Predicción del precio de ADO Protocol - Pronóstico de ADO
Predicción de precio de ADO Protocol hasta $0.031025 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.010393 | $0.031025 |
| 2027 | $0.0100059 | $0.026285 |
| 2028 | $0.018057 | $0.044229 |
| 2029 | $0.039667 | $0.130488 |
| 2030 | $0.033735 | $0.097539 |
| 2031 | $0.039885 | $0.089042 |
| 2032 | $0.060882 | $0.165169 |
| 2033 | $0.141478 | $0.439951 |
| 2034 | $0.113741 | $0.254796 |
| 2035 | $0.134478 | $0.300213 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en ADO Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.50, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de ADO Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'ADO Protocol'
'name_with_ticker' => 'ADO Protocol <small>ADO</small>'
'name_lang' => 'ADO Protocol'
'name_lang_with_ticker' => 'ADO Protocol <small>ADO</small>'
'name_with_lang' => 'ADO Protocol'
'name_with_lang_with_ticker' => 'ADO Protocol <small>ADO</small>'
'image' => '/uploads/coins/ado-network.png?1717128611'
'price_for_sd' => 0.03008
'ticker' => 'ADO'
'marketcap' => '$12.04M'
'low24h' => '$0.01867'
'high24h' => '$0.03009'
'volume24h' => '$29.26K'
'current_supply' => '400M'
'max_supply' => '860M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03008'
'change_24h_pct' => '60.873%'
'ath_price' => '$0.06588'
'ath_days' => 96
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 oct. 2025'
'ath_pct' => '-54.39%'
'fdv' => '$25.89M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.48'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.03034'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.026588'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010393'
'current_year_max_price_prediction' => '$0.031025'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.033735'
'grand_prediction_max_price' => '$0.097539'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.030653607259058
107 => 0.030768056701304
108 => 0.031025917138617
109 => 0.028822527934402
110 => 0.029811784998986
111 => 0.030392880843578
112 => 0.027767468677265
113 => 0.030340984886393
114 => 0.028784171830455
115 => 0.028255766096722
116 => 0.028967194805031
117 => 0.028689950345516
118 => 0.028451591839566
119 => 0.028318583697726
120 => 0.028840978423588
121 => 0.02881660808523
122 => 0.027961868921273
123 => 0.026846896525518
124 => 0.027221117859255
125 => 0.027085159740364
126 => 0.02659242997856
127 => 0.026924470345598
128 => 0.025462332610946
129 => 0.022946800633784
130 => 0.024608638110726
131 => 0.024544659175595
201 => 0.024512398095288
202 => 0.025761223029395
203 => 0.025641177327274
204 => 0.025423293202433
205 => 0.02658842836574
206 => 0.026163138357854
207 => 0.027473781951232
208 => 0.028337056588943
209 => 0.02811810221681
210 => 0.028930016186147
211 => 0.027229739162963
212 => 0.027794502986791
213 => 0.027910900028153
214 => 0.026574050778684
215 => 0.025660818288771
216 => 0.025599916093307
217 => 0.024016496806987
218 => 0.024862346608825
219 => 0.0256066594308
220 => 0.025250191350082
221 => 0.025137344204908
222 => 0.025713855796043
223 => 0.025758655684162
224 => 0.024737213487368
225 => 0.024949603664949
226 => 0.025835306012391
227 => 0.024927286238272
228 => 0.023163152141346
301 => 0.022725622494246
302 => 0.022667247974052
303 => 0.021480632870203
304 => 0.022754860317395
305 => 0.022198625889523
306 => 0.023955763782458
307 => 0.022952096041733
308 => 0.022908829931436
309 => 0.022843426859963
310 => 0.021822058221628
311 => 0.02204567304206
312 => 0.022789002762675
313 => 0.023054231181199
314 => 0.023026565684195
315 => 0.022785360041522
316 => 0.022895782749565
317 => 0.022540072733137
318 => 0.022414464122872
319 => 0.022018008797507
320 => 0.0214353289928
321 => 0.021516354193427
322 => 0.020361913033837
323 => 0.019732912219263
324 => 0.019558813083886
325 => 0.019326000443957
326 => 0.019585109891057
327 => 0.02035864264708
328 => 0.019425598029188
329 => 0.017825958477281
330 => 0.017922099540004
331 => 0.018138099963404
401 => 0.017735584603383
402 => 0.017354637595677
403 => 0.01768584011167
404 => 0.017008051745851
405 => 0.018220007449241
406 => 0.018187227443931
407 => 0.018638969583316
408 => 0.018921453213756
409 => 0.018270419900754
410 => 0.018106686783115
411 => 0.018199956608177
412 => 0.016658414160999
413 => 0.018512992677564
414 => 0.018529031149588
415 => 0.018391700014877
416 => 0.01937920582126
417 => 0.021463151083512
418 => 0.020679087049349
419 => 0.02037547375686
420 => 0.019798304665898
421 => 0.020567348210695
422 => 0.020508297665403
423 => 0.020241248705337
424 => 0.020079736661046
425 => 0.020377327554882
426 => 0.020042861856007
427 => 0.019982782625986
428 => 0.019618767858908
429 => 0.019488831148677
430 => 0.019392631181352
501 => 0.019286724469741
502 => 0.019520328285247
503 => 0.018990951306168
504 => 0.018352574564864
505 => 0.018299500446157
506 => 0.018446042754232
507 => 0.018381208691701
508 => 0.018299190045609
509 => 0.018142594113771
510 => 0.018096135445937
511 => 0.018247103577855
512 => 0.018076669358909
513 => 0.018328154332997
514 => 0.018259764335343
515 => 0.017877743367846
516 => 0.017401603800068
517 => 0.017397365159178
518 => 0.017294781670326
519 => 0.017164126173741
520 => 0.017127780803584
521 => 0.017657947159572
522 => 0.018755375649922
523 => 0.018539924178028
524 => 0.018695609946826
525 => 0.019461429841445
526 => 0.019704860956936
527 => 0.019532079317143
528 => 0.019295565151885
529 => 0.019305970574827
530 => 0.020114211075218
531 => 0.020164620043819
601 => 0.020291987244926
602 => 0.020455690092314
603 => 0.019559958619924
604 => 0.019263781703029
605 => 0.019123436648534
606 => 0.018691228201063
607 => 0.019157327956909
608 => 0.018885751589559
609 => 0.018922396519884
610 => 0.018898531460937
611 => 0.01891156339687
612 => 0.018219668682922
613 => 0.018471758751769
614 => 0.018052610118638
615 => 0.017491417150517
616 => 0.017489535834908
617 => 0.017626887018814
618 => 0.017545185160075
619 => 0.017325327558953
620 => 0.017356557293494
621 => 0.017082951957446
622 => 0.017389777935074
623 => 0.017398576606237
624 => 0.017280431891926
625 => 0.017753139644288
626 => 0.017946808396123
627 => 0.017869043014259
628 => 0.017941352169625
629 => 0.01854887715939
630 => 0.018647930240896
701 => 0.018691923076621
702 => 0.018632978504683
703 => 0.017952456611189
704 => 0.017982640650968
705 => 0.017761170194494
706 => 0.017574050996756
707 => 0.017581534783355
708 => 0.017677738374785
709 => 0.018097865100828
710 => 0.018981997027962
711 => 0.019015549188304
712 => 0.019056215385425
713 => 0.018890805524541
714 => 0.01884091632774
715 => 0.018906733055815
716 => 0.019238766522199
717 => 0.020092846743943
718 => 0.019790957751478
719 => 0.019545517301423
720 => 0.019760834746392
721 => 0.019727688313453
722 => 0.019447899062056
723 => 0.019440046309636
724 => 0.018903041282171
725 => 0.01870452275053
726 => 0.018538625806636
727 => 0.018357470674754
728 => 0.018250075840199
729 => 0.018415083116154
730 => 0.018452822232474
731 => 0.018092030939763
801 => 0.018042856419736
802 => 0.018337486377585
803 => 0.018207830718048
804 => 0.018341184779188
805 => 0.018372124065262
806 => 0.018367142127612
807 => 0.018231766728197
808 => 0.018318050970831
809 => 0.01811396301443
810 => 0.017892048014864
811 => 0.017750480070934
812 => 0.017626943263592
813 => 0.017695488664307
814 => 0.017451136826654
815 => 0.017372963755958
816 => 0.018288819810884
817 => 0.018965372525769
818 => 0.01895553518135
819 => 0.018895652877161
820 => 0.018806679919817
821 => 0.019232257596191
822 => 0.019083994843436
823 => 0.019191868383833
824 => 0.019219326727302
825 => 0.019302434863059
826 => 0.019332138878206
827 => 0.019242352713665
828 => 0.018941019379011
829 => 0.018190125358965
830 => 0.017840582165634
831 => 0.017725227089733
901 => 0.017729420027651
902 => 0.017613760081759
903 => 0.017647827119339
904 => 0.017601912956355
905 => 0.017514962639491
906 => 0.01769011972726
907 => 0.017710304949924
908 => 0.017669421192667
909 => 0.017679050797515
910 => 0.017340550749111
911 => 0.017366286172608
912 => 0.017222988064279
913 => 0.017196121396452
914 => 0.01683387625699
915 => 0.016192106484161
916 => 0.016547709236407
917 => 0.016118191117007
918 => 0.015955526096929
919 => 0.016725557002379
920 => 0.016648267256805
921 => 0.016515980809426
922 => 0.016320301582841
923 => 0.016247722254256
924 => 0.015806753229594
925 => 0.015780698427139
926 => 0.015999254582927
927 => 0.015898398437089
928 => 0.015756758211123
929 => 0.015243751670515
930 => 0.014666962468244
1001 => 0.014684372108693
1002 => 0.014867838022391
1003 => 0.015401289910217
1004 => 0.015192861028832
1005 => 0.015041643483941
1006 => 0.015013324983366
1007 => 0.015367790306863
1008 => 0.015869433002392
1009 => 0.016104792531512
1010 => 0.015871558386129
1011 => 0.015603631558132
1012 => 0.015619939022699
1013 => 0.015728425278589
1014 => 0.01573982565017
1015 => 0.015565432828467
1016 => 0.015614523386265
1017 => 0.015539950340035
1018 => 0.015082295692977
1019 => 0.01507401817165
1020 => 0.014961702340584
1021 => 0.014958301461857
1022 => 0.014767224214716
1023 => 0.014740491186986
1024 => 0.014361095715229
1025 => 0.014610814963655
1026 => 0.01444331640266
1027 => 0.014190856562324
1028 => 0.014147332390692
1029 => 0.014146024001536
1030 => 0.014405243808573
1031 => 0.014607785829285
1101 => 0.014446230111841
1102 => 0.014409447006605
1103 => 0.014802194338074
1104 => 0.014752213660173
1105 => 0.014708930715452
1106 => 0.015824516401073
1107 => 0.014941443280667
1108 => 0.014556372996119
1109 => 0.014079775396127
1110 => 0.014234957977898
1111 => 0.014267657227984
1112 => 0.013121525913177
1113 => 0.012656540581502
1114 => 0.012496975138273
1115 => 0.012405142969771
1116 => 0.012446992042113
1117 => 0.012028450706266
1118 => 0.01230971740599
1119 => 0.011947295987564
1120 => 0.011886534857344
1121 => 0.012534589248887
1122 => 0.012624762231592
1123 => 0.012240056272825
1124 => 0.012487099776591
1125 => 0.012397518367964
1126 => 0.011953508662571
1127 => 0.011936550757739
1128 => 0.011713762295269
1129 => 0.01136514149185
1130 => 0.011205812429942
1201 => 0.011122832471142
1202 => 0.01115707161939
1203 => 0.011139759258301
1204 => 0.011026784391661
1205 => 0.011146234845413
1206 => 0.01084108829641
1207 => 0.010719576481865
1208 => 0.010664692414287
1209 => 0.010393857288467
1210 => 0.010824876414574
1211 => 0.010909792612253
1212 => 0.010994876121073
1213 => 0.011735469976375
1214 => 0.011698472000261
1215 => 0.01203291568559
1216 => 0.01201991981898
1217 => 0.011924531062296
1218 => 0.011522101588534
1219 => 0.01168250280416
1220 => 0.011188812794346
1221 => 0.011558718917356
1222 => 0.011389909210463
1223 => 0.011501644185648
1224 => 0.011300734625529
1225 => 0.011411926271452
1226 => 0.010929929392906
1227 => 0.010479847489598
1228 => 0.010660973586199
1229 => 0.010857878367486
1230 => 0.01128481810372
1231 => 0.011030536318995
]
'min_raw' => 0.010393857288467
'max_raw' => 0.031025917138617
'avg_raw' => 0.020709887213542
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010393'
'max' => '$0.031025'
'avg' => '$0.0207098'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.019689682711533
'max_diff' => 0.00094237713861723
'year' => 2026
]
1 => [
'items' => [
101 => 0.011121985664241
102 => 0.010815645666103
103 => 0.010183578748249
104 => 0.010187156178362
105 => 0.010089926453377
106 => 0.010005905775217
107 => 0.011059743640829
108 => 0.010928682243529
109 => 0.010719853059823
110 => 0.010999379220756
111 => 0.011073290374383
112 => 0.01107539452102
113 => 0.011279329592422
114 => 0.011388169776587
115 => 0.011407353330786
116 => 0.011728249571946
117 => 0.011835809759259
118 => 0.012278834948314
119 => 0.011378935447384
120 => 0.011360402609358
121 => 0.011003312727077
122 => 0.010776840678366
123 => 0.011018819462007
124 => 0.011233179630915
125 => 0.011009973495051
126 => 0.011039119504256
127 => 0.01073948350347
128 => 0.010846589274567
129 => 0.010938843193341
130 => 0.010887906001829
131 => 0.010811650560747
201 => 0.011215604541596
202 => 0.011192811874888
203 => 0.011568983108716
204 => 0.011862235485748
205 => 0.012387796170522
206 => 0.011839346197862
207 => 0.011819358500967
208 => 0.012014741444243
209 => 0.011835779847148
210 => 0.011948877398968
211 => 0.012369574406443
212 => 0.012378463071285
213 => 0.012229566482779
214 => 0.012220506111837
215 => 0.01224910333041
216 => 0.012416598132808
217 => 0.012358070302255
218 => 0.012425800189515
219 => 0.01251049745065
220 => 0.012860841233601
221 => 0.012945307933587
222 => 0.012740097643583
223 => 0.012758625835128
224 => 0.012681871553519
225 => 0.012607727879212
226 => 0.012774392031239
227 => 0.013078974044861
228 => 0.013077079255962
301 => 0.013147736362894
302 => 0.013191755155158
303 => 0.013002794275037
304 => 0.012879787690363
305 => 0.01292695624204
306 => 0.013002379783368
307 => 0.01290249740412
308 => 0.012285977089385
309 => 0.012472989969405
310 => 0.012441861881707
311 => 0.01239753169952
312 => 0.012585574596509
313 => 0.012567437400361
314 => 0.012024157959917
315 => 0.012058936947028
316 => 0.012026272985315
317 => 0.012131816928029
318 => 0.011830080127876
319 => 0.011922892335375
320 => 0.011981103281857
321 => 0.012015389976533
322 => 0.012139257028309
323 => 0.012124722659452
324 => 0.012138353551534
325 => 0.012322015689628
326 => 0.013250915758875
327 => 0.013301473740142
328 => 0.013052507749672
329 => 0.013151964752228
330 => 0.012961029056176
331 => 0.013089205468094
401 => 0.0131769005138
402 => 0.012780623465042
403 => 0.012757158510031
404 => 0.012565434754443
405 => 0.012668456240907
406 => 0.012504541648435
407 => 0.012544760555939
408 => 0.012432304984337
409 => 0.012634702623539
410 => 0.01286101463358
411 => 0.012918189984649
412 => 0.012767786251524
413 => 0.012658884036652
414 => 0.012467687621958
415 => 0.012785651520685
416 => 0.012878633854447
417 => 0.012785163124069
418 => 0.012763503913465
419 => 0.012722459748507
420 => 0.012772211627089
421 => 0.012878127452688
422 => 0.012828179505294
423 => 0.012861171004518
424 => 0.012735441430164
425 => 0.013002856828951
426 => 0.013427576839247
427 => 0.013428942383529
428 => 0.013378994166896
429 => 0.013358556432799
430 => 0.013409806334176
501 => 0.013437607303291
502 => 0.013603340086717
503 => 0.013781177966418
504 => 0.014611069754237
505 => 0.014378039461083
506 => 0.015114368825719
507 => 0.015696709752745
508 => 0.015871328334077
509 => 0.01571068745569
510 => 0.015161143688379
511 => 0.015134180449418
512 => 0.015955430849175
513 => 0.015723389995592
514 => 0.015695789474406
515 => 0.015402166560806
516 => 0.015575734068649
517 => 0.015537772308602
518 => 0.015477847813215
519 => 0.015809002527362
520 => 0.016428894589861
521 => 0.016332278598609
522 => 0.016260159243027
523 => 0.015944153220495
524 => 0.01613445942856
525 => 0.016066695032943
526 => 0.01635785388086
527 => 0.016185377829312
528 => 0.015721632057908
529 => 0.01579548510053
530 => 0.015784322361709
531 => 0.016014050735638
601 => 0.015945091979993
602 => 0.015770857057921
603 => 0.016426775866182
604 => 0.016384184147186
605 => 0.0164445694669
606 => 0.016471152952116
607 => 0.016870399172119
608 => 0.017033957573999
609 => 0.017071088194719
610 => 0.017226456026445
611 => 0.017067222501529
612 => 0.017704270132773
613 => 0.018127869634791
614 => 0.018619902254615
615 => 0.019338894158079
616 => 0.019609241764829
617 => 0.019560405889457
618 => 0.020105537344922
619 => 0.021085126452802
620 => 0.019758408855684
621 => 0.021155445706971
622 => 0.02071315996942
623 => 0.019664508442066
624 => 0.019596987646494
625 => 0.020307146635912
626 => 0.021882210924173
627 => 0.021487675184195
628 => 0.021882856243305
629 => 0.021421856546575
630 => 0.021398964026022
701 => 0.021860466517005
702 => 0.022938792242379
703 => 0.022426520110689
704 => 0.021692052395632
705 => 0.022234371926847
706 => 0.021764564559606
707 => 0.020705957070408
708 => 0.02148737349015
709 => 0.020964862583727
710 => 0.021117359044429
711 => 0.022215599252098
