Predicción del precio de WOLF - Pronóstico de WOLF
Predicción de precio de WOLF hasta $0.015036 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.005037 | $0.015036 |
| 2027 | $0.004849 | $0.012739 |
| 2028 | $0.008751 | $0.021435 |
| 2029 | $0.019224 | $0.06324 |
| 2030 | $0.016349 | $0.047271 |
| 2031 | $0.01933 | $0.043153 |
| 2032 | $0.0295063 | $0.080047 |
| 2033 | $0.068566 | $0.213218 |
| 2034 | $0.055124 | $0.123484 |
| 2035 | $0.065173 | $0.145495 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en WOLF hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.62, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de WOLF para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'WOLF'
'name_with_ticker' => 'WOLF <small>WOLF</small>'
'name_lang' => 'WOLF'
'name_lang_with_ticker' => 'WOLF <small>WOLF</small>'
'name_with_lang' => 'WOLF'
'name_with_lang_with_ticker' => 'WOLF <small>WOLF</small>'
'image' => '/uploads/coins/wolf-2.png?1755429567'
'price_for_sd' => 0.01457
'ticker' => 'WOLF'
'marketcap' => '$14.58M'
'low24h' => '$0.01319'
'high24h' => '$0.01459'
'volume24h' => '$54.19K'
'current_supply' => '999.98M'
'max_supply' => '999.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01457'
'change_24h_pct' => '9.2062%'
'ath_price' => '$0.04783'
'ath_days' => 132
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 ago. 2025'
'ath_pct' => '-69.52%'
'fdv' => '$14.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.718881'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014704'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012885'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005037'
'current_year_max_price_prediction' => '$0.015036'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016349'
'grand_prediction_max_price' => '$0.047271'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014856008214562
107 => 0.014911475156504
108 => 0.015036445008912
109 => 0.013968591302787
110 => 0.014448026266299
111 => 0.014729649390382
112 => 0.013457265870239
113 => 0.014704498459214
114 => 0.013950002345523
115 => 0.013693915032385
116 => 0.014038702862587
117 => 0.01390433870984
118 => 0.013788820301436
119 => 0.013724359044689
120 => 0.013977533174345
121 => 0.013965722298588
122 => 0.013551480283489
123 => 0.013011118461457
124 => 0.013192481625703
125 => 0.013126590687844
126 => 0.012887793428942
127 => 0.013048713948951
128 => 0.012340101418842
129 => 0.011120970391264
130 => 0.011926365691075
131 => 0.011895358848134
201 => 0.011879723791875
202 => 0.012484956100192
203 => 0.012426776978832
204 => 0.012321181303873
205 => 0.012885854081562
206 => 0.012679740921785
207 => 0.01331493311385
208 => 0.013733311773199
209 => 0.013627197412057
210 => 0.014020684563374
211 => 0.013196659866705
212 => 0.013470367816806
213 => 0.013526778645979
214 => 0.012878886107137
215 => 0.0124362958026
216 => 0.012406780075186
217 => 0.01163938947982
218 => 0.012049323341704
219 => 0.012410048175946
220 => 0.012237288973722
221 => 0.012182598571332
222 => 0.012461999976241
223 => 0.012483711858314
224 => 0.011988678646136
225 => 0.012091611726611
226 => 0.012520859783391
227 => 0.012080795776917
228 => 0.011225823296385
301 => 0.011013778300294
302 => 0.010985487589051
303 => 0.010410404742151
304 => 0.011027948160866
305 => 0.010758373909462
306 => 0.011609955739651
307 => 0.011123536765372
308 => 0.011102568215584
309 => 0.011070871177162
310 => 0.010575873614462
311 => 0.010684246621957
312 => 0.011044495004546
313 => 0.011173035685942
314 => 0.01115962783977
315 => 0.011042729590938
316 => 0.011096245010638
317 => 0.010923853197779
318 => 0.010862978060633
319 => 0.010670839382775
320 => 0.010388448605988
321 => 0.010427716775504
322 => 0.0098682267551236
323 => 0.0095633868976376
324 => 0.0094790112428102
325 => 0.0093661805908737
326 => 0.0094917557651773
327 => 0.009866641790192
328 => 0.0094144497075174
329 => 0.0086391980993581
330 => 0.008685792041973
331 => 0.0087904747971628
401 => 0.0085953991754123
402 => 0.0084107764708814
403 => 0.0085712909335575
404 => 0.0082428066072191
405 => 0.0088301705586483
406 => 0.0088142840098306
407 => 0.0090332169685804
408 => 0.0091701202406431
409 => 0.0088546025214991
410 => 0.008775250668385
411 => 0.0088204530902594
412 => 0.008073357746314
413 => 0.0089721633401805
414 => 0.00897993624828
415 => 0.0089133798900629
416 => 0.0093919661212874
417 => 0.01040193234396
418 => 0.010021942425193
419 => 0.0098747988433908
420 => 0.0095950787868229
421 => 0.0099677891540661
422 => 0.0099391708130493
423 => 0.0098097478217877
424 => 0.0097314723928484
425 => 0.0098756972707248
426 => 0.0097136013344135
427 => 0.0096844844501535
428 => 0.0095080678110207
429 => 0.0094450950972959
430 => 0.0093984726070701
501 => 0.0093471458263627
502 => 0.0094603599147663
503 => 0.00920380189589
504 => 0.0088944180758178
505 => 0.0088686961587581
506 => 0.008939716633254
507 => 0.0089082953601421
508 => 0.0088685457257911
509 => 0.0087926528486464
510 => 0.0087701370531923
511 => 0.008843302465307
512 => 0.008760702980838
513 => 0.0088825830195988
514 => 0.008849438392986
515 => 0.0086642952030409
516 => 0.008433538239581
517 => 0.0084314840185771
518 => 0.0083817678093169
519 => 0.008318446741942
520 => 0.0083008322695881
521 => 0.0085577728532222
522 => 0.0090896321717602
523 => 0.0089852154612164
524 => 0.0090606672356392
525 => 0.0094318152884338
526 => 0.0095497920936059
527 => 0.0094660549517285
528 => 0.0093514303872448
529 => 0.0093564732863526
530 => 0.0097481801224087
531 => 0.0097726103972961
601 => 0.0098343378204313
602 => 0.0099136750033277
603 => 0.0094795664170394
604 => 0.0093360268109771
605 => 0.0092680097823507
606 => 0.0090585436600839
607 => 0.0092844349146805
608 => 0.009152817754255
609 => 0.0091705774058789
610 => 0.0091590114094605
611 => 0.0091653272255942
612 => 0.0088300063784534
613 => 0.0089521796712066
614 => 0.0087490428761046
615 => 0.0084770655106382
616 => 0.0084761537471416
617 => 0.0085427198220295
618 => 0.0085031237159554
619 => 0.0083965716126191
620 => 0.0084117068359863
621 => 0.0082791063532594
622 => 0.0084278069353986
623 => 0.0084320711360181
624 => 0.0083748133121191
625 => 0.0086039070756305
626 => 0.0086977669774638
627 => 0.008660078651192
628 => 0.0086951226640232
629 => 0.0089895544469526
630 => 0.0090375596745295
701 => 0.0090588804255718
702 => 0.0090303134436333
703 => 0.0087005043365191
704 => 0.0087151327728762
705 => 0.0086077990130077
706 => 0.0085171132964717
707 => 0.0085207402495492
708 => 0.0085673644961666
709 => 0.0087709753156209
710 => 0.0091994622816492
711 => 0.00921572304879
712 => 0.0092354315729248
713 => 0.0091552671005581
714 => 0.0091310887286216
715 => 0.0091629862421731
716 => 0.0093239034178389
717 => 0.0097378260822385
718 => 0.0095915181676745
719 => 0.0094725675557156
720 => 0.0095769193112582
721 => 0.0095608551764285
722 => 0.009425257712092
723 => 0.0094214519428894
724 => 0.0091611970556958
725 => 0.0090649867496174
726 => 0.0089845862166416
727 => 0.0088967909335412
728 => 0.0088447429467948
729 => 0.0089247123098242
730 => 0.0089430022493188
731 => 0.0087681478394295
801 => 0.0087443158294708
802 => 0.008887105715081
803 => 0.0088242692101675
804 => 0.0088888981137414
805 => 0.008903892573747
806 => 0.0089014781203344
807 => 0.008835869592478
808 => 0.0088776865116592
809 => 0.0087787770315721
810 => 0.008671227827701
811 => 0.0086026181361833
812 => 0.0085427470805792
813 => 0.0085759670219546
814 => 0.0084575439966732
815 => 0.008419658087501
816 => 0.0088635198803511
817 => 0.0091914053590478
818 => 0.0091866377743307
819 => 0.0091576163284883
820 => 0.0091144963467517
821 => 0.0093207489225971
822 => 0.009248894649323
823 => 0.0093011746367554
824 => 0.0093144820877411
825 => 0.009354759733927
826 => 0.0093691555304577
827 => 0.0093256414348182
828 => 0.0091796028150525
829 => 0.0088156884595319
830 => 0.008646285344669
831 => 0.0085903794951322
901 => 0.0085924115665826
902 => 0.0085363579644158
903 => 0.0085528682624002
904 => 0.0085306163565576
905 => 0.0084884766302059
906 => 0.008573365012599
907 => 0.0085831476078798
908 => 0.0085633336450886
909 => 0.0085680005506018
910 => 0.0084039494013451
911 => 0.0084164218539227
912 => 0.0083469736530479
913 => 0.0083339529525944
914 => 0.0081583939483294
915 => 0.0078473657245893
916 => 0.0080197055527815
917 => 0.0078115432749723
918 => 0.0077327090661928
919 => 0.0081058979493203
920 => 0.0080684401361027
921 => 0.0080043286423941
922 => 0.0079094943811931
923 => 0.0078743194312252
924 => 0.0076606075702565
925 => 0.0076479803334021
926 => 0.0077539017024038
927 => 0.0077050226351413
928 => 0.0076363779127543
929 => 0.0073877536866727
930 => 0.0071082177399045
1001 => 0.0071166551730372
1002 => 0.0072055703567529
1003 => 0.0074641032452527
1004 => 0.0073630899730514
1005 => 0.0072898036850757
1006 => 0.0072760793663156
1007 => 0.0074478679494061
1008 => 0.0076909847853
1009 => 0.0078050497652688
1010 => 0.0076920148343247
1011 => 0.0075621663918889
1012 => 0.0075700696649202
1013 => 0.0076226465996689
1014 => 0.0076281716921131
1015 => 0.007543653704723
1016 => 0.0075674450231064
1017 => 0.0075313038349583
1018 => 0.0073095054300049
1019 => 0.0073054938001896
1020 => 0.0072510608946316
1021 => 0.0072494126878843
1022 => 0.0071568087366055
1023 => 0.0071438528036807
1024 => 0.0069599820377586
1025 => 0.0070810063327005
1026 => 0.0069998295897142
1027 => 0.0068774770903759
1028 => 0.0068563834733725
1029 => 0.0068557493737741
1030 => 0.0069813780330763
1031 => 0.007079538288672
1101 => 0.0070012416939132
1102 => 0.0069834150770023
1103 => 0.0071737567073773
1104 => 0.0071495339999096
1105 => 0.0071285572914623
1106 => 0.0076692163391745
1107 => 0.0072412425147587
1108 => 0.0070546214994215
1109 => 0.0068236425545722
1110 => 0.0068988504637121
1111 => 0.0069146978752019
1112 => 0.0063592351499234
1113 => 0.0061338839914563
1114 => 0.0060565519660497
1115 => 0.0060120462921138
1116 => 0.0060323280865935
1117 => 0.0058294856129186
1118 => 0.005965799109933
1119 => 0.005790154673578
1120 => 0.0057607073122267
1121 => 0.0060747813225997
1122 => 0.0061184828863494
1123 => 0.0059320384383817
1124 => 0.0060517659565913
1125 => 0.0060083510941515
1126 => 0.0057931655933092
1127 => 0.0057849470899745
1128 => 0.0056769745697879
1129 => 0.0055080184832957
1130 => 0.0054308010180717
1201 => 0.0053905854917503
1202 => 0.0054071792016955
1203 => 0.0053987889141713
1204 => 0.0053440366126667
1205 => 0.0054019272520028
1206 => 0.0052540405905629
1207 => 0.0051951509303738
1208 => 0.005168551837096
1209 => 0.0050372939130295
1210 => 0.0052461836408831
1211 => 0.0052873375487938
1212 => 0.005328572542616
1213 => 0.0056874950115131
1214 => 0.0056695642592714
1215 => 0.0058316495269061
1216 => 0.0058253511914615
1217 => 0.0057791218475248
1218 => 0.005584087849814
1219 => 0.0056618249251548
1220 => 0.0054225622902795
1221 => 0.0056018341246058
1222 => 0.0055200219459901
1223 => 0.0055741733447202
1224 => 0.0054768042471687
1225 => 0.0055306923260252
1226 => 0.0052970966670687
1227 => 0.0050789683275147
1228 => 0.0051667495389144
1229 => 0.0052621777547051
1230 => 0.0054690904411964
1231 => 0.0053458549521148
]
'min_raw' => 0.0050372939130295
'max_raw' => 0.015036445008912
'avg_raw' => 0.010036869460971
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005037'
'max' => '$0.015036'
'avg' => '$0.010036'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0095424360869705
'max_diff' => 0.00045671500891224
'year' => 2026
]
1 => [
'items' => [
101 => 0.0053901750940383
102 => 0.0052417100376967
103 => 0.0049353842195172
104 => 0.0049371179903812
105 => 0.004889996436925
106 => 0.0048492765348793
107 => 0.0053600100304854
108 => 0.0052964922468051
109 => 0.0051952849715124
110 => 0.0053307549313089
111 => 0.0053665753388764
112 => 0.0053675950955223
113 => 0.0054664304812041
114 => 0.0055191789442596
115 => 0.0055284760894981
116 => 0.0056839957043482
117 => 0.0057361238278926
118 => 0.005950832191324
119 => 0.0055147036057024
120 => 0.0055057218244839
121 => 0.0053326612714574
122 => 0.0052229035327489
123 => 0.0053401764777286
124 => 0.0054440642976272
125 => 0.0053358893556078
126 => 0.0053500147193379
127 => 0.0052047986978943
128 => 0.0052567065925115
129 => 0.0053014166641044
130 => 0.0052767303905073
131 => 0.0052397738441034
201 => 0.0054355466811166
202 => 0.0054245004104124
203 => 0.0056068085770372
204 => 0.0057489308299032
205 => 0.0060036393144308
206 => 0.0057378377325727
207 => 0.0057281508664642
208 => 0.005822841536497
209 => 0.0057361093312444
210 => 0.0057909210910701
211 => 0.0059948082925363
212 => 0.0059991161078221
213 => 0.0059269546514795
214 => 0.005922563620303
215 => 0.0059364230173534
216 => 0.0060175979387682
217 => 0.0059892329269725
218 => 0.0060220576367367
219 => 0.0060631054389267
220 => 0.0062328965526918
221 => 0.0062738326153954
222 => 0.0061743792059406
223 => 0.0061833587352818
224 => 0.0061461604300885
225 => 0.0061102273333652
226 => 0.0061909996871918
227 => 0.0063386127513945
228 => 0.0063376944581832
301 => 0.0063719378198903
302 => 0.0063932711505465
303 => 0.0063016928784176
304 => 0.0062420787906882
305 => 0.0062649386252666
306 => 0.00630149199858
307 => 0.0062530848589551
308 => 0.0059542935688224
309 => 0.0060449277593872
310 => 0.0060298417982917
311 => 0.0060083575551762
312 => 0.0060994909346425
313 => 0.0060907008978717
314 => 0.0058274051701674
315 => 0.0058442605083941
316 => 0.0058284301991116
317 => 0.00587958116698
318 => 0.0057333470111164
319 => 0.0057783276525579
320 => 0.0058065390892028
321 => 0.0058231558421171
322 => 0.0058831869478576
323 => 0.0058761429904754
324 => 0.0058827490855765
325 => 0.0059717593677654
326 => 0.0064219428304364
327 => 0.0064464453230357
328 => 0.0063257860881109
329 => 0.0063739870725652
330 => 0.0062814517228094
331 => 0.0063435713230334
401 => 0.0063860719758399
402 => 0.0061940196982129
403 => 0.0061826476087408
404 => 0.00608973033268
405 => 0.0061396588137316
406 => 0.0060602190103937
407 => 0.0060797107594464
408 => 0.0060252101298348
409 => 0.0061233004121686
410 => 0.0062329805895068
411 => 0.0062606901337039
412 => 0.0061877982526302
413 => 0.0061350197269238
414 => 0.0060423580221106
415 => 0.0061964565023158
416 => 0.0062415195939938
417 => 0.0061962198050791
418 => 0.0061857228541676
419 => 0.006165831151158
420 => 0.0061899429729953
421 => 0.0062412741707188
422 => 0.0062170673258108
423 => 0.0062330563733422
424 => 0.0061721226119865
425 => 0.0063017231946363
426 => 0.0065075601099628
427 => 0.0065082219093033
428 => 0.0064840149339114
429 => 0.0064741099611276
430 => 0.0064989477868818
501 => 0.0065124212884525
502 => 0.0065927422624633
503 => 0.0066789298677057
504 => 0.0070811298147736
505 => 0.006968193679066
506 => 0.0073250493990866
507 => 0.0076072759417071
508 => 0.007691903341568
509 => 0.0076140501157228
510 => 0.0073477184356551
511 => 0.0073346509328287
512 => 0.0077326629051847
513 => 0.0076202062928909
514 => 0.0076068299366926
515 => 0.0074645281064523
516 => 0.0075486461125489
517 => 0.0075302482706789
518 => 0.0075012063772338
519 => 0.0076616976731549
520 => 0.0079621230519623
521 => 0.0079152989393038
522 => 0.0078803469113123
523 => 0.007727197299036
524 => 0.0078194275728306
525 => 0.0077865861388869
526 => 0.0079276937807981
527 => 0.0078441047396469
528 => 0.0076193543234487
529 => 0.0076551465680153
530 => 0.0076497366422531
531 => 0.0077610725310886
601 => 0.0077276522607868
602 => 0.0076432107981005
603 => 0.0079610962306779
604 => 0.007940454518858
605 => 0.0079697197468664
606 => 0.0079826032052929
607 => 0.0081760944663332
608 => 0.0082553616449516
609 => 0.0082733566822653
610 => 0.0083486543712092
611 => 0.0082714832071697
612 => 0.008580222885435
613 => 0.0087855167560218
614 => 0.0090239761510342
615 => 0.0093724294189904
616 => 0.0095034510711149
617 => 0.0094797831823879
618 => 0.0097439764733102
619 => 0.01021872594441
620 => 0.0095757436241042
621 => 0.01025280556867
622 => 0.010038455574076
623 => 0.0095302355928871
624 => 0.0094975122176185
625 => 0.0098416846894351
626 => 0.010605026106552
627 => 0.010413817739311
628 => 0.010605338854942
629 => 0.010381919300315
630 => 0.0103708246363
