Predicción del precio de Anarchy - Pronóstico de ANARCHY
Predicción de precio de Anarchy hasta $0.013461 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0045096 | $0.013461 |
| 2027 | $0.004341 | $0.0114045 |
| 2028 | $0.007834 | $0.019189 |
| 2029 | $0.01721 | $0.056615 |
| 2030 | $0.014636 | $0.042319 |
| 2031 | $0.0173054 | $0.038633 |
| 2032 | $0.026415 | $0.071662 |
| 2033 | $0.061383 | $0.190882 |
| 2034 | $0.049349 | $0.110548 |
| 2035 | $0.058346 | $0.130254 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Anarchy hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.14, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Anarchy para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Anarchy'
'name_with_ticker' => 'Anarchy <small>ANARCHY</small>'
'name_lang' => 'Anarchy'
'name_lang_with_ticker' => 'Anarchy <small>ANARCHY</small>'
'name_with_lang' => 'Anarchy'
'name_with_lang_with_ticker' => 'Anarchy <small>ANARCHY</small>'
'image' => '/uploads/coins/anarchy.jpg?1717324863'
'price_for_sd' => 0.01305
'ticker' => 'ANARCHY'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$9.34'
'current_supply' => '0'
'max_supply' => '5M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01305'
'change_24h_pct' => '0%'
'ath_price' => '$0.7309'
'ath_days' => 1258
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 jul. 2022'
'ath_pct' => '-98.21%'
'fdv' => '$65.26K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.643574'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013164'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011535'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0045096'
'current_year_max_price_prediction' => '$0.013461'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014636'
'grand_prediction_max_price' => '$0.042319'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013299756493427
107 => 0.013349412956362
108 => 0.013461291502876
109 => 0.012505301572273
110 => 0.012934512984724
111 => 0.013186634477868
112 => 0.012047540399584
113 => 0.013164118250407
114 => 0.012488659914467
115 => 0.012259399210205
116 => 0.012568068545693
117 => 0.012447779805462
118 => 0.012344362610204
119 => 0.012286654038317
120 => 0.012513306731708
121 => 0.012502733112653
122 => 0.012131885314873
123 => 0.01164812948036
124 => 0.011810493817167
125 => 0.011751505331431
126 => 0.011537723449459
127 => 0.011681786625786
128 => 0.01104740530595
129 => 0.0099559852174451
130 => 0.010677010759013
131 => 0.010649252059987
201 => 0.010635254865182
202 => 0.011177085631988
203 => 0.011125001105922
204 => 0.0110304671811
205 => 0.011535987259796
206 => 0.011351465630867
207 => 0.011920117812461
208 => 0.012294668917377
209 => 0.012199670641711
210 => 0.012551937766246
211 => 0.011814234363557
212 => 0.012059269842407
213 => 0.012109771314994
214 => 0.011529749220494
215 => 0.011133522778527
216 => 0.01110709899216
217 => 0.010420096945155
218 => 0.010787087893378
219 => 0.011110024740697
220 => 0.010955363051743
221 => 0.010906401781407
222 => 0.011156534293151
223 => 0.011175971731554
224 => 0.010732796076087
225 => 0.010824946328406
226 => 0.011209228199283
227 => 0.010815263411226
228 => 0.010049854181813
301 => 0.0098600221103084
302 => 0.0098346950126704
303 => 0.0093198553789778
304 => 0.0098727075970437
305 => 0.0096313727883397
306 => 0.010393746557401
307 => 0.0099582827492056
308 => 0.0099395107747848
309 => 0.0099111341821978
310 => 0.0094679904417212
311 => 0.0095650107576317
312 => 0.0098875210643294
313 => 0.010002596375098
314 => 0.0099905930774005
315 => 0.0098859405878817
316 => 0.009933849961676
317 => 0.0097795171759524
318 => 0.0097250190571543
319 => 0.0095530080033388
320 => 0.0093001992734965
321 => 0.0093353538779471
322 => 0.0088344736331269
323 => 0.0085615674920223
324 => 0.0084860306690097
325 => 0.008385019672376
326 => 0.0084974401298594
327 => 0.0088330547023257
328 => 0.0084282323233279
329 => 0.0077341927495244
330 => 0.0077759057104959
331 => 0.0078696223491096
401 => 0.0076949820130506
402 => 0.0075296995914233
403 => 0.0076733992472415
404 => 0.007379325530459
405 => 0.0079051597528289
406 => 0.0078909374107472
407 => 0.0080869358914766
408 => 0.0082094977637703
409 => 0.0079270323280105
410 => 0.0078559930347847
411 => 0.007896460244762
412 => 0.0072276274056614
413 => 0.0080322779794028
414 => 0.0080392366309784
415 => 0.0079796524314686
416 => 0.0084081040211865
417 => 0.0093122705128935
418 => 0.0089720867087005
419 => 0.008840357257607
420 => 0.0085899394747847
421 => 0.0089236063020588
422 => 0.0088979858957375
423 => 0.0087821207021021
424 => 0.0087120450714699
425 => 0.0088411615695458
426 => 0.0086960461084893
427 => 0.0086699793841774
428 => 0.0085120433957229
429 => 0.0084556674334742
430 => 0.0084139289154171
501 => 0.0083679789081782
502 => 0.0084693331741188
503 => 0.0082396510732333
504 => 0.0079626769755795
505 => 0.0079396495762609
506 => 0.0080032302503693
507 => 0.0079751005351008
508 => 0.0079395149020064
509 => 0.0078715722372588
510 => 0.0078514150999935
511 => 0.0079169160172529
512 => 0.0078429693006077
513 => 0.0079520817091038
514 => 0.0079224091714578
515 => 0.0077566607882365
516 => 0.0075500769348316
517 => 0.007548237905212
518 => 0.0075037297528613
519 => 0.0074470419289972
520 => 0.00743127267324
521 => 0.0076612972630395
522 => 0.0081374412798678
523 => 0.0080439628162037
524 => 0.0081115105862593
525 => 0.0084437787604475
526 => 0.0085493968213693
527 => 0.0084744316234279
528 => 0.0083718146368336
529 => 0.0083763292634537
530 => 0.0087270025709207
531 => 0.0087488736349628
601 => 0.0088041347579245
602 => 0.0088751609177217
603 => 0.0084865276855671
604 => 0.0083580246731684
605 => 0.0082971328168182
606 => 0.0081096094673737
607 => 0.0083118373227127
608 => 0.0081940078116668
609 => 0.0082099070383362
610 => 0.0081995526461101
611 => 0.0082052068444265
612 => 0.0079050127714472
613 => 0.0080143877139049
614 => 0.0078325306584501
615 => 0.0075890444756086
616 => 0.0075882282245464
617 => 0.0076478211228503
618 => 0.0076123729350688
619 => 0.0075169827732051
620 => 0.007530532495469
621 => 0.0074118226707498
622 => 0.0075449460175007
623 => 0.0075487635187473
624 => 0.0074975037789705
625 => 0.007702598662122
626 => 0.0077866262030907
627 => 0.0077528859442796
628 => 0.0077842588965879
629 => 0.0080478472683989
630 => 0.008090823674171
701 => 0.008109910954753
702 => 0.0080843365273533
703 => 0.0077890768081486
704 => 0.0078021728322366
705 => 0.0077060828968274
706 => 0.0076248970271145
707 => 0.0076281440361392
708 => 0.007669884126596
709 => 0.0078521655496444
710 => 0.008235766058373
711 => 0.008250323417271
712 => 0.0082679673609234
713 => 0.0081962005749534
714 => 0.0081745550255893
715 => 0.0082031110923909
716 => 0.0083471712747128
717 => 0.0087177331756028
718 => 0.0085867518508311
719 => 0.0084802619949459
720 => 0.0085736823080162
721 => 0.0085593009830716
722 => 0.0084379081276857
723 => 0.0084345010345465
724 => 0.0082015093334173
725 => 0.0081153776064742
726 => 0.0080433994885926
727 => 0.0079648012629021
728 => 0.0079182056000764
729 => 0.0079897977155267
730 => 0.0080061716793832
731 => 0.0078496342677352
801 => 0.0078282987969531
802 => 0.0079561306263996
803 => 0.0078998766043112
804 => 0.0079577352610618
805 => 0.0079711589657303
806 => 0.0079689974401045
807 => 0.0079102617803109
808 => 0.0079476981383407
809 => 0.0078591499912846
810 => 0.0077628671808628
811 => 0.0077014447464447
812 => 0.0076478455259112
813 => 0.0076775854886682
814 => 0.0075715679517423
815 => 0.0075376508079683
816 => 0.0079350155425849
817 => 0.008228553144437
818 => 0.0082242849914525
819 => 0.0081983037078387
820 => 0.0081597007904995
821 => 0.0083443472308668
822 => 0.0082800201031649
823 => 0.0083268234632794
824 => 0.0083387368827594
825 => 0.0083747952154328
826 => 0.0083876829700452
827 => 0.0083487272244856
828 => 0.0082179869843439
829 => 0.0078921947363198
830 => 0.0077405375654052
831 => 0.0076904881729534
901 => 0.0076923073733117
902 => 0.0076421257061619
903 => 0.0076569064561221
904 => 0.0076369855645241
905 => 0.0075992602152188
906 => 0.0076752560546558
907 => 0.0076840138672007
908 => 0.0076662755301934
909 => 0.0076704535506958
910 => 0.0075235876964185
911 => 0.0075347535883434
912 => 0.007472580483213
913 => 0.007460923775509
914 => 0.0073037555797709
915 => 0.0070253093391266
916 => 0.0071795955858741
917 => 0.0069932394957324
918 => 0.0069226636206401
919 => 0.0072567588365263
920 => 0.0072232249432102
921 => 0.0071658294946859
922 => 0.0070809296640591
923 => 0.0070494394910271
924 => 0.0068581151682622
925 => 0.0068468107065977
926 => 0.0069416362071512
927 => 0.006897877501392
928 => 0.0068364237057883
929 => 0.0066138442875828
930 => 0.0063635913280071
1001 => 0.0063711448918226
1002 => 0.0064507457021418
1003 => 0.0066821957937767
1004 => 0.0065917642388477
1005 => 0.0065261551081642
1006 => 0.0065138684901904
1007 => 0.0066676612379095
1008 => 0.0068853101965088
1009 => 0.0069874262182626
1010 => 0.0068862323420143
1011 => 0.0067699862656454
1012 => 0.0067770616256815
1013 => 0.0068241308261847
1014 => 0.0068290771336349
1015 => 0.0067534128882085
1016 => 0.0067747119300902
1017 => 0.0067423567378467
1018 => 0.0065437929827716
1019 => 0.0065402015940947
1020 => 0.0064914708463262
1021 => 0.0064899952986506
1022 => 0.0064070921402416
1023 => 0.0063954934152977
1024 => 0.0062308841624146
1025 => 0.006339230471145
1026 => 0.0062665574556852
1027 => 0.0061570220795559
1028 => 0.0061381381394248
1029 => 0.0061375704653815
1030 => 0.0062500388050043
1031 => 0.0063379162131142
1101 => 0.0062678216339031
1102 => 0.0062518624569431
1103 => 0.0064222647142646
1104 => 0.0064005794737694
1105 => 0.0063818001953553
1106 => 0.0068658221194609
1107 => 0.0064826809978296
1108 => 0.0063156095998677
1109 => 0.0061088270188919
1110 => 0.0061761564699459
1111 => 0.0061903437745584
1112 => 0.0056930689426733
1113 => 0.0054913246053092
1114 => 0.0054220935513008
1115 => 0.0053822501009355
1116 => 0.0054004072615895
1117 => 0.0052188136957112
1118 => 0.0053408475752618
1119 => 0.0051836028969332
1120 => 0.0051572403148929
1121 => 0.0054384132786222
1122 => 0.0054775368539365
1123 => 0.0053106235269036
1124 => 0.0054178089036718
1125 => 0.0053789419960675
1126 => 0.0051862984056235
1127 => 0.0051789408374589
1128 => 0.0050822790555237
1129 => 0.0049310220842045
1130 => 0.0048618935895452
1201 => 0.0048258908693255
1202 => 0.0048407462933672
1203 => 0.0048332349363882
1204 => 0.004784218251223
1205 => 0.004836044515405
1206 => 0.0047036498265109
1207 => 0.0046509291946167
1208 => 0.0046271165082995
1209 => 0.0045096086015519
1210 => 0.0046966159371906
1211 => 0.0047334587381677
1212 => 0.0047703741308441
1213 => 0.0050916974208832
1214 => 0.005075645017363
1215 => 0.0052207509273477
1216 => 0.0052151123785183
1217 => 0.0051737258224308
1218 => 0.0049991227500556
1219 => 0.0050687164227039
1220 => 0.0048545179155506
1221 => 0.0050150100011925
1222 => 0.0049417681156153
1223 => 0.0049902468460041
1224 => 0.0049030777176141
1225 => 0.0049513207123902
1226 => 0.0047421955330572
1227 => 0.0045469173830668
1228 => 0.0046255030111475
1229 => 0.0047109345762279
1230 => 0.0048961719768803
1231 => 0.0047858461092271
]
'min_raw' => 0.0045096086015519
'max_raw' => 0.013461291502876
'avg_raw' => 0.008985450052214
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0045096'
'max' => '$0.013461'
'avg' => '$0.008985'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0085428113984481
'max_diff' => 0.000408871502876
'year' => 2026
]
1 => [
'items' => [
101 => 0.0048255234631181
102 => 0.0046926109694921
103 => 0.0044183745305647
104 => 0.004419926679027
105 => 0.0043777413774636
106 => 0.004341287117758
107 => 0.0047985183622816
108 => 0.0047416544292688
109 => 0.0046510491941804
110 => 0.0047723279018551
111 => 0.0048043959171162
112 => 0.0048053088484284
113 => 0.0048937906628914
114 => 0.0049410134231315
115 => 0.004949336639299
116 => 0.0050885646861326
117 => 0.0051352320909689
118 => 0.0053274485268712
119 => 0.0049370069018522
120 => 0.0049289660135222
121 => 0.0047740345419837
122 => 0.0046757745533643
123 => 0.0047807624874696
124 => 0.0048737674648046
125 => 0.0047769244658799
126 => 0.0047895701170721
127 => 0.0046595663033794
128 => 0.0047060365495266
129 => 0.0047460629857267
130 => 0.0047239627403022
131 => 0.0046908776032377
201 => 0.0048661421172779
202 => 0.0048562530065286
203 => 0.0050194633513166
204 => 0.0051466974863626
205 => 0.0053747238021872
206 => 0.0051367664543435
207 => 0.0051280943427933
208 => 0.0052128656242471
209 => 0.0051352191129274
210 => 0.005184289027815
211 => 0.0053668178802808
212 => 0.0053706744273083
213 => 0.005306072295719
214 => 0.0053021412501408
215 => 0.0053145487961824
216 => 0.0053872201808906
217 => 0.0053618265661075
218 => 0.0053912127000222
219 => 0.005427960510459
220 => 0.0055799650351745
221 => 0.0056166128114745
222 => 0.005527577714759
223 => 0.0055356165871087
224 => 0.005502315016869
225 => 0.0054701461172849
226 => 0.0055424571056594
227 => 0.0056746068581898
228 => 0.0056737847614379
301 => 0.0057044409354009
302 => 0.0057235394778103
303 => 0.0056415545528014
304 => 0.0055881853812899
305 => 0.005608650517616
306 => 0.0056413747162742
307 => 0.0055980385010369
308 => 0.0053305473053046
309 => 0.0054116870466861
310 => 0.0053981814261896
311 => 0.0053789477802629
312 => 0.005460534417657
313 => 0.0054526651874485
314 => 0.005216951191222
315 => 0.0052320408364883
316 => 0.0052178688425291
317 => 0.0052636614543282
318 => 0.0051327461616117
319 => 0.0051730148239234
320 => 0.00519827095143
321 => 0.0052131470045581
322 => 0.0052668895090619
323 => 0.005260583446452
324 => 0.005266497515356
325 => 0.00534618346204
326 => 0.0057492076354531
327 => 0.0057711433519892
328 => 0.0056631238611538
329 => 0.0057062755171523
330 => 0.0056234337738649
331 => 0.0056790459911252
401 => 0.0057170944577775
402 => 0.0055451607532751
403 => 0.005534979955135
404 => 0.0054517962945047
405 => 0.0054964944819641
406 => 0.0054253764518028
407 => 0.0054428263288013
408 => 0.0053940349514605
409 => 0.0054818497164075
410 => 0.0055800402686531
411 => 0.0056048470798128
412 => 0.0055395910396554
413 => 0.0054923413659989
414 => 0.0054093865040681
415 => 0.0055473422882287
416 => 0.0055876847636435
417 => 0.0055471303863796
418 => 0.0055377330510369
419 => 0.0055199251175431
420 => 0.0055415110883112
421 => 0.0055874650498584
422 => 0.0055657940102292
423 => 0.0055801081136989
424 => 0.0055255575119117
425 => 0.005641581693223
426 => 0.0058258560158851
427 => 0.0058264484879644
428 => 0.0058047773315201
429 => 0.0057959099612147
430 => 0.0058181458828422
501 => 0.0058302079581599
502 => 0.0059021148513327
503 => 0.0059792738126041
504 => 0.0063393410177656
505 => 0.0062382355873884
506 => 0.0065577086323016
507 => 0.0068103703324449
508 => 0.0068861325287608
509 => 0.0068164348730369
510 => 0.0065780029577992
511 => 0.0065663043505381
512 => 0.0069226222952614
513 => 0.0068219461554813
514 => 0.0068099710490033
515 => 0.0066825761483389
516 => 0.0067578823127969
517 => 0.0067414117499552
518 => 0.0067154121607419
519 => 0.0068590910766551
520 => 0.0071280451809391
521 => 0.0070861261615508
522 => 0.0070548355581448
523 => 0.0069177292425774
524 => 0.0070002978683532
525 => 0.0069708967622123
526 => 0.0070972225725967
527 => 0.0070223899609843
528 => 0.0068211834347047
529 => 0.0068532262372002
530 => 0.0068483830320641
531 => 0.00694805585057
601 => 0.006918136544486
602 => 0.0068425408073635
603 => 0.0071271259250497
604 => 0.0071086465504528
605 => 0.0071348460786581
606 => 0.0071463799212214
607 => 0.0073196018674047
608 => 0.007390565356272
609 => 0.0074066753106356
610 => 0.0074740851365463
611 => 0.007404998092758
612 => 0.0076813955261386
613 => 0.0078651836910994
614 => 0.0080786631023539
615 => 0.0083906139000529
616 => 0.008507910285694
617 => 0.0084867217435072
618 => 0.0087232392780773
619 => 0.0091482560302105
620 => 0.0085726297808073
621 => 0.0091787656191586
622 => 0.0089868700109114
623 => 0.0085318889758117
624 => 0.0085025935610253
625 => 0.0088107120004332
626 => 0.0094940890437393
627 => 0.0093229108451894
628 => 0.0094943690299492
629 => 0.0092943539498892
630 => 0.0092844215153047
701 => 0.0094846547439527
702 => 0.0099525105968337
703 => 0.0097302498184443