712 => 0.022083456084728
713 => 0.022254461579433
714 => 0.021952641357272
715 => 0.021670693677094
716 => 0.021144417394331
717 => 0.020988612932112
718 => 0.021031671680212
719 => 0.020988591594335
720 => 0.020694144850858
721 => 0.020630559104639
722 => 0.020524580075184
723 => 0.020557427407891
724 => 0.020358155827258
725 => 0.020734222471522
726 => 0.020804023754585
727 => 0.021077693696924
728 => 0.021106107018203
729 => 0.021868273912171
730 => 0.021448485194668
731 => 0.021730115709183
801 => 0.021704924025156
802 => 0.019687235900453
803 => 0.019965255521824
804 => 0.020397766805314
805 => 0.020202921058357
806 => 0.019927454759043
807 => 0.019705000952778
808 => 0.019367960689218
809 => 0.019842338387894
810 => 0.02046609461721
811 => 0.021121926505533
812 => 0.021909865547546
813 => 0.021734006725991
814 => 0.021107196533222
815 => 0.021135314780584
816 => 0.021309130721657
817 => 0.021084023285124
818 => 0.021017634707472
819 => 0.021300009950553
820 => 0.021301954513661
821 => 0.021042941202789
822 => 0.020755095306689
823 => 0.020753889221874
824 => 0.020702669824925
825 => 0.021430968363508
826 => 0.021831458920441
827 => 0.021877374517371
828 => 0.021828368434931
829 => 0.02184722893108
830 => 0.021614192300208
831 => 0.022146844933516
901 => 0.022635659663724
902 => 0.022504646874025
903 => 0.0223082400777
904 => 0.022151792604194
905 => 0.022467792821239
906 => 0.022453721829004
907 => 0.022631390293488
908 => 0.022623330225677
909 => 0.02256358700352
910 => 0.022504649007643
911 => 0.022738331499244
912 => 0.022671034694489
913 => 0.022603633359208
914 => 0.022468449662675
915 => 0.022486823372197
916 => 0.022290450488275
917 => 0.022199599406761
918 => 0.02083341712301
919 => 0.020468328575498
920 => 0.020583192864608
921 => 0.020621009171033
922 => 0.020462122167282
923 => 0.020689925315939
924 => 0.020654422436524
925 => 0.020792543371837
926 => 0.020706251407967
927 => 0.020709792860264
928 => 0.020963559126619
929 => 0.021037228553341
930 => 0.020999759688325
1001 => 0.021026001597025
1002 => 0.021630735306989
1003 => 0.021544761511728
1004 => 0.021499089646516
1005 => 0.021511741065307
1006 => 0.02166626349384
1007 => 0.021709521337217
1008 => 0.021526234815152
1009 => 0.021612673798525
1010 => 0.021980720018985
1011 => 0.022109515366534
1012 => 0.022520568290636
1013 => 0.022345945702594
1014 => 0.022666473020433
1015 => 0.023651664719656
1016 => 0.024438704019075
1017 => 0.023714910153554
1018 => 0.025160207598087
1019 => 0.02628557897426
1020 => 0.026242385346439
1021 => 0.026046150816694
1022 => 0.024764945424466
1023 => 0.023585961120842
1024 => 0.024572231553142
1025 => 0.024574745759302
1026 => 0.024490024254488
1027 => 0.023963826264326
1028 => 0.02447171370503
1029 => 0.024512027965697
1030 => 0.024489462700151
1031 => 0.024086027934831
1101 => 0.023470057615395
1102 => 0.023590416741388
1103 => 0.023787567445024
1104 => 0.023414320033095
1105 => 0.023295044869126
1106 => 0.023516800091973
1107 => 0.024231341624525
1108 => 0.024096261686853
1109 => 0.02409273420378
1110 => 0.024670663459947
1111 => 0.024256990837471
1112 => 0.02359193485541
1113 => 0.023423999448929
1114 => 0.022827941890766
1115 => 0.023239640969273
1116 => 0.023254457286175
1117 => 0.023028973908339
1118 => 0.023610231588811
1119 => 0.023604875196957
1120 => 0.024156692855777
1121 => 0.025211560966193
1122 => 0.024899584559036
1123 => 0.024536789940449
1124 => 0.024576235774693
1125 => 0.025008859215735
1126 => 0.024747285207449
1127 => 0.024841349044587
1128 => 0.025008716838852
1129 => 0.02510969398464
1130 => 0.024561706717364
1201 => 0.024433944672101
1202 => 0.024172588365877
1203 => 0.02410440538403
1204 => 0.024317274642071
1205 => 0.024261191113359
1206 => 0.023253212032111
1207 => 0.023147872609778
1208 => 0.023151103219471
1209 => 0.022886222233398
1210 => 0.022482215150916
1211 => 0.023543921641669
1212 => 0.023458651751889
1213 => 0.023364520392937
1214 => 0.023376050947302
1215 => 0.023836901750367
1216 => 0.023569585011066
1217 => 0.024280290374849
1218 => 0.024134190717814
1219 => 0.023984344155861
1220 => 0.023963630796561
1221 => 0.023905952654517
1222 => 0.023708152844356
1223 => 0.02346929768766
1224 => 0.023311584823931
1225 => 0.021503704754365
1226 => 0.021839236779322
1227 => 0.022225235789328
1228 => 0.022358481100788
1229 => 0.022130555775241
1230 => 0.023717152725429
1231 => 0.024007039277058
]
'min_raw' => 0.010005905775217
'max_raw' => 0.02628557897426
'avg_raw' => 0.018145742374739
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0100059'
'max' => '$0.026285'
'avg' => '$0.018145'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00038795151324996
'max_diff' => -0.0047403381643568
'year' => 2027
]
2 => [
'items' => [
101 => 0.023128954003344
102 => 0.022964700100618
103 => 0.023727921183947
104 => 0.023267605570717
105 => 0.023474885663169
106 => 0.023026859479436
107 => 0.023937214095639
108 => 0.023930278718725
109 => 0.02357613021173
110 => 0.023875454104738
111 => 0.023823439212329
112 => 0.023423606420161
113 => 0.02394988950832
114 => 0.023950150538166
115 => 0.023609290300036
116 => 0.023211240165801
117 => 0.023140078203324
118 => 0.023086467223863
119 => 0.023461700648634
120 => 0.023798133763959
121 => 0.024424152382737
122 => 0.024581548337333
123 => 0.025195875226565
124 => 0.024830073475061
125 => 0.024992228653577
126 => 0.025168271038106
127 => 0.025252672230994
128 => 0.025115145016401
129 => 0.026069447542413
130 => 0.026150019914682
131 => 0.026177035134156
201 => 0.025855249691707
202 => 0.026141070479422
203 => 0.02600734439824
204 => 0.026355262511301
205 => 0.02640982051387
206 => 0.026363611826651
207 => 0.026380929397806
208 => 0.025566600542357
209 => 0.025524373295275
210 => 0.024948601785003
211 => 0.025183232931327
212 => 0.024744601249438
213 => 0.024883695874172
214 => 0.024945007459412
215 => 0.024912981766685
216 => 0.025196498624302
217 => 0.02495545137666
218 => 0.024319288058295
219 => 0.023682951417659
220 => 0.023674962729485
221 => 0.02350742652428
222 => 0.023386328533704
223 => 0.023409656302871
224 => 0.023491866404104
225 => 0.02338155033317
226 => 0.023405091860071
227 => 0.023796038062993
228 => 0.023874439535888
229 => 0.023608000697557
301 => 0.022538210314718
302 => 0.022275681071403
303 => 0.022464381885316
304 => 0.022374195050155
305 => 0.018057721639801
306 => 0.019071813040409
307 => 0.018469274365458
308 => 0.018746951908346
309 => 0.018131915947855
310 => 0.018425443344998
311 => 0.01837123955265
312 => 0.020001868515681
313 => 0.01997640848728
314 => 0.019988594855561
315 => 0.019406907746104
316 => 0.020333551105994
317 => 0.020790048946094
318 => 0.020705563345188
319 => 0.020726826550765
320 => 0.020361454230579
321 => 0.019992132458284
322 => 0.019582497774597
323 => 0.020343548384511
324 => 0.020258932548256
325 => 0.020453010832809
326 => 0.02094660655436
327 => 0.021019290399346
328 => 0.021116978224094
329 => 0.021081964092815
330 => 0.021916142753219
331 => 0.021815118213356
401 => 0.022058558287682
402 => 0.02155778358495
403 => 0.020991109474839
404 => 0.021098815697199
405 => 0.021088442721867
406 => 0.020956382840344
407 => 0.020837165084101
408 => 0.020638701109351
409 => 0.021266670492601
410 => 0.021241176082448
411 => 0.021653900948818
412 => 0.021580947819691
413 => 0.021093748968727
414 => 0.021111149371001
415 => 0.021228175438644
416 => 0.021633203994935
417 => 0.02175344404689
418 => 0.021697744064087
419 => 0.021829581791888
420 => 0.021933780956485
421 => 0.021842667602683
422 => 0.02313264055146
423 => 0.022596953846527
424 => 0.022858043819227
425 => 0.022920312239285
426 => 0.022760812990672
427 => 0.022795402666456
428 => 0.022847796600147
429 => 0.023165922305734
430 => 0.024000776207608
501 => 0.024370527317706
502 => 0.025482941775633
503 => 0.024339824635196
504 => 0.024271996794772
505 => 0.024472376230343
506 => 0.025125481278175
507 => 0.025654761576405
508 => 0.025830354386241
509 => 0.025853561874782
510 => 0.026182985659224
511 => 0.026371805229076
512 => 0.026142984947087
513 => 0.025949083716584
514 => 0.025254553576827
515 => 0.025334947331647
516 => 0.025888780579703
517 => 0.026671102663198
518 => 0.027342416397577
519 => 0.027107345725443
520 => 0.028900769019791
521 => 0.029078579613948
522 => 0.029054011939141
523 => 0.029459090934395
524 => 0.028655091621718
525 => 0.028311366338795
526 => 0.025991007363491
527 => 0.026642933589339
528 => 0.027590546644893
529 => 0.027465126503624
530 => 0.026776944572911
531 => 0.027341894349872
601 => 0.027155104285995
602 => 0.027007775212689
603 => 0.02768271825865
604 => 0.026940590654484
605 => 0.027583143354343
606 => 0.026759062870417
607 => 0.027108419508473
608 => 0.026910107784233
609 => 0.027038439773987
610 => 0.02628821358414
611 => 0.02669301742547
612 => 0.026271372413469
613 => 0.026271172498833
614 => 0.026261864661824
615 => 0.026757928148583
616 => 0.026774104761077
617 => 0.026407513094851
618 => 0.02635468150851
619 => 0.026550027573369
620 => 0.026321328492635
621 => 0.026428335353095
622 => 0.026324569621429
623 => 0.02630120976959
624 => 0.026115074495786
625 => 0.026034882301936
626 => 0.026066327727443
627 => 0.025958988278959
628 => 0.02589431237861
629 => 0.026248998997376
630 => 0.026059504244987
701 => 0.026219956208835
702 => 0.026037100945378
703 => 0.02540324493599
704 => 0.025038707642085
705 => 0.023841412398835
706 => 0.024180963844581
707 => 0.024406086804401
708 => 0.024331683667524
709 => 0.024491530395729
710 => 0.024501343686619
711 => 0.024449375885835
712 => 0.024389203830015
713 => 0.024359915400965
714 => 0.024578207355543
715 => 0.024704933182546
716 => 0.024428680905176
717 => 0.024363958861768
718 => 0.024643265166495
719 => 0.024813641851029
720 => 0.026071607563234
721 => 0.025978413400098
722 => 0.026212312461139
723 => 0.026185979016339
724 => 0.026431142495352
725 => 0.026831881169721
726 => 0.026017067396433
727 => 0.026158490893335
728 => 0.02612381711784
729 => 0.026502376306742
730 => 0.026503558127209
731 => 0.026276592983028
801 => 0.026399634469778
802 => 0.026330956087341
803 => 0.026455067206844
804 => 0.025977168735232
805 => 0.026559197487704
806 => 0.026889170285251
807 => 0.026893751957865
808 => 0.027050156445076
809 => 0.02720907246242
810 => 0.027514097919043
811 => 0.027200565467987
812 => 0.026636551110308
813 => 0.026677271125177
814 => 0.026346589713634
815 => 0.026352148527904
816 => 0.026322475141676
817 => 0.026411527207455
818 => 0.025996710655838
819 => 0.026094067271379
820 => 0.025957767439502
821 => 0.02615819460412
822 => 0.025942568106789
823 => 0.026123800397096
824 => 0.026202014245647
825 => 0.026490625030625
826 => 0.025899940059185
827 => 0.024695493416563
828 => 0.024948682703346
829 => 0.024574195860605
830 => 0.024608856043672
831 => 0.024678875129596
901 => 0.024451920363297
902 => 0.024495216180541
903 => 0.024493669349281
904 => 0.024480339593149
905 => 0.024421299893025
906 => 0.024335680647198
907 => 0.02467676137036
908 => 0.02473471763162
909 => 0.024863547221138
910 => 0.025246856693597
911 => 0.025208555038239
912 => 0.025271026627249
913 => 0.025134651499203
914 => 0.024615182094729
915 => 0.024643391782635
916 => 0.024291616522422
917 => 0.024854551536835
918 => 0.024721241095043
919 => 0.024635294985984
920 => 0.024611843793842
921 => 0.024996103416344
922 => 0.025111079917928
923 => 0.025039434277927
924 => 0.024892486980047
925 => 0.025174669233045
926 => 0.025250169299633
927 => 0.025267070980207
928 => 0.025767043829439
929 => 0.025295013908474
930 => 0.025408636202024
1001 => 0.026295084901389
1002 => 0.025491198252624
1003 => 0.025917034939286
1004 => 0.025896192449421
1005 => 0.02611403608879
1006 => 0.025878322912614
1007 => 0.025881244859932
1008 => 0.026074675253685
1009 => 0.025803037151014
1010 => 0.025735775736738
1011 => 0.02564285457465
1012 => 0.025845744532616
1013 => 0.025967367886493
1014 => 0.02694756279623
1015 => 0.027580813410239
1016 => 0.027553322331006
1017 => 0.027804539334059
1018 => 0.027691363773299
1019 => 0.027325890033403
1020 => 0.027949709142632
1021 => 0.027752306674772
1022 => 0.027768580294378
1023 => 0.027767974589443
1024 => 0.027899229973347
1025 => 0.027806223504472
1026 => 0.027622898207401
1027 => 0.02774459809503
1028 => 0.028106003252783
1029 => 0.029227815951711
1030 => 0.029855597200073
1031 => 0.029190022732294
1101 => 0.029649127087771
1102 => 0.029373828070093
1103 => 0.029323798049145
1104 => 0.029612149511929
1105 => 0.029901005695778
1106 => 0.029882606805626
1107 => 0.029672912049081
1108 => 0.029554460801917
1109 => 0.030451413329527
1110 => 0.031112272672684
1111 => 0.031067206495937
1112 => 0.031266113943788
1113 => 0.031850112362655
1114 => 0.031903505859169
1115 => 0.031896779505844
1116 => 0.031764438153697
1117 => 0.032339460438849
1118 => 0.032819154145677
1119 => 0.031733804954385
1120 => 0.032147091718164
1121 => 0.032332629461693
1122 => 0.032605053915761
1123 => 0.033064679633414
1124 => 0.033563955072485
1125 => 0.033634558093847
1126 => 0.033584461871525
1127 => 0.033255176298213
1128 => 0.03380148944124
1129 => 0.034121506867805
1130 => 0.034312069921857
1201 => 0.034795306120261
1202 => 0.032333775279633
1203 => 0.030591381404615
1204 => 0.030319281440558
1205 => 0.03087260741727
1206 => 0.031018515064637
1207 => 0.030959699874936
1208 => 0.028998477157083
1209 => 0.030308956008833
1210 => 0.031718921065125
1211 => 0.031773083565201
1212 => 0.032478941553359
1213 => 0.0327087978484
1214 => 0.03327710604779
1215 => 0.033241558215184
1216 => 0.033379932217977
1217 => 0.033348122431038
1218 => 0.034400793698997
1219 => 0.035562046430751
1220 => 0.035521835941208
1221 => 0.0353548921217
1222 => 0.035602832161821
1223 => 0.036801369428397
1224 => 0.036691027323059
1225 => 0.036798215279476
1226 => 0.03821135826337
1227 => 0.040048645159676
1228 => 0.039195040935753
1229 => 0.041047116483668
1230 => 0.042212899866773
1231 => 0.044229001683603
]
'min_raw' => 0.018057721639801
'max_raw' => 0.044229001683603
'avg_raw' => 0.031143361661702
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018057'
'max' => '$0.044229'
'avg' => '$0.031143'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0080518158645841
'max_diff' => 0.017943422709342
'year' => 2028
]
3 => [
'items' => [
101 => 0.043976575806625
102 => 0.044761429449078
103 => 0.043524680803964
104 => 0.040684855926643
105 => 0.040235442769394
106 => 0.04113517929116
107 => 0.043347093734917
108 => 0.041065518233791
109 => 0.041527077986139
110 => 0.041394148746412
111 => 0.04138706551214
112 => 0.041657403754712
113 => 0.041265264033967
114 => 0.039667616267062
115 => 0.040399808823637
116 => 0.040117074114769
117 => 0.040430789353527
118 => 0.042123781111098
119 => 0.041375269099193
120 => 0.040586772498829
121 => 0.041575722217088
122 => 0.042834995048425
123 => 0.04275619201777
124 => 0.04260328120119
125 => 0.043465231468105
126 => 0.044888920781316
127 => 0.04527373828183
128 => 0.045557802693462
129 => 0.045596970376519
130 => 0.04600042185458
131 => 0.043830961574181
201 => 0.047273950754866
202 => 0.047868459875713
203 => 0.047756716800873
204 => 0.048417488667927
205 => 0.048223072822475
206 => 0.047941394765327
207 => 0.048988858724814
208 => 0.047788025821245
209 => 0.046083594695287
210 => 0.045148510069761
211 => 0.046379904935779
212 => 0.047131874810697
213 => 0.047628879063751
214 => 0.047779272250428
215 => 0.043999370600087
216 => 0.04196221325351
217 => 0.043268007756609
218 => 0.044861167171513
219 => 0.04382211149319
220 => 0.043862840508588
221 => 0.042381420170329
222 => 0.044992239999908
223 => 0.044611865511189
224 => 0.046585249031532
225 => 0.04611428521701
226 => 0.047723502871543
227 => 0.047299741932348
228 => 0.049058749898791
301 => 0.049760465799844
302 => 0.050938756011072
303 => 0.051805511086956
304 => 0.052314486245897
305 => 0.052283929286472
306 => 0.054300742436615
307 => 0.05311149818406
308 => 0.051617527119502
309 => 0.051590505896362
310 => 0.052364254680431
311 => 0.053985819864226
312 => 0.05440626812357
313 => 0.054641241341937
