Predicción del precio de Superfluid - Pronóstico de SUP
Predicción de precio de Superfluid hasta $0.030639 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.010264 | $0.030639 |
| 2027 | $0.009881 | $0.025958 |
| 2028 | $0.017832 | $0.043678 |
| 2029 | $0.039173 | $0.128863 |
| 2030 | $0.033315 | $0.096324 |
| 2031 | $0.039389 | $0.087933 |
| 2032 | $0.060124 | $0.163111 |
| 2033 | $0.139716 | $0.43447 |
| 2034 | $0.112325 | $0.251622 |
| 2035 | $0.132803 | $0.296473 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Superfluid hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.65, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Superfluid para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Superfluid'
'name_with_ticker' => 'Superfluid <small>SUP</small>'
'name_lang' => 'Superfluid'
'name_lang_with_ticker' => 'Superfluid <small>SUP</small>'
'name_with_lang' => 'Superfluid'
'name_with_lang_with_ticker' => 'Superfluid <small>SUP</small>'
'image' => '/uploads/coins/superfluid.png?1756558598'
'price_for_sd' => 0.0297
'ticker' => 'SUP'
'marketcap' => '$2.82M'
'low24h' => '$0.02825'
'high24h' => '$0.03058'
'volume24h' => '$346.29K'
'current_supply' => '94.73M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0297'
'change_24h_pct' => '1.8719%'
'ath_price' => '$0.06392'
'ath_days' => 30
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 dic. 2025'
'ath_pct' => '-53.32%'
'fdv' => '$29.81M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.46'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029963'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.026257'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010264'
'current_year_max_price_prediction' => '$0.030639'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.033315'
'grand_prediction_max_price' => '$0.096324'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.030271766133171
107 => 0.030384789919261
108 => 0.03063943828046
109 => 0.028463495914961
110 => 0.029440430154758
111 => 0.03001428749428
112 => 0.027421579157211
113 => 0.029963037986649
114 => 0.028425617599412
115 => 0.027903794028704
116 => 0.028606360721634
117 => 0.028332569798131
118 => 0.028097180439645
119 => 0.027965829133108
120 => 0.028481716572939
121 => 0.028457649807252
122 => 0.027613557826251
123 => 0.026512474246625
124 => 0.026882034037784
125 => 0.026747769501014
126 => 0.026261177499291
127 => 0.02658908175711
128 => 0.025145157354223
129 => 0.022660960467716
130 => 0.024302097023952
131 => 0.02423891505175
201 => 0.024207055836291
202 => 0.025440324600619
203 => 0.02532177426528
204 => 0.025106604245792
205 => 0.026257225733145
206 => 0.025837233412218
207 => 0.027131550782679
208 => 0.027984071914063
209 => 0.027767844978975
210 => 0.028569645223634
211 => 0.026890547948966
212 => 0.027448276709921
213 => 0.027563223834575
214 => 0.026243027242598
215 => 0.025341170566278
216 => 0.025281027007887
217 => 0.023717331814654
218 => 0.024552645165172
219 => 0.025287686346013
220 => 0.02493565866189
221 => 0.024824217213625
222 => 0.025393547404112
223 => 0.025437789235896
224 => 0.024429070782678
225 => 0.024638815291061
226 => 0.025513484758141
227 => 0.024616775864661
228 => 0.022874616961196
301 => 0.022442537465905
302 => 0.022384890096428
303 => 0.021213056236543
304 => 0.022471411083849
305 => 0.021922105471187
306 => 0.023657355319895
307 => 0.022666189912644
308 => 0.022623462752955
309 => 0.022558874384373
310 => 0.021550228573323
311 => 0.021771057903157
312 => 0.022505128228784
313 => 0.022767052790862
314 => 0.022739731913153
315 => 0.022501530883718
316 => 0.022610578095207
317 => 0.022259299032435
318 => 0.022135255084129
319 => 0.021743738262299
320 => 0.021168316693491
321 => 0.021248332591899
322 => 0.020108271896847
323 => 0.019487106322582
324 => 0.019315175878456
325 => 0.019085263303103
326 => 0.019341145115616
327 => 0.020105042248139
328 => 0.019183620236499
329 => 0.017603906827782
330 => 0.017698850295346
331 => 0.017912160077995
401 => 0.017514658709214
402 => 0.017138457023424
403 => 0.017465533867011
404 => 0.016796188470743
405 => 0.017993047271299
406 => 0.017960675594902
407 => 0.018406790542497
408 => 0.018685755374429
409 => 0.018042831752763
410 => 0.017881138200564
411 => 0.017973246196459
412 => 0.016450906197419
413 => 0.018282382886429
414 => 0.018298221572889
415 => 0.018162601123471
416 => 0.01913780591987
417 => 0.021195792214275
418 => 0.020421494988013
419 => 0.020121663698747
420 => 0.019551684198676
421 => 0.020311148040486
422 => 0.020252833066917
423 => 0.019989110641139
424 => 0.019829610495164
425 => 0.020123494404664
426 => 0.019793195026508
427 => 0.019733864182171
428 => 0.019374383818085
429 => 0.019246065683421
430 => 0.019151064045008
501 => 0.019046476575783
502 => 0.019277170471319
503 => 0.018754387753725
504 => 0.018123963045328
505 => 0.018071550052114
506 => 0.018216266934574
507 => 0.01815224048699
508 => 0.018071243518116
509 => 0.017916598246323
510 => 0.017870718297656
511 => 0.018019805873038
512 => 0.017851494692777
513 => 0.018099847007637
514 => 0.018032308919956
515 => 0.017655046652311
516 => 0.017184838186445
517 => 0.017180652344804
518 => 0.017079346702129
519 => 0.016950318734778
520 => 0.016914426106021
521 => 0.017437988367535
522 => 0.01852174657997
523 => 0.018308978910733
524 => 0.018462725357065
525 => 0.019219005704565
526 => 0.019459404484892
527 => 0.019288775124773
528 => 0.019055207132682
529 => 0.019065482938956
530 => 0.019863655473772
531 => 0.01991343651571
601 => 0.020039217148715
602 => 0.020200880807728
603 => 0.019316307144957
604 => 0.019023819598988
605 => 0.018885222773117
606 => 0.018458398193156
607 => 0.01891869190947
608 => 0.018650498472716
609 => 0.018686686930127
610 => 0.018663119149763
611 => 0.018675988751488
612 => 0.017992712724872
613 => 0.01824166259704
614 => 0.017827735149939
615 => 0.017273532763806
616 => 0.01727167488308
617 => 0.017407315131947
618 => 0.017326631004317
619 => 0.017109512091443
620 => 0.017140352808245
621 => 0.016870155676937
622 => 0.017173159632062
623 => 0.017181848701295
624 => 0.017065175673835
625 => 0.017531995073193
626 => 0.017723251361999
627 => 0.017646454675946
628 => 0.017717863101781
629 => 0.018317820367978
630 => 0.018415639580339
701 => 0.018459084412896
702 => 0.018400874092608
703 => 0.01772882921925
704 => 0.017758637267139
705 => 0.017539925589681
706 => 0.017355137269498
707 => 0.017362527833218
708 => 0.017457533050592
709 => 0.017872426406848
710 => 0.01874554501579
711 => 0.018778679228758
712 => 0.018818838861468
713 => 0.018655489452621
714 => 0.018606221707869
715 => 0.01867121858028
716 => 0.018999116023403
717 => 0.019842557270403
718 => 0.019544428802166
719 => 0.019302045716844
720 => 0.019514681028682
721 => 0.019481947489115
722 => 0.019205643473301
723 => 0.019197888539837
724 => 0.018667572793752
725 => 0.01847152713713
726 => 0.018307696712694
727 => 0.018128798166111
728 => 0.018022741110963
729 => 0.01818569294974
730 => 0.018222961963257
731 => 0.017866664919861
801 => 0.017818102949409
802 => 0.018109062806252
803 => 0.017981022221332
804 => 0.018112715138176
805 => 0.018143269024525
806 => 0.018138349145107
807 => 0.018004660069083
808 => 0.018089869499475
809 => 0.017888323794444
810 => 0.017669173111409
811 => 0.017529368629203
812 => 0.017407370676104
813 => 0.017475062231046
814 => 0.017233754197668
815 => 0.017156554901219
816 => 0.018061002461731
817 => 0.018729127599131
818 => 0.018719412795027
819 => 0.018660276423486
820 => 0.018572411770751
821 => 0.018992688176781
822 => 0.018846272280612
823 => 0.018952802078532
824 => 0.018979918383144
825 => 0.019061991270297
826 => 0.019091325273051
827 => 0.019002657542953
828 => 0.018705077810894
829 => 0.017963537411635
830 => 0.01761834835403
831 => 0.017504430215442
901 => 0.017508570923418
902 => 0.017394351712496
903 => 0.017427994389059
904 => 0.017382652162536
905 => 0.017296784954966
906 => 0.017469760172946
907 => 0.017489693955442
908 => 0.017449319472666
909 => 0.017458829124937
910 => 0.017124545651715
911 => 0.017149960498159
912 => 0.017008447403599
913 => 0.016981915404334
914 => 0.016624182624241
915 => 0.01599040715011
916 => 0.016341580284853
917 => 0.015917412520499
918 => 0.015756773760948
919 => 0.01651721266421
920 => 0.016440885689615
921 => 0.016310247087646
922 => 0.016117005367863
923 => 0.016045330134261
924 => 0.015609854104516
925 => 0.015584123857505
926 => 0.015799957536688
927 => 0.015700357720128
928 => 0.015560481856278
929 => 0.015053865656402
930 => 0.014484261312883
1001 => 0.014501454087608
1002 => 0.014682634631416
1003 => 0.015209441498064
1004 => 0.015003608941413
1005 => 0.014854275059907
1006 => 0.014826309312861
1007 => 0.0151763591874
1008 => 0.01567175309759
1009 => 0.015904180836436
1010 => 0.015673852006175
1011 => 0.015409262647755
1012 => 0.015425366976013
1013 => 0.015532501857047
1014 => 0.015543760218238
1015 => 0.015371539746132
1016 => 0.015420018800243
1017 => 0.015346374684031
1018 => 0.014894420878777
1019 => 0.014886246467601
1020 => 0.014775329715052
1021 => 0.014771971199866
1022 => 0.014583274134299
1023 => 0.014556874110425
1024 => 0.01418220463365
1025 => 0.014428813217867
1026 => 0.014263401127106
1027 => 0.014014086089561
1028 => 0.013971104083116
1029 => 0.0139698119921
1030 => 0.014225802789836
1031 => 0.01442582181635
1101 => 0.014266278541244
1102 => 0.014229953630118
1103 => 0.01461780864722
1104 => 0.014568450560917
1105 => 0.014525706776504
1106 => 0.01562739600646
1107 => 0.014755323015067
1108 => 0.014375049414633
1109 => 0.013904388622099
1110 => 0.014057638149426
1111 => 0.014089930076538
1112 => 0.012958075713476
1113 => 0.012498882539346
1114 => 0.012341304746314
1115 => 0.012250616498601
1116 => 0.012291944271875
1117 => 0.011878616557171
1118 => 0.012156379617262
1119 => 0.011798472754049
1120 => 0.011738468503702
1121 => 0.012378450311278
1122 => 0.012467500041083
1123 => 0.012087586228153
1124 => 0.012331552398513
1125 => 0.012243086873757
1126 => 0.011804608039964
1127 => 0.011787861373745
1128 => 0.011567848108224
1129 => 0.011223569950646
1130 => 0.011066225594417
1201 => 0.010984279287566
1202 => 0.011018091930875
1203 => 0.011000995223734
1204 => 0.010889427644983
1205 => 0.011007390146752
1206 => 0.010706044700205
1207 => 0.010586046515284
1208 => 0.010531846119093
1209 => 0.010264384690485
1210 => 0.010690034764037
1211 => 0.010773893190725
1212 => 0.010857916844418
1213 => 0.011589285384437
1214 => 0.011552748279004
1215 => 0.011883025917829
1216 => 0.011870191936126
1217 => 0.01177599140339
1218 => 0.011378574851013
1219 => 0.011536978005521
1220 => 0.011049437717259
1221 => 0.011414736050742
1222 => 0.011248029146564
1223 => 0.011358372278747
1224 => 0.011159965377842
1225 => 0.011269771948823
1226 => 0.010793779134635
1227 => 0.010349303742145
1228 => 0.010528173615129
1229 => 0.010722625623313
1230 => 0.011144247122506
1231 => 0.010893132835888
]
'min_raw' => 0.010264384690485
'max_raw' => 0.03063943828046
'avg_raw' => 0.020451911485473
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010264'
'max' => '$0.030639'
'avg' => '$0.020451'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.019444415309515
'max_diff' => 0.00093063828046007
'year' => 2026
]
1 => [
'items' => [
101 => 0.010983443029039
102 => 0.010680918999729
103 => 0.010056725515547
104 => 0.010060258382881
105 => 0.0099642398141335
106 => 0.0098812657517954
107 => 0.010921976332462
108 => 0.010792547520556
109 => 0.010586319648009
110 => 0.010862363850584
111 => 0.010935354319155
112 => 0.010937432255183
113 => 0.011138826979649
114 => 0.011246311380198
115 => 0.011265255971659
116 => 0.011582154922028
117 => 0.011688375270193
118 => 0.01212588185142
119 => 0.011237192079764
120 => 0.011218890098735
121 => 0.01086624835861
122 => 0.010642597391977
123 => 0.010881561931637
124 => 0.011093251891863
125 => 0.010872826155757
126 => 0.010901609103452
127 => 0.010605705562175
128 => 0.010711477154625
129 => 0.010802581899016
130 => 0.010752279214053
131 => 0.010676973659985
201 => 0.011075895729205
202 => 0.011053386982671
203 => 0.011424872384707
204 => 0.01171447182077
205 => 0.012233485782285
206 => 0.011691867656634
207 => 0.011672128939398
208 => 0.011865078066568
209 => 0.011688345730687
210 => 0.011800034466371
211 => 0.012215491000266
212 => 0.012224268942159
213 => 0.012077227105706
214 => 0.012068279596595
215 => 0.012096520589747
216 => 0.012261928968731
217 => 0.012204130198628
218 => 0.012271016398677
219 => 0.012354658616036
220 => 0.0127006382906
221 => 0.012784052818829
222 => 0.012581398760707
223 => 0.012599696153134
224 => 0.012523897972419
225 => 0.012450677879596
226 => 0.012615265955326
227 => 0.012916053898709
228 => 0.012914182712524
301 => 0.012983959668907
302 => 0.01302743013467
303 => 0.01284082307329
304 => 0.012719348738063
305 => 0.012765929727802
306 => 0.012840413744796
307 => 0.012741775564961
308 => 0.01213293502537
309 => 0.012317618352197
310 => 0.01228687801606
311 => 0.012243100039248
312 => 0.012428800552487
313 => 0.012410889284965
314 => 0.011874377284042
315 => 0.011908723041632
316 => 0.011876465963318
317 => 0.011980695182529
318 => 0.011682717010799
319 => 0.011774373089509
320 => 0.011831858922854
321 => 0.011865718520322
322 => 0.011988042604116
323 => 0.011973689284742
324 => 0.011987150381631
325 => 0.012168524705538
326 => 0.013085853795706
327 => 0.013135781994111
328 => 0.012889917284783
329 => 0.012988135386693
330 => 0.012799578108964
331 => 0.012926157872727
401 => 0.013012760532317
402 => 0.012621419766365
403 => 0.012598247105986
404 => 0.012408911585298
405 => 0.012510649769604
406 => 0.012348777003139
407 => 0.012388494917961
408 => 0.012277440165575
409 => 0.012477316609089
410 => 0.012700809530598
411 => 0.012757272668573
412 => 0.012608742461468
413 => 0.012501196802906
414 => 0.012312382054214
415 => 0.0126263851893
416 => 0.012718209275072
417 => 0.012625902876469
418 => 0.012604513466977
419 => 0.012563980574642
420 => 0.012613112711698
421 => 0.012717709181381
422 => 0.012668383417872
423 => 0.012700963953677
424 => 0.012576800548089
425 => 0.012840884847992
426 => 0.013260314271585
427 => 0.013261662805766
428 => 0.013212336776373
429 => 0.013192153627889
430 => 0.0132427651274
501 => 0.013270219789693
502 => 0.01343388809855
503 => 0.013609510714787
504 => 0.014429064834613
505 => 0.014198937317264
506 => 0.014926094487867
507 => 0.015501181400272
508 => 0.0156736248198
509 => 0.015514984987924
510 => 0.014972286692634
511 => 0.014945659325188
512 => 0.015756679699662
513 => 0.015527529296787
514 => 0.015500272585515
515 => 0.015210307228527
516 => 0.015381712667415
517 => 0.015344223783564
518 => 0.015285045746387
519 => 0.015612075383579
520 => 0.016224245670265
521 => 0.016128833190189
522 => 0.016057612199869
523 => 0.015745542552407
524 => 0.015933478183458
525 => 0.015866557904911
526 => 0.016154089890209
527 => 0.015983762311732
528 => 0.015525793257109
529 => 0.015598726338544
530 => 0.015587702650006
531 => 0.015814569378967
601 => 0.015746469618111
602 => 0.015574405078737
603 => 0.016222153338777
604 => 0.016180092169735
605 => 0.016239725290914
606 => 0.016265977635073
607 => 0.016660250586355
608 => 0.016821771599168
609 => 0.0168584396969
610 => 0.017011872166589
611 => 0.01685462215728
612 => 0.017483734311871
613 => 0.017902057184962
614 => 0.018387960728755
615 => 0.019097996404796
616 => 0.019364976387185
617 => 0.019316748843012
618 => 0.019855089789062
619 => 0.020822476502466
620 => 0.019512285356436
621 => 0.020891919814598
622 => 0.02045514347379
623 => 0.019419554627004
624 => 0.019352874914061
625 => 0.020054187704538
626 => 0.021609631974963
627 => 0.021220010826924
628 => 0.021610269255583
629 => 0.021155012068756
630 => 0.021132404712221
701 => 0.021588158430172
702 => 0.022653051834006
703 => 0.022147160894777
704 => 0.021421842183844
705 => 0.021957406232788
706 => 0.02149345108948
707 => 0.020448030298739
708 => 0.021219712890975
709 => 0.020703710717802
710 => 0.020854307584118
711 => 0.021938867402598
