Predicción del precio de Zilliqa - Pronóstico de ZIL
Predicción de precio de Zilliqa hasta $0.00555 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001859 | $0.00555 |
| 2027 | $0.00179 | $0.0047026 |
| 2028 | $0.00323 | $0.007912 |
| 2029 | $0.007096 | $0.023345 |
| 2030 | $0.006035 | $0.01745 |
| 2031 | $0.007135 | $0.01593 |
| 2032 | $0.010892 | $0.02955 |
| 2033 | $0.025311 | $0.07871 |
| 2034 | $0.020349 | $0.045584 |
| 2035 | $0.024059 | $0.05371 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Zilliqa hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.97, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Zilliqa para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Zilliqa'
'name_with_ticker' => 'Zilliqa <small>ZIL</small>'
'name_lang' => 'Zilliqa'
'name_lang_with_ticker' => 'Zilliqa <small>ZIL</small>'
'name_with_lang' => 'Zilliqa'
'name_with_lang_with_ticker' => 'Zilliqa <small>ZIL</small>'
'image' => '/uploads/coins/zilliqa.png?1717107025'
'price_for_sd' => 0.005382
'ticker' => 'ZIL'
'marketcap' => '$105.5M'
'low24h' => '$0.005087'
'high24h' => '$0.005385'
'volume24h' => '$9.35M'
'current_supply' => '19.64B'
'max_supply' => '20.32B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.00000847 ETH 0.2x'
'price' => '$0.005382'
'change_24h_pct' => '5.5703%'
'ath_price' => '$0.2553'
'ath_days' => 1706
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 may. 2021'
'ath_pct' => '-97.89%'
'fdv' => '$109.16M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-61.44%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.265378'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005428'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004756'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001859'
'current_year_max_price_prediction' => '$0.00555'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006035'
'grand_prediction_max_price' => '$0.01745'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0054841592904786
107 => 0.0055046351505194
108 => 0.0055507683087147
109 => 0.0051565655229637
110 => 0.0053335510005802
111 => 0.0054375133873832
112 => 0.004967807541623
113 => 0.005428228813032
114 => 0.0051497033294858
115 => 0.0050551675970578
116 => 0.0051824475066364
117 => 0.0051328464020899
118 => 0.0050902022850753
119 => 0.0050664061350623
120 => 0.0051598664532858
121 => 0.0051555064177314
122 => 0.0050025871972517
123 => 0.0048031103079208
124 => 0.0048700612995859
125 => 0.0048457373766451
126 => 0.004757584342059
127 => 0.004816988843732
128 => 0.0045554014822942
129 => 0.0041053540230682
130 => 0.0044026691599594
131 => 0.0043912228506057
201 => 0.0043854511023808
202 => 0.0046088752105677
203 => 0.0045873981378367
204 => 0.0045484170405258
205 => 0.0047568684236375
206 => 0.004680780864735
207 => 0.004915264792789
208 => 0.005069711073275
209 => 0.00503053850073
210 => 0.0051757959740307
211 => 0.0048716037152119
212 => 0.0049726441815164
213 => 0.0049934684815857
214 => 0.004754296165927
215 => 0.0045909120525469
216 => 0.0045800161948997
217 => 0.0042967306580164
218 => 0.0044480595052185
219 => 0.0045812226283432
220 => 0.0045174478262422
221 => 0.0044972586291151
222 => 0.004600400858735
223 => 0.0046084158933299
224 => 0.0044256722551704
225 => 0.0044636704442821
226 => 0.0046221292095515
227 => 0.0044596776899607
228 => 0.0041440609237007
301 => 0.004065783601925
302 => 0.0040553399642629
303 => 0.0038430456593546
304 => 0.0040710144668637
305 => 0.0039714999732018
306 => 0.004285865066313
307 => 0.0041063014111017
308 => 0.0040985607808148
309 => 0.0040868596828327
310 => 0.0039041292048309
311 => 0.0039441355663856
312 => 0.0040771228053343
313 => 0.0041245741503997
314 => 0.004119624586352
315 => 0.0040764710953126
316 => 0.0040962265425288
317 => 0.0040325873637912
318 => 0.004010115045244
319 => 0.0039391862264109
320 => 0.0038349404573125
321 => 0.0038494364708821
322 => 0.0036428983249089
323 => 0.0035303653811736
324 => 0.003499217745508
325 => 0.0034575658253467
326 => 0.0035039224407218
327 => 0.0036423132282915
328 => 0.003475384577239
329 => 0.0031891971136929
330 => 0.0032063974678918
331 => 0.0032450415569455
401 => 0.0031730285526501
402 => 0.0031048742876777
403 => 0.0031641288915409
404 => 0.0030428674904938
405 => 0.0032596954179289
406 => 0.003253830830145
407 => 0.0033346508729438
408 => 0.0033851893043
409 => 0.0032687145820352
410 => 0.0032394215043668
411 => 0.0032561081727029
412 => 0.0029803147151202
413 => 0.0033121126635829
414 => 0.0033149820660194
415 => 0.0032904125002932
416 => 0.0034670846647372
417 => 0.0038399180371441
418 => 0.003699643125257
419 => 0.0036453244395426
420 => 0.0035420645782929
421 => 0.0036796522124443
422 => 0.0036690876288429
423 => 0.0036213105752981
424 => 0.0035924148642408
425 => 0.0036456560978548
426 => 0.0035858176862013
427 => 0.0035750690632188
428 => 0.0035099441025617
429 => 0.003486697454604
430 => 0.0034694865619318
501 => 0.0034505390602072
502 => 0.0034923325275885
503 => 0.0033976230321139
504 => 0.0032834126650579
505 => 0.0032739173088105
506 => 0.0033001348222498
507 => 0.0032885355242172
508 => 0.0032738617758341
509 => 0.003245845594013
510 => 0.0032375337913377
511 => 0.003264543117719
512 => 0.0032340511629761
513 => 0.003279043703182
514 => 0.0032668082217968
515 => 0.0031984618173965
516 => 0.0031132768924339
517 => 0.0031125185679203
518 => 0.0030941656155684
519 => 0.0030707903713634
520 => 0.0030642879131787
521 => 0.0031591386340781
522 => 0.0033554767876965
523 => 0.0033169309101674
524 => 0.0033447842570226
525 => 0.0034817951560797
526 => 0.0035253468008285
527 => 0.003494434874963
528 => 0.0034521207242739
529 => 0.0034539823321562
530 => 0.0035985825944256
531 => 0.003607601135413
601 => 0.0036303880789967
602 => 0.0036596757410912
603 => 0.0034994226904611
604 => 0.0034464344278829
605 => 0.0034213256493964
606 => 0.0033440003299783
607 => 0.0034273890575989
608 => 0.0033788020170757
609 => 0.0033853580688119
610 => 0.003381088431518
611 => 0.0033834199421921
612 => 0.0032596348101042
613 => 0.003304735606282
614 => 0.0032297467851931
615 => 0.0031293451716453
616 => 0.0031290085902313
617 => 0.0031535817429083
618 => 0.0031389646701485
619 => 0.0030996305031911
620 => 0.0031052177359554
621 => 0.0030562676977778
622 => 0.0031111611568592
623 => 0.0031127353048474
624 => 0.0030915983330341
625 => 0.0031761692805865
626 => 0.0032108180668021
627 => 0.0031969052591568
628 => 0.003209841907129
629 => 0.0033185326654029
630 => 0.0033362540015118
701 => 0.0033441246484057
702 => 0.0033335790242288
703 => 0.0032118285746638
704 => 0.0032172287248249
705 => 0.0031776060059987
706 => 0.0031441289839298
707 => 0.0031454678892487
708 => 0.0031626794303004
709 => 0.0032378432395165
710 => 0.0033960210448632
711 => 0.0034020237769497
712 => 0.0034092992633505
713 => 0.0033797062037919
714 => 0.0033707806538616
715 => 0.0033825557580996
716 => 0.0034419590251939
717 => 0.0035947603559902
718 => 0.0035407501604291
719 => 0.0034968390307191
720 => 0.0035353609298303
721 => 0.0035294307854067
722 => 0.0034793743985856
723 => 0.0034779694825255
724 => 0.0033818952722207
725 => 0.0033463788241749
726 => 0.0033166986218278
727 => 0.0032842886156861
728 => 0.0032650748776521
729 => 0.0032945959117601
730 => 0.0033013477215433
731 => 0.0032367994645266
801 => 0.0032280017756092
802 => 0.0032807132756599
803 => 0.0032575169097704
804 => 0.00328137494733
805 => 0.0032869102166943
806 => 0.0032860189108386
807 => 0.0032617992407642
808 => 0.0032772361362286
809 => 0.0032407232764953
810 => 0.0032010210255894
811 => 0.0031756934630492
812 => 0.0031535918055191
813 => 0.0031658550896727
814 => 0.0031221387208525
815 => 0.0031081529746302
816 => 0.0032720064633864
817 => 0.0033930467972525
818 => 0.0033912868228609
819 => 0.0033805734313804
820 => 0.0033646555047725
821 => 0.0034407945297159
822 => 0.0034142692158735
823 => 0.003433568597958
824 => 0.003438481100691
825 => 0.0034533497669127
826 => 0.0034586640370819
827 => 0.0034426006216326
828 => 0.0033886898374038
829 => 0.0032543492887892
830 => 0.0031918134007637
831 => 0.0031711755160977
901 => 0.0031719256640084
902 => 0.003151233235824
903 => 0.0031573280832939
904 => 0.003149113696603
905 => 0.003133557635484
906 => 0.0031648945467344
907 => 0.0031685058338325
908 => 0.0031611914242984
909 => 0.0031629142325292
910 => 0.0031023540456125
911 => 0.0031069583050939
912 => 0.0030813212032201
913 => 0.0030765145556787
914 => 0.0030117061946195
915 => 0.0028968887888811
916 => 0.0029605087772554
917 => 0.0028836647776233
918 => 0.002854562790586
919 => 0.002992327070933
920 => 0.0029784993581725
921 => 0.0029548323246888
922 => 0.0029198238495244
923 => 0.0029068388655454
924 => 0.0028279462134352
925 => 0.0028232848146726
926 => 0.0028623861433392
927 => 0.0028443422255541
928 => 0.0028190017312178
929 => 0.0027272210294566
930 => 0.0026240291331309
1001 => 0.0026271438478398
1002 => 0.0026599672701075
1003 => 0.0027554057971925
1004 => 0.0027181163135571
1005 => 0.0026910623653321
1006 => 0.0026859959740683
1007 => 0.0027494124679438
1008 => 0.002839160092944
1009 => 0.0028812676706041
1010 => 0.0028395403399691
1011 => 0.0027916062292946
1012 => 0.002794523756506
1013 => 0.0028139327579688
1014 => 0.002815972369594
1015 => 0.0027847721912511
1016 => 0.0027935548586985
1017 => 0.0027802131837419
1018 => 0.0026983353491601
1019 => 0.0026968544387699
1020 => 0.0026767602977051
1021 => 0.0026761518550995
1022 => 0.0026419667084299
1023 => 0.0026371839701
1024 => 0.0025693072864973
1025 => 0.0026139839251941
1026 => 0.0025840171815851
1027 => 0.0025388502305261
1028 => 0.0025310634311391
1029 => 0.0025308293505467
1030 => 0.0025772057101388
1031 => 0.0026134419904307
1101 => 0.0025845384659201
1102 => 0.0025779576936603
1103 => 0.0026482231246906
1104 => 0.0026392812081084
1105 => 0.0026315375660173
1106 => 0.0028311241774858
1107 => 0.002673135800571
1108 => 0.0026042438505748
1109 => 0.0025189769802281
1110 => 0.0025467403031659
1111 => 0.002552590443237
1112 => 0.0023475389905618
1113 => 0.002264349641749
1114 => 0.0022358021921609
1115 => 0.0022193727313213
1116 => 0.0022268598429341
1117 => 0.0021519796718651
1118 => 0.0022023003852272
1119 => 0.0021374604865448
1120 => 0.0021265898665234
1121 => 0.0022425316374896
1122 => 0.0022586642575976
1123 => 0.0021898374882049
1124 => 0.0022340354161968
1125 => 0.0022180086331098
1126 => 0.0021385719805059
1127 => 0.0021355380846729
1128 => 0.0020956795647296
1129 => 0.0020333086991487
1130 => 0.0020048035399445
1201 => 0.0019899578055378
1202 => 0.0019960834448916
1203 => 0.0019929861341867
1204 => 0.0019727740867353
1205 => 0.0019941446650872
1206 => 0.0019395516683306
1207 => 0.0019178122971365
1208 => 0.0019079931275177
1209 => 0.0018595387006406
1210 => 0.0019366512415835
1211 => 0.0019518433835874
1212 => 0.0019670654588042
1213 => 0.0020995632310143
1214 => 0.0020929440167495
1215 => 0.0021527784900151
1216 => 0.0021504534324125
1217 => 0.002133387671383
1218 => 0.0020613900327807
1219 => 0.002090087008293
1220 => 0.0020017621781661
1221 => 0.0020679411464018
1222 => 0.0020377398289988
1223 => 0.0020577300506081
1224 => 0.002021785829709
1225 => 0.0020416788456551
1226 => 0.0019554460040479
1227 => 0.0018749229898839
1228 => 0.0019073278013968
1229 => 0.001942555537451
1230 => 0.0020189382450768
1231 => 0.0019734453345586
]
'min_raw' => 0.0018595387006406
'max_raw' => 0.0055507683087147
'avg_raw' => 0.0037051535046776
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001859'
'max' => '$0.00555'
'avg' => '$0.0037051'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0035226312993594
'max_diff' => 0.00016859830871472
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019898063054583
102 => 0.0019349997917376
103 => 0.0018219182992249
104 => 0.0018225583281919
105 => 0.0018051632041831
106 => 0.0017901312773098
107 => 0.0019786707425842
108 => 0.0019552228797095
109 => 0.001917861778999
110 => 0.0019678710969711
111 => 0.0019810943543975
112 => 0.0019814708019468
113 => 0.0020179563094119
114 => 0.0020374286312864
115 => 0.0020408607124147
116 => 0.0020982714467327
117 => 0.0021175147676102
118 => 0.0021967752828878
119 => 0.0020357765408209
120 => 0.0020324608776762
121 => 0.0019685748306313
122 => 0.0019280572895969
123 => 0.0019713491013302
124 => 0.0020096997366042
125 => 0.0019697664917712
126 => 0.0019749809305096
127 => 0.0019213738119873
128 => 0.0019405358344097
129 => 0.001957040749523
130 => 0.0019479277055115
131 => 0.00193428503755
201 => 0.0020065554218566
202 => 0.0020024776435441
203 => 0.0020697774868994
204 => 0.0021222425274529
205 => 0.0022162692593724
206 => 0.00211814746289
207 => 0.0021145715146273
208 => 0.0021495269824948
209 => 0.0021175094161102
210 => 0.0021377434128564
211 => 0.0022130092496802
212 => 0.00221459949821
213 => 0.0021879607864174
214 => 0.0021863398183839
215 => 0.0021914560743792
216 => 0.0022214221455473
217 => 0.0022109510795168
218 => 0.0022230684622222
219 => 0.0022382214348433
220 => 0.0023009005543313
221 => 0.0023160122778407
222 => 0.0022792986242432
223 => 0.0022826134560977
224 => 0.0022688815418399
225 => 0.0022556166847272
226 => 0.0022854341463397
227 => 0.0023399261435001
228 => 0.0023395871516139
301 => 0.0023522282357821
302 => 0.0023601035264944
303 => 0.0023262970136918
304 => 0.0023042902169572
305 => 0.0023127290231541
306 => 0.0023262228580363
307 => 0.0023083531543672
308 => 0.00219805306527
309 => 0.0022315110663051
310 => 0.0022259420189202
311 => 0.0022180110182248
312 => 0.0022516532969887
313 => 0.002248408417131
314 => 0.0021512116674808
315 => 0.0021574338880393
316 => 0.0021515900613216
317 => 0.002170472660981
318 => 0.0021164896937611
319 => 0.0021330944908971
320 => 0.0021435088640005
321 => 0.0021496430097654
322 => 0.0021718037504913
323 => 0.0021692034433454
324 => 0.0021716421117481
325 => 0.002204500640026
326 => 0.0023706878003701
327 => 0.0023797330008363
328 => 0.002335191125614
329 => 0.0023529847262156
330 => 0.0023188249040931
331 => 0.0023417566215349
401 => 0.0023574459202061
402 => 0.0022865489963896
403 => 0.0022823509406784
404 => 0.0022480501288186
405 => 0.0022664814422147
406 => 0.0022371558973431
407 => 0.0022443513602906
408 => 0.0022242322186003
409 => 0.0022604426679617
410 => 0.0023009315768828
411 => 0.0023111606742317
412 => 0.00228425232301
413 => 0.0022647689033787
414 => 0.0022305624367436
415 => 0.0022874485530986
416 => 0.0023040837870938
417 => 0.0022873611752963
418 => 0.0022834861807465
419 => 0.0022761430730767
420 => 0.0022850440557518
421 => 0.0023039931880369
422 => 0.0022950571271868
423 => 0.0023009595528114
424 => 0.0022784655928852
425 => 0.0023263082050542
426 => 0.0024022937871304
427 => 0.0024025380932017
428 => 0.0023936019841828
429 => 0.0023899455209035
430 => 0.0023991145110452
501 => 0.0024040883120655
502 => 0.0024337391448787
503 => 0.0024655556698286
504 => 0.0026140295091322
505 => 0.0025723386491834
506 => 0.0027040734721618
507 => 0.0028082586135119
508 => 0.0028394991819387
509 => 0.0028107593289684
510 => 0.0027124418444532
511 => 0.0027076179196146
512 => 0.0028545457500515
513 => 0.0028130319082321
514 => 0.0028080939688436
515 => 0.0027555626365306
516 => 0.0027866151600597
517 => 0.0027798235176508
518 => 0.00276910257785
519 => 0.0028283486296059
520 => 0.0029392519495615
521 => 0.0029219666271016
522 => 0.0029090639357284
523 => 0.0028525280980479
524 => 0.0028865753000681
525 => 0.0028744517435599
526 => 0.0029265422361181
527 => 0.0028956849822723
528 => 0.0028127174000503
529 => 0.0028259302609839
530 => 0.0028239331636344
531 => 0.0028650332855717
601 => 0.0028526960491339
602 => 0.0028215241202143
603 => 0.0029388728940706
604 => 0.0029312529174245
605 => 0.0029420563021395
606 => 0.0029468122861967
607 => 0.0030182404169257
608 => 0.0030475022366401
609 => 0.0030541451820156
610 => 0.0030819416475539
611 => 0.003053453580631
612 => 0.0031674261599702
613 => 0.0032432112747463
614 => 0.0033312395854252
615 => 0.0034598726071064
616 => 0.0035082398131805
617 => 0.0034995027103213
618 => 0.0035970307992916
619 => 0.0037722866072436
620 => 0.0035349269198637
621 => 0.0037848672470291
622 => 0.0037057390251484
623 => 0.0035181274345251
624 => 0.0035060474598843
625 => 0.0036331002072698
626 => 0.0039148909725968
627 => 0.0038443055819268
628 => 0.0039150064250094
629 => 0.0038325301360571
630 => 0.0038284344931459
701 => 0.0039110007357455
702 => 0.0041039212620312
703 => 0.0040122719515107
704 => 0.0038808701915466
705 => 0.0039778952062662
706 => 0.0038938431592749
707 => 0.0037044503727167
708 => 0.0038442516066088
