Predicción del precio de PolySwarm - Pronóstico de NCT
Predicción de precio de PolySwarm hasta $0.010586 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003546 | $0.010586 |
| 2027 | $0.003414 | $0.008969 |
| 2028 | $0.006161 | $0.015091 |
| 2029 | $0.013535 | $0.044525 |
| 2030 | $0.011511 | $0.033282 |
| 2031 | $0.0136098 | $0.030383 |
| 2032 | $0.020774 | $0.056359 |
| 2033 | $0.048275 | $0.150119 |
| 2034 | $0.03881 | $0.086941 |
| 2035 | $0.045886 | $0.102438 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en PolySwarm hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.24, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de PolySwarm para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'PolySwarm'
'name_with_ticker' => 'PolySwarm <small>NCT</small>'
'name_lang' => 'PolySwarm'
'name_lang_with_ticker' => 'PolySwarm <small>NCT</small>'
'name_with_lang' => 'PolySwarm'
'name_with_lang_with_ticker' => 'PolySwarm <small>NCT</small>'
'image' => '/uploads/coins/polyswarm.jpg?1717233602'
'price_for_sd' => 0.01026
'ticker' => 'NCT'
'marketcap' => '$19.36M'
'low24h' => '$0.009839'
'high24h' => '$0.01037'
'volume24h' => '$302.79K'
'current_supply' => '1.89B'
'max_supply' => '1.89B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0179 USD 0.57x'
'price' => '$0.01026'
'change_24h_pct' => '4.3296%'
'ath_price' => '$0.1718'
'ath_days' => 1453
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 ene. 2022'
'ath_pct' => '-94.02%'
'fdv' => '$19.37M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.506139'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010352'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0090724'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003546'
'current_year_max_price_prediction' => '$0.010586'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.011511'
'grand_prediction_max_price' => '$0.033282'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010459608056063
107 => 0.010498660435706
108 => 0.010586647441107
109 => 0.0098348081134782
110 => 0.010172361898741
111 => 0.01037064312307
112 => 0.0094748013380177
113 => 0.01035293521133
114 => 0.0098217202634757
115 => 0.0096414179315931
116 => 0.0098841712684471
117 => 0.0097895700569898
118 => 0.0097082374905482
119 => 0.009662852521003
120 => 0.0098411037798805
121 => 0.0098327881455975
122 => 0.0095411344889954
123 => 0.0091606841832819
124 => 0.009288375793735
125 => 0.0092419842345421
126 => 0.0090738552393971
127 => 0.0091871538821526
128 => 0.0086882439985885
129 => 0.0078298954749957
130 => 0.0083969468016074
131 => 0.008375115942366
201 => 0.0083641078331859
202 => 0.0087902312329871
203 => 0.0087492693004357
204 => 0.0086749229917545
205 => 0.0090724898111351
206 => 0.0089273725740329
207 => 0.0093745897048608
208 => 0.0096691558314146
209 => 0.0095944443335046
210 => 0.0098714851992901
211 => 0.009291317550539
212 => 0.0094840259711681
213 => 0.0095237429095775
214 => 0.0090675838982967
215 => 0.0087559711791859
216 => 0.0087351901634662
217 => 0.0081948966514059
218 => 0.0084835170844517
219 => 0.0087374911216069
220 => 0.008615857266991
221 => 0.0085773516223277
222 => 0.0087740686100573
223 => 0.008789355204771
224 => 0.0084408192252989
225 => 0.0085132908921302
226 => 0.0088155097902287
227 => 0.0085056757513119
228 => 0.0079037188247994
301 => 0.0077544251843187
302 => 0.0077345066606509
303 => 0.0073296104670392
304 => 0.007764401699251
305 => 0.0075746036747099
306 => 0.0081741733601055
307 => 0.0078317023713643
308 => 0.0078169391315277
309 => 0.0077946223292184
310 => 0.0074461114493257
311 => 0.0075224131830003
312 => 0.007776051766817
313 => 0.0078665528709659
314 => 0.0078571128643495
315 => 0.0077748087993842
316 => 0.0078124871788603
317 => 0.0076911119905502
318 => 0.0076482518853518
319 => 0.007512973603745
320 => 0.007314151901362
321 => 0.0073417992785227
322 => 0.0069478814615738
323 => 0.0067332541280991
324 => 0.0066738481109361
325 => 0.0065944079020374
326 => 0.0066828210939135
327 => 0.0069467655418915
328 => 0.0066283925386917
329 => 0.0060825643559751
330 => 0.0061153695598023
331 => 0.0061890731128497
401 => 0.0060517270293437
402 => 0.0059217404878883
403 => 0.0060347532395423
404 => 0.0058034786429995
405 => 0.0062170215429144
406 => 0.0062058363664123
407 => 0.0063599795861792
408 => 0.0064563685048367
409 => 0.0062342232536141
410 => 0.0061783543236762
411 => 0.0062101798052701
412 => 0.0056841754866593
413 => 0.0063169938113843
414 => 0.0063224664505348
415 => 0.006275606391592
416 => 0.0066125626134343
417 => 0.0073236453408026
418 => 0.0070561074155302
419 => 0.0069525086444881
420 => 0.0067555673050069
421 => 0.007017979946646
422 => 0.006997830750043
423 => 0.0069067084416484
424 => 0.0068515973852125
425 => 0.0069531411964929
426 => 0.0068390149832592
427 => 0.0068185147793839
428 => 0.0066943058483408
429 => 0.0066499689111048
430 => 0.0066171436078795
501 => 0.0065810061743762
502 => 0.0066607163477972
503 => 0.0064800826080786
504 => 0.0062622560257218
505 => 0.0062441461023151
506 => 0.0062941491930817
507 => 0.0062720265477098
508 => 0.0062440401876003
509 => 0.0061906066045195
510 => 0.0061747540018473
511 => 0.0062262672699425
512 => 0.0061681117936732
513 => 0.0062539233668013
514 => 0.0062305873670813
515 => 0.0061002343696202
516 => 0.0059377662719228
517 => 0.0059363199650649
518 => 0.0059013164799171
519 => 0.0058567342787721
520 => 0.0058443325303161
521 => 0.0060252356208162
522 => 0.0063996996041774
523 => 0.00632618336408
524 => 0.0063793063817977
525 => 0.006640619051186
526 => 0.0067236824908385
527 => 0.0066647260288386
528 => 0.0065840227873769
529 => 0.0065875733204253
530 => 0.0068633607270324
531 => 0.0068805612492948
601 => 0.006924021419953
602 => 0.0069798800210915
603 => 0.0066742389901519
604 => 0.0065731776553539
605 => 0.0065252891882573
606 => 0.0063778112447687
607 => 0.0065368535630178
608 => 0.0064441864150451
609 => 0.0064566903792672
610 => 0.006448547156164
611 => 0.0064529939066207
612 => 0.0062169059492458
613 => 0.0063029239924955
614 => 0.0061599023121191
615 => 0.0059684123370321
616 => 0.0059677703954906
617 => 0.0060146372956095
618 => 0.0059867590295168
619 => 0.0059117393322771
620 => 0.005922395526187
621 => 0.005829036054562
622 => 0.0059337310563701
623 => 0.0059367333344052
624 => 0.0058964200559338
625 => 0.0060577171513453
626 => 0.0061238007029413
627 => 0.0060972656394573
628 => 0.0061219389321502
629 => 0.0063292382957619
630 => 0.006363037137136
701 => 0.0063780483498482
702 => 0.0063579353134184
703 => 0.0061257279839722
704 => 0.0061360273664549
705 => 0.0060604573315442
706 => 0.0059966086154187
707 => 0.0059991622292213
708 => 0.0060319887690619
709 => 0.006175344193797
710 => 0.006477027233888
711 => 0.006488475884732
712 => 0.0065023519835357
713 => 0.0064459109161327
714 => 0.0064288877501357
715 => 0.0064513457001377
716 => 0.0065646419882552
717 => 0.0068560708009356
718 => 0.0067530603946584
719 => 0.0066693113309026
720 => 0.0067427818384019
721 => 0.0067314716296533
722 => 0.0066360020856228
723 => 0.0066333225734931
724 => 0.0064500859950392
725 => 0.0063823476040798
726 => 0.0063257403344634
727 => 0.0062639266738125
728 => 0.006227281463766
729 => 0.0062835851613475
730 => 0.0062964624831502
731 => 0.0061733534643679
801 => 0.0061565741600114
802 => 0.0062571076422417
803 => 0.0062128666049781
804 => 0.0062583696089287
805 => 0.0062689266961627
806 => 0.0062672267619677
807 => 0.0062210340380137
808 => 0.0062504759027751
809 => 0.0061808371155721
810 => 0.0061051153938965
811 => 0.0060568096530974
812 => 0.0060146564874235
813 => 0.0060380455136958
814 => 0.0059546679057026
815 => 0.0059279937308459
816 => 0.0062405016614569
817 => 0.0064713546298257
818 => 0.0064679979362378
819 => 0.006447564927293
820 => 0.0064172056206856
821 => 0.0065624210158804
822 => 0.006511830875868
823 => 0.0065486394296747
824 => 0.0065580087514686
825 => 0.0065863668666797
826 => 0.0065965024554053
827 => 0.0065658656666576
828 => 0.0064630448616516
829 => 0.0062068251914855
830 => 0.0060875542433713
831 => 0.0060481928438789
901 => 0.0060496235559925
902 => 0.0060101581289191
903 => 0.0060217824659086
904 => 0.0060061156589001
905 => 0.0059764465166337
906 => 0.0060362135277663
907 => 0.006043101119031
908 => 0.0060291507844701
909 => 0.0060324365932687
910 => 0.00591693378137
911 => 0.0059257152092997
912 => 0.005876819102697
913 => 0.0058676516721604
914 => 0.0057440465725398
915 => 0.0055250622217164
916 => 0.0056464008093978
917 => 0.0054998408582659
918 => 0.0054443363840266
919 => 0.0057070859323587
920 => 0.0056807131652442
921 => 0.0056355744519105
922 => 0.0055688048871578
923 => 0.0055440394060985
924 => 0.0053935721829804
925 => 0.0053846817767271
926 => 0.0054592573954612
927 => 0.0054248433134058
928 => 0.0053765129085679
929 => 0.0052014650814196
930 => 0.0050046533673612
1001 => 0.0050105938758943
1002 => 0.0050731960203242
1003 => 0.0052552201983034
1004 => 0.0051841002029167
1005 => 0.0051325018302557
1006 => 0.0051228390060976
1007 => 0.0052437894809279
1008 => 0.0054149597427205
1009 => 0.0054952689998349
1010 => 0.005415684965063
1011 => 0.0053242631110257
1012 => 0.0053298275356729
1013 => 0.0053668451599443
1014 => 0.0053707351888542
1015 => 0.0053112289601944
1016 => 0.0053279796150024
1017 => 0.0053025338386371
1018 => 0.0051463731560522
1019 => 0.0051435487044951
1020 => 0.0051052243545576
1021 => 0.0051040639084725
1022 => 0.0050388646287717
1023 => 0.0050297427988402
1024 => 0.0049002856716809
1025 => 0.0049854947448095
1026 => 0.0049283409722319
1027 => 0.0048421967557456
1028 => 0.0048273454603536
1029 => 0.0048268990124807
1030 => 0.0049153498613178
1031 => 0.0049844611451422
1101 => 0.0049293351865756
1102 => 0.0049167840743818
1103 => 0.0050507971162245
1104 => 0.005033742735094
1105 => 0.005018973751024
1106 => 0.0053996333231889
1107 => 0.0050983115685835
1108 => 0.0049669180847311
1109 => 0.0048042936975179
1110 => 0.0048572450180179
1111 => 0.004868402639264
1112 => 0.0044773203032653
1113 => 0.0043186582482569
1114 => 0.0042642114100314
1115 => 0.0042328764848673
1116 => 0.0042471562037438
1117 => 0.0041043417450333
1118 => 0.0042003154232199
1119 => 0.0040766501737823
1120 => 0.0040559172922726
1121 => 0.0042770460774517
1122 => 0.0043078148560938
1123 => 0.0041765456872965
1124 => 0.0042608417442124
1125 => 0.0042302748221718
1126 => 0.0040787700595431
1127 => 0.0040729836920043
1128 => 0.0039969639277671
1129 => 0.0038780077170629
1130 => 0.0038236415367498
1201 => 0.003795327158014
1202 => 0.0038070102225166
1203 => 0.0038011029075964
1204 => 0.0037625536818802
1205 => 0.0038033125040904
1206 => 0.0036991905560515
1207 => 0.0036577283573749
1208 => 0.0036390008441484
1209 => 0.0035465866222283
1210 => 0.0036936587460943
1211 => 0.0037226338072617
1212 => 0.0037516659582504
1213 => 0.0040043710115162
1214 => 0.0039917465811921
1215 => 0.0041058652829749
1216 => 0.0041014308400745
1217 => 0.0040688823377256
1218 => 0.0039315655602845
1219 => 0.0039862975803363
1220 => 0.0038178409298612
1221 => 0.0039440601063359
1222 => 0.0038864589452317
1223 => 0.0039245850958251
1224 => 0.0038560308393618
1225 => 0.0038939715954244
1226 => 0.0037295048691684
1227 => 0.0035759281542997
1228 => 0.0036377319075467
1229 => 0.0037049196554426
1230 => 0.0038505998120007
1231 => 0.0037638339125899
]
'min_raw' => 0.0035465866222283
'max_raw' => 0.010586647441107
'avg_raw' => 0.0070666170316678
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003546'
'max' => '$0.010586'
'avg' => '$0.007066'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0067185033777717
'max_diff' => 0.00032155744110728
'year' => 2026
]
1 => [
'items' => [
101 => 0.0037950382109999
102 => 0.0036905090348628
103 => 0.0034748354872088
104 => 0.0034760561760665
105 => 0.0034428794994636
106 => 0.0034142100070046
107 => 0.0037738000198794
108 => 0.0037290793175015
109 => 0.0036578227311632
110 => 0.0037532025036012
111 => 0.0037784224293143
112 => 0.0037791404051443
113 => 0.0038487270250068
114 => 0.0038858654165016
115 => 0.0038924112189695
116 => 0.0040019072688416
117 => 0.0040386089004709
118 => 0.0041897777269426
119 => 0.0038827144834547
120 => 0.0038763907180237
121 => 0.0037545446925989
122 => 0.003677268016965
123 => 0.0037598358926926
124 => 0.0038329797589482
125 => 0.0037568174764112
126 => 0.003766762662637
127 => 0.0036645210210181
128 => 0.0037010675969805
129 => 0.0037325464315547
130 => 0.0037151656693432
131 => 0.0036891458270741
201 => 0.0038269827960369
202 => 0.0038192054940606
203 => 0.003947562448417
204 => 0.0040476258732316
205 => 0.0042269574189762
206 => 0.0040398156022268
207 => 0.0040329954106031
208 => 0.0040996638777179
209 => 0.0040385986938759
210 => 0.0040771897821656
211 => 0.0042207397980369
212 => 0.0042237727836691
213 => 0.0041729663665483
214 => 0.0041698747914492
215 => 0.0041796327196186
216 => 0.0042367852096897
217 => 0.0042168143735402
218 => 0.0042399251307322
219 => 0.0042688254864851
220 => 0.0043883696113763
221 => 0.0044171912951728
222 => 0.004347169545877
223 => 0.0043534917258381
224 => 0.0043273016694615
225 => 0.0043020024031621
226 => 0.004358871459142
227 => 0.0044628007767093
228 => 0.0044621542378187
301 => 0.004486263819397
302 => 0.0045012838889858
303 => 0.0044368067549479
304 => 0.0043948345115791
305 => 0.0044109293404499
306 => 0.0044366653223141
307 => 0.0044025835083923
308 => 0.0041922147646344
309 => 0.0042560272030832
310 => 0.0042454056930565
311 => 0.0042302793711587
312 => 0.0042944432714659
313 => 0.0042882545067524
314 => 0.0041028769763386
315 => 0.0041147442443798
316 => 0.0041035986642138
317 => 0.0041396123139012
318 => 0.0040366538386061
319 => 0.0040683231721709
320 => 0.0040881858813013
321 => 0.0040998851695715
322 => 0.0041421510210809
323 => 0.0041371916112369
324 => 0.0041418427372016
325 => 0.0042045118372189
326 => 0.0045214706396678
327 => 0.0045387220079549
328 => 0.0044537699611176
329 => 0.0044877066282241
330 => 0.0044225556485129
331 => 0.0044662919376667
401 => 0.0044962151959244
402 => 0.0043609977457695
403 => 0.0043529910459254
404 => 0.0042875711649454
405 => 0.0043227241034126
406 => 0.0042667932507256
407 => 0.0042805167255968
408 => 0.0042421446934659
409 => 0.0043112067115062
410 => 0.0043884287788279
411 => 0.0044079381226252
412 => 0.0043566174383951
413 => 0.0043194578808146
414 => 0.0042542179388224
415 => 0.0043627134163223
416 => 0.004394440800283
417 => 0.0043625467658811
418 => 0.0043551562212118
419 => 0.0043411511524178
420 => 0.0043581274627626
421 => 0.0043942680061361
422 => 0.0043772247932922
423 => 0.0043884821356384
424 => 0.0043455807551358
425 => 0.0044368280995621
426 => 0.0045817508423804
427 => 0.0045822167926958
428 => 0.0045651734879826
429 => 0.0045581997348971
430 => 0.004575687199807
501 => 0.0045851734321473
502 => 0.0046417246870134
503 => 0.0047024064365861
504 => 0.0049855816843203
505 => 0.0049060672079006
506 => 0.0051573171338612
507 => 0.0053560232045764
508 => 0.0054156064668205
509 => 0.005360792669165
510 => 0.0051732776283689
511 => 0.0051640772458797
512 => 0.0054443038836373
513 => 0.0053651270232776
514 => 0.0053557091876766
515 => 0.0052555193285653
516 => 0.0053147439440555
517 => 0.0053017906518751
518 => 0.0052813432464716
519 => 0.0053943396872045
520 => 0.0056058589369945
521 => 0.0055728916782998
522 => 0.0055482831489913
523 => 0.0054404557369966
524 => 0.0055053919231418
525 => 0.0054822693910262
526 => 0.0055816184629162
527 => 0.00552276627358
528 => 0.0053645271806878
529 => 0.0053897272777938
530 => 0.0053859183338118
531 => 0.0054643061310567
601 => 0.0054407760600285
602 => 0.0053813237097994
603 => 0.0056051359871938
604 => 0.0055906028628091
605 => 0.0056112075104519
606 => 0.0056202783135641
607 => 0.0057565089027994
608 => 0.0058123182163165
609 => 0.0058249879075644
610 => 0.0058780024389584
611 => 0.0058236688577282
612 => 0.006041041921836
613 => 0.0061855823253977
614 => 0.0063534734421159
615 => 0.0065988074885189
616 => 0.0066910553594333
617 => 0.0066743916072313
618 => 0.0068604010812554
619 => 0.0071946559713183
620 => 0.0067419540772261
621 => 0.0072186502709512
622 => 0.0070677337597401
623 => 0.0067099134265305
624 => 0.0066868740154964
625 => 0.0069291940995254
626 => 0.007466636723458
627 => 0.0073320134417867
628 => 0.0074668569189193
629 => 0.0073095548402111
630 => 0.0073017434661572
701 => 0.0074592171080613
702 => 0.0078271628558116
703 => 0.0076523656232955
704 => 0.0074017509284439
705 => 0.0075868009191258
706 => 0.007426493491629
707 => 0.007065275990255