704 => 0.0094115844920444
705 => 0.0096468820100765
706 => 0.0094430455241998
707 => 0.0089837448712796
708 => 0.009322779948447
709 => 0.0090960768475083
710 => 0.0091622408645619
711 => 0.0096387370631939
712 => 0.0095814037799219
713 => 0.0096555983573949
714 => 0.0095246468701652
715 => 0.0094023175319386
716 => 0.0091739807378425
717 => 0.0091063814699786
718 => 0.0091250634756493
719 => 0.0091063722121044
720 => 0.0089786198743311
721 => 0.0089510317691524
722 => 0.0089050503851919
723 => 0.0089193019387779
724 => 0.0088328434846038
725 => 0.0089960084508584
726 => 0.0090262933064
727 => 0.0091450311620112
728 => 0.0091573589200784
729 => 0.0094880421578279
730 => 0.0093059073873816
731 => 0.0094280991161565
801 => 0.0094171691378217
802 => 0.0085417497944655
803 => 0.0086623748560897
804 => 0.0088500295977474
805 => 0.0087654913909906
806 => 0.0086459741455303
807 => 0.0085494575617119
808 => 0.0084032250678995
809 => 0.0086090444947941
810 => 0.0088796751547046
811 => 0.0091642225602224
812 => 0.0095060876236675
813 => 0.0094297873212545
814 => 0.0091578316306576
815 => 0.0091700313642741
816 => 0.0092454453170725
817 => 0.0091477773961184
818 => 0.0091189732195247
819 => 0.0092414880655268
820 => 0.0092423317579382
821 => 0.0091299530113179
822 => 0.009005064599543
823 => 0.0090045413125376
824 => 0.0089823186259412
825 => 0.0092983073164667
826 => 0.0094720691461956
827 => 0.0094919906599429
828 => 0.0094707282695941
829 => 0.0094789113197653
830 => 0.0093778031396266
831 => 0.0096089064567241
901 => 0.009820989714242
902 => 0.0097641468707292
903 => 0.0096789313676173
904 => 0.009611053114854
905 => 0.0097481569115801
906 => 0.0097420518953333
907 => 0.0098191373520049
908 => 0.0098156403104231
909 => 0.0097897193706751
910 => 0.0097641477964476
911 => 0.00986553619778
912 => 0.0098363379664442
913 => 0.0098070943821903
914 => 0.0097484418970005
915 => 0.0097564137438524
916 => 0.0096712129543986
917 => 0.0096317951706744
918 => 0.0090390462799498
919 => 0.0088806444077194
920 => 0.0089304808612905
921 => 0.0089468883158091
922 => 0.0088779516180169
923 => 0.0089767891342662
924 => 0.0089613854120536
925 => 0.0090213122843068
926 => 0.0089838725762453
927 => 0.0089854091149236
928 => 0.009095511313345
929 => 0.009127474449955
930 => 0.009111217740701
1001 => 0.0091226033826151
1002 => 0.0093849806949465
1003 => 0.0093476790314871
1004 => 0.009327863266224
1005 => 0.0093333523686253
1006 => 0.009400395397359
1007 => 0.0094191637849907
1008 => 0.0093396408077637
1009 => 0.0093771443035408
1010 => 0.0095368294286575
1011 => 0.009592710185053
1012 => 0.0097710547351827
1013 => 0.009695290800466
1014 => 0.0098343587816248
1015 => 0.010261806343938
1016 => 0.010603281033836
1017 => 0.010289246796968
1018 => 0.010916321578425
1019 => 0.011404589244325
1020 => 0.011385848718055
1021 => 0.011300707956671
1022 => 0.010744828200312
1023 => 0.01023329936081
1024 => 0.010661214955715
1025 => 0.010662305800568
1026 => 0.010625547471466
1027 => 0.010397244646375
1028 => 0.010617603028028
1029 => 0.01063509427614
1030 => 0.010625303828496
1031 => 0.010450264587783
1101 => 0.010183012019873
1102 => 0.01023523253193
1103 => 0.01032077079595
1104 => 0.01015882901701
1105 => 0.01010707880624
1106 => 0.010203292293941
1107 => 0.010513312198191
1108 => 0.010454704731116
1109 => 0.010453174253299
1110 => 0.010703921850882
1111 => 0.010524440685731
1112 => 0.010235891199821
1113 => 0.010163028649128
1114 => 0.0099044156802647
1115 => 0.010083040579006
1116 => 0.010089468971112
1117 => 0.0099916379395737
1118 => 0.010243829648852
1119 => 0.010241505657854
1120 => 0.010480924152032
1121 => 0.010938602391419
1122 => 0.010803244415054
1123 => 0.010645837815447
1124 => 0.010662952277236
1125 => 0.010850655680969
1126 => 0.01073716591822
1127 => 0.010777977628183
1128 => 0.010850593907558
1129 => 0.010894405111865
1130 => 0.010656648519152
1201 => 0.010601216084178
1202 => 0.010487820776363
1203 => 0.010458238057177
1204 => 0.010550596169322
1205 => 0.010526263069832
1206 => 0.010088928689648
1207 => 0.010043224813613
1208 => 0.010044626486241
1209 => 0.0099297019168504
1210 => 0.009754414363473
1211 => 0.010215059587873
1212 => 0.010178063329628
1213 => 0.010137222323808
1214 => 0.010142225113985
1215 => 0.010342175593182
1216 => 0.010226194217507
1217 => 0.010534549713714
1218 => 0.010471161093708
1219 => 0.010406146794787
1220 => 0.010397159838292
1221 => 0.010372134879966
1222 => 0.010286314986492
1223 => 0.010182682308145
1224 => 0.010114255037392
1225 => 0.0093298656344953
1226 => 0.0094754437450896
1227 => 0.009642918091466
1228 => 0.0097007295647239
1229 => 0.0096018390392842
1230 => 0.010290219787181
1231 => 0.010415993583224
]
'min_raw' => 0.004341287117758
'max_raw' => 0.011404589244325
'avg_raw' => 0.0078729381810414
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004341'
'max' => '$0.0114045'
'avg' => '$0.007872'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016832148379393
'max_diff' => -0.0020567022585511
'year' => 2027
]
2 => [
'items' => [
101 => 0.010035016550989
102 => 0.0099637513034472
103 => 0.010294891924945
104 => 0.010095173649887
105 => 0.010185106776917
106 => 0.0099907205470693
107 => 0.010385698358844
108 => 0.010382689289687
109 => 0.010229033999928
110 => 0.010358902398646
111 => 0.010336334568464
112 => 0.010162858124763
113 => 0.010391197871533
114 => 0.010391311125199
115 => 0.01024342124956
116 => 0.010070718252071
117 => 0.010039843035183
118 => 0.010016582706759
119 => 0.010179386162009
120 => 0.010325355230913
121 => 0.010596967479342
122 => 0.010665257251945
123 => 0.010931796780722
124 => 0.010773085468909
125 => 0.01084344013778
126 => 0.010919820083115
127 => 0.010956439437688
128 => 0.010896770164514
129 => 0.011310815764752
130 => 0.011345773899441
131 => 0.011357495059616
201 => 0.011217881212817
202 => 0.011341890985802
203 => 0.011283870919794
204 => 0.011434823013108
205 => 0.011458494228793
206 => 0.011438445551236
207 => 0.011445959168719
208 => 0.011092644291565
209 => 0.0110743230513
210 => 0.010824511640273
211 => 0.010926311636779
212 => 0.010736001422711
213 => 0.010796350752005
214 => 0.010822952161328
215 => 0.010809057094714
216 => 0.010932067255842
217 => 0.010827483489567
218 => 0.010551469735206
219 => 0.010275380781081
220 => 0.010271914709159
221 => 0.010199225360913
222 => 0.010146684275849
223 => 0.010156805552828
224 => 0.010192474253039
225 => 0.010144611146151
226 => 0.010154825166727
227 => 0.010324445963945
228 => 0.010358462205146
229 => 0.010242861726539
301 => 0.0097787091238607
302 => 0.0096648049109248
303 => 0.0097466770003644
304 => 0.0097075474148501
305 => 0.0078347484067956
306 => 0.0082747347541177
307 => 0.0080133098070635
308 => 0.0081337864502495
309 => 0.007866939274969
310 => 0.0079942927336716
311 => 0.0079707752000529
312 => 0.0086782602264043
313 => 0.0086672138208316
314 => 0.0086725011506165
315 => 0.0084201231239212
316 => 0.008822168173257
317 => 0.0090202300216321
318 => 0.0089835740447433
319 => 0.0089927995644042
320 => 0.008834274571021
321 => 0.0086740360190709
322 => 0.008496306804422
323 => 0.0088265057172449
324 => 0.0087897932348224
325 => 0.0088739984607653
326 => 0.0090881560588367
327 => 0.0091196915786583
328 => 0.0091620756371003
329 => 0.0091468839692516
330 => 0.0095088111304376
331 => 0.0094649793631457
401 => 0.0095706013110591
402 => 0.0093533289506447
403 => 0.009107464651154
404 => 0.0091541954165776
405 => 0.0091496948680822
406 => 0.009092397720247
407 => 0.0090406724171098
408 => 0.0089545643609003
409 => 0.0092270229923417
410 => 0.0092159616694731
411 => 0.0093950316293351
412 => 0.0093633792745367
413 => 0.0091519971025479
414 => 0.0091595466581738
415 => 0.0092103210479505
416 => 0.0093860517906993
417 => 0.0094382206398085
418 => 0.0094140539503319
419 => 0.0094712547117817
420 => 0.0095164638613687
421 => 0.0094769322849175
422 => 0.010036616042749
423 => 0.009804196325482
424 => 0.0099174760785121
425 => 0.0099444926321267
426 => 0.0098752902981398
427 => 0.0098902978064317
428 => 0.0099130300921929
429 => 0.010051056079896
430 => 0.010413276209772
501 => 0.010573701039578
502 => 0.01105634705527
503 => 0.010560379990684
504 => 0.010530951357587
505 => 0.010617890479526
506 => 0.010901254784007
507 => 0.011130894937734
508 => 0.011207079824983
509 => 0.011217148915508
510 => 0.011360076828663
511 => 0.011442000443036
512 => 0.011342721620629
513 => 0.011258593213565
514 => 0.010957255701864
515 => 0.010992136339358
516 => 0.011232429342229
517 => 0.011571857361972
518 => 0.011863121914378
519 => 0.01176113121972
520 => 0.012539248225751
521 => 0.012616395348576
522 => 0.012605736110666
523 => 0.012781488737493
524 => 0.012432655564642
525 => 0.012283522624924
526 => 0.01127678273007
527 => 0.011559635576137
528 => 0.011970778799261
529 => 0.011916362451973
530 => 0.011617779253451
531 => 0.011862895412247
601 => 0.011781852344658
602 => 0.01171793031477
603 => 0.01201076952558
604 => 0.011688780784123
605 => 0.011967566715257
606 => 0.011610020874907
607 => 0.011761597104622
608 => 0.011675555105718
609 => 0.01173123482392
610 => 0.011405732329038
611 => 0.01158136557415
612 => 0.011398425408612
613 => 0.011398338671154
614 => 0.011394300256861
615 => 0.011609528550334
616 => 0.011616547137258
617 => 0.011457493103189
618 => 0.011434570931988
619 => 0.011519326212912
620 => 0.011420099976394
621 => 0.011466527307938
622 => 0.01142150621297
623 => 0.011411371016203
624 => 0.011330612044004
625 => 0.011295818858267
626 => 0.011309462162905
627 => 0.011262890530571
628 => 0.01123482943752
629 => 0.011388718199166
630 => 0.011306501641673
701 => 0.011376117332578
702 => 0.011296781466592
703 => 0.01102176879009
704 => 0.010863606091627
705 => 0.010344132639404
706 => 0.010491454666049
707 => 0.010589129322131
708 => 0.010556847848879
709 => 0.010626200944697
710 => 0.010630458661517
711 => 0.010607911263096
712 => 0.010581804264224
713 => 0.010569096820981
714 => 0.010663807691902
715 => 0.010718790540293
716 => 0.010598932280587
717 => 0.010570851167333
718 => 0.010692034485452
719 => 0.010765956239499
720 => 0.011311752938335
721 => 0.011271318555985
722 => 0.011372800920836
723 => 0.011361375563928
724 => 0.011467745249701
725 => 0.011641614730756
726 => 0.011288089461099
727 => 0.011349449223927
728 => 0.011334405227086
729 => 0.011498651639855
730 => 0.011499164399228
731 => 0.011400690470056
801 => 0.011454074784617
802 => 0.011424277124751
803 => 0.011478125523524
804 => 0.011270778530157
805 => 0.011523304786353
806 => 0.011666470901184
807 => 0.011668458762828
808 => 0.011736318365021
809 => 0.011805267651012
810 => 0.011937609801256
811 => 0.011801576700271
812 => 0.011556866394154
813 => 0.011574533687847
814 => 0.011431060124906
815 => 0.01143347194142
816 => 0.011420597475853
817 => 0.011459234716165
818 => 0.011279257231645
819 => 0.011321497587528
820 => 0.011262360841932
821 => 0.011349320672192
822 => 0.011255766269808
823 => 0.011334397972415
824 => 0.011368332808578
825 => 0.011493553084585
826 => 0.011237271133228
827 => 0.010714694885649
828 => 0.010824546748515
829 => 0.010662067214659
830 => 0.01067710531412
831 => 0.010707484668328
901 => 0.010609015241834
902 => 0.010627800105281
903 => 0.010627128977771
904 => 0.010621345563468
905 => 0.010595729862567
906 => 0.010558582028348
907 => 0.010706567566374
908 => 0.010731713192972
909 => 0.010787608806016
910 => 0.010953916236076
911 => 0.010937298202014
912 => 0.010964402905045
913 => 0.010905233490514
914 => 0.010679850013558
915 => 0.01069208942071
916 => 0.01053946381741
917 => 0.01078370582619
918 => 0.010725866094674
919 => 0.010688576443496
920 => 0.010678401616685
921 => 0.010845121290698
922 => 0.010895006430173
923 => 0.010863921358919
924 => 0.010800164970881
925 => 0.010922596083798
926 => 0.01095535348466
927 => 0.010962686658667
928 => 0.011179611116918
929 => 0.010974810326153
930 => 0.011024107912035
1001 => 0.011408713604469
1002 => 0.011059929313389
1003 => 0.011244688131192
1004 => 0.011235645148499
1005 => 0.011330161507789
1006 => 0.011227892048311
1007 => 0.01122915980083
1008 => 0.011313083924788
1009 => 0.011195227628485
1010 => 0.011166044752104
1011 => 0.011125728817395
1012 => 0.011213757185903
1013 => 0.011266526211643
1014 => 0.011691805804529
1015 => 0.011966555816639
1016 => 0.011954628194011
1017 => 0.012063624337251
1018 => 0.012014520576431
1019 => 0.011855951579827
1020 => 0.012126609521601
1021 => 0.012040962024014
1022 => 0.012048022699654
1023 => 0.012047759900954
1024 => 0.012104707999415
1025 => 0.012064355052439
1026 => 0.011984815251804
1027 => 0.012037617483432
1028 => 0.012194421234226
1029 => 0.012681144888016
1030 => 0.012953521892908
1031 => 0.012664747450315
1101 => 0.012863940193972
1102 => 0.012744495527409
1103 => 0.012722788878324
1104 => 0.012847896641569
1105 => 0.012973223389391
1106 => 0.012965240617357
1107 => 0.012874259834038
1108 => 0.012822867098093
1109 => 0.0132120301125
1110 => 0.013498758792296
1111 => 0.013479205818587
1112 => 0.01356550628557
1113 => 0.013818887125802
1114 => 0.013842053094361
1115 => 0.013839134714787
1116 => 0.013781715444595
1117 => 0.014031201787464
1118 => 0.01423932768398
1119 => 0.013768424542547
1120 => 0.01394773829423
1121 => 0.014028238014489
1122 => 0.014146435487019
1123 => 0.014345854435374
1124 => 0.014562476306552
1125 => 0.014593109014274
1126 => 0.014571373642235
1127 => 0.014428505695085
1128 => 0.014665535931364
1129 => 0.014804382684733
1130 => 0.014887062748913
1201 => 0.015096725635022
1202 => 0.014028735153356
1203 => 0.013272758407861
1204 => 0.013154701722615
1205 => 0.013394774634412
1206 => 0.013458079946707
1207 => 0.013432561654699
1208 => 0.012581641097246
1209 => 0.013150221801982
1210 => 0.013761966832655
1211 => 0.013785466450693
1212 => 0.014091718804034
1213 => 0.014191447123989
1214 => 0.014438020409842
1215 => 0.014422597183677
1216 => 0.014482633854944
1217 => 0.01446883246391
1218 => 0.01492555755382
1219 => 0.015429393152324
1220 => 0.015411946927647
1221 => 0.01533951459925
1222 => 0.015447088958467
1223 => 0.015967101290426
1224 => 0.015919226887927
1225 => 0.015965732792023
1226 => 0.016578856638014
1227 => 0.017376004853653
1228 => 0.017005649475117
1229 => 0.017809214079651
1230 => 0.018315015403076
1231 => 0.019189746491107
]
'min_raw' => 0.0078347484067956
'max_raw' => 0.019189746491107
'avg_raw' => 0.013512247448952
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007834'
'max' => '$0.019189'
'avg' => '$0.013512'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0034934612890376
'max_diff' => 0.0077851572467826
'year' => 2028
]
3 => [
'items' => [
101 => 0.019080225850745
102 => 0.019420752244242
103 => 0.018884161046847
104 => 0.017652039194657
105 => 0.017457051195175
106 => 0.017847422108021
107 => 0.018807110905415
108 => 0.017817198092548
109 => 0.018017456165326
110 => 0.017959781826894
111 => 0.017956708606499
112 => 0.018074000929281
113 => 0.01790386229753
114 => 0.017210686904418
115 => 0.017528365102173
116 => 0.017405694293859
117 => 0.017541806701398
118 => 0.018276349227854
119 => 0.017951590467601
120 => 0.017609483494933
121 => 0.018038561558273
122 => 0.018584925380123
123 => 0.018550734914062
124 => 0.018484391119397
125 => 0.018858367616275
126 => 0.019476067224285
127 => 0.019643028946212
128 => 0.019766276675956
129 => 0.019783270455601
130 => 0.019958316947512
131 => 0.019017047843109
201 => 0.020510866085302
202 => 0.020768807229833
203 => 0.020720324985226
204 => 0.021007015711549
205 => 0.020922664027223
206 => 0.020800451671008
207 => 0.021254917453097
208 => 0.02073390910743
209 => 0.019994403353882
210 => 0.019588695871721
211 => 0.02012296421172
212 => 0.020449223243562
213 => 0.020664859709638
214 => 0.020730111173982
215 => 0.019090115884234
216 => 0.018206249381368
217 => 0.018772797676155
218 => 0.019464025696869
219 => 0.019013208036552
220 => 0.019030879235326
221 => 0.018388131724511
222 => 0.01952089458952
223 => 0.019355860568123
224 => 0.020212057363068
225 => 0.020007719126546
226 => 0.020705914375455
227 => 0.020522056167346
228 => 0.021285241309832
301 => 0.021589696525582
302 => 0.022100924217497
303 => 0.022476985388741
304 => 0.022697815701399
305 => 0.022684557877741
306 => 0.023559597593718
307 => 0.023043617244765
