Predicción del precio de PolySwarm - Pronóstico de NCT
Predicción de precio de PolySwarm hasta $0.010659 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00357 | $0.010659 |
| 2027 | $0.003437 | $0.00903 |
| 2028 | $0.0062039 | $0.015195 |
| 2029 | $0.013628 | $0.04483 |
| 2030 | $0.01159 | $0.03351 |
| 2031 | $0.0137033 | $0.030591 |
| 2032 | $0.020917 | $0.056746 |
| 2033 | $0.0486067 | $0.15115 |
| 2034 | $0.039077 | $0.087538 |
| 2035 | $0.0462016 | $0.103142 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en PolySwarm hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.86, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de PolySwarm para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'PolySwarm'
'name_with_ticker' => 'PolySwarm <small>NCT</small>'
'name_lang' => 'PolySwarm'
'name_lang_with_ticker' => 'PolySwarm <small>NCT</small>'
'name_with_lang' => 'PolySwarm'
'name_with_lang_with_ticker' => 'PolySwarm <small>NCT</small>'
'image' => '/uploads/coins/polyswarm.jpg?1717233602'
'price_for_sd' => 0.01033
'ticker' => 'NCT'
'marketcap' => '$19.49M'
'low24h' => '$0.009917'
'high24h' => '$0.01037'
'volume24h' => '$316.63K'
'current_supply' => '1.89B'
'max_supply' => '1.89B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0179 USD 0.58x'
'price' => '$0.01033'
'change_24h_pct' => '4.2181%'
'ath_price' => '$0.1718'
'ath_days' => 1453
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 ene. 2022'
'ath_pct' => '-94.02%'
'fdv' => '$19.49M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.509615'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010424'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009134'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00357'
'current_year_max_price_prediction' => '$0.010659'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01159'
'grand_prediction_max_price' => '$0.03351'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010531433804485
107 => 0.0105707543554
108 => 0.01065934556437
109 => 0.0099023433833998
110 => 0.010242215138239
111 => 0.01044185795253
112 => 0.0095398644544947
113 => 0.010424028441204
114 => 0.0098891656596069
115 => 0.0097076251981634
116 => 0.00995204551336
117 => 0.0098567946788213
118 => 0.0097749036046017
119 => 0.0097292069781198
120 => 0.0099086822819144
121 => 0.009900309544473
122 => 0.0096066531128097
123 => 0.0092235902686723
124 => 0.009352158732774
125 => 0.0093054486044301
126 => 0.0091361650735852
127 => 0.0092502417340032
128 => 0.0087479058543989
129 => 0.0078836630826866
130 => 0.0084546083301518
131 => 0.0084326275591933
201 => 0.0084215438577274
202 => 0.0088505934314299
203 => 0.0088093502147762
204 => 0.008734493372695
205 => 0.0091347902689769
206 => 0.008988676517081
207 => 0.0094389646716946
208 => 0.009735553573135
209 => 0.0096603290340838
210 => 0.0099392723294271
211 => 0.0093551206905151
212 => 0.0095491524328658
213 => 0.0095891421060479
214 => 0.0091298506674132
215 => 0.0088160981150842
216 => 0.0087951743968848
217 => 0.0082511707089113
218 => 0.0085417730879824
219 => 0.0087974911556214
220 => 0.008675022045746
221 => 0.0086362519842201
222 => 0.0088343198203558
223 => 0.0088497113875599
224 => 0.0084987820241824
225 => 0.0085717513513162
226 => 0.0088760455756055
227 => 0.0085640839176027
228 => 0.0079579933747508
301 => 0.0078076745402662
302 => 0.0077876192368201
303 => 0.0073799426357607
304 => 0.0078177195635639
305 => 0.0076266182028856
306 => 0.0082303051115226
307 => 0.007885482386947
308 => 0.0078706177684789
309 => 0.0078481477174991
310 => 0.007497243626059
311 => 0.007574069320966
312 => 0.0078294496317206
313 => 0.0079205722036629
314 => 0.0079110673728641
315 => 0.0078281981288756
316 => 0.0078661352444144
317 => 0.0077439265770968
318 => 0.0077007721531136
319 => 0.0075645649204629
320 => 0.0073643779166748
321 => 0.0073922151473698
322 => 0.0069955923110867
323 => 0.0067794911395125
324 => 0.0067196771833884
325 => 0.006639691461462
326 => 0.0067287117835139
327 => 0.0069944687284245
328 => 0.0066739094693813
329 => 0.0061243331043691
330 => 0.0061573635803389
331 => 0.0062315732530067
401 => 0.0060932840189364
402 => 0.0059624048646245
403 => 0.0060761936707373
404 => 0.0058433309199444
405 => 0.0062597136039251
406 => 0.0062484516192224
407 => 0.0064036533348779
408 => 0.0065007041527372
409 => 0.006277033438147
410 => 0.0062207808582975
411 => 0.006252824884317
412 => 0.0057232085131651
413 => 0.0063603723783296
414 => 0.0063658825978943
415 => 0.0063187007526296
416 => 0.0066579708406024
417 => 0.007373936547219
418 => 0.007104561448736
419 => 0.0070002512686979
420 => 0.0068019575401953
421 => 0.0070661721599085
422 => 0.0070458845995047
423 => 0.0069541365575297
424 => 0.006898647055472
425 => 0.0070008881644144
426 => 0.0068859782506217
427 => 0.0068653372725913
428 => 0.0067402754033325
429 => 0.0066956340059597
430 => 0.00666258329257
501 => 0.006626197704624
502 => 0.0067064552449093
503 => 0.0065245810998642
504 => 0.0063052587102821
505 => 0.0062870244266895
506 => 0.0063373708868633
507 => 0.0063150963260895
508 => 0.0062869177846621
509 => 0.0062331172751081
510 => 0.0062171558131895
511 => 0.0062690228210247
512 => 0.0062104679932132
513 => 0.0062968688312956
514 => 0.0062733725841136
515 => 0.0061421244573559
516 => 0.0059785406971356
517 => 0.0059770844585411
518 => 0.0059418406057328
519 => 0.0058969522602326
520 => 0.0058844653494207
521 => 0.0060666106948693
522 => 0.0064436461087964
523 => 0.0063696250353497
524 => 0.0064231128468996
525 => 0.0066862199408926
526 => 0.0067698537741667
527 => 0.0067104924602847
528 => 0.0066292350325966
529 => 0.0066328099470265
530 => 0.0069104911757327
531 => 0.0069278098133564
601 => 0.0069715684234271
602 => 0.0070278106035498
603 => 0.0067200707467576
604 => 0.0066183154274461
605 => 0.0065700981119862
606 => 0.0064216074428189
607 => 0.0065817418988879
608 => 0.0064884384089776
609 => 0.0065010282374676
610 => 0.0064928290951473
611 => 0.0064973063812778
612 => 0.006259597216479
613 => 0.0063462059425058
614 => 0.0062022021374476
615 => 0.0060093972076604
616 => 0.0060087508579296
617 => 0.0060559395913485
618 => 0.0060278698862156
619 => 0.0059523350314412
620 => 0.0059630644010474
621 => 0.0058690638333235
622 => 0.0059744777719043
623 => 0.0059775006664736
624 => 0.005936910558184
625 => 0.0060993152748881
626 => 0.0061658526198315
627 => 0.0061391353410308
628 => 0.006163978064328
629 => 0.0063727009451365
630 => 0.006406731881926
701 => 0.0064218461760904
702 => 0.0064015950241704
703 => 0.0061677931354312
704 => 0.0061781632433992
705 => 0.0061020742718049
706 => 0.006037787108866
707 => 0.0060403582582418
708 => 0.0060734102167386
709 => 0.0062177500579658
710 => 0.0065215047445301
711 => 0.0065330320128434
712 => 0.0065470033983133
713 => 0.0064901747521515
714 => 0.0064730346886922
715 => 0.0064956468566208
716 => 0.0066097211462316
717 => 0.0069031511899783
718 => 0.0067994334149846
719 => 0.0067151092494513
720 => 0.0067890842762558
721 => 0.0067776964007146
722 => 0.0066815712707947
723 => 0.0066788733585525
724 => 0.0064943785011731
725 => 0.0064261749531446
726 => 0.0063691789634648
727 => 0.0063069408306525
728 => 0.0062700439792803
729 => 0.0063267343123071
730 => 0.0063397000622106
731 => 0.0062157456582701
801 => 0.0061988511310403
802 => 0.0063000749730398
803 => 0.006255530134181
804 => 0.0063013456056061
805 => 0.0063119751879745
806 => 0.0063102635803932
807 => 0.0062637536526825
808 => 0.0062933976936593
809 => 0.0062232806994352
810 => 0.0061470389994485
811 => 0.0060984015448828
812 => 0.006055958914952
813 => 0.0060795085528177
814 => 0.0059955583938204
815 => 0.0059687010483743
816 => 0.0062833549595884
817 => 0.0065157931869018
818 => 0.006512413443021
819 => 0.0064918401213463
820 => 0.0064612723384837
821 => 0.0066074849225203
822 => 0.0065565473818548
823 => 0.0065936086986629
824 => 0.0066030423592491
825 => 0.0066315952086068
826 => 0.0066418003980518
827 => 0.0066109532275891
828 => 0.0065074263558516
829 => 0.0062494472345214
830 => 0.0061293572571409
831 => 0.0060897255643485
901 => 0.0060911661011102
902 => 0.0060514296663832
903 => 0.0060631338272724
904 => 0.0060473594368695
905 => 0.0060174865576813
906 => 0.0060776639867074
907 => 0.0060845988748111
908 => 0.0060705527438097
909 => 0.0060738611161379
910 => 0.0059575651506272
911 => 0.0059664068803034
912 => 0.0059171750059136
913 => 0.0059079446229646
914 => 0.0057834907316167
915 => 0.0055630026232139
916 => 0.0056851744385676
917 => 0.0055376080655772
918 => 0.0054817224441304
919 => 0.0057462762840626
920 => 0.0057197224161147
921 => 0.0056742737368769
922 => 0.0056070456679494
923 => 0.0055821101232316
924 => 0.0054306096471603
925 => 0.0054216581908104
926 => 0.0054967459176083
927 => 0.0054620955153019
928 => 0.0054134332273303
929 => 0.0052371833531142
930 => 0.0050390201401674
1001 => 0.0050450014419567
1002 => 0.0051080334730374
1003 => 0.0052913076044322
1004 => 0.0052196992306216
1005 => 0.0051677465338106
1006 => 0.0051580173553902
1007 => 0.0052797983927358
1008 => 0.0054521440744959
1009 => 0.0055330048123605
1010 => 0.0054528742769138
1011 => 0.0053608246323271
1012 => 0.0053664272676762
1013 => 0.0054036990906283
1014 => 0.0054076158322253
1015 => 0.0053477009764557
1016 => 0.0053645666574016
1017 => 0.0053389461458146
1018 => 0.0051817131134973
1019 => 0.005178869266534
1020 => 0.0051402817446782
1021 => 0.005139113329852
1022 => 0.0050734663290668
1023 => 0.0050642818598607
1024 => 0.0049339357553135
1025 => 0.0050197299560508
1026 => 0.0049621837105939
1027 => 0.0048754479449034
1028 => 0.0048604946662057
1029 => 0.0048600451525914
1030 => 0.0049491033901933
1031 => 0.0050186892586922
1101 => 0.0049631847521714
1102 => 0.0049505474519462
1103 => 0.0050854807564773
1104 => 0.0050683092635313
1105 => 0.0050534388613844
1106 => 0.0054367124089983
1107 => 0.005133321488854
1108 => 0.0050010257307228
1109 => 0.0048372846077523
1110 => 0.0048905995430459
1111 => 0.0049018337832717
1112 => 0.0045080658990835
1113 => 0.004348314317509
1114 => 0.004293493594824
1115 => 0.0042619434938676
1116 => 0.0042763212710547
1117 => 0.004132526110646
1118 => 0.0042291588365931
1119 => 0.0041046443823815
1120 => 0.0040837691289279
1121 => 0.0043064163974391
1122 => 0.004337396464166
1123 => 0.0042052258747569
1124 => 0.0042901007896323
1125 => 0.0042593239656489
1126 => 0.0041067788253208
1127 => 0.0041009527230064
1128 => 0.0040244109338108
1129 => 0.0039046378551305
1130 => 0.0038498983442328
1201 => 0.0038213895316871
1202 => 0.0038331528233692
1203 => 0.003827204943132
1204 => 0.0037883910012837
1205 => 0.0038294297128448
1206 => 0.0037245927631726
1207 => 0.0036828458450844
1208 => 0.0036639897307051
1209 => 0.0035709409036813
1210 => 0.0037190229664773
1211 => 0.0037481969983368
1212 => 0.0037774285120514
1213 => 0.0040318688817347
1214 => 0.0040191577599064
1215 => 0.0041340601106673
1216 => 0.0041295952166086
1217 => 0.0040968232048769
1218 => 0.0039585634781152
1219 => 0.0040136713409597
1220 => 0.0038440579047875
1221 => 0.0039711438237603
1222 => 0.003913147117576
1223 => 0.0039515350790599
1224 => 0.0038825100630088
1225 => 0.0039207113568646
1226 => 0.003755115243576
1227 => 0.0036004839229872
1228 => 0.0036627120803618
1229 => 0.0037303612040809
1230 => 0.0038770417409801
1231 => 0.0037896800232911
]
'min_raw' => 0.0035709409036813
'max_raw' => 0.01065934556437
'avg_raw' => 0.0071151432340257
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00357'
'max' => '$0.010659'
'avg' => '$0.007115'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0067646390963187
'max_diff' => 0.00032376556437007
'year' => 2026
]
1 => [
'items' => [
101 => 0.0038210986004844
102 => 0.0037158516262933
103 => 0.0034986970562251
104 => 0.0034999261275088
105 => 0.0034665216278733
106 => 0.0034376552630514
107 => 0.0037997145674772
108 => 0.0037546867696613
109 => 0.003682940866934
110 => 0.0037789756088033
111 => 0.0038043687188298
112 => 0.0038050916249737
113 => 0.0038751560936261
114 => 0.0039125495131056
115 => 0.0039191402653612
116 => 0.0040293882206287
117 => 0.0040663418810287
118 => 0.0042185487783384
119 => 0.003909376942716
120 => 0.0039030097522176
121 => 0.003780327014564
122 => 0.0037025196828068
123 => 0.0037856545491365
124 => 0.0038593006916637
125 => 0.0037826154055002
126 => 0.0037926288849584
127 => 0.0036896851537019
128 => 0.0037264826936734
129 => 0.0037581776922607
130 => 0.0037406775769867
131 => 0.0037144790574063
201 => 0.003853262547826
202 => 0.0038454318393996
203 => 0.0039746702162971
204 => 0.0040754207730137
205 => 0.0042559837819661
206 => 0.0040675568691617
207 => 0.00406068984353
208 => 0.0041278161205858
209 => 0.0040663316043454
210 => 0.004105187696236
211 => 0.0042497234648497
212 => 0.004252777277884
213 => 0.0042016219749432
214 => 0.0041985091701102
215 => 0.0042083341056177
216 => 0.0042658790597613
217 => 0.0042457710846057
218 => 0.0042690405425274
219 => 0.0042981393559731
220 => 0.0044185043860257
221 => 0.0044475239872775
222 => 0.0043770214011738
223 => 0.004383386995315
224 => 0.0043570170927729
225 => 0.0043315440973312
226 => 0.0043888036710519
227 => 0.0044934466674662
228 => 0.0044927956888165
301 => 0.0045170708300155
302 => 0.0045321940418763
303 => 0.004467274145702
304 => 0.0044250136804633
305 => 0.0044412190319391
306 => 0.0044671317418555
307 => 0.0044328158893559
308 => 0.0042210025510795
309 => 0.0042852531872241
310 => 0.004274558739674
311 => 0.0042593285458735
312 => 0.0043239330573524
313 => 0.0043177017946165
314 => 0.0041310512834379
315 => 0.0041430000435775
316 => 0.0041317779271175
317 => 0.0041680388812286
318 => 0.0040643733938251
319 => 0.0040962601995527
320 => 0.0041162593051848
321 => 0.0041280389320425
322 => 0.0041705950216182
323 => 0.0041656015556871
324 => 0.0041702846207648
325 => 0.0042333840672145
326 => 0.0045525194142417
327 => 0.0045698892470479
328 => 0.0044843538375921
329 => 0.0045185235465583
330 => 0.0044529251774371
331 => 0.0044969618020991
401 => 0.0045270905422838
402 => 0.0043909445588125
403 => 0.0043828828772515
404 => 0.0043170137603262
405 => 0.0043524080927443
406 => 0.0042960931649245
407 => 0.0043099108783989
408 => 0.0042712753469178
409 => 0.0043408116113263
410 => 0.004418563959778
411 => 0.0044382072735302
412 => 0.0043865341720265
413 => 0.0043491194411144
414 => 0.0042834314988114
415 => 0.0043926720108126
416 => 0.004424617265566
417 => 0.0043925042159889
418 => 0.0043850629207179
419 => 0.0043709616796254
420 => 0.0043880545656765
421 => 0.004424443284848
422 => 0.0044072830368809
423 => 0.0044186176829878
424 => 0.0043754217002644
425 => 0.0044672956368889
426 => 0.0046132135589157
427 => 0.004613682708895
428 => 0.0045965223684277
429 => 0.0045895007268331
430 => 0.0046071082775291
501 => 0.0046166596514821
502 => 0.0046735992417603
503 => 0.0047346976907022
504 => 0.0050198174925721
505 => 0.0049397569931323
506 => 0.0051927322432042
507 => 0.0053928028212861
508 => 0.0054527952396268
509 => 0.0053976050376147
510 => 0.0052088023378477
511 => 0.0051995387766663
512 => 0.005481689720562
513 => 0.0054019691555795
514 => 0.0053924866480436
515 => 0.0052916087888107
516 => 0.0053512400975833
517 => 0.0053381978556162
518 => 0.0053176100386228
519 => 0.005431382421808
520 => 0.0056443541665998
521 => 0.0056111605229376
522 => 0.0055863830077526
523 => 0.0054778151488382
524 => 0.0055431972494139
525 => 0.0055199159357105
526 => 0.0056199472340669
527 => 0.0055606909088851
528 => 0.0054013651938925
529 => 0.0054267383391495
530 => 0.0054229032392875
531 => 0.0055018293226876
601 => 0.0054781376715167
602 => 0.005418277064159
603 => 0.0056436262523291
604 => 0.0056289933295074
605 => 0.0056497394685167
606 => 0.0056588725605043
607 => 0.0057960386402453
608 => 0.0058522311942902
609 => 0.0058649878878475
610 => 0.0059183664681021
611 => 0.005863659780144
612 => 0.0060825255371838
613 => 0.0062280584944442
614 => 0.0063971025133597
615 => 0.0066441212597441
616 => 0.0067370025934358
617 => 0.006720224411853
618 => 0.0069075112061756
619 => 0.0072440614124219
620 => 0.006788250830874
621 => 0.0072682204800385
622 => 0.0071162676306291
623 => 0.0067559901581944
624 => 0.006732792536362
625 => 0.0069767766236022
626 => 0.0075179098465029
627 => 0.0073823621116485
628 => 0.0075181315540384
629 => 0.007359749287672
630 => 0.0073518842731963
701 => 0.0075104392808769
702 => 0.0078809116987059
703 => 0.0077049141399462
704 => 0.0074525784830924
705 => 0.0076388992053356
706 => 0.0074774909525597
707 => 0.0071137929837302
708 => 0.0073822584608502
