Predicción del precio de Swop - Pronóstico de SWOP
Predicción de precio de Swop hasta $0.052979 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.017748 | $0.052979 |
| 2027 | $0.017085 | $0.044884 |
| 2028 | $0.030834 | $0.075524 |
| 2029 | $0.067735 | $0.222819 |
| 2030 | $0.0576061 | $0.166556 |
| 2031 | $0.0681083 | $0.152047 |
| 2032 | $0.103962 | $0.282039 |
| 2033 | $0.241585 | $0.75125 |
| 2034 | $0.194223 | $0.435084 |
| 2035 | $0.229632 | $0.512637 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Swop hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.43, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Swop para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Swop'
'name_with_ticker' => 'Swop <small>SWOP</small>'
'name_lang' => 'Swop'
'name_lang_with_ticker' => 'Swop <small>SWOP</small>'
'name_with_lang' => 'Swop'
'name_with_lang_with_ticker' => 'Swop <small>SWOP</small>'
'image' => '/uploads/coins/swop.png?1717376035'
'price_for_sd' => 0.05136
'ticker' => 'SWOP'
'marketcap' => '$191.68K'
'low24h' => '$0.05001'
'high24h' => '$0.05158'
'volume24h' => '$65.06'
'current_supply' => '3.73M'
'max_supply' => '3.73M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.05136'
'change_24h_pct' => '2.6015%'
'ath_price' => '$111.36'
'ath_days' => 1759
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 mar. 2021'
'ath_pct' => '-99.95%'
'fdv' => '$191.68K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.53'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.051809'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.045401'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.017748'
'current_year_max_price_prediction' => '$0.052979'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0576061'
'grand_prediction_max_price' => '$0.166556'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.05234343447938
107 => 0.052538865863059
108 => 0.052979182749463
109 => 0.049216723164568
110 => 0.050905957058176
111 => 0.051898223710859
112 => 0.047415126875066
113 => 0.051809607300671
114 => 0.049151227113912
115 => 0.048248932950996
116 => 0.049463753173146
117 => 0.048990336551123
118 => 0.048583320739464
119 => 0.048356198923139
120 => 0.049248228819471
121 => 0.049206614558601
122 => 0.04774708051266
123 => 0.045843177847948
124 => 0.0464821900757
125 => 0.046250030942586
126 => 0.045408656295057
127 => 0.045975641219529
128 => 0.043478926556659
129 => 0.039183458747125
130 => 0.04202117635584
131 => 0.041911927314748
201 => 0.041856838994179
202 => 0.043989305348374
203 => 0.043784317912788
204 => 0.043412263709956
205 => 0.045401823227854
206 => 0.044675607240469
207 => 0.046913633795583
208 => 0.048387742831263
209 => 0.048013861097383
210 => 0.049400267770427
211 => 0.046496911626804
212 => 0.047461290075285
213 => 0.047660047136946
214 => 0.045377272372234
215 => 0.043817856392372
216 => 0.043713861125159
217 => 0.041010048716837
218 => 0.042454403480952
219 => 0.043725375901911
220 => 0.043116678743716
221 => 0.042923983407741
222 => 0.043908422088715
223 => 0.043984921405374
224 => 0.04224072887852
225 => 0.042603401736246
226 => 0.044115807842313
227 => 0.042565292982808
228 => 0.039552895885954
301 => 0.038805779756286
302 => 0.038706100692506
303 => 0.036679862494318
304 => 0.038855705628545
305 => 0.037905891791485
306 => 0.040906342322242
307 => 0.039192501070812
308 => 0.039118620799874
309 => 0.039006939934472
310 => 0.037262873014446
311 => 0.037644712828697
312 => 0.038914006527112
313 => 0.039366904818323
314 => 0.039319663816063
315 => 0.038907786295529
316 => 0.039096341715275
317 => 0.038488939011208
318 => 0.038274452474408
319 => 0.037597473965097
320 => 0.036602502576496
321 => 0.036740859450596
322 => 0.034769560781352
323 => 0.033695492641609
324 => 0.033398204736518
325 => 0.033000658925315
326 => 0.033443108593723
327 => 0.034763976339902
328 => 0.033170729600285
329 => 0.030439219818476
330 => 0.030603388210629
331 => 0.030972225845763
401 => 0.030284899352795
402 => 0.029634402510141
403 => 0.030199956738352
404 => 0.029042580034942
405 => 0.031112089290938
406 => 0.031056114865296
407 => 0.031827499938337
408 => 0.032309862854925
409 => 0.031198172499039
410 => 0.030918585380863
411 => 0.031077850909902
412 => 0.028445546483244
413 => 0.031612384508154
414 => 0.0316397714549
415 => 0.031405267789769
416 => 0.033091511272879
417 => 0.036650010974773
418 => 0.035311160246601
419 => 0.034792716777676
420 => 0.033807155364269
421 => 0.035120357430788
422 => 0.035019524001222
423 => 0.034563516992786
424 => 0.034287722531256
425 => 0.034795882282946
426 => 0.034224755914466
427 => 0.034122165925184
428 => 0.033500582209145
429 => 0.033278705102776
430 => 0.033114436126402
501 => 0.032933592124151
502 => 0.033332488929599
503 => 0.032428536289209
504 => 0.031338458020468
505 => 0.031247829807233
506 => 0.03149806227209
507 => 0.031387353034007
508 => 0.031247299773994
509 => 0.030979899959393
510 => 0.030900568146494
511 => 0.031158358052092
512 => 0.030867328278757
513 => 0.031296758562524
514 => 0.031179977286801
515 => 0.030527646573716
516 => 0.02971460098145
517 => 0.029707363170258
518 => 0.029532193831066
519 => 0.029309089340719
520 => 0.029247026775444
521 => 0.030152327338711
522 => 0.032026272411308
523 => 0.031658372153852
524 => 0.031924217793799
525 => 0.033231915225237
526 => 0.033647592914857
527 => 0.03335255473663
528 => 0.032948688281111
529 => 0.032966456355497
530 => 0.034346590292696
531 => 0.034432667553453
601 => 0.034650157021807
602 => 0.034929692451159
603 => 0.033400160828994
604 => 0.032894415553642
605 => 0.0326547653845
606 => 0.031916735619831
607 => 0.032712637447136
608 => 0.03224889953628
609 => 0.032311473623997
610 => 0.032270722167282
611 => 0.03229297521825
612 => 0.031111510820924
613 => 0.031541974351369
614 => 0.03082624524223
615 => 0.029867964309455
616 => 0.029864751815751
617 => 0.030099289716452
618 => 0.029959777395647
619 => 0.029584353327548
620 => 0.029637680544469
621 => 0.0291704780107
622 => 0.029694407391044
623 => 0.029709431810963
624 => 0.029507690460904
625 => 0.030314875959646
626 => 0.030645580517082
627 => 0.030512790038755
628 => 0.03063626358313
629 => 0.03167366007052
630 => 0.031842800962746
701 => 0.031917922174253
702 => 0.031817269702487
703 => 0.030655225286544
704 => 0.030706766897786
705 => 0.030328588752892
706 => 0.030009068071888
707 => 0.030021847223463
708 => 0.03018612238828
709 => 0.030903521667647
710 => 0.032413246158078
711 => 0.032470539098896
712 => 0.03253997981452
713 => 0.03225752952597
714 => 0.032172339816258
715 => 0.032284727032698
716 => 0.032851700173761
717 => 0.034310109024282
718 => 0.033794609932656
719 => 0.033375501146942
720 => 0.03374317254293
721 => 0.033686572413421
722 => 0.033208810360011
723 => 0.033195401170408
724 => 0.032278423040145
725 => 0.031939437103969
726 => 0.031656155083042
727 => 0.031346818511455
728 => 0.031163433422762
729 => 0.031445196266026
730 => 0.031509638762001
731 => 0.030893559380832
801 => 0.03080959003767
802 => 0.03131269375933
803 => 0.031091296569024
804 => 0.031319009069639
805 => 0.031371840323064
806 => 0.031363333274456
807 => 0.031132169180472
808 => 0.031279506280564
809 => 0.030931010115541
810 => 0.03055207287851
811 => 0.030310334529908
812 => 0.030099385758814
813 => 0.030216432397432
814 => 0.029799182502632
815 => 0.029665695863704
816 => 0.031229591786243
817 => 0.032384858518936
818 => 0.032368060483107
819 => 0.032265806760101
820 => 0.032113878469124
821 => 0.032840585672973
822 => 0.032587415414121
823 => 0.032771617930519
824 => 0.032818505201897
825 => 0.032960418850817
826 => 0.033011140782416
827 => 0.032857823876478
828 => 0.032343273614069
829 => 0.031061063282115
830 => 0.03046419091133
831 => 0.030267213087275
901 => 0.030274372857066
902 => 0.030076874443631
903 => 0.030135046577646
904 => 0.030056644549409
905 => 0.029908170075418
906 => 0.030207264517053
907 => 0.030241732365194
908 => 0.030171920148604
909 => 0.03018836345285
910 => 0.029610348116673
911 => 0.029654293367299
912 => 0.02940960062752
913 => 0.029363723688626
914 => 0.028745161750298
915 => 0.027649289614564
916 => 0.028256509156643
917 => 0.0275230733378
918 => 0.027245310079838
919 => 0.028560198141981
920 => 0.02842821984986
921 => 0.028202330383333
922 => 0.027868192782849
923 => 0.027744257896548
924 => 0.026991268760401
925 => 0.026946778145196
926 => 0.027319979893488
927 => 0.027147760127739
928 => 0.026905898351903
929 => 0.026029899516958
930 => 0.025044986793233
1001 => 0.025074715117421
1002 => 0.025387997529885
1003 => 0.026298908396015
1004 => 0.0259429997617
1005 => 0.025684783963924
1006 => 0.025636427906939
1007 => 0.02624170520037
1008 => 0.027098299380089
1009 => 0.027500194203998
1010 => 0.027101928639231
1011 => 0.026644422602568
1012 => 0.02667226887514
1013 => 0.026857517651218
1014 => 0.026876984678307
1015 => 0.026579195280819
1016 => 0.026663021251901
1017 => 0.026535681936621
1018 => 0.025754200793797
1019 => 0.025740066278027
1020 => 0.025548278202492
1021 => 0.025542470935787
1022 => 0.025216191575525
1023 => 0.025170542837561
1024 => 0.02452269536402
1025 => 0.024949110532968
1026 => 0.024663093625439
1027 => 0.024231998681224
1028 => 0.024157677750352
1029 => 0.024155443573425
1030 => 0.024598081690068
1031 => 0.024943938048858
1101 => 0.024668069012
1102 => 0.024605258979803
1103 => 0.025275905799214
1104 => 0.025190559878362
1105 => 0.025116650861327
1106 => 0.027021600766502
1107 => 0.025513684271461
1108 => 0.024856146610759
1109 => 0.024042318892625
1110 => 0.024307305301325
1111 => 0.024363141831098
1112 => 0.022406032872458
1113 => 0.02161203401168
1114 => 0.021339563523877
1115 => 0.021182752905979
1116 => 0.021254213473659
1117 => 0.020539521372181
1118 => 0.02101980628429
1119 => 0.02040094333583
1120 => 0.020297188948567
1121 => 0.021403792562822
1122 => 0.021557769991061
1123 => 0.020900854445156
1124 => 0.021322700570593
1125 => 0.02116973330141
1126 => 0.020411551964837
1127 => 0.020382595014585
1128 => 0.020002166271255
1129 => 0.019406868953465
1130 => 0.019134802105275
1201 => 0.018993107328545
1202 => 0.019051573355
1203 => 0.019022011142935
1204 => 0.018829097712556
1205 => 0.019033068714948
1206 => 0.018512007090475
1207 => 0.018304516153132
1208 => 0.018210797310487
1209 => 0.01774832512758
1210 => 0.018484324032898
1211 => 0.018629325089116
1212 => 0.018774611842207
1213 => 0.02003923383639
1214 => 0.019976056895345
1215 => 0.020547145673971
1216 => 0.020524954214198
1217 => 0.02036207044351
1218 => 0.019674890608053
1219 => 0.019948788242663
1220 => 0.019105773896475
1221 => 0.019737417564043
1222 => 0.019449161772235
1223 => 0.019639957990873
1224 => 0.01929688918636
1225 => 0.019486757627742
1226 => 0.01866371021873
1227 => 0.017895160128784
1228 => 0.018204447120354
1229 => 0.018540677451448
1230 => 0.019269710479156
1231 => 0.018835504422245
]
'min_raw' => 0.01774832512758
'max_raw' => 0.052979182749463
'avg_raw' => 0.035363753938521
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.017748'
'max' => '$0.052979'
'avg' => '$0.035363'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.03362167487242
'max_diff' => 0.0016091827494626
'year' => 2026
]
1 => [
'items' => [
101 => 0.018991661339459
102 => 0.018468561807144
103 => 0.017389258055986
104 => 0.017395366798005
105 => 0.0172293394298
106 => 0.017085867543278
107 => 0.018885378211122
108 => 0.018661580613521
109 => 0.018304988431651
110 => 0.018782301237495
111 => 0.018908510319332
112 => 0.018912103314463
113 => 0.01926033841638
114 => 0.019446191552698
115 => 0.019478948973508
116 => 0.020026904430491
117 => 0.020210571871965
118 => 0.020967072069806
119 => 0.019430423212565
120 => 0.01939877694057
121 => 0.018789018007519
122 => 0.018402299252271
123 => 0.018815496971543
124 => 0.019181533743705
125 => 0.018800391790354
126 => 0.018850160883116
127 => 0.018338508951183
128 => 0.018521400441388
129 => 0.018678931230897
130 => 0.018591951988162
131 => 0.018461739851945
201 => 0.019151522902616
202 => 0.019112602639616
203 => 0.019754944474445
204 => 0.020255695869
205 => 0.02115313188806
206 => 0.020216610617773
207 => 0.020182480060349
208 => 0.020516111733883
209 => 0.020210520794694
210 => 0.020403643719621
211 => 0.021122016799186
212 => 0.021137194890359
213 => 0.020882942307334
214 => 0.02086747101455
215 => 0.020916303004339
216 => 0.02120231349377
217 => 0.021102372640548
218 => 0.021218026726089
219 => 0.021362653931017
220 => 0.021960893371261
221 => 0.022105126874974
222 => 0.021754714237449
223 => 0.021786352575214
224 => 0.021655288629738
225 => 0.021528682500634
226 => 0.021813274589519
227 => 0.022333372225627
228 => 0.022330136725225
301 => 0.022450789267549
302 => 0.022525954801877
303 => 0.022203289304007
304 => 0.021993245929633
305 => 0.022073789924775
306 => 0.022202581527028
307 => 0.022032024543975
308 => 0.020979267834892
309 => 0.021298606970069
310 => 0.021245453323089
311 => 0.021169756066086
312 => 0.021490854035883
313 => 0.021459883353373
314 => 0.020532191171681
315 => 0.020591579015263
316 => 0.020535802743148
317 => 0.020716027289104
318 => 0.020200788077766
319 => 0.020359272188984
320 => 0.020458671937844
321 => 0.020517219153548
322 => 0.02072873184287
323 => 0.020703913270048
324 => 0.020727189085536
325 => 0.021040806566521
326 => 0.02262697616482
327 => 0.02271330787637
328 => 0.02228817895436
329 => 0.022458009573406
330 => 0.022131971922712
331 => 0.022350843181885
401 => 0.022500589338684
402 => 0.021823915250639
403 => 0.021783847002723
404 => 0.021456463678667
405 => 0.021632380933076
406 => 0.021352483932413
407 => 0.021421160865994
408 => 0.021229134172554
409 => 0.021574743988613
410 => 0.021961189465303
411 => 0.022058820853909
412 => 0.021801994703442
413 => 0.021616035644835
414 => 0.021289552796645
415 => 0.021832501049331
416 => 0.021991275664464
417 => 0.02183166707387
418 => 0.021794682275913
419 => 0.021724596150614
420 => 0.021809551378713
421 => 0.021990410943812
422 => 0.021905120912863
423 => 0.021961456480922
424 => 0.021746763388468
425 => 0.022203396119713
426 => 0.022928638791582
427 => 0.022930970565361
428 => 0.022845680074667
429 => 0.022810781043485
430 => 0.022898294262796
501 => 0.022945766594293
502 => 0.023228768298366
503 => 0.023532440402123
504 => 0.024949545607835
505 => 0.024551628136709
506 => 0.025808968179183
507 => 0.026803360907609
508 => 0.02710153580734
509 => 0.026827228929801
510 => 0.025888839919505
511 => 0.025842798077839
512 => 0.027245147436841
513 => 0.026848919511253
514 => 0.026801789460292
515 => 0.026300405345535
516 => 0.026596785454987
517 => 0.026531962777416
518 => 0.026429637009636
519 => 0.026995109612453
520 => 0.028053623844838
521 => 0.027888644475037
522 => 0.027765495028654
523 => 0.027225890002865
524 => 0.027550852753536
525 => 0.027435139742274
526 => 0.027932316271947
527 => 0.027637799909577
528 => 0.026845917695016
529 => 0.026972027547763
530 => 0.026952966297218
531 => 0.027345245482737
601 => 0.027227493008212
602 => 0.026929973236707
603 => 0.028050005958267
604 => 0.027977277263278
605 => 0.028080389924678
606 => 0.028125783307091
607 => 0.028807527487514
608 => 0.029086816264853
609 => 0.029150219706947
610 => 0.02941552244445
611 => 0.029143618733153
612 => 0.030231427442401
613 => 0.030954756758653
614 => 0.031794940981666
615 => 0.033022675951718
616 => 0.033484315657641
617 => 0.033400924576742
618 => 0.03433177921909
619 => 0.036004504319652
620 => 0.033739030144607
621 => 0.036124579951931
622 => 0.035369342425429
623 => 0.033578687836236
624 => 0.033463390791123
625 => 0.034676042868852
626 => 0.037365588463816
627 => 0.036691887796851
628 => 0.037366690396761
629 => 0.036579497319716
630 => 0.036540406548456
701 => 0.037328458186057
702 => 0.039169783791768
703 => 0.038295039017553
704 => 0.037040877887497
705 => 0.037966930949022
706 => 0.037164698084964
707 => 0.035357042911401
708 => 0.036691372630648
709 => 0.03579914434691
710 => 0.036059543993569
711 => 0.037934875137045
712 => 0.037709230332351
713 => 0.038001235603771
