Predicción del precio de PolySwarm - Pronóstico de NCT
Predicción de precio de PolySwarm hasta $0.010974 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003676 | $0.010974 |
| 2027 | $0.003539 | $0.009297 |
| 2028 | $0.006387 | $0.015644 |
| 2029 | $0.014031 | $0.046156 |
| 2030 | $0.011932 | $0.0345017 |
| 2031 | $0.0141084 | $0.031496 |
| 2032 | $0.021535 | $0.058423 |
| 2033 | $0.050043 | $0.155619 |
| 2034 | $0.040232 | $0.090126 |
| 2035 | $0.047567 | $0.106191 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en PolySwarm hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.62, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de PolySwarm para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'PolySwarm'
'name_with_ticker' => 'PolySwarm <small>NCT</small>'
'name_lang' => 'PolySwarm'
'name_lang_with_ticker' => 'PolySwarm <small>NCT</small>'
'name_with_lang' => 'PolySwarm'
'name_with_lang_with_ticker' => 'PolySwarm <small>NCT</small>'
'image' => '/uploads/coins/polyswarm.jpg?1717233602'
'price_for_sd' => 0.01064
'ticker' => 'NCT'
'marketcap' => '$20.07M'
'low24h' => '$0.009937'
'high24h' => '$0.01064'
'volume24h' => '$403.47K'
'current_supply' => '1.89B'
'max_supply' => '1.89B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0179 USD 0.59x'
'price' => '$0.01064'
'change_24h_pct' => '7.0805%'
'ath_price' => '$0.1718'
'ath_days' => 1453
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 ene. 2022'
'ath_pct' => '-93.94%'
'fdv' => '$20.07M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.524683'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010732'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009404'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003676'
'current_year_max_price_prediction' => '$0.010974'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.011932'
'grand_prediction_max_price' => '$0.0345017'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010842824763739
107 => 0.010883307935462
108 => 0.010974518588474
109 => 0.010195133544955
110 => 0.010545054547953
111 => 0.010750600354049
112 => 0.0098219369242829
113 => 0.010732243663924
114 => 0.010181566185323
115 => 0.0099946579781872
116 => 0.010246305255811
117 => 0.010148238066986
118 => 0.010063925656733
119 => 0.01001687788314
120 => 0.010201659870531
121 => 0.010193039569957
122 => 0.0098907003739479
123 => 0.0094963112176762
124 => 0.0096286811639037
125 => 0.0095805899214644
126 => 0.0094063010549706
127 => 0.0095237507072694
128 => 0.0090065618784541
129 => 0.0081167653796133
130 => 0.0087045922019514
131 => 0.0086819615087239
201 => 0.0086705500869784
202 => 0.0091122856976254
203 => 0.0090698230112361
204 => 0.0089927528196439
205 => 0.0094048856004628
206 => 0.0092544515914957
207 => 0.009718053760422
208 => 0.010023412132785
209 => 0.0099459633722454
210 => 0.010233154397378
211 => 0.0096317307001151
212 => 0.0098314995274152
213 => 0.0098726716058542
214 => 0.0093997999459212
215 => 0.0090767704318743
216 => 0.0090552280460935
217 => 0.0084951393849452
218 => 0.0087943342268529
219 => 0.0090576133062078
220 => 0.0089315230584787
221 => 0.0088916066528867
222 => 0.0090955309122443
223 => 0.0091113775736896
224 => 0.0087500720133838
225 => 0.0088251988804304
226 => 0.0091384904048173
227 => 0.0088173047378391
228 => 0.0081932934522814
301 => 0.0080385300258321
302 => 0.0080178817318879
303 => 0.0075981510449152
304 => 0.0080488720580175
305 => 0.0078521202572262
306 => 0.0084736568384776
307 => 0.0081186384766343
308 => 0.0081033343446215
309 => 0.008080199904456
310 => 0.0077189203633223
311 => 0.0077980176223179
312 => 0.0080609489580722
313 => 0.0081547658208029
314 => 0.0081449799534012
315 => 0.0080596604510853
316 => 0.008098719282339
317 => 0.0079728971778721
318 => 0.0079284667740242
319 => 0.0077882321979348
320 => 0.0075821261118739
321 => 0.0076107864272628
322 => 0.007202436340185
323 => 0.0069799455399656
324 => 0.0069183630188465
325 => 0.0068360122978953
326 => 0.0069276647519048
327 => 0.0072012795356948
328 => 0.0068712420558295
329 => 0.0063054159460379
330 => 0.0063394230593572
331 => 0.006415826946183
401 => 0.0062734488085454
402 => 0.0061386998501628
403 => 0.0062558531369479
404 => 0.0060161051550754
405 => 0.0064447993443828
406 => 0.0064332043679636
407 => 0.0065929950514665
408 => 0.0066929154450958
409 => 0.0064626312873918
410 => 0.0064047154444839
411 => 0.0064377069407326
412 => 0.0058924309972079
413 => 0.0065484343737684
414 => 0.00655410751821
415 => 0.0065055306112349
416 => 0.0068548321574214
417 => 0.0075919673697592
418 => 0.0073146274516825
419 => 0.0072072330527598
420 => 0.0070030762219029
421 => 0.0072751030773866
422 => 0.0072542156591654
423 => 0.0071597548326513
424 => 0.0071026246300398
425 => 0.0072078887800591
426 => 0.0070895812369457
427 => 0.0070683299513286
428 => 0.0069395702821161
429 => 0.006893608938399
430 => 0.0068595809892846
501 => 0.0068221195608269
502 => 0.0069047501371982
503 => 0.0067174983801831
504 => 0.0064916911177389
505 => 0.0064729176871351
506 => 0.0065247527796091
507 => 0.0065018196098581
508 => 0.0064728078919413
509 => 0.006417416621567
510 => 0.0064009832148941
511 => 0.0064543838142254
512 => 0.0063940976510288
513 => 0.0064830531687826
514 => 0.0064588621900869
515 => 0.0063237333495678
516 => 0.0061553127831767
517 => 0.0061538134868617
518 => 0.0061175275520978
519 => 0.0060713119585492
520 => 0.0060584558376935
521 => 0.006245986813902
522 => 0.0066341703223236
523 => 0.0065579606111764
524 => 0.0066130299377656
525 => 0.0068839165204689
526 => 0.0069700232192665
527 => 0.0069089067240089
528 => 0.006825246695799
529 => 0.0068289273124584
530 => 0.0071148189544644
531 => 0.0071326496654945
601 => 0.0071777021198621
602 => 0.0072356072555466
603 => 0.0069187682190049
604 => 0.0068140042223302
605 => 0.0067643612286204
606 => 0.0066114800222509
607 => 0.0067763492962764
608 => 0.0066802870307079
609 => 0.0066932491122874
610 => 0.0066848075396542
611 => 0.0066894172091286
612 => 0.00644467951562
613 => 0.0065338490681001
614 => 0.0063855873923829
615 => 0.0061870816517517
616 => 0.006186416190904
617 => 0.0062350001897006
618 => 0.0062061005261243
619 => 0.0061283322745188
620 => 0.0061393788876036
621 => 0.0060425989331886
622 => 0.0061511297263272
623 => 0.0061542420011326
624 => 0.006112451734062
625 => 0.0062796583952554
626 => 0.006348163100774
627 => 0.0063206558517539
628 => 0.0063462331188541
629 => 0.0065611274687407
630 => 0.0065961646242701
701 => 0.0066117258143317
702 => 0.0065908758811118
703 => 0.0063501609930829
704 => 0.0063608377219657
705 => 0.0062824989695445
706 => 0.0062163109788829
707 => 0.0062189581513991
708 => 0.0062529873824356
709 => 0.0064015950301603
710 => 0.0067143310638976
711 => 0.0067261991677708
712 => 0.0067405836558823
713 => 0.0066820747136687
714 => 0.0066644278568419
715 => 0.0066877086160366
716 => 0.0068051558274289
717 => 0.0071072619417365
718 => 0.0070004774639513
719 => 0.0069136600213124
720 => 0.0069898223243211
721 => 0.0069780977347528
722 => 0.0068791303995862
723 => 0.006876352716109
724 => 0.0066864027581532
725 => 0.0066161825836482
726 => 0.0065575013499429
727 => 0.0064934229746491
728 => 0.0064554351658483
729 => 0.0065138017053166
730 => 0.0065271508234656
731 => 0.0063995313648456
801 => 0.0063821373042058
802 => 0.0064863541089722
803 => 0.0064404921787886
804 => 0.0064876623113036
805 => 0.006498606186665
806 => 0.006496843970673
807 => 0.0064489588483522
808 => 0.0064794793973645
809 => 0.0064072892003367
810 => 0.0063287932036859
811 => 0.006278717648296
812 => 0.0062350200846599
813 => 0.0062592660326825
814 => 0.006172833655117
815 => 0.0061451821979937
816 => 0.0064691397220932
817 => 0.0067084506282759
818 => 0.0067049709529225
819 => 0.0066837893241084
820 => 0.0066523177202272
821 => 0.0068028534835804
822 => 0.0067504098336858
823 => 0.0067885669707977
824 => 0.0067982795636427
825 => 0.0068276766569387
826 => 0.0068381835910265
827 => 0.0068064243386783
828 => 0.0066998364087319
829 => 0.0064342294213817
830 => 0.0063105886517778
831 => 0.0062697851384087
901 => 0.0062712682686227
902 => 0.006230356916334
903 => 0.0062424071431012
904 => 0.0062261663392308
905 => 0.0061954101857726
906 => 0.006257366926875
907 => 0.0062645068641201
908 => 0.0062500454204189
909 => 0.0062534516139224
910 => 0.0061337170366396
911 => 0.0061428201965006
912 => 0.006092132645621
913 => 0.0060826293408786
914 => 0.005954495626125
915 => 0.00572748817716
916 => 0.0058532723400329
917 => 0.0057013427592123
918 => 0.0056438047248467
919 => 0.0059161808305331
920 => 0.0058888418240594
921 => 0.0058420493289568
922 => 0.0057728334762896
923 => 0.0057471606432469
924 => 0.0055911806367102
925 => 0.005581964505803
926 => 0.005659272408857
927 => 0.0056235974716001
928 => 0.0055734963485361
929 => 0.0053920351594678
930 => 0.00518801270322
1001 => 0.0051941708587347
1002 => 0.0052590666060943
1003 => 0.0054477597439265
1004 => 0.0053740340705511
1005 => 0.0053205452486125
1006 => 0.0053105284001315
1007 => 0.005435910230564
1008 => 0.0056133517889315
1009 => 0.0056966033980865
1010 => 0.0056141035818029
1011 => 0.0055193322349619
1012 => 0.0055251005277159
1013 => 0.0055634743951681
1014 => 0.0055675069460601
1015 => 0.0055058205419184
1016 => 0.0055231849033541
1017 => 0.0054968068505028
1018 => 0.0053349247888445
1019 => 0.0053319968556826
1020 => 0.0052922683870508
1021 => 0.0052910654248097
1022 => 0.005223477388936
1023 => 0.0052140213555033
1024 => 0.0050798212079755
1025 => 0.0051681521514737
1026 => 0.0051089043921578
1027 => 0.0050196040437351
1028 => 0.0050042086300077
1029 => 0.0050037458252805
1030 => 0.0050954373159181
1031 => 0.0051670806830202
1101 => 0.0051099350322972
1102 => 0.0050969240753495
1103 => 0.0052358470561121
1104 => 0.005218167840499
1105 => 0.0052028577537967
1106 => 0.0055974638435758
1107 => 0.0052851023320185
1108 => 0.0051488948840078
1109 => 0.0049803123020016
1110 => 0.00503520364077
1111 => 0.00504677005237
1112 => 0.0046413593319397
1113 => 0.0044768842531518
1114 => 0.0044204426042244
1115 => 0.0043879596372989
1116 => 0.0044027625332223
1117 => 0.0042547156713106
1118 => 0.0043542056109843
1119 => 0.0042260095426585
1120 => 0.0042045170546176
1121 => 0.0044337475052296
1122 => 0.0044656435832874
1123 => 0.0043295650049582
1124 => 0.0044169494813662
1125 => 0.0043852626554856
1126 => 0.004228207096305
1127 => 0.0042222087291668
1128 => 0.0041434037703398
1129 => 0.0040200892694224
1130 => 0.0039637312335334
1201 => 0.0039343794791195
1202 => 0.003946490585045
1203 => 0.0039403668392831
1204 => 0.0039004052559257
1205 => 0.0039426573904638
1206 => 0.0038347206465062
1207 => 0.0037917393653569
1208 => 0.0037723257178199
1209 => 0.0036765256449503
1210 => 0.0038289861633715
1211 => 0.0038590228061475
1212 => 0.0038891186303886
1213 => 0.0041510822331149
1214 => 0.0041379952718242
1215 => 0.004256295028284
1216 => 0.0042516981172872
1217 => 0.0042179571104159
1218 => 0.004075609352552
1219 => 0.0041323466317318
1220 => 0.0039577181053474
1221 => 0.0040885616709001
1222 => 0.0040288501317398
1223 => 0.0040683731394456
1224 => 0.0039973072079446
1225 => 0.0040366380286777
1226 => 0.0038661456084357
1227 => 0.0037069421853068
1228 => 0.0037710102902115
1229 => 0.0038406596473194
1230 => 0.0039916771998556
1231 => 0.0039017323914328
]
'min_raw' => 0.0036765256449503
'max_raw' => 0.010974518588474
'avg_raw' => 0.0073255221167123
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003676'
'max' => '$0.010974'
'avg' => '$0.007325'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0069646543550497
'max_diff' => 0.00033333858847433
'year' => 2026
]
1 => [
'items' => [
101 => 0.0039340799457314
102 => 0.0038257210537463
103 => 0.0036021457083939
104 => 0.0036034111205684
105 => 0.0035690189245396
106 => 0.0035392990458278
107 => 0.0039120636346627
108 => 0.003865704465505
109 => 0.0037918371967902
110 => 0.0038907114713335
111 => 0.0039168553988685
112 => 0.0039175996797314
113 => 0.0039897357981238
114 => 0.0040282348574409
115 => 0.00403502048351
116 => 0.0041485282244044
117 => 0.0041865745219489
118 => 0.0043432818370212
119 => 0.0040249684812358
120 => 0.0040184130271453
121 => 0.0038921028351422
122 => 0.0038119949144886
123 => 0.0038975878930046
124 => 0.0039734115873631
125 => 0.0038944588886836
126 => 0.0039047684443487
127 => 0.003798780897044
128 => 0.0038366664580278
129 => 0.0038692986068833
130 => 0.0038512810523143
131 => 0.0038243079010652
201 => 0.0039671949091077
202 => 0.0039591326641352
203 => 0.0040921923309826
204 => 0.0041959218564781
205 => 0.0043818237100368
206 => 0.0041878254345655
207 => 0.004180755366334
208 => 0.0042498664173713
209 => 0.0041865639414071
210 => 0.0042265689210893
211 => 0.0043753782893354
212 => 0.0043785223967957
213 => 0.0043258545458819
214 => 0.0043226497023673
215 => 0.0043327651392585
216 => 0.0043920115690799
217 => 0.0043713090460414
218 => 0.0043952665298253
219 => 0.0044252257301471
220 => 0.0045491496851157
221 => 0.0045790273311161
222 => 0.0045064401411186
223 => 0.0045129939516511
224 => 0.0044858443500291
225 => 0.0044596181750457
226 => 0.004518570786383
227 => 0.0046263078423183
228 => 0.0046256376156849
301 => 0.0046506305185528
302 => 0.0046662008899871
303 => 0.0045993614575826
304 => 0.0045558514448412
305 => 0.0045725359523403
306 => 0.0045992148431726
307 => 0.0045638843476125
308 => 0.0043458081623378
309 => 0.0044119585461895
310 => 0.0044009478877281
311 => 0.0043852673711372
312 => 0.0044517820936258
313 => 0.0044453665863781
314 => 0.0042531972367583
315 => 0.004265499295029
316 => 0.0042539453656674
317 => 0.0042912784751463
318 => 0.0041845478309784
319 => 0.0042173774582826
320 => 0.0042379678927691
321 => 0.0042500958168649
322 => 0.0042939101948941
323 => 0.004288769083336
324 => 0.0042935906161812
325 => 0.0043585557722316
326 => 0.004687127238185
327 => 0.0047050106581248
328 => 0.0046169461577878
329 => 0.004652126188677
330 => 0.0045845882223968
331 => 0.0046299269116257
401 => 0.0046609464913183
402 => 0.0045207749754097
403 => 0.0045124749279432
404 => 0.0044446582084516
405 => 0.004481099072171
406 => 0.0044231190378025
407 => 0.0044373453101811
408 => 0.0043975674123866
409 => 0.0044691597087162
410 => 0.0045492110203308
411 => 0.0045694351429668
412 => 0.0045162341833438
413 => 0.0044777131824627
414 => 0.0044100829945221
415 => 0.0045225535043044
416 => 0.0045554433088415
417 => 0.0045223807481628
418 => 0.0045147194304223
419 => 0.0045002012471479
420 => 0.0045177995316359
421 => 0.0045552641839025
422 => 0.0045375965457571
423 => 0.0045492663320159
424 => 0.0045047931406287
425 => 0.0045993835842159
426 => 0.0047496159730622
427 => 0.0047500989947578
428 => 0.0047324312613772
429 => 0.0047252020055345
430 => 0.0047433301721507
501 => 0.0047531639588837
502 => 0.0048117871255832
503 => 0.0048746921191018
504 => 0.0051682422762543
505 => 0.0050858145667858
506 => 0.0053462697295885
507 => 0.0055522559474953
508 => 0.0056140222075599
509 => 0.0055572001546275
510 => 0.005362814981013
511 => 0.005353277517032
512 => 0.0056437710337156
513 => 0.0055616933098065
514 => 0.0055519304257167
515 => 0.0054480698336539
516 => 0.0055094643069476
517 => 0.0054960364350357
518 => 0.0054748398823087
519 => 0.005591976260577
520 => 0.0058112451038586
521 => 0.005777069998343
522 => 0.0057515598674131
523 => 0.0056397818995657
524 => 0.0057070972027228
525 => 0.0056831275126083
526 => 0.0057861165128815
527 => 0.0057251081106053
528 => 0.0055610714903222
529 => 0.0055871948627741
530 => 0.0055832463675809
531 => 0.0056645061188629
601 => 0.0056401139585191
602 => 0.0055784834067936
603 => 0.0058104956667898
604 => 0.0057954300811457
605 => 0.0058167896371167
606 => 0.0058261927742214
607 => 0.0059674145483665
608 => 0.006025268590641
609 => 0.0060384024711149
610 => 0.0060933593366834
611 => 0.006037035094235
612 => 0.0062623722225332
613 => 0.0064122082640655
614 => 0.0065862505367975
615 => 0.0068405730754117
616 => 0.0069362007025457
617 => 0.0069189264276336
618 => 0.0071117508738679
619 => 0.0074582521175043
620 => 0.0069889642358223
621 => 0.0074831255147535
622 => 0.0073266797592102
623 => 0.0069557496871559
624 => 0.0069318661634939
625 => 0.0071830643148757
626 => 0.0077401976377145
627 => 0.0076006420592972
628 => 0.0077404259006464
629 => 0.0075773606246567
630 => 0.0075692630592818
701 => 0.0077325061841601
702 => 0.0081139326433577
703 => 0.00793273123015
704 => 0.0076729345719072
705 => 0.00786476438147
706 => 0.0076985836474159
707 => 0.0073241319425335
708 => 0.0076005353437765