314 => 0.054281371678532
315 => 0.052990532276287
316 => 0.052433154367102
317 => 0.05290805649452
318 => 0.052327292001493
319 => 0.053329854450194
320 => 0.054706586828046
321 => 0.054422297036209
322 => 0.055372635187211
323 => 0.056356135195008
324 => 0.057762584377908
325 => 0.058130282274981
326 => 0.058738072916543
327 => 0.059363689135535
328 => 0.059564620204245
329 => 0.059948259959663
330 => 0.059946237988782
331 => 0.061102362213666
401 => 0.0623776030359
402 => 0.0628589769244
403 => 0.063965869637895
404 => 0.062070354656181
405 => 0.063508124543918
406 => 0.064805028972372
407 => 0.063258806047676
408 => 0.065389914125633
409 => 0.065472660223105
410 => 0.066722028054245
411 => 0.06545555440747
412 => 0.064703526398741
413 => 0.066874603081818
414 => 0.067925118700484
415 => 0.067608694846762
416 => 0.065200693696166
417 => 0.063799133742491
418 => 0.060130981002999
419 => 0.064476066375333
420 => 0.066592430712319
421 => 0.065195212823809
422 => 0.065899888255463
423 => 0.069744368918788
424 => 0.071208098243693
425 => 0.070903652776353
426 => 0.070955099048735
427 => 0.071744900823887
428 => 0.075247316846694
429 => 0.07314858798046
430 => 0.074752987560826
501 => 0.075603955313158
502 => 0.076394381586473
503 => 0.074453344476001
504 => 0.071928083714775
505 => 0.07112822762846
506 => 0.065056287040952
507 => 0.064740216164271
508 => 0.064562796003262
509 => 0.06344418698468
510 => 0.062565266708873
511 => 0.061866316673333
512 => 0.060032063055928
513 => 0.060651069806722
514 => 0.057727652379061
515 => 0.059597951249726
516 => 0.054932106446796
517 => 0.058817960645003
518 => 0.056703066873029
519 => 0.058123161161024
520 => 0.058118206585834
521 => 0.055503362760332
522 => 0.05399517541218
523 => 0.054956251089952
524 => 0.055986600506806
525 => 0.056153771233179
526 => 0.057489646147001
527 => 0.057862460120914
528 => 0.056732816374938
529 => 0.054835417184086
530 => 0.055276139741053
531 => 0.05398624418363
601 => 0.051725751834362
602 => 0.053349276904016
603 => 0.053903619744155
604 => 0.054148449122575
605 => 0.05192551451637
606 => 0.051227020200842
607 => 0.05085514768819
608 => 0.054548464240843
609 => 0.054750792458788
610 => 0.053715652689454
611 => 0.058394582602824
612 => 0.057335596660459
613 => 0.058518743415936
614 => 0.055236148788444
615 => 0.055361548323814
616 => 0.053807515421247
617 => 0.054677670006168
618 => 0.054062672791937
619 => 0.054607370114742
620 => 0.05493385944416
621 => 0.056487637345219
622 => 0.058835702292766
623 => 0.056255554740728
624 => 0.055131347503911
625 => 0.055828799350851
626 => 0.05768620552838
627 => 0.06050027096621
628 => 0.05883428758867
629 => 0.05957362272139
630 => 0.059735134557158
701 => 0.058506700092617
702 => 0.060545565097138
703 => 0.061638209416771
704 => 0.06275903639783
705 => 0.063732219060624
706 => 0.062311353454081
707 => 0.063831883326166
708 => 0.06260660465892
709 => 0.06150740302742
710 => 0.061509070062565
711 => 0.060819524822351
712 => 0.059483444031146
713 => 0.059237050234091
714 => 0.060518821882478
715 => 0.061546681360258
716 => 0.061631340789963
717 => 0.062200416610189
718 => 0.062537189818651
719 => 0.06583802508256
720 => 0.067165648331646
721 => 0.068789040910006
722 => 0.069421443808669
723 => 0.07132474980466
724 => 0.069787675633942
725 => 0.069455119968458
726 => 0.064838322188832
727 => 0.065594322566608
728 => 0.066804752114613
729 => 0.064858281726249
730 => 0.066092869171942
731 => 0.06633660288586
801 => 0.064792141407279
802 => 0.06561710501523
803 => 0.063426246257175
804 => 0.058883457026765
805 => 0.060550622520177
806 => 0.061778217485165
807 => 0.060026288108759
808 => 0.063166553706937
809 => 0.061332075372721
810 => 0.060750633811265
811 => 0.058482222981138
812 => 0.059552825573818
813 => 0.061000830909969
814 => 0.060106131960916
815 => 0.061962766619925
816 => 0.064592256443458
817 => 0.066466187480534
818 => 0.066610044636867
819 => 0.065405232523656
820 => 0.067335951624085
821 => 0.067350014804917
822 => 0.065172155772414
823 => 0.063838229241376
824 => 0.063535158326919
825 => 0.064292288891786
826 => 0.065211585171547
827 => 0.066661059182417
828 => 0.067536945970066
829 => 0.069820794177797
830 => 0.07043873801975
831 => 0.071117670953189
901 => 0.072024934727427
902 => 0.073114337506056
903 => 0.07073078624615
904 => 0.070825489181202
905 => 0.068605959250491
906 => 0.066234073206737
907 => 0.068034039054177
908 => 0.070387254960282
909 => 0.069847424631349
910 => 0.069786682691611
911 => 0.069888833785841
912 => 0.069481819347036
913 => 0.067640908124979
914 => 0.066716414033976
915 => 0.067909247274967
916 => 0.068543185055654
917 => 0.069526367268314
918 => 0.069405169308145
919 => 0.071937741101899
920 => 0.072921821919956
921 => 0.072670051935504
922 => 0.072716383671826
923 => 0.074498014987092
924 => 0.076479555430093
925 => 0.078335529542255
926 => 0.080223506125089
927 => 0.077947476665502
928 => 0.076791849271906
929 => 0.077984161759218
930 => 0.077351503970437
1001 => 0.080986943283265
1002 => 0.081238653213585
1003 => 0.084873829642772
1004 => 0.088324044942828
1005 => 0.086157026529891
1006 => 0.088200427288638
1007 => 0.090410531810131
1008 => 0.094674182008627
1009 => 0.093238334618796
1010 => 0.092138498020782
1011 => 0.091099157750032
1012 => 0.093261859862842
1013 => 0.096044141580964
1014 => 0.096643418414684
1015 => 0.097614475826681
1016 => 0.096593527693217
1017 => 0.097823147266226
1018 => 0.10216424468117
1019 => 0.10099124183972
1020 => 0.099325389235257
1021 => 0.10275226872092
1022 => 0.10399244308513
1023 => 0.11269663625749
1024 => 0.12368603968988
1025 => 0.11913635450856
1026 => 0.11631221809909
1027 => 0.11697595714472
1028 => 0.12098891526345
1029 => 0.12227775004626
1030 => 0.11877425281859
1031 => 0.12001174726825
1101 => 0.12683046335363
1102 => 0.13048848576284
1103 => 0.12552039999318
1104 => 0.11181364839184
1105 => 0.099175397434712
1106 => 0.1025276306964
1107 => 0.10214759147643
1108 => 0.10947345125803
1109 => 0.10096326610989
1110 => 0.1011065558022
1111 => 0.10858390660586
1112 => 0.10658907760569
1113 => 0.10335771010381
1114 => 0.099198989993521
1115 => 0.091511211234608
1116 => 0.084701931198268
1117 => 0.098056497433069
1118 => 0.097480624253321
1119 => 0.096646674549423
1120 => 0.098502539372666
1121 => 0.10751409215791
1122 => 0.10730634669866
1123 => 0.10598477607958
1124 => 0.10698717574636
1125 => 0.10318198459569
1126 => 0.10416266899781
1127 => 0.09917339547119
1128 => 0.10142875547569
1129 => 0.10335077704043
1130 => 0.10373665132557
1201 => 0.10460604579321
1202 => 0.097177165255474
1203 => 0.10051251451644
1204 => 0.1024717197273
1205 => 0.093619959308153
1206 => 0.10229674888439
1207 => 0.09704784497308
1208 => 0.095266288149689
1209 => 0.097664919710121
1210 => 0.096730170658275
1211 => 0.095926528313804
1212 => 0.09547808207726
1213 => 0.097239372367937
1214 => 0.09715720607068
1215 => 0.094275393303419
1216 => 0.090516186026243
1217 => 0.091777899380235
1218 => 0.091319507090104
1219 => 0.089658234296886
1220 => 0.090777731576673
1221 => 0.085848032121098
1222 => 0.077366740431262
1223 => 0.082969741510558
1224 => 0.082754032063898
1225 => 0.082645261579247
1226 => 0.086855762034762
1227 => 0.086451019568737
1228 => 0.085716408029653
1229 => 0.089644742579881
1230 => 0.088210847625492
1231 => 0.092629774006779
]
'min_raw' => 0.039667616267062
'max_raw' => 0.13048848576284
'avg_raw' => 0.08507805101495
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.039667'
'max' => '$0.130488'
'avg' => '$0.085078'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.021609894627261
'max_diff' => 0.086259484079235
'year' => 2029
]
4 => [
'items' => [
101 => 0.095540364719734
102 => 0.094802144767182
103 => 0.097539569400822
104 => 0.091806966707609
105 => 0.093711107370194
106 => 0.094103548121728
107 => 0.089596267541311
108 => 0.086517240441714
109 => 0.086311904437649
110 => 0.080973295763018
111 => 0.083825137425262
112 => 0.086334640070811
113 => 0.085132783048865
114 => 0.084752311020175
115 => 0.086696060100441
116 => 0.086847106051062
117 => 0.083403242369755
118 => 0.084119330682078
119 => 0.087105537984242
120 => 0.084044085919882
121 => 0.078096184644186
122 => 0.076621022891645
123 => 0.07642420912123
124 => 0.072423453451784
125 => 0.07671960025371
126 => 0.074844217045093
127 => 0.080768530130573
128 => 0.077384594268875
129 => 0.077238719557264
130 => 0.077018208535497
131 => 0.073574592861669
201 => 0.074328525841045
202 => 0.076834713891723
203 => 0.077728950022434
204 => 0.07763567386774
205 => 0.076822432203029
206 => 0.077194730072663
207 => 0.075995428917395
208 => 0.075571930718175
209 => 0.07423525390908
210 => 0.072270708266104
211 => 0.072543890387019
212 => 0.068651611416953
213 => 0.066530891255181
214 => 0.065943903865045
215 => 0.065158959795063
216 => 0.066032565386406
217 => 0.06864058507967
218 => 0.06549476000735
219 => 0.060101463574829
220 => 0.060425609880153
221 => 0.061153870388316
222 => 0.059796761749281
223 => 0.058512372315929
224 => 0.05962904472242
225 => 0.05734383392539
226 => 0.061430027195413
227 => 0.061319507118883
228 => 0.062842587281451
301 => 0.063795000563856
302 => 0.061599996295374
303 => 0.061047958657774
304 => 0.061362424384863
305 => 0.056165006397145
306 => 0.062417847348279
307 => 0.062471922176479
308 => 0.062008900667648
309 => 0.06533834543932
310 => 0.072364512387416
311 => 0.069720985754632
312 => 0.068697332341402
313 => 0.066751366454567
314 => 0.069344250458754
315 => 0.069145157422524
316 => 0.0682447832089
317 => 0.067700234075161
318 => 0.068703582550862
319 => 0.067575908095456
320 => 0.067373346776843
321 => 0.066146045574938
322 => 0.065707954884505
323 => 0.065383609978201
324 => 0.065026538105833
325 => 0.065814149679511
326 => 0.064029318234626
327 => 0.061876986481278
328 => 0.061698043384539
329 => 0.062192121007472
330 => 0.061973528439078
331 => 0.06169699684742
401 => 0.061169022730049
402 => 0.061012384087807
403 => 0.061521383684828
404 => 0.060946752816312
405 => 0.06179465196457
406 => 0.061564070312644
407 => 0.060276059948876
408 => 0.058670722153109
409 => 0.058656431279416
410 => 0.0583105638846
411 => 0.05787004975579
412 => 0.057747508802753
413 => 0.059535001686998
414 => 0.063235058462223
415 => 0.062508648782392
416 => 0.063033554221528
417 => 0.065615569464073
418 => 0.06643631446577
419 => 0.065853769103976
420 => 0.065056345082919
421 => 0.06509142769285
422 => 0.067816466969469
423 => 0.06798642432655
424 => 0.068415851737574
425 => 0.068967787316911
426 => 0.065947766119774
427 => 0.064949184966051
428 => 0.064476001816244
429 => 0.063018780859763
430 => 0.064590268728645
501 => 0.063674630045267
502 => 0.063798180986326
503 => 0.063717718273879
504 => 0.06376165635574
505 => 0.061428885021117
506 => 0.062278824288602
507 => 0.060865635407976
508 => 0.058973534134715
509 => 0.058967191147791
510 => 0.059430280253884
511 => 0.059154816732901
512 => 0.058413551480752
513 => 0.058518844711147
514 => 0.057596365218148
515 => 0.058630850423627
516 => 0.058660515757754
517 => 0.058262182604855
518 => 0.059855949795345
519 => 0.060508917513679
520 => 0.060246726099317
521 => 0.060490521465098
522 => 0.062538834384132
523 => 0.062872798764093
524 => 0.063021123681223
525 => 0.062822387941554
526 => 0.060527960865117
527 => 0.060629728462615
528 => 0.059883025356041
529 => 0.059252139916622
530 => 0.05927737202564
531 => 0.059601729150868
601 => 0.061018215740033
602 => 0.063999128260484
603 => 0.064112251711616
604 => 0.064249360634433
605 => 0.063691669739915
606 => 0.063523464829745
607 => 0.06374537052363
608 => 0.064864844537377
609 => 0.067744435634965
610 => 0.066726595819654
611 => 0.065899076206187
612 => 0.066625034004884
613 => 0.06651327849202
614 => 0.065569949496673
615 => 0.065543473393629
616 => 0.063732923451036
617 => 0.063063604361487
618 => 0.062504271232595
619 => 0.061893494057605
620 => 0.061531404874835
621 => 0.06208773842616
622 => 0.062214978491694
623 => 0.060998545458674
624 => 0.060832750131148
625 => 0.061826115604442
626 => 0.061388972496043
627 => 0.061838585023659
628 => 0.061942898986771
629 => 0.061926102036156
630 => 0.061469674425421
701 => 0.061760587773636
702 => 0.061072490979664
703 => 0.060324289065015
704 => 0.059846982858096
705 => 0.059430469887078
706 => 0.059661575491275
707 => 0.05883772621053
708 => 0.058574160244809
709 => 0.061662032877018
710 => 0.063943077590656
711 => 0.063909910297126
712 => 0.063708012927703
713 => 0.063408034390126
714 => 0.064842899238902
715 => 0.064343021016617
716 => 0.064706724189553
717 => 0.064799301911639
718 => 0.065079506793768
719 => 0.065179655954706
720 => 0.064876935632288
721 => 0.063860969256078
722 => 0.061329277641748
723 => 0.060150768361106
724 => 0.05976184066887
725 => 0.059775977451804
726 => 0.059386021869108
727 => 0.059500881264795
728 => 0.059346078458668
729 => 0.059052919394684
730 => 0.059643473745175
731 => 0.059711529632674
801 => 0.059573687190671
802 => 0.059606154075732
803 => 0.05846487752922
804 => 0.058551646306329
805 => 0.058068506729344
806 => 0.057977923882994
807 => 0.05675658910415
808 => 0.054592817508121
809 => 0.055791757014712
810 => 0.054343606687157
811 => 0.053795170215053
812 => 0.05639138317462
813 => 0.056130795401218
814 => 0.055684782407936
815 => 0.055025036233619
816 => 0.054780329959966
817 => 0.053293572105846
818 => 0.05320572652028
819 => 0.053942603858621
820 => 0.053602560321378
821 => 0.05312501041053
822 => 0.051395373041898
823 => 0.049450687976303
824 => 0.049509385794578
825 => 0.050127953931792
826 => 0.05192652421602
827 => 0.05122379169039
828 => 0.050713951180119
829 => 0.050618473378295
830 => 0.051813577964443
831 => 0.053504901335995
901 => 0.054298432420699
902 => 0.053512067215654
903 => 0.052608733209009
904 => 0.052663714964346
905 => 0.053029483950348
906 => 0.053067921099082
907 => 0.052479943524992
908 => 0.052645455768
909 => 0.052394027536114
910 => 0.050851012941131
911 => 0.05082310470006
912 => 0.050444424033979
913 => 0.050432957733907
914 => 0.049788727454585
915 => 0.049698595185155
916 => 0.048419436863578
917 => 0.049261382744488
918 => 0.048696649651716
919 => 0.04784546367384
920 => 0.047698718890423
921 => 0.047694307565034
922 => 0.048568285242611
923 => 0.049251169806471
924 => 0.048706473425648
925 => 0.048582456618231
926 => 0.049906631667024
927 => 0.049738118321942
928 => 0.049592186851895
929 => 0.053353461878669
930 => 0.050376119199027
1001 => 0.049077827849924
1002 => 0.047470945766569
1003 => 0.047994154675512
1004 => 0.048104402480164
1005 => 0.044240140731961
1006 => 0.042672410221978
1007 => 0.042134424189629
1008 => 0.041824805622007
1009 => 0.041965902691218
1010 => 0.040554761355785
1011 => 0.041503071671319
1012 => 0.040281142555642
1013 => 0.040076282162897
1014 => 0.042261242789699
1015 => 0.042565267296563
1016 => 0.041268204297268
1017 => 0.042101128718241
1018 => 0.041799098744681
1019 => 0.040302089023181
1020 => 0.040244914263078
1021 => 0.039493767407265
1022 => 0.038318368028611
1023 => 0.03778117897239
1024 => 0.037501406247821
1025 => 0.03761684592664
1026 => 0.037558476092517
1027 => 0.037177573441985
1028 => 0.037580308986576
1029 => 0.036551486091962
1030 => 0.036141800525537
1031 => 0.035956755059815
1101 => 0.035043615524008
1102 => 0.036496826600472
1103 => 0.036783127489606
1104 => 0.037069992479935
1105 => 0.039566956369697
1106 => 0.039442215110111
1107 => 0.04056981534531
1108 => 0.040525998873694
1109 => 0.040204389020703
1110 => 0.038847569953185
1111 => 0.039388373850523
1112 => 0.037723863514102
1113 => 0.03897102783385
1114 => 0.038401874121144
1115 => 0.038778596391067
1116 => 0.038101215782068
1117 => 0.038476106179448
1118 => 0.036851020051483
1119 => 0.035333537490767
1120 => 0.035944216771277
1121 => 0.036608094988837
1122 => 0.038047552117532
1123 => 0.037190223326945
1124 => 0.03749855117923
1125 => 0.036465704487532
1126 => 0.034334646744486
1127 => 0.034346708299879
1128 => 0.034018891493728
1129 => 0.033735609911176
1130 => 0.037288697851699
1201 => 0.036846815200287
