Predicción del precio de Pump.fun - Pronóstico de PUMP
Predicción de precio de Pump.fun hasta $0.002498 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000836 | $0.002498 |
| 2027 | $0.0008057 | $0.002116 |
| 2028 | $0.001454 | $0.003561 |
| 2029 | $0.003194 | $0.0105074 |
| 2030 | $0.002716 | $0.007854 |
| 2031 | $0.003211 | $0.00717 |
| 2032 | $0.0049025 | $0.01330011 |
| 2033 | $0.011392 | $0.035426 |
| 2034 | $0.009158 | $0.020517 |
| 2035 | $0.010828 | $0.024174 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Pump.fun hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.53, equivalente a un ROI del 39.57% en los próximos 90 días.
Predicción del precio a largo plazo de Pump.fun para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Pump.fun'
'name_with_ticker' => 'Pump.fun <small>PUMP</small>'
'name_lang' => 'Pump.fun'
'name_lang_with_ticker' => 'Pump.fun <small>PUMP</small>'
'name_with_lang' => 'Pump.fun'
'name_with_lang_with_ticker' => 'Pump.fun <small>PUMP</small>'
'image' => '/uploads/coins/pump-fun.jpg?1751970652'
'price_for_sd' => 0.002422
'ticker' => 'PUMP'
'marketcap' => '$1.43B'
'low24h' => '$0.002224'
'high24h' => '$0.002544'
'volume24h' => '$144.4M'
'current_supply' => '590B'
'max_supply' => '999.99B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.004 USD 0.61x'
'price' => '$0.002422'
'change_24h_pct' => '7.7396%'
'ath_price' => '$0.008819'
'ath_days' => 114
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 sept. 2025'
'ath_pct' => '-72.53%'
'fdv' => '$2.42B'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.119443'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002443'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002141'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000836'
'current_year_max_price_prediction' => '$0.002498'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002716'
'grand_prediction_max_price' => '$0.007854'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0024683541532913
107 => 0.0024775700916871
108 => 0.0024983340714704
109 => 0.0023209081376291
110 => 0.0024005671729721
111 => 0.0024473593931939
112 => 0.0022359504399163
113 => 0.0024431805179192
114 => 0.002317819546858
115 => 0.0022752701504213
116 => 0.0023325573072666
117 => 0.0023102324465304
118 => 0.0022910388422292
119 => 0.0022803284812411
120 => 0.0023223938466756
121 => 0.0023204314470991
122 => 0.0022516043447127
123 => 0.0021618221954012
124 => 0.0021919560317088
125 => 0.002181008126472
126 => 0.0021413315055862
127 => 0.0021680687574898
128 => 0.0020503314315199
129 => 0.0018477704816425
130 => 0.0019815884497412
131 => 0.0019764366035353
201 => 0.0019738388090607
202 => 0.0020743993136299
203 => 0.0020647327414412
204 => 0.0020471878182632
205 => 0.0021410092793131
206 => 0.0021067631839532
207 => 0.0022123015804577
208 => 0.002281815994191
209 => 0.0022641848903125
210 => 0.0023295635324211
211 => 0.0021926502544355
212 => 0.002238127353375
213 => 0.0022475001204379
214 => 0.0021398515370473
215 => 0.0020663143121998
216 => 0.0020614102176882
217 => 0.0019339068038564
218 => 0.0020020180983537
219 => 0.0020619532188745
220 => 0.0020332489472983
221 => 0.002024162032433
222 => 0.0020705851097685
223 => 0.0020741925804642
224 => 0.0019919418662988
225 => 0.0020090443943152
226 => 0.0020803647792021
227 => 0.0020072473036053
228 => 0.0018651919921925
301 => 0.0018299603108938
302 => 0.0018252597551598
303 => 0.0017297086412179
304 => 0.001832314660305
305 => 0.0017875243833031
306 => 0.0019290163316822
307 => 0.0018481968896046
308 => 0.0018447129249884
309 => 0.0018394464014846
310 => 0.0017572016105479
311 => 0.0017752079928339
312 => 0.001835063950002
313 => 0.0018564212298452
314 => 0.0018541934905825
315 => 0.0018347706231576
316 => 0.0018436623124035
317 => 0.0018150190832724
318 => 0.0018049045629089
319 => 0.0017729803544238
320 => 0.0017260605872383
321 => 0.0017325850686411
322 => 0.0016396247326219
323 => 0.0015889750077801
324 => 0.0015749558314966
325 => 0.0015562088030685
326 => 0.0015770733582415
327 => 0.0016393613876698
328 => 0.0015642288090366
329 => 0.0014354192729077
330 => 0.0014431609455098
331 => 0.0014605541853235
401 => 0.0014281419979984
402 => 0.0013974665828439
403 => 0.0014241363675457
404 => 0.0013695580690217
405 => 0.0014671497119492
406 => 0.0014645101315055
407 => 0.0015008862609621
408 => 0.0015236330012247
409 => 0.0014712091292641
410 => 0.0014580246672352
411 => 0.0014655351360072
412 => 0.0013414038169814
413 => 0.0014907420839357
414 => 0.0014920335674698
415 => 0.001480975101369
416 => 0.0015604931182205
417 => 0.0017283009360685
418 => 0.0016651648849402
419 => 0.0016407166976461
420 => 0.0015942406757285
421 => 0.0016561672154606
422 => 0.0016514122234137
423 => 0.0016299083461004
424 => 0.0016169027340051
425 => 0.0016408659730645
426 => 0.0016139334234962
427 => 0.0016090955975367
428 => 0.0015797836358291
429 => 0.0015693205991088
430 => 0.0015615741832666
501 => 0.0015530461405713
502 => 0.0015718568777011
503 => 0.0015292292726065
504 => 0.0014778245596979
505 => 0.0014735508140263
506 => 0.0014853510015773
507 => 0.0014801302970066
508 => 0.0014735258193014
509 => 0.0014609160727396
510 => 0.0014571750302993
511 => 0.0014693316033344
512 => 0.00145560754115
513 => 0.0014758581424915
514 => 0.0014703510994435
515 => 0.0014395892046428
516 => 0.0014012484942089
517 => 0.0014009071814637
518 => 0.0013926467382921
519 => 0.0013821258219471
520 => 0.0013791991437059
521 => 0.0014218903126662
522 => 0.0015102597547746
523 => 0.0014929107187872
524 => 0.0015054471752889
525 => 0.0015671141334899
526 => 0.0015867162051119
527 => 0.0015728031189751
528 => 0.0015537580285493
529 => 0.0015545959158726
530 => 0.0016196787551984
531 => 0.0016237378920549
601 => 0.0016339940213642
602 => 0.0016471760459083
603 => 0.0015750480747556
604 => 0.0015511986949176
605 => 0.0015398975356372
606 => 0.0015050943391524
607 => 0.0015426266027607
608 => 0.0015207581600479
609 => 0.0015237089601022
610 => 0.0015217872476958
611 => 0.0015228366326153
612 => 0.0014671224330961
613 => 0.0014874217591488
614 => 0.0014536701924672
615 => 0.0014084806334716
616 => 0.0014083291422244
617 => 0.0014193892227685
618 => 0.0014128102540799
619 => 0.0013951064184995
620 => 0.0013976211647839
621 => 0.0013755893411917
622 => 0.0014002962270671
623 => 0.0014010047321485
624 => 0.0013914912352933
625 => 0.0014295556018775
626 => 0.0014451506039246
627 => 0.0014388886164957
628 => 0.0014447112461934
629 => 0.0014936316495587
630 => 0.0015016078098541
701 => 0.0015051502933817
702 => 0.0015004038347438
703 => 0.0014456054213624
704 => 0.0014480359640168
705 => 0.0014302022547098
706 => 0.0014151346496154
707 => 0.0014157372748
708 => 0.0014234839824701
709 => 0.0014573143092037
710 => 0.0015285082374078
711 => 0.001531209994941
712 => 0.0015344846038872
713 => 0.0015211651236166
714 => 0.0015171478409168
715 => 0.0015224476737465
716 => 0.0015491843699811
717 => 0.0016179584116385
718 => 0.001593649072053
719 => 0.0015738852005725
720 => 0.0015912234441624
721 => 0.0015885543574634
722 => 0.0015660245796498
723 => 0.0015653922438243
724 => 0.0015221503969943
725 => 0.0015061648707905
726 => 0.0014928061685987
727 => 0.001478218814543
728 => 0.0014695709420862
729 => 0.0014828580045676
730 => 0.0014858969129649
731 => 0.0014568445186314
801 => 0.001452884784636
802 => 0.0014766095969883
803 => 0.0014661691916222
804 => 0.0014769074074508
805 => 0.0014793987656338
806 => 0.0014789975995855
807 => 0.0014680966173104
808 => 0.0014750445783405
809 => 0.0014586105792173
810 => 0.0014407410734776
811 => 0.0014293414421253
812 => 0.0014193937518287
813 => 0.0014249133085684
814 => 0.0014052370966226
815 => 0.0013989422804172
816 => 0.0014726907654776
817 => 0.0015271695643215
818 => 0.0015263774210104
819 => 0.0015215554523264
820 => 0.0015143909849626
821 => 0.0015486602445687
822 => 0.0015367215197574
823 => 0.0015454079395714
824 => 0.001547618997982
825 => 0.0015543112058626
826 => 0.0015567030949652
827 => 0.0015494731448233
828 => 0.0015252085490831
829 => 0.0014647434835071
830 => 0.0014365968322591
831 => 0.0014273079685277
901 => 0.0014276456010823
902 => 0.0014183321879691
903 => 0.0014210754055289
904 => 0.0014173782088518
905 => 0.0014103766127934
906 => 0.0014244809797418
907 => 0.0014261063766413
908 => 0.0014228142488609
909 => 0.00142358966413
910 => 0.0013963322521945
911 => 0.001398404574024
912 => 0.0013868656227396
913 => 0.001384702208478
914 => 0.0013555327444425
915 => 0.0013038548107222
916 => 0.0013324894025017
917 => 0.001297902842265
918 => 0.0012848043878315
919 => 0.0013468104338922
920 => 0.0013405867466477
921 => 0.001329934499457
922 => 0.001314177605739
923 => 0.0013083332205858
924 => 0.0012728245865025
925 => 0.0012707265469696
926 => 0.0012883255848351
927 => 0.0012802042344061
928 => 0.0012687987826079
929 => 0.0012274893923468
930 => 0.0011810439606242
1001 => 0.0011824458562623
1002 => 0.0011972192839453
1003 => 0.0012401750174017
1004 => 0.0012233914691986
1005 => 0.0012112148124082
1006 => 0.0012089344906203
1007 => 0.0012374774919727
1008 => 0.00127787181883
1009 => 0.0012968239332193
1010 => 0.0012780429634438
1011 => 0.0012564683966048
1012 => 0.0012577815405214
1013 => 0.0012665172986995
1014 => 0.001267435303367
1015 => 0.0012533924782562
1016 => 0.0012573454512686
1017 => 0.0012513405237953
1018 => 0.0012144882949763
1019 => 0.0012138217550167
1020 => 0.001204777623742
1021 => 0.0012045037710414
1022 => 0.0011891174475789
1023 => 0.0011869647945659
1024 => 0.0011564143154481
1025 => 0.0011765227333188
1026 => 0.0011630350623505
1027 => 0.0011427059607812
1028 => 0.0011392012160082
1029 => 0.0011390958591482
1030 => 0.0011599693009559
1031 => 0.0011762788149982
1101 => 0.0011632696861615
1102 => 0.0011603077596968
1103 => 0.0011919333853087
1104 => 0.0011879087361756
1105 => 0.0011844234159825
1106 => 0.0012742549499088
1107 => 0.0012031462811641
1108 => 0.0011721388428506
1109 => 0.0011337612497847
1110 => 0.0011462571876036
1111 => 0.0011488902653055
1112 => 0.0010565990720632
1113 => 0.0010191565464589
1114 => 0.0010063076826633
1115 => 0.00099891297989271
1116 => 0.0010022828388021
1117 => 0.00096858017418805
1118 => 0.00099122892219933
1119 => 0.00096204526345886
1120 => 0.00095715252809919
1121 => 0.0010093365250887
1122 => 0.0010165976234153
1123 => 0.0009856195221076
1124 => 0.0010055124780462
1125 => 0.00099829901569009
1126 => 0.00096254553352579
1127 => 0.00096118001349193
1128 => 0.00094324017293755
1129 => 0.00091516779630759
1130 => 0.00090233796690527
1201 => 0.00089565608035886
1202 => 0.00089841315697528
1203 => 0.00089701909467008
1204 => 0.00088792189514858
1205 => 0.00089754053549786
1206 => 0.00087296888410205
1207 => 0.00086318425452899
1208 => 0.00085876476435252
1209 => 0.00083695600944725
1210 => 0.00087166343689885
1211 => 0.00087850123733947
1212 => 0.00088535251035926
1213 => 0.00094498816443376
1214 => 0.00094200893568481
1215 => 0.0009689397126321
1216 => 0.00096789323216245
1217 => 0.00096021213832742
1218 => 0.00092780686691604
1219 => 0.00094072303053219
1220 => 0.00090096908653916
1221 => 0.00093075544438417
1222 => 0.00091716219457175
1223 => 0.00092615955294901
1224 => 0.0009099814913276
1225 => 0.00091893509860468
1226 => 0.00088012273348962
1227 => 0.00084388029304988
1228 => 0.00085846530906562
1229 => 0.00087432088947363
1230 => 0.00090869982772494
1231 => 0.00088822401572254
]
'min_raw' => 0.00083695600944725
'max_raw' => 0.0024983340714704
'avg_raw' => 0.0016676450404588
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000836'
'max' => '$0.002498'
'avg' => '$0.001667'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0015854939905528
'max_diff' => 7.5884071470422E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00089558789199478
102 => 0.00087092013918079
103 => 0.00082002351913028
104 => 0.00082031158847241
105 => 0.00081248225232078
106 => 0.00080571656278398
107 => 0.00089057590904286
108 => 0.00088002230790782
109 => 0.00086320652572031
110 => 0.00088571511841091
111 => 0.00089166674757771
112 => 0.00089183618209309
113 => 0.00090825787028928
114 => 0.00091702212822335
115 => 0.00091856686667069
116 => 0.00094440674786147
117 => 0.00095306793520034
118 => 0.00098874214007205
119 => 0.0009162785421701
120 => 0.00091478620205731
121 => 0.00088603186046943
122 => 0.00086779540244625
123 => 0.00088728052635225
124 => 0.00090454168614831
125 => 0.00088656821281959
126 => 0.00088891516899559
127 => 0.00086478724953851
128 => 0.00087341184542029
129 => 0.00088084050925221
130 => 0.0008767388377209
131 => 0.00087059843691539
201 => 0.0009031264678887
202 => 0.00090129110890281
203 => 0.00093158195916136
204 => 0.00095519584305739
205 => 0.00099751614448572
206 => 0.00095335270373805
207 => 0.00095174321242342
208 => 0.00096747624819439
209 => 0.00095306552655454
210 => 0.00096217260518972
211 => 0.00099604885332271
212 => 0.00099676460506426
213 => 0.00098477484119915
214 => 0.00098404526297833
215 => 0.00098634802828227
216 => 0.00099983539659301
217 => 0.00099512249568027
218 => 0.0010005763839325
219 => 0.0010073965547049
220 => 0.0010356076727119
221 => 0.0010424092777551
222 => 0.001025884903728
223 => 0.0010273768696871
224 => 0.0010211963001968
225 => 0.0010152259475114
226 => 0.0010286464284481
227 => 0.0010531726211401
228 => 0.0010530200449683
301 => 0.0010587096449518
302 => 0.0010622542186063
303 => 0.0010470383136946
304 => 0.0010371333191014
305 => 0.0010409315242996
306 => 0.0010470049371257
307 => 0.0010389619983755
308 => 0.00098931725455779
309 => 0.0010043762985136
310 => 0.0010018697372497
311 => 0.0009983000892017
312 => 0.0010134420743474
313 => 0.001011981592941
314 => 0.0009682345046494
315 => 0.00097103505130474
316 => 0.00096840481516721
317 => 0.00097690364622326
318 => 0.00095260656178673
319 => 0.00096008018131604
320 => 0.000964767565424
321 => 0.00096752847067377
322 => 0.00097750275360638
323 => 0.00097633238662698
324 => 0.00097743000195167
325 => 0.00099221923042767
326 => 0.0010670180730089
327 => 0.0010710892089763
328 => 0.001051041446525
329 => 0.0010590501321997
330 => 0.0010436752070114
331 => 0.0010539964972933
401 => 0.0010610580619719
402 => 0.0010291482090502
403 => 0.0010272587146534
404 => 0.0010118203316797
405 => 0.0010201160442151
406 => 0.0010069169690885
407 => 0.0010101555604405
408 => 0.0010011001766849
409 => 0.001017398064536
410 => 0.0010356216355893
411 => 0.001040225629308
412 => 0.0010281145039781
413 => 0.0010193452510771
414 => 0.0010039493317546
415 => 0.0010295530887084
416 => 0.0010370404075021
417 => 0.0010295137610102
418 => 0.0010277696725576
419 => 0.0010244646280914
420 => 0.0010284708533651
421 => 0.0010369996299559
422 => 0.0010329776164175
423 => 0.0010356342272184
424 => 0.0010255099663304
425 => 0.0010470433507923
426 => 0.0010812435476089
427 => 0.0010813535068339
428 => 0.0010773314716153
429 => 0.0010756857414598
430 => 0.0010798125936716
501 => 0.0010820512417042
502 => 0.0010953967250219
503 => 0.0011097169603294
504 => 0.0011765432501012
505 => 0.001157778695343
506 => 0.0012170709551423
507 => 0.0012639634345073
508 => 0.0012780244387092
509 => 0.0012650889764648
510 => 0.0012208374588866
511 => 0.0012186662683212
512 => 0.0012847967180918
513 => 0.0012661118370651
514 => 0.0012638893299218
515 => 0.0012402456089019
516 => 0.0012542219763565
517 => 0.0012511651397732
518 => 0.001246339773681
519 => 0.0012730057091821
520 => 0.0013229219599558
521 => 0.0013151420441611
522 => 0.0013093346979202
523 => 0.0012838885971859
524 => 0.0012992128334203
525 => 0.0012937561664137
526 => 0.0013172014707607
527 => 0.0013033129918426
528 => 0.0012659702807143
529 => 0.0012719172305446
530 => 0.0012710183610414
531 => 0.0012895170317239
601 => 0.0012839641899502
602 => 0.0012699340795652
603 => 0.0013227513516372
604 => 0.001319321691774
605 => 0.0013241841653307
606 => 0.0013263247765673
607 => 0.0013584737193329
608 => 0.0013716441125325
609 => 0.001374634022369
610 => 0.0013871448772738
611 => 0.0013743227409018
612 => 0.0014256204284182
613 => 0.0014597303973136
614 => 0.0014993508814685
615 => 0.001557247057801
616 => 0.0015790165556716
617 => 0.0015750840907325
618 => 0.0016189803108679
619 => 0.001697860842693
620 => 0.0015910281014951
621 => 0.0017035232373867
622 => 0.0016679085761822
623 => 0.0015834668551468
624 => 0.0015780298038146
625 => 0.0016352147176883
626 => 0.0017620453528163
627 => 0.0017302757172179
628 => 0.001762097316559
629 => 0.0017249757306238
630 => 0.0017231323309969
701 => 0.001760294403987
702 => 0.0018471256131277
703 => 0.0018058753604842
704 => 0.0017467330083427
705 => 0.001790402800807
706 => 0.001752571985126
