Predicción del precio de WELL - Pronóstico de WELL
Predicción de precio de WELL hasta $0.002519 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000844 | $0.002519 |
| 2027 | $0.000812 | $0.002134 |
| 2028 | $0.001466 | $0.003591 |
| 2029 | $0.003221 | $0.010596 |
| 2030 | $0.002739 | $0.00792 |
| 2031 | $0.003239 | $0.00723 |
| 2032 | $0.004944 | $0.013412 |
| 2033 | $0.011489 | $0.035727 |
| 2034 | $0.009236 | $0.020691 |
| 2035 | $0.01092 | $0.024379 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en WELL hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,959.03, equivalente a un ROI del 39.59% en los próximos 90 días.
Predicción del precio a largo plazo de WELL para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'WELL'
'name_with_ticker' => 'WELL <small>WELL</small>'
'name_lang' => 'WELL'
'name_lang_with_ticker' => 'WELL <small>WELL</small>'
'name_with_lang' => 'WELL'
'name_with_lang_with_ticker' => 'WELL <small>WELL</small>'
'image' => '/uploads/coins/well.png?ts=1572415328'
'price_for_sd' => 0.0024
'ticker' => 'WELL'
'marketcap' => '$177.89K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '72.38M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.1 USD 0.02x'
'price' => '$0.002443'
'change_24h_pct' => '0%'
'ath_price' => '$0.06465'
'ath_days' => 2620
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 nov. 2018'
'ath_pct' => '3.78%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.120456'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002463'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002159'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000844'
'current_year_max_price_prediction' => '$0.002519'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002739'
'grand_prediction_max_price' => '$0.00792'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.002489293564982
107 => 0.0024985876835401
108 => 0.0025195278072209
109 => 0.0023405967430609
110 => 0.0024209315377287
111 => 0.0024681207032437
112 => 0.0022549183366904
113 => 0.0024639063779548
114 => 0.0023374819513196
115 => 0.0022945716020884
116 => 0.0023523447343196
117 => 0.0023298304885029
118 => 0.0023104740620306
119 => 0.0022996728434734
120 => 0.002342095055596
121 => 0.002340116008695
122 => 0.0022707050358658
123 => 0.0021801612513634
124 => 0.0022105507174408
125 => 0.0021995099395121
126 => 0.0021594967360098
127 => 0.0021864608039578
128 => 0.0020677246949176
129 => 0.0018634453906799
130 => 0.0019983985563036
131 => 0.0019932030062279
201 => 0.0019905831742803
202 => 0.002091996748415
203 => 0.0020822481732712
204 => 0.0020645544139268
205 => 0.0021591717762439
206 => 0.002124635166215
207 => 0.0022310688604752
208 => 0.0023011729752146
209 => 0.0022833923040862
210 => 0.0023493255628412
211 => 0.0022112508293611
212 => 0.0022571137172264
213 => 0.0022665659948522
214 => 0.0021580042126799
215 => 0.0020838431607274
216 => 0.00207889746406
217 => 0.0019503124199968
218 => 0.0020190015126332
219 => 0.0020794450716054
220 => 0.0020504972974673
221 => 0.0020413332969654
222 => 0.0020881501881006
223 => 0.0020917882615014
224 => 0.0020088398024182
225 => 0.0020260874136977
226 => 0.0020980128199099
227 => 0.0020242750780027
228 => 0.0018810146904689
301 => 0.0018454841336306
302 => 0.0018407437023903
303 => 0.0017443820142811
304 => 0.0018478584553345
305 => 0.0018026882158185
306 => 0.0019453804612271
307 => 0.0018638754159236
308 => 0.0018603618963226
309 => 0.0018550506961245
310 => 0.0017721082105177
311 => 0.0017902673435956
312 => 0.0018506310676608
313 => 0.0018721695244532
314 => 0.0018699228869504
315 => 0.0018503352524815
316 => 0.0018593023712365
317 => 0.0018304161573755
318 => 0.0018202158340467
319 => 0.0017880208078009
320 => 0.0017407030133226
321 => 0.0017472828428617
322 => 0.0016535339106257
323 => 0.0016024545167111
324 => 0.0015883164136911
325 => 0.0015694103514609
326 => 0.0015904519037272
327 => 0.0016532683316796
328 => 0.0015774983923204
329 => 0.0014475961459322
330 => 0.0014554034922828
331 => 0.0014729442815106
401 => 0.0014402571368285
402 => 0.0014093214976109
403 => 0.0014362175260228
404 => 0.0013811762317571
405 => 0.0014795957589597
406 => 0.0014769337865664
407 => 0.0015136185000848
408 => 0.001536558204294
409 => 0.0014836896129093
410 => 0.0014703933051479
411 => 0.0014779674863323
412 => 0.0013527831430517
413 => 0.0015033882685112
414 => 0.0015046907078902
415 => 0.0014935384311934
416 => 0.001573731011089
417 => 0.0017429623673617
418 => 0.0016792907238164
419 => 0.00165463513895
420 => 0.001607764854096
421 => 0.0016702167257819
422 => 0.0016654213964373
423 => 0.0016437350985668
424 => 0.0016306191579493
425 => 0.0016547856806937
426 => 0.0016276246583422
427 => 0.0016227457923929
428 => 0.0015931851729986
429 => 0.0015826333767974
430 => 0.0015748212469691
501 => 0.0015662208596321
502 => 0.0015851911710144
503 => 0.0015422019496698
504 => 0.0014903611630135
505 => 0.0014860511625281
506 => 0.0014979514528074
507 => 0.0014926864602312
508 => 0.0014860259557693
509 => 0.0014733092388709
510 => 0.0014695364606168
511 => 0.0014817961596508
512 => 0.0014679556742263
513 => 0.0014883780644004
514 => 0.0014828243042954
515 => 0.0014518014518121
516 => 0.0014131354914869
517 => 0.0014127912833354
518 => 0.0014044607656082
519 => 0.0013938505987809
520 => 0.0013908990930973
521 => 0.0014339524175291
522 => 0.0015230715106254
523 => 0.0015055753002114
524 => 0.0015182181053193
525 => 0.0015804081934058
526 => 0.0016001765522873
527 => 0.0015861454393924
528 => 0.0015669387866606
529 => 0.0015677837819054
530 => 0.0016334187285392
531 => 0.0016375122996513
601 => 0.0016478554332154
602 => 0.0016611492828145
603 => 0.0015884094394634
604 => 0.0015643577418249
605 => 0.0015529607131464
606 => 0.0015178622760219
607 => 0.0015557129313481
608 => 0.0015336589754162
609 => 0.0015366348075418
610 => 0.0015346967929661
611 => 0.0015357550799724
612 => 0.0014795682486961
613 => 0.0015000397769203
614 => 0.0014660018907293
615 => 0.0014204289820517
616 => 0.0014202762056819
617 => 0.0014314301105177
618 => 0.001424795331469
619 => 0.0014069413116449
620 => 0.0014094773908923
621 => 0.0013872586680969
622 => 0.0014121751461226
623 => 0.001412889661557
624 => 0.0014032954603073
625 => 0.0014416827325174
626 => 0.0014574100292628
627 => 0.0014510949204726
628 => 0.0014569669443953
629 => 0.0015063023467448
630 => 0.0015143461699823
701 => 0.0015179187049192
702 => 0.0015131319813739
703 => 0.001457868704984
704 => 0.0014603198662895
705 => 0.0014423348710009
706 => 0.0014271394451941
707 => 0.0014277471825369
708 => 0.0014355596066686
709 => 0.0014696769210446
710 => 0.0015414747978233
711 => 0.0015441994747635
712 => 0.0015475018626995
713 => 0.0015340693913168
714 => 0.0015300180294164
715 => 0.0015353628215083
716 => 0.0015623263290733
717 => 0.0016316837910516
718 => 0.0016071682317593
719 => 0.0015872367004473
720 => 0.0016047220269102
721 => 0.0016020302979558
722 => 0.00157930939672
723 => 0.0015786716966966
724 => 0.0015350630229136
725 => 0.0015189418891375
726 => 0.0015054698631083
727 => 0.0014907587623805
728 => 0.0014820375287484
729 => 0.001495437307337
730 => 0.0014985019952417
731 => 0.0014692031451698
801 => 0.0014652098201679
802 => 0.0014891358935963
803 => 0.0014786069207344
804 => 0.0014894362304288
805 => 0.00149194872317
806 => 0.0014915441539711
807 => 0.0014805506970584
808 => 0.001487557598665
809 => 0.0014709841875076
810 => 0.0014529630921199
811 => 0.0014414667560165
812 => 0.0014314346779985
813 => 0.0014370010579507
814 => 0.001417157929802
815 => 0.001410809713744
816 => 0.0014851838180609
817 => 0.0015401247685762
818 => 0.0015393259053967
819 => 0.0015344630312425
820 => 0.0015272377866472
821 => 0.0015617977574279
822 => 0.0015497577546564
823 => 0.0015585178626486
824 => 0.0015607476777932
825 => 0.0015674966566585
826 => 0.0015699088365085
827 => 0.0015626175536351
828 => 0.0015381471177569
829 => 0.0014771691181275
830 => 0.001448783694693
831 => 0.001439416032163
901 => 0.0014397565289043
902 => 0.0014303641087364
903 => 0.0014331305974146
904 => 0.0014294020368738
905 => 0.0014223410452452
906 => 0.0014365650616149
907 => 0.0014382042469957
908 => 0.0014348841916106
909 => 0.0014356661848416
910 => 0.0014081775442677
911 => 0.0014102674459083
912 => 0.0013986306080014
913 => 0.001396448841178
914 => 0.0013670319282846
915 => 0.0013149156030442
916 => 0.0013437931062815
917 => 0.0013089131431623
918 => 0.0012957035726114
919 => 0.0013582356250897
920 => 0.0013519591413901
921 => 0.0013412165296181
922 => 0.0013253259678509
923 => 0.001319432003918
924 => 0.0012836221448639
925 => 0.0012815063073528
926 => 0.0012992546404476
927 => 0.0012910643954072
928 => 0.0012795621894822
929 => 0.0012379023655816
930 => 0.0011910629304237
1001 => 0.001192476718549
1002 => 0.001207375471394
1003 => 0.0012506956046616
1004 => 0.001233769679148
1005 => 0.0012214897259853
1006 => 0.001219190059892
1007 => 0.0012479751957271
1008 => 0.0012887121936063
1009 => 0.0013078250815723
1010 => 0.001288884790065
1011 => 0.0012671272029993
1012 => 0.001268451486509
1013 => 0.0012772613514099
1014 => 0.0012781871436462
1015 => 0.0012640251911824
1016 => 0.0012680116978469
1017 => 0.0012619558296898
1018 => 0.0012247909779881
1019 => 0.0012241187836718
1020 => 0.0012149979297
1021 => 0.0012147217538666
1022 => 0.0011992049059569
1023 => 0.0011970339916715
1024 => 0.0011662243483415
1025 => 0.0011865033488815
1026 => 0.0011729012600145
1027 => 0.0011523997036837
1028 => 0.0011488652276448
1029 => 0.001148758977027
1030 => 0.0011698094913147
1031 => 0.0011862573613658
1101 => 0.0011731378741739
1102 => 0.0011701508212509
1103 => 0.001202044731701
1104 => 0.0011979859408768
1105 => 0.0011944710541994
1106 => 0.0012850646422535
1107 => 0.0012133527482028
1108 => 0.0011820822692249
1109 => 0.0011433791133869
1110 => 0.001155981056086
1111 => 0.0011586364705737
1112 => 0.0010655623575514
1113 => 0.0010278022014899
1114 => 0.001014844338891
1115 => 0.0010073869057681
1116 => 0.0010107853516868
1117 => 0.00097679678240682
1118 => 0.00099963766308198
1119 => 0.0009702064350678
1120 => 0.00096527219391373
1121 => 0.0010178988754326
1122 => 0.0010252215707253
1123 => 0.00099398067762342
1124 => 0.001014042388436
1125 => 0.0010067677332167
1126 => 0.00097071094899936
1127 => 0.00096933384505801
1128 => 0.00095124181819498
1129 => 0.00092293129946106
1130 => 0.00090999263272702
1201 => 0.00090325406275328
1202 => 0.00090603452805656
1203 => 0.00090462863971558
1204 => 0.00089545426731118
1205 => 0.00090515450400267
1206 => 0.00088037440767046
1207 => 0.00087050677364417
1208 => 0.00086604979228186
1209 => 0.0008440560304979
1210 => 0.00087905788616644
1211 => 0.00088595369267491
1212 => 0.00089286308605241
1213 => 0.00095300463816041
1214 => 0.00095000013617535
1215 => 0.00097715937086843
1216 => 0.00097610401295088
1217 => 0.00096835775926599
1218 => 0.00093567758916629
1219 => 0.00094870332250001
1220 => 0.00090861213994723
1221 => 0.0009386511798512
1222 => 0.00092494261649932
1223 => 0.00093401630079235
1224 => 0.00091770099829236
1225 => 0.00092673056033819
1226 => 0.00088758894421562
1227 => 0.00085103905381777
1228 => 0.00086574779667168
1229 => 0.00088173788230266
1230 => 0.00091640846214866
1231 => 0.00089575895081845
]
'min_raw' => 0.0008440560304979
'max_raw' => 0.0025195278072209
'avg_raw' => 0.0016817919188594
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000844'
'max' => '$0.002519'
'avg' => '$0.001681'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0015989439695021
'max_diff' => 7.6527807220889E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00090318529593727
102 => 0.0008783082829444
103 => 0.00082697989937265
104 => 0.00082727041244942
105 => 0.00081937465888653
106 => 0.00081255157500929
107 => 0.00089813079559607
108 => 0.00088748766670883
109 => 0.00087052923376528
110 => 0.00089322877016156
111 => 0.00089923088787481
112 => 0.00089940175972813
113 => 0.00091596275552301
114 => 0.00092480136194746
115 => 0.00092635920463848
116 => 0.00095241828934573
117 => 0.00096115295081196
118 => 0.0009971297852158
119 => 0.00092405146794426
120 => 0.00092254646809057
121 => 0.00089354819918959
122 => 0.00087515703860809
123 => 0.00089480745768893
124 => 0.00091221504644485
125 => 0.0008940891014957
126 => 0.00089645596724648
127 => 0.00087212336709636
128 => 0.00088082112669478
129 => 0.00088831280897568
130 => 0.0008841763423609
131 => 0.00087798385163132
201 => 0.00091078782268039
202 => 0.000908936894074
203 => 0.00093948470607493
204 => 0.00096329891002464
205 => 0.0010059782208007
206 => 0.00096144013508309
207 => 0.00095981699021669
208 => 0.00097568349164643
209 => 0.00096115052173326
210 => 0.00097033485705731
211 => 0.0010044984823907
212 => 0.0010052203059597
213 => 0.00099312883116247
214 => 0.00099239306382218
215 => 0.00099471536382323
216 => 0.0010083171474651
217 => 0.00100356426632
218 => 0.0010090644207093
219 => 0.0010159424479944
220 => 0.0010443928850689
221 => 0.0010512521891291
222 => 0.0010345876364043
223 => 0.0010360922589303
224 => 0.001029859258759
225 => 0.0010238382586928
226 => 0.0010373725875451
227 => 0.0010621068395407
228 => 0.0010619529690427
301 => 0.0010676908347406
302 => 0.0010712654775352
303 => 0.001055920493862
304 => 0.0010459314737414
305 => 0.0010497618996735
306 => 0.0010558868341547
307 => 0.001047775665971
308 => 0.0009977097784824
309 => 0.0010128965705252
310 => 0.0010103687457331
311 => 0.0010067688158351
312 => 0.0010220392526701
313 => 0.0010205663817849
314 => 0.00097644818050258
315 => 0.00097927248460752
316 => 0.00097661993578959
317 => 0.00098519086368075
318 => 0.00096068766349975
319 => 0.00096822468284385
320 => 0.00097295183072131
321 => 0.00097573615713679
322 => 0.00098579505338001
323 => 0.00098461475800521
324 => 0.0009857216845623
325 => 0.0010006363722408
326 => 0.0010760697444161
327 => 0.0010801754164293
328 => 0.0010599575858575
329 => 0.0010680342103919
330 => 0.0010525288574496
331 => 0.0010629377047566
401 => 0.001070059173728
402 => 0.001037878624826
403 => 0.00103597310157
404 => 0.0010204037525206
405 => 0.0010287698388068
406 => 0.0010154587939826
407 => 0.0010187248587819
408 => 0.0010095926568727
409 => 0.0010260288021059
410 => 0.0010444069663955
411 => 0.0010490500164707
412 => 0.0010368361506815
413 => 0.0010279925069171
414 => 0.0010124659817443
415 => 0.0010382869391379
416 => 0.0010458377739592
417 => 0.0010382472778171
418 => 0.0010364883940053
419 => 0.0010331553123603
420 => 0.0010371955230328
421 => 0.0010457966504912
422 => 0.0010417405176197
423 => 0.0010444196648412
424 => 0.0010342095183575
425 => 0.0010559255736901
426 => 0.0010904158958115
427 => 0.0010905267878368
428 => 0.0010864706331013
429 => 0.0010848109419746
430 => 0.0010889728028813
501 => 0.0010912304416947
502 => 0.0011046891367123
503 => 0.0011191308526842
504 => 0.0011865240397107
505 => 0.0011676003024719
506 => 0.0012273955472405
507 => 0.0012746858224117
508 => 0.0012888661081824
509 => 0.0012758209125074
510 => 0.0012311940027906
511 => 0.0012290043936959
512 => 0.0012956958378081
513 => 0.0012768524501848
514 => 0.0012746110891861
515 => 0.0012507667949998
516 => 0.0012648617260372
517 => 0.0012617789578592
518 => 0.001256912657476
519 => 0.0012838048040339
520 => 0.0013341445017119
521 => 0.0013262985877461
522 => 0.0013204419769321
523 => 0.0012947800131789
524 => 0.0013102342471654
525 => 0.0013047312904492
526 => 0.0013283754847648
527 => 0.0013143691878353
528 => 0.0012767096929905
529 => 0.0012827070916719
530 => 0.0012818005969263
531 => 0.0013004561945557
601 => 0.0012948562472077
602 => 0.0012807071173307
603 => 0.0013339724460978
604 => 0.001330513691925
605 => 0.0013354174145608
606 => 0.0013375761849177
607 => 0.0013699978518979
608 => 0.0013832799714821
609 => 0.0013862952451639
610 => 0.0013989122314929
611 => 0.0013859813230503
612 => 0.0014377141764023
613 => 0.0014721135051857
614 => 0.0015120700957409
615 => 0.0015704574138611
616 => 0.0015924115855872
617 => 0.0015884457609691
618 => 0.0016327143592026
619 => 0.0017122640461925
620 => 0.0016045250271223
621 => 0.001717974475814
622 => 0.0016820576901951
623 => 0.001596899637608
624 => 0.0015914164629689
625 => 0.0016490864848862
626 => 0.0017769930429648
627 => 0.0017449539008703
628 => 0.0017770454475236
629 => 0.0017396089537097