1202 => 0.036142733027433
1203 => 0.037085174994911
1204 => 0.037334371609677
1205 => 0.037341465886971
1206 => 0.038029047218495
1207 => 0.038396009498385
1208 => 0.038460688190721
1209 => 0.039542612272052
1210 => 0.03990525895319
1211 => 0.04139894930912
1212 => 0.038364875312759
1213 => 0.038302390555432
1214 => 0.037098437086101
1215 => 0.0363348707621
1216 => 0.037150719125565
1217 => 0.037873449401187
1218 => 0.037120894330367
1219 => 0.037219162135312
1220 => 0.036208918438744
1221 => 0.036570033023883
1222 => 0.036881073551992
1223 => 0.036709335254488
1224 => 0.036452234710895
1225 => 0.037814193760493
1226 => 0.037737346693354
1227 => 0.039005634271643
1228 => 0.039994355135034
1229 => 0.041766319677226
1230 => 0.039917182302848
1231 => 0.03984979238727
]
'min_raw' => 0.033735609911176
'max_raw' => 0.097539569400822
'avg_raw' => 0.065637589655999
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.033735'
'max' => '$0.097539'
'avg' => '$0.065637'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0059320063558855
'max_diff' => -0.032948916362016
'year' => 2030
]
5 => [
'items' => [
101 => 0.040508539621725
102 => 0.039905158102421
103 => 0.040286474394599
104 => 0.041704883727429
105 => 0.041734852481531
106 => 0.041232837237755
107 => 0.041202289564548
108 => 0.04129870708356
109 => 0.041863427503962
110 => 0.041666096836968
111 => 0.041894452880614
112 => 0.042180015609906
113 => 0.043361224134346
114 => 0.043646009510625
115 => 0.042954128690554
116 => 0.043016597781945
117 => 0.042757815362686
118 => 0.042507834788215
119 => 0.043069754612894
120 => 0.044096674137057
121 => 0.044090285723995
122 => 0.044328511093138
123 => 0.044476923524548
124 => 0.043839828724395
125 => 0.04342510343612
126 => 0.0435841355013
127 => 0.043838431236791
128 => 0.043501670821593
129 => 0.041423029536388
130 => 0.0420535565182
131 => 0.041948605997232
201 => 0.041799143692955
202 => 0.042433143448887
203 => 0.042371992625775
204 => 0.04054028806176
205 => 0.040657547844997
206 => 0.040547419017555
207 => 0.040903267789258
208 => 0.039885941100953
209 => 0.040198863938476
210 => 0.040395126208701
211 => 0.040510726193621
212 => 0.040928352606805
213 => 0.040879348967444
214 => 0.040925306471778
215 => 0.041544536193245
216 => 0.044676387630442
217 => 0.044846847394128
218 => 0.044007441175009
219 => 0.044342767402992
220 => 0.04369901437305
221 => 0.04413117009482
222 => 0.04442684006409
223 => 0.043090764327024
224 => 0.043011650592935
225 => 0.042365240565243
226 => 0.042712584699589
227 => 0.042159935206917
228 => 0.04229553606156
301 => 0.041916384250508
302 => 0.042598782022029
303 => 0.043361808764484
304 => 0.043554579452467
305 => 0.043047482765382
306 => 0.042680311344633
307 => 0.042035679283583
308 => 0.043107716767672
309 => 0.04342121319777
310 => 0.043106070104384
311 => 0.043033044563634
312 => 0.042894661295867
313 => 0.043062403228071
314 => 0.043419505828885
315 => 0.043251102836991
316 => 0.043362335980016
317 => 0.042938429941923
318 => 0.043840039629283
319 => 0.045272012796998
320 => 0.045276616824883
321 => 0.045108212925234
322 => 0.04503930567781
323 => 0.045212098298453
324 => 0.045305831206828
325 => 0.045864610857241
326 => 0.046464203684897
327 => 0.049262241788722
328 => 0.048476563885699
329 => 0.050959149747444
330 => 0.052922552840657
331 => 0.053511291579099
401 => 0.05296967964203
402 => 0.051116854462619
403 => 0.051025946019948
404 => 0.053794849080602
405 => 0.053012507142173
406 => 0.052919450057988
407 => 0.051929479904687
408 => 0.052514674875477
409 => 0.052386684151073
410 => 0.052184644531081
411 => 0.053301155770312
412 => 0.055391165138506
413 => 0.05506541757849
414 => 0.054822262135931
415 => 0.053756825768127
416 => 0.054398456435373
417 => 0.054169984044393
418 => 0.055151646428207
419 => 0.05457013137852
420 => 0.053006580132534
421 => 0.05325558082199
422 => 0.053217944868698
423 => 0.053992490120522
424 => 0.05375999086132
425 => 0.05317254565686
426 => 0.055384021713699
427 => 0.055240420759444
428 => 0.055444014080829
429 => 0.055533642157236
430 => 0.056879728662455
501 => 0.057431177233679
502 => 0.057556365713813
503 => 0.058080199205913
504 => 0.057543332259328
505 => 0.059691182825313
506 => 0.061119378121138
507 => 0.062778300451497
508 => 0.065202431852438
509 => 0.06611392768366
510 => 0.065949274120233
511 => 0.067787222882197
512 => 0.07108997595214
513 => 0.066616854944993
514 => 0.071327062227105
515 => 0.069835864983546
516 => 0.066300263144562
517 => 0.066072612068139
518 => 0.06846696268268
519 => 0.073777401898028
520 => 0.072447197105086
521 => 0.073779577636536
522 => 0.072225284973041
523 => 0.072148101241691
524 => 0.073704089111117
525 => 0.077339739580512
526 => 0.075612578322822
527 => 0.073136269142609
528 => 0.07496473730564
529 => 0.073380748966082
530 => 0.069811579906638
531 => 0.072446179922551
601 => 0.070684497920999
602 => 0.071198650385218
603 => 0.074901443922059
604 => 0.07445591400733
605 => 0.075032470971949
606 => 0.074014863020519
607 => 0.073064256731839
608 => 0.071289879501067
609 => 0.070764573878776
610 => 0.070909749454261
611 => 0.070764501936971
612 => 0.069771754183723
613 => 0.069557370400929
614 => 0.069200054703904
615 => 0.069310801779451
616 => 0.06863894373265
617 => 0.06990687867992
618 => 0.070142218579138
619 => 0.071064915896761
620 => 0.071160713393207
621 => 0.073730412289013
622 => 0.072315065319239
623 => 0.073264602261742
624 => 0.073179666740216
625 => 0.066376890357295
626 => 0.067314252921457
627 => 0.068772494910717
628 => 0.068115558871156
629 => 0.067186805010575
630 => 0.066436786471525
701 => 0.065300431691531
702 => 0.066899829222612
703 => 0.069002866899019
704 => 0.071214049899221
705 => 0.073870641391516
706 => 0.07327772109657
707 => 0.07116438676916
708 => 0.071259189403295
709 => 0.071845221984062
710 => 0.071086256545295
711 => 0.070862422820637
712 => 0.071814470667495
713 => 0.07182102689778
714 => 0.070947745436441
715 => 0.069977252900982
716 => 0.069973186501823
717 => 0.069800496728984
718 => 0.072256006099997
719 => 0.073606287974054
720 => 0.073761095614827
721 => 0.073595868186387
722 => 0.073659457665952
723 => 0.072873758394868
724 => 0.074669633936684
725 => 0.076317706927536
726 => 0.075875988160044
727 => 0.07521378893355
728 => 0.074686315353811
729 => 0.075751732148009
730 => 0.075704290815285
731 => 0.076303312447709
801 => 0.076276137366345
802 => 0.076074708921704
803 => 0.075875995353688
804 => 0.07666387218931
805 => 0.076436976313566
806 => 0.076209728005856
807 => 0.075753946734769
808 => 0.075815894979235
809 => 0.075153810090774
810 => 0.074847499326428
811 => 0.070241320372963
812 => 0.069010398845358
813 => 0.069397671815661
814 => 0.069525172133023
815 => 0.06898947350674
816 => 0.069757527727143
817 => 0.069637827290464
818 => 0.070103511667169
819 => 0.069812572286269
820 => 0.069824512539945
821 => 0.070680103224356
822 => 0.070928484839983
823 => 0.07080215594559
824 => 0.070890632372922
825 => 0.072929534297226
826 => 0.072639667644003
827 => 0.072485681761735
828 => 0.072528336903482
829 => 0.073049320059692
830 => 0.073195166898805
831 => 0.072577203593007
901 => 0.072868638660425
902 => 0.074109532188871
903 => 0.074543774695337
904 => 0.075929668327746
905 => 0.075340916080403
906 => 0.076421596311
907 => 0.079743238908817
908 => 0.082396796856137
909 => 0.079956475304861
910 => 0.084829396546549
911 => 0.088623664712238
912 => 0.088478034380355
913 => 0.087816415962663
914 => 0.083496742531864
915 => 0.079521714638139
916 => 0.082846994259839
917 => 0.082855471081445
918 => 0.082569826612896
919 => 0.080795713351097
920 => 0.082508091316999
921 => 0.082644013661489
922 => 0.082567933293244
923 => 0.081207724815051
924 => 0.079130937877398
925 => 0.07953673707389
926 => 0.080201444435823
927 => 0.078943014727201
928 => 0.078540870184352
929 => 0.079288533400639
930 => 0.081697660065332
1001 => 0.081242228624492
1002 => 0.081230335469029
1003 => 0.083178864305929
1004 => 0.08178413817755
1005 => 0.079541855501306
1006 => 0.07897564955348
1007 => 0.076965999880724
1008 => 0.078354072067823
1009 => 0.0784040263147
1010 => 0.077643793363579
1011 => 0.079603544215407
1012 => 0.0795854847663
1013 => 0.08144597652969
1014 => 0.085002538012497
1015 => 0.083950687774269
1016 => 0.082727500388191
1017 => 0.082860494772365
1018 => 0.084319114908644
1019 => 0.083437199877191
1020 => 0.083754342671431
1021 => 0.084318634875041
1022 => 0.084659086372066
1023 => 0.082811509041194
1024 => 0.082380750385529
1025 => 0.08149956935178
1026 => 0.081269685668098
1027 => 0.081987389233641
1028 => 0.081798299700962
1029 => 0.078399827853682
1030 => 0.078044668636722
1031 => 0.078055560862856
1101 => 0.077162496124911
1102 => 0.075800358039448
1103 => 0.079379975599005
1104 => 0.079092482212257
1105 => 0.078775111763508
1106 => 0.078813987832589
1107 => 0.080367778490696
1108 => 0.079466501440685
1109 => 0.081862694194544
1110 => 0.081370109000498
1111 => 0.080864890854919
1112 => 0.080795054317879
1113 => 0.080600588435017
1114 => 0.079933692565118
1115 => 0.079128375727986
1116 => 0.078596635796761
1117 => 0.072501241920063
1118 => 0.073632511568303
1119 => 0.07493393418013
1120 => 0.075383180050609
1121 => 0.074614713902287
1122 => 0.07996403629251
1123 => 0.080941409040557
1124 => 0.077980883234276
1125 => 0.077427089733393
1126 => 0.080000342902231
1127 => 0.078448356674016
1128 => 0.079147215977552
1129 => 0.077636664418908
1130 => 0.080705988566367
1201 => 0.080682605458888
1202 => 0.079488569041696
1203 => 0.080497760445098
1204 => 0.080322388603776
1205 => 0.078974324429549
1206 => 0.080748724605189
1207 => 0.080749604685538
1208 => 0.079600370594582
1209 => 0.078258316776036
1210 => 0.078018389251177
1211 => 0.077837636090923
1212 => 0.079102761780499
1213 => 0.080237069517829
1214 => 0.082347734998263
1215 => 0.082878406448219
1216 => 0.084949652446196
1217 => 0.083716326301538
1218 => 0.084263043807217
1219 => 0.084856582997545
1220 => 0.085141147512069
1221 => 0.084677464906226
1222 => 0.08789496249995
1223 => 0.088166617878439
1224 => 0.088257701577036
1225 => 0.087172779491479
1226 => 0.08813644423263
1227 => 0.087685577413467
1228 => 0.088858607622519
1229 => 0.089042553737299
1230 => 0.088886757922153
1231 => 0.088945145322376
]
'min_raw' => 0.039885941100953
'max_raw' => 0.089042553737299
'avg_raw' => 0.064464247419126
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.039885'
'max' => '$0.089042'
'avg' => '$0.064464'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0061503311897765
'max_diff' => -0.0084970156635229
'year' => 2031
]
6 => [
'items' => [
101 => 0.086199578731603
102 => 0.086057206619854
103 => 0.08411595277389
104 => 0.084907028065144
105 => 0.08342815072537
106 => 0.083897117963937
107 => 0.084103834254214
108 => 0.083995857395219
109 => 0.084951754275192
110 => 0.084139046650384
111 => 0.081994177607013
112 => 0.079848724195505
113 => 0.079821789775572
114 => 0.07925692976272
115 => 0.078848639432699
116 => 0.078927290635139
117 => 0.079204467731173
118 => 0.078832529395998
119 => 0.07891190129756
120 => 0.080230003715703
121 => 0.080494339755385
122 => 0.079596022609787
123 => 0.075989149643665
124 => 0.075104013970623
125 => 0.075740231939402
126 => 0.075436160728011
127 => 0.060882869258454
128 => 0.064301949217202
129 => 0.062270448006698
130 => 0.063206657229375
131 => 0.061133020548139
201 => 0.062122668661035
202 => 0.061939916790746
203 => 0.067437696186482
204 => 0.067351855923166
205 => 0.06739294311465
206 => 0.065431744413021
207 => 0.068555987197064
208 => 0.07009510153662
209 => 0.069810252434569
210 => 0.069881942816723
211 => 0.068650064529734
212 => 0.067404870389221
213 => 0.066023758453387
214 => 0.068589693719572
215 => 0.068304405519948
216 => 0.068958754006431
217 => 0.070622946443392
218 => 0.070868005101387
219 => 0.071197366422872
220 => 0.071079313834655
221 => 0.0738918054287
222 => 0.073551194139244
223 => 0.074371969346277
224 => 0.072683572473046
225 => 0.070772991146882
226 => 0.071136130195376
227 => 0.071101156984827
228 => 0.070655907874145
229 => 0.070253956885455
301 => 0.069584821738274
302 => 0.071702064357322
303 => 0.071616108173528
304 => 0.073007638876025
305 => 0.07276167230775
306 => 0.071119047366585
307 => 0.07117771403771
308 => 0.071572275595267
309 => 0.072937857650995
310 => 0.073343255381051
311 => 0.073155459000183
312 => 0.07359995910408
313 => 0.073951273862472
314 => 0.073644078828797
315 => 0.077993312688636
316 => 0.076187207562504
317 => 0.077067490634182
318 => 0.077277432959848
319 => 0.076739670107266
320 => 0.076856291614147
321 => 0.077032941419613
322 => 0.078105524446827
323 => 0.080920292664635
324 => 0.082166934347528
325 => 0.085917517358726
326 => 0.082063418109854
327 => 0.081834731810274
328 => 0.082510325067347
329 => 0.084712314334452
330 => 0.086496819813105
331 => 0.087088843230966
401 => 0.087167088898877
402 => 0.088277764187756
403 => 0.088914382550473
404 => 0.088142898994026
405 => 0.087489147457632
406 => 0.085147490600897
407 => 0.085418543758184
408 => 0.087285831221409
409 => 0.089923484745896
410 => 0.092186865870982
411 => 0.091394308687773
412 => 0.097440960537483
413 => 0.098040461370024
414 => 0.097957629739149
415 => 0.099323381853363
416 => 0.09661264203723
417 => 0.095453748247723
418 => 0.087630495960196
419 => 0.089828510746677
420 => 0.093023454323709
421 => 0.092600591560866
422 => 0.090280338134138
423 => 0.092185105750696
424 => 0.091555330009071
425 => 0.091058599752232
426 => 0.093334217354709
427 => 0.090832082323567
428 => 0.09299849361274
429 => 0.09022004872572
430 => 0.091397929022226
501 => 0.09072930719827
502 => 0.091161987461578
503 => 0.088632547483389
504 => 0.089997371896935
505 => 0.088575766300659
506 => 0.088575092274508
507 => 0.088543710252177
508 => 0.090216222931832
509 => 0.090270763510271
510 => 0.089034774112979
511 => 0.088856648731046
512 => 0.089515271627344
513 => 0.088744196709389
514 => 0.089104977810413
515 => 0.088755124401406
516 => 0.088676365029998
517 => 0.08804879695882
518 => 0.087778423378412
519 => 0.087884443825959
520 => 0.087522541381196
521 => 0.087304482067642
522 => 0.088500332766238
523 => 0.087861437978458
524 => 0.08840241297697
525 => 0.087785903689678
526 => 0.085648813899614
527 => 0.084419750962033
528 => 0.08038298645693
529 => 0.081527807862987
530 => 0.082286825639605
531 => 0.082035970268961
601 => 0.082574904673247
602 => 0.082607990868626
603 => 0.082432777800007
604 => 0.08222990351273
605 => 0.082131155529335
606 => 0.082867142094854
607 => 0.083294407068307
608 => 0.082363003227837
609 => 0.082144788339739
610 => 0.08308648904667
611 => 0.083660925933894
612 => 0.087902245160956
613 => 0.087588034533335
614 => 0.088376641547943
615 => 0.088287856500259
616 => 0.089114442286518
617 => 0.090465560705834
618 => 0.087718359180713
619 => 0.088195178374393
620 => 0.088078273319466
621 => 0.089354612055007
622 => 0.089358596645223
623 => 0.088593367815417
624 => 0.089008210778475
625 => 0.088776656817117
626 => 0.089195106121685
627 => 0.087583838058838
628 => 0.089546188633746
629 => 0.090658714958641
630 => 0.090674162387742
701 => 0.091201491036187
702 => 0.091737287483823
703 => 0.092765702107025
704 => 0.091708605558155
705 => 0.089806991773013
706 => 0.089944282146125
707 => 0.088829366679669
708 => 0.088848108610086
709 => 0.088748062716689
710 => 0.089048307973879
711 => 0.087649725008536
712 => 0.087977969635054
713 => 0.08751842523573
714 => 0.088194179414616
715 => 0.087467179624303
716 => 0.088078216944309
717 => 0.088341920395415
718 => 0.089314991807128
719 => 0.087323456185612
720 => 0.083262580238233
721 => 0.084116225595734
722 => 0.082853617059594
723 => 0.082970476286704
724 => 0.083206550523473
725 => 0.08244135668342
726 => 0.082587331554073
727 => 0.082582116304484
728 => 0.082537174101031
729 => 0.082338117630045
730 => 0.082049446364993
731 => 0.083199423836631
801 => 0.083394827417844
802 => 0.083829185373498
803 => 0.085121540021709
804 => 0.084992403316532
805 => 0.085203030640507
