Predicción del precio de Anchor Protocol - Pronóstico de ANC
Predicción de precio de Anchor Protocol hasta $0.003611 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0012098 | $0.003611 |
| 2027 | $0.001164 | $0.003059 |
| 2028 | $0.002102 | $0.005148 |
| 2029 | $0.004617 | $0.015189 |
| 2030 | $0.003926 | $0.011354 |
| 2031 | $0.004642 | $0.010364 |
| 2032 | $0.007087 | $0.019226 |
| 2033 | $0.016468 | $0.051212 |
| 2034 | $0.01324 | $0.029659 |
| 2035 | $0.015653 | $0.034946 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Anchor Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.64, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Anchor Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Anchor Protocol'
'name_with_ticker' => 'Anchor Protocol <small>ANC</small>'
'name_lang' => 'Anchor Protocol'
'name_lang_with_ticker' => 'Anchor Protocol <small>ANC</small>'
'name_with_lang' => 'Anchor Protocol'
'name_with_lang_with_ticker' => 'Anchor Protocol <small>ANC</small>'
'image' => '/uploads/coins/anchor-protocol.jpg?1717211842'
'price_for_sd' => 0.003501
'ticker' => 'ANC'
'marketcap' => '$1.23M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0.58'
'current_supply' => '350.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003501'
'change_24h_pct' => '0%'
'ath_price' => '$8.23'
'ath_days' => 1754
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 mar. 2021'
'ath_pct' => '-99.96%'
'fdv' => '$3.5M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.172665'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003531'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003095'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0012098'
'current_year_max_price_prediction' => '$0.003611'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003926'
'grand_prediction_max_price' => '$0.011354'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0035682184050216
107 => 0.0035815408372827
108 => 0.0036115569574272
109 => 0.0033550724971983
110 => 0.0034702264898529
111 => 0.0035378686720675
112 => 0.0032322588319781
113 => 0.0035318277481395
114 => 0.0033506076733721
115 => 0.0032890988581618
116 => 0.0033719123746722
117 => 0.0033396398667494
118 => 0.0033118938595425
119 => 0.0032964111107842
120 => 0.0033572202175151
121 => 0.0033543834000035
122 => 0.0032548878988527
123 => 0.0031251000735568
124 => 0.0031686611278663
125 => 0.0031528349884486
126 => 0.0030954790175863
127 => 0.0031341300167612
128 => 0.0029639305772182
129 => 0.0026711112876817
130 => 0.0028645566796469
131 => 0.0028571092424844
201 => 0.0028533539069526
202 => 0.0029987227725766
203 => 0.0029847489103772
204 => 0.0029593862136528
205 => 0.0030950132117713
206 => 0.0030455075330175
207 => 0.0031980723699319
208 => 0.0032985614387986
209 => 0.0032730741604532
210 => 0.0033675846154282
211 => 0.0031696646865766
212 => 0.0032354057477718
213 => 0.003248954889371
214 => 0.0030933395956674
215 => 0.0029870352070507
216 => 0.0029799459162887
217 => 0.0027956287560744
218 => 0.0028940894953048
219 => 0.0029807308712452
220 => 0.0029392363758121
221 => 0.0029261004581708
222 => 0.0029932090125674
223 => 0.0029984239219899
224 => 0.0028795234345052
225 => 0.002904246610942
226 => 0.0030073463665696
227 => 0.0029016487616269
228 => 0.002696295580829
301 => 0.0026453651527613
302 => 0.002638570094823
303 => 0.0025004427345601
304 => 0.0026487685674981
305 => 0.0025840203665355
306 => 0.0027885591575738
307 => 0.0026717276970963
308 => 0.0026666913263431
309 => 0.0026590781132749
310 => 0.0025401861883272
311 => 0.0025662159639147
312 => 0.0026527429024145
313 => 0.0026836166888669
314 => 0.0026803962999984
315 => 0.0026523188732112
316 => 0.0026651725754147
317 => 0.0026237663220905
318 => 0.0026091449122451
319 => 0.0025629957208374
320 => 0.0024951691585075
321 => 0.0025046008580039
322 => 0.002370218690243
323 => 0.0022970001530454
324 => 0.0022767342269539
325 => 0.0022496337836131
326 => 0.0022797952941408
327 => 0.002369838002446
328 => 0.0022612273926038
329 => 0.0020750221201777
330 => 0.0020862133743288
331 => 0.0021113567996933
401 => 0.002064502192867
402 => 0.0020201582397151
403 => 0.0020587117092421
404 => 0.0019798140806144
405 => 0.0021208912011751
406 => 0.002117075460428
407 => 0.0021696602868224
408 => 0.0022025426579161
409 => 0.0021267594383392
410 => 0.0021077001635552
411 => 0.0021185571926679
412 => 0.0019391146857663
413 => 0.0021549960057178
414 => 0.0021568629563374
415 => 0.0021408769916738
416 => 0.00225582712996
417 => 0.0024984077755911
418 => 0.0024071391789208
419 => 0.0023717972196822
420 => 0.0023046121293346
421 => 0.0023941322731668
422 => 0.0023872585228523
423 => 0.0023561728171376
424 => 0.0023373720853281
425 => 0.002372013010149
426 => 0.0023330796913886
427 => 0.0023260861975232
428 => 0.0022837132336951
429 => 0.0022685880134554
430 => 0.0022573899025424
501 => 0.0022450618827308
502 => 0.0022722544224841
503 => 0.0022106325499266
504 => 0.0021363226124889
505 => 0.0021301445452357
506 => 0.0021472027321032
507 => 0.002139655754247
508 => 0.0021301084132092
509 => 0.0021118799391045
510 => 0.0021064719402274
511 => 0.00212404531299
512 => 0.0021042059997323
513 => 0.0021334799871474
514 => 0.0021255190823741
515 => 0.0020810501154494
516 => 0.0020256253181409
517 => 0.0020251319211875
518 => 0.0020131907395222
519 => 0.0019979818493029
520 => 0.0019937510839762
521 => 0.0020554648435729
522 => 0.0021832104790007
523 => 0.0021581309540722
524 => 0.0021762534810861
525 => 0.0022653983774703
526 => 0.0022937348593502
527 => 0.0022736222956982
528 => 0.0022460909780824
529 => 0.0022473022163337
530 => 0.0023413850629235
531 => 0.002347252894661
601 => 0.0023620790124272
602 => 0.0023811347636172
603 => 0.0022768675725253
604 => 0.0022423912410098
605 => 0.0022260544424638
606 => 0.0021757434260786
607 => 0.0022299995439095
608 => 0.0021983868275281
609 => 0.0022026524630121
610 => 0.0021998744623072
611 => 0.0022013914385396
612 => 0.0021208517672447
613 => 0.0021501961904241
614 => 0.0021014053954439
615 => 0.0020360799979892
616 => 0.0020358610043509
617 => 0.0020518493028315
618 => 0.0020423388372731
619 => 0.0020167464189917
620 => 0.0020203817012158
621 => 0.0019885328037093
622 => 0.002024248734016
623 => 0.0020252729390994
624 => 0.0020115203604715
625 => 0.0020665456789575
626 => 0.0020890895968376
627 => 0.0020800373549759
628 => 0.0020884544674172
629 => 0.0021591731215602
630 => 0.0021707033478568
701 => 0.0021758243127337
702 => 0.0021689628981965
703 => 0.0020897470745949
704 => 0.0020932606332233
705 => 0.0020674804712907
706 => 0.0020456989511042
707 => 0.0020465700976826
708 => 0.0020577686304579
709 => 0.0021066732798728
710 => 0.00220959023148
711 => 0.0022134958545622
712 => 0.0022182295836728
713 => 0.0021989751283981
714 => 0.002193167800447
715 => 0.0022008291650131
716 => 0.0022394793609205
717 => 0.0023388981582202
718 => 0.0023037569152963
719 => 0.0022751865377931
720 => 0.0023002504613818
721 => 0.0022963920668029
722 => 0.0022638233336054
723 => 0.0022629092377381
724 => 0.0022003994258782
725 => 0.0021772909717131
726 => 0.002157979817775
727 => 0.002136892541805
728 => 0.0021243912977581
729 => 0.002143598890328
730 => 0.0021479918940062
731 => 0.002105994157161
801 => 0.0021002700208159
802 => 0.0021345662793079
803 => 0.002119473774639
804 => 0.0021349967899671
805 => 0.0021385982626771
806 => 0.0021380183426219
807 => 0.0021222600343844
808 => 0.0021323039101354
809 => 0.0021085471497607
810 => 0.0020827152410033
811 => 0.0020662360926008
812 => 0.0020518558499778
813 => 0.0020598348443697
814 => 0.0020313911862696
815 => 0.0020222914875856
816 => 0.0021289012710253
817 => 0.0022076550643006
818 => 0.0022065099529564
819 => 0.0021995393821477
820 => 0.0021891825278545
821 => 0.0022387216925201
822 => 0.0022214632381175
823 => 0.0022340202056875
824 => 0.0022372164809483
825 => 0.0022468906435064
826 => 0.0022503483250985
827 => 0.0022398968098128
828 => 0.0022048202479689
829 => 0.0021174127908333
830 => 0.0020767243835848
831 => 0.0020632965314738
901 => 0.0020637846083949
902 => 0.0020503212680392
903 => 0.0020542868251585
904 => 0.0020489422091064
905 => 0.0020388207993051
906 => 0.0020592098758358
907 => 0.0020615595269686
908 => 0.002056800472875
909 => 0.0020579214023943
910 => 0.002018518467118
911 => 0.0020215141867084
912 => 0.0020048336393515
913 => 0.0020017062378091
914 => 0.0019595392666323
915 => 0.0018848343649924
916 => 0.0019262281322812
917 => 0.0018762302822408
918 => 0.0018572953388395
919 => 0.0019469304159135
920 => 0.0019379335402653
921 => 0.0019225348000034
922 => 0.0018997568537775
923 => 0.0018913082919526
924 => 0.0018399775047946
925 => 0.0018369446080502
926 => 0.0018623855322135
927 => 0.0018506454210809
928 => 0.0018341578587229
929 => 0.0017744415791796
930 => 0.0017073007095922
1001 => 0.0017093272704125
1002 => 0.001730683531828
1003 => 0.0017927797421777
1004 => 0.0017685176785187
1005 => 0.001750915272959
1006 => 0.0017476188715241
1007 => 0.0017888802369665
1008 => 0.0018472737135908
1009 => 0.0018746706263425
1010 => 0.0018475211178621
1011 => 0.0018163332243533
1012 => 0.0018182314869204
1013 => 0.0018308597773427
1014 => 0.0018321868321117
1015 => 0.0018118867196046
1016 => 0.0018176010823668
1017 => 0.0018089204427988
1018 => 0.0017556473737934
1019 => 0.0017546838329058
1020 => 0.0017416097626276
1021 => 0.0017412138849756
1022 => 0.0017189716299526
1023 => 0.0017158597847215
1024 => 0.0016716964373651
1025 => 0.001700764886334
1026 => 0.0016812672969278
1027 => 0.0016518798306761
1028 => 0.0016468134204175
1029 => 0.0016466611180073
1030 => 0.0016768354749305
1031 => 0.001700412281405
1101 => 0.0016816064658431
1102 => 0.0016773247461751
1103 => 0.0017230423103375
1104 => 0.0017172243335729
1105 => 0.0017121860032168
1106 => 0.0018420452182243
1107 => 0.001739251516505
1108 => 0.001694427595296
1109 => 0.001638949480968
1110 => 0.0016570134347381
1111 => 0.0016608197752122
1112 => 0.0015274049109353
1113 => 0.0014732785171139
1114 => 0.0014547043784645
1115 => 0.0014440146990721
1116 => 0.0014488861202038
1117 => 0.0014001660173717
1118 => 0.001432906732231
1119 => 0.0013907192413862
1120 => 0.0013836463712561
1121 => 0.0014590828309138
1122 => 0.0014695793735818
1123 => 0.0014247978615401
1124 => 0.0014535548417391
1125 => 0.001443127160967
1126 => 0.0013914424248313
1127 => 0.0013894684480781
1128 => 0.0013635348642916
1129 => 0.0013229538273969
1130 => 0.0013044072046015
1201 => 0.0012947479624205
1202 => 0.0012987335539992
1203 => 0.0012967183169359
1204 => 0.0012835675319387
1205 => 0.0012974721045382
1206 => 0.0012619516673127
1207 => 0.0012478071430019
1208 => 0.0012414183895211
1209 => 0.0012098919570034
1210 => 0.0012600645310073
1211 => 0.0012699491601435
1212 => 0.0012798532650526
1213 => 0.0013660617364668
1214 => 0.0013617550048576
1215 => 0.0014006857611418
1216 => 0.0013991729835416
1217 => 0.0013880693012129
1218 => 0.0013412246919353
1219 => 0.0013598961182685
1220 => 0.0013024283701988
1221 => 0.0013454871144796
1222 => 0.001325836901766
1223 => 0.0013388433577948
1224 => 0.0013154565771101
1225 => 0.0013283997871575
1226 => 0.0012722931724073
1227 => 0.0012199016049948
1228 => 0.0012409855011268
1229 => 0.0012639061074582
1230 => 0.0013136038220466
1231 => 0.001284004273235
]
'min_raw' => 0.0012098919570034
'max_raw' => 0.0036115569574272
'avg_raw' => 0.0024107244572153
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0012098'
'max' => '$0.003611'
'avg' => '$0.00241'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0022919680429966
'max_diff' => 0.00010969695742716
'year' => 2026
]
1 => [
'items' => [
101 => 0.0012946493902705
102 => 0.0012589900301726
103 => 0.001185414584698
104 => 0.0011858310137291
105 => 0.001174513034371
106 => 0.0011647326477536
107 => 0.001287404137481
108 => 0.0012721479985841
109 => 0.001247839337926
110 => 0.0012803774462046
111 => 0.0012889810384827
112 => 0.0012892259706597
113 => 0.0013129649345296
114 => 0.0013256344238024
115 => 0.0013278674761995
116 => 0.0013652212487631
117 => 0.0013777417406182
118 => 0.0014293118746033
119 => 0.0013245595061544
120 => 0.0013224022000604
121 => 0.0012808353241155
122 => 0.0012544729542448
123 => 0.0012826403781345
124 => 0.0013075928704639
125 => 0.0012816106676069
126 => 0.0012850033947858
127 => 0.0012501244102743
128 => 0.0012625920060284
129 => 0.0012733307790584
130 => 0.0012674014597871
131 => 0.0012585249818558
201 => 0.0013055470506474
202 => 0.0013028938812452
203 => 0.0013466819127366
204 => 0.0013808178145964
205 => 0.0014419954532514
206 => 0.0013781533980524
207 => 0.0013758267398118
208 => 0.0013985701973217
209 => 0.0013777382587134
210 => 0.0013909033248198
211 => 0.0014398743575705
212 => 0.001440909038325
213 => 0.0014235768025766
214 => 0.0014225221344561
215 => 0.0014258509799255
216 => 0.0014453481318142
217 => 0.0014385352278573
218 => 0.0014464192927978
219 => 0.001456278436731
220 => 0.001497060036229
221 => 0.0015068923418025
222 => 0.0014830049367248
223 => 0.0014851617019474
224 => 0.0014762271567244
225 => 0.0014675964979885
226 => 0.0014869969584203
227 => 0.0015224516811764
228 => 0.0015222311191863
301 => 0.0015304559257243
302 => 0.0015355799120596
303 => 0.0015135840117215
304 => 0.001499265489413
305 => 0.0015047561219773
306 => 0.0015135357630181
307 => 0.0015019090027168
308 => 0.0014301432520984
309 => 0.0014519123964221
310 => 0.0014482889463499
311 => 0.0014431287128204
312 => 0.0014650177557738
313 => 0.0014629065041822
314 => 0.0013996663222983
315 => 0.0014037147535602
316 => 0.0013999125208122
317 => 0.0014121983126848
318 => 0.0013770747856337
319 => 0.0013878785459941
320 => 0.0013946545632131
321 => 0.001398645689411
322 => 0.0014130643739784
323 => 0.0014113725077643
324 => 0.0014129592051991
325 => 0.001434338308021
326 => 0.0015424664736721
327 => 0.0015483516511572
328 => 0.0015193708848183
329 => 0.0015309481293503
330 => 0.0015087223515139
331 => 0.0015236426650753
401 => 0.0015338507646791
402 => 0.0014877223254741
403 => 0.0014849908986754
404 => 0.0014626733871477
405 => 0.0014746655537142
406 => 0.0014555851544396
407 => 0.0014602668170175
408 => 0.0014471764803095
409 => 0.0014707364801239
410 => 0.0014970802207702
411 => 0.0015037356900033
412 => 0.0014862280158107
413 => 0.0014735513058833
414 => 0.0014512951792186
415 => 0.0014883076138721
416 => 0.0014991311776983
417 => 0.0014882507622991
418 => 0.0014857295323093
419 => 0.0014809518060344
420 => 0.0014867431495243
421 => 0.0014990722302452
422 => 0.0014932580634596
423 => 0.0014970984230539
424 => 0.0014824629324419
425 => 0.0015135912932797
426 => 0.0015630306217382
427 => 0.0015631895772633
428 => 0.0015573753791371
429 => 0.0015549963345325
430 => 0.001560962054645
501 => 0.0015641982130794
502 => 0.0015834902579972
503 => 0.001604191390823
504 => 0.0017007945451091
505 => 0.0016736687659493
506 => 0.0017593808313793
507 => 0.0018271679468156
508 => 0.0018474943387637
509 => 0.0018287950146021
510 => 0.0017648256367631
511 => 0.0017616869939042
512 => 0.0018572842515705
513 => 0.001830273647648
514 => 0.0018270608222585
515 => 0.0017928817882678
516 => 0.001813085830512
517 => 0.0018086669100978
518 => 0.0018016914280429
519 => 0.0018402393332191
520 => 0.0019123975705136
521 => 0.0019011510325356
522 => 0.0018927560136469
523 => 0.0018559714846298
524 => 0.0018781239872201
525 => 0.001870235905351
526 => 0.0019041281109613
527 => 0.001884051119162
528 => 0.0018300690157576
529 => 0.0018386658436521
530 => 0.0018373664504103
531 => 0.0018641078712512
601 => 0.0018560807604777
602 => 0.0018357990282012
603 => 0.0019121509415032
604 => 0.001907193072945
605 => 0.0019142221970339
606 => 0.0019173166348408
607 => 0.001963790698996
608 => 0.0019828296360763
609 => 0.001987151808117
610 => 0.002005237325819
611 => 0.001986701823961
612 => 0.0020608570469816
613 => 0.0021101659432131
614 => 0.0021674407635986
615 => 0.0022511346702021
616 => 0.002282604353297
617 => 0.0022769196367201
618 => 0.0023403754015216
619 => 0.0024544040003274
620 => 0.0022999680767412
621 => 0.0024625894792772
622 => 0.0024111054207886
623 => 0.002289037644271
624 => 0.0022811779185478
625 => 0.0023638436340416
626 => 0.0025471882347265
627 => 0.0025012624917322
628 => 0.0025472633527896
629 => 0.0024936009048865
630 => 0.0024909361120455
701 => 0.0025446570874718
702 => 0.0026701790747331
703 => 0.0026105482837066
704 => 0.0025250529227002
705 => 0.0025881813668122
706 => 0.0025334936662607
707 => 0.0024102669707946
708 => 0.002501227373182
709 => 0.0024404047425087
710 => 0.0024581560196481
711 => 0.0025859961426399
712 => 0.0025706140808185
713 => 0.002590519893156
714 => 0.0025553866554062
715 => 0.0025225666713448
716 => 0.0024613057338502
717 => 0.0024431693903858
718 => 0.0024481816232421