709 => 0.0037507705028151
710 => 0.0037780532586309
711 => 0.0039745366345406
712 => 0.0039508952349206
713 => 0.0039814893951635
714 => 0.0039274915031233
715 => 0.0038770489572718
716 => 0.0037828941995273
717 => 0.0037550196175326
718 => 0.0037627231491735
719 => 0.0037550158000449
720 => 0.0037023370784137
721 => 0.0036909611134931
722 => 0.0036720006735662
723 => 0.0036778773067241
724 => 0.0036422261325892
725 => 0.0037095072640902
726 => 0.0037219952349761
727 => 0.0037709568317018
728 => 0.0037760401870978
729 => 0.0039123975370542
730 => 0.0038372942000904
731 => 0.0038876800026358
801 => 0.0038831730222066
802 => 0.003522193546582
803 => 0.0035719333333742
804 => 0.0036493128324179
805 => 0.0036144534729842
806 => 0.0035651704945787
807 => 0.0035253718471302
808 => 0.003465072826625
809 => 0.0035499425400459
810 => 0.0036615371883066
811 => 0.0037788704115369
812 => 0.0039198385912708
813 => 0.0038883761346047
814 => 0.0037762351094722
815 => 0.0037812656739405
816 => 0.0038123626440299
817 => 0.0037720892423065
818 => 0.0037602118299081
819 => 0.0038107308699564
820 => 0.0038110787668204
821 => 0.0037647393509345
822 => 0.003713241570201
823 => 0.0037130257926193
824 => 0.0037038622599474
825 => 0.0038341603081626
826 => 0.0039058110600624
827 => 0.0039140257032968
828 => 0.0039052581491219
829 => 0.003908632432752
830 => 0.0038669404389381
831 => 0.00396223597342
901 => 0.0040496885796122
902 => 0.0040262494130003
903 => 0.0039911107701751
904 => 0.0039631211486585
905 => 0.0040196559476939
906 => 0.0040171385420869
907 => 0.0040489247573891
908 => 0.0040474827510569
909 => 0.0040367942423908
910 => 0.0040262497947206
911 => 0.0040680573378427
912 => 0.0040560174368322
913 => 0.0040439588345298
914 => 0.0040197734615327
915 => 0.0040230606553996
916 => 0.0039879280797565
917 => 0.0039716741427068
918 => 0.0037272539281265
919 => 0.0036619368601298
920 => 0.0036824869393731
921 => 0.0036892525590426
922 => 0.0036608264873443
923 => 0.0037015821721009
924 => 0.0036952304418025
925 => 0.0037199413087556
926 => 0.0037045030319045
927 => 0.0037051366241715
928 => 0.003750537304603
929 => 0.0037637173152806
930 => 0.0037570138554742
1001 => 0.0037617087289414
1002 => 0.0038699001064109
1003 => 0.0038545187523003
1004 => 0.0038463477144907
1005 => 0.0038486111478058
1006 => 0.0038762563643986
1007 => 0.0038839955156717
1008 => 0.003851204187907
1009 => 0.0038666687676453
1010 => 0.0039325149854232
1011 => 0.0039555574350723
1012 => 0.004029097873349
1013 => 0.003997856588092
1014 => 0.0040552013192724
1015 => 0.0042314594726614
1016 => 0.0043722666817251
1017 => 0.0042427745531661
1018 => 0.0045013490609215
1019 => 0.0047026864055193
1020 => 0.0046949587428887
1021 => 0.0046598509198414
1022 => 0.0044306337058471
1023 => 0.0042197046080935
1024 => 0.004396155754887
1025 => 0.0043966055651477
1026 => 0.0043814482551513
1027 => 0.004287307504538
1028 => 0.0043781723610919
1029 => 0.0043853848834325
1030 => 0.0043813477888862
1031 => 0.0043091702961157
1101 => 0.0041989686052854
1102 => 0.0042205017518881
1103 => 0.0042557734852875
1104 => 0.004188996735508
1105 => 0.0041676575178075
1106 => 0.004207331183465
1107 => 0.0043351680005501
1108 => 0.0043110011907884
1109 => 0.0043103700977198
1110 => 0.0044137659582025
1111 => 0.0043397568363201
1112 => 0.0042207733538254
1113 => 0.0041907284552962
1114 => 0.0040840893061862
1115 => 0.0041577453463121
1116 => 0.0041603960960689
1117 => 0.0041200554356384
1118 => 0.0042240467760893
1119 => 0.0042230884775797
1120 => 0.0043218127782694
1121 => 0.0045105365620341
1122 => 0.0044547216526415
1123 => 0.0043898149856628
1124 => 0.00439687214003
1125 => 0.0044742717048976
1126 => 0.0044274741611185
1127 => 0.0044443028841455
1128 => 0.0044742462326097
1129 => 0.0044923117981897
1130 => 0.0043942727831564
1201 => 0.0043714151990039
1202 => 0.0043246566037499
1203 => 0.0043124581590386
1204 => 0.0043505420592229
1205 => 0.0043405082970484
1206 => 0.004160173310816
1207 => 0.0041413273013804
1208 => 0.0041419052815839
1209 => 0.0040945160947789
1210 => 0.0040222362101935
1211 => 0.0042121834312765
1212 => 0.0041969280111139
1213 => 0.0041800872079301
1214 => 0.0041821501102278
1215 => 0.0042645997609913
1216 => 0.0042167747997413
1217 => 0.0043439252975814
1218 => 0.0043177869777193
1219 => 0.0042909783085817
1220 => 0.0042872725338948
1221 => 0.004276953483485
1222 => 0.0042415656200801
1223 => 0.0041988326485379
1224 => 0.0041706166392591
1225 => 0.0038471733917551
1226 => 0.003907202577109
1227 => 0.0039762606830263
1228 => 0.0040000992644559
1229 => 0.0039593217213409
1230 => 0.0042431757660244
1231 => 0.0042950386352737
]
'min_raw' => 0.0017901312773098
'max_raw' => 0.0047026864055193
'avg_raw' => 0.0032464088414145
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00179'
'max' => '$0.0047026'
'avg' => '$0.003246'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.9407423330783E-5
'max_diff' => -0.00084808190319544
'year' => 2027
]
2 => [
'items' => [
101 => 0.0041379426213863
102 => 0.0041085563713759
103 => 0.0042451023236828
104 => 0.0041627484223779
105 => 0.0041998323790929
106 => 0.004119677148515
107 => 0.0042825463887936
108 => 0.0042813055980633
109 => 0.0042179457850263
110 => 0.0042714970651359
111 => 0.0042621912123845
112 => 0.0041906581395141
113 => 0.0042848141147948
114 => 0.0042848608149839
115 => 0.0042238783724969
116 => 0.0041526642304453
117 => 0.0041399328238494
118 => 0.0041303414192033
119 => 0.0041974734815137
120 => 0.0042576638786648
121 => 0.0043696632852981
122 => 0.0043978225971659
123 => 0.0045077302660578
124 => 0.00444228560054
125 => 0.0044712963731137
126 => 0.0045027916705668
127 => 0.0045178916743671
128 => 0.0044932870284855
129 => 0.0046640188780758
130 => 0.0046784338772699
131 => 0.0046832671018105
201 => 0.0046256972827405
202 => 0.0046768327564586
203 => 0.0046529081617348
204 => 0.0047151533107622
205 => 0.0047249141449157
206 => 0.0047166470656394
207 => 0.004719745308464
208 => 0.0045740557940008
209 => 0.0045665010241025
210 => 0.0044634912004767
211 => 0.0045054684650144
212 => 0.0044269939809839
213 => 0.0044518790482467
214 => 0.0044628481487825
215 => 0.0044571185131536
216 => 0.0045078417965692
217 => 0.0044647166435837
218 => 0.0043509022744236
219 => 0.0042370568966147
220 => 0.0042356276606327
221 => 0.0042056541821935
222 => 0.0041839888471983
223 => 0.0041881623593374
224 => 0.0042028703604754
225 => 0.0041831339914345
226 => 0.0041873457464287
227 => 0.0042572889421091
228 => 0.0042713155511908
229 => 0.0042236476529813
301 => 0.0040322541632256
302 => 0.0039852857207653
303 => 0.0040190457057811
304 => 0.0040029106073651
305 => 0.0032306612745072
306 => 0.0034120898003259
307 => 0.003304291131015
308 => 0.0033539697174118
309 => 0.0032439351903754
310 => 0.0032964494340808
311 => 0.0032867519707816
312 => 0.0035784836714377
313 => 0.0035739286821958
314 => 0.0035761089145012
315 => 0.0034720407459977
316 => 0.0036378241641825
317 => 0.0037194950373592
318 => 0.0037043799323341
319 => 0.0037081840786267
320 => 0.0036428162415791
321 => 0.0035767418180508
322 => 0.0035034551135771
323 => 0.0036396127519788
324 => 0.003624474346877
325 => 0.0036591964015544
326 => 0.003747504362807
327 => 0.0037605080455508
328 => 0.0037779851270287
329 => 0.0037717208374222
330 => 0.00392096163025
331 => 0.0039028875855161
401 => 0.0039464408330672
402 => 0.0038568484984617
403 => 0.0037554662676731
404 => 0.0037747357153112
405 => 0.0037728799125485
406 => 0.0037492534133886
407 => 0.0037279244663592
408 => 0.0036924177789488
409 => 0.0038047661919163
410 => 0.0038002050515221
411 => 0.0038740446127583
412 => 0.0038609927530705
413 => 0.0037738292397441
414 => 0.0037769423016746
415 => 0.0037978791392437
416 => 0.0038703417731231
417 => 0.0038918536164909
418 => 0.0038818884735442
419 => 0.003905475227744
420 => 0.003924117236554
421 => 0.0039078163770331
422 => 0.004138602172379
423 => 0.0040427638198219
424 => 0.0040894747660193
425 => 0.0041006150514505
426 => 0.0040720794445734
427 => 0.0040782677959216
428 => 0.0040876414619892
429 => 0.0041445565268001
430 => 0.0042939181253703
501 => 0.0043600693606383
502 => 0.0045590886157865
503 => 0.004354576421419
504 => 0.0043424415141608
505 => 0.0043782908918187
506 => 0.0044951362629184
507 => 0.004589828461467
508 => 0.0046212433266496
509 => 0.0046253953196864
510 => 0.0046843316951896
511 => 0.0047181129265298
512 => 0.004677175269023
513 => 0.0046424848906374
514 => 0.0045182282611884
515 => 0.0045326113043867
516 => 0.0046316962090452
517 => 0.0047716594729472
518 => 0.0048917625140707
519 => 0.0048497066150828
520 => 0.0051705634375226
521 => 0.0052023750808849
522 => 0.0051979797403658
523 => 0.0052704513981524
524 => 0.0051266099160424
525 => 0.005065114895643
526 => 0.0046499853441969
527 => 0.0047666198152389
528 => 0.0049361548686007
529 => 0.0049137162685644
530 => 0.0047905953811281
531 => 0.004891669115837
601 => 0.0048582509782744
602 => 0.0048318927066589
603 => 0.0049526450587318
604 => 0.0048198728873944
605 => 0.0049348303646262
606 => 0.0047873962109936
607 => 0.0048498987228869
608 => 0.0048144192742299
609 => 0.0048373788257086
610 => 0.0047031577569046
611 => 0.004775580187599
612 => 0.0047001447456848
613 => 0.0047001089794634
614 => 0.0046984437379021
615 => 0.0047871932007822
616 => 0.0047900873175805
617 => 0.0047245013304191
618 => 0.0047150493650235
619 => 0.0047499982350667
620 => 0.0047090822613697
621 => 0.0047282265879405
622 => 0.0047096621235189
623 => 0.0047054828715501
624 => 0.0046721818808221
625 => 0.0046578348983866
626 => 0.0046634607198757
627 => 0.0046442568908235
628 => 0.0046326858891867
629 => 0.0046961419744387
630 => 0.0046622399478997
701 => 0.0046909460026481
702 => 0.0046582318302694
703 => 0.0045448302559186
704 => 0.0044796118113095
705 => 0.0042654067496923
706 => 0.0043261550394464
707 => 0.004366431218402
708 => 0.0043531199414974
709 => 0.0043817177150688
710 => 0.0043834733861046
711 => 0.0043741759583967
712 => 0.0043634107281853
713 => 0.0043581708094729
714 => 0.0043972248705699
715 => 0.004419897067536
716 => 0.0043704734717859
717 => 0.0043588942148113
718 => 0.0044088641988661
719 => 0.0044393458602728
720 => 0.0046644053219339
721 => 0.0046477321900816
722 => 0.0046895784790941
723 => 0.0046848672291349
724 => 0.0047287288066566
725 => 0.0048004239486189
726 => 0.0046546476787326
727 => 0.0046799493986207
728 => 0.0046737460012062
729 => 0.0047414730675598
730 => 0.0047416845040683
731 => 0.0047010787445715
801 => 0.0047230917855479
802 => 0.0047108047099711
803 => 0.0047330091162363
804 => 0.0046475095102406
805 => 0.0047516388012313
806 => 0.0048106733992797
807 => 0.0048114930947309
808 => 0.0048394750256783
809 => 0.004867906288125
810 => 0.0049224776205504
811 => 0.0048663843232823
812 => 0.0047654779420694
813 => 0.0047727630568674
814 => 0.0047136016824825
815 => 0.0047145961958743
816 => 0.0047092874054475
817 => 0.0047252194851453
818 => 0.0046510057057957
819 => 0.0046684235314727
820 => 0.0046440384735262
821 => 0.0046798963902671
822 => 0.0046413191993799
823 => 0.0046737430097401
824 => 0.0046877360514253
825 => 0.0047393706764921
826 => 0.0046336927232747
827 => 0.0044182082228961
828 => 0.0044635056773727
829 => 0.0043965071841635
830 => 0.0044027081497913
831 => 0.0044152350872357
901 => 0.0043746311844194
902 => 0.0043823771295007
903 => 0.004382100389835
904 => 0.0043797155969031
905 => 0.0043691529535834
906 => 0.0043538350310146
907 => 0.0044148569199208
908 => 0.0044252257279354
909 => 0.0044482743037286
910 => 0.0045168512312906
911 => 0.0045099987790718
912 => 0.0045211754129461
913 => 0.0044967768839526
914 => 0.0044038399275746
915 => 0.0044088868514391
916 => 0.0043459516299772
917 => 0.0044466649086181
918 => 0.0044228146748856
919 => 0.0044074382740433
920 => 0.0044032426806122
921 => 0.0044719895971133
922 => 0.0044925597520064
923 => 0.0044797418118888
924 => 0.0044534518427485
925 => 0.0045039363554294
926 => 0.0045174438812523
927 => 0.0045204677181456
928 => 0.004609916595171
929 => 0.0045254669167183
930 => 0.0045457947936795
1001 => 0.0047043870868824
1002 => 0.0045605657611878
1003 => 0.0046367511250065
1004 => 0.0046330222478971
1005 => 0.0046719961020546
1006 => 0.0046298252542946
1007 => 0.0046303480124939
1008 => 0.0046649541546682
1009 => 0.004616356069235
1010 => 0.0046043224998454
1011 => 0.0045876982099196
1012 => 0.004623996738785
1013 => 0.0046457560651986
1014 => 0.0048211202556277
1015 => 0.0049344135202236
1016 => 0.0049294951608178
1017 => 0.0049744397590041
1018 => 0.0049541918058758
1019 => 0.0048888058240845
1020 => 0.0050004117220313
1021 => 0.0049650949461318
1022 => 0.0049680064182271
1023 => 0.0049678980530903
1024 => 0.0049913806216173
1025 => 0.0049747410696701
1026 => 0.0049419428047672
1027 => 0.0049637158236407
1028 => 0.0050283739056982
1029 => 0.0052290745763571
1030 => 0.005341389330588
1031 => 0.0052223130871258
1101 => 0.0053044502853716
1102 => 0.0052551972349003
1103 => 0.0052462464904784
1104 => 0.005297834720868
1105 => 0.0053495132496257
1106 => 0.0053462215507563
1107 => 0.0053087055926
1108 => 0.0052875137797697
1109 => 0.0054479852862988
1110 => 0.0055662179587488
1111 => 0.0055581552831296
1112 => 0.0055937413111901
1113 => 0.0056982229902102
1114 => 0.0057077754855328
1115 => 0.0057065720906838
1116 => 0.005682895234327
1117 => 0.0057857710159828
1118 => 0.0058715918029672
1119 => 0.0056774147261705
1120 => 0.0057513548150501
1121 => 0.005784548903149
1122 => 0.0058332876727204
1123 => 0.0059155181465536
1124 => 0.0060048422516924
1125 => 0.006017473659548
1126 => 0.0060085110712059
1127 => 0.0059495994227061
1128 => 0.0060473389244071
1129 => 0.0061045924322303
1130 => 0.0061386855859157
1201 => 0.0062251401511021
1202 => 0.0057847538985365
1203 => 0.0054730266203537
1204 => 0.005424345904469
1205 => 0.0055233400544951
1206 => 0.0055494440223935
1207 => 0.0055389215456653
1208 => 0.0051880441530663
1209 => 0.0054224986076127
1210 => 0.0056747518872142
1211 => 0.0056844419630175
1212 => 0.0058107252291533
1213 => 0.0058518482371331
1214 => 0.0059535228186986
1215 => 0.0059471630459386
1216 => 0.0059719191885539
1217 => 0.0059662281800833
1218 => 0.0061545589323241
1219 => 0.0063623157194331
1220 => 0.0063551217625217
1221 => 0.006325254266308
1222 => 0.0063696125913502
1223 => 0.006584039860217
1224 => 0.0065642988334267
1225 => 0.0065834755594168
1226 => 0.0068362973940022
1227 => 0.0071650017424497
1228 => 0.0070122855712188
1229 => 0.0073436357198954
1230 => 0.0075522030743706
1231 => 0.0079128987476685
]
'min_raw' => 0.0032306612745072
'max_raw' => 0.0079128987476685
'avg_raw' => 0.0055717800110879
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00323'
'max' => '$0.007912'
'avg' => '$0.005571'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0014405299971974
'max_diff' => 0.0032102123421492
'year' => 2028
]
3 => [
'items' => [
101 => 0.007867737872908
102 => 0.0080081540516157
103 => 0.0077868904817276
104 => 0.0072788246005191
105 => 0.0071984212300198
106 => 0.007359390813897
107 => 0.007755118828677
108 => 0.0073469279304352
109 => 0.0074295044175205
110 => 0.0074057223836847
111 => 0.0074044551401688
112 => 0.0074528206709216
113 => 0.0073826639459882
114 => 0.0070968328276557
115 => 0.0072278275447741
116 => 0.0071772441936117
117 => 0.007233370192965
118 => 0.0075362590633521
119 => 0.0074023446737851
120 => 0.007261276742698
121 => 0.0074382072337612
122 => 0.0076635005487977
123 => 0.0076494020980338
124 => 0.0076220452108564
125 => 0.0077762545515152
126 => 0.0080309632031861
127 => 0.0080998099282304
128 => 0.0081506311731489
129 => 0.0081576385641912
130 => 0.0082298190469959
131 => 0.0078416863991308
201 => 0.0084576628792461
202 => 0.0085640250013552
203 => 0.008544033330657
204 => 0.0086622503529789
205 => 0.0086274679061354
206 => 0.0085770735978578
207 => 0.0087644727237198
208 => 0.0085496347482487
209 => 0.0082446992894165
210 => 0.0080774056657616
211 => 0.008297711404582
212 => 0.0084322444316689
213 => 0.0085211622046658
214 => 0.008548068669049
215 => 0.0078718160317126
216 => 0.0075073533668791
217 => 0.0077409697564645
218 => 0.0080259978751005
219 => 0.0078401030535404
220 => 0.0078473897786001
221 => 0.007582352615355
222 => 0.0080494477830835
223 => 0.0079813959460341
224 => 0.0083344489970276
225 => 0.0082501900529802
226 => 0.0085380911106249
227 => 0.0084622771135319
228 => 0.0087769767767614
301 => 0.0089025189925769
302 => 0.0091133239120167
303 => 0.0092683928688871
304 => 0.0093594523263578
305 => 0.0093539854580867
306 => 0.0097148083942274
307 => 0.0095020437149784