709 => 0.0072027432417567
710 => 0.0072551353262421
711 => 0.007632449615903
712 => 0.0075870501623213
713 => 0.0076458012591323
714 => 0.0075421071110447
715 => 0.0074452404256646
716 => 0.0072644315639882
717 => 0.0072109029738149
718 => 0.0072256963503819
719 => 0.0072108956429522
720 => 0.0071097347465634
721 => 0.0070878890606199
722 => 0.0070514786269659
723 => 0.0070627637428457
724 => 0.006994301475328
725 => 0.0071235039191601
726 => 0.0071474850312633
727 => 0.0072415077952946
728 => 0.0072512695505649
729 => 0.0075131216100618
730 => 0.007368897895936
731 => 0.007465655615048
801 => 0.0074570006939316
802 => 0.0067637984634789
803 => 0.0068593156146602
804 => 0.0070079103269651
805 => 0.0069409686104871
806 => 0.0068463286853365
807 => 0.0067699018715057
808 => 0.0066541074335089
809 => 0.0068170858813541
810 => 0.0070313852094448
811 => 0.007256704535173
812 => 0.0075274109415285
813 => 0.0074669924229999
814 => 0.0072516438672057
815 => 0.0072613042461064
816 => 0.0073210209072516
817 => 0.0072436824052378
818 => 0.007220873771167
819 => 0.0073178873511807
820 => 0.0073185554303885
821 => 0.0072295681371514
822 => 0.0071306750452211
823 => 0.007130260679555
824 => 0.00711266360904
825 => 0.0073628797674245
826 => 0.007500473354829
827 => 0.0075162482378817
828 => 0.0074994115795118
829 => 0.0075058913410953
830 => 0.0074258286642525
831 => 0.0076088282016659
901 => 0.007776766673975
902 => 0.007731755575914
903 => 0.007664277541216
904 => 0.0076105280363965
905 => 0.0077190939007624
906 => 0.0077142596337207
907 => 0.0077752998779257
908 => 0.0077725307398631
909 => 0.0077520052015766
910 => 0.0077317563089457
911 => 0.0078120408793964
912 => 0.0077889202124373
913 => 0.0077657636326964
914 => 0.0077193195669309
915 => 0.0077256320868227
916 => 0.0076581657031587
917 => 0.0076269526670241
918 => 0.0071575834941048
919 => 0.0070321527140206
920 => 0.0070716157908141
921 => 0.0070846080603528
922 => 0.0070300204241162
923 => 0.0071082850720663
924 => 0.007096087609586
925 => 0.0071435408008197
926 => 0.007113894107115
927 => 0.0071151108177658
928 => 0.00720229542261
929 => 0.0072276054843061
930 => 0.0072147325826502
1001 => 0.0072237483217127
1002 => 0.0074315122231031
1003 => 0.007401974840241
1004 => 0.0073862836942973
1005 => 0.0073906302489589
1006 => 0.0074437183802724
1007 => 0.0074585801585357
1008 => 0.0073956097597156
1009 => 0.0074253069638267
1010 => 0.0075517538897955
1011 => 0.0075960031576084
1012 => 0.0077372255796136
1013 => 0.0076772317847174
1014 => 0.00778735299172
1015 => 0.0081258280389601
1016 => 0.0083962253273872
1017 => 0.0081475568063091
1018 => 0.0086441069916185
1019 => 0.0090307425367755
1020 => 0.0090159028205772
1021 => 0.0089484839702378
1022 => 0.0085083096813143
1023 => 0.0081032547380181
1024 => 0.0084421003976268
1025 => 0.0084429641848974
1026 => 0.0084138570422296
1027 => 0.008233075078965
1028 => 0.0084075662217756
1029 => 0.0084214166950332
1030 => 0.0084136641131471
1031 => 0.0082750590057778
1101 => 0.0080634346253307
1102 => 0.0081047855227128
1103 => 0.0081725191361603
1104 => 0.0080442852751922
1105 => 0.0080033067866493
1106 => 0.0080794935933271
1107 => 0.0083249833585943
1108 => 0.0082785749404959
1109 => 0.0082773630291482
1110 => 0.0084759179220051
1111 => 0.0083337954695473
1112 => 0.0081053070899527
1113 => 0.0080476107607136
1114 => 0.0078428276608193
1115 => 0.0079842720773287
1116 => 0.0079893624100702
1117 => 0.0079118947486749
1118 => 0.0081115931637263
1119 => 0.0081097529076754
1120 => 0.0082993368315802
1121 => 0.008661750089616
1122 => 0.0085545666559415
1123 => 0.0084299239841025
1124 => 0.0084434760984978
1125 => 0.0085921093439459
1126 => 0.008502242290781
1127 => 0.0085345591096744
1128 => 0.00859206042857
1129 => 0.0086267524019371
1130 => 0.0084384844574094
1201 => 0.0083945901936432
1202 => 0.0083047979347707
1203 => 0.0082813728104828
1204 => 0.0083545067317575
1205 => 0.0083352385273612
1206 => 0.007988934587314
1207 => 0.0079527438987622
1208 => 0.0079538538155117
1209 => 0.0078628506083746
1210 => 0.0077240488742183
1211 => 0.0080888115441602
1212 => 0.0080595159969135
1213 => 0.0080271759800485
1214 => 0.0080311374475849
1215 => 0.0081894685596528
1216 => 0.0080976285187406
1217 => 0.0083418003197923
1218 => 0.0082916059379723
1219 => 0.0082401242596593
1220 => 0.0082330079235462
1221 => 0.008213191869606
1222 => 0.0081452352474165
1223 => 0.0080631735425628
1224 => 0.0080089892969552
1225 => 0.0073878692728687
1226 => 0.0075031455364502
1227 => 0.0076357603699387
1228 => 0.0076815384790383
1229 => 0.0076032318556747
1230 => 0.0081483272701914
1231 => 0.0082479214550937
]
'min_raw' => 0.0034376552630514
'max_raw' => 0.0090307425367755
'avg_raw' => 0.0062341988999134
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003437'
'max' => '$0.00903'
'avg' => '$0.006234'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013328564062993
'max_diff' => -0.0016286030275946
'year' => 2027
]
2 => [
'items' => [
101 => 0.0079462441726567
102 => 0.007889812670515
103 => 0.008152026910077
104 => 0.007993879669234
105 => 0.0080650933621021
106 => 0.0079111683099286
107 => 0.0082239321324089
108 => 0.0082215493961043
109 => 0.0080998772050682
110 => 0.0082027137077567
111 => 0.0081848433347326
112 => 0.0080474757307181
113 => 0.0082282869304743
114 => 0.0082283766105736
115 => 0.0081112697720828
116 => 0.007974514622709
117 => 0.0079500660320134
118 => 0.0079316473031303
119 => 0.0080605634838855
120 => 0.0081761493284401
121 => 0.0083912259289954
122 => 0.008445301296469
123 => 0.0086563610557194
124 => 0.008530685245399
125 => 0.0085863957043398
126 => 0.0086468772882457
127 => 0.0086758743837068
128 => 0.0086286251727229
129 => 0.0089564878545016
130 => 0.0089841695102967
131 => 0.0089934509300394
201 => 0.0088828974784422
202 => 0.0089810948188181
203 => 0.0089351515352103
204 => 0.0090546831957459
205 => 0.0090734272863747
206 => 0.0090575517084525
207 => 0.0090635013786734
208 => 0.0087837284187157
209 => 0.008769220714822
210 => 0.008571407142811
211 => 0.0086520176355696
212 => 0.008501320183119
213 => 0.0085491078976468
214 => 0.0085701722668726
215 => 0.0085591694357815
216 => 0.0086565752318832
217 => 0.0085737604065073
218 => 0.0083551984663225
219 => 0.0081365769790834
220 => 0.0081338323643963
221 => 0.008076273185796
222 => 0.0080346684421573
223 => 0.0080426829917897
224 => 0.0080709273100483
225 => 0.0080330268310348
226 => 0.0080411148198354
227 => 0.0081754293239128
228 => 0.0082023651398184
229 => 0.0081108267128688
301 => 0.0077432867197341
302 => 0.0076530914835146
303 => 0.0077179220306599
304 => 0.0076869372047465
305 => 0.006203958265081
306 => 0.0065523621696179
307 => 0.0063453524002207
308 => 0.0064407520260205
309 => 0.0062294486563859
310 => 0.006330293699734
311 => 0.0063116713024989
312 => 0.0068718944709732
313 => 0.0068631473567592
314 => 0.0068673341374464
315 => 0.0066674881866457
316 => 0.0069858482126802
317 => 0.0071426838093611
318 => 0.0071136577144597
319 => 0.0071209629572037
320 => 0.0069954346834344
321 => 0.0068685495255278
322 => 0.0067278143579235
323 => 0.0069892829039398
324 => 0.0069602120650397
325 => 0.0070268901101188
326 => 0.0071964711523681
327 => 0.007221442605015
328 => 0.007255004490608
329 => 0.0072429749437206
330 => 0.0075295675547928
331 => 0.007494859298593
401 => 0.0075784962097877
402 => 0.0074064487379125
403 => 0.0072117606925899
404 => 0.007248764525174
405 => 0.0072452007585301
406 => 0.0071998299188526
407 => 0.0071588711534591
408 => 0.0070906863491394
409 => 0.0073064331594591
410 => 0.0072976742329601
411 => 0.0074394710718413
412 => 0.0074144071032281
413 => 0.0072470237866352
414 => 0.007253001914533
415 => 0.0072932076976358
416 => 0.0074323603720165
417 => 0.0074736703600092
418 => 0.0074545339276526
419 => 0.007499828443614
420 => 0.0075356273822238
421 => 0.0075043242391333
422 => 0.007947510732808
423 => 0.0077634688017797
424 => 0.0078531695584074
425 => 0.0078745626603156
426 => 0.0078197646796263
427 => 0.0078316483994692
428 => 0.0078496489969114
429 => 0.0079589450997022
430 => 0.0082457696985073
501 => 0.008372802360837
502 => 0.0087549863931372
503 => 0.0083622540666106
504 => 0.0083389509556424
505 => 0.0084077938407118
506 => 0.0086321763259603
507 => 0.0088140172550792
508 => 0.0088743443819227
509 => 0.0088823176076274
510 => 0.0089954953080575
511 => 0.0090603666553049
512 => 0.0089817525583563
513 => 0.0089151353424314
514 => 0.0086765207438215
515 => 0.0087041410333366
516 => 0.0088944174383722
517 => 0.0091631940677094
518 => 0.0093938323771228
519 => 0.0093130708797228
520 => 0.0099292240961526
521 => 0.0099903131708015
522 => 0.0099818726359313
523 => 0.010121042639255
524 => 0.0098448185241362
525 => 0.0097267273633329
526 => 0.0089295387406519
527 => 0.0091535162267239
528 => 0.0094790806564661
529 => 0.0094359909833858
530 => 0.0091995573921448
531 => 0.0093936530210423
601 => 0.0093294789361973
602 => 0.0092788621728948
603 => 0.0095107473781258
604 => 0.0092557800696551
605 => 0.0094765371625243
606 => 0.0091934139074799
607 => 0.0093134397914401
608 => 0.0092453072947055
609 => 0.0092893973700975
610 => 0.0090316476902639
611 => 0.0091707231609823
612 => 0.0090258616934443
613 => 0.0090257930102472
614 => 0.0090225951853223
615 => 0.0091930240594667
616 => 0.009198581738934
617 => 0.0090726345434375
618 => 0.0090544835849015
619 => 0.0091215971919116
620 => 0.0090430247351843
621 => 0.0090797882931579
622 => 0.0090441382659037
623 => 0.0090361126938644
624 => 0.0089721635704162
625 => 0.0089446125297169
626 => 0.008955416002678
627 => 0.0089185381798899
628 => 0.0088963179577309
629 => 0.0090181750238601
630 => 0.0089530717091273
701 => 0.0090081970071643
702 => 0.0089453747726839
703 => 0.0087276055376302
704 => 0.0086023641476829
705 => 0.0081910182498852
706 => 0.0083076754362276
707 => 0.0083850192714632
708 => 0.0083594571343792
709 => 0.0084143744960695
710 => 0.008417745976057
711 => 0.0083998917819552
712 => 0.0083792189124493
713 => 0.0083691565028552
714 => 0.008444153459992
715 => 0.0084876917178914
716 => 0.0083927817600561
717 => 0.0083705456848668
718 => 0.0084665048923606
719 => 0.008525039953498
720 => 0.008957229956927
721 => 0.0089252119255177
722 => 0.0090055709011338
723 => 0.0089965237136884
724 => 0.0090807527223228
725 => 0.0092184315536051
726 => 0.0089384919940016
727 => 0.0089870798219671
728 => 0.0089751672086067
729 => 0.00910522599762
730 => 0.0091056320269629
731 => 0.0090276552860311
801 => 0.0090699277423184
802 => 0.009046332416903
803 => 0.0090889723590281
804 => 0.0089247843051877
805 => 0.0091247476317601
806 => 0.0092381139525744
807 => 0.0092396880440489
808 => 0.0092934227803842
809 => 0.0093480203846068
810 => 0.0094528157314631
811 => 0.0093450976992608
812 => 0.0091513234454679
813 => 0.0091653133207047
814 => 0.0090517035466052
815 => 0.0090536133474331
816 => 0.00904341868094
817 => 0.0090740136425045
818 => 0.0089314981787472
819 => 0.0089649462732352
820 => 0.0089181187450802
821 => 0.0089869780280661
822 => 0.0089128968224205
823 => 0.0089751614639839
824 => 0.009002032819177
825 => 0.0091011886983388
826 => 0.0088982514184472
827 => 0.0084844485671022
828 => 0.0085714349433295
829 => 0.0084427752602569
830 => 0.0084546832037672
831 => 0.0084787391447932
901 => 0.0084007659693138
902 => 0.0084156407939781
903 => 0.0084151093605686
904 => 0.0084105297545487
905 => 0.0083902459201396
906 => 0.008360830347212
907 => 0.0084780129361196
908 => 0.0084979245414275
909 => 0.0085421855735012
910 => 0.0086738763824075
911 => 0.0086607173651147
912 => 0.0086821802682817
913 => 0.0086353268711771
914 => 0.0084568565984801
915 => 0.008466548392934
916 => 0.0083456915607942
917 => 0.0085390949925802
918 => 0.0084932945071327
919 => 0.0084637666362149
920 => 0.0084557096830612
921 => 0.0085877269280109
922 => 0.0086272285568167
923 => 0.0086026137926006
924 => 0.0085521281930662
925 => 0.0086490754689
926 => 0.0086750144700359
927 => 0.0086808212557967
928 => 0.008852593240778
929 => 0.0086904214016085
930 => 0.008729457775146
1001 => 0.0090340084180618
1002 => 0.0087578230100531
1003 => 0.0089041245803449
1004 => 0.0088969638797957
1005 => 0.0089718068125818
1006 => 0.0088908245748058
1007 => 0.0088918284466993
1008 => 0.0089582839007139
1009 => 0.0088649592008547
1010 => 0.0088418506927413
1011 => 0.008809926454289
1012 => 0.0088796318610248
1013 => 0.0089214170998585
1014 => 0.0092581754369819
1015 => 0.0094757366808096
1016 => 0.0094662917734381
1017 => 0.009552600546688
1018 => 0.0095137176538412
1019 => 0.0093881545360498
1020 => 0.0096024754673287
1021 => 0.0095346553571034
1022 => 0.009540246364589
1023 => 0.0095400382670111
1024 => 0.009585132711374
1025 => 0.0095531791646978
1026 => 0.0094901954442346
1027 => 0.0095320069772052
1028 => 0.0096561722822313
1029 => 0.010041585198889
1030 => 0.010257267373093
1031 => 0.010028600861183
1101 => 0.010186331959132
1102 => 0.0100917495057
1103 => 0.010074561060327
1104 => 0.010173627846075
1105 => 0.010272868035117
1106 => 0.010266546864102
1107 => 0.010194503582898
1108 => 0.010153808161376
1109 => 0.010461967527106
1110 => 0.010689014098418
1111 => 0.010673531044394
1112 => 0.010741868209497
1113 => 0.010942508239828
1114 => 0.010960852249699
1115 => 0.010958541326088
1116 => 0.010913073783624
1117 => 0.011110629949885
1118 => 0.01127543477945
1119 => 0.010902549361227
1120 => 0.011044539247058
1121 => 0.011108283081435
1122 => 0.011201877942246
1123 => 0.011359788160752
1124 => 0.011531320541668
1125 => 0.011555577101086
1126 => 0.011538365911395
1127 => 0.011425235695144
1128 => 0.011612928473148
1129 => 0.011722874500566
1130 => 0.011788344843823
1201 => 0.011954366741097
1202 => 0.011108676741656
1203 => 0.010510055326531
1204 => 0.010416571948361
1205 => 0.010606674073922
1206 => 0.010656802488396
1207 => 0.010636595787377
1208 => 0.0099627929603763
1209 => 0.010413024515924
1210 => 0.010897435813148
1211 => 0.010916044023902
1212 => 0.011158550447855
1213 => 0.011237520480169
1214 => 0.011432769937494
1215 => 0.011420557030778
1216 => 0.011468097166539
1217 => 0.011457168512608
1218 => 0.011818827017681
1219 => 0.012217790055583
1220 => 0.012203975234205
1221 => 0.012146619577191
1222 => 0.012231802508451
1223 => 0.012643575119043
1224 => 0.012605665695582
1225 => 0.012642491471358
1226 => 0.013127994585734
1227 => 0.013759217696436
1228 => 0.013465951187751
1229 => 0.014102255126433
1230 => 0.014502774726812
1231 => 0.015195431961166
]
'min_raw' => 0.006203958265081
'max_raw' => 0.015195431961166
'avg_raw' => 0.010699695113123
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0062039'
'max' => '$0.015195'
'avg' => '$0.010699'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0027663030020296
'max_diff' => 0.0061646894243903
'year' => 2028
]
3 => [
'items' => [
101 => 0.015108707864016
102 => 0.015378354242396
103 => 0.014953453630252
104 => 0.013977795938187
105 => 0.01382339437375
106 => 0.014132510215823
107 => 0.014892441350477
108 => 0.014108577280028
109 => 0.014267151960573
110 => 0.014221482441908
111 => 0.014219048907341
112 => 0.014311927023852
113 => 0.014177202471657
114 => 0.01362831040953
115 => 0.013879864406962
116 => 0.013782727327938
117 => 0.013890508159164
118 => 0.014472156853091
119 => 0.014214996100733
120 => 0.013944098138166
121 => 0.014283864300295
122 => 0.014716503381005
123 => 0.014689429604861
124 => 0.014636895163182
125 => 0.014933029060314
126 => 0.015422155499285
127 => 0.015554364410269
128 => 0.015651958325466
129 => 0.015665414877509
130 => 0.015804025726752
131 => 0.015058680255943
201 => 0.016241562659945
202 => 0.01644581377465
203 => 0.016407423030427
204 => 0.01663443954822
205 => 0.016567645529832
206 => 0.016470871476848
207 => 0.016830740945348
208 => 0.016418179639681
209 => 0.015832600806312
210 => 0.015511340676889
211 => 0.015934401930628
212 => 0.016192750675484
213 => 0.016363502761767
214 => 0.016415172239905
215 => 0.015116539303115
216 => 0.01441664817567
217 => 0.014865270364095
218 => 0.015412620396222
219 => 0.015055639698878
220 => 0.01506963266636
221 => 0.014560672004825
222 => 0.015457652121334
223 => 0.015326969663149
224 => 0.016004950487387
225 => 0.015843144922546
226 => 0.016396011965648
227 => 0.016250423544607
228 => 0.016854752940609
301 => 0.01709583629824
302 => 0.01750065277733
303 => 0.017798437427248
304 => 0.017973302269393
305 => 0.017962804040172
306 => 0.018655705662067
307 => 0.018247125783774
308 => 0.017733853161755
309 => 0.017724569679377
310 => 0.01799040084345
