Predicción del precio de SAM - Pronóstico de SAM
Predicción de precio de SAM hasta $0.000561 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000188 | $0.000561 |
| 2027 | $0.000181 | $0.000476 |
| 2028 | $0.000327 | $0.000801 |
| 2029 | $0.000718 | $0.002363 |
| 2030 | $0.000611 | $0.001766 |
| 2031 | $0.000722 | $0.001612 |
| 2032 | $0.0011027 | $0.002991 |
| 2033 | $0.002562 | $0.007968 |
| 2034 | $0.00206 | $0.004614 |
| 2035 | $0.002435 | $0.005437 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en SAM hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,961.86, equivalente a un ROI del 39.62% en los próximos 90 días.
Predicción del precio a largo plazo de SAM para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'SAM'
'name_with_ticker' => 'SAM <small>SAM</small>'
'name_lang' => 'SAM'
'name_lang_with_ticker' => 'SAM <small>SAM</small>'
'name_with_lang' => 'SAM'
'name_with_lang_with_ticker' => 'SAM <small>SAM</small>'
'image' => '/uploads/coins/sam-2.png?1737872809'
'price_for_sd' => 0.0005448
'ticker' => 'SAM'
'marketcap' => '$10.9K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$1.31'
'current_supply' => '20M'
'max_supply' => '20M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0005448'
'change_24h_pct' => '0%'
'ath_price' => '$0.004188'
'ath_days' => 310
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mar. 2025'
'ath_pct' => '-86.99%'
'fdv' => '$10.9K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.026865'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000549'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000481'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000188'
'current_year_max_price_prediction' => '$0.000561'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000611'
'grand_prediction_max_price' => '$0.001766'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00055519499989838
107 => 0.00055726789649222
108 => 0.00056193823836285
109 => 0.00052203067842473
110 => 0.00053994800121254
111 => 0.00055047274972427
112 => 0.00050292155305464
113 => 0.00054953281545487
114 => 0.00052133597659251
115 => 0.00051176554598032
116 => 0.00052465086999128
117 => 0.00051962944669282
118 => 0.00051531232180868
119 => 0.0005129032919457
120 => 0.00052236485179803
121 => 0.00052192345872191
122 => 0.00050644251039386
123 => 0.0004862482443841
124 => 0.00049302610291116
125 => 0.00049056364336552
126 => 0.00048163937230851
127 => 0.00048765325348034
128 => 0.0004611711643552
129 => 0.00041561010643461
130 => 0.0004457091368699
131 => 0.00044455035693959
201 => 0.00044396604755224
202 => 0.00046658463704825
203 => 0.00046441038156786
204 => 0.00046046408658056
205 => 0.00048156689550634
206 => 0.0004738640863756
207 => 0.00049760232910647
208 => 0.0005132378710623
209 => 0.0005092721918655
210 => 0.00052397749464809
211 => 0.00049318225108228
212 => 0.00050341119570412
213 => 0.00050551936701397
214 => 0.0004813064901199
215 => 0.00046476611665392
216 => 0.0004636630623178
217 => 0.00043498433413166
218 => 0.00045030427924209
219 => 0.00046378519695687
220 => 0.00045732888353296
221 => 0.00045528500757983
222 => 0.00046572672656177
223 => 0.00046653813755394
224 => 0.00044803788094294
225 => 0.0004518846701193
226 => 0.00046792642046021
227 => 0.0004514804591696
228 => 0.00041952864281448
301 => 0.00041160415058998
302 => 0.00041054687724987
303 => 0.00038905502583764
304 => 0.00041213370305286
305 => 0.00040205924197832
306 => 0.00043388434380222
307 => 0.00041570601632185
308 => 0.00041492238495673
309 => 0.00041373781121463
310 => 0.00039523888688692
311 => 0.00039928897564672
312 => 0.00041275208753022
313 => 0.00041755587752306
314 => 0.00041705480287052
315 => 0.00041268611093721
316 => 0.00041468607573296
317 => 0.00040824349229194
318 => 0.00040596848198814
319 => 0.00039878792367846
320 => 0.00038823448664309
321 => 0.00038970200679085
322 => 0.00036879288656677
323 => 0.00035740048813769
324 => 0.00035424722240192
325 => 0.000350030543676
326 => 0.00035472350748417
327 => 0.00036873365365627
328 => 0.0003518344449544
329 => 0.0003228619369767
330 => 0.00032460323407291
331 => 0.00032851541165235
401 => 0.00032122509461471
402 => 0.00031432542136851
403 => 0.0003203241274679
404 => 0.00030804809389992
405 => 0.00032999891165959
406 => 0.00032940520355565
407 => 0.00033758711098699
408 => 0.00034270342561345
409 => 0.00033091197682599
410 => 0.00032794645934341
411 => 0.00032963575287674
412 => 0.00030171549371862
413 => 0.00033530543015297
414 => 0.00033559591731811
415 => 0.00033310858985033
416 => 0.00035099419402869
417 => 0.00038873839750485
418 => 0.00037453750990005
419 => 0.00036903849699537
420 => 0.00035858486944382
421 => 0.00037251370748128
422 => 0.00037144419004372
423 => 0.00036660742658866
424 => 0.00036368213695942
425 => 0.00036907207279557
426 => 0.00036301426426154
427 => 0.00036192611539138
428 => 0.00035533311715586
429 => 0.00035297971674809
430 => 0.00035123735277775
501 => 0.00034931918124754
502 => 0.00035355018966461
503 => 0.00034396216795603
504 => 0.00033239995370085
505 => 0.00033143868069042
506 => 0.0003340928399882
507 => 0.00033291857207785
508 => 0.00033143305874744
509 => 0.0003285968092442
510 => 0.00032775535460347
511 => 0.00033048967397008
512 => 0.0003274027868259
513 => 0.00033195765695859
514 => 0.00033071898431496
515 => 0.00032379985961886
516 => 0.00031517606845946
517 => 0.00031509929862913
518 => 0.00031324131696969
519 => 0.00031087489797698
520 => 0.00031021661434954
521 => 0.00031981893317196
522 => 0.00033969544576113
523 => 0.00033579321073524
524 => 0.00033861297545858
525 => 0.00035248342707368
526 => 0.00035689242654309
527 => 0.00035376302315258
528 => 0.00034947930277845
529 => 0.00034966776473466
530 => 0.00036430653402339
531 => 0.00036521953610765
601 => 0.00036752639782893
602 => 0.00037049136705983
603 => 0.00035426797023349
604 => 0.00034890364420309
605 => 0.00034636172892841
606 => 0.00033853361372741
607 => 0.00034697556483981
608 => 0.000342056801447
609 => 0.00034272051067758
610 => 0.00034228826917047
611 => 0.00034252430226139
612 => 0.00032999277595867
613 => 0.00033455860550575
614 => 0.00032696702832653
615 => 0.00031680275867807
616 => 0.00031676868448216
617 => 0.00031925637507891
618 => 0.00031777659936862
619 => 0.00031379456098074
620 => 0.00031436019073905
621 => 0.00030940467887269
622 => 0.00031496187960207
623 => 0.00031512124023436
624 => 0.00031298141525078
625 => 0.00032154304972032
626 => 0.00032505075834811
627 => 0.00032364227970443
628 => 0.00032495193573175
629 => 0.0003359553662181
630 => 0.00033774940550071
701 => 0.00033854619924246
702 => 0.00033747860118346
703 => 0.00032515305824176
704 => 0.00032569974848348
705 => 0.00032168849822442
706 => 0.00031829941445065
707 => 0.00031843496002819
708 => 0.00032017738963796
709 => 0.00032778668193597
710 => 0.00034379998898486
711 => 0.00034440768228179
712 => 0.00034514422428533
713 => 0.00034214833780057
714 => 0.00034124474976999
715 => 0.00034243681561818
716 => 0.00034845057180606
717 => 0.00036391958544015
718 => 0.00035845180288118
719 => 0.00035400641054963
720 => 0.00035790621809356
721 => 0.00035730587328988
722 => 0.0003522383589811
723 => 0.00035209613073234
724 => 0.00034236995059147
725 => 0.0003387744032478
726 => 0.00033576969476537
727 => 0.00033248863154246
728 => 0.00033054350728169
729 => 0.00033353210218941
730 => 0.00033421562920482
731 => 0.00032768101420739
801 => 0.00032679037032948
802 => 0.00033212667799583
803 => 0.00032977836794947
804 => 0.00033219366306744
805 => 0.00033275403225283
806 => 0.00033266379990758
807 => 0.00033021189451749
808 => 0.00033177466589627
809 => 0.00032807824570089
810 => 0.00032405894392279
811 => 0.00032149487979971
812 => 0.00031925739377857
813 => 0.00032049888106655
814 => 0.00031607320557152
815 => 0.00031465734290942
816 => 0.00033124523411661
817 => 0.00034349888770124
818 => 0.00034332071472514
819 => 0.0003422361325555
820 => 0.00034062466345088
821 => 0.00034833268280383
822 => 0.00034564736298797
823 => 0.00034760115751999
824 => 0.00034809848022889
825 => 0.0003496037262847
826 => 0.00035014172236938
827 => 0.00034851552453916
828 => 0.00034305780599762
829 => 0.0003294576902964
830 => 0.00032312679972467
831 => 0.00032103750038668
901 => 0.00032111344244947
902 => 0.00031901862133738
903 => 0.00031963564003819
904 => 0.0003188040474136
905 => 0.0003172292121665
906 => 0.00032040163942781
907 => 0.00032076723211647
908 => 0.000320026749686
909 => 0.00032020116010423
910 => 0.0003140702818441
911 => 0.00031453639920265
912 => 0.00031194099851892
913 => 0.00031145439217874
914 => 0.00030489344525764
915 => 0.00029326977676246
916 => 0.00029971041744559
917 => 0.0002919310291915
918 => 0.00028898485698271
919 => 0.00030293157799535
920 => 0.00030153171402751
921 => 0.0002991357554208
922 => 0.00029559163327995
923 => 0.0002942770839029
924 => 0.00028629029802374
925 => 0.00028581839610615
926 => 0.00028977686284923
927 => 0.00028795016664982
928 => 0.00028538479336191
929 => 0.00027609327136081
930 => 0.00026564652431436
1001 => 0.00026596184594178
1002 => 0.00026928476180862
1003 => 0.0002789465878477
1004 => 0.00027517154526295
1005 => 0.00027243270855408
1006 => 0.00027191980676764
1007 => 0.00027833984645757
1008 => 0.00028742554765873
1009 => 0.0002916883553812
1010 => 0.00028746404239163
1011 => 0.00028261137908236
1012 => 0.00028290673821292
1013 => 0.0002848716301853
1014 => 0.00028507811254952
1015 => 0.00028191952759704
1016 => 0.00028280865075965
1017 => 0.00028145799137252
1018 => 0.00027316899720686
1019 => 0.00027301907558709
1020 => 0.00027098482274075
1021 => 0.00027092322637302
1022 => 0.00026746245481324
1023 => 0.00026697826894884
1024 => 0.00026010669696308
1025 => 0.00026462958645315
1026 => 0.00026159586964557
1027 => 0.00025702334283509
1028 => 0.00025623503748948
1029 => 0.00025621134007888
1030 => 0.00026090630271495
1031 => 0.0002645747230812
1101 => 0.00026164864244828
1102 => 0.00026098243060786
1103 => 0.0002680958301113
1104 => 0.00026719058518441
1105 => 0.00026640664891593
1106 => 0.00028661202276901
1107 => 0.00027061789271931
1108 => 0.00026364353910462
1109 => 0.00025501145211261
1110 => 0.00025782210316397
1111 => 0.00025841434863754
1112 => 0.00023765573547238
1113 => 0.0002292339686966
1114 => 0.00022634393570673
1115 => 0.000224680680862
1116 => 0.00022543864698058
1117 => 0.00021785806910766
1118 => 0.00022295234280945
1119 => 0.00021638820314179
1120 => 0.00021528770376495
1121 => 0.00022702519863159
1122 => 0.00022865840247283
1123 => 0.00022169064748943
1124 => 0.00022616507416584
1125 => 0.00022454258485379
1126 => 0.00021650072647617
1127 => 0.00021619358663805
1128 => 0.00021215846478915
1129 => 0.00020584428044918
1130 => 0.00020295852877363
1201 => 0.00020145560424576
1202 => 0.00020207574019737
1203 => 0.00020176218048376
1204 => 0.00019971599125249
1205 => 0.00020187946565531
1206 => 0.00019635268256545
1207 => 0.00019415187300675
1208 => 0.00019315781838748
1209 => 0.00018825248028546
1210 => 0.00019605905461953
1211 => 0.00019759704810797
1212 => 0.0001991380719187
1213 => 0.00021255163208942
1214 => 0.00021188152852962
1215 => 0.00021793893835656
1216 => 0.00021770355854955
1217 => 0.00021597588714337
1218 => 0.00020868712566887
1219 => 0.00021159229608292
1220 => 0.00020265063311218
1221 => 0.00020935033498384
1222 => 0.00020629287083585
1223 => 0.00020831660327987
1224 => 0.00020467774987293
1225 => 0.00020669164159291
1226 => 0.00019796176341988
1227 => 0.00018980992601461
1228 => 0.00019309046335346
1229 => 0.00019665678261574
1230 => 0.00020438947145761
1231 => 0.00019978394577669
]
'min_raw' => 0.00018825248028546
'max_raw' => 0.00056193823836285
'avg_raw' => 0.00037509535932416
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000188'
'max' => '$0.000561'
'avg' => '$0.000375'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00035661751971454
'max_diff' => 1.7068238362851E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00020144026696576
102 => 0.0001958918682472
103 => 0.00018444393686909
104 => 0.00018450873091744
105 => 0.00018274771608166
106 => 0.00018122594215117
107 => 0.00020031294580288
108 => 0.00019793917517791
109 => 0.00019415688235845
110 => 0.00019921963159964
111 => 0.00020055830285565
112 => 0.00020059641294436
113 => 0.00020429006410226
114 => 0.00020626136638736
115 => 0.00020660881695922
116 => 0.0002124208568628
117 => 0.00021436897597581
118 => 0.0002223930028942
119 => 0.00020609411516119
120 => 0.00020575845029411
121 => 0.00019929087486387
122 => 0.00019518903627769
123 => 0.00019957173126114
124 => 0.00020345420071895
125 => 0.00019941151401226
126 => 0.00019993940355038
127 => 0.00019451242694629
128 => 0.00019645231571927
129 => 0.0001981232092618
130 => 0.0001972006400582
131 => 0.00019581950930756
201 => 0.00020313588249851
202 => 0.00020272306404998
203 => 0.00020953623896809
204 => 0.00021484759603157
205 => 0.00022436649740797
206 => 0.00021443302759015
207 => 0.00021407101246802
208 => 0.00021760976835587
209 => 0.00021436843421073
210 => 0.00021641684550341
211 => 0.0002240364666804
212 => 0.00022419745726903
213 => 0.00022150065748485
214 => 0.0002213365569729
215 => 0.00022185450687121
216 => 0.00022488815560347
217 => 0.00022382810552181
218 => 0.00022505482231349
219 => 0.00022658885044565
220 => 0.0002329342412147
221 => 0.0002344640934469
222 => 0.00023074734566009
223 => 0.00023108292637058
224 => 0.00022969276067131
225 => 0.00022834987802454
226 => 0.00023136848210222
227 => 0.00023688504038499
228 => 0.00023685072216223
301 => 0.00023813045645726
302 => 0.00023892772032118
303 => 0.00023550528018444
304 => 0.00023327739750203
305 => 0.00023413170948632
306 => 0.0002354977729537
307 => 0.00023368871351519
308 => 0.00022252236062288
309 => 0.00022590951878103
310 => 0.00022534573003994
311 => 0.00022454282631358
312 => 0.00022794864003371
313 => 0.00022762014099187
314 => 0.00021778031932478
315 => 0.00021841023278268
316 => 0.00021781862644849
317 => 0.00021973022754553
318 => 0.00021426520147815
319 => 0.00021594620668896
320 => 0.00021700051739874
321 => 0.0002176215145064
322 => 0.00021986498188095
323 => 0.00021960173687855
324 => 0.00021984861820199
325 => 0.00022317508806503
326 => 0.00023999923112567
327 => 0.00024091493211208
328 => 0.00023640568555309
329 => 0.00023820704061245
330 => 0.00023474883281152
331 => 0.00023707035087627
401 => 0.000238658674576
402 => 0.000231481345194
403 => 0.00023105635032848
404 => 0.0002275838692738
405 => 0.0002294497839012
406 => 0.000226480979565
407 => 0.00022720942030474
408 => 0.00022517263649211
409 => 0.00022883844183523
410 => 0.0002329373818174
411 => 0.00023397293592894
412 => 0.00023124883889555
413 => 0.00022927641311663
414 => 0.0002258134832063
415 => 0.00023157241282361
416 => 0.00023325649934391
417 => 0.00023156356703406
418 => 0.00023117127762656
419 => 0.00023042788990821
420 => 0.00023132899084523
421 => 0.00023324732744705
422 => 0.00023234267533175
423 => 0.00023294021399182
424 => 0.0002306630127988
425 => 0.00023550641315453
426 => 0.00024319889854719
427 => 0.00024322363114558
428 => 0.00024231897415386
429 => 0.00024194880800396
430 => 0.00024287704097664
501 => 0.0002433805692862
502 => 0.00024638230451102
503 => 0.00024960328600165
504 => 0.0002646342011941
505 => 0.00026041358035524
506 => 0.00027374990250713
507 => 0.00028429720182459
508 => 0.00028745987571239
509 => 0.00028455036455091
510 => 0.00027459708403622
511 => 0.00027410872860954
512 => 0.00028898313186513
513 => 0.0002847804316546
514 => 0.00028428053383744
515 => 0.00027896246565353
516 => 0.00028210610260578
517 => 0.00028141854308995
518 => 0.00028033319675765
519 => 0.00028633103707489
520 => 0.00029755845871787
521 => 0.00029580855976472
522 => 0.00029450234137167
523 => 0.00028877887260777
524 => 0.00029222567918667
525 => 0.00029099833738315
526 => 0.0002962717766614
527 => 0.00029314790805395
528 => 0.00028474859206703
529 => 0.00028608621082246
530 => 0.00028588403243849
531 => 0.00029004484925401
601 => 0.00028879587532382
602 => 0.0002856401502333
603 => 0.00029752008461127
604 => 0.00029674866775243
605 => 0.00029784236048782
606 => 0.00029832383785351
607 => 0.00030555494456145
608 => 0.00030851729761009
609 => 0.00030918980361542
610 => 0.00031200380989502
611 => 0.00030911978857568
612 => 0.00032065793012538
613 => 0.00032833012098671
614 => 0.00033724176547947
615 => 0.00035026407330762
616 => 0.00035516058151409
617 => 0.00035427607113353
618 => 0.00036414943630729
619 => 0.00038189165405196
620 => 0.00035786228060915
621 => 0.0003831652691923
622 => 0.00037515463514393
623 => 0.00035616156592038
624 => 0.00035493863617596
625 => 0.00036780096316821
626 => 0.00039632836648393
627 => 0.00038918257550848
628 => 0.00039634005443806
629 => 0.00038799047507482
630 => 0.00038757584808366
701 => 0.000395934534005
702 => 0.00041546505926846
703 => 0.00040618683880658
704 => 0.00039288423466148
705 => 0.00040270667055078