308 => 0.0092347611330571
309 => 0.0092299268344159
310 => 0.0093683562710164
311 => 0.0096584663938699
312 => 0.0097336877277952
313 => 0.0097757261915763
314 => 0.009711342820926
315 => 0.0094804020105833
316 => 0.0093806829395737
317 => 0.0094656464772135
318 => 0.0093617433716801
319 => 0.0095411092818931
320 => 0.0097874169871066
321 => 0.0097365554199863
322 => 0.0099065780132774
323 => 0.010082533510435
324 => 0.010334157774027
325 => 0.010399941674149
326 => 0.010508679959514
327 => 0.01062060737382
328 => 0.010656555442766
329 => 0.010725191460416
330 => 0.010724829714724
331 => 0.010931668973649
401 => 0.011159819081522
402 => 0.011245940465557
403 => 0.011443971839384
404 => 0.011104850051552
405 => 0.011362077823173
406 => 0.011594103712004
407 => 0.011317472882035
408 => 0.011698744034431
409 => 0.011713547929299
410 => 0.01193706916582
411 => 0.011710487571119
412 => 0.011575944143459
413 => 0.011964365977836
414 => 0.012152311068318
415 => 0.012095700477517
416 => 0.011664891086311
417 => 0.011414141542346
418 => 0.010757881619813
419 => 0.011535249846372
420 => 0.011913883233387
421 => 0.01166391051731
422 => 0.011789982215255
423 => 0.012477788520355
424 => 0.012739660629176
425 => 0.012685193061166
426 => 0.012694397183547
427 => 0.012835698620152
428 => 0.013462307006182
429 => 0.013086828736605
430 => 0.013373867804794
501 => 0.013526112291566
502 => 0.013667525455557
503 => 0.013320259418885
504 => 0.012868471407526
505 => 0.012725371179558
506 => 0.01163905565712
507 => 0.011582508216548
508 => 0.011550766424592
509 => 0.011350638916276
510 => 0.011193393514277
511 => 0.01106834613246
512 => 0.010740184460264
513 => 0.010850929391343
514 => 0.010327908178526
515 => 0.010662518615753
516 => 0.0098277641313075
517 => 0.010522972470817
518 => 0.010144602178866
519 => 0.010398667653675
520 => 0.010397781243168
521 => 0.0099299661525131
522 => 0.0096601401712755
523 => 0.0098320837883044
524 => 0.010016420994661
525 => 0.010046329086207
526 => 0.010285327085941
527 => 0.010352026290422
528 => 0.010149924586957
529 => 0.0098104657000364
530 => 0.0098893142572352
531 => 0.0096585423077805
601 => 0.0092541233428761
602 => 0.0095445841039482
603 => 0.0096437601784363
604 => 0.0096875619828666
605 => 0.009289862378715
606 => 0.0091648965286121
607 => 0.0090983657585824
608 => 0.0097591276752382
609 => 0.0097953257046183
610 => 0.0096101314684242
611 => 0.01044722697686
612 => 0.010257766482203
613 => 0.010469440273683
614 => 0.0098821595771208
615 => 0.0099045944906078
616 => 0.0096265663972648
617 => 0.009782243551693
618 => 0.009672215956652
619 => 0.0097696663760468
620 => 0.0098280777556289
621 => 0.010106060227298
622 => 0.010526146584114
623 => 0.010064538915929
624 => 0.009863409844557
625 => 0.0099881891892432
626 => 0.010320493027372
627 => 0.010823950352459
628 => 0.010525893482985
629 => 0.010658166060323
630 => 0.010687061734075
701 => 0.010467285633189
702 => 0.010832053810784
703 => 0.011027536040528
704 => 0.011228060358897
705 => 0.011402170005974
706 => 0.011147966536516
707 => 0.011420000687472
708 => 0.011200789182294
709 => 0.01100413380048
710 => 0.011004432045518
711 => 0.01088106725183
712 => 0.010642032419094
713 => 0.010597950728485
714 => 0.010827269249936
715 => 0.011011160987595
716 => 0.01102630719189
717 => 0.011128119106557
718 => 0.01118837034891
719 => 0.011778914431566
720 => 0.012016436146848
721 => 0.012306873204237
722 => 0.012420014806226
723 => 0.012760530464704
724 => 0.012485536415154
725 => 0.01242603972274
726 => 0.011600060117096
727 => 0.011735314231248
728 => 0.011951869118086
729 => 0.011603631027418
730 => 0.011824507942588
731 => 0.011868113724455
801 => 0.011591798030352
802 => 0.011739390181469
803 => 0.011347429186126
804 => 0.010534690262707
805 => 0.010832958621539
806 => 0.011052584529684
807 => 0.010739151279082
808 => 0.011300968249244
809 => 0.010972766373532
810 => 0.010868742135399
811 => 0.010462906495126
812 => 0.010654445295289
813 => 0.01091350426508
814 => 0.010753435940587
815 => 0.01108560174829
816 => 0.011556037117383
817 => 0.01189129737631
818 => 0.011917034496047
819 => 0.01170148461025
820 => 0.01204690467786
821 => 0.012049420685949
822 => 0.011659785438602
823 => 0.011421136019101
824 => 0.011366914368867
825 => 0.011502370681931
826 => 0.011666839652606
827 => 0.011926161379273
828 => 0.012082864067583
829 => 0.012491461570012
830 => 0.012602016338761
831 => 0.012723482511504
901 => 0.012885798777069
902 => 0.013080701070917
903 => 0.012654265947772
904 => 0.012671209010189
905 => 0.012274118527913
906 => 0.011849770399066
907 => 0.01217179773312
908 => 0.012592805634895
909 => 0.012496225957055
910 => 0.012485358770354
911 => 0.012503634364079
912 => 0.012430816440985
913 => 0.012101463673591
914 => 0.011936064775663
915 => 0.012149471551749
916 => 0.012262887755596
917 => 0.01243878639683
918 => 0.012417103176528
919 => 0.012870199186213
920 => 0.013046258594664
921 => 0.013001215063976
922 => 0.013009504157655
923 => 0.013328251306963
924 => 0.013682763692344
925 => 0.014014811323283
926 => 0.014352584435252
927 => 0.013945385765264
928 => 0.013738635393168
929 => 0.013951949002531
930 => 0.013838761798796
1001 => 0.014489169044962
1002 => 0.014534201831518
1003 => 0.015184562045838
1004 => 0.01580183133268
1005 => 0.015414135553142
1006 => 0.015779715211045
1007 => 0.016175119417214
1008 => 0.016937918282934
1009 => 0.016681034460547
1010 => 0.016484265478481
1011 => 0.01629831974121
1012 => 0.016685243302417
1013 => 0.017183014282655
1014 => 0.017290229384207
1015 => 0.017463958808042
1016 => 0.017281303561502
1017 => 0.017501291687144
1018 => 0.018277946438339
1019 => 0.018068087468845
1020 => 0.017770053995651
1021 => 0.018383148331004
1022 => 0.018605024787625
1023 => 0.02016226995779
1024 => 0.022128356311713
1025 => 0.02131438365117
1026 => 0.020809124554037
1027 => 0.020927872426769
1028 => 0.021645820606999
1029 => 0.021876402775952
1030 => 0.021249600954297
1031 => 0.021470997954188
1101 => 0.022690917190863
1102 => 0.023345364721644
1103 => 0.022456537070814
1104 => 0.020004296833588
1105 => 0.017743219342244
1106 => 0.018342958910595
1107 => 0.01827496705563
1108 => 0.019585618087413
1109 => 0.018063082401828
1110 => 0.018088717998012
1111 => 0.019426471905129
1112 => 0.019069582097619
1113 => 0.018491466316444
1114 => 0.017747440227228
1115 => 0.016372039187229
1116 => 0.015153808130206
1117 => 0.017543039774885
1118 => 0.01744001176183
1119 => 0.017290811931032
1120 => 0.017622840009367
1121 => 0.019235074109947
1122 => 0.019197906895636
1123 => 0.018961468041069
1124 => 0.019140804828381
1125 => 0.018460027710548
1126 => 0.01863547947482
1127 => 0.017742861176018
1128 => 0.018146361926109
1129 => 0.018490225939623
1130 => 0.018559261731329
1201 => 0.018714802895099
1202 => 0.01738572068058
1203 => 0.017982439575095
1204 => 0.018332956020624
1205 => 0.016749309967828
1206 => 0.01830165242997
1207 => 0.017362584316166
1208 => 0.017043850494011
1209 => 0.017472983595555
1210 => 0.017305750008538
1211 => 0.017161972390706
1212 => 0.017081742009543
1213 => 0.017396849997624
1214 => 0.017382149833345
1215 => 0.016866572005019
1216 => 0.016194021745608
1217 => 0.016419751688376
1218 => 0.016337741883939
1219 => 0.016040527773183
1220 => 0.016240814198064
1221 => 0.01535885414553
1222 => 0.013841487715439
1223 => 0.014843906457348
1224 => 0.014805314426206
1225 => 0.014785854574095
1226 => 0.01553914455382
1227 => 0.015466733103626
1228 => 0.01533530561247
1229 => 0.016038114004241
1230 => 0.015781579487138
1231 => 0.016572158421717
]
'min_raw' => 0.0070968328276557
'max_raw' => 0.023345364721644
'avg_raw' => 0.01522109877465
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007096'
'max' => '$0.023345'
'avg' => '$0.015221'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0038661715531485
'max_diff' => 0.015432465973976
'year' => 2029
]
4 => [
'items' => [
101 => 0.017092884839471
102 => 0.016960811776193
103 => 0.01745055748898
104 => 0.016424952050347
105 => 0.016765617036912
106 => 0.016835827618502
107 => 0.016029441457781
108 => 0.015478580512406
109 => 0.015441844367624
110 => 0.014486727401657
111 => 0.014996943175442
112 => 0.015445911942209
113 => 0.015230890744311
114 => 0.015162821456632
115 => 0.015510572684956
116 => 0.015537595933685
117 => 0.014921462998876
118 => 0.015049576546416
119 => 0.015583831336759
120 => 0.015036114696456
121 => 0.013971990733351
122 => 0.013708073277836
123 => 0.013672861824307
124 => 0.012957096753394
125 => 0.013725709504184
126 => 0.013390189440923
127 => 0.014450093300618
128 => 0.013844681900339
129 => 0.013818583824893
130 => 0.013779132756102
131 => 0.013163044191684
201 => 0.01329792843282
202 => 0.013746304193809
203 => 0.013906289716644
204 => 0.013889601915889
205 => 0.013744106907969
206 => 0.01381071377754
207 => 0.013596149843281
208 => 0.013520382852332
209 => 0.013281241387544
210 => 0.012929769498821
211 => 0.012978643820651
212 => 0.012282286041469
213 => 0.011902873364866
214 => 0.011797856936562
215 => 0.011657424579694
216 => 0.011813719144946
217 => 0.012280313347373
218 => 0.011717501745764
219 => 0.010752600731448
220 => 0.010810592926519
221 => 0.010940884170808
222 => 0.010698087299039
223 => 0.010468300436306
224 => 0.010668081470255
225 => 0.010259240190424
226 => 0.010990290686214
227 => 0.010970517819048
228 => 0.011243008236019
301 => 0.011413402085817
302 => 0.011020699427696
303 => 0.01092193577116
304 => 0.010978196038481
305 => 0.010048339140956
306 => 0.011167019089591
307 => 0.011176693480241
308 => 0.011093855474003
309 => 0.011689518011283
310 => 0.012946551756747
311 => 0.012473605097638
312 => 0.012290465856343
313 => 0.011942318024766
314 => 0.012406204339369
315 => 0.012370585108162
316 => 0.012209501436448
317 => 0.012112077529184
318 => 0.012291584065498
319 => 0.012089834682824
320 => 0.012053594949993
321 => 0.011834021598258
322 => 0.01175564390164
323 => 0.011697616175369
324 => 0.011633733350432
325 => 0.011774642943635
326 => 0.011455323267237
327 => 0.011070255040794
328 => 0.011038240784262
329 => 0.011126634961271
330 => 0.011087527118117
331 => 0.011038053550954
401 => 0.010943595037917
402 => 0.010915571214886
403 => 0.011006635044512
404 => 0.010903829290215
405 => 0.011055524780799
406 => 0.011014272001054
407 => 0.010783837326825
408 => 0.010496630404892
409 => 0.01049407366085
410 => 0.010432195400634
411 => 0.010353384132789
412 => 0.010331460641032
413 => 0.01065125646881
414 => 0.011313224261627
415 => 0.01118326414435
416 => 0.011277173647931
417 => 0.011739115459898
418 => 0.011885952870847
419 => 0.01178173115459
420 => 0.011639066041262
421 => 0.01164534258221
422 => 0.012132872462119
423 => 0.012163279102713
424 => 0.012240106873939
425 => 0.01233885227149
426 => 0.01179854792278
427 => 0.011619894295975
428 => 0.011535238296269
429 => 0.011274530583169
430 => 0.011555681500357
501 => 0.011391866900994
502 => 0.011413971087152
503 => 0.011399575706919
504 => 0.011407436557937
505 => 0.010990086342701
506 => 0.011142146825852
507 => 0.010889316779998
508 => 0.010550805730105
509 => 0.010549670922368
510 => 0.010632521022261
511 => 0.01058323854092
512 => 0.0104506206508
513 => 0.010469458396153
514 => 0.010304419924854
515 => 0.010489497054686
516 => 0.010494804404532
517 => 0.010423539628327
518 => 0.010708676482555
519 => 0.010825497284382
520 => 0.010778589282045
521 => 0.010822206093891
522 => 0.011188664573958
523 => 0.011248413295913
524 => 0.011274949731427
525 => 0.011239394423243
526 => 0.010828904282189
527 => 0.010847111265484
528 => 0.010713520502591
529 => 0.010600650385395
530 => 0.010605164598157
531 => 0.010663194510484
601 => 0.010916614541026
602 => 0.011449922055374
603 => 0.011470160685701
604 => 0.011494690496059
605 => 0.011394915429636
606 => 0.011364822314884
607 => 0.011404522900934
608 => 0.011604805163346
609 => 0.012119985518374
610 => 0.011937886373168
611 => 0.011789836933574
612 => 0.011919716205941
613 => 0.011899722309987
614 => 0.011730953706994
615 => 0.01172621693441
616 => 0.01140229602668
617 => 0.011282549842414
618 => 0.011182480967996
619 => 0.011073208369494
620 => 0.011008427910252
621 => 0.01110796013784
622 => 0.01113072433592
623 => 0.010913095380773
624 => 0.010883433358353
625 => 0.011061153860974
626 => 0.010982945693859
627 => 0.011063384733206
628 => 0.011082047280328
629 => 0.011079042180406
630 => 0.010997383871787
701 => 0.011049430442615
702 => 0.010926324786778
703 => 0.010792465875926
704 => 0.010707072230507
705 => 0.010632554949056
706 => 0.010673901467775
707 => 0.010526508678119
708 => 0.010479354758277
709 => 0.011031798235503
710 => 0.011439894171899
711 => 0.01143396029536
712 => 0.011397839347999
713 => 0.011344170947086
714 => 0.01160087898554
715 => 0.011511447037982
716 => 0.011576516252119
717 => 0.011593079098064
718 => 0.011643209844327
719 => 0.011661127277233
720 => 0.011606968350534
721 => 0.011425204377576
722 => 0.010972265838564
723 => 0.01076142172597
724 => 0.010691839656928
725 => 0.010694368832982
726 => 0.010624602866659
727 => 0.010645152070433
728 => 0.010617456692194
729 => 0.010565008346042
730 => 0.010670662930196
731 => 0.010682838636779
801 => 0.010658177594359
802 => 0.010663986162592
803 => 0.010459803264225
804 => 0.010475326846526
805 => 0.010388889567633
806 => 0.010372683619858
807 => 0.010154177705771
808 => 0.0097670628060289
809 => 0.0099815620386388
810 => 0.0097224771288024
811 => 0.0096243577476704
812 => 0.010088839637255
813 => 0.010042218538263
814 => 0.009962423482493
815 => 0.0098443899642626
816 => 0.0098006101841947
817 => 0.0095346180994963
818 => 0.0095189018681197
819 => 0.0096507347276867
820 => 0.0095898983990882
821 => 0.0095044611532167
822 => 0.0091950161093046
823 => 0.0088470974262143
824 => 0.0088575989043179
825 => 0.0089682653641517
826 => 0.0092900430215239
827 => 0.0091643189239786
828 => 0.0090731046486917
829 => 0.0090560229568215
830 => 0.0092698360935211
831 => 0.0095724264771882
901 => 0.0097143951151265
902 => 0.0095737085065812
903 => 0.0094120953057894
904 => 0.0094219319524782
905 => 0.0094873707560029
906 => 0.0094942474489985
907 => 0.0093890538693885
908 => 0.0094186652458738
909 => 0.0093736828572716
910 => 0.009097626021451
911 => 0.0090926330286767
912 => 0.0090248842291486
913 => 0.0090228328224239
914 => 0.0089075752136964
915 => 0.0088914498774972
916 => 0.0086625988997319
917 => 0.0088132293063216
918 => 0.0087121943380326
919 => 0.0085599108090813
920 => 0.008533657071291
921 => 0.0085328678522307
922 => 0.0086892289864896
923 => 0.0088114021354299
924 => 0.0087139518845628
925 => 0.0086917643514341
926 => 0.0089286691579284
927 => 0.0088985208618668
928 => 0.008872412631913
929 => 0.0095453328271712
930 => 0.0090126639840067
1001 => 0.0087803899647124
1002 => 0.0084929067581957
1003 => 0.0085865127398537
1004 => 0.008606236895547
1005 => 0.0079148916066173
1006 => 0.0076344129090001
1007 => 0.0075381631895946
1008 => 0.0074827701153054
1009 => 0.0075080134348414
1010 => 0.007255549710116
1011 => 0.0074252095084961
1012 => 0.0072065972631113
1013 => 0.0071699462087467
1014 => 0.0075608519843553
1015 => 0.0076152442393928
1016 => 0.0073831899810537
1017 => 0.0075322063810793
1018 => 0.0074781709629471
1019 => 0.0072103447426032
1020 => 0.0072001157509824
1021 => 0.0070657299681607
1022 => 0.0068554422402599
1023 => 0.0067593351058362
1024 => 0.0067092816757879
1025 => 0.0067299346965477
1026 => 0.0067194918972587
1027 => 0.0066513455681162
1028 => 0.0067233979650759
1029 => 0.0065393338649498
1030 => 0.0064660380571743
1031 => 0.006432932041252
1101 => 0.0062695645580557
1102 => 0.0065295548736705
1103 => 0.0065807762411183
1104 => 0.0066320985304831
1105 => 0.0070788240201882
1106 => 0.0070565068771557
1107 => 0.0072582429812803
1108 => 0.0072504038872429
1109 => 0.0071928654824384
1110 => 0.0069501204171761
1111 => 0.0070468742736749
1112 => 0.0067490809422592
1113 => 0.006972207954134
1114 => 0.0068703821039212
1115 => 0.0069377805317495
1116 => 0.0068165920814429
1117 => 0.006883662773591
1118 => 0.0065929227275276
1119 => 0.0063214337633364
1120 => 0.0064306888477839
1121 => 0.0065494616194127
1122 => 0.0068069912510434
1123 => 0.0066536087270175
1124 => 0.0067087708826926
1125 => 0.0065239868952144
1126 => 0.0061427247481104
1127 => 0.0061448826504581
1128 => 0.0060862337753735
1129 => 0.0060355525844244
1130 => 0.0066712265550024
1201 => 0.0065921704482427
1202 => 0.0064662048887285
1203 => 0.0066348147958106
1204 => 0.0066793979314421
1205 => 0.0066806671506371
1206 => 0.0068036805863926
1207 => 0.0068693328791067