714 => 0.037485853942823
715 => 0.03700440620327
716 => 0.036105748244614
717 => 0.035839699926359
718 => 0.035913226110109
719 => 0.035839663490433
720 => 0.035336872621659
721 => 0.035228294981418
722 => 0.035047327490788
723 => 0.035103416883231
724 => 0.034763145056939
725 => 0.035405308296898
726 => 0.035524499452957
727 => 0.035991812307029
728 => 0.03604033027779
729 => 0.037341789924598
730 => 0.036624967821277
731 => 0.037105873975627
801 => 0.037062857202718
802 => 0.033617496750924
803 => 0.034092237022508
804 => 0.03483078390339
805 => 0.034498069534629
806 => 0.034027689260374
807 => 0.033647831968718
808 => 0.033072309329457
809 => 0.033882346392284
810 => 0.034947458992062
811 => 0.036067343291024
812 => 0.0374128108985
813 => 0.037112518191481
814 => 0.03604219070999
815 => 0.036090204818935
816 => 0.036387009147577
817 => 0.036002620574468
818 => 0.035889256880102
819 => 0.036371434716789
820 => 0.03637475521055
821 => 0.035932469702278
822 => 0.035440950297226
823 => 0.035438890812972
824 => 0.035351429682358
825 => 0.036595056460556
826 => 0.037278925443716
827 => 0.037357329920525
828 => 0.037273648197733
829 => 0.037305853971627
830 => 0.036907925678351
831 => 0.03781747175481
901 => 0.038652161179353
902 => 0.038428446583037
903 => 0.038093066600255
904 => 0.037825920289881
905 => 0.038365515402345
906 => 0.038341488081388
907 => 0.038644870895397
908 => 0.038631107698529
909 => 0.038529091468983
910 => 0.038428450226358
911 => 0.038827481377396
912 => 0.038712566814142
913 => 0.03859747375683
914 => 0.038366637010525
915 => 0.03839801155814
916 => 0.038062689483441
917 => 0.037907554148391
918 => 0.035574690930955
919 => 0.034951273650752
920 => 0.035147413417933
921 => 0.035211987722056
922 => 0.03494067572278
923 => 0.035329667435407
924 => 0.035269043489038
925 => 0.035504895800537
926 => 0.035357545515829
927 => 0.035363592822912
928 => 0.035796918591842
929 => 0.035922714906063
930 => 0.035858733885349
1001 => 0.035903543999116
1002 => 0.036936174157697
1003 => 0.0367893671708
1004 => 0.036711378884983
1005 => 0.036732982173136
1006 => 0.036996841318493
1007 => 0.037070707473018
1008 => 0.036757731385814
1009 => 0.036905332717833
1010 => 0.037533800456171
1011 => 0.037753728596396
1012 => 0.038455633648499
1013 => 0.038157451906998
1014 => 0.038704777398526
1015 => 0.040387069362472
1016 => 0.041731000589022
1017 => 0.04049506589278
1018 => 0.042963024441729
1019 => 0.044884684179713
1020 => 0.044810927678277
1021 => 0.044475841854169
1022 => 0.042288083332442
1023 => 0.040274875323106
1024 => 0.041959009308243
1025 => 0.041963302512116
1026 => 0.041818633909208
1027 => 0.0409201096413
1028 => 0.041787367212349
1029 => 0.041856206968922
1030 => 0.04181767501121
1031 => 0.041128778561707
1101 => 0.040076961012661
1102 => 0.040282483644049
1103 => 0.040619133906811
1104 => 0.039981784726801
1105 => 0.039778113045439
1106 => 0.040156777451213
1107 => 0.041376913064481
1108 => 0.041146253494557
1109 => 0.041140230041018
1110 => 0.042127089496032
1111 => 0.041420711103842
1112 => 0.040285075942605
1113 => 0.039998313087205
1114 => 0.038980498137142
1115 => 0.039683506548483
1116 => 0.039708806569666
1117 => 0.039323776047346
1118 => 0.040316319047467
1119 => 0.040307172588987
1120 => 0.041249444447073
1121 => 0.043050714338583
1122 => 0.042517990196555
1123 => 0.041898489979599
1124 => 0.04196584683006
1125 => 0.042704585228744
1126 => 0.042257927129142
1127 => 0.04241854849597
1128 => 0.042704342109068
1129 => 0.042876768491706
1130 => 0.04194103732709
1201 => 0.041722873631422
1202 => 0.041276587275138
1203 => 0.041160159495113
1204 => 0.041523650420236
1205 => 0.04142788340379
1206 => 0.039706680200852
1207 => 0.039526804889461
1208 => 0.039532321408458
1209 => 0.03908001638536
1210 => 0.038390142659492
1211 => 0.040203089620854
1212 => 0.04005748460768
1213 => 0.039896747942069
1214 => 0.039916437266456
1215 => 0.04070337609591
1216 => 0.040246911833463
1217 => 0.041460496888199
1218 => 0.041211020284651
1219 => 0.040955145547584
1220 => 0.040919775864786
1221 => 0.040821285921222
1222 => 0.040483527258246
1223 => 0.040075663376555
1224 => 0.039806356313297
1225 => 0.036719259542983
1226 => 0.037292206746738
1227 => 0.037951330278876
1228 => 0.038178857080899
1229 => 0.037789656741664
1230 => 0.040498895259843
1231 => 0.040993899243987
]
'min_raw' => 0.017085867543278
'max_raw' => 0.044884684179713
'avg_raw' => 0.030985275861495
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.017085'
'max' => '$0.044884'
'avg' => '$0.030985'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00066245758430192
'max_diff' => -0.0080944985697497
'year' => 2027
]
2 => [
'items' => [
101 => 0.039494499887706
102 => 0.039214023488218
103 => 0.0405172832459
104 => 0.039731258294992
105 => 0.040085205282256
106 => 0.039320165494441
107 => 0.040874667279615
108 => 0.040862824580515
109 => 0.040258088276067
110 => 0.040769207259531
111 => 0.040680387758134
112 => 0.039997641959812
113 => 0.040896311539214
114 => 0.040896757268113
115 => 0.040314711723183
116 => 0.039635009952858
117 => 0.039513495330163
118 => 0.039421950385155
119 => 0.040062690837592
120 => 0.040637176723703
121 => 0.041706152530627
122 => 0.041974918446726
123 => 0.043023929710022
124 => 0.04239929457816
125 => 0.042676187241735
126 => 0.042976793396905
127 => 0.043120915042118
128 => 0.042886076555237
129 => 0.044515622837397
130 => 0.04465320647162
131 => 0.04469933707408
201 => 0.044149863236275
202 => 0.044637924610199
203 => 0.044409576856234
204 => 0.045003674275219
205 => 0.045096836336332
206 => 0.045017931384906
207 => 0.045047502493566
208 => 0.043656972213405
209 => 0.043584865882747
210 => 0.042601690947794
211 => 0.04300234200105
212 => 0.042253344060693
213 => 0.042490859023114
214 => 0.042595553355423
215 => 0.042540866977576
216 => 0.043024994210469
217 => 0.042613387161851
218 => 0.041527088486083
219 => 0.040440493848967
220 => 0.040426852538419
221 => 0.040140771350455
222 => 0.03993398704994
223 => 0.039973821042287
224 => 0.040114201226944
225 => 0.039925827898411
226 => 0.039966026898824
227 => 0.040633598150215
228 => 0.040767474803782
229 => 0.040312509625978
301 => 0.038485758785936
302 => 0.038037469547732
303 => 0.038359690962191
304 => 0.038205689879796
305 => 0.030834973564833
306 => 0.032566614031653
307 => 0.031537732067222
308 => 0.032011888213015
309 => 0.030961666155024
310 => 0.031462887167951
311 => 0.031370329948524
312 => 0.034154756576205
313 => 0.034111281584267
314 => 0.034132090762262
315 => 0.033138814478528
316 => 0.034721130568907
317 => 0.035500636373273
318 => 0.03535637059476
319 => 0.035392679183128
320 => 0.034768777338865
321 => 0.034138131495897
322 => 0.033438648200346
323 => 0.034738201704731
324 => 0.034593713539162
325 => 0.034925117405777
326 => 0.035767970747374
327 => 0.035892084103613
328 => 0.036058893713031
329 => 0.035999104342371
330 => 0.037423529718671
331 => 0.03725102240694
401 => 0.037666715394471
402 => 0.036811603380417
403 => 0.035843962968536
404 => 0.036027879776286
405 => 0.036010167108734
406 => 0.035784664521145
407 => 0.035581090867972
408 => 0.035242198091959
409 => 0.036314504981957
410 => 0.036270971280485
411 => 0.036975731304918
412 => 0.036851158124926
413 => 0.03601922794071
414 => 0.036048940489993
415 => 0.036248771663279
416 => 0.036940389635655
417 => 0.037145708938799
418 => 0.037050596857023
419 => 0.037275720099738
420 => 0.037453648331766
421 => 0.03729806514625
422 => 0.039500794957259
423 => 0.038586067965941
424 => 0.03903189953688
425 => 0.039138227739557
426 => 0.038865870284242
427 => 0.03892493486391
428 => 0.039014401607974
429 => 0.039557626158542
430 => 0.040983204562523
501 => 0.041614583533406
502 => 0.043514118318997
503 => 0.041562156299094
504 => 0.041446334950854
505 => 0.041788498526194
506 => 0.042903726531514
507 => 0.043807514081785
508 => 0.044107352552965
509 => 0.044146981156725
510 => 0.044709498061542
511 => 0.045031922261065
512 => 0.044641193713634
513 => 0.044310092180671
514 => 0.043124127587432
515 => 0.043261406218374
516 => 0.044207119852895
517 => 0.04554299606391
518 => 0.046689316827193
519 => 0.046287915249203
520 => 0.04935032594391
521 => 0.049653951455465
522 => 0.049612000227156
523 => 0.050303704328011
524 => 0.048930812550904
525 => 0.048343874717666
526 => 0.04438168009026
527 => 0.045494895164742
528 => 0.047113018652331
529 => 0.046898853941097
530 => 0.045723729411845
531 => 0.046688425389861
601 => 0.046369466730697
602 => 0.046117890802607
603 => 0.04727040889958
604 => 0.046003167909124
605 => 0.047100376954063
606 => 0.045693195004754
607 => 0.0462897488178
608 => 0.045951116021454
609 => 0.046170252941964
610 => 0.044889182982364
611 => 0.045580417236349
612 => 0.044860425364831
613 => 0.044860083994938
614 => 0.044844190134468
615 => 0.045691257378377
616 => 0.04571888021079
617 => 0.045092896237694
618 => 0.045002682167463
619 => 0.045336250868214
620 => 0.044945729281416
621 => 0.045128451873965
622 => 0.044951263762602
623 => 0.044911374986582
624 => 0.044593534432734
625 => 0.044456599982929
626 => 0.044510295509063
627 => 0.044327004996424
628 => 0.044216565832652
629 => 0.044822221005081
630 => 0.044498643878512
701 => 0.044772628169685
702 => 0.044460388490319
703 => 0.043378029725285
704 => 0.042755553753778
705 => 0.040711078381339
706 => 0.041290889060799
707 => 0.041675304141138
708 => 0.041548254959379
709 => 0.041821205763304
710 => 0.041837962725851
711 => 0.041749223637091
712 => 0.041646475140488
713 => 0.04159646285469
714 => 0.041969213458731
715 => 0.042185607730585
716 => 0.041713885337261
717 => 0.041603367380602
718 => 0.042080304764761
719 => 0.042371236293579
720 => 0.044519311242073
721 => 0.044360174911698
722 => 0.044759575872011
723 => 0.044714609453187
724 => 0.045133245289159
725 => 0.045817537952267
726 => 0.04442617963693
727 => 0.044667671330922
728 => 0.044608463144413
729 => 0.0452548825995
730 => 0.045256900650479
731 => 0.044869339896108
801 => 0.045079442868508
802 => 0.044962169153188
803 => 0.045174098607264
804 => 0.044358049548985
805 => 0.045351909214917
806 => 0.045915363602599
807 => 0.045923187167318
808 => 0.046190260075229
809 => 0.046461621617486
810 => 0.046982476467238
811 => 0.046447095258421
812 => 0.045483996582068
813 => 0.045553529195711
814 => 0.044988864794149
815 => 0.044998356904754
816 => 0.044947687274433
817 => 0.045099750649258
818 => 0.044391418908493
819 => 0.044557662952257
820 => 0.044324920317464
821 => 0.044667165393888
822 => 0.044298966266793
823 => 0.044608434592432
824 => 0.044741990862741
825 => 0.045234816375439
826 => 0.044226175537863
827 => 0.042169488591065
828 => 0.042601829122201
829 => 0.041962363517035
830 => 0.04202154849341
831 => 0.042141111564908
901 => 0.041753568531582
902 => 0.041827499529456
903 => 0.041824858193968
904 => 0.041802096591693
905 => 0.041701281681103
906 => 0.041555080115125
907 => 0.042137502155511
908 => 0.042236467009411
909 => 0.04245645362048
910 => 0.043110984556675
911 => 0.043045581481246
912 => 0.043152256610817
913 => 0.042919385401919
914 => 0.0420323507209
915 => 0.042080520971732
916 => 0.041479837171982
917 => 0.042441092785199
918 => 0.042213454768035
919 => 0.042066695057497
920 => 0.042026650310757
921 => 0.042682803702542
922 => 0.042879135081309
923 => 0.04275679454137
924 => 0.042505870524713
925 => 0.042987718815721
926 => 0.043116641090848
927 => 0.043145502033778
928 => 0.0439992448202
929 => 0.04319321677164
930 => 0.043387235734158
1001 => 0.04490091629457
1002 => 0.043528216899916
1003 => 0.044255366384114
1004 => 0.044219776200765
1005 => 0.044591761271484
1006 => 0.044189262567536
1007 => 0.044194252021362
1008 => 0.044524549563708
1009 => 0.044060706234958
1010 => 0.043945852103716
1011 => 0.043787181944006
1012 => 0.044133632432901
1013 => 0.044341313832386
1014 => 0.046015073387053
1015 => 0.047096398392078
1016 => 0.047049455221818
1017 => 0.047478427924061
1018 => 0.047285171792761
1019 => 0.046661096766401
1020 => 0.047726316738555
1021 => 0.047389236568669
1022 => 0.047417025048322
1023 => 0.047415990759721
1024 => 0.047640119604636
1025 => 0.047481303776907
1026 => 0.047168261478343
1027 => 0.047376073565202
1028 => 0.047993201168993
1029 => 0.049908784186947
1030 => 0.050980769821894
1031 => 0.049844249305699
1101 => 0.050628205939154
1102 => 0.050158111311391
1103 => 0.050072681133423
1104 => 0.050565063833173
1105 => 0.051058308383658
1106 => 0.051026890838147
1107 => 0.050668820622883
1108 => 0.050466555843975
1109 => 0.051998172513535
1110 => 0.053126641585257
1111 => 0.053049687559918
1112 => 0.053389337600974
1113 => 0.054386560626495
1114 => 0.054477734202342
1115 => 0.054466248427386
1116 => 0.054240265206669
1117 => 0.055222160781067
1118 => 0.056041275344039
1119 => 0.054187956620356
1120 => 0.054893676128611
1121 => 0.055210496352729
1122 => 0.055675682438059
1123 => 0.056460529338252
1124 => 0.05731308124222
1125 => 0.057433641429197
1126 => 0.0573480982072
1127 => 0.056785817308708
1128 => 0.05771868977509
1129 => 0.058265144587345
1130 => 0.058590545922646
1201 => 0.059415709567352
1202 => 0.055212452926575
1203 => 0.052237178960822
1204 => 0.051772546967593
1205 => 0.052717394396575
1206 => 0.052966543128581
1207 => 0.052866111587115
1208 => 0.049517170238587
1209 => 0.051754915484473
1210 => 0.054162541214081
1211 => 0.05425502792372
1212 => 0.055460335705042
1213 => 0.055852833325876
1214 => 0.056823264073143
1215 => 0.056762563365681
1216 => 0.056998847809715
1217 => 0.056944530107908
1218 => 0.058742048718916
1219 => 0.060724978680956
1220 => 0.060656316121702
1221 => 0.060371246478696
1222 => 0.060794623510156
1223 => 0.06284121973467
1224 => 0.062652801950353
1225 => 0.062835833778428
1226 => 0.065248886068239
1227 => 0.068386197297678
1228 => 0.066928601250706
1229 => 0.070091165260671
1230 => 0.072081831664629
1231 => 0.075524483371527
]
'min_raw' => 0.030834973564833
'max_raw' => 0.075524483371527
'avg_raw' => 0.05317972846818
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.030834'
'max' => '$0.075524'
'avg' => '$0.053179'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013749106021555
'max_diff' => 0.030639799191814
'year' => 2028
]
3 => [
'items' => [
101 => 0.075093446422406
102 => 0.076433645468557
103 => 0.074321800323354
104 => 0.069472576995648
105 => 0.068705168841957
106 => 0.070241539399516
107 => 0.074018556498426
108 => 0.070122587689808
109 => 0.070910737105671
110 => 0.070683750020881
111 => 0.070671654843766
112 => 0.071133278559622
113 => 0.070463669283098
114 => 0.067735560630131
115 => 0.068985836748941
116 => 0.068503045096278
117 => 0.069038738429409
118 => 0.071929654411584
119 => 0.070651511545035
120 => 0.069305091863021
121 => 0.070993800938713
122 => 0.073144107895466
123 => 0.073009545550586
124 => 0.072748438358821
125 => 0.074220285927671
126 => 0.076651346900538
127 => 0.07730845291271
128 => 0.077793515136954
129 => 0.077860397022484
130 => 0.078549322010301
131 => 0.074844798719355
201 => 0.080723972320992
202 => 0.081739143193102
203 => 0.081548333143667
204 => 0.082676652843096
205 => 0.082344672564816
206 => 0.081863685227698
207 => 0.083652311951775
208 => 0.081601795747354
209 => 0.07869134614799
210 => 0.077094615935613
211 => 0.079197319083823
212 => 0.080481366522208
213 => 0.081330040198225
214 => 0.081586848339805
215 => 0.075132370317006
216 => 0.071653764644479
217 => 0.073883510998274
218 => 0.076603955438776
219 => 0.074829686513129
220 => 0.074899234495879
221 => 0.072369593277579
222 => 0.076827772555865
223 => 0.076178253334208
224 => 0.079547960205142
225 => 0.078743752616806
226 => 0.081491617758786
227 => 0.080768012775913
228 => 0.083771656603607
301 => 0.084969891446884
302 => 0.086981914239108
303 => 0.088461966395474
304 => 0.089331081330579
305 => 0.089278902929843
306 => 0.092722769294069
307 => 0.090692041618612
308 => 0.088140969052472
309 => 0.088094828198281
310 => 0.089416064829263
311 => 0.092185014344232
312 => 0.092902962666887
313 => 0.093304197834939