708 => 0.0073319104979003
709 => 0.0071536195959514
710 => 0.0072056543596058
711 => 0.0075803953167321
712 => 0.0075353054933291
713 => 0.0075936559000178
714 => 0.0074906689595082
715 => 0.0073944629175224
716 => 0.0072148871958012
717 => 0.0071617236775757
718 => 0.0071764161613902
719 => 0.0071617163967104
720 => 0.0070612454307935
721 => 0.0070395487352697
722 => 0.0070033866255093
723 => 0.0070145947754309
724 => 0.0069465994294829
725 => 0.007074920695842
726 => 0.0070987382536414
727 => 0.007192119770192
728 => 0.0072018149490216
729 => 0.0074618811434123
730 => 0.0073186410537767
731 => 0.0074147388726586
801 => 0.0074061429792301
802 => 0.0067176684781573
803 => 0.0068125341899432
804 => 0.0069601154669817
805 => 0.0068936303017175
806 => 0.0067996358331667
807 => 0.0067237302601474
808 => 0.0066087255552798
809 => 0.0067705924689112
810 => 0.0069834302477093
811 => 0.0072072128663277
812 => 0.0074760730197797
813 => 0.0074160665634064
814 => 0.0072021867127741
815 => 0.0072117812066342
816 => 0.0072710905923827
817 => 0.0071942795490124
818 => 0.0071716264727928
819 => 0.0072679784075718
820 => 0.0072686419303925
821 => 0.0071802615420703
822 => 0.0070820429138905
823 => 0.0070816313742522
824 => 0.007064154318047
825 => 0.0073126639696845
826 => 0.0074493191509254
827 => 0.0074649864472238
828 => 0.007448264617054
829 => 0.0074547001858207
830 => 0.007375183546848
831 => 0.0075569350036127
901 => 0.007723728113696
902 => 0.0076790239971786
903 => 0.0076120061714544
904 => 0.0075586232452493
905 => 0.0076664486762985
906 => 0.0076616473795868
907 => 0.0077222713213866
908 => 0.0077195210692057
909 => 0.0076991355177602
910 => 0.0076790247252109
911 => 0.0077587617444481
912 => 0.0077357987634451
913 => 0.0077128001145901
914 => 0.0076666728033944
915 => 0.0076729422710794
916 => 0.0076059360169277
917 => 0.0075749358577595
918 => 0.0071087678436527
919 => 0.0069841925178041
920 => 0.0070233864512807
921 => 0.0070362901118512
922 => 0.0069820747703942
923 => 0.007059805643265
924 => 0.0070476913690654
925 => 0.0070948209233625
926 => 0.0070653764239651
927 => 0.007066584836491
928 => 0.0071531748309896
929 => 0.0071783122747727
930 => 0.0071655271679806
1001 => 0.00717448141853
1002 => 0.007380828343088
1003 => 0.007351492409019
1004 => 0.0073359082787317
1005 => 0.0073402251893252
1006 => 0.0073929512526777
1007 => 0.0074077116716801
1008 => 0.0073451707391708
1009 => 0.007374665404487
1010 => 0.0075002499459731
1011 => 0.0075441974280238
1012 => 0.0076844566947414
1013 => 0.0076248720653301
1014 => 0.007734242231377
1015 => 0.0080704088347678
1016 => 0.0083389619785159
1017 => 0.0080919894090971
1018 => 0.0085851530575539
1019 => 0.0089691516980013
1020 => 0.0089544131905978
1021 => 0.0088874541455872
1022 => 0.0084502819025699
1023 => 0.0080479894866744
1024 => 0.0083845241748092
1025 => 0.0083853820709383
1026 => 0.0083564734427696
1027 => 0.0081769244360097
1028 => 0.0083502255265294
1029 => 0.0083639815377578
1030 => 0.0083562818294885
1031 => 0.0082186220269806
1101 => 0.0080084409523351
1102 => 0.0080495098312184
1103 => 0.0081167814926117
1104 => 0.0079894222032555
1105 => 0.0079487231933347
1106 => 0.0080243903960809
1107 => 0.0082682058892169
1108 => 0.0082221139825665
1109 => 0.0082209103366119
1110 => 0.0084181110592725
1111 => 0.008276957900427
1112 => 0.0080500278413019
1113 => 0.007992725008533
1114 => 0.0077893385560171
1115 => 0.0079298183032076
1116 => 0.0079348739192177
1117 => 0.0078579345973497
1118 => 0.0080562710432347
1119 => 0.0080544433379694
1120 => 0.008242734274853
1121 => 0.0086026758273282
1122 => 0.0084962233986132
1123 => 0.008372430806009
1124 => 0.0083858904932213
1125 => 0.008533510040602
1126 => 0.0084442558924292
1127 => 0.0084763523064141
1128 => 0.0085334614588353
1129 => 0.0085679168284315
1130 => 0.0083809328957745
1201 => 0.0083373379965967
1202 => 0.0082481581326094
1203 => 0.0082248927707162
1204 => 0.0082975279091349
1205 => 0.0082783911163989
1206 => 0.0079344490142683
1207 => 0.0078985051509199
1208 => 0.0078996074978928
1209 => 0.0078092249444656
1210 => 0.0076713698561909
1211 => 0.0080336447972773
1212 => 0.0080045490494735
1213 => 0.0079724295957301
1214 => 0.0079763640455426
1215 => 0.0081336153188313
1216 => 0.0080424016389442
1217 => 0.0082849081565521
1218 => 0.0082350561069451
1219 => 0.0081839255403747
1220 => 0.0081768577385995
1221 => 0.0081571768327248
1222 => 0.0080896836835381
1223 => 0.0080081816501856
1224 => 0.0079543669481811
1225 => 0.0073374830434511
1226 => 0.0074519731079204
1227 => 0.0075836834909946
1228 => 0.0076291493874355
1229 => 0.007551376825429
1230 => 0.0080927546183155
1231 => 0.008191669557922
]
'min_raw' => 0.0034142100070046
'max_raw' => 0.0089691516980013
'avg_raw' => 0.006191680852503
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003414'
'max' => '$0.008969'
'avg' => '$0.006191'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013237661522371
'max_diff' => -0.0016174957431059
'year' => 2027
]
2 => [
'items' => [
101 => 0.0078920497537919
102 => 0.0078360031218351
103 => 0.0080964290261758
104 => 0.0079393603700863
105 => 0.008010088376306
106 => 0.0078572131130101
107 => 0.0081678438455384
108 => 0.0081654773598053
109 => 0.0080446349889385
110 => 0.0081467701333023
111 => 0.0081290216385466
112 => 0.0079925908994596
113 => 0.0081721689433145
114 => 0.0081722580117838
115 => 0.0080559498571643
116 => 0.0079201273956976
117 => 0.0078958455475707
118 => 0.0078775524368144
119 => 0.008005589392448
120 => 0.008120386926508
121 => 0.0083339966766714
122 => 0.008387703243105
123 => 0.0085973235473437
124 => 0.0084725048623969
125 => 0.0085278353687613
126 => 0.0085879044603978
127 => 0.008616703791896
128 => 0.0085697768266769
129 => 0.0088954034423192
130 => 0.0089228963056211
131 => 0.0089321144248739
201 => 0.0088223149621968
202 => 0.0089198425839383
203 => 0.0088742126395008
204 => 0.0089929290785635
205 => 0.0090115453320561
206 => 0.0089957780276403
207 => 0.0090016871203364
208 => 0.0087238222483571
209 => 0.008709413488891
210 => 0.0085129490311718
211 => 0.0085930097498843
212 => 0.0084433400736613
213 => 0.0084908018697601
214 => 0.0085117225772479
215 => 0.008500794786896
216 => 0.0085975362627982
217 => 0.0085152862453035
218 => 0.0082982149259802
219 => 0.0080810844657212
220 => 0.0080783585696633
221 => 0.008021191952148
222 => 0.0079798709582728
223 => 0.0079878308476342
224 => 0.0080158825359684
225 => 0.0079782405431516
226 => 0.0079862733708165
227 => 0.0081196718325052
228 => 0.0081464239426426
229 => 0.0080555098196717
301 => 0.007690476497098
302 => 0.0076008964041216
303 => 0.0076652847985025
304 => 0.0076345112931321
305 => 0.0061616464627336
306 => 0.0065076742073229
307 => 0.0063020762714799
308 => 0.0063968252594225
309 => 0.0061869630062542
310 => 0.0062871202732892
311 => 0.0062686248832256
312 => 0.0068250272568198
313 => 0.0068163397990626
314 => 0.006820498025361
315 => 0.0066220150499396
316 => 0.0069382038191859
317 => 0.007093969776697
318 => 0.0070651416435384
319 => 0.0070723970635767
320 => 0.0069477249089626
321 => 0.0068217051243375
322 => 0.0066819297888824
323 => 0.0069416150854043
324 => 0.0069127425134069
325 => 0.0069789658055455
326 => 0.0071473902830283
327 => 0.00717219142712
328 => 0.0072055244162877
329 => 0.0071935769124748
330 => 0.007478214924661
331 => 0.0074437433832832
401 => 0.0075268098798644
402 => 0.0073559357941265
403 => 0.007162575546597
404 => 0.0071993270082296
405 => 0.0071957875469378
406 => 0.0071507261422885
407 => 0.0071100467210027
408 => 0.0070423269459176
409 => 0.0072566023349277
410 => 0.0072479031454467
411 => 0.0073887329114426
412 => 0.0073638398823554
413 => 0.0071975981417541
414 => 0.007203535498042
415 => 0.0072434670724744
416 => 0.0073816707075155
417 => 0.0074226989560167
418 => 0.0074036930366179
419 => 0.0074486786380888
420 => 0.0074842334232807
421 => 0.0074531437716978
422 => 0.0078933076758383
423 => 0.0077105209347188
424 => 0.0077996099205185
425 => 0.0078208571186889
426 => 0.0077664328673558
427 => 0.0077782355386836
428 => 0.0077961133697098
429 => 0.0079046640588629
430 => 0.0081895324765955
501 => 0.0083156987596443
502 => 0.0086952762471316
503 => 0.0083052224061566
504 => 0.0082820782254364
505 => 0.0083504515930748
506 => 0.0085733037605874
507 => 0.0087539045109167
508 => 0.0088138201989082
509 => 0.0088217390461764
510 => 0.008934144859968
511 => 0.0089985737761891
512 => 0.0089204958376073
513 => 0.0088543329597602
514 => 0.0086173457437507
515 => 0.0086447776592985
516 => 0.0088337563545017
517 => 0.0091006998922656
518 => 0.0093297652184086
519 => 0.0092495545249259
520 => 0.0098615054962736
521 => 0.0099221779354872
522 => 0.0099137949661627
523 => 0.010052015811961
524 => 0.0097776755812373
525 => 0.0096603898175114
526 => 0.0088686381249314
527 => 0.0090910880554145
528 => 0.0094144320933981
529 => 0.0093716362974931
530 => 0.0091368152140985
531 => 0.0093295870855599
601 => 0.009265850676321
602 => 0.0092155791259282
603 => 0.009445882843897
604 => 0.009192654445635
605 => 0.0094119059464158
606 => 0.009130713628798
607 => 0.0092499209206173
608 => 0.0091822530963727
609 => 0.0092260424717156
610 => 0.0089700506782253
611 => 0.0091081776361431
612 => 0.0089643041426566
613 => 0.0089642359278878
614 => 0.0089610599125449
615 => 0.0091303264395991
616 => 0.0091358462149694
617 => 0.0090107579957289
618 => 0.0089927308290911
619 => 0.0090593867125715
620 => 0.0089813501302194
621 => 0.0090178629559456
622 => 0.0089824560665145
623 => 0.0089744852299203
624 => 0.0089109722478123
625 => 0.0088836091087943
626 => 0.0088943389006644
627 => 0.0088577125894247
628 => 0.0088356439120711
629 => 0.0089566698971587
630 => 0.0088920105955007
701 => 0.0089467599318347
702 => 0.008884366153165
703 => 0.0086680821326207
704 => 0.0085436949052436
705 => 0.0081351544399747
706 => 0.0082510160091321
707 => 0.0083278323493509
708 => 0.0083024445493668
709 => 0.008356987367507
710 => 0.0083603358535624
711 => 0.0083426034273868
712 => 0.00832207154954
713 => 0.0083120777668882
714 => 0.0083865632350221
715 => 0.0084298045563394
716 => 0.0083355418967619
717 => 0.0083134574744977
718 => 0.0084087622277146
719 => 0.0084668980721211
720 => 0.0088961404835096
721 => 0.0088643408192392
722 => 0.0089441517361889
723 => 0.0089351662517387
724 => 0.0090188208075782
725 => 0.0091555606513226
726 => 0.0088775303159286
727 => 0.0089257867685873
728 => 0.0089139554007997
729 => 0.0090431271719544
730 => 0.0090435304321244
731 => 0.0089660855027086
801 => 0.0090080696553454
802 => 0.0089846352531185
803 => 0.0090269843852919
804 => 0.0088639161153355
805 => 0.0090625156660104
806 => 0.0091751088137707
807 => 0.0091766721697366
808 => 0.0092300404281805
809 => 0.0092842656696406
810 => 0.0093883462986
811 => 0.0092813629173888
812 => 0.0090889102292119
813 => 0.0091028046916799
814 => 0.0089899697510175
815 => 0.0089918665267554
816 => 0.0089817413892138
817 => 0.0090121276891608
818 => 0.008870584199404
819 => 0.0089038041735368
820 => 0.008857296015215
821 => 0.008925685668934
822 => 0.0088521097067471
823 => 0.0089139496953559
824 => 0.0089406377844113
825 => 0.0090391174075795
826 => 0.0088375641863338
827 => 0.0084265835242604
828 => 0.0085129766420871
829 => 0.0083851944347884
830 => 0.0083970211645751
831 => 0.0084209130409542
901 => 0.0083434716526739
902 => 0.0083582450290992
903 => 0.0083577172201346
904 => 0.0083531688476235
905 => 0.0083330233516035
906 => 0.0083038083967095
907 => 0.0084201917851182
908 => 0.0084399675906879
909 => 0.0084839267567656
910 => 0.0086147194172255
911 => 0.0086016501461422
912 => 0.0086229666695179
913 => 0.008576432818676
914 => 0.0083991797364533
915 => 0.0084088054316083
916 => 0.0082887728587842
917 => 0.0084808572540085
918 => 0.0084353691338292
919 => 0.0084060426468319
920 => 0.0083980406431468
921 => 0.0085291575133138
922 => 0.0085683897358729
923 => 0.0085439428475506
924 => 0.0084938015663718
925 => 0.0085900876491741
926 => 0.0086158497429483
927 => 0.0086216169256749
928 => 0.0087922174033753
929 => 0.0086311515972434
930 => 0.0086699217376358
1001 => 0.0089723953055525
1002 => 0.0086980935179512
1003 => 0.0088433972925034
1004 => 0.0088362854288634
1005 => 0.0089106179231127
1006 => 0.0088301879947321
1007 => 0.0088311850200887
1008 => 0.0088971872392628
1009 => 0.0088044990259958
1010 => 0.0087815481209136
1011 => 0.0087498416099201
1012 => 0.008819071616715
1013 => 0.0088605718747846
1014 => 0.0091950334762451
1015 => 0.0094111109240906
1016 => 0.0094017304322159
1017 => 0.0094874505684056
1018 => 0.0094488328619457
1019 => 0.0093241261009503
1020 => 0.0095369853356001
1021 => 0.0094696277673482
1022 => 0.0094751806434355
1023 => 0.0094749739651101
1024 => 0.0095197608594968
1025 => 0.0094880252401653
1026 => 0.0094254710768683
1027 => 0.0094669974497454
1028 => 0.0095903159312404
1029 => 0.009973100281674
1030 => 0.010187311475395
1031 => 0.0099602044988405
1101 => 0.010116859850184
1102 => 0.010022922461387
1103 => 0.010005851243447
1104 => 0.010104242380831
1105 => 0.010202805738875
1106 => 0.010196527679069
1107 => 0.010124975742413
1108 => 0.010084557868959
1109 => 0.010390615547731
1110 => 0.010616113631894
1111 => 0.010600736174313
1112 => 0.010668607271061
1113 => 0.010867878910287
1114 => 0.010886097811624
1115 => 0.010883802648812
1116 => 0.010838645200902
1117 => 0.011034854008412
1118 => 0.011198534847603
1119 => 0.010828192556435
1120 => 0.010969214052775
1121 => 0.011032523145911
1122 => 0.011125479677596
1123 => 0.011282312927872
1124 => 0.011452675435638
1125 => 0.011476766562165
1126 => 0.011459672755027
1127 => 0.011347314101566
1128 => 0.01153372679041
1129 => 0.01164292297162
1130 => 0.01170794679862
1201 => 0.011872836404959
1202 => 0.011032914121317
1203 => 0.010438375382109
1204 => 0.010345529572738
1205 => 0.010534335177075
1206 => 0.010584121709242
1207 => 0.010564052820553
1208 => 0.0098948454164768
1209 => 0.010342006334252
1210 => 0.010823113883419
1211 => 0.010841595183755
1212 => 0.011082447682353
1213 => 0.011160879128774
1214 => 0.011354796959404
1215 => 0.0113426673463
1216 => 0.011389883252152
1217 => 0.011379029133062
1218 => 0.011738221080087
1219 => 0.012134463138176
1220 => 0.012120742535677
1221 => 0.012063778051703
1222 => 0.012148380024292
1223 => 0.012557344292119
1224 => 0.012519693415857
1225 => 0.012556268035052
1226 => 0.013038459955036
1227 => 0.013665378042017
1228 => 0.013374111649068
1229 => 0.014006075912121
1230 => 0.014403863916727
1231 => 0.015091797138646
]
'min_raw' => 0.0061616464627336
'max_raw' => 0.015091797138646
'avg_raw' => 0.01062672180069
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006161'
'max' => '$0.015091'
'avg' => '$0.010626'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0027474364557291
'max_diff' => 0.0061226454406444
'year' => 2028
]
3 => [
'items' => [
101 => 0.015005664511119
102 => 0.015273471866125
103 => 0.014851469131424
104 => 0.013882465551728
105 => 0.013729117026044
106 => 0.014036124657866
107 => 0.014790872963333
108 => 0.014012354947806
109 => 0.014169848128403
110 => 0.014124490081796
111 => 0.014122073144251
112 => 0.014214317819926
113 => 0.014080512106701
114 => 0.013535363559836
115 => 0.013785201926284
116 => 0.013688727334774
117 => 0.013795773086711
118 => 0.014373454860888
119 => 0.014118047978311
120 => 0.013848997575086
121 => 0.014186446487794
122 => 0.014616134913698
123 => 0.014589245784229
124 => 0.014537069634276
125 => 0.01483118385971
126 => 0.015316974392744
127 => 0.015448281621758
128 => 0.015545209933759
129 => 0.015558574710367
130 => 0.015696240215587
131 => 0.014955978097841
201 => 0.016130793089984
202 => 0.016333651185518
203 => 0.016295522271165
204 => 0.016520990506777
205 => 0.016454652032283
206 => 0.016358537990928
207 => 0.016715953102843
208 => 0.016306205518945
209 => 0.015724620409388
210 => 0.015405551315836
211 => 0.015825727236795
212 => 0.016082314009606
213 => 0.01625190154445
214 => 0.016303218630026
215 => 0.015013442538785
216 => 0.014318324759868
217 => 0.014763887286612
218 => 0.015307504320324
219 => 0.01495295827777
220 => 0.014966855811394
221 => 0.014461366327774
222 => 0.015352228923214
223 => 0.015222437736392
224 => 0.01589579464322
225 => 0.015735092613379
226 => 0.016284189031332
227 => 0.01613959354226
228 => 0.016739801333173
301 => 0.016979240470946
302 => 0.017381296048992
303 => 0.017677049768864
304 => 0.017850722010039
305 => 0.017840295380107
306 => 0.018528471322812
307 => 0.018122678012435
308 => 0.017612905976462
309 => 0.017603685808641
