Predicción del precio de Runbot - Pronóstico de RBOT
Predicción de precio de Runbot hasta $0.011501 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003852 | $0.011501 |
| 2027 | $0.003709 | $0.009743 |
| 2028 | $0.006693 | $0.016395 |
| 2029 | $0.0147044 | $0.04837 |
| 2030 | $0.0125054 | $0.036157 |
| 2031 | $0.014785 | $0.0330072 |
| 2032 | $0.022568 | $0.061226 |
| 2033 | $0.052444 | $0.163085 |
| 2034 | $0.042163 | $0.09445 |
| 2035 | $0.049849 | $0.111286 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Runbot hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.18, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Runbot para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Runbot'
'name_with_ticker' => 'Runbot <small>RBOT</small>'
'name_lang' => 'Runbot'
'name_lang_with_ticker' => 'Runbot <small>RBOT</small>'
'name_with_lang' => 'Runbot'
'name_with_lang_with_ticker' => 'Runbot <small>RBOT</small>'
'image' => '/uploads/coins/runbot.jpeg?1717621355'
'price_for_sd' => 0.01115
'ticker' => 'RBOT'
'marketcap' => '$153.3K'
'low24h' => '$0.01085'
'high24h' => '$0.01117'
'volume24h' => '$1.12'
'current_supply' => '13.75M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01115'
'change_24h_pct' => '2.7685%'
'ath_price' => '$0.06095'
'ath_days' => 302
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 mar. 2025'
'ath_pct' => '-81.71%'
'fdv' => '$1.12M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.549855'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.011247'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009856'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003852'
'current_year_max_price_prediction' => '$0.011501'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0125054'
'grand_prediction_max_price' => '$0.036157'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.011363008659711
107 => 0.011405434009274
108 => 0.011501020488132
109 => 0.010684244491865
110 => 0.011050952934905
111 => 0.011266359789257
112 => 0.010293143784727
113 => 0.011247122437976
114 => 0.010670026238932
115 => 0.010474151121283
116 => 0.010737871162613
117 => 0.010635099206031
118 => 0.010546741912733
119 => 0.010497437024901
120 => 0.010691083917536
121 => 0.010682050058536
122 => 0.010365206156944
123 => 0.009951896203527
124 => 0.010090616590331
125 => 0.010040218173294
126 => 0.0098575678084296
127 => 0.0099806521010592
128 => 0.0094386511678533
129 => 0.0085061667330296
130 => 0.0091221945134448
131 => 0.0090984781140081
201 => 0.0090865192299591
202 => 0.0095494470811838
203 => 0.0095049472498512
204 => 0.009424179620239
205 => 0.009856084447573
206 => 0.0096984333756564
207 => 0.010184276832039
208 => 0.010504284754798
209 => 0.010423120394414
210 => 0.010724089392501
211 => 0.010093812427867
212 => 0.010303165153196
213 => 0.010346312459735
214 => 0.0098507548090466
215 => 0.009512227972596
216 => 0.0094896520920932
217 => 0.0089026932095595
218 => 0.0092162419068424
219 => 0.0094921517849247
220 => 0.0093600123647948
221 => 0.0093181809719345
222 => 0.0095318884859354
223 => 0.0095484953900543
224 => 0.0091698562162215
225 => 0.0092485872904046
226 => 0.0095769089576999
227 => 0.0092403144267753
228 => 0.0085863662355934
301 => 0.0084241780426392
302 => 0.0084025391479776
303 => 0.007962671905378
304 => 0.0084350162332254
305 => 0.008228825276079
306 => 0.0088801800391575
307 => 0.0085081296917727
308 => 0.0084920913449046
309 => 0.0084678470312994
310 => 0.0080892351249069
311 => 0.008172127070365
312 => 0.0084476725218674
313 => 0.0085459902432051
314 => 0.0085357348993762
315 => 0.0084463221988317
316 => 0.0084872548752739
317 => 0.0083553964625638
318 => 0.0083088345126403
319 => 0.0081618721908085
320 => 0.0079458781770934
321 => 0.0079759134694688
322 => 0.0075479728103911
323 => 0.0073148080267958
324 => 0.0072502710877591
325 => 0.0071639695956948
326 => 0.0072600190709273
327 => 0.0075467605082719
328 => 0.0072008894992448
329 => 0.0066079179142982
330 => 0.0066435565169279
331 => 0.0067236258758408
401 => 0.0065744171552185
402 => 0.0064332036232882
403 => 0.0065559773322856
404 => 0.0063047274547374
405 => 0.006753988223182
406 => 0.0067418369784343
407 => 0.0069092936108109
408 => 0.007014007679592
409 => 0.0067726756526339
410 => 0.0067119813004851
411 => 0.0067465555618736
412 => 0.0061751200362416
413 => 0.0068625951371567
414 => 0.0068685404503774
415 => 0.0068176330690771
416 => 0.007183692336902
417 => 0.0079561915687612
418 => 0.0076655462840261
419 => 0.0075529996449765
420 => 0.007339048401872
421 => 0.0076241257301409
422 => 0.007602236239229
423 => 0.0075032436599822
424 => 0.0074433726391781
425 => 0.0075536868307553
426 => 0.0074297034900485
427 => 0.0074074326752232
428 => 0.0072724957682674
429 => 0.0072243294317223
430 => 0.0071886689937014
501 => 0.0071494103553626
502 => 0.0072360051288948
503 => 0.0070397699795797
504 => 0.0068031296266746
505 => 0.0067834555418147
506 => 0.0068377774198762
507 => 0.0068137440326222
508 => 0.0067833404792028
509 => 0.0067252918158101
510 => 0.006708070017395
511 => 0.0067640325074154
512 => 0.0067008541189982
513 => 0.0067940772726127
514 => 0.0067687257331019
515 => 0.0066271140942116
516 => 0.0064506135608103
517 => 0.0064490423358407
518 => 0.0064110155854382
519 => 0.0063625828014406
520 => 0.0063491099089244
521 => 0.0065456376729575
522 => 0.0069524442629251
523 => 0.0068725783952578
524 => 0.0069302896696307
525 => 0.0072141720205981
526 => 0.0073044096833304
527 => 0.0072403611277192
528 => 0.0071526875144556
529 => 0.0071565447084881
530 => 0.0074561519856173
531 => 0.0074748381239861
601 => 0.0075220519672673
602 => 0.0075827350985141
603 => 0.0072506957273718
604 => 0.0071409056839671
605 => 0.0070888810704823
606 => 0.0069286653970081
607 => 0.0071014442649962
608 => 0.0070007734177484
609 => 0.0070143573544479
610 => 0.007005510797852
611 => 0.0070103416159549
612 => 0.0067538626456412
613 => 0.0068473101022857
614 => 0.006691935581182
615 => 0.0064839065390326
616 => 0.0064832091527389
617 => 0.0065341239660904
618 => 0.0065038378428121
619 => 0.0064223386637975
620 => 0.0064339152375113
621 => 0.0063324922703356
622 => 0.0064462298220485
623 => 0.0064494914080591
624 => 0.0064056962553233
625 => 0.0065809246464947
626 => 0.0066527158613303
627 => 0.0066238889536165
628 => 0.0066506932886385
629 => 0.0068758971826321
630 => 0.0069126152436879
701 => 0.0069289229809499
702 => 0.00690707277338
703 => 0.0066548096024081
704 => 0.0066659985467465
705 => 0.0065839014971723
706 => 0.006514538141456
707 => 0.0065173123119217
708 => 0.006552974093365
709 => 0.0067087111844634
710 => 0.0070364507114771
711 => 0.0070488881869528
712 => 0.0070639627700561
713 => 0.0070026468646965
714 => 0.0069841534009259
715 => 0.0070085510532074
716 => 0.0071316327878281
717 => 0.0074482324256374
718 => 0.0073363249686567
719 => 0.0072453424641881
720 => 0.0073251586493142
721 => 0.0073128715732339
722 => 0.0072091562858406
723 => 0.007206245343158
724 => 0.0070071825468669
725 => 0.0069335935635187
726 => 0.006872097100993
727 => 0.0068049445693207
728 => 0.0067651342975721
729 => 0.0068263009684229
730 => 0.0068402905097492
731 => 0.0067065485149236
801 => 0.0066883199752226
802 => 0.0067975365752186
803 => 0.0067494744215656
804 => 0.0067989075384818
805 => 0.0068103764456357
806 => 0.0068085296874326
807 => 0.0067583472791157
808 => 0.0067903320497159
809 => 0.0067146785321273
810 => 0.0066324166945406
811 => 0.0065799387672539
812 => 0.0065341448155092
813 => 0.0065595539614972
814 => 0.0064689749955767
815 => 0.0064399969613844
816 => 0.0067794963291167
817 => 0.0070302881622938
818 => 0.007026641549715
819 => 0.0070044437334738
820 => 0.0069714622812019
821 => 0.0071292199891656
822 => 0.007074260358176
823 => 0.0071142480817518
824 => 0.0071244266356813
825 => 0.0071552340528416
826 => 0.0071662450564894
827 => 0.0071329621558319
828 => 0.0070212606760614
829 => 0.0067429112087314
830 => 0.0066133387802992
831 => 0.0065705777207171
901 => 0.0065721320040181
902 => 0.0065292579319505
903 => 0.0065418862676555
904 => 0.0065248663121511
905 => 0.0064926346339953
906 => 0.0065575637461976
907 => 0.0065650462215224
908 => 0.0065498909908893
909 => 0.0065534605963307
910 => 0.0064279817595721
911 => 0.0064375216430051
912 => 0.0063844023597801
913 => 0.006374443134538
914 => 0.0062401622121703
915 => 0.0060022640938649
916 => 0.0061340827447352
917 => 0.0059748643509912
918 => 0.0059145659327279
919 => 0.006200009266458
920 => 0.0061713586727172
921 => 0.0061223213103466
922 => 0.0060497848311188
923 => 0.0060228803453836
924 => 0.0058594172069822
925 => 0.0058497589327235
926 => 0.0059307756779912
927 => 0.0058933892376662
928 => 0.0058408845160976
929 => 0.0056507177368943
930 => 0.0054369073150131
1001 => 0.0054433609076853
1002 => 0.0055113700248014
1003 => 0.0057091157050955
1004 => 0.0056318530467696
1005 => 0.0055757981016673
1006 => 0.0055653006954551
1007 => 0.0056966977120092
1008 => 0.0058826520189593
1009 => 0.0059698976192872
1010 => 0.0058834398790506
1011 => 0.005784121882282
1012 => 0.00579016690855
1013 => 0.0058303817600917
1014 => 0.0058346077723813
1015 => 0.00576996196654
1016 => 0.0057881593822194
1017 => 0.0057605158437959
1018 => 0.0055908674995169
1019 => 0.0055877990989296
1020 => 0.0055461646592944
1021 => 0.0055449039850088
1022 => 0.0054740734169917
1023 => 0.0054641637308975
1024 => 0.0053235253389914
1025 => 0.0054160939544363
1026 => 0.0053540037872663
1027 => 0.0052604192597513
1028 => 0.0052442852519336
1029 => 0.0052438002441762
1030 => 0.0053398906288166
1031 => 0.0054149710823452
1101 => 0.0053550838723073
1102 => 0.0053414487154465
1103 => 0.0054870365182409
1104 => 0.005468509143273
1105 => 0.0054524645560396
1106 => 0.0058660018503366
1107 => 0.005538654813183
1108 => 0.0053959128206684
1109 => 0.0052192424989624
1110 => 0.005276767246559
1111 => 0.0052888885560919
1112 => 0.004864028279608
1113 => 0.0046916625183514
1114 => 0.0046325130845548
1115 => 0.0045984717491547
1116 => 0.0046139848131607
1117 => 0.0044588354115425
1118 => 0.0045630983753642
1119 => 0.0044287521080153
1120 => 0.0044062285190936
1121 => 0.0046464562874225
1122 => 0.0046798825779952
1123 => 0.0045372756376776
1124 => 0.004628852379328
1125 => 0.0045956453797936
1126 => 0.0044310550891718
1127 => 0.0044247689507143
1128 => 0.0043421833285087
1129 => 0.0042129528214846
1130 => 0.0041538910120572
1201 => 0.0041231311089092
1202 => 0.0041358232444466
1203 => 0.0041294057123331
1204 => 0.0040875269743068
1205 => 0.0041318061525753
1206 => 0.0040186911495189
1207 => 0.0039736478438723
1208 => 0.0039533028277084
1209 => 0.0038529067518392
1210 => 0.0040126815548848
1211 => 0.0040441592038747
1212 => 0.004075698873557
1213 => 0.004350230165095
1214 => 0.0043365153575871
1215 => 0.004460490538076
1216 => 0.004455673090538
1217 => 0.0044203133607978
1218 => 0.0042711364774171
1219 => 0.0043305957243103
1220 => 0.0041475894043914
1221 => 0.0042847101824948
1222 => 0.004222133985669
1223 => 0.004263553107402
1224 => 0.0041890777919144
1225 => 0.0042302955065157
1226 => 0.004051623722194
1227 => 0.0038847825239742
1228 => 0.0039519242925361
1229 => 0.0040249150735553
1230 => 0.0041831776845103
1231 => 0.0040889177790637
]
'min_raw' => 0.0038529067518392
'max_raw' => 0.011501020488132
'avg_raw' => 0.0076769636199857
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003852'
'max' => '$0.011501'
'avg' => '$0.007676'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0072987832481608
'max_diff' => 0.00034933048813226
'year' => 2026
]
1 => [
'items' => [
101 => 0.0041228172054239
102 => 0.0040092598018126
103 => 0.0037749584420937
104 => 0.0037762845623447
105 => 0.0037402424026845
106 => 0.0037090967144967
107 => 0.0040997446630949
108 => 0.0040511614154565
109 => 0.003973750368763
110 => 0.0040773681309549
111 => 0.0041047663119135
112 => 0.0041055462996081
113 => 0.0041811431441418
114 => 0.0042214891936209
115 => 0.0042286003597114
116 => 0.0043475536279631
117 => 0.0043874251944495
118 => 0.0045516505339718
119 => 0.0042180661132048
120 => 0.0042111961615804
121 => 0.0040788262453625
122 => 0.0039948751518115
123 => 0.0040845744485612
124 => 0.0041640357803064
125 => 0.0040812953304374
126 => 0.0040920994864441
127 => 0.0039810271926381
128 => 0.0040207303112366
129 => 0.0040549279855612
130 => 0.0040360460398455
131 => 0.0040077788532126
201 => 0.0041575208572684
202 => 0.0041490718265559
203 => 0.0042885150232864
204 => 0.0043972209668165
205 => 0.0045920414511342
206 => 0.0043887361195271
207 => 0.0043813268651779
208 => 0.0044537535149237
209 => 0.0043874141063068
210 => 0.0044293383225941
211 => 0.0045852868117444
212 => 0.0045885817575798
213 => 0.00453338716954
214 => 0.0045300285738417
215 => 0.0045406292982374
216 => 0.0046027180721304
217 => 0.0045810223467369
218 => 0.0046061291894308
219 => 0.0046375256806693
220 => 0.0047673948802678
221 => 0.0047987059046209
222 => 0.0047226363483477
223 => 0.0047295045775645
224 => 0.0047010524753623
225 => 0.0046735681011387
226 => 0.0047353489606227
227 => 0.0048482546956355
228 => 0.0048475523149178
301 => 0.0048737442508669
302 => 0.0048900616099775
303 => 0.004820015559638
304 => 0.0047744181565317
305 => 0.0047919031023208
306 => 0.0048198619114102
307 => 0.0047828364373525
308 => 0.0045542980596007
309 => 0.0046236220043225
310 => 0.0046120831101531
311 => 0.0045956503216783
312 => 0.0046653560841623
313 => 0.0046586327933224
314 => 0.0044572441301796
315 => 0.0044701363789901
316 => 0.0044580281505302
317 => 0.0044971523137945
318 => 0.004385301273096
319 => 0.0044197058998866
320 => 0.0044412841592863
321 => 0.0044539939198448
322 => 0.0044999102901462
323 => 0.0044945225340561
324 => 0.0044995753796629
325 => 0.0045676572353477
326 => 0.0049119918985296
327 => 0.004930733274515
328 => 0.0048384438848267
329 => 0.0048753116756795
330 => 0.0048045335793418
331 => 0.0048520473895853
401 => 0.004884555131834
402 => 0.0047376588954915
403 => 0.004728960653724
404 => 0.0046578904310055
405 => 0.0046960795430712
406 => 0.0046353179198803
407 => 0.00465022669686
408 => 0.004608540456701
409 => 0.0046835673893396
410 => 0.0047674591580363
411 => 0.0047886535317954
412 => 0.0047329002591868
413 => 0.0046925312154984
414 => 0.0046216564731714
415 => 0.0047395227492079
416 => 0.0047739904402307
417 => 0.0047393417051003
418 => 0.0047313128360808
419 => 0.0047160981437967
420 => 0.0047345407049734
421 => 0.0047738027217831
422 => 0.0047552874797112
423 => 0.0047675171232963
424 => 0.0047209103331038
425 => 0.0048200387477953
426 => 0.0049774785268775
427 => 0.0049779847215112
428 => 0.0049594693796353
429 => 0.0049518933006583
430 => 0.0049708911650279
501 => 0.0049811967271152
502 => 0.0050426323368738
503 => 0.0051085551938475
504 => 0.005416188402948
505 => 0.0053298062288468
506 => 0.0056027567131422
507 => 0.0058186251080353
508 => 0.0058833546008829
509 => 0.0058238065132211
510 => 0.0056200957220546
511 => 0.0056101006987863
512 => 0.0059145306252667
513 => 0.005828515227262
514 => 0.0058182839693681
515 => 0.0057094406713597
516 => 0.0057737805409874
517 => 0.0057597084676909
518 => 0.0057374950115629
519 => 0.0058602510008583
520 => 0.0060900392543166
521 => 0.0060542246000745
522 => 0.0060274906220768
523 => 0.0059103501126349
524 => 0.0059808948635989
525 => 0.0059557752289763
526 => 0.006063705120629
527 => 0.0059997698437538
528 => 0.0058278635760237
529 => 0.0058552402157702
530 => 0.0058511022917466
531 => 0.0059362604749344
601 => 0.0059106981020975
602 => 0.0058461108281888
603 => 0.0060892538630474
604 => 0.0060734655067964
605 => 0.0060958497862397
606 => 0.0061057040383075
607 => 0.0062537009189651
608 => 0.0063143305055985
609 => 0.0063280944832347
610 => 0.0063856879012759
611 => 0.0063266615065274
612 => 0.0065628091706278
613 => 0.0067198335876563
614 => 0.0069022255284375
615 => 0.0071687491762509
616 => 0.0072689645333104
617 => 0.0072508615260505
618 => 0.0074529367140302
619 => 0.0078160613349508
620 => 0.0073242593940688
621 => 0.007842128032006
622 => 0.007678176800316
623 => 0.0072894513793357
624 => 0.0072644220449963
625 => 0.007527671413279
626 => 0.0081115331753174
627 => 0.0079652824260321
628 => 0.0081117723891504
629 => 0.0079408840659004
630 => 0.0079323980202912
701 => 0.00810347272472
702 => 0.0085031980964147
