Previsão de Preço Arcadia - Projeção AAA
Previsão de Preço Arcadia até $0.035641 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.01194 | $0.035641 |
| 2027 | $0.011494 | $0.030195 |
| 2028 | $0.020743 | $0.0508084 |
| 2029 | $0.045568 | $0.149899 |
| 2030 | $0.038754 | $0.112049 |
| 2031 | $0.045819 | $0.102288 |
| 2032 | $0.069939 | $0.189739 |
| 2033 | $0.162524 | $0.505397 |
| 2034 | $0.130662 | $0.292699 |
| 2035 | $0.154483 | $0.344872 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Arcadia hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.64, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Arcadia para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Arcadia'
'name_with_ticker' => 'Arcadia <small>AAA</small>'
'name_lang' => 'Arcadia'
'name_lang_with_ticker' => 'Arcadia <small>AAA</small>'
'name_with_lang' => 'Arcadia'
'name_with_lang_with_ticker' => 'Arcadia <small>AAA</small>'
'image' => '/uploads/coins/arcadia.png?1744550688'
'price_for_sd' => 0.03455
'ticker' => 'AAA'
'marketcap' => '$775.34K'
'low24h' => '$0.03141'
'high24h' => '$0.05545'
'volume24h' => '$75.31K'
'current_supply' => '22.44M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03455'
'change_24h_pct' => '-7.5788%'
'ath_price' => '$1.04'
'ath_days' => 212
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de jun. de 2025'
'ath_pct' => '-96.69%'
'fdv' => '$3.46M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.70'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.034854'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.030543'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01194'
'current_year_max_price_prediction' => '$0.035641'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.038754'
'grand_prediction_max_price' => '$0.112049'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.035213589566113
107 => 0.03534506432702
108 => 0.035641283676611
109 => 0.033110121766825
110 => 0.03424653915331
111 => 0.03491407789996
112 => 0.031898113557327
113 => 0.034854461981971
114 => 0.033066059869303
115 => 0.032459049331365
116 => 0.033276309053141
117 => 0.032957822144754
118 => 0.032684005803101
119 => 0.032531211579697
120 => 0.033131316921706
121 => 0.03310332129022
122 => 0.032121432475267
123 => 0.030840598543069
124 => 0.031270488452655
125 => 0.031114305418263
126 => 0.030548277953614
127 => 0.03092971212237
128 => 0.02925006908258
129 => 0.026360330532868
130 => 0.028269380333893
131 => 0.028195883993201
201 => 0.02815882380543
202 => 0.029593421968639
203 => 0.029455518457057
204 => 0.029205222233181
205 => 0.030543681067177
206 => 0.030055125587957
207 => 0.031560738456766
208 => 0.032552432469099
209 => 0.032300906789631
210 => 0.033233599801503
211 => 0.031280392247916
212 => 0.031929169448132
213 => 0.03206288152993
214 => 0.030527164692929
215 => 0.029478081177033
216 => 0.029408119266951
217 => 0.027589153023001
218 => 0.028560830108336
219 => 0.029415865732702
220 => 0.029006370022076
221 => 0.028876735913428
222 => 0.029539008460302
223 => 0.029590472709175
224 => 0.028417082380936
225 => 0.028661067386616
226 => 0.029678525419433
227 => 0.028635430054717
228 => 0.026608866149734
301 => 0.02610625028186
302 => 0.026039192060037
303 => 0.024676057963396
304 => 0.026139837477503
305 => 0.025500858492743
306 => 0.027519385449455
307 => 0.026366413677358
308 => 0.026316711368679
309 => 0.026241579039366
310 => 0.025068273212026
311 => 0.025325152620739
312 => 0.026179058899136
313 => 0.026483742279211
314 => 0.026451961306472
315 => 0.026174874292525
316 => 0.026301723308595
317 => 0.025893098430707
318 => 0.025748804481534
319 => 0.025293373086764
320 => 0.024624014752587
321 => 0.024717093134368
322 => 0.023390919127228
323 => 0.022668349142757
324 => 0.022468351294374
325 => 0.022200905813032
326 => 0.022498559973137
327 => 0.023387162242891
328 => 0.02231531937808
329 => 0.020477719967396
330 => 0.020588162823096
331 => 0.020836295129073
401 => 0.020373902218443
402 => 0.019936286134227
403 => 0.020316757814538
404 => 0.019538142719586
405 => 0.020930387043421
406 => 0.020892730736181
407 => 0.021411673324295
408 => 0.021736178774416
409 => 0.020988298771773
410 => 0.020800208973591
411 => 0.02090735347084
412 => 0.019136493598626
413 => 0.021266956292576
414 => 0.021285380622423
415 => 0.021127620324541
416 => 0.022262025938413
417 => 0.024655975613667
418 => 0.023755275449434
419 => 0.023406497122036
420 => 0.022743469266698
421 => 0.023626914517238
422 => 0.023559079705889
423 => 0.023252304963382
424 => 0.023066766641918
425 => 0.023408626688131
426 => 0.023024406398995
427 => 0.022955389877399
428 => 0.022537224847242
429 => 0.022387958956772
430 => 0.022277448433915
501 => 0.022155787206789
502 => 0.02242414155774
503 => 0.02181601529353
504 => 0.021082674634244
505 => 0.02102170529328
506 => 0.02119004700416
507 => 0.021115568328662
508 => 0.021021348718036
509 => 0.020841457822166
510 => 0.020788088036123
511 => 0.020961513949425
512 => 0.020765726204665
513 => 0.021054621687169
514 => 0.020976058101244
515 => 0.020537208296672
516 => 0.019990238957167
517 => 0.019985369782738
518 => 0.019867526135751
519 => 0.019717434533403
520 => 0.01967568248326
521 => 0.020284715550844
522 => 0.021545395773917
523 => 0.021297894080607
524 => 0.021476739419017
525 => 0.022356481474259
526 => 0.022636125018854
527 => 0.022437640654621
528 => 0.022165943014876
529 => 0.022177896332136
530 => 0.023106369415612
531 => 0.023164277142941
601 => 0.023310591288158
602 => 0.023498646313135
603 => 0.022469667238548
604 => 0.022129431510258
605 => 0.021968208946635
606 => 0.02147170585166
607 => 0.022007141872632
608 => 0.021695166232868
609 => 0.021737262405277
610 => 0.021709847217771
611 => 0.021724817763956
612 => 0.020929997882758
613 => 0.021219588472964
614 => 0.020738087949728
615 => 0.020093412800086
616 => 0.020091251622933
617 => 0.020249034952497
618 => 0.02015517925401
619 => 0.019902615982632
620 => 0.019938491403266
621 => 0.019624184968618
622 => 0.019976653895134
623 => 0.019986761442752
624 => 0.019851041706931
625 => 0.020394068719567
626 => 0.020616547329712
627 => 0.020527213692196
628 => 0.020610279443558
629 => 0.021308178893367
630 => 0.021421966955174
701 => 0.021472504095811
702 => 0.021404791022245
703 => 0.020623035764349
704 => 0.020657709934317
705 => 0.020403293881767
706 => 0.020188339127065
707 => 0.020196936189964
708 => 0.020307450876042
709 => 0.020790074991749
710 => 0.021805728991008
711 => 0.021844272317847
712 => 0.021890987954363
713 => 0.021700971983253
714 => 0.021643661348159
715 => 0.021719268868979
716 => 0.02210069511055
717 => 0.023081826960086
718 => 0.022735029436867
719 => 0.022453077652265
720 => 0.022700425381016
721 => 0.022662348136951
722 => 0.022340937877452
723 => 0.022331916961958
724 => 0.021715027912905
725 => 0.021486978077354
726 => 0.021296402565533
727 => 0.021088299081724
728 => 0.020964928360831
729 => 0.021154481859113
730 => 0.021197834986902
731 => 0.020783372950079
801 => 0.020726883305949
802 => 0.021065341952004
803 => 0.020916398920885
804 => 0.021069590522
805 => 0.021105132287512
806 => 0.021099409244668
807 => 0.020943895614182
808 => 0.021043015364771
809 => 0.020808567605609
810 => 0.020553640880436
811 => 0.020391013512272
812 => 0.020249099564159
813 => 0.020327841670659
814 => 0.020047140438726
815 => 0.019957338465231
816 => 0.021009435823536
817 => 0.021786631454069
818 => 0.021775330721798
819 => 0.021706540420409
820 => 0.021604331986149
821 => 0.022093217926967
822 => 0.021922899840769
823 => 0.02204682047903
824 => 0.0220783634824
825 => 0.022173834653458
826 => 0.022207957391086
827 => 0.022104814778208
828 => 0.021758655571579
829 => 0.020896059740489
830 => 0.020494519052583
831 => 0.020362003937385
901 => 0.020366820610141
902 => 0.020233955272973
903 => 0.020273090069375
904 => 0.020220345787864
905 => 0.020120460878893
906 => 0.020321674058999
907 => 0.020344862003575
908 => 0.02029789644302
909 => 0.020308958532709
910 => 0.019920103750567
911 => 0.019949667535105
912 => 0.019785052626013
913 => 0.01975418931502
914 => 0.019338057159495
915 => 0.018600818726662
916 => 0.019009320383918
917 => 0.018515907825978
918 => 0.018329045013866
919 => 0.019213624503275
920 => 0.019124837256954
921 => 0.018972872086141
922 => 0.018748083926192
923 => 0.018664707811069
924 => 0.018158140929247
925 => 0.01812821025544
926 => 0.018379278480527
927 => 0.01826341913338
928 => 0.018100708730618
929 => 0.017511388145507
930 => 0.016848796690501
1001 => 0.016868796161626
1002 => 0.017079554175511
1003 => 0.017692361525473
1004 => 0.017452927092168
1005 => 0.017279214663612
1006 => 0.017246683547519
1007 => 0.017653878573917
1008 => 0.018230144846265
1009 => 0.01850051608802
1010 => 0.018232586398738
1011 => 0.01792480319805
1012 => 0.017943536535345
1013 => 0.018068161035692
1014 => 0.018081257308583
1015 => 0.017880922085559
1016 => 0.01793731527737
1017 => 0.017851648862307
1018 => 0.017325914231198
1019 => 0.017316405358843
1020 => 0.017187381601753
1021 => 0.017183474813665
1022 => 0.01696397321637
1023 => 0.016933263425565
1024 => 0.01649742968134
1025 => 0.016784296771615
1026 => 0.016591881388657
1027 => 0.016301866020339
1028 => 0.016251867261527
1029 => 0.016250364238462
1030 => 0.016548145175475
1031 => 0.01678081702799
1101 => 0.016595228536624
1102 => 0.016552973634622
1103 => 0.017004145440168
1104 => 0.01694672971539
1105 => 0.016897008068023
1106 => 0.01817854652212
1107 => 0.01716410883601
1108 => 0.016721756102787
1109 => 0.016174260594918
1110 => 0.016352527892992
1111 => 0.016390091431988
1112 => 0.015073463429046
1113 => 0.014539307612227
1114 => 0.014356005465133
1115 => 0.014250512487968
1116 => 0.014298586962359
1117 => 0.013817784076995
1118 => 0.014140891567706
1119 => 0.013724556910236
1120 => 0.013654757050041
1121 => 0.014399214991564
1122 => 0.014502801965066
1123 => 0.014060867754154
1124 => 0.01434466106021
1125 => 0.014241753662412
1126 => 0.013731693772985
1127 => 0.013712213236956
1128 => 0.013456283113914
1129 => 0.01305580202919
1130 => 0.012872771427129
1201 => 0.012777447500431
1202 => 0.012816780010413
1203 => 0.012796892289771
1204 => 0.012667111460013
1205 => 0.012804331175017
1206 => 0.012453791506283
1207 => 0.012314203785703
1208 => 0.012251155250727
1209 => 0.011940031118415
1210 => 0.012435167970454
1211 => 0.012532716167875
1212 => 0.012630456565379
1213 => 0.013481219995451
1214 => 0.013438718258717
1215 => 0.013822913259606
1216 => 0.013807984148361
1217 => 0.013698405510561
1218 => 0.013236111262494
1219 => 0.013420373510171
1220 => 0.012853242952533
1221 => 0.013278175727445
1222 => 0.013084254154592
1223 => 0.013212610648595
1224 => 0.012981814098938
1225 => 0.013109546438875
1226 => 0.012555848464283
1227 => 0.01203881308635
1228 => 0.012246883215634
1229 => 0.012473079241871
1230 => 0.012963529860428
1231 => 0.012671421518145
]
'min_raw' => 0.011940031118415
'max_raw' => 0.035641283676611
'avg_raw' => 0.023790657397513
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01194'
'max' => '$0.035641'
'avg' => '$0.02379'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.022618688881585
'max_diff' => 0.001082563676611
'year' => 2026
]
1 => [
'items' => [
101 => 0.01277647472387
102 => 0.012424564070387
103 => 0.011698471873945
104 => 0.011702581476923
105 => 0.011590888011279
106 => 0.011494368549449
107 => 0.012704973675146
108 => 0.012554415790931
109 => 0.012314521506962
110 => 0.012635629539074
111 => 0.012720535599434
112 => 0.012722952755609
113 => 0.012957224886839
114 => 0.013082255965273
115 => 0.013104293234762
116 => 0.013472925495038
117 => 0.013596486166305
118 => 0.014105415084295
119 => 0.013071647951811
120 => 0.013050358198007
121 => 0.012640148187596
122 => 0.01237998651383
123 => 0.012657961679977
124 => 0.012904209729789
125 => 0.012647799800918
126 => 0.012681281524519
127 => 0.01233707214447
128 => 0.012460110801281
129 => 0.012566088267623
130 => 0.012507573739777
131 => 0.012419974659455
201 => 0.01288402019788
202 => 0.012857836929993
203 => 0.013289966803735
204 => 0.013626842942221
205 => 0.014230585206201
206 => 0.013600548679942
207 => 0.013577587644757
208 => 0.013802035446759
209 => 0.013596451804516
210 => 0.013726373569907
211 => 0.014209652801214
212 => 0.01421986372983
213 => 0.014048817519472
214 => 0.014038409342027
215 => 0.014071260637767
216 => 0.014263671703006
217 => 0.014196437364617
218 => 0.014274242643166
219 => 0.014371539335388
220 => 0.014773999707364
221 => 0.014871031540524
222 => 0.014635294491182
223 => 0.014656578907302
224 => 0.014568406779721
225 => 0.014483233609272
226 => 0.014674690457899
227 => 0.015024581611859
228 => 0.01502240495715
301 => 0.015103572903956
302 => 0.015154139862385
303 => 0.014937069459532
304 => 0.014795764609175
305 => 0.014849949880263
306 => 0.014936593308735
307 => 0.014821852584161
308 => 0.014113619679016
309 => 0.014328452300344
310 => 0.014292693647376
311 => 0.01424176897715
312 => 0.014457784839146
313 => 0.014436949582283
314 => 0.013812852748464
315 => 0.013852805402888
316 => 0.013815282401707
317 => 0.013936526895007
318 => 0.013589904203988
319 => 0.013696523009206
320 => 0.013763393324349
321 => 0.013802780453691
322 => 0.01394507377288
323 => 0.013928377294216
324 => 0.013944035896323
325 => 0.014155019324636
326 => 0.015222101104277
327 => 0.015280180011159
328 => 0.014994178232307
329 => 0.015108430301823
330 => 0.014889091312534
331 => 0.015036335045487
401 => 0.015137075467989
402 => 0.014681848869974
403 => 0.014654893305236
404 => 0.014434649025914
405 => 0.014552995826348
406 => 0.014364697557422
407 => 0.014410899366223
408 => 0.014281715081015
409 => 0.014514221074054
410 => 0.014774198902051
411 => 0.014839879568238
412 => 0.014667102012804
413 => 0.014541999676073
414 => 0.014322361184046
415 => 0.01468762489125
416 => 0.014794439130447
417 => 0.014687063841524
418 => 0.014662182640884
419 => 0.014615032810631
420 => 0.014672185700264
421 => 0.01479385739716
422 => 0.014736479271828
423 => 0.014774378534482
424 => 0.014629945626792
425 => 0.014937141318868
426 => 0.015425042008554
427 => 0.015426610689051
428 => 0.015369232254429
429 => 0.015345754235217
430 => 0.015404627991154
501 => 0.015436564588622
502 => 0.015626951519722
503 => 0.015831244282142
504 => 0.016784589464442
505 => 0.016516893952125
506 => 0.01736275851262
507 => 0.018031727558205
508 => 0.018232322124505
509 => 0.018047784562213
510 => 0.017416491530134
511 => 0.017385517282238
512 => 0.018328935597207
513 => 0.018062376711932
514 => 0.018030670380712
515 => 0.017693368585222
516 => 0.017892755721996
517 => 0.017849146830351
518 => 0.017780308061469
519 => 0.018160724829006
520 => 0.018872831057798
521 => 0.018761842623951
522 => 0.018678994906689
523 => 0.018315980326257
524 => 0.018534596185919
525 => 0.018456751265605
526 => 0.018791222444884
527 => 0.018593089127722
528 => 0.018060357266208
529 => 0.018145196571061
530 => 0.018132373280806
531 => 0.018396275685598
601 => 0.01831705873414
602 => 0.018116904899647
603 => 0.018870397156124
604 => 0.018821469560132
605 => 0.018890837704843
606 => 0.018921375707425
607 => 0.01938001316592
608 => 0.019567902257903
609 => 0.019610556371245
610 => 0.019789036476766
611 => 0.019606115623628
612 => 0.020337929456536
613 => 0.020824542952899
614 => 0.021389769569825
615 => 0.022215717575747
616 => 0.02252628166642
617 => 0.022470181043192
618 => 0.023096405394868
619 => 0.024221716634644
620 => 0.02269763861863
621 => 0.024302496470243
622 => 0.023794417003397
623 => 0.022589769727465
624 => 0.022512204644754
625 => 0.023328005766257
626 => 0.025137374135804
627 => 0.024684147880919
628 => 0.025138115451593
629 => 0.024608538166494
630 => 0.024582240190661
701 => 0.025112395064895
702 => 0.026351130825779
703 => 0.025762653899098
704 => 0.02491892792424
705 => 0.025541922054245
706 => 0.02500222688345
707 => 0.02378614261248
708 => 0.024683801307343
709 => 0.024083562501936
710 => 0.024258744095804
711 => 0.025520356785986
712 => 0.02536855620929
713 => 0.025565000211889