310 => 0.017867703969597
311 => 0.018421013605117
312 => 0.018564478743279
313 => 0.018644656183638
314 => 0.018521861642732
315 => 0.018081402087786
316 => 0.017891213885141
317 => 0.018053259744077
318 => 0.017855091583358
319 => 0.018197185424925
320 => 0.018666953336699
321 => 0.018569948120581
322 => 0.018894222014227
323 => 0.019229811379543
324 => 0.019709719244205
325 => 0.019835184930965
326 => 0.020042574940146
327 => 0.020256047383662
328 => 0.020324608979276
329 => 0.020455514338716
330 => 0.020454824402855
331 => 0.020849316514475
401 => 0.021284453529996
402 => 0.02144870767991
403 => 0.021826401040611
404 => 0.021179614396365
405 => 0.021670209495775
406 => 0.022112738555835
407 => 0.0215851371671
408 => 0.022312312766114
409 => 0.022340547346808
410 => 0.022766855993655
411 => 0.022334710509221
412 => 0.022078103900022
413 => 0.022818917565856
414 => 0.023177373963342
415 => 0.023069403979204
416 => 0.022247747068782
417 => 0.021769507504393
418 => 0.020517862318865
419 => 0.022000490108171
420 => 0.022722634855496
421 => 0.022245876888344
422 => 0.022486325875621
423 => 0.023798137584359
424 => 0.024297590549528
425 => 0.024193707824213
426 => 0.024211262294736
427 => 0.024480758049029
428 => 0.025675850637586
429 => 0.024959723456493
430 => 0.025507175853665
501 => 0.025797542631138
502 => 0.026067251476372
503 => 0.025404931794834
504 => 0.024543263620561
505 => 0.0242703371394
506 => 0.022198472704383
507 => 0.022090623162889
508 => 0.022030083947073
509 => 0.021648392754795
510 => 0.021348488031681
511 => 0.021109992661112
512 => 0.020484109587993
513 => 0.02069532675218
514 => 0.019697799765579
515 => 0.020335982181421
516 => 0.018743905024673
517 => 0.020069834189641
518 => 0.01934819122775
519 => 0.019832755068134
520 => 0.019831064470544
521 => 0.018938828809291
522 => 0.018424205900363
523 => 0.018752143647355
524 => 0.019103718943861
525 => 0.019160760852878
526 => 0.019616587401852
527 => 0.019743798793712
528 => 0.019358342337445
529 => 0.018710912764329
530 => 0.018861295887867
531 => 0.018421158391165
601 => 0.017649834357838
602 => 0.018203812744599
603 => 0.018392965322549
604 => 0.018476505876757
605 => 0.017717997277144
606 => 0.017479657407122
607 => 0.017352767260188
608 => 0.018612998829062
609 => 0.018682037159217
610 => 0.018328827301108
611 => 0.01992536935249
612 => 0.019564022715522
613 => 0.019967735441091
614 => 0.018847650195647
615 => 0.018890438960418
616 => 0.018360172655063
617 => 0.018657086353655
618 => 0.018447237321465
619 => 0.018633098660967
620 => 0.018744503181529
621 => 0.019274682475401
622 => 0.020075887985538
623 => 0.019195491368818
624 => 0.018811889955402
625 => 0.019049874114829
626 => 0.01968365729257
627 => 0.020643871249611
628 => 0.020075405260936
629 => 0.020327680813532
630 => 0.020382791798816
701 => 0.019963626024521
702 => 0.020659326489601
703 => 0.021032158020698
704 => 0.021414606024989
705 => 0.021746674911165
706 => 0.021261847881863
707 => 0.021780682300441
708 => 0.021362593345671
709 => 0.020987524332002
710 => 0.020988093156874
711 => 0.020752806885715
712 => 0.020296910087366
713 => 0.020212835723039
714 => 0.020650201183691
715 => 0.021000926864471
716 => 0.021029814311402
717 => 0.021223994069218
718 => 0.021338907649683
719 => 0.022465216955675
720 => 0.022918227875865
721 => 0.023472161054015
722 => 0.023687949244867
723 => 0.024337394334986
724 => 0.023812914679364
725 => 0.023699440206738
726 => 0.022124098849981
727 => 0.022382060908898
728 => 0.02279508305486
729 => 0.022130909433042
730 => 0.022552174724391
731 => 0.022635341416522
801 => 0.022108341067522
802 => 0.022389834724264
803 => 0.02164227102901
804 => 0.020092182831239
805 => 0.020661052180882
806 => 0.021079931501572
807 => 0.020482139063499
808 => 0.021553658870982
809 => 0.020927699120109
810 => 0.020729299930449
811 => 0.019955273957169
812 => 0.020320584421565
813 => 0.020814672055404
814 => 0.020509383341544
815 => 0.021142903262134
816 => 0.022040136423279
817 => 0.02267955820507
818 => 0.022728645069744
819 => 0.022317539701985
820 => 0.022976338677459
821 => 0.022981137308768
822 => 0.022238009373161
823 => 0.021782847650355
824 => 0.021679433949265
825 => 0.021937781650038
826 => 0.022251463452393
827 => 0.022746052226661
828 => 0.02304492186451
829 => 0.023824215371814
830 => 0.024035069850794
831 => 0.02426673499611
901 => 0.024576311073137
902 => 0.024948036527285
903 => 0.024134722395951
904 => 0.024167036882596
905 => 0.023409690024599
906 => 0.022600356292303
907 => 0.023214539710242
908 => 0.0240175028278
909 => 0.023833302201437
910 => 0.023812575868094
911 => 0.023847431811772
912 => 0.023708550554924
913 => 0.02308039577738
914 => 0.022764940380555
915 => 0.023171958323714
916 => 0.023388270246219
917 => 0.023723751173642
918 => 0.023682396068194
919 => 0.024546558909214
920 => 0.024882346458306
921 => 0.024796437634089
922 => 0.024812246925256
923 => 0.025420174243585
924 => 0.026096314451354
925 => 0.026729608980489
926 => 0.027373823376158
927 => 0.026597197778063
928 => 0.026202875194959
929 => 0.026609715446817
930 => 0.02639384028249
1001 => 0.027634323009447
1002 => 0.027720211342024
1003 => 0.028960604367961
1004 => 0.030137885052829
1005 => 0.029398456147837
1006 => 0.030095704300635
1007 => 0.030849835025361
1008 => 0.032304675546659
1009 => 0.031814736440992
1010 => 0.031439450764377
1011 => 0.031084807613342
1012 => 0.03182276371263
1013 => 0.032772132445229
1014 => 0.03297661737729
1015 => 0.033307961086485
1016 => 0.032959593691047
1017 => 0.033379163847442
1018 => 0.034860430867983
1019 => 0.034460179443527
1020 => 0.033891758077172
1021 => 0.035061076127493
1022 => 0.035484247784295
1023 => 0.03845428808845
1024 => 0.04220408665869
1025 => 0.040651645428106
1026 => 0.039687995059317
1027 => 0.039914475754074
1028 => 0.041283775253234
1029 => 0.04172355079297
1030 => 0.040528089276248
1031 => 0.04095034649399
1101 => 0.043277025279164
1102 => 0.044525213798617
1103 => 0.042830006135116
1104 => 0.038152995424428
1105 => 0.033840577952365
1106 => 0.034984425256646
1107 => 0.034854748470055
1108 => 0.037354474565635
1109 => 0.034450633579426
1110 => 0.034499526814318
1111 => 0.037050944598299
1112 => 0.036370270075907
1113 => 0.035267664523839
1114 => 0.033848628193111
1115 => 0.031225408290788
1116 => 0.028901949269402
1117 => 0.033458787470997
1118 => 0.033262288321671
1119 => 0.032977728433906
1120 => 0.033610985671532
1121 => 0.036685903064242
1122 => 0.036615016265804
1123 => 0.036164070620902
1124 => 0.036506108918107
1125 => 0.035207703556608
1126 => 0.035542332182407
1127 => 0.033839894843405
1128 => 0.034609467620697
1129 => 0.035265298827529
1130 => 0.035396966652048
1201 => 0.035693620983814
1202 => 0.033158742198967
1203 => 0.034296828353232
1204 => 0.034965347344611
1205 => 0.031944954220631
1206 => 0.034905643883855
1207 => 0.033114615598919
1208 => 0.03250671369867
1209 => 0.03332517352237
1210 => 0.033006218933096
1211 => 0.03273200050688
1212 => 0.032578981913381
1213 => 0.033179968477792
1214 => 0.033151931736228
1215 => 0.032168601070386
1216 => 0.03088588630248
1217 => 0.031316407482266
1218 => 0.031159995101493
1219 => 0.03059313645597
1220 => 0.030975130740278
1221 => 0.029293021235066
1222 => 0.026399039259793
1223 => 0.028310892397724
1224 => 0.028237288131609
1225 => 0.028200173522947
1226 => 0.029636878316362
1227 => 0.029498772300894
1228 => 0.029248108530482
1229 => 0.030588532819253
1230 => 0.030099259922601
1231 => 0.03160708370289
]
'min_raw' => 0.013535363559836
'max_raw' => 0.044525213798617
'avg_raw' => 0.029030288679226
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.013535'
'max' => '$0.044525'
'avg' => '$0.02903'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0073737170971019
'max_diff' => 0.029433416659972
'year' => 2029
]
4 => [
'items' => [
101 => 0.032600233964517
102 => 0.032348338933123
103 => 0.033282401554494
104 => 0.031326325820718
105 => 0.031976055715342
106 => 0.032109964146137
107 => 0.030571992191598
108 => 0.029521368153011
109 => 0.029451303507628
110 => 0.027629666209628
111 => 0.028602770150477
112 => 0.029459061348647
113 => 0.029048964315605
114 => 0.028919139846244
115 => 0.029582384904716
116 => 0.029633924726069
117 => 0.028458811337274
118 => 0.028703154621806
119 => 0.029722106736995
120 => 0.028677479642865
121 => 0.026647939837838
122 => 0.026144585905608
123 => 0.026077429212395
124 => 0.024712293426684
125 => 0.02617822242224
126 => 0.025538305131225
127 => 0.027559796186155
128 => 0.026405131337053
129 => 0.026355356043208
130 => 0.026280113386112
131 => 0.025105084622301
201 => 0.025362341244602
202 => 0.026217501438421
203 => 0.026522632229644
204 => 0.026490804588257
205 => 0.02621331068694
206 => 0.026340345973964
207 => 0.025931121052431
208 => 0.025786615215358
209 => 0.025330515044093
210 => 0.024660173793221
211 => 0.024753388855596
212 => 0.023425267433289
213 => 0.022701636393677
214 => 0.022501344859216
215 => 0.022233506648576
216 => 0.022531597897799
217 => 0.023421505032169
218 => 0.022348088223788
219 => 0.020507790397252
220 => 0.020618395432342
221 => 0.020866892107258
222 => 0.020403820197521
223 => 0.019965561497633
224 => 0.020346591880133
225 => 0.019566833430812
226 => 0.020961122190519
227 => 0.020923410587018
228 => 0.021443115214398
301 => 0.021768097183311
302 => 0.021019118959128
303 => 0.020830752961198
304 => 0.020938054794376
305 => 0.019164594509731
306 => 0.021298185673506
307 => 0.02131663705849
308 => 0.021158645098099
309 => 0.022294716525572
310 => 0.024692181587105
311 => 0.023790158793148
312 => 0.023440868303544
313 => 0.022776866827478
314 => 0.02366160936983
315 => 0.023593674946711
316 => 0.023286449722002
317 => 0.023100638947497
318 => 0.023443000996792
319 => 0.023058216500837
320 => 0.022989098632192
321 => 0.02257031954919
322 => 0.022420834469793
323 => 0.022310161668179
324 => 0.022188321788088
325 => 0.022457070202963
326 => 0.021848050938057
327 => 0.021113633407475
328 => 0.021052574536315
329 => 0.021221163447938
330 => 0.021146575404513
331 => 0.021052217437459
401 => 0.020872062381488
402 => 0.020818614224786
403 => 0.02099229480471
404 => 0.020796219556182
405 => 0.021085539266157
406 => 0.021006860313833
407 => 0.020567366081937
408 => 0.02001959354739
409 => 0.020014717222841
410 => 0.0198967005288
411 => 0.01974638852501
412 => 0.019704575164228
413 => 0.020314502564099
414 => 0.021577034028242
415 => 0.021329168892013
416 => 0.02150827685518
417 => 0.02238931076429
418 => 0.022669364950383
419 => 0.022470589122541
420 => 0.022198492509433
421 => 0.022210463379496
422 => 0.023140299875734
423 => 0.023198292637443
424 => 0.02334482163711
425 => 0.023533152810771
426 => 0.022502662735783
427 => 0.022161927389634
428 => 0.022000468079352
429 => 0.021503235896299
430 => 0.022039458176256
501 => 0.021727024417052
502 => 0.021769182405426
503 => 0.021741726960192
504 => 0.021756719489819
505 => 0.020960732458395
506 => 0.021250748296799
507 => 0.020768540715955
508 => 0.020122918895546
509 => 0.02012075454482
510 => 0.020278769570713
511 => 0.020184776050183
512 => 0.019931841903232
513 => 0.019967770004991
514 => 0.019653002028257
515 => 0.020005988536425
516 => 0.020016110926432
517 => 0.019880191893483
518 => 0.020424016312066
519 => 0.020646821620078
520 => 0.020557356800923
521 => 0.020640544529871
522 => 0.021339468807468
523 => 0.02145342396092
524 => 0.021504035312629
525 => 0.021436222806058
526 => 0.020653319582632
527 => 0.020688044669753
528 => 0.02043325502092
529 => 0.020217984616728
530 => 0.020226594303951
531 => 0.020337271274899
601 => 0.02082060409815
602 => 0.021837749530654
603 => 0.021876349456294
604 => 0.021923133692209
605 => 0.02173283869287
606 => 0.021675443900192
607 => 0.021751162446587
608 => 0.02213314879207
609 => 0.023115721380932
610 => 0.022768414604211
611 => 0.022486048788586
612 => 0.022733759734167
613 => 0.022695626575717
614 => 0.022373744342548
615 => 0.022364710180325
616 => 0.021746915262898
617 => 0.021518530548435
618 => 0.02132767518673
619 => 0.021119266114153
620 => 0.020995714229995
621 => 0.02118554607739
622 => 0.021228962866913
623 => 0.020813892214892
624 => 0.02075731961876
625 => 0.021096275273123
626 => 0.020947113527178
627 => 0.021100530081916
628 => 0.021136124038598
629 => 0.021130392591774
630 => 0.02097465059789
701 => 0.021073915900498
702 => 0.020839123867418
703 => 0.020583822796067
704 => 0.020420956618364
705 => 0.020278834277254
706 => 0.020357692012301
707 => 0.020076578585713
708 => 0.019986644742852
709 => 0.021040287049514
710 => 0.021818623950009
711 => 0.021807306623221
712 => 0.021738415306976
713 => 0.02163605678513
714 => 0.022125660628645
715 => 0.021955092439502
716 => 0.022079195048553
717 => 0.022110784371126
718 => 0.022206395736461
719 => 0.022240568581493
720 => 0.022137274509238
721 => 0.021790606986441
722 => 0.02092674447979
723 => 0.020524614150991
724 => 0.020391904444477
725 => 0.020396728190258
726 => 0.020263667747491
727 => 0.020302860011237
728 => 0.020250038277586
729 => 0.020150006693002
730 => 0.020351515343834
731 => 0.02037473733866
801 => 0.020327702811706
802 => 0.020338781145479
803 => 0.019949355351013
804 => 0.019978962548378
805 => 0.01981410591115
806 => 0.019783197279046
807 => 0.019366454055843
808 => 0.018628133028043
809 => 0.019037234548
810 => 0.01854309744027
811 => 0.018355960230174
812 => 0.019241838676963
813 => 0.019152921051349
814 => 0.01900073272786
815 => 0.018775614478594
816 => 0.018692115930132
817 => 0.018184805182103
818 => 0.018154830556712
819 => 0.018406267461977
820 => 0.018290237981613
821 => 0.018127288647381
822 => 0.017537102676701
823 => 0.016873538241798
824 => 0.016893567081071
825 => 0.017104634581758
826 => 0.017718341806337
827 => 0.017478555776452
828 => 0.017304588260542
829 => 0.017272009374256
830 => 0.017679802344639
831 => 0.018256914832999
901 => 0.018527683100373
902 => 0.018259359970759
903 => 0.017951124807003
904 => 0.017969885653197
905 => 0.018094693157916
906 => 0.018107808661979
907 => 0.01790717925746
908 => 0.017963655259638
909 => 0.017877863048055
910 => 0.01735135640393
911 => 0.017341833568308
912 => 0.017212620346773
913 => 0.017208707821777
914 => 0.016988883898198
915 => 0.016958129011718
916 => 0.016521655269092
917 => 0.016808943608253
918 => 0.016616245673659
919 => 0.016325804433378
920 => 0.016275732254079
921 => 0.016274227023906
922 => 0.016572445236201
923 => 0.016805458754811
924 => 0.016619597736732
925 => 0.01657728078568
926 => 0.017029115112745
927 => 0.016971615076064
928 => 0.016921820415135
929 => 0.018205240739491
930 => 0.017189313406226
1001 => 0.016746311101818
1002 => 0.016198011626256
1003 => 0.016376540700265
1004 => 0.016414159399296
1005 => 0.01509559799898
1006 => 0.014560657803088
1007 => 0.014377086486654
1008 => 0.014271438598729
1009 => 0.014319583667899
1010 => 0.01383807474937
1011 => 0.014161656706044
1012 => 0.013744710683533
1013 => 0.013674808325999
1014 => 0.01442035946395
1015 => 0.014524098549349
1016 => 0.014081515381828
1017 => 0.014365725423083
1018 => 0.014262666911309
1019 => 0.013751858026381
1020 => 0.013732348884233
1021 => 0.013476042941577
1022 => 0.01307497377193
1023 => 0.012891674399279
1024 => 0.012796210494524
1025 => 0.012835600762181
1026 => 0.012815683837492
1027 => 0.012685712431568
1028 => 0.01282313364634
1029 => 0.012472079228965
1030 => 0.012332286531328
1031 => 0.012269145412972
1101 => 0.011957564411613
1102 => 0.012453428345475
1103 => 0.012551119787175
1104 => 0.012649003711194
1105 => 0.013501016441583
1106 => 0.013458452293336
1107 => 0.01384321146391
1108 => 0.013828260430068
1109 => 0.013718520881935
1110 => 0.013255547779641
1111 => 0.013440080606513
1112 => 0.012872117248169
1113 => 0.013297674013995
1114 => 0.013103467677747
1115 => 0.013232012656355
1116 => 0.013000877194384
1117 => 0.013128797102388
1118 => 0.012574286052116
1119 => 0.012056491435553
1120 => 0.012264867104625
1121 => 0.012491395287555
1122 => 0.012982566106454
1123 => 0.012690028818789
1124 => 0.012795236289493
1125 => 0.012442808874152
1126 => 0.011715650450391
1127 => 0.0117197660881
1128 => 0.011607908606612
1129 => 0.011511247411146
1130 => 0.012723630245327
1201 => 0.01257285127496
1202 => 0.012332604719144
1203 => 0.012654184281122
1204 => 0.012739215021463
1205 => 0.012741635727101
1206 => 0.012976251874351
1207 => 0.013101466554195
1208 => 0.013123536184229
1209 => 0.013492709761142
1210 => 0.013616451874607
1211 => 0.014126128127327
1212 => 0.013090842963436
1213 => 0.013069521946774
1214 => 0.012658709565037