703 => 0.008313303555804
704 => 0.008041043167787
705 => 0.008242076001458
706 => 0.0080679227562218
707 => 0.0076755067522804
708 => 0.0079651705908404
709 => 0.0077714806311465
710 => 0.0078280096585098
711 => 0.0082351171445792
712 => 0.0081861328947825
713 => 0.0082495230498388
714 => 0.0081376410853737
715 => 0.0080331256883968
716 => 0.0078380399385241
717 => 0.0077802846655981
718 => 0.0077962461452178
719 => 0.0077802767558815
720 => 0.0076711280717583
721 => 0.0076475574238141
722 => 0.0076082719779199
723 => 0.0076204481803106
724 => 0.0075465800486669
725 => 0.0076859844750133
726 => 0.0077118591649708
727 => 0.0078133060811013
728 => 0.0078238386364712
729 => 0.0081063668538882
730 => 0.0079507550594288
731 => 0.0080551528860281
801 => 0.0080458145617866
802 => 0.007297876237927
803 => 0.0074009355398391
804 => 0.0075612634718239
805 => 0.0074890359557841
806 => 0.0073869231467398
807 => 0.007304461578494
808 => 0.0071795238704734
809 => 0.0073553712952962
810 => 0.0075865919596494
811 => 0.0078297027740914
812 => 0.0081217844883919
813 => 0.008056595249966
814 => 0.0078242425096104
815 => 0.0078346656838089
816 => 0.0078990976453366
817 => 0.0078156524008973
818 => 0.0077910427692674
819 => 0.0078957166598573
820 => 0.007896437491414
821 => 0.0078004236529919
822 => 0.0076937218419326
823 => 0.0076932747574482
824 => 0.0076742882007875
825 => 0.0079442617321515
826 => 0.0080927198769989
827 => 0.0081097403640534
828 => 0.008091574262608
829 => 0.0080985656740676
830 => 0.0080121811506328
831 => 0.00820963055467
901 => 0.0083908296535367
902 => 0.0083422644242863
903 => 0.0082694582416858
904 => 0.0082114646104237
905 => 0.008328602967825
906 => 0.0083233869811628
907 => 0.0083892470374827
908 => 0.0083862592449019
909 => 0.0083641129850836
910 => 0.008342265215199
911 => 0.0084288891532314
912 => 0.008403942850216
913 => 0.0083789577987016
914 => 0.0083288464528694
915 => 0.0083356574170293
916 => 0.0082628638054428
917 => 0.0082291861499138
918 => 0.0077227550147523
919 => 0.0075874200673224
920 => 0.0076299991967807
921 => 0.007644017351765
922 => 0.0075851194092071
923 => 0.0076695639291951
924 => 0.0076564033402039
925 => 0.0077076034932818
926 => 0.0076756158604909
927 => 0.0076769286440984
928 => 0.0077709974516539
929 => 0.0077983060266846
930 => 0.0077844166650168
1001 => 0.0077941442978295
1002 => 0.0080183134902208
1003 => 0.00798644379959
1004 => 0.0079695136616289
1005 => 0.0079742034255468
1006 => 0.0080314834604444
1007 => 0.0080475187428418
1008 => 0.0079795761245448
1009 => 0.0080116182561053
1010 => 0.0081480495855379
1011 => 0.0081957928294948
1012 => 0.0083481663461481
1013 => 0.0082834353680505
1014 => 0.0084022518798397
1015 => 0.0087674533295462
1016 => 0.0090592015175898
1017 => 0.0087908978268611
1018 => 0.0093266562202956
1019 => 0.0097438209795613
1020 => 0.0097278095012764
1021 => 0.0096550671763037
1022 => 0.0091801361887786
1023 => 0.0087430976132359
1024 => 0.0091086989393155
1025 => 0.0091096309322823
1026 => 0.0090782254541363
1027 => 0.0088831687266068
1028 => 0.0090714379028282
1029 => 0.0090863820263434
1030 => 0.0090780172911381
1031 => 0.008928467755476
1101 => 0.0087001332558941
1102 => 0.0087447492705568
1103 => 0.0088178312127164
1104 => 0.008679471849718
1105 => 0.0086352576497506
1106 => 0.0087174602595858
1107 => 0.0089823341960686
1108 => 0.0089322613126867
1109 => 0.0089309537073412
1110 => 0.0091451867366559
1111 => 0.0089918421220479
1112 => 0.008745312021382
1113 => 0.0086830599196313
1114 => 0.0084621068964569
1115 => 0.0086147199365711
1116 => 0.0086202122081931
1117 => 0.00853662760579
1118 => 0.0087520944512059
1119 => 0.0087501088862932
1120 => 0.0089546625880081
1121 => 0.0093456924388249
1122 => 0.0092300456705281
1123 => 0.0090955610613314
1124 => 0.0091101832672048
1125 => 0.0092705527749568
1126 => 0.0091735897096902
1127 => 0.0092084583040105
1128 => 0.0092704999971631
1129 => 0.0093079312910507
1130 => 0.0091047974800493
1201 => 0.0090574372716915
1202 => 0.0089605549065658
1203 => 0.0089352801058995
1204 => 0.0090141887707775
1205 => 0.0089933991254664
1206 => 0.0086197506040304
1207 => 0.0085807022545795
1208 => 0.008581899811709
1209 => 0.0084837108803671
1210 => 0.0083339491920271
1211 => 0.008727513967179
1212 => 0.0086959052077988
1213 => 0.0086610115837667
1214 => 0.0086652858536104
1215 => 0.008836118983356
1216 => 0.0087370271408237
1217 => 0.0090004790450294
1218 => 0.0089463212536138
1219 => 0.0088907745192045
1220 => 0.0088830962685142
1221 => 0.0088617155147913
1222 => 0.0087883929548474
1223 => 0.0086998515577125
1224 => 0.0086413888579995
1225 => 0.0079712244394178
1226 => 0.0080956030573394
1227 => 0.0082386893197906
1228 => 0.0082880821242065
1229 => 0.008203592314375
1230 => 0.0087917291275111
1231 => 0.0088991873906983
]
'min_raw' => 0.0037090967144967
'max_raw' => 0.0097438209795613
'avg_raw' => 0.006726458847029
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003709'
'max' => '$0.009743'
'avg' => '$0.006726'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001438100373425
'max_diff' => -0.001757199508571
'year' => 2027
]
2 => [
'items' => [
101 => 0.008573689302175
102 => 0.0085128018998116
103 => 0.0087957208954734
104 => 0.0086250861556487
105 => 0.0087019229685436
106 => 0.0085358438065544
107 => 0.0088733038418418
108 => 0.0088707329617731
109 => 0.0087394533861657
110 => 0.0088504099845053
111 => 0.008831128545036
112 => 0.0086829142275027
113 => 0.0088780025000727
114 => 0.0088780992614219
115 => 0.008751745524164
116 => 0.0086041920214364
117 => 0.0085778129402069
118 => 0.0085579398460314
119 => 0.0086970354056193
120 => 0.0088217480494053
121 => 0.0090538073606047
122 => 0.0091121525850335
123 => 0.0093398778802405
124 => 0.0092042785546881
125 => 0.0092643879794002
126 => 0.0093296452629225
127 => 0.0093609320044002
128 => 0.0093099519381014
129 => 0.0096637030570289
130 => 0.0096935704901206
131 => 0.009703584782084
201 => 0.0095843018951398
202 => 0.0096902530172535
203 => 0.0096406819959489
204 => 0.0097696520221572
205 => 0.0097898761690386
206 => 0.009772747036125
207 => 0.0097791664995616
208 => 0.0094773023255306
209 => 0.0094616490756467
210 => 0.0092482159027761
211 => 0.0093351914983392
212 => 0.0091725947912827
213 => 0.009224155882022
214 => 0.0092468835195278
215 => 0.0092350118914768
216 => 0.0093401089680153
217 => 0.0092507549830434
218 => 0.0090149351255473
219 => 0.0087790510190888
220 => 0.0087760896862793
221 => 0.008713985564749
222 => 0.0086690956598199
223 => 0.0086777430480642
224 => 0.0087082175721336
225 => 0.0086673244250813
226 => 0.0086760510513401
227 => 0.0088209711924426
228 => 0.0088500338932175
229 => 0.0087512674804541
301 => 0.0083547060812835
302 => 0.0082573889192281
303 => 0.0083273385654303
304 => 0.0082939071398798
305 => 0.0066938303747948
306 => 0.0070697446764774
307 => 0.006846389163261
308 => 0.0069493216598442
309 => 0.0067213335184801
310 => 0.0068301414094213
311 => 0.0068100485649924
312 => 0.0074145076379852
313 => 0.0074050698409667
314 => 0.0074095872149623
315 => 0.0071939611841943
316 => 0.0075374593060925
317 => 0.0077066788327325
318 => 0.0076753608019833
319 => 0.0076832428756024
320 => 0.0075478027362672
321 => 0.0074108985715686
322 => 0.0072590507835179
323 => 0.0075411652047622
324 => 0.0075097988969736
325 => 0.0075817419217993
326 => 0.0077647132899316
327 => 0.0077916565189297
328 => 0.0078278684919344
329 => 0.007814889077356
330 => 0.0081241113904693
331 => 0.0080866625280368
401 => 0.0081769035117262
402 => 0.0079912709616772
403 => 0.0077812101108934
404 => 0.0078211358112208
405 => 0.0078172906452171
406 => 0.0077683372687135
407 => 0.0077241443492593
408 => 0.0076505755896461
409 => 0.0078833580311902
410 => 0.0078739074891742
411 => 0.0080269007793604
412 => 0.0079998577292225
413 => 0.0078192576218443
414 => 0.0078257077900106
415 => 0.0078690882707742
416 => 0.0080192286100067
417 => 0.0080638004850247
418 => 0.0080431530166342
419 => 0.008092024042808
420 => 0.0081306497092636
421 => 0.0080968748318237
422 => 0.0085750558714603
423 => 0.0083764817651374
424 => 0.0084732654028895
425 => 0.008496347730211
426 => 0.0084372228341459
427 => 0.0084500449069986
428 => 0.0084694668535648
429 => 0.0085873931099075
430 => 0.008896865728788
501 => 0.0090339290450389
502 => 0.0094462907945644
503 => 0.0090225478446377
504 => 0.0089974046916117
505 => 0.0090716834948331
506 => 0.0093137834947288
507 => 0.0095099828053475
508 => 0.0095750734356895
509 => 0.0095836762370184
510 => 0.0097057905866833
511 => 0.0097757842546134
512 => 0.0096909626927077
513 => 0.0096190853001804
514 => 0.0093616294018978
515 => 0.0093914306231531
516 => 0.0095967314851533
517 => 0.009886731044889
518 => 0.010135580836454
519 => 0.010048442312739
520 => 0.010713247738475
521 => 0.01077916048095
522 => 0.010770053471154
523 => 0.010920212507643
524 => 0.010622177399568
525 => 0.010494761616707
526 => 0.0096346260082879
527 => 0.0098762890297781
528 => 0.010227560423886
529 => 0.010181068337676
530 => 0.0099259656617633
531 => 0.010135387318199
601 => 0.01006614596936
602 => 0.010011532444706
603 => 0.010261727588502
604 => 0.0099866277504477
605 => 0.010224816092561
606 => 0.0099193370800578
607 => 0.010048840354175
608 => 0.0099753280324175
609 => 0.010022899513926
610 => 0.0097447976050729
611 => 0.0098948546445478
612 => 0.009738554738889
613 => 0.0097384806323828
614 => 0.0097350303033025
615 => 0.0099189164491702
616 => 0.0099249129697852
617 => 0.0097890208301524
618 => 0.0097694366497972
619 => 0.009841849629055
620 => 0.0097570729953334
621 => 0.009796739448674
622 => 0.0097582744517962
623 => 0.0097496151708022
624 => 0.0096806165465871
625 => 0.0096508900421185
626 => 0.0096625465704783
627 => 0.0096227568298341
628 => 0.0095987820718381
629 => 0.0097302611205012
630 => 0.0096600171686502
701 => 0.00971949522744
702 => 0.0096517124727196
703 => 0.0094167479133183
704 => 0.0092816173105016
705 => 0.0088377910390188
706 => 0.0089636596190465
707 => 0.0090471106178254
708 => 0.0090195300632268
709 => 0.0090787837667623
710 => 0.0090824214629208
711 => 0.0090631574798814
712 => 0.0090408522553908
713 => 0.0090299953056651
714 => 0.0091109141139886
715 => 0.0091578902058223
716 => 0.0090554860419832
717 => 0.0090314941791822
718 => 0.0091350304427123
719 => 0.0091981875036548
720 => 0.0096645037567668
721 => 0.0096299575425546
722 => 0.009716661760875
723 => 0.0097069001964768
724 => 0.0097977800303418
725 => 0.0099463301500277
726 => 0.0096442862214397
727 => 0.0096967106035493
728 => 0.0096838573557118
729 => 0.0098241857452991
730 => 0.0098246238352141
731 => 0.0097404899557335
801 => 0.0097861002967162
802 => 0.0097606418556339
803 => 0.0098066486995843
804 => 0.009629496156802
805 => 0.0098452488314756
806 => 0.0099675666952203
807 => 0.009969265078877
808 => 0.010027242775517
809 => 0.010086151473146
810 => 0.010199221588377
811 => 0.010082998009001
812 => 0.0098739231038404
813 => 0.0098890176366851
814 => 0.009766437096287
815 => 0.0097684976973171
816 => 0.0097574980475263
817 => 0.0097905088245634
818 => 0.0096367401660045
819 => 0.0096728293628199
820 => 0.0096223042759404
821 => 0.0096966007718778
822 => 0.0096166700238999
823 => 0.0096838511574865
824 => 0.0097128443076526
825 => 0.0098198296559436
826 => 0.0096008682009702
827 => 0.009154390971892
828 => 0.0092482458984574
829 => 0.0091094270899218
830 => 0.0091222752991723
831 => 0.0091482307266355
901 => 0.0090641006941398
902 => 0.0090801500530979
903 => 0.0090795766570583
904 => 0.0090746354397628
905 => 0.0090527499690546
906 => 0.0090210117066194
907 => 0.0091474471756394
908 => 0.0091689310255827
909 => 0.0092166869627208
910 => 0.009358776238482
911 => 0.0093445781691376
912 => 0.0093677358093106
913 => 0.0093171828108376
914 => 0.0091246203077819
915 => 0.009135077378144
916 => 0.0090046775431658
917 => 0.0092133523457616
918 => 0.0091639353981341
919 => 0.0091320759705224
920 => 0.009123382830523
921 => 0.0092658243181157
922 => 0.0093084450437002
923 => 0.0092818866676864
924 => 0.0092274146636506
925 => 0.0093320170146018
926 => 0.0093600041908974
927 => 0.0093662694875426
928 => 0.0095516047979167
929 => 0.0093766276725741
930 => 0.0094187464057671
1001 => 0.0097473447388163
1002 => 0.009449351394211
1003 => 0.009607205114893
1004 => 0.0095994789966968
1005 => 0.009680231618719
1006 => 0.0095928549246985
1007 => 0.0095939380635409
1008 => 0.0096656409212403
1009 => 0.0095649471892801
1010 => 0.0095400140051876
1011 => 0.0095055689899387
1012 => 0.009580778420589
1013 => 0.0096258630728339
1014 => 0.0099892122588995
1015 => 0.010223952403834
1016 => 0.010213761715059
1017 => 0.01030688553429
1018 => 0.01026493240081
1019 => 0.010129454666126
1020 => 0.010360698639482
1021 => 0.010287523370653
1022 => 0.010293555850908
1023 => 0.010293331321691
1024 => 0.010341986478369
1025 => 0.010307509840683
1026 => 0.01023955284885
1027 => 0.010284665871449
1028 => 0.010418635420367
1029 => 0.010834481010896
1030 => 0.011067193712578
1031 => 0.010820471414052
1101 => 0.010990657151832
1102 => 0.010888606352543
1103 => 0.010870060686564
1104 => 0.010976949906517
1105 => 0.011084026221899
1106 => 0.011077205923513
1107 => 0.010999474016975
1108 => 0.010955565235346
1109 => 0.011288057240363
1110 => 0.011533031685807
1111 => 0.011516326070957
1112 => 0.011590059221947
1113 => 0.011806542033733
1114 => 0.011826334508992
1115 => 0.011823841112034
1116 => 0.011774783396974
1117 => 0.011987938839023
1118 => 0.012165756858894
1119 => 0.011763427953351
1120 => 0.01191662953371
1121 => 0.011985406658979
1122 => 0.012086391884128
1123 => 0.012256770886044
1124 => 0.012441847672923
1125 => 0.012468019559851
1126 => 0.012449449353636
1127 => 0.012327386237558
1128 => 0.012529899466186
1129 => 0.012648526965997
1130 => 0.012719166927392
1201 => 0.012898298116121
1202 => 0.01198583140309
1203 => 0.011339942111069
1204 => 0.011239077171365
1205 => 0.01144418999257
1206 => 0.011498276607778
1207 => 0.011476474361007
1208 => 0.010749467241151
1209 => 0.011235249629337
1210 => 0.011757910633281
1211 => 0.011777988171047
1212 => 0.012039643197947
1213 => 0.012124848800308
1214 => 0.012335515392872
1215 => 0.012322338140149
1216 => 0.012373632103
1217 => 0.012361840509228
1218 => 0.012752056010867
1219 => 0.013182521656738
1220 => 0.013167616000218
1221 => 0.013105731470586
1222 => 0.01319764054997
1223 => 0.013641927228011
1224 => 0.013601024430246
1225 => 0.013640758014183
1226 => 0.014164597046492
1227 => 0.014845662303729
1228 => 0.014529239113909
1229 => 0.015215786387498
1230 => 0.015647931503915
1231 => 0.01639528179812
]
'min_raw' => 0.0066938303747948
'max_raw' => 0.01639528179812
'avg_raw' => 0.011544556086457
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006693'
'max' => '$0.016395'
'avg' => '$0.011544'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0029847336602981
'max_diff' => 0.0066514608185588
'year' => 2028
]
3 => [
'items' => [
101 => 0.016301709860508
102 => 0.016592647845732
103 => 0.016134196563129
104 => 0.015081499749982
105 => 0.01491490644974
106 => 0.015248430455639
107 => 0.016068366679345
108 => 0.015222607746049
109 => 0.015393703676736
110 => 0.015344428037188
111 => 0.015341802347765
112 => 0.01544201423361
113 => 0.015296651666491
114 => 0.01470441841782
115 => 0.014975835425634
116 => 0.014871028284402
117 => 0.014987319621488
118 => 0.01561489600555
119 => 0.015337429526604
120 => 0.015045141130581
121 => 0.015411735643182
122 => 0.015878536433264
123 => 0.015849324878743
124 => 0.015792642253488
125 => 0.016112159244243
126 => 0.016639907703275
127 => 0.016782555991087
128 => 0.016887856040834
129 => 0.016902375138635
130 => 0.017051930869555
131 => 0.016247732011498
201 => 0.017524016252526
202 => 0.017744395284311
203 => 0.017702973160111
204 => 0.017947915178973
205 => 0.017875847023444
206 => 0.017771431573231
207 => 0.018159716773788
208 => 0.017714579124349
209 => 0.017082762272242
210 => 0.016736135051256
211 => 0.017192601737471
212 => 0.01747135001425
213 => 0.017655584893482
214 => 0.017711334256619
215 => 0.016310159679588
216 => 0.015555004295273
217 => 0.016039050238745
218 => 0.016629619696847
219 => 0.01624445136834
220 => 0.016259549237597
221 => 0.015710400421601
222 => 0.016678207181887
223 => 0.016537205877449
224 => 0.017268720894298
