Predicción del precio de Alea - Pronóstico de ALEA
Predicción de precio de Alea hasta $0.005876 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001968 | $0.005876 |
| 2027 | $0.001895 | $0.004978 |
| 2028 | $0.00342 | $0.008377 |
| 2029 | $0.007513 | $0.024714 |
| 2030 | $0.006389 | $0.018474 |
| 2031 | $0.007554 | $0.016864 |
| 2032 | $0.011531 | $0.031283 |
| 2033 | $0.026796 | $0.083327 |
| 2034 | $0.021542 | $0.048258 |
| 2035 | $0.02547 | $0.05686 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Alea hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.61, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Alea para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Alea'
'name_with_ticker' => 'Alea <small>ALEA</small>'
'name_lang' => 'Alea'
'name_lang_with_ticker' => 'Alea <small>ALEA</small>'
'name_with_lang' => 'Alea'
'name_with_lang_with_ticker' => 'Alea <small>ALEA</small>'
'image' => '/uploads/coins/alea.png?1717098054'
'price_for_sd' => 0.005697
'ticker' => 'ALEA'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$6.72K'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005697'
'change_24h_pct' => '0%'
'ath_price' => '$8.24'
'ath_days' => 648
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 mar. 2024'
'ath_pct' => '-99.93%'
'fdv' => '$5.7K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.280943'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005746'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0050358'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001968'
'current_year_max_price_prediction' => '$0.005876'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006389'
'grand_prediction_max_price' => '$0.018474'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0058058212604309
107 => 0.0058274980895042
108 => 0.0058763370922528
109 => 0.0054590131610519
110 => 0.0056463793541742
111 => 0.0057564394387954
112 => 0.0052591839724565
113 => 0.0057466102970241
114 => 0.0054517484798716
115 => 0.0053516679504542
116 => 0.0054864131987076
117 => 0.0054339028444192
118 => 0.0053887575253135
119 => 0.0053635656615575
120 => 0.0054625077005844
121 => 0.0054578919362025
122 => 0.0052960035565322
123 => 0.0050848267646667
124 => 0.0051557046276587
125 => 0.0051299540355502
126 => 0.0050366305678566
127 => 0.0050995193171636
128 => 0.0048225890924831
129 => 0.0043461450345008
130 => 0.0046608985730801
131 => 0.0046487809042308
201 => 0.0046426706261044
202 => 0.0048791992111979
203 => 0.004856462445384
204 => 0.0048151949927929
205 => 0.0050358726587274
206 => 0.0049553223421278
207 => 0.0052035594378462
208 => 0.0053670644440551
209 => 0.0053255942856477
210 => 0.0054793715342754
211 => 0.0051573375104688
212 => 0.0052643042954149
213 => 0.0052863500015427
214 => 0.0050331495305847
215 => 0.0048601824614615
216 => 0.00484864752992
217 => 0.0045487464683907
218 => 0.0047089511947429
219 => 0.0048499247242107
220 => 0.0047824093435834
221 => 0.0047610359910414
222 => 0.0048702278138638
223 => 0.0048787129536618
224 => 0.0046852508670522
225 => 0.0047254777610059
226 => 0.0048932305959572
227 => 0.0047212508199745
228 => 0.0043871222079771
301 => 0.0043042536925122
302 => 0.0042931975049795
303 => 0.0040684515186539
304 => 0.0043097913629668
305 => 0.0042044400534185
306 => 0.0045372435779791
307 => 0.0043471479896112
308 => 0.0043389533487359
309 => 0.0043265659471604
310 => 0.0041331177925903
311 => 0.0041754706441696
312 => 0.0043162579733405
313 => 0.0043664924784715
314 => 0.0043612526080272
315 => 0.0043155680386213
316 => 0.0043364822005525
317 => 0.0042691103979952
318 => 0.0042453200122894
319 => 0.0041702310109408
320 => 0.0040598709228244
321 => 0.0040752171699548
322 => 0.0038565649581083
323 => 0.0037374316283432
324 => 0.0037044570928163
325 => 0.0036603621658089
326 => 0.0037094377321539
327 => 0.0038559455438644
328 => 0.0036792260395753
329 => 0.0033762528449037
330 => 0.0033944620501447
331 => 0.0034353727279596
401 => 0.0033591359505027
402 => 0.0032869842387075
403 => 0.00334971429826
404 => 0.0032213405616526
405 => 0.0034508860807158
406 => 0.003444677517719
407 => 0.0035302378922261
408 => 0.003583740550281
409 => 0.0034604342451557
410 => 0.0034294230428724
411 => 0.0034470884330735
412 => 0.0031551188831916
413 => 0.0035063777510178
414 => 0.0035094154522932
415 => 0.0034834048097321
416 => 0.0036704393129487
417 => 0.0040651404522602
418 => 0.0039166380068347
419 => 0.0038591333714557
420 => 0.0037498170175647
421 => 0.0038954745685617
422 => 0.0038842903412569
423 => 0.0038337110238923
424 => 0.0038031204949331
425 => 0.0038594844824972
426 => 0.0037961363731213
427 => 0.0037847573119878
428 => 0.0037158125820591
429 => 0.0036912024502599
430 => 0.0036729820884333
501 => 0.0036529232603581
502 => 0.0036971680367436
503 => 0.003596903552569
504 => 0.003475994413703
505 => 0.0034659421270613
506 => 0.0034936973742851
507 => 0.0034814177435237
508 => 0.0034658833369136
509 => 0.0034362239241508
510 => 0.0034274246099572
511 => 0.0034560181122661
512 => 0.0034237377152641
513 => 0.0034713691994448
514 => 0.0034584160713179
515 => 0.0033860609505558
516 => 0.0032958796807895
517 => 0.0032950768783269
518 => 0.0032756474716827
519 => 0.0032509012010904
520 => 0.0032440173547296
521 => 0.0033444313476129
522 => 0.0035522853077433
523 => 0.003511478601846
524 => 0.0035409656288962
525 => 0.0036860126176001
526 => 0.0037321186935939
527 => 0.0036993936929358
528 => 0.0036545976936447
529 => 0.00365656849027
530 => 0.0038096499805186
531 => 0.0038191974852918
601 => 0.003843320949712
602 => 0.0038743264187821
603 => 0.0037046740583898
604 => 0.0036485778793521
605 => 0.0036219963976265
606 => 0.0035401357222397
607 => 0.0036284154424404
608 => 0.003576978629994
609 => 0.0035839192133247
610 => 0.0035793991493254
611 => 0.0035818674099144
612 => 0.0034508219180651
613 => 0.0034985680077467
614 => 0.0034191808731446
615 => 0.0033128904115364
616 => 0.0033125340886389
617 => 0.0033385485285359
618 => 0.00332307412174
619 => 0.0032814328909357
620 => 0.0032873478312304
621 => 0.0032355267302563
622 => 0.00329363985114
623 => 0.0032953063275082
624 => 0.0032729296105249
625 => 0.0033624608913115
626 => 0.0033991419301004
627 => 0.0033844130956262
628 => 0.0033981085158096
629 => 0.0035131743047072
630 => 0.0035319350489699
701 => 0.0035402673323062
702 => 0.0035291031764516
703 => 0.0034002117072014
704 => 0.0034059285919515
705 => 0.0033639818848679
706 => 0.0033285413376174
707 => 0.0033299587736463
708 => 0.0033481798218817
709 => 0.0034277522081761
710 => 0.0035952076040842
711 => 0.0036015624139506
712 => 0.0036092646288916
713 => 0.0035779358499036
714 => 0.0035684867903848
715 => 0.0035809525388993
716 => 0.0036438399812159
717 => 0.0038056035566285
718 => 0.0037484255052517
719 => 0.0037019388594531
720 => 0.0037427201805282
721 => 0.0037364422158033
722 => 0.0036834498756042
723 => 0.0036819625571113
724 => 0.0035802533135933
725 => 0.0035426537220722
726 => 0.0035112326891164
727 => 0.0034769217413956
728 => 0.0034565810614733
729 => 0.0034878335905076
730 => 0.0034949814136669
731 => 0.0034266472127326
801 => 0.0034173335136488
802 => 0.0034731366972279
803 => 0.0034485797966871
804 => 0.0034738371778751
805 => 0.0034796971069646
806 => 0.0034787535234155
807 => 0.0034531132989089
808 => 0.0034694556134069
809 => 0.0034308011677406
810 => 0.0033887702637886
811 => 0.003361957165685
812 => 0.0033385591813482
813 => 0.0033515417429571
814 => 0.0033052612813436
815 => 0.0032904552302318
816 => 0.0034639192049687
817 => 0.0035920589081588
818 => 0.0035901957061256
819 => 0.0035788539429247
820 => 0.0035620023834007
821 => 0.0036426071846749
822 => 0.0036145260836549
823 => 0.0036349574309014
824 => 0.0036401580662766
825 => 0.0036558988232262
826 => 0.0036615247908719
827 => 0.0036445192091608
828 => 0.0035874463998817
829 => 0.0034452263854779
830 => 0.0033790225848574
831 => 0.0033571742279411
901 => 0.003357968374219
902 => 0.0033360622746475
903 => 0.0033425146027338
904 => 0.0033338184182568
905 => 0.0033173499486903
906 => 0.0033505248613683
907 => 0.0033543479610087
908 => 0.003346604539979
909 => 0.0033484283959474
910 => 0.0032843161770797
911 => 0.0032891904898358
912 => 0.0032620496970121
913 => 0.0032569611255448
914 => 0.0031883515647058
915 => 0.0030667997825646
916 => 0.0031341512691878
917 => 0.0030528001443992
918 => 0.003021991240771
919 => 0.0031678357987792
920 => 0.0031531970502535
921 => 0.0031281418760886
922 => 0.0030910800515429
923 => 0.0030773334603046
924 => 0.0029938135235828
925 => 0.0029888787201598
926 => 0.0030302734560271
927 => 0.0030111712097302
928 => 0.002984344421343
929 => 0.0028871805131925
930 => 0.0027779361105669
1001 => 0.0027812335123963
1002 => 0.0028159821243071
1003 => 0.0029170183999267
1004 => 0.0028775417790968
1005 => 0.0028489010377427
1006 => 0.0028435374878246
1007 => 0.0029106735444019
1008 => 0.0030056851298976
1009 => 0.0030502624400477
1010 => 0.003006087679522
1011 => 0.002955342093168
1012 => 0.002958430741877
1013 => 0.0029789781379987
1014 => 0.0029811373788065
1015 => 0.0029481072188206
1016 => 0.0029574050153814
1017 => 0.0029432808121973
1018 => 0.0028566006033276
1019 => 0.002855032833215
1020 => 0.0028337601120512
1021 => 0.0028331159825087
1022 => 0.0027969257770801
1023 => 0.0027918625171695
1024 => 0.0027200046677026
1025 => 0.0027673017218273
1026 => 0.0027355773411272
1027 => 0.0026877612163873
1028 => 0.0026795176984591
1029 => 0.0026792698883559
1030 => 0.0027283663569739
1031 => 0.0027667280010062
1101 => 0.0027361292003119
1102 => 0.0027291624465266
1103 => 0.002803549150439
1104 => 0.0027940827643163
1105 => 0.0027858849349857
1106 => 0.0029971778845126
1107 => 0.0028299230275676
1108 => 0.002756990363366
1109 => 0.0026667223418794
1110 => 0.0026961140648463
1111 => 0.0027023073327297
1112 => 0.0024852290130881
1113 => 0.0023971603658449
1114 => 0.002366938524908
1115 => 0.0023495454281747
1116 => 0.0023574716807648
1117 => 0.0022781995688239
1118 => 0.0023314717390879
1119 => 0.0022628287908519
1120 => 0.0022513205771966
1121 => 0.0023740626718722
1122 => 0.0023911415172973
1123 => 0.0023182778567321
1124 => 0.0023650681223701
1125 => 0.0023481013216164
1126 => 0.0022640054771822
1127 => 0.0022607936344919
1128 => 0.0022185972958667
1129 => 0.0021525681967393
1130 => 0.0021223911266409
1201 => 0.0021066746465243
1202 => 0.0021131595725285
1203 => 0.0021098805954987
1204 => 0.0020884830523942
1205 => 0.0021111070776224
1206 => 0.0020533120420569
1207 => 0.0020302975932085
1208 => 0.0020199025005948
1209 => 0.0019686060799723
1210 => 0.0020502414968045
1211 => 0.0020663247023364
1212 => 0.0020824395967514
1213 => 0.002222708750529
1214 => 0.0022157013000028
1215 => 0.0022790452399929
1216 => 0.0022765838109669
1217 => 0.0022585170931779
1218 => 0.002182296582657
1219 => 0.0022126767196507
1220 => 0.0021191713801057
1221 => 0.0021892319382379
1222 => 0.0021572592253052
1223 => 0.0021784219318337
1224 => 0.0021403694773312
1225 => 0.0021614292768002
1226 => 0.0020701386270155
1227 => 0.0019848927027407
1228 => 0.0020191981511526
1229 => 0.0020564920968801
1230 => 0.0021373548735382
1231 => 0.0020891936708641
]
'min_raw' => 0.0019686060799723
'max_raw' => 0.0058763370922528
'avg_raw' => 0.0039224715861126
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001968'
'max' => '$0.005876'
'avg' => '$0.003922'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0037292439200277
'max_diff' => 0.00017848709225278
'year' => 2026
]
1 => [
'items' => [
101 => 0.0021065142605224
102 => 0.0020484931845987
103 => 0.0019287791320673
104 => 0.0019294567006037
105 => 0.0019110413017342
106 => 0.0018951277084186
107 => 0.0020947255643418
108 => 0.0020699024157826
109 => 0.0020303499773269
110 => 0.0020832924879513
111 => 0.002097291328071
112 => 0.0020976898553692
113 => 0.0021363153444768
114 => 0.0021569297749375
115 => 0.0021605631576543
116 => 0.002221341199324
117 => 0.00224171319721
118 => 0.0023256225733491
119 => 0.0021551807845379
120 => 0.0021516706480597
121 => 0.0020840374976473
122 => 0.002041143484418
123 => 0.0020869744874306
124 => 0.0021275744995439
125 => 0.0020852990531958
126 => 0.0020908193340055
127 => 0.002034068001314
128 => 0.0020543539323528
129 => 0.0020718269089734
130 => 0.0020621793582976
131 => 0.0020477365079892
201 => 0.002124245761547
202 => 0.0021199288096191
203 => 0.0021911759854724
204 => 0.0022467182539844
205 => 0.0023462599285261
206 => 0.002242383001917
207 => 0.002238597313838
208 => 0.0022756030220539
209 => 0.0022417075318288
210 => 0.0022631283116185
211 => 0.002342808709738
212 => 0.0023444922309915
213 => 0.0023162910809001
214 => 0.0023145750383542
215 => 0.002319991377716
216 => 0.0023517150465345
217 => 0.0023406298218794
218 => 0.0023534579244938
219 => 0.002369499663244
220 => 0.002435855096271
221 => 0.0024518531665285
222 => 0.0024129861498511
223 => 0.0024164954062815
224 => 0.0024019580751207
225 => 0.0023879151953716
226 => 0.0024194815382497
227 => 0.0024771696502976
228 => 0.0024768107755465
301 => 0.002490193296245
302 => 0.0024985304957733
303 => 0.0024627411321946
304 => 0.0024394435725163
305 => 0.0024483773393592
306 => 0.0024626626270931
307 => 0.0024437448130794
308 => 0.0023269753014023
309 => 0.0023623957119799
310 => 0.0023565000236902
311 => 0.0023481038466255
312 => 0.0023837193433591
313 => 0.0023802841418146
314 => 0.0022773865187379
315 => 0.0022839736907167
316 => 0.0022777871064833
317 => 0.0022977772257975
318 => 0.0022406279997839
319 => 0.0022582067167998
320 => 0.0022692319233219
321 => 0.0022757258546631
322 => 0.0022991863875977
323 => 0.0022964335648383
324 => 0.0022990152682699
325 => 0.0023338010452609
326 => 0.0025097355682445
327 => 0.0025193112961529
328 => 0.0024721569097742
329 => 0.0024909941570533
330 => 0.0024548307615305
331 => 0.0024791074912187
401 => 0.0024957170131093
402 => 0.0024206617775132
403 => 0.0024162174935656
404 => 0.0023799048388455
405 => 0.0023994172026382
406 => 0.0023683716288554
407 => 0.0023759891267336
408 => 0.0023546899385845
409 => 0.0023930242366268
410 => 0.0024358879383858
411 => 0.002446717002189
412 => 0.0024182303975279
413 => 0.0023976042183945
414 => 0.0023613914425221
415 => 0.0024216140958522
416 => 0.0024392250349381
417 => 0.0024215215930864
418 => 0.0024174193187816
419 => 0.0024096455163865
420 => 0.0024190685677088
421 => 0.0024391291219817
422 => 0.0024296689350469
423 => 0.0024359175551843
424 => 0.0024121042587694
425 => 0.0024627529799632
426 => 0.0025431953384975
427 => 0.0025434539738338
428 => 0.0025339937359051
429 => 0.0025301228103683
430 => 0.0025398295885784
501 => 0.0025450951175645
502 => 0.0025764850583774
503 => 0.0026101677155
504 => 0.0027673499793966
505 => 0.0027232138286694
506 => 0.0028626752840132
507 => 0.0029729711883866
508 => 0.0030060441074528
509 => 0.002975618578113
510 => 0.0028715344857962
511 => 0.0028664276236678
512 => 0.0030219732007593
513 => 0.0029780244507922
514 => 0.0029727968868274
515 => 0.0029171844383503
516 => 0.002950058283136
517 => 0.0029428682910512
518 => 0.0029315185367988
519 => 0.002994239542638
520 => 0.0031116476664261
521 => 0.0030933485092873
522 => 0.0030796890373567
523 => 0.0030198372075691
524 => 0.0030558813774914
525 => 0.0030430467389627
526 => 0.0030981924911449
527 => 0.0030655253691802
528 => 0.0029776914957864
529 => 0.0029916793296286
530 => 0.002989565096683
531 => 0.0030330758608879
601 => 0.0030200150094771
602 => 0.0029870147558258
603 => 0.0031112463782229
604 => 0.0031031794676771
605 => 0.0031146165024786
606 => 0.0031196514389003
607 => 0.0031952690382467
608 => 0.0032262471492056
609 => 0.0032332797227414
610 => 0.0032627065322193
611 => 0.0032325475569144
612 => 0.003353204961119
613 => 0.0034334350943603
614 => 0.0035266265227251
615 => 0.0036628042470604
616 => 0.0037140083311249
617 => 0.0037047587716486
618 => 0.0038080071680648
619 => 0.0039935422413418
620 => 0.0037422607146087
621 => 0.0040068607724179
622 => 0.0039230914490701
623 => 0.0037244758903582
624 => 0.0037116873899007
625 => 0.0038461921522345
626 => 0.0041445107694872
627 => 0.0040697853393671
628 => 0.0041446329935212
629 => 0.0040573192291832
630 => 0.0040529833648457
701 => 0.0041403923588753
702 => 0.0043446282378416
703 => 0.0042476034274122
704 => 0.0041084945702019
705 => 0.0042112103855924
706 => 0.0041222284404012
707 => 0.0039217272134072
708 => 0.004069728198239
709 => 0.0039707641545074