706 => 0.00039419756755994
707 => 0.00037502417697363
708 => 0.00038917711125679
709 => 0.000379713447154
710 => 0.00038247544745525
711 => 0.00040236666178551
712 => 0.00039997329825167
713 => 0.00040307053228396
714 => 0.0003976039952857
715 => 0.00039249738773556
716 => 0.00038296552552157
717 => 0.00038014361103514
718 => 0.00038092348667734
719 => 0.0003801432245675
720 => 0.00037481023526111
721 => 0.00037365857672815
722 => 0.00037173909538457
723 => 0.00037233402291544
724 => 0.00036872483642543
725 => 0.00037553611702805
726 => 0.00037680035072869
727 => 0.00038175703273761
728 => 0.00038227165190694
729 => 0.00039607594074782
730 => 0.00038847277042591
731 => 0.00039357363350399
801 => 0.0003931173642991
802 => 0.00035657320332248
803 => 0.0003616086662732
804 => 0.00036944226640919
805 => 0.00036591324016612
806 => 0.00036092402272338
807 => 0.00035689496213345
808 => 0.00035079052334712
809 => 0.00035938240371352
810 => 0.00037067981275073
811 => 0.00038255817284368
812 => 0.00039682924419439
813 => 0.00039364410720249
814 => 0.00038229138509153
815 => 0.00038280065991226
816 => 0.00038594879646175
817 => 0.0003818716735918
818 => 0.00038066925046255
819 => 0.00038578360198826
820 => 0.00038581882171642
821 => 0.00038112759911777
822 => 0.00037591416368405
823 => 0.00037589231919923
824 => 0.00037496463871961
825 => 0.00038815550737129
826 => 0.00039540915138247
827 => 0.00039624076997852
828 => 0.00039535317682497
829 => 0.00039569477620246
830 => 0.00039147404057549
831 => 0.00040112139059847
901 => 0.00040997475300358
902 => 0.00040760186275451
903 => 0.00040404456294493
904 => 0.00040121100230383
905 => 0.00040693436591932
906 => 0.00040667951354693
907 => 0.00040989742660648
908 => 0.00040975144348253
909 => 0.00040866938035244
910 => 0.00040760190139839
911 => 0.00041183433478883
912 => 0.00041061546194318
913 => 0.00040939469585135
914 => 0.00040694626256424
915 => 0.00040727904531212
916 => 0.00040372235972051
917 => 0.00040207687422297
918 => 0.00037733272041171
919 => 0.00037072027397479
920 => 0.00037280068423261
921 => 0.00037348560930731
922 => 0.00037060786414388
923 => 0.00037473381147616
924 => 0.00037409078695488
925 => 0.0003765924192104
926 => 0.0003750295079854
927 => 0.00037509365040724
928 => 0.00037968983907217
929 => 0.00038102413219518
930 => 0.00038034549994375
1001 => 0.0003808207907105
1002 => 0.00039177366582255
1003 => 0.00039021651723484
1004 => 0.00038938931308275
1005 => 0.00038961845428609
1006 => 0.00039241714870951
1007 => 0.00039320063034502
1008 => 0.0003898809636011
1009 => 0.00039144653762829
1010 => 0.00039811255313518
1011 => 0.00040044528129878
1012 => 0.00040789022982397
1013 => 0.00040472748336706
1014 => 0.00041053284136918
1015 => 0.0004283765326753
1016 => 0.00044263130798015
1017 => 0.00042952202750631
1018 => 0.00045569910701898
1019 => 0.00047608171829862
1020 => 0.00047529939972869
1021 => 0.00047174521999379
1022 => 0.00044854015895168
1023 => 0.00042718651581275
1024 => 0.00044504974502204
1025 => 0.0004450952820669
1026 => 0.00044356081483571
1027 => 0.00043403037064932
1028 => 0.00044322917603646
1029 => 0.00044395934380294
1030 => 0.00044355064402099
1031 => 0.00043624367480859
1101 => 0.0004250872833749
1102 => 0.00042726721555641
1103 => 0.00043083798893915
1104 => 0.00042407776998427
1105 => 0.00042191747041207
1106 => 0.00042593387833059
1107 => 0.00043887558149589
1108 => 0.00043642902747867
1109 => 0.00043636513806598
1110 => 0.000446832533652
1111 => 0.00043934013741776
1112 => 0.00042729471148233
1113 => 0.00042425308257399
1114 => 0.00041345734903611
1115 => 0.0004209140006438
1116 => 0.00042118235226034
1117 => 0.00041709842037994
1118 => 0.00042762610004659
1119 => 0.0004275290856251
1120 => 0.00043752355063026
1121 => 0.00045662921397049
1122 => 0.00045097872918819
1123 => 0.00044440783015737
1124 => 0.00044512226907329
1125 => 0.0004529579005954
1126 => 0.00044822029890706
1127 => 0.00044992397350592
1128 => 0.00045295532187985
1129 => 0.00045478420961799
1130 => 0.00044485912027275
1201 => 0.00044254510717448
1202 => 0.00043781144848364
1203 => 0.00043657652528912
1204 => 0.00044043199152178
1205 => 0.00043941621238511
1206 => 0.00042115979834608
1207 => 0.00041925190150128
1208 => 0.00041931041397366
1209 => 0.00041451291664184
1210 => 0.00040719558167953
1211 => 0.00042642510106511
1212 => 0.0004248807015415
1213 => 0.00042317580399446
1214 => 0.00042338464421596
1215 => 0.00043173152683236
1216 => 0.00042688991338717
1217 => 0.00043976213625604
1218 => 0.00043711599420864
1219 => 0.00043440198860253
1220 => 0.00043402683035714
1221 => 0.00043298216974686
1222 => 0.00042939963981313
1223 => 0.00042507351964149
1224 => 0.00042221704038206
1225 => 0.00038947290144414
1226 => 0.00039555002316712
1227 => 0.00040254119776234
1228 => 0.00040495452321724
1229 => 0.0004008263630296
1230 => 0.00042956264473878
1231 => 0.00043481304031674
]
'min_raw' => 0.00018122594215117
'max_raw' => 0.00047608171829862
'avg_raw' => 0.0003286538302249
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000181'
'max' => '$0.000476'
'avg' => '$0.000328'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.0265381342923E-6
'max_diff' => -8.5856520064229E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00041890924963625
102 => 0.00041593429974742
103 => 0.00042975768195821
104 => 0.00042142049264536
105 => 0.00042517472848244
106 => 0.00041706012405988
107 => 0.00043354837377154
108 => 0.00043342276093411
109 => 0.00042700845939227
110 => 0.00043242978313219
111 => 0.00043148769472015
112 => 0.00042424596407714
113 => 0.00043377794954976
114 => 0.00043378267729564
115 => 0.00042760905152055
116 => 0.00042039960819571
117 => 0.00041911073000868
118 => 0.00041813973343118
119 => 0.00042493592284755
120 => 0.00043102936502714
121 => 0.00044236775023092
122 => 0.00044521848966454
123 => 0.00045634511545843
124 => 0.00044971975154375
125 => 0.0004526566895543
126 => 0.00045584515122
127 => 0.00045737381699433
128 => 0.00045488293814779
129 => 0.00047216716790759
130 => 0.00047362648647443
131 => 0.00047411578336683
201 => 0.00046828763834045
202 => 0.00047346439521821
203 => 0.00047104236211127
204 => 0.00047734381939534
205 => 0.00047833196835853
206 => 0.00047749504134113
207 => 0.00047780869541891
208 => 0.00046305965446599
209 => 0.0004622948388852
210 => 0.00045186652417218
211 => 0.00045611613949994
212 => 0.00044817168733405
213 => 0.00045069095495278
214 => 0.00045180142411465
215 => 0.00045122137804306
216 => 0.0004563564063745
217 => 0.00045199058327579
218 => 0.00044046845831053
219 => 0.00042894319415003
220 => 0.00042879850384677
221 => 0.00042576410523112
222 => 0.00042357079080983
223 => 0.00042399330097938
224 => 0.00042548228192574
225 => 0.00042348424853041
226 => 0.00042391063025817
227 => 0.00043099140790555
228 => 0.00043241140736493
229 => 0.00042758569437233
301 => 0.00040820976035999
302 => 0.00040345485755252
303 => 0.00040687258739671
304 => 0.00040523913266118
305 => 0.00032705960767511
306 => 0.0003454267274173
307 => 0.00033451360855494
308 => 0.00033954287581517
309 => 0.00032840340739513
310 => 0.00033371974559474
311 => 0.00033273801205086
312 => 0.00036227179707372
313 => 0.00036181066764298
314 => 0.00036203138589905
315 => 0.00035149592845855
316 => 0.0003682791982301
317 => 0.00037654724042643
318 => 0.0003750170458627
319 => 0.00037540216286765
320 => 0.00036878457676907
321 => 0.00036209545859781
322 => 0.00035467619709796
323 => 0.00036846026791623
324 => 0.00036692771454318
325 => 0.00037044284058567
326 => 0.00037938279581705
327 => 0.00038069923818446
328 => 0.0003824685500763
329 => 0.00038183437771127
330 => 0.00039694293630159
331 => 0.00039511319016682
401 => 0.00039952235189772
402 => 0.00039045237169336
403 => 0.0003801888281617
404 => 0.00038213959224655
405 => 0.00038195171797812
406 => 0.00037955986290902
407 => 0.0003774006030997
408 => 0.00037380604388487
409 => 0.00038517976113527
410 => 0.00038471800898575
411 => 0.00039219323955832
412 => 0.0003908719199441
413 => 0.00038204782417861
414 => 0.00038236297848515
415 => 0.00038448254265468
416 => 0.00039181837844617
417 => 0.00039399615397087
418 => 0.00039298732157848
419 => 0.00039537515302208
420 => 0.00039726239763538
421 => 0.00039561216188898
422 => 0.00041897602001872
423 => 0.00040927371720075
424 => 0.00041400255208604
425 => 0.00041513035134227
426 => 0.0004122415172625
427 => 0.00041286800193301
428 => 0.00041381695550198
429 => 0.00041957881574858
430 => 0.00043469960424337
501 => 0.00044139649853702
502 => 0.00046154443543842
503 => 0.0004408404146912
504 => 0.00043961192378182
505 => 0.00044324117562717
506 => 0.000455070147464
507 => 0.00046465641809893
508 => 0.00046783673711376
509 => 0.00046825706877291
510 => 0.00047422355866834
511 => 0.00047764343940795
512 => 0.00047349906986077
513 => 0.00046998715060312
514 => 0.00045740789173767
515 => 0.00045886397520353
516 => 0.00046889494635481
517 => 0.00048306428392725
518 => 0.00049522304963271
519 => 0.00049096547365843
520 => 0.00052344777296201
521 => 0.00052666826025967
522 => 0.00052622329304595
523 => 0.00053356004238278
524 => 0.00051899808905219
525 => 0.00051277257187881
526 => 0.0004707464674086
527 => 0.00048255408854221
528 => 0.00049971715929717
529 => 0.00049744556252454
530 => 0.00048498128177209
531 => 0.00049521359435806
601 => 0.00049183047182314
602 => 0.00048916206271397
603 => 0.00050138656213966
604 => 0.00048794522286635
605 => 0.00049958307165583
606 => 0.00048465741020519
607 => 0.00049098492190685
608 => 0.00048739312023768
609 => 0.00048971745611229
610 => 0.00047612943608333
611 => 0.00048346120186041
612 => 0.00047582441052239
613 => 0.00047582078968896
614 => 0.0004756522070969
615 => 0.00048463685823937
616 => 0.00048492984739056
617 => 0.00047829017662123
618 => 0.00047733329633221
619 => 0.00048087138428196
620 => 0.00047672920991951
621 => 0.00047866730723316
622 => 0.00047678791291277
623 => 0.00047636482166515
624 => 0.00047299355862106
625 => 0.00047154112580686
626 => 0.00047211066213789
627 => 0.00047016654102398
628 => 0.00046899513773091
629 => 0.00047541918549812
630 => 0.00047198707592145
701 => 0.00047489316548211
702 => 0.00047158130964999
703 => 0.00046010097442897
704 => 0.00045349851224101
705 => 0.00043181322323614
706 => 0.0004379631442974
707 => 0.00044204054832358
708 => 0.00044069296631725
709 => 0.00044358809391185
710 => 0.0004437658312329
711 => 0.00044282459573957
712 => 0.00044173476561802
713 => 0.00044120429658623
714 => 0.00044515797814403
715 => 0.00044745322336313
716 => 0.00044244977036623
717 => 0.0004412775313348
718 => 0.00044633629856288
719 => 0.00044942214364965
720 => 0.00047220628998381
721 => 0.00047051836683155
722 => 0.00047475472270553
723 => 0.0004742777740463
724 => 0.00047871814990664
725 => 0.00048597628779544
726 => 0.00047121846406023
727 => 0.00047377991197351
728 => 0.00047315190409765
729 => 0.00048000832941385
730 => 0.00048002973442528
731 => 0.00047591896494437
801 => 0.00047814747976959
802 => 0.00047690358393026
803 => 0.00047915147183454
804 => 0.00047049582358877
805 => 0.00048103746883263
806 => 0.00048701390239728
807 => 0.00048709688518312
808 => 0.00048992966726085
809 => 0.00049280793791551
810 => 0.00049833252779257
811 => 0.00049265386010231
812 => 0.0004824384897347
813 => 0.00048317600647979
814 => 0.00047718673857092
815 => 0.00047728741924651
816 => 0.00047674997790969
817 => 0.0004783628798182
818 => 0.00047084976485635
819 => 0.0004726130779209
820 => 0.00047014442930458
821 => 0.00047377454561354
822 => 0.00046986914054483
823 => 0.00047315160125323
824 => 0.00047456820247969
825 => 0.00047979549150254
826 => 0.00046909706570597
827 => 0.00044728225128701
828 => 0.00045186798975693
829 => 0.00044508532235793
830 => 0.00044571308404914
831 => 0.00044698126257293
901 => 0.00044287068105515
902 => 0.00044365485046943
903 => 0.00044362683441984
904 => 0.00044338540723994
905 => 0.00044231608622898
906 => 0.00044076535920436
907 => 0.00044694297838181
908 => 0.00044799267625887
909 => 0.00045032602460951
910 => 0.00045726848657573
911 => 0.00045657477091078
912 => 0.0004577062499423
913 => 0.00045523623756947
914 => 0.00044582766083895
915 => 0.00044633859182145
916 => 0.00043996727428262
917 => 0.00045016309569537
918 => 0.00044774859060657
919 => 0.00044619194346853
920 => 0.00044576719787468
921 => 0.00045272686886129
922 => 0.00045480931149996
923 => 0.00045351167299506
924 => 0.00045085017856337
925 => 0.00045596103467242
926 => 0.00045732848415749
927 => 0.0004576346056676
928 => 0.00046669006278339
929 => 0.0004581407051268
930 => 0.00046019862048804
1001 => 0.00047625388867865
1002 => 0.00046169397590533
1003 => 0.00046940668642616
1004 => 0.00046902918938118
1005 => 0.00047297475109974
1006 => 0.00046870553815794
1007 => 0.00046875846016896
1008 => 0.00047226185167954
1009 => 0.00046734197014292
1010 => 0.000466123738286
1011 => 0.00046444075970081
1012 => 0.00046811548187103
1013 => 0.00047031831161869
1014 => 0.00048807150158466
1015 => 0.00049954087194649
1016 => 0.00049904295633077
1017 => 0.00050359297299947
1018 => 0.00050154314881685
1019 => 0.00049492372581485
1020 => 0.00050622227372662
1021 => 0.00050264694041601
1022 => 0.00050294168655011
1023 => 0.00050293071608428
1024 => 0.00050530800017477
1025 => 0.00050362347652177
1026 => 0.0005003031074889
1027 => 0.00050250732340805
1028 => 0.00050905305666633
1029 => 0.00052937121354764
1030 => 0.00054074152331819
1031 => 0.00052868670662247
1101 => 0.00053700195775875
1102 => 0.00053201577010391
1103 => 0.00053110963148079
1104 => 0.00053633222368661
1105 => 0.00054156395734872
1106 => 0.00054123071853185
1107 => 0.00053743274854565
1108 => 0.00053528737167037
1109 => 0.000551532884124
1110 => 0.00056350230096475
1111 => 0.0005626860669802
1112 => 0.00056628865833449
1113 => 0.00057686597797466
1114 => 0.00057783303552327
1115 => 0.00057771120849971
1116 => 0.00057531425546345
1117 => 0.00058572900028772
1118 => 0.00059441716365012
1119 => 0.00057475943009019
1120 => 0.00058224483769119
1121 => 0.00058560527832804
1122 => 0.00059053940218075
1123 => 0.00059886409617546
1124 => 0.00060790692186974
1125 => 0.00060918567657245
1126 => 0.00060827833891683
1127 => 0.00060231435228725
1128 => 0.00061220912006528
1129 => 0.00061800524296879
1130 => 0.00062145670151591
1201 => 0.00063020902612348
1202 => 0.00058562603126538
1203 => 0.0005540679715862
1204 => 0.00054913972486339
1205 => 0.00055916150836796
1206 => 0.00056180417275589
1207 => 0.00056073891805473
1208 => 0.00052521745275256
1209 => 0.00054895271169991
1210 => 0.00057448985461002
1211 => 0.00057547084027248
1212 => 0.00058825526796976
1213 => 0.00059241840167939
1214 => 0.00060271154166894
1215 => 0.00060206770296007
1216 => 0.00060457391874789
1217 => 0.00060399778313988
1218 => 0.00062306365749418
1219 => 0.00064409614821671
1220 => 0.00064336785994221
1221 => 0.00064034419055572
1222 => 0.00064483485520691
1223 => 0.00066654263961125
1224 => 0.00066454413468345
1225 => 0.00066648551198856
1226 => 0.00069208021319839
1227 => 0.00072535696557496
1228 => 0.00070989657316473
1229 => 0.00074344117608686
1230 => 0.00076455572550334
1231 => 0.00080107115543399
]
'min_raw' => 0.00032705960767511
'max_raw' => 0.00080107115543399
'avg_raw' => 0.00056406538155455
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000327'
'max' => '$0.000801'
'avg' => '$0.000564'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00014583366552394
'max_diff' => 0.00032498943713537
'year' => 2028
]
3 => [
'items' => [
101 => 0.00079649924376439
102 => 0.00081071443267379
103 => 0.00078831456768904
104 => 0.00073687994992445
105 => 0.00072874022477939
106 => 0.00074503616065046
107 => 0.00078509812885532
108 => 0.00074377446670325
109 => 0.00075213418973656
110 => 0.00074972658894058
111 => 0.00074959829812581
112 => 0.00075449463672925
113 => 0.00074739224220911
114 => 0.00071845580923768
115 => 0.00073171720594501
116 => 0.00072659634381174
117 => 0.00073227832213417
118 => 0.00076294161571423
119 => 0.00074938464270087
120 => 0.00073510347291034
121 => 0.00075301522907294
122 => 0.00077582304981512
123 => 0.00077439577738267
124 => 0.00077162627231012
125 => 0.00078723782739752
126 => 0.00081302354264544
127 => 0.00081999331786156
128 => 0.00082513826343531
129 => 0.00082584766450537
130 => 0.00083315493641722
131 => 0.00079386189367754
201 => 0.00085622096162233
202 => 0.00086698865002191
203 => 0.00086496477087774
204 => 0.00087693260336028
205 => 0.00087341136344931
206 => 0.00086830963928393
207 => 0.00088728119939973
208 => 0.00086553183665293
209 => 0.00083466135440248
210 => 0.00081772519729097
211 => 0.00084002809517623
212 => 0.00085364769665088
213 => 0.00086264938685628
214 => 0.00086537329287346
215 => 0.00079691210073247
216 => 0.00076001531520026
217 => 0.0007836657317039
218 => 0.0008125208721029
219 => 0.00079370160191569
220 => 0.00079443928167744
221 => 0.00076760794800768
222 => 0.00081489484976667