1215 => 0.012398165857852
1216 => 0.012676549215572
1217 => 0.012923158867395
1218 => 0.01266637241434
1219 => 0.012699903304051
1220 => 0.01235518847105
1221 => 0.012478407803508
1222 => 0.012584540892057
1223 => 0.012525940438774
1224 => 0.012438212723917
1225 => 0.012902939688245
1226 => 0.012876717971638
1227 => 0.013309482404847
1228 => 0.013646853227814
1229 => 0.014251482054821
1230 => 0.013620520353826
1231 => 0.013597525601596
]
'min_raw' => 0.011511247411146
'max_raw' => 0.033282401554494
'avg_raw' => 0.02239682448282
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.011511'
'max' => '$0.033282'
'avg' => '$0.022396'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0020241161486892
'max_diff' => -0.011242812244123
'year' => 2030
]
5 => [
'items' => [
101 => 0.013822302993117
102 => 0.013616417462359
103 => 0.013746530010871
104 => 0.014230518911724
105 => 0.014240744834539
106 => 0.014069447452026
107 => 0.014059023990732
108 => 0.014091923526832
109 => 0.014284617137366
110 => 0.014217284068969
111 => 0.014295203600383
112 => 0.014392643167562
113 => 0.014795694530937
114 => 0.014892868850123
115 => 0.01465678563361
116 => 0.014678101304749
117 => 0.014589799701144
118 => 0.014504501458477
119 => 0.014696239451184
120 => 0.015046644401476
121 => 0.015044464550466
122 => 0.015125751688035
123 => 0.015176392901321
124 => 0.014959003742262
125 => 0.014817491393336
126 => 0.014871756232579
127 => 0.014958526892263
128 => 0.014843617677109
129 => 0.014134344770053
130 => 0.014349492861525
131 => 0.0143136816989
201 => 0.014262682248536
202 => 0.014479015318202
203 => 0.014458149465885
204 => 0.013833136179449
205 => 0.013873147502196
206 => 0.013835569400506
207 => 0.01395699193482
208 => 0.013609860247031
209 => 0.013716635616228
210 => 0.013783604126831
211 => 0.013823049094052
212 => 0.013965551363323
213 => 0.013948830366779
214 => 0.013964511962701
215 => 0.014175805208826
216 => 0.015244453940639
217 => 0.015302618133271
218 => 0.015016196376197
219 => 0.015130616218729
220 => 0.014910955141936
221 => 0.015058415094388
222 => 0.015159303448779
223 => 0.014703408375002
224 => 0.014676413227467
225 => 0.014455845531273
226 => 0.014574366117615
227 => 0.014385791342813
228 => 0.014432060996484
301 => 0.014302687011105
302 => 0.014535534426684
303 => 0.014795894018131
304 => 0.014861671132843
305 => 0.014688639862865
306 => 0.014563353820085
307 => 0.014343392800751
308 => 0.014709192878054
309 => 0.014816163968213
310 => 0.014708631004457
311 => 0.014683713267113
312 => 0.014636494199871
313 => 0.014693731015447
314 => 0.014815581380683
315 => 0.014758118998661
316 => 0.014796073914343
317 => 0.0146514289147
318 => 0.014959075707119
319 => 0.015447692852714
320 => 0.015449263836734
321 => 0.015391801144968
322 => 0.015368288649548
323 => 0.015427248858428
324 => 0.015459232353071
325 => 0.015649898857134
326 => 0.015854491612483
327 => 0.016809236730883
328 => 0.016541148122111
329 => 0.017388254789197
330 => 0.018058206179828
331 => 0.018259095308454
401 => 0.018074286762682
402 => 0.017442066710756
403 => 0.017411046978843
404 => 0.018355850652842
405 => 0.018088900340188
406 => 0.018057147449926
407 => 0.0177193503449
408 => 0.017919030270956
409 => 0.017875357342
410 => 0.017806417487089
411 => 0.01818739287618
412 => 0.01890054479465
413 => 0.01878939338026
414 => 0.018706424005583
415 => 0.018342876357774
416 => 0.018561813243062
417 => 0.018483854011671
418 => 0.018818816343879
419 => 0.018620392078603
420 => 0.018086877929016
421 => 0.018171841815824
422 => 0.018158999695256
423 => 0.018423289626529
424 => 0.01834395634924
425 => 0.018143508599612
426 => 0.018898107318922
427 => 0.018849107875388
428 => 0.018918577883486
429 => 0.018949160729483
430 => 0.019408471672405
501 => 0.01959663666941
502 => 0.019639353418022
503 => 0.019818095611973
504 => 0.019634906149406
505 => 0.020367794611548
506 => 0.020855122673645
507 => 0.021421179295444
508 => 0.022248340161568
509 => 0.022559360298897
510 => 0.022503177294921
511 => 0.02313032122336
512 => 0.024257284922139
513 => 0.02273096887957
514 => 0.02433818337858
515 => 0.023829357824377
516 => 0.022622941588743
517 => 0.022545262605881
518 => 0.023362261687433
519 => 0.025174287017067
520 => 0.024720395223815
521 => 0.025175029421439
522 => 0.024644674480594
523 => 0.024618337887598
524 => 0.025149271265736
525 => 0.026389826043428
526 => 0.025800484970047
527 => 0.024955520028996
528 => 0.025579428992358
529 => 0.025038941308245
530 => 0.023821071282962
531 => 0.024720048141315
601 => 0.024118927917521
602 => 0.024294366756133
603 => 0.025557832056662
604 => 0.025405808568988
605 => 0.025602541039035
606 => 0.025255313378788
607 => 0.024930947991341
608 => 0.024325495907982
609 => 0.024146251394526
610 => 0.024195788129503
611 => 0.02414622684658
612 => 0.023807481970333
613 => 0.023734330046559
614 => 0.023612406968744
615 => 0.023650196028733
616 => 0.023420944972586
617 => 0.02385358908122
618 => 0.02393389164023
619 => 0.024248733942969
620 => 0.024281421915289
621 => 0.025158253246919
622 => 0.024675309284009
623 => 0.024999309789705
624 => 0.024970328134865
625 => 0.022649088286743
626 => 0.022968934657342
627 => 0.023466515236673
628 => 0.023242355860138
629 => 0.022925446946935
630 => 0.022669526007943
701 => 0.022281779616109
702 => 0.022827525216605
703 => 0.023545122647682
704 => 0.024299621370357
705 => 0.025206102148937
706 => 0.025003786191758
707 => 0.024282675342737
708 => 0.024315023848652
709 => 0.024514989583552
710 => 0.024256015788053
711 => 0.024179639359992
712 => 0.024504496635176
713 => 0.024506733748692
714 => 0.024208753098942
715 => 0.023877602136628
716 => 0.023876214602005
717 => 0.0238172894868
718 => 0.024655157127686
719 => 0.025115899612199
720 => 0.025168722995525
721 => 0.025112344177627
722 => 0.025134042147041
723 => 0.02486594624707
724 => 0.025478733973033
725 => 0.026041088588803
726 => 0.025890365538822
727 => 0.025664410260358
728 => 0.025484425997581
729 => 0.025847966966494
730 => 0.025831779059415
731 => 0.026036176911821
801 => 0.026026904244577
802 => 0.025958172934605
803 => 0.025890367993434
804 => 0.026159206920853
805 => 0.026081785627178
806 => 0.026004244076848
807 => 0.025848722626646
808 => 0.025869860574666
809 => 0.025643944310567
810 => 0.025539425109569
811 => 0.023967707103197
812 => 0.023547692694526
813 => 0.023679837777676
814 => 0.023723343370194
815 => 0.023540552561278
816 => 0.023802627626158
817 => 0.023761783504902
818 => 0.023920684087695
819 => 0.023821409902227
820 => 0.023825484149427
821 => 0.0241174283614
822 => 0.024202181008155
823 => 0.024159075127977
824 => 0.024189265008871
825 => 0.0248849780717
826 => 0.024786069921817
827 => 0.024733526938504
828 => 0.024748081703967
829 => 0.024925851307776
830 => 0.024975617090982
831 => 0.024764755970559
901 => 0.024864199293924
902 => 0.025287616343577
903 => 0.025435788347626
904 => 0.025908682257954
905 => 0.025707788519828
906 => 0.026076537670636
907 => 0.027209946844371
908 => 0.0281153925183
909 => 0.02728270725743
910 => 0.028945442929789
911 => 0.030240121155986
912 => 0.030190429249265
913 => 0.029964672154081
914 => 0.028490715414356
915 => 0.027134358447005
916 => 0.028269008644153
917 => 0.028271901100849
918 => 0.028174433642642
919 => 0.02756907163064
920 => 0.028153368356823
921 => 0.028199747709093
922 => 0.028173787605087
923 => 0.027709657969831
924 => 0.02700101780229
925 => 0.027139484394782
926 => 0.027366295497927
927 => 0.026936894761921
928 => 0.026799675208459
929 => 0.027054792465433
930 => 0.027876833423196
1001 => 0.02772143134189
1002 => 0.027717373165518
1003 => 0.028382249170083
1004 => 0.027906341440036
1005 => 0.027141230901945
1006 => 0.026948030400509
1007 => 0.026262298775863
1008 => 0.026735936051498
1009 => 0.026752981413848
1010 => 0.026493575118438
1011 => 0.027162280293148
1012 => 0.02715611805724
1013 => 0.027790954096996
1014 => 0.029004522171483
1015 => 0.028645610375799
1016 => 0.028228235006911
1017 => 0.028273615282073
1018 => 0.028771324892535
1019 => 0.028470398300444
1020 => 0.028578613601095
1021 => 0.028771161095717
1022 => 0.028887329779907
1023 => 0.028256900396153
1024 => 0.028109917149876
1025 => 0.027809241012104
1026 => 0.027730800220145
1027 => 0.027975694660547
1028 => 0.027911173627749
1029 => 0.026751548817146
1030 => 0.026630361572346
1031 => 0.026634078212128
1101 => 0.02632934712294
1102 => 0.025864559068087
1103 => 0.027085994325189
1104 => 0.026987895980068
1105 => 0.026879602999264
1106 => 0.026892868271501
1107 => 0.027423051918327
1108 => 0.027115518628252
1109 => 0.027933146283631
1110 => 0.027765066617822
1111 => 0.027592676342808
1112 => 0.027568846755665
1113 => 0.027502491207431
1114 => 0.027274933342727
1115 => 0.027000143546989
1116 => 0.026818703521958
1117 => 0.024738836367702
1118 => 0.025124847613501
1119 => 0.025568918365761
1120 => 0.02572220980994
1121 => 0.025459994187228
1122 => 0.027285287213735
1123 => 0.027618785838639
1124 => 0.026608596750227
1125 => 0.026419631617534
1126 => 0.027297675736375
1127 => 0.026768107796186
1128 => 0.027006572207227
1129 => 0.026491142583615
1130 => 0.027538455785879
1201 => 0.027530477014008
1202 => 0.027123048523685
1203 => 0.027467404293756
1204 => 0.027407564004527
1205 => 0.026947578242405
1206 => 0.027553038155
1207 => 0.027553338455563
1208 => 0.027161197391887
1209 => 0.026703262480231
1210 => 0.026621394533966
1211 => 0.026559718033867
1212 => 0.026991403569041
1213 => 0.027378451470032
1214 => 0.028098651656464
1215 => 0.028279727094868
1216 => 0.028986476585831
1217 => 0.028565641674971
1218 => 0.028752192340231
1219 => 0.028954719476573
1220 => 0.029051818433425
1221 => 0.028893600893853
1222 => 0.029991473763015
1223 => 0.030084167871128
1224 => 0.030115247403777
1225 => 0.029745050849407
1226 => 0.03007387203527
1227 => 0.029920027491818
1228 => 0.030320288254635
1229 => 0.030383054253031
1230 => 0.030329893685355
1231 => 0.030349816603939
]
'min_raw' => 0.013609860247031
'max_raw' => 0.030383054253031
'avg_raw' => 0.021996457250031
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0136098'
'max' => '$0.030383'
'avg' => '$0.021996'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0020986128358851
'max_diff' => -0.0028993473014636
'year' => 2031
]
6 => [
'items' => [
101 => 0.029412975788155
102 => 0.029364395649628
103 => 0.028702002013717
104 => 0.028971932316517
105 => 0.028467310553528
106 => 0.028627331312752
107 => 0.028697866938684
108 => 0.028661023130559
109 => 0.028987193770837
110 => 0.028709882094341
111 => 0.027978010985807
112 => 0.027245940479479
113 => 0.027236749930604
114 => 0.027044008688406
115 => 0.026904692072615
116 => 0.026931529395339
117 => 0.027026107621064
118 => 0.026899195014202
119 => 0.026926278253509
120 => 0.027376040480676
121 => 0.027466237087776
122 => 0.027159713774758
123 => 0.025928978441888
124 => 0.025626952904136
125 => 0.025844042871246
126 => 0.025740287849352
127 => 0.020774421241525
128 => 0.021941077941293
129 => 0.021247890146209
130 => 0.021567342974221
131 => 0.020859777735549
201 => 0.021197464954115
202 => 0.021135106455208
203 => 0.023011055904554
204 => 0.022981765534187
205 => 0.02299578528447
206 => 0.022326586075198
207 => 0.023392638586307
208 => 0.023917814387287
209 => 0.023820618323627
210 => 0.023845080478844
211 => 0.02342473960523
212 => 0.022999855102946
213 => 0.022528592800657
214 => 0.023404139908529
215 => 0.023306794016221
216 => 0.023530070469229
217 => 0.024097925354084
218 => 0.02418154414295
219 => 0.024293928643164
220 => 0.02425364679991
221 => 0.025213323730788
222 => 0.025097100522306
223 => 0.025377165015047
224 => 0.024801051104934
225 => 0.024149123530407
226 => 0.024273033649207
227 => 0.024261100108344
228 => 0.024109172436482
229 => 0.02397201892747
301 => 0.023743696977727
302 => 0.024466141412005
303 => 0.024436811487312
304 => 0.024911628875787
305 => 0.024827700290244
306 => 0.024267204655179
307 => 0.024287222866436
308 => 0.024421854957569
309 => 0.024887818162179
310 => 0.025026147766502
311 => 0.024962067982298
312 => 0.025113740078452
313 => 0.025233615519082
314 => 0.02512879458816
315 => 0.026612837922232
316 => 0.025996559662785
317 => 0.026296929398403
318 => 0.026368565810467
319 => 0.026185070647317
320 => 0.026224864177735
321 => 0.02628514053323
322 => 0.026651126760477
323 => 0.02761158051974
324 => 0.028036958951688
325 => 0.029316730952005
326 => 0.028001637194468
327 => 0.027923604973295
328 => 0.028154130555964
329 => 0.028905492197774
330 => 0.029514400236651
331 => 0.029716410161894
401 => 0.029743109108336
402 => 0.030122093157457
403 => 0.03033931974678
404 => 0.030076074525624
405 => 0.029853001763618
406 => 0.029053982818922
407 => 0.029146471437427
408 => 0.029783626302376
409 => 0.03068364507735
410 => 0.031455954817271
411 => 0.031185518864062
412 => 0.033248754289013
413 => 0.033453315653836
414 => 0.033425051887479
415 => 0.033891073119358
416 => 0.032966115877651
417 => 0.032570678736619
418 => 0.029901232626747
419 => 0.030651238098329
420 => 0.03174141509755
421 => 0.03159712608375
422 => 0.0308054104064
423 => 0.031455354229935
424 => 0.031240462476252
425 => 0.031070968434255
426 => 0.031847453498679
427 => 0.030993676274096
428 => 0.03173289801663
429 => 0.030784838485561
430 => 0.031186754192717
501 => 0.03095860739886
502 => 0.031106246335105
503 => 0.030243152130576
504 => 0.030708856812912
505 => 0.030223777284696
506 => 0.03022354729384
507 => 0.030212839136369
508 => 0.030783533050144
509 => 0.030802143358183
510 => 0.030380399693633
511 => 0.030319619842697
512 => 0.030544354807617
513 => 0.030281249021877
514 => 0.030404354563056
515 => 0.030284977763309
516 => 0.030258103531226
517 => 0.030043965077714
518 => 0.029951708344081
519 => 0.029987884586502
520 => 0.02986439642099
521 => 0.029789990334506
522 => 0.030198037892993
523 => 0.029980034543085
524 => 0.030164625753012
525 => 0.029954260772033
526 => 0.029225044096299
527 => 0.028805663874759
528 => 0.02742824117272
529 => 0.027818876542331
530 => 0.028077868196524
531 => 0.027992271456358
601 => 0.028176166375776
602 => 0.028187456030295
603 => 0.028127669917406
604 => 0.028058445257755
605 => 0.028024750521801
606 => 0.028275883478024
607 => 0.028421674611858
608 => 0.028103861473884
609 => 0.028029402302335
610 => 0.028350728931771
611 => 0.028546737990102
612 => 0.029993958748847
613 => 0.029886743960577
614 => 0.030155832039294
615 => 0.030125536851123
616 => 0.030407584026711
617 => 0.030868611956766
618 => 0.029931213269527
619 => 0.030093913268824
620 => 0.030054022986288
621 => 0.030489534631221
622 => 0.030490894251039
623 => 0.030229783264481
624 => 0.030371335766336
625 => 0.030292325043091
626 => 0.030435108098935
627 => 0.029885312041714
628 => 0.030554904292593
629 => 0.030934519951269
630 => 0.030939790915058
701 => 0.031119725724454
702 => 0.031302549911923
703 => 0.031653465019137
704 => 0.031292763080042
705 => 0.030643895405236
706 => 0.030690741555527
707 => 0.0303103106752
708 => 0.030316705787029
709 => 0.030282568178893
710 => 0.030385017710668
711 => 0.029907793952702
712 => 0.030019797414835
713 => 0.029862991911957
714 => 0.030093572404284
715 => 0.029845505910861
716 => 0.030054003749986
717 => 0.030143984505539
718 => 0.030476015430678
719 => 0.029796464673252
720 => 0.028410814677318
721 => 0.028702095105846
722 => 0.028271268472469
723 => 0.028311143117661
724 => 0.028391696246951
725 => 0.028130597199579
726 => 0.028180406669641
727 => 0.028178627124866
728 => 0.028163291969388
729 => 0.028095370023043
730 => 0.027996869762895
731 => 0.028389264482543
801 => 0.028455939991724
802 => 0.028604151389286
803 => 0.029045127975679
804 => 0.029001064015754
805 => 0.029072934162587
806 => 0.028916042035584
807 => 0.028318420893455
808 => 0.028350874596715
809 => 0.027946176397032
810 => 0.028593802346434
811 => 0.028440435973371
812 => 0.02834155967495
813 => 0.028314580360843
814 => 0.028756650042899
815 => 0.028888924220363
816 => 0.028806499829557
817 => 0.028637444999311
818 => 0.028962080249958
819 => 0.02904893894777
820 => 0.029068383406984
821 => 0.029643574828496
822 => 0.029100530217867
823 => 0.029231246453045
824 => 0.030251057205306
825 => 0.029326229577269
826 => 0.029816131397957
827 => 0.029792153253161
828 => 0.030042770447251
829 => 0.029771595328278
830 => 0.029774956868878
831 => 0.029997487958951
901 => 0.029684983176637
902 => 0.029607602597771
903 => 0.029500701882279
904 => 0.029734115683672
905 => 0.02987403670121
906 => 0.031001697341897
907 => 0.031730217543353
908 => 0.031698590560073