707 => 0.0016673285692179
708 => 0.0017302514235763
709 => 0.0016881767028066
710 => 0.0017004563431423
711 => 0.0017888911480579
712 => 0.001778250438361
713 => 0.001792020502012
714 => 0.0017677167000933
715 => 0.0017450131167435
716 => 0.0017026351924307
717 => 0.0016900891782481
718 => 0.0016935564452099
719 => 0.0016900874600428
720 => 0.0016663774008631
721 => 0.0016612572158407
722 => 0.0016527233498162
723 => 0.001655368351738
724 => 0.0016393221869415
725 => 0.0016696046152194
726 => 0.0016752253007556
727 => 0.0016972623267114
728 => 0.0016995502838511
729 => 0.0017609230874604
730 => 0.0017271199785605
731 => 0.0017497980224306
801 => 0.0017477694847328
802 => 0.0015852969632913
803 => 0.0016076842432388
804 => 0.0016425118253215
805 => 0.0016268220468009
806 => 0.0016046403708155
807 => 0.0015867274781511
808 => 0.0015595876140772
809 => 0.0015977864515863
810 => 0.0016480138609173
811 => 0.0017008241338396
812 => 0.0017642722164896
813 => 0.0017501113430592
814 => 0.001699638016068
815 => 0.0017019022126461
816 => 0.001715898584963
817 => 0.0016977720111081
818 => 0.0016924261306055
819 => 0.0017151641430735
820 => 0.0017153207272688
821 => 0.0016944639133791
822 => 0.0016712853814973
823 => 0.0016711882626024
824 => 0.0016670638667321
825 => 0.0017257094514868
826 => 0.0017579585933644
827 => 0.0017616559055086
828 => 0.0017577097347985
829 => 0.0017592284592869
830 => 0.0017404633941896
831 => 0.0017833547683948
901 => 0.0018227161348827
902 => 0.001812166447831
903 => 0.0017963509672141
904 => 0.001783753175126
905 => 0.0018091988083786
906 => 0.001808065754385
907 => 0.0018223723476845
908 => 0.0018217233179736
909 => 0.0018169125487451
910 => 0.0018121666196387
911 => 0.0018309836920902
912 => 0.0018255646774171
913 => 0.0018201372455175
914 => 0.0018092516999444
915 => 0.0018107312263776
916 => 0.0017949184765264
917 => 0.0017876027749031
918 => 0.0016775921753104
919 => 0.0016481937483991
920 => 0.0016574430919656
921 => 0.0016604882160267
922 => 0.0016476939829599
923 => 0.0016660376266089
924 => 0.001663178789177
925 => 0.0016743008532608
926 => 0.0016673522704851
927 => 0.001667637442746
928 => 0.0016880717430954
929 => 0.0016940039074205
930 => 0.0016909867607663
1001 => 0.0016930998668612
1002 => 0.0017417955049311
1003 => 0.0017348725423964
1004 => 0.0017311948565296
1005 => 0.0017322136006485
1006 => 0.0017446563802216
1007 => 0.0017481396791515
1008 => 0.0017333806968185
1009 => 0.0017403411182074
1010 => 0.0017699777090725
1011 => 0.0017803488385895
1012 => 0.0018134485055831
1013 => 0.0017993871787446
1014 => 0.0018251973527167
1015 => 0.0019045290281705
1016 => 0.0019679046598574
1017 => 0.0019096218098494
1018 => 0.0020260030866044
1019 => 0.0021166226044607
1020 => 0.0021131444764307
1021 => 0.0020973428674252
1022 => 0.0019941749555903
1023 => 0.0018992383049729
1024 => 0.0019786568444375
1025 => 0.0019788592986271
1026 => 0.0019720371756543
1027 => 0.0019296655557829
1028 => 0.0019705627351286
1029 => 0.0019738090047083
1030 => 0.0019719919569964
1031 => 0.0019395057353865
1101 => 0.0018899052794456
1102 => 0.0018995970898097
1103 => 0.0019154724728938
1104 => 0.0018854170607638
1105 => 0.0018758125354667
1106 => 0.0018936691753298
1107 => 0.0019512069895474
1108 => 0.0019403297990635
1109 => 0.0019400457516617
1110 => 0.0019865829851988
1111 => 0.0019532723693498
1112 => 0.0018997193345759
1113 => 0.0018861964870177
1114 => 0.0018381994882679
1115 => 0.0018713511862638
1116 => 0.0018725442568559
1117 => 0.0018543874106656
1118 => 0.0019011926625762
1119 => 0.0019007613439399
1120 => 0.0019451959645865
1121 => 0.0020301382703816
1122 => 0.002005016650801
1123 => 0.0019758029404532
1124 => 0.0019789792807763
1125 => 0.0020138158942451
1126 => 0.0019927528824993
1127 => 0.0020003272883796
1128 => 0.0020138044294746
1129 => 0.0020219355233158
1130 => 0.001977809341503
1201 => 0.0019675214177232
1202 => 0.0019464759362402
1203 => 0.0019409855629538
1204 => 0.0019581266684933
1205 => 0.0019536105927878
1206 => 0.0018724439838924
1207 => 0.0018639616216561
1208 => 0.0018642217635959
1209 => 0.0018428924604383
1210 => 0.0018103601535037
1211 => 0.0018958531137247
1212 => 0.0018889868325458
1213 => 0.0018814069895321
1214 => 0.0018823354770513
1215 => 0.001919445073458
1216 => 0.0018979196334626
1217 => 0.0019551485436406
1218 => 0.0019433840001665
1219 => 0.001931317740544
1220 => 0.0019296498159169
1221 => 0.0019250053354071
1222 => 0.001909077683604
1223 => 0.0018898440869483
1224 => 0.0018771444004506
1225 => 0.0017315664839381
1226 => 0.001758584898455
1227 => 0.0017896671215508
1228 => 0.0018003965804093
1229 => 0.0017820430985759
1230 => 0.0019098023909326
1231 => 0.0019331452447653
]
'min_raw' => 0.00080571656278398
'max_raw' => 0.0021166226044607
'avg_raw' => 0.0014611695836223
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0008057'
'max' => '$0.002116'
'avg' => '$0.001461'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.1239446663271E-5
'max_diff' => -0.00038171146700973
'year' => 2027
]
2 => [
'items' => [
101 => 0.0018624382178893
102 => 0.0018492118201097
103 => 0.0019106695113691
104 => 0.0018736030106424
105 => 0.00189029405365
106 => 0.00185421714818
107 => 0.0019275226348356
108 => 0.0019269641698476
109 => 0.001898446679859
110 => 0.001922549467118
111 => 0.0019183610146913
112 => 0.0018861648387297
113 => 0.0019285433110408
114 => 0.0019285643302344
115 => 0.0019011168661441
116 => 0.0018690642371092
117 => 0.0018633339840871
118 => 0.0018590170081861
119 => 0.0018892323422138
120 => 0.0019163233162222
121 => 0.0019667329024298
122 => 0.0019794070701046
123 => 0.0020288751903064
124 => 0.0019994193332853
125 => 0.0020124767331856
126 => 0.0020266523878593
127 => 0.0020334487180023
128 => 0.0020223744627454
129 => 0.0020992188153096
130 => 0.0021057068331161
131 => 0.0021078822093655
201 => 0.0020819707260408
202 => 0.0021049861878913
203 => 0.0020942180154834
204 => 0.0021222338086043
205 => 0.0021266270426893
206 => 0.0021229061297132
207 => 0.0021243006115542
208 => 0.0020587275129134
209 => 0.0020553272018233
210 => 0.0020089637188336
211 => 0.0020278571808535
212 => 0.0019925367591946
213 => 0.0020037372287433
214 => 0.0020086742889984
215 => 0.0020060954488968
216 => 0.0020289253888486
217 => 0.002009515276041
218 => 0.0019582887970238
219 => 0.0019070483613866
220 => 0.0019064050794568
221 => 0.0018929143772223
222 => 0.0018831630704522
223 => 0.0018850415180823
224 => 0.0018916614125406
225 => 0.0018827783101519
226 => 0.0018846739704313
227 => 0.0019161545617868
228 => 0.0019224677698739
229 => 0.0019010130220645
301 => 0.0018148691137043
302 => 0.0017937291825171
303 => 0.0018089241458314
304 => 0.0018016619320481
305 => 0.0014540817931113
306 => 0.0015357405910255
307 => 0.0014872217061756
308 => 0.001509581440561
309 => 0.0014600562230336
310 => 0.0014836922526767
311 => 0.0014793275410513
312 => 0.0016106324716377
313 => 0.0016085823257506
314 => 0.0016095636220954
315 => 0.0015627237908022
316 => 0.0016373409138923
317 => 0.0016740999918715
318 => 0.0016672968648487
319 => 0.0016690090653527
320 => 0.0016395877879021
321 => 0.0016098484843729
322 => 0.0015768630199129
323 => 0.0016381459357529
324 => 0.0016313323216458
325 => 0.0016469603009466
326 => 0.0016867066524621
327 => 0.0016925594537044
328 => 0.0017004256779274
329 => 0.0016976061964995
330 => 0.0017647776828304
331 => 0.0017566427726239
401 => 0.001776245565648
402 => 0.00173592113313
403 => 0.0016902902101057
404 => 0.0016989631567854
405 => 0.0016981278822767
406 => 0.0016874938790977
407 => 0.0016778939765061
408 => 0.0016619128434469
409 => 0.0017124795132089
410 => 0.0017104265987622
411 => 0.0017436608974031
412 => 0.0017377864122976
413 => 0.0016985551630324
414 => 0.0016999563147748
415 => 0.0017093797336132
416 => 0.0017419942938075
417 => 0.0017516765158418
418 => 0.0017471913248257
419 => 0.0017578074392761
420 => 0.0017661979832838
421 => 0.0017588611624203
422 => 0.0018627350738605
423 => 0.0018195993837667
424 => 0.0018406234189822
425 => 0.0018456375275003
426 => 0.0018327939939665
427 => 0.0018355792964976
428 => 0.0018397982708825
429 => 0.0018654150571882
430 => 0.0019326409167312
501 => 0.0019624147923009
502 => 0.0020519909659695
503 => 0.0019599424864072
504 => 0.0019544807105645
505 => 0.0019706160843835
506 => 0.0020232067809279
507 => 0.0020658266008842
508 => 0.0020799660539601
509 => 0.002081834816101
510 => 0.0021083613700445
511 => 0.0021235658960739
512 => 0.0021051403486781
513 => 0.0020895266264954
514 => 0.0020336002116834
515 => 0.0020400738464804
516 => 0.0020846707706374
517 => 0.0021476665527549
518 => 0.0022017234874057
519 => 0.0021827946329654
520 => 0.0023272084306565
521 => 0.0023415264688201
522 => 0.0023395481789035
523 => 0.00237216680065
524 => 0.0023074254791501
525 => 0.0022797473099048
526 => 0.0020929024904545
527 => 0.0021453982634189
528 => 0.0022217039523913
529 => 0.0022116046083241
530 => 0.0021561893773355
531 => 0.0022016814499838
601 => 0.0021866403480977
602 => 0.0021747768069841
603 => 0.0022291259886858
604 => 0.0021693668308635
605 => 0.0022211078090786
606 => 0.0021547494693258
607 => 0.002182881098378
608 => 0.0021669122251542
609 => 0.0021772460432015
610 => 0.0021168347540515
611 => 0.0021494312192757
612 => 0.002115478633931
613 => 0.0021154625359848
614 => 0.0021147130307815
615 => 0.0021546580968707
616 => 0.0021559607040418
617 => 0.0021264412398482
618 => 0.0021221870238772
619 => 0.0021379170900468
620 => 0.0021195013022731
621 => 0.0021281179334648
622 => 0.002119762291254
623 => 0.0021178812601955
624 => 0.002102892884691
625 => 0.0020964354804097
626 => 0.0020989675950152
627 => 0.002090324182472
628 => 0.0020851162137689
629 => 0.0021136770347237
630 => 0.0020984181402278
701 => 0.0021113383902989
702 => 0.0020966141346773
703 => 0.0020455734496402
704 => 0.0020162194119299
705 => 0.0019198082893688
706 => 0.0019471503641295
707 => 0.0019652781879833
708 => 0.0019592869423077
709 => 0.0019721584563231
710 => 0.0019729486627455
711 => 0.0019687640023296
712 => 0.0019639187016561
713 => 0.0019615602772502
714 => 0.001979138040551
715 => 0.0019893425237874
716 => 0.001967097557626
717 => 0.0019618858732945
718 => 0.0019843767622619
719 => 0.0019980961915395
720 => 0.0020993927490434
721 => 0.0020918883728799
722 => 0.0021107228843908
723 => 0.0021086024074338
724 => 0.0021283439760701
725 => 0.0021606130973812
726 => 0.0020950009511676
727 => 0.002106388951053
728 => 0.0021035968764684
729 => 0.0021340800146614
730 => 0.0021341751796915
731 => 0.0021158990155991
801 => 0.0021258068206505
802 => 0.0021202765556772
803 => 0.0021302704919441
804 => 0.0020917881473611
805 => 0.0021386554891508
806 => 0.0021652262518808
807 => 0.0021655951869471
808 => 0.0021781895176025
809 => 0.0021909860869628
810 => 0.0022155479875036
811 => 0.0021903010688877
812 => 0.0021448843200356
813 => 0.0021481632626075
814 => 0.0021215354393729
815 => 0.0021219830578922
816 => 0.0021195936351558
817 => 0.0021267644726551
818 => 0.002093361742941
819 => 0.0021012012968405
820 => 0.0020902258754728
821 => 0.0021063650926304
822 => 0.002089001962877
823 => 0.0021035955300455
824 => 0.002109893629851
825 => 0.0021331337537217
826 => 0.0020855693776854
827 => 0.0019885823951222
828 => 0.0020089702347104
829 => 0.0019788150185291
830 => 0.0019816059985957
831 => 0.0019872442225114
901 => 0.0019689688940886
902 => 0.0019724552508299
903 => 0.001972330693634
904 => 0.0019712573270108
905 => 0.0019665032082614
906 => 0.001959608795501
907 => 0.0019870740139501
908 => 0.0019917408897596
909 => 0.0020021147765803
910 => 0.0020329804270842
911 => 0.0020298962207367
912 => 0.002034926689252
913 => 0.002023945204728
914 => 0.0019821153981671
915 => 0.0019843869579127
916 => 0.0019560605714866
917 => 0.002001390407193
918 => 0.0019906557037731
919 => 0.001983734970645
920 => 0.0019818465844908
921 => 0.0020127887449722
922 => 0.0020220471243472
923 => 0.0020162779236275
924 => 0.0020044451246368
925 => 0.0020271675967519
926 => 0.0020332471717058
927 => 0.0020346081643318
928 => 0.002074868028318
929 => 0.0020368582434974
930 => 0.0020460075764885
1001 => 0.0021173880606927
1002 => 0.0020526558113529
1003 => 0.0020869459275296
1004 => 0.0020852676047799
1005 => 0.0021028092679016
1006 => 0.0020838286764012
1007 => 0.0020840639635808
1008 => 0.0020996397720577
1009 => 0.0020777663581638
1010 => 0.0020723501932771
1011 => 0.0020648678002775
1012 => 0.0020812053316543
1013 => 0.0020909989428317
1014 => 0.0021699282563066
1015 => 0.0022209201924253
1016 => 0.0022187064979967
1017 => 0.0022389355212116
1018 => 0.0022298221609767
1019 => 0.0022003927167952
1020 => 0.0022506251894747
1021 => 0.0022347295333029
1022 => 0.0022360399518845
1023 => 0.0022359911780395
1024 => 0.0022465603997713
1025 => 0.0022390711375193
1026 => 0.0022243090328638
1027 => 0.0022341088068527
1028 => 0.0022632106321166
1029 => 0.0023535435906886
1030 => 0.002404095111058
1031 => 0.002350500325688
1101 => 0.0023874692909734
1102 => 0.0023653010851913
1103 => 0.0023612724627537
1104 => 0.0023844917049381
1105 => 0.0024077515893322
1106 => 0.0024062700352515
1107 => 0.0023893845535897
1108 => 0.0023798463734522
1109 => 0.0024520726689783
1110 => 0.002505287773179
1111 => 0.0025016588598311
1112 => 0.0025176757031629
1113 => 0.0025647016505675
1114 => 0.0025690011138498
1115 => 0.0025684594802983
1116 => 0.0025578028119505
1117 => 0.0026041059642612
1118 => 0.0026427328685452
1119 => 0.0025553361011287
1120 => 0.0025886156460532
1121 => 0.0026035559059698
1122 => 0.0026254926401027
1123 => 0.0026625035876085
1124 => 0.0027027072932687
1125 => 0.0027083925380603
1126 => 0.0027043585848167
1127 => 0.0026778431602001
1128 => 0.0027218345346635
1129 => 0.0027476036500995
1130 => 0.0027629485686259
1201 => 0.002801860728858
1202 => 0.0026036481719288
1203 => 0.002463343472331
1204 => 0.0024414328674644
1205 => 0.0024859889440526
1206 => 0.0024977380261209
1207 => 0.0024930019858713
1208 => 0.0023350762905288
1209 => 0.0024406014213619
1210 => 0.0025541375893333
1211 => 0.0025584989759357
1212 => 0.0026153375555515
1213 => 0.0026338465269665
1214 => 0.0026796090335601
1215 => 0.0026767465763129
1216 => 0.002687889018428
1217 => 0.0026853275639459
1218 => 0.002770092970978
1219 => 0.0028636018027191
1220 => 0.0028603638892158
1221 => 0.0028469208883067
1222 => 0.002866886037029
1223 => 0.0029633971724012
1224 => 0.0029545119736156
1225 => 0.0029631431873964
1226 => 0.0030769352551295
1227 => 0.0032248811299155
1228 => 0.0031561454175545
1229 => 0.0033052821352095
1230 => 0.0033991557935757
1231 => 0.0035615005790025
]
'min_raw' => 0.0014540817931113
'max_raw' => 0.0035615005790025
'avg_raw' => 0.0025077911860569
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001454'
'max' => '$0.003561'
'avg' => '$0.0025077'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00064836523032734
'max_diff' => 0.0014448779745418
'year' => 2028
]
3 => [
'items' => [
101 => 0.0035411742123021
102 => 0.0036043738459277
103 => 0.0035047857736677
104 => 0.0032761114296887
105 => 0.0032399228394238
106 => 0.0033123733135752
107 => 0.0034904857346625
108 => 0.0033067639195869
109 => 0.0033439306034969
110 => 0.0033332265960304
111 => 0.0033326562249617
112 => 0.0033544249687903
113 => 0.0033228482704855
114 => 0.0031941991210524
115 => 0.0032531582681034
116 => 0.0032303913099762
117 => 0.0032556529474075
118 => 0.0033919795859323
119 => 0.0033317063294193
120 => 0.0032682133498847
121 => 0.0033478476364412
122 => 0.0034492494485375
123 => 0.0034429039053731
124 => 0.0034305908994029
125 => 0.003499998669369
126 => 0.0036146399707847
127 => 0.0036456270538913
128 => 0.0036685010851375
129 => 0.0036716550275864
130 => 0.0037041425949748
131 => 0.0035294487572066
201 => 0.0038066923642007
202 => 0.0038545646764284
203 => 0.0038455666658337
204 => 0.0038987747261
205 => 0.0038831195650114
206 => 0.0038604376928136
207 => 0.0039447837860148
208 => 0.0038480877965384
209 => 0.0037108400131633
210 => 0.0036355431647503
211 => 0.003734700128764
212 => 0.003795251826586
213 => 0.003835272647035
214 => 0.0038473829231217
215 => 0.0035430097425429
216 => 0.0033789694795215
217 => 0.0034841174073928
218 => 0.0036124051363181
219 => 0.003528736112395
220 => 0.0035320157797264
221 => 0.0034127257394447
222 => 0.0036229596579318
223 => 0.0035923303443538
224 => 0.0037512352773787
225 => 0.0037133113398206
226 => 0.0038428921440485
227 => 0.0038087691755696
228 => 0.0039504117099359
301 => 0.0040069167517131
302 => 0.0041017975111646
303 => 0.0041715921840513
304 => 0.0042125769509298
305 => 0.0042101163792564
306 => 0.0043725184441584
307 => 0.0042767556203817