630 => 0.0017377499162523
701 => 0.0017752272405789
702 => 0.0018627950516506
703 => 0.0018211948670407
704 => 0.0017615508016187
705 => 0.0018055910513619
706 => 0.0017674393113017
707 => 0.0016814727629463
708 => 0.0017449294011422
709 => 0.0017024977543216
710 => 0.0017148815646543
711 => 0.0018040665750399
712 => 0.0017933355986361
713 => 0.0018072224757643
714 => 0.0017827125011158
715 => 0.0017598163199258
716 => 0.001717078897442
717 => 0.001704426453574
718 => 0.0017079231338718
719 => 0.0017044247207929
720 => 0.0016805135256903
721 => 0.0016753499053845
722 => 0.0016667436453182
723 => 0.0016694110851807
724 => 0.0016532287984057
725 => 0.0016837681169812
726 => 0.0016894364836203
727 => 0.0017116604529117
728 => 0.0017139678191287
729 => 0.0017758612572667
730 => 0.0017417713916173
731 => 0.0017646418166723
801 => 0.0017625960705906
802 => 0.0015987452708294
803 => 0.0016213224653687
804 => 0.0016564454949578
805 => 0.001640622617736
806 => 0.0016182527713275
807 => 0.0016001879209573
808 => 0.0015728178254208
809 => 0.0016113407092924
810 => 0.0016619942051316
811 => 0.0017152524753742
812 => 0.0017792387974506
813 => 0.001764957795246
814 => 0.0017140562955909
815 => 0.0017163396996819
816 => 0.0017304548052858
817 => 0.0017121744610361
818 => 0.0017067832306422
819 => 0.0017297141330176
820 => 0.0017298720455397
821 => 0.0017088383002271
822 => 0.0016854631414468
823 => 0.0016853651986781
824 => 0.0016812058149504
825 => 0.0017403488988347
826 => 0.0017728716149309
827 => 0.0017766002919183
828 => 0.0017726206452611
829 => 0.0017741522533129
830 => 0.0017552280014057
831 => 0.001798483229453
901 => 0.0018381785042079
902 => 0.0018275393226077
903 => 0.0018115896769403
904 => 0.0017988850159272
905 => 0.001824546508233
906 => 0.0018234038423755
907 => 0.0018378318006123
908 => 0.0018371772650868
909 => 0.0018323256853947
910 => 0.0018275394958729
911 => 0.0018465161963204
912 => 0.001841051211348
913 => 0.0018355777377445
914 => 0.0018245998484857
915 => 0.0018260919259594
916 => 0.0018101450342232
917 => 0.0018027672724259
918 => 0.0016918234367203
919 => 0.0016621756186254
920 => 0.0016715034257351
921 => 0.001674574382032
922 => 0.0016616716136023
923 => 0.0016801708690812
924 => 0.0016772877797103
925 => 0.0016885041939013
926 => 0.0016814966652749
927 => 0.001681784256694
928 => 0.0017023919042217
929 => 0.0017083743919702
930 => 0.0017053316504168
1001 => 0.0017074626823017
1002 => 0.0017565714126388
1003 => 0.0017495897215936
1004 => 0.0017458808373762
1005 => 0.0017469082236514
1006 => 0.0017594565571555
1007 => 0.0017629694054231
1008 => 0.00174808522047
1009 => 0.0017551046881383
1010 => 0.001784992690567
1011 => 0.0017954517999026
1012 => 0.0018288322562445
1013 => 0.0018146516451002
1014 => 0.0018406807705781
1015 => 0.0019206854283146
1016 => 0.0019845986848157
1017 => 0.0019258214128102
1018 => 0.0020431899690703
1019 => 0.0021345782256383
1020 => 0.0021310705921361
1021 => 0.002115134935755
1022 => 0.0020110918353349
1023 => 0.0019153498231331
1024 => 0.0019954420817605
1025 => 0.0019956462533989
1026 => 0.0019887662573525
1027 => 0.0019460351927914
1028 => 0.0019872793089307
1029 => 0.0019905531170932
1030 => 0.0019887206550981
1031 => 0.0019559588480874
1101 => 0.0019059376241762
1102 => 0.0019157116515945
1103 => 0.0019317217078906
1104 => 0.0019014113312746
1105 => 0.0018917253293753
1106 => 0.0019097334497433
1107 => 0.0019677593657101
1108 => 0.0019567899024178
1109 => 0.0019565034454002
1110 => 0.0020034354611409
1111 => 0.0019698422664334
1112 => 0.0019158349333811
1113 => 0.0019021973695161
1114 => 0.0018537932051594
1115 => 0.0018872261338903
1116 => 0.0018884293254758
1117 => 0.0018701184520862
1118 => 0.0019173207598396
1119 => 0.0019168857822639
1120 => 0.0019616973483395
1121 => 0.0020473602322203
1122 => 0.0020220255022423
1123 => 0.0019925639676885
1124 => 0.0019957672533743
1125 => 0.002030899390964
1126 => 0.0020096576985886
1127 => 0.0020172963592691
1128 => 0.0020308878289362
1129 => 0.0020390879000436
1130 => 0.0019945873893338
1201 => 0.0019842121915819
1202 => 0.0019629881781811
1203 => 0.0019574512292498
1204 => 0.0019747377453112
1205 => 0.0019701833590706
1206 => 0.0018883282018821
1207 => 0.0018797738825181
1208 => 0.0018800362312802
1209 => 0.0018585259885037
1210 => 0.0018257177052198
1211 => 0.0019119359148092
1212 => 0.0019050113859561
1213 => 0.0018973672420182
1214 => 0.0018983036060337
1215 => 0.0019357280086102
1216 => 0.0019140199651382
1217 => 0.0019717343565869
1218 => 0.0019598700127585
1219 => 0.0019477013932791
1220 => 0.0019460193194018
1221 => 0.0019413354390801
1222 => 0.0019252726706618
1223 => 0.0019058759125739
1224 => 0.0018930684927659
1225 => 0.0017462556173546
1226 => 0.0017735032330598
1227 => 0.0018048491312302
1228 => 0.0018156696096678
1229 => 0.0017971604325459
1230 => 0.0019260035257893
1231 => 0.0019495444004878
]
'min_raw' => 0.00081255157500929
'max_raw' => 0.0021345782256383
'avg_raw' => 0.0014735649003238
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000812'
'max' => '$0.002134'
'avg' => '$0.001473'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.1504455488605E-5
'max_diff' => -0.00038494958158261
'year' => 2027
]
2 => [
'items' => [
101 => 0.0018782375554928
102 => 0.0018648989562335
103 => 0.0019268780021361
104 => 0.0018894970608266
105 => 0.0019063296964094
106 => 0.0018699467452388
107 => 0.0019438740931302
108 => 0.0019433108906015
109 => 0.0019145514825468
110 => 0.0019388587372987
111 => 0.0019346347536134
112 => 0.001902165452751
113 => 0.001944903427882
114 => 0.0019449246253845
115 => 0.0019172443204153
116 => 0.0018849197842093
117 => 0.0018791409206071
118 => 0.001874787323164
119 => 0.0019052589783188
120 => 0.0019325797690482
121 => 0.0019834169871972
122 => 0.0019961986717024
123 => 0.002046086437251
124 => 0.002016380701858
125 => 0.002029548869604
126 => 0.0020438447784434
127 => 0.0020506987628556
128 => 0.002039530563061
129 => 0.0021170267975815
130 => 0.0021235698541983
131 => 0.0021257636844847
201 => 0.002099632390232
202 => 0.002122843095634
203 => 0.0021119835752342
204 => 0.0021402370304528
205 => 0.0021446675329893
206 => 0.0021409150549606
207 => 0.0021423213663964
208 => 0.0020761920015057
209 => 0.0020727628450759
210 => 0.0020260060538342
211 => 0.0020450597918739
212 => 0.002009439741878
213 => 0.0020207352266589
214 => 0.002025714168723
215 => 0.0020231134519412
216 => 0.0020461370616347
217 => 0.0020265622899825
218 => 0.0019749012492019
219 => 0.0019232261334052
220 => 0.0019225773944201
221 => 0.0019089722485724
222 => 0.0018991382200312
223 => 0.0019010326028092
224 => 0.0019077086548068
225 => 0.0018987501957527
226 => 0.0019006619371973
227 => 0.0019324095830441
228 => 0.0019387763470048
229 => 0.001917139595411
301 => 0.0018302649155936
302 => 0.0018089456512577
303 => 0.0018242695156829
304 => 0.0018169456954709
305 => 0.0014664169830424
306 => 0.0015487685045616
307 => 0.0014998380268683
308 => 0.0015223874421724
309 => 0.0014724420949333
310 => 0.0014962786324957
311 => 0.0014918768943789
312 => 0.0016242957040231
313 => 0.0016222281664467
314 => 0.0016232177872729
315 => 0.0015759806067947
316 => 0.0016512307179256
317 => 0.0016883016285752
318 => 0.0016814407896243
319 => 0.0016831675149773
320 => 0.0016534966524985
321 => 0.001623505066079
322 => 0.0015902397810676
323 => 0.0016520425689052
324 => 0.0016451711539064
325 => 0.0016609317076565
326 => 0.0017010152333236
327 => 0.0017069176847406
328 => 0.0017148506393018
329 => 0.0017120072397978
330 => 0.0017797485517367
331 => 0.0017715446318893
401 => 0.0017913137182927
402 => 0.0017506472076768
403 => 0.0017046291908144
404 => 0.0017133757113776
405 => 0.0017125333511123
406 => 0.0017018091381187
407 => 0.0016921277981401
408 => 0.0016760110947762
409 => 0.0017270067290427
410 => 0.0017249363994204
411 => 0.0017584526295097
412 => 0.0017525283102822
413 => 0.0017129642565535
414 => 0.0017143772944725
415 => 0.0017238806535603
416 => 0.0017567718878705
417 => 0.0017665362456197
418 => 0.0017620130060679
419 => 0.0017727191785801
420 => 0.0017811809008079
421 => 0.001773781840613
422 => 0.0018785369297369
423 => 0.0018350353132333
424 => 0.0018562376984349
425 => 0.0018612943423737
426 => 0.0018483418552541
427 => 0.0018511507859165
428 => 0.0018554055504824
429 => 0.0018812396477578
430 => 0.0019490357941648
501 => 0.0019790622459044
502 => 0.0020693983074423
503 => 0.0019765689670758
504 => 0.0019710608581845
505 => 0.0019873331107552
506 => 0.0020403699419211
507 => 0.0020833513120849
508 => 0.0020976107122229
509 => 0.0020994953273482
510 => 0.0021262469099542
511 => 0.0021415804182165
512 => 0.0021229985641894
513 => 0.0021072523885026
514 => 0.0020508515416799
515 => 0.002057380093274
516 => 0.0021023553397045
517 => 0.0021658855243164
518 => 0.0022204010319025
519 => 0.0022013116012031
520 => 0.0023469504824017
521 => 0.002361389982591
522 => 0.0023593949105498
523 => 0.0023922902408669
524 => 0.002326999709205
525 => 0.002299086741975
526 => 0.0021106568904128
527 => 0.002163597992748
528 => 0.0022405509941142
529 => 0.0022303659758244
530 => 0.0021744806492727
531 => 0.002220358637871
601 => 0.002205189940103
602 => 0.0021932257588236
603 => 0.0022480359926353
604 => 0.002187769889079
605 => 0.00223994979363
606 => 0.0021730285263114
607 => 0.0022013988001146
608 => 0.0021852944605881
609 => 0.0021957159419354
610 => 0.0021347921749253
611 => 0.0021676651607631
612 => 0.0021334245506381
613 => 0.0021334083161307
614 => 0.0021326524527644
615 => 0.0021729363787303
616 => 0.0021742500361098
617 => 0.0021444801539554
618 => 0.0021401898488439
619 => 0.0021560533554808
620 => 0.002137481343868
621 => 0.0021461710712108
622 => 0.0021377445468569
623 => 0.002135847558735
624 => 0.0021207320346344
625 => 0.0021142198512419
626 => 0.0021167734461484
627 => 0.0021080567102641
628 => 0.0021028045615956
629 => 0.0021316076681996
630 => 0.0021162193302551
701 => 0.0021292491847097
702 => 0.0021144000210599
703 => 0.0020629263503771
704 => 0.0020333232980432
705 => 0.0019360943057351
706 => 0.0019636683273415
707 => 0.0019819499321939
708 => 0.0019759078618992
709 => 0.001988888566863
710 => 0.0019896854767229
711 => 0.0019854653172165
712 => 0.0019805789131441
713 => 0.0019782004818767
714 => 0.0019959273599315
715 => 0.0020062184093015
716 => 0.0019837847358172
717 => 0.0019785288400002
718 => 0.00200121052249
719 => 0.0020150463357059
720 => 0.0021172022068208
721 => 0.0021096341699295
722 => 0.0021286284573744
723 => 0.0021264899920992
724 => 0.0021463990313688
725 => 0.0021789418963868
726 => 0.002112773152677
727 => 0.002124257758642
728 => 0.0021214419984777
729 => 0.00215218372962
730 => 0.002152279701949
731 => 0.0021338484984659
801 => 0.0021438403528862
802 => 0.002138263173861
803 => 0.0021483418901605
804 => 0.0021095330941828
805 => 0.002156798018533
806 => 0.0021835941849552
807 => 0.002183966249752
808 => 0.0021966674199685
809 => 0.0022095725445108
810 => 0.0022343428072701
811 => 0.0022088817153265
812 => 0.0021630796895073
813 => 0.0021663864478318
814 => 0.0021395327368524
815 => 0.0021399841525854
816 => 0.0021375744600242
817 => 0.0021448061287938
818 => 0.0021111200388057
819 => 0.0021190260967951
820 => 0.0021079575693121
821 => 0.0021242336978249
822 => 0.0021067232740856
823 => 0.0021214406406329
824 => 0.0021277921681463
825 => 0.0021512294414093
826 => 0.0021032615697684
827 => 0.002005451832353
828 => 0.0020260126249861
829 => 0.0019956015976663
830 => 0.0019984162540277
831 => 0.0020041023078269
901 => 0.0019856719471025
902 => 0.0019891878791213
903 => 0.0019890622652884
904 => 0.0019879797931381
905 => 0.0019831853444994
906 => 0.0019762324454205
907 => 0.0020039306553614
908 => 0.0020086371209654
909 => 0.0020190990109954
910 => 0.0020502264993567
911 => 0.0020471161292327
912 => 0.002052189271953
913 => 0.0020411146298791
914 => 0.0019989299749106
915 => 0.0020012208046319
916 => 0.0019726541212995
917 => 0.0020183684966759
918 => 0.0020075427291865
919 => 0.0020005632864603
920 => 0.0019986588808483
921 => 0.0020298635282326
922 => 0.0020392004478029
923 => 0.0020333823061041
924 => 0.0020214491277374
925 => 0.0020443643579289
926 => 0.0020504955068122
927 => 0.0020518680449391
928 => 0.0020924694392787
929 => 0.0020541372118574
930 => 0.0020633641599873
1001 => 0.0021353501753482
1002 => 0.002070068792807
1003 => 0.0021046497970876
1004 => 0.0021029572368789
1005 => 0.0021206477085115
1006 => 0.0021015061018589
1007 => 0.0021017433850143
1008 => 0.0021174513253677
1009 => 0.0020953923560834
1010 => 0.0020899302450726
1011 => 0.0020823843778315
1012 => 0.0020988605028923
1013 => 0.0021087371947152
1014 => 0.0021883360771768
1015 => 0.002239760585397
1016 => 0.0022375281118727
1017 => 0.0022579287408698
1018 => 0.0022487380706582
1019 => 0.0022190589721689
1020 => 0.0022697175743097
1021 => 0.0022536870729464
1022 => 0.0022550086080018
1023 => 0.002254959420401
1024 => 0.0022656183023968
1025 => 0.0022580655076306
1026 => 0.0022431781738679
1027 => 0.0022530610807823
1028 => 0.0022824097811145
1029 => 0.0023735090474735
1030 => 0.0024244894038327
1031 => 0.0023704399660078
1101 => 0.0024077225444686
1102 => 0.0023853662825332
1103 => 0.0023813034846983
1104 => 0.0024047196991326
1105 => 0.0024281769005505
1106 => 0.0024266827782284
1107 => 0.0024096540545397
1108 => 0.0024000349606158
1109 => 0.0024728739624404
1110 => 0.0025265404982049
1111 => 0.0025228808002507
1112 => 0.0025390335168227
1113 => 0.0025864583922625
1114 => 0.0025907943285249
1115 => 0.0025902481002162
1116 => 0.0025795010297818
1117 => 0.0026261969785507
1118 => 0.0026651515605507
1119 => 0.002577013393489
1120 => 0.0026105752536927
1121 => 0.0026256422540338
1122 => 0.0026477650807121
1123 => 0.0026850899975345
1124 => 0.002725634757149
1125 => 0.0027313682307091
1126 => 0.0027273000568462
1127 => 0.0027005596979789
1128 => 0.0027449242577486
1129 => 0.0027709119763847
1130 => 0.0027863870681142
1201 => 0.0028256293259303
1202 => 0.0026257353026985
1203 => 0.0024842403776774
1204 => 0.0024621439019239
1205 => 0.0025070779542697
1206 => 0.0025189267055309
1207 => 0.0025141504887546
1208 => 0.0023548850864876
1209 => 0.0024613054025417
1210 => 0.0025758047145416
1211 => 0.0025802030994286
1212 => 0.0026375238490835
1213 => 0.002656189834828
1214 => 0.0027023405515026
1215 => 0.0026994538116091
1216 => 0.0027106907767011
1217 => 0.0027081075930235
1218 => 0.0027935920774832
1219 => 0.002887894158411
1220 => 0.0028846287772108
1221 => 0.0028710717373458
1222 => 0.0028912062533641
1223 => 0.0029885361069067
1224 => 0.0029795755336716
1225 => 0.0029882799673097
1226 => 0.0031030373499067
1227 => 0.0032522382713301
1228 => 0.0031829194638013
1229 => 0.0033333213301892
1230 => 0.00342799133262
1231 => 0.0035917133127631
]
'min_raw' => 0.0014664169830424
'max_raw' => 0.0035917133127631
'avg_raw' => 0.0025290651479027
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001466'
'max' => '$0.003591'
'avg' => '$0.002529'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00065386540803307
'max_diff' => 0.0014571350871248
'year' => 2028
]
3 => [
'items' => [
101 => 0.0035712145145014
102 => 0.0036349502799238
103 => 0.0035345173873848
104 => 0.0033039031652787
105 => 0.0032674075818747
106 => 0.003340472664065
107 => 0.0035200960390433
108 => 0.0033348156847616
109 => 0.0033722976591231
110 => 0.0033615028479855
111 => 0.0033609276383749
112 => 0.0033828810496624
113 => 0.003351036481577
114 => 0.0032212959824686
115 => 0.0032807552886444
116 => 0.0032577951950595
117 => 0.0032832711306803
118 => 0.0034207542481507
119 => 0.0033599696847289
120 => 0.0032959380849009
121 => 0.0033762479208347
122 => 0.003478509939432
123 => 0.0034721105660907
124 => 0.003459693107078
125 => 0.0035296896733755
126 => 0.0036453034938294
127 => 0.0036765534449241
128 => 0.0036996215199451
129 => 0.0037028022177521
130 => 0.0037355653819577
131 => 0.003559389590644
201 => 0.003838985095974
202 => 0.0038872635160745
203 => 0.0038781891740311
204 => 0.0039318486061064
205 => 0.0039160606399814
206 => 0.0038931863541224
207 => 0.0039782479676501
208 => 0.0038807316918588
209 => 0.0037423196153307
210 => 0.003666384012667
211 => 0.0037663821398049
212 => 0.0038274475065944
213 => 0.0038678078295555
214 => 0.0038800208388971
215 => 0.0035730656158156
216 => 0.0034076337750918