714 => 0.025218281689136
715 => 0.024894391916392
716 => 0.024289827603195
717 => 0.024110845914718
718 => 0.024160310014326
719 => 0.024110821402766
720 => 0.023772573225765
721 => 0.023699528564147
722 => 0.023577784261289
723 => 0.023615517911443
724 => 0.023386603004519
725 => 0.023818612730118
726 => 0.023898797542046
727 => 0.024213178193716
728 => 0.02424581823589
729 => 0.025121363875861
730 => 0.024639128050312
731 => 0.024962653476328
801 => 0.024933714317086
802 => 0.022615878086745
803 => 0.022935255468844
804 => 0.023432106449246
805 => 0.02320827575604
806 => 0.022891831524163
807 => 0.022636285840257
808 => 0.02224910799825
809 => 0.022794053375782
810 => 0.023510598598757
811 => 0.024263991005224
812 => 0.025169142617368
813 => 0.024967123314664
814 => 0.024247069825445
815 => 0.024279370898972
816 => 0.024479043425512
817 => 0.024220449361481
818 => 0.024144184923643
819 => 0.024468565862873
820 => 0.024470799696125
821 => 0.024173255973321
822 => 0.023842590575351
823 => 0.02384120507526
824 => 0.02378236636154
825 => 0.024619005442954
826 => 0.02507907234398
827 => 0.025131818272748
828 => 0.025075522122717
829 => 0.025097188276549
830 => 0.024829485483725
831 => 0.025441374683325
901 => 0.026002904722448
902 => 0.025852402676623
903 => 0.025626778714806
904 => 0.025447058361696
905 => 0.025810066273025
906 => 0.025793902102161
907 => 0.025998000247424
908 => 0.025988741176627
909 => 0.025920110646894
910 => 0.025852405127635
911 => 0.026120849858413
912 => 0.026043542087039
913 => 0.025966114235344
914 => 0.025810820825158
915 => 0.025831927778753
916 => 0.025606342774093
917 => 0.025501976828871
918 => 0.023932563421636
919 => 0.02351316487716
920 => 0.023645116196897
921 => 0.023688557997468
922 => 0.023506035213439
923 => 0.023767725999481
924 => 0.023726941767676
925 => 0.023885609355653
926 => 0.023786480735231
927 => 0.02379054900839
928 => 0.024082065144603
929 => 0.024166693519144
930 => 0.024123650844818
1001 => 0.0241537964585
1002 => 0.024848489402123
1003 => 0.02474972628057
1004 => 0.024697260340667
1005 => 0.024711793764578
1006 => 0.024889302706059
1007 => 0.024938995518045
1008 => 0.024728443581809
1009 => 0.024827741092124
1010 => 0.025250537288314
1011 => 0.025398492028788
1012 => 0.025870692538078
1013 => 0.025670093369037
1014 => 0.02603830182554
1015 => 0.027170049089318
1016 => 0.028074167114577
1017 => 0.027242702814291
1018 => 0.028903000428944
1019 => 0.030195780277499
1020 => 0.030146161233674
1021 => 0.029920735164542
1022 => 0.028448939677293
1023 => 0.027094571526691
1024 => 0.028227557994179
1025 => 0.028230446209685
1026 => 0.028133121667332
1027 => 0.02752864729342
1028 => 0.028112087269394
1029 => 0.028158398615944
1030 => 0.028132476577057
1031 => 0.027669027491844
1101 => 0.026961426398432
1102 => 0.027099689958327
1103 => 0.027326168489935
1104 => 0.02689739738123
1105 => 0.026760379031841
1106 => 0.027015122212163
1107 => 0.027835957817009
1108 => 0.027680783600689
1109 => 0.027676731374793
1110 => 0.028340632476316
1111 => 0.02786542256645
1112 => 0.027101433904599
1113 => 0.026908516691709
1114 => 0.026223790550555
1115 => 0.026696733335161
1116 => 0.026713753704015
1117 => 0.026454727774245
1118 => 0.027122452431226
1119 => 0.027116299230961
1120 => 0.027750204415066
1121 => 0.028961993043159
1122 => 0.028603607517335
1123 => 0.028186844143036
1124 => 0.028232157877417
1125 => 0.028729137699753
1126 => 0.028428652354223
1127 => 0.028536708979534
1128 => 0.028728974143109
1129 => 0.028844972489969
1130 => 0.028215467500417
1201 => 0.028068699774649
1202 => 0.027768464516197
1203 => 0.027690138741424
1204 => 0.027934674094818
1205 => 0.02787024766876
1206 => 0.026712323207919
1207 => 0.02659131365913
1208 => 0.026595024849229
1209 => 0.02629074058511
1210 => 0.025826634045736
1211 => 0.027046278320849
1212 => 0.026948323816647
1213 => 0.026840189625084
1214 => 0.026853435446545
1215 => 0.027382841688792
1216 => 0.027075759332633
1217 => 0.02789218810629
1218 => 0.027724354894522
1219 => 0.027552217394164
1220 => 0.027528422748178
1221 => 0.027462164496622
1222 => 0.027234940298425
1223 => 0.026960553425046
1224 => 0.026779379444257
1225 => 0.024702561984685
1226 => 0.02508800722489
1227 => 0.025531426839307
1228 => 0.025684493513311
1229 => 0.025422662375536
1230 => 0.027245278987624
1231 => 0.027578288605823
]
'min_raw' => 0.011494368549449
'max_raw' => 0.030195780277499
'avg_raw' => 0.020845074413474
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011494'
'max' => '$0.030195'
'avg' => '$0.020845'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00044566256896568
'max_diff' => -0.0054455033991119
'year' => 2027
]
2 => [
'items' => [
101 => 0.026569580750618
102 => 0.026380892696179
103 => 0.02725764934506
104 => 0.026728857906644
105 => 0.026966972658984
106 => 0.02645229880623
107 => 0.027498076340459
108 => 0.027490109267805
109 => 0.027083278187033
110 => 0.027427129030642
111 => 0.027367376484812
112 => 0.026908065196601
113 => 0.027512637327554
114 => 0.027512937187788
115 => 0.027121371117816
116 => 0.026664107672923
117 => 0.026582359769056
118 => 0.026520773704779
119 => 0.026951826262466
120 => 0.027338306637823
121 => 0.028057450799751
122 => 0.028238260728504
123 => 0.028943973917624
124 => 0.028523756074054
125 => 0.028710033201376
126 => 0.028912263373593
127 => 0.029009219954922
128 => 0.028851234408624
129 => 0.029947497474464
130 => 0.030040055665853
131 => 0.030071089626801
201 => 0.029701435889054
202 => 0.030029774926708
203 => 0.029876155964436
204 => 0.030275829827691
205 => 0.030338503792742
206 => 0.030285421174035
207 => 0.030305314879783
208 => 0.029369847747145
209 => 0.029321338841336
210 => 0.028659916468588
211 => 0.02892945097447
212 => 0.028425569134848
213 => 0.02858535525675
214 => 0.028655787456787
215 => 0.02861899767248
216 => 0.028944690051026
217 => 0.028667784994705
218 => 0.027936987023667
219 => 0.02720598994721
220 => 0.027196812874373
221 => 0.027004354247312
222 => 0.026865241910503
223 => 0.026892039881847
224 => 0.02698647942818
225 => 0.026859752912388
226 => 0.02688679643973
227 => 0.027335899183683
228 => 0.027425963536129
229 => 0.027119889676104
301 => 0.025890958961859
302 => 0.025589376282044
303 => 0.02580614793165
304 => 0.025702545045021
305 => 0.020743959852724
306 => 0.021908905891921
307 => 0.02121673451326
308 => 0.02153571892982
309 => 0.020829191189117
310 => 0.021166383259272
311 => 0.021104116196198
312 => 0.022977314953966
313 => 0.022948067531864
314 => 0.022962066725085
315 => 0.022293848757941
316 => 0.023358338123697
317 => 0.023882743863067
318 => 0.023785690317317
319 => 0.023810116603846
320 => 0.02339039207312
321 => 0.022966130576015
322 => 0.022495559282349
323 => 0.02336982258161
324 => 0.023272619426905
325 => 0.023495568491209
326 => 0.024062590734411
327 => 0.024146086913631
328 => 0.024258306625237
329 => 0.024218083846969
330 => 0.025176353610264
331 => 0.025060300819061
401 => 0.025339954655192
402 => 0.024764685496883
403 => 0.024113713839206
404 => 0.024237442269463
405 => 0.024225526226668
406 => 0.024073821325291
407 => 0.023936868923512
408 => 0.023708881760649
409 => 0.024430266879697
410 => 0.024400979961268
411 => 0.024875101128322
412 => 0.024791295606678
413 => 0.024231621822449
414 => 0.024251610681143
415 => 0.02438604536218
416 => 0.024851325328198
417 => 0.024989452100788
418 => 0.024925466276324
419 => 0.025076915976742
420 => 0.02519661564485
421 => 0.025091948412128
422 => 0.026573815703822
423 => 0.025958441088883
424 => 0.026258370394455
425 => 0.026329901766548
426 => 0.026146675661075
427 => 0.026186410842517
428 => 0.026246598815213
429 => 0.026612048399411
430 => 0.027571093852033
501 => 0.027995848554557
502 => 0.029273744034126
503 => 0.027960578589383
504 => 0.027882660786311
505 => 0.028112848350928
506 => 0.028863108276409
507 => 0.029471123477681
508 => 0.029672837197181
509 => 0.029699496995144
510 => 0.0300779253426
511 => 0.030294833414092
512 => 0.030031974187566
513 => 0.029809228515593
514 => 0.029011381166797
515 => 0.029103734169886
516 => 0.029739954779105
517 => 0.030638653862834
518 => 0.031409831170376
519 => 0.031139791755518
520 => 0.033200001872773
521 => 0.033404263290695
522 => 0.0333760409673
523 => 0.033841378875502
524 => 0.032917777892139
525 => 0.032522920577825
526 => 0.029857388658144
527 => 0.03060629440194
528 => 0.031694872882241
529 => 0.031550795438413
530 => 0.030760240648233
531 => 0.031409231463677
601 => 0.031194654804272
602 => 0.031025409290206
603 => 0.031800755800002
604 => 0.030948230463002
605 => 0.031686368289856
606 => 0.030739698891857
607 => 0.031141025272818
608 => 0.030913213009012
609 => 0.031060635463316
610 => 0.030198806807792
611 => 0.030663828630605
612 => 0.030179460371113
613 => 0.030179230717491
614 => 0.030168538261317
615 => 0.030738395370591
616 => 0.030756978390466
617 => 0.030335853125706
618 => 0.030275162395841
619 => 0.030499567833451
620 => 0.030236847837887
621 => 0.030359772870272
622 => 0.030240571111892
623 => 0.030213736285308
624 => 0.029999911821515
625 => 0.029907790363287
626 => 0.029943913560736
627 => 0.029820606465058
628 => 0.0297463094797
629 => 0.030153758720901
630 => 0.029936075027783
701 => 0.030120395572907
702 => 0.029910339048631
703 => 0.029182191618217
704 => 0.028763426330967
705 => 0.027388023334217
706 => 0.027778085917913
707 => 0.028036697814453
708 => 0.027951226584189
709 => 0.028134851859771
710 => 0.028146124960349
711 => 0.028086426511419
712 => 0.028017303355403
713 => 0.027983658025805
714 => 0.028234422747528
715 => 0.02838000010884
716 => 0.028062652978051
717 => 0.027988302985466
718 => 0.028309158455909
719 => 0.028504880107527
720 => 0.029949978816579
721 => 0.029842921236605
722 => 0.03011161475335
723 => 0.030081363986803
724 => 0.030362997598586
725 => 0.030823349526607
726 => 0.029887325340517
727 => 0.030049786773941
728 => 0.030009954982248
729 => 0.030444828039497
730 => 0.030446185665714
731 => 0.030185457544373
801 => 0.030326802488783
802 => 0.030247907618409
803 => 0.030390481312456
804 => 0.029841491417354
805 => 0.030510101849791
806 => 0.030889160880677
807 => 0.030894424115689
808 => 0.031074095087931
809 => 0.03125665120157
810 => 0.031607051764413
811 => 0.031246878720052
812 => 0.030598962475387
813 => 0.030645739935495
814 => 0.030265866878311
815 => 0.030272252613032
816 => 0.030238165060633
817 => 0.030340464371375
818 => 0.029863940363273
819 => 0.029975779595512
820 => 0.029819204015447
821 => 0.030049446409209
822 => 0.029801743653953
823 => 0.030009935774152
824 => 0.030099784591552
825 => 0.030431328662064
826 => 0.029752774325168
827 => 0.028369156098147
828 => 0.028660009424216
829 => 0.028229814508924
830 => 0.028269630686202
831 => 0.028350065701001
901 => 0.028089349501338
902 => 0.028139085936122
903 => 0.028137309000682
904 => 0.028121996331035
905 => 0.028054173978165
906 => 0.027955818148261
907 => 0.028347637502272
908 => 0.02841421524562
909 => 0.028562209321844
910 => 0.029002539307347
911 => 0.0289585399581
912 => 0.029030304722238
913 => 0.028873642645065
914 => 0.028276897790644
915 => 0.028309303907265
916 => 0.027905199113727
917 => 0.028551875453722
918 => 0.0283987339607
919 => 0.028300002643905
920 => 0.028273062889378
921 => 0.028714484367746
922 => 0.028846564592508
923 => 0.028764261060011
924 => 0.028595454113681
925 => 0.028919613353927
926 => 0.029006344691437
927 => 0.029025760639377
928 => 0.029600108661724
929 => 0.029057860313615
930 => 0.02918838488049
1001 => 0.030206700291366
1002 => 0.029283228731623
1003 => 0.029772412212692
1004 => 0.029748469226882
1005 => 0.02999871894273
1006 => 0.02972794144594
1007 => 0.029731298057537
1008 => 0.029953502851826
1009 => 0.029641456293093
1010 => 0.029564189176829
1011 => 0.029457445209109
1012 => 0.029690516757476
1013 => 0.029830232609802
1014 => 0.030956239769566
1015 => 0.031683691746939
1016 => 0.031652111138083
1017 => 0.031940698786603
1018 => 0.031810687407785
1019 => 0.031390846370312
1020 => 0.032107463827118
1021 => 0.031880696079237
1022 => 0.031899390536849
1023 => 0.031898694728203
1024 => 0.032049475456164
1025 => 0.031942633491553
1026 => 0.031732037012202
1027 => 0.031871840783321
1028 => 0.032287008002782
1029 => 0.033575699790873
1030 => 0.034296868788384
1031 => 0.033532284511696
1101 => 0.034059684507564
1102 => 0.033743432441876
1103 => 0.033685960033857
1104 => 0.034017206205816
1105 => 0.034349032180348
1106 => 0.034327896300294
1107 => 0.034087007682235
1108 => 0.033950935814216
1109 => 0.034981317586275
1110 => 0.035740485323832
1111 => 0.035688715173656
1112 => 0.035917211779979
1113 => 0.036588084883279
1114 => 0.036649421112189
1115 => 0.036641694157144
1116 => 0.036489665914016
1117 => 0.037150227608096
1118 => 0.037701279794774
1119 => 0.03645447576825
1120 => 0.036929242419687
1121 => 0.037142380465544
1122 => 0.037455330352069
1123 => 0.037983329267129
1124 => 0.03855687613368
1125 => 0.038637981949231
1126 => 0.038580433491827
1127 => 0.038202163915569
1128 => 0.038829745740786
1129 => 0.039197368455393
1130 => 0.039416279369046
1201 => 0.039971401022765
1202 => 0.037143696733554
1203 => 0.035142107091628
1204 => 0.034829529965737
1205 => 0.035465167842726
1206 => 0.035632780481771
1207 => 0.03556521603714
1208 => 0.033312244918584
1209 => 0.034817668539061
1210 => 0.036437377775081
1211 => 0.03649959740331
1212 => 0.037310457713384
1213 => 0.037574507068632
1214 => 0.038227355900132
1215 => 0.03818652002797
1216 => 0.038345478329347
1217 => 0.038308936568634
1218 => 0.039518201555448
1219 => 0.040852200413493
1220 => 0.040806008274895
1221 => 0.040614230155893
1222 => 0.04089905336564
1223 => 0.042275883147147
1224 => 0.042149126724113
1225 => 0.042272259792004
1226 => 0.043895619699127
1227 => 0.046006218498641
1228 => 0.045025633455612
1229 => 0.04715322084324
1230 => 0.048492424325191
1231 => 0.050808438271
]
'min_raw' => 0.020743959852724
'max_raw' => 0.050808438271
'avg_raw' => 0.035776199061862
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.020743'
'max' => '$0.0508084'
'avg' => '$0.035776'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0092495913032749
'max_diff' => 0.020612657993501
'year' => 2028
]
3 => [
'items' => [
101 => 0.050518461918375
102 => 0.051420069151783
103 => 0.049999343727287
104 => 0.04673707097666
105 => 0.046220803826395
106 => 0.047254383735192
107 => 0.049795339085717
108 => 0.047174360008712
109 => 0.04770458066242
110 => 0.047551877078482
111 => 0.047543740153442
112 => 0.047854293486938
113 => 0.04740381967933
114 => 0.045568508348447
115 => 0.046409620715833
116 => 0.046084826837252
117 => 0.046445209860526
118 => 0.048390048403868
119 => 0.047530188924696
120 => 0.0466243968127
121 => 0.047760461132504
122 => 0.049207061405669
123 => 0.049116535760365
124 => 0.048940878171691
125 => 0.049931050801914
126 => 0.051566525893684
127 => 0.052008588239118
128 => 0.052334909624951
129 => 0.052379903830813
130 => 0.052843372114928
131 => 0.050351186342195
201 => 0.054306349167392
202 => 0.054989296528135
203 => 0.054860930729583
204 => 0.055619997978231
205 => 0.055396661138002
206 => 0.055073081096985
207 => 0.056276364144327
208 => 0.054896897230485
209 => 0.052938917616341
210 => 0.051864731275577
211 => 0.053279306501236
212 => 0.054143138229674
213 => 0.054714076052155
214 => 0.054886841492268
215 => 0.050544647629389
216 => 0.04820444596641
217 => 0.049704488401913
218 => 0.051534643700625
219 => 0.050341019737104
220 => 0.050387807536645
221 => 0.048686013443522
222 => 0.051685214716407
223 => 0.051248256318201
224 => 0.05351519726106
225 => 0.052974173611709
226 => 0.05482277594847
227 => 0.05433597699979
228 => 0.056356652219198
301 => 0.057162754271817
302 => 0.058516325077932
303 => 0.059512017272934
304 => 0.060096706774396
305 => 0.060061604209843
306 => 0.062378435305788
307 => 0.061012280952423
308 => 0.059296069106736
309 => 0.059265028249027
310 => 0.060153878682818
311 => 0.062016665347835
312 => 0.062499658827631
313 => 0.062769586291654