225 => 0.017094138964752
226 => 0.017690661063743
227 => 0.017533576803446
228 => 0.018185624785476
301 => 0.018445744379001
302 => 0.018882525660913
303 => 0.019203823749908
304 => 0.019392496133218
305 => 0.019381168951016
306 => 0.0201287829299
307 => 0.019687941086195
308 => 0.019134139832057
309 => 0.01912412331459
310 => 0.019410944831533
311 => 0.020012044045405
312 => 0.020167900325924
313 => 0.020255002724429
314 => 0.020121602369062
315 => 0.01964310014314
316 => 0.019436485308048
317 => 0.019612527133754
318 => 0.019397243108362
319 => 0.019768883734218
320 => 0.020279225691672
321 => 0.020173842095569
322 => 0.020526123657351
323 => 0.020890698012695
324 => 0.021412055714895
325 => 0.02154835792407
326 => 0.021773660292728
327 => 0.022005570438049
328 => 0.022080053726572
329 => 0.022222265435171
330 => 0.022221515909269
331 => 0.022650080465082
401 => 0.023122800441684
402 => 0.023301241289358
403 => 0.0237115561793
404 => 0.023008906309423
405 => 0.023541874307185
406 => 0.02402262478222
407 => 0.023449454246867
408 => 0.024239436298244
409 => 0.024270109511161
410 => 0.024733238609294
411 => 0.024263768543537
412 => 0.023984998717092
413 => 0.02478979676067
414 => 0.025179213183056
415 => 0.025061917787458
416 => 0.024169294035363
417 => 0.02364974872521
418 => 0.022289998435734
419 => 0.023900681390459
420 => 0.02468519807344
421 => 0.024167262326679
422 => 0.024428478990822
423 => 0.025853592410599
424 => 0.02639618333159
425 => 0.02628332821302
426 => 0.026302398870305
427 => 0.02659517108255
428 => 0.027893484304244
429 => 0.02711550492714
430 => 0.027710241010605
501 => 0.028025686884795
502 => 0.028318690592731
503 => 0.027599166090812
504 => 0.026663075285728
505 => 0.02636657603334
506 => 0.024115763824062
507 => 0.023998599273787
508 => 0.023932831261268
509 => 0.023518173245409
510 => 0.023192365629333
511 => 0.022933271316569
512 => 0.022253330467763
513 => 0.022482790544362
514 => 0.021399106746049
515 => 0.022092409236814
516 => 0.020362823728247
517 => 0.021803273934692
518 => 0.021019302376559
519 => 0.021545718192998
520 => 0.021543881577806
521 => 0.020574583159454
522 => 0.020015512060491
523 => 0.020371773924123
524 => 0.020753714922039
525 => 0.020815683563947
526 => 0.021310880037424
527 => 0.021449078728959
528 => 0.021030330241728
529 => 0.020326981912953
530 => 0.02049035368806
531 => 0.020012201336683
601 => 0.019174257732758
602 => 0.019776083458188
603 => 0.01998157322126
604 => 0.020072329207125
605 => 0.019248307911139
606 => 0.018989382529567
607 => 0.018851532829012
608 => 0.020220611111258
609 => 0.020295612310079
610 => 0.01991189557281
611 => 0.021646331610777
612 => 0.021253775317748
613 => 0.021692356875689
614 => 0.020475529411851
615 => 0.020522013859645
616 => 0.019945948237739
617 => 0.020268506493288
618 => 0.020040532714804
619 => 0.020242446973822
620 => 0.020363473548154
621 => 0.02093944464336
622 => 0.021809850599405
623 => 0.02085341376868
624 => 0.020436680545105
625 => 0.020695219493214
626 => 0.021383742781893
627 => 0.022426890809099
628 => 0.021809326181683
629 => 0.022083390876403
630 => 0.022143261819909
701 => 0.021687892527137
702 => 0.022443680924456
703 => 0.022848714066593
704 => 0.023264194260626
705 => 0.023624944071614
706 => 0.023098242334524
707 => 0.023661888692939
708 => 0.023207689225033
709 => 0.022800225348043
710 => 0.02280084330255
711 => 0.022545235260417
712 => 0.022049962470098
713 => 0.021958626568715
714 => 0.022433767462161
715 => 0.022814785462694
716 => 0.022846167930171
717 => 0.023057119072678
718 => 0.023181957785844
719 => 0.024405546884873
720 => 0.024897684542562
721 => 0.025499461154695
722 => 0.025733887059392
723 => 0.026439424986193
724 => 0.025869645809312
725 => 0.025746370500315
726 => 0.024034966269594
727 => 0.0243152086165
728 => 0.024763903653261
729 => 0.024042365085485
730 => 0.024500015231454
731 => 0.024590365064624
801 => 0.024017847481052
802 => 0.024323653859462
803 => 0.023511522783678
804 => 0.021827552837559
805 => 0.022445555664394
806 => 0.022900613762448
807 => 0.022251189748267
808 => 0.023415257157506
809 => 0.022735233008257
810 => 0.022519697999861
811 => 0.02167881908833
812 => 0.022075681566175
813 => 0.022612443749984
814 => 0.022280787125692
815 => 0.022969024419591
816 => 0.023943751973935
817 => 0.02463840087519
818 => 0.024691727392338
819 => 0.024245114686693
820 => 0.024960814397733
821 => 0.024966027488781
822 => 0.024158715291009
823 => 0.023664241065006
824 => 0.023551895480476
825 => 0.023832556777282
826 => 0.024173331404539
827 => 0.02471063801248
828 => 0.025035321142556
829 => 0.025881922547167
830 => 0.02611098861329
831 => 0.026362662771468
901 => 0.02669897706023
902 => 0.027102808593101
903 => 0.02621924818932
904 => 0.026254353691325
905 => 0.02543159447705
906 => 0.024552358260991
907 => 0.025219588950638
908 => 0.026091904319373
909 => 0.025891794209962
910 => 0.025869277734775
911 => 0.025907144200491
912 => 0.02575626771298
913 => 0.025073858951714
914 => 0.024731157543911
915 => 0.02517332979243
916 => 0.025408324663696
917 => 0.025772781215322
918 => 0.02572785425259
919 => 0.026666655189803
920 => 0.027031444846137
921 => 0.026938116041817
922 => 0.026955290787895
923 => 0.027615725036063
924 => 0.028350263748688
925 => 0.029038256183982
926 => 0.029738111639125
927 => 0.028894408572127
928 => 0.028466028187076
929 => 0.028908007397024
930 => 0.028673487006918
1001 => 0.030021110731734
1002 => 0.030114417274543
1003 => 0.031461943550826
1004 => 0.032740906447462
1005 => 0.031937612767085
1006 => 0.032695082526539
1007 => 0.033514347828803
1008 => 0.035094843517877
1009 => 0.034562588172305
1010 => 0.034154888919103
1011 => 0.033769615094814
1012 => 0.034571308762661
1013 => 0.035602674858977
1014 => 0.035824821237821
1015 => 0.036184783237998
1016 => 0.035806327208871
1017 => 0.03626213581039
1018 => 0.037871340466199
1019 => 0.037436519163357
1020 => 0.036819003012309
1021 => 0.038089315538412
1022 => 0.038549036703394
1023 => 0.04177560059708
1024 => 0.045849270795565
1025 => 0.044162744584232
1026 => 0.043115863340996
1027 => 0.043361905265512
1028 => 0.04484947171956
1029 => 0.045327230851601
1030 => 0.044028516837265
1031 => 0.044487244582713
1101 => 0.047014879561251
1102 => 0.048370874630997
1103 => 0.046529251191847
1104 => 0.041448285163076
1105 => 0.036763402439298
1106 => 0.038006044300662
1107 => 0.03786516727725
1108 => 0.040580795732803
1109 => 0.037426148819089
1110 => 0.037479264982573
1111 => 0.040251049758687
1112 => 0.039511585100841
1113 => 0.038313747058608
1114 => 0.036772147982613
1115 => 0.03392235950998
1116 => 0.031398222387538
1117 => 0.036348636558709
1118 => 0.036135165697904
1119 => 0.035826028256849
1120 => 0.036513980179752
1121 => 0.039854479438805
1122 => 0.039777470118742
1123 => 0.039287576115008
1124 => 0.039659156399113
1125 => 0.03824860723824
1126 => 0.038612137874605
1127 => 0.036762660329938
1128 => 0.037598701421132
1129 => 0.038311177036146
1130 => 0.038454217064242
1201 => 0.038776493551346
1202 => 0.036022676254451
1203 => 0.037259059372929
1204 => 0.037985318621603
1205 => 0.034704052914555
1206 => 0.037920458548648
1207 => 0.035974738422002
1208 => 0.035314331787283
1209 => 0.036203482318974
1210 => 0.035856979492047
1211 => 0.035559076708784
1212 => 0.035392841837103
1213 => 0.036045735855614
1214 => 0.036015277569273
1215 => 0.034947016233721
1216 => 0.033553512869396
1217 => 0.034021218338652
1218 => 0.033851296556909
1219 => 0.033235478099527
1220 => 0.033650465385599
1221 => 0.031823071397998
1222 => 0.028679135022006
1223 => 0.030756115693362
1224 => 0.030676154196835
1225 => 0.030635833984321
1226 => 0.032196627555315
1227 => 0.032046593267099
1228 => 0.031774279564845
1229 => 0.033230476844834
1230 => 0.032698945249021
1231 => 0.034337000382723
]
'min_raw' => 0.01470441841782
'max_raw' => 0.048370874630997
'avg_raw' => 0.031537646524409
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0147044'
'max' => '$0.04837'
'avg' => '$0.031537'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0080105880430255
'max_diff' => 0.031975592832877
'year' => 2029
]
4 => [
'items' => [
101 => 0.035415929436543
102 => 0.035142278128795
103 => 0.03615701611883
104 => 0.034031993328032
105 => 0.034737840658018
106 => 0.034883314814466
107 => 0.033212507596439
108 => 0.032071140732156
109 => 0.031995024574844
110 => 0.030016051722221
111 => 0.031073203046381
112 => 0.032003452463748
113 => 0.0315579351831
114 => 0.031416897721497
115 => 0.032137427525533
116 => 0.032193418862227
117 => 0.030916810451907
118 => 0.031182257765343
119 => 0.032289217189316
120 => 0.031154365228025
121 => 0.02894953324425
122 => 0.028402704428087
123 => 0.028329747383956
124 => 0.026846704264981
125 => 0.028439246144347
126 => 0.027744058936535
127 => 0.029940146996391
128 => 0.028685753274458
129 => 0.02863167886823
130 => 0.028549937472226
131 => 0.027273420995985
201 => 0.027552896977427
202 => 0.028481917705137
203 => 0.028813402766951
204 => 0.028778826159227
205 => 0.028477364996745
206 => 0.028615372373198
207 => 0.028170802528686
208 => 0.028013815663667
209 => 0.02751832193503
210 => 0.026790083037569
211 => 0.02689134912281
212 => 0.025448517312867
213 => 0.02466238596593
214 => 0.024444795170142
215 => 0.02415382366427
216 => 0.024477661175976
217 => 0.025444429951631
218 => 0.024278301696754
219 => 0.022279056598152
220 => 0.022399214635126
221 => 0.022669174068965
222 => 0.022166106449967
223 => 0.02168999516785
224 => 0.022103935299521
225 => 0.021256828795661
226 => 0.022771542842857
227 => 0.022730574072818
228 => 0.023295165800324
301 => 0.023648216594122
302 => 0.022834548815969
303 => 0.022629913570155
304 => 0.022746483106324
305 => 0.020819848335302
306 => 0.023137718636016
307 => 0.023157763674628
308 => 0.022986125884334
309 => 0.024220320263247
310 => 0.026824855357635
311 => 0.025844924487945
312 => 0.025465465636634
313 => 0.024744114082908
314 => 0.02570527219863
315 => 0.025631470251745
316 => 0.025297709859373
317 => 0.025095850532671
318 => 0.025467782531465
319 => 0.025049764042031
320 => 0.024974676434949
321 => 0.024519727232154
322 => 0.024357331065626
323 => 0.024237099409106
324 => 0.024104736168996
325 => 0.024396696493814
326 => 0.023735075987197
327 => 0.022937226515676
328 => 0.02287089396497
329 => 0.023054043969487
330 => 0.022973013726402
331 => 0.022870506023341
401 => 0.022674790901884
402 => 0.02261672640614
403 => 0.02280540784842
404 => 0.022592397500897
405 => 0.022906705871941
406 => 0.022821231386493
407 => 0.022343777858965
408 => 0.021748693987729
409 => 0.021743396493044
410 => 0.02161518664912
411 => 0.021451892136402
412 => 0.021406467338637
413 => 0.022069074416205
414 => 0.023440651236609
415 => 0.023171377887712
416 => 0.023365955478533
417 => 0.024323084644852
418 => 0.024627327224947
419 => 0.024411383047976
420 => 0.024115785339682
421 => 0.024128790138663
422 => 0.025138936991416
423 => 0.025201938611551
424 => 0.025361123380539
425 => 0.025565720794299
426 => 0.024446226872244
427 => 0.024076062075609
428 => 0.023900657459002
429 => 0.023360479129983
430 => 0.02394301514644
501 => 0.02360359635633
502 => 0.023649395547313
503 => 0.023619568764103
504 => 0.023635856204614
505 => 0.022771119449411
506 => 0.023086184073781
507 => 0.022562328027977
508 => 0.021860943588247
509 => 0.021858592301668
510 => 0.022030255149641
511 => 0.021928143370499
512 => 0.02165336319836
513 => 0.021692394424886
514 => 0.021350439809928
515 => 0.02173391390643
516 => 0.021744910571382
517 => 0.021597252156253
518 => 0.022188046911143
519 => 0.022430096004264
520 => 0.022332904072277
521 => 0.022423276759222
522 => 0.023182567411055
523 => 0.023306364917478
524 => 0.023361347592227
525 => 0.023287678091872
526 => 0.022437155198488
527 => 0.022474879505512
528 => 0.02219808357104
529 => 0.021964220174447
530 => 0.021973573483859
531 => 0.022093809669821
601 => 0.022618888145676
602 => 0.023723884843046
603 => 0.023765818659969
604 => 0.023816643669375
605 => 0.023609912813516
606 => 0.023547560809241
607 => 0.023629819197297
608 => 0.024044797858863
609 => 0.025112235642018
610 => 0.024734931837679
611 => 0.024428177971667
612 => 0.024697283812408
613 => 0.024655857077547
614 => 0.02430617374493
615 => 0.02429635929844
616 => 0.023625205182624
617 => 0.023377094787447
618 => 0.023169755170496
619 => 0.022943345721523
620 => 0.022809122610858
621 => 0.023015350312152
622 => 0.023062517027452
623 => 0.02261159655433
624 => 0.022550137760052
625 => 0.022918369152198
626 => 0.022756324245564
627 => 0.022922991450557
628 => 0.02296165967176
629 => 0.022955433197542
630 => 0.022786239704277
701 => 0.022894078591462
702 => 0.022639007474952
703 => 0.02236165594619
704 => 0.022184722950451
705 => 0.022030325444912
706 => 0.022115994154621
707 => 0.021810600846998
708 => 0.021712899381537
709 => 0.022857545202935
710 => 0.023703107378219
711 => 0.023690812569311
712 => 0.023615971082051
713 => 0.023504771813025
714 => 0.024036662939716
715 => 0.023851362706676
716 => 0.023986184108566
717 => 0.024020501813783
718 => 0.024124371171644
719 => 0.024161495539206
720 => 0.024049279915902
721 => 0.023672670578107
722 => 0.022734195915265
723 => 0.022297333426348
724 => 0.022153161528485
725 => 0.022158401903151
726 => 0.022013848975802
727 => 0.022056426291314
728 => 0.021999042323036
729 => 0.02189037096979
730 => 0.022109284004786
731 => 0.022134511692753
801 => 0.022083414774569
802 => 0.022095449948537
803 => 0.021672389289752
804 => 0.0217045536728
805 => 0.021525458300737
806 => 0.021491880077502
807 => 0.021039142572545
808 => 0.020237052457162
809 => 0.020681488241856
810 => 0.020144672311074
811 => 0.019941371983999
812 => 0.020903764112687
813 => 0.020807166635569
814 => 0.020641833744657
815 => 0.020397271940606
816 => 0.020306561588538
817 => 0.019755434204786
818 => 0.019722870658803
819 => 0.019996024271882
820 => 0.019869973278088
821 => 0.019692949943557
822 => 0.019051789370453
823 => 0.018330912605314
824 => 0.018352671343583
825 => 0.018581968830185
826 => 0.019248682197459
827 => 0.018988185750607
828 => 0.018799192589563
829 => 0.018763799851613
830 => 0.019206814066772
831 => 0.01983377199557
901 => 0.020127926628368
902 => 0.019836428320874
903 => 0.019501570760608
904 => 0.019521951988721
905 => 0.019657539168404
906 => 0.01967178746389
907 => 0.01945382961607
908 => 0.019515183473536
909 => 0.019421981353731
910 => 0.018850000116525
911 => 0.018839654789716
912 => 0.018699281369662
913 => 0.018695030918291
914 => 0.018456220712989
915 => 0.01842280951445
916 => 0.017948637357079
917 => 0.018260738906986
918 => 0.018051397573376
919 => 0.017735870804996
920 => 0.017681473871198
921 => 0.017679838633682
922 => 0.018003814074313
923 => 0.018256953065335
924 => 0.018055039155501
925 => 0.018009067272168
926 => 0.018499926713905
927 => 0.018437460375661
928 => 0.018383364929606
929 => 0.019777634789581
930 => 0.018673961399177
1001 => 0.018192696805486
1002 => 0.017597040481126
1003 => 0.017790989183898
1004 => 0.017831857025271
1005 => 0.016399410940308
1006 => 0.015818267742039
1007 => 0.015618841296312
1008 => 0.01550406855732
1009 => 0.015556371935704
1010 => 0.015033274895963
1011 => 0.015384804757895
1012 => 0.014931846937772
1013 => 0.014855907085176
1014 => 0.015665851778263
1015 => 0.015778550850678
1016 => 0.015297741594899
1017 => 0.015606498973057
1018 => 0.015494539255688
1019 => 0.01493961159953
1020 => 0.014918417444836
1021 => 0.014639974253626
1022 => 0.014204264576608
1023 => 0.01400513356256
1024 => 0.013901424401509
1025 => 0.01394421682261
1026 => 0.013922579665031
1027 => 0.013781382575895
1028 => 0.013930672916901
1029 => 0.013549297786659
1030 => 0.013397431136848
1031 => 0.013328836494408
1101 => 0.012990344115185
1102 => 0.013529036018774
1103 => 0.013635165110042
1104 => 0.013741503308406
1105 => 0.014667104724989
1106 => 0.014620864293939
1107 => 0.015038855270628
1108 => 0.01502261290991
1109 => 0.014903395112353
1110 => 0.014400434834838
1111 => 0.01460090583705
1112 => 0.01398388725235
1113 => 0.014446199529193
1114 => 0.014235219512664
1115 => 0.014374866973378
1116 => 0.014123768247511
1117 => 0.014262736650018
1118 => 0.013660332254712
1119 => 0.013097815506434
1120 => 0.013324188666828
1121 => 0.013570282181089
1122 => 0.014103875623466
