Previsão de Preço Arcadia - Projeção AAA
Previsão de Preço Arcadia até $0.035653 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.011944 | $0.035653 |
| 2027 | $0.011498 | $0.0302063 |
| 2028 | $0.020751 | $0.050826 |
| 2029 | $0.045584 | $0.149952 |
| 2030 | $0.038767 | $0.112088 |
| 2031 | $0.045835 | $0.102324 |
| 2032 | $0.069964 | $0.1898063 |
| 2033 | $0.162581 | $0.505575 |
| 2034 | $0.1307079 | $0.2928019 |
| 2035 | $0.154537 | $0.344993 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Arcadia hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.45, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Arcadia para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Arcadia'
'name_with_ticker' => 'Arcadia <small>AAA</small>'
'name_lang' => 'Arcadia'
'name_lang_with_ticker' => 'Arcadia <small>AAA</small>'
'name_with_lang' => 'Arcadia'
'name_with_lang_with_ticker' => 'Arcadia <small>AAA</small>'
'image' => '/uploads/coins/arcadia.png?1744550688'
'price_for_sd' => 0.03457
'ticker' => 'AAA'
'marketcap' => '$775.63K'
'low24h' => '$0.03141'
'high24h' => '$0.05545'
'volume24h' => '$75.33K'
'current_supply' => '22.44M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03457'
'change_24h_pct' => '-7.5388%'
'ath_price' => '$1.04'
'ath_days' => 212
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de jun. de 2025'
'ath_pct' => '-96.69%'
'fdv' => '$3.46M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.70'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.034866'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.030554'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.011944'
'current_year_max_price_prediction' => '$0.035653'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.038767'
'grand_prediction_max_price' => '$0.112088'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.035225959612728
107 => 0.035357480558898
108 => 0.035653803966247
109 => 0.033121752894317
110 => 0.034258569488499
111 => 0.034926342732272
112 => 0.031909318923109
113 => 0.034866705872036
114 => 0.033077675518459
115 => 0.032470451746122
116 => 0.033287998559926
117 => 0.032969399771496
118 => 0.032695487241953
119 => 0.032542639344053
120 => 0.033142955494761
121 => 0.033114950028798
122 => 0.032132716289894
123 => 0.030851432418464
124 => 0.031281473342426
125 => 0.031125235443095
126 => 0.030559009140832
127 => 0.030940577302133
128 => 0.029260344226991
129 => 0.026369590552125
130 => 0.028279310975921
131 => 0.028205788816981
201 => 0.028168715610479
202 => 0.029603817728166
203 => 0.02946586577299
204 => 0.029215481623515
205 => 0.030554410639573
206 => 0.030065683537575
207 => 0.031571825307346
208 => 0.032563867688059
209 => 0.032312253651101
210 => 0.033245274305119
211 => 0.031291380616753
212 => 0.03194038572342
213 => 0.032074144776421
214 => 0.030537888463352
215 => 0.029488436418937
216 => 0.029418449932204
217 => 0.027598844710589
218 => 0.028570863132636
219 => 0.029426199119181
220 => 0.02901655955838
221 => 0.028886879911064
222 => 0.029549385105117
223 => 0.029600867432668
224 => 0.028427064908648
225 => 0.028671135622884
226 => 0.029688951074625
227 => 0.028645489284945
228 => 0.026618213476112
301 => 0.026115421046241
302 => 0.026048339267793
303 => 0.024684726321011
304 => 0.0261490200406
305 => 0.025509816591368
306 => 0.027529052628661
307 => 0.026375675833539
308 => 0.026325956065126
309 => 0.026250797342866
310 => 0.02507707934943
311 => 0.025334048996322
312 => 0.026188255240176
313 => 0.026493045651306
314 => 0.026461253514351
315 => 0.026184069163571
316 => 0.026310962739944
317 => 0.025902194317793
318 => 0.025757849680152
319 => 0.025302258298638
320 => 0.024632664828143
321 => 0.024725775907071
322 => 0.023399136033358
323 => 0.022676312220052
324 => 0.022476244115194
325 => 0.022208704683956
326 => 0.022506463405848
327 => 0.023395377829279
328 => 0.022323158440906
329 => 0.020484913506984
330 => 0.020595395159729
331 => 0.020843614631152
401 => 0.020381059288292
402 => 0.019943289475603
403 => 0.020323894810349
404 => 0.019545006198691
405 => 0.020937739598686
406 => 0.020900070063307
407 => 0.021419194948769
408 => 0.021743814393164
409 => 0.020995671670627
410 => 0.020807515799102
411 => 0.02091469793473
412 => 0.019143215983954
413 => 0.021274427079961
414 => 0.021292857882019
415 => 0.021135042165128
416 => 0.022269846279991
417 => 0.024664636916631
418 => 0.023763620348897
419 => 0.0234147195005
420 => 0.022751458732653
421 => 0.023635214325282
422 => 0.023567355684503
423 => 0.023260473176275
424 => 0.023074869677767
425 => 0.023416849814682
426 => 0.023032494554276
427 => 0.022963453788131
428 => 0.022545141862387
429 => 0.022395823536877
430 => 0.022285274193202
501 => 0.022163570228171
502 => 0.022432018848291
503 => 0.021823678957741
504 => 0.021090080686032
505 => 0.021029089927383
506 => 0.021197490774376
507 => 0.02112298593555
508 => 0.021028733226879
509 => 0.020848779137827
510 => 0.020795390603716
511 => 0.020968877439142
512 => 0.020773020916857
513 => 0.021062017884345
514 => 0.02098342670012
515 => 0.020544422733686
516 => 0.019997261251422
517 => 0.01999239036652
518 => 0.019874505322691
519 => 0.01972436099524
520 => 0.01968259427818
521 => 0.020291841290651
522 => 0.021552964373237
523 => 0.021305375736008
524 => 0.02148428390031
525 => 0.022364334996759
526 => 0.022644076776261
527 => 0.022445522687218
528 => 0.022173729603853
529 => 0.022185687120148
530 => 0.023114486363367
531 => 0.023172414432878
601 => 0.02331877997623
602 => 0.023506901062334
603 => 0.02247756052164
604 => 0.022137205273248
605 => 0.02197592607437
606 => 0.02147924856473
607 => 0.022014872676965
608 => 0.021702787444477
609 => 0.021744898404689
610 => 0.021717473586607
611 => 0.021732449391738
612 => 0.020937350301317
613 => 0.021227042620689
614 => 0.020745372952984
615 => 0.020100471337885
616 => 0.02009830940154
617 => 0.020256148158204
618 => 0.020162259489509
619 => 0.019909607496149
620 => 0.019945495519322
621 => 0.019631078673175
622 => 0.019983671417145
623 => 0.019993782515405
624 => 0.019858015103119
625 => 0.020401232873629
626 => 0.02062378963743
627 => 0.020534424618244
628 => 0.020617519549455
629 => 0.02131566416168
630 => 0.021429492195658
701 => 0.021480047089293
702 => 0.021412310229062
703 => 0.020630280351364
704 => 0.020664966701888
705 => 0.0204104612765
706 => 0.020195431011168
707 => 0.020204031094096
708 => 0.020314584602455
709 => 0.020797378257333
710 => 0.021813389041784
711 => 0.02185194590836
712 => 0.021898677955433
713 => 0.021708595234342
714 => 0.021651264466815
715 => 0.02172689854751
716 => 0.022108458778841
717 => 0.023089935286416
718 => 0.022743015938027
719 => 0.022460965107666
720 => 0.02270839972625
721 => 0.022670309106176
722 => 0.022348785939702
723 => 0.022339761855285
724 => 0.021722656101647
725 => 0.021494526155346
726 => 0.021303883696985
727 => 0.021095707109303
728 => 0.020972293049983
729 => 0.021161913135786
730 => 0.021205281492928
731 => 0.020790673861328
801 => 0.020734164373169
802 => 0.021072741915061
803 => 0.020923746562317
804 => 0.021076991977521
805 => 0.021112546228363
806 => 0.021106821175093
807 => 0.020951252914822
808 => 0.021050407484807
809 => 0.020815877367393
810 => 0.02056086108999
811 => 0.020398176593082
812 => 0.020256212792563
813 => 0.020334982560075
814 => 0.020054182721685
815 => 0.019964349201999
816 => 0.021016816147544
817 => 0.021794284796145
818 => 0.021782980094083
819 => 0.021714165627613
820 => 0.021611921288945
821 => 0.022100978968627
822 => 0.021930601052043
823 => 0.022054565221909
824 => 0.0220861193059
825 => 0.022181624014658
826 => 0.022215758739132
827 => 0.022112579893681
828 => 0.021766299086114
829 => 0.020903400237048
830 => 0.020501718493457
831 => 0.020369156827533
901 => 0.020373975192319
902 => 0.020241063181397
903 => 0.020280211725312
904 => 0.020227448915464
905 => 0.020127528918308
906 => 0.020328812781818
907 => 0.020352008871999
908 => 0.020305026813092
909 => 0.02031609278874
910 => 0.019927101407295
911 => 0.019956675577182
912 => 0.01979200284115
913 => 0.019761128688304
914 => 0.019344850351313
915 => 0.018607352936822
916 => 0.019015998095056
917 => 0.018522412208114
918 => 0.018335483753683
919 => 0.019220373983623
920 => 0.019131555547571
921 => 0.018979536993497
922 => 0.018754669868579
923 => 0.01867126446458
924 => 0.018164519632824
925 => 0.018134578444786
926 => 0.018385734866665
927 => 0.018269834819733
928 => 0.018107067259059
929 => 0.017517539653783
930 => 0.01685471543957
1001 => 0.016874721936232
1002 => 0.017085553986491
1003 => 0.017698576607192
1004 => 0.017459058063885
1005 => 0.017285284612557
1006 => 0.017252742068734
1007 => 0.017660080137108
1008 => 0.018236548843822
1009 => 0.018507015063252
1010 => 0.018238991253978
1011 => 0.017931099933311
1012 => 0.017949839851369
1013 => 0.018074508130578
1014 => 0.018087609004008
1015 => 0.017887203405993
1016 => 0.017943616407952
1017 => 0.017857919899464
1018 => 0.017332000585055
1019 => 0.017322488372365
1020 => 0.017193419291015
1021 => 0.017189511130527
1022 => 0.016969932425358
1023 => 0.016939211846629
1024 => 0.016503225000042
1025 => 0.016790192862756
1026 => 0.016597709886937
1027 => 0.016307592640234
1028 => 0.01625757631755
1029 => 0.016256072766494
1030 => 0.016553958309829
1031 => 0.016786711896744
1101 => 0.01660105821071
1102 => 0.016558788465146
1103 => 0.017010118761102
1104 => 0.016952682866975
1105 => 0.016902943753082
1106 => 0.0181849323939
1107 => 0.017170138349871
1108 => 0.016727630224256
1109 => 0.016179942388793
1110 => 0.016358272309702
1111 => 0.016395849044249
1112 => 0.015078758528113
1113 => 0.014544415069749
1114 => 0.014361048531148
1115 => 0.01425551849576
1116 => 0.014303609858049
1117 => 0.013822638073286
1118 => 0.014145859067186
1119 => 0.013729378157113
1120 => 0.013659553777194
1121 => 0.014404273236487
1122 => 0.01450789659866
1123 => 0.014065807142376
1124 => 0.014349700141092
1125 => 0.01424675659335
1126 => 0.013736517526944
1127 => 0.013717030147672
1128 => 0.01346101011992
1129 => 0.013060388351734
1130 => 0.012877293453556
1201 => 0.012781936040882
1202 => 0.01282128236783
1203 => 0.012801387660908
1204 => 0.01267156124094
1205 => 0.012808829159331
1206 => 0.012458166350863
1207 => 0.012318529595049
1208 => 0.012255458911996
1209 => 0.011944225486082
1210 => 0.012439536272843
1211 => 0.012537118737596
1212 => 0.012634893469949
1213 => 0.013485955761438
1214 => 0.013443439094433
1215 => 0.013827769057708
1216 => 0.013812834702073
1217 => 0.013703217570814
1218 => 0.013240760925176
1219 => 0.01342508790163
1220 => 0.012857758118877
1221 => 0.013282840166791
1222 => 0.013088850471974
1223 => 0.013217252055837
1224 => 0.012986374430547
1225 => 0.013114151641086
1226 => 0.01256025916006
1227 => 0.012043042154755
1228 => 0.012251185376195
1229 => 0.012477460861965
1230 => 0.012968083769037
1231 => 0.012675872813136
]
'min_raw' => 0.011944225486082
'max_raw' => 0.035653803966247
'avg_raw' => 0.023799014726164
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.011944'
'max' => '$0.035653'
'avg' => '$0.023799'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.022626634513918
'max_diff' => 0.0010829439662466
'year' => 2026
]
1 => [
'items' => [
101 => 0.012780962922598
102 => 0.012428928647774
103 => 0.011702581385193
104 => 0.011706692431818
105 => 0.011594959729805
106 => 0.011498406362024
107 => 0.012709436756545
108 => 0.012558825983429
109 => 0.012318847427919
110 => 0.012640068260838
111 => 0.012725004147522
112 => 0.01272742215281
113 => 0.012961776580598
114 => 0.013086851580718
115 => 0.013108896591596
116 => 0.013477658347282
117 => 0.013601262423703
118 => 0.014110370121378
119 => 0.013076239840809
120 => 0.013054942608209
121 => 0.012644588496699
122 => 0.012384335431738
123 => 0.012662408246713
124 => 0.012908742800057
125 => 0.012652242797926
126 => 0.012685736283194
127 => 0.012341405987154
128 => 0.012464487865742
129 => 0.012570502560501
130 => 0.012511967477311
131 => 0.012424337624645
201 => 0.012888546175845
202 => 0.012862353710138
203 => 0.013294635385124
204 => 0.013631629863534
205 => 0.014235584213815
206 => 0.013605326364445
207 => 0.013582357263366
208 => 0.013806883910774
209 => 0.013601228049843
210 => 0.013731195454952
211 => 0.014214644455564
212 => 0.014224858971138
213 => 0.014053752674614
214 => 0.01404334084092
215 => 0.014076203676865
216 => 0.014268682333448
217 => 0.014201424376566
218 => 0.014279256987033
219 => 0.014376587858237
220 => 0.01477918960897
221 => 0.01487625552807
222 => 0.014640435667566
223 => 0.014661727560607
224 => 0.014573524459378
225 => 0.014488321368773
226 => 0.014679845473541
227 => 0.01502985953942
228 => 0.015027682120082
301 => 0.015108878580065
302 => 0.015159463301967
303 => 0.014942316645286
304 => 0.014800962156491
305 => 0.014855166462114
306 => 0.014941840327223
307 => 0.014827059295821
308 => 0.014118577598259
309 => 0.014333485687313
310 => 0.014297714472826
311 => 0.014246771913468
312 => 0.014462863658847
313 => 0.014442021082846
314 => 0.013817705012448
315 => 0.013857671701686
316 => 0.013820135519194
317 => 0.013941422604006
318 => 0.013594678149233
319 => 0.013701334408162
320 => 0.013768228213921
321 => 0.013807629179416
322 => 0.013949972484279
323 => 0.013933270140373
324 => 0.01394893424313
325 => 0.014159991787002
326 => 0.015227448417702
327 => 0.015285547726901
328 => 0.014999445479582
329 => 0.015113737684269
330 => 0.014894321644228
331 => 0.015041617101867
401 => 0.015142392913084
402 => 0.014687006400267
403 => 0.014660041366412
404 => 0.014439719718324
405 => 0.01455810809235
406 => 0.014369743676848
407 => 0.014415961715705
408 => 0.014286732049846
409 => 0.014519319719023
410 => 0.014779388873632
411 => 0.014845092612528
412 => 0.01467225436273
413 => 0.01454710807928
414 => 0.014327392431291
415 => 0.01469278445058
416 => 0.01479963621214
417 => 0.014692223203764
418 => 0.014667333262703
419 => 0.014620166869367
420 => 0.014677339836019
421 => 0.014799054274499
422 => 0.014741655993024
423 => 0.014779568569166
424 => 0.014635084924194
425 => 0.014942388529865
426 => 0.01543046061231
427 => 0.015432029843863
428 => 0.01537463125299
429 => 0.015351144986275
430 => 0.015410039423748
501 => 0.015441987240101
502 => 0.015632441051494
503 => 0.015836805579134
504 => 0.016790485658401
505 => 0.016522696108356
506 => 0.017368857809363
507 => 0.018038061854515
508 => 0.018238726886909
509 => 0.018054124499126
510 => 0.017422609702543
511 => 0.017391624573822
512 => 0.018335374298587
513 => 0.018068721774865
514 => 0.01803700430565
515 => 0.017699584020707
516 => 0.017899041199424
517 => 0.017855416988578
518 => 0.017786554037589
519 => 0.018167104440272
520 => 0.018879460822125
521 => 0.018768433399577
522 => 0.018685556579059
523 => 0.01832241447663
524 => 0.018541107133017
525 => 0.01846323486686
526 => 0.018797823541235
527 => 0.018599620622581
528 => 0.018066701619738
529 => 0.018151570727465
530 => 0.018138742932565
531 => 0.018402738042619
601 => 0.018323493263342
602 => 0.018123269117578
603 => 0.018877026065455
604 => 0.018828081281876
605 => 0.018897473794656
606 => 0.018928022524816
607 => 0.019386821096301
608 => 0.019574776191122
609 => 0.019617445288264
610 => 0.019795988091375
611 => 0.019613002980674
612 => 0.020345073889652
613 => 0.0208318583266
614 => 0.021397283499814
615 => 0.022223521649838
616 => 0.022534194837378
617 => 0.022478074506777
618 => 0.0231045188424
619 => 0.024230225388439
620 => 0.022705611984913
621 => 0.024311033600876
622 => 0.023802775652746
623 => 0.0225977052009
624 => 0.022520112870648
625 => 0.023336200571794
626 => 0.025146204547405
627 => 0.02469281908041
628 => 0.025146946123608
629 => 0.024617182805339
630 => 0.024590875591391
701 => 0.025121216701694
702 => 0.026360387613305
703 => 0.025771703962826
704 => 0.02492768159871
705 => 0.025550894577931
706 => 0.025011009819692
707 => 0.02379449835515
708 => 0.024692472385088
709 => 0.024092022724096
710 => 0.024267265856833
711 => 0.025529321734091
712 => 0.025377467831954