217 => 0.0035136736883158
218 => 0.003643049700933
219 => 0.0035586709003616
220 => 0.0035619783895938
221 => 0.0034416763943377
222 => 0.0036536937581074
223 => 0.0036228046115529
224 => 0.0037830575585198
225 => 0.0037448119066159
226 => 0.0038754919638839
227 => 0.0038410795252396
228 => 0.0039839236340785
301 => 0.0040409080164442
302 => 0.0041365936633471
303 => 0.0042069804147196
304 => 0.0042483128614095
305 => 0.0042458314163443
306 => 0.0044096111618729
307 => 0.0043130359679632
308 => 0.004191714763387
309 => 0.0041895204455597
310 => 0.0042523544165445
311 => 0.0043840371820705
312 => 0.004418180607265
313 => 0.0044372621240171
314 => 0.004408038116879
315 => 0.0043032126654964
316 => 0.0042579495670666
317 => 0.004296515038327
318 => 0.0042493527809442
319 => 0.0043307680685792
320 => 0.0044425686478691
321 => 0.0044194822703531
322 => 0.0044966565690858
323 => 0.0045765238493012
324 => 0.0046907376470731
325 => 0.0047205973631354
326 => 0.004769954338323
327 => 0.0048207588787128
328 => 0.0048370759278653
329 => 0.0048682302375803
330 => 0.0048680660389899
331 => 0.0049619516482431
401 => 0.0050655103826446
402 => 0.0051046014074909
403 => 0.0051944890636334
404 => 0.0050405596025285
405 => 0.0051573168669908
406 => 0.0052626348421597
407 => 0.0051370704104129
408 => 0.0053101317268154
409 => 0.005316851305566
410 => 0.0054183089668477
411 => 0.0053154621902026
412 => 0.0052543921025293
413 => 0.0054306991573758
414 => 0.0055160085875959
415 => 0.0054903126929424
416 => 0.0052947656658669
417 => 0.0051809489087024
418 => 0.0048830685015901
419 => 0.0052359207112906
420 => 0.0054077847297956
421 => 0.0052943205795783
422 => 0.0053515452971324
423 => 0.005663744800931
424 => 0.0057826101585565
425 => 0.005757886995102
426 => 0.0057620648027479
427 => 0.0058262023921638
428 => 0.0061106237848496
429 => 0.005940191893516
430 => 0.0060704806884794
501 => 0.0061395853955368
502 => 0.0062037736986988
503 => 0.0060461475130543
504 => 0.0058410781615194
505 => 0.0057761240896626
506 => 0.0052830388059731
507 => 0.0052573715755963
508 => 0.005242963781389
509 => 0.0051521246769354
510 => 0.0050807500237597
511 => 0.0050239902495834
512 => 0.0048750356522414
513 => 0.0049253034562363
514 => 0.0046879009173138
515 => 0.004839782648687
516 => 0.0044608824642819
517 => 0.0047764417969343
518 => 0.0046046971988938
519 => 0.0047200190774218
520 => 0.0047196167302516
521 => 0.0045072725890467
522 => 0.0043847969199089
523 => 0.0044628431831079
524 => 0.0045465149725773
525 => 0.004560090438913
526 => 0.0046685730980172
527 => 0.0046988482763462
528 => 0.0046071130725963
529 => 0.0044530306001462
530 => 0.0044888204442494
531 => 0.0043840716398605
601 => 0.0042005033892735
602 => 0.0043323453116392
603 => 0.004377361940615
604 => 0.0043972438485115
605 => 0.0042167255570153
606 => 0.0041600027905844
607 => 0.0041298040656867
608 => 0.0044297279555657
609 => 0.0044461584632932
610 => 0.0043620976627197
611 => 0.0047420604522838
612 => 0.0046560631708071
613 => 0.0047521432040621
614 => 0.0044855728910284
615 => 0.0044957562359708
616 => 0.0043695575778019
617 => 0.0044402203937791
618 => 0.0043902781930153
619 => 0.0044345115365517
620 => 0.0044610248202865
621 => 0.0045872027704974
622 => 0.0047778825464432
623 => 0.0045683559923998
624 => 0.0044770622723275
625 => 0.004533700382805
626 => 0.0046845351346893
627 => 0.0049130575048831
628 => 0.0047777676622871
629 => 0.0048378069970607
630 => 0.0048509229207446
701 => 0.0047511651995165
702 => 0.0049167357143577
703 => 0.0050054662983535
704 => 0.005096485517326
705 => 0.0051755149548592
706 => 0.0050601304397129
707 => 0.00518360841064
708 => 0.0050841069628688
709 => 0.0049948438779475
710 => 0.0049949792532011
711 => 0.0049389832161043
712 => 0.0048304838382747
713 => 0.0048104748883238
714 => 0.0049145639728202
715 => 0.0049980335613133
716 => 0.005004908516414
717 => 0.0050511215694261
718 => 0.0050784699781663
719 => 0.0053465215621797
720 => 0.0054543341267089
721 => 0.0055861652898277
722 => 0.0056375209574598
723 => 0.0057920831050064
724 => 0.0056672616179386
725 => 0.0056402557040476
726 => 0.0052653384909926
727 => 0.0053267311636271
728 => 0.0054250267560267
729 => 0.0052669593491068
730 => 0.0053672167366957
731 => 0.0053870096687476
801 => 0.0052615882791049
802 => 0.0053285812624514
803 => 0.0051506677607183
804 => 0.0047817605745995
805 => 0.0049171464135136
806 => 0.0050168359613349
807 => 0.0048745666849612
808 => 0.0051295788562797
809 => 0.0049806060103152
810 => 0.0049333887701022
811 => 0.0047491774818695
812 => 0.0048361181189726
813 => 0.0049537065755245
814 => 0.0048810505805008
815 => 0.0050318226795276
816 => 0.0052453561811997
817 => 0.0053975328706311
818 => 0.0054092151072602
819 => 0.0053113756910021
820 => 0.0054681639799584
821 => 0.0054693060114738
822 => 0.0052924481810322
823 => 0.0051841237446351
824 => 0.0051595122047692
825 => 0.005220996656731
826 => 0.0052956501320686
827 => 0.0054133578555796
828 => 0.0054844861676807
829 => 0.0056699510820987
830 => 0.0057201325702444
831 => 0.0057752668116399
901 => 0.0058489431609147
902 => 0.0059374105084473
903 => 0.0057438489884949
904 => 0.0057515395485264
905 => 0.0055712977411883
906 => 0.0053786835207578
907 => 0.0055248537043631
908 => 0.0057159517752222
909 => 0.0056721136666225
910 => 0.0056671809838738
911 => 0.0056754763880451
912 => 0.0056424238857797
913 => 0.0054929286430162
914 => 0.0054178530679901
915 => 0.0055147197135957
916 => 0.0055662000246966
917 => 0.0056460414976593
918 => 0.0056361993508676
919 => 0.0058418624108712
920 => 0.0059217768570604
921 => 0.0059013313219933
922 => 0.0059050937924949
923 => 0.0060497750801091
924 => 0.0062106904279123
925 => 0.0063614088857804
926 => 0.0065147261746321
927 => 0.0063298961988457
928 => 0.0062360509358694
929 => 0.0063328752925278
930 => 0.0062814989259834
1001 => 0.0065767227673677
1002 => 0.0065971634256071
1003 => 0.0068923659189475
1004 => 0.0071725482371865
1005 => 0.0069965707430882
1006 => 0.0071625095938224
1007 => 0.0073419859900846
1008 => 0.0076882250774701
1009 => 0.0075716239336766
1010 => 0.0074823092849037
1011 => 0.0073979073733785
1012 => 0.0075735343528363
1013 => 0.0077994756561992
1014 => 0.0078481412489046
1015 => 0.0079269981007747
1016 => 0.0078440897631904
1017 => 0.0079439437237569
1018 => 0.0082964720826103
1019 => 0.0082012158081942
1020 => 0.0080659365853131
1021 => 0.0083442238674444
1022 => 0.0084449349530333
1023 => 0.0091517780945011
1024 => 0.010044196758838
1025 => 0.0096747295718657
1026 => 0.0094453893662803
1027 => 0.0094992897546153
1028 => 0.0098251708405529
1029 => 0.0099298335024074
1030 => 0.0096453243081038
1031 => 0.0097458177653403
1101 => 0.010299546595013
1102 => 0.010596604346384
1103 => 0.010193160019843
1104 => 0.0090800731237503
1105 => 0.0080537561714147
1106 => 0.0083259816428288
1107 => 0.0082951197225104
1108 => 0.0088900322709149
1109 => 0.0081989439775528
1110 => 0.0082105801320182
1111 => 0.0088177948419004
1112 => 0.0086558003675994
1113 => 0.0083933900659164
1114 => 0.0080556720570176
1115 => 0.0074313690824334
1116 => 0.0068784065278676
1117 => 0.0079628934370419
1118 => 0.0079161283895068
1119 => 0.0078484056704843
1120 => 0.0079991152533054
1121 => 0.0087309182078231
1122 => 0.0087140477811065
1123 => 0.0086067267337026
1124 => 0.0086881288022742
1125 => 0.0083791198897226
1126 => 0.0084587585224893
1127 => 0.0080535935975659
1128 => 0.0082367450648132
1129 => 0.0083928270512635
1130 => 0.0084241628208767
1201 => 0.0084947639098593
1202 => 0.007891485334476
1203 => 0.0081623397034947
1204 => 0.0083214412696709
1205 => 0.0076026146055224
1206 => 0.0083072323777246
1207 => 0.0078809835966523
1208 => 0.0077363083583145
1209 => 0.0079310945072231
1210 => 0.0078551861555577
1211 => 0.0077899246122837
1212 => 0.0077535075498012
1213 => 0.0078965369997969
1214 => 0.0078898645049974
1215 => 0.0076558405639845
1216 => 0.0073505658729694
1217 => 0.0074530260795742
1218 => 0.0074158013259451
1219 => 0.0072808940167045
1220 => 0.0073718052543621
1221 => 0.0069714781728428
1222 => 0.0062827362362798
1223 => 0.0067377402563094
1224 => 0.0067202230964874
1225 => 0.0067113901501652
1226 => 0.0070533130958299
1227 => 0.0070204450941088
1228 => 0.0069607893491405
1229 => 0.0072797983921656
1230 => 0.0071633558001843
1231 => 0.0075222044313455
]
'min_raw' => 0.0032212959824686
'max_raw' => 0.010596604346384
'avg_raw' => 0.0069089501644262
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003221'
'max' => '$0.010596'
'avg' => '$0.0069089'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0017548789994262
'max_diff' => 0.0070048910336208
'year' => 2029
]
4 => [
'items' => [
101 => 0.0077585653487026
102 => 0.0076986165745862
103 => 0.007920915159792
104 => 0.0074553865557939
105 => 0.0076100164842762
106 => 0.0076418854982286
107 => 0.0072758618700932
108 => 0.0070258227056758
109 => 0.0070091479440643
110 => 0.0065756144904839
111 => 0.0068072045620268
112 => 0.0070109942411362
113 => 0.0069133947995607
114 => 0.0068824977320583
115 => 0.0070403441491718
116 => 0.0070526101676447
117 => 0.0067729436465692
118 => 0.0068310951721877
119 => 0.0070735967009036
120 => 0.0068249847558589
121 => 0.0063419723571676
122 => 0.0062221786041233
123 => 0.0062061959092303
124 => 0.0058813057500118
125 => 0.0062301837955179
126 => 0.0060778891793041
127 => 0.0065589860471537
128 => 0.0062841860964123
129 => 0.0062723400197715
130 => 0.0062544329374874
131 => 0.0059747865564045
201 => 0.006036011341407
202 => 0.0062395318515533
203 => 0.0063121502623962
204 => 0.0063045755672002
205 => 0.0062385344900234
206 => 0.0062687677569699
207 => 0.0061713758701667
208 => 0.0061369847678997
209 => 0.006028436989127
210 => 0.0058689017414205
211 => 0.0058910860961006
212 => 0.0055750050257255
213 => 0.0054027872828931
214 => 0.0053551196814705
215 => 0.0052913765726819
216 => 0.0053623196352221
217 => 0.0055741096077667
218 => 0.0053186459671287
219 => 0.0048806714739458
220 => 0.0049069944872583
221 => 0.0049661344827987
222 => 0.0048559274923594
223 => 0.0047516258248801
224 => 0.0048423076624916
225 => 0.0046567320960142
226 => 0.0049885604034098
227 => 0.0049795853776328
228 => 0.005103270450505
301 => 0.0051806132648452
302 => 0.0050023631178245
303 => 0.0049575336878885
304 => 0.0049830705685641
305 => 0.0045610028151017
306 => 0.0050687785105026
307 => 0.0050731697758022
308 => 0.005035569096292
309 => 0.0053059439782771
310 => 0.0058765193113063
311 => 0.0056618459196812
312 => 0.0055787178939063
313 => 0.005420691456142
314 => 0.0056312523017815
315 => 0.0056150845140972
316 => 0.0055419676467378
317 => 0.0054977463372202
318 => 0.0055792254559056
319 => 0.0054876501727256
320 => 0.005471200735546
321 => 0.0053715350434016
322 => 0.0053359589258061
323 => 0.0053096197846645
324 => 0.0052806229782981
325 => 0.0053445827075884
326 => 0.0051996415464134
327 => 0.0050248567147936
328 => 0.0050103252472425
329 => 0.0050504479067708
330 => 0.0050326966167102
331 => 0.0050102402608951
401 => 0.0049673649620194
402 => 0.0049546447767288
403 => 0.0049959792079667
404 => 0.0049493150450462
405 => 0.0050181705593639
406 => 0.0049994456694188
407 => 0.0048948499563251
408 => 0.0047644849715174
409 => 0.0047633244497028
410 => 0.0047352375275675
411 => 0.0046994646093311
412 => 0.0046895134018512
413 => 0.0048346706910601
414 => 0.0051351419355306
415 => 0.0050761522405735
416 => 0.0051187783406871
417 => 0.005328456564644
418 => 0.0053951069667957
419 => 0.0053478000900497
420 => 0.0052830435193987
421 => 0.0052858924798622
422 => 0.0055071852849236
423 => 0.005520987045732
424 => 0.0055558596426781
425 => 0.0056006807847485
426 => 0.0053554333243564
427 => 0.0052743413465324
428 => 0.0052359154686278
429 => 0.0051175786373678
430 => 0.0052451947644486
501 => 0.005170838312266
502 => 0.0051808715380436
503 => 0.0051743373865937
504 => 0.0051779054751227
505 => 0.0049884676506352
506 => 0.0050574888373195
507 => 0.0049427277275775
508 => 0.004789075484172
509 => 0.0047885603879747
510 => 0.0048261665568692
511 => 0.0048037969360812
512 => 0.0047436008617163
513 => 0.0047521514299624
514 => 0.004677239454796
515 => 0.0047612471000727
516 => 0.0047636561387454
517 => 0.0047313086193865
518 => 0.0048607339877563
519 => 0.0049137596667785
520 => 0.0048924678365854
521 => 0.0049122657752125
522 => 0.0050786035287215
523 => 0.0051057238403685
524 => 0.0051177688913348
525 => 0.0051016301187033
526 => 0.0049153061239961
527 => 0.0049235703854722
528 => 0.0048629327181844
529 => 0.0048117002791662
530 => 0.0048137493080482
531 => 0.0048400894414544
601 => 0.0049551183488678
602 => 0.005197189903195
603 => 0.0052063763417297
604 => 0.0052175105732211
605 => 0.0051722220581292
606 => 0.0051585626086248
607 => 0.0051765829483242
608 => 0.0052674922966118
609 => 0.0055013358220548
610 => 0.0054186799022793
611 => 0.0053514793528858
612 => 0.0054104323518419
613 => 0.0054013569997415
614 => 0.0053247518949024
615 => 0.0053226018447508
616 => 0.0051755721564311
617 => 0.0051212186283633
618 => 0.0050757967520188
619 => 0.0050261972488187
620 => 0.0049967930007313
621 => 0.0050419712897854
622 => 0.0050523040990258
623 => 0.0049535209804278
624 => 0.0049400572063791
625 => 0.0050207256334079
626 => 0.0049852264662946
627 => 0.0050217382400076
628 => 0.0050302092847012
629 => 0.0050288452514009
630 => 0.0049917800438812
701 => 0.0050154043018538
702 => 0.0049595258890183
703 => 0.0048987665077259
704 => 0.0048600058079046
705 => 0.0048261819564497
706 => 0.0048449493950906
707 => 0.0047780469031346
708 => 0.0047566434494767
709 => 0.0050074009348153
710 => 0.0051926381853323
711 => 0.0051899447623478
712 => 0.0051735492426217
713 => 0.0051491888260184
714 => 0.0052657101804056
715 => 0.0052251164704551
716 => 0.005254651786162
717 => 0.0052621697636028
718 => 0.0052849244170458
719 => 0.0052930572498232
720 => 0.0052684741805545
721 => 0.0051859703975196
722 => 0.0049803788144211
723 => 0.0048846753775049
724 => 0.0048530916492557
725 => 0.0048542396577915
726 => 0.0048225724574379
727 => 0.0048318998671664
728 => 0.0048193287649833
729 => 0.0047955221387248
730 => 0.0048434794030045
731 => 0.0048490060309599
801 => 0.0048378122324304
802 => 0.0048404487772055
803 => 0.0047477689063151
804 => 0.0047548151556088
805 => 0.0047155807441474
806 => 0.0047082247649762
807 => 0.0046090435893328
808 => 0.0044333297601393
809 => 0.0045306922784666
810 => 0.004413092047569
811 => 0.0043685550581938
812 => 0.0045793862389731
813 => 0.0045582246359696
814 => 0.0045220051703552
815 => 0.0044684290319135
816 => 0.0044485571210103
817 => 0.0043278216810449
818 => 0.0043206879871532
819 => 0.0043805277313312
820 => 0.0043529137483529
821 => 0.0043141332580183
822 => 0.0041736742531416
823 => 0.0040157518272819
824 => 0.0040205185126536
825 => 0.0040707506980684
826 => 0.004216807551895
827 => 0.0041597406122957
828 => 0.0041183378928488
829 => 0.0041105844080575
830 => 0.0042076355032398
831 => 0.0043449831357558
901 => 0.0044094235719522
902 => 0.0043455650567667
903 => 0.0042722078329082
904 => 0.0042766727472198
905 => 0.0043063758218182
906 => 0.0043094971949796
907 => 0.0042617491834922
908 => 0.0042751899690403
909 => 0.0042547721867415
910 => 0.0041294682944621
911 => 0.0041272019443937
912 => 0.0040964503484301
913 => 0.0040955192023258
914 => 0.0040432030662466
915 => 0.0040358836771647
916 => 0.003932006813617
917 => 0.0040003788797723
918 => 0.0039545184874899
919 => 0.0038853960589475
920 => 0.003873479326213
921 => 0.0038731210948371
922 => 0.003944094373458
923 => 0.0039995495156889
924 => 0.0039553162486482
925 => 0.0039452451911689
926 => 0.004052777737013
927 => 0.0040390932403734
928 => 0.0040272425545391
929 => 0.004332685161706
930 => 0.0040909035041495
1001 => 0.0039854729010404
1002 => 0.0038549825089643
1003 => 0.0038974708386139
1004 => 0.0039064237539545
1005 => 0.0035926178836726
1006 => 0.0034653068811812
1007 => 0.0034216185427401
1008 => 0.0033964752863048
1009 => 0.0034079333839915
1010 => 0.0032933385496581
1011 => 0.0033703481735538
1012 => 0.0032711187334813
1013 => 0.0032544825949326
1014 => 0.0034319171259511
1015 => 0.0034566061043848
1016 => 0.0033512752521221
1017 => 0.0034189147107908
1018 => 0.0033943877028187
1019 => 0.0032728197374255
1020 => 0.0032681767353409
1021 => 0.0032071782036273
1022 => 0.0031117273131386