308 => 0.02239542431925
309 => 0.02238370055425
310 => 0.022719408855339
311 => 0.023422961357348
312 => 0.023605382284846
313 => 0.023707330696997
314 => 0.023551193154938
315 => 0.022991133466794
316 => 0.022749302533021
317 => 0.022955349495113
318 => 0.022703371766292
319 => 0.0231383560187
320 => 0.023735682304879
321 => 0.023612336788867
322 => 0.024024662355901
323 => 0.024451375939867
324 => 0.025061595529844
325 => 0.02522112952703
326 => 0.025484833157844
327 => 0.025756270816082
328 => 0.025843449276458
329 => 0.026009900007203
330 => 0.02600902272969
331 => 0.026510633210217
401 => 0.027063925103822
402 => 0.027272779984921
403 => 0.027753030267683
404 => 0.02693061848843
405 => 0.027554427270179
406 => 0.028117118406263
407 => 0.027446254836791
408 => 0.028370883976144
409 => 0.02840678523037
410 => 0.028948851545257
411 => 0.028399363487779
412 => 0.028073079233277
413 => 0.029015049650313
414 => 0.029470839463327
415 => 0.029333551862307
416 => 0.028288786439818
417 => 0.027680688151832
418 => 0.026089177638774
419 => 0.027974390589629
420 => 0.028892622825575
421 => 0.028286408440155
422 => 0.028592147714776
423 => 0.030260162060813
424 => 0.030895233927854
425 => 0.030763143418997
426 => 0.030785464540599
427 => 0.031128137792684
428 => 0.032647739706036
429 => 0.031737159015459
430 => 0.032433263834598
501 => 0.032802475320676
502 => 0.033145419525326
503 => 0.032303256947335
504 => 0.031207615807196
505 => 0.030860580266227
506 => 0.028226132366705
507 => 0.028088997912707
508 => 0.028012020188079
509 => 0.027526686523015
510 => 0.027145347206354
511 => 0.026842092023523
512 => 0.026046259864113
513 => 0.026314829856016
514 => 0.025046439496997
515 => 0.025857910699703
516 => 0.023833529060353
517 => 0.025519494244429
518 => 0.024601900046167
519 => 0.025218039871683
520 => 0.025215890217876
521 => 0.024081381451791
522 => 0.023427020472107
523 => 0.023844004756472
524 => 0.024291045009565
525 => 0.024363575786605
526 => 0.024943175143684
527 => 0.025104928865799
528 => 0.024614807536233
529 => 0.023791578250495
530 => 0.023982795637711
531 => 0.023423145457858
601 => 0.022442380044299
602 => 0.023146782886838
603 => 0.023387296987688
604 => 0.023493521716409
605 => 0.022529051573842
606 => 0.022225994115382
607 => 0.022064648867397
608 => 0.023667077266387
609 => 0.023754861911362
610 => 0.023305743256175
611 => 0.025335802164797
612 => 0.024876337311464
613 => 0.025389672124259
614 => 0.023965444664067
615 => 0.024019852071023
616 => 0.023345599967111
617 => 0.02372313609176
618 => 0.023456305727416
619 => 0.023692634903773
620 => 0.02383428963766
621 => 0.024508431103437
622 => 0.02552719185708
623 => 0.024407736849086
624 => 0.023919974271213
625 => 0.024222579431245
626 => 0.025028456849252
627 => 0.026249402389638
628 => 0.02552657805591
629 => 0.025847355220866
630 => 0.025917430761026
701 => 0.025384446857746
702 => 0.026269054266392
703 => 0.026743122563224
704 => 0.027229418541161
705 => 0.0276516557131
706 => 0.027035181233695
707 => 0.027694897294804
708 => 0.027163282605112
709 => 0.026686369271142
710 => 0.026687092551808
711 => 0.026387917850816
712 => 0.025808229169207
713 => 0.025701325682298
714 => 0.02625745112162
715 => 0.026703411058681
716 => 0.026740142455101
717 => 0.026987048790507
718 => 0.027133165416462
719 => 0.028565306986748
720 => 0.029141326173613
721 => 0.029845671531827
722 => 0.03012005374358
723 => 0.030945845829491
724 => 0.030278951652564
725 => 0.030134664902425
726 => 0.028131563416538
727 => 0.028459571172636
728 => 0.02898474323819
729 => 0.028140223310466
730 => 0.028675876822915
731 => 0.028781626172965
801 => 0.028111526846481
802 => 0.028469455850039
803 => 0.027518902535143
804 => 0.025547911321782
805 => 0.026271248543051
806 => 0.02680386821058
807 => 0.026043754273484
808 => 0.027406229085257
809 => 0.026610299427408
810 => 0.026358027937232
811 => 0.025373826912772
812 => 0.025838331910946
813 => 0.026466581572046
814 => 0.026078396323348
815 => 0.026883939000704
816 => 0.028024802262225
817 => 0.028837849361966
818 => 0.028900265022638
819 => 0.028377530207429
820 => 0.02921521608485
821 => 0.029221317711945
822 => 0.028276404620167
823 => 0.027697650612751
824 => 0.027566156484557
825 => 0.027894654597728
826 => 0.028293511951213
827 => 0.02892239882985
828 => 0.029302421999492
829 => 0.030293320877203
830 => 0.030561429702214
831 => 0.030856000015385
901 => 0.031249636795901
902 => 0.03172229867731
903 => 0.030688141389443
904 => 0.030729230386401
905 => 0.029766237438822
906 => 0.028737141367175
907 => 0.029518097006919
908 => 0.030539092619708
909 => 0.030304875098034
910 => 0.030278520842216
911 => 0.030322841390441
912 => 0.030146249027928
913 => 0.029347528317101
914 => 0.02894641577638
915 => 0.029463953288633
916 => 0.029739001443451
917 => 0.030165577144854
918 => 0.030112992685735
919 => 0.031211805881663
920 => 0.031638771463214
921 => 0.031529535396566
922 => 0.031549637461742
923 => 0.032322638252606
924 => 0.033182374111785
925 => 0.033987630196045
926 => 0.034806771271507
927 => 0.033819264733417
928 => 0.033317869814311
929 => 0.033835181385876
930 => 0.033560688584316
1001 => 0.035138005641934
1002 => 0.035247215652748
1003 => 0.03682441865239
1004 => 0.03832137210889
1005 => 0.037381162463569
1006 => 0.038267737811134
1007 => 0.039226641333074
1008 => 0.041076521803386
1009 => 0.040453547140565
1010 => 0.039976358312101
1011 => 0.039525417174962
1012 => 0.040463754096458
1013 => 0.041670909555664
1014 => 0.041930919279586
1015 => 0.042352234363698
1016 => 0.041909273068711
1017 => 0.042442771157937
1018 => 0.044326253843841
1019 => 0.043817320196148
1020 => 0.043094552601258
1021 => 0.04458138129018
1022 => 0.0451194588128
1023 => 0.048895968659938
1024 => 0.05366396834179
1025 => 0.051689985165129
1026 => 0.050464670107337
1027 => 0.05075264821078
1028 => 0.052493760287617
1029 => 0.053052950226562
1030 => 0.051532879208178
1031 => 0.052069793989637
1101 => 0.055028247223771
1102 => 0.056615362465341
1103 => 0.054459846789274
1104 => 0.048512864527999
1105 => 0.043029475287309
1106 => 0.044483917034176
1107 => 0.044319028476663
1108 => 0.047497517402183
1109 => 0.043805182296966
1110 => 0.043867351750617
1111 => 0.047111568461039
1112 => 0.046246067062653
1113 => 0.044844065642312
1114 => 0.043039711449226
1115 => 0.039704195840743
1116 => 0.036749836648576
1117 => 0.042544015372703
1118 => 0.042294159850089
1119 => 0.041932332026829
1120 => 0.042737540693634
1121 => 0.046647405417173
1122 => 0.046557270380299
1123 => 0.045983877263002
1124 => 0.046418790888817
1125 => 0.044767823180931
1126 => 0.045193315151089
1127 => 0.043028606690438
1128 => 0.044007145320863
1129 => 0.044841057576935
1130 => 0.045008477808623
1201 => 0.045385684139306
1202 => 0.042162497343193
1203 => 0.043609613586856
1204 => 0.044459658803552
1205 => 0.040619123589608
1206 => 0.044383743770634
1207 => 0.042106388832016
1208 => 0.041333420361126
1209 => 0.042374120576328
1210 => 0.041968558690349
1211 => 0.041619880396179
1212 => 0.041425311916978
1213 => 0.04218948729713
1214 => 0.042153837602259
1215 => 0.04090349836028
1216 => 0.039272481789465
1217 => 0.039819904486924
1218 => 0.039621020688822
1219 => 0.03890024014798
1220 => 0.039385959205133
1221 => 0.037247098294219
1222 => 0.033567299265306
1223 => 0.035998287219098
1224 => 0.035904696827283
1225 => 0.035857504307744
1226 => 0.037684324567447
1227 => 0.037508717951391
1228 => 0.037189990223704
1229 => 0.038894386463311
1230 => 0.03827225890849
1231 => 0.040189509440763
]
'min_raw' => 0.017210686904418
'max_raw' => 0.056615362465341
'avg_raw' => 0.036913024684879
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01721'
'max' => '$0.056615'
'avg' => '$0.036913'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.009375938497622
'max_diff' => 0.037425615974233
'year' => 2029
]
4 => [
'items' => [
101 => 0.041452334641307
102 => 0.041132041322333
103 => 0.042319734527209
104 => 0.039832516000235
105 => 0.040658670225009
106 => 0.040828939465734
107 => 0.038873354478281
108 => 0.037537449365541
109 => 0.037448359724954
110 => 0.035132084358527
111 => 0.036369419962951
112 => 0.037458224090418
113 => 0.036936771407975
114 => 0.036771695066669
115 => 0.03761503429371
116 => 0.037680568974363
117 => 0.036186371310419
118 => 0.036497062319839
119 => 0.037792695477204
120 => 0.036464415688525
121 => 0.033883785032395
122 => 0.033243752949665
123 => 0.033158360871697
124 => 0.031422543101747
125 => 0.033286522953865
126 => 0.032472845796861
127 => 0.035043242186488
128 => 0.033575045554046
129 => 0.033511754531668
130 => 0.033416080868571
131 => 0.031921990808246
201 => 0.032249101577081
202 => 0.033336467593063
203 => 0.03372445203762
204 => 0.03368398208139
205 => 0.033331138906374
206 => 0.033492668705047
207 => 0.032972324942809
208 => 0.032788580730344
209 => 0.032208633452976
210 => 0.031356271169771
211 => 0.031474797373093
212 => 0.02978604465734
213 => 0.028865922548907
214 => 0.028611244876307
215 => 0.028270679248794
216 => 0.028649712670145
217 => 0.029781260633076
218 => 0.02841637371849
219 => 0.026076370839116
220 => 0.026217008999337
221 => 0.02653298118951
222 => 0.025944169103488
223 => 0.025386907879321
224 => 0.025871401301702
225 => 0.024879911233998
226 => 0.026652798027292
227 => 0.026604846407991
228 => 0.027265668969947
301 => 0.027678894879382
302 => 0.026726542941611
303 => 0.026487029004695
304 => 0.026623467028464
305 => 0.024368450415019
306 => 0.027081386003297
307 => 0.027104847582921
308 => 0.026903955294238
309 => 0.028348509742507
310 => 0.031396970196185
311 => 0.030250016749474
312 => 0.029805881708056
313 => 0.028961580669659
314 => 0.030086561673687
315 => 0.030000180685016
316 => 0.029609533095224
317 => 0.029373268214024
318 => 0.029808593501912
319 => 0.029319326593323
320 => 0.029231440812384
321 => 0.028698948600571
322 => 0.028508873107806
323 => 0.028368148780086
324 => 0.028213225122553
325 => 0.028554948106501
326 => 0.027780558867473
327 => 0.026846721359519
328 => 0.026769082874995
329 => 0.026983449556813
330 => 0.026888608257831
331 => 0.026768628811344
401 => 0.026539555373541
402 => 0.026471594177925
403 => 0.026692435093593
404 => 0.026443118575629
405 => 0.026810998678859
406 => 0.026710955646515
407 => 0.026152123400302
408 => 0.025455611515323
409 => 0.025449411098563
410 => 0.025299348755453
411 => 0.025108221799478
412 => 0.025055054652718
413 => 0.025830598617031
414 => 0.027435951413081
415 => 0.02712078224638
416 => 0.027348524269157
417 => 0.028468789616656
418 => 0.028824888283071
419 => 0.028572137884309
420 => 0.028226157549517
421 => 0.028241378928368
422 => 0.029423698467721
423 => 0.029497438287128
424 => 0.029683755021402
425 => 0.029923224678046
426 => 0.028612920602331
427 => 0.028179663724235
428 => 0.027974362579217
429 => 0.027342114514103
430 => 0.028023939847476
501 => 0.027626669424391
502 => 0.027680274777155
503 => 0.027645364220845
504 => 0.027664427745232
505 => 0.026652302469301
506 => 0.027021067724112
507 => 0.026407923964792
508 => 0.025586993299679
509 => 0.025584241252235
510 => 0.025785162869509
511 => 0.025665646829491
512 => 0.025344032238839
513 => 0.025389716073463
514 => 0.024989477611367
515 => 0.025438312269313
516 => 0.025451183241295
517 => 0.025278357449797
518 => 0.02596984916761
519 => 0.026253153888601
520 => 0.02613939625035
521 => 0.026245172349447
522 => 0.02713387894816
523 => 0.027278776900738
524 => 0.027343130999851
525 => 0.027256905032323
526 => 0.02626141627465
527 => 0.026305570434197
528 => 0.02598159650818
529 => 0.025707872680227
530 => 0.025718820197853
531 => 0.025859549827028
601 => 0.026474124371318
602 => 0.027767460268629
603 => 0.027816541420515
604 => 0.0278760292084
605 => 0.027634062478906
606 => 0.02756108299798
607 => 0.027657361770923
608 => 0.028143070733582
609 => 0.029392446054238
610 => 0.028950833372947
611 => 0.028591795388945
612 => 0.02890676849686
613 => 0.028858280855737
614 => 0.028448996368425
615 => 0.028437509116031
616 => 0.027651961328712
617 => 0.027361562197799
618 => 0.027118882948009
619 => 0.026853883542541
620 => 0.026696783012119
621 => 0.026938160827761
622 => 0.026993366790097
623 => 0.026465589977632
624 => 0.026393655948296
625 => 0.026824649886208
626 => 0.026634985523206
627 => 0.026830060024003
628 => 0.026875318981506
629 => 0.026868031246946
630 => 0.026669999869159
701 => 0.02679621916398
702 => 0.026497672903946
703 => 0.026173048686358
704 => 0.02596595866034
705 => 0.025785245146133
706 => 0.025885515506946
707 => 0.025528069979292
708 => 0.025413715961039
709 => 0.026753458906919
710 => 0.027743141425704
711 => 0.027728751049924
712 => 0.027641153338264
713 => 0.027511000907286
714 => 0.028133549272587
715 => 0.027916665870363
716 => 0.028074466666696
717 => 0.028114633592241
718 => 0.028236206778362
719 => 0.028279658742832
720 => 0.028148316726874
721 => 0.027707516879244
722 => 0.026609085568942
723 => 0.026097762828838
724 => 0.02592901780785
725 => 0.025935151368871
726 => 0.025765960374503
727 => 0.025815794704953
728 => 0.025748630028098
729 => 0.025621436379015
730 => 0.025877661657537
731 => 0.025907189233983
801 => 0.025847383192312
802 => 0.025861469680136
803 => 0.025366301198594
804 => 0.025403947782796
805 => 0.025194326818061
806 => 0.025155025414192
807 => 0.024625121869128
808 => 0.0236863209283
809 => 0.024206507781131
810 => 0.023578195212251
811 => 0.023340243721928
812 => 0.024466669068071
813 => 0.024353607205494
814 => 0.024160094443572
815 => 0.023873848737097
816 => 0.023767677420146
817 => 0.023122614108106
818 => 0.023084500326352
819 => 0.023404211121974
820 => 0.023256675590371
821 => 0.023049479827926
822 => 0.022299037779448
823 => 0.021455292454134
824 => 0.021480759821912
825 => 0.021749139511454
826 => 0.02252948965473
827 => 0.022224593353558
828 => 0.022003387588775
829 => 0.021961962398452
830 => 0.022480485384854
831 => 0.023214304044536
901 => 0.023558595341392
902 => 0.02321741312249
903 => 0.02282548135997
904 => 0.022849336430318
905 => 0.023008033526081
906 => 0.02302471034699
907 => 0.022769603060826
908 => 0.022841414267581
909 => 0.022732326477965
910 => 0.022062854914451
911 => 0.022050746296784
912 => 0.02188644717841
913 => 0.021881472266402
914 => 0.021601958479713
915 => 0.021562852568767
916 => 0.021007860980021
917 => 0.021373158124403
918 => 0.021128135978912
919 => 0.020758829810777
920 => 0.02069516128819
921 => 0.02069324733552
922 => 0.021072442194847
923 => 0.021368727011694
924 => 0.021132398244036
925 => 0.021078590764681
926 => 0.021653113872347
927 => 0.021580000570002
928 => 0.021516684921702
929 => 0.023148598632155
930 => 0.021856811590516
1001 => 0.021293518707735
1002 => 0.020596336798877
1003 => 0.020823342743897
1004 => 0.020871176231924
1005 => 0.019194579417604
1006 => 0.018514384298841
1007 => 0.018280966966693
1008 => 0.018146631992006
1009 => 0.018207850126844
1010 => 0.017595594741027
1011 => 0.018007040486065
1012 => 0.017476879074607
1013 => 0.017387995788682
1014 => 0.018335990066765
1015 => 0.018467897932458
1016 => 0.01790513799685
1017 => 0.018266520978068
1018 => 0.018135478485479
1019 => 0.017485967170351
1020 => 0.017461160615595
1021 => 0.017135258669091
1022 => 0.016625285229863
1023 => 0.016392213683722
1024 => 0.016270827998872
1025 => 0.016320914098201
1026 => 0.01629558903372
1027 => 0.01613032585745
1028 => 0.016305061725534
1029 => 0.015858683788425
1030 => 0.015680932497157
1031 => 0.01560064636269
1101 => 0.01520446025095
1102 => 0.015834968539491
1103 => 0.015959186615268
1104 => 0.016083649439027
1105 => 0.017167013345469
1106 => 0.017112891546258
1107 => 0.017602126252743
1108 => 0.017583115491693
1109 => 0.017443577828327
1110 => 0.016854891379417
1111 => 0.017089531305626
1112 => 0.016367346083896
1113 => 0.016908456355838
1114 => 0.016661516225029
1115 => 0.016824965649212
1116 => 0.01653106884689
1117 => 0.016693723471997
1118 => 0.015988643329222
1119 => 0.015330249412644
1120 => 0.015595206344391
1121 => 0.015883244830701
1122 => 0.016507785659863
1123 => 0.016135814294364
1124 => 0.016269589263192
1125 => 0.015821465511278
1126 => 0.014896858210858
1127 => 0.014902091387766
1128 => 0.014759860698261
1129 => 0.014636952616508
1130 => 0.016178539680286
1201 => 0.01598681896002
1202 => 0.015681337084064