713 => 0.025573980842612
714 => 0.025227140522441
715 => 0.024903136971703
716 => 0.02429836028343
717 => 0.024119315721163
718 => 0.024168797196825
719 => 0.024119291200601
720 => 0.023780924201697
721 => 0.0237078538805
722 => 0.023586066810554
723 => 0.023623813716017
724 => 0.023394818394455
725 => 0.023826979879091
726 => 0.023907192858833
727 => 0.024221683948075
728 => 0.024254335456244
729 => 0.02513018866328
730 => 0.02464778343496
731 => 0.02497142251098
801 => 0.024942473185812
802 => 0.022623822731685
803 => 0.022943312306637
804 => 0.023440337823912
805 => 0.023216428502082
806 => 0.022899873107726
807 => 0.022644237654158
808 => 0.022256923801934
809 => 0.022802060611235
810 => 0.023518857546629
811 => 0.02427251460942
812 => 0.025177984188797
813 => 0.024975893919508
814 => 0.024255587485465
815 => 0.024287899905912
816 => 0.024487642574647
817 => 0.024228957670101
818 => 0.024152666441621
819 => 0.024477161331385
820 => 0.024479395949352
821 => 0.024181747703556
822 => 0.023850966147409
823 => 0.02384958016061
824 => 0.023790720777665
825 => 0.024627653758808
826 => 0.025087882274969
827 => 0.025140646732651
828 => 0.025084330806562
829 => 0.025106004571414
830 => 0.024838207738304
831 => 0.02545031188611
901 => 0.026012039182964
902 => 0.025861484267854
903 => 0.025635781047462
904 => 0.025455997561079
905 => 0.025819132992063
906 => 0.02580296314295
907 => 0.026007132985066
908 => 0.025997870661685
909 => 0.025929216022998
910 => 0.025861486719727
911 => 0.026130025751423
912 => 0.026052690822899
913 => 0.025975235771871
914 => 0.02581988780926
915 => 0.025841002177435
916 => 0.025615337927886
917 => 0.025510935320351
918 => 0.023940970599909
919 => 0.02352142472653
920 => 0.023653422398939
921 => 0.023696879460014
922 => 0.023514292558256
923 => 0.02377607527265
924 => 0.023735276713908
925 => 0.023894000039613
926 => 0.023794836596678
927 => 0.023798906298966
928 => 0.024090524840763
929 => 0.02417518294408
930 => 0.024132125149458
1001 => 0.024162281352877
1002 => 0.024857218332516
1003 => 0.024758420516845
1004 => 0.024705936146383
1005 => 0.024720474675686
1006 => 0.0248980459736
1007 => 0.024947756241983
1008 => 0.024737130341767
1009 => 0.024836462733923
1010 => 0.025259407452564
1011 => 0.025407414167491
1012 => 0.025879780554283
1013 => 0.025679110917531
1014 => 0.026047448720569
1015 => 0.027179593551495
1016 => 0.028084029180903
1017 => 0.027252272798717
1018 => 0.028913153652941
1019 => 0.030206387637163
1020 => 0.030156751162855
1021 => 0.029931245904665
1022 => 0.028458933396032
1023 => 0.027104089474646
1024 => 0.028237473944597
1025 => 0.028240363174694
1026 => 0.028143004443576
1027 => 0.027538317726184
1028 => 0.028121962656545
1029 => 0.02816829027163
1030 => 0.02814235912669
1031 => 0.027678747238228
1101 => 0.026970897574346
1102 => 0.027109209704316
1103 => 0.027335767794698
1104 => 0.026906846064636
1105 => 0.026769779582598
1106 => 0.027024612250673
1107 => 0.027845736203705
1108 => 0.027690507476832
1109 => 0.027686453827445
1110 => 0.028350588148235
1111 => 0.027875211303706
1112 => 0.027110954263212
1113 => 0.026917969281175
1114 => 0.026233002605206
1115 => 0.026706111528065
1116 => 0.026723137875939
1117 => 0.026464020953945
1118 => 0.027131980173357
1119 => 0.027125824811558
1120 => 0.027759952677779
1121 => 0.028972166990445
1122 => 0.028613655568746
1123 => 0.028196745791242
1124 => 0.028242075443711
1125 => 0.028739229848179
1126 => 0.028438638946307
1127 => 0.028546733530414
1128 => 0.02873906623408
1129 => 0.028855105329554
1130 => 0.028225379203613
1201 => 0.028078559920373
1202 => 0.027778219193432
1203 => 0.027699865903898
1204 => 0.027944487159177
1205 => 0.027880038101007
1206 => 0.02672170687733
1207 => 0.026600654819561
1208 => 0.026604367313351
1209 => 0.02629997615838
1210 => 0.025835706584803
1211 => 0.027055779304069
1212 => 0.026957790389805
1213 => 0.026849618212197
1214 => 0.026862868686732
1215 => 0.027392460902064
1216 => 0.027085270672124
1217 => 0.027901986245909
1218 => 0.027734094076656
1219 => 0.027561896106777
1220 => 0.027538093102062
1221 => 0.027471811574899
1222 => 0.027244507555986
1223 => 0.026970024294296
1224 => 0.026788786669595
1225 => 0.024711239652796
1226 => 0.025096820294579
1227 => 0.025540395676169
1228 => 0.025693516120377
1229 => 0.025431593004947
1230 => 0.027254849877024
1231 => 0.027587976476893
]
'min_raw' => 0.011498406362024
'max_raw' => 0.030206387637163
'avg_raw' => 0.020852396999594
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011498'
'max' => '$0.0302063'
'avg' => '$0.020852'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00044581912405762
'max_diff' => -0.0054474163290834
'year' => 2027
]
2 => [
'items' => [
101 => 0.02657891427658
102 => 0.026390159938639
103 => 0.027267224579995
104 => 0.026738247384466
105 => 0.026976445783223
106 => 0.026461591132668
107 => 0.02750773603407
108 => 0.027499766162693
109 => 0.027092792167794
110 => 0.027436763801445
111 => 0.027376990265372
112 => 0.026917517627463
113 => 0.027522302136238
114 => 0.027522602101809
115 => 0.027130898480096
116 => 0.026673474404884
117 => 0.02659169778411
118 => 0.0265300900855
119 => 0.026961294065985
120 => 0.027347910206548
121 => 0.028067306993867
122 => 0.028248180438645
123 => 0.02895414153504
124 => 0.028533776074759
125 => 0.028720118638657
126 => 0.028922419851534
127 => 0.029019410492368
128 => 0.028861369447934
129 => 0.029958017615816
130 => 0.030050608321617
131 => 0.030081653184365
201 => 0.029711869592377
202 => 0.03004032397099
203 => 0.029886651044503
204 => 0.030286465307654
205 => 0.030349161289201
206 => 0.030296060023305
207 => 0.030315960717437
208 => 0.029380164968143
209 => 0.029331639021827
210 => 0.028669984300554
211 => 0.028939613490177
212 => 0.02843555464384
213 => 0.028595396896395
214 => 0.028665853838288
215 => 0.02862905113024
216 => 0.02895485792001
217 => 0.028677855590775
218 => 0.027946800900525
219 => 0.027215547034914
220 => 0.027206366738297
221 => 0.027013840503185
222 => 0.026874679298137
223 => 0.026901486683238
224 => 0.026995959404877
225 => 0.026869188371813
226 => 0.026896241399172
227 => 0.027345501906703
228 => 0.02743559789751
229 => 0.027129416517975
301 => 0.025900054097379
302 => 0.025598365475743
303 => 0.02581521327423
304 => 0.02571157399334
305 => 0.020751246918698
306 => 0.021916602187314
307 => 0.021224187658428
308 => 0.021543284129799
309 => 0.02083650819568
310 => 0.021173818716742
311 => 0.02111152978011
312 => 0.022985386566674
313 => 0.022956128870358
314 => 0.022970132981302
315 => 0.022301680278434
316 => 0.023366543584571
317 => 0.02389113354042
318 => 0.023794045901101
319 => 0.023818480768247
320 => 0.023398608794103
321 => 0.022974198259806
322 => 0.022503461660958
323 => 0.023378032076816
324 => 0.023280794775987
325 => 0.023503822159211
326 => 0.02407104358948
327 => 0.024154569099751
328 => 0.024266828232589
329 => 0.024226591324616
330 => 0.025185197714815
331 => 0.025069104155873
401 => 0.025348856230526
402 => 0.024773384988124
403 => 0.024122184653114
404 => 0.024245956547456
405 => 0.02423403631872
406 => 0.024082278125511
407 => 0.023945277614248
408 => 0.023717210362651
409 => 0.024438848894307
410 => 0.024409551687788
411 => 0.024883839407046
412 => 0.024800004445682
413 => 0.024240134055799
414 => 0.024260129936303
415 => 0.024394611842382
416 => 0.024860055254812
417 => 0.024998230549425
418 => 0.024934222247627
419 => 0.025085725150229
420 => 0.025205466867174
421 => 0.025100762866301
422 => 0.026583150717464
423 => 0.025967559929941
424 => 0.026267594596526
425 => 0.0263391510966
426 => 0.026155860626332
427 => 0.026195609766194
428 => 0.026255818882091
429 => 0.026621396843669
430 => 0.027580779195685
501 => 0.028005683108656
502 => 0.02928402749522
503 => 0.027970400753632
504 => 0.027892455579114
505 => 0.028122724005437
506 => 0.028873247486845
507 => 0.029481476275441
508 => 0.029683260854179
509 => 0.02970993001736
510 => 0.030088491301457
511 => 0.030305475569752
512 => 0.030042524004418
513 => 0.029819700084973
514 => 0.029021572463447
515 => 0.029113957908868
516 => 0.029750402013581
517 => 0.030649416797859
518 => 0.031420865009315
519 => 0.031150730733348
520 => 0.033211664573901
521 => 0.033415997746032
522 => 0.033387765508526
523 => 0.033853266883494
524 => 0.032929341451889
525 => 0.032534345429666
526 => 0.029867877145516
527 => 0.030617045969534
528 => 0.031706006852387
529 => 0.031561878796148
530 => 0.030771046295012
531 => 0.031420265091947
601 => 0.031205613054732
602 => 0.031036308087059
603 => 0.031811926965352
604 => 0.030959102148001
605 => 0.031697499272457
606 => 0.030750497322602
607 => 0.031151964683966
608 => 0.030924072392864
609 => 0.031071546634636
610 => 0.030209415230634
611 => 0.030674600409177
612 => 0.03019006199782
613 => 0.030189832263524
614 => 0.030179136051238
615 => 0.030749193343427
616 => 0.030767782891259
617 => 0.030346509691023
618 => 0.030285797641345
619 => 0.030510281909479
620 => 0.030247469624017
621 => 0.030370437838264
622 => 0.030251194205957
623 => 0.030224349952669
624 => 0.030010450375301
625 => 0.02991829655608
626 => 0.029954432443108
627 => 0.029831082031355
628 => 0.029756758946494
629 => 0.030164351318974
630 => 0.029946591156587
701 => 0.030130976450968
702 => 0.029920846136742
703 => 0.029192442918214
704 => 0.028773530524515
705 => 0.02739764436773
706 => 0.027787843975013
707 => 0.028046546718332
708 => 0.027961045463208
709 => 0.028144735243807
710 => 0.02815601230447
711 => 0.028096292884301
712 => 0.028027145446278
713 => 0.027993488297541
714 => 0.028244341109439
715 => 0.028389969610064
716 => 0.02807251099962
717 => 0.027998134888911
718 => 0.02831910307144
719 => 0.028514893477365
720 => 0.029960499829592
721 => 0.029853404641772
722 => 0.030122192546831
723 => 0.030091931153608
724 => 0.03037366369938
725 => 0.030834177342662
726 => 0.029897824344231
727 => 0.030060342848108
728 => 0.030020497064058
729 => 0.030455522886193
730 => 0.030456880989325
731 => 0.030196061277804
801 => 0.030337455874736
802 => 0.030258533289686
803 => 0.030401157067898
804 => 0.029851974320246
805 => 0.030520819626272
806 => 0.03090001181535
807 => 0.030905276899263
808 => 0.031085010987431
809 => 0.031267631230506
810 => 0.031618154884216
811 => 0.031257855316051
812 => 0.030609711467377
813 => 0.030656505359759
814 => 0.030276498858428
815 => 0.030282886836369
816 => 0.030248787309485
817 => 0.030351122556558
818 => 0.029874431152168
819 => 0.029986309671981
820 => 0.029829679089083
821 => 0.03006000236381
822 => 0.029812212594005
823 => 0.030020477849214
824 => 0.03011035822926
825 => 0.030442018766615
826 => 0.029763226062973
827 => 0.02837912179002
828 => 0.028670077288837
829 => 0.028239731252025
830 => 0.028279561416175
831 => 0.028360024686681
901 => 0.028099216901027
902 => 0.028148970807532
903 => 0.028147193247878
904 => 0.028131875199102
905 => 0.028064029021179
906 => 0.027965638640233
907 => 0.02835759563496
908 => 0.028424196766147
909 => 0.028572242830642
910 => 0.029012727497975
911 => 0.028968712692364
912 => 0.029040502666472
913 => 0.028883785556079
914 => 0.02828683107345
915 => 0.028319248573892
916 => 0.027915001823932
917 => 0.028561905332375
918 => 0.028408710042867
919 => 0.028309944043126
920 => 0.028282994825037
921 => 0.02872457136866
922 => 0.028856697991377
923 => 0.028774365546788
924 => 0.028605499300914
925 => 0.028929772413815
926 => 0.029016534218843
927 => 0.029035956987336
928 => 0.029610506770194
929 => 0.029068067937746
930 => 0.029198638356095
1001 => 0.03021731148708
1002 => 0.029293515524559
1003 => 0.029782870849015
1004 => 0.029758919452365
1005 => 0.030009257077475
1006 => 0.029738384460298
1007 => 0.029741742251026
1008 => 0.029964025102784
1009 => 0.029651868926413
1010 => 0.029574574667282
1011 => 0.029467793201884
1012 => 0.029700946625059
1013 => 0.02984071155763
1014 => 0.030967114268124
1015 => 0.031694821789308
1016 => 0.031663230086621
1017 => 0.031951919111988
1018 => 0.031821862061972
1019 => 0.031401873540154
1020 => 0.032118742734753
1021 => 0.031891895326501
1022 => 0.031910596351217
1023 => 0.031909900298143
1024 => 0.032060733993286
1025 => 0.031953854496572
1026 => 0.031743184037594
1027 => 0.031883036919842
1028 => 0.032298349981801
1029 => 0.03358749446948
1030 => 0.034308916803678
1031 => 0.033544063939116
1101 => 0.034071649203303
1102 => 0.033755286042642
1103 => 0.033697793445361
1104 => 0.034029155979515
1105 => 0.03436109851992
1106 => 0.034339955215123
1107 => 0.034098981976227
1108 => 0.033962862308045
1109 => 0.034993606038958
1110 => 0.035753040461634
1111 => 0.03570125212532
1112 => 0.035929828999339
1113 => 0.036600937771074
1114 => 0.036662295546552
1115 => 0.036654565877134
1116 => 0.036502484228589
1117 => 0.037163277968849
1118 => 0.037714523732533
1119 => 0.036467281721012
1120 => 0.036942215151403
1121 => 0.037155428069704
1122 => 0.037468487891193
1123 => 0.037996672284964
1124 => 0.03857042063059
1125 => 0.038651554937492
1126 => 0.038593986264111
1127 => 0.038215583806987
1128 => 0.038843386093013
1129 => 0.039211137948391
1130 => 0.039430125762417
1201 => 0.03998544242269
1202 => 0.037156744800101
1203 => 0.035154452027439
1204 => 0.03484176509753
1205 => 0.035477626265307
1206 => 0.035645297784352
1207 => 0.035577709605267
1208 => 0.033323947049141
1209 => 0.034829899504098
1210 => 0.036450177721554
1211 => 0.036512419206677
1212 => 0.037323564360756
1213 => 0.037587706472887
1214 => 0.038240784641146
1215 => 0.038199934423907
1216 => 0.038358948565135
1217 => 0.038322393967807
1218 => 0.039532083752674
1219 => 0.040866551226052
1220 => 0.040820342860796
1221 => 0.040628497372795
1222 => 0.040913420636993
1223 => 0.042290734079745
1224 => 0.042163933128935
1225 => 0.042287109451768
1226 => 0.043911039622757
1227 => 0.046022379846416
1228 => 0.045041450337434
1229 => 0.047169785117063
1230 => 0.04850945904266
1231 => 0.050826286572112
]
'min_raw' => 0.020751246918698
'max_raw' => 0.050826286572112
'avg_raw' => 0.035788766745405
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.020751'
'max' => '$0.050826'
'avg' => '$0.035788'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0092528405566738
'max_diff' => 0.020619898934949
'year' => 2028
]
3 => [
'items' => [
101 => 0.050536208354809
102 => 0.051438132310358
103 => 0.050016907804685
104 => 0.046753489062795
105 => 0.046237040555026
106 => 0.047270983546139
107 => 0.049812831499108
108 => 0.047190931708431
109 => 0.047721338621315
110 => 0.047568581394722
111 => 0.047560441611294
112 => 0.047871104037876
113 => 0.047420471985055
114 => 0.045584515934705
115 => 0.046425923773224
116 => 0.046101015799048
117 => 0.04646152541989
118 => 0.048407047158094
119 => 0.047546885622188
120 => 0.046640775317961
121 => 0.047777238721435
122 => 0.049224347165253
123 => 0.049133789719543
124 => 0.048958070424789
125 => 0.049948590888953
126 => 0.051584640500485
127 => 0.052026858136303
128 => 0.052353294154322
129 => 0.052398304166025
130 => 0.052861935260133
131 => 0.050368874017034
201 => 0.054325426236187
202 => 0.055008613506885
203 => 0.054880202615205
204 => 0.055639536513671
205 => 0.0554161212183
206 => 0.055092427508095
207 => 0.056296133252115
208 => 0.05491618175064
209 => 0.052957514325359
210 => 0.051882950637801
211 => 0.053298022784158
212 => 0.054162157964725
213 => 0.054733296349761
214 => 0.054906122479981
215 => 0.0505624032645
216 => 0.048221379521068
217 => 0.049721948900716
218 => 0.051552747107654
219 => 0.050358703840555
220 => 0.050405508076002
221 => 0.04870311616617
222 => 0.051703371016949
223 => 0.051266259121305
224 => 0.05353399640914
225 => 0.05299278270567
226 => 0.054842034430845
227 => 0.054355064476432
228 => 0.056376449531076
301 => 0.057182834756189
302 => 0.058536881052992
303 => 0.059532923020881
304 => 0.060117817915672
305 => 0.060082703020074
306 => 0.062400347986716
307 => 0.061033713722235
308 => 0.059316898995082
309 => 0.059285847233149
310 => 0.060175009907794
311 => 0.062038450943984
312 => 0.062521614092704