909 => 0.031987601984025
910 => 0.031857399690494
911 => 0.031436942139049
912 => 0.032154611910029
913 => 0.031927511165912
914 => 0.03194623307533
915 => 0.031945536244926
916 => 0.032096538386272
917 => 0.031989539529985
918 => 0.031778633801037
919 => 0.031918642866471
920 => 0.032334419736653
921 => 0.03362500389929
922 => 0.034347231894667
923 => 0.033581524867112
924 => 0.034109699321494
925 => 0.033792982856666
926 => 0.033735426053508
927 => 0.034067158642645
928 => 0.034399471885766
929 => 0.034378304968809
930 => 0.034137062618777
1001 => 0.034000790936542
1002 => 0.035032685768788
1003 => 0.035792968303316
1004 => 0.03574112213146
1005 => 0.035969954272754
1006 => 0.036641812517106
1007 => 0.036703238814968
1008 => 0.036695500513305
1009 => 0.036543249024883
1010 => 0.037204780718265
1011 => 0.037756642095427
1012 => 0.036508007204282
1013 => 0.036983471024999
1014 => 0.037196922052607
1015 => 0.037510331489201
1016 => 0.038039105742255
1017 => 0.038613494831516
1018 => 0.038694719746594
1019 => 0.038637086782376
1020 => 0.038258261737601
1021 => 0.038886765132958
1022 => 0.039254927681739
1023 => 0.039474160054289
1024 => 0.040030096874285
1025 => 0.037198240253486
1026 => 0.035193711384877
1027 => 0.034880675256296
1028 => 0.035517246533304
1029 => 0.035685105302489
1030 => 0.035617441643108
1031 => 0.033361162157697
1101 => 0.034868796411753
1102 => 0.036490884103629
1103 => 0.036553195098034
1104 => 0.037365246112841
1105 => 0.037629683210358
1106 => 0.038283490715238
1107 => 0.038242594877795
1108 => 0.038401786600883
1109 => 0.038365191180562
1110 => 0.039576231907938
1111 => 0.040912189671522
1112 => 0.040865929702254
1113 => 0.040673869967404
1114 => 0.040959111424708
1115 => 0.042337963006661
1116 => 0.042211020448641
1117 => 0.042334334330816
1118 => 0.043960078054609
1119 => 0.046073776154888
1120 => 0.045091751175489
1121 => 0.047222462810709
1122 => 0.04856363284091
1123 => 0.050883047728572
1124 => 0.050592645561278
1125 => 0.051495576756392
1126 => 0.050072765073059
1127 => 0.046805701850443
1128 => 0.046288676589649
1129 => 0.047323774254925
1130 => 0.049868460861652
1201 => 0.047243633017908
1202 => 0.047774632272114
1203 => 0.047621704451181
1204 => 0.047613555577504
1205 => 0.047924564941859
1206 => 0.047473429637705
1207 => 0.045635423250892
1208 => 0.046477770746529
1209 => 0.046152499925614
1210 => 0.046513412151965
1211 => 0.048461106586056
1212 => 0.047599984449508
1213 => 0.046692862230537
1214 => 0.047830594799662
1215 => 0.049279319327485
1216 => 0.049188660750142
1217 => 0.049012745217752
1218 => 0.050004371863201
1219 => 0.051642248562137
1220 => 0.052084960052338
1221 => 0.052411760623567
1222 => 0.052456820900998
1223 => 0.052920969763349
1224 => 0.050425124349915
1225 => 0.054386095118891
1226 => 0.055070045351084
1227 => 0.054941491054264
1228 => 0.055701672952321
1229 => 0.05547800815396
1230 => 0.055153952953065
1231 => 0.056359002956812
]
'min_raw' => 0.020774421241525
'max_raw' => 0.056359002956812
'avg_raw' => 0.038566712099168
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.020774'
'max' => '$0.056359'
'avg' => '$0.038566'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0071645609944933
'max_diff' => 0.025975948703782
'year' => 2032
]
7 => [
'items' => [
101 => 0.054977510370037
102 => 0.05301665556819
103 => 0.051940891842587
104 => 0.053357544295846
105 => 0.054222644514694
106 => 0.054794420728645
107 => 0.054967439865509
108 => 0.050618869724599
109 => 0.048275231601405
110 => 0.049777476768507
111 => 0.051610319551794
112 => 0.050414942815711
113 => 0.050461799320618
114 => 0.048757506234444
115 => 0.051761111673009
116 => 0.051323511624908
117 => 0.053593781448557
118 => 0.05305196333509
119 => 0.054903280244908
120 => 0.054415766458167
121 => 0.056439408930401
122 => 0.057246694700508
123 => 0.058602253152515
124 => 0.059599407467926
125 => 0.060184955554459
126 => 0.060149801443679
127 => 0.062470034681419
128 => 0.061101874203899
129 => 0.059383142193467
130 => 0.059352055753928
131 => 0.060242211416752
201 => 0.06210773348375
202 => 0.06259143621348
203 => 0.062861760051459
204 => 0.062447749683554
205 => 0.06096270954215
206 => 0.060321476738417
207 => 0.060867825665501
208 => 0.060199687875976
209 => 0.061353081147049
210 => 0.062936936459742
211 => 0.062609876600914
212 => 0.063703188673423
213 => 0.064834651648685
214 => 0.066452694520492
215 => 0.066875710843137
216 => 0.067574940738598
217 => 0.068294677986083
218 => 0.068525838192512
219 => 0.068967194751385
220 => 0.06896486858446
221 => 0.070294926281348
222 => 0.071762021109473
223 => 0.072315815443767
224 => 0.073589234979078
225 => 0.071408548650801
226 => 0.073062624280718
227 => 0.074554641903102
228 => 0.072775796985029
301 => 0.075227520286883
302 => 0.07532271514697
303 => 0.076760044513733
304 => 0.07530303584153
305 => 0.074437868742913
306 => 0.076935573739233
307 => 0.078144134509982
308 => 0.077780106170239
309 => 0.075009832530495
310 => 0.073397414449539
311 => 0.069177405319456
312 => 0.074176188424867
313 => 0.07661094985901
314 => 0.075003527086576
315 => 0.075814217634793
316 => 0.080237082398573
317 => 0.081921022941333
318 => 0.081570775080072
319 => 0.081629961203055
320 => 0.082538584954246
321 => 0.086567923055265
322 => 0.084153450265808
323 => 0.085999224244779
324 => 0.086978216107792
325 => 0.087887558309967
326 => 0.085654501261978
327 => 0.082749326852668
328 => 0.081829136166314
329 => 0.074843700570698
330 => 0.074480078311737
331 => 0.0742759661189
401 => 0.072989067615306
402 => 0.071977917902648
403 => 0.07117381410956
404 => 0.06906360563078
405 => 0.069775739046548
406 => 0.06641250716611
407 => 0.068564183737595
408 => 0.063196384448343
409 => 0.067666847201449
410 => 0.065233777571933
411 => 0.066867518390955
412 => 0.066861818423145
413 => 0.063853583597326
414 => 0.062118496530053
415 => 0.063224161539919
416 => 0.064409522198292
417 => 0.064601842977081
418 => 0.066138694011741
419 => 0.066567596101012
420 => 0.065268002746997
421 => 0.063085148739146
422 => 0.063592175939571
423 => 0.06210822164002
424 => 0.059507648809534
425 => 0.061375425618034
426 => 0.062013166740806
427 => 0.062294829551932
428 => 0.059737464850956
429 => 0.058933885338821
430 => 0.058506066349246
501 => 0.062755025070261
502 => 0.062987792620481
503 => 0.061796920923544
504 => 0.067179773916785
505 => 0.065961468501829
506 => 0.067322614142408
507 => 0.06354616853554
508 => 0.063690433843381
509 => 0.061902603972864
510 => 0.062903669237518
511 => 0.0621961485743
512 => 0.062822793056854
513 => 0.063198401175945
514 => 0.064985937681172
515 => 0.06768725799698
516 => 0.06471893933638
517 => 0.063425600388851
518 => 0.064227980597884
519 => 0.066364824830966
520 => 0.069602253227128
521 => 0.067685630457282
522 => 0.068536195096174
523 => 0.068722005630786
524 => 0.067308758957532
525 => 0.069654361647805
526 => 0.070911389185165
527 => 0.072200839333298
528 => 0.073320432767349
529 => 0.071685804588517
530 => 0.073435091054612
531 => 0.072025474953569
601 => 0.070760903587499
602 => 0.070762821420269
603 => 0.069969537329894
604 => 0.068432449444563
605 => 0.068148986855349
606 => 0.069623595041819
607 => 0.070806091161453
608 => 0.070903487205641
609 => 0.071558177816314
610 => 0.071945616975862
611 => 0.07574304743742
612 => 0.077270405383051
613 => 0.079138029767563
614 => 0.079865574718873
615 => 0.082055224183015
616 => 0.080286904406086
617 => 0.079904317299094
618 => 0.074592943927966
619 => 0.075462681019939
620 => 0.076855214021336
621 => 0.074615906284257
622 => 0.076036231625843
623 => 0.076316633934876
624 => 0.074539815464232
625 => 0.075488890981197
626 => 0.072968427789418
627 => 0.067742197206929
628 => 0.069660179936441
629 => 0.071072460811368
630 => 0.069056961869871
701 => 0.072669665711923
702 => 0.070559198708741
703 => 0.069890281989014
704 => 0.067280599379331
705 => 0.068512269115206
706 => 0.070178120068789
707 => 0.069148817855435
708 => 0.07128477449865
709 => 0.074309858744271
710 => 0.076465713924583
711 => 0.076631213715967
712 => 0.075245143266106
713 => 0.077466330007792
714 => 0.07748250892828
715 => 0.074977001209845
716 => 0.073442391683028
717 => 0.073093725169689
718 => 0.073964762480106
719 => 0.07502236257731
720 => 0.076689903160839
721 => 0.07769756301126
722 => 0.080325005479669
723 => 0.081035916076941
724 => 0.081816991288718
725 => 0.082860748646326
726 => 0.084114046968029
727 => 0.081371901590457
728 => 0.081480852138307
729 => 0.078927404330299
730 => 0.076198679145987
731 => 0.078269441420484
801 => 0.080976687632428
802 => 0.080355642360167
803 => 0.080285762080234
804 => 0.080403281327908
805 => 0.079935033474065
806 => 0.077817165785211
807 => 0.076753585890421
808 => 0.078125875302869
809 => 0.07885518605201
810 => 0.079986283421347
811 => 0.079846851796007
812 => 0.08276043714843
813 => 0.083892568314133
814 => 0.083602920715322
815 => 0.083656222844262
816 => 0.085705892242135
817 => 0.087985546159233
818 => 0.090120742879423
819 => 0.092292756692034
820 => 0.08967430926579
821 => 0.088344823146129
822 => 0.089716513459948
823 => 0.088988675271496
824 => 0.09317104939317
825 => 0.093460627902987
826 => 0.097642699591408
827 => 0.10161198361555
828 => 0.099118947437097
829 => 0.10146976826456
830 => 0.10401237265471
831 => 0.10891746904598
901 => 0.10726560514477
902 => 0.10600030328445
903 => 0.10480459914034
904 => 0.10729266965155
905 => 0.11049353261631
906 => 0.11118296784143
907 => 0.11230011629066
908 => 0.11112557129471
909 => 0.11254018137045
910 => 0.11753437654896
911 => 0.11618490092675
912 => 0.11426842860417
913 => 0.11821086605001
914 => 0.11963761883582
915 => 0.12965131708287
916 => 0.14229402476501
917 => 0.13705986076811
918 => 0.13381084626981
919 => 0.13457444174457
920 => 0.13919113060742
921 => 0.14067386454379
922 => 0.1366432825757
923 => 0.13806695226638
924 => 0.14591151223412
925 => 0.15011986697319
926 => 0.14440435598008
927 => 0.12863548783054
928 => 0.1140958712401
929 => 0.11795243228735
930 => 0.11751521794762
1001 => 0.12594321900417
1002 => 0.11615271637946
1003 => 0.11631756333452
1004 => 0.12491984652751
1005 => 0.12262490485209
1006 => 0.11890739325183
1007 => 0.11412301318883
1008 => 0.10527864414078
1009 => 0.097444939831448
1010 => 0.11280863797641
1011 => 0.11214612737532
1012 => 0.11118671384639
1013 => 0.11332178483565
1014 => 0.12368908350905
1015 => 0.12345008371896
1016 => 0.12192968899315
1017 => 0.12308289499253
1018 => 0.11870523066447
1019 => 0.11983345443937
1020 => 0.11409356809055
1021 => 0.11668823643905
1022 => 0.11889941714155
1023 => 0.11934334440467
1024 => 0.12034353519597
1025 => 0.11179701439327
1026 => 0.11563415132101
1027 => 0.11788810977495
1028 => 0.10770464348034
1029 => 0.11768681538865
1030 => 0.11164823848039
1031 => 0.10959865478134
1101 => 0.11235814921999
1102 => 0.11128277155355
1103 => 0.11035822498424
1104 => 0.10984231211284
1105 => 0.1118685802743
1106 => 0.11177405244265
1107 => 0.10845868444881
1108 => 0.10413392205253
1109 => 0.10558545426821
1110 => 0.10505809900607
1111 => 0.10314689550588
1112 => 0.10443481590542
1113 => 0.098763466267458
1114 => 0.089006203986455
1115 => 0.095452150322312
1116 => 0.095203988400222
1117 => 0.095078853905857
1118 => 0.099922804424382
1119 => 0.099457170350979
1120 => 0.098612039948249
1121 => 0.10313137402327
1122 => 0.10148175629227
1123 => 0.10656548944041
1124 => 0.10991396488702
1125 => 0.10906468320193
1126 => 0.11221394054405
1127 => 0.10561889463878
1128 => 0.10780950434119
1129 => 0.10826098596481
1130 => 0.10307560614231
1201 => 0.099533353843981
1202 => 0.099297126000316
1203 => 0.093155348667454
1204 => 0.096436236543974
1205 => 0.099323282102947
1206 => 0.097940611323985
1207 => 0.09750289906148
1208 => 0.09973907608241
1209 => 0.099912846188497
1210 => 0.095950869354377
1211 => 0.09677468979768
1212 => 0.100210157995
1213 => 0.096688124813611
1214 => 0.089845389663017
1215 => 0.088148296737455
1216 => 0.087921873257556
1217 => 0.083319222645294
1218 => 0.088261704601706
1219 => 0.086104178777451
1220 => 0.092919777005145
1221 => 0.089026743850273
1222 => 0.088858922971873
1223 => 0.088605237100201
1224 => 0.084643545585125
1225 => 0.085510904248296
1226 => 0.088394136547133
1227 => 0.089422906313294
1228 => 0.089315597198221
1229 => 0.088380007135926
1230 => 0.088808315475449
1231 => 0.08742858508133
]
'min_raw' => 0.048275231601405
'max_raw' => 0.15011986697319
'avg_raw' => 0.099197549287299
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.048275'
'max' => '$0.150119'
'avg' => '$0.099197'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.02750081035988
'max_diff' => 0.093760864016382
'year' => 2033
]
8 => [
'items' => [
101 => 0.086941373562561
102 => 0.085403599991243
103 => 0.083143497662196
104 => 0.083457778753063
105 => 0.078979924651278
106 => 0.076540152078921
107 => 0.075864855186578
108 => 0.074961819959538
109 => 0.075966855418358
110 => 0.078967239453221
111 => 0.075348139740194
112 => 0.069143447132537
113 => 0.069516359730539
114 => 0.070354183619505
115 => 0.068792904345176
116 => 0.067315284540261
117 => 0.06859995507755
118 => 0.065970945024669
119 => 0.070671886924152
120 => 0.070544739620008
121 => 0.072296960055838
122 => 0.073392659453546
123 => 0.070867427078722
124 => 0.070232337965409
125 => 0.070594113587543
126 => 0.064614768418818
127 => 0.071808319990063
128 => 0.07187053012277
129 => 0.071337849197667
130 => 0.075168193333367
131 => 0.083251414173991
201 => 0.080210181346943
202 => 0.079032524074562
203 => 0.076793796738902
204 => 0.079776767991192
205 => 0.079547722340617
206 => 0.078511891045732
207 => 0.077885417046595
208 => 0.079039714598746
209 => 0.077742386805838
210 => 0.077509351086048
211 => 0.076097408169484
212 => 0.07559340878758
213 => 0.075220267710012
214 => 0.074809476047695
215 => 0.075715580091863
216 => 0.073662229119864
217 => 0.071186089140111
218 => 0.070980224893001
219 => 0.071548634179043
220 => 0.071297155383064
221 => 0.070979020909277
222 => 0.070371615560048
223 => 0.070191411368094
224 => 0.0707769875693
225 => 0.070115906179352
226 => 0.071091367781187
227 => 0.07082609620024
228 => 0.069344310712896
301 => 0.067497457368413
302 => 0.067481016499741
303 => 0.067083114976118
304 => 0.066576327560891
305 => 0.0664353508957
306 => 0.068491763708137
307 => 0.072748476686627
308 => 0.071912782074441
309 => 0.072516657077174
310 => 0.075487124413564
311 => 0.076431346654733
312 => 0.075761160073081
313 => 0.074843767344807
314 => 0.074884127969004
315 => 0.07801913663518
316 => 0.07821466328021
317 => 0.078708696032913
318 => 0.079343667733776
319 => 0.075869298499433
320 => 0.074720485490512
321 => 0.074176114153165
322 => 0.07249966113236
323 => 0.074307571987079
324 => 0.073254179754496
325 => 0.073396318355674
326 => 0.073303750405189
327 => 0.073354298765571
328 => 0.070670572915085
329 => 0.071648381562524
330 => 0.070022585037051
331 => 0.067845825993667
401 => 0.067838528734083
402 => 0.068371287426139
403 => 0.068054381709254
404 => 0.067201596573509
405 => 0.067322730677009
406 => 0.066261468467053
407 => 0.067451587124071
408 => 0.067485715468705
409 => 0.067027454959551
410 => 0.068860996955413
411 => 0.069612200607146
412 => 0.06931056372313
413 => 0.069591036959261
414 => 0.071947508958512
415 => 0.072331716714472
416 => 0.072502356420329
417 => 0.072273721819909
418 => 0.069634108941571
419 => 0.069751186997226
420 => 0.06889214590734
421 => 0.068166346709907
422 => 0.068195374871489
423 => 0.068568530006261
424 => 0.07019812036507
425 => 0.073627497205584
426 => 0.073757639549839
427 => 0.073915375867597
428 => 0.073273782991354
429 => 0.073080272440663
430 => 0.073335562806336
501 => 0.074623456439565
502 => 0.077936268523941
503 => 0.076765299478043
504 => 0.075813283416509
505 => 0.076648458164161
506 => 0.076519889558076
507 => 0.075434641135846
508 => 0.075404181827166
509 => 0.073321243129998
510 => 0.072551228119874
511 => 0.07190774594279
512 => 0.071205080203942
513 => 0.070788516400384
514 => 0.071428547727512
515 => 0.071574930464654
516 => 0.070175490782056
517 => 0.069984752324425
518 => 0.071127564978238
519 => 0.070624655737645
520 => 0.071141910363144
521 => 0.071261917873188
522 => 0.071242593900064
523 => 0.070717498894126
524 => 0.071052178792352
525 => 0.070260561060168
526 => 0.069399795673556
527 => 0.068850680984476
528 => 0.068371505588759
529 => 0.06863737994814
530 => 0.067689586403687
531 => 0.067386368173502
601 => 0.070938796773369
602 => 0.073563013975135
603 => 0.073524856817717