806 => 0.084743232374891
807 => 0.082991805009512
808 => 0.083086915941824
809 => 0.081900881091852
810 => 0.083798855795814
811 => 0.083349390333874
812 => 0.083059617026615
813 => 0.082980549694999
814 => 0.084276107840413
815 => 0.084663759142907
816 => 0.084422200865504
817 => 0.08392675779117
818 => 0.084878154958488
819 => 0.085132708704238
820 => 0.085189693900331
821 => 0.086875387268505
822 => 0.085283905433894
823 => 0.085666990929454
824 => 0.088655714609235
825 => 0.085945354647349
826 => 0.0873810927674
827 => 0.087310820857644
828 => 0.088045295897133
829 => 0.087250572466686
830 => 0.087260424016074
831 => 0.087912588093491
901 => 0.08699674126517
902 => 0.086769964710894
903 => 0.086456674525367
904 => 0.087140732183973
905 => 0.087550793813041
906 => 0.090855589386244
907 => 0.092990638043522
908 => 0.092897949950519
909 => 0.093744945615724
910 => 0.093363366310958
911 => 0.092131146080335
912 => 0.09423439576076
913 => 0.093568839558169
914 => 0.09362370720286
915 => 0.093621665026384
916 => 0.094064201717174
917 => 0.093750623913857
918 => 0.093132529875419
919 => 0.093542849543375
920 => 0.09476135226524
921 => 0.098543622102139
922 => 0.10066023041128
923 => 0.098416199624237
924 => 0.099964102012368
925 => 0.099035912153505
926 => 0.098867232444893
927 => 0.099839429533727
928 => 0.10081332832487
929 => 0.10075129518215
930 => 0.10004429467004
1001 => 0.099644928020222
1002 => 0.10266906609029
1003 => 0.10489719950546
1004 => 0.10474525574414
1005 => 0.10541588609185
1006 => 0.10738487753452
1007 => 0.10756489743584
1008 => 0.10754221906598
1009 => 0.10709602095744
1010 => 0.1090347487386
1011 => 0.11065206956232
1012 => 0.10699273898722
1013 => 0.10838616416606
1014 => 0.1090117176222
1015 => 0.10993021568916
1016 => 0.11147987588627
1017 => 0.11316321788739
1018 => 0.11340126090326
1019 => 0.1132323579921
1020 => 0.11212214869169
1021 => 0.11396408159577
1022 => 0.11504304269234
1023 => 0.11568553933376
1024 => 0.11731480391516
1025 => 0.10901558082738
1026 => 0.1031409782277
1027 => 0.10222357420147
1028 => 0.10408915136394
1029 => 0.10458108918399
1030 => 0.10438278966556
1031 => 0.097770390344126
1101 => 0.10218876128751
1102 => 0.10694255691542
1103 => 0.10712516956593
1104 => 0.10950501905444
1105 => 0.11027999560122
1106 => 0.11219608637347
1107 => 0.11207623437397
1108 => 0.11254277198535
1109 => 0.1124355230678
1110 => 0.11598467774289
1111 => 0.11989992240407
1112 => 0.11976434993117
1113 => 0.11920148718805
1114 => 0.12003743434394
1115 => 0.1240783864174
1116 => 0.12370636030542
1117 => 0.1240677519841
1118 => 0.12883226221679
1119 => 0.13502680326296
1120 => 0.13214881702526
1121 => 0.13839321904284
1122 => 0.14232373911138
1123 => 0.14912116714655
1124 => 0.14827009567851
1125 => 0.15091628453077
1126 => 0.14674650012674
1127 => 0.13717183228261
1128 => 0.13565660444592
1129 => 0.13869012894665
1130 => 0.14614775292471
1201 => 0.13845526182815
1202 => 0.14001144275827
1203 => 0.1395632625457
1204 => 0.13953938092682
1205 => 0.14045084518606
1206 => 0.13912871873925
1207 => 0.13374213774893
1208 => 0.13621077607347
1209 => 0.13525751626261
1210 => 0.13631522909299
1211 => 0.14202326900455
1212 => 0.13949960849697
1213 => 0.13684113715777
1214 => 0.14017545017914
1215 => 0.14442117644961
1216 => 0.14415548652991
1217 => 0.14363993703592
1218 => 0.14654606254027
1219 => 0.15134613045857
1220 => 0.15264356952866
1221 => 0.15360131252522
1222 => 0.15373336910324
1223 => 0.15509363392961
1224 => 0.14777914712736
1225 => 0.15938742553187
1226 => 0.16139185454011
1227 => 0.16101510496163
1228 => 0.16324294344502
1229 => 0.1625874568484
1230 => 0.1616377596126
1231 => 0.1651693574836
]
'min_raw' => 0.060882869258454
'max_raw' => 0.1651693574836
'avg_raw' => 0.11302611337103
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.060882'
'max' => '$0.165169'
'avg' => '$0.113026'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.020996928157501
'max_diff' => 0.076126803746305
'year' => 2032
]
7 => [
'items' => [
101 => 0.16112066550974
102 => 0.155374056969
103 => 0.15222135386851
104 => 0.15637308763253
105 => 0.15890840656668
106 => 0.16058409110558
107 => 0.16109115223458
108 => 0.14834694991615
109 => 0.14147853169238
110 => 0.14588110902724
111 => 0.15125255722543
112 => 0.14774930846141
113 => 0.14788662918043
114 => 0.14289191708053
115 => 0.15169447841757
116 => 0.15041201927196
117 => 0.15706541958803
118 => 0.15547753220573
119 => 0.16090312187997
120 => 0.15947438228743
121 => 0.16540500045631
122 => 0.16777088460895
123 => 0.1717435723217
124 => 0.17466589757495
125 => 0.17638194285883
126 => 0.17627891793671
127 => 0.18307874428182
128 => 0.17906912425395
129 => 0.17403209650406
130 => 0.17394099256368
131 => 0.17654974061059
201 => 0.18201696084182
202 => 0.18343453150296
203 => 0.18422676011399
204 => 0.18301343441852
205 => 0.17866127925032
206 => 0.17678204071462
207 => 0.17838320639382
208 => 0.17642511835789
209 => 0.17980532765037
210 => 0.18444707698268
211 => 0.18348857410102
212 => 0.18669270552761
213 => 0.19000864446968
214 => 0.19475058608497
215 => 0.1959903052168
216 => 0.19803951379942
217 => 0.20014882256088
218 => 0.20082627568759
219 => 0.20211974390786
220 => 0.20211292669186
221 => 0.20601088023407
222 => 0.21031044370071
223 => 0.21193342937424
224 => 0.21566539543857
225 => 0.20927453433709
226 => 0.21412207589548
227 => 0.21849467972299
228 => 0.21328148117854
301 => 0.22046666085259
302 => 0.22074564509736
303 => 0.22495797596813
304 => 0.22068797164566
305 => 0.21815245670931
306 => 0.22547239332604
307 => 0.22901428007903
308 => 0.2279474349642
309 => 0.21982869096369
310 => 0.21510323372608
311 => 0.20273580066264
312 => 0.21738555935964
313 => 0.22452102948163
314 => 0.21981021181988
315 => 0.22218607423656
316 => 0.23514800920603
317 => 0.24008307481927
318 => 0.23905661567043
319 => 0.23923007036963
320 => 0.24189294219675
321 => 0.25370158234852
322 => 0.24662557144745
323 => 0.25203491664825
324 => 0.25490401383791
325 => 0.25756899120419
326 => 0.25102464906735
327 => 0.2425105561028
328 => 0.23981378546362
329 => 0.21934181384348
330 => 0.21827615881539
331 => 0.21767797435547
401 => 0.21390650595053
402 => 0.21094316487639
403 => 0.20858660603244
404 => 0.20240229189786
405 => 0.20448931637583
406 => 0.19463281041199
407 => 0.20093865363453
408 => 0.18520743212257
409 => 0.1983088608535
410 => 0.19117834884413
411 => 0.19596629588392
412 => 0.19594959118775
413 => 0.1871334626675
414 => 0.18204850372493
415 => 0.1852888374727
416 => 0.18876273246832
417 => 0.18932636024377
418 => 0.19383035578353
419 => 0.19508732412562
420 => 0.19127865136685
421 => 0.18488143752272
422 => 0.1863673643938
423 => 0.18201839146431
424 => 0.17439698368622
425 => 0.17987081180946
426 => 0.18173981739797
427 => 0.18256527674075
428 => 0.17507049751559
429 => 0.17271547516348
430 => 0.17146168102376
501 => 0.18391395564016
502 => 0.18459611935306
503 => 0.1811060733496
504 => 0.19688141222498
505 => 0.19331096718426
506 => 0.19730002907502
507 => 0.186232532105
508 => 0.18665532539361
509 => 0.18141579496349
510 => 0.18434958189881
511 => 0.1822760758533
512 => 0.18411256090668
513 => 0.18521334247557
514 => 0.1904520131503
515 => 0.19836867805762
516 => 0.18966953044577
517 => 0.1858791872572
518 => 0.18823069485369
519 => 0.19449306946119
520 => 0.20398088755661
521 => 0.19836390828399
522 => 0.20085662830268
523 => 0.20140117673337
524 => 0.19725942416962
525 => 0.20413359988137
526 => 0.207817526491
527 => 0.21159647291128
528 => 0.21487762620434
529 => 0.21008707861021
530 => 0.21521365123395
531 => 0.2110825386611
601 => 0.20737650361669
602 => 0.20738212414207
603 => 0.20505727422218
604 => 0.20055258455245
605 => 0.19972185066301
606 => 0.20404343326599
607 => 0.20750893325818
608 => 0.20779436843616
609 => 0.20971304729566
610 => 0.21084850168075
611 => 0.22197749822997
612 => 0.22645367270596
613 => 0.23192705412555
614 => 0.23405924465136
615 => 0.24047637370142
616 => 0.23529402081975
617 => 0.23417278617528
618 => 0.21860693012674
619 => 0.22115583818267
620 => 0.22523688591327
621 => 0.21867422510068
622 => 0.22283672286997
623 => 0.22365848810339
624 => 0.2184512283975
625 => 0.22123265079882
626 => 0.21384601753517
627 => 0.19852968647742
628 => 0.20415065133624
629 => 0.20828957346864
630 => 0.20238282126029
701 => 0.21297044597088
702 => 0.20678537418789
703 => 0.20482500336848
704 => 0.19717689787933
705 => 0.20078650926763
706 => 0.20566856035497
707 => 0.20265202038235
708 => 0.20891179376129
709 => 0.21777730228645
710 => 0.22409539161164
711 => 0.224580416058
712 => 0.22051830790102
713 => 0.22702786214662
714 => 0.22707527714265
715 => 0.21973247336131
716 => 0.21523504693013
717 => 0.21421322218231
718 => 0.21676594074292
719 => 0.21986541233336
720 => 0.22475241516005
721 => 0.22770552861707
722 => 0.23540568230262
723 => 0.23748912310923
724 => 0.2397781928959
725 => 0.24283709605388
726 => 0.2465100935817
727 => 0.23847378409469
728 => 0.23879308165217
729 => 0.23130978152814
730 => 0.22331280213183
731 => 0.22938151265608
801 => 0.2373155443798
802 => 0.23549546873605
803 => 0.23529067304536
804 => 0.23563508259152
805 => 0.23426280499425
806 => 0.22805604428076
807 => 0.22493904790683
808 => 0.22896076845979
809 => 0.2310981339475
810 => 0.23441300142107
811 => 0.23400437403659
812 => 0.24254311665775
813 => 0.24586101384215
814 => 0.24501215376156
815 => 0.24516836444535
816 => 0.25117525881429
817 => 0.2578561607646
818 => 0.26411370706373
819 => 0.27047915192707
820 => 0.26280535969677
821 => 0.25890908125594
822 => 0.26292904605151
823 => 0.26079599614588
824 => 0.27305313360734
825 => 0.27390179121124
826 => 0.28615804234216
827 => 0.29779068411264
828 => 0.29048443023703
829 => 0.29737389856083
830 => 0.30482542025961
831 => 0.31920061458239
901 => 0.31435955485991
902 => 0.31065137898157
903 => 0.30714717069432
904 => 0.3144388718627
905 => 0.32381952892805
906 => 0.32584003261311
907 => 0.32911402047472
908 => 0.32567182256242
909 => 0.32981757080212
910 => 0.34445388382234
911 => 0.34049902284597
912 => 0.33488248448389
913 => 0.34643644792691
914 => 0.35061778238204
915 => 0.37996457737001
916 => 0.41701611829795
917 => 0.40167653706025
918 => 0.39215476398081
919 => 0.39439260651396
920 => 0.40792257498703
921 => 0.41226797144085
922 => 0.40045568593139
923 => 0.40462798486752
924 => 0.42761776221695
925 => 0.43995104016455
926 => 0.42320079213149
927 => 0.37698752213273
928 => 0.33437677665626
929 => 0.3456790651435
930 => 0.34439773637989
1001 => 0.36909738410873
1002 => 0.34040470071964
1003 => 0.34088781192142
1004 => 0.36609822220791
1005 => 0.35937251695932
1006 => 0.34847773581986
1007 => 0.33445632061547
1008 => 0.30853643778622
1009 => 0.28557847473495
1010 => 0.33060432718162
1011 => 0.32866273054992
1012 => 0.32585101089872
1013 => 0.33210818872263
1014 => 0.3624912681046
1015 => 0.36179083978442
1016 => 0.35733507217307
1017 => 0.36071473263494
1018 => 0.34788526500048
1019 => 0.35119171093143
1020 => 0.33437002689648
1021 => 0.34197413061585
1022 => 0.34845436051263
1023 => 0.34975536260585
1024 => 0.3526865867527
1025 => 0.32763959735185
1026 => 0.33888496025185
1027 => 0.3454905574076
1028 => 0.31564622914427
1029 => 0.34490063099466
1030 => 0.3272035849909
1031 => 0.32119694177651
1101 => 0.32928409554962
1102 => 0.32613252385922
1103 => 0.32342298758632
1104 => 0.3219110197903
1105 => 0.32784933297468
1106 => 0.32757230356681
1107 => 0.31785607062024
1108 => 0.30518164082577
1109 => 0.30943559548877
1110 => 0.30789009387867
1111 => 0.30228899666997
1112 => 0.30606345990958
1113 => 0.28944263401448
1114 => 0.26084736693732
1115 => 0.27973827626521
1116 => 0.27901099680545
1117 => 0.27864426952233
1118 => 0.29284026577586
1119 => 0.29147564829344
1120 => 0.28899885420047
1121 => 0.30224350840413
1122 => 0.29740903145406
1123 => 0.31230775026815
1124 => 0.32212101006783
1125 => 0.31963204995694
1126 => 0.32886146823014
1127 => 0.30953359801243
1128 => 0.31595354119919
1129 => 0.31727668259233
1130 => 0.30208007142717
1201 => 0.29169891659007
1202 => 0.29100661191626
1203 => 0.27300712003999
1204 => 0.28262230331347
1205 => 0.29108326669082
1206 => 0.28703112183035
1207 => 0.28574833382191
1208 => 0.29230181955426
1209 => 0.29281108152247
1210 => 0.28119985467806
1211 => 0.28361419641874
1212 => 0.29368240282833
1213 => 0.28336050344958
1214 => 0.26330673902937
1215 => 0.25833312818817
1216 => 0.25766955682012
1217 => 0.24418072975674
1218 => 0.25866548864682
1219 => 0.2523425032239
1220 => 0.27231673841392
1221 => 0.26090756239735
1222 => 0.26041573562251
1223 => 0.25967226731703
1224 => 0.24806187664715
1225 => 0.25060381432504
1226 => 0.25905360231436
1227 => 0.26206858186263
1228 => 0.26175409479474
1229 => 0.25901219374345
1230 => 0.26026742200393
1231 => 0.25622389442641
]
'min_raw' => 0.14147853169238
'max_raw' => 0.43995104016455
'avg_raw' => 0.29071478592847
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.141478'
'max' => '$0.439951'
'avg' => '$0.290714'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.080595662433926
'max_diff' => 0.27478168268095
'year' => 2033
]
8 => [
'items' => [
101 => 0.25479604068004
102 => 0.25028934149438
103 => 0.24366573869889
104 => 0.24458679129252
105 => 0.2314637009947
106 => 0.22431354490534
107 => 0.22233447593734
108 => 0.21968798220235
109 => 0.22263340444676
110 => 0.23142652492872
111 => 0.2208201560629
112 => 0.20263628059272
113 => 0.2037291624923
114 => 0.20618454364109
115 => 0.20160895711428
116 => 0.19727854846653
117 => 0.20104348744859
118 => 0.19333873969809
119 => 0.20711562559687
120 => 0.20674299944259
121 => 0.21187817054875
122 => 0.21508929842575
123 => 0.20768868828426
124 => 0.20582745484705
125 => 0.20688769800122
126 => 0.1893642403835
127 => 0.21044613020966
128 => 0.21062844726832
129 => 0.20906733792417
130 => 0.22029279342627
131 => 0.24398200584309
201 => 0.23506917123552
202 => 0.23161785228362
203 => 0.22505689243315
204 => 0.23379898188265
205 => 0.23312772581077
206 => 0.23009205128741
207 => 0.22825606586381
208 => 0.23163892530119
209 => 0.22783689214307
210 => 0.22715394251499
211 => 0.22301601082533
212 => 0.22153895747602
213 => 0.22044540597938
214 => 0.21924151323173
215 => 0.22189700064167
216 => 0.21587931681228
217 => 0.20862258003487
218 => 0.2080192608908
219 => 0.20968507809192
220 => 0.20894807798593
221 => 0.20801573241784
222 => 0.20623563081915
223 => 0.20570751270067
224 => 0.20742364037924
225 => 0.20548623228659
226 => 0.20834498346337
227 => 0.20756756132521
228 => 0.20322494445775
301 => 0.19781243599822
302 => 0.19776425331981
303 => 0.19659813725049
304 => 0.1951129131095
305 => 0.1946997577308
306 => 0.20072641478879
307 => 0.21320141453618
308 => 0.21075227358433
309 => 0.2125220289201
310 => 0.22122747358089
311 => 0.2239946726567
312 => 0.22203058029739
313 => 0.21934200953603
314 => 0.2194602930048
315 => 0.22864795318209
316 => 0.22922097627753
317 => 0.23066882077546
318 => 0.23252971011611
319 => 0.22234749779881
320 => 0.21898071172033
321 => 0.21738534169416
322 => 0.21247221949947
323 => 0.21777060056718
324 => 0.21468346081832
325 => 0.21510002144215
326 => 0.21482873578941
327 => 0.21497687610007
328 => 0.20711177467649
329 => 0.20997740425768
330 => 0.20521273928095
331 => 0.19883338773586
401 => 0.19881200191259
402 => 0.20037333916563
403 => 0.19944459467239
404 => 0.19694536712128
405 => 0.1973003705989
406 => 0.19419016658279
407 => 0.19767800567851
408 => 0.19777802442369
409 => 0.19643501638796
410 => 0.20180851374397
411 => 0.20401003999508
412 => 0.20312604333594
413 => 0.20394801643292
414 => 0.21085404644808
415 => 0.21198003067177
416 => 0.21248011848559
417 => 0.21181006706401
418 => 0.20407424598402
419 => 0.20441736254417
420 => 0.20189980088721
421 => 0.19977272658119
422 => 0.1998577983984
423 => 0.200951391092
424 => 0.2057271745233
425 => 0.21577752920667
426 => 0.21615893282019
427 => 0.2166212051261
428 => 0.2147409113385
429 => 0.21417379674017
430 => 0.21492196728007
501 => 0.21869635207659
502 => 0.22840509450874
