Predicción del precio de Phil - Pronóstico de PHIL
Predicción de precio de Phil hasta $0.000796 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000266 | $0.000796 |
| 2027 | $0.000256 | $0.000674 |
| 2028 | $0.000463 | $0.001135 |
| 2029 | $0.001018 | $0.003349 |
| 2030 | $0.000865 | $0.0025036 |
| 2031 | $0.001023 | $0.002285 |
| 2032 | $0.001562 | $0.004239 |
| 2033 | $0.003631 | $0.011292 |
| 2034 | $0.002919 | $0.00654 |
| 2035 | $0.003451 | $0.0077059 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Phil hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,965.22, equivalente a un ROI del 39.65% en los próximos 90 días.
Predicción del precio a largo plazo de Phil para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Phil'
'name_with_ticker' => 'Phil <small>PHIL</small>'
'name_lang' => 'Phil'
'name_lang_with_ticker' => 'Phil <small>PHIL</small>'
'name_with_lang' => 'Phil'
'name_with_lang_with_ticker' => 'Phil <small>PHIL</small>'
'image' => '/uploads/coins/phil.jpg?1724971701'
'price_for_sd' => 0.0007721
'ticker' => 'PHIL'
'marketcap' => '$772.18K'
'low24h' => '$0.0007487'
'high24h' => '$0.0007731'
'volume24h' => '$262.39K'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007721'
'change_24h_pct' => '3.0771%'
'ath_price' => '$0.07516'
'ath_days' => 494
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 ago. 2024'
'ath_pct' => '-98.97%'
'fdv' => '$772.18K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.038074'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000778'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000682'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000266'
'current_year_max_price_prediction' => '$0.000796'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000865'
'grand_prediction_max_price' => '$0.0025036'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00078682259432806
107 => 0.00078976030427868
108 => 0.00079637911480061
109 => 0.00073982210357111
110 => 0.00076521454118655
111 => 0.00078013021933596
112 => 0.00071274064281987
113 => 0.00077879814408225
114 => 0.0007388375718336
115 => 0.00072527435342475
116 => 0.00074353544019411
117 => 0.0007364190769206
118 => 0.00073030084566491
119 => 0.00072688676749968
120 => 0.0007402956942205
121 => 0.00073967015176184
122 => 0.00071773054508605
123 => 0.00068911122255026
124 => 0.00069871680659051
125 => 0.00069522700785586
126 => 0.00068257952704848
127 => 0.00069110240205
128 => 0.00065357197387164
129 => 0.00058900282285269
130 => 0.00063165918182239
131 => 0.00063001695840325
201 => 0.00062918887488641
202 => 0.00066124394971698
203 => 0.00065816259390842
204 => 0.00065256990294317
205 => 0.00068247681289306
206 => 0.00067156038845665
207 => 0.0007052022363366
208 => 0.00072736093316864
209 => 0.00072174077089328
210 => 0.00074258113236609
211 => 0.00069893809984625
212 => 0.00071343456459479
213 => 0.00071642226588823
214 => 0.00068210776626661
215 => 0.00065866674182647
216 => 0.00065710349274356
217 => 0.00061645998673651
218 => 0.00063817141958256
219 => 0.00065727658200694
220 => 0.00064812669182616
221 => 0.00064523010994012
222 => 0.00066002811860395
223 => 0.0006611780506135
224 => 0.00063495947893136
225 => 0.00064041115021826
226 => 0.00066314552574958
227 => 0.00063983830228527
228 => 0.00059455617430747
301 => 0.00058332558049458
302 => 0.00058182721225902
303 => 0.00055136895112883
304 => 0.00058407606247433
305 => 0.00056979853187593
306 => 0.00061490107996519
307 => 0.00058913874638642
308 => 0.00058802818367636
309 => 0.00058634940525598
310 => 0.0005601327216863
311 => 0.0005658725092309
312 => 0.00058495243722348
313 => 0.00059176037048201
314 => 0.00059105024726739
315 => 0.0005848589351673
316 => 0.00058769328614208
317 => 0.00057856285409899
318 => 0.00057533870851106
319 => 0.00056516241816446
320 => 0.00055020608262692
321 => 0.00055228585281595
322 => 0.000522653438578
323 => 0.00050650812658991
324 => 0.0005020393170234
325 => 0.00049606343810665
326 => 0.00050271430844826
327 => 0.00052256949367158
328 => 0.00049861992777972
329 => 0.00045756007692484
330 => 0.0004600278439238
331 => 0.00046557218368386
401 => 0.00045524034322046
402 => 0.00044546212330749
403 => 0.00045396349218976
404 => 0.0004365658921001
405 => 0.00046767460053668
406 => 0.00046683319715462
407 => 0.00047842859991015
408 => 0.00048567944321481
409 => 0.00046896859688598
410 => 0.00046476586422521
411 => 0.00046715993175233
412 => 0.00042759132838031
413 => 0.00047519500084391
414 => 0.00047560667938016
415 => 0.00047208163781549
416 => 0.00049742912380386
417 => 0.00055092022531847
418 => 0.0005307947212541
419 => 0.0005230015177838
420 => 0.00050818663228995
421 => 0.00052792658758964
422 => 0.0005264108670139
423 => 0.00051955620375043
424 => 0.00051541048202083
425 => 0.00052304910142238
426 => 0.00051446397254412
427 => 0.00051292184749402
428 => 0.00050357824753902
429 => 0.0005002430074618
430 => 0.00049777372848835
501 => 0.00049505529496493
502 => 0.00050105148192617
503 => 0.00048746333340791
504 => 0.00047107735835751
505 => 0.00046971504183078
506 => 0.00047347651753718
507 => 0.00047181234454603
508 => 0.00046970707441075
509 => 0.00046568754038629
510 => 0.00046449503050499
511 => 0.00046837010909567
512 => 0.00046399537129791
513 => 0.00047045053522281
514 => 0.00046869508781575
515 => 0.00045888930129955
516 => 0.00044666766073323
517 => 0.00044655886249643
518 => 0.00044392573008392
519 => 0.00044057204006248
520 => 0.00043963912022055
521 => 0.00045324753061474
522 => 0.00048141653286525
523 => 0.00047588628369638
524 => 0.00047988245548362
525 => 0.00049953966552026
526 => 0.00050578810147798
527 => 0.00050135310963751
528 => 0.00049528221926789
529 => 0.00049554930763386
530 => 0.00051629537781034
531 => 0.0005175892847596
601 => 0.00052085857019018
602 => 0.00052506052586842