313 => 0.062791636378509
314 => 0.062378087848255
315 => 0.060894704301721
316 => 0.060254186807253
317 => 0.060799926270118
318 => 0.060132533802961
319 => 0.061284640438527
320 => 0.062866728925858
321 => 0.06254003390948
322 => 0.063632126368378
323 => 0.064762327171859
324 => 0.066378565081332
325 => 0.066801109519985
326 => 0.067499559409152
327 => 0.068218493773941
328 => 0.068449396116087
329 => 0.068890260332032
330 => 0.068887936759998
331 => 0.070216510748334
401 => 0.07168196899998
402 => 0.07223514556454
403 => 0.073507144572412
404 => 0.071328890847593
405 => 0.072981121319844
406 => 0.074471474563825
407 => 0.072694613986298
408 => 0.075143602337002
409 => 0.075238691005132
410 => 0.076674416999442
411 => 0.07521903365239
412 => 0.074354831666659
413 => 0.076849750418239
414 => 0.078056963012924
415 => 0.077693340754783
416 => 0.074926157416083
417 => 0.073315538022884
418 => 0.069100236405601
419 => 0.074093443258751
420 => 0.076525488663079
421 => 0.074919859006025
422 => 0.075729645211144
423 => 0.080147576172212
424 => 0.08182963824234
425 => 0.081479781090255
426 => 0.081538901189818
427 => 0.082446511351273
428 => 0.08647135463721
429 => 0.08405957524514
430 => 0.085903290222728
501 => 0.086881189998832
502 => 0.087789517809824
503 => 0.085558951785981
504 => 0.082657018162483
505 => 0.081737853969035
506 => 0.074760210780133
507 => 0.074396994149782
508 => 0.074193109648576
509 => 0.072907646708506
510 => 0.071897624955544
511 => 0.071094418157885
512 => 0.068986563662975
513 => 0.069697902678289
514 => 0.066338422556826
515 => 0.068487698885873
516 => 0.063125887494534
517 => 0.067591363348327
518 => 0.06516100786138
519 => 0.066792926206664
520 => 0.066787232597293
521 => 0.063782353523443
522 => 0.062049201983873
523 => 0.063153633600154
524 => 0.064337671962698
525 => 0.064529778203438
526 => 0.06606491484704
527 => 0.066493338486617
528 => 0.06519519485751
529 => 0.063014775871212
530 => 0.063521237471667
531 => 0.062038938555705
601 => 0.059441266721286
602 => 0.061306959983765
603 => 0.061943989692317
604 => 0.062225338302396
605 => 0.05967082639787
606 => 0.058868143296317
607 => 0.058440801548213
608 => 0.062685020462525
609 => 0.062917528355433
610 => 0.06172798510201
611 => 0.067104833404601
612 => 0.065887887036073
613 => 0.067247514288818
614 => 0.063475281389905
615 => 0.063619385766629
616 => 0.06183355025957
617 => 0.062833498813951
618 => 0.062126767405561
619 => 0.062752712852441
620 => 0.063127901972432
621 => 0.064913444441457
622 => 0.067611751375167
623 => 0.064646743939179
624 => 0.06335484773963
625 => 0.06415633287593
626 => 0.066290793412373
627 => 0.069524610386108
628 => 0.067610125651025
629 => 0.068459741466396
630 => 0.068645344725278
701 => 0.067233674559705
702 => 0.069576660678699
703 => 0.070832285974252
704 => 0.072120297712446
705 => 0.07323864221545
706 => 0.071605837500226
707 => 0.073353172598877
708 => 0.071945128955531
709 => 0.070681968246574
710 => 0.070683883939959
711 => 0.069891484775396
712 => 0.068356111545336
713 => 0.068072965164862
714 => 0.069545928393537
715 => 0.070727105412797
716 => 0.07082439280956
717 => 0.071478353098489
718 => 0.071865360061151
719 => 0.075658554405688
720 => 0.07718420855001
721 => 0.079049749558532
722 => 0.079776482917482
723 => 0.081963689779591
724 => 0.080197342602182
725 => 0.079815182279505
726 => 0.074509733861939
727 => 0.075378500743099
728 => 0.076769480343371
729 => 0.074532670603218
730 => 0.075951411540714
731 => 0.076231501054818
801 => 0.074456664664173
802 => 0.07540468146657
803 => 0.072887029906797
804 => 0.067666629299222
805 => 0.069582472476905
806 => 0.070993177921521
807 => 0.068979927313328
808 => 0.072588601104956
809 => 0.070480488374034
810 => 0.069812317845589
811 => 0.067205546394131
812 => 0.068435842175385
813 => 0.070099834835669
814 => 0.069071680831523
815 => 0.071205254768225
816 => 0.07422696446598
817 => 0.076380414742524
818 => 0.076545729915259
819 => 0.075161205657404
820 => 0.077379914616532
821 => 0.077396075489079
822 => 0.074893362719491
823 => 0.073360465083282
824 => 0.073012187515091
825 => 0.073882253164271
826 => 0.074938673485356
827 => 0.076604353890767
828 => 0.07761088967451
829 => 0.080235401173181
830 => 0.08094551873408
831 => 0.081725722639316
901 => 0.082768315662685
902 => 0.084020215902604
903 => 0.081281129448382
904 => 0.081389958459504
905 => 0.078839359078567
906 => 0.076113677847084
907 => 0.078182130140817
908 => 0.080886356360196
909 => 0.080266003877566
910 => 0.080196201550619
911 => 0.080313589702993
912 => 0.079845864189908
913 => 0.077730359028941
914 => 0.076667965580867
915 => 0.078038724174358
916 => 0.078767221361352
917 => 0.079897056966749
918 => 0.079757780880448
919 => 0.082668116064466
920 => 0.083798984313007
921 => 0.083509659822449
922 => 0.083562902491695
923 => 0.085610285438371
924 => 0.087887396351493
925 => 0.090020211212881
926 => 0.092189802096415
927 => 0.089574275605742
928 => 0.088246272557025
929 => 0.089616432720195
930 => 0.088889406451216
1001 => 0.093067115042768
1002 => 0.093356370521401
1003 => 0.097533777017071
1004 => 0.10149863321777
1005 => 0.099008378075889
1006 => 0.10135657651113
1007 => 0.10389634457027
1008 => 0.10879596921887
1009 => 0.1071459480081
1010 => 0.10588205761977
1011 => 0.10468768730988
1012 => 0.10717298232382
1013 => 0.1103702746557
1014 => 0.1110589408007
1015 => 0.11217484304632
1016 => 0.11100160828108
1017 => 0.11241464032824
1018 => 0.11740326437242
1019 => 0.11605529411988
1020 => 0.11414095966424
1021 => 0.11807899923458
1022 => 0.11950416044635
1023 => 0.12950668819323
1024 => 0.14213529265749
1025 => 0.1369069674854
1026 => 0.13366157733408
1027 => 0.13442432100133
1028 => 0.13903585984643
1029 => 0.14051693976055
1030 => 0.13649085399511
1031 => 0.137912935551
1101 => 0.14574874473993
1102 => 0.14995240496694
1103 => 0.14424326975178
1104 => 0.12849199212073
1105 => 0.1139685947917
1106 => 0.11782085376046
1107 => 0.11738412714292
1108 => 0.12580272657932
1109 => 0.11602314547516
1110 => 0.11618780853982
1111 => 0.12478049569712
1112 => 0.1224881140795
1113 => 0.11877474944502
1114 => 0.11399570646298
1115 => 0.10516120350271
1116 => 0.097336237862464
1117 => 0.11268279746496
1118 => 0.11202102590899
1119 => 0.1110626826269
1120 => 0.11319537189762
1121 => 0.12355110562182
1122 => 0.12331237244124
1123 => 0.12179367374912
1124 => 0.12294559332189
1125 => 0.11857281237446
1126 => 0.11969977759099
1127 => 0.11396629421136
1128 => 0.11655806815037
1129 => 0.11876678223227
1130 => 0.11921021428479
1201 => 0.1202092893413
1202 => 0.11167230237013
1203 => 0.11550515888742
1204 => 0.11775660300123
1205 => 0.10758449658677
1206 => 0.11755553316324
1207 => 0.11152369242004
1208 => 0.1094763950766
1209 => 0.11223281123863
1210 => 0.11115863317958
1211 => 0.11023511796227
1212 => 0.109719780603
1213 => 0.11174378841785
1214 => 0.11164936603407
1215 => 0.10833769640599
1216 => 0.10401775837708
1217 => 0.10546767137671
1218 => 0.10494090439094
1219 => 0.1030318328802
1220 => 0.10431831657627
1221 => 0.098653293453297
1222 => 0.088906915612508
1223 => 0.09534567135376
1224 => 0.09509778626174
1225 => 0.09497279135765
1226 => 0.099811338343063
1227 => 0.099346223694688
1228 => 0.09850203605347
1229 => 0.10301632871215
1230 => 0.10136855116593
1231 => 0.10644661329817
]
'min_raw' => 0.045584515934705
'max_raw' => 0.14995240496694
'avg_raw' => 0.097768460450821
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.045584'
'max' => '$0.149952'
'avg' => '$0.097768'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.024833269016006
'max_diff' => 0.099126118394826
'year' => 2029
]
4 => [
'items' => [
101 => 0.10979135344693
102 => 0.1089430191542
103 => 0.11208876343064
104 => 0.10550107444381
105 => 0.10768924047303
106 => 0.10814021845898
107 => 0.10296062304148
108 => 0.099422322203332
109 => 0.09918635787701
110 => 0.093051431831556
111 => 0.096328659805645
112 => 0.099212484801935
113 => 0.097831356422572
114 => 0.097394132437702
115 => 0.099627814954089
116 => 0.099801391215809
117 => 0.0958438340538
118 => 0.096666735507318
119 => 0.10009837136447
120 => 0.096580267088388
121 => 0.089745165159031
122 => 0.088049965377873
123 => 0.087823794478335
124 => 0.083226278223844
125 => 0.088163246733163
126 => 0.086008127676315
127 => 0.092816122954606
128 => 0.088927432563658
129 => 0.088759798893131
130 => 0.088506396013616
131 => 0.084549123852371
201 => 0.085415514957918
202 => 0.088295530947848
203 => 0.089323153098757
204 => 0.089215963689357
205 => 0.08828141729831
206 => 0.088709247850479
207 => 0.087331056575896
208 => 0.086844388552269
209 => 0.085308330401119
210 => 0.083050749265822
211 => 0.083364679769235
212 => 0.078891820811975
213 => 0.076454769859467
214 => 0.075780226275629
215 => 0.074878198404202
216 => 0.075882112723911
217 => 0.078879149764534
218 => 0.075264087236665
219 => 0.069066316099785
220 => 0.069438812705599
221 => 0.07027570198363
222 => 0.068716164350596
223 => 0.067240192863002
224 => 0.068523430322113
225 => 0.065897352987644
226 => 0.070593050883268
227 => 0.070466045414732
228 => 0.072216311210211
301 => 0.073310788331193
302 => 0.070788372908504
303 => 0.070153992251035
304 => 0.070515364304523
305 => 0.064542689226561
306 => 0.071728216233153
307 => 0.071790356969092
308 => 0.071258270261251
309 => 0.075084341564004
310 => 0.083158545394379
311 => 0.080120705129296
312 => 0.078944361559447
313 => 0.076708131573263
314 => 0.079687775255655
315 => 0.07945898511053
316 => 0.078424309308187
317 => 0.077798534154545
318 => 0.078951544062444
319 => 0.077655663467161
320 => 0.077422887703831
321 => 0.076012519840578
322 => 0.075509082681046
323 => 0.075136357850539
324 => 0.074726024435336
325 => 0.075631117700557
326 => 0.073580057286632
327 => 0.07110667949537
328 => 0.070901044894345
329 => 0.071468820107354
330 => 0.071217621841491
331 => 0.070899842253691
401 => 0.070293114478461
402 => 0.070113111308238
403 => 0.070698034286339
404 => 0.070037690347191
405 => 0.071012063800201
406 => 0.070747088135524
407 => 0.069266955612411
408 => 0.067422162473366
409 => 0.067405739944844
410 => 0.067008282289104
411 => 0.066502060206361
412 => 0.066361240803734
413 => 0.068415359642547
414 => 0.072667324164289
415 => 0.071832561787783
416 => 0.072435763154698
417 => 0.075402916869582
418 => 0.076346085810118
419 => 0.075676646836306
420 => 0.074760277479754
421 => 0.074800593080789
422 => 0.077932104575995
423 => 0.078127413106761
424 => 0.078620894755086
425 => 0.079255158131081
426 => 0.07578466463187
427 => 0.074637133149073
428 => 0.074093369069901
429 => 0.072418786169233
430 => 0.074224680259716
501 => 0.073172463109286
502 => 0.073314443151735
503 => 0.073221978462831
504 => 0.073272470435408
505 => 0.070591738340007
506 => 0.07156845622044
507 => 0.069944473306672
508 => 0.067770142485773
509 => 0.067762853366443
510 => 0.068295017754486
511 => 0.067978465552883
512 => 0.067126631717673
513 => 0.067247630693422
514 => 0.066187552344752
515 => 0.067376343398289
516 => 0.067410433672005
517 => 0.066952684362507
518 => 0.068784181002033
519 => 0.069534546669605
520 => 0.069233246268153
521 => 0.069513406630234
522 => 0.071867249933253
523 => 0.072251029097029
524 => 0.072421478450549
525 => 0.072193098897044
526 => 0.069556430564802
527 => 0.069673378017317
528 => 0.06881529520662
529 => 0.06809030565412
530 => 0.068119301434151
531 => 0.06849204030618
601 => 0.07011981282118
602 => 0.073545364116565
603 => 0.073675361284179
604 => 0.073832921643613
605 => 0.073192044478304
606 => 0.072998749792879
607 => 0.073253755376546
608 => 0.074540212336162
609 => 0.077849328905952
610 => 0.076679666101724
611 => 0.075728712035
612 => 0.076562955126892
613 => 0.076434529941909
614 => 0.075350492138112
615 => 0.075320066807459
616 => 0.073239451674121
617 => 0.072470295632641
618 => 0.071827531274048
619 => 0.071125649374252
620 => 0.07070955025676
621 => 0.071348867614895
622 => 0.071495087058882
623 => 0.070097208481962
624 => 0.069906682797267
625 => 0.071048220618484
626 => 0.070545872384186
627 => 0.071062550000799
628 => 0.071182423639831
629 => 0.071163121223023
630 => 0.070638611972088
701 => 0.070972918527543
702 => 0.070182183862312
703 => 0.06932237867838
704 => 0.068773876538787
705 => 0.068295235673741
706 => 0.068560813444438
707 => 0.067614077184486
708 => 0.06731119720089
709 => 0.070859662988691
710 => 0.073480952818574
711 => 0.073442838226303
712 => 0.073210825448129
713 => 0.072866101521837
714 => 0.074514993633801
715 => 0.073940552592631
716 => 0.074358506446238
717 => 0.074464893243448
718 => 0.074786894036952
719 => 0.074901981643726
720 => 0.074554106962572
721 => 0.073386597043306
722 => 0.070477273328006
723 => 0.069122975284964
724 => 0.068676034373143
725 => 0.068692279826426
726 => 0.068244157701981
727 => 0.068376149751055
728 => 0.068198256253873
729 => 0.067861369007268
730 => 0.068540011606284
731 => 0.068618218843827
801 => 0.068459815552042
802 => 0.06849712526154
803 => 0.067185613660488
804 => 0.067285325039062
805 => 0.06673011941245
806 => 0.066626025050564
807 => 0.065222513573771
808 => 0.062735989550392
809 => 0.064113765232071
810 => 0.062449605953181
811 => 0.061819363618137
812 => 0.064802832809442
813 => 0.064503375251189
814 => 0.063990834082532
815 => 0.063232678871149
816 => 0.062951471728387
817 => 0.061242946148329
818 => 0.06114199734243
819 => 0.061988788753978
820 => 0.061598023653862
821 => 0.061049241458983
822 => 0.05906160797829
823 => 0.056826849863162
824 => 0.056894303163469
825 => 0.057605138140739
826 => 0.059671986706306
827 => 0.058864433214896
828 => 0.058278543891269
829 => 0.058168824432722
830 => 0.059542193169682
831 => 0.061485797662126
901 => 0.062397693404282
902 => 0.061494032418491
903 => 0.060455955334578
904 => 0.06051913827669
905 => 0.060939466084103
906 => 0.060983636593546
907 => 0.060307955127967
908 => 0.060498155502701
909 => 0.060209223741194
910 => 0.05843605005415
911 => 0.058403978964946
912 => 0.057968813545857
913 => 0.057955636909913
914 => 0.057215311974941
915 => 0.057111735398914
916 => 0.055641775306018
917 => 0.056609307490611
918 => 0.055960337698905
919 => 0.054982187146307
920 => 0.054813553622351
921 => 0.05480848429499
922 => 0.055812826202048
923 => 0.056597571170671
924 => 0.05597162680628
925 => 0.05582911140793
926 => 0.057350803011622
927 => 0.057157153884526
928 => 0.056989454989363
929 => 0.061311769197469
930 => 0.057890320227369
1001 => 0.056398373186926
1002 => 0.054551805411319
1003 => 0.05515305719026
1004 => 0.055279749774309
1005 => 0.050839087142833
1006 => 0.049037510866293
1007 => 0.048419277779154
1008 => 0.048063475896973
1009 => 0.048225619282562
1010 => 0.046603989329854
1011 => 0.047693751477357
1012 => 0.046289557011281
1013 => 0.046054139239399
1014 => 0.048565012891059
1015 => 0.048914386291376
1016 => 0.047423850823815
1017 => 0.048381015889762
1018 => 0.04803393453126
1019 => 0.046313627895119
1020 => 0.046247924835337
1021 => 0.045384735437024
1022 => 0.044034011175067
1023 => 0.043416693942582
1024 => 0.04309518976811
1025 => 0.043227848656489
1026 => 0.043160772263096
1027 => 0.042723053423984
1028 => 0.043185861794578
1029 => 0.042003577653333
1030 => 0.041532782581978
1031 => 0.04132013537061
1101 => 0.040270790145519
1102 => 0.041940765044579
1103 => 0.042269771137483
1104 => 0.042599425474026
1105 => 0.045468841409053
1106 => 0.045325493497825
1107 => 0.046621288802068
1108 => 0.04657093657936
1109 => 0.046201354768097
1110 => 0.044642149899638
1111 => 0.045263621170052
1112 => 0.043350829197798
1113 => 0.044784023000622
1114 => 0.044129973200617
1115 => 0.044562888105325
1116 => 0.043784468072297
1117 => 0.04421527785875
1118 => 0.042347790687432
1119 => 0.040603957443109
1120 => 0.041305726846291
1121 => 0.042068630444615
1122 => 0.043722799830003
1123 => 0.042737590190667
1124 => 0.043091908831873
1125 => 0.041905000696056
1126 => 0.039456070188318
1127 => 0.039469930869039
1128 => 0.039093216263275
1129 => 0.038767679842661
1130 => 0.042850753369231