314 => 0.06235618298426
315 => 0.060873320346846
316 => 0.060233027778295
317 => 0.060778575597762
318 => 0.060111417494012
319 => 0.061263119552587
320 => 0.062844652469294
321 => 0.062518072176053
322 => 0.063609781132705
323 => 0.064739585051707
324 => 0.06635525539855
325 => 0.066777651455315
326 => 0.067475856074863
327 => 0.068194537976647
328 => 0.06842535923448
329 => 0.068866068635313
330 => 0.068863745879231
331 => 0.070191853321805
401 => 0.071656796959028
402 => 0.072209779268557
403 => 0.073481331597695
404 => 0.071303842794554
405 => 0.072955493064925
406 => 0.074445322952288
407 => 0.072669086342097
408 => 0.075117214699194
409 => 0.075212269975722
410 => 0.076647491796471
411 => 0.07519261952591
412 => 0.074328721015768
413 => 0.076822763644694
414 => 0.078029552311224
415 => 0.077666057743693
416 => 0.074899846136843
417 => 0.073289792333259
418 => 0.069075970973096
419 => 0.074067424397745
420 => 0.0764986157582
421 => 0.074893549938552
422 => 0.075703051776879
423 => 0.08011943132494
424 => 0.081800902717442
425 => 0.081451168422174
426 => 0.081510267760958
427 => 0.082417559203487
428 => 0.086440989114186
429 => 0.08403005664932
430 => 0.085873124182794
501 => 0.086850680556874
502 => 0.087758689396929
503 => 0.085528906664896
504 => 0.082627992092536
505 => 0.08170915067536
506 => 0.074733957775178
507 => 0.074370868692996
508 => 0.074167055788442
509 => 0.072882044255138
510 => 0.071872377184243
511 => 0.071069452442932
512 => 0.068962338148108
513 => 0.069673427367623
514 => 0.066315126970606
515 => 0.068463648553759
516 => 0.063103720031121
517 => 0.06756762777591
518 => 0.065138125739401
519 => 0.066769471015669
520 => 0.066763779405682
521 => 0.063759955533582
522 => 0.062027412612359
523 => 0.063131456393342
524 => 0.064315078965659
525 => 0.064507117745833
526 => 0.066041715306552
527 => 0.066469988499685
528 => 0.06517230073033
529 => 0.062992647426068
530 => 0.06349893117605
531 => 0.062017152788325
601 => 0.059420393159621
602 => 0.06128543126003
603 => 0.061922237267446
604 => 0.062203487078359
605 => 0.059649872223387
606 => 0.058847470994279
607 => 0.058420279312701
608 => 0.062663007815214
609 => 0.062895434059999
610 => 0.061706308529916
611 => 0.067081268683401
612 => 0.065864749661168
613 => 0.067223899463399
614 => 0.063452991232354
615 => 0.063597045004981
616 => 0.061811836616919
617 => 0.062811434026566
618 => 0.062104950795956
619 => 0.062730676434081
620 => 0.063105733801609
621 => 0.064890649254541
622 => 0.067588008643233
623 => 0.064624042407558
624 => 0.063332599873897
625 => 0.064133803558432
626 => 0.066267514551736
627 => 0.069500195929248
628 => 0.067586383489985
629 => 0.068435700951887
630 => 0.068621239033809
701 => 0.067210064594284
702 => 0.069552227943712
703 => 0.070807412310371
704 => 0.072094971746756
705 => 0.073212923528773
706 => 0.071580692193825
707 => 0.07332741369339
708 => 0.071919864502592
709 => 0.070657147368686
710 => 0.070659062389351
711 => 0.069866941485898
712 => 0.068332107421801
713 => 0.068049060471802
714 => 0.069521506450585
715 => 0.070702268684416
716 => 0.070799521917464
717 => 0.071453252559867
718 => 0.07184012362008
719 => 0.07563198593587
720 => 0.077157104327211
721 => 0.079021990227129
722 => 0.079748468384357
723 => 0.08193490718078
724 => 0.080169180278792
725 => 0.079787154156603
726 => 0.07448356881516
727 => 0.075352030617709
728 => 0.07674252175769
729 => 0.074506497501909
730 => 0.075924740230365
731 => 0.07620473138745
801 => 0.074430518253322
802 => 0.075378202147484
803 => 0.072861434693283
804 => 0.067642867296203
805 => 0.069558037701031
806 => 0.070968247758373
807 => 0.0689557041289
808 => 0.072563110688535
809 => 0.070455738248383
810 => 0.069787802356572
811 => 0.067181946306276
812 => 0.068411810053418
813 => 0.07007521838138
814 => 0.069047425426673
815 => 0.071180250131578
816 => 0.074200898717294
817 => 0.076353592782209
818 => 0.076518849902404
819 => 0.075134811837965
820 => 0.077352741669042
821 => 0.077368896866492
822 => 0.074867062956528
823 => 0.073334703616945
824 => 0.07298654835088
825 => 0.073856308465371
826 => 0.074912357810938
827 => 0.076577453291354
828 => 0.077583635617172
829 => 0.080207225485037
830 => 0.080917093679065
831 => 0.081697023605713
901 => 0.082739250509196
902 => 0.083990711128321
903 => 0.081252586539368
904 => 0.08136137733379
905 => 0.078811673628473
906 => 0.076086949554844
907 => 0.078154675485078
908 => 0.080857952080806
909 => 0.08023781744289
910 => 0.080168039627924
911 => 0.080285386557946
912 => 0.079817825292662
913 => 0.077703063018411
914 => 0.076641042643394
915 => 0.078011319877459
916 => 0.078739561243341
917 => 0.079869000092504
918 => 0.079729772914783
919 => 0.082639086097348
920 => 0.083769557227029
921 => 0.083480334336469
922 => 0.08353355830887
923 => 0.085580222290818
924 => 0.087856533567295
925 => 0.089988599463445
926 => 0.092157428467369
927 => 0.089542820452301
928 => 0.088215283748854
929 => 0.089584962762744
930 => 0.088858191798346
1001 => 0.093034433334051
1002 => 0.09332358723692
1003 => 0.097499526782827
1004 => 0.10146299067352
1005 => 0.098973610016609
1006 => 0.10132098385191
1007 => 0.10385986003899
1008 => 0.10875776412168
1009 => 0.10710832233697
1010 => 0.10584487577994
1011 => 0.10465092488847
1012 => 0.10713534715925
1013 => 0.110331516721
1014 => 0.11101994103207
1015 => 0.11213545141433
1016 => 0.1109626286455
1017 => 0.11237516448836
1018 => 0.11736203671336
1019 => 0.11601453981783
1020 => 0.11410087760524
1021 => 0.11803753428257
1022 => 0.11946219503074
1023 => 0.12946121026197
1024 => 0.14208538003012
1025 => 0.13685889085134
1026 => 0.13361464036032
1027 => 0.13437711618036
1028 => 0.13898703562457
1029 => 0.14046759543852
1030 => 0.13644292348463
1031 => 0.13786450565838
1101 => 0.14569756320262
1102 => 0.14989974726053
1103 => 0.14419261688127
1104 => 0.12844687051298
1105 => 0.11392857326082
1106 => 0.11777947945954
1107 => 0.11734290620414
1108 => 0.12575854934159
1109 => 0.11598240246252
1110 => 0.11614700770364
1111 => 0.12473667742885
1112 => 0.12244510081038
1113 => 0.11873304017142
1114 => 0.1139556754115
1115 => 0.10512427480003
1116 => 0.097302056996623
1117 => 0.11264322745828
1118 => 0.11198168829186
1119 => 0.11102368154428
1120 => 0.11315562189386
1121 => 0.12350771906961
1122 => 0.12326906972324
1123 => 0.12175090434161
1124 => 0.12290241940308
1125 => 0.11853117401365
1126 => 0.11965774348192
1127 => 0.11392627348836
1128 => 0.11651713729278
1129 => 0.11872507575646
1130 => 0.11916835209214
1201 => 0.12016707631066
1202 => 0.11163308721173
1203 => 0.11546459777239
1204 => 0.11771525126279
1205 => 0.1075467169137
1206 => 0.11751425203304
1207 => 0.11148452944793
1208 => 0.10943795103915
1209 => 0.11219339925037
1210 => 0.1111195984027
1211 => 0.11019640748957
1212 => 0.10968125109761
1213 => 0.11170454815621
1214 => 0.11161015893006
1215 => 0.10829965223716
1216 => 0.10398123120979
1217 => 0.10543063505391
1218 => 0.10490405304911
1219 => 0.10299565193327
1220 => 0.10428168386411
1221 => 0.098618650086527
1222 => 0.088875694811072
1223 => 0.095312189500828
1224 => 0.095064391456832
1225 => 0.094939440446302
1226 => 0.099776288314007
1227 => 0.099311336996594
1228 => 0.098467445802672
1229 => 0.1029801532097
1230 => 0.10133295430166
1231 => 0.10640923320738
]
'min_raw' => 0.045568508348447
'max_raw' => 0.14989974726053
'avg_raw' => 0.097734127804486
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.045568'
'max' => '$0.149899'
'avg' => '$0.097734'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.024824548495723
'max_diff' => 0.099091308989525
'year' => 2029
]
4 => [
'items' => [
101 => 0.10975279880782
102 => 0.10890476241854
103 => 0.11204940202661
104 => 0.10546402639109
105 => 0.1076514240178
106 => 0.10810224363706
107 => 0.10292446710079
108 => 0.099387408782273
109 => 0.099151527317844
110 => 0.093018755630199
111 => 0.096294832763736
112 => 0.099177645067965
113 => 0.097797001689511
114 => 0.09735993124144
115 => 0.09959282937162
116 => 0.099766344679814
117 => 0.09581017726466
118 => 0.096632789745799
119 => 0.10006322054009
120 => 0.096546351691361
121 => 0.089713649995537
122 => 0.08801904550548
123 => 0.087792954028749
124 => 0.08319705225094
125 => 0.088132287080573
126 => 0.085977924821367
127 => 0.092783529384974
128 => 0.088896204557431
129 => 0.088728629753613
130 => 0.088475315859764
131 => 0.084519433345292
201 => 0.085385520206512
202 => 0.088264524841962
203 => 0.089291786130199
204 => 0.089184634361732
205 => 0.088250416148613
206 => 0.088678096462608
207 => 0.087300389157531
208 => 0.086813892033611
209 => 0.085278373288942
210 => 0.083021584932158
211 => 0.083335405194856
212 => 0.078864116939272
213 => 0.076427921788401
214 => 0.075753615079176
215 => 0.074851903966383
216 => 0.075855465748728
217 => 0.078851450341432
218 => 0.075237657289042
219 => 0.069042062578829
220 => 0.069414428377693
221 => 0.070251023771341
222 => 0.06869203378991
223 => 0.067216580608596
224 => 0.068499367442448
225 => 0.065874212288649
226 => 0.070568261229851
227 => 0.070441300360911
228 => 0.072190951528152
301 => 0.073285044309484
302 => 0.070763514665258
303 => 0.070129356778676
304 => 0.070490601931742
305 => 0.064520024235085
306 => 0.071703027951893
307 => 0.071765146866317
308 => 0.071233247007535
309 => 0.075057974736376
310 => 0.083129343206725
311 => 0.080092569718135
312 => 0.078916639236388
313 => 0.076681194530988
314 => 0.079659791873361
315 => 0.079431082070824
316 => 0.078396769608133
317 => 0.077771214203446
318 => 0.078923819217157
319 => 0.077628393686933
320 => 0.077395699665791
321 => 0.075985827071267
322 => 0.075482566700137
323 => 0.075109972756725
324 => 0.074699783435354
325 => 0.075604558865489
326 => 0.073554218707682
327 => 0.071081709474692
328 => 0.070876147084889
329 => 0.071443722916364
330 => 0.071192612861987
331 => 0.070874944866558
401 => 0.070268430151551
402 => 0.070088490191745
403 => 0.070673207766657
404 => 0.070013095715734
405 => 0.070987127005034
406 => 0.070722244389954
407 => 0.069242631634323
408 => 0.067398486318002
409 => 0.067382069556461
410 => 0.066984751473064
411 => 0.066478707156685
412 => 0.066337937204594
413 => 0.068391334713284
414 => 0.072641806103258
415 => 0.071807336864246
416 => 0.072410326409279
417 => 0.075376438170156
418 => 0.076319275904847
419 => 0.075650072013099
420 => 0.074734024451377
421 => 0.074774325895073
422 => 0.077904737719933
423 => 0.078099977665608
424 => 0.078593286021536
425 => 0.079227326667828
426 => 0.075758051876832
427 => 0.074610923364403
428 => 0.074067350234948
429 => 0.0723933553855
430 => 0.074198615313158
501 => 0.073146767662249
502 => 0.073288697846589
503 => 0.073196265627844
504 => 0.073246739869518
505 => 0.070566949147506
506 => 0.071543324040954
507 => 0.069919911409573
508 => 0.067746344132773
509 => 0.067739057573111
510 => 0.068271035084817
511 => 0.067954594044572
512 => 0.067103059341716
513 => 0.067224015827126
514 => 0.066164309738538
515 => 0.067352683332879
516 => 0.06738676163536
517 => 0.066929173070391
518 => 0.068760026556428
519 => 0.069510128723492
520 => 0.069208934127533
521 => 0.069488996107716
522 => 0.071842012828529
523 => 0.072225657223339
524 => 0.072396046721388
525 => 0.072167747366286
526 => 0.069532004933879
527 => 0.069648911318798
528 => 0.068791129834864
529 => 0.068066394871726
530 => 0.068095380469517
531 => 0.068467988449521
601 => 0.070095189351366
602 => 0.073519537720566
603 => 0.073649489238011
604 => 0.073806994268107
605 => 0.073166342155019
606 => 0.072973115347496
607 => 0.073228031382689
608 => 0.074514036586477
609 => 0.077821991117626
610 => 0.076652739055464
611 => 0.075702118928433
612 => 0.076536069065185
613 => 0.076407688978349
614 => 0.075324031848302
615 => 0.075293617201894
616 => 0.073213732703192
617 => 0.072444846760701
618 => 0.07180230811704
619 => 0.071100672692058
620 => 0.070684719693096
621 => 0.071323812546758
622 => 0.071469980643915
623 => 0.070072592949951
624 => 0.069882134170789
625 => 0.071023271126388
626 => 0.070521099298103
627 => 0.071037595476757
628 => 0.071157427020626
629 => 0.071138131382109
630 => 0.070613806319312
701 => 0.07094799547874
702 => 0.070157538490108
703 => 0.069298035237772
704 => 0.068749725711726
705 => 0.068271252927547
706 => 0.068536737437211
707 => 0.067590333635814
708 => 0.067287560012402
709 => 0.07083477971102
710 => 0.073455149041427
711 => 0.073417047833583
712 => 0.073185116529666
713 => 0.072840513657592
714 => 0.074488826739986
715 => 0.07391458742114
716 => 0.074332394504901
717 => 0.074438743943026
718 => 0.07476063166183
719 => 0.074875678854118
720 => 0.074527926333611
721 => 0.073360826400397
722 => 0.070452524331359
723 => 0.069098701867411
724 => 0.068651917904611
725 => 0.068668157653095
726 => 0.068220192892471
727 => 0.068352138590847
728 => 0.068174307563243
729 => 0.067837538618908
730 => 0.068515942903888
731 => 0.068594122677959
801 => 0.068435775011517
802 => 0.068473071619233
803 => 0.067162020572267
804 => 0.067261696935915
805 => 0.066706686276864
806 => 0.066602628469046
807 => 0.065199609853274
808 => 0.062713959004634
809 => 0.064091250862746
810 => 0.062427675974688
811 => 0.061797654957307
812 => 0.064780076465217
813 => 0.064480724065319
814 => 0.063968362882053
815 => 0.063210473906577
816 => 0.062929365513303
817 => 0.061221439903872
818 => 0.061120526547438
819 => 0.061967020597343
820 => 0.061576392719394
821 => 0.061027803236407
822 => 0.059040867738653
823 => 0.056806894387442
824 => 0.05687432400066
825 => 0.057584909359128
826 => 0.059651032124366
827 => 0.058843762215701
828 => 0.058258078634609
829 => 0.058148397705455
830 => 0.059521284166403
831 => 0.061464206137252
901 => 0.062375781655545
902 => 0.061472438001877
903 => 0.060434725452019
904 => 0.060497886206632
905 => 0.060918066410555
906 => 0.060962221408959
907 => 0.060286777217575
908 => 0.060476910801013
909 => 0.060188080501592
910 => 0.058415529487185
911 => 0.058383469660154
912 => 0.057948457054973
913 => 0.057935285046173
914 => 0.057195220085779
915 => 0.057091679881992
916 => 0.055622235984398
917 => 0.05658942840768
918 => 0.055940686510024
919 => 0.054962879447512
920 => 0.054794305141377
921 => 0.054789237594175
922 => 0.055793226813716
923 => 0.056577696209099
924 => 0.055951971653084
925 => 0.05580950630084
926 => 0.057330663543048
927 => 0.057137082418321
928 => 0.056969442412771
929 => 0.061290238784917
930 => 0.057869991300418
1001 => 0.056378568176276
1002 => 0.054532648846579
1003 => 0.055133689488262
1004 => 0.055260337582588
1005 => 0.050821234346637
1006 => 0.049020290716666
1007 => 0.048402274729989
1008 => 0.048046597792193
1009 => 0.048208684239057
1010 => 0.046587623742464
1011 => 0.04767700320604
1012 => 0.046273301840824
1013 => 0.046037966738906
1014 => 0.048547958665144
1015 => 0.04889720937852
1016 => 0.047407197331567
1017 => 0.048364026276749
1018 => 0.048017066800309
1019 => 0.046297364271864
1020 => 0.046231684284553
1021 => 0.045368798006245
1022 => 0.044018548068403
1023 => 0.043401447614766
1024 => 0.0430800563406
1025 => 0.043212668644112
1026 => 0.043145615805453
1027 => 0.042708050676915
1028 => 0.043170696526425
1029 => 0.041988827559389
1030 => 0.04151819781375
1031 => 0.041305625276172
1101 => 0.040256648542088
1102 => 0.041926037008087
1103 => 0.04225492756629
1104 => 0.042584466140493
1105 => 0.045452874443386
1106 => 0.045309576870611
1107 => 0.046604917139747
1108 => 0.046554582598866
1109 => 0.046185130570988
1110 => 0.044626473237276
1111 => 0.045247726270098
1112 => 0.04333560599923
1113 => 0.044768296517704
1114 => 0.044114476395659
1115 => 0.044547239276757
1116 => 0.043769092595887
1117 => 0.044199751097969
1118 => 0.042332919718676
1119 => 0.040589698843717
1120 => 0.04129122181159
1121 => 0.042053857506551
1122 => 0.043707446009186
1123 => 0.042722582338825
1124 => 0.043076776556505
1125 => 0.041890285218673
1126 => 0.039442214684229
1127 => 0.039456070497595
1128 => 0.039079488179986
1129 => 0.038754066075654
1130 => 0.04283570577869