712 => 0.021808370295849
713 => 0.021977245635689
714 => 0.021679185081109
715 => 0.021400749523296
716 => 0.020881028877742
717 => 0.020727165216512
718 => 0.020769687597041
719 => 0.020727144144532
720 => 0.020436365219824
721 => 0.020373571538718
722 => 0.020268912652488
723 => 0.020301350817608
724 => 0.020104561492459
725 => 0.020475943607765
726 => 0.020544875400974
727 => 0.020815136333795
728 => 0.020843195720397
729 => 0.021595868571382
730 => 0.021181309013213
731 => 0.021459431356183
801 => 0.021434553476039
802 => 0.019441998977494
803 => 0.019716555406936
804 => 0.020143679050594
805 => 0.019951260428079
806 => 0.019679225514865
807 => 0.019459542736855
808 => 0.019126700864454
809 => 0.019595169408197
810 => 0.020211155727144
811 => 0.020858818149978
812 => 0.02163694211449
813 => 0.021463273903972
814 => 0.020844271663713
815 => 0.02087203965203
816 => 0.021043690429502
817 => 0.020821387076558
818 => 0.020755825477897
819 => 0.021034683272613
820 => 0.021036603612988
821 => 0.020780816739167
822 => 0.02049655643742
823 => 0.020495365376376
824 => 0.020444784001309
825 => 0.021164010383013
826 => 0.021559512170961
827 => 0.021604855813566
828 => 0.021556460182535
829 => 0.021575085740165
830 => 0.021344951964045
831 => 0.021870969532204
901 => 0.022353695270492
902 => 0.022224314460699
903 => 0.022030354234255
904 => 0.021875855571501
905 => 0.022187919485793
906 => 0.022174023770924
907 => 0.022349479082289
908 => 0.022341519415886
909 => 0.022282520393882
910 => 0.02222431656774
911 => 0.02245508815933
912 => 0.022388629647031
913 => 0.022322067906305
914 => 0.022188568145188
915 => 0.02220671297992
916 => 0.022012786243443
917 => 0.021923066861665
918 => 0.020573902626622
919 => 0.020213361857805
920 => 0.020326795323159
921 => 0.020364140565252
922 => 0.020207232760618
923 => 0.020432198246156
924 => 0.020397137613532
925 => 0.020533538025287
926 => 0.02044832096984
927 => 0.02045181830752
928 => 0.020702423497398
929 => 0.02077517525017
930 => 0.020738173121531
1001 => 0.020764088144071
1002 => 0.021361288900451
1003 => 0.021276386050299
1004 => 0.021231283103332
1005 => 0.021243776927881
1006 => 0.021396374525265
1007 => 0.021439093521012
1008 => 0.02125809013422
1009 => 0.021343452377799
1010 => 0.021706913976879
1011 => 0.021834104966413
1012 => 0.022240037549864
1013 => 0.022067590173538
1014 => 0.022384124796133
1015 => 0.023357044311384
1016 => 0.024134279741077
1017 => 0.023419501919319
1018 => 0.024846795805615
1019 => 0.025958148829244
1020 => 0.025915493249142
1021 => 0.025721703143413
1022 => 0.024456457272861
1023 => 0.023292159159025
1024 => 0.024266143969958
1025 => 0.024268626857542
1026 => 0.024184960698499
1027 => 0.023665317370284
1028 => 0.024166878237069
1029 => 0.024206690317273
1030 => 0.024184406139246
1031 => 0.023785996817871
1101 => 0.023177699422483
1102 => 0.023296559277483
1103 => 0.02349125414465
1104 => 0.0231226561435
1105 => 0.023004866747992
1106 => 0.02322385964459
1107 => 0.023929500386413
1108 => 0.02379610309167
1109 => 0.023792619549204
1110 => 0.024363349745371
1111 => 0.0239548300962
1112 => 0.023298058480897
1113 => 0.023132214986279
1114 => 0.022543582305952
1115 => 0.022950152994892
1116 => 0.022964784750183
1117 => 0.022742110138902
1118 => 0.023316127298372
1119 => 0.023310837629194
1120 => 0.023855781490932
1121 => 0.024897509483008
1122 => 0.02458941925543
1123 => 0.024231143840878
1124 => 0.02427009831234
1125 => 0.024697332716444
1126 => 0.024439017042909
1127 => 0.024531909160153
1128 => 0.024697192113099
1129 => 0.024796911422355
1130 => 0.024255750238331
1201 => 0.024129579679603
1202 => 0.023871478996294
1203 => 0.023804145345696
1204 => 0.024014362966804
1205 => 0.02395897805074
1206 => 0.022963555007808
1207 => 0.02285952776134
1208 => 0.022862718128472
1209 => 0.022601136671002
1210 => 0.022202162161618
1211 => 0.02325064335075
1212 => 0.023166435637778
1213 => 0.023073476839816
1214 => 0.023084863762151
1215 => 0.023539973910028
1216 => 0.023275987040646
1217 => 0.023977839399496
1218 => 0.02383355965413
1219 => 0.023685579677712
1220 => 0.023665124337391
1221 => 0.023608164671528
1222 => 0.023412828783527
1223 => 0.023176948960899
1224 => 0.02302120067044
1225 => 0.021235840722417
1226 => 0.021567193143809
1227 => 0.021948383900897
1228 => 0.022079969422718
1229 => 0.021854883282203
1230 => 0.023421716556271
1231 => 0.023707992093824
]
'min_raw' => 0.0098812657517954
'max_raw' => 0.025958148829244
'avg_raw' => 0.01791970729052
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009881'
'max' => '$0.025958'
'avg' => '$0.017919'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00038311893869008
'max_diff' => -0.0046812894512162
'year' => 2027
]
2 => [
'items' => [
101 => 0.022840844817284
102 => 0.022678636967233
103 => 0.023432350875916
104 => 0.022977769251202
105 => 0.023182467328976
106 => 0.022740022048691
107 => 0.023639036699954
108 => 0.023632187714573
109 => 0.023282450710065
110 => 0.023578046031379
111 => 0.023526679070057
112 => 0.023131826853332
113 => 0.023651554219509
114 => 0.023651811997799
115 => 0.023315197734898
116 => 0.022922105970167
117 => 0.022851830447046
118 => 0.022798887280563
119 => 0.023169446555496
120 => 0.023501688842693
121 => 0.024119909369318
122 => 0.024275344698269
123 => 0.024882019135081
124 => 0.024520774046402
125 => 0.024680909315306
126 => 0.024854758802218
127 => 0.024938108639347
128 => 0.024802294552545
129 => 0.025744709670073
130 => 0.025824278380846
131 => 0.025850957081301
201 => 0.025533180006109
202 => 0.02581544042553
203 => 0.025683380122766
204 => 0.02602696434315
205 => 0.02608084273601
206 => 0.026035209654037
207 => 0.026052311506343
208 => 0.025248126456952
209 => 0.025206425219727
210 => 0.024637825891178
211 => 0.024869534320436
212 => 0.024436366518013
213 => 0.024573728490284
214 => 0.024634276338828
215 => 0.024602649578809
216 => 0.024882634767374
217 => 0.024644590159898
218 => 0.024016351302615
219 => 0.023387941282075
220 => 0.023380052106159
221 => 0.023214602840109
222 => 0.0230950133243
223 => 0.02311805050771
224 => 0.023199236546838
225 => 0.023090294644117
226 => 0.023113542922557
227 => 0.023499619247131
228 => 0.023577044100654
229 => 0.02331392419654
301 => 0.022257459813502
302 => 0.021998200803964
303 => 0.022184551038691
304 => 0.022095487628984
305 => 0.017832782998694
306 => 0.018834242221989
307 => 0.018239209157849
308 => 0.018513427769959
309 => 0.017906053094537
310 => 0.018195924124883
311 => 0.018142395529973
312 => 0.019752712325699
313 => 0.019727569443852
314 => 0.01973960401086
315 => 0.019165162771651
316 => 0.020080263263491
317 => 0.020531074671721
318 => 0.020447641478015
319 => 0.020468639815373
320 => 0.020107818808738
321 => 0.01974309754692
322 => 0.019338565537365
323 => 0.020090136009451
324 => 0.020006574202691
325 => 0.02019823492281
326 => 0.020685682097325
327 => 0.020757460545404
328 => 0.020853931507528
329 => 0.020819353534877
330 => 0.021643141127235
331 => 0.021543375014275
401 => 0.021783782641839
402 => 0.021289245912169
403 => 0.02072963066069
404 => 0.020835995224795
405 => 0.020825751461942
406 => 0.020695336603578
407 => 0.020577603900689
408 => 0.020381612121363
409 => 0.021001759112477
410 => 0.02097658227716
411 => 0.021384165976086
412 => 0.021312121598244
413 => 0.020830991610765
414 => 0.020848175262392
415 => 0.02096374357777
416 => 0.021363726836826
417 => 0.021482469101051
418 => 0.021427462953201
419 => 0.021557658425133
420 => 0.021660559617652
421 => 0.021570581230619
422 => 0.022844485443376
423 => 0.022315471597947
424 => 0.022573309265355
425 => 0.022634802029763
426 => 0.022477289606784
427 => 0.022511448411231
428 => 0.022563189692252
429 => 0.022877352618627
430 => 0.023701807041212
501 => 0.024066952292724
502 => 0.025165509797847
503 => 0.024036632062654
504 => 0.023969649129608
505 => 0.024167532509539
506 => 0.024812502059167
507 => 0.025335189300232
508 => 0.025508594812644
509 => 0.025531513213722
510 => 0.025856833482787
511 => 0.026043300994151
512 => 0.02581733104535
513 => 0.025625845173781
514 => 0.024939966549922
515 => 0.025019358868219
516 => 0.025566293211713
517 => 0.026338870186169
518 => 0.027001821603187
519 => 0.026769679123137
520 => 0.028540762378868
521 => 0.028716358049447
522 => 0.028692096405461
523 => 0.02909212947518
524 => 0.028298145297105
525 => 0.027958701678259
526 => 0.025667246592671
527 => 0.026311052004483
528 => 0.027246860979918
529 => 0.027123003152916
530 => 0.026443393660709
531 => 0.027001306058445
601 => 0.02681684277222
602 => 0.026671348924985
603 => 0.027337884444537
604 => 0.02660500126102
605 => 0.027239549909536
606 => 0.026425734704249
607 => 0.026770739530431
608 => 0.026574898105084
609 => 0.026701631508706
610 => 0.025960750620721
611 => 0.026360511964011
612 => 0.025944119234547
613 => 0.025943921810177
614 => 0.025934729917596
615 => 0.026424614117242
616 => 0.026440589223405
617 => 0.026078564059693
618 => 0.026026390577706
619 => 0.02621930328584
620 => 0.025993453028533
621 => 0.026099126942442
622 => 0.025996653783734
623 => 0.025973584917293
624 => 0.025789768264653
625 => 0.025710574996551
626 => 0.025741628717533
627 => 0.025635626358532
628 => 0.025571756102961
629 => 0.025922024516172
630 => 0.02573489023278
701 => 0.025893343503358
702 => 0.025712766003138
703 => 0.025086805713501
704 => 0.024726809331521
705 => 0.023544428370947
706 => 0.023879750144626
707 => 0.024102068827492
708 => 0.024028592504131
709 => 0.024186448078272
710 => 0.024196139128475
711 => 0.024144818672174
712 => 0.024085396158336
713 => 0.024056472564871
714 => 0.024272045333906
715 => 0.024397192582177
716 => 0.024124381481557
717 => 0.024060465657715
718 => 0.024336292742755
719 => 0.024504547105289
720 => 0.02574684278428
721 => 0.025654809507819
722 => 0.02588579497112
723 => 0.025859789552713
724 => 0.026101899117122
725 => 0.026497645931795
726 => 0.025692982005015
727 => 0.025832643839519
728 => 0.025798401982961
729 => 0.02617224559416
730 => 0.026173412693108
731 => 0.025949274773321
801 => 0.02607078357586
802 => 0.026002960695702
803 => 0.026125525806959
804 => 0.025653580347301
805 => 0.026228358973801
806 => 0.026554221417109
807 => 0.02655874601745
808 => 0.026713202229374
809 => 0.02687013868619
810 => 0.027171364548762
811 => 0.026861737660373
812 => 0.026304749029732
813 => 0.026344961809802
814 => 0.026018399579451
815 => 0.026023889149542
816 => 0.025994585394173
817 => 0.026082528169918
818 => 0.025672878841126
819 => 0.025769022719798
820 => 0.025634420726639
821 => 0.025832351241073
822 => 0.025619410726629
823 => 0.025798385470501
824 => 0.02587562503685
825 => 0.026160640699526
826 => 0.025577313681512
827 => 0.024387870404015
828 => 0.02463790580155
829 => 0.024268083808738
830 => 0.024302312242185
831 => 0.024371459125161
901 => 0.024147331453982
902 => 0.024190087950569
903 => 0.024188560387638
904 => 0.024175396675555
905 => 0.02411709241206
906 => 0.024032539694846
907 => 0.024369371696275
908 => 0.02442660601692
909 => 0.024553830821882
910 => 0.02493236554404
911 => 0.024894540998833
912 => 0.024956234401391
913 => 0.024821558050001
914 => 0.024308559491865
915 => 0.024336417781682
916 => 0.023989024461261
917 => 0.024544947193633
918 => 0.024413297352786
919 => 0.024328421843959
920 => 0.024305262775009
921 => 0.024684735811526
922 => 0.024798280091563
923 => 0.024727526915917
924 => 0.024582410088468
925 => 0.024861077297109
926 => 0.024935636886116
927 => 0.024952328028443
928 => 0.025446072893019
929 => 0.024979922881551
930 => 0.025092129822444
1001 => 0.025967536344406
1002 => 0.025173663426829
1003 => 0.025594195616748
1004 => 0.025573612754396
1005 => 0.025788742792725
1006 => 0.025555965812077
1007 => 0.025558851361733
1008 => 0.025749872261598
1009 => 0.025481617858538
1010 => 0.025415194295871
1011 => 0.02532343061978
1012 => 0.025523793249417
1013 => 0.025643901584263
1014 => 0.026611886553266
1015 => 0.02723724898872
1016 => 0.027210100356121
1017 => 0.027458188037966
1018 => 0.027346422265072
1019 => 0.026985501102076
1020 => 0.027601549517664
1021 => 0.027406606022411
1022 => 0.027422676927304
1023 => 0.027422078767421
1024 => 0.027551699149508
1025 => 0.027459851229266
1026 => 0.027278809550473
1027 => 0.027398993465717
1028 => 0.027755896727455
1029 => 0.028863735403021
1030 => 0.029483696602778
1031 => 0.028826412960349
1101 => 0.029279798415518
1102 => 0.029007928700172
1103 => 0.028958521885471
1104 => 0.029243281456238
1105 => 0.029528539460939
1106 => 0.029510369759244
1107 => 0.029303287095992
1108 => 0.029186311354049
1109 => 0.030072090861789
1110 => 0.030724718114232
1111 => 0.030680213310884
1112 => 0.030876643039124
1113 => 0.031453366796582
1114 => 0.031506095189226
1115 => 0.031499452623701
1116 => 0.031368759800893
1117 => 0.031936619237153
1118 => 0.032410337569418
1119 => 0.031338508188492
1120 => 0.031746646785472
1121 => 0.03192987335106
1122 => 0.032198904310216
1123 => 0.032652804633137
1124 => 0.033145860774944
1125 => 0.033215584319481
1126 => 0.033166112128053
1127 => 0.032840928348471
1128 => 0.033380436262219
1129 => 0.033696467345075
1130 => 0.033884656622673
1201 => 0.034361873318952
1202 => 0.031931004895951
1203 => 0.030210315404152
1204 => 0.02994160489295
1205 => 0.030488038283998
1206 => 0.030632128411493
1207 => 0.030574045861773
1208 => 0.028637253400509
1209 => 0.02993140808147
1210 => 0.031323809702568
1211 => 0.031377297519568
1212 => 0.032074362884835
1213 => 0.03230135594144
1214 => 0.032862584926926
1215 => 0.032827479901077
1216 => 0.03296413022794
1217 => 0.032932716684248
1218 => 0.033972275199154
1219 => 0.035119062617029
1220 => 0.035079353015309
1221 => 0.034914488755816
1222 => 0.035159340294696
1223 => 0.036342947807151
1224 => 0.036233980194328
1225 => 0.036339832948347
1226 => 0.037735372910728
1227 => 0.039549773375068
1228 => 0.038706802196554
1229 => 0.040535807095508
1230 => 0.041687068728015
1231 => 0.043678056678762
]
'min_raw' => 0.017832782998694
'max_raw' => 0.043678056678762
'avg_raw' => 0.030755419838728
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017832'
'max' => '$0.043678'
'avg' => '$0.030755'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0079515172468984
'max_diff' => 0.017719907849519
'year' => 2028
]
3 => [
'items' => [
101 => 0.043428775181507
102 => 0.044203852180188
103 => 0.0429825092748
104 => 0.040178059089903
105 => 0.039734244113139
106 => 0.040622772935806
107 => 0.042807134344957
108 => 0.040553979621549
109 => 0.04100978988758
110 => 0.040878516500299
111 => 0.040871521499367
112 => 0.041138492234224
113 => 0.040751237259056
114 => 0.039173490824381
115 => 0.039896562717674
116 => 0.039617349934909
117 => 0.039927157334079
118 => 0.041599060093107
119 => 0.040859872030157
120 => 0.040081197452601
121 => 0.041057828174578
122 => 0.04230141469038
123 => 0.042223593281161
124 => 0.04207258722045
125 => 0.042923800478256
126 => 0.044329755398067
127 => 0.044709779363308
128 => 0.0449903052852
129 => 0.045028985070305
130 => 0.045427410896236
131 => 0.043284974813969
201 => 0.046685075898188
202 => 0.047272179429535
203 => 0.04716182829859
204 => 0.04781436916459
205 => 0.047622375088449
206 => 0.047344205795068
207 => 0.0483786218671
208 => 0.047192747313588
209 => 0.045509547682332
210 => 0.044586111074712
211 => 0.045802166891133
212 => 0.046544769743721
213 => 0.047035582990871
214 => 0.047184102782901
215 => 0.043451286028302
216 => 0.041439504829081
217 => 0.042729033512663
218 => 0.044302347505149
219 => 0.043276234975302
220 => 0.043316456643784
221 => 0.041853489833851
222 => 0.044431787605756
223 => 0.044056151307287
224 => 0.046004953088233
225 => 0.045539855903099
226 => 0.047129028103411
227 => 0.046710545804109
228 => 0.048447642431482
301 => 0.049140617306155
302 => 0.050304229973658
303 => 0.051160188188629
304 => 0.051662823224332
305 => 0.051632646902125
306 => 0.053624337325358
307 => 0.052449907067141
308 => 0.05097454587086
309 => 0.050947861241524
310 => 0.051711971711108
311 => 0.053313337631885
312 => 0.053728548516216
313 => 0.053960594756446