311 => 0.018547510036129
312 => 0.018691960344182
313 => 0.01877268836011
314 => 0.018649050593554
315 => 0.01820556641885
316 => 0.018014072200729
317 => 0.01817723082269
318 => 0.017977701848412
319 => 0.018322144835958
320 => 0.018795138626911
321 => 0.018697467279499
322 => 0.019023967950189
323 => 0.019361861795481
324 => 0.019845065170011
325 => 0.019971392425082
326 => 0.020180206573919
327 => 0.020395144924947
328 => 0.020464177330547
329 => 0.020595981612333
330 => 0.020595286938708
331 => 0.020992488013323
401 => 0.021430613098917
402 => 0.021595995176109
403 => 0.021976282143393
404 => 0.021325054038765
405 => 0.021819018036894
406 => 0.022264585927928
407 => 0.02173336151963
408 => 0.022465530607056
409 => 0.02249395907359
410 => 0.022923195166423
411 => 0.022488082154652
412 => 0.022229713437192
413 => 0.022975614243549
414 => 0.02333653214809
415 => 0.023227820737995
416 => 0.022400521539427
417 => 0.021918997921329
418 => 0.020658757733797
419 => 0.022151566674253
420 => 0.022878670363316
421 => 0.022398638516528
422 => 0.022640738658263
423 => 0.023961558530334
424 => 0.024464441220865
425 => 0.02435984513665
426 => 0.024377520153084
427 => 0.024648866524929
428 => 0.025852165770862
429 => 0.02513112097044
430 => 0.025682332703329
501 => 0.025974693418912
502 => 0.026246254344985
503 => 0.025579386538262
504 => 0.02471180131995
505 => 0.02443700066256
506 => 0.022350908809758
507 => 0.022242318669382
508 => 0.022181363732971
509 => 0.021797051481146
510 => 0.021495087323197
511 => 0.021254954213585
512 => 0.020624773224148
513 => 0.020837440808926
514 => 0.019833063840757
515 => 0.020475628632057
516 => 0.01887261873933
517 => 0.02020765301169
518 => 0.019481054553804
519 => 0.019968945876471
520 => 0.019967243669609
521 => 0.019068881058493
522 => 0.018550724252752
523 => 0.018880913936335
524 => 0.019234903487626
525 => 0.019292337101359
526 => 0.01975129379468
527 => 0.019879378742545
528 => 0.0194912753708
529 => 0.018839399922333
530 => 0.018990815721316
531 => 0.018547655816418
601 => 0.017771035128984
602 => 0.018328817665195
603 => 0.018519269147025
604 => 0.018603383371182
605 => 0.01783966612058
606 => 0.017599689579332
607 => 0.01747192808237
608 => 0.018740813615631
609 => 0.01881032602949
610 => 0.018454690692121
611 => 0.020062196139753
612 => 0.019698368148559
613 => 0.020104853154744
614 => 0.018977076324624
615 => 0.019020158918287
616 => 0.018486251293482
617 => 0.018785203887653
618 => 0.018573913829785
619 => 0.018761051472351
620 => 0.018873221003707
621 => 0.019407041019524
622 => 0.020213748378783
623 => 0.01932730611049
624 => 0.018941070520107
625 => 0.019180688908109
626 => 0.0198188242519
627 => 0.020785631963291
628 => 0.020213262339329
629 => 0.020467270258977
630 => 0.020522759689394
701 => 0.02010071551896
702 => 0.020801193333852
703 => 0.021176585085525
704 => 0.021561659346363
705 => 0.021896008537513
706 => 0.02140785221862
707 => 0.021930249454295
708 => 0.021509289497866
709 => 0.02113164489891
710 => 0.021132217629881
711 => 0.020895315656448
712 => 0.020436288231353
713 => 0.020351636531421
714 => 0.020792005364798
715 => 0.021145139466082
716 => 0.021174225282062
717 => 0.021369738465218
718 => 0.021485441153064
719 => 0.022619484784131
720 => 0.023075606513848
721 => 0.023633343531002
722 => 0.023850613531519
723 => 0.024504518337471
724 => 0.023976437099113
725 => 0.023862183401408
726 => 0.022276024232801
727 => 0.022535757707802
728 => 0.022951616061832
729 => 0.022282881583889
730 => 0.022707039688685
731 => 0.022790777483469
801 => 0.022260158242223
802 => 0.022543584905676
803 => 0.021790887717693
804 => 0.020230155120597
805 => 0.020802930875392
806 => 0.021224686625155
807 => 0.020622789168134
808 => 0.021701667063196
809 => 0.021071408869461
810 => 0.020871647279776
811 => 0.020092306098265
812 => 0.020460125136345
813 => 0.02095760565201
814 => 0.020650220531646
815 => 0.021288090810508
816 => 0.022191485239167
817 => 0.022835297907097
818 => 0.022884721849487
819 => 0.022470793436106
820 => 0.023134116360204
821 => 0.02313894794354
822 => 0.022390716975404
823 => 0.021932429673588
824 => 0.021828305834371
825 => 0.022088427599417
826 => 0.02240426344331
827 => 0.022902248540717
828 => 0.023203170505509
829 => 0.023987815393008
830 => 0.024200117802033
831 => 0.024433373783483
901 => 0.024745075708181
902 => 0.025119353787514
903 => 0.024300454657596
904 => 0.024332991046647
905 => 0.023570443515297
906 => 0.022755552117673
907 => 0.023373953110823
908 => 0.024182430146931
909 => 0.02399696462156
910 => 0.023976095961239
911 => 0.024011191259415
912 => 0.023871356310023
913 => 0.023238888016449
914 => 0.022921266398877
915 => 0.023331079319462
916 => 0.023548876648078
917 => 0.023886661310838
918 => 0.023845022221384
919 => 0.024715119237229
920 => 0.025053212627219
921 => 0.024966713870228
922 => 0.024982631723223
923 => 0.025594733656354
924 => 0.02627551689436
925 => 0.026913160234013
926 => 0.027561798426526
927 => 0.026779839768672
928 => 0.026382809386719
929 => 0.026792443395802
930 => 0.026575085824566
1001 => 0.02782408690133
1002 => 0.027910565025967
1003 => 0.029159475785737
1004 => 0.030344840814286
1005 => 0.029600334277874
1006 => 0.030302370408399
1007 => 0.031061679721407
1008 => 0.032526510579696
1009 => 0.032033207079996
1010 => 0.031655344330276
1011 => 0.031298265857611
1012 => 0.032041289474616
1013 => 0.032997177487801
1014 => 0.03320306661046
1015 => 0.033536685644865
1016 => 0.033185926023183
1017 => 0.033608377352594
1018 => 0.035099816179937
1019 => 0.034696816243494
1020 => 0.034124491548273
1021 => 0.035301839263152
1022 => 0.035727916824344
1023 => 0.038718352287337
1024 => 0.042493900588093
1025 => 0.040930798799993
1026 => 0.03996053107914
1027 => 0.040188567008599
1028 => 0.041567269437659
1029 => 0.042010064900046
1030 => 0.04080639419253
1031 => 0.041231551035242
1101 => 0.043574207039083
1102 => 0.044830966823741
1103 => 0.043124118230818
1104 => 0.038414990657541
1105 => 0.034072959971408
1106 => 0.035224662033561
1107 => 0.035094094761189
1108 => 0.037610986385027
1109 => 0.034687204828291
1110 => 0.034736433811251
1111 => 0.037305372088436
1112 => 0.036620023398835
1113 => 0.035509846294509
1114 => 0.034081065492866
1115 => 0.0314398320348
1116 => 0.029100417904748
1117 => 0.033688547748678
1118 => 0.033490699246835
1119 => 0.033204185296661
1120 => 0.033841791088726
1121 => 0.036937823827431
1122 => 0.036866450251923
1123 => 0.036412407979665
1124 => 0.036756795041428
1125 => 0.035449473577495
1126 => 0.035786400085907
1127 => 0.034072272171564
1128 => 0.034847129577152
1129 => 0.035507464353049
1130 => 0.035640036335733
1201 => 0.035938727782015
1202 => 0.03338644207667
1203 => 0.034532343427198
1204 => 0.035205453114198
1205 => 0.032164319060395
1206 => 0.035145339671945
1207 => 0.033342012460863
1208 => 0.032729936120355
1209 => 0.033554016277922
1210 => 0.033232871439074
1211 => 0.03295676996489
1212 => 0.03280270059827
1213 => 0.033407814115579
1214 => 0.03337958484673
1215 => 0.03238950168494
1216 => 0.031097978561337
1217 => 0.031531456114419
1218 => 0.031373969655511
1219 => 0.030803218412268
1220 => 0.031187835837446
1221 => 0.029494175347389
1222 => 0.026580320503057
1223 => 0.02850530226701
1224 => 0.028431192563075
1225 => 0.028393823089744
1226 => 0.029840393682766
1227 => 0.029701339298309
1228 => 0.029448954228895
1229 => 0.030798583162546
1230 => 0.030305950446692
1231 => 0.031824128398087
]
'min_raw' => 0.01362831040953
'max_raw' => 0.044830966823741
'avg_raw' => 0.029229638616635
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.013628'
'max' => '$0.04483'
'avg' => '$0.029229'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0074243521444492
'max_diff' => 0.029635534862575
'year' => 2029
]
4 => [
'items' => [
101 => 0.032824098586469
102 => 0.032570473801049
103 => 0.033510950596497
104 => 0.031541442561741
105 => 0.032195634127939
106 => 0.032330462103063
107 => 0.030781928951002
108 => 0.029724090315321
109 => 0.029653544538564
110 => 0.027819398123437
111 => 0.028799184333685
112 => 0.029661355652396
113 => 0.02924844249793
114 => 0.029117726528656
115 => 0.029785526066843
116 => 0.029837419810276
117 => 0.028654236960543
118 => 0.028900258141531
119 => 0.029926207363866
120 => 0.028874406853442
121 => 0.026830930272327
122 => 0.026324119826936
123 => 0.026256501971151
124 => 0.024881991847608
125 => 0.026357987324306
126 => 0.025713675744508
127 => 0.027749048305051
128 => 0.026586454414391
129 => 0.026536337315411
130 => 0.026460577969724
131 => 0.025277480326092
201 => 0.02553650352027
202 => 0.026397536068063
203 => 0.026704762181341
204 => 0.026672715980697
205 => 0.026393316538844
206 => 0.026521224172568
207 => 0.02610918911837
208 => 0.025963690964965
209 => 0.025504458770398
210 => 0.024829514310516
211 => 0.024923369477337
212 => 0.023586127893487
213 => 0.022857527705823
214 => 0.022655860776673
215 => 0.022386183330774
216 => 0.022686321561772
217 => 0.023582339656095
218 => 0.022501551733498
219 => 0.020648616648663
220 => 0.02075998120451
221 => 0.021010184297063
222 => 0.020543932489349
223 => 0.020102664282896
224 => 0.020486311187186
225 => 0.019701198164929
226 => 0.021105061454881
227 => 0.021067090887169
228 => 0.021590364307339
301 => 0.021917577915624
302 => 0.021163456485192
303 => 0.0209737969848
304 => 0.021081835655767
305 => 0.019296197083794
306 => 0.021444439540557
307 => 0.021463017630531
308 => 0.021303940745089
309 => 0.022447813533771
310 => 0.024861741900758
311 => 0.023953524949054
312 => 0.023601835894351
313 => 0.022933274744278
314 => 0.023824092781517
315 => 0.023755691855183
316 => 0.023446356926021
317 => 0.02325927019568
318 => 0.023603983232726
319 => 0.02321655643562
320 => 0.023146963937083
321 => 0.022725309113336
322 => 0.022574797525331
323 => 0.022463364737611
324 => 0.02234068818749
325 => 0.022611282087964
326 => 0.021998080709898
327 => 0.021258619960821
328 => 0.021197141800612
329 => 0.021366888406165
330 => 0.021291788169356
331 => 0.021196782249571
401 => 0.021015390075378
402 => 0.020961574892126
403 => 0.021136448130281
404 => 0.020939026440147
405 => 0.021230332898056
406 => 0.021151113660226
407 => 0.020708601437411
408 => 0.020157067368775
409 => 0.020152157558682
410 => 0.020033330448291
411 => 0.019881986257433
412 => 0.019839885765823
413 => 0.020454001514985
414 => 0.021725202736812
415 => 0.0214756355197
416 => 0.02165597341074
417 => 0.022543057347688
418 => 0.0228250346557
419 => 0.022624893841472
420 => 0.022350928750809
421 => 0.022362981824402
422 => 0.023299203474069
423 => 0.023357594469966
424 => 0.023505129678948
425 => 0.023694754115936
426 => 0.02265718770305
427 => 0.022314112539662
428 => 0.022151544494163
429 => 0.021650897835778
430 => 0.022190802334646
501 => 0.021876223104171
502 => 0.021918670589919
503 => 0.02189102660914
504 => 0.021906122091923
505 => 0.02110466904648
506 => 0.021396676413108
507 => 0.02091115753033
508 => 0.020261102248342
509 => 0.020258923035098
510 => 0.020418023144432
511 => 0.020323384173812
512 => 0.020068713137265
513 => 0.020104887955993
514 => 0.019787958479001
515 => 0.020143368932693
516 => 0.020153560832785
517 => 0.020016708448776
518 => 0.020564267289879
519 => 0.020788602593845
520 => 0.020698523423027
521 => 0.020782282399087
522 => 0.021486006164299
523 => 0.021600743843649
524 => 0.021651702741671
525 => 0.021583424569082
526 => 0.020795145177671
527 => 0.020830108720703
528 => 0.020573569440611
529 => 0.020356820782376
530 => 0.020365489592008
531 => 0.020476926577694
601 => 0.020963578429878
602 => 0.021987708563104
603 => 0.022026573553031
604 => 0.022073679054594
605 => 0.02188207730641
606 => 0.021824288385776
607 => 0.021900526888678
608 => 0.022285136320514
609 => 0.023274456199637
610 => 0.022924764479902
611 => 0.022640459668481
612 => 0.022889871636124
613 => 0.022851476618661
614 => 0.022527384031893
615 => 0.022518287832407
616 => 0.021896250539732
617 => 0.021666297515735
618 => 0.021474131557196
619 => 0.021264291347092
620 => 0.021139891036635
621 => 0.021331026452427
622 => 0.021374741383467
623 => 0.020956820456361
624 => 0.020899859378268
625 => 0.021241142628792
626 => 0.021090956594558
627 => 0.021245426655202
628 => 0.021281265034291
629 => 0.02127549422983
630 => 0.021118682761334
701 => 0.021218629715168
702 => 0.020982225373729
703 => 0.020725171159198
704 => 0.020561186585371
705 => 0.02041808829531
706 => 0.020497487543557
707 => 0.020214443721285
708 => 0.020123892305993
709 => 0.021184769936086
710 => 0.021968451647792
711 => 0.021957056605332
712 => 0.021887692214922
713 => 0.021784630800827
714 => 0.022277596736143
715 => 0.022105857261443
716 => 0.0222308120786
717 => 0.022262618323904
718 => 0.02235888624901
719 => 0.022393293757727
720 => 0.022289290368832
721 => 0.021940242292753
722 => 0.021070447673661
723 => 0.020665555930508
724 => 0.020531934911262
725 => 0.02053679178153
726 => 0.020402817617538
727 => 0.020442279013134
728 => 0.020389094554558
729 => 0.020288376056718
730 => 0.020491268460133
731 => 0.020514649919553
801 => 0.020467292408212
802 => 0.0204784468165
803 => 0.020086346849256
804 => 0.020116157358169
805 => 0.019950168656404
806 => 0.019919047775847
807 => 0.019499442792074
808 => 0.018756051740606
809 => 0.019167962545835
810 => 0.018670432216542
811 => 0.018482009942025
812 => 0.019373971683916
813 => 0.019284443464197
814 => 0.019131210069022
815 => 0.018904545940919
816 => 0.018820474010958
817 => 0.018309679578459
818 => 0.018279499118404
819 => 0.018532662631761
820 => 0.018415836381171
821 => 0.018251768079783
822 => 0.01765752932349
823 => 0.016989408215726
824 => 0.01700957459231
825 => 0.017222091485854
826 => 0.017840013015643
827 => 0.017598580383803
828 => 0.017423418239284
829 => 0.01739061563497
830 => 0.017801208904861
831 => 0.018382284403706
901 => 0.018654912026933
902 => 0.01838474633214
903 => 0.018074394528715
904 => 0.018093284204957
905 => 0.018218948758276
906 => 0.018232154326028
907 => 0.01803014720668
908 => 0.018087011027513
909 => 0.01800062968393
910 => 0.017470507537813
911 => 0.017460919309225
912 => 0.017330818785193
913 => 0.017326879393031
914 => 0.017105545946556
915 => 0.017074579867389
916 => 0.016635108875433
917 => 0.016924370013179
918 => 0.016730348828871
919 => 0.016437913139147
920 => 0.016387497116013
921 => 0.016385981549479
922 => 0.016686247615401
923 => 0.016920861229375
924 => 0.016733723910439
925 => 0.016691116370422
926 => 0.017146053427391
927 => 0.017088158540049
928 => 0.017038021940992
929 => 0.018330255466077
930 => 0.017307351796733
1001 => 0.016861307411598
1002 => 0.016309242783463
1003 => 0.016488997810136
1004 => 0.016526874835406
1005 => 0.01519925892187
1006 => 0.014660645311093
1007 => 0.014475813417099
1008 => 0.014369440048967
1009 => 0.014417915728578
1010 => 0.013933100305802
1011 => 0.014258904288014
1012 => 0.013839095112319
1013 => 0.013768712737836
1014 => 0.014519383548357
1015 => 0.014623835006286
1016 => 0.014178212636238
1017 => 0.014464374337517
1018 => 0.014360608126688
1019 => 0.013846291535711
1020 => 0.013826648424992
1021 => 0.013568582438742
1022 => 0.013164759141682
1023 => 0.0129802010589
1024 => 0.01288408160698
1025 => 0.012923742366173
1026 => 0.012903688672686
1027 => 0.012772824757841
1028 => 0.012911189639101
1029 => 0.012557724543799
1030 => 0.012416971894788
1031 => 0.012353397188666
1101 => 0.012039676571894
1102 => 0.01253894558537
1103 => 0.01263730787065
1104 => 0.012735863960018
1105 => 0.013593727430865
1106 => 0.013550870996158
1107 => 0.013938272293975
1108 => 0.013923218591927
1109 => 0.013812725466305
1110 => 0.013346573144541
1111 => 0.01353237315163
1112 => 0.012960509609543
1113 => 0.013388988658216
1114 => 0.013193448714115
1115 => 0.01332287640642
1116 => 0.013090153745631
1117 => 0.013218952074994
1118 => 0.01266063321749
1119 => 0.012139282924111
1120 => 0.012349089501331
1121 => 0.012577173245061
1122 => 0.013071716916125
1123 => 0.012777170785536
1124 => 0.012883100712118
1125 => 0.012528253190524
1126 => 0.011796101396291
1127 => 0.011800245295935
1128 => 0.011687619693186
1129 => 0.011590294728804
1130 => 0.012811002951849
1201 => 0.012659188587772
1202 => 0.012417292267588
1203 => 0.012741080104732
1204 => 0.012826694748077
1205 => 0.012829132076613
1206 => 0.013065359324419
1207 => 0.013191433848919
1208 => 0.013213655030301
1209 => 0.013585363708751
1210 => 0.013709955554812
1211 => 0.014223131735838
1212 => 0.013180737306349
1213 => 0.01315926987904
1214 => 0.012745636463606
1215 => 0.012483303612252
