Predicción del precio de Prosper [OLD] - Pronóstico de PROS
Predicción de precio de Prosper [OLD] hasta $0.149033 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.049927 | $0.149033 |
| 2027 | $0.048063 | $0.126263 |
| 2028 | $0.08674 | $0.212455 |
| 2029 | $0.190544 | $0.6268045 |
| 2030 | $0.162049 | $0.468533 |
| 2031 | $0.191593 | $0.427718 |
| 2032 | $0.292452 | $0.793394 |
| 2033 | $0.679595 | $2.11 |
| 2034 | $0.546362 | $1.22 |
| 2035 | $0.645969 | $1.44 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Prosper [OLD] hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.48, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Prosper para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Prosper [OLD]'
'name_with_ticker' => 'Prosper [OLD] <small>PROS</small>'
'name_lang' => 'Prosper'
'name_lang_with_ticker' => 'Prosper <small>PROS</small>'
'name_with_lang' => 'Prosper/Prosper [OLD]'
'name_with_lang_with_ticker' => 'Prosper/Prosper [OLD] <small>PROS</small>'
'image' => '/uploads/coins/prosper.png?1740178186'
'price_for_sd' => 0.1445
'ticker' => 'PROS'
'marketcap' => '$7.39M'
'low24h' => '$0.1416'
'high24h' => '$0.1473'
'volume24h' => '$242.18'
'current_supply' => '51.39M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1445'
'change_24h_pct' => '-0.4199%'
'ath_price' => '$9.61'
'ath_days' => 1780
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21 feb. 2021'
'ath_pct' => '-98.51%'
'fdv' => '$14.37M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.12'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.145743'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.127718'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.049927'
'current_year_max_price_prediction' => '$0.149033'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.162049'
'grand_prediction_max_price' => '$0.468533'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.14724533163932
107 => 0.1477950922576
108 => 0.14903373100207
109 => 0.13844969854667
110 => 0.14320161838828
111 => 0.14599292610055
112 => 0.13338169630787
113 => 0.14574364263574
114 => 0.13826545408896
115 => 0.13572724457757
116 => 0.13914460930099
117 => 0.13781285894477
118 => 0.13666789819151
119 => 0.13602899041826
120 => 0.13853832591036
121 => 0.13842126241035
122 => 0.13431550250424
123 => 0.12895970607891
124 => 0.13075728715727
125 => 0.13010420909909
126 => 0.12773736996749
127 => 0.12933233376894
128 => 0.12230892038005
129 => 0.11022550268972
130 => 0.11820817854104
131 => 0.11790085420425
201 => 0.11774588733759
202 => 0.1237446476149
203 => 0.12316800522919
204 => 0.12212139365261
205 => 0.12771814812512
206 => 0.12567525745568
207 => 0.13197096513331
208 => 0.13611772539064
209 => 0.13506597285574
210 => 0.13896602092079
211 => 0.13079869979472
212 => 0.13351155625675
213 => 0.13407067221372
214 => 0.12764908504369
215 => 0.12326235105495
216 => 0.12296980591032
217 => 0.11536381370302
218 => 0.11942687334674
219 => 0.12300219769238
220 => 0.12128989478719
221 => 0.12074783084101
222 => 0.12351711798275
223 => 0.123732315311
224 => 0.11882579342122
225 => 0.11984601469145
226 => 0.12410050698597
227 => 0.11973881240153
228 => 0.11126475230274
301 => 0.10916306823519
302 => 0.10888266483885
303 => 0.103182730961
304 => 0.10930351281417
305 => 0.10663162750851
306 => 0.11507208117501
307 => 0.11025093930776
308 => 0.11004310951776
309 => 0.10972894430817
310 => 0.1048227757582
311 => 0.10589691486736
312 => 0.10946751686224
313 => 0.11074154787972
314 => 0.11060865600677
315 => 0.10945001896453
316 => 0.10998043706929
317 => 0.10827177554395
318 => 0.10766841159664
319 => 0.1057640290106
320 => 0.10296511270823
321 => 0.10335431918683
322 => 0.09780893361555
323 => 0.094787513240431
324 => 0.093951223902279
325 => 0.092832902848364
326 => 0.094077541241057
327 => 0.097793224234967
328 => 0.09331132221819
329 => 0.085627415579297
330 => 0.086089231461034
331 => 0.087126794632932
401 => 0.085193302526268
402 => 0.083363414513002
403 => 0.08495435367703
404 => 0.081698581138979
405 => 0.087520239189518
406 => 0.087362779654259
407 => 0.089532733766582
408 => 0.090889650604958
409 => 0.087762396599544
410 => 0.086975900674176
411 => 0.087423924497513
412 => 0.080019088683165
413 => 0.088927600703131
414 => 0.089004641885014
415 => 0.088344968512676
416 => 0.093088476143857
417 => 0.10309875678278
418 => 0.099332486543812
419 => 0.097874072871163
420 => 0.095101627413362
421 => 0.098795746374359
422 => 0.098512095675387
423 => 0.097229319643305
424 => 0.096453492696596
425 => 0.097882977634059
426 => 0.096276363693435
427 => 0.0959877716829
428 => 0.094239218090264
429 => 0.093615064011813
430 => 0.093152965180417
501 => 0.092644239771943
502 => 0.093766361256562
503 => 0.09122348634504
504 => 0.088157028482846
505 => 0.087902085691138
506 => 0.088606005153843
507 => 0.088294573192237
508 => 0.087900594674723
509 => 0.087148382391124
510 => 0.086925217075053
511 => 0.087650396087865
512 => 0.086831711262963
513 => 0.088039725318176
514 => 0.087711212337624
515 => 0.085876165532958
516 => 0.083589017793
517 => 0.083568657380659
518 => 0.08307589515176
519 => 0.082448288365958
520 => 0.082273702515847
521 => 0.084820369218125
522 => 0.090091893076522
523 => 0.089056966806243
524 => 0.08980480710003
525 => 0.093483441180715
526 => 0.094652768334578
527 => 0.093822807617797
528 => 0.09268670619892
529 => 0.092736688895539
530 => 0.096619091365129
531 => 0.096861232044906
601 => 0.097473043425157
602 => 0.098259393946656
603 => 0.093956726511884
604 => 0.092534033646293
605 => 0.091859882838581
606 => 0.089783759280024
607 => 0.092022680544546
608 => 0.090718157003877
609 => 0.090894181798383
610 => 0.09077954542004
611 => 0.090842144634293
612 => 0.087518611917447
613 => 0.088729532559729
614 => 0.086716142130015
615 => 0.08402043835831
616 => 0.084011401414031
617 => 0.084671171093155
618 => 0.084278714271222
619 => 0.083222623054388
620 => 0.083372635827129
621 => 0.082058366087058
622 => 0.083532211969196
623 => 0.083574476595421
624 => 0.083006965649871
625 => 0.085277628582843
626 => 0.086207921039166
627 => 0.085834373177542
628 => 0.086181711925392
629 => 0.089099972665186
630 => 0.089575776498415
701 => 0.089787097131298
702 => 0.089503955477853
703 => 0.086235052374589
704 => 0.086380042127668
705 => 0.085316203521787
706 => 0.084417372004367
707 => 0.084453320551313
708 => 0.084915436791185
709 => 0.086933525513465
710 => 0.091180474256675
711 => 0.091341642857001
712 => 0.091536983902215
713 => 0.090742433700785
714 => 0.090502789757212
715 => 0.090818941976135
716 => 0.092413872630128
717 => 0.096516467291647
718 => 0.095066336335181
719 => 0.093887357294942
720 => 0.094921639763699
721 => 0.094762420084608
722 => 0.093418445760057
723 => 0.093380724877012
724 => 0.090801208453616
725 => 0.089847619964633
726 => 0.089050730048378
727 => 0.088180547063165
728 => 0.087664673420733
729 => 0.088457289795886
730 => 0.088638570538845
731 => 0.08690550098201
801 => 0.086669290005325
802 => 0.088084552016341
803 => 0.087461747971579
804 => 0.088102317376414
805 => 0.088250934973039
806 => 0.088227004117028
807 => 0.087576725165708
808 => 0.087991193577682
809 => 0.087010852224382
810 => 0.085944878245179
811 => 0.085264853258973
812 => 0.084671441266283
813 => 0.085000700729135
814 => 0.083826950864471
815 => 0.083451444659847
816 => 0.08785078100554
817 => 0.091100618064939
818 => 0.091053364147018
819 => 0.090765718074399
820 => 0.090338334357362
821 => 0.092382606849218
822 => 0.091670423189574
823 => 0.092188596306901
824 => 0.092320493112918
825 => 0.092719705019955
826 => 0.092862388963297
827 => 0.092431098986145
828 => 0.090983637145187
829 => 0.087376699858062
830 => 0.085697660814164
831 => 0.08514354996307
901 => 0.085163690840101
902 => 0.084608115538754
903 => 0.084771757364139
904 => 0.084551207590063
905 => 0.084133539674683
906 => 0.084974910912317
907 => 0.085071871109539
908 => 0.084875485009038
909 => 0.084921741044986
910 => 0.083295748010435
911 => 0.08341936872938
912 => 0.082731032857329
913 => 0.082601978179332
914 => 0.080861925035047
915 => 0.077779168665211
916 => 0.079487314944502
917 => 0.077424114440832
918 => 0.076642749147503
919 => 0.080341610918888
920 => 0.079970347787496
921 => 0.079334906690758
922 => 0.078394956871154
923 => 0.078046320339819
924 => 0.075928115140339
925 => 0.075802960276969
926 => 0.076852799970182
927 => 0.076368335074542
928 => 0.07568796287986
929 => 0.073223723758945
930 => 0.070453103105502
1001 => 0.070536730727529
1002 => 0.07141801360816
1003 => 0.073980462440781
1004 => 0.072979269351061
1005 => 0.072252892277102
1006 => 0.072116863685964
1007 => 0.073819546299199
1008 => 0.076229198919963
1009 => 0.077359754016686
1010 => 0.076239408251302
1011 => 0.074952415359728
1012 => 0.075030748653688
1013 => 0.075551864964464
1014 => 0.075606626920539
1015 => 0.074768926853132
1016 => 0.075004734515251
1017 => 0.074646521113787
1018 => 0.072448166130217
1019 => 0.072408404859624
1020 => 0.071868893093393
1021 => 0.071852556891527
1022 => 0.070934712789651
1023 => 0.070806300055042
1024 => 0.068983864881612
1025 => 0.070183397231605
1026 => 0.069378813909505
1027 => 0.068166117061081
1028 => 0.067957047667319
1029 => 0.067950762788884
1030 => 0.069195931298162
1031 => 0.070168846712602
1101 => 0.069392809980865
1102 => 0.069216121459888
1103 => 0.071102692609052
1104 => 0.070862609233843
1105 => 0.070654698579284
1106 => 0.076013440957075
1107 => 0.071771578217171
1108 => 0.069921883945513
1109 => 0.06763253603692
1110 => 0.068377959259852
1111 => 0.068535030885469
1112 => 0.063029561851281
1113 => 0.060795993749773
1114 => 0.060029517347574
1115 => 0.059588399341723
1116 => 0.0597894223562
1117 => 0.057778949093435
1118 => 0.059130020376172
1119 => 0.057389120471692
1120 => 0.057097252937328
1121 => 0.060210197622653
1122 => 0.060643345690056
1123 => 0.058795401465955
1124 => 0.059982080812823
1125 => 0.059551774385572
1126 => 0.057418963203869
1127 => 0.057337505504625
1128 => 0.056267335825584
1129 => 0.054592727503569
1130 => 0.053827386564668
1201 => 0.053428790358694
1202 => 0.053593258921764
1203 => 0.053510098583455
1204 => 0.052967421124166
1205 => 0.053541204220186
1206 => 0.052075425513399
1207 => 0.051491740621776
1208 => 0.051228103697616
1209 => 0.049927140728268
1210 => 0.051997551353358
1211 => 0.052405448328847
1212 => 0.052814148987383
1213 => 0.056371609188148
1214 => 0.056193888529796
1215 => 0.057800396727828
1216 => 0.057737970773431
1217 => 0.057279768611646
1218 => 0.055346689061667
1219 => 0.056117180116459
1220 => 0.053745728410706
1221 => 0.055522581271697
1222 => 0.05471169982909
1223 => 0.055248421440279
1224 => 0.054283347589126
1225 => 0.054817459305276
1226 => 0.052502175833715
1227 => 0.050340196704889
1228 => 0.051210240218434
1229 => 0.052156077019202
1230 => 0.054206892198001
1231 => 0.052985443596366
]
'min_raw' => 0.049927140728268
'max_raw' => 0.14903373100207
'avg_raw' => 0.099480435865172
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.049927'
'max' => '$0.149033'
'avg' => '$0.09948'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.094579859271732
'max_diff' => 0.0045267310020749
'year' => 2026
]
1 => [
'items' => [
101 => 0.053424722701599
102 => 0.051953211233502
103 => 0.048917062758348
104 => 0.048934247028992
105 => 0.04846720173218
106 => 0.048063606406004
107 => 0.053125741661564
108 => 0.052496185122019
109 => 0.051493069170577
110 => 0.052835779733826
111 => 0.053190813718431
112 => 0.053200921036853
113 => 0.054180528003424
114 => 0.054703344417086
115 => 0.054795493076011
116 => 0.056336925803718
117 => 0.056853593722057
118 => 0.058981675756111
119 => 0.054658987097102
120 => 0.054569964168794
121 => 0.052854674425006
122 => 0.051766810551838
123 => 0.05292916139511
124 => 0.053958845565536
125 => 0.052886669582415
126 => 0.05302667313094
127 => 0.051587364473596
128 => 0.05210184959283
129 => 0.052544993486144
130 => 0.05230031547505
131 => 0.051934020649892
201 => 0.053874423205925
202 => 0.053764938089215
203 => 0.055571885559054
204 => 0.056980530327847
205 => 0.059505073578897
206 => 0.056870581089011
207 => 0.05677456971152
208 => 0.057713096327201
209 => 0.056853450038522
210 => 0.057396716818986
211 => 0.059417544901692
212 => 0.059460241814701
213 => 0.058745013509945
214 => 0.0587014918026
215 => 0.058838859222269
216 => 0.059643424489862
217 => 0.059362284663571
218 => 0.059687626788144
219 => 0.060094472096738
220 => 0.061777356791918
221 => 0.062183094594547
222 => 0.061197362085091
223 => 0.061286362693915
224 => 0.060917671676417
225 => 0.060561520773197
226 => 0.061362095991972
227 => 0.062825162939627
228 => 0.062816061276078
301 => 0.063155464369977
302 => 0.063366909685709
303 => 0.062459231603157
304 => 0.061868366547664
305 => 0.06209494180766
306 => 0.062457240582562
307 => 0.061977453197901
308 => 0.059015983200637
309 => 0.059914304018371
310 => 0.059764779508656
311 => 0.059551838424021
312 => 0.060455106952762
313 => 0.060367984499627
314 => 0.057758328784235
315 => 0.057925390476127
316 => 0.057768488359045
317 => 0.058275471198491
318 => 0.056826071301416
319 => 0.057271896947899
320 => 0.057551514614017
321 => 0.057716211567485
322 => 0.058311209897169
323 => 0.058241393710626
324 => 0.058306870024987
325 => 0.059189095474174
326 => 0.063651089052943
327 => 0.063893945518602
328 => 0.06269803146112
329 => 0.063175775538722
330 => 0.062258611380871
331 => 0.062874309824502
401 => 0.06329555506259
402 => 0.061392028832472
403 => 0.061279314362907
404 => 0.060358364742323
405 => 0.060853230903172
406 => 0.060065863259125
407 => 0.060259055738023
408 => 0.059718872724806
409 => 0.060691094599231
410 => 0.061778189722845
411 => 0.062052832881757
412 => 0.061330364971974
413 => 0.060807250592335
414 => 0.059888834066278
415 => 0.061416181217357
416 => 0.061862824069394
417 => 0.061413835192597
418 => 0.061309794659243
419 => 0.061112638036533
420 => 0.06135162236877
421 => 0.0618603915565
422 => 0.061620465403058
423 => 0.061778940854362
424 => 0.06117499585317
425 => 0.062459532082371
426 => 0.06449968475482
427 => 0.064506244179261
428 => 0.064266316732528
429 => 0.064168143590633
430 => 0.064414323710996
501 => 0.064547866327456
502 => 0.065343967694997
503 => 0.066198216180447
504 => 0.070184621124225
505 => 0.069065254567869
506 => 0.07260223018628
507 => 0.07539951868164
508 => 0.076238303190798
509 => 0.075466660910234
510 => 0.072826914351721
511 => 0.072697395791985
512 => 0.076642291622652
513 => 0.075527677862813
514 => 0.075395098102752
515 => 0.073984673452739
516 => 0.074818409105388
517 => 0.07463605888799
518 => 0.074348210148948
519 => 0.075938919695673
520 => 0.07891658596352
521 => 0.078452488751299
522 => 0.078106061711226
523 => 0.07658811926502
524 => 0.077502259662355
525 => 0.07717675177607
526 => 0.07857534022796
527 => 0.077746847411588
528 => 0.075519233567329
529 => 0.075873988414339
530 => 0.075820367932881
531 => 0.076923873641694
601 => 0.076592628618604
602 => 0.07575568702583
603 => 0.07890640862393
604 => 0.078701818288584
605 => 0.078991880608243
606 => 0.079119575011832
607 => 0.081037363726654
608 => 0.081823020400722
609 => 0.082001378220592
610 => 0.082747691296089
611 => 0.081982809271398
612 => 0.085042882721803
613 => 0.087077653006087
614 => 0.089441143399604
615 => 0.09289483811086
616 => 0.094193459270755
617 => 0.093958874981727
618 => 0.096577426895329
619 => 0.10128290647693
620 => 0.094909986939979
621 => 0.10162068668705
622 => 0.09949615662588
623 => 0.094458934069515
624 => 0.094134596321838
625 => 0.097545861920365
626 => 0.10511172069575
627 => 0.10321655888378
628 => 0.10511482050155
629 => 0.10290039749231
630 => 0.10279043272528
701 => 0.10500727091868
702 => 0.1101870341911
703 => 0.1077263228209
704 => 0.10419828968052
705 => 0.1068033344491
706 => 0.10454660358505