314 => 0.053605207861946
315 => 0.052330447988825
316 => 0.051780013138791
317 => 0.052248999578653
318 => 0.051675469463166
319 => 0.052665543346625
320 => 0.054025126256984
321 => 0.053744377762369
322 => 0.054682877887702
323 => 0.05565412678433
324 => 0.057043056328025
325 => 0.057406173942659
326 => 0.058006393551523
327 => 0.058624216690914
328 => 0.058822644832486
329 => 0.059201505723383
330 => 0.059199508939477
331 => 0.060341231734475
401 => 0.06160058733357
402 => 0.062075964918079
403 => 0.063169069461184
404 => 0.061297166238068
405 => 0.062717026335676
406 => 0.063997775685122
407 => 0.062470813511615
408 => 0.064575375131238
409 => 0.064657090489889
410 => 0.065890895388573
411 => 0.064640197755338
412 => 0.063897537493092
413 => 0.066041569843081
414 => 0.067078999560855
415 => 0.066766517286978
416 => 0.064388511753625
417 => 0.063004410535759
418 => 0.059381950675416
419 => 0.063672910858612
420 => 0.065762912394823
421 => 0.064383099154554
422 => 0.065078996694003
423 => 0.0688755880237
424 => 0.070321084190964
425 => 0.070020431092954
426 => 0.070071236517346
427 => 0.070851200011591
428 => 0.074309987678813
429 => 0.072237401934543
430 => 0.073821816077731
501 => 0.074662183626247
502 => 0.075442763839502
503 => 0.073525905540659
504 => 0.071032101058104
505 => 0.070242208495689
506 => 0.064245903920956
507 => 0.06393377022721
508 => 0.063758560126292
509 => 0.062653885223962
510 => 0.061785913346653
511 => 0.061095669884087
512 => 0.059284264914167
513 => 0.059895560917164
514 => 0.057008559464712
515 => 0.058855560684942
516 => 0.05424783665774
517 => 0.058085286146852
518 => 0.055996736857346
519 => 0.057399141533897
520 => 0.057394248676095
521 => 0.054811977033758
522 => 0.053322576641093
523 => 0.05427168053963
524 => 0.055289195258822
525 => 0.055454283598681
526 => 0.056773517991966
527 => 0.057141687954283
528 => 0.056026115780249
529 => 0.054152351818921
530 => 0.054587584451132
531 => 0.053313756665693
601 => 0.051081422468788
602 => 0.052684723861821
603 => 0.053232161449588
604 => 0.053473941075178
605 => 0.051278696777837
606 => 0.05058890335854
607 => 0.050221663130034
608 => 0.053868973346832
609 => 0.054068781233845
610 => 0.053046535833896
611 => 0.057667181974953
612 => 0.056621387445302
613 => 0.057789796160802
614 => 0.054548091651651
615 => 0.054671929129435
616 => 0.053137254264184
617 => 0.053996569641713
618 => 0.053389233229903
619 => 0.053927145451129
620 => 0.054249567818636
621 => 0.055783990858843
622 => 0.058102806793194
623 => 0.055554799225135
624 => 0.054444595839592
625 => 0.055133359775962
626 => 0.056967628902767
627 => 0.059746640524384
628 => 0.058101409711566
629 => 0.058831535208464
630 => 0.058991035148513
701 => 0.057777902856896
702 => 0.05979137044237
703 => 0.060870404078807
704 => 0.061977269315242
705 => 0.062938329386378
706 => 0.061535162999321
707 => 0.063036752169472
708 => 0.061826736364501
709 => 0.060741227098308
710 => 0.060742873367786
711 => 0.060061917548342
712 => 0.058742479842216
713 => 0.0584991552854
714 => 0.059764960358461
715 => 0.060780016154869
716 => 0.06086362101205
717 => 0.061425608056392
718 => 0.061758186200306
719 => 0.065017904128728
720 => 0.066328989645341
721 => 0.067932160197476
722 => 0.068556685477274
723 => 0.070436282664762
724 => 0.068918355282446
725 => 0.068589942145071
726 => 0.06403065417978
727 => 0.06477723732868
728 => 0.065972588984628
729 => 0.064050365088311
730 => 0.065269573715573
731 => 0.065510271324965
801 => 0.063985048655862
802 => 0.064799735984411
803 => 0.062636167977744
804 => 0.05814996666339
805 => 0.059796364866882
806 => 0.061008668116294
807 => 0.05927856190347
808 => 0.062379710325601
809 => 0.060568083438089
810 => 0.059993884688175
811 => 0.057753730648123
812 => 0.058810997123591
813 => 0.060240965170259
814 => 0.059357411169047
815 => 0.061190918387863
816 => 0.063787653588222
817 => 0.065638241730252
818 => 0.065780306908953
819 => 0.064590502713403
820 => 0.06649717153
821 => 0.066511059530771
822 => 0.064360329316679
823 => 0.063043019035864
824 => 0.062743723368419
825 => 0.06349142262607
826 => 0.064399267557756
827 => 0.065830685984382
828 => 0.06669566216062
829 => 0.068951061280333
830 => 0.069561307614767
831 => 0.070231783321182
901 => 0.071127745632003
902 => 0.072203578106164
903 => 0.069849717899876
904 => 0.069943241154016
905 => 0.067751359121333
906 => 0.065409018821731
907 => 0.067186563132289
908 => 0.069510465861532
909 => 0.068977360007759
910 => 0.068917374708845
911 => 0.069018253343084
912 => 0.068616308938949
913 => 0.0667983292958
914 => 0.065885351300166
915 => 0.067063325840062
916 => 0.067689366882401
917 => 0.068660301942554
918 => 0.068540613702437
919 => 0.071041638146577
920 => 0.072013460618517
921 => 0.071764826843567
922 => 0.071810581441863
923 => 0.073570019607018
924 => 0.075526876702727
925 => 0.077359731602895
926 => 0.079224190330295
927 => 0.076976512563351
928 => 0.075835280410789
929 => 0.077012740683851
930 => 0.076387963689011
1001 => 0.079978117622257
1002 => 0.080226692091149
1003 => 0.083816586415402
1004 => 0.087223823605782
1005 => 0.085083798973499
1006 => 0.087101745812915
1007 => 0.089284319845364
1008 => 0.093494859263833
1009 => 0.092076897716255
1010 => 0.090990761393101
1011 => 0.089964367815893
1012 => 0.092100129914671
1013 => 0.094847753735117
1014 => 0.095439565589627
1015 => 0.096398526883462
1016 => 0.095390296339202
1017 => 0.096604598976811
1018 => 0.10089162087919
1019 => 0.099733229718576
1020 => 0.098088128049837
1021 => 0.1014723201118
1022 => 0.10269704606331
1023 => 0.11129281418498
1024 => 0.12214532651206
1025 => 0.11765231514721
1026 => 0.11486335800448
1027 => 0.11551882908797
1028 => 0.11948179920909
1029 => 0.12075457943361
1030 => 0.11729472402971
1031 => 0.11851680344942
1101 => 0.12525058120422
1102 => 0.12886303692421
1103 => 0.12395683683893
1104 => 0.11042082538636
1105 => 0.097940004644014
1106 => 0.10125048032357
1107 => 0.10087517511753
1108 => 0.10810977925917
1109 => 0.099705602472501
1110 => 0.099847107255875
1111 => 0.10723131534959
1112 => 0.10526133522756
1113 => 0.10207021972587
1114 => 0.097963303318676
1115 => 0.090371288496192
1116 => 0.083646829248921
1117 => 0.096835042383295
1118 => 0.096266342651732
1119 => 0.095442781163849
1120 => 0.097275528136471
1121 => 0.10617482720122
1122 => 0.10596966955356
1123 => 0.10466456127148
1124 => 0.10565447440074
1125 => 0.10189668316815
1126 => 0.1028651515321
1127 => 0.097938027618242
1128 => 0.10016529340218
1129 => 0.10206337302521
1130 => 0.10244444061108
1201 => 0.10330300533984
1202 => 0.095966663735113
1203 => 0.099260465731962
1204 => 0.1011952658176
1205 => 0.092453768642057
1206 => 0.1010224745245
1207 => 0.095838954349662
1208 => 0.094079589748463
1209 => 0.096448342405317
1210 => 0.095525237191253
1211 => 0.094731605534758
1212 => 0.094288745434111
1213 => 0.096028095955614
1214 => 0.095946953174813
1215 => 0.093101038128246
1216 => 0.089388657964336
1217 => 0.090634654602069
1218 => 0.0901819723423
1219 => 0.088541393435723
1220 => 0.089646945534504
1221 => 0.084778653598588
1222 => 0.076403010354642
1223 => 0.081936216834484
1224 => 0.08172319440398
1225 => 0.081615778834722
1226 => 0.085773830577729
1227 => 0.085374129845214
1228 => 0.084648669101819
1229 => 0.088528069780258
1230 => 0.087112036347325
1231 => 0.091475917728186
]
'min_raw' => 0.039173490824381
'max_raw' => 0.12886303692421
'avg_raw' => 0.084018263874296
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.039173'
'max' => '$0.128863'
'avg' => '$0.084018'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.021340707825687
'max_diff' => 0.085184980245449
'year' => 2029
]
4 => [
'items' => [
101 => 0.094350252243773
102 => 0.093621228035639
103 => 0.096324553540413
104 => 0.090663359848043
105 => 0.09254378130498
106 => 0.092931333561103
107 => 0.088480198578069
108 => 0.085439525828236
109 => 0.085236747622029
110 => 0.079964640104334
111 => 0.082780957385322
112 => 0.085259200045464
113 => 0.084072314130655
114 => 0.083696581507235
115 => 0.085616117993825
116 => 0.085765282418552
117 => 0.082364317727055
118 => 0.083071485980962
119 => 0.086020495156695
120 => 0.082997178516112
121 => 0.077123368139428
122 => 0.075666581954228
123 => 0.075472219823226
124 => 0.071521300149795
125 => 0.075763931373017
126 => 0.073911909148633
127 => 0.07976242516483
128 => 0.076420641793325
129 => 0.076276584191317
130 => 0.076058819997227
131 => 0.072658100223868
201 => 0.073402641727218
202 => 0.075877611081223
203 => 0.076760708029258
204 => 0.076668593782578
205 => 0.075865482381174
206 => 0.076233142668141
207 => 0.075048780782485
208 => 0.074630557950298
209 => 0.073310531650666
210 => 0.071370457656779
211 => 0.071640236844795
212 => 0.06779644261493
213 => 0.0657021395129
214 => 0.065122464016729
215 => 0.064347297716943
216 => 0.065210021112929
217 => 0.067785553628825
218 => 0.06467891498495
219 => 0.059352800935391
220 => 0.059672909465026
221 => 0.060392098290041
222 => 0.059051894672536
223 => 0.057783504423331
224 => 0.058886266837261
225 => 0.056629522101542
226 => 0.060664815109628
227 => 0.060555671742537
228 => 0.062059779435105
301 => 0.063000328842666
302 => 0.060832666964726
303 => 0.060287505864405
304 => 0.060598054403339
305 => 0.05546537881019
306 => 0.061640330336807
307 => 0.061693731574029
308 => 0.061236477760098
309 => 0.064524448817781
310 => 0.071463093293384
311 => 0.068852496135335
312 => 0.067841594010022
313 => 0.065919868330836
314 => 0.068480453697571
315 => 0.06828384069276
316 => 0.067394682121737
317 => 0.066856916243638
318 => 0.067847766362837
319 => 0.066734138948617
320 => 0.066534100864588
321 => 0.065322087718956
322 => 0.06488945416905
323 => 0.064569149512338
324 => 0.064216525557782
325 => 0.064994326133116
326 => 0.063231727701223
327 => 0.061106206782014
328 => 0.060929492716037
329 => 0.061417415789059
330 => 0.061201546150847
331 => 0.06092845921526
401 => 0.060407061884422
402 => 0.060252374434254
403 => 0.060755033603619
404 => 0.060187560708256
405 => 0.061024897877212
406 => 0.060797188499235
407 => 0.059525222424261
408 => 0.057939881752688
409 => 0.057925768895347
410 => 0.057584209848136
411 => 0.057149183047767
412 => 0.057028168543969
413 => 0.058793395262615
414 => 0.062447361741421
415 => 0.061730000689624
416 => 0.062248367567665
417 => 0.06479821956107
418 => 0.065608740833049
419 => 0.065033452032447
420 => 0.064245961239915
421 => 0.064280606838203
422 => 0.06697170126596
423 => 0.067139541524455
424 => 0.067563619710354
425 => 0.068108680023715
426 => 0.06512627816072
427 => 0.064140135978659
428 => 0.063672847103713
429 => 0.062233778232433
430 => 0.063785690633668
501 => 0.062881457736983
502 => 0.06300346964774
503 => 0.062924009230796
504 => 0.062967399991537
505 => 0.060663687162992
506 => 0.061503039038132
507 => 0.060107453750738
508 => 0.058238921712718
509 => 0.058232657738135
510 => 0.058689978307293
511 => 0.058417946137802
512 => 0.057685914564289
513 => 0.057789896194215
514 => 0.056878907701451
515 => 0.057900506691215
516 => 0.057929802494785
517 => 0.057536431236853
518 => 0.059110345434079
519 => 0.059755179364875
520 => 0.059496253976074
521 => 0.059737012469354
522 => 0.061759810280017
523 => 0.062089614584011
524 => 0.062236091870196
525 => 0.06203983171123
526 => 0.059773985500031
527 => 0.05987448541462
528 => 0.059137083724108
529 => 0.058514057001102
530 => 0.058538974802678
531 => 0.058859291526108
601 => 0.060258133443653
602 => 0.063201913792894
603 => 0.063313628105272
604 => 0.063449029110811
605 => 0.062898285174191
606 => 0.062732175532997
607 => 0.062951317026268
608 => 0.064056846148825
609 => 0.066900567200271
610 => 0.065895406254947
611 => 0.065078194760137
612 => 0.065795109559722
613 => 0.06568474614569
614 => 0.064753167865443
615 => 0.064727021565834
616 => 0.062939025002448
617 => 0.062278043383676
618 => 0.061725677669414
619 => 0.061122508729311
620 => 0.060764929963212
621 => 0.061314333464583
622 => 0.061439988545697
623 => 0.060238708188021
624 => 0.060074978114153
625 => 0.061055969585669
626 => 0.060624271814103
627 => 0.061068283677748
628 => 0.061171298238777
629 => 0.061154710521825
630 => 0.060703968468137
701 => 0.060991258011836
702 => 0.060311732595852
703 => 0.059572850767387
704 => 0.059101490194791
705 => 0.058690165578294
706 => 0.058918392381854
707 => 0.058104805499731
708 => 0.057844522681872
709 => 0.06089393077865
710 => 0.063146561326402
711 => 0.063113807186098
712 => 0.062914424780679
713 => 0.06261818296947
714 => 0.064035174215159
715 => 0.063541522798795
716 => 0.063900695450156
717 => 0.063992119964356
718 => 0.064268834433537
719 => 0.064367736071857
720 => 0.06406878662925
721 => 0.063065475786259
722 => 0.06056532055746
723 => 0.059401491549413
724 => 0.059017408591653
725 => 0.05903136927769
726 => 0.058646271233537
727 => 0.058759699866424
728 => 0.05860682538401
729 => 0.058317318098628
730 => 0.058900516122792
731 => 0.058967724262211
801 => 0.058831598874674
802 => 0.05886366133125
803 => 0.057736601262355
804 => 0.057822289191547
805 => 0.057345167913109
806 => 0.057255713425185
807 => 0.056049592380995
808 => 0.053912774121173
809 => 0.055096778863082
810 => 0.053666667631117
811 => 0.05312506283785
812 => 0.055688935692347
813 => 0.055431593968519
814 => 0.054991136801084
815 => 0.05433960885113
816 => 0.054097950796836
817 => 0.052629712958587
818 => 0.052542961634359
819 => 0.053270659952751
820 => 0.052934852217383
821 => 0.052463250976592
822 => 0.050755159087898
823 => 0.048834698275216
824 => 0.048892664915564
825 => 0.049503527768635
826 => 0.051279693900016
827 => 0.050585715064499
828 => 0.050082225456842
829 => 0.04998793698817
830 => 0.051168154579882
831 => 0.052838409735384
901 => 0.053622056084492
902 => 0.052845486352219
903 => 0.051953404857267
904 => 0.052007701724357
905 => 0.052368914455683
906 => 0.052406872806472
907 => 0.051826219460718
908 => 0.051989669976351
909 => 0.051741373696876
910 => 0.050217579888054
911 => 0.050190019290055
912 => 0.049816055714875
913 => 0.049804732246441
914 => 0.049168526915476
915 => 0.049079517391794
916 => 0.047816293092258
917 => 0.048647751151608
918 => 0.048090052738903
919 => 0.047249469683201
920 => 0.047104552847563
921 => 0.047100196472492
922 => 0.047963287319766
923 => 0.048637665432541
924 => 0.048099754141564
925 => 0.04797728216758
926 => 0.04928496243691
927 => 0.049118548202868
928 => 0.048974434549444
929 => 0.052688856705727
930 => 0.049748601729053
1001 => 0.048466482735337
1002 => 0.046879617012819
1003 => 0.047396308493743
1004 => 0.04750518298055
1005 => 0.043689056971941
1006 => 0.042140855125517
1007 => 0.04160957059458
1008 => 0.041303808835765
1009 => 0.041443148308771
1010 => 0.040049585061025
1011 => 0.040986082610919
1012 => 0.039779374633339
1013 => 0.039577066113931
1014 => 0.041734809460276
1015 => 0.042035046841566
1016 => 0.04075414089654
1017 => 0.041576689873083
1018 => 0.041278422179902
1019 => 0.039800060178153
1020 => 0.039743597623781
1021 => 0.039001807538241
1022 => 0.037841049693234
1023 => 0.037310552210775
1024 => 0.03703426451592
1025 => 0.037148266203557
1026 => 0.037090623461779
1027 => 0.036714465580621
1028 => 0.037112184391212
1029 => 0.036096177178911
1030 => 0.035691594920447
1031 => 0.035508854500536
1101 => 0.034607089620426
1102 => 0.036042198561343
1103 => 0.03632493310173
1104 => 0.036608224716502
1105 => 0.039074084811696
1106 => 0.038950897409789
1107 => 0.040064451528336
1108 => 0.040021180862984
1109 => 0.039703577189993
1110 => 0.038363659536916
1111 => 0.038897726831697
1112 => 0.037253950710846
1113 => 0.038485579546499
1114 => 0.037923515579956
1115 => 0.038295545154025
1116 => 0.037626602435295
1117 => 0.037996822955808
1118 => 0.036391979950015
1119 => 0.034893400131956
1120 => 0.035496472397015
1121 => 0.036152080918813
1122 => 0.037573607240016
1123 => 0.036726957890445
1124 => 0.037031445011908
1125 => 0.036011464125538
1126 => 0.033906952213821
1127 => 0.033918863522692
1128 => 0.033595130214359
1129 => 0.033315377370122
1130 => 0.036824205752932