603 => 0.00050206872085928
604 => 0.00049446639568555
605 => 0.00049086399225729
606 => 0.00047976998400383
607 => 0.0004917339207768
608 => 0.00048476304716604
609 => 0.00048570365617509
610 => 0.00048509108332399
611 => 0.00048542558952269
612 => 0.00046766590501868
613 => 0.0004741366006304
614 => 0.00046337781416385
615 => 0.00044897300681561
616 => 0.0004489247168504
617 => 0.00045245027304161
618 => 0.00045035313426405
619 => 0.00044470978773601
620 => 0.00044551139847448
621 => 0.00043848844491108
622 => 0.00044636411219175
623 => 0.00044658995814887
624 => 0.00044355739725531
625 => 0.00045569094933384
626 => 0.00046066207552045
627 => 0.00045866597897656
628 => 0.00046052202406575
629 => 0.00047611609051693
630 => 0.00047865860376529
701 => 0.00047978782020121
702 => 0.00047827481976958
703 => 0.00046080705497404
704 => 0.0004615818246214
705 => 0.00045589707901685
706 => 0.00045109406802475
707 => 0.00045128616327596
708 => 0.00045375553527362
709 => 0.00046453942761418
710 => 0.00048723349329972
711 => 0.00048809471650334
712 => 0.00048913854414978
713 => 0.00048489277252596
714 => 0.00048361220717766
715 => 0.00048530160341403
716 => 0.00049382430128823
717 => 0.00051574699411057
718 => 0.00050799805029973
719 => 0.00050169803836203
720 => 0.00050722484730242
721 => 0.00050637403838661
722 => 0.00049919235491331
723 => 0.00049899078897756
724 => 0.00048520684226921
725 => 0.00048011123101642
726 => 0.00047585295685369
727 => 0.00047120303263306
728 => 0.0004684464016882
729 => 0.00047268183968586
730 => 0.00047365053446816
731 => 0.00046438967526347
801 => 0.00046312745437392
802 => 0.00047069007191
803 => 0.00046736204589517
804 => 0.0004707850031825
805 => 0.00047157915863474
806 => 0.00047145128131598
807 => 0.00046797643993514
808 => 0.00047019120021003
809 => 0.00046495263190811
810 => 0.0004592564756873
811 => 0.00045562268290149
812 => 0.00045245171674321
813 => 0.00045421115306546
814 => 0.00044793908383701
815 => 0.00044593252265902
816 => 0.00046944088926258
817 => 0.00048680677243016
818 => 0.00048655426561126
819 => 0.00048501719529068
820 => 0.00048273342057763
821 => 0.00049365722894322
822 => 0.00048985159253709
823 => 0.00049262051099411
824 => 0.00049332531695256
825 => 0.00049545855231483
826 => 0.00049622100059906
827 => 0.00049391635232972
828 => 0.00048618167124874
829 => 0.00046690758138635
830 => 0.00045793544052599
831 => 0.00045497448459925
901 => 0.00045508210972353
902 => 0.00045211332833614
903 => 0.00045298776750617
904 => 0.00045180923407842
905 => 0.00044957737688412
906 => 0.00045407334217292
907 => 0.00045459146028964
908 => 0.00045354204826845
909 => 0.00045378922278871
910 => 0.00044510053946298
911 => 0.00044576112118541
912 => 0.00044208291821227
913 => 0.00044139329949621
914 => 0.00043209512267789
915 => 0.00041562205465195
916 => 0.00042474973341772
917 => 0.00041372478101452
918 => 0.00040954946448414
919 => 0.00042931476354402
920 => 0.00042733087572247
921 => 0.00042393532214728
922 => 0.0004189125907142
923 => 0.00041704961076768
924 => 0.0004057307343604
925 => 0.0004050619547584
926 => 0.00041067189554122
927 => 0.00040808310089623
928 => 0.00040444745276145
929 => 0.00039127950375705
930 => 0.00037647436931801
1001 => 0.00037692124326497
1002 => 0.00038163048107071
1003 => 0.00039532322511814
1004 => 0.00038997323313193
1005 => 0.00038609175256185
1006 => 0.00038536486792795
1007 => 0.00039446335095724
1008 => 0.00040733961063482
1009 => 0.00041338086358547
1010 => 0.00040739416538696
1011 => 0.00040051696884323
1012 => 0.00040093555193099
1013 => 0.0004037201976853
1014 => 0.00040401282458131
1015 => 0.00039953647661857
1016 => 0.00040079654234972
1017 => 0.00039888238728128
1018 => 0.00038713522115948
1019 => 0.000386922752175
1020 => 0.00038403980816007
1021 => 0.00038395251376105
1022 => 0.00037904790680756
1023 => 0.00037836171839082
1024 => 0.00036862332359631
1025 => 0.00037503316454063
1026 => 0.00037073377976694
1027 => 0.00036425359279063
1028 => 0.00036313640611339
1029 => 0.00036310282213283
1030 => 0.0003697565252142
1031 => 0.00037495541214615
1101 => 0.0003708085694058
1102 => 0.00036986441369699
1103 => 0.00037994552655431
1104 => 0.00037866261305183
1105 => 0.00037755161823259
1106 => 0.00040618668280875
1107 => 0.00038351979477477
1108 => 0.00037363573781122
1109 => 0.00036140234038731
1110 => 0.00036538559627468
1111 => 0.00036622492681635
1112 => 0.00033680581124749
1113 => 0.00032487047972512
1114 => 0.00032077472372012
1115 => 0.00031841755823375
1116 => 0.00031949174814531
1117 => 0.00030874854990042
1118 => 0.00031596815679708
1119 => 0.00030666545521695
1120 => 0.00030510582702343
1121 => 0.0003217402098323
1122 => 0.0003240547870235
1123 => 0.00031418008164307
1124 => 0.00032052124106689
1125 => 0.00031822184851111
1126 => 0.00030682492333517
1127 => 0.00030638964462355
1128 => 0.00030067106819156
1129 => 0.00029172260341008
1130 => 0.00028763291488558
1201 => 0.00028550296959372
1202 => 0.00028638182653295
1203 => 0.00028593744957101
1204 => 0.00028303758930619
1205 => 0.00028610366616693
1206 => 0.00027827110677816
1207 => 0.00027515211851833
1208 => 0.00027374334388135
1209 => 0.00026679149659851
1210 => 0.00027785497712602
1211 => 0.00028003462216399
1212 => 0.00028221856177602
1213 => 0.0003012282650598
1214 => 0.0003002785940046
1215 => 0.00030886315783499
1216 => 0.00030852957747055
1217 => 0.0003060811208054
1218 => 0.00029575148488675
1219 => 0.00029986869365587
1220 => 0.00028719656502082
1221 => 0.00029669138541518
1222 => 0.00029235834590037
1223 => 0.00029522638039658
1224 => 0.00029006939577216
1225 => 0.00029292348398999
1226 => 0.000280551496862
1227 => 0.00026899870936043
1228 => 0.00027364788829795
1229 => 0.00027870207750114
1230 => 0.00028966084747711
1231 => 0.00028313389448731
]
'min_raw' => 0.00026679149659851