707 => 0.099461557329139
708 => 0.10321510968926
709 => 0.10070521612106
710 => 0.10143773649754
711 => 0.10671315945939
712 => 0.10607840661158
713 => 0.10689983557318
714 => 0.1054500349565
715 => 0.10409569256796
716 => 0.10156771192495
717 => 0.10081930148449
718 => 0.10102613520525
719 => 0.10081919898797
720 => 0.099404817051548
721 => 0.099099381407042
722 => 0.09859030861809
723 => 0.098748091562099
724 => 0.097790885784371
725 => 0.099597330855749
726 => 0.099932622979337
727 => 0.10124720305727
728 => 0.10138368712191
729 => 0.10504477392708
730 => 0.10302830883686
731 => 0.10438112771259
801 => 0.10426011885912
802 => 0.094568105956506
803 => 0.095903579821133
804 => 0.097981158059707
805 => 0.09704521187932
806 => 0.09572200295793
807 => 0.094653440807934
808 => 0.0930344598846
809 => 0.095313144444418
810 => 0.098309372329491
811 => 0.10145967640561
812 => 0.10524456033696
813 => 0.10439981830439
814 => 0.10138892063322
815 => 0.10152398730329
816 => 0.10235891631086
817 => 0.10127760738475
818 => 0.10095870827278
819 => 0.10231510446991
820 => 0.10232444522505
821 => 0.10108026862502
822 => 0.099697594015988
823 => 0.099691800558891
824 => 0.099445766967267
825 => 0.1029441663217
826 => 0.10486793223857
827 => 0.10508848890063
828 => 0.1048530870179
829 => 0.1049436838598
830 => 0.10382428686006
831 => 0.10638289645459
901 => 0.10873092963879
902 => 0.10810160658701
903 => 0.10715816186886
904 => 0.10640666270839
905 => 0.10792457726779
906 => 0.10785698692188
907 => 0.10871042161731
908 => 0.10867170488985
909 => 0.10838472690108
910 => 0.1081016168359
911 => 0.10922411624301
912 => 0.10890085444055
913 => 0.10857709052323
914 => 0.10792773242126
915 => 0.10801599097201
916 => 0.10707270915288
917 => 0.10663630382172
918 => 0.10007381472376
919 => 0.098320103201269
920 => 0.098871856546335
921 => 0.0990535080738
922 => 0.098290290571769
923 => 0.099384548415191
924 => 0.0992140094894
925 => 0.099877476687719
926 => 0.099462971186606
927 => 0.099479982636957
928 => 0.10069895493384
929 => 0.1010528277775
930 => 0.10087284519311
1001 => 0.10099889882578
1002 => 0.10390375158665
1003 => 0.10349077441602
1004 => 0.10327138852506
1005 => 0.10333215991616
1006 => 0.10407441207731
1007 => 0.10428220215697
1008 => 0.10340178098832
1009 => 0.10381699270111
1010 => 0.10558491147596
1011 => 0.10620358299162
1012 => 0.10817808549043
1013 => 0.10733928173495
1014 => 0.10887894233071
1015 => 0.1136113340931
1016 => 0.1173918960895
1017 => 0.11391513503928
1018 => 0.120857655694
1019 => 0.12626340386914
1020 => 0.12605592225043
1021 => 0.12511330501889
1022 => 0.11895900444075
1023 => 0.11329572529329
1024 => 0.11803329877567
1025 => 0.11804537582477
1026 => 0.11763841406109
1027 => 0.11511080949845
1028 => 0.11755045890121
1029 => 0.11774410941129
1030 => 0.11763571662147
1031 => 0.11569780812958
1101 => 0.11273898004782
1102 => 0.11331712797256
1103 => 0.11426414606719
1104 => 0.11247124324539
1105 => 0.11189830215801
1106 => 0.11296350864595
1107 => 0.11639582589467
1108 => 0.11574696620086
1109 => 0.115730021852
1110 => 0.11850611878145
1111 => 0.11651903249918
1112 => 0.11332442026938
1113 => 0.1125177385496
1114 => 0.10965456189029
1115 => 0.11163216820716
1116 => 0.11170333873784
1117 => 0.11062022396873
1118 => 0.11341230906351
1119 => 0.11338657950782
1120 => 0.11603724875829
1121 => 0.12110433281927
1122 => 0.11960574672637
1123 => 0.11786305414604
1124 => 0.11805253314914
1125 => 0.12013065013919
1126 => 0.11887417316821
1127 => 0.11932601104744
1128 => 0.12012996622844
1129 => 0.12061501235022
1130 => 0.11798274247665
1201 => 0.1173690344531
1202 => 0.11611360321916
1203 => 0.11578608464396
1204 => 0.11680860718857
1205 => 0.11653920862432
1206 => 0.11169735713032
1207 => 0.11119135670939
1208 => 0.1112068750199
1209 => 0.10993451290246
1210 => 0.10799385527147
1211 => 0.11309378765507
1212 => 0.11268419171116
1213 => 0.11223202948929
1214 => 0.11228741678146
1215 => 0.11450112457644
1216 => 0.11321706226043
1217 => 0.11663095238121
1218 => 0.11592915920331
1219 => 0.1152093676785
1220 => 0.11510987056439
1221 => 0.11483281223706
1222 => 0.11388267614381
1223 => 0.11273532971687
1224 => 0.11197775222437
1225 => 0.10329355730539
1226 => 0.10490529336871
1227 => 0.1067594487952
1228 => 0.10739949581837
1229 => 0.10630465109534
1230 => 0.11392590728663
1231 => 0.11531838423303
]
'min_raw' => 0.048063606406004
'max_raw' => 0.12626340386914
'avg_raw' => 0.087163505137573
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.048063'
'max' => '$0.126263'
'avg' => '$0.087163'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0018635343222643
'max_diff' => -0.022770327132934
'year' => 2027
]
2 => [
'items' => [
101 => 0.11110048073336
102 => 0.11031148320444
103 => 0.11397763383327
104 => 0.1117664968354
105 => 0.11276217169015
106 => 0.1106100672592
107 => 0.11498297731313
108 => 0.11494966306514
109 => 0.11324850228751
110 => 0.11468631172772
111 => 0.11443645695473
112 => 0.11251585062656
113 => 0.11504386395945
114 => 0.11504511782253
115 => 0.11340778756048
116 => 0.1114957442721
117 => 0.11115391609258
118 => 0.11089639447747
119 => 0.1126988371592
120 => 0.11431490163154
121 => 0.11732199695821
122 => 0.11807805217016
123 => 0.12102898599584
124 => 0.11927184858101
125 => 0.12005076483826
126 => 0.12089638861994
127 => 0.12130181175767
128 => 0.12064119651095
129 => 0.12522521139505
130 => 0.12561224270186
131 => 0.12574201095122
201 => 0.12419630692397
202 => 0.1255692538767
203 => 0.12492689746474
204 => 0.12659813039691
205 => 0.12686020106004
206 => 0.1266382365318
207 => 0.12672142189678
208 => 0.12280977386884
209 => 0.12260693428301
210 => 0.1198412021373
211 => 0.12096825842993
212 => 0.11886128071206
213 => 0.11952942505067
214 => 0.11982393670882
215 => 0.119670100532
216 => 0.1210319805017
217 => 0.11987410431375
218 => 0.1168182786813
219 => 0.1137616204912
220 => 0.11372324663752
221 => 0.11291848249056
222 => 0.11233678541222
223 => 0.11244884090632
224 => 0.11284373908316
225 => 0.1123138332123
226 => 0.11242691549676
227 => 0.11430483488209
228 => 0.11468143822212
229 => 0.1134015929243
301 => 0.10826282937277
302 => 0.10700176390761
303 => 0.10790819275595
304 => 0.10747497814794
305 => 0.086740695443513
306 => 0.091611907608956
307 => 0.088717598750984
308 => 0.090051429433485
309 => 0.087097089567142
310 => 0.08850705540158
311 => 0.088246686195667
312 => 0.096079451208052
313 => 0.095957153356
314 => 0.096015690865919
315 => 0.093221542998807
316 => 0.097672696420499
317 => 0.099865494654324
318 => 0.099459666060678
319 => 0.099561804374465
320 => 0.097806729743184
321 => 0.096032683824753
322 => 0.094064993877504
323 => 0.097720718585665
324 => 0.097314264403419
325 => 0.098246524059892
326 => 0.10061752284973
327 => 0.10096666142809
328 => 0.10143590721801
329 => 0.10126771600551
330 => 0.10527471304372
331 => 0.10478943926338
401 => 0.10595880945121
402 => 0.1035533262545
403 => 0.10083129368686
404 => 0.10134866308802
405 => 0.10129883625427
406 => 0.10066448347201
407 => 0.10009181814401
408 => 0.099138491720357
409 => 0.10215495759057
410 => 0.10203249458495
411 => 0.10401502829823
412 => 0.1036645962071
413 => 0.10132432493728
414 => 0.10140790818352
415 => 0.10197004568319
416 => 0.10391560998792
417 => 0.10449318593769
418 => 0.10422562974534
419 => 0.10485891540691
420 => 0.10535943857268
421 => 0.10492177341034
422 => 0.11111818915493
423 => 0.10854500532518
424 => 0.1097991572197
425 => 0.11009826505665
426 => 0.10933210662186
427 => 0.10949825895229
428 => 0.10974993445909
429 => 0.11127805885327
430 => 0.11528829942995
501 => 0.11706440768273
502 => 0.12240791699286
503 => 0.11691692661696
504 => 0.11659111397203
505 => 0.11755364135731
506 => 0.12069084699026
507 => 0.12323325749302
508 => 0.12407672173197
509 => 0.12418819945522
510 => 0.12577059443993
511 => 0.12667759373525
512 => 0.12557845006767
513 => 0.12464704089453
514 => 0.12131084884713
515 => 0.12169702216077
516 => 0.12435737334207
517 => 0.12811527607957
518 => 0.13133994757148
519 => 0.13021078000616
520 => 0.13882553146149
521 => 0.13967964888018
522 => 0.13956163746984
523 => 0.14150744405933
524 => 0.13764541423581
525 => 0.13599432166295
526 => 0.12484842212971
527 => 0.12797996526322
528 => 0.13253184711685
529 => 0.13192938848484
530 => 0.12862369021058
531 => 0.13133743990291
601 => 0.13044018938783
602 => 0.12973249067962
603 => 0.13297459565606
604 => 0.12940976805614
605 => 0.13249628523459
606 => 0.12853779502729
607 => 0.13021593794849
608 => 0.12926334286378
609 => 0.12987978862925
610 => 0.12627605928037
611 => 0.12822054416144
612 => 0.12619516231644
613 => 0.12619420202173
614 => 0.12614949160525
615 => 0.12853234436397
616 => 0.12861004910688
617 => 0.1268491173179
618 => 0.12659533953618
619 => 0.12753368900551
620 => 0.12643512753104
621 => 0.12694913753068
622 => 0.1264506963703
623 => 0.12633848676632
624 => 0.12544438155093
625 => 0.1250591764402
626 => 0.12521022528963
627 => 0.12469461769551
628 => 0.12438394546971
629 => 0.12608769108003
630 => 0.12517744852934
701 => 0.12594818335442
702 => 0.12506983374675
703 => 0.12202509132785
704 => 0.12027402776518
705 => 0.11452279158365
706 => 0.11615383503035
707 => 0.11723521852294
708 => 0.11687782128509
709 => 0.11764564884637
710 => 0.11769278722259
711 => 0.11744315865534
712 => 0.11715412075387
713 => 0.11701343308824
714 => 0.11806200368466
715 => 0.11867073420914
716 => 0.11734374982347
717 => 0.11703285594839
718 => 0.11837451042712
719 => 0.1191929188841
720 => 0.12523558710645
721 => 0.12478792672697
722 => 0.12591146643054
723 => 0.12578497310204
724 => 0.12696262170528
725 => 0.12888757946016
726 => 0.12497360211785
727 => 0.12565293324932
728 => 0.12548637694393
729 => 0.12730479501277
730 => 0.12731047191549
731 => 0.1262202394465
801 => 0.12681127215494
802 => 0.12648137391123
803 => 0.12707754462605
804 => 0.12478194794968
805 => 0.12757773690715
806 => 0.12916276908937
807 => 0.12918477726275
808 => 0.12993606993753
809 => 0.13069942680705
810 => 0.13216462384371
811 => 0.13065856325693
812 => 0.12794930687337
813 => 0.12814490643342
814 => 0.12655647040701
815 => 0.12658317230359
816 => 0.12644063548699
817 => 0.12686839920328
818 => 0.12487581803017
819 => 0.12534347284878
820 => 0.12468875336414
821 => 0.12565151001702
822 => 0.12461574300789
823 => 0.12548629662544
824 => 0.12586199870746
825 => 0.1272483474784
826 => 0.12441097816722
827 => 0.1186253900687
828 => 0.11984159083048
829 => 0.1180427343733
830 => 0.11820922538714
831 => 0.11854556373195
901 => 0.11745538111336
902 => 0.11766335360138
903 => 0.11765592336063
904 => 0.11759189355997
905 => 0.11730829495603
906 => 0.11689702087203
907 => 0.11853541023918
908 => 0.11881380451877
909 => 0.11943264051654
910 => 0.12127387668545
911 => 0.12108989377283
912 => 0.12138997753668
913 => 0.1207348963651
914 => 0.11823961272387
915 => 0.11837511863076
916 => 0.1166853578005
917 => 0.11938942953301
918 => 0.11874906965475
919 => 0.11833622547545
920 => 0.11822357711615
921 => 0.12006937735338
922 => 0.12062166971374
923 => 0.12027751817773
924 => 0.11957165333686
925 => 0.12092712250153
926 => 0.12128978886734
927 => 0.12137097649202
928 => 0.12377260796637
929 => 0.12150520101264
930 => 0.12205098840249
1001 => 0.12630906581622
1002 => 0.12244757717649
1003 => 0.12449309383043
1004 => 0.12439297643457
1005 => 0.12543939353822
1006 => 0.12430713968945
1007 => 0.1243211753329
1008 => 0.1252503228305
1009 => 0.12394550274275
1010 => 0.1236224109393
1011 => 0.12317606192685
1012 => 0.12415064866617
1013 => 0.12473486933963
1014 => 0.12944325890487
1015 => 0.13248509329266
1016 => 0.13235303923962
1017 => 0.13355976608959
1018 => 0.13301612459133
1019 => 0.13126056278805
1020 => 0.13425709271829
1021 => 0.13330886526822
1022 => 0.13338703598711
1023 => 0.13338412646905
1024 => 0.13401461482786
1025 => 0.13356785604223
1026 => 0.13268724861691
1027 => 0.13327183692207
1028 => 0.13500785519423
1029 => 0.14039650917857
1030 => 0.14341207133838
1031 => 0.1402149685501
1101 => 0.14242028724254
1102 => 0.14109788186247
1103 => 0.14085756146676
1104 => 0.14224266457739
1105 => 0.14363019212765
1106 => 0.14354181262114
1107 => 0.14253453886998
1108 => 0.14196555548657
1109 => 0.14627408828915
1110 => 0.14944854186414
1111 => 0.14923206541213
1112 => 0.15018752206938
1113 => 0.15299277236622
1114 => 0.15324924929682
1115 => 0.15321693909862
1116 => 0.15258123426553
1117 => 0.15534336749055
1118 => 0.15764758762198
1119 => 0.15243408696394
1120 => 0.15441931976479
1121 => 0.15531055472929
1122 => 0.15661915207469
1123 => 0.15882697514274
1124 => 0.1612252565908
1125 => 0.16156439988337
1126 => 0.16132376148779
1127 => 0.15974203040353
1128 => 0.16236625858145
1129 => 0.16390346990234
1130 => 0.16481884406548
1201 => 0.16714008063947
1202 => 0.15531605869302
1203 => 0.14694642826731
1204 => 0.1456393896174
1205 => 0.14829730410874
1206 => 0.14899817496363
1207 => 0.14871565480084
1208 => 0.13929487482319
1209 => 0.1455897911605
1210 => 0.15236259184783
1211 => 0.15262276270533
1212 => 0.156013368342
1213 => 0.15711748852292
1214 => 0.15984737047728
1215 => 0.15967661561776
1216 => 0.16034129843174
1217 => 0.16018849936351
1218 => 0.16524503083949
1219 => 0.17082313595968
1220 => 0.17062998391666
1221 => 0.16982806530849
1222 => 0.17101905118906
1223 => 0.17677625345918
1224 => 0.17624622253143
1225 => 0.17676110242981
1226 => 0.18354916836798
1227 => 0.19237461967871
1228 => 0.18827431148405
1229 => 0.19717080043457
1230 => 0.2027706686463
1231 => 0.21245506168132
]
'min_raw' => 0.086740695443513
'max_raw' => 0.21245506168132
'avg_raw' => 0.14959787856242
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.08674'
'max' => '$0.212455'
'avg' => '$0.149597'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.038677089037509
'max_diff' => 0.086191657812177
'year' => 2028
]
3 => [
'items' => [
101 => 0.21124252797669
102 => 0.21501259111787
103 => 0.20907183958199
104 => 0.19543067323166
105 => 0.19327190644043
106 => 0.19759381222515
107 => 0.20821879587148
108 => 0.19725919367902
109 => 0.19947630692874
110 => 0.19883777816367
111 => 0.19880375367935
112 => 0.20010232985819
113 => 0.1982186773816
114 => 0.19054433832934
115 => 0.19406144269183
116 => 0.19270331979225
117 => 0.1942102584041
118 => 0.20234258458351
119 => 0.19874708932915
120 => 0.194959527153
121 => 0.19970997064922
122 => 0.20575891764941
123 => 0.20538038541714
124 => 0.20464587467234
125 => 0.20878627328305
126 => 0.21562499876496
127 => 0.2174734787825
128 => 0.21883798894093
129 => 0.21902613183819
130 => 0.22096412061013
131 => 0.21054306654736
201 => 0.22708154697663
202 => 0.22993728568047
203 => 0.22940052516239
204 => 0.23257455854384
205 => 0.23164067740556
206 => 0.23028763015766
207 => 0.23531914820353
208 => 0.22955091878651
209 => 0.22136364332894
210 => 0.21687194208697
211 => 0.2227869766176
212 => 0.2263990817992
213 => 0.2287864535512
214 => 0.22950887080086
215 => 0.21135202330932
216 => 0.2015664895363
217 => 0.20783890449343
218 => 0.21549168364009
219 => 0.2105005549728
220 => 0.2106961977671
221 => 0.2035801599331
222 => 0.21612129508916
223 => 0.21429415718447
224 => 0.22377335186616
225 => 0.22151106598008
226 => 0.22924098126278
227 => 0.22720543551117
228 => 0.23565487212025
301 => 0.23902558114298
302 => 0.24468552620111
303 => 0.24884900482599
304 => 0.25129387910917
305 => 0.2511470980277
306 => 0.26083490796921
307 => 0.255122344913
308 => 0.24794601936667
309 => 0.24781622227855
310 => 0.25153294296831
311 => 0.25932216990154
312 => 0.26134180311668
313 => 0.26247050256051
314 => 0.26074186007197
315 => 0.25454128229754
316 => 0.25186390425219
317 => 0.25414510791794
318 => 0.25135539186079
319 => 0.25617122443151
320 => 0.26278439115744
321 => 0.26141879837983
322 => 0.26598377029426