308 => 0.0041564549441534
309 => 0.0041542790844642
310 => 0.0042165845093566
311 => 0.0043471595872725
312 => 0.0043810158051859
313 => 0.0043999368122494
314 => 0.0043709586312867
315 => 0.0042670149494604
316 => 0.0042221325946543
317 => 0.0042603736613161
318 => 0.004213608122881
319 => 0.0042943385623126
320 => 0.0044051986987435
321 => 0.004382306518959
322 => 0.0044588316437912
323 => 0.0045380270973146
324 => 0.0046512801527435
325 => 0.004680888695181
326 => 0.0047298304899184
327 => 0.0047802076732451
328 => 0.0047963874668265
329 => 0.0048272797130685
330 => 0.004827116895682
331 => 0.0049202127590202
401 => 0.0050229003792212
402 => 0.0050616625786232
403 => 0.0051507941187879
404 => 0.0049981594797975
405 => 0.0051139346068121
406 => 0.0052183666694186
407 => 0.0050938584591505
408 => 0.0052654640203127
409 => 0.0052721270753861
410 => 0.0053727312962506
411 => 0.0052707496449678
412 => 0.0052101932659731
413 => 0.005385017263113
414 => 0.0054696090884247
415 => 0.0054441293422097
416 => 0.0052502272154234
417 => 0.0051373678607803
418 => 0.0048419931607356
419 => 0.005191877252176
420 => 0.0053622955868577
421 => 0.0052497858731066
422 => 0.0053065292284234
423 => 0.0056161025759375
424 => 0.0057339680632809
425 => 0.0057094528658554
426 => 0.0057135955306658
427 => 0.0057771936082265
428 => 0.0060592225082312
429 => 0.0058902242539696
430 => 0.0060194170871088
501 => 0.0060879404999664
502 => 0.0061515888646799
503 => 0.0059952885972159
504 => 0.0057919442457523
505 => 0.0057275365538285
506 => 0.0052385989993981
507 => 0.0052131476763419
508 => 0.0051988610774564
509 => 0.0051087860923628
510 => 0.0050380118276941
511 => 0.0049817295047496
512 => 0.0048340278820189
513 => 0.0048838728438639
514 => 0.0046484672849557
515 => 0.0047990714192844
516 => 0.0044233584632009
517 => 0.004736263377398
518 => 0.0045659634586412
519 => 0.0046803152738848
520 => 0.004679916311174
521 => 0.0044693583640345
522 => 0.0043479129343567
523 => 0.0044253026888742
524 => 0.0045082706489234
525 => 0.0045217319213036
526 => 0.0046293020471927
527 => 0.0046593225571162
528 => 0.0045683590105243
529 => 0.0044155726472879
530 => 0.0044510614347818
531 => 0.0043471937552108
601 => 0.0041651696419753
602 => 0.0042959025379372
603 => 0.0043405404965382
604 => 0.0043602551620248
605 => 0.0041812553522684
606 => 0.004125009725768
607 => 0.0040950650261657
608 => 0.0043924660196316
609 => 0.0044087583173985
610 => 0.0043254046185245
611 => 0.0047021712413569
612 => 0.004616897350848
613 => 0.0047121691791569
614 => 0.0044478411992926
615 => 0.0044579388840882
616 => 0.0043328017823767
617 => 0.004402870197671
618 => 0.0043533481001514
619 => 0.0043972093621448
620 => 0.0044234996217368
621 => 0.0045486161896813
622 => 0.0047376920076264
623 => 0.0045299279467003
624 => 0.0044394021701186
625 => 0.0044955638527736
626 => 0.0046451298145838
627 => 0.004871729902867
628 => 0.0047375780898516
629 => 0.0047971123864223
630 => 0.0048101179817265
701 => 0.004711199401379
702 => 0.0048753771720204
703 => 0.004963361373085
704 => 0.0050536149576121
705 => 0.005131979616209
706 => 0.0050175656912331
707 => 0.0051400049915493
708 => 0.0050413405289405
709 => 0.0049528283062357
710 => 0.0049529625427413
711 => 0.0048974375324814
712 => 0.0047898508285012
713 => 0.0047700101896111
714 => 0.004873223698714
715 => 0.0049559911586588
716 => 0.0049628082830892
717 => 0.0050086326016603
718 => 0.0050357509613627
719 => 0.005301547752068
720 => 0.0054084534200761
721 => 0.0055391756472956
722 => 0.0055900993218987
723 => 0.0057433613253061
724 => 0.0056195898102233
725 => 0.0055928110643758
726 => 0.0052210475757286
727 => 0.005281923826168
728 => 0.005379392576806
729 => 0.0052226547995267
730 => 0.0053220688431472
731 => 0.0053416952812352
801 => 0.0052173289098312
802 => 0.0052837583623518
803 => 0.0051073414314171
804 => 0.004741537414629
805 => 0.0048757844164617
806 => 0.0049746353968628
807 => 0.0048335628595924
808 => 0.0050864299223884
809 => 0.0049387102045387
810 => 0.0048918901457773
811 => 0.0047092284039929
812 => 0.00479543771482
813 => 0.0049120370421119
814 => 0.0048399922139722
815 => 0.0049894960499475
816 => 0.0052012333529051
817 => 0.0053521299641671
818 => 0.0053637139322892
819 => 0.0052666975205355
820 => 0.0054221669395212
821 => 0.0054232993645087
822 => 0.0052479292247816
823 => 0.0051405159906637
824 => 0.0051161114778727
825 => 0.0051770787356111
826 => 0.0052511042416822
827 => 0.0053678218326848
828 => 0.0054383518284479
829 => 0.0056222566511789
830 => 0.0056720160232454
831 => 0.0057266864870475
901 => 0.0057997430864338
902 => 0.0058874662653247
903 => 0.0056955329439948
904 => 0.0057031588126597
905 => 0.0055244331613351
906 => 0.0053334391710437
907 => 0.0054783798019379
908 => 0.0056678703961879
909 => 0.0056244010444985
910 => 0.0056195098544351
911 => 0.0056277354794187
912 => 0.0055949610078211
913 => 0.005446723287464
914 => 0.0053722792323179
915 => 0.0054683310561604
916 => 0.0055193783257578
917 => 0.0055985481891137
918 => 0.005588788832382
919 => 0.0057927218981641
920 => 0.0058719641209112
921 => 0.0058516905693666
922 => 0.0058554213907611
923 => 0.0059988856499428
924 => 0.0061584474118282
925 => 0.0063078980578627
926 => 0.0064599256740637
927 => 0.0062766504489946
928 => 0.0061835945925489
929 => 0.0062796044831698
930 => 0.0062286602837693
1001 => 0.0065214007645558
1002 => 0.0065416694802955
1003 => 0.0068343887926133
1004 => 0.0071122142763702
1005 => 0.006937717067783
1006 => 0.0071022600759538
1007 => 0.0072802267546788
1008 => 0.0076235533519924
1009 => 0.0075079330323925
1010 => 0.0074193696795804
1011 => 0.007335677739108
1012 => 0.0075098273815097
1013 => 0.0077338681143511
1014 => 0.0077821243423697
1015 => 0.0078603178670576
1016 => 0.0077781069368975
1017 => 0.0078771209470385
1018 => 0.0082266839117967
1019 => 0.0081322289130414
1020 => 0.0079980876304101
1021 => 0.0082740340187027
1022 => 0.0083738979439114
1023 => 0.0090747952701696
1024 => 0.0099597070971949
1025 => 0.0095933477901621
1026 => 0.0093659367459459
1027 => 0.0094193837355988
1028 => 0.0097425235786727
1029 => 0.009846305840322
1030 => 0.0095641898772681
1031 => 0.0096638380047682
1101 => 0.010212908984481
1102 => 0.010507467948792
1103 => 0.010107417310712
1104 => 0.0090036934664875
1105 => 0.0079860096755807
1106 => 0.0082559452438276
1107 => 0.0082253429274643
1108 => 0.0088152511971665
1109 => 0.0081299761925594
1110 => 0.0081415144661513
1111 => 0.0087436214141472
1112 => 0.0085829896031483
1113 => 0.0083227866414979
1114 => 0.0079879094451586
1115 => 0.0073688579753339
1116 => 0.0068205468249828
1117 => 0.0078959112593378
1118 => 0.007849539589505
1119 => 0.0077823865396908
1120 => 0.0079318283853335
1121 => 0.0086574755679661
1122 => 0.0086407470517157
1123 => 0.0085343287662947
1124 => 0.0086150460978588
1125 => 0.0083086365030121
1126 => 0.0083876052324209
1127 => 0.0079858484692687
1128 => 0.008167459305058
1129 => 0.0083222283628053
1130 => 0.0083533005425431
1201 => 0.0084233077500772
1202 => 0.0078251038266482
1203 => 0.0080936798259234
1204 => 0.0082514430633296
1205 => 0.0075386630172525
1206 => 0.0082373536935812
1207 => 0.0078146904272249
1208 => 0.0076712321664343
1209 => 0.0078643798154001
1210 => 0.0077891099887559
1211 => 0.0077243974117997
1212 => 0.007688286681955
1213 => 0.0078301129984273
1214 => 0.0078234966312448
1215 => 0.0075914412501942
1216 => 0.0072887344654011
1217 => 0.0073903327983891
1218 => 0.0073534211715251
1219 => 0.0072196486740753
1220 => 0.0073097951856035
1221 => 0.0069128355709386
1222 => 0.0062298871860729
1223 => 0.00668106380839
1224 => 0.0066636939992165
1225 => 0.0066549353537731
1226 => 0.0069939821158384
1227 => 0.0069613905928055
1228 => 0.0069022366593636
1229 => 0.0072185622656986
1230 => 0.0071030991642065
1231 => 0.0074589292364769
]
'min_raw' => 0.0031941991210524
'max_raw' => 0.010507467948792
'avg_raw' => 0.006850833534922
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003194'
'max' => '$0.0105074'
'avg' => '$0.00685'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0017401173279411
'max_diff' => 0.0069459673697891
'year' => 2029
]
4 => [
'items' => [
101 => 0.0076933019357203
102 => 0.0076338574380296
103 => 0.0078542860944896
104 => 0.0073926734187814
105 => 0.0075460026329656
106 => 0.0075776035715039
107 => 0.0072146588568183
108 => 0.0069667229690398
109 => 0.0069501884720011
110 => 0.0065203018102631
111 => 0.0067499437950396
112 => 0.006952019238412
113 => 0.0068552407827245
114 => 0.006824603614828
115 => 0.0069811222612203
116 => 0.0069932851005366
117 => 0.0067159710751664
118 => 0.0067736334424339
119 => 0.0070140950995104
120 => 0.0067675744256367
121 => 0.0062886250252234
122 => 0.0061698389519274
123 => 0.006153990700088
124 => 0.0058318334482669
125 => 0.0061777768053427
126 => 0.0060267632592736
127 => 0.006503813241886
128 => 0.0062313248502881
129 => 0.006219578420342
130 => 0.0062018219686518
131 => 0.0059245279138609
201 => 0.0059852376889036
202 => 0.0061870462275053
203 => 0.0062590537876143
204 => 0.0062515428091544
205 => 0.0061860572555699
206 => 0.0062160362066606
207 => 0.0061194635598385
208 => 0.0060853617482598
209 => 0.0059777270504752
210 => 0.0058195337795759
211 => 0.0058415315241502
212 => 0.0055281092609778
213 => 0.005357340177423
214 => 0.0053100735457954
215 => 0.0052468666305744
216 => 0.0053172129350568
217 => 0.0055272213750857
218 => 0.0052739066406349
219 => 0.0048396162963815
220 => 0.0048657178860659
221 => 0.0049243604084551
222 => 0.0048150804559419
223 => 0.0047116561520593
224 => 0.0048015751932062
225 => 0.0046175606491976
226 => 0.0049465976869587
227 => 0.0049376981572029
228 => 0.0050603428173663
301 => 0.0051370350402882
302 => 0.0049602842958551
303 => 0.004915831961615
304 => 0.0049411540314441
305 => 0.0045226366227766
306 => 0.0050261410162779
307 => 0.0050304953431814
308 => 0.0049932109526453
309 => 0.0052613114982307
310 => 0.0058270872720729
311 => 0.0056142196676757
312 => 0.0055317908972957
313 => 0.0053750937445482
314 => 0.0055838833968279
315 => 0.0055678516091588
316 => 0.0054953497854441
317 => 0.005451500456242
318 => 0.0055322941897907
319 => 0.0054414892185506
320 => 0.0054251781505622
321 => 0.0053263508251692
322 => 0.0052910739663607
323 => 0.0052649563845111
324 => 0.0052362034931552
325 => 0.0052996252067121
326 => 0.005155903259971
327 => 0.0049825886814375
328 => 0.0049681794495221
329 => 0.005007964605713
330 => 0.0049903626357551
331 => 0.0049680951780619
401 => 0.0049255805371445
402 => 0.0049129673513659
403 => 0.0049539540860986
404 => 0.0049076824522604
405 => 0.004975958768535
406 => 0.0049573913884092
407 => 0.0048536755123617
408 => 0.0047244071302712
409 => 0.004723256370521
410 => 0.0046954057096422
411 => 0.0046599337056382
412 => 0.0046500662056138
413 => 0.0047940024623654
414 => 0.0050919462061916
415 => 0.005033452720089
416 => 0.0050757202584517
417 => 0.005283634713476
418 => 0.0053497244665224
419 => 0.0053028155252316
420 => 0.0052386036731754
421 => 0.0052414286687852
422 => 0.005460860005511
423 => 0.0054745456688226
424 => 0.0055091249248488
425 => 0.005553569040939
426 => 0.0053103845503836
427 => 0.0052299747011492
428 => 0.0051918720536134
429 => 0.0050745306467834
430 => 0.0052010732939576
501 => 0.0051273423125456
502 => 0.0051372911409471
503 => 0.0051308119533991
504 => 0.005134350027921
505 => 0.0049465057144008
506 => 0.0050149463094411
507 => 0.0049011505459149
508 => 0.0047487907927272
509 => 0.0047482800294103
510 => 0.0047855698631551
511 => 0.0047633884108924
512 => 0.0047036986931906
513 => 0.0047121773358626
514 => 0.0046378955044088
515 => 0.0047211964951171
516 => 0.0047235852694653
517 => 0.004691509850607
518 => 0.0048198465201147
519 => 0.0048724261583248
520 => 0.0048513134305102
521 => 0.0048709448330591
522 => 0.0050358833885188
523 => 0.0050627755698324
524 => 0.0050747193003742
525 => 0.0050587162836893
526 => 0.004873959607071
527 => 0.004882154351325
528 => 0.0048220267552869
529 => 0.0047712252727246
530 => 0.0047732570656084
531 => 0.0047993756313759
601 => 0.0049134369399161
602 => 0.0051534722394575
603 => 0.0051625814036116
604 => 0.0051736219762994
605 => 0.0051287144186308
606 => 0.0051151698695305
607 => 0.0051330386259386
608 => 0.0052231832639899
609 => 0.0054550597470883
610 => 0.0053730991114517
611 => 0.0053064638388859
612 => 0.0053649209376666
613 => 0.0053559219255112
614 => 0.0052799612066338
615 => 0.00527782924225
616 => 0.0051320363366134
617 => 0.0050781400189434
618 => 0.0050331002218289
619 => 0.0049839179391736
620 => 0.0049547610334104
621 => 0.0049995592922393
622 => 0.0050098051840709
623 => 0.004911853008202
624 => 0.0048985024885768
625 => 0.0049784923498359
626 => 0.0049432917942184
627 => 0.0049794964386028
628 => 0.0049878962266576
629 => 0.0049865436673173
630 => 0.0049497902444945
701 => 0.0049732157801989
702 => 0.0049178074047697
703 => 0.0048575591185594
704 => 0.0048191244655581
705 => 0.0047855851331975
706 => 0.0048041947041086
707 => 0.004737854981784
708 => 0.0047166315694576
709 => 0.0049652797357935
710 => 0.0051489588096841
711 => 0.0051462880432048
712 => 0.0051300304391277
713 => 0.0051058749372036
714 => 0.0052214161385688
715 => 0.0051811638943324
716 => 0.0052104507652019
717 => 0.0052179055030043
718 => 0.0052404687491088
719 => 0.0052485331702146
720 => 0.0052241568885322
721 => 0.0051423471098942
722 => 0.0049384849197685
723 => 0.0048435865199495
724 => 0.0048122684673514
725 => 0.0048134068190819
726 => 0.004782005996529
727 => 0.004791254946057
728 => 0.0047787895893303
729 => 0.0047551832193835
730 => 0.0048027370772854
731 => 0.0048082172164138
801 => 0.0047971175777532
802 => 0.0047997319444705
803 => 0.0047078316770786
804 => 0.0047148186548115
805 => 0.0046759142749324
806 => 0.0046686201727043
807 => 0.0045702732881618
808 => 0.0043960375265859
809 => 0.0044925810519736
810 => 0.0043759700493793
811 => 0.0043318076957518
812 => 0.0045408654091692
813 => 0.0045198818131005
814 => 0.0044839670179807
815 => 0.0044308415506995
816 => 0.0044111367981135
817 => 0.0042914169591679
818 => 0.0042843432724025
819 => 0.0043436796572915
820 => 0.0043162979573056
821 => 0.0042778436802646
822 => 0.0041385661868698
823 => 0.0039819721711007
824 => 0.0039866987601219
825 => 0.0040365084030028
826 => 0.0041813366574246
827 => 0.0041247497528677
828 => 0.0040836953043518
829 => 0.004076007040237
830 => 0.0041722417621053
831 => 0.0043084340553466
901 => 0.0043723324322045
902 => 0.0043090110813608
903 => 0.0042362709229753
904 => 0.0042406982793708
905 => 0.0042701514979793
906 => 0.004273246614809
907 => 0.0042259002495091
908 => 0.0042392279740081
909 => 0.0042189819417814
910 => 0.0040947320793777
911 => 0.0040924847933674
912 => 0.0040619918733338
913 => 0.0040610685598339
914 => 0.0040091924960414
915 => 0.0040019346761145
916 => 0.0038989316028025
917 => 0.0039667285375785
918 => 0.0039212539132296
919 => 0.0038527129279564
920 => 0.0038408964362606
921 => 0.0038405412182514
922 => 0.0039109174846432
923 => 0.0039659061499307
924 => 0.0039220449637896
925 => 0.0039120586219186
926 => 0.0040186866266996
927 => 0.0040051172411554
928 => 0.0039933662407872
929 => 0.004296239529257
930 => 0.0040564916879358
1001 => 0.0039519479447913
1002 => 0.0038225552103318
1003 => 0.0038646861371266
1004 => 0.0038735637424344
1005 => 0.0035623975408525
1006 => 0.003436157451624
1007 => 0.0033928366102582
1008 => 0.0033679048535854
1009 => 0.0033792665681745
1010 => 0.0032656356813833
1011 => 0.0033419975165884
1012 => 0.0032436027736069
1013 => 0.0032271065747419
1014 => 0.0034030485639624
1015 => 0.0034275298639242
1016 => 0.0033230850325433
1017 => 0.0033901555223721
1018 => 0.0033658348304107
1019 => 0.0032452894690653
1020 => 0.0032406855229336
1021 => 0.0031802000979848
1022 => 0.0030855521202262
1023 => 0.0030422954546462
1024 => 0.0030197670076405
1025 => 0.0030290626839457
1026 => 0.0030243625055534
1027 => 0.0029936906622205
1028 => 0.0030261205797101
1029 => 0.0029432755414912
1030 => 0.0029102859797446
1031 => 0.0028953853600557
1101 => 0.0028218556202539
1102 => 0.0029388741351022
1103 => 0.0029619282566878
1104 => 0.0029850278020146
1105 => 0.0031860935733552
1106 => 0.003176048895625
1107 => 0.0032668478903496
1108 => 0.0032633196083832
1109 => 0.0032374222642416
1110 => 0.0031281656292143
1111 => 0.0031717133766239
1112 => 0.0030376801789196
1113 => 0.0031381069640112
1114 => 0.0030922763732182
1115 => 0.0031226115951627
1116 => 0.0030680661308899
1117 => 0.0030982538429455
1118 => 0.0029673952441672
1119 => 0.0028452013258582
1120 => 0.0028943757256486
1121 => 0.0029478339219955
1122 => 0.0030637449125706
1123 => 0.002994709282829