1208 => 0.0068809043802509
1209 => 0.0070744686792934
1210 => 0.0071393488791576
1211 => 0.0074065812402087
1212 => 0.0068637627407569
1213 => 0.0068525837509724
1214 => 0.006637187482979
1215 => 0.0065005797645373
1216 => 0.0066465411303337
1217 => 0.0067758429747159
1218 => 0.0066412052517114
1219 => 0.0066587860959784
1220 => 0.006478045953151
1221 => 0.0065426520495976
1222 => 0.0065982995232385
1223 => 0.0065675742591013
1224 => 0.0065215770515684
1225 => 0.0067652416980154
1226 => 0.0067514931837334
1227 => 0.0069783993043308
1228 => 0.0071552888515489
1229 => 0.0074723065429525
1230 => 0.0071414820554668
1231 => 0.0071294254962346
]
'min_raw' => 0.0060355525844244
'max_raw' => 0.01745055748898
'avg_raw' => 0.011743055036702
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006035'
'max' => '$0.01745'
'avg' => '$0.011743'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010612802432312
'max_diff' => -0.0058948072326645
'year' => 2030
]
5 => [
'items' => [
101 => 0.0072472802966625
102 => 0.0071393308362017
103 => 0.0072075511689242
104 => 0.0074613151926686
105 => 0.0074666768266143
106 => 0.0073768625499501
107 => 0.0073713973430528
108 => 0.0073886471573467
109 => 0.007489679858454
110 => 0.0074543759282658
111 => 0.0074952305300658
112 => 0.0075463198352045
113 => 0.0077576468626747
114 => 0.0078085970935535
115 => 0.007684814447184
116 => 0.0076959906342157
117 => 0.0076496925265638
118 => 0.0076049691346858
119 => 0.0077055007883008
120 => 0.0078892243612369
121 => 0.0078880814264249
122 => 0.0079307017242702
123 => 0.0079572538167422
124 => 0.0078432727985328
125 => 0.0077690753468767
126 => 0.0077975273711482
127 => 0.0078430227775627
128 => 0.0077827738240197
129 => 0.0074108893727221
130 => 0.0075236953591751
131 => 0.0075049189270984
201 => 0.007478179004529
202 => 0.0075916062962104
203 => 0.00758066595722
204 => 0.0072529603297138
205 => 0.0072739389807485
206 => 0.0072542361109667
207 => 0.0073179001140595
208 => 0.0071358927711072
209 => 0.0071918770039612
210 => 0.0072269897899876
211 => 0.0072476714907063
212 => 0.0073223879752771
213 => 0.0073136208581871
214 => 0.0073218429989692
215 => 0.0074326278211672
216 => 0.0079929394350843
217 => 0.008023435959972
218 => 0.0078732599178454
219 => 0.0079332522845835
220 => 0.0078180800593347
221 => 0.0078953959457311
222 => 0.0079482935115929
223 => 0.0077092595830803
224 => 0.0076951055451511
225 => 0.0075794579631597
226 => 0.007641600423108
227 => 0.0075427273011292
228 => 0.0075669873068278
301 => 0.0074991542159452
302 => 0.0076212402741002
303 => 0.007757751457373
304 => 0.0077922395732577
305 => 0.0077015161884325
306 => 0.0076358264788567
307 => 0.007520496988377
308 => 0.00771229250133
309 => 0.0077683793541798
310 => 0.0077119979009689
311 => 0.0076989330863008
312 => 0.0076741752861125
313 => 0.0077041855706485
314 => 0.0077680738931339
315 => 0.0077379453400818
316 => 0.0077578457801695
317 => 0.0076820058238
318 => 0.0078433105309926
319 => 0.0080995012261062
320 => 0.0081003249210824
321 => 0.0080701962056262
322 => 0.0080578681843938
323 => 0.0080887820748152
324 => 0.0081055515922146
325 => 0.0082055214451994
326 => 0.0083127930804267
327 => 0.0088133829957514
328 => 0.0086728193506711
329 => 0.0091169725037745
330 => 0.0094682399818105
331 => 0.0095735697394083
401 => 0.0094766713185664
402 => 0.009145187055216
403 => 0.0091289228558269
404 => 0.0096243002943184
405 => 0.0094843334782205
406 => 0.0094676848708164
407 => 0.0092905718163025
408 => 0.0093952675673988
409 => 0.00937236907084
410 => 0.0093362226737892
411 => 0.0095359748737116
412 => 0.0099098931599643
413 => 0.0098516144884684
414 => 0.0098081121636664
415 => 0.0096174976397205
416 => 0.0097322901584312
417 => 0.0096914147412242
418 => 0.0098670414737262
419 => 0.0097630040880005
420 => 0.0094832730919274
421 => 0.0095278211750575
422 => 0.0095210878219106
423 => 0.0096596597525413
424 => 0.0096180638985328
425 => 0.0095129655638259
426 => 0.009908615147912
427 => 0.0098829238646401
428 => 0.0099193482304747
429 => 0.009935383362776
430 => 0.010176208292482
501 => 0.010274866560644
502 => 0.010297263714773
503 => 0.010390981439022
504 => 0.010294931932418
505 => 0.010679198440972
506 => 0.010934713246588
507 => 0.011231506841982
508 => 0.011665202055451
509 => 0.01182827546762
510 => 0.011798817715325
511 => 0.012127640476482
512 => 0.012718527668962
513 => 0.011918252911037
514 => 0.012760944174351
515 => 0.012494157849724
516 => 0.011861612273315
517 => 0.011820883795417
518 => 0.012249251003766
519 => 0.013199328243069
520 => 0.012961344670311
521 => 0.013199717498939
522 => 0.012921642932426
523 => 0.012907834186402
524 => 0.013186212037918
525 => 0.013836657061571
526 => 0.0135276550124
527 => 0.013084624804503
528 => 0.013411751415701
529 => 0.013128364070943
530 => 0.01248981306808
531 => 0.012961162688758
601 => 0.012645984620675
602 => 0.012737970336729
603 => 0.01340042775664
604 => 0.013320719127231
605 => 0.013423869474506
606 => 0.01324181181148
607 => 0.013071741246356
608 => 0.012754291906945
609 => 0.012660310807609
610 => 0.01268628380238
611 => 0.012660297936682
612 => 0.012482687948792
613 => 0.012444333088818
614 => 0.012380406641828
615 => 0.012400220120814
616 => 0.012280019698132
617 => 0.012506862730407
618 => 0.012548966796131
619 => 0.012714044237881
620 => 0.012731183125507
621 => 0.013190921451051
622 => 0.01293770530693
623 => 0.013107584558037
624 => 0.013092388958852
625 => 0.011875321454002
626 => 0.012043022617893
627 => 0.012303913001382
628 => 0.012186382237249
629 => 0.012020221234727
630 => 0.011886037316202
701 => 0.011682734958625
702 => 0.011968879122838
703 => 0.012345128270738
704 => 0.012740725424803
705 => 0.01321600948486
706 => 0.013109931615572
707 => 0.012731840319901
708 => 0.012748801219229
709 => 0.012853646825007
710 => 0.012717862239297
711 => 0.012677816714142
712 => 0.012848145184791
713 => 0.012849318143358
714 => 0.012693081567384
715 => 0.01251945320418
716 => 0.012518725694999
717 => 0.012487830204817
718 => 0.012927139171494
719 => 0.01316871468402
720 => 0.013196410927213
721 => 0.013166850506181
722 => 0.013178227139025
723 => 0.01303765967104
724 => 0.013358955218867
725 => 0.01365380778639
726 => 0.013574780999688
727 => 0.013456308612101
728 => 0.013361939648985
729 => 0.013552550671066
730 => 0.013544063062303
731 => 0.013651232506436
801 => 0.01364637068141
802 => 0.013610333628194
803 => 0.013574782286684
804 => 0.01371573933723
805 => 0.013675145970374
806 => 0.013634489550807
807 => 0.013552946877178
808 => 0.013564029880805
809 => 0.013445577949146
810 => 0.013390776665569
811 => 0.012566696847238
812 => 0.012346475792195
813 => 0.012415761819124
814 => 0.0124385725782
815 => 0.012342732092824
816 => 0.012480142729453
817 => 0.012458727427288
818 => 0.012542041840478
819 => 0.012489990612208
820 => 0.012492126812772
821 => 0.012645198376622
822 => 0.01268963570282
823 => 0.012667034520062
824 => 0.012682863613743
825 => 0.013047638396562
826 => 0.012995779087286
827 => 0.012968229862827
828 => 0.012975861186277
829 => 0.013069068964147
830 => 0.013095162052994
831 => 0.012984603802018
901 => 0.013036743712308
902 => 0.013258748832783
903 => 0.013336438060547
904 => 0.013584384782627
905 => 0.013479052608186
906 => 0.013672394373042
907 => 0.014266661043144
908 => 0.014741402379347
909 => 0.014304810627059
910 => 0.015176612633052
911 => 0.015855435547288
912 => 0.015829381193201
913 => 0.015711012716647
914 => 0.014938190876231
915 => 0.014227028696555
916 => 0.014821946057395
917 => 0.014823462624093
918 => 0.014772358695191
919 => 0.014454956581801
920 => 0.014761313789654
921 => 0.014785631312288
922 => 0.014772019966164
923 => 0.014528668510016
924 => 0.014157115815346
925 => 0.014229716322513
926 => 0.014348637434263
927 => 0.014123494960178
928 => 0.014051548297844
929 => 0.014185310831535
930 => 0.014616321585619
1001 => 0.014534841499235
1002 => 0.014532713724892
1003 => 0.014881320087378
1004 => 0.0146317931658
1005 => 0.014230632047407
1006 => 0.014129333574348
1007 => 0.013769792237816
1008 => 0.014018128719601
1009 => 0.014027065907476
1010 => 0.013891054554339
1011 => 0.014241668619113
1012 => 0.014238437648782
1013 => 0.014571293521268
1014 => 0.015207588934504
1015 => 0.015019405070615
1016 => 0.014800567711257
1017 => 0.014824361399921
1018 => 0.015085319436737
1019 => 0.014927538250585
1020 => 0.014984277465215
1021 => 0.01508523355514
1022 => 0.01514614287079
1023 => 0.01481559748674
1024 => 0.014738531545904
1025 => 0.014580881677425
1026 => 0.014539753769412
1027 => 0.014668156297817
1028 => 0.01463432676811
1029 => 0.014026314771441
1030 => 0.013962774134843
1031 => 0.013964722835452
1101 => 0.013804946883532
1102 => 0.013561250206232
1103 => 0.014201670523804
1104 => 0.014150235809627
1105 => 0.014093455865905
1106 => 0.014100411085029
1107 => 0.014378395839029
1108 => 0.014217150643143
1109 => 0.014645847423975
1110 => 0.014557720253641
1111 => 0.014467332953922
1112 => 0.014454838675836
1113 => 0.014420047276926
1114 => 0.014300734624755
1115 => 0.014156657427679
1116 => 0.014061525182417
1117 => 0.012971013691371
1118 => 0.013173406280896
1119 => 0.013406240506479
1120 => 0.013486613948125
1121 => 0.013349129614516
1122 => 0.014306163344223
1123 => 0.014481022628847
1124 => 0.013951362449932
1125 => 0.013852284656339
1126 => 0.014312658867876
1127 => 0.014034996939861
1128 => 0.014160028089045
1129 => 0.013889779132892
1130 => 0.014438904147658
1201 => 0.014434720735082
1202 => 0.014221098701787
1203 => 0.014401650581507
1204 => 0.014370275249242
1205 => 0.01412909649978
1206 => 0.014446549944199
1207 => 0.014446707397147
1208 => 0.014241100834644
1209 => 0.014000997382704
1210 => 0.013958072556488
1211 => 0.013925734466073
1212 => 0.014152074901164
1213 => 0.014355011027518
1214 => 0.014732624846531
1215 => 0.014827565932513
1216 => 0.015198127311691
1217 => 0.014977476052697
1218 => 0.015075287897897
1219 => 0.015181476492191
1220 => 0.015232387209252
1221 => 0.015149430927821
1222 => 0.015725065278832
1223 => 0.015773666455038
1224 => 0.015789962009021
1225 => 0.015595861344631
1226 => 0.015768268164436
1227 => 0.015687604722963
1228 => 0.015897468588726
1229 => 0.015930377922554
1230 => 0.015902504887585
1231 => 0.015912950829581
]
'min_raw' => 0.0071358927711072
'max_raw' => 0.015930377922554
'avg_raw' => 0.011533135346831
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007135'
'max' => '$0.01593'
'avg' => '$0.011533'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011003401866828
'max_diff' => -0.0015201795664255
'year' => 2031
]
6 => [
'items' => [
101 => 0.015421748459851
102 => 0.015396277025682
103 => 0.015048972213411
104 => 0.015190501491559
105 => 0.014925919289737
106 => 0.015009821031433
107 => 0.015046804119728
108 => 0.015027486253175
109 => 0.015198503344597
110 => 0.015053103880404
111 => 0.014669370788515
112 => 0.014285533148802
113 => 0.014280714379903
114 => 0.014179656704664
115 => 0.014106610515102
116 => 0.014120681802664
117 => 0.014170270855381
118 => 0.01410372830921
119 => 0.014117928535228
120 => 0.014353746902743
121 => 0.014401038594568
122 => 0.014240322947689
123 => 0.013595026434311
124 => 0.013436669051324
125 => 0.013550493197851
126 => 0.013496092587025
127 => 0.010892400044568
128 => 0.011504098986301
129 => 0.011140648246457
130 => 0.011308143068942
131 => 0.010937153978673
201 => 0.011114209417753
202 => 0.011081513743185
203 => 0.012065107540004
204 => 0.012049750075755
205 => 0.012057100881192
206 => 0.011706227785275
207 => 0.012265178154314
208 => 0.012540537205307
209 => 0.012489575573412
210 => 0.012502401518235
211 => 0.012282009291792
212 => 0.012059234759697
213 => 0.01181214351885
214 => 0.012271208502944
215 => 0.012220168313214
216 => 0.012337236144775
217 => 0.012634972601603
218 => 0.012678815425862
219 => 0.012737740626276
220 => 0.012716620136509
221 => 0.013219795889187
222 => 0.013158857985477
223 => 0.013305700800386
224 => 0.013003633989127
225 => 0.012661816719742
226 => 0.012726785007803
227 => 0.012720528039221
228 => 0.012640869647754
229 => 0.012568957613705
301 => 0.012449244338103
302 => 0.012828034856338
303 => 0.012812656653051
304 => 0.013061611889072
305 => 0.013017606632883
306 => 0.012723728762141
307 => 0.012734224667786
308 => 0.012804814677414
309 => 0.013049127506718
310 => 0.013121656188541
311 => 0.013088058013353
312 => 0.013167582401912
313 => 0.013230435236158
314 => 0.013175475750194
315 => 0.013953586172152
316 => 0.013630460475286
317 => 0.013787949691644
318 => 0.013825509941766
319 => 0.013729300150887
320 => 0.013750164609514
321 => 0.01378176857911
322 => 0.013973661693803
323 => 0.014477244751476
324 => 0.014700278259714
325 => 0.015371285573527
326 => 0.014681758431631
327 => 0.014640844744578
328 => 0.014761713424275
329 => 0.015155665750821
330 => 0.015474927109426
331 => 0.015580844520705
401 => 0.015594843255111
402 => 0.015793551359927
403 => 0.01590744713992
404 => 0.01576942296946
405 => 0.015652461936728
406 => 0.01523352203522
407 => 0.015282015469555
408 => 0.015616087143499
409 => 0.016087983059667
410 => 0.016492918848142
411 => 0.016351124448455
412 => 0.017432915626819
413 => 0.017540170803433
414 => 0.017525351606
415 => 0.017769694860037
416 => 0.017284723260411
417 => 0.017077388505689
418 => 0.015677750239569
419 => 0.016070991501846
420 => 0.016642590770815
421 => 0.016566937464179
422 => 0.016151826796162
423 => 0.016492603949476
424 => 0.016379932365504
425 => 0.016291063612476
426 => 0.01669818859815
427 => 0.016250537952629
428 => 0.016638125113191
429 => 0.016141040570694
430 => 0.016351772153329
501 => 0.016232150715086
502 => 0.016309560445881
503 => 0.015857024741392
504 => 0.016101202022851
505 => 0.015846866163703
506 => 0.015846745575391
507 => 0.015841131097203
508 => 0.016140356107593
509 => 0.016150113824439
510 => 0.015928986089657
511 => 0.015897118128411
512 => 0.016014950683814
513 => 0.015876999621832
514 => 0.01594154605548
515 => 0.015878954667553
516 => 0.015864864027754
517 => 0.015752587412514
518 => 0.015704215559558
519 => 0.015723183409491
520 => 0.015658436359073
521 => 0.015619423919193
522 => 0.015833370540982
523 => 0.015719067491542
524 => 0.015815851959319
525 => 0.015705553843114
526 => 0.015323212517745
527 => 0.015103323978339
528 => 0.014381116657777
529 => 0.014585933757993
530 => 0.014721727707335
531 => 0.014676847807887
601 => 0.014773267198116
602 => 0.01477918656559
603 => 0.014747839638947
604 => 0.014711543913685
605 => 0.014693877161907
606 => 0.014825550655563
607 => 0.014901991550556
608 => 0.01473535644684
609 => 0.014696316173512
610 => 0.014864793463546
611 => 0.01496756451314
612 => 0.01572636820128
613 => 0.015670153573159
614 => 0.015811241258179
615 => 0.015795356950013
616 => 0.015943239320945
617 => 0.016184964497666
618 => 0.01569346962597
619 => 0.015778776141083
620 => 0.015757860953592
621 => 0.015986207486356
622 => 0.015986920359307
623 => 0.015850015206159
624 => 0.015924233710713
625 => 0.015882806977549
626 => 0.015957670683535
627 => 0.015669402792528
628 => 0.016020481967178
629 => 0.016219521236163
630 => 0.016222284896606
701 => 0.016316627930431
702 => 0.016412485916777
703 => 0.016596476974098
704 => 0.01640735450605
705 => 0.016067141596732
706 => 0.016091703869904
707 => 0.01589223716565
708 => 0.015895590236985
709 => 0.015877691279413
710 => 0.015931407398457
711 => 0.015681190459939
712 => 0.015739915875282
713 => 0.015657699949906
714 => 0.015778597419717
715 => 0.015648531727268
716 => 0.015757850867655
717 => 0.01580502938466
718 => 0.015979119128087
719 => 0.015622818530616
720 => 0.014896297492942
721 => 0.015049021023277
722 => 0.014823130925737
723 => 0.014844037914288
724 => 0.014886273358485
725 => 0.014749374465266
726 => 0.014775490459912
727 => 0.014774557412808
728 => 0.014766516916937
729 => 0.014730904227524
730 => 0.014679258782121
731 => 0.01488499834098
801 => 0.014919957501128
802 => 0.014997667383615
803 => 0.015228879282779
804 => 0.0152057757617
805 => 0.015243458563135
806 => 0.015161197219182
807 => 0.014847853782103
808 => 0.014864869838277
809 => 0.014652679345121
810 => 0.014992241195636
811 => 0.014911828467437
812 => 0.014859985858451
813 => 0.014845840122271
814 => 0.015077625151011
815 => 0.015146978864395
816 => 0.015103762284368
817 => 0.015015123817905
818 => 0.015185335877125
819 => 0.015230877443502
820 => 0.015241072520705
821 => 0.015542655654718
822 => 0.015257927667726
823 => 0.015326464524148
824 => 0.015861169513242
825 => 0.015376265872378
826 => 0.015633130145585
827 => 0.015620557976069