1201 => 0.042342958632361
1202 => 0.041533854177692
1203 => 0.0426168726428
1204 => 0.042903239914788
1205 => 0.042911392388437
1206 => 0.043701534703827
1207 => 0.044123233799192
1208 => 0.044197560092498
1209 => 0.045440866097919
1210 => 0.045857605871333
1211 => 0.047574098018807
1212 => 0.044087455577198
1213 => 0.044015650470561
1214 => 0.042632112933597
1215 => 0.041754651554792
1216 => 0.042692193464905
1217 => 0.043522727610032
1218 => 0.042657919944591
1219 => 0.042770845568612
1220 => 0.04160991193514
1221 => 0.042024891082101
1222 => 0.042382327027193
1223 => 0.042184971907427
1224 => 0.041889521741042
1225 => 0.043454633281419
1226 => 0.043366323554589
1227 => 0.044823791402746
1228 => 0.045959991814911
1229 => 0.047996266073627
1230 => 0.045871307731279
1231 => 0.045793865803339
]
'min_raw' => 0.038767679842661
'max_raw' => 0.11208876343064
'avg_raw' => 0.075428221636649
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.038767'
'max' => '$0.112088'
'avg' => '$0.075428'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0068168360920434
'max_diff' => -0.037863641536301
'year' => 2030
]
5 => [
'items' => [
101 => 0.046550873071025
102 => 0.045857489977465
103 => 0.046295684157824
104 => 0.047925666216716
105 => 0.047960105169128
106 => 0.047383208344138
107 => 0.047348104119909
108 => 0.047458903465708
109 => 0.048107858694808
110 => 0.047881093797381
111 => 0.048143511877668
112 => 0.048471669705356
113 => 0.04982906961671
114 => 0.050156334139882
115 => 0.049361251015776
116 => 0.049433038119714
117 => 0.049135655205779
118 => 0.048848387037114
119 => 0.049494123928125
120 => 0.050674220788439
121 => 0.050666879467118
122 => 0.050940639000906
123 => 0.051111188922509
124 => 0.050379063808815
125 => 0.049902477280786
126 => 0.050085230881621
127 => 0.050377457869211
128 => 0.049990465608082
129 => 0.047601770100139
130 => 0.048326347726789
131 => 0.048205742579679
201 => 0.048033986184107
202 => 0.048762554590696
203 => 0.048692282390526
204 => 0.046587357170824
205 => 0.046722107653976
206 => 0.046595551794012
207 => 0.047004479668449
208 => 0.045835406530258
209 => 0.046195005553738
210 => 0.046420542690233
211 => 0.046553385796286
212 => 0.047033306186722
213 => 0.046976993068125
214 => 0.047029805684203
215 => 0.047741400928933
216 => 0.05134040548678
217 => 0.051536291364107
218 => 0.050571677662252
219 => 0.050957021809979
220 => 0.050217245311845
221 => 0.050713862231114
222 => 0.051053634914577
223 => 0.049518267492541
224 => 0.04942735299826
225 => 0.048684523179364
226 => 0.049083677848007
227 => 0.04844859406996
228 => 0.048604421414805
301 => 0.048168714573834
302 => 0.048952900139216
303 => 0.049829741451429
304 => 0.050051266194407
305 => 0.049468529968031
306 => 0.049046590535945
307 => 0.048305803888693
308 => 0.049537748592581
309 => 0.049898006766832
310 => 0.049535856309758
311 => 0.04945193813571
312 => 0.049292913347526
313 => 0.049485675996282
314 => 0.049896044723446
315 => 0.049702522410036
316 => 0.049830347307467
317 => 0.04934321061092
318 => 0.050379306172691
319 => 0.052024875274759
320 => 0.052030166048499
321 => 0.051836642691932
322 => 0.051757457103944
323 => 0.051956023811761
324 => 0.052063738105119
325 => 0.052705866427294
326 => 0.053394895700508
327 => 0.056610294671574
328 => 0.055707423507125
329 => 0.058560316759196
330 => 0.060816584919758
331 => 0.061493141086462
401 => 0.060870741247522
402 => 0.058741545019887
403 => 0.058637076495093
404 => 0.061818994582639
405 => 0.060919956981826
406 => 0.060813019319923
407 => 0.059675383271309
408 => 0.060347867075006
409 => 0.060200785002395
410 => 0.059968608755278
411 => 0.061251661007104
412 => 0.063653420283656
413 => 0.06327908357685
414 => 0.062999658590199
415 => 0.061775299638085
416 => 0.062512637197729
417 => 0.062250085415511
418 => 0.063378174491401
419 => 0.062709919513076
420 => 0.060913145887772
421 => 0.061199288009845
422 => 0.061156038203732
423 => 0.062046116148829
424 => 0.061778936842804
425 => 0.061103867156156
426 => 0.063645211331554
427 => 0.063480190576502
428 => 0.063714152278168
429 => 0.063817149454748
430 => 0.065364020870805
501 => 0.065997724595599
502 => 0.066141586435673
503 => 0.066743555961823
504 => 0.066126608885481
505 => 0.068594837066659
506 => 0.070236064782035
507 => 0.07214243523025
508 => 0.074928154839163
509 => 0.075975611181462
510 => 0.075786397568643
511 => 0.077898498383143
512 => 0.081693896597435
513 => 0.07655355606234
514 => 0.081966347127517
515 => 0.08025271996996
516 => 0.076189740806228
517 => 0.075928132847462
518 => 0.078679629509299
519 => 0.084782184283514
520 => 0.083253563527176
521 => 0.084784684559458
522 => 0.082998550545019
523 => 0.082909853936483
524 => 0.084697936017102
525 => 0.088875887261749
526 => 0.086891099233578
527 => 0.084045418905203
528 => 0.086146624975985
529 => 0.084326365820032
530 => 0.080224812483212
531 => 0.083252394619692
601 => 0.081227936665603
602 => 0.08181878112271
603 => 0.086073890626813
604 => 0.085561904593656
605 => 0.086224461929191
606 => 0.085055065574116
607 => 0.083962664981596
608 => 0.081923618152926
609 => 0.08131995691075
610 => 0.081486787160631
611 => 0.081319874237963
612 => 0.08017904627713
613 => 0.079932684587607
614 => 0.079522070978382
615 => 0.079649337305555
616 => 0.078877263590965
617 => 0.080334326208967
618 => 0.08060476987046
619 => 0.081665098534903
620 => 0.081775185374351
621 => 0.084728185611991
622 => 0.083101722704252
623 => 0.084192894444815
624 => 0.084095289773832
625 => 0.076277797884737
626 => 0.077354979292739
627 => 0.079030735525444
628 => 0.078275809614044
629 => 0.077208521000783
630 => 0.076346628221179
701 => 0.075040772527019
702 => 0.076878739339813
703 => 0.079295470252657
704 => 0.081836477658514
705 => 0.08488933156325
706 => 0.08420797011085
707 => 0.081779406678285
708 => 0.081888350259804
709 => 0.082561796613029
710 => 0.081689622396549
711 => 0.081432401193245
712 => 0.082526458369596
713 => 0.082533992540086
714 => 0.08153045069825
715 => 0.080415197587267
716 => 0.080410524636011
717 => 0.080212076116978
718 => 0.083033854095699
719 => 0.084585546670063
720 => 0.084763445723036
721 => 0.084573572646372
722 => 0.084646647257788
723 => 0.083743751537978
724 => 0.085807503408054
725 => 0.087701406207943
726 => 0.087193799800241
727 => 0.086432825634593
728 => 0.085826673058173
729 => 0.087051009517042
730 => 0.086996491741813
731 => 0.08768486461919
801 => 0.087653636049238
802 => 0.08742216214159
803 => 0.087193808066903
804 => 0.088099206161061
805 => 0.087838466050192
806 => 0.087577320937913
807 => 0.087053554435919
808 => 0.087124743002381
809 => 0.086363900229651
810 => 0.08601189954919
811 => 0.080718653882783
812 => 0.079304125678927
813 => 0.079749165047237
814 => 0.079895683562726
815 => 0.079280079075641
816 => 0.080162697774304
817 => 0.080025142585042
818 => 0.080560289359366
819 => 0.08022595288814
820 => 0.080239674173541
821 => 0.081222886447365
822 => 0.08150831715334
823 => 0.081363144792573
824 => 0.081464818537837
825 => 0.083807847083641
826 => 0.083474743350263
827 => 0.083297788630909
828 => 0.0833468062975
829 => 0.083945500326052
830 => 0.084113101966564
831 => 0.083402962038555
901 => 0.083737868133874
902 => 0.085163855781832
903 => 0.085662870754706
904 => 0.087255487007344
905 => 0.086578915316727
906 => 0.087820791936192
907 => 0.09163789727749
908 => 0.094687265147717
909 => 0.091882940433799
910 => 0.097482716192816
911 => 0.10184294486133
912 => 0.10167559202269
913 => 0.10091528530043
914 => 0.095951280884002
915 => 0.091383330010865
916 => 0.095204614881683
917 => 0.095214356122673
918 => 0.09488610436334
919 => 0.092847360877773
920 => 0.094815160509275
921 => 0.094971357298025
922 => 0.094883928632404
923 => 0.093320828782106
924 => 0.090934264219843
925 => 0.091400593222681
926 => 0.092164449642183
927 => 0.090718310082923
928 => 0.090256180869053
929 => 0.091115367001317
930 => 0.093883843738011
1001 => 0.093360479247632
1002 => 0.093346812085707
1003 => 0.095585987316628
1004 => 0.093983221095548
1005 => 0.091406475124799
1006 => 0.090755812784081
1007 => 0.088446399813204
1008 => 0.090041519578036
1009 => 0.090098925098635
1010 => 0.089225294305166
1011 => 0.091477365448835
1012 => 0.091456612216777
1013 => 0.093594618591136
1014 => 0.09768168378039
1015 => 0.096472937491664
1016 => 0.095067297069098
1017 => 0.095220129157212
1018 => 0.096896319942089
1019 => 0.095882856729839
1020 => 0.09624730516708
1021 => 0.09689576830573
1022 => 0.097287002217711
1023 => 0.095163836618026
1024 => 0.09466882515399
1025 => 0.093656205423986
1026 => 0.09339203183787
1027 => 0.094216789478955
1028 => 0.093999494979646
1029 => 0.090094100386914
1030 => 0.089685964922563
1031 => 0.089698481854571
1101 => 0.088672205823677
1102 => 0.087106888542095
1103 => 0.091220448897856
1104 => 0.090890072432048
1105 => 0.090525362382903
1106 => 0.090570037282917
1107 => 0.092355594411857
1108 => 0.091319881104275
1109 => 0.094073494682554
1110 => 0.093507434512061
1111 => 0.092926857034135
1112 => 0.092846603541863
1113 => 0.092623130745404
1114 => 0.091856759375782
1115 => 0.090931319895185
1116 => 0.090320264589899
1117 => 0.08331566977306
1118 => 0.084615681827211
1119 => 0.086111227195686
1120 => 0.086627483463861
1121 => 0.085744391393301
1122 => 0.091891629233238
1123 => 0.093014788822852
1124 => 0.089612665164023
1125 => 0.08897626673525
1126 => 0.09193335140828
1127 => 0.090149867861543
1128 => 0.090952970393434
1129 => 0.089217101993085
1130 => 0.092744252567666
1201 => 0.092717381589881
1202 => 0.09134524035206
1203 => 0.092504964730249
1204 => 0.092303434080123
1205 => 0.090754290002058
1206 => 0.092793363198099
1207 => 0.092794374552964
1208 => 0.091473718444485
1209 => 0.089931481238578
1210 => 0.089655765652178
1211 => 0.089448050995004
1212 => 0.09090188532091
1213 => 0.092205388631495
1214 => 0.094630885126619
1215 => 0.095240712573868
1216 => 0.097620909698994
1217 => 0.096203618200676
1218 => 0.096831885164883
1219 => 0.097513957828318
1220 => 0.09784096854556
1221 => 0.097308122130176
1222 => 0.10100554799372
1223 => 0.1013177240228
1224 => 0.10142239394504
1225 => 0.10017564274719
1226 => 0.10128304961664
1227 => 0.10076493061588
1228 => 0.10211293231824
1229 => 0.10232431619732
1230 => 0.10214528157194
1231 => 0.10221237815162
]
'min_raw' => 0.045835406530258
'max_raw' => 0.10232431619732
'avg_raw' => 0.074079861363788
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.045835'
'max' => '$0.102324'
'avg' => '$0.074079'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0070677266875971
'max_diff' => -0.0097644472333197
'year' => 2031
]
6 => [
'items' => [
101 => 0.099057277447708
102 => 0.098893668831728
103 => 0.096662853743701
104 => 0.097571927381424
105 => 0.095872457788733
106 => 0.096411377103052
107 => 0.096648927601792
108 => 0.096524844702123
109 => 0.097623325040938
110 => 0.096689392348238
111 => 0.094224590419451
112 => 0.091759116957027
113 => 0.091728164946037
114 => 0.091079049302602
115 => 0.090609857583859
116 => 0.09070024055436
117 => 0.091018761931239
118 => 0.090591344542395
119 => 0.090682555712916
120 => 0.092197268880425
121 => 0.092501033803729
122 => 0.091468721905726
123 => 0.087323840673345
124 => 0.086306676422271
125 => 0.087037793914699
126 => 0.086688366843315
127 => 0.069964277792185
128 => 0.073893354442829
129 => 0.071558830515852
130 => 0.072634686547684
131 => 0.070251742140281
201 => 0.071389008112311
202 => 0.071178996613581
203 => 0.077496835597985
204 => 0.077398191232147
205 => 0.07744540706993
206 => 0.075191672112336
207 => 0.078781933095356
208 => 0.080550624757201
209 => 0.080223287002798
210 => 0.080305670863366
211 => 0.078890043188016
212 => 0.077459113440236
213 => 0.07587199213144
214 => 0.078820667349061
215 => 0.078492825000426
216 => 0.079244777394241
217 => 0.081157204048527
218 => 0.081438816137972
219 => 0.081817305642016
220 => 0.081681644097534
221 => 0.08491365246985
222 => 0.084522234930485
223 => 0.085465438581844
224 => 0.083525197109965
225 => 0.081329629715123
226 => 0.081746935298377
227 => 0.08170674541495
228 => 0.081195082071125
229 => 0.080733175282334
301 => 0.079964230620427
302 => 0.082397285313097
303 => 0.082298507735855
304 => 0.083897601895043
305 => 0.083614946469634
306 => 0.081727304361241
307 => 0.081794721868427
308 => 0.082248137004002
309 => 0.08381741196523
310 => 0.084283279618109
311 => 0.084067471159679
312 => 0.084578273773395
313 => 0.084981991332176
314 => 0.084628974483033
315 => 0.089626948620244
316 => 0.087551441300933
317 => 0.088563029127078
318 => 0.088804286862992
319 => 0.088186310245552
320 => 0.088320327245791
321 => 0.088523326483707
322 => 0.089755898105004
323 => 0.092990522686763
324 => 0.09442311589519
325 => 0.098733143245645
326 => 0.09430415897189
327 => 0.094041361374044
328 => 0.094817727450218
329 => 0.097348169767664
330 => 0.099398855593593
331 => 0.10007918638896
401 => 0.1001691033346
402 => 0.10144544913424
403 => 0.10217702674415
404 => 0.10129046718294
405 => 0.10053920078146
406 => 0.097848257781994
407 => 0.098159741761377
408 => 0.10030555749553
409 => 0.10333664860793
410 => 0.10593764011365
411 => 0.10502686354205
412 => 0.11197544587528
413 => 0.11266436943121
414 => 0.11256918247134
415 => 0.11413865285731
416 => 0.11102357375825
417 => 0.10969181709158
418 => 0.1007016331047
419 => 0.10322750810017
420 => 0.10689901574553
421 => 0.10641307794122
422 => 0.10374673094948
423 => 0.10593561745036
424 => 0.10521190312036
425 => 0.10464107960135
426 => 0.1072561328015
427 => 0.10438077438747
428 => 0.10687033184582
429 => 0.10367744865432
430 => 0.10503102389271
501 => 0.10426266912233
502 => 0.10475988882478
503 => 0.1018531526041
504 => 0.10342155691175
505 => 0.10178790182847
506 => 0.10178712726325
507 => 0.10175106423674
508 => 0.10367305219749
509 => 0.10373572815588
510 => 0.10231537614893
511 => 0.10211068123466
512 => 0.10286754561767
513 => 0.10198145564826
514 => 0.10239605156796
515 => 0.10199401333632
516 => 0.10190350606215
517 => 0.10118232870306
518 => 0.10087162566758
519 => 0.10099346033363
520 => 0.10057757580835
521 => 0.10032699033867
522 => 0.10170121647968
523 => 0.10096702288866
524 => 0.10158869078204
525 => 0.10088022175679
526 => 0.098424359450038
527 => 0.097011967067151
528 => 0.092373070828248
529 => 0.093688656047068
530 => 0.094560890408217
531 => 0.09427261695706
601 => 0.094891939877161
602 => 0.094929961274523
603 => 0.094728613079948
604 => 0.094495477664932
605 => 0.094382000238099
606 => 0.095227768007399
607 => 0.095718764664711
608 => 0.094648430795348
609 => 0.094397666545319
610 => 0.095479833181997
611 => 0.096139954205224
612 => 0.10101391695077
613 => 0.10065283804789
614 => 0.10155907523596
615 => 0.10145704683593
616 => 0.10240692778394
617 => 0.1039595816843
618 => 0.10080260217601
619 => 0.10135054465851
620 => 0.10121620181564
621 => 0.10268292174751
622 => 0.10268750068704
623 => 0.10180812881979
624 => 0.1022848505752
625 => 0.10201875756951
626 => 0.10249962359542
627 => 0.100648015619
628 => 0.10290307426556
629 => 0.10418154720538
630 => 0.10419929880339
701 => 0.10480528483028
702 => 0.10542100172995
703 => 0.10660281670121
704 => 0.10538804155183
705 => 0.10320277931407
706 => 0.10336054818928
707 => 0.10207932973884
708 => 0.10210086725246
709 => 0.10198589831682
710 => 0.10233092874714
711 => 0.10072373039571
712 => 0.10110093663637
713 => 0.10057284569053
714 => 0.10134939669193
715 => 0.1005139561829
716 => 0.10121613703146
717 => 0.10151917500803
718 => 0.10263739166552
719 => 0.1003487946734
720 => 0.095682190482062
721 => 0.096663167260187
722 => 0.095212225551276
723 => 0.095346515730561
724 => 0.095617803264839
725 => 0.094738471606486
726 => 0.094906220375975
727 => 0.094900227209498
728 => 0.094848581338578
729 => 0.094619833212841
730 => 0.094288103174084
731 => 0.09560961354737
801 => 0.09583416391111
802 => 0.096333311553801
803 => 0.09781843636337
804 => 0.097670037373239
805 => 0.097912082283157
806 => 0.097383699603831