701 => 0.010594487865856
702 => 0.01111708919296
703 => 0.01086882089187
704 => 0.010512867404374
705 => 0.010775697920292
706 => 0.010548009803588
707 => 0.010034964750762
708 => 0.010413671525876
709 => 0.010160441090305
710 => 0.010234347193875
711 => 0.01076659990426
712 => 0.01070255784998
713 => 0.010785434198353
714 => 0.010639159612727
715 => 0.010502516084368
716 => 0.010247460791405
717 => 0.010171951493232
718 => 0.010192819546707
719 => 0.010171941152061
720 => 0.010029240059727
721 => 0.0099984237724242
722 => 0.0099470619434936
723 => 0.0099629811219573
724 => 0.0098664058571347
725 => 0.010048663335323
726 => 0.010082491929322
727 => 0.010215123722935
728 => 0.010228893995737
729 => 0.010598271653053
730 => 0.010394824646543
731 => 0.01053131446328
801 => 0.010519105529379
802 => 0.0095412502609372
803 => 0.0096759900892384
804 => 0.0098856029783876
805 => 0.0097911726559494
806 => 0.0096576702733143
807 => 0.0095498599413915
808 => 0.0093865162643561
809 => 0.009616419353046
810 => 0.0099187174672054
811 => 0.01023656077478
812 => 0.010618428682912
813 => 0.010533200211249
814 => 0.010229422019859
815 => 0.010243049287615
816 => 0.010327287694748
817 => 0.010218191303644
818 => 0.010186016648093
819 => 0.010322867391151
820 => 0.010323809807006
821 => 0.010198281224302
822 => 0.010058779176114
823 => 0.010058194657439
824 => 0.010033371615393
825 => 0.01038633526435
826 => 0.010580429582626
827 => 0.010602682183418
828 => 0.010578931805294
829 => 0.010588072383215
830 => 0.010475133175986
831 => 0.010733278712629
901 => 0.010970178585
902 => 0.010906684358577
903 => 0.010811497486933
904 => 0.010735676558847
905 => 0.010888823357544
906 => 0.010882003971673
907 => 0.010968109471282
908 => 0.01096420322845
909 => 0.010935249187523
910 => 0.010906685392617
911 => 0.011019937610716
912 => 0.010987322790678
913 => 0.010954657310817
914 => 0.01088914169012
915 => 0.010898046351072
916 => 0.010802875914783
917 => 0.010758845716253
918 => 0.010096737173579
919 => 0.0099198001359563
920 => 0.0099754681298781
921 => 0.009993795478896
922 => 0.0099167922533714
923 => 0.010027195098268
924 => 0.010009988931836
925 => 0.010076928060151
926 => 0.010035107398939
927 => 0.010036823733463
928 => 0.010159809380982
929 => 0.010195512637675
930 => 0.01017735367316
1001 => 0.010190071589454
1002 => 0.010483150602534
1003 => 0.010441484139014
1004 => 0.010419349660712
1005 => 0.010425481062471
1006 => 0.010500369033998
1007 => 0.010521333577294
1008 => 0.010432505334197
1009 => 0.010474397247151
1010 => 0.010652767695637
1011 => 0.010715187257713
1012 => 0.010914400536773
1013 => 0.010829771195095
1014 => 0.010985112014417
1015 => 0.011462576733426
1016 => 0.011844008589017
1017 => 0.011493228091278
1018 => 0.012193679119015
1019 => 0.012739080717841
1020 => 0.012718147296064
1021 => 0.012623043911943
1022 => 0.012002118691931
1023 => 0.011430734047003
1024 => 0.011908721564759
1025 => 0.011909940053241
1026 => 0.011868880501559
1027 => 0.011613863152434
1028 => 0.011860006450592
1029 => 0.011879544411739
1030 => 0.01186860834906
1031 => 0.011673087145405
1101 => 0.011374562405784
1102 => 0.011432893425339
1103 => 0.01152844082529
1104 => 0.011347549663907
1105 => 0.011289743977263
1106 => 0.011397215746716
1107 => 0.011743512180526
1108 => 0.011678046845673
1109 => 0.011676337281213
1110 => 0.011956425745338
1111 => 0.011755942851898
1112 => 0.011433629166297
1113 => 0.011352240709888
1114 => 0.011063366519467
1115 => 0.011262892951725
1116 => 0.011270073552812
1117 => 0.011160794964975
1118 => 0.011442496521431
1119 => 0.011439900591996
1120 => 0.011707334294108
1121 => 0.012218567089034
1122 => 0.012067370395336
1123 => 0.011891545090719
1124 => 0.011910662176438
1125 => 0.012120329421785
1126 => 0.011993559819011
1127 => 0.012039147052037
1128 => 0.012120260420048
1129 => 0.0121691981289
1130 => 0.011903620793243
1201 => 0.011841702012269
1202 => 0.011715037916935
1203 => 0.01168199361876
1204 => 0.011785158881476
1205 => 0.011757978479633
1206 => 0.011269470051095
1207 => 0.011218418202278
1208 => 0.011219983889596
1209 => 0.011091611588362
1210 => 0.010895813016096
1211 => 0.011410359973484
1212 => 0.011369034651725
1213 => 0.01132341469483
1214 => 0.011329002879246
1215 => 0.011552350273833
1216 => 0.011422797505659
1217 => 0.011767234773132
1218 => 0.011696428825671
1219 => 0.011623806972834
1220 => 0.011613768420656
1221 => 0.011585815203119
1222 => 0.01148995321925
1223 => 0.011374194113316
1224 => 0.011297759924697
1225 => 0.010421586333203
1226 => 0.010584199055317
1227 => 0.010771270169493
1228 => 0.010835846368466
1229 => 0.010725384311585
1230 => 0.01149431493453
1231 => 0.011634805968942
]
'min_raw' => 0.0048492765348793
'max_raw' => 0.012739080717841
'avg_raw' => 0.0087941786263601
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004849'
'max' => '$0.012739'
'avg' => '$0.008794'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018801737815017
'max_diff' => -0.0022973642910713
'year' => 2027
]
2 => [
'items' => [
101 => 0.011209249461705
102 => 0.011129645214559
103 => 0.01149953377572
104 => 0.011276445756302
105 => 0.011376902277786
106 => 0.011159770225117
107 => 0.01160096579281
108 => 0.011597604621788
109 => 0.011425969581102
110 => 0.011571034342184
111 => 0.011545825770078
112 => 0.011352050231862
113 => 0.011607108823002
114 => 0.011607235328881
115 => 0.011442040333888
116 => 0.011249128745571
117 => 0.011214640709948
118 => 0.011188658607922
119 => 0.01137051227342
120 => 0.011533561701263
121 => 0.011836956263098
122 => 0.011913236864421
123 => 0.012210965129669
124 => 0.01203368244384
125 => 0.012112269562273
126 => 0.012197586996158
127 => 0.012238491311408
128 => 0.012171839924755
129 => 0.012634334470529
130 => 0.012673383180659
131 => 0.012686475875396
201 => 0.012530525316757
202 => 0.012669045913511
203 => 0.01260423671361
204 => 0.012772852247238
205 => 0.012799293315903
206 => 0.012776898671412
207 => 0.01278529148395
208 => 0.012390633978761
209 => 0.012370168905133
210 => 0.012091126174076
211 => 0.012204838149561
212 => 0.011992259061748
213 => 0.012059670080301
214 => 0.012089384214963
215 => 0.012073863237278
216 => 0.012211267254043
217 => 0.012094445770007
218 => 0.011786134666405
219 => 0.011477739563648
220 => 0.011473867914346
221 => 0.011392672927416
222 => 0.01133398382347
223 => 0.011345289426997
224 => 0.011385131848443
225 => 0.011331668109506
226 => 0.011343077308888
227 => 0.011532546037739
228 => 0.011570542640081
229 => 0.011441415339092
301 => 0.010922950592643
302 => 0.010795718043394
303 => 0.010887170276663
304 => 0.010843461999439
305 => 0.008751520131057
306 => 0.0092429908428209
307 => 0.0089509756346592
308 => 0.0090855496775538
309 => 0.0087874777669922
310 => 0.0089297333059996
311 => 0.0089034639022854
312 => 0.0096937342631262
313 => 0.009681395278423
314 => 0.0096873012974359
315 => 0.0094053916219006
316 => 0.0098544813897101
317 => 0.010075719158079
318 => 0.010034773935206
319 => 0.010045078965673
320 => 0.0098680044000539
321 => 0.0096890157662969
322 => 0.0094904898253071
323 => 0.0098593264851182
324 => 0.009818318144799
325 => 0.0099123765231562
326 => 0.010151593462033
327 => 0.010186819064979
328 => 0.010234162632562
329 => 0.010217193333728
330 => 0.010621470876878
331 => 0.010572510198893
401 => 0.010690491345887
402 => 0.010447795175269
403 => 0.010173161421282
404 => 0.010225360319461
405 => 0.010220333145809
406 => 0.010156331455302
407 => 0.010098553590821
408 => 0.010002369725273
409 => 0.010306709708402
410 => 0.010294354060877
411 => 0.010494377632436
412 => 0.010459021523238
413 => 0.010222904772903
414 => 0.010231337728833
415 => 0.010288053410206
416 => 0.010484347031004
417 => 0.010542620342345
418 => 0.010515625822742
419 => 0.01057951984835
420 => 0.010630019081022
421 => 0.010585861774474
422 => 0.011211036115675
423 => 0.010951420142205
424 => 0.011077955161278
425 => 0.011108133017739
426 => 0.011030833072986
427 => 0.011047596663099
428 => 0.011072988934316
429 => 0.01122716583283
430 => 0.011631770625975
501 => 0.011810967334621
502 => 0.012350089473993
503 => 0.011796087542507
504 => 0.011763215360581
505 => 0.01186032753781
506 => 0.012176849305496
507 => 0.012433360468827
508 => 0.012518460020188
509 => 0.01252970733074
510 => 0.012689359746405
511 => 0.012780869533722
512 => 0.012669973743868
513 => 0.012576001173239
514 => 0.012239403089553
515 => 0.012278365234265
516 => 0.012546775774437
517 => 0.012925921471732
518 => 0.013251267923397
519 => 0.013137342935493
520 => 0.014006510174698
521 => 0.014092684556235
522 => 0.014080778043058
523 => 0.014277096108667
524 => 0.013887444727911
525 => 0.013720861213498
526 => 0.012596319109643
527 => 0.01291226957135
528 => 0.013371522122561
529 => 0.0133107383253
530 => 0.012977216846754
531 => 0.013251014917448
601 => 0.01316048871282
602 => 0.013089086939293
603 => 0.013416192305732
604 => 0.013056526518585
605 => 0.013367934181204
606 => 0.012968550632795
607 => 0.013137863335241
608 => 0.013041753256599
609 => 0.013103948256289
610 => 0.012740357558954
611 => 0.01293654227357
612 => 0.01273219562983
613 => 0.012732098742914
614 => 0.012727587779428
615 => 0.012968000699577
616 => 0.012975840556271
617 => 0.012798175045038
618 => 0.012772570669212
619 => 0.012867243466436
620 => 0.012756406415732
621 => 0.012808266374156
622 => 0.012757977201042
623 => 0.012746656048922
624 => 0.012656447182694
625 => 0.012617582722778
626 => 0.012632822478925
627 => 0.012580801334563
628 => 0.012549456713399
629 => 0.012721352545346
630 => 0.012629515536594
701 => 0.012707277206626
702 => 0.01261865796932
703 => 0.012311465083252
704 => 0.012134795205968
705 => 0.01155453632098
706 => 0.011719097020954
707 => 0.011828200935287
708 => 0.011792142092251
709 => 0.011869610440012
710 => 0.011874366367393
711 => 0.011849180617839
712 => 0.01182001874635
713 => 0.011805824360062
714 => 0.011911617686211
715 => 0.01197303427288
716 => 0.011839150972712
717 => 0.011807783988709
718 => 0.011943147397079
719 => 0.012025718997987
720 => 0.01263538130612
721 => 0.01259021555315
722 => 0.012703572729773
723 => 0.012690810451293
724 => 0.012809626831608
725 => 0.013003841397875
726 => 0.012608948881408
727 => 0.012677488567911
728 => 0.012660684219593
729 => 0.012844149688192
730 => 0.012844722447359
731 => 0.012734725734154
801 => 0.012794356736875
802 => 0.012761072347047
803 => 0.012821221738121
804 => 0.012589612336983
805 => 0.01287168758688
806 => 0.013031606077043
807 => 0.013033826545434
808 => 0.01310962664058
809 => 0.013186643927294
810 => 0.013334471902349
811 => 0.013182521085304
812 => 0.012909176357553
813 => 0.012928910963998
814 => 0.01276864905013
815 => 0.012771343081856
816 => 0.012756962129369
817 => 0.012800120450331
818 => 0.012599083161431
819 => 0.012646266211308
820 => 0.012580209665177
821 => 0.01267734497388
822 => 0.012572843438757
823 => 0.012660676116027
824 => 0.012698581787838
825 => 0.012838454532869
826 => 0.012552184120589
827 => 0.011968459371147
828 => 0.012091165390458
829 => 0.011909673549547
830 => 0.011926471310411
831 => 0.011960405460701
901 => 0.011850413777048
902 => 0.011871396724053
903 => 0.011870647065531
904 => 0.011864186913389
905 => 0.011835573828391
906 => 0.011794079194216
907 => 0.011959381045392
908 => 0.011987469051025
909 => 0.012049905208178
910 => 0.012235672861018
911 => 0.012217110291796
912 => 0.01224738661235
913 => 0.012181293574575
914 => 0.011929537176874
915 => 0.011943208760506
916 => 0.011772723893546
917 => 0.012045545526828
918 => 0.011980937762997
919 => 0.011939284717357
920 => 0.011927919297942
921 => 0.012114147432861
922 => 0.012169869809597
923 => 0.012135147363805
924 => 0.012063930614469
925 => 0.012200687826536
926 => 0.012237278287161
927 => 0.012245469541891
928 => 0.012487777101079
929 => 0.012259011842748
930 => 0.01231407791416
1001 => 0.012743687684007
1002 => 0.012354090904851
1003 => 0.012560469007815
1004 => 0.012550367873615
1005 => 0.012655943927637
1006 => 0.012541707555651
1007 => 0.012543123652393
1008 => 0.012636868036023
1009 => 0.012505220956103
1010 => 0.012472623287758
1011 => 0.012427589842408
1012 => 0.012525918722814
1013 => 0.012584862439584
1014 => 0.013059905507367
1015 => 0.01336680499375
1016 => 0.013353481677656
1017 => 0.01347523184655
1018 => 0.01342038228036
1019 => 0.013243258562546
1020 => 0.013545587150917
1021 => 0.013449917735591
1022 => 0.013457804605952
1023 => 0.013457511056244
1024 => 0.01352112285387
1025 => 0.013476048065316
1026 => 0.013387201030244
1027 => 0.013446181838442
1028 => 0.013621333752766
1029 => 0.014165010669145
1030 => 0.014469259474311
1031 => 0.014146694509048
1101 => 0.014369195502769
1102 => 0.014235774191747
1103 => 0.014211527570594
1104 => 0.014351274637345
1105 => 0.014491266312838
1106 => 0.01448234944831
1107 => 0.014380722680554
1108 => 0.014323316298133
1109 => 0.014758016658376
1110 => 0.015078296478875
1111 => 0.0150564555423
1112 => 0.015152854333289
1113 => 0.015435884165134
1114 => 0.015461760865912
1115 => 0.015458500996383
1116 => 0.015394362893549
1117 => 0.015673042519069
1118 => 0.015905521965578
1119 => 0.015379516775871
1120 => 0.015579812666198
1121 => 0.015669731944496
1122 => 0.015801760122886
1123 => 0.016024513790321
1124 => 0.016266483355648
1125 => 0.016300700505246
1126 => 0.016276421800165
1127 => 0.016116836367341
1128 => 0.016381602353019
1129 => 0.016536696057902
1130 => 0.016629050809904
1201 => 0.016863247094616
1202 => 0.015670287255347
1203 => 0.014825850987161
1204 => 0.014693980070077
1205 => 0.014962144765536
1206 => 0.015032857657155
1207 => 0.01500435337921
1208 => 0.01405386358658
1209 => 0.014688975938027
1210 => 0.01537230342642
1211 => 0.015398552818188
1212 => 0.015740640846581
1213 => 0.015852038731288
1214 => 0.016127464432648
1215 => 0.016110236480037
1216 => 0.016177298255338
1217 => 0.016161881914545
1218 => 0.01667205002859
1219 => 0.017234841219079
1220 => 0.017215353549719
1221 => 0.017134445657443
1222 => 0.017254607674318
1223 => 0.017835468495273
1224 => 0.017781992138984
1225 => 0.017833939864013
1226 => 0.0185188075078
1227 => 0.019409232866009
1228 => 0.018995540889876
1229 => 0.019893133441424
1230 => 0.020458120373287
1231 => 0.021435206851204
]
'min_raw' => 0.008751520131057
'max_raw' => 0.021435206851204
'avg_raw' => 0.015093363491131
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008751'
'max' => '$0.021435'
'avg' => '$0.015093'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0039022435961776
'max_diff' => 0.0086961261333633
'year' => 2028
]
3 => [
'items' => [
101 => 0.021312870811917
102 => 0.021693243407578
103 => 0.02109386376929
104 => 0.01971756696517
105 => 0.019499762727665
106 => 0.019935812326831
107 => 0.021007797717283
108 => 0.019902051692014
109 => 0.020125742672799
110 => 0.020061319655284
111 => 0.020057886826461
112 => 0.020188903940317
113 => 0.019998856783276
114 => 0.019224570476658
115 => 0.019579421328083
116 => 0.019442396373011
117 => 0.019594435776551
118 => 0.020414929731637
119 => 0.020052169795961
120 => 0.019670031671949
121 => 0.020149317682698
122 => 0.020759613474922
123 => 0.020721422261052
124 => 0.020647315343454
125 => 0.02106505215784
126 => 0.021755030989803
127 => 0.021941529495523
128 => 0.022079198879652
129 => 0.02209818116178
130 => 0.022293710465121
131 => 0.021242300121327
201 => 0.022910915339061
202 => 0.023199039092598
203 => 0.023144883768439
204 => 0.023465121194395
205 => 0.023370899220039
206 => 0.023234386362173
207 => 0.023742030798767
208 => 0.023160057417006
209 => 0.022334019470007
210 => 0.021880838715105
211 => 0.022477623690208
212 => 0.022842059449578
213 => 0.023082928304054
214 => 0.023155815073882
215 => 0.021323918113334
216 => 0.020336627253262
217 => 0.020969469375255
218 => 0.021741580440518
219 => 0.021238011005374
220 => 0.021257749973849
221 => 0.020539792295054
222 => 0.02180510376418
223 => 0.021620758526073
224 => 0.022577141947474
225 => 0.0223488933685
226 => 0.023128786922062
227 => 0.02292341481233
228 => 0.023775902957627
301 => 0.024115983558982
302 => 0.024687031817975
303 => 0.025107097241875
304 => 0.02535376769336
305 => 0.02533895852469
306 => 0.026316389744205
307 => 0.025740032702903