1216 => 0.012763598618374
1217 => 0.013011901729714
1218 => 0.012753351933418
1219 => 0.01278711307853
1220 => 0.012440031101297
1221 => 0.012564096576433
1222 => 0.012670958477044
1223 => 0.012611955616579
1224 => 0.012523625478692
1225 => 0.012991543706195
1226 => 0.012965141926013
1227 => 0.013400878136858
1228 => 0.013740565673008
1229 => 0.014349346464197
1230 => 0.013714051972131
1231 => 0.013690899315773
]
'min_raw' => 0.011590294728804
'max_raw' => 0.033510950596497
'avg_raw' => 0.022550622662651
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01159'
'max' => '$0.03351'
'avg' => '$0.02255'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0020380156807265
'max_diff' => -0.011320016227243
'year' => 2030
]
5 => [
'items' => [
101 => 0.013917220245473
102 => 0.013709920906257
103 => 0.013840926932912
104 => 0.014328239367958
105 => 0.014338535511814
106 => 0.014166061836399
107 => 0.014155566797576
108 => 0.014188692253595
109 => 0.01438270908415
110 => 0.014314913642019
111 => 0.014393368244024
112 => 0.01449147692517
113 => 0.01489729602761
114 => 0.014995137639315
115 => 0.014757433247933
116 => 0.014778895293011
117 => 0.014689987325503
118 => 0.014604103342904
119 => 0.014797157993439
120 => 0.01514996916179
121 => 0.015147774341823
122 => 0.015229619675211
123 => 0.015280608639869
124 => 0.015061726677355
125 => 0.014919242568271
126 => 0.014973880042193
127 => 0.015061246552844
128 => 0.014945548260286
129 => 0.014231404801952
130 => 0.014448030307549
131 => 0.014411973230972
201 => 0.014360623569235
202 => 0.014578442190229
203 => 0.014557433052862
204 => 0.013928127822901
205 => 0.013968413901947
206 => 0.0139305777528
207 => 0.014052834091244
208 => 0.01370331866277
209 => 0.013810827254546
210 => 0.013878255635478
211 => 0.013917971469856
212 => 0.014061452297032
213 => 0.014044616478012
214 => 0.014060405758883
215 => 0.014273149948051
216 => 0.015349137051871
217 => 0.0154077006559
218 => 0.015119312051029
219 => 0.015234517610461
220 => 0.015013348129037
221 => 0.015161820683624
222 => 0.015263401834678
223 => 0.014804376145996
224 => 0.014777195623764
225 => 0.014555113297215
226 => 0.014674447760117
227 => 0.014484578049189
228 => 0.01453116543489
301 => 0.014400903043055
302 => 0.014635349413375
303 => 0.014897496884676
304 => 0.014963725688444
305 => 0.014789506219023
306 => 0.01466335984154
307 => 0.01444188835788
308 => 0.014810200371021
309 => 0.014917906027768
310 => 0.014809634639057
311 => 0.014784545792517
312 => 0.014737002473656
313 => 0.014794632332365
314 => 0.014917319439631
315 => 0.014859462465519
316 => 0.014897678016229
317 => 0.014752039744629
318 => 0.015061799136392
319 => 0.015553771598169
320 => 0.01555535337008
321 => 0.015497496084097
322 => 0.015473822129226
323 => 0.015533187215718
324 => 0.015565390339856
325 => 0.015757366143874
326 => 0.015963363830239
327 => 0.016924665148672
328 => 0.016654735585165
329 => 0.017507659302951
330 => 0.018182211225435
331 => 0.018384479852408
401 => 0.018198402233067
402 => 0.017561840749019
403 => 0.017530608005735
404 => 0.018481899612229
405 => 0.018213116161479
406 => 0.018181145225274
407 => 0.017841028479803
408 => 0.018042079600655
409 => 0.017998106771282
410 => 0.017928693508894
411 => 0.018312285042137
412 => 0.019030334148915
413 => 0.018918419461801
414 => 0.018834880339444
415 => 0.018468836223148
416 => 0.018689276540072
417 => 0.018610781965472
418 => 0.018948044471842
419 => 0.018748257634347
420 => 0.018211079862484
421 => 0.018296627193214
422 => 0.018283696886271
423 => 0.018549801686898
424 => 0.018469923630877
425 => 0.018268099413836
426 => 0.01902787993513
427 => 0.018978544014198
428 => 0.019048491070317
429 => 0.019079283927606
430 => 0.019541748942082
501 => 0.019731206061284
502 => 0.019774216144256
503 => 0.019954185754358
504 => 0.019769738336408
505 => 0.020507659516987
506 => 0.020998334043177
507 => 0.021568277755227
508 => 0.02240111870496
509 => 0.022714274606269
510 => 0.022657705795647
511 => 0.023289156298653
512 => 0.024423858816197
513 => 0.02288706161683
514 => 0.024505312799399
515 => 0.023992993158606
516 => 0.022778292506522
517 => 0.022700080104908
518 => 0.023522689489464
519 => 0.025347157931188
520 => 0.024890149279486
521 => 0.025347905433623
522 => 0.024813908564672
523 => 0.02478739111925
524 => 0.025321970397602
525 => 0.026571044019871
526 => 0.025977655962755
527 => 0.02512688867816
528 => 0.0257550820017
529 => 0.025210882808302
530 => 0.023984649713812
531 => 0.024889799813583
601 => 0.024284551719057
602 => 0.024461195289798
603 => 0.025733336760632
604 => 0.025580269333193
605 => 0.025778352757962
606 => 0.02542874069799
607 => 0.025102147905215
608 => 0.024492538204401
609 => 0.024312062825385
610 => 0.024361939727322
611 => 0.02431203810887
612 => 0.023970967083867
613 => 0.023897312828491
614 => 0.023774552509331
615 => 0.023812601065422
616 => 0.023581775750603
617 => 0.02401739081061
618 => 0.024098244804373
619 => 0.024415249117765
620 => 0.024448161557202
621 => 0.025331014057723
622 => 0.02484475373617
623 => 0.025170979141564
624 => 0.025141798470753
625 => 0.022804618752948
626 => 0.02312666149695
627 => 0.023627658944037
628 => 0.02340196027321
629 => 0.023082875158017
630 => 0.022825196819236
701 => 0.022434787787021
702 => 0.022984281002722
703 => 0.023706806149282
704 => 0.024466485987267
705 => 0.025379191536412
706 => 0.025175486282907
707 => 0.024449423591891
708 => 0.024481994233821
709 => 0.024683333126156
710 => 0.024422580967014
711 => 0.024345680064797
712 => 0.024672768123085
713 => 0.024675020598778
714 => 0.024374993726734
715 => 0.024041568762796
716 => 0.024040171700023
717 => 0.023980841948193
718 => 0.024824463195721
719 => 0.025288369582133
720 => 0.025341555701712
721 => 0.02528478973252
722 => 0.025306636701101
723 => 0.025036699796328
724 => 0.025653695513337
725 => 0.026219911797817
726 => 0.02606815373813
727 => 0.02584064683298
728 => 0.02565942662481
729 => 0.026025464016346
730 => 0.026009164947498
731 => 0.026214966392529
801 => 0.026205630050215
802 => 0.026136426764835
803 => 0.026068156209597
804 => 0.026338841244162
805 => 0.026260888301276
806 => 0.026182814275938
807 => 0.026026224865589
808 => 0.02604750796713
809 => 0.025820040344255
810 => 0.025714803413702
811 => 0.024132292476896
812 => 0.023709393844544
813 => 0.023842446363177
814 => 0.023886250707019
815 => 0.02370220468026
816 => 0.023966079405087
817 => 0.023924954808735
818 => 0.024084946556055
819 => 0.023984990658364
820 => 0.023989092883271
821 => 0.024283041865538
822 => 0.024368376505638
823 => 0.024324974618948
824 => 0.024355371812656
825 => 0.025055862311806
826 => 0.024956274963253
827 => 0.024903371169183
828 => 0.024918025881691
829 => 0.02509701622291
830 => 0.02514712374594
831 => 0.024934814649865
901 => 0.025034940846919
902 => 0.025461265486065
903 => 0.025610454981881
904 => 0.026086596237507
905 => 0.025884322969381
906 => 0.026255604307207
907 => 0.027396796560551
908 => 0.028308459897019
909 => 0.027470056616722
910 => 0.029144210234519
911 => 0.030447778969048
912 => 0.030397745829809
913 => 0.030170438468856
914 => 0.028686360121763
915 => 0.027320689100407
916 => 0.028463130899226
917 => 0.028466043218317
918 => 0.028367906454617
919 => 0.027758387443676
920 => 0.028346696514245
921 => 0.028393394351842
922 => 0.028367255980745
923 => 0.02789993918415
924 => 0.02718643281033
925 => 0.027325850247881
926 => 0.027554218854629
927 => 0.027121869439373
928 => 0.026983707604224
929 => 0.027240576742131
930 => 0.028068262625278
1001 => 0.027911793403527
1002 => 0.027907707359805
1003 => 0.028577149043732
1004 => 0.028097973272598
1005 => 0.027327608748245
1006 => 0.027133081545987
1007 => 0.026442641027193
1008 => 0.026919530752789
1009 => 0.026936693165022
1010 => 0.026675505536009
1011 => 0.027348802684853
1012 => 0.027342598133094
1013 => 0.027981793568866
1014 => 0.02920369517122
1015 => 0.028842318741278
1016 => 0.028422077270899
1017 => 0.028467769170761
1018 => 0.028968896535031
1019 => 0.028665903490969
1020 => 0.028774861902156
1021 => 0.028968731613426
1022 => 0.02908569802375
1023 => 0.028450939504326
1024 => 0.028302946929439
1025 => 0.028000206059555
1026 => 0.027921226617528
1027 => 0.028167802739153
1028 => 0.028102838642768
1029 => 0.02693525073073
1030 => 0.026813231297525
1031 => 0.026816973459337
1101 => 0.026510149792834
1102 => 0.026042170055298
1103 => 0.027271992863924
1104 => 0.027173220881032
1105 => 0.027064184256263
1106 => 0.027077540620643
1107 => 0.027611365019305
1108 => 0.027301719909303
1109 => 0.02812496218408
1110 => 0.027955728321313
1111 => 0.027782154248545
1112 => 0.027758161024493
1113 => 0.027691349815121
1114 => 0.027462229318829
1115 => 0.02718555255155
1116 => 0.027002866584461
1117 => 0.024908717058038
1118 => 0.025297379029034
1119 => 0.025744499199013
1120 => 0.025898843289968
1121 => 0.025634827042103
1122 => 0.027472654289493
1123 => 0.027808443037335
1124 => 0.026791317017163
1125 => 0.026601054267771
1126 => 0.027485127883668
1127 => 0.026951923419678
1128 => 0.027192025357164
1129 => 0.026673056297057
1130 => 0.027727561361022
1201 => 0.027719527799214
1202 => 0.027309301512255
1203 => 0.027656021960884
1204 => 0.027595770750564
1205 => 0.027132626282929
1206 => 0.027742243866742
1207 => 0.027742546229458
1208 => 0.027347712347348
1209 => 0.026886632813295
1210 => 0.026804202682818
1211 => 0.026742102652434
1212 => 0.027176752556491
1213 => 0.027566458301353
1214 => 0.028291604076294
1215 => 0.028473922953152
1216 => 0.029185525667187
1217 => 0.028761800898287
1218 => 0.028949632600186
1219 => 0.029153550483014
1220 => 0.029251316214873
1221 => 0.029092012201207
1222 => 0.030197424123465
1223 => 0.03029075475865
1224 => 0.03032204771332
1225 => 0.029949309032665
1226 => 0.030280388221661
1227 => 0.03012548723332
1228 => 0.03052849657225
1229 => 0.030591693582476
1230 => 0.030538167963113
1231 => 0.030558227691656
]
'min_raw' => 0.01370331866277
'max_raw' => 0.030591693582476
'avg_raw' => 0.022147506122623
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0137033'
'max' => '$0.030591'
'avg' => '$0.022147'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0021130239339662
'max_diff' => -0.0029192570140215
'year' => 2031
]
6 => [
'items' => [
101 => 0.029614953624034
102 => 0.029566039887461
103 => 0.028899097618524
104 => 0.029170881522904
105 => 0.028662794540607
106 => 0.028823914156569
107 => 0.028894934148081
108 => 0.028857837334864
109 => 0.029186247777076
110 => 0.028907031811375
111 => 0.028170134970535
112 => 0.027433037362643
113 => 0.027423783702603
114 => 0.027229718913298
115 => 0.02708944561537
116 => 0.027116467229014
117 => 0.027211694919978
118 => 0.027083910808857
119 => 0.027111180027784
120 => 0.02756403075582
121 => 0.027654846739744
122 => 0.027346218542275
123 => 0.026107031794598
124 => 0.025802932258454
125 => 0.026021512974479
126 => 0.02591704547062
127 => 0.020917078437255
128 => 0.022091746526184
129 => 0.021393798635701
130 => 0.021715445134674
131 => 0.021003021071221
201 => 0.021343027175645
202 => 0.021280240463193
203 => 0.023169071989237
204 => 0.02313958048296
205 => 0.023153696506359
206 => 0.022479901930435
207 => 0.023553274985398
208 => 0.024082057149519
209 => 0.023984193644022
210 => 0.024008823779969
211 => 0.023585596440852
212 => 0.023157794272131
213 => 0.022683295828737
214 => 0.023564855286782
215 => 0.023466840923769
216 => 0.023691650608066
217 => 0.02426340493178
218 => 0.02434759792783
219 => 0.024460754168323
220 => 0.024420195711116
221 => 0.025386462708603
222 => 0.025269441399572
223 => 0.025551429085008
224 => 0.02497135902161
225 => 0.024314954684119
226 => 0.024439715689202
227 => 0.024427700201148
228 => 0.024274729247484
229 => 0.02413663391031
301 => 0.023906744082035
302 => 0.02463414951599
303 => 0.024604618183769
304 => 0.025082696125996
305 => 0.024998191205906
306 => 0.024433846667684
307 => 0.024454002343271
308 => 0.02458955894808
309 => 0.025058721905084
310 => 0.025198001413773
311 => 0.025133481596019
312 => 0.025286195218945
313 => 0.02540689383987
314 => 0.025301353107425
315 => 0.026795587313142
316 => 0.026175077093283
317 => 0.02647750945696
318 => 0.026549637793662
319 => 0.026364882575895
320 => 0.026404949367041
321 => 0.026465639638079
322 => 0.026834139079448
323 => 0.027801188239773
324 => 0.028229487729955
325 => 0.029518047878092
326 => 0.028193923419512
327 => 0.028115355353912
328 => 0.02834746394738
329 => 0.02910398516228
330 => 0.029717074550533
331 => 0.029920471670591
401 => 0.029947353957728
402 => 0.030328940476542
403 => 0.03054765875296
404 => 0.030282605836437
405 => 0.03005800124188
406 => 0.029253495463128
407 => 0.029346619197615
408 => 0.029988149381867
409 => 0.030894348553062
410 => 0.031671961715902
411 => 0.03139966868883
412 => 0.033477072276467
413 => 0.033683038356749
414 => 0.033654580504135
415 => 0.034123801886878
416 => 0.033192492997405
417 => 0.032794340403895
418 => 0.030106563304594
419 => 0.030861719036494
420 => 0.031959382241553
421 => 0.031814102400337
422 => 0.031016950040202
423 => 0.031671357004354
424 => 0.031454989596808
425 => 0.031284331645384
426 => 0.032066148804528
427 => 0.03120650872277
428 => 0.031950806674147
429 => 0.03099623685273
430 => 0.031400912500442
501 => 0.031171199030842
502 => 0.031319851798297
503 => 0.03045083075723
504 => 0.030919733416696
505 => 0.030431322864987
506 => 0.030431091294793
507 => 0.030420309604794
508 => 0.030994922452936
509 => 0.031013660557284
510 => 0.030589020794315
511 => 0.030527823570352
512 => 0.030754101782109
513 => 0.030489189258499
514 => 0.030613140160957
515 => 0.030492943605064
516 => 0.030465884828605
517 => 0.030250275894115
518 => 0.030157385636845
519 => 0.030193810300207
520 => 0.03006947414595
521 => 0.029994557115575
522 => 0.030405406721818
523 => 0.030185906350828
524 => 0.030371765141885
525 => 0.030159955592226
526 => 0.02942573141208
527 => 0.029003471321798
528 => 0.02761658990812
529 => 0.028009907756618
530 => 0.028270677897089
531 => 0.028184493367219
601 => 0.028369651086365
602 => 0.028381018266532
603 => 0.028320821604578
604 => 0.028251121581705
605 => 0.028217195465224
606 => 0.028470052942331
607 => 0.028616845218583
608 => 0.02829684966934
609 => 0.028221879189365
610 => 0.028545412357089
611 => 0.028742767402501
612 => 0.030199926173604
613 => 0.03009197514528
614 => 0.030362911042054
615 => 0.030332407817928
616 => 0.03061639180122
617 => 0.031080585593318
618 => 0.030136749823358
619 => 0.030300567077638
620 => 0.030260402869981
621 => 0.030698905157554
622 => 0.030700274113832
623 => 0.030437370087618
624 => 0.030579894625359
625 => 0.030500341338348
626 => 0.030644104880249
627 => 0.030090533393482
628 => 0.030764723710015
629 => 0.031146946175624
630 => 0.03115225333493
701 => 0.031333423750123
702 => 0.031517503384643
703 => 0.031870828213147
704 => 0.031507649346944
705 => 0.030854325921395
706 => 0.030901493762497
707 => 0.03051845047714
708 => 0.030524889503969
709 => 0.030490517474119
710 => 0.030593670523105
711 => 0.030113169686936
712 => 0.030225942272773
713 => 0.030068059992205
714 => 0.030300223872394
715 => 0.030050453915375
716 => 0.030260383501584
717 => 0.030350982151716
718 => 0.030685293121152
719 => 0.030001075913369
720 => 0.028605910709267
721 => 0.028899191349913
722 => 0.028465406245701
723 => 0.028505554708632
724 => 0.028586660993334
725 => 0.028323768988291
726 => 0.028373920498174
727 => 0.028372128733331
728 => 0.028356688271897
729 => 0.028288299908014
730 => 0.028189123250159
731 => 0.028584212530088
801 => 0.028651345897568
802 => 0.028800575057411
803 => 0.029244579813997
804 => 0.029200213268461
805 => 0.029272576944981
806 => 0.029114607445443
807 => 0.028512882460648
808 => 0.028545559022309
809 => 0.028138081774795
810 => 0.028790154948058
811 => 0.028635735413684
812 => 0.028536180135315
813 => 0.028509015555238
814 => 0.028954120913736
815 => 0.02908730341317
816 => 0.029004313017068
817 => 0.028834097293445
818 => 0.029160961802562
819 => 0.029248416955895
820 => 0.029267994939504
821 => 0.029847136179606
822 => 0.029300362501369
823 => 0.029431976360184
824 => 0.030458790115821
825 => 0.029527611730071
826 => 0.030020877688759
827 => 0.029996734886913
828 => 0.030249073060168
829 => 0.029976035791507
830 => 0.029979420415684
831 => 0.030203479618666
901 => 0.029888828877368
902 => 0.029810916928879
903 => 0.029703282130058
904 => 0.029938298775544
905 => 0.030079180625624
906 => 0.031214584870952
907 => 0.031948107794158
908 => 0.031916263629532
909 => 0.032207259684431