719 => 0.0024431669065721
720 => 0.002408891975061
721 => 0.0024014903068645
722 => 0.0023891538689292
723 => 0.0023929774468894
724 => 0.0023697813344188
725 => 0.0024135571912123
726 => 0.0024216823759847
727 => 0.0024535387939555
728 => 0.0024568462329488
729 => 0.0025455659035498
730 => 0.0024967005998563
731 => 0.0025294836644012
801 => 0.0025265512385422
802 => 0.00229168322313
803 => 0.0023240459633958
804 => 0.0023743922312619
805 => 0.002351711305831
806 => 0.0023196457837908
807 => 0.0022937511554989
808 => 0.0022545181457749
809 => 0.0023097378535582
810 => 0.002382345897332
811 => 0.0024586876927605
812 => 0.0025504073578552
813 => 0.0025299365963406
814 => 0.0024569730574204
815 => 0.0024602461484764
816 => 0.0024804791094712
817 => 0.0024542755866246
818 => 0.0024465476561837
819 => 0.002479417410499
820 => 0.0024796437664321
821 => 0.0024494934465956
822 => 0.0024159868835477
823 => 0.0024158464898251
824 => 0.0024098843205657
825 => 0.0024946615615527
826 => 0.0025412804721497
827 => 0.0025466252551196
828 => 0.0025409207256709
829 => 0.002543116172651
830 => 0.0025159896557522
831 => 0.0025779928292641
901 => 0.002634893072757
902 => 0.0026196425920045
903 => 0.002596779953373
904 => 0.0025785687604891
905 => 0.0026153526137211
906 => 0.0026137146866399
907 => 0.0026343960987688
908 => 0.002633457870453
909 => 0.0026265034894213
910 => 0.0026196428403674
911 => 0.0026468445383736
912 => 0.0026390108861937
913 => 0.0026311650661883
914 => 0.0026154290730325
915 => 0.0026175678558495
916 => 0.0025947091647748
917 => 0.0025841336883412
918 => 0.0024251038968946
919 => 0.0023826059401717
920 => 0.0023959766624824
921 => 0.0024003786514378
922 => 0.0023818834862094
923 => 0.0024084008021288
924 => 0.0024042681065315
925 => 0.0024203460075544
926 => 0.0024103012330166
927 => 0.0024107134740674
928 => 0.0024402530142112
929 => 0.0024488284683851
930 => 0.0024444669231799
1001 => 0.0024475215999366
1002 => 0.0025179153364974
1003 => 0.0025079075982234
1004 => 0.002502591186727
1005 => 0.0025040638690445
1006 => 0.0025220509779945
1007 => 0.0025270863864408
1008 => 0.0025057510070221
1009 => 0.0025158128952943
1010 => 0.0025586551385137
1011 => 0.0025736474989795
1012 => 0.0026214959168451
1013 => 0.002601169058498
1014 => 0.0026384798867199
1015 => 0.0027531606524755
1016 => 0.0028447755834665
1017 => 0.00276052270678
1018 => 0.0029287618604538
1019 => 0.0030597601740621
1020 => 0.0030547322405967
1021 => 0.0030318896545735
1022 => 0.0028827515573008
1023 => 0.0027455124566668
1024 => 0.0028603187918272
1025 => 0.0028606114567857
1026 => 0.0028507494907787
1027 => 0.0027894976668967
1028 => 0.0028486180600786
1029 => 0.0028533108221957
1030 => 0.0028506841233163
1031 => 0.0028037224935585
1101 => 0.0027320207648783
1102 => 0.0027460311110327
1103 => 0.002768980343837
1104 => 0.002725532658427
1105 => 0.0027116484903504
1106 => 0.0027374618003758
1107 => 0.0028206376636944
1108 => 0.002804913748539
1109 => 0.002804503133569
1110 => 0.0028717767105816
1111 => 0.0028236233479871
1112 => 0.002746207826365
1113 => 0.0027266593861702
1114 => 0.0026572755928856
1115 => 0.0027051992260439
1116 => 0.0027069239122844
1117 => 0.0026806766281713
1118 => 0.0027483376488138
1119 => 0.0027477141405971
1120 => 0.0028119482096832
1121 => 0.0029347396245613
1122 => 0.0028984241609833
1123 => 0.0028561932279533
1124 => 0.0028607849013104
1125 => 0.0029111442248224
1126 => 0.0028806958282355
1127 => 0.0028916452839419
1128 => 0.0029111276515098
1129 => 0.0029228818475835
1130 => 0.0028590936533822
1201 => 0.0028442215739718
1202 => 0.0028137985188888
1203 => 0.0028058617116908
1204 => 0.0028306406552581
1205 => 0.0028241122790811
1206 => 0.0027067789590842
1207 => 0.0026945169743081
1208 => 0.0026948930318751
1209 => 0.00266405968813
1210 => 0.0026170314380683
1211 => 0.0027406188713195
1212 => 0.0027306930708244
1213 => 0.0027197357552738
1214 => 0.0027210779639072
1215 => 0.0027747230799148
1216 => 0.0027436062034871
1217 => 0.0028263355194259
1218 => 0.0028093288591398
1219 => 0.0027918860421893
1220 => 0.0027894749135655
1221 => 0.0027827609171908
1222 => 0.0027597361254538
1223 => 0.002731932305856
1224 => 0.0027135738158319
1225 => 0.0025031284061357
1226 => 0.0025421858500707
1227 => 0.0025871178791198
1228 => 0.0026026282354938
1229 => 0.0025760966976322
1230 => 0.0027607837522802
1231 => 0.0027945278568532
]
'min_raw' => 0.0011647326477536
'max_raw' => 0.0030597601740621
'avg_raw' => 0.0021122464109078
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001164'
'max' => '$0.003059'
'avg' => '$0.002112'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.5159309249826E-5
'max_diff' => -0.00055179678336506
'year' => 2027
]
2 => [
'items' => [
101 => 0.0026923147630283
102 => 0.0026731948665067
103 => 0.0027620372495131
104 => 0.0027084544320206
105 => 0.0027325827714566
106 => 0.0026804304990921
107 => 0.0027863998902043
108 => 0.0027855925809913
109 => 0.0027443680944214
110 => 0.0027792107481772
111 => 0.0027731559796515
112 => 0.0027266136358456
113 => 0.002787875365519
114 => 0.0027879057505726
115 => 0.0027482280785467
116 => 0.0027018932441798
117 => 0.0026936096701749
118 => 0.0026873691099038
119 => 0.0027310479761832
120 => 0.0027702103111089
121 => 0.0028430817072396
122 => 0.0028614033076086
123 => 0.0029329137335865
124 => 0.0028903327566961
125 => 0.0029092083522356
126 => 0.0029297004813098
127 => 0.0029395251615611
128 => 0.0029235163723131
129 => 0.0030346014987224
130 => 0.0030439804869516
131 => 0.003047125180577
201 => 0.0030096679009652
202 => 0.0030429387322459
203 => 0.0030273724121038
204 => 0.0030678716526653
205 => 0.0030742224507057
206 => 0.0030688435507017
207 => 0.0030708593942402
208 => 0.002976067835609
209 => 0.0029711523932287
210 => 0.0029041299875889
211 => 0.0029314421132917
212 => 0.0028803834033946
213 => 0.002896574646266
214 => 0.0029037115918478
215 => 0.002899983656494
216 => 0.0029329862999002
217 => 0.0029049273110103
218 => 0.002830875026005
219 => 0.0027568025655041
220 => 0.0027558726461006
221 => 0.0027363706747383
222 => 0.0027222743214075
223 => 0.002724989779154
224 => 0.0027345594064354
225 => 0.0027217181172733
226 => 0.0027244584573859
227 => 0.0027699663620462
228 => 0.0027790926477783
229 => 0.0027480779629906
301 => 0.0026235495281705
302 => 0.0025929899379097
303 => 0.0026149555653661
304 => 0.0026044574102095
305 => 0.0021020003996057
306 => 0.0022200452211969
307 => 0.0021499069966308
308 => 0.0021822299174154
309 => 0.0021106369523386
310 => 0.002144804867782
311 => 0.0021384953014121
312 => 0.0023283078813305
313 => 0.0023253442189738
314 => 0.0023267627673104
315 => 0.0022590517591937
316 => 0.0023669172336779
317 => 0.0024200556451258
318 => 0.0024102211393998
319 => 0.0024126962726149
320 => 0.0023701652834705
321 => 0.0023271745602535
322 => 0.002279491231981
323 => 0.0023680809620738
324 => 0.0023582312963646
325 => 0.0023808228857036
326 => 0.0024382796581935
327 => 0.0024467403861997
328 => 0.0024581116904402
329 => 0.0024540358873346
330 => 0.0025511380529614
331 => 0.0025393783400033
401 => 0.002567715864732
402 => 0.0025094234263918
403 => 0.0024434599992408
404 => 0.0024559974902353
405 => 0.0024547900290324
406 => 0.0024394176620599
407 => 0.0024255401765022
408 => 0.0024024380730058
409 => 0.0024755365469363
410 => 0.0024725688823882
411 => 0.0025206119218891
412 => 0.0025121198479921
413 => 0.0024554077001452
414 => 0.0024574331856003
415 => 0.002471055548701
416 => 0.0025182027029301
417 => 0.0025321991883283
418 => 0.0025257154586283
419 => 0.0025410619659036
420 => 0.0025531912195265
421 => 0.0025425852134134
422 => 0.002692743893888
423 => 0.0026303875407283
424 => 0.0026607795933856
425 => 0.002668027918864
426 => 0.002649461485567
427 => 0.002653487880135
428 => 0.0026595867707786
429 => 0.0026966180404818
430 => 0.0027937988072672
501 => 0.0028368395073446
502 => 0.0029663295771182
503 => 0.0028332655763587
504 => 0.0028253701092272
505 => 0.0028486951810189
506 => 0.0029247195598919
507 => 0.0029863301783617
508 => 0.00300676997491
509 => 0.0030094714314481
510 => 0.0030478178485846
511 => 0.003069797299769
512 => 0.0030431615849334
513 => 0.0030205906054858
514 => 0.0029397441587176
515 => 0.0029491023550686
516 => 0.0030135710478501
517 => 0.0031046368735909
518 => 0.0031827808258609
519 => 0.0031554175373676
520 => 0.0033641801130999
521 => 0.0033848780697651
522 => 0.003382018281399
523 => 0.0034291713069513
524 => 0.0033355821537767
525 => 0.0032955709775901
526 => 0.0030254707074339
527 => 0.0031013578661009
528 => 0.0032116643079201
529 => 0.0031970648367174
530 => 0.0031169573501687
531 => 0.0031827200571489
601 => 0.0031609768496313
602 => 0.0031438270797356
603 => 0.0032223935002742
604 => 0.0031360064935613
605 => 0.0032108025314455
606 => 0.0031148758391931
607 => 0.0031555425305646
608 => 0.0031324581497156
609 => 0.0031473965732402
610 => 0.0030600668545575
611 => 0.0031071878509496
612 => 0.0030581064661882
613 => 0.0030580831952212
614 => 0.0030569997209323
615 => 0.0031147437524439
616 => 0.0031166267832384
617 => 0.0030739538567049
618 => 0.003067804021315
619 => 0.0030905431860106
620 => 0.0030639215795488
621 => 0.0030763776616579
622 => 0.0030642988615866
623 => 0.0030615796692722
624 => 0.0030399126822779
625 => 0.0030305779485345
626 => 0.0030342383381618
627 => 0.0030217435413039
628 => 0.0030142149742404
629 => 0.0030555020994521
630 => 0.0030334440539694
701 => 0.0030521213876249
702 => 0.003030836208657
703 => 0.002957052504843
704 => 0.0029146187165311
705 => 0.0027752481397796
706 => 0.0028147734624577
707 => 0.0028409787922851
708 => 0.0028323179309335
709 => 0.0028509248124252
710 => 0.00285206712383
711 => 0.0028460178369823
712 => 0.0028390135377744
713 => 0.002835604232282
714 => 0.0028610144022307
715 => 0.002875765861153
716 => 0.0028436088477154
717 => 0.0028360749093914
718 => 0.0028685874254142
719 => 0.0028884200414062
720 => 0.0030348529349069
721 => 0.0030240047131843
722 => 0.0030512316208519
723 => 0.0030481662888795
724 => 0.0030767044257017
725 => 0.0031233522182894
726 => 0.0030285042130306
727 => 0.0030449665471462
728 => 0.0030409303629919
729 => 0.0030849963632448
730 => 0.0030851339324876
731 => 0.003058714164076
801 => 0.0030730367491437
802 => 0.0030650422750785
803 => 0.0030794893702323
804 => 0.0030238598285694
805 => 0.0030916106054769
806 => 0.0031300209302199
807 => 0.0031305542576162
808 => 0.0031487604467012
809 => 0.0031672589892429
810 => 0.0032027653307682
811 => 0.0031662687366489
812 => 0.0031006149167
813 => 0.0031053549104398
814 => 0.0030668620998256
815 => 0.0030675091709263
816 => 0.0030640550546788
817 => 0.0030744211175513
818 => 0.0030261345964356
819 => 0.0030374673464277
820 => 0.0030216014300742
821 => 0.0030449320577426
822 => 0.0030198321590624
823 => 0.0030409284166217
824 => 0.0030500328620323
825 => 0.003083628461602
826 => 0.0030148700616902
827 => 0.0028746670297354
828 => 0.0029041394068497
829 => 0.0028605474460924
830 => 0.0028645820480268
831 => 0.0028727325860364
901 => 0.0028463140256571
902 => 0.002851353854433
903 => 0.0028511737962844
904 => 0.002849622152435
905 => 0.0028427496645471
906 => 0.0028327831974295
907 => 0.0028724865349095
908 => 0.0028792329056176
909 => 0.0028942292520034
910 => 0.0029388482067284
911 => 0.0029343897209639
912 => 0.0029416616962265
913 => 0.0029257870150587
914 => 0.0028653184289564
915 => 0.0028686021641049
916 => 0.0028276539341849
917 => 0.0028931821137001
918 => 0.0028776641758612
919 => 0.0028676596603863
920 => 0.0028649298356478
921 => 0.0029096593921313
922 => 0.0029230431764811
923 => 0.0029147033002266
924 => 0.0028975979707158
925 => 0.0029304452601133
926 => 0.0029392338090402
927 => 0.0029412012410358
928 => 0.0029994003400052
929 => 0.0029444539241568
930 => 0.0029576800725719
1001 => 0.003060866706936
1002 => 0.00296729066835
1003 => 0.0030168599829837
1004 => 0.0030144338229786
1005 => 0.0030397918070111
1006 => 0.0030123537281439
1007 => 0.0030126938560157
1008 => 0.0030352100279379
1009 => 0.0030035901252862
1010 => 0.0029957605927179
1011 => 0.002984944149551
1012 => 0.0030085614574942
1013 => 0.0030227189654872
1014 => 0.0031368180823669
1015 => 0.003210531315423
1016 => 0.0032073312295712
1017 => 0.0032365740239469
1018 => 0.0032233998772474
1019 => 0.0031808570823903
1020 => 0.0032534724456702
1021 => 0.0032304939063726
1022 => 0.0032323882292333
1023 => 0.0032323177224419
1024 => 0.003247596442256
1025 => 0.0032367700689936
1026 => 0.0032154301759889
1027 => 0.0032295965928565
1028 => 0.0032716657863666
1029 => 0.0034022498538623
1030 => 0.0034753264280416
1031 => 0.003397850552339
1101 => 0.0034512923739554
1102 => 0.0034192463242536
1103 => 0.0034134226037354
1104 => 0.0034469880170301
1105 => 0.0034806121821374
1106 => 0.0034784704681813
1107 => 0.0034540610509334
1108 => 0.0034402727904961
1109 => 0.0035446821179336
1110 => 0.003621609131823
1111 => 0.003616363225201
1112 => 0.0036395169509704
1113 => 0.003707497005947
1114 => 0.0037137122502203
1115 => 0.0037129292722976
1116 => 0.0036975241408726
1117 => 0.0037644593333227
1118 => 0.0038202978484773
1119 => 0.0036939582980448
1120 => 0.0037420667449433
1121 => 0.0037636641767134
1122 => 0.0037953756142212
1123 => 0.0038488781247508
1124 => 0.0039069960420261
1125 => 0.0039152145527594
1126 => 0.0039093831261022
1127 => 0.0038710527973657
1128 => 0.0039346461159392
1129 => 0.0039718975905127
1130 => 0.0039940799911364
1201 => 0.0040503308683187
1202 => 0.0037637975550994
1203 => 0.0035609750343731
1204 => 0.003529301368969
1205 => 0.0035937110130736
1206 => 0.0036106953225667
1207 => 0.0036038489687066
1208 => 0.0033755537818123
1209 => 0.0035280994420568
1210 => 0.0036922257460764
1211 => 0.0036985305058392
1212 => 0.0037806955653506
1213 => 0.0038074518767871
1214 => 0.0038736055193143
1215 => 0.0038694675909625
1216 => 0.0038855749501835
1217 => 0.0038818721472392
1218 => 0.004004407839728
1219 => 0.0041395829052695
1220 => 0.0041349022225802
1221 => 0.0041154692075898
1222 => 0.0041443305486719
1223 => 0.0042838457025511
1224 => 0.0042710013828667
1225 => 0.0042834785453636
1226 => 0.0044479747745167
1227 => 0.0046618432717315
1228 => 0.0045624798827292
1229 => 0.0047780698458192
1230 => 0.0049137722996515
1231 => 0.0051484556616589
]
'min_raw' => 0.0021020003996057
'max_raw' => 0.0051484556616589
'avg_raw' => 0.0036252280306323
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002102'
'max' => '$0.005148'
'avg' => '$0.003625'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0009372677518521
'max_diff' => 0.0020886954875968
'year' => 2028
]
3 => [
'items' => [
101 => 0.0051190721488956
102 => 0.005210432659539
103 => 0.0050664695285253
104 => 0.0047359010799685
105 => 0.0046835873576192
106 => 0.0047883207545569
107 => 0.0050457975911929
108 => 0.004780211892689
109 => 0.0048339395335968
110 => 0.0048184659694009
111 => 0.0048176414489233
112 => 0.0048491100419856
113 => 0.0048034632064573
114 => 0.0046174897868061
115 => 0.004702720309084
116 => 0.0046698087113267
117 => 0.0047063265827606
118 => 0.0049033984737736
119 => 0.0048162682931497
120 => 0.0047244837257434
121 => 0.0048396019418969
122 => 0.0049861869899711
123 => 0.0049770139611013
124 => 0.0049592144510652
125 => 0.0050595493571866
126 => 0.00522527322673
127 => 0.0052700677227351
128 => 0.0053031341039029
129 => 0.0053076933992049
130 => 0.0053546569744013
131 => 0.0051021219942255
201 => 0.0055029014933228
202 => 0.0055721050415066
203 => 0.0055590976426413
204 => 0.0056360144739172
205 => 0.0056133835909641
206 => 0.0055805949922419
207 => 0.0057025245304934
208 => 0.0055627421540944
209 => 0.0053643386689079
210 => 0.0052554905929586
211 => 0.0053988305198925
212 => 0.0054863632113969
213 => 0.0055442167523566
214 => 0.0055617231988949
215 => 0.0051217255658616
216 => 0.0048845912450441
217 => 0.0050365916259376
218 => 0.0052220425811336
219 => 0.0051010918048057
220 => 0.0051058328462476
221 => 0.0049333888245089
222 => 0.0052373000506615
223 => 0.0051930227413068
224 => 0.0054227335005641
225 => 0.0053679111843233
226 => 0.0055552313911774
227 => 0.005505903702929
228 => 0.0057106601789743
301 => 0.005792343080829
302 => 0.0059295013859717
303 => 0.0060303955935693
304 => 0.0060896426020694
305 => 0.006086085633909
306 => 0.0063208517983284
307 => 0.0061824183932753
308 => 0.0060085134102801
309 => 0.0060053680178009
310 => 0.0060954358727468
311 => 0.0062841933878041
312 => 0.0063331354651483
313 => 0.0063604874095827
314 => 0.0063185969545533
315 => 0.0061683374149797
316 => 0.006103456107625
317 => 0.0061587368612836
318 => 0.0060911332498884
319 => 0.0062078360493798
320 => 0.0063680939194543
321 => 0.0063350013030122
322 => 0.0064456249582558
323 => 0.006560108803485