807 => 0.095371025887617
808 => 0.095480323753672
809 => 0.094117377612577
810 => 0.096298457956653
811 => 0.095781949342322
812 => 0.095448952878575
813 => 0.095358091708252
814 => 0.096846897854967
815 => 0.097292371988242
816 => 0.097014782403042
817 => 0.096445438065216
818 => 0.097538747505386
819 => 0.097831270988554
820 => 0.097896756208584
821 => 0.099833890915274
822 => 0.098005020519806
823 => 0.098445247801403
824 => 0.10187977538401
825 => 0.098765132798994
826 => 0.10041502844109
827 => 0.10033427463506
828 => 0.10117830541613
829 => 0.1002650394756
830 => 0.10027636050147
831 => 0.10102580265546
901 => 0.099973346312781
902 => 0.099712743321606
903 => 0.099352722155772
904 => 0.10013881520026
905 => 0.1006100424285
906 => 0.10440778780986
907 => 0.10686130452444
908 => 0.10675479089317
909 => 0.10772812609782
910 => 0.1072896296734
911 => 0.10587360904943
912 => 0.10829058358923
913 => 0.10752575171432
914 => 0.10758880352482
915 => 0.10758645673328
916 => 0.10809500306733
917 => 0.10773465138207
918 => 0.10702436122108
919 => 0.1074958849778
920 => 0.10889614196243
921 => 0.11324258260783
922 => 0.11567490837568
923 => 0.11309615354249
924 => 0.11487494409552
925 => 0.11380830361158
926 => 0.11361446330584
927 => 0.11473167522474
928 => 0.1158508426752
929 => 0.1157795565469
930 => 0.11496709844775
1001 => 0.1145081614829
1002 => 0.1179833859359
1003 => 0.12054387211397
1004 => 0.12036926412234
1005 => 0.12113992701182
1006 => 0.12340261709105
1007 => 0.12360948911494
1008 => 0.12358342799482
1009 => 0.12307067409875
1010 => 0.12529858632918
1011 => 0.1271571499082
1012 => 0.1229519863867
1013 => 0.12455325760605
1014 => 0.12527211984616
1015 => 0.12632762289145
1016 => 0.1281084334517
1017 => 0.13004286605681
1018 => 0.13031641603714
1019 => 0.13012231923552
1020 => 0.12884650893212
1021 => 0.13096318817121
1022 => 0.13220308922723
1023 => 0.13294142193146
1024 => 0.13481371082254
1025 => 0.12527655929462
1026 => 0.11852568941597
1027 => 0.11747144360068
1028 => 0.11961529392225
1029 => 0.12018061015516
1030 => 0.11995273189052
1031 => 0.11235401407986
1101 => 0.117431437924
1102 => 0.12289431905836
1103 => 0.12310417057102
1104 => 0.12583900309034
1105 => 0.1267295766632
1106 => 0.12893147530395
1107 => 0.12879374594445
1108 => 0.12932987322362
1109 => 0.12920662684657
1110 => 0.13328518041409
1111 => 0.13778443067013
1112 => 0.1376286359405
1113 => 0.13698181548348
1114 => 0.13794245416143
1115 => 0.14258616259463
1116 => 0.14215864433601
1117 => 0.14257394190834
1118 => 0.14804913585901
1119 => 0.15516766683214
1120 => 0.1518603945063
1121 => 0.15903622381141
1122 => 0.16355302798461
1123 => 0.17136437375588
1124 => 0.17038635479363
1125 => 0.17342725438009
1126 => 0.16863549673248
1127 => 0.15763265259958
1128 => 0.15589141039835
1129 => 0.15937742138048
1130 => 0.16794743922008
1201 => 0.15910752102061
1202 => 0.16089582495923
1203 => 0.1603807933046
1204 => 0.16035334945647
1205 => 0.16140076951745
1206 => 0.15988143208924
1207 => 0.15369137808313
1208 => 0.15652824335591
1209 => 0.15543279343663
1210 => 0.15664827679327
1211 => 0.16320773916562
1212 => 0.16030764449275
1213 => 0.15725263033945
1214 => 0.1610842960496
1215 => 0.16596332320182
1216 => 0.16565800245109
1217 => 0.1650655525805
1218 => 0.16840516148136
1219 => 0.17392121697198
1220 => 0.17541218460578
1221 => 0.17651278643157
1222 => 0.17666454082853
1223 => 0.178227705432
1224 => 0.16982217539091
1225 => 0.18316196743544
1226 => 0.18546538101721
1227 => 0.18503243473055
1228 => 0.18759258198423
1229 => 0.18683932171753
1230 => 0.185747965774
1231 => 0.18980634373001
]
'min_raw' => 0.069964277792185
'max_raw' => 0.18980634373001
'avg_raw' => 0.1298853107611
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.069964'
'max' => '$0.1898063'
'avg' => '$0.129885'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.024128871261926
'max_diff' => 0.087482027532697
'year' => 2032
]
7 => [
'items' => [
101 => 0.18515374089765
102 => 0.17854995692353
103 => 0.17492699042728
104 => 0.17969800496591
105 => 0.18261149705918
106 => 0.18453712999994
107 => 0.18511982536431
108 => 0.17047467276053
109 => 0.16258174776449
110 => 0.16764102219438
111 => 0.17381368617132
112 => 0.16978788593085
113 => 0.16994568967843
114 => 0.16420595649723
115 => 0.17432152519773
116 => 0.17284777192339
117 => 0.18049360651769
118 => 0.1786688667301
119 => 0.18490374803216
120 => 0.1832618948317
121 => 0.19007713567203
122 => 0.19279591975852
123 => 0.19736118138469
124 => 0.20071940642085
125 => 0.2026914203947
126 => 0.20257302807255
127 => 0.21038712989038
128 => 0.20577942705233
129 => 0.19999106633556
130 => 0.19988637315223
131 => 0.20288424718916
201 => 0.20916696874397
202 => 0.21079598703325
203 => 0.2117063860222
204 => 0.21031207827941
205 => 0.20531074708574
206 => 0.20315119763364
207 => 0.204991196335
208 => 0.20274103603612
209 => 0.20662544399545
210 => 0.21195956578838
211 => 0.21085809073154
212 => 0.21454015670418
213 => 0.21835070762121
214 => 0.22379996657513
215 => 0.22522460465116
216 => 0.2275794772167
217 => 0.23000341462198
218 => 0.23078191798961
219 => 0.23226832247383
220 => 0.23226048838849
221 => 0.23673986834824
222 => 0.24168076315869
223 => 0.24354583656766
224 => 0.24783447003083
225 => 0.24049033551679
226 => 0.24606094590903
227 => 0.25108577592425
228 => 0.24509496643068
301 => 0.25335190163798
302 => 0.25367249972146
303 => 0.25851315015046
304 => 0.25360622358426
305 => 0.25069250625271
306 => 0.25910429901333
307 => 0.2631745005612
308 => 0.26194852273058
309 => 0.25261877090558
310 => 0.24718845517156
311 => 0.23297627146593
312 => 0.24981121698589
313 => 0.25801102786657
314 => 0.25259753537633
315 => 0.25532778610436
316 => 0.27022314878969
317 => 0.27589433849695
318 => 0.27471477068245
319 => 0.27491409822576
320 => 0.27797416925242
321 => 0.29154420939654
322 => 0.28341272679112
323 => 0.28962894056212
324 => 0.29292599793204
325 => 0.29598848856422
326 => 0.28846797948169
327 => 0.27868390766353
328 => 0.27558488141133
329 => 0.25205927023645
330 => 0.25083466000825
331 => 0.25014724917767
401 => 0.24581322112707
402 => 0.24240786226949
403 => 0.23969979447308
404 => 0.23259301587778
405 => 0.23499134503202
406 => 0.2236646232511
407 => 0.23091105845216
408 => 0.21283333699654
409 => 0.22788900060717
410 => 0.21969488740093
411 => 0.22519701403896
412 => 0.22517781763745
413 => 0.21504665804601
414 => 0.20920321662557
415 => 0.21292688492881
416 => 0.21691895293505
417 => 0.21756665253813
418 => 0.22274247291185
419 => 0.22418693312427
420 => 0.21981015124524
421 => 0.21245871640095
422 => 0.2141662870469
423 => 0.20916861276093
424 => 0.20041038080753
425 => 0.20670069590052
426 => 0.2088484860389
427 => 0.20979707252091
428 => 0.20118435728448
429 => 0.19847805516605
430 => 0.19703724262627
501 => 0.21134692301777
502 => 0.21213083961189
503 => 0.20812021148172
504 => 0.22624863093347
505 => 0.22214561128749
506 => 0.22672968949627
507 => 0.21401134290869
508 => 0.21449720087586
509 => 0.20847613178076
510 => 0.21184752814603
511 => 0.20946473386023
512 => 0.21157515263651
513 => 0.21284012894942
514 => 0.21886021004633
515 => 0.22795774026311
516 => 0.21796101068247
517 => 0.21360529244838
518 => 0.21630755554332
519 => 0.22350403826521
520 => 0.23440707797005
521 => 0.22795225902066
522 => 0.23081679806047
523 => 0.23144257240619
524 => 0.2266830278833
525 => 0.23458256916556
526 => 0.23881599751447
527 => 0.2431586190159
528 => 0.2469291955881
529 => 0.24142408049194
530 => 0.24731534277208
531 => 0.24256802532207
601 => 0.23830919080076
602 => 0.23831564969475
603 => 0.23564402058789
604 => 0.2304674025464
605 => 0.22951275475599
606 => 0.23447895312047
607 => 0.23846137390806
608 => 0.23878938515863
609 => 0.2409942579308
610 => 0.24229907892538
611 => 0.25508809849036
612 => 0.26023194795571
613 => 0.26652174971386
614 => 0.26897198197246
615 => 0.27634630261397
616 => 0.27039093978291
617 => 0.26910245957342
618 => 0.25121476981902
619 => 0.25414387801422
620 => 0.25883366285163
621 => 0.25129210264364
622 => 0.25607548676773
623 => 0.25701982811976
624 => 0.25103584331358
625 => 0.25423214815128
626 => 0.24574371014069
627 => 0.22814276501552
628 => 0.23460216404898
629 => 0.23935845594781
630 => 0.23257064096161
701 => 0.24473753659965
702 => 0.23762988734361
703 => 0.23537710375679
704 => 0.22658819180922
705 => 0.23073621993223
706 => 0.23634648736263
707 => 0.23287999435424
708 => 0.2400734878432
709 => 0.25026139305822
710 => 0.25752190101468
711 => 0.25807927266149
712 => 0.25341125246174
713 => 0.26089178462275
714 => 0.26094627213286
715 => 0.25250820129637
716 => 0.2473399298924
717 => 0.24616568775528
718 => 0.24909917483753
719 => 0.25266096970698
720 => 0.25827692748792
721 => 0.26167053315689
722 => 0.2705192569122
723 => 0.2729134678476
724 => 0.2755439797862
725 => 0.27905915495601
726 => 0.28328002401977
727 => 0.27404500280246
728 => 0.27441192741165
729 => 0.26581240352166
730 => 0.25662257894873
731 => 0.26359651027178
801 => 0.27271399777346
802 => 0.27062243606665
803 => 0.2703870926479
804 => 0.27078287499941
805 => 0.26920590577649
806 => 0.26207333242644
807 => 0.25849139874231
808 => 0.26311300704358
809 => 0.26556918617158
810 => 0.26937850579778
811 => 0.26890892674887
812 => 0.2787213250149
813 => 0.28253412626955
814 => 0.28155864854965
815 => 0.28173815992629
816 => 0.28864105447472
817 => 0.29631849290112
818 => 0.30350942711467
819 => 0.3108243542545
820 => 0.30200592408097
821 => 0.29752846908401
822 => 0.30214805973567
823 => 0.29969683991045
824 => 0.31378227610517
825 => 0.31475752114655
826 => 0.32884193880391
827 => 0.342209728302
828 => 0.33381365922707
829 => 0.34173077419747
830 => 0.35029377952981
831 => 0.36681320611344
901 => 0.36125004440051
902 => 0.35698874971426
903 => 0.35296184682618
904 => 0.36134119248344
905 => 0.37212108680819
906 => 0.37444297279719
907 => 0.3782053151281
908 => 0.37424967220448
909 => 0.3790138084062
910 => 0.39583330266579
911 => 0.39128852684706
912 => 0.38483421457531
913 => 0.39811158993185
914 => 0.40291662045889
915 => 0.43664084111171
916 => 0.47921906276396
917 => 0.46159139941625
918 => 0.45064933993518
919 => 0.45322098346236
920 => 0.468769108646
921 => 0.47376267298215
922 => 0.46018844373162
923 => 0.46498309098387
924 => 0.49140206874309
925 => 0.50557500268862
926 => 0.48632625471161
927 => 0.43321972245944
928 => 0.38425307437339
929 => 0.39724123444272
930 => 0.39576878016039
1001 => 0.42415267592806
1002 => 0.39118013544684
1003 => 0.39173530846575
1004 => 0.42070615313884
1005 => 0.41297722846608
1006 => 0.40045736034208
1007 => 0.38434448326602
1008 => 0.35455833973017
1009 => 0.32817592175241
1010 => 0.3799179189148
1011 => 0.37768670991044
1012 => 0.37445558862548
1013 => 0.38164609940132
1014 => 0.4165611786667
1015 => 0.41575627308055
1016 => 0.4106358744079
1017 => 0.41451965167198
1018 => 0.3997765154099
1019 => 0.40357615731961
1020 => 0.38424531780616
1021 => 0.39298366459341
1022 => 0.40043049832805
1023 => 0.40192556045253
1024 => 0.40529401175877
1025 => 0.37651096415206
1026 => 0.38943370750159
1027 => 0.39702460852214
1028 => 0.36272864155197
1029 => 0.39634668752508
1030 => 0.37600991532973
1031 => 0.36910730939856
1101 => 0.3784007589357
1102 => 0.3747790926129
1103 => 0.37166539657994
1104 => 0.36992790069346
1105 => 0.37675198435294
1106 => 0.37643363269368
1107 => 0.36526810732921
1108 => 0.3507031346563
1109 => 0.35559161756426
1110 => 0.35381558589402
1111 => 0.34737901800845
1112 => 0.35171648760916
1113 => 0.33261646663079
1114 => 0.2997558732702
1115 => 0.3214645877914
1116 => 0.32062882589687
1117 => 0.32020739685086
1118 => 0.33652089582875
1119 => 0.33495272931848
1120 => 0.33210649174682
1121 => 0.3473267446234
1122 => 0.34177114758216
1123 => 0.35889218859999
1124 => 0.37016921353384
1125 => 0.36730899523707
1126 => 0.37791509169395
1127 => 0.35570423833711
1128 => 0.36308179287748
1129 => 0.36460229664341
1130 => 0.34713892906549
1201 => 0.3352093007534
1202 => 0.33441373055271
1203 => 0.3137293990636
1204 => 0.32477880198699
1205 => 0.33450181930421
1206 => 0.32984524854589
1207 => 0.32837111735489
1208 => 0.33590213390962
1209 => 0.33648735839472
1210 => 0.32314417811519
1211 => 0.32591864781887
1212 => 0.33748864770043
1213 => 0.32562711350742
1214 => 0.30258209014101
1215 => 0.29686660572377
1216 => 0.29610405474523
1217 => 0.28060320770488
1218 => 0.29724854172218
1219 => 0.28998240735641
1220 => 0.31293603875622
1221 => 0.29982504760344
1222 => 0.29925985897945
1223 => 0.29840549347915
1224 => 0.28506327409959
1225 => 0.28798437220144
1226 => 0.29769454718778
1227 => 0.30115924701586
1228 => 0.30079785043834
1229 => 0.29764696203298
1230 => 0.29908942260979
1231 => 0.29444275450529
]
'min_raw' => 0.16258174776449
'max_raw' => 0.50557500268862
'avg_raw' => 0.33407837522655
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.162581'
'max' => '$0.505575'
'avg' => '$0.334078'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.092617469972301
'max_diff' => 0.3157686589586
'year' => 2033
]
8 => [
'items' => [
101 => 0.29280191928556
102 => 0.2876229919848
103 => 0.28001139956787
104 => 0.28106983817805
105 => 0.26598928191861
106 => 0.25777259448277
107 => 0.25549832369472
108 => 0.25245707374864
109 => 0.25584184096859
110 => 0.2659465605975
111 => 0.25375812488918
112 => 0.23286190678663
113 => 0.23411780510001
114 => 0.23693943573064
115 => 0.23168134571742
116 => 0.22670500479796
117 => 0.23103152948413
118 => 0.22217752640411
119 => 0.23800939970236
120 => 0.23758119189795
121 => 0.24348233522706
122 => 0.24717244125441
123 => 0.23866794154739
124 => 0.23652908286969
125 => 0.23774747397822
126 => 0.21761018295401
127 => 0.24183668893421
128 => 0.24204620076396
129 => 0.24025223327936
130 => 0.25315209980436
131 => 0.28037484174138
201 => 0.27013255119242
202 => 0.26616642671699
203 => 0.25862682118998
204 => 0.26867289789724
205 => 0.26790151594933
206 => 0.26441303424298
207 => 0.26230318962225
208 => 0.26619064302731
209 => 0.26182149112482
210 => 0.26103667138687
211 => 0.25628151766717
212 => 0.25458414413495
213 => 0.25332747634608
214 => 0.25194400858816
215 => 0.25499559372344
216 => 0.24808030033743
217 => 0.23974113442847
218 => 0.23904782301416
219 => 0.24096211678562
220 => 0.24011518429416
221 => 0.23904376822723
222 => 0.23699814317266
223 => 0.23639124991683
224 => 0.23836335857552
225 => 0.23613696288094
226 => 0.23942213100635
227 => 0.23852874705288
228 => 0.23353837691165
301 => 0.22731852804402
302 => 0.22726315834252
303 => 0.22592310210659
304 => 0.22421633901132
305 => 0.22374155656366
306 => 0.23066716164272
307 => 0.24500295689046
308 => 0.24218849725682
309 => 0.24422223277955
310 => 0.25422619868934
311 => 0.25740615862231
312 => 0.25514909838336
313 => 0.25205949511888
314 => 0.25219542198252
315 => 0.26275353162375
316 => 0.26341202797124
317 => 0.26507583580235
318 => 0.26721429905738
319 => 0.25551328792267
320 => 0.25164430541033
321 => 0.249810966853
322 => 0.24416499368776
323 => 0.25025369169732
324 => 0.24670606811119
325 => 0.24718476373704
326 => 0.24687301258272
327 => 0.2470432497935
328 => 0.23800497437112
329 => 0.24129804689726
330 => 0.23582267512063
331 => 0.22849176695104
401 => 0.2284671911763
402 => 0.23026142056512
403 => 0.22919414271645
404 => 0.2263221254679
405 => 0.22673008196252
406 => 0.22315595379767
407 => 0.22716404583341
408 => 0.22727898357135
409 => 0.22573564981534
410 => 0.23191066860651
411 => 0.23444057884359
412 => 0.23342472350397
413 => 0.2343693037249
414 => 0.24230545076112
415 => 0.2435993890064
416 => 0.24417407090218
417 => 0.24340407329259
418 => 0.23451436192413
419 => 0.2349086584253
420 => 0.2320155723196
421 => 0.2295712194262
422 => 0.22966898072299
423 => 0.23092569585383
424 => 0.2364138445356
425 => 0.24796332989235
426 => 0.24840162441907
427 => 0.24893285017141
428 => 0.24677208806396
429 => 0.24612038153665
430 => 0.2469801506659
501 => 0.25131753012281
502 => 0.26247444767299