308 => 0.025015992422102
309 => 0.025002896817741
310 => 0.025377887538897
311 => 0.026163765216762
312 => 0.026367531864577
313 => 0.026481409622348
314 => 0.026307001872208
315 => 0.025681407611755
316 => 0.025411279181927
317 => 0.025641436430515
318 => 0.02535997389313
319 => 0.025845857197096
320 => 0.026513078752516
321 => 0.026375300139802
322 => 0.026835873385181
323 => 0.027312518240431
324 => 0.027994141790897
325 => 0.028172343427436
326 => 0.028466903956233
327 => 0.028770103498459
328 => 0.028867483019965
329 => 0.029053410741611
330 => 0.029052430810742
331 => 0.029612736514302
401 => 0.030230771056551
402 => 0.030464064788718
403 => 0.031000510861944
404 => 0.030081865760857
405 => 0.030778668622666
406 => 0.031407202246124
407 => 0.030657838548837
408 => 0.031690661826199
409 => 0.031730764013631
410 => 0.032336259432345
411 => 0.031722473826592
412 => 0.031358009893168
413 => 0.032410203612676
414 => 0.032919327009754
415 => 0.03276597489917
416 => 0.031598957765702
417 => 0.030919703738304
418 => 0.029141964930286
419 => 0.031247773340984
420 => 0.032273451190562
421 => 0.031596301507857
422 => 0.031937816420369
423 => 0.03380101104645
424 => 0.034510394927144
425 => 0.034362848038927
426 => 0.034387781034207
427 => 0.034770551700001
428 => 0.036467967627788
429 => 0.035450836658065
430 => 0.036228395173248
501 => 0.036640809406005
502 => 0.037023882729484
503 => 0.036083175718585
504 => 0.034859329719136
505 => 0.034471686317551
506 => 0.031528972317074
507 => 0.03137579127379
508 => 0.031289806112334
509 => 0.030747681832197
510 => 0.030321720648347
511 => 0.029982980500024
512 => 0.029094025194455
513 => 0.029394021514528
514 => 0.027977212296843
515 => 0.028883636625682
516 => 0.026622374904202
517 => 0.028505620859606
518 => 0.027480655706766
519 => 0.028168892240548
520 => 0.028166491048118
521 => 0.026899229383832
522 => 0.026168299302949
523 => 0.026634076398712
524 => 0.027133426418802
525 => 0.027214444279547
526 => 0.027861864614963
527 => 0.028042545714324
528 => 0.027495073548066
529 => 0.026575515281159
530 => 0.02678910769367
531 => 0.026163970859526
601 => 0.025068442603231
602 => 0.025855270122991
603 => 0.026123927632601
604 => 0.026242582093925
605 => 0.025165255876129
606 => 0.024826736588607
607 => 0.024646511760382
608 => 0.026436445994924
609 => 0.026534502632841
610 => 0.026032831009449
611 => 0.028300434317633
612 => 0.027787205850721
613 => 0.028360607792288
614 => 0.026769726421004
615 => 0.026830500231793
616 => 0.026077351495622
617 => 0.026499064462461
618 => 0.026201011329943
619 => 0.02646499422219
620 => 0.02662322447936
621 => 0.027376249631234
622 => 0.028514219197239
623 => 0.02726377278472
624 => 0.026718935376063
625 => 0.027056949440112
626 => 0.027957125435647
627 => 0.029320938148043
628 => 0.028513533573016
629 => 0.028871846012794
630 => 0.028950121340675
701 => 0.028354771098791
702 => 0.02934288956066
703 => 0.029872430271836
704 => 0.030415629468491
705 => 0.030887274110851
706 => 0.030198663764141
707 => 0.030935575543537
708 => 0.030341754731784
709 => 0.029809036075574
710 => 0.029809843989879
711 => 0.029475661795061
712 => 0.028828141682934
713 => 0.028708729039517
714 => 0.029329928690727
715 => 0.029828071983171
716 => 0.029869101450682
717 => 0.030144899172906
718 => 0.030308113423975
719 => 0.03190783496347
720 => 0.032551256200246
721 => 0.033338019509235
722 => 0.033644508157636
723 => 0.034566929107063
724 => 0.033821999275034
725 => 0.033660829020047
726 => 0.03142333751833
727 => 0.031789726626389
728 => 0.032376350939683
729 => 0.031433010737189
730 => 0.032031342968688
731 => 0.032149466425595
801 => 0.031400956398082
802 => 0.031800767944986
803 => 0.030738987012271
804 => 0.02853736312006
805 => 0.02934534059742
806 => 0.029940283983035
807 => 0.029091226415772
808 => 0.030613129242025
809 => 0.029724065029379
810 => 0.029442274356579
811 => 0.028342908476356
812 => 0.028861766853348
813 => 0.029563530237566
814 => 0.029129922054869
815 => 0.030029724140561
816 => 0.031304083862351
817 => 0.032212268489532
818 => 0.032281987628234
819 => 0.031698085756601
820 => 0.032633792232304
821 => 0.032640607832446
822 => 0.031585127105379
823 => 0.030938651036991
824 => 0.030791770314056
825 => 0.03115870715761
826 => 0.031604236225962
827 => 0.032306711390802
828 => 0.032731202420598
829 => 0.033838049893658
830 => 0.034137531084064
831 => 0.034466570115297
901 => 0.034906267732903
902 => 0.035434237458995
903 => 0.03427906975564
904 => 0.034324966721996
905 => 0.033249290551018
906 => 0.03209977629476
907 => 0.032972114326285
908 => 0.034112580260238
909 => 0.033850956114886
910 => 0.033821518054038
911 => 0.033871024706948
912 => 0.033673768645198
913 => 0.032781586788556
914 => 0.032333538645505
915 => 0.032911635059313
916 => 0.033218867575141
917 => 0.0336953584137
918 => 0.033636620860346
919 => 0.034864010089092
920 => 0.035340936429059
921 => 0.035218918262466
922 => 0.03524137254165
923 => 0.036104824899189
924 => 0.037065161503294
925 => 0.037964643460614
926 => 0.038879635141248
927 => 0.03777657695751
928 => 0.037216512038978
929 => 0.037794356073977
930 => 0.037487743895263
1001 => 0.039249628421234
1002 => 0.039371617483106
1003 => 0.041133374604771
1004 => 0.042805491899368
1005 => 0.041755264985725
1006 => 0.042745581662031
1007 => 0.043816689889159
1008 => 0.045883031440337
1009 => 0.045187160300673
1010 => 0.044654133913381
1011 => 0.044150426552955
1012 => 0.04519856160871
1013 => 0.046546970613572
1014 => 0.046837404998319
1015 => 0.047308019656082
1016 => 0.046813225887466
1017 => 0.047409150482018
1018 => 0.049513026163322
1019 => 0.04894454038281
1020 => 0.048137199185832
1021 => 0.049798006977853
1022 => 0.050399046861559
1023 => 0.054617459532436
1024 => 0.059943379783354
1025 => 0.057738413827596
1026 => 0.05636972030505
1027 => 0.056691395748693
1028 => 0.05863624153055
1029 => 0.059260864269363
1030 => 0.0575629243449
1031 => 0.058162665430973
1101 => 0.061467297780476
1102 => 0.063240127010685
1103 => 0.06083238679333
1104 => 0.054189527026008
1105 => 0.048064506944356
1106 => 0.049689138083259
1107 => 0.049504955330281
1108 => 0.053055370528541
1109 => 0.048930982184955
1110 => 0.049000426307078
1111 => 0.052624260331683
1112 => 0.051657483542161
1113 => 0.050091428958553
1114 => 0.048075940875916
1115 => 0.044350124745078
1116 => 0.041050065495926
1117 => 0.04752224164177
1118 => 0.047243149637472
1119 => 0.046838983056132
1120 => 0.047738412047513
1121 => 0.052105783922286
1122 => 0.05200510186477
1123 => 0.051364613983285
1124 => 0.05185041839639
1125 => 0.050006265096106
1126 => 0.050481545392179
1127 => 0.048063536709881
1128 => 0.049156577619242
1129 => 0.050088068908767
1130 => 0.050275079576104
1201 => 0.050696424158614
1202 => 0.047096080833246
1203 => 0.04871252928581
1204 => 0.049662041310953
1205 => 0.045372111437812
1206 => 0.049577243190537
1207 => 0.047033406865993
1208 => 0.046169990610303
1209 => 0.047332466852147
1210 => 0.046879448730155
1211 => 0.046489970350983
1212 => 0.046272634723317
1213 => 0.047126228977507
1214 => 0.047086407785283
1215 => 0.045689761909923
1216 => 0.043867894300085
1217 => 0.044479372870713
1218 => 0.044257216973362
1219 => 0.04345209534268
1220 => 0.043994650111003
1221 => 0.041605513491994
1222 => 0.037495128115504
1223 => 0.040210574599722
1224 => 0.040106032863917
1225 => 0.040053318180134
1226 => 0.042093901163596
1227 => 0.041897746193995
1228 => 0.041541723003416
1229 => 0.043445556697589
1230 => 0.042750631789039
1231 => 0.044892226612289
]
'min_raw' => 0.019224570476658
'max_raw' => 0.063240127010685
'avg_raw' => 0.041232348743672
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.019224'
'max' => '$0.06324'
'avg' => '$0.041232'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010473050345601
'max_diff' => 0.041804920159481
'year' => 2029
]
4 => [
'items' => [
101 => 0.04630281947255
102 => 0.045945047495289
103 => 0.047271716898352
104 => 0.044493460101967
105 => 0.04541628556541
106 => 0.045606478614445
107 => 0.043422063685327
108 => 0.041929839572912
109 => 0.041830325237214
110 => 0.039243014267435
111 => 0.040625134903446
112 => 0.041841343867098
113 => 0.041258874155137
114 => 0.041074481645118
115 => 0.04201650298895
116 => 0.042089706115233
117 => 0.040420667078262
118 => 0.040767713145641
119 => 0.042214952938218
120 => 0.040731246416103
121 => 0.037848647005718
122 => 0.037133722496887
123 => 0.037038338388736
124 => 0.03509940641941
125 => 0.037181497171112
126 => 0.036272608761431
127 => 0.039143776357457
128 => 0.037503780824988
129 => 0.037433083895401
130 => 0.037326215117345
131 => 0.035657296275075
201 => 0.036022683436206
202 => 0.037237286009844
203 => 0.037670669891595
204 => 0.037625464402119
205 => 0.037231333794609
206 => 0.037411764768452
207 => 0.036830533735385
208 => 0.036625288960332
209 => 0.03597747999324
210 => 0.03502537977341
211 => 0.035157775148547
212 => 0.033271415482489
213 => 0.032243626619736
214 => 0.031959148208566
215 => 0.031578731787977
216 => 0.032002117255521
217 => 0.033266071662564
218 => 0.031741474484783
219 => 0.029127659561536
220 => 0.029284754292147
221 => 0.029637699509986
222 => 0.028979988431509
223 => 0.028357520093238
224 => 0.028898705810912
225 => 0.027791197970619
226 => 0.029771536541304
227 => 0.029717973932802
228 => 0.030456121688637
301 => 0.030917700628678
302 => 0.02985391060984
303 => 0.029586370296897
304 => 0.029738773418179
305 => 0.027219889305536
306 => 0.030250275117859
307 => 0.030276482020204
308 => 0.030052082611658
309 => 0.031665669504055
310 => 0.035070841137385
311 => 0.033789678596215
312 => 0.033293573736931
313 => 0.032350478036782
314 => 0.033607097061749
315 => 0.033510608326942
316 => 0.033074249675879
317 => 0.032810338602194
318 => 0.033296602847414
319 => 0.032750085080963
320 => 0.032651915472805
321 => 0.032057114456952
322 => 0.031844797556015
323 => 0.03168760657514
324 => 0.031514554750464
325 => 0.031896263953872
326 => 0.031031260680921
327 => 0.029988151531059
328 => 0.029901428291846
329 => 0.0301408787801
330 => 0.03003493976404
331 => 0.029900921096594
401 => 0.029645042962629
402 => 0.029569129386253
403 => 0.029815811681444
404 => 0.029537321752645
405 => 0.02994824881272
406 => 0.029836499390011
407 => 0.029212276198826
408 => 0.028434262985584
409 => 0.028427337036048
410 => 0.028259715365453
411 => 0.028046223965863
412 => 0.027986835542518
413 => 0.028853128659259
414 => 0.030646329484942
415 => 0.030294281255201
416 => 0.030548672180543
417 => 0.031800023753269
418 => 0.032197790788784
419 => 0.031915465168604
420 => 0.031529000446616
421 => 0.031546002933042
422 => 0.032866669878903
423 => 0.032949038256353
424 => 0.033157156573125
425 => 0.033424647424405
426 => 0.031961020017241
427 => 0.031477066213786
428 => 0.031247742052975
429 => 0.030541512397295
430 => 0.031303120533391
501 => 0.0308593640878
502 => 0.030919241993189
503 => 0.030880246428752
504 => 0.030901540643803
505 => 0.029770982996314
506 => 0.030182898782698
507 => 0.029498008895454
508 => 0.028581018218931
509 => 0.028577944144645
510 => 0.028802376313624
511 => 0.028668875277483
512 => 0.028309627421855
513 => 0.028360656884145
514 => 0.027913585098761
515 => 0.028414939493386
516 => 0.028429316543492
517 => 0.028236267792603
518 => 0.029008673411097
519 => 0.029325128623218
520 => 0.029198059799877
521 => 0.029316213135832
522 => 0.03030891044855
523 => 0.030470763424943
524 => 0.030542647825649
525 => 0.030446332251561
526 => 0.029334357820389
527 => 0.029383678614892
528 => 0.029021795349691
529 => 0.028716042124915
530 => 0.028728270650442
531 => 0.028885467553114
601 => 0.029571955646557
602 => 0.031016629368526
603 => 0.031071453680232
604 => 0.031137902345358
605 => 0.030867622229868
606 => 0.030786103160804
607 => 0.030893647854757
608 => 0.031436191347392
609 => 0.032831760509573
610 => 0.032338473160728
611 => 0.031937422867642
612 => 0.032289252097061
613 => 0.032235090744921
614 => 0.031777914426797
615 => 0.031765083010221
616 => 0.030887615487631
617 => 0.030563235723499
618 => 0.030292159713185
619 => 0.029996151786541
620 => 0.029820668365351
621 => 0.030090290656088
622 => 0.030151956464056
623 => 0.02956242261317
624 => 0.029482071327696
625 => 0.029963497396302
626 => 0.029751639732882
627 => 0.029969540593527
628 => 0.030020095462316
629 => 0.030011954964063
630 => 0.029790751231755
701 => 0.029931739894338
702 => 0.029598259676585
703 => 0.029235650026888
704 => 0.02900432766176
705 => 0.028802468217728
706 => 0.028914471569417
707 => 0.028515200071649
708 => 0.028387465083765
709 => 0.0298839761078
710 => 0.030989464891459
711 => 0.030973390646723
712 => 0.030875542815853
713 => 0.030730160786887
714 => 0.031425555746445
715 => 0.031183294047396
716 => 0.031359559675096
717 => 0.031404426675191
718 => 0.031540225571402
719 => 0.031588762004488
720 => 0.031442051192982
721 => 0.030949671790352
722 => 0.029722709133025
723 => 0.029151554703917
724 => 0.028963064228982
725 => 0.028969915499751
726 => 0.028780926866509
727 => 0.028836592488875
728 => 0.028761568634748
729 => 0.028619491605252
730 => 0.028905698713208
731 => 0.028938681416196
801 => 0.028871877257279
802 => 0.02888761205505
803 => 0.028334502151645
804 => 0.028376553896309
805 => 0.028142404438341
806 => 0.028098504237686
807 => 0.027506594797668
808 => 0.026457941426032
809 => 0.027038997189164
810 => 0.026337163536104
811 => 0.026071368497176
812 => 0.027329600871856
813 => 0.027203309239372
814 => 0.026987152862212
815 => 0.026667412529456
816 => 0.026548817729802
817 => 0.025828273269661
818 => 0.025785699659
819 => 0.026142820949784
820 => 0.02597802176188
821 => 0.025746581287731
822 => 0.024908327351108
823 => 0.023965852390003
824 => 0.023994299784892
825 => 0.02429408353465
826 => 0.025165745218416
827 => 0.024825171918668
828 => 0.024578082082073
829 => 0.024531809583172
830 => 0.025111006784957
831 => 0.025930692171049
901 => 0.026315270214777
902 => 0.025934165053252
903 => 0.025496371963851
904 => 0.025523018400665
905 => 0.025700285206974
906 => 0.0257189134419
907 => 0.025433955146556
908 => 0.025514169237543
909 => 0.025392316698404
910 => 0.024644507890634
911 => 0.024630982400628
912 => 0.024447458059156
913 => 0.024441901015033
914 => 0.024129680327895
915 => 0.024085998495485
916 => 0.023466065370731
917 => 0.023874107230774
918 => 0.023600414174217
919 => 0.023187894180319
920 => 0.023116775577883
921 => 0.023114637666815
922 => 0.023538203462766
923 => 0.023869157617837
924 => 0.023605175182114
925 => 0.023545071498584
926 => 0.024186821594622
927 => 0.024105153045219
928 => 0.024034428608142
929 => 0.025857298335113
930 => 0.024414354705917
1001 => 0.023785148923244
1002 => 0.02300638728425
1003 => 0.023259956000763
1004 => 0.023313386655032
1005 => 0.021440605295587
1006 => 0.0206808181313
1007 => 0.020420087808491
1008 => 0.02027003382153
1009 => 0.020338415307648
1010 => 0.019654517745643
1011 => 0.020114108217932
1012 => 0.019521910737658
1013 => 0.019422626902913
1014 => 0.020481549356833
1015 => 0.020628892230161
1016 => 0.020000281756702
1017 => 0.020403951443454
1018 => 0.020257575203609
1019 => 0.019532062263748
1020 => 0.019504353005957
1021 => 0.019140316115747
1022 => 0.018570668874002
1023 => 0.018310324798848
1024 => 0.018174735344097
1025 => 0.018230682195713
1026 => 0.018202393755534
1027 => 0.018017792548327
1028 => 0.018212974880644
1029 => 0.017714364676483
1030 => 0.01751581407561
1031 => 0.017426133375535
1101 => 0.016983588120409
1102 => 0.017687874422083
1103 => 0.017826627695877
1104 => 0.017965654356485
1105 => 0.019175786519538
1106 => 0.019115331736469
1107 => 0.019661813532732
1108 => 0.019640578255045
1109 => 0.019484712794332
1110 => 0.018827142054211
1111 => 0.019089238031152
1112 => 0.018282547352887
1113 => 0.018886974858677
1114 => 0.018611139386531
1115 => 0.018793714608079
1116 => 0.018465427897591
1117 => 0.018647115317801
1118 => 0.017859531244501
1119 => 0.017124096318461
1120 => 0.017420056801383
1121 => 0.017741799693507
1122 => 0.018439420262195
1123 => 0.018023923206729
1124 => 0.018173351659557
1125 => 0.017672791356602
1126 => 0.016639992473625
1127 => 0.016645838003141
1128 => 0.016486964395741