324 => 0.0067238258439539
325 => 0.006766627540757
326 => 0.0068373771179696
327 => 0.0069102016729469
328 => 0.0069335909573288
329 => 0.0069782483584826
330 => 0.006978012991935
331 => 0.0071125910761017
401 => 0.0072610348704739
402 => 0.0073170689663677
403 => 0.0074459162801373
404 => 0.0072252697706552
405 => 0.0073926326827018
406 => 0.0075435982187332
407 => 0.007363610883098
408 => 0.0076116814936005
409 => 0.0076213135132662
410 => 0.007766745574558
411 => 0.007619322319027
412 => 0.0075317828604844
413 => 0.0077845059972362
414 => 0.0079067907624062
415 => 0.0078699575959506
416 => 0.0075896553805455
417 => 0.0074265074684522
418 => 0.006999517913622
419 => 0.0075053054858944
420 => 0.0077516598583226
421 => 0.0075890173822358
422 => 0.0076710447868261
423 => 0.0081185597087958
424 => 0.0082889444166365
425 => 0.0082535055884846
426 => 0.0082594941670695
427 => 0.0083514306627191
428 => 0.0087591277147824
429 => 0.0085148261908424
430 => 0.0087015855520911
501 => 0.0088006420438864
502 => 0.0088926512339441
503 => 0.0086667057429654
504 => 0.0083727539790006
505 => 0.0082796471160973
506 => 0.0075728457933218
507 => 0.0075360537149888
508 => 0.0075154012065064
509 => 0.0073851900618801
510 => 0.0072828797700382
511 => 0.0072015188274278
512 => 0.0069880034175842
513 => 0.0070600586005958
514 => 0.0067197596014345
515 => 0.0069374708416419
516 => 0.0063943454221737
517 => 0.0068466764105658
518 => 0.0066004932185503
519 => 0.006765798610913
520 => 0.0067652218759717
521 => 0.0064608422385097
522 => 0.0062852824158626
523 => 0.0063971559677438
524 => 0.0065170932958942
525 => 0.0065365527238689
526 => 0.0066920546005004
527 => 0.0067354518317666
528 => 0.006603956195007
529 => 0.0063830903550668
530 => 0.0064343924522714
531 => 0.0062842427805001
601 => 0.0060211112561447
602 => 0.0062100969107724
603 => 0.006274624922375
604 => 0.0063031241683784
605 => 0.0060443645350346
606 => 0.005963056640293
607 => 0.0059197689993719
608 => 0.0063496877357664
609 => 0.0063732396546328
610 => 0.0062527447078067
611 => 0.0067973932932602
612 => 0.0066741225441353
613 => 0.0068118461729746
614 => 0.0064297373246732
615 => 0.0064443343972562
616 => 0.0062634379449044
617 => 0.0063647278707161
618 => 0.006293139415879
619 => 0.006356544645677
620 => 0.0063945494789884
621 => 0.0065754162480123
622 => 0.0068487416185377
623 => 0.0065484007840954
624 => 0.0064175379815689
625 => 0.006498724528256
626 => 0.0067149350007218
627 => 0.0070425049341179
628 => 0.0068485769405881
629 => 0.0069346388910057
630 => 0.0069534395985423
701 => 0.006810444275718
702 => 0.0070477773756368
703 => 0.007174966111974
704 => 0.0073054354374553
705 => 0.0074187182971033
706 => 0.0072533231197761
707 => 0.0074303196679835
708 => 0.007287691694225
709 => 0.0071597396571548
710 => 0.0071599337075787
711 => 0.0070796675256435
712 => 0.0069241416839544
713 => 0.0068954603325524
714 => 0.0070446643446009
715 => 0.0071643118325913
716 => 0.007174166572775
717 => 0.0072404095698364
718 => 0.0072796114931402
719 => 0.0076638436339478
720 => 0.0078183849795156
721 => 0.008007355211558
722 => 0.0080809697667172
723 => 0.0083025231854678
724 => 0.0081236008061378
725 => 0.0080848898238952
726 => 0.0075474736995773
727 => 0.0076354755598278
728 => 0.0077763750290053
729 => 0.0075497970799276
730 => 0.0076935086375625
731 => 0.0077218803432667
801 => 0.007542098047919
802 => 0.0076381275397986
803 => 0.0073831016801265
804 => 0.0068543004853733
805 => 0.0070483660825324
806 => 0.0071912636838151
807 => 0.0069873311876375
808 => 0.0073528722937584
809 => 0.0071393307258626
810 => 0.0070716483006426
811 => 0.0068075950293326
812 => 0.0069322180090485
813 => 0.0071007723735433
814 => 0.0069966253728336
815 => 0.0072127460370571
816 => 0.0075188305348735
817 => 0.0077369645756645
818 => 0.0077537101987352
819 => 0.0076134646243524
820 => 0.0078382090523362
821 => 0.007839846070135
822 => 0.0075863334372613
823 => 0.0074310583611904
824 => 0.0073957795372055
825 => 0.0074839129563406
826 => 0.0075909231974972
827 => 0.007759648522366
828 => 0.0078616057024783
829 => 0.0081274559543013
830 => 0.0081993874099206
831 => 0.0082784182713915
901 => 0.0083840278745316
902 => 0.0085108392808478
903 => 0.0082333831432053
904 => 0.0082444069927968
905 => 0.0079860436790658
906 => 0.0077099454252972
907 => 0.0079194695837744
908 => 0.0081933945491526
909 => 0.0081305558594346
910 => 0.0081234852231634
911 => 0.0081353760721407
912 => 0.0080879977522131
913 => 0.0078737073671031
914 => 0.0077660920772296
915 => 0.0079049432567549
916 => 0.0079787364791175
917 => 0.0080931833315567
918 => 0.0080790753413136
919 => 0.0083738781425024
920 => 0.0084884295966703
921 => 0.0084591224327611
922 => 0.0084645156562367
923 => 0.0086719055923172
924 => 0.0089025658542321
925 => 0.0091186096278178
926 => 0.0093383786336051
927 => 0.0090734385193982
928 => 0.0089389182686385
929 => 0.0090777088300824
930 => 0.0090040646045617
1001 => 0.0094272461687001
1002 => 0.009456546342037
1003 => 0.0098796973053317
1004 => 0.010281317957378
1005 => 0.010029067221609
1006 => 0.010266928303816
1007 => 0.010524194457322
1008 => 0.011020502607364
1009 => 0.010853363482761
1010 => 0.010725337532719
1011 => 0.010604353628547
1012 => 0.010856101927476
1013 => 0.011179972092271
1014 => 0.011249730623778
1015 => 0.011362766094629
1016 => 0.011243923118349
1017 => 0.011387056393154
1018 => 0.011892379749165
1019 => 0.011755836917758
1020 => 0.011561924146805
1021 => 0.011960828404605
1022 => 0.012105190304801
1023 => 0.013118397723295
1024 => 0.014397613942654
1025 => 0.013868010028053
1026 => 0.013539267788048
1027 => 0.01361653001232
1028 => 0.014083656471428
1029 => 0.014233682664241
1030 => 0.013825859755046
1031 => 0.013969909701078
1101 => 0.014763639066398
1102 => 0.015189449405005
1103 => 0.014611141771219
1104 => 0.013015613945615
1105 => 0.011544464423426
1106 => 0.011934679523437
1107 => 0.01189044124088
1108 => 0.012743204424161
1109 => 0.011752580416387
1110 => 0.011769259984081
1111 => 0.0126396574069
1112 => 0.012407450296882
1113 => 0.012031304517491
1114 => 0.011547210703884
1115 => 0.010652318516173
1116 => 0.0098596875496024
1117 => 0.011414219407057
1118 => 0.011347185166631
1119 => 0.011250109652576
1120 => 0.011466140704437
1121 => 0.012515126170793
1122 => 0.012490943660559
1123 => 0.012337106868475
1124 => 0.012453790719415
1125 => 0.012010849274263
1126 => 0.012125005370268
1127 => 0.011544231385826
1128 => 0.011806765482058
1129 => 0.012030497477584
1130 => 0.012075414988095
1201 => 0.01217661643282
1202 => 0.011311861167985
1203 => 0.011700110894016
1204 => 0.011928171233979
1205 => 0.010897786321119
1206 => 0.011907803837191
1207 => 0.011296807702731
1208 => 0.011089426437842
1209 => 0.011368637990612
1210 => 0.011259828976955
1211 => 0.011166281376493
1212 => 0.011114080208083
1213 => 0.011319102356983
1214 => 0.011309537828682
1215 => 0.010974081799998
1216 => 0.010536493085516
1217 => 0.010683362221456
1218 => 0.010630003287464
1219 => 0.010436623627236
1220 => 0.01056693816948
1221 => 0.0099930988761159
1222 => 0.0090058381974535
1223 => 0.0096580528423903
1224 => 0.0096329432880333
1225 => 0.0096202819120988
1226 => 0.01011040319188
1227 => 0.010063289339851
1228 => 0.0099777772370778
1229 => 0.010435053130409
1230 => 0.010268141278114
1231 => 0.010782524277508
]
'min_raw' => 0.0046174897868061
'max_raw' => 0.015189449405005
'avg_raw' => 0.0099034695959057
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004617'
'max' => '$0.015189'
'avg' => '$0.0099034'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0025154893872004
'max_diff' => 0.010040993743346
'year' => 2029
]
4 => [
'items' => [
101 => 0.011121330189115
102 => 0.011035398050708
103 => 0.011354046648166
104 => 0.010686745789714
105 => 0.010908396367428
106 => 0.010954078244301
107 => 0.010429410416866
108 => 0.01007099774871
109 => 0.010047095709947
110 => 0.0094256575356718
111 => 0.009757624792296
112 => 0.010049742240387
113 => 0.0099098406519811
114 => 0.0098655519885329
115 => 0.010091813165051
116 => 0.010109395596262
117 => 0.0097085143013405
118 => 0.0097918702168143
119 => 0.010139478241108
120 => 0.0097831113864724
121 => 0.009090748800111
122 => 0.0089190333060317
123 => 0.008896123293777
124 => 0.0084304172549064
125 => 0.0089305081564356
126 => 0.0087122050763152
127 => 0.0094018218907432
128 => 0.0090079164648311
129 => 0.0089909359892088
130 => 0.0089652675098115
131 => 0.0085644150840814
201 => 0.0086521762898156
202 => 0.0089439079040854
203 => 0.0090480010306487
204 => 0.0090371432647383
205 => 0.0089424782600219
206 => 0.0089858154144178
207 => 0.008846211340443
208 => 0.0087969142363149
209 => 0.0086413190154501
210 => 0.0084126370250555
211 => 0.0084444366584081
212 => 0.0079913577975388
213 => 0.0077444963874221
214 => 0.0076761684026829
215 => 0.0075847973658665
216 => 0.0076864890044203
217 => 0.0079900742820523
218 => 0.0076238860280186
219 => 0.0069960819515971
220 => 0.0070338140463162
221 => 0.0071185868603903
222 => 0.0069606132821914
223 => 0.0068111045481435
224 => 0.0069410902623711
225 => 0.0066750813989965
226 => 0.0071507327606568
227 => 0.0071378677243214
228 => 0.0073151611378655
301 => 0.0074260263477817
302 => 0.0071705179319628
303 => 0.0071062582563525
304 => 0.0071428634880196
305 => 0.006537860547725
306 => 0.0072657194902941
307 => 0.0072720140446545
308 => 0.0072181162486865
309 => 0.0076056786654808
310 => 0.0084235562486661
311 => 0.0081158378028222
312 => 0.0079966799197522
313 => 0.0077701606969323
314 => 0.0080719841119593
315 => 0.008048808782864
316 => 0.0079440011557123
317 => 0.0078806131757913
318 => 0.0079974074723773
319 => 0.007866141069939
320 => 0.0078425620171016
321 => 0.0076996986111692
322 => 0.0076487028751222
323 => 0.0076109476623517
324 => 0.007569382882842
325 => 0.0076610644291427
326 => 0.0074533019835134
327 => 0.0072027608412882
328 => 0.0071819310562049
329 => 0.0072394439241934
330 => 0.0072139987614379
331 => 0.0071818092345551
401 => 0.0071203506614398
402 => 0.0071021172156511
403 => 0.007161367068854
404 => 0.007094477439069
405 => 0.0071931767314834
406 => 0.0071663359852276
407 => 0.0070164057585168
408 => 0.0068295371847557
409 => 0.0068278736624791
410 => 0.0067876131347882
411 => 0.0067363352995629
412 => 0.0067220709788811
413 => 0.0069301432280785
414 => 0.0073608465568388
415 => 0.007276289187546
416 => 0.0073373905526478
417 => 0.0076379487947049
418 => 0.0077334872217532
419 => 0.007665676309186
420 => 0.0075728525496691
421 => 0.0075769363239993
422 => 0.0078941432099316
423 => 0.0079139270143133
424 => 0.0079639143054887
425 => 0.0080281621010558
426 => 0.0076766179865864
427 => 0.0075603786278216
428 => 0.0075052979709247
429 => 0.0073356708665792
430 => 0.007518599155887
501 => 0.0074120146754777
502 => 0.0074263965633292
503 => 0.0074170303399988
504 => 0.0074221449312785
505 => 0.0071505998064074
506 => 0.0072495365779188
507 => 0.0070850350061787
508 => 0.0068647858677866
509 => 0.0068640475154454
510 => 0.0069179531800401
511 => 0.0068858879814103
512 => 0.0067996013563692
513 => 0.0068118579641949
514 => 0.0067044771826328
515 => 0.0068248959352683
516 => 0.0068283491142149
517 => 0.0067819813351965
518 => 0.0069675030382171
519 => 0.007043511431316
520 => 0.0070129911658719
521 => 0.0070413700481316
522 => 0.0072798029279937
523 => 0.0073186778909671
524 => 0.007335943581584
525 => 0.0073128098434231
526 => 0.0070457281634781
527 => 0.0070575743717027
528 => 0.0069706547558335
529 => 0.0068972168397875
530 => 0.0069001539712982
531 => 0.0069379106064067
601 => 0.0071027960463227
602 => 0.0074497877340984
603 => 0.0074629558150019
604 => 0.0074789159131969
605 => 0.0074139981729351
606 => 0.007394418361293
607 => 0.0074202491868271
608 => 0.0075505610207994
609 => 0.0078857584370941
610 => 0.0077672772830929
611 => 0.0076709502606208
612 => 0.0077554550289076
613 => 0.0077424461822001
614 => 0.0076326384243484
615 => 0.0076295564863116
616 => 0.0074188002913303
617 => 0.0073408885247321
618 => 0.007275779620968
619 => 0.0072046823977685
620 => 0.0071625335806554
621 => 0.0072272933200359
622 => 0.007242104638647
623 => 0.0071005063366849
624 => 0.0070812070113511
625 => 0.007196839241345
626 => 0.0071459538081288
627 => 0.0071982907380897
628 => 0.0072104333547785
629 => 0.0072084781138235
630 => 0.0071553478773909
701 => 0.0071892115057265
702 => 0.0071091139294792
703 => 0.0070220198455772
704 => 0.0069664592462009
705 => 0.006917975254201
706 => 0.0069448769908687
707 => 0.0068489772117113
708 => 0.0068182969422777
709 => 0.0071777392704022
710 => 0.007443263182844
711 => 0.007439402359998
712 => 0.0074159005938466
713 => 0.0073809817365046
714 => 0.0075480064888887
715 => 0.0074898184049234
716 => 0.0075321550977853
717 => 0.007542931562984
718 => 0.007575548677477
719 => 0.0075872064923725
720 => 0.0075519684788852
721 => 0.0074337054016612
722 => 0.0071390050573347
723 => 0.0070018212515224
724 => 0.0069565483106273
725 => 0.0069581938960433
726 => 0.0069128013040538
727 => 0.006926171456748
728 => 0.006908151710579
729 => 0.0068740266707797
730 => 0.0069427698658229
731 => 0.0069506918786644
801 => 0.0069346463955214
802 => 0.0069384256876565
803 => 0.0068055759403473
804 => 0.0068156762181008
805 => 0.0067594365880884
806 => 0.0067488923354399
807 => 0.0066067234481134
808 => 0.0063548506565048
809 => 0.0064944126329395
810 => 0.00632584139079
811 => 0.0062620009071169
812 => 0.0065642118275933
813 => 0.0065338782332036
814 => 0.006481960305305
815 => 0.0064051628692986
816 => 0.0063766779532464
817 => 0.0062036126205419
818 => 0.0061933869974181
819 => 0.0062791628494635
820 => 0.0062395802451114
821 => 0.0061839912774965
822 => 0.0059826536717587
823 => 0.005756283542319
824 => 0.0057631162336149
825 => 0.0058351203600237
826 => 0.0060444820686366
827 => 0.0059626808270872
828 => 0.005903333087782
829 => 0.0058922190401966
830 => 0.0060313346145622
831 => 0.0062282122979033
901 => 0.0063205829020371
902 => 0.0062290464386775
903 => 0.0061238942782432
904 => 0.0061302944030206
905 => 0.0061728715658585
906 => 0.0061773458236641
907 => 0.0061089025770381
908 => 0.0061281689500547
909 => 0.0060989015676884
910 => 0.0059192876961298
911 => 0.005916039050755
912 => 0.0058719589100096
913 => 0.0058706241808664
914 => 0.005795632865152
915 => 0.0057851410616931
916 => 0.0056362412526946
917 => 0.0057342475578876
918 => 0.0056685100739261
919 => 0.0055694281796914
920 => 0.0055523464237791
921 => 0.0055518329255696
922 => 0.0056535678766425
923 => 0.0057330587257513
924 => 0.0056696536056043
925 => 0.0056552174888034
926 => 0.0058093574482752
927 => 0.0057897417334155
928 => 0.0057727546508548
929 => 0.0062105840607335
930 => 0.0058640079185596
1001 => 0.0057128809386972
1002 => 0.0055258326028824
1003 => 0.0055867364842033
1004 => 0.0055995698268617
1005 => 0.0051497522972238
1006 => 0.0049672613814709
1007 => 0.0049046373762096
1008 => 0.0048685963758082
1009 => 0.0048850207122655
1010 => 0.0047207574840384
1011 => 0.00483114509007
1012 => 0.0046889070192504
1013 => 0.0046650603437948
1014 => 0.0049193996343361
1015 => 0.0049547894607863
1016 => 0.0048038054663923
1017 => 0.0049007616328816
1018 => 0.0048656039791211
1019 => 0.0046913452827266
1020 => 0.0046846898822845
1021 => 0.0045972529939231
1022 => 0.0044604311947554
1023 => 0.0043978999611167
1024 => 0.0043653331517167
1025 => 0.0043787708519896
1026 => 0.0043719763395312
1027 => 0.0043276375497548
1028 => 0.00437451778706
1029 => 0.0042547581529965
1030 => 0.0042070689017435
1031 => 0.0041855287733347
1101 => 0.004079235204996
1102 => 0.0042483955411873
1103 => 0.0042817222584427
1104 => 0.0043151146396263
1105 => 0.0046057725198826
1106 => 0.0045912520735756
1107 => 0.0047225098364464
1108 => 0.0047174094011488
1109 => 0.0046799725609432
1110 => 0.0045220326901774
1111 => 0.0045849847076572
1112 => 0.0043912281827702
1113 => 0.0045364037453785
1114 => 0.0044701516812805
1115 => 0.0045140038558634
1116 => 0.0044351536919722
1117 => 0.0044787926283131
1118 => 0.0042896252594437
1119 => 0.0041129834320502
1120 => 0.0041840692598897
1121 => 0.0042613476844018
1122 => 0.0044289069989203
1123 => 0.0043291100535274
1124 => 0.004365000808831
1125 => 0.0042447727866039
1126 => 0.0039967080353125
1127 => 0.0039981120548651
1128 => 0.0039599526972633
1129 => 0.0039269774409379
1130 => 0.0043405729332037
1201 => 0.0042891357957633
1202 => 0.0042071774491781
1203 => 0.0043168819529776
1204 => 0.0043458895650268
1205 => 0.0043467153709619
1206 => 0.004426752945051
1207 => 0.0044694690126898
1208 => 0.0044769979047532
1209 => 0.0046029387569085
1210 => 0.004645152469351
1211 => 0.0048190247765933
1212 => 0.0044658448527912
1213 => 0.004458571344677
1214 => 0.0043184257203219
1215 => 0.0042295431497412