'max_raw' => 0.00079637911480061
'avg_raw' => 0.00053158530569956
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000266'
'max' => '$0.000796'
'avg' => '$0.000531'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050539850340149
'max_diff' => 2.4189114800613E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00028548123359386
102 => 0.00027761804052674
103 => 0.00026139402721923
104 => 0.00026148585337262
105 => 0.0002589901423846
106 => 0.00025683348371119
107 => 0.00028388359355355
108 => 0.0002805194847957
109 => 0.00027515921777373
110 => 0.00028233414819118
111 => 0.00028423131367501
112 => 0.00028428532330924
113 => 0.00028951996733005
114 => 0.00029231369778232
115 => 0.00029280610488326
116 => 0.00030104293035198
117 => 0.00030380380560274
118 => 0.00031517546002693
119 => 0.00029207666927216
120 => 0.00029160096487714
121 => 0.0002824351141761
122 => 0.00027662198675513
123 => 0.00028283314398396
124 => 0.00028833538138119
125 => 0.00028260608402946
126 => 0.00028335420931153
127 => 0.00027566309571762
128 => 0.00027841230692691
129 => 0.0002807802979791
130 => 0.00027947283250416
131 => 0.00027751549340614
201 => 0.00028788426066131
202 => 0.00028729921417724
203 => 0.00029695484862218
204 => 0.00030448210615306
205 => 0.00031797229730662
206 => 0.00030389457957831
207 => 0.00030338153159043
208 => 0.00030839665796744
209 => 0.00030380303781302
210 => 0.00030670604718424
211 => 0.00031750457761657
212 => 0.0003177327335485
213 => 0.0003139108277263
214 => 0.00031367826440968
215 => 0.00031441230322991
216 => 0.00031871159152724
217 => 0.00031720928809236
218 => 0.00031894779166087
219 => 0.00032112181699419
220 => 0.00033011450754047
221 => 0.00033228261478657
222 => 0.00032701523821328
223 => 0.00032749082334153
224 => 0.0003255206799104
225 => 0.00032361754604175
226 => 0.00032789551304809
227 => 0.00033571358183583
228 => 0.00033566494603566
301 => 0.00033747858603287
302 => 0.00033860846872613
303 => 0.00033375818508198
304 => 0.00033060082877951
305 => 0.00033181156009368
306 => 0.00033374754583133
307 => 0.00033118374601152
308 => 0.00031535878585605
309 => 0.00032015906786485
310 => 0.00031936006621679
311 => 0.00031822219070803
312 => 0.00032304891138736
313 => 0.00032258336240297
314 => 0.00030863836287445
315 => 0.00030953107649983
316 => 0.00030869265174677
317 => 0.00031140177364946
318 => 0.00030365673633969
319 => 0.00030603905765256
320 => 0.00030753322724711
321 => 0.00030841330461705
322 => 0.00031159274755199
323 => 0.00031121967662057
324 => 0.00031156955693908
325 => 0.00031628383146977
326 => 0.00034012701430237
327 => 0.00034142474613693
328 => 0.00033503423996043
329 => 0.00033758712113078
330 => 0.00033268614753745
331 => 0.00033597620394432
401 => 0.00033822717697953
402 => 0.00032805546267064
403 => 0.00032745315976315
404 => 0.00032253195810843
405 => 0.00032517633312656
406 => 0.00032096894233541
407 => 0.00032200128886728
408 => 0.00031911475796583
409 => 0.00032430993888587
410 => 0.00033011895840398
411 => 0.00033158654613939
412 => 0.00032772595464378
413 => 0.00032493063197558
414 => 0.00032002296620675
415 => 0.00032818452375478
416 => 0.00033057121190078
417 => 0.00032817198749799
418 => 0.00032761603477977
419 => 0.00032656250538334
420 => 0.00032783954602158
421 => 0.00033055821348456
422 => 0.00032927614011493
423 => 0.0003301229721628
424 => 0.00032689572164573
425 => 0.00033375979072769
426 => 0.00034466158435802
427 => 0.00034469663540717
428 => 0.00034341455512668
429 => 0.0003428899554987
430 => 0.00034420544766962
501 => 0.00034491904820804
502 => 0.00034917310866879
503 => 0.00035373788503242
504 => 0.00037503970455352
505 => 0.0003690582388726
506 => 0.00038795848040264
507 => 0.00040290611756369
508 => 0.00040738826036733
509 => 0.00040326489988909
510 => 0.0003891591064326
511 => 0.00038846700891038
512 => 0.00040954701964677
513 => 0.00040359095108808
514 => 0.00040288249568508
515 => 0.00039534572715142
516 => 0.00039980089080176
517 => 0.00039882648115812
518 => 0.00039728832786589
519 => 0.00040578846976134
520 => 0.00042169997657671
521 => 0.00041922001902237
522 => 0.00041736884574997
523 => 0.00040925754333877
524 => 0.0004141423591153
525 => 0.00041240296977976
526 => 0.00041987649020898
527 => 0.00041544934226546
528 => 0.0004035458280108
529 => 0.00040544150189035
530 => 0.00040515497459702
531 => 0.00041105168599016
601 => 0.00040928163959531
602 => 0.0004048093446302
603 => 0.00042164559277622
604 => 0.00042055234046975
605 => 0.00042210232228805
606 => 0.00042278467221925
607 => 0.00043303259977776
608 => 0.00043723084780138
609 => 0.00043818392360342
610 => 0.0004421719345217
611 => 0.00043808469825877
612 => 0.00045443655746053
613 => 0.00046530958967227
614 => 0.00047793917610732
615 => 0.00049639439640173
616 => 0.00050333372995276
617 => 0.00050208020145834
618 => 0.00051607273885904
619 => 0.00054121701753148
620 => 0.00050716257908048
621 => 0.00054302198546002
622 => 0.00053166931141701
623 => 0.00050475232548692
624 => 0.00050301918892344
625 => 0.00052124768430793
626 => 0.00056167673264307
627 => 0.00055154971457759
628 => 0.00056169329681672
629 => 0.00054986026932668
630 => 0.00054927265977521
701 => 0.00056111859308334
702 => 0.00058879726194599
703 => 0.00057564816388873
704 => 0.00055679570753253
705 => 0.00057071606792924
706 => 0.00055865696348508
707 => 0.00053148442604156
708 => 0.00055154197063773
709 => 0.00053813006177226
710 => 0.00054204436979549
711 => 0.00057023420735984
712 => 0.00056684233152304
713 => 0.0005712317329351
714 => 0.00056348455433344
715 => 0.00055624746790156
716 => 0.00054273890864335
717 => 0.00053873969021092
718 => 0.00053984493030884
719 => 0.00053873914250882
720 => 0.00053118122775392
721 => 0.00052954909678219
722 => 0.00052682880699068
723 => 0.0005276719385451