323 => 0.27070803597665
324 => 0.27746394808252
325 => 0.27923019367769
326 => 0.28214973048221
327 => 0.28515489287194
328 => 0.28612007004013
329 => 0.28796289273108
330 => 0.28795318014585
331 => 0.2935066503613
401 => 0.2996322999856
402 => 0.30194459090966
403 => 0.30726157638906
404 => 0.29815642508497
405 => 0.30506278694156
406 => 0.31129249821366
407 => 0.30386517961422
408 => 0.31410200796026
409 => 0.31449948080779
410 => 0.32050084890391
411 => 0.31441731261548
412 => 0.31080492818674
413 => 0.32123374667823
414 => 0.32627992344155
415 => 0.32475997393329
416 => 0.31319308312625
417 => 0.30646065654927
418 => 0.2888405976092
419 => 0.30971231855361
420 => 0.31987832498918
421 => 0.31316675562551
422 => 0.31655168082387
423 => 0.33501873514046
424 => 0.34204979377099
425 => 0.34058738272665
426 => 0.34083450611981
427 => 0.3446283377341
428 => 0.36145227641312
429 => 0.35137098238081
430 => 0.35907775392963
501 => 0.3631653977703
502 => 0.36696222917637
503 => 0.35763841124394
504 => 0.34550826110794
505 => 0.3416661333708
506 => 0.31249942232287
507 => 0.31098116834822
508 => 0.31012892638444
509 => 0.30475566135485
510 => 0.30053374690276
511 => 0.29717632378082
512 => 0.28836544289744
513 => 0.29133885654946
514 => 0.27729615139511
515 => 0.28628017650995
516 => 0.26386768001064
517 => 0.2825334730862
518 => 0.27237453054464
519 => 0.27919598723741
520 => 0.27917218781763
521 => 0.26661172330142
522 => 0.25936710949868
523 => 0.26398365937838
524 => 0.26893296731159
525 => 0.26973597587229
526 => 0.27615288279786
527 => 0.27794370358983
528 => 0.27251743298472
529 => 0.26340323083722
530 => 0.26552025212327
531 => 0.25932420812989
601 => 0.24846587935888
602 => 0.25626452065045
603 => 0.25892731966945
604 => 0.26010336341255
605 => 0.24942544415375
606 => 0.24607021009373
607 => 0.24428391163331
608 => 0.26202484554848
609 => 0.26299673395625
610 => 0.25802441545094
611 => 0.28049976658951
612 => 0.27541290242481
613 => 0.28109617600876
614 => 0.26532815463113
615 => 0.26593051428221
616 => 0.25846568026828
617 => 0.26264548851569
618 => 0.25969133476793
619 => 0.26230780131497
620 => 0.26387610057517
621 => 0.27133970968329
622 => 0.28261869551325
623 => 0.27022489537197
624 => 0.26482473916792
625 => 0.26817496570528
626 => 0.27709706046195
627 => 0.29061449073195
628 => 0.28261189994847
629 => 0.28616331384537
630 => 0.28693913979044
701 => 0.28103832561872
702 => 0.29083206216729
703 => 0.29608060514784
704 => 0.30146452421295
705 => 0.30613923028319
706 => 0.29931406854343
707 => 0.30661796995348
708 => 0.30073231472914
709 => 0.29545227354505
710 => 0.29546028118802
711 => 0.29214803422415
712 => 0.28573013836167
713 => 0.28454657989644
714 => 0.29070360049952
715 => 0.29564094795117
716 => 0.29604761153558
717 => 0.29878118077489
718 => 0.30039887889271
719 => 0.31625451960127
720 => 0.32263178945899
721 => 0.33042979432548
722 => 0.33346755669244
723 => 0.34261013231894
724 => 0.33522675997686
725 => 0.33362932092706
726 => 0.31145242297088
727 => 0.31508388876883
728 => 0.32089821589568
729 => 0.31154829908366
730 => 0.3174786692467
731 => 0.3186494499393
801 => 0.31123059248817
802 => 0.31519332480273
803 => 0.30466948264352
804 => 0.28284808651398
805 => 0.29085635561916
806 => 0.29675313723481
807 => 0.28833770280135
808 => 0.30342204330103
809 => 0.29461008298511
810 => 0.29181711461365
811 => 0.28092074923148
812 => 0.2860634142523
813 => 0.29301894232883
814 => 0.28872123464446
815 => 0.29763962339357
816 => 0.31027044030971
817 => 0.3192719126223
818 => 0.31996293389474
819 => 0.31417559024955
820 => 0.3234498453753
821 => 0.32351739819896
822 => 0.31305600053066
823 => 0.30664845270814
824 => 0.30519264436127
825 => 0.3088295390398
826 => 0.31324540058732
827 => 0.32020798347779
828 => 0.32441532649736
829 => 0.33538584569007
830 => 0.33835415363418
831 => 0.34161542413002
901 => 0.34597348725104
902 => 0.35120645941228
903 => 0.33975701423677
904 => 0.34021192203803
905 => 0.32955035721895
906 => 0.31815694618672
907 => 0.32680312495145
908 => 0.33810685353338
909 => 0.33551376570717
910 => 0.33522199035475
911 => 0.33571267556579
912 => 0.33375757202717
913 => 0.32491471118148
914 => 0.32047388182401
915 => 0.32620368467154
916 => 0.32924881988082
917 => 0.33397155902671
918 => 0.33338938174205
919 => 0.34555465059671
920 => 0.35028170621499
921 => 0.34907232310572
922 => 0.34929487870326
923 => 0.35785298710656
924 => 0.36737136376026
925 => 0.37628657955688
926 => 0.38535551998263
927 => 0.37442255833262
928 => 0.36887147465808
929 => 0.37459877605293
930 => 0.37155978931522
1001 => 0.38902270853214
1002 => 0.39023180316996
1003 => 0.40769345961905
1004 => 0.42426665088461
1005 => 0.41385732639028
1006 => 0.42367285054216
1007 => 0.43428914018385
1008 => 0.45476968533359
1009 => 0.44787255824143
1010 => 0.44258946698059
1011 => 0.43759697126681
1012 => 0.44798556231081
1013 => 0.46135031872713
1014 => 0.46422895925316
1015 => 0.46889345663064
1016 => 0.46398930798582
1017 => 0.46989581485425
1018 => 0.49074837955046
1019 => 0.48511383249886
1020 => 0.47711186988696
1021 => 0.49357296701301
1022 => 0.49953017407204
1023 => 0.54134097302582
1024 => 0.59412883382293
1025 => 0.57227431282914
1026 => 0.55870850640731
1027 => 0.56189679270167
1028 => 0.58117313248292
1029 => 0.58736408102021
1030 => 0.57053494874791
1031 => 0.57647928277365
1101 => 0.60923314768951
1102 => 0.62680454534707
1103 => 0.60294022717456
1104 => 0.53709951980917
1105 => 0.47639138070513
1106 => 0.49249391291865
1107 => 0.49066838548539
1108 => 0.52585832720962
1109 => 0.48497945041515
1110 => 0.48566774586065
1111 => 0.52158537831294
1112 => 0.51200316975878
1113 => 0.49648121909758
1114 => 0.47650470812258
1115 => 0.43957627998166
1116 => 0.40686774135185
1117 => 0.47101671793148
1118 => 0.46825049741403
1119 => 0.46424460017383
1120 => 0.47315929099853
1121 => 0.5164464991641
1122 => 0.51544858890887
1123 => 0.50910039300334
1124 => 0.51391544364725
1125 => 0.49563711743928
1126 => 0.50034785829282
1127 => 0.47638176422573
1128 => 0.48721543965655
1129 => 0.49644791596272
1130 => 0.49830147227034
1201 => 0.50247762927632
1202 => 0.46679282489936
1203 => 0.4828142544138
1204 => 0.4922253432486
1205 => 0.44970570151463
1206 => 0.49138486664259
1207 => 0.46617163184668
1208 => 0.45761388126687
1209 => 0.46913576502468
1210 => 0.46464567571886
1211 => 0.46078536060061
1212 => 0.45863123843599
1213 => 0.46709163824382
1214 => 0.46669695048042
1215 => 0.45285409430197
1216 => 0.43479665272419
1217 => 0.44085732283301
1218 => 0.43865542456339
1219 => 0.43067546118376
1220 => 0.43605299299718
1221 => 0.41237306439746
1222 => 0.37163297801723
1223 => 0.3985471269826
1224 => 0.3975109615244
1225 => 0.39698847991401
1226 => 0.41721371900905
1227 => 0.41526952894571
1228 => 0.4117408049432
1229 => 0.43061065340019
1230 => 0.42372290487811
1231 => 0.44494932286551
]
'min_raw' => 0.19054433832934
'max_raw' => 0.62680454534707
'avg_raw' => 0.40867444183821
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.190544'
'max' => '$0.6268045'
'avg' => '$0.408674'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.10380364288583
'max_diff' => 0.41434948366575
'year' => 2029
]
4 => [
'items' => [
101 => 0.45893041459066
102 => 0.45538435748822
103 => 0.4685336418322
104 => 0.44099694843148
105 => 0.45014353339882
106 => 0.45202863188397
107 => 0.43037780239933
108 => 0.41558762248428
109 => 0.41460128610434
110 => 0.38895715234399
111 => 0.40265604160655
112 => 0.41471049725906
113 => 0.40893734846505
114 => 0.40710974202479
115 => 0.41644658696863
116 => 0.41717213978544
117 => 0.40062945867162
118 => 0.40406920591377
119 => 0.4184135237239
120 => 0.40370776590868
121 => 0.37513688064561
122 => 0.36805090607698
123 => 0.3671055064491
124 => 0.34788778142323
125 => 0.36852442478056
126 => 0.35951597692743
127 => 0.38797355575769
128 => 0.3717187393509
129 => 0.37101802670369
130 => 0.36995879676524
131 => 0.35341730696126
201 => 0.35703884196181
202 => 0.36907737587901
203 => 0.37337286040446
204 => 0.37292480617659
205 => 0.36901838049522
206 => 0.37080672216801
207 => 0.3650458505404
208 => 0.36301156686651
209 => 0.35659080801792
210 => 0.3471540662904
211 => 0.34846630310651
212 => 0.3297696484865
213 => 0.31958271874295
214 => 0.31676311085152
215 => 0.31299261333956
216 => 0.3171889985784
217 => 0.32971668321307
218 => 0.3146056376471
219 => 0.28869880994085
220 => 0.29025585442908
221 => 0.29375407110348
222 => 0.28723516747375
223 => 0.28106557227833
224 => 0.28642953474567
225 => 0.27545247032285
226 => 0.29508059689543
227 => 0.29454971107883
228 => 0.30186586286988
301 => 0.30644080272738
302 => 0.29589704751022
303 => 0.29324532158645
304 => 0.29475586518686
305 => 0.26978994424966
306 => 0.29982561449742
307 => 0.30008536422098
308 => 0.29786122938922
309 => 0.31385429654887
310 => 0.34760465661848
311 => 0.33490641355521
312 => 0.32998927003468
313 => 0.32064177660774
314 => 0.33309675659989
315 => 0.33214040846445
316 => 0.32781543951172
317 => 0.32519968479439
318 => 0.33001929306449
319 => 0.32460248199348
320 => 0.32362947388111
321 => 0.31773410336342
322 => 0.31562972431088
323 => 0.31407172583811
324 => 0.31235652260537
325 => 0.31613983353479
326 => 0.30756635323273
327 => 0.29722757645709
328 => 0.29636801903531
329 => 0.29874133264991
330 => 0.29769131804787
331 => 0.29636299196937
401 => 0.29382685573743
402 => 0.29307443829339
403 => 0.29551942996547
404 => 0.29275917691956
405 => 0.29683208064756
406 => 0.29572447619759
407 => 0.28953748777678
408 => 0.28182620948795
409 => 0.28175756293623
410 => 0.28009618067793
411 => 0.2779801605815
412 => 0.27739153219865
413 => 0.28597779678798
414 => 0.3037511075226
415 => 0.30026178134612
416 => 0.30278317710916
417 => 0.31518594874622
418 => 0.31912841688528
419 => 0.31633014638265
420 => 0.31249970112884
421 => 0.31266822128017
422 => 0.32575801226707
423 => 0.32657440647466
424 => 0.32863717125849
425 => 0.33128840694296
426 => 0.31678166328398
427 => 0.3119849549584
428 => 0.30971200844249
429 => 0.3027122129145
430 => 0.31026089227432
501 => 0.30586260007803
502 => 0.30645607996237
503 => 0.30606957540913
504 => 0.30628063303052
505 => 0.29507511043403
506 => 0.29915781392326
507 => 0.29236952751905
508 => 0.28328077404472
509 => 0.28325030535615
510 => 0.28547476489296
511 => 0.28415156931735
512 => 0.28059088404586
513 => 0.28109666258272
514 => 0.27666551039468
515 => 0.28163468468694
516 => 0.28177718282509
517 => 0.27986378004981
518 => 0.28751947866095
519 => 0.29065602462839
520 => 0.28939658193265
521 => 0.29056765877144
522 => 0.30040677860211
523 => 0.30201098444541
524 => 0.30272346671311
525 => 0.3017688348602
526 => 0.29074749982002
527 => 0.29123634289539
528 => 0.28764953676082
529 => 0.28461906354542
530 => 0.2847402665813
531 => 0.28629832374795
601 => 0.29310245077358
602 => 0.3074213349738
603 => 0.30796472616223
604 => 0.30862333213445
605 => 0.3059444506566
606 => 0.30513647436944
607 => 0.30620240364858
608 => 0.31157982370302
609 => 0.32541200803834
610 => 0.32052279027371
611 => 0.31654778012586
612 => 0.32003493568057
613 => 0.31949811541615
614 => 0.31496681214763
615 => 0.31483963355686
616 => 0.30614261383929
617 => 0.30292752367127
618 => 0.30024075368153
619 => 0.29730687099265
620 => 0.29556756699005
621 => 0.29823992843758
622 => 0.29885112911909
623 => 0.29300796410916
624 => 0.29221156230955
625 => 0.29698321699013
626 => 0.29488338967042
627 => 0.29704311414195
628 => 0.29754418874512
629 => 0.29746350419328
630 => 0.29527104330788
701 => 0.29666845249611
702 => 0.29336316317821
703 => 0.2897691574834
704 => 0.28747640576458
705 => 0.28547567580052
706 => 0.28658579706769
707 => 0.28262841745038
708 => 0.28136237206448
709 => 0.29619504170584
710 => 0.30715209424798
711 => 0.30699277436455
712 => 0.3060229555479
713 => 0.30458200150694
714 => 0.31147440893978
715 => 0.30907323200821
716 => 0.31082028885097
717 => 0.3112649881412
718 => 0.31261095895786
719 => 0.31309202783471
720 => 0.31163790356504
721 => 0.30675768490969
722 => 0.29459664401783
723 => 0.28893564665456
724 => 0.28706742323332
725 => 0.28713532960642
726 => 0.2852621686889
727 => 0.28581389852829
728 => 0.2850702995667
729 => 0.28366210302935
730 => 0.2864988448997
731 => 0.28682575297418
801 => 0.2861636235251
802 => 0.28631957897979
803 => 0.28083742994059
804 => 0.28125422582544
805 => 0.27893345337475
806 => 0.27849833651757
807 => 0.27263162585498
808 => 0.2622378975229
809 => 0.2679970319625
810 => 0.26104080741631
811 => 0.25840637977667
812 => 0.27087735048518
813 => 0.26962561091693
814 => 0.26748317689419
815 => 0.2643140704522
816 => 0.26313861804578
817 => 0.25599694132737
818 => 0.25557497296748
819 => 0.25911458079062
820 => 0.25748117357071
821 => 0.25518725121427
822 => 0.24687889697042
823 => 0.23753755599878
824 => 0.23781951236514
825 => 0.24079081912639
826 => 0.24943029427004
827 => 0.24605470186698
828 => 0.2436056708481
829 => 0.24314704095586
830 => 0.24888775426389
831 => 0.25701206631137
901 => 0.2608238117528
902 => 0.25704648778477
903 => 0.25270730139585
904 => 0.25297140756549
905 => 0.25472838759046
906 => 0.25491302134872
907 => 0.2520886570851
908 => 0.2528836990815
909 => 0.25167595758881
910 => 0.24426405027746
911 => 0.24412999237761
912 => 0.24231099079025
913 => 0.24225591214511
914 => 0.2391613366738
915 => 0.23872838417358
916 => 0.232583916748
917 => 0.23662822381467
918 => 0.23391551497
919 => 0.22982682287775
920 => 0.22912193081992
921 => 0.22910074091348
922 => 0.2332989134774
923 => 0.23657916572397
924 => 0.23396270370176
925 => 0.23336698601729
926 => 0.23972769236289
927 => 0.23891823450129
928 => 0.23821724921358
929 => 0.25628462327575
930 => 0.24198288689076
1001 => 0.23574651351234
1002 => 0.22802781720135
1003 => 0.23054106364125
1004 => 0.23107064159341
1005 => 0.21250856836507
1006 => 0.2049779375681
1007 => 0.20239370886441
1008 => 0.2009064487098
1009 => 0.2015842118381
1010 => 0.19480576086592
1011 => 0.19936099202445
1012 => 0.19349142645075
1013 => 0.1925073746811
1014 => 0.20300288502653
1015 => 0.20446327397721
1016 => 0.19823280100631
1017 => 0.20223377327558
1018 => 0.20078296511307
1019 => 0.19359204330584
1020 => 0.19331740298564
1021 => 0.18970925119589
1022 => 0.1840631923208
1023 => 0.1814827919109
1024 => 0.18013889697336
1025 => 0.18069341421658
1026 => 0.1804130333299
1027 => 0.17858335838737
1028 => 0.18051790815586
1029 => 0.17557593290853
1030 => 0.17360799854484
1031 => 0.1727191282485
1101 => 0.16833284076701
1102 => 0.17531337474095
1103 => 0.17668862787227
1104 => 0.17806659067709
1105 => 0.19006081611791
1106 => 0.18946161851022
1107 => 0.1948780730627
1108 => 0.19466759959901
1109 => 0.1931227390199
1110 => 0.18660522635384
1111 => 0.18920299073904
1112 => 0.18120747574362
1113 => 0.18719825922036
1114 => 0.18446431582268
1115 => 0.18627391020751
1116 => 0.18302009633904
1117 => 0.18482089128053
1118 => 0.17701475140823
1119 => 0.16972548783083
1120 => 0.17265890028125
1121 => 0.17584785509125
1122 => 0.18276232164992
1123 => 0.17864412241069
1124 => 0.18012518258347
1125 => 0.17516387893113
1126 => 0.16492729237003
1127 => 0.16498523033827
1128 => 0.16341055451201
1129 => 0.16204980469168
1130 => 0.1791171471328
1201 => 0.17699455330549
1202 => 0.17361247783988
1203 => 0.17813952024893
1204 => 0.17933654211571
1205 => 0.17937061964544
1206 => 0.18267343292721
1207 => 0.18443614496775
1208 => 0.18474683060493
1209 => 0.18994387866579
1210 => 0.19168586062507
1211 => 0.19886083778083
1212 => 0.18428659116649
1213 => 0.18398644414832
1214 => 0.17820322501943
1215 => 0.17453541601882
1216 => 0.17845436303965
1217 => 0.1819260151105
1218 => 0.17831109892647
1219 => 0.17878313066506
1220 => 0.1739304010375
1221 => 0.1756650235372
1222 => 0.17715911411283
1223 => 0.17633416511555
1224 => 0.17509917653864