828 => 0.015751961046428
829 => 0.015609779088931
830 => 0.015611541604698
831 => 0.015728218629162
901 => 0.015564366791114
902 => 0.01552379477176
903 => 0.015467744817604
904 => 0.015590127841957
905 => 0.015663490930148
906 => 0.016254743541716
907 => 0.016636719693184
908 => 0.016620137101059
909 => 0.016771670951776
910 => 0.016703403564137
911 => 0.016482950161424
912 => 0.016859237238426
913 => 0.016740164262743
914 => 0.016749980494184
915 => 0.01674961513356
916 => 0.016828788252849
917 => 0.016772686841723
918 => 0.016662105201701
919 => 0.016735514454977
920 => 0.016953513692917
921 => 0.017630190016516
922 => 0.018008867051971
923 => 0.017607393183501
924 => 0.017884324482023
925 => 0.017718264383621
926 => 0.017688086323881
927 => 0.017862019644415
928 => 0.018036257412201
929 => 0.018025159219644
930 => 0.017898671547439
1001 => 0.017827221870917
1002 => 0.018368262758943
1003 => 0.018766892468849
1004 => 0.018739708595081
1005 => 0.018859689373224
1006 => 0.019211956648718
1007 => 0.019244163553632
1008 => 0.019240106223881
1009 => 0.019160278049608
1010 => 0.019507130930019
1011 => 0.019796481705153
1012 => 0.019141800133722
1013 => 0.019391094305712
1014 => 0.019503010491274
1015 => 0.019667336655717
1016 => 0.019944582439393
1017 => 0.020245744896279
1018 => 0.020288332569761
1019 => 0.020258114577417
1020 => 0.02005948984142
1021 => 0.020389025395359
1022 => 0.020582059594297
1023 => 0.020697007042256
1024 => 0.020988494644847
1025 => 0.019503701647536
1026 => 0.018452691365039
1027 => 0.018288560932654
1028 => 0.018622326621018
1029 => 0.018710337971308
1030 => 0.018674860706363
1031 => 0.017491853079739
1101 => 0.018282332642329
1102 => 0.019132822186267
1103 => 0.019165492953377
1104 => 0.019591265801971
1105 => 0.019729914894491
1106 => 0.020072717844932
1107 => 0.020051275427046
1108 => 0.020134742490292
1109 => 0.0201155548579
1110 => 0.020750525137913
1111 => 0.021450991650767
1112 => 0.021426736722774
1113 => 0.021326036374008
1114 => 0.021475593563887
1115 => 0.022198550071705
1116 => 0.022131991821607
1117 => 0.022196647492159
1118 => 0.02304905395892
1119 => 0.024157303619116
1120 => 0.023642410385508
1121 => 0.0247595805459
1122 => 0.025462779943221
1123 => 0.026678890588713
1124 => 0.026526627546426
1125 => 0.027000050496484
1126 => 0.026254044922477
1127 => 0.024541065331955
1128 => 0.024269979754733
1129 => 0.024812699945312
1130 => 0.02614692457599
1201 => 0.02477068046359
1202 => 0.025049092855104
1203 => 0.024968910067618
1204 => 0.024964637467628
1205 => 0.025127705231335
1206 => 0.024891166935036
1207 => 0.023927467363486
1208 => 0.02436912519801
1209 => 0.024198579897949
1210 => 0.024387812623361
1211 => 0.025409023596897
1212 => 0.024957521882868
1213 => 0.024481901504159
1214 => 0.025078435007671
1215 => 0.025838027148794
1216 => 0.025790493237721
1217 => 0.025698257582605
1218 => 0.026218185141189
1219 => 0.027076953143487
1220 => 0.027309074683699
1221 => 0.027480422059168
1222 => 0.027504047967307
1223 => 0.027747409504564
1224 => 0.02643879318373
1225 => 0.028515600892544
1226 => 0.028874208213201
1227 => 0.028806804899668
1228 => 0.029205381844075
1229 => 0.029088110396109
1230 => 0.028918202467333
1231 => 0.029550031703966
]
'min_raw' => 0.010892400044568
'max_raw' => 0.029550031703966
'avg_raw' => 0.020221215874267
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010892'
'max' => '$0.02955'
'avg' => '$0.020221'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.003756507273461
'max_diff' => 0.013619653781412
'year' => 2032
]
7 => [
'items' => [
101 => 0.028825690470157
102 => 0.02779757928079
103 => 0.02723353714857
104 => 0.027976313328258
105 => 0.028429900821878
106 => 0.028729693301577
107 => 0.028820410324795
108 => 0.026540377343564
109 => 0.025311566023107
110 => 0.026099219991169
111 => 0.027060212193179
112 => 0.026433454823527
113 => 0.026458022525808
114 => 0.025564431225624
115 => 0.027139275195163
116 => 0.026909833675324
117 => 0.028100176686125
118 => 0.027816091773498
119 => 0.028786770289957
120 => 0.028531158105594
121 => 0.029592189991801
122 => 0.0300154643375
123 => 0.030726207841321
124 => 0.031249033655978
125 => 0.031556046974409
126 => 0.031537615046349
127 => 0.0327541547674
128 => 0.032036803796557
129 => 0.031135641910535
130 => 0.031119342735146
131 => 0.031586067245479
201 => 0.032564193779522
202 => 0.032817807758637
203 => 0.032959543374307
204 => 0.032742470345056
205 => 0.031963837279213
206 => 0.031627627469141
207 => 0.031914087968258
208 => 0.031563771393669
209 => 0.03216851608288
210 => 0.032998959707662
211 => 0.032827476383075
212 => 0.033400719426954
213 => 0.033993965670442
214 => 0.034842334442986
215 => 0.035064129455134
216 => 0.035430748176105
217 => 0.035808119267961
218 => 0.035929320692229
219 => 0.036160731817749
220 => 0.03615951216689
221 => 0.036856885169412
222 => 0.037626109187038
223 => 0.037916473446115
224 => 0.038584150049083
225 => 0.037440777264678
226 => 0.038308038655769
227 => 0.039090330139494
228 => 0.038157649982505
301 => 0.039443132292308
302 => 0.039493044657432
303 => 0.040246662112117
304 => 0.039482726446159
305 => 0.039029103886283
306 => 0.040338695219631
307 => 0.040972365214098
308 => 0.040781498654787
309 => 0.039328994714187
310 => 0.038483575119933
311 => 0.036270948972509
312 => 0.038891900222469
313 => 0.040168489122128
314 => 0.039325688657338
315 => 0.039750748189003
316 => 0.04206973516775
317 => 0.04295265526597
318 => 0.042769014057618
319 => 0.042800046398837
320 => 0.043276454057703
321 => 0.045389107979604
322 => 0.044123156778667
323 => 0.045090929037497
324 => 0.045604231954018
325 => 0.046081016309565
326 => 0.044910184621584
327 => 0.043386949798455
328 => 0.042904477388922
329 => 0.039241888760896
330 => 0.039051235116991
331 => 0.038944215449271
401 => 0.038269471582526
402 => 0.037739307731164
403 => 0.037317701752839
404 => 0.036211281763512
405 => 0.03658466603061
406 => 0.034821263495422
407 => 0.035949425946287
408 => 0.033134992921283
409 => 0.035478936375835
410 => 0.034203234519554
411 => 0.035059834006155
412 => 0.035056845411243
413 => 0.033479574171295
414 => 0.032569837036904
415 => 0.033149556946437
416 => 0.03377106270768
417 => 0.033871899926445
418 => 0.034677698368857
419 => 0.034902579393555
420 => 0.03422117939003
421 => 0.033076670052515
422 => 0.033342513468141
423 => 0.032564449728572
424 => 0.031200922952766
425 => 0.032180231688043
426 => 0.032514610747432
427 => 0.032662291589213
428 => 0.031321419607317
429 => 0.030900088518858
430 => 0.030675775382672
501 => 0.032903580317601
502 => 0.033025624500922
503 => 0.032401229203745
504 => 0.035223555154577
505 => 0.034584775869134
506 => 0.035298448835699
507 => 0.033318390964612
508 => 0.033394031841789
509 => 0.032456640713781
510 => 0.032981517108968
511 => 0.032610551390406
512 => 0.032939112283166
513 => 0.033136050327579
514 => 0.034073287638927
515 => 0.035489638120426
516 => 0.033933295638722
517 => 0.033255174932208
518 => 0.033675877204633
519 => 0.034796262795599
520 => 0.036493704317395
521 => 0.035488784772298
522 => 0.035934751001772
523 => 0.036032174783255
524 => 0.035291184314844
525 => 0.036521025692903
526 => 0.037180107678619
527 => 0.037856189418163
528 => 0.038443212249229
529 => 0.037586147504033
530 => 0.038503329636798
531 => 0.037764242742231
601 => 0.037101205392406
602 => 0.037102210946375
603 => 0.0366862779314
604 => 0.035880355303952
605 => 0.035731730806379
606 => 0.036504894211958
607 => 0.037124898044385
608 => 0.037175964529642
609 => 0.037519230508221
610 => 0.037722371778423
611 => 0.03971343238357
612 => 0.040514253429877
613 => 0.041493482246535
614 => 0.041874947056935
615 => 0.043023019373537
616 => 0.042095857736006
617 => 0.041895260483606
618 => 0.039110412575124
619 => 0.039566431264128
620 => 0.040296561184482
621 => 0.039122452148587
622 => 0.039867154089215
623 => 0.040014174027239
624 => 0.039082556372825
625 => 0.03958017361487
626 => 0.038258649753229
627 => 0.035518443729302
628 => 0.036524076325538
629 => 0.037264560408639
630 => 0.036207798321024
701 => 0.038102003460733
702 => 0.036995447922446
703 => 0.036644722940842
704 => 0.035276419745122
705 => 0.035922206182682
706 => 0.036795641586253
707 => 0.036255960054611
708 => 0.037375880266359
709 => 0.038961985958005
710 => 0.040092339328098
711 => 0.040179113824201
712 => 0.039452372335024
713 => 0.040616980209431
714 => 0.040625463106365
715 => 0.039311780666471
716 => 0.03850715748665
717 => 0.038324345407254
718 => 0.038781045824006
719 => 0.039335564441492
720 => 0.040209885748218
721 => 0.040738219802487
722 => 0.042115834809291
723 => 0.042488577930815
724 => 0.042898109612716
725 => 0.04344537023463
726 => 0.04410249692598
727 => 0.042664741135549
728 => 0.042721865853415
729 => 0.041383047568448
730 => 0.039952328224999
731 => 0.041038065864993
801 => 0.04245752339966
802 => 0.042131898272847
803 => 0.042095258794162
804 => 0.042156876234365
805 => 0.04191136552267
806 => 0.040800929672724
807 => 0.040243275740578
808 => 0.040962791585738
809 => 0.041345182235474
810 => 0.041938236785247
811 => 0.041865130294124
812 => 0.043392775124929
813 => 0.043986371712598
814 => 0.043834504304042
815 => 0.04386245156211
816 => 0.044937129830216
817 => 0.046132393088793
818 => 0.047251914859328
819 => 0.048390740488896
820 => 0.047017841743331
821 => 0.046320768428956
822 => 0.047039970156007
823 => 0.046658351596137
824 => 0.048851245036569
825 => 0.049003076220531
826 => 0.051195811089809
827 => 0.053276977586764
828 => 0.051969834197997
829 => 0.053202411538573
830 => 0.054535544425911
831 => 0.057107374058601
901 => 0.056241272316369
902 => 0.055577851955363
903 => 0.054950922919836
904 => 0.056255462720585
905 => 0.057933732333717
906 => 0.058295215534119
907 => 0.058880956415981
908 => 0.05826512149969
909 => 0.059006826824371
910 => 0.061625372542329
911 => 0.060917818374794
912 => 0.059912977711887
913 => 0.061980068068411
914 => 0.062728140032826
915 => 0.067978500847424
916 => 0.074607298257442
917 => 0.071862932602664
918 => 0.070159416280617
919 => 0.070559783024246
920 => 0.072980395439431
921 => 0.07375781932079
922 => 0.071644513217172
923 => 0.072390968659751
924 => 0.076504011538242
925 => 0.078710527080338
926 => 0.075713782599598
927 => 0.067445883429846
928 => 0.059822502804392
929 => 0.061844566631566
930 => 0.06161532734551
1001 => 0.0660342788059
1002 => 0.060900943441902
1003 => 0.06098737564426
1004 => 0.065497706341099
1005 => 0.064294427437826
1006 => 0.062345269718842
1007 => 0.059836733812808
1008 => 0.055199473179016
1009 => 0.051092122116087
1010 => 0.059147583416948
1011 => 0.058800217277749
1012 => 0.058297179631411
1013 => 0.059416635478977
1014 => 0.064852395311673
1015 => 0.064727083453692
1016 => 0.063929913347887
1017 => 0.064534559847205
1018 => 0.062239272264089
1019 => 0.062830820136985
1020 => 0.059821295221952
1021 => 0.061181726172409
1022 => 0.062341087701788
1023 => 0.062573846693452
1024 => 0.063098264586639
1025 => 0.05861717110683
1026 => 0.060629050521272
1027 => 0.061810841189648
1028 => 0.056471467956011
1029 => 0.061705298948213
1030 => 0.05853916523888
1031 => 0.0574645319042
1101 => 0.058911384117171
1102 => 0.058347544402666
1103 => 0.057862788125914
1104 => 0.057592285794316
1105 => 0.05865469437627
1106 => 0.058605131746069
1107 => 0.056866825101373
1108 => 0.054599274945809
1109 => 0.055360339207813
1110 => 0.055083837426411
1111 => 0.054081759301173
1112 => 0.054757038966209
1113 => 0.051783449072606
1114 => 0.046667542214415
1115 => 0.050047266989401
1116 => 0.049917151261997
1117 => 0.049851541011962
1118 => 0.052391310771632
1119 => 0.052147170511698
1120 => 0.051704053549288
1121 => 0.054073621110662
1122 => 0.053208697075579
1123 => 0.055874189149972
1124 => 0.057629854623385
1125 => 0.057184561069499
1126 => 0.058835772933112
1127 => 0.055377872591276
1128 => 0.056526448377952
1129 => 0.056763168255728
1130 => 0.054044381014773
1201 => 0.052187114877556
1202 => 0.052063256400588
1203 => 0.048843012865694
1204 => 0.050563240969137
1205 => 0.052076970512291
1206 => 0.051352011531278
1207 => 0.051122511175423
1208 => 0.052294978720933
1209 => 0.052386089490724
1210 => 0.05030875428399
1211 => 0.050740698054121
1212 => 0.052541975380242
1213 => 0.050695310487104
1214 => 0.047107542250735
1215 => 0.046217726123339
1216 => 0.046099008249379
1217 => 0.043685756339673
1218 => 0.046277187891793
1219 => 0.045145958573245
1220 => 0.048719498436329
1221 => 0.046678311631814
1222 => 0.04659032014834
1223 => 0.046457308115524
1224 => 0.04438012250666
1225 => 0.044834894142969
1226 => 0.046346624325737
1227 => 0.046886026685808
1228 => 0.046829762600459
1229 => 0.04633921602312
1230 => 0.046563785734221
1231 => 0.04584036844949
]
'min_raw' => 0.025311566023107
'max_raw' => 0.078710527080338
'avg_raw' => 0.052011046551722
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.025311'
'max' => '$0.07871'
'avg' => '$0.052011'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014419165978538
'max_diff' => 0.049160495376372
'year' => 2033
]
8 => [
'items' => [
101 => 0.045584914749623
102 => 0.044778632604767
103 => 0.043593620592955
104 => 0.043758403781299
105 => 0.041410584910641
106 => 0.040131368581727
107 => 0.039777298361684
108 => 0.03930382086583
109 => 0.039830778904717
110 => 0.041403933834768
111 => 0.03950637522569
112 => 0.036253144088685
113 => 0.036448668823255
114 => 0.03688795485002
115 => 0.036069348245312
116 => 0.035294605794401
117 => 0.035968181498627
118 => 0.03458974457929
119 => 0.037054532366161
120 => 0.036987866764014
121 => 0.037906587229506
122 => 0.03848108199062
123 => 0.03715705756114
124 => 0.036824068997669
125 => 0.037013754416908
126 => 0.033878676966369
127 => 0.037650384516932
128 => 0.037683002400453
129 => 0.037403708278856
130 => 0.039412026111125
131 => 0.043650203147252
201 => 0.042055630465985
202 => 0.041438163727583
203 => 0.040264359006518
204 => 0.04182838410371
205 => 0.041708291378838
206 => 0.041165186533153
207 => 0.040836715027892
208 => 0.041441933847821
209 => 0.040761721718443
210 => 0.040639536929027
211 => 0.039899230043531
212 => 0.039634974167226
213 => 0.039439329636739
214 => 0.039223944232307
215 => 0.039699030763785
216 => 0.038622422180619
217 => 0.037324137770563
218 => 0.037216199469499
219 => 0.03751422660877
220 => 0.037382371785154
221 => 0.037215568199332
222 => 0.036897094727744
223 => 0.036802610451834
224 => 0.03710963851129
225 => 0.036763021733012
226 => 0.037274473670554
227 => 0.037135387043469
228 => 0.03635846045087
301 => 0.035390122261426
302 => 0.035381502020382
303 => 0.03517287514586
304 => 0.034907157453894
305 => 0.034833240870787
306 => 0.035911454831572
307 => 0.038143325462169
308 => 0.037705155853245
309 => 0.038021778301121
310 => 0.039579247371913
311 => 0.040074319954789
312 => 0.0397229291619
313 => 0.039241923771754
314 => 0.039263085567777
315 => 0.040906826596139
316 => 0.041009344707825
317 => 0.041268374902457
318 => 0.041601301904483
319 => 0.039779628069962
320 => 0.039177284893991
321 => 0.038891861280489
322 => 0.038012867023743
323 => 0.038960786970372
324 => 0.03840847461145
325 => 0.038483000418345
326 => 0.038434465388837
327 => 0.038460968796873
328 => 0.037053843407742
329 => 0.037566525943208
330 => 0.036714091791583
331 => 0.035572778152781
401 => 0.035568952069267
402 => 0.035848286965466
403 => 0.035682127638832
404 => 0.035234997163205
405 => 0.035298509936871
406 => 0.034742071208272
407 => 0.035366071673171
408 => 0.035383965773724
409 => 0.035143691605202
410 => 0.036105050416851
411 => 0.036498919906378
412 => 0.036340766301486
413 => 0.036487823427853
414 => 0.037723363778713
415 => 0.037924810766308
416 => 0.038014280211357
417 => 0.037894403007422
418 => 0.036510406837354
419 => 0.036571792952702
420 => 0.036121382368601
421 => 0.035740832888134
422 => 0.035756052871634
423 => 0.035951704772563
424 => 0.036806128098756
425 => 0.038604211617723
426 => 0.038672447572886
427 => 0.038755151541127
428 => 0.038418752938608
429 => 0.038317291901187
430 => 0.038451145198861
501 => 0.039126410829845
502 => 0.040863377365566
503 => 0.040249417383748
504 => 0.039750258361673
505 => 0.040188155396339
506 => 0.040120744580202
507 => 0.039551729452164
508 => 0.039535759092684
509 => 0.038443637136837
510 => 0.038039904516175
511 => 0.037702515319486
512 => 0.03733409512447
513 => 0.037115683283308
514 => 0.03745126313774
515 => 0.037528014220912
516 => 0.036794263004265
517 => 0.03669425542474
518 => 0.037293452507374
519 => 0.037029768211626
520 => 0.037300974048859
521 => 0.037363896129458
522 => 0.037353764225263