604 => 0.073292584935161
605 => 0.072947476032313
606 => 0.074598209573771
607 => 0.074023127015386
608 => 0.074441547626367
609 => 0.074548053232919
610 => 0.074870413626517
611 => 0.074985629759416
612 => 0.074637366583046
613 => 0.073468552826382
614 => 0.070555980072253
615 => 0.069200169592866
616 => 0.068752729551859
617 => 0.06876899314754
618 => 0.06832037057477
619 => 0.068452510028304
620 => 0.068274417865405
621 => 0.067937154393996
622 => 0.068616554879164
623 => 0.068694849456026
624 => 0.068536269264557
625 => 0.068573620640335
626 => 0.067260644385454
627 => 0.067360467118478
628 => 0.066804641456141
629 => 0.066700430845031
630 => 0.065295351971919
701 => 0.062806051078761
702 => 0.064185365415855
703 => 0.062519347657591
704 => 0.061888401488248
705 => 0.064875202521657
706 => 0.064575410538867
707 => 0.064062296980775
708 => 0.063303295086121
709 => 0.063021773900298
710 => 0.061311340294014
711 => 0.061210278751746
712 => 0.062058015832613
713 => 0.061666814338645
714 => 0.061117419281522
715 => 0.059127566075908
716 => 0.056890312255042
717 => 0.056957840885018
718 => 0.057669469699848
719 => 0.059738626455188
720 => 0.058930171114101
721 => 0.058343627488187
722 => 0.05823378549849
723 => 0.059608687969331
724 => 0.061554463016544
725 => 0.062467377134433
726 => 0.061562706969219
727 => 0.060523470594321
728 => 0.060586724097104
729 => 0.061007521313046
730 => 0.061051741150689
731 => 0.060375305105856
801 => 0.06056571789023
802 => 0.060276463459056
803 => 0.058501309548867
804 => 0.058469202643705
805 => 0.058033551245921
806 => 0.058020359894735
807 => 0.05727920818877
808 => 0.057175515941766
809 => 0.055703914244879
810 => 0.05667252693819
811 => 0.056022832397966
812 => 0.055043589478399
813 => 0.054874767629967
814 => 0.054869692641345
815 => 0.05587515616503
816 => 0.056660777511507
817 => 0.056034134112652
818 => 0.055891459557704
819 => 0.057414850537468
820 => 0.057220985149276
821 => 0.057053098973399
822 => 0.061380240202513
823 => 0.057954970268629
824 => 0.056461357069883
825 => 0.05461272710698
826 => 0.055214650344503
827 => 0.055341484414741
828 => 0.050895862594558
829 => 0.049092274375776
830 => 0.048473350865879
831 => 0.048117151635639
901 => 0.048279476097728
902 => 0.046656035161026
903 => 0.047747014319724
904 => 0.046341251694587
905 => 0.046105571015736
906 => 0.048619248730053
907 => 0.048969012299308
908 => 0.047476812249843
909 => 0.048435046246844
910 => 0.048087577279082
911 => 0.046365349460012
912 => 0.046299573025174
913 => 0.045435419644799
914 => 0.04408318693758
915 => 0.043465180305134
916 => 0.043143317085176
917 => 0.04327612412272
918 => 0.043208972820575
919 => 0.042770765151191
920 => 0.043234090371237
921 => 0.04205048589322
922 => 0.041579165053124
923 => 0.041366280364213
924 => 0.040315763264241
925 => 0.041987603137371
926 => 0.042316976653662
927 => 0.042646999137528
928 => 0.045519619543663
929 => 0.045376111546114
930 => 0.046673353952732
1001 => 0.046622945498287
1002 => 0.046252950949985
1003 => 0.044692004811852
1004 => 0.045314170121322
1005 => 0.043399242004728
1006 => 0.044834036352135
1007 => 0.044179256130423
1008 => 0.044612654500525
1009 => 0.043833365153126
1010 => 0.044264656054045
1011 => 0.042395083333326
1012 => 0.040649302632317
1013 => 0.041351855748919
1014 => 0.042115611333359
1015 => 0.04377162804173
1016 => 0.042785318152065
1017 => 0.043140032484895
1018 => 0.041951798848379
1019 => 0.039500133454087
1020 => 0.039514009613969
1021 => 0.039136874305491
1022 => 0.038810974336309
1023 => 0.042898607707615
1024 => 0.042390245881972
1025 => 0.041580237845561
1026 => 0.042664465790737
1027 => 0.042951152868453
1028 => 0.042959314446521
1029 => 0.043750339167347
1030 => 0.044172509202652
1031 => 0.044246918501164
1101 => 0.045491612990604
1102 => 0.045908818165548
1103 => 0.047627227236053
1104 => 0.044136691024694
1105 => 0.044064805728432
1106 => 0.042679723101399
1107 => 0.041801281802045
1108 => 0.042739870728706
1109 => 0.043571332387561
1110 => 0.042705558932831
1111 => 0.042818610668543
1112 => 0.041656380541857
1113 => 0.042071823124137
1114 => 0.042429658242156
1115 => 0.042232082722562
1116 => 0.041936302606967
1117 => 0.043503162013399
1118 => 0.043414753665116
1119 => 0.044873849166328
1120 => 0.046011318450443
1121 => 0.048049866754532
1122 => 0.045922535327288
1123 => 0.045845006914703
1124 => 0.046602859583673
1125 => 0.045908702142253
1126 => 0.04634738568373
1127 => 0.047979188053979
1128 => 0.048013665466702
1129 => 0.047436124381957
1130 => 0.047400980954463
1201 => 0.047511904037395
1202 => 0.04816158399875
1203 => 0.047934565857604
1204 => 0.048197276997935
1205 => 0.048525801301694
1206 => 0.049884717113459
1207 => 0.050212347115088
1208 => 0.04941637606781
1209 => 0.049488243341269
1210 => 0.049190528319693
1211 => 0.048902939339209
1212 => 0.049549397368339
1213 => 0.05073081212274
1214 => 0.050723462602868
1215 => 0.050997527862468
1216 => 0.051168268248719
1217 => 0.050435325521327
1218 => 0.049958206756845
1219 => 0.050141164451003
1220 => 0.050433717788262
1221 => 0.050046293346665
1222 => 0.047654930220672
1223 => 0.048380317032231
1224 => 0.048259577197185
1225 => 0.048087628989613
1226 => 0.048817011037885
1227 => 0.04874666035999
1228 => 0.046639384427737
1229 => 0.04677428539588
1230 => 0.046647588202416
1231 => 0.047056972754305
]
'min_raw' => 0.038810974336309
'max_raw' => 0.086941373562561
'avg_raw' => 0.062876173949435
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.03881'
'max' => '$0.086941'
'avg' => '$0.062876'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0094642572650956
'max_diff' => -0.063178493410633
'year' => 2034
]
9 => [
'items' => [
101 => 0.045886594032965
102 => 0.046246594645028
103 => 0.046472383654118
104 => 0.046605375115065
105 => 0.047085831465104
106 => 0.047029455457833
107 => 0.047082327053336
108 => 0.04779471698467
109 => 0.051397740794651
110 => 0.051593845431004
111 => 0.050628154479699
112 => 0.051013928967334
113 => 0.050273326310682
114 => 0.050770497835699
115 => 0.051110649966328
116 => 0.049573567895508
117 => 0.049482551870854
118 => 0.048738892483591
119 => 0.049138492915286
120 => 0.048502699896172
121 => 0.048658701263967
122 => 0.048222507839658
123 => 0.04900756915817
124 => 0.049885389698462
125 => 0.050107161833123
126 => 0.049523774825736
127 => 0.049101364185311
128 => 0.048359750251439
129 => 0.049593070751412
130 => 0.049953731250366
131 => 0.049591176355349
201 => 0.049507164464193
202 => 0.049347962082258
203 => 0.049540940002118
204 => 0.049951767015832
205 => 0.049758028582949
206 => 0.0498859962311
207 => 0.049398315516012
208 => 0.050435568155867
209 => 0.052082974976398
210 => 0.052088271658705
211 => 0.051894532181499
212 => 0.051815258161601
213 => 0.052014046622309
214 => 0.052121881207514
215 => 0.052764726637874
216 => 0.053454525396743
217 => 0.056673515221605
218 => 0.055769635759779
219 => 0.058625715030958
220 => 0.060884502918983
221 => 0.061561814641779
222 => 0.060938719726786
223 => 0.058807145681523
224 => 0.058702560489651
225 => 0.061888032040623
226 => 0.060987990423634
227 => 0.060880933337202
228 => 0.059742026813365
301 => 0.060415261625269
302 => 0.060268015296147
303 => 0.06003557976209
304 => 0.061320064885261
305 => 0.063724506369059
306 => 0.063349751615099
307 => 0.063070014575642
308 => 0.061844288298965
309 => 0.0625824492934
310 => 0.062319604301824
311 => 0.063448953191186
312 => 0.062779951927269
313 => 0.06098117172317
314 => 0.06126763339953
315 => 0.061224335293429
316 => 0.062115407248848
317 => 0.061847929565597
318 => 0.06117210598291
319 => 0.063716288249463
320 => 0.063551083204559
321 => 0.063785306187102
322 => 0.063888418387604
323 => 0.065437017299735
324 => 0.066071428724397
325 => 0.06621545122473
326 => 0.066818093011018
327 => 0.066200456948093
328 => 0.068671441566844
329 => 0.070314502152363
330 => 0.072223001573568
331 => 0.075011832184233
401 => 0.076060458291968
402 => 0.075871033371494
403 => 0.077985492912017
404 => 0.08178512970454
405 => 0.076639048603037
406 => 0.082057884498581
407 => 0.080342343617521
408 => 0.076274827049789
409 => 0.076012926935697
410 => 0.078767496380204
411 => 0.084876866290635
412 => 0.083346538419972
413 => 0.084879369358806
414 => 0.083091240647547
415 => 0.083002444985501
416 => 0.084792523938478
417 => 0.088975140984235
418 => 0.086988136408852
419 => 0.084139278116529
420 => 0.086242830746436
421 => 0.084420538783805
422 => 0.080314404964593
423 => 0.08334536820709
424 => 0.081318649403695
425 => 0.081910153696823
426 => 0.086170015169889
427 => 0.085657457367254
428 => 0.086320754625438
429 => 0.085150052326255
430 => 0.084056431776011
501 => 0.08201510780565
502 => 0.081410772414082
503 => 0.081577788974602
504 => 0.081410689648969
505 => 0.080268587648288
506 => 0.080021950829982
507 => 0.079610878660731
508 => 0.079738287114831
509 => 0.078965351173234
510 => 0.080424040991742
511 => 0.080694786675987
512 => 0.081756299481262
513 => 0.081866509262139
514 => 0.084822807315139
515 => 0.083194528026117
516 => 0.084286918352063
517 => 0.084189204679334
518 => 0.076362982467601
519 => 0.077441366837034
520 => 0.079118994500216
521 => 0.078363225511923
522 => 0.077294744985185
523 => 0.076431889671542
524 => 0.075124575639887
525 => 0.076964595034699
526 => 0.079384024874628
527 => 0.081927869995547
528 => 0.084984133228995
529 => 0.084302010854115
530 => 0.08187073528029
531 => 0.081979800526483
601 => 0.082653998962862
602 => 0.081780850730365
603 => 0.081523342270723
604 => 0.082618621254818
605 => 0.082626163839227
606 => 0.08162150127425
607 => 0.080505002684587
608 => 0.08050032451473
609 => 0.080301654374796
610 => 0.083126583624093
611 => 0.084680009078644
612 => 0.084858106803538
613 => 0.08466802168275
614 => 0.084741177901533
615 => 0.083837273856923
616 => 0.085903330458482
617 => 0.087799348307893
618 => 0.087291175021738
619 => 0.086529351024702
620 => 0.085922521516647
621 => 0.087148225274959
622 => 0.087093646616038
623 => 0.087782788246028
624 => 0.087751524801017
625 => 0.087519792390779
626 => 0.087291183297632
627 => 0.08819759251116
628 => 0.087936561214151
629 => 0.087675124463438
630 => 0.08715077303592
701 => 0.087222041103475
702 => 0.086460348646092
703 => 0.086107954862632
704 => 0.0808087978703
705 => 0.079392689966999
706 => 0.079838226340912
707 => 0.079984908483551
708 => 0.079368616509243
709 => 0.080252220887982
710 => 0.080114512081524
711 => 0.080650256490495
712 => 0.080315546643088
713 => 0.080329283251977
714 => 0.081313593545536
715 => 0.081599343011312
716 => 0.081454008526737
717 => 0.081555795817959
718 => 0.083901440982424
719 => 0.083567965249547
720 => 0.083390812912873
721 => 0.083439885320813
722 => 0.084039247951533
723 => 0.084207036764148
724 => 0.083496103774787
725 => 0.083831383882424
726 => 0.085258964027364
727 => 0.085758536284054
728 => 0.087352931119123
729 => 0.086675603855078
730 => 0.087918867362271
731 => 0.091740235523619
801 => 0.094793008829468
802 => 0.091985552336217
803 => 0.097591581744072
804 => 0.10195667977524
805 => 0.10178914004236
806 => 0.10102798423408
807 => 0.096058436177731
808 => 0.091485383964487
809 => 0.095310936322919
810 => 0.095320688442613
811 => 0.094992070102309
812 => 0.092951049813817
813 => 0.094921047020438
814 => 0.09507741824472
815 => 0.094989891941587
816 => 0.093425046471825
817 => 0.091035816671283
818 => 0.091502666455301
819 => 0.092267375925
820 => 0.090819621363752
821 => 0.090356976058892
822 => 0.091217121702498
823 => 0.093988690184661
824 => 0.093464741217711
825 => 0.09345105879274
826 => 0.095692734662291
827 => 0.094088178523623
828 => 0.091508554926137
829 => 0.090857165946717
830 => 0.088545173897969
831 => 0.090142075041072
901 => 0.090199544670304
902 => 0.089324938234161
903 => 0.091579524418199
904 => 0.091558748009601
905 => 0.093699142040477
906 => 0.097790771532226
907 => 0.096580675354657
908 => 0.095173465158233
909 => 0.095326467924291
910 => 0.097004530624938
911 => 0.095989935609681
912 => 0.096354791051175
913 => 0.097003978372529
914 => 0.097395649201917
915 => 0.095270112519414
916 => 0.09477454824255
917 => 0.093760797651513
918 => 0.093496329044863
919 => 0.094322007748663
920 => 0.09410447058187
921 => 0.090194714570501
922 => 0.089786123313636
923 => 0.08979865422415
924 => 0.088771232081307
925 => 0.087204166703903
926 => 0.091322320951108
927 => 0.090991575531525
928 => 0.090626458185969
929 => 0.090671182977469
930 => 0.092458734158983
1001 => 0.091421864200206
1002 => 0.094178552925258
1003 => 0.093611860597036
1004 => 0.09303063474892
1005 => 0.092950291632138
1006 => 0.092726569268473
1007 => 0.09195934204004
1008 => 0.091032869058498
1009 => 0.090421131346368
1010 => 0.083408714024106
1011 => 0.084710177889763
1012 => 0.086207393435037
1013 => 0.086724226241551
1014 => 0.085840147962268
1015 => 0.091994250839026
1016 => 0.093118664737021
1017 => 0.089712741696291
1018 => 0.089075632558292
1019 => 0.092036019608047
1020 => 0.090250544324446
1021 => 0.091054543735325
1022 => 0.08931673677317
1023 => 0.092847826355676
1024 => 0.092820925369251
1025 => 0.09144725176838
1026 => 0.092608271289325
1027 => 0.092406515576274
1028 => 0.0908556414641
1029 => 0.092896991831276
1030 => 0.09289800431559
1031 => 0.091575873340992
1101 => 0.090031913814348
1102 => 0.08975589031768
1103 => 0.089547943691481
1104 => 0.09100340161264
1105 => 0.092308360633653
1106 => 0.094736565844981
1107 => 0.095347074327842
1108 => 0.097729929580298
1109 => 0.096311055296577
1110 => 0.096940023889053
1111 => 0.097622858269225
1112 => 0.097950234181482
1113 => 0.097416792700419
1114 => 0.10111834772983
1115 => 0.10143087238703
1116 => 0.10153565920126
1117 => 0.10028751567191
1118 => 0.10139615925761
1119 => 0.10087746163828
1120 => 0.10222696874543
1121 => 0.1024385886912
1122 => 0.10225935412573
1123 => 0.10232652563671
1124 => 0.099167901418156
1125 => 0.099004110089354
1126 => 0.096770803699034
1127 => 0.097680892560857
1128 => 0.095979525055374
1129 => 0.09651904621739
1130 => 0.09675686200486
1201 => 0.096632640533413
1202 => 0.097732347619618
1203 => 0.096797371941029
1204 => 0.094329817400998
1205 => 0.091861590577382
1206 => 0.091830604000186
1207 => 0.09118076344535
1208 => 0.090711047748438
1209 => 0.090801531655723
1210 => 0.091120408746996
1211 => 0.090692514032206
1212 => 0.090783827064419
1213 => 0.092300231814708
1214 => 0.092604335972874
1215 => 0.09157087122226
1216 => 0.087421361120292
1217 => 0.086403060933011
1218 => 0.087134994913858
1219 => 0.086785177613599
1220 => 0.070042411639574
1221 => 0.073975876156213
1222 => 0.07163874510826
1223 => 0.072715802621386
1224 => 0.070330197018577
1225 => 0.07146873305254
1226 => 0.071258487019745
1227 => 0.077583381562824
1228 => 0.077484627034142
1229 => 0.077531895601049
1230 => 0.075275643744991
1231 => 0.078869914215604
]
'min_raw' => 0.045886594032965
'max_raw' => 0.1024385886912
'avg_raw' => 0.074162591362082
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.045886'
'max' => '$0.102438'
'avg' => '$0.074162'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0070756196966558
'max_diff' => 0.015497215128638
'year' => 2035
]
10 => [
'items' => [
101 => 0.080640581095214
102 => 0.080312877780571
103 => 0.080395353644776
104 => 0.078978145042126
105 => 0.077545617278187
106 => 0.075956723523536
107 => 0.078908691726474
108 => 0.078580483254085
109 => 0.079333275404064
110 => 0.081247837794715
111 => 0.081529764379453
112 => 0.081908676568359
113 => 0.081772863521443
114 => 0.085008481296399
115 => 0.084616626634558
116 => 0.085560883625314
117 => 0.083618475354379
118 => 0.081420456020731
119 => 0.081838227637392
120 => 0.0817979928712
121 => 0.081285758118267
122 => 0.080823335486881
123 => 0.080053532092393
124 => 0.082489303942019
125 => 0.082390416053166
126 => 0.083991296029102
127 => 0.083708324943237
128 => 0.081818574777059
129 => 0.081886067573941
130 => 0.082339989068906
131 => 0.083911016545763
201 => 0.084377404464602
202 => 0.084161354998251
203 => 0.08467272805984
204 => 0.08507689647736
205 => 0.084723485390394
206 => 0.089727041103814
207 => 0.087649215924915
208 => 0.088661933459696
209 => 0.088903460624463
210 => 0.088284793870681
211 => 0.088418960536781
212 => 0.088622186477694
213 => 0.089856134595198
214 => 0.093094371501294
215 => 0.09452856458358
216 => 0.098843405233477
217 => 0.094409474813028
218 => 0.094146383731306
219 => 0.094923616828057
220 => 0.097456885061815
221 => 0.099509861027491
222 => 0.10019095159433
223 => 0.10028096895632
224 => 0.10155874013775
225 => 0.10229113474993