1129 => 0.016349674403022
1130 => 0.018071648041731
1201 => 0.017857493399383
1202 => 0.017516266004668
1203 => 0.017973012432332
1204 => 0.018093783437347
1205 => 0.018097221618076
1206 => 0.018430452021368
1207 => 0.01860829714734
1208 => 0.018639643121617
1209 => 0.019163988361117
1210 => 0.019339741969117
1211 => 0.020063646206885
1212 => 0.018593208230936
1213 => 0.01856292552847
1214 => 0.017979439791239
1215 => 0.017609383912143
1216 => 0.018004777833878
1217 => 0.018355042871882
1218 => 0.01799032350233
1219 => 0.018037948152347
1220 => 0.017548342197391
1221 => 0.017723353288187
1222 => 0.01787409641612
1223 => 0.017790864921147
1224 => 0.017666263344722
1225 => 0.018326325133135
1226 => 0.01828908186023
1227 => 0.018903746572355
1228 => 0.019382921670552
1229 => 0.020241689109315
1230 => 0.019345520518406
1231 => 0.019312860573006
]
'min_raw' => 0.016349674403022
'max_raw' => 0.047271716898352
'avg_raw' => 0.031810695650687
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016349'
'max' => '$0.047271'
'avg' => '$0.03181'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028748960736368
'max_diff' => -0.015968410112333
'year' => 2030
]
5 => [
'items' => [
101 => 0.019632116778114
102 => 0.019339693092655
103 => 0.019524494767742
104 => 0.020211914702436
105 => 0.020226438802433
106 => 0.019983141414222
107 => 0.019968336746039
108 => 0.020015064670827
109 => 0.020288751585828
110 => 0.020193116968177
111 => 0.020303787768895
112 => 0.020442183299845
113 => 0.021014645894341
114 => 0.021152664687811
115 => 0.020817350574219
116 => 0.020847625684323
117 => 0.020722209001261
118 => 0.02060105805689
119 => 0.020873387687162
120 => 0.021371075439136
121 => 0.021367979349462
122 => 0.021483433234252
123 => 0.021555360048005
124 => 0.021246597509732
125 => 0.021045604450829
126 => 0.021122677979133
127 => 0.021245920229334
128 => 0.021082712178411
129 => 0.020075316482786
130 => 0.020380895984153
131 => 0.020330032613051
201 => 0.020257596987405
202 => 0.020564859539005
203 => 0.020535223316331
204 => 0.019647503387656
205 => 0.019704332337289
206 => 0.019650959344306
207 => 0.019823418403721
208 => 0.019330379737484
209 => 0.019482035110553
210 => 0.01957715193886
211 => 0.019633176481456
212 => 0.019835575545698
213 => 0.01981182635159
214 => 0.019834099262447
215 => 0.020134203643346
216 => 0.021652028618547
217 => 0.021734640483055
218 => 0.021327829448347
219 => 0.02149034243272
220 => 0.021178353040406
221 => 0.021387793609614
222 => 0.021531087527851
223 => 0.02088356986517
224 => 0.020845228071541
225 => 0.020531950988025
226 => 0.020700288347786
227 => 0.020432451504522
228 => 0.020498169297324
301 => 0.020314416619476
302 => 0.020645134854809
303 => 0.02101492923033
304 => 0.021108353893209
305 => 0.020862593827021
306 => 0.020684647342723
307 => 0.020372231935511
308 => 0.020891785720335
309 => 0.021043719080132
310 => 0.020890987679076
311 => 0.020855596476204
312 => 0.020788530210713
313 => 0.020869824901471
314 => 0.021042891618426
315 => 0.02096127655075
316 => 0.021015184740822
317 => 0.020809742310152
318 => 0.02124669972298
319 => 0.021940693254078
320 => 0.021942924556759
321 => 0.021861309049148
322 => 0.021827913741865
323 => 0.021911656205517
324 => 0.021957083056752
325 => 0.022227890828461
326 => 0.022518478356962
327 => 0.023874523559205
328 => 0.023493751492718
329 => 0.024696915467638
330 => 0.025648461960511
331 => 0.025933789147638
401 => 0.025671301561163
402 => 0.02477334570713
403 => 0.024729287709007
404 => 0.026071212862114
405 => 0.025692057542296
406 => 0.025646958223465
407 => 0.025167177667614
408 => 0.0254507873981
409 => 0.025388757789739
410 => 0.025290841018349
411 => 0.025831948627691
412 => 0.02684485376737
413 => 0.026686983002387
414 => 0.026569139799741
415 => 0.026052785189387
416 => 0.026363745996798
417 => 0.026253018809341
418 => 0.026728773075865
419 => 0.026446946787624
420 => 0.025689185067838
421 => 0.025809861119329
422 => 0.025791621176913
423 => 0.026166997899345
424 => 0.026054319124694
425 => 0.025769618837733
426 => 0.02684139176772
427 => 0.026771796795161
428 => 0.026870466554624
429 => 0.026913904034203
430 => 0.027566273329929
501 => 0.027833528156899
502 => 0.027894199681575
503 => 0.028148071096966
504 => 0.027887883129489
505 => 0.028928820510276
506 => 0.029620983128119
507 => 0.030424965627107
508 => 0.031599800148252
509 => 0.032041548796029
510 => 0.031961750856747
511 => 0.032852496982478
512 => 0.034453147970242
513 => 0.032285288185737
514 => 0.034568049802796
515 => 0.033845353830585
516 => 0.03213185468122
517 => 0.032021525536828
518 => 0.033181927054913
519 => 0.035755585937517
520 => 0.035110913577622
521 => 0.03575664039055
522 => 0.035003365763471
523 => 0.034965959329139
524 => 0.035720055523254
525 => 0.037482042384446
526 => 0.036644988473783
527 => 0.035444866438809
528 => 0.036331017873467
529 => 0.035563351491322
530 => 0.03383358427606
531 => 0.035110420608818
601 => 0.034256636515308
602 => 0.034505816103453
603 => 0.036300343277213
604 => 0.036084421019936
605 => 0.036363844414715
606 => 0.035870669436714
607 => 0.035409966240705
608 => 0.034550029513086
609 => 0.034295444642406
610 => 0.034365802741658
611 => 0.034295409776426
612 => 0.03381428308055
613 => 0.033710383816384
614 => 0.033537213824176
615 => 0.033590886445808
616 => 0.033265276197789
617 => 0.033879770010311
618 => 0.033993825476816
619 => 0.034441002829038
620 => 0.0344874302652
621 => 0.035732812825967
622 => 0.0350468770393
623 => 0.035507061985843
624 => 0.035465898712795
625 => 0.03216899140357
626 => 0.032623276141922
627 => 0.033330000632393
628 => 0.033011622207378
629 => 0.032561509603485
630 => 0.032198019542331
701 => 0.031647294930914
702 => 0.032422429245753
703 => 0.033441648443422
704 => 0.03451327934602
705 => 0.035800773659454
706 => 0.035513419916781
707 => 0.034489210535393
708 => 0.034535155820057
709 => 0.034819171491044
710 => 0.034451345391571
711 => 0.034342866294017
712 => 0.03480426812885
713 => 0.034807445549705
714 => 0.034384217168991
715 => 0.033913876273804
716 => 0.03391190552828
717 => 0.033828212908935
718 => 0.035018254494528
719 => 0.035672657039828
720 => 0.035747683237025
721 => 0.03566760717898
722 => 0.035698425275616
723 => 0.035317642853282
724 => 0.036187998553218
725 => 0.036986723012738
726 => 0.036772647795327
727 => 0.036451718611844
728 => 0.036196083059155
729 => 0.036712428183329
730 => 0.036689436147752
731 => 0.036979746851376
801 => 0.036966576680943
802 => 0.036868956110452
803 => 0.036772651281665
804 => 0.037154489042003
805 => 0.037044525899152
806 => 0.036934391953168
807 => 0.036713501463834
808 => 0.036743524149937
809 => 0.036422650379402
810 => 0.036274199490968
811 => 0.034041854312401
812 => 0.033445298736706
813 => 0.033632987264828
814 => 0.033694779201616
815 => 0.033435157450567
816 => 0.033807388350216
817 => 0.033749376558796
818 => 0.033975066503449
819 => 0.033834065224348
820 => 0.033839851966026
821 => 0.03425450666322
822 => 0.034374882685882
823 => 0.034313658469203
824 => 0.034356537811922
825 => 0.035344674166647
826 => 0.035204192775827
827 => 0.035129564836852
828 => 0.035150237285964
829 => 0.035402727310479
830 => 0.035473410731899
831 => 0.035173920108507
901 => 0.035315161617833
902 => 0.035916550038328
903 => 0.036127001949865
904 => 0.036798663428841
905 => 0.036513329694741
906 => 0.037037072112636
907 => 0.038646877748298
908 => 0.039932901880142
909 => 0.038750220941304
910 => 0.041111840485249
911 => 0.042950700054414
912 => 0.042880121561368
913 => 0.042559473861896
914 => 0.040465981131013
915 => 0.038539517907837
916 => 0.040151086195973
917 => 0.040155194414962
918 => 0.040016759269782
919 => 0.039156950472464
920 => 0.039986839787379
921 => 0.040052713387481
922 => 0.040015841688628
923 => 0.039356628299653
924 => 0.038350131297687
925 => 0.038546798402658
926 => 0.0388689431325
927 => 0.038259055952478
928 => 0.038064160044094
929 => 0.038426508618244
930 => 0.03959407122248
1001 => 0.039373350275379
1002 => 0.039367586359447
1003 => 0.040311924171394
1004 => 0.039635982098895
1005 => 0.038549279004667
1006 => 0.038274872141522
1007 => 0.037300912639968
1008 => 0.037973629936816
1009 => 0.037997839834714
1010 => 0.037629399446235
1011 => 0.038579175911601
1012 => 0.038570423554268
1013 => 0.039472094952563
1014 => 0.04119575201379
1015 => 0.040685981804772
1016 => 0.040093174514526
1017 => 0.040157629103739
1018 => 0.040864536859924
1019 => 0.0404371242934
1020 => 0.040590824832348
1021 => 0.04086430421575
1022 => 0.041029301117867
1023 => 0.040133888588682
1024 => 0.039925125095597
1025 => 0.039498068254774
1026 => 0.039386657096397
1027 => 0.039734485982414
1028 => 0.039642845359924
1029 => 0.037995805086541
1030 => 0.037823680213927
1031 => 0.037828959038032
1101 => 0.037396142861752
1102 => 0.036735994305141
1103 => 0.038470825296494
1104 => 0.038331494088944
1105 => 0.038177683219188
1106 => 0.0381965241731
1107 => 0.038949555507569
1108 => 0.038512759304583
1109 => 0.03967405359971
1110 => 0.039435326404334
1111 => 0.039190476757196
1112 => 0.039156631077659
1113 => 0.039062384853102
1114 => 0.038739179481618
1115 => 0.038348889573919
1116 => 0.038091186370524
1117 => 0.035137105934315
1118 => 0.03568536608018
1119 => 0.036316089402513
1120 => 0.036533812565917
1121 => 0.03616138202893
1122 => 0.038753885309209
1123 => 0.039227560640499
1124 => 0.037792767164944
1125 => 0.037524375887899
1126 => 0.03877148099665
1127 => 0.038019324163674
1128 => 0.038358020339508
1129 => 0.037625944464258
1130 => 0.039113466124024
1201 => 0.039102133701257
1202 => 0.038523454178408
1203 => 0.039012550148494
1204 => 0.03892755768763
1205 => 0.038274229931558
1206 => 0.039134177779211
1207 => 0.039134604302615
1208 => 0.03857763784345
1209 => 0.037927222954781
1210 => 0.037810944134801
1211 => 0.037723343663808
1212 => 0.03833647599365
1213 => 0.038886208523371
1214 => 0.039909124470931
1215 => 0.040166309844031
1216 => 0.041170121477039
1217 => 0.040572400524284
1218 => 0.040837362480858
1219 => 0.041125016165877
1220 => 0.041262927920589
1221 => 0.041038208117038
1222 => 0.042597540768453
1223 => 0.04272919622095
1224 => 0.042773339155358
1225 => 0.042247540958787
1226 => 0.042714572821942
1227 => 0.042496064079641
1228 => 0.04306456312363
1229 => 0.043153711032688
1230 => 0.043078205925245
1231 => 0.043106502878684
]
'min_raw' => 0.019330379737484
'max_raw' => 0.043153711032688
'avg_raw' => 0.031242045385086
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01933'
'max' => '$0.043153'
'avg' => '$0.031242'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029807053344626
'max_diff' => -0.004118005865664
'year' => 2031
]
6 => [
'items' => [
101 => 0.041775887545831
102 => 0.041706888121268
103 => 0.040766076071369
104 => 0.041149463935834
105 => 0.040432738699475
106 => 0.040660019655012
107 => 0.040760202934601
108 => 0.040707872874695
109 => 0.041171140110461
110 => 0.040777268320816
111 => 0.039737775909427
112 => 0.038698000289026
113 => 0.038684946753095
114 => 0.038411192185807
115 => 0.038213317774308
116 => 0.038251435405935
117 => 0.038385766911548
118 => 0.038205510183001
119 => 0.038243977095284
120 => 0.038882784142888
121 => 0.039010892340522
122 => 0.038575530629859
123 => 0.036827490539153
124 => 0.036398517116267
125 => 0.036706854705725
126 => 0.036559489197448
127 => 0.029506361133482
128 => 0.031163388951584
129 => 0.030178839289415
130 => 0.030632565070694
131 => 0.02962759481352
201 => 0.030107219295248
202 => 0.030018650166554
203 => 0.032683101863043
204 => 0.032641500114636
205 => 0.032661412670083
206 => 0.031710934516711
207 => 0.033225072023327
208 => 0.03397099060571
209 => 0.033832940928091
210 => 0.033867685057784
211 => 0.033270665796848
212 => 0.032667193121549
213 => 0.031997849050863
214 => 0.033241407600769
215 => 0.033103145118272
216 => 0.03342026950785
217 => 0.034226806118865
218 => 0.034345571698572
219 => 0.034505193842099
220 => 0.034447980666322
221 => 0.035811030628808
222 => 0.035645956284658
223 => 0.03604373795893
224 => 0.035225470875184
225 => 0.034299523999301
226 => 0.034475516228922
227 => 0.03445856676197
228 => 0.03424278059397
229 => 0.034047978489951
301 => 0.033723687871912
302 => 0.034749791373368
303 => 0.034708133445094
304 => 0.035382526881808
305 => 0.03526332129116
306 => 0.03446723718226
307 => 0.03449566948195
308 => 0.034686890361459
309 => 0.035348708008763
310 => 0.035545180546464
311 => 0.035454166638924
312 => 0.035669589807201
313 => 0.035839851495898
314 => 0.035690972053907
315 => 0.037798790993543
316 => 0.036923477613182
317 => 0.037350099264378
318 => 0.037451846014388
319 => 0.037191223853742
320 => 0.037247743468206
321 => 0.037333355283447
322 => 0.037853173461073
323 => 0.039217326769767
324 => 0.039821500984082
325 => 0.04163918891728
326 => 0.039771332726095
327 => 0.039660501869667
328 => 0.039987922355353
329 => 0.041055097593948
330 => 0.041919942890156
331 => 0.04220686196903
401 => 0.042244783061821
402 => 0.042783062327809
403 => 0.04309159396476
404 => 0.042717701066768
405 => 0.042400865983939
406 => 0.041266002044261
407 => 0.041397365635411
408 => 0.042302330511426
409 => 0.043580646700963
410 => 0.044677574977716
411 => 0.044293468927007
412 => 0.047223926957305
413 => 0.047514469901161
414 => 0.047474326260698
415 => 0.04813622632539
416 => 0.046822489490581
417 => 0.046260841541247
418 => 0.042469369325077
419 => 0.043534618365679
420 => 0.045083020406076
421 => 0.04487808358982
422 => 0.043753592639178
423 => 0.044676721950495
424 => 0.044371506531251
425 => 0.044130770466694
426 => 0.045233629047412
427 => 0.044020990734979
428 => 0.04507092341129
429 => 0.043724373893759
430 => 0.044295223491092
501 => 0.043971181650758
502 => 0.044180876434528
503 => 0.042955005013372
504 => 0.043616455475882
505 => 0.042927486499484
506 => 0.042927159838483
507 => 0.042911950810143
508 => 0.043722519755518
509 => 0.043748952379726
510 => 0.043149940704393
511 => 0.043063613763656
512 => 0.043382809709341
513 => 0.043009114854495
514 => 0.04318396432507
515 => 0.043014410866836
516 => 0.042976240812046
517 => 0.042672095321375
518 => 0.04254106108134
519 => 0.042592442983194
520 => 0.04241705006298
521 => 0.042311369484311
522 => 0.042890928283105
523 => 0.042581293396245
524 => 0.042843472295904
525 => 0.042544686350127
526 => 0.041508964087225
527 => 0.040913309261267
528 => 0.03895692591815
529 => 0.039511753807372
530 => 0.039879605271937
531 => 0.039758030365092
601 => 0.040019220308238
602 => 0.04003525524945
603 => 0.039950339736417
604 => 0.039852018450676
605 => 0.039804161086285
606 => 0.04016085067165
607 => 0.040367920981573
608 => 0.039916524087624
609 => 0.039810768111085
610 => 0.040267155293174
611 => 0.040545551210601
612 => 0.042601070247735
613 => 0.042448790758225
614 => 0.042830982393554
615 => 0.042787953480625
616 => 0.043188551202352
617 => 0.043843359172147
618 => 0.042511951482366
619 => 0.042743037820698
620 => 0.042686380787102
621 => 0.043304947423633
622 => 0.043306878521153
623 => 0.042936016922858
624 => 0.043137067011836
625 => 0.043024846367689
626 => 0.043227644239192
627 => 0.042446756972802
628 => 0.043397793371694
629 => 0.043936969726433
630 => 0.043944456190642
701 => 0.04420002150362
702 => 0.044459690662951
703 => 0.044958103001869
704 => 0.044445790213333
705 => 0.0435241893794
706 => 0.043590725982857
707 => 0.043050391751123
708 => 0.043059474867178
709 => 0.04301098848182
710 => 0.043156499774162
711 => 0.042478688518661
712 => 0.042637769465538
713 => 0.042415055208334
714 => 0.042742553683398
715 => 0.042390219461667
716 => 0.042686353465365
717 => 0.042814155084363
718 => 0.043285745809839
719 => 0.042320565128075
720 => 0.04035249638097
721 => 0.040766208292139
722 => 0.040154295879151
723 => 0.040210930702688
724 => 0.040325342059598
725 => 0.039954497418787
726 => 0.040025242889596
727 => 0.04002271536355
728 => 0.04000093450957
729 => 0.039904463495795
730 => 0.039764561439614
731 => 0.040321888171859
801 => 0.040416588843891
802 => 0.040627096706889
803 => 0.041253425318321
804 => 0.041190840320193
805 => 0.041292919048766
806 => 0.041070081757438
807 => 0.04022126748552
808 => 0.040267362184254