1201 => 0.042328089360443
1202 => 0.041519269033159
1203 => 0.04260190718247
1204 => 0.042888173892926
1205 => 0.042896323503729
1206 => 0.043686188350531
1207 => 0.04410773936086
1208 => 0.044182039553538
1209 => 0.04542490895614
1210 => 0.045841502386049
1211 => 0.047557391765333
1212 => 0.044071973702847
1213 => 0.044000193811493
1214 => 0.042617142121445
1215 => 0.041739988874434
1216 => 0.042677201554705
1217 => 0.043507444047136
1218 => 0.042642940069976
1219 => 0.042755826038718
1220 => 0.041595300081952
1221 => 0.042010133503674
1222 => 0.042367443930558
1223 => 0.042170158114569
1224 => 0.041874811699292
1225 => 0.043439373630717
1226 => 0.043351094914979
1227 => 0.044808050954645
1228 => 0.045943852375492
1229 => 0.047979411570438
1230 => 0.045855199434411
1231 => 0.045777784701195
]
'min_raw' => 0.038754066075654
'max_raw' => 0.11204940202661
'avg_raw' => 0.075401734051131
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.038754'
'max' => '$0.112049'
'avg' => '$0.0754017'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0068144422727934
'max_diff' => -0.037850345233916
'year' => 2030
]
5 => [
'items' => [
101 => 0.046534526136089
102 => 0.045841386532878
103 => 0.046279426835742
104 => 0.04790883650557
105 => 0.047943263364303
106 => 0.047366569124018
107 => 0.047331477227086
108 => 0.047442237664277
109 => 0.048090965004441
110 => 0.04786427973841
111 => 0.04812660566723
112 => 0.048454648258096
113 => 0.049811571501096
114 => 0.050138721101142
115 => 0.049343917180652
116 => 0.04941567907563
117 => 0.049118400591511
118 => 0.048831233300741
119 => 0.049476743432977
120 => 0.050656425887173
121 => 0.050649087143851
122 => 0.050922750543474
123 => 0.05109324057429
124 => 0.0503613725557
125 => 0.049884953387131
126 => 0.0500676428117
127 => 0.050359767180043
128 => 0.0499729108162
129 => 0.04758505412926
130 => 0.048309377311202
131 => 0.048188814516133
201 => 0.048017118435017
202 => 0.048745430995485
203 => 0.048675183472298
204 => 0.046570997424029
205 => 0.046705700587825
206 => 0.046579189169571
207 => 0.04698797344375
208 => 0.045819310840557
209 => 0.046178783586236
210 => 0.046404241522479
211 => 0.046537037978975
212 => 0.047016789839223
213 => 0.046960496495698
214 => 0.04701329056595
215 => 0.047724635924901
216 => 0.05132237664623
217 => 0.051518193735724
218 => 0.050553918770318
219 => 0.050939127599515
220 => 0.050199610883367
221 => 0.050696053409249
222 => 0.051035706777184
223 => 0.049500878519071
224 => 0.049409995950579
225 => 0.048667426985882
226 => 0.049066441486254
227 => 0.048431580726004
228 => 0.048587353350083
301 => 0.048151799513146
302 => 0.048935709701729
303 => 0.049812243099892
304 => 0.050033690051621
305 => 0.049451158460529
306 => 0.049029367197876
307 => 0.048288840687337
308 => 0.049520352778073
309 => 0.049880484443056
310 => 0.04951846115975
311 => 0.049434572454643
312 => 0.049275603510049
313 => 0.049468298467733
314 => 0.049878523088666
315 => 0.049685068733093
316 => 0.049812848743176
317 => 0.049325883110915
318 => 0.050361614834467
319 => 0.052006606073881
320 => 0.052011894989699
321 => 0.051818439591336
322 => 0.05173928181038
323 => 0.051937778788956
324 => 0.052045455257062
325 => 0.052687358087656
326 => 0.053376145399422
327 => 0.056590415241981
328 => 0.055687861132299
329 => 0.058539752554387
330 => 0.060795228397504
331 => 0.06147154698285
401 => 0.06084936570758
402 => 0.058720917174455
403 => 0.05861648533512
404 => 0.061797286051401
405 => 0.060898564159149
406 => 0.060791664049775
407 => 0.059654427496622
408 => 0.060326675149023
409 => 0.060179644726165
410 => 0.059947550010708
411 => 0.061230151702312
412 => 0.063631067570352
413 => 0.063256862316672
414 => 0.062977535453682
415 => 0.061753606450886
416 => 0.062490685085008
417 => 0.062228225501209
418 => 0.06335591843418
419 => 0.062687898122145
420 => 0.060891755456898
421 => 0.061177797096502
422 => 0.061134562478112
423 => 0.062024327860946
424 => 0.061757242378354
425 => 0.061082409751067
426 => 0.063622861500928
427 => 0.063457898695027
428 => 0.063691778238047
429 => 0.06379473924585
430 => 0.065341067458209
501 => 0.065974548649829
502 => 0.066118359970976
503 => 0.066720118107821
504 => 0.066103387680342
505 => 0.068570749111601
506 => 0.070211400488857
507 => 0.072117101490688
508 => 0.074901842858502
509 => 0.075948931373098
510 => 0.075759784205062
511 => 0.077871143328326
512 => 0.081665208739953
513 => 0.076526673301234
514 => 0.081937563595544
515 => 0.080224538200098
516 => 0.076162985803506
517 => 0.075901469711723
518 => 0.078652000150288
519 => 0.084752411934281
520 => 0.083224327972688
521 => 0.084754911332221
522 => 0.082969404541604
523 => 0.082880739080017
524 => 0.084668193252726
525 => 0.088844677356316
526 => 0.086860586311866
527 => 0.084015905280564
528 => 0.086116373485938
529 => 0.084296753537287
530 => 0.080196640513421
531 => 0.083223159475681
601 => 0.081199412435916
602 => 0.081790049410429
603 => 0.086043664678363
604 => 0.085531858435655
605 => 0.086194183105701
606 => 0.085025197399125
607 => 0.083933180417056
608 => 0.081894849625779
609 => 0.081291400366976
610 => 0.081458172032279
611 => 0.081291317723221
612 => 0.080150890378728
613 => 0.079904615202266
614 => 0.079494145785266
615 => 0.07962136742124
616 => 0.078849564830216
617 => 0.080306115782029
618 => 0.080576464473769
619 => 0.081636420790229
620 => 0.081746468971274
621 => 0.084698432225083
622 => 0.083072540470612
623 => 0.084163329032251
624 => 0.084065758636398
625 => 0.076251011959645
626 => 0.077327815101607
627 => 0.079002982871061
628 => 0.078248322061558
629 => 0.077181408240355
630 => 0.076319818125434
701 => 0.075014420999215
702 => 0.076851742386436
703 => 0.079267624633286
704 => 0.081807739731867
705 => 0.084859521587878
706 => 0.084178399404273
707 => 0.081750688792844
708 => 0.081859594117429
709 => 0.082532803981348
710 => 0.081660936040007
711 => 0.081403805163222
712 => 0.082497478147391
713 => 0.082505009672161
714 => 0.081501820236888
715 => 0.08038695876131
716 => 0.080382287451021
717 => 0.080183908619726
718 => 0.08300469569499
719 => 0.084555843372645
720 => 0.084733679954089
721 => 0.084543873553786
722 => 0.084616922504116
723 => 0.083714343847695
724 => 0.085777371004886
725 => 0.087670608736564
726 => 0.08716318058135
727 => 0.086402473641521
728 => 0.085796533923337
729 => 0.087020440440787
730 => 0.086965941810172
731 => 0.087654072956603
801 => 0.087622855352962
802 => 0.087391462730339
803 => 0.087163188845109
804 => 0.088068268997137
805 => 0.087807620448496
806 => 0.087546567040665
807 => 0.087022984465983
808 => 0.087094148033668
809 => 0.086333572440618
810 => 0.085981695369701
811 => 0.080690308494264
812 => 0.079276277020093
813 => 0.079721160107132
814 => 0.079867627170769
815 => 0.079252238861079
816 => 0.080134547616888
817 => 0.079997040731892
818 => 0.080531999582576
819 => 0.080197780517882
820 => 0.080211496984877
821 => 0.081194363991126
822 => 0.081479694464455
823 => 0.081334573082821
824 => 0.081436211124048
825 => 0.083778416885387
826 => 0.083445430125649
827 => 0.08326853754621
828 => 0.08331753799962
829 => 0.0839160217891
830 => 0.084083564574151
831 => 0.083373674020868
901 => 0.083708462509625
902 => 0.085133949403766
903 => 0.085632789141145
904 => 0.087224846126201
905 => 0.086548512022393
906 => 0.087789952540987
907 => 0.091605717456885
908 => 0.094654014502553
909 => 0.091850674563153
910 => 0.097448483889234
911 => 0.10180718140764
912 => 0.1016398873371
913 => 0.10087984760627
914 => 0.095917586363531
915 => 0.091351239584815
916 => 0.095171182562537
917 => 0.095180920382766
918 => 0.09485278389324
919 => 0.092814756338544
920 => 0.094781864952017
921 => 0.094938006890265
922 => 0.094850608926339
923 => 0.093288057978562
924 => 0.090902331488993
925 => 0.091368496734432
926 => 0.092132084915976
927 => 0.090686453187132
928 => 0.090224486255851
929 => 0.091083370673907
930 => 0.093850875224558
1001 => 0.093327694520319
1002 => 0.093314032157793
1003 => 0.09555242107367
1004 => 0.093950217684464
1005 => 0.091374376571045
1006 => 0.090723942718737
1007 => 0.088415340727786
1008 => 0.090009900345894
1009 => 0.09006728570781
1010 => 0.089193961700976
1011 => 0.091445242001036
1012 => 0.091424496056741
1013 => 0.093561751642796
1014 => 0.097647381606793
1015 => 0.096439059784799
1016 => 0.09503391297086
1017 => 0.09518669139003
1018 => 0.096862293559057
1019 => 0.095849186237386
1020 => 0.096213506693894
1021 => 0.096861742116412
1022 => 0.097252838641597
1023 => 0.09513041861869
1024 => 0.094635580984265
1025 => 0.09362331684864
1026 => 0.093359236030461
1027 => 0.094183704047343
1028 => 0.093966485853779
1029 => 0.090062462690348
1030 => 0.089654470547989
1031 => 0.089666983084517
1101 => 0.088641067443588
1102 => 0.087076299843205
1103 => 0.091188415669593
1104 => 0.09085815521971
1105 => 0.090493573243167
1106 => 0.090538232455018
1107 => 0.092323162562717
1108 => 0.09128781295912
1109 => 0.094040459570744
1110 => 0.093474598179525
1111 => 0.092894224578813
1112 => 0.092813999268582
1113 => 0.092590604947456
1114 => 0.09182450269895
1115 => 0.090899388198272
1116 => 0.090288547472878
1117 => 0.083286412409168
1118 => 0.084585967947447
1119 => 0.086080988136022
1120 => 0.086597063114201
1121 => 0.085714281152725
1122 => 0.091859360311409
1123 => 0.092982125489157
1124 => 0.089581196529598
1125 => 0.088945021580279
1126 => 0.091901067835175
1127 => 0.090118210581515
1128 => 0.090921031093672
1129 => 0.08918577226573
1130 => 0.092711684236239
1201 => 0.092684822694542
1202 => 0.091313163301681
1203 => 0.092472480427809
1204 => 0.092271020547751
1205 => 0.090722420471458
1206 => 0.092760777620846
1207 => 0.092761788620561
1208 => 0.091441596277379
1209 => 0.089899900647807
1210 => 0.089624281882465
1211 => 0.089416640166951
1212 => 0.090869963960324
1213 => 0.092173009529037
1214 => 0.09459765428002
1215 => 0.095207267578555
1216 => 0.097586628866994
1217 => 0.096169835068727
1218 => 0.096797881408948
1219 => 0.097479714553836
1220 => 0.097806610437079
1221 => 0.097273951137535
1222 => 0.10097007860266
1223 => 0.10128214500714
1224 => 0.10138677817319
1225 => 0.10014046478798
1226 => 0.10124748277733
1227 => 0.10072954572069
1228 => 0.102077074055
1229 => 0.10228838370392
1230 => 0.10210941194884
1231 => 0.10217648496671
]
'min_raw' => 0.045819310840557
'max_raw' => 0.10228838370392
'avg_raw' => 0.074053847272239
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.045819'
'max' => '$0.102288'
'avg' => '$0.074053'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.007065244764903
'max_diff' => -0.0097610183226876
'year' => 2031
]
6 => [
'items' => [
101 => 0.099022492216788
102 => 0.098858941054067
103 => 0.096628909345313
104 => 0.097537663750192
105 => 0.095838790948002
106 => 0.096377521013905
107 => 0.096614988093747
108 => 0.096490948767376
109 => 0.09758904336076
110 => 0.096655438630479
111 => 0.094191502248439
112 => 0.09172689456858
113 => 0.091695953426785
114 => 0.091047065728617
115 => 0.090578038772552
116 => 0.090668390003915
117 => 0.090986799527936
118 => 0.090559532232179
119 => 0.09065071137273
120 => 0.092164892629322
121 => 0.092468550881685
122 => 0.091436601493218
123 => 0.087293175788937
124 => 0.08627636872811
125 => 0.087007229479272
126 => 0.086657925113677
127 => 0.069939708940487
128 => 0.073867405845572
129 => 0.071533701716555
130 => 0.07260917994777
131 => 0.070227072341798
201 => 0.071363938948324
202 => 0.07115400119782
203 => 0.077469621592196
204 => 0.07737101186659
205 => 0.077418211123927
206 => 0.075165267594211
207 => 0.078754267811132
208 => 0.08052233837426
209 => 0.0801951155687
210 => 0.080277470499121
211 => 0.078862339939548
212 => 0.077431912681066
213 => 0.075845348710232
214 => 0.078792988462808
215 => 0.07846526124021
216 => 0.079216949576317
217 => 0.081128704657503
218 => 0.081410217855259
219 => 0.081788574447868
220 => 0.081652960542674
221 => 0.084883833953881
222 => 0.084492553865794
223 => 0.085435426299118
224 => 0.083495866167867
225 => 0.08130106977462
226 => 0.081718228815676
227 => 0.081678053045441
228 => 0.081166569378749
229 => 0.080704824794439
301 => 0.079936150157293
302 => 0.082368350451665
303 => 0.082269607561432
304 => 0.083868140178238
305 => 0.0835855840109
306 => 0.081698604772196
307 => 0.081765998604861
308 => 0.082219254517907
309 => 0.083787978408146
310 => 0.084253682465635
311 => 0.084037949791108
312 => 0.084548573029948
313 => 0.08495214881814
314 => 0.084599255935383
315 => 0.08959547497
316 => 0.087520696491651
317 => 0.088531929085782
318 => 0.088773102100955
319 => 0.088155342493914
320 => 0.088289312432368
321 => 0.088492240384503
322 => 0.089724379172499
323 => 0.092957867874432
324 => 0.094389958009416
325 => 0.098698471838598
326 => 0.094271042859363
327 => 0.094008337546257
328 => 0.094784430991546
329 => 0.097313984711782
330 => 0.099363950413135
331 => 0.10004404230163
401 => 0.10013392767179
402 => 0.10140982526626
403 => 0.10214114597334
404 => 0.10125489773886
405 => 0.10050389515419
406 => 0.097813897113805
407 => 0.098125271711601
408 => 0.10027033391509
409 => 0.10330036062105
410 => 0.10590043875531
411 => 0.10498998201456
412 => 0.11193612426416
413 => 0.11262480589576
414 => 0.11252965236202
415 => 0.11409857160838
416 => 0.11098458640921
417 => 0.10965329740594
418 => 0.10066627043724
419 => 0.10319125843938
420 => 0.10686147678783
421 => 0.1063757096268
422 => 0.10371029895694
423 => 0.1058984168023
424 => 0.10517495661385
425 => 0.10460433354683
426 => 0.10721846843757
427 => 0.10434411974246
428 => 0.10683280296084
429 => 0.10364104099114
430 => 0.10499414090426
501 => 0.10422605595149
502 => 0.10472310104888
503 => 0.10181738556583
504 => 0.10338523910823
505 => 0.10175215770384
506 => 0.10175138341062
507 => 0.10171533304811
508 => 0.10363664607818
509 => 0.10369930002711
510 => 0.10227944679495
511 => 0.10207482376192
512 => 0.10283142236231
513 => 0.10194564355474
514 => 0.10236009388377
515 => 0.101958196833
516 => 0.10186772134162
517 => 0.10114679723319
518 => 0.10083620330506
519 => 0.1009579951873
520 => 0.1005422567052
521 => 0.10029175923181
522 => 0.10166550279572
523 => 0.10093156702618
524 => 0.10155301661292
525 => 0.10084479637564
526 => 0.098389796476373
527 => 0.09697790007315
528 => 0.09234063284204
529 => 0.093655756076271
530 => 0.094527684141159
531 => 0.094239511920915
601 => 0.094858617357845
602 => 0.094896625403506
603 => 0.094695347914928
604 => 0.094462294368397
605 => 0.094348856790615
606 => 0.095194327557736
607 => 0.095685151795288
608 => 0.094615193787363
609 => 0.09436451759641
610 => 0.095446304216422
611 => 0.096106193429702
612 => 0.10097844462084
613 => 0.10061749251544
614 => 0.10152341146673
615 => 0.10142141889527
616 => 0.10237096628043
617 => 0.1039230749465
618 => 0.10076720405197
619 => 0.10131495411746
620 => 0.1011806584508
621 => 0.10264686332518
622 => 0.10265144065676
623 => 0.1017723775922
624 => 0.10224893194066
625 => 0.10198293237694
626 => 0.10246362954059
627 => 0.10061267178001
628 => 0.10286693853386
629 => 0.10414496252155
630 => 0.10416270788586
701 => 0.104768481113
702 => 0.10538398179579
703 => 0.1065653817576
704 => 0.10535103319206
705 => 0.10316653833711
706 => 0.10332425180976
707 => 0.10204348327557
708 => 0.10206501322602
709 => 0.10195008466319
710 => 0.10229499393167
711 => 0.10068835996851
712 => 0.10106543374837
713 => 0.10053752824842
714 => 0.101313806554
715 => 0.1004786594206
716 => 0.10118059368936
717 => 0.10148352525027
718 => 0.10260134923167
719 => 0.10031355590967
720 => 0.09564859045613
721 => 0.096629222751704
722 => 0.095178790559546
723 => 0.095313033581115
724 => 0.095584225849303
725 => 0.094705202979518
726 => 0.094872892841879
727 => 0.09486690177998
728 => 0.094815274045168
729 => 0.094586606247263
730 => 0.094254992699756
731 => 0.095576039007758
801 => 0.095800510517764
802 => 0.096299482878372
803 => 0.097784086167354
804 => 0.097635739289428
805 => 0.097877699202177
806 => 0.097349502071192
807 => 0.095337535131116
808 => 0.095446794615827