710 => 0.0039996471236862
711 => 0.0042076548238196
712 => 0.0041826267870194
713 => 0.0042150153841726
714 => 0.0041578503579544
715 => 0.0041044492093693
716 => 0.0040047719999139
717 => 0.0039752624922212
718 => 0.0039834178585066
719 => 0.0039752584508267
720 => 0.0039194899682172
721 => 0.0039074467697075
722 => 0.0038873742445666
723 => 0.0038935955594338
724 => 0.0038558533397446
725 => 0.0039270807062387
726 => 0.0039403011331134
727 => 0.0039921344705783
728 => 0.0039975159796244
729 => 0.0041418710866628
730 => 0.0040623627194951
731 => 0.0041157037966134
801 => 0.0041109324686102
802 => 0.0037287804917705
803 => 0.0037814376624236
804 => 0.0038633556952293
805 => 0.0038264517324876
806 => 0.0037742781633682
807 => 0.0037321452089344
808 => 0.0036683094746515
809 => 0.003758157044798
810 => 0.0038762970453168
811 => 0.0040005122049982
812 => 0.0041497485804559
813 => 0.0041164407587566
814 => 0.0039977223347657
815 => 0.0040030479565421
816 => 0.0040359688548087
817 => 0.0039933333003744
818 => 0.0039807592430269
819 => 0.0040342413724169
820 => 0.0040346096744487
821 => 0.0039855523163933
822 => 0.0039310340403164
823 => 0.003930805606749
824 => 0.0039211046061052
825 => 0.0040590450156469
826 => 0.0041348982935464
827 => 0.0041435947496139
828 => 0.0041343129527633
829 => 0.0041378851479898
830 => 0.004093747796893
831 => 0.0041946326929754
901 => 0.0042872146501027
902 => 0.0042624007078676
903 => 0.0042252010809473
904 => 0.0041955697863286
905 => 0.0042554205165515
906 => 0.0042527554577484
907 => 0.0042864060274739
908 => 0.0042848794432561
909 => 0.0042735640223193
910 => 0.0042624011119769
911 => 0.0043066607896866
912 => 0.0042939147132948
913 => 0.0042811488387259
914 => 0.0042555449229204
915 => 0.0042590249203144
916 => 0.0042218317164342
917 => 0.004204624438474
918 => 0.0039458682639857
919 => 0.0038767201590605
920 => 0.0038984755605094
921 => 0.0039056380035451
922 => 0.003875544659666
923 => 0.0039186907844429
924 => 0.0039119665065995
925 => 0.0039381267381173
926 => 0.0039217829612102
927 => 0.0039224537155154
928 => 0.0039705172785386
929 => 0.0039844703353613
930 => 0.0039773736980463
1001 => 0.0039823439395632
1002 => 0.0040968810575128
1003 => 0.0040805975420312
1004 => 0.0040719472489741
1005 => 0.0040743434392681
1006 => 0.0041036101286077
1007 => 0.0041118032037208
1008 => 0.0040770885687494
1009 => 0.0040934601912848
1010 => 0.0041631684821724
1011 => 0.0041875624388354
1012 => 0.0042654162387405
1013 => 0.0042323425607999
1014 => 0.0042930507280551
1015 => 0.0044796469372584
1016 => 0.0046287129006455
1017 => 0.0044916256803032
1018 => 0.0047653663386277
1019 => 0.0049785127068985
1020 => 0.0049703317942704
1021 => 0.0049331647947981
1022 => 0.0046905033213111
1023 => 0.0044672026155297
1024 => 0.0046540031377647
1025 => 0.0046544793307117
1026 => 0.0046384330001865
1027 => 0.0045387706194215
1028 => 0.0046349649653666
1029 => 0.0046426005232212
1030 => 0.0046383266412814
1031 => 0.0045619157276196
1101 => 0.0044452503855555
1102 => 0.0044680465141375
1103 => 0.0045053870377832
1104 => 0.0044346936364727
1105 => 0.0044121028112897
1106 => 0.0044541034533852
1107 => 0.0045894382733979
1108 => 0.0045638540096158
1109 => 0.0045631859010943
1110 => 0.0046726462309708
1111 => 0.0045942962577969
1112 => 0.0044683340463222
1113 => 0.0044365269266874
1114 => 0.0043236330798271
1115 => 0.0044016092619676
1116 => 0.0044044154859445
1117 => 0.0043617087278834
1118 => 0.0044717994643685
1119 => 0.0044707849588507
1120 => 0.0045752997282996
1121 => 0.0047750927135312
1122 => 0.0047160040965825
1123 => 0.0046472904638944
1124 => 0.00465476154099
1125 => 0.0047367008165388
1126 => 0.0046871584600503
1127 => 0.0047049742368651
1128 => 0.0047366738502268
1129 => 0.0047557990140251
1130 => 0.004652009724239
1201 => 0.0046278114759743
1202 => 0.0045783103524556
1203 => 0.0045653964333118
1204 => 0.0046057140655429
1205 => 0.004595091793893
1206 => 0.0044041796336855
1207 => 0.0043842282507186
1208 => 0.0043848401311502
1209 => 0.0043346714300433
1210 => 0.0042581521189875
1211 => 0.0044592402997116
1212 => 0.0044430901045721
1213 => 0.004425261539064
1214 => 0.0044274454366104
1215 => 0.0045147310003519
1216 => 0.0044641009653552
1217 => 0.0045987092114936
1218 => 0.0045710378027818
1219 => 0.0045426567268503
1220 => 0.0045387335976479
1221 => 0.0045278093047739
1222 => 0.0044903458397586
1223 => 0.0044451064545474
1224 => 0.0044152354938626
1225 => 0.0040728213546231
1226 => 0.0041363714271345
1227 => 0.0042094799927875
1228 => 0.0042347167766868
1229 => 0.0041915475114948
1230 => 0.0044920504254681
1231 => 0.0045469552035692
]
'min_raw' => 0.0018951277084186
'max_raw' => 0.0049785127068985
'avg_raw' => 0.0034368202076586
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001895'
'max' => '$0.004978'
'avg' => '$0.003436'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.3478371553723E-5
'max_diff' => -0.00089782438535426
'year' => 2027
]
2 => [
'items' => [
101 => 0.004380645049351
102 => 0.0043495352098957
103 => 0.0044940899813636
104 => 0.0044069057830663
105 => 0.0044461648222212
106 => 0.0043613082531146
107 => 0.0045337302503242
108 => 0.0045324166835913
109 => 0.0044653406323494
110 => 0.0045220328515421
111 => 0.0045121811833304
112 => 0.0044364524866792
113 => 0.0045361309850829
114 => 0.0045361804243745
115 => 0.0044716211834132
116 => 0.0043962301238056
117 => 0.0043827519830051
118 => 0.0043725980144453
119 => 0.0044436675684051
120 => 0.0045073883082568
121 => 0.0046259568074096
122 => 0.0046557677452147
123 => 0.0047721218200944
124 => 0.0047028386336806
125 => 0.0047335509728503
126 => 0.0047668935615447
127 => 0.0047828792246979
128 => 0.0047568314444278
129 => 0.0049375772159639
130 => 0.0049528376969889
131 => 0.0049579544042739
201 => 0.0048970079470665
202 => 0.0049511426657626
203 => 0.0049258148236381
204 => 0.0049917108325687
205 => 0.0050020441681715
206 => 0.004993292200535
207 => 0.004996572164356
208 => 0.004842337534089
209 => 0.0048343396548571
210 => 0.0047252880040274
211 => 0.0047697273578096
212 => 0.0046866501159475
213 => 0.0047129947651324
214 => 0.0047246072354721
215 => 0.0047185415399685
216 => 0.0047722398921962
217 => 0.0047265853229541
218 => 0.0046060954084179
219 => 0.0044855726664851
220 => 0.0044840596016358
221 => 0.004452328091088
222 => 0.004429392020878
223 => 0.0044338103217012
224 => 0.0044493809900904
225 => 0.0044284870253253
226 => 0.0044329458120588
227 => 0.0045069913805763
228 => 0.0045218406912736
229 => 0.0044713769315238
301 => 0.0042687576542426
302 => 0.0042190343753659
303 => 0.004254774482167
304 => 0.0042376930130737
305 => 0.0034201489999296
306 => 0.003612218839016
307 => 0.0034980974627063
308 => 0.0035506898433819
309 => 0.0034342014697567
310 => 0.0034897958273294
311 => 0.0034795295794666
312 => 0.0037883721969579
313 => 0.0037835500442849
314 => 0.0037858581535869
315 => 0.0036756860828593
316 => 0.003851193183026
317 => 0.0039376542915993
318 => 0.0039216526414903
319 => 0.0039256799120807
320 => 0.0038564780603514
321 => 0.0037865281787793
322 => 0.0037089429949064
323 => 0.0038530866767238
324 => 0.0038370603599204
325 => 0.0038738189645806
326 => 0.0039673064458424
327 => 0.0039810728325827
328 => 0.0039995749959664
329 => 0.003992943287467
330 => 0.0041509374889533
331 => 0.004131803348674
401 => 0.0041779111214793
402 => 0.0040830639346137
403 => 0.0039757353396977
404 => 0.0039961349967551
405 => 0.0039941703457368
406 => 0.0039691580833523
407 => 0.0039465781312453
408 => 0.0039089888728493
409 => 0.0040279268485778
410 => 0.0040230981839695
411 => 0.0041012686512698
412 => 0.0040874512618671
413 => 0.0039951753537469
414 => 0.0039984710058576
415 => 0.0040206358501385
416 => 0.0040973486292684
417 => 0.0041201222051185
418 => 0.0041095725774147
419 => 0.004134542763681
420 => 0.0041542781807894
421 => 0.004137021228218
422 => 0.0043813432849371
423 => 0.004279883732913
424 => 0.0043293344126185
425 => 0.004341128108348
426 => 0.0043109188047317
427 => 0.004317470120972
428 => 0.0043273935799492
429 => 0.0043876468796466
430 => 0.0045457689724853
501 => 0.0046158001710301
502 => 0.0048264924871305
503 => 0.0046099850548723
504 => 0.0045971383998389
505 => 0.004635090448267
506 => 0.0047587891418646
507 => 0.004859035314598
508 => 0.0048922927534341
509 => 0.0048966882729968
510 => 0.004959081439166
511 => 0.0049948440384506
512 => 0.0049515052676899
513 => 0.0049147801972287
514 => 0.00478323555332
515 => 0.0047984622040366
516 => 0.004903358727931
517 => 0.0050515312463062
518 => 0.0051786786817952
519 => 0.0051341560814225
520 => 0.0054738320942089
521 => 0.0055075095834245
522 => 0.0055028564433385
523 => 0.0055795787756542
524 => 0.0054273005702388
525 => 0.0053621986871725
526 => 0.0049227205743096
527 => 0.0050461959979448
528 => 0.0052256747776559
529 => 0.0052019200881503
530 => 0.0050715778008425
531 => 0.0051785798054822
601 => 0.0051432015964863
602 => 0.005115297335208
603 => 0.0052431321656312
604 => 0.0051025725184154
605 => 0.0052242725876524
606 => 0.00506819099003
607 => 0.0051343594569107
608 => 0.0050967990349006
609 => 0.0051211052311733
610 => 0.0049790117044201
611 => 0.0050556819223307
612 => 0.0049758219712867
613 => 0.0049757841072719
614 => 0.0049740211944263
615 => 0.0050679760726764
616 => 0.005071039937883
617 => 0.0050016071408983
618 => 0.0049916007901087
619 => 0.0050285995135187
620 => 0.0049852836983865
621 => 0.0050055508956604
622 => 0.0049858975711455
623 => 0.0049814731938348
624 => 0.0049462190026777
625 => 0.0049310305277931
626 => 0.0049369863201541
627 => 0.0049166561304044
628 => 0.0049044064557052
629 => 0.0049715844258088
630 => 0.004935693946334
701 => 0.0049660836950874
702 => 0.0049314507408909
703 => 0.004811397832786
704 => 0.0047423541357984
705 => 0.0045155853212987
706 => 0.004579896675785
707 => 0.0046225351703443
708 => 0.0046084431481468
709 => 0.0046387182647156
710 => 0.0046405769109887
711 => 0.0046307341619738
712 => 0.0046193375195489
713 => 0.0046137902642903
714 => 0.0046551349602069
715 => 0.004679136947785
716 => 0.0046268145137027
717 => 0.0046145560994659
718 => 0.0046674569691238
719 => 0.0046997264690553
720 => 0.0049379863258837
721 => 0.0049203352661206
722 => 0.0049646359622803
723 => 0.0049596483837423
724 => 0.005006082570972
725 => 0.0050819828425409
726 => 0.0049276563683917
727 => 0.004954442108096
728 => 0.0049478748632936
729 => 0.0050195743200226
730 => 0.0050197981579002
731 => 0.0049768107519377
801 => 0.005000114922101
802 => 0.0049871071736323
803 => 0.0050106139332179
804 => 0.0049200995254561
805 => 0.0050303363036834
806 => 0.0050928334534372
807 => 0.0050937012264221
808 => 0.0051233243793974
809 => 0.0051534232184775
810 => 0.0052111953190355
811 => 0.0051518119859488
812 => 0.0050449871505769
813 => 0.0050526995586486
814 => 0.0049900681967557
815 => 0.0049911210412644
816 => 0.0049855008747641
817 => 0.005002367417498
818 => 0.0049238007830983
819 => 0.0049422402151551
820 => 0.0049164249022943
821 => 0.0049543859906475
822 => 0.0049135461347722
823 => 0.0049478716963693
824 => 0.0049626854708442
825 => 0.0050173486175744
826 => 0.0049054723435549
827 => 0.0046773490474713
828 => 0.0047253033300357
829 => 0.0046543751793953
830 => 0.0046609398497796
831 => 0.0046742015287154
901 => 0.0046312160883332
902 => 0.0046394163557312
903 => 0.0046391233844753
904 => 0.0046365987164683
905 => 0.0046254165432484
906 => 0.004609200179754
907 => 0.0046738011807822
908 => 0.00468477814969
909 => 0.0047091785918133
910 => 0.0047817777565943
911 => 0.0047745233880265
912 => 0.0047863555641414
913 => 0.0047605259901173
914 => 0.0046621380096376
915 => 0.0046674809503365
916 => 0.0046008543942063
917 => 0.0047074748009761
918 => 0.0046822256813324
919 => 0.0046659474096429
920 => 0.0046615057323953
921 => 0.0047342848564635
922 => 0.0047560615110577
923 => 0.0047424917612915
924 => 0.0047146598086282
925 => 0.0047681053855199
926 => 0.0047824051672082
927 => 0.0047856063609726
928 => 0.0048803016760517
929 => 0.0047908987771518
930 => 0.0048124189435054
1001 => 0.0049803131381938
1002 => 0.0048280562714266
1003 => 0.0049087101294865
1004 => 0.0049047625428369
1005 => 0.0049460223274426
1006 => 0.0049013780362163
1007 => 0.0049019314557118
1008 => 0.0049385673492618
1009 => 0.0048871188440891
1010 => 0.0048743794706863
1011 => 0.0048567801175716
1012 => 0.0048952076612382
1013 => 0.004918243235738
1014 => 0.0051038930484412
1015 => 0.0052238312941074
1016 => 0.0052186244585484
1017 => 0.0052662051887699
1018 => 0.0052447696340156
1019 => 0.0051755485733003
1020 => 0.0052937004833322
1021 => 0.0052563122753122
1022 => 0.0052593945137547
1023 => 0.005259279792686
1024 => 0.0052841396824854
1025 => 0.0052665241721871
1026 => 0.005231802193194
1027 => 0.0052548522632565
1028 => 0.0053233027307913
1029 => 0.005535775082336
1030 => 0.0056546774251446
1031 => 0.0055286170120007
1101 => 0.0056155717969712
1102 => 0.0055634299111468
1103 => 0.0055539541794057
1104 => 0.0056085682102753
1105 => 0.0056632778357763
1106 => 0.0056597930691481
1107 => 0.0056200766904047
1108 => 0.0055976419158184
1109 => 0.0057675255451868
1110 => 0.0058926929094132
1111 => 0.0058841573343056
1112 => 0.0059218305869128
1113 => 0.0060324404217573
1114 => 0.0060425531988479
1115 => 0.006041279221374
1116 => 0.0060162136481958
1117 => 0.0061251233951023
1118 => 0.0062159778220563
1119 => 0.0060104116922191
1120 => 0.0060886885834029
1121 => 0.0061238296017792
1122 => 0.006175427042626
1123 => 0.0062624805740696
1124 => 0.0063570437990263
1125 => 0.0063704160758682
1126 => 0.0063609278055265
1127 => 0.0062985608166717
1128 => 0.0064020330257932
1129 => 0.0064626446191746
1130 => 0.0064987374359617
1201 => 0.0065902628140615
1202 => 0.0061240466207452
1203 => 0.0057940356266677
1204 => 0.005742499644526
1205 => 0.0058473000907636
1206 => 0.0058749351326686
1207 => 0.0058637954819281
1208 => 0.0054923381048069
1209 => 0.0057405439983103
1210 => 0.0060075926699757
1211 => 0.0060178510970444
1212 => 0.0061515412458044
1213 => 0.0061950762383851
1214 => 0.0063027143313053
1215 => 0.0062959815392865
1216 => 0.0063221897020164
1217 => 0.0063161648992669
1218 => 0.0065155418005271
1219 => 0.0067354841303734
1220 => 0.0067278682268646
1221 => 0.0066962489147097
1222 => 0.0067432089851537
1223 => 0.0069702130400076
1224 => 0.0069493141443025
1225 => 0.0069696156413163
1226 => 0.0072372662153769
1227 => 0.007585250034506
1228 => 0.0074235766135163
1229 => 0.0077743614167902
1230 => 0.0079951618561477
1231 => 0.0083770133848249
]
'min_raw' => 0.0034201489999296
'max_raw' => 0.0083770133848249
'avg_raw' => 0.0058985811923772
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00342'
'max' => '$0.008377'
'avg' => '$0.005898'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015250212915109
'max_diff' => 0.0033985006779264
'year' => 2028
]
3 => [
'items' => [
101 => 0.0083292036927761
102 => 0.0084778556907342
103 => 0.0082436143658249
104 => 0.0077057489358508
105 => 0.0076206296726912
106 => 0.0077910405930997
107 => 0.0082099792124695
108 => 0.0077778467250998
109 => 0.0078652665644841
110 => 0.0078400896448604
111 => 0.0078387480738086
112 => 0.0078899503842893
113 => 0.0078156787624042
114 => 0.0075130828136343
115 => 0.0076517607537464
116 => 0.0075982105412074
117 => 0.0076576284944522
118 => 0.0079782826822863
119 => 0.0078365138224037
120 => 0.0076871718448844
121 => 0.0078744798263315
122 => 0.0081129872527191
123 => 0.0080980618866148
124 => 0.0080691004380535
125 => 0.0082323546072218
126 => 0.0085020026657043
127 => 0.0085748874523785
128 => 0.0086286895118375
129 => 0.0086361079068436
130 => 0.0087125219859138
131 => 0.008301624223926
201 => 0.0089537295248037
202 => 0.0090663300962198
203 => 0.0090451658556091
204 => 0.0091703166517818
205 => 0.0091334941127786
206 => 0.0090801440310422
207 => 0.0092785346633137
208 => 0.0090510958127129
209 => 0.0087282749980402
210 => 0.008551169114439
211 => 0.0087843964286891
212 => 0.0089268202109901
213 => 0.0090209532712372
214 => 0.0090494378783912
215 => 0.0083335210475132
216 => 0.0079476815822376
217 => 0.0081950002558208
218 => 0.0084967461066153
219 => 0.0082999480104893
220 => 0.0083076621232693
221 => 0.0080270797558235
222 => 0.0085215714202342
223 => 0.0084495281440591
224 => 0.008823288788298
225 => 0.0087340878109338
226 => 0.009038875107006
227 => 0.0089586143974156
228 => 0.0092917721156095
301 => 0.0094246777492822