503 => 0.22497337650811
504 => 0.22218333635573
505 => 0.2246309537588
506 => 0.22425416224465
507 => 0.22107366267572
508 => 0.2209843966458
509 => 0.21488000110579
510 => 0.21262334506501
511 => 0.21073751436955
512 => 0.20867823648098
513 => 0.20745742752101
514 => 0.20933314493127
515 => 0.20976214369583
516 => 0.20566085479636
517 => 0.20510186427415
518 => 0.20845106532192
519 => 0.2069772068116
520 => 0.2084931068394
521 => 0.208844808649
522 => 0.20878817655728
523 => 0.20724929900092
524 => 0.20823013366535
525 => 0.20591016728309
526 => 0.20338755229007
527 => 0.20177828108898
528 => 0.20037397852719
529 => 0.20115316720702
530 => 0.19837550183766
531 => 0.19748687078265
601 => 0.20789784895052
602 => 0.21558855046001
603 => 0.21547672461421
604 => 0.21479601353717
605 => 0.2137846149539
606 => 0.21862236197061
607 => 0.2169369876438
608 => 0.21816323828429
609 => 0.21847537053788
610 => 0.21942010086126
611 => 0.21975776074955
612 => 0.21873711804726
613 => 0.21531171647736
614 => 0.20677594144258
615 => 0.20280251512201
616 => 0.20149121825357
617 => 0.20153888140423
618 => 0.20022411893134
619 => 0.20061137540313
620 => 0.20008944693428
621 => 0.19910104068235
622 => 0.20109213590622
623 => 0.20132159108243
624 => 0.20085684566536
625 => 0.20096631003511
626 => 0.19711841647717
627 => 0.19741096346719
628 => 0.19578202465166
629 => 0.19547661826089
630 => 0.19135880278315
701 => 0.18406349577743
702 => 0.18810580403119
703 => 0.18322326409521
704 => 0.1813741722389
705 => 0.19012748549388
706 => 0.1892488956222
707 => 0.18774513167571
708 => 0.18552075138699
709 => 0.18469570710053
710 => 0.17968299919324
711 => 0.17938682166832
712 => 0.18187125506167
713 => 0.18072477453478
714 => 0.17911468166888
715 => 0.17328308852112
716 => 0.16672644704889
717 => 0.16692435084135
718 => 0.16900989650302
719 => 0.17507390178846
720 => 0.17270459001508
721 => 0.17098562713878
722 => 0.17066371706388
723 => 0.17469309561561
724 => 0.18039551044723
725 => 0.18307095590188
726 => 0.1804196707108
727 => 0.17737401703863
728 => 0.17755939186546
729 => 0.17879260753894
730 => 0.17892220106949
731 => 0.17693979362716
801 => 0.17749782971016
802 => 0.1766501218722
803 => 0.17144774043537
804 => 0.17135364585211
805 => 0.17007689754778
806 => 0.17003823811654
807 => 0.16786617075108
808 => 0.16756228351186
809 => 0.16324951192268
810 => 0.16608819124295
811 => 0.16418415419227
812 => 0.16131432123995
813 => 0.16081956095727
814 => 0.16080468786573
815 => 0.16375136462485
816 => 0.16605375760938
817 => 0.16421727573195
818 => 0.16379914440717
819 => 0.16826369303513
820 => 0.16769553852695
821 => 0.16720352038708
822 => 0.17988492174369
823 => 0.16984660302785
824 => 0.16546932310054
825 => 0.16005160796758
826 => 0.16181564333336
827 => 0.162187351504
828 => 0.1491587232258
829 => 0.14387301035594
830 => 0.14205915288689
831 => 0.14101525226927
901 => 0.1414909708892
902 => 0.13673320935405
903 => 0.13993050379178
904 => 0.13581068446591
905 => 0.13511998334888
906 => 0.14248673065122
907 => 0.14351177050242
908 => 0.13913863204225
909 => 0.14194689488049
910 => 0.14092857973757
911 => 0.13588130694365
912 => 0.13568853824815
913 => 0.13315599418038
914 => 0.12919305311148
915 => 0.12738188270309
916 => 0.1264386094291
917 => 0.12682782236598
918 => 0.12663102439498
919 => 0.12534678451494
920 => 0.12670463552163
921 => 0.12323588730231
922 => 0.12185460381178
923 => 0.12123071010464
924 => 0.1181519964063
925 => 0.12305159901055
926 => 0.12401688244716
927 => 0.12498406779032
928 => 0.13340275587711
929 => 0.13298218201126
930 => 0.13678396493077
1001 => 0.13663623463755
1002 => 0.1355519045641
1003 => 0.13097729434788
1004 => 0.13280065244548
1005 => 0.12718863963384
1006 => 0.1313935412121
1007 => 0.12947459973267
1008 => 0.13074474516762
1009 => 0.12846090915118
1010 => 0.12972487829996
1011 => 0.12424578695963
1012 => 0.11912948855893
1013 => 0.12118843638943
1014 => 0.12342674815044
1015 => 0.12827997835952
1016 => 0.12538943448527
1017 => 0.12642898336601
1018 => 0.1229466686339
1019 => 0.11576165866752
1020 => 0.11580232504364
1021 => 0.11469706779426
1022 => 0.1137419641606
1023 => 0.12572144822075
1024 => 0.12423161001025
1025 => 0.12185774780703
1026 => 0.12503525669958
1027 => 0.12587544048461
1028 => 0.12589935933582
1029 => 0.12821758780044
1030 => 0.12945482674758
1031 => 0.12967289547452
1101 => 0.13332067805225
1102 => 0.13454336665689
1103 => 0.13957944797804
1104 => 0.12934985566702
1105 => 0.12913918394515
1106 => 0.12507997076595
1107 => 0.12250555359409
1108 => 0.12525624331222
1109 => 0.1276929788959
1110 => 0.12515568693291
1111 => 0.12548700369812
1112 => 0.12208089654218
1113 => 0.12329841957819
1114 => 0.12434711443487
1115 => 0.12376808677445
1116 => 0.12290125434154
1117 => 0.1274931943662
1118 => 0.12723409911405
1119 => 0.13151021923326
1120 => 0.13484376065447
1121 => 0.14081806282309
1122 => 0.13458356706272
1123 => 0.13435635725734
1124 => 0.13657736955057
1125 => 0.13454302663148
1126 => 0.13582866113321
1127 => 0.14061092722903
1128 => 0.14071196897583
1129 => 0.13901938953186
1130 => 0.13891639591887
1201 => 0.13924147431587
1202 => 0.14114546864078
1203 => 0.14048015451982
1204 => 0.14125007286429
1205 => 0.14221286754345
1206 => 0.14619539455294
1207 => 0.14715556833215
1208 => 0.1448228438417
1209 => 0.14503346274478
1210 => 0.14416095975063
1211 => 0.14331813279072
1212 => 0.14521268471161
1213 => 0.14867501558456
1214 => 0.1486534766039
1215 => 0.14945667006833
1216 => 0.14995705294265
1217 => 0.14780904334339
1218 => 0.14641076807878
1219 => 0.1469469557898
1220 => 0.14780433161637
1221 => 0.14666892036467
1222 => 0.1396606361455
1223 => 0.14178650188667
1224 => 0.14143265387781
1225 => 0.14092873128382
1226 => 0.14306630572539
1227 => 0.14286013145585
1228 => 0.13668441163275
1229 => 0.13707976117875
1230 => 0.13670845414808
1231 => 0.13790822312645
]
'min_raw' => 0.1137419641606
'max_raw' => 0.25479604068004
'avg_raw' => 0.18426900242032
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.113741'
'max' => '$0.254796'
'avg' => '$0.184269'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.02773656753178
'max_diff' => -0.18515499948452
'year' => 2034
]
9 => [
'items' => [
101 => 0.13447823516934
102 => 0.13553327636363
103 => 0.13619498831028
104 => 0.13658474173038
105 => 0.13799279834017
106 => 0.13782757914874
107 => 0.13798252808325
108 => 0.14007030432242
109 => 0.15062956010181
110 => 0.1512042770962
111 => 0.14837416042297
112 => 0.14950473621234
113 => 0.14733427792649
114 => 0.14879132111459
115 => 0.149788193059
116 => 0.14528352042965
117 => 0.14501678295163
118 => 0.14283736641236
119 => 0.1440084614121
120 => 0.1421451650628
121 => 0.14260235281158
122 => 0.14132401600908
123 => 0.14362476773926
124 => 0.14619736567427
125 => 0.14684730550762
126 => 0.14513759362276
127 => 0.14389964954261
128 => 0.14172622754201
129 => 0.14534067676688
130 => 0.14639765186858
131 => 0.14533512492664
201 => 0.14508891421752
202 => 0.14462234536863
203 => 0.14518789900442
204 => 0.14639189535518
205 => 0.14582411291048
206 => 0.14619914321824
207 => 0.14476991441464
208 => 0.14780975442395
209 => 0.15263775193607
210 => 0.15265327473753
211 => 0.15208548923228
212 => 0.15185316363664
213 => 0.15243574602114
214 => 0.15275177306594
215 => 0.15463573767006
216 => 0.15665730675074
217 => 0.16609108757057
218 => 0.16344211966624
219 => 0.17181233122773
220 => 0.17843208183692
221 => 0.18041705559801
222 => 0.17859097313804
223 => 0.17234404368553
224 => 0.17203753952404
225 => 0.18137308951167
226 => 0.17873536904489
227 => 0.17842162058852
228 => 0.17508386709916
301 => 0.17705689280019
302 => 0.17662536313683
303 => 0.17594417245207
304 => 0.17970856804746
305 => 0.18675518055213
306 => 0.18565689991056
307 => 0.18483708435941
308 => 0.18124489125896
309 => 0.1834081938508
310 => 0.18263788323318
311 => 0.18594762649769
312 => 0.18398700790758
313 => 0.17871538571808
314 => 0.17955490892726
315 => 0.17942801668308
316 => 0.18203945007662
317 => 0.18125556259164
318 => 0.17927495007069
319 => 0.18673109599665
320 => 0.18624693535348
321 => 0.18693336445096
322 => 0.1872355517682
323 => 0.1917739764013
324 => 0.1936332237601
325 => 0.19405530546125
326 => 0.19582144665275
327 => 0.19401136225949
328 => 0.20125299040084
329 => 0.20606825055413
330 => 0.21166142301319
331 => 0.21983455127891
401 => 0.22290772311249
402 => 0.22235258212765
403 => 0.22854935470009
404 => 0.23968481726626
405 => 0.22460337748733
406 => 0.24048417019514
407 => 0.23545649457642
408 => 0.22353596612844
409 => 0.22276842463019
410 => 0.23084114489534
411 => 0.24874566147291
412 => 0.24426078314158
413 => 0.2487529971272
414 => 0.24351259089497
415 => 0.24325236055593
416 => 0.2484984822933
417 => 0.26075633168388
418 => 0.25493308691703
419 => 0.24658403762556
420 => 0.25274884569679
421 => 0.24740831841943
422 => 0.23537461574409
423 => 0.24425735363964
424 => 0.2383177197747
425 => 0.24005122070479
426 => 0.25253544763504
427 => 0.25103331242162
428 => 0.25297721448176
429 => 0.2495462782264
430 => 0.2463412427549
501 => 0.24035880603829
502 => 0.23858770145707
503 => 0.23907717104565
504 => 0.23858745890025
505 => 0.23524034053874
506 => 0.23451753064725
507 => 0.23331281582775
508 => 0.23368620732507
509 => 0.23142099101265
510 => 0.23569592221176
511 => 0.23648938711288
512 => 0.23960032553991
513 => 0.23992331348755
514 => 0.24858723272541
515 => 0.24381529160044
516 => 0.24701672169665
517 => 0.24673035565581
518 => 0.22379432012611
519 => 0.22695470345575
520 => 0.23187126813374
521 => 0.22965636241055
522 => 0.22652500392608
523 => 0.22399626405705
524 => 0.22016496457855
525 => 0.22555744502096
526 => 0.23264798337636
527 => 0.24010314124141
528 => 0.24906002493498
529 => 0.2470609527642
530 => 0.23993569853104
531 => 0.24025533223094
601 => 0.24223118199248
602 => 0.2396722770264
603 => 0.23891760599615
604 => 0.24212750178169
605 => 0.24214960656983
606 => 0.23920527715236
607 => 0.23593319381144
608 => 0.23591948366277
609 => 0.23533724803683
610 => 0.24361616931939
611 => 0.24816873893144
612 => 0.24869068370063
613 => 0.24813360788984
614 => 0.24834800425986
615 => 0.24569896431163
616 => 0.25175388408489
617 => 0.25731047723833
618 => 0.25582119157391
619 => 0.25358854064851
620 => 0.2518101266474
621 => 0.25540225375406
622 => 0.25524230198853
623 => 0.2572619452446
624 => 0.25717032256048
625 => 0.25649119249609
626 => 0.25582121582779
627 => 0.25847759758689
628 => 0.25771260230045
629 => 0.25694641876504
630 => 0.25540972038794
701 => 0.25561858321924
702 => 0.25338631779251
703 => 0.25235356966458
704 => 0.23682351572983
705 => 0.23267337785931
706 => 0.23397909571722
707 => 0.23440897193899
708 => 0.2326028266192
709 => 0.23519237504712
710 => 0.23478879666764
711 => 0.23635888405675
712 => 0.2353779616213
713 => 0.23541821902021
714 => 0.23830290274814
715 => 0.23914033870668
716 => 0.23871441201923
717 => 0.2390127164712
718 => 0.24588701666058
719 => 0.2449097110014
720 => 0.24439053684838
721 => 0.24453435163687
722 => 0.24629088272191
723 => 0.24678261552268
724 => 0.24469910909236
725 => 0.24568170276951
726 => 0.24986546193709
727 => 0.25132954086548
728 => 0.25600217800715
729 => 0.25401715869986
730 => 0.25766074754801
731 => 0.26885989747622
801 => 0.27780655336112
802 => 0.26957883887318
803 => 0.28600823305602
804 => 0.29880087308399
805 => 0.29830987025246
806 => 0.29607917756449
807 => 0.28151509700258
808 => 0.26811301293131
809 => 0.27932442533948
810 => 0.27935300553535
811 => 0.27838993526658
812 => 0.27240838853979
813 => 0.27818179040624
814 => 0.27864006208049
815 => 0.27838355180718
816 => 0.27379751395623
817 => 0.2667954817993
818 => 0.26816366212227
819 => 0.27040476940141
820 => 0.26616188577804
821 => 0.26480602737499
822 => 0.26732682610888
823 => 0.27544936485874
824 => 0.27391384595875
825 => 0.27387374735475
826 => 0.28044334837029
827 => 0.2757409318518
828 => 0.26818091925766
829 => 0.26627191637333
830 => 0.25949624219237
831 => 0.26417622448328
901 => 0.26434464871432
902 => 0.26178147024185
903 => 0.26838890706422
904 => 0.26832801837069
905 => 0.27460079624634
906 => 0.28659199159682
907 => 0.2830456050808
908 => 0.27892154340842
909 => 0.27936994326003
910 => 0.2842877828871
911 => 0.28131434478522
912 => 0.2823836138582
913 => 0.28428616442029
914 => 0.28543402041208
915 => 0.27920478444732
916 => 0.27775245156513
917 => 0.27478148818775
918 => 0.27400641929825
919 => 0.27642620697794
920 => 0.2757886784167
921 => 0.26433049330987
922 => 0.26313304921347
923 => 0.26316977311435
924 => 0.26015874299858
925 => 0.255566199342
926 => 0.26763512986496
927 => 0.26666582583939
928 => 0.26559578921334
929 => 0.26572686259448
930 => 0.27096557628049
1001 => 0.26792685778122
1002 => 0.2760057889477
1003 => 0.27434500357477
1004 => 0.27264162532375
1005 => 0.27240616656328
1006 => 0.27175051126204
1007 => 0.26950202527549
1008 => 0.26678684333368
1009 => 0.26499404503066
1010 => 0.24444299900856
1011 => 0.24825715361032
1012 => 0.25264499080852
1013 => 0.25415965462619
1014 => 0.25156871735453
1015 => 0.26960433127093
1016 => 0.27289961172895
1017 => 0.26291799227577
1018 => 0.26105083882291
1019 => 0.26972674154045
1020 => 0.2644941116158
1021 => 0.26685036455047
1022 => 0.26175743450716
1023 => 0.27210587516369
1024 => 0.27202703738427
1025 => 0.26800126023875
1026 => 0.27140381951481
1027 => 0.27081254110772
1028 => 0.26626744862548
1029 => 0.27224996270231
1030 => 0.27225292995466
1031 => 0.26837820698003
1101 => 0.2638533788316
1102 => 0.26304444643033
1103 => 0.26243502453075
1104 => 0.26670048412142
1105 => 0.27052488185266
1106 => 0.2776411378819
1107 => 0.27943033372573
1108 => 0.28641368421768
1109 => 0.28225543901289
1110 => 0.28409873525388
1111 => 0.28609989407366
1112 => 0.28705932320203
1113 => 0.28549598492315
1114 => 0.29634400269889
1115 => 0.29725990777384
1116 => 0.29756700282293
1117 => 0.29390911226463
1118 => 0.29715817522034
1119 => 0.29563804626102
1120 => 0.29959299950919
1121 => 0.30021318667788
1122 => 0.2996879102098
1123 => 0.29988476740613
1124 => 0.290627897956
1125 => 0.29014788044113
1126 => 0.28360280756545
1127 => 0.28626997314103
1128 => 0.28128383493806
1129 => 0.28286499072514
1130 => 0.28356194913027
1201 => 0.28319789761147
1202 => 0.28642077068089
1203 => 0.28368067018242
1204 => 0.27644909445271
1205 => 0.26921554848504
1206 => 0.26912473720773
1207 => 0.26722027223714
1208 => 0.26584369288355
1209 => 0.26610887090383
1210 => 0.267043392835
1211 => 0.26578937677005
1212 => 0.26605698467773
1213 => 0.27050105900747
1214 => 0.27139228642061
1215 => 0.26836354744573
1216 => 0.25620272341662
1217 => 0.25321842669676
1218 => 0.25536347999782
1219 => 0.25433828267904
1220 => 0.20527084441107
1221 => 0.21679851120453
1222 => 0.20994916303843
1223 => 0.21310565779672
1224 => 0.20611424694924
1225 => 0.2094509146569
1226 => 0.20883475396689
1227 => 0.22737090104232
1228 => 0.22708148460137
1229 => 0.22722001293607
1230 => 0.22060769458701
1231 => 0.23114129726108
]
'min_raw' => 0.13447823516934
'max_raw' => 0.30021318667788
'avg_raw' => 0.21734571092361
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.134478'
'max' => '$0.300213'
'avg' => '$0.217345'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.020736271008743
'max_diff' => 0.045417145997843
'year' => 2035
]
10 => [
'items' => [
101 => 0.23633052871442
102 => 0.23537014007933
103 => 0.23561184920802
104 => 0.23145848555644
105 => 0.22726022657503
106 => 0.22260371125721
107 => 0.23125494115503
108 => 0.23029307207181
109 => 0.23249925367914
110 => 0.23811019467056
111 => 0.23893642704544
112 => 0.2400468917361
113 => 0.23964886919276
114 => 0.24913138096397
115 => 0.24798298622085
116 => 0.25075028713606
117 => 0.24505773919785
118 => 0.23861608086416
119 => 0.23984042951972
120 => 0.2397225148986
121 => 0.23822132643564
122 => 0.23686612061395
123 => 0.2346100847477
124 => 0.24174851605898
125 => 0.24145870878405
126 => 0.24615035170109
127 => 0.24532105824331
128 => 0.23978283356976
129 => 0.23998063234744