1225 => 0.18164137923089
1226 => 0.18127224251589
1227 => 0.1873644920675
1228 => 0.19211383625392
1229 => 0.20062551008282
1230 => 0.19174313471878
1231 => 0.19141942565627
]
'min_raw' => 0.16204980469168
'max_raw' => 0.4685336418322
'avg_raw' => 0.31529172326194
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.162049'
'max' => '$0.468533'
'avg' => '$0.315291'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.028494533637662
'max_diff' => -0.15827090351487
'year' => 2030
]
5 => [
'items' => [
101 => 0.19458373366687
102 => 0.191685376186
103 => 0.19351703806601
104 => 0.20033040103657
105 => 0.20047435665978
106 => 0.19806291449465
107 => 0.19791617801975
108 => 0.19837932186585
109 => 0.20109196983849
110 => 0.2001440872856
111 => 0.20124100097325
112 => 0.20261270833621
113 => 0.20828667158127
114 => 0.20965464491054
115 => 0.20633117893326
116 => 0.20663125069974
117 => 0.20538818319306
118 => 0.20418739555719
119 => 0.20688659080166
120 => 0.21181942316376
121 => 0.21178873626965
122 => 0.21293305749709
123 => 0.21364596014172
124 => 0.21058566011434
125 => 0.20859351732686
126 => 0.20935743163492
127 => 0.21057894724939
128 => 0.20896131058432
129 => 0.19897650772532
130 => 0.20200525908106
131 => 0.20150112675709
201 => 0.20078318102317
202 => 0.20382861393202
203 => 0.20353487449858
204 => 0.19473623805379
205 => 0.19529949821188
206 => 0.19477049176958
207 => 0.19647981980918
208 => 0.19159306686232
209 => 0.193096199156
210 => 0.1940389496396
211 => 0.19459423691699
212 => 0.19660031532697
213 => 0.19636492517963
214 => 0.19658568314491
215 => 0.19956016784186
216 => 0.21460409071912
217 => 0.21542289824879
218 => 0.21139079050793
219 => 0.2130015380206
220 => 0.20990925502804
221 => 0.21198512531744
222 => 0.21340538304806
223 => 0.20698751146326
224 => 0.20660748675965
225 => 0.2035024408152
226 => 0.20517091662695
227 => 0.20251625164279
228 => 0.20316761357367
301 => 0.20134634883023
302 => 0.20462426275822
303 => 0.20828947986604
304 => 0.20921545845129
305 => 0.20677960745235
306 => 0.20501589079872
307 => 0.20191938535933
308 => 0.20706894291516
309 => 0.20857483047441
310 => 0.20706103312889
311 => 0.20671025320681
312 => 0.20604552588831
313 => 0.2068512782498
314 => 0.20856662908736
315 => 0.20775770130992
316 => 0.20829201235839
317 => 0.20625576962078
318 => 0.21058667320099
319 => 0.21746519037506
320 => 0.21748730593253
321 => 0.21667837379467
322 => 0.21634737619254
323 => 0.21717738965609
324 => 0.21762763791113
325 => 0.22031174925382
326 => 0.22319190766424
327 => 0.23663235025409
328 => 0.23285832775766
329 => 0.24478348799888
330 => 0.25421474146144
331 => 0.25704276199613
401 => 0.25444111617286
402 => 0.24554102634962
403 => 0.24510434548277
404 => 0.25840483719969
405 => 0.25464683908855
406 => 0.25419983717108
407 => 0.24944449199086
408 => 0.25225548995333
409 => 0.25164068346408
410 => 0.25067018134345
411 => 0.25603336964002
412 => 0.26607277935609
413 => 0.26450804320285
414 => 0.26334004025048
415 => 0.25822219131375
416 => 0.26130427948661
417 => 0.26020680692176
418 => 0.26492224553363
419 => 0.26212892415971
420 => 0.25461836855676
421 => 0.25581444929165
422 => 0.25563366409475
423 => 0.25935421063632
424 => 0.25823739491419
425 => 0.25541558790075
426 => 0.26603846574511
427 => 0.26534867514544
428 => 0.26632664050768
429 => 0.26675717110472
430 => 0.27322312965247
501 => 0.27587202598189
502 => 0.27647337182413
503 => 0.27898961846408
504 => 0.27641076531548
505 => 0.28672801660102
506 => 0.29358838667761
507 => 0.30155705955298
508 => 0.31320143240125
509 => 0.31757982430867
510 => 0.31678890700006
511 => 0.32561753759822
512 => 0.34148239053369
513 => 0.31999564737182
514 => 0.34262124009516
515 => 0.33545823866398
516 => 0.31847489112755
517 => 0.31738136376671
518 => 0.32888268389911
519 => 0.35439150499171
520 => 0.34800183462667
521 => 0.35440195620339
522 => 0.34693587442167
523 => 0.34656512053213
524 => 0.35403934527586
525 => 0.37150327878837
526 => 0.36320681860233
527 => 0.35131180855016
528 => 0.36009489886583
529 => 0.35248617319776
530 => 0.33534158471937
531 => 0.34799694856616
601 => 0.33953466716582
602 => 0.34200441075806
603 => 0.35979086759221
604 => 0.3576507540488
605 => 0.36042025914315
606 => 0.35553215514219
607 => 0.35096589522203
608 => 0.34244263198615
609 => 0.33991931393381
610 => 0.340616668264
611 => 0.33991896835964
612 => 0.33515028091199
613 => 0.33412048331171
614 => 0.33240410886143
615 => 0.33293608507321
616 => 0.32970879896362
617 => 0.33579935464374
618 => 0.33692981544777
619 => 0.34136201396156
620 => 0.34182217951452
621 => 0.35416578928705
622 => 0.34736713645027
623 => 0.35192825974063
624 => 0.35152026994258
625 => 0.31884297176667
626 => 0.32334561514107
627 => 0.3303503152243
628 => 0.32719470733145
629 => 0.32273341606949
630 => 0.31913068417615
701 => 0.31367217695949
702 => 0.3213549210456
703 => 0.33145691255007
704 => 0.3420783826899
705 => 0.35483938311661
706 => 0.35199127637579
707 => 0.34183982466329
708 => 0.34229521137147
709 => 0.34511023281339
710 => 0.34146452427443
711 => 0.34038933365361
712 => 0.34496251813276
713 => 0.34499401114089
714 => 0.34079918286823
715 => 0.33613739888864
716 => 0.33611786584355
717 => 0.33528834641187
718 => 0.34708344408578
719 => 0.35356955518754
720 => 0.35431317737247
721 => 0.35351950348963
722 => 0.35382495706734
723 => 0.35005083192893
724 => 0.3586773628133
725 => 0.36659392062828
726 => 0.36447211402127
727 => 0.36129122428479
728 => 0.35875749239728
729 => 0.36387524731173
730 => 0.36364736174148
731 => 0.36652477640202
801 => 0.36639424025226
802 => 0.36542667392696
803 => 0.36447214857611
804 => 0.36825673369758
805 => 0.36716683396118
806 => 0.36607524130944
807 => 0.36388588513191
808 => 0.36418345499779
809 => 0.36100311448678
810 => 0.3595317434439
811 => 0.33740585327178
812 => 0.33149309243348
813 => 0.33335336735855
814 => 0.3339658181659
815 => 0.33139257707166
816 => 0.3350819437894
817 => 0.33450695989445
818 => 0.33674388587539
819 => 0.33534635163853
820 => 0.33540370693109
821 => 0.33951355713596
822 => 0.34070666413499
823 => 0.34009984028573
824 => 0.34052483890905
825 => 0.35031875280267
826 => 0.34892637143873
827 => 0.34818669659033
828 => 0.34839159157837
829 => 0.35089414656207
830 => 0.35159472532307
831 => 0.34862632388392
901 => 0.35002623916275
902 => 0.3559869007443
903 => 0.35807279495362
904 => 0.36472996798374
905 => 0.36190188255873
906 => 0.36709295575301
907 => 0.38304854498495
908 => 0.39579497370621
909 => 0.38407283108569
910 => 0.40748002418439
911 => 0.42570588157416
912 => 0.42500634281078
913 => 0.4218282430032
914 => 0.40107858892444
915 => 0.38198444788125
916 => 0.39795750764394
917 => 0.39799822625816
918 => 0.39662612625874
919 => 0.3881041310041
920 => 0.39632957929637
921 => 0.39698248551137
922 => 0.39661703165275
923 => 0.39008323787189
924 => 0.38010734241546
925 => 0.38205660850873
926 => 0.38524954613345
927 => 0.37920464909328
928 => 0.37727293821572
929 => 0.38086435626014
930 => 0.39243665350092
1001 => 0.3902489777413
1002 => 0.39019184868613
1003 => 0.39955165330466
1004 => 0.39285205317005
1005 => 0.38208119499658
1006 => 0.37936141125761
1007 => 0.36970801125013
1008 => 0.37637564901953
1009 => 0.37661560543268
1010 => 0.37296380836799
1011 => 0.38237751820217
1012 => 0.3822907692088
1013 => 0.39122768565056
1014 => 0.40831171333466
1015 => 0.40325912569453
1016 => 0.39738351598902
1017 => 0.398022357677
1018 => 0.40502887419843
1019 => 0.40079257436636
1020 => 0.4023159773225
1021 => 0.4050265683456
1022 => 0.40666193521002
1023 => 0.39778705355207
1024 => 0.39571789410294
1025 => 0.3914851200463
1026 => 0.3903808683034
1027 => 0.3938283744528
1028 => 0.39292007838462
1029 => 0.37659543802531
1030 => 0.37488942227832
1031 => 0.37494174334566
1101 => 0.37065188563322
1102 => 0.36410882293795
1103 => 0.38130360103516
1104 => 0.37992261971319
1105 => 0.3783981232132
1106 => 0.37858486533579
1107 => 0.38604853572269
1108 => 0.3817192299739
1109 => 0.39322939886632
1110 => 0.39086325416939
1111 => 0.38843642678926
1112 => 0.38810096532236
1113 => 0.38716684382819
1114 => 0.38396339365339
1115 => 0.38009503506981
1116 => 0.37754080966145
1117 => 0.348261440181
1118 => 0.35369552084631
1119 => 0.35994693531972
1120 => 0.36210489854497
1121 => 0.35841355312167
1122 => 0.38410915046972
1123 => 0.38880398371414
1124 => 0.37458302758038
1125 => 0.37192286732557
1126 => 0.38428355013315
1127 => 0.37682854736816
1128 => 0.38018553465676
1129 => 0.37292956431268
1130 => 0.38767313586633
1201 => 0.38756081455333
1202 => 0.38182523222029
1203 => 0.3866729071326
1204 => 0.38583050432116
1205 => 0.37935504599329
1206 => 0.38787841944539
1207 => 0.38788264693228
1208 => 0.38236227363905
1209 => 0.37591568619766
1210 => 0.37476318862474
1211 => 0.3738949365198
1212 => 0.37997199786377
1213 => 0.38542067206229
1214 => 0.39555930390486
1215 => 0.39810839683803
1216 => 0.40805767625893
1217 => 0.40213336478541
1218 => 0.40475953532894
1219 => 0.40761061494845
1220 => 0.40897752736302
1221 => 0.40675021693604
1222 => 0.42220554316348
1223 => 0.42351044623603
1224 => 0.42394796894889
1225 => 0.41873651990341
1226 => 0.42336550641064
1227 => 0.42119975691983
1228 => 0.42683443543238
1229 => 0.42771802497033
1230 => 0.42696965606629
1231 => 0.42725012133215
]
'min_raw' => 0.19159306686232
'max_raw' => 0.42771802497033
'avg_raw' => 0.30965554591633
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.191593'
'max' => '$0.427718'
'avg' => '$0.309655'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.029543262170643
'max_diff' => -0.040815616861868
'year' => 2031
]
6 => [
'items' => [
101 => 0.41406172690341
102 => 0.41337783907796
103 => 0.40405298005144
104 => 0.40785292903062
105 => 0.40074910655033
106 => 0.40300180183631
107 => 0.4039947684539
108 => 0.40347609904323
109 => 0.40806777244451
110 => 0.40416391203652
111 => 0.39386098256577
112 => 0.38355524606877
113 => 0.38342586594192
114 => 0.38071254743362
115 => 0.3787513151212
116 => 0.37912911804302
117 => 0.38046054481716
118 => 0.37867393017668
119 => 0.37905519499389
120 => 0.3853867313137
121 => 0.38665647576819
122 => 0.38234138799066
123 => 0.36501568789967
124 => 0.36076391763911
125 => 0.36382000578613
126 => 0.36235939248914
127 => 0.29245231072977
128 => 0.30887594264273
129 => 0.29911757825389
130 => 0.30361468152502
131 => 0.29365391840023
201 => 0.2984077166517
202 => 0.29752986369557
203 => 0.32393857780102
204 => 0.32352624205426
205 => 0.32372360535591
206 => 0.31430294074077
207 => 0.32931031527161
208 => 0.33670348761324
209 => 0.33533520817571
210 => 0.33567957463171
211 => 0.32976221797695
212 => 0.32378089830303
213 => 0.31714669426615
214 => 0.32947222535427
215 => 0.3281018367011
216 => 0.33124501522119
217 => 0.33923900317899
218 => 0.34041614827198
219 => 0.3419982432144
220 => 0.34143117479873
221 => 0.35494104507266
222 => 0.35330491064149
223 => 0.35724752387261
224 => 0.34913726932942
225 => 0.33995974648138
226 => 0.34170409353897
227 => 0.34153609889017
228 => 0.33939733419568
229 => 0.33746655306013
301 => 0.33425234646364
302 => 0.34442257174799
303 => 0.34400967917446
304 => 0.35069393000484
305 => 0.34951242374322
306 => 0.34162203576451
307 => 0.34190384251479
308 => 0.34379912834212
309 => 0.35035873423049
310 => 0.35230607187019
311 => 0.35140398748749
312 => 0.35353915431008
313 => 0.35522670310888
314 => 0.35375108445725
315 => 0.37464273276006
316 => 0.3659670638241
317 => 0.37019552449857
318 => 0.3712039874539
319 => 0.36862083079952
320 => 0.36918102498195
321 => 0.37002956652455
322 => 0.37518174460976
323 => 0.3887025507001
324 => 0.39469082367827
325 => 0.41270683838928
326 => 0.39419358096822
327 => 0.39309508088833
328 => 0.3963403091693
329 => 0.4069176169935
330 => 0.41548953150901
331 => 0.41833333007941
401 => 0.41870918500649
402 => 0.42404434017672
403 => 0.42710235162555
404 => 0.42339651201055
405 => 0.42025620095441
406 => 0.40900799654109
407 => 0.41031000682978
408 => 0.41927956657734
409 => 0.43194959802521
410 => 0.44282180309957
411 => 0.43901473581713
412 => 0.4680599718115
413 => 0.47093968832119
414 => 0.47054180461193
415 => 0.47710222738029
416 => 0.46408112419197
417 => 0.45851435030697
418 => 0.42093517184879
419 => 0.43149338816077
420 => 0.44684037563253
421 => 0.44480914429239
422 => 0.43366375176425
423 => 0.4428133483199
424 => 0.43978820556427
425 => 0.43740214995961
426 => 0.44833313324419
427 => 0.43631406810275
428 => 0.44672047626364
429 => 0.43337415015679
430 => 0.43903212617979
501 => 0.43582038534363
502 => 0.43789877528078
503 => 0.42574855017668
504 => 0.43230451671281
505 => 0.42547580041476
506 => 0.4254725627141
507 => 0.42532181842334
508 => 0.43335577286484
509 => 0.43361775983075
510 => 0.42768065535985
511 => 0.42682502585059
512 => 0.4299887365999
513 => 0.42628485988962
514 => 0.42801788049044
515 => 0.42633735131816
516 => 0.42595902880412
517 => 0.42294449064599
518 => 0.42164574472101
519 => 0.42215501646275
520 => 0.4204166094606
521 => 0.41936915636088
522 => 0.4251134536378
523 => 0.42204450732703
524 => 0.42464309360079
525 => 0.42168167657411
526 => 0.41141611493167
527 => 0.40551228187476
528 => 0.38612158755026
529 => 0.3916207644066
530 => 0.39526672435167
531 => 0.39406173461158
601 => 0.39665051884243
602 => 0.39680944916897
603 => 0.39596780902599
604 => 0.39499329756119
605 => 0.394518959274
606 => 0.39805428824869
607 => 0.40010666571221
608 => 0.39563264520881
609 => 0.39458444480306
610 => 0.39910792654944
611 => 0.4018672478016
612 => 0.42224052559886
613 => 0.42073120737482
614 => 0.42451929992842
615 => 0.4240928188399
616 => 0.42806334332655
617 => 0.43455347279336
618 => 0.42135722491859
619 => 0.42364763725773
620 => 0.42308608104552
621 => 0.4292170045225
622 => 0.42923614459639
623 => 0.42556034970959
624 => 0.42755305775069
625 => 0.42644078278923
626 => 0.42845081397755
627 => 0.42071104950975
628 => 0.43013724717559
629 => 0.43548129384136
630 => 0.4355554959345
701 => 0.4380885316411
702 => 0.44066224262254
703 => 0.44560225672843
704 => 0.44052446831032
705 => 0.43139002125889
706 => 0.43204949883192
707 => 0.42669397586783
708 => 0.42678400317641
709 => 0.42630343034764
710 => 0.42774566558262
711 => 0.4210275390399
712 => 0.42260426991148
713 => 0.42039683745795
714 => 0.42364283873068
715 => 0.42015067794445
716 => 0.42308581024611
717 => 0.42435251604633
718 => 0.42902668771935
719 => 0.4194602989879
720 => 0.39995378477687
721 => 0.40405429055765
722 => 0.3979893204201
723 => 0.3985506564973
724 => 0.39968464470922
725 => 0.39600901789653
726 => 0.39671021166008
727 => 0.39668516008462
728 => 0.39646927914128
729 => 0.39551310664785
730 => 0.39412646735943
731 => 0.39965041149945
801 => 0.40058903724995
802 => 0.40267548602219
803 => 0.40888334231667
804 => 0.40826303108152
805 => 0.40927478444251
806 => 0.40706613253621
807 => 0.39865310952466
808 => 0.39910997715047
809 => 0.39341283053591
810 => 0.40252979717433
811 => 0.40037077913627
812 => 0.39897884616189
813 => 0.39859904435367
814 => 0.40482228872316
815 => 0.40668438097591
816 => 0.40552405004436
817 => 0.40314417745148
818 => 0.40771423637598
819 => 0.40893699134887
820 => 0.40921072109383
821 => 0.41730798928616
822 => 0.40966326843635
823 => 0.41150342872689
824 => 0.42585983401676
825 => 0.41284055546736
826 => 0.41973715767954
827 => 0.41939960488944
828 => 0.42292767321289
829 => 0.41911020031032
830 => 0.41915752246214
831 => 0.42229020812132
901 => 0.41789091609584
902 => 0.41680158952295
903 => 0.4152966926644
904 => 0.41858257989949
905 => 0.42055232068902
906 => 0.43642698483749
907 => 0.44668274185004
908 => 0.44623751239049
909 => 0.45030607621614
910 => 0.44847315094891
911 => 0.44255415175976
912 => 0.45265716163059
913 => 0.44946014657957
914 => 0.449723704616
915 => 0.44971389497272