302 => 0.0096478469933288
303 => 0.0098120111977118
304 => 0.0099084115584863
305 => 0.009902624042414
306 => 0.010284610298272
307 => 0.010059366348776
308 => 0.0097764068622859
309 => 0.009771289017901
310 => 0.009917837745521
311 => 0.010224963674933
312 => 0.010304596959928
313 => 0.010349101102469
314 => 0.010280941458968
315 => 0.010036455295169
316 => 0.0099308874092142
317 => 0.010020834306644
318 => 0.0099108369803123
319 => 0.01010072322536
320 => 0.010361477597323
321 => 0.010307632850647
322 => 0.010487627765929
323 => 0.010673903567229
324 => 0.010940286329257
325 => 0.011009928647377
326 => 0.011125044750968
327 => 0.011243537035233
328 => 0.011281593563482
329 => 0.011354255284158
330 => 0.011353872321023
331 => 0.011572843306976
401 => 0.011814375085449
402 => 0.011905547740349
403 => 0.012115194233002
404 => 0.011756181961223
405 => 0.012028496893403
406 => 0.012274131778714
407 => 0.011981275742108
408 => 0.012384909561865
409 => 0.012400581748432
410 => 0.01263721315872
411 => 0.0123973418913
412 => 0.012254907098402
413 => 0.012666111008536
414 => 0.012865079627848
415 => 0.012805148660451
416 => 0.012349071039402
417 => 0.012083614301862
418 => 0.01138886281694
419 => 0.012211825961861
420 => 0.012612667303588
421 => 0.012348032957163
422 => 0.012481499128639
423 => 0.013209647283661
424 => 0.013486878956992
425 => 0.013429216706935
426 => 0.013438960677993
427 => 0.013588549856811
428 => 0.014251910655958
429 => 0.013854409488526
430 => 0.014158284236943
501 => 0.014319458307801
502 => 0.014469165767143
503 => 0.014101531562528
504 => 0.013623244863943
505 => 0.013471751389392
506 => 0.012321720286784
507 => 0.012261856173562
508 => 0.012228252632741
509 => 0.012016387061186
510 => 0.011849918756807
511 => 0.011717536980593
512 => 0.011370127667263
513 => 0.011487368112205
514 => 0.010933670176716
515 => 0.011287906493991
516 => 0.010404191219447
517 => 0.011140175559829
518 => 0.010739612744461
519 => 0.011008579901878
520 => 0.011007641500804
521 => 0.010512387687884
522 => 0.010226735624275
523 => 0.010408764236951
524 => 0.010603913359189
525 => 0.010635575647712
526 => 0.010888591578607
527 => 0.010959202886361
528 => 0.01074524732734
529 => 0.010385878184627
530 => 0.010469351440142
531 => 0.010225044041416
601 => 0.0097969047222972
602 => 0.010104401855884
603 => 0.010209394896985
604 => 0.010255765805256
605 => 0.0098347399570362
606 => 0.0097024444946096
607 => 0.0096320115004801
608 => 0.010331529034638
609 => 0.01036985018423
610 => 0.01017379376485
611 => 0.011059987371283
612 => 0.010859414464913
613 => 0.011083503542884
614 => 0.010461777117129
615 => 0.010485527903858
616 => 0.010191192650298
617 => 0.010356000724803
618 => 0.010239519689755
619 => 0.010342685861048
620 => 0.010404523238751
621 => 0.010698810194793
622 => 0.011143535844147
623 => 0.010654853537165
624 => 0.010441927657954
625 => 0.010574025675876
626 => 0.010925820105276
627 => 0.011458806673843
628 => 0.011143267897897
629 => 0.011283298648466
630 => 0.011313889137931
701 => 0.011081222526429
702 => 0.011467385423681
703 => 0.0116743332575
704 => 0.011886618913179
705 => 0.012070940599895
706 => 0.011801827354039
707 => 0.012089817102974
708 => 0.011857748202367
709 => 0.01164955840768
710 => 0.011649874145662
711 => 0.011519273646287
712 => 0.011266218722028
713 => 0.011219551511435
714 => 0.011462320234357
715 => 0.011656997759856
716 => 0.011673032333299
717 => 0.011780815814308
718 => 0.011844600968111
719 => 0.012469782187092
720 => 0.012721235245136
721 => 0.01302870728475
722 => 0.013148484972355
723 => 0.013508972869366
724 => 0.013217849615134
725 => 0.013154863267829
726 => 0.012280437544373
727 => 0.012423624707602
728 => 0.01265288117144
729 => 0.012284217899021
730 => 0.012518049890782
731 => 0.012564213279195
801 => 0.012271690862095
802 => 0.012427939724216
803 => 0.012012989070982
804 => 0.011152580634458
805 => 0.011468343304232
806 => 0.01170085091375
807 => 0.011369033886986
808 => 0.011963803064369
809 => 0.01161635118947
810 => 0.011506225625758
811 => 0.01107658653912
812 => 0.011279359649688
813 => 0.011553613185163
814 => 0.011384156385635
815 => 0.011735804688721
816 => 0.012233832467069
817 => 0.012588756719986
818 => 0.012616003397013
819 => 0.012387810880465
820 => 0.012753490844538
821 => 0.012756154423854
822 => 0.012343665930534
823 => 0.01209101902512
824 => 0.012033617116637
825 => 0.012177018338336
826 => 0.012351133894804
827 => 0.012625665598614
828 => 0.01279155935756
829 => 0.013224122297641
830 => 0.013341161426675
831 => 0.013469751945437
901 => 0.01364158853435
902 => 0.013847922417338
903 => 0.013396475627956
904 => 0.0134144124505
905 => 0.012994031450933
906 => 0.012544794064163
907 => 0.012885709242491
908 => 0.013331410488109
909 => 0.013229166129908
910 => 0.013217661550948
911 => 0.013237009061655
912 => 0.01315992015456
913 => 0.012811249884818
914 => 0.012636149858145
915 => 0.012862073565334
916 => 0.012982141960998
917 => 0.013168357571608
918 => 0.013145402567065
919 => 0.0136250739819
920 => 0.013811459789194
921 => 0.01376377432379
922 => 0.013772549597039
923 => 0.014109992198199
924 => 0.014485297771052
925 => 0.014836820965961
926 => 0.015194405458096
927 => 0.014763323396067
928 => 0.014544446510415
929 => 0.014770271586381
930 => 0.014650445622355
1001 => 0.015339001154337
1002 => 0.015386675245434
1003 => 0.016075180987014
1004 => 0.016728654921512
1005 => 0.016318219651455
1006 => 0.016705241624708
1007 => 0.017123837443145
1008 => 0.017931376691634
1009 => 0.017659425882316
1010 => 0.017451115824391
1011 => 0.017254263826199
1012 => 0.017663881585063
1013 => 0.018190848288037
1014 => 0.018304351868633
1015 => 0.018488271030904
1016 => 0.018294902520342
1017 => 0.018527793592472
1018 => 0.019350001414614
1019 => 0.019127833603242
1020 => 0.018812319595836
1021 => 0.019461373705738
1022 => 0.019696263864978
1023 => 0.021344846015454
1024 => 0.023426249079961
1025 => 0.022564534544026
1026 => 0.022029640524216
1027 => 0.022155353306727
1028 => 0.022915411245945
1029 => 0.023159517732989
1030 => 0.022495952152652
1031 => 0.022730334733624
1101 => 0.024021805798769
1102 => 0.024714638589866
1103 => 0.023773678599698
1104 => 0.021177607305837
1105 => 0.018783911011582
1106 => 0.019418827058368
1107 => 0.019346847282401
1108 => 0.020734371827602
1109 => 0.019122534974416
1110 => 0.019149674173238
1111 => 0.02056589125662
1112 => 0.020188068818881
1113 => 0.019576044857586
1114 => 0.018788379463806
1115 => 0.017332307133173
1116 => 0.016042623264351
1117 => 0.018571990327568
1118 => 0.018462919420447
1119 => 0.018304968583532
1120 => 0.01865647107902
1121 => 0.020363267421386
1122 => 0.020323920241333
1123 => 0.020073613556949
1124 => 0.020263468970953
1125 => 0.019542762285573
1126 => 0.019728504808582
1127 => 0.018783531837859
1128 => 0.019210699086183
1129 => 0.019574731729039
1130 => 0.019647816671687
1201 => 0.019812480779284
1202 => 0.018405444008614
1203 => 0.019037162210216
1204 => 0.019408237469666
1205 => 0.017731705947636
1206 => 0.019375097831935
1207 => 0.018380950628811
1208 => 0.018043522136481
1209 => 0.01849782514858
1210 => 0.018320782822941
1211 => 0.01816857222763
1212 => 0.018083636100137
1213 => 0.018417226092629
1214 => 0.018401663720753
1215 => 0.017855845746009
1216 => 0.017143848448342
1217 => 0.017382818111953
1218 => 0.017295998192811
1219 => 0.016981351605845
1220 => 0.017193385414886
1221 => 0.016259695827725
1222 => 0.014653331421976
1223 => 0.015714544952686
1224 => 0.015673689386132
1225 => 0.015653088156823
1226 => 0.016450560795364
1227 => 0.016373902201992
1228 => 0.01623476610438
1229 => 0.016978796262301
1230 => 0.016707215246042
1231 => 0.017544163945617
]
'min_raw' => 0.0075130828136343
'max_raw' => 0.024714638589866
'avg_raw' => 0.01611386070175
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007513'
'max' => '$0.024714'
'avg' => '$0.016113'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0040929338137047
'max_diff' => 0.016337625205041
'year' => 2029
]
4 => [
'items' => [
101 => 0.018095432489605
102 => 0.01795561295518
103 => 0.018474083685313
104 => 0.017388323490352
105 => 0.01774896947398
106 => 0.017823298111372
107 => 0.016969615045645
108 => 0.016386444495921
109 => 0.016347553668885
110 => 0.015336416301516
111 => 0.015876557721549
112 => 0.016351859818607
113 => 0.016124226999049
114 => 0.016052165248714
115 => 0.016420313102889
116 => 0.016448921344132
117 => 0.015796650412036
118 => 0.015932278193553
119 => 0.01649786858872
120 => 0.01591802676675
121 => 0.014791488823286
122 => 0.014512091837701
123 => 0.014474815129516
124 => 0.013717068345356
125 => 0.014530762480267
126 => 0.014175563184731
127 => 0.015297633503387
128 => 0.014656712955155
129 => 0.014629084151312
130 => 0.014587319162039
131 => 0.013935095202787
201 => 0.014077890798869
202 => 0.014552565108626
203 => 0.014721934249936
204 => 0.014704267660897
205 => 0.01455023894555
206 => 0.014620752502681
207 => 0.01439360376661
208 => 0.014313392820212
209 => 0.014060225009618
210 => 0.013688138267439
211 => 0.013739879211079
212 => 0.013002678013029
213 => 0.012601011674103
214 => 0.012489835725365
215 => 0.01234116660035
216 => 0.012506628298629
217 => 0.01300058961466
218 => 0.012404767467787
219 => 0.011383272189039
220 => 0.011444665795835
221 => 0.01158259900238
222 => 0.011325561384503
223 => 0.011082296850713
224 => 0.011293795626168
225 => 0.010860974610428
226 => 0.011634903354305
227 => 0.011613970750694
228 => 0.011902443526979
301 => 0.012082831474047
302 => 0.011667095657346
303 => 0.011562539223715
304 => 0.011622099320136
305 => 0.010637703598046
306 => 0.011821997395034
307 => 0.011832239216969
308 => 0.011744542519569
309 => 0.012375142405496
310 => 0.013705904853838
311 => 0.013205218490976
312 => 0.013011337597951
313 => 0.012642769878583
314 => 0.013133864481255
315 => 0.013096156078039
316 => 0.012925624378209
317 => 0.012822486274061
318 => 0.013012521393341
319 => 0.012798938819756
320 => 0.012760573520684
321 => 0.012528121550162
322 => 0.012445146772577
323 => 0.012383715550573
324 => 0.012316085811255
325 => 0.01246526016391
326 => 0.012127211455273
327 => 0.01171955785198
328 => 0.011685665865739
329 => 0.011779244619564
330 => 0.011737842987115
331 => 0.011685467650651
401 => 0.011585468869768
402 => 0.011555801367615
403 => 0.011652206356984
404 => 0.011543370744747
405 => 0.011703963619186
406 => 0.011660291243348
407 => 0.011416340902025
408 => 0.011112288454753
409 => 0.0111095817502
410 => 0.011044074149181
411 => 0.01096064037015
412 => 0.01093743100153
413 => 0.011275983789217
414 => 0.011976777927697
415 => 0.011839195269731
416 => 0.011938612840149
417 => 0.012427648889421
418 => 0.012583098743658
419 => 0.012472764119152
420 => 0.012321731279986
421 => 0.012328375958405
422 => 0.012844500890586
423 => 0.012876690969515
424 => 0.012958024914054
425 => 0.013062562017756
426 => 0.012490567239944
427 => 0.012301435055808
428 => 0.012211813734311
429 => 0.011935814751914
430 => 0.012233455992064
501 => 0.012060033187697
502 => 0.012083433848973
503 => 0.012068194137619
504 => 0.012076516050523
505 => 0.011634687025449
506 => 0.011795666300336
507 => 0.011528007033392
508 => 0.011169641321117
509 => 0.011168439953591
510 => 0.011256149453973
511 => 0.011203976411073
512 => 0.011063580094118
513 => 0.011083522728289
514 => 0.010908804268321
515 => 0.011104736712709
516 => 0.011110355354134
517 => 0.011034910690533
518 => 0.011336771654579
519 => 0.011460444337844
520 => 0.01141078504408
521 => 0.011456960109412
522 => 0.011844912450317
523 => 0.011908165609432
524 => 0.011936258484442
525 => 0.011898617753522
526 => 0.01146405116603
527 => 0.011483326042105
528 => 0.011341899790547
529 => 0.011222409511112
530 => 0.011227188495646
531 => 0.011288622031924
601 => 0.011556905887882
602 => 0.012121493446549
603 => 0.012142919131692
604 => 0.012168887687117
605 => 0.012063260521454
606 => 0.012031402357574
607 => 0.012073431499021
608 => 0.012285460901453
609 => 0.012830858089928
610 => 0.012638078297668
611 => 0.012481345325763
612 => 0.012618842397029
613 => 0.012597675800646
614 => 0.012419008425857
615 => 0.012413993827717
616 => 0.012071074012084
617 => 0.011944304364151
618 => 0.011838366157794
619 => 0.011722684402039
620 => 0.01165410437954
621 => 0.011759474463161
622 => 0.011783573847988
623 => 0.011553180318596
624 => 0.011521778531874
625 => 0.011709922861364
626 => 0.011627127556683
627 => 0.011712284580773
628 => 0.011732041740825
629 => 0.01172886038301
630 => 0.011642412575943
701 => 0.011697511830257
702 => 0.011567185667926
703 => 0.011425475540747
704 => 0.01133507330846
705 => 0.011256185370674
706 => 0.011299956983552
707 => 0.011143919176023
708 => 0.011093999540974
709 => 0.011678845442668
710 => 0.012110877398402
711 => 0.012104595482662
712 => 0.012066355936173
713 => 0.0120095397267
714 => 0.012281304441844
715 => 0.012186627049195
716 => 0.012255512762908
717 => 0.012273047068172
718 => 0.012326118129212
719 => 0.012345086471922
720 => 0.012287750965891
721 => 0.01209532600471
722 => 0.011615821296664
723 => 0.01139261056067
724 => 0.011318947299923
725 => 0.011321624819545
726 => 0.011247766875404
727 => 0.011269521350034
728 => 0.011240201556922
729 => 0.011184676961987
730 => 0.011296528496279
731 => 0.011309418343637
801 => 0.011283310859007
802 => 0.011289460116742
803 => 0.011073301294657
804 => 0.011089735380428
805 => 0.010998228302513
806 => 0.010981071828539
807 => 0.010749749904003
808 => 0.01033992958404
809 => 0.010567009823521
810 => 0.010292728826542
811 => 0.01018885445695
812 => 0.010680579566817
813 => 0.010631224004118
814 => 0.010546748735124
815 => 0.010421792206094
816 => 0.010375444613978
817 => 0.010093851316145
818 => 0.010077213281867
819 => 0.010216778523932
820 => 0.010152373966866
821 => 0.010061925576832
822 => 0.0097343306767347
823 => 0.0093660055460818
824 => 0.009377122966567
825 => 0.009494280337695
826 => 0.0098349311950737
827 => 0.0097018330117762
828 => 0.0096052687526682
829 => 0.0095871851696482
830 => 0.0098135390716885
831 => 0.010133877265684
901 => 0.010284172779144
902 => 0.010135234489848
903 => 0.0099641422025117
904 => 0.0099745557972765
905 => 0.010043832777874
906 => 0.010051112809011
907 => 0.0099397493185268
908 => 0.0099710974887829
909 => 0.0099234767516272
910 => 0.0096312283756041
911 => 0.0096259425292114
912 => 0.0095542200645937
913 => 0.0095520483368694
914 => 0.0094300305325473
915 => 0.0094129593982534
916 => 0.0091706856418206
917 => 0.0093301509619772
918 => 0.0092231899975212
919 => 0.0090619745945453
920 => 0.0090341809983065
921 => 0.0090333454892418
922 => 0.0091988776609936
923 => 0.0093282166221727
924 => 0.0092250506292919
925 => 0.0092015617325017
926 => 0.009452361698256
927 => 0.0094204451165214
928 => 0.009392805562579
929 => 0.010105194493912
930 => 0.0095412830663604
1001 => 0.0092953854970089
1002 => 0.0089910405602546
1003 => 0.0090901368063022
1004 => 0.0091110178413712
1005 => 0.0083791231307752
1006 => 0.0080821935378381
1007 => 0.0079802984910977
1008 => 0.0079216564511142
1009 => 0.0079483803651151
1010 => 0.0076811089051042
1011 => 0.0078607197464934
1012 => 0.0076292852540181
1013 => 0.0075904845082016
1014 => 0.0080043180499796
1015 => 0.0080619005697375
1016 => 0.0078162356509636
1017 => 0.0079739922983541
1018 => 0.0079167875450289
1019 => 0.0076332525341343
1020 => 0.0076224235822605
1021 => 0.0074801556805312
1022 => 0.0072575339628189
1023 => 0.0071557898640862
1024 => 0.0071028006540834
1025 => 0.0071246650348697
1026 => 0.0071136097348831
1027 => 0.0070414664243773
1028 => 0.0071177449049933
1029 => 0.0069228849074638
1030 => 0.0068452900863538
1031 => 0.0068102423058446
1101 => 0.0066372928423141
1102 => 0.0069125323497666
1103 => 0.0069667580001107
1104 => 0.0070210904917372
1105 => 0.0074940177369777
1106 => 0.007470391628284
1107 => 0.0076839601444935
1108 => 0.0076756612646809
1109 => 0.0076147480642773
1110 => 0.0073577652915101
1111 => 0.0074601940444576
1112 => 0.0071449342638474
1113 => 0.0073811483270619
1114 => 0.0072733500931459
1115 => 0.0073447016357397
1116 => 0.0072164051286469
1117 => 0.007287409712905
1118 => 0.0069796169134463
1119 => 0.0066922043280734
1120 => 0.0068078675425239
1121 => 0.0069336066843245
1122 => 0.0072062411814859
1123 => 0.0070438623241623
1124 => 0.0071022599014803
1125 => 0.0069066377931016
1126 => 0.0065030135068236