1124 => 0.0030195371058102
1125 => 0.0029363680549504
1126 => 0.0027647665469616
1127 => 0.0027657377928609
1128 => 0.0027393406393989
1129 => 0.0027165296447602
1130 => 0.0030026388553624
1201 => 0.0029670566523067
1202 => 0.0029103610686211
1203 => 0.0029862503603772
1204 => 0.0030063166936425
1205 => 0.0030068879539407
1206 => 0.0030622548222198
1207 => 0.0030918041297454
1208 => 0.0030970123232709
1209 => 0.0031841332867885
1210 => 0.0032133350846063
1211 => 0.0033336131570247
1212 => 0.0030892970774514
1213 => 0.0030842655485693
1214 => 0.0029873182783417
1215 => 0.0029258327868877
1216 => 0.0029915282425447
1217 => 0.0030497254479328
1218 => 0.0029891266277372
1219 => 0.0029970395543439
1220 => 0.0029156905893368
1221 => 0.0029447690165022
1222 => 0.0029698152752643
1223 => 0.0029559862033269
1224 => 0.002935283413302
1225 => 0.0030449539407632
1226 => 0.0030387658998016
1227 => 0.0031408936162879
1228 => 0.0032205094745121
1229 => 0.0033631953254868
1230 => 0.003214295201613
1231 => 0.0032088686892747
]
'min_raw' => 0.0027165296447602
'max_raw' => 0.0078542860944896
'avg_raw' => 0.0052854078696249
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002716'
'max' => '$0.007854'
'avg' => '$0.005285'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00047766947629218
'max_diff' => -0.0026531818543019
'year' => 2030
]
5 => [
'items' => [
101 => 0.003261913717822
102 => 0.0032133269636888
103 => 0.0032440321151432
104 => 0.0033582482508877
105 => 0.0033606614578566
106 => 0.0033202371318867
107 => 0.0033177773079777
108 => 0.0033255412419739
109 => 0.0033710148458915
110 => 0.00335512497142
111 => 0.0033735131364409
112 => 0.003396507818369
113 => 0.003491623572367
114 => 0.0035145556586431
115 => 0.0034588425779158
116 => 0.0034638728453125
117 => 0.0034430346237623
118 => 0.0034229051628469
119 => 0.003468153251313
120 => 0.0035508450223383
121 => 0.0035503306011224
122 => 0.003569513484702
123 => 0.0035814642622524
124 => 0.003530162776502
125 => 0.0034967673956864
126 => 0.0035095733096944
127 => 0.0035300502450697
128 => 0.0035029329155335
129 => 0.0033355521956666
130 => 0.0033863248137524
131 => 0.0033778737674487
201 => 0.00336583844983
202 => 0.0034168907099283
203 => 0.003411966594899
204 => 0.0032644702323998
205 => 0.0032739124709762
206 => 0.0032650444462013
207 => 0.0032936988484763
208 => 0.0032117795319302
209 => 0.0032369773619648
210 => 0.0032527812047474
211 => 0.0032620897895573
212 => 0.0032957187808468
213 => 0.0032917728068633
214 => 0.0032954734935636
215 => 0.0033453364099214
216 => 0.0035975259299725
217 => 0.0036112520491241
218 => 0.0035436596183295
219 => 0.0035706614612302
220 => 0.0035188238275148
221 => 0.0035536227783099
222 => 0.0035774313366464
223 => 0.0034698450396463
224 => 0.0034634744773672
225 => 0.0034114228912978
226 => 0.003439392465299
227 => 0.0033948908619796
228 => 0.0034058099988341
301 => 0.0033752791402755
302 => 0.0034302286070478
303 => 0.003491670649183
304 => 0.0035071933354462
305 => 0.0034663598308245
306 => 0.0034367936824193
307 => 0.0033848852655145
308 => 0.0034712101196816
309 => 0.0034964541377424
310 => 0.0034710775236015
311 => 0.0034651972076151
312 => 0.0034540540194463
313 => 0.0034675612876623
314 => 0.0034963166533986
315 => 0.0034827561539456
316 => 0.0034917131027396
317 => 0.0034575784503025
318 => 0.0035301797594285
319 => 0.0036454881107771
320 => 0.0036458588459815
321 => 0.0036322982734323
322 => 0.0036267495793118
323 => 0.0036406635496716
324 => 0.0036482113078109
325 => 0.0036932065365686
326 => 0.0037414882097146
327 => 0.0039667977113428
328 => 0.0039035317048762
329 => 0.004103439698443
330 => 0.0042615409665501
331 => 0.0043089486239249
401 => 0.0042653358098427
402 => 0.0041161387287856
403 => 0.0041088184082067
404 => 0.0043317818366889
405 => 0.0042687844557707
406 => 0.0042612911177665
407 => 0.004181574661596
408 => 0.0042286969602679
409 => 0.004218390622306
410 => 0.0042021215636297
411 => 0.0042920276269279
412 => 0.0044603237514526
413 => 0.0044340932221744
414 => 0.0044145133488674
415 => 0.0043287200436517
416 => 0.00438038677602
417 => 0.0043619892422348
418 => 0.0044410367227397
419 => 0.0043942107464047
420 => 0.0042683071886506
421 => 0.0042883577452065
422 => 0.0042853271439192
423 => 0.0043476967036611
424 => 0.0043289749099343
425 => 0.00428167141322
426 => 0.0044597485335951
427 => 0.004448185195915
428 => 0.0044645793649984
429 => 0.0044717965852355
430 => 0.004580188990337
501 => 0.004624593890537
502 => 0.0046346745802996
503 => 0.0046768558010914
504 => 0.0046336250731001
505 => 0.0048065788080519
506 => 0.0049215829496646
507 => 0.0050551661782067
508 => 0.0052503671788938
509 => 0.0053237645608623
510 => 0.0053105059807642
511 => 0.0054585051516869
512 => 0.0057244563719982
513 => 0.0053642623262255
514 => 0.0057435475310436
515 => 0.0056234702142564
516 => 0.0053387690562528
517 => 0.0053204376580835
518 => 0.005513240587732
519 => 0.005940858929098
520 => 0.0058337453845929
521 => 0.0059410341284845
522 => 0.0058158761097578
523 => 0.0058096609592134
524 => 0.0059349554828728
525 => 0.006227712966852
526 => 0.0060886348600637
527 => 0.0058892322906318
528 => 0.0060364680448527
529 => 0.0059089188085207
530 => 0.0056215146802815
531 => 0.0058336634768841
601 => 0.0056918056182458
602 => 0.005733207282975
603 => 0.0060313714020688
604 => 0.005995495506415
605 => 0.0060419222374095
606 => 0.0059599802724033
607 => 0.0058834335560258
608 => 0.0057405534254732
609 => 0.0056982536627219
610 => 0.0057099437953603
611 => 0.0056982478696727
612 => 0.0056183077497648
613 => 0.0056010446884818
614 => 0.0055722721633648
615 => 0.0055811899720123
616 => 0.0055270892070933
617 => 0.005629188528284
618 => 0.0056481390619931
619 => 0.0057224384335789
620 => 0.0057301524408156
621 => 0.0059370751330967
622 => 0.0058231055913829
623 => 0.0058995661996213
624 => 0.0058927268431453
625 => 0.0053449393936362
626 => 0.0054204196710089
627 => 0.0055378432955851
628 => 0.0054849441118775
629 => 0.0054101570426176
630 => 0.0053497624743612
701 => 0.0052582585277912
702 => 0.0053870485754109
703 => 0.0055563937927361
704 => 0.0057344473149892
705 => 0.0059483669554473
706 => 0.0059006225819962
707 => 0.0057304482361102
708 => 0.0057380821329542
709 => 0.0057852718794162
710 => 0.0057241568701074
711 => 0.0057061328607555
712 => 0.0057827956573087
713 => 0.0057833235918555
714 => 0.00571300338765
715 => 0.0056348553491373
716 => 0.0056345279060025
717 => 0.0056206222173696
718 => 0.0058183499008739
719 => 0.0059270801342777
720 => 0.0059395458803099
721 => 0.0059262410902478
722 => 0.0059313615758945
723 => 0.0058680938487841
724 => 0.0060127051114968
725 => 0.0061454147067337
726 => 0.0061098457002832
727 => 0.0060565227031818
728 => 0.006014048367607
729 => 0.0060998400966756
730 => 0.0060960199260289
731 => 0.0061442556041926
801 => 0.0061420673552083
802 => 0.0061258475108775
803 => 0.006109846279545
804 => 0.0061732893530813
805 => 0.0061550187667674
806 => 0.0061367198011865
807 => 0.0061000184242826
808 => 0.0061050067509491
809 => 0.006051692960815
810 => 0.0060270275620258
811 => 0.0056561191448043
812 => 0.0055570002959405
813 => 0.0055881851035432
814 => 0.0055984519519192
815 => 0.0055553153018695
816 => 0.0056171621771446
817 => 0.0056075234071451
818 => 0.0056450222227216
819 => 0.0056215945907587
820 => 0.0056225560689463
821 => 0.0056914517392515
822 => 0.0057114524454442
823 => 0.0057012799248491
824 => 0.0057084044095803
825 => 0.005872585153154
826 => 0.0058492439016225
827 => 0.0058368443269547
828 => 0.0058402790938779
829 => 0.0058822307939358
830 => 0.0058939749794742
831 => 0.005844214040099
901 => 0.0058676815867729
902 => 0.0059676034220352
903 => 0.0060025704092909
904 => 0.006114168247505
905 => 0.0060667595023383
906 => 0.0061537803058943
907 => 0.0064212525884475
908 => 0.0066349279554251
909 => 0.0064384232574445
910 => 0.006830810857505
911 => 0.0071363408888103
912 => 0.0071246141373219
913 => 0.0070713379093269
914 => 0.006723500091622
915 => 0.0064034145458002
916 => 0.0066711796964303
917 => 0.0066718622848656
918 => 0.0066488610209573
919 => 0.0065060021462689
920 => 0.0066438898417828
921 => 0.0066548348663181
922 => 0.0066487085630952
923 => 0.0065391789988219
924 => 0.0063719475986238
925 => 0.0064046242139271
926 => 0.0064581491763788
927 => 0.0063568152559808
928 => 0.0063244329283749
929 => 0.0063846378363842
930 => 0.0065786305941809
1001 => 0.0065419573870429
1002 => 0.0065409997013965
1003 => 0.0066979032333927
1004 => 0.0065855941663849
1005 => 0.0064050363706911
1006 => 0.0063594431460136
1007 => 0.006197617913685
1008 => 0.0063093911780561
1009 => 0.0063134136988547
1010 => 0.0062521966242538
1011 => 0.0064100037989084
1012 => 0.0064085495780125
1013 => 0.0065583640038489
1014 => 0.0068447529183192
1015 => 0.0067600536239677
1016 => 0.006661557559894
1017 => 0.0066722668130585
1018 => 0.0067897208875832
1019 => 0.0067187054729098
1020 => 0.0067442431111634
1021 => 0.0067896822333091
1022 => 0.0068170967838895
1023 => 0.0066683222811159
1024 => 0.0066336358278123
1025 => 0.0065626795176439
1026 => 0.0065441683407832
1027 => 0.0066019607748634
1028 => 0.0065867345103201
1029 => 0.0063130756215576
1030 => 0.0062844767450582
1031 => 0.0062853538317706
1101 => 0.0062134405970105
1102 => 0.0061037556528474
1103 => 0.0063920011371604
1104 => 0.0063688509907771
1105 => 0.0063432950208489
1106 => 0.0063464254813448
1107 => 0.0064715430765391
1108 => 0.0063989685527364
1109 => 0.0065919198189965
1110 => 0.0065522548392994
1111 => 0.0065115726025427
1112 => 0.0065059490782117
1113 => 0.0064902898879057
1114 => 0.0064365886978185
1115 => 0.0063717412838469
1116 => 0.006328923404156
1117 => 0.0058380972947086
1118 => 0.0059291917656179
1119 => 0.0060339876508768
1120 => 0.006070162770525
1121 => 0.0060082827251246
1122 => 0.0064390320991742
1123 => 0.0065177341606173
1124 => 0.0062793404828977
1125 => 0.0062347467593461
1126 => 0.0064419556562662
1127 => 0.0063169833611659
1128 => 0.0063732583779974
1129 => 0.0062516225723962
1130 => 0.006498777138681
1201 => 0.0064968942349831
1202 => 0.0064007455264592
1203 => 0.0064820097565057
1204 => 0.0064678880967206
1205 => 0.006359336441601
1206 => 0.0065022184197684
1207 => 0.006502289287447
1208 => 0.0064097482459459
1209 => 0.0063016805693116
1210 => 0.006282360621174
1211 => 0.0062678056355221
1212 => 0.0063696787437639
1213 => 0.0064610178540645
1214 => 0.0066309772934482
1215 => 0.006673709134646
1216 => 0.0068404943556605
1217 => 0.0067411818771714
1218 => 0.0067852058125737
1219 => 0.0068330000220188
1220 => 0.0068559143236006
1221 => 0.0068185766988223
1222 => 0.0070776627985936
1223 => 0.0070995376036073
1224 => 0.0071068720365121
1225 => 0.0070195096614007
1226 => 0.0070971078979181
1227 => 0.0070608022528351
1228 => 0.0071552594553424
1229 => 0.0071700715507856
1230 => 0.0071575262329008
1231 => 0.0071622278257875
]
'min_raw' => 0.0032117795319302
'max_raw' => 0.0071700715507856
'avg_raw' => 0.0051909255413579
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003211'
'max' => '$0.00717'
'avg' => '$0.00519'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00049524988717
'max_diff' => -0.00068421454370399
'year' => 2031
]
6 => [
'items' => [
101 => 0.0069411435455526
102 => 0.0069296791593099
103 => 0.0067733614394154
104 => 0.0068370620657147
105 => 0.0067179767980987
106 => 0.0067557399631739
107 => 0.0067723856065184
108 => 0.0067636908670672
109 => 0.00684066360355
110 => 0.0067752210530484
111 => 0.0066025074025234
112 => 0.0064297466962798
113 => 0.0064275778263407
114 => 0.0063820929818665
115 => 0.0063492157702765
116 => 0.0063555490876105
117 => 0.006377868523963
118 => 0.0063479185240611
119 => 0.0063543098750437
120 => 0.0064604488867036
121 => 0.0064817343085432
122 => 0.0064093981283811
123 => 0.0061189579269692
124 => 0.0060476831730287
125 => 0.0060989140527214
126 => 0.0060744289919195
127 => 0.0049025382862237
128 => 0.0051778566246264
129 => 0.0050142718168748
130 => 0.0050896592224619
131 => 0.0049226814938281
201 => 0.0050023720179847
202 => 0.004987656088005
203 => 0.0054303598288946
204 => 0.0054234476188997
205 => 0.0054267561280383
206 => 0.0052688323665806
207 => 0.00552040920668
208 => 0.0056443450045235
209 => 0.0056214077867872
210 => 0.0056271805903285
211 => 0.0055279846992759
212 => 0.0054277165610951
213 => 0.0053165037646968
214 => 0.0055231233940878
215 => 0.0055001508184142
216 => 0.0055528416417376
217 => 0.0056868492408738
218 => 0.0057065823688919
219 => 0.005733103893062
220 => 0.0057235978145777
221 => 0.0059500711705057
222 => 0.0059226437527835
223 => 0.0059887359380874
224 => 0.0058527792984911
225 => 0.0056989314556653
226 => 0.0057281729009216
227 => 0.0057253567145985
228 => 0.0056895034304382
229 => 0.0056571366886068
301 => 0.0056032551827306
302 => 0.0057737442402854
303 => 0.0057668226958983
304 => 0.005878874454111
305 => 0.0058590682174342
306 => 0.0057267973214982
307 => 0.0057315214024231
308 => 0.0057632931169588
309 => 0.0058732553837299
310 => 0.0059058996713096
311 => 0.0058907775366527
312 => 0.0059265705077155
313 => 0.0059548598126466
314 => 0.0059301232088651
315 => 0.0062803413535304
316 => 0.0061349063627415
317 => 0.0062057903653218
318 => 0.0062226957822645
319 => 0.0061793929122485
320 => 0.0061887837541955
321 => 0.0062030083208938
322 => 0.0062893771044304
323 => 0.0065160337834393
324 => 0.0066164184836681
325 => 0.0069184308072004
326 => 0.0066080829317366
327 => 0.0065896681731537
328 => 0.0066440697125203
329 => 0.006821382917685
330 => 0.0069650786162884
331 => 0.0070127507695189
401 => 0.0070190514315498
402 => 0.007108487560195
403 => 0.0071597506812494
404 => 0.0070976276617738
405 => 0.0070449849073195
406 => 0.0068564250951232
407 => 0.0068782514068163
408 => 0.0070286130502694
409 => 0.0072410077279036
410 => 0.0074232644572135
411 => 0.0073594445028975
412 => 0.0078463457044625
413 => 0.0078946199697846
414 => 0.0078879500272109
415 => 0.0079979259877886
416 => 0.0077796461022568
417 => 0.0076863272222184
418 => 0.0070563668683531
419 => 0.0072333600320403
420 => 0.0074906299899038
421 => 0.0074565793462677
422 => 0.0072697430260216
423 => 0.0074231227251106
424 => 0.0073724105999651
425 => 0.0073324118428149
426 => 0.0075156539034607
427 => 0.0073141717306117
428 => 0.0074886200511038
429 => 0.0072648882756358
430 => 0.007359736027073
501 => 0.0073058958560877
502 => 0.0073407370451184
503 => 0.0071370561659677
504 => 0.0072469574242835
505 => 0.0071324839122999
506 => 0.0071324296369503
507 => 0.0071299026278286
508 => 0.0072645802070241
509 => 0.0072689720380466
510 => 0.0071694451035346
511 => 0.0071551017173685
512 => 0.0072081367336976
513 => 0.007146046619469
514 => 0.007175098193126
515 => 0.0071469265620398
516 => 0.0071405845344969
517 => 0.0070900501800284
518 => 0.0070682785906524
519 => 0.0070768157918315
520 => 0.0070476739229784
521 => 0.0070301148928869
522 => 0.0071264096947891
523 => 0.007074963266654
524 => 0.0071185247918317
525 => 0.0070688809359889
526 => 0.0068967937028395
527 => 0.0067978245152657
528 => 0.0064727676843414
529 => 0.0065649533983598
530 => 0.006626072622127
531 => 0.0066058727190365
601 => 0.0066492699271996
602 => 0.0066519341633233
603 => 0.0066378252885673
604 => 0.0066214890190587
605 => 0.0066135374265142
606 => 0.006672802082723
607 => 0.0067072072104087
608 => 0.0066322067539018
609 => 0.0066146351963101
610 => 0.0066904647987273
611 => 0.0067367208123965
612 => 0.0070782492283208
613 => 0.0070529477001469
614 => 0.0071164495706893
615 => 0.0071093002345819
616 => 0.0071758603115516
617 => 0.0072846579070098
618 => 0.0070634419751572
619 => 0.0071018374118554
620 => 0.0070924237374571
621 => 0.0071951997661396
622 => 0.0071955206216828
623 => 0.0071339012584442
624 => 0.0071673061149159
625 => 0.0071486604404477
626 => 0.0071823556943257
627 => 0.0070526097828125
628 => 0.0072106262978299
629 => 0.0073002114794855
630 => 0.0073014553698197
701 => 0.0073439180349324
702 => 0.0073870625619587
703 => 0.0074698747244893
704 => 0.0073847529756921
705 => 0.0072316272360412
706 => 0.0072426824198509
707 => 0.0071529048547201
708 => 0.0071544140318096
709 => 0.0071463579262295
710 => 0.0071705349055105
711 => 0.0070579152701752
712 => 0.0070843468734875
713 => 0.0070473424740671
714 => 0.0071017569715179
715 => 0.0070432159672995
716 => 0.0070924191978983
717 => 0.0071136536811118
718 => 0.0071920093813154
719 => 0.0070316427666703
720 => 0.0067046443835436
721 => 0.006773383408149
722 => 0.0066717129914237
723 => 0.0066811229755782
724 => 0.0067001326411582
725 => 0.006638516095438
726 => 0.0066502705906009
727 => 0.0066498506373185