709 => 0.007415712260881
710 => 0.0074696534622054
711 => 0.0078581240920931
712 => 0.0078113822781392
713 => 0.0078718705135709
714 => 0.0077651103612866
715 => 0.0076653795445223
716 => 0.007479224568924
717 => 0.0074241132579788
718 => 0.0074393440416268
719 => 0.0074241057103588
720 => 0.0073199537123641
721 => 0.0072974620983135
722 => 0.0072599750895157
723 => 0.0072715938810492
724 => 0.0072011073372981
725 => 0.0073341300086195
726 => 0.0073588201886086
727 => 0.0074556229956261
728 => 0.0074656733841817
729 => 0.0077352678238239
730 => 0.0075867797368195
731 => 0.0076863983654267
801 => 0.0076774875376371
802 => 0.0069637888665757
803 => 0.0070621302464313
804 => 0.0072151185722615
805 => 0.0071461975388458
806 => 0.007048759322634
807 => 0.0069700727387364
808 => 0.0068508545180151
809 => 0.0070186518742971
810 => 0.0072392875545485
811 => 0.0074712690691372
812 => 0.0077499796588846
813 => 0.0076877746998019
814 => 0.0074660587685289
815 => 0.0074760047832422
816 => 0.0075374871325874
817 => 0.0074578619039249
818 => 0.0074343788695232
819 => 0.0075342609242671
820 => 0.0075349487570839
821 => 0.0074433303084774
822 => 0.0073415131688503
823 => 0.0073410865513176
824 => 0.0073229691747579
825 => 0.0075805836656987
826 => 0.0077222455879534
827 => 0.0077384868990403
828 => 0.0077211524183132
829 => 0.0077278237719641
830 => 0.0076453938207116
831 => 0.0078338042454322
901 => 0.0080067082830155
902 => 0.0079603663073872
903 => 0.0078908930980203
904 => 0.0078355543404765
905 => 0.0079473302548009
906 => 0.0079423530492876
907 => 0.0080051981170854
908 => 0.0080023471017994
909 => 0.0079812146692216
910 => 0.0079603670620929
911 => 0.0080430254678514
912 => 0.0080192211744463
913 => 0.0079953799063987
914 => 0.0079475625934136
915 => 0.0079540617604098
916 => 0.007884600546572
917 => 0.0078524646107218
918 => 0.0073692172404256
919 => 0.0072400777525191
920 => 0.0072807076642912
921 => 0.0072940840862018
922 => 0.0072378824155681
923 => 0.0073184611742321
924 => 0.0073059030600484
925 => 0.0073547593360863
926 => 0.0073242360559107
927 => 0.0073254887419761
928 => 0.007415251200723
929 => 0.0074413096243741
930 => 0.0074280560997879
1001 => 0.0074373384141038
1002 => 0.0076512454296944
1003 => 0.0076208346924387
1004 => 0.0076046795943801
1005 => 0.0076091546669482
1006 => 0.0076638124956497
1007 => 0.0076791137034794
1008 => 0.0076142814107085
1009 => 0.0076448566947702
1010 => 0.007775042373724
1011 => 0.0078205999934865
1012 => 0.0079659980468704
1013 => 0.0079042303695486
1014 => 0.0080176076145152
1015 => 0.0083660906123915
1016 => 0.0086444829442844
1017 => 0.008388461850826
1018 => 0.0088996939152976
1019 => 0.0092977614093728
1020 => 0.009282482915934
1021 => 0.009213070640875
1022 => 0.0087598813820423
1023 => 0.0083428498693932
1024 => 0.0086917144378175
1025 => 0.0086926037653471
1026 => 0.0086626359895268
1027 => 0.0084765087076662
1028 => 0.0086561591635723
1029 => 0.0086704191643675
1030 => 0.0086624373559625
1031 => 0.0085197340053585
1101 => 0.0083018523649738
1102 => 0.00834442591597
1103 => 0.0084141622609787
1104 => 0.0082821368113517
1105 => 0.0082399466804918
1106 => 0.0083183861607612
1107 => 0.008571134509704
1108 => 0.0085233538984079
1109 => 0.0085221061535503
1110 => 0.0087265318708077
1111 => 0.0085802071750824
1112 => 0.0083449629047875
1113 => 0.0082855606240473
1114 => 0.0080747225455908
1115 => 0.0082203491573602
1116 => 0.0082255899998637
1117 => 0.0081458317928655
1118 => 0.0083514348437128
1119 => 0.0083495401754036
1120 => 0.0085447296722075
1121 => 0.0089178586802696
1122 => 0.0088075060720223
1123 => 0.0086791779949603
1124 => 0.0086931308150885
1125 => 0.0088461588134009
1126 => 0.0087536345923318
1127 => 0.0087869069473301
1128 => 0.0088461084517067
1129 => 0.0088818261891877
1130 => 0.0086879915823298
1201 => 0.0086427994632902
1202 => 0.0085503522480135
1203 => 0.0085262344951569
1204 => 0.0086015308230252
1205 => 0.0085816929008904
1206 => 0.0082251495273448
1207 => 0.0081878887610207
1208 => 0.0081890314955277
1209 => 0.0080953375269529
1210 => 0.0079524317357472
1211 => 0.0083279796225743
1212 => 0.0082978178714728
1213 => 0.0082645216325908
1214 => 0.0082686002318682
1215 => 0.008431612841041
1216 => 0.0083370572953866
1217 => 0.0085884487108578
1218 => 0.0085367701933546
1219 => 0.0084837663168783
1220 => 0.0084764395666117
1221 => 0.0084560375962466
1222 => 0.0083860716486258
1223 => 0.008301583562572
1224 => 0.0082457972099267
1225 => 0.007606312054966
1226 => 0.0077249967800127
1227 => 0.0078615327377258
1228 => 0.0079086644031949
1229 => 0.0078280424279981
1230 => 0.0083892550956033
1231 => 0.0084917940579546
]
'min_raw' => 0.0035392990458278
'max_raw' => 0.0092977614093728
'avg_raw' => 0.0064185302276003
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003539'
'max' => '$0.009297'
'avg' => '$0.006418'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013722659912249
'max_diff' => -0.0016767571791016
'year' => 2027
]
2 => [
'items' => [
101 => 0.0081811968525415
102 => 0.008123096797009
103 => 0.0083930641255714
104 => 0.0082302408242846
105 => 0.0083035601468842
106 => 0.0081450838749491
107 => 0.0084670954246155
108 => 0.0084646422361239
109 => 0.008339372470343
110 => 0.0084452496185707
111 => 0.0084268508585575
112 => 0.0082854216015166
113 => 0.0084715789843265
114 => 0.0084716713160658
115 => 0.0083511018901013
116 => 0.0082103031966158
117 => 0.0081851317157373
118 => 0.0081661683862081
119 => 0.0082988963302933
120 => 0.0084178997899306
121 => 0.008639335724856
122 => 0.0086950099800843
123 => 0.0089123103046854
124 => 0.0087829185415463
125 => 0.008840276234242
126 => 0.0089025461234042
127 => 0.008932400598168
128 => 0.0088837543336199
129 => 0.0092213111821074
130 => 0.0092498113225943
131 => 0.0092593671731743
201 => 0.0091455449031065
202 => 0.0092466457193608
203 => 0.0091993439955425
204 => 0.0093224099401202
205 => 0.0093417082516149
206 => 0.0093253632683362
207 => 0.0093314888570078
208 => 0.0090434436359323
209 => 0.00902850697166
210 => 0.0088248444944491
211 => 0.0089078384593096
212 => 0.0087526852200072
213 => 0.0088018859104454
214 => 0.0088235731059892
215 => 0.0088122449457747
216 => 0.0089125308135596
217 => 0.0088272673388932
218 => 0.0086022430106353
219 => 0.0083771573746497
220 => 0.0083743316078407
221 => 0.0083150705329772
222 => 0.0082722356300581
223 => 0.0082804871520102
224 => 0.0083095665916321
225 => 0.0082705454801638
226 => 0.0082788726127161
227 => 0.0084171584964787
228 => 0.0084448907442575
229 => 0.0083506457306165
301 => 0.0079722384013573
302 => 0.0078793762935942
303 => 0.0079461237351187
304 => 0.0079142227571558
305 => 0.0063873954447854
306 => 0.0067461008740772
307 => 0.0065329702884774
308 => 0.0066311906679885
309 => 0.0064136395299887
310 => 0.0065174663358743
311 => 0.0064982933159751
312 => 0.007075081031411
313 => 0.00706607528458
314 => 0.0070703858590145
315 => 0.0068646309101154
316 => 0.0071924041305673
317 => 0.0073538770053057
318 => 0.007323992673653
319 => 0.0073315139160973
320 => 0.0072022740518354
321 => 0.0070716371834049
322 => 0.0069267407914455
323 => 0.0071959403779707
324 => 0.0071660099793393
325 => 0.0072346595451822
326 => 0.0074092547198276
327 => 0.0074349645225167
328 => 0.007469518758054
329 => 0.0074571335243519
330 => 0.007752200038383
331 => 0.0077164655366222
401 => 0.0078025754043477
402 => 0.007625440873265
403 => 0.0074249963375808
404 => 0.0074630942907888
405 => 0.0074594251515305
406 => 0.0074127127975301
407 => 0.007370542972989
408 => 0.0073003420964025
409 => 0.0075224680576972
410 => 0.0075134501493182
411 => 0.0076594396038013
412 => 0.0076336345496555
413 => 0.0074613020825021
414 => 0.0074674569702803
415 => 0.0075088515485274
416 => 0.0076521186564755
417 => 0.007694650088483
418 => 0.0076749478345926
419 => 0.0077215816081552
420 => 0.007758439041367
421 => 0.0077262103342996
422 => 0.0081825008620457
423 => 0.0079930172224609
424 => 0.0080853702299759
425 => 0.0081073958780927
426 => 0.008050977643591
427 => 0.0080632127384689
428 => 0.0080817455733451
429 => 0.0081942733176125
430 => 0.0084895786787352
501 => 0.008620367412965
502 => 0.0090138517728975
503 => 0.0086095072292543
504 => 0.0085855150973785
505 => 0.0086563935126917
506 => 0.0088874104865216
507 => 0.0090746280454898
508 => 0.0091367389106396
509 => 0.0091449478868078
510 => 0.0092614719988812
511 => 0.0093282614468756
512 => 0.0092473229067871
513 => 0.0091787359686804
514 => 0.0089330660697067
515 => 0.0089615030294498
516 => 0.0091574054825039
517 => 0.0094341292360398
518 => 0.009671587004773
519 => 0.0095884375704014
520 => 0.010222809060304
521 => 0.010285704402353
522 => 0.010277014299732
523 => 0.010420299249
524 => 0.010135907804174
525 => 0.010014324951686
526 => 0.0091935652431939
527 => 0.0094241652429269
528 => 0.0097593558852018
529 => 0.0097149921467963
530 => 0.0094715677427047
531 => 0.0096714023455341
601 => 0.0096053307764329
602 => 0.0095532173885709
603 => 0.0097919589210441
604 => 0.0095294527991282
605 => 0.009756737185829
606 => 0.0094652426089292
607 => 0.0095888173900136
608 => 0.0095186703676305
609 => 0.0095640640880081
610 => 0.0092986933262268
611 => 0.0094418809477729
612 => 0.0092927362504133
613 => 0.0092926655364075
614 => 0.0092893731589469
615 => 0.0094648412339817
616 => 0.0094705632416091
617 => 0.0093408920690408
618 => 0.0093222044272293
619 => 0.009391302433596
620 => 0.0093104067649372
621 => 0.0093482573391514
622 => 0.0093115532202711
623 => 0.0093032903500042
624 => 0.0092374503939055
625 => 0.0092090847305109
626 => 0.009220207638021
627 => 0.0091822394204371
628 => 0.0091593621959723
629 => 0.0092848223031895
630 => 0.0092177940289497
701 => 0.0092745492588415
702 => 0.0092098695112987
703 => 0.0089856613266909
704 => 0.0088567168287644
705 => 0.0084332083521499
706 => 0.0085533148307571
707 => 0.0086329455503329
708 => 0.0086066275979881
709 => 0.0086631687433202
710 => 0.0086666399104354
711 => 0.0086482578077192
712 => 0.0086269736876671
713 => 0.0086166137551113
714 => 0.0086938282046482
715 => 0.0087386537915233
716 => 0.0086409375583639
717 => 0.00861804401213
718 => 0.0087168405189153
719 => 0.0087771063309814
720 => 0.0092220752268429
721 => 0.0091891104938069
722 => 0.0092718455047252
723 => 0.009262530812168
724 => 0.0093492502843312
725 => 0.0094909999709346
726 => 0.0092027832242341
727 => 0.0092528076856761
728 => 0.009240542842964
729 => 0.0093744471796797
730 => 0.0093748652144028
731 => 0.009294582875524
801 => 0.0093381052338624
802 => 0.0093138122474114
803 => 0.0093577129573224
804 => 0.0091886702296996
805 => 0.0093945460249094
806 => 0.0095112643344502
807 => 0.0095128849682914
808 => 0.0095682085206799
809 => 0.0096244204540307
810 => 0.0097323143650701
811 => 0.0096214113514114
812 => 0.0094219076260302
813 => 0.0094363111506096
814 => 0.0093193421894141
815 => 0.009321308458784
816 => 0.0093108123587884
817 => 0.0093423119449848
818 => 0.0091955826174943
819 => 0.0092300196973779
820 => 0.0091818075838776
821 => 0.009252702881957
822 => 0.0091764312606361
823 => 0.0092405369284855
824 => 0.0092682028095928
825 => 0.0093702905064824
826 => 0.0091613528248006
827 => 0.0087353147480138
828 => 0.0088248731169668
829 => 0.0086924092546273
830 => 0.0087046692894123
831 => 0.0087294365108481
901 => 0.0086491578428441
902 => 0.0086644724828277
903 => 0.00866392533612
904 => 0.0086592103213858
905 => 0.0086383267393287
906 => 0.0086080414136552
907 => 0.008728688829807
908 => 0.0087491891767804
909 => 0.0087947589086466
910 => 0.008930343520436
911 => 0.0089167954204129
912 => 0.0089388929336558
913 => 0.0088906541863188
914 => 0.0087069069465492
915 => 0.0087168853057033
916 => 0.008592455007159
917 => 0.0087915769461554
918 => 0.0087444222427199
919 => 0.0087140212986555
920 => 0.0087057261194048
921 => 0.0088416468192217
922 => 0.0088823164229029
923 => 0.0088569738551244
924 => 0.0088049955092498
925 => 0.0089048092993475
926 => 0.0089315152587719
927 => 0.0089374937382091
928 => 0.0091143446368663
929 => 0.0089473777388756
930 => 0.0089875683307302
1001 => 0.0093011238554693
1002 => 0.0090167722622357
1003 => 0.0091673996429687
1004 => 0.0091600272165089
1005 => 0.0092370830875393
1006 => 0.0091537063859921
1007 => 0.0091547399401338
1008 => 0.009223160333392
1009 => 0.0091270762307438
1010 => 0.0091032844556944
1011 => 0.0090704162888635
1012 => 0.0091421827286809
1013 => 0.0091852034636346
1014 => 0.009531918992113
1015 => 0.0097559130356591
1016 => 0.0097461888634865
1017 => 0.0098350495942565
1018 => 0.0097950170211736
1019 => 0.0096657412826298
1020 => 0.0098863992048273
1021 => 0.0098165738055244
1022 => 0.0098223301266051
1023 => 0.009822115876047
1024 => 0.0098685436623411
1025 => 0.0098356453207076
1026 => 0.0097707993124025
1027 => 0.0098138471189519
1028 => 0.0099416837145312
1029 => 0.010338492429715
1030 => 0.010560551843748
1031 => 0.010325124174164
1101 => 0.010487519028141
1102 => 0.010390139982958
1103 => 0.010372443313673
1104 => 0.010474439282855
1105 => 0.01057661378248
1106 => 0.010570105708567
1107 => 0.010495932268558
1108 => 0.010454033574378
1109 => 0.010771304523799
1110 => 0.011005064354764
1111 => 0.010989123501438
1112 => 0.011059481243775
1113 => 0.011266053751362
1114 => 0.011284940152604
1115 => 0.011282560900147
1116 => 0.011235748984074
1117 => 0.011439146444623
1118 => 0.01160882418465
1119 => 0.01122491337803
1120 => 0.011371101587429
1121 => 0.011436730184519
1122 => 0.011533092436173
1123 => 0.011695671706903
1124 => 0.011872275916938
1125 => 0.011897249688603
1126 => 0.011879529602501
1127 => 0.011763054378608
1128 => 0.011956296812554
1129 => 0.012069493698267
1130 => 0.012136899853244
1201 => 0.012307830646952
1202 => 0.011437135484392
1203 => 0.010820814171974
1204 => 0.010724566699253
1205 => 0.010920289719777
1206 => 0.010971900319428
1207 => 0.010951096151423
1208 => 0.010257370480815
1209 => 0.010720914377167
1210 => 0.011219648633764
1211 => 0.011238807047719
1212 => 0.011488483844613
1213 => 0.01156978884428
1214 => 0.011770811391665
1215 => 0.011758237376594
1216 => 0.011807183167915
1217 => 0.011795931378113
1218 => 0.012168283316853
1219 => 0.012579042800082
1220 => 0.012564819505313
1221 => 0.012505767969713
1222 => 0.012593469569862
1223 => 0.013017417376215
1224 => 0.012978387055831
1225 => 0.01301630168749
1226 => 0.013516160043831
1227 => 0.014166047011098
1228 => 0.013864109267218
1229 => 0.014519227291192
1230 => 0.01493158936097
1231 => 0.015644726921616
]
'min_raw' => 0.0063873954447854
'max_raw' => 0.015644726921616
'avg_raw' => 0.011016061183201
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006387'
'max' => '$0.015644'
'avg' => '$0.011016'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0028480963989576
'max_diff' => 0.0063469655122436
'year' => 2028
]
3 => [
'items' => [
101 => 0.015555438586747
102 => 0.015833057805861
103 => 0.015395593832293
104 => 0.014391088122923
105 => 0.014232121249322
106 => 0.014550376955954
107 => 0.01533277755577
108 => 0.014525736376738
109 => 0.014688999756164
110 => 0.014641979891906
111 => 0.014639474403161
112 => 0.014735098717989
113 => 0.014596390661902
114 => 0.014031269088303
115 => 0.014290260975201
116 => 0.014190251769858
117 => 0.014301219439367
118 => 0.014900066185156
119 => 0.014635301764119
120 => 0.014356393954272
121 => 0.014706206242418
122 => 0.015151637493772
123 => 0.015123763206579
124 => 0.015069675438877
125 => 0.015374565353471
126 => 0.015878154168018
127 => 0.016014272201006
128 => 0.016114751750147
129 => 0.016128606182358
130 => 0.016271315444609
131 => 0.015503931774118
201 => 0.016721789366998
202 => 0.016932079730652
203 => 0.016892553857927
204 => 0.017126282746757
205 => 0.017057513778534
206 => 0.016957878333099
207 => 0.017328388337454
208 => 0.016903628516076
209 => 0.016300735425405
210 => 0.01596997635199
211 => 0.016405546581437
212 => 0.016671534121254
213 => 0.016847334965088
214 => 0.01690053219421
215 => 0.015563501583997
216 => 0.014842916240209
217 => 0.015304803184049
218 => 0.015868337133268
219 => 0.015500801314576
220 => 0.015515208022832
221 => 0.014991198532091
222 => 0.015914700345844
223 => 0.015780153899453
224 => 0.016478181101338
225 => 0.01631159130759
226 => 0.016880805393468
227 => 0.016730912248215
228 => 0.017353110313747
301 => 0.017601321967428
302 => 0.018018107965017
303 => 0.018324697441468
304 => 0.018504732646162
305 => 0.018493924007767
306 => 0.019207313181948
307 => 0.018786652509853
308 => 0.018258203563593
309 => 0.018248645589391
310 => 0.018522336786838