1127 => 0.0065052979764505
1128 => 0.0064432091734397
1129 => 0.0063895553825247
1130 => 0.007062513489247
1201 => 0.0069788205107827
1202 => 0.0068454667030661
1203 => 0.0070239660739645
1204 => 0.0070711641407959
1205 => 0.007072507803406
1206 => 0.0072027363366778
1207 => 0.0072722393282297
1208 => 0.0072844895317339
1209 => 0.0074894069426108
1210 => 0.0075580925558108
1211 => 0.0078409988758294
1212 => 0.0072663424849869
1213 => 0.0072545078147806
1214 => 0.0070264779261695
1215 => 0.0068818577658025
1216 => 0.0070363801922778
1217 => 0.0071732659677203
1218 => 0.0070307313487801
1219 => 0.0070493433609437
1220 => 0.0068580022805228
1221 => 0.0069263977133386
1222 => 0.0069853090739394
1223 => 0.0069527816832654
1224 => 0.0069040866050829
1225 => 0.0071620428951588
1226 => 0.0071474879903339
1227 => 0.0073877028180421
1228 => 0.0075749674541677
1229 => 0.0079105791596627
1230 => 0.0075603508491448
1231 => 0.0075475871374781
]
'min_raw' => 0.0063895553825247
'max_raw' => 0.018474083685313
'avg_raw' => 0.012431819533919
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006389'
'max' => '$0.018474'
'avg' => '$0.012431'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011235274311096
'max_diff' => -0.0062405549045529
'year' => 2030
]
5 => [
'items' => [
101 => 0.0076723544663841
102 => 0.0075580734545828
103 => 0.0076302951091947
104 => 0.0078989431345623
105 => 0.0079046192440083
106 => 0.0078095370975338
107 => 0.0078037513402798
108 => 0.0078220129065949
109 => 0.0079289714708923
110 => 0.0078915968620221
111 => 0.007934847705616
112 => 0.0079889335478106
113 => 0.0082126555230495
114 => 0.0082665941338724
115 => 0.0081355512735361
116 => 0.0081473829765997
117 => 0.008098369349627
118 => 0.0080510228001102
119 => 0.0081574509290156
120 => 0.0083519504264402
121 => 0.0083507404551613
122 => 0.0083958605580338
123 => 0.0084239700083283
124 => 0.0083033036702892
125 => 0.0082247543212499
126 => 0.0082548751398965
127 => 0.0083030389848585
128 => 0.0082392562541114
129 => 0.0078455596929054
130 => 0.0079649820801416
131 => 0.0079451043554491
201 => 0.0079167960582731
202 => 0.0080368761921051
203 => 0.0080252941702596
204 => 0.0076783676499739
205 => 0.0077005767602022
206 => 0.0076797182595257
207 => 0.0077471163424592
208 => 0.0075544337369227
209 => 0.0076137016086486
210 => 0.0076508738621933
211 => 0.0076727686051018
212 => 0.0077518674298532
213 => 0.0077425860957238
214 => 0.0077512904890921
215 => 0.0078685731648828
216 => 0.0084617486924782
217 => 0.0084940339276772
218 => 0.0083350496217874
219 => 0.0083985607161636
220 => 0.0082766333033108
221 => 0.0083584839924015
222 => 0.0084144841550953
223 => 0.008161430188094
224 => 0.0081464459744749
225 => 0.0080240153238172
226 => 0.0080898026206541
227 => 0.0079851303011126
228 => 0.0080108132270458
301 => 0.0079390015271393
302 => 0.0080682482894041
303 => 0.0082127662525325
304 => 0.0082492771972061
305 => 0.00815323262072
306 => 0.008083690017698
307 => 0.007961596115549
308 => 0.0081646409958629
309 => 0.0082240175065473
310 => 0.0081643291163296
311 => 0.0081504980120991
312 => 0.0081242880945745
313 => 0.0081560585700042
314 => 0.0082236941293183
315 => 0.0081917984485784
316 => 0.0082128661076367
317 => 0.0081325779161823
318 => 0.008303343615868
319 => 0.0085745606439725
320 => 0.0085754326510663
321 => 0.0085435367983968
322 => 0.0085304857026902
323 => 0.0085632127831313
324 => 0.0085809658817354
325 => 0.0086867992587617
326 => 0.0088003626888986
327 => 0.0093303136657412
328 => 0.0091815055520769
329 => 0.0096517095856563
330 => 0.010023579927865
331 => 0.010135087583575
401 => 0.010032505787163
402 => 0.0096815790029975
403 => 0.0096643608607817
404 => 0.010188793633791
405 => 0.010040617354873
406 => 0.010022992257989
407 => 0.0098354910052116
408 => 0.009946327468085
409 => 0.0099220859077818
410 => 0.0098838194189054
411 => 0.010095287669133
412 => 0.010491137355658
413 => 0.010429440469758
414 => 0.01038338660647
415 => 0.01018159198362
416 => 0.010303117419037
417 => 0.010259844539151
418 => 0.010445772292787
419 => 0.010335632810337
420 => 0.010039494773825
421 => 0.010086655732223
422 => 0.010079527448236
423 => 0.010226227027578
424 => 0.010182191455167
425 => 0.010070928795977
426 => 0.010489784384464
427 => 0.010462586232345
428 => 0.010501146993687
429 => 0.01051812263336
430 => 0.010773072649009
501 => 0.01087751751293
502 => 0.010901228325604
503 => 0.011000442868273
504 => 0.0108987597774
505 => 0.011305564639707
506 => 0.011576066135419
507 => 0.011890267542569
508 => 0.01234940024779
509 => 0.012522038392169
510 => 0.012490852856611
511 => 0.012838962033701
512 => 0.013464506486899
513 => 0.012617293275603
514 => 0.013509410844293
515 => 0.013226976722038
516 => 0.012557330498945
517 => 0.012514213176788
518 => 0.012967705373819
519 => 0.013973507419827
520 => 0.013721565415015
521 => 0.013973919506692
522 => 0.013679535054174
523 => 0.013664916384839
524 => 0.013959621910911
525 => 0.01464821743614
526 => 0.014321091513721
527 => 0.013852076289367
528 => 0.014198389832345
529 => 0.013898380991612
530 => 0.013222377106253
531 => 0.013721372759712
601 => 0.013387708576822
602 => 0.013485089523953
603 => 0.014186402007586
604 => 0.014102018234113
605 => 0.014211218650714
606 => 0.014018482773685
607 => 0.013838437072881
608 => 0.013502368401962
609 => 0.013402875036488
610 => 0.013430371423309
611 => 0.013402861410644
612 => 0.013214834077895
613 => 0.01317422959329
614 => 0.013106553673359
615 => 0.013127529270792
616 => 0.013000278742032
617 => 0.013240426781103
618 => 0.013285000373332
619 => 0.013459760089483
620 => 0.013477904222957
621 => 0.013964607544888
622 => 0.013696539533885
623 => 0.013876382699545
624 => 0.013860295834059
625 => 0.012571843763145
626 => 0.012749381090408
627 => 0.013025573457347
628 => 0.012901149170411
629 => 0.012725242339482
630 => 0.01258318814198
701 => 0.012367961506976
702 => 0.012670888862682
703 => 0.013069206122703
704 => 0.013488006205994
705 => 0.013991167065201
706 => 0.013878867418864
707 => 0.013478599963723
708 => 0.013496555669365
709 => 0.013607550776334
710 => 0.01346380202784
711 => 0.0134214077156
712 => 0.013601726448842
713 => 0.013602968204856
714 => 0.013437567897097
715 => 0.013253755722959
716 => 0.013252985543238
717 => 0.013220277942265
718 => 0.013685353663727
719 => 0.013941098286071
720 => 0.01397041899487
721 => 0.013939124768754
722 => 0.013951168674363
723 => 0.013802356513569
724 => 0.014142496984269
725 => 0.01445464351659
726 => 0.01437098157789
727 => 0.014245560438533
728 => 0.014145656459935
729 => 0.014347447375526
730 => 0.014338461943703
731 => 0.01445191718894
801 => 0.014446770203667
802 => 0.014408619471961
803 => 0.014370982940372
804 => 0.014520207533883
805 => 0.014477233247425
806 => 0.014434192210031
807 => 0.014347866820285
808 => 0.014359599874464
809 => 0.014234200390835
810 => 0.014176184851819
811 => 0.013303770343752
812 => 0.01307063268023
813 => 0.013143982535129
814 => 0.01316813121189
815 => 0.013066669401951
816 => 0.013212139574003
817 => 0.01318946820178
818 => 0.013277669248791
819 => 0.013222565063863
820 => 0.013224826558833
821 => 0.013386876217257
822 => 0.013433919922506
823 => 0.013409993114327
824 => 0.013426750630612
825 => 0.013812920520506
826 => 0.013758019511181
827 => 0.013728854444194
828 => 0.013736933367067
829 => 0.013835608053511
830 => 0.013863231578277
831 => 0.013746188762772
901 => 0.013801386831181
902 => 0.014036413200786
903 => 0.014118659128807
904 => 0.014381148650765
905 => 0.014269638436458
906 => 0.014474320260868
907 => 0.015103442407928
908 => 0.015606028710941
909 => 0.015143829576433
910 => 0.016066765317936
911 => 0.016785403179966
912 => 0.016757820661867
913 => 0.016632509528229
914 => 0.015814359428285
915 => 0.015061485508385
916 => 0.015691296511096
917 => 0.015692902028864
918 => 0.015638800705179
919 => 0.015302782030225
920 => 0.015627107983654
921 => 0.015652851800058
922 => 0.015638442108705
923 => 0.015380817378455
924 => 0.014987472032371
925 => 0.01506433077146
926 => 0.015190226953964
927 => 0.01495187921579
928 => 0.014875712671445
929 => 0.01501732076866
930 => 0.015473611563109
1001 => 0.015387352431531
1002 => 0.015385099857005
1003 => 0.01575415300146
1004 => 0.015489990596684
1005 => 0.015065300206296
1006 => 0.014958060281745
1007 => 0.014577430795059
1008 => 0.014840332937269
1009 => 0.014849794317331
1010 => 0.014705805500838
1011 => 0.015076984105187
1012 => 0.015073563629003
1013 => 0.015425942471188
1014 => 0.016099558469997
1015 => 0.015900337072519
1016 => 0.015668664262479
1017 => 0.015693853520521
1018 => 0.015970117508851
1019 => 0.015803081995013
1020 => 0.015863149130402
1021 => 0.015970026590047
1022 => 0.016034508415069
1023 => 0.015684575578219
1024 => 0.015602989494726
1025 => 0.015436093000725
1026 => 0.015392552820711
1027 => 0.015528486532665
1028 => 0.015492672802174
1029 => 0.014848999124973
1030 => 0.014781731644339
1031 => 0.014783794641934
1101 => 0.014614647363486
1102 => 0.014356657163853
1103 => 0.015034640004693
1104 => 0.01498018849421
1105 => 0.014920078240849
1106 => 0.014927441403901
1107 => 0.015221730776139
1108 => 0.015051028078272
1109 => 0.015504869178175
1110 => 0.015411573091747
1111 => 0.01531588431274
1112 => 0.01530265720873
1113 => 0.015265825192596
1114 => 0.015139514504681
1115 => 0.014986986758929
1116 => 0.014886274729456
1117 => 0.013731801552418
1118 => 0.013946065058815
1119 => 0.014192555692191
1120 => 0.014277643271083
1121 => 0.014132095079507
1122 => 0.015145261634411
1123 => 0.015330376927108
1124 => 0.014769650630757
1125 => 0.014664761635014
1126 => 0.01515213813951
1127 => 0.014858190527944
1128 => 0.014990555119434
1129 => 0.014704455272194
1130 => 0.015285788073906
1201 => 0.015281359291956
1202 => 0.015055207702093
1203 => 0.015246349477226
1204 => 0.015213133890028
1205 => 0.01495780930206
1206 => 0.015293882318759
1207 => 0.015294049006782
1208 => 0.015076383018499
1209 => 0.014822196797396
1210 => 0.014776754304673
1211 => 0.014742519490747
1212 => 0.01498213545384
1213 => 0.01519697437709
1214 => 0.015596736350172
1215 => 0.015697246008315
1216 => 0.016089541895354
1217 => 0.015855948795162
1218 => 0.01595949759094
1219 => 0.016071914456628
1220 => 0.016125811236033
1221 => 0.016037989326254
1222 => 0.016647386314255
1223 => 0.016698838091483
1224 => 0.016716089427332
1225 => 0.016510604191711
1226 => 0.016693123175361
1227 => 0.016607728587305
1228 => 0.016829901582127
1229 => 0.016864741144562
1230 => 0.016835233274632
1231 => 0.016846291901655
]
'min_raw' => 0.0075544337369227
'max_raw' => 0.016864741144562
'avg_raw' => 0.012209587440742
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007554'
'max' => '$0.016864'
'avg' => '$0.0122095'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.001164878354398
'max_diff' => -0.0016093425407516
'year' => 2031
]
6 => [
'items' => [
101 => 0.016326279077391
102 => 0.016299313669167
103 => 0.015931638414652
104 => 0.016081468798585
105 => 0.015801368077379
106 => 0.01589019090143
107 => 0.015929343155937
108 => 0.015908892240054
109 => 0.016089939983689
110 => 0.015936012415989
111 => 0.015529772256793
112 => 0.015123421417737
113 => 0.015118320013959
114 => 0.015011335010724
115 => 0.014934004448665
116 => 0.014948901058367
117 => 0.01500139865395
118 => 0.014930953192975
119 => 0.014945986303749
120 => 0.015195636107703
121 => 0.015245701595464
122 => 0.015075559506201
123 => 0.014392414466421
124 => 0.014224768960119
125 => 0.014345269225494
126 => 0.014287677859856
127 => 0.01153127114044
128 => 0.012178848012808
129 => 0.01179407982488
130 => 0.01197139870821
131 => 0.011578650023575
201 => 0.011766090281605
202 => 0.011731476910169
203 => 0.012772761357744
204 => 0.012756503133335
205 => 0.012764285084994
206 => 0.012392832256567
207 => 0.012984566698294
208 => 0.01327607636237
209 => 0.013222125681828
210 => 0.013235703905799
211 => 0.013002385031175
212 => 0.01276654412171
213 => 0.012504960257457
214 => 0.012990950744495
215 => 0.012936916898471
216 => 0.013060851100487
217 => 0.013376050670649
218 => 0.013422465004682
219 => 0.01348484634031
220 => 0.013462487072093
221 => 0.013995175553207
222 => 0.013930663463352
223 => 0.014086119038507
224 => 0.013766335125971
225 => 0.013404469274768
226 => 0.013473248142796
227 => 0.01346662418472
228 => 0.01338229359579
229 => 0.01330616371078
301 => 0.013179428901699
302 => 0.013580436590852
303 => 0.013564156410999
304 => 0.013827713599189
305 => 0.013781127306119
306 => 0.013470012639393
307 => 0.01348112416058
308 => 0.013555854480573
309 => 0.013814496971325
310 => 0.013891279672303
311 => 0.013855710865948
312 => 0.013939899592308
313 => 0.014006438928972
314 => 0.013948255908535
315 => 0.014772004780785
316 => 0.014429926817456
317 => 0.014596653236619
318 => 0.014636416505181
319 => 0.014534563728892
320 => 0.014556651948995
321 => 0.01459010958377
322 => 0.014793257790451
323 => 0.015326377466189
324 => 0.015562492541505
325 => 0.016272856395305
326 => 0.01554288647138
327 => 0.01549957307701
328 => 0.015627531058013
329 => 0.016044589839844
330 => 0.016382576810179
331 => 0.016494706587175
401 => 0.016509526388266
402 => 0.016719889304158
403 => 0.016840465404511
404 => 0.016694345713075
405 => 0.016570524573952
406 => 0.01612701262286
407 => 0.016178350338842
408 => 0.016532016292793
409 => 0.01703159028357
410 => 0.017460276739472
411 => 0.017310165683847
412 => 0.018455407076378
413 => 0.018568953082556
414 => 0.018553264695884
415 => 0.018811939395868
416 => 0.018298522794586
417 => 0.018079027250559
418 => 0.01659729610966
419 => 0.017013602121225
420 => 0.017618727357829
421 => 0.017538636763661
422 => 0.017099178641795
423 => 0.017459943371079
424 => 0.017340663269422
425 => 0.017246582104309
426 => 0.017677586160223
427 => 0.017203679496074
428 => 0.017613999776334
429 => 0.017087759772681
430 => 0.017310851378504
501 => 0.017184213793312
502 => 0.01726616383105
503 => 0.016787085584949
504 => 0.017045584577578
505 => 0.016776331176989
506 => 0.01677620351582
507 => 0.016770259732078
508 => 0.017087035163818
509 => 0.017097365199275
510 => 0.016863267676598
511 => 0.016829530566289
512 => 0.016954274345435
513 => 0.016808232050503
514 => 0.016876564321122
515 => 0.016810301765369
516 => 0.016795384668366
517 => 0.016676522701511
518 => 0.016625313698012
519 => 0.016645394067777
520 => 0.016576849413628
521 => 0.016535548780134
522 => 0.016762043996555
523 => 0.016641036739212
524 => 0.016743497898878
525 => 0.016626730475809
526 => 0.016221963714307
527 => 0.015989178069437
528 => 0.015224611178858
529 => 0.015441441400584
530 => 0.015585200061915
531 => 0.015537687825203
601 => 0.015639762494456
602 => 0.015646029050132
603 => 0.015612843534629
604 => 0.015574418959006
605 => 0.015555716000604
606 => 0.015695112529482
607 => 0.015776036906366
608 => 0.015599628166822
609 => 0.015558298067368
610 => 0.01573665704284
611 => 0.015845455914844
612 => 0.016648765656912
613 => 0.016589253876564
614 => 0.016738616766642
615 => 0.01672180079738
616 => 0.016878356901556
617 => 0.017134259966338
618 => 0.016613937484014
619 => 0.016704247475547
620 => 0.016682105551186
621 => 0.016923845275444
622 => 0.016924599960476
623 => 0.016779664919989
624 => 0.016858236556739
625 => 0.016814380024605
626 => 0.016893634705737
627 => 0.016588459060455
628 => 0.016960130054734
629 => 0.01717084355854
630 => 0.017173769315745
701 => 0.017273645844224
702 => 0.017375126181616
703 => 0.017569908852167
704 => 0.017369693798653
705 => 0.017009526407925
706 => 0.017035529330202
707 => 0.016824363320798
708 => 0.016827913059566
709 => 0.016808964275823
710 => 0.016865831002235
711 => 0.016600938109009
712 => 0.016663107941588
713 => 0.016576069811911
714 => 0.016704058271652
715 => 0.016566363846221
716 => 0.016682094873679
717 => 0.016732040548586
718 => 0.016916341164246
719 => 0.016539142495437
720 => 0.015770008875631
721 => 0.015931690087358
722 => 0.015692550875429
723 => 0.01571468411996
724 => 0.015759396796393
725 => 0.015614468382997
726 => 0.015642116157054
727 => 0.01564112838401
728 => 0.015632616289558
729 => 0.015594914811832
730 => 0.015540240210121
731 => 0.015758046995385
801 => 0.015795056612445
802 => 0.015877324406648
803 => 0.016122097559419
804 => 0.016097638949309
805 => 0.016137531957177
806 => 0.016050445744991
807 => 0.015718723799574
808 => 0.015736737897173
809 => 0.015512101811463