503 => 0.25853084786529
504 => 0.25532463983584
505 => 0.25813734866514
506 => 0.25770435418761
507 => 0.25404944504701
508 => 0.25394686392048
509 => 0.24693192473452
510 => 0.24433866143991
511 => 0.24217153652854
512 => 0.23980509269955
513 => 0.23840218547381
514 => 0.24055768858248
515 => 0.2410506776466
516 => 0.23633763242775
517 => 0.23569526177972
518 => 0.23954403624358
519 => 0.23785033409881
520 => 0.2395923487565
521 => 0.2399965110998
522 => 0.23993143165388
523 => 0.23816301209429
524 => 0.23929014998654
525 => 0.23662413285539
526 => 0.23372523964808
527 => 0.23187592638924
528 => 0.2302621552951
529 => 0.23115756929106
530 => 0.22796558189161
531 => 0.22694440088052
601 => 0.23890830103005
602 => 0.24774616270412
603 => 0.2476176566952
604 => 0.24683540941497
605 => 0.24567314862962
606 => 0.25123250350708
607 => 0.24929573543058
608 => 0.25070489602862
609 => 0.25106358654311
610 => 0.25214923469978
611 => 0.25253726060118
612 => 0.25136437682584
613 => 0.24742803562009
614 => 0.23761904759146
615 => 0.23305293718528
616 => 0.23154604469665
617 => 0.23160081737662
618 => 0.23008994234717
619 => 0.23053496275601
620 => 0.22993518241013
621 => 0.22879934353749
622 => 0.23108743444138
623 => 0.23135111560302
624 => 0.2308170478454
625 => 0.23094284013585
626 => 0.22652098720609
627 => 0.22685717108058
628 => 0.22498525654723
629 => 0.2246342951385
630 => 0.21990225820445
701 => 0.21151876885606
702 => 0.21616403576007
703 => 0.2105532065634
704 => 0.20842830052869
705 => 0.21848727520634
706 => 0.21747763314123
707 => 0.21574956480662
708 => 0.21319339157874
709 => 0.21224528206366
710 => 0.20648486878505
711 => 0.20614451283794
712 => 0.20899952920306
713 => 0.20768203738567
714 => 0.20583177990089
715 => 0.19913033484859
716 => 0.19159569183761
717 => 0.19182311534904
718 => 0.19421974510381
719 => 0.20118826934538
720 => 0.19846554636751
721 => 0.19649017960741
722 => 0.19612025279255
723 => 0.20075066137476
724 => 0.20730365961917
725 => 0.21037817978037
726 => 0.20733142367518
727 => 0.20383147431054
728 => 0.20404450001116
729 => 0.20546166456021
730 => 0.20561058851668
731 => 0.20333248128091
801 => 0.20397375512369
802 => 0.2029996015172
803 => 0.19702122263229
804 => 0.19691309271591
805 => 0.19544590212317
806 => 0.19540147617512
807 => 0.19290541896903
808 => 0.19255620331147
809 => 0.18760013022893
810 => 0.19086223254023
811 => 0.18867418557787
812 => 0.18537628269749
813 => 0.18480772299786
814 => 0.18479063140674
815 => 0.18817684026729
816 => 0.19082266271815
817 => 0.18871224759157
818 => 0.18823174697592
819 => 0.19336223645888
820 => 0.19270933490673
821 => 0.19214392637332
822 => 0.20671691050029
823 => 0.19518125641966
824 => 0.19015105280839
825 => 0.18392522062969
826 => 0.18595238298045
827 => 0.18637953587296
828 => 0.17140753177378
829 => 0.16533339157538
830 => 0.16324897555844
831 => 0.16204936467137
901 => 0.16259604241637
902 => 0.15712860381223
903 => 0.1608028129773
904 => 0.1560684732972
905 => 0.15527474584295
906 => 0.16374033166313
907 => 0.16491826847477
908 => 0.15989282408002
909 => 0.16311997292699
910 => 0.16194976389436
911 => 0.15614962996263
912 => 0.15592810750934
913 => 0.15301780418697
914 => 0.14846374303322
915 => 0.14638241488419
916 => 0.14529844111325
917 => 0.14574570981737
918 => 0.14551955707392
919 => 0.1440437574473
920 => 0.14560414818101
921 => 0.14161799465435
922 => 0.14003067620142
923 => 0.13931372128174
924 => 0.1357757805924
925 => 0.1414062175585
926 => 0.1425154845712
927 => 0.14362693718259
928 => 0.15330137334376
929 => 0.15281806585282
930 => 0.15718693019061
1001 => 0.15701716415627
1002 => 0.15577109327622
1003 => 0.150514125202
1004 => 0.15260945897994
1005 => 0.14616034729862
1006 => 0.15099246026723
1007 => 0.14878728570222
1008 => 0.1502468885286
1009 => 0.14762239103969
1010 => 0.1490748963129
1011 => 0.14277853293101
1012 => 0.13689907739722
1013 => 0.13926514193602
1014 => 0.141837324682
1015 => 0.14741447225526
1016 => 0.14409276917109
1017 => 0.14528737920766
1018 => 0.14128563556047
1019 => 0.13302889537477
1020 => 0.13307562762754
1021 => 0.13180550803283
1022 => 0.1307079392625
1023 => 0.14447430672842
1024 => 0.14276224131997
1025 => 0.14003428916119
1026 => 0.14368576153023
1027 => 0.14465126878127
1028 => 0.14467875541536
1029 => 0.14734277539767
1030 => 0.14876456333978
1031 => 0.14901515962696
1101 => 0.15320705262909
1102 => 0.154612119871
1103 => 0.16039939298786
1104 => 0.14864393456637
1105 => 0.14840183863608
1106 => 0.1437371452347
1107 => 0.14077872293366
1108 => 0.14393971094069
1109 => 0.14673991479703
1110 => 0.14382415537405
1111 => 0.14420489199965
1112 => 0.1402907232006
1113 => 0.1416898543675
1114 => 0.14289497461176
1115 => 0.14222957804657
1116 => 0.14123344718294
1117 => 0.14651033001391
1118 => 0.14621258760432
1119 => 0.15112654221154
1120 => 0.15495732122813
1121 => 0.16182276205952
1122 => 0.15465831664844
1123 => 0.15439721578157
1124 => 0.15694951863713
1125 => 0.15461172912673
1126 => 0.15608913139955
1127 => 0.16158472971282
1128 => 0.16170084304533
1129 => 0.15975579512223
1130 => 0.15963743877934
1201 => 0.16001100650946
1202 => 0.16219900437298
1203 => 0.16143445068908
1204 => 0.16231921156822
1205 => 0.16342561859552
1206 => 0.16800218716728
1207 => 0.16910558235604
1208 => 0.16642490409218
1209 => 0.16666693932512
1210 => 0.16566429206818
1211 => 0.1646957473811
1212 => 0.16687289439306
1213 => 0.17085167334934
1214 => 0.17082692157195
1215 => 0.17174992095339
1216 => 0.17232494192149
1217 => 0.16985653098533
1218 => 0.16824968623187
1219 => 0.16886585275654
1220 => 0.16985111644784
1221 => 0.1685463450205
1222 => 0.16049269134208
1223 => 0.16293565539872
1224 => 0.16252902672486
1225 => 0.16194993804554
1226 => 0.16440635729538
1227 => 0.16416942966625
1228 => 0.15707252732684
1229 => 0.15752684798877
1230 => 0.15710015607105
1231 => 0.15847888495015
]
'min_raw' => 0.1307079392625
'max_raw' => 0.29280191928556
'avg_raw' => 0.21175492927403
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1307079'
'max' => '$0.2928019'
'avg' => '$0.211754'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.031873808501981
'max_diff' => -0.21277308340306
'year' => 2034
]
9 => [
'items' => [
101 => 0.15453727324266
102 => 0.15574968645672
103 => 0.15651010065891
104 => 0.15695799046578
105 => 0.15857607556911
106 => 0.1583862119581
107 => 0.15856427338047
108 => 0.16096346643007
109 => 0.17309776157132
110 => 0.17375820448305
111 => 0.17050594204007
112 => 0.171805156738
113 => 0.16931094862499
114 => 0.17098532724099
115 => 0.17213089456546
116 => 0.16695429610613
117 => 0.16664777154122
118 => 0.16414326894409
119 => 0.16548904677751
120 => 0.16334781747969
121 => 0.16387320025235
122 => 0.16240418421794
123 => 0.16504812060171
124 => 0.16800445230494
125 => 0.16875133844226
126 => 0.16678660256968
127 => 0.16536400431554
128 => 0.16286639041425
129 => 0.16701997799505
130 => 0.16823461358196
131 => 0.16701359803139
201 => 0.16673066204861
202 => 0.16619449887249
203 => 0.16684441160103
204 => 0.16822799841569
205 => 0.16757552442474
206 => 0.16800649499088
207 => 0.16636407960767
208 => 0.16985734813206
209 => 0.17540549924965
210 => 0.17542333746271
211 => 0.17477085995467
212 => 0.1745038802162
213 => 0.1751733617351
214 => 0.17553652799552
215 => 0.1777015084657
216 => 0.18002461876683
217 => 0.19086556088977
218 => 0.18782146772238
219 => 0.19744019650438
220 => 0.20504736213533
221 => 0.20732841848702
222 => 0.20522995397546
223 => 0.19805122023826
224 => 0.19769899731315
225 => 0.20842705629974
226 => 0.2053958882598
227 => 0.20503534046654
228 => 0.20119972110143
301 => 0.20346704719691
302 => 0.20297114972016
303 => 0.20218835129298
304 => 0.20651425153986
305 => 0.21461195062623
306 => 0.21334984828388
307 => 0.21240774743256
308 => 0.20827973574349
309 => 0.2107657208051
310 => 0.20988050914057
311 => 0.2136839402206
312 => 0.2114308719051
313 => 0.20537292418066
314 => 0.20633767232303
315 => 0.20619185258212
316 => 0.20919281251727
317 => 0.20829199883314
318 => 0.20601595425275
319 => 0.21458427357109
320 => 0.21402789457405
321 => 0.2148167127859
322 => 0.21516397495777
323 => 0.22037935993612
324 => 0.22251593628805
325 => 0.22300097652597
326 => 0.22503055881155
327 => 0.2229504786698
328 => 0.23127228230883
329 => 0.23680579613808
330 => 0.24323325720277
331 => 0.25262550535695
401 => 0.25615707754608
402 => 0.25551913063999
403 => 0.26264022599824
404 => 0.27543667606397
405 => 0.25810565906278
406 => 0.27635526204803
407 => 0.2705776484447
408 => 0.25687903052603
409 => 0.25599700102817
410 => 0.26527386412691
411 => 0.28584905361495
412 => 0.28069520201006
413 => 0.28585748346986
414 => 0.27983540793628
415 => 0.279536361128
416 => 0.28556500470271
417 => 0.29965125901928
418 => 0.29295940760883
419 => 0.28336499770266
420 => 0.29044936067182
421 => 0.28431222984109
422 => 0.27048355640469
423 => 0.28069126095687
424 => 0.27386565962152
425 => 0.2758577329601
426 => 0.29020413173544
427 => 0.28847793507892
428 => 0.29071179339396
429 => 0.28676909193818
430 => 0.28308598707152
501 => 0.27621119832696
502 => 0.27417591230268
503 => 0.27473839213787
504 => 0.27417563356561
505 => 0.27032925244559
506 => 0.26949862680894
507 => 0.26811421435731
508 => 0.26854330166483
509 => 0.26594020123162
510 => 0.27085278957708
511 => 0.27176460926357
512 => 0.27533958138553
513 => 0.27571074685074
514 => 0.28566699332384
515 => 0.28018326007438
516 => 0.28386222178087
517 => 0.28353314081811
518 => 0.25717592111417
519 => 0.26080771343766
520 => 0.26645764257378
521 => 0.26391235715626
522 => 0.26031391908094
523 => 0.25740798739907
524 => 0.25300520375427
525 => 0.25920203718635
526 => 0.26735021418977
527 => 0.27591739806609
528 => 0.28621030814936
529 => 0.28391305044146
530 => 0.27572497927168
531 => 0.27609229016297
601 => 0.27836286156139
602 => 0.27542226529727
603 => 0.27455502605172
604 => 0.27824371620642
605 => 0.27826911818825
606 => 0.27488560680344
607 => 0.27112545307528
608 => 0.27110969789386
609 => 0.27044061485671
610 => 0.27995443632221
611 => 0.2851860761724
612 => 0.28578587525001
613 => 0.28514570491553
614 => 0.28539208106982
615 => 0.28234790511231
616 => 0.28930598862883
617 => 0.29569141414673
618 => 0.29397998370321
619 => 0.29141430617421
620 => 0.28937062044259
621 => 0.29349855629411
622 => 0.29331474580861
623 => 0.29563564302535
624 => 0.29553035372145
625 => 0.29474992328082
626 => 0.29398001157484
627 => 0.29703262446217
628 => 0.29615352097408
629 => 0.29527305199546
630 => 0.29350713666578
701 => 0.29374715388783
702 => 0.29118191935923
703 => 0.28999512448915
704 => 0.27214857716225
705 => 0.26737939656374
706 => 0.26887987786566
707 => 0.26937387527023
708 => 0.26729832176189
709 => 0.2702741323269
710 => 0.2698103554025
711 => 0.27161464011489
712 => 0.27048740135953
713 => 0.27053366363124
714 => 0.27384863245813
715 => 0.27481098201146
716 => 0.27432152326152
717 => 0.27466432339232
718 => 0.28256400771953
719 => 0.28144092522588
720 => 0.280844310035
721 => 0.28100957652021
722 => 0.28302811523696
723 => 0.28359319586952
724 => 0.28119890952185
725 => 0.28232806880461
726 => 0.28713588571898
727 => 0.28881834954014
728 => 0.29418796642882
729 => 0.29190685773718
730 => 0.29609393146476
731 => 0.30896356862473
801 => 0.31924472529927
802 => 0.3097897487346
803 => 0.32866978366998
804 => 0.34337059904733
805 => 0.34280635726766
806 => 0.34024293007063
807 => 0.32350644260491
808 => 0.30810527731199
809 => 0.32098900604754
810 => 0.32102184932165
811 => 0.31991512559725
812 => 0.31304135959514
813 => 0.31967593344013
814 => 0.32020256181871
815 => 0.3199077899685
816 => 0.31463768969107
817 => 0.30659122064479
818 => 0.3081634814359
819 => 0.31073887668501
820 => 0.30586311619472
821 => 0.30430501528533
822 => 0.30720182131672
823 => 0.31653593392335
824 => 0.3147713740039
825 => 0.31472529421326
826 => 0.32227482983853
827 => 0.3168709916226
828 => 0.30818331267956
829 => 0.30598955917003
830 => 0.29820321210066
831 => 0.30358126975549
901 => 0.30377481647612
902 => 0.30082930926098
903 => 0.30842232435645
904 => 0.30835235338562
905 => 0.31556079114761
906 => 0.32934061678296
907 => 0.32526524427855
908 => 0.32052602945519
909 => 0.32104131351066
910 => 0.32669270776978
911 => 0.32327574579193
912 => 0.32450450914307
913 => 0.32669084788928
914 => 0.3280099203386
915 => 0.32085151928458
916 => 0.31918255357298
917 => 0.31576843545442
918 => 0.31487775576482
919 => 0.31765848373448
920 => 0.31692586015904
921 => 0.3037585496237
922 => 0.30238249241053
923 => 0.3024246941207
924 => 0.29896453283024
925 => 0.29368695632842
926 => 0.30755611226748
927 => 0.30644222494686
928 => 0.30521257955293
929 => 0.30536320409743
930 => 0.31138333462127
1001 => 0.30789135489356
1002 => 0.31717535532389
1003 => 0.31526684393801
1004 => 0.31330938643656
1005 => 0.31303880618424
1006 => 0.31228535204861
1007 => 0.30970147746959
1008 => 0.30658129364863
1009 => 0.30452107802434
1010 => 0.28090459755418
1011 => 0.28528767895869
1012 => 0.29033001458415
1013 => 0.29207060863616
1014 => 0.28909320206475
1015 => 0.30981904362854
1016 => 0.31360585460142
1017 => 0.30213535715699
1018 => 0.29998969542246
1019 => 0.30995971285464
1020 => 0.30394657355797
1021 => 0.30665428981507
1022 => 0.30080168830883
1023 => 0.31269372272882
1024 => 0.31260312535115
1025 => 0.30797685536799
1026 => 0.31188694707843
1027 => 0.31120747242111
1028 => 0.30598442500412
1029 => 0.31285930264812
1030 => 0.31286271250166
1031 => 0.30841002822666
1101 => 0.30321026781138
1102 => 0.30228067346198
1103 => 0.30158034899315
1104 => 0.30648205292641
1105 => 0.31087690534574
1106 => 0.31905463612181
1107 => 0.321110711937
1108 => 0.32913571272442
1109 => 0.32435721548571
1110 => 0.32647546141973
1111 => 0.3287751170253
1112 => 0.32987765648964
1113 => 0.32808112759802
1114 => 0.34054725704299
1115 => 0.34159978032048
1116 => 0.34195268227114
1117 => 0.33774917356218
1118 => 0.3414828731392
1119 => 0.33973599875424
1120 => 0.34428088060821
1121 => 0.34499357611488
1122 => 0.34438994837561
1123 => 0.34461616917856
1124 => 0.33397852687321
1125 => 0.33342690900164
1126 => 0.32590556018182
1127 => 0.3289705654209
1128 => 0.32324068503596
1129 => 0.32505768913034
1130 => 0.32585860722208
1201 => 0.32544025306266
1202 => 0.32914385621842
1203 => 0.32599503693988
1204 => 0.31768478515
1205 => 0.30937226923758
1206 => 0.30926791237153
1207 => 0.30707937365988
1208 => 0.30549746102222
1209 => 0.3058021935176
1210 => 0.3068761105782
1211 => 0.30543504301038
1212 => 0.30574256783996
1213 => 0.31084952903811
1214 => 0.31187369368522
1215 => 0.30839318204738
1216 => 0.29441842558604
1217 => 0.29098898529741
1218 => 0.29345399896812
1219 => 0.29227588120073
1220 => 0.23588944732624
1221 => 0.24913660357325
1222 => 0.2412655931622
1223 => 0.24489291688739
1224 => 0.23685865344596
1225 => 0.24069302507204
1226 => 0.23998495664153
1227 => 0.26128599187489
1228 => 0.26095340550833
1229 => 0.26111259700192
1230 => 0.25351397224164
1231 => 0.26561878780991
]
'min_raw' => 0.15453727324266
'max_raw' => 0.34499357611488
'avg_raw' => 0.24976542467877
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.154537'
'max' => '$0.344993'
'avg' => '$0.249765'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.023829333980153
'max_diff' => 0.052191656829315
'year' => 2035
]
10 => [
'items' => [
101 => 0.27158205523393
102 => 0.27047841314097
103 => 0.27075617607873
104 => 0.26598328853532
105 => 0.26115880898636
106 => 0.25580771868448
107 => 0.26574938305062
108 => 0.26464403968298
109 => 0.26717929967836
110 => 0.27362717966465
111 => 0.27457665448574
112 => 0.27585275827392
113 => 0.27539536590511
114 => 0.286292307784
115 => 0.28497261622212
116 => 0.28815269318506
117 => 0.28161103359929
118 => 0.27420852483796
119 => 0.27561549974724
120 => 0.2754799967493
121 => 0.2737548880624
122 => 0.27219753707469
123 => 0.26960498646107
124 => 0.27780820022786
125 => 0.27747516472975
126 => 0.28286662233265
127 => 0.28191362983151