1023 => 0.0030681036948959
1024 => 0.0030453841357575
1025 => 0.0030547586686534
1026 => 0.0030500186179558
1027 => 0.0030190865808601
1028 => 0.0030517916061144
1029 => 0.0029682437812392
1030 => 0.0029349743641834
1031 => 0.0029199473403439
1101 => 0.0028457938369338
1102 => 0.0029638050370719
1103 => 0.002987054730165
1104 => 0.0030103502323357
1105 => 0.0032131216742169
1106 => 0.0032029917860066
1107 => 0.0032945610419715
1108 => 0.0032910028290698
1109 => 0.003264885793945
1110 => 0.0031547023187973
1111 => 0.0031986194881596
1112 => 0.0030634492671059
1113 => 0.0031647279874009
1114 => 0.0031185086089587
1115 => 0.0031491011690571
1116 => 0.0030940929875803
1117 => 0.0031245367864417
1118 => 0.0029925680949041
1119 => 0.0028693375875959
1120 => 0.0029189291410595
1121 => 0.0029728408311565
1122 => 0.0030897351117299
1123 => 0.0030201138425772
1124 => 0.0030451522836362
1125 => 0.0029612776974731
1126 => 0.0027882204686277
1127 => 0.002789199953749
1128 => 0.0027625788693478
1129 => 0.0027395743656832
1130 => 0.0030281106828419
1201 => 0.002992226630719
1202 => 0.0029350500900499
1203 => 0.0030115831618409
1204 => 0.0030318197207656
1205 => 0.003032395827149
1206 => 0.0030882323807232
1207 => 0.0031180323593751
1208 => 0.0031232847347729
1209 => 0.0032111447582506
1210 => 0.0032405942792186
1211 => 0.0033618926882335
1212 => 0.0031155040393873
1213 => 0.0031104298273049
1214 => 0.0030126601391107
1215 => 0.0029506530571804
1216 => 0.0030169058170599
1217 => 0.0030755967179095
1218 => 0.0030144838290004
1219 => 0.0030224638821284
1220 => 0.0029404248218744
1221 => 0.0029697499256187
1222 => 0.0029950086554813
1223 => 0.0029810622694907
1224 => 0.00296018385465
1225 => 0.003070784733342
1226 => 0.0030645441983179
1227 => 0.0031675382792592
1228 => 0.0032478295305302
1229 => 0.003391725806586
1230 => 0.0032415625410393
1231 => 0.0032360899947979
]
'min_raw' => 0.0027395743656832
'max_raw' => 0.007920915159792
'avg_raw' => 0.0053302447627376
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002739'
'max' => '$0.00792'
'avg' => '$0.00533'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00048172161678541
'max_diff' => -0.0026756891865919
'year' => 2030
]
5 => [
'items' => [
101 => 0.003289585012132
102 => 0.0032405860894102
103 => 0.003271551717185
104 => 0.0033867367652247
105 => 0.0033891704437836
106 => 0.003348403192305
107 => 0.0033459225013476
108 => 0.0033537522979389
109 => 0.0033996116611336
110 => 0.0033835869905175
111 => 0.0034021311450494
112 => 0.0034253208942498
113 => 0.0035212435291926
114 => 0.0035443701517327
115 => 0.0034881844487392
116 => 0.0034932573886349
117 => 0.0034722423933832
118 => 0.0034519421712873
119 => 0.0034975741059496
120 => 0.003580967363443
121 => 0.0035804485783162
122 => 0.0035997941931214
123 => 0.0036118463508773
124 => 0.0035601096670703
125 => 0.0035264309883225
126 => 0.0035393455367844
127 => 0.0035599961810173
128 => 0.0035326488111821
129 => 0.0033638481760257
130 => 0.0034150515057058
131 => 0.0034065287679322
201 => 0.0033943913529421
202 => 0.0034458766968791
203 => 0.0034409108098571
204 => 0.0032921632139994
205 => 0.0033016855524758
206 => 0.0032927422989411
207 => 0.0033216397807292
208 => 0.0032390255305602
209 => 0.0032644371174967
210 => 0.0032803750266045
211 => 0.0032897625775097
212 => 0.0033236768484834
213 => 0.0033196974002217
214 => 0.0033234294803921
215 => 0.0033737153912105
216 => 0.0036280442720893
217 => 0.0036418868319305
218 => 0.0035737210045941
219 => 0.0036009519081035
220 => 0.0035486745281094
221 => 0.0035837686835275
222 => 0.0036077792133696
223 => 0.0034992802459724
224 => 0.0034928556412756
225 => 0.0034403624939381
226 => 0.0034685693379534
227 => 0.0034236902209812
228 => 0.0034347019864814
301 => 0.0034039121301546
302 => 0.0034593277413435
303 => 0.0035212910053682
304 => 0.0035369453728642
305 => 0.003495765471611
306 => 0.003465948509216
307 => 0.0034135997455683
308 => 0.0035006569061827
309 => 0.0035261150729652
310 => 0.0035005231852704
311 => 0.0034945929856978
312 => 0.0034833552682232
313 => 0.0034969771205841
314 => 0.0035259764223215
315 => 0.0035123008871552
316 => 0.0035213338190645
317 => 0.0034869095973452
318 => 0.0035601267940654
319 => 0.003676413323135
320 => 0.0036767872033407
321 => 0.0036631115944582
322 => 0.0036575158299485
323 => 0.0036715478345674
324 => 0.0036791596214501
325 => 0.0037245365513579
326 => 0.0037732278050456
327 => 0.0040004486403478
328 => 0.0039366459390338
329 => 0.0041382497815419
330 => 0.0042976922459832
331 => 0.0043455020694951
401 => 0.0043015192814901
402 => 0.0041510565396286
403 => 0.0041436741196925
404 => 0.0043685289797647
405 => 0.0043049971827892
406 => 0.0042974402776955
407 => 0.0042170475750909
408 => 0.0042645696191602
409 => 0.0042541758510159
410 => 0.0042377687795196
411 => 0.0043284375291894
412 => 0.0044981613345162
413 => 0.0044717082877962
414 => 0.0044519623155413
415 => 0.0043654412130864
416 => 0.0044175462419521
417 => 0.0043989926391791
418 => 0.0044787106910992
419 => 0.0044314874831128
420 => 0.0043045158669419
421 => 0.004324736515321
422 => 0.0043216802049968
423 => 0.0043845788548965
424 => 0.0043656982414371
425 => 0.0043179934621959
426 => 0.0044975812370009
427 => 0.0044859198058248
428 => 0.0045024530490582
429 => 0.0045097314940371
430 => 0.0046190434078694
501 => 0.0046638250013754
502 => 0.0046739912071134
503 => 0.0047165302574114
504 => 0.0046729327967898
505 => 0.0048473537237386
506 => 0.0049633334624163
507 => 0.0050980498971533
508 => 0.005294906816668
509 => 0.0053689268394339
510 => 0.0053555557848487
511 => 0.0055048104545278
512 => 0.0057730177781962
513 => 0.005409768153303
514 => 0.0057922708903546
515 => 0.0056711749400105
516 => 0.0053840586201678
517 => 0.005365571714049
518 => 0.0055600102193355
519 => 0.0059912561100483
520 => 0.0058832339055751
521 => 0.0059914327956769
522 => 0.0058652130430507
523 => 0.0058589451684693
524 => 0.0059853025840196
525 => 0.0062805435728372
526 => 0.0061402856459929
527 => 0.0059391915152071
528 => 0.0060876762920081
529 => 0.0059590450367257
530 => 0.005669202816953
531 => 0.0058831513030312
601 => 0.0057400900432927
602 => 0.0057818429244393
603 => 0.0060825364136531
604 => 0.0060463561774946
605 => 0.0060931767532834
606 => 0.006010539662524
607 => 0.0059333435890817
608 => 0.0057892513853458
609 => 0.0057465927874794
610 => 0.0057583820892341
611 => 0.005746586945287
612 => 0.0056659686815725
613 => 0.0056485591751991
614 => 0.0056195425685154
615 => 0.0056285360282467
616 => 0.0055739763185737
617 => 0.0056769417633378
618 => 0.0056960530572144
619 => 0.0057709827213083
620 => 0.0057787621676041
621 => 0.0059874402155484
622 => 0.0058725038534328
623 => 0.005949613088268
624 => 0.0059427157125241
625 => 0.0053902813014316
626 => 0.0054664018891101
627 => 0.0055848216355815
628 => 0.0055314737003103
629 => 0.0054560522013312
630 => 0.0053951452970606
701 => 0.00530286510904
702 => 0.005432747701595
703 => 0.0056035294993309
704 => 0.0057830934758276
705 => 0.0059988278280905
706 => 0.0059506784320901
707 => 0.0057790604721737
708 => 0.0057867591284885
709 => 0.0058343491925174
710 => 0.0057727157355868
711 => 0.00575453882591
712 => 0.0058318519642532
713 => 0.0058323843773464
714 => 0.0057614676364957
715 => 0.0056826566566667
716 => 0.0056823264357836
717 => 0.0056683027831468
718 => 0.0058677078197011
719 => 0.0059773604276828
720 => 0.0059899319224739
721 => 0.005976514265919
722 => 0.0059816781893992
723 => 0.005917873752845
724 => 0.0060637117741901
725 => 0.0061975471644617
726 => 0.0061616764208928
727 => 0.0061079010769564
728 => 0.0060650664253396
729 => 0.0061515859382767
730 => 0.00614773336056
731 => 0.0061963782290831
801 => 0.0061941714168606
802 => 0.0061778139772023
803 => 0.0061616770050685
804 => 0.0062256582755382
805 => 0.0062072326971507
806 => 0.0061887784987507
807 => 0.006151765778663
808 => 0.0061567964220391
809 => 0.006103030363174
810 => 0.0060781557241755
811 => 0.005704100836243
812 => 0.0056041411475913
813 => 0.0056355905005082
814 => 0.0056459444440705
815 => 0.0056024418594675
816 => 0.0056648133908912
817 => 0.0056550928537866
818 => 0.0056929097773365
819 => 0.0056692834053225
820 => 0.0056702530398711
821 => 0.0057397331622908
822 => 0.0057599035374188
823 => 0.0057496447218338
824 => 0.0057568296446179
825 => 0.0059224031576112
826 => 0.0058988638988064
827 => 0.0058863591367212
828 => 0.0058898230412779
829 => 0.0059321306237839
830 => 0.0059439744369772
831 => 0.0058937913682272
901 => 0.0059174579935545
902 => 0.0060182274804565
903 => 0.0060534910978132
904 => 0.0061660356369191
905 => 0.0061182247163873
906 => 0.0062059837302317
907 => 0.0064757250195369
908 => 0.0066912130261114
909 => 0.006493041349847
910 => 0.0068887576316889
911 => 0.007196879519232
912 => 0.0071850532879842
913 => 0.0071313251099034
914 => 0.0067805365327798
915 => 0.0064577356541476
916 => 0.0067277722959727
917 => 0.0067284606749063
918 => 0.0067052642878898
919 => 0.0065611935203347
920 => 0.0067002509374704
921 => 0.0067112888102603
922 => 0.0067051105367052
923 => 0.0065946518170125
924 => 0.0064260017682255
925 => 0.0064589555840673
926 => 0.0065129346066558
927 => 0.006410741055692
928 => 0.0063780840240334
929 => 0.0064387996591412
930 => 0.0066344380860632
1001 => 0.0065974537747098
1002 => 0.0065964879648751
1003 => 0.0067547225326336
1004 => 0.0066414607312755
1005 => 0.0064593712372178
1006 => 0.0064133912385029
1007 => 0.0062501932189034
1008 => 0.0063629146723322
1009 => 0.0063669713167669
1010 => 0.0063052349287093
1011 => 0.00646438080486
1012 => 0.0064629142475942
1013 => 0.0066139995712616
1014 => 0.0069028179650576
1015 => 0.0068174001541221
1016 => 0.0067180685334356
1017 => 0.0067288686347713
1018 => 0.0068473190895026
1019 => 0.0067757012406112
1020 => 0.0068014555184099
1021 => 0.0068472801073186
1022 => 0.0068749272195678
1023 => 0.0067248906407835
1024 => 0.0066899099371898
1025 => 0.0066183516941955
1026 => 0.0065996834842962
1027 => 0.0066579661801033
1028 => 0.0066426107489161
1029 => 0.0063666303715103
1030 => 0.006337788886531
1031 => 0.0063386734136992
1101 => 0.0062661501283811
1102 => 0.006155534710688
1103 => 0.0064462254238819
1104 => 0.0064228788913985
1105 => 0.0063971061264149
1106 => 0.0064002631430681
1107 => 0.0065264421292431
1108 => 0.00645325194507
1109 => 0.0066478400453295
1110 => 0.0066078385817698
1111 => 0.0065668112316092
1112 => 0.0065611400020934
1113 => 0.0065453479725706
1114 => 0.0064911912273816
1115 => 0.00642579370325
1116 => 0.0063826125931817
1117 => 0.005887622733585
1118 => 0.0059794899723026
1119 => 0.0060851748564849
1120 => 0.0061216568549991
1121 => 0.0060592518720632
1122 => 0.0064936553564707
1123 => 0.0065730250590881
1124 => 0.0063326090527024
1125 => 0.0062876370340285
1126 => 0.006496603714528
1127 => 0.0063705712610491
1128 => 0.0064273236671335
1129 => 0.0063046560070853
1130 => 0.0065539072219438
1201 => 0.0065520083452966
1202 => 0.0064550439931226
1203 => 0.0065369975995968
1204 => 0.0065227561436927
1205 => 0.006413283628901
1206 => 0.0065573776959253
1207 => 0.0065574491647848
1208 => 0.0064641230840042
1209 => 0.0063551386533585
1210 => 0.0063356548112564
1211 => 0.0063209763535184
1212 => 0.0064237136663358
1213 => 0.0065158276197567
1214 => 0.0066872288500873
1215 => 0.0067303231917852
1216 => 0.0068985232763849
1217 => 0.0067983683155192
1218 => 0.0068427657124471
1219 => 0.0068909653672075
1220 => 0.0069140740541833
1221 => 0.0068764196888368
1222 => 0.007137703654137
1223 => 0.0071597640263422
1224 => 0.0071671606783211
1225 => 0.0070790571953195
1226 => 0.0071573137091019
1227 => 0.0071207000778864
1228 => 0.0072159585747493
1229 => 0.0072308963233789
1230 => 0.0072182445817154
1231 => 0.0072229860589068
]
'min_raw' => 0.0032390255305602
'max_raw' => 0.0072308963233789
'avg_raw' => 0.0052349609269695
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003239'
'max' => '$0.00723'
'avg' => '$0.005234'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.000499451164877
'max_diff' => -0.00069001883641309
'year' => 2031
]
6 => [
'items' => [
101 => 0.0070000262881731
102 => 0.006988464647854
103 => 0.0068308208617275
104 => 0.0068950618698181
105 => 0.0067749663843443
106 => 0.0068130498999087
107 => 0.0068298367506963
108 => 0.0068210682524902
109 => 0.0068986939600291
110 => 0.0068326962507367
111 => 0.0066585174448862
112 => 0.0064842911841365
113 => 0.0064821039153544
114 => 0.0064362332162479
115 => 0.0064030771024316
116 => 0.0064094641462289
117 => 0.0064319729216461
118 => 0.0064017688514856
119 => 0.0064082144212396
120 => 0.0065152538257619
121 => 0.0065367198149687
122 => 0.0064637699963405
123 => 0.0061708659479394
124 => 0.0060989865597676
125 => 0.0061506520385553
126 => 0.0061259592673778
127 => 0.0049441272402916
128 => 0.0052217811446932
129 => 0.0050568086229335
130 => 0.0051328355509811
131 => 0.0049644413256918
201 => 0.0050448078762974
202 => 0.0050299671089171
203 => 0.0054764263708186
204 => 0.0054694555235286
205 => 0.0054727920992373
206 => 0.0053135286472606
207 => 0.0055672396507334
208 => 0.0056922268141968
209 => 0.0056690950166653
210 => 0.005674916791749
211 => 0.0055748794073483
212 => 0.0054737606797892
213 => 0.0053616044488655
214 => 0.0055699768629926
215 => 0.0055468094075774
216 => 0.0055999472149125
217 => 0.0057350916202417
218 => 0.0057549921472901
219 => 0.0057817386574544
220 => 0.0057721519375067
221 => 0.0060005465002561
222 => 0.0059728864117113
223 => 0.0060395392667537
224 => 0.0059024292869672
225 => 0.0057472763302401
226 => 0.0057767658349817
227 => 0.0057739257585354
228 => 0.0057377683256869
229 => 0.0057051270120194
301 => 0.005650788421396
302 => 0.0058227237627267
303 => 0.0058157435018594
304 => 0.0059287458116341
305 => 0.0059087715557356
306 => 0.0057753785863155
307 => 0.0057801427423144
308 => 0.0058121839809822
309 => 0.0059230790738517
310 => 0.005956000287729
311 => 0.0059407498697775
312 => 0.0059768464778835
313 => 0.0060053757651532
314 => 0.00598042931712
315 => 0.0063336184138681
316 => 0.0061869496766403
317 => 0.0062584349986506
318 => 0.0062754838267341
319 => 0.0062318136120965
320 => 0.0062412841179382
321 => 0.0062556293537301
322 => 0.0063427308163732
323 => 0.0065713102573601
324 => 0.0066725465357803
325 => 0.0069771208743176
326 => 0.0066641402721346
327 => 0.0066455692984435
328 => 0.0067004323340779
329 => 0.0068792497132673
330 => 0.0070241644036379
331 => 0.0070722409667628
401 => 0.0070785950782374
402 => 0.0071687899067293
403 => 0.0072204879003869
404 => 0.0071578378821909
405 => 0.0071047485515001
406 => 0.0069145891586559
407 => 0.0069366006261645
408 => 0.0070882378095763
409 => 0.0073024342625311
410 => 0.0074862371025088
411 => 0.0074218757541243
412 => 0.0079129074102672
413 => 0.0079615911932893
414 => 0.0079548646686108
415 => 0.0080657735714535
416 => 0.0078456419855161
417 => 0.0077515314676792
418 => 0.0071162270673849
419 => 0.0072947216901379
420 => 0.0075541741069309
421 => 0.0075198346066717
422 => 0.0073314133264136
423 => 0.0074860941680716
424 => 0.0074349518445023
425 => 0.0073946137720063
426 => 0.0075794103020307
427 => 0.0073762189262458
428 => 0.0075521471175242
429 => 0.0073265173924656
430 => 0.0074221697513423
501 => 0.0073678728462599
502 => 0.0074030095982266
503 => 0.0071976008641908
504 => 0.0073084344310614
505 => 0.007192989823422
506 => 0.0071929350876466
507 => 0.0071903866415345
508 => 0.0073262067104624
509 => 0.0073306357980341
510 => 0.0072302645618836
511 => 0.0072157994986609
512 => 0.0072692844188417
513 => 0.0072066675850328
514 => 0.0072359656074663
515 => 0.0072075549922859
516 => 0.0072011591643897
517 => 0.0071501961195523
518 => 0.0071282398385782
519 => 0.0071368494620918
520 => 0.0071074603784747
521 => 0.0070897523925459
522 => 0.0071868640774297
523 => 0.0071349812216705
524 => 0.0071789122856797
525 => 0.0071288472936989
526 => 0.0069553002192147
527 => 0.0068554914614519
528 => 0.0065276771255736
529 => 0.0066206448645763
530 => 0.0066822825717171
531 => 0.0066619113098748
601 => 0.006705676662944
602 => 0.006708363500175
603 => 0.0066941349377572
604 => 0.0066776600852692
605 => 0.0066696410381945
606 => 0.0067294084452072
607 => 0.0067641054366565
608 => 0.0066884687402349
609 => 0.0066707481205331
610 => 0.0067472209966318
611 => 0.0067938694068751