223 => 0.00080800554592583
224 => 0.00084374726643908
225 => 0.00083521721799337
226 => 0.00086436320358633
227 => 0.00085668808879136
228 => 0.00088854706119539
301 => 0.00090125646783461
302 => 0.00092259753964304
303 => 0.00093829611893911
304 => 0.00094751462496774
305 => 0.00094696118044353
306 => 0.00098348949397041
307 => 0.00096195002368567
308 => 0.00093489137254469
309 => 0.0009344019669145
310 => 0.00094841602576447
311 => 0.00097778564854471
312 => 0.000985400764421
313 => 0.00098965657532263
314 => 0.00098313865278094
315 => 0.00095975910153461
316 => 0.00094966392984346
317 => 0.0009582653086096
318 => 0.00094774656150351
319 => 0.00096590487004779
320 => 0.0009908401060845
321 => 0.00098569107844753
322 => 0.0010029035058526
323 => 0.0010207165574166
324 => 0.0010461900211874
325 => 0.0010528497278967
326 => 0.0010638579698412
327 => 0.0010751890668212
328 => 0.0010788283097896
329 => 0.0010857767538069
330 => 0.0010857401320771
331 => 0.0011066797358077
401 => 0.0011297767671681
402 => 0.0011384953618091
403 => 0.00115854328944
404 => 0.0011242119159352
405 => 0.001150252657109
406 => 0.0011737420574898
407 => 0.0011457370260015
408 => 0.0011843354375726
409 => 0.0011858341264281
410 => 0.0012084625488196
411 => 0.0011855243076446
412 => 0.0011719036532563
413 => 0.001211225972116
414 => 0.0012302528035708
415 => 0.0012245217670911
416 => 0.0011809082965047
417 => 0.0011555233859536
418 => 0.001089086178658
419 => 0.0011677839205734
420 => 0.0012061152950159
421 => 0.001180809027505
422 => 0.0011935720368598
423 => 0.0012632028774798
424 => 0.0012897137933249
425 => 0.0012841997081544
426 => 0.0012851314977787
427 => 0.0012994363067615
428 => 0.0013628717075935
429 => 0.0013248597449939
430 => 0.0013539184661202
501 => 0.0013693311070267
502 => 0.0013836472268563
503 => 0.0013484913612108
504 => 0.0013027540965481
505 => 0.0012882671849097
506 => 0.0011782928179331
507 => 0.0011725681745375
508 => 0.0011693547587251
509 => 0.0011490946265746
510 => 0.0011331757124216
511 => 0.0011205164008557
512 => 0.0010872945869164
513 => 0.0010985059738843
514 => 0.0010455573363965
515 => 0.0010794319982767
516 => 0.00099492469435665
517 => 0.0010653048882094
518 => 0.0010270001484901
519 => 0.0010527207510089
520 => 0.0010526310142498
521 => 0.0010052712302881
522 => 0.00097795509527252
523 => 0.00099536199966434
524 => 0.0010140235829342
525 => 0.0010170513620346
526 => 0.0010412465918611
527 => 0.0010479989604309
528 => 0.0010275389684263
529 => 0.00099317346831833
530 => 0.0010011557901998
531 => 0.00097779333377437
601 => 0.00093685152751268
602 => 0.00096625664754518
603 => 0.00097629684837614
604 => 0.00098073117304071
605 => 0.00094046960878056
606 => 0.00092781855116894
607 => 0.00092108323424916
608 => 0.00098797620595542
609 => 0.00099164075394783
610 => 0.00097289240830377
611 => 0.001057636708406
612 => 0.0010384564633146
613 => 0.0010598854963558
614 => 0.0010004314781558
615 => 0.0010027027017165
616 => 0.0009745562167077
617 => 0.00099031636756382
618 => 0.00097917760091209
619 => 0.00098904310311949
620 => 0.00099495644446562
621 => 0.0010230983109132
622 => 0.0010656262231193
623 => 0.0010188948545145
624 => 0.00099853332800781
625 => 0.001011165504535
626 => 0.0010448066552756
627 => 0.0010957747207064
628 => 0.0010656006001434
629 => 0.0010789913624595
630 => 0.001081916648312
701 => 0.0010596673689155
702 => 0.0010965950833738
703 => 0.0011163849455521
704 => 0.0011366852492122
705 => 0.0011543114340786
706 => 0.0011285768615171
707 => 0.001156116543064
708 => 0.0011339244211454
709 => 0.0011140157936051
710 => 0.0011140459867751
711 => 0.0011015570139004
712 => 0.0010773580552438
713 => 0.0010728953959889
714 => 0.0010961107130047
715 => 0.0011147271987527
716 => 0.0011162605416858
717 => 0.0011265675847455
718 => 0.0011326671866572
719 => 0.0011924515773986
720 => 0.0012164973539173
721 => 0.001245900074281
722 => 0.0012573540909092
723 => 0.0012918265744678
724 => 0.001263987244276
725 => 0.0012579640300714
726 => 0.0011743450608216
727 => 0.0011880376623518
728 => 0.0012099608385413
729 => 0.0011747065659221
730 => 0.001197067287484
731 => 0.0012014817675851
801 => 0.0011735086392288
802 => 0.0011884502957314
803 => 0.0011487696859528
804 => 0.0010664911519779
805 => 0.0010966866829026
806 => 0.001118920757369
807 => 0.0010871899916639
808 => 0.0011440661610402
809 => 0.001110840277053
810 => 0.0011003092669527
811 => 0.0010592240419755
812 => 0.0010786146866494
813 => 0.0011048408112182
814 => 0.0010886361153489
815 => 0.001122263292425
816 => 0.0011698883432052
817 => 0.001203828790512
818 => 0.001206434316616
819 => 0.0011846128828311
820 => 0.0012195818697339
821 => 0.001219836580627
822 => 0.0011803914205481
823 => 0.0011562314796313
824 => 0.0011507422902221
825 => 0.0011644553615853
826 => 0.001181105561793
827 => 0.001207358286848
828 => 0.0012232222587737
829 => 0.0012645870839554
830 => 0.0012757792196271
831 => 0.0012880759834868
901 => 0.0013045082521848
902 => 0.0013242394039041
903 => 0.0012810687672375
904 => 0.0012827840171124
905 => 0.0012425841179866
906 => 0.001199624760522
907 => 0.0012322255578781
908 => 0.0012748467637189
909 => 0.0012650694120068
910 => 0.001263969260206
911 => 0.0012658194103783
912 => 0.0012584476064858
913 => 0.0012251052106919
914 => 0.0012083608682586
915 => 0.0012299653419349
916 => 0.0012414471581893
917 => 0.0012592544538803
918 => 0.00125705932882
919 => 0.0013029290101561
920 => 0.0013207525812962
921 => 0.0013161925490849
922 => 0.0013170317047551
923 => 0.0013493004289394
924 => 0.0013851898868017
925 => 0.0014188051001208
926 => 0.001452999938916
927 => 0.0014117767261011
928 => 0.001390846120928
929 => 0.0014124411627669
930 => 0.001400982529595
1001 => 0.0014668272346523
1002 => 0.0014713861791693
1003 => 0.001537226122905
1004 => 0.0015997160695849
1005 => 0.0015604672536989
1006 => 0.0015974771192739
1007 => 0.0016375063063518
1008 => 0.0017147291027266
1009 => 0.0016887231816383
1010 => 0.0016688030536494
1011 => 0.0016499786289532
1012 => 0.0016891492684527
1013 => 0.0017395416704025
1014 => 0.00175039571113
1015 => 0.0017679834036714
1016 => 0.0017494920954849
1017 => 0.0017717628394447
1018 => 0.0018503883518837
1019 => 0.0018291430443761
1020 => 0.0017989712923617
1021 => 0.0018610385831578
1022 => 0.0018835004944164
1023 => 0.0020411499510237
1024 => 0.0022401889021646
1025 => 0.002157785469432
1026 => 0.0021066349995928
1027 => 0.0021186565733104
1028 => 0.0021913388603733
1029 => 0.0022146821041575
1030 => 0.0021512271206535
1031 => 0.0021736404935739
1101 => 0.0022971403819994
1102 => 0.0023633941097889
1103 => 0.002273412648388
1104 => 0.0020251573650994
1105 => 0.0017962546562091
1106 => 0.0018569699622301
1107 => 0.0018500867307426
1108 => 0.001982771953931
1109 => 0.0018286363508183
1110 => 0.001831231599072
1111 => 0.0019666606121598
1112 => 0.001930530473309
1113 => 0.0018720042755693
1114 => 0.0017966819622215
1115 => 0.0016574416995274
1116 => 0.0015341127158572
1117 => 0.0017759892538031
1118 => 0.0017655590976629
1119 => 0.0017504546859094
1120 => 0.0017840679197988
1121 => 0.0019472842422827
1122 => 0.0019435215777698
1123 => 0.0019195854258668
1124 => 0.0019377407861216
1125 => 0.0018688215531368
1126 => 0.0018865836087387
1127 => 0.0017962183968505
1128 => 0.0018370672466086
1129 => 0.0018718787046344
1130 => 0.0018788676202256
1201 => 0.0018946140039153
1202 => 0.001760062879327
1203 => 0.0018204723840537
1204 => 0.0018559573084755
1205 => 0.0016956351289853
1206 => 0.0018527882544621
1207 => 0.0017577206435972
1208 => 0.0017254532686021
1209 => 0.0017688970381296
1210 => 0.0017519669588943
1211 => 0.0017374114709353
1212 => 0.0017292892585592
1213 => 0.0017611895681864
1214 => 0.0017597013806132
1215 => 0.0017075062824798
1216 => 0.0016394199047093
1217 => 0.0016622719279483
1218 => 0.0016539695736667
1219 => 0.0016238807707253
1220 => 0.0016441569909719
1221 => 0.001554870778566
1222 => 0.0014012584908153
1223 => 0.0015027394733751
1224 => 0.0014988325659366
1225 => 0.001496862526042
1226 => 0.0015731226797073
1227 => 0.0015657920255534
1228 => 0.0015524868164823
1229 => 0.0016236364101266
1230 => 0.0015976658513493
1231 => 0.0016777009940676
]
'min_raw' => 0.00071845580923768
'max_raw' => 0.0023633941097889
'avg_raw' => 0.0015409249595133
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000718'
'max' => '$0.002363'
'avg' => '$0.00154'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00039139620156257
'max_diff' => 0.0015623229543549
'year' => 2029
]
4 => [
'items' => [
101 => 0.0017304173154104
102 => 0.0017170467511235
103 => 0.0017666267061465
104 => 0.0016627983924091
105 => 0.0016972859933637
106 => 0.0017043938401227
107 => 0.0016227584351853
108 => 0.0015669914112327
109 => 0.0015632723865257
110 => 0.0014665800521613
111 => 0.0015182323167055
112 => 0.0015636841719885
113 => 0.0015419162605144
114 => 0.0015350251900396
115 => 0.0015702301746047
116 => 0.0015729659034157
117 => 0.0015105909966051
118 => 0.0015235607148874
119 => 0.001577646596161
120 => 0.0015221978894494
121 => 0.0014144701098035
122 => 0.0013877521309982
123 => 0.0013841874601156
124 => 0.0013117261825661
125 => 0.001389537554099
126 => 0.0013555708052098
127 => 0.0014628713579667
128 => 0.0014015818576963
129 => 0.0013989397898375
130 => 0.0013949459167617
131 => 0.0013325755018371
201 => 0.001346230658859
202 => 0.0013916224805386
203 => 0.0014078187938894
204 => 0.0014061293857144
205 => 0.001391400035849
206 => 0.0013981430567909
207 => 0.0013764214369127
208 => 0.0013687510808373
209 => 0.0013445413271656
210 => 0.0013089596773834
211 => 0.0013139075240206
212 => 0.001243410965357
213 => 0.0012050006986615
214 => 0.0011943692430793
215 => 0.0011801524163558
216 => 0.0011959750714873
217 => 0.0012432112574637
218 => 0.0011862343954603
219 => 0.0010885515620175
220 => 0.0010944224667509
221 => 0.0011076126465995
222 => 0.0010830328337134
223 => 0.0010597701036441
224 => 0.0010799951600744
225 => 0.0010386056558147
226 => 0.0011126143704486
227 => 0.0011106126421248
228 => 0.0011381985142721
301 => 0.0011554485262449
302 => 0.0011156928334053
303 => 0.0011056943841669
304 => 0.0011113899552573
305 => 0.0010172548521754
306 => 0.0011305056680383
307 => 0.0011314850657967
308 => 0.0011230988675795
309 => 0.0011834014307998
310 => 0.0013106586480358
311 => 0.0012627793640019
312 => 0.001244239058065
313 => 0.001208993922926
314 => 0.0012559559728496
315 => 0.0012523500201376
316 => 0.0012360425344568
317 => 0.0012261797162346
318 => 0.0012443522612195
319 => 0.0012239279368043
320 => 0.0012202591669165
321 => 0.001198030413057
322 => 0.001190095759273
323 => 0.001184221257499
324 => 0.0011777540082625
325 => 0.0011920191485402
326 => 0.0011596924639354
327 => 0.0011207096513261
328 => 0.0011174686522575
329 => 0.0011264173356374
330 => 0.0011224582093929
331 => 0.0011174496974842
401 => 0.0011078870842634
402 => 0.0011050500611937
403 => 0.0011142690098423
404 => 0.0011038613543161
405 => 0.0011192184169794
406 => 0.00111504214568
407 => 0.0010917138336893
408 => 0.0010626381197015
409 => 0.0010623792848586
410 => 0.0010561149699737
411 => 0.0010481364231217
412 => 0.0010459169739119
413 => 0.0010782918622341
414 => 0.0011453069121623
415 => 0.0011321502543272
416 => 0.0011416572879616
417 => 0.0011884224839859
418 => 0.0012032877335235
419 => 0.0011927367315045
420 => 0.0011782938691833
421 => 0.0011789292818267
422 => 0.0012282849145298
423 => 0.0012313631648007
424 => 0.0012391409101539
425 => 0.0012491375109234
426 => 0.001194439195842
427 => 0.0011763529961053
428 => 0.0011677827512858
429 => 0.0011413897143441
430 => 0.0011698523419178
501 => 0.0011532683877218
502 => 0.0011555061297314
503 => 0.001154048797312
504 => 0.0011548445993574
505 => 0.0011125936835045
506 => 0.0011279876965986
507 => 0.0011023921641118
508 => 0.0010681226193454
509 => 0.0010680077358149
510 => 0.0010763951583468
511 => 0.001071405991225
512 => 0.0010579802707832
513 => 0.0010598873310043
514 => 0.0010431794767641
515 => 0.0010619159670146
516 => 0.0010624532625126
517 => 0.0010552386931826
518 => 0.0010841048415509
519 => 0.0010959313260899
520 => 0.0010911825420059
521 => 0.0010955981387393
522 => 0.001132696972859
523 => 0.0011387457015561
524 => 0.0011414321472868
525 => 0.0011378326658935
526 => 0.0010962762373237
527 => 0.0010981194416423
528 => 0.0010845952313373
529 => 0.0010731686987758
530 => 0.001073625700154
531 => 0.0010795004232359
601 => 0.0011051556834825
602 => 0.0011591456662112
603 => 0.0011611945465895
604 => 0.0011636778493782
605 => 0.0011535770089287
606 => 0.0011505304987971
607 => 0.0011545496320317
608 => 0.0011748254308861
609 => 0.0012269802903655
610 => 0.0012085452797196
611 => 0.0011935573291064
612 => 0.0012067058025166
613 => 0.0012046816980963
614 => 0.0011875962198017
615 => 0.0011871166873309
616 => 0.0011543241919258
617 => 0.0011422015530235
618 => 0.0011320709685929
619 => 0.0011210086348604
620 => 0.0011144505126109
621 => 0.0011245267689993
622 => 0.0011268313280541
623 => 0.0011047994173581
624 => 0.0011017965493409
625 => 0.0011197882832071
626 => 0.001111870791932
627 => 0.0011200141280528
628 => 0.001121903451885
629 => 0.0011215992272332
630 => 0.001113332457024
701 => 0.0011186014498367
702 => 0.0011061387110722
703 => 0.0010925873545086
704 => 0.0010839424333004
705 => 0.0010763985929639
706 => 0.0010805843540332
707 => 0.0010656628801109
708 => 0.0010608892002932
709 => 0.0011168164336279
710 => 0.0011581304822112
711 => 0.0011575297595827
712 => 0.0011538730150746
713 => 0.0011484398344792
714 => 0.0011744279598844
715 => 0.0011653742166422
716 => 0.0011719615713165
717 => 0.0011736383295515
718 => 0.0011787133717216
719 => 0.0011805272630828
720 => 0.0011750444235607
721 => 0.0011566433444521
722 => 0.0011107896048357
723 => 0.0010894445652645
724 => 0.0010824003466762
725 => 0.001082656390643
726 => 0.0010755935550078
727 => 0.0010776738766365
728 => 0.0010748701040428
729 => 0.0010695604370557
730 => 0.001080256497059
731 => 0.0010814891183337
801 => 0.0010789925301205
802 => 0.0010795805670225
803 => 0.0010589098829242
804 => 0.0010604814301419
805 => 0.0010517308555315
806 => 0.0010500902282819
807 => 0.0010279695376667
808 => 0.0009887795277966
809 => 0.0010104945975309
810 => 0.00098426584689272
811 => 0.0009743326215956
812 => 0.0010213549652187
813 => 0.0010166352261157
814 => 0.0010085570843927
815 => 0.00099660782915215
816 => 0.00099217573414853
817 => 0.00096524772793735
818 => 0.00096365667767506
819 => 0.00097700292467066
820 => 0.00097084409089851
821 => 0.00096219475574967
822 => 0.00093086774060961
823 => 0.00089564580357391
824 => 0.00089670893245582
825 => 0.00090791237529944
826 => 0.00094048789635737
827 => 0.0009277600767178
828 => 0.00091852589753439
829 => 0.00091679661335174
830 => 0.00093844222539921
831 => 0.00096907530134231
901 => 0.00098344765519837
902 => 0.00096920508902189
903 => 0.00095284399587258
904 => 0.00095383981980257
905 => 0.00096046459027183
906 => 0.00096116075997894
907 => 0.00095051137028629
908 => 0.00095350911110561
909 => 0.00094895526868189
910 => 0.00092100834613326
911 => 0.00092050287492501
912 => 0.00091364424942657
913 => 0.00091343657297227
914 => 0.00090176834003511
915 => 0.00090013587358852
916 => 0.00087696788888069
917 => 0.0008922171265745
918 => 0.0008819887385504
919 => 0.00086657214516527
920 => 0.0008639143186548
921 => 0.00086383442118048
922 => 0.00087966381549981
923 => 0.00089203215088556
924 => 0.00088216666573923
925 => 0.00087992048600581
926 => 0.00090390380907338
927 => 0.00090085171260019
928 => 0.00089820861673832
929 => 0.00096633244537812
930 => 0.00091240711924108
1001 => 0.00088889259909532
1002 => 0.00085978891512868
1003 => 0.00086926522138173
1004 => 0.00087126201834515
1005 => 0.00080127290473872
1006 => 0.00077287833006518
1007 => 0.00076313438206419
1008 => 0.00075752660223042
1009 => 0.00076008213791873
1010 => 0.00073452369036112
1011 => 0.00075169938981754
1012 => 0.00072956793463444
1013 => 0.00072585752415101
1014 => 0.0007654313075796
1015 => 0.00077093776835699
1016 => 0.00074744549595734
1017 => 0.00076253133789135
1018 => 0.00075706100189719
1019 => 0.00072994731491243
1020 => 0.00072891177150439
1021 => 0.00071530707646762
1022 => 0.00069401836312313
1023 => 0.00068428884987226
1024 => 0.0006792216348957
1025 => 0.00068131246655308
1026 => 0.0006802552780866
1027 => 0.00067335640823302
1028 => 0.00068065071323108
1029 => 0.00066201677817594
1030 => 0.00065459659509317
1031 => 0.00065124507054162
1101 => 0.0006347063806509
1102 => 0.00066102679105581
1103 => 0.00066621224348137
1104 => 0.00067140791285008
1105 => 0.00071663266747055
1106 => 0.00071437336653354
1107 => 0.00073479634667992
1108 => 0.00073400274722688
1109 => 0.00072817778245879
1110 => 0.00070360321426241
1111 => 0.00071339819914593
1112 => 0.00068325075815309
1113 => 0.00070583927077165
1114 => 0.00069553081693138
1115 => 0.00070235397215888