1201 => 0.036387827477161
1202 => 0.035692515806498
1203 => 0.036623218108268
1204 => 0.036869310569088
1205 => 0.036876316475483
1206 => 0.037555332849951
1207 => 0.037917724010725
1208 => 0.037981597023505
1209 => 0.039050043959851
1210 => 0.039408173279758
1211 => 0.040883257264098
1212 => 0.03788697765262
1213 => 0.037825271245778
1214 => 0.036636314998286
1215 => 0.035882260149473
1216 => 0.036687945778907
1217 => 0.037401673259529
1218 => 0.036658492500617
1219 => 0.036755536218329
1220 => 0.035757876769588
1221 => 0.036114493078273
1222 => 0.036421659084716
1223 => 0.036252060070341
1224 => 0.035998162137137
1225 => 0.037343155745359
1226 => 0.037267265934911
1227 => 0.038519754904157
1228 => 0.039496159622029
1229 => 0.041246051429678
1230 => 0.039419948104473
1231 => 0.0393533976412
]
'min_raw' => 0.033315377370122
'max_raw' => 0.096324553540413
'avg_raw' => 0.064819965455267
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.033315'
'max' => '$0.096324'
'avg' => '$0.064819'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0058581134542588
'max_diff' => -0.032538483383799
'year' => 2030
]
5 => [
'items' => [
101 => 0.040003939094731
102 => 0.039408073685251
103 => 0.039784640055467
104 => 0.041185380765742
105 => 0.041214976209692
106 => 0.040719214391957
107 => 0.040689047240293
108 => 0.040784263720429
109 => 0.041341949618618
110 => 0.041147077029834
111 => 0.041372588523146
112 => 0.041654594098686
113 => 0.042821088727006
114 => 0.043102326632746
115 => 0.042419064326935
116 => 0.042480755262986
117 => 0.042225196404644
118 => 0.041978329749628
119 => 0.042533249938124
120 => 0.043547377489584
121 => 0.04354106865472
122 => 0.043776326534836
123 => 0.043922890245167
124 => 0.043293731509234
125 => 0.042884172306949
126 => 0.043041223366034
127 => 0.043292351429638
128 => 0.042959785919627
129 => 0.040907037532506
130 => 0.041529710263084
131 => 0.041426067073575
201 => 0.041278466568271
202 => 0.041904568813853
203 => 0.04184417972488
204 => 0.040035292055696
205 => 0.040151091175355
206 => 0.040042334183701
207 => 0.040393750273323
208 => 0.039389096063163
209 => 0.039698120931758
210 => 0.039891938432414
211 => 0.040006098429276
212 => 0.040418522618184
213 => 0.040370129399798
214 => 0.040415514427782
215 => 0.041027030623985
216 => 0.044119869697359
217 => 0.044288206104158
218 => 0.043459256070932
219 => 0.043790405258889
220 => 0.043154671232377
221 => 0.043581443743422
222 => 0.043873430656633
223 => 0.042553997941688
224 => 0.042475869699357
225 => 0.041837511772374
226 => 0.042180529163893
227 => 0.041634763830163
228 => 0.041768675552999
301 => 0.041394246701734
302 => 0.042068144085971
303 => 0.042821666074614
304 => 0.04301203548643
305 => 0.042511255523126
306 => 0.042148657826687
307 => 0.041512055718845
308 => 0.042570739211789
309 => 0.04288033052792
310 => 0.042569113060402
311 => 0.042496997172942
312 => 0.042360337696516
313 => 0.042525990126897
314 => 0.042878644427125
315 => 0.04271233917164
316 => 0.042822186722809
317 => 0.042403561132055
318 => 0.043293939786955
319 => 0.044708075372228
320 => 0.044712622049369
321 => 0.044546315897437
322 => 0.044478267003182
323 => 0.044648907207366
324 => 0.044741472518108
325 => 0.045293291648376
326 => 0.045885415560598
327 => 0.048648599495033
328 => 0.047872708503303
329 => 0.050324369672481
330 => 0.052263315348942
331 => 0.052844720377494
401 => 0.052309855108446
402 => 0.05048010991589
403 => 0.050390333887482
404 => 0.053124745703656
405 => 0.052352149121592
406 => 0.052260251216537
407 => 0.051282612770717
408 => 0.051860518175074
409 => 0.05173412178578
410 => 0.051534598901757
411 => 0.052637202156031
412 => 0.054701177017959
413 => 0.054379487179894
414 => 0.054139360638541
415 => 0.053087196034114
416 => 0.053720834135451
417 => 0.053495207744104
418 => 0.054464641907379
419 => 0.053890370584651
420 => 0.052346295942613
421 => 0.052592194918694
422 => 0.05255502778314
423 => 0.053319924799161
424 => 0.053090321700863
425 => 0.052510194093199
426 => 0.054694122576264
427 => 0.054552310408222
428 => 0.05475336763973
429 => 0.054841879250942
430 => 0.056171198033447
501 => 0.056715777405183
502 => 0.056839406456771
503 => 0.05735671474064
504 => 0.056826535355411
505 => 0.058947630907821
506 => 0.060358035680817
507 => 0.061996293403417
508 => 0.0643902282583
509 => 0.065290369908871
510 => 0.065127767376551
511 => 0.066942821461922
512 => 0.070204433306949
513 => 0.065787032383483
514 => 0.07043856628218
515 => 0.068965944354394
516 => 0.06547438425495
517 => 0.065249568947335
518 => 0.067614093984525
519 => 0.072858382939911
520 => 0.07154474803682
521 => 0.072860531576016
522 => 0.071325600185586
523 => 0.071249377904634
524 => 0.072785983384414
525 => 0.076376345843923
526 => 0.074670699222135
527 => 0.07222523654809
528 => 0.074030928130991
529 => 0.072466670973015
530 => 0.068941961788085
531 => 0.071543743524966
601 => 0.069804006171992
602 => 0.070311754021114
603 => 0.073968423170666
604 => 0.073528443064246
605 => 0.074097818063015
606 => 0.073092886093325
607 => 0.072154121170409
608 => 0.070401846728188
609 => 0.069883084651932
610 => 0.070026451826705
611 => 0.06988301360628
612 => 0.068902632160091
613 => 0.068690918880129
614 => 0.068338054138155
615 => 0.068447421676617
616 => 0.067783932727483
617 => 0.06903607345831
618 => 0.069268481811778
619 => 0.070179685415802
620 => 0.070274289596773
621 => 0.072811978663809
622 => 0.071414262169818
623 => 0.072351971067023
624 => 0.072268093557199
625 => 0.065550056949641
626 => 0.066475743120424
627 => 0.067915820305838
628 => 0.067267067485788
629 => 0.066349882783016
630 => 0.065609206959196
701 => 0.064487007348116
702 => 0.066066481750776
703 => 0.068143322631896
704 => 0.070326961708828
705 => 0.072950460982061
706 => 0.072364926485173
707 => 0.070277917214783
708 => 0.070371538926091
709 => 0.070950271506615
710 => 0.070200760231437
711 => 0.069979714724189
712 => 0.070919903248304
713 => 0.070926377809951
714 => 0.070063974506395
715 => 0.069105571052632
716 => 0.069101555307167
717 => 0.068931016669649
718 => 0.071355938630347
719 => 0.072689400521467
720 => 0.072842279778303
721 => 0.072679110529404
722 => 0.072741907897349
723 => 0.071965995803734
724 => 0.073739500760155
725 => 0.075367044289628
726 => 0.074930827856333
727 => 0.074276877411004
728 => 0.073755974382779
729 => 0.07480811965742
730 => 0.07476126928457
731 => 0.075352829116736
801 => 0.075325992545734
802 => 0.075127073223867
803 => 0.074930834960369
804 => 0.075708897493372
805 => 0.075484827979169
806 => 0.075260410423121
807 => 0.074810306657857
808 => 0.074871483234988
809 => 0.074217645703424
810 => 0.073915150543752
811 => 0.069366349129666
812 => 0.068150760755449
813 => 0.068533209603561
814 => 0.068659121694639
815 => 0.06813009607636
816 => 0.068888582917441
817 => 0.068770373546695
818 => 0.069230257058099
819 => 0.068942941805994
820 => 0.06895473332416
821 => 0.069799666218528
822 => 0.070044953832365
823 => 0.069920198572254
824 => 0.070007572880075
825 => 0.072021076925436
826 => 0.071734821038421
827 => 0.071582753303735
828 => 0.071624877105492
829 => 0.072139370559096
830 => 0.072283400635803
831 => 0.071673135079979
901 => 0.071960939844009
902 => 0.073186376001386
903 => 0.073615209302789
904 => 0.074983839349203
905 => 0.074402420980027
906 => 0.075469639559847
907 => 0.07874990563259
908 => 0.081370409148644
909 => 0.078960485818393
910 => 0.083772706806516
911 => 0.087519711117872
912 => 0.08737589485144
913 => 0.086722517979984
914 => 0.082456653190769
915 => 0.078531140811273
916 => 0.081814998602781
917 => 0.081823369831623
918 => 0.081541283535023
919 => 0.079789269773607
920 => 0.081480317253836
921 => 0.081614546461834
922 => 0.081539413799783
923 => 0.080196148956718
924 => 0.078145231818198
925 => 0.078545976117863
926 => 0.079202403455676
927 => 0.077959649560107
928 => 0.077562514389359
929 => 0.078300864229838
930 => 0.080679981257157
1001 => 0.080230222964429
1002 => 0.08021847795779
1003 => 0.08214273466128
1004 => 0.080765382142168
1005 => 0.078551030786843
1006 => 0.077991877865917
1007 => 0.07600726168717
1008 => 0.077378043150791
1009 => 0.077427375135311
1010 => 0.076676612136733
1011 => 0.078611951066486
1012 => 0.078594116577539
1013 => 0.080431432854154
1014 => 0.083943691510562
1015 => 0.08290494379811
1016 => 0.081696993223959
1017 => 0.081828330944205
1018 => 0.083268781566196
1019 => 0.082397852237851
1020 => 0.082711044496659
1021 => 0.083268307512202
1022 => 0.083604518125541
1023 => 0.081779955410933
1024 => 0.081354562563235
1025 => 0.080484358089446
1026 => 0.08025733798537
1027 => 0.08096610137186
1028 => 0.0807793672605
1029 => 0.077423228973035
1030 => 0.077072493848618
1031 => 0.07708325039415
1101 => 0.076201310247256
1102 => 0.074856139833356
1103 => 0.078391167365134
1104 => 0.078107255181654
1105 => 0.077793838104149
1106 => 0.07783222990781
1107 => 0.079366665546156
1108 => 0.078476615385058
1109 => 0.080842959614689
1110 => 0.080356510379895
1111 => 0.079857585557771
1112 => 0.079788618949731
1113 => 0.079596575459479
1114 => 0.078937986875167
1115 => 0.078142701584573
1116 => 0.077617585349291
1117 => 0.071598119634683
1118 => 0.072715297457693
1119 => 0.074000508709103
1120 => 0.074444158482929
1121 => 0.07368526484517
1122 => 0.078967952621497
1123 => 0.079933150583478
1124 => 0.077009502998333
1125 => 0.076462607906896
1126 => 0.079003806972644
1127 => 0.077471153287047
1128 => 0.078161307147825
1129 => 0.0766695719948
1130 => 0.079700662658733
1201 => 0.079677570826339
1202 => 0.078498408097782
1203 => 0.079495028361401
1204 => 0.079321841064977
1205 => 0.077990569248585
1206 => 0.079742866349859
1207 => 0.079743735467359
1208 => 0.078608816978331
1209 => 0.07728348064875
1210 => 0.077046541816068
1211 => 0.076868040233895
1212 => 0.078117406700957
1213 => 0.079237584768657
1214 => 0.081321958436952
1215 => 0.081846019500658
1216 => 0.083891464721025
1217 => 0.082673501683217
1218 => 0.083213408922615
1219 => 0.083799554605524
1220 => 0.084080574400704
1221 => 0.083622667724812
1222 => 0.086800086090882
1223 => 0.087068357554562
1224 => 0.087158306655794
1225 => 0.086086899060298
1226 => 0.087038559771169
1227 => 0.086593309240243
1228 => 0.087751727427553
1229 => 0.087933382190749
1230 => 0.087779527068877
1231 => 0.087837187157941
]
'min_raw' => 0.039389096063163
'max_raw' => 0.087933382190749
'avg_raw' => 0.063661239126956
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.039389'
'max' => '$0.087933'
'avg' => '$0.063661'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0060737186930405
'max_diff' => -0.0083911713496638
'year' => 2031
]
6 => [
'items' => [
101 => 0.08512582111751
102 => 0.084985222484718
103 => 0.08306815015018
104 => 0.083849371296788
105 => 0.082388915808109
106 => 0.082852041287927
107 => 0.08305618258661
108 => 0.082949550757095
109 => 0.083893540368282
110 => 0.083090956354436
111 => 0.080972805184869
112 => 0.078854076926432
113 => 0.078827478019026
114 => 0.07826965426724
115 => 0.077866449865215
116 => 0.077944121337489
117 => 0.078217845736635
118 => 0.077850540505533
119 => 0.077928923699436
120 => 0.079230606982724
121 => 0.079491650282007
122 => 0.078604523154843
123 => 0.075042579727443
124 => 0.0741684698759
125 => 0.074796762702837
126 => 0.074496479198802
127 => 0.060124472925246
128 => 0.063500962616235
129 => 0.061494767096605
130 => 0.062419314292668
131 => 0.060371508168937
201 => 0.061348828585896
202 => 0.061168353190911
203 => 0.066597648696429
204 => 0.066512877714862
205 => 0.066553453097758
206 => 0.064616684353556
207 => 0.067702009552071
208 => 0.069221951689566
209 => 0.068940650851866
210 => 0.069011448212326
211 => 0.067794914996738
212 => 0.066565231798494
213 => 0.065201323884755
214 => 0.06773529620437
215 => 0.067453561738779
216 => 0.068099759237984
217 => 0.069743221419336
218 => 0.069985227468446
219 => 0.070310486052633
220 => 0.070193904003684
221 => 0.072971361386332
222 => 0.072634992971039
223 => 0.073445544072097
224 => 0.071778178960562
225 => 0.069891397069111
226 => 0.070250012623129
227 => 0.070215475061473
228 => 0.069775772261223
229 => 0.069378828233599
301 => 0.06871802826589
302 => 0.070808897143714
303 => 0.07072401168565
304 => 0.072098208583167
305 => 0.071855305933294
306 => 0.070233142589083
307 => 0.07029107847027
308 => 0.070680725114287
309 => 0.072029296598136
310 => 0.07242964443229
311 => 0.072244187364407
312 => 0.072683150487985
313 => 0.073030089042892
314 => 0.072726720628921
315 => 0.077021777623383
316 => 0.075238170508953
317 => 0.076107488206268
318 => 0.07631481535476
319 => 0.075783751223517
320 => 0.075898920017603
321 => 0.076073369359025
322 => 0.077132591599456
323 => 0.079912297246771
324 => 0.081143409955871
325 => 0.084847273283228
326 => 0.081041183183296
327 => 0.080815345547933
328 => 0.081482523179147
329 => 0.083657083046056
330 => 0.085419359572164
331 => 0.086004008364046
401 => 0.086081279353393
402 => 0.08717811935368
403 => 0.087806807586989
404 => 0.087044934127889
405 => 0.086399326142778
406 => 0.084086838475922
407 => 0.084354515220055
408 => 0.08619854254488
409 => 0.088803339753861
410 => 0.091038526742126
411 => 0.090255842162967
412 => 0.096227173012749
413 => 0.096819206075806
414 => 0.096737406249212
415 => 0.098086145673188
416 => 0.095409172582603
417 => 0.094264714722467
418 => 0.086538913917121
419 => 0.088709548812103
420 => 0.091864694108879
421 => 0.091447098797663
422 => 0.089155747945869
423 => 0.091036788547035
424 => 0.090414857698711
425 => 0.089924315034704
426 => 0.092171586074896
427 => 0.089700619253399
428 => 0.091840044324643
429 => 0.089096209541254
430 => 0.090259417400196
501 => 0.089599124361427
502 => 0.090026414879982
503 => 0.087528483239489
504 => 0.088876306518836
505 => 0.087472409359836
506 => 0.08747174372979
507 => 0.087440752622194
508 => 0.089092431403924
509 => 0.089146292589699
510 => 0.087925699474453
511 => 0.087749792937297
512 => 0.088400211601508
513 => 0.087638741690636
514 => 0.087995028669298
515 => 0.087649533260264
516 => 0.087571754966444
517 => 0.086952004288398
518 => 0.086684998655895
519 => 0.086789698444287
520 => 0.086432304090066
521 => 0.086216961064129
522 => 0.08739791547423
523 => 0.086766979172478
524 => 0.087301215437086
525 => 0.086692385787573
526 => 0.084581916967911
527 => 0.083368164031921
528 => 0.079381684072142
529 => 0.080512244843522
530 => 0.081261807804597
531 => 0.081014077250433
601 => 0.081546298339775
602 => 0.08157897239214
603 => 0.081405941890643
604 => 0.08120559473649
605 => 0.081108076821741
606 => 0.081834895463353
607 => 0.0822568381484
608 => 0.0813370364756
609 => 0.081121539813056
610 => 0.082051510087898
611 => 0.082618791418326
612 => 0.086807278034361
613 => 0.086496981417212
614 => 0.087275765033621
615 => 0.087188085949822
616 => 0.088004375249778
617 => 0.089338663265609
618 => 0.086625682656628
619 => 0.087096562282536
620 => 0.086981113472462
621 => 0.088241553308547
622 => 0.088245488264133
623 => 0.087489791618761
624 => 0.087899467029995
625 => 0.087670797454301
626 => 0.088084034284127
627 => 0.086492837216711
628 => 0.088430743485715
629 => 0.089529411464318
630 => 0.089544666470267
701 => 0.090065426372557
702 => 0.090594548593663
703 => 0.091610152620243
704 => 0.090566223948582
705 => 0.088688297892671
706 => 0.088823878088243
707 => 0.087722850728769
708 => 0.087741359197599
709 => 0.087642559540452
710 => 0.087939064748842
711 => 0.086557903436018
712 => 0.086882059235512
713 => 0.086428239217966
714 => 0.087095575766447
715 => 0.086377631954965
716 => 0.08698105779955
717 => 0.087241476390189
718 => 0.088202426596059
719 => 0.086235698828234
720 => 0.082225407773873
721 => 0.083068419573579
722 => 0.081821538904666
723 => 0.081936942457783
724 => 0.08217007600142
725 => 0.081414413909945
726 => 0.08155857042335
727 => 0.081553420138277
728 => 0.081509037763931
729 => 0.081312460868884
730 => 0.081027385479512
731 => 0.082163038089191
801 => 0.082356007597219
802 => 0.082784954909701
803 => 0.084061211153905
804 => 0.083933683058914