810 => 0.015871579956886
811 => 0.01578645078717
812 => 0.015731567457656
813 => 0.015716592032708
814 => 0.01596197193078
815 => 0.016035393442142
816 => 0.015989642083395
817 => 0.015895804711826
818 => 0.016076000205768
819 => 0.016124212918109
820 => 0.016135005966386
821 => 0.016454277832591
822 => 0.016152849717038
823 => 0.01622540646039
824 => 0.01679147345978
825 => 0.016278128803239
826 => 0.016550058916761
827 => 0.01653674935276
828 => 0.016675859597224
829 => 0.01652533825239
830 => 0.016527204144857
831 => 0.016650724617797
901 => 0.016477262390588
902 => 0.016434310703726
903 => 0.016374973255952
904 => 0.016504534402349
905 => 0.016582200450068
906 => 0.017208131755253
907 => 0.017612511924337
908 => 0.017594956714721
909 => 0.017755378468643
910 => 0.017683106999206
911 => 0.017449723360144
912 => 0.01784808077392
913 => 0.017722023820219
914 => 0.017732415802323
915 => 0.01773202901223
916 => 0.017815845866351
917 => 0.017756453943504
918 => 0.017639386367118
919 => 0.017717101287638
920 => 0.017947886817991
921 => 0.01866425218557
922 => 0.019065139735845
923 => 0.018640118251674
924 => 0.018933292380191
925 => 0.018757492371704
926 => 0.018725544280564
927 => 0.018909679298671
928 => 0.019094136620752
929 => 0.019082387486766
930 => 0.018948480942924
1001 => 0.01887284053406
1002 => 0.019445615051372
1003 => 0.019867625558768
1004 => 0.019838847271357
1005 => 0.019965865272785
1006 => 0.020338794053495
1007 => 0.020372889987508
1008 => 0.020368594683508
1009 => 0.020284084353515
1010 => 0.020651281169046
1011 => 0.020957603212776
1012 => 0.02026452265386
1013 => 0.020528438657605
1014 => 0.020646919054528
1015 => 0.020820883428761
1016 => 0.021114390487907
1017 => 0.021433217003042
1018 => 0.021478302568037
1019 => 0.02144631220213
1020 => 0.021236037544882
1021 => 0.021584901322134
1022 => 0.021789257540986
1023 => 0.021910946992703
1024 => 0.022219531195065
1025 => 0.020647650749124
1026 => 0.01953499564196
1027 => 0.019361238480041
1028 => 0.019714580501465
1029 => 0.019807753974665
1030 => 0.019770195864447
1031 => 0.018517801383157
1101 => 0.019354644882286
1102 => 0.020255018123549
1103 => 0.020289605126631
1104 => 0.020740350797124
1105 => 0.020887132064126
1106 => 0.021250041409458
1107 => 0.021227341331098
1108 => 0.021315703981538
1109 => 0.021295390938429
1110 => 0.021967604081079
1111 => 0.022709155002039
1112 => 0.022683477451634
1113 => 0.022576870733113
1114 => 0.022735199889263
1115 => 0.023500559909119
1116 => 0.023430097823135
1117 => 0.023498545737723
1118 => 0.024400948334935
1119 => 0.025574200076583
1120 => 0.025029106850038
1121 => 0.026211802305289
1122 => 0.026956246402377
1123 => 0.028243685491335
1124 => 0.028082491776626
1125 => 0.028583682366293
1126 => 0.027793921385154
1127 => 0.025980470535431
1128 => 0.025693484996851
1129 => 0.026268037312719
1130 => 0.027680518117285
1201 => 0.026223553265591
1202 => 0.026518295357534
1203 => 0.026433409615226
1204 => 0.026428886414759
1205 => 0.026601518579376
1206 => 0.026351106620711
1207 => 0.025330883252859
1208 => 0.025798445610132
1209 => 0.0256178973298
1210 => 0.025818229107594
1211 => 0.026899337089237
1212 => 0.026421353480157
1213 => 0.025917836576227
1214 => 0.026549358513101
1215 => 0.027353502953224
1216 => 0.027303181039348
1217 => 0.027205535493499
1218 => 0.027755958322892
1219 => 0.028665095578292
1220 => 0.028910831725218
1221 => 0.029092229125024
1222 => 0.029117240761723
1223 => 0.029374876164368
1224 => 0.027989505671861
1225 => 0.030188124222308
1226 => 0.030567764910359
1227 => 0.030496408195499
1228 => 0.030918362842545
1229 => 0.030794213081428
1230 => 0.03061433955607
1231 => 0.031283227423965
]
'min_raw' => 0.01153127114044
'max_raw' => 0.031283227423965
'avg_raw' => 0.021407249282203
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011531'
'max' => '$0.031283'
'avg' => '$0.0214072'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0039768374035175
'max_diff' => 0.014418486279403
'year' => 2032
]
7 => [
'items' => [
101 => 0.030516401459891
102 => 0.029427988544593
103 => 0.028830863692893
104 => 0.029617205866299
105 => 0.030097397592037
106 => 0.030414773776821
107 => 0.030510811618572
108 => 0.02809704803955
109 => 0.026796163343922
110 => 0.027630015519146
111 => 0.028647372722323
112 => 0.027983854201229
113 => 0.02800986287105
114 => 0.027063859829571
115 => 0.028731073000437
116 => 0.028488174064912
117 => 0.029748334172098
118 => 0.029447586849101
119 => 0.030475198497378
120 => 0.03020459391137
121 => 0.03132785841859
122 => 0.031775959041693
123 => 0.032528389729175
124 => 0.033081880805831
125 => 0.03340690135264
126 => 0.033387388338131
127 => 0.034675281669184
128 => 0.033915855967428
129 => 0.032961838303127
130 => 0.032944583133467
131 => 0.033438682400343
201 => 0.034474178914202
202 => 0.034742668094384
203 => 0.034892716918138
204 => 0.034662911921321
205 => 0.033838609750595
206 => 0.033482680252583
207 => 0.03378594249716
208 => 0.033415078831664
209 => 0.034055293564276
210 => 0.03493444513464
211 => 0.034752903811902
212 => 0.035359769235619
213 => 0.035987811105062
214 => 0.03688593918549
215 => 0.037120743123301
216 => 0.037508865103708
217 => 0.037908370112975
218 => 0.03803668035499
219 => 0.038281664419326
220 => 0.038280373232379
221 => 0.039018649199586
222 => 0.039832990453918
223 => 0.040140385425385
224 => 0.040847223212416
225 => 0.039636788272676
226 => 0.040554917078943
227 => 0.041383092244451
228 => 0.040395707670478
301 => 0.041756587274599
302 => 0.041809427145808
303 => 0.042607246466672
304 => 0.041798503741288
305 => 0.041318274892554
306 => 0.04270467758491
307 => 0.043375514176466
308 => 0.04317345273564
309 => 0.041635755193952
310 => 0.040740749269739
311 => 0.038398346132324
312 => 0.041173023832877
313 => 0.042524488402358
314 => 0.041632255227206
315 => 0.042082245742649
316 => 0.044537248084986
317 => 0.045471954027317
318 => 0.0452775417254
319 => 0.045310394204125
320 => 0.045814744564494
321 => 0.048051311813188
322 => 0.046711108874548
323 => 0.047735643804693
324 => 0.048279053437406
325 => 0.048783802588818
326 => 0.047544298200558
327 => 0.045931721203367
328 => 0.04542095037698
329 => 0.041543540221932
330 => 0.041341704184623
331 => 0.041228407500623
401 => 0.040514087934141
402 => 0.039952828423482
403 => 0.039506494022376
404 => 0.038335179267141
405 => 0.038730463612728
406 => 0.036863632365271
407 => 0.038057964840957
408 => 0.035078457093799
409 => 0.037559879682183
410 => 0.036209354183766
411 => 0.037116195733686
412 => 0.037113031848948
413 => 0.03544324904117
414 => 0.034480153165122
415 => 0.035093875341592
416 => 0.035751834232095
417 => 0.03585858584844
418 => 0.036711646724461
419 => 0.036949717678476
420 => 0.03622835157334
421 => 0.035016713418328
422 => 0.035298149327213
423 => 0.034474449875411
424 => 0.03303094826927
425 => 0.034067696323921
426 => 0.034421687692373
427 => 0.034578030447124
428 => 0.033158512404764
429 => 0.032712469016619
430 => 0.032474999259436
501 => 0.034833471464603
502 => 0.034962673895953
503 => 0.034301655989788
504 => 0.037289519605941
505 => 0.036613274048561
506 => 0.037368806020339
507 => 0.035272611968353
508 => 0.035352689404039
509 => 0.034360317546829
510 => 0.034915979476555
511 => 0.034523255534445
512 => 0.034871087483792
513 => 0.035079576520065
514 => 0.036071785538818
515 => 0.03757120911537
516 => 0.035923582598671
517 => 0.035205688130899
518 => 0.035651065821113
519 => 0.036837165301339
520 => 0.038634166729195
521 => 0.03757030571588
522 => 0.038042429168058
523 => 0.038145567139048
524 => 0.037361115414105
525 => 0.038663090583224
526 => 0.039360829653582
527 => 0.040076565563013
528 => 0.040698018998707
529 => 0.039790684901416
530 => 0.040761662446751
531 => 0.039979225945821
601 => 0.039277299517689
602 => 0.039278364050337
603 => 0.038838035348461
604 => 0.037984843003588
605 => 0.037827501244875
606 => 0.038646012943776
607 => 0.039302381812949
608 => 0.039356443496809
609 => 0.039719843028233
610 => 0.039934899127617
611 => 0.04204274125617
612 => 0.042890532797259
613 => 0.04392719624583
614 => 0.044331035082199
615 => 0.045546445195433
616 => 0.044564902818213
617 => 0.044352539950711
618 => 0.041404352573622
619 => 0.041887118091459
620 => 0.042660072265462
621 => 0.041417098303254
622 => 0.042205479189107
623 => 0.042361122276164
624 => 0.041374862523648
625 => 0.041901666471235
626 => 0.040502631372929
627 => 0.037601704257391
628 => 0.038666320144378
629 => 0.039450235783032
630 => 0.038331491510571
701 => 0.040336797317576
702 => 0.039165339063038
703 => 0.038794043036262
704 => 0.037345484859219
705 => 0.038029148558666
706 => 0.038953813501289
707 => 0.038382478070585
708 => 0.039568084875742
709 => 0.041247220301629
710 => 0.042443872200359
711 => 0.042535736274258
712 => 0.041766369272825
713 => 0.042999284802656
714 => 0.043008265246286
715 => 0.041617531492029
716 => 0.040765714811184
717 => 0.040572180269059
718 => 0.04105566749997
719 => 0.041642710254964
720 => 0.04256831306155
721 => 0.043127635452169
722 => 0.04458605160523
723 => 0.04498065720018
724 => 0.04541420911209
725 => 0.045993568168859
726 => 0.046689237261123
727 => 0.045167152891712
728 => 0.045227628141229
729 => 0.043810284251126
730 => 0.042295649036877
731 => 0.043445068362548
801 => 0.044947781230016
802 => 0.044603057237869
803 => 0.04456426874668
804 => 0.044629500229829
805 => 0.044369589597383
806 => 0.043194023439567
807 => 0.042603661474545
808 => 0.043365379026823
809 => 0.043770198005711
810 => 0.044398036938042
811 => 0.04432064253756
812 => 0.045937888202264
813 => 0.046566300964598
814 => 0.046405526088694
815 => 0.046435112535124
816 => 0.047572823824423
817 => 0.048838192766296
818 => 0.050023377760499
819 => 0.051228998841482
820 => 0.049775575572165
821 => 0.049037616870692
822 => 0.049799001880915
823 => 0.049395000277221
824 => 0.05171651332671
825 => 0.051877249853341
826 => 0.054198595031013
827 => 0.056401828025265
828 => 0.055018016856595
829 => 0.056322888460427
830 => 0.057734213487715
831 => 0.060456888444587
901 => 0.059539987303972
902 => 0.058837655399934
903 => 0.058173955144262
904 => 0.059555010016868
905 => 0.061331715047587
906 => 0.061714400294134
907 => 0.062334496590557
908 => 0.061682541156636
909 => 0.062467749666258
910 => 0.065239880743327
911 => 0.064490826456025
912 => 0.063427048951571
913 => 0.065615380198618
914 => 0.066407328770002
915 => 0.071965638590661
916 => 0.07898323434157
917 => 0.076077903620675
918 => 0.07427447108778
919 => 0.074698320511002
920 => 0.077260908918626
921 => 0.078083930982664
922 => 0.07584667329989
923 => 0.076636910535707
924 => 0.080991195399472
925 => 0.083327129526698
926 => 0.080154617224116
927 => 0.071401781604956
928 => 0.063331267426336
929 => 0.065471931206496
930 => 0.065229246366357
1001 => 0.069907382244373
1002 => 0.064472961759001
1003 => 0.064564463462627
1004 => 0.069339338236368
1005 => 0.068065483508812
1006 => 0.066002001993156
1007 => 0.063346333124986
1008 => 0.058437083602535
1009 => 0.054088824395949
1010 => 0.062616762044353
1011 => 0.062249021865906
1012 => 0.061716479591473
1013 => 0.062901594796131
1014 => 0.068656177829132
1015 => 0.068523516064454
1016 => 0.067679589602198
1017 => 0.068319700385792
1018 => 0.065889787477902
1019 => 0.066516031362354
1020 => 0.063329989015657
1021 => 0.064770213217246
1022 => 0.06599757468858
1023 => 0.066243985675348
1024 => 0.066799162210592
1025 => 0.062055239502107
1026 => 0.064185121523964
1027 => 0.065436227668847
1028 => 0.059783684590632
1029 => 0.065324495066502
1030 => 0.061972658362028
1031 => 0.060834994641631
1101 => 0.062366708965347
1102 => 0.061769798403754
1103 => 0.06125660975466
1104 => 0.060970241670766
1105 => 0.062094963620962
1106 => 0.062042493997652
1107 => 0.060202230588008
1108 => 0.057801681988859
1109 => 0.058607384894055
1110 => 0.058314665475093
1111 => 0.057253812539215
1112 => 0.057968699330125
1113 => 0.054820699698885
1114 => 0.049404729952121
1115 => 0.052982685462473
1116 => 0.052844938067392
1117 => 0.052775479584444
1118 => 0.055464214263047
1119 => 0.055205754463363
1120 => 0.05473664739609
1121 => 0.057245197020047
1122 => 0.056329542662549
1123 => 0.059151373637058
1124 => 0.061010014021455
1125 => 0.060538602699254
1126 => 0.062286662964368
1127 => 0.0586259466617
1128 => 0.059841889775
1129 => 0.060092493965427
1130 => 0.057214241907079
1201 => 0.055248041683017
1202 => 0.055116918544396
1203 => 0.051707798314954
1204 => 0.053528922824065
1205 => 0.05513143702883
1206 => 0.054363957084873
1207 => 0.054120995862428
1208 => 0.055362232056042
1209 => 0.055458686738755
1210 => 0.053259509751092
1211 => 0.053716788285705
1212 => 0.055623715791272
1213 => 0.053668738605237
1214 => 0.04987053727648
1215 => 0.048928530832706
1216 => 0.048802849808483
1217 => 0.046248053621496
1218 => 0.048991480207658
1219 => 0.047793900983537
1220 => 0.051577039403334
1221 => 0.049416131027324
1222 => 0.049322978586187
1223 => 0.049182165008916
1224 => 0.046983146393475
1225 => 0.047464591715333
1226 => 0.049064989291382
1227 => 0.049636029176286
1228 => 0.049576465037898
1229 => 0.049057146470166
1230 => 0.049294887851133
1231 => 0.048529040028451
]
'min_raw' => 0.026796163343922
'max_raw' => 0.083327129526698
'avg_raw' => 0.05506164643531
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026796'
'max' => '$0.083327'
'avg' => '$0.055061'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015264892203482
'max_diff' => 0.052043902102733
'year' => 2033
]
8 => [
'items' => [
101 => 0.048258603222518
102 => 0.04740503027349
103 => 0.046150513843964
104 => 0.046324962047886
105 => 0.043839436738916
106 => 0.042485190633777
107 => 0.042110353160551
108 => 0.041609104825817
109 => 0.04216697049373
110 => 0.043832395558006
111 => 0.041823539590852
112 => 0.038379496940029
113 => 0.038586489771707
114 => 0.039051541207763
115 => 0.038184920933295
116 => 0.037364737573438
117 => 0.038077820461254
118 => 0.036618534188089
119 => 0.039227888982052
120 => 0.039157313247508
121 => 0.04012991935328
122 => 0.040738109911105
123 => 0.039336427579349
124 => 0.038983908263464
125 => 0.039184719286901
126 => 0.035865760381561
127 => 0.039858689602856
128 => 0.039893220620572
129 => 0.039597545082501
130 => 0.041723656624981
131 => 0.046210415130434
201 => 0.04452231610124
202 => 0.043868633134073
203 => 0.042625981335648
204 => 0.044281741075686
205 => 0.044154604561527
206 => 0.043579645029407
207 => 0.043231907710399
208 => 0.04387262438288
209 => 0.043152515824181
210 => 0.043023164539778
211 => 0.042239436491886
212 => 0.041959681236142
213 => 0.041752561582167
214 => 0.041524543194298
215 => 0.042027494939296
216 => 0.040887740116318
217 => 0.03951330753135
218 => 0.039399038333476
219 => 0.039714545635455
220 => 0.039574957141086
221 => 0.039398370037469
222 => 0.039061217166028
223 => 0.038961191111202
224 => 0.039286227263641
225 => 0.038919280398323
226 => 0.039460730486731
227 => 0.039313486022484
228 => 0.038490990414645
301 => 0.037465856360403
302 => 0.037456730517029
303 => 0.037235867066599
304 => 0.036954564255435
305 => 0.036876312248705
306 => 0.038017766609392
307 => 0.040380542975161
308 => 0.039916673438114
309 => 0.040251866717893
310 => 0.041900685901422
311 => 0.042424795938143
312 => 0.042052795048305
313 => 0.041543577286279
314 => 0.041565980283484
315 => 0.043306131527026
316 => 0.043414662625573
317 => 0.043688885698141
318 => 0.044041339841822
319 => 0.042112819513028
320 => 0.041475147149427
321 => 0.041172982606836
322 => 0.040242432768053
323 => 0.041245950989867
324 => 0.040661243896951
325 => 0.040740140860224
326 => 0.04068875910939
327 => 0.040716817019764
328 => 0.039227159614209
329 => 0.039769912478705
330 => 0.038867480572831
331 => 0.037659225553601
401 => 0.037655175059107
402 => 0.03795089376333
403 => 0.037774988706584
404 => 0.037301632721814
405 => 0.037368870705273
406 => 0.036779795219038
407 => 0.037440395134858
408 => 0.037459338776704
409 => 0.037204971825993
410 => 0.038222717141535
411 => 0.038639688227714
412 => 0.038472258451688
413 => 0.038627940908294
414 => 0.039935949311624
415 => 0.040149211753774
416 => 0.040243928843251
417 => 0.040117020490962
418 => 0.038651848900762
419 => 0.038716835491178
420 => 0.038240007009986
421 => 0.037837137190326
422 => 0.037853249870338
423 => 0.038060377327054
424 => 0.038964915078398
425 => 0.040868461450687
426 => 0.040940699644041