1116 => 0.00069008532384072
1117 => 0.00069687530038007
1118 => 0.00066744190661908
1119 => 0.00063995741766409
1120 => 0.00065101797834183
1121 => 0.00066304207272707
1122 => 0.00068911337303653
1123 => 0.00067358552165577
1124 => 0.00067916992418536
1125 => 0.00066046311052893
1126 => 0.00062186561061857
1127 => 0.00062208406827638
1128 => 0.00061614668380742
1129 => 0.0006110159167539
1130 => 0.00067536908217767
1201 => 0.00066736574878423
1202 => 0.00065461348447215
1203 => 0.0006716828970087
1204 => 0.00067619632061137
1205 => 0.00067632481143621
1206 => 0.00068877821419757
1207 => 0.00069542459748371
1208 => 0.00069659605134496
1209 => 0.00071619174966354
1210 => 0.00072275996926641
1211 => 0.00074981353624142
1212 => 0.00069486069829757
1213 => 0.00069372898076284
1214 => 0.00067192309864809
1215 => 0.00065809346347355
1216 => 0.00067287002560026
1217 => 0.00068596004244263
1218 => 0.00067232984195966
1219 => 0.0006741096583935
1220 => 0.0006558122278734
1221 => 0.00066235269831021
1222 => 0.0006679862325469
1223 => 0.00066487572606524
1224 => 0.00066021914731197
1225 => 0.00068488681033814
1226 => 0.00068349496411685
1227 => 0.00070646605903395
1228 => 0.00072437367020058
1229 => 0.00075646731077958
1230 => 0.00072297592375607
1231 => 0.00072175536449673
]
'min_raw' => 0.0006110159167539
'max_raw' => 0.0017666267061465
'avg_raw' => 0.0011888213114502
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000611'
'max' => '$0.001766'
'avg' => '$0.001188'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00010743989248378
'max_diff' => -0.00059676740364238
'year' => 2030
]
5 => [
'items' => [
101 => 0.00073368652704067
102 => 0.00072275814266759
103 => 0.00072966450435637
104 => 0.00075535458913958
105 => 0.00075589738014915
106 => 0.00074680493139224
107 => 0.00074625165505906
108 => 0.00074799795930331
109 => 0.00075822611780673
110 => 0.00075465208494607
111 => 0.00075878804625587
112 => 0.00076396012920586
113 => 0.00078535405720473
114 => 0.00079051206081646
115 => 0.00077798078615822
116 => 0.00077911221995312
117 => 0.00077442517923976
118 => 0.0007698975566391
119 => 0.00078007499103921
120 => 0.00079867445244338
121 => 0.0007985587461593
122 => 0.0008028734596832
123 => 0.00080556149046357
124 => 0.00079402249459541
125 => 0.00078651103258588
126 => 0.00078939140508708
127 => 0.00079399718344285
128 => 0.00078789781324143
129 => 0.00075024967485515
130 => 0.00076166971506915
131 => 0.00075976886196611
201 => 0.00075706181599573
202 => 0.00076854475473948
203 => 0.00076743719728483
204 => 0.00073426155153984
205 => 0.00073638534874232
206 => 0.00073439070668196
207 => 0.00074083580324434
208 => 0.00072241008630222
209 => 0.00072807771273452
210 => 0.00073163239490216
211 => 0.00073372613000725
212 => 0.00074129013689446
213 => 0.00074040258798969
214 => 0.00074123496560836
215 => 0.00075245039099831
216 => 0.00080917416395142
217 => 0.00081226151375931
218 => 0.00079705827416013
219 => 0.00080313166850936
220 => 0.00079147207946418
221 => 0.00079929923970267
222 => 0.00080465438394953
223 => 0.00078045551683298
224 => 0.00077902261697169
225 => 0.00076731490465497
226 => 0.00077360596609525
227 => 0.00076359643500043
228 => 0.00076605242381257
301 => 0.00075918526498458
302 => 0.00077154478363727
303 => 0.000785364645966
304 => 0.00078885608895314
305 => 0.0007796716056147
306 => 0.00077302143439071
307 => 0.00076134592442398
308 => 0.00078076255770436
309 => 0.00078644057298673
310 => 0.00078073273350729
311 => 0.00077941010238115
312 => 0.00077690371878705
313 => 0.00077994184350908
314 => 0.00078640964929608
315 => 0.00078335955152855
316 => 0.00078537419483981
317 => 0.00077769645202844
318 => 0.00079402631448318
319 => 0.00081996206605672
320 => 0.00082004545373896
321 => 0.00081699533953026
322 => 0.00081574729851169
323 => 0.00081887690078622
324 => 0.00082057458163714
325 => 0.00083069514152206
326 => 0.00084155490549948
327 => 0.00089223268549583
328 => 0.00087800256766327
329 => 0.00092296690891065
330 => 0.00095852786494836
331 => 0.00096919104077193
401 => 0.00095938142075544
402 => 0.0009258232405843
403 => 0.00092417671616735
404 => 0.00097432680524125
405 => 0.00096015710805828
406 => 0.00095847166766597
407 => 0.00094054142948825
408 => 0.00095114042095448
409 => 0.00094882226604299
410 => 0.00094516294510719
411 => 0.00096538508249261
412 => 0.0010032391184355
413 => 0.00099733921194087
414 => 0.00099293520543144
415 => 0.00097363813089414
416 => 0.00098525927992323
417 => 0.00098112121134242
418 => 0.00099890098004879
419 => 0.00098836863893724
420 => 0.00096004975866584
421 => 0.00096455963368931
422 => 0.00096387797515212
423 => 0.00097790645954461
424 => 0.00097369545673837
425 => 0.00096305570927002
426 => 0.0010031097374559
427 => 0.0010005088516577
428 => 0.0010041963130742
429 => 0.0010058196476283
430 => 0.0010301998287539
501 => 0.0010401876088823
502 => 0.0010424550098321
503 => 0.0010519426284714
504 => 0.0010422189492374
505 => 0.0010811205990395
506 => 0.0011069879261837
507 => 0.0011370341577822
508 => 0.0011809397778133
509 => 0.0011974486970947
510 => 0.0011944665085921
511 => 0.0012277552486118
512 => 0.00128757437446
513 => 0.0012065576642203
514 => 0.0012918684568266
515 => 0.0012648600448479
516 => 0.001200823585907
517 => 0.0011967003928915
518 => 0.0012400666263648
519 => 0.0013362487583635
520 => 0.0013121562251865
521 => 0.0013362881651169
522 => 0.0013081369753447
523 => 0.0013067390314956
524 => 0.0013349209246643
525 => 0.0014007694541677
526 => 0.0013694872860959
527 => 0.0013246366274625
528 => 0.0013577536558438
529 => 0.0013290646210236
530 => 0.0012644201960185
531 => 0.0013121378020805
601 => 0.001280230397826
602 => 0.0012895426746784
603 => 0.0013566072925531
604 => 0.0013485379002994
605 => 0.0013589804410813
606 => 0.0013405496299302
607 => 0.001323332346043
608 => 0.0012911950070951
609 => 0.0012816807253843
610 => 0.0012843101305612
611 => 0.0012816794223817
612 => 0.0012636988765978
613 => 0.0012598159794477
614 => 0.0012533443140839
615 => 0.0012553501537907
616 => 0.0012431815295543
617 => 0.0012661462376545
618 => 0.0012704086898422
619 => 0.0012871204892997
620 => 0.0012888555637587
621 => 0.0013353976873704
622 => 0.0013097630677937
623 => 0.0013269609837923
624 => 0.0013254226403123
625 => 0.0012022114501478
626 => 0.0012191888650509
627 => 0.0012456003948339
628 => 0.0012337020364667
629 => 0.0012168805415224
630 => 0.0012032962824435
701 => 0.001182714740877
702 => 0.0012116828653983
703 => 0.0012497728687272
704 => 0.0012898215891012
705 => 0.0013379375025344
706 => 0.0013271985907871
707 => 0.0012889220955683
708 => 0.0012906391511828
709 => 0.0013012533133553
710 => 0.0012875070089436
711 => 0.0012834529554128
712 => 0.0013006963486544
713 => 0.0013008150944268
714 => 0.0012849983099048
715 => 0.0012674208483496
716 => 0.0012673471981438
717 => 0.0012642194586382
718 => 0.0013086933932544
719 => 0.0013331495604714
720 => 0.0013359534206297
721 => 0.0013329608383427
722 => 0.0013341125644936
723 => 0.001319882059645
724 => 0.0013524087738039
725 => 0.0013822585032748
726 => 0.0013742581381301
727 => 0.0013622644534594
728 => 0.001352710905925
729 => 0.0013720076259471
730 => 0.0013711483733804
731 => 0.0013819977919282
801 => 0.0013815055996336
802 => 0.0013778573482432
803 => 0.0013742582684207
804 => 0.0013885282130956
805 => 0.0013844186981975
806 => 0.0013803028000877
807 => 0.0013720477363161
808 => 0.0013731697365847
809 => 0.0013611781227927
810 => 0.0013556302535536
811 => 0.0012722036113973
812 => 0.001249909286569
813 => 0.0012569235350028
814 => 0.0012592328077121
815 => 0.0012495302889759
816 => 0.0012634412084711
817 => 0.0012612732064031
818 => 0.0012697076342109
819 => 0.0012644381698969
820 => 0.0012646544305504
821 => 0.0012801508015298
822 => 0.0012846494639514
823 => 0.0012823614079352
824 => 0.001283963883939
825 => 0.0013208922670846
826 => 0.0013156422319045
827 => 0.0013128532553522
828 => 0.0013136258209174
829 => 0.0013230618145645
830 => 0.0013257033775996
831 => 0.0013145108894007
901 => 0.0013197893315383
902 => 0.0013422642682261
903 => 0.0013501292240956
904 => 0.001375230387838
905 => 0.0013645669673426
906 => 0.0013841401371639
907 => 0.0014443013882092
908 => 0.0014923623583861
909 => 0.0014481635040078
910 => 0.0015364213552101
911 => 0.0016051427522079
912 => 0.0016025051105297
913 => 0.0015905219454086
914 => 0.0015122844619794
915 => 0.0014402891632728
916 => 0.0015005162877227
917 => 0.0015006698190488
918 => 0.0014954962556457
919 => 0.0014633636976769
920 => 0.0014943781122798
921 => 0.0014968399238831
922 => 0.0014954619640338
923 => 0.0014708260071779
924 => 0.0014332114545448
925 => 0.0014405612480928
926 => 0.0014526003598561
927 => 0.0014298078096664
928 => 0.0014225242088314
929 => 0.0014360658085453
930 => 0.001479699664328
1001 => 0.001471450936646
1002 => 0.0014712355290305
1003 => 0.001506527084059
1004 => 0.0014812659470528
1005 => 0.0014406539525268
1006 => 0.0014303988883025
1007 => 0.0013940003189455
1008 => 0.0014191409404477
1009 => 0.0014200457066585
1010 => 0.0014062764451927
1011 => 0.001441771252208
1012 => 0.0014414441613126
1013 => 0.0014751411978687
1014 => 0.0015395572757351
1015 => 0.0015205062717874
1016 => 0.0014983520269394
1017 => 0.001500760807625
1018 => 0.0015271791863681
1019 => 0.0015112060315071
1020 => 0.0015169500893639
1021 => 0.0015271704920486
1022 => 0.0015333367147466
1023 => 0.0014998735830715
1024 => 0.0014920717263515
1025 => 0.0014761118655818
1026 => 0.0014719482358119
1027 => 0.0014849472093954
1028 => 0.0014815224391166
1029 => 0.0014199696645619
1030 => 0.0014135370571446
1031 => 0.0014137343360304
1101 => 0.0013975592388256
1102 => 0.0013728883331202
1103 => 0.0014377220002908
1104 => 0.0014325149494704
1105 => 0.0014267667683585
1106 => 0.001427470887746
1107 => 0.0014556129852479
1108 => 0.0014392891474868
1109 => 0.0014826887455991
1110 => 0.0014737670929386
1111 => 0.0014646166335518
1112 => 0.0014633517613347
1113 => 0.0014598296151513
1114 => 0.0014477508653555
1115 => 0.0014331650491567
1116 => 0.0014235342299005
1117 => 0.0013131350793485
1118 => 0.0013336245195287
1119 => 0.0013571957527847
1120 => 0.0013653324480488
1121 => 0.0013514140677573
1122 => 0.0014483004478429
1123 => 0.0014660025231049
1124 => 0.0014123817824584
1125 => 0.0014023515312039
1126 => 0.0014489580294453
1127 => 0.001420848613593
1128 => 0.0014335062818301
1129 => 0.0014061473264759
1130 => 0.0014617386115516
1201 => 0.0014613150991002
1202 => 0.0014396888336196
1203 => 0.0014579672051135
1204 => 0.0014547908882578
1205 => 0.0014303748877934
1206 => 0.0014625126423163
1207 => 0.0014625285822416
1208 => 0.0014417137719121
1209 => 0.0014174066303952
1210 => 0.001413061087601
1211 => 0.0014097873048471
1212 => 0.0014327011319592
1213 => 0.0014532455976983
1214 => 0.0014914737550336
1215 => 0.0015010852220663
1216 => 0.0015385994177666
1217 => 0.0015162615407601
1218 => 0.0015261636323132
1219 => 0.0015369137534304
1220 => 0.0015420677568166
1221 => 0.0015336695848778
1222 => 0.0015919445722594
1223 => 0.0015968647666938
1224 => 0.0015985144653282
1225 => 0.0015788644674637
1226 => 0.0015963182647066
1227 => 0.0015881522109857
1228 => 0.0016093980141726
1229 => 0.0016127296273923
1230 => 0.0016099078695208
1231 => 0.0016109653761427
]
'min_raw' => 0.00072241008630222
'max_raw' => 0.0016127296273923
'avg_raw' => 0.0011675698568473
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000722'
'max' => '$0.001612'
'avg' => '$0.001167'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00011139416954831
'max_diff' => -0.00015389707875415
'year' => 2031
]
6 => [
'items' => [
101 => 0.0015612379548248
102 => 0.0015586593256964
103 => 0.0015234995345597
104 => 0.001537827409336
105 => 0.0015110421341947
106 => 0.0015195360208609
107 => 0.0015232800451707
108 => 0.0015213243793428
109 => 0.0015386374858785
110 => 0.0015239178084891
111 => 0.0014850701597197
112 => 0.0014462119269343
113 => 0.0014457240934749
114 => 0.0014354934066873
115 => 0.0014280984939836
116 => 0.0014295230165189
117 => 0.0014345432197369
118 => 0.0014278067106463
119 => 0.0014292442864105
120 => 0.0014531176226127
121 => 0.0014579052499312
122 => 0.0014416350216562
123 => 0.0013763077073491
124 => 0.0013602762205569
125 => 0.0013717993353449
126 => 0.0013662920286599
127 => 0.0011027043018492
128 => 0.0011646303284114
129 => 0.0011278359862373
130 => 0.0011447925119374
131 => 0.0011072350164264
201 => 0.0011251594218412
202 => 0.0011218494386556
203 => 0.0012214246568432
204 => 0.0012198699267724
205 => 0.0012206140937828
206 => 0.00118509306346
207 => 0.0012416790292653
208 => 0.0012695553107865
209 => 0.0012643961529801
210 => 0.0012656946018503
211 => 0.0012433829482939
212 => 0.0012208301193601
213 => 0.0011958155612171
214 => 0.001242289518354
215 => 0.0012371224076573
216 => 0.0012489739005278
217 => 0.0012791155837581
218 => 0.0012835540611109
219 => 0.0012895194196837
220 => 0.0012873812632785
221 => 0.0013383208234116
222 => 0.0013321517065694
223 => 0.001347017503183
224 => 0.0013164374316782
225 => 0.0012818331780835
226 => 0.0012884103153936
227 => 0.0012877768841806
228 => 0.0012797125778211
229 => 0.0012724324826193
301 => 0.0012603131752624
302 => 0.0012986604570597
303 => 0.0012971036274491
304 => 0.0013223068892284
305 => 0.0013178519678975
306 => 0.0012881009129455
307 => 0.0012891634776933
308 => 0.0012963097362742
309 => 0.0013210430188169
310 => 0.0013283855410458
311 => 0.0013249841922004
312 => 0.0013330349326256
313 => 0.0013393979096026
314 => 0.0013338340245678
315 => 0.0014126069034647
316 => 0.0013798949121208
317 => 0.0013958385090932
318 => 0.001399640963026
319 => 0.0013899010572341
320 => 0.0013920132940405
321 => 0.0013952127572521
322 => 0.0014146392713538
323 => 0.0014656200654637
324 => 0.001488199112137
325 => 0.0015561292880841
326 => 0.0014863242366263
327 => 0.0014821822937548
328 => 0.0014944185697376
329 => 0.001534300774158
330 => 0.0015666215548957
331 => 0.001577344222497
401 => 0.0015787614000324
402 => 0.0015988778372819
403 => 0.0016104082039639
404 => 0.001596435172685
405 => 0.0015845944917134
406 => 0.0015421826421927
407 => 0.0015470919292584
408 => 0.001580912048835
409 => 0.001628684959732
410 => 0.0016696790872059
411 => 0.0016553243725541
412 => 0.0017648407124979
413 => 0.0017756988102692
414 => 0.0017741985722415
415 => 0.0017989349348661
416 => 0.0017498382925289
417 => 0.0017288485267271
418 => 0.0015871545813369
419 => 0.0016269648003706
420 => 0.0016848312917083
421 => 0.0016771724445916
422 => 0.0016351482518064
423 => 0.0016696472080873
424 => 0.0016582407742587
425 => 0.0016492440466447
426 => 0.0016904597999458
427 => 0.0016451413861415
428 => 0.0016843792058639
429 => 0.0016340562962066
430 => 0.0016553899436815
501 => 0.0016432799335823
502 => 0.0016511165942635
503 => 0.0016053036360506
504 => 0.0016300231962556
505 => 0.0016042752210757
506 => 0.001604263013183
507 => 0.0016036946252038
508 => 0.0016339870038189
509 => 0.001634974837198
510 => 0.0016125887236322
511 => 0.0016093625349306
512 => 0.0016212914454745
513 => 0.0016073258154142
514 => 0.0016138602458208
515 => 0.0016075237366545
516 => 0.0016060972549738
517 => 0.0015947308062466
518 => 0.0015898338276079
519 => 0.0015917540591117
520 => 0.001585199319042
521 => 0.0015812498510546
522 => 0.0016029089766145
523 => 0.0015913373795545
524 => 0.001601135463405
525 => 0.0015899693102406
526 => 0.0015512625585115
527 => 0.0015290018962756
528 => 0.0014558884303771
529 => 0.001476623318609
530 => 0.0014903705709585
531 => 0.001485827104139
601 => 0.0014955882289555
602 => 0.0014961874827427
603 => 0.0014930140415619
604 => 0.0014893396032176
605 => 0.0014875510898408
606 => 0.0015008812032501
607 => 0.0015086197827552
608 => 0.0014917502916462
609 => 0.0014877980059087
610 => 0.00150485399281
611 => 0.0015152581349669
612 => 0.0015920764750708
613 => 0.0015863855243159
614 => 0.0016006686939179
615 => 0.0015990606282138
616 => 0.0016140316654441
617 => 0.0016385029840832
618 => 0.0015887459510016
619 => 0.0015973820514758
620 => 0.0015952646790762
621 => 0.0016183815957301
622 => 0.0016184537642206
623 => 0.001604594017911
624 => 0.0016121076112342
625 => 0.0016079137295658
626 => 0.0016154926405776
627 => 0.001586309518199
628 => 0.0016218514111328
629 => 0.0016420013741573
630 => 0.0016422811564134
701 => 0.001651832078967
702 => 0.0016615363694336
703 => 0.0016801629099187
704 => 0.001661016885329
705 => 0.0016265750509202
706 => 0.0016290616401181
707 => 0.001608868405206
708 => 0.0016092078571331
709 => 0.001607395836143
710 => 0.0016128338475368
711 => 0.001587502855894
712 => 0.0015934479890017
713 => 0.0015851247678362
714 => 0.0015973639584185
715 => 0.0015841966125627
716 => 0.0015952636580152
717 => 0.0016000398279541
718 => 0.0016176639978523
719 => 0.0015815935083389
720 => 0.0015080433384637
721 => 0.0015235044758811
722 => 0.0015006362391946
723 => 0.0015027527815655