809 => 0.039692560552425
810 => 0.040612397736832
811 => 0.040394568150307
812 => 0.040254131998809
813 => 0.040215812693741
814 => 0.040843693852655
815 => 0.041031565736234
816 => 0.040914496586001
817 => 0.04067438434342
818 => 0.041135470831987
819 => 0.04125883812465
820 => 0.041286455511867
821 => 0.042103412365042
822 => 0.041332114324701
823 => 0.041517773429054
824 => 0.042966232762491
825 => 0.041652680020789
826 => 0.04234849820379
827 => 0.042314441524595
828 => 0.042670398561815
829 => 0.042285242657936
830 => 0.042290017126969
831 => 0.042606082861402
901 => 0.042162225540147
902 => 0.042052320225424
903 => 0.041900486820292
904 => 0.042232009505684
905 => 0.042430742362096
906 => 0.044032383231571
907 => 0.04506711627695
908 => 0.045022195786536
909 => 0.045432684981287
910 => 0.045247755839401
911 => 0.044650570858411
912 => 0.045669892802011
913 => 0.045347336688815
914 => 0.045373927822881
915 => 0.045372938099543
916 => 0.045587409716474
917 => 0.045435436919843
918 => 0.045135882937997
919 => 0.045334740850745
920 => 0.045925277758605
921 => 0.047758322440485
922 => 0.048784118529077
923 => 0.047696568227924
924 => 0.04844674586278
925 => 0.047996906597489
926 => 0.047915157421426
927 => 0.048386324413808
928 => 0.048858316121637
929 => 0.048828252290325
930 => 0.048485610547483
1001 => 0.048292060921164
1002 => 0.049757683535533
1003 => 0.05083752931157
1004 => 0.050763891069022
1005 => 0.051088906323189
1006 => 0.052043161161766
1007 => 0.052130406265094
1008 => 0.052119415387381
1009 => 0.051903169295696
1010 => 0.052842757109924
1011 => 0.053626577795028
1012 => 0.051853114573421
1013 => 0.052528426151871
1014 => 0.052831595276617
1015 => 0.05327673749797
1016 => 0.054027767039893
1017 => 0.054843584323168
1018 => 0.054958949832004
1019 => 0.054877092482737
1020 => 0.054339039054071
1021 => 0.055231716060155
1022 => 0.055754625314467
1023 => 0.056066005808845
1024 => 0.056855614933812
1025 => 0.05283346754592
1026 => 0.049986391711075
1027 => 0.04954177970719
1028 => 0.050445915700593
1029 => 0.050684329151704
1030 => 0.050588224988506
1031 => 0.047383582291577
1101 => 0.049524907926607
1102 => 0.051828794262126
1103 => 0.051917295919146
1104 => 0.053070669590698
1105 => 0.053446255336539
1106 => 0.054374872318282
1107 => 0.054316787073239
1108 => 0.054542890530769
1109 => 0.054490913261449
1110 => 0.056210980676752
1111 => 0.058108470468313
1112 => 0.058042766430479
1113 => 0.057769979822862
1114 => 0.058175114452202
1115 => 0.060133527264457
1116 => 0.059953227995631
1117 => 0.060128373377441
1118 => 0.062437452454399
1119 => 0.065439583717113
1120 => 0.064044792336532
1121 => 0.067071088291986
1122 => 0.068975981178889
1123 => 0.072270296457186
1124 => 0.071857831959498
1125 => 0.073140284722538
1126 => 0.071119434424699
1127 => 0.066479153659633
1128 => 0.06574481146628
1129 => 0.067214983133879
1130 => 0.070829256721417
1201 => 0.0671011567965
1202 => 0.067855346555823
1203 => 0.067638139854401
1204 => 0.067626565832351
1205 => 0.06806829917904
1206 => 0.067427541920406
1207 => 0.064816981578702
1208 => 0.066013385999176
1209 => 0.065551396796372
1210 => 0.06606400826046
1211 => 0.068830360915093
1212 => 0.067607290464869
1213 => 0.066318885099733
1214 => 0.067934831347652
1215 => 0.069992486220629
1216 => 0.06986372187664
1217 => 0.069613865229979
1218 => 0.071022294065134
1219 => 0.073348605869881
1220 => 0.073977398602826
1221 => 0.074441560543184
1222 => 0.074505560632679
1223 => 0.075164801330314
1224 => 0.071619897949086
1225 => 0.07724575065467
1226 => 0.07821718000588
1227 => 0.078034591549474
1228 => 0.079114294389348
1229 => 0.078796618424439
1230 => 0.078336355793119
1231 => 0.080047914453699
]
'min_raw' => 0.029506361133482
'max_raw' => 0.080047914453699
'avg_raw' => 0.054777137793591
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0295063'
'max' => '$0.080047'
'avg' => '$0.054777'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010175981395998
'max_diff' => 0.036894203421011
'year' => 2032
]
7 => [
'items' => [
101 => 0.078085750565006
102 => 0.075300705954571
103 => 0.07377277539935
104 => 0.075784877609107
105 => 0.077013598215916
106 => 0.077825704375708
107 => 0.078071447208974
108 => 0.071895078707525
109 => 0.068566358642345
110 => 0.070700030040272
111 => 0.073303256403877
112 => 0.071605436895196
113 => 0.071671988205539
114 => 0.069251343765278
115 => 0.073517429724661
116 => 0.07289589688381
117 => 0.076120410361621
118 => 0.075350854341804
119 => 0.077980319908066
120 => 0.077287893501482
121 => 0.080162116802175
122 => 0.08130872229331
123 => 0.083234051367822
124 => 0.084650331272532
125 => 0.085481997921695
126 => 0.085432067775582
127 => 0.088727545374246
128 => 0.086784317369532
129 => 0.084343165011934
130 => 0.084299012267523
131 => 0.085563319664919
201 => 0.088212961124065
202 => 0.088899974603706
203 => 0.089283921414723
204 => 0.088695893508366
205 => 0.086586658781655
206 => 0.085675901920723
207 => 0.086451893153403
208 => 0.085502922557522
209 => 0.087141112040135
210 => 0.089390696098153
211 => 0.088926165885992
212 => 0.090479020738986
213 => 0.09208606214674
214 => 0.094384203536574
215 => 0.094985022795806
216 => 0.095978154184206
217 => 0.097000412609536
218 => 0.097328734465115
219 => 0.097955602759704
220 => 0.097952298854361
221 => 0.099841408653208
222 => 0.1019251552622
223 => 0.10271172136824
224 => 0.10452038675759
225 => 0.10142311066153
226 => 0.10377243015934
227 => 0.10589157515364
228 => 0.10336504312934
301 => 0.10684727891838
302 => 0.10698248624315
303 => 0.10902395632169
304 => 0.10695453529875
305 => 0.10572571970115
306 => 0.10927326428829
307 => 0.1109898093674
308 => 0.11047277201987
309 => 0.10653809227584
310 => 0.10424793989847
311 => 0.098254169389477
312 => 0.10535404946899
313 => 0.10881219394939
314 => 0.10652913651707
315 => 0.10768057788841
316 => 0.11396246865434
317 => 0.1163542059357
318 => 0.11585674130068
319 => 0.11594080463503
320 => 0.11723134265895
321 => 0.12295429896928
322 => 0.11952497089104
323 => 0.12214656371238
324 => 0.12353704709196
325 => 0.1248286055474
326 => 0.12165694618209
327 => 0.11753066394875
328 => 0.1162236971559
329 => 0.10630213144957
330 => 0.10578567086737
331 => 0.10549576589223
401 => 0.10366795603184
402 => 0.10223179816083
403 => 0.10108971210068
404 => 0.098092537223078
405 => 0.099103995761277
406 => 0.094327124565391
407 => 0.097383197474599
408 => 0.089759195704376
409 => 0.096108690927053
410 => 0.092652949353472
411 => 0.09497338687826
412 => 0.094965291090335
413 => 0.090692629911812
414 => 0.088228248112205
415 => 0.089798648110089
416 => 0.091482241566329
417 => 0.091755398940315
418 => 0.093938221802614
419 => 0.094547400743862
420 => 0.092701560112037
421 => 0.089601205213651
422 => 0.09032134694498
423 => 0.088213654463004
424 => 0.084520004459564
425 => 0.087172848376977
426 => 0.088078645927695
427 => 0.08847869772824
428 => 0.084846417168426
429 => 0.083705075755884
430 => 0.083097435164629
501 => 0.089132323405605
502 => 0.089462928206435
503 => 0.087771507302578
504 => 0.095416890175124
505 => 0.093686504566464
506 => 0.095619769246104
507 => 0.09025600163103
508 => 0.090460904777197
509 => 0.087921611230031
510 => 0.089343445940788
511 => 0.088338538995097
512 => 0.089228575747003
513 => 0.089762060106337
514 => 0.092300936980418
515 => 0.096137680822701
516 => 0.091921713439512
517 => 0.090084756076892
518 => 0.091224394093221
519 => 0.094259400310448
520 => 0.098857590088656
521 => 0.096135369192763
522 => 0.097343444600052
523 => 0.09760735533301
524 => 0.095600090426475
525 => 0.098931600808893
526 => 0.10071698428797
527 => 0.10254841830445
528 => 0.10413860114535
529 => 0.10181690328417
530 => 0.10430145279795
531 => 0.10229934447187
601 => 0.10050324632924
602 => 0.10050597026872
603 => 0.099379251667035
604 => 0.097196092400591
605 => 0.096793484336186
606 => 0.098887902331013
607 => 0.10056742722074
608 => 0.10070576093504
609 => 0.1016356322111
610 => 0.10218592045384
611 => 0.10757949331324
612 => 0.10974883293526
613 => 0.11240146036158
614 => 0.11343480823802
615 => 0.11654481487038
616 => 0.11403323193236
617 => 0.11348983516512
618 => 0.10594597635041
619 => 0.10718128280871
620 => 0.10915912763778
621 => 0.10597859028316
622 => 0.10799590917588
623 => 0.10839417065796
624 => 0.1058705168409
625 => 0.10721850938524
626 => 0.10363864083941
627 => 0.096215712174348
628 => 0.098939864650454
629 => 0.10094575781268
630 => 0.098083100945341
701 => 0.10321430257992
702 => 0.1002167605145
703 => 0.099266683587157
704 => 0.095560094766711
705 => 0.097309462010274
706 => 0.099675506255719
707 => 0.098213565994201
708 => 0.10124731154829
709 => 0.10554390432326
710 => 0.10860591220122
711 => 0.10884097514499
712 => 0.10687230921805
713 => 0.11002710892983
714 => 0.11005008820156
715 => 0.10649146123894
716 => 0.10431182203885
717 => 0.10381660342659
718 => 0.10505375661334
719 => 0.10655588897314
720 => 0.10892433303665
721 => 0.11035553418062
722 => 0.11408734771367
723 => 0.11509706945623
724 => 0.1162064475228
725 => 0.11768891873927
726 => 0.11946900553246
727 => 0.11557427696936
728 => 0.11572902179586
729 => 0.11210230448409
730 => 0.1082266369126
731 => 0.11116778549058
801 => 0.11501294601169
802 => 0.11413086193962
803 => 0.11403160946217
804 => 0.1141985245989
805 => 0.11353346201473
806 => 0.11052540859492
807 => 0.1090147829989
808 => 0.11096387541946
809 => 0.11199973129686
810 => 0.11360625342659
811 => 0.11340821566453
812 => 0.11754644414282
813 => 0.11915443459596
814 => 0.11874304182825
815 => 0.11881874799823
816 => 0.12172993790599
817 => 0.12496777981529
818 => 0.12800044603422
819 => 0.13108540436816
820 => 0.12736636668862
821 => 0.12547806871331
822 => 0.12742631022109
823 => 0.12639254585358
824 => 0.13233286254374
825 => 0.13274415718284
826 => 0.13868404432049
827 => 0.14432170452272
828 => 0.14078079115888
829 => 0.14411971297474
830 => 0.1477310291449
831 => 0.15469784395205
901 => 0.1523516658205
902 => 0.15055453014103
903 => 0.14885624560763
904 => 0.15239010612656
905 => 0.15693636122937
906 => 0.15791558103502
907 => 0.15950229121094
908 => 0.15783405947465
909 => 0.15984326085131
910 => 0.16693662459874
911 => 0.16501993509933
912 => 0.16229792788696
913 => 0.16789745731165
914 => 0.16992390524283
915 => 0.18414657808286
916 => 0.20210329005271
917 => 0.19466909338706
918 => 0.19005444761667
919 => 0.19113899883357
920 => 0.1976961821719
921 => 0.19980214134557
922 => 0.19407741834387
923 => 0.19609948728815
924 => 0.20724128597656
925 => 0.21321850350119
926 => 0.20510063925533
927 => 0.18270377376014
928 => 0.16205284091961
929 => 0.16753039823254
930 => 0.16690941322165
1001 => 0.17887988594466
1002 => 0.16497422268866
1003 => 0.16520835839483
1004 => 0.1774263678168
1005 => 0.17416681237272
1006 => 0.16888675000565
1007 => 0.16209139121815
1008 => 0.14952954200486
1009 => 0.13840316184356
1010 => 0.16022455559218
1011 => 0.15928357741411
1012 => 0.15792090156711
1013 => 0.16095338920768
1014 => 0.17567828840365
1015 => 0.17533883181733
1016 => 0.17317938220747
1017 => 0.17481730570404
1018 => 0.16859961409746
1019 => 0.17020205479868
1020 => 0.16204956970634
1021 => 0.16573483344593
1022 => 0.1688754213632
1023 => 0.1695059408848
1024 => 0.17092653356207
1025 => 0.15878772467265
1026 => 0.16423769348729
1027 => 0.16743903957288
1028 => 0.15297524149224
1029 => 0.16715313678948
1030 => 0.1585764150163
1031 => 0.15566534682844
1101 => 0.15958471663932
1102 => 0.15805733441231
1103 => 0.15674418086442
1104 => 0.15601141862185
1105 => 0.1588893712459
1106 => 0.15875511131609
1107 => 0.15404622223661
1108 => 0.14790366839131
1109 => 0.14996531108425
1110 => 0.1492162969659
1111 => 0.14650177317626
1112 => 0.14833103445763
1113 => 0.14027589354245
1114 => 0.12641744226767
1115 => 0.13557275967563
1116 => 0.13522028991449
1117 => 0.1350425586777
1118 => 0.14192252667539
1119 => 0.14126117650028
1120 => 0.1400608194565
1121 => 0.14647972767782
1122 => 0.14413673983054
1123 => 0.1513572762985
1124 => 0.15611318861132
1125 => 0.15490693541115
1126 => 0.15937989392867
1127 => 0.15001280716796
1128 => 0.15312417764758
1129 => 0.15376542679126
1130 => 0.14640051934675
1201 => 0.14136938156798
1202 => 0.14103386203731
1203 => 0.13231056246242
1204 => 0.13697047868331
1205 => 0.14107101211726
1206 => 0.13910717481665
1207 => 0.13848548259525
1208 => 0.14166157332581
1209 => 0.14190838277695
1210 => 0.13628110113522
1211 => 0.13745119118137
1212 => 0.14233066118509
1213 => 0.1373282410567
1214 => 0.12760935588792
1215 => 0.12519893799197
1216 => 0.12487734381183
1217 => 0.11834009930534
1218 => 0.12536001364164
1219 => 0.12229563291184
1220 => 0.13197597492036
1221 => 0.12644661548181
1222 => 0.1262082558478
1223 => 0.12584794030125
1224 => 0.12022106390434
1225 => 0.12145299222861
1226 => 0.12554810960647
1227 => 0.12700929362169
1228 => 0.12685688015778
1229 => 0.12552804129724
1230 => 0.12613637692284
1231 => 0.1241767159146
]
'min_raw' => 0.068566358642345
'max_raw' => 0.21321850350119
'avg_raw' => 0.14089243107177
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.068566'
'max' => '$0.213218'
'avg' => '$0.140892'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.039059997508863
'max_diff' => 0.1331705890475
'year' => 2033
]
8 => [
'items' => [
101 => 0.12348471882578
102 => 0.12130058566465
103 => 0.11809051329998
104 => 0.1185368935508
105 => 0.11217690023526
106 => 0.10871163832656
107 => 0.10775249950165
108 => 0.10646989897981
109 => 0.10789737264346
110 => 0.11215888317329
111 => 0.10701859734443
112 => 0.098205937839966
113 => 0.098735593692225
114 => 0.099925573136018
115 => 0.097708054315012
116 => 0.095609358853178
117 => 0.097434004284698
118 => 0.093699964277421
119 => 0.10037681403131
120 => 0.10019622395712
121 => 0.10268494065175
122 => 0.10424118627451
123 => 0.10065454395455
124 => 0.099752513110397
125 => 0.10026635087425
126 => 0.091773757225596
127 => 0.10199091456663
128 => 0.10207927296759
129 => 0.10132269469461
130 => 0.10676301555937
131 => 0.11824378946263
201 => 0.11392426050716
202 => 0.11225160833715
203 => 0.10907189533926
204 => 0.11330867411627
205 => 0.11298335561024
206 => 0.1115121419526
207 => 0.11062234734199
208 => 0.11226182119463
209 => 0.11041919838839
210 => 0.1100882127005
211 => 0.10808279954787
212 => 0.10736695829287
213 => 0.10683697792613
214 => 0.10625352161714
215 => 0.10754048084651
216 => 0.10462406191916
217 => 0.10110714659285
218 => 0.10081475313701
219 => 0.10162207717606
220 => 0.10126489638699
221 => 0.10081304309281
222 => 0.099950332099309
223 => 0.099694384176441
224 => 0.10052609075748
225 => 0.099587142518992
226 => 0.10097261179204
227 => 0.10059584081129
228 => 0.098491228740335
301 => 0.095868102872743
302 => 0.095844751550328
303 => 0.095279603384944
304 => 0.094559802225732
305 => 0.094359570010059
306 => 0.097280337735805
307 => 0.10332623951688
308 => 0.10213928433109
309 => 0.10299698109688
310 => 0.10721600029091
311 => 0.10855709962235
312 => 0.10760521908257
313 => 0.10630222629028
314 => 0.10635955136034
315 => 0.11081227217433
316 => 0.11108998290968
317 => 0.11179166834504
318 => 0.11269353242574
319 => 0.10775881043528
320 => 0.10612712639836
321 => 0.10535394397929
322 => 0.10297284138778
323 => 0.10554065639241
324 => 0.10404450055401
325 => 0.10424638309258
326 => 0.10411490682449
327 => 0.10418670175725
328 => 0.10037494771573
329 => 0.10176375054857
330 => 0.099454596476235
331 => 0.096362898388094
401 => 0.096352533932013
402 => 0.09710922265908
403 => 0.096659114594988
404 => 0.095447885367852
405 => 0.095619934762726
406 => 0.094112601024749
407 => 0.095802952369674
408 => 0.095851425597879
409 => 0.095200548256023
410 => 0.097804767726415
411 => 0.098871718568276
412 => 0.098443297158722
413 => 0.098841659380098
414 => 0.10218860767784
415 => 0.10273430628796
416 => 0.10297666956375
417 => 0.10265193488117
418 => 0.098902835450901
419 => 0.099069123953035
420 => 0.097849009258528
421 => 0.096818140914188
422 => 0.09685937024177
423 => 0.097389370574265
424 => 0.099703913110378
425 => 0.10457473142789
426 => 0.10475957542252
427 => 0.10498361173629
428 => 0.10407234345656
429 => 0.10379749622373