314 => 0.09268969220797
315 => 0.090485482859825
316 => 0.089533716438891
317 => 0.090344649004854
318 => 0.08935294816091
319 => 0.09106490203967
320 => 0.093415780368823
321 => 0.092930333290233
322 => 0.094553110091665
323 => 0.096232513360049
324 => 0.098634135460559
325 => 0.099262008409441
326 => 0.10029985851807
327 => 0.10136814719586
328 => 0.10171125272797
329 => 0.10236634764818
330 => 0.10236289497458
331 => 0.1043370676096
401 => 0.10651464116105
402 => 0.10733662476578
403 => 0.10922673074042
404 => 0.10598999049607
405 => 0.1084450951524
406 => 0.11065966100767
407 => 0.10801936429919
408 => 0.1116583982016
409 => 0.1117996936418
410 => 0.11393308703519
411 => 0.11177048412227
412 => 0.11048633741585
413 => 0.11419362084093
414 => 0.11598745851199
415 => 0.11544714000673
416 => 0.1113352895029
417 => 0.1089420161441
418 => 0.10267835813618
419 => 0.11009793161645
420 => 0.11371178942677
421 => 0.11132593048421
422 => 0.11252921895771
423 => 0.11909397070152
424 => 0.12159340312937
425 => 0.12107353865673
426 => 0.12116138719491
427 => 0.12251003556507
428 => 0.12849068515257
429 => 0.12490694128936
430 => 0.12764657919246
501 => 0.12909967325777
502 => 0.13044938800743
503 => 0.12713491516398
504 => 0.12282283469392
505 => 0.12145701780023
506 => 0.11108870383252
507 => 0.11054898806319
508 => 0.11024602924681
509 => 0.10833591676389
510 => 0.10683509157615
511 => 0.1056415796648
512 => 0.10250944799658
513 => 0.10356645048991
514 => 0.098574486337457
515 => 0.10176816809785
516 => 0.093800872775342
517 => 0.10043627306939
518 => 0.096824926363969
519 => 0.099249848549799
520 => 0.099241388224734
521 => 0.094776337658342
522 => 0.092200989674875
523 => 0.093842101643983
524 => 0.095601503946497
525 => 0.09588696105074
526 => 0.098168072061048
527 => 0.098804681111708
528 => 0.096875725967774
529 => 0.093635768288789
530 => 0.09438833656205
531 => 0.092185738902837
601 => 0.088325771226763
602 => 0.09109806740029
603 => 0.09204465120319
604 => 0.09246271653624
605 => 0.088666881647104
606 => 0.087474147913352
607 => 0.086839146481508
608 => 0.093145773670655
609 => 0.093491264944482
610 => 0.091723682740038
611 => 0.099713321913147
612 => 0.09790502050117
613 => 0.099925336222951
614 => 0.094320048879299
615 => 0.094534178404347
616 => 0.091880545547148
617 => 0.093366402631368
618 => 0.09231624673565
619 => 0.093246360062489
620 => 0.093803866155595
621 => 0.096457063577754
622 => 0.10046656832206
623 => 0.09606076435922
624 => 0.094141092480337
625 => 0.095332046117352
626 => 0.098503712594757
627 => 0.10330894966265
628 => 0.10046415260405
629 => 0.10172662523087
630 => 0.10200241933633
701 => 0.099904771305429
702 => 0.1033862929376
703 => 0.10525206866411
704 => 0.10716596849162
705 => 0.1088277540856
706 => 0.10640151481296
707 => 0.10899793862242
708 => 0.10690567936249
709 => 0.10502870651255
710 => 0.10503155310558
711 => 0.10385410061862
712 => 0.10157263805656
713 => 0.1011519013562
714 => 0.10334062680465
715 => 0.10509577734125
716 => 0.10524033994604
717 => 0.10621208146599
718 => 0.10678714808776
719 => 0.11242358274628
720 => 0.11469060339297
721 => 0.11746267332724
722 => 0.11854255079194
723 => 0.12179259480318
724 => 0.11916792030844
725 => 0.11860005547152
726 => 0.11071651178154
727 => 0.11200744161913
728 => 0.11407434484531
729 => 0.11075059425445
730 => 0.11285874898242
731 => 0.11327494338255
801 => 0.11063765448122
802 => 0.11204634443394
803 => 0.10830528156697
804 => 0.10054811326941
805 => 0.10339492888342
806 => 0.1054911434031
807 => 0.10249958682213
808 => 0.10786183620429
809 => 0.10472932081453
810 => 0.10373646382323
811 => 0.099862974721095
812 => 0.10169111247303
813 => 0.10416369495894
814 => 0.10263592645122
815 => 0.10580627550034
816 => 0.11029633525511
817 => 0.11349621922404
818 => 0.11374186658205
819 => 0.11168455556561
820 => 0.11498140959904
821 => 0.11500542358142
822 => 0.11128655876366
823 => 0.10900877476951
824 => 0.10849125745354
825 => 0.10978411717408
826 => 0.11135388754988
827 => 0.11382897791286
828 => 0.11532462318205
829 => 0.11922447281515
830 => 0.12027966030841
831 => 0.12143899145065
901 => 0.12298821538117
902 => 0.12484845592261
903 => 0.12077835552148
904 => 0.12094006819804
905 => 0.11715004705888
906 => 0.11309986592768
907 => 0.11617344854406
908 => 0.1201917489534
909 => 0.11926994639967
910 => 0.11916622478166
911 => 0.11934065577318
912 => 0.11864564675092
913 => 0.11550214670149
914 => 0.11392350065602
915 => 0.11596035681024
916 => 0.11704285520617
917 => 0.11872171581447
918 => 0.11851476080805
919 => 0.12283932543858
920 => 0.12451972048596
921 => 0.12408980352468
922 => 0.12416891859208
923 => 0.12721119355923
924 => 0.13059482901427
925 => 0.13376405012793
926 => 0.13698791796596
927 => 0.13310141945751
928 => 0.13112809520082
929 => 0.13316406212736
930 => 0.13208374941783
1001 => 0.13829154668837
1002 => 0.13872136110251
1003 => 0.14492870947865
1004 => 0.15082022224489
1005 => 0.14711986863383
1006 => 0.15060913542147
1007 => 0.15438306193641
1008 => 0.16166357848123
1009 => 0.15921175664059
1010 => 0.15733369953561
1011 => 0.15555894464611
1012 => 0.15925192783676
1013 => 0.16400289171467
1014 => 0.16502620382981
1015 => 0.16668436039165
1016 => 0.16494101151662
1017 => 0.16704068321301
1018 => 0.17445344694379
1019 => 0.17245045274946
1020 => 0.16960587899613
1021 => 0.17545754403218
1022 => 0.17757523886096
1023 => 0.1924383302147
1024 => 0.21120359701249
1025 => 0.20343465333882
1026 => 0.19861221929833
1027 => 0.19974560568751
1028 => 0.20659804587769
1029 => 0.2087988321812
1030 => 0.20281633635174
1031 => 0.20492945501659
1101 => 0.21657294661719
1102 => 0.22281930629298
1103 => 0.21433591085523
1104 => 0.19093055929884
1105 => 0.16934975625279
1106 => 0.17507395701683
1107 => 0.17442501029282
1108 => 0.1869344894625
1109 => 0.17240268200036
1110 => 0.17264736036913
1111 => 0.18541552232027
1112 => 0.18200919561342
1113 => 0.17649138259768
1114 => 0.16939004239419
1115 => 0.15626255823357
1116 => 0.14463517942553
1117 => 0.16743914689351
1118 => 0.16645579834997
1119 => 0.16503176393482
1120 => 0.1682007984291
1121 => 0.18358873038718
1122 => 0.18323398874967
1123 => 0.18097730344261
1124 => 0.1826889793585
1125 => 0.17619131753379
1126 => 0.17786591293503
1127 => 0.16934633774333
1128 => 0.17319754153887
1129 => 0.17647954384912
1130 => 0.17713845440378
1201 => 0.17862301352823
1202 => 0.16593761835122
1203 => 0.17163298836206
1204 => 0.17497848465943
1205 => 0.15986341067773
1206 => 0.17467970824548
1207 => 0.16571679384365
1208 => 0.16267464607721
1209 => 0.16677049727223
1210 => 0.16517434007818
1211 => 0.16380205785224
1212 => 0.16303630079136
1213 => 0.16604384186638
1214 => 0.16590353648044
1215 => 0.16098261554314
1216 => 0.15456347478282
1217 => 0.1567179491231
1218 => 0.15593520839697
1219 => 0.15309845502993
1220 => 0.15501008428841
1221 => 0.14659223648749
1222 => 0.13210976686766
1223 => 0.14167732990856
1224 => 0.14130898913899
1225 => 0.14112325502005
1226 => 0.14831301421727
1227 => 0.14762188476642
1228 => 0.14636747804558
1229 => 0.15307541686678
1230 => 0.15062692896253
1231 => 0.15817259174712
]
'min_raw' => 0.067735560630131
'max_raw' => 0.22281930629298
'avg_raw' => 0.14527743346155
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.067735'
'max' => '$0.222819'
'avg' => '$0.145277'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.036900587065298
'max_diff' => 0.14729482292145
'year' => 2029
]
4 => [
'items' => [
101 => 0.16314265327992
102 => 0.16188208491056
103 => 0.16655645180455
104 => 0.15676758386047
105 => 0.16001905313028
106 => 0.16068917644044
107 => 0.15299264194297
108 => 0.14773496209192
109 => 0.1473843347878
110 => 0.13826824247898
111 => 0.14313798540782
112 => 0.14742315766155
113 => 0.14537089269482
114 => 0.14472120691602
115 => 0.14804031066024
116 => 0.14829823344736
117 => 0.14241756656744
118 => 0.14364034342828
119 => 0.1487395262077
120 => 0.14351185710539
121 => 0.1333553499745
122 => 0.13083639578134
123 => 0.13050032085844
124 => 0.12366871730581
125 => 0.13100472434538
126 => 0.12780236067984
127 => 0.13791858912906
128 => 0.13214025369329
129 => 0.13189116120166
130 => 0.13151462136665
131 => 0.12563437797892
201 => 0.12692177757187
202 => 0.13120128989533
203 => 0.1327282681045
204 => 0.13256899176712
205 => 0.13118031795027
206 => 0.13181604571246
207 => 0.1297681450882
208 => 0.1290449887544
209 => 0.12676250844513
210 => 0.12340789294178
211 => 0.12387437280257
212 => 0.11722800170754
213 => 0.11360670598535
214 => 0.11260437905736
215 => 0.11126402559913
216 => 0.11275577554702
217 => 0.1172091733733
218 => 0.11183743075375
219 => 0.10262795481645
220 => 0.10318146001247
221 => 0.10442502185075
222 => 0.1021076525921
223 => 0.099914457070852
224 => 0.101821262637
225 => 0.097919086275993
226 => 0.1048965812211
227 => 0.10470785953704
228 => 0.10730863816719
301 => 0.10893495841797
302 => 0.10518681676735
303 => 0.10424416927828
304 => 0.104781144129
305 => 0.095906145972893
306 => 0.10658336147545
307 => 0.10667569847849
308 => 0.10588505299898
309 => 0.11157034063205
310 => 0.1235680708235
311 => 0.1190540421179
312 => 0.11730607376585
313 => 0.11398318465085
314 => 0.11841073710295
315 => 0.11807077015521
316 => 0.11653331068887
317 => 0.11560345040647
318 => 0.11731674648787
319 => 0.11539115406177
320 => 0.11504526475031
321 => 0.11294955185409
322 => 0.112201477699
323 => 0.11164763337626
324 => 0.11103790519655
325 => 0.1123828136262
326 => 0.10933507418717
327 => 0.10565979919728
328 => 0.10535423984889
329 => 0.10619791607483
330 => 0.10582465214916
331 => 0.10535245280482
401 => 0.10445089566064
402 => 0.10418342291468
403 => 0.10505257957972
404 => 0.10407135237987
405 => 0.10551920656346
406 => 0.10512547033895
407 => 0.10292609179551
408 => 0.10018485181615
409 => 0.10016044903039
410 => 0.099569853373369
411 => 0.098817641007506
412 => 0.09860839273561
413 => 0.10166067679073
414 => 0.10797881343766
415 => 0.10673841203367
416 => 0.1076347291695
417 => 0.11204372236011
418 => 0.11344520871236
419 => 0.11245046689556
420 => 0.11108880294372
421 => 0.11114870924704
422 => 0.11580192717418
423 => 0.11609214266854
424 => 0.11682542359573
425 => 0.11776789681233
426 => 0.11261097415972
427 => 0.11090581865386
428 => 0.11009782137675
429 => 0.10760950249758
430 => 0.11029294107643
501 => 0.10872941633283
502 => 0.10894038923835
503 => 0.10880299285686
504 => 0.10887802057186
505 => 0.10489463086907
506 => 0.10634596871596
507 => 0.10393283805389
508 => 0.100701926984
509 => 0.10069109583719
510 => 0.10148185674432
511 => 0.10101148121428
512 => 0.099745712757416
513 => 0.099925509192455
514 => 0.098350303230811
515 => 0.10011676771622
516 => 0.10016742359695
517 => 0.099487238550097
518 => 0.102208720815
519 => 0.10332371431945
520 => 0.10287600195063
521 => 0.10329230162614
522 => 0.10678995631208
523 => 0.10736022663927
524 => 0.10761350304866
525 => 0.10727414621277
526 => 0.10335623233307
527 => 0.10353000847389
528 => 0.10225495445482
529 => 0.1011776681706
530 => 0.10122075397234
531 => 0.10177461915985
601 => 0.10419338091745
602 => 0.10928352244254
603 => 0.10947668959257
604 => 0.10971081381349
605 => 0.1087585129456
606 => 0.10847128989155
607 => 0.1088502112384
608 => 0.1107618007683
609 => 0.11567892803068
610 => 0.11394088685227
611 => 0.11252783231999
612 => 0.11376746210156
613 => 0.11357663081323
614 => 0.11196582269388
615 => 0.11192061267493
616 => 0.10882895688738
617 => 0.10768604213632
618 => 0.10673093702464
619 => 0.10568798717635
620 => 0.10506969154628
621 => 0.1060196746444
622 => 0.10623694701881
623 => 0.10415979237191
624 => 0.10387668386889
625 => 0.10557293319204
626 => 0.10482647710747
627 => 0.10559422570168
628 => 0.10577234996116
629 => 0.10574366785283
630 => 0.1049642819706
701 => 0.10546103929031
702 => 0.10428606013871
703 => 0.10300844678751
704 => 0.10219340906756
705 => 0.10148218055785
706 => 0.10187681147188
707 => 0.10047002432011
708 => 0.10001996479722
709 => 0.10529274908779
710 => 0.10918781153521
711 => 0.10913117578461
712 => 0.10878642021837
713 => 0.10827418337805
714 => 0.1107243274529
715 => 0.1098707462494
716 => 0.11049179789404
717 => 0.11064988160306
718 => 0.11112835337849
719 => 0.11129936591216
720 => 0.11078244725955
721 => 0.10904760512509
722 => 0.10472454346984
723 => 0.10271214659944
724 => 0.10204802211308
725 => 0.10207216177681
726 => 0.10140628208702
727 => 0.1016024134983
728 => 0.10133807558624
729 => 0.10083748353102
730 => 0.1018459013231
731 => 0.10196211207958
801 => 0.10172673531721
802 => 0.10178217506551
803 => 0.099833356003849
804 => 0.099981520484495
805 => 0.099156521828428
806 => 0.099001844525923
807 => 0.096916319764236
808 => 0.093221510347259
809 => 0.095268793428092
810 => 0.09279596335801
811 => 0.09185946514098
812 => 0.096292702045047
813 => 0.095847728018729
814 => 0.095086125911234
815 => 0.093959557662462
816 => 0.093541702540441
817 => 0.091002947095897
818 => 0.0908529438805
819 => 0.092111219630979
820 => 0.091530568666758
821 => 0.090715114803275
822 => 0.087761623570972
823 => 0.084440921558522
824 => 0.084541152679089
825 => 0.085597406205392
826 => 0.088668605788313
827 => 0.087468634978974
828 => 0.086598042388719
829 => 0.086435006566482
830 => 0.088475741220397
831 => 0.091363808302814
901 => 0.092718824761026
902 => 0.0913760446034
903 => 0.089833531058737
904 => 0.089927416710882
905 => 0.090551995893083
906 => 0.090617630334058
907 => 0.089613612589437
908 => 0.08989623770348
909 => 0.089466904311467
910 => 0.086832086077166
911 => 0.086784430570407
912 => 0.086137803683526
913 => 0.086118224078377
914 => 0.085018150435156
915 => 0.08486424252802
916 => 0.082679979539708
917 => 0.084117668053173
918 => 0.083153342080375
919 => 0.081699875377869
920 => 0.081449297170513
921 => 0.081441764487018
922 => 0.082934149801283
923 => 0.084100228661866
924 => 0.083170116943536
925 => 0.08295834853473
926 => 0.085219481109438
927 => 0.084931731378626
928 => 0.084682541967529
929 => 0.091105213572181
930 => 0.086021167829784
1001 => 0.083804233698913
1002 => 0.081060356727587
1003 => 0.081953776905279
1004 => 0.082142033663792
1005 => 0.075543504168752
1006 => 0.072866481574409
1007 => 0.071947828301498
1008 => 0.071419130355088
1009 => 0.071660064648238
1010 => 0.069250430329897
1011 => 0.070869744443495
1012 => 0.06878320480513
1013 => 0.068433389644571
1014 => 0.072164380990629
1015 => 0.072683526640297
1016 => 0.0704686900129
1017 => 0.071890973677168
1018 => 0.071375233849283
1019 => 0.068818972538498
1020 => 0.068721342159011
1021 => 0.067438700090189
1022 => 0.065431613620928
1023 => 0.064514321247156
1024 => 0.064036587414598
1025 => 0.064233709704758
1026 => 0.064134038642812
1027 => 0.063483617543506
1028 => 0.064171320018868
1029 => 0.062414524372599
1030 => 0.06171495419079
1031 => 0.061398974569572
1101 => 0.059839717316124
1102 => 0.062321189011208
1103 => 0.062810070195896
1104 => 0.063299914627542
1105 => 0.067563675974016
1106 => 0.06735067050641
1107 => 0.069276136195693
1108 => 0.069201316139712
1109 => 0.068652142134652
1110 => 0.066335267342045
1111 => 0.067258732340056
1112 => 0.064416450614503
1113 => 0.066546081339658
1114 => 0.065574206812202
1115 => 0.066217489584307
1116 => 0.065060809157593
1117 => 0.065700963863901
1118 => 0.062926002061082
1119 => 0.060334781774376
1120 => 0.061377564460182
1121 => 0.062511188496319
1122 => 0.064969174248695
1123 => 0.063505218212522
1124 => 0.064031712161437
1125 => 0.062268045566596
1126 => 0.058629097614983
1127 => 0.0586496936652
1128 => 0.058089920801635
1129 => 0.057606195319338
1130 => 0.063673371173797
1201 => 0.062918821948438
1202 => 0.061716546510791
1203 => 0.063325839960609
1204 => 0.063751362691662
1205 => 0.063763476725601
1206 => 0.064937575684712
1207 => 0.065564192509659
1208 => 0.065674636440969
1209 => 0.067522106521217
1210 => 0.068141354123397
1211 => 0.070691947357575
1212 => 0.06551102844999
1213 => 0.065404330834487
1214 => 0.063348486019697
1215 => 0.062044636736536
1216 => 0.063437761695606