809 => 0.094084327090715
810 => 0.09626464152051
811 => 0.09574831428479
812 => 0.095415434757014
813 => 0.095324605493753
814 => 0.096812888827134
815 => 0.097258206526465
816 => 0.096980714420401
817 => 0.096411570015126
818 => 0.097504495525692
819 => 0.097796916285494
820 => 0.097862378509551
821 => 0.099798832966593
822 => 0.097970604802374
823 => 0.098410677492527
824 => 0.10184399899681
825 => 0.098730450158407
826 => 0.10037976641853
827 => 0.10029904097023
828 => 0.10114277535909
829 => 0.10022983012358
830 => 0.10024114717393
831 => 0.10099032615172
901 => 0.099938239392552
902 => 0.099677727915453
903 => 0.09931783317566
904 => 0.10010365017351
905 => 0.10057471192428
906 => 0.10437112367874
907 => 0.10682377880952
908 => 0.10671730258188
909 => 0.10769029598741
910 => 0.10725195354662
911 => 0.10583643017641
912 => 0.10825255596467
913 => 0.10748799267027
914 => 0.10755102233931
915 => 0.10754867637188
916 => 0.10805704412338
917 => 0.10769681898022
918 => 0.10698677824672
919 => 0.10745813642183
920 => 0.10885790168829
921 => 0.11320281602543
922 => 0.11563428765095
923 => 0.11305643838053
924 => 0.11483460428849
925 => 0.11376833836901
926 => 0.11357456613277
927 => 0.1146913857284
928 => 0.11581016016889
929 => 0.11573889907362
930 => 0.11492672627953
1001 => 0.11446795047627
1002 => 0.11794195455973
1003 => 0.1205015415903
1004 => 0.1203269949145
1005 => 0.12109738717585
1006 => 0.12335928268249
1007 => 0.12356608206062
1008 => 0.1235400300922
1009 => 0.12302745625622
1010 => 0.12525458612676
1011 => 0.12711249704738
1012 => 0.12290881022288
1013 => 0.12450951913535
1014 => 0.12522812893777
1015 => 0.12628326132966
1016 => 0.12806344653549
1017 => 0.12999719983983
1018 => 0.13027065375959
1019 => 0.13007662511754
1020 => 0.12880126283125
1021 => 0.13091719877134
1022 => 0.13215666442023
1023 => 0.13289473784948
1024 => 0.13476636926235
1025 => 0.12523256682727
1026 => 0.11848406760299
1027 => 0.11743019199961
1028 => 0.1195732894807
1029 => 0.12013840719558
1030 => 0.11991060895331
1031 => 0.11231455952967
1101 => 0.11739020037143
1102 => 0.12285116314516
1103 => 0.12306094096577
1104 => 0.12579481311365
1105 => 0.1266850739502
1106 => 0.12888619936605
1107 => 0.12874851837199
1108 => 0.1292844573832
1109 => 0.12916125428569
1110 => 0.13323837561692
1111 => 0.13773604590364
1112 => 0.13758030588333
1113 => 0.13693371256559
1114 => 0.13789401390297
1115 => 0.14253609163851
1116 => 0.1421087235084
1117 => 0.14252387524367
1118 => 0.14799714650991
1119 => 0.15511317771977
1120 => 0.15180706678494
1121 => 0.15898037620573
1122 => 0.16349559424533
1123 => 0.17130419696256
1124 => 0.17032652144418
1125 => 0.17336635317982
1126 => 0.16857627821925
1127 => 0.1575772978759
1128 => 0.15583666713416
1129 => 0.15932145395892
1130 => 0.16788846232705
1201 => 0.15905164837801
1202 => 0.16083932433081
1203 => 0.16032447353614
1204 => 0.16029703932527
1205 => 0.16134409157129
1206 => 0.15982528767786
1207 => 0.15363740738844
1208 => 0.15647327645968
1209 => 0.15537821122166
1210 => 0.15659326774576
1211 => 0.16315042667893
1212 => 0.16025135041143
1213 => 0.15719740906545
1214 => 0.16102772923715
1215 => 0.16590504305653
1216 => 0.16559982952309
1217 => 0.16500758769885
1218 => 0.1683460238533
1219 => 0.17386014231042
1220 => 0.17535058637186
1221 => 0.17645080170723
1222 => 0.17660250281369
1223 => 0.1781651184919
1224 => 0.16976254016028
1225 => 0.18309764776608
1226 => 0.18540025247469
1227 => 0.18496745822266
1228 => 0.18752670644786
1229 => 0.18677371069814
1230 => 0.18568273799822
1231 => 0.18973969080287
]
'min_raw' => 0.069939708940487
'max_raw' => 0.18973969080287
'avg_raw' => 0.12983969987168
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.069939'
'max' => '$0.189739'
'avg' => '$0.129839'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02412039809993
'max_diff' => 0.087451307098949
'year' => 2032
]
7 => [
'items' => [
101 => 0.18508872179155
102 => 0.17848725682069
103 => 0.17486556257551
104 => 0.17963490171131
105 => 0.18254737069454
106 => 0.18447232742464
107 => 0.18505481816808
108 => 0.17041480839709
109 => 0.16252465510269
110 => 0.16758215290361
111 => 0.17375264927058
112 => 0.16972826274141
113 => 0.16988601107418
114 => 0.16414829347375
115 => 0.17426030996282
116 => 0.17278707421581
117 => 0.18043022387742
118 => 0.17860612487057
119 => 0.18483881671425
120 => 0.18319754007156
121 => 0.19001038765283
122 => 0.19272821700349
123 => 0.1972918754796
124 => 0.20064892123206
125 => 0.20262024270795
126 => 0.20250189196078
127 => 0.21031324975674
128 => 0.20570716497252
129 => 0.1999208369127
130 => 0.19981618049373
131 => 0.20281300178881
201 => 0.20909351708553
202 => 0.21072196332419
203 => 0.21163204261488
204 => 0.2102382245011
205 => 0.2052386495889
206 => 0.20307985849023
207 => 0.20491921105249
208 => 0.20266984092621
209 => 0.20655288482596
210 => 0.21188513347375
211 => 0.21078404521398
212 => 0.21446481818201
213 => 0.21827403097532
214 => 0.2237213763522
215 => 0.22514551414833
216 => 0.22749955977023
217 => 0.22992264597887
218 => 0.23070087596507
219 => 0.23218675847933
220 => 0.23217892714503
221 => 0.23665673411317
222 => 0.24159589386516
223 => 0.24346031232973
224 => 0.24774743978437
225 => 0.24040588425717
226 => 0.24597453845826
227 => 0.25099760394011
228 => 0.24500889819597
301 => 0.25326293387478
302 => 0.25358341937615
303 => 0.25842236994879
304 => 0.25351716651266
305 => 0.25060447237024
306 => 0.25901331122216
307 => 0.26308208346666
308 => 0.26185653615385
309 => 0.25253006059063
310 => 0.24710165178148
311 => 0.23289445886608
312 => 0.24972349257943
313 => 0.25792042399156
314 => 0.25250883251851
315 => 0.25523812448404
316 => 0.2701282564721
317 => 0.2757974546685
318 => 0.27461830107434
319 => 0.27481755862123
320 => 0.27787655506479
321 => 0.29144182991561
322 => 0.28331320278439
323 => 0.28952723365236
324 => 0.29282313321838
325 => 0.29588454841778
326 => 0.28836668025827
327 => 0.27858604424217
328 => 0.2754881062527
329 => 0.25197075639732
330 => 0.25074657620667
331 => 0.25005940676921
401 => 0.24572690066803
402 => 0.24232273764581
403 => 0.23961562082206
404 => 0.23251133786304
405 => 0.2349088248133
406 => 0.22358608055571
407 => 0.2308299710783
408 => 0.21275859784596
409 => 0.2278089744676
410 => 0.2196177387291
411 => 0.22511793322493
412 => 0.22509874356448
413 => 0.21497114165941
414 => 0.20912975223822
415 => 0.21285211292768
416 => 0.21684277906814
417 => 0.21749025122321
418 => 0.22266425404136
419 => 0.22410820701309
420 => 0.21973296209704
421 => 0.21238410880319
422 => 0.21409107981385
423 => 0.20909516052518
424 => 0.20034000413703
425 => 0.20662811030536
426 => 0.20877514621974
427 => 0.20972339959347
428 => 0.20111370882224
429 => 0.19840835705643
430 => 0.19696805047642
501 => 0.21127270584049
502 => 0.21205634715227
503 => 0.2080471274055
504 => 0.22616918083071
505 => 0.2220676020126
506 => 0.22665007046363
507 => 0.21393619008626
508 => 0.21442187743818
509 => 0.20840292271856
510 => 0.21177313517485
511 => 0.20939117763776
512 => 0.21150085531347
513 => 0.21276538741376
514 => 0.21878335448214
515 => 0.22787768998473
516 => 0.21788447088364
517 => 0.21353028221576
518 => 0.21623159637643
519 => 0.2234255519613
520 => 0.23432476292419
521 => 0.22787221066709
522 => 0.23073574378735
523 => 0.2313612983844
524 => 0.22660342523649
525 => 0.23450019249371
526 => 0.23873213422007
527 => 0.24307323075437
528 => 0.24684248324035
529 => 0.24133930133582
530 => 0.2472284948238
531 => 0.24248284445508
601 => 0.23822550547802
602 => 0.2382319621039
603 => 0.23556127117379
604 => 0.23038647096799
605 => 0.22943215841436
606 => 0.23439661283473
607 => 0.23837763514427
608 => 0.2387055312095
609 => 0.24090962971238
610 => 0.24221399250236
611 => 0.25499852103942
612 => 0.26014056417619
613 => 0.26642815718994
614 => 0.26887752901812
615 => 0.27624926007254
616 => 0.27029598854337
617 => 0.2690079608002
618 => 0.25112655253702
619 => 0.25405463213838
620 => 0.25874277009782
621 => 0.25120385820522
622 => 0.25598556258276
623 => 0.25692957231723
624 => 0.25094768886391
625 => 0.25414287127826
626 => 0.24565741409133
627 => 0.22806264976333
628 => 0.23451978049614
629 => 0.23927440216218
630 => 0.23248897080411
701 => 0.244651593881
702 => 0.23754644056698
703 => 0.23529444807395
704 => 0.22650862246531
705 => 0.23065519395515
706 => 0.23626349126833
707 => 0.23279821556333
708 => 0.23998918296498
709 => 0.25017351056667
710 => 0.25743146890283
711 => 0.25798864482145
712 => 0.25332226385675
713 => 0.26080016913314
714 => 0.26085463750926
715 => 0.25241952980935
716 => 0.24725307331003
717 => 0.24607924352307
718 => 0.24901170047379
719 => 0.25257224457338
720 => 0.25818623023885
721 => 0.26157864419976
722 => 0.27042426061246
723 => 0.27281763079004
724 => 0.2754472189907
725 => 0.27896115976175
726 => 0.28318054661332
727 => 0.27394876839192
728 => 0.27431556415084
729 => 0.26571906009374
730 => 0.25653246264533
731 => 0.26350394498313
801 => 0.27261823076237
802 => 0.27052740353422
803 => 0.27029214275933
804 => 0.2706877861268
805 => 0.26911137067681
806 => 0.26198130202119
807 => 0.25840062617892
808 => 0.26302061154328
809 => 0.26547592815254
810 => 0.26928391008739
811 => 0.26881449593717
812 => 0.27862344845395
813 => 0.28243491079464
814 => 0.28145977562623
815 => 0.28163922396515
816 => 0.28853969447381
817 => 0.29621443686943
818 => 0.30340284589438
819 => 0.31071520430392
820 => 0.30189987083502
821 => 0.29742398815369
822 => 0.30204195657696
823 => 0.29959159752896
824 => 0.31367208744246
825 => 0.31464699001407
826 => 0.32872646174788
827 => 0.34208955697558
828 => 0.33369643628778
829 => 0.34161077106192
830 => 0.35017076938533
831 => 0.36668439496086
901 => 0.36112318682337
902 => 0.3568633885453
903 => 0.35283789975571
904 => 0.36121430289849
905 => 0.37199041172536
906 => 0.37431148235438
907 => 0.37807250349062
908 => 0.37411824964165
909 => 0.37888071285596
910 => 0.39569430073484
911 => 0.39115112087232
912 => 0.38469907511494
913 => 0.39797178795117
914 => 0.40277513113024
915 => 0.4364875090913
916 => 0.47905077885601
917 => 0.46142930568792
918 => 0.4504910886511
919 => 0.45306182911273
920 => 0.46860449437319
921 => 0.47359630515532
922 => 0.46002684266914
923 => 0.46481980621964
924 => 0.49122950661664
925 => 0.50539746355501
926 => 0.48615547502223
927 => 0.43306759180864
928 => 0.38411813898784
929 => 0.39710173809851
930 => 0.39562980088735
1001 => 0.42400372928671
1002 => 0.39104276753513
1003 => 0.39159774559793
1004 => 0.42055841678808
1005 => 0.41283220622614
1006 => 0.4003167346141
1007 => 0.38420951578106
1008 => 0.35443383203078
1009 => 0.32806067857679
1010 => 0.37978450587457
1011 => 0.37755408038782
1012 => 0.37432409375246
1013 => 0.3815120794884
1014 => 0.41641489787677
1015 => 0.41561027494352
1016 => 0.41049167436441
1017 => 0.41437408779039
1018 => 0.39963612876933
1019 => 0.40343443638615
1020 => 0.38411038514443
1021 => 0.39284566334935
1022 => 0.400289882033
1023 => 0.40178441914729
1024 => 0.40515168757872
1025 => 0.37637874750761
1026 => 0.3892969528704
1027 => 0.39688518824889
1028 => 0.36260126474652
1029 => 0.39620750531247
1030 => 0.37587787463499
1031 => 0.36897769264225
1101 => 0.37826787866562
1102 => 0.37464748413731
1103 => 0.37153488151857
1104 => 0.36979799577601
1105 => 0.37661968307116
1106 => 0.37630144320516
1107 => 0.36513983875785
1108 => 0.35057998076152
1109 => 0.35546674701614
1110 => 0.35369133902216
1111 => 0.34725703141979
1112 => 0.35159297786252
1113 => 0.332499664101
1114 => 0.29965061015839
1115 => 0.32135170138661
1116 => 0.32051623298057
1117 => 0.32009495192477
1118 => 0.33640272220867
1119 => 0.33483510638014
1120 => 0.33198986830124
1121 => 0.34720477639121
1122 => 0.34165113026897
1123 => 0.3587661590141
1124 => 0.37003922387629
1125 => 0.3671800099818
1126 => 0.37778238197214
1127 => 0.35557932824076
1128 => 0.36295429205842
1129 => 0.36447426187999
1130 => 0.34701702678712
1201 => 0.33509158771672
1202 => 0.33429629689069
1203 => 0.31361922896934
1204 => 0.32466475175346
1205 => 0.3343843547087
1206 => 0.3297294191648
1207 => 0.32825580563385
1208 => 0.33578417757571
1209 => 0.33636919655174
1210 => 0.32303070190076
1211 => 0.32580419731389
1212 => 0.33737013424189
1213 => 0.32551276537844
1214 => 0.30247583456697
1215 => 0.29676235721524
1216 => 0.29600007401624
1217 => 0.28050467029674
1218 => 0.29714415909194
1219 => 0.28988057632226
1220 => 0.31282614726059
1221 => 0.29971976020018
1222 => 0.29915477004941
1223 => 0.29830070457049
1224 => 0.28496317048205
1225 => 0.2878832428029
1226 => 0.29759000793701
1227 => 0.30105349109139
1228 => 0.30069222142291
1229 => 0.29754243949234
1230 => 0.29898439353066
1231 => 0.29433935716315
]
'min_raw' => 0.16252465510269
'max_raw' => 0.50539746355501
'avg_raw' => 0.33396105932885
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.162524'
'max' => '$0.505397'
'avg' => '$0.333961'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.092584946162206
'max_diff' => 0.31565777275213
'year' => 2033
]
8 => [
'items' => [
101 => 0.2926990981437
102 => 0.28752198948956
103 => 0.27991306998073
104 => 0.28097113690665
105 => 0.26589587637757
106 => 0.25768207433669
107 => 0.25540860218795
108 => 0.25236842021571
109 => 0.25575199883133
110 => 0.2658531700586
111 => 0.25366901447549
112 => 0.2327801343474
113 => 0.23403559163602
114 => 0.23685623141493
115 => 0.23159998784733
116 => 0.22662539443368
117 => 0.23095039980532
118 => 0.22209950592181
119 => 0.2379258196551
120 => 0.23749776222135
121 => 0.24339683328845
122 => 0.24708564348783
123 => 0.23858413024474
124 => 0.23644602265464
125 => 0.23766398590953
126 => 0.21753376635283
127 => 0.24175176488535
128 => 0.24196120314234
129 => 0.24016786563239
130 => 0.25306320220414
131 => 0.28027638452687
201 => 0.27003769068934
202 => 0.26607295896929
203 => 0.25853600107126
204 => 0.2685785499701
205 => 0.26780743890284
206 => 0.26432018222148
207 => 0.2622110784997
208 => 0.26609716677574
209 => 0.26172954915686
210 => 0.26094500501841
211 => 0.25619152113181
212 => 0.25449474365403
213 => 0.25323851716014
214 => 0.25185553522463
215 => 0.25490604875673
216 => 0.24799318376451
217 => 0.2396569462604
218 => 0.23896387831127
219 => 0.24087749985397
220 => 0.24003086477369
221 => 0.23895982494823
222 => 0.23691491824108
223 => 0.23630823810359
224 => 0.23827965423108
225 => 0.23605404036384
226 => 0.23933805486041
227 => 0.23844498463015
228 => 0.23345636692128
301 => 0.22723870223319
302 => 0.22718335197547
303 => 0.22584376631744
304 => 0.22413760257388
305 => 0.22366298685216
306 => 0.23058615991635
307 => 0.24491692096608
308 => 0.24210344966597
309 => 0.24413647101643
310 => 0.25413692390554
311 => 0.25731576715488
312 => 0.25505949951153
313 => 0.25197098120078
314 => 0.25210686033196
315 => 0.26266126235785
316 => 0.26331952746591
317 => 0.26498275102961
318 => 0.26712046333589
319 => 0.25542356116101
320 => 0.25155593729141
321 => 0.24972324253438
322 => 0.24407925202488
323 => 0.2501658119102
324 => 0.24661943411751
325 => 0.24709796164326
326 => 0.24678631996435
327 => 0.24695649739415
328 => 0.23792139587787
329 => 0.24121331199945
330 => 0.2357398629697
331 => 0.22841152914235
401 => 0.22838696199771
402 => 0.23018056131992
403 => 0.22911365825952
404 => 0.22624264955659
405 => 0.22665046279206
406 => 0.22307758972807
407 => 0.22708427427099
408 => 0.22719917164707
409 => 0.22565637985247
410 => 0.23182923020675
411 => 0.23435825203346
412 => 0.23334275342445
413 => 0.23428700194394
414 => 0.24222036210055
415 => 0.24351384596284
416 => 0.24408832605173
417 => 0.24331859883665
418 => 0.23443200920413
419 => 0.23482616724303
420 => 0.23193409708156
421 => 0.22949060255396
422 => 0.22958832952062
423 => 0.23084460333986
424 => 0.23633082478797
425 => 0.24787625439509
426 => 0.24831439500909
427 => 0.24884543421471
428 => 0.24668543088653
429 => 0.2460339532143
430 => 0.24689342042462
501 => 0.25122927675521
502 => 0.26238227641099
503 => 0.25844006144883
504 => 0.25523497932037