430 => 0.10416009066793
501 => 0.10598931393252
502 => 0.11069457279834
503 => 0.10903142006149
504 => 0.10767925099791
505 => 0.10886546780883
506 => 0.10868285902867
507 => 0.10714145715308
508 => 0.10709819513623
509 => 0.104139752121
510 => 0.10304608309875
511 => 0.10213213140406
512 => 0.10113412001276
513 => 0.10054246540636
514 => 0.10145151578401
515 => 0.10165942636094
516 => 0.099671771822737
517 => 0.099400861853815
518 => 0.10102402345622
519 => 0.10030973055256
520 => 0.10104439851758
521 => 0.10121484778733
522 => 0.10118740152912
523 => 0.10044159770169
524 => 0.10091695082111
525 => 0.099792598984106
526 => 0.098570035233554
527 => 0.097790115729115
528 => 0.097109532520182
529 => 0.097487159640226
530 => 0.096140987909256
531 => 0.095710320479435
601 => 0.10075591188003
602 => 0.1044831444969
603 => 0.1044289490585
604 => 0.10409904826521
605 => 0.1036088826043
606 => 0.10595345526138
607 => 0.10513665302886
608 => 0.10573094489913
609 => 0.10588221712246
610 => 0.10634007258221
611 => 0.10650371655507
612 => 0.10600907081105
613 => 0.10434897927825
614 => 0.10021218901528
615 => 0.09828650198081
616 => 0.097650993184582
617 => 0.097674092722322
618 => 0.097036904350579
619 => 0.097224584882837
620 => 0.09697163672065
621 => 0.096492614096202
622 => 0.097457581343017
623 => 0.097568784828921
624 => 0.097343549943014
625 => 0.097396600912267
626 => 0.095531752256038
627 => 0.095673532649133
628 => 0.0948840814038
629 => 0.094736068812277
630 => 0.09274040480946
701 => 0.089204796752346
702 => 0.091163866825766
703 => 0.088797585664014
704 => 0.087901439133048
705 => 0.092143657431261
706 => 0.091717856374941
707 => 0.090989070057789
708 => 0.089911043202345
709 => 0.08951119255529
710 => 0.087081826601115
711 => 0.086938286700379
712 => 0.088142346065667
713 => 0.087586714097739
714 => 0.086806396380488
715 => 0.083980164708141
716 => 0.080802544575274
717 => 0.080898456953277
718 => 0.081909198795818
719 => 0.084848067020113
720 => 0.083699800361944
721 => 0.082866719726601
722 => 0.082710708765913
723 => 0.084663512569991
724 => 0.087427139077805
725 => 0.088723770802614
726 => 0.08743884814262
727 => 0.085962798175967
728 => 0.08605263849808
729 => 0.086650305911926
730 => 0.086713112306559
731 => 0.085752355518656
801 => 0.086022802926786
802 => 0.085611968583608
803 => 0.083090678977865
804 => 0.083045076843993
805 => 0.082426311713457
806 => 0.082407575751217
807 => 0.08135490190598
808 => 0.08120762555824
809 => 0.079117477745786
810 => 0.080493219365494
811 => 0.079570444116671
812 => 0.078179604156018
813 => 0.077939822822562
814 => 0.077932614706134
815 => 0.0793606963596
816 => 0.080476531399903
817 => 0.079586496187198
818 => 0.079383852421873
819 => 0.081547557676224
820 => 0.081272206459997
821 => 0.081033754082569
822 => 0.087179686635751
823 => 0.08231470144681
824 => 0.080193290220785
825 => 0.077567640983513
826 => 0.078422565614841
827 => 0.078602710796118
828 => 0.072288497689328
829 => 0.069726822218289
830 => 0.068847751731332
831 => 0.068341834237856
901 => 0.068572387192545
902 => 0.066266578814045
903 => 0.067816120178947
904 => 0.065819485028297
905 => 0.065484742647678
906 => 0.069054973632673
907 => 0.069551750417248
908 => 0.067432346317801
909 => 0.068793346850002
910 => 0.068299829137703
911 => 0.065853711607264
912 => 0.065760287910024
913 => 0.064532912118439
914 => 0.062612306671392
915 => 0.061734538445368
916 => 0.061277389132121
917 => 0.061466017848429
918 => 0.06137064139733
919 => 0.06074824553879
920 => 0.061406316399391
921 => 0.059725217284208
922 => 0.059055790071006
923 => 0.058753425329396
924 => 0.057261353104216
925 => 0.059635903542007
926 => 0.060103719892051
927 => 0.060572457984819
928 => 0.064652503061282
929 => 0.064448675539349
930 => 0.066291177069589
1001 => 0.066219580848267
1002 => 0.065694069565296
1003 => 0.063477023904855
1004 => 0.064360698790068
1005 => 0.061640884846951
1006 => 0.063678754382505
1007 => 0.062748755829945
1008 => 0.06336432093639
1009 => 0.062257479371733
1010 => 0.062870051193983
1011 => 0.060214656503488
1012 => 0.057735086303916
1013 => 0.05873293773539
1014 => 0.059817716359556
1015 => 0.0621697928132
1016 => 0.060768915481619
1017 => 0.061272723943092
1018 => 0.059585049933675
1019 => 0.056102896392
1020 => 0.056122605002885
1021 => 0.055586951543337
1022 => 0.055124068747602
1023 => 0.060929823094872
1024 => 0.060207785766395
1025 => 0.059057313781375
1026 => 0.060597266251263
1027 => 0.061004454126633
1028 => 0.061016046193007
1029 => 0.06213955576311
1030 => 0.062739173022075
1031 => 0.062844858162857
1101 => 0.064612724746447
1102 => 0.065205290306542
1103 => 0.067645983985556
1104 => 0.062688299686945
1105 => 0.062586199441309
1106 => 0.060618936540563
1107 => 0.059371267307713
1108 => 0.060704365520363
1109 => 0.061885308550718
1110 => 0.060655631732382
1111 => 0.060816201564962
1112 => 0.059165460904632
1113 => 0.059755523016133
1114 => 0.060263763996507
1115 => 0.059983143200169
1116 => 0.059563040285849
1117 => 0.061788484689526
1118 => 0.061662916394684
1119 => 0.063735301386133
1120 => 0.065350873684641
1121 => 0.068246268061658
1122 => 0.065224773088918
1123 => 0.065114657802756
1124 => 0.066191052388032
1125 => 0.065205125516139
1126 => 0.065828197266136
1127 => 0.068145881570082
1128 => 0.068194850587265
1129 => 0.067374556456431
1130 => 0.067324641484021
1201 => 0.067482187944882
1202 => 0.068404942487021
1203 => 0.068082503696615
1204 => 0.068455638028024
1205 => 0.068922248223088
1206 => 0.070852345828494
1207 => 0.071317685826842
1208 => 0.070187150881982
1209 => 0.07028922552944
1210 => 0.069866374426184
1211 => 0.069457905558747
1212 => 0.070376083920657
1213 => 0.072054072923888
1214 => 0.072043634241386
1215 => 0.07243289507469
1216 => 0.072675401349028
1217 => 0.071634386894128
1218 => 0.070956724763151
1219 => 0.071216583544929
1220 => 0.071632103395981
1221 => 0.07108183605747
1222 => 0.067685331135552
1223 => 0.068715613759287
1224 => 0.068544124352451
1225 => 0.068299902583293
1226 => 0.069335859728398
1227 => 0.069235939134519
1228 => 0.066242929416362
1229 => 0.066434532187723
1230 => 0.066254581415497
1231 => 0.066836039175022
]
'min_raw' => 0.055124068747602
'max_raw' => 0.12348471882578
'avg_raw' => 0.089304393786688
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.055124'
'max' => '$0.123484'
'avg' => '$0.0893043'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013442289894744
'max_diff' => -0.089733784675419
'year' => 2034
]
9 => [
'items' => [
101 => 0.065173724888943
102 => 0.065685041567483
103 => 0.066005734594968
104 => 0.066194625251836
105 => 0.06687702782798
106 => 0.06679695576193
107 => 0.066872050435928
108 => 0.067883873308748
109 => 0.073001326183793
110 => 0.073279857852759
111 => 0.071908266046601
112 => 0.072456189919709
113 => 0.071404295901121
114 => 0.072110439402877
115 => 0.072593564852678
116 => 0.070410413844708
117 => 0.070281141810549
118 => 0.069224906251167
119 => 0.069792467412539
120 => 0.068889436795704
121 => 0.069111008922405
122 => 0.068491473939838
123 => 0.069606513560275
124 => 0.070853301115563
125 => 0.071168288889161
126 => 0.070339691667587
127 => 0.069739732671949
128 => 0.068686402314389
129 => 0.07043811417401
130 => 0.070950368104214
131 => 0.070435423522187
201 => 0.07031609961077
202 => 0.070089981014249
203 => 0.070364071739954
204 => 0.070947578259298
205 => 0.070672407360449
206 => 0.070854162587026
207 => 0.07016149908849
208 => 0.071634731513229
209 => 0.073974579156407
210 => 0.073982102149184
211 => 0.073706929767061
212 => 0.073594335156968
213 => 0.073876678719882
214 => 0.074029838520424
215 => 0.074942885829935
216 => 0.07592262197045
217 => 0.080494623045865
218 => 0.079210823439047
219 => 0.083267374782716
220 => 0.086475580218292
221 => 0.0874375807506
222 => 0.086552585526499
223 => 0.083525064671354
224 => 0.083376520054649
225 => 0.087900914398572
226 => 0.086622565766025
227 => 0.086470510263855
228 => 0.084852896622593
301 => 0.085809106629926
302 => 0.085599969474568
303 => 0.085269836243495
304 => 0.08709421832732
305 => 0.090509298724527
306 => 0.089977026418201
307 => 0.08957970983293
308 => 0.087838784213394
309 => 0.088887210286169
310 => 0.088513885842933
311 => 0.090117924568623
312 => 0.089167727561332
313 => 0.086612881017843
314 => 0.087019748750778
315 => 0.086958251511449
316 => 0.088223860339096
317 => 0.087843955983378
318 => 0.086884069088748
319 => 0.090497626350996
320 => 0.090262982042047
321 => 0.09059565402498
322 => 0.090742106520089
323 => 0.092941615147598
324 => 0.093842683455863
325 => 0.09404724173726
326 => 0.094903186938987
327 => 0.094025945040893
328 => 0.097535538096145
329 => 0.099869212687455
330 => 0.10257989581506
331 => 0.10654093242742
401 => 0.10803031883531
402 => 0.10776127451171
403 => 0.11076448726452
404 => 0.11616119382365
405 => 0.10885210320505
406 => 0.11654859337429
407 => 0.11411197344696
408 => 0.10833479143219
409 => 0.10796280901894
410 => 0.1118751837538
411 => 0.12055245436363
412 => 0.11837889649266
413 => 0.12055600952565
414 => 0.1180162915285
415 => 0.11789017312351
416 => 0.12043266109129
417 => 0.12637332281179
418 => 0.12355113711075
419 => 0.11950484187999
420 => 0.12249256331106
421 => 0.1199043225069
422 => 0.11407229157216
423 => 0.11837723441392
424 => 0.11549864173334
425 => 0.11633876811194
426 => 0.12238914176816
427 => 0.12166114480254
428 => 0.12260324028675
429 => 0.12094046641604
430 => 0.11938717342543
501 => 0.1164878367094
502 => 0.11562948604335
503 => 0.11586670328723
504 => 0.11562936849027
505 => 0.11400721624393
506 => 0.11365691262078
507 => 0.1130730579017
508 => 0.11325401889284
509 => 0.11215620120826
510 => 0.11422800999977
511 => 0.11461255596819
512 => 0.11612024563213
513 => 0.11627677897461
514 => 0.12047567322807
515 => 0.11816299283282
516 => 0.11971453850917
517 => 0.11957575366016
518 => 0.10846000048439
519 => 0.10999165319689
520 => 0.11237442415845
521 => 0.11130098907004
522 => 0.10978340300015
523 => 0.1085578708809
524 => 0.10670106440315
525 => 0.10931448386378
526 => 0.11275085254833
527 => 0.11636393095532
528 => 0.12070480792305
529 => 0.11973597471723
530 => 0.11628278127986
531 => 0.1164376890149
601 => 0.11739526767898
602 => 0.1161551163038
603 => 0.11578937145263
604 => 0.11734501995282
605 => 0.11735573284907
606 => 0.11592878881464
607 => 0.11434300164836
608 => 0.11433635714223
609 => 0.11405418163288
610 => 0.11806648992475
611 => 0.12027285379516
612 => 0.12052580985717
613 => 0.12025582783674
614 => 0.1203597332012
615 => 0.11907589867892
616 => 0.12201036368755
617 => 0.12470331896798
618 => 0.12398154942623
619 => 0.12289951427755
620 => 0.12203762116376
621 => 0.12377851479998
622 => 0.12370099554678
623 => 0.12467979835289
624 => 0.12463539420377
625 => 0.1243062596347
626 => 0.12398156118066
627 => 0.1252689538487
628 => 0.1248982054352
629 => 0.12452688114701
630 => 0.12378213344013
701 => 0.12388335702245
702 => 0.1228015087024
703 => 0.12230099616753
704 => 0.11477448854063
705 => 0.11276315976699
706 => 0.11339596474355
707 => 0.11360430057261
708 => 0.11272896771273
709 => 0.11398397017923
710 => 0.11378837937421
711 => 0.11454930877977
712 => 0.11407391312289
713 => 0.11409342352647
714 => 0.11549146078833
715 => 0.11589731695312
716 => 0.11569089523205
717 => 0.11583546592976
718 => 0.1191670366392
719 => 0.11869339382195
720 => 0.11844178051534
721 => 0.11851147912083
722 => 0.11936276686677
723 => 0.11960108095704
724 => 0.11859132741051
725 => 0.11906753302037
726 => 0.12109515606767
727 => 0.1218047093807
728 => 0.12406926295097
729 => 0.12310724034509
730 => 0.12487307447355
731 => 0.13030064656723
801 => 0.13463656671508
802 => 0.13064907535764
803 => 0.13861144053306
804 => 0.14481128395557
805 => 0.14457332363864
806 => 0.14349223753296
807 => 0.13643388062779
808 => 0.12993867536949
809 => 0.13537219036904
810 => 0.13538604151619
811 => 0.13491929775898
812 => 0.13202039236889
813 => 0.13481842213515
814 => 0.13504051957704
815 => 0.13491620407006
816 => 0.13269362010432
817 => 0.12930014519082
818 => 0.12996322206608
819 => 0.13104935551417
820 => 0.12899307830577
821 => 0.12833597314345
822 => 0.12955765665957
823 => 0.13349417549637
824 => 0.13274999941297
825 => 0.13273056596798
826 => 0.13591446683252
827 => 0.13363548094232
828 => 0.12997158558895
829 => 0.12904640369138
830 => 0.12576263123221
831 => 0.12803074456615
901 => 0.1281123699272
902 => 0.12687014743375
903 => 0.13007238509801
904 => 0.13004287591419
905 => 0.13308292398623
906 => 0.13889435411005
907 => 0.13717562825933
908 => 0.13517693709178
909 => 0.13539425023939
910 => 0.13777763909409
911 => 0.13633658778506
912 => 0.13685479988315
913 => 0.13777685471801
914 => 0.13833315329322
915 => 0.13531420743536
916 => 0.13461034674302
917 => 0.13317049478803
918 => 0.13279486428909
919 => 0.13396759366293
920 => 0.13365862090606
921 => 0.12810550963167
922 => 0.12752517860628
923 => 0.1275429765303
924 => 0.12608370657372
925 => 0.123857969625
926 => 0.12970707343438
927 => 0.12923730854033
928 => 0.12871872445421
929 => 0.12878224804576
930 => 0.13132114576489
1001 => 0.12984845687039
1002 => 0.13376384166539
1003 => 0.13295895625878
1004 => 0.1321334285786
1005 => 0.13201931550701
1006 => 0.13170155778085
1007 => 0.13061184830541
1008 => 0.12929595863244
1009 => 0.12842709428993
1010 => 0.11846720585194
1011 => 0.12031570321202
1012 => 0.12244223092897
1013 => 0.12317629977533
1014 => 0.12192062421761
1015 => 0.13066143002987
1016 => 0.13225845948027
1017 => 0.12742095310335
1018 => 0.12651605317431
1019 => 0.13072075511856
1020 => 0.12818480584227
1021 => 0.12932674364611
1022 => 0.1268584987208
1023 => 0.13187378185215
1024 => 0.13183557379758
1025 => 0.12988451538418
1026 => 0.13153353659492
1027 => 0.13124697857913
1028 => 0.12904423843565
1029 => 0.13194361264365
1030 => 0.13194505069709
1031 => 0.13006719939385
1101 => 0.12787428018619
1102 => 0.1274822380263
1103 => 0.12718688692228
1104 => 0.12925410537987
1105 => 0.13110756698493
1106 => 0.13455639951983
1107 => 0.13542351796135
1108 => 0.13880793896593
1109 => 0.13679268104217
1110 => 0.13768601877781
1111 => 0.13865586326019
1112 => 0.13912084236989
1113 => 0.13836318386279
1114 => 0.14362058276616
1115 => 0.14406446831615
1116 => 0.14421329930146
1117 => 0.14244053397167
1118 => 0.14401516450542
1119 => 0.14327844702496
1120 => 0.1451951812431
1121 => 0.1454957496426
1122 => 0.14524117890126
1123 => 0.14533658405541
1124 => 0.1408503215601
1125 => 0.1406176851828
1126 => 0.13744567167116
1127 => 0.13873829062349
1128 => 0.13632180144895
1129 => 0.13708809505879
1130 => 0.1374258699805
1201 => 0.13724943552996
1202 => 0.13881137335963
1203 => 0.13748340712159
1204 => 0.13397868588155
1205 => 0.13047300978255
1206 => 0.13042899887479
1207 => 0.12950601623825
1208 => 0.12883886884473
1209 => 0.12896738510105
1210 => 0.12942029315095
1211 => 0.12881254500553
1212 => 0.12894223888596
1213 => 0.13109602144704
1214 => 0.13152794717959
1215 => 0.13006009477611
1216 => 0.12416645556603
1217 => 0.12272014172081
1218 => 0.12375972343111
1219 => 0.12326287033122
1220 => 0.099482756629883
1221 => 0.1050695416086
1222 => 0.10175006368354
1223 => 0.10327983183324
1224 => 0.099891504446395
1225 => 0.10150859187285
1226 => 0.10120997487176
1227 => 0.11019335979255
1228 => 0.11005309659326
1229 => 0.1101202331642
1230 => 0.10691562970984
1231 => 0.1120206500271
]
'min_raw' => 0.065173724888943
'max_raw' => 0.1454957496426
'avg_raw' => 0.10533473726577
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.065173'
'max' => '$0.145495'
'avg' => '$0.105334'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010049656141342
'max_diff' => 0.022011030816823
'year' => 2035
]
10 => [
'items' => [
101 => 0.11453556660597
102 => 0.11407012247956
103 => 0.11418726473858
104 => 0.11217437261778
105 => 0.11013972235989
106 => 0.10788298209346
107 => 0.11207572656696
108 => 0.11160956495404
109 => 0.11267877197442
110 => 0.11539806646905
111 => 0.11579849291297
112 => 0.11633667011434
113 => 0.11614377189771
114 => 0.12073939001134
115 => 0.12018283033492
116 => 0.12152397902196
117 => 0.11876513441952
118 => 0.11564323987994
119 => 0.11623660996949