805 => 0.084141686672934
806 => 0.083687615951419
807 => 0.081958005496248
808 => 0.082051931665371
809 => 0.080880670831346
810 => 0.082755003136821
811 => 0.082311136506907
812 => 0.082024972803078
813 => 0.0819468903852
814 => 0.083226310221778
815 => 0.083609132689331
816 => 0.083370583417812
817 => 0.082881311902333
818 => 0.083820857852192
819 => 0.084072240712113
820 => 0.084128516063806
821 => 0.085793211346888
822 => 0.084221554037672
823 => 0.084599867572931
824 => 0.087551361780656
825 => 0.084874763812609
826 => 0.086292617451541
827 => 0.086223220894069
828 => 0.086948546838196
829 => 0.086163722995973
830 => 0.0861734518281
831 => 0.086817492128649
901 => 0.085913053679809
902 => 0.085689102000729
903 => 0.085379714360053
904 => 0.086055250954749
905 => 0.086460204591377
906 => 0.089723833496924
907 => 0.091832286609468
908 => 0.091740753099203
909 => 0.092577198039473
910 => 0.092200371932924
911 => 0.090983501033171
912 => 0.093060551277452
913 => 0.092403285672688
914 => 0.092457469850567
915 => 0.09245545311276
916 => 0.092892477280772
917 => 0.092582805605059
918 => 0.091972410945083
919 => 0.092377619406301
920 => 0.093580943671442
921 => 0.097316099112938
922 => 0.099406341582226
923 => 0.097190263891701
924 => 0.098718884608163
925 => 0.097802256881538
926 => 0.097635678356298
927 => 0.09859576513042
928 => 0.099557532409345
929 => 0.099496271991512
930 => 0.098798078334308
1001 => 0.098403686453362
1002 => 0.10139015390686
1003 => 0.10359053225345
1004 => 0.10344048120174
1005 => 0.10410275774478
1006 => 0.10604722215862
1007 => 0.1062249996158
1008 => 0.10620260374236
1009 => 0.10576196376558
1010 => 0.10767654150161
1011 => 0.1092737159328
1012 => 0.10565996834227
1013 => 0.10703603611732
1014 => 0.10765379727567
1015 => 0.1085608539376
1016 => 0.11009121056664
1017 => 0.11175358377282
1018 => 0.11198866157117
1019 => 0.11182186262373
1020 => 0.11072548280727
1021 => 0.11254447140571
1022 => 0.11360999226614
1023 => 0.11424448555452
1024 => 0.11585345496423
1025 => 0.10765761235827
1026 => 0.10185618760196
1027 => 0.10095021135268
1028 => 0.10279254968136
1029 => 0.10327835960626
1030 => 0.10308253023468
1031 => 0.096552499228999
1101 => 0.10091583209085
1102 => 0.10561041137076
1103 => 0.10579074928018
1104 => 0.10814095382673
1105 => 0.10890627676522
1106 => 0.11079849947354
1107 => 0.11068014042794
1108 => 0.11114086654558
1109 => 0.1110349535898
1110 => 0.11453989770246
1111 => 0.11840637154797
1112 => 0.11827248785333
1113 => 0.117716636492
1114 => 0.11854217055032
1115 => 0.1225327859154
1116 => 0.12216539400089
1117 => 0.12252228395147
1118 => 0.12722744436812
1119 => 0.13334482221104
1120 => 0.13050268602831
1121 => 0.13666930374218
1122 => 0.1405508627147
1123 => 0.14726361759698
1124 => 0.14642314762471
1125 => 0.14903637383991
1126 => 0.14491853096295
1127 => 0.13546313136411
1128 => 0.13396677818378
1129 => 0.1369625151445
1130 => 0.1443272421427
1201 => 0.13673057368249
1202 => 0.13826736981807
1203 => 0.13782477242764
1204 => 0.13780118829362
1205 => 0.1387012987655
1206 => 0.13739564157944
1207 => 0.13207615932019
1208 => 0.1345140466917
1209 => 0.13357266130059
1210 => 0.13461719857695
1211 => 0.14025413545754
1212 => 0.13776191129484
1213 => 0.13513655559129
1214 => 0.13842933425661
1215 => 0.14262217301908
1216 => 0.14235979270458
1217 => 0.14185066522798
1218 => 0.14472059015649
1219 => 0.14946086532927
1220 => 0.1507421426605
1221 => 0.15168795539186
1222 => 0.15181836698788
1223 => 0.15316168747721
1224 => 0.14593831464573
1225 => 0.15740199283865
1226 => 0.15938145338485
1227 => 0.1590093968424
1228 => 0.16120948393106
1229 => 0.16056216249876
1230 => 0.15962429530496
1231 => 0.16311190131244
]
'min_raw' => 0.060124472925246
'max_raw' => 0.16311190131244
'avg_raw' => 0.11161818711884
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.060124'
'max' => '$0.163111'
'avg' => '$0.111618'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.020735376862083
'max_diff' => 0.075178519121694
'year' => 2032
]
7 => [
'items' => [
101 => 0.15911364246016
102 => 0.15343861738614
103 => 0.15032518639126
104 => 0.15442520347863
105 => 0.15692894084301
106 => 0.15858375197326
107 => 0.15908449682141
108 => 0.14649904451633
109 => 0.13971618374508
110 => 0.1440639197338
111 => 0.14936845770474
112 => 0.14590884766947
113 => 0.14604445783294
114 => 0.14111196309218
115 => 0.14980487404115
116 => 0.14853839003478
117 => 0.15510891130023
118 => 0.1535408036685
119 => 0.15889880869431
120 => 0.15748786640472
121 => 0.16334460896412
122 => 0.16568102213604
123 => 0.16960422348537
124 => 0.17249014636824
125 => 0.17418481548397
126 => 0.1740830739068
127 => 0.18079819722412
128 => 0.17683852361244
129 => 0.17186424033275
130 => 0.17177427124188
131 => 0.17435052303857
201 => 0.17974964004427
202 => 0.18114955252989
203 => 0.18193191262978
204 => 0.18073370090265
205 => 0.17643575898953
206 => 0.17457992946251
207 => 0.17616114998809
208 => 0.17422745316113
209 => 0.17756555638396
210 => 0.18214948508929
211 => 0.18120292193846
212 => 0.184367140635
213 => 0.18764177410042
214 => 0.19232464702895
215 => 0.19354892341875
216 => 0.19557260573603
217 => 0.19765563958552
218 => 0.19832465391864
219 => 0.19960200986352
220 => 0.19959527756717
221 => 0.20344467568305
222 => 0.2076906810108
223 => 0.20929344972677
224 => 0.21297892801197
225 => 0.20666767560313
226 => 0.21145483305368
227 => 0.2157729689044
228 => 0.21062470932733
301 => 0.21772038576369
302 => 0.21799589480056
303 => 0.22215575415798
304 => 0.21793893976661
305 => 0.21543500884156
306 => 0.22266376360111
307 => 0.22616153032561
308 => 0.22510797452242
309 => 0.21709036283968
310 => 0.21242376894878
311 => 0.20021039261757
312 => 0.21467766446049
313 => 0.22172425055907
314 => 0.21707211388402
315 => 0.21941838102428
316 => 0.2322188537619
317 => 0.23709244501115
318 => 0.23607877210028
319 => 0.23625006613574
320 => 0.2388797675119
321 => 0.25054131161678
322 => 0.24355344407666
323 => 0.24889540698068
324 => 0.25172876484309
325 => 0.25436054553045
326 => 0.24789772394513
327 => 0.23948968802032
328 => 0.2368265100976
329 => 0.21660955057527
330 => 0.21555717003433
331 => 0.21496643694631
401 => 0.21124194838716
402 => 0.20831552060295
403 => 0.20598831657765
404 => 0.19988103825331
405 => 0.20194206540674
406 => 0.19220833844579
407 => 0.19843563201331
408 => 0.18290036875458
409 => 0.19583859762929
410 => 0.18879690788186
411 => 0.19352521316162
412 => 0.19350871654993
413 => 0.18480240741935
414 => 0.17978079000886
415 => 0.18298076006709
416 => 0.18641138198346
417 => 0.1869679888474
418 => 0.19141587971036
419 => 0.19265719044312
420 => 0.1888959609716
421 => 0.18257843495396
422 => 0.18404585216043
423 => 0.17975105284601
424 => 0.17222458224455
425 => 0.17763022483009
426 => 0.17947594887811
427 => 0.1802911257663
428 => 0.17288970635076
429 => 0.17056401967776
430 => 0.16932584360746
501 => 0.18162300465046
502 => 0.18229667089167
503 => 0.17885009915484
504 => 0.19442893022263
505 => 0.19090296095087
506 => 0.19484233251087
507 => 0.18391269942968
508 => 0.18433022613209
509 => 0.17915596267632
510 => 0.18205320446714
511 => 0.18000552735185
512 => 0.18181913596154
513 => 0.1829062054844
514 => 0.18807961989446
515 => 0.19589766971168
516 => 0.18730688429976
517 => 0.18356375607348
518 => 0.18588597177291
519 => 0.19207033819852
520 => 0.20143996990519
521 => 0.19589295935343
522 => 0.19835462844195
523 => 0.19889239362576
524 => 0.19480223340638
525 => 0.20159077994663
526 => 0.2052288171876
527 => 0.2089606906111
528 => 0.21220097174001
529 => 0.2074700983001
530 => 0.21253281102487
531 => 0.2084531582578
601 => 0.20479328797899
602 => 0.20479883849148
603 => 0.20250294840341
604 => 0.198054372057
605 => 0.19723398632532
606 => 0.20150173650483
607 => 0.20492406799136
608 => 0.20520594760445
609 => 0.20710072616113
610 => 0.2082220365932
611 => 0.21921240317511
612 => 0.22363281953144
613 => 0.22903802097776
614 => 0.23114365156156
615 => 0.23748084470846
616 => 0.23236304656067
617 => 0.23125577873894
618 => 0.21588382104464
619 => 0.21840097825593
620 => 0.22243118982075
621 => 0.21595027774893
622 => 0.22006092475817
623 => 0.2208724535532
624 => 0.21573005883668
625 => 0.21847683404453
626 => 0.21118221345456
627 => 0.19605667250664
628 => 0.20160761899757
629 => 0.20569498404327
630 => 0.19986181015458
701 => 0.21031754857506
702 => 0.20420952204006
703 => 0.20227357086545
704 => 0.19472073511686
705 => 0.19828538285488
706 => 0.20310661996141
707 => 0.20012765595855
708 => 0.20630945355817
709 => 0.21506452758444
710 => 0.22130391470924
711 => 0.2217828973779
712 => 0.21777138946313
713 => 0.22419985649765
714 => 0.22424668086188
715 => 0.21699534378588
716 => 0.21255394020245
717 => 0.2115448439635
718 => 0.21406576421337
719 => 0.21712662678425
720 => 0.22195275394806
721 => 0.22486908151696
722 => 0.23247331711601
723 => 0.23453080523859
724 => 0.23679136089389
725 => 0.23981216037891
726 => 0.24343940467777
727 => 0.235503200651
728 => 0.23581852083192
729 => 0.22842843752641
730 => 0.22053107366933
731 => 0.22652418841655
801 => 0.2343593887179
802 => 0.23256198511165
803 => 0.23235974048832
804 => 0.23269985984678
805 => 0.23134467622537
806 => 0.22521523093121
807 => 0.22213706187684
808 => 0.22610868528166
809 => 0.22821942636469
810 => 0.23149300170852
811 => 0.2310894644506
812 => 0.23952184297997
813 => 0.24279841029459
814 => 0.24196012416329
815 => 0.24211438898593
816 => 0.2480464575998
817 => 0.25464413792138
818 => 0.26082373618314
819 => 0.26710988895492
820 => 0.25953168643582
821 => 0.25568394255517
822 => 0.25965383207345
823 => 0.25754735281481
824 => 0.2696518074573
825 => 0.27048989363408
826 => 0.28259347298672
827 => 0.29408121105979
828 => 0.2868659686003
829 => 0.29366961725794
830 => 0.30102831799079
831 => 0.31522444561063
901 => 0.31044368925406
902 => 0.30678170480893
903 => 0.30332114720286
904 => 0.31052201823304
905 => 0.31978582377664
906 => 0.32178115876311
907 => 0.32501436371781
908 => 0.32161504404543
909 => 0.32570915016803
910 => 0.3401631438222
911 => 0.33625754714792
912 => 0.33071097201443
913 => 0.34212101182809
914 => 0.34625026088125
915 => 0.37523149324082
916 => 0.41182149624978
917 => 0.39667299474116
918 => 0.38726983101567
919 => 0.38947979753719
920 => 0.40284122798629
921 => 0.40713249537594
922 => 0.3954673513223
923 => 0.39958767740871
924 => 0.42229107924635
925 => 0.43447072591991
926 => 0.41792912979244
927 => 0.37229152212595
928 => 0.33021156361005
929 => 0.3413730634937
930 => 0.34010769578856
1001 => 0.36449966875605
1002 => 0.3361643999589
1003 => 0.3366414932156
1004 => 0.36153786635251
1005 => 0.35489594083147
1006 => 0.34413687212094
1007 => 0.33029011671834
1008 => 0.30469310868678
1009 => 0.28202112484786
1010 => 0.32648610620204
1011 => 0.32456869535173
1012 => 0.3217920002961
1013 => 0.32797123467261
1014 => 0.35797584279862
1015 => 0.35728413946588
1016 => 0.3528838757731
1017 => 0.35622143700193
1018 => 0.34355178150065
1019 => 0.34681704020602
1020 => 0.33020489792963
1021 => 0.33771428002291
1022 => 0.34411378799163
1023 => 0.34539858396268
1024 => 0.34829329488878
1025 => 0.32355830696143
1026 => 0.33466359035972
1027 => 0.34118690393188
1028 => 0.31171433589269
1029 => 0.34060432602327
1030 => 0.323127725852
1031 => 0.31719590526414
1101 => 0.32518232022775
1102 => 0.32207000654939
1103 => 0.31939422200993
1104 => 0.31790108826109
1105 => 0.32376542998191
1106 => 0.32349185143123
1107 => 0.31389665015629
1108 => 0.30138010124356
1109 => 0.30558106590039
1110 => 0.30405481605631
1111 => 0.29852348973122
1112 => 0.30225093581944
1113 => 0.28583714966422
1114 => 0.25759808369851
1115 => 0.27625367566144
1116 => 0.27553545566425
1117 => 0.27517329657298
1118 => 0.28919245833043
1119 => 0.28784483940454
1120 => 0.28539889785813
1121 => 0.29847856809659
1122 => 0.29370431251316
1123 => 0.3084174432652
1124 => 0.31810846276413
1125 => 0.31565050674756
1126 => 0.32476495742707
1127 => 0.30567784764132
1128 => 0.31201781987022
1129 => 0.31332447935977
1130 => 0.29831716699615
1201 => 0.2880653265271
1202 => 0.28738164564735
1203 => 0.26960636706465
1204 => 0.27910177740649
1205 => 0.28745734556054
1206 => 0.28345567683303
1207 => 0.28218886806036
1208 => 0.28866071934265
1209 => 0.28916363761495
1210 => 0.27769704770979
1211 => 0.28008131485075
1212 => 0.29002410517998
1213 => 0.27983078204503
1214 => 0.26002682026369
1215 => 0.25511516393073
1216 => 0.25445985843612
1217 => 0.24113905691275
1218 => 0.2554433842929
1219 => 0.24919916205932
1220 => 0.26892458527791
1221 => 0.25765752932502
1222 => 0.25717182906207
1223 => 0.25643762187788
1224 => 0.24497185773133
1225 => 0.2474821313921
1226 => 0.25582666336598
1227 => 0.25880408638213
1228 => 0.25849351676824
1229 => 0.25578577060696
1230 => 0.25702536293369
1231 => 0.25303220414669
]
'min_raw' => 0.13971618374508
'max_raw' => 0.43447072591991
'avg_raw' => 0.2870934548325
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.139716'
'max' => '$0.43447'
'avg' => '$0.287093'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.079591710819838
'max_diff' => 0.27135882460747
'year' => 2033
]
8 => [
'items' => [
101 => 0.25162213666859
102 => 0.24717157583809
103 => 0.24063048091606
104 => 0.24154006028384
105 => 0.22858043967271
106 => 0.22151935054464
107 => 0.21956493413765
108 => 0.21695140683753
109 => 0.21986013900052
110 => 0.2285437266958
111 => 0.2180694776094
112 => 0.2001121122339
113 => 0.20119138049083
114 => 0.20361617582653
115 => 0.19909758576008
116 => 0.19482111947871
117 => 0.19853915994969
118 => 0.19093038751232
119 => 0.20453565962424
120 => 0.20416767514195
121 => 0.20923887924089
122 => 0.21241000723554
123 => 0.20510158387275
124 => 0.20326353516109
125 => 0.20431057124191
126 => 0.18700539712764
127 => 0.20782467732098
128 => 0.20800472332063
129 => 0.20646306016252
130 => 0.21754868414231
131 => 0.24094280843249
201 => 0.23214099784805
202 => 0.22873267075363
203 => 0.22225343845565
204 => 0.23088663079396
205 => 0.23022373632115
206 => 0.22722587611988
207 => 0.22541276091626
208 => 0.22875348127208
209 => 0.22499880869406
210 => 0.22432436632754
211 => 0.22023797938699
212 => 0.21877932516797
213 => 0.2176993956549
214 => 0.2165104993727
215 => 0.21913290831674
216 => 0.21319018464292
217 => 0.20602384246468
218 => 0.20542803865345
219 => 0.20707310535985
220 => 0.20634528580308
221 => 0.20542455413343
222 => 0.20366662662971
223 => 0.20314508709153
224 => 0.20483983757559
225 => 0.20292656308918
226 => 0.20574970381533
227 => 0.20498196574932
228 => 0.20069344332171
301 => 0.19534835656255
302 => 0.1953007740787
303 => 0.19414918390414
304 => 0.19268246067409
305 => 0.19227445182557
306 => 0.19822603695168
307 => 0.21054564004677
308 => 0.20812700717608
309 => 0.20987471729662
310 => 0.21847172131737
311 => 0.22120445037463
312 => 0.21926482401802
313 => 0.21660974383015
314 => 0.21672655388365
315 => 0.22579976663305
316 => 0.2263656517828
317 => 0.22779546099475
318 => 0.22963316989614
319 => 0.21957779379041
320 => 0.21625294657334
321 => 0.21467744950639
322 => 0.20982552833429
323 => 0.21505790934612
324 => 0.21200922500342
325 => 0.21242059667914
326 => 0.21215269033566
327 => 0.21229898531495
328 => 0.20453185667341
329 => 0.20736179012212
330 => 0.20265647688902
331 => 0.1963565906661
401 => 0.19633547123845
402 => 0.19787735946647
403 => 0.19696018401435
404 => 0.19449208845544
405 => 0.1948426697805
406 => 0.19177120847396
407 => 0.19521560079372
408 => 0.19531437364082
409 => 0.1939880949804
410 => 0.19929465658353
411 => 0.20146875920207
412 => 0.20059577417614
413 => 0.20140750824545
414 => 0.20822751229133
415 => 0.20933947052845
416 => 0.20983332892554
417 => 0.20917162409714
418 => 0.20153216539975
419 => 0.20187100787847
420 => 0.19938480659517
421 => 0.19728422850021
422 => 0.19736824060793
423 => 0.19844821080478
424 => 0.20316450399381
425 => 0.21308966496945
426 => 0.21346631757328
427 => 0.21392283151685
428 => 0.21206595988282
429 => 0.21150590963013
430 => 0.21224476047466