1216 => 0.0043245115859719
1217 => 0.004408640655988
1218 => 0.0043210398450362
1219 => 0.0043324786615924
1220 => 0.0042148817301389
1221 => 0.0042569170996836
1222 => 0.0042931236227113
1223 => 0.0042731325088165
1224 => 0.004243204843735
1225 => 0.0044017430316419
1226 => 0.004392797685764
1227 => 0.0045404320911201
1228 => 0.0046555236675328
1229 => 0.0048617883475445
1230 => 0.0046465404011314
1231 => 0.004638695910431
]
'min_raw' => 0.0039269774409379
'max_raw' => 0.011354046648166
'avg_raw' => 0.0076405120445519
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003926'
'max' => '$0.011354'
'avg' => '$0.00764'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00069051234586825
'max_diff' => -0.0038354027568394
'year' => 2030
]
5 => [
'items' => [
101 => 0.0047153770653232
102 => 0.0046451407298657
103 => 0.004689527669399
104 => 0.0048546369253663
105 => 0.0048581254237691
106 => 0.0047996885808454
107 => 0.0047961326936427
108 => 0.0048073561285552
109 => 0.0048730921373955
110 => 0.0048501219560432
111 => 0.0048767036314379
112 => 0.0049099444235521
113 => 0.0050474424335401
114 => 0.0050805927382509
115 => 0.005000054684266
116 => 0.0050073263687945
117 => 0.0049772029257851
118 => 0.0049481040572837
119 => 0.0050135140641264
120 => 0.0051330521372683
121 => 0.0051323084971193
122 => 0.0051600390066001
123 => 0.0051773148842747
124 => 0.0051031541705799
125 => 0.0050548782729297
126 => 0.005073390323964
127 => 0.0051029914967078
128 => 0.0050637910625978
129 => 0.004821827823863
130 => 0.0048952240138236
131 => 0.0048830072989238
201 => 0.0048656092113033
202 => 0.0049394096478646
203 => 0.0049322914157209
204 => 0.0047190727272107
205 => 0.0047327222958628
206 => 0.0047199028026892
207 => 0.0047613252077546
208 => 0.0046429037840554
209 => 0.0046793294164048
210 => 0.0047021752315453
211 => 0.0047156315921728
212 => 0.0047642451938724
213 => 0.004758540948809
214 => 0.0047638906099901
215 => 0.0048359717477955
216 => 0.0052005334075558
217 => 0.0052203756943366
218 => 0.0051226650172525
219 => 0.0051616985054897
220 => 0.0050867627437598
221 => 0.0051370676226351
222 => 0.0051714849431562
223 => 0.0050159596897916
224 => 0.0050067504936379
225 => 0.0049315054453632
226 => 0.0049719378722086
227 => 0.0049076069739032
228 => 0.004923391526148
301 => 0.0048792565419989
302 => 0.0049586907262797
303 => 0.00504751048713
304 => 0.0050699498663194
305 => 0.0050109215204322
306 => 0.0049681811078523
307 => 0.0048931430229291
308 => 0.0050179330304891
309 => 0.0050544254316062
310 => 0.0050177413514413
311 => 0.0050092408485041
312 => 0.0049931324107982
313 => 0.005012658329713
314 => 0.0050542266861526
315 => 0.0050346238169027
316 => 0.0050475718574004
317 => 0.0049982272789846
318 => 0.005103178720862
319 => 0.0052698668685033
320 => 0.0052704027981542
321 => 0.0052507998232375
322 => 0.0052427787082536
323 => 0.0052628925501261
324 => 0.005273803484229
325 => 0.005338847960597
326 => 0.005408643275226
327 => 0.0057343475545184
328 => 0.0056428910962198
329 => 0.0059318753090423
330 => 0.0061604243014812
331 => 0.0062289561510775
401 => 0.0061659100741216
402 => 0.0059502328505378
403 => 0.0059396506970063
404 => 0.0062619635256155
405 => 0.0061708953886706
406 => 0.0061600631235575
407 => 0.0060448261241539
408 => 0.0061129454631814
409 => 0.0060980467644857
410 => 0.0060745284397252
411 => 0.0062044953933554
412 => 0.0064477819283213
413 => 0.0064098634403202
414 => 0.0063815590480154
415 => 0.0062575374402206
416 => 0.006332226149342
417 => 0.0063056309305918
418 => 0.0064199008680854
419 => 0.0063522098885032
420 => 0.0061702054579653
421 => 0.0061991902634229
422 => 0.0061948092683873
423 => 0.006284969835779
424 => 0.0062579058713709
425 => 0.0061895245949755
426 => 0.0064469504013934
427 => 0.0064302346014022
428 => 0.0064539337840258
429 => 0.0064643668971383
430 => 0.0066210574491534
501 => 0.0066852485547755
502 => 0.0066998210595752
503 => 0.006760797645198
504 => 0.0066983039065765
505 => 0.0069483234183428
506 => 0.0071145718046244
507 => 0.0073076778603542
508 => 0.0075898577097901
509 => 0.0076959599434875
510 => 0.0076767935246543
511 => 0.0078907390660225
512 => 0.0082751944481188
513 => 0.007754502949376
514 => 0.0083027923618899
515 => 0.0081292102641937
516 => 0.0077176502331645
517 => 0.0076911506191403
518 => 0.0079698638504635
519 => 0.0085880229723838
520 => 0.0084331811234455
521 => 0.0085882762381781
522 => 0.0084073495484805
523 => 0.0083983650133671
524 => 0.0085794890326955
525 => 0.0090026951764125
526 => 0.0088016458011776
527 => 0.0085133922224491
528 => 0.0087262341792598
529 => 0.0085418507786772
530 => 0.0081263833715002
531 => 0.0084330627188018
601 => 0.0082279949729862
602 => 0.0082878446432161
603 => 0.0087188665433955
604 => 0.0086670048480235
605 => 0.0087341186840986
606 => 0.0086156645201009
607 => 0.0085050096524198
608 => 0.0082984641245547
609 => 0.0082373161763254
610 => 0.0082542152693433
611 => 0.0082373078019741
612 => 0.008121747477385
613 => 0.0080967922362926
614 => 0.008055199074491
615 => 0.0080680905345378
616 => 0.0079898832218422
617 => 0.0081374765793542
618 => 0.0081648712070966
619 => 0.0082722773444292
620 => 0.0082834286059133
621 => 0.008582553169554
622 => 0.0084178003864848
623 => 0.0085283307774385
624 => 0.0085184438989193
625 => 0.0077265699869961
626 => 0.0078356832252964
627 => 0.0080054291824713
628 => 0.0079289588588492
629 => 0.0078208477125476
630 => 0.007733542165356
701 => 0.0076012653339103
702 => 0.0077874424340186
703 => 0.0080322455229337
704 => 0.0082896372162348
705 => 0.0085988764707642
706 => 0.008529857869095
707 => 0.0082838562034737
708 => 0.0082948916584891
709 => 0.0083631084991031
710 => 0.0082747614923545
711 => 0.0082487062353259
712 => 0.0083595289068931
713 => 0.0083602920817251
714 => 0.0082586381733684
715 => 0.0081456684566987
716 => 0.008145195109461
717 => 0.0081250932395377
718 => 0.0084109256264833
719 => 0.0085681045383895
720 => 0.0085861248473331
721 => 0.0085668916280193
722 => 0.008574293730794
723 => 0.0084828347851567
724 => 0.0086918828135756
725 => 0.0088837259571601
726 => 0.0088323078965485
727 => 0.0087552249141837
728 => 0.0086938246059107
729 => 0.0088178439352492
730 => 0.0088123215497383
731 => 0.0088820503746612
801 => 0.0088788870723894
802 => 0.0088554398912016
803 => 0.0088323087339212
804 => 0.0089240211579108
805 => 0.0088976094526583
806 => 0.0088711567227323
807 => 0.0088181017231555
808 => 0.0088253127787483
809 => 0.0087482431058472
810 => 0.0087125871486948
811 => 0.0081764071037273
812 => 0.0080331222755236
813 => 0.0080782025993081
814 => 0.0080930442124081
815 => 0.0080306864715493
816 => 0.0081200914535515
817 => 0.0081061577818097
818 => 0.0081603655476315
819 => 0.0081264988889736
820 => 0.0081278887884581
821 => 0.0082274834104378
822 => 0.0082563961529044
823 => 0.0082416908987314
824 => 0.0082519899546875
825 => 0.008489327352236
826 => 0.0084555855639273
827 => 0.0084376609113871
828 => 0.00844262616264
829 => 0.0085032709562848
830 => 0.0085202481874224
831 => 0.0084483144661237
901 => 0.008482238824932
902 => 0.008626684439096
903 => 0.0086772322291396
904 => 0.0088385565106433
905 => 0.0087700230885501
906 => 0.0088958191508593
907 => 0.0092824733593596
908 => 0.0095913594955458
909 => 0.0093072950394495
910 => 0.0098745250921433
911 => 0.010316195052484
912 => 0.010299243023766
913 => 0.010222227650171
914 => 0.0097193981427263
915 => 0.0092566869332105
916 => 0.0096437645077262
917 => 0.0096447512480669
918 => 0.0096115009411339
919 => 0.00940498614045
920 => 0.0096043146737168
921 => 0.0096201366488327
922 => 0.0096112805501706
923 => 0.0094529461366859
924 => 0.0092111987523857
925 => 0.0092584356126165
926 => 0.0093358105532803
927 => 0.0091893236485001
928 => 0.0091425122064682
929 => 0.0092295435834467
930 => 0.0095099768137787
1001 => 0.0094569625360235
1002 => 0.0094555781189838
1003 => 0.009682395680773
1004 => 0.0095200432568254
1005 => 0.0092590314206973
1006 => 0.0091931224897518
1007 => 0.0089591901864712
1008 => 0.0091207680615854
1009 => 0.0091265829616592
1010 => 0.009038088410745
1011 => 0.0092662122657827
1012 => 0.0092641100642981
1013 => 0.0094806797129015
1014 => 0.0098946795411857
1015 => 0.0097722394202678
1016 => 0.0096298548810875
1017 => 0.0096453360283915
1018 => 0.0098151260035881
1019 => 0.0097124671086561
1020 => 0.0097493839630369
1021 => 0.0098150701255075
1022 => 0.0098547002182218
1023 => 0.0096396338679224
1024 => 0.0095894916138549
1025 => 0.0094869181595725
1026 => 0.0094601586599744
1027 => 0.0095437025982221
1028 => 0.0095216917221447
1029 => 0.0091260942418244
1030 => 0.0090847521040474
1031 => 0.00908602000839
1101 => 0.0089820632372381
1102 => 0.0088235042087475
1103 => 0.0092401878685531
1104 => 0.0092067223391866
1105 => 0.0091697789847923
1106 => 0.0091743043349097
1107 => 0.0093551725889118
1108 => 0.0092502598675248
1109 => 0.0095291875321889
1110 => 0.0094718483896671
1111 => 0.0094130387144999
1112 => 0.0094049094260053
1113 => 0.0093822727184716
1114 => 0.0093046430255909
1115 => 0.009210900506616
1116 => 0.0091490035757509
1117 => 0.008439472184131
1118 => 0.0085711570832614
1119 => 0.0087226485562547
1120 => 0.0087749428056681
1121 => 0.0086854898733947
1122 => 0.0093081751725791
1123 => 0.0094219457770849
1124 => 0.0090773271949638
1125 => 0.009012863128933
1126 => 0.009312401426016
1127 => 0.0091317432158073
1128 => 0.0092130935968024
1129 => 0.0090372585693704
1130 => 0.0093945417700516
1201 => 0.0093918198706755
1202 => 0.0092528286360034
1203 => 0.0093703030757774
1204 => 0.0093498890009627
1205 => 0.0091929682393382
1206 => 0.0093995164380896
1207 => 0.0093996188834193
1208 => 0.0092658428419774
1209 => 0.0091096217129145
1210 => 0.0090816930648164
1211 => 0.0090606525801604
1212 => 0.0092079189273822
1213 => 0.0093399574738114
1214 => 0.0095856484735844
1215 => 0.0096474210284016
1216 => 0.0098885234222846
1217 => 0.0097449586857897
1218 => 0.0098085990740033
1219 => 0.0098776897178917
1220 => 0.0099108143132961
1221 => 0.0098568395626484
1222 => 0.010231370822053
1223 => 0.010262992735688
1224 => 0.010273595289802
1225 => 0.010147305456407
1226 => 0.010259480386965
1227 => 0.0102069974518
1228 => 0.01034354346892
1229 => 0.010364955627911
1230 => 0.010346820291005
1231 => 0.010353616848237
]
'min_raw' => 0.0046429037840554
'max_raw' => 0.010364955627911
'avg_raw' => 0.0075039297059835
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004642'
'max' => '$0.010364'
'avg' => '$0.0075039'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00071592634311755
'max_diff' => -0.0009890910202544
'year' => 2031
]
6 => [
'items' => [
101 => 0.010034020490177
102 => 0.010017447733006
103 => 0.0097914770130369
104 => 0.0098835617517156
105 => 0.0097114137464921
106 => 0.0097660036522694
107 => 0.0097900663625844
108 => 0.0097774973682626
109 => 0.0098887680846777
110 => 0.0097941652446193
111 => 0.0095444927955584
112 => 0.0092947523234058
113 => 0.0092916170352121
114 => 0.0092258647771797
115 => 0.0091783379377491
116 => 0.0091874932931287
117 => 0.009219757959638
118 => 0.0091764626566776
119 => 0.0091857019046918
120 => 0.0093391349825144
121 => 0.0093699048920371
122 => 0.0092653367168993
123 => 0.0088454804046055
124 => 0.0087424466124388
125 => 0.0088165052589993
126 => 0.0087811099959311
127 => 0.007087041104252
128 => 0.0074850374618729
129 => 0.0072485615408538
130 => 0.0073575405249934
131 => 0.0071161598447758
201 => 0.007231359357221
202 => 0.007210086213685
203 => 0.0078500525791711
204 => 0.007840060384619
205 => 0.0078448431193759
206 => 0.0076165507280786
207 => 0.007980226706229
208 => 0.0081593865704311
209 => 0.0081262288477527
210 => 0.0081345739321958
211 => 0.0079911777328763
212 => 0.0078462315080338
213 => 0.0076854638376194
214 => 0.0079841502977648
215 => 0.0079509414621445
216 => 0.0080271105828955
217 => 0.0082208301028489
218 => 0.0082493560380309
219 => 0.008287695184197
220 => 0.0082739533294627
221 => 0.0086013400603303
222 => 0.008561691367055
223 => 0.0086572333101408
224 => 0.0084606962844286
225 => 0.0082382959843696
226 => 0.0082805670105972
227 => 0.0082764959708493
228 => 0.0082246669623374
229 => 0.0081778780508843
301 => 0.0080999876960089
302 => 0.008346444304438
303 => 0.0083364386162184
304 => 0.0084984190781536
305 => 0.0084697874581123
306 => 0.0082785784921306
307 => 0.0082854075577573
308 => 0.0083313363060345
309 => 0.0084902962282269
310 => 0.0085374863559504
311 => 0.0085156260085875
312 => 0.0085673678293251
313 => 0.0086082624547522
314 => 0.008572503564654
315 => 0.0090787740396185
316 => 0.0088685352413589
317 => 0.0089710041687985
318 => 0.0089954424042109
319 => 0.0089328443780828
320 => 0.0089464196484827
321 => 0.0089669824840988
322 => 0.0090918359953438
323 => 0.0094194877355052
324 => 0.0095646024608219
325 => 0.010001187271771
326 => 0.0095525527029788
327 => 0.0095259325843011
328 => 0.0096045746923513
329 => 0.0098608961935744
330 => 0.010068620695261
331 => 0.010137534896385
401 => 0.010146643045713
402 => 0.01027593066835
403 => 0.010350035922574
404 => 0.01026023175036
405 => 0.010184132117297
406 => 0.0099115526774993
407 => 0.0099431044898651
408 => 0.010160465188638
409 => 0.010467499978136
410 => 0.010730967769051
411 => 0.010638710531452
412 => 0.011342568130871
413 => 0.011412352736853
414 => 0.011402710760713
415 => 0.011561690478481
416 => 0.011246148114367
417 => 0.011111247640363
418 => 0.010200585721733
419 => 0.010456444575451
420 => 0.010828350445394
421 => 0.010779127308931
422 => 0.010509039325106
423 => 0.010730762883096
424 => 0.010657454140888
425 => 0.010599632494326
426 => 0.010864524666504
427 => 0.010573264842023
428 => 0.010825444905843
429 => 0.010502021365526
430 => 0.010639131954742
501 => 0.01056130135301
502 => 0.010611667290891
503 => 0.010317229047186
504 => 0.010476100776405
505 => 0.010310619460929
506 => 0.010310541001239
507 => 0.010306887992028
508 => 0.010501576025829
509 => 0.010507924795622
510 => 0.010364050044485
511 => 0.010343315445101
512 => 0.01041998212647
513 => 0.010330225521622
514 => 0.010372222072109
515 => 0.010331497554354
516 => 0.010322329607618
517 => 0.010249277848226
518 => 0.01021780514168
519 => 0.010230146400868
520 => 0.010188019320903
521 => 0.010162636231421
522 => 0.010301838656647
523 => 0.010227468416258
524 => 0.010290440350688
525 => 0.010218675883714
526 => 0.0099699089748913
527 => 0.0098268404949652
528 => 0.0093569428649044
529 => 0.0094902052498834
530 => 0.0095785583489945
531 => 0.0095493576502653
601 => 0.0096120920503058
602 => 0.0096159434329606
603 => 0.0095955478400059
604 => 0.0095719323562017
605 => 0.009560437644704
606 => 0.0096461098067676
607 => 0.0096958453804379
608 => 0.0095874257645022
609 => 0.0095620245654401
610 => 0.0096716427831622
611 => 0.0097385098326483
612 => 0.010232218556704
613 => 0.010195643019768
614 => 0.010287440439891
615 => 0.010277105459131
616 => 0.010373323779896
617 => 0.010530600069451
618 => 0.010210813397644
619 => 0.010266317306479
620 => 0.010252709029805
621 => 0.010401280626248
622 => 0.010401744450555
623 => 0.010312668356786
624 => 0.010360957952312
625 => 0.010334004024845
626 => 0.01038271341482
627 => 0.010195154531173
628 => 0.010423581005725
629 => 0.010553084097319
630 => 0.010554882247872
701 => 0.010616265685487
702 => 0.010678634813194
703 => 0.01079834692262
704 => 0.010675296107436
705 => 0.010453939669675
706 => 0.010469920889504
707 => 0.010340139691036
708 => 0.010342321336429
709 => 0.010330675542342
710 => 0.010365625447052
711 => 0.010202824069853
712 => 0.010241033227679
713 => 0.01018754018297
714 => 0.010266201023047
715 => 0.010181574962227
716 => 0.010252702467482
717 => 0.010283398740836
718 => 0.010396668650355
719 => 0.010164844904494
720 => 0.0096921405935957
721 => 0.0097915087707323
722 => 0.0096445354315453
723 => 0.0096581383736541
724 => 0.0096856184816058
725 => 0.0095965464608023
726 => 0.0096135385953896
727 => 0.0096129315167703
728 => 0.0096077000411999
729 => 0.0095845289684642
730 => 0.0095509263287404
731 => 0.0096847889030528
801 => 0.0097075347629119
802 => 0.0097580959917629
803 => 0.0099085319128142
804 => 0.0098934998167779
805 => 0.0099180177890888
806 => 0.0098644951931966
807 => 0.009660621133371
808 => 0.0096716924756872
809 => 0.0095336326595977
810 => 0.0097545654918647
811 => 0.009702245681013
812 => 0.0096685147585964
813 => 0.0096593109639002
814 => 0.0098101197865022
815 => 0.0098552441498634
816 => 0.0098271256748001
817 => 0.0097694538620983
818 => 0.0098802007916266
819 => 0.0099098319979305
820 => 0.0099164653322652
821 => 0.010112687657772
822 => 0.0099274319805029
823 => 0.0099720248633046
824 => 0.010319925805324
825 => 0.010004427657961
826 => 0.010171554063067
827 => 0.010163374095221
828 => 0.010248870308824