612 => 0.0071382950586339
613 => 0.0071127788938714
614 => 0.0071768194601308
615 => 0.0071696094751526
616 => 0.0072367341910547
617 => 0.0073464547325332
618 => 0.0071233621933616
619 => 0.0071620833442022
620 => 0.0071525898122181
621 => 0.0072562377050833
622 => 0.0072565612824913
623 => 0.0071944191931223
624 => 0.0072281074279095
625 => 0.0072093035794397
626 => 0.0072432846751172
627 => 0.0071124381099345
628 => 0.0072717951023131
629 => 0.007362140248254
630 => 0.0073633946906931
701 => 0.0074062175728456
702 => 0.0074497281012467
703 => 0.0075332427715442
704 => 0.0074473989224198
705 => 0.0072929741945752
706 => 0.0073041231611367
707 => 0.0072135839997032
708 => 0.0072151059793641
709 => 0.0072069815326544
710 => 0.0072313636088102
711 => 0.0071177886045276
712 => 0.0071444444310223
713 => 0.0071071261178335
714 => 0.0071620022214775
715 => 0.0071029646053014
716 => 0.0071525852341495
717 => 0.0071739998526104
718 => 0.0072530202557549
719 => 0.0070912932275075
720 => 0.0067615208689537
721 => 0.0068308430168251
722 => 0.0067283101149861
723 => 0.0067377999254216
724 => 0.0067569708527934
725 => 0.0066948316048442
726 => 0.0067066858151202
727 => 0.0067062622993123
728 => 0.006702612668882
729 => 0.0066864478505588
730 => 0.0066630056658784
731 => 0.0067563921145214
801 => 0.0067722602919002
802 => 0.0068075332845621
803 => 0.0069124817848243
804 => 0.0069019949547921
805 => 0.0069190994096691
806 => 0.00688176048071
807 => 0.0067395319712453
808 => 0.0067472556635913
809 => 0.0066509410962737
810 => 0.0068050703045311
811 => 0.0067685704736096
812 => 0.0067450387951691
813 => 0.0067386179586871
814 => 0.0068438266059822
815 => 0.0068753066821964
816 => 0.006855690411249
817 => 0.006815456867238
818 => 0.0068927171657187
819 => 0.0069133887622418
820 => 0.0069180163703642
821 => 0.0070549068060793
822 => 0.0069256670250577
823 => 0.0069567763248825
824 => 0.0071994822015747
825 => 0.0069793814625365
826 => 0.0070959737328372
827 => 0.0070902671479229
828 => 0.0071499118081414
829 => 0.0070853745448878
830 => 0.007086174561613
831 => 0.0071391349792078
901 => 0.0070647616241575
902 => 0.0070463457355322
903 => 0.0070209043172935
904 => 0.0070764547232622
905 => 0.0071097546793116
906 => 0.0073781278689474
907 => 0.0075515091887565
908 => 0.0075439822484029
909 => 0.007612764393393
910 => 0.0075817774071027
911 => 0.0074817122544174
912 => 0.0076525112684058
913 => 0.0075984633138456
914 => 0.0076029189615513
915 => 0.0076027531221211
916 => 0.0076386902869495
917 => 0.0076132255120758
918 => 0.0075630318268943
919 => 0.007596352737559
920 => 0.0076953039297896
921 => 0.0080024514666666
922 => 0.0081743352974667
923 => 0.0079921038442288
924 => 0.0081178046604959
925 => 0.0080424289625161
926 => 0.0080287309559604
927 => 0.0081076803577935
928 => 0.0081867679501033
929 => 0.0081817304123782
930 => 0.0081243168815541
1001 => 0.0080918854348059
1002 => 0.0083374672149146
1003 => 0.0085184076871222
1004 => 0.008506068759958
1005 => 0.0085605287716268
1006 => 0.0087204250502714
1007 => 0.0087350439621053
1008 => 0.0087332023152261
1009 => 0.0086969678169201
1010 => 0.0088544064684013
1011 => 0.0089857445613364
1012 => 0.0086885805774776
1013 => 0.0088017367323689
1014 => 0.0088525361759632
1015 => 0.0089271248306753
1016 => 0.0090529683936848
1017 => 0.0091896678814696
1018 => 0.0092089986878759
1019 => 0.0091952825556664
1020 => 0.0091051255687928
1021 => 0.009254703779491
1022 => 0.0093423231872774
1023 => 0.0093944985394796
1024 => 0.0095268065515138
1025 => 0.0088528498960326
1026 => 0.0083757898774638
1027 => 0.0083012900667341
1028 => 0.0084527883614133
1029 => 0.008492737253544
1030 => 0.0084766339052178
1031 => 0.0079396594819193
1101 => 0.0082984630075249
1102 => 0.0086845054320192
1103 => 0.0086993348937513
1104 => 0.0088925958032196
1105 => 0.0089555294773748
1106 => 0.0091111298407832
1107 => 0.0091013969956866
1108 => 0.009139283208034
1109 => 0.0091305738239131
1110 => 0.009418790731605
1111 => 0.0097367367814142
1112 => 0.0097257273207159
1113 => 0.0096800188142889
1114 => 0.0097479037407915
1115 => 0.010076058137364
1116 => 0.010045846939095
1117 => 0.01007519454483
1118 => 0.01046210707236
1119 => 0.010965148395814
1120 => 0.010731435196547
1121 => 0.011238525589796
1122 => 0.01155771211264
1123 => 0.012109712199396
1124 => 0.012040599069877
1125 => 0.012255488652887
1126 => 0.011916872143691
1127 => 0.01113934019289
1128 => 0.011016292785403
1129 => 0.011262636811249
1130 => 0.011868249560892
1201 => 0.01124356391057
1202 => 0.011369937004037
1203 => 0.011333541544617
1204 => 0.011331602185255
1205 => 0.011405619644149
1206 => 0.011298253459533
1207 => 0.010860824308596
1208 => 0.011061295510684
1209 => 0.01098388395214
1210 => 0.011069777847759
1211 => 0.011533311777075
1212 => 0.011328372377655
1213 => 0.011112485368292
1214 => 0.011383255587196
1215 => 0.011728039122604
1216 => 0.011706463188593
1217 => 0.011664596858573
1218 => 0.011900595168849
1219 => 0.012290395236408
1220 => 0.012395756628326
1221 => 0.012473532253821
1222 => 0.012484256198547
1223 => 0.012594719494117
1224 => 0.012000730513502
1225 => 0.012943406280456
1226 => 0.013106180344517
1227 => 0.013075585566767
1228 => 0.013256502088391
1229 => 0.01320327185832
1230 => 0.013126149606515
1231 => 0.013412940775336
]
'min_raw' => 0.0049441272402916
'max_raw' => 0.013412940775336
'avg_raw' => 0.0091785340078137
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004944'
'max' => '$0.013412'
'avg' => '$0.009178'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0017051017097314
'max_diff' => 0.0061820444519569
'year' => 2032
]
7 => [
'items' => [
101 => 0.013084157843136
102 => 0.012617491863499
103 => 0.012361469677464
104 => 0.012698620344756
105 => 0.012904506492334
106 => 0.013040584139065
107 => 0.013081761152746
108 => 0.012046840187197
109 => 0.011489075186115
110 => 0.01184659615702
111 => 0.012282796416303
112 => 0.011998307399037
113 => 0.012009458829905
114 => 0.011603852253682
115 => 0.012318683598211
116 => 0.012214538683991
117 => 0.012754842683194
118 => 0.012625894797573
119 => 0.013066491734443
120 => 0.012950467794954
121 => 0.013432076680961
122 => 0.01362420350463
123 => 0.013946814343722
124 => 0.01418412819022
125 => 0.014323483419974
126 => 0.014315117054688
127 => 0.014867311901474
128 => 0.014541701892543
129 => 0.014132658980938
130 => 0.014125260685181
131 => 0.014337109805284
201 => 0.014781087443052
202 => 0.014896204384913
203 => 0.014960539050872
204 => 0.014862008270451
205 => 0.014508581942435
206 => 0.01435597424591
207 => 0.01448600042482
208 => 0.01432698958129
209 => 0.014601486907786
210 => 0.014978430366529
211 => 0.014900593032894
212 => 0.015160791569209
213 => 0.01543006968061
214 => 0.015815149473951
215 => 0.015915823591394
216 => 0.016082234079233
217 => 0.016253525134217
218 => 0.016308539204654
219 => 0.016413578134983
220 => 0.016413024527972
221 => 0.016729566414453
222 => 0.017078721917727
223 => 0.017210520037245
224 => 0.017513582545685
225 => 0.016994598620558
226 => 0.017388253889425
227 => 0.017743340795773
228 => 0.01731999154751
301 => 0.017903479858516
302 => 0.01792613538742
303 => 0.018268206975979
304 => 0.017921451887987
305 => 0.017715549823619
306 => 0.0183099813684
307 => 0.018597608068501
308 => 0.018510972565647
309 => 0.017851672111204
310 => 0.017467930967992
311 => 0.016463606378067
312 => 0.017653272238426
313 => 0.018232723775979
314 => 0.017850171471707
315 => 0.018043108602243
316 => 0.019095711026373
317 => 0.019496473878522
318 => 0.019413118006819
319 => 0.019427203776982
320 => 0.019643448137641
321 => 0.020602394720749
322 => 0.020027771699943
323 => 0.020467049468635
324 => 0.020700040813216
325 => 0.020916456158811
326 => 0.020385008468802
327 => 0.019693602832617
328 => 0.019474605644403
329 => 0.017812134184329
330 => 0.017725595325085
331 => 0.017677018440995
401 => 0.017370748058146
402 => 0.017130103431745
403 => 0.016938733890268
404 => 0.016436523065652
405 => 0.016606004476407
406 => 0.015805585241513
407 => 0.016317665102882
408 => 0.015040176677194
409 => 0.016104106998881
410 => 0.015525058095763
411 => 0.015913873860736
412 => 0.015912517319161
413 => 0.015196584221694
414 => 0.014783648952218
415 => 0.015046787377609
416 => 0.015328892657583
417 => 0.015374663290142
418 => 0.01574042014933
419 => 0.015842495026811
420 => 0.015533203382621
421 => 0.015013703569061
422 => 0.015134371527222
423 => 0.014781203619897
424 => 0.014162290446717
425 => 0.014606804692882
426 => 0.014758581400435
427 => 0.014825614641018
428 => 0.014216984617854
429 => 0.014025739850575
430 => 0.013923922741175
501 => 0.014935137075919
502 => 0.014990533679864
503 => 0.014707116821793
504 => 0.015988187894963
505 => 0.015698242056326
506 => 0.016022182596539
507 => 0.015123422174801
508 => 0.015157756033252
509 => 0.014732268446327
510 => 0.014970513063914
511 => 0.014802129447186
512 => 0.014951265253192
513 => 0.015040656640403
514 => 0.015466074409002
515 => 0.01610896458644
516 => 0.015402531180806
517 => 0.015094728029658
518 => 0.015285687373479
519 => 0.015794237270404
520 => 0.016564716396434
521 => 0.016108577246487
522 => 0.016311004055488
523 => 0.016355225307913
524 => 0.016018885185931
525 => 0.016577117736482
526 => 0.016876279095396
527 => 0.017183156746921
528 => 0.017449610013223
529 => 0.017060583064517
530 => 0.017476897664455
531 => 0.017141421586325
601 => 0.016840464863363
602 => 0.016840921290482
603 => 0.016652126741892
604 => 0.016286313514355
605 => 0.016218851942615
606 => 0.016569795558262
607 => 0.016851219103528
608 => 0.016874398494643
609 => 0.017030209029366
610 => 0.017122416098839
611 => 0.018026170729104
612 => 0.018389668317647
613 => 0.01883414628826
614 => 0.01900729550722
615 => 0.019528412578858
616 => 0.019107568220451
617 => 0.019016515896274
618 => 0.017752456336576
619 => 0.017959446018662
620 => 0.018290856471217
621 => 0.017757921172872
622 => 0.018095945954876
623 => 0.018162679207187
624 => 0.017739812235365
625 => 0.017965683756018
626 => 0.017365835963401
627 => 0.016122039629124
628 => 0.01657850243736
629 => 0.016914612707942
630 => 0.016434941909725
701 => 0.017294733249706
702 => 0.016792460898585
703 => 0.016633264676604
704 => 0.016012183457106
705 => 0.016305309885101
706 => 0.016701767576129
707 => 0.016456802816227
708 => 0.016965141474668
709 => 0.017685084583989
710 => 0.018198158917044
711 => 0.018237546393466
712 => 0.017907673970622
713 => 0.018436296633447
714 => 0.018440147072436
715 => 0.017843858549282
716 => 0.017478635148999
717 => 0.017395655624018
718 => 0.017602954746515
719 => 0.017854654150754
720 => 0.018251513958663
721 => 0.018491328028932
722 => 0.019116635936639
723 => 0.019285826327482
724 => 0.019471715271696
725 => 0.019720120227195
726 => 0.020018394065994
727 => 0.019365787887441
728 => 0.019391717147525
729 => 0.018784019310003
730 => 0.018134607017926
731 => 0.018627429997228
801 => 0.019271730485171
802 => 0.019123927241348
803 => 0.019107296357071
804 => 0.019135264891402
805 => 0.019023826072362
806 => 0.01851979242396
807 => 0.01826666988115
808 => 0.018593262539823
809 => 0.01876683200294
810 => 0.019036023103387
811 => 0.019002839618322
812 => 0.019696246984061
813 => 0.019965684118836
814 => 0.019896750569896
815 => 0.019909436001879
816 => 0.020397239064396
817 => 0.020939776394265
818 => 0.021447934197794
819 => 0.021964854141429
820 => 0.021341686973648
821 => 0.021025281117456
822 => 0.021351731195991
823 => 0.021178512189203
824 => 0.022173879982301
825 => 0.022242797088676
826 => 0.023238092905353
827 => 0.024182747153
828 => 0.023589426745292
829 => 0.024148901166023
830 => 0.024754018366663
831 => 0.025921387623424
901 => 0.025528258726292
902 => 0.025227128152205
903 => 0.024942561214744
904 => 0.02553469983787
905 => 0.026296476716876
906 => 0.026460556160406
907 => 0.026726427542096
908 => 0.026446896293455
909 => 0.026783560893086
910 => 0.027972134867704
911 => 0.027650971687929
912 => 0.027194868343092
913 => 0.028133133344195
914 => 0.028472687800682
915 => 0.030855858802353
916 => 0.033864710635846
917 => 0.032619026219593
918 => 0.03184578970444
919 => 0.032027518626917
920 => 0.033126249460446
921 => 0.033479126932202
922 => 0.03251988431981
923 => 0.032858705027112
924 => 0.034725640436465
925 => 0.035727191385123
926 => 0.034366950670607
927 => 0.030614100487185
928 => 0.027153801227224
929 => 0.028071628410272
930 => 0.027967575291208
1001 => 0.029973364483622
1002 => 0.027643312052308
1003 => 0.027682544159498
1004 => 0.029729810948243
1005 => 0.029183635268044
1006 => 0.028298900615018
1007 => 0.027160260769297
1008 => 0.025055379703045
1009 => 0.023191027843714
1010 => 0.026847451174453
1011 => 0.026689779551657
1012 => 0.026461447676223
1013 => 0.026969575556912
1014 => 0.029436900310919
1015 => 0.029380020489388
1016 => 0.02901818008515
1017 => 0.02929263284265
1018 => 0.028250787719669
1019 => 0.028519294930233
1020 => 0.027153253098142
1021 => 0.027770761057194
1022 => 0.028297002371807
1023 => 0.028402653106852
1024 => 0.028640689607567
1025 => 0.026606693771097
1026 => 0.027519898186692
1027 => 0.028056320225172
1028 => 0.02563274594012
1029 => 0.028008413953942
1030 => 0.026571286428817
1031 => 0.026083503761858
1101 => 0.026740238862438
1102 => 0.026484308555046
1103 => 0.026264274705483
1104 => 0.026141492036765
1105 => 0.026623725813423
1106 => 0.026601229031348
1107 => 0.025812200975193
1108 => 0.024782946040837
1109 => 0.025128397780948
1110 => 0.025002891925139
1111 => 0.024548042513106
1112 => 0.024854556098089
1113 => 0.023504825392802
1114 => 0.021182683867254
1115 => 0.02271676168815
1116 => 0.022657701360801
1117 => 0.022627920465579
1118 => 0.023780737549185
1119 => 0.023669920786612
1120 => 0.02346878727742
1121 => 0.024544348538479
1122 => 0.024151754209852
1123 => 0.025361637423824
1124 => 0.026158544758885
1125 => 0.025956423281462
1126 => 0.026705918481875
1127 => 0.025136356291326
1128 => 0.025657701891121
1129 => 0.025765150496685
1130 => 0.024531076279473
1201 => 0.023688051779463
1202 => 0.023631831656495
1203 => 0.02217014334941
1204 => 0.022950965444719
1205 => 0.023638056575977
1206 => 0.02330899324453
1207 => 0.023204821624281
1208 => 0.023737011840064
1209 => 0.023778367577732
1210 => 0.022835452376233
1211 => 0.023031514304865
1212 => 0.023849125139847
1213 => 0.023010912609597
1214 => 0.021382402584561
1215 => 0.020978509582439
1216 => 0.020924622810731
1217 => 0.019829232955819
1218 => 0.02100549964413
1219 => 0.020492027712695
1220 => 0.022114079391761
1221 => 0.021187572171916
1222 => 0.021147632297455
1223 => 0.021087257319302
1224 => 0.020144410021194
1225 => 0.020350833658408
1226 => 0.021037017267715
1227 => 0.021281855309927
1228 => 0.021256316696225
1229 => 0.021033654593683
1230 => 0.021135588164012
1231 => 0.020807224617971
]
'min_raw' => 0.011489075186115
'max_raw' => 0.035727191385123
'avg_raw' => 0.023608133285619
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.011489'
'max' => '$0.035727'
'avg' => '$0.0236081'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0065449479458229
'max_diff' => 0.022314250609787
'year' => 2033
]
8 => [
'items' => [
101 => 0.020691272615568
102 => 0.020325296200872
103 => 0.019787411974834
104 => 0.0198622080755
105 => 0.018796518678655
106 => 0.018215874534836
107 => 0.018055159888594
108 => 0.017840245546912
109 => 0.018079435035353
110 => 0.01879349971449
111 => 0.017932186214178
112 => 0.016455524632009
113 => 0.016544274509206
114 => 0.016743669133193
115 => 0.01637209857052
116 => 0.016020438216504
117 => 0.016326178363215
118 => 0.015700497384364
119 => 0.016819279690261
120 => 0.016789019764238
121 => 0.017206032622842
122 => 0.017466799321293
123 => 0.016865816505585
124 => 0.016714670952665
125 => 0.016800770328791
126 => 0.015377739430163
127 => 0.017089740638974
128 => 0.01710454609652
129 => 0.016977772780356
130 => 0.01788936057194
131 => 0.019813095143546
201 => 0.019089308815664
202 => 0.01880903687295
203 => 0.018276239704974
204 => 0.018986160296937
205 => 0.01893164947196
206 => 0.018685130848801
207 => 0.01853603561633
208 => 0.018810748153668
209 => 0.018501995692844
210 => 0.01844653526693
211 => 0.018110505427429
212 => 0.017990558063111
213 => 0.017901753809812
214 => 0.017803989052655
215 => 0.018019633745483
216 => 0.017530954501113