128 => 0.2755493126721
129 => 0.27577661550452
130 => 0.27730533629054
131 => 0.2825962563856
201 => 0.28416696170312
202 => 0.28343934841826
203 => 0.2851615550935
204 => 0.28652271702959
205 => 0.28533249607586
206 => 0.30218351482688
207 => 0.29518579699253
208 => 0.29859643597518
209 => 0.29940985327589
210 => 0.29732630196444
211 => 0.29777814963752
212 => 0.2984625757411
213 => 0.30261827701771
214 => 0.31352403962939
215 => 0.31835412765206
216 => 0.33288568578062
217 => 0.31795305607985
218 => 0.31706701563077
219 => 0.31968458806074
220 => 0.32821615100385
221 => 0.33513018144028
222 => 0.33742396421603
223 => 0.33772712547607
224 => 0.34203041445118
225 => 0.34449697944012
226 => 0.34150788198186
227 => 0.33897493485754
228 => 0.32990223265919
229 => 0.3309524226428
301 => 0.33818719020655
302 => 0.34840672551604
303 => 0.357176149973
304 => 0.35410540317347
305 => 0.37753303364448
306 => 0.3798557875124
307 => 0.37953485803147
308 => 0.3848264370147
309 => 0.37432373034432
310 => 0.36983361976237
311 => 0.33952258677599
312 => 0.34803875067419
313 => 0.360417495037
314 => 0.35877912180268
315 => 0.34978934676162
316 => 0.3571693304225
317 => 0.35472927703078
318 => 0.35280470568283
319 => 0.36162154012431
320 => 0.35192706848031
321 => 0.36032078526647
322 => 0.34955575666634
323 => 0.35411943008619
324 => 0.35152886833303
325 => 0.35320527927463
326 => 0.34340501516475
327 => 0.34869299979048
328 => 0.34318501761904
329 => 0.34318240611833
330 => 0.34306081710662
331 => 0.34954093370518
401 => 0.34975225007482
402 => 0.34496343411757
403 => 0.34427329092276
404 => 0.34682511203265
405 => 0.34383759783598
406 => 0.34523543692541
407 => 0.343879936958
408 => 0.34357478536414
409 => 0.34114328554698
410 => 0.34009572857027
411 => 0.34050650265305
412 => 0.33910431893995
413 => 0.3382594525336
414 => 0.34289275191342
415 => 0.34041736696155
416 => 0.34251336366753
417 => 0.34012471088519
418 => 0.33184459965514
419 => 0.32708262012615
420 => 0.31144225757929
421 => 0.31587784499577
422 => 0.31881864404184
423 => 0.31784670997466
424 => 0.31993480043952
425 => 0.3200629922353
426 => 0.31938413273961
427 => 0.31859810041089
428 => 0.31821550334358
429 => 0.32106706842739
430 => 0.32272249793781
501 => 0.31911379256893
502 => 0.31826832339216
503 => 0.32191692376218
504 => 0.32414256788017
505 => 0.34057547356598
506 => 0.33935807083519
507 => 0.34241351278625
508 => 0.34206951691214
509 => 0.34527210684693
510 => 0.35050698787482
511 => 0.33986301104936
512 => 0.34171043738524
513 => 0.34125749111099
514 => 0.34620263976438
515 => 0.34621807797869
516 => 0.34325321433249
517 => 0.34486051501451
518 => 0.34396336386779
519 => 0.34558463724717
520 => 0.3393418116795
521 => 0.34694489934954
522 => 0.3512553601263
523 => 0.35131521087837
524 => 0.35335833507662
525 => 0.35543426759182
526 => 0.35941883927913
527 => 0.35532314005009
528 => 0.34795537584534
529 => 0.34848730462319
530 => 0.3441675871657
531 => 0.34424020239658
601 => 0.34385257660318
602 => 0.34501587078829
603 => 0.33959708933543
604 => 0.34086886651151
605 => 0.33908837101748
606 => 0.34170656693576
607 => 0.33888982093098
608 => 0.34125727268658
609 => 0.34227898638203
610 => 0.34604913191415
611 => 0.33833296737047
612 => 0.32259918552748
613 => 0.32590661722454
614 => 0.32101466595144
615 => 0.32146743466673
616 => 0.32238209952924
617 => 0.31941737145013
618 => 0.31998294813831
619 => 0.3199627417591
620 => 0.3197886140995
621 => 0.31901737382289
622 => 0.31789892283657
623 => 0.32235448732501
624 => 0.32311157455397
625 => 0.32479448568067
626 => 0.32980168766424
627 => 0.32930135010813
628 => 0.33011742142095
629 => 0.3283359423271
630 => 0.32155007237249
701 => 0.32191857775883
702 => 0.31732330968627
703 => 0.32467697434449
704 => 0.32293552948979
705 => 0.3218128086632
706 => 0.32150646388373
707 => 0.32652607775251
708 => 0.32802802489485
709 => 0.32709211222767
710 => 0.32517252804233
711 => 0.32885869715229
712 => 0.32984496049913
713 => 0.33006574849049
714 => 0.33659693340052
715 => 0.33043076917455
716 => 0.33191502619014
717 => 0.34349477572595
718 => 0.33299354079318
719 => 0.33855627914255
720 => 0.33828401204744
721 => 0.34112972075418
722 => 0.33805058087348
723 => 0.33808875050262
724 => 0.34061554704919
725 => 0.33706711700968
726 => 0.33618847583022
727 => 0.33497463933373
728 => 0.33762500691649
729 => 0.33921378241654
730 => 0.35201814611989
731 => 0.36029034902219
801 => 0.35993123087782
802 => 0.36321289847638
803 => 0.3617344771666
804 => 0.35696026476948
805 => 0.36510926317818
806 => 0.36253057911309
807 => 0.36274316269432
808 => 0.36273525032281
809 => 0.36444984979362
810 => 0.36323489892781
811 => 0.36084010605917
812 => 0.36242988132568
813 => 0.36715094551216
814 => 0.38180527360693
815 => 0.39000602975279
816 => 0.38131157778978
817 => 0.38730889433052
818 => 0.38371264146846
819 => 0.38305909534417
820 => 0.38682585332996
821 => 0.39059920452697
822 => 0.39035885836837
823 => 0.38761959916306
824 => 0.38607226114412
825 => 0.39778922301984
826 => 0.40642208093664
827 => 0.40583337790213
828 => 0.40843172163998
829 => 0.41606053921806
830 => 0.41675802268994
831 => 0.41667015580396
901 => 0.41494137024402
902 => 0.42245293187678
903 => 0.42871920874419
904 => 0.41454120633631
905 => 0.41994000404955
906 => 0.42236369828142
907 => 0.42592240049148
908 => 0.4319265276276
909 => 0.4384486022135
910 => 0.43937089507085
911 => 0.43871648415278
912 => 0.43441500064061
913 => 0.44155153247703
914 => 0.44573194545454
915 => 0.44822128571559
916 => 0.45453383843091
917 => 0.42237866619187
918 => 0.39961763706532
919 => 0.39606317369397
920 => 0.40329131473199
921 => 0.40519731788037
922 => 0.40442901040118
923 => 0.37880940277702
924 => 0.39592829176193
925 => 0.41434677691262
926 => 0.4150543059389
927 => 0.4242749847177
928 => 0.42727761569647
929 => 0.4347014706954
930 => 0.43423710654392
1001 => 0.43604469709682
1002 => 0.43562916333181
1003 => 0.44938029144023
1004 => 0.46454982780609
1005 => 0.46402455499791
1006 => 0.46184375466751
1007 => 0.46508261503987
1008 => 0.48073920223575
1009 => 0.47929779457845
1010 => 0.4806979993387
1011 => 0.49915799800923
1012 => 0.52315862218511
1013 => 0.51200792263215
1014 => 0.53620173213472
1015 => 0.55143045275786
1016 => 0.57776695039647
1017 => 0.57446949118213
1018 => 0.5847220964467
1019 => 0.56856635098796
1020 => 0.53146949379984
1021 => 0.52559877414875
1022 => 0.53735210356052
1023 => 0.56624651704625
1024 => 0.53644211565337
1025 => 0.54247150723782
1026 => 0.54073504205588
1027 => 0.54064251320583
1028 => 0.54417396306997
1029 => 0.539051410854
1030 => 0.51818121159661
1031 => 0.52774590092742
1101 => 0.52405251504269
1102 => 0.52815060204195
1103 => 0.55026628739735
1104 => 0.54048841572964
1105 => 0.5301882222175
1106 => 0.54310695067765
1107 => 0.55955693136414
1108 => 0.55852752113624
1109 => 0.55653003503401
1110 => 0.5677897596073
1111 => 0.58638752581262
1112 => 0.59141442728604
1113 => 0.59512518318324
1114 => 0.59563683372773
1115 => 0.60090715232501
1116 => 0.57256732093612
1117 => 0.61754336116879
1118 => 0.62530948087893
1119 => 0.6238497722461
1120 => 0.63248148745565
1121 => 0.62994181787552
1122 => 0.62626223511587
1123 => 0.63994533974148
1124 => 0.62425876445782
1125 => 0.60199364572758
1126 => 0.58977856123805
1127 => 0.60586436985662
1128 => 0.61568741186262
1129 => 0.62217981776577
1130 => 0.62414441586925
1201 => 0.57476726137368
1202 => 0.54815571368311
1203 => 0.56521341065075
1204 => 0.58602497821064
1205 => 0.57245171162752
1206 => 0.57298375797999
1207 => 0.55363184682417
1208 => 0.58773719294438
1209 => 0.58276833088577
1210 => 0.60854679603557
1211 => 0.60239455844247
1212 => 0.62341589605787
1213 => 0.617880273362
1214 => 0.64085833368009
1215 => 0.65002490404712
1216 => 0.66541700235613
1217 => 0.67673949252935
1218 => 0.68338827532379
1219 => 0.68298910734377
1220 => 0.70933489718576
1221 => 0.69379970536773
1222 => 0.67428384308068
1223 => 0.67393086270367
1224 => 0.68403840432403
1225 => 0.7052210386917
1226 => 0.71071338758844
1227 => 0.7137828613417
1228 => 0.70908185543943
1229 => 0.69221951813818
1230 => 0.68493844638549
1231 => 0.69114213047173
]
'min_raw' => 0.25580771868448
'max_raw' => 0.7137828613417
'avg_raw' => 0.48479529001309
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2558077'
'max' => '$0.713782'
'avg' => '$0.484795'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10127044544182
'max_diff' => 0.36878928522682
'year' => 2036
]
11 => [
'items' => [
101 => 0.6835555579229
102 => 0.69665211055848
103 => 0.71463647459983
104 => 0.71092277454317
105 => 0.72333711704354
106 => 0.73618465550451
107 => 0.75455721252274
108 => 0.75936047926112
109 => 0.7673000965278
110 => 0.77547257072361
111 => 0.77809734918095
112 => 0.78310886567693
113 => 0.78308245251125
114 => 0.79818499478586
115 => 0.81484356660157
116 => 0.82113179181517
117 => 0.83559121895909
118 => 0.81082995669389
119 => 0.82961165855892
120 => 0.84655322377768
121 => 0.82635479130513
122 => 0.85419362483735
123 => 0.85527454365926
124 => 0.87159513454406
125 => 0.85505108903542
126 => 0.84522728762286
127 => 0.8735882342079
128 => 0.88731120289895
129 => 0.88317773304798
130 => 0.85172182338753
131 => 0.83341313475772
201 => 0.78549576513121
202 => 0.84225595933013
203 => 0.86990219420686
204 => 0.85165022631804
205 => 0.86085545726759
206 => 0.9110762125222
207 => 0.93019702457005
208 => 0.92622002932866
209 => 0.92689207605754
210 => 0.93720931917127
211 => 0.98296165694713
212 => 0.95554579562095
213 => 0.97650419435209
214 => 0.98762045346796
215 => 0.99794585445062
216 => 0.97258993301368
217 => 0.93960225177668
218 => 0.92915366840027
219 => 0.84983542781847
220 => 0.84570656893453
221 => 0.84338891532574
222 => 0.82877643716096
223 => 0.81729503201807
224 => 0.8081645923712
225 => 0.78420359215774
226 => 0.79228972634725
227 => 0.75410089305639
228 => 0.77853275526673
301 => 0.71758245523291
302 => 0.76834367624902
303 => 0.74071665147946
304 => 0.75926745558577
305 => 0.75920273357783
306 => 0.72504482168031
307 => 0.70534325095526
308 => 0.71789785861787
309 => 0.73135739461818
310 => 0.73354115905092
311 => 0.75099179880516
312 => 0.75586189726032
313 => 0.74110527157802
314 => 0.71631939573969
315 => 0.72207658939129
316 => 0.70522658160966
317 => 0.67569759109855
318 => 0.69690582761034
319 => 0.7041472520158
320 => 0.7073454775681
321 => 0.6783071068279
322 => 0.66918262028762
323 => 0.66432482021544
324 => 0.71257090672537
325 => 0.71521393625377
326 => 0.70169182349977
327 => 0.76281305536716
328 => 0.74897943816708
329 => 0.76443497789807
330 => 0.72155418441146
331 => 0.72319228846929
401 => 0.70289183363753
402 => 0.71425873186644
403 => 0.70622497457048
404 => 0.71334039881942
405 => 0.71760535477624
406 => 0.73790247850312
407 => 0.76857543679826
408 => 0.73487076506775
409 => 0.72018515693498
410 => 0.72929602562556
411 => 0.7535594695648
412 => 0.79031982915559
413 => 0.76855695640666
414 => 0.77821494977509
415 => 0.78032479167187
416 => 0.76427765501215
417 => 0.79091150997363
418 => 0.80518480922054
419 => 0.81982626080475
420 => 0.83253902297117
421 => 0.8139781430696
422 => 0.8338409451619
423 => 0.81783503293207
424 => 0.80347607500113
425 => 0.80349785161319
426 => 0.7944902675522
427 => 0.77703693840541
428 => 0.77381827672863
429 => 0.79056216124339
430 => 0.80398917097247
501 => 0.8050950838048
502 => 0.81252896629548
503 => 0.81692826137839
504 => 0.86004733374255
505 => 0.87739018134709
506 => 0.89859668711462
507 => 0.90685781624424
508 => 0.93172085314572
509 => 0.91164193157065
510 => 0.90729773058555
511 => 0.84698813569996
512 => 0.85686382848387
513 => 0.87267576549353
514 => 0.84724886871735
515 => 0.86337638225696
516 => 0.86656029505713
517 => 0.84638487249462
518 => 0.8571614374138
519 => 0.82854207601728
520 => 0.76919926066902
521 => 0.79097757549116
522 => 0.80701374570176
523 => 0.7841281535657
524 => 0.82514969167486
525 => 0.80118575596792
526 => 0.7935903388206
527 => 0.76395790856716
528 => 0.77794327498994
529 => 0.79685868332792
530 => 0.78517116012729
531 => 0.80942452565902
601 => 0.84377375938827
602 => 0.86825306887597
603 => 0.87013228629764
604 => 0.85439373028341
605 => 0.87961486673834
606 => 0.87979857518287
607 => 0.85134903023035
608 => 0.83392384235466
609 => 0.82996480300639
610 => 0.83985525951374
611 => 0.85186409959266
612 => 0.87079869334474
613 => 0.88224047179167
614 => 0.91207456173087
615 => 0.92014681105802
616 => 0.92901576571549
617 => 0.94086742422219
618 => 0.95509837896236
619 => 0.92396186015958
620 => 0.92519897209735
621 => 0.89620507690265
622 => 0.86522094174195
623 => 0.88873403810195
624 => 0.91947428377652
625 => 0.91242243745382
626 => 0.91162896068637
627 => 0.91296336851712
628 => 0.90764650668158
629 => 0.8835985376515
630 => 0.87152179815285
701 => 0.88710387321095
702 => 0.89538505262595
703 => 0.90822843970389
704 => 0.90664522115552
705 => 0.93972840698921
706 => 0.95258353262057
707 => 0.94929464138223
708 => 0.94989987652167
709 => 0.97317346743641
710 => 0.99905848711264
711 => 1.0233032238686
712 => 1.0479660114325
713 => 1.0182340584193
714 => 1.0031380062911
715 => 1.0187132787027
716 => 1.0104488199233
717 => 1.0579388514675
718 => 1.061226958214
719 => 1.1087135556884
720 => 1.1537839912904
721 => 1.1254760582095
722 => 1.1521691640875
723 => 1.1810399344154
724 => 1.2367363344917
725 => 1.217979746369
726 => 1.2036124938202
727 => 1.1900355095837
728 => 1.2182870584943
729 => 1.2546322248384
730 => 1.2624606255592
731 => 1.2751456254062
801 => 1.2618088991151
802 => 1.2778715169406
803 => 1.3345796161364
804 => 1.3192565871574
805 => 1.2974954227075
806 => 1.3422610207188
807 => 1.3584615166173
808 => 1.4721650810981
809 => 1.6157205281152
810 => 1.5562876304142
811 => 1.5193957129236
812 => 1.5280661886219
813 => 1.580487778214
814 => 1.5973239290129
815 => 1.5515574673723
816 => 1.5677229553348
817 => 1.6567963833641
818 => 1.7045814196842
819 => 1.639682921975
820 => 1.4606305407071
821 => 1.2955360679428
822 => 1.3393265564209
823 => 1.3343620740046
824 => 1.4300603602856
825 => 1.3188911379839
826 => 1.3207629425781
827 => 1.4184401680732
828 => 1.3923815589227
829 => 1.3501699494334
830 => 1.2958442594063
831 => 1.195418196873
901 => 1.1064680326994
902 => 1.2809197886433
903 => 1.273397111707
904 => 1.2625031607051
905 => 1.2867464698113
906 => 1.4044650972475
907 => 1.4017513018671
908 => 1.3844875202474
909 => 1.39758194645
910 => 1.3478744332095
911 => 1.3606851911906
912 => 1.2955099161349
913 => 1.32497186242
914 => 1.3500793822776
915 => 1.3551200886122
916 => 1.3664770573689
917 => 1.2694330027947
918 => 1.3130029342348
919 => 1.3385961870054
920 => 1.2229649398975
921 => 1.3363105290328
922 => 1.2677436817081
923 => 1.2444710638866
924 => 1.275804577849
925 => 1.263593876985
926 => 1.2530958334186
927 => 1.2472377447292
928 => 1.2702456192295
929 => 1.2691722743837
930 => 1.2315269260653
1001 => 1.1824201038047
1002 => 1.1989019652318
1003 => 1.1929139504571
1004 => 1.171212612444
1005 => 1.1858366940353
1006 => 1.1214396397858
1007 => 1.0106478550172
1008 => 1.0838403016795
1009 => 1.0810224721011
1010 => 1.0796015946492
1011 => 1.1346036954253
1012 => 1.12931651255
1013 => 1.1197202238592
1014 => 1.1710363690767
1015 => 1.1523052857728
1016 => 1.2100300709173
1017 => 1.2480513478185
1018 => 1.2384079221369
1019 => 1.2741671168353
1020 => 1.1992816740304
1021 => 1.2241556142477
1022 => 1.2292820988527
1023 => 1.1704031358103
1024 => 1.1301815610561
1025 => 1.1274992405795
1026 => 1.0577605728301
1027 => 1.095014406231
1028 => 1.1277962379554
1029 => 1.1120962845323
1030 => 1.1071261483013
1031 => 1.1325174964144
1101 => 1.1344906216249
1102 => 1.0895031577214
1103 => 1.0988574760347
1104 => 1.1378665384269
1105 => 1.0978745477493
1106 => 1.0201766425173
1107 => 1.0009064877622
1108 => 0.99833549389846
1109 => 0.94607330586734
1110 => 1.0021942116468
1111 => 0.97769593232729
1112 => 1.0550857031631
1113 => 1.0108810811114