724 => 0.00052255699788822
725 => 0.00053220994770842
726 => 0.00053400162025655
727 => 0.00054102623214649
728 => 0.00054175555065615
729 => 0.00056131899478052
730 => 0.00055054377850714
731 => 0.00055777272387074
801 => 0.00055712609895594
802 => 0.00050533569819147
803 => 0.00051247195846624
804 => 0.00052357373997194
805 => 0.00051857240245173
806 => 0.0005115016813309
807 => 0.00050579169491775
808 => 0.00049714048162573
809 => 0.00050931689820241
810 => 0.00052532759118319
811 => 0.00054216160825181
812 => 0.00056238657675127
813 => 0.00055787259922678
814 => 0.00054178351653391
815 => 0.00054250526103043
816 => 0.00054696680151192
817 => 0.00054118870121469
818 => 0.00053948462663512
819 => 0.00054673268783254
820 => 0.00054678260124654
821 => 0.00054013419854783
822 => 0.00053274571559306
823 => 0.0005327147575797
824 => 0.00053140004840218
825 => 0.00055009415316872
826 => 0.00056037402060314
827 => 0.00056155259083766
828 => 0.000560294693436
829 => 0.00056077880822174
830 => 0.00055479717986307
831 => 0.0005684694084942
901 => 0.00058101639752939
902 => 0.00057765353644063
903 => 0.00057261212960972
904 => 0.00056859640624184
905 => 0.00057670755963669
906 => 0.00057634638274415
907 => 0.00058090681052592
908 => 0.00058069992317943
909 => 0.00057916642284279
910 => 0.00057765359120676
911 => 0.00058365179764088
912 => 0.0005819244105161
913 => 0.000580194340282
914 => 0.00057672441956701
915 => 0.00057719603942146
916 => 0.00057215550306051
917 => 0.00056982352030068
918 => 0.00053475609480192
919 => 0.00052538493284746
920 => 0.00052833329116593
921 => 0.00052930396727845
922 => 0.0005252256255864
923 => 0.00053107291993278
924 => 0.00053016162530272
925 => 0.00053370693961877
926 => 0.00053149198115375
927 => 0.00053158288382177
928 => 0.00053809660438845
929 => 0.00053998756518031
930 => 0.00053902580725965
1001 => 0.00053969938954015
1002 => 0.00055522180889297
1003 => 0.00055301501724003
1004 => 0.00055184270315739
1005 => 0.00055216744217002
1006 => 0.00055613375311909
1007 => 0.00055724410363228
1008 => 0.00055253947048494
1009 => 0.00055475820267439
1010 => 0.000564205282738
1011 => 0.00056751122610184
1012 => 0.00057806221037637
1013 => 0.00057357996472776
1014 => 0.00058180732060284
1015 => 0.00060709540765052
1016 => 0.00062729728138674
1017 => 0.00060871880342118
1018 => 0.00064581697184463
1019 => 0.00067470321737848
1020 => 0.00067359451516233
1021 => 0.00066855753010261
1022 => 0.00063567130754289
1023 => 0.00060540891523748
1024 => 0.00063072469141001
1025 => 0.00063078922652971
1026 => 0.00062861457890504
1027 => 0.00061510802927615
1028 => 0.00062814458025509
1029 => 0.00062917937433
1030 => 0.00062860016482201
1031 => 0.00061824472488932
1101 => 0.00060243388211732
1102 => 0.00060552328294916
1103 => 0.00061058378453378
1104 => 0.00060100319930287
1105 => 0.00059794162181346
1106 => 0.00060363367685522
1107 => 0.00062197466418652
1108 => 0.00061850740677364
1109 => 0.00061841686267031
1110 => 0.00063325126022857
1111 => 0.00062263303304021
1112 => 0.00060556225018728
1113 => 0.00060125165238095
1114 => 0.0005859519341351
1115 => 0.00059651950402323
1116 => 0.00059689981205043
1117 => 0.00059111206202064
1118 => 0.00060603189420408
1119 => 0.00060589440532393
1120 => 0.00062005856545815
1121 => 0.00064713511981917
1122 => 0.0006391272503383
1123 => 0.00062981496938576
1124 => 0.00063082747252684
1125 => 0.00064193213291384
1126 => 0.00063521800174912
1127 => 0.00063763245012854
1128 => 0.00064192847835704
1129 => 0.00064452037885168
1130 => 0.00063045453793275
1201 => 0.0006271751175676
1202 => 0.00062046657442065
1203 => 0.0006187164407345
1204 => 0.00062418040914935
1205 => 0.00062274084651689
1206 => 0.00059686784863337
1207 => 0.00059416397639854
1208 => 0.00059424690029974
1209 => 0.00058744788500314
1210 => 0.00057707775472519
1211 => 0.00060432983792734
1212 => 0.00060214111425355
1213 => 0.00059972493271144
1214 => 0.00060002090116381
1215 => 0.00061185010682306
1216 => 0.00060498857015149
1217 => 0.00062323108997661
1218 => 0.0006194809763209
1219 => 0.00061563468640041
1220 => 0.00061510301197254
1221 => 0.00061362251850318
1222 => 0.0006085453555294
1223 => 0.00060241437614837
1224 => 0.00059836617250467
1225 => 0.00055196116461935
1226 => 0.00056057366415736
1227 => 0.00057048155982179
1228 => 0.00057390172570176
1229 => 0.00056805129529581
1230 => 0.00060877636618062
1231 => 0.00061621722906783
]
'min_raw' => 0.00025683348371119
'max_raw' => 0.00067470321737848
'avg_raw' => 0.00046576835054483
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000256'
'max' => '$0.000674'
'avg' => '$0.000465'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.9580128873293E-6
'max_diff' => -0.00012167589742213
'year' => 2027
]
2 => [
'items' => [
101 => 0.00059367837002701
102 => 0.00058946226975602
103 => 0.00060905277301248
104 => 0.00059723730470722
105 => 0.00060255780936161
106 => 0.00059105778845926
107 => 0.0006144249430922
108 => 0.00061424692452459
109 => 0.00060515657360125
110 => 0.00061283967595362
111 => 0.00061150454784803
112 => 0.00060124156404413
113 => 0.00061475029798453
114 => 0.00061475699814803
115 => 0.00060600773302559
116 => 0.000595790506823
117 => 0.00059396390809809
118 => 0.00059258781132788
119 => 0.0006022193739124
120 => 0.00061085500280857
121 => 0.00062692376723038
122 => 0.00063096383639045
123 => 0.00064673249528483
124 => 0.00063734302667529
125 => 0.00064150525649593
126 => 0.00064602394574958
127 => 0.00064819037154708
128 => 0.00064466029696687
129 => 0.00066915551486879
130 => 0.0006712236617738
131 => 0.00067191709354165
201 => 0.00066365744388591
202 => 0.00067099394597528
203 => 0.00066756143960707
204 => 0.0006764918675994
205 => 0.00067789227273803
206 => 0.00067670617940647
207 => 0.00067715069010136
208 => 0.00065624834287462