427 => 0.041028254441723
428 => 0.040672125078035
429 => 0.040564713054248
430 => 0.040706417239019
501 => 0.041421289172737
502 => 0.043260133872098
503 => 0.042610163343036
504 => 0.042081727185514
505 => 0.042545308161026
506 => 0.042473943503514
507 => 0.041871553975258
508 => 0.04185464690752
509 => 0.040698468807215
510 => 0.040271056088434
511 => 0.039913878029333
512 => 0.039523848913164
513 => 0.039292626579205
514 => 0.039647889172837
515 => 0.039729141931345
516 => 0.038952354061439
517 => 0.0388464807451
518 => 0.039480822487796
519 => 0.03920167233748
520 => 0.039488785189671
521 => 0.039555397834188
522 => 0.039544671664201
523 => 0.03925320684708
524 => 0.039438977829907
525 => 0.038999574074526
526 => 0.038521788486858
527 => 0.038216991049021
528 => 0.037951014858994
529 => 0.038098593907848
530 => 0.037572501545554
531 => 0.037404194010709
601 => 0.039376042800905
602 => 0.04083266870317
603 => 0.040811488785663
604 => 0.040682561484878
605 => 0.040491001667858
606 => 0.04140727537897
607 => 0.04108806393949
608 => 0.04132031693272
609 => 0.041379435067124
610 => 0.041558367854724
611 => 0.041622320946498
612 => 0.041429010284879
613 => 0.040780236093575
614 => 0.039163552492446
615 => 0.038410981911967
616 => 0.038162621085354
617 => 0.038171648529697
618 => 0.037922631314431
619 => 0.037995978044495
620 => 0.037897124314974
621 => 0.037709919266546
622 => 0.038087034523637
623 => 0.038130493543945
624 => 0.038042470336748
625 => 0.03806320298853
626 => 0.037334408428144
627 => 0.037389817095712
628 => 0.037081294593702
629 => 0.03702345034387
630 => 0.036243532324918
701 => 0.034861794503421
702 => 0.035627411385066
703 => 0.034702653854063
704 => 0.034352434164709
705 => 0.036010319703774
706 => 0.035843913978239
707 => 0.035559099710953
708 => 0.035137800049142
709 => 0.034981535906437
710 => 0.034032124442576
711 => 0.033976028148378
712 => 0.034446582106133
713 => 0.034229437645402
714 => 0.033924484583498
715 => 0.032819975505876
716 => 0.03157814161224
717 => 0.031615624771599
718 => 0.032010629028024
719 => 0.03315915717716
720 => 0.032710407359554
721 => 0.03238483421807
722 => 0.032323864155362
723 => 0.033087032139616
724 => 0.03416707472597
725 => 0.034673806542897
726 => 0.034171650701997
727 => 0.033594801109961
728 => 0.033629911271765
729 => 0.033863483448614
730 => 0.033888028581868
731 => 0.033512558798549
801 => 0.033618251343227
802 => 0.033457694703133
803 => 0.032472358899241
804 => 0.032454537299082
805 => 0.032212720002121
806 => 0.032205397870473
807 => 0.03179400632419
808 => 0.03173644980305
809 => 0.030919606918223
810 => 0.031457255378644
811 => 0.031096629019205
812 => 0.030553080032372
813 => 0.030459371982165
814 => 0.03045655500502
815 => 0.031014658279169
816 => 0.031450733616942
817 => 0.031102902269125
818 => 0.031023707813654
819 => 0.031869297408489
820 => 0.031761688424826
821 => 0.031668499738978
822 => 0.034070368758373
823 => 0.032169102009345
824 => 0.031340041186256
825 => 0.030313920983304
826 => 0.030648030895533
827 => 0.030718432763135
828 => 0.028250798647104
829 => 0.027249679793554
830 => 0.026906133529384
831 => 0.026708417797323
901 => 0.026798519339181
902 => 0.025897394951457
903 => 0.026502965443229
904 => 0.025722667893609
905 => 0.025591848470107
906 => 0.026987117149146
907 => 0.027181260634793
908 => 0.02635298420937
909 => 0.026884871760265
910 => 0.02669200194052
911 => 0.025736043855507
912 => 0.025699533288211
913 => 0.025219867124703
914 => 0.024469282460484
915 => 0.024126245128061
916 => 0.023947588306948
917 => 0.024021305593291
918 => 0.02398403187753
919 => 0.023740795669275
920 => 0.023997973892265
921 => 0.023340989805903
922 => 0.023079373449034
923 => 0.022961207410089
924 => 0.02237809621885
925 => 0.023306085434835
926 => 0.023488911000884
927 => 0.023672096789776
928 => 0.02526660401583
929 => 0.025186946940847
930 => 0.025907008104125
1001 => 0.025879027851428
1002 => 0.025673654743443
1003 => 0.024807219383094
1004 => 0.025152565075004
1005 => 0.024089644713942
1006 => 0.024886056920009
1007 => 0.024522607648129
1008 => 0.024763174355589
1009 => 0.02433061372455
1010 => 0.024570010637758
1011 => 0.023532265724976
1012 => 0.022563234126885
1013 => 0.022953200729752
1014 => 0.02337713902516
1015 => 0.024296345267072
1016 => 0.023748873612676
1017 => 0.023945765121792
1018 => 0.023286211525494
1019 => 0.02192536406416
1020 => 0.021933066313004
1021 => 0.021723729578751
1022 => 0.021542832076693
1023 => 0.023811757317942
1024 => 0.023529580597792
1025 => 0.02307996892461
1026 => 0.023681792016022
1027 => 0.023840923593608
1028 => 0.02384545384591
1029 => 0.024284528438101
1030 => 0.024518862626662
1031 => 0.024560165043059
1101 => 0.025251058400707
1102 => 0.025482636741087
1103 => 0.026436475150919
1104 => 0.024498981007965
1105 => 0.024459079591094
1106 => 0.023690260901103
1107 => 0.023202663933369
1108 => 0.023723647082642
1109 => 0.024185167031606
1110 => 0.0237046016124
1111 => 0.023767353310858
1112 => 0.023122233499212
1113 => 0.023352833476167
1114 => 0.023551457241492
1115 => 0.023441788872845
1116 => 0.023277610016971
1117 => 0.024147327658895
1118 => 0.024098254781086
1119 => 0.024908155843968
1120 => 0.025539531639065
1121 => 0.026671069935803
1122 => 0.025490250734732
1123 => 0.025447216989713
1124 => 0.025867878750097
1125 => 0.025482572339963
1126 => 0.025726072690842
1127 => 0.026631838264775
1128 => 0.026650975664066
1129 => 0.026330399568804
1130 => 0.026310892484273
1201 => 0.026372462630086
1202 => 0.026733080897223
1203 => 0.026607069794006
1204 => 0.02675289303286
1205 => 0.026935247225972
1206 => 0.027689541485259
1207 => 0.027871399277522
1208 => 0.027429579124778
1209 => 0.02746947053772
1210 => 0.02730421767236
1211 => 0.027144585475033
1212 => 0.027503415342212
1213 => 0.028159183977301
1214 => 0.028155104474656
1215 => 0.028307230051676
1216 => 0.028402003025883
1217 => 0.027995168042529
1218 => 0.027730333428103
1219 => 0.027831887871139
1220 => 0.02799427563712
1221 => 0.027779227707238
1222 => 0.026451852264116
1223 => 0.026854493180488
1224 => 0.026787474043869
1225 => 0.026692030643518
1226 => 0.027096889198459
1227 => 0.027057839603176
1228 => 0.025888152618397
1229 => 0.025963032184122
1230 => 0.025892706292798
1231 => 0.026119943634992
]
'min_raw' => 0.021542832076693
'max_raw' => 0.048258603222518
'avg_raw' => 0.034900717649605
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021542'
'max' => '$0.048258'
'avg' => '$0.03490071'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0052533312672295
'max_diff' => -0.03506852630418
'year' => 2034
]
9 => [
'items' => [
101 => 0.025470300777755
102 => 0.02567012654523
103 => 0.02579545539334
104 => 0.025869275047698
105 => 0.026135962257851
106 => 0.026104669591831
107 => 0.026134017061794
108 => 0.026529443791637
109 => 0.028529376497118
110 => 0.028638228421675
111 => 0.028102201734437
112 => 0.02831633382333
113 => 0.027905247038196
114 => 0.028181212351098
115 => 0.028370020809427
116 => 0.027516831692018
117 => 0.027466311369637
118 => 0.02705352788311
119 => 0.027275334347518
120 => 0.026922424314195
121 => 0.027009016092104
122 => 0.026766897932136
123 => 0.027202662414833
124 => 0.027689914817442
125 => 0.027813014016522
126 => 0.027489193021281
127 => 0.027254725279883
128 => 0.026843077164463
129 => 0.027527657154582
130 => 0.02772784920589
131 => 0.027526605630961
201 => 0.027479973097391
202 => 0.027391604530539
203 => 0.027498720906594
204 => 0.027726758916986
205 => 0.027619220402486
206 => 0.027690251485898
207 => 0.027419554242867
208 => 0.027995302721837
209 => 0.02890972986786
210 => 0.028912669900658
211 => 0.028805130806486
212 => 0.028761128126113
213 => 0.028871469762751
214 => 0.028931325574177
215 => 0.029288150193872
216 => 0.029671037227324
217 => 0.031457803945744
218 => 0.030956087001074
219 => 0.032541412728884
220 => 0.033795199550801
221 => 0.03417115539724
222 => 0.033825293708605
223 => 0.032642119554866
224 => 0.032584067386254
225 => 0.034352229095182
226 => 0.033852642425473
227 => 0.033793218180783
228 => 0.033161044616124
301 => 0.033534737489057
302 => 0.033453005376003
303 => 0.033323987237075
304 => 0.034036967206959
305 => 0.035371602062421
306 => 0.035163586704071
307 => 0.035008312888617
308 => 0.034327948228828
309 => 0.034737679718969
310 => 0.03459178218322
311 => 0.035218650585664
312 => 0.034847307630891
313 => 0.033848857565093
314 => 0.034007864029006
315 => 0.033983830521862
316 => 0.034478438395849
317 => 0.034329969389
318 => 0.033954839565432
319 => 0.035367040425579
320 => 0.035275339956795
321 => 0.035405350255885
322 => 0.035462584810246
323 => 0.036322166588047
324 => 0.036674309738863
325 => 0.036754252399231
326 => 0.037088761156778
327 => 0.036745929516613
328 => 0.038117500512089
329 => 0.039029515190694
330 => 0.04008886717174
331 => 0.041636865143017
401 => 0.042218926699999
402 => 0.042113782489561
403 => 0.043287456884327
404 => 0.045396523682405
405 => 0.04254008518998
406 => 0.045547921858478
407 => 0.044595675496375
408 => 0.042337916502012
409 => 0.042192543440005
410 => 0.043721524044109
411 => 0.047112655865082
412 => 0.046263215805827
413 => 0.047114045244715
414 => 0.046121507509785
415 => 0.046072219645481
416 => 0.047065839902315
417 => 0.049387487791829
418 => 0.048284559905191
419 => 0.046703242330682
420 => 0.047870862619673
421 => 0.046859361867192
422 => 0.044580167570621
423 => 0.046262566255022
424 => 0.045137594166719
425 => 0.045465920828891
426 => 0.047830444831536
427 => 0.047545939047783
428 => 0.047914115876485
429 => 0.047264293410691
430 => 0.046657256760042
501 => 0.045524177772472
502 => 0.045188728944371
503 => 0.045281434932274
504 => 0.045188683003888
505 => 0.044554735723876
506 => 0.044417834869116
507 => 0.044189660780085
508 => 0.044260381471301
509 => 0.043831347429239
510 => 0.044641023309566
511 => 0.044791306287794
512 => 0.045380520872131
513 => 0.045441695084921
514 => 0.047082649315355
515 => 0.046178839300348
516 => 0.046785193089617
517 => 0.046730955099482
518 => 0.042386848985544
519 => 0.042985428479672
520 => 0.043916630327942
521 => 0.04349712515751
522 => 0.042904042995612
523 => 0.042425097350826
524 => 0.041699445724268
525 => 0.042720786453743
526 => 0.044063740905525
527 => 0.045475754626031
528 => 0.047172196592414
529 => 0.046793570494279
530 => 0.04544404082349
531 => 0.045504579738689
601 => 0.045878807491268
602 => 0.045394148549502
603 => 0.045251213165909
604 => 0.045859170364484
605 => 0.045863357031584
606 => 0.045305698346092
607 => 0.04468596276763
608 => 0.044683366052928
609 => 0.044573090092676
610 => 0.046141125358135
611 => 0.04700338620789
612 => 0.047102243024712
613 => 0.046996732356468
614 => 0.047037339225106
615 => 0.046535608635255
616 => 0.04768241598007
617 => 0.048734839807165
618 => 0.048452767739748
619 => 0.048029901611783
620 => 0.047693068372866
621 => 0.048373420533373
622 => 0.048343125522639
623 => 0.048725647803149
624 => 0.04870829438295
625 => 0.048579666527405
626 => 0.048452772333453
627 => 0.048955893469002
628 => 0.048811002661842
629 => 0.048665886799239
630 => 0.048374834720661
701 => 0.048414393532003
702 => 0.047991600417837
703 => 0.047795996977527
704 => 0.044854590553545
705 => 0.044068550643829
706 => 0.044315854800743
707 => 0.044397273750449
708 => 0.044055188174403
709 => 0.044545651015879
710 => 0.044469212901564
711 => 0.044766588889563
712 => 0.044580801282825
713 => 0.044588426071011
714 => 0.045134787808332
715 => 0.045293398945065
716 => 0.045212728040774
717 => 0.045269227176903
718 => 0.046571225922198
719 => 0.046386123336194
720 => 0.04628779127661
721 => 0.046315029929128
722 => 0.046647718523719
723 => 0.04674085316608
724 => 0.046346235141939
725 => 0.046532339283384
726 => 0.047324747097523
727 => 0.047602044986074
728 => 0.04848704673579
729 => 0.048111082262859
730 => 0.048801181324286
731 => 0.050922310567004
801 => 0.052616815377067
802 => 0.051058478725361
803 => 0.054170221015155
804 => 0.05659315874068
805 => 0.056500162355161
806 => 0.056077667119156
807 => 0.053319216935778
808 => 0.050780849950858
809 => 0.052904301718499
810 => 0.052909714833746
811 => 0.05272730844371
812 => 0.051594398021026
813 => 0.052687885616726
814 => 0.052774682691109
815 => 0.05272609941066
816 => 0.051857499645837
817 => 0.050531308349022
818 => 0.050790442953967
819 => 0.051214910723068
820 => 0.050411304682906
821 => 0.050154503860868
822 => 0.050631945447393
823 => 0.052170361718082
824 => 0.051879533033547
825 => 0.051871938321263
826 => 0.05311622676426
827 => 0.052225584773326
828 => 0.050793711471199
829 => 0.050432144578323
830 => 0.049148825689258
831 => 0.05003521861696
901 => 0.050067118320413
902 => 0.049581649972627
903 => 0.050833104552053
904 => 0.050821572177789
905 => 0.052009642046522
906 => 0.054280785416873
907 => 0.053609096566083
908 => 0.052827995512152
909 => 0.052912922854297
910 => 0.053844366179089
911 => 0.053281194282137
912 => 0.053483714822855
913 => 0.053844059639995
914 => 0.054061464615034
915 => 0.052881641624062
916 => 0.052606568447409
917 => 0.052043865265543
918 => 0.051897066508747
919 => 0.052355376509189
920 => 0.052234628016404
921 => 0.05006443727386
922 => 0.049837640266437
923 => 0.049844595806863
924 => 0.049274303948087
925 => 0.048404471977726
926 => 0.050690338460868
927 => 0.05050675139159
928 => 0.050304085475619
929 => 0.05032891089393
930 => 0.051321128059058
1001 => 0.050745591995116
1002 => 0.052275748949613
1003 => 0.051961194680496
1004 => 0.051638573281299
1005 => 0.051593977176642
1006 => 0.051469795462715
1007 => 0.051043930159681
1008 => 0.050529672215729
1009 => 0.050190114576872
1010 => 0.046297727657746
1011 => 0.047020132028963
1012 => 0.047851192408817
1013 => 0.048138071121677
1014 => 0.047647345231927
1015 => 0.051063307008818
1016 => 0.051687436142482
1017 => 0.049796908285676
1018 => 0.049443267713411
1019 => 0.051086491625861
1020 => 0.0500954267307
1021 => 0.050541703192307
1022 => 0.049577097582486
1023 => 0.051537101710817
1024 => 0.051522169763264
1025 => 0.050759683888642
1026 => 0.051404131728595
1027 => 0.05129214305732
1028 => 0.050431298382793
1029 => 0.05156439202246
1030 => 0.051564954022769
1031 => 0.050831077946318
1101 => 0.049974071355154
1102 => 0.049820858818246
1103 => 0.049705433752895
1104 => 0.050513315701916
1105 => 0.051237660131227
1106 => 0.052585485533963
1107 => 0.052924360863752
1108 => 0.054247013836128
1109 => 0.053459438389883
1110 => 0.053808560384394
1111 => 0.054187581695757
1112 => 0.054369298450472
1113 => 0.054073200750123
1114 => 0.056127825241906
1115 => 0.05630129850108
1116 => 0.056359462584344
1117 => 0.055666654765929
1118 => 0.05628203026237
1119 => 0.05599411644668
1120 => 0.056743188210345
1121 => 0.056860652227516
1122 => 0.056761164383876
1123 => 0.056798449316969
1124 => 0.05504518977383
1125 => 0.054954274017337
1126 => 0.053714631226472
1127 => 0.054219794826726
1128 => 0.053275415689172
1129 => 0.053574888041873
1130 => 0.053706892601467
1201 => 0.053637940910728
1202 => 0.054248356018743
1203 => 0.053729378477362
1204 => 0.052359711417851
1205 => 0.050989671193466
1206 => 0.050972471454459
1207 => 0.050611764046597
1208 => 0.05035103865757
1209 => 0.050401263617227
1210 => 0.050578262926002
1211 => 0.050340751135977
1212 => 0.050391436318532
1213 => 0.051233148062553
1214 => 0.051401947350003
1215 => 0.050828301417109
1216 => 0.048525030219828
1217 => 0.047959801690697
1218 => 0.048366076748467
1219 => 0.048171903438318
1220 => 0.038878485737636
1221 => 0.041061836375198
1222 => 0.03976456356594
1223 => 0.040362406561098
1224 => 0.039038226950012
1225 => 0.039670194866622
1226 => 0.039553493468197
1227 => 0.043064256683354
1228 => 0.043009440944647
1229 => 0.043035678337982
1230 => 0.041783299192934
1231 => 0.043778373176794
]
'min_raw' => 0.025470300777755
'max_raw' => 0.056860652227516
'avg_raw' => 0.041165476502636
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.02547'
'max' => '$0.05686'
'avg' => '$0.041165'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0039274687010626
'max_diff' => 0.0086020490049978
'year' => 2035
]
10 => [
'items' => [
101 => 0.044761218361784
102 => 0.04457931987562
103 => 0.044625099805738
104 => 0.043838448930139
105 => 0.043043294837991
106 => 0.042161346576462
107 => 0.043799897434283
108 => 0.04361771854989
109 => 0.044035571364795
110 => 0.045098288722127
111 => 0.045254777889864
112 => 0.04546510091826