505 => 0.25804670043097
506 => 0.25761385800499
507 => 0.25396023233252
508 => 0.25385768722867
509 => 0.2468452114284
510 => 0.24425285879138
511 => 0.24208649489367
512 => 0.23972088207172
513 => 0.23831846749481
514 => 0.24047321367097
515 => 0.24096602961566
516 => 0.23625463944297
517 => 0.23561249437162
518 => 0.23945991728906
519 => 0.23776680990948
520 => 0.23950821283642
521 => 0.23991223325295
522 => 0.23984717666051
523 => 0.23807937810408
524 => 0.23920612018743
525 => 0.23654103926232
526 => 0.23364316403846
527 => 0.23179450018965
528 => 0.23018129579189
529 => 0.23107639535176
530 => 0.22788552885955
531 => 0.22686470644923
601 => 0.23882440532209
602 => 0.24765916346791
603 => 0.24753070258552
604 => 0.24674873000143
605 => 0.24558687735883
606 => 0.25114427999767
607 => 0.24920819204207
608 => 0.25061685779533
609 => 0.25097542235105
610 => 0.25206068926848
611 => 0.25244857890962
612 => 0.25127610700742
613 => 0.24734114809828
614 => 0.23753560462135
615 => 0.23297109766328
616 => 0.23146473433924
617 => 0.23151948778508
618 => 0.23000914331873
619 => 0.23045400745296
620 => 0.22985443772763
621 => 0.22871899771935
622 => 0.23100628513083
623 => 0.23126987369745
624 => 0.23073599348456
625 => 0.23086174160144
626 => 0.22644144146193
627 => 0.22677750728115
628 => 0.22490625009456
629 => 0.22455541193041
630 => 0.21982503671171
701 => 0.21144449133292
702 => 0.21608812699199
703 => 0.21047926810981
704 => 0.20835510826305
705 => 0.21841055060299
706 => 0.21740126308661
707 => 0.21567380158532
708 => 0.21311852599038
709 => 0.2121707494161
710 => 0.20641235898034
711 => 0.20607212255358
712 => 0.20892613634316
713 => 0.20760910717989
714 => 0.2057594994367
715 => 0.19906040768262
716 => 0.19152841055797
717 => 0.19175575420672
718 => 0.19415154235428
719 => 0.20111761950937
720 => 0.19839585265052
721 => 0.19642117956575
722 => 0.19605138265542
723 => 0.20068016521038
724 => 0.20723086228558
725 => 0.21030430278968
726 => 0.20725861659189
727 => 0.20375989627927
728 => 0.20397284717319
729 => 0.20538951406676
730 => 0.20553838572668
731 => 0.20326107847743
801 => 0.20390212712869
802 => 0.2029283156087
803 => 0.19695203610807
804 => 0.19684394416289
805 => 0.19537726879291
806 => 0.1953328584456
807 => 0.19283767776195
808 => 0.19248858473594
809 => 0.1875342520419
810 => 0.19079520882422
811 => 0.18860793022255
812 => 0.18531118544299
813 => 0.18474282540037
814 => 0.18472573981117
815 => 0.18811075956115
816 => 0.19075565289758
817 => 0.18864597887028
818 => 0.18816564698858
819 => 0.19329433483449
820 => 0.19264166255707
821 => 0.19207645257411
822 => 0.20664431921117
823 => 0.19511271602313
824 => 0.19008427883224
825 => 0.1838606329342
826 => 0.18588708342095
827 => 0.18631408631326
828 => 0.17134733982496
829 => 0.16527533263864
830 => 0.16319164859106
831 => 0.16199245896271
901 => 0.16253894473483
902 => 0.15707342609174
903 => 0.16074634501123
904 => 0.1560136678551
905 => 0.15522021912842
906 => 0.16368283214977
907 => 0.16486035531382
908 => 0.1598366756682
909 => 0.16306269126055
910 => 0.16189289316179
911 => 0.15609479602134
912 => 0.15587335135849
913 => 0.15296407002638
914 => 0.1484116080895
915 => 0.14633101082549
916 => 0.14524741770582
917 => 0.1456945293458
918 => 0.14546845601878
919 => 0.1439931746381
920 => 0.14555301742062
921 => 0.1415682636828
922 => 0.13998150263706
923 => 0.13926479948528
924 => 0.1357281011891
925 => 0.14135656095519
926 => 0.14246543843458
927 => 0.14357650074515
928 => 0.15324753960423
929 => 0.1527644018329
930 => 0.15713173198806
1001 => 0.15696202556924
1002 => 0.15571639226293
1003 => 0.15046127024034
1004 => 0.152555868215
1005 => 0.14610902122179
1006 => 0.15093943733209
1007 => 0.14873503714235
1008 => 0.15019412741051
1009 => 0.14757055154749
1010 => 0.14902254675488
1011 => 0.14272839442159
1012 => 0.13685100353387
1013 => 0.13921623719882
1014 => 0.14178751668991
1015 => 0.1473627057764
1016 => 0.1440421691508
1017 => 0.14523635968476
1018 => 0.14123602130107
1019 => 0.13298218057537
1020 => 0.13302889641751
1021 => 0.13175922284156
1022 => 0.13066203949656
1023 => 0.14442357272633
1024 => 0.14271210853156
1025 => 0.13998511432809
1026 => 0.14363530443587
1027 => 0.14460047263668
1028 => 0.14462794961849
1029 => 0.14729103409609
1030 => 0.14871232275916
1031 => 0.14896283104625
1101 => 0.15315325201149
1102 => 0.15455782584605
1103 => 0.16034306668788
1104 => 0.14859173634609
1105 => 0.14834972543088
1106 => 0.1436866700963
1107 => 0.14072928668312
1108 => 0.14388916466875
1109 => 0.14668838519766
1110 => 0.14377364968093
1111 => 0.14415425260599
1112 => 0.14024145831741
1113 => 0.1416400981615
1114 => 0.14284479521235
1115 => 0.14217963230969
1116 => 0.14118385125015
1117 => 0.14645888103618
1118 => 0.14616124318264
1119 => 0.1510734721918
1120 => 0.15490290598131
1121 => 0.16176593592527
1122 => 0.1546040064009
1123 => 0.15434299722294
1124 => 0.15689440380469
1125 => 0.154557435239
1126 => 0.1560343187031
1127 => 0.16152798716668
1128 => 0.1616440597245
1129 => 0.15969969482988
1130 => 0.15958138004933
1201 => 0.15995481659637
1202 => 0.16214204611643
1203 => 0.16137776091534
1204 => 0.16226221109937
1205 => 0.16336822959768
1206 => 0.16794319104881
1207 => 0.16904619876622
1208 => 0.16636646185685
1209 => 0.16660841209602
1210 => 0.1656061169315
1211 => 0.16463791236128
1212 => 0.1668142948402
1213 => 0.17079167659732
1214 => 0.17076693351183
1215 => 0.17168960877023
1216 => 0.17226442781236
1217 => 0.16979688369029
1218 => 0.16819060320094
1219 => 0.16880655335084
1220 => 0.16979147105418
1221 => 0.16848715781403
1222 => 0.16043633227919
1223 => 0.16287843845773
1224 => 0.16247195257673
1225 => 0.16189306725181
1226 => 0.16434862389859
1227 => 0.16411177946964
1228 => 0.15701736929832
1229 => 0.15747153041973
1230 => 0.15704498834034
1231 => 0.15842323306115
]
'min_raw' => 0.13066203949656
'max_raw' => 0.2926990981437
'avg_raw' => 0.21168056882013
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.130662'
'max' => '$0.292699'
'avg' => '$0.21168'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.031862615606137
'max_diff' => -0.2126983654113
'year' => 2034
]
9 => [
'items' => [
101 => 0.15448300550106
102 => 0.15569499296071
103 => 0.15645514013372
104 => 0.15690287265835
105 => 0.15852038955038
106 => 0.15833059261241
107 => 0.15850859150623
108 => 0.16090694204848
109 => 0.17303697607668
110 => 0.17369718706542
111 => 0.17044606669602
112 => 0.17174482515808
113 => 0.16925149291818
114 => 0.1709252835547
115 => 0.17207044859854
116 => 0.16689566796802
117 => 0.16658925104313
118 => 0.16408562793415
119 => 0.16543093318045
120 => 0.16329045580271
121 => 0.16381565408049
122 => 0.16234715390986
123 => 0.16499016184153
124 => 0.16794545539104
125 => 0.16869207924973
126 => 0.1667280333193
127 => 0.16530593462874
128 => 0.16280919779655
129 => 0.1669613267919
130 => 0.16817553584397
131 => 0.16695494906865
201 => 0.16667211244246
202 => 0.16613613754691
203 => 0.16678582205027
204 => 0.16816892300071
205 => 0.16751667813435
206 => 0.16794749735966
207 => 0.16630565873163
208 => 0.16979770055007
209 => 0.17534390336338
210 => 0.17536173531232
211 => 0.17470948693011
212 => 0.174442600945
213 => 0.17511184736688
214 => 0.17547488609683
215 => 0.17763910630641
216 => 0.17996140081762
217 => 0.19079853600496
218 => 0.18775551180985
219 => 0.19737086285212
220 => 0.20497535712949
221 => 0.20725561245904
222 => 0.20515788485015
223 => 0.19798167201719
224 => 0.19762957277967
225 => 0.20835386447103
226 => 0.20532376086455
227 => 0.20496333968226
228 => 0.20112906724398
301 => 0.20339559713889
302 => 0.20289987380288
303 => 0.20211735026539
304 => 0.20644173141702
305 => 0.21453658689271
306 => 0.21327492775375
307 => 0.2123331577332
308 => 0.20820659564828
309 => 0.21069170772441
310 => 0.20980680691329
311 => 0.21360890236981
312 => 0.21135662524809
313 => 0.20530080484954
314 => 0.20626521420825
315 => 0.2061194456738
316 => 0.20911935178346
317 => 0.20821885443159
318 => 0.20594360911339
319 => 0.21450891955672
320 => 0.21395273593929
321 => 0.21474127714753
322 => 0.21508841737384
323 => 0.220301970903
324 => 0.22243779696879
325 => 0.22292266687862
326 => 0.22495153645041
327 => 0.22287218675542
328 => 0.23119106808658
329 => 0.23672263875162
330 => 0.24314784273109
331 => 0.25253679267711
401 => 0.25606712470946
402 => 0.25542940182659
403 => 0.26254799652106
404 => 0.27533995294955
405 => 0.25801502195682
406 => 0.27625821636038
407 => 0.27048263164002
408 => 0.25678882416638
409 => 0.25590710440446
410 => 0.26518070981399
411 => 0.28574867406087
412 => 0.28059663229694
413 => 0.28575710095553
414 => 0.27973714015086
415 => 0.27943819835669
416 => 0.28546472489605
417 => 0.29954603264411
418 => 0.29285653116293
419 => 0.28326549045661
420 => 0.29034736566104
421 => 0.28421238996235
422 => 0.27038857264164
423 => 0.2805926926277
424 => 0.27376948818963
425 => 0.27576086198616
426 => 0.29010222283993
427 => 0.28837663235947
428 => 0.29060970622656
429 => 0.28666838930086
430 => 0.28298657780363
501 => 0.27611420322913
502 => 0.27407963192159
503 => 0.27464191423479
504 => 0.2740793532824
505 => 0.27023432286835
506 => 0.26940398891652
507 => 0.26802006261905
508 => 0.26844899924706
509 => 0.26584681292589
510 => 0.27075767615307
511 => 0.27166917564241
512 => 0.27524289236714
513 => 0.27561392749286
514 => 0.28556667770256
515 => 0.28008487013623
516 => 0.28376253992822
517 => 0.28343357452646
518 => 0.25708561049759
519 => 0.26071612747071
520 => 0.2663640725619
521 => 0.26381968095393
522 => 0.2602225065162
523 => 0.25731759528944
524 => 0.25291635773848
525 => 0.25911101507318
526 => 0.26725633073994
527 => 0.27582050613998
528 => 0.28610980173613
529 => 0.28381335073967
530 => 0.2756281549159
531 => 0.27599533682126
601 => 0.27826511087948
602 => 0.27532554724337
603 => 0.27445861253998
604 => 0.27814600736392
605 => 0.27817140042552
606 => 0.27478907720404
607 => 0.27103024390199
608 => 0.27101449425321
609 => 0.27034564617313
610 => 0.27985612673845
611 => 0.28508592943133
612 => 0.28568551788183
613 => 0.28504557235135
614 => 0.2852918619875
615 => 0.28224875503135
616 => 0.28920439512777
617 => 0.29558757832176
618 => 0.29387674886895
619 => 0.29131197231046
620 => 0.28926900424524
621 => 0.29339549051925
622 => 0.29321174458116
623 => 0.29553182678513
624 => 0.29542657445491
625 => 0.29464641807242
626 => 0.2938767767308
627 => 0.29692831765404
628 => 0.29604952287439
629 => 0.29516936308372
630 => 0.29340406787782
701 => 0.29364400081475
702 => 0.29107966710108
703 => 0.28989328898922
704 => 0.27205300870585
705 => 0.26728550286615
706 => 0.26878545725485
707 => 0.26927928118591
708 => 0.26720445653475
709 => 0.27017922210579
710 => 0.2697156080426
711 => 0.27151925915732
712 => 0.27039241624627
713 => 0.2704386622724
714 => 0.27375246700555
715 => 0.27471447861752
716 => 0.27422519174728
717 => 0.27456787149942
718 => 0.28246478175136
719 => 0.28134209364251
720 => 0.28074568796069
721 => 0.28091089641046
722 => 0.2829287262915
723 => 0.28349360848876
724 => 0.28110016292539
725 => 0.28222892568942
726 => 0.28703505427734
727 => 0.28871692727979
728 => 0.29408465855877
729 => 0.29180435090764
730 => 0.29598995429069
731 => 0.30885507211284
801 => 0.31913261842761
802 => 0.30968096209898
803 => 0.32855436706843
804 => 0.34325002006629
805 => 0.34268597642734
806 => 0.34012344941059
807 => 0.32339283917667
808 => 0.30799708220008
809 => 0.32087628664937
810 => 0.32090911839014
811 => 0.31980278330595
812 => 0.31293143111475
813 => 0.31956367514421
814 => 0.3200901185905
815 => 0.31979545025319
816 => 0.31452720063894
817 => 0.30648355721325
818 => 0.30805526588487
819 => 0.31062975675097
820 => 0.30575570844639
821 => 0.30419815468407
822 => 0.30709394346494
823 => 0.31642477827846
824 => 0.31466083800681
825 => 0.31461477439767
826 => 0.32216165890688
827 => 0.3167597183179
828 => 0.30807509016453
829 => 0.30588210701963
830 => 0.29809849422569
831 => 0.30347466330674
901 => 0.30366814206096
902 => 0.30072366919838
903 => 0.30831401790941
904 => 0.30824407150978
905 => 0.31544997793659
906 => 0.32922496460978
907 => 0.32515102322459
908 => 0.32041347263717
909 => 0.32092857574406
910 => 0.32657798544374
911 => 0.32316222337583
912 => 0.32439055523099
913 => 0.32657612621636
914 => 0.32789473545651
915 => 0.32073884816664
916 => 0.31907046853372
917 => 0.31565754932644
918 => 0.31476718241041
919 => 0.31754693389185
920 => 0.31681456758656
921 => 0.30365188092085
922 => 0.30227630692779
923 => 0.30231849381829
924 => 0.29885954760775
925 => 0.29358382439448
926 => 0.3074481100019
927 => 0.30633461383708
928 => 0.30510540024886
929 => 0.30525597189962
930 => 0.31127398837757
1001 => 0.30778323490324
1002 => 0.31706397513798
1003 => 0.31515613395031
1004 => 0.31319936383511
1005 => 0.31292887860052
1006 => 0.31217568904995
1007 => 0.30959272183156
1008 => 0.30647363370309
1009 => 0.30441414154989
1010 => 0.28080595430913
1011 => 0.28518749653851
1012 => 0.29022806148327
1013 => 0.2919680443034
1014 => 0.28899168328642
1015 => 0.30971024670565
1016 => 0.31349572789138
1017 => 0.30202925845896
1018 => 0.29988435020101
1019 => 0.30985086653395
1020 => 0.30383983882812
1021 => 0.30654660423599
1022 => 0.30069605794568
1023 => 0.31258391632557
1024 => 0.31249335076232
1025 => 0.30786870535309
1026 => 0.31177742398477
1027 => 0.31109818793367
1028 => 0.30587697465665
1029 => 0.31274943809936
1030 => 0.31275284675549
1031 => 0.30830172609756
1101 => 0.30310379164471
1102 => 0.30217452373427
1103 => 0.30147444519333
1104 => 0.30637442783052
1105 => 0.31076773694117
1106 => 0.3189425960024
1107 => 0.32099794980025
1108 => 0.32902013250592
1109 => 0.32424331329768
1110 => 0.32636081538253
1111 => 0.32865966343459
1112 => 0.32976181572809
1113 => 0.32796591771059
1114 => 0.34042766951464
1115 => 0.34147982318511
1116 => 0.34183260120972
1117 => 0.33763056861665
1118 => 0.34136295705727
1119 => 0.33961669610962
1120 => 0.34415998197015
1121 => 0.34487242720466
1122 => 0.344269011437
1123 => 0.34449515279962
1124 => 0.33386124603853
1125 => 0.33330982187464
1126 => 0.32579111427273
1127 => 0.32885504319599
1128 => 0.32312717493189
1129 => 0.32494354096202
1130 => 0.32574417780113
1201 => 0.32532597055212
1202 => 0.32902827314023
1203 => 0.32588055960989
1204 => 0.3175732260713
1205 => 0.30926362920524
1206 => 0.30915930898543
1207 => 0.30697153880717
1208 => 0.30539018167838
1209 => 0.30569480716304
1210 => 0.30676834710392
1211 => 0.30532778558542
1212 => 0.30563520242372
1213 => 0.31074037024708
1214 => 0.31176417524566
1215 => 0.30828488583404
1216 => 0.29431503678731
1217 => 0.29088680079053
1218 => 0.29335094884014
1219 => 0.29217324478388
1220 => 0.2358066117274
1221 => 0.24904911606593
1222 => 0.24118086966093
1223 => 0.24480691960497
1224 => 0.23677547749799
1225 => 0.24060850263538
1226 => 0.23990068285217
1227 => 0.26119423795435
1228 => 0.26086176837975
1229 => 0.26102090397121
1230 => 0.25342494756528
1231 => 0.26552551237262
]
'min_raw' => 0.15448300550106
'max_raw' => 0.34487242720466
'avg_raw' => 0.24967771635286
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.154483'
'max' => '$0.344872'
'avg' => '$0.249677'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.023820966004508
'max_diff' => 0.05217332906096
'year' => 2035
]
10 => [
'items' => [
101 => 0.27148668571896
102 => 0.27038343118404
103 => 0.27066109658179
104 => 0.26588988509893
105 => 0.26106709972772
106 => 0.25571788852969
107 => 0.26565606175314
108 => 0.26455110654097
109 => 0.26708547624735
110 => 0.27353109197805
111 => 0.27448023337891
112 => 0.2757558890469
113 => 0.27529865729728
114 => 0.28619177257554
115 => 0.28487254444026
116 => 0.28805150467846
117 => 0.28151214228018
118 => 0.27411223300456
119 => 0.27551871383659
120 => 0.27538325842226
121 => 0.27365875552936
122 => 0.27210195142538
123 => 0.26951031121909
124 => 0.27771064432237
125 => 0.27737772577395
126 => 0.28276729009749
127 => 0.28181463225187
128 => 0.27545255000389
129 => 0.27567977301601