209 => 0.00065516444590225
210 => 0.00064038543377414
211 => 0.00064640799045728
212 => 0.00063514910940679
213 => 0.00063871941656723
214 => 0.00064029317394441
215 => 0.00063947113240052
216 => 0.00064674849677598
217 => 0.00064056125038952
218 => 0.00062423208989816
219 => 0.00060789848053795
220 => 0.0006076934253775
221 => 0.00060339307434511
222 => 0.00060028470819727
223 => 0.00060088348979255
224 => 0.00060299367423466
225 => 0.00060016206044138
226 => 0.00060076632881064
227 => 0.00061080120995941
228 => 0.0006128136338083
229 => 0.00060597463126502
301 => 0.00057851504919042
302 => 0.00057177639887217
303 => 0.00057662000708768
304 => 0.00057430507432899
305 => 0.00046350901765677
306 => 0.00048953890771077
307 => 0.00047407283093222
308 => 0.00048120031067175
309 => 0.00046541345120203
310 => 0.00047294776800118
311 => 0.00047155645479757
312 => 0.00051341174772396
313 => 0.00051275823489499
314 => 0.00051307103690308
315 => 0.00049814018205518
316 => 0.00052192543924478
317 => 0.00053364291222656
318 => 0.00053147431982807
319 => 0.00053202010781428
320 => 0.00052264166192911
321 => 0.00051316184075952
322 => 0.00050264726014843
323 => 0.00052218205128239
324 => 0.0005200101159783
325 => 0.00052499175412823
326 => 0.00053766146255431
327 => 0.00053952712524759
328 => 0.00054203459482705
329 => 0.00054113584547665
330 => 0.00056254770125484
331 => 0.00055995458424012
401 => 0.0005662032501549
402 => 0.00055334927028079
403 => 0.00053880377194226
404 => 0.00054156839564825
405 => 0.00054130214015366
406 => 0.00053791240211375
407 => 0.00053485229817674
408 => 0.00052975808730056
409 => 0.00054587692431414
410 => 0.00054522252896784
411 => 0.00055581642897304
412 => 0.00055394385424347
413 => 0.00054143834190261
414 => 0.00054188497872236
415 => 0.00054488882598146
416 => 0.00055528517564253
417 => 0.0005583715200594
418 => 0.00055694180235595
419 => 0.00056032583811207
420 => 0.00056300044199545
421 => 0.0005606617271809
422 => 0.00059377299704197
423 => 0.00058002288928597
424 => 0.00058672459613361
425 => 0.00058832291372802
426 => 0.00058422885681893
427 => 0.00058511671116533
428 => 0.00058646156857429
429 => 0.00059462727941142
430 => 0.00061605646741551
501 => 0.00062554730890911
502 => 0.00065410097381246
503 => 0.00062475922664195
504 => 0.00062301820879308
505 => 0.00062816158608024
506 => 0.0006449256100909
507 => 0.00065851127698683
508 => 0.00066301842647214
509 => 0.00066361412068155
510 => 0.00067206983274562
511 => 0.00067691648921105
512 => 0.00067104308689374
513 => 0.00066606599340067
514 => 0.00064823866228809
515 => 0.00065030222440658
516 => 0.0006645181210669
517 => 0.00068459891241174
518 => 0.00070183032043586
519 => 0.00069579648192101
520 => 0.00074183041056314
521 => 0.00074639448655627
522 => 0.00074576387882826
523 => 0.00075616152316619
524 => 0.00073552431659885
525 => 0.00072670151096427
526 => 0.00066714209750628
527 => 0.00068387586329107
528 => 0.00070819937459887
529 => 0.0007049800666688
530 => 0.00068731568258775
531 => 0.00070181692041653
601 => 0.0006970223576947
602 => 0.00069324068714941
603 => 0.00071056525303031
604 => 0.00069151618119032
605 => 0.00070800934553548
606 => 0.00068685669166287
607 => 0.00069582404398709
608 => 0.00069073374110583
609 => 0.00069402779091407
610 => 0.00067477084304363
611 => 0.00068516142467853
612 => 0.00067433856068656
613 => 0.00067433342923985
614 => 0.00067409451391737
615 => 0.000686827565408
616 => 0.00068724278975998
617 => 0.00067783304546983
618 => 0.00067647695430979
619 => 0.00068149113408461
620 => 0.00067562084278405
621 => 0.00067836751513641
622 => 0.00067570403669153
623 => 0.00067510443159214
624 => 0.00067032667614587
625 => 0.00066826828773249
626 => 0.00066907543486751
627 => 0.00066632022558281
628 => 0.00066466011232851
629 => 0.00067376427560664
630 => 0.00066890028842803
701 => 0.00067301879981212
702 => 0.00066832523629238
703 => 0.00065205530024465
704 => 0.00064269828797216
705 => 0.00061196588700188
706 => 0.00062068155779362
707 => 0.00062646005654556
708 => 0.00062455026274252
709 => 0.00062865323882355
710 => 0.00062890512823194
711 => 0.0006275712088831
712 => 0.0006260267011628
713 => 0.0006252749202212
714 => 0.00063087807943737
715 => 0.00063413090195602
716 => 0.00062704000620166
717 => 0.00062537870853859
718 => 0.00063254799564533
719 => 0.00063692125663888
720 => 0.00066921095869216
721 => 0.00066681883326969
722 => 0.00067282259864918
723 => 0.00067214666680274
724 => 0.00067843956939528
725 => 0.00068872580555502
726 => 0.00066781101136541
727 => 0.00067144109645755
728 => 0.00067055108342387
729 => 0.00068026801235172
730 => 0.00068029834754319
731 => 0.00067447256325435
801 => 0.00067763081542989
802 => 0.00067586796570762
803 => 0.00067905367341919
804 => 0.00066678688497626
805 => 0.00068172650918176
806 => 0.00069019631341816
807 => 0.0006903139166582
808 => 0.00069432853664573
809 => 0.00069840762306417
810 => 0.00070623707423081
811 => 0.00069818926392057
812 => 0.000683712036611
813 => 0.00068475724566159
814 => 0.000676269252587
815 => 0.00067641193728406
816 => 0.00067565027518873
817 => 0.00067793608047207
818 => 0.00066728849069397
819 => 0.00066978745873279
820 => 0.00066628888884451
821 => 0.00067143349124988
822 => 0.00066589874949494
823 => 0.00067055065423263
824 => 0.00067255826210434
825 => 0.00067996637837163
826 => 0.00066480456469891
827 => 0.00063388860025568
828 => 0.00064038751080149
829 => 0.00063077511162584
830 => 0.00063166477576653
831 => 0.00063346203891972
901 => 0.00062763652101231
902 => 0.00062874784624588
903 => 0.00062870814188826
904 => 0.00062836599118433
905 => 0.00062685054898444
906 => 0.00062465285797349
907 => 0.00063340778254749
908 => 0.00063489541483351
909 => 0.00063820223712669
910 => 0.00064804109723221
911 => 0.00064705796309137