130 => 0.24131092418615
131 => 0.24591507942893
201 => 0.24728190617978
202 => 0.24664873757016
203 => 0.24814740070446
204 => 0.24933188294039
205 => 0.24829615343668
206 => 0.26295989904894
207 => 0.25687048951795
208 => 0.25983842535351
209 => 0.2605462605622
210 => 0.25873315555932
211 => 0.25912635311202
212 => 0.25972194026445
213 => 0.26333822882605
214 => 0.27282841639324
215 => 0.27703155586485
216 => 0.28967690834445
217 => 0.27668254364226
218 => 0.27591151181686
219 => 0.27818932165149
220 => 0.28561348220352
221 => 0.29163006701499
222 => 0.29362611530207
223 => 0.29388992603437
224 => 0.29763464531569
225 => 0.29978104857287
226 => 0.29717993789905
227 => 0.29497576895062
228 => 0.28708070936888
229 => 0.287994584013
301 => 0.29429027406511
302 => 0.303183307078
303 => 0.31081445456546
304 => 0.30814229268769
305 => 0.32852900156274
306 => 0.33055026047546
307 => 0.33027098784885
308 => 0.33487571645569
309 => 0.32573626790778
310 => 0.32182897658508
311 => 0.29545233529565
312 => 0.30286309560876
313 => 0.31363507094257
314 => 0.3122093596143
315 => 0.30438646319117
316 => 0.31080852019702
317 => 0.3086851873146
318 => 0.30701042657307
319 => 0.31468283019836
320 => 0.30624670724738
321 => 0.31355091416283
322 => 0.30418319324142
323 => 0.30815449889806
324 => 0.30590019373691
325 => 0.30735900545342
326 => 0.2988308219671
327 => 0.30343242276637
328 => 0.29863938024519
329 => 0.29863710771896
330 => 0.29853130103965
331 => 0.30417029431021
401 => 0.30435418167832
402 => 0.30018695713133
403 => 0.29958639496983
404 => 0.30180698804828
405 => 0.29920725512766
406 => 0.30042365379869
407 => 0.29924409860424
408 => 0.29897855588474
409 => 0.29686266631735
410 => 0.29595108291413
411 => 0.29630853825514
412 => 0.2950883588954
413 => 0.29435315669534
414 => 0.29838505081729
415 => 0.29623097243408
416 => 0.29805490741123
417 => 0.29597630330582
418 => 0.28877095587177
419 => 0.28462708436729
420 => 0.27101685100044
421 => 0.27487669629983
422 => 0.27743577772663
423 => 0.27659000133034
424 => 0.27840705630159
425 => 0.27851860871932
426 => 0.27792786562548
427 => 0.2772438608017
428 => 0.27691092508132
429 => 0.2793923551719
430 => 0.28083290886059
501 => 0.2776926157839
502 => 0.27695688905341
503 => 0.28013189873427
504 => 0.28206865280545
505 => 0.29636855669894
506 => 0.29530917363043
507 => 0.29796801723896
508 => 0.29766867225192
509 => 0.30045556394067
510 => 0.30501095402347
511 => 0.29574857227804
512 => 0.29735620147998
513 => 0.29696204792525
514 => 0.30126531308325
515 => 0.30127874740736
516 => 0.2986987249811
517 => 0.30009739699445
518 => 0.29931669664716
519 => 0.3007275276927
520 => 0.29529502492367
521 => 0.30191122689392
522 => 0.30566218707241
523 => 0.30571426915813
524 => 0.30749219451327
525 => 0.30929866964459
526 => 0.31276604134833
527 => 0.30920196652969
528 => 0.30279054288665
529 => 0.3032534269649
530 => 0.29949441162884
531 => 0.29955760135576
601 => 0.29922028964119
602 => 0.30023258748826
603 => 0.29551716737466
604 => 0.29662386705027
605 => 0.29507448102359
606 => 0.29735283341735
607 => 0.2949017028668
608 => 0.29696185785247
609 => 0.29785095244906
610 => 0.30113173065133
611 => 0.29441712925881
612 => 0.28072560248092
613 => 0.28360372740335
614 => 0.27934675457124
615 => 0.27974075361429
616 => 0.28053669438573
617 => 0.27795678992987
618 => 0.27844895439791
619 => 0.27843137081981
620 => 0.2782798450431
621 => 0.27760871225349
622 => 0.27663543692899
623 => 0.28051266626348
624 => 0.28117148308018
625 => 0.28263595125357
626 => 0.28699321517933
627 => 0.28655782176179
628 => 0.2872679664901
629 => 0.28571772453549
630 => 0.27981266489236
701 => 0.28013333804108
702 => 0.27613453873809
703 => 0.28253369296487
704 => 0.28101828877926
705 => 0.28004129784251
706 => 0.27977471681366
707 => 0.2841427815539
708 => 0.28544977498521
709 => 0.28463534438789
710 => 0.28296492347204
711 => 0.28617262544608
712 => 0.28703087117225
713 => 0.28722300073946
714 => 0.29290643362161
715 => 0.28754064150251
716 => 0.28883224099696
717 => 0.29890893154937
718 => 0.28977076370658
719 => 0.29461145501836
720 => 0.29437452836839
721 => 0.29685086224344
722 => 0.29417139671187
723 => 0.29420461189844
724 => 0.2964034286181
725 => 0.29331558709403
726 => 0.29255099410826
727 => 0.29149471437453
728 => 0.2938010625299
729 => 0.29518361394189
730 => 0.30632596295041
731 => 0.31352442856275
801 => 0.31321192418592
802 => 0.31606762920651
803 => 0.31478110793947
804 => 0.31062659140106
805 => 0.31771784454281
806 => 0.31547387533813
807 => 0.31565886543294
808 => 0.31565198009237
809 => 0.31714402344229
810 => 0.31608677398511
811 => 0.31400282678057
812 => 0.31538624818869
813 => 0.3194945151886
814 => 0.33224670201335
815 => 0.33938299470448
816 => 0.33181708823275
817 => 0.33703594920543
818 => 0.33390649229212
819 => 0.33333777687769
820 => 0.33661560723933
821 => 0.3398991750091
822 => 0.33969002593742
823 => 0.33730632434964
824 => 0.33595983180689
825 => 0.34615592444869
826 => 0.35366823182127
827 => 0.3531559428216
828 => 0.3554170198608
829 => 0.36205561198038
830 => 0.36266256164625
831 => 0.36258609993892
901 => 0.36108171186342
902 => 0.36761826793526
903 => 0.37307117801015
904 => 0.36073348948989
905 => 0.36543151976621
906 => 0.36754061691832
907 => 0.37063739727856
908 => 0.37586218482693
909 => 0.38153768991092
910 => 0.38234026855854
911 => 0.38177080060113
912 => 0.37802765243248
913 => 0.38423785781823
914 => 0.38787565048597
915 => 0.3900418727702
916 => 0.395535052058
917 => 0.36755364198431
918 => 0.34774700916784
919 => 0.3446539174423
920 => 0.35094384109601
921 => 0.35260244380229
922 => 0.3519338631311
923 => 0.32963969715589
924 => 0.34453654327233
925 => 0.36056429713122
926 => 0.36117998843202
927 => 0.36920381713831
928 => 0.37181670467293
929 => 0.37827693848877
930 => 0.37787284910466
1001 => 0.37944581323404
1002 => 0.37908421602064
1003 => 0.39105043880174
1004 => 0.40425095953059
1005 => 0.40379386747283
1006 => 0.40189613643659
1007 => 0.40471459063663
1008 => 0.41833894268257
1009 => 0.41708463067197
1010 => 0.41830308794823
1011 => 0.43436696684522
1012 => 0.45525229447144
1013 => 0.44554896293645
1014 => 0.46660240030894
1015 => 0.47985442314016
1016 => 0.50277242634202
1017 => 0.4999029794676
1018 => 0.50882478993401
1019 => 0.49476607069076
1020 => 0.46248440957231
1021 => 0.45737571313109
1022 => 0.46760345277922
1023 => 0.49274735269593
1024 => 0.4668115818913
1025 => 0.47205835454626
1026 => 0.47054728366866
1027 => 0.47046676512323
1028 => 0.47353983050968
1029 => 0.46908218888633
1030 => 0.45092095499838
1031 => 0.4592441414644
1101 => 0.45603015945763
1102 => 0.45959631211237
1103 => 0.47884136719682
1104 => 0.47033266959917
1105 => 0.46136944787052
1106 => 0.47261131701638
1107 => 0.48692607956442
1108 => 0.48603028745027
1109 => 0.48429207633675
1110 => 0.49409028137387
1111 => 0.51027404549048
1112 => 0.51464845189956
1113 => 0.51787754927995
1114 => 0.51832278725266
1115 => 0.52290901508541
1116 => 0.49824771215048
1117 => 0.53738583325539
1118 => 0.54414390560144
1119 => 0.54287366809378
1120 => 0.55038498108325
1121 => 0.54817496225813
1122 => 0.54497299172186
1123 => 0.55688002051226
1124 => 0.54322957285174
1125 => 0.52385448094121
1126 => 0.51322492232323
1127 => 0.52722278257342
1128 => 0.53577078737022
1129 => 0.54142047478568
1130 => 0.54313006678397
1201 => 0.50016209889559
1202 => 0.47700474731651
1203 => 0.49184834417913
1204 => 0.50995855680185
1205 => 0.49814710900495
1206 => 0.49861009539656
1207 => 0.48177007483206
1208 => 0.51144852495512
1209 => 0.50712462440724
1210 => 0.52955702809846
1211 => 0.52420335492627
1212 => 0.54249610931556
1213 => 0.5376790140279
1214 => 0.5576745072468
1215 => 0.56565125084819
1216 => 0.57904544483593
1217 => 0.58889826845749
1218 => 0.59468403494255
1219 => 0.59433667922466
1220 => 0.61726276849589
1221 => 0.60374405462919
1222 => 0.5867613638964
1223 => 0.58645420060075
1224 => 0.59524977677785
1225 => 0.61368289149657
1226 => 0.61846232995223
1227 => 0.62113338402595
1228 => 0.61704257173198
1229 => 0.60236897672463
1230 => 0.59603299279728
1231 => 0.60143143467451
]
'min_raw' => 0.22260371125721
'max_raw' => 0.62113338402595
'avg_raw' => 0.42186854764158
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2226037'
'max' => '$0.621133'
'avg' => '$0.421868'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.088125476087862
'max_diff' => 0.32092019734807
'year' => 2036
]
11 => [
'items' => [
101 => 0.59482960415205
102 => 0.6062262157803
103 => 0.62187619773077
104 => 0.61864453834474
105 => 0.62944749115481
106 => 0.64062741080945
107 => 0.6566151980372
108 => 0.66079499764458
109 => 0.66770404745204
110 => 0.67481572920855
111 => 0.67709980972354
112 => 0.68146082813522
113 => 0.68143784341553
114 => 0.69458006592952
115 => 0.70907634434321
116 => 0.71454835385476
117 => 0.7271309379982
118 => 0.70558370359889
119 => 0.72192752840756
120 => 0.73667006749744
121 => 0.71909340463094
122 => 0.74331873955521
123 => 0.74425935441453
124 => 0.75846152204086
125 => 0.74406490434547
126 => 0.73551623871358
127 => 0.76019591607853
128 => 0.77213763455288
129 => 0.76854069176348
130 => 0.74116777953316
131 => 0.72523557053568
201 => 0.68353790649568
202 => 0.7329305907561
203 => 0.75698832645499
204 => 0.74110547580962
205 => 0.7491158618249
206 => 0.79281793054787
207 => 0.80945684881817
208 => 0.80599607013276
209 => 0.80658088476133
210 => 0.81555894304226
211 => 0.85537259776688
212 => 0.83151533298259
213 => 0.84975331799553
214 => 0.85942667948444
215 => 0.86841183673763
216 => 0.8463471303119
217 => 0.81764127144693
218 => 0.80854892095442
219 => 0.73952623932971
220 => 0.73593330900083
221 => 0.7339164883303
222 => 0.72120071928755
223 => 0.71120960796222
224 => 0.70326430529014
225 => 0.68241345841038
226 => 0.68945000714927
227 => 0.65621810913289
228 => 0.67747869981762
301 => 0.62443978817123
302 => 0.66861216985011
303 => 0.64457115077404
304 => 0.66071404850249
305 => 0.66065772745306
306 => 0.63093353462461
307 => 0.61378924052924
308 => 0.62471425199272
309 => 0.63642673151006
310 => 0.63832704190623
311 => 0.65351257732746
312 => 0.65775053385153
313 => 0.64490932773232
314 => 0.6233406746176
315 => 0.62835058080755
316 => 0.6136877149402
317 => 0.58799160650666
318 => 0.60644700019464
319 => 0.6127484830261
320 => 0.61553157683202
321 => 0.59026240540563
322 => 0.58232228312305
323 => 0.57809502864389
324 => 0.62007874190312
325 => 0.62237870448834
326 => 0.61061177072044
327 => 0.66379942713778
328 => 0.65176142240247
329 => 0.66521082307457
330 => 0.62789598433217
331 => 0.62932146142322
401 => 0.61165601876575
402 => 0.62154748624863
403 => 0.61455651584861
404 => 0.6207483534254
405 => 0.62445971533902
406 => 0.64212225927118
407 => 0.66881384773008
408 => 0.63948406420165
409 => 0.62670465750808
410 => 0.63463292954666
411 => 0.65574696276087
412 => 0.68773580388788
413 => 0.66879776610527
414 => 0.67720214568446
415 => 0.67903812873769
416 => 0.66507392080105
417 => 0.68825068415284
418 => 0.70067129992076
419 => 0.71341228161435
420 => 0.72447491902469
421 => 0.70832325334574
422 => 0.72560785087255
423 => 0.71167951640813
424 => 0.6991843605088
425 => 0.69920331050253
426 => 0.69136491668178
427 => 0.67617704095289
428 => 0.67337616364467
429 => 0.68794668111387
430 => 0.69963085629103
501 => 0.70059322092204
502 => 0.70706218065471
503 => 0.71089044438892
504 => 0.74841263325637
505 => 0.76350436801869
506 => 0.78195825561412
507 => 0.78914708483666
508 => 0.81078288345859
509 => 0.79331021889773
510 => 0.78952989801178
511 => 0.73704852757077
512 => 0.74564234904043
513 => 0.75940188639378
514 => 0.73727541727378
515 => 0.75130956911927
516 => 0.75408020797755
517 => 0.73652356831988
518 => 0.74590132813866
519 => 0.72099677837198
520 => 0.66935669885871
521 => 0.68830817432344
522 => 0.70226283926315
523 => 0.68234781179641
524 => 0.71804472771254
525 => 0.69719132636825
526 => 0.69058179928191
527 => 0.66479567765154
528 => 0.67696573446223
529 => 0.69342591055712
530 => 0.68325543543134
531 => 0.70436069842186
601 => 0.73425137938447
602 => 0.75555325865926
603 => 0.75718855244349
604 => 0.74349287118487
605 => 0.76544028780648
606 => 0.76560015077602
607 => 0.74084337516903
608 => 0.72567998795604
609 => 0.72223483447721
610 => 0.73084150332946
611 => 0.7412915881948
612 => 0.75776845942462
613 => 0.76772508762477
614 => 0.79368669338319
615 => 0.80071115952384
616 => 0.80842891812737
617 => 0.81874222369028
618 => 0.83112599129583
619 => 0.80403101278317
620 => 0.80510754679084
621 => 0.77987707795537
622 => 0.75291470358943
623 => 0.77337578482576
624 => 0.8001259267187
625 => 0.79398941461218
626 => 0.79329893164263
627 => 0.79446013247341
628 => 0.78983340274484
629 => 0.76890687565714
630 => 0.75839770476069
701 => 0.77195721639255
702 => 0.77916349336045
703 => 0.79033980048427
704 => 0.78896208472803
705 => 0.81775105163123
706 => 0.82893757363665
707 => 0.8260755826094
708 => 0.82660225783607
709 => 0.84685492158894
710 => 0.8693800489601
711 => 0.89047780319554
712 => 0.91193934497346
713 => 0.88606661870195
714 => 0.87293004390919
715 => 0.88648363588244
716 => 0.87929190920081
717 => 0.92061770391816
718 => 0.92347901228109
719 => 0.96480181867311
720 => 1.0040220825674
721 => 0.9793885375194
722 => 1.0026168609804
723 => 1.0277401866365
724 => 1.0762071579398
725 => 1.0598851870934
726 => 1.047382813223
727 => 1.0355681303265
728 => 1.0601526099061
729 => 1.0917801501385
730 => 1.0985924193797
731 => 1.1096308980376
801 => 1.0980252874498
802 => 1.1120029670868
803 => 1.1613503183092
804 => 1.1480162284078
805 => 1.1290796771859
806 => 1.168034671606
807 => 1.1821323326529
808 => 1.2810771008826
809 => 1.4059989579772
810 => 1.3542804888589
811 => 1.3221771661326
812 => 1.3297222084743
813 => 1.3753394418135
814 => 1.3899902493434
815 => 1.3501643040408
816 => 1.3642315012046
817 => 1.4417431406332
818 => 1.4833256483155
819 => 1.4268510176071
820 => 1.2710397512988
821 => 1.1273746479376
822 => 1.1654811026729
823 => 1.1611610132869
824 => 1.244437600079
825 => 1.1476982147735
826 => 1.1493270579201
827 => 1.2343257163356
828 => 1.2116495315163
829 => 1.1749170162552
830 => 1.1276428359497
831 => 1.0402521413224
901 => 0.96284776602127
902 => 1.1146555711499
903 => 1.1081093425481
904 => 1.0986294334361
905 => 1.1197259453316
906 => 1.2221646187468
907 => 1.219803075763
908 => 1.2047801441695
909 => 1.2161749053771
910 => 1.1729194595227
911 => 1.1840673728276
912 => 1.1273518906513
913 => 1.1529896572427
914 => 1.1748382047749
915 => 1.1792246241653
916 => 1.1891074510279
917 => 1.1046597775379
918 => 1.1425743036815
919 => 1.1648455356801
920 => 1.0642232992759
921 => 1.1628565575916
922 => 1.1031897314216
923 => 1.0829379144539
924 => 1.1102043180269
925 => 1.0995785740371
926 => 1.0904431833192
927 => 1.0853454783327
928 => 1.1053669158336
929 => 1.1044328918434
930 => 1.0716739340983
1001 => 1.0289412091458
1002 => 1.0432837142938
1003 => 1.0380729477118
1004 => 1.0191884574166
1005 => 1.0319143237535
1006 => 0.9758760488192
1007 => 0.87946510941078
1008 => 0.94315712913092
1009 => 0.94070505565528
1010 => 0.93946860901619
1011 => 0.98733140151775
1012 => 0.98273049840122
1013 => 0.97437981419256
1014 => 1.0190350905524
1015 => 1.0027353139828
1016 => 1.0529673846599
1017 => 1.0860534752144
1018 => 1.0776617724269
1019 => 1.1087794005124
1020 => 1.0436141366446
1021 => 1.0652594233249
1022 => 1.0697204869106
1023 => 1.0184840513738
1024 => 0.98348326305142
1025 => 0.98114910950852
1026 => 0.92046256596327
1027 => 0.95288082768047
1028 => 0.9814075564328
1029 => 0.96774546712401
1030 => 0.96342045779216
1031 => 0.98551599248852
1101 => 0.98723300476988
1102 => 0.94808494279397
1103 => 0.95622506453666
1104 => 0.99017072538629
1105 => 0.95536972097884
1106 => 0.88775705412697
1107 => 0.87098817792945
1108 => 0.86875090073299
1109 => 0.82327237852898
1110 => 0.87210875442047
1111 => 0.85079036761033
1112 => 0.91813489611007
1113 => 0.87966806260697
1114 => 0.87800983429734
1115 => 0.87550317899812