910 => 0.032076163296481
911 => 0.03165281847831
912 => 0.032375416461527
913 => 0.032146756224853
914 => 0.032165606696942
915 => 0.03216490508143
916 => 0.032316944148993
917 => 0.032209210535448
918 => 0.031996856524524
919 => 0.032137827027122
920 => 0.032556459021963
921 => 0.033855905579145
922 => 0.034583093087921
923 => 0.033812127978033
924 => 0.034343929387199
925 => 0.034025038041916
926 => 0.033967085998283
927 => 0.034301096583055
928 => 0.03463569180914
929 => 0.034614379539733
930 => 0.03437148058725
1001 => 0.034234273132326
1002 => 0.035273253948885
1003 => 0.03603875731595
1004 => 0.035986555118316
1005 => 0.036216958641609
1006 => 0.03689343051211
1007 => 0.036955278622127
1008 => 0.036947487181827
1009 => 0.036794190187967
1010 => 0.037460264595448
1011 => 0.038015915584633
1012 => 0.036758706363064
1013 => 0.03723743517656
1014 => 0.037452351964618
1015 => 0.037767913572424
1016 => 0.038300318899059
1017 => 0.038878652297323
1018 => 0.03896043498094
1019 => 0.038902406253252
1020 => 0.038520979830661
1021 => 0.039153799135993
1022 => 0.039524489843619
1023 => 0.039745227676903
1024 => 0.04030498209484
1025 => 0.037453679217534
1026 => 0.035435385322029
1027 => 0.035120199585729
1028 => 0.035761142174563
1029 => 0.035930153623817
1030 => 0.035862025320545
1031 => 0.033590252045901
1101 => 0.035108239169592
1102 => 0.036741465678702
1103 => 0.036804204560441
1104 => 0.037621831900057
1105 => 0.037888084877513
1106 => 0.03854638205477
1107 => 0.038505205387097
1108 => 0.038665490273963
1109 => 0.03862864355422
1110 => 0.039848000454262
1111 => 0.04119313219126
1112 => 0.041146554556465
1113 => 0.040953175954395
1114 => 0.04124037615442
1115 => 0.04262869626008
1116 => 0.042500881992127
1117 => 0.04262504266625
1118 => 0.044261950313115
1119 => 0.046390163101437
1120 => 0.045401394592191
1121 => 0.047546737746781
1122 => 0.048897117542842
1123 => 0.051232459768251
1124 => 0.050940063419827
1125 => 0.051849195010646
1126 => 0.050416612931188
1127 => 0.047127114904147
1128 => 0.046606539249675
1129 => 0.047648744893003
1130 => 0.050210905770185
1201 => 0.047568053329024
1202 => 0.048102698935812
1203 => 0.04794872096509
1204 => 0.047940516133394
1205 => 0.048253661187752
1206 => 0.047799427953858
1207 => 0.045948800043979
1208 => 0.046796931909258
1209 => 0.046469427465436
1210 => 0.04683281806293
1211 => 0.048793887243921
1212 => 0.047926851812955
1213 => 0.04701350041867
1214 => 0.048159045756003
1215 => 0.049617718622513
1216 => 0.049526437496014
1217 => 0.049349313958055
1218 => 0.050347750067643
1219 => 0.051996874006351
1220 => 0.052442625580267
1221 => 0.052771670279143
1222 => 0.052817039983862
1223 => 0.053284376139583
1224 => 0.050771391846393
1225 => 0.0547595624577
1226 => 0.055448209351282
1227 => 0.055318772276778
1228 => 0.056084174316304
1229 => 0.0558589736199
1230 => 0.055532693143717
1231 => 0.056746018182049
]
'min_raw' => 0.020917078437255
'max_raw' => 0.056746018182049
'avg_raw' => 0.038831548309652
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.020917'
'max' => '$0.056746'
'avg' => '$0.038831'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0072137597744847
'max_diff' => 0.026154324599573
'year' => 2032
]
7 => [
'items' => [
101 => 0.055355038935883
102 => 0.053380719015369
103 => 0.052297568059355
104 => 0.05372394861353
105 => 0.054594989444143
106 => 0.055170692024577
107 => 0.055344899277567
108 => 0.050966467663525
109 => 0.048606735862506
110 => 0.050119296892579
111 => 0.051964725740654
112 => 0.050761140395964
113 => 0.050808318662787
114 => 0.049092322257924
115 => 0.052116553345886
116 => 0.051675948314157
117 => 0.053961807998184
118 => 0.053416269239421
119 => 0.055280299075183
120 => 0.054789437548984
121 => 0.056826976300536
122 => 0.05763980567269
123 => 0.059004672695326
124 => 0.060008674433186
125 => 0.06059824345715
126 => 0.060562847944369
127 => 0.062899014139435
128 => 0.061521458553635
129 => 0.059790924072946
130 => 0.059759624163956
131 => 0.060655892493368
201 => 0.062534225032608
202 => 0.063021249331406
203 => 0.063293429473357
204 => 0.0628765761113
205 => 0.061381338253211
206 => 0.060735702127117
207 => 0.061285802812429
208 => 0.060613076944983
209 => 0.061774390525735
210 => 0.063369122115303
211 => 0.06303981634831
212 => 0.06414063615509
213 => 0.065279868845486
214 => 0.066909022758895
215 => 0.067334943919255
216 => 0.068038975400998
217 => 0.068763655058007
218 => 0.068996402633173
219 => 0.069440789971498
220 => 0.069438447830869
221 => 0.070777638985627
222 => 0.072254808300623
223 => 0.072812405520486
224 => 0.07409456958147
225 => 0.071898908559422
226 => 0.073564342666582
227 => 0.075066605919759
228 => 0.073275545738277
301 => 0.07574410493495
302 => 0.075839953494681
303 => 0.077287152949973
304 => 0.075820139052166
305 => 0.074949030882522
306 => 0.077463887528287
307 => 0.07868074744193
308 => 0.078314219332806
309 => 0.075524922324649
310 => 0.073901431827326
311 => 0.0696524440479
312 => 0.074685553615242
313 => 0.077137034467675
314 => 0.075518573581476
315 => 0.076334831112227
316 => 0.080788067527614
317 => 0.082483571628888
318 => 0.082130918628292
319 => 0.08219051118023
320 => 0.083105374417701
321 => 0.087162381837036
322 => 0.084731328950675
323 => 0.086589777792484
324 => 0.087575492357044
325 => 0.088491078979077
326 => 0.086242687609488
327 => 0.083317563473082
328 => 0.082391053870724
329 => 0.075357649542721
330 => 0.074991530302922
331 => 0.074786016479074
401 => 0.073490280890221
402 => 0.072472187649231
403 => 0.071662562104617
404 => 0.069537862900897
405 => 0.070254886510953
406 => 0.066868559439411
407 => 0.069035011495721
408 => 0.063630351723813
409 => 0.068131512982191
410 => 0.065681735551945
411 => 0.067326695209802
412 => 0.06732095610052
413 => 0.064292063835471
414 => 0.062545061988359
415 => 0.063658319559668
416 => 0.064851820046607
417 => 0.065045461485195
418 => 0.066592866020061
419 => 0.067024713364393
420 => 0.065716195750042
421 => 0.063518352163044
422 => 0.064028861100829
423 => 0.062534716541029
424 => 0.05991628567142
425 => 0.06179688843539
426 => 0.062439008903276
427 => 0.062722605882691
428 => 0.060147679851248
429 => 0.059338582187805
430 => 0.058907825380774
501 => 0.063185961546922
502 => 0.06342032750345
503 => 0.062221278133846
504 => 0.067641094982981
505 => 0.066414423509013
506 => 0.067784916087242
507 => 0.063982537765627
508 => 0.064127793738094
509 => 0.062327686904825
510 => 0.063335626448274
511 => 0.062623247266372
512 => 0.063254194893816
513 => 0.063632382300211
514 => 0.065432193753661
515 => 0.068152063937912
516 => 0.065163361940938
517 => 0.063861141681856
518 => 0.064669031806626
519 => 0.066820549671404
520 => 0.070080209370716
521 => 0.068150425221958
522 => 0.069006830657317
523 => 0.069193917146117
524 => 0.067770965759315
525 => 0.070132675618024
526 => 0.071398335117803
527 => 0.072696639873245
528 => 0.073823921514722
529 => 0.072178068403588
530 => 0.073939367156277
531 => 0.072520071272693
601 => 0.071246816141006
602 => 0.071248747143464
603 => 0.070450015600068
604 => 0.068902372588086
605 => 0.068616963471573
606 => 0.070101697738873
607 => 0.071292314016389
608 => 0.071390378875672
609 => 0.072049565222978
610 => 0.072439664913155
611 => 0.076263172191695
612 => 0.077801018448835
613 => 0.079681467742126
614 => 0.080414008718178
615 => 0.08261869442562
616 => 0.080838231661042
617 => 0.08045301734229
618 => 0.075105170963236
619 => 0.075980880508214
620 => 0.077382975983127
621 => 0.075128291001193
622 => 0.076558369665286
623 => 0.076840697486786
624 => 0.075051677668273
625 => 0.076007270452324
626 => 0.073469499331399
627 => 0.06820738041342
628 => 0.070138533860636
629 => 0.071560512817009
630 => 0.069531173517524
701 => 0.073168685665574
702 => 0.071043726162176
703 => 0.070370216015643
704 => 0.067742612810314
705 => 0.068982740377507
706 => 0.070660030669051
707 => 0.069623660274802
708 => 0.071774284454666
709 => 0.074820141843872
710 => 0.076990801203364
711 => 0.077157437475801
712 => 0.07576184893053
713 => 0.077998288480854
714 => 0.078014578501401
715 => 0.075491865552513
716 => 0.073946717917843
717 => 0.073595657124228
718 => 0.074472675816202
719 => 0.07553753841484
720 => 0.077216529938959
721 => 0.078231109352954
722 => 0.080876594373313
723 => 0.081592386767823
724 => 0.082378825594695
725 => 0.083429750396148
726 => 0.084691655071881
727 => 0.081930679481651
728 => 0.082040378188953
729 => 0.07946939594764
730 => 0.076721932706647
731 => 0.078806914830432
801 => 0.081532751603733
802 => 0.080907441636156
803 => 0.08083708149088
804 => 0.080955407738957
805 => 0.080483944444118
806 => 0.078351533434807
807 => 0.077280649975531
808 => 0.078662362849505
809 => 0.079396681749058
810 => 0.080535546322926
811 => 0.080395157225682
812 => 0.083328750062841
813 => 0.084468655532118
814 => 0.084177018933771
815 => 0.084230687086494
816 => 0.086294431489638
817 => 0.088589739707342
818 => 0.090739598745818
819 => 0.092926527698349
820 => 0.090290099488783
821 => 0.088951483836251
822 => 0.090332593497609
823 => 0.089599757270766
824 => 0.093810851603548
825 => 0.094102418638468
826 => 0.098313208461198
827 => 0.10230974941449
828 => 0.099799593647197
829 => 0.10216655747586
830 => 0.10472662183795
831 => 0.1096654013479
901 => 0.1080021941573
902 => 0.10672820351509
903 => 0.10552428851408
904 => 0.10802944451506
905 => 0.11125228768949
906 => 0.11194645724125
907 => 0.11307127710828
908 => 0.11188866655453
909 => 0.11331299070625
910 => 0.11834148084157
911 => 0.11698273841929
912 => 0.11505310575092
913 => 0.11902261577143
914 => 0.12045916601677
915 => 0.13054162796579
916 => 0.14327115266215
917 => 0.13800104585129
918 => 0.13472972048851
919 => 0.13549855954564
920 => 0.14014695104314
921 => 0.14163986685957
922 => 0.13758160703158
923 => 0.13901505301028
924 => 0.14691348128625
925 => 0.15115073464439
926 => 0.14539597544499
927 => 0.1295188230509
928 => 0.1148793634417
929 => 0.11876240735352
930 => 0.1183221906788
1001 => 0.12680806651233
1002 => 0.11695033286189
1003 => 0.11711631181499
1004 => 0.12577766657407
1005 => 0.12346696561756
1006 => 0.11972392600023
1007 => 0.1149066917732
1008 => 0.1060015887643
1009 => 0.098114090692153
1010 => 0.11358329079396
1011 => 0.11291623075666
1012 => 0.11195022896988
1013 => 0.11409996141404
1014 => 0.12453845195069
1015 => 0.12429781095772
1016 => 0.12276697573658
1017 => 0.12392810075965
1018 => 0.11952037516973
1019 => 0.1206563464163
1020 => 0.1148770444765
1021 => 0.11748953031826
1022 => 0.1197158951183
1023 => 0.1201628708138
1024 => 0.12116992987891
1025 => 0.11256472042844
1026 => 0.11642820683603
1027 => 0.11869764314076
1028 => 0.10844424735317
1029 => 0.11849496647322
1030 => 0.11241492287677
1031 => 0.11035126476095
1101 => 0.11312970854762
1102 => 0.11204694630183
1103 => 0.11111605090483
1104 => 0.11059659527849
1105 => 0.11263677774977
1106 => 0.11254160079894
1107 => 0.10920346629357
1108 => 0.10484900591107
1109 => 0.10631050574573
1110 => 0.10577952915416
1111 => 0.10385520148899
1112 => 0.10515196599111
1113 => 0.099441671401284
1114 => 0.089617406354773
1115 => 0.096107616769875
1116 => 0.095857750728884
1117 => 0.095731756940494
1118 => 0.1006089706912
1119 => 0.10014013912554
1120 => 0.099289205243044
1121 => 0.10383957342093
1122 => 0.10217862782491
1123 => 0.10729727078384
1124 => 0.11066874008966
1125 => 0.1098136264181
1126 => 0.11298450959595
1127 => 0.1063441757501
1128 => 0.10854982828974
1129 => 0.10900441022126
1130 => 0.10378342258395
1201 => 0.10021684576782
1202 => 0.099978995756134
1203 => 0.093795043061519
1204 => 0.09709846067586
1205 => 0.10000533147177
1206 => 0.098613165942817
1207 => 0.098172447926112
1208 => 0.10042398069338
1209 => 0.10059894407247
1210 => 0.09660976048741
1211 => 0.09743923807576
1212 => 0.10089829750835
1213 => 0.097352078653091
1214 => 0.090462354688881
1215 => 0.08875360788787
1216 => 0.088525629566163
1217 => 0.083891372719406
1218 => 0.088867794519805
1219 => 0.086695453044118
1220 => 0.093557853737165
1221 => 0.08963808726509
1222 => 0.089469113966816
1223 => 0.089213686043483
1224 => 0.085224789736739
1225 => 0.086098104520331
1226 => 0.089001135870587
1227 => 0.090036970161348
1228 => 0.089928924158482
1229 => 0.088986909433228
1230 => 0.089418158950553
1231 => 0.088028953997957
]
'min_raw' => 0.048606735862506
'max_raw' => 0.15115073464439
'avg_raw' => 0.099878735253449
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0486067'
'max' => '$0.15115'
'avg' => '$0.099878'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.027689657425251
'max_diff' => 0.094404716462343
'year' => 2033
]
8 => [
'items' => [
101 => 0.087538396815394
102 => 0.085990063408844
103 => 0.083714441039235
104 => 0.084030880286932
105 => 0.079522276923754
106 => 0.077065750521803
107 => 0.07638581639024
108 => 0.075476580053112
109 => 0.076488517053905
110 => 0.079509504616902
111 => 0.075865552677663
112 => 0.069618252671346
113 => 0.069993726046606
114 => 0.070837303241772
115 => 0.069265302719403
116 => 0.067777536152983
117 => 0.069071028476168
118 => 0.066423965106791
119 => 0.071157188203467
120 => 0.071029167783406
121 => 0.072793420653294
122 => 0.073896644178948
123 => 0.071354071125173
124 => 0.070714620877997
125 => 0.071078880800181
126 => 0.065058475685471
127 => 0.072301425113944
128 => 0.072364062441372
129 => 0.071827723615713
130 => 0.0756843705854
131 => 0.083823098609794
201 => 0.080760981747441
202 => 0.079575237545365
203 => 0.077321136950446
204 => 0.080324592157926
205 => 0.080093973659192
206 => 0.079051029348446
207 => 0.078420253375123
208 => 0.079582477446618
209 => 0.0782762409509
210 => 0.078041604983291
211 => 0.076619966306029
212 => 0.076112505978685
213 => 0.075736802554897
214 => 0.075323190001162
215 => 0.076235516228874
216 => 0.074168064970369
217 => 0.071674921427357
218 => 0.071467643517943
219 => 0.072039956049896
220 => 0.071786750358164
221 => 0.071466431266506
222 => 0.070854854886817
223 => 0.070673413239226
224 => 0.071263010570926
225 => 0.070597389559096
226 => 0.071579549620303
227 => 0.07131245642905
228 => 0.069820495574612
301 => 0.067960959955326
302 => 0.067944406187806
303 => 0.067543772288881
304 => 0.067033504782889
305 => 0.066891560036061
306 => 0.068962094160553
307 => 0.073248037832378
308 => 0.072406604535659
309 => 0.073014626326091
310 => 0.076005491753734
311 => 0.076956197934721
312 => 0.076281409206167
313 => 0.075357716775366
314 => 0.075398354554503
315 => 0.078554891211264
316 => 0.07875176053066
317 => 0.079249185788323
318 => 0.079888517816781
319 => 0.076390290215163
320 => 0.075233588349057
321 => 0.074685478833519
322 => 0.072997513670741
323 => 0.074817839383601
324 => 0.073757213544837
325 => 0.073900328206624
326 => 0.073807124595387
327 => 0.073858020069523
328 => 0.071155865171148
329 => 0.072140388395035
330 => 0.070503427583902
331 => 0.06831172081527
401 => 0.06830437344567
402 => 0.068840790572304
403 => 0.068521708675378
404 => 0.067663067495095
405 => 0.067785033422082
406 => 0.066716483563096
407 => 0.067914774721683
408 => 0.067949137424419
409 => 0.067487730057003
410 => 0.06933386291912
411 => 0.070090225059031
412 => 0.069786516845494
413 => 0.070068916081145
414 => 0.072441569887981
415 => 0.072828415984639
416 => 0.073000227467155
417 => 0.072770022841243
418 => 0.070112283837192
419 => 0.0702301658636
420 => 0.069365225769768
421 => 0.068634442535621
422 => 0.068663670032533
423 => 0.069039387610056
424 => 0.07068016830664
425 => 0.074133094553295
426 => 0.0742641305803
427 => 0.074422950067619
428 => 0.073776951396411
429 => 0.073582112015799
430 => 0.073839155451137
501 => 0.075135893003144
502 => 0.078471454047716
503 => 0.077292443999933
504 => 0.0763338904787
505 => 0.077174800340995
506 => 0.077045348858964
507 => 0.075952648075256
508 => 0.07592197960361
509 => 0.073824737442102
510 => 0.073049434766885
511 => 0.072401533821075
512 => 0.071694042902133
513 => 0.071274618570074
514 => 0.071919044969067
515 => 0.072066432911145
516 => 0.070657383327102
517 => 0.070465335075414
518 => 0.071615995382191
519 => 0.071109632682119
520 => 0.071630439276334
521 => 0.071751270873588
522 => 0.071731814203443
523 => 0.071203113389181
524 => 0.071540091522106
525 => 0.070743037779722
526 => 0.06987636154848
527 => 0.069323476108785
528 => 0.068841010233039
529 => 0.069108710341984
530 => 0.068154408333704
531 => 0.06784910791495
601 => 0.071425930912919
602 => 0.074068168518846
603 => 0.074029749337615
604 => 0.073795882452482
605 => 0.073448403699339