724 => 0.0015070285339998
725 => 0.001493169421421
726 => 0.0014958133033502
727 => 0.001495718845283
728 => 0.00149490485669
729 => 0.001491299566244
730 => 0.0014860711818122
731 => 0.0015068994561765
801 => 0.0015104385858566
802 => 0.00151830563273
803 => 0.0015417126279563
804 => 0.0015393737171582
805 => 0.0015431885777104
806 => 0.0015348607585446
807 => 0.0015031390852118
808 => 0.0015048617246914
809 => 0.001483380382778
810 => 0.0015177563065206
811 => 0.0015096156340383
812 => 0.0015043672895308
813 => 0.0015029352301064
814 => 0.0015264002467464
815 => 0.0015334213474942
816 => 0.0015290462686767
817 => 0.0015200728543807
818 => 0.0015373044625809
819 => 0.0015419149139921
820 => 0.0015429470240362
821 => 0.0015734781299339
822 => 0.0015446533736976
823 => 0.0015515917790171
824 => 0.0016057232366648
825 => 0.0015566334742089
826 => 0.0015826374162141
827 => 0.0015813646585709
828 => 0.0015946673953754
829 => 0.0015802734458752
830 => 0.0015804518761302
831 => 0.0015922638052071
901 => 0.0015756760811112
902 => 0.0015715687273514
903 => 0.0015658944475496
904 => 0.0015782840299074
905 => 0.0015857110241983
906 => 0.0016455671436567
907 => 0.0016842369265975
908 => 0.0016825581693358
909 => 0.0016978988682063
910 => 0.0016909877428604
911 => 0.0016686698960558
912 => 0.0017067637391798
913 => 0.0016947092533013
914 => 0.0016957030104709
915 => 0.0016956660227794
916 => 0.0017036812020672
917 => 0.0016980017129614
918 => 0.0016868068569463
919 => 0.0016942385248112
920 => 0.0017163079215
921 => 0.0017848120059937
922 => 0.0018231477992348
923 => 0.0017825041431048
924 => 0.001810539592863
925 => 0.0017937283130602
926 => 0.0017906732034278
927 => 0.0018082815376795
928 => 0.0018259206929893
929 => 0.0018247971550522
930 => 0.0018119920340779
1001 => 0.0018047587461575
1002 => 0.0018595316256204
1003 => 0.0018998873501769
1004 => 0.0018971353603104
1005 => 0.0019092817485863
1006 => 0.001944943920238
1007 => 0.0019482044222809
1008 => 0.0019477936739653
1009 => 0.0019397121794537
1010 => 0.0019748262187629
1011 => 0.0020041189681275
1012 => 0.001937841546971
1013 => 0.0019630791213122
1014 => 0.0019744090815379
1015 => 0.0019910448245968
1016 => 0.0020191121116115
1017 => 0.0020496006297897
1018 => 0.0020539120405497
1019 => 0.0020508528882955
1020 => 0.0020307448909816
1021 => 0.0020641057913759
1022 => 0.0020836478244174
1023 => 0.0020952846578822
1024 => 0.0021247937313644
1025 => 0.0019744790515151
1026 => 0.0018680788499933
1027 => 0.0018514629220882
1028 => 0.0018852520648724
1029 => 0.0018941619923612
1030 => 0.0018905704117626
1031 => 0.0017708073114668
1101 => 0.0018508323941507
1102 => 0.0019369326544185
1103 => 0.0019402401160697
1104 => 0.0019833437066313
1105 => 0.001997380002594
1106 => 0.0020320840427129
1107 => 0.0020299132955545
1108 => 0.0020383631770616
1109 => 0.0020364206956347
1110 => 0.002100702622157
1111 => 0.0021716151330697
1112 => 0.0021691596583047
1113 => 0.0021589651458623
1114 => 0.002174105735262
1115 => 0.0022472950459703
1116 => 0.0022405569470751
1117 => 0.0022471024362019
1118 => 0.0023333967582958
1119 => 0.0024455916522421
1120 => 0.0023934658598209
1121 => 0.0025065638305822
1122 => 0.0025777530081106
1123 => 0.0027008673295477
1124 => 0.002685452810153
1125 => 0.0027333803120338
1126 => 0.0026578576033291
1127 => 0.0024844421984855
1128 => 0.0024569985468614
1129 => 0.0025119414323967
1130 => 0.0026470131552366
1201 => 0.002507687543165
1202 => 0.002535872933029
1203 => 0.002527755538852
1204 => 0.0025273229974131
1205 => 0.002543831344866
1206 => 0.002519885125868
1207 => 0.0024223239218276
1208 => 0.0024670356467075
1209 => 0.002449770302498
1210 => 0.0024689274891151
1211 => 0.0025723109242631
1212 => 0.0025266026432309
1213 => 0.0024784526822027
1214 => 0.0025388434186638
1215 => 0.0026157415786873
1216 => 0.0026109294300323
1217 => 0.0026015918503195
1218 => 0.0026542272982606
1219 => 0.0027411656375202
1220 => 0.0027646647212755
1221 => 0.002782011264486
1222 => 0.0027844030597225
1223 => 0.0028090400371508
1224 => 0.0026765608002013
1225 => 0.0028868087515482
1226 => 0.0029231127647634
1227 => 0.0029162891149261
1228 => 0.0029566394977084
1229 => 0.0029447673915034
1230 => 0.0029275665722889
1231 => 0.0029915305117713
]
'min_raw' => 0.0011027043018492
'max_raw' => 0.0029915305117713
'avg_raw' => 0.0020471174068103
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0011027'
'max' => '$0.002991'
'avg' => '$0.002047'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00038029421554702
'max_diff' => 0.0013788008843789
'year' => 2032
]
7 => [
'items' => [
101 => 0.0029182010167784
102 => 0.0028141190305628
103 => 0.0027570175944166
104 => 0.0028322133717754
105 => 0.0028781328090373
106 => 0.0029084826360428
107 => 0.0029176664753568
108 => 0.0026868447862456
109 => 0.0025624446977725
110 => 0.0026421837282339
111 => 0.0027394708486906
112 => 0.002676020365335
113 => 0.0026785075041549
114 => 0.0025880437893834
115 => 0.0027474748801299
116 => 0.0027242471112347
117 => 0.0028447528173523
118 => 0.0028159931634686
119 => 0.002914260888803
120 => 0.0028883837034124
121 => 0.002995798453195
122 => 0.0030386491050216
123 => 0.0031106020186097
124 => 0.0031635308747463
125 => 0.0031946117114373
126 => 0.0031927457345837
127 => 0.0033159034939649
128 => 0.0032432816660622
129 => 0.0031520515345656
130 => 0.0031504014693142
131 => 0.0031976508471573
201 => 0.0032966725808825
202 => 0.0033223474757298
203 => 0.0033366962393158
204 => 0.0033147206083997
205 => 0.0032358948190646
206 => 0.0032018582428855
207 => 0.0032308583919246
208 => 0.003195393701661
209 => 0.0032566157066906
210 => 0.003340686595911
211 => 0.0033233262897393
212 => 0.0033813591904686
213 => 0.0034414171374843
214 => 0.0035273026990879
215 => 0.0035497563652242
216 => 0.0035868714215111
217 => 0.0036250750060912
218 => 0.0036373449678428
219 => 0.0036607721319723
220 => 0.0036606486592533
221 => 0.0037312479951874
222 => 0.0038091212490021
223 => 0.0038385165995471
224 => 0.0039061095872564
225 => 0.003790358964545
226 => 0.0038781571415189
227 => 0.0039573532948803
228 => 0.0038629323759687
301 => 0.0039930696154358
302 => 0.003998122549547
303 => 0.0040744158555061
304 => 0.0039970779738877
305 => 0.0039511549866539
306 => 0.0040837329300859
307 => 0.0041478832207466
308 => 0.0041285606311272
309 => 0.0039815147700498
310 => 0.0038959277718091
311 => 0.0036719300889141
312 => 0.003937265020283
313 => 0.0040665019254268
314 => 0.0039811800776869
315 => 0.0040242114548114
316 => 0.0042589766954318
317 => 0.0043483600991364
318 => 0.004329768976003
319 => 0.0043329105697766
320 => 0.0043811402319921
321 => 0.0045950171148156
322 => 0.0044668571290004
323 => 0.0045648306360931
324 => 0.0046167954309853
325 => 0.0046650632285106
326 => 0.0045465327729824
327 => 0.0043923263918985
328 => 0.0043434827578657
329 => 0.003972696501439
330 => 0.0039533954665488
331 => 0.0039425612107838
401 => 0.0038742527607212
402 => 0.0038205810302312
403 => 0.0037778992774419
404 => 0.0036658896122725
405 => 0.003703689586189
406 => 0.003525169558143
407 => 0.0036393803457255
408 => 0.0033544580704474
409 => 0.0035917498078101
410 => 0.0034626027034949
411 => 0.0035493215106424
412 => 0.0035490189568936
413 => 0.0033893421387124
414 => 0.0032972438823556
415 => 0.0033559324758239
416 => 0.0034188513067283
417 => 0.0034290596753581
418 => 0.0035106355819752
419 => 0.0035334016640437
420 => 0.0034644193725292
421 => 0.0033485536895925
422 => 0.0033754666451238
423 => 0.0032966984921708
424 => 0.0031586603338939
425 => 0.0032578017490834
426 => 0.0032916529871694
427 => 0.0033066036223707
428 => 0.0031708589474949
429 => 0.0031282050234887
430 => 0.0031054964322489
501 => 0.0033310307566746
502 => 0.0033433860360816
503 => 0.003280174679775
504 => 0.0035658960042278
505 => 0.0035012284687802
506 => 0.003573477949806
507 => 0.0033730245764976
508 => 0.0033806821653042
509 => 0.0032857843259722
510 => 0.0033389207749222
511 => 0.0033013656454721
512 => 0.0033346278749517
513 => 0.0033545651181565
514 => 0.0034494473856868
515 => 0.0035928332108938
516 => 0.0034352751389626
517 => 0.003366624830749
518 => 0.0034092150958607
519 => 0.0035226385843328
520 => 0.0036944809754094
521 => 0.0035927468212416
522 => 0.0036378947113033
523 => 0.003647757516792
524 => 0.0035727425179117
525 => 0.0036972468854184
526 => 0.0037639697874369
527 => 0.0038324136785488
528 => 0.0038918415914469
529 => 0.0038050756833253
530 => 0.0038979276424198
531 => 0.0038231053539668
601 => 0.0037559820262385
602 => 0.0037560838246194
603 => 0.0037139763806201
604 => 0.003632387901992
605 => 0.0036173417347412
606 => 0.0036956137969015
607 => 0.0037583805783623
608 => 0.003763550351116
609 => 0.0037983012664064
610 => 0.0038188665001123
611 => 0.00402043374751
612 => 0.004101505761865
613 => 0.0042006390864037
614 => 0.0042392571031596
615 => 0.0043554834882694
616 => 0.0042616212428477
617 => 0.0042413135556295
618 => 0.0039593863627139
619 => 0.00400555192476
620 => 0.0040794674439099
621 => 0.0039606052023999
622 => 0.0040359959363214
623 => 0.0040508796641915
624 => 0.0039565663089166
625 => 0.0040069431470085
626 => 0.0038731572007279
627 => 0.003595749378928
628 => 0.0036975557196253
629 => 0.0037725194540223
630 => 0.003665536962076
701 => 0.0038572989380955
702 => 0.0037452755504756
703 => 0.003709769514671
704 => 0.0035712478101815
705 => 0.0036366247225112
706 => 0.0037250479325443
707 => 0.0036704126690453
708 => 0.0037837890443317
709 => 0.0039443602281121
710 => 0.0040587928158533
711 => 0.004067577529025
712 => 0.0039940050414953
713 => 0.0041119054222949
714 => 0.0041127641978543
715 => 0.0039797720866751
716 => 0.0038983151590811
717 => 0.0038798079737449
718 => 0.0039260425512621
719 => 0.0039821798637419
720 => 0.0040706927591718
721 => 0.0041241792481065
722 => 0.0042636436442065
723 => 0.0043013787110335
724 => 0.004342838108919
725 => 0.0043982406500989
726 => 0.0044647656057053
727 => 0.0043192127901063
728 => 0.0043249958748145
729 => 0.0041894591082446
730 => 0.0040446186352262
731 => 0.0041545344996273
801 => 0.0042982348708371
802 => 0.0042652698469067
803 => 0.0042615606083002
804 => 0.0042677985187794
805 => 0.0042429439672729
806 => 0.004130527751962
807 => 0.0040740730323956
808 => 0.0041469140237713
809 => 0.0041856257689079
810 => 0.0042456643095959
811 => 0.0042382632921962
812 => 0.0043929161253398
813 => 0.0044530095398405
814 => 0.0044376350728691
815 => 0.004440464344799
816 => 0.0045492606013169
817 => 0.0046702644142215
818 => 0.0047836004528661
819 => 0.0048988907392715
820 => 0.0047599037991533
821 => 0.004689334802484
822 => 0.0047621439937616
823 => 0.0047235104120061
824 => 0.0049455104322375
825 => 0.0049608812319717
826 => 0.0051828651990747
827 => 0.0053935544172146
828 => 0.0052612242941904
829 => 0.0053860056399226
830 => 0.0055209668389044
831 => 0.0057813288884057
901 => 0.005693648109781
902 => 0.0056264860074874
903 => 0.005563018145345
904 => 0.0056950846912241
905 => 0.005864986192683
906 => 0.0059015813488008
907 => 0.0059608794821374
908 => 0.0058985347455648
909 => 0.0059736221137191
910 => 0.0062387135183651
911 => 0.0061670834808032
912 => 0.0060653573123621
913 => 0.006274621516681
914 => 0.00635035341873
915 => 0.006881879568415
916 => 0.0075529532886424
917 => 0.0072751243619606
918 => 0.0071026669816858
919 => 0.0071431985567942
920 => 0.0073882519621422
921 => 0.0074669553383337
922 => 0.0072530124311645
923 => 0.0073285806828173
924 => 0.0077449691791308
925 => 0.0079683482480606
926 => 0.0076649694686424
927 => 0.0068279594484047
928 => 0.0060561979839041
929 => 0.0062609038771613
930 => 0.0062376965816294
1001 => 0.0066850540753954
1002 => 0.0061653751280969
1003 => 0.0061741251887785
1004 => 0.0066307335617558
1005 => 0.0065089182760947
1006 => 0.0063115931142468
1007 => 0.0060576386759587
1008 => 0.0055881804088408
1009 => 0.0051723681298421
1010 => 0.0059878717648072
1011 => 0.0059527057651704
1012 => 0.0059017801863871
1013 => 0.0060151095512462
1014 => 0.0065654047779003
1015 => 0.0065527186917941
1016 => 0.0064720162844844
1017 => 0.0065332283491504
1018 => 0.0063008623433549
1019 => 0.006360748353924
1020 => 0.0060560757329451
1021 => 0.0061938004818801
1022 => 0.0063111697430727
1023 => 0.0063347333599387
1024 => 0.006387823391926
1025 => 0.0059341748813172
1026 => 0.00613784974416
1027 => 0.0062574896443263
1028 => 0.005716952222838
1029 => 0.0062468049574638
1030 => 0.0059262778700243
1031 => 0.0058174861623921
1101 => 0.0059639598645013
1102 => 0.005906878920339
1103 => 0.0058578040764537
1104 => 0.0058304194703529
1105 => 0.0059379735914694
1106 => 0.0059329560631643
1107 => 0.0057569766456625
1108 => 0.00552741866937
1109 => 0.0056044658611975
1110 => 0.0055764738940853
1111 => 0.0054750273942351
1112 => 0.005543390086437
1113 => 0.0052423553875465
1114 => 0.0047244408345274
1115 => 0.0050665910524036
1116 => 0.0050534186412032
1117 => 0.0050467765141547
1118 => 0.0053038929465512
1119 => 0.0052791771342616
1120 => 0.0052343176929381
1121 => 0.005474203515416
1122 => 0.0053866419632919
1123 => 0.0056564860348419
1124 => 0.005834222792785
1125 => 0.0057891430017889
1126 => 0.0059563052817107
1127 => 0.0056062408728837
1128 => 0.0057225182273497
1129 => 0.0057464828289517
1130 => 0.0054712433616031
1201 => 0.0052832209468178
1202 => 0.0052706819953641
1203 => 0.0049446770392111
1204 => 0.005118826255368
1205 => 0.0052720703588018
1206 => 0.0051986783254798
1207 => 0.0051754446002547
1208 => 0.0052941406636496
1209 => 0.0053033643643384
1210 => 0.0050930630111494
1211 => 0.0051367913218551
1212 => 0.0053191456467247
1213 => 0.0051321964607414
1214 => 0.0047689847303519
1215 => 0.0046789031994202
1216 => 0.0046668846626619
1217 => 0.004422576406319
1218 => 0.0046849228780587
1219 => 0.004570401612696
1220 => 0.0049321729178014
1221 => 0.0047255310885436
1222 => 0.0047166231722941
1223 => 0.0047031575503757
1224 => 0.0044928713418944
1225 => 0.0045389106571661
1226 => 0.0046919523531149
1227 => 0.0047465593543675
1228 => 0.0047408633967549
1229 => 0.0046912023653131
1230 => 0.0047139369312015
1231 => 0.0046407009732271
]
'min_raw' => 0.0025624446977725
'max_raw' => 0.0079683482480606
'avg_raw' => 0.0052653964729165
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002562'
'max' => '$0.007968'
'avg' => '$0.005265'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0014597403959233
'max_diff' => 0.0049768177362893
'year' => 2033
]
8 => [
'items' => [
101 => 0.0046148398321917
102 => 0.0045332149574167
103 => 0.0044132489409446
104 => 0.0044299309513294
105 => 0.0041922468818824
106 => 0.0040627439859993
107 => 0.0040268992912396
108 => 0.003978966267354
109 => 0.0040323134538324
110 => 0.0041915735527771
111 => 0.003999472084535
112 => 0.0036701275915852
113 => 0.0036899217567872
114 => 0.0037343933690557
115 => 0.0036515208138025
116 => 0.0035730888952217
117 => 0.003641279085045
118 => 0.0035017314817105
119 => 0.0037512570302221
120 => 0.0037445080634221
121 => 0.0038375157573508
122 => 0.0038956753770745
123 => 0.003761636283012
124 => 0.0037279258133355
125 => 0.0037471288289186
126 => 0.0034297457565751
127 => 0.0038115787891763
128 => 0.0038148808970982
129 => 0.0037866062443031
130 => 0.0039899205463909
131 => 0.0044189771391174
201 => 0.0042575487901722
202 => 0.004195038854263
203 => 0.004076207420405
204 => 0.0042345432505084
205 => 0.0042223855291802
206 => 0.0041674037026551
207 => 0.004134150522419
208 => 0.0041954205266022
209 => 0.0041265584908556
210 => 0.0041141889770333
211 => 0.004039243181434
212 => 0.0040124909422215
213 => 0.0039926846493459
214 => 0.003970879867016
215 => 0.0040189757834226
216 => 0.0039099841093006
217 => 0.003778550834895
218 => 0.0037676235802559
219 => 0.0037977946910485
220 => 0.0037844462204978
221 => 0.0037675596729145
222 => 0.0037353186548002
223 => 0.0037257534334461
224 => 0.0037568357624613
225 => 0.0037217456252155
226 => 0.0037735230341804
227 => 0.0037594424439167
228 => 0.0036807894113092
301 => 0.0035827586115978
302 => 0.0035818859318538
303 => 0.0035607653568588
304 => 0.0035338651291029
305 => 0.003526382101135
306 => 0.003635536297456
307 => 0.0038614822171303
308 => 0.0038171236266706
309 => 0.003849177254329
310 => 0.0040068493777666
311 => 0.0040569686044413
312 => 0.0040213951644866
313 => 0.0039727000458023
314 => 0.0039748423838925
315 => 0.0041412483454515
316 => 0.0041516268811562
317 => 0.0041778500926395
318 => 0.0042115543300743
319 => 0.004027135141863
320 => 0.0039661562567123
321 => 0.0039372610779482
322 => 0.0038482751111962
323 => 0.003944238847258
324 => 0.0038883248878317
325 => 0.0038958695912511
326 => 0.0038909560932515
327 => 0.0038936391954086
328 => 0.0037511872827459
329 => 0.0038030892726681
330 => 0.003716792147866
331 => 0.0036012499850629
401 => 0.0036008626472188
402 => 0.0036291414278764
403 => 0.0036123201025925
404 => 0.0035670543487692
405 => 0.0035734841354515
406 => 0.0035171524383754
407 => 0.0035803238233948