217 => 0.016941655238219
218 => 0.016892661380816
219 => 0.01702793772869
220 => 0.016968088014896
221 => 0.016892374843412
222 => 0.016747817779795
223 => 0.016704930786993
224 => 0.016844292707789
225 => 0.016686961224515
226 => 0.016919112398375
227 => 0.016855980124596
228 => 0.016503328375261
301 => 0.016063793727189
302 => 0.016059880946866
303 => 0.01596518392792
304 => 0.015844573036501
305 => 0.015811021845711
306 => 0.016300429780838
307 => 0.017313489559802
308 => 0.017114601684725
309 => 0.017258318557318
310 => 0.017965263328654
311 => 0.018189979812891
312 => 0.018030481375082
313 => 0.017812150075972
314 => 0.017821755545083
315 => 0.018567859687518
316 => 0.018614393287692
317 => 0.018731968683022
318 => 0.018883086292825
319 => 0.018056217357482
320 => 0.017782810092587
321 => 0.017653254562423
322 => 0.017254273673816
323 => 0.017684540356142
324 => 0.017433842386207
325 => 0.017467670107414
326 => 0.0174456397596
327 => 0.017457669819192
328 => 0.016818966967806
329 => 0.017051676717617
330 => 0.016664751623757
331 => 0.016146702357459
401 => 0.016144965674667
402 => 0.016271757498673
403 => 0.01619633676039
404 => 0.015993381492913
405 => 0.016022210330736
406 => 0.015769639376275
407 => 0.016052877017552
408 => 0.016060999259631
409 => 0.015951937339681
410 => 0.01638830400533
411 => 0.016567083784288
412 => 0.016495296892244
413 => 0.016562047024573
414 => 0.01712286637386
415 => 0.017214304398057
416 => 0.017254915128349
417 => 0.017200502129649
418 => 0.016572297772767
419 => 0.016600161307326
420 => 0.016395717178479
421 => 0.016222983433394
422 => 0.016229891877329
423 => 0.016318699476117
424 => 0.016706527468523
425 => 0.017522688614833
426 => 0.01755366133373
427 => 0.01759120117257
428 => 0.017438507781995
429 => 0.017392453994318
430 => 0.017453210827755
501 => 0.017759718042595
502 => 0.018548137815059
503 => 0.018269457610684
504 => 0.018042886266611
505 => 0.018241650418559
506 => 0.018211052235332
507 => 0.017952772775969
508 => 0.017945523731771
509 => 0.017449802872316
510 => 0.017266546157594
511 => 0.017113403130244
512 => 0.016946174942278
513 => 0.016847036466912
514 => 0.016999358222705
515 => 0.017034196010473
516 => 0.016701141829303
517 => 0.016655747775087
518 => 0.016927727008905
519 => 0.016808039088509
520 => 0.016931141082753
521 => 0.016959701801367
522 => 0.016955102867861
523 => 0.016830134932899
524 => 0.016909785768046
525 => 0.016721387797865
526 => 0.016516533301753
527 => 0.01638584889612
528 => 0.016271809419434
529 => 0.016335085149113
530 => 0.0161095187265
531 => 0.016037355488151
601 => 0.016882801857299
602 => 0.017507342180269
603 => 0.017498261116627
604 => 0.017442982477172
605 => 0.017360849631804
606 => 0.017753709513382
607 => 0.017616844986122
608 => 0.017716425365117
609 => 0.017741772750947
610 => 0.01781849165371
611 => 0.017845912067235
612 => 0.01776302853286
613 => 0.017484861268128
614 => 0.016791694891766
615 => 0.016469024072402
616 => 0.016362537327504
617 => 0.016366407918434
618 => 0.016259639741509
619 => 0.016291087754627
620 => 0.016248703405931
621 => 0.016168437703374
622 => 0.016330128968163
623 => 0.016348762380171
624 => 0.016311021706903
625 => 0.01631991100169
626 => 0.016007434346281
627 => 0.016031191267728
628 => 0.015898909710227
629 => 0.015874108512873
630 => 0.015539712254583
701 => 0.014947280811509
702 => 0.015275545339684
703 => 0.014879047950626
704 => 0.014728888381475
705 => 0.015439720427235
706 => 0.015368372605253
707 => 0.015246256148171
708 => 0.015065620456849
709 => 0.014998620921826
710 => 0.014591552956504
711 => 0.014567501209489
712 => 0.014769255084863
713 => 0.014676152613305
714 => 0.014545401482574
715 => 0.014071834141098
716 => 0.01353938765652
717 => 0.01355545886905
718 => 0.013724820189275
719 => 0.014217261069316
720 => 0.01402485589817
721 => 0.013885263738909
722 => 0.013859122323605
723 => 0.014186336866903
724 => 0.014649413999236
725 => 0.01486667942896
726 => 0.014651375986553
727 => 0.014404046984676
728 => 0.014419100755008
729 => 0.014519246744819
730 => 0.01452977067236
731 => 0.01436878491797
801 => 0.014414101464851
802 => 0.014345261486307
803 => 0.013922790665048
804 => 0.013915149507561
805 => 0.013811468354762
806 => 0.013808328930661
807 => 0.013631941425274
808 => 0.013607263593961
809 => 0.013257035496059
810 => 0.013487556690686
811 => 0.013332935176236
812 => 0.013099884082432
813 => 0.013059705986018
814 => 0.013058498183923
815 => 0.013297789547989
816 => 0.013484760431775
817 => 0.013335624883679
818 => 0.013301669610249
819 => 0.013664223096245
820 => 0.013618084860404
821 => 0.013578129445725
822 => 0.01460795052111
823 => 0.013792766782002
824 => 0.01343730014269
825 => 0.012997342675257
826 => 0.013140595045111
827 => 0.013170780424255
828 => 0.012112762023373
829 => 0.011683524089903
830 => 0.011536225806626
831 => 0.011451453562109
901 => 0.011490085338438
902 => 0.011103720853727
903 => 0.011363364177332
904 => 0.011028805192149
905 => 0.010972715289534
906 => 0.011570948198946
907 => 0.011654188813465
908 => 0.011299058491096
909 => 0.011527109648433
910 => 0.011444415128635
911 => 0.011034540245707
912 => 0.011018886040015
913 => 0.010813225231561
914 => 0.01049140589011
915 => 0.010344325815501
916 => 0.010267725235637
917 => 0.010299332127804
918 => 0.010283350715938
919 => 0.010179061193264
920 => 0.0102893284693
921 => 0.010007641144611
922 => 0.0098954709822107
923 => 0.0098448063221825
924 => 0.0095947926082032
925 => 0.0099926756087475
926 => 0.010071063572253
927 => 0.010149605984261
928 => 0.010833264057614
929 => 0.010799110432267
930 => 0.011107842571914
1001 => 0.011095845808689
1002 => 0.011007790401332
1003 => 0.010636299122107
1004 => 0.010784368924811
1005 => 0.010328633087245
1006 => 0.010670101363774
1007 => 0.010514269502423
1008 => 0.010617414454699
1009 => 0.010431950530301
1010 => 0.01053459392368
1011 => 0.010089652266401
1012 => 0.0096741720073326
1013 => 0.0098413733922068
1014 => 0.010023140419363
1015 => 0.010417257647614
1016 => 0.010182524677864
1017 => 0.010266943530022
1018 => 0.0099841545068371
1019 => 0.0094006799773148
1020 => 0.0094039823797867
1021 => 0.0093142275351033
1022 => 0.0092366662448749
1023 => 0.010209486583138
1024 => 0.010088500996061
1025 => 0.0098957262972565
1026 => 0.010153762892168
1027 => 0.010221991863455
1028 => 0.010223934246349
1029 => 0.010412191085108
1030 => 0.010512663793701
1031 => 0.010530372544064
1101 => 0.01082659874741
1102 => 0.010925889863453
1103 => 0.011334855918231
1104 => 0.01050413938634
1105 => 0.010487031326034
1106 => 0.010157393996226
1107 => 0.0099483327903015
1108 => 0.010171708595855
1109 => 0.010369589065738
1110 => 0.010163542694015
1111 => 0.010190448000285
1112 => 0.0099138475808548
1113 => 0.010012719215542
1114 => 0.010097880786782
1115 => 0.010050859572709
1116 => 0.0099804665393893
1117 => 0.010353365123806
1118 => 0.010332324724272
1119 => 0.010679576458983
1120 => 0.010950284018399
1121 => 0.011435440359638
1122 => 0.010929154425783
1123 => 0.010910703354049
1124 => 0.011091065539894
1125 => 0.010925862250942
1126 => 0.011030265026936
1127 => 0.011418619458365
1128 => 0.01142682477554
1129 => 0.011289375140902
1130 => 0.011281011318143
1201 => 0.011307410024009
1202 => 0.011462028068818
1203 => 0.011407999773029
1204 => 0.011470522684745
1205 => 0.011548708543231
1206 => 0.011872118404045
1207 => 0.011950091426589
1208 => 0.011760657406185
1209 => 0.011777761177225
1210 => 0.011706907653514
1211 => 0.011638464037401
1212 => 0.011792315291035
1213 => 0.012073481481005
1214 => 0.01207173236073
1215 => 0.012136957451713
1216 => 0.012177592143042
1217 => 0.012003158301447
1218 => 0.011889608284679
1219 => 0.011933150586483
1220 => 0.012002775675296
1221 => 0.011910572108564
1222 => 0.01134144898185
1223 => 0.011514084582769
1224 => 0.011485349577327
1225 => 0.011444427435281
1226 => 0.011618013866956
1227 => 0.011601271032154
1228 => 0.011099758127494
1229 => 0.011131863356496
1230 => 0.011101710552806
1231 => 0.011199140430212
]
'min_raw' => 0.0092366662448749
'max_raw' => 0.020691272615568
'avg_raw' => 0.014963969430221
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.009236'
'max' => '$0.020691'
'avg' => '$0.014963'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0022524089412396
'max_diff' => -0.015035918769555
'year' => 2034
]
9 => [
'items' => [
101 => 0.010920600717825
102 => 0.011006277657361
103 => 0.011060013430667
104 => 0.011091664213962
105 => 0.011206008546369
106 => 0.011192591558718
107 => 0.011205174527578
108 => 0.011374716986753
109 => 0.012232204565311
110 => 0.012278875722273
111 => 0.012049049876222
112 => 0.012140860768605
113 => 0.011964603932064
114 => 0.012082926327252
115 => 0.012163879504977
116 => 0.011798067661241
117 => 0.011776406657954
118 => 0.011599422346751
119 => 0.011694523690688
120 => 0.011543210614456
121 => 0.011580337550657
122 => 0.011476527400372
123 => 0.01166336500249
124 => 0.011872278473286
125 => 0.011925058266252
126 => 0.011786217354088
127 => 0.011685687383619
128 => 0.011509189872107
129 => 0.011802709167255
130 => 0.011888543153995
131 => 0.011802258317863
201 => 0.011782264235971
202 => 0.011744375486913
203 => 0.011790302513195
204 => 0.011888075683669
205 => 0.011841967662061
206 => 0.011872422822652
207 => 0.011756359155703
208 => 0.012003216046307
209 => 0.012395284197931
210 => 0.012396544761148
211 => 0.012350436491
212 => 0.012331569980272
213 => 0.012378879863528
214 => 0.012404543534441
215 => 0.012557535021741
216 => 0.012721700983064
217 => 0.013487791893337
218 => 0.013272676631295
219 => 0.013952398061842
220 => 0.014489969462623
221 => 0.014651163620569
222 => 0.01450287258003
223 => 0.01399557694087
224 => 0.013970686596632
225 => 0.01472880045623
226 => 0.014514598567079
227 => 0.014489119933949
228 => 0.014218070324279
301 => 0.014378294213741
302 => 0.014343250898773
303 => 0.014287933311718
304 => 0.01459362933152
305 => 0.015165864990917
306 => 0.015076676697008
307 => 0.015010101772931
308 => 0.014718389835293
309 => 0.014894065577971
310 => 0.014831510810851
311 => 0.015100285788636
312 => 0.014941069445891
313 => 0.014512975777095
314 => 0.014581151104866
315 => 0.014570846541223
316 => 0.014782913730804
317 => 0.014719256424323
318 => 0.01455841643047
319 => 0.015163909151643
320 => 0.015124591822257
321 => 0.015180334806133
322 => 0.015204874591544
323 => 0.015573427340944
324 => 0.015724411610001
325 => 0.015758687682428
326 => 0.015902111060489
327 => 0.015755119178126
328 => 0.016343191511014
329 => 0.016734225297413
330 => 0.01718843116273
331 => 0.017852148010985
401 => 0.018101711685653
402 => 0.018056630241582
403 => 0.018559852781033
404 => 0.019464132498419
405 => 0.018239411026812
406 => 0.01952904571027
407 => 0.019120762259035
408 => 0.018152729540865
409 => 0.01809039964617
410 => 0.018745962642007
411 => 0.020199938271171
412 => 0.019835733866921
413 => 0.020200533979104
414 => 0.019774975270743
415 => 0.019753842693983
416 => 0.020179865542504
417 => 0.02117529114937
418 => 0.020702401756519
419 => 0.02002439885463
420 => 0.020525025646491
421 => 0.020091336388559
422 => 0.019114113108458
423 => 0.019835455366677
424 => 0.01935311434125
425 => 0.019493887095129
426 => 0.020507696187762
427 => 0.020385711995531
428 => 0.020543570835711
429 => 0.020264954114678
430 => 0.020004682163409
501 => 0.019518865238318
502 => 0.019375038797283
503 => 0.019414787251252
504 => 0.019375019099923
505 => 0.019103208995222
506 => 0.019044511628992
507 => 0.018946680113683
508 => 0.01897700219107
509 => 0.01879305032067
510 => 0.01914020550651
511 => 0.019204640568123
512 => 0.019457271162038
513 => 0.019483500108368
514 => 0.020187072716448
515 => 0.019799556746975
516 => 0.020059535915816
517 => 0.020036280931936
518 => 0.018173709745199
519 => 0.018430355621127
520 => 0.018829616064158
521 => 0.018649749775757
522 => 0.018395460926188
523 => 0.018190109046056
524 => 0.017878979949347
525 => 0.018316888178259
526 => 0.01889269093293
527 => 0.019498103416445
528 => 0.020225466847191
529 => 0.020063127796892
530 => 0.019484505863051
531 => 0.01951046242032
601 => 0.019670915643825
602 => 0.019463114140673
603 => 0.019401829420626
604 => 0.019662496064381
605 => 0.019664291132297
606 => 0.01942519038927
607 => 0.01915947366837
608 => 0.019158360305607
609 => 0.019111078581642
610 => 0.0197833865844
611 => 0.020153088007911
612 => 0.020195473680313
613 => 0.020150235114447
614 => 0.020167645642994
615 => 0.019952524530468
616 => 0.020444227601518
617 => 0.020895462963908
618 => 0.02077452224755
619 => 0.020593214920994
620 => 0.020448794902448
621 => 0.020740501480915
622 => 0.020727512246164
623 => 0.020891521816667
624 => 0.020884081395183
625 => 0.020828931145335
626 => 0.020774524217139
627 => 0.020990241537557
628 => 0.020928118413591
629 => 0.020865898795254
630 => 0.020741107825333
701 => 0.020758068990704
702 => 0.020576792969414
703 => 0.020492926387339
704 => 0.019231774216996
705 => 0.018894753147744
706 => 0.019000786836827
707 => 0.019035695880437
708 => 0.018889023879194
709 => 0.01909931385203
710 => 0.019066540382516
711 => 0.019194042780558
712 => 0.019114384817772
713 => 0.019117654008351
714 => 0.019351911092036
715 => 0.01941991692003
716 => 0.019385328607038
717 => 0.01940955307584
718 => 0.01996779573487
719 => 0.019888431480351
720 => 0.019846270801927
721 => 0.019857949597982
722 => 0.020000592566221
723 => 0.020040524809311
724 => 0.019871329089351
725 => 0.019951122768993
726 => 0.020290874129584
727 => 0.020409767877529
728 => 0.020789219648733
729 => 0.020628021792108
730 => 0.020923907434423
731 => 0.021833359024051
801 => 0.02255989188311
802 => 0.021891742240679
803 => 0.023225927312938
804 => 0.024264781769173
805 => 0.02422490880484
806 => 0.024043760501259
807 => 0.02286105232221
808 => 0.021772706622664
809 => 0.022683154013934
810 => 0.022685474931569
811 => 0.022607266693223
812 => 0.022121522041712
813 => 0.022590363832263
814 => 0.022627578791014
815 => 0.02260674831037
816 => 0.022234329024944
817 => 0.021665713610688
818 => 0.021776819701561
819 => 0.021958813744913
820 => 0.021614261052913
821 => 0.021504155590635
822 => 0.021708862593431
823 => 0.022368471208837
824 => 0.022243776020947
825 => 0.022240519725659
826 => 0.022774018618441
827 => 0.022392148547476
828 => 0.021778221105178
829 => 0.02162319632929
830 => 0.021072962812088
831 => 0.021453011062284
901 => 0.021466688322221
902 => 0.021258539779588
903 => 0.021795111212241
904 => 0.021790166612027
905 => 0.022299561329212
906 => 0.023273332708552
907 => 0.022985340595302
908 => 0.022650437101045
909 => 0.022686850396737
910 => 0.02308621437481
911 => 0.022844749797074
912 => 0.022931582142779
913 => 0.023086082943655
914 => 0.023179297112863
915 => 0.022673438312273
916 => 0.022555498427832
917 => 0.022314234815539
918 => 0.022251293642491
919 => 0.022447797820573
920 => 0.022396025912243
921 => 0.021465538801485
922 => 0.021368297721229
923 => 0.021371279966332
924 => 0.021126762646468
925 => 0.020753815042794
926 => 0.021733899077705
927 => 0.021655184613434
928 => 0.021568289936895
929 => 0.021578934038957
930 => 0.022004355300382
1001 => 0.021757589484467
1002 => 0.022413656850198
1003 => 0.022278789122994
1004 => 0.02214046254749
1005 => 0.022121341601224
1006 => 0.022068097671124
1007 => 0.021885504423616
1008 => 0.021665012105097
1009 => 0.021519423977693
1010 => 0.019850531106974
1011 => 0.020160267916276
1012 => 0.02051659188198
1013 => 0.020639593487062
1014 => 0.020429190730117
1015 => 0.02189381240688
1016 => 0.02216141290067
1017 => 0.021350833549831
1018 => 0.021199207249026
1019 => 0.021903753001918
1020 => 0.021478825785709
1021 => 0.021670170485149
1022 => 0.021256587904914
1023 => 0.022096955777973
1024 => 0.022090553582782
1025 => 0.021763631499593
1026 => 0.022039943805638
1027 => 0.021991927742751
1028 => 0.021622833516004
1029 => 0.022108656723303
1030 => 0.022108897685552
1031 => 0.021794242288382
1101 => 0.02142679367141
1102 => 0.021361102537444
1103 => 0.021311613092363
1104 => 0.021657999115417
1105 => 0.021968567740567
1106 => 0.022546458955478
1107 => 0.022691754537263
1108 => 0.023258852865846
1109 => 0.022921173422692
1110 => 0.023070862346161
1111 => 0.023233370847378
1112 => 0.023311283398914
1113 => 0.023184329077205
1114 => 0.024065266208478
1115 => 0.024139644293574