1123 => 0.013786071771236
1124 => 0.013900366053992
1125 => 0.013517499339392
1126 => 0.012727535946701
1127 => 0.012732007053714
1128 => 0.012610488396036
1129 => 0.012505478533789
1130 => 0.013822575366656
1201 => 0.013658773555269
1202 => 0.013397776806675
1203 => 0.013747131326267
1204 => 0.013839506206248
1205 => 0.013842135989218
1206 => 0.014097016028566
1207 => 0.014233045551256
1208 => 0.014257021344216
1209 => 0.014658080593179
1210 => 0.014792510363332
1211 => 0.015346207561378
1212 => 0.014221504396642
1213 => 0.014198341875095
1214 => 0.013752047460794
1215 => 0.013469000487609
1216 => 0.013771427929205
1217 => 0.014039337356997
1218 => 0.01376037215351
1219 => 0.013796799119809
1220 => 0.013422311126422
1221 => 0.01355617296276
1222 => 0.013671472809351
1223 => 0.013607811011075
1224 => 0.01351250621779
1225 => 0.014017371839117
1226 => 0.013988885342178
1227 => 0.014459027815568
1228 => 0.014825537493786
1229 => 0.015482388358595
1230 => 0.014796930238757
1231 => 0.014771949420421
]
'min_raw' => 0.012505478533789
'max_raw' => 0.03615701611883
'avg_raw' => 0.024331247326309
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0125054'
'max' => '$0.036157'
'avg' => '$0.024331'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0021989398840318
'max_diff' => -0.012213858512167
'year' => 2030
]
5 => [
'items' => [
101 => 0.015016140926706
102 => 0.014792472978884
103 => 0.014933823401152
104 => 0.015459614620298
105 => 0.015470723760228
106 => 0.015284631353089
107 => 0.015273307613202
108 => 0.015309048695621
109 => 0.015518385331701
110 => 0.01544523667879
111 => 0.015529886151836
112 => 0.01563574161408
113 => 0.016073604687704
114 => 0.016179171992377
115 => 0.015922698172395
116 => 0.015945854886724
117 => 0.015849926637687
118 => 0.015757261151094
119 => 0.015965559632246
120 => 0.016346229200669
121 => 0.01634386107504
122 => 0.016432169015755
123 => 0.016487184131238
124 => 0.016251018982059
125 => 0.016097284153977
126 => 0.016156235869465
127 => 0.016250500946332
128 => 0.01612566697551
129 => 0.01535513387888
130 => 0.015588864398553
131 => 0.015549960211241
201 => 0.015494555917598
202 => 0.015729573762513
203 => 0.015706905718041
204 => 0.015027909779748
205 => 0.015071376896721
206 => 0.015030553159099
207 => 0.015162463007106
208 => 0.014785349414201
209 => 0.01490134701548
210 => 0.014974099623592
211 => 0.015016951468682
212 => 0.015171761716932
213 => 0.015153596521113
214 => 0.015170632542855
215 => 0.015400175272619
216 => 0.016561123630215
217 => 0.016624311487831
218 => 0.016313151367058
219 => 0.016437453697945
220 => 0.016198820404573
221 => 0.016359016533118
222 => 0.016468618655727
223 => 0.015973347738931
224 => 0.01594402100952
225 => 0.01570440279166
226 => 0.015833160049268
227 => 0.015628297994439
228 => 0.015678563976924
301 => 0.015538015907787
302 => 0.015790974449391
303 => 0.016073821404689
304 => 0.016145279715561
305 => 0.015957303664392
306 => 0.01582119661512
307 => 0.015582237473048
308 => 0.015979631851866
309 => 0.016095842078607
310 => 0.015979021449017
311 => 0.01595195155656
312 => 0.015900654159268
313 => 0.015962834541894
314 => 0.016095209172754
315 => 0.016032783741416
316 => 0.01607401683861
317 => 0.015916878791493
318 => 0.016251097162551
319 => 0.016781916369821
320 => 0.01678362304037
321 => 0.016721197272535
322 => 0.016695653993319
323 => 0.01675970661943
324 => 0.016794452541518
325 => 0.017001586989117
326 => 0.017223850503991
327 => 0.018261057346738
328 => 0.017969813815745
329 => 0.018890085430341
330 => 0.019617900795173
331 => 0.019836140799578
401 => 0.019635370264511
402 => 0.01894854510946
403 => 0.018914846190681
404 => 0.019941252942428
405 => 0.019651246022652
406 => 0.019616750622339
407 => 0.019249777843907
408 => 0.019466704206423
409 => 0.019419259228823
410 => 0.019344365010594
411 => 0.019758245399053
412 => 0.020532992538891
413 => 0.020412240931615
414 => 0.020322105458289
415 => 0.019927158052216
416 => 0.020165004605368
417 => 0.020080312003442
418 => 0.020444205168573
419 => 0.02022864291877
420 => 0.019649048935005
421 => 0.019741351187286
422 => 0.01972739988754
423 => 0.020014516647712
424 => 0.019928331322985
425 => 0.019710570819662
426 => 0.020530344537393
427 => 0.020477112991984
428 => 0.020552583152948
429 => 0.020585807451797
430 => 0.021084789267746
501 => 0.021289206152103
502 => 0.021335612363674
503 => 0.021529792593644
504 => 0.021330780982658
505 => 0.022126969319476
506 => 0.022656388104582
507 => 0.023271335267125
508 => 0.024169938353814
509 => 0.024507821426953
510 => 0.024446785874065
511 => 0.025128096478778
512 => 0.026352396490763
513 => 0.024694251910564
514 => 0.026440282179803
515 => 0.025887509155451
516 => 0.024576894258674
517 => 0.024492506110456
518 => 0.025380069735105
519 => 0.027348600429744
520 => 0.026855505817627
521 => 0.027349406955883
522 => 0.026773245043004
523 => 0.026744633747756
524 => 0.027321424057792
525 => 0.028669126056395
526 => 0.028028883354713
527 => 0.0271109384479
528 => 0.027788734682286
529 => 0.027201564856981
530 => 0.025878506902082
531 => 0.02685512875747
601 => 0.026202089535361
602 => 0.026392681097847
603 => 0.027765272410467
604 => 0.027600118592307
605 => 0.027813842925838
606 => 0.027436625071295
607 => 0.027084244113355
608 => 0.026426498887207
609 => 0.026231772952193
610 => 0.026285588195126
611 => 0.026231746284031
612 => 0.025863743874992
613 => 0.025784273789798
614 => 0.025651820166143
615 => 0.025692873082619
616 => 0.025443821519474
617 => 0.025913833275807
618 => 0.026001071599512
619 => 0.026343106960044
620 => 0.026378618205833
621 => 0.027331181816344
622 => 0.026806525786856
623 => 0.027158510348059
624 => 0.027127025535898
625 => 0.024605299257619
626 => 0.024952770889386
627 => 0.025493327705812
628 => 0.025249807592719
629 => 0.024905527127738
630 => 0.024627502193114
701 => 0.024206265987651
702 => 0.024799147857716
703 => 0.025578724470894
704 => 0.02639838955524
705 => 0.027383163447498
706 => 0.027163373378778
707 => 0.026379979892319
708 => 0.026415122351852
709 => 0.026632359208639
710 => 0.02635101774105
711 => 0.026268044649821
712 => 0.026620959980042
713 => 0.026623390313963
714 => 0.02629967295425
715 => 0.025939920348581
716 => 0.025938412972028
717 => 0.025874398470647
718 => 0.026784633080591
719 => 0.027285170080961
720 => 0.027342555841397
721 => 0.027281307562057
722 => 0.027304879593918
723 => 0.027013628141983
724 => 0.027679342593171
725 => 0.028290268005917
726 => 0.028126526944784
727 => 0.027881055816981
728 => 0.027685526240195
729 => 0.028080466390512
730 => 0.028062880327312
731 => 0.028284932105397
801 => 0.02827485855411
802 => 0.02820019089293
803 => 0.028126529611401
804 => 0.028418588266368
805 => 0.028334480064056
806 => 0.028250241218474
807 => 0.028081287317339
808 => 0.02810425095853
809 => 0.027858822214779
810 => 0.027745275647864
811 => 0.026037807717774
812 => 0.02558151649373
813 => 0.025725075001479
814 => 0.025772338189725
815 => 0.025573759664267
816 => 0.025858470259135
817 => 0.025814098414508
818 => 0.025986723305291
819 => 0.025878874768031
820 => 0.02588330090962
821 => 0.026200460461967
822 => 0.026292533229307
823 => 0.02624570427672
824 => 0.02627850166991
825 => 0.02703430375305
826 => 0.026926852866018
827 => 0.026869771723857
828 => 0.026885583590335
829 => 0.027078707227157
830 => 0.027132771301307
831 => 0.026903698020117
901 => 0.027011730303783
902 => 0.027471718056296
903 => 0.027632687736624
904 => 0.0281464256864
905 => 0.027928180674371
906 => 0.028328778839373
907 => 0.029560081024609
908 => 0.030543730409806
909 => 0.029639125784149
910 => 0.03144547261307
911 => 0.032851972724447
912 => 0.032797988907524
913 => 0.032552733080172
914 => 0.030951470097108
915 => 0.029477964026607
916 => 0.030710614422954
917 => 0.030713756702311
918 => 0.030607870940081
919 => 0.02995022356479
920 => 0.030584986236954
921 => 0.030635371392751
922 => 0.030607169103999
923 => 0.030102952403299
924 => 0.029333106696153
925 => 0.029483532704579
926 => 0.029729933574989
927 => 0.029263445322698
928 => 0.02911437406057
929 => 0.029391525898833
930 => 0.030284566868592
1001 => 0.030115742646293
1002 => 0.030111333963577
1003 => 0.030833635579183
1004 => 0.030316623504854
1005 => 0.029485430058277
1006 => 0.029275542750921
1007 => 0.028530584206841
1008 => 0.029045129726688
1009 => 0.02906364730392
1010 => 0.028781835981227
1011 => 0.029508297493962
1012 => 0.029501603023231
1013 => 0.030191270110046
1014 => 0.031509654552908
1015 => 0.031119743399395
1016 => 0.030666319150073
1017 => 0.030715618938065
1018 => 0.031256315930092
1019 => 0.030929398185801
1020 => 0.031046960086
1021 => 0.031256137986076
1022 => 0.031382340206788
1023 => 0.030697460380647
1024 => 0.030537782131584
1025 => 0.030211136473452
1026 => 0.030125920718375
1027 => 0.030391966791239
1028 => 0.030321873050586
1029 => 0.029062090973257
1030 => 0.028930436736815
1031 => 0.028934474384288
1101 => 0.028603423546937
1102 => 0.028098491558671
1103 => 0.029425422675911
1104 => 0.029318851536807
1105 => 0.029201205247188
1106 => 0.029215616246386
1107 => 0.029791592070511
1108 => 0.029457497005042
1109 => 0.030345743493696
1110 => 0.030163146718763
1111 => 0.029975867025553
1112 => 0.029949979267272
1113 => 0.029877892563339
1114 => 0.02963068043327
1115 => 0.029332156931067
1116 => 0.029135045857249
1117 => 0.026875539730615
1118 => 0.027294890924776
1119 => 0.027777316248594
1120 => 0.027943847537177
1121 => 0.027658984244441
1122 => 0.02964192857233
1123 => 0.030004231609162
1124 => 0.028906792078154
1125 => 0.028701505950064
1126 => 0.029655387096711
1127 => 0.029080080158055
1128 => 0.029339140837305
1129 => 0.028779193347382
1130 => 0.02991696341706
1201 => 0.029908295515416
1202 => 0.029465677260608
1203 => 0.029839775178652
1204 => 0.029774766459295
1205 => 0.029275051539738
1206 => 0.029932805271336
1207 => 0.02993313150898
1208 => 0.029507121062079
1209 => 0.029009634125776
1210 => 0.028920695211682
1211 => 0.028853691687175
1212 => 0.029322662077667
1213 => 0.02974313946335
1214 => 0.030525543632923
1215 => 0.030722258630618
1216 => 0.031490050362681
1217 => 0.031032867769338
1218 => 0.031235530891461
1219 => 0.031455550378975
1220 => 0.031561035812237
1221 => 0.031389152959396
1222 => 0.032581849554975
1223 => 0.032682549690921
1224 => 0.032716313575451
1225 => 0.032314142994054
1226 => 0.032671364599531
1227 => 0.032504232440264
1228 => 0.032939063888025
1229 => 0.033007251011241
1230 => 0.032949498943705
1231 => 0.032971142612874
]
'min_raw' => 0.014785349414201
'max_raw' => 0.033007251011241
'avg_raw' => 0.023896300212721
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.014785'
'max' => '$0.0330072'
'avg' => '$0.023896'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0022798708804123
'max_diff' => -0.0031497651075888
'year' => 2031
]
6 => [
'items' => [
101 => 0.031953386474645
102 => 0.031900610449786
103 => 0.031181005606025
104 => 0.031474249898908
105 => 0.030926043748927
106 => 0.031099885566235
107 => 0.031176513382879
108 => 0.031136487360055
109 => 0.031490829491247
110 => 0.031189566292419
111 => 0.030394483178454
112 => 0.029599183444627
113 => 0.029589199104306
114 => 0.029379810722595
115 => 0.029228461274014
116 => 0.029257616547221
117 => 0.029360363532784
118 => 0.029222489432429
119 => 0.029251911862134
120 => 0.029740520235862
121 => 0.029838507160618
122 => 0.029505509304335
123 => 0.028168474859999
124 => 0.027840363253662
125 => 0.028076203369561
126 => 0.02796348698421
127 => 0.022568716456933
128 => 0.023836137770554
129 => 0.023083079063562
130 => 0.023430123162309
131 => 0.022661445226076
201 => 0.023028298627109
202 => 0.022960554199279
203 => 0.024998530165859
204 => 0.024966709974285
205 => 0.024981940616105
206 => 0.024254942398842
207 => 0.025413070299095
208 => 0.025983605747691
209 => 0.025878014820465
210 => 0.025904589781981
211 => 0.025447943896084
212 => 0.024986361946459
213 => 0.024474396527372
214 => 0.025425564995197
215 => 0.025319811298562
216 => 0.025562372229664
217 => 0.026179272971975
218 => 0.026270113949658
219 => 0.026392205144882
220 => 0.026348444142437
221 => 0.027391008760312
222 => 0.027264747306024
223 => 0.027569001082957
224 => 0.026943127980016
225 => 0.026234893155618
226 => 0.026369505441796
227 => 0.026356541196153
228 => 0.026191491469456
229 => 0.026042491956065
301 => 0.025794449746622
302 => 0.026579292000639
303 => 0.026547428838416
304 => 0.02706325639793
305 => 0.026972078866304
306 => 0.026363172995182
307 => 0.026384920187491
308 => 0.026531180507114
309 => 0.0270373891433
310 => 0.027187666331832
311 => 0.027118051950593
312 => 0.027282824027404
313 => 0.027413053158617
314 => 0.027299178801242
315 => 0.028911399561911
316 => 0.028241893098442
317 => 0.028568205890341
318 => 0.028646029568462
319 => 0.02844668585341
320 => 0.028489916367241
321 => 0.028555398816086
322 => 0.028952995422694
323 => 0.029996403963938
324 => 0.030458522504133
325 => 0.031848828932836
326 => 0.03042014999237
327 => 0.030335378096504
328 => 0.030585814267546
329 => 0.031402071320076
330 => 0.032063570994026
331 => 0.032283028598706
401 => 0.032312033544015
402 => 0.032723750599662
403 => 0.03295973913789
404 => 0.032673757319873
405 => 0.032431417672648
406 => 0.031563387136591
407 => 0.031663864034708
408 => 0.03235605022459
409 => 0.033333803987362
410 => 0.034172818433761
411 => 0.033879024817237
412 => 0.036120462725339
413 => 0.036342692138474
414 => 0.036311987219116
415 => 0.03681825889441
416 => 0.035813412719386
417 => 0.035383821511586
418 => 0.03248381425505
419 => 0.033298598004377
420 => 0.034482934034597
421 => 0.034326182719965
422 => 0.033466086237427
423 => 0.034172165973452
424 => 0.033938713931567
425 => 0.033754580620199
426 => 0.034598131015576
427 => 0.033670612704718
428 => 0.034473681329932
429 => 0.033443737511414
430 => 0.03388036684173
501 => 0.033632514916458
502 => 0.033792905487699
503 => 0.032855265485546
504 => 0.033361193270783
505 => 0.032834217226343
506 => 0.032833967371084
507 => 0.032822334345695
508 => 0.033442319325009
509 => 0.033462537012926
510 => 0.033004367176468
511 => 0.032938337745077
512 => 0.033182483160357
513 => 0.032896652820849
514 => 0.03303039103771
515 => 0.032900703615197
516 => 0.032871508244754
517 => 0.032638874565882
518 => 0.032538649580628
519 => 0.032577950379826
520 => 0.032443796491213
521 => 0.032362963920766
522 => 0.032806254712907
523 => 0.032569422324965
524 => 0.0327699567528
525 => 0.03254142246282
526 => 0.031749223046097
527 => 0.031293620784183
528 => 0.029797229522918
529 => 0.030221604228345
530 => 0.030502965097091
531 => 0.030409975331649
601 => 0.03060975333008
602 => 0.030622018076654
603 => 0.030557068212869
604 => 0.030481864591198
605 => 0.030445259627189
606 => 0.030718083039023
607 => 0.030876466212406
608 => 0.030531203424392
609 => 0.0304503131839
610 => 0.030799392925063
611 => 0.031012331365516
612 => 0.032584549170044
613 => 0.032468074196888
614 => 0.032760403522451
615 => 0.032727491726551
616 => 0.033033899431455
617 => 0.033534746531413
618 => 0.032516384338145
619 => 0.032693136802581
620 => 0.032649801180112
621 => 0.033122928143021
622 => 0.033124405193756
623 => 0.032840741945047
624 => 0.032994520394083
625 => 0.032908685482522
626 => 0.033063800768996
627 => 0.03246651860261
628 => 0.033193943808643
629 => 0.033606347026219
630 => 0.033612073245295
701 => 0.033807549097391
702 => 0.034006163884319
703 => 0.034387387672125
704 => 0.033995531759787
705 => 0.033290621119894
706 => 0.033341513391247
707 => 0.032928224540995
708 => 0.032935172001234
709 => 0.032898085913994
710 => 0.033009384053513
711 => 0.032490942285397
712 => 0.032612619532127
713 => 0.032442270674164
714 => 0.032692766497433
715 => 0.032423274400039
716 => 0.032649780282363
717 => 0.032747532712385
718 => 0.033108241283627
719 => 0.032369997450783
720 => 0.030864668300901
721 => 0.031181106738558
722 => 0.030713069433561
723 => 0.030756388068082
724 => 0.030843898603924
725 => 0.030560248325594
726 => 0.030614359859852
727 => 0.030612426615071
728 => 0.030595766955974
729 => 0.030521978563487
730 => 0.030414970795792
731 => 0.030841256807035
801 => 0.030913691107074
802 => 0.031074703583348
803 => 0.031553767496933
804 => 0.031505897714861
805 => 0.031583975315519