311 => 0.019095918453174
312 => 0.019244639833981
313 => 0.019327754796909
314 => 0.019200461337933
315 => 0.018743864327396
316 => 0.018546708053245
317 => 0.018714690910989
318 => 0.0185092623109
319 => 0.018863889707738
320 => 0.019350868867921
321 => 0.019250309597068
322 => 0.019586464162843
323 => 0.019934348773928
324 => 0.020431839392256
325 => 0.020561901861911
326 => 0.020776890178418
327 => 0.020998183776087
328 => 0.021069257315629
329 => 0.021204958755438
330 => 0.021204243541866
331 => 0.021613188964491
401 => 0.022064268429632
402 => 0.022234540485209
403 => 0.022626071688152
404 => 0.021955588224001
405 => 0.022464157633518
406 => 0.022922899971221
407 => 0.022375968444485
408 => 0.023129786135388
409 => 0.023159055168139
410 => 0.02360098281287
411 => 0.023153004481842
412 => 0.022886996378876
413 => 0.023654951804947
414 => 0.024026541245253
415 => 0.023914615481738
416 => 0.023062854894928
417 => 0.022567093699675
418 => 0.021269591026505
419 => 0.022806538990819
420 => 0.02355514151085
421 => 0.02306091619525
422 => 0.023310174697069
423 => 0.024670048260651
424 => 0.02518780006837
425 => 0.025080111311723
426 => 0.025098308938889
427 => 0.025377678416474
428 => 0.026616556531668
429 => 0.025874192048074
430 => 0.026441701879915
501 => 0.026742707048415
502 => 0.027022297424118
503 => 0.026335711826837
504 => 0.025442474052721
505 => 0.025159548154087
506 => 0.02301177522773
507 => 0.022899974319609
508 => 0.022837217081965
509 => 0.022441541575813
510 => 0.02213064901262
511 => 0.021883415703669
512 => 0.021234601670863
513 => 0.021453557360799
514 => 0.02041948321052
515 => 0.021081047206531
516 => 0.019430639894092
517 => 0.020805148146009
518 => 0.020057065795712
519 => 0.020559382974327
520 => 0.020557630437011
521 => 0.019632705251376
522 => 0.019099227706998
523 => 0.019439180361533
524 => 0.019803636592669
525 => 0.019862768389993
526 => 0.020335295406942
527 => 0.020467167540438
528 => 0.020067588819423
529 => 0.019396438870923
530 => 0.019552331696659
531 => 0.01909606854386
601 => 0.01829648491849
602 => 0.018870759837622
603 => 0.019066842544099
604 => 0.019153443837865
605 => 0.018367145175113
606 => 0.018120073063901
607 => 0.017988533945028
608 => 0.019294937587477
609 => 0.01936650532805
610 => 0.019000354648621
611 => 0.020655390439473
612 => 0.020280804867756
613 => 0.020699308727058
614 => 0.019538186056715
615 => 0.019582542506381
616 => 0.019032848426424
617 => 0.019340640380628
618 => 0.019123102947994
619 => 0.019315773832388
620 => 0.019431259966081
621 => 0.019980863846648
622 => 0.020811423739485
623 => 0.019898771354566
624 => 0.019501115641034
625 => 0.019747819009209
626 => 0.020404822588847
627 => 0.021400216643394
628 => 0.02081092332893
629 => 0.02107244169504
630 => 0.021129571823893
701 => 0.020695048750631
702 => 0.021416238128903
703 => 0.02180272937565
704 => 0.022199189421719
705 => 0.022543424571162
706 => 0.022040834560976
707 => 0.022578677915323
708 => 0.022145271113852
709 => 0.021756460408161
710 => 0.021757050073507
711 => 0.021513143438209
712 => 0.021040543598106
713 => 0.020953388936608
714 => 0.021406778492139
715 => 0.021770353979524
716 => 0.021800299798074
717 => 0.022001593869073
718 => 0.022120717626797
719 => 0.023288292393383
720 => 0.02375790062319
721 => 0.024332128677368
722 => 0.02455582286619
723 => 0.02522906217574
724 => 0.024685366755455
725 => 0.024567734831272
726 => 0.022934676481204
727 => 0.023202089694542
728 => 0.023630244050633
729 => 0.022941736588837
730 => 0.023378436100774
731 => 0.023464649834991
801 => 0.022918341368746
802 => 0.023210148325163
803 => 0.022435195563651
804 => 0.020828315591984
805 => 0.021418027045662
806 => 0.021852253170298
807 => 0.021232558950747
808 => 0.022343336853814
809 => 0.021694443333953
810 => 0.021488775240539
811 => 0.020686390682161
812 => 0.021065085307101
813 => 0.021577275209718
814 => 0.021260801398368
815 => 0.0219175320757
816 => 0.022847637858477
817 => 0.02351048662804
818 => 0.023561371925942
819 => 0.023135204574531
820 => 0.02381814047493
821 => 0.023823114917387
822 => 0.023052760431861
823 => 0.022580922598828
824 => 0.022473720050408
825 => 0.022741533034659
826 => 0.023066707438545
827 => 0.023579416842258
828 => 0.023889236396971
829 => 0.024697081480068
830 => 0.024915661196821
831 => 0.025155814036302
901 => 0.025476732290242
902 => 0.025862076935849
903 => 0.025018964788945
904 => 0.025052463206299
905 => 0.024267368848784
906 => 0.023428382933859
907 => 0.024065068662216
908 => 0.02489745055729
909 => 0.02470650123086
910 => 0.024685015530896
911 => 0.024721148518599
912 => 0.024577178962293
913 => 0.02392600999488
914 => 0.023598997015978
915 => 0.02402092718867
916 => 0.024245164297504
917 => 0.024592936497774
918 => 0.02455006623351
919 => 0.025445890073399
920 => 0.025793980129273
921 => 0.025704923797367
922 => 0.025721312305698
923 => 0.02635151272491
924 => 0.027052425201675
925 => 0.027708922229713
926 => 0.028376739203836
927 => 0.02757165977619
928 => 0.027162890093228
929 => 0.027584636064405
930 => 0.027360851715594
1001 => 0.028646782962611
1002 => 0.028735818052109
1003 => 0.03002165631166
1004 => 0.031242069934746
1005 => 0.030475550004067
1006 => 0.031198343773881
1007 => 0.031980104166176
1008 => 0.033488246798966
1009 => 0.03298035741734
1010 => 0.032591322110656
1011 => 0.032223685625644
1012 => 0.032988678790305
1013 => 0.033972830275577
1014 => 0.034184807079419
1015 => 0.034528290483014
1016 => 0.034167159683286
1017 => 0.034602101954305
1018 => 0.036137639294323
1019 => 0.035722723550487
1020 => 0.035133476493206
1021 => 0.036345635748577
1022 => 0.036784311470945
1023 => 0.039863167426788
1024 => 0.043750350252236
1025 => 0.042141031037882
1026 => 0.041142074669126
1027 => 0.041376853111346
1028 => 0.042796320689756
1029 => 0.043252208624293
1030 => 0.042012948064228
1031 => 0.042450675844529
1101 => 0.044862598950436
1102 => 0.046156518312998
1103 => 0.044399202022084
1104 => 0.039550836071629
1105 => 0.03508042124279
1106 => 0.036266176560801
1107 => 0.03613174870601
1108 => 0.038723059189772
1109 => 0.035712827947219
1110 => 0.035763512521175
1111 => 0.038408408561496
1112 => 0.037702795642936
1113 => 0.036559793082943
1114 => 0.0350887664264
1115 => 0.032369437598284
1116 => 0.029960852221128
1117 => 0.034684642809817
1118 => 0.034480944369976
1119 => 0.034185958842671
1120 => 0.034842417212922
1121 => 0.038029992719903
1122 => 0.037956508787292
1123 => 0.037489041499853
1124 => 0.037843611317308
1125 => 0.036497635279623
1126 => 0.036844523951839
1127 => 0.035079713106241
1128 => 0.035877481313463
1129 => 0.036557340712798
1130 => 0.036693832552704
1201 => 0.037001355637461
1202 => 0.034373604548309
1203 => 0.03555338764062
1204 => 0.036246399676626
1205 => 0.033115346085957
1206 => 0.036184508814243
1207 => 0.034327861248066
1208 => 0.033697687178195
1209 => 0.034546133544156
1210 => 0.034215493170199
1211 => 0.033931227992526
1212 => 0.033772603139089
1213 => 0.034395608510642
1214 => 0.034366544565407
1215 => 0.033347186857414
1216 => 0.032017476281672
1217 => 0.032463770797153
1218 => 0.032301627815645
1219 => 0.031714000733801
1220 => 0.0321099904366
1221 => 0.030366252191278
1222 => 0.027366241171828
1223 => 0.029348140344099
1224 => 0.029271839381858
1225 => 0.029233364976723
1226 => 0.030722707429015
1227 => 0.030579541517204
1228 => 0.030319693985381
1229 => 0.031709228430104
1230 => 0.031202029665905
1231 => 0.03276509674611
]
'min_raw' => 0.014031269088303
'max_raw' => 0.046156518312998
'avg_raw' => 0.030093893700651
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.014031'
'max' => '$0.046156'
'avg' => '$0.030093'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0076438736435179
'max_diff' => 0.030511791391382
'year' => 2029
]
4 => [
'items' => [
101 => 0.033794633817973
102 => 0.033533509914513
103 => 0.034501794506785
104 => 0.032474052521401
105 => 0.033147587070058
106 => 0.033286401607057
107 => 0.031692081790748
108 => 0.030602965230939
109 => 0.030530333573237
110 => 0.028641955548034
111 => 0.029650711846643
112 => 0.030538375644246
113 => 0.030113253570688
114 => 0.02997867262236
115 => 0.030666217500321
116 => 0.030719645625762
117 => 0.029501478703643
118 => 0.029754774181081
119 => 0.030811058428867
120 => 0.029728158528183
121 => 0.027624260911848
122 => 0.027102465214337
123 => 0.027032848049686
124 => 0.025617696733897
125 => 0.027137334097908
126 => 0.026473971664768
127 => 0.028569525642755
128 => 0.02737255644921
129 => 0.027320957499628
130 => 0.027242958119416
131 => 0.026024878922751
201 => 0.026291560853849
202 => 0.027178052209625
203 => 0.027494362312405
204 => 0.027461368577233
205 => 0.027173707918358
206 => 0.02730539749493
207 => 0.026881179485101
208 => 0.026731379276496
209 => 0.026258568612345
210 => 0.025563667553323
211 => 0.025660297807656
212 => 0.024283516978981
213 => 0.02353337371223
214 => 0.023325743942722
215 => 0.023048092737491
216 => 0.023357105385155
217 => 0.024279616731877
218 => 0.02316687232603
219 => 0.02125915009215
220 => 0.021373807449007
221 => 0.021631408487789
222 => 0.02115137065622
223 => 0.020697055135161
224 => 0.021092045620938
225 => 0.020283718561386
226 => 0.021729090951108
227 => 0.021689997678575
228 => 0.022228743124234
301 => 0.022565631707575
302 => 0.021789212591949
303 => 0.02159394528403
304 => 0.021705178417025
305 => 0.019866742503481
306 => 0.022078503688248
307 => 0.022097631090819
308 => 0.021933850657421
309 => 0.023111545207844
310 => 0.025596848041378
311 => 0.024661777144328
312 => 0.024299689430323
313 => 0.023611360421314
314 => 0.024528517956885
315 => 0.02445809456804
316 => 0.024139613296403
317 => 0.023946994829595
318 => 0.024301900260694
319 => 0.023903018119118
320 => 0.023831367925943
321 => 0.02339724571148
322 => 0.023242283832219
323 => 0.023127556226024
324 => 0.023001252404505
325 => 0.023279847161824
326 => 0.022648514789547
327 => 0.021887189838857
328 => 0.021823893906857
329 => 0.021998659540144
330 => 0.021921338757186
331 => 0.021823523724696
401 => 0.021636768189334
402 => 0.021581361811392
403 => 0.021761405660348
404 => 0.021558146652086
405 => 0.021858066390868
406 => 0.021776504817236
407 => 0.021320908497031
408 => 0.020753066798695
409 => 0.020748011816492
410 => 0.020625671254032
411 => 0.020469852153713
412 => 0.020426506844663
413 => 0.021058780623944
414 => 0.022367568424695
415 => 0.02211062206277
416 => 0.022296292142183
417 => 0.023209605168464
418 => 0.023499919915238
419 => 0.02329386138446
420 => 0.023011795758393
421 => 0.023024205214433
422 => 0.023988108845773
423 => 0.024048226332912
424 => 0.024200123828274
425 => 0.024395355036042
426 => 0.023327110103346
427 => 0.022973890974169
428 => 0.022806516154913
429 => 0.022291066493813
430 => 0.022846934761996
501 => 0.022523054126778
502 => 0.022566756689807
503 => 0.022538295338303
504 => 0.022553837160772
505 => 0.021728686940068
506 => 0.022029328311874
507 => 0.021529453720894
508 => 0.020860177757127
509 => 0.020857934109418
510 => 0.021021738453388
511 => 0.02092430121993
512 => 0.020662100130036
513 => 0.020699344557301
514 => 0.02037304418403
515 => 0.020738963330475
516 => 0.020749456582274
517 => 0.020608557779142
518 => 0.021172306711352
519 => 0.021403275108854
520 => 0.021310532498288
521 => 0.021396768040064
522 => 0.022121299344151
523 => 0.022239429560234
524 => 0.022291895198974
525 => 0.022221598193428
526 => 0.021410011142262
527 => 0.021446008479115
528 => 0.02118188390589
529 => 0.020958726474277
530 => 0.020967651601235
531 => 0.021082383529519
601 => 0.021583424589278
602 => 0.022637835961556
603 => 0.022677850102369
604 => 0.022726348408329
605 => 0.022529081424692
606 => 0.022469583814837
607 => 0.022548076519872
608 => 0.022944057992984
609 => 0.023962629849748
610 => 0.02360259852744
611 => 0.023309887458183
612 => 0.023566673980259
613 => 0.023527143707945
614 => 0.023193468427752
615 => 0.023184103273977
616 => 0.022543673728846
617 => 0.022306921507887
618 => 0.022109073631456
619 => 0.021893028915344
620 => 0.021764950365748
621 => 0.021961737228587
622 => 0.022006744712432
623 => 0.021576466797589
624 => 0.021517821507727
625 => 0.021869195741182
626 => 0.02171456904159
627 => 0.021873606436678
628 => 0.021910504476536
629 => 0.021904563042285
630 => 0.021743115009148
701 => 0.02184601717102
702 => 0.021602622881582
703 => 0.021337968148458
704 => 0.021169134917298
705 => 0.021021805530632
706 => 0.021103552437188
707 => 0.02081213964171
708 => 0.020718910823456
709 => 0.02181115623395
710 => 0.022618009662298
711 => 0.022606277693901
712 => 0.0225348623535
713 => 0.022428753643737
714 => 0.022936295479954
715 => 0.022759478052836
716 => 0.022888127504655
717 => 0.022920874189543
718 => 0.02301998854203
719 => 0.023055413403878
720 => 0.022948334867226
721 => 0.02258896621968
722 => 0.021693453717741
723 => 0.021276590230699
724 => 0.021139018336564
725 => 0.02114401881363
726 => 0.021006083333049
727 => 0.021046711513915
728 => 0.020991954509769
729 => 0.020888257991058
730 => 0.021097149469367
731 => 0.021121222266283
801 => 0.021072464499179
802 => 0.021083948718389
803 => 0.020680255231478
804 => 0.020710947170512
805 => 0.02054005055383
806 => 0.020508009498391
807 => 0.020075997733089
808 => 0.01931062626975
809 => 0.019734716356845
810 => 0.019222475167724
811 => 0.019028481667683
812 => 0.019946816724698
813 => 0.019854641355623
814 => 0.019696877191437
815 => 0.019463511111673
816 => 0.019376953362649
817 => 0.018851055880435
818 => 0.018819983051631
819 => 0.019080632044243
820 => 0.018960351502537
821 => 0.018791432068178
822 => 0.018179623000019
823 => 0.017491747044386
824 => 0.017512509695653
825 => 0.017731310238752
826 => 0.018367502327087
827 => 0.01811893107194
828 => 0.017938589774304
829 => 0.017904817270296
830 => 0.018327550865479
831 => 0.018925807468089
901 => 0.019206496080797
902 => 0.018928342190244
903 => 0.018608813977645
904 => 0.018628262179395
905 => 0.018757642352688
906 => 0.018771238379563
907 => 0.018563258361193
908 => 0.018621803518114
909 => 0.018532868071269
910 => 0.017987071398143
911 => 0.017977199667066
912 => 0.017843252361321
913 => 0.017839196490137
914 => 0.017611318708343
915 => 0.017579437031425
916 => 0.01712697186448
917 => 0.017424785807554
918 => 0.017225027850474
919 => 0.016923945491016
920 => 0.01687203877876
921 => 0.016870478400311
922 => 0.017179622662691
923 => 0.017421173276856
924 => 0.017228502725661
925 => 0.017184635375916
926 => 0.01765302390485
927 => 0.017593417195087
928 => 0.017541798168854
929 => 0.018872240151061
930 => 0.017819091506462
1001 => 0.017359858585793
1002 => 0.0167914706405
1003 => 0.016976540621548
1004 => 0.017015537585799
1005 => 0.015648667036995
1006 => 0.015094127825579
1007 => 0.01490383086559
1008 => 0.014794312274712
1009 => 0.014844221271823
1010 => 0.014345070940586
1011 => 0.014680508218362
1012 => 0.014248286223637
1013 => 0.01417582279965
1014 => 0.014948689268247
1015 => 0.015056229122332
1016 => 0.014597430694792
1017 => 0.014892053557991
1018 => 0.014785219212231
1019 => 0.014255695429185
1020 => 0.014235471515586
1021 => 0.013969775094914
1022 => 0.013554011645528
1023 => 0.013363996592735
1024 => 0.013265035103455
1025 => 0.013305868542653
1026 => 0.013285221906271
1027 => 0.013150488637952
1028 => 0.013292944659497
1029 => 0.012929028391342
1030 => 0.012784114001089
1031 => 0.012718659533001
1101 => 0.012395662898774
1102 => 0.012909694181084
1103 => 0.013010964819295
1104 => 0.013112434991947
1105 => 0.013995663568253
1106 => 0.013951539964559
1107 => 0.014350395852889
1108 => 0.014334897046517
1109 => 0.014221136886129
1110 => 0.013741201482087
1111 => 0.013932495180112
1112 => 0.013343722911233
1113 => 0.0137848711277
1114 => 0.013583549504494
1115 => 0.013716804084383
1116 => 0.013477200334662
1117 => 0.013609806942754
1118 => 0.013034979844508
1119 => 0.0124982143882
1120 => 0.012714224476979
1121 => 0.012949052147231
1122 => 0.013458218369315
1123 => 0.013154963167972
1124 => 0.013264025205724
1125 => 0.01289868563602
1126 => 0.012144885749632
1127 => 0.012149152175127
1128 => 0.012033196485029
1129 => 0.011932993838977
1130 => 0.013189795675826
1201 => 0.013033492500317
1202 => 0.012784443846597
1203 => 0.013117805366401
1204 => 0.013205951443396
1205 => 0.01320846083829
1206 => 0.013451672797832
1207 => 0.013581475064239
1208 => 0.013604353276288
1209 => 0.013987052549571
1210 => 0.01411532829805
1211 => 0.014643677951771
1212 => 0.013570462248812
1213 => 0.013548360077659
1214 => 0.013122496446624
1215 => 0.012852406999184