1114 => 1.0089755082054
1115 => 1.0060949552712
1116 => 0.961110731109
1117 => 0.97095941730393
1118 => 1.0036979502132
1119 => 1.0153794275811
1120 => 1.0141609537881
1121 => 1.0035375135415
1122 => 1.0084008700856
1123 => 0.99273430415123
1124 => 0.98720211364845
1125 => 0.96974099867278
1126 => 0.94407798341468
1127 => 0.94764658308674
1128 => 0.89680143476721
1129 => 0.86909829940647
1130 => 0.86143043666007
1201 => 0.85117665013355
1202 => 0.86258862913253
1203 => 0.89665739685038
1204 => 0.85556323489038
1205 => 0.78511017663026
1206 => 0.78934452547787
1207 => 0.79885785014897
1208 => 0.7811298325613
1209 => 0.76435175171431
1210 => 0.77893893176205
1211 => 0.74908704221098
1212 => 0.80246530838213
1213 => 0.80102157587306
1214 => 0.82091769261183
1215 => 0.833359142718
1216 => 0.80468562819059
1217 => 0.79747431682837
1218 => 0.80158220751612
1219 => 0.73368792488725
1220 => 0.81536928124012
1221 => 0.81607566500176
1222 => 0.81002717837664
1223 => 0.8535199790056
1224 => 0.94530335407741
1225 => 0.91077075639769
1226 => 0.89739869082281
1227 => 0.87197838439004
1228 => 0.90584943340326
1229 => 0.90324866530972
1230 => 0.89148700567872
1231 => 0.88437351723528
]
'min_raw' => 0.66432482021544
'max_raw' => 1.7045814196842
'avg_raw' => 1.1844531199498
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.664324'
'max' => '$1.70'
'avg' => '$1.18'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.40851710153096
'max_diff' => 0.99079855834246
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.020852396999594
]
1 => [
'year' => 2028
'avg' => 0.035788766745405
]
2 => [
'year' => 2029
'avg' => 0.097768460450821
]
3 => [
'year' => 2030
'avg' => 0.075428221636649
]
4 => [
'year' => 2031
'avg' => 0.074079861363788
]
5 => [
'year' => 2032
'avg' => 0.1298853107611
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.020852396999594
'min' => '$0.020852'
'max_raw' => 0.1298853107611
'max' => '$0.129885'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1298853107611
]
1 => [
'year' => 2033
'avg' => 0.33407837522655
]
2 => [
'year' => 2034
'avg' => 0.21175492927403
]
3 => [
'year' => 2035
'avg' => 0.24976542467877
]
4 => [
'year' => 2036
'avg' => 0.48479529001309
]
5 => [
'year' => 2037
'avg' => 1.1844531199498
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1298853107611
'min' => '$0.129885'
'max_raw' => 1.1844531199498
'max' => '$1.18'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.1844531199498
]
]
]
]
'prediction_2025_max_price' => '$0.035653'
'last_price' => 0.03457086
'sma_50day_nextmonth' => '$0.031824'
'sma_200day_nextmonth' => '$0.138141'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.033354'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.033639'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.033338'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.032116'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.049122'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.084288'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.163335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.033854'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.03361'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.033373'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.035713'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.052041'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.086247'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.132822'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.111457'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0347043'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.038158'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.056018'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.097119'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.140352'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.070176'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035088'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.29
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.034555'
'vwma_10_action' => 'BUY'
'hma_9' => '0.033163'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 61.64
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 82.26
'cci_20_action' => 'NEUTRAL'
'adx_14' => 36.8
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.004836'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -38.36
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 46.89
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.035083'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 15
'sell_pct' => 51.61
'buy_pct' => 48.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767687437
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Arcadia para 2026
A previsão de preço para Arcadia em 2026 sugere que o preço médio poderia variar entre $0.011944 na extremidade inferior e $0.035653 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Arcadia poderia potencialmente ganhar 3.13% até 2026 se AAA atingir a meta de preço prevista.
Previsão de preço de Arcadia 2027-2032
A previsão de preço de AAA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.020852 na extremidade inferior e $0.129885 na extremidade superior. Considerando a volatilidade de preços no mercado, se Arcadia atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Arcadia | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011498 | $0.020852 | $0.0302063 |
| 2028 | $0.020751 | $0.035788 | $0.050826 |
| 2029 | $0.045584 | $0.097768 | $0.149952 |
| 2030 | $0.038767 | $0.075428 | $0.112088 |
| 2031 | $0.045835 | $0.074079 | $0.102324 |
| 2032 | $0.069964 | $0.129885 | $0.1898063 |
Previsão de preço de Arcadia 2032-2037
A previsão de preço de Arcadia para 2032-2037 é atualmente estimada entre $0.129885 na extremidade inferior e $1.18 na extremidade superior. Comparado ao preço atual, Arcadia poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Arcadia | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.069964 | $0.129885 | $0.1898063 |
| 2033 | $0.162581 | $0.334078 | $0.505575 |
| 2034 | $0.1307079 | $0.211754 | $0.2928019 |
| 2035 | $0.154537 | $0.249765 | $0.344993 |
| 2036 | $0.2558077 | $0.484795 | $0.713782 |
| 2037 | $0.664324 | $1.18 | $1.70 |
Arcadia Histograma de preços potenciais
Previsão de preço de Arcadia baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Arcadia é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de AAA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Arcadia
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Arcadia está projetado para aumentar no próximo mês, alcançando $0.138141 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Arcadia é esperado para alcançar $0.031824 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 43.81, sugerindo que o mercado de AAA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de AAA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.033354 | BUY |
| SMA 5 | $0.033639 | BUY |
| SMA 10 | $0.033338 | BUY |
| SMA 21 | $0.032116 | BUY |
| SMA 50 | $0.049122 | SELL |
| SMA 100 | $0.084288 | SELL |
| SMA 200 | $0.163335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.033854 | BUY |
| EMA 5 | $0.03361 | BUY |
| EMA 10 | $0.033373 | BUY |
| EMA 21 | $0.035713 | SELL |
| EMA 50 | $0.052041 | SELL |
| EMA 100 | $0.086247 | SELL |
| EMA 200 | $0.132822 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.111457 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.097119 | SELL |
| EMA 50 | $0.140352 | SELL |
| EMA 100 | $0.070176 | SELL |
| EMA 200 | $0.035088 | SELL |
Osciladores de Arcadia
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 43.81 | NEUTRAL |
| Stoch RSI (14) | 91.29 | SELL |
| Estocástico Rápido (14) | 61.64 | NEUTRAL |
| Índice de Canal de Commodities (20) | 82.26 | NEUTRAL |
| Índice Direcional Médio (14) | 36.8 | SELL |
| Oscilador Impressionante (5, 34) | -0.004836 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -38.36 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 46.89 | NEUTRAL |
| VWMA (10) | 0.034555 | BUY |
| Média Móvel de Hull (9) | 0.033163 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.035083 | SELL |
Previsão do preço de Arcadia com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Arcadia
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Arcadia por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.048577 | $0.068259 | $0.095916 | $0.134778 | $0.189386 | $0.26612 |
| Amazon.com stock | $0.072134 | $0.150512 | $0.314052 | $0.655289 | $1.36 | $2.85 |
| Apple stock | $0.049036 | $0.069554 | $0.098657 | $0.139937 | $0.19849 | $0.281543 |
| Netflix stock | $0.054547 | $0.086067 | $0.13580062 | $0.214272 | $0.338087 | $0.533449 |
| Google stock | $0.044769 | $0.057975 | $0.075078 | $0.097226 | $0.1259074 | $0.163049 |
| Tesla stock | $0.078369 | $0.177657 | $0.402736 | $0.912973 | $2.06 | $4.69 |
| Kodak stock | $0.025924 | $0.01944 | $0.014578 | $0.010932 | $0.008198 | $0.006147 |
| Nokia stock | $0.0229017 | $0.015171 | $0.01005 | $0.006658 | $0.00441 | $0.002921 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Arcadia
Você pode fazer perguntas como: 'Devo investir em Arcadia agora?', 'Devo comprar AAA hoje?', 'Arcadia será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Arcadia regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Arcadia, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Arcadia para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Arcadia é de $0.03457 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Arcadia com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Arcadia tiver 1% da média anterior do crescimento anual do Bitcoin | $0.035469 | $0.036391 | $0.037337 | $0.0383078 |
| Se Arcadia tiver 2% da média anterior do crescimento anual do Bitcoin | $0.036368 | $0.038258 | $0.040247 | $0.042339 |
| Se Arcadia tiver 5% da média anterior do crescimento anual do Bitcoin | $0.039063 | $0.04414 | $0.049877 | $0.05636 |
| Se Arcadia tiver 10% da média anterior do crescimento anual do Bitcoin | $0.043556 | $0.054878 | $0.069143 | $0.087116 |
| Se Arcadia tiver 20% da média anterior do crescimento anual do Bitcoin | $0.052543 | $0.079858 | $0.121373 | $0.184471 |
| Se Arcadia tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0795012 | $0.182825 | $0.420437 | $0.966863 |
| Se Arcadia tiver 100% da média anterior do crescimento anual do Bitcoin | $0.124431 | $0.447869 | $1.61 | $5.80 |
Perguntas Frequentes sobre Arcadia
AAA é um bom investimento?
A decisão de adquirir Arcadia depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Arcadia experimentou uma queda de -7.5388% nas últimas 24 horas, e Arcadia registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Arcadia dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Arcadia pode subir?
Parece que o valor médio de Arcadia pode potencialmente subir para $0.035653 até o final deste ano. Observando as perspectivas de Arcadia em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.112088. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Arcadia na próxima semana?
Com base na nossa nova previsão experimental de Arcadia, o preço de Arcadia aumentará 0.86% na próxima semana e atingirá $0.034866 até 13 de janeiro de 2026.
Qual será o preço de Arcadia no próximo mês?
Com base na nossa nova previsão experimental de Arcadia, o preço de Arcadia diminuirá -11.62% no próximo mês e atingirá $0.030554 até 5 de fevereiro de 2026.
Até onde o preço de Arcadia pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Arcadia em 2026, espera-se que AAA fluctue dentro do intervalo de $0.011944 e $0.035653. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Arcadia não considera flutuações repentinas e extremas de preço.
Onde estará Arcadia em 5 anos?
O futuro de Arcadia parece seguir uma tendência de alta, com um preço máximo de $0.112088 projetada após um período de cinco anos. Com base na previsão de Arcadia para 2030, o valor de Arcadia pode potencialmente atingir seu pico mais alto de aproximadamente $0.112088, enquanto seu pico mais baixo está previsto para cerca de $0.038767.
Quanto será Arcadia em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Arcadia, espera-se que o valor de AAA em 2026 aumente 3.13% para $0.035653 se o melhor cenário ocorrer. O preço ficará entre $0.035653 e $0.011944 durante 2026.
Quanto será Arcadia em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Arcadia, o valor de AAA pode diminuir -12.62% para $0.0302063 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0302063 e $0.011498 ao longo do ano.
Quanto será Arcadia em 2028?
Nosso novo modelo experimental de previsão de preços de Arcadia sugere que o valor de AAA em 2028 pode aumentar 47.02%, alcançando $0.050826 no melhor cenário. O preço é esperado para variar entre $0.050826 e $0.020751 durante o ano.
Quanto será Arcadia em 2029?
Com base no nosso modelo de previsão experimental, o valor de Arcadia pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.149952 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.149952 e $0.045584.
Quanto será Arcadia em 2030?
Usando nossa nova simulação experimental para previsões de preços de Arcadia, espera-se que o valor de AAA em 2030 aumente 224.23%, alcançando $0.112088 no melhor cenário. O preço está previsto para variar entre $0.112088 e $0.038767 ao longo de 2030.
Quanto será Arcadia em 2031?
Nossa simulação experimental indica que o preço de Arcadia poderia aumentar 195.98% em 2031, potencialmente atingindo $0.102324 sob condições ideais. O preço provavelmente oscilará entre $0.102324 e $0.045835 durante o ano.
Quanto será Arcadia em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Arcadia, AAA poderia ver um 449.04% aumento em valor, atingindo $0.1898063 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.1898063 e $0.069964 ao longo do ano.
Quanto será Arcadia em 2033?
De acordo com nossa previsão experimental de preços de Arcadia, espera-se que o valor de AAA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.505575. Ao longo do ano, o preço de AAA poderia variar entre $0.505575 e $0.162581.
Quanto será Arcadia em 2034?
Os resultados da nossa nova simulação de previsão de preços de Arcadia sugerem que AAA pode aumentar 746.96% em 2034, atingindo potencialmente $0.2928019 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.2928019 e $0.1307079.
Quanto será Arcadia em 2035?
Com base em nossa previsão experimental para o preço de Arcadia, AAA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.344993 em 2035. A faixa de preço esperada para o ano está entre $0.344993 e $0.154537.
Quanto será Arcadia em 2036?
Nossa recente simulação de previsão de preços de Arcadia sugere que o valor de AAA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.713782 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.713782 e $0.2558077.
Quanto será Arcadia em 2037?
De acordo com a simulação experimental, o valor de Arcadia poderia aumentar 4830.69% em 2037, com um pico de $1.70 sob condições favoráveis. O preço é esperado para cair entre $1.70 e $0.664324 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Arcadia?
Traders de Arcadia utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Arcadia
Médias móveis são ferramentas populares para a previsão de preço de Arcadia. Uma média móvel simples (SMA) calcula o preço médio de fechamento de AAA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de AAA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de AAA.
Como ler gráficos de Arcadia e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Arcadia em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de AAA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Arcadia?
A ação de preço de Arcadia é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de AAA. A capitalização de mercado de Arcadia pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de AAA, grandes detentores de Arcadia, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Arcadia.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