120 => 0.11617946365828
121 => 0.11545192552716
122 => 0.11479513663281
123 => 0.11370176817285
124 => 0.11716134776827
125 => 0.11702089515463
126 => 0.11929465971115
127 => 0.11889274973962
128 => 0.11620869658564
129 => 0.11630455806913
130 => 0.11694927261501
131 => 0.11918063701953
201 => 0.11984305789766
202 => 0.119536198154
203 => 0.12026251240621
204 => 0.12083656157694
205 => 0.12033460414384
206 => 0.12744126286204
207 => 0.12449008268773
208 => 0.12592846737051
209 => 0.1262715136419
210 => 0.12539280783122
211 => 0.12558336765746
212 => 0.12587201386977
213 => 0.12762461714818
214 => 0.13222395527059
215 => 0.13426097081625
216 => 0.14038943258994
217 => 0.13409182503181
218 => 0.1337181510614
219 => 0.13482207208865
220 => 0.13842012791337
221 => 0.14133601421111
222 => 0.14230338191759
223 => 0.1424312355295
224 => 0.14424608165623
225 => 0.1452863176112
226 => 0.14402571160126
227 => 0.14295747999878
228 => 0.13913120699249
229 => 0.13957410851156
301 => 0.14262526077367
302 => 0.14693519305588
303 => 0.15063356332604
304 => 0.14933852295865
305 => 0.15921876680584
306 => 0.16019835262612
307 => 0.16006300553956
308 => 0.16229464782005
309 => 0.15786529235931
310 => 0.15597165708513
311 => 0.14318844379618
312 => 0.14678000530988
313 => 0.15200055089506
314 => 0.15130959211082
315 => 0.14751829236128
316 => 0.15063068728521
317 => 0.14960163218977
318 => 0.14878997374046
319 => 0.15250833844448
320 => 0.14841984371041
321 => 0.15195976503255
322 => 0.14741977932111
323 => 0.14934443859396
324 => 0.1482519089054
325 => 0.1489589095093
326 => 0.14482579842526
327 => 0.14705592484061
328 => 0.14473301783441
329 => 0.14473191647404
330 => 0.14468063817313
331 => 0.14741352796458
401 => 0.14750264740256
402 => 0.14548303771751
403 => 0.14519198040967
404 => 0.14626817182609
405 => 0.14500823353244
406 => 0.14559775073008
407 => 0.1450260894078
408 => 0.14489739640313
409 => 0.14387194864657
410 => 0.14343015755778
411 => 0.14360339522725
412 => 0.1430120457512
413 => 0.14265573630184
414 => 0.14460975925547
415 => 0.14356580361641
416 => 0.14444975808135
417 => 0.1434423804046
418 => 0.13995037048341
419 => 0.13794207865039
420 => 0.13134599561875
421 => 0.13321663658411
422 => 0.13445687347946
423 => 0.13404697519295
424 => 0.13492759532196
425 => 0.13498165824578
426 => 0.13469535966498
427 => 0.13436386258553
428 => 0.13420250814019
429 => 0.13540511198052
430 => 0.13610326398761
501 => 0.13458134784414
502 => 0.13422478418559
503 => 0.13576352543394
504 => 0.13670215670653
505 => 0.14363248265198
506 => 0.14311906172129
507 => 0.14440764750357
508 => 0.14426257251944
509 => 0.14561321570708
510 => 0.14782094649448
511 => 0.14333201251247
512 => 0.14411113623609
513 => 0.14392011309165
514 => 0.14600565369366
515 => 0.14601216452377
516 => 0.14476177875239
517 => 0.14543963316425
518 => 0.14506127342751
519 => 0.14574502061018
520 => 0.14311220467174
521 => 0.14631869028984
522 => 0.14813656101394
523 => 0.1481618021507
524 => 0.14902345844641
525 => 0.14989895114662
526 => 0.15157938314532
527 => 0.14985208481023
528 => 0.14674484325451
529 => 0.1469691760585
530 => 0.14514740147128
531 => 0.14517802583122
601 => 0.14501455059778
602 => 0.14550515207918
603 => 0.14321986410799
604 => 0.14375621662706
605 => 0.14300531995949
606 => 0.14410950393338
607 => 0.14292158450562
608 => 0.14392002097451
609 => 0.14435091305578
610 => 0.14594091411214
611 => 0.14268674005681
612 => 0.13605125886977
613 => 0.13744611746272
614 => 0.13538301203997
615 => 0.13557396030164
616 => 0.13595970617941
617 => 0.13470937758137
618 => 0.13494790087549
619 => 0.13493937914496
620 => 0.13486594347508
621 => 0.13454068471675
622 => 0.13406899516668
623 => 0.13594806115575
624 => 0.1362673510833
625 => 0.13697709304059
626 => 0.1390888036829
627 => 0.13887779399216
628 => 0.13922195955246
629 => 0.13847064806674
630 => 0.13560881148665
701 => 0.13576422298166
702 => 0.13382623914858
703 => 0.13692753443679
704 => 0.13619310677745
705 => 0.13571961648773
706 => 0.13559042027533
707 => 0.13770736543987
708 => 0.13834078861215
709 => 0.13794608179863
710 => 0.13713652660867
711 => 0.1386911118969
712 => 0.13910705333735
713 => 0.13920016728653
714 => 0.14195459435512
715 => 0.1393541091618
716 => 0.13998007179443
717 => 0.14486365356531
718 => 0.14043491878734
719 => 0.1427809183718
720 => 0.14266609390014
721 => 0.14386622790325
722 => 0.1425676478826
723 => 0.14258374533829
724 => 0.14364938302893
725 => 0.14215288708119
726 => 0.14178233363926
727 => 0.14127041671319
728 => 0.14238816859316
729 => 0.14305821029364
730 => 0.14845825430807
731 => 0.15194692901332
801 => 0.15179547644364
802 => 0.15317946942318
803 => 0.15255596790997
804 => 0.15054251705244
805 => 0.15397923215207
806 => 0.15289171169628
807 => 0.15298136556132
808 => 0.15297802863999
809 => 0.1537011346704
810 => 0.15318874777616
811 => 0.15217878061217
812 => 0.15284924394882
813 => 0.15484028036364
814 => 0.16102051848769
815 => 0.16447906161917
816 => 0.1608123098485
817 => 0.16334158612014
818 => 0.16182492163044
819 => 0.1615492985758
820 => 0.16313787098644
821 => 0.1647292239828
822 => 0.16462786167654
823 => 0.16347262111807
824 => 0.16282005503973
825 => 0.16776150401058
826 => 0.17140227943691
827 => 0.1711540029609
828 => 0.17224981458217
829 => 0.17546715139437
830 => 0.1757613043515
831 => 0.17572424783993
901 => 0.174995159044
902 => 0.17816304495959
903 => 0.18080575112404
904 => 0.17482639605314
905 => 0.17710325618863
906 => 0.17812541205931
907 => 0.17962624013744
908 => 0.18215838867323
909 => 0.18490897360234
910 => 0.18529793646994
911 => 0.18502194870179
912 => 0.18320786400136
913 => 0.18621758685209
914 => 0.18798061191136
915 => 0.18903045298804
916 => 0.19169267528162
917 => 0.17813172454598
918 => 0.16853260959231
919 => 0.16703356917939
920 => 0.17008192680591
921 => 0.17088575440183
922 => 0.17056173250583
923 => 0.15975705591212
924 => 0.16697668479321
925 => 0.17474439842562
926 => 0.17504278794125
927 => 0.17893146780086
928 => 0.18019778136553
929 => 0.18332867835344
930 => 0.1831328398944
1001 => 0.1838951634875
1002 => 0.18371991849505
1003 => 0.18951924587701
1004 => 0.19591676518777
1005 => 0.1956952394369
1006 => 0.19477552034397
1007 => 0.19614146003239
1008 => 0.20274438556092
1009 => 0.20213649398798
1010 => 0.20272700887101
1011 => 0.21051223019373
1012 => 0.22063412534808
1013 => 0.21593148882723
1014 => 0.22613485693028
1015 => 0.23255733629384
1016 => 0.24366435025637
1017 => 0.24227369740507
1018 => 0.24659757643364
1019 => 0.23978413856322
1020 => 0.22413910798974
1021 => 0.22166322201472
1022 => 0.22662000843614
1023 => 0.23880578417704
1024 => 0.22623623499256
1025 => 0.22877903842197
1026 => 0.22804671086323
1027 => 0.22800768823982
1028 => 0.22949702305902
1029 => 0.22733666522529
1030 => 0.21853497876974
1031 => 0.22256873980365
1101 => 0.22101111095134
1102 => 0.2227394162919
1103 => 0.23206636740757
1104 => 0.22794269999259
1105 => 0.22359875135045
1106 => 0.22904702694707
1107 => 0.23598455401219
1108 => 0.23555041603639
1109 => 0.23470800690774
1110 => 0.23945662305882
1111 => 0.24729994572643
1112 => 0.24941996432646
1113 => 0.25098491871513
1114 => 0.25120069948521
1115 => 0.253423375524
1116 => 0.24147148627694
1117 => 0.26043944145831
1118 => 0.26371468333894
1119 => 0.26309907361025
1120 => 0.26673936711733
1121 => 0.26566830042221
1122 => 0.26411649282621
1123 => 0.26988713234756
1124 => 0.26327155980293
1125 => 0.25388158745324
1126 => 0.24873006290961
1127 => 0.25551400599029
1128 => 0.25965672330268
1129 => 0.26239479591986
1130 => 0.26322333503943
1201 => 0.24239927741652
1202 => 0.23117626531295
1203 => 0.23837008739925
1204 => 0.2471470468356
1205 => 0.24142272982411
1206 => 0.24164711221339
1207 => 0.23348574047906
1208 => 0.24786914713973
1209 => 0.24577360577276
1210 => 0.25664527809154
1211 => 0.25405066624204
1212 => 0.26291609298212
1213 => 0.26058152900865
1214 => 0.2702721735388
1215 => 0.2741380340056
1216 => 0.2806294154025
1217 => 0.28540450198274
1218 => 0.2882085241555
1219 => 0.28804018118187
1220 => 0.29915111398867
1221 => 0.29259938509892
1222 => 0.28436886948947
1223 => 0.28422000542904
1224 => 0.28848270609048
1225 => 0.29741615726206
1226 => 0.29973247117442
1227 => 0.30102697465407
1228 => 0.29904439751299
1229 => 0.29193296536982
1230 => 0.28886228502617
1231 => 0.29147859364513
]
'min_raw' => 0.10788298209346
'max_raw' => 0.30102697465407
'avg_raw' => 0.20445497837377
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.107882'
'max' => '$0.301026'
'avg' => '$0.204454'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.042709257204521
'max_diff' => 0.15553122501147
'year' => 2036
]
11 => [
'items' => [
101 => 0.28827907302611
102 => 0.29380234324147
103 => 0.30138697295402
104 => 0.29982077691126
105 => 0.30505633546499
106 => 0.31047458777128
107 => 0.31822293191822
108 => 0.32024863599858
109 => 0.32359704781279
110 => 0.32704366346559
111 => 0.32815062352438
112 => 0.33026415374613
113 => 0.33025301439859
114 => 0.33662227997884
115 => 0.34364777715359
116 => 0.34629973969642
117 => 0.3523977813336
118 => 0.3419550987308
119 => 0.34987599344191
120 => 0.35702083874419
121 => 0.34850245962742
122 => 0.36024306071211
123 => 0.36069892164746
124 => 0.36758188054813
125 => 0.36060468308692
126 => 0.35646164550646
127 => 0.36842243976366
128 => 0.37420989134323
129 => 0.37246666382762
130 => 0.35920061636008
131 => 0.35147920772642
201 => 0.33127079198367
202 => 0.35520853336956
203 => 0.36686790892514
204 => 0.35917042139409
205 => 0.36305258636864
206 => 0.38423241967357
207 => 0.39229632890344
208 => 0.39061909215461
209 => 0.39090251755549
210 => 0.39525365660562
211 => 0.41454900336994
212 => 0.40298678432612
213 => 0.41182566755704
214 => 0.41651377935175
215 => 0.42086835885799
216 => 0.41017488786966
217 => 0.39626283923212
218 => 0.39185630944054
219 => 0.35840505796002
220 => 0.35666377504904
221 => 0.35568634018483
222 => 0.34952375162691
223 => 0.34468164509546
224 => 0.34083102220576
225 => 0.33072583784985
226 => 0.33413604092917
227 => 0.31803048618175
228 => 0.32833424936334
301 => 0.30262939510422
302 => 0.32403716155508
303 => 0.31238588756758
304 => 0.32020940469018
305 => 0.32018210917596
306 => 0.30577653370489
307 => 0.29746769840987
308 => 0.30276241164457
309 => 0.30843876452702
310 => 0.30935973368465
311 => 0.31671927336472
312 => 0.31877316269665
313 => 0.31254978213398
314 => 0.3020967191342
315 => 0.30452472726007
316 => 0.2974184949027
317 => 0.28496509603369
318 => 0.2939093445169
319 => 0.29696330419991
320 => 0.29831210677617
321 => 0.28606561927102
322 => 0.28221750701273
323 => 0.2801688043352
324 => 0.30051585138209
325 => 0.30163050855018
326 => 0.29592776488159
327 => 0.32170470701997
328 => 0.3158705911287
329 => 0.32238872797234
330 => 0.30430441097182
331 => 0.304995256235
401 => 0.29643385075292
402 => 0.30122766574957
403 => 0.29783955182181
404 => 0.30084037287124
405 => 0.30263905263542
406 => 0.31119905327511
407 => 0.32413490301227
408 => 0.3099204746304
409 => 0.30372704463006
410 => 0.3075694137691
411 => 0.31780214912785
412 => 0.33330526700044
413 => 0.32412710919054
414 => 0.32820021977134
415 => 0.32909001323317
416 => 0.32232237945803
417 => 0.33355479931098
418 => 0.33957434436219
419 => 0.34574915201539
420 => 0.35111056448649
421 => 0.34328279805177
422 => 0.35165963020316
423 => 0.34490938219908
424 => 0.3388537119116
425 => 0.33886289586375
426 => 0.33506408543319
427 => 0.32770341154306
428 => 0.32634599034472
429 => 0.33340746684188
430 => 0.33907010226828
501 => 0.3395365040442
502 => 0.34267162997297
503 => 0.34452696520325
504 => 0.36271177266595
505 => 0.37002585266006
506 => 0.37896937122842
507 => 0.38245337573988
508 => 0.39293898023463
509 => 0.38447100300596
510 => 0.38263890286646
511 => 0.35720425617728
512 => 0.36136917814776
513 => 0.36803762007769
514 => 0.35731421632856
515 => 0.36411574782008
516 => 0.36545851421264
517 => 0.35694983917253
518 => 0.3614946901496
519 => 0.3494249134089
520 => 0.32439799116232
521 => 0.33358266142976
522 => 0.34034567027318
523 => 0.33069402278065
524 => 0.34799422734068
525 => 0.33788780498542
526 => 0.33468455429263
527 => 0.32218753129873
528 => 0.32808564509732
529 => 0.33606292846277
530 => 0.33113389480165
531 => 0.3413623797466
601 => 0.35584864226594
602 => 0.36617241560907
603 => 0.36696494673555
604 => 0.36032745211502
605 => 0.37096407960435
606 => 0.37104155582334
607 => 0.35904339656347
608 => 0.35169459082283
609 => 0.35002492669654
610 => 0.35419607504095
611 => 0.35926061916753
612 => 0.36724599368714
613 => 0.37207138826732
614 => 0.38465345814088
615 => 0.38805780549246
616 => 0.39179815109821
617 => 0.39679640630736
618 => 0.40279809321228
619 => 0.38966674394055
620 => 0.39018847692701
621 => 0.37796074630107
622 => 0.36489366249331
623 => 0.37480995026841
624 => 0.38777417742587
625 => 0.38480016939175
626 => 0.38446553273444
627 => 0.38502829877157
628 => 0.38278599383587
629 => 0.37264413171537
630 => 0.36755095204988
701 => 0.37412245322708
702 => 0.37761491363889
703 => 0.38303141516306
704 => 0.38236371702173
705 => 0.39631604325819
706 => 0.40173749533723
707 => 0.4003504558984
708 => 0.40060570453611
709 => 0.41042098456292
710 => 0.42133759461902
711 => 0.43156244051013
712 => 0.44196359291792
713 => 0.42942459772644
714 => 0.42305806926592
715 => 0.42962670153128
716 => 0.42614129279109
717 => 0.44616948525163
718 => 0.44755619384304
719 => 0.46758293803731
720 => 0.486590703018
721 => 0.47465226639311
722 => 0.48590967441139
723 => 0.4980854790131
724 => 0.5215745815429
725 => 0.51366427816745
726 => 0.50760510975212
727 => 0.50187922487732
728 => 0.51379388234316
729 => 0.52912189883166
730 => 0.53242340677336
731 => 0.53777311091203
801 => 0.53214855114092
802 => 0.53892271386028
803 => 0.56283848497757
804 => 0.55637623251133
805 => 0.54719879515034
806 => 0.56607799955237
807 => 0.57291031023441
808 => 0.62086304470988
809 => 0.68140535281381
810 => 0.65634043971655
811 => 0.6407818393174
812 => 0.64443847946613
813 => 0.66654648089923
814 => 0.67364686928665
815 => 0.65434556599899
816 => 0.66116311262097
817 => 0.6987284647945
818 => 0.71888107099481
819 => 0.69151112491869
820 => 0.61599852920246
821 => 0.5463724673285
822 => 0.5648404342399
823 => 0.56274673991989
824 => 0.60310602445722
825 => 0.55622210992722
826 => 0.5570115148074
827 => 0.59820538660775
828 => 0.58721556785317
829 => 0.56941346894039
830 => 0.54650244235155
831 => 0.50414929068862
901 => 0.46663592315576
902 => 0.54020827570029
903 => 0.53703570207593
904 => 0.53244134531878
905 => 0.54266558912049
906 => 0.59231161481931
907 => 0.59116711323845
908 => 0.58388637811085
909 => 0.58940875153568
910 => 0.56844537017873
911 => 0.57384811088174
912 => 0.54636143820457
913 => 0.5587865621995
914 => 0.56937527363145
915 => 0.57150111421996
916 => 0.576290741614
917 => 0.53536389993875
918 => 0.553738850302
919 => 0.56453241214039
920 => 0.51576670708139
921 => 0.56356847094507
922 => 0.53465145467919
923 => 0.52483658503954
924 => 0.53805101399858
925 => 0.53290133818179
926 => 0.52847394931362
927 => 0.52600339025299
928 => 0.5357066084572
929 => 0.53525394173012
930 => 0.51937759343453
1001 => 0.49866754428568
1002 => 0.50561851656422
1003 => 0.50309316316971
1004 => 0.49394095669094
1005 => 0.50010843881601
1006 => 0.4729499688285
1007 => 0.42622523278941
1008 => 0.4570930246342
1009 => 0.45590464822587
1010 => 0.45530541495222
1011 => 0.47850170740047
1012 => 0.47627191911109
1013 => 0.47222483153172
1014 => 0.49386662875378
1015 => 0.48596708164448
1016 => 0.51031162446798
1017 => 0.52634651487784
1018 => 0.52227954799554
1019 => 0.53736043992937
1020 => 0.50577865292653
1021 => 0.5162688557275
1022 => 0.51843087198599
1023 => 0.49359957233543
1024 => 0.47663674005149
1025 => 0.4755055125286
1026 => 0.44609429897052
1027 => 0.46180553185422
1028 => 0.47563076661689
1029 => 0.46900955204713
1030 => 0.4669134733175
1031 => 0.47762188496316
1101 => 0.47845402025937
1102 => 0.45948124732002
1103 => 0.46342628760369
1104 => 0.47987776139497
1105 => 0.46301175267428
1106 => 0.43024385277685
1107 => 0.42211696055063
1108 => 0.42103268331931