916 => 0.45183963049374
917 => 0.4503333520563
918 => 0.44736432263979
919 => 0.44933530292527
920 => 0.4551884097348
921 => 0.4733566328668
922 => 0.48352381122842
923 => 0.47274455596315
924 => 0.48017994190515
925 => 0.47572135983885
926 => 0.47491110284608
927 => 0.47958107468836
928 => 0.48425922069815
929 => 0.48396124302151
930 => 0.48056514924386
1001 => 0.47864678204155
1002 => 0.49317330119757
1003 => 0.50387619305893
1004 => 0.50314632758709
1005 => 0.50636771641485
1006 => 0.51582581364698
1007 => 0.51669054352515
1008 => 0.51658160743609
1009 => 0.51443828420781
1010 => 0.52375100922197
1011 => 0.53151984827059
1012 => 0.51394216680703
1013 => 0.5206355177996
1014 => 0.52364037870647
1015 => 0.52805240601981
1016 => 0.53549623563905
1017 => 0.54358220898384
1018 => 0.54472565427298
1019 => 0.54391432512144
1020 => 0.53858140833792
1021 => 0.54742917685752
1022 => 0.55261199215059
1023 => 0.555698240051
1024 => 0.56352445122375
1025 => 0.52365893570446
1026 => 0.49544014237522
1027 => 0.49103337031255
1028 => 0.49999471458975
1029 => 0.50235774961027
1030 => 0.50140521315649
1031 => 0.46964239572399
1101 => 0.49086614565223
1102 => 0.51370111603144
1103 => 0.51457830024205
1104 => 0.52600996387059
1105 => 0.52973258214777
1106 => 0.53893656975115
1107 => 0.53836085782059
1108 => 0.54060188233458
1109 => 0.54008670960795
1110 => 0.55713515851496
1111 => 0.57594212937856
1112 => 0.57529090378006
1113 => 0.57258717920444
1114 => 0.57660267125279
1115 => 0.5960134806615
1116 => 0.59422644438303
1117 => 0.59596239790818
1118 => 0.61884883614634
1119 => 0.64860446141382
1120 => 0.63477998606114
1121 => 0.66477511969083
1122 => 0.68365546633701
1123 => 0.71630707359729
1124 => 0.71221893155575
1125 => 0.72492996265361
1126 => 0.70490030408039
1127 => 0.65890815933441
1128 => 0.6516297263775
1129 => 0.66620133347651
1130 => 0.7020242076528
1201 => 0.66507314368591
1202 => 0.67254829580125
1203 => 0.67039545148915
1204 => 0.67028073556476
1205 => 0.67465897581543
1206 => 0.66830810997818
1207 => 0.64243354005826
1208 => 0.65429170297276
1209 => 0.64971269679571
1210 => 0.65479344553667
1211 => 0.68221215103142
1212 => 0.67008968775189
1213 => 0.65731965743585
1214 => 0.67333610934875
1215 => 0.69373055648386
1216 => 0.69245430863449
1217 => 0.6899778543765
1218 => 0.70393749736589
1219 => 0.72699473779273
1220 => 0.73322701722862
1221 => 0.73782755849484
1222 => 0.73846189540867
1223 => 0.74499595985932
1224 => 0.70986064851191
1225 => 0.76562128995904
1226 => 0.77524961238032
1227 => 0.7734398868182
1228 => 0.78414136196771
1229 => 0.7809927165085
1230 => 0.77643082324545
1231 => 0.79339493762647
]
'min_raw' => 0.29245231072977
'max_raw' => 0.79339493762647
'avg_raw' => 0.54292362417812
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.292452'
'max' => '$0.793394'
'avg' => '$0.542923'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.10085924386744
'max_diff' => 0.36567691265614
'year' => 2032
]
7 => [
'items' => [
101 => 0.77394694942207
102 => 0.74634297859955
103 => 0.73119889426169
104 => 0.75114184615623
105 => 0.76332031096511
106 => 0.77136950150795
107 => 0.77380518170276
108 => 0.71258810271441
109 => 0.67959549239454
110 => 0.70074337734853
111 => 0.72654525654145
112 => 0.70971731777023
113 => 0.71037694111056
114 => 0.68638472272731
115 => 0.72866803550009
116 => 0.72250771248773
117 => 0.75446747917326
118 => 0.74684002436061
119 => 0.77290197342166
120 => 0.76603898880286
121 => 0.7945268542512
122 => 0.80589143505671
123 => 0.82497433498493
124 => 0.83901179385351
125 => 0.84725485819493
126 => 0.84675997553083
127 => 0.87942310312991
128 => 0.86016279794749
129 => 0.83596731533298
130 => 0.83552969538825
131 => 0.84806087868695
201 => 0.87432280111877
202 => 0.88113213550991
203 => 0.88493762448807
204 => 0.87910938564799
205 => 0.85820370477098
206 => 0.8491767377625
207 => 0.85686797519014
208 => 0.8474622527317
209 => 0.86369916847457
210 => 0.8859959218076
211 => 0.88139173041525
212 => 0.89678285194093
213 => 0.9127110435268
214 => 0.93548907287445
215 => 0.94144409321391
216 => 0.95128751538589
217 => 0.96141963019661
218 => 0.96467379240565
219 => 0.97088699776996
220 => 0.97085425111077
221 => 0.98957816367307
222 => 1.0102312190606
223 => 1.01802726935
224 => 1.0359538571139
225 => 1.0052552037908
226 => 1.0285404849771
227 => 1.0495443914755
228 => 1.0245026682587
301 => 1.0590168497399
302 => 1.060356957196
303 => 1.0805909887342
304 => 1.0600799213988
305 => 1.0479005150887
306 => 1.0830620047496
307 => 1.10007554202
308 => 1.0949509261334
309 => 1.0559523462029
310 => 1.0332534999556
311 => 0.97384624104597
312 => 1.0442167054271
313 => 1.0784921058925
314 => 1.0558635811961
315 => 1.0672760928303
316 => 1.1295390557872
317 => 1.1532447608529
318 => 1.1483141399146
319 => 1.1491473336882
320 => 1.1619385018527
321 => 1.2186615857189
322 => 1.1846717990355
323 => 1.210655717382
324 => 1.2244374939809
325 => 1.2372387761528
326 => 1.2058028730254
327 => 1.1649052249419
328 => 1.1519512230273
329 => 1.0536136203745
330 => 1.0484947210978
331 => 1.0456213278153
401 => 1.0275049896187
402 => 1.0132705102788
403 => 1.0019507238154
404 => 0.97224422376103
405 => 0.98226929548592
406 => 0.93492333462767
407 => 0.96521360254695
408 => 0.88964830580898
409 => 0.95258133036728
410 => 0.9183297463137
411 => 0.94132876381228
412 => 0.94124852240687
413 => 0.89890003934684
414 => 0.87447431810812
415 => 0.89003933834473
416 => 0.90672627559122
417 => 0.90943367501786
418 => 0.93106872473156
419 => 0.93710660206282
420 => 0.91881155186757
421 => 0.888082382994
422 => 0.89522006806561
423 => 0.87432967314796
424 => 0.8377200595922
425 => 0.86401372319048
426 => 0.87299153599371
427 => 0.87695664958232
428 => 0.84095529929277
429 => 0.82964289340445
430 => 0.82362026342979
501 => 0.88343506075721
502 => 0.88671185037908
503 => 0.86994733138225
504 => 0.94572454692486
505 => 0.92857382924006
506 => 0.94773538292183
507 => 0.89457239795904
508 => 0.89660329557807
509 => 0.87143508652205
510 => 0.88552760185309
511 => 0.87556746624008
512 => 0.88438906587929
513 => 0.88967669633021
514 => 0.91484077553077
515 => 0.95286866373013
516 => 0.9110821012463
517 => 0.89287509757749
518 => 0.90417062025354
519 => 0.93425208564644
520 => 0.97982704555856
521 => 0.95284575200904
522 => 0.96481959191424
523 => 0.96743534325446
524 => 0.94754033629283
525 => 0.98056060284318
526 => 0.99825643194367
527 => 1.0164086909649
528 => 1.0321697888583
529 => 1.0091582795351
530 => 1.0337838930812
531 => 1.013939995569
601 => 0.99613796807615
602 => 0.9961649664035
603 => 0.9849974945111
604 => 0.96335911052758
605 => 0.95936866052865
606 => 0.98012748536138
607 => 0.9967740970092
608 => 0.99814519167641
609 => 1.0073616112184
610 => 1.0128157933667
611 => 1.0662741930211
612 => 1.0877756035932
613 => 1.1140671214399
614 => 1.1243091493499
615 => 1.1551339813889
616 => 1.1302404260469
617 => 1.1248545487609
618 => 1.0500835889601
619 => 1.0623273294387
620 => 1.0819307392903
621 => 1.0504068419682
622 => 1.0704014990181
623 => 1.0743488678645
624 => 1.0493356719999
625 => 1.0626963006676
626 => 1.0272144320766
627 => 0.95364207150466
628 => 0.98064250991227
629 => 1.0005239208296
630 => 0.97215069609029
701 => 1.02300860324
702 => 0.99329846380344
703 => 0.98388177594025
704 => 0.94714391929433
705 => 0.96448277346143
706 => 0.98793382199089
707 => 0.9734438004767
708 => 1.0035127708063
709 => 1.0460984518946
710 => 1.0764475442592
711 => 1.0787773707248
712 => 1.0592649375656
713 => 1.0905337362299
714 => 1.0907614952912
715 => 1.0554901626611
716 => 1.0338866678168
717 => 1.028978308334
718 => 1.0412403526625
719 => 1.0561287381756
720 => 1.0796035725029
721 => 1.0937889232406
722 => 1.1307767946361
723 => 1.1407846521103
724 => 1.1517802532816
725 => 1.1664737673644
726 => 1.1841170983605
727 => 1.1455144945765
728 => 1.1470482479891
729 => 1.1111020378349
730 => 1.0726883570772
731 => 1.1018395524394
801 => 1.1399508625545
802 => 1.1312080859048
803 => 1.130224344933
804 => 1.1318787243806
805 => 1.1252869562991
806 => 1.0954726335691
807 => 1.0805000673416
808 => 1.0998184976841
809 => 1.1100853836467
810 => 1.1260084284082
811 => 1.1240455770466
812 => 1.1650616303421
813 => 1.1809992283916
814 => 1.1769217088023
815 => 1.1776720705377
816 => 1.2065263305275
817 => 1.2386182019673
818 => 1.2686764744661
819 => 1.2992530402847
820 => 1.2623917967667
821 => 1.2436759305937
822 => 1.2629859271138
823 => 1.2527397711523
824 => 1.3116172225143
825 => 1.315693769502
826 => 1.374566963354
827 => 1.4304446348091
828 => 1.3953488705206
829 => 1.4284425954967
830 => 1.4642361572294
831 => 1.5332877451077
901 => 1.5100335995744
902 => 1.4922212885349
903 => 1.4753887406709
904 => 1.5104146006841
905 => 1.5554748100392
906 => 1.5651803475529
907 => 1.5809070261259
908 => 1.5643723465732
909 => 1.5842865468593
910 => 1.6545924246121
911 => 1.6355951558361
912 => 1.6086159802109
913 => 1.6641157184485
914 => 1.6842008579669
915 => 1.8251688857763
916 => 2.0031468439845
917 => 1.9294628006201
918 => 1.8837247371345
919 => 1.894474266975
920 => 1.9594657923785
921 => 1.9803390076102
922 => 1.9235984131817
923 => 1.9436401503696
924 => 2.0540720927353
925 => 2.1133152867335
926 => 2.0328550718614
927 => 1.8108685301276
928 => 1.6061868006314
929 => 1.6604776122322
930 => 1.6543227190367
1001 => 1.7729680644432
1002 => 1.6351420772586
1003 => 1.6374627134084
1004 => 1.7585615189103
1005 => 1.7262544337615
1006 => 1.6739210933993
1007 => 1.6065688919316
1008 => 1.482062118194
1009 => 1.3717829965663
1010 => 1.5880657498431
1011 => 1.5787392442371
1012 => 1.565233082009
1013 => 1.5952895845283
1014 => 1.7412354290749
1015 => 1.7378709049775
1016 => 1.7164675192651
1017 => 1.7327017986872
1018 => 1.671075145725
1019 => 1.6869577374062
1020 => 1.6061543779997
1021 => 1.6426808710978
1022 => 1.673808809555
1023 => 1.6800582040572
1024 => 1.6941384089729
1025 => 1.5738245995825
1026 => 1.6278419677709
1027 => 1.6595721108387
1028 => 1.516214170106
1029 => 1.6567383852813
1030 => 1.5717302038351
1031 => 1.5428771502722
1101 => 1.5817239857938
1102 => 1.5665853362113
1103 => 1.5535700142715
1104 => 1.5463072409975
1105 => 1.5748320696358
1106 => 1.5735013522853
1107 => 1.5268291962023
1108 => 1.4659472711925
1109 => 1.4863812436069
1110 => 1.4789573898592
1111 => 1.4520523861815
1112 => 1.4701831101378
1113 => 1.390344577584
1114 => 1.252986531971
1115 => 1.3437294642937
1116 => 1.3402359601086
1117 => 1.3384743768806
1118 => 1.4066651825707
1119 => 1.4001102100331
1120 => 1.388212870691
1121 => 1.4518338822145
1122 => 1.4286113571851
1123 => 1.5001777074108
1124 => 1.5473159342907
1125 => 1.5353601551921
1126 => 1.5796938854115
1127 => 1.4868520010605
1128 => 1.517690350872
1129 => 1.524046092028
1130 => 1.4510488088079
1201 => 1.401182684607
1202 => 1.3978571826382
1203 => 1.3113961952489
1204 => 1.3575829568236
1205 => 1.3982253956712
1206 => 1.3787608214439
1207 => 1.3725989187311
1208 => 1.404078743337
1209 => 1.4065249953153
1210 => 1.350750190967
1211 => 1.3623475389493
1212 => 1.4107104079345
1213 => 1.3611289187372
1214 => 1.2648001843173
1215 => 1.2409093263322
1216 => 1.2377218454811
1217 => 1.1729279438177
1218 => 1.2425058277013
1219 => 1.2121332168148
1220 => 1.3080799306857
1221 => 1.2532756822952
1222 => 1.2509131806829
1223 => 1.2473419129924
1224 => 1.1915711252283
1225 => 1.2037813833302
1226 => 1.2443701409356
1227 => 1.2588526669143
1228 => 1.2573420208029
1229 => 1.2441712338802
1230 => 1.2502007526881
1231 => 1.2307775717843
]
'min_raw' => 0.67959549239454
'max_raw' => 2.1133152867335
'avg_raw' => 1.396455389564
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.679595'
'max' => '$2.11'
'avg' => '$1.39'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.38714318166477
'max_diff' => 1.3199203491071
'year' => 2033
]
8 => [
'items' => [
101 => 1.2239188423487
102 => 1.2022708056076
103 => 1.170454172021
104 => 1.174878470064
105 => 1.1118413936539
106 => 1.0774954487948
107 => 1.06798894393
108 => 1.0552764483208
109 => 1.0694248541358
110 => 1.1116628175366
111 => 1.0607148723914
112 => 0.9733681940228
113 => 0.97861787822425
114 => 0.99041235997968
115 => 0.96843342125674
116 => 0.94763220030798
117 => 0.96571717426653
118 => 0.92870723517084
119 => 0.99488483430232
120 => 0.99309491570639
121 => 1.0177618322673
122 => 1.033186561409
123 => 0.99763755455285
124 => 0.98869707546328
125 => 0.99378997867482
126 => 0.90961563317011
127 => 1.010882992434
128 => 1.0117587567621
129 => 1.0042599308927
130 => 1.0581816734218
131 => 1.1719733687713
201 => 1.1291603557205
202 => 1.112581863037
203 => 1.081066136327
204 => 1.1230589709494
205 => 1.1198345764407
206 => 1.1052526416569
207 => 1.0964334420012
208 => 1.1126830877782
209 => 1.0944199310626
210 => 1.0911393662785
211 => 1.0712627129765
212 => 1.0641676520778
213 => 1.0589147514509
214 => 1.053131824
215 => 1.0658875209409
216 => 1.0369814335212
217 => 1.0021235257918
218 => 0.99922546793188
219 => 1.007227260483
220 => 1.0036870629425
221 => 0.99920851882807
222 => 0.99065775845472
223 => 0.98812093051003
224 => 0.99636439063631
225 => 0.98705800477732
226 => 1.0007900840573
227 => 0.99705571832377
228 => 0.97619585490127
301 => 0.95019674176624
302 => 0.94996529512435
303 => 0.9443638288465
304 => 0.93722951935557
305 => 0.93524491766608
306 => 0.96419410820284
307 => 1.0241180662376
308 => 1.0123535594166
309 => 1.0208546212699
310 => 1.0626714317781
311 => 1.0759637383633
312 => 1.0665291739946
313 => 1.0536145603883
314 => 1.0541827378442
315 => 1.0983158820566
316 => 1.1010684121263
317 => 1.1080231676126
318 => 1.1169619938261
319 => 1.0680514947514
320 => 1.0518790577362
321 => 1.0442156598658
322 => 1.020615360533
323 => 1.0460662600266
324 => 1.0312371108079
325 => 1.0332380696734
326 => 1.0319349425872
327 => 1.0326465380933
328 => 0.99486633631466
329 => 1.0086314561739
330 => 0.98574427461904
331 => 0.95510090772383
401 => 0.95499818041305
402 => 0.96249810104822
403 => 0.9580368547825
404 => 0.94603175579056
405 => 0.94773702343989
406 => 0.93279708446477
407 => 0.9495510025278
408 => 0.95003144494945
409 => 0.9435802739031
410 => 0.96939199627436
411 => 0.97996707999023
412 => 0.97572078101004
413 => 0.97966914833401
414 => 1.0128424277885
415 => 1.0182511197913
416 => 1.0206533035008
417 => 1.0174346955584
418 => 0.98027549498539
419 => 0.98192366354393
420 => 0.96983049623842
421 => 0.95961304421184
422 => 0.96002168870943
423 => 0.96527478722688
424 => 0.98821537654274
425 => 1.0364924943364
426 => 1.0383245756665
427 => 1.0405451116843
428 => 1.0315130757482
429 => 1.0287889272849
430 => 1.0323827822703
501 => 1.0505131294233
502 => 1.0971493046422
503 => 1.0806649655944
504 => 1.0672629413546
505 => 1.0790201297727
506 => 1.0772102027716
507 => 1.0619325974363
508 => 1.0615038059382
509 => 1.0321811967539
510 => 1.021341295782
511 => 1.0122826631773
512 => 1.0023908728546
513 => 0.99652668797549
514 => 1.0055367411742
515 => 1.0075974469445
516 => 0.98789680815683
517 => 0.98521168388642
518 => 1.0012996507883
519 => 0.99421993637464
520 => 1.0015015982175
521 => 1.003191006226
522 => 1.0029189726263
523 => 0.99552693767843
524 => 1.0002384003206
525 => 0.98909438661733
526 => 0.97697694549181
527 => 0.96924677299699
528 => 0.96250117223666
529 => 0.96624402359511
530 => 0.95290144191991
531 => 0.94863288150891
601 => 0.99864226278867
602 => 1.0355847304315
603 => 1.0350475723211
604 => 1.0317777604702
605 => 1.0269194833169
606 => 1.0501577161892
607 => 1.0420619805196
608 => 1.0479523046406
609 => 1.0494516393455
610 => 1.0539896739266
611 => 1.0556116312321
612 => 1.0507089497331
613 => 1.0342549518107
614 => 0.99325315338698
615 => 0.97416670553851
616 => 0.96786785983859
617 => 0.96809681091657
618 => 0.96178131810323
619 => 0.96364151377729