1116 => 0.83635793624303
1117 => 0.84492825659644
1118 => 0.87341730674781
1119 => 0.88358252079394
1120 => 0.88252220568778
1121 => 0.87327769485992
1122 => 0.87750978457736
1123 => 0.86387674903968
1124 => 0.85906264044423
1125 => 0.84386798949209
1126 => 0.82153605022191
1127 => 0.82464144334718
1128 => 0.78039602818318
1129 => 0.75628877771992
1130 => 0.74961620852015
1201 => 0.74069337012034
1202 => 0.75062406686017
1203 => 0.78027068648117
1204 => 0.74451057333703
1205 => 0.68320236763169
1206 => 0.68688709525868
1207 => 0.69516558423107
1208 => 0.6797386747987
1209 => 0.66513839970332
1210 => 0.67783215434099
1211 => 0.65185505937184
1212 => 0.69830479205106
1213 => 0.69704845695596
1214 => 0.71436204486657
1215 => 0.72518858669766
1216 => 0.70023691291153
1217 => 0.69396163443082
1218 => 0.69753631824894
1219 => 0.63845475744203
1220 => 0.70953382088147
1221 => 0.71014851557372
1222 => 0.70488512642673
1223 => 0.74273253338836
1224 => 0.82260236697964
1225 => 0.79255212282599
1226 => 0.78091576001626
1227 => 0.75879502580882
1228 => 0.788269590741
1229 => 0.78600640402904
1230 => 0.77577141542953
1231 => 0.76958126238943
]
'min_raw' => 0.57809502864389
'max_raw' => 1.4833256483155
'avg_raw' => 1.0307103384797
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.578095'
'max' => '$1.48'
'avg' => '$1.03'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.35549131738668
'max_diff' => 0.86219226428957
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018145742374739
]
1 => [
'year' => 2028
'avg' => 0.031143361661702
]
2 => [
'year' => 2029
'avg' => 0.08507805101495
]
3 => [
'year' => 2030
'avg' => 0.065637589655999
]
4 => [
'year' => 2031
'avg' => 0.064464247419126
]
5 => [
'year' => 2032
'avg' => 0.11302611337103
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018145742374739
'min' => '$0.018145'
'max_raw' => 0.11302611337103
'max' => '$0.113026'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11302611337103
]
1 => [
'year' => 2033
'avg' => 0.29071478592847
]
2 => [
'year' => 2034
'avg' => 0.18426900242032
]
3 => [
'year' => 2035
'avg' => 0.21734571092361
]
4 => [
'year' => 2036
'avg' => 0.42186854764158
]
5 => [
'year' => 2037
'avg' => 1.0307103384797
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11302611337103
'min' => '$0.113026'
'max_raw' => 1.0307103384797
'max' => '$1.03'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0307103384797
]
]
]
]
'prediction_2025_max_price' => '$0.031025'
'last_price' => 0.03008354
'sma_50day_nextmonth' => '$0.024048'
'sma_200day_nextmonth' => '$0.032753'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0233075'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.021518'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019612'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.018551'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.025414'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.035857'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030432'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.024887'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022893'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.020842'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.020398'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.024973'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.029168'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.027913'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.034021'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.020465'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.013744'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.02475'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.024325'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.027031'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.028552'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.023239'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.01701'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.007999'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '70.82'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 164.4
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.020969'
'vwma_10_action' => 'BUY'
'hma_9' => '0.023335'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 520.55
'cci_20_action' => 'SELL'
'adx_14' => 21.7
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002051'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 91.49
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007991'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 5
'buy_signals' => 30
'sell_pct' => 14.29
'buy_pct' => 85.71
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767706978
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de ADO Protocol para 2026
La previsión del precio de ADO Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.010393 en el extremo inferior y $0.031025 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, ADO Protocol podría potencialmente ganar 3.13% para 2026 si ADO alcanza el objetivo de precio previsto.
Predicción de precio de ADO Protocol 2027-2032
La predicción del precio de ADO para 2027-2032 está actualmente dentro de un rango de precios de $0.018145 en el extremo inferior y $0.113026 en el extremo superior. Considerando la volatilidad de precios en el mercado, si ADO Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de ADO Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0100059 | $0.018145 | $0.026285 |
| 2028 | $0.018057 | $0.031143 | $0.044229 |
| 2029 | $0.039667 | $0.085078 | $0.130488 |
| 2030 | $0.033735 | $0.065637 | $0.097539 |
| 2031 | $0.039885 | $0.064464 | $0.089042 |
| 2032 | $0.060882 | $0.113026 | $0.165169 |
Predicción de precio de ADO Protocol 2032-2037
La predicción de precio de ADO Protocol para 2032-2037 se estima actualmente entre $0.113026 en el extremo inferior y $1.03 en el extremo superior. Comparado con el precio actual, ADO Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de ADO Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.060882 | $0.113026 | $0.165169 |
| 2033 | $0.141478 | $0.290714 | $0.439951 |
| 2034 | $0.113741 | $0.184269 | $0.254796 |
| 2035 | $0.134478 | $0.217345 | $0.300213 |
| 2036 | $0.2226037 | $0.421868 | $0.621133 |
| 2037 | $0.578095 | $1.03 | $1.48 |
ADO Protocol Histograma de precios potenciales
Pronóstico de precio de ADO Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para ADO Protocol es Alcista, con 30 indicadores técnicos mostrando señales alcistas y 5 indicando señales bajistas. La predicción de precio de ADO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de ADO Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de ADO Protocol aumentar durante el próximo mes, alcanzando $0.032753 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para ADO Protocol alcance $0.024048 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 70.82, lo que sugiere que el mercado de ADO está en un estado SELL.
Promedios Móviles y Osciladores Populares de ADO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0233075 | BUY |
| SMA 5 | $0.021518 | BUY |
| SMA 10 | $0.019612 | BUY |
| SMA 21 | $0.018551 | BUY |
| SMA 50 | $0.025414 | BUY |
| SMA 100 | $0.035857 | SELL |
| SMA 200 | $0.030432 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.024887 | BUY |
| EMA 5 | $0.022893 | BUY |
| EMA 10 | $0.020842 | BUY |
| EMA 21 | $0.020398 | BUY |
| EMA 50 | $0.024973 | BUY |
| EMA 100 | $0.029168 | BUY |
| EMA 200 | $0.027913 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.034021 | SELL |
| SMA 50 | $0.020465 | BUY |
| SMA 100 | $0.013744 | BUY |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.028552 | BUY |
| EMA 50 | $0.023239 | BUY |
| EMA 100 | $0.01701 | BUY |
| EMA 200 | $0.007999 | BUY |
Osciladores de ADO Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 70.82 | SELL |
| Stoch RSI (14) | 164.4 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 520.55 | SELL |
| Índice Direccional Medio (14) | 21.7 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002051 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 91.49 | SELL |
| VWMA (10) | 0.020969 | BUY |
| Promedio Móvil de Hull (9) | 0.023335 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.007991 | SELL |
Predicción de precios de ADO Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de ADO Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de ADO Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.042272 | $0.059399 | $0.083466 | $0.117284 | $0.1648043 | $0.231577 |
| Amazon.com acción | $0.062771 | $0.130975 | $0.273288 | $0.570232 | $1.18 | $2.48 |
| Apple acción | $0.042671 | $0.060525 | $0.085851 | $0.121773 | $0.172726 | $0.244999 |
| Netflix acción | $0.047467 | $0.074895 | $0.118173 | $0.186459 | $0.2942037 | $0.4642074 |
| Google acción | $0.038958 | $0.05045 | $0.065333 | $0.0846061 | $0.109564 | $0.141885 |
| Tesla acción | $0.068197 | $0.154597 | $0.350461 | $0.794469 | $1.80 | $4.08 |
| Kodak acción | $0.022559 | $0.016917 | $0.012686 | $0.009513 | $0.007133 | $0.005349 |
| Nokia acción | $0.019929 | $0.0132021 | $0.008745 | $0.005793 | $0.003838 | $0.002542 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de ADO Protocol
Podría preguntarse cosas como: "¿Debo invertir en ADO Protocol ahora?", "¿Debería comprar ADO hoy?", "¿Será ADO Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de ADO Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como ADO Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de ADO Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de ADO Protocol es de $0.03008 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de ADO Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si ADO Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.030865 | $0.031667 | $0.03249 | $0.033335 |
| Si ADO Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.031647 | $0.033292 | $0.035023 | $0.036844 |
| Si ADO Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.033993 | $0.038411 | $0.0434035 | $0.049044 |
| Si ADO Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0379032 | $0.047755 | $0.060168 | $0.0758084 |
| Si ADO Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.045722 | $0.069492 | $0.105619 | $0.160527 |
| Si ADO Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.069181 | $0.159094 | $0.365864 | $0.841364 |
| Si ADO Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.10828 | $0.389735 | $1.40 | $5.04 |
Cuadro de preguntas
¿Es ADO una buena inversión?
La decisión de adquirir ADO Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de ADO Protocol ha experimentado un aumento de 60.873% durante las últimas 24 horas, y ADO Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en ADO Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede ADO Protocol subir?
Parece que el valor medio de ADO Protocol podría potencialmente aumentar hasta $0.031025 para el final de este año. Mirando las perspectivas de ADO Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.097539. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de ADO Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de ADO Protocol, el precio de ADO Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.03034 para el 13 de enero de 2026.
¿Cuál será el precio de ADO Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de ADO Protocol, el precio de ADO Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.026588 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de ADO Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de ADO Protocol en 2026, se anticipa que ADO fluctúe dentro del rango de $0.010393 y $0.031025. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de ADO Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará ADO Protocol en 5 años?
El futuro de ADO Protocol parece estar en una tendencia alcista, con un precio máximo de $0.097539 proyectada después de un período de cinco años. Basado en el pronóstico de ADO Protocol para 2030, el valor de ADO Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.097539, mientras que su punto más bajo se anticipa que esté alrededor de $0.033735.
¿Cuánto será ADO Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de ADO Protocol, se espera que el valor de ADO en 2026 crezca en un 3.13% hasta $0.031025 si ocurre lo mejor. El precio estará entre $0.031025 y $0.010393 durante 2026.
¿Cuánto será ADO Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de ADO Protocol, el valor de ADO podría disminuir en un -12.62% hasta $0.026285 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.026285 y $0.0100059 a lo largo del año.
¿Cuánto será ADO Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de ADO Protocol sugiere que el valor de ADO en 2028 podría aumentar en un 47.02% , alcanzando $0.044229 en el mejor escenario. Se espera que el precio oscile entre $0.044229 y $0.018057 durante el año.
¿Cuánto será ADO Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de ADO Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.130488 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.130488 y $0.039667.
¿Cuánto será ADO Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de ADO Protocol, se espera que el valor de ADO en 2030 aumente en un 224.23% , alcanzando $0.097539 en el mejor escenario. Se pronostica que el precio oscile entre $0.097539 y $0.033735 durante el transcurso de 2030.
¿Cuánto será ADO Protocol en 2031?
Nuestra simulación experimental indica que el precio de ADO Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.089042 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.089042 y $0.039885 durante el año.
¿Cuánto será ADO Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de ADO Protocol, ADO podría experimentar un 449.04% aumento en valor, alcanzando $0.165169 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.165169 y $0.060882 a lo largo del año.
¿Cuánto será ADO Protocol en 2033?
Según nuestra predicción experimental de precios de ADO Protocol, se anticipa que el valor de ADO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.439951. A lo largo del año, el precio de ADO podría oscilar entre $0.439951 y $0.141478.
¿Cuánto será ADO Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de ADO Protocol sugieren que ADO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.254796 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.254796 y $0.113741.
¿Cuánto será ADO Protocol en 2035?
Basado en nuestra predicción experimental para el precio de ADO Protocol, ADO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.300213 en 2035. El rango de precios esperado para el año está entre $0.300213 y $0.134478.
¿Cuánto será ADO Protocol en 2036?
Nuestra reciente simulación de predicción de precios de ADO Protocol sugiere que el valor de ADO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.621133 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.621133 y $0.2226037.
¿Cuánto será ADO Protocol en 2037?
Según la simulación experimental, el valor de ADO Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $1.48 bajo condiciones favorables. Se espera que el precio caiga entre $1.48 y $0.578095 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de ADO Protocol?
Los traders de ADO Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de ADO Protocol
Las medias móviles son herramientas populares para la predicción de precios de ADO Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de ADO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ADO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ADO.
¿Cómo leer gráficos de ADO Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de ADO Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ADO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de ADO Protocol?
La acción del precio de ADO Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ADO. La capitalización de mercado de ADO Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ADO, grandes poseedores de ADO Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de ADO Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