829 => 0.010156360910258
830 => 0.010157507675125
831 => 0.01023342252079
901 => 0.010126813811368
902 => 0.010100415995674
903 => 0.010063947602357
904 => 0.010143575004995
905 => 0.010191308031639
906 => 0.010576001170345
907 => 0.010824530482087
908 => 0.010813741169215
909 => 0.010912335292119
910 => 0.010867917736732
911 => 0.010724481733628
912 => 0.010969309500769
913 => 0.010891835751217
914 => 0.010898222593
915 => 0.010897984874429
916 => 0.010949498145009
917 => 0.010912996271681
918 => 0.010841047332513
919 => 0.010888810396049
920 => 0.011030649619146
921 => 0.011470922919796
922 => 0.011717305691685
923 => 0.011456090367561
924 => 0.011636273200329
925 => 0.011528227706376
926 => 0.01150859262605
927 => 0.011621760760435
928 => 0.011735126980659
929 => 0.011727906042526
930 => 0.011645607988063
1001 => 0.011599119905333
1002 => 0.011951143242415
1003 => 0.012210508040616
1004 => 0.012192821100183
1005 => 0.012270885503156
1006 => 0.012500085004725
1007 => 0.012521040134727
1008 => 0.012518400269995
1009 => 0.012466460793844
1010 => 0.012692137468455
1011 => 0.012880400920819
1012 => 0.01245443830579
1013 => 0.012616639293333
1014 => 0.012689456542431
1015 => 0.01279637386801
1016 => 0.012976761317687
1017 => 0.013172709933444
1018 => 0.013200419216179
1019 => 0.013180758154067
1020 => 0.013051524774594
1021 => 0.013265934088108
1022 => 0.013391530035448
1023 => 0.013466319547876
1024 => 0.013655973307607
1025 => 0.012689906236971
1026 => 0.012006075947726
1027 => 0.011899285973432
1028 => 0.012116447585468
1029 => 0.012173711370731
1030 => 0.012150628410694
1031 => 0.011380915249019
1101 => 0.011895233592931
1102 => 0.012448596885866
1103 => 0.012469853823591
1104 => 0.012746879058315
1105 => 0.012837089830389
1106 => 0.013060131454869
1107 => 0.01304618014053
1108 => 0.013100487226724
1109 => 0.013088002968075
1110 => 0.01350114061047
1111 => 0.013956892781565
1112 => 0.013941111533083
1113 => 0.013875591766273
1114 => 0.013972899792766
1115 => 0.014443284874707
1116 => 0.014399979354129
1117 => 0.014442046978615
1118 => 0.014996657499965
1119 => 0.015717730070146
1120 => 0.015382719466794
1121 => 0.016109596079363
1122 => 0.016567126376902
1123 => 0.017358377716978
1124 => 0.017259309152206
1125 => 0.017567337492427
1126 => 0.017081955745029
1127 => 0.015967421141168
1128 => 0.01579104177384
1129 => 0.016144157733868
1130 => 0.017012258865045
1201 => 0.016116818139938
1202 => 0.016297964632402
1203 => 0.016245794430386
1204 => 0.01624301450203
1205 => 0.016349113060606
1206 => 0.016195211567662
1207 => 0.015568189199059
1208 => 0.015855549855524
1209 => 0.015744586105871
1210 => 0.015867708659006
1211 => 0.016532150298677
1212 => 0.016238384811468
1213 => 0.015928926734264
1214 => 0.016317055837323
1215 => 0.016811277561146
1216 => 0.016780350053871
1217 => 0.016720337763063
1218 => 0.01705862390421
1219 => 0.017617373500847
1220 => 0.01776840127158
1221 => 0.017879886884308
1222 => 0.017895258866739
1223 => 0.018053599839405
1224 => 0.017202160522313
1225 => 0.018553416585051
1226 => 0.01878674117939
1227 => 0.018742885825968
1228 => 0.019002216292776
1229 => 0.018925914690862
1230 => 0.018815365641044
1231 => 0.019226459592107
]
'min_raw' => 0.007087041104252
'max_raw' => 0.019226459592107
'avg_raw' => 0.01315675034818
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007087'
'max' => '$0.019226'
'avg' => '$0.013156'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0024441373201965
'max_diff' => 0.0088615039641956
'year' => 2032
]
7 => [
'items' => [
101 => 0.018755173550784
102 => 0.018086242348389
103 => 0.017719253460796
104 => 0.018202534032127
105 => 0.018497656612872
106 => 0.018692713865423
107 => 0.018751738072188
108 => 0.017268255332762
109 => 0.016468740413937
110 => 0.016981220310447
111 => 0.017606481153662
112 => 0.017198687166759
113 => 0.01721467191899
114 => 0.01663326486004
115 => 0.017657922777418
116 => 0.017508638737586
117 => 0.018283124600315
118 => 0.018098287333537
119 => 0.018729850489225
120 => 0.018563538744346
121 => 0.019253889498973
122 => 0.019529289105495
123 => 0.01999172790737
124 => 0.020331899772494
125 => 0.020531655198146
126 => 0.020519662631654
127 => 0.021311193145844
128 => 0.020844455255596
129 => 0.020258122463769
130 => 0.020247517553422
131 => 0.020551187614708
201 => 0.021187596755353
202 => 0.021352608386145
203 => 0.021444827376458
204 => 0.021303590782628
205 => 0.02079698025417
206 => 0.020578228396555
207 => 0.020764611317094
208 => 0.020536681021342
209 => 0.020930152657756
210 => 0.02147047325556
211 => 0.021358899188772
212 => 0.021731874565923
213 => 0.02211786484312
214 => 0.02266984827542
215 => 0.02281415718451
216 => 0.023052694323661
217 => 0.023298227395215
218 => 0.023377086000496
219 => 0.023527651546366
220 => 0.023526857991618
221 => 0.023980597398328
222 => 0.024481086015069
223 => 0.02467000888155
224 => 0.025104426595756
225 => 0.02436050148399
226 => 0.024924777226861
227 => 0.025433768071668
228 => 0.024826928203259
301 => 0.025663315586305
302 => 0.025695790613094
303 => 0.026186124961482
304 => 0.025689077162696
305 => 0.02539393176641
306 => 0.026246005466535
307 => 0.026658297089955
308 => 0.02653411149764
309 => 0.025589053008326
310 => 0.02503898843208
311 => 0.023599363336511
312 => 0.025304661449389
313 => 0.026135262415943
314 => 0.025586901952481
315 => 0.025863463074028
316 => 0.027372290877943
317 => 0.027946754816308
318 => 0.027827270332934
319 => 0.027847461243743
320 => 0.028157431557626
321 => 0.029532010633157
322 => 0.028708330988606
323 => 0.029338003214178
324 => 0.029671979092169
325 => 0.029982194500325
326 => 0.02922040350248
327 => 0.028229324607216
328 => 0.027915408318424
329 => 0.025532378311394
330 => 0.025408331250553
331 => 0.025338699876292
401 => 0.024899683911133
402 => 0.024554737619112
403 => 0.024280423520661
404 => 0.023560541409204
405 => 0.02380348048946
406 => 0.02265613865487
407 => 0.023390167301342
408 => 0.021558982029799
409 => 0.023084047537904
410 => 0.022254023718063
411 => 0.022811362389667
412 => 0.022809417887547
413 => 0.021783180688736
414 => 0.021191268489486
415 => 0.021568457980415
416 => 0.021972835056031
417 => 0.022038443876062
418 => 0.022562729309919
419 => 0.022709046105031
420 => 0.022265699384964
421 => 0.021521034785245
422 => 0.021694003387768
423 => 0.021187763286276
424 => 0.020300596980655
425 => 0.02093777530979
426 => 0.02115533600611
427 => 0.021251423203764
428 => 0.020378997033925
429 => 0.020104861790068
430 => 0.019958914486456
501 => 0.021408415522177
502 => 0.021487822460978
503 => 0.021081565335065
504 => 0.022917886067071
505 => 0.022502270129908
506 => 0.022966614960096
507 => 0.02167830830006
508 => 0.021727523349409
509 => 0.021117618330518
510 => 0.021459124387229
511 => 0.021217758913599
512 => 0.021431534072675
513 => 0.021559670021597
514 => 0.022169474961076
515 => 0.02309101053077
516 => 0.02207839043832
517 => 0.021637177363053
518 => 0.021910903473472
519 => 0.022639872176724
520 => 0.023744297077371
521 => 0.023090455307565
522 => 0.023380619182052
523 => 0.023444007080135
524 => 0.022961888365618
525 => 0.023762073482062
526 => 0.024190899186657
527 => 0.024630785626595
528 => 0.025012726697055
529 => 0.024455085309174
530 => 0.025051841528959
531 => 0.024570961357466
601 => 0.024139562131157
602 => 0.02414021638571
603 => 0.023869593349309
604 => 0.023345227115587
605 => 0.023248525936867
606 => 0.02375157768058
607 => 0.024154977539861
608 => 0.024188203484426
609 => 0.024411546373957
610 => 0.024543718395366
611 => 0.025839183884331
612 => 0.026360230820645
613 => 0.026997357151456
614 => 0.027245553763779
615 => 0.027992536583462
616 => 0.02738928728959
617 => 0.027258770510245
618 => 0.025446834525911
619 => 0.025743538941839
620 => 0.026218591339458
621 => 0.025454667964975
622 => 0.025939201515162
623 => 0.026034858701793
624 => 0.025428710141029
625 => 0.025752480277466
626 => 0.024892642786245
627 => 0.023109752638414
628 => 0.023764058348463
629 => 0.02424584758798
630 => 0.023558274939005
701 => 0.024790722299556
702 => 0.0240707519944
703 => 0.023842555972334
704 => 0.022952281932502
705 => 0.023372457009513
706 => 0.023940749817497
707 => 0.023589610933293
708 => 0.024318276841785
709 => 0.02535026209631
710 => 0.026085716244469
711 => 0.026142175281795
712 => 0.025669327536129
713 => 0.026427069066232
714 => 0.026432588386033
715 => 0.025577852844613
716 => 0.02505433208468
717 => 0.024935387066526
718 => 0.025232535042419
719 => 0.025593327541695
720 => 0.026162196754516
721 => 0.026505952505688
722 => 0.027402285190781
723 => 0.027644807115495
724 => 0.027911265182703
725 => 0.028267335333117
726 => 0.028694888843202
727 => 0.027759426103771
728 => 0.027796593782329
729 => 0.026925503831735
730 => 0.025994619292589
731 => 0.026701044621405
801 => 0.027624601767008
802 => 0.027412736737366
803 => 0.027388897593522
804 => 0.027428988421041
805 => 0.027269249107557
806 => 0.026546754112882
807 => 0.026183921649614
808 => 0.026652068095663
809 => 0.026900867096937
810 => 0.02728673265036
811 => 0.027239166576266
812 => 0.028233114802949
813 => 0.028619333028403
814 => 0.028520521879122
815 => 0.028538705508613
816 => 0.029237935157611
817 => 0.030015622334843
818 => 0.030744029001181
819 => 0.031484995547975
820 => 0.030591731455399
821 => 0.030138187038058
822 => 0.030606129106014
823 => 0.030357832457995
824 => 0.031784618647081
825 => 0.03188340622716
826 => 0.033310089243364
827 => 0.034664181311996
828 => 0.033813700344768
829 => 0.03461566559036
830 => 0.035483056388654
831 => 0.037156393967648
901 => 0.036592872739769
902 => 0.036161224310716
903 => 0.035753318630972
904 => 0.036602105597317
905 => 0.037694056469816
906 => 0.037929252229177
907 => 0.038310359211037
908 => 0.037909671819156
909 => 0.038392255648408
910 => 0.040095988623749
911 => 0.039635624934545
912 => 0.038981834488719
913 => 0.040326768044496
914 => 0.040813494270035
915 => 0.04422959382137
916 => 0.048542560616964
917 => 0.046756964043121
918 => 0.045648586628896
919 => 0.045909081612303
920 => 0.047484031082914
921 => 0.047989854866477
922 => 0.046614851454839
923 => 0.047100525905135
924 => 0.049776639876725
925 => 0.051212289162467
926 => 0.049262484599006
927 => 0.043883051138786
928 => 0.038922967812349
929 => 0.040238605265983
930 => 0.040089452807725
1001 => 0.042964603418181
1002 => 0.03962464541281
1003 => 0.03968088173982
1004 => 0.042615487420064
1005 => 0.041832584936453
1006 => 0.040564383179578
1007 => 0.03893222708865
1008 => 0.035915035598405
1009 => 0.033242624954887
1010 => 0.038483837646242
1011 => 0.038257827024464
1012 => 0.037930530151232
1013 => 0.03865889392539
1014 => 0.042195621663035
1015 => 0.042114088641412
1016 => 0.041595417156358
1017 => 0.041988824906411
1018 => 0.040495416898895
1019 => 0.0408803021467
1020 => 0.038922182109808
1021 => 0.039807334144799
1022 => 0.040561662188186
1023 => 0.040713104710913
1024 => 0.041054312447464
1025 => 0.038138729696789
1026 => 0.03944774075483
1027 => 0.04021666211368
1028 => 0.036742647440798
1029 => 0.040147992013406
1030 => 0.038087975887686
1031 => 0.037388775474213
1101 => 0.038330156718305
1102 => 0.037963299531959
1103 => 0.037647897265715
1104 => 0.037471897381853
1105 => 0.038163143871057
1106 => 0.038130896396118
1107 => 0.036999882974617
1108 => 0.035524522072274
1109 => 0.036019701618171
1110 => 0.035839798246814
1111 => 0.035187805221018
1112 => 0.035627169798466
1113 => 0.033692430556708
1114 => 0.030363812250259
1115 => 0.032562799461835
1116 => 0.032478140846227
1117 => 0.032435452133275
1118 => 0.034087930247233
1119 => 0.033929082605732
1120 => 0.033640772580969
1121 => 0.035182510181318
1122 => 0.034619755217893
1123 => 0.036354033413423
1124 => 0.037496341199079
1125 => 0.037206614994851
1126 => 0.038280960988514
1127 => 0.036031109554787
1128 => 0.036778419952699
1129 => 0.036932439589981
1130 => 0.035163485378647
1201 => 0.033955072044384
1202 => 0.033874484651909
1203 => 0.031779262459911
1204 => 0.032898513242834
1205 => 0.033883407614061
1206 => 0.033411719641134
1207 => 0.033262397320183
1208 => 0.034025252673863
1209 => 0.034084533068259
1210 => 0.032732933793792
1211 => 0.033013974082536
1212 => 0.034185958805659
1213 => 0.032984443074517
1214 => 0.030650094275387
1215 => 0.030071143498306
1216 => 0.029993900792463
1217 => 0.028423740367853
1218 => 0.030109831757591
1219 => 0.029373807681531
1220 => 0.031698898918883
1221 => 0.030370819273822
1222 => 0.030313568414722
1223 => 0.030227025344319
1224 => 0.028875523404347
1225 => 0.029171416436772
1226 => 0.030155009942333
1227 => 0.030505967186091
1228 => 0.030469359470259
1229 => 0.030150189797558
1230 => 0.030296304039308
1231 => 0.029825619157056
]
'min_raw' => 0.016468740413937
'max_raw' => 0.051212289162467
'avg_raw' => 0.033840514788202
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.016468'
'max' => '$0.051212'
'avg' => '$0.03384'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0093816993096846
'max_diff' => 0.03198582957036
'year' => 2033
]
8 => [
'items' => [
101 => 0.029659410528675
102 => 0.029134810378217
103 => 0.028363793081535
104 => 0.028471007765563
105 => 0.026943420753186
106 => 0.026111110273665
107 => 0.025880737702609
108 => 0.02557267387266
109 => 0.025915534331928
110 => 0.026939093291112
111 => 0.025704464026189
112 => 0.023587778750654
113 => 0.023714995142369
114 => 0.024000812603669
115 => 0.023468193655409
116 => 0.0229641145202
117 => 0.023402370431031
118 => 0.022505502976017
119 => 0.024109194750773
120 => 0.02406581938256
121 => 0.024663576504555
122 => 0.025037366300149
123 => 0.024175901837188
124 => 0.0239592458544
125 => 0.024082662948661
126 => 0.022042853295502
127 => 0.024496880537862
128 => 0.02451810306736
129 => 0.02433638288523
130 => 0.025643076632196
131 => 0.028400608006294
201 => 0.027363113781916
202 => 0.026961364659808
203 => 0.026197639285003
204 => 0.027215258001405
205 => 0.02713712076131
206 => 0.026783754528933
207 => 0.026570037529022
208 => 0.026963817654279
209 => 0.026521243813731
210 => 0.026441745390853
211 => 0.025960071443347
212 => 0.025788135758856
213 => 0.025660841423016
214 => 0.025520702866938
215 => 0.025829813601292
216 => 0.025129328010343
217 => 0.024284611057106
218 => 0.024214381982409
219 => 0.024408290632252
220 => 0.024322500489498
221 => 0.024213971252211
222 => 0.024006759382052
223 => 0.023945284046557
224 => 0.024145049063323
225 => 0.023919526006418
226 => 0.024252297561758
227 => 0.024161802111796
228 => 0.023656301884646
301 => 0.023026261441463
302 => 0.023020652759964
303 => 0.022884911579954
304 => 0.022712024778388
305 => 0.022663931625306
306 => 0.023365461740616
307 => 0.024817608084277
308 => 0.0245325170101
309 => 0.024738524528501
310 => 0.025751877625903
311 => 0.026073992102977
312 => 0.02584536287685
313 => 0.02553240109089
314 => 0.025546169821165
315 => 0.026615654983763
316 => 0.026682357461497
317 => 0.026850893103696
318 => 0.027067509032088
319 => 0.025882253506129
320 => 0.02549034439248
321 => 0.025304636112144
322 => 0.024732726486856
323 => 0.025349481985903
324 => 0.024990124968712
325 => 0.025038614507715
326 => 0.025007035631828
327 => 0.025024279833416
328 => 0.024108746486238
329 => 0.024442318718934
330 => 0.023887690184679
331 => 0.023145104837287
401 => 0.023142615430818
402 => 0.023324362142572
403 => 0.023216252086671
404 => 0.022925330706005
405 => 0.022966654715019
406 => 0.022604612912896
407 => 0.023010613144775
408 => 0.023022255778687
409 => 0.022865923574431
410 => 0.023491422948877
411 => 0.023747690552946
412 => 0.023644789347145
413 => 0.023740470730033
414 => 0.024544363831341
415 => 0.024675433483169
416 => 0.024733645964536
417 => 0.02465564895118
418 => 0.023755164420198
419 => 0.023795104738303
420 => 0.023502049184866
421 => 0.023254448123646
422 => 0.023264350867598
423 => 0.02339164999895
424 => 0.023947572771561
425 => 0.025117479473083
426 => 0.025161876577215
427 => 0.025215687162578
428 => 0.024996812468873
429 => 0.024930797766903
430 => 0.025017888198642
501 => 0.025457243644961
502 => 0.026587385136735
503 => 0.02618791765393
504 => 0.025863144372328
505 => 0.026148058098541
506 => 0.026104197863618
507 => 0.025733973341488
508 => 0.025723582372223
509 => 0.025013003146316
510 => 0.024750318185604
511 => 0.024530798970805
512 => 0.024291089718938
513 => 0.024148982039305
514 => 0.024367324022007
515 => 0.024417261416798
516 => 0.023939852855654
517 => 0.023874783832856
518 => 0.024264645969465
519 => 0.024093082178669
520 => 0.02426953979208
521 => 0.024310479472017
522 => 0.024303887240626
523 => 0.024124754939059
524 => 0.024238928526276
525 => 0.023968873955724
526 => 0.023675230171133
527 => 0.023487903731219
528 => 0.023324436567147
529 => 0.023415137650541