523 => 0.037078447536553
524 => 0.037253926183875
525 => 0.036838866870256
526 => 0.036387552206589
527 => 0.036099641569067
528 => 0.035848401352024
529 => 0.035987804026606
530 => 0.035490858945643
531 => 0.035331876212714
601 => 0.037194477966557
602 => 0.038570401908463
603 => 0.038550395429422
604 => 0.038428611133509
605 => 0.038247664372824
606 => 0.039113173447253
607 => 0.038811647392122
608 => 0.039031032790575
609 => 0.039086875582057
610 => 0.039255894893101
611 => 0.039316304769099
612 => 0.039133704166478
613 => 0.038520874241294
614 => 0.036993760333857
615 => 0.03628288468758
616 => 0.036048283883739
617 => 0.036056811177388
618 => 0.035821590351025
619 => 0.035890873426247
620 => 0.035797496524886
621 => 0.035620663264008
622 => 0.03597688507105
623 => 0.036017936315876
624 => 0.035934789889579
625 => 0.035954373882916
626 => 0.035265956985478
627 => 0.035318295827027
628 => 0.035026866506382
629 => 0.034972227021994
630 => 0.034235519077056
701 => 0.032930334165075
702 => 0.033653533303678
703 => 0.032780010441434
704 => 0.03244919409747
705 => 0.034015227217295
706 => 0.033858040927062
707 => 0.033589006325421
708 => 0.03319104807787
709 => 0.033043441492765
710 => 0.032146630608229
711 => 0.032093642236871
712 => 0.032538125927177
713 => 0.032333011997851
714 => 0.032044954358357
715 => 0.031001638788044
716 => 0.029828606657099
717 => 0.029864013123715
718 => 0.03023713281953
719 => 0.031322028657159
720 => 0.030898141084509
721 => 0.030590605787002
722 => 0.030533013670256
723 => 0.031253899588595
724 => 0.032274104193314
725 => 0.032752761368057
726 => 0.032278426644921
727 => 0.031733536454978
728 => 0.031766701396062
729 => 0.031987332890937
730 => 0.032010518141487
731 => 0.031655850643451
801 => 0.031755687466672
802 => 0.031604026202929
803 => 0.030673281307287
804 => 0.030656447083549
805 => 0.03042802727587
806 => 0.030421110814873
807 => 0.030032511740019
808 => 0.029978144043188
809 => 0.029206556993788
810 => 0.029714417926284
811 => 0.029373771476661
812 => 0.028860336926705
813 => 0.028771820616768
814 => 0.028769159709605
815 => 0.029296342190544
816 => 0.029708257492053
817 => 0.029379697167496
818 => 0.029304890350468
819 => 0.030103631445729
820 => 0.030001984360671
821 => 0.029913958640563
822 => 0.032182756060664
823 => 0.030386825866184
824 => 0.029603697793279
825 => 0.028634428091071
826 => 0.028950027193592
827 => 0.029016528561609
828 => 0.026685609651795
829 => 0.025739956140382
830 => 0.025415443491465
831 => 0.025228681874078
901 => 0.025313791488326
902 => 0.02446259241396
903 => 0.025034612269467
904 => 0.024297545821133
905 => 0.024173974232448
906 => 0.025491940347082
907 => 0.025675327632487
908 => 0.024892940498986
909 => 0.025395359695665
910 => 0.0252131755108
911 => 0.024310180709881
912 => 0.024275692950466
913 => 0.023822601901167
914 => 0.023113602144729
915 => 0.022789570231033
916 => 0.022620811597007
917 => 0.022690444698446
918 => 0.022655236071551
919 => 0.022425475965022
920 => 0.022668405651909
921 => 0.022047820687389
922 => 0.021800698754124
923 => 0.021689079510054
924 => 0.021138274634504
925 => 0.022014850135543
926 => 0.022187546552055
927 => 0.022360583233856
928 => 0.023866749411775
929 => 0.023791505605908
930 => 0.024471672965729
1001 => 0.024445242912874
1002 => 0.024251248163872
1003 => 0.023432816228421
1004 => 0.023759028610745
1005 => 0.022754997602611
1006 => 0.023507285901377
1007 => 0.023163972938131
1008 => 0.023391211443162
1009 => 0.022982616121846
1010 => 0.02320874964315
1011 => 0.022228499279025
1012 => 0.0213131552815
1013 => 0.021681516426661
1014 => 0.022081967118658
1015 => 0.022950246251845
1016 => 0.022433106363266
1017 => 0.022619089422423
1018 => 0.021996077307435
1019 => 0.020710625359601
1020 => 0.020717900878026
1021 => 0.020520162100944
1022 => 0.020349286927212
1023 => 0.022492506100355
1024 => 0.022225962916893
1025 => 0.021801261238357
1026 => 0.022369741312052
1027 => 0.022520056466529
1028 => 0.022524335727658
1029 => 0.022939084114832
1030 => 0.023160435403414
1031 => 0.023199449527418
1101 => 0.023852065075868
1102 => 0.024070813199501
1103 => 0.024971805762352
1104 => 0.023141655293073
1105 => 0.023103964548523
1106 => 0.022377740992496
1107 => 0.021917158532123
1108 => 0.022409277467603
1109 => 0.022845227663504
1110 => 0.022391287180289
1111 => 0.02245056222419
1112 => 0.021841184213774
1113 => 0.022059008178597
1114 => 0.02224662752116
1115 => 0.022143035147952
1116 => 0.021987952351332
1117 => 0.022809484718951
1118 => 0.022763130643158
1119 => 0.023528160470832
1120 => 0.024124555929312
1121 => 0.025193403209347
1122 => 0.024078005352361
1123 => 0.024037355821148
1124 => 0.02443471150915
1125 => 0.024070752366415
1126 => 0.024300761981181
1127 => 0.025156345104474
1128 => 0.025174422227659
1129 => 0.024871607123253
1130 => 0.02485318079663
1201 => 0.024911339749865
1202 => 0.025251978555527
1203 => 0.025132948890055
1204 => 0.025270693032401
1205 => 0.025442944191618
1206 => 0.026155448019116
1207 => 0.026327230279755
1208 => 0.025909888445292
1209 => 0.025947569740165
1210 => 0.025791472437787
1211 => 0.025640684399582
1212 => 0.025979633888641
1213 => 0.026599070741966
1214 => 0.02659521725745
1215 => 0.026738914567289
1216 => 0.026828436800866
1217 => 0.026444141840073
1218 => 0.026193979951514
1219 => 0.026289907937802
1220 => 0.026443298876917
1221 => 0.026240165323599
1222 => 0.024986330931906
1223 => 0.025366664191094
1224 => 0.025303358139419
1225 => 0.025213202623555
1226 => 0.025595630656699
1227 => 0.025558744539963
1228 => 0.024453862137149
1229 => 0.024524593123795
1230 => 0.024458163522716
1231 => 0.024672811154022
]
'min_raw' => 0.020349286927212
'max_raw' => 0.045584914749623
'avg_raw' => 0.032967100838417
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.020349'
'max' => '$0.045584'
'avg' => '$0.032967'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0049622790958949
'max_diff' => -0.033125612330715
'year' => 2034
]
9 => [
'items' => [
101 => 0.024059160689911
102 => 0.024247915439673
103 => 0.024366300649257
104 => 0.024436030447181
105 => 0.024687942291449
106 => 0.02465838334408
107 => 0.024686104865778
108 => 0.025059623628568
109 => 0.026948753354597
110 => 0.027051574517455
111 => 0.026545245506469
112 => 0.02674751395946
113 => 0.026359202760966
114 => 0.026619878669974
115 => 0.026798226506467
116 => 0.025992306927671
117 => 0.025944585600589
118 => 0.025554671703649
119 => 0.025764189346013
120 => 0.02543083171216
121 => 0.025512626015153
122 => 0.025283922013287
123 => 0.025695543682133
124 => 0.026155800667443
125 => 0.026272079758032
126 => 0.02596619953199
127 => 0.025744722089845
128 => 0.025355880660645
129 => 0.026002532623301
130 => 0.026191633363544
131 => 0.026001539357616
201 => 0.025957490422806
202 => 0.025874017770937
203 => 0.025975199540501
204 => 0.026190603480301
205 => 0.026089022960177
206 => 0.026156118683337
207 => 0.025900418975461
208 => 0.026444269057696
209 => 0.027308033872934
210 => 0.027310811018055
211 => 0.027209229950375
212 => 0.027167665166075
213 => 0.027271893505969
214 => 0.027328433104692
215 => 0.027665488443702
216 => 0.028027162251338
217 => 0.029714936100927
218 => 0.029241015957698
219 => 0.030738509323169
220 => 0.03192283215008
221 => 0.03227795878171
222 => 0.031951258990609
223 => 0.030833636653231
224 => 0.030778800769461
225 => 0.032449000389483
226 => 0.031977092496838
227 => 0.031920960554606
228 => 0.031323811525674
301 => 0.031676800560119
302 => 0.031599596680249
303 => 0.031477726578932
304 => 0.032151205067223
305 => 0.033411896675465
306 => 0.03321540606563
307 => 0.033068734940325
308 => 0.03242606476456
309 => 0.032813095755951
310 => 0.032675281433007
311 => 0.033267419223504
312 => 0.032916649913872
313 => 0.031973517330417
314 => 0.032123714302938
315 => 0.032101012332696
316 => 0.0325682172716
317 => 0.032427973945681
318 => 0.032073627572485
319 => 0.033407587768603
320 => 0.033320967813344
321 => 0.033443775105823
322 => 0.033497838673914
323 => 0.034309796738276
324 => 0.034642429977485
325 => 0.03471794354635
326 => 0.035033919396821
327 => 0.034710081779343
328 => 0.036005663141562
329 => 0.036867149148169
330 => 0.037867809476508
331 => 0.039330043168351
401 => 0.039879856562902
402 => 0.039780537694365
403 => 0.040889186591278
404 => 0.042881404015151
405 => 0.040183221795406
406 => 0.043024414224495
407 => 0.04212492550459
408 => 0.039992253930804
409 => 0.039854935023999
410 => 0.041299204974592
411 => 0.044502456719178
412 => 0.043700078488139
413 => 0.044503769122519
414 => 0.043566221306974
415 => 0.043519664155658
416 => 0.044458234517764
417 => 0.046651255327632
418 => 0.045609433345019
419 => 0.044115726067714
420 => 0.045218656276617
421 => 0.044263196058293
422 => 0.042110276769934
423 => 0.043699464924628
424 => 0.042636820063057
425 => 0.042946956326971
426 => 0.0451804777695
427 => 0.04491173456037
428 => 0.045259513157935
429 => 0.044645693036184
430 => 0.044072288251919
501 => 0.04300198564049
502 => 0.042685121802527
503 => 0.042772691567773
504 => 0.0426850784073
505 => 0.042086253932794
506 => 0.041956937844539
507 => 0.041741405365313
508 => 0.041808207893046
509 => 0.04140294377585
510 => 0.042167760896838
511 => 0.042309717694038
512 => 0.042866287814238
513 => 0.042924072770468
514 => 0.044474112632945
515 => 0.043620376724054
516 => 0.04419313647975
517 => 0.044141903456177
518 => 0.040038475390634
519 => 0.040603891573214
520 => 0.041483501715935
521 => 0.041087238538922
522 => 0.04052701511793
523 => 0.040074604668199
524 => 0.039389156575513
525 => 0.040353911603103
526 => 0.041622461874126
527 => 0.042956245298768
528 => 0.044558698690523
529 => 0.044201049748097
530 => 0.042926288547252
531 => 0.042983473403508
601 => 0.043336967683473
602 => 0.042879160472577
603 => 0.042744144188625
604 => 0.043318418519374
605 => 0.043322373231074
606 => 0.042795610707089
607 => 0.042210210558203
608 => 0.042207757710204
609 => 0.042103591408005
610 => 0.043584752260728
611 => 0.044399240967473
612 => 0.044492620785088
613 => 0.044392955761736
614 => 0.044431312873661
615 => 0.04395737984124
616 => 0.045040650212879
617 => 0.046034766230232
618 => 0.04576832190139
619 => 0.045368883975164
620 => 0.045050712427387
621 => 0.045693370796371
622 => 0.045664754230839
623 => 0.046026083494068
624 => 0.046009691511549
625 => 0.045888190070606
626 => 0.045768326240589
627 => 0.046243572777812
628 => 0.046106709407318
629 => 0.045969633450206
630 => 0.045694706632941
701 => 0.045732073753458
702 => 0.045332704795821
703 => 0.045147938442138
704 => 0.042369495799218
705 => 0.041627005136797
706 => 0.041860607813985
707 => 0.041937515880807
708 => 0.041614382992994
709 => 0.04207767254809
710 => 0.042005469361673
711 => 0.042286369722569
712 => 0.042110875372357
713 => 0.042118077721704
714 => 0.042634169186337
715 => 0.04278399273413
716 => 0.042707791268498
717 => 0.042761160162993
718 => 0.04399102381103
719 => 0.043816176529105
720 => 0.043723292395418
721 => 0.04374902193523
722 => 0.044063278465878
723 => 0.044151253136689
724 => 0.043778498274593
725 => 0.043954291622427
726 => 0.04470279738601
727 => 0.044964732041506
728 => 0.045800701726084
729 => 0.045445566945899
730 => 0.046097432204802
731 => 0.048101043773426
801 => 0.049701667333817
802 => 0.048229667759115
803 => 0.051169009089593
804 => 0.053457707938841
805 => 0.05336986386498
806 => 0.052970776282055
807 => 0.050365153490393
808 => 0.047967420549858
809 => 0.049973225967734
810 => 0.049978339178242
811 => 0.049806038713985
812 => 0.048735895328382
813 => 0.049768800043836
814 => 0.04985078826919
815 => 0.049804896665421
816 => 0.048984420240763
817 => 0.047731704389701
818 => 0.04797648206842
819 => 0.048377432899492
820 => 0.047618349329167
821 => 0.047375776133953
822 => 0.047826765855295
823 => 0.049279948704899
824 => 0.049005232904896
825 => 0.048998058965145
826 => 0.050173409655185
827 => 0.04933211221767
828 => 0.047979569498836
829 => 0.047638034624483
830 => 0.046425815905991
831 => 0.047263099692629
901 => 0.047293232045522
902 => 0.046834660272414
903 => 0.04801678007089
904 => 0.048005886628839
905 => 0.04912813344218
906 => 0.051273447852634
907 => 0.050638972816952
908 => 0.049901147381142
909 => 0.049981369463695
910 => 0.050861207704328
911 => 0.050329237419288
912 => 0.050520537642817
913 => 0.050860918148528
914 => 0.051066278158796
915 => 0.049951821318528
916 => 0.049691988118429
917 => 0.049160460580087
918 => 0.049021794966765
919 => 0.049454713056059
920 => 0.049340654434751
921 => 0.04729069953794
922 => 0.047076467845381
923 => 0.04708303802554
924 => 0.04654434224844
925 => 0.045722701886564
926 => 0.047881923699979
927 => 0.047708507970072
928 => 0.047517070425566
929 => 0.04754052043244
930 => 0.048477765438827
1001 => 0.047934116003115
1002 => 0.049379497130345
1003 => 0.04908237022272
1004 => 0.048777623131077
1005 => 0.048735497800189
1006 => 0.048618196169707
1007 => 0.048215925232768
1008 => 0.04773015890368
1009 => 0.047409413896856
1010 => 0.043732678267713
1011 => 0.044415059013895
1012 => 0.045200075861415
1013 => 0.045471060531421
1014 => 0.045007522501807
1015 => 0.048234228539475
1016 => 0.04882377882587
1017 => 0.047037992552966
1018 => 0.046703944854479
1019 => 0.048256128650975
1020 => 0.047319972074936
1021 => 0.047741523323805
1022 => 0.046830360099955
1023 => 0.048681773425925
1024 => 0.048667668758347
1025 => 0.047947427158478
1026 => 0.048556170426685
1027 => 0.048450386303398
1028 => 0.047637235311023
1029 => 0.048707551762774
1030 => 0.048708082626381
1031 => 0.04801486574591
1101 => 0.047205340194208
1102 => 0.047060616145704
1103 => 0.046951586016097
1104 => 0.047714708595589
1105 => 0.048398921914141
1106 => 0.049672073269097
1107 => 0.049992173769064
1108 => 0.051241547330729
1109 => 0.050497606205652
1110 => 0.050827385670748
1111 => 0.051185407930263
1112 => 0.051357056967308
1113 => 0.051077364072639
1114 => 0.05301815547658
1115 => 0.053182017735384
1116 => 0.053236959333358
1117 => 0.052582535391689
1118 => 0.053163817021722
1119 => 0.052891854597054
1120 => 0.053599425272703
1121 => 0.053710381389361
1122 => 0.05361640550593
1123 => 0.05365162472868
1124 => 0.051995501644482
1125 => 0.051909622925821
1126 => 0.050738660503203
1127 => 0.051215836345737
1128 => 0.050323778979754
1129 => 0.050606659559716
1130 => 0.050731350623978
1201 => 0.050666219088163
1202 => 0.051242815151925
1203 => 0.050752590706934
1204 => 0.049458807796242
1205 => 0.048164672395261
1206 => 0.048148425579481
1207 => 0.04780770257179
1208 => 0.047561422243761
1209 => 0.047608864572203
1210 => 0.047776057525635
1211 => 0.047551704685367
1212 => 0.047599581738816
1213 => 0.048394659829204
1214 => 0.048554107069993
1215 => 0.048012243045731
1216 => 0.045836580797713
1217 => 0.045302667824814
1218 => 0.045686433881779
1219 => 0.045503018424249
1220 => 0.036724487233348
1221 => 0.038786872922856
1222 => 0.037561473378151
1223 => 0.038126193866273
1224 => 0.036875378246802
1225 => 0.037472333021277
1226 => 0.03736209727173
1227 => 0.04067835243003
1228 => 0.040626573667093
1229 => 0.04065135742084
1230 => 0.039468364280779
1231 => 0.041352904474661
]
'min_raw' => 0.024059160689911
'max_raw' => 0.053710381389361
'avg_raw' => 0.038884771039636
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.024059'
'max' => '$0.05371'
'avg' => '$0.038884'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0037098737626996
'max_diff' => 0.0081254666397375
'year' => 2035
]
10 => [
'items' => [
101 => 0.042281296740041
102 => 0.042109476040079
103 => 0.042152719608528
104 => 0.041409651829782
105 => 0.040658551941204
106 => 0.039825466571327
107 => 0.041373236216095
108 => 0.041201150652906
109 => 0.04159585302043
110 => 0.042599692271921
111 => 0.042747511414918
112 => 0.042946181842139
113 => 0.042874972636304
114 => 0.044571464817068
115 => 0.044366008420162
116 => 0.044861099222866
117 => 0.043842659879073
118 => 0.042690199090422
119 => 0.042909244209562
120 => 0.04288814840314
121 => 0.042619574574737
122 => 0.042377118131202
123 => 0.041973496464396
124 => 0.043250615142937
125 => 0.043198766456881
126 => 0.044038136416626
127 => 0.043889769623037
128 => 0.042898939863931
129 => 0.042934327542616
130 => 0.043172326688513
131 => 0.043996044449889
201 => 0.044240579964447
202 => 0.044127301371048
203 => 0.044395423399291
204 => 0.044607336118198
205 => 0.04442203637412
206 => 0.047045489987688
207 => 0.045956049140786
208 => 0.046487035029285
209 => 0.046613672034942
210 => 0.046289294007842
211 => 0.046359639986814
212 => 0.046466194976824
213 => 0.047113176010559