1217 => 0.064671880228822
1218 => 0.063386833522616
1219 => 0.06355463349363
1220 => 0.061829563282722
1221 => 0.062446194711024
1222 => 0.062977320766301
1223 => 0.062684064176723
1224 => 0.062245044868346
1225 => 0.0645706965828
1226 => 0.064439474198768
1227 => 0.066605174541769
1228 => 0.068293492829856
1229 => 0.071319261025101
1230 => 0.0681617141765
1231 => 0.068046640619225
]
'min_raw' => 0.057606195319338
'max_raw' => 0.16655645180455
'avg_raw' => 0.11208132356194
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0576061'
'max' => '$0.166556'
'avg' => '$0.112081'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.010129365310793
'max_diff' => -0.056262854488426
'year' => 2030
]
5 => [
'items' => [
101 => 0.069171503099967
102 => 0.068141181912812
103 => 0.068792309337616
104 => 0.071214354330575
105 => 0.071265528324667
106 => 0.070408297989647
107 => 0.070356135445856
108 => 0.070520775908769
109 => 0.071485080242501
110 => 0.071148122678216
111 => 0.071538058502329
112 => 0.072025679221291
113 => 0.074042685261819
114 => 0.074528978589648
115 => 0.073347537917205
116 => 0.073454208781896
117 => 0.073012317539131
118 => 0.072585456135501
119 => 0.07354497823276
120 => 0.075298523724955
121 => 0.075287615009457
122 => 0.075694403479593
123 => 0.07594782932647
124 => 0.074859940072616
125 => 0.074151764171154
126 => 0.074423323874178
127 => 0.074857553753114
128 => 0.074282508976843
129 => 0.070733066231044
130 => 0.071809740420839
131 => 0.071630529188979
201 => 0.07137531060198
202 => 0.072457914825494
203 => 0.072353495007105
204 => 0.069225716047133
205 => 0.069425946308097
206 => 0.069237892712486
207 => 0.06984553235205
208 => 0.068108367378173
209 => 0.068642707624153
210 => 0.068977840817303
211 => 0.069175236842683
212 => 0.069888366642077
213 => 0.069804689091031
214 => 0.069883165128015
215 => 0.070940548361229
216 => 0.076288429904719
217 => 0.076579503297696
218 => 0.075146151455587
219 => 0.075718747244895
220 => 0.074619488542358
221 => 0.075357428273764
222 => 0.075862307896355
223 => 0.073580853964634
224 => 0.073445761069311
225 => 0.072341965335081
226 => 0.07293508264047
227 => 0.071991390360952
228 => 0.072222939437392
301 => 0.071575508033582
302 => 0.072740755658132
303 => 0.074043683563554
304 => 0.074372854606646
305 => 0.073506947309316
306 => 0.072879973359977
307 => 0.071779213642997
308 => 0.073609801584365
309 => 0.074145121284578
310 => 0.073606989777873
311 => 0.073482292949363
312 => 0.07324599268466
313 => 0.073532425167583
314 => 0.074142205818525
315 => 0.073854644524421
316 => 0.074044583825355
317 => 0.073320731074754
318 => 0.074860300209226
319 => 0.077305506512258
320 => 0.077313368250354
321 => 0.077025805406188
322 => 0.076908140885983
323 => 0.07720319781487
324 => 0.077363254094922
325 => 0.078317414098755
326 => 0.079341265798279
327 => 0.084119134938464
328 => 0.082777528402852
329 => 0.087016738140731
330 => 0.090369402650903
331 => 0.091374720143252
401 => 0.090449875354134
402 => 0.087286031289694
403 => 0.087130798005977
404 => 0.09185891677876
405 => 0.09052300666389
406 => 0.090364104406557
407 => 0.088673652858134
408 => 0.089672919089749
409 => 0.089454364906544
410 => 0.089109366436318
411 => 0.09101589679675
412 => 0.094584751434341
413 => 0.094028511970566
414 => 0.093613305014064
415 => 0.091793988995599
416 => 0.092889623597659
417 => 0.092499489101364
418 => 0.094175754482916
419 => 0.093182772004709
420 => 0.090512885830866
421 => 0.09093807400411
422 => 0.090873807667084
423 => 0.092196404329118
424 => 0.091799393640043
425 => 0.090796284958249
426 => 0.094572553477174
427 => 0.094327343604264
428 => 0.094674995141269
429 => 0.09482804209934
430 => 0.097126590201495
501 => 0.098068231813612
502 => 0.09828200094532
503 => 0.099176487647655
504 => 0.098259745301307
505 => 0.10192736831292
506 => 0.1043661236039
507 => 0.10719886337158
508 => 0.11133825754083
509 => 0.11289470804
510 => 0.11261354918857
511 => 0.11575199060544
512 => 0.12139170006792
513 => 0.1137534957164
514 => 0.12179654344556
515 => 0.11925020739596
516 => 0.11321289042899
517 => 0.11282415839161
518 => 0.11691269953633
519 => 0.12598069028783
520 => 0.12370926145288
521 => 0.12598440553169
522 => 0.12333032911237
523 => 0.12319853184784
524 => 0.12585550296401
525 => 0.13206366080092
526 => 0.12911439772192
527 => 0.1248859059092
528 => 0.1280081584611
529 => 0.12530337434982
530 => 0.1192087387257
531 => 0.12370752453406
601 => 0.12069931458205
602 => 0.12157727017128
603 => 0.12790008005295
604 => 0.12713930283991
605 => 0.12812381899966
606 => 0.12638617374697
607 => 0.12476293907946
608 => 0.12173305102956
609 => 0.12083605054966
610 => 0.12108394921161
611 => 0.12083592770339
612 => 0.11914073318558
613 => 0.11877465609086
614 => 0.11816451156146
615 => 0.11835362086411
616 => 0.11720637064475
617 => 0.11937146884268
618 => 0.11977333014699
619 => 0.12134890806124
620 => 0.12151248978707
621 => 0.1259004518513
622 => 0.12348363608303
623 => 0.12510504475822
624 => 0.12496001070502
625 => 0.11334373739441
626 => 0.11494435736536
627 => 0.11743441973795
628 => 0.1163126500143
629 => 0.11472673007875
630 => 0.11344601469914
701 => 0.11150559993917
702 => 0.11423669645147
703 => 0.11782779794541
704 => 0.12160356604718
705 => 0.12613990402334
706 => 0.12512744619585
707 => 0.12151876236413
708 => 0.12168064528467
709 => 0.12268134180091
710 => 0.12138534888952
711 => 0.12100313527916
712 => 0.12262883152013
713 => 0.12264002679668
714 => 0.12114883032615
715 => 0.11949163833523
716 => 0.11948469464028
717 => 0.11918981333207
718 => 0.12338278784202
719 => 0.12568849986495
720 => 0.12595284603254
721 => 0.12567070726167
722 => 0.12577929127689
723 => 0.12443764825364
724 => 0.1275042463529
725 => 0.1303184600239
726 => 0.12956419064317
727 => 0.12843343361574
728 => 0.12753273117875
729 => 0.12935201377375
730 => 0.12927100398361
731 => 0.13029388032255
801 => 0.1302474767434
802 => 0.12990352190294
803 => 0.12956420292688
804 => 0.13090956431207
805 => 0.13052212183898
806 => 0.13013407756071
807 => 0.12935579535404
808 => 0.12946157683183
809 => 0.12833101504554
810 => 0.12780796543221
811 => 0.11994255421932
812 => 0.11784065933351
813 => 0.1185019582526
814 => 0.11871967502739
815 => 0.11780492767943
816 => 0.11911644039709
817 => 0.11891204252927
818 => 0.11970723506417
819 => 0.11921043329161
820 => 0.11923082220965
821 => 0.12069181029344
822 => 0.12111594134965
823 => 0.12090022487131
824 => 0.12105130529841
825 => 0.124532889974
826 => 0.12403791996794
827 => 0.12377497701734
828 => 0.12384781401164
829 => 0.12473743354227
830 => 0.12498647843943
831 => 0.12393125771012
901 => 0.12442890590622
902 => 0.12654782876424
903 => 0.12728933184391
904 => 0.12965585373252
905 => 0.12865051317266
906 => 0.13049585928039
907 => 0.13616782409071
908 => 0.14069898205131
909 => 0.13653194193272
910 => 0.14485283648787
911 => 0.15133184646048
912 => 0.15108317126637
913 => 0.14995340601545
914 => 0.14257722541502
915 => 0.13578955405385
916 => 0.14146772936722
917 => 0.14148220420382
918 => 0.14099444390868
919 => 0.13796500660647
920 => 0.14088902605725
921 => 0.14112112410277
922 => 0.14099121091713
923 => 0.13866854844041
924 => 0.13512227213825
925 => 0.13581520603911
926 => 0.13695024590418
927 => 0.13480137864548
928 => 0.13411468535186
929 => 0.13539137883344
930 => 0.13950515124072
1001 => 0.13872746639658
1002 => 0.13870715790243
1003 => 0.14203442345534
1004 => 0.1396528193883
1005 => 0.13582394615468
1006 => 0.13485710516655
1007 => 0.13142547100085
1008 => 0.13379571294216
1009 => 0.13388101372997
1010 => 0.132582856442
1011 => 0.13592928446404
1012 => 0.13589844654069
1013 => 0.13907538189755
1014 => 0.14514848909742
1015 => 0.14335237245897
1016 => 0.14126368422537
1017 => 0.14149078254941
1018 => 0.14398149063764
1019 => 0.14247555167016
1020 => 0.14301709782264
1021 => 0.14398067094268
1022 => 0.14456201853017
1023 => 0.141407135578
1024 => 0.14067158144635
1025 => 0.13916689583742
1026 => 0.13877435144834
1027 => 0.13999988648052
1028 => 0.13967700129833
1029 => 0.13387384452906
1030 => 0.13326738235821
1031 => 0.13328598168716
1101 => 0.13176100372286
1102 => 0.12943504629064
1103 => 0.13554752354679
1104 => 0.13505660607906
1105 => 0.13451467118868
1106 => 0.13458105512051
1107 => 0.13723427432633
1108 => 0.13569527319617
1109 => 0.13978695993802
1110 => 0.13894583215126
1111 => 0.13808313261063
1112 => 0.13796388125564
1113 => 0.13763181553457
1114 => 0.13649303862079
1115 => 0.13511789706752
1116 => 0.13420990950133
1117 => 0.123801547206
1118 => 0.12573327870536
1119 => 0.1279555597125
1120 => 0.12872268221093
1121 => 0.1274104660941
1122 => 0.13654485291113
1123 => 0.13821379340375
1124 => 0.13315846378933
1125 => 0.13221281802622
1126 => 0.13660684928993
1127 => 0.13395671128944
1128 => 0.13515006826879
1129 => 0.1325706832108
1130 => 0.13781179451136
1201 => 0.13777186602451
1202 => 0.13573295535273
1203 => 0.13745622869066
1204 => 0.13715676754052
1205 => 0.13485484241369
1206 => 0.13788476964375
1207 => 0.13788627244985
1208 => 0.135923865258
1209 => 0.13363220328409
1210 => 0.13322250824979
1211 => 0.13291385807623
1212 => 0.13507415924669
1213 => 0.13701107852104
1214 => 0.14061520508759
1215 => 0.14152136813836
1216 => 0.14505818285219
1217 => 0.14295218189448
1218 => 0.14388574484176
1219 => 0.14489925948156
1220 => 0.14538517567065
1221 => 0.14459340131623
1222 => 0.15008753037782
1223 => 0.15055140320638
1224 => 0.15070693575332
1225 => 0.14885434634612
1226 => 0.15049987934366
1227 => 0.14972998894843
1228 => 0.1517330298751
1229 => 0.15204713226851
1230 => 0.15178109871581
1231 => 0.15188079977325
]
'min_raw' => 0.068108367378173
'max_raw' => 0.15204713226851
'avg_raw' => 0.11007774982334
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0681083'
'max' => '$0.152047'
'avg' => '$0.110077'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010502172058834
'max_diff' => -0.014509319536037
'year' => 2031
]
6 => [
'items' => [
101 => 0.14719252984996
102 => 0.14694941832184
103 => 0.14363457538557
104 => 0.14498539838418
105 => 0.1424600995349
106 => 0.14326089781347
107 => 0.14361388206438
108 => 0.14342950312338
109 => 0.14506177188976
110 => 0.14367400998786
111 => 0.14001147815956
112 => 0.13634794847691
113 => 0.13630195584599
114 => 0.13533741314722
115 => 0.13464022544081
116 => 0.13477452852713
117 => 0.13524783012074
118 => 0.13461271629178
119 => 0.13474825002828
120 => 0.13699901311068
121 => 0.13745038759515
122 => 0.13591644073353
123 => 0.12975742273665
124 => 0.1282459842715
125 => 0.12933237626712
126 => 0.12881315086582
127 => 0.10396226620294
128 => 0.1098006129361
129 => 0.10633166555878
130 => 0.10793031610884
131 => 0.10438941911616
201 => 0.10607932075538
202 => 0.10576725762795
203 => 0.11515514640563
204 => 0.11500856743498
205 => 0.11507872703145
206 => 0.1117298266925
207 => 0.11706471586499
208 => 0.11969287410777
209 => 0.1192064719632
210 => 0.11932888890387
211 => 0.1172253602765
212 => 0.11509909378664
213 => 0.11274073701933
214 => 0.11712227239129
215 => 0.11663512045323
216 => 0.11775247172741
217 => 0.12059421061474
218 => 0.12101266746062
219 => 0.12157507770505
220 => 0.12137349366751
221 => 0.12617604327391
222 => 0.12559442282833
223 => 0.12699596075855
224 => 0.12411289090115
225 => 0.120850423694
226 => 0.12147051205199
227 => 0.12141079255668
228 => 0.12065049483853
229 => 0.1199641320538
301 => 0.11882153139874
302 => 0.12243688894444
303 => 0.1222901120305
304 => 0.12466625965765
305 => 0.12424625248389
306 => 0.12144134178429
307 => 0.12154151971866
308 => 0.12221526447116
309 => 0.12454710275226
310 => 0.12523935111774
311 => 0.12491867409352
312 => 0.12567769282394
313 => 0.12627759028077
314 => 0.12575303070833
315 => 0.13317968805583
316 => 0.13009562214041
317 => 0.13159877440879
318 => 0.13195726736772
319 => 0.13103899519173
320 => 0.13123813554584
321 => 0.13153977891982
322 => 0.13337129841879
323 => 0.13817773553851
324 => 0.14030647382032
325 => 0.14671088797122
326 => 0.14012971173948
327 => 0.1397392119775
328 => 0.14089284036086
329 => 0.14465290944353
330 => 0.1477000922697
331 => 0.14871101860934
401 => 0.14884462921369
402 => 0.15074119423196
403 => 0.15182826993159
404 => 0.15051090135413
405 => 0.14939456941898
406 => 0.14539600699147
407 => 0.14585885148018
408 => 0.14904739102658
409 => 0.15355139093992
410 => 0.15741629142688
411 => 0.15606293798173
412 => 0.16638806944962
413 => 0.16741176406028
414 => 0.1672703225651
415 => 0.16960245123437
416 => 0.16497365075561
417 => 0.16299474887216
418 => 0.14963593305426
419 => 0.15338921540007
420 => 0.15884483171226
421 => 0.15812276043583
422 => 0.15416074604088
423 => 0.15741328588368
424 => 0.15633789449533
425 => 0.1554896886893
426 => 0.15937548391949
427 => 0.15510289244423
428 => 0.15880220934393
429 => 0.15405779715553
430 => 0.15606911998627
501 => 0.1549273958708
502 => 0.15566623129795
503 => 0.15134701448771
504 => 0.15367755903546
505 => 0.15125005617241
506 => 0.15124890521998
507 => 0.15119531795973
508 => 0.15405126431292
509 => 0.15414439662096
510 => 0.15203384795086
511 => 0.15172968491454
512 => 0.15285433507814
513 => 0.1515376642829
514 => 0.15215372626097
515 => 0.15155632417263
516 => 0.15142183637933
517 => 0.15035021476111
518 => 0.14988853070314
519 => 0.1500695689184
520 => 0.1494515921581
521 => 0.14907923880683
522 => 0.15112124750617
523 => 0.15003028463251
524 => 0.15095404179917
525 => 0.14990130392031
526 => 0.14625205577612
527 => 0.1441533345783
528 => 0.13726024311941
529 => 0.1392151153063
530 => 0.14051119758867
531 => 0.14008284240207
601 => 0.14100311509432
602 => 0.14105961236348
603 => 0.14076042233016
604 => 0.1404139986002
605 => 0.14024537868688
606 => 0.14150213337302
607 => 0.14223172176874
608 => 0.14064127678504
609 => 0.14026865777805
610 => 0.14187668546745
611 => 0.14285758142905
612 => 0.1500999660917
613 => 0.1495634268433
614 => 0.15091003506628
615 => 0.15075842764576
616 => 0.15216988759496
617 => 0.15447702808442
618 => 0.14978596638272
619 => 0.15060017248943
620 => 0.15040054795483
621 => 0.15257999627922
622 => 0.15258680027899
623 => 0.151280112137
624 => 0.15198848897737
625 => 0.15159309245838
626 => 0.15230762740924
627 => 0.14955626103452
628 => 0.15290712828728
629 => 0.15480685409448
630 => 0.15483323178915
701 => 0.15573368674461
702 => 0.15664860113019
703 => 0.15840469962105
704 => 0.1565996244964
705 => 0.15335247006767
706 => 0.15358690412918
707 => 0.15168309867571
708 => 0.15171510198933
709 => 0.15154426579306
710 => 0.15205695807801
711 => 0.14966876815988
712 => 0.15022927156022
713 => 0.14944456351744
714 => 0.15059846668739
715 => 0.14935705762355
716 => 0.15040045168983
717 => 0.15085074597978
718 => 0.15251234160382
719 => 0.14911163859888
720 => 0.14217737496445
721 => 0.14363504125023
722 => 0.14147903831635
723 => 0.14167858459636
724 => 0.14208169983954
725 => 0.14077507144529
726 => 0.14102433496632
727 => 0.14101542951931
728 => 0.14093868718808
729 => 0.14059878267835
730 => 0.14010585389119
731 => 0.14206953046376
801 => 0.14240319737819
802 => 0.14314489759638
803 => 0.14535169434565
804 => 0.14513118331055
805 => 0.14549084595772
806 => 0.14470570441837
807 => 0.14171500506053
808 => 0.14187741442435
809 => 0.13985216705509
810 => 0.14309310746777
811 => 0.14232560999972
812 => 0.14183079938921
813 => 0.14169578572974
814 => 0.14390805270131
815 => 0.14456999765224
816 => 0.1441575179803
817 => 0.14331151013918
818 => 0.14493609529389
819 => 0.14537076574554
820 => 0.14546807242964
821 => 0.14834652584048
822 => 0.14562894599968
823 => 0.14628309447778
824 => 0.15138657416901
825 => 0.14675842232112
826 => 0.14921005757505
827 => 0.14909006278706
828 => 0.15034423642416
829 => 0.14898718394224
830 => 0.14900400623416
831 => 0.15011762745882
901 => 0.14855374729143
902 => 0.14816650856909
903 => 0.14763154104763
904 => 0.14879962305934
905 => 0.14949983539756
906 => 0.15514303259428
907 => 0.15878879534442
908 => 0.15863052316842
909 => 0.16007683458395