606 => 0.07511047276804
607 => 0.074531441138624
608 => 0.074952735028736
609 => 0.075059972005418
610 => 0.075384546036124
611 => 0.07550055335402
612 => 0.075149898667074
613 => 0.073973058708817
614 => 0.071040485423428
615 => 0.069675364642749
616 => 0.06922485204724
617 => 0.069241227324441
618 => 0.068789524076767
619 => 0.068922570927126
620 => 0.068743255811817
621 => 0.068403676364406
622 => 0.069087742268016
623 => 0.069166574490892
624 => 0.069006905335011
625 => 0.069044513201329
626 => 0.067722520786219
627 => 0.067823028998323
628 => 0.067263386501361
629 => 0.067158460279772
630 => 0.065743732781098
701 => 0.063237337949168
702 => 0.06462612398769
703 => 0.062948665746023
704 => 0.062313386892264
705 => 0.065320698179829
706 => 0.065018847536388
707 => 0.064502210446139
708 => 0.063737996513056
709 => 0.06345454213148
710 => 0.061732363039779
711 => 0.061630607511573
712 => 0.062484165972167
713 => 0.062090278111756
714 => 0.061537110378741
715 => 0.059533592923474
716 => 0.057280975961922
717 => 0.057348968308546
718 => 0.058065483852587
719 => 0.060148849432173
720 => 0.059334842457638
721 => 0.05874427105796
722 => 0.058633674787311
723 => 0.060018018663456
724 => 0.061977155277209
725 => 0.062896338343171
726 => 0.061985455840807
727 => 0.060939083067489
728 => 0.061002770929776
729 => 0.061426457744909
730 => 0.06147098123857
731 => 0.060789900131999
801 => 0.060981620474044
802 => 0.060690379743203
803 => 0.05890303591562
804 => 0.058870708533508
805 => 0.058432065533407
806 => 0.058418783597691
807 => 0.057672542429895
808 => 0.057568138131998
809 => 0.056086430999737
810 => 0.057061695121214
811 => 0.056407539152191
812 => 0.055421571807081
813 => 0.055251590665151
814 => 0.055246480826766
815 => 0.05625884883193
816 => 0.057049865011644
817 => 0.056418918475341
818 => 0.05627526417941
819 => 0.057809116229672
820 => 0.057613919574904
821 => 0.057444880530759
822 => 0.061801736081446
823 => 0.058352944943399
824 => 0.056849075157094
825 => 0.054987750719415
826 => 0.055593807341936
827 => 0.055721512377125
828 => 0.051245362633455
829 => 0.049429389239917
830 => 0.048806215604769
831 => 0.048447570367359
901 => 0.04861100950563
902 => 0.046976420459012
903 => 0.048074891331947
904 => 0.046659475385948
905 => 0.046422176296439
906 => 0.048953115344275
907 => 0.049305280727249
908 => 0.04780283379427
909 => 0.048767647949307
910 => 0.048417792924771
911 => 0.046683738629852
912 => 0.046617510510626
913 => 0.045747423020391
914 => 0.044385904580312
915 => 0.043763654118778
916 => 0.043439580675786
917 => 0.04357329969443
918 => 0.043505687266734
919 => 0.043064470441209
920 => 0.043530977298703
921 => 0.042339245051747
922 => 0.04186468766857
923 => 0.041650341108237
924 => 0.040592610145515
925 => 0.0422759304823
926 => 0.042607565794557
927 => 0.042939854530827
928 => 0.045832201116902
929 => 0.045687707655148
930 => 0.046993858178231
1001 => 0.046943103570761
1002 => 0.046570568283342
1003 => 0.044998903184802
1004 => 0.045625340880843
1005 => 0.04369726302246
1006 => 0.045141910050511
1007 => 0.044482633476811
1008 => 0.04491900797777
1009 => 0.044134367278743
1010 => 0.044568619838605
1011 => 0.042686208829953
1012 => 0.04092843991631
1013 => 0.041635817439633
1014 => 0.042404817705918
1015 => 0.044072206220846
1016 => 0.043079123377011
1017 => 0.043436273520274
1018 => 0.042239880326556
1019 => 0.039771379435094
1020 => 0.039785350882061
1021 => 0.039405625799125
1022 => 0.039077487886699
1023 => 0.043193190887821
1024 => 0.042681338159996
1025 => 0.041865767827834
1026 => 0.042957441126909
1027 => 0.043246096874369
1028 => 0.043254314497698
1029 => 0.044050771156536
1030 => 0.044475840218131
1031 => 0.044550760482592
1101 => 0.04580400224386
1102 => 0.046224072351579
1103 => 0.047954281674725
1104 => 0.044439776078047
1105 => 0.044367397148068
1106 => 0.04297280320897
1107 => 0.042088329685135
1108 => 0.043033363867847
1109 => 0.043870535143698
1110 => 0.042998816454116
1111 => 0.04311264451199
1112 => 0.041942433393259
1113 => 0.042360728804654
1114 => 0.042721021163425
1115 => 0.042522088899918
1116 => 0.042224277673017
1117 => 0.043801896646054
1118 => 0.043712881200857
1119 => 0.045181996257852
1120 => 0.046327276502205
1121 => 0.048379823443419
1122 => 0.046237883708571
1123 => 0.046159822911193
1124 => 0.046922879726901
1125 => 0.046223955531556
1126 => 0.046665651496971
1127 => 0.048308659394797
1128 => 0.048343373562661
1129 => 0.047761866524274
1130 => 0.047726481768141
1201 => 0.047838166555853
1202 => 0.048492307845893
1203 => 0.048263730779422
1204 => 0.048528245947606
1205 => 0.04885902621582
1206 => 0.050227273653083
1207 => 0.050557153478027
1208 => 0.049755716526492
1209 => 0.049828077309907
1210 => 0.049528317890097
1211 => 0.049238754046534
1212 => 0.049889651279459
1213 => 0.051079178766045
1214 => 0.051071778777288
1215 => 0.051347726033066
1216 => 0.051519638887345
1217 => 0.050781663068878
1218 => 0.050301267947179
1219 => 0.050485482005174
1220 => 0.050780044295569
1221 => 0.050389959424411
1222 => 0.047982174894733
1223 => 0.048712542911166
1224 => 0.04859097396006
1225 => 0.048417844990396
1226 => 0.049152235678688
1227 => 0.049081401905244
1228 => 0.046959655385742
1229 => 0.047095482713931
1230 => 0.046967915495443
1231 => 0.047380111276174
]
'min_raw' => 0.039077487886699
'max_raw' => 0.087538396815394
'avg_raw' => 0.063307942351046
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.039077'
'max' => '$0.087538'
'avg' => '$0.0633079'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0095292479758071
'max_diff' => -0.063612337828998
'year' => 2034
]
9 => [
'items' => [
101 => 0.046201695606686
102 => 0.04656416832987
103 => 0.04679150782388
104 => 0.046925412532356
105 => 0.047409168158691
106 => 0.047352405019427
107 => 0.047405639682255
108 => 0.048122921569359
109 => 0.051750687212911
110 => 0.051948138492676
111 => 0.050975816176701
112 => 0.051364239763723
113 => 0.050618551415541
114 => 0.051119136999353
115 => 0.051461624942303
116 => 0.049913987784759
117 => 0.049822346756372
118 => 0.049073580687121
119 => 0.049475925160458
120 => 0.048835766173787
121 => 0.048992838797305
122 => 0.048553650048603
123 => 0.04934410235466
124 => 0.050227950856702
125 => 0.050451245892553
126 => 0.049863852787787
127 => 0.049438541468844
128 => 0.048691834899038
129 => 0.049933624566066
130 => 0.050296761707559
131 => 0.049931717161254
201 => 0.049847128363494
202 => 0.049686832744588
203 => 0.049881135836811
204 => 0.050294783984699
205 => 0.050099715157037
206 => 0.050228561554378
207 => 0.049737531953542
208 => 0.050781907369581
209 => 0.052440626872883
210 => 0.052445959927314
211 => 0.052250890048158
212 => 0.052171071656447
213 => 0.052371225190291
214 => 0.052479800271673
215 => 0.053127060098243
216 => 0.053821595680122
217 => 0.057062690191134
218 => 0.056152603821891
219 => 0.059028295685637
220 => 0.061302594588005
221 => 0.061984557385787
222 => 0.061357183700657
223 => 0.059210972213885
224 => 0.059105668839302
225 => 0.062313014907655
226 => 0.061406792737589
227 => 0.061299000494035
228 => 0.060152273140486
301 => 0.060830131031379
302 => 0.060681873567066
303 => 0.060447841906643
304 => 0.061741147542477
305 => 0.064162100238567
306 => 0.063784772057331
307 => 0.063503114073789
308 => 0.062268970779313
309 => 0.063012200698471
310 => 0.06274755075989
311 => 0.063884654847035
312 => 0.06321105957575
313 => 0.061399927213357
314 => 0.061688356011638
315 => 0.061644760579016
316 => 0.062541951493172
317 => 0.06227263705039
318 => 0.061592172611721
319 => 0.064153825685443
320 => 0.063987486183499
321 => 0.064223317566752
322 => 0.064327137834988
323 => 0.065886370919572
324 => 0.066525138824433
325 => 0.066670150322042
326 => 0.067276930427577
327 => 0.066655053080253
328 => 0.069143005860585
329 => 0.070797349283437
330 => 0.072718954300813
331 => 0.075526935709936
401 => 0.076582762695047
402 => 0.076392037000528
403 => 0.078521016457876
404 => 0.082346745218177
405 => 0.077165326164756
406 => 0.082621373009476
407 => 0.080894051571528
408 => 0.076798603515337
409 => 0.07653490494268
410 => 0.079308389915461
411 => 0.085459712647055
412 => 0.083918876070516
413 => 0.085462232903704
414 => 0.083661825177565
415 => 0.083572419758934
416 => 0.085374791119031
417 => 0.089586130044046
418 => 0.087585480780451
419 => 0.084717059481761
420 => 0.086835057131135
421 => 0.085000251555818
422 => 0.080865921064885
423 => 0.083917697821824
424 => 0.081877061614057
425 => 0.082472627745671
426 => 0.08676174153267
427 => 0.086245664014231
428 => 0.086913516110583
429 => 0.085734774641255
430 => 0.084633644238433
501 => 0.082578302570549
502 => 0.081969817229809
503 => 0.08213798068698
504 => 0.081969733896351
505 => 0.080819789122735
506 => 0.08057145865836
507 => 0.08015756367146
508 => 0.080285847034785
509 => 0.079507603370165
510 => 0.080976309958648
511 => 0.081248914843669
512 => 0.082317717018802
513 => 0.082428683606239
514 => 0.085405282450538
515 => 0.08376582182681
516 => 0.084865713557427
517 => 0.084767328888458
518 => 0.0768873642932
519 => 0.07797315388891
520 => 0.07966230176029
521 => 0.078901342933819
522 => 0.077825525190132
523 => 0.076956744680406
524 => 0.075640453370804
525 => 0.077493108111934
526 => 0.079929152088652
527 => 0.082490465701574
528 => 0.085567716183583
529 => 0.084880909699143
530 => 0.082432938644303
531 => 0.08254275283758
601 => 0.08322158097012
602 => 0.082342436860441
603 => 0.082083160099564
604 => 0.083185960324641
605 => 0.083193554703703
606 => 0.082181993157402
607 => 0.081057827612497
608 => 0.081053117317817
609 => 0.080853082917252
610 => 0.083697410853046
611 => 0.085261503623743
612 => 0.085440824339242
613 => 0.085249433910837
614 => 0.085323092490716
615 => 0.08441298136988
616 => 0.086493225507041
617 => 0.088402263242124
618 => 0.087890600348479
619 => 0.08712354493374
620 => 0.086512548349505
621 => 0.087746668970984
622 => 0.087691715522396
623 => 0.088385589462916
624 => 0.088354111332964
625 => 0.088120787624686
626 => 0.087890608681203
627 => 0.088803242173863
628 => 0.088540418384422
629 => 0.088277186357043
630 => 0.087749234227327
701 => 0.087820991690112
702 => 0.087054068718304
703 => 0.086699255059539
704 => 0.08136370894871
705 => 0.079937876683898
706 => 0.0803864725399
707 => 0.080534161943482
708 => 0.079913637914582
709 => 0.08080330997248
710 => 0.080664655524653
711 => 0.081204078871011
712 => 0.080867070583246
713 => 0.080880901520929
714 => 0.081871971037504
715 => 0.082159682734477
716 => 0.082013350243278
717 => 0.082115836504129
718 => 0.084477589128699
719 => 0.084141823430083
720 => 0.083963454594751
721 => 0.084012863981132
722 => 0.084616342413257
723 => 0.084785283425551
724 => 0.084069468485187
725 => 0.08440705094914
726 => 0.085844434235057
727 => 0.08634743703628
728 => 0.087952780522741
729 => 0.087270802076987
730 => 0.088522603029504
731 => 0.09237021238715
801 => 0.095443948976353
802 => 0.092617213781385
803 => 0.098261739589462
804 => 0.10265681259019
805 => 0.10248812236804
806 => 0.1017217397305
807 => 0.096718065968231
808 => 0.092113610771622
809 => 0.095965433059081
810 => 0.095975252146226
811 => 0.095644377195721
812 => 0.093589341295077
813 => 0.095572866400927
814 => 0.095730311420724
815 => 0.095642184077648
816 => 0.094066592870911
817 => 0.091660956316152
818 => 0.092131011940672
819 => 0.09290097264251
820 => 0.091443276403302
821 => 0.090977454129945
822 => 0.091843506362429
823 => 0.09463410710464
824 => 0.094106560199175
825 => 0.094092783817489
826 => 0.096349853193775
827 => 0.094734278626411
828 => 0.092136940847424
829 => 0.091481078803553
830 => 0.089153210389424
831 => 0.090761077394646
901 => 0.090818941665733
902 => 0.089938329338976
903 => 0.092208397684409
904 => 0.092187478604968
905 => 0.094342570643873
906 => 0.098462297206653
907 => 0.097243891342607
908 => 0.095827017884902
909 => 0.095981071315394
910 => 0.097670657211626
911 => 0.09664909500927
912 => 0.097016455899822
913 => 0.097670101166921
914 => 0.09806446158566
915 => 0.09592432892
916 => 0.095425361621256
917 => 0.09440464964175
918 => 0.094138364938788
919 => 0.094969713548242
920 => 0.09475068256163
921 => 0.09081407839781
922 => 0.090402681359632
923 => 0.090415298319453
924 => 0.089380820906091
925 => 0.087802994547688
926 => 0.091949428010456
927 => 0.091616411374096
928 => 0.091248786780996
929 => 0.091293818696014
930 => 0.093093644926532
1001 => 0.092049654819428
1002 => 0.094825273625778
1003 => 0.094254689841931
1004 => 0.093669472737038
1005 => 0.093588577906993
1006 => 0.093363319249986
1007 => 0.092590823500056
1008 => 0.091657988462218
1009 => 0.09104204996945
1010 => 0.083981478632264
1011 => 0.085291879602992
1012 => 0.086799376473007
1013 => 0.087319758351622
1014 => 0.086429609138921
1015 => 0.092625972016497
1016 => 0.093758107223868
1017 => 0.090328795833388
1018 => 0.08968731169009
1019 => 0.092668027610136
1020 => 0.090870291532647
1021 => 0.091679811978263
1022 => 0.08993007155885
1023 => 0.093485409005201
1024 => 0.093458323290679
1025 => 0.092075216723111
1026 => 0.093244208922915
1027 => 0.093041067760713
1028 => 0.09147954385237
1029 => 0.093534912098335
1030 => 0.093535931535342
1031 => 0.092204721535387
1101 => 0.090650159694781
1102 => 0.090372240754792
1103 => 0.090162866166667
1104 => 0.09162831866448
1105 => 0.092942238791669
1106 => 0.095387118399943
1107 => 0.09600181922237
1108 => 0.098401037455253
1109 => 0.096972419813386
1110 => 0.09760570751033
1111 => 0.098293230889376
1112 => 0.098622854880126
1113 => 0.098085750275798
1114 => 0.10181272374909
1115 => 0.10212739450175
1116 => 0.10223290088323
1117 => 0.10097618639761
1118 => 0.10209244299853
1119 => 0.10157018350149
1120 => 0.10292895762491
1121 => 0.10314203075716
1122 => 0.10296156539444
1123 => 0.10302919816974
1124 => 0.099848883793466
1125 => 0.099683967715561
1126 => 0.097435325291416
1127 => 0.098351663700381
1128 => 0.096638612966065
1129 => 0.097181839000294
1130 => 0.097421287860135
1201 => 0.097296213364357
1202 => 0.098403472099161
1203 => 0.097462075976563
1204 => 0.094977576829175
1205 => 0.092492400781657
1206 => 0.092461201420761
1207 => 0.09180689843445
1208 => 0.091333957216917
1209 => 0.091425062473905
1210 => 0.091746129282576
1211 => 0.091315296230329
1212 => 0.091407236305816
1213 => 0.092934054152419
1214 => 0.093240246582788
1215 => 0.092199685067287
1216 => 0.088021680430241
1217 => 0.086996387612579
1218 => 0.087733347757474
1219 => 0.087381128274526
1220 => 0.070523390334985
1221 => 0.074483865809519
1222 => 0.07213068576759
1223 => 0.073215139395518
1224 => 0.070813151925727
1225 => 0.071959506245261
1226 => 0.0717478164606
1227 => 0.078116143824661
1228 => 0.078016711152219
1229 => 0.078064304310657
1230 => 0.075792558855096
1231 => 0.079411511050416
]
'min_raw' => 0.046201695606686
'max_raw' => 0.10314203075716
'avg_raw' => 0.074671863181921
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0462016'
'max' => '$0.103142'
'avg' => '$0.074671'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.007124207719987
'max_diff' => 0.015603633941763
'year' => 2035
]
10 => [
'items' => [
101 => 0.081194337035143
102 => 0.080864383393747
103 => 0.080947425616714
104 => 0.079520485094091
105 => 0.078078120214054
106 => 0.076478315583729
107 => 0.079450554845044
108 => 0.079120092577002
109 => 0.079878054123319
110 => 0.081805763744331
111 => 0.082089626308682
112 => 0.08247114047382
113 => 0.082334394803645
114 => 0.085592231448281
115 => 0.085197685934717
116 => 0.086148427103914
117 => 0.08419268038597
118 => 0.081979567333433
119 => 0.082400207772603
120 => 0.082359696715734
121 => 0.081843944465367
122 => 0.081378346394576
123 => 0.080603256788152
124 => 0.083055754994555
125 => 0.082956188046162
126 => 0.084568061206717
127 => 0.084283146968689
128 => 0.082380419956793
129 => 0.082448376224259
130 => 0.082905414781634
131 => 0.084487230447084
201 => 0.084956821034813
202 => 0.084739287964628
203 => 0.085254172606447
204 => 0.085661116433804
205 => 0.085305278485746
206 => 0.090343193434423
207 => 0.088251099905527
208 => 0.089270771734818
209 => 0.089513957457849
210 => 0.088891042341951
211 => 0.089026130325671
212 => 0.089230751811735
213 => 0.090473173406121
214 => 0.093733647167375
215 => 0.095177688801438
216 => 0.099522159305278
217 => 0.095057781245759
218 => 0.09479288352714
219 => 0.095575453855322
220 => 0.098126117949984
221 => 0.10019319162701
222 => 0.10087895921802
223 => 0.10096959472596
224 => 0.10225614031567
225 => 0.10299356425503
226 => 0.10209991984157
227 => 0.10134264976963