620 => 0.96113441796186
621 => 0.95638658501906
622 => 0.96595085828993
623 => 0.96705305168703
624 => 0.96482063602105
625 => 0.96534645072502
626 => 0.94686300248793
627 => 0.94826825891346
628 => 0.94044361256478
629 => 0.93897658570192
630 => 0.91919656110235
701 => 0.88415338036379
702 => 0.90357070421681
703 => 0.88011730749127
704 => 0.87123515077436
705 => 0.91328189921346
706 => 0.90906157186543
707 => 0.90183820597782
708 => 0.89115334234869
709 => 0.88719022249297
710 => 0.86311156082091
711 => 0.86168886503466
712 => 0.87362289993788
713 => 0.86811575345511
714 => 0.86038163407383
715 => 0.83236943766993
716 => 0.80087445439245
717 => 0.80182508996719
718 => 0.81184305816276
719 => 0.84097165179846
720 => 0.82959060633521
721 => 0.82133352726917
722 => 0.81978722456698
723 => 0.83914244028879
724 => 0.86653412557822
725 => 0.8793856914616
726 => 0.86665017997903
727 => 0.85202031011648
728 => 0.85291076250673
729 => 0.85883454332932
730 => 0.85945704893602
731 => 0.84993450763043
801 => 0.85261504722935
802 => 0.84854306246491
803 => 0.82355329948185
804 => 0.82310131391288
805 => 0.81696842306247
806 => 0.81678272156489
807 => 0.80634914430703
808 => 0.80488941472474
809 => 0.78417291380639
810 => 0.79780857744619
811 => 0.78866249018108
812 => 0.77487717932869
813 => 0.77250058654173
814 => 0.77242914329274
815 => 0.78658357519905
816 => 0.79764317466825
817 => 0.78882159028484
818 => 0.78681308651996
819 => 0.80825865205448
820 => 0.80552950835954
821 => 0.80316608752082
822 => 0.86408150059518
823 => 0.81586219785786
824 => 0.79483582960281
825 => 0.76881170608815
826 => 0.77728529192955
827 => 0.77907080096921
828 => 0.71648747511729
829 => 0.69109742761343
830 => 0.68238452011386
831 => 0.67737011866543
901 => 0.67965524437237
902 => 0.65680122366335
903 => 0.67215950355042
904 => 0.6523698534187
905 => 0.64905205417302
906 => 0.68443840007577
907 => 0.68936220338411
908 => 0.66835572876497
909 => 0.68184528610978
910 => 0.67695378509768
911 => 0.65270909017046
912 => 0.65178312115615
913 => 0.63961798548391
914 => 0.62058190379129
915 => 0.6118819036515
916 => 0.60735086804183
917 => 0.6092204616425
918 => 0.6082751379075
919 => 0.60210626109495
920 => 0.60862873070536
921 => 0.59196651612129
922 => 0.58533148801733
923 => 0.58233459975425
924 => 0.5675459252696
925 => 0.59108128292807
926 => 0.59571804487742
927 => 0.60036394268017
928 => 0.64080331116397
929 => 0.63878307459499
930 => 0.65704502928347
1001 => 0.65633540330586
1002 => 0.65112679800465
1003 => 0.62915254901284
1004 => 0.63791109300765
1005 => 0.61095365597157
1006 => 0.63115200072654
1007 => 0.62193431968342
1008 => 0.62803549349371
1009 => 0.61706503286214
1010 => 0.62313653873487
1011 => 0.59681759314813
1012 => 0.5722413320768
1013 => 0.58213153695769
1014 => 0.59288332074534
1015 => 0.61619592750052
1016 => 0.60231113124196
1017 => 0.60730462901881
1018 => 0.59057724736779
1019 => 0.55606388108139
1020 => 0.55625922298643
1021 => 0.55095009349782
1022 => 0.54636223047407
1023 => 0.6039059671181
1024 => 0.59674949383455
1025 => 0.5853465902733
1026 => 0.60060982982342
1027 => 0.60464567262065
1028 => 0.60476056739136
1029 => 0.6158962329659
1030 => 0.6218393396792
1031 => 0.62288683799632
1101 => 0.64040904837983
1102 => 0.64628226217684
1103 => 0.67047319859839
1104 => 0.62133510859675
1105 => 0.62032314196939
1106 => 0.60082461490488
1107 => 0.58845834078106
1108 => 0.60167134427395
1109 => 0.61337626161381
1110 => 0.60118831931396
1111 => 0.60277980727682
1112 => 0.58641849053074
1113 => 0.59226689139596
1114 => 0.59730432208576
1115 => 0.59452294894534
1116 => 0.59035909873415
1117 => 0.61241659187306
1118 => 0.61117202166615
1119 => 0.63171246637668
1120 => 0.64772521188983
1121 => 0.67642291447003
1122 => 0.64647536578252
1123 => 0.64538395807762
1124 => 0.6560526434603
1125 => 0.64628062885669
1126 => 0.65245620476769
1127 => 0.67542793371674
1128 => 0.67591329015105
1129 => 0.6677829445298
1130 => 0.66728821225986
1201 => 0.66884973407266
1202 => 0.67799561610346
1203 => 0.67479976389733
1204 => 0.67849808497934
1205 => 0.68312289212309
1206 => 0.70225305534727
1207 => 0.70686527293575
1208 => 0.69565997535638
1209 => 0.6966716882674
1210 => 0.69248059938042
1211 => 0.68843206002978
1212 => 0.69753258524832
1213 => 0.71416397395647
1214 => 0.71406051095048
1215 => 0.71791866986277
1216 => 0.72032227090242
1217 => 0.71000425569677
1218 => 0.70328760720183
1219 => 0.70586319762624
1220 => 0.70998162280393
1221 => 0.70452764784786
1222 => 0.67086318789204
1223 => 0.68107483454861
1224 => 0.67937511722095
1225 => 0.67695451305367
1226 => 0.68722240273117
1227 => 0.68623203972309
1228 => 0.65656682264832
1229 => 0.65846589359688
1230 => 0.65668231144262
1231 => 0.66244543026962
]
'min_raw' => 0.54636223047407
'max_raw' => 1.2239188423487
'avg_raw' => 0.88514053641138
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.546362'
'max' => '$1.22'
'avg' => '$0.88514'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.13323326192047
'max_diff' => -0.88939644438483
'year' => 2034
]
9 => [
'items' => [
101 => 0.64596940152709
102 => 0.65103731700055
103 => 0.65421586607674
104 => 0.65608805590138
105 => 0.66285168932058
106 => 0.6620580550044
107 => 0.66280235589717
108 => 0.67283103872481
109 => 0.72355267503867
110 => 0.72631334179225
111 => 0.71271880903119
112 => 0.71814955672893
113 => 0.70772370872323
114 => 0.71472265033657
115 => 0.71951114843457
116 => 0.69787284630493
117 => 0.69659156648423
118 => 0.68612268729513
119 => 0.69174806998373
120 => 0.68279768164684
121 => 0.68499379387342
122 => 0.67885327263428
123 => 0.68990498829915
124 => 0.70226252367545
125 => 0.70538452512536
126 => 0.69717188341677
127 => 0.69122538958029
128 => 0.68078530530027
129 => 0.6981473981304
130 => 0.70322460317412
131 => 0.69812072973373
201 => 0.69693805073576
202 => 0.69469687617165
203 => 0.69741352651425
204 => 0.70319695162506
205 => 0.7004695951459
206 => 0.70227106215022
207 => 0.69540572759444
208 => 0.71000767138914
209 => 0.73319907228426
210 => 0.73327363643031
211 => 0.73054626524968
212 => 0.72943028372459
213 => 0.73222873206665
214 => 0.73374677549385
215 => 0.74279644428439
216 => 0.75250709945135
217 => 0.79782249002478
218 => 0.78509810968422
219 => 0.82530462002561
220 => 0.8571027495437
221 => 0.86663761822249
222 => 0.85786598768824
223 => 0.82785871346475
224 => 0.82638641343408
225 => 0.87122994986838
226 => 0.8585595968616
227 => 0.85705249868818
228 => 0.84101952040546
301 => 0.85049699629354
302 => 0.84842413329063
303 => 0.84515201763262
304 => 0.86323438142037
305 => 0.8970829522073
306 => 0.89180733502027
307 => 0.88786933151899
308 => 0.87061414651197
309 => 0.88100562197129
310 => 0.87730541659583
311 => 0.89320384709717
312 => 0.88378596906153
313 => 0.85846360647594
314 => 0.8624962761813
315 => 0.86188674626793
316 => 0.87443082869311
317 => 0.87066540651234
318 => 0.86115148715427
319 => 0.89696726147216
320 => 0.89464158430576
321 => 0.89793886280389
322 => 0.8993904267705
323 => 0.92119085745306
324 => 0.93012179636773
325 => 0.93214927585945
326 => 0.94063297708478
327 => 0.93193819364449
328 => 0.9667235266812
329 => 0.98985374337015
330 => 1.0167206803244
331 => 1.0559804963665
401 => 1.0707425503719
402 => 1.0680759174459
403 => 1.0978422619029
404 => 1.1513317212235
405 => 1.0788876664967
406 => 1.1551714320319
407 => 1.1310208726019
408 => 1.0737603306434
409 => 1.0700734267987
410 => 1.1088509306216
411 => 1.1948557019043
412 => 1.173312482156
413 => 1.1948909388942
414 => 1.1697185229019
415 => 1.1684685002781
416 => 1.1936683708353
417 => 1.2525492419656
418 => 1.2245771472081
419 => 1.1844722903341
420 => 1.2140850925491
421 => 1.188431742735
422 => 1.1306275656831
423 => 1.1732960084619
424 => 1.144764835903
425 => 1.1530917488563
426 => 1.2130600298833
427 => 1.2058444876538
428 => 1.2151820674401
429 => 1.1987014835243
430 => 1.1833060193974
501 => 1.1545692423224
502 => 1.1460616993365
503 => 1.1484128781484
504 => 1.146060534209
505 => 1.1299825715402
506 => 1.1265105370326
507 => 1.1207236607401
508 => 1.1225172556795
509 => 1.1116362352391
510 => 1.1321709689436
511 => 1.1359823964707
512 => 1.1509258632061
513 => 1.1524773434957
514 => 1.1940946856471
515 => 1.1711725529411
516 => 1.186550698562
517 => 1.1851751324729
518 => 1.0750013402168
519 => 1.0901823167181
520 => 1.1137991521012
521 => 1.103159799773
522 => 1.0881182448059
523 => 1.0759713826928
524 => 1.057567644511
525 => 1.0834705525893
526 => 1.1175301222452
527 => 1.153341150389
528 => 1.1963657542722
529 => 1.1867631635471
530 => 1.1525368353467
531 => 1.1540722034274
601 => 1.1635632447574
602 => 1.151271483883
603 => 1.1476464036375
604 => 1.1630652143985
605 => 1.1631713952742
606 => 1.1490282388794
607 => 1.1333107087168
608 => 1.1332448516915
609 => 1.1304480690124
610 => 1.1702160643274
611 => 1.1920844407528
612 => 1.1945916148674
613 => 1.1919156879588
614 => 1.1929455460222
615 => 1.180220819617
616 => 1.2093057707788
617 => 1.2359969981684
618 => 1.2288431790531
619 => 1.2181185872239
620 => 1.2095759332657
621 => 1.22683080127
622 => 1.2260624691594
623 => 1.2357638735821
624 => 1.2353237618395
625 => 1.2320615444204
626 => 1.2288432955572
627 => 1.2416032885255
628 => 1.2379286154698
629 => 1.234248234632
630 => 1.2268666674234
701 => 1.2278699450019
702 => 1.2171472049247
703 => 1.2121863747258
704 => 1.1375873912302
705 => 1.1176521052481
706 => 1.1239241520382
707 => 1.1259890726952
708 => 1.117313210688
709 => 1.1297521681602
710 => 1.1278135698143
711 => 1.1353555219362
712 => 1.1306436376839
713 => 1.1308370150572
714 => 1.1446936619635
715 => 1.1487163055108
716 => 1.1466703565359
717 => 1.1481032690669
718 => 1.1811241335485
719 => 1.176429622567
720 => 1.1739357571732
721 => 1.1746265749306
722 => 1.183064113781
723 => 1.1854261639866
724 => 1.1754179912873
725 => 1.1801379033888
726 => 1.2002346900711
727 => 1.2072674280303
728 => 1.2297125516904
729 => 1.2201774642293
730 => 1.237679529933
731 => 1.2914749130121
801 => 1.3344503873731
802 => 1.2949283651142
803 => 1.3738473508845
804 => 1.4352971015628
805 => 1.4329385577818
806 => 1.4222233723927
807 => 1.3522644649716
808 => 1.2878872353341
809 => 1.3417415215274
810 => 1.3418788071782
811 => 1.3372526762332
812 => 1.3085201742455
813 => 1.3362528474453
814 => 1.3384541663336
815 => 1.3372220131341
816 => 1.315192871227
817 => 1.2815584432009
818 => 1.2881305299278
819 => 1.2988957420533
820 => 1.2785149496411
821 => 1.2720020515497
822 => 1.2841107682313
823 => 1.3231275763305
824 => 1.3157516747683
825 => 1.3155590601702
826 => 1.3471162949223
827 => 1.3245281253173
828 => 1.2882134249881
829 => 1.279043484223
830 => 1.2464963721189
831 => 1.268976778378
901 => 1.2697858081782
902 => 1.2574735194142
903 => 1.2892124993644
904 => 1.2889200190766
905 => 1.3190514568156
906 => 1.3766514489213
907 => 1.3596162969322
908 => 1.3398062685881
909 => 1.3419601679416
910 => 1.365583127573
911 => 1.3513001469201
912 => 1.3564364063474
913 => 1.3655753532292
914 => 1.3710891067902
915 => 1.341166823656
916 => 1.3341905081092
917 => 1.3199194148544
918 => 1.3161963530067
919 => 1.3278198606867
920 => 1.3247574770776
921 => 1.2697178123562
922 => 1.263965861155
923 => 1.2641422652864
924 => 1.2496787105007
925 => 1.2276183178015
926 => 1.2855917126573
927 => 1.2809356377133
928 => 1.2757956913266
929 => 1.2764253054308
930 => 1.3015895912371
1001 => 1.2869930346426
1002 => 1.3258003726777
1003 => 1.3178227506331
1004 => 1.3096405326853
1005 => 1.3085095009284
1006 => 1.3053600450926
1007 => 1.2945593891705
1008 => 1.2815169481258
1009 => 1.2729051988312
1010 => 1.1741877604075
1011 => 1.192509142766
1012 => 1.2135862231229
1013 => 1.220861946801
1014 => 1.2084163179849
1015 => 1.2950508184531
1016 => 1.3108797765195
1017 => 1.2629328300391
1018 => 1.2539639140135
1019 => 1.2956388190946
1020 => 1.2705037567808
1021 => 1.2818220738017
1022 => 1.2573580631909
1023 => 1.3070670440473
1024 => 1.3066883448985
1025 => 1.2873504286171
1026 => 1.3036947030378
1027 => 1.3008544831444
1028 => 1.2790220232899
1029 => 1.3077591719666
1030 => 1.3077734252338
1031 => 1.2891611012555
1101 => 1.2674259816105
1102 => 1.2635402555786
1103 => 1.2606128829874
1104 => 1.2811021195954
1105 => 1.29947270507
1106 => 1.3336558101839
1107 => 1.3422502549801
1108 => 1.3757949451841
1109 => 1.3558207154289
1110 => 1.3646750327698
1111 => 1.374287646763
1112 => 1.3788962874036
1113 => 1.3713867547931
1114 => 1.4234954662254
1115 => 1.4278950380399
1116 => 1.4293701764132
1117 => 1.4117994121046
1118 => 1.4274063632992
1119 => 1.4201043876831
1120 => 1.4391020996889
1121 => 1.4420811835064
1122 => 1.4395580054969
1123 => 1.4405036137222
1124 => 1.3960380211215
1125 => 1.3937322455704
1126 => 1.3622928323216
1127 => 1.3751046256089
1128 => 1.3511535921436
1129 => 1.3587487115784
1130 => 1.3620965678563
1201 => 1.3603478377259
1202 => 1.3758289851787
1203 => 1.3626668472544
1204 => 1.3279298012162
1205 => 1.293183291093
1206 => 1.2927470769623
1207 => 1.2835989341737
1208 => 1.2769865025035
1209 => 1.2782602914318
1210 => 1.282749289758
1211 => 1.2767255937602
1212 => 1.2780110547105
1213 => 1.2993582714665
1214 => 1.3036393035455
1215 => 1.2890906838338
1216 => 1.2306758763352
1217 => 1.2163407360526
1218 => 1.2266445506096
1219 => 1.221719990902
1220 => 0.98602338399371
1221 => 1.0413968056496
1222 => 1.0084957988054
1223 => 1.0236580964618
1224 => 0.99007468814823
1225 => 1.0061024508527
1226 => 1.0031427083213
1227 => 1.0921815317254
1228 => 1.0907913129668
1229 => 1.0914567371178
1230 => 1.0596943086381
1231 => 1.1102927196502
]
'min_raw' => 0.64596940152709
'max_raw' => 1.4420811835064
'avg_raw' => 1.0440252925167
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.645969'
'max' => '$1.44'
'avg' => '$1.04'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.09960717105302
'max_diff' => 0.21816234115767
'year' => 2035
]
10 => [
'items' => [
101 => 1.1352193163748
102 => 1.130606066721
103 => 1.1317671222703
104 => 1.1118163411721
105 => 1.0916499042891
106 => 1.0692822221934
107 => 1.1108386107981
108 => 1.1062182497765
109 => 1.1168156956067
110 => 1.1437679841288
111 => 1.1477368109955
112 => 1.1530709545522
113 => 1.1511590437973
114 => 1.1967085146549
115 => 1.1911921731889
116 => 1.2044849689621
117 => 1.1771406795299
118 => 1.1461980204935
119 => 1.1520792083846
120 => 1.1515128026972
121 => 1.1443018082059
122 => 1.1377920448046
123 => 1.1269551228558
124 => 1.1612447474644
125 => 1.1598526513255
126 => 1.1823890696796
127 => 1.1784055388284
128 => 1.1518025448689
129 => 1.1527526760026
130 => 1.1591427644941
131 => 1.1812589337238
201 => 1.1878245185348
202 => 1.184783078057
203 => 1.1919819420719
204 => 1.197671630668
205 => 1.1926964793596
206 => 1.2631341302209
207 => 1.2338835066874
208 => 1.2481400570731
209 => 1.2515401603356
210 => 1.2428308673251
211 => 1.2447196011227
212 => 1.2475805181769
213 => 1.2649514463047
214 => 1.3105377880308
215 => 1.3307276684646
216 => 1.3914699199008
217 => 1.3290511799513
218 => 1.3253475102371
219 => 1.336289023961
220 => 1.3719511557744
221 => 1.4008519640353
222 => 1.4104400294631
223 => 1.4117072505911
224 => 1.4296950987362
225 => 1.4400053978395
226 => 1.427510900844
227 => 1.4169231228688
228 => 1.3789990163647
229 => 1.3833888349565
301 => 1.41363033188
302 => 1.4563482274999
303 => 1.4930046259812
304 => 1.4801688328375
305 => 1.5780968738661
306 => 1.5878060391339
307 => 1.5864645464288
308 => 1.6085834698264
309 => 1.5646819113226
310 => 1.5459131445096
311 => 1.4192123206434
312 => 1.4548100840904
313 => 1.5065535238439
314 => 1.4997050855645
315 => 1.4621276165094
316 => 1.4929761201013
317 => 1.4827766400919
318 => 1.4747318870317
319 => 1.5115864603526
320 => 1.4710633430839
321 => 1.5061492747505
322 => 1.4611512044705