1216 => 0.013140989702162
1217 => 0.013396634581533
1218 => 0.013130440045633
1219 => 0.013165199432349
1220 => 0.012807855016797
1221 => 0.012935588830739
1222 => 0.013045610398909
1223 => 0.012984862955734
1224 => 0.012893921093092
1225 => 0.01337567461676
1226 => 0.013348492194947
1227 => 0.013797112151652
1228 => 0.014146843489025
1229 => 0.014773624567551
1230 => 0.014119545837272
1231 => 0.014095708608614
]
'min_raw' => 0.011932993838977
'max_raw' => 0.034501794506785
'avg_raw' => 0.023217394172881
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.011932'
'max' => '$0.0345017'
'avg' => '$0.023217'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0020982752493265
'max_diff' => -0.011654723806213
'year' => 2030
]
5 => [
'items' => [
101 => 0.014328721342365
102 => 0.014115292625014
103 => 0.014250172207071
104 => 0.014751893381651
105 => 0.014762493959468
106 => 0.01458492062296
107 => 0.014574115269296
108 => 0.014608220171012
109 => 0.014807973645608
110 => 0.01473817364378
111 => 0.014818947973016
112 => 0.014919957508585
113 => 0.015337775774856
114 => 0.015438510344337
115 => 0.015193777565385
116 => 0.015215874195167
117 => 0.015124337417774
118 => 0.015035914037765
119 => 0.015234676882828
120 => 0.015597919888875
121 => 0.015595660172987
122 => 0.015679925489955
123 => 0.015732422084334
124 => 0.015507068271402
125 => 0.015360371225673
126 => 0.015416624207581
127 => 0.015506573950683
128 => 0.015387454718205
129 => 0.014652195633959
130 => 0.014875226271587
131 => 0.014838103067845
201 => 0.01478523511138
202 => 0.01500949414216
203 => 0.014987863811558
204 => 0.014339951432479
205 => 0.014381428680841
206 => 0.014342473801329
207 => 0.014468344986451
208 => 0.014108495167944
209 => 0.014219182548491
210 => 0.014288604635941
211 => 0.014329494778774
212 => 0.014477218013322
213 => 0.014459884396763
214 => 0.014476140531379
215 => 0.014695175090725
216 => 0.015802976728314
217 => 0.015863271927222
218 => 0.015566356315869
219 => 0.015684968246203
220 => 0.015457259277539
221 => 0.01561012183372
222 => 0.015714706512372
223 => 0.015242108460023
224 => 0.015214124270499
225 => 0.014985475465921
226 => 0.015108338382171
227 => 0.014912854648261
228 => 0.014960819518832
301 => 0.014826705559214
302 => 0.015068083984703
303 => 0.015337982570816
304 => 0.015406169612286
305 => 0.015226798862545
306 => 0.015096922618624
307 => 0.014868902718193
308 => 0.015248104894365
309 => 0.015358995166654
310 => 0.015247522434972
311 => 0.015221691767314
312 => 0.015172742698777
313 => 0.015232076543601
314 => 0.015358391234416
315 => 0.015298823558894
316 => 0.015338169058024
317 => 0.015188224588243
318 => 0.015507142872891
319 => 0.016013661860777
320 => 0.016015290402147
321 => 0.015955722405533
322 => 0.015931348464729
323 => 0.015992468844143
324 => 0.016025624142686
325 => 0.016223276242153
326 => 0.016435364819687
327 => 0.017425089669544
328 => 0.017147178892152
329 => 0.01802532165794
330 => 0.018719818573111
331 => 0.018928067831302
401 => 0.018736488312651
402 => 0.018081105128271
403 => 0.018048948902574
404 => 0.019028368075683
405 => 0.018751637299039
406 => 0.018718721053708
407 => 0.018368547816253
408 => 0.018575543569388
409 => 0.018530270561733
410 => 0.018458804904318
411 => 0.01885373838185
412 => 0.019593018595836
413 => 0.01947779484156
414 => 0.01939178565407
415 => 0.019014918431384
416 => 0.019241876675782
417 => 0.019161061192051
418 => 0.019508295796934
419 => 0.01930260170919
420 => 0.018749540791234
421 => 0.018837617565331
422 => 0.018824304938112
423 => 0.019098277862934
424 => 0.019016037991329
425 => 0.018808246283279
426 => 0.019590491816435
427 => 0.01953969714259
428 => 0.019611712376823
429 => 0.019643415710077
430 => 0.020119554781397
501 => 0.020314613724165
502 => 0.020358895519161
503 => 0.020544186428392
504 => 0.020354285312544
505 => 0.021114025173137
506 => 0.021619207848381
507 => 0.022206003522141
508 => 0.023063469717311
509 => 0.023385884938701
510 => 0.023327643514784
511 => 0.023977764597836
512 => 0.0251460177327
513 => 0.023563780874975
514 => 0.025229880128131
515 => 0.024702412340623
516 => 0.023451795705181
517 => 0.02337127073766
518 => 0.024218202843139
519 => 0.026096616738896
520 => 0.025626095362803
521 => 0.026097386343308
522 => 0.025547600380455
523 => 0.025520298873439
524 => 0.026070684466237
525 => 0.027356690403767
526 => 0.026745757188059
527 => 0.02586983461637
528 => 0.02651660221244
529 => 0.025956312265209
530 => 0.024693822198814
531 => 0.025625735563974
601 => 0.025002591636057
602 => 0.025184458162376
603 => 0.026494214013196
604 => 0.026336620724041
605 => 0.026540561032953
606 => 0.026180611725771
607 => 0.025844362314066
608 => 0.025216727816911
609 => 0.025030916184311
610 => 0.025082267834759
611 => 0.025030890736983
612 => 0.024679735004083
613 => 0.024603902956998
614 => 0.024477512889576
615 => 0.02451668645643
616 => 0.02427903615296
617 => 0.024727531376666
618 => 0.024810776042312
619 => 0.025137153464728
620 => 0.025171039051439
621 => 0.026079995527175
622 => 0.025579357574733
623 => 0.025915228736233
624 => 0.025885185258206
625 => 0.023478900359873
626 => 0.023810465188031
627 => 0.024326276009872
628 => 0.024093903933798
629 => 0.023765384184921
630 => 0.023500086873588
701 => 0.023098134318876
702 => 0.023663874820818
703 => 0.024407763421077
704 => 0.025189905293945
705 => 0.02612959750623
706 => 0.025919869143671
707 => 0.025172338401672
708 => 0.025205872084687
709 => 0.025413164118065
710 => 0.025144702100373
711 => 0.025065527410355
712 => 0.025402286731466
713 => 0.025404605807831
714 => 0.025095707811758
715 => 0.02475242421686
716 => 0.024750985846063
717 => 0.024689901846077
718 => 0.025558467088353
719 => 0.026036090149755
720 => 0.026090848864016
721 => 0.02603240445199
722 => 0.026054897386603
723 => 0.02577697905088
724 => 0.026412217952221
725 => 0.026995175986708
726 => 0.026838930780383
727 => 0.026604697004538
728 => 0.026418118519851
729 => 0.026794978818941
730 => 0.026778197823055
731 => 0.026990084356838
801 => 0.02698047195975
802 => 0.026909222487894
803 => 0.026838933324927
804 => 0.027117621910967
805 => 0.027037364073789
806 => 0.026956981574022
807 => 0.026795762164795
808 => 0.02681767456008
809 => 0.026583481227999
810 => 0.02647513267662
811 => 0.024845830428413
812 => 0.024410427628705
813 => 0.024547414212934
814 => 0.024592513753318
815 => 0.024403025896901
816 => 0.024674702807566
817 => 0.024632362248816
818 => 0.024797084594514
819 => 0.024694173224335
820 => 0.024698396742864
821 => 0.025001037139544
822 => 0.025088894934224
823 => 0.02504420975075
824 => 0.025075505721537
825 => 0.025796708159112
826 => 0.025694176235244
827 => 0.025639708194227
828 => 0.02565479621383
829 => 0.025839078899385
830 => 0.025890667989878
831 => 0.025672081388355
901 => 0.025775168093268
902 => 0.026214098199134
903 => 0.026367698894895
904 => 0.026857918583247
905 => 0.026649664546675
906 => 0.027031923843826
907 => 0.028206858601472
908 => 0.029145477785181
909 => 0.028282284793764
910 => 0.030005939392213
911 => 0.031348051740672
912 => 0.031296539233333
913 => 0.031062510901761
914 => 0.029534551674943
915 => 0.028128500813836
916 => 0.029304722063225
917 => 0.029307720493082
918 => 0.029206682044621
919 => 0.028579140918836
920 => 0.029184844973717
921 => 0.029232923562
922 => 0.02920601233769
923 => 0.028724878027899
924 => 0.027990274865332
925 => 0.028133814564906
926 => 0.028368935520939
927 => 0.027923802499799
928 => 0.027781555527984
929 => 0.028046019712182
930 => 0.028898178416969
1001 => 0.028737082750048
1002 => 0.028732875891146
1003 => 0.029422111469427
1004 => 0.028928767541725
1005 => 0.028135625060195
1006 => 0.027935346123345
1007 => 0.027224490821584
1008 => 0.02771548111049
1009 => 0.027733150976895
1010 => 0.02746424061346
1011 => 0.028157445654139
1012 => 0.028151057647652
1013 => 0.028809152663822
1014 => 0.030067183165539
1015 => 0.02969512164226
1016 => 0.029262454570865
1017 => 0.029309497478083
1018 => 0.029825442058467
1019 => 0.029513490187297
1020 => 0.029625670255175
1021 => 0.029825272260498
1022 => 0.029945697106148
1023 => 0.029292170196027
1024 => 0.029139801811472
1025 => 0.028828109570708
1026 => 0.028746794883104
1027 => 0.029000661709534
1028 => 0.028933776770017
1029 => 0.027731665893045
1030 => 0.027606038617919
1031 => 0.027609891427093
1101 => 0.027293995670539
1102 => 0.026812178818125
1103 => 0.028078364738479
1104 => 0.027976672288814
1105 => 0.027864411694754
1106 => 0.027878162976976
1107 => 0.028427771369979
1108 => 0.028108970746148
1109 => 0.028956554454998
1110 => 0.028782316725157
1111 => 0.028603610455005
1112 => 0.028578907804943
1113 => 0.028510121137437
1114 => 0.028274226060167
1115 => 0.027989368579267
1116 => 0.027801280996444
1117 => 0.025645212149067
1118 => 0.026045365985865
1119 => 0.026505706499931
1120 => 0.026664614200687
1121 => 0.026392791582465
1122 => 0.028284959273913
1123 => 0.028630676544522
1124 => 0.027583476381267
1125 => 0.027387587987623
1126 => 0.028297801684388
1127 => 0.02774883155614
1128 => 0.027996032771276
1129 => 0.027461718955987
1130 => 0.028547403377816
1201 => 0.02853913228154
1202 => 0.028116776520154
1203 => 0.02847374871751
1204 => 0.028411716013565
1205 => 0.027934877399177
1206 => 0.028562520012414
1207 => 0.028562831315319
1208 => 0.028156323077791
1209 => 0.027681610452454
1210 => 0.027596743047256
1211 => 0.02753280685777
1212 => 0.027980308388023
1213 => 0.028381536860746
1214 => 0.029128123575511
1215 => 0.029315833214065
1216 => 0.030048476429882
1217 => 0.029612223066614
1218 => 0.029805608532124
1219 => 0.030015555810979
1220 => 0.030116212257018
1221 => 0.02995219797972
1222 => 0.031090294461862
1223 => 0.03118638467533
1224 => 0.031218602892729
1225 => 0.030834843162378
1226 => 0.031175711623013
1227 => 0.031016230558659
1228 => 0.031431155982992
1229 => 0.031496221587562
1230 => 0.031441113335268
1231 => 0.031461766185149
]
'min_raw' => 0.014108495167944
'max_raw' => 0.031496221587562
'avg_raw' => 0.022802358377753
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0141084'
'max' => '$0.031496'
'avg' => '$0.0228023'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0021755013289668
'max_diff' => -0.0030055729192232
'year' => 2031
]
6 => [
'items' => [
101 => 0.030490601611618
102 => 0.030440241605179
103 => 0.029753579344002
104 => 0.030033399290983
105 => 0.029510289312222
106 => 0.029676172875117
107 => 0.029749292769044
108 => 0.029711099085974
109 => 0.030049219890947
110 => 0.029761748133203
111 => 0.029003062899785
112 => 0.028244170963082
113 => 0.028234643692997
114 => 0.028034840841618
115 => 0.027890419975789
116 => 0.027918240558153
117 => 0.0280162839191
118 => 0.027884721517418
119 => 0.0279127970262
120 => 0.028379037538118
121 => 0.028472538747707
122 => 0.02815478510424
123 => 0.026878958374087
124 => 0.026565867294338
125 => 0.026790910953596
126 => 0.026683354579138
127 => 0.021535549695803
128 => 0.022744950094673
129 => 0.022026365445021
130 => 0.022357522312071
131 => 0.021624033461369
201 => 0.021974092786369
202 => 0.021909449611161
203 => 0.023854129663785
204 => 0.023823766159584
205 => 0.023838299562244
206 => 0.023144582386679
207 => 0.024249692683828
208 => 0.024794109754685
209 => 0.02469335264406
210 => 0.024718711038078
211 => 0.024282969812479
212 => 0.023842518489791
213 => 0.023353990187957
214 => 0.024261615388842
215 => 0.024160702960182
216 => 0.024392159764381
217 => 0.024980819585544
218 => 0.025067501980311
219 => 0.025184003997925
220 => 0.025142246317789
221 => 0.026137083670731
222 => 0.026016602303141
223 => 0.026306927734177
224 => 0.025709706295493
225 => 0.025033893548844
226 => 0.025162343457999
227 => 0.025149972698818
228 => 0.024992478735953
229 => 0.02485030022831
301 => 0.024613613071629
302 => 0.025362526258474
303 => 0.025332121750764
304 => 0.025824335389212
305 => 0.025737331847508
306 => 0.025156300902632
307 => 0.025177052536497
308 => 0.025316617247134
309 => 0.025799652304171
310 => 0.025943049996634
311 => 0.025876622472075
312 => 0.026033851495507
313 => 0.026158118904885
314 => 0.026049457568871
315 => 0.027587872940354
316 => 0.026949015620169
317 => 0.027260390232886
318 => 0.027334651243294
319 => 0.027144433226676
320 => 0.027185684703284
321 => 0.02724816944999
322 => 0.027627564596224
323 => 0.028623207238811
324 => 0.029064170587644
325 => 0.030390830579358
326 => 0.02902755472003
327 => 0.028946663572334
328 => 0.029185635098135
329 => 0.029964524954493
330 => 0.030595742025667
331 => 0.030805153143961
401 => 0.030832830280245
402 => 0.031225699459554
403 => 0.031450884746557
404 => 0.0311779948077
405 => 0.030946749157287
406 => 0.030118455940772
407 => 0.030214333135951
408 => 0.030874831933896
409 => 0.031807825389177
410 => 0.032608430835233
411 => 0.032328086711941
412 => 0.034466914480552
413 => 0.034678970517481
414 => 0.03464967122977
415 => 0.035132766440065
416 => 0.034173920828258
417 => 0.033763995752451
418 => 0.030996747091656
419 => 0.031774231090733
420 => 0.032904349743427
421 => 0.032754774302015
422 => 0.031934051928271
423 => 0.032607808243717
424 => 0.032385043335523
425 => 0.032209339409905
426 => 0.03301427315504
427 => 0.032129215437409
428 => 0.03289552061566
429 => 0.031912726298141
430 => 0.032329367300282
501 => 0.032092861716809
502 => 0.03224590981435
503 => 0.03135119376341
504 => 0.031833960826493
505 => 0.031331109066395
506 => 0.031330870649187
507 => 0.031319770168712
508 => 0.031911373034482
509 => 0.031930665182695
510 => 0.031493469771029
511 => 0.031430463081932
512 => 0.031663431834666
513 => 0.031390686439828
514 => 0.031518302293434
515 => 0.031394551794029
516 => 0.031366692950029
517 => 0.031144708941243
518 => 0.031049072126681
519 => 0.031086573785928
520 => 0.030958561289488
521 => 0.030881429129968
522 => 0.031304426640796
523 => 0.031078436134431
524 => 0.031269790354535
525 => 0.031051718069899
526 => 0.030295784521778
527 => 0.029861039144402
528 => 0.028433150747078
529 => 0.028838098125269
530 => 0.029106578655958
531 => 0.029017845842167
601 => 0.029208478261231
602 => 0.029220181543509
603 => 0.029158205000804
604 => 0.029086444104038
605 => 0.029051514868119
606 => 0.029311848775673
607 => 0.029462981371445
608 => 0.029133524269019
609 => 0.029056337079515
610 => 0.029389436399893
611 => 0.029592626792899
612 => 0.031092870492032
613 => 0.030981727593077
614 => 0.031260674458762
615 => 0.031229269322474
616 => 0.031521650077433
617 => 0.031999569042463
618 => 0.031027826158312
619 => 0.03119648712266
620 => 0.031155135349152
621 => 0.031606603169291
622 => 0.031608012602546
623 => 0.031337335091883
624 => 0.031484073761655
625 => 0.031402168261753
626 => 0.031550182570268
627 => 0.030980243211901
628 => 0.03167436782924
629 => 0.032067891758869
630 => 0.032073355839013
701 => 0.032259883058458
702 => 0.032449405516343
703 => 0.032813177370324
704 => 0.032439260116772
705 => 0.031766619377744
706 => 0.031815181866486
707 => 0.031420812847303
708 => 0.031427442261764
709 => 0.031392053927815
710 => 0.031498256981907
711 => 0.031003548809958
712 => 0.031119655829106
713 => 0.030957105322377
714 => 0.031196133769604
715 => 0.030938978673206
716 => 0.031155115408075
717 => 0.031248392857798
718 => 0.031592588655397
719 => 0.030888140674044
720 => 0.029451723553128
721 => 0.029753675846819
722 => 0.02930706468661
723 => 0.029348400249856
724 => 0.029431904666119
725 => 0.029161239532066
726 => 0.029212873910004
727 => 0.029211029166679
728 => 0.029195132165311
729 => 0.02912472171036
730 => 0.029022612620398
731 => 0.029429383807287
801 => 0.029498502158397
802 => 0.029652143690961
803 => 0.030109276675824
804 => 0.030063598310698
805 => 0.030138101619395
806 => 0.029975461314827
807 => 0.029355944667121
808 => 0.029389587401676
809 => 0.028970061962688
810 => 0.029641415482264
811 => 0.029482430107395
812 => 0.029379931201956
813 => 0.029351963425961
814 => 0.029810229555074
815 => 0.029947349963346
816 => 0.029861905726719
817 => 0.029686657104591
818 => 0.030023186266681
819 => 0.030113227273431
820 => 0.030133384134258
821 => 0.030729649286416
822 => 0.030166708732584
823 => 0.030302214119039
824 => 0.031359388462445
825 => 0.030400677213063
826 => 0.030908527943673
827 => 0.030883671293137
828 => 0.031143470542185
829 => 0.030862360171743
830 => 0.030865844871693
831 => 0.031096529004522
901 => 0.030772574744066
902 => 0.030692359113398
903 => 0.030581541794146
904 => 0.030823507356563
905 => 0.030968554768071
906 => 0.032137530379241
907 => 0.032892741935822
908 => 0.032859956210422