226 => 0.10140358510761
227 => 0.10065147971606
228 => 0.0979575315583
229 => 0.098269363392938
301 => 0.10041757550484
302 => 0.10345205164197
303 => 0.10605594785106
304 => 0.10514415415358
305 => 0.1121004964393
306 => 0.11279018936282
307 => 0.11269489610123
308 => 0.11426611922108
309 => 0.11114756130221
310 => 0.10981431737268
311 => 0.10081409343847
312 => 0.10334278924962
313 => 0.10701839711622
314 => 0.10653191663226
315 => 0.10386259195025
316 => 0.10605392292893
317 => 0.10532940037812
318 => 0.10475793938183
319 => 0.10737591298899
320 => 0.10449734346749
321 => 0.10698968118326
322 => 0.10379323228285
323 => 0.10514831915039
324 => 0.1043791063062
325 => 0.10487688128757
326 => 0.10196689891769
327 => 0.10353705476865
328 => 0.1019015752721
329 => 0.10190079984187
330 => 0.10186469654134
331 => 0.1037888309162
401 => 0.10385157686909
402 => 0.10242963865886
403 => 0.10222471514791
404 => 0.10298242477263
405 => 0.10209534524655
406 => 0.10251040417359
407 => 0.10210791695862
408 => 0.10201730860886
409 => 0.10129532586217
410 => 0.10098427584357
411 => 0.10110624657063
412 => 0.10068989759894
413 => 0.10043903228349
414 => 0.1018147931159
415 => 0.10107977960118
416 => 0.1017021417532
417 => 0.10099288153261
418 => 0.098534276598093
419 => 0.097120306900977
420 => 0.092476230092471
421 => 0.093793284514404
422 => 0.094666492958737
423 => 0.094377897573094
424 => 0.094997912133043
425 => 0.095035975991475
426 => 0.094834402937735
427 => 0.094601007164611
428 => 0.094487403009851
429 => 0.095334115305299
430 => 0.095825660291832
501 => 0.094754131108147
502 => 0.094503086812697
503 => 0.095586461978149
504 => 0.096247320203229
505 => 0.10112672603306
506 => 0.10076524388892
507 => 0.10167249313344
508 => 0.10157035079138
509 => 0.10252129253578
510 => 0.1040756803899
511 => 0.10091517526879
512 => 0.10146372967577
513 => 0.10132923680315
514 => 0.10279759472049
515 => 0.10280217877363
516 => 0.10192182485227
517 => 0.10239907899515
518 => 0.10213268882538
519 => 0.10261409186695
520 => 0.1007604160745
521 => 0.10301799309777
522 => 0.10429789379492
523 => 0.10431566521734
524 => 0.10492232798986
525 => 0.10553873250229
526 => 0.10672186728637
527 => 0.10550573551531
528 => 0.10331803284721
529 => 0.10347597791361
530 => 0.10219332863975
531 => 0.10221489020577
601 => 0.10209979287653
602 => 0.10244520862571
603 => 0.10083621540703
604 => 0.10121384289944
605 => 0.10068516219868
606 => 0.10146258042717
607 => 0.10062620692515
608 => 0.10132917194661
609 => 0.10163254834622
610 => 0.10275201379198
611 => 0.1004608609686
612 => 0.095789045264315
613 => 0.096771117565646
614 => 0.095318555491863
615 => 0.095452995642085
616 => 0.095724586141526
617 => 0.094844272473957
618 => 0.095012208579857
619 => 0.095006208720406
620 => 0.094954505173044
621 => 0.094725501588783
622 => 0.094393401084625
623 => 0.095716387278045
624 => 0.095941188412384
625 => 0.096440893487053
626 => 0.097927676836078
627 => 0.097779112118745
628 => 0.098021427336606
629 => 0.097492454576556
630 => 0.095477533171293
701 => 0.095586953097679
702 => 0.094222484862321
703 => 0.096406000966532
704 => 0.095888915532051
705 => 0.095555547188601
706 => 0.095464584547454
707 => 0.096955053344825
708 => 0.097401024969234
709 => 0.097123125380945
710 => 0.096553145217737
711 => 0.097647675630604
712 => 0.097940525794556
713 => 0.098006084146367
714 => 0.099945382182578
715 => 0.098114469363677
716 => 0.098555188276895
717 => 0.10199355142906
718 => 0.098875430511727
719 => 0.10052716870403
720 => 0.10044632471475
721 => 0.10129129808216
722 => 0.1003770122357
723 => 0.10038834590452
724 => 0.10113862501133
725 => 0.10008499331937
726 => 0.099824099295187
727 => 0.099463676069334
728 => 0.10025064699716
729 => 0.10072240047676
730 => 0.10452438705759
731 => 0.10698064378046
801 => 0.1068740111982
802 => 0.10784843339219
803 => 0.10740944726912
804 => 0.10599184527902
805 => 0.10841151901797
806 => 0.10764583300352
807 => 0.10770895522824
808 => 0.10770660581588
809 => 0.10821572007806
810 => 0.10785496596367
811 => 0.10714388257356
812 => 0.10761593291279
813 => 0.10901775365922
814 => 0.11336904826926
815 => 0.11580409038002
816 => 0.11322245567666
817 => 0.11500323272557
818 => 0.11393540105197
819 => 0.11374134427163
820 => 0.11485980385674
821 => 0.11598022115729
822 => 0.11590885541894
823 => 0.11509548999281
824 => 0.11463604050197
825 => 0.11811514597348
826 => 0.12067849161987
827 => 0.12050368863168
828 => 0.1212752121726
829 => 0.12354042915108
830 => 0.12374753220297
831 => 0.12372144197864
901 => 0.12320811545556
902 => 0.12543851574647
903 => 0.1272991549093
904 => 0.1230892951969
905 => 0.12469235466427
906 => 0.12541201970653
907 => 0.12646870150355
908 => 0.12825150081557
909 => 0.13018809373258
910 => 0.1304619492047
911 => 0.13026763564204
912 => 0.12899040055486
913 => 0.13110944363301
914 => 0.13235072937051
915 => 0.13308988662088
916 => 0.13496426642377
917 => 0.12541646411283
918 => 0.11865805508058
919 => 0.11760263191758
920 => 0.119748876422
921 => 0.12031482398183
922 => 0.1200866912301
923 => 0.11247948741664
924 => 0.11756258156385
925 => 0.12303156346756
926 => 0.12324164933561
927 => 0.12597953602762
928 => 0.12687110416431
929 => 0.12907546181439
930 => 0.1289375786432
1001 => 0.129474304652
1002 => 0.12935092063737
1003 => 0.13343402900189
1004 => 0.1379383038754
1005 => 0.13778233515925
1006 => 0.13713479235402
1007 => 0.13809650384224
1008 => 0.14274539821914
1009 => 0.14231740252193
1010 => 0.14273316388518
1011 => 0.14821447235575
1012 => 0.15534095307453
1013 => 0.15202998729369
1014 => 0.15921383033337
1015 => 0.1637356787277
1016 => 0.17155574795783
1017 => 0.17057663677556
1018 => 0.17362093234053
1019 => 0.16882382341264
1020 => 0.15780869165852
1021 => 0.1560655048942
1022 => 0.15955540894089
1023 => 0.16813499749981
1024 => 0.159285207165
1025 => 0.16107550822374
1026 => 0.16055990139838
1027 => 0.16053242690185
1028 => 0.16158101668775
1029 => 0.16005998251254
1030 => 0.15386301565389
1031 => 0.15670304904625
1101 => 0.15560637576385
1102 => 0.15682321653308
1103 => 0.1633900043013
1104 => 0.1604866708963
1105 => 0.15742824500179
1106 => 0.16126418979255
1107 => 0.16614866568482
1108 => 0.16584300396173
1109 => 0.16524989246224
1110 => 0.16859323093054
1111 => 0.1741154465739
1112 => 0.17560807927224
1113 => 0.17670991021463
1114 => 0.176861834086
1115 => 0.17842674438125
1116 => 0.17001182731549
1117 => 0.18336651680925
1118 => 0.18567250276896
1119 => 0.18523907298186
1120 => 0.18780207932537
1121 => 0.18704797784191
1122 => 0.18595540310729
1123 => 0.19001831332882
1124 => 0.18536051461978
1125 => 0.17874935575284
1126 => 0.17512234324454
1127 => 0.17989868589822
1128 => 0.18281543168544
1129 => 0.18474321511091
1130 => 0.18532656121066
1201 => 0.17066505337311
1202 => 0.16276331381318
1203 => 0.16782823827747
1204 => 0.17400779568632
1205 => 0.16997749956207
1206 => 0.17013547953979
1207 => 0.16438933640981
1208 => 0.17451620185096
1209 => 0.17304080273653
1210 => 0.18069517595214
1211 => 0.17886839835405
1212 => 0.18511024257032
1213 => 0.1834665558012
1214 => 0.19028940768254
1215 => 0.19301122801935
1216 => 0.19758158798236
1217 => 0.20094356337586
1218 => 0.20291777963127
1219 => 0.20279925509239
1220 => 0.21062208344694
1221 => 0.20600923487507
1222 => 0.20021440990386
1223 => 0.20010959980257
1224 => 0.20311082176847
1225 => 0.20940055966394
1226 => 0.21103139718827
1227 => 0.21194281288143
1228 => 0.21054694802075
1229 => 0.20554003150182
1230 => 0.20337807033459
1231 => 0.20522012388711
]
'min_raw' => 0.075956723523536
'max_raw' => 0.21194281288143
'avg_raw' => 0.14394976820248
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.075956'
'max' => '$0.211942'
'avg' => '$0.143949'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.030070129490571
'max_diff' => 0.10950422419023
'year' => 2036
]
11 => [
'items' => [
101 => 0.20296745068184
102 => 0.20685619662261
103 => 0.2121962753906
104 => 0.21109357024197
105 => 0.21477974822705
106 => 0.21859455464437
107 => 0.22404989915481
108 => 0.22547612822066
109 => 0.22783363063188
110 => 0.23026027501223
111 => 0.23103964778729
112 => 0.23252771224007
113 => 0.23251986940587
114 => 0.23700425179259
115 => 0.2419506644349
116 => 0.24381782069766
117 => 0.24811124356828
118 => 0.24075890736183
119 => 0.24633573883197
120 => 0.25136618041518
121 => 0.24536868057891
122 => 0.25363483686497
123 => 0.25395579298204
124 => 0.25880184929322
125 => 0.25388944282979
126 => 0.25097247155276
127 => 0.25939365833205
128 => 0.26346840534965
129 => 0.26224105838656
130 => 0.25290088739583
131 => 0.24746450726045
201 => 0.23323645184675
202 => 0.25009019809053
203 => 0.25829916625536
204 => 0.25287962815143
205 => 0.25561292793535
206 => 0.27052492528099
207 => 0.27620244838988
208 => 0.27502156327211
209 => 0.27522111341799
210 => 0.27828460183322
211 => 0.29186979656021
212 => 0.28372923297745
213 => 0.28995238881537
214 => 0.29325312823255
215 => 0.29631903895543
216 => 0.28879013121107
217 => 0.27899513285728
218 => 0.27589264571257
219 => 0.25234076189441
220 => 0.25111478406103
221 => 0.25042660555222
222 => 0.24608773739897
223 => 0.24267857554653
224 => 0.2399674834674
225 => 0.23285276825114
226 => 0.23525377578197
227 => 0.22391440468372
228 => 0.23116893246974
301 => 0.21307102239825
302 => 0.22814349968809
303 => 0.21994023556068
304 => 0.22544850679615
305 => 0.22542928895672
306 => 0.21528681521323
307 => 0.20943684802601
308 => 0.21316467480183
309 => 0.21716120102078
310 => 0.21780962395387
311 => 0.22299122451674
312 => 0.22443729785571
313 => 0.22005562812793
314 => 0.21269598343847
315 => 0.21440546104421
316 => 0.20940220551689
317 => 0.20063419265271
318 => 0.20693153256658
319 => 0.20908172128767
320 => 0.21003136712045
321 => 0.20140903348161
322 => 0.19869970905231
323 => 0.19725728745959
324 => 0.21158294844032
325 => 0.2123677404872
326 => 0.20835263341697
327 => 0.22650129810247
328 => 0.22239369633658
329 => 0.22698289389595
330 => 0.21425034386938
331 => 0.21473674442705
401 => 0.2087089511963
402 => 0.21208411262823
403 => 0.20969865731468
404 => 0.21181143293853
405 => 0.21307782193616
406 => 0.21910462606535
407 => 0.22821231611026
408 => 0.21820442250466
409 => 0.21384383994502
410 => 0.21654912084017
411 => 0.22375364036171
412 => 0.2346688562294
413 => 0.22820682874654
414 => 0.23107456681109
415 => 0.23170104000141
416 => 0.2269361801728
417 => 0.23484454340781
418 => 0.23908269951288
419 => 0.24343017071384
420 => 0.24720495814426
421 => 0.24169369511323
422 => 0.24759153656496
423 => 0.24283891746403
424 => 0.23857532681378
425 => 0.23858179292086
426 => 0.23590718022483
427 => 0.23072478110339
428 => 0.22976906719313
429 => 0.23474081164767
430 => 0.23872767987426
501 => 0.23905605743721
502 => 0.24126339254014
503 => 0.24256967071669
504 => 0.25537297264596
505 => 0.26052256659638
506 => 0.26681939260213
507 => 0.26927236120104
508 => 0.27665491724584
509 => 0.27069290365778
510 => 0.26940298451518
511 => 0.25149531836617
512 => 0.25442769769487
513 => 0.25912271993262
514 => 0.25157273755359
515 => 0.25636146360669
516 => 0.25730685956866
517 => 0.25131619204138
518 => 0.25451606640917
519 => 0.24601814878496
520 => 0.22839754749234
521 => 0.23486416017416
522 => 0.23962576374628
523 => 0.23283036834738
524 => 0.24501085158179
525 => 0.23789526473246
526 => 0.23563996530963
527 => 0.22684123818886
528 => 0.2309938986958
529 => 0.2366104314918
530 => 0.23314006721589
531 => 0.24034159416622
601 => 0.25054087690497
602 => 0.25780949316239
603 => 0.25836748726387
604 => 0.25369425396982
605 => 0.26118314014771
606 => 0.26123768850772
607 => 0.25279019430605
608 => 0.24761615114337
609 => 0.24644059765053
610 => 0.24937736075649
611 => 0.25294313332349
612 => 0.25856536282482
613 => 0.26196275836308
614 => 0.2708213640875
615 => 0.27321824880039
616 => 0.27585169840983
617 => 0.27937079921382
618 => 0.28359638200793
619 => 0.27435104741697
620 => 0.27471838179573
621 => 0.266109254235
622 => 0.25690916676258
623 => 0.26389088634706
624 => 0.27301855596452
625 => 0.27092465846909
626 => 0.27068905222641
627 => 0.27108527657488
628 => 0.26950654624363
629 => 0.26236600746586
630 => 0.2587800735938
701 => 0.26340684315805
702 => 0.26586576526763
703 => 0.26967933901905
704 => 0.26920923555941
705 => 0.27903259199513
706 => 0.28284965126318
707 => 0.28187308416124
708 => 0.28205279601039
709 => 0.28896339948867
710 => 0.29664941183052
711 => 0.30384837664731
712 => 0.31117147286169
713 => 0.30234319454995
714 => 0.29786073927575
715 => 0.30248548893716
716 => 0.30003153166875
717 => 0.31413269802401
718 => 0.31510903218758
719 => 0.32920917886802
720 => 0.34259189708198
721 => 0.33418645154809
722 => 0.34211240809697
723 => 0.3506849763173
724 => 0.36722285126338
725 => 0.36165347679099
726 => 0.35738742322837
727 => 0.35335602322511
728 => 0.36174472666516
729 => 0.37253665962798
730 => 0.37486113862432
731 => 0.37862768261771
801 => 0.37466762215975
802 => 0.37943707879502
803 => 0.39627535652295
804 => 0.39172550524528
805 => 0.38526398500588
806 => 0.39855618810671
807 => 0.40336658473676
808 => 0.43712846751078
809 => 0.47975423914678
810 => 0.46210688979357
811 => 0.45115261057363
812 => 0.45372712602929
813 => 0.46929261485733
814 => 0.47429175584497
815 => 0.46070236733332
816 => 0.46550236909287
817 => 0.49195085071379
818 => 0.50613961253453
819 => 0.48686936817702
820 => 0.43370352826361
821 => 0.38468219580535
822 => 0.39768486063265
823 => 0.3962107619609
824 => 0.4246263559473
825 => 0.39161699279704
826 => 0.39217278581526
827 => 0.42117598419266
828 => 0.41343842810627
829 => 0.40090457819763
830 => 0.38477370678047
831 => 0.35495429904085
901 => 0.32854241803017
902 => 0.38034219898505
903 => 0.37810849823848
904 => 0.37487376854156
905 => 0.38207230944776
906 => 0.4170263807468
907 => 0.41622057626807
908 => 0.41109445929945
909 => 0.41498257384063
910 => 0.4002229729198
911 => 0.40402685814696
912 => 0.38467443057583
913 => 0.39342253606675
914 => 0.40087768618496
915 => 0.40237441794657
916 => 0.40574663103051
917 => 0.37693143944519
918 => 0.38986861449742
919 => 0.39746799279124
920 => 0.36313372519204
921 => 0.39678931471389
922 => 0.37642983106771
923 => 0.36951951652901
924 => 0.37882334469065
925 => 0.37519763380779
926 => 0.37208046049959
927 => 0.37034102423378
928 => 0.37717272880965
929 => 0.37685402162553
930 => 0.3656760269627
1001 => 0.35109478859838
1002 => 0.35598873080628
1003 => 0.3542107157212
1004 => 0.34776695968435
1005 => 0.35210927323111
1006 => 0.33298792196575
1007 => 0.30009063095505
1008 => 0.32182358906799
1009 => 0.32098689382155
1010 => 0.32056499413719
1011 => 0.33689671150423
1012 => 0.33532679371621
1013 => 0.33247737755829
1014 => 0.34771462792207
1015 => 0.34215282656935
1016 => 0.35929298781322
1017 => 0.37058260656455
1018 => 0.36771919406831
1019 => 0.3783371350714
1020 => 0.35610147735037
1021 => 0.36348727090555
1022 => 0.36500947272101
1023 => 0.34752660261779
1024 => 0.33558365168183
1025 => 0.33478719301401
1026 => 0.31407976193107
1027 => 0.32514150447103
1028 => 0.33487538014019
1029 => 0.33021360907393
1030 => 0.3287378316208
1031 => 0.33627725857176
1101 => 0.33686313661668
1102 => 0.32350505510405
1103 => 0.32628262324595
1104 => 0.33786554412996
1105 => 0.32599076335839
1106 => 0.30292000405365
1107 => 0.29719813676787
1108 => 0.29643473419701
1109 => 0.28091657631097
1110 => 0.29758049930008
1111 => 0.29030625034996
1112 => 0.31328551562451
1113 => 0.30015988253996
1114 => 0.29959406273155
1115 => 0.29873874310343
1116 => 0.28538162356388
1117 => 0.28830598385381
1118 => 0.29802700285019
1119 => 0.30149557194322
1120 => 0.30113377176966
1121 => 0.29797936455383
1122 => 0.29942343602406
1123 => 0.29477157867059
1124 => 0.29312891101904
1125 => 0.28794420005941
1126 => 0.28032410726173
1127 => 0.28138372790199
1128 => 0.26628633016403
1129 => 0.25806046659685
1130 => 0.25578365597659
1201 => 0.25273900966072
1202 => 0.25612755687947
1203 => 0.26624356113313
1204 => 0.25404151377319
1205 => 0.23312195944867
1206 => 0.23437926030876
1207 => 0.2372040420454
1208 => 0.23194007996696
1209 => 0.22695818163057
1210 => 0.23128953803988
1211 => 0.22242564709497
1212 => 0.23827520091836
1213 => 0.23784651490529
1214 => 0.24375424844082
1215 => 0.24744847545948
1216 => 0.23893447820167
1217 => 0.23679323091562
1218 => 0.23801298268402
1219 => 0.21785320298311
1220 => 0.2421067643433
1221 => 0.24231651014909
1222 => 0.24052053921951
1223 => 0.25343481189911
1224 => 0.28068795531573