323 => 1.4802274656594
324 => 1.4693988571937
325 => 1.4764062939753
326 => 1.4354409617352
327 => 1.4575448606347
328 => 1.4345213668701
329 => 1.4345104507363
330 => 1.4340022058354
331 => 1.4610892441477
401 => 1.4619725514946
402 => 1.4419551892556
403 => 1.4390703746269
404 => 1.4497370463015
405 => 1.4372491673763
406 => 1.4430921673276
407 => 1.4374261458925
408 => 1.4361506051228
409 => 1.4259868792543
410 => 1.4216080666927
411 => 1.4233251119262
412 => 1.4174639513468
413 => 1.4139323900902
414 => 1.4332996894134
415 => 1.4229525226596
416 => 1.4317138377091
417 => 1.4217292134441
418 => 1.387118155648
419 => 1.3672129703042
420 => 1.3018358905741
421 => 1.3203767492855
422 => 1.3326693577931
423 => 1.3286066507547
424 => 1.3373349175321
425 => 1.3378707622242
426 => 1.3350331137207
427 => 1.3317474802789
428 => 1.3301482156264
429 => 1.3420678240934
430 => 1.348987558004
501 => 1.3339030855107
502 => 1.3303690046597
503 => 1.345620239187
504 => 1.3549234834383
505 => 1.4236134119486
506 => 1.4185246401791
507 => 1.4312964586997
508 => 1.4298585479338
509 => 1.4432454484537
510 => 1.4651273730774
511 => 1.420635302035
512 => 1.4283575871479
513 => 1.4264642611718
514 => 1.4471350977219
515 => 1.4471996298173
516 => 1.4348064307207
517 => 1.4415249850077
518 => 1.4377748723186
519 => 1.4445518328059
520 => 1.4184566765296
521 => 1.4502377600761
522 => 1.4682555865192
523 => 1.4685057640568
524 => 1.4770460707925
525 => 1.4857235170572
526 => 1.502379119516
527 => 1.4852590013445
528 => 1.4544615753638
529 => 1.4566850500446
530 => 1.4386285304605
531 => 1.4389320638168
601 => 1.4373117789721
602 => 1.4421743757605
603 => 1.4195237430771
604 => 1.4248398012945
605 => 1.4173972886594
606 => 1.428341408579
607 => 1.4165673446733
608 => 1.4264633481527
609 => 1.4307341351967
610 => 1.4464934313326
611 => 1.4142396838206
612 => 1.3484721092568
613 => 1.3622972507848
614 => 1.3418487805234
615 => 1.3437413642989
616 => 1.3475646847279
617 => 1.3351720523049
618 => 1.3375361760345
619 => 1.3374517128987
620 => 1.3367238552259
621 => 1.3335000529065
622 => 1.3288249017335
623 => 1.3474492650711
624 => 1.3506139073217
625 => 1.3576485150285
626 => 1.378578735944
627 => 1.3764873133059
628 => 1.3798985104009
629 => 1.3724518862956
630 => 1.3440867918337
701 => 1.3456271529316
702 => 1.3264188253585
703 => 1.3571573149062
704 => 1.3498780348531
705 => 1.3451850356483
706 => 1.343904507335
707 => 1.3648866102197
708 => 1.371164784257
709 => 1.3672526475096
710 => 1.3592287409053
711 => 1.3746370136406
712 => 1.3787596174017
713 => 1.379682516348
714 => 1.4069830213917
715 => 1.3812083113092
716 => 1.3874125402046
717 => 1.4358161629717
718 => 1.3919207563653
719 => 1.4151731322291
720 => 1.4140350494301
721 => 1.4259301781045
722 => 1.413059301686
723 => 1.4132188516248
724 => 1.4237809200419
725 => 1.4089483998292
726 => 1.4052756592343
727 => 1.4002017944072
728 => 1.4112803926336
729 => 1.4179215112284
730 => 1.4714440497386
731 => 1.5060220505405
801 => 1.5045209283327
802 => 1.518238375329
803 => 1.5120585398198
804 => 1.4921022208022
805 => 1.5261652239513
806 => 1.5153862644984
807 => 1.5162748688192
808 => 1.516241794922
809 => 1.5234088606453
810 => 1.5183303377284
811 => 1.5083200477597
812 => 1.5149653454016
813 => 1.5346995036608
814 => 1.5959549364152
815 => 1.6302342881111
816 => 1.5938912764006
817 => 1.6189601992262
818 => 1.6039277785014
819 => 1.6011959404799
820 => 1.6169410765932
821 => 1.6327137724829
822 => 1.631709119942
823 => 1.6202589526629
824 => 1.6137910437042
825 => 1.662768217248
826 => 1.6988537644106
827 => 1.6963929720147
828 => 1.7072541093577
829 => 1.739142744519
830 => 1.7420582416768
831 => 1.7416909560469
901 => 1.7344645921407
902 => 1.7658630947196
903 => 1.792056277975
904 => 1.7327918976861
905 => 1.7553589978724
906 => 1.7654900962126
907 => 1.7803655543375
908 => 1.8054629456103
909 => 1.8327253692869
910 => 1.836580574912
911 => 1.8338451220324
912 => 1.8158648207644
913 => 1.8456956900597
914 => 1.8631699136729
915 => 1.8735754139441
916 => 1.8999620313216
917 => 1.7655526624269
918 => 1.6704110305442
919 => 1.6555532908639
920 => 1.6857670887556
921 => 1.6937342263091
922 => 1.6905226831512
923 => 1.5834321265684
924 => 1.6549894812464
925 => 1.7319791781666
926 => 1.7349366659757
927 => 1.7734793180326
928 => 1.786030385459
929 => 1.8170622722657
930 => 1.8151212192969
1001 => 1.8226769899092
1002 => 1.8209400490931
1003 => 1.8784200848678
1004 => 1.9418291001952
1005 => 1.9396334476227
1006 => 1.930517651448
1007 => 1.9440561632417
1008 => 2.0095010623826
1009 => 2.0034759448029
1010 => 2.0093288333133
1011 => 2.0864920577134
1012 => 2.1868152257741
1013 => 2.1402050419285
1014 => 2.2413357291543
1015 => 2.3049921360556
1016 => 2.4150793095961
1017 => 2.4012958532781
1018 => 2.4441519820804
1019 => 2.3766205897747
1020 => 2.2215548626946
1021 => 2.1970151178164
1022 => 2.2461443085078
1023 => 2.3669236298664
1024 => 2.2423405378611
1025 => 2.2675435351164
1026 => 2.2602850702114
1027 => 2.2598982974631
1028 => 2.2746598401472
1029 => 2.2532474525736
1030 => 2.1660095335838
1031 => 2.2059901577606
1101 => 2.1905517187387
1102 => 2.2076818178453
1103 => 2.3001258977338
1104 => 2.2592541664235
1105 => 2.2161991176379
1106 => 2.2701997034952
1107 => 2.3389610059061
1108 => 2.3346580471772
1109 => 2.3263085087458
1110 => 2.3733744197157
1111 => 2.4511135156199
1112 => 2.4721260808618
1113 => 2.4876371269405
1114 => 2.4897758381334
1115 => 2.5118058926226
1116 => 2.3933447373457
1117 => 2.5813456330684
1118 => 2.6138081943397
1119 => 2.607706578256
1120 => 2.6437873488757
1121 => 2.6331714708786
1122 => 2.617790729241
1123 => 2.6749864252733
1124 => 2.609416175227
1125 => 2.5163474603511
1126 => 2.4652881226798
1127 => 2.5325271773647
1128 => 2.5735877217411
1129 => 2.6007261296328
1130 => 2.6089381954634
1201 => 2.4025405396142
1202 => 2.2913036504503
1203 => 2.3626052210708
1204 => 2.4495980581994
1205 => 2.3928614877431
1206 => 2.3950854538885
1207 => 2.3141940145261
1208 => 2.4567551556662
1209 => 2.43598519653
1210 => 2.5437397812699
1211 => 2.5180232848372
1212 => 2.6058929656837
1213 => 2.5827539338831
1214 => 2.6788027612014
1215 => 2.7171192388369
1216 => 2.7814585682704
1217 => 2.8287868409099
1218 => 2.8565789078494
1219 => 2.8549103763958
1220 => 2.9650363915628
1221 => 2.9000989279287
1222 => 2.8185221690192
1223 => 2.817046702822
1224 => 2.8592964622128
1225 => 2.9478403672405
1226 => 2.9707985135528
1227 => 2.9836289853335
1228 => 2.9639786711695
1229 => 2.8934937085046
1230 => 2.8630586589928
1231 => 2.8889902029651
]
'min_raw' => 1.0692822221934
'max_raw' => 2.9836289853335
'avg_raw' => 2.0264556037634
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.06'
'max' => '$2.98'
'avg' => '$2.02'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.42331282066635
'max_diff' => 1.5415478018271
'year' => 2036
]
11 => [
'items' => [
101 => 2.8572781530099
102 => 2.9120220480623
103 => 2.9871971086342
104 => 2.9716737559005
105 => 3.0235659966981
106 => 3.0772690067007
107 => 3.1540667229575
108 => 3.1741444897983
109 => 3.2073322748969
110 => 3.2414934073829
111 => 3.2524650424691
112 => 3.273413298147
113 => 3.2733028904992
114 => 3.3364318689648
115 => 3.4060650871541
116 => 3.4323500150079
117 => 3.4927907572482
118 => 3.3892881042579
119 => 3.4677960555038
120 => 3.5386121927091
121 => 3.4541822745263
122 => 3.5705492470934
123 => 3.575067512945
124 => 3.6432879629711
125 => 3.5741334674128
126 => 3.5330697486992
127 => 3.6516191659878
128 => 3.7089814947421
129 => 3.6917034944912
130 => 3.5602170594617
131 => 3.4836863145561
201 => 3.2833905934598
202 => 3.5206495272296
203 => 3.6362114329308
204 => 3.5599177820436
205 => 3.5983958618145
206 => 3.808319788485
207 => 3.8882452281935
208 => 3.8716212954551
209 => 3.8744304664347
210 => 3.917556782952
211 => 4.1088026204861
212 => 3.9942036815919
213 => 4.0818102764362
214 => 4.1282764984526
215 => 4.1714369150521
216 => 4.0654485728735
217 => 3.9275592969771
218 => 3.8838839751027
219 => 3.5523318820464
220 => 3.5350731557451
221 => 3.5253853096792
222 => 3.4643048106069
223 => 3.4163122696929
224 => 3.3781468193093
225 => 3.2779892803343
226 => 3.311789509583
227 => 3.1521592969599
228 => 3.2542850500488
301 => 2.9995113762962
302 => 3.2116944624379
303 => 3.0962128554321
304 => 3.1737556486686
305 => 3.173485109168
306 => 3.0307042418545
307 => 2.9483512173487
308 => 3.0008297697914
309 => 3.0570909437627
310 => 3.0662191299543
311 => 3.1391632105749
312 => 3.1595203355484
313 => 3.0978372964955
314 => 2.9942317581962
315 => 3.0182969617524
316 => 2.9478635367667
317 => 2.8244316686619
318 => 2.9130825912485
319 => 2.9433519139254
320 => 2.9567205712249
321 => 2.8353395051896
322 => 2.7971989389302
323 => 2.776893221484
324 => 2.9785629868092
325 => 2.9896109117975
326 => 2.9330881655383
327 => 3.1885763383365
328 => 3.1307514962373
329 => 3.1953560122924
330 => 3.0161132967692
331 => 3.0229606098845
401 => 2.9381042358639
402 => 2.9856181352105
403 => 2.9520368425968
404 => 2.9817794816848
405 => 2.9996070969207
406 => 3.0844495468453
407 => 3.2126632269318
408 => 3.0717769140729
409 => 3.0103907300311
410 => 3.0484743733616
411 => 3.1498961341546
412 => 3.3035552934404
413 => 3.2125859784644
414 => 3.2529566156916
415 => 3.2617758039611
416 => 3.194698398965
417 => 3.3060285330408
418 => 3.3656912563365
419 => 3.4268928649768
420 => 3.4800325069291
421 => 3.4024475966337
422 => 3.4854745720098
423 => 3.4185694860908
424 => 3.3585487075007
425 => 3.3586397342463
426 => 3.3209878230731
427 => 3.248032500729
428 => 3.2345784199532
429 => 3.3045682472117
430 => 3.3606934606116
501 => 3.3653162020089
502 => 3.3963900039647
503 => 3.4147791598765
504 => 3.5950178866576
505 => 3.6675113935819
506 => 3.7561550816171
507 => 3.7906867937913
508 => 3.8946148671317
509 => 3.8106845072839
510 => 3.7925256459841
511 => 3.540430134674
512 => 3.5817107605284
513 => 3.6478050255092
514 => 3.5415200047595
515 => 3.6089333869857
516 => 3.6222422166478
517 => 3.5379084804249
518 => 3.5829547727872
519 => 3.4633251755678
520 => 3.2152708252412
521 => 3.3063046884429
522 => 3.3733362534263
523 => 3.2776739452626
524 => 3.4491449300035
525 => 3.3489751205974
526 => 3.3172261000145
527 => 3.1933618513776
528 => 3.2518210087621
529 => 3.3308878561791
530 => 3.282033736983
531 => 3.3834133697978
601 => 3.5269939668241
602 => 3.6293180506375
603 => 3.6371732232294
604 => 3.5713856925187
605 => 3.6768106303331
606 => 3.67757853591
607 => 3.5586587753818
608 => 3.4858210842063
609 => 3.4692722075194
610 => 3.5106145460817
611 => 3.560811777313
612 => 3.6399588202078
613 => 3.6877857206098
614 => 3.8124929114301
615 => 3.8462351016307
616 => 3.8833075386684
617 => 3.9328477472668
618 => 3.992333469538
619 => 3.8621820957327
620 => 3.8673532524465
621 => 3.7461580952274
622 => 3.6166436885951
623 => 3.7149289790303
624 => 3.84342392193
625 => 3.8139470400545
626 => 3.8106302886855
627 => 3.8162081444981
628 => 3.793983538189
629 => 3.693462467535
630 => 3.6429814151477
701 => 3.7081148518172
702 => 3.7427303746513
703 => 3.7964160317762
704 => 3.7897981413688
705 => 3.9280866287038
706 => 3.9818213532553
707 => 3.9680737112765
708 => 3.9706036082561
709 => 4.0678877603518
710 => 4.176087745494
711 => 4.2774313098252
712 => 4.3805223362703
713 => 4.2562420801795
714 => 4.1931402306771
715 => 4.2582452321258
716 => 4.2236996019379
717 => 4.422209039897
718 => 4.4359534026815
719 => 4.6344484861487
720 => 4.8228439567141
721 => 4.7045161371074
722 => 4.8160939413944
723 => 4.9367744338027
724 => 5.1695866833625
725 => 5.0911837081444
726 => 5.0311282578587
727 => 4.9743761475244
728 => 5.0924682799862
729 => 5.2443919218303
730 => 5.2771148191769
731 => 5.3301384139874
801 => 5.2743905874609
802 => 5.3415327040904
803 => 5.5785738795337
804 => 5.5145232615086
805 => 5.4235610872623
806 => 5.6106823295983
807 => 5.6784007797843
808 => 6.1536843276172
809 => 6.7537494397404
810 => 6.5053185430814
811 => 6.3511094687103
812 => 6.3873522590756
813 => 6.6064757245371
814 => 6.6768512270121
815 => 6.4855463513945
816 => 6.553118467593
817 => 6.9254474713907
818 => 7.1251900361836
819 => 6.8539128041894
820 => 6.1054696801285
821 => 5.4153709387101
822 => 5.5984162004856
823 => 5.5776645483561
824 => 5.9776856139476
825 => 5.5129956754517
826 => 5.5208198622522
827 => 5.9291129398505
828 => 5.8201873466626
829 => 5.6437418358343
830 => 5.4166591862055
831 => 4.9968759057638
901 => 4.6250621477538
902 => 5.3542745508059
903 => 5.3228295859996
904 => 5.2772926170774
905 => 5.3786302137992
906 => 5.8706968183015
907 => 5.8593530904036
908 => 5.7871900811377
909 => 5.8419250876503
910 => 5.6341465245528
911 => 5.6876957912929
912 => 5.4152616235437
913 => 5.5384132452222
914 => 5.6433632630138
915 => 5.664433532897
916 => 5.7119059268186
917 => 5.3062595184169
918 => 5.4883828466364
919 => 5.5953632393173
920 => 5.1120219332053
921 => 5.5858091357562
922 => 5.2991981169285
923 => 5.2019180323853
924 => 5.3328928505461
925 => 5.2818518365317
926 => 5.2379697699109
927 => 5.213482822747
928 => 5.3096562740411
929 => 5.3051696675861
930 => 5.1478112348064
1001 => 4.9425435739956
1002 => 5.011438138645
1003 => 4.9864080974178
1004 => 4.8956959990712
1005 => 4.9568250007363
1006 => 4.687643814083
1007 => 4.2245315732664
1008 => 4.5304777050614
1009 => 4.5186991117926
1010 => 4.5127598109499
1011 => 4.7426698732638
1012 => 4.7205693256999
1013 => 4.6804566154623
1014 => 4.8949592976909
1015 => 4.8166629332093
1016 => 5.0579538795982
1017 => 5.2168837026099
1018 => 5.176573958653
1019 => 5.32604822537
1020 => 5.013025330267
1021 => 5.1169989797215
1022 => 5.1384278047728
1023 => 4.8923123678886
1024 => 4.7241852486034
1025 => 4.7129730865366
1026 => 4.4214638310403
1027 => 4.5771857223459
1028 => 4.7142145424852
1029 => 4.6485883715045
1030 => 4.6278130862981
1031 => 4.733949512808
1101 => 4.7421972221448
1102 => 4.5541485752119
1103 => 4.5932498436354
1104 => 4.7563086330065
1105 => 4.589141180509
1106 => 4.2643621269547
1107 => 4.1838124312515
1108 => 4.1730656170192
1109 => 3.9546084537953
1110 => 4.1891951470817
1111 => 4.0867917689297
1112 => 4.4102828135312
1113 => 4.2255064637721
1114 => 4.2175411246418
1115 => 4.2055003462851
1116 => 4.0174652415465
1117 => 4.0586329792299
1118 => 4.1954808093132
1119 => 4.244309656788
1120 => 4.2392164079535
1121 => 4.1948101802887
1122 => 4.215139123917
1123 => 4.1496525134169
1124 => 4.1265278282634
1125 => 4.0535399609731
1126 => 3.9462679594695
1127 => 3.961184789216
1128 => 3.7486508849912
1129 => 3.6328511339415
1130 => 3.6007992890671
1201 => 3.5579382225623
1202 => 3.6056405605777
1203 => 3.748048803144
1204 => 3.5762742490151
1205 => 3.281778824545
1206 => 3.2994785013514
1207 => 3.3392444200543
1208 => 3.2651408936294
1209 => 3.1950081249058
1210 => 3.2559828772596
1211 => 3.131201283647
1212 => 3.3543236794913
1213 => 3.348288843977
1214 => 3.4314550753513
1215 => 3.4834606265725
1216 => 3.3636046680047
1217 => 3.3334612185499
1218 => 3.3506322973027
1219 => 3.0668326145685
1220 => 3.4082625865879
1221 => 3.4112152871641
1222 => 3.385932472194
1223 => 3.5677333918266
1224 => 3.9513900373802
1225 => 3.8070429747701
1226 => 3.7511474292144
1227 => 3.6448899562537
1228 => 3.7864717300294
1229 => 3.7756004588232
1230 => 3.7264364476214
1231 => 3.6967019002455
]
'min_raw' => 2.776893221484
'max_raw' => 7.1251900361836
'avg_raw' => 4.9510416288338
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.77'
'max' => '$7.12'
'avg' => '$4.95'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.7076109992906
'max_diff' => 4.1415610508502
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.087163505137573
]
1 => [
'year' => 2028
'avg' => 0.14959787856242
]
2 => [
'year' => 2029
'avg' => 0.40867444183821
]
3 => [
'year' => 2030