1203 => 0.016090236714399
1204 => 0.016198356266769
1205 => 0.016201434278426
1206 => 0.016499756893491
1207 => 0.016658971726629
1208 => 0.016687034031046
1209 => 0.017156451111537
1210 => 0.017313793525157
1211 => 0.017961864658925
1212 => 0.016645463460409
1213 => 0.016618353044008
1214 => 0.016095990770746
1215 => 0.015764700358822
1216 => 0.016118674508681
1217 => 0.016432247283167
1218 => 0.01610573435093
1219 => 0.016148370046816
1220 => 0.015710053112374
1221 => 0.015866730791708
1222 => 0.016001682715914
1223 => 0.015927170195475
1224 => 0.015815621345932
1225 => 0.016406537891596
1226 => 0.016373196064269
1227 => 0.016923471136704
1228 => 0.017352449906215
1229 => 0.018121256550307
1230 => 0.0173189667384
1231 => 0.017289728108841
]
'min_raw' => 0.014636952616508
'max_raw' => 0.042319734527209
'avg_raw' => 0.028478343571859
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014636'
'max' => '$0.042319'
'avg' => '$0.028478'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0025737342879092
'max_diff' => -0.014295627938132
'year' => 2030
]
5 => [
'items' => [
101 => 0.017575540402805
102 => 0.017313749768784
103 => 0.017479192412779
104 => 0.018094601182626
105 => 0.018107603800184
106 => 0.017889793203154
107 => 0.01787653940853
108 => 0.017918372316277
109 => 0.018163388963575
110 => 0.018077772618408
111 => 0.018176850020576
112 => 0.018300747829113
113 => 0.018813241696809
114 => 0.01893680223327
115 => 0.018636614188462
116 => 0.018663717807845
117 => 0.018551439238741
118 => 0.018442979547832
119 => 0.018686781093729
120 => 0.019132333210786
121 => 0.01912956145419
122 => 0.019232920885052
123 => 0.019297312954203
124 => 0.019020895055531
125 => 0.018840957167663
126 => 0.018909956803617
127 => 0.019020288724123
128 => 0.018874177648813
129 => 0.017972312406763
130 => 0.018245880709826
131 => 0.01820034556739
201 => 0.018135497987298
202 => 0.018410573031469
203 => 0.018384041372409
204 => 0.017589315177106
205 => 0.017640190969646
206 => 0.017592409102556
207 => 0.017746802090375
208 => 0.017305412040767
209 => 0.017441180647219
210 => 0.017526333444434
211 => 0.017576489096168
212 => 0.017757685702285
213 => 0.01773642437192
214 => 0.017756364068137
215 => 0.018025030800877
216 => 0.019383854939789
217 => 0.019457812739593
218 => 0.019093617484562
219 => 0.019239106305513
220 => 0.018959799584194
221 => 0.019147300057408
222 => 0.019275583119185
223 => 0.018695896630428
224 => 0.018661571358698
225 => 0.018381111839185
226 => 0.018531814898932
227 => 0.018292035494941
228 => 0.018350868973553
301 => 0.018186365438343
302 => 0.018482439049393
303 => 0.018813495351734
304 => 0.018897133247516
305 => 0.018677117952094
306 => 0.018517812378494
307 => 0.018238124269771
308 => 0.018703251827833
309 => 0.018839269300316
310 => 0.018702537385955
311 => 0.018670853613746
312 => 0.018610812922661
313 => 0.01868359153019
314 => 0.01883852851995
315 => 0.018765463096816
316 => 0.018813724096043
317 => 0.018629802933516
318 => 0.019020986561357
319 => 0.019642280305835
320 => 0.019644277866815
321 => 0.019571212049831
322 => 0.019541315091746
323 => 0.019616285053976
324 => 0.019656953183057
325 => 0.019899392293768
326 => 0.020159539118761
327 => 0.021373530840053
328 => 0.02103264682258
329 => 0.022109772498401
330 => 0.02296163906071
331 => 0.023217076595137
401 => 0.022982086082729
402 => 0.02217819623372
403 => 0.022138753562569
404 => 0.023340104390528
405 => 0.023000667756276
406 => 0.02296029284871
407 => 0.022530772046692
408 => 0.022784672037871
409 => 0.022729140385312
410 => 0.022641480955046
411 => 0.023125904451389
412 => 0.024032701991758
413 => 0.023891369091198
414 => 0.023785870637175
415 => 0.023323607121782
416 => 0.023601993008342
417 => 0.023502865126269
418 => 0.023928781415766
419 => 0.023676478041069
420 => 0.022998096189926
421 => 0.023106130735697
422 => 0.023089801531439
423 => 0.023425855397965
424 => 0.023324980368604
425 => 0.023070104062969
426 => 0.024029602656347
427 => 0.023967298154705
428 => 0.024055631693241
429 => 0.024094518848711
430 => 0.024678548734238
501 => 0.024917807091466
502 => 0.024972122927364
503 => 0.025199399861826
504 => 0.02496646807019
505 => 0.025898361314286
506 => 0.026518015944131
507 => 0.027237776683832
508 => 0.028289540577984
509 => 0.028685013531544
510 => 0.028613574882225
511 => 0.029411010263155
512 => 0.030843983916694
513 => 0.02890321982789
514 => 0.030946849125944
515 => 0.030299859685015
516 => 0.028765859359415
517 => 0.028667087823122
518 => 0.029705930653729
519 => 0.032009984067096
520 => 0.031432844819405
521 => 0.032010928060151
522 => 0.031336563253122
523 => 0.03130307535646
524 => 0.031978175666684
525 => 0.033555584339325
526 => 0.032806216607233
527 => 0.031731814210773
528 => 0.032525136220767
529 => 0.031837887277224
530 => 0.030289323058556
531 => 0.031432403491899
601 => 0.030668058159179
602 => 0.0308911347621
603 => 0.03249767496369
604 => 0.032304371796256
605 => 0.032554523994306
606 => 0.032113011912371
607 => 0.031700570007778
608 => 0.030930716564517
609 => 0.030702800913284
610 => 0.030765788599739
611 => 0.030702769699715
612 => 0.030272043773529
613 => 0.030179028550779
614 => 0.030023999104438
615 => 0.030072049212365
616 => 0.02978054849778
617 => 0.030330670573322
618 => 0.030432778078202
619 => 0.030833111048407
620 => 0.030874674945427
621 => 0.031989596569066
622 => 0.031375516474263
623 => 0.031787494418981
624 => 0.031750643233919
625 => 0.028799105797967
626 => 0.029205801615006
627 => 0.02983849267814
628 => 0.02955346621179
629 => 0.029150505474294
630 => 0.028825093073377
701 => 0.028332060010862
702 => 0.02902599457849
703 => 0.029938444743208
704 => 0.030897816187377
705 => 0.032050438117038
706 => 0.031793186320336
707 => 0.030876268722149
708 => 0.030917400975795
709 => 0.031171664382889
710 => 0.030842370168435
711 => 0.030745254876006
712 => 0.031158322233016
713 => 0.031161166800886
714 => 0.030782274010622
715 => 0.030361204010892
716 => 0.030359439712219
717 => 0.030284514372821
718 => 0.031349892304553
719 => 0.031935742445148
720 => 0.032002909219622
721 => 0.031931221586069
722 => 0.031958811311043
723 => 0.031617918022558
724 => 0.03239709899127
725 => 0.033112152501172
726 => 0.032920502885628
727 => 0.03263319286733
728 => 0.03240433659903
729 => 0.032866591621974
730 => 0.032846008133459
731 => 0.033105907132562
801 => 0.033094116612713
802 => 0.033006722354611
803 => 0.032920506006753
804 => 0.033262344080557
805 => 0.033163900205053
806 => 0.033065303419019
807 => 0.032867552470216
808 => 0.032894430108453
809 => 0.032607169698281
810 => 0.032474269888393
811 => 0.030475775618909
812 => 0.029941712647419
813 => 0.030109739730104
814 => 0.030165058608545
815 => 0.029932633718932
816 => 0.030265871305582
817 => 0.030213936580688
818 => 0.03041598421445
819 => 0.030289753624764
820 => 0.030294934172196
821 => 0.030666151421264
822 => 0.030773917367939
823 => 0.030719106737682
824 => 0.030757494224316
825 => 0.03164211765144
826 => 0.031516352488768
827 => 0.031449542252691
828 => 0.031468049144673
829 => 0.031694089396844
830 => 0.031757368326111
831 => 0.031489251056273
901 => 0.031615696710696
902 => 0.032154086258887
903 => 0.032342492130544
904 => 0.032943793232925
905 => 0.032688349837359
906 => 0.033157227245252
907 => 0.034598396545028
908 => 0.035749702303019
909 => 0.034690913948248
910 => 0.036805140354895
911 => 0.038451368880235
912 => 0.038388183887495
913 => 0.038101125866151
914 => 0.036226938457301
915 => 0.034502283261117
916 => 0.035945030565452
917 => 0.035948708425035
918 => 0.035824775152083
919 => 0.035055036237694
920 => 0.035797989906368
921 => 0.035856962870576
922 => 0.035823953692797
923 => 0.035233796671883
924 => 0.034332735980197
925 => 0.034508801082518
926 => 0.034797199311751
927 => 0.03425120129764
928 => 0.034076721848946
929 => 0.034401112340142
930 => 0.03544636609222
1001 => 0.035248766925132
1002 => 0.035243606812319
1003 => 0.036089019844207
1004 => 0.035483886564926
1005 => 0.034511021827297
1006 => 0.034265360650536
1007 => 0.033393428970233
1008 => 0.033995675287532
1009 => 0.034017349060334
1010 => 0.033687504907157
1011 => 0.034537786862452
1012 => 0.034529951364545
1013 => 0.035337167533331
1014 => 0.036880261671501
1015 => 0.036423892803793
1016 => 0.03589318546344
1017 => 0.035950888066255
1018 => 0.036583743196973
1019 => 0.036201104538264
1020 => 0.036338704067787
1021 => 0.036583534923605
1022 => 0.036731247457729
1023 => 0.035929634505762
1024 => 0.035742740181078
1025 => 0.035360419983771
1026 => 0.035260679780637
1027 => 0.035572071603972
1028 => 0.035490030860159
1029 => 0.034015527463655
1030 => 0.03386143365466
1031 => 0.033866159491787
1101 => 0.03347868328231
1102 => 0.032887689057912
1103 => 0.034440786593199
1104 => 0.034316051125529
1105 => 0.03417835282298
1106 => 0.034195220079347
1107 => 0.034869367080055
1108 => 0.034478327774405
1109 => 0.035517969858559
1110 => 0.035304250700558
1111 => 0.035085050452592
1112 => 0.03505475030132
1113 => 0.034970376907139
1114 => 0.034681029144535
1115 => 0.034331624334087
1116 => 0.034100917013302
1117 => 0.031456293377118
1118 => 0.031947120140926
1119 => 0.032511771592419
1120 => 0.032706687010776
1121 => 0.03237327069994
1122 => 0.034694194452683
1123 => 0.035118249587287
1124 => 0.03383375892414
1125 => 0.033593483166473
1126 => 0.034709946891354
1127 => 0.034036582783112
1128 => 0.034339798599823
1129 => 0.033684411854278
1130 => 0.035016107123145
1201 => 0.035005961836396
1202 => 0.034487902299105
1203 => 0.034925762672505
1204 => 0.034849673657412
1205 => 0.034264785715735
1206 => 0.035034649114142
1207 => 0.035035030956783
1208 => 0.034536409915726
1209 => 0.033954129701952
1210 => 0.033850031752574
1211 => 0.03377160793131
1212 => 0.034320511147259
1213 => 0.034812656054304
1214 => 0.035728415713244
1215 => 0.035958659449415
1216 => 0.036857316079882
1217 => 0.036322209811236
1218 => 0.03655941548934
1219 => 0.036816935807715
1220 => 0.036940400518339
1221 => 0.036739221397858
1222 => 0.038135205046799
1223 => 0.038253068838604
1224 => 0.038292587548478
1225 => 0.037821869716468
1226 => 0.038239977324173
1227 => 0.038044358620797
1228 => 0.038553304142541
1229 => 0.038633113298894
1230 => 0.038565517782756
1231 => 0.038590850468684
]
'min_raw' => 0.017305412040767
'max_raw' => 0.038633113298894
'avg_raw' => 0.02796926266983
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0173054'
'max' => '$0.038633'
'avg' => '$0.027969'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0026684594242586
'max_diff' => -0.0036866212283156
'year' => 2031
]
6 => [
'items' => [
101 => 0.037399624692704
102 => 0.037337853352003
103 => 0.036495596738448
104 => 0.036838822534118
105 => 0.036197178360354
106 => 0.036400650337522
107 => 0.036490338846305
108 => 0.036443490659095
109 => 0.036858228005634
110 => 0.036505616535833
111 => 0.035575016892338
112 => 0.034644163707592
113 => 0.034632477604114
114 => 0.034387400391494
115 => 0.0342102544549
116 => 0.034244379046877
117 => 0.034364638559947
118 => 0.03420326475338
119 => 0.034237702036871
120 => 0.034809590397237
121 => 0.034924278529388
122 => 0.034534523444795
123 => 0.032969600538765
124 => 0.032585564532313
125 => 0.032861601997986
126 => 0.032729673868484
127 => 0.026415401258177
128 => 0.027898845947039
129 => 0.027017433485939
130 => 0.027423628899851
131 => 0.026523935017718
201 => 0.026953316095269
202 => 0.026874025088732
203 => 0.029259360250102
204 => 0.029222116522479
205 => 0.029239943123998
206 => 0.028389032986524
207 => 0.029744555940248
208 => 0.030412335290282
209 => 0.030288747104962
210 => 0.030319851588604
211 => 0.029785373505551
212 => 0.029245118040153
213 => 0.028645891584307
214 => 0.029759180272641
215 => 0.02963540157497
216 => 0.029919305373258
217 => 0.030641352667161
218 => 0.03074767687398
219 => 0.030890577686177
220 => 0.030839357917377
221 => 0.032059620610263
222 => 0.031911838746602
223 => 0.032267950518281
224 => 0.031535401585672
225 => 0.030706452934242
226 => 0.030864008972506
227 => 0.030848835059035
228 => 0.030655653724749
229 => 0.030481258253877
301 => 0.030190938930494
302 => 0.031109552228853
303 => 0.031072258206525
304 => 0.031676005078465
305 => 0.031569286954365
306 => 0.030856597203273
307 => 0.030882051057159
308 => 0.031053240457246
309 => 0.031645728925552
310 => 0.031821619842636
311 => 0.031740140161802
312 => 0.031932996522659
313 => 0.032085422326894
314 => 0.031952138856882
315 => 0.033839151722284
316 => 0.033055532418491
317 => 0.033437463014772
318 => 0.033528551211519
319 => 0.033295230710929
320 => 0.033345829572926
321 => 0.033422473061487
322 => 0.033887837315696
323 => 0.035109087772973
324 => 0.035649971287167
325 => 0.037277246026345
326 => 0.035605058440776
327 => 0.035505837749648
328 => 0.035798959069163
329 => 0.036754341605585
330 => 0.037528589416836
331 => 0.037785452083256
401 => 0.037819400724964
402 => 0.038301292163075
403 => 0.038577503348656
404 => 0.038242777867485
405 => 0.037959133069411
406 => 0.036943152609997
407 => 0.037060755114597
408 => 0.037870919750499
409 => 0.03901532501717
410 => 0.039997343791047
411 => 0.039653475043245
412 => 0.042276950855473
413 => 0.042537057766317
414 => 0.042501119401502
415 => 0.043093681653504
416 => 0.041917566256483
417 => 0.041414754138094
418 => 0.03802046029426
419 => 0.03897411841293
420 => 0.040360316494796
421 => 0.040176847980685
422 => 0.039170153880453
423 => 0.0399965801233
424 => 0.039723337762677
425 => 0.039507820176017
426 => 0.040495148020643
427 => 0.039409540498285
428 => 0.040349486729314
429 => 0.03914399596552
430 => 0.039655045806719
501 => 0.039364949200155
502 => 0.039552677257505
503 => 0.038455222870152
504 => 0.039047382618368
505 => 0.038430587077785
506 => 0.03843029463639
507 => 0.038416678840646
508 => 0.039142336058851
509 => 0.039165999714685
510 => 0.038629737934024
511 => 0.038552454233447
512 => 0.038838212580506
513 => 0.03850366439633
514 => 0.038660197386085
515 => 0.038508405621127
516 => 0.038474234097611
517 => 0.038201949584432
518 => 0.038084641929535
519 => 0.038130641283666
520 => 0.037973621773725
521 => 0.037879011839342
522 => 0.038397858543399
523 => 0.038120659679638
524 => 0.038355373841937
525 => 0.038087887430709
526 => 0.03716066299111
527 => 0.036627406410677
528 => 0.034875965398027
529 => 0.035372671896559
530 => 0.035701988818965
531 => 0.035593149578074
601 => 0.035826978382703
602 => 0.035841333572228
603 => 0.035765313444241
604 => 0.035677291874813
605 => 0.035634447842714
606 => 0.035953772156525
607 => 0.036139150668655
608 => 0.035735040177821
609 => 0.035640362743925
610 => 0.03604894076171
611 => 0.036298173116531
612 => 0.038138364792965
613 => 0.038002037449834
614 => 0.038344192328203
615 => 0.038305670939693
616 => 0.038664303761771
617 => 0.039250516856328
618 => 0.038058581727334
619 => 0.038265460451712
620 => 0.038214738566022
621 => 0.038768506813992
622 => 0.038770235618017
623 => 0.038438223890583
624 => 0.0386182128343
625 => 0.038517747943655
626 => 0.038699301579694
627 => 0.038000216715052
628 => 0.038851626618638
629 => 0.03933432117033
630 => 0.039341023384648
701 => 0.039569816771249
702 => 0.039802284102855
703 => 0.040248484902235
704 => 0.039789839804736
705 => 0.038964781922536
706 => 0.03902434843671
707 => 0.038540617302254
708 => 0.038548748910017
709 => 0.038505341750491
710 => 0.038635609903768
711 => 0.038028803249082
712 => 0.038171219558069
713 => 0.037971835891499
714 => 0.038265027030559
715 => 0.037949601831162
716 => 0.038214714106393
717 => 0.038329127775771
718 => 0.038751316678928
719 => 0.037887244186894
720 => 0.036125341883073
721 => 0.036495715108337
722 => 0.035947904015983
723 => 0.035998606018244
724 => 0.036101032131976
725 => 0.035769035585633
726 => 0.035832370064261
727 => 0.035830107311007
728 => 0.035810608125898
729 => 0.035724243001879
730 => 0.035598996485233
731 => 0.036097940058707
801 => 0.036182720294394
802 => 0.036371176256277
803 => 0.03693189336794
804 => 0.036875864505865
805 => 0.036967249904524
806 => 0.036767756092357
807 => 0.036007859964029
808 => 0.036049125979767
809 => 0.035534538102261
810 => 0.036358017087297
811 => 0.036163006394249
812 => 0.036037281731822
813 => 0.036002976592848
814 => 0.036565083613776
815 => 0.036733274844385
816 => 0.036628469356363