909 => 0.033159556368271
910 => 0.033024583753137
911 => 0.032588721574892
912 => 0.033332685165426
913 => 0.033097263956622
914 => 0.033116671795039
915 => 0.033115949434324
916 => 0.033272483957299
917 => 0.033161564901593
918 => 0.032942932057188
919 => 0.033088070742472
920 => 0.033519080749733
921 => 0.034856949037276
922 => 0.035605637855381
923 => 0.034811877030344
924 => 0.035359402618574
925 => 0.035031082368951
926 => 0.034971416812913
927 => 0.035315303344145
928 => 0.035659791803226
929 => 0.035637849377647
930 => 0.035387768446032
1001 => 0.035246504073331
1002 => 0.036316205230457
1003 => 0.037104342821143
1004 => 0.037050597121199
1005 => 0.037287813161711
1006 => 0.03798428679347
1007 => 0.038047963613866
1008 => 0.038039941798091
1009 => 0.03788211215475
1010 => 0.038567880893747
1011 => 0.03913996124077
1012 => 0.037845579152453
1013 => 0.038338462906979
1014 => 0.038559734304108
1015 => 0.038884626363359
1016 => 0.039432773725547
1017 => 0.04002820714979
1018 => 0.040112407964573
1019 => 0.040052663457104
1020 => 0.039659959107707
1021 => 0.040311489465512
1022 => 0.040693140668847
1023 => 0.0409204052265
1024 => 0.041496710331493
1025 => 0.038561100800927
1026 => 0.036483130465932
1027 => 0.036158625391867
1028 => 0.036818519220509
1029 => 0.036992527960568
1030 => 0.036922385255639
1031 => 0.034583440722804
1101 => 0.036146311332957
1102 => 0.037827828699588
1103 => 0.037892422629836
1104 => 0.038734225382441
1105 => 0.039008350865351
1106 => 0.039686112418807
1107 => 0.039643718249104
1108 => 0.039808742401829
1109 => 0.039770806206937
1110 => 0.041026216765183
1111 => 0.042411121041199
1112 => 0.042363166209847
1113 => 0.042164069834726
1114 => 0.042459761902757
1115 => 0.043889131530968
1116 => 0.043757538080784
1117 => 0.043885369908534
1118 => 0.045570677255937
1119 => 0.047761816539735
1120 => 0.046743812355624
1121 => 0.048952588512333
1122 => 0.050342896020788
1123 => 0.052747289096182
1124 => 0.052446247241257
1125 => 0.053382259821257
1126 => 0.051907319491611
1127 => 0.048520558360122
1128 => 0.047984590447063
1129 => 0.049057611781876
1130 => 0.051695530029624
1201 => 0.048974534348701
1202 => 0.049524988231119
1203 => 0.049366457475951
1204 => 0.049358010045721
1205 => 0.049680414099439
1206 => 0.049212750204056
1207 => 0.047307403363139
1208 => 0.048180612592052
1209 => 0.047843424573817
1210 => 0.048217559819081
1211 => 0.050236613432654
1212 => 0.049343941701867
1213 => 0.048403584548245
1214 => 0.049583001100844
1215 => 0.051084803663801
1216 => 0.05099082355841
1217 => 0.050808462873315
1218 => 0.051836420507103
1219 => 0.053534305354794
1220 => 0.053993236806472
1221 => 0.054332010621659
1222 => 0.054378721807143
1223 => 0.054859876048467
1224 => 0.052272588426388
1225 => 0.056378680328886
1226 => 0.057087688971948
1227 => 0.056954424732449
1228 => 0.057742457999568
1229 => 0.057510598621907
1230 => 0.057174670761299
1231 => 0.058423871109164
]
'min_raw' => 0.021535549695803
'max_raw' => 0.058423871109164
'avg_raw' => 0.039979710402484
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.021535'
'max' => '$0.058423'
'avg' => '$0.039979'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0074270545278592
'max_diff' => 0.026927649521603
'year' => 2032
]
7 => [
'items' => [
101 => 0.056991763715606
102 => 0.054959067567758
103 => 0.053843890258877
104 => 0.055312445697999
105 => 0.056209241259148
106 => 0.056801966078158
107 => 0.056981324250256
108 => 0.052473432199426
109 => 0.050043928403184
110 => 0.051601212482258
111 => 0.053501206536734
112 => 0.052262033863482
113 => 0.052310607086209
114 => 0.050543872503002
115 => 0.053657523344909
116 => 0.053203890607169
117 => 0.055557338053028
118 => 0.054995668932478
119 => 0.056914813964272
120 => 0.056409438759847
121 => 0.05850722297827
122 => 0.059344085898239
123 => 0.06074930898818
124 => 0.061782996813428
125 => 0.062389998075711
126 => 0.062353555996728
127 => 0.06475879740472
128 => 0.063340510579161
129 => 0.06155880806172
130 => 0.061526582684379
131 => 0.062449351665082
201 => 0.064383222299328
202 => 0.064884646818115
203 => 0.065164874718526
204 => 0.064735695934243
205 => 0.063196247234631
206 => 0.062531521091321
207 => 0.063097887024392
208 => 0.062405270156626
209 => 0.06360092118436
210 => 0.065242805422717
211 => 0.06490376282021
212 => 0.066037131408283
213 => 0.067210048663086
214 => 0.068887373016464
215 => 0.069325887713578
216 => 0.070050735832687
217 => 0.070796842647453
218 => 0.071036472048214
219 => 0.071493998926902
220 => 0.071491587534409
221 => 0.072870375578447
222 => 0.074391221488531
223 => 0.074965305611924
224 => 0.076285380398483
225 => 0.074024798587438
226 => 0.075739475858808
227 => 0.077286157678739
228 => 0.07544213985081
301 => 0.077983688825561
302 => 0.078082371412977
303 => 0.07957236132159
304 => 0.078061971101683
305 => 0.077165106210438
306 => 0.079754321546372
307 => 0.081007161287912
308 => 0.080629795761812
309 => 0.077758025475359
310 => 0.076086531992622
311 => 0.071711911141284
312 => 0.076893838509251
313 => 0.079417804171294
314 => 0.07775148901404
315 => 0.078591881455595
316 => 0.083176790118552
317 => 0.084922426486554
318 => 0.084559346324929
319 => 0.084620700895435
320 => 0.085562614594068
321 => 0.089739578655154
322 => 0.087236644968482
323 => 0.089150043988807
324 => 0.090164903929913
325 => 0.091107562401972
326 => 0.088792691124865
327 => 0.085781077605562
328 => 0.084827173185063
329 => 0.077585806811133
330 => 0.07720886224371
331 => 0.076997271835426
401 => 0.075663224241253
402 => 0.074615028258622
403 => 0.073781463896212
404 => 0.07159394208586
405 => 0.072332166481478
406 => 0.06884571328706
407 => 0.071076222488534
408 => 0.065511759006888
409 => 0.070146009543328
410 => 0.06762379766986
411 => 0.069317395108223
412 => 0.069311486306307
413 => 0.066193036466724
414 => 0.06439437967964
415 => 0.065540553789139
416 => 0.066769343417936
417 => 0.066968710401064
418 => 0.06856186822949
419 => 0.069006484334591
420 => 0.067659276778994
421 => 0.065396447869432
422 => 0.065922051415491
423 => 0.064383728340555
424 => 0.061687876322471
425 => 0.063624084306919
426 => 0.064285190841866
427 => 0.064577173150106
428 => 0.061926112311017
429 => 0.061093091438045
430 => 0.060649598114996
501 => 0.065054229205702
502 => 0.065295524839744
503 => 0.064061022260224
504 => 0.069641090979993
505 => 0.068378149572219
506 => 0.06978916455286
507 => 0.065874358402802
508 => 0.06602390926972
509 => 0.064170577300731
510 => 0.065208319363678
511 => 0.064474876721575
512 => 0.065124480060159
513 => 0.065513849622891
514 => 0.06736687747834
515 => 0.070167168144877
516 => 0.067090096909769
517 => 0.065749372908161
518 => 0.066581150538241
519 => 0.068796283977518
520 => 0.072152324528617
521 => 0.070165480975756
522 => 0.071047208405724
523 => 0.071239826623849
524 => 0.069774801744915
525 => 0.072206342085593
526 => 0.07350942430796
527 => 0.074846117033236
528 => 0.076006729873314
529 => 0.074312212564258
530 => 0.076125588984463
531 => 0.074664327693807
601 => 0.073353425253673
602 => 0.073355413351558
603 => 0.072533065101633
604 => 0.070939661744856
605 => 0.070645813718672
606 => 0.072174448259792
607 => 0.07340026839954
608 => 0.073501232817532
609 => 0.07417990983181
610 => 0.07458154389793
611 => 0.078518103740944
612 => 0.080101420674735
613 => 0.082037470650719
614 => 0.082791671226163
615 => 0.085061544562378
616 => 0.083228437493286
617 => 0.082831833248104
618 => 0.077325863004356
619 => 0.07822746532332
620 => 0.079671017627664
621 => 0.077349666650162
622 => 0.078822029544046
623 => 0.079112705168209
624 => 0.077270788032222
625 => 0.078254635559094
626 => 0.075641828218185
627 => 0.070224120204931
628 => 0.072212373543345
629 => 0.073676397239256
630 => 0.071587054912372
701 => 0.075332120164597
702 => 0.073144330358086
703 => 0.072450906021853
704 => 0.069745610462583
705 => 0.071022405830183
706 => 0.07274928984681
707 => 0.07168227629635
708 => 0.073896489626447
709 => 0.07703240621099
710 => 0.079267247116196
711 => 0.079438810450768
712 => 0.078001957471432
713 => 0.080304523540691
714 => 0.080321295220737
715 => 0.077723991288354
716 => 0.076133157091619
717 => 0.075771716214977
718 => 0.076674666389487
719 => 0.077771014595139
720 => 0.079499650145986
721 => 0.080544228405612
722 => 0.083267934505216
723 => 0.084004891280995
724 => 0.084814583346243
725 => 0.085896581645199
726 => 0.087195798021766
727 => 0.084353186554267
728 => 0.084466128807162
729 => 0.081819128367262
730 => 0.078990428778968
731 => 0.081137059164102
801 => 0.083943492838391
802 => 0.083299693852675
803 => 0.083227253315162
804 => 0.08334907820593
805 => 0.082863674795209
806 => 0.080668213158411
807 => 0.079565666068728
808 => 0.08098823310418
809 => 0.081744264172349
810 => 0.08291680242624
811 => 0.082772262337168
812 => 0.085792594957777
813 => 0.086966204884028
814 => 0.086665945243293
815 => 0.08672120024334
816 => 0.088845964955901
817 => 0.09120914030746
818 => 0.093422565872648
819 => 0.095674157426398
820 => 0.092959775927239
821 => 0.091581580401742
822 => 0.093003526388929
823 => 0.092249021832789
824 => 0.096584628812959
825 => 0.096884816833433
826 => 0.10122011029987
827 => 0.10533482003666
828 => 0.10275044457367
829 => 0.10518739423244
830 => 0.10782315397583
831 => 0.11290796215744
901 => 0.11119557764758
902 => 0.10988391794952
903 => 0.10864440587274
904 => 0.11122363373752
905 => 0.11454176918137
906 => 0.11525646377527
907 => 0.11641454205174
908 => 0.11519696434711
909 => 0.11666340258055
910 => 0.12184057393022
911 => 0.12044165653138
912 => 0.11845496893784
913 => 0.12254184849758
914 => 0.12402087432291
915 => 0.13440145213689
916 => 0.14750736042732
917 => 0.14208142833705
918 => 0.13871337719488
919 => 0.13950494910453
920 => 0.14429078314921
921 => 0.14582784114958
922 => 0.14164958764891
923 => 0.14312541742137
924 => 0.15125738456803
925 => 0.15561992403747
926 => 0.14969500947075
927 => 0.13334840516669
928 => 0.11827608945686
929 => 0.12227394629833
930 => 0.12182071340045
1001 => 0.13055749761598
1002 => 0.12040829281407
1003 => 0.12057917939385
1004 => 0.12949663105453
1005 => 0.12711760783529
1006 => 0.12326389490238
1007 => 0.11830422582605
1008 => 0.10913581882458
1009 => 0.10101510506343
1010 => 0.11694169483773
1011 => 0.11625491132603
1012 => 0.11526034702549
1013 => 0.11747364225325
1014 => 0.12822077562446
1015 => 0.12797301941517
1016 => 0.12639692081805
1017 => 0.12759237771287
1018 => 0.12305432552877
1019 => 0.12422388490614
1020 => 0.11827370192505
1021 => 0.12096343313409
1022 => 0.12325562656522
1023 => 0.12371581833302
1024 => 0.12475265388385
1025 => 0.11589300762306
1026 => 0.11987072868861
1027 => 0.12220726715256
1028 => 0.11165070136844
1029 => 0.12199859778895
1030 => 0.11573878089259
1031 => 0.11361410501867
1101 => 0.11647470117814
1102 => 0.11535992407278
1103 => 0.11440150417949
1104 => 0.11386668941129
1105 => 0.11596719551833
1106 => 0.11586920439779
1107 => 0.11243236871601
1108 => 0.10794915667247
1109 => 0.1094538697907
1110 => 0.10890719340808
1111 => 0.10692596767483
1112 => 0.10826107460494
1113 => 0.10238193936692
1114 => 0.092267192760763
1115 => 0.098949304191856
1116 => 0.098692050170498
1117 => 0.098562331027387
1118 => 0.10358375308786
1119 => 0.10310105922066
1120 => 0.10222496512515
1121 => 0.10690987751973
1122 => 0.10519982147474
1123 => 0.11046981126551
1124 => 0.11394096738328
1125 => 0.11306056991168
1126 => 0.11632520901799
1127 => 0.10948853534185
1128 => 0.11175940409732
1129 => 0.11222742700054
1130 => 0.106852066428
1201 => 0.10318003390691
1202 => 0.10293515120199
1203 => 0.096568352847675
1204 => 0.09996944513755
1205 => 0.10296226560588
1206 => 0.1015289368538
1207 => 0.10107518779037
1208 => 0.10339329334927
1209 => 0.10357343000442
1210 => 0.0994662951768
1211 => 0.10032029856351
1212 => 0.10388163465233
1213 => 0.10023056203152
1214 => 0.093137124328603
1215 => 0.091377853703832
1216 => 0.091143134572697
1217 => 0.086371853108804
1218 => 0.091495416579259
1219 => 0.089258843821441
1220 => 0.096324150365132
1221 => 0.092288485159375
1222 => 0.092114515698336
1223 => 0.091851535342205
1224 => 0.087744696287078
1225 => 0.088643833036913
1226 => 0.091632700535759
1227 => 0.09269916213135
1228 => 0.092587921449668
1229 => 0.091618053454444
1230 => 0.09206205405613
1231 => 0.090631773418036
]
'min_raw' => 0.050043928403184
'max_raw' => 0.15561992403747
'avg_raw' => 0.10283192622033
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.050043'
'max' => '$0.155619'
'avg' => '$0.102831'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.028508378707381
'max_diff' => 0.097196052928308
'year' => 2033
]
8 => [
'items' => [
101 => 0.090126711556008
102 => 0.088532597391237
103 => 0.086189689954302
104 => 0.086515485603295
105 => 0.081873572915648
106 => 0.079344412518466
107 => 0.078644374254324
108 => 0.0777082538309
109 => 0.078750111547071
110 => 0.08186042296023
111 => 0.078108727506584
112 => 0.071676708802145
113 => 0.072063284085908
114 => 0.072931803973293
115 => 0.071313322908986
116 => 0.069781566410439
117 => 0.071113304410593
118 => 0.068387973293717
119 => 0.073261147218344
120 => 0.073129341520594
121 => 0.074945759404641
122 => 0.076081602784183
123 => 0.073463851528
124 => 0.072805494166222
125 => 0.073180524440165
126 => 0.066982109402154
127 => 0.07443921665683
128 => 0.074503706030032
129 => 0.073951508864046
130 => 0.077922188264805
131 => 0.086301560286367
201 => 0.083148903472397
202 => 0.081928099464471
203 => 0.079607350153001
204 => 0.082699610818075
205 => 0.082462173445779
206 => 0.081388391602803
207 => 0.080738964993768
208 => 0.081935553433422
209 => 0.080590694444037
210 => 0.08034912081529
211 => 0.078885447459784
212 => 0.078362982664762
213 => 0.077976170530451
214 => 0.07755032837795
215 => 0.078489630053115
216 => 0.076361048881765
217 => 0.073794188656502
218 => 0.073580782002584
219 => 0.074170016536957
220 => 0.073909324118849
221 => 0.073579533907582
222 => 0.072949874581253
223 => 0.072763068109674
224 => 0.073370098516689
225 => 0.072684796579241
226 => 0.073695996918275
227 => 0.073421006378324
228 => 0.071884931576036
301 => 0.069970413644654
302 => 0.069953370419228
303 => 0.06954089067135
304 => 0.069015535695683
305 => 0.068869393959946
306 => 0.071001149150739
307 => 0.075413818597616
308 => 0.074547505998964
309 => 0.075173505634776
310 => 0.078252804268363
311 => 0.07923162070624
312 => 0.078536879983173
313 => 0.077585876031697
314 => 0.077627715379136
315 => 0.080877583769801
316 => 0.081080274074957
317 => 0.081592407085716
318 => 0.082250642733313
319 => 0.07864898036025
320 => 0.077458077405256
321 => 0.0768937615164
322 => 0.075155886996455
323 => 0.077030035672115
324 => 0.075938049497856
325 => 0.076085395740323
326 => 0.075989436306617
327 => 0.076041836646169
328 => 0.073259785066916
329 => 0.07427341844207
330 => 0.072588056358451
331 => 0.070331545719257
401 => 0.07032398110436
402 => 0.070876258886506
403 => 0.070547742451054
404 => 0.069663713170181
405 => 0.069789285357028
406 => 0.068689140866981
407 => 0.069922862816879
408 => 0.069958241547933
409 => 0.069483191395933
410 => 0.071383910280573
411 => 0.072162636358449
412 => 0.071849948171843
413 => 0.072140697321714
414 => 0.074583505198604
415 => 0.074981789469718
416 => 0.075158681033764
417 => 0.074921669771583
418 => 0.072185347365378
419 => 0.072306714899834
420 => 0.071416200460617
421 => 0.070663809599578
422 => 0.070693901288249
423 => 0.071080727994789
424 => 0.072770022909334
425 => 0.076325044467619
426 => 0.076459954937069
427 => 0.076623470361659
428 => 0.075958370953586
429 => 0.075757770607967
430 => 0.076022414243181
501 => 0.077357493426319
502 => 0.080791679555814
503 => 0.079577808816071
504 => 0.078590913009636
505 => 0.079456686697078
506 => 0.079323407624055
507 => 0.07819839812042
508 => 0.078166822850614
509 => 0.076007569925843
510 => 0.075209343283366
511 => 0.074542285354683
512 => 0.073813875510549
513 => 0.073382049738428
514 => 0.07404553038571
515 => 0.074197276259816
516 => 0.072746564228877
517 => 0.072548837539625
518 => 0.073733520299884
519 => 0.073212185586519
520 => 0.073748391267693
521 => 0.073872795585213
522 => 0.073852763624818
523 => 0.073308430309154
524 => 0.073655372132305
525 => 0.072834751292218
526 => 0.071942449381888
527 => 0.071373216355471
528 => 0.070876485042118
529 => 0.07115210044496
530 => 0.070169581859213
531 => 0.069855254389441
601 => 0.07353783604906
602 => 0.076258198715445
603 => 0.076218643564894
604 => 0.075977861758673
605 => 0.075620108835434