530 => 0.023091804849604
531 => 0.02298836417918
601 => 0.024200249083914
602 => 0.025095481492999
603 => 0.02508246445922
604 => 0.025003226613799
605 => 0.024885495248314
606 => 0.025448630862273
607 => 0.025252445674622
608 => 0.025395186790459
609 => 0.025431520395265
610 => 0.025541491274032
611 => 0.025580796410875
612 => 0.025461988988163
613 => 0.025063256766438
614 => 0.02406965398022
615 => 0.023607129201057
616 => 0.023454488319973
617 => 0.023460036526094
618 => 0.023306992232992
619 => 0.023352070636275
620 => 0.023291315803967
621 => 0.02317626084975
622 => 0.023408033331335
623 => 0.023434742950727
624 => 0.023380644484051
625 => 0.023393386631346
626 => 0.02294547443302
627 => 0.022979528224644
628 => 0.022789912385532
629 => 0.022754361701552
630 => 0.022275029372016
701 => 0.02142582266991
702 => 0.021896365617366
703 => 0.021328015905191
704 => 0.021112773257286
705 => 0.022131698475365
706 => 0.022029426644057
707 => 0.021854381725352
708 => 0.021595453808031
709 => 0.021499414924808
710 => 0.020915913072559
711 => 0.020881436670267
712 => 0.021170635944117
713 => 0.021037180429974
714 => 0.020849758344563
715 => 0.020170934549875
716 => 0.019407711853812
717 => 0.019430748749559
718 => 0.019673515688914
719 => 0.02037939330667
720 => 0.020103594709606
721 => 0.019903499663011
722 => 0.019866027875619
723 => 0.020335065747332
724 => 0.020998852602278
725 => 0.021310286543224
726 => 0.021001664966136
727 => 0.020647137115742
728 => 0.020668715583271
729 => 0.020812267460422
730 => 0.020827352732996
731 => 0.020596591548442
801 => 0.020661549470203
802 => 0.020562872447171
803 => 0.019957291738971
804 => 0.019946338704277
805 => 0.019797719432177
806 => 0.019793219299683
807 => 0.019540380843025
808 => 0.019505006995149
809 => 0.019002980893258
810 => 0.019333415993798
811 => 0.019111777476977
812 => 0.018777715952888
813 => 0.018720123620219
814 => 0.018718392325155
815 => 0.019061398815604
816 => 0.019329407763249
817 => 0.019115632973869
818 => 0.019066960598177
819 => 0.019586654233245
820 => 0.01952051848107
821 => 0.019463245346216
822 => 0.020939417769895
823 => 0.019770912109382
824 => 0.019261376945428
825 => 0.01863073042193
826 => 0.018836072109977
827 => 0.018879340620745
828 => 0.017362749414314
829 => 0.016747468550744
830 => 0.016536327344737
831 => 0.016414812595582
901 => 0.016470188392658
902 => 0.015916363450198
903 => 0.01628854297095
904 => 0.015808977384437
905 => 0.015728576653216
906 => 0.016586099328678
907 => 0.016705418599394
908 => 0.016196365520929
909 => 0.016523260005511
910 => 0.016404723521228
911 => 0.015817198159981
912 => 0.015794759012725
913 => 0.015499959438966
914 => 0.015038655190479
915 => 0.014827826770475
916 => 0.014718025498841
917 => 0.014763331643501
918 => 0.01474042347037
919 => 0.014590932145003
920 => 0.014748992138152
921 => 0.014345214170556
922 => 0.014184426530399
923 => 0.014111802483585
924 => 0.013753426296751
925 => 0.014323762180618
926 => 0.014436125534641
927 => 0.014548710279184
928 => 0.015528683615553
929 => 0.015479726917044
930 => 0.015922271628687
1001 => 0.01590507515498
1002 => 0.01577885423447
1003 => 0.015246348933174
1004 => 0.015458596055276
1005 => 0.014805332403971
1006 => 0.015294801949139
1007 => 0.015071428489461
1008 => 0.015219279157729
1009 => 0.014953430325027
1010 => 0.015100562045673
1011 => 0.014462771054286
1012 => 0.01386721080049
1013 => 0.014106881632105
1014 => 0.014367431235755
1015 => 0.014932369163272
1016 => 0.01459589679428
1017 => 0.014716904981598
1018 => 0.014311547810607
1019 => 0.0134751801823
1020 => 0.013479913932247
1021 => 0.013351256993892
1022 => 0.013240078614932
1023 => 0.014634544693421
1024 => 0.014461120793314
1025 => 0.014184792505653
1026 => 0.014554668899537
1027 => 0.014652470088808
1028 => 0.014655254351174
1029 => 0.01492510662026
1030 => 0.015069126824645
1031 => 0.015094511009887
1101 => 0.015519129385839
1102 => 0.015661455864606
1103 => 0.01624767848785
1104 => 0.015056907716516
1105 => 0.015032384576089
1106 => 0.014559873818921
1107 => 0.014260200026625
1108 => 0.014580392739862
1109 => 0.014864039773125
1110 => 0.014568687522907
1111 => 0.01460725429156
1112 => 0.014210768026808
1113 => 0.014352493210044
1114 => 0.014474566030291
1115 => 0.014407164594059
1116 => 0.014306261381754
1117 => 0.014840783951065
1118 => 0.014810624092894
1119 => 0.015308383798057
1120 => 0.01569642308337
1121 => 0.016391858852969
1122 => 0.015666135373505
1123 => 0.015639687125424
1124 => 0.015898222992851
1125 => 0.015661416284111
1126 => 0.015811069949745
1127 => 0.016367747333799
1128 => 0.016379509049723
1129 => 0.016182485153876
1130 => 0.016170496231908
1201 => 0.016208336826311
1202 => 0.016429970369657
1203 => 0.016352524799501
1204 => 0.016442146773968
1205 => 0.016554220425379
1206 => 0.017017804565858
1207 => 0.01712957313267
1208 => 0.016858033460673
1209 => 0.016882550452754
1210 => 0.016780987161496
1211 => 0.016682878294725
1212 => 0.016903412699576
1213 => 0.017306443659056
1214 => 0.017303936424374
1215 => 0.017397431773171
1216 => 0.017455678600914
1217 => 0.017205640576957
1218 => 0.017042875017513
1219 => 0.017105289690046
1220 => 0.017205092110639
1221 => 0.01707292511015
1222 => 0.016257129157422
1223 => 0.016504589536233
1224 => 0.016463400029004
1225 => 0.016404741161896
1226 => 0.016653564486344
1227 => 0.016629564869693
1228 => 0.015910683174927
1229 => 0.01595670364862
1230 => 0.015913481832357
1231 => 0.016053140363055
]
'min_raw' => 0.013240078614932
'max_raw' => 0.029659410528675
'avg_raw' => 0.021449744571803
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01324'
'max' => '$0.029659'
'avg' => '$0.021449'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.003228661799005
'max_diff' => -0.021552878633793
'year' => 2034
]
9 => [
'items' => [
101 => 0.015653874265134
102 => 0.015776685827756
103 => 0.015853712088546
104 => 0.015899081147895
105 => 0.016062985300118
106 => 0.016043753039629
107 => 0.016061789795803
108 => 0.016304816384458
109 => 0.017533961473222
110 => 0.017600861128448
111 => 0.017271422758717
112 => 0.01740302688954
113 => 0.01715037573702
114 => 0.017319982148322
115 => 0.0174360225474
116 => 0.016911658297255
117 => 0.016880608849457
118 => 0.016626914915757
119 => 0.016763235665768
120 => 0.016546339550692
121 => 0.016599558270627
122 => 0.016450754090162
123 => 0.016718571988383
124 => 0.017018034013287
125 => 0.017093689946892
126 => 0.016894671757506
127 => 0.016750569472452
128 => 0.016497573330142
129 => 0.016918311553191
130 => 0.017041348231375
131 => 0.016917665293898
201 => 0.016889005254759
202 => 0.016834694532379
203 => 0.016900527531256
204 => 0.017040678147202
205 => 0.016974585704897
206 => 0.017018240927439
207 => 0.016851872236181
208 => 0.017205723349947
209 => 0.017767724077514
210 => 0.01776953100175
211 => 0.017703438203182
212 => 0.017676394453997
213 => 0.017744209676174
214 => 0.017780996652279
215 => 0.018000298645614
216 => 0.018235618421839
217 => 0.01933375313942
218 => 0.01902540130498
219 => 0.019999731754745
220 => 0.020770300639534
221 => 0.021001360555188
222 => 0.020788796304995
223 => 0.020061625487579
224 => 0.020025947018126
225 => 0.021112647222945
226 => 0.020805604641061
227 => 0.020769082902947
228 => 0.020380553313868
301 => 0.020610222421339
302 => 0.020559990418493
303 => 0.020480696744566
304 => 0.020918889402733
305 => 0.021739146941094
306 => 0.021611302111414
307 => 0.021515871876609
308 => 0.021097724367016
309 => 0.021349542564418
310 => 0.021259874927583
311 => 0.021645143999915
312 => 0.021416919136221
313 => 0.020803278491518
314 => 0.020901002786773
315 => 0.020886231956139
316 => 0.02119021460391
317 => 0.021098966558363
318 => 0.020868414310767
319 => 0.021736343390001
320 => 0.021679984903271
321 => 0.021759888352111
322 => 0.021795064321386
323 => 0.02232335745729
324 => 0.022539782251575
325 => 0.022588914468927
326 => 0.022794501284603
327 => 0.022583799281667
328 => 0.023426757521392
329 => 0.023987275562832
330 => 0.02463834611196
331 => 0.0255897351755
401 => 0.025947466264233
402 => 0.02588284534498
403 => 0.026604177674904
404 => 0.027900395837459
405 => 0.026144848095928
406 => 0.027993444130563
407 => 0.027408199969065
408 => 0.026020596590247
409 => 0.02593125129142
410 => 0.026870952409962
411 => 0.028955119048009
412 => 0.0284330589436
413 => 0.028955972951316
414 => 0.028345965985103
415 => 0.028315673997688
416 => 0.028926346274529
417 => 0.03035321533538
418 => 0.029675363329956
419 => 0.028703496264051
420 => 0.029421107781589
421 => 0.028799446273287
422 => 0.027398668902982
423 => 0.028432659734077
424 => 0.027741259511687
425 => 0.027943046853438
426 => 0.029396267282881
427 => 0.029221411956066
428 => 0.029447690940132
429 => 0.029048314456008
430 => 0.028675233843945
501 => 0.0279788511762
502 => 0.027772686599531
503 => 0.027829663071498
504 => 0.027772658364821
505 => 0.027383038662305
506 => 0.027298900324642
507 => 0.027158666075686
508 => 0.027202130533287
509 => 0.026938449118274
510 => 0.027436070427764
511 => 0.02752843332783
512 => 0.027890560618704
513 => 0.027928157875354
514 => 0.028936677225878
515 => 0.028381201715089
516 => 0.028753862645175
517 => 0.028720528343967
518 => 0.026050670163047
519 => 0.02641855306402
520 => 0.026990863409919
521 => 0.02673303837484
522 => 0.026368534097004
523 => 0.026074177349169
524 => 0.025628196776677
525 => 0.026255905868162
526 => 0.027081276574045
527 => 0.027949090638524
528 => 0.028991712375565
529 => 0.028759011341312
530 => 0.027929599550382
531 => 0.027966806357438
601 => 0.028196804198316
602 => 0.027898936096872
603 => 0.02781108897868
604 => 0.02818473535326
605 => 0.02818730845049
606 => 0.027844575201216
607 => 0.02746368991417
608 => 0.02746209399091
609 => 0.027394319132996
610 => 0.028358022981763
611 => 0.028887962657136
612 => 0.028948719386877
613 => 0.02888387324514
614 => 0.028908829951443
615 => 0.028600469730768
616 => 0.029305289753849
617 => 0.029952102306505
618 => 0.029778742725258
619 => 0.029518852068454
620 => 0.029311836642278
621 => 0.029729976469896
622 => 0.029711357361586
623 => 0.029946452963124
624 => 0.02993578766866
625 => 0.029856733860256
626 => 0.029778745548519
627 => 0.030087960389157
628 => 0.029998911480892
629 => 0.029909724255076
630 => 0.029730845619821
701 => 0.029755158197212
702 => 0.029495312414193
703 => 0.029375095865234
704 => 0.027567327408731
705 => 0.027084232606615
706 => 0.027236224065662
707 => 0.027286263600437
708 => 0.027076020123453
709 => 0.02737745526233
710 => 0.027330476915235
711 => 0.027513242182368
712 => 0.027399058378209
713 => 0.02740374452136
714 => 0.027739534742839
715 => 0.027837016072688
716 => 0.027787436281556
717 => 0.027822160267769
718 => 0.028622359873972
719 => 0.028508597078913
720 => 0.028448162861414
721 => 0.028464903552676
722 => 0.028669371708534
723 => 0.028726611628627
724 => 0.028484082065016
725 => 0.028598460409262
726 => 0.029085468882286
727 => 0.029255894285552
728 => 0.029799810363944
729 => 0.029568745146506
730 => 0.029992875353381
731 => 0.031296507012675
801 => 0.032337938186568
802 => 0.031380195040093
803 => 0.033292650765487
804 => 0.034781771873187
805 => 0.034724616924813
806 => 0.034464954215693
807 => 0.03276962942491
808 => 0.031209566276563
809 => 0.032514625343936
810 => 0.032517952207886
811 => 0.032405846476599
812 => 0.031709567407691
813 => 0.032381617474274
814 => 0.032434962368032
815 => 0.032405103413079
816 => 0.03187126788346
817 => 0.031056199699028
818 => 0.031215462071269
819 => 0.031476337085863
820 => 0.030982446259007
821 => 0.030824618213926
822 => 0.031118050577746
823 => 0.032063550793033
824 => 0.031884809454243
825 => 0.031880141795537
826 => 0.032644873041005
827 => 0.032097490508582
828 => 0.031217470879811
829 => 0.030995254317514
830 => 0.030206535224371
831 => 0.030751306311326
901 => 0.030770911652908
902 => 0.030472546096009
903 => 0.031241681600367
904 => 0.031234593881291
905 => 0.031964773571967
906 => 0.033360602897573
907 => 0.032947787481401
908 => 0.032467728066584
909 => 0.032519923835579
910 => 0.033092382591312
911 => 0.032746260959633
912 => 0.03287072871163
913 => 0.033092194194462
914 => 0.033225809818932
915 => 0.032500698603445
916 => 0.032331640493036
917 => 0.031985806930473
918 => 0.03189558540929
919 => 0.032177259629943
920 => 0.032103048424498
921 => 0.030769263899864
922 => 0.030629875995933
923 => 0.030634150823946
924 => 0.030283653311977
925 => 0.029749060477184
926 => 0.031153938528142
927 => 0.031041107159394
928 => 0.030916550060751
929 => 0.030931807594622
930 => 0.031541617540808
1001 => 0.03118789697588
1002 => 0.032128321071403
1003 => 0.031934998149099
1004 => 0.031736717223313
1005 => 0.031709308759584
1006 => 0.03163298751969
1007 => 0.03137125359021
1008 => 0.031055194142593
1009 => 0.030846504318676
1010 => 0.028454269693929
1011 => 0.028898254525294
1012 => 0.029409018603287
1013 => 0.029585332316252
1014 => 0.029283735509688
1015 => 0.031383162470388
1016 => 0.031766748006689
1017 => 0.030604842396567
1018 => 0.030387497297207
1019 => 0.031397411578918
1020 => 0.030788309810046
1021 => 0.031062588299273
1022 => 0.030469748227877
1023 => 0.03167435348369
1024 => 0.031665176409906
1025 => 0.031196557758151
1026 => 0.031592631033653
1027 => 0.03152380355515
1028 => 0.030994734251475
1029 => 0.0316911259243
1030 => 0.031691471325882
1031 => 0.031240436062216
1101 => 0.030713725618569
1102 => 0.03061956223159
1103 => 0.030548622768573
1104 => 0.031045141540039
1105 => 0.031490318717962
1106 => 0.032318683077295
1107 => 0.032526953558683
1108 => 0.033339847112891
1109 => 0.032855808580429
1110 => 0.033070376592521
1111 => 0.033303320522145
1112 => 0.033415002408237
1113 => 0.033233022768031
1114 => 0.034495781058052
1115 => 0.034602396547644
1116 => 0.034638143799084
1117 => 0.034212348808518
1118 => 0.034590554418699
1119 => 0.034413604538549
1120 => 0.034873978968607
1121 => 0.034946171557596
1122 => 0.034885027003048
1123 => 0.034907942070276
1124 => 0.03383040063557
1125 => 0.033774524427697
1126 => 0.033012648368548
1127 => 0.033323118494155
1128 => 0.032742709475554
1129 => 0.032926763154228
1130 => 0.033007892262059
1201 => 0.032965515020164
1202 => 0.033340672009231
1203 => 0.033021711929015
1204 => 0.032179923835432
1205 => 0.031337906397247
1206 => 0.031327335554203
1207 => 0.031105647225571
1208 => 0.030945407168212
1209 => 0.030976275088081
1210 => 0.031085057663864
1211 => 0.030939084527152
1212 => 0.030970235296895
1213 => 0.03148754563113
1214 => 0.031591288529372
1215 => 0.031238729626178
1216 => 0.029823154755848
1217 => 0.029475769131968
1218 => 0.029725463029456
1219 => 0.029606125428804
1220 => 0.023894453884395
1221 => 0.025236326391332
1222 => 0.024439031313394
1223 => 0.024806461567091
1224 => 0.023992629751076
1225 => 0.024381032950258
1226 => 0.024309309061583
1227 => 0.026467000343844
1228 => 0.026433310962279
1229 => 0.026449436286432
1230 => 0.025679732550307
1231 => 0.026905891501687
]
'min_raw' => 0.015653874265134
'max_raw' => 0.034946171557596
'avg_raw' => 0.025300022911365
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.015653'
'max' => '$0.034946'
'avg' => '$0.025300022'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0024137956502019
'max_diff' => 0.0052867610289217
'year' => 2035
]
10 => [
'items' => [
101 => 0.027509941492387
102 => 0.027398147915378
103 => 0.027426283950213
104 => 0.026942813652605
105 => 0.026454117335726
106 => 0.025912077910484
107 => 0.026919120164487
108 => 0.026807154256626
109 => 0.027063963765196
110 => 0.027717102651784
111 => 0.027813279833867
112 => 0.02794254294192
113 => 0.027896211319258
114 => 0.029000018539789
115 => 0.028866340202229
116 => 0.029188466533868
117 => 0.028525828229902
118 => 0.02777599009076
119 => 0.027918509806955
120 => 0.027904784012214
121 => 0.02773003889143
122 => 0.027572286809769
123 => 0.027309674040176
124 => 0.028140619702545
125 => 0.028106884826138
126 => 0.028653013262667
127 => 0.028556479756702
128 => 0.027911805378111
129 => 0.027934830049662
130 => 0.028089682031121
131 => 0.02862562650702
201 => 0.028784731317349
202 => 0.028711027629974
203 => 0.02888547879109
204 => 0.029023357875889
205 => 0.028902794281317
206 => 0.030609720534336
207 => 0.029900885747599
208 => 0.030246366890614
209 => 0.03032876210753
210 => 0.030117708491984
211 => 0.030163478463933
212 => 0.030232807499864
213 => 0.03065375983002
214 => 0.031758460547888
215 => 0.03224772497588
216 => 0.033719701147375
217 => 0.032207098376025
218 => 0.032117346787346
219 => 0.032382494145254
220 => 0.033246699982423
221 => 0.033947057642722
222 => 0.034179406683246
223 => 0.034210115444616
224 => 0.034646017690911
225 => 0.034895868729391
226 => 0.034593087692843
227 => 0.034336512466865
228 => 0.033417491854699