910 => 0.15942525804456
911 => 0.15732114552166
912 => 0.16091260902906
913 => 0.15977611970211
914 => 0.15986981050139
915 => 0.15986632332516
916 => 0.16062198937396
917 => 0.16008653072261
918 => 0.15903108675709
919 => 0.15973173971691
920 => 0.16181242851956
921 => 0.16827095040633
922 => 0.1718852248182
923 => 0.16805336654852
924 => 0.17069653107232
925 => 0.16911157421386
926 => 0.16882354040429
927 => 0.17048364305356
928 => 0.17214665149276
929 => 0.17204072504456
930 => 0.17083346631414
1001 => 0.17015151649037
1002 => 0.17531546902585
1003 => 0.17912018128836
1004 => 0.17886072541917
1005 => 0.1800058792462
1006 => 0.18336808630063
1007 => 0.18367548437714
1008 => 0.18363675928496
1009 => 0.18287484107867
1010 => 0.18618537056151
1011 => 0.18894707249933
1012 => 0.18269847902785
1013 => 0.18507786162169
1014 => 0.18614604312699
1015 => 0.18771445049193
1016 => 0.19036061661219
1017 => 0.19323505487969
1018 => 0.19364153196733
1019 => 0.19335311702193
1020 => 0.19145734771547
1021 => 0.19460259236695
1022 => 0.19644500291872
1023 => 0.19754211623949
1024 => 0.2003242130787
1025 => 0.18615263985231
1026 => 0.17612129594978
1027 => 0.17455475674504
1028 => 0.17774037581899
1029 => 0.17858039816396
1030 => 0.17824178621
1031 => 0.16695059663782
1101 => 0.17449531096871
1102 => 0.18261278921114
1103 => 0.18292461460991
1104 => 0.18698839394654
1105 => 0.18831172707849
1106 => 0.19158360209621
1107 => 0.19137894542301
1108 => 0.19217559492293
1109 => 0.19199245899894
1110 => 0.1980529184947
1111 => 0.20473850530546
1112 => 0.20450700469307
1113 => 0.20354587248875
1114 => 0.20497331770956
1115 => 0.21187355976929
1116 => 0.21123829605456
1117 => 0.21185540064179
1118 => 0.21999117491082
1119 => 0.23056883876094
1120 => 0.22565445192247
1121 => 0.23631725728524
1122 => 0.24302892805007
1123 => 0.25463606863815
1124 => 0.25318279747015
1125 => 0.25770137212395
1126 => 0.25058113877258
1127 => 0.23423164376126
1128 => 0.23164427359237
1129 => 0.23682425419314
1130 => 0.24955873104503
1201 => 0.23642320019892
1202 => 0.23908050098134
1203 => 0.23831519817723
1204 => 0.23827441844313
1205 => 0.23983081503068
1206 => 0.23757318060425
1207 => 0.22837517181031
1208 => 0.23259056503637
1209 => 0.23096279927198
1210 => 0.23276892674555
1211 => 0.24251585181676
1212 => 0.2382065039051
1213 => 0.23366695594317
1214 => 0.23936055649377
1215 => 0.2466104665281
1216 => 0.24615678018749
1217 => 0.24527643906053
1218 => 0.25023887590003
1219 => 0.25843536770131
1220 => 0.26065084649902
1221 => 0.26228626765402
1222 => 0.26251176460063
1223 => 0.26483452329626
1224 => 0.25234446437928
1225 => 0.27216650864799
1226 => 0.27558922812028
1227 => 0.27494589871668
1228 => 0.27875010736007
1229 => 0.27763081267372
1230 => 0.27600913028517
1231 => 0.28203961016332
]
'min_raw' => 0.10396226620294
'max_raw' => 0.28203961016332
'avg_raw' => 0.19300093818313
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.103962'
'max' => '$0.282039'
'avg' => '$0.19300093'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.035853898824766
'max_diff' => 0.12999247789481
'year' => 2032
]
7 => [
'items' => [
101 => 0.27512615161765
102 => 0.26531336759229
103 => 0.25992988020112
104 => 0.26701929067135
105 => 0.2713485462592
106 => 0.27420990881039
107 => 0.2750757553895
108 => 0.25331403209837
109 => 0.24158567020495
110 => 0.24910341571269
111 => 0.25827558407921
112 => 0.25229351252089
113 => 0.25252799840042
114 => 0.24399913641901
115 => 0.25903019911589
116 => 0.25684029971209
117 => 0.26820150169286
118 => 0.26549005966081
119 => 0.27475467883681
120 => 0.27231499411657
121 => 0.28244198898935
122 => 0.28648192142154
123 => 0.29326559674047
124 => 0.29825569591961
125 => 0.30118597760298
126 => 0.30101005448192
127 => 0.31262129037198
128 => 0.30577455023329
129 => 0.29717343096635
130 => 0.297017863855
131 => 0.30147250540215
201 => 0.31080821201375
202 => 0.31322882490913
203 => 0.31458161729156
204 => 0.31250976866683
205 => 0.30507812295657
206 => 0.30186917601818
207 => 0.30460329178183
208 => 0.30125970314813
209 => 0.30703167517517
210 => 0.314957825595
211 => 0.3133211068767
212 => 0.31879241216138
213 => 0.32445463753293
214 => 0.3325518741207
215 => 0.33466879160455
216 => 0.33816797570618
217 => 0.34176978556886
218 => 0.34292658982526
219 => 0.34513528808599
220 => 0.34512364715592
221 => 0.35177970802719
222 => 0.35912154928925
223 => 0.36189292440167
224 => 0.36826554865814
225 => 0.35735265294231
226 => 0.36563020970108
227 => 0.37309677309817
228 => 0.36419482840588
301 => 0.37646408527711
302 => 0.37694047271868
303 => 0.38413335749325
304 => 0.37684199078424
305 => 0.37251240050729
306 => 0.38501176540921
307 => 0.39105981435894
308 => 0.38923809279462
309 => 0.37537470174071
310 => 0.36730561351852
311 => 0.34618725323016
312 => 0.37120286323699
313 => 0.38338723715597
314 => 0.37534314715579
315 => 0.37940011825511
316 => 0.4015336370957
317 => 0.40996064803098
318 => 0.40820788866569
319 => 0.40850407614555
320 => 0.41305113828516
321 => 0.43321531592504
322 => 0.42113247328124
323 => 0.43036935374695
324 => 0.43526856183991
325 => 0.43981921935249
326 => 0.42864424275168
327 => 0.41410576238704
328 => 0.40950081537167
329 => 0.37454332093696
330 => 0.37272363153893
331 => 0.37170218473758
401 => 0.36526210714161
402 => 0.36020197023689
403 => 0.35617796149942
404 => 0.34561776090157
405 => 0.34918151860541
406 => 0.3323507629376
407 => 0.3431184839685
408 => 0.31625619152987
409 => 0.3386279068901
410 => 0.3264519993366
411 => 0.33462779378879
412 => 0.33459926921215
413 => 0.31954503948769
414 => 0.31086207395637
415 => 0.316395197539
416 => 0.32232714523947
417 => 0.32328958379641
418 => 0.33098050882975
419 => 0.33312688069067
420 => 0.32662327374755
421 => 0.31569953022623
422 => 0.31823686670217
423 => 0.31081065491367
424 => 0.29779650439945
425 => 0.30714349450403
426 => 0.31033496788388
427 => 0.31174450434265
428 => 0.2989465819972
429 => 0.29492519693985
430 => 0.292784245278
501 => 0.31404747916086
502 => 0.315212327112
503 => 0.30925280030106
504 => 0.336190426592
505 => 0.33009361212994
506 => 0.33690524763987
507 => 0.31800663001208
508 => 0.31872858265582
509 => 0.30978167420705
510 => 0.31479134510572
511 => 0.31125067118377
512 => 0.31438661320364
513 => 0.31626628392038
514 => 0.32521172426952
515 => 0.33873004944962
516 => 0.32387557378551
517 => 0.31740326601864
518 => 0.32141864935556
519 => 0.33211214432282
520 => 0.34831333658814
521 => 0.33872190468769
522 => 0.34297841929204
523 => 0.34390827837393
524 => 0.33683591158465
525 => 0.34857410483958
526 => 0.35486469796582
527 => 0.3613175448585
528 => 0.36692037101075
529 => 0.35874013590842
530 => 0.36749416005855
531 => 0.36043996188683
601 => 0.35411161687719
602 => 0.35412121436434
603 => 0.35015135109742
604 => 0.34245924078281
605 => 0.34104069762265
606 => 0.34842013828405
607 => 0.35433775085887
608 => 0.35482515377398
609 => 0.35810144815331
610 => 0.36004032541848
611 => 0.37904395839299
612 => 0.38668737678163
613 => 0.39603360410476
614 => 0.39967448637162
615 => 0.41063223666636
616 => 0.40178296335839
617 => 0.39986836741368
618 => 0.37328844945145
619 => 0.37764090952873
620 => 0.38460961806239
621 => 0.37340336088843
622 => 0.38051115174047
623 => 0.38191438021825
624 => 0.37302257655779
625 => 0.377772073085
626 => 0.36515881843631
627 => 0.33900498393292
628 => 0.34860322153386
629 => 0.35567075513999
630 => 0.34558451326343
701 => 0.3636637114357
702 => 0.35310221709386
703 => 0.34975473042863
704 => 0.33669499148242
705 => 0.34285868554958
706 => 0.35119517003102
707 => 0.34604419184183
708 => 0.35673324500765
709 => 0.37187179495681
710 => 0.38266042716682
711 => 0.38348864438492
712 => 0.37655227665611
713 => 0.38766785020884
714 => 0.38774881502702
715 => 0.37521040265109
716 => 0.36753069488501
717 => 0.36578584912231
718 => 0.37014481593469
719 => 0.37543740635459
720 => 0.38378234631867
721 => 0.38882501876637
722 => 0.40197363408315
723 => 0.40553127238753
724 => 0.4094400382755
725 => 0.41466335492059
726 => 0.42093528578392
727 => 0.40721265811618
728 => 0.40775788369559
729 => 0.39497956281411
730 => 0.38132409435566
731 => 0.39168689273745
801 => 0.40523487311634
802 => 0.40212695144823
803 => 0.40177724677149
804 => 0.40236535303778
805 => 0.40002208159526
806 => 0.38942355170644
807 => 0.38410103634658
808 => 0.39096843907929
809 => 0.39461815799879
810 => 0.40027855375399
811 => 0.39958079050071
812 => 0.414161362084
813 => 0.41982693130767
814 => 0.41837743625688
815 => 0.41864417823027
816 => 0.42890142068686
817 => 0.4403095838614
818 => 0.45099483411407
819 => 0.46186432961326
820 => 0.44876072854535
821 => 0.44210752804083
822 => 0.44897193268033
823 => 0.44532958295512
824 => 0.46625960486729
825 => 0.46770875417326
826 => 0.48863726260662
827 => 0.50850090923031
828 => 0.49602490868016
829 => 0.50778921526754
830 => 0.52051327199978
831 => 0.54506004184007
901 => 0.53679355332363
902 => 0.53046155267244
903 => 0.52447784265306
904 => 0.53692899331617
905 => 0.55294719973227
906 => 0.55639736797383
907 => 0.56198795859086
908 => 0.55611013614195
909 => 0.56318932586075
910 => 0.58818197632172
911 => 0.58142874155094
912 => 0.57183806253976
913 => 0.59156735975903
914 => 0.59870731572698
915 => 0.64881926593404
916 => 0.71208767309186
917 => 0.68589413708576
918 => 0.66963496402665
919 => 0.67345625536828
920 => 0.69655973589158
921 => 0.70397984056784
922 => 0.68380943819429
923 => 0.69093396530608
924 => 0.73019081016013
925 => 0.75125084791395
926 => 0.72264848790383
927 => 0.64373571102198
928 => 0.5709745268287
929 => 0.59027406935559
930 => 0.58808610016757
1001 => 0.6302626825721
1002 => 0.5812676791351
1003 => 0.58209262933829
1004 => 0.62514137880117
1005 => 0.61365671048688
1006 => 0.59505301866291
1007 => 0.57111035436709
1008 => 0.52685012498789
1009 => 0.48764760553892
1010 => 0.56453277397939
1011 => 0.56121734570963
1012 => 0.55641611425607
1013 => 0.56710073530845
1014 => 0.6189822222562
1015 => 0.61778618605807
1016 => 0.61017761398859
1017 => 0.61594864884442
1018 => 0.59404132835014
1019 => 0.59968734366193
1020 => 0.57096300108538
1021 => 0.58394760356449
1022 => 0.5950131034956
1023 => 0.59723466643429
1024 => 0.60223996117099
1025 => 0.55947026566569
1026 => 0.57867260329528
1027 => 0.58995217763695
1028 => 0.53899065040687
1029 => 0.58894483209741
1030 => 0.55872574042093
1031 => 0.5484689268304
1101 => 0.56227837509761
1102 => 0.55689681967775
1103 => 0.55227007434329
1104 => 0.54968827094909
1105 => 0.55982840566333
1106 => 0.55935535625883
1107 => 0.54276412775099
1108 => 0.52112154650749
1109 => 0.52838550716632
1110 => 0.52574644215897
1111 => 0.51618213012619
1112 => 0.52262732163685
1113 => 0.49424596006068
1114 => 0.44541730260369
1115 => 0.47767500938201
1116 => 0.47643312276068
1117 => 0.47580690721112
1118 => 0.5000476823175
1119 => 0.49771749112085
1120 => 0.49348817128165
1121 => 0.51610445535067
1122 => 0.50784920743353
1123 => 0.53328993633312
1124 => 0.55004684578958
1125 => 0.54579675152219
1126 => 0.56155670585916
1127 => 0.52855285414876
1128 => 0.53951540980225
1129 => 0.54177477732899
1130 => 0.51582537391589
1201 => 0.49809873921858
1202 => 0.49691657478271
1203 => 0.46618103309831
1204 => 0.48259971137749
1205 => 0.4970474688121
1206 => 0.49012811419219
1207 => 0.48793765322936
1208 => 0.49912824323541
1209 => 0.4999978479198
1210 => 0.4801707689591
1211 => 0.48429344651696
1212 => 0.50148569727137
1213 => 0.48386024590872
1214 => 0.44961687301224
1215 => 0.44112404308224
1216 => 0.43999094301566
1217 => 0.41695771467067
1218 => 0.44169157458821
1219 => 0.43089458190797
1220 => 0.46500215241701
1221 => 0.44552009106481
1222 => 0.44468025833822
1223 => 0.44341072799531
1224 => 0.42358507686809
1225 => 0.42792563447909
1226 => 0.44235430906365
1227 => 0.44750262270607
1228 => 0.44696561141428
1229 => 0.44228360068665
1230 => 0.44442700122198
1231 => 0.43752236128742
]
'min_raw' => 0.24158567020495
'max_raw' => 0.75125084791395
'avg_raw' => 0.49641825905945
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.241585'
'max' => '$0.75125'
'avg' => '$0.496418'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13762340400201
'max_diff' => 0.46921123775062
'year' => 2033
]
8 => [
'items' => [
101 => 0.43508418921887
102 => 0.42738864749848
103 => 0.41607832711715
104 => 0.4176510965364
105 => 0.39524239235469
106 => 0.38303294099654
107 => 0.37965352577859
108 => 0.37513443051366
109 => 0.38016396961362
110 => 0.39517891131124
111 => 0.37706770602632
112 => 0.34601731491866
113 => 0.34788349633152
114 => 0.35207625189199
115 => 0.34426307964291
116 => 0.336868567819
117 => 0.34329749591419
118 => 0.3301410358718
119 => 0.35366614723238
120 => 0.35302985889844
121 => 0.36179856563054
122 => 0.3672818179021
123 => 0.35464469664016
124 => 0.35146649481719
125 => 0.35327694301678
126 => 0.32335426710089
127 => 0.35935324462713
128 => 0.35966456527967
129 => 0.3569988488444
130 => 0.37616719303339
131 => 0.41661837802863
201 => 0.40139901508827
202 => 0.39550561775009
203 => 0.38430226510215
204 => 0.39923006731627
205 => 0.39808384501621
206 => 0.39290019308347
207 => 0.38976510422057
208 => 0.39554160157754
209 => 0.38904933227238
210 => 0.38788314230954
211 => 0.38081729996195
212 => 0.3782951157192
213 => 0.37642779091691
214 => 0.37437204978915
215 => 0.37890650245823
216 => 0.36863083615316
217 => 0.35623938992522
218 => 0.35520917524868
219 => 0.35805368854802
220 => 0.35679520316217
221 => 0.35520315010482
222 => 0.3521634872485
223 => 0.35126168421114
224 => 0.3541921065899
225 => 0.35088383057852
226 => 0.35576537204443
227 => 0.35443786287371
228 => 0.3470225045588
301 => 0.33778022258113
302 => 0.33769794688519
303 => 0.33570671239348
304 => 0.33317057588418
305 => 0.33246508072624
306 => 0.34275606952175
307 => 0.36405810834508
308 => 0.35987600840948
309 => 0.36289800421179
310 => 0.37776323258001
311 => 0.38248844166526
312 => 0.37913460017926
313 => 0.3745436550973
314 => 0.37474563338146
315 => 0.39043428250012
316 => 0.39141276430157
317 => 0.39388507214362
318 => 0.39706268639477
319 => 0.37967576162663
320 => 0.37392671078847
321 => 0.37120249155615
322 => 0.36281295072613
323 => 0.37186035124643
324 => 0.36658881841157
325 => 0.3673001282922
326 => 0.36683688679929
327 => 0.36708984797867
328 => 0.35365957148431
329 => 0.35855285836431
330 => 0.35041681985772
331 => 0.33952357761059
401 => 0.33948705964291
402 => 0.34215316525045
403 => 0.34056726131036
404 => 0.3362996345849
405 => 0.33690583081863
406 => 0.33159491394157
407 => 0.33755067228475
408 => 0.33772146212331
409 => 0.33542817074883
410 => 0.34460383821278
411 => 0.34836311665939
412 => 0.34685362314965
413 => 0.34825720657074
414 => 0.36004979354285
415 => 0.36197249976594
416 => 0.3628264388634
417 => 0.36168227359806
418 => 0.34847275341263
419 => 0.34905865180407
420 => 0.34475971815737
421 => 0.34112757223638
422 => 0.34127283902512
423 => 0.34314023417443
424 => 0.35129525831275
425 => 0.36845702584691
426 => 0.36910830237974
427 => 0.36989766853661
428 => 0.36668691967298
429 => 0.36571852709298
430 => 0.36699608686933
501 => 0.37344114443229
502 => 0.39001958230029
503 => 0.3841596551211
504 => 0.37939544310922
505 => 0.38357494146597
506 => 0.38293154045394
507 => 0.37750058841651
508 => 0.37734815968116
509 => 0.36692442634093
510 => 0.36307100946197
511 => 0.35985080589465
512 => 0.35633442766469
513 => 0.3542498007799
514 => 0.35745273512091
515 => 0.3581852841007
516 => 0.35118201218637
517 => 0.35022749210243
518 => 0.35594651512379
519 => 0.35342978631876
520 => 0.35601830430661
521 => 0.35661886268369
522 => 0.35652215895294
523 => 0.35389440503602
524 => 0.35556925702192
525 => 0.35160773277787
526 => 0.34730017016417
527 => 0.34455221358727
528 => 0.34215425701037
529 => 0.34348478268928
530 => 0.33874170158834
531 => 0.33722429448478
601 => 0.35500185485446
602 => 0.36813432984052
603 => 0.3679433784532
604 => 0.36678101099154
605 => 0.36505396872116
606 => 0.37331480053313