606 => 0.077331321571679
607 => 0.07673516927115
608 => 0.077168919879976
609 => 0.077279327614378
610 => 0.077613498573731
611 => 0.077732935968735
612 => 0.077371913206428
613 => 0.076160276720909
614 => 0.073140993797937
615 => 0.071735509446894
616 => 0.071271676200857
617 => 0.071288535658405
618 => 0.070823476555279
619 => 0.070960457303637
620 => 0.070775840241147
621 => 0.070426220188455
622 => 0.071130512391909
623 => 0.071211675507422
624 => 0.07104728529147
625 => 0.07108600513834
626 => 0.069724924362242
627 => 0.069828404377537
628 => 0.069252214502772
629 => 0.069144185847326
630 => 0.067687628018512
701 => 0.065107124693334
702 => 0.066536974031001
703 => 0.064809917098341
704 => 0.06415585446876
705 => 0.067252085229589
706 => 0.066941309537275
707 => 0.06640939664298
708 => 0.065622586611956
709 => 0.065330751117854
710 => 0.063557651039577
711 => 0.063452886827832
712 => 0.064331683104355
713 => 0.063926148860273
714 => 0.063356625193754
715 => 0.061293868205308
716 => 0.058974646394928
717 => 0.059044649123275
718 => 0.059782350430501
719 => 0.061927316473837
720 => 0.061089241132416
721 => 0.060481207856409
722 => 0.060367341501226
723 => 0.061792617331702
724 => 0.063809681236344
725 => 0.064756042491141
726 => 0.063818227229056
727 => 0.062740915551532
728 => 0.062806486521562
729 => 0.063242700808854
730 => 0.06328854076271
731 => 0.062587321610072
801 => 0.062784710694125
802 => 0.062484858625813
803 => 0.060644667036062
804 => 0.060611383805514
805 => 0.060159771112292
806 => 0.060146096459423
807 => 0.059377790608185
808 => 0.05927029930855
809 => 0.057744781408086
810 => 0.058748881909865
811 => 0.058075384010914
812 => 0.057060263815101
813 => 0.056885256710721
814 => 0.056879995785836
815 => 0.057922297250213
816 => 0.058736702010396
817 => 0.058087099795215
818 => 0.057939197962829
819 => 0.059518402589972
820 => 0.059317434406398
821 => 0.059143397255529
822 => 0.063629075287034
823 => 0.060078311103276
824 => 0.058529975248624
825 => 0.056613615607487
826 => 0.057237591969765
827 => 0.057369072957417
828 => 0.052760573470272
829 => 0.05089090580229
830 => 0.050249306315578
831 => 0.04988005674009
901 => 0.050048328408384
902 => 0.048365408217055
903 => 0.049496358418559
904 => 0.048039091786571
905 => 0.047794776293362
906 => 0.050400549552051
907 => 0.050763127678291
908 => 0.049216256747557
909 => 0.050209598300744
910 => 0.049849398845078
911 => 0.048064072440367
912 => 0.047995886103679
913 => 0.047100072071053
914 => 0.04569829657377
915 => 0.045057647556854
916 => 0.044723991986474
917 => 0.04486166477763
918 => 0.044792053201564
919 => 0.044337790580653
920 => 0.044818091003254
921 => 0.043591121897345
922 => 0.043102532913009
923 => 0.042881848603963
924 => 0.041792842900762
925 => 0.04352593525759
926 => 0.043867376284807
927 => 0.044209490056325
928 => 0.047187356866393
929 => 0.047038591055926
930 => 0.048383361530657
1001 => 0.048331106222884
1002 => 0.047947555899653
1003 => 0.046329420176908
1004 => 0.046974380235498
1005 => 0.044989293424205
1006 => 0.046476655436008
1007 => 0.045797885527544
1008 => 0.046247162647175
1009 => 0.045439321876393
1010 => 0.045886414313872
1011 => 0.043948344618988
1012 => 0.042138602407281
1013 => 0.04286689550294
1014 => 0.04365863338834
1015 => 0.045375322854948
1016 => 0.044352876771017
1017 => 0.044720587045765
1018 => 0.043488819179315
1019 => 0.04094733023373
1020 => 0.040961714785157
1021 => 0.040570762080226
1022 => 0.040232921863135
1023 => 0.044470317003175
1024 => 0.043943329934206
1025 => 0.043103645010168
1026 => 0.044227596648746
1027 => 0.044524787301497
1028 => 0.04453324790158
1029 => 0.045353254003696
1030 => 0.045790891407389
1031 => 0.045868026896619
1101 => 0.047158324215702
1102 => 0.047590814857626
1103 => 0.049372182603342
1104 => 0.045753760931288
1105 => 0.04567924191812
1106 => 0.044243412953238
1107 => 0.043332787524151
1108 => 0.044305764255441
1109 => 0.045167688814796
1110 => 0.044270195351902
1111 => 0.044387389051035
1112 => 0.043182577405011
1113 => 0.043613240876808
1114 => 0.043984186275354
1115 => 0.043779372029439
1116 => 0.043472755190184
1117 => 0.045097020830187
1118 => 0.045005373397229
1119 => 0.046517926902905
1120 => 0.047697070524319
1121 => 0.049810306691027
1122 => 0.047605034585574
1123 => 0.047524665704889
1124 => 0.048310284405163
1125 => 0.047590694583496
1126 => 0.048045450511393
1127 => 0.049737038480543
1128 => 0.049772779068762
1129 => 0.049174078166951
1130 => 0.049137647162666
1201 => 0.049252634219929
1202 => 0.049926117005874
1203 => 0.049690781426429
1204 => 0.04996311771693
1205 => 0.050303678418363
1206 => 0.051712381874236
1207 => 0.052052015508304
1208 => 0.051226881857369
1209 => 0.051301382187418
1210 => 0.050992759551543
1211 => 0.050694633952318
1212 => 0.051364776761629
1213 => 0.052589475917333
1214 => 0.052581857127447
1215 => 0.052865963526821
1216 => 0.053042959459966
1217 => 0.052283163345965
1218 => 0.051788564014227
1219 => 0.051978224870189
1220 => 0.052281496709147
1221 => 0.05187987790021
1222 => 0.049400900563523
1223 => 0.050152863929789
1224 => 0.050027700456512
1225 => 0.049849452450168
1226 => 0.050605557429708
1227 => 0.050532629259901
1228 => 0.04834814743804
1229 => 0.048487990876741
1230 => 0.048356651780723
1231 => 0.048781035269409
]
'min_raw' => 0.040232921863135
'max_raw' => 0.090126711556008
'avg_raw' => 0.065179816709571
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.040232'
'max' => '$0.090126'
'avg' => '$0.065179'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0098110065400489
'max_diff' => -0.065493212481464
'year' => 2034
]
9 => [
'items' => [
101 => 0.047567776482399
102 => 0.047940966713861
103 => 0.048175028128592
104 => 0.048312892100014
105 => 0.048810951298998
106 => 0.048752509800575
107 => 0.048807318493401
108 => 0.049545808802741
109 => 0.053280839368113
110 => 0.053484128840906
111 => 0.052483057127243
112 => 0.052882965531585
113 => 0.052115228845602
114 => 0.052630615626291
115 => 0.052983230172234
116 => 0.051389832842998
117 => 0.051295482194223
118 => 0.050524576785839
119 => 0.05093881768599
120 => 0.050279730628874
121 => 0.050441447538804
122 => 0.049989272960414
123 => 0.050803097174456
124 => 0.051713079101253
125 => 0.051942976472237
126 => 0.051338215466219
127 => 0.050900328642169
128 => 0.050131543628026
129 => 0.051410050240038
130 => 0.051783924535174
131 => 0.051408086437529
201 => 0.05132099653808
202 => 0.051155961335992
203 => 0.051356009536375
204 => 0.051781888335469
205 => 0.051581051758563
206 => 0.051713707855894
207 => 0.05120815960724
208 => 0.052283414870094
209 => 0.053991179001777
210 => 0.053996669742708
211 => 0.053795832083218
212 => 0.053713653640062
213 => 0.053919725266548
214 => 0.054031510670415
215 => 0.054697908523395
216 => 0.055412979970104
217 => 0.058749906401779
218 => 0.057812910812691
219 => 0.060773630457515
220 => 0.063115175295241
221 => 0.063817302208729
222 => 0.063171378485944
223 => 0.060961708322412
224 => 0.060853291362401
225 => 0.064155471485398
226 => 0.06322245435122
227 => 0.063111474931945
228 => 0.061930841413552
301 => 0.062628742047229
302 => 0.062476100941059
303 => 0.062235149487512
304 => 0.063566695280387
305 => 0.066059230136735
306 => 0.06567074520453
307 => 0.065380759223935
308 => 0.064110125070621
309 => 0.064875330637329
310 => 0.064602855591572
311 => 0.065773581305082
312 => 0.065080069327148
313 => 0.063215385828781
314 => 0.063512342821973
315 => 0.063467458369847
316 => 0.064391177214062
317 => 0.06411389974514
318 => 0.063413315493895
319 => 0.06605071092357
320 => 0.065879453134331
321 => 0.06612225752449
322 => 0.066229147526014
323 => 0.067834483647936
324 => 0.068492138492062
325 => 0.068641437655547
326 => 0.069266158892615
327 => 0.06862589402206
328 => 0.071187410005394
329 => 0.072890668665709
330 => 0.074869091248554
331 => 0.07776009839195
401 => 0.078847143821177
402 => 0.078650778794154
403 => 0.080842707415668
404 => 0.084781554424692
405 => 0.079446932390624
406 => 0.085064302345972
407 => 0.083285907873764
408 => 0.079069366572108
409 => 0.078797871022037
410 => 0.08165336174657
411 => 0.087986565342786
412 => 0.086400169672534
413 => 0.087989160117792
414 => 0.086135518359202
415 => 0.086043469422169
416 => 0.087899132874983
417 => 0.092234991679432
418 => 0.090175187688675
419 => 0.087221953583266
420 => 0.089402575689288
421 => 0.087513519014003
422 => 0.083256945610913
423 => 0.086398956585663
424 => 0.084297983326168
425 => 0.08491115901717
426 => 0.089327092312442
427 => 0.088795755535244
428 => 0.089483354525399
429 => 0.088269760305375
430 => 0.08713607193763
501 => 0.085019958410431
502 => 0.084393481518163
503 => 0.084566617192909
504 => 0.084393395720722
505 => 0.083209449650341
506 => 0.082953776609166
507 => 0.082527643672583
508 => 0.08265972008824
509 => 0.081858465497876
510 => 0.083370598457539
511 => 0.083651263659723
512 => 0.084751667926342
513 => 0.084865915547753
514 => 0.087930525767013
515 => 0.086242589956927
516 => 0.087375003027699
517 => 0.087273709343964
518 => 0.079160751807786
519 => 0.080278645775041
520 => 0.082017737973638
521 => 0.081234279295454
522 => 0.080126652025598
523 => 0.079232183617973
524 => 0.07787697251633
525 => 0.079784406117368
526 => 0.082292478469784
527 => 0.08492952440156
528 => 0.088097762302495
529 => 0.087390648485361
530 => 0.084870296397783
531 => 0.084983357551313
601 => 0.085682257114514
602 => 0.084777118678447
603 => 0.08451017568325
604 => 0.085645583246162
605 => 0.085653402174039
606 => 0.084611931013711
607 => 0.083454526406216
608 => 0.08344967683865
609 => 0.083243727867948
610 => 0.086172156223572
611 => 0.087782495721663
612 => 0.087967118549927
613 => 0.087770069134323
614 => 0.087845905633778
615 => 0.086908884561248
616 => 0.089050636868083
617 => 0.091016120582186
618 => 0.090489328960371
619 => 0.08969959343143
620 => 0.089070531043811
621 => 0.090341141853739
622 => 0.090284563554499
623 => 0.090998953796593
624 => 0.090966544928694
625 => 0.090726322359854
626 => 0.090489337539476
627 => 0.091428955564726
628 => 0.091158360663258
629 => 0.090887345453167
630 => 0.090343782958978
701 => 0.090417662129555
702 => 0.089628062959587
703 => 0.08926275825396
704 => 0.083769451969879
705 => 0.082301461031811
706 => 0.082763320864638
707 => 0.08291537711379
708 => 0.082276505576261
709 => 0.083192483248445
710 => 0.083049729098496
711 => 0.083605101987564
712 => 0.083258129117962
713 => 0.083272369005559
714 => 0.084292742232644
715 => 0.084588960921445
716 => 0.084438301705543
717 => 0.084543818256065
718 => 0.086975402627093
719 => 0.086629709087224
720 => 0.086446066284096
721 => 0.0864969365956
722 => 0.087118258536154
723 => 0.08729219475659
724 => 0.086555214768325
725 => 0.086902778791221
726 => 0.088382662288271
727 => 0.088900537758086
728 => 0.09055334766341
729 => 0.089851204639275
730 => 0.091140018548113
731 => 0.095101393114841
801 => 0.098266013225014
802 => 0.095355697788242
803 => 0.10116711960863
804 => 0.10569214509476
805 => 0.10551846707977
806 => 0.10472942422054
807 => 0.09957780300862
808 => 0.094837204363062
809 => 0.098802916426522
810 => 0.098813025842128
811 => 0.098472367658861
812 => 0.096356568939755
813 => 0.098398742449695
814 => 0.09856084276683
815 => 0.098470109695188
816 => 0.096847931778002
817 => 0.094371165927052
818 => 0.094855120045788
819 => 0.095647846764674
820 => 0.094147049705705
821 => 0.093667454108864
822 => 0.094559113570187
823 => 0.097432226139197
824 => 0.096889080850834
825 => 0.096874897132332
826 => 0.099198703005398
827 => 0.097535359508978
828 => 0.094861224257061
829 => 0.094185969838441
830 => 0.091789271558222
831 => 0.093444679597116
901 => 0.09350425478537
902 => 0.092597604720328
903 => 0.094934793913005
904 => 0.094913256303141
905 => 0.097132069596885
906 => 0.10137360726631
907 => 0.10011917586407
908 => 0.098660408625009
909 => 0.098819017071123
910 => 0.10055856024599
911 => 0.099506792732556
912 => 0.099885015663569
913 => 0.10055798776028
914 => 0.10096400853519
915 => 0.098760596929919
916 => 0.098246876283371
917 => 0.097195984131979
918 => 0.096921825985512
919 => 0.097777755715236
920 => 0.097552248471897
921 => 0.093499247721483
922 => 0.093075686592382
923 => 0.093088676607505
924 => 0.092023612009146
925 => 0.090399132851855
926 => 0.094668167084605
927 => 0.09432530389062
928 => 0.093946809459963
929 => 0.093993172868059
930 => 0.095846215937501
1001 => 0.094771357376307
1002 => 0.097629045027096
1003 => 0.097041590356048
1004 => 0.096439069689356
1005 => 0.096355782979991
1006 => 0.096123863927963
1007 => 0.095328527205278
1008 => 0.09436811032031
1009 => 0.093733959902967
1010 => 0.086464623252114
1011 => 0.087813769850726
1012 => 0.089365840033848
1013 => 0.089901608441531
1014 => 0.088985139506144
1015 => 0.095364714984791
1016 => 0.096530324899859
1017 => 0.092999616436265
1018 => 0.092339165040603
1019 => 0.095408014068338
1020 => 0.093557122953078
1021 => 0.094390579108948
1022 => 0.092589102776101
1023 => 0.096249563604362
1024 => 0.0962216770258
1025 => 0.094797675088349
1026 => 0.096001231774738
1027 => 0.095792084182402
1028 => 0.094184389502182
1029 => 0.096300530393318
1030 => 0.096301579972799
1031 => 0.094931009068474
1101 => 0.093330482308773
1102 => 0.093044345926894
1103 => 0.092828780600161
1104 => 0.094337563252967
1105 => 0.095690333061631
1106 => 0.098207502295479
1107 => 0.098840378447334
1108 => 0.10131053620098
1109 => 0.099839677528481
1110 => 0.10049169012719
1111 => 0.1011995420359
1112 => 0.10153891227133
1113 => 0.10098592668431
1114 => 0.10482309843321
1115 => 0.10514707329672
1116 => 0.10525569926609
1117 => 0.10396182654196
1118 => 0.10511108835567
1119 => 0.10457338681258
1120 => 0.10597233684989
1121 => 0.10619171007843
1122 => 0.10600590875829
1123 => 0.1060755412836
1124 => 0.10280119211939
1125 => 0.10263139984166
1126 => 0.10031627008688
1127 => 0.10125970257453
1128 => 0.099496000758761
1129 => 0.10005528877268
1130 => 0.10030181760013
1201 => 0.10017304493106
1202 => 0.10131304283186
1203 => 0.10034381172999
1204 => 0.097785851495812
1205 => 0.095227194347076
1206 => 0.095195072490811
1207 => 0.094521423227599
1208 => 0.094034498195313
1209 => 0.094128297231125
1210 => 0.094458857267726
1211 => 0.09401528544506
1212 => 0.094109943983088
1213 => 0.095681906420892
1214 => 0.09599715227707
1215 => 0.094925823683269
1216 => 0.090624284787179
1217 => 0.089568676352486
1218 => 0.090327426761718
1219 => 0.08996479293589
1220 => 0.072608609363464
1221 => 0.076686187245896
1222 => 0.074263428929616
1223 => 0.075379947427508
1224 => 0.072906938556811
1225 => 0.074087188011408
1226 => 0.073869239032953
1227 => 0.080425863603601
1228 => 0.080323490929273
1229 => 0.080372491311033
1230 => 0.078033575419829
1231 => 0.081759531943004
]
'min_raw' => 0.047567776482399
'max_raw' => 0.10619171007843
'avg_raw' => 0.076879743280416
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.047567'
'max' => '$0.106191'
'avg' => '$0.076879'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0073348546192639
'max_diff' => 0.016064998522426
'year' => 2035
]
10 => [
'items' => [
101 => 0.083595072107383
102 => 0.083255362474276
103 => 0.083340860070172
104 => 0.081871728105586
105 => 0.080386715719813
106 => 0.078739608442223
107 => 0.081799730175373
108 => 0.081459496876667
109 => 0.082239869651822
110 => 0.084224577337789
111 => 0.084516833083719
112 => 0.084909627770014
113 => 0.084768838836007
114 => 0.088123002428777
115 => 0.087716791086208
116 => 0.088695643546819
117 => 0.086682069769628
118 => 0.084403519910559
119 => 0.084836597747361
120 => 0.084794888869085
121 => 0.08426388697741
122 => 0.083784522212303
123 => 0.082986514938586
124 => 0.085511528035481
125 => 0.085409017114963
126 => 0.087068549762249
127 => 0.086775211247001
128 => 0.084816224850064
129 => 0.084886190432473
130 => 0.085356742598483
131 => 0.086985329017714
201 => 0.087468804349561
202 => 0.087244839312689
203 => 0.087774947942571
204 => 0.08819392418936
205 => 0.087827564908496
206 => 0.093014439742183
207 => 0.090860487683585
208 => 0.091910308929844
209 => 0.092160685111171
210 => 0.091519351787546
211 => 0.091658434021015
212 => 0.091869105707082
213 => 0.093148262931132
214 => 0.096505141614164
215 => 0.097991880331834
216 => 0.10246480711834
217 => 0.097868427377733
218 => 0.097595697225636
219 => 0.098401406409334
220 => 0.1010274879404
221 => 0.10315568036603
222 => 0.10386172457198
223 => 0.10395503996931
224 => 0.1052796258366
225 => 0.10603885375367
226 => 0.10511878627225