214 => 0.048811041448552
215 => 0.049563014493278
216 => 0.051825362500033
217 => 0.049500573599884
218 => 0.049362630247482
219 => 0.049770147439863
220 => 0.051098385213685
221 => 0.052174797174338
222 => 0.052531905121382
223 => 0.052579102831794
224 => 0.053249061080536
225 => 0.053633068654734
226 => 0.053167710527488
227 => 0.052773368239674
228 => 0.051360883112289
229 => 0.051524382111853
301 => 0.052650728084693
302 => 0.054241758112776
303 => 0.055607027395331
304 => 0.055128957677019
305 => 0.05877629216312
306 => 0.059137910479392
307 => 0.059087946520603
308 => 0.05991176686109
309 => 0.058276651253317
310 => 0.057577607652122
311 => 0.052858629518274
312 => 0.054184469889268
313 => 0.056111656732384
314 => 0.055856586327118
315 => 0.054457011727795
316 => 0.055605965692495
317 => 0.055226085580653
318 => 0.054926458375203
319 => 0.056299108688961
320 => 0.054789823283617
321 => 0.056096600455922
322 => 0.054420645215561
323 => 0.055131141459222
324 => 0.054727829428484
325 => 0.054988821740435
326 => 0.053463066017718
327 => 0.054286326770069
328 => 0.05342881566379
329 => 0.053428409091874
330 => 0.053409479486675
331 => 0.054418337500427
401 => 0.054451236324036
402 => 0.053705688727574
403 => 0.053598243671281
404 => 0.053995524358629
405 => 0.053530412721722
406 => 0.053748035529253
407 => 0.053537004294866
408 => 0.053489496719008
409 => 0.053110948271821
410 => 0.052947859192367
411 => 0.053011810622709
412 => 0.05279351142173
413 => 0.052661978256913
414 => 0.053383314229551
415 => 0.052997933517981
416 => 0.053324249108366
417 => 0.052952371308811
418 => 0.051663280836111
419 => 0.050921911273377
420 => 0.048486938869196
421 => 0.049177494022448
422 => 0.049635332803485
423 => 0.049484017089083
424 => 0.049809101795026
425 => 0.049829059355742
426 => 0.049723371003994
427 => 0.049600997432186
428 => 0.049541432745112
429 => 0.049985379122123
430 => 0.050243104936526
501 => 0.049681283050254
502 => 0.049549656043024
503 => 0.050117688989082
504 => 0.050464188758035
505 => 0.053022548370581
506 => 0.052833016827091
507 => 0.053308703807564
508 => 0.053255148753575
509 => 0.053753744491989
510 => 0.054568737802017
511 => 0.052911628527018
512 => 0.05319924539863
513 => 0.053128728383754
514 => 0.053898614661614
515 => 0.053901018162538
516 => 0.053439432880289
517 => 0.053689665750162
518 => 0.053549992626979
519 => 0.053802400838526
520 => 0.052830485517776
521 => 0.054014173466674
522 => 0.054685248258532
523 => 0.054694566132668
524 => 0.055012650258031
525 => 0.055335842151589
526 => 0.055956180847192
527 => 0.055318541242058
528 => 0.054171489665386
529 => 0.054254303084268
530 => 0.053581787164555
531 => 0.053593092278665
601 => 0.053532744693546
602 => 0.053713852339241
603 => 0.052870228461439
604 => 0.053068225299348
605 => 0.052791028566808
606 => 0.053198642827069
607 => 0.052760117264079
608 => 0.053128694378315
609 => 0.053287760042294
610 => 0.053874715766816
611 => 0.052673423426328
612 => 0.050223907023731
613 => 0.050738825069073
614 => 0.049977220834073
615 => 0.050047710205654
616 => 0.050190109954548
617 => 0.049728545778084
618 => 0.049816597677395
619 => 0.04981345184394
620 => 0.049786342750741
621 => 0.049666272081988
622 => 0.049492145857039
623 => 0.05018581114401
624 => 0.050303678393222
625 => 0.050565682687557
626 => 0.051345229748286
627 => 0.051267334613933
628 => 0.0513943848099
629 => 0.051117034945461
630 => 0.050060575670407
701 => 0.050117946491821
702 => 0.049402531429479
703 => 0.05054738791594
704 => 0.050276270788579
705 => 0.050101479812848
706 => 0.050053786475693
707 => 0.050835265882804
708 => 0.051069096769601
709 => 0.050923389052756
710 => 0.050624538274535
711 => 0.051198420116021
712 => 0.051351966686671
713 => 0.051386340101261
714 => 0.052403148693445
715 => 0.051443168406229
716 => 0.051674245202746
717 => 0.053477040405386
718 => 0.051842153925324
719 => 0.052708189756132
720 => 0.052665801808847
721 => 0.053108836434833
722 => 0.052629460038304
723 => 0.052635402483266
724 => 0.053028787217377
725 => 0.052476349305629
726 => 0.052339557909728
727 => 0.05215058157601
728 => 0.052563204487123
729 => 0.052810553261006
730 => 0.054804002720849
731 => 0.056091861984247
801 => 0.056035952617136
802 => 0.056546859574584
803 => 0.056316691310882
804 => 0.05557341727207
805 => 0.05684209542371
806 => 0.056440632572782
807 => 0.056473728682435
808 => 0.056472496843581
809 => 0.056739434542956
810 => 0.056550284718468
811 => 0.056177450998571
812 => 0.05642495542126
813 => 0.057159955072196
814 => 0.059441416541244
815 => 0.060718152604667
816 => 0.059364555427109
817 => 0.0602982486348
818 => 0.059738365419092
819 => 0.059636617983715
820 => 0.060223046317531
821 => 0.060810501116516
822 => 0.060773082785457
823 => 0.060346620767532
824 => 0.06010572319468
825 => 0.061929880322928
826 => 0.063273888221315
827 => 0.063182235892988
828 => 0.063586759463288
829 => 0.064774453177133
830 => 0.064883041005665
831 => 0.064869361435133
901 => 0.064600215172149
902 => 0.065769653874947
903 => 0.066745220215137
904 => 0.064537915588651
905 => 0.065378428294678
906 => 0.065755761528041
907 => 0.066309798664344
908 => 0.067244552180693
909 => 0.068259942430573
910 => 0.068403529745094
911 => 0.068301647674156
912 => 0.067631970509205
913 => 0.068743022636749
914 => 0.069393850915685
915 => 0.069781404261852
916 => 0.070764175065002
917 => 0.065758091809631
918 => 0.062214537262997
919 => 0.061661160050993
920 => 0.062786474372088
921 => 0.063083210784348
922 => 0.062963596708642
923 => 0.058975003900522
924 => 0.061640160935316
925 => 0.064507645811987
926 => 0.0646177975843
927 => 0.066053320469842
928 => 0.066520785565446
929 => 0.067676569646594
930 => 0.067604275037632
1001 => 0.06788569006885
1002 => 0.067820997626602
1003 => 0.069961844257876
1004 => 0.072323516010972
1005 => 0.072241738827819
1006 => 0.071902220571279
1007 => 0.072406463078706
1008 => 0.074843961420027
1009 => 0.074619555632873
1010 => 0.074837546740254
1011 => 0.077711494656058
1012 => 0.081448035760928
1013 => 0.079712037275123
1014 => 0.083478654469213
1015 => 0.085849540333094
1016 => 0.089949742280503
1017 => 0.089436376802768
1018 => 0.091032555332222
1019 => 0.088517345455012
1020 => 0.082741915169153
1021 => 0.081827931218956
1022 => 0.083657750233009
1023 => 0.08815618172793
1024 => 0.083516078616676
1025 => 0.084454765432799
1026 => 0.084184423566607
1027 => 0.084170018197436
1028 => 0.084719812547801
1029 => 0.083922307167252
1030 => 0.080673126778418
1031 => 0.08216220700308
1101 => 0.081587201616832
1102 => 0.082225212962366
1103 => 0.085668297058314
1104 => 0.084146027506622
1105 => 0.082542440193051
1106 => 0.084553694548781
1107 => 0.087114712485606
1108 => 0.086954448585711
1109 => 0.086643469634802
1110 => 0.088396441698749
1111 => 0.091291837975765
1112 => 0.092074451954799
1113 => 0.092652161594283
1114 => 0.092731817993083
1115 => 0.093552328406904
1116 => 0.08914023711654
1117 => 0.096142339304888
1118 => 0.097351408923646
1119 => 0.097124153946121
1120 => 0.098467983941944
1121 => 0.098072595067496
1122 => 0.097499738623035
1123 => 0.099629995007251
1124 => 0.097187827965573
1125 => 0.093721479310193
1126 => 0.091819771881248
1127 => 0.094324093630045
1128 => 0.09585339553325
1129 => 0.096864166809399
1130 => 0.097170025586838
1201 => 0.089482735203798
1202 => 0.08533971204401
1203 => 0.087995342389577
1204 => 0.091235394692985
1205 => 0.089122238462401
1206 => 0.089205070185906
1207 => 0.086192264728781
1208 => 0.091501961124179
1209 => 0.090728383020945
1210 => 0.094741707588957
1211 => 0.093783895471859
1212 => 0.09705660586071
1213 => 0.096194791534857
1214 => 0.099772134618084
1215 => 0.10119923362668
1216 => 0.10359555497234
1217 => 0.10535829870899
1218 => 0.10639341554706
1219 => 0.10633127101473
1220 => 0.11043291962035
1221 => 0.1080143207383
1222 => 0.10497599052247
1223 => 0.10492103671467
1224 => 0.10649463098693
1225 => 0.10979245288706
1226 => 0.11064753012441
1227 => 0.11112540164831
1228 => 0.11039352477463
1229 => 0.10776830903072
1230 => 0.10663475418264
1231 => 0.10760057575545
]
'min_raw' => 0.039825466571327
'max_raw' => 0.11112540164831
'avg_raw' => 0.075475434109818
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.039825'
'max' => '$0.111125'
'avg' => '$0.075475'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015766305881416
'max_diff' => 0.057415020258947
'year' => 2036
]
11 => [
'items' => [
101 => 0.1064194589659
102 => 0.1084583979075
103 => 0.11125829656818
104 => 0.11068012856675
105 => 0.11261285751174
106 => 0.11461302864079
107 => 0.11747336318864
108 => 0.11822116055733
109 => 0.11945724117158
110 => 0.12072957415498
111 => 0.12113821321891
112 => 0.12191843198522
113 => 0.12191431984719
114 => 0.12426556161422
115 => 0.12685905409515
116 => 0.12783803746721
117 => 0.13008915574981
118 => 0.12623419457946
119 => 0.12915822690977
120 => 0.131795777265
121 => 0.12865118099806
122 => 0.13298527435507
123 => 0.13315355737886
124 => 0.13569443124322
125 => 0.13311876880916
126 => 0.13158934867762
127 => 0.13600472729075
128 => 0.13814118991852
129 => 0.13749766998793
130 => 0.13260045154161
131 => 0.12975006035427
201 => 0.1222900368176
202 => 0.13112675694582
203 => 0.13543086554961
204 => 0.13258930494012
205 => 0.13402242282784
206 => 0.14184104933318
207 => 0.14481787608784
208 => 0.14419871693246
209 => 0.14430334463749
210 => 0.14590958632108
211 => 0.15303254651956
212 => 0.14876430365971
213 => 0.15202721539805
214 => 0.15375785201877
215 => 0.15536536376152
216 => 0.15141782298063
217 => 0.14628213042559
218 => 0.1446554410117
219 => 0.13230676773854
220 => 0.13166396566711
221 => 0.13130314138551
222 => 0.12902819532967
223 => 0.12724071088994
224 => 0.12581923689843
225 => 0.12208886465664
226 => 0.12334775578202
227 => 0.1174023210178
228 => 0.12120599948667
301 => 0.11171694204544
302 => 0.11961971105136
303 => 0.11531859317625
304 => 0.1182066781512
305 => 0.11819660189479
306 => 0.11287872178775
307 => 0.10981147952333
308 => 0.11176604567307
309 => 0.11386149573925
310 => 0.11420147546254
311 => 0.11691828117019
312 => 0.11767648324565
313 => 0.11537909555993
314 => 0.11152030242141
315 => 0.11241661205779
316 => 0.10979331583715
317 => 0.10519609011413
318 => 0.10849789788827
319 => 0.1096252802326
320 => 0.11012319650141
321 => 0.10560235299775
322 => 0.10418180581662
323 => 0.10342551841692
324 => 0.11093671829541
325 => 0.11134819878033
326 => 0.10924300644201
327 => 0.11875867543375
328 => 0.11660498647473
329 => 0.11901118470856
330 => 0.11233528135296
331 => 0.11259030985144
401 => 0.1094298302168
402 => 0.11119948762887
403 => 0.10994875080874
404 => 0.11105651679807
405 => 0.11172050716459
406 => 0.11488046819562
407 => 0.11965579273042
408 => 0.114408475393
409 => 0.11212214408611
410 => 0.11354057117009
411 => 0.11731802941285
412 => 0.12304107201517
413 => 0.11965291560763
414 => 0.12115652188667
415 => 0.12148499296785
416 => 0.1189866918693
417 => 0.12313318794021
418 => 0.12535532887069
419 => 0.12763478565808
420 => 0.12961397411764
421 => 0.12672432049087
422 => 0.1298166640871
423 => 0.12732478102066
424 => 0.12508930430394
425 => 0.12509269459935
426 => 0.12369034739985
427 => 0.12097312299368
428 => 0.12047202512349
429 => 0.12307879952594
430 => 0.12516918573425
501 => 0.12534135995465
502 => 0.12649870516749
503 => 0.12718361014285
504 => 0.13389660998451
505 => 0.13659663405368
506 => 0.13989817237661
507 => 0.1411843076179
508 => 0.14505511358917
509 => 0.14192912339588
510 => 0.14125279575416
511 => 0.13186348659884
512 => 0.13340098544702
513 => 0.13586266944954
514 => 0.13190407886134
515 => 0.1344148934476
516 => 0.13491058143325
517 => 0.13176956746793
518 => 0.13344731874201
519 => 0.12899170877664
520 => 0.11975291285189
521 => 0.12314347336113
522 => 0.12564006714625
523 => 0.12207711998708
524 => 0.12846356486479
525 => 0.12473273561022
526 => 0.1235502418479
527 => 0.11893691209165
528 => 0.12111422615326
529 => 0.12405907459771
530 => 0.12223950063442
531 => 0.12601538981866
601 => 0.1313630558964
602 => 0.13517412120243
603 => 0.13546668747444
604 => 0.13301642780421
605 => 0.1369429845631
606 => 0.13697158524237
607 => 0.13254241317789
608 => 0.12982956995012
609 => 0.12921320626091
610 => 0.13075300360179
611 => 0.1326226018359
612 => 0.13557043716469
613 => 0.13735175231576
614 => 0.14199647749321
615 => 0.14325320695152
616 => 0.14463397160964
617 => 0.14647909900494
618 => 0.14869464752395
619 => 0.1438471534956
620 => 0.14403975347021
621 => 0.13952583414914
622 => 0.13470206399306
623 => 0.13836270425009
624 => 0.14314850443158
625 => 0.1420506365821
626 => 0.14192710402163
627 => 0.14213485152327
628 => 0.14130709501778
629 => 0.13756318302153
630 => 0.13568301385515
701 => 0.13810891176209
702 => 0.13939816853534
703 => 0.14139769335565
704 => 0.1411512097167
705 => 0.14630177092051
706 => 0.14830312325943
707 => 0.14779109168844
708 => 0.14788531782023
709 => 0.15150867063279
710 => 0.1555385841597
711 => 0.15931312997157
712 => 0.16315276009192
713 => 0.15852393611852
714 => 0.156173704771
715 => 0.15859854360682
716 => 0.15731188998846
717 => 0.16470538332581
718 => 0.16521729276305
719 => 0.17261025146668
720 => 0.17962704961357
721 => 0.1752199244165
722 => 0.17937564497605
723 => 0.18387039558208
724 => 0.19254149874811
725 => 0.18962137625488
726 => 0.18738460818922
727 => 0.18527087317515
728 => 0.18966922019344
729 => 0.19532762336715
730 => 0.19654638921526
731 => 0.19852125549358
801 => 0.19644492507708
802 => 0.19894563636346
803 => 0.20777424607258
804 => 0.20538867779688
805 => 0.20200078734615
806 => 0.20897012680281
807 => 0.21149230365955
808 => 0.22919426171446
809 => 0.25154371499019
810 => 0.24229089457961
811 => 0.23654737036412
812 => 0.23789723479298
813 => 0.24605849855254
814 => 0.24867963744654
815 => 0.24155447837187
816 => 0.24407120501238
817 => 0.2579386162407
818 => 0.26537803744487
819 => 0.25527430420204
820 => 0.22739850490493
821 => 0.20169574487878
822 => 0.20851327424808
823 => 0.20774037799017
824 => 0.22263918136021
825 => 0.20533178278246
826 => 0.20562319498721
827 => 0.22083008983284
828 => 0.21677315100021
829 => 0.21020142966481
830 => 0.20174372571723
831 => 0.1861088777272
901 => 0.17226065685244
902 => 0.19942020704264
903 => 0.198249037852
904 => 0.19655301130641
905 => 0.20032733485439
906 => 0.21865437864296
907 => 0.21823188096478
908 => 0.21554416629642
909 => 0.21758277418394
910 => 0.2098440518456
911 => 0.21183849679962
912 => 0.20169167343027
913 => 0.20627846136199
914 => 0.21018732970233
915 => 0.21097209289344
916 => 0.21274020443401
917 => 0.19763188490688
918 => 0.2044150768176
919 => 0.20839956656602
920 => 0.19039749692568
921 => 0.2080437235303
922 => 0.19736888267689
923 => 0.19374568136051
924 => 0.19862384461253
925 => 0.19672281964905
926 => 0.19508843001738
927 => 0.19417641252053
928 => 0.19775839722958
929 => 0.19759129336151
930 => 0.19173047114422
1001 => 0.18408526747944
1002 => 0.1866512487746
1003 => 0.18571900371386
1004 => 0.18234042735176
1005 => 0.18461717988895
1006 => 0.17459151395325
1007 => 0.15734287679965
1008 => 0.16873785484336
1009 => 0.16829916058403
1010 => 0.16807795104528
1011 => 0.17664096211107
1012 => 0.17581782617937
1013 => 0.17432382640317
1014 => 0.18231298887426
1015 => 0.17939683710291
1016 => 0.18838372973044
1017 => 0.1943030784507
1018 => 0.19280174014437
1019 => 0.19836891622648
1020 => 0.18671036380108
1021 => 0.19058286725686
1022 => 0.19138098485204
1023 => 0.18221440384949
1024 => 0.17595250139769
1025 => 0.17553490389507
1026 => 0.16467762798695
1027 => 0.1704774971402
1028 => 0.17558114198016
1029 => 0.17313689216066
1030 => 0.17236311568769
1031 => 0.17631617187644
1101 => 0.17662335819795
1102 => 0.16961947751353
1103 => 0.17107580609188
1104 => 0.17714893835806
1105 => 0.17092277874082
1106 => 0.15882636764192
1107 => 0.15582629044343
1108 => 0.15542602484276
1109 => 0.14728957754132
1110 => 0.15602676994726
1111 => 0.15221275131987
1112 => 0.16426119046484
1113 => 0.15737918664231
1114 => 0.1570825172124
1115 => 0.15663405785716
1116 => 0.14963068155241
1117 => 0.15116397587537
1118 => 0.1562608797322
1119 => 0.15807951244905
1120 => 0.15788981415706
1121 => 0.15623590212269
1122 => 0.15699305458263
1123 => 0.15455400269978
1124 => 0.15369272271547
1125 => 0.15097428617126
1126 => 0.14697893543854
1127 => 0.14753451346284
1128 => 0.13961867822094
1129 => 0.13530571105597
1130 => 0.13411193858871
1201 => 0.13251557615429
1202 => 0.13429225197343
1203 => 0.13959625365427
1204 => 0.13319850232045
1205 => 0.12223000640869