806 => 0.03141353235167
807 => 0.030764294428333
808 => 0.030799551171148
809 => 0.030359899023293
810 => 0.031063460689454
811 => 0.030896848000347
812 => 0.0307894317158
813 => 0.030760122187356
814 => 0.031240373607722
815 => 0.031384072359715
816 => 0.031294528940738
817 => 0.031110872776017
818 => 0.031463546905352
819 => 0.031557907624235
820 => 0.031579031509303
821 => 0.032203902447927
822 => 0.031613954853322
823 => 0.031755961102918
824 => 0.032863853324797
825 => 0.031859147958229
826 => 0.032391362798503
827 => 0.032365313651584
828 => 0.0326375767547
829 => 0.032342980130364
830 => 0.032346632008594
831 => 0.032588383199461
901 => 0.032248887251945
902 => 0.032164823280998
903 => 0.032048689507212
904 => 0.032302263353604
905 => 0.032454269406358
906 => 0.033679326555408
907 => 0.034470769343088
908 => 0.034436410724393
909 => 0.034750384182626
910 => 0.034608936264025
911 => 0.034152163622785
912 => 0.034931818823892
913 => 0.034685103296103
914 => 0.034705442224454
915 => 0.034704685208525
916 => 0.034868729466259
917 => 0.034752489075219
918 => 0.034523367332648
919 => 0.034675469038031
920 => 0.035127156725663
921 => 0.036529209167545
922 => 0.037313816288746
923 => 0.036481974833667
924 => 0.037055767930579
925 => 0.036711696535817
926 => 0.036649168528151
927 => 0.037009552995989
928 => 0.037370568269131
929 => 0.037347573156944
930 => 0.037085494606982
1001 => 0.036937453084106
1002 => 0.038058473092874
1003 => 0.038884421539257
1004 => 0.038828097392442
1005 => 0.039076693858888
1006 => 0.039806580773173
1007 => 0.039873312485375
1008 => 0.039864905823448
1009 => 0.039699504312022
1010 => 0.040418172766929
1011 => 0.04101769863578
1012 => 0.039661218641036
1013 => 0.040177748465408
1014 => 0.040409635345119
1015 => 0.040750114082273
1016 => 0.041324558782714
1017 => 0.041948558091324
1018 => 0.042036798435366
1019 => 0.041974187688579
1020 => 0.041562643370549
1021 => 0.04224543085989
1022 => 0.04264539175781
1023 => 0.042883559319578
1024 => 0.04348751262892
1025 => 0.040411067399545
1026 => 0.038233406556944
1027 => 0.037893333370568
1028 => 0.038584885567781
1029 => 0.038767242367161
1030 => 0.038693734569987
1031 => 0.036242579307378
1101 => 0.037880428545389
1102 => 0.039642616611213
1103 => 0.039710309431558
1104 => 0.040592497622925
1105 => 0.04087977426015
1106 => 0.041590051385249
1107 => 0.041545623357687
1108 => 0.041718564534671
1109 => 0.041678808353006
1110 => 0.042994447160758
1111 => 0.044445792139963
1112 => 0.044395536678327
1113 => 0.044186888666032
1114 => 0.044496766544063
1115 => 0.045994710098183
1116 => 0.045856803459776
1117 => 0.045990768012129
1118 => 0.047756927882834
1119 => 0.050053186948064
1120 => 0.048986344071624
1121 => 0.051301086137731
1122 => 0.05275809356914
1123 => 0.055277837264383
1124 => 0.054962352943739
1125 => 0.055943270673564
1126 => 0.054397570166222
1127 => 0.050848329363753
1128 => 0.050286648420815
1129 => 0.051411147892605
1130 => 0.054175620116947
1201 => 0.051324084824339
1202 => 0.051900946700186
1203 => 0.051734810441135
1204 => 0.051725957745923
1205 => 0.052063829115622
1206 => 0.051573729071689
1207 => 0.049576973325391
1208 => 0.050492074716964
1209 => 0.050138710122899
1210 => 0.050530794485089
1211 => 0.052646712079938
1212 => 0.05171121447408
1213 => 0.050725743739963
1214 => 0.051961742734008
1215 => 0.053535594188763
1216 => 0.053437105393207
1217 => 0.053245995964706
1218 => 0.054323269807
1219 => 0.056102610582849
1220 => 0.056583559244591
1221 => 0.056938585714127
1222 => 0.056987537866054
1223 => 0.057491775454501
1224 => 0.054780362857189
1225 => 0.059083444283137
1226 => 0.059826467575173
1227 => 0.05968680999143
1228 => 0.060512649109328
1229 => 0.060269666291326
1230 => 0.059917622310878
1231 => 0.061226752973764
]
'min_raw' => 0.022568716456933
'max_raw' => 0.061226752973764
'avg_raw' => 0.041897734715348
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.022568'
'max' => '$0.061226'
'avg' => '$0.041897'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0077833670427323
'max_diff' => 0.028219501962523
'year' => 2032
]
7 => [
'items' => [
101 => 0.059725940310162
102 => 0.057595725681239
103 => 0.056427047804944
104 => 0.057966057107005
105 => 0.05890587638375
106 => 0.059527037141946
107 => 0.059715000012061
108 => 0.054990842098716
109 => 0.052444782997234
110 => 0.054076777690657
111 => 0.056067923850891
112 => 0.054769301939733
113 => 0.054820205460034
114 => 0.052968711886558
115 => 0.056231739948971
116 => 0.055756344206663
117 => 0.058222698158716
118 => 0.057634082994332
119 => 0.059645298898922
120 => 0.059115678348059
121 => 0.061314103644007
122 => 0.06219111501455
123 => 0.063663753601612
124 => 0.064747032540972
125 => 0.065383154653988
126 => 0.065344964268356
127 => 0.067865596994905
128 => 0.066379267940259
129 => 0.064512088346762
130 => 0.064478316958792
131 => 0.065445355728403
201 => 0.067472003695379
202 => 0.067997484026687
203 => 0.068291155844543
204 => 0.067841387232707
205 => 0.066228083570052
206 => 0.065531467228153
207 => 0.066125004534369
208 => 0.065399159412108
209 => 0.066652171729302
210 => 0.068372825269797
211 => 0.068017517117886
212 => 0.069205258998949
213 => 0.070434446891759
214 => 0.072192240784759
215 => 0.072651793199309
216 => 0.073411415865347
217 => 0.074193317111746
218 => 0.074444442719261
219 => 0.074923919423705
220 => 0.074921392344796
221 => 0.076366327666143
222 => 0.07796013607151
223 => 0.078561761847787
224 => 0.079945167146497
225 => 0.07757613405276
226 => 0.07937307286785
227 => 0.080993956659357
228 => 0.079061472181927
301 => 0.081724951822929
302 => 0.081828368701815
303 => 0.083389840790811
304 => 0.081806989686757
305 => 0.08086709775381
306 => 0.083580530546938
307 => 0.084893475203201
308 => 0.084498005587636
309 => 0.081488462286448
310 => 0.079736778999773
311 => 0.07515228596407
312 => 0.080582816000221
313 => 0.083227868770096
314 => 0.081481612238772
315 => 0.082362322459496
316 => 0.087167191852515
317 => 0.088996575025123
318 => 0.088616076113574
319 => 0.088680374166081
320 => 0.089667476120366
321 => 0.094044829792644
322 => 0.091421818005952
323 => 0.093427012234501
324 => 0.094490560023059
325 => 0.095478442481233
326 => 0.093052515387414
327 => 0.089896419882303
328 => 0.088896751951958
329 => 0.081307981441687
330 => 0.080912952980267
331 => 0.080691211534285
401 => 0.079293163083317
402 => 0.078194679958556
403 => 0.077321125393683
404 => 0.07502865734998
405 => 0.075802298018625
406 => 0.072148582432228
407 => 0.074486100184675
408 => 0.068654681886738
409 => 0.07351126032679
410 => 0.070868045483395
411 => 0.0726428931617
412 => 0.072636700885351
413 => 0.069368643593624
414 => 0.067483696350371
415 => 0.068684858097016
416 => 0.069972598837757
417 => 0.070181530440462
418 => 0.071851119924306
419 => 0.072317066461541
420 => 0.070905226700755
421 => 0.068533838704079
422 => 0.069084658050105
423 => 0.067472534013905
424 => 0.064647348649918
425 => 0.066676446101337
426 => 0.067369269184369
427 => 0.067675259327096
428 => 0.064897013996347
429 => 0.064024028994785
430 => 0.063559259105007
501 => 0.06817520211959
502 => 0.068428073897831
503 => 0.067134346127883
504 => 0.072982118324347
505 => 0.071658587374992
506 => 0.073137295718377
507 => 0.069034676967868
508 => 0.069191402529047
509 => 0.067249157065174
510 => 0.068336684744054
511 => 0.067568055233275
512 => 0.068248823254758
513 => 0.068656872799924
514 => 0.070598799560428
515 => 0.073533434011035
516 => 0.070308740459959
517 => 0.068903695301293
518 => 0.069775377415455
519 => 0.072096781754396
520 => 0.075613828158393
521 => 0.073531665900071
522 => 0.074455694152906
523 => 0.074657553218995
524 => 0.073122243855546
525 => 0.075670437204566
526 => 0.077036034721791
527 => 0.078436855203875
528 => 0.07965314837837
529 => 0.077877336698628
530 => 0.079777709748557
531 => 0.078246344531316
601 => 0.076872551621825
602 => 0.076874635098592
603 => 0.076012834738556
604 => 0.074342987947153
605 => 0.074035042578772
606 => 0.075637013274302
607 => 0.076921642064928
608 => 0.07702745024508
609 => 0.077738686750181
610 => 0.078159589187581
611 => 0.082285005263218
612 => 0.08394428173607
613 => 0.085973213598578
614 => 0.086763596903359
615 => 0.089142367282653
616 => 0.087221317007089
617 => 0.086805685695998
618 => 0.081035566845693
619 => 0.081980423484182
620 => 0.083493230127509
621 => 0.08106051247004
622 => 0.082603511889287
623 => 0.082908132659842
624 => 0.08097784965493
625 => 0.082008897210459
626 => 0.07927074058727
627 => 0.073593118342902
628 => 0.075676758021158
629 => 0.077211018169886
630 => 0.075021439764739
701 => 0.078946174307579
702 => 0.076653425410618
703 => 0.075926734081637
704 => 0.073091652123118
705 => 0.074429701675227
706 => 0.076239432853478
707 => 0.07512122938915
708 => 0.077441669476726
709 => 0.0807280314795
710 => 0.083070088748918
711 => 0.083249882824623
712 => 0.081744096906038
713 => 0.084157128450368
714 => 0.084174704750802
715 => 0.081452795311275
716 => 0.079785640935219
717 => 0.079406859953256
718 => 0.080353129110585
719 => 0.081502074558505
720 => 0.083313641300729
721 => 0.084408333142431
722 => 0.087262708885901
723 => 0.088035021120718
724 => 0.088883558116342
725 => 0.090017465221615
726 => 0.09137901142931
727 => 0.088400025839743
728 => 0.08851838649074
729 => 0.085744396356599
730 => 0.082779990067842
731 => 0.085029604922548
801 => 0.087970677091352
802 => 0.087295991886232
803 => 0.087220076018088
804 => 0.087347745451001
805 => 0.086839054839499
806 => 0.084538266056632
807 => 0.083382824333577
808 => 0.08487363894094
809 => 0.085665940556229
810 => 0.086894731265581
811 => 0.086743256874028
812 => 0.08990848977883
813 => 0.091138403573961
814 => 0.090823738994188
815 => 0.090881644849692
816 => 0.093108345027438
817 => 0.095584893580909
818 => 0.0979045081106
819 => 0.10026411963996
820 => 0.09741951584411
821 => 0.095975201467347
822 => 0.09746536523169
823 => 0.096674663362756
824 => 0.10121827083906
825 => 0.10153286036259
826 => 0.10607613928436
827 => 0.11038825198471
828 => 0.10767989125714
829 => 0.11023375343599
830 => 0.11299596360185
831 => 0.11832471516425
901 => 0.11653017910577
902 => 0.11515559260895
903 => 0.1138566150114
904 => 0.11655958118501
905 => 0.12003690398642
906 => 0.12078588601246
907 => 0.1219995230278
908 => 0.12072353210264
909 => 0.1222603226262
910 => 0.12768586847435
911 => 0.12621983809356
912 => 0.1241378392767
913 => 0.12842078664885
914 => 0.12997076865329
915 => 0.14084935409235
916 => 0.15458401758111
917 => 0.1488977767101
918 => 0.14536814350762
919 => 0.14619769103422
920 => 0.15121312519262
921 => 0.15282392346237
922 => 0.14844521848972
923 => 0.14999185111085
924 => 0.15851394891483
925 => 0.16308578096503
926 => 0.15687661896189
927 => 0.13974578725417
928 => 0.12395037806288
929 => 0.12814003185696
930 => 0.12766505513681
1001 => 0.13682098607383
1002 => 0.12618487375383
1003 => 0.12636395860746
1004 => 0.13570922449997
1005 => 0.13321606777826
1006 => 0.12917747318849
1007 => 0.12397986427277
1008 => 0.11437160347141
1009 => 0.10586129893347
1010 => 0.12255196593845
1011 => 0.12183223402719
1012 => 0.12078995556138
1013 => 0.12310943350072
1014 => 0.13437215997883
1015 => 0.13411251767962
1016 => 0.13246080584272
1017 => 0.13371361471349
1018 => 0.12895784973621
1019 => 0.13018351865761
1020 => 0.12394787598937
1021 => 0.12676664689885
1022 => 0.12916880817833
1023 => 0.12965107761979
1024 => 0.13073765529669
1025 => 0.12145296801482
1026 => 0.12562152002028
1027 => 0.12807015378299
1028 => 0.11700713736102
1029 => 0.12785147351864
1030 => 0.12129134226581
1031 => 0.11906473518874
1101 => 0.12206256828484
1102 => 0.1208943098118
1103 => 0.11988990977912
1104 => 0.1193294373031
1105 => 0.12153071507011
1106 => 0.12142802283119
1107 => 0.11782630515475
1108 => 0.11312801127063
1109 => 0.11470491291438
1110 => 0.11413200976367
1111 => 0.11205573483954
1112 => 0.11345489344801
1113 => 0.10729370703424
1114 => 0.096693706039957
1115 => 0.10369639138359
1116 => 0.10342679561532
1117 => 0.10329085320376
1118 => 0.1085531776995
1119 => 0.10804732662172
1120 => 0.10712920196223
1121 => 0.11203887276016
1122 => 0.11024677687453
1123 => 0.11576959412316
1124 => 0.11940727875654
1125 => 0.11848464426674
1126 => 0.12190590424689
1127 => 0.11474124154336
1128 => 0.11712105509709
1129 => 0.11761153137224
1130 => 0.11197828818462
1201 => 0.10813009011401
1202 => 0.10787345917537
1203 => 0.10120121403528
1204 => 0.10476547353263
1205 => 0.10790187439122
1206 => 0.1063997817745
1207 => 0.10592426412578
1208 => 0.10835358066587
1209 => 0.10854235936673
1210 => 0.10423818498138
1211 => 0.10513315913157
1212 => 0.10886535011493
1213 => 0.1050391174946
1214 => 0.097605372524855
1215 => 0.095761700992792
1216 => 0.095515721224807
1217 => 0.090515537806419
1218 => 0.095884903940423
1219 => 0.093541031732864
1220 => 0.10094529595264
1221 => 0.096716019940171
1222 => 0.09653370430422
1223 => 0.096258107480591
1224 => 0.091954243057409
1225 => 0.092896515841233
1226 => 0.096028774086861
1227 => 0.097146399116315
1228 => 0.097029821669311
1229 => 0.09601342431266
1230 => 0.096478725817738
1231 => 0.094979827548089
]
'min_raw' => 0.052444782997234
'max_raw' => 0.16308578096503
'avg_raw' => 0.10776528198113
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.052444'
'max' => '$0.163085'
'avg' => '$0.107765'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0298760665403
'max_diff' => 0.10185902799126
'year' => 2033
]
8 => [
'items' => [
101 => 0.094450535372206
102 => 0.092779943671837
103 => 0.090324635385032
104 => 0.090666061061593
105 => 0.08580145287907
106 => 0.083150956156934
107 => 0.082417333597232
108 => 0.081436302850202
109 => 0.082528143630533
110 => 0.085787672055295
111 => 0.0818559892275
112 => 0.07511539479473
113 => 0.075520516005554
114 => 0.076430703084707
115 => 0.074734575484195
116 => 0.073129333055509
117 => 0.074524961109817
118 => 0.071668882388966
119 => 0.076775846553045
120 => 0.076637717484508
121 => 0.078541277912331
122 => 0.079731613312842
123 => 0.076988275590328
124 => 0.076298333571889
125 => 0.076691355901708
126 => 0.070195572257861
127 => 0.078010433805255
128 => 0.078078017052436
129 => 0.077499328259093
130 => 0.081660500776299
131 => 0.090441872689859
201 => 0.087137967346111
202 => 0.085858595335944
203 => 0.083426508209402
204 => 0.086667119902475
205 => 0.086418291485865
206 => 0.085292995020577
207 => 0.084612412207232
208 => 0.085866406908628
209 => 0.084457028386384
210 => 0.084203865276658
211 => 0.082669972275893
212 => 0.082122442262306
213 => 0.081717072838043
214 => 0.081270800932706
215 => 0.082255165551848
216 => 0.080024465820923
217 => 0.077334460623617
218 => 0.077110815797721
219 => 0.077728318825075
220 => 0.077455119703165
221 => 0.077109507825433
222 => 0.076449640629048
223 => 0.076253872127712
224 => 0.076890024783678
225 => 0.076171845525097
226 => 0.077231558142382
227 => 0.076943374947054
228 => 0.075333607044253
301 => 0.073327240224952
302 => 0.073309379351763
303 => 0.072877110911646
304 => 0.072326552061162
305 => 0.072173399184037
306 => 0.074407425207806
307 => 0.079031792218236
308 => 0.078123918322365
309 => 0.078779950254791
310 => 0.08200697806366
311 => 0.083032753163988
312 => 0.08230468229459
313 => 0.081308053983103
314 => 0.081351900570834
315 => 0.084757681211093
316 => 0.08497009557201
317 => 0.085506798134578
318 => 0.086196612599604
319 => 0.082422160680826
320 => 0.081174124224891
321 => 0.080582735313642
322 => 0.078761486363307
323 => 0.080725547214159
324 => 0.079581173065839
325 => 0.079735588235835
326 => 0.079635025153803
327 => 0.079689939396638
328 => 0.076774419052481
329 => 0.077836681430654
330 => 0.076070464197764
331 => 0.073705697590115
401 => 0.073697770063252
402 => 0.074276543340312
403 => 0.073932266347716
404 => 0.073005825812812
405 => 0.073137422318119
406 => 0.071984498459278
407 => 0.073277408148942
408 => 0.073314484172589
409 => 0.072816643516801
410 => 0.074808549280884
411 => 0.07562463469767
412 => 0.07529694531325
413 => 0.075601643136906
414 => 0.078161644581543
415 => 0.078579036517713
416 => 0.078764414444396
417 => 0.078516032580509
418 => 0.075648435263853
419 => 0.075775625398812
420 => 0.074842388580463
421 => 0.074053901811031
422 => 0.07408543714674
423 => 0.074490821842333