229 => 0.033523870992967
301 => 0.03425671776452
302 => 0.035291906993797
303 => 0.0361802070456
304 => 0.035869155327841
305 => 0.03824226036605
306 => 0.038477544037324
307 => 0.038445035441586
308 => 0.038981046659652
309 => 0.037917173548577
310 => 0.037462347182021
311 => 0.034391986942974
312 => 0.035254632931779
313 => 0.036508539537931
314 => 0.036342580296699
315 => 0.035431959802292
316 => 0.036179516258298
317 => 0.03593235071569
318 => 0.035737400997328
319 => 0.036630503450008
320 => 0.03564850061666
321 => 0.036498743308476
322 => 0.035408298261587
323 => 0.035870576185887
324 => 0.035608164878187
325 => 0.035777977154189
326 => 0.034785258058517
327 => 0.035320905185648
328 => 0.034762973376984
329 => 0.034762708844661
330 => 0.034750392469062
331 => 0.035406796767707
401 => 0.03542820208832
402 => 0.034943118319849
403 => 0.03487321017038
404 => 0.035131697239312
405 => 0.034829076579463
406 => 0.034970670881535
407 => 0.034833365326629
408 => 0.034802454954122
409 => 0.034556155847021
410 => 0.034450043419547
411 => 0.03449165283654
412 => 0.034349618445218
413 => 0.034264037586838
414 => 0.034733368282291
415 => 0.034482623824457
416 => 0.034694938097946
417 => 0.034452979187108
418 => 0.033614244185662
419 => 0.033131878816869
420 => 0.031547586149914
421 => 0.031996889584954
422 => 0.032294778227223
423 => 0.03219632603273
424 => 0.032407839442442
425 => 0.032420824647958
426 => 0.032352059482336
427 => 0.03227243822991
428 => 0.03223368300756
429 => 0.032522532683397
430 => 0.032690219642454
501 => 0.03232467533771
502 => 0.032239033421617
503 => 0.032608618895967
504 => 0.032834065821818
505 => 0.034498639254614
506 => 0.034375322278211
507 => 0.034684823689248
508 => 0.034649978580051
509 => 0.034974385366259
510 => 0.035504653357172
511 => 0.034426470266384
512 => 0.034613605570179
513 => 0.034567724315274
514 => 0.035068643825617
515 => 0.035070207641651
516 => 0.034769881372415
517 => 0.034932693115205
518 => 0.034841816066886
519 => 0.035006043175968
520 => 0.034373675304808
521 => 0.035143831111988
522 => 0.035580459826915
523 => 0.035586522417045
524 => 0.035793480962621
525 => 0.036003762831156
526 => 0.036407380566119
527 => 0.035992506151592
528 => 0.035246187467068
529 => 0.035300069265496
530 => 0.034862502893827
531 => 0.034869858463588
601 => 0.034830593855739
602 => 0.034948429899594
603 => 0.034399533689939
604 => 0.034528358533227
605 => 0.034348002998226
606 => 0.034613213512468
607 => 0.034327890840012
608 => 0.034567702189943
609 => 0.034671196818701
610 => 0.035053094226898
611 => 0.03427148428231
612 => 0.032677728694955
613 => 0.033012755441836
614 => 0.032517224567416
615 => 0.032563087836463
616 => 0.032655738939022
617 => 0.032355426402073
618 => 0.032412716570187
619 => 0.032410669762237
620 => 0.032393031477101
621 => 0.03231490858762
622 => 0.03220161494173
623 => 0.032652941957011
624 => 0.032729631211591
625 => 0.032900101924735
626 => 0.03340730713566
627 => 0.033356625374366
628 => 0.033439289429802
629 => 0.033258834260923
630 => 0.032571458634189
701 => 0.032608786437785
702 => 0.03214330812881
703 => 0.032888198597836
704 => 0.032711798702697
705 => 0.032598072542752
706 => 0.032567041306345
707 => 0.033075503780883
708 => 0.033227643722438
709 => 0.033132840320593
710 => 0.032938395777551
711 => 0.03331178678256
712 => 0.033411690463398
713 => 0.033434055213232
714 => 0.034095632483484
715 => 0.033471030033433
716 => 0.033621378051174
717 => 0.034794350366861
718 => 0.033730626335648
719 => 0.034294104678858
720 => 0.034266525346158
721 => 0.034554781799476
722 => 0.03424287990341
723 => 0.034246746301223
724 => 0.034502698503586
725 => 0.03414325979659
726 => 0.03405425771794
727 => 0.033931301983729
728 => 0.034199771331132
729 => 0.034360706563076
730 => 0.035657726338639
731 => 0.036495660264941
801 => 0.036459283343307
802 => 0.0367917003123
803 => 0.036641943423178
804 => 0.036158338924332
805 => 0.036983792834577
806 => 0.036722584678917
807 => 0.036744118361901
808 => 0.036743316877145
809 => 0.036916997465446
810 => 0.036793928851043
811 => 0.03655134797932
812 => 0.036712384482745
813 => 0.037190605326313
814 => 0.038675017498355
815 => 0.039505714215675
816 => 0.038625008512919
817 => 0.039232507513561
818 => 0.038868224587202
819 => 0.038802023543005
820 => 0.039183577809232
821 => 0.039565799935692
822 => 0.039541454038628
823 => 0.039263980402141
824 => 0.039107242585523
825 => 0.040294113843979
826 => 0.041168580369386
827 => 0.041108947614851
828 => 0.041372147199757
829 => 0.042144909321496
830 => 0.042215561005338
831 => 0.042206660517084
901 => 0.042031542946942
902 => 0.042792427611637
903 => 0.043427170985417
904 => 0.041991008289087
905 => 0.042537880243099
906 => 0.042783388682369
907 => 0.043143867910289
908 => 0.043752056791124
909 => 0.044412711229844
910 => 0.044506135011186
911 => 0.044439846367584
912 => 0.044004127005904
913 => 0.044727022975998
914 => 0.045150478481283
915 => 0.045402636544073
916 => 0.046042067436207
917 => 0.042784904858909
918 => 0.040479323295214
919 => 0.040119273441042
920 => 0.040851448977762
921 => 0.041044517827805
922 => 0.040966692016441
923 => 0.038371550352197
924 => 0.040105610557256
925 => 0.041971313533977
926 => 0.042042982783628
927 => 0.042976992703784
928 => 0.043281144620147
929 => 0.044033145029351
930 => 0.043986107199008
1001 => 0.044169207331709
1002 => 0.044127115782053
1003 => 0.045520038187736
1004 => 0.047056638452183
1005 => 0.047003430871115
1006 => 0.046782526402871
1007 => 0.047110607208022
1008 => 0.048696543353023
1009 => 0.0485505357669
1010 => 0.048692369699922
1011 => 0.050562277794322
1012 => 0.052993424308368
1013 => 0.051863912669474
1014 => 0.054314627917654
1015 => 0.05585722325955
1016 => 0.058524982396024
1017 => 0.058190965813146
1018 => 0.059229504868055
1019 => 0.057593006418432
1020 => 0.053835275187193
1021 => 0.053240599835832
1022 => 0.054431154948834
1023 => 0.057358018521483
1024 => 0.054338977599109
1025 => 0.054949725645698
1026 => 0.054773830167193
1027 => 0.054764457444651
1028 => 0.055122176142456
1029 => 0.054603286513937
1030 => 0.052489236820887
1031 => 0.053458093337039
1101 => 0.053083971307841
1102 => 0.053499087591881
1103 => 0.055739298969864
1104 => 0.054748848119688
1105 => 0.053705488606722
1106 => 0.055014092975993
1107 => 0.056680396023323
1108 => 0.056576121773255
1109 => 0.056373786144869
1110 => 0.057514341488133
1111 => 0.059398204763844
1112 => 0.059907405437293
1113 => 0.060283286964283
1114 => 0.060335114676285
1115 => 0.060868972320645
1116 => 0.057998285217474
1117 => 0.062554139374679
1118 => 0.063340809534698
1119 => 0.063192948148752
1120 => 0.064067298923471
1121 => 0.06381004274541
1122 => 0.063437318905658
1123 => 0.064823350863331
1124 => 0.06323437707087
1125 => 0.06097902881871
1126 => 0.059741700161844
1127 => 0.06137111434966
1128 => 0.062366140735441
1129 => 0.063023789880878
1130 => 0.063222794114925
1201 => 0.058221128485495
1202 => 0.055525508116325
1203 => 0.057253369867613
1204 => 0.059361480454831
1205 => 0.057986574556721
1206 => 0.058040468264886
1207 => 0.056080213773094
1208 => 0.059534919480864
1209 => 0.05903159791789
1210 => 0.061642831076957
1211 => 0.061019639327091
1212 => 0.063148998600823
1213 => 0.062588266941449
1214 => 0.064915832709425
1215 => 0.065844361710599
1216 => 0.067403506417568
1217 => 0.068550419610876
1218 => 0.069223908974939
1219 => 0.069183475199716
1220 => 0.071852175591205
1221 => 0.070278536207634
1222 => 0.068301674263543
1223 => 0.068265919067894
1224 => 0.069289763881089
1225 => 0.071435461731438
1226 => 0.0719918099654
1227 => 0.072302732729763
1228 => 0.071826543692842
1229 => 0.070118470925727
1230 => 0.069380933765012
1231 => 0.070009336794449
]
'min_raw' => 0.025912077910484
'max_raw' => 0.072302732729763
'avg_raw' => 0.049107405320123
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.025912'
'max' => '$0.0723027'
'avg' => '$0.0491074'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.01025820364535
'max_diff' => 0.037356561172167
'year' => 2036
]
11 => [
'items' => [
101 => 0.069240853888735
102 => 0.070567470982219
103 => 0.072389199601692
104 => 0.072013019845667
105 => 0.07327053237004
106 => 0.07457192553859
107 => 0.076432976218841
108 => 0.076919523781166
109 => 0.077723768399943
110 => 0.078551600293258
111 => 0.078817477586696
112 => 0.079325119836748
113 => 0.079322444311511
114 => 0.080852258400307
115 => 0.082539690714647
116 => 0.083176657349163
117 => 0.084641327002686
118 => 0.082133131549174
119 => 0.084035626612736
120 => 0.085751724782609
121 => 0.083705721798063
122 => 0.086525660254704
123 => 0.086635152074858
124 => 0.088288348564498
125 => 0.086612517208123
126 => 0.08561741389815
127 => 0.088490239868007
128 => 0.08988030986165
129 => 0.0894616094668
130 => 0.086275278788201
131 => 0.084420697665105
201 => 0.07956690114398
202 => 0.085316432791658
203 => 0.088116861941105
204 => 0.086268026353238
205 => 0.087200471483414
206 => 0.092287589767307
207 => 0.094224435043296
208 => 0.093821584765461
209 => 0.093889659830935
210 => 0.09493474638563
211 => 0.099569235708828
212 => 0.096792142279746
213 => 0.098915126150574
214 => 0.10004114914067
215 => 0.10108706204782
216 => 0.098518630512036
217 => 0.095177138821734
218 => 0.094118748137136
219 => 0.086084196090592
220 => 0.085665962764278
221 => 0.085431195724452
222 => 0.083951022746802
223 => 0.082788012239869
224 => 0.081863143104945
225 => 0.079436010305602
226 => 0.08025509637615
227 => 0.076386753275981
228 => 0.078861582105807
301 => 0.072687613113527
302 => 0.077829477950777
303 => 0.075030994691768
304 => 0.076910100935227
305 => 0.076903544910566
306 => 0.073443514545181
307 => 0.071447841239419
308 => 0.072719561942618
309 => 0.074082947485762
310 => 0.074304152203157
311 => 0.076071817147847
312 => 0.07656513443808
313 => 0.075070360017894
314 => 0.072559671329119
315 => 0.073142847048809
316 => 0.071436023202073
317 => 0.068444880062699
318 => 0.070593171285747
319 => 0.071326692362992
320 => 0.071650657058478
321 => 0.068709211316014
322 => 0.067784945201838
323 => 0.067292873677995
324 => 0.072179967620861
325 => 0.072447693659042
326 => 0.071077969395061
327 => 0.07726925295084
328 => 0.075867974801314
329 => 0.077433545815816
330 => 0.073089929964806
331 => 0.073255861939769
401 => 0.071199524586369
402 => 0.072350936099762
403 => 0.071537155553821
404 => 0.07225791342795
405 => 0.072689932725906
406 => 0.074745932654581
407 => 0.077852954167364
408 => 0.074438834826792
409 => 0.072951254139016
410 => 0.073874140831241
411 => 0.076331909709223
412 => 0.08005555537024
413 => 0.077851082193565
414 => 0.078829389954991
415 => 0.07904310667898
416 => 0.077417609772533
417 => 0.080115489759765
418 => 0.081561305562461
419 => 0.083044413406602
420 => 0.084332154391931
421 => 0.082452027519411
422 => 0.084464032778608
423 => 0.082842711706435
424 => 0.081388219095604
425 => 0.081390424960506
426 => 0.080478000498986
427 => 0.078710063131909
428 => 0.078384028356394
429 => 0.080080102432274
430 => 0.081440193222317
501 => 0.08155221681418
502 => 0.082305232959536
503 => 0.082750860157675
504 => 0.08711861250023
505 => 0.088875358624348
506 => 0.091023474531418
507 => 0.0918602867384
508 => 0.094378791467637
509 => 0.092344894355825
510 => 0.091904847921872
511 => 0.085795779245361
512 => 0.086796138898903
513 => 0.088397811224574
514 => 0.085822190232079
515 => 0.087455828925586
516 => 0.087778343808883
517 => 0.085734671616327
518 => 0.086826285236234
519 => 0.083927283102644
520 => 0.077916144491818
521 => 0.080122181875414
522 => 0.081746567933895
523 => 0.079428368743086
524 => 0.083583651065913
525 => 0.081156220915356
526 => 0.080386842094825
527 => 0.077385221012581
528 => 0.07880187062041
529 => 0.080717909499466
530 => 0.079534020235637
531 => 0.081990768219949
601 => 0.08547017855649
602 => 0.087949813564777
603 => 0.088140169150963
604 => 0.086545929963278
605 => 0.089100708435842
606 => 0.0891193172079
607 => 0.086237516654271
608 => 0.084472429861105
609 => 0.084071398427924
610 => 0.085073253574855
611 => 0.086289690675892
612 => 0.088207672944099
613 => 0.089366669459434
614 => 0.092388717687175
615 => 0.093206397288689
616 => 0.094104779265788
617 => 0.095305294637933
618 => 0.096746821148017
619 => 0.093592843210104
620 => 0.093718156633327
621 => 0.09078121604734
622 => 0.087642673831328
623 => 0.090024436148471
624 => 0.093138273545572
625 => 0.092423955806192
626 => 0.092343580468325
627 => 0.092478749492358
628 => 0.091940177244302
629 => 0.089504234926765
630 => 0.088280919944703
701 => 0.089859308372499
702 => 0.090698151575886
703 => 0.091999124229524
704 => 0.091838751889762
705 => 0.09518991773127
706 => 0.096492079443285
707 => 0.09615893075471
708 => 0.096220238131079
709 => 0.098577739711332
710 => 0.10119976632575
711 => 0.10365564025704
712 => 0.10615386070219
713 => 0.10314215844836
714 => 0.10161300177984
715 => 0.10319070113262
716 => 0.10235355164831
717 => 0.10716406089984
718 => 0.10749713012321
719 => 0.11230729152017
720 => 0.11687270746925
721 => 0.11400525150955
722 => 0.11670913332649
723 => 0.11963360196223
724 => 0.12527537643851
725 => 0.12337542527492
726 => 0.12192009245964
727 => 0.12054480998132
728 => 0.12340655449876
729 => 0.12708814310297
730 => 0.1278811220265
731 => 0.12916605082388
801 => 0.12781510530705
802 => 0.1294421703803
803 => 0.1351864250575
804 => 0.13363427673778
805 => 0.13142997660349
806 => 0.13596451398705
807 => 0.1376055454386
808 => 0.14912316358038
809 => 0.16366463225345
810 => 0.15764436873837
811 => 0.15390739690186
812 => 0.1547856739256
813 => 0.16009572602523
814 => 0.161801146227
815 => 0.15716522622499
816 => 0.15880271154287
817 => 0.16782541663839
818 => 0.17266580843911
819 => 0.16609190622239
820 => 0.14795477073121
821 => 0.13123150349417
822 => 0.13566726702397
823 => 0.13516438909746
824 => 0.14485816011722
825 => 0.13359725851369
826 => 0.1337868632165
827 => 0.14368109115506
828 => 0.14104148077106
829 => 0.13676565000474
830 => 0.13126272179068
831 => 0.12109005002773
901 => 0.11207983096136
902 => 0.12975094548005
903 => 0.12898893488917
904 => 0.12788543062993
905 => 0.13034115994723
906 => 0.14226548444115
907 => 0.14199059016629
908 => 0.14024185304195
909 => 0.1415682547381
910 => 0.13653312537434
911 => 0.13783079285915
912 => 0.13122885444319
913 => 0.13421320632851
914 => 0.13675647599229
915 => 0.13726707503104
916 => 0.13841748073719
917 => 0.1285873899338
918 => 0.13300081210822
919 => 0.13559328415396
920 => 0.12388040113638
921 => 0.13536175811649
922 => 0.12841626992289
923 => 0.12605886691225
924 => 0.12923279950185
925 => 0.12799591488493
926 => 0.12693251412361
927 => 0.12633911822725
928 => 0.12866970402689
929 => 0.12856097941368
930 => 0.12474768869826
1001 => 0.1197734064096
1002 => 0.12144293882092
1003 => 0.12083638204394
1004 => 0.11863814203677
1005 => 0.12011949038509
1006 => 0.11359638195232
1007 => 0.10237371293542
1008 => 0.10978775184764
1009 => 0.10950231941444
1010 => 0.10935839143829
1011 => 0.11492983677183
1012 => 0.11439427085813
1013 => 0.11342221348047
1014 => 0.11862028944073
1015 => 0.11672292179125
1016 => 0.12257016181091
1017 => 0.12642153226364
1018 => 0.12544470013805
1019 => 0.12906693266412
1020 => 0.1214814014757
1021 => 0.1240010106578
1022 => 0.12452029861821
1023 => 0.11855614599026
1024 => 0.11448189606507
1025 => 0.1142101900449
1026 => 0.10714600214084
1027 => 0.11091963429906
1028 => 0.11424027443478
1029 => 0.11264994550186
1030 => 0.11214649487142
1031 => 0.11471851495721
1101 => 0.11491838294574
1102 => 0.11036137162623
1103 => 0.11130891858134
1104 => 0.1152603469007
1105 => 0.11120935272601
1106 => 0.10333893277071
1107 => 0.10138695980473
1108 => 0.10112653062907
1109 => 0.095832625132398
1110 => 0.10151739997204
1111 => 0.099035843412043
1112 => 0.10687505085146
1113 => 0.10239733760458
1114 => 0.102204312336
1115 => 0.10191252633189
1116 => 0.097355843182419
1117 => 0.098353467199832
1118 => 0.10166972137614
1119 => 0.10285299822652
1120 => 0.10272957275672
1121 => 0.1016534699215
1122 => 0.10214610428893
1123 => 0.10055915734625
1124 => 0.099998773351342
1125 => 0.098230047317662
1126 => 0.095630508671191
1127 => 0.09599199046388
1128 => 0.090841624198933
1129 => 0.088035431307163
1130 => 0.087258714099749
1201 => 0.086220055388749
1202 => 0.087376033364922
1203 => 0.090827033858414
1204 => 0.086664395092666
1205 => 0.07952784290395
1206 => 0.079956761850585
1207 => 0.080920415376496
1208 => 0.079124653406168
1209 => 0.07742511540813
1210 => 0.078902725809547
1211 => 0.075878874567683
1212 => 0.081285833352455
1213 => 0.081139590270154
1214 => 0.083154970141029
1215 => 0.084415228534045
1216 => 0.081510740951642
1217 => 0.080780270179238
1218 => 0.081196379529245