728 => 0.0066462317068085
729 => 0.0066302028635228
730 => 0.0066069578695485
731 => 0.0066995587711103
801 => 0.0067152934687326
802 => 0.0067502697524304
803 => 0.0068543354480752
804 => 0.0068439368310422
805 => 0.0068608974068575
806 => 0.0068238725650823
807 => 0.0066828404517983
808 => 0.0066904991740756
809 => 0.0065949947845552
810 => 0.0067478274904672
811 => 0.0067116346884141
812 => 0.0066883009534824
813 => 0.0066819341277207
814 => 0.0067862577820964
815 => 0.0068174730545586
816 => 0.0067980217915392
817 => 0.0067581266836024
818 => 0.0068347370847709
819 => 0.0068552347961903
820 => 0.0068598234778506
821 => 0.0069955624201338
822 => 0.0068674097768526
823 => 0.0068982573918181
824 => 0.0071389216779389
825 => 0.0069206723798287
826 => 0.0070362839005778
827 => 0.0070306253182504
828 => 0.0070897682601851
829 => 0.0070257738707587
830 => 0.0070265671579122
831 => 0.0070790820836603
901 => 0.0070053343415639
902 => 0.006987073363504
903 => 0.0069618459531018
904 => 0.0070169290807886
905 => 0.0070499489246412
906 => 0.0073160646156904
907 => 0.0074879874884581
908 => 0.007480523863137
909 => 0.0075487274272513
910 => 0.0075180010969447
911 => 0.0074187776711885
912 => 0.0075881399599467
913 => 0.0075345466453644
914 => 0.0075389648131027
915 => 0.0075388003686788
916 => 0.0075744352376671
917 => 0.0075491846671011
918 => 0.0074994132005977
919 => 0.0075324538227998
920 => 0.0076305726585014
921 => 0.0079351365351726
922 => 0.0081055745154925
923 => 0.0079248759547491
924 => 0.0080495194022998
925 => 0.0079747777487708
926 => 0.007961194966953
927 => 0.0080394802630933
928 => 0.0081179025872811
929 => 0.0081129074242594
930 => 0.0080559768439299
1001 => 0.0080238182036618
1002 => 0.0082673342017069
1003 => 0.0084467526408798
1004 => 0.0084345175061646
1005 => 0.0084885194117182
1006 => 0.0086470706766394
1007 => 0.0086615666172747
1008 => 0.00865974046194
1009 => 0.0086238107605805
1010 => 0.008779925071379
1011 => 0.008910158376017
1012 => 0.0086154940728247
1013 => 0.0087276983820414
1014 => 0.0087780705114458
1015 => 0.0088520317421488
1016 => 0.0089768167356863
1017 => 0.009112366336253
1018 => 0.0091315345359988
1019 => 0.0091179337809963
1020 => 0.0090285351756538
1021 => 0.0091768551660369
1022 => 0.0092637375378715
1023 => 0.0093154740020313
1024 => 0.0094466690670138
1025 => 0.0087783815925682
1026 => 0.0083053345021131
1027 => 0.0082314613680557
1028 => 0.0083816852910789
1029 => 0.0084212981415668
1030 => 0.0084053302512054
1031 => 0.0078728727433383
1101 => 0.0082286580894714
1102 => 0.0086114532066291
1103 => 0.0086261579260614
1104 => 0.0088177931655789
1105 => 0.0088801974549597
1106 => 0.0090344889409764
1107 => 0.009024837966517
1108 => 0.0090624054880483
1109 => 0.0090537693654271
1110 => 0.0093395618533675
1111 => 0.0096548334081609
1112 => 0.0096439165567205
1113 => 0.0095985925405952
1114 => 0.0096659064334344
1115 => 0.0099913004645343
1116 => 0.0099613433964837
1117 => 0.0099904441363579
1118 => 0.010374102037429
1119 => 0.010872911883521
1120 => 0.010641164630321
1121 => 0.011143989486288
1122 => 0.011460491079519
1123 => 0.012007847858137
1124 => 0.011939316093665
1125 => 0.012152398070891
1126 => 0.011816629932249
1127 => 0.011045638415991
1128 => 0.010923626057306
1129 => 0.011167897889238
1130 => 0.011768416352346
1201 => 0.011148985425771
1202 => 0.011274295495469
1203 => 0.011238206186966
1204 => 0.011236283141086
1205 => 0.011309677980749
1206 => 0.0112032149378
1207 => 0.010769465348489
1208 => 0.010968250229168
1209 => 0.010891489840304
1210 => 0.010976661214615
1211 => 0.011436295994423
1212 => 0.011233080501945
1213 => 0.011019009488506
1214 => 0.011287502045519
1215 => 0.01162938533465
1216 => 0.01160799089284
1217 => 0.011566476733545
1218 => 0.011800489875881
1219 => 0.012187011027604
1220 => 0.012291486141747
1221 => 0.012368607535108
1222 => 0.012379241272276
1223 => 0.012488775373935
1224 => 0.011899782903165
1225 => 0.012834529080676
1226 => 0.01299593392369
1227 => 0.012965596502749
1228 => 0.013144991192805
1229 => 0.013092208724187
1230 => 0.013015735208474
1231 => 0.013300113950558
]
'min_raw' => 0.0049025382862237
'max_raw' => 0.013300113950558
'avg_raw' => 0.0091013261183907
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0049025'
'max' => '$0.01330011'
'avg' => '$0.0091013'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0016907587542935
'max_diff' => 0.006130042399772
'year' => 2032
]
7 => [
'items' => [
101 => 0.01297409667094
102 => 0.012511356186956
103 => 0.012257487605474
104 => 0.012591802232564
105 => 0.012795956509356
106 => 0.012930889499664
107 => 0.012971720141003
108 => 0.011945504712024
109 => 0.011392431512322
110 => 0.011746945092334
111 => 0.012179476127169
112 => 0.011897380171428
113 => 0.011908437798814
114 => 0.01150624309944
115 => 0.012215061433683
116 => 0.012111792564484
117 => 0.012647551640566
118 => 0.012519688437324
119 => 0.012956579165821
120 => 0.012841531195205
121 => 0.013319088888987
122 => 0.013509599582395
123 => 0.013829496687249
124 => 0.014064814299795
125 => 0.01420299730279
126 => 0.014194701313602
127 => 0.014742251213969
128 => 0.014419380167659
129 => 0.01401377803863
130 => 0.014006441975775
131 => 0.014216509065825
201 => 0.014656752057479
202 => 0.01477090065994
203 => 0.014834694156277
204 => 0.01473699219597
205 => 0.014386538815576
206 => 0.014235214822761
207 => 0.014364147248918
208 => 0.014206473971018
209 => 0.014478662283981
210 => 0.014852434973965
211 => 0.014775252391541
212 => 0.015033262192726
213 => 0.01530027519353
214 => 0.015682115776985
215 => 0.015781943045015
216 => 0.015946953722979
217 => 0.016116803913788
218 => 0.016171355217485
219 => 0.016275510582517
220 => 0.016274961632331
221 => 0.016588840835322
222 => 0.01693505931625
223 => 0.017065748777824
224 => 0.017366261988455
225 => 0.016851643646488
226 => 0.017241987570379
227 => 0.017594087560671
228 => 0.017174299436867
301 => 0.017752879567443
302 => 0.017775344522822
303 => 0.018114538677429
304 => 0.017770700419998
305 => 0.017566530360306
306 => 0.018155961672485
307 => 0.018441168917536
308 => 0.018355262174233
309 => 0.017701507615958
310 => 0.017320994422191
311 => 0.016325117998587
312 => 0.017504776641006
313 => 0.018079353954613
314 => 0.017700019599524
315 => 0.017891333783669
316 => 0.018935081938534
317 => 0.019332473658218
318 => 0.019249818958501
319 => 0.019263786242141
320 => 0.019478211600913
321 => 0.020429091727908
322 => 0.019859302314584
323 => 0.020294884971468
324 => 0.020525916442069
325 => 0.020740511347488
326 => 0.020213534083197
327 => 0.019527944405188
328 => 0.019310789375065
329 => 0.017662302273773
330 => 0.017576491361134
331 => 0.017528323095533
401 => 0.017224628994456
402 => 0.016986008619824
403 => 0.01679624883851
404 => 0.016298262505276
405 => 0.0164663182742
406 => 0.01567263199685
407 => 0.016180404350584
408 => 0.014913661887708
409 => 0.015968642652247
410 => 0.015394464586197
411 => 0.01578000971508
412 => 0.015778664584446
413 => 0.015068753764979
414 => 0.014659292019771
415 => 0.014920216980307
416 => 0.01519994925025
417 => 0.015245334869916
418 => 0.015608015059658
419 => 0.01570923130483
420 => 0.015402541356624
421 => 0.014887411465769
422 => 0.015007064390552
423 => 0.014656867257069
424 => 0.014043160250778
425 => 0.014483935336992
426 => 0.014634435330939
427 => 0.014700904702061
428 => 0.014097394346099
429 => 0.013907758289409
430 => 0.013806797644028
501 => 0.014809505857372
502 => 0.014864436476785
503 => 0.014583403661462
504 => 0.015853698635347
505 => 0.015566191759863
506 => 0.015887407380673
507 => 0.014996207141771
508 => 0.015030252191057
509 => 0.014608343715843
510 => 0.014844584270028
511 => 0.014677617060719
512 => 0.014825498367825
513 => 0.014914137813567
514 => 0.015335977057752
515 => 0.015973459378806
516 => 0.01527296834177
517 => 0.014967754365717
518 => 0.015157107399871
519 => 0.015661379482476
520 => 0.016425377500836
521 => 0.015973075297074
522 => 0.016173799334514
523 => 0.016217648607104
524 => 0.015884137707188
525 => 0.016437674523431
526 => 0.016734319400181
527 => 0.017038615661718
528 => 0.017302827579424
529 => 0.016917073043242
530 => 0.017329885692697
531 => 0.016997231568479
601 => 0.016698806429903
602 => 0.016699259017654
603 => 0.01651205256893
604 => 0.016149316484997
605 => 0.01608242238575
606 => 0.016430413937828
607 => 0.016709470207671
608 => 0.016732454618645
609 => 0.016886954508059
610 => 0.016978385951139
611 => 0.017874538388341
612 => 0.018234978311946
613 => 0.018675717427751
614 => 0.018847410152053
615 => 0.019364143696952
616 => 0.018946839392399
617 => 0.018856552981142
618 => 0.01760312642347
619 => 0.017808374952071
620 => 0.018136997649897
621 => 0.017608545290718
622 => 0.017943726679652
623 => 0.018009898585939
624 => 0.017590588681768
625 => 0.017814560218897
626 => 0.017219758219215
627 => 0.015986424436992
628 => 0.016439047576498
629 => 0.016772330558475
630 => 0.016296694649698
701 => 0.017149253606529
702 => 0.016651206264338
703 => 0.016493349167352
704 => 0.01587749235189
705 => 0.016168153062285
706 => 0.016561275834955
707 => 0.016318371666873
708 => 0.016822434287888
709 => 0.017536321387836
710 => 0.018045079847971
711 => 0.018084136005261
712 => 0.017757038399564
713 => 0.018281214400203
714 => 0.018285032450111
715 => 0.017693759780069
716 => 0.017331608561888
717 => 0.017249327043145
718 => 0.017454882409208
719 => 0.017704464571222
720 => 0.018097986078249
721 => 0.018335782883212
722 => 0.018955830832874
723 => 0.019123598029885
724 => 0.019307923315563
725 => 0.019554238741043
726 => 0.01985000356331
727 => 0.01920288697009
728 => 0.019228598118715
729 => 0.018626012107048
730 => 0.017982062534006
731 => 0.018470739990497
801 => 0.019109620758822
802 => 0.018963060804668
803 => 0.018946569815877
804 => 0.018974303084804
805 => 0.018863801665572
806 => 0.018364007841761
807 => 0.018113014512318
808 => 0.018436859942527
809 => 0.018608969375981
810 => 0.018875896097749
811 => 0.018842991745152
812 => 0.019530566314588
813 => 0.019797737001095
814 => 0.019729383306608
815 => 0.019741962031417
816 => 0.020225661797603
817 => 0.020763635418046
818 => 0.021267518705463
819 => 0.021780090427714
820 => 0.021162165210525
821 => 0.020848420893566
822 => 0.021172124942991
823 => 0.021000363017902
824 => 0.021987357987362
825 => 0.022055695377594
826 => 0.023042618976084
827 => 0.023979326991726
828 => 0.023390997469968
829 => 0.023945765710042
830 => 0.0245457927926
831 => 0.02570334238574
901 => 0.025313520405856
902 => 0.025014922878555
903 => 0.024732749658067
904 => 0.025319907336164
905 => 0.026075276308963
906 => 0.02623797555087
907 => 0.026501610478653
908 => 0.026224430587835
909 => 0.026558263235962
910 => 0.027736839177352
911 => 0.027418377554411
912 => 0.026966110854574
913 => 0.027896483368664
914 => 0.028233181564782
915 => 0.03059630583535
916 => 0.033579847842737
917 => 0.032344641860685
918 => 0.031577909647778
919 => 0.031758109904943
920 => 0.03284759844677
921 => 0.033197507587767
922 => 0.032246333921623
923 => 0.032582304540699
924 => 0.034433535683714
925 => 0.035426661797336
926 => 0.034077863140406
927 => 0.030356581140066
928 => 0.026925389186611
929 => 0.027835495801254
930 => 0.02773231795505
1001 => 0.029721234872431
1002 => 0.027410782350026
1003 => 0.027449684445017
1004 => 0.02947973005795
1005 => 0.028938148692212
1006 => 0.028060856240217
1007 => 0.02693179439238
1008 => 0.024844619141073
1009 => 0.022995949815802
1010 => 0.026621616085777
1011 => 0.026465270763369
1012 => 0.026238859567445
1013 => 0.026742713183725
1014 => 0.02918928332304
1015 => 0.029132881962554
1016 => 0.028774085283369
1017 => 0.029046229402242
1018 => 0.028013148060381
1019 => 0.028279396645004
1020 => 0.026924845668275
1021 => 0.027537159280802
1022 => 0.028058973964627
1023 => 0.028163735988004
1024 => 0.028399770175952
1025 => 0.026382883882847
1026 => 0.027288406615781
1027 => 0.027820316385373
1028 => 0.025417128695311
1029 => 0.027772813091578
1030 => 0.026347774379651
1031 => 0.02586409483746
1101 => 0.026515305621086
1102 => 0.026261528145384
1103 => 0.026043345174088
1104 => 0.025921595327246
1105 => 0.02639977265523
1106 => 0.026377465111334
1107 => 0.025595074192532
1108 => 0.024574477133289
1109 => 0.024917023006328
1110 => 0.024792572879268
1111 => 0.024341549564419
1112 => 0.024645484821865
1113 => 0.023307107766187
1114 => 0.021004499604678
1115 => 0.022525673086966
1116 => 0.022467109562616
1117 => 0.022437579177995
1118 => 0.023580699007787
1119 => 0.023470814412414
1120 => 0.023271372795819
1121 => 0.024337886662726
1122 => 0.023948594754669
1123 => 0.025148300686591
1124 => 0.02593850460547
1125 => 0.025738083331223
1126 => 0.026481273936315
1127 => 0.024924914571397
1128 => 0.025441874722123
1129 => 0.025548419492712
1130 => 0.024324726047159
1201 => 0.023488792891183
1202 => 0.023433045680015
1203 => 0.021983652786237
1204 => 0.022757906771003
1205 => 0.023439218236789
1206 => 0.023112922916583
1207 => 0.023009627566001
1208 => 0.023537341110096
1209 => 0.023578348972033
1210 => 0.02264336537405
1211 => 0.022837778071151
1212 => 0.023648511336481
1213 => 0.022817349672992
1214 => 0.021202538330319
1215 => 0.020802042790823
1216 => 0.020748609303257
1217 => 0.019662433636441
1218 => 0.020828805817816
1219 => 0.020319653103815
1220 => 0.021928060426759
1221 => 0.021009346789954
1222 => 0.020969742881281
1223 => 0.020909875764692
1224 => 0.019974959498912
1225 => 0.020179646744089
1226 => 0.020860058321807
1227 => 0.021102836838122
1228 => 0.021077513049845
1229 => 0.020856723933879
1230 => 0.020957800060545
1231 => 0.020632198639298
]
'min_raw' => 0.011392431512322
'max_raw' => 0.035426661797336
'avg_raw' => 0.023409546654829
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.011392'
'max' => '$0.035426'
'avg' => '$0.0234095'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0064898932260985
'max_diff' => 0.022126547846778
'year' => 2033
]
8 => [
'items' => [
101 => 0.020517222000648
102 => 0.020154324102252
103 => 0.019620964444714
104 => 0.019695131376379
105 => 0.01863840633365
106 => 0.018062646445728
107 => 0.017903283697145
108 => 0.017690177169512
109 => 0.017927354646496
110 => 0.018635412764375
111 => 0.017781344451304
112 => 0.01631710423447
113 => 0.016405107566445
114 => 0.016602824924971
115 => 0.01623437993539
116 => 0.015885677673996
117 => 0.016188845999169
118 => 0.015568428116559
119 => 0.016677799462003
120 => 0.016647794076086
121 => 0.017061299110604
122 => 0.017319872294665
123 => 0.016723944819466
124 => 0.016574070671013
125 => 0.016659445797372
126 => 0.015248385134097
127 => 0.016945985350341
128 => 0.016960666267505
129 => 0.0168349593417
130 => 0.017738879049323
131 => 0.019646431572035
201 => 0.018928733581869
202 => 0.018650819227539
203 => 0.018122503836805
204 => 0.018826452726694
205 => 0.018772400435264
206 => 0.018527955474695
207 => 0.018380114399827
208 => 0.018652516113325
209 => 0.018346360812989
210 => 0.018291366908463
211 => 0.017958163680997
212 => 0.017839225288573
213 => 0.017751168037895
214 => 0.017654225657226
215 => 0.017868056392446
216 => 0.017383487814663
217 => 0.016799145612699
218 => 0.016750563881276
219 => 0.016884702313085
220 => 0.016825356042441
221 => 0.016750279754165
222 => 0.016606938674034
223 => 0.016564412437557
224 => 0.016702602075311
225 => 0.016546594031243
226 => 0.016776792398463
227 => 0.016714191180036
228 => 0.01636450586273
301 => 0.015928668487282
302 => 0.01592478862044
303 => 0.015830888172817
304 => 0.015711291834741
305 => 0.015678022869482
306 => 0.016163314008428
307 => 0.017167852142506
308 => 0.016970637270227
309 => 0.017113145226842
310 => 0.01781414332808
311 => 0.018036969544715
312 => 0.017878812774076
313 => 0.017662318031739
314 => 0.017671842701673
315 => 0.018411670773651
316 => 0.018457812943008
317 => 0.018574399318947
318 => 0.018724245759334
319 => 0.017904332270828
320 => 0.017633224850098
321 => 0.017504759113689
322 => 0.017109134368046
323 => 0.017535781737919
324 => 0.017287192586356
325 => 0.017320735755917
326 => 0.017298890722736
327 => 0.017310819588007
328 => 0.016677489370103
329 => 0.016908241614651
330 => 0.016524571252956
331 => 0.016010879707665
401 => 0.016009157633482
402 => 0.016134882911446
403 => 0.016060096596482
404 => 0.015858848545848
405 => 0.015887434881576
406 => 0.015636988500638
407 => 0.0159178436067
408 => 0.015925897526194
409 => 0.015817753012079
410 => 0.016250449053505
411 => 0.016427724974723
412 => 0.016356541938853
413 => 0.016422730583167
414 => 0.016978832438542
415 => 0.017069501305393
416 => 0.017109770426799
417 => 0.017055815138751
418 => 0.016432895104233
419 => 0.016460524256624