817 => 0.036413510242765
818 => 0.03682629528783
819 => 0.036936739151887
820 => 0.036961463460036
821 => 0.037692839416211
822 => 0.037002339251413
823 => 0.037168549504062
824 => 0.038465274448415
825 => 0.037289323859697
826 => 0.037912251113368
827 => 0.037881762065858
828 => 0.038200430570127
829 => 0.037855621947271
830 => 0.037859896263401
831 => 0.038142852306718
901 => 0.037745491575271
902 => 0.037647099470068
903 => 0.037511171481428
904 => 0.037807965271797
905 => 0.037985879726296
906 => 0.039419739565782
907 => 0.040346078414044
908 => 0.040305863601596
909 => 0.040673351708395
910 => 0.040507794950477
911 => 0.039973168507492
912 => 0.040885710654918
913 => 0.040596944137087
914 => 0.040620749697966
915 => 0.040619863653801
916 => 0.040811868143751
917 => 0.040675815365668
918 => 0.040407641374536
919 => 0.040585667785006
920 => 0.041114342578495
921 => 0.042755365359209
922 => 0.043673703447957
923 => 0.042700080253168
924 => 0.043371672495599
925 => 0.042968956462924
926 => 0.042895770980023
927 => 0.043317580538547
928 => 0.043740128418865
929 => 0.043713213945613
930 => 0.043406465882576
1001 => 0.043233191685211
1002 => 0.044545281958778
1003 => 0.045512007721468
1004 => 0.045446083505465
1005 => 0.045737051555201
1006 => 0.046591342748532
1007 => 0.046669448428924
1008 => 0.046659608908433
1009 => 0.046466015830096
1010 => 0.04730717645366
1011 => 0.048008887444649
1012 => 0.046421204625903
1013 => 0.047025773458987
1014 => 0.04729718388615
1015 => 0.04769569491707
1016 => 0.048368049824436
1017 => 0.049098405587168
1018 => 0.049201685899961
1019 => 0.049128403575616
1020 => 0.048646714317078
1021 => 0.049445878307615
1022 => 0.04991400983057
1023 => 0.05019277143949
1024 => 0.050899664498203
1025 => 0.047298860024549
1026 => 0.044750031646503
1027 => 0.044351995289743
1028 => 0.045161417873221
1029 => 0.04537485615346
1030 => 0.045288819450324
1031 => 0.042419881381495
1101 => 0.044336890924551
1102 => 0.046399432006138
1103 => 0.046478662609045
1104 => 0.047511213800188
1105 => 0.047847454793727
1106 => 0.048678793842176
1107 => 0.048626793358346
1108 => 0.04882921118715
1109 => 0.048782678833696
1110 => 0.050322559361857
1111 => 0.052021276258889
1112 => 0.051962455094334
1113 => 0.051718244442079
1114 => 0.052080938904781
1115 => 0.053834196788085
1116 => 0.053672784897575
1117 => 0.053829582800173
1118 => 0.055896772653872
1119 => 0.058584413518009
1120 => 0.057335734501886
1121 => 0.060045008669164
1122 => 0.061750353145013
1123 => 0.064699570080084
1124 => 0.064330313594613
1125 => 0.065478422105083
1126 => 0.063669267419467
1127 => 0.059515082570807
1128 => 0.058857666916925
1129 => 0.060173829704412
1130 => 0.06340948748816
1201 => 0.060071927326073
1202 => 0.060747111400016
1203 => 0.060552658341298
1204 => 0.060542296764171
1205 => 0.06093775601952
1206 => 0.060364121743869
1207 => 0.058027032510031
1208 => 0.059098106733346
1209 => 0.058684513538515
1210 => 0.059143426023595
1211 => 0.061619987435664
1212 => 0.060525040601538
1213 => 0.059371603058044
1214 => 0.060818269705867
1215 => 0.06266037347714
1216 => 0.062545097933712
1217 => 0.062321415198024
1218 => 0.063582303067453
1219 => 0.065664920422267
1220 => 0.066227843524639
1221 => 0.066643381850354
1222 => 0.066700677564893
1223 => 0.067290859033728
1224 => 0.064117304530921
1225 => 0.069153817029535
1226 => 0.070023483607196
1227 => 0.069860022334582
1228 => 0.070826620134488
1229 => 0.070542222541537
1230 => 0.070130175049965
1231 => 0.071662438164064
]
'min_raw' => 0.026415401258177
'max_raw' => 0.071662438164064
'avg_raw' => 0.04903891971112
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026415'
'max' => '$0.071662'
'avg' => '$0.049038'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00910998921741
'max_diff' => 0.03302932486517
'year' => 2032
]
7 => [
'items' => [
101 => 0.069905822151006
102 => 0.067412526872278
103 => 0.066044655770579
104 => 0.067845978780311
105 => 0.068945983884844
106 => 0.069673017285476
107 => 0.069893017153222
108 => 0.064363658533023
109 => 0.061383640909023
110 => 0.063293798040036
111 => 0.065624321571873
112 => 0.064104358355031
113 => 0.06416393803546
114 => 0.061996869927549
115 => 0.065816059013902
116 => 0.065259635288457
117 => 0.068146362560364
118 => 0.06745742192949
119 => 0.069811435957623
120 => 0.069191545172415
121 => 0.071764677164189
122 => 0.072791169180475
123 => 0.074514809036544
124 => 0.075782725531146
125 => 0.076527270348153
126 => 0.076482570670058
127 => 0.079432828165797
128 => 0.077693164394705
129 => 0.075507736690945
130 => 0.07546820919872
131 => 0.076600073174247
201 => 0.078972149555236
202 => 0.079587194448519
203 => 0.079930920637896
204 => 0.07940449201367
205 => 0.077516211672976
206 => 0.076700861795663
207 => 0.077395563514094
208 => 0.076546003008852
209 => 0.078012582785476
210 => 0.080026510063318
211 => 0.079610642044375
212 => 0.081000826481283
213 => 0.082439521121814
214 => 0.084496919073594
215 => 0.085034799083414
216 => 0.085923894285903
217 => 0.086839065301824
218 => 0.087132993567587
219 => 0.087694193827514
220 => 0.087691236025128
221 => 0.089382450781551
222 => 0.091247913030446
223 => 0.091952081843854
224 => 0.09357127920219
225 => 0.090798460469482
226 => 0.092901675330087
227 => 0.094798827781235
228 => 0.092536964418561
301 => 0.095654416117434
302 => 0.095775459702604
303 => 0.097603074129104
304 => 0.095750436779288
305 => 0.094650346634795
306 => 0.097826265662106
307 => 0.099362992838911
308 => 0.098900118106957
309 => 0.095377618541842
310 => 0.093327372707832
311 => 0.087961483897342
312 => 0.094317610982514
313 => 0.097413495074932
314 => 0.095369600949954
315 => 0.096400422260372
316 => 0.10202424908508
317 => 0.10416543822411
318 => 0.10372008585123
319 => 0.10379534307112
320 => 0.10495068986521
321 => 0.1100741338113
322 => 0.1070040474383
323 => 0.10935101343651
324 => 0.11059583573935
325 => 0.11175209606893
326 => 0.10891268613932
327 => 0.10521865554012
328 => 0.10404860098449
329 => 0.095166375959975
330 => 0.094704017573901
331 => 0.094444481800904
401 => 0.092808145464225
402 => 0.09152243333384
403 => 0.090499987312328
404 => 0.08781678362365
405 => 0.088722286102308
406 => 0.084445819450689
407 => 0.087181751265723
408 => 0.080356407230841
409 => 0.086040756559284
410 => 0.082947023655461
411 => 0.085024382094698
412 => 0.085017134386803
413 => 0.081192058873075
414 => 0.078985835144046
415 => 0.080391726771695
416 => 0.081898954196352
417 => 0.08214349677508
418 => 0.084097656473808
419 => 0.084643020441201
420 => 0.082990542159392
421 => 0.080214967146494
422 => 0.080859669917864
423 => 0.078972770262961
424 => 0.075666051196291
425 => 0.07804099455975
426 => 0.078851904642923
427 => 0.079210048732181
428 => 0.075958270309361
429 => 0.074936490929367
430 => 0.074392504161017
501 => 0.079795203386193
502 => 0.080091175445652
503 => 0.078576940543227
504 => 0.085421425887831
505 => 0.083872308056007
506 => 0.085603052217238
507 => 0.080801169898817
508 => 0.080984608269973
509 => 0.078711320226855
510 => 0.079984209629839
511 => 0.07908457242695
512 => 0.079881372745016
513 => 0.080358971570334
514 => 0.082631886589253
515 => 0.086066709597766
516 => 0.082292388880463
517 => 0.080647863294666
518 => 0.081668117718932
519 => 0.084385189698307
520 => 0.088501692831415
521 => 0.086064640124269
522 => 0.087146162731862
523 => 0.087382427308029
524 => 0.085585434866374
525 => 0.088567950505942
526 => 0.090166304867101
527 => 0.091805885708817
528 => 0.093229487813667
529 => 0.09115100106548
530 => 0.093375279825412
531 => 0.091582903782963
601 => 0.089974957180457
602 => 0.089977395771722
603 => 0.088968707379618
604 => 0.087014246517001
605 => 0.086653813947125
606 => 0.088528829693236
607 => 0.090032414756965
608 => 0.0901562572245
609 => 0.09098871917277
610 => 0.091481361578717
611 => 0.096309926871866
612 => 0.098252015776758
613 => 0.1006267653278
614 => 0.10155186411148
615 => 0.10433607978409
616 => 0.10208759950552
617 => 0.10160112665364
618 => 0.094847530141894
619 => 0.095953431192349
620 => 0.097724085477707
621 => 0.094876727578887
622 => 0.096682720794243
623 => 0.097039262111122
624 => 0.09477997544704
625 => 0.09598675807234
626 => 0.092781901205655
627 => 0.086136566719597
628 => 0.088575348662895
629 => 0.090371113058288
630 => 0.087808335849909
701 => 0.092402014802755
702 => 0.089718482391283
703 => 0.08886793144912
704 => 0.085549628980434
705 => 0.087115740012479
706 => 0.089233927607869
707 => 0.087925133939656
708 => 0.090641077317555
709 => 0.094487577456301
710 => 0.097228822518215
711 => 0.097439261275893
712 => 0.095676824350238
713 => 0.098501140771322
714 => 0.098521712833074
715 => 0.095335872372419
716 => 0.093384562829102
717 => 0.09294122119527
718 => 0.094048775518829
719 => 0.095393550933438
720 => 0.097513886952243
721 => 0.09879516160106
722 => 0.10213604634961
723 => 0.1030399939719
724 => 0.10403315834899
725 => 0.10536033223735
726 => 0.10695394477072
727 => 0.10346721127212
728 => 0.1036057456941
729 => 0.10035894773732
730 => 0.096889278482571
731 => 0.099522324946547
801 => 0.1029646829387
802 => 0.10217500221183
803 => 0.10208614699835
804 => 0.10223557682105
805 => 0.10164018334155
806 => 0.098947240700101
807 => 0.097594861764276
808 => 0.099339775620152
809 => 0.10026711967737
810 => 0.10170534943721
811 => 0.10152805726197
812 => 0.10523278266872
813 => 0.10667232693671
814 => 0.10630402991139
815 => 0.10637180542761
816 => 0.1089780315632
817 => 0.11187669103726
818 => 0.11459166814653
819 => 0.11735345947305
820 => 0.11402401223438
821 => 0.11233352425833
822 => 0.11407767633941
823 => 0.11315220469447
824 => 0.11847023927899
825 => 0.11883844845525
826 => 0.12415609848534
827 => 0.12920318157788
828 => 0.12603319911534
829 => 0.12902234979837
830 => 0.1322553599711
831 => 0.13849236113129
901 => 0.13639195856088
902 => 0.13478308310946
903 => 0.13326270358189
904 => 0.1364263720253
905 => 0.14049638093692
906 => 0.14137302187442
907 => 0.14279351509578
908 => 0.14130004016317
909 => 0.14309876621864
910 => 0.14944905959473
911 => 0.14773315426892
912 => 0.14529629286072
913 => 0.15030923959248
914 => 0.15212340552737
915 => 0.1648561721445
916 => 0.18093181596297
917 => 0.17427639386375
918 => 0.17014515859764
919 => 0.17111609687939
920 => 0.17698637780701
921 => 0.17887172572755
922 => 0.1737467001611
923 => 0.17555694583298
924 => 0.18553157746448
925 => 0.19088264731028
926 => 0.18361517571512
927 => 0.16356450981619
928 => 0.14507688015319
929 => 0.14998063204863
930 => 0.14942469876483
1001 => 0.16014119609223
1002 => 0.14769223049438
1003 => 0.1479018391479
1004 => 0.15883994229106
1005 => 0.15592184389903
1006 => 0.15119489822574
1007 => 0.14511139208776
1008 => 0.13386546833549
1009 => 0.12390464005233
1010 => 0.14344011815737
1011 => 0.14259771281852
1012 => 0.14137778505038
1013 => 0.14409260228839
1014 => 0.15727498418184
1015 => 0.15697108761199
1016 => 0.155037852684
1017 => 0.15650419433813
1018 => 0.15093784144411
1019 => 0.1523724173284
1020 => 0.1450739516182
1021 => 0.14837316293006
1022 => 0.1511847563233
1023 => 0.15174922532335
1024 => 0.15302100280295
1025 => 0.14215380348414
1026 => 0.14703285693407
1027 => 0.14989884373043
1028 => 0.13695021111901
1029 => 0.14964289089673
1030 => 0.14196462972133
1031 => 0.13935851255479
1101 => 0.14286730598971
1102 => 0.14149992577571
1103 => 0.14032433256297
1104 => 0.13966833135101
1105 => 0.14224480199821
1106 => 0.14212460656297
1107 => 0.13790900051274
1108 => 0.1324099142703
1109 => 0.13425558811462
1110 => 0.13358503750369
1111 => 0.13115487558695
1112 => 0.13279251129996
1113 => 0.12558119240832
1114 => 0.11317449306697
1115 => 0.12137073867934
1116 => 0.12105519213907
1117 => 0.12089607926456
1118 => 0.12705533131467
1119 => 0.12646326134817
1120 => 0.12538864856142
1121 => 0.1311351394804
1122 => 0.12903759299376
1123 => 0.13550173702148
1124 => 0.13975944035275
1125 => 0.13867954906567
1126 => 0.142683939628
1127 => 0.13429810871225
1128 => 0.13708354536132
1129 => 0.13765761999425
1130 => 0.13106422867446
1201 => 0.12656013131694
1202 => 0.12625975937367
1203 => 0.11845027525858
1204 => 0.1226220386369
1205 => 0.12629301777053
1206 => 0.12453490364501
1207 => 0.12397833723504
1208 => 0.12682171431907
1209 => 0.12704266907038
1210 => 0.12200487732484
1211 => 0.12305239375485
1212 => 0.12742071140313
1213 => 0.12294232335807
1214 => 0.11424154692705
1215 => 0.11208363407451
1216 => 0.11179572872175
1217 => 0.10594329791944
1218 => 0.11222783612978
1219 => 0.10948446678581
1220 => 0.11815073767278
1221 => 0.11320061022029
1222 => 0.1129872201195
1223 => 0.11266464968465
1224 => 0.10762722073223
1225 => 0.1087300975275
1226 => 0.11239622796785
1227 => 0.11370434461089
1228 => 0.11356789732793
1229 => 0.11237826192864
1230 => 0.11292287092252
1231 => 0.11116849559889
]
'min_raw' => 0.061383640909023
'max_raw' => 0.19088264731028
'avg_raw' => 0.12613314410965
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.061383'
'max' => '$0.190882'
'avg' => '$0.126133'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.034968239650846
'max_diff' => 0.11922020914621
'year' => 2033
]
8 => [
'items' => [
101 => 0.11054898915796
102 => 0.10859365642169
103 => 0.10571985747383
104 => 0.10611947684356
105 => 0.10042572915745
106 => 0.097323473227994
107 => 0.096464809673797
108 => 0.095316568883104
109 => 0.096594506526458
110 => 0.10040959948564
111 => 0.095807787959744
112 => 0.087918304878151
113 => 0.08839247625438
114 => 0.089457798554021
115 => 0.087472577496452
116 => 0.085593732372438
117 => 0.087227235772245
118 => 0.083884357785356
119 => 0.089861769387948
120 => 0.0897000971556
121 => 0.091928106560393
122 => 0.093321326564565
123 => 0.090110405515281
124 => 0.089302867554639
125 => 0.089762877877575
126 => 0.082159931925112
127 => 0.091306783672106
128 => 0.091385886025845
129 => 0.090708563648698
130 => 0.095578979826607
131 => 0.1058570770829
201 => 0.10199004345958
202 => 0.10049261115892
203 => 0.097645991260746
204 => 0.10143894325949
205 => 0.10114770372526
206 => 0.099830608102133
207 => 0.099034024559678
208 => 0.10050175416124
209 => 0.098852156619401
210 => 0.098555843572978
211 => 0.096760508903432
212 => 0.096119656108927
213 => 0.09564519421296
214 => 0.095122858285163
215 => 0.096275001183879
216 => 0.093664093798368
217 => 0.090515595441849
218 => 0.090253831870728
219 => 0.09097658410508
220 => 0.090656820043955
221 => 0.090252300963426
222 => 0.089479963874479
223 => 0.08925082795856
224 => 0.089995408524355
225 => 0.089154820477316
226 => 0.090395153929923
227 => 0.090057851861594
228 => 0.088173709927065
301 => 0.085825371477952
302 => 0.085804466339948
303 => 0.085298520673134
304 => 0.084654122797006
305 => 0.084474866049693
306 => 0.087089666672125
307 => 0.092502225706161
308 => 0.091439610856219
309 => 0.092207458986453
310 => 0.095984511819973
311 => 0.097185123335808
312 => 0.096332957719911
313 => 0.095166460865584
314 => 0.095217780807103
315 => 0.099204053680947
316 => 0.099452672630427
317 => 0.10008085250825
318 => 0.10088824117486
319 => 0.096470459501082
320 => 0.095009703687552
321 => 0.094317516543455
322 => 0.092185848049771
323 => 0.094484669764764
324 => 0.093145244796798
325 => 0.093325978986249
326 => 0.09320827560827
327 => 0.093272549611714
328 => 0.089860098579585
329 => 0.091103416382547
330 => 0.089036159389669
331 => 0.086268334336693
401 => 0.086259055616591
402 => 0.086936476877132
403 => 0.086533520203866
404 => 0.08544917415707
405 => 0.085603200395048
406 => 0.084253768476334
407 => 0.085767045862234
408 => 0.085810441242894
409 => 0.085227747020547
410 => 0.087559159625563
411 => 0.08851434127209
412 => 0.088130799452421
413 => 0.088487430955578
414 => 0.091483767300653
415 => 0.09197230086422
416 => 0.092189275202441
417 => 0.091898558332816
418 => 0.088542198483514
419 => 0.088691067315175
420 => 0.08759876660447
421 => 0.086675887607738
422 => 0.086712797927745
423 => 0.087187277697937
424 => 0.089259358682236
425 => 0.093619930957848
426 => 0.093785411488171
427 => 0.09398597871833
428 => 0.093170170996261
429 => 0.092924115581057
430 => 0.093248726186003
501 => 0.094886327864724
502 => 0.099098683986916
503 => 0.097609755999528
504 => 0.096399234369236
505 => 0.09746118819329
506 => 0.097297708725946