424 => 0.076261160583487
425 => 0.079986734097074
426 => 0.080128116888556
427 => 0.080299476956259
428 => 0.079602469442241
429 => 0.07939224530655
430 => 0.07966958520498
501 => 0.081068714735334
502 => 0.084667655747368
503 => 0.083395549628527
504 => 0.082361307552398
505 => 0.083268616682825
506 => 0.083128943553919
507 => 0.081949961783891
508 => 0.081916871692327
509 => 0.07965402873237
510 => 0.078817507212515
511 => 0.078118447217974
512 => 0.077355091953358
513 => 0.076902549364594
514 => 0.077597860457864
515 => 0.077756886331574
516 => 0.07623657647418
517 => 0.076029363858355
518 => 0.077270881706071
519 => 0.076724535989742
520 => 0.077286466107708
521 => 0.077416838715223
522 => 0.077395845722678
523 => 0.076825398047424
524 => 0.077188984384636
525 => 0.076328994306826
526 => 0.075393884263541
527 => 0.074797342315339
528 => 0.074276780345726
529 => 0.074565618381707
530 => 0.073535963523178
531 => 0.073206556211076
601 => 0.07706580951454
602 => 0.079916681423774
603 => 0.079875228617145
604 => 0.079622895317584
605 => 0.079247979218378
606 => 0.081041287287469
607 => 0.080416534614525
608 => 0.080871094383924
609 => 0.08098679892305
610 => 0.081337001715006
611 => 0.081462169112183
612 => 0.081083826303567
613 => 0.079814061627169
614 => 0.076649928779187
615 => 0.075177016397038
616 => 0.074690930777633
617 => 0.07470859906669
618 => 0.074221228779772
619 => 0.074364781171674
620 => 0.074171307116203
621 => 0.073804914061541
622 => 0.07454299464305
623 => 0.074628051554372
624 => 0.074455774727242
625 => 0.074496352156543
626 => 0.0730699736083
627 => 0.073178418071392
628 => 0.072574585520442
629 => 0.072461374196448
630 => 0.070934938089362
701 => 0.068230635265206
702 => 0.069729081542815
703 => 0.067919169152894
704 => 0.067233727906183
705 => 0.070478500160128
706 => 0.070152815021805
707 => 0.069595383636923
708 => 0.068770826439801
709 => 0.068464990154612
710 => 0.066606825701806
711 => 0.066497035433012
712 => 0.067417991910484
713 => 0.066993002184308
714 => 0.066396155652562
715 => 0.064234438015939
716 => 0.061803951672263
717 => 0.061877312777486
718 => 0.062650405262603
719 => 0.064898275928808
720 => 0.064019993970965
721 => 0.063382790333425
722 => 0.063263461246385
723 => 0.064757114603058
724 => 0.066870947032803
725 => 0.067862709914505
726 => 0.066879903019025
727 => 0.065750907375579
728 => 0.065819624109134
729 => 0.066276765751833
730 => 0.066324804874845
731 => 0.065589944773589
801 => 0.065796803587625
802 => 0.065482566133538
803 => 0.063554091457844
804 => 0.06351921146622
805 => 0.06304593267995
806 => 0.063031601986394
807 => 0.062226436706023
808 => 0.062113788517454
809 => 0.060515083983236
810 => 0.061567356148981
811 => 0.060861547226968
812 => 0.059797726698
813 => 0.059614323637828
814 => 0.059608810320373
815 => 0.060701116137706
816 => 0.061554591919534
817 => 0.060873825075349
818 => 0.060718827661039
819 => 0.062373794539568
820 => 0.062163184918917
821 => 0.06198079834572
822 => 0.066681676523437
823 => 0.062960564631675
824 => 0.061337947453226
825 => 0.05932965056825
826 => 0.05998356216071
827 => 0.060121350941202
828 => 0.055291758955557
829 => 0.053332394088469
830 => 0.052660013903191
831 => 0.052273049600504
901 => 0.05244939409243
902 => 0.050685735901474
903 => 0.051870943374011
904 => 0.050343764458958
905 => 0.05008772794398
906 => 0.052818513025258
907 => 0.053198485816303
908 => 0.051577403841413
909 => 0.052618400898625
910 => 0.052240920894738
911 => 0.050369943558188
912 => 0.050298485985909
913 => 0.049359695326462
914 => 0.047890669730119
915 => 0.047219285613371
916 => 0.046869622936144
917 => 0.047013900571557
918 => 0.046940949384124
919 => 0.046464893540036
920 => 0.046968236347856
921 => 0.045682403469483
922 => 0.045170374456656
923 => 0.044939102830544
924 => 0.043797852141209
925 => 0.045614089504426
926 => 0.045971911145336
927 => 0.046330437805414
928 => 0.049451167604851
929 => 0.049295264763161
930 => 0.050704550524267
1001 => 0.0506497882711
1002 => 0.050247837143117
1003 => 0.048552071451909
1004 => 0.049227973432308
1005 => 0.04714765219513
1006 => 0.048706370314117
1007 => 0.047995036458236
1008 => 0.048465867621906
1009 => 0.047619270736493
1010 => 0.048087812408009
1011 => 0.046056763930703
1012 => 0.044160199440217
1013 => 0.044923432355358
1014 => 0.045753153820386
1015 => 0.047552201365665
1016 => 0.046480703489517
1017 => 0.0468660546436
1018 => 0.045575192784425
1019 => 0.042911776052485
1020 => 0.042926850701942
1021 => 0.042517142063421
1022 => 0.042163093981297
1023 => 0.046603777910075
1024 => 0.046051508666707
1025 => 0.045171539906612
1026 => 0.046349413060568
1027 => 0.046660861417834
1028 => 0.046669727914721
1029 => 0.04752907376254
1030 => 0.047987706795568
1031 => 0.048068542855468
1101 => 0.049420742114408
1102 => 0.049873981470066
1103 => 0.051740810231183
1104 => 0.047948794987006
1105 => 0.047870700928457
1106 => 0.04636598815136
1107 => 0.045411675519557
1108 => 0.04643133075371
1109 => 0.047334606094349
1110 => 0.046394055434064
1111 => 0.046516871494189
1112 => 0.045254259078569
1113 => 0.045705583605717
1114 => 0.046094325088477
1115 => 0.045879684890865
1116 => 0.045558358126337
1117 => 0.047260547817233
1118 => 0.047164503603937
1119 => 0.048749621777271
1120 => 0.049985334746273
1121 => 0.052199953296839
1122 => 0.049888883388647
1123 => 0.049804658815521
1124 => 0.050627967527869
1125 => 0.049873855425791
1126 => 0.050350428243239
1127 => 0.052123170048161
1128 => 0.052160625289049
1129 => 0.051533201745822
1130 => 0.051495022966196
1201 => 0.051615526520935
1202 => 0.052321319604896
1203 => 0.052074693814529
1204 => 0.052360095422943
1205 => 0.052716994504489
1206 => 0.054193280427837
1207 => 0.054549207966014
1208 => 0.053684488575515
1209 => 0.053762563054624
1210 => 0.0534391342655
1211 => 0.053126706107756
1212 => 0.053828998979896
1213 => 0.055112453007332
1214 => 0.055104468706439
1215 => 0.055402205094023
1216 => 0.055587692396906
1217 => 0.054791445107926
1218 => 0.054273117401624
1219 => 0.054471877226269
1220 => 0.054789698514302
1221 => 0.054368812066048
1222 => 0.051770905933856
1223 => 0.052558944699477
1224 => 0.052427776515751
1225 => 0.052240977071529
1226 => 0.053033356144084
1227 => 0.052956929249514
1228 => 0.050667647037576
1229 => 0.050814199457226
1230 => 0.050676559375612
1231 => 0.05112130263782
]
'min_raw' => 0.042163093981297
'max_raw' => 0.094450535372206
'avg_raw' => 0.068306814676752
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.042163'
'max' => '$0.09445'
'avg' => '$0.0683068'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010281689015936
'max_diff' => -0.068635245592822
'year' => 2034
]
9 => [
'items' => [
101 => 0.049849837830109
102 => 0.050240931841515
103 => 0.05048622233919
104 => 0.050630700326731
105 => 0.051152653887212
106 => 0.051091408661255
107 => 0.051148846797974
108 => 0.051922766137537
109 => 0.055836984579999
110 => 0.056050026853586
111 => 0.055000928781893
112 => 0.05542002276899
113 => 0.054615453959543
114 => 0.055155566391467
115 => 0.055525097600021
116 => 0.053855257125331
117 => 0.053756380009594
118 => 0.05294849045847
119 => 0.053382604542041
120 => 0.052691897821173
121 => 0.052861373090579
122 => 0.052387505462732
123 => 0.053240372846752
124 => 0.05419401110428
125 => 0.054434937788448
126 => 0.053801163407862
127 => 0.053342268988551
128 => 0.05253660155746
129 => 0.053876444450834
130 => 0.054268255343829
131 => 0.053874386435012
201 => 0.053783118402634
202 => 0.053610165646194
203 => 0.053819811147513
204 => 0.05426612145756
205 => 0.054055649757399
206 => 0.05419467002339
207 => 0.05366486812651
208 => 0.054791708698911
209 => 0.056581402716835
210 => 0.056587156875747
211 => 0.056376684041065
212 => 0.056290563091813
213 => 0.056506520992757
214 => 0.056623669294961
215 => 0.057322037546706
216 => 0.058071414505046
217 => 0.061568429790836
218 => 0.060586481892119
219 => 0.063689241892043
220 => 0.066143122209021
221 => 0.066878933620901
222 => 0.066202021744573
223 => 0.063886342781717
224 => 0.06377272452427
225 => 0.067233326549217
226 => 0.066255547971555
227 => 0.066139244321008
228 => 0.064901969977305
301 => 0.065633352353842
302 => 0.065473388299361
303 => 0.065220877213654
304 => 0.066616303839549
305 => 0.069228417912631
306 => 0.06882129543809
307 => 0.068517397396714
308 => 0.067185804642793
309 => 0.067987720902662
310 => 0.067702173882217
311 => 0.068929065094667
312 => 0.068202281919379
313 => 0.066248140337157
314 => 0.066559343825061
315 => 0.066512306043919
316 => 0.067480340246691
317 => 0.067189760407105
318 => 0.0664555656666
319 => 0.069219489990702
320 => 0.06904001611885
321 => 0.069294469035697
322 => 0.069406487078911
323 => 0.071088839109182
324 => 0.071778044906724
325 => 0.071934506689012
326 => 0.072589198891587
327 => 0.071918217350601
328 => 0.074602621916277
329 => 0.076387594313102
330 => 0.078460931605854
331 => 0.081490634651093
401 => 0.082629831022423
402 => 0.082424045394493
403 => 0.08472113166587
404 => 0.088848944634175
405 => 0.083258394414077
406 => 0.089145257370757
407 => 0.087281544525773
408 => 0.082862714897079
409 => 0.082578194363571
410 => 0.085570677091789
411 => 0.092207715767188
412 => 0.09054521285567
413 => 0.092210435026376
414 => 0.090267864910764
415 => 0.090171399931258
416 => 0.092116088731759
417 => 0.096659960113597
418 => 0.094501337144557
419 => 0.091406421802372
420 => 0.093691659128825
421 => 0.091711975067921
422 => 0.087251192800024
423 => 0.090543941571026
424 => 0.088342174239943
425 => 0.088984766999542
426 => 0.093612554441305
427 => 0.093055726812705
428 => 0.093776313324964
429 => 0.09250449699186
430 => 0.091316419989714
501 => 0.089098786037452
502 => 0.08844225395222
503 => 0.088623695801028
504 => 0.088442164038651
505 => 0.087201418223468
506 => 0.086933479282812
507 => 0.086486902643044
508 => 0.086625315417165
509 => 0.085785620683797
510 => 0.087370298135447
511 => 0.087664428234603
512 => 0.088817624332781
513 => 0.088937352977275
514 => 0.092148987695983
515 => 0.090380073262248
516 => 0.091566813785122
517 => 0.091460660542721
518 => 0.082958484334196
519 => 0.084130009200395
520 => 0.085952534247445
521 => 0.085131489184124
522 => 0.083970723559543
523 => 0.083033343081379
524 => 0.081613115804886
525 => 0.083612058423501
526 => 0.086240455403132
527 => 0.089004013462194
528 => 0.09232424739466
529 => 0.091583209832717
530 => 0.088941943998333
531 => 0.089060429254218
601 => 0.089792858483866
602 => 0.088844296083259
603 => 0.088564546513182
604 => 0.089754425188785
605 => 0.089762619229278
606 => 0.088671183549783
607 => 0.087458252522646
608 => 0.087453170297354
609 => 0.087237340936599
610 => 0.090306260474575
611 => 0.0919938559177
612 => 0.092187336015558
613 => 0.091980833165545
614 => 0.09206030791671
615 => 0.091078333311984
616 => 0.093322836062864
617 => 0.095382613745388
618 => 0.09483054932574
619 => 0.094002926280106
620 => 0.093343684660532
621 => 0.094675252951168
622 => 0.094615960311269
623 => 0.095364623384242
624 => 0.095330659702765
625 => 0.095078912469966
626 => 0.094830558316426
627 => 0.095815254462531
628 => 0.095531677786189
629 => 0.095247660636943
630 => 0.09467802076328
701 => 0.094755444282827
702 => 0.09392796413798
703 => 0.093545133960059
704 => 0.087788286622158
705 => 0.086249868903057
706 => 0.086733886434867
707 => 0.086893237573848
708 => 0.086223716210959
709 => 0.087183637859415
710 => 0.087034035087312
711 => 0.087616051958871
712 => 0.087252433085756
713 => 0.087267356131144
714 => 0.088336681705257
715 => 0.088647111468659
716 => 0.088489224385517
717 => 0.088599803086497
718 => 0.091148042578222
719 => 0.090785764410611
720 => 0.090593311354539
721 => 0.090646622166318
722 => 0.091297751991325
723 => 0.091480032791956
724 => 0.090707696231036
725 => 0.091071934617991
726 => 0.092622815440908
727 => 0.093165535956677
728 => 0.094897639322384
729 => 0.09416181102695
730 => 0.095512455709123
731 => 0.09966387699342
801 => 0.10298031957182
802 => 0.099930381918937
803 => 0.10602060636775
804 => 0.11076271969196
805 => 0.11058070948418
806 => 0.10975381233904
807 => 0.10435504239503
808 => 0.099387013801431
809 => 0.10354298067362
810 => 0.10355357508786
811 => 0.10319657384779
812 => 0.10097926980652
813 => 0.10311941647344
814 => 0.10328929354399
815 => 0.10319420755844
816 => 0.10149420574874
817 => 0.098898617198191
818 => 0.099405788988008
819 => 0.10023654672575
820 => 0.098663749013982
821 => 0.098161144845898
822 => 0.099095581618722
823 => 0.1021065315984
824 => 0.10153732894598
825 => 0.1015224647644
826 => 0.10395775509091
827 => 0.10221461278567
828 => 0.099412186048466
829 => 0.098704536337854
830 => 0.096192856595144
831 => 0.09792768273973
901 => 0.097990116044222
902 => 0.097039969494326
903 => 0.099489285204434
904 => 0.099466714328972
905 => 0.10179197506319
906 => 0.10623700025896
907 => 0.10492238758216
908 => 0.1033936360685
909 => 0.10355985374572
910 => 0.1053828514046
911 => 0.10428062540505
912 => 0.10467699355948
913 => 0.10538225145392
914 => 0.10580775105221
915 => 0.10349863090159
916 => 0.1029602645365
917 => 0.10185895589443
918 => 0.10157164502662
919 => 0.10246863793602
920 => 0.10223231199562
921 => 0.097984868766733
922 => 0.097540987316763
923 => 0.097554600527117
924 => 0.096438439515755
925 => 0.094736026064092
926 => 0.099209866969238
927 => 0.098850554933192
928 => 0.098453902253939
929 => 0.098502489943879
930 => 0.10044443264827
1001 => 0.099318007809264
1002 => 0.10231279286115
1003 => 0.10169715508596
1004 => 0.10106572852485
1005 => 0.10097844614038
1006 => 0.10073540078514
1007 => 0.099901907828815
1008 => 0.09889541499889
1009 => 0.098230841251658
1010 => 0.090612758592032
1011 => 0.09202663042131
1012 => 0.093653161082423
1013 => 0.094214632948726
1014 => 0.093254196468744
1015 => 0.099939831714974
1016 => 0.10116136169884
1017 => 0.097461267699271
1018 => 0.096769131185794
1019 => 0.099985208069569
1020 => 0.098045520559243
1021 => 0.098918961726374
1022 => 0.097031059669812
1023 => 0.1008671308963
1024 => 0.10083790646073
1025 => 0.099345588112031
1026 => 0.1006068853614
1027 => 0.10038770392532
1028 => 0.098702880185053
1029 => 0.10092054281404
1030 => 0.10092164274703
1031 => 0.099485318782203
1101 => 0.097808006843031
1102 => 0.097508143084646
1103 => 0.097282236023731
1104 => 0.098863402437744
1105 => 0.10028107130037
1106 => 0.1029190015838
1107 => 0.10358223993273
1108 => 0.10617090336289
1109 => 0.10462948032996
1110 => 0.10531277319569
1111 => 0.10605458425911
1112 => 0.10641023576211
1113 => 0.10583072072328
1114 => 0.10985198056669
1115 => 0.11019149810569
1116 => 0.1103053353997
1117 => 0.10894938920587
1118 => 0.11015378678915
1119 => 0.10959028904539
1120 => 0.11105635363048
1121 => 0.11128625127707
1122 => 0.11109153614925
1123 => 0.11116450929097
1124 => 0.10773307341347
1125 => 0.10755513536095
1126 => 0.105128937389
1127 => 0.10611763099612
1128 => 0.10426931568693
1129 => 0.10485543551123
1130 => 0.10511379154503
1201 => 0.10497884101455
1202 => 0.10617353024924
1203 => 0.10515780034087
1204 => 0.10247712211121
1205 => 0.099795713532554
1206 => 0.099762050632077
1207 => 0.099056083084111
1208 => 0.098545797851337
1209 => 0.09864409689051
1210 => 0.098990515525903
1211 => 0.098525663370493
1212 => 0.098624863146452
1213 => 0.10027224039202
1214 => 0.10060261015007
1215 => 0.099479884628441
1216 => 0.094971979650597
1217 => 0.09386572846181
1218 => 0.094660879878396
1219 => 0.094280848715578
1220 => 0.076092003232015
1221 => 0.080365202679419
1222 => 0.077826212671913
1223 => 0.078996296080685
1224 => 0.076404644751297
1225 => 0.077641516605765
1226 => 0.077413111537573
1227 => 0.084284289795835
1228 => 0.084177005798329
1229 => 0.084228356970592
1230 => 0.081777231723695
1231 => 0.085681940797306
]
'min_raw' => 0.049849837830109
'max_raw' => 0.11128625127707
'avg_raw' => 0.080568044553591
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.049849'
'max' => '$0.111286'
'avg' => '$0.080568'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0076867438488118
'max_diff' => 0.016835715904866
'year' => 2035
]
10 => [
'items' => [
101 => 0.087605540895763
102 => 0.087249533712497
103 => 0.087339133050652
104 => 0.085799519564351
105 => 0.084243263794568
106 => 0.082517136639832