1219 => 0.074319018868656
1220 => 0.082592943050984
1221 => 0.082664496290895
1222 => 0.082051814009546
1223 => 0.086457423207886
1224 => 0.095754632760351
1225 => 0.092256648547326
1226 => 0.09090212333291
1227 => 0.088327169910154
1228 => 0.091758142460371
1229 => 0.091494697300024
1230 => 0.090303298376323
1231 => 0.089582736589878
]
'min_raw' => 0.067292873677995
'max_raw' => 0.17266580843911
'avg_raw' => 0.11997934105855
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.067292'
'max' => '$0.172665'
'avg' => '$0.119979'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.041380795767511
'max_diff' => 0.10036307570934
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0021122464109078
]
1 => [
'year' => 2028
'avg' => 0.0036252280306323
]
2 => [
'year' => 2029
'avg' => 0.0099034695959057
]
3 => [
'year' => 2030
'avg' => 0.0076405120445519
]
4 => [
'year' => 2031
'avg' => 0.0075039297059835
]
5 => [
'year' => 2032
'avg' => 0.01315675034818
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0021122464109078
'min' => '$0.002112'
'max_raw' => 0.01315675034818
'max' => '$0.013156'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01315675034818
]
1 => [
'year' => 2033
'avg' => 0.033840514788202
]
2 => [
'year' => 2034
'avg' => 0.021449744571803
]
3 => [
'year' => 2035
'avg' => 0.025300022911365
]
4 => [
'year' => 2036
'avg' => 0.049107405320123
]
5 => [
'year' => 2037
'avg' => 0.11997934105855
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01315675034818
'min' => '$0.013156'
'max_raw' => 0.11997934105855
'max' => '$0.119979'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.11997934105855
]
]
]
]
'prediction_2025_max_price' => '$0.003611'
'last_price' => 0.00350186
'sma_50day_nextmonth' => '$0.003233'
'sma_200day_nextmonth' => '$0.005827'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0035014'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003282'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0033094'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003397'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005256'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006051'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.006984'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003437'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003366'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003339'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003719'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.004748'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.005595'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.006666'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.005682'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.007464'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.010225'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.542572'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.003526'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003824'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004607'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005696'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0122056'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.169266'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.769381'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 103.07
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003226'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003471'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 85.57
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 29.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.41
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0012014'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -14.43
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 50.29
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000290'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 14
'sell_pct' => 58.82
'buy_pct' => 41.18
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767702236
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Anchor Protocol para 2026
La previsión del precio de Anchor Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.0012098 en el extremo inferior y $0.003611 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Anchor Protocol podría potencialmente ganar 3.13% para 2026 si ANC alcanza el objetivo de precio previsto.
Predicción de precio de Anchor Protocol 2027-2032
La predicción del precio de ANC para 2027-2032 está actualmente dentro de un rango de precios de $0.002112 en el extremo inferior y $0.013156 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Anchor Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Anchor Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001164 | $0.002112 | $0.003059 |
| 2028 | $0.002102 | $0.003625 | $0.005148 |
| 2029 | $0.004617 | $0.0099034 | $0.015189 |
| 2030 | $0.003926 | $0.00764 | $0.011354 |
| 2031 | $0.004642 | $0.0075039 | $0.010364 |
| 2032 | $0.007087 | $0.013156 | $0.019226 |
Predicción de precio de Anchor Protocol 2032-2037
La predicción de precio de Anchor Protocol para 2032-2037 se estima actualmente entre $0.013156 en el extremo inferior y $0.119979 en el extremo superior. Comparado con el precio actual, Anchor Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Anchor Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007087 | $0.013156 | $0.019226 |
| 2033 | $0.016468 | $0.03384 | $0.051212 |
| 2034 | $0.01324 | $0.021449 | $0.029659 |
| 2035 | $0.015653 | $0.025300022 | $0.034946 |
| 2036 | $0.025912 | $0.0491074 | $0.0723027 |
| 2037 | $0.067292 | $0.119979 | $0.172665 |
Anchor Protocol Histograma de precios potenciales
Pronóstico de precio de Anchor Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Anchor Protocol es Bajista, con 14 indicadores técnicos mostrando señales alcistas y 20 indicando señales bajistas. La predicción de precio de ANC se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Anchor Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Anchor Protocol aumentar durante el próximo mes, alcanzando $0.005827 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Anchor Protocol alcance $0.003233 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 44.81, lo que sugiere que el mercado de ANC está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ANC para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0035014 | BUY |
| SMA 5 | $0.003282 | BUY |
| SMA 10 | $0.0033094 | BUY |
| SMA 21 | $0.003397 | BUY |
| SMA 50 | $0.005256 | SELL |
| SMA 100 | $0.006051 | SELL |
| SMA 200 | $0.006984 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.003437 | BUY |
| EMA 5 | $0.003366 | BUY |
| EMA 10 | $0.003339 | BUY |
| EMA 21 | $0.003719 | SELL |
| EMA 50 | $0.004748 | SELL |
| EMA 100 | $0.005595 | SELL |
| EMA 200 | $0.006666 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.005682 | SELL |
| SMA 50 | $0.007464 | SELL |
| SMA 100 | $0.010225 | SELL |
| SMA 200 | $0.542572 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.005696 | SELL |
| EMA 50 | $0.0122056 | SELL |
| EMA 100 | $0.169266 | SELL |
| EMA 200 | $0.769381 | SELL |
Osciladores de Anchor Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 44.81 | NEUTRAL |
| Stoch RSI (14) | 103.07 | SELL |
| Estocástico Rápido (14) | 85.57 | SELL |
| Índice de Canal de Materias Primas (20) | 29.39 | NEUTRAL |
| Índice Direccional Medio (14) | 19.41 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.0012014 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -14.43 | SELL |
| Oscilador Ultimate (7, 14, 28) | 50.29 | NEUTRAL |
| VWMA (10) | 0.003226 | BUY |
| Promedio Móvil de Hull (9) | 0.003471 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000290 | SELL |
Predicción de precios de Anchor Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Anchor Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Anchor Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.00492 | $0.006914 | $0.009715 | $0.013652 | $0.019183 | $0.026956 |
| Amazon.com acción | $0.0073068 | $0.015246 | $0.031812 | $0.066377 | $0.13850089 | $0.28899 |
| Apple acción | $0.004967 | $0.007045 | $0.009993 | $0.014174 | $0.0201061 | $0.028519 |
| Netflix acción | $0.005525 | $0.008718 | $0.013755 | $0.0217047 | $0.034246 | $0.054035 |
| Google acción | $0.004534 | $0.005872 | $0.007605 | $0.009848 | $0.012753 | $0.016516 |
| Tesla acción | $0.007938 | $0.017995 | $0.040795 | $0.092479 | $0.209644 | $0.475248 |
| Kodak acción | $0.002626 | $0.001969 | $0.001476 | $0.0011073 | $0.00083 | $0.000622 |
| Nokia acción | $0.002319 | $0.001536 | $0.001018 | $0.000674 | $0.000446 | $0.000295 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Anchor Protocol
Podría preguntarse cosas como: "¿Debo invertir en Anchor Protocol ahora?", "¿Debería comprar ANC hoy?", "¿Será Anchor Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Anchor Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Anchor Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Anchor Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Anchor Protocol es de $0.003501 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Anchor Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Anchor Protocol
basado en el historial de precios del último mes
Predicción de precios de Anchor Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Anchor Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.003592 | $0.003686 | $0.003782 | $0.00388 |
| Si Anchor Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.003683 | $0.003875 | $0.004076 | $0.004288 |
| Si Anchor Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003956 | $0.004471 | $0.005052 | $0.005709 |
| Si Anchor Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.004412 | $0.005558 | $0.0070039 | $0.008824 |
| Si Anchor Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.005322 | $0.008089 | $0.012294 | $0.018686 |
| Si Anchor Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.008053 | $0.018519 | $0.042588 | $0.097938 |
| Si Anchor Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0126043 | $0.045366 | $0.16329 | $0.587734 |
Cuadro de preguntas
¿Es ANC una buena inversión?
La decisión de adquirir Anchor Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Anchor Protocol ha experimentado una caída de 0% durante las últimas 24 horas, y Anchor Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Anchor Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Anchor Protocol subir?
Parece que el valor medio de Anchor Protocol podría potencialmente aumentar hasta $0.003611 para el final de este año. Mirando las perspectivas de Anchor Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.011354. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Anchor Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Anchor Protocol, el precio de Anchor Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.003531 para el 13 de enero de 2026.
¿Cuál será el precio de Anchor Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Anchor Protocol, el precio de Anchor Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.003095 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Anchor Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Anchor Protocol en 2026, se anticipa que ANC fluctúe dentro del rango de $0.0012098 y $0.003611. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Anchor Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Anchor Protocol en 5 años?
El futuro de Anchor Protocol parece estar en una tendencia alcista, con un precio máximo de $0.011354 proyectada después de un período de cinco años. Basado en el pronóstico de Anchor Protocol para 2030, el valor de Anchor Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.011354, mientras que su punto más bajo se anticipa que esté alrededor de $0.003926.
¿Cuánto será Anchor Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Anchor Protocol, se espera que el valor de ANC en 2026 crezca en un 3.13% hasta $0.003611 si ocurre lo mejor. El precio estará entre $0.003611 y $0.0012098 durante 2026.
¿Cuánto será Anchor Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Anchor Protocol, el valor de ANC podría disminuir en un -12.62% hasta $0.003059 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003059 y $0.001164 a lo largo del año.
¿Cuánto será Anchor Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Anchor Protocol sugiere que el valor de ANC en 2028 podría aumentar en un 47.02% , alcanzando $0.005148 en el mejor escenario. Se espera que el precio oscile entre $0.005148 y $0.002102 durante el año.
¿Cuánto será Anchor Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Anchor Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.015189 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.015189 y $0.004617.
¿Cuánto será Anchor Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Anchor Protocol, se espera que el valor de ANC en 2030 aumente en un 224.23% , alcanzando $0.011354 en el mejor escenario. Se pronostica que el precio oscile entre $0.011354 y $0.003926 durante el transcurso de 2030.
¿Cuánto será Anchor Protocol en 2031?
Nuestra simulación experimental indica que el precio de Anchor Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.010364 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.010364 y $0.004642 durante el año.
¿Cuánto será Anchor Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Anchor Protocol, ANC podría experimentar un 449.04% aumento en valor, alcanzando $0.019226 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.019226 y $0.007087 a lo largo del año.
¿Cuánto será Anchor Protocol en 2033?
Según nuestra predicción experimental de precios de Anchor Protocol, se anticipa que el valor de ANC aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.051212. A lo largo del año, el precio de ANC podría oscilar entre $0.051212 y $0.016468.
¿Cuánto será Anchor Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Anchor Protocol sugieren que ANC podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.029659 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.029659 y $0.01324.
¿Cuánto será Anchor Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Anchor Protocol, ANC podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.034946 en 2035. El rango de precios esperado para el año está entre $0.034946 y $0.015653.
¿Cuánto será Anchor Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Anchor Protocol sugiere que el valor de ANC podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0723027 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0723027 y $0.025912.
¿Cuánto será Anchor Protocol en 2037?
Según la simulación experimental, el valor de Anchor Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $0.172665 bajo condiciones favorables. Se espera que el precio caiga entre $0.172665 y $0.067292 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de aiRight
Predicción de precios de Yoshi.exchange
Predicción de precios de PLEX
Predicción de precios de Ton Inu
Predicción de precios de PAW
Predicción de precios de Sonar
Predicción de precios de Vai
Predicción de precios de BTC 2x Flexible Leverage Index
Predicción de precios de Nucleon xCFX
Predicción de precios de Interlay
Predicción de precios de Lattice Token
Predicción de precios de GAMI WORLD
Predicción de precios de Florence Finance Medici
Predicción de precios de Turbos Finance
Predicción de precios de LABEL Foundation
Predicción de precios de Finceptor
Predicción de precios de ToaCoin
Predicción de precios de WOM TokenPredicción de precios de Merchant Token
Predicción de precios de LUCA
Predicción de precios de Asia Coin
Predicción de precios de BoringDAO
Predicción de precios de Tap
Predicción de precios de Prism
Predicción de precios de Napoli Fan Token
¿Cómo leer y predecir los movimientos de precio de Anchor Protocol?
Los traders de Anchor Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Anchor Protocol
Las medias móviles son herramientas populares para la predicción de precios de Anchor Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de ANC durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ANC por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ANC.
¿Cómo leer gráficos de Anchor Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Anchor Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ANC dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Anchor Protocol?
La acción del precio de Anchor Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ANC. La capitalización de mercado de Anchor Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ANC, grandes poseedores de Anchor Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Anchor Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