501 => 0.21597212909694
502 => 0.22555993316416
503 => 0.2221709628589
504 => 0.21941567724826
505 => 0.22183280554846
506 => 0.22146070759272
507 => 0.21831982638015
508 => 0.21823167230554
509 => 0.21220331705815
510 => 0.2099747713822
511 => 0.20811243181162
512 => 0.20607880561815
513 => 0.2048732038429
514 => 0.2067255561059
515 => 0.20714921098483
516 => 0.20309901038821
517 => 0.2025469830129
518 => 0.20585446424975
519 => 0.20439896507274
520 => 0.20589598207094
521 => 0.2062433028557
522 => 0.20618737620987
523 => 0.20466766790606
524 => 0.20563628466056
525 => 0.20334521727762
526 => 0.20085402560587
527 => 0.19926480052601
528 => 0.19787799086373
529 => 0.19864747346621
530 => 0.19590440849032
531 => 0.19502684679754
601 => 0.2053081390987
602 => 0.21290304026409
603 => 0.21279260739323
604 => 0.21212037569293
605 => 0.21112157574349
606 => 0.2158990606595
607 => 0.21423468044359
608 => 0.21544565611429
609 => 0.21575390024697
610 => 0.2166868623994
611 => 0.21702031617809
612 => 0.21601238726035
613 => 0.21262965470428
614 => 0.20420020679512
615 => 0.20027627603855
616 => 0.19898131353064
617 => 0.19902838295832
618 => 0.19772999801577
619 => 0.19811243057088
620 => 0.19759700358007
621 => 0.19662090955465
622 => 0.19858720241071
623 => 0.19881379934508
624 => 0.19835484309703
625 => 0.1984629439079
626 => 0.1946629821968
627 => 0.19495188503261
628 => 0.19334323733082
629 => 0.19304163527927
630 => 0.1889751139701
701 => 0.18177068201922
702 => 0.18576263667114
703 => 0.18094091680539
704 => 0.17911485843125
705 => 0.18775913476408
706 => 0.18689148917517
707 => 0.18540645708342
708 => 0.18320978511192
709 => 0.18239501810984
710 => 0.17744475172909
711 => 0.17715226358267
712 => 0.17960574926941
713 => 0.17847355004427
714 => 0.17688351353479
715 => 0.17112456247689
716 => 0.16464959476464
717 => 0.16484503333968
718 => 0.16690460009789
719 => 0.1728930682178
720 => 0.1705532701218
721 => 0.16885571975706
722 => 0.16853781960192
723 => 0.17251700561254
724 => 0.17814838748281
725 => 0.18079050586127
726 => 0.17817224679054
727 => 0.17516453174717
728 => 0.17534759742545
729 => 0.17656545136818
730 => 0.17669343059804
731 => 0.1747357173029
801 => 0.17528680212811
802 => 0.17444965388637
803 => 0.16931207667204
804 => 0.16921915419166
805 => 0.16795830988864
806 => 0.16792013202424
807 => 0.16577512133245
808 => 0.16547501950891
809 => 0.16121597058752
810 => 0.16401928948517
811 => 0.16213897034947
812 => 0.15930488588954
813 => 0.15881628866042
814 => 0.15880160083771
815 => 0.16171157188837
816 => 0.16398528477917
817 => 0.16217167930587
818 => 0.16175875649487
819 => 0.16616769182224
820 => 0.16560661461349
821 => 0.16512072536928
822 => 0.17764415900186
823 => 0.16773088406596
824 => 0.16340813036395
825 => 0.15805790178906
826 => 0.15979996319124
827 => 0.16016704112489
828 => 0.14730070585345
829 => 0.14208083523623
830 => 0.14028957234707
831 => 0.13925867522962
901 => 0.13972846799124
902 => 0.13502997220598
903 => 0.13818743907962
904 => 0.13411893888355
905 => 0.13343684158563
906 => 0.14071182392667
907 => 0.14172409521959
908 => 0.13740543139594
909 => 0.14017871269889
910 => 0.13917308234694
911 => 0.13418868164211
912 => 0.13399831419795
913 => 0.13149731713442
914 => 0.12758374101846
915 => 0.1257951317182
916 => 0.1248636084652
917 => 0.12524797311441
918 => 0.12505362658602
919 => 0.12378538402719
920 => 0.12512632076494
921 => 0.12170078151331
922 => 0.12033670418187
923 => 0.11972058209761
924 => 0.1166802188451
925 => 0.12151878883551
926 => 0.12247204807832
927 => 0.12342718553632
928 => 0.13174100500812
929 => 0.13132567008192
930 => 0.13508009553846
1001 => 0.13493420546917
1002 => 0.1338633825113
1003 => 0.12934575659389
1004 => 0.13114640176563
1005 => 0.12560429580939
1006 => 0.12975681841838
1007 => 0.12786178051313
1008 => 0.12911610419638
1009 => 0.12686071711609
1010 => 0.12810894144897
1011 => 0.12269810120838
1012 => 0.11764553472429
1013 => 0.1196788349711
1014 => 0.12188926487547
1015 => 0.1266820401152
1016 => 0.12382750272195
1017 => 0.12485410231057
1018 => 0.12141516553939
1019 => 0.1143196566967
1020 => 0.11435981650618
1021 => 0.1132683270548
1022 => 0.11232512080874
1023 => 0.12415538067995
1024 => 0.12268410085623
1025 => 0.12033980901348
1026 => 0.12347773680346
1027 => 0.12430745471674
1028 => 0.12433107561929
1029 => 0.12662042673322
1030 => 0.12784225383311
1031 => 0.12805760615517
1101 => 0.13165994959764
1102 => 0.1328674076035
1103 => 0.13784075624378
1104 => 0.12773859034012
1105 => 0.12753054288124
1106 => 0.12352189388255
1107 => 0.12097954531335
1108 => 0.12369597066416
1109 => 0.12610235269594
1110 => 0.12359666688004
1111 => 0.12392385654969
1112 => 0.1205601780639
1113 => 0.12176253484678
1114 => 0.12279816648315
1115 => 0.12222635156516
1116 => 0.12137031695678
1117 => 0.12590505681135
1118 => 0.12564918901697
1119 => 0.12987204302277
1120 => 0.13316405969948
1121 => 0.13906394210251
1122 => 0.13290710724712
1123 => 0.13268272771379
1124 => 0.13487607364372
1125 => 0.13286707181367
1126 => 0.13413669162187
1127 => 0.13885938672316
1128 => 0.13895916982872
1129 => 0.13728767424725
1130 => 0.13718596358921
1201 => 0.13750699259979
1202 => 0.13938726954192
1203 => 0.13873024300326
1204 => 0.13949057074767
1205 => 0.14044137223461
1206 => 0.14437429031605
1207 => 0.14532250355065
1208 => 0.14301883698276
1209 => 0.14322683228078
1210 => 0.14236519774733
1211 => 0.14153286958426
1212 => 0.14340382174306
1213 => 0.14682302358694
1214 => 0.14680175290972
1215 => 0.14759494127772
1216 => 0.14808909105985
1217 => 0.14596783845519
1218 => 0.14458698101018
1219 => 0.14511648962084
1220 => 0.14596318542048
1221 => 0.14484191758449
1222 => 0.137920933079
1223 => 0.14002031766376
1224 => 0.1396708774142
1225 => 0.13917323200543
1226 => 0.14128417943947
1227 => 0.14108057340977
1228 => 0.13498178234061
1229 => 0.13537220715738
1230 => 0.13500552536684
1231 => 0.13619034924809
]
'min_raw' => 0.11232512080874
'max_raw' => 0.25162213666859
'avg_raw' => 0.18197362873866
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.112325'
'max' => '$0.251622'
'avg' => '$0.181973'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.027391062936348
'max_diff' => -0.18284858925132
'year' => 2034
]
9 => [
'items' => [
101 => 0.13280308743582
102 => 0.13384498635572
103 => 0.13449845559108
104 => 0.1348833539909
105 => 0.13627387093834
106 => 0.13611070982385
107 => 0.13626372861438
108 => 0.13832549816457
109 => 0.14875322103558
110 => 0.14932077898398
111 => 0.14652591607151
112 => 0.14764240867881
113 => 0.14549898702289
114 => 0.14693788034018
115 => 0.14792233460395
116 => 0.14347377508566
117 => 0.1432103602619
118 => 0.14105809194235
119 => 0.14221459902657
120 => 0.14037451309978
121 => 0.14082600582274
122 => 0.13956359280891
123 => 0.14183568488988
124 => 0.14437623688381
125 => 0.14501808064692
126 => 0.1433296660373
127 => 0.14210714258799
128 => 0.13996079413526
129 => 0.14353021944664
130 => 0.14457402818396
131 => 0.14352473676371
201 => 0.14328159301417
202 => 0.14282083604814
203 => 0.14337934478265
204 => 0.1445683433774
205 => 0.14400763359747
206 => 0.14437799228555
207 => 0.14296656687882
208 => 0.14596854067807
209 => 0.15073639753561
210 => 0.15075172697503
211 => 0.15019101417267
212 => 0.14996158257466
213 => 0.15053690793679
214 => 0.15084899834466
215 => 0.15270949506914
216 => 0.15470588217997
217 => 0.16402214973425
218 => 0.16140617908466
219 => 0.16967212588606
220 => 0.17620941660711
221 => 0.17816966425328
222 => 0.17636632865558
223 => 0.17019721499015
224 => 0.16989452884241
225 => 0.17911378919118
226 => 0.17650892587378
227 => 0.17619908567078
228 => 0.17290290939416
301 => 0.17485135781301
302 => 0.1744252035618
303 => 0.17375249822807
304 => 0.17747000208115
305 => 0.18442883743027
306 => 0.18334423768157
307 => 0.18253463428229
308 => 0.17898718785868
309 => 0.18112354295654
310 => 0.18036282782538
311 => 0.18363134279059
312 => 0.18169514693167
313 => 0.17648919147219
314 => 0.17731825703817
315 => 0.17719294544572
316 => 0.17977184913864
317 => 0.17899772626235
318 => 0.1770417855299
319 => 0.18440505288757
320 => 0.18392692326201
321 => 0.1846048017554
322 => 0.18490322483229
323 => 0.18938511591758
324 => 0.1912212032907
325 => 0.19163802726963
326 => 0.19338216826601
327 => 0.19159463145277
328 => 0.19874605319788
329 => 0.20350133136135
330 => 0.2090248316526
331 => 0.21709615015503
401 => 0.22013104057582
402 => 0.21958281478555
403 => 0.22570239635741
404 => 0.23669914841139
405 => 0.22180557278484
406 => 0.23748854408402
407 => 0.23252349643931
408 => 0.22075145779109
409 => 0.21999347728537
410 => 0.22796563853412
411 => 0.24564712489176
412 => 0.24121811310093
413 => 0.2456543691684
414 => 0.24047924082008
415 => 0.24022225207818
416 => 0.24540302473563
417 => 0.25750818243897
418 => 0.25175747576916
419 => 0.24351242762687
420 => 0.24960044286798
421 => 0.24432644064692
422 => 0.23244263754259
423 => 0.24121472631909
424 => 0.23534908036895
425 => 0.23706098769209
426 => 0.24938970303029
427 => 0.24790627938306
428 => 0.24982596694391
429 => 0.24643776864599
430 => 0.2432726571659
501 => 0.23736474154406
502 => 0.23561569898515
503 => 0.23609907142447
504 => 0.23561545944978
505 => 0.2323100349559
506 => 0.23159622885116
507 => 0.23040652073736
508 => 0.23077526102909
509 => 0.22853826171377
510 => 0.23275994160942
511 => 0.23354352259937
512 => 0.23661570916854
513 => 0.23693467376974
514 => 0.24549066963504
515 => 0.2407781708901
516 => 0.24393972190578
517 => 0.24365692302526
518 => 0.22100659356454
519 => 0.22412760911868
520 => 0.22898292989229
521 => 0.22679561446501
522 => 0.22370326220382
523 => 0.22120602195148
524 => 0.21742244761325
525 => 0.2227477558372
526 => 0.2297499698683
527 => 0.23711226147298
528 => 0.24595757243956
529 => 0.24398340200259
530 => 0.23694690453713
531 => 0.23726255667327
601 => 0.23921379397432
602 => 0.23668676438085
603 => 0.23594149402026
604 => 0.23911140527118
605 => 0.23913323470781
606 => 0.2362255817588
607 => 0.23299425760085
608 => 0.23298071823464
609 => 0.23240573531162
610 => 0.24058152900476
611 => 0.24507738887001
612 => 0.24559283195812
613 => 0.24504269544334
614 => 0.24525442115374
615 => 0.24263837935766
616 => 0.2486178751404
617 => 0.25410525178148
618 => 0.25263451762097
619 => 0.25042967803718
620 => 0.24867341710923
621 => 0.25222079836112
622 => 0.25206283905806
623 => 0.2540573243336
624 => 0.2539668429608
625 => 0.25329617257902
626 => 0.25263454157272
627 => 0.25525783372533
628 => 0.25450236771416
629 => 0.25374572825561
630 => 0.25222817198578
701 => 0.25243443308679
702 => 0.25022997419964
703 => 0.24921009064927
704 => 0.23387348909451
705 => 0.22977504802116
706 => 0.2310645010143
707 => 0.23148902242027
708 => 0.22970537561286
709 => 0.23226266695342
710 => 0.23186411580683
711 => 0.23341464517357
712 => 0.23244594174139
713 => 0.23248569766815
714 => 0.23533444791284
715 => 0.23616145222832
716 => 0.23574083115873
717 => 0.23603541973783
718 => 0.24282408920512
719 => 0.2418589574963
720 => 0.24134625051178
721 => 0.24148827385039
722 => 0.24322292445
723 => 0.24370853190948
724 => 0.24165097898064
725 => 0.24262133283645
726 => 0.24675297639827
727 => 0.24819881781414
728 => 0.25281324957032
729 => 0.25085295694531
730 => 0.254451158898
731 => 0.26551080498311
801 => 0.2743460155452
802 => 0.26622079078179
803 => 0.28244552982178
804 => 0.295078816465
805 => 0.2945939298818
806 => 0.29239102414237
807 => 0.27800836317236
808 => 0.26477322411437
809 => 0.27584497993007
810 => 0.27587320411257
811 => 0.27492213046895
812 => 0.26901509375064
813 => 0.27471657839539
814 => 0.27516914154174
815 => 0.27491582652604
816 => 0.27038691532389
817 => 0.26347210500091
818 => 0.2648232423863
819 => 0.26703643298604
820 => 0.26284640146082
821 => 0.26150743250555
822 => 0.26399683054266
823 => 0.27201818970492
824 => 0.27050179821986
825 => 0.27046219910997
826 => 0.2769499649331
827 => 0.27230612475123
828 => 0.26484028455568
829 => 0.26295506144396
830 => 0.25626378943584
831 => 0.26088547484534
901 => 0.26105180107541
902 => 0.2585205512091
903 => 0.26504568153181
904 => 0.26498555130716
905 => 0.2711801914111
906 => 0.28302201668924
907 => 0.27951980625366
908 => 0.2754471165565
909 => 0.27588993085001
910 => 0.2807465106911
911 => 0.27781011165425
912 => 0.2788660612212
913 => 0.28074491238497
914 => 0.28187846994132
915 => 0.27572682936212
916 => 0.27429258767612
917 => 0.271358632537
918 => 0.27059321840608
919 => 0.2729828636479
920 => 0.27235327655409
921 => 0.26103782199982
922 => 0.2598552940403
923 => 0.25989156048456
924 => 0.25691803770421
925 => 0.25238270173695
926 => 0.26430129386808
927 => 0.26334406411936
928 => 0.26228735656047
929 => 0.26241679720694
930 => 0.2675902540925
1001 => 0.26458938783304
1002 => 0.27256768261612
1003 => 0.27092758505821
1004 => 0.2692454251866
1005 => 0.2690128994525
1006 => 0.26836541141707
1007 => 0.26614493402387
1008 => 0.26346357414159
1009 => 0.26169310809189
1010 => 0.24139805916941
1011 => 0.24516470219856
1012 => 0.24949788166327
1013 => 0.25099367785036
1014 => 0.2484350149664
1015 => 0.26624596562977
1016 => 0.26950019794656
1017 => 0.25964291599068
1018 => 0.25779902100691
1019 => 0.26636685107793
1020 => 0.26119940217047
1021 => 0.26352630409709
1022 => 0.25849681487905
1023 => 0.26871634867649
1024 => 0.26863849295135
1025 => 0.26466286348551
1026 => 0.2680230382861
1027 => 0.26743912522466
1028 => 0.26295064934927
1029 => 0.26885864136769
1030 => 0.26886157165802
1031 => 0.26503511473478
1101 => 0.26056665076757
1102 => 0.25976779495064
1103 => 0.25916596440377
1104 => 0.26337829067544
1105 => 0.26715504923903
1106 => 0.27418266058801
1107 => 0.27594956905307
1108 => 0.28284593042196
1109 => 0.27873948300453
1110 => 0.28055981795728
1111 => 0.28253604905059
1112 => 0.28348352691022
1113 => 0.28193966258242
1114 => 0.29265255044389
1115 => 0.29355704641381
1116 => 0.29386031608866
1117 => 0.29024799057715
1118 => 0.29345658110668
1119 => 0.29195538785526
1120 => 0.29586107565196
1121 => 0.2964735373688
1122 => 0.29595480408359
1123 => 0.29614920909957
1124 => 0.28700764919272
1125 => 0.28653361108598
1126 => 0.28007006786437
1127 => 0.28270400950328
1128 => 0.27777998185745
1129 => 0.27934144174705
1130 => 0.28002971838824
1201 => 0.27967020173024
1202 => 0.28285292861161
1203 => 0.2801469605743
1204 => 0.27300546602151
1205 => 0.26586202577331
1206 => 0.26577234569991
1207 => 0.26389160397475
1208 => 0.26253217218249
1209 => 0.26279404697412
1210 => 0.26371692789666
1211 => 0.26247853266557
1212 => 0.26274280707636
1213 => 0.26713152314659
1214 => 0.26801164885558
1215 => 0.26502063780911
1216 => 0.25301129685668
1217 => 0.2500641744638
1218 => 0.25218250759582
1219 => 0.25117008079684
1220 => 0.20271385822411
1221 => 0.21409792895627
1222 => 0.20733390069374
1223 => 0.21045107611509
1224 => 0.20354675479567
1225 => 0.20684185881578
1226 => 0.2062333734212
1227 => 0.22453862227936
1228 => 0.22425281099649
1229 => 0.2243896137328
1230 => 0.21785966269085
1231 => 0.22826205200817
]
'min_raw' => 0.13280308743582
'max_raw' => 0.2964735373688
'avg_raw' => 0.21463831240231
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.132803'
'max' => '$0.296473'
'avg' => '$0.214638'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.020477966627083
'max_diff' => 0.044851400700208
'year' => 2035
]
10 => [
'items' => [
101 => 0.2333866430437
102 => 0.2324382176296
103 => 0.23267691587331
104 => 0.22857528920131
105 => 0.2244293264447
106 => 0.21983081568851
107 => 0.22837428028039
108 => 0.22742439285958
109 => 0.22960309284422
110 => 0.23514414033151
111 => 0.23596008062241
112 => 0.23705671264783
113 => 0.2366636481303
114 => 0.24602803961178
115 => 0.24489395001512
116 => 0.24762677964321
117 => 0.24200514175796
118 => 0.23564372488002
119 => 0.23685282225813
120 => 0.23673637645767
121 => 0.23525388776757
122 => 0.23391556326468
123 => 0.23168763003797
124 => 0.23873714043936
125 => 0.23845094319098
126 => 0.24308414397432
127 => 0.24226518073136