107 => 0.085724067537567
108 => 0.085367511565875
109 => 0.086185322680147
110 => 0.088265246603483
111 => 0.088571523302056
112 => 0.088983162290891
113 => 0.088835619015853
114 => 0.092350698414552
115 => 0.091924999106129
116 => 0.092950811957379
117 => 0.090840637093749
118 => 0.088452773935915
119 => 0.088906628657092
120 => 0.088862918797773
121 => 0.088306442120809
122 => 0.087804079858598
123 => 0.086967788231707
124 => 0.089613938687062
125 => 0.089506509811013
126 => 0.091245658441843
127 => 0.090938247028155
128 => 0.088885278371216
129 => 0.088958600548426
130 => 0.089451727427604
131 => 0.091158445186864
201 => 0.091665115220018
202 => 0.091430405473351
203 => 0.091985946034339
204 => 0.092425022642531
205 => 0.092041087296186
206 => 0.09747680215244
207 => 0.095219514367406
208 => 0.096319700727724
209 => 0.096582088691986
210 => 0.095909987438954
211 => 0.096055742134595
212 => 0.096276520782714
213 => 0.097617045501201
214 => 0.10113497024646
215 => 0.10269303516882
216 => 0.10738055036128
217 => 0.10256365956633
218 => 0.10227784520083
219 => 0.10312220823639
220 => 0.10587427587824
221 => 0.1081045682134
222 => 0.10884448484962
223 => 0.10894227704779
224 => 0.11033040984607
225 => 0.1111260616789
226 => 0.11016185401284
227 => 0.10934478897261
228 => 0.10641816341633
229 => 0.10675692829341
301 => 0.10909068235949
302 => 0.11238724743527
303 => 0.11521604321942
304 => 0.11422549752929
305 => 0.12178266192865
306 => 0.1225319239106
307 => 0.12242840013124
308 => 0.12413533043125
309 => 0.12074742139604
310 => 0.11929902464584
311 => 0.10952144770839
312 => 0.11226854800563
313 => 0.11626161961922
314 => 0.11573312161791
315 => 0.11283324627701
316 => 0.11521384340393
317 => 0.11442674354562
318 => 0.11380592523056
319 => 0.11665001428338
320 => 0.11352282154107
321 => 0.11623042347943
322 => 0.11275789598692
323 => 0.11423002225857
324 => 0.11339437218805
325 => 0.11393514019709
326 => 0.1107738214659
327 => 0.11247959231658
328 => 0.11070285579046
329 => 0.11070201338601
330 => 0.11066279182872
331 => 0.11275311447244
401 => 0.11282127981881
402 => 0.11127652822679
403 => 0.11105390538883
404 => 0.11187705870214
405 => 0.11091336175645
406 => 0.1113642694919
407 => 0.11092701929241
408 => 0.1108285850626
409 => 0.11004424437232
410 => 0.10970632883705
411 => 0.10983883422544
412 => 0.10938652502366
413 => 0.10911399236885
414 => 0.11060857822413
415 => 0.10981008129307
416 => 0.11048619711738
417 => 0.10971567780296
418 => 0.10704472215988
419 => 0.1055086273247
420 => 0.10046343971265
421 => 0.10189424866089
422 => 0.10284287647386
423 => 0.10252935498733
424 => 0.1032029204571
425 => 0.10324427190647
426 => 0.10302528890606
427 => 0.10277173464505
428 => 0.10264831845322
429 => 0.10356816163414
430 => 0.10410216156116
501 => 0.10293808396589
502 => 0.1026653568725
503 => 0.1038423035918
504 => 0.10456024041067
505 => 0.10986108250738
506 => 0.10946837900336
507 => 0.11045398773427
508 => 0.11034302331657
509 => 0.11137609828636
510 => 0.1130647392519
511 => 0.10963126001751
512 => 0.11022719329182
513 => 0.11008108421507
514 => 0.11167626480319
515 => 0.11168124478287
516 => 0.11072485433511
517 => 0.1112433291125
518 => 0.11095393071537
519 => 0.11147691273352
520 => 0.10946313420864
521 => 0.11191569907799
522 => 0.11330614531912
523 => 0.11332545166653
524 => 0.11398451214956
525 => 0.11465415577053
526 => 0.11593947838731
527 => 0.11461830882035
528 => 0.11224165338267
529 => 0.11241324022872
530 => 0.11101980801519
531 => 0.11104323186244
601 => 0.11091819353004
602 => 0.11129344297802
603 => 0.10954548036037
604 => 0.10995572369295
605 => 0.10938138062495
606 => 0.11022594478216
607 => 0.10931733336046
608 => 0.11008101375685
609 => 0.11041059289953
610 => 0.11162674703134
611 => 0.10913770640637
612 => 0.10406238407882
613 => 0.1051292783644
614 => 0.10355125791328
615 => 0.10369730971398
616 => 0.10399235759536
617 => 0.10303601087814
618 => 0.10321845169384
619 => 0.10321193362409
620 => 0.1031557644203
621 => 0.10290698170329
622 => 0.10254619754346
623 => 0.10398345059271
624 => 0.10422766789249
625 => 0.10477053269778
626 => 0.10638573012961
627 => 0.10622433381719
628 => 0.10648757789901
629 => 0.10591291754644
630 => 0.10372396655957
701 => 0.10384283712952
702 => 0.10236051921749
703 => 0.10473262649606
704 => 0.10417088018221
705 => 0.1038087186793
706 => 0.10370989955782
707 => 0.10532910075167
708 => 0.10581359112674
709 => 0.10551168923793
710 => 0.10489247965611
711 => 0.10608154510609
712 => 0.10639968885786
713 => 0.10647090951119
714 => 0.10857770550785
715 => 0.10658865600382
716 => 0.10706743998889
717 => 0.11080277596552
718 => 0.10741534167585
719 => 0.10920974116789
720 => 0.10912191465035
721 => 0.11003986871131
722 => 0.10904661562428
723 => 0.1090589281867
724 => 0.10987400920524
725 => 0.10872937491534
726 => 0.10844594736813
727 => 0.10805439424161
728 => 0.10890933616868
729 => 0.10942183518827
730 => 0.11355220089705
731 => 0.11622060551248
801 => 0.11610476303071
802 => 0.11716334646607
803 => 0.11668644493293
804 => 0.11514640408214
805 => 0.11777506602646
806 => 0.11694324739939
807 => 0.11701182151635
808 => 0.11700926918429
809 => 0.11756235585244
810 => 0.11717044325841
811 => 0.11639794330656
812 => 0.11691076482566
813 => 0.11843366140034
814 => 0.12316077909632
815 => 0.12580613678497
816 => 0.12300152524185
817 => 0.12493610872905
818 => 0.12377604799931
819 => 0.1235652304559
820 => 0.12478029185045
821 => 0.12599748004913
822 => 0.12591995042293
823 => 0.12503633429399
824 => 0.12453720196368
825 => 0.12831679919036
826 => 0.13110154204322
827 => 0.13091164124981
828 => 0.13174980159288
829 => 0.13421066628347
830 => 0.13443565691022
831 => 0.1344073132626
901 => 0.13384965051886
902 => 0.13627269139041
903 => 0.1382940347148
904 => 0.13372056770611
905 => 0.13546208407194
906 => 0.13624390687671
907 => 0.13739185471049
908 => 0.13932863512448
909 => 0.1414324923597
910 => 0.14173000084038
911 => 0.14151890433625
912 => 0.1401313539349
913 => 0.14243341962591
914 => 0.14378191571763
915 => 0.14458491428046
916 => 0.14662118502958
917 => 0.13624873514819
918 => 0.12890659957794
919 => 0.12776001908692
920 => 0.13009163560246
921 => 0.13070646428331
922 => 0.13045862761299
923 => 0.12219438651091
924 => 0.12771650956784
925 => 0.13365784966381
926 => 0.13388608073377
927 => 0.13686043981337
928 => 0.13782901305279
929 => 0.14022376197003
930 => 0.14007396977323
1001 => 0.1406570530258
1002 => 0.14052301228363
1003 => 0.14495878037894
1004 => 0.149852091306
1005 => 0.14968265150837
1006 => 0.14897918016758
1007 => 0.15002395506834
1008 => 0.15507437634413
1009 => 0.15460941448441
1010 => 0.15506108532577
1011 => 0.1610158166392
1012 => 0.16875781439731
1013 => 0.16516087915481
1014 => 0.17296519364081
1015 => 0.17787759592082
1016 => 0.18637308771222
1017 => 0.18530941029876
1018 => 0.18861664291035
1019 => 0.18340520573248
1020 => 0.17143869256688
1021 => 0.16954494605245
1022 => 0.17333627453164
1023 => 0.1826568856453
1024 => 0.17304273531843
1025 => 0.17498766540806
1026 => 0.1744275254114
1027 => 0.17439767793142
1028 => 0.17553683484379
1029 => 0.17388442832798
1030 => 0.1671522269203
1031 => 0.17023755515232
1101 => 0.16904616175231
1102 => 0.17036810155389
1103 => 0.17750206545357
1104 => 0.17434796996106
1105 => 0.17102538657762
1106 => 0.17519264348073
1107 => 0.18049899354324
1108 => 0.18016693169275
1109 => 0.17952259291173
1110 => 0.18315469688388
1111 => 0.18915386853926
1112 => 0.19077542053109
1113 => 0.19197241706028
1114 => 0.19213746265824
1115 => 0.19383753489243
1116 => 0.18469581801581
1117 => 0.19920395747495
1118 => 0.20170911238027
1119 => 0.20123824708611
1120 => 0.20402262133034
1121 => 0.20320338779493
1122 => 0.20201644693592
1123 => 0.20643027236643
1124 => 0.2013701776877
1125 => 0.19418801033945
1126 => 0.19024773128504
1127 => 0.19543660859713
1128 => 0.19860527490477
1129 => 0.20069956176909
1130 => 0.20133329170883
1201 => 0.18540546347381
1202 => 0.17682124745299
1203 => 0.1823236315041
1204 => 0.18903691980072
1205 => 0.18465852536036
1206 => 0.18483015013303
1207 => 0.1785877102829
1208 => 0.18958923721267
1209 => 0.18798640727641
1210 => 0.19630189182109
1211 => 0.19431733469857
1212 => 0.2010982895395
1213 => 0.19931263687534
1214 => 0.20672478124978
1215 => 0.20968168631655
1216 => 0.21464679012917
1217 => 0.21829914070534
1218 => 0.220443870822
1219 => 0.22031510927048
1220 => 0.22881359849299
1221 => 0.22380233631307
1222 => 0.21750700995128
1223 => 0.2173931473589
1224 => 0.22065358608714
1225 => 0.22748657120384
1226 => 0.22925826482871
1227 => 0.23024839986612
1228 => 0.22873197358947
1229 => 0.22329260765356
1230 => 0.22094391702065
1231 => 0.22294506948801
]
'min_raw' => 0.082517136639832
'max_raw' => 0.23024839986612
'avg_raw' => 0.15638276825298
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.082517'
'max' => '$0.230248'
'avg' => '$0.156382'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.032667298809723
'max_diff' => 0.11896214858905
'year' => 2036
]
11 => [
'items' => [
101 => 0.22049783198142
102 => 0.22472245049137
103 => 0.23052375403534
104 => 0.22932580779435
105 => 0.23333036247184
106 => 0.23747465527161
107 => 0.24340118010711
108 => 0.24495059315769
109 => 0.2475117140114
110 => 0.25014794865424
111 => 0.250994636173
112 => 0.25261122535803
113 => 0.25260270513505
114 => 0.25747440545313
115 => 0.26284804176798
116 => 0.26487646507687
117 => 0.26954071262774
118 => 0.2615533521516
119 => 0.26761185682494
120 => 0.2730767796945
121 => 0.26656127335708
122 => 0.27554138092493
123 => 0.27589005815243
124 => 0.28115467031898
125 => 0.27581797731053
126 => 0.27264906603744
127 => 0.2817975941453
128 => 0.28622427872075
129 => 0.28489092530107
130 => 0.27474403994151
131 => 0.26883811744187
201 => 0.25338117909291
202 => 0.27169059025729
203 => 0.28060857034262
204 => 0.27472094452752
205 => 0.27769032052591
206 => 0.29389027314975
207 => 0.30005816623965
208 => 0.29877528759377
209 => 0.29899207296695
210 => 0.30232015612308
211 => 0.31707870964624
212 => 0.30823504227457
213 => 0.31499569461431
214 => 0.31858152023797
215 => 0.32191223491746
216 => 0.31373305234783
217 => 0.30309205600079
218 => 0.29972160577905
219 => 0.27413553617263
220 => 0.27280367013495
221 => 0.27205605336833
222 => 0.26734243540726
223 => 0.26363882285849
224 => 0.26069357265339
225 => 0.25296435658903
226 => 0.25557274011723
227 => 0.24325398292342
228 => 0.25113508722607
301 => 0.23147405329796
302 => 0.24784834658407
303 => 0.2389365631962
304 => 0.24492058605951
305 => 0.24489970836747
306 => 0.23388122503994
307 => 0.2275259938065
308 => 0.23157579449774
309 => 0.23591750231234
310 => 0.236621929798
311 => 0.24225106730979
312 => 0.24382203859143
313 => 0.23906192226644
314 => 0.23106662207062
315 => 0.23292374795273
316 => 0.22748835920977
317 => 0.21796304950695
318 => 0.22480429323147
319 => 0.22714019462727
320 => 0.22817186175702
321 => 0.21880481365351
322 => 0.21586148377088
323 => 0.21429447963829
324 => 0.22985745378681
325 => 0.23071002864209
326 => 0.22634813514053
327 => 0.24606430737932
328 => 0.24160193037759
329 => 0.24658749879743
330 => 0.2327552332444
331 => 0.23328364441614
401 => 0.22673522823144
402 => 0.23040190372955
403 => 0.22781041566996
404 => 0.23010567258409
405 => 0.23148144011473
406 => 0.23802878176876
407 => 0.24792310670862
408 => 0.23705082726025
409 => 0.23231361941069
410 => 0.23525255651749
411 => 0.2430793333215
412 => 0.25493730082492
413 => 0.24791714539906
414 => 0.25103257116709
415 => 0.25171315310175
416 => 0.24653675039101
417 => 0.25512816217641
418 => 0.25973236954871
419 => 0.26445533360622
420 => 0.2685561509629
421 => 0.26256887790144
422 => 0.26897611831908
423 => 0.26381301357265
424 => 0.25918117486315
425 => 0.25918819945053
426 => 0.25628257936769
427 => 0.25065257432549
428 => 0.24961431501594
429 => 0.25501547106194
430 => 0.25934668671945
501 => 0.25970342638613
502 => 0.26210140992002
503 => 0.26352051187418
504 => 0.27742964020055
505 => 0.28302400667575
506 => 0.2898646921057
507 => 0.29252952460057
508 => 0.3005497150148
509 => 0.29407275988729
510 => 0.29267142990349
511 => 0.27321707134286
512 => 0.27640272146731
513 => 0.28150325468607
514 => 0.27330117725699
515 => 0.27850350752776
516 => 0.27953055772363
517 => 0.27302247380451
518 => 0.27649872262342
519 => 0.26726683639635
520 => 0.24812433660054
521 => 0.25514947325085
522 => 0.26032233846091
523 => 0.25294002199648
524 => 0.26617253852388
525 => 0.25844237554316
526 => 0.25599228499153
527 => 0.24643360822928
528 => 0.25094493571385
529 => 0.25704657073272
530 => 0.25327646968227
531 => 0.26109999544548
601 => 0.27218019438431
602 => 0.28007660398536
603 => 0.28068279226443
604 => 0.2756059299093
605 => 0.28374163423349
606 => 0.28380089395754
607 => 0.27462378624453
608 => 0.26900285886865
609 => 0.26772577234232
610 => 0.27091618487266
611 => 0.27478993466713
612 => 0.28089775841809
613 => 0.28458858839133
614 => 0.29421231549659
615 => 0.29681622011739
616 => 0.2996771218411
617 => 0.3035001688134
618 => 0.30809071691276
619 => 0.2980468590114
620 => 0.29844592020992
621 => 0.28909321879885
622 => 0.27909851602807
623 => 0.28668324957381
624 => 0.29659927973003
625 => 0.29432453145595
626 => 0.29406857580623
627 => 0.29449902221289
628 => 0.29278393630057
629 => 0.28502666628319
630 => 0.28113101384354
701 => 0.28615739937762
702 => 0.2888286995903
703 => 0.29297165325831
704 => 0.29246094677158
705 => 0.30313275049963
706 => 0.30727949072975
707 => 0.30621857712986
708 => 0.30641381076456
709 => 0.31392128587706
710 => 0.32227114223219
711 => 0.33009188456936
712 => 0.33804747958342
713 => 0.32845669928181
714 => 0.32358709252174
715 => 0.32861128369314
716 => 0.32594537713699
717 => 0.34126446696789
718 => 0.34232512751042
719 => 0.35764310959677
720 => 0.37218169862808
721 => 0.36305027134339
722 => 0.37166079598434
723 => 0.3809737804099
724 => 0.39894003834407
725 => 0.39288963473241
726 => 0.3882551203878
727 => 0.38387552672595
728 => 0.39298876589534
729 => 0.40471280249922
730 => 0.40723804769227
731 => 0.41132990962292
801 => 0.40702781713191
802 => 0.41220921367739
803 => 0.43050182030391
804 => 0.42555899652012
805 => 0.41853939214856
806 => 0.43297964823959
807 => 0.43820552078385
808 => 0.47488343111022
809 => 0.52119080798617
810 => 0.5020192498889
811 => 0.49011884511561
812 => 0.49291572251871
813 => 0.50982560895017
814 => 0.51525652777899
815 => 0.50049341825228
816 => 0.50570799811685
817 => 0.53444084585683
818 => 0.54985509680921
819 => 0.52892047360578
820 => 0.47116267846673
821 => 0.41790735357806
822 => 0.43203306385707
823 => 0.43043164668325
824 => 0.46130150708411
825 => 0.42544111180758
826 => 0.42604490889492
827 => 0.45755312531712
828 => 0.44914727336326
829 => 0.43553086973818
830 => 0.41800676839333
831 => 0.3856118462742
901 => 0.35691876035406
902 => 0.41319250946651
903 => 0.41076588307761
904 => 0.4072517684606
905 => 0.41507205027384
906 => 0.45304511893323
907 => 0.4521697167938
908 => 0.44660085501686
909 => 0.45082478759298
910 => 0.43479039393517
911 => 0.43892282227714
912 => 0.4178989176625
913 => 0.42740260058414
914 => 0.43550165505144
915 => 0.4371276601443
916 => 0.44079113264439
917 => 0.40948716123741
918 => 0.42354172536283
919 => 0.43179746505195
920 => 0.39449773279015
921 => 0.43106016927291
922 => 0.40894222874027
923 => 0.40143506752317
924 => 0.41154247110871
925 => 0.40760360610165
926 => 0.4042172012665
927 => 0.40232752918266
928 => 0.40974929086246
929 => 0.40940305680917
930 => 0.39725961419916
1001 => 0.38141898834444
1002 => 0.3867356223321
1003 => 0.38480403936068
1004 => 0.37780373349306
1005 => 0.38252109442768
1006 => 0.36174822427336
1007 => 0.32600958085269
1008 => 0.34961962340064
1009 => 0.34871066244533
1010 => 0.34825232311356
1011 => 0.3659946175547
1012 => 0.36428910532856
1013 => 0.36119358393769
1014 => 0.37774688181518
1015 => 0.37170470541662
1016 => 0.39032526936118
1017 => 0.40258997707763
1018 => 0.39947925047901
1019 => 0.41101426736681
1020 => 0.38685810684109
1021 => 0.39488181439079
1022 => 0.3965354893964
1023 => 0.37754261668888
1024 => 0.36456814822118
1025 => 0.36370289909416
1026 => 0.34120695876306
1027 => 0.35322410850705
1028 => 0.36379870297831
1029 => 0.35873429284825