507 => 0.095917777501642
508 => 0.09587904742818
509 => 0.093230518218042
510 => 0.092251417273146
511 => 0.091433207239156
512 => 0.090539743241952
513 => 0.090010067835226
514 => 0.090823889993125
515 => 0.091010020749497
516 => 0.089230584378073
517 => 0.088988053775891
518 => 0.090441179928598
519 => 0.089801713286795
520 => 0.090459420585899
521 => 0.090612014321
522 => 0.090587443215117
523 => 0.089919766598799
524 => 0.090345323763637
525 => 0.089338754204098
526 => 0.088244260989959
527 => 0.087546042508676
528 => 0.086936754278514
529 => 0.087274822800647
530 => 0.086069670248114
531 => 0.08568411769163
601 => 0.090201154571529
602 => 0.09353793828104
603 => 0.093489420124392
604 => 0.093194078323657
605 => 0.09275526031566
606 => 0.094854225594211
607 => 0.094122988061299
608 => 0.094655024463433
609 => 0.094790450057273
610 => 0.095200342542249
611 => 0.095346843874178
612 => 0.094904015097371
613 => 0.093417827635424
614 => 0.089714389782717
615 => 0.087990429465042
616 => 0.08742149384538
617 => 0.087442173574592
618 => 0.086871734324544
619 => 0.087039754248977
620 => 0.086813303851673
621 => 0.086384461583413
622 => 0.087248342999028
623 => 0.087347897284566
624 => 0.087146257039547
625 => 0.087193750616732
626 => 0.085524255509653
627 => 0.085651183596691
628 => 0.08494443187882
629 => 0.084811924451738
630 => 0.083025317652871
701 => 0.07986008473588
702 => 0.081613931028487
703 => 0.079495531335126
704 => 0.078693261272258
705 => 0.082491082971286
706 => 0.08210988700788
707 => 0.081457445220432
708 => 0.080492347836013
709 => 0.080134383828268
710 => 0.077959507834845
711 => 0.077831004558641
712 => 0.078908931827573
713 => 0.078411505482174
714 => 0.077712930503144
715 => 0.075182762742508
716 => 0.072338016469797
717 => 0.072423881478333
718 => 0.073328742339296
719 => 0.07595974732966
720 => 0.074931768163076
721 => 0.074185957483018
722 => 0.07404628956163
723 => 0.075794526012402
724 => 0.078268646857104
725 => 0.079429449002104
726 => 0.078279129330494
727 => 0.076957704029358
728 => 0.077038133064543
729 => 0.077573191402786
730 => 0.077629418468817
731 => 0.076769306442494
801 => 0.077011422939769
802 => 0.076643625840811
803 => 0.07438645572341
804 => 0.07434563067355
805 => 0.073791684724954
806 => 0.073774911461783
807 => 0.07283251121493
808 => 0.07270066290589
809 => 0.070829470016156
810 => 0.072061094842673
811 => 0.071234985572251
812 => 0.069989844042249
813 => 0.069775181173154
814 => 0.069768728148096
815 => 0.071047210090857
816 => 0.072046155036803
817 => 0.071249356096698
818 => 0.071067940423335
819 => 0.073004985192751
820 => 0.072758478589287
821 => 0.072545005460485
822 => 0.078047116471856
823 => 0.07369176627128
824 => 0.07179258498913
825 => 0.069441987507727
826 => 0.070207353900413
827 => 0.070368627844924
828 => 0.06471586462919
829 => 0.062422539296574
830 => 0.061635556464562
831 => 0.061182636718435
901 => 0.061389037934153
902 => 0.059324776154566
903 => 0.060711994210187
904 => 0.05892451799677
905 => 0.058624841792639
906 => 0.061821070688042
907 => 0.062265807266739
908 => 0.060368422853193
909 => 0.061586850805324
910 => 0.061145031892466
911 => 0.058955159146081
912 => 0.058871522114782
913 => 0.057772720948395
914 => 0.056053309892832
915 => 0.055267492902481
916 => 0.05485823259113
917 => 0.055027101371918
918 => 0.054941716148882
919 => 0.05438451981178
920 => 0.054973653990694
921 => 0.05346865961062
922 => 0.05286935872191
923 => 0.052598668414155
924 => 0.051262899277595
925 => 0.053388701993094
926 => 0.053807511908204
927 => 0.054227147008224
928 => 0.057879784056847
929 => 0.057697308632143
930 => 0.059346797602331
1001 => 0.059282701494166
1002 => 0.058812240519918
1003 => 0.056827443056642
1004 => 0.057618547949891
1005 => 0.055183650053467
1006 => 0.057008041114431
1007 => 0.056175465222599
1008 => 0.056726546367907
1009 => 0.055735652779661
1010 => 0.056284054204389
1011 => 0.0539068272759
1012 => 0.051687006218562
1013 => 0.052580327012651
1014 => 0.053551468879451
1015 => 0.055657151889017
1016 => 0.054403024460027
1017 => 0.0548540561073
1018 => 0.053343175590721
1019 => 0.050225797523333
1020 => 0.050243441544648
1021 => 0.049763900844754
1022 => 0.049349507665956
1023 => 0.054547076081654
1024 => 0.053900676287764
1025 => 0.052870722814915
1026 => 0.054249356467048
1027 => 0.05461388908653
1028 => 0.054624266817734
1029 => 0.055630082342645
1030 => 0.056166886268593
1031 => 0.056261500287182
1101 => 0.057844172747713
1102 => 0.058374663680528
1103 => 0.060559680754908
1104 => 0.056121342205916
1105 => 0.05602993754423
1106 => 0.054268756669758
1107 => 0.053151787916
1108 => 0.054345236475936
1109 => 0.055402468978065
1110 => 0.054301607830623
1111 => 0.054445357056032
1112 => 0.052967540909251
1113 => 0.053495790644013
1114 => 0.053950790478513
1115 => 0.053699566313556
1116 => 0.053323471579228
1117 => 0.055315787969411
1118 => 0.055203373670726
1119 => 0.05705866449642
1120 => 0.058504996368168
1121 => 0.061097081645089
1122 => 0.058392105530161
1123 => 0.058293525449227
1124 => 0.059257161553101
1125 => 0.058374516152862
1126 => 0.058932317577929
1127 => 0.061007211211934
1128 => 0.061051050444846
1129 => 0.060316686809909
1130 => 0.060272000715985
1201 => 0.060413043285132
1202 => 0.061239134018013
1203 => 0.06095047253274
1204 => 0.061284518911512
1205 => 0.061702249023267
1206 => 0.063430157879381
1207 => 0.063846750854782
1208 => 0.06283464590325
1209 => 0.062926027648315
1210 => 0.06254747261354
1211 => 0.062181793193228
1212 => 0.063003787126899
1213 => 0.064505997197013
1214 => 0.064496652026132
1215 => 0.064845135563607
1216 => 0.065062237920461
1217 => 0.064130275676206
1218 => 0.063523602524398
1219 => 0.063756239614417
1220 => 0.064128231387534
1221 => 0.063635607695975
1222 => 0.060594906066182
1223 => 0.061517260699889
1224 => 0.061363735788003
1225 => 0.06114509764421
1226 => 0.06207253236076
1227 => 0.061983079019857
1228 => 0.059303604166381
1229 => 0.059475135452966
1230 => 0.059314035552048
1231 => 0.059834582289853
]
'min_raw' => 0.049349507665956
'max_raw' => 0.11054898915796
'avg_raw' => 0.079949248411956
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.049349'
'max' => '$0.110548'
'avg' => '$0.079949'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012034133243067
'max_diff' => -0.080333658152321
'year' => 2034
]
9 => [
'items' => [
101 => 0.058346404920731
102 => 0.058804158256446
103 => 0.059091256857435
104 => 0.059260360139012
105 => 0.059871277147277
106 => 0.059799593087535
107 => 0.059866821165475
108 => 0.060772649812621
109 => 0.065354020267033
110 => 0.065603374152642
111 => 0.064375464423002
112 => 0.064865990140545
113 => 0.063924288029045
114 => 0.064556458965351
115 => 0.06498897426457
116 => 0.063034520795306
117 => 0.062918790745154
118 => 0.061973201894058
119 => 0.062481307781747
120 => 0.061672874780327
121 => 0.06187123596109
122 => 0.061316600806861
123 => 0.062314833657715
124 => 0.063431013094672
125 => 0.06371300409971
126 => 0.062971207170218
127 => 0.062434097306466
128 => 0.061491109320706
129 => 0.063059319356883
130 => 0.063517911761796
131 => 0.063056910566208
201 => 0.062950086516116
202 => 0.062747655134217
203 => 0.06299303329074
204 => 0.063515414169071
205 => 0.06326906899371
206 => 0.063431784322079
207 => 0.062811681281655
208 => 0.064130584194488
209 => 0.066225319431339
210 => 0.066232054347649
211 => 0.065985707844396
212 => 0.065884908162874
213 => 0.066137674624768
214 => 0.066274790061322
215 => 0.067092190449642
216 => 0.067969293632978
217 => 0.072062351479507
218 => 0.070913037214837
219 => 0.074544641633378
220 => 0.07741676922363
221 => 0.078277994705028
222 => 0.077485707785932
223 => 0.074775337034202
224 => 0.074642353314616
225 => 0.078692791506715
226 => 0.077548357195625
227 => 0.077412230375881
228 => 0.075964071003692
301 => 0.076820112550683
302 => 0.076632883706985
303 => 0.076337333817658
304 => 0.077970601456945
305 => 0.081027932674884
306 => 0.080551418933098
307 => 0.08019572352969
308 => 0.078637169813336
309 => 0.079575767266156
310 => 0.079241550690857
311 => 0.080677557197423
312 => 0.079826898754372
313 => 0.077539686980136
314 => 0.077903932993932
315 => 0.077848877941708
316 => 0.078981907015234
317 => 0.078641799810872
318 => 0.077782466551531
319 => 0.081017483049155
320 => 0.080807419071907
321 => 0.081105241764334
322 => 0.081236352524014
323 => 0.083205450058733
324 => 0.084012126314614
325 => 0.084195255947555
326 => 0.084961536000061
327 => 0.084176190201783
328 => 0.08731813333696
329 => 0.089407342184388
330 => 0.091834065770379
331 => 0.095380161171321
401 => 0.096713525845292
402 => 0.096472665451424
403 => 0.09916127451339
404 => 0.10399264523332
405 => 0.097449223608097
406 => 0.10433946246813
407 => 0.10215809239668
408 => 0.096986103198433
409 => 0.096653088067813
410 => 0.10015561920089
411 => 0.10792389614793
412 => 0.10597803087977
413 => 0.10792707888643
414 => 0.10565341085688
415 => 0.10554050407523
416 => 0.10781665190515
417 => 0.11313499537612
418 => 0.11060844974819
419 => 0.10698602705614
420 => 0.10966076760081
421 => 0.10734365980547
422 => 0.10212256742493
423 => 0.10597654291327
424 => 0.10339949925912
425 => 0.10415161760057
426 => 0.10956818005529
427 => 0.10891644493029
428 => 0.10975985053109
429 => 0.10827126172145
430 => 0.10688068504434
501 => 0.10428507041094
502 => 0.10351663688024
503 => 0.10372900426278
504 => 0.10351653164151
505 => 0.10206430910905
506 => 0.10175070179144
507 => 0.10122800918929
508 => 0.10139001348292
509 => 0.10040719847176
510 => 0.10226197345775
511 => 0.10260623603937
512 => 0.10395598659877
513 => 0.10409612217948
514 => 0.10785515827492
515 => 0.10578474436158
516 => 0.10717375676558
517 => 0.10704951042228
518 => 0.097098195887202
519 => 0.098469399228944
520 => 0.10060256132138
521 => 0.099641574690171
522 => 0.09828296442988
523 => 0.097185813800621
524 => 0.095523518407883
525 => 0.097863167251607
526 => 0.10093955668719
527 => 0.10417414449238
528 => 0.10806028980173
529 => 0.1071929474084
530 => 0.10410149570897
531 => 0.1042401759739
601 => 0.10509744280302
602 => 0.1039872043684
603 => 0.1036597733796
604 => 0.1050524588132
605 => 0.10506204947238
606 => 0.10378458597655
607 => 0.1023649190743
608 => 0.10235897061814
609 => 0.10210635460524
610 => 0.10569835068438
611 => 0.10767358533615
612 => 0.10790004280573
613 => 0.10765834294413
614 => 0.10775136362813
615 => 0.1066020181056
616 => 0.10922908114229
617 => 0.11163993397436
618 => 0.11099377391501
619 => 0.11002508812897
620 => 0.10925348324216
621 => 0.11081200832563
622 => 0.11074260965701
623 => 0.11161887727806
624 => 0.1115791247172
625 => 0.11128446887433
626 => 0.1109937844381
627 => 0.1121463153703
628 => 0.11181440497091
629 => 0.11148197902299
630 => 0.11081524789257
701 => 0.11090586772642
702 => 0.10993734919764
703 => 0.10948926820984
704 => 0.10275120524986
705 => 0.10095057465439
706 => 0.10151708969494
707 => 0.10170360115585
708 => 0.10091996441313
709 => 0.10204349820242
710 => 0.10186839665148
711 => 0.10254961435522
712 => 0.10212401910896
713 => 0.10214148568632
714 => 0.10339307055911
715 => 0.10375641097231
716 => 0.10357161310564
717 => 0.10370103919695
718 => 0.10668360884394
719 => 0.10625958281734
720 => 0.10603432744187
721 => 0.1060967247203
722 => 0.10685883521212
723 => 0.10707218454014
724 => 0.10616820844553
725 => 0.10659452879757
726 => 0.10840974674845
727 => 0.10904497029882
728 => 0.111072298947
729 => 0.11021105370436
730 => 0.11179190662105
731 => 0.11665090953447
801 => 0.12053261727914
802 => 0.11696283841878
803 => 0.12409110035937
804 => 0.12964147476856
805 => 0.1294284421541
806 => 0.12846060599339
807 => 0.12214165229286
808 => 0.11632685688735
809 => 0.12119118015332
810 => 0.12120358031368
811 => 0.12078573063118
812 => 0.11819050213986
813 => 0.12069542230516
814 => 0.12089425377135
815 => 0.12078296102384
816 => 0.11879320542438
817 => 0.11575521639231
818 => 0.11634883217726
819 => 0.11732118694244
820 => 0.1154803165175
821 => 0.11489204687446
822 => 0.11598575206375
823 => 0.11950989806617
824 => 0.1188436786784
825 => 0.11882628099778
826 => 0.12167665005965
827 => 0.1196364009595
828 => 0.11635631957333
829 => 0.11552805576437
830 => 0.1125882772279
831 => 0.11461879273417
901 => 0.11469186737238
902 => 0.11357977478096
903 => 0.11644655975803
904 => 0.11642014182978
905 => 0.11914172750088
906 => 0.12434437712311
907 => 0.12280569762297
908 => 0.12101638077217
909 => 0.12121092912623
910 => 0.12334464438398
911 => 0.12205455143116
912 => 0.12251847785184
913 => 0.12334394217578
914 => 0.12384196529753
915 => 0.12113927126315
916 => 0.12050914399893
917 => 0.11922012476097
918 => 0.11888384370247
919 => 0.11993372297552
920 => 0.11965711687985
921 => 0.114685725732
922 => 0.11416618769649
923 => 0.11418212118631
924 => 0.11287571809333
925 => 0.11088313980387
926 => 0.1161195165779
927 => 0.1156989622399
928 => 0.11523470279907
929 => 0.11529157193154
930 => 0.11756450561187
1001 => 0.11624608929138
1002 => 0.1197513151636
1003 => 0.119030746101
1004 => 0.11829169716091
1005 => 0.11818953808541
1006 => 0.11790506729617
1007 => 0.11692951111293
1008 => 0.11575146839984
1009 => 0.11497362256034
1010 => 0.10605708932922
1011 => 0.10771194603183
1012 => 0.10961570782325
1013 => 0.1102728787648
1014 => 0.10914874239443
1015 => 0.11697389886853
1016 => 0.11840363036143
1017 => 0.11407288041035
1018 => 0.11326277391786
1019 => 0.11702700931531
1020 => 0.11475671521158
1021 => 0.11577902850748
1022 => 0.11356934633723
1023 => 0.11805924991221
1024 => 0.11802504436962
1025 => 0.11627837046988
1026 => 0.11775464728923
1027 => 0.11749810786248
1028 => 0.11552611733154
1029 => 0.11812176552942
1030 => 0.11812305293854
1031 => 0.11644191728601
1101 => 0.11447871889176
1102 => 0.11412774538755
1103 => 0.11386333399878
1104 => 0.11571399951455
1105 => 0.11737330042911
1106 => 0.12046084805553
1107 => 0.12123713088713
1108 => 0.12426701445895
1109 => 0.12246286631429
1110 => 0.12326262181919
1111 => 0.12413086955208
1112 => 0.12454713944398
1113 => 0.1238688499934
1114 => 0.12857550633028
1115 => 0.12897289233333
1116 => 0.12910613242278
1117 => 0.12751907438769
1118 => 0.12892875337841
1119 => 0.12826921126231
1120 => 0.12998515662232
1121 => 0.13025423876506
1122 => 0.13002633576303
1123 => 0.13011174668231
1124 => 0.12609544580986
1125 => 0.12588717942195
1126 => 0.12304745244487
1127 => 0.12420466217823
1128 => 0.12204131404822
1129 => 0.1227273340252
1130 => 0.12302972509442
1201 => 0.1228717731604
1202 => 0.1242700890803
1203 => 0.12308123489132
1204 => 0.11994365322088
1205 => 0.11680521671841
1206 => 0.11676581620464
1207 => 0.11593952127155
1208 => 0.11534226137839
1209 => 0.11545731482274
1210 => 0.11586277816731
1211 => 0.11531869511171
1212 => 0.11543480281733
1213 => 0.11736296435228
1214 => 0.11774964339709
1215 => 0.11643555691756
1216 => 0.11115931008045
1217 => 0.10986450587216
1218 => 0.11079518545999
1219 => 0.11035038056045
1220 => 0.089061369606365
1221 => 0.094062906945665
1222 => 0.091091163294813
1223 => 0.092460679492476
1224 => 0.089427298754244
1225 => 0.090874987035635
1226 => 0.090607651871173
1227 => 0.098649975906517
1228 => 0.09852440607856
1229 => 0.098584509710196
1230 => 0.095715606773053
1231 => 0.10028584705113
]
'min_raw' => 0.058346404920731
'max_raw' => 0.13025423876506
'avg_raw' => 0.094300321842893
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.058346'
'max' => '$0.130254'
'avg' => '$0.09430032'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0089968972547755
'max_diff' => 0.0197052496071
'year' => 2035
]
10 => [
'items' => [
101 => 0.10253731175263
102 => 0.10212062555717
103 => 0.10222549649542
104 => 0.10042346632234
105 => 0.098601957301314
106 => 0.096581623468773
107 => 0.10033515400883
108 => 0.099917825487675
109 => 0.10087502696513
110 => 0.10330945982826
111 => 0.10366793931487
112 => 0.10414973938021
113 => 0.10397704835365
114 => 0.10809124921873
115 => 0.1075929923476
116 => 0.10879364804875
117 => 0.10632380817752
118 => 0.10352894992388
119 => 0.1040601611071
120 => 0.10400900119842
121 => 0.10335767684239
122 => 0.10276969033644
123 => 0.1017908584682
124 => 0.10488802733915
125 => 0.10476228793909
126 => 0.10679786267009
127 => 0.10643805506387
128 => 0.10403517180966
129 => 0.10412099125516