128 => 0.23679594376052
129 => 0.2369912786289
130 => 0.23830499949346
131 => 0.24285180240551
201 => 0.24420160307975
202 => 0.24357632162719
203 => 0.24505631644576
204 => 0.2462260440061
205 => 0.24520321621789
206 => 0.25968430074602
207 => 0.25367074483225
208 => 0.25660171014257
209 => 0.25730072809883
210 => 0.25551020830263
211 => 0.25589850793272
212 => 0.25648667606699
213 => 0.26005791780314
214 => 0.26942988946591
215 => 0.27358067191819
216 => 0.28606850572185
217 => 0.27323600721721
218 => 0.2724745798621
219 => 0.27472401582659
220 => 0.2820556962408
221 => 0.28799733458679
222 => 0.28996851880749
223 => 0.29022904334296
224 => 0.29392711598286
225 => 0.29604678225507
226 => 0.29347807269541
227 => 0.29130136029869
228 => 0.28350464667716
229 => 0.2844071375086
301 => 0.29062440438012
302 => 0.29940666003133
303 => 0.30694274901804
304 => 0.30430387331411
305 => 0.32443663217916
306 => 0.32643271298568
307 => 0.32615691915924
308 => 0.33070428829316
309 => 0.32167868661796
310 => 0.31782006703901
311 => 0.2917719902256
312 => 0.29909043732292
313 => 0.30972822997621
314 => 0.30832027822887
315 => 0.30059482885504
316 => 0.30693688857193
317 => 0.30484000529498
318 => 0.30318610645469
319 => 0.31076293766615
320 => 0.30243190051008
321 => 0.30964512150767
322 => 0.30039409096704
323 => 0.30431592747605
324 => 0.30208970339565
325 => 0.30353034321143
326 => 0.29510839228549
327 => 0.29965267257382
328 => 0.29491933528528
329 => 0.29491709106711
330 => 0.29481260238412
331 => 0.30038135271325
401 => 0.30056294946156
402 => 0.29644763455442
403 => 0.295854553383
404 => 0.29804748532017
405 => 0.29548013635153
406 => 0.29668138277525
407 => 0.29551652088197
408 => 0.29525428593405
409 => 0.29316475325341
410 => 0.29226452512169
411 => 0.29261752776816
412 => 0.29141254775042
413 => 0.29068650370371
414 => 0.29466817394897
415 => 0.29254092815704
416 => 0.29434214302235
417 => 0.29228943135189
418 => 0.28517383837818
419 => 0.28108158561296
420 => 0.26764089010142
421 => 0.27145265467536
422 => 0.27397985853144
423 => 0.27314461767208
424 => 0.27493903823329
425 => 0.27504920108207
426 => 0.27446581666567
427 => 0.27379033224765
428 => 0.27346154378959
429 => 0.27591206358464
430 => 0.27733467280637
501 => 0.27423349724803
502 => 0.27350693520476
503 => 0.27664239491485
504 => 0.2785550235267
505 => 0.29267679858346
506 => 0.29163061187452
507 => 0.29425633521018
508 => 0.29396071905759
509 => 0.2967128954239
510 => 0.30121154062628
511 => 0.29206453708885
512 => 0.29365214062336
513 => 0.29326289689982
514 => 0.29751255780828
515 => 0.29752582478577
516 => 0.29497794078484
517 => 0.29635919003644
518 => 0.29558821459679
519 => 0.29698147141982
520 => 0.29161663941319
521 => 0.29815042569944
522 => 0.30185466149585
523 => 0.30190609481347
524 => 0.30366187318234
525 => 0.30544584569293
526 => 0.30887002557575
527 => 0.30535034717448
528 => 0.29901878836436
529 => 0.29947590645964
530 => 0.2957637158459
531 => 0.29582611844078
601 => 0.29549300849874
602 => 0.29649269651016
603 => 0.29183601471437
604 => 0.29292892862419
605 => 0.29139884275034
606 => 0.29364881451549
607 => 0.29122821682984
608 => 0.29326270919471
609 => 0.29414072865489
610 => 0.29738063936539
611 => 0.29074967938361
612 => 0.27722870310426
613 => 0.28007097624417
614 => 0.2758670310145
615 => 0.27625612215106
616 => 0.27704214817029
617 => 0.27449438067024
618 => 0.27498041441987
619 => 0.27496304987417
620 => 0.27481341160038
621 => 0.27415063887417
622 => 0.27318948729557
623 => 0.27701841935784
624 => 0.27766902952686
625 => 0.27911525533903
626 => 0.28341824237173
627 => 0.28298827249575
628 => 0.28368957120276
629 => 0.28215864006297
630 => 0.27632713765581
701 => 0.27664381629273
702 => 0.27269482861599
703 => 0.27901427084561
704 => 0.27751774351307
705 => 0.2765529226063
706 => 0.27628966228288
707 => 0.28060331558815
708 => 0.28189402826531
709 => 0.28108974274141
710 => 0.27944012966712
711 => 0.28260787443408
712 => 0.28345542929729
713 => 0.28364516557454
714 => 0.28925780194677
715 => 0.28395884959914
716 => 0.28523436009627
717 => 0.29518552888436
718 => 0.28616119196099
719 => 0.29094158449603
720 => 0.2907076091574
721 => 0.29315309621866
722 => 0.29050700783996
723 => 0.29053980927672
724 => 0.29271123611548
725 => 0.28966185873933
726 => 0.28890679001751
727 => 0.28786366798622
728 => 0.29014128677969
729 => 0.29150661623854
730 => 0.30251016895289
731 => 0.30961896582933
801 => 0.3093103542088
802 => 0.31213048672365
803 => 0.31085999119625
804 => 0.30675722599853
805 => 0.31376014591213
806 => 0.31154412903685
807 => 0.31172681477559
808 => 0.31172001520327
809 => 0.31319347269778
810 => 0.31214939302252
811 => 0.31009140481002
812 => 0.31145759342777
813 => 0.31551468520111
814 => 0.32810802255234
815 => 0.33515542097361
816 => 0.3276837603184
817 => 0.33283761178884
818 => 0.32974713741163
819 => 0.32918550628364
820 => 0.33242250587371
821 => 0.33566517140305
822 => 0.33545862762726
823 => 0.33310461896567
824 => 0.3317748992035
825 => 0.34184398273146
826 => 0.34926271195251
827 => 0.34875680435542
828 => 0.35098971595898
829 => 0.35754561348839
830 => 0.3581450025973
831 => 0.35806949334638
901 => 0.35658384490017
902 => 0.36303897740875
903 => 0.36842396251465
904 => 0.35623996020938
905 => 0.36087946878693
906 => 0.36296229366302
907 => 0.36602049852741
908 => 0.3711802027483
909 => 0.37678501007613
910 => 0.37757759128587
911 => 0.37701521698905
912 => 0.37331869589104
913 => 0.37945154294841
914 => 0.38304402092166
915 => 0.38518325934233
916 => 0.39060801204182
917 => 0.36297515648037
918 => 0.34341524787195
919 => 0.34036068569424
920 => 0.34657225799733
921 => 0.3482102000773
922 => 0.34754994767867
923 => 0.3255334922308
924 => 0.34024477361271
925 => 0.35607287541998
926 => 0.35668089727237
927 => 0.36460477598709
928 => 0.36718511570737
929 => 0.37356487667925
930 => 0.37316582089343
1001 => 0.37471919116592
1002 => 0.3743620982409
1003 => 0.38617926202413
1004 => 0.39921534854283
1005 => 0.39876395031891
1006 => 0.39688985864587
1007 => 0.39967320436045
1008 => 0.41312784267968
1009 => 0.41188915518943
1010 => 0.41309243457506
1011 => 0.42895621142363
1012 => 0.44958137792271
1013 => 0.43999891735103
1014 => 0.46079009951283
1015 => 0.47387704659047
1016 => 0.49650956834567
1017 => 0.4936758651544
1018 => 0.50248653978859
1019 => 0.48860294503033
1020 => 0.45672340512792
1021 => 0.45167834590839
1022 => 0.46177868222714
1023 => 0.48660937349038
1024 => 0.46099667539433
1025 => 0.46617809086111
1026 => 0.46468584285811
1027 => 0.46460632730367
1028 => 0.4676411126033
1029 => 0.46323899824243
1030 => 0.44530399241099
1031 => 0.45352349989189
1101 => 0.45034955332035
1102 => 0.45387128367486
1103 => 0.47287660992612
1104 => 0.46447390216005
1105 => 0.45562233210904
1106 => 0.46672416527365
1107 => 0.48086061389595
1108 => 0.47997598034681
1109 => 0.47825942151333
1110 => 0.48793557378154
1111 => 0.50391774248202
1112 => 0.5082376584602
1113 => 0.5114265321185
1114 => 0.51186622391952
1115 => 0.51639532273693
1116 => 0.49204121691583
1117 => 0.53069180831172
1118 => 0.53736569774475
1119 => 0.53611128313571
1120 => 0.54352903036033
1121 => 0.54134654095676
1122 => 0.53818445623309
1123 => 0.54994316338418
1124 => 0.53646275451419
1125 => 0.51732901125952
1126 => 0.50683186128748
1127 => 0.5206553551516
1128 => 0.52909688048096
1129 => 0.53467619174183
1130 => 0.53636448795825
1201 => 0.49393175682348
1202 => 0.47106286816899
1203 => 0.48572156360418
1204 => 0.50360618372422
1205 => 0.49194186694805
1206 => 0.4923990860822
1207 => 0.47576883568792
1208 => 0.50507759187206
1209 => 0.50080755262147
1210 => 0.52296052380709
1211 => 0.51767353944494
1212 => 0.53573842747343
1213 => 0.53098133703521
1214 => 0.55072775347894
1215 => 0.55860513361123
1216 => 0.57183248086966
1217 => 0.58156257135796
1218 => 0.58727626659966
1219 => 0.58693323776888
1220 => 0.60957374486815
1221 => 0.59622342883078
1222 => 0.57945228545994
1223 => 0.57914894838864
1224 => 0.58783496118933
1225 => 0.60603846112836
1226 => 0.6107583638124
1227 => 0.61339614551181
1228 => 0.60935629101732
1229 => 0.59486547978452
1230 => 0.58860842096428
1231 => 0.59393961636357
]
'min_raw' => 0.21983081568851
'max_raw' => 0.61339614551181
'avg_raw' => 0.41661348060016
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.21983'
'max' => '$0.613396'
'avg' => '$0.416613'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.087027728252696
'max_diff' => 0.316922608143
'year' => 2036
]
11 => [
'items' => [
101 => 0.58742002250508
102 => 0.59867467057979
103 => 0.61412970624947
104 => 0.61093830249951
105 => 0.62160668675362
106 => 0.63264734210987
107 => 0.64843597513616
108 => 0.65256370846062
109 => 0.65938669468232
110 => 0.66640978873866
111 => 0.66866541727186
112 => 0.67297211202218
113 => 0.672949413615
114 => 0.68592792811907
115 => 0.70024363152819
116 => 0.70564747815584
117 => 0.71807332550627
118 => 0.69679449737228
119 => 0.71293473294547
120 => 0.7274936294488
121 => 0.71013591284469
122 => 0.73405948135418
123 => 0.73498837930743
124 => 0.74901363556309
125 => 0.734796351434
126 => 0.72635417350133
127 => 0.75072642486868
128 => 0.76251938958662
129 => 0.75896725263924
130 => 0.7319353150791
131 => 0.71620156796476
201 => 0.67502331695335
202 => 0.72380073404442
203 => 0.74755879105272
204 => 0.73187378745098
205 => 0.73978439092552
206 => 0.78294207846086
207 => 0.79937373162099
208 => 0.79595606262961
209 => 0.79653359242953
210 => 0.80539981421913
211 => 0.84471752435175
212 => 0.8211574410629
213 => 0.83916824195775
214 => 0.8487211058096
215 => 0.85759433814209
216 => 0.83580448394738
217 => 0.80745620379659
218 => 0.79847711349299
219 => 0.73031422296042
220 => 0.72676604849177
221 => 0.72477435064182
222 => 0.71221697742919
223 => 0.70235032183806
224 => 0.69450399098656
225 => 0.67391287571949
226 => 0.6808617726636
227 => 0.64804383262765
228 => 0.66903958766627
301 => 0.61666136295202
302 => 0.6602835049214
303 => 0.63654195630288
304 => 0.65248376767331
305 => 0.65242814819525
306 => 0.62307421910638
307 => 0.6061434854088
308 => 0.61693240787491
309 => 0.62849898918432
310 => 0.63037562808712
311 => 0.64537200267343
312 => 0.64955716847447
313 => 0.6368759207106
314 => 0.61557594066654
315 => 0.62052344022995
316 => 0.60604322448806
317 => 0.58066720337384
318 => 0.59889270476089
319 => 0.60511569225316
320 => 0.60786411804553
321 => 0.58290971573541
322 => 0.57506850074314
323 => 0.57089390367542
324 => 0.61235464069227
325 => 0.61462595345837
326 => 0.60300559621572
327 => 0.65553071284
328 => 0.64364266126495
329 => 0.65692452751764
330 => 0.62007450650181
331 => 0.62148222692975
401 => 0.60403683643307
402 => 0.6138050894098
403 => 0.60690120305134
404 => 0.61301591110104
405 => 0.61668104189414
406 => 0.63412356977389
407 => 0.66048267057146
408 => 0.6315182377657
409 => 0.61889801961392
410 => 0.62672753197648
411 => 0.64757855515908
412 => 0.67916892262494
413 => 0.66046678926975
414 => 0.66876647846997
415 => 0.67057959133274
416 => 0.65678933058724
417 => 0.67967738920885
418 => 0.69194328576643
419 => 0.70452555756485
420 => 0.71545039162016
421 => 0.69949992151847
422 => 0.71656921093736
423 => 0.70281437680094
424 => 0.69047486863195
425 => 0.69049358257231
426 => 0.68275282884646
427 => 0.66775414310488
428 => 0.66498815533301
429 => 0.67937717302803
430 => 0.69091580257439
501 => 0.69186617937014
502 => 0.6982545575632
503 => 0.70203513397232
504 => 0.73908992222614
505 => 0.75399366459511
506 => 0.77221767865048
507 => 0.7793169591742
508 => 0.80068324831767
509 => 0.78342823454916
510 => 0.77969500378122
511 => 0.72786737517907
512 => 0.73635414645923
513 => 0.7499422861304
514 => 0.72809143859743
515 => 0.7419507719853
516 => 0.74468689797689
517 => 0.72734895515958
518 => 0.73660989954659
519 => 0.71201557693335
520 => 0.6610187595959
521 => 0.67973416324476
522 => 0.69351499986707
523 => 0.67384804684213
524 => 0.70910029892314
525 => 0.68850666101161
526 => 0.68197946646261
527 => 0.65651455341406
528 => 0.66853301213858
529 => 0.68478814965125
530 => 0.67474436453099
531 => 0.69558672673745
601 => 0.72510507007678
602 => 0.74614159938811
603 => 0.74775652289701
604 => 0.73423144388783
605 => 0.75590546931595
606 => 0.75606334092912
607 => 0.73161495170521
608 => 0.71664044943476
609 => 0.71323821101229
610 => 0.72173766963975
611 => 0.7320575815001
612 => 0.74832920618233
613 => 0.75816180819234
614 => 0.78380001942532
615 => 0.79073698427984
616 => 0.79835860549863
617 => 0.80854344186787
618 => 0.82077294926759
619 => 0.79401548330325
620 => 0.79507860730817
621 => 0.77016242548451
622 => 0.74353591186402
623 => 0.7637421166602
624 => 0.79015904151242
625 => 0.78409896976321
626 => 0.78341708789539
627 => 0.7845638240588
628 => 0.77999472786334
629 => 0.75932887510987
630 => 0.74895061323217
701 => 0.76234121883139
702 => 0.76945772976009
703 => 0.78049481758553
704 => 0.77913426354639
705 => 0.80756461648802
706 => 0.81861179195189
707 => 0.81578545173294
708 => 0.81630556635291
709 => 0.83630594984837
710 => 0.85855048968791
711 => 0.8793854366732
712 => 0.90057963962844
713 => 0.87502920074208
714 => 0.86205626360758
715 => 0.8754410232873
716 => 0.86833888139711
717 => 0.90914989533027
718 => 0.9119755613886
719 => 0.95278362422094
720 => 0.99151533518256
721 => 0.96718864147825
722 => 0.99012761794307
723 => 1.014937991232
724 => 1.0628012266442
725 => 1.0466825728063
726 => 1.034335936578
727 => 1.0226684250007
728 => 1.0469466644277
729 => 1.0781802315962
730 => 1.0849076428129
731 => 1.0958086190528
801 => 1.0843475754445
802 => 1.0981511400782
803 => 1.1468837888289
804 => 1.1337157969614
805 => 1.1150151316494
806 => 1.1534848775047
807 => 1.1674069289824
808 => 1.2651191772877
809 => 1.3884849270648
810 => 1.3374106965939
811 => 1.3057072735855
812 => 1.3131583300077
813 => 1.3582073256322
814 => 1.3726756332431
815 => 1.3333457856319
816 => 1.3472377527042
817 => 1.4237838571007
818 => 1.4648483862164
819 => 1.4090772399752
820 => 1.2552068594117
821 => 1.1133313413464
822 => 1.1509631174752
823 => 1.1466968419122
824 => 1.2289360817652
825 => 1.1334017447103
826 => 1.1350102979349
827 => 1.2189501581752
828 => 1.1965564425566
829 => 1.1602814912249
830 => 1.1135961886354
831 => 1.027294088931
901 => 0.95085391251072
902 => 1.1007707015922
903 => 1.094306017041
904 => 1.0849441957983
905 => 1.1057779159191
906 => 1.2069405470708
907 => 1.2046084209912
908 => 1.1897726247345
909 => 1.2010254454385
910 => 1.1583088173489
911 => 1.1693178650471
912 => 1.1133088675395
913 => 1.1386272735553
914 => 1.1602036614712
915 => 1.1645354407892
916 => 1.1742951607788
917 => 1.0908994220401
918 => 1.1283416603635
919 => 1.1503354675153
920 => 1.0509666466622
921 => 1.1483712654221
922 => 1.0894476877674
923 => 1.069448140509
924 => 1.0963748961525
925 => 1.0858815132911
926 => 1.0768599188989
927 => 1.0718257142175
928 => 1.0915977517645
929 => 1.0906753625802
930 => 1.0583244715662
1001 => 1.0161240530294
1002 => 1.0302878986719
1003 => 1.0251420407632
1004 => 1.0064927878733
1005 => 1.0190601326017
1006 => 0.96371990660541
1007 => 0.86850992411342
1008 => 0.93140855490826
1009 => 0.9289870260432
1010 => 0.92776598138185
1011 => 0.97503256403371
1012 => 0.97048897273733
1013 => 0.96224231004343
1014 => 1.0063413314458
1015 => 0.9902445954184
1016 => 1.0398509429869
1017 => 1.0725248918329
1018 => 1.064237721514
1019 => 1.0949677283306
1020 => 1.0306142050685
1021 => 1.051989864081
1022 => 1.0563953577781
1023 => 1.005797156367
1024 => 0.97123236046496
1025 => 0.96892728264581
1026 => 0.90899668987392
1027 => 0.94101112878982
1028 => 0.96918251018832
1029 => 0.95569060468595
1030 => 0.95141947046311
1031 => 0.9732397689116
1101 => 0.97493539297927
1102 => 0.9362749845423
1103 => 0.94431370767226
1104 => 0.97783651945071
1105 => 0.94346901882612
1106 => 0.87669857901189
1107 => 0.86013858676441
1108 => 0.85792917853738
1109 => 0.81301716617266
1110 => 0.86124520463107
1111 => 0.8401923734129
1112 => 0.90669801497945
1113 => 0.86871034919355