912 => 0.00064866149566492
913 => 0.00064516099306031
914 => 0.00063182715404267
915 => 0.00063255124565237
916 => 0.00062352181167672
917 => 0.000637971334199
918 => 0.00063454949654135
919 => 0.00063234341554309
920 => 0.00063174146590351
921 => 0.00064160471464018
922 => 0.00064455595324968
923 => 0.0006427169393985
924 => 0.00063894506833712
925 => 0.00064618817582854
926 => 0.00064812612583107
927 => 0.00064855996136779
928 => 0.00066139335911447
929 => 0.00064927720574056
930 => 0.00065219368428187
1001 => 0.00067494721731564
1002 => 0.00065431290262694
1003 => 0.00066524335931767
1004 => 0.00066470837034201
1005 => 0.0006703000221185
1006 => 0.00066424969168825
1007 => 0.00066432469278519
1008 => 0.00066928970075141
1009 => 0.00066231724250676
1010 => 0.00066059076379148
1011 => 0.0006582056458116
1012 => 0.00066341346366288
1013 => 0.00066653531493537
1014 => 0.0006916951434446
1015 => 0.00070794954008913
1016 => 0.00070724389386287
1017 => 0.0007136921794565
1018 => 0.00071078716773704
1019 => 0.00070140611859154
1020 => 0.00071741842558585
1021 => 0.00071235146166947
1022 => 0.00071276917601837
1023 => 0.00071275362866944
1024 => 0.00071612271671216
1025 => 0.00071373540906151
1026 => 0.00070902978062997
1027 => 0.00071215359638531
1028 => 0.0007214302123941
1029 => 0.00075022511312671
1030 => 0.00076633912105837
1031 => 0.00074925502961588
1101 => 0.00076103940712781
1102 => 0.00075397297982369
1103 => 0.00075268879977453
1104 => 0.00076009025971068
1105 => 0.00076750467492266
1106 => 0.00076703240872706
1107 => 0.00076164992401759
1108 => 0.00075860949498071
1109 => 0.00078163264226643
1110 => 0.00079859570499747
1111 => 0.00079743893784103
1112 => 0.00080254453186873
1113 => 0.00081753471384413
1114 => 0.00081890522822088
1115 => 0.00081873257491033
1116 => 0.00081533561202915
1117 => 0.00083009539290505
1118 => 0.00084240826178535
1119 => 0.00081454931326986
1120 => 0.00082515763616414
1121 => 0.00082992005409021
1122 => 0.00083691269655139
1123 => 0.00084871045648637
1124 => 0.00086152595297703
1125 => 0.00086333820469557
1126 => 0.00086205232537703
1127 => 0.00085360016094241
1128 => 0.00086762303012316
1129 => 0.00087583729801249
1130 => 0.00088072870656041
1201 => 0.00089313250478517
1202 => 0.000829949465162
1203 => 0.00078522536931589
1204 => 0.00077824105592575
1205 => 0.00079244393184917
1206 => 0.00079618911696436
1207 => 0.00079467943754049
1208 => 0.0007443384015288
1209 => 0.00077797602078947
1210 => 0.00081416727078259
1211 => 0.00081555752408833
1212 => 0.00083367562055824
1213 => 0.00083957561545471
1214 => 0.00085416305790617
1215 => 0.0008532506094091
1216 => 0.00085680241950913
1217 => 0.00085598591987591
1218 => 0.00088300608526884
1219 => 0.00091281334023063
1220 => 0.00091178120977257
1221 => 0.00090749606420838
1222 => 0.0009138602360971
1223 => 0.00094462451755723
1224 => 0.00094179223550795
1225 => 0.00094454355626562
1226 => 0.00098081637790604
1227 => 0.0010279762057873
1228 => 0.0010060657309672
1229 => 0.0010536051567576
1230 => 0.001083528705336
1231 => 0.0011352783884497
]
'min_raw' => 0.00046350901765677
'max_raw' => 0.0011352783884497
'avg_raw' => 0.00079939370305322
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000463'
'max' => '$0.001135'
'avg' => '$0.000799'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020667553394558
'max_diff' => 0.00046057517107119
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011287990732513
102 => 0.0011489448451307
103 => 0.0011171997467723
104 => 0.0010443065841984
105 => 0.0010327709621972
106 => 0.001055865569572
107 => 0.001112641408264
108 => 0.0010540774963635
109 => 0.0010659248994672
110 => 0.0010625128465763
111 => 0.001062331032778
112 => 0.0010692701259676
113 => 0.0010592046093774
114 => 0.001018195884037
115 => 0.0010369899411946
116 => 0.0010297326531613
117 => 0.0010377851553009
118 => 0.0010812411882438
119 => 0.0010620282402173
120 => 0.0010417889602045
121 => 0.0010671735087963
122 => 0.0010994967622309
123 => 0.0010974740311214
124 => 0.001093549087333
125 => 0.0011156737899647
126 => 0.0011522173167827
127 => 0.0011620948852378
128 => 0.0011693863043334
129 => 0.0011703916678371
130 => 0.0011807475367556
131 => 0.0011250614195659
201 => 0.0012134367176669
202 => 0.0012286966903306
203 => 0.0012258284479309
204 => 0.0012427892653087
205 => 0.0012377989625818
206 => 0.0012305687968849
207 => 0.0012574553000981
208 => 0.0012266320937931
209 => 0.0011828824329768
210 => 0.0011588805037828
211 => 0.0011904881803258
212 => 0.0012097898854348
213 => 0.0012225470846928
214 => 0.0012264074054801
215 => 0.0011293841743253
216 => 0.0010770940338879
217 => 0.0011106114144006
218 => 0.0011515049318721
219 => 0.0011248342540116
220 => 0.0011258796940894
221 => 0.0010878543163912
222 => 0.0011548693340454
223 => 0.0011451058096582
224 => 0.0011957589914504
225 => 0.0011836702030985
226 => 0.0012249759065049
227 => 0.0012140987304931
228 => 0.0012592492799832
301 => 0.0012772610565772
302 => 0.0013075056327876
303 => 0.0013297536661655
304 => 0.0013428181369021
305 => 0.0013420337950827
306 => 0.0013938017368345
307 => 0.0013632759902176
308 => 0.0013249284581006
309 => 0.0013242348722295
310 => 0.0013440956025016
311 => 0.0013857182446267
312 => 0.0013965103901449
313 => 0.001402541727198
314 => 0.0013933045245488
315 => 0.0013601710143961
316 => 0.0013458641327029
317 => 0.0013580540104158
318 => 0.001343146837461
319 => 0.0013688808001949
320 => 0.0014042190275064
321 => 0.001396921823309
322 => 0.0014213152828827
323 => 0.0014465599472746
324 => 0.0014826609511639
325 => 0.0014920990903969
326 => 0.0015076999756487
327 => 0.0015237584111966
328 => 0.0015289159479076
329 => 0.0015387632857786
330 => 0.0015387113854472
331 => 0.0015683870009238
401 => 0.0016011201237717
402 => 0.0016134761198733
403 => 0.0016418880515952