408 => 0.0035821353526791
409 => 0.003557810928478
410 => 0.0036551351630717
411 => 0.0036950089813938
412 => 0.003678998124305
413 => 0.0036938856169788
414 => 0.0038189669263713
415 => 0.0038393606374824
416 => 0.003848418176825
417 => 0.0038362822739999
418 => 0.0036961718736995
419 => 0.0037023863657482
420 => 0.0036567885464747
421 => 0.0036182631941685
422 => 0.0036198040062219
423 => 0.0036396110452525
424 => 0.0037261095463669
425 => 0.0039081405425969
426 => 0.0039150484858409
427 => 0.0039234211145716
428 => 0.003889365425778
429 => 0.0038790939041688
430 => 0.003892644692476
501 => 0.0039610059639249
502 => 0.0041368497139956
503 => 0.0040746947885115
504 => 0.0040241618665938
505 => 0.0040684928626935
506 => 0.0040616684533218
507 => 0.0040040635703816
508 => 0.0040024467931765
509 => 0.0038918846054191
510 => 0.0038510122819845
511 => 0.003816856309282
512 => 0.0037795588787553
513 => 0.0037574477117178
514 => 0.003791420513633
515 => 0.0037991904953854
516 => 0.0037249083702548
517 => 0.0037147839910814
518 => 0.0037754443779541
519 => 0.0037487500033386
520 => 0.0037762058296193
521 => 0.0037825758168281
522 => 0.0037815501021742
523 => 0.0037536781092462
524 => 0.0037714428863837
525 => 0.0037294238925186
526 => 0.003683734547739
527 => 0.0036545875923164
528 => 0.0036291530079276
529 => 0.0036432655936132
530 => 0.0035929568025002
531 => 0.0035768620077073
601 => 0.0037654245796097
602 => 0.0039047177788633
603 => 0.00390269240058
604 => 0.0038903634311653
605 => 0.0038720450834553
606 => 0.003959665862692
607 => 0.0039291405352387
608 => 0.0039513502614374
609 => 0.0039570035688943
610 => 0.0039741144278988
611 => 0.003980230089265
612 => 0.0039617443130166
613 => 0.0038997037900798
614 => 0.0037451047055572
615 => 0.0036731384143797
616 => 0.0036493883395977
617 => 0.0036502516097082
618 => 0.0036264387662529
619 => 0.0036334527158673
620 => 0.0036239996008143
621 => 0.0036060976878582
622 => 0.0036421602009344
623 => 0.0036463160696209
624 => 0.003637898648154
625 => 0.0036398812556246
626 => 0.0035701886010062
627 => 0.0035754871821723
628 => 0.0035459840089281
629 => 0.0035404525196108
630 => 0.0034658710667845
701 => 0.0033337392123483
702 => 0.0034069530860554
703 => 0.0033185210220458
704 => 0.0032850304594409
705 => 0.0034435695739614
706 => 0.003427656644054
707 => 0.0034004206252371
708 => 0.0033601328769231
709 => 0.0033451897591794
710 => 0.0032544001061851
711 => 0.0032490357691422
712 => 0.003294033572693
713 => 0.0032732686346342
714 => 0.0032441067973026
715 => 0.0031384855785755
716 => 0.0030197323587426
717 => 0.0030233167719932
718 => 0.0030610899617399
719 => 0.0031709206053369
720 => 0.0031280078727941
721 => 0.0030968741929675
722 => 0.0030910437906109
723 => 0.0031640234828773
724 => 0.0032673050371525
725 => 0.0033157624316239
726 => 0.0032677426253757
727 => 0.0032125800575278
728 => 0.0032159375474339
729 => 0.0032382734235978
730 => 0.0032406206083703
731 => 0.0032047154475049
801 => 0.0032148225399728
802 => 0.0031994689423021
803 => 0.0031052439417376
804 => 0.0031035397102681
805 => 0.0030804153755462
806 => 0.003079715179881
807 => 0.0030403749178833
808 => 0.0030348709432835
809 => 0.002956758465304
810 => 0.0030081723348565
811 => 0.00297368661051
812 => 0.0029217084895598
813 => 0.0029127474419163
814 => 0.0029124780620033
815 => 0.002965847970124
816 => 0.0030075486764066
817 => 0.0029742865044496
818 => 0.0029667133526551
819 => 0.0030475748008396
820 => 0.0030372844444896
821 => 0.0030283730622563
822 => 0.0032580573067692
823 => 0.0030762443047521
824 => 0.0029969634583493
825 => 0.0028988383559014
826 => 0.0029307883840482
827 => 0.0029375207244223
828 => 0.0027015475414143
829 => 0.0026058132504566
830 => 0.0025729608494705
831 => 0.0025540538282383
901 => 0.0025626699952332
902 => 0.0024764979048589
903 => 0.0025344069747453
904 => 0.0024597892284266
905 => 0.0024472793204291
906 => 0.0025807050942119
907 => 0.0025992705111717
908 => 0.0025200646745982
909 => 0.0025709276439386
910 => 0.0025524840242076
911 => 0.0024610683355213
912 => 0.0024575769286218
913 => 0.0024117077494558
914 => 0.0023399313660844
915 => 0.0023071276328662
916 => 0.002290043163791
917 => 0.0022970925487011
918 => 0.0022935281639758
919 => 0.0022702681426007
920 => 0.0022948614011738
921 => 0.0022320357881556
922 => 0.0022070181228314
923 => 0.0021957182238099
924 => 0.0021399568761489
925 => 0.0022286979774614
926 => 0.0022461810923509
927 => 0.0022636986543776
928 => 0.002416177072072
929 => 0.0024085596812235
930 => 0.002477417184674
1001 => 0.0024747415087107
1002 => 0.0024551022333091
1003 => 0.0023722473608934
1004 => 0.0024052718362922
1005 => 0.0023036276341577
1006 => 0.0023797863815308
1007 => 0.002345030709695
1008 => 0.0023680354539221
1009 => 0.0023266708495477
1010 => 0.0023495637295111
1011 => 0.002250326987472
1012 => 0.0021576611140546
1013 => 0.0021949525666032
1014 => 0.0022354926403185
1015 => 0.002323393849552
1016 => 0.0022710406145018
1017 => 0.0022898688175208
1018 => 0.0022267974892101
1019 => 0.0020966633234709
1020 => 0.0020973998687165
1021 => 0.0020773815624444
1022 => 0.0020600828231048
1023 => 0.0022770540133256
1024 => 0.0022500702160147
1025 => 0.0022070750665519
1026 => 0.0022646257826672
1027 => 0.0022798431054607
1028 => 0.0022802763212476
1029 => 0.0023222638381264
1030 => 0.0023446725834112
1031 => 0.0023486222218927
1101 => 0.0024146904869018
1102 => 0.0024368356978713
1103 => 0.0025280486877473
1104 => 0.002342771357935
1105 => 0.0023389556932526
1106 => 0.0022654356392647
1107 => 0.0022188080587195
1108 => 0.0022686282695963
1109 => 0.0023127621752961
1110 => 0.0022668070027376
1111 => 0.0022728077781071
1112 => 0.0022111167136228
1113 => 0.0022331683663415
1114 => 0.0022521622203413
1115 => 0.0022416749305698
1116 => 0.0022259749501912
1117 => 0.0023091436983252
1118 => 0.0023044509916145
1119 => 0.0023818996419181
1120 => 0.0024422764032359
1121 => 0.0025504823531544
1122 => 0.0024375638035107
1123 => 0.0024334486027511
1124 => 0.0024736753502751
1125 => 0.0024368295393659
1126 => 0.0024601148199864
1127 => 0.0025467307344574
1128 => 0.0025485607922426
1129 => 0.0025179049664442
1130 => 0.0025160395566584
1201 => 0.0025219273433409
1202 => 0.0025564122938424
1203 => 0.0025443621925217
1204 => 0.0025583068748413
1205 => 0.0025757449136105
1206 => 0.002647876035535
1207 => 0.0026652666048323
1208 => 0.0026230165374164
1209 => 0.0026268312454501
1210 => 0.0026110285604462
1211 => 0.0025957633647396
1212 => 0.0026300772953853
1213 => 0.0026927866780824
1214 => 0.0026923965662673
1215 => 0.0027069439241568
1216 => 0.0027160068076051
1217 => 0.0026771022774087
1218 => 0.00265177685881
1219 => 0.002661488235799
1220 => 0.0026770169390907
1221 => 0.0026564524866121
1222 => 0.0025295191595337
1223 => 0.002568022622437
1224 => 0.0025616137634867
1225 => 0.0025524867689977
1226 => 0.0025912022986854
1227 => 0.0025874680913999
1228 => 0.002475614085521
1229 => 0.002482774616068
1230 => 0.0024760495411
1231 => 0.0024977796341423
]
'min_raw' => 0.0020600828231048
'max_raw' => 0.0046148398321917
'avg_raw' => 0.0033374613276483
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00206'
'max' => '$0.004614'
'avg' => '$0.003337'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0005023618746677
'max_diff' => -0.0033535084158689
'year' => 2034
]
9 => [
'items' => [
101 => 0.0024356560430295
102 => 0.002454764841247
103 => 0.0024667497003552
104 => 0.002473808874442
105 => 0.0024993114517643
106 => 0.0024963190186652
107 => 0.0024991254379213
108 => 0.0025369390276595
109 => 0.0027281871884982
110 => 0.0027385964039274
111 => 0.0026873376201625
112 => 0.0027078144932418
113 => 0.0026685033747294
114 => 0.0026948931919484
115 => 0.0027129484346609
116 => 0.0026313602646665
117 => 0.0026265291427423
118 => 0.0025870557732601
119 => 0.0026082665261339
120 => 0.0025745186932046
121 => 0.0025827992309563
122 => 0.0025596461255181
123 => 0.0026013171055696
124 => 0.002647911736283
125 => 0.0026596833800789
126 => 0.0026287172532631
127 => 0.0026062957366813
128 => 0.0025669309396704
129 => 0.0026323954744013
130 => 0.0026515392993521
131 => 0.0026322949200386
201 => 0.0026278355768537
202 => 0.002619385129576
203 => 0.0026296283791914
204 => 0.0026514350379701
205 => 0.0026411514203958
206 => 0.0026479439309777
207 => 0.0026220578850463
208 => 0.002677115156427
209 => 0.0027645593536335
210 => 0.0027648405010261
211 => 0.0027545568280193
212 => 0.0027503489705898
213 => 0.0027609006431602
214 => 0.0027666244926774
215 => 0.0028007466669243
216 => 0.0028373611193787
217 => 0.003008224792846
218 => 0.0029602469570584
219 => 0.003111847372884
220 => 0.0032317436189518
221 => 0.0032676952607202
222 => 0.0032346214419488
223 => 0.0031214776945444
224 => 0.003115926322516
225 => 0.0032850108491961
226 => 0.003237236725847
227 => 0.0032315541458907
228 => 0.0031711010960253
301 => 0.0032068363357516
302 => 0.0031990205146191
303 => 0.0031866828585984
304 => 0.0032548632066579
305 => 0.0033824907317236
306 => 0.0033625987850588
307 => 0.0033477503696343
308 => 0.0032826889355531
309 => 0.0033218704508674
310 => 0.0033079186637365
311 => 0.0033678643952738
312 => 0.0033323538718716
313 => 0.0032368747898755
314 => 0.0032520801483866
315 => 0.0032497818890366
316 => 0.0032970799036034
317 => 0.0032828822136393
318 => 0.0032470095622063
319 => 0.0033820545147178
320 => 0.0033732854466612
321 => 0.0033857179802775
322 => 0.0033911911660642
323 => 0.003473390648899
324 => 0.0035070651469263
325 => 0.0035147098475336
326 => 0.0035466980161804
327 => 0.0035139139527571
328 => 0.0036450735810914
329 => 0.0037322870805573
330 => 0.0038335900481525
331 => 0.0039816209114799
401 => 0.004037281885453
402 => 0.0040272272287068
403 => 0.0041394625398287
404 => 0.004341146899064
405 => 0.0040679934040848
406 => 0.0043556246975664
407 => 0.0042645639509131
408 => 0.004048660558711
409 => 0.0040347589255869
410 => 0.0041809712094761
411 => 0.0045052559827316
412 => 0.0044240263250385
413 => 0.0045053888453518
414 => 0.0044104751435817
415 => 0.0044057618782933
416 => 0.0045007790987082
417 => 0.0047227920133267
418 => 0.0046173219996211
419 => 0.0044661048726658
420 => 0.0045777612460105
421 => 0.0044810341621098
422 => 0.0042630809698753
423 => 0.0044239642102502
424 => 0.0043163861691024
425 => 0.0043477831606725
426 => 0.0045738962021392
427 => 0.0045466896827691
428 => 0.0045818974380899
429 => 0.004519756671496
430 => 0.0044617073967978
501 => 0.0043533541147778
502 => 0.004321276049724
503 => 0.004330141272857
504 => 0.0043212716565596
505 => 0.0042606489910875
506 => 0.0042475575322508
507 => 0.0042257378606395
508 => 0.0042325006892543
509 => 0.0041914733230551
510 => 0.0042689004397594
511 => 0.0042832715949052
512 => 0.0043396165935569
513 => 0.0043454665182343
514 => 0.0045023865374585
515 => 0.0044159576278036
516 => 0.0044739416023131
517 => 0.0044687549698667
518 => 0.0040533398398963
519 => 0.0041105803795675
520 => 0.004199628696225
521 => 0.004159512550273
522 => 0.0041027977056292
523 => 0.0040569974277218
524 => 0.0039876053233732
525 => 0.0040852733776865
526 => 0.0042136964832689
527 => 0.0043487235401222
528 => 0.0045109497016083
529 => 0.0044747427108853
530 => 0.0043456908348754
531 => 0.0043514800077608
601 => 0.0043872663965824
602 => 0.0043409197715221
603 => 0.0043272512469982
604 => 0.0043853885512073
605 => 0.0043857889108697
606 => 0.004332461517561
607 => 0.0042731978787084
608 => 0.0042729495618977
609 => 0.0042624041697827
610 => 0.0044123511454122
611 => 0.0044948068206592
612 => 0.0045042602309423
613 => 0.0044941705308263
614 => 0.0044980536559551
615 => 0.0044500745153157
616 => 0.0045597406030452
617 => 0.0046603810499978
618 => 0.0046334072603449
619 => 0.0045929697151052
620 => 0.0045607592625857
621 => 0.0046258195013942
622 => 0.0046229224713744
623 => 0.0046595020434904
624 => 0.0046578425828054
625 => 0.0046455422485301
626 => 0.0046334076996286
627 => 0.0046815198143958
628 => 0.0046676642979998
629 => 0.0046537872601598
630 => 0.0046259547363035
701 => 0.0046297376385448
702 => 0.0045893070754174
703 => 0.0045706020469379
704 => 0.0042893232982458
705 => 0.004214156425547
706 => 0.0042378054538609
707 => 0.0042455913280285
708 => 0.004212878608701
709 => 0.0042597802450085
710 => 0.0042524706746711
711 => 0.0042809079368983
712 => 0.0042631415700612
713 => 0.0042638707079533
714 => 0.0043161178046326
715 => 0.0043312853590737
716 => 0.0043235710184678
717 => 0.004328973878196
718 => 0.0044534805002287
719 => 0.0044357796400733
720 => 0.004426376410907
721 => 0.0044289811696489
722 => 0.0044607952810303
723 => 0.0044697014952311
724 => 0.004431965239834
725 => 0.00444976187603
726 => 0.0045255376942228
727 => 0.0045520549420504
728 => 0.0046366852681152
729 => 0.0046007328014188
730 => 0.0046667251100264
731 => 0.0048695629682501
801 => 0.0050316038847114
802 => 0.0048825843613095
803 => 0.0051801518686044
804 => 0.0054118508565572
805 => 0.0054029578634847
806 => 0.005362555785641
807 => 0.005098772647893
808 => 0.0048560354717523
809 => 0.0050590954267589
810 => 0.0050596130683439
811 => 0.0050421700381239
812 => 0.0049338328755086
813 => 0.0050384001396993
814 => 0.0050467003093982
815 => 0.0050420544215601
816 => 0.0049589925729928
817 => 0.0048321724826262
818 => 0.0048569528247195
819 => 0.0048975435305735
820 => 0.0048206968562835
821 => 0.0047961396875437
822 => 0.0048417961364236
823 => 0.0049889107276133
824 => 0.0049610995663257
825 => 0.0049603733045107
826 => 0.005079361246267
827 => 0.0049941915591745
828 => 0.0048572653841909
829 => 0.0048226897191732
830 => 0.0046999694013191
831 => 0.0047847327619757
901 => 0.0047877832444244
902 => 0.0047413592180533
903 => 0.0048610324380735
904 => 0.004859929628283
905 => 0.004973541539684
906 => 0.0051907248435975
907 => 0.0051264930536889
908 => 0.0050517984704242
909 => 0.0050599198426812
910 => 0.0051489912510859
911 => 0.005095136644262
912 => 0.0051145031363635
913 => 0.0051489619375807
914 => 0.0051697517879189
915 => 0.0050569285031552
916 => 0.0050306239985152
917 => 0.0049768142136484
918 => 0.0049627762451839
919 => 0.0050066031921799
920 => 0.0049950563400753
921 => 0.0047875268631867
922 => 0.0047658388781687
923 => 0.0047665040177059
924 => 0.0047119685481707
925 => 0.0046287888671172
926 => 0.0048473801025252
927 => 0.0048298241671395
928 => 0.0048104437731952
929 => 0.0048128177608704
930 => 0.0049077008074167
1001 => 0.0048526638487111
1002 => 0.0049989886238099
1003 => 0.004968908648975
1004 => 0.0049380572362877
1005 => 0.0049337926312972
1006 => 0.0049219174695315
1007 => 0.0048811931212835
1008 => 0.0048320160236202
1009 => 0.0047995450440956
1010 => 0.0044273266001871
1011 => 0.0044964081782814
1012 => 0.004575880236895
1013 => 0.0046033136730641
1014 => 0.0045563868821609
1015 => 0.0048830460770105
1016 => 0.0049427298596759
1017 => 0.0047619437889057
1018 => 0.0047281260965112
1019 => 0.0048852631592939
1020 => 0.0047904903012113
1021 => 0.0048331665134029
1022 => 0.0047409238852847
1023 => 0.004928353784177
1024 => 0.0049269258823784
1025 => 0.004854011418413
1026 => 0.0049156382240598
1027 => 0.0049049290500175
1028 => 0.004822608799781
1029 => 0.0049309634829415
1030 => 0.0049310172255125
1031 => 0.0048608386392429
1101 => 0.0047788854145481
1102 => 0.0047642341136214
1103 => 0.0047531963264985
1104 => 0.0048304518943993
1105 => 0.0048997189950072
1106 => 0.005028607896468
1107 => 0.00506101362862
1108 => 0.0051874953585811
1109 => 0.0051121816466729
1110 => 0.005145567239686
1111 => 0.0051818120235821
1112 => 0.0051991891058397
1113 => 0.0051708740828066
1114 => 0.0053673522713931
1115 => 0.005383941050446
1116 => 0.00538950312457
1117 => 0.0053232517848507
1118 => 0.0053820984808406
1119 => 0.0053545660605847
1120 => 0.005426197769364
1121 => 0.0054374305359402
1122 => 0.0054279167822674
1123 => 0.0054314822396758
1124 => 0.0052638227668448
1125 => 0.0052551287387043
1126 => 0.005136585048109
1127 => 0.0051848924782573
1128 => 0.0050945840530304
1129 => 0.0051232217849497
1130 => 0.0051358450243094
1201 => 0.0051292513604304
1202 => 0.005187623707878
1203 => 0.0051379952878648
1204 => 0.0050070177277824
1205 => 0.0048760044829513
1206 => 0.0048743597183835
1207 => 0.0048398662435953
1208 => 0.0048149337791185
1209 => 0.0048197366563034
1210 => 0.0048366626219522
1211 => 0.0048139500112252
1212 => 0.0048187968982824
1213 => 0.0048992875180714
1214 => 0.0049154293378372
1215 => 0.0048605731272568
1216 => 0.0046403175260629
1217 => 0.0045862662490606
1218 => 0.0046251172350865
1219 => 0.0046065489660901
1220 => 0.0037178445420405
1221 => 0.0039266324641319
1222 => 0.0038025777705931
1223 => 0.0038597478808578
1224 => 0.0037331201625618
1225 => 0.00379355354686
1226 => 0.003782393707454
1227 => 0.0041181185076931
1228 => 0.0041128766267118
1229 => 0.0041153856377434
1230 => 0.003995624004011
1231 => 0.0041864075384294
]
'min_raw' => 0.0024356560430295
'max_raw' => 0.0054374305359402