420 => 0.016257799868607
421 => 0.016086519123302
422 => 0.016093369454865
423 => 0.01618143002289
424 => 0.016565995688139
425 => 0.017375291459273
426 => 0.0174060036422
427 => 0.017443227703845
428 => 0.01729181873782
429 => 0.017246152344878
430 => 0.017306398104664
501 => 0.017610327045552
502 => 0.018392114797417
503 => 0.01811577879206
504 => 0.017891113318278
505 => 0.018088205508161
506 => 0.018057864710389
507 => 0.017801757843285
508 => 0.017794569776516
509 => 0.017303018816227
510 => 0.017121303618282
511 => 0.016969448797732
512 => 0.016803627297962
513 => 0.016705322754512
514 => 0.016856363211868
515 => 0.016890907951523
516 => 0.016560655351779
517 => 0.016515643142759
518 => 0.016785334544708
519 => 0.016666653413819
520 => 0.016788719900088
521 => 0.01681704037197
522 => 0.016812480123721
523 => 0.016688563392632
524 => 0.016767544221778
525 => 0.01658073101553
526 => 0.016377599712171
527 => 0.016248014596155
528 => 0.01613493439546
529 => 0.016197677863065
530 => 0.015974008857556
531 => 0.015902452641126
601 => 0.016740787293989
602 => 0.017360074115674
603 => 0.017351069440022
604 => 0.017296255792806
605 => 0.017214813831586
606 => 0.017604369058818
607 => 0.017468655807053
608 => 0.017567398536934
609 => 0.017592532705908
610 => 0.017668606265464
611 => 0.017695796024263
612 => 0.017613609688673
613 => 0.017337782308218
614 => 0.016650446701006
615 => 0.016330490120422
616 => 0.01622489911953
617 => 0.016228737151867
618 => 0.016122867086295
619 => 0.016154050565369
620 => 0.016112022744862
621 => 0.016032432220442
622 => 0.016192763372463
623 => 0.016211240044145
624 => 0.016173816837449
625 => 0.016182631357365
626 => 0.015872783189582
627 => 0.015896340272823
628 => 0.015765171439844
629 => 0.015740578864924
630 => 0.015408995477329
701 => 0.014821547442423
702 => 0.015147050678722
703 => 0.014753888541955
704 => 0.014604992083382
705 => 0.015309844760113
706 => 0.015239097100939
707 => 0.015118007861702
708 => 0.014938891639662
709 => 0.014872455690576
710 => 0.014468811894999
711 => 0.0144449624662
712 => 0.014645019230588
713 => 0.014552699917356
714 => 0.01442304863752
715 => 0.013953464844496
716 => 0.013425497187285
717 => 0.01344143321217
718 => 0.013609369900741
719 => 0.01409766847211
720 => 0.013906881772625
721 => 0.013768463833124
722 => 0.013742542313883
723 => 0.014067004397556
724 => 0.014526186222861
725 => 0.01474162406168
726 => 0.014528131706355
727 => 0.014282883183802
728 => 0.014297810324998
729 => 0.014397113907894
730 => 0.01440754931038
731 => 0.014247917734154
801 => 0.014292853087814
802 => 0.014224592176629
803 => 0.013805675090686
804 => 0.013798098209002
805 => 0.013695289200161
806 => 0.013692176184232
807 => 0.013517272413285
808 => 0.013492802166677
809 => 0.01314552011356
810 => 0.013374102212588
811 => 0.013220781341659
812 => 0.012989690624432
813 => 0.012949850497678
814 => 0.01294865285536
815 => 0.013185931351014
816 => 0.013371329475216
817 => 0.013223448423851
818 => 0.013189778775009
819 => 0.013549282537658
820 => 0.013503532406912
821 => 0.013463913088742
822 => 0.014485071526755
823 => 0.013676744941081
824 => 0.013324268412058
825 => 0.012888011773916
826 => 0.013030059135092
827 => 0.013059990601202
828 => 0.012010872027638
829 => 0.011585244753003
830 => 0.011439185511773
831 => 0.011355126353471
901 => 0.011393433167458
902 => 0.011010318699186
903 => 0.011267777957993
904 => 0.01093603321233
905 => 0.010880415126128
906 => 0.011473615826663
907 => 0.011556156238714
908 => 0.011204013197608
909 => 0.011430146036778
910 => 0.011348147125813
911 => 0.010941720023829
912 => 0.010926197498008
913 => 0.010722266664836
914 => 0.010403154399712
915 => 0.010257311531625
916 => 0.01018135529966
917 => 0.010212696321326
918 => 0.010196849341721
919 => 0.010093437080484
920 => 0.010202776811485
921 => 0.0099234589810737
922 => 0.0098122323703874
923 => 0.0097619938907782
924 => 0.0095140832393541
925 => 0.0099086193321369
926 => 0.0099863479126499
927 => 0.010064229642478
928 => 0.010742136928517
929 => 0.010708270596252
930 => 0.01101440574635
1001 => 0.011002509897363
1002 => 0.010915195193495
1003 => 0.010546828820446
1004 => 0.010693653091244
1005 => 0.010241750807285
1006 => 0.010580346724795
1007 => 0.010425825688147
1008 => 0.01052810300687
1009 => 0.010344199165832
1010 => 0.010445979144666
1011 => 0.01000478024263
1012 => 0.0095927949157441
1013 => 0.0097585898378843
1014 => 0.0099388278791999
1015 => 0.010329629876571
1016 => 0.010096871430983
1017 => 0.010180580169588
1018 => 0.009900169907936
1019 => 0.009321603442917
1020 => 0.0093248780662769
1021 => 0.0092358782203893
1022 => 0.0091589693593522
1023 => 0.010123606538405
1024 => 0.010003638656532
1025 => 0.009812485537777
1026 => 0.010068351583354
1027 => 0.010136006626945
1028 => 0.010137932670924
1029 => 0.010324605932918
1030 => 0.010424233486308
1031 => 0.010441793274403
1101 => 0.010735527685494
1102 => 0.010833983585641
1103 => 0.011239509504347
1104 => 0.010415780784462
1105 => 0.010398816633545
1106 => 0.010071952143331
1107 => 0.0098646495161138
1108 => 0.010086146331572
1109 => 0.010282362272737
1110 => 0.010078049119573
1111 => 0.01010472810409
1112 => 0.0098304543889652
1113 => 0.0099284943363445
1114 => 0.010012939546435
1115 => 0.0099663138648829
1116 => 0.0098965129628914
1117 => 0.010266274803178
1118 => 0.010245411391041
1119 => 0.010589742117504
1120 => 0.010858172542109
1121 => 0.011339247850678
1122 => 0.010837220687163
1123 => 0.010818924821947
1124 => 0.01099776983918
1125 => 0.010833956205401
1126 => 0.010937480767295
1127 => 0.011322568443273
1128 => 0.011330704739054
1129 => 0.01119441130171
1130 => 0.011186117833661
1201 => 0.01121229447919
1202 => 0.011365611909664
1203 => 0.011312038088488
1204 => 0.011374035070676
1205 => 0.011451563246234
1206 => 0.011772252651608
1207 => 0.011849569781555
1208 => 0.01166172924012
1209 => 0.01167868913785
1210 => 0.011608431619016
1211 => 0.011540563736145
1212 => 0.011693120825529
1213 => 0.011971921904896
1214 => 0.011970187497851
1215 => 0.012034863929146
1216 => 0.012075156810034
1217 => 0.011902190269071
1218 => 0.01178959541106
1219 => 0.011832771444218
1220 => 0.01190181086149
1221 => 0.011810382891687
1222 => 0.011246047108507
1223 => 0.011417230535215
1224 => 0.011388737242569
1225 => 0.011348159328938
1226 => 0.011520285588215
1227 => 0.011503683590603
1228 => 0.011006389306569
1229 => 0.011038224473166
1230 => 0.011008325308491
1231 => 0.011104935626348
]
'min_raw' => 0.0091589693593522
'max_raw' => 0.020517222000648
'avg_raw' => 0.01483809568
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.009158'
'max' => '$0.020517'
'avg' => '$0.014838'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00223346215297
'max_diff' => -0.014909439796688
'year' => 2034
]
9 => [
'items' => [
101 => 0.010828738931189
102 => 0.010913695174407
103 => 0.010966978933737
104 => 0.010998363477328
105 => 0.011111745969362
106 => 0.011098441842578
107 => 0.011110918966161
108 => 0.011279035269979
109 => 0.012129309844142
110 => 0.012175588413188
111 => 0.011947695813612
112 => 0.01203873441216
113 => 0.0118639602109
114 => 0.011981287303091
115 => 0.012061559519783
116 => 0.011698824808012
117 => 0.01167734601251
118 => 0.011501850455951
119 => 0.011596151827469
120 => 0.011446111564875
121 => 0.01148292619713
122 => 0.011379989275903
123 => 0.011565255239575
124 => 0.01177241137438
125 => 0.011824747194876
126 => 0.01168707418314
127 => 0.011587389849549
128 => 0.011412376997825
129 => 0.011703427270658
130 => 0.011788539240031
131 => 0.011702980213716
201 => 0.011683154317817
202 => 0.011645584280914
203 => 0.011691124978751
204 => 0.011788075701967
205 => 0.011742355531297
206 => 0.01177255450951
207 => 0.011657467145613
208 => 0.011902247528193
209 => 0.012291017685337
210 => 0.012292267644963
211 => 0.012246547227844
212 => 0.012227839418219
213 => 0.01227475134073
214 => 0.012300199134264
215 => 0.012451903689487
216 => 0.012614688721418
217 => 0.013374335436764
218 => 0.013161029678871
219 => 0.013835033436311
220 => 0.014368082900013
221 => 0.014527921126749
222 => 0.014380877479121
223 => 0.01387784910373
224 => 0.013853168131809
225 => 0.014604904897746
226 => 0.014392504829644
227 => 0.014367240517395
228 => 0.014098470919791
301 => 0.014257347039737
302 => 0.014222598501733
303 => 0.014167746234536
304 => 0.014470870803987
305 => 0.015038292937882
306 => 0.014949854877064
307 => 0.014883839967186
308 => 0.014594581848754
309 => 0.01476877984419
310 => 0.014706751274558
311 => 0.014973265374
312 => 0.014815388325501
313 => 0.014390895690227
314 => 0.01445849754154
315 => 0.01444827965771
316 => 0.014658562982884
317 => 0.01459544114822
318 => 0.014435954106423
319 => 0.015036353550715
320 => 0.0149973669504
321 => 0.015052641036069
322 => 0.015076974397989
323 => 0.015442426959505
324 => 0.01559214118078
325 => 0.015626128930126
326 => 0.015768345861024
327 => 0.015622590443329
328 => 0.016205716035963
329 => 0.016593460528743
330 => 0.017043845710256
331 => 0.017701979512571
401 => 0.017949443910319
402 => 0.017904741681834
403 => 0.018403731219572
404 => 0.019300404326973
405 => 0.018085984953705
406 => 0.019364771502597
407 => 0.018959922445518
408 => 0.018000032614109
409 => 0.017938227025324
410 => 0.018588275563704
411 => 0.020030020656979
412 => 0.019668879863251
413 => 0.020030611353942
414 => 0.019608632355552
415 => 0.019587677541563
416 => 0.020010116775865
417 => 0.020997169072776
418 => 0.020528257525616
419 => 0.019855957840933
420 => 0.020352373465961
421 => 0.019922332310465
422 => 0.018953329226191
423 => 0.019668603705692
424 => 0.019190320031094
425 => 0.0193299086343
426 => 0.020335189778979
427 => 0.020214231692007
428 => 0.020370762656966
429 => 0.020094489600942
430 => 0.019836407002354
501 => 0.019354676666624
502 => 0.019212060063233
503 => 0.019251474161603
504 => 0.019212040531563
505 => 0.018942516836053
506 => 0.018884313219669
507 => 0.018787304642403
508 => 0.01881737165688
509 => 0.01863496715076
510 => 0.018979202140502
511 => 0.019043095187986
512 => 0.019293600706704
513 => 0.019319609020678
514 => 0.020017263324584
515 => 0.019633007057597
516 => 0.019890799336582
517 => 0.019867739968715
518 => 0.018020836337396
519 => 0.018275323362423
520 => 0.018671225310937
521 => 0.018492872019764
522 => 0.018240722194288
523 => 0.018037097690797
524 => 0.017728585746335
525 => 0.018162810383719
526 => 0.018733769607236
527 => 0.019334089488812
528 => 0.020055334492009
529 => 0.019894361003513
530 => 0.019320606315165
531 => 0.019346344531356
601 => 0.019505448056236
602 => 0.019299394535437
603 => 0.019238625329511
604 => 0.019497099300516
605 => 0.0194988792687
606 => 0.019261789790621
607 => 0.018998308222654
608 => 0.018997204225263
609 => 0.018950320225173
610 => 0.019616972915014
611 => 0.019983564488237
612 => 0.020025593621316
613 => 0.019980735592711
614 => 0.019997999667569
615 => 0.019784688108405
616 => 0.020272255077077
617 => 0.020719694742906
618 => 0.02059977135431
619 => 0.020419989146689
620 => 0.020276783958835
621 => 0.020566036763177
622 => 0.020553156791126
623 => 0.020715786747763
624 => 0.020708408913534
625 => 0.020653722575939
626 => 0.020599773307331
627 => 0.020813676059212
628 => 0.020752075501844
629 => 0.020690379261795
630 => 0.020566638007155
701 => 0.020583456498785
702 => 0.020403705333098
703 => 0.020320544218997
704 => 0.019070000594336
705 => 0.018735814475134
706 => 0.018840956231221
707 => 0.018875571627329
708 => 0.018730133399981
709 => 0.018938654457983
710 => 0.018906156671972
711 => 0.019032586546772
712 => 0.018953598649944
713 => 0.018956840340782
714 => 0.019189126903357
715 => 0.019256560680691
716 => 0.019222263317282
717 => 0.019246284014969
718 => 0.019799830854661
719 => 0.019721134195488
720 => 0.019679328163785
721 => 0.019690908720275
722 => 0.019832351805994
723 => 0.019871948147489
724 => 0.019704175666188
725 => 0.019783298138251
726 => 0.020120191582157
727 => 0.020238085221007
728 => 0.020614345124058
729 => 0.020454503229756
730 => 0.020747899944543
731 => 0.02164970141949
801 => 0.022370122837593
802 => 0.021707593528831
803 => 0.023030555718063
804 => 0.024060671550034
805 => 0.024021133988655
806 => 0.023841509466343
807 => 0.022668749978689
808 => 0.021589559213292
809 => 0.022492348113407
810 => 0.022494649507974
811 => 0.02241709914081
812 => 0.02193544047071
813 => 0.022400338463146
814 => 0.022437240377525
815 => 0.022416585118484
816 => 0.022047298545426
817 => 0.021483466203935
818 => 0.021593637693838
819 => 0.021774100841738
820 => 0.021432446454208
821 => 0.021323267175822
822 => 0.021526252226548
823 => 0.022180312353602
824 => 0.022056666075294
825 => 0.022053437171274
826 => 0.022582448384054
827 => 0.022203790523469
828 => 0.021595027309144
829 => 0.021441306568927
830 => 0.020895701499854
831 => 0.021272552864441
901 => 0.021286115074157
902 => 0.0210797174331
903 => 0.021611775340193
904 => 0.021606872332913
905 => 0.022111982129329
906 => 0.023077562349501
907 => 0.022791992765079
908 => 0.022459906408279
909 => 0.022496013403019
910 => 0.022892018015661
911 => 0.022652584586952
912 => 0.022738686517305
913 => 0.022891887690077
914 => 0.022984317761382
915 => 0.022482714138177
916 => 0.022365766339133
917 => 0.022126532185388
918 => 0.022064120460194
919 => 0.022258971686634
920 => 0.022207635272662
921 => 0.021284975222946
922 => 0.021188552114119
923 => 0.021191509273206
924 => 0.02094904878139
925 => 0.020579238334186
926 => 0.021551078109204
927 => 0.021473025774381
928 => 0.021386862037508
929 => 0.021397416603631
930 => 0.021819259311261
1001 => 0.021574569237268
1002 => 0.022225117902891
1003 => 0.022091384654522
1004 => 0.021954221652954
1005 => 0.02193526154805
1006 => 0.021882465494644
1007 => 0.021701408182967
1008 => 0.02148277059926
1009 => 0.021338407128433
1010 => 0.019683552632047
1011 => 0.01999068400073
1012 => 0.020344010644496
1013 => 0.020465977586056
1014 => 0.020257344692662
1015 => 0.021709646281231
1016 => 0.021974995776189
1017 => 0.021171234847642
1018 => 0.021020883995253
1019 => 0.021719503258083
1020 => 0.021298150439865
1021 => 0.021487885588109
1022 => 0.021077781977183
1023 => 0.021911080853194
1024 => 0.021904732511916
1025 => 0.021580560428239
1026 => 0.021854548453528
1027 => 0.02180693629162
1028 => 0.02144094680755
1029 => 0.021922683372642
1030 => 0.021922922307968
1031 => 0.021610913725538
1101 => 0.021246556008722
1102 => 0.0211814174547
1103 => 0.021132344304378
1104 => 0.021475816601368
1105 => 0.02178377278884
1106 => 0.022356802904911
1107 => 0.022500876290951
1108 => 0.023063204308174
1109 => 0.022728365353172
1110 => 0.022876795125034
1111 => 0.023037936639063
1112 => 0.023115193806672
1113 => 0.022989307397902
1114 => 0.023862834272095
1115 => 0.023936586704449
1116 => 0.023961315257061
1117 => 0.023666766909927
1118 => 0.023928394782081
1119 => 0.023805987764904
1120 => 0.024124456817949
1121 => 0.024174396831883
1122 => 0.024132099416748
1123 => 0.024147951165421
1124 => 0.023402550078997
1125 => 0.023363897100362
1126 => 0.022836860993983
1127 => 0.023051632102987
1128 => 0.022650127808952
1129 => 0.022777448956543
1130 => 0.02283357090524
1201 => 0.022804255984133
1202 => 0.02306377493925
1203 => 0.022843130811181
1204 => 0.022260814679954
1205 => 0.021678339897086
1206 => 0.021671027400661
1207 => 0.021517672071866
1208 => 0.021406824257576
1209 => 0.021428177479146
1210 => 0.021503429017102
1211 => 0.021402450501391
1212 => 0.021423999387458
1213 => 0.021781854475659
1214 => 0.021853619761492
1215 => 0.021609733279724
1216 => 0.020630493862777
1217 => 0.020390186053622
1218 => 0.020562914541331
1219 => 0.020480361449346
1220 => 0.016529250116296
1221 => 0.017457505116333
1222 => 0.016905967515872
1223 => 0.017160141417189
1224 => 0.016597164347088
1225 => 0.016865846513097
1226 => 0.016816230727737
1227 => 0.018308837298734
1228 => 0.018285532300141
1229 => 0.018296687169695
1230 => 0.017764236182055
1231 => 0.018612445062985
]
'min_raw' => 0.010828738931189
'max_raw' => 0.024174396831883
'avg_raw' => 0.017501567881536
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.010828'
'max' => '$0.024174'
'avg' => '$0.0175015'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0016697695718366
'max_diff' => 0.0036571748312358
'year' => 2035
]
10 => [
'items' => [
101 => 0.019030303258335
102 => 0.018952968827311
103 => 0.018972432237495
104 => 0.018637986365175
105 => 0.018299925336801
106 => 0.017924963629115
107 => 0.018621596135328
108 => 0.018544142492551
109 => 0.018721793282141
110 => 0.019173609258741
111 => 0.019240140877577
112 => 0.01932956004799
113 => 0.019297509640687
114 => 0.020061080372063