1114 => 0.8670727768465
1115 => 0.86459734606431
1116 => 0.82593972173013
1117 => 0.83440328463912
1118 => 0.86253745678565
1119 => 0.87257604636166
1120 => 0.87152893922514
1121 => 0.86239958399358
1122 => 0.86657895606873
1123 => 0.85311574242493
1124 => 0.84836160147474
1125 => 0.83335622490647
1126 => 0.81130246669218
1127 => 0.81436917703544
1128 => 0.77067491133319
1129 => 0.74686795634841
1130 => 0.74027850497925
1201 => 0.73146681521627
1202 => 0.74127380878499
1203 => 0.77055113096835
1204 => 0.73523646888482
1205 => 0.67469195777812
1206 => 0.67833078605846
1207 => 0.68650615282657
1208 => 0.67127141093966
1209 => 0.65685300629866
1210 => 0.66938863933186
1211 => 0.64373513183177
1212 => 0.68960625664687
1213 => 0.68836557127297
1214 => 0.70546348995271
1215 => 0.71615516938776
1216 => 0.69151430976228
1217 => 0.68531720020244
1218 => 0.68884735545065
1219 => 0.63050175271573
1220 => 0.70069540944329
1221 => 0.70130244710152
1222 => 0.69610462212847
1223 => 0.73348057734988
1224 => 0.81235550071982
1225 => 0.78267958181161
1226 => 0.77118816905095
1227 => 0.74934298499277
1228 => 0.77845039571161
1229 => 0.77621540071475
1230 => 0.76610790574224
1231 => 0.75999486124556
]
'min_raw' => 0.57089390367542
'max_raw' => 1.4648483862164
'avg_raw' => 1.0178711449459
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.570893'
'max' => '$1.46'
'avg' => '$1.01'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.35106308798691
'max_diff' => 0.85145224070458
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01791970729052
]
1 => [
'year' => 2028
'avg' => 0.030755419838728
]
2 => [
'year' => 2029
'avg' => 0.084018263874296
]
3 => [
'year' => 2030
'avg' => 0.064819965455267
]
4 => [
'year' => 2031
'avg' => 0.063661239126956
]
5 => [
'year' => 2032
'avg' => 0.11161818711884
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01791970729052
'min' => '$0.017919'
'max_raw' => 0.11161818711884
'max' => '$0.111618'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11161818711884
]
1 => [
'year' => 2033
'avg' => 0.2870934548325
]
2 => [
'year' => 2034
'avg' => 0.18197362873866
]
3 => [
'year' => 2035
'avg' => 0.21463831240231
]
4 => [
'year' => 2036
'avg' => 0.41661348060016
]
5 => [
'year' => 2037
'avg' => 1.0178711449459
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11161818711884
'min' => '$0.111618'
'max_raw' => 1.0178711449459
'max' => '$1.01'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0178711449459
]
]
]
]
'prediction_2025_max_price' => '$0.030639'
'last_price' => 0.0297088
'sma_50day_nextmonth' => '$0.027735'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.029977'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.03044'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.029894'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.028181'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.029867'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.029965'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.029685'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.029315'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.028866'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.014433'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.007216'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.030182'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.029998'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.026548'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.012642'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.0053097'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002654'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001327'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.14'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 75.56
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0299060'
'vwma_10_action' => 'SELL'
'hma_9' => '0.030369'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 74.63
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 44.41
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.92
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001174'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -25.37
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.45
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 14
'buy_signals' => 12
'sell_pct' => 53.85
'buy_pct' => 46.15
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767710505
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Superfluid para 2026
La previsión del precio de Superfluid para 2026 sugiere que el precio medio podría oscilar entre $0.010264 en el extremo inferior y $0.030639 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Superfluid podría potencialmente ganar 3.13% para 2026 si SUP alcanza el objetivo de precio previsto.
Predicción de precio de Superfluid 2027-2032
La predicción del precio de SUP para 2027-2032 está actualmente dentro de un rango de precios de $0.017919 en el extremo inferior y $0.111618 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Superfluid alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Superfluid | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009881 | $0.017919 | $0.025958 |
| 2028 | $0.017832 | $0.030755 | $0.043678 |
| 2029 | $0.039173 | $0.084018 | $0.128863 |
| 2030 | $0.033315 | $0.064819 | $0.096324 |
| 2031 | $0.039389 | $0.063661 | $0.087933 |
| 2032 | $0.060124 | $0.111618 | $0.163111 |
Predicción de precio de Superfluid 2032-2037
La predicción de precio de Superfluid para 2032-2037 se estima actualmente entre $0.111618 en el extremo inferior y $1.01 en el extremo superior. Comparado con el precio actual, Superfluid podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Superfluid | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.060124 | $0.111618 | $0.163111 |
| 2033 | $0.139716 | $0.287093 | $0.43447 |
| 2034 | $0.112325 | $0.181973 | $0.251622 |
| 2035 | $0.132803 | $0.214638 | $0.296473 |
| 2036 | $0.21983 | $0.416613 | $0.613396 |
| 2037 | $0.570893 | $1.01 | $1.46 |
Superfluid Histograma de precios potenciales
Pronóstico de precio de Superfluid basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Superfluid es Bajista, con 12 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de SUP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Superfluid
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Superfluid disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Superfluid alcance $0.027735 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 48.14, lo que sugiere que el mercado de SUP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SUP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.029977 | SELL |
| SMA 5 | $0.03044 | SELL |
| SMA 10 | $0.029894 | SELL |
| SMA 21 | $0.028181 | BUY |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.029867 | SELL |
| EMA 5 | $0.029965 | SELL |
| EMA 10 | $0.029685 | BUY |
| EMA 21 | $0.029315 | BUY |
| EMA 50 | $0.028866 | BUY |
| EMA 100 | $0.014433 | BUY |
| EMA 200 | $0.007216 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.012642 | BUY |
| EMA 50 | $0.0053097 | BUY |
| EMA 100 | $0.002654 | BUY |
| EMA 200 | $0.001327 | BUY |
Osciladores de Superfluid
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 48.14 | NEUTRAL |
| Stoch RSI (14) | 75.56 | NEUTRAL |
| Estocástico Rápido (14) | 74.63 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 44.41 | NEUTRAL |
| Índice Direccional Medio (14) | 10.92 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001174 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -25.37 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.45 | NEUTRAL |
| VWMA (10) | 0.0299060 | SELL |
| Promedio Móvil de Hull (9) | 0.030369 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Superfluid basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Superfluid
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Superfluid por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.041745 | $0.058659 | $0.082426 | $0.115823 | $0.162751 | $0.228692 |
| Amazon.com acción | $0.061989 | $0.129344 | $0.269884 | $0.563129 | $1.17 | $2.45 |
| Apple acción | $0.042139 | $0.059771 | $0.084781 | $0.120256 | $0.170574 | $0.241947 |
| Netflix acción | $0.046875 | $0.073962 | $0.1167015 | $0.184136 | $0.290538 | $0.458424 |
| Google acción | $0.038472 | $0.049822 | $0.064519 | $0.083552 | $0.108199 | $0.140118 |
| Tesla acción | $0.067347 | $0.152671 | $0.346095 | $0.784572 | $1.77 | $4.03 |
| Kodak acción | $0.022278 | $0.0167064 | $0.012528 | $0.009394 | $0.007045 | $0.005283 |
| Nokia acción | $0.01968 | $0.013037 | $0.008636 | $0.005721 | $0.00379 | $0.00251 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Superfluid
Podría preguntarse cosas como: "¿Debo invertir en Superfluid ahora?", "¿Debería comprar SUP hoy?", "¿Será Superfluid una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Superfluid regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Superfluid, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Superfluid a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Superfluid es de $0.0297 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Superfluid
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Superfluid
basado en el historial de precios del último mes
Predicción de precios de Superfluid basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Superfluid ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.030481 | $0.031273 | $0.032086 | $0.03292 |
| Si Superfluid ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.031253 | $0.032877 | $0.034587 | $0.036385 |
| Si Superfluid ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.033569 | $0.037932 | $0.042862 | $0.048433 |
| Si Superfluid ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.037431 | $0.04716 | $0.059419 | $0.074864 |
| Si Superfluid ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.045153 | $0.068626 | $0.1043036 | $0.158527 |
| Si Superfluid ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.06832 | $0.157113 | $0.3613069 | $0.830883 |
| Si Superfluid ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.106931 | $0.38488 | $1.38 | $4.98 |
Cuadro de preguntas
¿Es SUP una buena inversión?
La decisión de adquirir Superfluid depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Superfluid ha experimentado un aumento de 1.8719% durante las últimas 24 horas, y Superfluid ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Superfluid dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Superfluid subir?
Parece que el valor medio de Superfluid podría potencialmente aumentar hasta $0.030639 para el final de este año. Mirando las perspectivas de Superfluid en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.096324. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Superfluid la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Superfluid, el precio de Superfluid aumentará en un 0.86% durante la próxima semana y alcanzará $0.029963 para el 13 de enero de 2026.
¿Cuál será el precio de Superfluid el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Superfluid, el precio de Superfluid disminuirá en un -11.62% durante el próximo mes y alcanzará $0.026257 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Superfluid este año en 2026?
Según nuestra predicción más reciente sobre el valor de Superfluid en 2026, se anticipa que SUP fluctúe dentro del rango de $0.010264 y $0.030639. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Superfluid no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Superfluid en 5 años?
El futuro de Superfluid parece estar en una tendencia alcista, con un precio máximo de $0.096324 proyectada después de un período de cinco años. Basado en el pronóstico de Superfluid para 2030, el valor de Superfluid podría potencialmente alcanzar su punto más alto de aproximadamente $0.096324, mientras que su punto más bajo se anticipa que esté alrededor de $0.033315.
¿Cuánto será Superfluid en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Superfluid, se espera que el valor de SUP en 2026 crezca en un 3.13% hasta $0.030639 si ocurre lo mejor. El precio estará entre $0.030639 y $0.010264 durante 2026.
¿Cuánto será Superfluid en 2027?
Según nuestra última simulación experimental para la predicción de precios de Superfluid, el valor de SUP podría disminuir en un -12.62% hasta $0.025958 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.025958 y $0.009881 a lo largo del año.
¿Cuánto será Superfluid en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Superfluid sugiere que el valor de SUP en 2028 podría aumentar en un 47.02% , alcanzando $0.043678 en el mejor escenario. Se espera que el precio oscile entre $0.043678 y $0.017832 durante el año.
¿Cuánto será Superfluid en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Superfluid podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.128863 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.128863 y $0.039173.
¿Cuánto será Superfluid en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Superfluid, se espera que el valor de SUP en 2030 aumente en un 224.23% , alcanzando $0.096324 en el mejor escenario. Se pronostica que el precio oscile entre $0.096324 y $0.033315 durante el transcurso de 2030.
¿Cuánto será Superfluid en 2031?
Nuestra simulación experimental indica que el precio de Superfluid podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.087933 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.087933 y $0.039389 durante el año.
¿Cuánto será Superfluid en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Superfluid, SUP podría experimentar un 449.04% aumento en valor, alcanzando $0.163111 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.163111 y $0.060124 a lo largo del año.
¿Cuánto será Superfluid en 2033?
Según nuestra predicción experimental de precios de Superfluid, se anticipa que el valor de SUP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.43447. A lo largo del año, el precio de SUP podría oscilar entre $0.43447 y $0.139716.
¿Cuánto será Superfluid en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Superfluid sugieren que SUP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.251622 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.251622 y $0.112325.
¿Cuánto será Superfluid en 2035?
Basado en nuestra predicción experimental para el precio de Superfluid, SUP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.296473 en 2035. El rango de precios esperado para el año está entre $0.296473 y $0.132803.
¿Cuánto será Superfluid en 2036?
Nuestra reciente simulación de predicción de precios de Superfluid sugiere que el valor de SUP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.613396 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.613396 y $0.21983.
¿Cuánto será Superfluid en 2037?
Según la simulación experimental, el valor de Superfluid podría aumentar en un 4830.69% en 2037, con un máximo de $1.46 bajo condiciones favorables. Se espera que el precio caiga entre $1.46 y $0.570893 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Superfluid?
Los traders de Superfluid utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Superfluid
Las medias móviles son herramientas populares para la predicción de precios de Superfluid. Una media móvil simple (SMA) calcula el precio de cierre promedio de SUP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SUP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SUP.
¿Cómo leer gráficos de Superfluid y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Superfluid en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SUP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Superfluid?
La acción del precio de Superfluid está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SUP. La capitalización de mercado de Superfluid puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SUP, grandes poseedores de Superfluid, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Superfluid.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