'avg_raw' => 0.0039365432894848
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002435'
'max' => '$0.005437'
'avg' => '$0.003936'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0003755732199247
'max_diff' => 0.00082259070374845
'year' => 2035
]
10 => [
'items' => [
101 => 0.0042803943678379
102 => 0.0042629999070929
103 => 0.0042673777181134
104 => 0.004192152420398
105 => 0.0041161139830596
106 => 0.0040317756538198
107 => 0.0041884658450149
108 => 0.0041710445705447
109 => 0.0042110027062025
110 => 0.0043126274956387
111 => 0.0043275921319183
112 => 0.0043477047548343
113 => 0.0043404958112329
114 => 0.0045122420947082
115 => 0.0044914424865609
116 => 0.0045415635577403
117 => 0.0044384607116295
118 => 0.004321790054643
119 => 0.004343965332285
120 => 0.0043418296747258
121 => 0.004314640302803
122 => 0.00429009495355
123 => 0.0042492338626531
124 => 0.0043785244005545
125 => 0.004373275440828
126 => 0.0044582499975525
127 => 0.0044432299192527
128 => 0.0043429221603294
129 => 0.0043465046715629
130 => 0.0043705987813039
131 => 0.0044539887702193
201 => 0.0044787445965527
202 => 0.004467276711446
203 => 0.0044944203448742
204 => 0.0045158735660008
205 => 0.0044971145391481
206 => 0.0047627028000958
207 => 0.0046524120374014
208 => 0.0047061669877404
209 => 0.0047189872266537
210 => 0.0046861484542579
211 => 0.0046932700081223
212 => 0.0047040572217195
213 => 0.0047695550703292
214 => 0.0049414403770362
215 => 0.0050175672093138
216 => 0.0052465985402529
217 => 0.0050112459356298
218 => 0.0049972810860574
219 => 0.0050385365448431
220 => 0.0051730021815329
221 => 0.0052819739503549
222 => 0.0053181261728053
223 => 0.0053229042858103
224 => 0.0053907282584816
225 => 0.0054296036947746
226 => 0.0053824926442517
227 => 0.0053425709616662
228 => 0.0051995764499065
229 => 0.0052161284540038
301 => 0.0053301553484016
302 => 0.0054912250528891
303 => 0.0056294396157859
304 => 0.0055810416931233
305 => 0.0059502836794303
306 => 0.0059868925141544
307 => 0.0059818343569009
308 => 0.0060652347305274
309 => 0.0058997019730695
310 => 0.0058289335122101
311 => 0.0053512024825716
312 => 0.0054854254155045
313 => 0.005680526331159
314 => 0.0056547039933813
315 => 0.0055130164933705
316 => 0.0056293321331117
317 => 0.0055908745450869
318 => 0.005560541449805
319 => 0.0056995032396514
320 => 0.0055467090434796
321 => 0.0056790020921707
322 => 0.0055093348888279
323 => 0.0055812627707573
324 => 0.005540433026214
325 => 0.0055668548748388
326 => 0.0054123932876654
327 => 0.0054957370107611
328 => 0.0054089259147759
329 => 0.0054088847550132
330 => 0.0054069683952578
331 => 0.0055091012647051
401 => 0.0055124318139111
402 => 0.0054369554690754
403 => 0.0054260781486224
404 => 0.0054662973033713
405 => 0.0054192112065737
406 => 0.0054412424949089
407 => 0.0054198785118537
408 => 0.0054150690292737
409 => 0.0053767462538098
410 => 0.0053602357484333
411 => 0.0053667099430147
412 => 0.0053446101792322
413 => 0.0053312942721698
414 => 0.0054043195261866
415 => 0.0053653050787958
416 => 0.005398340002578
417 => 0.0053606925375884
418 => 0.0052301900217147
419 => 0.0051551366447966
420 => 0.0049086294899007
421 => 0.004978538613238
422 => 0.0050248884343369
423 => 0.0050095698187402
424 => 0.0050424801325591
425 => 0.0050445005585411
426 => 0.0050338010800376
427 => 0.0050214124546187
428 => 0.0050153823568987
429 => 0.0050603257649371
430 => 0.0050864169260289
501 => 0.0050295402589647
502 => 0.0050162148516607
503 => 0.0050737203023095
504 => 0.0051087985939854
505 => 0.0053677969909309
506 => 0.0053486095531314
507 => 0.0053967662566637
508 => 0.0053913445508708
509 => 0.0054418204481372
510 => 0.0055243272074619
511 => 0.0053565678965021
512 => 0.0053856851122042
513 => 0.0053785462433287
514 => 0.0054564865417989
515 => 0.0054567298629033
516 => 0.0054100007605637
517 => 0.0054353333650351
518 => 0.0054211934001828
519 => 0.0054467462278018
520 => 0.0053483532932016
521 => 0.0054681852666837
522 => 0.0055361222738462
523 => 0.0055370655792566
524 => 0.0055692671814702
525 => 0.0056019858743102
526 => 0.0056647865560191
527 => 0.0056002343973825
528 => 0.0054841113480211
529 => 0.0054924950571099
530 => 0.0054244121557571
531 => 0.005425556641629
601 => 0.0054194472863497
602 => 0.0054377819214337
603 => 0.0053523767145565
604 => 0.0053724211459051
605 => 0.0053443588246371
606 => 0.0053856241101982
607 => 0.0053412294843305
608 => 0.00537854280075
609 => 0.0053946459911606
610 => 0.0054540671104527
611 => 0.0053324529366972
612 => 0.005084473403854
613 => 0.0051366017081188
614 => 0.0050594998515212
615 => 0.0050666359218967
616 => 0.0050810519197526
617 => 0.0050343249540808
618 => 0.005043238986595
619 => 0.0050429205146265
620 => 0.0050401760952546
621 => 0.0050280206068023
622 => 0.0050103927436564
623 => 0.0050806167248595
624 => 0.00509254914767
625 => 0.0051190734454633
626 => 0.005197991764093
627 => 0.0051901059630398
628 => 0.0052029680317363
629 => 0.0051748902079892
630 => 0.0050679383716112
701 => 0.0050737463708874
702 => 0.0050013205268471
703 => 0.0051172213537957
704 => 0.0050897745081581
705 => 0.0050720793482232
706 => 0.0050672510598905
707 => 0.0051463650017676
708 => 0.0051700371331363
709 => 0.005155286249445
710 => 0.005125031756642
711 => 0.0051831293267616
712 => 0.0051986737855859
713 => 0.0052021536166591
714 => 0.0053050913718069
715 => 0.005207906693676
716 => 0.0052313000116347
717 => 0.0054138080004316
718 => 0.0052482984389737
719 => 0.0053359725449816
720 => 0.0053316813537265
721 => 0.0053765324596302
722 => 0.0053280022539368
723 => 0.0053286038439993
724 => 0.0053684285875646
725 => 0.0053125019176574
726 => 0.0052986536876899
727 => 0.0052795224571726
728 => 0.005321294799105
729 => 0.0053463354288929
730 => 0.0055481445146677
731 => 0.0056785223876907
801 => 0.0056728623403756
802 => 0.005724584577671
803 => 0.005701283236048
804 => 0.005626037057364
805 => 0.0057544731090837
806 => 0.0057138305683269
807 => 0.0057171810900062
808 => 0.005717056383422
809 => 0.0057440801199926
810 => 0.0057249313259432
811 => 0.0056871870872885
812 => 0.0057122434743574
813 => 0.0057866519861297
814 => 0.0060176182898028
815 => 0.0061468700932347
816 => 0.0060098371689428
817 => 0.0061043606451754
818 => 0.0060476802415942
819 => 0.0060373797261675
820 => 0.0060967474544716
821 => 0.0061562190981251
822 => 0.0061524310115274
823 => 0.0061092576521376
824 => 0.0060848701169018
825 => 0.0062695407041312
826 => 0.0064056028470205
827 => 0.0063963243210476
828 => 0.0064372767171535
829 => 0.0065575142187305
830 => 0.0065685072290093
831 => 0.0065671223623856
901 => 0.0065398750394077
902 => 0.0066582644745228
903 => 0.0067570270241598
904 => 0.0065335680713891
905 => 0.0066186583153117
906 => 0.006656858067245
907 => 0.0067129466364387
908 => 0.0068075774542043
909 => 0.0069103716218824
910 => 0.0069249078442728
911 => 0.0069145936988645
912 => 0.0068467981820252
913 => 0.0069592767868881
914 => 0.0070251641156689
915 => 0.0070643985121532
916 => 0.0071638904136562
917 => 0.0066570939759082
918 => 0.0062983582678529
919 => 0.0062423365068336
920 => 0.0063562589608132
921 => 0.0063862994034131
922 => 0.0063741901386686
923 => 0.0059704004844287
924 => 0.0062402106378702
925 => 0.0065305036766913
926 => 0.006541655014568
927 => 0.006686981779543
928 => 0.0067343061313643
929 => 0.0068513132255837
930 => 0.0068439943999827
1001 => 0.0068724837654356
1002 => 0.006865934553685
1003 => 0.0070826655569759
1004 => 0.0073217520384712
1005 => 0.0073134732338655
1006 => 0.0072791017234077
1007 => 0.007330149277651
1008 => 0.0075769121486186
1009 => 0.0075541941777543
1010 => 0.0075762627513368
1011 => 0.0078672100831536
1012 => 0.0082454830012908
1013 => 0.008069737252836
1014 => 0.008451054957506
1015 => 0.0086910742398128
1016 => 0.0091061627701054
1017 => 0.0090541916417587
1018 => 0.0092157825605412
1019 => 0.0089611524753162
1020 => 0.0083764703304088
1021 => 0.0082839421429039
1022 => 0.0084691859174757
1023 => 0.0089245896614372
1024 => 0.008454843632934
1025 => 0.0085498726427017
1026 => 0.0085225042814956
1027 => 0.008521045937835
1028 => 0.0085767049838486
1029 => 0.0084959686346252
1030 => 0.0081670342236973
1031 => 0.0083177829258029
1101 => 0.0082595716123727
1102 => 0.0083241614045644
1103 => 0.0086727258741667
1104 => 0.0085186172134164
1105 => 0.008356276258087
1106 => 0.008559887842412
1107 => 0.0088191553577892
1108 => 0.0088029308626254
1109 => 0.0087714485606948
1110 => 0.008948912648318
1111 => 0.0092420313289725
1112 => 0.0093212601305071
1113 => 0.0093797452120385
1114 => 0.0093878093166681
1115 => 0.0094708746061663
1116 => 0.0090242116093861
1117 => 0.0097330772563956
1118 => 0.0098554787716158
1119 => 0.0098324723597774
1120 => 0.0099685164925016
1121 => 0.0099284888575476
1122 => 0.0098704950946428
1123 => 0.010086153982427
1124 => 0.0098389184703572
1125 => 0.0094879987870589
1126 => 0.0092954773083972
1127 => 0.0095490051217637
1128 => 0.0097038257104852
1129 => 0.0098061522711913
1130 => 0.0098371162266336
1201 => 0.0090588847863397
1202 => 0.0086394612027157
1203 => 0.0089083069111175
1204 => 0.0092363172301074
1205 => 0.0090223894955025
1206 => 0.0090307750576802
1207 => 0.0087257703273533
1208 => 0.0092633033809284
1209 => 0.0091849893363871
1210 => 0.0095912827380026
1211 => 0.0094943175569988
1212 => 0.0098256340537972
1213 => 0.0097383873165652
1214 => 0.010100543644916
1215 => 0.010245017609286
1216 => 0.01048761188104
1217 => 0.010666065214879
1218 => 0.010770856425778
1219 => 0.010764565154538
1220 => 0.011179800138892
1221 => 0.010934950575823
1222 => 0.010627361817999
1223 => 0.0106217985078
1224 => 0.010781103084044
1225 => 0.011114961772775
1226 => 0.011201526473316
1227 => 0.011249904331545
1228 => 0.011175811957622
1229 => 0.010910045305438
1230 => 0.010795288612492
1231 => 0.010893064639703
]
'min_raw' => 0.0040317756538198
'max_raw' => 0.011249904331545
'avg_raw' => 0.0076408399926826
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004031'
'max' => '$0.011249'
'avg' => '$0.00764'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0015961196107903
'max_diff' => 0.0058124737956053
'year' => 2036
]
11 => [
'items' => [
101 => 0.010773492960414
102 => 0.010979907224755
103 => 0.011263358097404
104 => 0.011204826613088
105 => 0.011400488589625
106 => 0.0116029781511
107 => 0.011892547318385
108 => 0.011968251421429
109 => 0.01209338742499
110 => 0.012222193477691
111 => 0.012263562510398
112 => 0.012342548829893
113 => 0.012342132533
114 => 0.01258016312319
115 => 0.012842718235363
116 => 0.012941826712044
117 => 0.013169721189298
118 => 0.012779459883376
119 => 0.013075477566916
120 => 0.013342492927273
121 => 0.013024146206904
122 => 0.01346291299566
123 => 0.0134799493158
124 => 0.01373717752347
125 => 0.013476427456035
126 => 0.013321594898335
127 => 0.013768590690913
128 => 0.013984877874706
129 => 0.013919730414744
130 => 0.013423955027707
131 => 0.013135392487645
201 => 0.012380168660746
202 => 0.01327476390695
203 => 0.013710495155674
204 => 0.013422826589038
205 => 0.013567909881368
206 => 0.014359437280906
207 => 0.014660799667046
208 => 0.014598118397411
209 => 0.014608710500157
210 => 0.014771320173604
211 => 0.015492421016451
212 => 0.015060320676431
213 => 0.015390645195885
214 => 0.01556584812993
215 => 0.015728586379237
216 => 0.015328952672892
217 => 0.014809035092722
218 => 0.014644355370426
219 => 0.013394223619414
220 => 0.013329148832727
221 => 0.013292620382991
222 => 0.013062313674461
223 => 0.012881355687874
224 => 0.0127374511784
225 => 0.012359802772016
226 => 0.012487248023186
227 => 0.011885355284758
228 => 0.012270424929035
301 => 0.011309789585297
302 => 0.012109835244995
303 => 0.011674406766034
304 => 0.011966785278845
305 => 0.011965765197758
306 => 0.01142740365698
307 => 0.011116887955579
308 => 0.011314760645964
309 => 0.01152689587721
310 => 0.011561314104771
311 => 0.011836352969378
312 => 0.01191311040455
313 => 0.011680531792519
314 => 0.011289882553014
315 => 0.01138062146159
316 => 0.011115049134492
317 => 0.010649643846345
318 => 0.010983906049489
319 => 0.011098037862114
320 => 0.011148444972515
321 => 0.010690772323781
322 => 0.010546961640992
323 => 0.010470398040164
324 => 0.011230802761269
325 => 0.011272459448408
326 => 0.011059337947344
327 => 0.012022667341163
328 => 0.011804636230458
329 => 0.012048230400034
330 => 0.011372387856717
331 => 0.011398205952015
401 => 0.011078251261151
402 => 0.011257404508655
403 => 0.011130784767698
404 => 0.011242930696683
405 => 0.011310150504122
406 => 0.011630052693569
407 => 0.012113488014133
408 => 0.011582269974263
409 => 0.01135081066711
410 => 0.011494406719491
411 => 0.01187682192985
412 => 0.012456200549018
413 => 0.012113196745389
414 => 0.012265416008857
415 => 0.012298669146161
416 => 0.012045750840056
417 => 0.012465526007723
418 => 0.012690486930322
419 => 0.012921250287806
420 => 0.013121615645266
421 => 0.012829078328232
422 => 0.013142135191036
423 => 0.012889866621591
424 => 0.012663555635754
425 => 0.012663898856102
426 => 0.012521930668811
427 => 0.012246849416791
428 => 0.012196120213415
429 => 0.012460019935769
430 => 0.012671642521701
501 => 0.012689072771482
502 => 0.012806237908615
503 => 0.012875575029873
504 => 0.01355517307745
505 => 0.013828513034116
506 => 0.014162747959066
507 => 0.014292951298782
508 => 0.014684816670847
509 => 0.014368353557155
510 => 0.014299884771861
511 => 0.013349347557418
512 => 0.013504997973033
513 => 0.013754209306464
514 => 0.013353456960516
515 => 0.013607642083545
516 => 0.013657823611208
517 => 0.013339839549151
518 => 0.013509688575976
519 => 0.013058619917455
520 => 0.01212332007826
521 => 0.012466567263813
522 => 0.012719312728133
523 => 0.012358613787257
524 => 0.013005152677801
525 => 0.012627458005217
526 => 0.01250774692655
527 => 0.012040711328587
528 => 0.012261134152977
529 => 0.012559259179114
530 => 0.012375052573716
531 => 0.012757308938679
601 => 0.013298685895517
602 => 0.013684503354514
603 => 0.013714121628302
604 => 0.013466066849929
605 => 0.013863576215336
606 => 0.013866471637092
607 => 0.013418079449039
608 => 0.013143441730515
609 => 0.013081043463023
610 => 0.013236926569118
611 => 0.013426197437526
612 => 0.01372462484424
613 => 0.013904958275991
614 => 0.014375172224535
615 => 0.014502398636921
616 => 0.014642181891495
617 => 0.014828975427165
618 => 0.015053268959616
619 => 0.014562527479651
620 => 0.014582025553506
621 => 0.014125053882141
622 => 0.01363671411492
623 => 0.014007303125829
624 => 0.014491798960203
625 => 0.014380655080477
626 => 0.014368149123545
627 => 0.014389180674242
628 => 0.014305381818549
629 => 0.013926362699978
630 => 0.013736021671418
701 => 0.013981610159436
702 => 0.014112129510932
703 => 0.014314553642619
704 => 0.014289600595733
705 => 0.014811023420193
706 => 0.01501363256277
707 => 0.014961796473965
708 => 0.01497133556181
709 => 0.015338149736572
710 => 0.015746122539997
711 => 0.016128242907156
712 => 0.016516952157083
713 => 0.016048347984716
714 => 0.015810419685476
715 => 0.016055900957243
716 => 0.015925645139044
717 => 0.016674133706801
718 => 0.01672595743126
719 => 0.017474391874773
720 => 0.018184745283583
721 => 0.017738585034813
722 => 0.018159294053905
723 => 0.018614325158962
724 => 0.019492153986753
725 => 0.019196532119943
726 => 0.018970090402952
727 => 0.018756104074554
728 => 0.019201375654578
729 => 0.01977421042889
730 => 0.019897593552734
731 => 0.020097521349342
801 => 0.019887321717217
802 => 0.020140484021381
803 => 0.021034258200236
804 => 0.020792752527547
805 => 0.020449775648353
806 => 0.021155324523575
807 => 0.021410659918766
808 => 0.023202737442399
809 => 0.025465309343017
810 => 0.024528589719313
811 => 0.023947137621127
812 => 0.024083792656429
813 => 0.024910007321642
814 => 0.025175361249366
815 => 0.024454037800828
816 => 0.024708821437282
817 => 0.02611270432392
818 => 0.026865842450645
819 => 0.025842979714607
820 => 0.023020941993202
821 => 0.020418894332973
822 => 0.021109074544199
823 => 0.021030829527032
824 => 0.022539126550767
825 => 0.020786992697124
826 => 0.020816494137622
827 => 0.022355981146493
828 => 0.021945272406015
829 => 0.021279976846042
830 => 0.020423751726821
831 => 0.018840940402704
901 => 0.017439000272973
902 => 0.020188527714904
903 => 0.020069963091917
904 => 0.019898263947538
905 => 0.020280361813564
906 => 0.022135720590615
907 => 0.022092948565593
908 => 0.021820854764887
909 => 0.022027235514598
910 => 0.021243797302782
911 => 0.021445707168523
912 => 0.02041848215533
913 => 0.020882830761999
914 => 0.02127854942057
915 => 0.021357995799993
916 => 0.021536992549466
917 => 0.020007484923221
918 => 0.02069418894342
919 => 0.021097563219822
920 => 0.019275103564156
921 => 0.021061539052084
922 => 0.019980859598295
923 => 0.019614060760418
924 => 0.020107907073547
925 => 0.019915454685039
926 => 0.019749995422584
927 => 0.019657666311183
928 => 0.020020292539716
929 => 0.020003375592723
930 => 0.019410048700125