115 => 0.019968606918292
116 => 0.020191441335453
117 => 0.019733054032864
118 => 0.019214345289464
119 => 0.019312934863718
120 => 0.01930343989491
121 => 0.019182558044167
122 => 0.019073431314309
123 => 0.01889176605536
124 => 0.019466581816072
125 => 0.019443245345924
126 => 0.019821035671942
127 => 0.019754257562159
128 => 0.019308297001652
129 => 0.019324224570315
130 => 0.019431345124102
131 => 0.019802090583841
201 => 0.019912153078568
202 => 0.019861167745778
203 => 0.019981846246702
204 => 0.020077225613373
205 => 0.019993824426669
206 => 0.021174609352859
207 => 0.020684265127467
208 => 0.02092325549113
209 => 0.02098025328465
210 => 0.020834254635082
211 => 0.020865916514354
212 => 0.020913875634105
213 => 0.021205074017874
214 => 0.021969262835816
215 => 0.022307716861274
216 => 0.02332597249589
217 => 0.022279612965967
218 => 0.022217526321728
219 => 0.022400944909896
220 => 0.022998768760722
221 => 0.023483248841076
222 => 0.023643978834056
223 => 0.023665221955992
224 => 0.02396676210795
225 => 0.024139599299662
226 => 0.023930147202209
227 => 0.023752658480167
228 => 0.023116915908521
229 => 0.023190504842259
301 => 0.023697459621076
302 => 0.024413563105642
303 => 0.025028054393269
304 => 0.024812880961526
305 => 0.026454502356959
306 => 0.026617262412894
307 => 0.026594774235826
308 => 0.02696556586519
309 => 0.026229619991305
310 => 0.025914988871939
311 => 0.023791033556455
312 => 0.024387778365094
313 => 0.025255181990046
314 => 0.025140377867687
315 => 0.024510446169482
316 => 0.025027576533589
317 => 0.024856597063053
318 => 0.024721738460697
319 => 0.025339551861717
320 => 0.02466024064892
321 => 0.025248405341052
322 => 0.024494078039608
323 => 0.024813863855637
324 => 0.02463233796016
325 => 0.024749807461511
326 => 0.024063083156909
327 => 0.024433622922382
328 => 0.024047667484444
329 => 0.024047484491313
330 => 0.024038964503629
331 => 0.024493039364775
401 => 0.024507846729695
402 => 0.024172284721239
403 => 0.024123924993357
404 => 0.024302736253697
405 => 0.024093395098582
406 => 0.024191344507483
407 => 0.024096361886395
408 => 0.024074979297748
409 => 0.023904599193462
410 => 0.023831194759837
411 => 0.02385997852966
412 => 0.023761724684202
413 => 0.023702523188316
414 => 0.024027187836018
415 => 0.023853732611685
416 => 0.02400060333519
417 => 0.023833225609193
418 => 0.023253021487883
419 => 0.02291933996217
420 => 0.021823388161965
421 => 0.022134198732979
422 => 0.022340266463118
423 => 0.022272161079537
424 => 0.022418477796755
425 => 0.022427460454857
426 => 0.022379891398567
427 => 0.022324812525357
428 => 0.022298003175931
429 => 0.022497818102065
430 => 0.022613817392146
501 => 0.022360948116669
502 => 0.022301704383441
503 => 0.022557369182245
504 => 0.022713324561822
505 => 0.023864811460864
506 => 0.023779505592129
507 => 0.023993606582222
508 => 0.023969502096385
509 => 0.024193914042964
510 => 0.024560732732057
511 => 0.023814887773013
512 => 0.023944340668525
513 => 0.023912601808049
514 => 0.024259118364345
515 => 0.024260200151211
516 => 0.024052446165925
517 => 0.024165072971772
518 => 0.024102207778503
519 => 0.02421581367948
520 => 0.023778366280243
521 => 0.024311129992985
522 => 0.024613172687575
523 => 0.024617366550682
524 => 0.024760532390758
525 => 0.024905997175882
526 => 0.025185204163615
527 => 0.024898210244534
528 => 0.024381936122403
529 => 0.024419209446466
530 => 0.024116518117558
531 => 0.024121606413483
601 => 0.02409444469106
602 => 0.024175959064689
603 => 0.023796254101304
604 => 0.023885370097267
605 => 0.023760607181056
606 => 0.023944069458311
607 => 0.023746694375386
608 => 0.02391258650261
609 => 0.023984180045308
610 => 0.024248361759165
611 => 0.02370767452145
612 => 0.02260517664244
613 => 0.022836935063102
614 => 0.022494146154711
615 => 0.022525872573272
616 => 0.022589964987987
617 => 0.022382220502162
618 => 0.022421851603276
619 => 0.022420435701465
620 => 0.022408234224585
621 => 0.022354191860349
622 => 0.022275819740251
623 => 0.022588030145055
624 => 0.02264108077665
625 => 0.022759005759103
626 => 0.023109870517605
627 => 0.02307481085427
628 => 0.02313199461978
629 => 0.023007162780743
630 => 0.022531663164259
701 => 0.022557485081132
702 => 0.02223548536396
703 => 0.022750771502381
704 => 0.022628744943358
705 => 0.022550073626926
706 => 0.022528607429353
707 => 0.022880341913726
708 => 0.022985586384213
709 => 0.022920005092899
710 => 0.022785495951103
711 => 0.02304379326741
712 => 0.023112902732565
713 => 0.023128373793154
714 => 0.023586027114052
715 => 0.023153951529898
716 => 0.023257956417466
717 => 0.024069372860766
718 => 0.023333530114508
719 => 0.023723322428452
720 => 0.023704244123066
721 => 0.023903648681027
722 => 0.02368788712913
723 => 0.023690561752154
724 => 0.023867619490789
725 => 0.023618973829408
726 => 0.023557405666938
727 => 0.023472349691445
728 => 0.023658066302223
729 => 0.023769395011144
730 => 0.02466662264312
731 => 0.025246272611928
801 => 0.025221108478064
802 => 0.025451061556296
803 => 0.025347465588424
804 => 0.025012926880929
805 => 0.025583943661974
806 => 0.025403250060094
807 => 0.025418146221091
808 => 0.025417591785234
809 => 0.025537737233975
810 => 0.025452603172374
811 => 0.025284795198124
812 => 0.025396193962701
813 => 0.025727008467708
814 => 0.026753866841876
815 => 0.027328510392124
816 => 0.026719272578607
817 => 0.027139516664352
818 => 0.026887519961183
819 => 0.026841724663965
820 => 0.027105669005607
821 => 0.027370075346878
822 => 0.027353233805999
823 => 0.027161288379652
824 => 0.027052863278743
825 => 0.027873894467896
826 => 0.028478816262163
827 => 0.028437564651241
828 => 0.028619635846108
829 => 0.029154202505485
830 => 0.029203076581411
831 => 0.029196919571202
901 => 0.029075780074537
902 => 0.029602130372947
903 => 0.030041221052133
904 => 0.029047739781116
905 => 0.029426044443495
906 => 0.029595877594651
907 => 0.029845243047775
908 => 0.030265964365697
909 => 0.030722979307778
910 => 0.030787606231502
911 => 0.030741750336437
912 => 0.030440336696913
913 => 0.030940407899861
914 => 0.031233337882435
915 => 0.031407770983474
916 => 0.031850104304809
917 => 0.029596926426375
918 => 0.028002015133812
919 => 0.02775294670468
920 => 0.028259437149452
921 => 0.028392994640553
922 => 0.028339157783357
923 => 0.026543940120587
924 => 0.027743495255215
925 => 0.029034115718613
926 => 0.02908369370683
927 => 0.029729805296408
928 => 0.029940205714984
929 => 0.030460410232377
930 => 0.030427871298178
1001 => 0.030554532819901
1002 => 0.030525415529529
1003 => 0.031488984856014
1004 => 0.032551944914557
1005 => 0.032515137987736
1006 => 0.032362324902948
1007 => 0.032589278392361
1008 => 0.0336863670865
1009 => 0.033585364740032
1010 => 0.033683479916266
1011 => 0.034977009315865
1012 => 0.036658781537756
1013 => 0.035877429493517
1014 => 0.037572738601521
1015 => 0.038639845820535
1016 => 0.040485297414873
1017 => 0.040254237786221
1018 => 0.040972658549348
1019 => 0.039840592827335
1020 => 0.037241141101362
1021 => 0.036829767915425
1022 => 0.037653347451299
1023 => 0.039678037376528
1024 => 0.037589582760293
1025 => 0.038012074409148
1026 => 0.037890396785856
1027 => 0.037883913102407
1028 => 0.038131368928596
1029 => 0.037772421346281
1030 => 0.036310004322491
1031 => 0.036980221426416
1101 => 0.036721418416122
1102 => 0.037008579651086
1103 => 0.038558270401885
1104 => 0.037873115180944
1105 => 0.037151359813172
1106 => 0.038056601214695
1107 => 0.03920928459353
1108 => 0.039137151739254
1109 => 0.038997183852764
1110 => 0.039786175500428
1111 => 0.041089358549506
1112 => 0.041441603691059
1113 => 0.041701623853218
1114 => 0.041737476240503
1115 => 0.042106778111674
1116 => 0.040120948874332
1117 => 0.043272510873705
1118 => 0.043816698570853
1119 => 0.043714413838059
1120 => 0.04431925556052
1121 => 0.044141295782418
1122 => 0.043883459984983
1123 => 0.044842262768608
1124 => 0.043743072748576
1125 => 0.042182910899317
1126 => 0.041326975252311
1127 => 0.042454140358648
1128 => 0.043142460756446
1129 => 0.043597396753992
1130 => 0.043735060111969
1201 => 0.040275103145096
1202 => 0.038410378237963
1203 => 0.039605645524321
1204 => 0.041063954106619
1205 => 0.040112847896526
1206 => 0.040150129459279
1207 => 0.038794101950001
1208 => 0.041183932452016
1209 => 0.040835754249511
1210 => 0.042642103380025
1211 => 0.042211003663171
1212 => 0.043684011257036
1213 => 0.043296118991711
1214 => 0.04490623809831
1215 => 0.045548558202167
1216 => 0.046627113625684
1217 => 0.047420503385734
1218 => 0.047886397027963
1219 => 0.047858426521206
1220 => 0.049704529239008
1221 => 0.048615946964237
1222 => 0.047248431067981
1223 => 0.047223697019875
1224 => 0.047931952880396
1225 => 0.049416262863542
1226 => 0.04980112284634
1227 => 0.050016207073159
1228 => 0.049686798092649
1229 => 0.04850522005278
1230 => 0.0479950206459
1231 => 0.048429725322461
]
'min_raw' => 0.017924963629115
'max_raw' => 0.050016207073159
'avg_raw' => 0.033970585351137
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.017924'
'max' => '$0.050016'
'avg' => '$0.03397'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.007096224697926
'max_diff' => 0.025841810241276
'year' => 2036
]
11 => [
'items' => [
101 => 0.047898118857626
102 => 0.048815820758361
103 => 0.05007602147862
104 => 0.04981579501326
105 => 0.050685693071626
106 => 0.051585946046089
107 => 0.052873348232463
108 => 0.053209922836346
109 => 0.053766267857779
110 => 0.054338929634652
111 => 0.054522853163716
112 => 0.054874020248819
113 => 0.05487216942494
114 => 0.055930435072168
115 => 0.05709773485282
116 => 0.057538363496964
117 => 0.058551564767768
118 => 0.056816493098324
119 => 0.058132564890664
120 => 0.059319694590769
121 => 0.057904349622691
122 => 0.059855072928104
123 => 0.059930815093619
124 => 0.061074431867656
125 => 0.059915157176705
126 => 0.059226783565755
127 => 0.061214092387546
128 => 0.06217568852677
129 => 0.061886047943907
130 => 0.059681868806999
131 => 0.058398942007628
201 => 0.055041275115577
202 => 0.059018576589627
203 => 0.060955804118163
204 => 0.0596768518557
205 => 0.060321880984676
206 => 0.063840950760971
207 => 0.065180784688889
208 => 0.064902108598028
209 => 0.064949200269985
210 => 0.065672150337783
211 => 0.068878109074278
212 => 0.066957024285829
213 => 0.068425621624924
214 => 0.069204560358159
215 => 0.069928082064314
216 => 0.06815134142538
217 => 0.06583982795963
218 => 0.065107674614292
219 => 0.059549685258592
220 => 0.059260367775504
221 => 0.059097965105029
222 => 0.058074039240001
223 => 0.057269513986987
224 => 0.056629725635684
225 => 0.054950729944888
226 => 0.055517341703096
227 => 0.052841373005603
228 => 0.054553362947751
301 => 0.050282452293028
302 => 0.053839393597077
303 => 0.051903512159559
304 => 0.053203404479488
305 => 0.053198869277641
306 => 0.050805355385417
307 => 0.049424826523742
308 => 0.050304553245388
309 => 0.051247690123787
310 => 0.051400710909214
311 => 0.052623512490449
312 => 0.052964770127739
313 => 0.051930743554953
314 => 0.050193947162715
315 => 0.050597365352524
316 => 0.049416651267002
317 => 0.047347495247636
318 => 0.048833599224743
319 => 0.049341020461906
320 => 0.049565126587388
321 => 0.047530349286516
322 => 0.046890978081418
323 => 0.046550582216667
324 => 0.049931282964811
325 => 0.050116485383295
326 => 0.049168963625349
327 => 0.053451851818965
328 => 0.052482502315182
329 => 0.053565503207302
330 => 0.050560759380228
331 => 0.050675544640846
401 => 0.049253050759953
402 => 0.050049552282178
403 => 0.049486610678712
404 => 0.049985202830364
405 => 0.050284056910291
406 => 0.051706317373935
407 => 0.053855633526963
408 => 0.051493879088874
409 => 0.050464828859252
410 => 0.051103245834111
411 => 0.052803434367767
412 => 0.055379307027305
413 => 0.05385433856859
414 => 0.054531093674924
415 => 0.054678934558919
416 => 0.053554479274863
417 => 0.055420767297534
418 => 0.056420926210581
419 => 0.05744688230164
420 => 0.058337691228871
421 => 0.057037092877613
422 => 0.058428919546909
423 => 0.057307352941937
424 => 0.056301191751854
425 => 0.056302717683054
426 => 0.055671538070845
427 => 0.05444854803844
428 => 0.054223009912431
429 => 0.055396287726255
430 => 0.056337145423119
501 => 0.056414638969437
502 => 0.056935546133434
503 => 0.057243813627318
504 => 0.060265254136711
505 => 0.061480502504256
506 => 0.062966485204615
507 => 0.063545359211801
508 => 0.065287562435613
509 => 0.063880591837557
510 => 0.063576184898408
511 => 0.05935016974777
512 => 0.060042179491941
513 => 0.061150153861368
514 => 0.059368439837029
515 => 0.060498527291435
516 => 0.06072163049346
517 => 0.059307897876264
518 => 0.060063033550889
519 => 0.058057617081208
520 => 0.053899346125832
521 => 0.055425396641812
522 => 0.056549083484624
523 => 0.054945443810343
524 => 0.057819905857065
525 => 0.056140704470311
526 => 0.055608478246592
527 => 0.053532073995513
528 => 0.054512056873893
529 => 0.055837497748905
530 => 0.055018529387188
531 => 0.056718011706469
601 => 0.05912493190595
602 => 0.060840246574676
603 => 0.060971927135794
604 => 0.05986909472096
605 => 0.061636390703913
606 => 0.061649263525748
607 => 0.059655746437361
608 => 0.058434728320674
609 => 0.058157310435518
610 => 0.058850354703617
611 => 0.059691838388118
612 => 0.061018623623855
613 => 0.061820372154229
614 => 0.06391090710688
615 => 0.064476545924733
616 => 0.06509801149458
617 => 0.065928481148778
618 => 0.066925672896693
619 => 0.064743874122414
620 => 0.064830561055098
621 => 0.062798900245549
622 => 0.060627779300914
623 => 0.062275389463846
624 => 0.064429420579483
625 => 0.063935283461563
626 => 0.063879682941492
627 => 0.063973187593954
628 => 0.063600624344051
629 => 0.061915534572582
630 => 0.06106929303857
701 => 0.062161160516686
702 => 0.062741439487874
703 => 0.063641401566542
704 => 0.063530462244451
705 => 0.065848667910229
706 => 0.06674945253305
707 => 0.066518993279785
708 => 0.066561403328697
709 => 0.068192230861233
710 => 0.070006046482675
711 => 0.071704924166207
712 => 0.07343309551439
713 => 0.071349717502479
714 => 0.070291906632923
715 => 0.071383297435855
716 => 0.070804190113382
717 => 0.074131912562702
718 => 0.074362316845037
719 => 0.077689798662148
720 => 0.080847975135751
721 => 0.07886438107729
722 => 0.08073482093138
723 => 0.082757854132778
724 => 0.086660613403582
725 => 0.085346301381902
726 => 0.08433955897119
727 => 0.083388192257611
728 => 0.085367835363356
729 => 0.087914614593326
730 => 0.088463166446713
731 => 0.089352030012137
801 => 0.088417498658159
802 => 0.089543038738773
803 => 0.093516689810711
804 => 0.092442974214685
805 => 0.090918125459933
806 => 0.094054941347723
807 => 0.095190142823451
808 => 0.10315758128974
809 => 0.11321680147189
810 => 0.10905221826408
811 => 0.10646712707673
812 => 0.10707468482494
813 => 0.11074797150937
814 => 0.11192771460812
815 => 0.10872076618389
816 => 0.10985351458283
817 => 0.11609506963033
818 => 0.11944346366026
819 => 0.1148958948183
820 => 0.10234933274255
821 => 0.090780829513299
822 => 0.093849317506186
823 => 0.093501446194061
824 => 0.10020721844276
825 => 0.092417366452822
826 => 0.092548527582143
827 => 0.099392968099405
828 => 0.097566988712816
829 => 0.094609135960312
830 => 0.090802425111749
831 => 0.083765368030043
901 => 0.077532450329922
902 => 0.089756637295078
903 => 0.089229508124899
904 => 0.088466146970314
905 => 0.09016492461554
906 => 0.098413706654311
907 => 0.098223545529615
908 => 0.097013837475361
909 => 0.097931390372635
910 => 0.094448284501117
911 => 0.095345960193054
912 => 0.090778997003283
913 => 0.09284345509829
914 => 0.094602789736745
915 => 0.094956002212809
916 => 0.095751807956858
917 => 0.08895173500515
918 => 0.092004768120814
919 => 0.09379813904575
920 => 0.085695623963497
921 => 0.093637978374146
922 => 0.088833360863857
923 => 0.087202601517932
924 => 0.089398204141013
925 => 0.088542575663505
926 => 0.087806956542733
927 => 0.087396468433802
928 => 0.089008676680374
929 => 0.088933465238666
930 => 0.086295579631137
1001 => 0.082854565390089
1002 => 0.084009482716827
1003 => 0.083589890424615
1004 => 0.082069233829158
1005 => 0.083093972769719
1006 => 0.078581541083998
1007 => 0.070818136904505
1008 => 0.075946879504979
1009 => 0.075749428493859
1010 => 0.075649864740362
1011 => 0.079503973056585
1012 => 0.079133489471387
1013 => 0.078461058136468
1014 => 0.082056884100365
1015 => 0.080744359252858
1016 => 0.084789251563126
1017 => 0.087453479245901
1018 => 0.086777744926812
1019 => 0.089283463939792
1020 => 0.08403608967943
1021 => 0.085779056920608
1022 => 0.086138280053366
1023 => 0.082012512166136
1024 => 0.079194105167773
1025 => 0.079006149553175
1026 => 0.074119420218423
1027 => 0.076729871584746