1116 => 0.024164582622138
1117 => 0.02386753557801
1118 => 0.024131382877922
1119 => 0.024007937463997
1120 => 0.024329108136906
1121 => 0.024379471799331
1122 => 0.024336815568997
1123 => 0.024352801790387
1124 => 0.023601077356804
1125 => 0.02356209647926
1126 => 0.023030589447997
1127 => 0.023247182491938
1128 => 0.022842272177865
1129 => 0.022970673409496
1130 => 0.023027271448947
1201 => 0.022997707845048
1202 => 0.023259428337669
1203 => 0.023036912452977
1204 => 0.022449656448276
1205 => 0.021862240446069
1206 => 0.02185486591666
1207 => 0.021700209652033
1208 => 0.021588421499415
1209 => 0.021609955863507
1210 => 0.021685845771339
1211 => 0.021584010640012
1212 => 0.021605742328453
1213 => 0.021966633154052
1214 => 0.022039007235371
1215 => 0.021793051828672
1216 => 0.02080550537958
1217 => 0.0205631590039
1218 => 0.020737352772801
1219 => 0.020654099370782
1220 => 0.016669470178584
1221 => 0.017605599702451
1222 => 0.017049383327324
1223 => 0.017305713423267
1224 => 0.016737960535795
1225 => 0.017008921972175
1226 => 0.016958885288803
1227 => 0.018464153861094
1228 => 0.018440651162767
1229 => 0.018451900660721
1230 => 0.017914932812962
1231 => 0.018770337174708
]
'min_raw' => 0.010920600717825
'max_raw' => 0.024379471799331
'avg_raw' => 0.017650036258578
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01092'
'max' => '$0.024379'
'avg' => '$0.01765'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0016839344729496
'max_diff' => 0.0036881991837639
'year' => 2035
]
10 => [
'items' => [
101 => 0.019191740122649
102 => 0.019113749652262
103 => 0.01913337817342
104 => 0.018796095147526
105 => 0.018455166297676
106 => 0.018077023734619
107 => 0.018779565876946
108 => 0.018701455183513
109 => 0.018880613010907
110 => 0.019336261808955
111 => 0.019403357825309
112 => 0.01949353555171
113 => 0.019461213256083
114 => 0.020231261470391
115 => 0.020138003550697
116 => 0.020362728305026
117 => 0.019900452435463
118 => 0.019377343409424
119 => 0.019476769333552
120 => 0.019467193817525
121 => 0.019345286508245
122 => 0.019235234040271
123 => 0.019052027688185
124 => 0.019631719695624
125 => 0.019608185258764
126 => 0.019989180435738
127 => 0.019921835837419
128 => 0.019472092127819
129 => 0.019488154812392
130 => 0.019596184085608
131 => 0.019970074633666
201 => 0.020081070804739
202 => 0.020029652955865
203 => 0.02015135519028
204 => 0.020247543674161
205 => 0.020163434982911
206 => 0.021354236681473
207 => 0.020859732793825
208 => 0.021100750547929
209 => 0.021158231862123
210 => 0.021010994684515
211 => 0.021042925156171
212 => 0.021091291120195
213 => 0.021384959782726
214 => 0.022155631326921
215 => 0.022496956507706
216 => 0.023523850154785
217 => 0.022468614202917
218 => 0.022406000868534
219 => 0.02259097542359
220 => 0.023193870702158
221 => 0.023682460698363
222 => 0.023844554187537
223 => 0.023865977518003
224 => 0.024170075679466
225 => 0.024344379074521
226 => 0.024133150164089
227 => 0.023954155779086
228 => 0.023313020109607
229 => 0.023387233309104
301 => 0.023898488659947
302 => 0.024620666955802
303 => 0.025240371063492
304 => 0.025023372283848
305 => 0.026678919795269
306 => 0.026843060568721
307 => 0.026820381621137
308 => 0.027194318730483
309 => 0.026452129719398
310 => 0.026134829537925
311 => 0.023992856396796
312 => 0.024594663479504
313 => 0.025469425417111
314 => 0.02535364739448
315 => 0.024718371892936
316 => 0.025239889150057
317 => 0.025067459235501
318 => 0.024931456607766
319 => 0.025554511010825
320 => 0.024869437100998
321 => 0.025462591280807
322 => 0.024701864909807
323 => 0.025024363515994
324 => 0.02484129770962
325 => 0.024959763722046
326 => 0.024267213834064
327 => 0.024640896942921
328 => 0.02425166738818
329 => 0.024251482842691
330 => 0.024242890578697
331 => 0.024700817423742
401 => 0.024715750401719
402 => 0.024377341771342
403 => 0.024328571800768
404 => 0.024508899943356
405 => 0.024297782916401
406 => 0.024396563244558
407 => 0.024300774871912
408 => 0.024279210891617
409 => 0.024107385427822
410 => 0.024033358293579
411 => 0.02406238624036
412 => 0.023963298893065
413 => 0.023903595182173
414 => 0.024231014007881
415 => 0.024056087337343
416 => 0.024204203986819
417 => 0.02403540637093
418 => 0.023450280292636
419 => 0.023113768097414
420 => 0.022008519176735
421 => 0.022321966399582
422 => 0.022529782232615
423 => 0.022461099101037
424 => 0.022608657044509
425 => 0.022617715903823
426 => 0.022569743312225
427 => 0.022514197196824
428 => 0.02248716041974
429 => 0.02268867040531
430 => 0.022805653734448
501 => 0.022550639331677
502 => 0.022490893025138
503 => 0.022748726666071
504 => 0.022906005038094
505 => 0.02406726017003
506 => 0.023981230639051
507 => 0.024197147879365
508 => 0.024172838911625
509 => 0.024399154577787
510 => 0.024769085043826
511 => 0.024016912972185
512 => 0.024147464035669
513 => 0.024115455929767
514 => 0.024464912037027
515 => 0.024466003000849
516 => 0.02425648660792
517 => 0.024370068843542
518 => 0.024306670355583
519 => 0.024421239992144
520 => 0.023980081662216
521 => 0.02451736488797
522 => 0.024821969855206
523 => 0.024826199295472
524 => 0.024970579632447
525 => 0.02511727841676
526 => 0.025398853958476
527 => 0.025109425427727
528 => 0.024588771676208
529 => 0.024626361195367
530 => 0.024321102091351
531 => 0.024326233552039
601 => 0.024298841412726
602 => 0.024381047284788
603 => 0.023998121228296
604 => 0.024087993208373
605 => 0.023962171909975
606 => 0.024147190524738
607 => 0.023948141079926
608 => 0.024115440494489
609 => 0.024187641375751
610 => 0.024454064181981
611 => 0.023908790214824
612 => 0.022796939683989
613 => 0.023030664145455
614 => 0.022684967308287
615 => 0.022716962866727
616 => 0.022781598986833
617 => 0.022572092173948
618 => 0.022612059471528
619 => 0.022610631558413
620 => 0.022598326574608
621 => 0.02254382576104
622 => 0.022464788798709
623 => 0.022779647730343
624 => 0.022833148398256
625 => 0.022952073755697
626 => 0.023305914951602
627 => 0.023270557871981
628 => 0.023328226735794
629 => 0.023202335929887
630 => 0.02272280258015
701 => 0.022748843548145
702 => 0.022424112259965
703 => 0.022943769646563
704 => 0.022820707918274
705 => 0.022741369221483
706 => 0.022719720922995
707 => 0.023074439222784
708 => 0.023180576497609
709 => 0.023114438870545
710 => 0.022978788667896
711 => 0.023239277158365
712 => 0.023308972889288
713 => 0.023324575193162
714 => 0.02378611085456
715 => 0.023350369909612
716 => 0.023455257085954
717 => 0.024273556894405
718 => 0.023531471885794
719 => 0.023924570865326
720 => 0.023905330715866
721 => 0.02410642685205
722 => 0.023888834963143
723 => 0.023891532275387
724 => 0.024070092020886
725 => 0.023819337061752
726 => 0.023757246607496
727 => 0.023671469089641
728 => 0.02385876116177
729 => 0.023971034288519
730 => 0.024875873234594
731 => 0.025460440459427
801 => 0.025435062854511
802 => 0.025666966658561
803 => 0.025562491870841
804 => 0.025225115222237
805 => 0.025800976022705
806 => 0.025618749570398
807 => 0.025633772097721
808 => 0.025633212958504
809 => 0.025754377618775
810 => 0.025668521352395
811 => 0.025499289838394
812 => 0.025611633615092
813 => 0.025945254468249
814 => 0.026980823833186
815 => 0.027560342169274
816 => 0.026945936101689
817 => 0.027369745179884
818 => 0.027115610751582
819 => 0.027069426966115
820 => 0.027335610386467
821 => 0.027602259725659
822 => 0.027585275315509
823 => 0.027391701587851
824 => 0.027282356700848
825 => 0.028110352818457
826 => 0.028720406253365
827 => 0.028678804698954
828 => 0.028862420430572
829 => 0.029401521897624
830 => 0.029450810579532
831 => 0.029444601338499
901 => 0.029322434197649
902 => 0.029853249603133
903 => 0.030296065153197
904 => 0.02929415603429
905 => 0.029675669910816
906 => 0.029846943781598
907 => 0.030098424638574
908 => 0.030522714997377
909 => 0.030983606864497
910 => 0.03104878202793
911 => 0.031002537130556
912 => 0.030698566554752
913 => 0.031202879935338
914 => 0.031498294886081
915 => 0.031674207728798
916 => 0.032120293428822
917 => 0.029848001510716
918 => 0.028239560350844
919 => 0.027988379037558
920 => 0.028499166115342
921 => 0.028633856594303
922 => 0.028579563031122
923 => 0.026769116272614
924 => 0.027978847410055
925 => 0.029280416396859
926 => 0.029330414962449
927 => 0.029982007611767
928 => 0.03019419288807
929 => 0.030718810376972
930 => 0.030685995410203
1001 => 0.030813731420264
1002 => 0.03078436712363
1003 => 0.031756110550575
1004 => 0.032828087855791
1005 => 0.032790968690391
1006 => 0.032636859269706
1007 => 0.032865738038984
1008 => 0.033972133498036
1009 => 0.033870274333793
1010 => 0.033969221835512
1011 => 0.035273724435451
1012 => 0.036969763378702
1013 => 0.036181783010036
1014 => 0.037891473674798
1015 => 0.038967633321458
1016 => 0.040828740153371
1017 => 0.040595720411871
1018 => 0.041320235644102
1019 => 0.040178566441899
1020 => 0.037557063184225
1021 => 0.037142200258987
1022 => 0.037972766341316
1023 => 0.04001463200927
1024 => 0.037908460725049
1025 => 0.038334536432764
1026 => 0.038211826600278
1027 => 0.038205287914788
1028 => 0.038454842945183
1029 => 0.03809285035768
1030 => 0.03661802743497
1031 => 0.037293930089262
1101 => 0.037032931614929
1102 => 0.037322528880927
1103 => 0.038885365886522
1104 => 0.038194398392968
1105 => 0.037466520268149
1106 => 0.038379440965758
1107 => 0.039541902727401
1108 => 0.039469157959502
1109 => 0.039328002704824
1110 => 0.040123687484796
1111 => 0.041437925627543
1112 => 0.041793158916492
1113 => 0.042055384867968
1114 => 0.042091541396333
1115 => 0.042463976109648
1116 => 0.040461300790519
1117 => 0.043639597954327
1118 => 0.04418840207583
1119 => 0.044085249646588
1120 => 0.04469522233043
1121 => 0.04451575289333
1122 => 0.044255729836864
1123 => 0.045222666285665
1124 => 0.044114151674863
1125 => 0.042540754742938
1126 => 0.041677558067822
1127 => 0.042814285081705
1128 => 0.043508444602777
1129 => 0.043967239889369
1130 => 0.04410607106588
1201 => 0.040616762774658
1202 => 0.038736219131599
1203 => 0.039941626046323
1204 => 0.041412305675027
1205 => 0.040453131090925
1206 => 0.040490728918664
1207 => 0.039123198028381
1208 => 0.041533301814393
1209 => 0.041182169964934
1210 => 0.043003842621066
1211 => 0.042569085821844
1212 => 0.044054589155994
1213 => 0.043663406343474
1214 => 0.045287184327507
1215 => 0.045934953327372
1216 => 0.04702265829534
1217 => 0.047822778497532
1218 => 0.04829262438412
1219 => 0.048264416599437
1220 => 0.05012618007839
1221 => 0.049028363199913
1222 => 0.047649246464974
1223 => 0.047624302594296
1224 => 0.048338566693557
1225 => 0.04983546829682
1226 => 0.050223593103514
1227 => 0.050440501921496
1228 => 0.050108298516106
1229 => 0.048916696975764
1230 => 0.048402169472201
1231 => 0.048840561812533
]
'min_raw' => 0.018077023734619
'max_raw' => 0.050440501921496
'avg_raw' => 0.034258762828057
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.018077'
'max' => '$0.05044'
'avg' => '$0.034258'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0071564230167941
'max_diff' => 0.026061030122164
'year' => 2036
]
11 => [
'items' => [
101 => 0.04830444565179
102 => 0.04922993255286
103 => 0.050500823741364
104 => 0.050238389736586
105 => 0.051115667268253
106 => 0.052023557221241
107 => 0.053321880629902
108 => 0.053661310445702
109 => 0.054222375023861
110 => 0.054799894774899
111 => 0.054985378554339
112 => 0.055339524641526
113 => 0.055337658116835
114 => 0.056404901187354
115 => 0.057582103343903
116 => 0.058026469905708
117 => 0.059048266312063
118 => 0.057298475774197
119 => 0.058625711997313
120 => 0.059822912293442
121 => 0.058395560745623
122 => 0.060362832324034
123 => 0.06043921702149
124 => 0.061592535264993
125 => 0.060423426276162
126 => 0.059729213090523
127 => 0.061733380545635
128 => 0.062703134046481
129 => 0.06241103639991
130 => 0.06018815888687
131 => 0.058894348830579
201 => 0.055508198355943
202 => 0.059519239863963
203 => 0.061472901178835
204 => 0.060183099376034
205 => 0.060833600382077
206 => 0.064382522945386
207 => 0.065733722881774
208 => 0.065452682740606
209 => 0.065500173898149
210 => 0.066229256857811
211 => 0.06946241221427
212 => 0.067525030580725
213 => 0.069006086247265
214 => 0.069791632832455
215 => 0.070521292279766
216 => 0.068729479288407
217 => 0.06639835691361
218 => 0.065659992603651
219 => 0.060054854005961
220 => 0.059763082200068
221 => 0.05959930184383
222 => 0.058566689864939
223 => 0.057755339705756
224 => 0.057110123935674
225 => 0.05541688507724
226 => 0.055988303486413
227 => 0.053289634152484
228 => 0.055016147157363
301 => 0.050709005738763
302 => 0.054296121099572
303 => 0.052343817294806
304 => 0.053654736792664
305 => 0.053650163118032
306 => 0.05123634469507
307 => 0.04984410460381
308 => 0.050731294176756
309 => 0.051682431824149
310 => 0.051836750707428
311 => 0.053069925494506
312 => 0.053414078070576
313 => 0.052371279698136
314 => 0.050619749806399
315 => 0.051026590252106
316 => 0.049835859995164
317 => 0.04774915102065
318 => 0.049247861836589
319 => 0.049759587602814
320 => 0.049985594853552
321 => 0.047933556237263
322 => 0.047288761152099
323 => 0.046945477659113
324 => 0.050354857389433
325 => 0.0505416309073
326 => 0.049586071182781
327 => 0.0539052917475
328 => 0.052927719109162
329 => 0.054019907257297
330 => 0.050989673745958
331 => 0.051105432746842
401 => 0.049670871640928
402 => 0.050474130002832
403 => 0.049906412882863
404 => 0.050409234665144
405 => 0.050710623968231
406 => 0.052144949676783
407 => 0.054312498795174
408 => 0.051930709246473
409 => 0.050892929432249
410 => 0.051536762192298
411 => 0.053251373675598
412 => 0.055849097842145
413 => 0.054311192851478
414 => 0.054993688971016
415 => 0.055142784010996
416 => 0.054008789807216
417 => 0.055890909825951
418 => 0.056899553234307
419 => 0.057934212661936
420 => 0.058832578452447
421 => 0.057520946933892
422 => 0.058924580673738
423 => 0.057793499654132
424 => 0.056778803050539
425 => 0.056780341926438
426 => 0.056143807924652
427 => 0.054910443087745
428 => 0.054682991688608
429 => 0.055866222590864
430 => 0.05681506172209
501 => 0.056893212657571
502 => 0.057418538753732
503 => 0.057729421326152
504 => 0.060776493160223
505 => 0.062002050658587
506 => 0.063500639168971
507 => 0.064084423849585
508 => 0.065841406439845
509 => 0.064422500303061
510 => 0.06411551103503
511 => 0.059853645975686
512 => 0.060551526140399
513 => 0.061668899619526
514 => 0.059872071052802
515 => 0.061011745205464
516 => 0.061236741024798
517 => 0.05981101550567
518 => 0.0605725571074
519 => 0.058550128394555
520 => 0.054356582214454
521 => 0.055895578441638
522 => 0.057028797685374
523 => 0.055411554099638
524 => 0.0583104006311
525 => 0.056616954331759
526 => 0.056080213154625
527 => 0.053986194460582
528 => 0.054974490677999
529 => 0.056311175463095
530 => 0.055485259672191
531 => 0.057199158950196
601 => 0.059626497408093
602 => 0.061356363343694
603 => 0.061489160970399
604 => 0.060376973065824
605 => 0.062159261280794
606 => 0.062172243304672
607 => 0.060161814917324
608 => 0.058930438724186
609 => 0.058650667462268
610 => 0.059349590926927
611 => 0.060198213041413
612 => 0.061536253591643
613 => 0.062344803472839
614 => 0.064453072741277
615 => 0.065023509956499
616 => 0.065650247510271
617 => 0.066487762160814
618 => 0.06749341323314
619 => 0.065293105938639
620 => 0.065380528249335
621 => 0.063331632562024
622 => 0.061142093678768
623 => 0.062803680761284
624 => 0.064975984840008
625 => 0.064477655884166
626 => 0.064421583696697
627 => 0.064515881562892
628 => 0.064140157804089
629 => 0.062440773167998
630 => 0.061587352842463
701 => 0.062688482793148
702 => 0.063273684356281
703 => 0.064181280945761
704 => 0.064069400509068
705 => 0.066407271854811
706 => 0.067315697966207
707 => 0.067083283693167
708 => 0.067126053512769
709 => 0.068770715595364
710 => 0.070599918081765
711 => 0.072313207594808
712 => 0.074056039274971
713 => 0.071954987660656
714 => 0.070888203225755
715 => 0.07198885245755
716 => 0.0714048324824
717 => 0.074760784491189
718 => 0.074993143326972
719 => 0.078348852662233
720 => 0.08153382041183
721 => 0.079533399232932
722 => 0.081419706303684
723 => 0.083459901193575
724 => 0.087395768145864
725 => 0.086070306621802
726 => 0.085055023867
727 => 0.084095586569524
728 => 0.086092023279191
729 => 0.088660407212323
730 => 0.089213612511845
731 => 0.090110016437758