130 => 0.27720795697216
131 => 0.28249701909291
201 => 0.28406717283715
202 => 0.28333981506301
203 => 0.28506141696333
204 => 0.28642210090998
205 => 0.28523229791757
206 => 0.30207739921766
207 => 0.2950821387215
208 => 0.29849158001462
209 => 0.29930471167343
210 => 0.2972218920277
211 => 0.29767358102868
212 => 0.29835776678728
213 => 0.30251200873619
214 => 0.31341394164973
215 => 0.31824233352517
216 => 0.33276878871108
217 => 0.31784140279437
218 => 0.31695567348974
219 => 0.31957232672564
220 => 0.32810089370122
221 => 0.33501249618736
222 => 0.33730547347193
223 => 0.33760852827302
224 => 0.34191030609311
225 => 0.34437600491618
226 => 0.34138795711776
227 => 0.33885589947025
228 => 0.32978638326741
229 => 0.33083620446336
301 => 0.33806843144588
302 => 0.34828437803472
303 => 0.35705072299604
304 => 0.35398105452855
305 => 0.37740045808725
306 => 0.37972239629041
307 => 0.37940157950799
308 => 0.38469130028552
309 => 0.37419228177502
310 => 0.36970374795288
311 => 0.33940335907371
312 => 0.34791653241196
313 => 0.36029092982023
314 => 0.35865313192164
315 => 0.34966651375516
316 => 0.35704390584031
317 => 0.35460470930458
318 => 0.35268081379449
319 => 0.3614945520917
320 => 0.3518034847855
321 => 0.36019425401058
322 => 0.34943300568803
323 => 0.35399507651554
324 => 0.35140542447131
325 => 0.35308124671975
326 => 0.34328442409805
327 => 0.34857055178029
328 => 0.3430645038073
329 => 0.34306189322365
330 => 0.34294034690947
331 => 0.34941818793215
401 => 0.34962943009533
402 => 0.3448422957921
403 => 0.34415239494992
404 => 0.34670331995515
405 => 0.34371685486234
406 => 0.34511420308268
407 => 0.34375917911643
408 => 0.34345413468046
409 => 0.34102348871558
410 => 0.33997629960192
411 => 0.34038692943612
412 => 0.33898523811778
413 => 0.33814066839709
414 => 0.34277234073452
415 => 0.34029782504576
416 => 0.34239308571566
417 => 0.34000527173933
418 => 0.33172806817632
419 => 0.32696776087739
420 => 0.31133289064405
421 => 0.31576692044723
422 => 0.31870668679407
423 => 0.31773509403398
424 => 0.31982245123915
425 => 0.31995059801873
426 => 0.31927197691324
427 => 0.31848622060983
428 => 0.31810375789638
429 => 0.32095432161662
430 => 0.32260916980178
501 => 0.31900173167598
502 => 0.31815655939652
503 => 0.32180387851383
504 => 0.32402874106839
505 => 0.34045587612903
506 => 0.33923890090479
507 => 0.3422932698983
508 => 0.34194939482275
509 => 0.34515086012709
510 => 0.3503839028595
511 => 0.33974366380275
512 => 0.34159044139122
513 => 0.34113765417485
514 => 0.34608106627599
515 => 0.34609649906898
516 => 0.34313267657259
517 => 0.34473941283041
518 => 0.3438425767298
519 => 0.34546328077827
520 => 0.33922264745872
521 => 0.3468230652072
522 => 0.35113201231048
523 => 0.35119184204519
524 => 0.35323424877423
525 => 0.35530945229916
526 => 0.35929262475311
527 => 0.35519836378129
528 => 0.34783318686124
529 => 0.34836492884549
530 => 0.34404672831208
531 => 0.3441193180432
601 => 0.34373182836955
602 => 0.34489471404902
603 => 0.33947783547062
604 => 0.34074916604587
605 => 0.33896929579562
606 => 0.34158657230089
607 => 0.33877081543253
608 => 0.34113743582714
609 => 0.34215879073475
610 => 0.34592761233201
611 => 0.33821415741828
612 => 0.32248590069418
613 => 0.32579217094426
614 => 0.32090193754246
615 => 0.32135454726223
616 => 0.32226889092846
617 => 0.31930520395157
618 => 0.31987058203025
619 => 0.31985038274677
620 => 0.31967631623432
621 => 0.31890534678861
622 => 0.31778728856067
623 => 0.32224128842061
624 => 0.32299810978869
625 => 0.32468042993962
626 => 0.32968587358011
627 => 0.32918571172394
628 => 0.33000149646288
629 => 0.32822064295821
630 => 0.3214371559487
701 => 0.32180553192966
702 => 0.3172118775443
703 => 0.32456295986904
704 => 0.322822126545
705 => 0.32169979997619
706 => 0.32139356277361
707 => 0.32641141394073
708 => 0.32791283365511
709 => 0.32697724964564
710 => 0.32505833954686
711 => 0.32874321421136
712 => 0.32972913121919
713 => 0.32994984167803
714 => 0.33647873307888
715 => 0.3303147341804
716 => 0.33179846998015
717 => 0.34337415313868
718 => 0.33287660584897
719 => 0.33843739077157
720 => 0.33816521928654
721 => 0.34100992868624
722 => 0.33793187008492
723 => 0.3379700263103
724 => 0.34049593553993
725 => 0.33694875157705
726 => 0.33607041894368
727 => 0.33485700870142
728 => 0.33750644557367
729 => 0.33909466315486
730 => 0.35189453044201
731 => 0.36016382845437
801 => 0.35980483641893
802 => 0.36308535161791
803 => 0.36160744947469
804 => 0.35683491360337
805 => 0.36498105038698
806 => 0.3624032718598
807 => 0.36261578078958
808 => 0.3626078711966
809 => 0.36432186856386
810 => 0.36310734434361
811 => 0.36071339243713
812 => 0.36230260943371
813 => 0.36702201575807
814 => 0.38167119779796
815 => 0.38986907414332
816 => 0.38117767534841
817 => 0.38717288585467
818 => 0.38357789586284
819 => 0.38292457923963
820 => 0.38669001448015
821 => 0.39046204061658
822 => 0.39022177885861
823 => 0.38748348157924
824 => 0.38593668692785
825 => 0.39764953424243
826 => 0.40627936062067
827 => 0.40569086431676
828 => 0.40828829561295
829 => 0.41591443423409
830 => 0.41661167277572
831 => 0.41652383674532
901 => 0.41479565827056
902 => 0.42230458212231
903 => 0.42856865850638
904 => 0.41439563488553
905 => 0.41979253674184
906 => 0.42221537986246
907 => 0.42577283238869
908 => 0.43177485109872
909 => 0.43829463537464
910 => 0.43921660435705
911 => 0.43856242324375
912 => 0.43426245025257
913 => 0.44139647600449
914 => 0.44557542097647
915 => 0.44806388707383
916 => 0.45437422305546
917 => 0.42223034251674
918 => 0.39947730621692
919 => 0.39592409104087
920 => 0.40314969382464
921 => 0.40505502765562
922 => 0.40428698997744
923 => 0.37867637900643
924 => 0.39578925647435
925 => 0.41420127373822
926 => 0.41490855430663
927 => 0.42412599512605
928 => 0.42712757169251
929 => 0.43454881970973
930 => 0.43408461862567
1001 => 0.43589157442001
1002 => 0.43547618657501
1003 => 0.44922248579877
1004 => 0.46438669518776
1005 => 0.46386160683585
1006 => 0.4616815723214
1007 => 0.46491929532648
1008 => 0.48057038451136
1009 => 0.47912948302281
1010 => 0.48052919608324
1011 => 0.49898271228895
1012 => 0.52297490833844
1013 => 0.51182812449635
1014 => 0.53601343803304
1015 => 0.551236810896
1016 => 0.57756406013636
1017 => 0.57426775886703
1018 => 0.58451676379802
1019 => 0.56836669163609
1020 => 0.53128286148422
1021 => 0.52541420341148
1022 => 0.53716340549119
1023 => 0.56604767233377
1024 => 0.53625373713794
1025 => 0.54228101142435
1026 => 0.54054515602439
1027 => 0.54045265966703
1028 => 0.54398286941735
1029 => 0.53886211605116
1030 => 0.51799924563138
1031 => 0.5275605761991
1101 => 0.5238684872941
1102 => 0.52796513519766
1103 => 0.55007305434706
1104 => 0.54029861630414
1105 => 0.53000203983679
1106 => 0.54291623172008
1107 => 0.5593604357853
1108 => 0.55833138704798
1109 => 0.55633460238856
1110 => 0.56759037296544
1111 => 0.5861816083271
1112 => 0.59120674453972
1113 => 0.59491619735749
1114 => 0.59542766822934
1115 => 0.60069613608679
1116 => 0.57236625659244
1117 => 0.61732650291288
1118 => 0.62508989545068
1119 => 0.62363069941323
1120 => 0.6322593834855
1121 => 0.62972060574285
1122 => 0.62604231511578
1123 => 0.63972061474406
1124 => 0.62403954800209
1125 => 0.60178224795329
1126 => 0.58957145294704
1127 => 0.60565161282801
1128 => 0.61547120534707
1129 => 0.62196133135879
1130 => 0.6239252395685
1201 => 0.57456542449276
1202 => 0.54796322178779
1203 => 0.56501492872681
1204 => 0.58581918803835
1205 => 0.57225068788153
1206 => 0.57278254739911
1207 => 0.55343743191461
1208 => 0.58753080150597
1209 => 0.58256368432688
1210 => 0.60833309703868
1211 => 0.60218301988255
1212 => 0.62319697558618
1213 => 0.61766329679507
1214 => 0.64063328807315
1215 => 0.64979663948167
1216 => 0.66518333265834
1217 => 0.6765018467942
1218 => 0.68314829478346
1219 => 0.68274926697638
1220 => 0.70908580515705
1221 => 0.69355606872047
1222 => 0.67404705967828
1223 => 0.67369420325484
1224 => 0.68379819548258
1225 => 0.70497339129705
1226 => 0.71046381148517
1227 => 0.71353220735343
1228 => 0.70883285226956
1229 => 0.69197643639389
1230 => 0.68469792148275
1231 => 0.69089942706592
]
'min_raw' => 0.25571788852969
'max_raw' => 0.71353220735343
'avg_raw' => 0.48462504794156
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.255717'
'max' => '$0.713532'
'avg' => '$0.484625'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10123488302863
'max_diff' => 0.36865978014877
'year' => 2036
]
11 => [
'items' => [
101 => 0.68331551863915
102 => 0.69640747225263
103 => 0.71438552085434
104 => 0.710673124911
105 => 0.72308310795609
106 => 0.73592613483948
107 => 0.75429224009914
108 => 0.75909382010893
109 => 0.76703064927737
110 => 0.77520025360426
111 => 0.77782411033705
112 => 0.78283386697487
113 => 0.7828074630845
114 => 0.79790470190808
115 => 0.81455742385306
116 => 0.82084344087589
117 => 0.83529779040689
118 => 0.81054522337588
119 => 0.82932032980589
120 => 0.84625594577717
121 => 0.82606460624272
122 => 0.85389366381222
123 => 0.85497420305564
124 => 0.87128906275605
125 => 0.85475082690076
126 => 0.8449304752418
127 => 0.87328146251742
128 => 0.88699961221237
129 => 0.88286759388224
130 => 0.85142273036711
131 => 0.83312047106766
201 => 0.78521992823884
202 => 0.84196019036904
203 => 0.86959671691652
204 => 0.85135115843985
205 => 0.86055315685472
206 => 0.91075627644829
207 => 0.92987037397824
208 => 0.92589477530964
209 => 0.92656658604071
210 => 0.93688020612246
211 => 0.98261647737927
212 => 0.95521024348372
213 => 0.97616128240487
214 => 0.98727363790406
215 => 0.99759541299001
216 => 0.97224839560944
217 => 0.93927229841896
218 => 0.92882738419634
219 => 0.84953699723
220 => 0.8454095882477
221 => 0.84309274851265
222 => 0.82848540170662
223 => 0.81700802840611
224 => 0.80788079502999
225 => 0.78392820902846
226 => 0.79201150366844
227 => 0.75383608087522
228 => 0.77825936352441
301 => 0.71733046696861
302 => 0.76807386253222
303 => 0.74045653934603
304 => 0.75900082910003
305 => 0.75893612982005
306 => 0.72479021291052
307 => 0.70509556064421
308 => 0.71764575959564
309 => 0.7311005691076
310 => 0.7332835666835
311 => 0.75072807842222
312 => 0.75559646667997
313 => 0.74084502297567
314 => 0.7160678510149
315 => 0.72182302295426
316 => 0.70497893226855
317 => 0.67546031124043
318 => 0.6966611002085
319 => 0.70389998169509
320 => 0.70709708414955
321 => 0.67806891060492
322 => 0.66894762824489
323 => 0.66409153405138
324 => 0.71232067833048
325 => 0.71496277972523
326 => 0.70144541543422
327 => 0.76254518379867
328 => 0.74871642445034
329 => 0.76416653677073
330 => 0.72130080142363
331 => 0.72293833024025
401 => 0.70264500417305
402 => 0.71400791077015
403 => 0.7059769746309
404 => 0.71308990020753
405 => 0.71735335847048
406 => 0.73764335460256
407 => 0.76830554169577
408 => 0.73461270579217
409 => 0.71993225469867
410 => 0.72903992399108
411 => 0.75329484751141
412 => 0.7900422982314
413 => 0.7682870677938
414 => 0.77794166963424
415 => 0.78005077063303
416 => 0.76400926913075
417 => 0.79063377127315
418 => 0.80490205826833
419 => 0.8195383683194
420 => 0.83224666623666
421 => 0.81369230422565
422 => 0.83354813124075
423 => 0.81754783969188
424 => 0.8031939240928
425 => 0.80321569305773
426 => 0.79421127212518
427 => 0.77676407193833
428 => 0.77354654053579
429 => 0.79028454522119
430 => 0.80370683988393
501 => 0.80481236436081
502 => 0.8122436363485
503 => 0.81664138656263
504 => 0.8597453171126
505 => 0.87708207455421
506 => 0.89828113338579
507 => 0.90653936151419
508 => 0.931393667442
509 => 0.91132179683726
510 => 0.90697912137394
511 => 0.84669070497457
512 => 0.85656292978254
513 => 0.87236931422812
514 => 0.84695134643222
515 => 0.86307319658902
516 => 0.86625599131745
517 => 0.84608765361282
518 => 0.85686043420329
519 => 0.82825112286185
520 => 0.76892914650279
521 => 0.79069981359092
522 => 0.80673035249509
523 => 0.78385279692765
524 => 0.82485992979862
525 => 0.80090440933444
526 => 0.79331165941507
527 => 0.76368963496882
528 => 0.77767009025117
529 => 0.79657885620138
530 => 0.78489543722413
531 => 0.80914028587611
601 => 0.84347745743226
602 => 0.8679481706971
603 => 0.86982672820751
604 => 0.85409369898868
605 => 0.87930597871871
606 => 0.87948962265167
607 => 0.85105006812102
608 => 0.83363099932309
609 => 0.82967335024217
610 => 0.83956033358912
611 => 0.85156495661013
612 => 0.87049290123725
613 => 0.88193066175722
614 => 0.91175427507386
615 => 0.91982368972733
616 => 0.92868952993785
617 => 0.94053702658296
618 => 0.95476298394121
619 => 0.92363739912557
620 => 0.92487407663564
621 => 0.89589036301837
622 => 0.86491710833333
623 => 0.88842194776857
624 => 0.9191513986124
625 => 0.9121020286358
626 => 0.91130883050787
627 => 0.91264276974423
628 => 0.90732777499277
629 => 0.88328825071484
630 => 0.87121575211785
701 => 0.88679235533084
702 => 0.89507062670369
703 => 0.90790950366186
704 => 0.90632684108095
705 => 0.93939840933046
706 => 0.95224902071991
707 => 0.94896128441782
708 => 0.9495663070212
709 => 0.97283172511659
710 => 0.99870765493683
711 => 1.0229438778432
712 => 1.0475980047535
713 => 1.0178764924961
714 => 1.0027857415399
715 => 1.0183555444952
716 => 1.0100939878863
717 => 1.0575673426981
718 => 1.0608542947837
719 => 1.1083242167316
720 => 1.1533788252733
721 => 1.1250808328854
722 => 1.1517645651376
723 => 1.180625197125
724 => 1.2363020386974
725 => 1.2175520371908
726 => 1.2031898298866
727 => 1.1896176133819
728 => 1.2178592413995
729 => 1.2541916446732
730 => 1.2620172963509
731 => 1.2746978416979
801 => 1.2613657987689
802 => 1.2774227760005
803 => 1.3341109614214
804 => 1.3187933133202
805 => 1.2970397905817
806 => 1.3417896685803
807 => 1.3579844754672
808 => 1.471648111486
809 => 1.6151531471703
810 => 1.5557411200922
811 => 1.5188621576706
812 => 1.5275295886204
813 => 1.5799327697002
814 => 1.5967630082693
815 => 1.5510126181075
816 => 1.567172429352
817 => 1.6562145781069
818 => 1.7039828340998
819 => 1.6391071263288
820 => 1.4601176215965
821 => 1.2950811238696
822 => 1.3388562347571
823 => 1.3338934956823
824 => 1.4295581762852
825 => 1.3184279924789
826 => 1.3202991397649
827 => 1.417942064652
828 => 1.3918926063157
829 => 1.3496958199733
830 => 1.2953892071076
831 => 1.1949984104717
901 => 1.1060794822868
902 => 1.2804699772636
903 => 1.2729499420116
904 => 1.2620598165601
905 => 1.2862946123179
906 => 1.4039719013513
907 => 1.4012590589549
908 => 1.3840013397331
909 => 1.3970911676603
910 => 1.3474011098493
911 => 1.3602073691688
912 => 1.2950549812451
913 => 1.3245065815907
914 => 1.3496052846214
915 => 1.3546442208474
916 => 1.3659972014592
917 => 1.2689872251469
918 => 1.3125418564479
919 => 1.3381261218201
920 => 1.2225354801048
921 => 1.3358412664856
922 => 1.267298497287
923 => 1.2440340519432
924 => 1.2753565627411
925 => 1.263150149821
926 => 1.2526557927769
927 => 1.2467997612304
928 => 1.269799556221
929 => 1.268726588294
930 => 1.2310944596215
1001 => 1.1820048818501
1002 => 1.1984809554606
1003 => 1.1924950434539
1004 => 1.1708013261435
1005 => 1.1854202723013
1006 => 1.1210458319017
1007 => 1.0102929530865
1008 => 1.0834596972843
1009 => 1.0806428572228
1010 => 1.0792224787302
1011 => 1.1342052648146
1012 => 1.1289199386013
1013 => 1.11932701977
1014 => 1.1706251446663
1015 => 1.151900639022
1016 => 1.2096051533694
1017 => 1.2476130786125
1018 => 1.2379730393433
1019 => 1.2737196767427
1020 => 1.1988605309196
1021 => 1.2237257363344
1022 => 1.2288504207087
1023 => 1.1699921337679
1024 => 1.1297846833345
1025 => 1.1271033047891
1026 => 1.0573891266655
1027 => 1.0946298779059
1028 => 1.1274001978705
1029 => 1.111705757687
1030 => 1.106737366783
1031 => 1.1321197983992
1101 => 1.1340922307216
1102 => 1.0891205647418
1103 => 1.0984715981664
1104 => 1.1374669620271
1105 => 1.097489015049
1106 => 1.0198183944309
1107 => 1.0005550066373
1108 => 0.99798491561097
1109 => 0.94574108011614
1110 => 1.0018422783212
1111 => 0.97735260188603
1112 => 1.0547151963132
1113 => 1.0105260972803
1114 => 1.0086211935407
1115 => 1.0057416521495