1206 => 0.1228892317024
1207 => 0.12437031521161
1208 => 0.12161032589055
1209 => 0.11899822762651
1210 => 0.12126923514086
1211 => 0.11662173882792
1212 => 0.12493194293735
1213 => 0.12470717520527
1214 => 0.12780470539768
1215 => 0.12974165459472
1216 => 0.1252776137903
1217 => 0.12415491960004
1218 => 0.12479445723442
1219 => 0.11422432472581
1220 => 0.12694090006474
1221 => 0.12705087353634
1222 => 0.12610921390568
1223 => 0.13288039769345
1224 => 0.14716970747082
1225 => 0.14179349434642
1226 => 0.13971166212775
1227 => 0.13575409755825
1228 => 0.14102731737018
1229 => 0.14062241636367
1230 => 0.13879130045807
1231 => 0.13768383584493
]
'min_raw' => 0.10342551841692
'max_raw' => 0.26537803744487
'avg_raw' => 0.1844017779309
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.103425'
'max' => '$0.265378'
'avg' => '$0.1844017'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.063600051845597
'max_diff' => 0.15425263579656
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0032464088414145
]
1 => [
'year' => 2028
'avg' => 0.0055717800110879
]
2 => [
'year' => 2029
'avg' => 0.01522109877465
]
3 => [
'year' => 2030
'avg' => 0.011743055036702
]
4 => [
'year' => 2031
'avg' => 0.011533135346831
]
5 => [
'year' => 2032
'avg' => 0.020221215874267
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0032464088414145
'min' => '$0.003246'
'max_raw' => 0.020221215874267
'max' => '$0.020221'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.020221215874267
]
1 => [
'year' => 2033
'avg' => 0.052011046551722
]
2 => [
'year' => 2034
'avg' => 0.032967100838417
]
3 => [
'year' => 2035
'avg' => 0.038884771039636
]
4 => [
'year' => 2036
'avg' => 0.075475434109818
]
5 => [
'year' => 2037
'avg' => 0.1844017779309
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.020221215874267
'min' => '$0.020221'
'max_raw' => 0.1844017779309
'max' => '$0.1844017'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1844017779309
]
]
]
]
'prediction_2025_max_price' => '$0.00555'
'last_price' => 0.00538217
'sma_50day_nextmonth' => '$0.004884'
'sma_200day_nextmonth' => '$0.008236'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.005223'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005165'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004979'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004792'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005322'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006886'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009189'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005249'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005164'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005031'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004997'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005531'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006748'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008659'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.008048'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.010589'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.015753'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.024548'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005222'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005298'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005935'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007495'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010568'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0153025'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.02254'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 110.46
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004994'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005311'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 191
'cci_20_action' => 'SELL'
'adx_14' => 18.79
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000161'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.01
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000921'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767702257
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Zilliqa para 2026
La previsión del precio de Zilliqa para 2026 sugiere que el precio medio podría oscilar entre $0.001859 en el extremo inferior y $0.00555 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Zilliqa podría potencialmente ganar 3.13% para 2026 si ZIL alcanza el objetivo de precio previsto.
Predicción de precio de Zilliqa 2027-2032
La predicción del precio de ZIL para 2027-2032 está actualmente dentro de un rango de precios de $0.003246 en el extremo inferior y $0.020221 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Zilliqa alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Zilliqa | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00179 | $0.003246 | $0.0047026 |
| 2028 | $0.00323 | $0.005571 | $0.007912 |
| 2029 | $0.007096 | $0.015221 | $0.023345 |
| 2030 | $0.006035 | $0.011743 | $0.01745 |
| 2031 | $0.007135 | $0.011533 | $0.01593 |
| 2032 | $0.010892 | $0.020221 | $0.02955 |
Predicción de precio de Zilliqa 2032-2037
La predicción de precio de Zilliqa para 2032-2037 se estima actualmente entre $0.020221 en el extremo inferior y $0.1844017 en el extremo superior. Comparado con el precio actual, Zilliqa podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Zilliqa | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.010892 | $0.020221 | $0.02955 |
| 2033 | $0.025311 | $0.052011 | $0.07871 |
| 2034 | $0.020349 | $0.032967 | $0.045584 |
| 2035 | $0.024059 | $0.038884 | $0.05371 |
| 2036 | $0.039825 | $0.075475 | $0.111125 |
| 2037 | $0.103425 | $0.1844017 | $0.265378 |
Zilliqa Histograma de precios potenciales
Pronóstico de precio de Zilliqa basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Zilliqa es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de ZIL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Zilliqa
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Zilliqa aumentar durante el próximo mes, alcanzando $0.008236 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Zilliqa alcance $0.004884 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 58.73, lo que sugiere que el mercado de ZIL está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ZIL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.005223 | BUY |
| SMA 5 | $0.005165 | BUY |
| SMA 10 | $0.004979 | BUY |
| SMA 21 | $0.004792 | BUY |
| SMA 50 | $0.005322 | BUY |
| SMA 100 | $0.006886 | SELL |
| SMA 200 | $0.009189 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.005249 | BUY |
| EMA 5 | $0.005164 | BUY |
| EMA 10 | $0.005031 | BUY |
| EMA 21 | $0.004997 | BUY |
| EMA 50 | $0.005531 | SELL |
| EMA 100 | $0.006748 | SELL |
| EMA 200 | $0.008659 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.008048 | SELL |
| SMA 50 | $0.010589 | SELL |
| SMA 100 | $0.015753 | SELL |
| SMA 200 | $0.024548 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.007495 | SELL |
| EMA 50 | $0.010568 | SELL |
| EMA 100 | $0.0153025 | SELL |
| EMA 200 | $0.02254 | SELL |
Osciladores de Zilliqa
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 58.73 | NEUTRAL |
| Stoch RSI (14) | 110.46 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 191 | SELL |
| Índice Direccional Medio (14) | 18.79 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000161 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.01 | SELL |
| VWMA (10) | 0.004994 | BUY |
| Promedio Móvil de Hull (9) | 0.005311 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000921 | SELL |
Predicción de precios de Zilliqa basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Zilliqa
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Zilliqa por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.007562 | $0.010627 | $0.014932 | $0.020983 | $0.029484 | $0.04143 |
| Amazon.com acción | $0.01123 | $0.023432 | $0.048893 | $0.102018 | $0.212868 | $0.444162 |
| Apple acción | $0.007634 | $0.010828 | $0.015359 | $0.021786 | $0.030902 | $0.043832 |
| Netflix acción | $0.008492 | $0.013399 | $0.021142 | $0.033358 | $0.052635 | $0.08305 |
| Google acción | $0.006969 | $0.009025 | $0.011688 | $0.015136 | $0.0196019 | $0.025384 |
| Tesla acción | $0.01220097 | $0.027658 | $0.06270014 | $0.142136 | $0.322212 | $0.730431 |
| Kodak acción | $0.004036 | $0.003026 | $0.002269 | $0.0017019 | $0.001276 | $0.000957 |
| Nokia acción | $0.003565 | $0.002361 | $0.001564 | $0.001036 | $0.000686 | $0.000454 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Zilliqa
Podría preguntarse cosas como: "¿Debo invertir en Zilliqa ahora?", "¿Debería comprar ZIL hoy?", "¿Será Zilliqa una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Zilliqa regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Zilliqa, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Zilliqa a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Zilliqa es de $0.005382 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Zilliqa
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Zilliqa
basado en el historial de precios del último mes
Predicción de precios de Zilliqa basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Zilliqa ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.005522 | $0.005665 | $0.005812 | $0.005963 |
| Si Zilliqa ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.005661 | $0.005956 | $0.006265 | $0.006591 |
| Si Zilliqa ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.006081 | $0.006872 | $0.007765 | $0.008774 |
| Si Zilliqa ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.006781 | $0.008543 | $0.010764 | $0.013562 |
| Si Zilliqa ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.00818 | $0.012432 | $0.018896 | $0.028719 |
| Si Zilliqa ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.012377 | $0.028463 | $0.065455 | $0.150526 |
| Si Zilliqa ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.019372 | $0.069726 | $0.250968 | $0.903316 |
Cuadro de preguntas
¿Es ZIL una buena inversión?
La decisión de adquirir Zilliqa depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Zilliqa ha experimentado un aumento de 5.5703% durante las últimas 24 horas, y Zilliqa ha sufrido un declive de -61.44% durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Zilliqa dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Zilliqa subir?
Parece que el valor medio de Zilliqa podría potencialmente aumentar hasta $0.00555 para el final de este año. Mirando las perspectivas de Zilliqa en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.01745. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Zilliqa la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Zilliqa, el precio de Zilliqa aumentará en un 0.86% durante la próxima semana y alcanzará $0.005428 para el 13 de enero de 2026.
¿Cuál será el precio de Zilliqa el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Zilliqa, el precio de Zilliqa disminuirá en un -11.62% durante el próximo mes y alcanzará $0.004756 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Zilliqa este año en 2026?
Según nuestra predicción más reciente sobre el valor de Zilliqa en 2026, se anticipa que ZIL fluctúe dentro del rango de $0.001859 y $0.00555. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Zilliqa no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Zilliqa en 5 años?
El futuro de Zilliqa parece estar en una tendencia alcista, con un precio máximo de $0.01745 proyectada después de un período de cinco años. Basado en el pronóstico de Zilliqa para 2030, el valor de Zilliqa podría potencialmente alcanzar su punto más alto de aproximadamente $0.01745, mientras que su punto más bajo se anticipa que esté alrededor de $0.006035.
¿Cuánto será Zilliqa en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Zilliqa, se espera que el valor de ZIL en 2026 crezca en un 3.13% hasta $0.00555 si ocurre lo mejor. El precio estará entre $0.00555 y $0.001859 durante 2026.
¿Cuánto será Zilliqa en 2027?
Según nuestra última simulación experimental para la predicción de precios de Zilliqa, el valor de ZIL podría disminuir en un -12.62% hasta $0.0047026 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0047026 y $0.00179 a lo largo del año.
¿Cuánto será Zilliqa en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Zilliqa sugiere que el valor de ZIL en 2028 podría aumentar en un 47.02% , alcanzando $0.007912 en el mejor escenario. Se espera que el precio oscile entre $0.007912 y $0.00323 durante el año.
¿Cuánto será Zilliqa en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Zilliqa podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.023345 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.023345 y $0.007096.
¿Cuánto será Zilliqa en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Zilliqa, se espera que el valor de ZIL en 2030 aumente en un 224.23% , alcanzando $0.01745 en el mejor escenario. Se pronostica que el precio oscile entre $0.01745 y $0.006035 durante el transcurso de 2030.
¿Cuánto será Zilliqa en 2031?
Nuestra simulación experimental indica que el precio de Zilliqa podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.01593 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.01593 y $0.007135 durante el año.
¿Cuánto será Zilliqa en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Zilliqa, ZIL podría experimentar un 449.04% aumento en valor, alcanzando $0.02955 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.02955 y $0.010892 a lo largo del año.
¿Cuánto será Zilliqa en 2033?
Según nuestra predicción experimental de precios de Zilliqa, se anticipa que el valor de ZIL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.07871. A lo largo del año, el precio de ZIL podría oscilar entre $0.07871 y $0.025311.
¿Cuánto será Zilliqa en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Zilliqa sugieren que ZIL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.045584 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.045584 y $0.020349.
¿Cuánto será Zilliqa en 2035?
Basado en nuestra predicción experimental para el precio de Zilliqa, ZIL podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.05371 en 2035. El rango de precios esperado para el año está entre $0.05371 y $0.024059.
¿Cuánto será Zilliqa en 2036?
Nuestra reciente simulación de predicción de precios de Zilliqa sugiere que el valor de ZIL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.111125 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.111125 y $0.039825.
¿Cuánto será Zilliqa en 2037?
Según la simulación experimental, el valor de Zilliqa podría aumentar en un 4830.69% en 2037, con un máximo de $0.265378 bajo condiciones favorables. Se espera que el precio caiga entre $0.265378 y $0.103425 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Tether Gold
Predicción de precios de Ankr
Predicción de precios de Terra
Predicción de precios de cUSDT
Predicción de precios de GMT
Predicción de precios de Biconomy
Predicción de precios de Celo
Predicción de precios de Fasttoken
Predicción de precios de Rocket Pool
Predicción de precios de BitClout
Predicción de precios de EthereumPoW
Predicción de precios de 0x
Predicción de precios de Wootrade Network
Predicción de precios de MX Token
Predicción de precios de Ravencoin
Predicción de precios de Holo
Predicción de precios de Siacoin
Predicción de precios de Frax Share
Predicción de precios de Saga
Predicción de precios de Golem
Predicción de precios de APENFT
Predicción de precios de Qtum
Predicción de precios de Jeo Boden
Predicción de precios de Polymesh
Predicción de precios de Trust Wallet Token
¿Cómo leer y predecir los movimientos de precio de Zilliqa?
Los traders de Zilliqa utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Zilliqa
Las medias móviles son herramientas populares para la predicción de precios de Zilliqa. Una media móvil simple (SMA) calcula el precio de cierre promedio de ZIL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ZIL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ZIL.
¿Cómo leer gráficos de Zilliqa y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Zilliqa en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ZIL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Zilliqa?
La acción del precio de Zilliqa está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ZIL. La capitalización de mercado de Zilliqa puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ZIL, grandes poseedores de Zilliqa, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Zilliqa.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