227 => 0.10433912541682
228 => 0.10154647700776
229 => 0.10186973366523
301 => 0.10409665147706
302 => 0.10724230405106
303 => 0.10994160120893
304 => 0.10899640142425
305 => 0.1162076085743
306 => 0.11692257030809
307 => 0.11682378571396
308 => 0.1184525749441
309 => 0.11521976001943
310 => 0.11383766900629
311 => 0.10450769694329
312 => 0.10712903852838
313 => 0.1109393124683
314 => 0.11043500842456
315 => 0.10766788564047
316 => 0.10993950209816
317 => 0.10918843465724
318 => 0.10859603660476
319 => 0.11130992692516
320 => 0.10832589303741
321 => 0.1109095444476
322 => 0.10759598478958
323 => 0.10900071901725
324 => 0.10820332393027
325 => 0.10871933627661
326 => 0.10570273864379
327 => 0.10733042150269
328 => 0.10563502168553
329 => 0.10563421784527
330 => 0.10559679180034
331 => 0.10759142216667
401 => 0.10765646699131
402 => 0.10618243213687
403 => 0.10597000068559
404 => 0.10675547110079
405 => 0.10583589095962
406 => 0.10626615671991
407 => 0.10584892327118
408 => 0.10575499523359
409 => 0.10500656064954
410 => 0.1046841144521
411 => 0.10481055391453
412 => 0.10437895084523
413 => 0.10411889438422
414 => 0.10554506002472
415 => 0.10478311725435
416 => 0.10542828136736
417 => 0.10469303543439
418 => 0.1021443526993
419 => 0.10067857830653
420 => 0.095864352882966
421 => 0.09722966124106
422 => 0.098134862094989
423 => 0.097835693218165
424 => 0.098478423728569
425 => 0.098517882161867
426 => 0.098308923921073
427 => 0.098066977047442
428 => 0.097949210689859
429 => 0.098826944635112
430 => 0.099336498733497
501 => 0.098225711110706
502 => 0.097965469112257
503 => 0.099088536727164
504 => 0.099773607323482
505 => 0.10483178369878
506 => 0.1044570576552
507 => 0.10539754648831
508 => 0.10529166187868
509 => 0.10627744400739
510 => 0.10788878116523
511 => 0.10461248218639
512 => 0.10518113440322
513 => 0.10504171401175
514 => 0.10656386928783
515 => 0.10656862129045
516 => 0.10565601316515
517 => 0.10615075283525
518 => 0.10587460272387
519 => 0.10637364329906
520 => 0.10445205296043
521 => 0.10679234257002
522 => 0.10811913597373
523 => 0.10813755850143
524 => 0.1087664480447
525 => 0.10940543624349
526 => 0.11063191844693
527 => 0.10937123032051
528 => 0.1071033751066
529 => 0.10726710692792
530 => 0.10593746424578
531 => 0.10595981577949
601 => 0.10584050154084
602 => 0.10619857255257
603 => 0.10453062941143
604 => 0.10492209233282
605 => 0.10437404195047
606 => 0.10517994304873
607 => 0.10431292668722
608 => 0.10504164677902
609 => 0.10535613821319
610 => 0.10651661837577
611 => 0.10414152282365
612 => 0.099298542213047
613 => 0.10031659545286
614 => 0.09881081474482
615 => 0.09895018048226
616 => 0.099231721451783
617 => 0.098319155055087
618 => 0.098493243965305
619 => 0.098487024284387
620 => 0.098433426434381
621 => 0.098196032669614
622 => 0.097851764743777
623 => 0.099223222200232
624 => 0.099456259546687
625 => 0.099974272700635
626 => 0.10151552847511
627 => 0.10136152067792
628 => 0.10161271378485
629 => 0.10106436064282
630 => 0.098975617011805
701 => 0.099089045840217
702 => 0.097674586532338
703 => 0.099938101795995
704 => 0.099402071504619
705 => 0.099056489288686
706 => 0.098962193979272
707 => 0.1005072702287
708 => 0.10096958125863
709 => 0.10068150004931
710 => 0.10009063708434
711 => 0.10122526865004
712 => 0.10152884819076
713 => 0.10159680845435
714 => 0.10360715804475
715 => 0.10170916466425
716 => 0.10216603053537
717 => 0.10573036764372
718 => 0.10249800573135
719 => 0.1042102599266
720 => 0.10412645399388
721 => 0.10500238530065
722 => 0.10405460206021
723 => 0.10406635096938
724 => 0.10484411862907
725 => 0.10375188422218
726 => 0.1034814316229
727 => 0.10310780329403
728 => 0.10392360708121
729 => 0.104412644556
730 => 0.10835392744433
731 => 0.11090017593453
801 => 0.11078963657232
802 => 0.11179975942192
803 => 0.11134468982651
804 => 0.10987515006163
805 => 0.11238347524899
806 => 0.11158973620693
807 => 0.11165517108916
808 => 0.11165273559958
809 => 0.11218050267268
810 => 0.11180653133225
811 => 0.11106939543288
812 => 0.11155874064357
813 => 0.11301192097521
814 => 0.11752263731364
815 => 0.12004689393567
816 => 0.11737067389544
817 => 0.11921669464318
818 => 0.11810973999899
819 => 0.11790857341109
820 => 0.11906801086053
821 => 0.12022947775173
822 => 0.12015549733192
823 => 0.11931233201089
824 => 0.11883604931557
825 => 0.12244262145096
826 => 0.12509988236397
827 => 0.12491867498421
828 => 0.12571846542669
829 => 0.1280666749024
830 => 0.12828136574814
831 => 0.12825431963619
901 => 0.12772218597435
902 => 0.13003430315672
903 => 0.13196311198809
904 => 0.12759901240645
905 => 0.12926080439688
906 => 0.13000683636098
907 => 0.13110223262198
908 => 0.13295034972402
909 => 0.13495789508569
910 => 0.13524178401145
911 => 0.13504035123329
912 => 0.13371632110155
913 => 0.13591300119129
914 => 0.13719976486937
915 => 0.1379660031926
916 => 0.13990905609043
917 => 0.13001144360041
918 => 0.12300542153672
919 => 0.12191133002329
920 => 0.12413620813887
921 => 0.12472289075488
922 => 0.124486399728
923 => 0.11660048493566
924 => 0.12186981231393
925 => 0.12753916551532
926 => 0.12775694846096
927 => 0.13059514521416
928 => 0.13151937841862
929 => 0.1338044988159
930 => 0.13366156391287
1001 => 0.1342179543654
1002 => 0.13409004983571
1003 => 0.1383227541828
1004 => 0.14299205564032
1005 => 0.14283037257831
1006 => 0.14215910524913
1007 => 0.14315605170106
1008 => 0.14797527119797
1009 => 0.14753159469311
1010 => 0.14796258862531
1011 => 0.15364472001148
1012 => 0.16103229908726
1013 => 0.15760002690575
1014 => 0.16504706992992
1015 => 0.16973458876285
1016 => 0.1778411678859
1017 => 0.17682618425395
1018 => 0.17998201601773
1019 => 0.17500915171928
1020 => 0.16359045010836
1021 => 0.16178339686939
1022 => 0.16540116321567
1023 => 0.17429508876153
1024 => 0.16512106184944
1025 => 0.16697695554548
1026 => 0.16644245803617
1027 => 0.16641397693536
1028 => 0.16750098471201
1029 => 0.16592422323747
1030 => 0.15950021333625
1031 => 0.16244429921705
1101 => 0.16130744627186
1102 => 0.16256886937255
1103 => 0.16937624959654
1104 => 0.16636654453184
1105 => 0.16319606473476
1106 => 0.16717254998609
1107 => 0.1722359821796
1108 => 0.17191912169279
1109 => 0.17130427991098
1110 => 0.17477011084301
1111 => 0.18049464814953
1112 => 0.18204196758043
1113 => 0.18318416715077
1114 => 0.1833416571739
1115 => 0.18496390229164
1116 => 0.17624068143515
1117 => 0.1900846569626
1118 => 0.19247512910409
1119 => 0.19202581941641
1120 => 0.19468272859522
1121 => 0.19390099851553
1122 => 0.19276839427976
1123 => 0.19698016046897
1124 => 0.19215171040504
1125 => 0.18529833342426
1126 => 0.18153843526817
1127 => 0.18648977246244
1128 => 0.18951338130912
1129 => 0.19151179441914
1130 => 0.19211651301876
1201 => 0.17691784023841
1202 => 0.16872659856684
1203 => 0.17397709056554
1204 => 0.18038305317355
1205 => 0.17620509598941
1206 => 0.17636886400111
1207 => 0.17041219500436
1208 => 0.18091008620601
1209 => 0.17938063175909
1210 => 0.18731544413526
1211 => 0.18542173748084
1212 => 0.19189226894596
1213 => 0.19018836116007
1214 => 0.1972611871151
1215 => 0.20008272887768
1216 => 0.20482053663496
1217 => 0.20830568730756
1218 => 0.21035223444282
1219 => 0.21022936742923
1220 => 0.21833880676487
1221 => 0.21355695371087
1222 => 0.20754981927882
1223 => 0.20744116916921
1224 => 0.21055234921332
1225 => 0.21707252907522
1226 => 0.21876311684865
1227 => 0.21970792477977
1228 => 0.21826091854426
1229 => 0.21307055977264
1230 => 0.21082938917077
1231 => 0.21273893145653
]
'min_raw' => 0.078739608442223
'max_raw' => 0.21970792477977
'avg_raw' => 0.149223766611
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.078739'
'max' => '$0.2197079'
'avg' => '$0.149223'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.031171831959824
'max_diff' => 0.11351621470134
'year' => 2036
]
11 => [
'items' => [
101 => 0.21040372532989
102 => 0.21443494624758
103 => 0.2199706735899
104 => 0.21882756778435
105 => 0.22264879910831
106 => 0.22660337152334
107 => 0.2322585876878
108 => 0.23373707060524
109 => 0.2361809466461
110 => 0.2386964978636
111 => 0.23950442511865
112 => 0.24104700893365
113 => 0.24103887875551
114 => 0.24568755890989
115 => 0.25081519707781
116 => 0.2527507617811
117 => 0.25720148608866
118 => 0.24957977668394
119 => 0.25536093081931
120 => 0.26057567656109
121 => 0.25435844170901
122 => 0.26292745152266
123 => 0.26326016675593
124 => 0.2682837717606
125 => 0.2631913856821
126 => 0.26016754308417
127 => 0.26889726336251
128 => 0.27312130002159
129 => 0.27184898580352
130 => 0.26216661178215
131 => 0.25653105480515
201 => 0.24178171517859
202 => 0.25925294509031
203 => 0.26776267153754
204 => 0.26214457364645
205 => 0.26497801543748
206 => 0.28043635510274
207 => 0.28632188999389
208 => 0.28509773987953
209 => 0.28530460109763
210 => 0.28848032889488
211 => 0.30256325485315
212 => 0.29412443917929
213 => 0.30057559756557
214 => 0.30399726871227
215 => 0.30717550756513
216 => 0.29937075743521
217 => 0.28921689219074
218 => 0.28600073683755
219 => 0.26158596453179
220 => 0.26031506960529
221 => 0.25960167777099
222 => 0.25510384316701
223 => 0.25156977722886
224 => 0.24875935678339
225 => 0.24138397427189
226 => 0.2438729493629
227 => 0.23211812900153
228 => 0.23963844650348
301 => 0.22087746937667
302 => 0.23650216861332
303 => 0.22799835518671
304 => 0.23370843719335
305 => 0.23368851525515
306 => 0.22317444389778
307 => 0.21711014696192
308 => 0.22097455299542
309 => 0.22511750302026
310 => 0.22578968272324
311 => 0.2311611255725
312 => 0.23266017981296
313 => 0.22811797548023
314 => 0.22048868982598
315 => 0.22226079887798
316 => 0.21707423522855
317 => 0.2079849819312
318 => 0.21451304233249
319 => 0.21674200917205
320 => 0.21772644790983
321 => 0.20878821119969
322 => 0.2059796231668
323 => 0.20448435446443
324 => 0.21933487570827
325 => 0.22014842078516
326 => 0.21598620914809
327 => 0.23479980042475
328 => 0.23054170529269
329 => 0.23529904081384
330 => 0.22209999855588
331 => 0.222604219745
401 => 0.21635558161605
402 => 0.21985440143411
403 => 0.21738154835893
404 => 0.21957173136882
405 => 0.22088451803449
406 => 0.22713213082341
407 => 0.23657350631569
408 => 0.22619894581227
409 => 0.22167860123449
410 => 0.22448299758716
411 => 0.23195147463336
412 => 0.24326659966266
413 => 0.2365678179072
414 => 0.23954062349759
415 => 0.24019004926817
416 => 0.23525061560407
417 => 0.24344872362739
418 => 0.2478421563184
419 => 0.25234890916657
420 => 0.2562619963883
421 => 0.25054881297339
422 => 0.25666273818001
423 => 0.25173599371656
424 => 0.24731619461536
425 => 0.24732289762619
426 => 0.24455029308704
427 => 0.2391780224218
428 => 0.23818729328571
429 => 0.24334119136695
430 => 0.24747412955214
501 => 0.24781453813651
502 => 0.25010274507386
503 => 0.25145688236898
504 => 0.26472926872154
505 => 0.27006753230747
506 => 0.27659505997219
507 => 0.27913789986891
508 => 0.28679093629945
509 => 0.28061048783256
510 => 0.2792733089299
511 => 0.26070954583854
512 => 0.26374936100479
513 => 0.26861639838449
514 => 0.26078980149229
515 => 0.26575397578612
516 => 0.2667340089473
517 => 0.26052385672478
518 => 0.26384096735167
519 => 0.25503170498141
520 => 0.23676552416243
521 => 0.24346905910831
522 => 0.24840511721394
523 => 0.24136075368563
524 => 0.25398750265561
525 => 0.24661121657635
526 => 0.2442732880134
527 => 0.23515219515762
528 => 0.23945699988249
529 => 0.24527930991174
530 => 0.24168179922985
531 => 0.24914717406371
601 => 0.25972013577121
602 => 0.26725505791472
603 => 0.2678334956754
604 => 0.26298904553769
605 => 0.27075230780023
606 => 0.27080885469047
607 => 0.26205186314447
608 => 0.25668825458168
609 => 0.25546963143108
610 => 0.25851399098641
611 => 0.26221040550636
612 => 0.26803862095552
613 => 0.27156048948797
614 => 0.28074365476587
615 => 0.28322835598809
616 => 0.28595828931697
617 => 0.28960632212461
618 => 0.29398672084659
619 => 0.28440265781913
620 => 0.28478345051014
621 => 0.27585890371935
622 => 0.26632174556391
623 => 0.27355925978034
624 => 0.28302134685215
625 => 0.2808507336232
626 => 0.28060649529334
627 => 0.2810172364181
628 => 0.27938066492907
629 => 0.27197851273837
630 => 0.26826119824812
701 => 0.27305748232861
702 => 0.27560649385934
703 => 0.27955978844635
704 => 0.27907246144457
705 => 0.28925572374785
706 => 0.29321263155303
707 => 0.29220028521083
708 => 0.29238658130127
709 => 0.29955037387601
710 => 0.30751798456542
711 => 0.31498070339489
712 => 0.32257210151946
713 => 0.31342037478298
714 => 0.30877369234623
715 => 0.31356788251913
716 => 0.31102401773028
717 => 0.32564181936633
718 => 0.32665392423582
719 => 0.34127066883844
720 => 0.35514369999589
721 => 0.34643029768707
722 => 0.35464664360403
723 => 0.36353329160174
724 => 0.38067707739599
725 => 0.37490365346615
726 => 0.37048130121697
727 => 0.36630219971015
728 => 0.37499824653216
729 => 0.38618557184594
730 => 0.38859521456766
731 => 0.39249975633121
801 => 0.38839460809149
802 => 0.39333880697899
803 => 0.41079400164294
804 => 0.40607745396348
805 => 0.39937919803576
806 => 0.41315839780824
807 => 0.41814503664061
808 => 0.45314387948925
809 => 0.49733136431575
810 => 0.47903745544691
811 => 0.46768183587128
812 => 0.47035067583045
813 => 0.48648644944833
814 => 0.49166874781053
815 => 0.47758147441668
816 => 0.48255733753369
817 => 0.50997483252447
818 => 0.52468343892847
819 => 0.50470717580245
820 => 0.44959345810784
821 => 0.39877609337668
822 => 0.41225514683914
823 => 0.41072704048022
824 => 0.44018371844566
825 => 0.40596496586119
826 => 0.40654112189583
827 => 0.43660693276643
828 => 0.42858588988464
829 => 0.4155928276737
830 => 0.3988709571098
831 => 0.36795903278661
901 => 0.34057947937079
902 => 0.3942770887538
903 => 0.39196155019444
904 => 0.38860830721689
905 => 0.39607058660463
906 => 0.43230529710653
907 => 0.43146996974915
908 => 0.42615604328925
909 => 0.43018660967429
910 => 0.4148862498989
911 => 0.41882950099573
912 => 0.39876804364647
913 => 0.4078366602088
914 => 0.41556495039768
915 => 0.41711651907238
916 => 0.42061228252156
917 => 0.39074136659254
918 => 0.40415253088065
919 => 0.41203033344376
920 => 0.37643813486672
921 => 0.41132679011554
922 => 0.390221380403
923 => 0.38305788735395
924 => 0.39270258702606
925 => 0.38894403818406
926 => 0.3857126585991
927 => 0.38390949326855
928 => 0.39099149626108
929 => 0.39066111235666
930 => 0.37907358090333
1001 => 0.36395811849066
1002 => 0.36903136382449
1003 => 0.36718820623278
1004 => 0.36050836534837
1005 => 0.3650097715774
1006 => 0.3451878566543
1007 => 0.3110852822826
1008 => 0.33361448750265
1009 => 0.33274713760874
1010 => 0.33230978046104
1011 => 0.34923985552241
1012 => 0.34761241944855
1013 => 0.34465860703859
1014 => 0.36045411626705
1015 => 0.35468854291908
1016 => 0.3724566814376
1017 => 0.38415992663704
1018 => 0.38119160509414
1019 => 0.39219856377091
1020 => 0.36914824115047
1021 => 0.37680463370655
1022 => 0.37838260560106
1023 => 0.36025920213504
1024 => 0.34787868811707
1025 => 0.34705304898027
1026 => 0.32558694381303
1027 => 0.33705396392502
1028 => 0.34714446708604
1029 => 0.34231189912659
1030 => 0.34078205247949
1031 => 0.34859770721627
1101 => 0.34920505052588
1102 => 0.33535755870354
1103 => 0.33823689074644
1104 => 0.35024418401445
1105 => 0.33793433776363
1106 => 0.31401831730025
1107 => 0.30808681356048
1108 => 0.30729544162229
1109 => 0.29120873304654
1110 => 0.30848318500296
1111 => 0.30094242379746
1112 => 0.32476359809346
1113 => 0.3111570710911
1114 => 0.31057052090705
1115 => 0.30968386427566
1116 => 0.29583736967095
1117 => 0.29886887199874
1118 => 0.30894604744716
1119 => 0.31254169717467
1120 => 0.3121666414498
1121 => 0.30889666378988
1122 => 0.3103936428176
1123 => 0.30557135178726
1124 => 0.30386850045714
1125 => 0.29849383325312
1126 => 0.29059455725292
1127 => 0.29169300002982
1128 => 0.27604246731543
1129 => 0.26751522645599
1130 => 0.26515499857332
1201 => 0.26199880320791
1202 => 0.26551149923816
1203 => 0.27599813132263
1204 => 0.26334902816565
1205 => 0.24166302803443
1206 => 0.24296639359347
1207 => 0.2458946690319
1208 => 0.24043784712485
1209 => 0.23527342314618
1210 => 0.23976347079268
1211 => 0.23057482665559
1212 => 0.2470050727766
1213 => 0.24656068066426
1214 => 0.25268486037857
1215 => 0.25651443563475
1216 => 0.24768850450897
1217 => 0.2454688066987
1218 => 0.24673324745107
1219 => 0.2258348583909
1220 => 0.25097701613864
1221 => 0.2511944465629
1222 => 0.2493326752646
1223 => 0.26272009808824
1224 => 0.29097173588801
1225 => 0.28034233332824
1226 => 0.2762263073817
1227 => 0.26840173904854