404 => 0.0015932336141942
405 => 0.0016301385638648
406 => 0.0016634277522584
407 => 0.0016237390095034
408 => 0.0016784406951001
409 => 0.0016805646375952
410 => 0.0017126336476095
411 => 0.001680125562281
412 => 0.0016608223649825
413 => 0.0017165499723021
414 => 0.0017435148060809
415 => 0.0017353927786996
416 => 0.0016735837492942
417 => 0.0016376082430663
418 => 0.0015434534041109
419 => 0.0016549838780399
420 => 0.0017093071185022
421 => 0.001673443065225
422 => 0.0016915308076106
423 => 0.0017902116650966
424 => 0.0018277829465149
425 => 0.0018199683826229
426 => 0.001821288915282
427 => 0.0018415616967683
428 => 0.0019314623743033
429 => 0.0018775918044429
430 => 0.0019187738366095
501 => 0.0019406166379777
502 => 0.0019609054492011
503 => 0.0019110825411811
504 => 0.001846263669891
505 => 0.0018257328124423
506 => 0.0016698770919298
507 => 0.00166176412483
508 => 0.0016572100705488
509 => 0.0016284974024899
510 => 0.0016059371104572
511 => 0.0015879963286229
512 => 0.0015409143595188
513 => 0.0015568031419857
514 => 0.0014817643100043
515 => 0.0015297714954931
516 => 0.0014100077077748
517 => 0.0015097505489868
518 => 0.0014554650552656
519 => 0.0014919163042957
520 => 0.0014917891293217
521 => 0.0014246708229783
522 => 0.0013859583846027
523 => 0.0014106274570463
524 => 0.0014370746609392
525 => 0.0014413656307917
526 => 0.0014756551209815
527 => 0.0014852245806434
528 => 0.0014562286711126
529 => 0.0014075258694748
530 => 0.0014188384195026
531 => 0.0013857291361375
601 => 0.0013277063905703
602 => 0.0013693793394166
603 => 0.0013836083163829
604 => 0.0013898926432182
605 => 0.0013328339369102
606 => 0.0013149048525834
607 => 0.0013053595585275
608 => 0.001400160307003
609 => 0.0014053537060051
610 => 0.0013787835424378
611 => 0.0014988832012481
612 => 0.001471700949597
613 => 0.0015020701845046
614 => 0.0014178119241601
615 => 0.0014210307031741
616 => 0.0013811414924285
617 => 0.001403476785048
618 => 0.0013876909201246
619 => 0.001401672314126
620 => 0.001410052704043
621 => 0.0014499353693616
622 => 0.0015102059449603
623 => 0.0014439782291327
624 => 0.0014151218649482
625 => 0.0014330241909939
626 => 0.0014807004443945
627 => 0.0015529324087989
628 => 0.0015101696320677
629 => 0.001529147026222
630 => 0.0015332927425992
701 => 0.0015017610542017
702 => 0.0015540950271264
703 => 0.0015821412283773
704 => 0.001610910827517
705 => 0.0016358906643441
706 => 0.0015994196169635
707 => 0.0016384488655801
708 => 0.001606998180785
709 => 0.0015787836652117
710 => 0.0015788264549854
711 => 0.001561127077218
712 => 0.0015268323025286
713 => 0.0015205078198996
714 => 0.0015534085772296
715 => 0.001579791868895
716 => 0.001581964923164
717 => 0.0015965720690524
718 => 0.0016052164275236
719 => 0.0016899428919769
720 => 0.0017240205768741
721 => 0.0017656901249088
722 => 0.0017819227622353
723 => 0.0018307771808657
724 => 0.0017913232700598
725 => 0.0017827871682802
726 => 0.0016642823288414
727 => 0.0016836874896608
728 => 0.001714757024452
729 => 0.0016647946540265
730 => 0.0016964842783091
731 => 0.0017027404814205
801 => 0.0016630969517978
802 => 0.0016842722738651
803 => 0.0016280368964998
804 => 0.0015114317225133
805 => 0.0015542248420184
806 => 0.0015857349819825
807 => 0.0015407661270815
808 => 0.0016213710589565
809 => 0.0015742833217787
810 => 0.0015593587697033
811 => 0.0015011327710703
812 => 0.0015286132011009
813 => 0.0015657808761991
814 => 0.0015428155741944
815 => 0.0015904720241115
816 => 0.0016579662667051
817 => 0.001706066683329
818 => 0.0017097592360521
819 => 0.0016788338906406
820 => 0.0017283919540254
821 => 0.0017287529304134
822 => 0.0016728512324647
823 => 0.001638611753733
824 => 0.0016308324721247
825 => 0.0016502666428003
826 => 0.0016738633137462
827 => 0.0017110686870651
828 => 0.0017335511149494
829 => 0.0017921733631133
830 => 0.0018080348626349
831 => 0.0018254618417029
901 => 0.0018487496600191
902 => 0.0018767126567818
903 => 0.0018155312117994
904 => 0.001817962064665
905 => 0.0017609907502121
906 => 0.0017001087302063
907 => 0.0017463105943398
908 => 0.0018067133857179
909 => 0.0017928569186366
910 => 0.001791297783028
911 => 0.0017939198166535
912 => 0.0017834724929841
913 => 0.0017362196352234
914 => 0.0017124895458745
915 => 0.001743107415326
916 => 0.0017593794502949
917 => 0.0017846159574611
918 => 0.0017815050252748
919 => 0.001846511557532
920 => 0.0018717711302716
921 => 0.0018653086506467
922 => 0.001866497902426
923 => 0.0019122291523166
924 => 0.0019630917075438
925 => 0.0020107312024195
926 => 0.0020591921427708
927 => 0.0020007705877146
928 => 0.0019711077249976
929 => 0.0020017122276451
930 => 0.0019854730477508
1001 => 0.0020787881922774
1002 => 0.0020852491304214
1003 => 0.002178557527201
1004 => 0.002267118306702
1005 => 0.0022114948678286
1006 => 0.0022639452653515
1007 => 0.0023206746466162
1008 => 0.0024301148270862
1009 => 0.0023932592244559
1010 => 0.002365028410442
1011 => 0.0023383504276092
1012 => 0.0023938630748738
1013 => 0.0024652792087435
1014 => 0.0024806615599639
1015 => 0.0025055868454512
1016 => 0.0024793809554802
1017 => 0.0025109430634662
1018 => 0.0026223711737498
1019 => 0.0025922623147481
1020 => 0.0025495028947249
1021 => 0.0026374646861244
1022 => 0.0026692977164891
1023 => 0.0028927185946757
1024 => 0.0031747966824426
1025 => 0.0030580145018825
1026 => 0.0029855240338715
1027 => 0.003002561013351
1028 => 0.0031055663820575
1029 => 0.0031386484372591
1030 => 0.003048720007153
1031 => 0.0030804842489636
1101 => 0.0032555083443319
1102 => 0.0033494031560517
1103 => 0.0032218813899806
1104 => 0.002870053894977
1105 => 0.0025456528767928
1106 => 0.0026316986347835
1107 => 0.0026219437161381
1108 => 0.0028099852719107
1109 => 0.0025915442284185
1110 => 0.0025952222153677
1111 => 0.0027871522713742
1112 => 0.0027359486229458