228 => 0.098630202367766
229 => 0.098944175540281
301 => 0.10110713934669
302 => 0.10416245312118
303 => 0.10678423019092
304 => 0.10586617523925
305 => 0.11287028647466
306 => 0.11356471549442
307 => 0.11346876785747
308 => 0.11505078050938
309 => 0.11191080756661
310 => 0.11056840829946
311 => 0.10150638015456
312 => 0.10405244042796
313 => 0.10775328856021
314 => 0.10726346743244
315 => 0.10457581259484
316 => 0.10678219136371
317 => 0.10605269354288
318 => 0.1054773083447
319 => 0.10811325948148
320 => 0.10521492292768
321 => 0.10772437543597
322 => 0.10450597663713
323 => 0.10587036883694
324 => 0.1050958738361
325 => 0.10559706702018
326 => 0.10266710190711
327 => 0.10424803996124
328 => 0.10260132968642
329 => 0.10260054893134
330 => 0.10256419771075
331 => 0.10450154504645
401 => 0.10456472187352
402 => 0.10313301926527
403 => 0.10292668855202
404 => 0.1036896013412
405 => 0.10279643027225
406 => 0.10321433939386
407 => 0.10280908831381
408 => 0.1027178577598
409 => 0.10199091718383
410 => 0.10167773119605
411 => 0.10180053949167
412 => 0.10138133146671
413 => 0.10112874346826
414 => 0.10251395160032
415 => 0.1017738907745
416 => 0.10240052666479
417 => 0.10168639598005
418 => 0.099210907894789
419 => 0.097787228519145
420 => 0.09311126100396
421 => 0.094437359590747
422 => 0.095316564325735
423 => 0.095025987166066
424 => 0.095650259343468
425 => 0.095688584585032
426 => 0.095485627336457
427 => 0.095250628843041
428 => 0.095136244572678
429 => 0.09598877121069
430 => 0.096483691618782
501 => 0.095404804283133
502 => 0.095152036075628
503 => 0.096242850738972
504 => 0.096908247053469
505 => 0.10182115958582
506 => 0.10145719515693
507 => 0.10237067444904
508 => 0.10226783069923
509 => 0.10322530252603
510 => 0.10479036430506
511 => 0.10160815611013
512 => 0.10216047742029
513 => 0.10202506099
514 => 0.10350350206781
515 => 0.10350811759948
516 => 0.10262171831972
517 => 0.10310224974946
518 => 0.10283403028807
519 => 0.10331873910684
520 => 0.10145233419008
521 => 0.10372541391273
522 => 0.10501410364145
523 => 0.10503199709959
524 => 0.10564282580333
525 => 0.10626346314314
526 => 0.10745472247079
527 => 0.10623023956705
528 => 0.10402751402423
529 => 0.10418654369366
530 => 0.10289508651385
531 => 0.10291679614236
601 => 0.10280090844394
602 => 0.10314869615052
603 => 0.10152865403387
604 => 0.10190887468055
605 => 0.10137656354863
606 => 0.10215932027985
607 => 0.10131720343138
608 => 0.1020249956881
609 => 0.10233045536242
610 => 0.10345760813672
611 => 0.10115072205016
612 => 0.096446825157202
613 => 0.097435641313338
614 => 0.09597310454858
615 => 0.096108467894429
616 => 0.096381923395959
617 => 0.095495564646426
618 => 0.095664653963463
619 => 0.095658612903195
620 => 0.095606554309452
621 => 0.095375978165899
622 => 0.095041597139648
623 => 0.096373668231181
624 => 0.096600013066741
625 => 0.097103149597998
626 => 0.098600142634251
627 => 0.098450557728403
628 => 0.09869453691606
629 => 0.09816193171929
630 => 0.096133173921958
701 => 0.096243345231002
702 => 0.094869507241856
703 => 0.097068017471807
704 => 0.096547381230438
705 => 0.096211723658688
706 => 0.09612013638039
707 => 0.097620840172829
708 => 0.098069874268176
709 => 0.097790066353513
710 => 0.097216172157237
711 => 0.098318218670675
712 => 0.098613079826061
713 => 0.098679088364691
714 => 0.10063170349004
715 => 0.09878821785935
716 => 0.099231963173329
717 => 0.10269393744031
718 => 0.099554404499951
719 => 0.1012174851184
720 => 0.10113608597638
721 => 0.1019868617452
722 => 0.10106629753105
723 => 0.10107770902777
724 => 0.10183314027394
725 => 0.10077227333144
726 => 0.10050958775747
727 => 0.10014668951842
728 => 0.10093906454702
729 => 0.10141405754062
730 => 0.10524215222514
731 => 0.10771527597366
801 => 0.10760791114934
802 => 0.10858902466512
803 => 0.10814702404029
804 => 0.10671968742884
805 => 0.10915597697943
806 => 0.10838503302694
807 => 0.10844858870969
808 => 0.108446223164
809 => 0.10895883349532
810 => 0.10859560209553
811 => 0.10787963572162
812 => 0.10835492761337
813 => 0.10976637461193
814 => 0.11414754940393
815 => 0.11659931286038
816 => 0.11399995016533
817 => 0.11579295574552
818 => 0.11471779131062
819 => 0.11452240194942
820 => 0.11564854195586
821 => 0.1167766531213
822 => 0.11670479731702
823 => 0.11588584654006
824 => 0.11542324202626
825 => 0.11892623838861
826 => 0.12150718643641
827 => 0.12133118308245
828 => 0.12210800464749
829 => 0.12438877678864
830 => 0.12459730200966
831 => 0.12457103262471
901 => 0.12405418110706
902 => 0.12629989747571
903 => 0.12817331358006
904 => 0.12393454491399
905 => 0.12554861253247
906 => 0.12627321948842
907 => 0.12733715748095
908 => 0.12913219921105
909 => 0.13108209064124
910 => 0.13135782666895
911 => 0.13116217876211
912 => 0.129876172948
913 => 0.13200976741796
914 => 0.13325957701952
915 => 0.13400381003586
916 => 0.13589106113674
917 => 0.1262776944143
918 => 0.11947287563282
919 => 0.11841020491732
920 => 0.12057118760475
921 => 0.12114102150592
922 => 0.12091132217487
923 => 0.11325187996926
924 => 0.11836987953926
925 => 0.12387641674296
926 => 0.12408794526303
927 => 0.12684463292347
928 => 0.12774232342615
929 => 0.12996181832011
930 => 0.12982298831019
1001 => 0.13036339999699
1002 => 0.13023916870882
1003 => 0.13435031563009
1004 => 0.13888552119548
1005 => 0.13872848144782
1006 => 0.13807649198968
1007 => 0.13904480751574
1008 => 0.14372562568139
1009 => 0.14329469095328
1010 => 0.14371330733471
1011 => 0.14923225575135
1012 => 0.15640767375426
1013 => 0.15307397169172
1014 => 0.1603071459205
1015 => 0.16486004568342
1016 => 0.17273381504477
1017 => 0.1717479803416
1018 => 0.17481318097359
1019 => 0.16998313047301
1020 => 0.15889235820942
1021 => 0.15713720104494
1022 => 0.16065107013589
1023 => 0.16928957441767
1024 => 0.16037901289423
1025 => 0.16218160788528
1026 => 0.16166246040659
1027 => 0.16163479724369
1028 => 0.16269058765754
1029 => 0.16115910859592
1030 => 0.15491958739105
1031 => 0.15777912318951
1101 => 0.15667491909154
1102 => 0.15790011586211
1103 => 0.1645119975233
1104 => 0.16158872703332
1105 => 0.15850929903933
1106 => 0.16237158512357
1107 => 0.16728960253429
1108 => 0.16698184184325
1109 => 0.16638465746866
1110 => 0.16975095452072
1111 => 0.17531109101823
1112 => 0.17681397357107
1113 => 0.17792337074649
1114 => 0.17807633787356
1115 => 0.17965199435095
1116 => 0.1711792923555
1117 => 0.1846256880167
1118 => 0.1869475090982
1119 => 0.1865111029645
1120 => 0.18909170937943
1121 => 0.18833242950849
1122 => 0.18723235210286
1123 => 0.19132316218125
1124 => 0.18663337853773
1125 => 0.1799768210831
1126 => 0.17632490201172
1127 => 0.18113404363683
1128 => 0.18407081861137
1129 => 0.18601184005557
1130 => 0.18659919197179
1201 => 0.17183700409271
1202 => 0.16388100357436
1203 => 0.16898070869089
1204 => 0.17520270089591
1205 => 0.17114472887464
1206 => 0.17130379369512
1207 => 0.16551819200908
1208 => 0.17571459826721
1209 => 0.17422906764068
1210 => 0.181936003159
1211 => 0.18009668114553
1212 => 0.18638138787921
1213 => 0.18472641397277
1214 => 0.19159611813004
1215 => 0.1943366291082
1216 => 0.19893837356699
1217 => 0.20232343552334
1218 => 0.20431120865003
1219 => 0.20419187020745
1220 => 0.21206841764004
1221 => 0.20742389280465
1222 => 0.20158927498095
1223 => 0.2014837451525
1224 => 0.20450557640057
1225 => 0.21083850569761
1226 => 0.21248054212395
1227 => 0.21339821647555
1228 => 0.2119927662616
1229 => 0.20695146742889
1230 => 0.20477466015288
1231 => 0.20662936302022
]
'min_raw' => 0.076478315583729
'max_raw' => 0.21339821647555
'avg_raw' => 0.14493826602964
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.076478'
'max' => '$0.213398'
'avg' => '$0.144938'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.030276619977044
'max_diff' => 0.1102561857184
'year' => 2036
]
11 => [
'items' => [
101 => 0.2043612207899
102 => 0.20827667060773
103 => 0.21365341950257
104 => 0.21254314211775
105 => 0.2162546329531
106 => 0.22009563550746
107 => 0.22558844167041
108 => 0.22702446459943
109 => 0.22939815589403
110 => 0.23184146395315
111 => 0.23262618865274
112 => 0.23412447159004
113 => 0.23411657489939
114 => 0.23863175137699
115 => 0.24361213085517
116 => 0.24549210881213
117 => 0.24981501446158
118 => 0.24241219002959
119 => 0.24802731739877
120 => 0.25309230284153
121 => 0.24705361839183
122 => 0.25537653807271
123 => 0.25569969818378
124 => 0.26057903218754
125 => 0.25563289240744
126 => 0.25269589039466
127 => 0.26117490515754
128 => 0.26527763331483
129 => 0.26404185820474
130 => 0.25463754859925
131 => 0.24916383703903
201 => 0.23483807808584
202 => 0.25180755839263
203 => 0.26007289724353
204 => 0.25461614336838
205 => 0.25736821262259
206 => 0.2723826101121
207 => 0.27809912056587
208 => 0.27691012635291
209 => 0.27711104680239
210 => 0.28019557208123
211 => 0.29387405584673
212 => 0.28567759130967
213 => 0.29194348133259
214 => 0.2952668868074
215 => 0.2983538510278
216 => 0.29077324254755
217 => 0.28091098229602
218 => 0.27778719048483
219 => 0.25407357673636
220 => 0.25283918015775
221 => 0.25214627595213
222 => 0.24777761294894
223 => 0.24434504050594
224 => 0.24161533145603
225 => 0.23445175974892
226 => 0.23686925491122
227 => 0.22545201676371
228 => 0.23275636112841
301 => 0.21453417336613
302 => 0.22971015280979
303 => 0.22145055716572
304 => 0.2269966534996
305 => 0.22697730369196
306 => 0.21676518194984
307 => 0.21087504325053
308 => 0.21462846887736
309 => 0.21865243909662
310 => 0.21930531472643
311 => 0.22452249715207
312 => 0.2259785006241
313 => 0.22156674212954
314 => 0.21415655902744
315 => 0.21587777555377
316 => 0.21084016285256
317 => 0.20201194036267
318 => 0.20835252388089
319 => 0.21051747786979
320 => 0.21147364488599
321 => 0.20279210199539
322 => 0.20006417273369
323 => 0.19861184608431
324 => 0.2130358808584
325 => 0.21382606204375
326 => 0.20978338337918
327 => 0.22805667428556
328 => 0.22392086576761
329 => 0.22854157717985
330 => 0.21572159319494
331 => 0.21621133384757
401 => 0.21014214797975
402 => 0.21354048652258
403 => 0.21113865037408
404 => 0.21326593435136
405 => 0.21454101959622
406 => 0.22060920957035
407 => 0.22977944179183
408 => 0.21970282434452
409 => 0.21531229782291
410 => 0.21803615578366
411 => 0.22529014847894
412 => 0.23628031873734
413 => 0.22977391674658
414 => 0.23266134746421
415 => 0.23329212262316
416 => 0.22849454267526
417 => 0.23645721235322
418 => 0.24072447172224
419 => 0.24510179684996
420 => 0.24890250560849
421 => 0.24335339693451
422 => 0.24929173864915
423 => 0.24450648348557
424 => 0.24021361491326
425 => 0.24022012542286
426 => 0.23752714625865
427 => 0.23230915979077
428 => 0.23134688302781
429 => 0.23635276827085
430 => 0.24036701417667
501 => 0.24069764669641
502 => 0.24292013948928
503 => 0.2442353878306
504 => 0.25712660956895
505 => 0.26231156559389
506 => 0.268651631675
507 => 0.27112144472014
508 => 0.27855469650902
509 => 0.27255174199031
510 => 0.27125296501983
511 => 0.25322232757813
512 => 0.25617484344912
513 => 0.26090210623397
514 => 0.2533002784003
515 => 0.25812188846119
516 => 0.25907377642288
517 => 0.25304197119938
518 => 0.25626381898817
519 => 0.24770754647245
520 => 0.22996594515107
521 => 0.23647696382719
522 => 0.241271265158
523 => 0.23442920602584
524 => 0.24669333219598
525 => 0.23952888287034
526 => 0.23725809638833
527 => 0.22839894872816
528 => 0.2325801254039
529 => 0.23823522672651
530 => 0.23474103158523
531 => 0.24199201115942
601 => 0.2522613320021
602 => 0.25957986158323
603 => 0.26014168740992
604 => 0.25543636319266
605 => 0.2629766752798
606 => 0.26303159822141
607 => 0.25452609538404
608 => 0.24931652225498
609 => 0.24813289627903
610 => 0.25108982603051
611 => 0.25468008462815
612 => 0.26034092177516
613 => 0.26376164710512
614 => 0.27268108455313
615 => 0.27509442858625
616 => 0.27774596199845
617 => 0.28128922833978
618 => 0.28554382805738
619 => 0.27623500608976
620 => 0.27660486294035
621 => 0.26793661681351
622 => 0.25867335267475
623 => 0.26570301547389
624 => 0.27489336446692
625 => 0.27278508825349
626 => 0.2725478641113
627 => 0.27294680931797
628 => 0.2713572379029
629 => 0.26416766530483
630 => 0.26055710695518
701 => 0.2652156483779
702 => 0.26769145581625
703 => 0.27153121724003
704 => 0.27105788559702
705 => 0.28094869866441
706 => 0.28479196953974
707 => 0.28380869638699
708 => 0.28398964231089
709 => 0.29094770065212
710 => 0.29868649256141
711 => 0.305934892408
712 => 0.31330827605796
713 => 0.30441937427987
714 => 0.2999061381482
715 => 0.30456264579746
716 => 0.30209183729367
717 => 0.31628983584586
718 => 0.31727287446066
719 => 0.33146984633595
720 => 0.34494446318957
721 => 0.33648129776665
722 => 0.34446168157112
723 => 0.35309311730589
724 => 0.36974455723825
725 => 0.36413693807375
726 => 0.35984158967634
727 => 0.35578250619576
728 => 0.36422881455749
729 => 0.37509485533178
730 => 0.37743529644092
731 => 0.38122770515504
801 => 0.37724045110582
802 => 0.38204265942648
803 => 0.39899656499568
804 => 0.39441547005462
805 => 0.38790957879055
806 => 0.40129305896703
807 => 0.40613648841594
808 => 0.44013021281207
809 => 0.48304869407289
810 => 0.46528016101297
811 => 0.4542506591557
812 => 0.45684285371544
813 => 0.47251523018961
814 => 0.47754870009675
815 => 0.46386599374802
816 => 0.46869895694523
817 => 0.49532905932831
818 => 0.50961525486086
819 => 0.49021268243562
820 => 0.43668175463156
821 => 0.38732379446472
822 => 0.40041574811888
823 => 0.39893152686512
824 => 0.42754224970281
825 => 0.39430621245534
826 => 0.39486582208402
827 => 0.42406818437072
828 => 0.41627749476786
829 => 0.40365757536737
830 => 0.38741593384238
831 => 0.35739175731344
901 => 0.33079850687566
902 => 0.38295399504397
903 => 0.38070495555555
904 => 0.37744801308734
905 => 0.38469598611236
906 => 0.41989008574879
907 => 0.41907874783999
908 => 0.41391743001242
909 => 0.41783224409486
910 => 0.40297128953087
911 => 0.40680129589965
912 => 0.38731597591165
913 => 0.39612415432507
914 => 0.40363049868823
915 => 0.40513750845246
916 => 0.4085328784011
917 => 0.3795198139423
918 => 0.39254582810548
919 => 0.40019739105388
920 => 0.36562735128677
921 => 0.39951405251883
922 => 0.37901476103831
923 => 0.3720569936208
924 => 0.38142471083233
925 => 0.37777410232459
926 => 0.37463552350056
927 => 0.37288414258913
928 => 0.37976276023205
929 => 0.37944186449728
930 => 0.3681871109513
1001 => 0.35350574375301
1002 => 0.35843329248421
1003 => 0.35664306783415
1004 => 0.35015506275876
1005 => 0.35452719481485
1006 => 0.33527453792522
1007 => 0.30215134241262
1008 => 0.32403353995916
1009 => 0.32319109915687
1010 => 0.3227663023027
1011 => 0.33921016897941
1012 => 0.337629470623
1013 => 0.33476048762786
1014 => 0.35010237163617
1015 => 0.34450237759568
1016 => 0.36176023970394
1017 => 0.37312738385698
1018 => 0.37024430841118
1019 => 0.38093516242929
1020 => 0.35854681325473
1021 => 0.36598332478585
1022 => 0.36751597950586
1023 => 0.34991305516897
1024 => 0.33788809242293
1025 => 0.33708616450238
1026 => 0.3162365362427
1027 => 0.3273742393667
1028 => 0.33717495720635
1029 => 0.33248117392759
1030 => 0.33099526236432
1031 => 0.33858646228617
1101 => 0.33917636353433
1102 => 0.32572655256138
1103 => 0.32852319416278
1104 => 0.34018565454358
1105 => 0.32822933008397
1106 => 0.30500014471347
1107 => 0.29923898557298
1108 => 0.2984703407444
1109 => 0.28284562023208
1110 => 0.2996239737748
1111 => 0.29229977282148
1112 => 0.31543683587561
1113 => 0.30222106954565
1114 => 0.30165136427318
1115 => 0.30079017119626
1116 => 0.28734132880222
1117 => 0.29028577056799
1118 => 0.30007354344856
1119 => 0.3035659310795
1120 => 0.3032016464373
1121 => 0.30002557802174
1122 => 0.30147956587829
1123 => 0.29679576438941
1124 => 0.2951418165988
1125 => 0.28992150241742
1126 => 0.28224908271941
1127 => 0.2833159797361
1128 => 0.26811490871651
1129 => 0.25983255844314
1130 => 0.25754011304709
1201 => 0.25447455925561
1202 => 0.25788637550497
1203 => 0.26807184599223
1204 => 0.25578600761648
1205 => 0.23472279947263
1206 => 0.23598873417203
1207 => 0.23883291358221
1208 => 0.23353280406747
1209 => 0.22851669521624
1210 => 0.23287779489261
1211 => 0.22395303593069
1212 => 0.23991142806422
1213 => 0.23947979827988
1214 => 0.24542810000691
1215 => 0.24914769514826
1216 => 0.24057523258068
1217 => 0.23841928142733
1218 => 0.2396474091868
1219 => 0.21934919301129
1220 => 0.24376930269596
1221 => 0.24398048881858
1222 => 0.2421721850219
1223 => 0.25517513954269
1224 => 0.28261542930478
1225 => 0.27229128851318
1226 => 0.26829346914987
1227 => 0.26069361161782