130 => 0.10469816826962
131 => 0.10669578450674
201 => 0.107288813014
202 => 0.10701409858133
203 => 0.10766432726677
204 => 0.10817824150777
205 => 0.10772886698307
206 => 0.11409106260581
207 => 0.11144903541252
208 => 0.11273674108342
209 => 0.11304385129833
210 => 0.11225719494067
211 => 0.1124277925366
212 => 0.11268620140936
213 => 0.11425520948312
214 => 0.11837274066481
215 => 0.1201963671962
216 => 0.12568283759203
217 => 0.12004494039887
218 => 0.11971041091137
219 => 0.12069868990519
220 => 0.12391982882941
221 => 0.1265302593813
222 => 0.12739628979472
223 => 0.12751075001045
224 => 0.12913548063863
225 => 0.13006674593527
226 => 0.12893819560571
227 => 0.12798186736556
228 => 0.12455641831315
229 => 0.12495292336816
301 => 0.12768445000199
302 => 0.13154289225839
303 => 0.13485383711688
304 => 0.13369445962552
305 => 0.14253969149168
306 => 0.14341666010167
307 => 0.14329549139556
308 => 0.14529335639956
309 => 0.14132800122475
310 => 0.13963273506238
311 => 0.12818863638587
312 => 0.13140396131525
313 => 0.13607762492952
314 => 0.13545904802483
315 => 0.13206490858076
316 => 0.13485126235775
317 => 0.13393000666174
318 => 0.13320337407136
319 => 0.13653221883255
320 => 0.13287201727622
321 => 0.13604111161908
322 => 0.13197671534428
323 => 0.13369975556424
324 => 0.13272167460131
325 => 0.13335461285342
326 => 0.12965446876464
327 => 0.13165097669902
328 => 0.12957140747066
329 => 0.12957042148408
330 => 0.1295245148781
331 => 0.13197111885305
401 => 0.13205090252084
402 => 0.13024285848674
403 => 0.12998229109447
404 => 0.13094574531259
405 => 0.12981779275223
406 => 0.13034555465597
407 => 0.12983377812265
408 => 0.12971856644534
409 => 0.12880054019886
410 => 0.12840502925022
411 => 0.12856011928424
412 => 0.12803071704372
413 => 0.1277117330445
414 => 0.12946106093194
415 => 0.12852646560937
416 => 0.12931782079478
417 => 0.12841597168402
418 => 0.12528976974917
419 => 0.12349185795745
420 => 0.11758675230159
421 => 0.11926143294033
422 => 0.1203717479364
423 => 0.12000478883682
424 => 0.12079315897704
425 => 0.12084155850077
426 => 0.1205852513317
427 => 0.12028848046491
428 => 0.12014402881941
429 => 0.12122065303794
430 => 0.12184566963429
501 => 0.12048318290035
502 => 0.12016397132181
503 => 0.12154152063478
504 => 0.1223818249199
505 => 0.12858615963508
506 => 0.12812652247964
507 => 0.12928012154056
508 => 0.12915024398972
509 => 0.1303593995883
510 => 0.13233585796469
511 => 0.12831716545903
512 => 0.12901467152208
513 => 0.12884365914319
514 => 0.13071072745408
515 => 0.13071655623755
516 => 0.12959715551819
517 => 0.13020400080836
518 => 0.12986527641532
519 => 0.13047739717489
520 => 0.1281203837452
521 => 0.13099097167869
522 => 0.13261841006037
523 => 0.13264100704388
524 => 0.13341239992065
525 => 0.13419617975951
526 => 0.13570057690736
527 => 0.13415422293957
528 => 0.13137248268603
529 => 0.13157331534737
530 => 0.12994238205452
531 => 0.12996979833783
601 => 0.12982344806889
602 => 0.1302626562427
603 => 0.12821676524054
604 => 0.12869693176948
605 => 0.12802469581711
606 => 0.1290132102124
607 => 0.12794973213035
608 => 0.12884357667584
609 => 0.12922933035026
610 => 0.13065276971354
611 => 0.12773948897903
612 => 0.12179911234961
613 => 0.12304785153722
614 => 0.1212008681924
615 => 0.12137181353292
616 => 0.12171715032653
617 => 0.12059780079128
618 => 0.12081133740785
619 => 0.12080370837727
620 => 0.12073796551328
621 => 0.12044677946783
622 => 0.12002450209253
623 => 0.12170672518562
624 => 0.12199256766941
625 => 0.12262796010247
626 => 0.12451845699246
627 => 0.12432955177217
628 => 0.12463766402407
629 => 0.12396505670814
630 => 0.12140301385722
701 => 0.12154214511039
702 => 0.119807176154
703 => 0.12258359304551
704 => 0.12192610087869
705 => 0.1215022114015
706 => 0.12138654923034
707 => 0.12328173229646
708 => 0.1238488007732
709 => 0.12349544175304
710 => 0.12277069209358
711 => 0.12416242569275
712 => 0.12453479489136
713 => 0.12461815462248
714 => 0.12708403972177
715 => 0.12475597020697
716 => 0.1253163596782
717 => 0.12968835836253
718 => 0.12572355885042
719 => 0.12782380157757
720 => 0.12772100562521
721 => 0.12879541873608
722 => 0.12763287239035
723 => 0.1276472835456
724 => 0.12860128960101
725 => 0.12726156015209
726 => 0.12692982429988
727 => 0.12647153359599
728 => 0.12747219458171
729 => 0.12807204558664
730 => 0.13290640414436
731 => 0.13602962024619
801 => 0.13589403319831
802 => 0.13713304500759
803 => 0.13657485883946
804 => 0.13477232846051
805 => 0.13784902802222
806 => 0.13687543154632
807 => 0.13695569365687
808 => 0.13695270629711
809 => 0.1376000628403
810 => 0.13714135140009
811 => 0.13623718406568
812 => 0.13683741253798
813 => 0.13861987651513
814 => 0.14415269939286
815 => 0.14724894037539
816 => 0.14396630179796
817 => 0.14623062193239
818 => 0.14487283671149
819 => 0.14462608674624
820 => 0.14604824712261
821 => 0.14747289680245
822 => 0.14738215277677
823 => 0.14634793026578
824 => 0.14576372421174
825 => 0.15018752817629
826 => 0.15344691157984
827 => 0.1532246434829
828 => 0.15420566257733
829 => 0.15708596498035
830 => 0.15734930373496
831 => 0.15731612910465
901 => 0.1566634165248
902 => 0.1594994482951
903 => 0.16186531589312
904 => 0.15651233242124
905 => 0.15855067845163
906 => 0.15946575765608
907 => 0.16080936541998
908 => 0.16307625693249
909 => 0.16553870237835
910 => 0.16588691916373
911 => 0.16563984269079
912 => 0.16401579372516
913 => 0.16671023091511
914 => 0.16828856902865
915 => 0.16922843325564
916 => 0.17161177255678
917 => 0.15947140887372
918 => 0.15087785604362
919 => 0.14953584867679
920 => 0.15226487342907
921 => 0.15298449549268
922 => 0.15269441674117
923 => 0.14302159173925
924 => 0.149484923255
925 => 0.15643892451359
926 => 0.15670605602299
927 => 0.16018737445435
928 => 0.16132103443967
929 => 0.16412395208375
930 => 0.16394862882196
1001 => 0.16463109466413
1002 => 0.16447420758568
1003 => 0.1696660222974
1004 => 0.17539336491637
1005 => 0.17519504525331
1006 => 0.17437167198899
1007 => 0.17559452169251
1008 => 0.18150575305462
1009 => 0.18096154159635
1010 => 0.18149019667224
1011 => 0.18845987159057
1012 => 0.1975214404091
1013 => 0.19331143192626
1014 => 0.20244593893672
1015 => 0.20819562690039
1016 => 0.21813911770473
1017 => 0.21689414368331
1018 => 0.22076507168473
1019 => 0.21466538035103
1020 => 0.20065925609785
1021 => 0.19844273332149
1022 => 0.20288026805105
1023 => 0.21378951417537
1024 => 0.20253669706789
1025 => 0.20481312731303
1026 => 0.20415751524929
1027 => 0.20412258046858
1028 => 0.20545589895807
1029 => 0.20352185094785
1030 => 0.19564219142561
1031 => 0.19925339294953
1101 => 0.197858934617
1102 => 0.19940619010069
1103 => 0.20775608980948
1104 => 0.20406440011148
1105 => 0.20017550490315
1106 => 0.20505304250932
1107 => 0.21126382398575
1108 => 0.2108751644428
1109 => 0.2101210024824
1110 => 0.21437217396656
1111 => 0.22139386378201
1112 => 0.2232917983237
1113 => 0.2246928148008
1114 => 0.22488599130263
1115 => 0.22687582932996
1116 => 0.21617596875325
1117 => 0.2331569222804
1118 => 0.23608906386517
1119 => 0.23553794277205
1120 => 0.23879689474013
1121 => 0.23783802839949
1122 => 0.23644878151342
1123 => 0.2416149135818
1124 => 0.23569236005076
1125 => 0.22728604094221
1126 => 0.22267416802112
1127 => 0.22874745431279
1128 => 0.23245619832263
1129 => 0.23490744219271
1130 => 0.23564918710672
1201 => 0.21700656847122
1202 => 0.20695923099372
1203 => 0.21339945912384
1204 => 0.22125698192339
1205 => 0.21613231981736
1206 => 0.21633319686965
1207 => 0.20902677544396
1208 => 0.22190343809587
1209 => 0.22002741665727
1210 => 0.22976021919937
1211 => 0.22743740776207
1212 => 0.23537413040994
1213 => 0.23328412534821
1214 => 0.24195961950882
1215 => 0.24542050900911
1216 => 0.25123188112454
1217 => 0.25550675010919
1218 => 0.25801703494219
1219 => 0.25786632685666
1220 => 0.26781332598395
1221 => 0.26194792812027
1222 => 0.25457960603535
1223 => 0.25444633633559
1224 => 0.2582624947533
1225 => 0.26626011588489
1226 => 0.26833378268365
1227 => 0.26949267952934
1228 => 0.26771778866868
1229 => 0.26135131966451
1230 => 0.25860231062724
1231 => 0.26094454597345
]
'min_raw' => 0.096581623468773
'max_raw' => 0.26949267952934
'avg_raw' => 0.18303715149905
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.096581'
'max' => '$0.269492'
'avg' => '$0.183037'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.038235218548041
'max_diff' => 0.13923844076428
'year' => 2036
]
11 => [
'items' => [
101 => 0.25808019341561
102 => 0.26302486952583
103 => 0.26981496595098
104 => 0.26841283789014
105 => 0.27309994177875
106 => 0.27795060120576
107 => 0.28488726204312
108 => 0.28670076204981
109 => 0.28969840859965
110 => 0.29278397157503
111 => 0.29377497124446
112 => 0.29566709710256
113 => 0.2956571246653
114 => 0.30135917329343
115 => 0.307648709508
116 => 0.3100228638259
117 => 0.31548210076828
118 => 0.30613334881893
119 => 0.31322448456323
120 => 0.31962086650723
121 => 0.31199483626172
122 => 0.322505542318
123 => 0.32291364921639
124 => 0.3290755788553
125 => 0.32282928268338
126 => 0.31912025195538
127 => 0.32982808469155
128 => 0.33500926765901
129 => 0.33344865318335
130 => 0.3215722999665
131 => 0.31465975299354
201 => 0.29656828423458
202 => 0.31799841047286
203 => 0.32843639983817
204 => 0.32154526809568
205 => 0.3250207541134
206 => 0.34398187889595
207 => 0.35120104757124
208 => 0.34969951095258
209 => 0.34995324592373
210 => 0.35384857830374
211 => 0.37112262727539
212 => 0.36077161672226
213 => 0.36868457644516
214 => 0.37288158174989
215 => 0.37677999417858
216 => 0.36720672535964
217 => 0.35475204328544
218 => 0.35080712266056
219 => 0.32086008085325
220 => 0.31930120727377
221 => 0.3184261642949
222 => 0.31290914209043
223 => 0.30857427387728
224 => 0.30512702573085
225 => 0.29608041715918
226 => 0.29913338198614
227 => 0.28471497609684
228 => 0.29393936122788
301 => 0.27092723728397
302 => 0.29009241791342
303 => 0.27966168143065
304 => 0.28666564044507
305 => 0.28664120429188
306 => 0.2737446951391
307 => 0.26630625780306
308 => 0.2710463195819
309 => 0.27612804207538
310 => 0.27695253445298
311 => 0.28354112031232
312 => 0.28537985300448
313 => 0.27980840710501
314 => 0.27045036216457
315 => 0.27262402256995
316 => 0.26626220864432
317 => 0.25511337444329
318 => 0.26312066180644
319 => 0.26585470176779
320 => 0.26706220956955
321 => 0.25609861158509
322 => 0.25265361106708
323 => 0.25081952169765
324 => 0.26903509933974
325 => 0.27003298980232
326 => 0.26492764110829
327 => 0.28800430131433
328 => 0.28278134238838
329 => 0.28861666716467
330 => 0.27242678567139
331 => 0.273045260947
401 => 0.26538071159373
402 => 0.26967234708619
403 => 0.26663915744599
404 => 0.26932562534917
405 => 0.27093588313361
406 => 0.27859917480976
407 => 0.29017992039464
408 => 0.2774545345816
409 => 0.27190990175197
410 => 0.27534976077527
411 => 0.28451055865364
412 => 0.29838963637199
413 => 0.29017294302026
414 => 0.29381937200126
415 => 0.29461595451527
416 => 0.28855726903623
417 => 0.29861302874762
418 => 0.30400199206981
419 => 0.30952995334953
420 => 0.31432972723876
421 => 0.30732196405193
422 => 0.31482127518523
423 => 0.30877815421841
424 => 0.30335684998482
425 => 0.30336507186552
426 => 0.29996420852717
427 => 0.29337460727276
428 => 0.29215938369882
429 => 0.29848113019625
430 => 0.30355057221557
501 => 0.30396811574127
502 => 0.3067748193205
503 => 0.30843579758735
504 => 0.32471564259286
505 => 0.33126353092802
506 => 0.33927016483907
507 => 0.34238919997659
508 => 0.35177637750453
509 => 0.34419546926143
510 => 0.34255529207689
511 => 0.31978506991648
512 => 0.32351369251964
513 => 0.32948357706586
514 => 0.3198835111138
515 => 0.3259725433298
516 => 0.32717464727257
517 => 0.31955730454626
518 => 0.32362605642234
519 => 0.31282065774035
520 => 0.29041544855816
521 => 0.29863797215031
522 => 0.30469251718565
523 => 0.2960519349002
524 => 0.31153984421015
525 => 0.30249212732662
526 => 0.29962443544155
527 => 0.28843654699189
528 => 0.29371679967881
529 => 0.3008584170438
530 => 0.29644572781437
531 => 0.30560272053407
601 => 0.31857146430591
602 => 0.32781376341977
603 => 0.32852327238365
604 => 0.32258109323939
605 => 0.33210347324055
606 => 0.33217283338304
607 => 0.32143154984166
608 => 0.31485257348029
609 => 0.3133578162087
610 => 0.31709201293755
611 => 0.32162601713713
612 => 0.32877487806166
613 => 0.33309478499589
614 => 0.34435881117875
615 => 0.3474065336989
616 => 0.35075505673681
617 => 0.35522971616171
618 => 0.36060269208043
619 => 0.34884692665395
620 => 0.34931400512984
621 => 0.33836719913435
622 => 0.32666896699739
623 => 0.33554646698412
624 => 0.34715261729243
625 => 0.34449015358805
626 => 0.34419057203211
627 => 0.34469438511221
628 => 0.34268697442704
629 => 0.33360753029613
630 => 0.32904789029391
701 => 0.33493098918499
702 => 0.338057594419
703 => 0.34290668646831
704 => 0.34230893352132
705 => 0.35479967388587
706 => 0.35965319789115
707 => 0.3584114587566
708 => 0.35863996864148
709 => 0.36742704201852
710 => 0.37720007481326
711 => 0.3863538096908
712 => 0.39566538197029
713 => 0.38443991815051
714 => 0.37874031991318
715 => 0.38462085042733
716 => 0.38150055816207
717 => 0.3994306830571
718 => 0.40067212600239
719 => 0.41860095434531
720 => 0.4356175473679
721 => 0.42492973017434
722 => 0.43500786039801
723 => 0.44590817991692
724 => 0.46693666478201
725 => 0.45985501087046
726 => 0.45443057495789
727 => 0.44930450923118
728 => 0.45997103826843
729 => 0.47369335747289
730 => 0.47664901359879
731 => 0.48143830567029
801 => 0.47640295066388
802 => 0.48246748114294
803 => 0.50387793862376
804 => 0.4980926440171
805 => 0.48987659564314
806 => 0.50677809554205
807 => 0.51289468265254
808 => 0.55582409427555
809 => 0.61002424977513
810 => 0.5875850295009
811 => 0.57365628136756
812 => 0.57692986757322
813 => 0.59672192957062
814 => 0.60307851171554
815 => 0.58579913020039
816 => 0.59190249987045
817 => 0.62553266682257
818 => 0.64357417240745
819 => 0.61907138452572
820 => 0.55146916455467
821 => 0.4891368303808
822 => 0.5056701722653
823 => 0.50379580438493
824 => 0.53992722332621
825 => 0.49795466665406
826 => 0.4986613768638
827 => 0.53553995528495
828 => 0.52570138282108
829 => 0.50976415545877
830 => 0.48925318977774
831 => 0.45133677268166
901 => 0.41775314468215
902 => 0.48361837303681
903 => 0.48077814462201
904 => 0.47666507297911
905 => 0.48581826883954
906 => 0.53026358975783
907 => 0.5292389812552
908 => 0.52272094472131
909 => 0.52766481798492
910 => 0.50889747057238
911 => 0.51373424332515
912 => 0.4891269566206
913 => 0.50025047790213
914 => 0.50972996132662
915 => 0.51163310797024
916 => 0.51592099453539
917 => 0.47928147330839
918 => 0.49573154265948
919 => 0.5053944172402
920 => 0.46173719834615
921 => 0.50453145439132
922 => 0.4786436607594
923 => 0.46985695477912
924 => 0.48168709682108
925 => 0.47707687896214
926 => 0.4731132843681
927 => 0.47090153048142
928 => 0.47958828115191
929 => 0.47918303385022
930 => 0.46496982372765
1001 => 0.44642927052732
1002 => 0.45265208875426
1003 => 0.45039128055318
1004 => 0.4421978199824
1005 => 0.4477192231249
1006 => 0.4234057580035
1007 => 0.38157570496608
1008 => 0.40920991929178
1009 => 0.40814603210048
1010 => 0.40760957193518
1011 => 0.42837592024736
1012 => 0.42637971501831
1013 => 0.4227565829807
1014 => 0.44213127832123
1015 => 0.43505925389551
1016 => 0.45685356679707
1017 => 0.47120871084182
1018 => 0.46756778197181
1019 => 0.48106886433033
1020 => 0.45279544991788
1021 => 0.4621867440532
1022 => 0.46412227675872
1023 => 0.44189219758819
1024 => 0.42670631888127
1025 => 0.42569359390321
1026 => 0.39936337296841
1027 => 0.41342876446167
1028 => 0.42580572691028
1029 => 0.41987812238848
1030 => 0.41800161987903
1031 => 0.42758826423609
1101 => 0.42833322860669
1102 => 0.41134796200922
1103 => 0.41487973678827
1104 => 0.42960782472563
1105 => 0.41450862676063
1106 => 0.38517335155463
1107 => 0.37789779771163
1108 => 0.37692710471392
1109 => 0.35719522566025
1110 => 0.37838398500884
1111 => 0.36913452372973
1112 => 0.39835346108486
1113 => 0.38166376077192
1114 => 0.38094430114871
1115 => 0.37985673240645
1116 => 0.3628726889913
1117 => 0.36659111510695
1118 => 0.37895172984766
1119 => 0.38336213643943
1120 => 0.38290209489851
1121 => 0.37889115609212