801 => 0.089167557316717
802 => 0.090302645519545
803 => 0.094310005658555
804 => 0.093227181575048
805 => 0.09168939730381
806 => 0.0948528232626
807 => 0.095997654819579
808 => 0.1040326822394
809 => 0.11417723626735
810 => 0.10997732428704
811 => 0.10737030339056
812 => 0.10798301514059
813 => 0.11168746285677
814 => 0.11287721388992
815 => 0.10964306045006
816 => 0.11078541812043
817 => 0.11707992119833
818 => 0.12045672014779
819 => 0.11587057360982
820 => 0.10321757720078
821 => 0.091550936655447
822 => 0.094645455083742
823 => 0.09429463272806
824 => 0.10105729103001
825 => 0.09320135657877
826 => 0.093333630367262
827 => 0.10023613328112
828 => 0.098394663842559
829 => 0.09541171918968
830 => 0.091572715452538
831 => 0.084475961979563
901 => 0.078190169520939
902 => 0.09051805606385
903 => 0.089986455179313
904 => 0.089216618319666
905 => 0.090929806945762
906 => 0.099248564617011
907 => 0.099056790327498
908 => 0.097836820141718
909 => 0.098762156775308
910 => 0.095249503203875
911 => 0.096154794010868
912 => 0.091549088599978
913 => 0.093631059796949
914 => 0.095405319130164
915 => 0.095761527959665
916 => 0.096564084641005
917 => 0.089706325669293
918 => 0.092785258114366
919 => 0.094593842468891
920 => 0.086422592558287
921 => 0.09443232313073
922 => 0.089586947342732
923 => 0.087942354025183
924 => 0.090156582268569
925 => 0.089293695368714
926 => 0.088551835882638
927 => 0.088137865542643
928 => 0.089763750389132
929 => 0.08968790091769
930 => 0.087027637738185
1001 => 0.08355743286672
1002 => 0.084722147527175
1003 => 0.084298995771774
1004 => 0.082765439222535
1005 => 0.083798871174398
1006 => 0.079248159866336
1007 => 0.071418897586205
1008 => 0.076591148065249
1009 => 0.076392022048132
1010 => 0.076291613680655
1011 => 0.080178416965153
1012 => 0.079804790513157
1013 => 0.079126654844224
1014 => 0.082752984729175
1015 => 0.081429325540148
1016 => 0.085508531267401
1017 => 0.088195359985855
1018 => 0.087513893313051
1019 => 0.090040868709327
1020 => 0.084748980200559
1021 => 0.086506733289456
1022 => 0.086869003764937
1023 => 0.082708236381295
1024 => 0.07986592042142
1025 => 0.07967637035167
1026 => 0.074748186172513
1027 => 0.077380782382106
1028 => 0.079697358102315
1029 => 0.078587898105873
1030 => 0.078236676215174
1031 => 0.080030992684021
1101 => 0.080170426440931
1102 => 0.07699132200684
1103 => 0.077652358487832
1104 => 0.080408990501739
1105 => 0.077582898433871
1106 => 0.072092263185522
1107 => 0.07073050972996
1108 => 0.070548826716892
1109 => 0.066855643343379
1110 => 0.070821508607338
1111 => 0.069090302141039
1112 => 0.07455916262504
1113 => 0.071435378846666
1114 => 0.071300718771407
1115 => 0.071097160317316
1116 => 0.06791828482425
1117 => 0.068614256529155
1118 => 0.070927772475742
1119 => 0.071753261029107
1120 => 0.071667155809962
1121 => 0.070916434985469
1122 => 0.07126011113461
1123 => 0.070153010513521
1124 => 0.069762070241908
1125 => 0.068528155208103
1126 => 0.066714640986138
1127 => 0.066966821261632
1128 => 0.063373775056111
1129 => 0.061416092785947
1130 => 0.060874232135404
1201 => 0.060149633427582
1202 => 0.060956077487536
1203 => 0.063363596407653
1204 => 0.06045961780636
1205 => 0.055480950184859
1206 => 0.055780176592148
1207 => 0.056452449488209
1208 => 0.055199673393929
1209 => 0.054014025958222
1210 => 0.055044850208953
1211 => 0.052935323105107
1212 => 0.056707375760324
1213 => 0.056605352307055
1214 => 0.058011340274749
1215 => 0.058890533404725
1216 => 0.056864277882286
1217 => 0.05635468009797
1218 => 0.056644970155844
1219 => 0.051847122128276
1220 => 0.057619253731889
1221 => 0.05766917136569
1222 => 0.057241746279211
1223 => 0.060315228163565
1224 => 0.066801233582592
1225 => 0.064360937444991
1226 => 0.06341598102217
1227 => 0.06161961817163
1228 => 0.064013165012503
1229 => 0.063829377960272
1230 => 0.06299822321091
1231 => 0.062495538225135
]
'min_raw' => 0.046945477659113
'max_raw' => 0.12045672014779
'avg_raw' => 0.083701098903451
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.046945'
'max' => '$0.120456'
'avg' => '$0.083701'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.028868453924494
'max_diff' => 0.070016218226293
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0014735649003238
]
1 => [
'year' => 2028
'avg' => 0.0025290651479027
]
2 => [
'year' => 2029
'avg' => 0.0069089501644262
]
3 => [
'year' => 2030
'avg' => 0.0053302447627376
]
4 => [
'year' => 2031
'avg' => 0.0052349609269695
]
5 => [
'year' => 2032
'avg' => 0.0091785340078137
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0014735649003238
'min' => '$0.001473'
'max_raw' => 0.0091785340078137
'max' => '$0.009178'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0091785340078137
]
1 => [
'year' => 2033
'avg' => 0.023608133285619
]
2 => [
'year' => 2034
'avg' => 0.014963969430221
]
3 => [
'year' => 2035
'avg' => 0.017650036258578
]
4 => [
'year' => 2036
'avg' => 0.034258762828057
]
5 => [
'year' => 2037
'avg' => 0.083701098903451
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0091785340078137
'min' => '$0.009178'
'max_raw' => 0.083701098903451
'max' => '$0.083701'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.083701098903451
]
]
]
]
'prediction_2025_max_price' => '$0.002519'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767713858
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de WELL para 2026
La previsión del precio de WELL para 2026 sugiere que el precio medio podría oscilar entre $0.000844 en el extremo inferior y $0.002519 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, WELL podría potencialmente ganar 3.13% para 2026 si WELL alcanza el objetivo de precio previsto.
Predicción de precio de WELL 2027-2032
La predicción del precio de WELL para 2027-2032 está actualmente dentro de un rango de precios de $0.001473 en el extremo inferior y $0.009178 en el extremo superior. Considerando la volatilidad de precios en el mercado, si WELL alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de WELL | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000812 | $0.001473 | $0.002134 |
| 2028 | $0.001466 | $0.002529 | $0.003591 |
| 2029 | $0.003221 | $0.0069089 | $0.010596 |
| 2030 | $0.002739 | $0.00533 | $0.00792 |
| 2031 | $0.003239 | $0.005234 | $0.00723 |
| 2032 | $0.004944 | $0.009178 | $0.013412 |
Predicción de precio de WELL 2032-2037
La predicción de precio de WELL para 2032-2037 se estima actualmente entre $0.009178 en el extremo inferior y $0.083701 en el extremo superior. Comparado con el precio actual, WELL podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de WELL | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004944 | $0.009178 | $0.013412 |
| 2033 | $0.011489 | $0.0236081 | $0.035727 |
| 2034 | $0.009236 | $0.014963 | $0.020691 |
| 2035 | $0.01092 | $0.01765 | $0.024379 |
| 2036 | $0.018077 | $0.034258 | $0.05044 |
| 2037 | $0.046945 | $0.083701 | $0.120456 |
WELL Histograma de precios potenciales
Pronóstico de precio de WELL basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para WELL es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de WELL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de WELL
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de WELL disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para WELL alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de WELL está en un estado —.
Promedios Móviles y Osciladores Populares de WELL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de WELL
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de WELL basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de WELL
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de WELL por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.003433 | $0.004824 | $0.006778 | $0.009525 | $0.013385 | $0.0188082 |
| Amazon.com acción | $0.005098 | $0.010637 | $0.022195 | $0.046312 | $0.096634 | $0.201634 |
| Apple acción | $0.003465 | $0.004915 | $0.006972 | $0.00989 | $0.014028 | $0.019898 |
| Netflix acción | $0.003855 | $0.006082 | $0.009597 | $0.015143 | $0.023894 | $0.0377018 |
| Google acción | $0.003164 | $0.004097 | $0.0053062 | $0.006871 | $0.008898 | $0.011523 |
| Tesla acción | $0.005538 | $0.012556 | $0.028463 | $0.064524 | $0.146273 | $0.33159 |
| Kodak acción | $0.001832 | $0.001373 | $0.00103 | $0.000772 | $0.000579 | $0.000434 |
| Nokia acción | $0.001618 | $0.001072 | $0.00071 | $0.00047 | $0.000311 | $0.0002065 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de WELL
Podría preguntarse cosas como: "¿Debo invertir en WELL ahora?", "¿Debería comprar WELL hoy?", "¿Será WELL una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de WELL regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como WELL, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de WELL a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de WELL es de $0.002443 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de WELL basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si WELL ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0025068 | $0.002571 | $0.002638 | $0.0027074 |
| Si WELL ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00257 | $0.0027039 | $0.002844 | $0.002992 |
| Si WELL ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.00276 | $0.003119 | $0.003525 | $0.003983 |
| Si WELL ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003078 | $0.003878 | $0.004886 | $0.006156 |
| Si WELL ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.003713 | $0.005644 | $0.008578 | $0.013037 |
| Si WELL ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.005618 | $0.012921 | $0.029714 | $0.068333 |
| Si WELL ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.008794 | $0.031653 | $0.11393 | $0.410074 |
Cuadro de preguntas
¿Es WELL una buena inversión?
La decisión de adquirir WELL depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de WELL ha experimentado una caída de 0% durante las últimas 24 horas, y WELL ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en WELL dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede WELL subir?
Parece que el valor medio de WELL podría potencialmente aumentar hasta $0.002519 para el final de este año. Mirando las perspectivas de WELL en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.00792. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de WELL la próxima semana?
Basado en nuestro nuevo pronóstico experimental de WELL, el precio de WELL aumentará en un 0.86% durante la próxima semana y alcanzará $0.002463 para el 13 de enero de 2026.
¿Cuál será el precio de WELL el próximo mes?
Basado en nuestro nuevo pronóstico experimental de WELL, el precio de WELL disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002159 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de WELL este año en 2026?
Según nuestra predicción más reciente sobre el valor de WELL en 2026, se anticipa que WELL fluctúe dentro del rango de $0.000844 y $0.002519. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de WELL no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará WELL en 5 años?
El futuro de WELL parece estar en una tendencia alcista, con un precio máximo de $0.00792 proyectada después de un período de cinco años. Basado en el pronóstico de WELL para 2030, el valor de WELL podría potencialmente alcanzar su punto más alto de aproximadamente $0.00792, mientras que su punto más bajo se anticipa que esté alrededor de $0.002739.
¿Cuánto será WELL en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de WELL, se espera que el valor de WELL en 2026 crezca en un 3.13% hasta $0.002519 si ocurre lo mejor. El precio estará entre $0.002519 y $0.000844 durante 2026.
¿Cuánto será WELL en 2027?
Según nuestra última simulación experimental para la predicción de precios de WELL, el valor de WELL podría disminuir en un -12.62% hasta $0.002134 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002134 y $0.000812 a lo largo del año.
¿Cuánto será WELL en 2028?
Nuestro nuevo modelo experimental de predicción de precios de WELL sugiere que el valor de WELL en 2028 podría aumentar en un 47.02% , alcanzando $0.003591 en el mejor escenario. Se espera que el precio oscile entre $0.003591 y $0.001466 durante el año.
¿Cuánto será WELL en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de WELL podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.010596 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.010596 y $0.003221.
¿Cuánto será WELL en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de WELL, se espera que el valor de WELL en 2030 aumente en un 224.23% , alcanzando $0.00792 en el mejor escenario. Se pronostica que el precio oscile entre $0.00792 y $0.002739 durante el transcurso de 2030.
¿Cuánto será WELL en 2031?
Nuestra simulación experimental indica que el precio de WELL podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.00723 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.00723 y $0.003239 durante el año.
¿Cuánto será WELL en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de WELL, WELL podría experimentar un 449.04% aumento en valor, alcanzando $0.013412 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.013412 y $0.004944 a lo largo del año.
¿Cuánto será WELL en 2033?
Según nuestra predicción experimental de precios de WELL, se anticipa que el valor de WELL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.035727. A lo largo del año, el precio de WELL podría oscilar entre $0.035727 y $0.011489.
¿Cuánto será WELL en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de WELL sugieren que WELL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.020691 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.020691 y $0.009236.
¿Cuánto será WELL en 2035?
Basado en nuestra predicción experimental para el precio de WELL, WELL podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.024379 en 2035. El rango de precios esperado para el año está entre $0.024379 y $0.01092.
¿Cuánto será WELL en 2036?
Nuestra reciente simulación de predicción de precios de WELL sugiere que el valor de WELL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.05044 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.05044 y $0.018077.
¿Cuánto será WELL en 2037?
Según la simulación experimental, el valor de WELL podría aumentar en un 4830.69% en 2037, con un máximo de $0.120456 bajo condiciones favorables. Se espera que el precio caiga entre $0.120456 y $0.046945 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de DeltaChain
Predicción de precios de SureRemit
Predicción de precios de lien
Predicción de precios de Kripton
Predicción de precios de DataminePredicción de precios de Wonderland
Predicción de precios de DFSocial Gaming
Predicción de precios de WagyuSwap
Predicción de precios de Tesla
Predicción de precios de Baked Token
Predicción de precios de Aluna
Predicción de precios de Finance Vote
Predicción de precios de Vesper V-Dollar
Predicción de precios de Wrapped Virgin Gen-0 CryptoKittties
Predicción de precios de KickPad
Predicción de precios de Plata Network
Predicción de precios de ZENZO
Predicción de precios de Edain
Predicción de precios de UpStable
Predicción de precios de moonwolf.io
Predicción de precios de Megacoin
Predicción de precios de Omni Consumer Protocol
Predicción de precios de NicCageWaluigiElmo42069Inu
Predicción de precios de aRIA Currency
Predicción de precios de The Parallel
¿Cómo leer y predecir los movimientos de precio de WELL?
Los traders de WELL utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de WELL
Las medias móviles son herramientas populares para la predicción de precios de WELL. Una media móvil simple (SMA) calcula el precio de cierre promedio de WELL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de WELL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de WELL.
¿Cómo leer gráficos de WELL y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de WELL en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de WELL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de WELL?
La acción del precio de WELL está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de WELL. La capitalización de mercado de WELL puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de WELL, grandes poseedores de WELL, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de WELL.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