113 => 0.045389715084393
114 => 0.047185711489591
115 => 0.046968204474555
116 => 0.047492333799751
117 => 0.046414160012036
118 => 0.04519410403004
119 => 0.045425996785582
120 => 0.04540366364846
121 => 0.045119337180109
122 => 0.044862659957577
123 => 0.04443536470042
124 => 0.045787390121863
125 => 0.045732500358841
126 => 0.046621101819801
127 => 0.046464032880162
128 => 0.045415088059965
129 => 0.045452551329426
130 => 0.045704509820787
131 => 0.046576541036199
201 => 0.046835419273346
202 => 0.046715496559385
203 => 0.046999344728176
204 => 0.047223686747367
205 => 0.047027518631756
206 => 0.049804845466856
207 => 0.048651505730371
208 => 0.049213635493047
209 => 0.049347700129185
210 => 0.049004296382794
211 => 0.04907876835902
212 => 0.049191573110604
213 => 0.049876501472783
214 => 0.051673951680759
215 => 0.052470030142215
216 => 0.054865071471323
217 => 0.052403926907938
218 => 0.052257892774776
219 => 0.052689312041467
220 => 0.054095454842526
221 => 0.055235001510506
222 => 0.0556130548823
223 => 0.055663020876363
224 => 0.056372274134361
225 => 0.056778804875055
226 => 0.056286152133628
227 => 0.05586868051816
228 => 0.054373349010039
229 => 0.054546437703756
301 => 0.055738847159671
302 => 0.057423195748718
303 => 0.058868542064723
304 => 0.058362432160263
305 => 0.062223693473382
306 => 0.06260652176074
307 => 0.062553627269748
308 => 0.063425767080836
309 => 0.061694747164009
310 => 0.060954702612634
311 => 0.055958942619928
312 => 0.057362547403477
313 => 0.059402769387183
314 => 0.0591327383572
315 => 0.057651074617342
316 => 0.058867418089912
317 => 0.058465256899303
318 => 0.058148055682587
319 => 0.059601215948846
320 => 0.058003406543561
321 => 0.059386830016105
322 => 0.057612575102884
323 => 0.058364744027675
324 => 0.057937776567646
325 => 0.058214076841448
326 => 0.056598831086542
327 => 0.057470378488015
328 => 0.056562571849259
329 => 0.056562141430712
330 => 0.056542101548846
331 => 0.057610132033512
401 => 0.057644960469274
402 => 0.056855684327401
403 => 0.056741937304546
404 => 0.057162519665268
405 => 0.056670127871558
406 => 0.056900514892758
407 => 0.056677106059731
408 => 0.056626812025707
409 => 0.056226060605777
410 => 0.056053405875182
411 => 0.056121108243813
412 => 0.055890005156713
413 => 0.055750757187371
414 => 0.056514401622924
415 => 0.056106417206336
416 => 0.056451872159761
417 => 0.056058182640443
418 => 0.054693483244126
419 => 0.05390863018987
420 => 0.051330839537928
421 => 0.052061897769079
422 => 0.052546590132667
423 => 0.052386399309392
424 => 0.052730551183405
425 => 0.052751679313384
426 => 0.052639792030929
427 => 0.052510240891495
428 => 0.052447182561446
429 => 0.052917167690911
430 => 0.053190009877537
501 => 0.0525952354957
502 => 0.052455888179814
503 => 0.053057237918245
504 => 0.053424060911299
505 => 0.056132475791979
506 => 0.055931827669554
507 => 0.056435415081636
508 => 0.056378718867215
509 => 0.056906558702843
510 => 0.057769353752338
511 => 0.056015050175426
512 => 0.056319536617124
513 => 0.056244883573238
514 => 0.057059925931303
515 => 0.05706247040458
516 => 0.056573811796535
517 => 0.056838721555537
518 => 0.056690856195481
519 => 0.056958068886304
520 => 0.055929147891549
521 => 0.057182262598002
522 => 0.057892697887633
523 => 0.057902562282318
524 => 0.05823930297124
525 => 0.05858145101389
526 => 0.059238174386943
527 => 0.058563135355453
528 => 0.057348805851528
529 => 0.057436476519451
530 => 0.056724515575606
531 => 0.056736483767698
601 => 0.056672596620345
602 => 0.056864326758751
603 => 0.055971221875008
604 => 0.05618083180611
605 => 0.055887376675093
606 => 0.05631889870298
607 => 0.055854652334121
608 => 0.05624484757328
609 => 0.056413242903324
610 => 0.05703462529648
611 => 0.055762873649421
612 => 0.053169685951051
613 => 0.05371480544461
614 => 0.052908530895424
615 => 0.052983154674655
616 => 0.053133906584988
617 => 0.052645270320644
618 => 0.052738486721182
619 => 0.052735156375401
620 => 0.052706457254659
621 => 0.052579344090275
622 => 0.052395004853346
623 => 0.053129355636649
624 => 0.053254136144496
625 => 0.053531507756406
626 => 0.054356777530489
627 => 0.054274313618856
628 => 0.054408815680124
629 => 0.054115198435574
630 => 0.052996774736515
701 => 0.053057510524273
702 => 0.05230013427771
703 => 0.053512139942967
704 => 0.053225121003741
705 => 0.053040078026453
706 => 0.052989587335689
707 => 0.053816902793917
708 => 0.0540644485456
709 => 0.053910194645328
710 => 0.053593815395567
711 => 0.054201357084238
712 => 0.05436390961
713 => 0.054400299125811
714 => 0.055476746513572
715 => 0.054460460576948
716 => 0.054705090702907
717 => 0.056613625112887
718 => 0.054882847762781
719 => 0.055799679126073
720 => 0.0557548050018
721 => 0.056223824903378
722 => 0.055716331680205
723 => 0.055722622666932
724 => 0.056139080565373
725 => 0.05555424055559
726 => 0.055409425944544
727 => 0.055209365596566
728 => 0.055646190047315
729 => 0.055908046549668
730 => 0.058018417646227
731 => 0.059381813619218
801 => 0.059322625004329
802 => 0.059863498147967
803 => 0.059619829842928
804 => 0.058832960609506
805 => 0.060176050442477
806 => 0.059751040622059
807 => 0.059786077915268
808 => 0.059784773825464
809 => 0.060067368201039
810 => 0.05986712418655
811 => 0.059472422679367
812 => 0.059734443959783
813 => 0.060512553488298
814 => 0.062927829340123
815 => 0.064279449704953
816 => 0.062846460097015
817 => 0.063834917140075
818 => 0.063242195137496
819 => 0.063134479917675
820 => 0.063755303987118
821 => 0.064377214726911
822 => 0.06433760170138
823 => 0.06388612643976
824 => 0.063631099520232
825 => 0.065562248795188
826 => 0.066985086684705
827 => 0.066888058679466
828 => 0.067316308739393
829 => 0.068573664160614
830 => 0.068688620982639
831 => 0.068674139065316
901 => 0.068389206587423
902 => 0.069627236287848
903 => 0.070660022445003
904 => 0.068323252951281
905 => 0.069213064183931
906 => 0.069612529114196
907 => 0.070199062147728
908 => 0.071188641689646
909 => 0.07226358754518
910 => 0.072415596675334
911 => 0.072307738923183
912 => 0.071598783235363
913 => 0.07277500181726
914 => 0.073464003076815
915 => 0.073874287559366
916 => 0.074914700742289
917 => 0.069614996073611
918 => 0.065863601696708
919 => 0.065277767293963
920 => 0.066469084588745
921 => 0.066783225458801
922 => 0.066656595667981
923 => 0.062434060234922
924 => 0.065255536518782
925 => 0.068291207763752
926 => 0.068407820259431
927 => 0.069927540757555
928 => 0.070422424047193
929 => 0.071645998242502
930 => 0.071569463343442
1001 => 0.071867384188682
1002 => 0.071798897345631
1003 => 0.074065310888496
1004 => 0.076565501591945
1005 => 0.076478927938004
1006 => 0.07611949594347
1007 => 0.076653313747616
1008 => 0.079233778490293
1009 => 0.078996210647893
1010 => 0.079226987570804
1011 => 0.082269500931041
1012 => 0.086225201091828
1013 => 0.08438738122134
1014 => 0.088374921521878
1015 => 0.090884866770638
1016 => 0.095225557545185
1017 => 0.094682081681859
1018 => 0.09637188074693
1019 => 0.09370914645967
1020 => 0.087594970308734
1021 => 0.086627378528722
1022 => 0.088564521775632
1023 => 0.093326799424486
1024 => 0.088414540704962
1025 => 0.089408284246183
1026 => 0.089122086039458
1027 => 0.089106835753286
1028 => 0.089688877149085
1029 => 0.088844595747241
1030 => 0.085404841432807
1031 => 0.086981260564513
1101 => 0.086372529431896
1102 => 0.087047962007446
1103 => 0.090692993048105
1104 => 0.089081437938342
1105 => 0.087383795542314
1106 => 0.089513015843939
1107 => 0.092224244967385
1108 => 0.092054581121387
1109 => 0.091725362346165
1110 => 0.093581151344758
1111 => 0.096646371075276
1112 => 0.097474887651384
1113 => 0.098086481649592
1114 => 0.098170810128979
1115 => 0.099039445876529
1116 => 0.09436857253756
1117 => 0.10178136848304
1118 => 0.10306135356847
1119 => 0.10282076942235
1120 => 0.1042434189748
1121 => 0.10382483938734
1122 => 0.10321838323822
1123 => 0.10547358538509
1124 => 0.10288817810914
1125 => 0.099218517974643
1126 => 0.097205269847213
1127 => 0.099856477385507
1128 => 0.10147547731475
1129 => 0.10254553328025
1130 => 0.10286933156886
1201 => 0.094731159138593
1202 => 0.090345135562416
1203 => 0.093156526388883
1204 => 0.096586617229003
1205 => 0.094349518209754
1206 => 0.09443720825592
1207 => 0.091247692953751
1208 => 0.096868818560433
1209 => 0.096049867840647
1210 => 0.10029858562359
1211 => 0.099284595026603
1212 => 0.10274925944432
1213 => 0.10183689718959
1214 => 0.1056240618995
1215 => 0.10713486443568
1216 => 0.10967173703156
1217 => 0.11153787084002
1218 => 0.1126337003058
1219 => 0.11256791081502
1220 => 0.11691013309851
1221 => 0.11434967632363
1222 => 0.11113313916105
1223 => 0.11107496215183
1224 => 0.11274085232701
1225 => 0.11623210111954
1226 => 0.11713733113584
1227 => 0.1176432312212
1228 => 0.11686842762996
1229 => 0.11408923531042
1230 => 0.11288919415767
1231 => 0.11391166398835
]
'min_raw' => 0.042161346576462
'max_raw' => 0.1176432312212
'avg_raw' => 0.079902288898832
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.042161'
'max' => '$0.117643'
'avg' => '$0.0799022'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016691045798707
'max_diff' => 0.060782578993685
'year' => 2036
]
11 => [
'items' => [
101 => 0.11266127124726
102 => 0.11481979991662
103 => 0.11778392081651
104 => 0.11717184157209
105 => 0.11921793071814
106 => 0.12133541772945
107 => 0.12436351925792
108 => 0.12515517712773
109 => 0.12646375748248
110 => 0.12781071651378
111 => 0.12824332345307
112 => 0.12906930433022
113 => 0.12906495100328
114 => 0.1315540999715
115 => 0.13429970836597
116 => 0.1353361119739
117 => 0.13771926492271
118 => 0.13363819901351
119 => 0.13673373438555
120 => 0.1395259847774
121 => 0.13619694874926
122 => 0.14078524934814
123 => 0.14096340266308
124 => 0.14365330620534
125 => 0.14092657364209
126 => 0.13930744855008
127 => 0.1439818020229
128 => 0.14624357442765
129 => 0.14556231017242
130 => 0.14037785555201
131 => 0.1373602805912
201 => 0.12946270487205
202 => 0.13881772446127
203 => 0.14337428161352
204 => 0.14036605516977
205 => 0.14188322960991
206 => 0.15016044140989
207 => 0.15331186775355
208 => 0.1526563931042
209 => 0.15276715752991
210 => 0.15446760998251
211 => 0.16200835261362
212 => 0.15748976483602
213 => 0.16094405588374
214 => 0.16277619940008
215 => 0.16447799640453
216 => 0.16029892082008
217 => 0.15486200488752
218 => 0.15313990538547
219 => 0.1400669463356
220 => 0.13938644204407
221 => 0.13900445436384
222 => 0.13659607607325
223 => 0.13470375044717
224 => 0.13319890285177
225 => 0.12924973337591
226 => 0.13058246214493
227 => 0.12428831025613
228 => 0.12831508558354
301 => 0.11826946719141
302 => 0.12663575669554
303 => 0.12208236568695
304 => 0.12513984528616
305 => 0.12512917802787
306 => 0.11949938871093
307 => 0.11625224372363
308 => 0.11832145089031
309 => 0.12053980522686
310 => 0.12089972575453
311 => 0.12377588005684
312 => 0.12457855289989
313 => 0.12214641671225
314 => 0.11806129407875
315 => 0.11901017489479
316 => 0.11623301468418
317 => 0.11136614823701
318 => 0.1148616166867
319 => 0.11605512330032
320 => 0.11658224381347
321 => 0.11179623962607
322 => 0.11029237320118
323 => 0.10949172733523
324 => 0.11744348103823
325 => 0.11787909605614
326 => 0.11565042803471
327 => 0.12572421882255
328 => 0.12344420971189
329 => 0.12599153850429
330 => 0.11892407390643
331 => 0.11919406057167
401 => 0.1158482095699
402 => 0.11772166256105
403 => 0.11639756637111
404 => 0.11757030607318
405 => 0.11827324141522
406 => 0.12161854339577
407 => 0.12667395467052
408 => 0.12111886683586
409 => 0.11869843551598
410 => 0.12020005749381
411 => 0.12419907470221
412 => 0.13025779047887
413 => 0.12667090879607
414 => 0.12826270597769
415 => 0.12861044284775
416 => 0.12596560908843
417 => 0.13035530927212
418 => 0.13270778526242
419 => 0.13512093885215
420 => 0.13721621249909
421 => 0.13415707224203
422 => 0.13743079082761
423 => 0.13479275153676
424 => 0.13242615757737
425 => 0.13242974672352
426 => 0.13094514776237
427 => 0.12806855020365
428 => 0.12753806147889
429 => 0.1302977308184
430 => 0.13251072428703
501 => 0.13269299702863
502 => 0.13391822392057
503 => 0.13464330057438
504 => 0.14175003747564
505 => 0.14460842584733
506 => 0.14810360904172
507 => 0.14946517987366
508 => 0.15356301992766
509 => 0.15025368127376
510 => 0.14953768503927
511 => 0.13959766546155
512 => 0.14122534311055
513 => 0.14383141207414
514 => 0.13964063857888
515 => 0.14229871977853
516 => 0.1428234813132
517 => 0.13949823769913
518 => 0.1412743939887
519 => 0.13655744947725
520 => 0.12677677117095
521 => 0.13036619796303
522 => 0.13300922427
523 => 0.12923729984716
524 => 0.13599832838146
525 => 0.13204867508768
526 => 0.13079682461035
527 => 0.12591290958135
528 => 0.12821792947591
529 => 0.13133550188801
530 => 0.12940920459402
531 => 0.13340656071403
601 => 0.1390678830359
602 => 0.14310247846004
603 => 0.14341220459893
604 => 0.14081823003811
605 => 0.14497509082635
606 => 0.14500536901904
607 => 0.14031641306864
608 => 0.13744445365723
609 => 0.1367919384363
610 => 0.13842204939132
611 => 0.1404013050258
612 => 0.14352203951173
613 => 0.14540783400234
614 => 0.15032498588575
615 => 0.15165542619961
616 => 0.15311717674024
617 => 0.15507052624969
618 => 0.15741602316433
619 => 0.15228420944432
620 => 0.15248810597031
621 => 0.14770943208904
622 => 0.14260273371575
623 => 0.14647808122214
624 => 0.15154458257087
625 => 0.15038232156349
626 => 0.15025154345732
627 => 0.15047147595707
628 => 0.1495951691134
629 => 0.14563166573691
630 => 0.14364121915409
701 => 0.14620940306301
702 => 0.14757427851389
703 => 0.14969108130856
704 => 0.14943014068383
705 => 0.15488279735487
706 => 0.15700153485745
707 => 0.1564594711384
708 => 0.1565592239082
709 => 0.16039509695254
710 => 0.1646613766853
711 => 0.16865731064023
712 => 0.17272214628854
713 => 0.16782182826126
714 => 0.16533374897661
715 => 0.16790081169679
716 => 0.16653869208344
717 => 0.17436583541266
718 => 0.17490776983446
719 => 0.18273434717213
720 => 0.19016270103706
721 => 0.18549708506728
722 => 0.18989655078283
723 => 0.1946549316479
724 => 0.20383462035608
725 => 0.20074322414451
726 => 0.1983752630948
727 => 0.19613755134472
728 => 0.20079387426989
729 => 0.20678415932654
730 => 0.20807440935351
731 => 0.21016510731064
801 => 0.2079669940471
802 => 0.2106143793588
803 => 0.21996081282914
804 => 0.21743532400221
805 => 0.21384872387536
806 => 0.22122683545919
807 => 0.2238969453597
808 => 0.24263717498885
809 => 0.26629748901593
810 => 0.25650196364672
811 => 0.25042156495042
812 => 0.25185060287304
813 => 0.26049054860355
814 => 0.26326542495402
815 => 0.2557223544762
816 => 0.25838669448936
817 => 0.27306746991401
818 => 0.28094323491366
819 => 0.27024688818777
820 => 0.24073609179431
821 => 0.21352578977578
822 => 0.22074318716697
823 => 0.21992495828472
824 => 0.23569762001447
825 => 0.21737509192892
826 => 0.21768359631114
827 => 0.23378241998192
828 => 0.22948752983026
829 => 0.22253035783255
830 => 0.21357658483064
831 => 0.19702470731284
901 => 0.18236424781207
902 => 0.21111678499526
903 => 0.20987692330882
904 => 0.20808141984966
905 => 0.21207711850426
906 => 0.23147909697218
907 => 0.23103181857042
908 => 0.22818646158186
909 => 0.23034463977986
910 => 0.2221520187598
911 => 0.22426344373918
912 => 0.21352147952492
913 => 0.21837729597382
914 => 0.22251543086607
915 => 0.22334622271182
916 => 0.22521803916158
917 => 0.20922357253982
918 => 0.21640461848012
919 => 0.22062281019704
920 => 0.20156486656088
921 => 0.22024609592731
922 => 0.20894514446041
923 => 0.20510943179795
924 => 0.21027371358124
925 => 0.20826118794786
926 => 0.20653093658776
927 => 0.20556542659932
928 => 0.20935750517999
929 => 0.20918060018169
930 => 0.20297602361298
1001 => 0.19488240641
1002 => 0.19759889000725
1003 => 0.1966119660492
1004 => 0.19303522630951
1005 => 0.19544551703686
1006 => 0.18483181649382
1007 => 0.16657149636167
1008 => 0.1786348231697
1009 => 0.17817039820997
1010 => 0.17793621408527
1011 => 0.18700147077564
1012 => 0.18613005551592
1013 => 0.1845484282866
1014 => 0.19300617848511
1015 => 0.18991898588986
1016 => 0.19943298603437
1017 => 0.20569952185649
1018 => 0.2041101256708
1019 => 0.2100038329003
1020 => 0.19766147230281
1021 => 0.20176110940374
1022 => 0.20260603892839
1023 => 0.19290181116052
1024 => 0.18627262982939
1025 => 0.1858305390128
1026 => 0.17433645214206
1027 => 0.18047650057138
1028 => 0.18587948909671