1122 => 0.38072734333836
1123 => 0.37481234444817
1124 => 0.37272363523
1125 => 0.36613109439269
1126 => 0.35644188059774
1127 => 0.35778922520333
1128 => 0.33859235735484
1129 => 0.32813288489609
1130 => 0.32523784077314
1201 => 0.32136646677971
1202 => 0.32567512276703
1203 => 0.33853797504019
1204 => 0.32302264619243
1205 => 0.29642270315671
1206 => 0.29802140505726
1207 => 0.30161321356893
1208 => 0.29491990216962
1209 => 0.28858524465723
1210 => 0.29409271541725
1211 => 0.28282196889216
1212 => 0.30297522943985
1213 => 0.3024301402209
1214 => 0.30994202948381
1215 => 0.31463936799939
1216 => 0.30381352350238
1217 => 0.30109085288757
1218 => 0.30264180980824
1219 => 0.27700794670878
1220 => 0.30784719598657
1221 => 0.30811389509495
1222 => 0.30583025541126
1223 => 0.32225120359668
1224 => 0.35690452609009
1225 => 0.3438665522414
1226 => 0.33881785469234
1227 => 0.32922027696101
1228 => 0.34200847944024
1229 => 0.34102654501687
1230 => 0.33658586516682
1231 => 0.33390012813775
]
'min_raw' => 0.25081952169765
'max_raw' => 0.64357417240745
'avg_raw' => 0.44719684705255
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.250819'
'max' => '$0.643574'
'avg' => '$0.447196'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15423789822888
'max_diff' => 0.37408149287811
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0078729381810414
]
1 => [
'year' => 2028
'avg' => 0.013512247448952
]
2 => [
'year' => 2029
'avg' => 0.036913024684879
]
3 => [
'year' => 2030
'avg' => 0.028478343571859
]
4 => [
'year' => 2031
'avg' => 0.02796926266983
]
5 => [
'year' => 2032
'avg' => 0.04903891971112
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0078729381810414
'min' => '$0.007872'
'max_raw' => 0.04903891971112
'max' => '$0.049038'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.04903891971112
]
1 => [
'year' => 2033
'avg' => 0.12613314410965
]
2 => [
'year' => 2034
'avg' => 0.079949248411956
]
3 => [
'year' => 2035
'avg' => 0.094300321842893
]
4 => [
'year' => 2036
'avg' => 0.18303715149905
]
5 => [
'year' => 2037
'avg' => 0.44719684705255
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.04903891971112
'min' => '$0.049038'
'max_raw' => 0.44719684705255
'max' => '$0.447196'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.44719684705255
]
]
]
]
'prediction_2025_max_price' => '$0.013461'
'last_price' => 0.01305242
'sma_50day_nextmonth' => '$0.013363'
'sma_200day_nextmonth' => '$0.015729'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.012689'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012826'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.013373'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0157088'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.019773'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.017918'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017594'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012862'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01296'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013615'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015389'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.017497'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017773'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.018146'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019155'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.017439'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.019873'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.013465'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0145056'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016449'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.017514'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017851'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.019641'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.019311'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '24.50'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 10.07
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.013271'
'vwma_10_action' => 'SELL'
'hma_9' => '0.012464'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 20.57
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -70.59
'cci_20_action' => 'NEUTRAL'
'adx_14' => 45.92
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.005290'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -79.43
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 23.13
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.002934'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767709127
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Anarchy para 2026
La previsión del precio de Anarchy para 2026 sugiere que el precio medio podría oscilar entre $0.0045096 en el extremo inferior y $0.013461 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Anarchy podría potencialmente ganar 3.13% para 2026 si ANARCHY alcanza el objetivo de precio previsto.
Predicción de precio de Anarchy 2027-2032
La predicción del precio de ANARCHY para 2027-2032 está actualmente dentro de un rango de precios de $0.007872 en el extremo inferior y $0.049038 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Anarchy alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Anarchy | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004341 | $0.007872 | $0.0114045 |
| 2028 | $0.007834 | $0.013512 | $0.019189 |
| 2029 | $0.01721 | $0.036913 | $0.056615 |
| 2030 | $0.014636 | $0.028478 | $0.042319 |
| 2031 | $0.0173054 | $0.027969 | $0.038633 |
| 2032 | $0.026415 | $0.049038 | $0.071662 |
Predicción de precio de Anarchy 2032-2037
La predicción de precio de Anarchy para 2032-2037 se estima actualmente entre $0.049038 en el extremo inferior y $0.447196 en el extremo superior. Comparado con el precio actual, Anarchy podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Anarchy | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.026415 | $0.049038 | $0.071662 |
| 2033 | $0.061383 | $0.126133 | $0.190882 |
| 2034 | $0.049349 | $0.079949 | $0.110548 |
| 2035 | $0.058346 | $0.09430032 | $0.130254 |
| 2036 | $0.096581 | $0.183037 | $0.269492 |
| 2037 | $0.250819 | $0.447196 | $0.643574 |
Anarchy Histograma de precios potenciales
Pronóstico de precio de Anarchy basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Anarchy es Bajista, con 12 indicadores técnicos mostrando señales alcistas y 22 indicando señales bajistas. La predicción de precio de ANARCHY se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Anarchy
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Anarchy aumentar durante el próximo mes, alcanzando $0.015729 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Anarchy alcance $0.013363 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 24.50, lo que sugiere que el mercado de ANARCHY está en un estado BUY.
Promedios Móviles y Osciladores Populares de ANARCHY para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.012689 | BUY |
| SMA 5 | $0.012826 | BUY |
| SMA 10 | $0.013373 | SELL |
| SMA 21 | $0.0157088 | SELL |
| SMA 50 | $0.019773 | SELL |
| SMA 100 | $0.017918 | SELL |
| SMA 200 | $0.017594 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.012862 | BUY |
| EMA 5 | $0.01296 | BUY |
| EMA 10 | $0.013615 | SELL |
| EMA 21 | $0.015389 | SELL |
| EMA 50 | $0.017497 | SELL |
| EMA 100 | $0.017773 | SELL |
| EMA 200 | $0.018146 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.019155 | SELL |
| SMA 50 | $0.017439 | SELL |
| SMA 100 | $0.019873 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.017514 | SELL |
| EMA 50 | $0.017851 | SELL |
| EMA 100 | $0.019641 | SELL |
| EMA 200 | $0.019311 | SELL |
Osciladores de Anarchy
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 24.50 | BUY |
| Stoch RSI (14) | 10.07 | BUY |
| Estocástico Rápido (14) | 20.57 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -70.59 | NEUTRAL |
| Índice Direccional Medio (14) | 45.92 | SELL |
| Oscilador Asombroso (5, 34) | -0.005290 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -79.43 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 23.13 | BUY |
| VWMA (10) | 0.013271 | SELL |
| Promedio Móvil de Hull (9) | 0.012464 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.002934 | NEUTRAL |
Predicción de precios de Anarchy basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Anarchy
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Anarchy por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.01834 | $0.025771 | $0.036213 | $0.050886 | $0.071504 | $0.100475 |
| Amazon.com acción | $0.027234 | $0.056826 | $0.118572 | $0.2474081 | $0.516231 | $1.07 |
| Apple acción | $0.018513 | $0.02626 | $0.037248 | $0.052834 | $0.074941 | $0.106298 |
| Netflix acción | $0.020594 | $0.032495 | $0.051272 | $0.080899 | $0.127646 | $0.2014068 |
| Google acción | $0.0169028 | $0.021889 | $0.028346 | $0.0367082 | $0.047537 | $0.06156 |
| Tesla acción | $0.029588 | $0.067075 | $0.152055 | $0.344698 | $0.781405 | $1.77 |
| Kodak acción | $0.009787 | $0.007339 | $0.0055041 | $0.004127 | $0.003095 | $0.002321 |
| Nokia acción | $0.008646 | $0.005728 | $0.003794 | $0.002513 | $0.001665 | $0.0011031 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Anarchy
Podría preguntarse cosas como: "¿Debo invertir en Anarchy ahora?", "¿Debería comprar ANARCHY hoy?", "¿Será Anarchy una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Anarchy regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Anarchy, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Anarchy a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Anarchy es de $0.01305 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Anarchy basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Anarchy ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.013391 | $0.013739 | $0.014096 | $0.014463 |
| Si Anarchy ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.01373 | $0.014444 | $0.015195 | $0.015985 |
| Si Anarchy ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014748 | $0.016665 | $0.018831 | $0.021279 |
| Si Anarchy ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.016445 | $0.020719 | $0.0261055 | $0.032891 |
| Si Anarchy ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019837 | $0.03015 | $0.045825 | $0.069648 |
| Si Anarchy ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.030016 | $0.069026 | $0.158738 | $0.365044 |
| Si Anarchy ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.046979 | $0.169095 | $0.608629 | $2.19 |
Cuadro de preguntas
¿Es ANARCHY una buena inversión?
La decisión de adquirir Anarchy depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Anarchy ha experimentado una caída de 0% durante las últimas 24 horas, y Anarchy ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Anarchy dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Anarchy subir?
Parece que el valor medio de Anarchy podría potencialmente aumentar hasta $0.013461 para el final de este año. Mirando las perspectivas de Anarchy en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.042319. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Anarchy la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Anarchy, el precio de Anarchy aumentará en un 0.86% durante la próxima semana y alcanzará $0.013164 para el 13 de enero de 2026.
¿Cuál será el precio de Anarchy el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Anarchy, el precio de Anarchy disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011535 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Anarchy este año en 2026?
Según nuestra predicción más reciente sobre el valor de Anarchy en 2026, se anticipa que ANARCHY fluctúe dentro del rango de $0.0045096 y $0.013461. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Anarchy no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Anarchy en 5 años?
El futuro de Anarchy parece estar en una tendencia alcista, con un precio máximo de $0.042319 proyectada después de un período de cinco años. Basado en el pronóstico de Anarchy para 2030, el valor de Anarchy podría potencialmente alcanzar su punto más alto de aproximadamente $0.042319, mientras que su punto más bajo se anticipa que esté alrededor de $0.014636.
¿Cuánto será Anarchy en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Anarchy, se espera que el valor de ANARCHY en 2026 crezca en un 3.13% hasta $0.013461 si ocurre lo mejor. El precio estará entre $0.013461 y $0.0045096 durante 2026.
¿Cuánto será Anarchy en 2027?
Según nuestra última simulación experimental para la predicción de precios de Anarchy, el valor de ANARCHY podría disminuir en un -12.62% hasta $0.0114045 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0114045 y $0.004341 a lo largo del año.
¿Cuánto será Anarchy en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Anarchy sugiere que el valor de ANARCHY en 2028 podría aumentar en un 47.02% , alcanzando $0.019189 en el mejor escenario. Se espera que el precio oscile entre $0.019189 y $0.007834 durante el año.
¿Cuánto será Anarchy en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Anarchy podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.056615 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.056615 y $0.01721.
¿Cuánto será Anarchy en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Anarchy, se espera que el valor de ANARCHY en 2030 aumente en un 224.23% , alcanzando $0.042319 en el mejor escenario. Se pronostica que el precio oscile entre $0.042319 y $0.014636 durante el transcurso de 2030.
¿Cuánto será Anarchy en 2031?
Nuestra simulación experimental indica que el precio de Anarchy podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.038633 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.038633 y $0.0173054 durante el año.
¿Cuánto será Anarchy en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Anarchy, ANARCHY podría experimentar un 449.04% aumento en valor, alcanzando $0.071662 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.071662 y $0.026415 a lo largo del año.
¿Cuánto será Anarchy en 2033?
Según nuestra predicción experimental de precios de Anarchy, se anticipa que el valor de ANARCHY aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.190882. A lo largo del año, el precio de ANARCHY podría oscilar entre $0.190882 y $0.061383.
¿Cuánto será Anarchy en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Anarchy sugieren que ANARCHY podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.110548 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.110548 y $0.049349.
¿Cuánto será Anarchy en 2035?
Basado en nuestra predicción experimental para el precio de Anarchy, ANARCHY podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.130254 en 2035. El rango de precios esperado para el año está entre $0.130254 y $0.058346.
¿Cuánto será Anarchy en 2036?
Nuestra reciente simulación de predicción de precios de Anarchy sugiere que el valor de ANARCHY podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.269492 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.269492 y $0.096581.
¿Cuánto será Anarchy en 2037?
Según la simulación experimental, el valor de Anarchy podría aumentar en un 4830.69% en 2037, con un máximo de $0.643574 bajo condiciones favorables. Se espera que el precio caiga entre $0.643574 y $0.250819 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Anarchy?
Los traders de Anarchy utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Anarchy
Las medias móviles son herramientas populares para la predicción de precios de Anarchy. Una media móvil simple (SMA) calcula el precio de cierre promedio de ANARCHY durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ANARCHY por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ANARCHY.
¿Cómo leer gráficos de Anarchy y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Anarchy en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ANARCHY dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Anarchy?
La acción del precio de Anarchy está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ANARCHY. La capitalización de mercado de Anarchy puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ANARCHY, grandes poseedores de Anarchy, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Anarchy.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