607 => 0.37043689191039
608 => 0.37253081089074
609 => 0.37306380115275
610 => 0.37467700214944
611 => 0.37525358284644
612 => 0.37351075551905
613 => 0.36766161413989
614 => 0.35308610994269
615 => 0.34630117339308
616 => 0.34406203131965
617 => 0.34414341988128
618 => 0.3418983600169
619 => 0.34255963076349
620 => 0.34166839703752
621 => 0.33998061597313
622 => 0.3433805669646
623 => 0.34377237964363
624 => 0.34297879045583
625 => 0.34316570943791
626 => 0.33659512990931
627 => 0.33709467680032
628 => 0.33431313623182
629 => 0.3337916309072
630 => 0.32676013856649
701 => 0.31430283065379
702 => 0.32120538849756
703 => 0.3128680692688
704 => 0.30971060014586
705 => 0.32465756788664
706 => 0.32315730688982
707 => 0.32058951221104
708 => 0.31679120870582
709 => 0.31538238098821
710 => 0.30682278975669
711 => 0.30631704344309
712 => 0.31055940798583
713 => 0.30860170272021
714 => 0.3058523430863
715 => 0.29589444119042
716 => 0.28469846251143
717 => 0.28503639873234
718 => 0.28859763124154
719 => 0.29895239505966
720 => 0.29490660969669
721 => 0.29197134599581
722 => 0.29142165933834
723 => 0.29830213870356
724 => 0.30803945851033
725 => 0.31260799110342
726 => 0.30808071405207
727 => 0.30288002194138
728 => 0.30319656397247
729 => 0.30530237629199
730 => 0.30552366739219
731 => 0.30213855146792
801 => 0.30309144177217
802 => 0.3016439142659
803 => 0.29276044063182
804 => 0.29259976676358
805 => 0.29041961906841
806 => 0.29035360506265
807 => 0.28664462996984
808 => 0.28612571871542
809 => 0.27876132354996
810 => 0.28360859074931
811 => 0.28035729840494
812 => 0.27545683393963
813 => 0.27461199201872
814 => 0.2745865950504
815 => 0.27961827633246
816 => 0.28354979262394
817 => 0.28041385602726
818 => 0.27969986405178
819 => 0.28732343039464
820 => 0.28635326208716
821 => 0.2855131025898
822 => 0.3071675883215
823 => 0.29002637314426
824 => 0.28255182494063
825 => 0.27330065216044
826 => 0.27631288066613
827 => 0.27694760147113
828 => 0.25470019858398
829 => 0.2456744300034
830 => 0.24257712635546
831 => 0.24079458431663
901 => 0.24160691110748
902 => 0.23348266076789
903 => 0.23894229135879
904 => 0.2319073772905
905 => 0.23072795105336
906 => 0.24330724886609
907 => 0.24505758466954
908 => 0.23759010834531
909 => 0.24238543702007
910 => 0.24064658418255
911 => 0.23202797070077
912 => 0.23169880306
913 => 0.22737428577376
914 => 0.22060725361234
915 => 0.21751453833086
916 => 0.21590382536008
917 => 0.21656843692399
918 => 0.21623238897983
919 => 0.21403944883257
920 => 0.2163580857421
921 => 0.21043492656515
922 => 0.20807627685475
923 => 0.20701092950083
924 => 0.20175378480696
925 => 0.21012023987776
926 => 0.21176853692453
927 => 0.21342008162567
928 => 0.22779565069161
929 => 0.22707748788602
930 => 0.23356932988915
1001 => 0.23331706884664
1002 => 0.23146549034648
1003 => 0.22365398522417
1004 => 0.22676751193923
1005 => 0.21718456065976
1006 => 0.22436475933569
1007 => 0.22108801651226
1008 => 0.22325688929098
1009 => 0.21935706047547
1010 => 0.22151538676196
1011 => 0.21215940930211
1012 => 0.20342292919225
1013 => 0.20693874382221
1014 => 0.21076083640715
1015 => 0.21904810698237
1016 => 0.21411227699627
1017 => 0.21588738810366
1018 => 0.20994106304389
1019 => 0.19767209596179
1020 => 0.19774153698307
1021 => 0.19585422369147
1022 => 0.19422330945527
1023 => 0.21467921644527
1024 => 0.21213520105103
1025 => 0.20808164547281
1026 => 0.21350749069615
1027 => 0.21494217029295
1028 => 0.21498301360414
1029 => 0.21894157021776
1030 => 0.22105425259206
1031 => 0.22142662201742
1101 => 0.22765549637922
1102 => 0.22974333290445
1103 => 0.23834283607022
1104 => 0.22087500625309
1105 => 0.22051526779303
1106 => 0.21358384346546
1107 => 0.20918782457544
1108 => 0.21388484263982
1109 => 0.21804575943796
1110 => 0.21371313474889
1111 => 0.21427888406658
1112 => 0.20846268940995
1113 => 0.2105417053223
1114 => 0.21233243389971
1115 => 0.21134369883343
1116 => 0.20986351458388
1117 => 0.21770461171098
1118 => 0.21726218628156
1119 => 0.22456399619236
1120 => 0.23025627917527
1121 => 0.24045786789792
1122 => 0.22981197824498
1123 => 0.22942399971245
1124 => 0.23321655210167
1125 => 0.22974275228444
1126 => 0.23193807385743
1127 => 0.24010416765298
1128 => 0.24027670434691
1129 => 0.23738649242248
1130 => 0.23721062276422
1201 => 0.23776571957976
1202 => 0.24101693896652
1203 => 0.2398808630129
1204 => 0.24119555886835
1205 => 0.24283960616692
1206 => 0.24964008285542
1207 => 0.25127965476212
1208 => 0.24729634504942
1209 => 0.24765599331725
1210 => 0.24616612614041
1211 => 0.24472693311556
1212 => 0.24796202885816
1213 => 0.25387422991373
1214 => 0.25383745041781
1215 => 0.25520896614593
1216 => 0.25606340908231
1217 => 0.25239551450894
1218 => 0.25000785001389
1219 => 0.25092343251233
1220 => 0.25238746886613
1221 => 0.25044866525459
1222 => 0.23848147122294
1223 => 0.24211155342483
1224 => 0.24150733024449
1225 => 0.24064684295963
1226 => 0.24429691868422
1227 => 0.24394485997616
1228 => 0.23339933483806
1229 => 0.23407442514253
1230 => 0.23344038931545
1231 => 0.23548908878428
]
'min_raw' => 0.19422330945527
'max_raw' => 0.43508418921887
'avg_raw' => 0.31465374933707
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.194223'
'max' => '$0.435084'
'avg' => '$0.314653'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.047362360749683
'max_diff' => -0.31616665869507
'year' => 2034
]
9 => [
'items' => [
101 => 0.22963211578987
102 => 0.23143368123563
103 => 0.23256360619459
104 => 0.23322914067591
105 => 0.2356335075837
106 => 0.23535138287817
107 => 0.23561597031588
108 => 0.23918101171081
109 => 0.25721176771185
110 => 0.25819314197836
111 => 0.25336049616926
112 => 0.25529104285028
113 => 0.25158481538688
114 => 0.25407283071262
115 => 0.25577506760976
116 => 0.24808298639294
117 => 0.24762751126447
118 => 0.24390598688195
119 => 0.2459057232872
120 => 0.24272399888032
121 => 0.24350468275777
122 => 0.24132182257761
123 => 0.24525053629877
124 => 0.24964344869942
125 => 0.2507532718532
126 => 0.24783380494453
127 => 0.24571991850041
128 => 0.24200863026203
129 => 0.24818058531392
130 => 0.24998545305801
131 => 0.24817110511201
201 => 0.24775068104864
202 => 0.24695397820824
203 => 0.24791970532249
204 => 0.24997562336066
205 => 0.2490060903807
206 => 0.24964648399494
207 => 0.2472059639085
208 => 0.25239672873466
209 => 0.26064091250418
210 => 0.26066741890306
211 => 0.25969788069696
212 => 0.25930116655202
213 => 0.26029597158798
214 => 0.26083561251094
215 => 0.26405262958119
216 => 0.26750461706918
217 => 0.28361353645548
218 => 0.27909021635269
219 => 0.29338300795612
220 => 0.30468675042773
221 => 0.30807624854221
222 => 0.3049580697651
223 => 0.2942909486093
224 => 0.29376756875521
225 => 0.30970875130435
226 => 0.3052046370818
227 => 0.304668887027
228 => 0.29896941160794
301 => 0.30233850747437
302 => 0.30160163678673
303 => 0.30043845035733
304 => 0.30686645057723
305 => 0.31889909315735
306 => 0.31702369296983
307 => 0.31562379372716
308 => 0.30948984275031
309 => 0.31318385130592
310 => 0.31186848561334
311 => 0.31752013138036
312 => 0.31417222162726
313 => 0.30517051398665
314 => 0.30660406559843
315 => 0.30638738715622
316 => 0.31084661414302
317 => 0.3095080648864
318 => 0.30612601393092
319 => 0.31885796689312
320 => 0.3180312246866
321 => 0.31920335611587
322 => 0.3197193646204
323 => 0.32746908002632
324 => 0.33064389046489
325 => 0.33136462801733
326 => 0.33438045238532
327 => 0.3312895915597
328 => 0.3436552386086
329 => 0.35187767234061
330 => 0.36142845224291
331 => 0.3753847086878
401 => 0.38063239021367
402 => 0.37968444351619
403 => 0.39026591787216
404 => 0.40928059207686
405 => 0.38352785282331
406 => 0.41064554978983
407 => 0.4020604000191
408 => 0.38170516435293
409 => 0.3803945271485
410 => 0.39417932907077
411 => 0.42475269299635
412 => 0.41709441209321
413 => 0.4247652192004
414 => 0.41581681525096
415 => 0.4153724515718
416 => 0.42433061519379
417 => 0.44526185278065
418 => 0.43531820639884
419 => 0.4210615510284
420 => 0.43158844349581
421 => 0.42246907502263
422 => 0.40192058550204
423 => 0.41708855595014
424 => 0.40694616607042
425 => 0.40990625463642
426 => 0.43122404959695
427 => 0.42865903610741
428 => 0.43197840107673
429 => 0.42611980878879
430 => 0.42064695977665
501 => 0.41043148067638
502 => 0.40740718093182
503 => 0.40824298857831
504 => 0.40740676674706
505 => 0.40169130007555
506 => 0.40045704559202
507 => 0.39839990071219
508 => 0.39903749592929
509 => 0.39516946171626
510 => 0.4024692414529
511 => 0.40382414489746
512 => 0.40913631583867
513 => 0.40968784304824
514 => 0.4244821635055
515 => 0.4163337004061
516 => 0.42180039295763
517 => 0.42131140052132
518 => 0.38214632403229
519 => 0.38754292601608
520 => 0.39593834515587
521 => 0.39215622021312
522 => 0.38680918042501
523 => 0.38249115910597
524 => 0.37594891526728
525 => 0.38515699783757
526 => 0.39726464724709
527 => 0.40999491301793
528 => 0.42528949322154
529 => 0.42187592096863
530 => 0.40970899147971
531 => 0.41025479104864
601 => 0.41362870921952
602 => 0.40925917863544
603 => 0.40797051876282
604 => 0.41345166714174
605 => 0.41348941279824
606 => 0.40846173978584
607 => 0.40287440128701
608 => 0.40285099013469
609 => 0.40185677721611
610 => 0.41599368352052
611 => 0.4237675525855
612 => 0.42465881414559
613 => 0.42370756358131
614 => 0.42407366216972
615 => 0.41955021904632
616 => 0.42988946864102
617 => 0.43937778651492
618 => 0.43683471463637
619 => 0.43302228837145
620 => 0.42998550722012
621 => 0.43611934550741
622 => 0.43584621534403
623 => 0.43929491433572
624 => 0.43913846142881
625 => 0.43797879367003
626 => 0.43683475605176
627 => 0.44137073589207
628 => 0.44006444654367
629 => 0.4387561281671
630 => 0.43613209536937
701 => 0.43648874500715
702 => 0.43267697701138
703 => 0.4309134787219
704 => 0.40439469567216
705 => 0.39730801031503
706 => 0.39953762579117
707 => 0.40027167309785
708 => 0.39718753854859
709 => 0.40160939524307
710 => 0.40092025356114
711 => 0.40360130071112
712 => 0.40192629884935
713 => 0.40199504151002
714 => 0.40692086483744
715 => 0.40835085230535
716 => 0.40762354913776
717 => 0.40813292734584
718 => 0.41987133315607
719 => 0.41820250722295
720 => 0.41731597670691
721 => 0.41756155171851
722 => 0.42056096607728
723 => 0.42140063833579
724 => 0.41784288797378
725 => 0.41952074361161
726 => 0.42666483996591
727 => 0.42916486936908
728 => 0.43714376314181
729 => 0.43375418725363
730 => 0.43997590049379
731 => 0.45909932585572
801 => 0.47437644127521
802 => 0.46032697458195
803 => 0.48838145152093
804 => 0.51022588599362
805 => 0.50938746021475
806 => 0.50557837779356
807 => 0.48070906991074
808 => 0.45782396201648
809 => 0.47696832652304
810 => 0.47701712944524
811 => 0.47537261155583
812 => 0.46515865218286
813 => 0.47501718790969
814 => 0.47579972267474
815 => 0.4753617112991
816 => 0.46753069259574
817 => 0.45557417444989
818 => 0.45791044947573
819 => 0.46173731562677
820 => 0.45449225963493
821 => 0.45217702525212
822 => 0.45648148646113
823 => 0.4703513573467
824 => 0.46772933859847
825 => 0.46766086709255
826 => 0.47887897520644
827 => 0.47084923081615
828 => 0.45793991738559
829 => 0.45468014549145
830 => 0.44311015131272
831 => 0.45110158750287
901 => 0.45138918506448
902 => 0.44701235713363
903 => 0.4582950728501
904 => 0.45819110063849
905 => 0.46890236000067
906 => 0.48937826493586
907 => 0.48332253228844
908 => 0.47628037408132
909 => 0.4770460519363
910 => 0.48544364815146
911 => 0.4803662697813
912 => 0.48219213044395
913 => 0.48544088449267
914 => 0.48740093847228
915 => 0.47676403033215
916 => 0.47428405822256
917 => 0.46921090563826
918 => 0.46788741482389
919 => 0.472019391749
920 => 0.47093076181414
921 => 0.45136501360306
922 => 0.4493202840522
923 => 0.44938299298833
924 => 0.44424142331112
925 => 0.43639929543526
926 => 0.45700793926389
927 => 0.45535277674667
928 => 0.45352560542706
929 => 0.45374942348801
930 => 0.46269493728228
1001 => 0.45750608752233
1002 => 0.4713014950449
1003 => 0.46846557398617
1004 => 0.46555692225319
1005 => 0.465154857984
1006 => 0.4640352752213
1007 => 0.46019580934963
1008 => 0.45555942359346
1009 => 0.45249808012038
1010 => 0.41740555995304
1011 => 0.4239185275723
1012 => 0.43141110314258
1013 => 0.43399751020483
1014 => 0.42957328195093
1015 => 0.46037050484709
1016 => 0.46599745423964
1017 => 0.44895305749277
1018 => 0.44576474677957
1019 => 0.46057952996665
1020 => 0.45164440467125
1021 => 0.45566789104466
1022 => 0.44697131423472
1023 => 0.46464208690728
1024 => 0.46450746522616
1025 => 0.45763313554403
1026 => 0.46344327191799
1027 => 0.46243361774258
1028 => 0.45467251646218
1029 => 0.4648881276611
1030 => 0.4648931944768
1031 => 0.45827680161857
1101 => 0.45055030327479
1102 => 0.44916898786267
1103 => 0.44812835225325
1104 => 0.45541195847687
1105 => 0.46194241704172
1106 => 0.47409398139292
1107 => 0.47714917338486
1108 => 0.48907379112506
1109 => 0.48197326185987
1110 => 0.48512083451588
1111 => 0.48853796988532
1112 => 0.49017627024241
1113 => 0.48750674772657
1114 => 0.50603058744557
1115 => 0.50759456707363
1116 => 0.50811895591455
1117 => 0.50187282138452
1118 => 0.50742085077318
1119 => 0.50482511155364
1120 => 0.51157850388575
1121 => 0.51263752203506
1122 => 0.51174057133826
1123 => 0.51207672041431
1124 => 0.4962698910434
1125 => 0.49545022355285
1126 => 0.48427399915825
1127 => 0.48882839320953
1128 => 0.48031417182845
1129 => 0.48301411913459
1130 => 0.48420423018109
1201 => 0.48358258370861
1202 => 0.48908589181583
1203 => 0.48440695567312
1204 => 0.4720584739042
1205 => 0.45970662779967
1206 => 0.45955156043342
1207 => 0.45629953738229
1208 => 0.45394892035406
1209 => 0.45440173258632
1210 => 0.45599750195402
1211 => 0.45385617133746
1212 => 0.45431313279272
1213 => 0.4619017376683
1214 => 0.46342357825665
1215 => 0.45825176931595
1216 => 0.43748621013059
1217 => 0.43239028982004
1218 => 0.43605313628277
1219 => 0.43430253159111
1220 => 0.35051603891684
1221 => 0.37020043254805
1222 => 0.35850463427123
1223 => 0.363894596215
1224 => 0.35195621478665
1225 => 0.35765383614844
1226 => 0.35660169352673
1227 => 0.38825361598216
1228 => 0.38775941474881
1229 => 0.38799596272666
1230 => 0.37670491142116
1231 => 0.39469186273628
]
'min_raw' => 0.22963211578987
'max_raw' => 0.51263752203506
'avg_raw' => 0.37113481891247
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.229632'
'max' => '$0.512637'
'avg' => '$0.371134'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.035408806334597
'max_diff' => 0.07755333281619
'year' => 2035
]
10 => [
'items' => [
101 => 0.40355288174396
102 => 0.40191294295403
103 => 0.40232568021636
104 => 0.39523348658551
105 => 0.38806463066378
106 => 0.38011326616757
107 => 0.39488591858317
108 => 0.39324345181214
109 => 0.397010679644
110 => 0.40659180070652
111 => 0.40800265717812
112 => 0.40989886258344
113 => 0.40921920792672
114 => 0.425411339228
115 => 0.4234503652883
116 => 0.42817574827228
117 => 0.41845527695855
118 => 0.40745564099145
119 => 0.4095463121836
120 => 0.40934496373568
121 => 0.40678156689667
122 => 0.40446744684762
123 => 0.40061508896524
124 => 0.41280451934679
125 => 0.41230965073381
126 => 0.42032099835607
127 => 0.41890491484576
128 => 0.40944796258947
129 => 0.40978571948939
130 => 0.41205729696181
131 => 0.41991925253026
201 => 0.42225321622573
202 => 0.42117203124962
203 => 0.42373111589221
204 => 0.42575371205143
205 => 0.42398512282937
206 => 0.44902461658913
207 => 0.43862647303266
208 => 0.44369445585227
209 => 0.44490313989246
210 => 0.4418071211394
211 => 0.44247853674682
212 => 0.44349554844226
213 => 0.44967064430563
214 => 0.46587588262952
215 => 0.47305307237038
216 => 0.49464600182207
217 => 0.47245710667371
218 => 0.47114050946238
219 => 0.47503004810063
220 => 0.48770738353248
221 => 0.49798117317843
222 => 0.50138958191313
223 => 0.50184005939412
224 => 0.50823446076716
225 => 0.51189961238565
226 => 0.50745801225102
227 => 0.50369422119183
228 => 0.49021278879677
229 => 0.49177330130522
301 => 0.50252368500265
302 => 0.5177092351697
303 => 0.53074001700024