1028 => 0.079026960759293
1029 => 0.077926833306006
1030 => 0.077578565819668
1031 => 0.079357788877367
1101 => 0.079496049746965
1102 => 0.076343687267897
1103 => 0.076999163249632
1104 => 0.079732607057282
1105 => 0.076930287478974
1106 => 0.071485838294625
1107 => 0.070135539621507
1108 => 0.069955384887571
1109 => 0.066293267792538
1110 => 0.07022577303555
1111 => 0.068509129112387
1112 => 0.073931986697106
1113 => 0.070834479528083
1114 => 0.070700952184935
1115 => 0.070499106021566
1116 => 0.067346970557719
1117 => 0.068037087895642
1118 => 0.070331143034737
1119 => 0.071149687752747
1120 => 0.071064306832519
1121 => 0.070319900913038
1122 => 0.070660686131002
1123 => 0.0695628982065
1124 => 0.069175246441879
1125 => 0.067951710840717
1126 => 0.066153451517344
1127 => 0.066403510505625
1128 => 0.062840688245877
1129 => 0.060899473585477
1130 => 0.060362170952276
1201 => 0.059643667415737
1202 => 0.060443327838593
1203 => 0.06283059521806
1204 => 0.059951044271395
1205 => 0.055014256150353
1206 => 0.055310965528305
1207 => 0.055977583406759
1208 => 0.054735345400379
1209 => 0.053559671380473
1210 => 0.054581824555333
1211 => 0.052490042347919
1212 => 0.056230365292917
1213 => 0.056129200039389
1214 => 0.057523361133265
1215 => 0.058395158676331
1216 => 0.05638594758737
1217 => 0.05588063643198
1218 => 0.056168484631202
1219 => 0.051410995087861
1220 => 0.057134572739589
1221 => 0.057184070476798
1222 => 0.056760240799868
1223 => 0.059807869203778
1224 => 0.066239315715167
1225 => 0.063819546833246
1226 => 0.062882539184265
1227 => 0.061101286958603
1228 => 0.063474699789005
1229 => 0.063292458714638
1230 => 0.062468295463475
1231 => 0.061969838957626
]
'min_raw' => 0.046550582216667
'max_raw' => 0.11944346366026
'avg_raw' => 0.082997022938463
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.04655'
'max' => '$0.119443'
'avg' => '$0.082997'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.028625618587553
'max_diff' => 0.0694272565871
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0014611695836223
]
1 => [
'year' => 2028
'avg' => 0.0025077911860569
]
2 => [
'year' => 2029
'avg' => 0.006850833534922
]
3 => [
'year' => 2030
'avg' => 0.0052854078696249
]
4 => [
'year' => 2031
'avg' => 0.0051909255413579
]
5 => [
'year' => 2032
'avg' => 0.0091013261183907
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0014611695836223
'min' => '$0.001461'
'max_raw' => 0.0091013261183907
'max' => '$0.0091013'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0091013261183907
]
1 => [
'year' => 2033
'avg' => 0.023409546654829
]
2 => [
'year' => 2034
'avg' => 0.01483809568
]
3 => [
'year' => 2035
'avg' => 0.017501567881536
]
4 => [
'year' => 2036
'avg' => 0.033970585351137
]
5 => [
'year' => 2037
'avg' => 0.082997022938463
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0091013261183907
'min' => '$0.0091013'
'max_raw' => 0.082997022938463
'max' => '$0.082997'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.082997022938463
]
]
]
]
'prediction_2025_max_price' => '$0.002498'
'last_price' => 0.00242245
'sma_50day_nextmonth' => '$0.002128'
'sma_200day_nextmonth' => '$0.00359'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002365'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002294'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002079'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001997'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002518'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.00356'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.002355'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002282'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002166'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00218'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002593'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003118'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003415'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0038058'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002292'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002319'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002624'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003274'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001987'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000993'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000496'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.69
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002176'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002475'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 174.38
'cci_20_action' => 'SELL'
'adx_14' => 23.47
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000044'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.86
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000833'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 10
'buy_signals' => 20
'sell_pct' => 33.33
'buy_pct' => 66.67
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767686942
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Pump.fun para 2026
La previsión del precio de Pump.fun para 2026 sugiere que el precio medio podría oscilar entre $0.000836 en el extremo inferior y $0.002498 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Pump.fun podría potencialmente ganar 3.13% para 2026 si PUMP alcanza el objetivo de precio previsto.
Predicción de precio de Pump.fun 2027-2032
La predicción del precio de PUMP para 2027-2032 está actualmente dentro de un rango de precios de $0.001461 en el extremo inferior y $0.0091013 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Pump.fun alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Pump.fun | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0008057 | $0.001461 | $0.002116 |
| 2028 | $0.001454 | $0.0025077 | $0.003561 |
| 2029 | $0.003194 | $0.00685 | $0.0105074 |
| 2030 | $0.002716 | $0.005285 | $0.007854 |
| 2031 | $0.003211 | $0.00519 | $0.00717 |
| 2032 | $0.0049025 | $0.0091013 | $0.01330011 |
Predicción de precio de Pump.fun 2032-2037
La predicción de precio de Pump.fun para 2032-2037 se estima actualmente entre $0.0091013 en el extremo inferior y $0.082997 en el extremo superior. Comparado con el precio actual, Pump.fun podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Pump.fun | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0049025 | $0.0091013 | $0.01330011 |
| 2033 | $0.011392 | $0.0234095 | $0.035426 |
| 2034 | $0.009158 | $0.014838 | $0.020517 |
| 2035 | $0.010828 | $0.0175015 | $0.024174 |
| 2036 | $0.017924 | $0.03397 | $0.050016 |
| 2037 | $0.04655 | $0.082997 | $0.119443 |
Pump.fun Histograma de precios potenciales
Pronóstico de precio de Pump.fun basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Pump.fun es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 10 indicando señales bajistas. La predicción de precio de PUMP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Pump.fun
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Pump.fun aumentar durante el próximo mes, alcanzando $0.00359 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Pump.fun alcance $0.002128 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.93, lo que sugiere que el mercado de PUMP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PUMP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002365 | BUY |
| SMA 5 | $0.002294 | BUY |
| SMA 10 | $0.002079 | BUY |
| SMA 21 | $0.001997 | BUY |
| SMA 50 | $0.002518 | SELL |
| SMA 100 | $0.00356 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.002355 | BUY |
| EMA 5 | $0.002282 | BUY |
| EMA 10 | $0.002166 | BUY |
| EMA 21 | $0.00218 | BUY |
| EMA 50 | $0.002593 | SELL |
| EMA 100 | $0.003118 | SELL |
| EMA 200 | $0.003415 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0038058 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003274 | SELL |
| EMA 50 | $0.001987 | BUY |
| EMA 100 | $0.000993 | BUY |
| EMA 200 | $0.000496 | BUY |
Osciladores de Pump.fun
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.93 | NEUTRAL |
| Stoch RSI (14) | 106.69 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 174.38 | SELL |
| Índice Direccional Medio (14) | 23.47 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000044 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 83.86 | SELL |
| VWMA (10) | 0.002176 | BUY |
| Promedio Móvil de Hull (9) | 0.002475 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000833 | SELL |
Predicción de precios de Pump.fun basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Pump.fun
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Pump.fun por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0034039 | $0.004783 | $0.006721 | $0.009444 | $0.01327 | $0.018647 |
| Amazon.com acción | $0.005054 | $0.010546 | $0.0220063 | $0.045917 | $0.0958095 | $0.199912 |
| Apple acción | $0.003436 | $0.004873 | $0.006913 | $0.0098057 | $0.0139086 | $0.019728 |
| Netflix acción | $0.003822 | $0.00603 | $0.009515 | $0.015014 | $0.02369 | $0.037379 |
| Google acción | $0.003137 | $0.004062 | $0.00526 | $0.006812 | $0.008822 | $0.011425 |
| Tesla acción | $0.005491 | $0.012448 | $0.02822 | $0.063973 | $0.145024 | $0.328758 |
| Kodak acción | $0.001816 | $0.001362 | $0.001021 | $0.000766 | $0.000574 | $0.00043 |
| Nokia acción | $0.0016047 | $0.001063 | $0.0007042 | $0.000466 | $0.000309 | $0.0002047 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Pump.fun
Podría preguntarse cosas como: "¿Debo invertir en Pump.fun ahora?", "¿Debería comprar PUMP hoy?", "¿Será Pump.fun una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Pump.fun regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Pump.fun, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Pump.fun a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Pump.fun es de $0.002422 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Pump.fun
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Pump.fun
basado en el historial de precios del último mes
Predicción de precios de Pump.fun basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Pump.fun ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002485 | $0.00255 | $0.002616 | $0.002684 |
| Si Pump.fun ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002548 | $0.00268 | $0.00282 | $0.002966 |
| Si Pump.fun ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.002737 | $0.003093 | $0.003495 | $0.003949 |
| Si Pump.fun ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003052 | $0.003845 | $0.004845 | $0.0061044 |
| Si Pump.fun ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.003681 | $0.005595 | $0.0085049 | $0.012926 |
| Si Pump.fun ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00557 | $0.01281 | $0.02946 | $0.06775 |
| Si Pump.fun ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.008719 | $0.031383 | $0.112957 | $0.406571 |
Cuadro de preguntas
¿Es PUMP una buena inversión?
La decisión de adquirir Pump.fun depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Pump.fun ha experimentado un aumento de 7.7396% durante las últimas 24 horas, y Pump.fun ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Pump.fun dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Pump.fun subir?
Parece que el valor medio de Pump.fun podría potencialmente aumentar hasta $0.002498 para el final de este año. Mirando las perspectivas de Pump.fun en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.007854. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Pump.fun la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Pump.fun, el precio de Pump.fun aumentará en un 0.86% durante la próxima semana y alcanzará $0.002443 para el 13 de enero de 2026.
¿Cuál será el precio de Pump.fun el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Pump.fun, el precio de Pump.fun disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002141 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Pump.fun este año en 2026?
Según nuestra predicción más reciente sobre el valor de Pump.fun en 2026, se anticipa que PUMP fluctúe dentro del rango de $0.000836 y $0.002498. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Pump.fun no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Pump.fun en 5 años?
El futuro de Pump.fun parece estar en una tendencia alcista, con un precio máximo de $0.007854 proyectada después de un período de cinco años. Basado en el pronóstico de Pump.fun para 2030, el valor de Pump.fun podría potencialmente alcanzar su punto más alto de aproximadamente $0.007854, mientras que su punto más bajo se anticipa que esté alrededor de $0.002716.
¿Cuánto será Pump.fun en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Pump.fun, se espera que el valor de PUMP en 2026 crezca en un 3.13% hasta $0.002498 si ocurre lo mejor. El precio estará entre $0.002498 y $0.000836 durante 2026.
¿Cuánto será Pump.fun en 2027?
Según nuestra última simulación experimental para la predicción de precios de Pump.fun, el valor de PUMP podría disminuir en un -12.62% hasta $0.002116 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002116 y $0.0008057 a lo largo del año.
¿Cuánto será Pump.fun en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Pump.fun sugiere que el valor de PUMP en 2028 podría aumentar en un 47.02% , alcanzando $0.003561 en el mejor escenario. Se espera que el precio oscile entre $0.003561 y $0.001454 durante el año.
¿Cuánto será Pump.fun en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Pump.fun podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0105074 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0105074 y $0.003194.
¿Cuánto será Pump.fun en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Pump.fun, se espera que el valor de PUMP en 2030 aumente en un 224.23% , alcanzando $0.007854 en el mejor escenario. Se pronostica que el precio oscile entre $0.007854 y $0.002716 durante el transcurso de 2030.
¿Cuánto será Pump.fun en 2031?
Nuestra simulación experimental indica que el precio de Pump.fun podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.00717 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.00717 y $0.003211 durante el año.
¿Cuánto será Pump.fun en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Pump.fun, PUMP podría experimentar un 449.04% aumento en valor, alcanzando $0.01330011 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.01330011 y $0.0049025 a lo largo del año.
¿Cuánto será Pump.fun en 2033?
Según nuestra predicción experimental de precios de Pump.fun, se anticipa que el valor de PUMP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.035426. A lo largo del año, el precio de PUMP podría oscilar entre $0.035426 y $0.011392.
¿Cuánto será Pump.fun en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Pump.fun sugieren que PUMP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.020517 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.020517 y $0.009158.
¿Cuánto será Pump.fun en 2035?
Basado en nuestra predicción experimental para el precio de Pump.fun, PUMP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.024174 en 2035. El rango de precios esperado para el año está entre $0.024174 y $0.010828.
¿Cuánto será Pump.fun en 2036?
Nuestra reciente simulación de predicción de precios de Pump.fun sugiere que el valor de PUMP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.050016 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.050016 y $0.017924.
¿Cuánto será Pump.fun en 2037?
Según la simulación experimental, el valor de Pump.fun podría aumentar en un 4830.69% en 2037, con un máximo de $0.119443 bajo condiciones favorables. Se espera que el precio caiga entre $0.119443 y $0.04655 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Pump.fun?
Los traders de Pump.fun utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Pump.fun
Las medias móviles son herramientas populares para la predicción de precios de Pump.fun. Una media móvil simple (SMA) calcula el precio de cierre promedio de PUMP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PUMP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PUMP.
¿Cómo leer gráficos de Pump.fun y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Pump.fun en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PUMP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Pump.fun?
La acción del precio de Pump.fun está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PUMP. La capitalización de mercado de Pump.fun puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PUMP, grandes poseedores de Pump.fun, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Pump.fun.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