1228 => 0.27882751177558
1229 => 0.27802697509754
1230 => 0.27440664464489
1231 => 0.27221705749101
]
'min_raw' => 0.20448435446443
'max_raw' => 0.52468343892847
'avg_raw' => 0.36458389669645
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.204484'
'max' => '$0.524683'
'avg' => '$0.364583'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12574474602221
'max_diff' => 0.3049755141487
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0064185302276003
]
1 => [
'year' => 2028
'avg' => 0.011016061183201
]
2 => [
'year' => 2029
'avg' => 0.030093893700651
]
3 => [
'year' => 2030
'avg' => 0.023217394172881
]
4 => [
'year' => 2031
'avg' => 0.022802358377753
]
5 => [
'year' => 2032
'avg' => 0.039979710402484
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0064185302276003
'min' => '$0.006418'
'max_raw' => 0.039979710402484
'max' => '$0.039979'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.039979710402484
]
1 => [
'year' => 2033
'avg' => 0.10283192622033
]
2 => [
'year' => 2034
'avg' => 0.065179816709571
]
3 => [
'year' => 2035
'avg' => 0.076879743280416
]
4 => [
'year' => 2036
'avg' => 0.149223766611
]
5 => [
'year' => 2037
'avg' => 0.36458389669645
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.039979710402484
'min' => '$0.039979'
'max_raw' => 0.36458389669645
'max' => '$0.364583'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.36458389669645
]
]
]
]
'prediction_2025_max_price' => '$0.010974'
'last_price' => 0.01064118
'sma_50day_nextmonth' => '$0.009799'
'sma_200day_nextmonth' => '$0.015757'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.010199'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0099029'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009744'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00982'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010354'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.013514'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017156'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010254'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.010062'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0099072'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009972'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.010935'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013057'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.015937'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.015469'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019457'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.020455'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.017139'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0103089'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.010438'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.011586'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.014216'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017471'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018211'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0166052'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.82'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 128.96
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.009712'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010228'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 211.62
'cci_20_action' => 'SELL'
'adx_14' => 21.55
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.00020069'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 61.5
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002552'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767714023
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de PolySwarm para 2026
La previsión del precio de PolySwarm para 2026 sugiere que el precio medio podría oscilar entre $0.003676 en el extremo inferior y $0.010974 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, PolySwarm podría potencialmente ganar 3.13% para 2026 si NCT alcanza el objetivo de precio previsto.
Predicción de precio de PolySwarm 2027-2032
La predicción del precio de NCT para 2027-2032 está actualmente dentro de un rango de precios de $0.006418 en el extremo inferior y $0.039979 en el extremo superior. Considerando la volatilidad de precios en el mercado, si PolySwarm alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de PolySwarm | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003539 | $0.006418 | $0.009297 |
| 2028 | $0.006387 | $0.011016 | $0.015644 |
| 2029 | $0.014031 | $0.030093 | $0.046156 |
| 2030 | $0.011932 | $0.023217 | $0.0345017 |
| 2031 | $0.0141084 | $0.0228023 | $0.031496 |
| 2032 | $0.021535 | $0.039979 | $0.058423 |
Predicción de precio de PolySwarm 2032-2037
La predicción de precio de PolySwarm para 2032-2037 se estima actualmente entre $0.039979 en el extremo inferior y $0.364583 en el extremo superior. Comparado con el precio actual, PolySwarm podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de PolySwarm | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.021535 | $0.039979 | $0.058423 |
| 2033 | $0.050043 | $0.102831 | $0.155619 |
| 2034 | $0.040232 | $0.065179 | $0.090126 |
| 2035 | $0.047567 | $0.076879 | $0.106191 |
| 2036 | $0.078739 | $0.149223 | $0.2197079 |
| 2037 | $0.204484 | $0.364583 | $0.524683 |
PolySwarm Histograma de precios potenciales
Pronóstico de precio de PolySwarm basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para PolySwarm es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de NCT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de PolySwarm
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de PolySwarm aumentar durante el próximo mes, alcanzando $0.015757 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para PolySwarm alcance $0.009799 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 57.82, lo que sugiere que el mercado de NCT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de NCT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.010199 | BUY |
| SMA 5 | $0.0099029 | BUY |
| SMA 10 | $0.009744 | BUY |
| SMA 21 | $0.00982 | BUY |
| SMA 50 | $0.010354 | BUY |
| SMA 100 | $0.013514 | SELL |
| SMA 200 | $0.017156 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.010254 | BUY |
| EMA 5 | $0.010062 | BUY |
| EMA 10 | $0.0099072 | BUY |
| EMA 21 | $0.009972 | BUY |
| EMA 50 | $0.010935 | SELL |
| EMA 100 | $0.013057 | SELL |
| EMA 200 | $0.015937 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.015469 | SELL |
| SMA 50 | $0.019457 | SELL |
| SMA 100 | $0.020455 | SELL |
| SMA 200 | $0.017139 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.014216 | SELL |
| EMA 50 | $0.017471 | SELL |
| EMA 100 | $0.018211 | SELL |
| EMA 200 | $0.0166052 | SELL |
Osciladores de PolySwarm
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 57.82 | NEUTRAL |
| Stoch RSI (14) | 128.96 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 211.62 | SELL |
| Índice Direccional Medio (14) | 21.55 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.00020069 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 61.5 | NEUTRAL |
| VWMA (10) | 0.009712 | BUY |
| Promedio Móvil de Hull (9) | 0.010228 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002552 | SELL |
Predicción de precios de PolySwarm basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de PolySwarm
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de PolySwarm por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.014952 | $0.02101 | $0.029523 | $0.041486 | $0.058294 | $0.081913 |
| Amazon.com acción | $0.0222034 | $0.046328 | $0.096667 | $0.2017032 | $0.420865 | $0.878161 |
| Apple acción | $0.015093 | $0.0214092 | $0.030367 | $0.043073 | $0.061096 | $0.086661 |
| Netflix acción | $0.01679 | $0.026492 | $0.04180048 | $0.065954 | $0.104066 | $0.164199 |
| Google acción | $0.01378 | $0.017845 | $0.0231097 | $0.029926 | $0.038755 | $0.050187 |
| Tesla acción | $0.024122 | $0.054684 | $0.123965 | $0.28102 | $0.637052 | $1.44 |
| Kodak acción | $0.007979 | $0.005983 | $0.004487 | $0.003365 | $0.002523 | $0.001892 |
| Nokia acción | $0.007049 | $0.004669 | $0.003093 | $0.002049 | $0.001357 | $0.000899 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de PolySwarm
Podría preguntarse cosas como: "¿Debo invertir en PolySwarm ahora?", "¿Debería comprar NCT hoy?", "¿Será PolySwarm una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de PolySwarm regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como PolySwarm, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de PolySwarm a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de PolySwarm es de $0.01064 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de PolySwarm
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de PolySwarm
basado en el historial de precios del último mes
Predicción de precios de PolySwarm basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si PolySwarm ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.010917 | $0.0112015 | $0.011492 | $0.011791 |
| Si PolySwarm ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.011194 | $0.011776 | $0.012388 | $0.013032 |
| Si PolySwarm ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.012024 | $0.013586 | $0.015352 | $0.017348 |
| Si PolySwarm ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0134071 | $0.016892 | $0.021282 | $0.026815 |
| Si PolySwarm ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.016173 | $0.02458 | $0.037359 | $0.056781 |
| Si PolySwarm ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.024471 | $0.056275 | $0.129413 | $0.2976081 |
| Si PolySwarm ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.038301 | $0.137857 | $0.496194 | $1.78 |
Cuadro de preguntas
¿Es NCT una buena inversión?
La decisión de adquirir PolySwarm depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de PolySwarm ha experimentado un aumento de 7.0805% durante las últimas 24 horas, y PolySwarm ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en PolySwarm dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede PolySwarm subir?
Parece que el valor medio de PolySwarm podría potencialmente aumentar hasta $0.010974 para el final de este año. Mirando las perspectivas de PolySwarm en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0345017. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de PolySwarm la próxima semana?
Basado en nuestro nuevo pronóstico experimental de PolySwarm, el precio de PolySwarm aumentará en un 0.86% durante la próxima semana y alcanzará $0.010732 para el 13 de enero de 2026.
¿Cuál será el precio de PolySwarm el próximo mes?
Basado en nuestro nuevo pronóstico experimental de PolySwarm, el precio de PolySwarm disminuirá en un -11.62% durante el próximo mes y alcanzará $0.009404 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de PolySwarm este año en 2026?
Según nuestra predicción más reciente sobre el valor de PolySwarm en 2026, se anticipa que NCT fluctúe dentro del rango de $0.003676 y $0.010974. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de PolySwarm no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará PolySwarm en 5 años?
El futuro de PolySwarm parece estar en una tendencia alcista, con un precio máximo de $0.0345017 proyectada después de un período de cinco años. Basado en el pronóstico de PolySwarm para 2030, el valor de PolySwarm podría potencialmente alcanzar su punto más alto de aproximadamente $0.0345017, mientras que su punto más bajo se anticipa que esté alrededor de $0.011932.
¿Cuánto será PolySwarm en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de PolySwarm, se espera que el valor de NCT en 2026 crezca en un 3.13% hasta $0.010974 si ocurre lo mejor. El precio estará entre $0.010974 y $0.003676 durante 2026.
¿Cuánto será PolySwarm en 2027?
Según nuestra última simulación experimental para la predicción de precios de PolySwarm, el valor de NCT podría disminuir en un -12.62% hasta $0.009297 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.009297 y $0.003539 a lo largo del año.
¿Cuánto será PolySwarm en 2028?
Nuestro nuevo modelo experimental de predicción de precios de PolySwarm sugiere que el valor de NCT en 2028 podría aumentar en un 47.02% , alcanzando $0.015644 en el mejor escenario. Se espera que el precio oscile entre $0.015644 y $0.006387 durante el año.
¿Cuánto será PolySwarm en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de PolySwarm podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.046156 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.046156 y $0.014031.
¿Cuánto será PolySwarm en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de PolySwarm, se espera que el valor de NCT en 2030 aumente en un 224.23% , alcanzando $0.0345017 en el mejor escenario. Se pronostica que el precio oscile entre $0.0345017 y $0.011932 durante el transcurso de 2030.
¿Cuánto será PolySwarm en 2031?
Nuestra simulación experimental indica que el precio de PolySwarm podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.031496 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.031496 y $0.0141084 durante el año.
¿Cuánto será PolySwarm en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de PolySwarm, NCT podría experimentar un 449.04% aumento en valor, alcanzando $0.058423 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.058423 y $0.021535 a lo largo del año.
¿Cuánto será PolySwarm en 2033?
Según nuestra predicción experimental de precios de PolySwarm, se anticipa que el valor de NCT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.155619. A lo largo del año, el precio de NCT podría oscilar entre $0.155619 y $0.050043.
¿Cuánto será PolySwarm en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de PolySwarm sugieren que NCT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.090126 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.090126 y $0.040232.
¿Cuánto será PolySwarm en 2035?
Basado en nuestra predicción experimental para el precio de PolySwarm, NCT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.106191 en 2035. El rango de precios esperado para el año está entre $0.106191 y $0.047567.
¿Cuánto será PolySwarm en 2036?
Nuestra reciente simulación de predicción de precios de PolySwarm sugiere que el valor de NCT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.2197079 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.2197079 y $0.078739.
¿Cuánto será PolySwarm en 2037?
Según la simulación experimental, el valor de PolySwarm podría aumentar en un 4830.69% en 2037, con un máximo de $0.524683 bajo condiciones favorables. Se espera que el precio caiga entre $0.524683 y $0.204484 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de FLUX Token
Predicción de precios de Smart Layer Network
Predicción de precios de Zephyr Protocol
Predicción de precios de Terra Virtua KolectPredicción de precios de Vega Protocol
Predicción de precios de sUSD
Predicción de precios de Mdex
Predicción de precios de OX Coin
Predicción de precios de Murasaki
Predicción de precios de Solend
Predicción de precios de Talken
Predicción de precios de Rich Quack
Predicción de precios de Hacken Token
Predicción de precios de Peapods Finance
Predicción de precios de Katana Inu
Predicción de precios de Sai
Predicción de precios de SX Network
Predicción de precios de Quickswap
Predicción de precios de Dero
Predicción de precios de THORSwap
Predicción de precios de Hydro Protocol
Predicción de precios de Mossland
Predicción de precios de ParaSwap
Predicción de precios de Cetus Protocol
Predicción de precios de GoGoPool
¿Cómo leer y predecir los movimientos de precio de PolySwarm?
Los traders de PolySwarm utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de PolySwarm
Las medias móviles son herramientas populares para la predicción de precios de PolySwarm. Una media móvil simple (SMA) calcula el precio de cierre promedio de NCT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de NCT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de NCT.
¿Cómo leer gráficos de PolySwarm y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de PolySwarm en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de NCT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de PolySwarm?
La acción del precio de PolySwarm está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de NCT. La capitalización de mercado de PolySwarm puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de NCT, grandes poseedores de PolySwarm, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de PolySwarm.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