304 => 0.52617709137178
305 => 0.56098899299344
306 => 0.56444045084536
307 => 0.56396357096922
308 => 0.57182650560169
309 => 0.55622018161502
310 => 0.54954817575244
311 => 0.50450799553967
312 => 0.51716244901438
313 => 0.53555644030987
314 => 0.53312192658798
315 => 0.5197637184364
316 => 0.5307298836015
317 => 0.52710412645423
318 => 0.52424434135937
319 => 0.53734557127552
320 => 0.52294023081385
321 => 0.53541273601925
322 => 0.51941661908178
323 => 0.5261979344317
324 => 0.52234853186377
325 => 0.52483956709025
326 => 0.51027702605643
327 => 0.51813461971258
328 => 0.50995012432697
329 => 0.5099462438105
330 => 0.50976557062124
331 => 0.51939459314681
401 => 0.51970859522567
402 => 0.51259273303063
403 => 0.51156722611767
404 => 0.51535906266483
405 => 0.51091981515167
406 => 0.51299691112279
407 => 0.51098272827266
408 => 0.51052929328792
409 => 0.50691624618387
410 => 0.50535964614865
411 => 0.5059700291311
412 => 0.503886477338
413 => 0.50263106201729
414 => 0.50951583691561
415 => 0.50583757941846
416 => 0.50895209120053
417 => 0.50540271194214
418 => 0.49309901704165
419 => 0.48602303199516
420 => 0.46278249288124
421 => 0.46937348094414
422 => 0.47374331284872
423 => 0.47229908343033
424 => 0.47540184706363
425 => 0.47559233155112
426 => 0.474583591465
427 => 0.47341559967288
428 => 0.47284708586247
429 => 0.47708432203061
430 => 0.47954418024502
501 => 0.47418188394116
502 => 0.47292557294366
503 => 0.47834715056736
504 => 0.48165430978587
505 => 0.50607251532314
506 => 0.50426353578718
507 => 0.50880371942815
508 => 0.50829256442497
509 => 0.51305140018868
510 => 0.5208300854283
511 => 0.50501384338156
512 => 0.50775899611637
513 => 0.50708594806063
514 => 0.51443411025054
515 => 0.51445705041082
516 => 0.51005146011004
517 => 0.51243980208463
518 => 0.51110669511515
519 => 0.51351579958922
520 => 0.50423937576259
521 => 0.51553705865535
522 => 0.52194211684893
523 => 0.52203105108817
524 => 0.52506699783824
525 => 0.52815169556649
526 => 0.53407250423533
527 => 0.52798656742625
528 => 0.51703855956071
529 => 0.51782897036675
530 => 0.51141015736091
531 => 0.51151805876719
601 => 0.51094207260408
602 => 0.5126706504378
603 => 0.50461870139073
604 => 0.50650847773807
605 => 0.50386277978528
606 => 0.50775324488572
607 => 0.50356774755457
608 => 0.50708562349648
609 => 0.50860382213357
610 => 0.51420600778893
611 => 0.50274030017827
612 => 0.47936094619997
613 => 0.48427556985348
614 => 0.47700645543458
615 => 0.47767923964952
616 => 0.47903837083651
617 => 0.47463298197942
618 => 0.4754733913436
619 => 0.47544336600724
620 => 0.47518462387951
621 => 0.47403861209359
622 => 0.47237666827248
623 => 0.47899734093643
624 => 0.48012232223431
625 => 0.48262301630379
626 => 0.49006338561759
627 => 0.48931991726715
628 => 0.49053254499293
629 => 0.48788538547618
630 => 0.47780203378727
701 => 0.47834960829644
702 => 0.47152134539273
703 => 0.48244840226932
704 => 0.47986073097084
705 => 0.47819244245091
706 => 0.47773723447166
707 => 0.48519604702186
708 => 0.48742784063944
709 => 0.48603713662706
710 => 0.48318476212436
711 => 0.48866216439838
712 => 0.49012768617385
713 => 0.49045576245302
714 => 0.50016066909486
715 => 0.49099815892623
716 => 0.49320366619134
717 => 0.5104104042839
718 => 0.4948062672015
719 => 0.50307212662783
720 => 0.50266755582237
721 => 0.50689608980344
722 => 0.50232069261426
723 => 0.50237741014598
724 => 0.50613206185548
725 => 0.5008593306845
726 => 0.49955372829598
727 => 0.49775004794714
728 => 0.5016883180025
729 => 0.50404913278806
730 => 0.52307556613225
731 => 0.53536750978338
801 => 0.53483388409179
802 => 0.53971022400749
803 => 0.53751338821331
804 => 0.53041922593791
805 => 0.54252809590109
806 => 0.5386963427881
807 => 0.53901222785916
808 => 0.53900047060104
809 => 0.5415482514435
810 => 0.53974291521593
811 => 0.53618441219742
812 => 0.53854671256949
813 => 0.54556190013669
814 => 0.56733725759753
815 => 0.57952303611773
816 => 0.5666036584297
817 => 0.57551527216154
818 => 0.57017147945508
819 => 0.56920035335626
820 => 0.57479750534294
821 => 0.58040445440323
822 => 0.58004731598759
823 => 0.57597695888984
824 => 0.57367771744681
825 => 0.59108834395584
826 => 0.60391619698541
827 => 0.60304142340781
828 => 0.60690238948772
829 => 0.61823830531354
830 => 0.61927471939032
831 => 0.61914415503835
901 => 0.61657529461041
902 => 0.6277369758956
903 => 0.63704824679481
904 => 0.61598067764285
905 => 0.62400293218118
906 => 0.62760438070434
907 => 0.63289237563796
908 => 0.64181410946184
909 => 0.65150547876759
910 => 0.65287594464788
911 => 0.65190353352298
912 => 0.64551181494785
913 => 0.65611622688429
914 => 0.66232804269259
915 => 0.66602703685156
916 => 0.67540707058476
917 => 0.62762662202434
918 => 0.5938052456909
919 => 0.58852354938984
920 => 0.5992640865105
921 => 0.60209628049504
922 => 0.60095462665114
923 => 0.56288559268284
924 => 0.58832312380456
925 => 0.61569176844317
926 => 0.61674310954605
927 => 0.63044442530351
928 => 0.63490613535005
929 => 0.64593749040731
930 => 0.64524747614497
1001 => 0.64793343555421
1002 => 0.64731598000036
1003 => 0.66774924231808
1004 => 0.69029016502334
1005 => 0.6895096445458
1006 => 0.68626912021483
1007 => 0.69108185143783
1008 => 0.71434649930173
1009 => 0.71220466333481
1010 => 0.71428527453552
1011 => 0.74171560550516
1012 => 0.77737893768478
1013 => 0.76080973934734
1014 => 0.7967601320812
1015 => 0.81938899865873
1016 => 0.8585232835361
1017 => 0.85362347832904
1018 => 0.86885816825115
1019 => 0.84485180438819
1020 => 0.78972834047222
1021 => 0.78100484130338
1022 => 0.79846950755359
1023 => 0.84140468535252
1024 => 0.79711732601138
1025 => 0.80607660112611
1026 => 0.80349632929034
1027 => 0.80335883756966
1028 => 0.80860633732873
1029 => 0.80099456523703
1030 => 0.76998283640378
1031 => 0.78419532897479
1101 => 0.77870720305317
1102 => 0.7847966879301
1103 => 0.81765912631627
1104 => 0.80312985896306
1105 => 0.78782445606828
1106 => 0.80702082783913
1107 => 0.83146440569242
1108 => 0.8299347705197
1109 => 0.82696663894671
1110 => 0.84369784121734
1111 => 0.87133288558613
1112 => 0.87880252703241
1113 => 0.88431646363796
1114 => 0.88507674233714
1115 => 0.8929080854493
1116 => 0.85079697978263
1117 => 0.91762838596553
1118 => 0.92916832363298
1119 => 0.92699929363291
1120 => 0.93982544867547
1121 => 0.9360516684938
1122 => 0.93058405309854
1123 => 0.9509162370424
1124 => 0.9276070288734
1125 => 0.8945225424252
1126 => 0.87637173882277
1127 => 0.90027418119001
1128 => 0.91487056866339
1129 => 0.9245178522787
1130 => 0.92743711447165
1201 => 0.85406594504059
1202 => 0.81452295406887
1203 => 0.83986955792043
1204 => 0.87079416394849
1205 => 0.85062519203473
1206 => 0.85141577754883
1207 => 0.82266012391238
1208 => 0.87333840123019
1209 => 0.86595500249639
1210 => 0.90426008818836
1211 => 0.89511827207045
1212 => 0.92635458245739
1213 => 0.91812901508975
1214 => 0.95227288534755
1215 => 0.96589379960176
1216 => 0.98876543456062
1217 => 1.0055899023407
1218 => 1.0154695516219
1219 => 1.0148764145367
1220 => 1.0540245070106
1221 => 1.0309402446089
1222 => 1.0019409704894
1223 => 1.0014164651122
1224 => 1.0164356001015
1225 => 1.0479115867408
1226 => 1.0560728521193
1227 => 1.0606338860856
1228 => 1.0536485037955
1229 => 1.0285921914224
1230 => 1.0177730027781
1231 => 1.0269912649651
]
'min_raw' => 0.38011326616757
'max_raw' => 1.0606338860856
'avg_raw' => 0.72037357612661
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.380113'
'max' => '$1.06'
'avg' => '$0.720373'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1504811503777
'max_diff' => 0.54799636405058
'year' => 2036
]
11 => [
'items' => [
101 => 1.0157181224447
102 => 1.0351787291201
103 => 1.0619022986467
104 => 1.0563839872159
105 => 1.0748308749776
106 => 1.0939214631417
107 => 1.1212218616284
108 => 1.1283591967236
109 => 1.1401569402275
110 => 1.1523006936498
111 => 1.1562009399658
112 => 1.1636477203582
113 => 1.1636084721497
114 => 1.1860498460886
115 => 1.2108033764946
116 => 1.2201472611773
117 => 1.2416330087805
118 => 1.2048394189605
119 => 1.2327477794932
120 => 1.2579218192853
121 => 1.2279082912414
122 => 1.2692749473949
123 => 1.2708811209144
124 => 1.2951324341231
125 => 1.2705490821967
126 => 1.2559515662956
127 => 1.2980940477402
128 => 1.3184854670355
129 => 1.3123434055929
130 => 1.2656020147436
131 => 1.2383965204367
201 => 1.1671944942877
202 => 1.2515363699598
203 => 1.2926168373135
204 => 1.2654956262574
205 => 1.2791739875675
206 => 1.3537986916514
207 => 1.3822109473748
208 => 1.376301396801
209 => 1.3773000135685
210 => 1.392630751038
211 => 1.4606156837688
212 => 1.4198775361981
213 => 1.4510203235866
214 => 1.4675383457238
215 => 1.4828812052442
216 => 1.4452039914226
217 => 1.396186489829
218 => 1.3806605894595
219 => 1.2627989563185
220 => 1.2566637464664
221 => 1.2532198672606
222 => 1.2315066960139
223 => 1.2144460911521
224 => 1.2008788647465
225 => 1.1652744111411
226 => 1.1772898690532
227 => 1.1205438012334
228 => 1.1568479244674
301 => 1.0662798300451
302 => 1.1417076303254
303 => 1.1006557079141
304 => 1.1282209697254
305 => 1.1281247971237
306 => 1.0773684105549
307 => 1.0480931860408
308 => 1.06674849851
309 => 1.0867484743375
310 => 1.0899934031275
311 => 1.1159238938407
312 => 1.1231605364247
313 => 1.1012331715486
314 => 1.0644030075951
315 => 1.0729578146749
316 => 1.0479198231484
317 => 1.0040417060707
318 => 1.0355557357943
319 => 1.0463160111161
320 => 1.0510683616975
321 => 1.0079192729874
322 => 0.99436089250239
323 => 0.987142524498
324 => 1.0588330020856
325 => 1.06276036828
326 => 1.0426674075561
327 => 1.1334894953209
328 => 1.1129336596961
329 => 1.135899564391
330 => 1.0721815555996
331 => 1.0746156693431
401 => 1.0444505428549
402 => 1.0613409980538
403 => 1.049403368724
404 => 1.0599764161885
405 => 1.0663138572444
406 => 1.0964740339322
407 => 1.1420520110962
408 => 1.0919691092883
409 => 1.0701472717702
410 => 1.0836854170358
411 => 1.1197392819138
412 => 1.1743627327675
413 => 1.1420245504627
414 => 1.1563756866316
415 => 1.1595107714469
416 => 1.13566579304
417 => 1.1752419311335
418 => 1.1964511050538
419 => 1.2182073288758
420 => 1.237097648425
421 => 1.2095174146517
422 => 1.2390322182603
423 => 1.215248496616
424 => 1.193912039585
425 => 1.193944398183
426 => 1.1805597270116
427 => 1.1546252400399
428 => 1.1498425227359
429 => 1.1747228221419
430 => 1.1946744660924
501 => 1.1963177790501
502 => 1.2073640342936
503 => 1.2139010943612
504 => 1.277973169726
505 => 1.3037434884698
506 => 1.3352549464224
507 => 1.3475304351835
508 => 1.3844752553479
509 => 1.3546393125535
510 => 1.3481841186531
511 => 1.2585680694928
512 => 1.2732426925224
513 => 1.2967381798834
514 => 1.2589555014255
515 => 1.2829199145332
516 => 1.2876509973164
517 => 1.2576716604692
518 => 1.27368491961
519 => 1.2311584509326
520 => 1.142978971902
521 => 1.1753401001011
522 => 1.1991687830936
523 => 1.1651623144079
524 => 1.226117593295
525 => 1.1905087777415
526 => 1.1792224927356
527 => 1.1351906710766
528 => 1.1559719959594
529 => 1.1840790354233
530 => 1.1667121528287
531 => 1.2027510418631
601 => 1.2537917199565
602 => 1.2901663466908
603 => 1.2929587388659
604 => 1.2695722907865
605 => 1.3070492230841
606 => 1.3073222016214
607 => 1.2650480688919
608 => 1.2391553979785
609 => 1.2332725286683
610 => 1.2479690896096
611 => 1.2658134277271
612 => 1.2939489754411
613 => 1.3109506976667
614 => 1.3552821722142
615 => 1.3672769981438
616 => 1.3804556752364
617 => 1.3980664519857
618 => 1.4192127047836
619 => 1.3729459075186
620 => 1.374784173626
621 => 1.3317011726202
622 => 1.2856608073182
623 => 1.3205997055699
624 => 1.3662776673071
625 => 1.3557990924149
626 => 1.3546200386817
627 => 1.3566028800187
628 => 1.3487023767483
629 => 1.3129686932624
630 => 1.2950234611205
701 => 1.3181773889005
702 => 1.3304826710529
703 => 1.3495670905378
704 => 1.347214533013
705 => 1.3963739480891
706 => 1.4154758102841
707 => 1.4105887365199
708 => 1.4114880757065
709 => 1.4460710847867
710 => 1.4845345034221
711 => 1.5205605706694
712 => 1.5572078336288
713 => 1.5130281277642
714 => 1.4905963977516
715 => 1.5137402172511
716 => 1.5014597808518
717 => 1.5720268110161
718 => 1.5769127190776
719 => 1.6474746464425
720 => 1.7144463178697
721 => 1.6723826109684
722 => 1.7120467919854
723 => 1.7549468376234
724 => 1.8377079859407
725 => 1.8098369427597
726 => 1.788488160478
727 => 1.7683136643784
728 => 1.8102935881507
729 => 1.864300089438
730 => 1.8759325725475
731 => 1.8947816391354
801 => 1.8749641503724
802 => 1.8988321327626
803 => 1.9830965987229
804 => 1.9603275961974
805 => 1.9279919523114
806 => 1.9945106553417
807 => 2.0185835153835
808 => 2.1875394542112
809 => 2.4008533062029
810 => 2.312539970784
811 => 2.2577210336361
812 => 2.2706047841884
813 => 2.3484997818062
814 => 2.3735171827774
815 => 2.3055112629224
816 => 2.3295321034984
817 => 2.4618892967492
818 => 2.5328946844011
819 => 2.436459830674
820 => 2.1703998939027
821 => 1.9250804813714
822 => 1.9901502364518
823 => 1.9827733455753
824 => 2.1249746378271
825 => 1.9597845630174
826 => 1.9625659402236
827 => 2.1077078046054
828 => 2.0689864435498
829 => 2.006262797697
830 => 1.9255384334003
831 => 1.7763119798977
901 => 1.644137948543
902 => 1.9033616618911
903 => 1.8921834640038
904 => 1.8759957769469
905 => 1.9120197228014
906 => 2.0869417782955
907 => 2.0829092587489
908 => 2.0572564268031
909 => 2.0767138737403
910 => 2.0028518131736
911 => 2.0218877479895
912 => 1.9250416215231
913 => 1.9688201153374
914 => 2.0061282209237
915 => 2.0136183754761
916 => 2.0304940761394
917 => 1.8862930616584
918 => 1.951035083641
919 => 1.9890649560487
920 => 1.8172446089723
921 => 1.9856686202315
922 => 1.8837828428146
923 => 1.8492012796863
924 => 1.8957607986641
925 => 1.8776165088378
926 => 1.8620171139137
927 => 1.8533123835144
928 => 1.887500555665
929 => 1.8859056365705
930 => 1.8299671512937
1001 => 1.7569976775945
1002 => 1.7814886281093
1003 => 1.7725908361834
1004 => 1.7403440904059
1005 => 1.762074503573
1006 => 1.6663847614956
1007 => 1.5017555337713
1008 => 1.6105146443356
1009 => 1.606327536886
1010 => 1.6042162074397
1011 => 1.6859456731477
1012 => 1.6780892708395
1013 => 1.6638298237199
1014 => 1.7400822044772
1015 => 1.7122490597615
1016 => 1.7980242534615
1017 => 1.854521343624
1018 => 1.8401918540694
1019 => 1.8933276404413
1020 => 1.7820528501444
1021 => 1.8190138719113
1022 => 1.8266314872717
1023 => 1.739141261935
1024 => 1.6793746754189
1025 => 1.6753889254872
1026 => 1.5717619008113
1027 => 1.6271186209451
1028 => 1.6758302438461
1029 => 1.6525011566511
1030 => 1.6451158645819
1031 => 1.6828457200893
1101 => 1.6857776529966
1102 => 1.6189292719981
1103 => 1.6328291672206
1104 => 1.6907940409637
1105 => 1.6313686011248
1106 => 1.5159146786084
1107 => 1.4872805095489
1108 => 1.483460183564
1109 => 1.4058020460702
1110 => 1.4891939816451
1111 => 1.4527911670017
1112 => 1.5677872222875
1113 => 1.5021020922445
1114 => 1.4992705375715
1115 => 1.4949902273846
1116 => 1.4281466604264
1117 => 1.44278115346
1118 => 1.4914284371997
1119 => 1.5087863360889
1120 => 1.5069757650257
1121 => 1.4911900389699
1122 => 1.4984166635223
1123 => 1.4751371879163
1124 => 1.4669167205595
1125 => 1.4409706643636
1126 => 1.4028371295366
1127 => 1.4081398314409
1128 => 1.3325873207664
1129 => 1.2914223030758
1130 => 1.2800283687252
1201 => 1.2647919235264
1202 => 1.2817493657531
1203 => 1.3323732899964
1204 => 1.2713100968943
1205 => 1.1666215354057
1206 => 1.1729134963318
1207 => 1.1870496644328
1208 => 1.1607070086968
1209 => 1.1357758958141
1210 => 1.1574514757404
1211 => 1.1130935521528
1212 => 1.1924101075759
1213 => 1.1902648170337
1214 => 1.2198291239926
1215 => 1.2383162918546
1216 => 1.1957093552243
1217 => 1.1849938258832
1218 => 1.1910978783896
1219 => 1.0902114874046
1220 => 1.2115845535027
1221 => 1.2126341928185
1222 => 1.2036465437426
1223 => 1.2682739544668
1224 => 1.4046579488898
1225 => 1.3533448041544
1226 => 1.3334748035648
1227 => 1.2957019179192
1228 => 1.34603204531
1229 => 1.3421674767987