1225 => 0.27043422650725
1226 => 0.26646367279201
1227 => 0.25891564727688
1228 => 0.26897294311838
1229 => 0.26820069971601
1230 => 0.26470832218587
1231 => 0.26259612135876
]
'min_raw' => 0.19725728745959
'max_raw' => 0.50613961253453
'avg_raw' => 0.35169844999706
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.197257'
'max' => '$0.506139'
'avg' => '$0.351698'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12130056393606
'max_diff' => 0.29419679965311
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.006191680852503
]
1 => [
'year' => 2028
'avg' => 0.01062672180069
]
2 => [
'year' => 2029
'avg' => 0.029030288679226
]
3 => [
'year' => 2030
'avg' => 0.02239682448282
]
4 => [
'year' => 2031
'avg' => 0.021996457250031
]
5 => [
'year' => 2032
'avg' => 0.038566712099168
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.006191680852503
'min' => '$0.006191'
'max_raw' => 0.038566712099168
'max' => '$0.038566'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.038566712099168
]
1 => [
'year' => 2033
'avg' => 0.099197549287299
]
2 => [
'year' => 2034
'avg' => 0.062876173949435
]
3 => [
'year' => 2035
'avg' => 0.074162591362082
]
4 => [
'year' => 2036
'avg' => 0.14394976820248
]
5 => [
'year' => 2037
'avg' => 0.35169844999706
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.038566712099168
'min' => '$0.038566'
'max_raw' => 0.35169844999706
'max' => '$0.351698'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.35169844999706
]
]
]
]
'prediction_2025_max_price' => '$0.010586'
'last_price' => 0.01026509
'sma_50day_nextmonth' => '$0.009584'
'sma_200day_nextmonth' => '$0.0157032'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.010074'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009827'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0097073'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0098028'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010346'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.01351'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017154'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010066'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.009937'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.009838'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009938'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01092'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013049'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.015934'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.015451'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01945'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.020452'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.017137'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.01012'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.010313'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.011517'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.014182'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017456'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0182035'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0166015'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.42
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.009664'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010115'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 127.43
'cci_20_action' => 'SELL'
'adx_14' => 20.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000264'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 56.12
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002552'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767700752
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de PolySwarm para 2026
La previsión del precio de PolySwarm para 2026 sugiere que el precio medio podría oscilar entre $0.003546 en el extremo inferior y $0.010586 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, PolySwarm podría potencialmente ganar 3.13% para 2026 si NCT alcanza el objetivo de precio previsto.
Predicción de precio de PolySwarm 2027-2032
La predicción del precio de NCT para 2027-2032 está actualmente dentro de un rango de precios de $0.006191 en el extremo inferior y $0.038566 en el extremo superior. Considerando la volatilidad de precios en el mercado, si PolySwarm alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de PolySwarm | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003414 | $0.006191 | $0.008969 |
| 2028 | $0.006161 | $0.010626 | $0.015091 |
| 2029 | $0.013535 | $0.02903 | $0.044525 |
| 2030 | $0.011511 | $0.022396 | $0.033282 |
| 2031 | $0.0136098 | $0.021996 | $0.030383 |
| 2032 | $0.020774 | $0.038566 | $0.056359 |
Predicción de precio de PolySwarm 2032-2037
La predicción de precio de PolySwarm para 2032-2037 se estima actualmente entre $0.038566 en el extremo inferior y $0.351698 en el extremo superior. Comparado con el precio actual, PolySwarm podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de PolySwarm | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.020774 | $0.038566 | $0.056359 |
| 2033 | $0.048275 | $0.099197 | $0.150119 |
| 2034 | $0.03881 | $0.062876 | $0.086941 |
| 2035 | $0.045886 | $0.074162 | $0.102438 |
| 2036 | $0.075956 | $0.143949 | $0.211942 |
| 2037 | $0.197257 | $0.351698 | $0.506139 |
PolySwarm Histograma de precios potenciales
Pronóstico de precio de PolySwarm basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para PolySwarm es Neutral, con 17 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de NCT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de PolySwarm
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de PolySwarm aumentar durante el próximo mes, alcanzando $0.0157032 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para PolySwarm alcance $0.009584 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 53.09, lo que sugiere que el mercado de NCT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de NCT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.010074 | BUY |
| SMA 5 | $0.009827 | BUY |
| SMA 10 | $0.0097073 | BUY |
| SMA 21 | $0.0098028 | BUY |
| SMA 50 | $0.010346 | SELL |
| SMA 100 | $0.01351 | SELL |
| SMA 200 | $0.017154 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.010066 | BUY |
| EMA 5 | $0.009937 | BUY |
| EMA 10 | $0.009838 | BUY |
| EMA 21 | $0.009938 | BUY |
| EMA 50 | $0.01092 | SELL |
| EMA 100 | $0.013049 | SELL |
| EMA 200 | $0.015934 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.015451 | SELL |
| SMA 50 | $0.01945 | SELL |
| SMA 100 | $0.020452 | SELL |
| SMA 200 | $0.017137 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.014182 | SELL |
| EMA 50 | $0.017456 | SELL |
| EMA 100 | $0.0182035 | SELL |
| EMA 200 | $0.0166015 | SELL |
Osciladores de PolySwarm
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 53.09 | NEUTRAL |
| Stoch RSI (14) | 120.42 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 127.43 | SELL |
| Índice Direccional Medio (14) | 20.87 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000264 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 56.12 | NEUTRAL |
| VWMA (10) | 0.009664 | BUY |
| Promedio Móvil de Hull (9) | 0.010115 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002552 | SELL |
Predicción de precios de PolySwarm basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de PolySwarm
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de PolySwarm por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.014424 | $0.020268 | $0.02848 | $0.040019 | $0.056234 | $0.079018 |
| Amazon.com acción | $0.021418 | $0.044691 | $0.093251 | $0.194574 | $0.405991 | $0.847124 |
| Apple acción | $0.01456 | $0.020652 | $0.029294 | $0.041551 | $0.058937 | $0.083598 |
| Netflix acción | $0.016196 | $0.025555 | $0.040323 | $0.063623 | $0.100388 | $0.158396 |
| Google acción | $0.013293 | $0.017214 | $0.022292 | $0.028869 | $0.037385 | $0.048414 |
| Tesla acción | $0.02327 | $0.052751 | $0.119584 | $0.271088 | $0.614536 | $1.39 |
| Kodak acción | $0.007697 | $0.005772 | $0.004328 | $0.003246 | $0.002434 | $0.001825 |
| Nokia acción | $0.00680019 | $0.0045048 | $0.002984 | $0.001976 | $0.0013096 | $0.000867 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de PolySwarm
Podría preguntarse cosas como: "¿Debo invertir en PolySwarm ahora?", "¿Debería comprar NCT hoy?", "¿Será PolySwarm una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de PolySwarm regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como PolySwarm, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de PolySwarm a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de PolySwarm es de $0.01026 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de PolySwarm
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de PolySwarm
basado en el historial de precios del último mes
Predicción de precios de PolySwarm basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si PolySwarm ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.010531 | $0.0108056 | $0.011086 | $0.011374 |
| Si PolySwarm ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010798 | $0.01136 | $0.01195 | $0.012571 |
| Si PolySwarm ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.011599 | $0.0131067 | $0.01481 | $0.016734 |
| Si PolySwarm ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.012933 | $0.016295 | $0.02053 | $0.025867 |
| Si PolySwarm ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0156015 | $0.023712 | $0.036039 | $0.054774 |
| Si PolySwarm ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0236062 | $0.054286 | $0.12484 | $0.287089 |
| Si PolySwarm ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.036947 | $0.132985 | $0.478657 | $1.72 |
Cuadro de preguntas
¿Es NCT una buena inversión?
La decisión de adquirir PolySwarm depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de PolySwarm ha experimentado un aumento de 4.3296% durante las últimas 24 horas, y PolySwarm ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en PolySwarm dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede PolySwarm subir?
Parece que el valor medio de PolySwarm podría potencialmente aumentar hasta $0.010586 para el final de este año. Mirando las perspectivas de PolySwarm en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.033282. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de PolySwarm la próxima semana?
Basado en nuestro nuevo pronóstico experimental de PolySwarm, el precio de PolySwarm aumentará en un 0.86% durante la próxima semana y alcanzará $0.010352 para el 13 de enero de 2026.
¿Cuál será el precio de PolySwarm el próximo mes?
Basado en nuestro nuevo pronóstico experimental de PolySwarm, el precio de PolySwarm disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0090724 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de PolySwarm este año en 2026?
Según nuestra predicción más reciente sobre el valor de PolySwarm en 2026, se anticipa que NCT fluctúe dentro del rango de $0.003546 y $0.010586. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de PolySwarm no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará PolySwarm en 5 años?
El futuro de PolySwarm parece estar en una tendencia alcista, con un precio máximo de $0.033282 proyectada después de un período de cinco años. Basado en el pronóstico de PolySwarm para 2030, el valor de PolySwarm podría potencialmente alcanzar su punto más alto de aproximadamente $0.033282, mientras que su punto más bajo se anticipa que esté alrededor de $0.011511.
¿Cuánto será PolySwarm en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de PolySwarm, se espera que el valor de NCT en 2026 crezca en un 3.13% hasta $0.010586 si ocurre lo mejor. El precio estará entre $0.010586 y $0.003546 durante 2026.
¿Cuánto será PolySwarm en 2027?
Según nuestra última simulación experimental para la predicción de precios de PolySwarm, el valor de NCT podría disminuir en un -12.62% hasta $0.008969 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008969 y $0.003414 a lo largo del año.
¿Cuánto será PolySwarm en 2028?
Nuestro nuevo modelo experimental de predicción de precios de PolySwarm sugiere que el valor de NCT en 2028 podría aumentar en un 47.02% , alcanzando $0.015091 en el mejor escenario. Se espera que el precio oscile entre $0.015091 y $0.006161 durante el año.
¿Cuánto será PolySwarm en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de PolySwarm podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.044525 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.044525 y $0.013535.
¿Cuánto será PolySwarm en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de PolySwarm, se espera que el valor de NCT en 2030 aumente en un 224.23% , alcanzando $0.033282 en el mejor escenario. Se pronostica que el precio oscile entre $0.033282 y $0.011511 durante el transcurso de 2030.
¿Cuánto será PolySwarm en 2031?
Nuestra simulación experimental indica que el precio de PolySwarm podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.030383 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.030383 y $0.0136098 durante el año.
¿Cuánto será PolySwarm en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de PolySwarm, NCT podría experimentar un 449.04% aumento en valor, alcanzando $0.056359 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.056359 y $0.020774 a lo largo del año.
¿Cuánto será PolySwarm en 2033?
Según nuestra predicción experimental de precios de PolySwarm, se anticipa que el valor de NCT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.150119. A lo largo del año, el precio de NCT podría oscilar entre $0.150119 y $0.048275.
¿Cuánto será PolySwarm en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de PolySwarm sugieren que NCT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.086941 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.086941 y $0.03881.
¿Cuánto será PolySwarm en 2035?
Basado en nuestra predicción experimental para el precio de PolySwarm, NCT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.102438 en 2035. El rango de precios esperado para el año está entre $0.102438 y $0.045886.
¿Cuánto será PolySwarm en 2036?
Nuestra reciente simulación de predicción de precios de PolySwarm sugiere que el valor de NCT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.211942 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.211942 y $0.075956.
¿Cuánto será PolySwarm en 2037?
Según la simulación experimental, el valor de PolySwarm podría aumentar en un 4830.69% en 2037, con un máximo de $0.506139 bajo condiciones favorables. Se espera que el precio caiga entre $0.506139 y $0.197257 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de FLUX Token
Predicción de precios de Smart Layer Network
Predicción de precios de Zephyr Protocol
Predicción de precios de Terra Virtua KolectPredicción de precios de Vega Protocol
Predicción de precios de sUSD
Predicción de precios de Mdex
Predicción de precios de OX Coin
Predicción de precios de Murasaki
Predicción de precios de Solend
Predicción de precios de Talken
Predicción de precios de Rich Quack
Predicción de precios de Hacken Token
Predicción de precios de Peapods Finance
Predicción de precios de Katana Inu
Predicción de precios de Sai
Predicción de precios de SX Network
Predicción de precios de Quickswap
Predicción de precios de Dero
Predicción de precios de THORSwap
Predicción de precios de Hydro Protocol
Predicción de precios de Mossland
Predicción de precios de ParaSwap
Predicción de precios de Cetus Protocol
Predicción de precios de GoGoPool
¿Cómo leer y predecir los movimientos de precio de PolySwarm?
Los traders de PolySwarm utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de PolySwarm
Las medias móviles son herramientas populares para la predicción de precios de PolySwarm. Una media móvil simple (SMA) calcula el precio de cierre promedio de NCT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de NCT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de NCT.
¿Cómo leer gráficos de PolySwarm y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de PolySwarm en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de NCT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de PolySwarm?
La acción del precio de PolySwarm está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de NCT. La capitalización de mercado de PolySwarm puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de NCT, grandes poseedores de PolySwarm, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de PolySwarm.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