1029 => 0.18329187688193
1030 => 0.18247271615744
1031 => 0.18665763064455
1101 => 0.18698283434157
1102 => 0.17956815558603
1103 => 0.18110990209165
1104 => 0.18753924131409
1105 => 0.18094789923923
1106 => 0.16814199827737
1107 => 0.1649659577834
1108 => 0.16454221543547
1109 => 0.15592854172087
1110 => 0.16517819599604
1111 => 0.1611404740296
1112 => 0.17389558934224
1113 => 0.16660993588272
1114 => 0.16629586592373
1115 => 0.16582110311667
1116 => 0.15840695832413
1117 => 0.16003018484022
1118 => 0.16542603700406
1119 => 0.16735133784474
1120 => 0.16715051319353
1121 => 0.16539959438476
1122 => 0.16620115604926
1123 => 0.1636190466453
1124 => 0.1627072500728
1125 => 0.15982936928059
1126 => 0.15559967955091
1127 => 0.15618784385002
1128 => 0.14780772173699
1129 => 0.14324178644307
1130 => 0.14197799573177
1201 => 0.14028800197517
1202 => 0.14216888502348
1203 => 0.14778398190395
1204 => 0.14101098375684
1205 => 0.12939915350422
1206 => 0.13009704428799
1207 => 0.13166499767351
1208 => 0.12874312691265
1209 => 0.12597782145152
1210 => 0.12838203019365
1211 => 0.12346194463956
1212 => 0.13225956650674
1213 => 0.13202161549028
1214 => 0.13530082488108
1215 => 0.1373513818093
1216 => 0.13262551196544
1217 => 0.13143696847983
1218 => 0.13211401686552
1219 => 0.12092391519386
1220 => 0.13438635484087
1221 => 0.13450277857798
1222 => 0.13350588785796
1223 => 0.1406742213638
1224 => 0.15580164092042
1225 => 0.15011009718418
1226 => 0.14790615942168
1227 => 0.14371647212412
1228 => 0.14929898168911
1229 => 0.14887033205523
1230 => 0.1469318158503
1231 => 0.14575939520102
]
'min_raw' => 0.10949172733523
'max_raw' => 0.28094323491366
'avg_raw' => 0.19521748112445
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.109491'
'max' => '$0.280943'
'avg' => '$0.195217'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.067330380758771
'max_diff' => 0.16330000369246
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0034368202076586
]
1 => [
'year' => 2028
'avg' => 0.0058985811923772
]
2 => [
'year' => 2029
'avg' => 0.01611386070175
]
3 => [
'year' => 2030
'avg' => 0.012431819533919
]
4 => [
'year' => 2031
'avg' => 0.012209587440742
]
5 => [
'year' => 2032
'avg' => 0.021407249282203
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0034368202076586
'min' => '$0.003436'
'max_raw' => 0.021407249282203
'max' => '$0.0214072'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.021407249282203
]
1 => [
'year' => 2033
'avg' => 0.05506164643531
]
2 => [
'year' => 2034
'avg' => 0.034900717649605
]
3 => [
'year' => 2035
'avg' => 0.041165476502636
]
4 => [
'year' => 2036
'avg' => 0.079902288898832
]
5 => [
'year' => 2037
'avg' => 0.19521748112445
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.021407249282203
'min' => '$0.0214072'
'max_raw' => 0.19521748112445
'max' => '$0.195217'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19521748112445
]
]
]
]
'prediction_2025_max_price' => '$0.005876'
'last_price' => 0.00569785
'sma_50day_nextmonth' => '$0.061313'
'sma_200day_nextmonth' => '$0.434758'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.093359'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.1062035'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.119197'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.147959'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.265176'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.427213'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.529737'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.069815'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.090718'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.114347'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.153348'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.24867'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.365065'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.54319'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.463494'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.70879'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.082876'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.13797'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.245987'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.403739'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.835748'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$1.53'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.769645'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '12.01'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 60.75
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0.13
'momentum_10_action' => 'SELL'
'vwma_10' => '0.066294'
'vwma_10_action' => 'SELL'
'hma_9' => '0.097178'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -313.46
'cci_20_action' => 'BUY'
'adx_14' => 56.17
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.096562'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 9.56
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.116552'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 1
'sell_pct' => 96.88
'buy_pct' => 3.13
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767689887
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Alea para 2026
La previsión del precio de Alea para 2026 sugiere que el precio medio podría oscilar entre $0.001968 en el extremo inferior y $0.005876 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Alea podría potencialmente ganar 3.13% para 2026 si ALEA alcanza el objetivo de precio previsto.
Predicción de precio de Alea 2027-2032
La predicción del precio de ALEA para 2027-2032 está actualmente dentro de un rango de precios de $0.003436 en el extremo inferior y $0.0214072 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Alea alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Alea | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001895 | $0.003436 | $0.004978 |
| 2028 | $0.00342 | $0.005898 | $0.008377 |
| 2029 | $0.007513 | $0.016113 | $0.024714 |
| 2030 | $0.006389 | $0.012431 | $0.018474 |
| 2031 | $0.007554 | $0.0122095 | $0.016864 |
| 2032 | $0.011531 | $0.0214072 | $0.031283 |
Predicción de precio de Alea 2032-2037
La predicción de precio de Alea para 2032-2037 se estima actualmente entre $0.0214072 en el extremo inferior y $0.195217 en el extremo superior. Comparado con el precio actual, Alea podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Alea | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.011531 | $0.0214072 | $0.031283 |
| 2033 | $0.026796 | $0.055061 | $0.083327 |
| 2034 | $0.021542 | $0.03490071 | $0.048258 |
| 2035 | $0.02547 | $0.041165 | $0.05686 |
| 2036 | $0.042161 | $0.0799022 | $0.117643 |
| 2037 | $0.109491 | $0.195217 | $0.280943 |
Alea Histograma de precios potenciales
Pronóstico de precio de Alea basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Alea es Bajista, con 1 indicadores técnicos mostrando señales alcistas y 31 indicando señales bajistas. La predicción de precio de ALEA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Alea
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Alea aumentar durante el próximo mes, alcanzando $0.434758 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Alea alcance $0.061313 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 12.01, lo que sugiere que el mercado de ALEA está en un estado BUY.
Promedios Móviles y Osciladores Populares de ALEA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.093359 | SELL |
| SMA 5 | $0.1062035 | SELL |
| SMA 10 | $0.119197 | SELL |
| SMA 21 | $0.147959 | SELL |
| SMA 50 | $0.265176 | SELL |
| SMA 100 | $0.427213 | SELL |
| SMA 200 | $0.529737 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.069815 | SELL |
| EMA 5 | $0.090718 | SELL |
| EMA 10 | $0.114347 | SELL |
| EMA 21 | $0.153348 | SELL |
| EMA 50 | $0.24867 | SELL |
| EMA 100 | $0.365065 | SELL |
| EMA 200 | $0.54319 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.463494 | SELL |
| SMA 50 | $0.70879 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.403739 | SELL |
| EMA 50 | $0.835748 | SELL |
| EMA 100 | $1.53 | SELL |
| EMA 200 | $0.769645 | SELL |
Osciladores de Alea
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 12.01 | BUY |
| Stoch RSI (14) | 60.75 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -313.46 | BUY |
| Índice Direccional Medio (14) | 56.17 | SELL |
| Oscilador Asombroso (5, 34) | -0.096562 | NEUTRAL |
| Momentum (10) | -0.13 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 9.56 | BUY |
| VWMA (10) | 0.066294 | SELL |
| Promedio Móvil de Hull (9) | 0.097178 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.116552 | SELL |
Predicción de precios de Alea basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Alea
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Alea por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0080064 | $0.01125 | $0.0158086 | $0.022213 | $0.031214 | $0.043861 |
| Amazon.com acción | $0.011888 | $0.0248069 | $0.051761 | $0.1080025 | $0.225353 | $0.470214 |
| Apple acción | $0.008081 | $0.011463 | $0.01626 | $0.023064 | $0.032714 | $0.046403 |
| Netflix acción | $0.00899 | $0.014185 | $0.022382 | $0.035315 | $0.055722 | $0.087921 |
| Google acción | $0.007378 | $0.009555 | $0.012374 | $0.016024 | $0.020751 | $0.026873 |
| Tesla acción | $0.012916 | $0.02928 | $0.066377 | $0.150473 | $0.341111 | $0.773273 |
| Kodak acción | $0.004272 | $0.0032041 | $0.0024027 | $0.0018018 | $0.001351 | $0.001013 |
| Nokia acción | $0.003774 | $0.0025005 | $0.001656 | $0.001097 | $0.000726 | $0.000481 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Alea
Podría preguntarse cosas como: "¿Debo invertir en Alea ahora?", "¿Debería comprar ALEA hoy?", "¿Será Alea una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Alea regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Alea, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Alea a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Alea es de $0.005697 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Alea basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Alea ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.005845 | $0.005997 | $0.006153 | $0.006313 |
| Si Alea ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.005994 | $0.0063056 | $0.006633 | $0.006978 |
| Si Alea ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.006438 | $0.007275 | $0.00822 | $0.009289 |
| Si Alea ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.007178 | $0.009044 | $0.011396 | $0.014358 |
| Si Alea ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.008659 | $0.013161 | $0.0200043 | $0.0304039 |
| Si Alea ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0131031 | $0.030132 | $0.069295 | $0.159355 |
| Si Alea ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0205083 | $0.073816 | $0.265688 | $0.956298 |
Cuadro de preguntas
¿Es ALEA una buena inversión?
La decisión de adquirir Alea depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Alea ha experimentado una caída de 0% durante las últimas 24 horas, y Alea ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Alea dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Alea subir?
Parece que el valor medio de Alea podría potencialmente aumentar hasta $0.005876 para el final de este año. Mirando las perspectivas de Alea en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.018474. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Alea la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Alea, el precio de Alea aumentará en un 0.86% durante la próxima semana y alcanzará $0.005746 para el 13 de enero de 2026.
¿Cuál será el precio de Alea el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Alea, el precio de Alea disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0050358 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Alea este año en 2026?
Según nuestra predicción más reciente sobre el valor de Alea en 2026, se anticipa que ALEA fluctúe dentro del rango de $0.001968 y $0.005876. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Alea no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Alea en 5 años?
El futuro de Alea parece estar en una tendencia alcista, con un precio máximo de $0.018474 proyectada después de un período de cinco años. Basado en el pronóstico de Alea para 2030, el valor de Alea podría potencialmente alcanzar su punto más alto de aproximadamente $0.018474, mientras que su punto más bajo se anticipa que esté alrededor de $0.006389.
¿Cuánto será Alea en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Alea, se espera que el valor de ALEA en 2026 crezca en un 3.13% hasta $0.005876 si ocurre lo mejor. El precio estará entre $0.005876 y $0.001968 durante 2026.
¿Cuánto será Alea en 2027?
Según nuestra última simulación experimental para la predicción de precios de Alea, el valor de ALEA podría disminuir en un -12.62% hasta $0.004978 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.004978 y $0.001895 a lo largo del año.
¿Cuánto será Alea en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Alea sugiere que el valor de ALEA en 2028 podría aumentar en un 47.02% , alcanzando $0.008377 en el mejor escenario. Se espera que el precio oscile entre $0.008377 y $0.00342 durante el año.
¿Cuánto será Alea en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Alea podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.024714 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.024714 y $0.007513.
¿Cuánto será Alea en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Alea, se espera que el valor de ALEA en 2030 aumente en un 224.23% , alcanzando $0.018474 en el mejor escenario. Se pronostica que el precio oscile entre $0.018474 y $0.006389 durante el transcurso de 2030.
¿Cuánto será Alea en 2031?
Nuestra simulación experimental indica que el precio de Alea podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.016864 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.016864 y $0.007554 durante el año.
¿Cuánto será Alea en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Alea, ALEA podría experimentar un 449.04% aumento en valor, alcanzando $0.031283 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.031283 y $0.011531 a lo largo del año.
¿Cuánto será Alea en 2033?
Según nuestra predicción experimental de precios de Alea, se anticipa que el valor de ALEA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.083327. A lo largo del año, el precio de ALEA podría oscilar entre $0.083327 y $0.026796.
¿Cuánto será Alea en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Alea sugieren que ALEA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.048258 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.048258 y $0.021542.
¿Cuánto será Alea en 2035?
Basado en nuestra predicción experimental para el precio de Alea, ALEA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.05686 en 2035. El rango de precios esperado para el año está entre $0.05686 y $0.02547.
¿Cuánto será Alea en 2036?
Nuestra reciente simulación de predicción de precios de Alea sugiere que el valor de ALEA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.117643 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.117643 y $0.042161.
¿Cuánto será Alea en 2037?
Según la simulación experimental, el valor de Alea podría aumentar en un 4830.69% en 2037, con un máximo de $0.280943 bajo condiciones favorables. Se espera que el precio caiga entre $0.280943 y $0.109491 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Alea?
Los traders de Alea utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Alea
Las medias móviles son herramientas populares para la predicción de precios de Alea. Una media móvil simple (SMA) calcula el precio de cierre promedio de ALEA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ALEA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ALEA.
¿Cómo leer gráficos de Alea y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Alea en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ALEA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Alea?
La acción del precio de Alea está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ALEA. La capitalización de mercado de Alea puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ALEA, grandes poseedores de Alea, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Alea.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