1230 => 1.3246904323964
1231 => 1.3141202614102
]
'min_raw' => 0.987142524498
'max_raw' => 2.5328946844011
'avg_raw' => 1.7600186044496
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.987142'
'max' => '$2.53'
'avg' => '$1.76'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.60702925833044
'max_diff' => 1.4722607983155
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.030985275861495
]
1 => [
'year' => 2028
'avg' => 0.05317972846818
]
2 => [
'year' => 2029
'avg' => 0.14527743346155
]
3 => [
'year' => 2030
'avg' => 0.11208132356194
]
4 => [
'year' => 2031
'avg' => 0.11007774982334
]
5 => [
'year' => 2032
'avg' => 0.19300093818313
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.030985275861495
'min' => '$0.030985'
'max_raw' => 0.19300093818313
'max' => '$0.19300093'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.19300093818313
]
1 => [
'year' => 2033
'avg' => 0.49641825905945
]
2 => [
'year' => 2034
'avg' => 0.31465374933707
]
3 => [
'year' => 2035
'avg' => 0.37113481891247
]
4 => [
'year' => 2036
'avg' => 0.72037357612661
]
5 => [
'year' => 2037
'avg' => 1.7600186044496
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.19300093818313
'min' => '$0.19300093'
'max_raw' => 1.7600186044496
'max' => '$1.76'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.7600186044496
]
]
]
]
'prediction_2025_max_price' => '$0.052979'
'last_price' => 0.05137
'sma_50day_nextmonth' => '$0.048745'
'sma_200day_nextmonth' => '$0.068918'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.050791'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.050342'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.050558'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.051277'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.056542'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.063356'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.073711'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.05081'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.050563'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.050641'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.051932'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.05591'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.062626'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.072417'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.067492'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.092083'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.070658'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.440772'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.051811'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.052933'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.056728'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.065773'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.08174'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.456051'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$2.45'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.98'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 51.23
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.049040'
'vwma_10_action' => 'BUY'
'hma_9' => '0.050911'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 44.04
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 19.18
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.37
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003679'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -55.96
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 61.47
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002963'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 14
'sell_pct' => 58.82
'buy_pct' => 41.18
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767709488
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Swop para 2026
La previsión del precio de Swop para 2026 sugiere que el precio medio podría oscilar entre $0.017748 en el extremo inferior y $0.052979 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Swop podría potencialmente ganar 3.13% para 2026 si SWOP alcanza el objetivo de precio previsto.
Predicción de precio de Swop 2027-2032
La predicción del precio de SWOP para 2027-2032 está actualmente dentro de un rango de precios de $0.030985 en el extremo inferior y $0.19300093 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Swop alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Swop | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.017085 | $0.030985 | $0.044884 |
| 2028 | $0.030834 | $0.053179 | $0.075524 |
| 2029 | $0.067735 | $0.145277 | $0.222819 |
| 2030 | $0.0576061 | $0.112081 | $0.166556 |
| 2031 | $0.0681083 | $0.110077 | $0.152047 |
| 2032 | $0.103962 | $0.19300093 | $0.282039 |
Predicción de precio de Swop 2032-2037
La predicción de precio de Swop para 2032-2037 se estima actualmente entre $0.19300093 en el extremo inferior y $1.76 en el extremo superior. Comparado con el precio actual, Swop podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Swop | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.103962 | $0.19300093 | $0.282039 |
| 2033 | $0.241585 | $0.496418 | $0.75125 |
| 2034 | $0.194223 | $0.314653 | $0.435084 |
| 2035 | $0.229632 | $0.371134 | $0.512637 |
| 2036 | $0.380113 | $0.720373 | $1.06 |
| 2037 | $0.987142 | $1.76 | $2.53 |
Swop Histograma de precios potenciales
Pronóstico de precio de Swop basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Swop es Bajista, con 14 indicadores técnicos mostrando señales alcistas y 20 indicando señales bajistas. La predicción de precio de SWOP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Swop
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Swop aumentar durante el próximo mes, alcanzando $0.068918 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Swop alcance $0.048745 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.98, lo que sugiere que el mercado de SWOP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SWOP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.050791 | BUY |
| SMA 5 | $0.050342 | BUY |
| SMA 10 | $0.050558 | BUY |
| SMA 21 | $0.051277 | BUY |
| SMA 50 | $0.056542 | SELL |
| SMA 100 | $0.063356 | SELL |
| SMA 200 | $0.073711 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.05081 | BUY |
| EMA 5 | $0.050563 | BUY |
| EMA 10 | $0.050641 | BUY |
| EMA 21 | $0.051932 | SELL |
| EMA 50 | $0.05591 | SELL |
| EMA 100 | $0.062626 | SELL |
| EMA 200 | $0.072417 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.067492 | SELL |
| SMA 50 | $0.092083 | SELL |
| SMA 100 | $0.070658 | SELL |
| SMA 200 | $0.440772 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.065773 | SELL |
| EMA 50 | $0.08174 | SELL |
| EMA 100 | $0.456051 | SELL |
| EMA 200 | $2.45 | SELL |
Osciladores de Swop
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.98 | NEUTRAL |
| Stoch RSI (14) | 51.23 | NEUTRAL |
| Estocástico Rápido (14) | 44.04 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 19.18 | NEUTRAL |
| Índice Direccional Medio (14) | 13.37 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.003679 | SELL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -55.96 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 61.47 | NEUTRAL |
| VWMA (10) | 0.049040 | BUY |
| Promedio Móvil de Hull (9) | 0.050911 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002963 | SELL |
Predicción de precios de Swop basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Swop
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Swop por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.072183 | $0.101429 | $0.142525 | $0.200272 | $0.281416 | $0.395436 |
| Amazon.com acción | $0.107186 | $0.223651 | $0.466661 | $0.973716 | $2.03 | $4.23 |
| Apple acción | $0.072864 | $0.103352 | $0.146597 | $0.207937 | $0.294943 | $0.418355 |
| Netflix acción | $0.081053 | $0.12789 | $0.20179 | $0.318394 | $0.502375 | $0.79267 |
| Google acción | $0.066523 | $0.086148 | $0.111561 | $0.144471 | $0.18709 | $0.24228 |
| Tesla acción | $0.116451 | $0.263987 | $0.59844 | $1.35 | $3.07 | $6.97 |
| Kodak acción | $0.038522 | $0.028887 | $0.021662 | $0.016244 | $0.012181 | $0.009134 |
| Nokia acción | $0.03403 | $0.022543 | $0.014934 | $0.009893 | $0.006553 | $0.004341 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Swop
Podría preguntarse cosas como: "¿Debo invertir en Swop ahora?", "¿Debería comprar SWOP hoy?", "¿Será Swop una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Swop regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Swop, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Swop a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Swop es de $0.05136 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Swop basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Swop ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0527052 | $0.054075 | $0.05548 | $0.056922 |
| Si Swop ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.05404 | $0.056849 | $0.0598053 | $0.062914 |
| Si Swop ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.058046 | $0.06559 | $0.074114 | $0.083747 |
| Si Swop ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.064722 | $0.081546 | $0.102742 | $0.129448 |
| Si Swop ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.078075 | $0.118664 | $0.180353 | $0.274112 |
| Si Swop ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.118133 | $0.271667 | $0.624742 | $1.43 |
| Si Swop ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.184897 | $0.6655041 | $2.39 | $8.62 |
Cuadro de preguntas
¿Es SWOP una buena inversión?
La decisión de adquirir Swop depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Swop ha experimentado un aumento de 2.6015% durante las últimas 24 horas, y Swop ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Swop dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Swop subir?
Parece que el valor medio de Swop podría potencialmente aumentar hasta $0.052979 para el final de este año. Mirando las perspectivas de Swop en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.166556. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Swop la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Swop, el precio de Swop aumentará en un 0.86% durante la próxima semana y alcanzará $0.051809 para el 13 de enero de 2026.
¿Cuál será el precio de Swop el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Swop, el precio de Swop disminuirá en un -11.62% durante el próximo mes y alcanzará $0.045401 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Swop este año en 2026?
Según nuestra predicción más reciente sobre el valor de Swop en 2026, se anticipa que SWOP fluctúe dentro del rango de $0.017748 y $0.052979. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Swop no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Swop en 5 años?
El futuro de Swop parece estar en una tendencia alcista, con un precio máximo de $0.166556 proyectada después de un período de cinco años. Basado en el pronóstico de Swop para 2030, el valor de Swop podría potencialmente alcanzar su punto más alto de aproximadamente $0.166556, mientras que su punto más bajo se anticipa que esté alrededor de $0.0576061.
¿Cuánto será Swop en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Swop, se espera que el valor de SWOP en 2026 crezca en un 3.13% hasta $0.052979 si ocurre lo mejor. El precio estará entre $0.052979 y $0.017748 durante 2026.
¿Cuánto será Swop en 2027?
Según nuestra última simulación experimental para la predicción de precios de Swop, el valor de SWOP podría disminuir en un -12.62% hasta $0.044884 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.044884 y $0.017085 a lo largo del año.
¿Cuánto será Swop en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Swop sugiere que el valor de SWOP en 2028 podría aumentar en un 47.02% , alcanzando $0.075524 en el mejor escenario. Se espera que el precio oscile entre $0.075524 y $0.030834 durante el año.
¿Cuánto será Swop en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Swop podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.222819 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.222819 y $0.067735.
¿Cuánto será Swop en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Swop, se espera que el valor de SWOP en 2030 aumente en un 224.23% , alcanzando $0.166556 en el mejor escenario. Se pronostica que el precio oscile entre $0.166556 y $0.0576061 durante el transcurso de 2030.
¿Cuánto será Swop en 2031?
Nuestra simulación experimental indica que el precio de Swop podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.152047 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.152047 y $0.0681083 durante el año.
¿Cuánto será Swop en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Swop, SWOP podría experimentar un 449.04% aumento en valor, alcanzando $0.282039 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.282039 y $0.103962 a lo largo del año.
¿Cuánto será Swop en 2033?
Según nuestra predicción experimental de precios de Swop, se anticipa que el valor de SWOP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.75125. A lo largo del año, el precio de SWOP podría oscilar entre $0.75125 y $0.241585.
¿Cuánto será Swop en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Swop sugieren que SWOP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.435084 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.435084 y $0.194223.
¿Cuánto será Swop en 2035?
Basado en nuestra predicción experimental para el precio de Swop, SWOP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.512637 en 2035. El rango de precios esperado para el año está entre $0.512637 y $0.229632.
¿Cuánto será Swop en 2036?
Nuestra reciente simulación de predicción de precios de Swop sugiere que el valor de SWOP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $1.06 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $1.06 y $0.380113.
¿Cuánto será Swop en 2037?
Según la simulación experimental, el valor de Swop podría aumentar en un 4830.69% en 2037, con un máximo de $2.53 bajo condiciones favorables. Se espera que el precio caiga entre $2.53 y $0.987142 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Lucha
Predicción de precios de Starcoin
Predicción de precios de Bao Finance V2
Predicción de precios de Composite
Predicción de precios de MotaCoin
Predicción de precios de Yellow Duckies
Predicción de precios de Smart MFG
Predicción de precios de Ara Token
Predicción de precios de DOS Network
Predicción de precios de FLUX
Predicción de precios de AstroSwap
Predicción de precios de DYOR
Predicción de precios de Sky Hause
Predicción de precios de Neblio
Predicción de precios de Dexsport
Predicción de precios de Switch
Predicción de precios de Bezoge Earth
Predicción de precios de Sheesha Finance (ERC20)
Predicción de precios de Noah Platinum
Predicción de precios de Froyo Games
Predicción de precios de Basis Cash
Predicción de precios de $REKT (OLD)
Predicción de precios de Open Predict Token
Predicción de precios de Nyzo
Predicción de precios de BNSD Finance
¿Cómo leer y predecir los movimientos de precio de Swop?
Los traders de Swop utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Swop
Las medias móviles son herramientas populares para la predicción de precios de Swop. Una media móvil simple (SMA) calcula el precio de cierre promedio de SWOP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SWOP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SWOP.
¿Cómo leer gráficos de Swop y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Swop en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SWOP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Swop?
La acción del precio de Swop está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SWOP. La capitalización de mercado de Swop puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SWOP, grandes poseedores de Swop, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Swop.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