1030 => 0.35713105189603
1031 => 0.36532166222041
1101 => 0.36595814279045
1102 => 0.35144631834239
1103 => 0.35446378617486
1104 => 0.36704712864852
1105 => 0.35414671823005
1106 => 0.32908332805704
1107 => 0.32286726076566
1108 => 0.32203792280413
1109 => 0.30517945530738
1110 => 0.32328264810535
1111 => 0.31538011931363
1112 => 0.34034411307983
1113 => 0.32608481372516
1114 => 0.32547012382968
1115 => 0.32454092989726
1116 => 0.31003015050829
1117 => 0.31320708898633
1118 => 0.32376771634876
1119 => 0.32753586716565
1120 => 0.3271428181639
1121 => 0.32371596351335
1122 => 0.32528476002404
1123 => 0.32023111985818
1124 => 0.31844657433319
1125 => 0.31281405777841
1126 => 0.30453581446529
1127 => 0.3056869549714
1128 => 0.28928558884793
1129 => 0.28034925409747
1130 => 0.27787579441755
1201 => 0.27456818076055
1202 => 0.27824939818133
1203 => 0.28923912583842
1204 => 0.27598318268318
1205 => 0.25325679793982
1206 => 0.25462269238678
1207 => 0.25769145167137
1208 => 0.2519728390464
1209 => 0.24656065212364
1210 => 0.25126610954837
1211 => 0.24163664073598
1212 => 0.25885512697202
1213 => 0.25838941517359
1214 => 0.26480740205834
1215 => 0.26882070096772
1216 => 0.25957134630254
1217 => 0.25724515861716
1218 => 0.25857026084209
1219 => 0.23666927276573
1220 => 0.26301762408898
1221 => 0.26324548572536
1222 => 0.26129439605584
1223 => 0.27532407972139
1224 => 0.30493108822377
1225 => 0.29379174068601
1226 => 0.28947824863084
1227 => 0.2812782970808
1228 => 0.29220424565628
1229 => 0.29136530327703
1230 => 0.28757128767862
1231 => 0.28527665520666
]
'min_raw' => 0.21429447963829
'max_raw' => 0.54985509680921
'avg_raw' => 0.38207478822375
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.214294'
'max' => '$0.549855'
'avg' => '$0.382074'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.13177734299846
'max_diff' => 0.31960669694309
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.006726458847029
]
1 => [
'year' => 2028
'avg' => 0.011544556086457
]
2 => [
'year' => 2029
'avg' => 0.031537646524409
]
3 => [
'year' => 2030
'avg' => 0.024331247326309
]
4 => [
'year' => 2031
'avg' => 0.023896300212721
]
5 => [
'year' => 2032
'avg' => 0.041897734715348
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.006726458847029
'min' => '$0.006726'
'max_raw' => 0.041897734715348
'max' => '$0.041897'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.041897734715348
]
1 => [
'year' => 2033
'avg' => 0.10776528198113
]
2 => [
'year' => 2034
'avg' => 0.068306814676752
]
3 => [
'year' => 2035
'avg' => 0.080568044553591
]
4 => [
'year' => 2036
'avg' => 0.15638276825298
]
5 => [
'year' => 2037
'avg' => 0.38207478822375
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.041897734715348
'min' => '$0.041897'
'max_raw' => 0.38207478822375
'max' => '$0.382074'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.38207478822375
]
]
]
]
'prediction_2025_max_price' => '$0.011501'
'last_price' => 0.01115169
'sma_50day_nextmonth' => '$0.008882'
'sma_200day_nextmonth' => '$0.027971'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009744'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007613'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.006277'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006954'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010736'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.021412'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.009522'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.008461'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007418'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00769'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.012033'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.019858'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.033254'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.016416'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00921'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00858'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.009822'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.016475'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023853'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011926'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005963'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '63.12'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 211.92
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.008141'
'vwma_10_action' => 'BUY'
'hma_9' => '0.009793'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 187.79
'cci_20_action' => 'SELL'
'adx_14' => 49.74
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.0005083'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.74
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007429'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 9
'buy_signals' => 21
'sell_pct' => 30
'buy_pct' => 70
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767676389
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Runbot para 2026
La previsión del precio de Runbot para 2026 sugiere que el precio medio podría oscilar entre $0.003852 en el extremo inferior y $0.011501 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Runbot podría potencialmente ganar 3.13% para 2026 si RBOT alcanza el objetivo de precio previsto.
Predicción de precio de Runbot 2027-2032
La predicción del precio de RBOT para 2027-2032 está actualmente dentro de un rango de precios de $0.006726 en el extremo inferior y $0.041897 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Runbot alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Runbot | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003709 | $0.006726 | $0.009743 |
| 2028 | $0.006693 | $0.011544 | $0.016395 |
| 2029 | $0.0147044 | $0.031537 | $0.04837 |
| 2030 | $0.0125054 | $0.024331 | $0.036157 |
| 2031 | $0.014785 | $0.023896 | $0.0330072 |
| 2032 | $0.022568 | $0.041897 | $0.061226 |
Predicción de precio de Runbot 2032-2037
La predicción de precio de Runbot para 2032-2037 se estima actualmente entre $0.041897 en el extremo inferior y $0.382074 en el extremo superior. Comparado con el precio actual, Runbot podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Runbot | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.022568 | $0.041897 | $0.061226 |
| 2033 | $0.052444 | $0.107765 | $0.163085 |
| 2034 | $0.042163 | $0.0683068 | $0.09445 |
| 2035 | $0.049849 | $0.080568 | $0.111286 |
| 2036 | $0.082517 | $0.156382 | $0.230248 |
| 2037 | $0.214294 | $0.382074 | $0.549855 |
Runbot Histograma de precios potenciales
Pronóstico de precio de Runbot basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Runbot es Alcista, con 21 indicadores técnicos mostrando señales alcistas y 9 indicando señales bajistas. La predicción de precio de RBOT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Runbot
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Runbot aumentar durante el próximo mes, alcanzando $0.027971 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Runbot alcance $0.008882 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 63.12, lo que sugiere que el mercado de RBOT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de RBOT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009744 | BUY |
| SMA 5 | $0.007613 | BUY |
| SMA 10 | $0.006277 | BUY |
| SMA 21 | $0.006954 | BUY |
| SMA 50 | $0.010736 | BUY |
| SMA 100 | $0.021412 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009522 | BUY |
| EMA 5 | $0.008461 | BUY |
| EMA 10 | $0.007418 | BUY |
| EMA 21 | $0.00769 | BUY |
| EMA 50 | $0.012033 | SELL |
| EMA 100 | $0.019858 | SELL |
| EMA 200 | $0.033254 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.016416 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.016475 | SELL |
| EMA 50 | $0.023853 | SELL |
| EMA 100 | $0.011926 | SELL |
| EMA 200 | $0.005963 | BUY |
Osciladores de Runbot
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 63.12 | NEUTRAL |
| Stoch RSI (14) | 211.92 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 187.79 | SELL |
| Índice Direccional Medio (14) | 49.74 | SELL |
| Oscilador Asombroso (5, 34) | -0.0005083 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.74 | SELL |
| VWMA (10) | 0.008141 | BUY |
| Promedio Móvil de Hull (9) | 0.009793 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.007429 | SELL |
Predicción de precios de Runbot basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Runbot
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Runbot por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.015669 | $0.022018 | $0.03094 | $0.043476 | $0.061091 | $0.085843 |
| Amazon.com acción | $0.023268 | $0.048551 | $0.1013054 | $0.211379 | $0.441056 | $0.920291 |
| Apple acción | $0.015817 | $0.022436 | $0.031824 | $0.04514 | $0.064028 | $0.090818 |
| Netflix acción | $0.017595 | $0.027763 | $0.0438058 | $0.069118 | $0.109058 | $0.172077 |
| Google acción | $0.014441 | $0.0187015 | $0.024218 | $0.031362 | $0.040614 | $0.052595 |
| Tesla acción | $0.02528 | $0.0573079 | $0.129912 | $0.2945024 | $0.667614 | $1.51 |
| Kodak acción | $0.008362 | $0.006271 | $0.0047026 | $0.003526 | $0.002644 | $0.001983 |
| Nokia acción | $0.007387 | $0.004893 | $0.003242 | $0.002147 | $0.001422 | $0.000942 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Runbot
Podría preguntarse cosas como: "¿Debo invertir en Runbot ahora?", "¿Debería comprar RBOT hoy?", "¿Será Runbot una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Runbot regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Runbot, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Runbot a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Runbot es de $0.01115 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Runbot basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Runbot ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.011441 | $0.011738 | $0.012044 | $0.012357 |
| Si Runbot ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.011731 | $0.012341 | $0.012982 | $0.013657 |
| Si Runbot ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.012601 | $0.014238 | $0.016089 | $0.01818 |
| Si Runbot ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01405 | $0.0177025 | $0.0223039 | $0.0281014 |
| Si Runbot ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.016949 | $0.02576 | $0.039152 | $0.0595058 |
| Si Runbot ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.025645 | $0.058975 | $0.135622 | $0.311885 |
| Si Runbot ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.040138 | $0.144471 | $0.519999 | $1.87 |
Cuadro de preguntas
¿Es RBOT una buena inversión?
La decisión de adquirir Runbot depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Runbot ha experimentado un aumento de 2.7685% durante las últimas 24 horas, y Runbot ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Runbot dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Runbot subir?
Parece que el valor medio de Runbot podría potencialmente aumentar hasta $0.011501 para el final de este año. Mirando las perspectivas de Runbot en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.036157. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Runbot la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Runbot, el precio de Runbot aumentará en un 0.86% durante la próxima semana y alcanzará $0.011247 para el 13 de enero de 2026.
¿Cuál será el precio de Runbot el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Runbot, el precio de Runbot disminuirá en un -11.62% durante el próximo mes y alcanzará $0.009856 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Runbot este año en 2026?
Según nuestra predicción más reciente sobre el valor de Runbot en 2026, se anticipa que RBOT fluctúe dentro del rango de $0.003852 y $0.011501. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Runbot no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Runbot en 5 años?
El futuro de Runbot parece estar en una tendencia alcista, con un precio máximo de $0.036157 proyectada después de un período de cinco años. Basado en el pronóstico de Runbot para 2030, el valor de Runbot podría potencialmente alcanzar su punto más alto de aproximadamente $0.036157, mientras que su punto más bajo se anticipa que esté alrededor de $0.0125054.
¿Cuánto será Runbot en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Runbot, se espera que el valor de RBOT en 2026 crezca en un 3.13% hasta $0.011501 si ocurre lo mejor. El precio estará entre $0.011501 y $0.003852 durante 2026.
¿Cuánto será Runbot en 2027?
Según nuestra última simulación experimental para la predicción de precios de Runbot, el valor de RBOT podría disminuir en un -12.62% hasta $0.009743 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.009743 y $0.003709 a lo largo del año.
¿Cuánto será Runbot en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Runbot sugiere que el valor de RBOT en 2028 podría aumentar en un 47.02% , alcanzando $0.016395 en el mejor escenario. Se espera que el precio oscile entre $0.016395 y $0.006693 durante el año.
¿Cuánto será Runbot en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Runbot podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.04837 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.04837 y $0.0147044.
¿Cuánto será Runbot en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Runbot, se espera que el valor de RBOT en 2030 aumente en un 224.23% , alcanzando $0.036157 en el mejor escenario. Se pronostica que el precio oscile entre $0.036157 y $0.0125054 durante el transcurso de 2030.
¿Cuánto será Runbot en 2031?
Nuestra simulación experimental indica que el precio de Runbot podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0330072 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0330072 y $0.014785 durante el año.
¿Cuánto será Runbot en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Runbot, RBOT podría experimentar un 449.04% aumento en valor, alcanzando $0.061226 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.061226 y $0.022568 a lo largo del año.
¿Cuánto será Runbot en 2033?
Según nuestra predicción experimental de precios de Runbot, se anticipa que el valor de RBOT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.163085. A lo largo del año, el precio de RBOT podría oscilar entre $0.163085 y $0.052444.
¿Cuánto será Runbot en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Runbot sugieren que RBOT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.09445 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.09445 y $0.042163.
¿Cuánto será Runbot en 2035?
Basado en nuestra predicción experimental para el precio de Runbot, RBOT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.111286 en 2035. El rango de precios esperado para el año está entre $0.111286 y $0.049849.
¿Cuánto será Runbot en 2036?
Nuestra reciente simulación de predicción de precios de Runbot sugiere que el valor de RBOT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.230248 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.230248 y $0.082517.
¿Cuánto será Runbot en 2037?
Según la simulación experimental, el valor de Runbot podría aumentar en un 4830.69% en 2037, con un máximo de $0.549855 bajo condiciones favorables. Se espera que el precio caiga entre $0.549855 y $0.214294 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Runbot?
Los traders de Runbot utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Runbot
Las medias móviles son herramientas populares para la predicción de precios de Runbot. Una media móvil simple (SMA) calcula el precio de cierre promedio de RBOT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de RBOT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de RBOT.
¿Cómo leer gráficos de Runbot y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Runbot en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de RBOT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Runbot?
La acción del precio de Runbot está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de RBOT. La capitalización de mercado de Runbot puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de RBOT, grandes poseedores de Runbot, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Runbot.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