1116 => 0.96077322477344
1117 => 0.97061845247616
1118 => 1.0033454888305
1119 => 1.0150228640982
1120 => 1.0138048181878
1121 => 1.0031851084982
1122 => 1.0080467572124
1123 => 0.99238569279322
1124 => 0.98685544498994
1125 => 0.9694004617083
1126 => 0.94374645834649
1127 => 0.9473138048591
1128 => 0.89648651146423
1129 => 0.86879310441408
1130 => 0.86112793433583
1201 => 0.85087774855769
1202 => 0.86228572009418
1203 => 0.89634252412816
1204 => 0.85526279290914
1205 => 0.78483447514224
1206 => 0.78906733704404
1207 => 0.79857732098942
1208 => 0.78085552882205
1209 => 0.76408333981291
1210 => 0.77866539738565
1211 => 0.74882399070771
1212 => 0.80218351241744
1213 => 0.80074028689353
1214 => 0.82062941685623
1215 => 0.83306649798794
1216 => 0.80440305253218
1217 => 0.79719427351425
1218 => 0.8013007216636
1219 => 0.73343028098113
1220 => 0.8150829538802
1221 => 0.81578908958613
1222 => 0.80974272696452
1223 => 0.85322025453982
1224 => 0.94497139870463
1225 => 0.91045092758861
1226 => 0.89708355778572
1227 => 0.87167217801894
1228 => 0.90553133277974
1229 => 0.90293147797921
1230 => 0.89117394860554
1231 => 0.88406295815462
]
'min_raw' => 0.66409153405138
'max_raw' => 1.7039828340998
'avg_raw' => 1.1840371840756
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.664091'
'max' => '$1.70'
'avg' => '$1.18'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.40837364552169
'max_diff' => 0.99045062674636
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.020845074413474
]
1 => [
'year' => 2028
'avg' => 0.035776199061862
]
2 => [
'year' => 2029
'avg' => 0.097734127804486
]
3 => [
'year' => 2030
'avg' => 0.075401734051131
]
4 => [
'year' => 2031
'avg' => 0.074053847272239
]
5 => [
'year' => 2032
'avg' => 0.12983969987168
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.020845074413474
'min' => '$0.020845'
'max_raw' => 0.12983969987168
'max' => '$0.129839'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.12983969987168
]
1 => [
'year' => 2033
'avg' => 0.33396105932885
]
2 => [
'year' => 2034
'avg' => 0.21168056882013
]
3 => [
'year' => 2035
'avg' => 0.24967771635286
]
4 => [
'year' => 2036
'avg' => 0.48462504794156
]
5 => [
'year' => 2037
'avg' => 1.1840371840756
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.12983969987168
'min' => '$0.129839'
'max_raw' => 1.1840371840756
'max' => '$1.18'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.1840371840756
]
]
]
]
'prediction_2025_max_price' => '$0.035641'
'last_price' => 0.03455872
'sma_50day_nextmonth' => '$0.031817'
'sma_200day_nextmonth' => '$0.138139'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.03335'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.033636'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.033337'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.032116'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.049122'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.084288'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.163335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.033848'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0336069'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.033371'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.035712'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.052041'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.086247'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.132822'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.111457'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.034698'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.038154'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.056015'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.097117'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.140352'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.070176'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035088'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.79'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.25
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.034547'
'vwma_10_action' => 'BUY'
'hma_9' => '0.033159'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 61.49
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 81.94
'cci_20_action' => 'NEUTRAL'
'adx_14' => 36.8
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.004838'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -38.51
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 46.86
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.035083'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 15
'sell_pct' => 51.61
'buy_pct' => 48.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767683690
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Arcadia para 2026
A previsão de preço para Arcadia em 2026 sugere que o preço médio poderia variar entre $0.01194 na extremidade inferior e $0.035641 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Arcadia poderia potencialmente ganhar 3.13% até 2026 se AAA atingir a meta de preço prevista.
Previsão de preço de Arcadia 2027-2032
A previsão de preço de AAA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.020845 na extremidade inferior e $0.129839 na extremidade superior. Considerando a volatilidade de preços no mercado, se Arcadia atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Arcadia | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011494 | $0.020845 | $0.030195 |
| 2028 | $0.020743 | $0.035776 | $0.0508084 |
| 2029 | $0.045568 | $0.097734 | $0.149899 |
| 2030 | $0.038754 | $0.0754017 | $0.112049 |
| 2031 | $0.045819 | $0.074053 | $0.102288 |
| 2032 | $0.069939 | $0.129839 | $0.189739 |
Previsão de preço de Arcadia 2032-2037
A previsão de preço de Arcadia para 2032-2037 é atualmente estimada entre $0.129839 na extremidade inferior e $1.18 na extremidade superior. Comparado ao preço atual, Arcadia poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Arcadia | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.069939 | $0.129839 | $0.189739 |
| 2033 | $0.162524 | $0.333961 | $0.505397 |
| 2034 | $0.130662 | $0.21168 | $0.292699 |
| 2035 | $0.154483 | $0.249677 | $0.344872 |
| 2036 | $0.255717 | $0.484625 | $0.713532 |
| 2037 | $0.664091 | $1.18 | $1.70 |
Arcadia Histograma de preços potenciais
Previsão de preço de Arcadia baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Arcadia é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de AAA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Arcadia
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Arcadia está projetado para aumentar no próximo mês, alcançando $0.138139 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Arcadia é esperado para alcançar $0.031817 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 43.79, sugerindo que o mercado de AAA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de AAA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.03335 | BUY |
| SMA 5 | $0.033636 | BUY |
| SMA 10 | $0.033337 | BUY |
| SMA 21 | $0.032116 | BUY |
| SMA 50 | $0.049122 | SELL |
| SMA 100 | $0.084288 | SELL |
| SMA 200 | $0.163335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.033848 | BUY |
| EMA 5 | $0.0336069 | BUY |
| EMA 10 | $0.033371 | BUY |
| EMA 21 | $0.035712 | SELL |
| EMA 50 | $0.052041 | SELL |
| EMA 100 | $0.086247 | SELL |
| EMA 200 | $0.132822 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.111457 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.097117 | SELL |
| EMA 50 | $0.140352 | SELL |
| EMA 100 | $0.070176 | SELL |
| EMA 200 | $0.035088 | SELL |
Osciladores de Arcadia
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 43.79 | NEUTRAL |
| Stoch RSI (14) | 91.25 | SELL |
| Estocástico Rápido (14) | 61.49 | NEUTRAL |
| Índice de Canal de Commodities (20) | 81.94 | NEUTRAL |
| Índice Direcional Médio (14) | 36.8 | SELL |
| Oscilador Impressionante (5, 34) | -0.004838 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -38.51 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 46.86 | NEUTRAL |
| VWMA (10) | 0.034547 | BUY |
| Média Móvel de Hull (9) | 0.033159 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.035083 | SELL |
Previsão do preço de Arcadia com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Arcadia
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Arcadia por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.04856 | $0.068235 | $0.095882 | $0.134731 | $0.18932 | $0.266026 |
| Amazon.com stock | $0.0721088 | $0.150459 | $0.313942 | $0.655059 | $1.36 | $2.85 |
| Apple stock | $0.049018 | $0.069529 | $0.098622 | $0.139888 | $0.19842 | $0.281444 |
| Netflix stock | $0.054528 | $0.086037 | $0.135752 | $0.214196 | $0.337969 | $0.533262 |
| Google stock | $0.044753 | $0.057955 | $0.075052 | $0.097192 | $0.125863 | $0.162992 |
| Tesla stock | $0.078342 | $0.177595 | $0.402595 | $0.912653 | $2.06 | $4.69 |
| Kodak stock | $0.025915 | $0.019433 | $0.014573 | $0.010928 | $0.008195 | $0.006145 |
| Nokia stock | $0.022893 | $0.015166 | $0.010046 | $0.006655 | $0.0044091 | $0.00292 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Arcadia
Você pode fazer perguntas como: 'Devo investir em Arcadia agora?', 'Devo comprar AAA hoje?', 'Arcadia será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Arcadia regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Arcadia, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Arcadia para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Arcadia é de $0.03455 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Arcadia com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Arcadia tiver 1% da média anterior do crescimento anual do Bitcoin | $0.035457 | $0.036378 | $0.037324 | $0.038294 |
| Se Arcadia tiver 2% da média anterior do crescimento anual do Bitcoin | $0.036355 | $0.038245 | $0.040233 | $0.042325 |
| Se Arcadia tiver 5% da média anterior do crescimento anual do Bitcoin | $0.03905 | $0.044125 | $0.04986 | $0.05634 |
| Se Arcadia tiver 10% da média anterior do crescimento anual do Bitcoin | $0.043541 | $0.054859 | $0.069119 | $0.087085 |
| Se Arcadia tiver 20% da média anterior do crescimento anual do Bitcoin | $0.052524 | $0.07983 | $0.121331 | $0.1844067 |
| Se Arcadia tiver 50% da média anterior do crescimento anual do Bitcoin | $0.079473 | $0.182761 | $0.420289 | $0.966524 |
| Se Arcadia tiver 100% da média anterior do crescimento anual do Bitcoin | $0.124387 | $0.447712 | $1.61 | $5.80 |
Perguntas Frequentes sobre Arcadia
AAA é um bom investimento?
A decisão de adquirir Arcadia depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Arcadia experimentou uma queda de -7.5788% nas últimas 24 horas, e Arcadia registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Arcadia dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Arcadia pode subir?
Parece que o valor médio de Arcadia pode potencialmente subir para $0.035641 até o final deste ano. Observando as perspectivas de Arcadia em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.112049. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Arcadia na próxima semana?
Com base na nossa nova previsão experimental de Arcadia, o preço de Arcadia aumentará 0.86% na próxima semana e atingirá $0.034854 até 13 de janeiro de 2026.
Qual será o preço de Arcadia no próximo mês?
Com base na nossa nova previsão experimental de Arcadia, o preço de Arcadia diminuirá -11.62% no próximo mês e atingirá $0.030543 até 5 de fevereiro de 2026.
Até onde o preço de Arcadia pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Arcadia em 2026, espera-se que AAA fluctue dentro do intervalo de $0.01194 e $0.035641. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Arcadia não considera flutuações repentinas e extremas de preço.
Onde estará Arcadia em 5 anos?
O futuro de Arcadia parece seguir uma tendência de alta, com um preço máximo de $0.112049 projetada após um período de cinco anos. Com base na previsão de Arcadia para 2030, o valor de Arcadia pode potencialmente atingir seu pico mais alto de aproximadamente $0.112049, enquanto seu pico mais baixo está previsto para cerca de $0.038754.
Quanto será Arcadia em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Arcadia, espera-se que o valor de AAA em 2026 aumente 3.13% para $0.035641 se o melhor cenário ocorrer. O preço ficará entre $0.035641 e $0.01194 durante 2026.
Quanto será Arcadia em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Arcadia, o valor de AAA pode diminuir -12.62% para $0.030195 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.030195 e $0.011494 ao longo do ano.
Quanto será Arcadia em 2028?
Nosso novo modelo experimental de previsão de preços de Arcadia sugere que o valor de AAA em 2028 pode aumentar 47.02%, alcançando $0.0508084 no melhor cenário. O preço é esperado para variar entre $0.0508084 e $0.020743 durante o ano.
Quanto será Arcadia em 2029?
Com base no nosso modelo de previsão experimental, o valor de Arcadia pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.149899 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.149899 e $0.045568.
Quanto será Arcadia em 2030?
Usando nossa nova simulação experimental para previsões de preços de Arcadia, espera-se que o valor de AAA em 2030 aumente 224.23%, alcançando $0.112049 no melhor cenário. O preço está previsto para variar entre $0.112049 e $0.038754 ao longo de 2030.
Quanto será Arcadia em 2031?
Nossa simulação experimental indica que o preço de Arcadia poderia aumentar 195.98% em 2031, potencialmente atingindo $0.102288 sob condições ideais. O preço provavelmente oscilará entre $0.102288 e $0.045819 durante o ano.
Quanto será Arcadia em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Arcadia, AAA poderia ver um 449.04% aumento em valor, atingindo $0.189739 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.189739 e $0.069939 ao longo do ano.
Quanto será Arcadia em 2033?
De acordo com nossa previsão experimental de preços de Arcadia, espera-se que o valor de AAA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.505397. Ao longo do ano, o preço de AAA poderia variar entre $0.505397 e $0.162524.
Quanto será Arcadia em 2034?
Os resultados da nossa nova simulação de previsão de preços de Arcadia sugerem que AAA pode aumentar 746.96% em 2034, atingindo potencialmente $0.292699 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.292699 e $0.130662.
Quanto será Arcadia em 2035?
Com base em nossa previsão experimental para o preço de Arcadia, AAA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.344872 em 2035. A faixa de preço esperada para o ano está entre $0.344872 e $0.154483.
Quanto será Arcadia em 2036?
Nossa recente simulação de previsão de preços de Arcadia sugere que o valor de AAA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.713532 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.713532 e $0.255717.
Quanto será Arcadia em 2037?
De acordo com a simulação experimental, o valor de Arcadia poderia aumentar 4830.69% em 2037, com um pico de $1.70 sob condições favoráveis. O preço é esperado para cair entre $1.70 e $0.664091 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Arcadia?
Traders de Arcadia utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Arcadia
Médias móveis são ferramentas populares para a previsão de preço de Arcadia. Uma média móvel simples (SMA) calcula o preço médio de fechamento de AAA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de AAA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de AAA.
Como ler gráficos de Arcadia e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Arcadia em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de AAA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Arcadia?
A ação de preço de Arcadia é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de AAA. A capitalização de mercado de Arcadia pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de AAA, grandes detentores de Arcadia, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Arcadia.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