1109 => 0.39899190704985
1110 => 0.42266003834944
1111 => 0.41232826477068
1112 => 0.44496621371231
1113 => 0.42632359231768
1114 => 0.4255199461699
1115 => 0.42430511714826
1116 => 0.40533371052013
1117 => 0.4094872428759
1118 => 0.42329421702732
1119 => 0.42822070095125
1120 => 0.42770682831649
1121 => 0.42322655532161
1122 => 0.42527760135596
1123 => 0.41867046744752
1124 => 0.41633735094886
1125 => 0.40897339350481
1126 => 0.39815041040722
1127 => 0.39965541258815
1128 => 0.37821225108425
1129 => 0.36652887862221
1130 => 0.36329507510909
1201 => 0.3589706979014
1202 => 0.36378352502143
1203 => 0.3781515053019
1204 => 0.36082067274659
1205 => 0.33110817594707
1206 => 0.33289394763235
1207 => 0.33690604640881
1208 => 0.32942952688157
1209 => 0.32235362860576
1210 => 0.32850554807081
1211 => 0.31591597148392
1212 => 0.33842743659192
1213 => 0.3378185645484
1214 => 0.346209446641
1215 => 0.35145643741174
1216 => 0.33936382241862
1217 => 0.33632256244977
1218 => 0.33805500234559
1219 => 0.30942162992521
1220 => 0.34386948923964
1221 => 0.34416739575747
1222 => 0.34161653928752
1223 => 0.35995896091412
1224 => 0.39866719169101
1225 => 0.38410359823777
1226 => 0.37846413466573
1227 => 0.36774351029286
1228 => 0.38202810574202
1229 => 0.38093127168592
1230 => 0.37597097212231
1231 => 0.37297096746916
]
'min_raw' => 0.2801688043352
'max_raw' => 0.71888107099481
'avg_raw' => 0.49952493766501
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.280168'
'max' => '$0.718881'
'avg' => '$0.499524'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17228582224174
'max_diff' => 0.41785409634074
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0087941786263601
]
1 => [
'year' => 2028
'avg' => 0.015093363491131
]
2 => [
'year' => 2029
'avg' => 0.041232348743672
]
3 => [
'year' => 2030
'avg' => 0.031810695650687
]
4 => [
'year' => 2031
'avg' => 0.031242045385086
]
5 => [
'year' => 2032
'avg' => 0.054777137793591
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0087941786263601
'min' => '$0.008794'
'max_raw' => 0.054777137793591
'max' => '$0.054777'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.054777137793591
]
1 => [
'year' => 2033
'avg' => 0.14089243107177
]
2 => [
'year' => 2034
'avg' => 0.089304393786688
]
3 => [
'year' => 2035
'avg' => 0.10533473726577
]
4 => [
'year' => 2036
'avg' => 0.20445497837377
]
5 => [
'year' => 2037
'avg' => 0.49952493766501
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.054777137793591
'min' => '$0.054777'
'max_raw' => 0.49952493766501
'max' => '$0.499524'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.49952493766501
]
]
]
]
'prediction_2025_max_price' => '$0.015036'
'last_price' => 0.01457973
'sma_50day_nextmonth' => '$0.018074'
'sma_200day_nextmonth' => '$0.01768'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.014191'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.020577'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.026019'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.025119'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.020495'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.017853'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.0162074'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.018924'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.02244'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.023784'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.021774'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.019247'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.016554'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.020927'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.018131'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.019738'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.019874'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019068'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01071'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.005355'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.002677'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '33.89'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -28.45
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.02
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0206042'
'vwma_10_action' => 'SELL'
'hma_9' => '0.012594'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 7.01
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -146.58
'cci_20_action' => 'BUY'
'adx_14' => 32.46
'adx_14_action' => 'BUY'
'ao_5_34' => '-0.003919'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -92.99
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 21.62
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.002416'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767703816
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de WOLF para 2026
La previsión del precio de WOLF para 2026 sugiere que el precio medio podría oscilar entre $0.005037 en el extremo inferior y $0.015036 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, WOLF podría potencialmente ganar 3.13% para 2026 si WOLF alcanza el objetivo de precio previsto.
Predicción de precio de WOLF 2027-2032
La predicción del precio de WOLF para 2027-2032 está actualmente dentro de un rango de precios de $0.008794 en el extremo inferior y $0.054777 en el extremo superior. Considerando la volatilidad de precios en el mercado, si WOLF alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de WOLF | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004849 | $0.008794 | $0.012739 |
| 2028 | $0.008751 | $0.015093 | $0.021435 |
| 2029 | $0.019224 | $0.041232 | $0.06324 |
| 2030 | $0.016349 | $0.03181 | $0.047271 |
| 2031 | $0.01933 | $0.031242 | $0.043153 |
| 2032 | $0.0295063 | $0.054777 | $0.080047 |
Predicción de precio de WOLF 2032-2037
La predicción de precio de WOLF para 2032-2037 se estima actualmente entre $0.054777 en el extremo inferior y $0.499524 en el extremo superior. Comparado con el precio actual, WOLF podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de WOLF | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0295063 | $0.054777 | $0.080047 |
| 2033 | $0.068566 | $0.140892 | $0.213218 |
| 2034 | $0.055124 | $0.0893043 | $0.123484 |
| 2035 | $0.065173 | $0.105334 | $0.145495 |
| 2036 | $0.107882 | $0.204454 | $0.301026 |
| 2037 | $0.280168 | $0.499524 | $0.718881 |
WOLF Histograma de precios potenciales
Pronóstico de precio de WOLF basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para WOLF es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de WOLF se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de WOLF
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de WOLF aumentar durante el próximo mes, alcanzando $0.01768 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para WOLF alcance $0.018074 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 33.89, lo que sugiere que el mercado de WOLF está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de WOLF para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.014191 | BUY |
| SMA 5 | $0.020577 | SELL |
| SMA 10 | $0.026019 | SELL |
| SMA 21 | $0.025119 | SELL |
| SMA 50 | $0.020495 | SELL |
| SMA 100 | $0.017853 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0162074 | SELL |
| EMA 5 | $0.018924 | SELL |
| EMA 10 | $0.02244 | SELL |
| EMA 21 | $0.023784 | SELL |
| EMA 50 | $0.021774 | SELL |
| EMA 100 | $0.019247 | SELL |
| EMA 200 | $0.016554 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.020927 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019068 | SELL |
| EMA 50 | $0.01071 | BUY |
| EMA 100 | $0.005355 | BUY |
| EMA 200 | $0.002677 | BUY |
Osciladores de WOLF
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 33.89 | NEUTRAL |
| Stoch RSI (14) | -28.45 | BUY |
| Estocástico Rápido (14) | 7.01 | BUY |
| Índice de Canal de Materias Primas (20) | -146.58 | BUY |
| Índice Direccional Medio (14) | 32.46 | BUY |
| Oscilador Asombroso (5, 34) | -0.003919 | SELL |
| Momentum (10) | -0.02 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -92.99 | BUY |
| Oscilador Ultimate (7, 14, 28) | 21.62 | BUY |
| VWMA (10) | 0.0206042 | SELL |
| Promedio Móvil de Hull (9) | 0.012594 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.002416 | NEUTRAL |
Predicción de precios de WOLF basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de WOLF
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de WOLF por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.020486 | $0.028787 | $0.040451 | $0.05684 | $0.079871 | $0.112232 |
| Amazon.com acción | $0.030421 | $0.063476 | $0.132446 | $0.276358 | $0.576638 | $1.20 |
| Apple acción | $0.02068 | $0.029333 | $0.041607 | $0.059016 | $0.08371 | $0.118736 |
| Netflix acción | $0.0230045 | $0.036297 | $0.057271 | $0.090365 | $0.142583 | $0.224974 |
| Google acción | $0.01888 | $0.02445 | $0.031663 | $0.0410036 | $0.053099 | $0.068763 |
| Tesla acción | $0.033051 | $0.074924 | $0.169848 | $0.385032 | $0.87284 | $1.97 |
| Kodak acción | $0.010933 | $0.008198 | $0.006148 | $0.00461 | $0.003457 | $0.002592 |
| Nokia acción | $0.009658 | $0.006398 | $0.004238 | $0.0028079 | $0.00186 | $0.001232 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de WOLF
Podría preguntarse cosas como: "¿Debo invertir en WOLF ahora?", "¿Debería comprar WOLF hoy?", "¿Será WOLF una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de WOLF regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como WOLF, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de WOLF a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de WOLF es de $0.01457 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de WOLF basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si WOLF ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.014958 | $0.015347 | $0.015746 | $0.016155 |
| Si WOLF ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.015337 | $0.016135 | $0.016973 | $0.017856 |
| Si WOLF ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.016474 | $0.018615 | $0.021035 | $0.023769 |
| Si WOLF ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.018369 | $0.023144 | $0.02916 | $0.036739 |
| Si WOLF ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.022159 | $0.033678 | $0.051187 | $0.077798 |
| Si WOLF ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.033528 | $0.077104 | $0.177313 | $0.407759 |
| Si WOLF ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.052477 | $0.188882 | $0.679847 | $2.44 |
Cuadro de preguntas
¿Es WOLF una buena inversión?
La decisión de adquirir WOLF depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de WOLF ha experimentado un aumento de 9.2062% durante las últimas 24 horas, y WOLF ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en WOLF dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede WOLF subir?
Parece que el valor medio de WOLF podría potencialmente aumentar hasta $0.015036 para el final de este año. Mirando las perspectivas de WOLF en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.047271. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de WOLF la próxima semana?
Basado en nuestro nuevo pronóstico experimental de WOLF, el precio de WOLF aumentará en un 0.86% durante la próxima semana y alcanzará $0.014704 para el 13 de enero de 2026.
¿Cuál será el precio de WOLF el próximo mes?
Basado en nuestro nuevo pronóstico experimental de WOLF, el precio de WOLF disminuirá en un -11.62% durante el próximo mes y alcanzará $0.012885 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de WOLF este año en 2026?
Según nuestra predicción más reciente sobre el valor de WOLF en 2026, se anticipa que WOLF fluctúe dentro del rango de $0.005037 y $0.015036. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de WOLF no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará WOLF en 5 años?
El futuro de WOLF parece estar en una tendencia alcista, con un precio máximo de $0.047271 proyectada después de un período de cinco años. Basado en el pronóstico de WOLF para 2030, el valor de WOLF podría potencialmente alcanzar su punto más alto de aproximadamente $0.047271, mientras que su punto más bajo se anticipa que esté alrededor de $0.016349.
¿Cuánto será WOLF en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de WOLF, se espera que el valor de WOLF en 2026 crezca en un 3.13% hasta $0.015036 si ocurre lo mejor. El precio estará entre $0.015036 y $0.005037 durante 2026.
¿Cuánto será WOLF en 2027?
Según nuestra última simulación experimental para la predicción de precios de WOLF, el valor de WOLF podría disminuir en un -12.62% hasta $0.012739 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.012739 y $0.004849 a lo largo del año.
¿Cuánto será WOLF en 2028?
Nuestro nuevo modelo experimental de predicción de precios de WOLF sugiere que el valor de WOLF en 2028 podría aumentar en un 47.02% , alcanzando $0.021435 en el mejor escenario. Se espera que el precio oscile entre $0.021435 y $0.008751 durante el año.
¿Cuánto será WOLF en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de WOLF podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.06324 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.06324 y $0.019224.
¿Cuánto será WOLF en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de WOLF, se espera que el valor de WOLF en 2030 aumente en un 224.23% , alcanzando $0.047271 en el mejor escenario. Se pronostica que el precio oscile entre $0.047271 y $0.016349 durante el transcurso de 2030.
¿Cuánto será WOLF en 2031?
Nuestra simulación experimental indica que el precio de WOLF podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.043153 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.043153 y $0.01933 durante el año.
¿Cuánto será WOLF en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de WOLF, WOLF podría experimentar un 449.04% aumento en valor, alcanzando $0.080047 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.080047 y $0.0295063 a lo largo del año.
¿Cuánto será WOLF en 2033?
Según nuestra predicción experimental de precios de WOLF, se anticipa que el valor de WOLF aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.213218. A lo largo del año, el precio de WOLF podría oscilar entre $0.213218 y $0.068566.
¿Cuánto será WOLF en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de WOLF sugieren que WOLF podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.123484 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.123484 y $0.055124.
¿Cuánto será WOLF en 2035?
Basado en nuestra predicción experimental para el precio de WOLF, WOLF podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.145495 en 2035. El rango de precios esperado para el año está entre $0.145495 y $0.065173.
¿Cuánto será WOLF en 2036?
Nuestra reciente simulación de predicción de precios de WOLF sugiere que el valor de WOLF podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.301026 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.301026 y $0.107882.
¿Cuánto será WOLF en 2037?
Según la simulación experimental, el valor de WOLF podría aumentar en un 4830.69% en 2037, con un máximo de $0.718881 bajo condiciones favorables. Se espera que el precio caiga entre $0.718881 y $0.280168 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de WOLF?
Los traders de WOLF utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de WOLF
Las medias móviles son herramientas populares para la predicción de precios de WOLF. Una media móvil simple (SMA) calcula el precio de cierre promedio de WOLF durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de WOLF por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de WOLF.
¿Cómo leer gráficos de WOLF y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de WOLF en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de WOLF dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de WOLF?
La acción del precio de WOLF está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de WOLF. La capitalización de mercado de WOLF puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de WOLF, grandes poseedores de WOLF, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de WOLF.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