1001 => 0.018636077955829
1002 => 0.018895847942338
1003 => 0.018801471070883
1004 => 0.018459437113869
1005 => 0.018689926703559
1006 => 0.017674967198678
1007 => 0.015928782123535
1008 => 0.01708236547127
1009 => 0.017037953767239
1010 => 0.017015559372157
1011 => 0.017882445375278
1012 => 0.01779911428854
1013 => 0.017647867550132
1014 => 0.018456659348909
1015 => 0.018161439462571
1016 => 0.019071237589713
1017 => 0.019670489478303
1018 => 0.019518499815588
1019 => 0.020082099113242
1020 => 0.018901832518166
1021 => 0.019293869736973
1022 => 0.01937466806443
1023 => 0.018446678983658
1024 => 0.017812748284904
1025 => 0.017770472334636
1026 => 0.016671323864027
1027 => 0.01725848010501
1028 => 0.017775153298898
1029 => 0.017527706934485
1030 => 0.017449372807762
1031 => 0.017849564872592
1101 => 0.017880663223443
1102 => 0.017171617528394
1103 => 0.017319050580952
1104 => 0.017933870918822
1105 => 0.017303558685904
1106 => 0.016078964978263
1107 => 0.015775248807435
1108 => 0.015734727471647
1109 => 0.014911025128329
1110 => 0.015795544574245
1111 => 0.015409428132455
1112 => 0.016629165345684
1113 => 0.01593245799107
1114 => 0.015902424329503
1115 => 0.015857024045066
1116 => 0.015148029411457
1117 => 0.015303254177258
1118 => 0.015819244940179
1119 => 0.016003356257441
1120 => 0.015984151938671
1121 => 0.015816716303943
1122 => 0.015893367480113
1123 => 0.015646447334631
1124 => 0.015559254692062
1125 => 0.015284050727892
1126 => 0.014879576927596
1127 => 0.014935821490309
1128 => 0.014134453055597
1129 => 0.013697825000524
1130 => 0.013576972109545
1201 => 0.013415362572938
1202 => 0.013595226336731
1203 => 0.014132182879508
1204 => 0.013484499367234
1205 => 0.012374091415155
1206 => 0.012440828825118
1207 => 0.01259076797079
1208 => 0.012311357364777
1209 => 0.01204691867534
1210 => 0.012276826661217
1211 => 0.011806332173672
1212 => 0.012647624981796
1213 => 0.012624870369032
1214 => 0.012938452302703
1215 => 0.013134541521176
1216 => 0.012682619357233
1217 => 0.012568962155129
1218 => 0.01263370646288
1219 => 0.011563627275495
1220 => 0.012851004003641
1221 => 0.012862137291045
1222 => 0.012766807325073
1223 => 0.013452295689514
1224 => 0.014898889947666
1225 => 0.01435462299863
1226 => 0.014143866385407
1227 => 0.01374321790961
1228 => 0.014277058215458
1229 => 0.014236067609175
1230 => 0.014050692542337
1231 => 0.013938577123508
]
'min_raw' => 0.010470398040164
'max_raw' => 0.026865842450645
'avg_raw' => 0.018668120245405
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.01047'
'max' => '$0.026865'
'avg' => '$0.018668'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0064386223863443
'max_diff' => 0.0156159381191
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0003286538302249
]
1 => [
'year' => 2028
'avg' => 0.00056406538155455
]
2 => [
'year' => 2029
'avg' => 0.0015409249595133
]
3 => [
'year' => 2030
'avg' => 0.0011888213114502
]
4 => [
'year' => 2031
'avg' => 0.0011675698568473
]
5 => [
'year' => 2032
'avg' => 0.0020471174068103
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0003286538302249
'min' => '$0.000328'
'max_raw' => 0.0020471174068103
'max' => '$0.002047'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0020471174068103
]
1 => [
'year' => 2033
'avg' => 0.0052653964729165
]
2 => [
'year' => 2034
'avg' => 0.0033374613276483
]
3 => [
'year' => 2035
'avg' => 0.0039365432894848
]
4 => [
'year' => 2036
'avg' => 0.0076408399926826
]
5 => [
'year' => 2037
'avg' => 0.018668120245405
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0020471174068103
'min' => '$0.002047'
'max_raw' => 0.018668120245405
'max' => '$0.018668'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.018668120245405
]
]
]
]
'prediction_2025_max_price' => '$0.000561'
'last_price' => 0.00054487160186071
'sma_50day_nextmonth' => '$0.00072'
'sma_200day_nextmonth' => '$0.002268'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000555'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000556'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007028'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00108'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0018038'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002185'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.00056'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000595'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000726'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001033'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001578'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002043'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0025058'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001819'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000626'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000739'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001052'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001588'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001867'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.000933'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000466'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '11.07'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 3.05
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000592'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000486'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -96
'cci_20_action' => 'NEUTRAL'
'adx_14' => 59.07
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000885'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 2.16
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000226'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 5
'sell_pct' => 83.33
'buy_pct' => 16.67
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767709158
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de SAM para 2026
La previsión del precio de SAM para 2026 sugiere que el precio medio podría oscilar entre $0.000188 en el extremo inferior y $0.000561 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, SAM podría potencialmente ganar 3.13% para 2026 si SAM alcanza el objetivo de precio previsto.
Predicción de precio de SAM 2027-2032
La predicción del precio de SAM para 2027-2032 está actualmente dentro de un rango de precios de $0.000328 en el extremo inferior y $0.002047 en el extremo superior. Considerando la volatilidad de precios en el mercado, si SAM alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de SAM | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000181 | $0.000328 | $0.000476 |
| 2028 | $0.000327 | $0.000564 | $0.000801 |
| 2029 | $0.000718 | $0.00154 | $0.002363 |
| 2030 | $0.000611 | $0.001188 | $0.001766 |
| 2031 | $0.000722 | $0.001167 | $0.001612 |
| 2032 | $0.0011027 | $0.002047 | $0.002991 |
Predicción de precio de SAM 2032-2037
La predicción de precio de SAM para 2032-2037 se estima actualmente entre $0.002047 en el extremo inferior y $0.018668 en el extremo superior. Comparado con el precio actual, SAM podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de SAM | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0011027 | $0.002047 | $0.002991 |
| 2033 | $0.002562 | $0.005265 | $0.007968 |
| 2034 | $0.00206 | $0.003337 | $0.004614 |
| 2035 | $0.002435 | $0.003936 | $0.005437 |
| 2036 | $0.004031 | $0.00764 | $0.011249 |
| 2037 | $0.01047 | $0.018668 | $0.026865 |
SAM Histograma de precios potenciales
Pronóstico de precio de SAM basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para SAM es Bajista, con 5 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de SAM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de SAM
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de SAM aumentar durante el próximo mes, alcanzando $0.002268 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para SAM alcance $0.00072 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 11.07, lo que sugiere que el mercado de SAM está en un estado BUY.
Promedios Móviles y Osciladores Populares de SAM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000555 | SELL |
| SMA 5 | $0.000556 | SELL |
| SMA 10 | $0.0007028 | SELL |
| SMA 21 | $0.00108 | SELL |
| SMA 50 | $0.0018038 | SELL |
| SMA 100 | $0.002185 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00056 | SELL |
| EMA 5 | $0.000595 | SELL |
| EMA 10 | $0.000726 | SELL |
| EMA 21 | $0.001033 | SELL |
| EMA 50 | $0.001578 | SELL |
| EMA 100 | $0.002043 | SELL |
| EMA 200 | $0.0025058 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001819 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001588 | SELL |
| EMA 50 | $0.001867 | SELL |
| EMA 100 | $0.000933 | SELL |
| EMA 200 | $0.000466 | BUY |
Osciladores de SAM
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 11.07 | BUY |
| Stoch RSI (14) | 3.05 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -96 | NEUTRAL |
| Índice Direccional Medio (14) | 59.07 | SELL |
| Oscilador Asombroso (5, 34) | -0.000885 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 2.16 | BUY |
| VWMA (10) | 0.000592 | SELL |
| Promedio Móvil de Hull (9) | 0.000486 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000226 | SELL |
Predicción de precios de SAM basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de SAM
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de SAM por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000765 | $0.001075 | $0.001511 | $0.002124 | $0.002984 | $0.004194 |
| Amazon.com acción | $0.001136 | $0.002372 | $0.004949 | $0.010327 | $0.021549 | $0.044965 |
| Apple acción | $0.000772 | $0.001096 | $0.001554 | $0.0022055 | $0.003128 | $0.004437 |
| Netflix acción | $0.000859 | $0.001356 | $0.00214 | $0.003377 | $0.005328 | $0.0084076 |
| Google acción | $0.0007056 | $0.000913 | $0.001183 | $0.001532 | $0.001984 | $0.002569 |
| Tesla acción | $0.001235 | $0.002800057 | $0.006347 | $0.014389 | $0.032619 | $0.073946 |
| Kodak acción | $0.0004085 | $0.0003064 | $0.000229 | $0.000172 | $0.000129 | $0.000096 |
| Nokia acción | $0.00036 | $0.000239 | $0.000158 | $0.0001049 | $0.000069 | $0.000046 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de SAM
Podría preguntarse cosas como: "¿Debo invertir en SAM ahora?", "¿Debería comprar SAM hoy?", "¿Será SAM una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de SAM regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como SAM, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de SAM a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de SAM es de $0.0005448 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de SAM basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si SAM ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000559 | $0.000573 | $0.000588 | $0.0006037 |
| Si SAM ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000573 | $0.0006029 | $0.000634 | $0.000667 |
| Si SAM ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000615 | $0.000695 | $0.000786 | $0.000888 |
| Si SAM ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000686 | $0.000864 | $0.001089 | $0.001373 |
| Si SAM ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000828 | $0.001258 | $0.001912 | $0.0029074 |
| Si SAM ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001253 | $0.002881 | $0.006626 | $0.015238 |
| Si SAM ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.001961 | $0.007058 | $0.025407 | $0.091448 |
Cuadro de preguntas
¿Es SAM una buena inversión?
La decisión de adquirir SAM depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de SAM ha experimentado una caída de 0% durante las últimas 24 horas, y SAM ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en SAM dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede SAM subir?
Parece que el valor medio de SAM podría potencialmente aumentar hasta $0.000561 para el final de este año. Mirando las perspectivas de SAM en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.001766. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de SAM la próxima semana?
Basado en nuestro nuevo pronóstico experimental de SAM, el precio de SAM aumentará en un 0.86% durante la próxima semana y alcanzará $0.000549 para el 13 de enero de 2026.
¿Cuál será el precio de SAM el próximo mes?
Basado en nuestro nuevo pronóstico experimental de SAM, el precio de SAM disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000481 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de SAM este año en 2026?
Según nuestra predicción más reciente sobre el valor de SAM en 2026, se anticipa que SAM fluctúe dentro del rango de $0.000188 y $0.000561. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de SAM no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará SAM en 5 años?
El futuro de SAM parece estar en una tendencia alcista, con un precio máximo de $0.001766 proyectada después de un período de cinco años. Basado en el pronóstico de SAM para 2030, el valor de SAM podría potencialmente alcanzar su punto más alto de aproximadamente $0.001766, mientras que su punto más bajo se anticipa que esté alrededor de $0.000611.
¿Cuánto será SAM en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de SAM, se espera que el valor de SAM en 2026 crezca en un 3.13% hasta $0.000561 si ocurre lo mejor. El precio estará entre $0.000561 y $0.000188 durante 2026.
¿Cuánto será SAM en 2027?
Según nuestra última simulación experimental para la predicción de precios de SAM, el valor de SAM podría disminuir en un -12.62% hasta $0.000476 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000476 y $0.000181 a lo largo del año.
¿Cuánto será SAM en 2028?
Nuestro nuevo modelo experimental de predicción de precios de SAM sugiere que el valor de SAM en 2028 podría aumentar en un 47.02% , alcanzando $0.000801 en el mejor escenario. Se espera que el precio oscile entre $0.000801 y $0.000327 durante el año.
¿Cuánto será SAM en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de SAM podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.002363 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.002363 y $0.000718.
¿Cuánto será SAM en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de SAM, se espera que el valor de SAM en 2030 aumente en un 224.23% , alcanzando $0.001766 en el mejor escenario. Se pronostica que el precio oscile entre $0.001766 y $0.000611 durante el transcurso de 2030.
¿Cuánto será SAM en 2031?
Nuestra simulación experimental indica que el precio de SAM podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.001612 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.001612 y $0.000722 durante el año.
¿Cuánto será SAM en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de SAM, SAM podría experimentar un 449.04% aumento en valor, alcanzando $0.002991 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.002991 y $0.0011027 a lo largo del año.
¿Cuánto será SAM en 2033?
Según nuestra predicción experimental de precios de SAM, se anticipa que el valor de SAM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.007968. A lo largo del año, el precio de SAM podría oscilar entre $0.007968 y $0.002562.
¿Cuánto será SAM en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de SAM sugieren que SAM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.004614 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.004614 y $0.00206.
¿Cuánto será SAM en 2035?
Basado en nuestra predicción experimental para el precio de SAM, SAM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.005437 en 2035. El rango de precios esperado para el año está entre $0.005437 y $0.002435.
¿Cuánto será SAM en 2036?
Nuestra reciente simulación de predicción de precios de SAM sugiere que el valor de SAM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.011249 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.011249 y $0.004031.
¿Cuánto será SAM en 2037?
Según la simulación experimental, el valor de SAM podría aumentar en un 4830.69% en 2037, con un máximo de $0.026865 bajo condiciones favorables. Se espera que el precio caiga entre $0.026865 y $0.01047 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de SAM?
Los traders de SAM utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de SAM
Las medias móviles son herramientas populares para la predicción de precios de SAM. Una media móvil simple (SMA) calcula el precio de cierre promedio de SAM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SAM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SAM.
¿Cómo leer gráficos de SAM y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de SAM en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SAM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de SAM?
La acción del precio de SAM está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SAM. La capitalización de mercado de SAM puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SAM, grandes poseedores de SAM, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de SAM.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