1228 => 0.27081997054438
1229 => 0.27004242417463
1230 => 0.26652606461491
1231 => 0.26439935938147
]
'min_raw' => 0.19861184608431
'max_raw' => 0.50961525486086
'avg_raw' => 0.35411355047259
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.198611'
'max' => '$0.509615'
'avg' => '$0.354113'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12213353050058
'max_diff' => 0.29621703838531
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0062341988999134
]
1 => [
'year' => 2028
'avg' => 0.010699695113123
]
2 => [
'year' => 2029
'avg' => 0.029229638616635
]
3 => [
'year' => 2030
'avg' => 0.022550622662651
]
4 => [
'year' => 2031
'avg' => 0.022147506122623
]
5 => [
'year' => 2032
'avg' => 0.038831548309652
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0062341988999134
'min' => '$0.006234'
'max_raw' => 0.038831548309652
'max' => '$0.038831'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.038831548309652
]
1 => [
'year' => 2033
'avg' => 0.099878735253449
]
2 => [
'year' => 2034
'avg' => 0.063307942351046
]
3 => [
'year' => 2035
'avg' => 0.074671863181921
]
4 => [
'year' => 2036
'avg' => 0.14493826602964
]
5 => [
'year' => 2037
'avg' => 0.35411355047259
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.038831548309652
'min' => '$0.038831'
'max_raw' => 0.35411355047259
'max' => '$0.354113'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.35411355047259
]
]
]
]
'prediction_2025_max_price' => '$0.010659'
'last_price' => 0.01033558
'sma_50day_nextmonth' => '$0.009624'
'sma_200day_nextmonth' => '$0.015713'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.010097'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009841'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009714'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0098062'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010348'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.013511'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017154'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0101013'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00996'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.009851'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009944'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.010923'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013051'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.015934'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.015454'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019451'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.020452'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.017137'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.010156'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.010336'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01153'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.014188'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017459'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0182049'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0166022'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.05'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.17
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.009671'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010136'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 143.99
'cci_20_action' => 'SELL'
'adx_14' => 21.01
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000252'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 57.25
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002552'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767711089
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de PolySwarm para 2026
La previsión del precio de PolySwarm para 2026 sugiere que el precio medio podría oscilar entre $0.00357 en el extremo inferior y $0.010659 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, PolySwarm podría potencialmente ganar 3.13% para 2026 si NCT alcanza el objetivo de precio previsto.
Predicción de precio de PolySwarm 2027-2032
La predicción del precio de NCT para 2027-2032 está actualmente dentro de un rango de precios de $0.006234 en el extremo inferior y $0.038831 en el extremo superior. Considerando la volatilidad de precios en el mercado, si PolySwarm alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de PolySwarm | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003437 | $0.006234 | $0.00903 |
| 2028 | $0.0062039 | $0.010699 | $0.015195 |
| 2029 | $0.013628 | $0.029229 | $0.04483 |
| 2030 | $0.01159 | $0.02255 | $0.03351 |
| 2031 | $0.0137033 | $0.022147 | $0.030591 |
| 2032 | $0.020917 | $0.038831 | $0.056746 |
Predicción de precio de PolySwarm 2032-2037
La predicción de precio de PolySwarm para 2032-2037 se estima actualmente entre $0.038831 en el extremo inferior y $0.354113 en el extremo superior. Comparado con el precio actual, PolySwarm podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de PolySwarm | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.020917 | $0.038831 | $0.056746 |
| 2033 | $0.0486067 | $0.099878 | $0.15115 |
| 2034 | $0.039077 | $0.0633079 | $0.087538 |
| 2035 | $0.0462016 | $0.074671 | $0.103142 |
| 2036 | $0.076478 | $0.144938 | $0.213398 |
| 2037 | $0.198611 | $0.354113 | $0.509615 |
PolySwarm Histograma de precios potenciales
Pronóstico de precio de PolySwarm basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para PolySwarm es Neutral, con 17 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de NCT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de PolySwarm
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de PolySwarm aumentar durante el próximo mes, alcanzando $0.015713 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para PolySwarm alcance $0.009624 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.05, lo que sugiere que el mercado de NCT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de NCT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.010097 | BUY |
| SMA 5 | $0.009841 | BUY |
| SMA 10 | $0.009714 | BUY |
| SMA 21 | $0.0098062 | BUY |
| SMA 50 | $0.010348 | SELL |
| SMA 100 | $0.013511 | SELL |
| SMA 200 | $0.017154 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0101013 | BUY |
| EMA 5 | $0.00996 | BUY |
| EMA 10 | $0.009851 | BUY |
| EMA 21 | $0.009944 | BUY |
| EMA 50 | $0.010923 | SELL |
| EMA 100 | $0.013051 | SELL |
| EMA 200 | $0.015934 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.015454 | SELL |
| SMA 50 | $0.019451 | SELL |
| SMA 100 | $0.020452 | SELL |
| SMA 200 | $0.017137 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.014188 | SELL |
| EMA 50 | $0.017459 | SELL |
| EMA 100 | $0.0182049 | SELL |
| EMA 200 | $0.0166022 | SELL |
Osciladores de PolySwarm
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.05 | NEUTRAL |
| Stoch RSI (14) | 122.17 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 143.99 | SELL |
| Índice Direccional Medio (14) | 21.01 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000252 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 57.25 | NEUTRAL |
| VWMA (10) | 0.009671 | BUY |
| Promedio Móvil de Hull (9) | 0.010136 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002552 | SELL |
Predicción de precios de PolySwarm basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de PolySwarm
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de PolySwarm por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.014523 | $0.0204075 | $0.028676 | $0.040294 | $0.05662 | $0.079561 |
| Amazon.com acción | $0.021565 | $0.044998 | $0.093891 | $0.19591 | $0.408779 | $0.852941 |
| Apple acción | $0.01466 | $0.020794 | $0.029495 | $0.041836 | $0.059342 | $0.084172 |
| Netflix acción | $0.0163079 | $0.025731 | $0.040600037 | $0.06406 | $0.101077 | $0.159484 |
| Google acción | $0.013384 | $0.017332 | $0.022446 | $0.029067 | $0.037642 | $0.048746 |
| Tesla acción | $0.023429 | $0.053113 | $0.1204054 | $0.272949 | $0.618756 | $1.40 |
| Kodak acción | $0.00775 | $0.005812 | $0.004358 | $0.003268 | $0.00245 | $0.001837 |
| Nokia acción | $0.006846 | $0.004535 | $0.0030047 | $0.00199 | $0.001318 | $0.000873 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de PolySwarm
Podría preguntarse cosas como: "¿Debo invertir en PolySwarm ahora?", "¿Debería comprar NCT hoy?", "¿Será PolySwarm una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de PolySwarm regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como PolySwarm, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de PolySwarm a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de PolySwarm es de $0.01033 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de PolySwarm
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de PolySwarm
basado en el historial de precios del último mes
Predicción de precios de PolySwarm basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si PolySwarm ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0106042 | $0.010879 | $0.011162 | $0.011452 |
| Si PolySwarm ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010872 | $0.011438 | $0.012032 | $0.012658 |
| Si PolySwarm ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.011678 | $0.013196 | $0.014911 | $0.016849 |
| Si PolySwarm ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.013022 | $0.0164069 | $0.020671 | $0.026044 |
| Si PolySwarm ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0157086 | $0.023875 | $0.036286 | $0.055151 |
| Si PolySwarm ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.023768 | $0.054659 | $0.125697 | $0.289061 |
| Si PolySwarm ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.037201 | $0.133898 | $0.481944 | $1.73 |
Cuadro de preguntas
¿Es NCT una buena inversión?
La decisión de adquirir PolySwarm depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de PolySwarm ha experimentado un aumento de 4.2181% durante las últimas 24 horas, y PolySwarm ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en PolySwarm dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede PolySwarm subir?
Parece que el valor medio de PolySwarm podría potencialmente aumentar hasta $0.010659 para el final de este año. Mirando las perspectivas de PolySwarm en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.03351. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de PolySwarm la próxima semana?
Basado en nuestro nuevo pronóstico experimental de PolySwarm, el precio de PolySwarm aumentará en un 0.86% durante la próxima semana y alcanzará $0.010424 para el 13 de enero de 2026.
¿Cuál será el precio de PolySwarm el próximo mes?
Basado en nuestro nuevo pronóstico experimental de PolySwarm, el precio de PolySwarm disminuirá en un -11.62% durante el próximo mes y alcanzará $0.009134 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de PolySwarm este año en 2026?
Según nuestra predicción más reciente sobre el valor de PolySwarm en 2026, se anticipa que NCT fluctúe dentro del rango de $0.00357 y $0.010659. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de PolySwarm no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará PolySwarm en 5 años?
El futuro de PolySwarm parece estar en una tendencia alcista, con un precio máximo de $0.03351 proyectada después de un período de cinco años. Basado en el pronóstico de PolySwarm para 2030, el valor de PolySwarm podría potencialmente alcanzar su punto más alto de aproximadamente $0.03351, mientras que su punto más bajo se anticipa que esté alrededor de $0.01159.
¿Cuánto será PolySwarm en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de PolySwarm, se espera que el valor de NCT en 2026 crezca en un 3.13% hasta $0.010659 si ocurre lo mejor. El precio estará entre $0.010659 y $0.00357 durante 2026.
¿Cuánto será PolySwarm en 2027?
Según nuestra última simulación experimental para la predicción de precios de PolySwarm, el valor de NCT podría disminuir en un -12.62% hasta $0.00903 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00903 y $0.003437 a lo largo del año.
¿Cuánto será PolySwarm en 2028?
Nuestro nuevo modelo experimental de predicción de precios de PolySwarm sugiere que el valor de NCT en 2028 podría aumentar en un 47.02% , alcanzando $0.015195 en el mejor escenario. Se espera que el precio oscile entre $0.015195 y $0.0062039 durante el año.
¿Cuánto será PolySwarm en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de PolySwarm podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.04483 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.04483 y $0.013628.
¿Cuánto será PolySwarm en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de PolySwarm, se espera que el valor de NCT en 2030 aumente en un 224.23% , alcanzando $0.03351 en el mejor escenario. Se pronostica que el precio oscile entre $0.03351 y $0.01159 durante el transcurso de 2030.
¿Cuánto será PolySwarm en 2031?
Nuestra simulación experimental indica que el precio de PolySwarm podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.030591 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.030591 y $0.0137033 durante el año.
¿Cuánto será PolySwarm en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de PolySwarm, NCT podría experimentar un 449.04% aumento en valor, alcanzando $0.056746 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.056746 y $0.020917 a lo largo del año.
¿Cuánto será PolySwarm en 2033?
Según nuestra predicción experimental de precios de PolySwarm, se anticipa que el valor de NCT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.15115. A lo largo del año, el precio de NCT podría oscilar entre $0.15115 y $0.0486067.
¿Cuánto será PolySwarm en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de PolySwarm sugieren que NCT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.087538 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.087538 y $0.039077.
¿Cuánto será PolySwarm en 2035?
Basado en nuestra predicción experimental para el precio de PolySwarm, NCT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.103142 en 2035. El rango de precios esperado para el año está entre $0.103142 y $0.0462016.
¿Cuánto será PolySwarm en 2036?
Nuestra reciente simulación de predicción de precios de PolySwarm sugiere que el valor de NCT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.213398 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.213398 y $0.076478.
¿Cuánto será PolySwarm en 2037?
Según la simulación experimental, el valor de PolySwarm podría aumentar en un 4830.69% en 2037, con un máximo de $0.509615 bajo condiciones favorables. Se espera que el precio caiga entre $0.509615 y $0.198611 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de FLUX Token
Predicción de precios de Smart Layer Network
Predicción de precios de Zephyr Protocol
Predicción de precios de Terra Virtua KolectPredicción de precios de Vega Protocol
Predicción de precios de sUSD
Predicción de precios de Mdex
Predicción de precios de OX Coin
Predicción de precios de Murasaki
Predicción de precios de Solend
Predicción de precios de Talken
Predicción de precios de Rich Quack
Predicción de precios de Hacken Token
Predicción de precios de Peapods Finance
Predicción de precios de Katana Inu
Predicción de precios de Sai
Predicción de precios de SX Network
Predicción de precios de Quickswap
Predicción de precios de Dero
Predicción de precios de THORSwap
Predicción de precios de Hydro Protocol
Predicción de precios de Mossland
Predicción de precios de ParaSwap
Predicción de precios de Cetus Protocol
Predicción de precios de GoGoPool
¿Cómo leer y predecir los movimientos de precio de PolySwarm?
Los traders de PolySwarm utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de PolySwarm
Las medias móviles son herramientas populares para la predicción de precios de PolySwarm. Una media móvil simple (SMA) calcula el precio de cierre promedio de NCT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de NCT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de NCT.
¿Cómo leer gráficos de PolySwarm y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de PolySwarm en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de NCT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de PolySwarm?
La acción del precio de PolySwarm está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de NCT. La capitalización de mercado de PolySwarm puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de NCT, grandes poseedores de PolySwarm, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de PolySwarm.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