'avg' => 0.31529172326194
]
4 => [
'year' => 2031
'avg' => 0.30965554591633
]
5 => [
'year' => 2032
'avg' => 0.54292362417812
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.087163505137573
'min' => '$0.087163'
'max_raw' => 0.54292362417812
'max' => '$0.542923'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.54292362417812
]
1 => [
'year' => 2033
'avg' => 1.396455389564
]
2 => [
'year' => 2034
'avg' => 0.88514053641138
]
3 => [
'year' => 2035
'avg' => 1.0440252925167
]
4 => [
'year' => 2036
'avg' => 2.0264556037634
]
5 => [
'year' => 2037
'avg' => 4.9510416288338
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.54292362417812
'min' => '$0.542923'
'max_raw' => 4.9510416288338
'max' => '$4.95'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.9510416288338
]
]
]
]
'prediction_2025_max_price' => '$0.149033'
'last_price' => 0.144507
'sma_50day_nextmonth' => '$0.131332'
'sma_200day_nextmonth' => '$0.134575'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.141139'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.14281'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.139222'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.128658'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.135074'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.143914'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.134435'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.142896'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.141843'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.138111'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.1339072'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.135262'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.138772'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.15867'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.129428'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.187657'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.316966'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.390945'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.139138'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.137633'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.136158'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.140419'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.195151'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.306166'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.605261'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.30'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 92.32
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.139160'
'vwma_10_action' => 'BUY'
'hma_9' => '0.142225'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 97.16
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 92.55
'cci_20_action' => 'NEUTRAL'
'adx_14' => 9.02
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.012525'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -2.84
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 60.94
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.012675'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 9
'buy_signals' => 24
'sell_pct' => 27.27
'buy_pct' => 72.73
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767693620
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Prosper para 2026
La previsión del precio de Prosper para 2026 sugiere que el precio medio podría oscilar entre $0.049927 en el extremo inferior y $0.149033 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Prosper podría potencialmente ganar 3.13% para 2026 si PROS alcanza el objetivo de precio previsto.
Predicción de precio de Prosper 2027-2032
La predicción del precio de PROS para 2027-2032 está actualmente dentro de un rango de precios de $0.087163 en el extremo inferior y $0.542923 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Prosper alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Prosper | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.048063 | $0.087163 | $0.126263 |
| 2028 | $0.08674 | $0.149597 | $0.212455 |
| 2029 | $0.190544 | $0.408674 | $0.6268045 |
| 2030 | $0.162049 | $0.315291 | $0.468533 |
| 2031 | $0.191593 | $0.309655 | $0.427718 |
| 2032 | $0.292452 | $0.542923 | $0.793394 |
Predicción de precio de Prosper 2032-2037
La predicción de precio de Prosper para 2032-2037 se estima actualmente entre $0.542923 en el extremo inferior y $4.95 en el extremo superior. Comparado con el precio actual, Prosper podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Prosper | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.292452 | $0.542923 | $0.793394 |
| 2033 | $0.679595 | $1.39 | $2.11 |
| 2034 | $0.546362 | $0.88514 | $1.22 |
| 2035 | $0.645969 | $1.04 | $1.44 |
| 2036 | $1.06 | $2.02 | $2.98 |
| 2037 | $2.77 | $4.95 | $7.12 |
Prosper Histograma de precios potenciales
Pronóstico de precio de Prosper basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Prosper es Alcista, con 24 indicadores técnicos mostrando señales alcistas y 9 indicando señales bajistas. La predicción de precio de PROS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Prosper
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Prosper aumentar durante el próximo mes, alcanzando $0.134575 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Prosper alcance $0.131332 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.30, lo que sugiere que el mercado de PROS está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PROS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.141139 | BUY |
| SMA 5 | $0.14281 | BUY |
| SMA 10 | $0.139222 | BUY |
| SMA 21 | $0.128658 | BUY |
| SMA 50 | $0.135074 | BUY |
| SMA 100 | $0.143914 | BUY |
| SMA 200 | $0.134435 | BUY |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.142896 | BUY |
| EMA 5 | $0.141843 | BUY |
| EMA 10 | $0.138111 | BUY |
| EMA 21 | $0.1339072 | BUY |
| EMA 50 | $0.135262 | BUY |
| EMA 100 | $0.138772 | BUY |
| EMA 200 | $0.15867 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.129428 | BUY |
| SMA 50 | $0.187657 | SELL |
| SMA 100 | $0.316966 | SELL |
| SMA 200 | $0.390945 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.140419 | BUY |
| EMA 50 | $0.195151 | SELL |
| EMA 100 | $0.306166 | SELL |
| EMA 200 | $0.605261 | SELL |
Osciladores de Prosper
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.30 | NEUTRAL |
| Stoch RSI (14) | 92.32 | SELL |
| Estocástico Rápido (14) | 97.16 | SELL |
| Índice de Canal de Materias Primas (20) | 92.55 | NEUTRAL |
| Índice Direccional Medio (14) | 9.02 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.012525 | NEUTRAL |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -2.84 | SELL |
| Oscilador Ultimate (7, 14, 28) | 60.94 | NEUTRAL |
| VWMA (10) | 0.139160 | BUY |
| Promedio Móvil de Hull (9) | 0.142225 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.012675 | BUY |
Predicción de precios de Prosper basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Prosper
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Prosper por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.203056 | $0.285328 | $0.400933 | $0.563379 | $0.791641 | $1.11 |
| Amazon.com acción | $0.301522 | $0.629144 | $1.31 | $2.73 | $5.71 | $11.92 |
| Apple acción | $0.204972 | $0.290737 | $0.412388 | $0.584941 | $0.829695 | $1.17 |
| Netflix acción | $0.2280093 | $0.359763 | $0.567649 | $0.895662 | $1.41 | $2.22 |
| Google acción | $0.187135 | $0.24234 | $0.313829 | $0.4064077 | $0.526296 | $0.681551 |
| Tesla acción | $0.327586 | $0.742613 | $1.68 | $3.81 | $8.65 | $19.61 |
| Kodak acción | $0.108364 | $0.081262 | $0.060937 | $0.045696 | $0.034267 | $0.025697 |
| Nokia acción | $0.095729 | $0.063417 | $0.042011 | $0.02783 | $0.018436 | $0.012213 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Prosper
Podría preguntarse cosas como: "¿Debo invertir en Prosper ahora?", "¿Debería comprar PROS hoy?", "¿Será Prosper una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Prosper/Prosper [OLD] regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Prosper, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Prosper a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Prosper es de $0.1445 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Prosper
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Prosper
basado en el historial de precios del último mes
Predicción de precios de Prosper basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Prosper ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.148263 | $0.152117 | $0.156071 | $0.160127 |
| Si Prosper ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.152019 | $0.159922 | $0.168236 | $0.176982 |
| Si Prosper ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.163288 | $0.1845099 | $0.208489 | $0.235586 |
| Si Prosper ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.182069 | $0.229394 | $0.289021 | $0.364147 |
| Si Prosper ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.219631 | $0.3338093 | $0.507344 | $0.771095 |
| Si Prosper ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.332317 | $0.764216 | $1.75 | $4.04 |
| Si Prosper ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.520127 | $1.87 | $6.73 | $24.25 |
Cuadro de preguntas
¿Es PROS una buena inversión?
La decisión de adquirir Prosper depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Prosper ha experimentado una caída de -0.4199% durante las últimas 24 horas, y Prosper ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Prosper dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Prosper subir?
Parece que el valor medio de Prosper podría potencialmente aumentar hasta $0.149033 para el final de este año. Mirando las perspectivas de Prosper en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.468533. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Prosper la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Prosper, el precio de Prosper aumentará en un 0.86% durante la próxima semana y alcanzará $0.145743 para el 13 de enero de 2026.
¿Cuál será el precio de Prosper el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Prosper, el precio de Prosper disminuirá en un -11.62% durante el próximo mes y alcanzará $0.127718 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Prosper este año en 2026?
Según nuestra predicción más reciente sobre el valor de Prosper en 2026, se anticipa que PROS fluctúe dentro del rango de $0.049927 y $0.149033. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Prosper no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Prosper en 5 años?
El futuro de Prosper parece estar en una tendencia alcista, con un precio máximo de $0.468533 proyectada después de un período de cinco años. Basado en el pronóstico de Prosper para 2030, el valor de Prosper podría potencialmente alcanzar su punto más alto de aproximadamente $0.468533, mientras que su punto más bajo se anticipa que esté alrededor de $0.162049.
¿Cuánto será Prosper en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Prosper, se espera que el valor de PROS en 2026 crezca en un 3.13% hasta $0.149033 si ocurre lo mejor. El precio estará entre $0.149033 y $0.049927 durante 2026.
¿Cuánto será Prosper en 2027?
Según nuestra última simulación experimental para la predicción de precios de Prosper, el valor de PROS podría disminuir en un -12.62% hasta $0.126263 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.126263 y $0.048063 a lo largo del año.
¿Cuánto será Prosper en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Prosper sugiere que el valor de PROS en 2028 podría aumentar en un 47.02% , alcanzando $0.212455 en el mejor escenario. Se espera que el precio oscile entre $0.212455 y $0.08674 durante el año.
¿Cuánto será Prosper en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Prosper podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.6268045 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.6268045 y $0.190544.
¿Cuánto será Prosper en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Prosper, se espera que el valor de PROS en 2030 aumente en un 224.23% , alcanzando $0.468533 en el mejor escenario. Se pronostica que el precio oscile entre $0.468533 y $0.162049 durante el transcurso de 2030.
¿Cuánto será Prosper en 2031?
Nuestra simulación experimental indica que el precio de Prosper podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.427718 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.427718 y $0.191593 durante el año.
¿Cuánto será Prosper en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Prosper, PROS podría experimentar un 449.04% aumento en valor, alcanzando $0.793394 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.793394 y $0.292452 a lo largo del año.
¿Cuánto será Prosper en 2033?
Según nuestra predicción experimental de precios de Prosper, se anticipa que el valor de PROS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.11. A lo largo del año, el precio de PROS podría oscilar entre $2.11 y $0.679595.
¿Cuánto será Prosper en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Prosper sugieren que PROS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.22 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.22 y $0.546362.
¿Cuánto será Prosper en 2035?
Basado en nuestra predicción experimental para el precio de Prosper, PROS podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.44 en 2035. El rango de precios esperado para el año está entre $1.44 y $0.645969.
¿Cuánto será Prosper en 2036?
Nuestra reciente simulación de predicción de precios de Prosper sugiere que el valor de PROS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $2.98 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $2.98 y $1.06.
¿Cuánto será Prosper en 2037?
Según la simulación experimental, el valor de Prosper podría aumentar en un 4830.69% en 2037, con un máximo de $7.12 bajo condiciones favorables. Se espera que el precio caiga entre $7.12 y $2.77 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Sphynx Labs
Predicción de precios de Domi
Predicción de precios de DigitalBits
Predicción de precios de Obyte
Predicción de precios de Adshares
Predicción de precios de sBTC
Predicción de precios de Any Inu
Predicción de precios de Zeek CoinPredicción de precios de Paribus
Predicción de precios de Fimarkcoin
Predicción de precios de Ethereum Push Notification Service
Predicción de precios de Karura
Predicción de precios de Mettalex
Predicción de precios de Iron Bank EURO
Predicción de precios de Galatasaray Fan Token
Predicción de precios de Saito
Predicción de precios de SophiaVerse
Predicción de precios de DEXTF
Predicción de precios de Joystream
Predicción de precios de DeepBrain Chain
Predicción de precios de Dego Finance
Predicción de precios de ROACORE
Predicción de precios de eUSD
Predicción de precios de Kyber Network
Predicción de precios de Buying
¿Cómo leer y predecir los movimientos de precio de Prosper?
Los traders de Prosper utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Prosper
Las medias móviles son herramientas populares para la predicción de precios de Prosper. Una media móvil simple (SMA) calcula el precio de cierre promedio de PROS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PROS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PROS.
¿Cómo leer gráficos de Prosper y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Prosper en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PROS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Prosper?
La acción del precio de Prosper está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PROS. La capitalización de mercado de Prosper puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PROS, grandes poseedores de Prosper, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Prosper.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