1113 => 0.0026530052701597
1114 => 0.0025462584550587
1115 => 0.0023489270944594
1116 => 0.0021741452053844
1117 => 0.0025169327397255
1118 => 0.002502151117926
1119 => 0.0024807451390468
1120 => 0.0025283818286737
1121 => 0.0027596920715919
1122 => 0.0027543596218144
1123 => 0.00272043729697
1124 => 0.0027461670813869
1125 => 0.0026484947145497
1126 => 0.0026736671074421
1127 => 0.0025456014900141
1128 => 0.0026034924975842
1129 => 0.0026528273109763
1130 => 0.0026627320051792
1201 => 0.0026850477869645
1202 => 0.0024943618749198
1203 => 0.0025799742511836
1204 => 0.0026302635014438
1205 => 0.0024030548392298
1206 => 0.0026257723167234
1207 => 0.002491042457429
1208 => 0.0024453131196099
1209 => 0.0025068816486011
1210 => 0.0024828883329759
1211 => 0.0024622602891361
1212 => 0.0024507494862386
1213 => 0.0024959586188593
1214 => 0.0024938495587859
1215 => 0.0024198786431041
1216 => 0.0023233865990374
1217 => 0.0023557724962695
1218 => 0.0023440063961857
1219 => 0.0023013645316247
1220 => 0.0023300999997404
1221 => 0.0022035635408463
1222 => 0.0019858641401117
1223 => 0.00212968303255
1224 => 0.0021241461616359
1225 => 0.002121354220244
1226 => 0.0022294301430491
1227 => 0.0022190411368072
1228 => 0.0022001849887486
1229 => 0.0023010182236784
1230 => 0.0022642127365306
1231 => 0.0023776385754567
]
'min_raw' => 0.001018195884037
'max_raw' => 0.0033494031560517
'avg_raw' => 0.0021837995200443
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001018'
'max' => '$0.003349'
'avg' => '$0.002183'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00055468686638024
'max_diff' => 0.002214124767602
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024523481688967
102 => 0.0024333993993982
103 => 0.0025036641331313
104 => 0.0023565186019314
105 => 0.002405394444942
106 => 0.0024154676884475
107 => 0.0022997739572113
108 => 0.0022207409067113
109 => 0.0022154703032857
110 => 0.002078437885144
111 => 0.0021516394968283
112 => 0.0022160538858219
113 => 0.0021852043922525
114 => 0.0021754383641908
115 => 0.0022253308835649
116 => 0.0022292079596208
117 => 0.0021408102146722
118 => 0.0021591909050396
119 => 0.0022358414394068
120 => 0.0021572595082385
121 => 0.0020045876522641
122 => 0.0019667229211289
123 => 0.0019616710680101
124 => 0.0018589789140817
125 => 0.0019692532235207
126 => 0.0019211155322828
127 => 0.0020731819221251
128 => 0.0019863224157956
129 => 0.0019825780760816
130 => 0.0019769179574287
131 => 0.0018885265783831
201 => 0.0019078786728289
202 => 0.001972207982174
203 => 0.0019951614044698
204 => 0.0019927671744725
205 => 0.0019718927334634
206 => 0.001981448945663
207 => 0.0019506650565633
208 => 0.0019397946246109
209 => 0.0019054845512215
210 => 0.0018550582217386
211 => 0.0018620703121359
212 => 0.0017621625586635
213 => 0.001707727512066
214 => 0.0016926606086102
215 => 0.0016725125156198
216 => 0.0016949363893255
217 => 0.0017618795325507
218 => 0.001681131899041
219 => 0.0015426957451765
220 => 0.0015510159939075
221 => 0.001569709122502
222 => 0.0015348746010336
223 => 0.0015019066499035
224 => 0.0015305696086367
225 => 0.0014719123852727
226 => 0.0015767975677073
227 => 0.0015739607174598
228 => 0.0016130554274153
301 => 0.0016375021518546
302 => 0.0015811603667429
303 => 0.0015669905601517
304 => 0.0015750623259679
305 => 0.0014416540171074
306 => 0.0016021531224007
307 => 0.0016035411253282
308 => 0.0015916562015824
309 => 0.0016771170202971
310 => 0.001857466003683
311 => 0.0017896114616122
312 => 0.001763336132008
313 => 0.0017133867112232
314 => 0.0017799413487158
315 => 0.0017748309909704
316 => 0.0017517200152003
317 => 0.001737742424944
318 => 0.0017634965635677
319 => 0.0017345512021601
320 => 0.0017293518198859
321 => 0.0016978492202883
322 => 0.0016866042255089
323 => 0.0016782788790504
324 => 0.0016691134906312
325 => 0.0016893300536114
326 => 0.0016435166621879
327 => 0.0015882702032732
328 => 0.0015836770579894
329 => 0.0015963591359514
330 => 0.0015907482605229
331 => 0.0015836501952765
401 => 0.0015700980556782
402 => 0.001566077425355
403 => 0.0015791425233728
404 => 0.0015643927894532
405 => 0.0015861568253112
406 => 0.0015802382118168
407 => 0.0015471773179593
408 => 0.0015059712035023
409 => 0.0015056043826509
410 => 0.0014967265928827
411 => 0.0014854193928282
412 => 0.0014822739884468
413 => 0.0015281556941996
414 => 0.0016231294519842
415 => 0.0016044838308017
416 => 0.0016179572029862
417 => 0.0016842328590473
418 => 0.0017052998971306
419 => 0.0016903470124992
420 => 0.001669878581762
421 => 0.0016707790888354
422 => 0.0017407259128797
423 => 0.0017450884104969
424 => 0.0017561110345803
425 => 0.0017702782215207
426 => 0.0016927597456958
427 => 0.0016671279755951
428 => 0.001654982220925
429 => 0.0016175779975395
430 => 0.001657915245665
501 => 0.0016344124585955
502 => 0.0016375837875407
503 => 0.0016355184554047
504 => 0.0016366462664081
505 => 0.0015767682501613
506 => 0.0015985846521857
507 => 0.0015623106524593
508 => 0.0015137438387732
509 => 0.001513581025784
510 => 0.0015254676846291
511 => 0.001518397034823
512 => 0.0014993700979978
513 => 0.0015020727845692
514 => 0.0014783944063033
515 => 0.0015049477684016
516 => 0.0015057092238141
517 => 0.0014954847330348
518 => 0.0015363938510051
519 => 0.0015531543500162
520 => 0.0015464243711555
521 => 0.0015526821567586
522 => 0.0016052586405417
523 => 0.0016138309014712
524 => 0.0016176381335243
525 => 0.0016125369469347
526 => 0.0015536431583662
527 => 0.0015562553483249
528 => 0.0015370888316229
529 => 0.0015208951447275
530 => 0.0015215428072786
531 => 0.0015298684673748
601 => 0.0015662271133083
602 => 0.0016427417402162
603 => 0.0016456454143759
604 => 0.0016491647521636
605 => 0.0016348498367036
606 => 0.0016305323212255
607 => 0.0016362282385864
608 => 0.001664963109505
609 => 0.001738876998949
610 => 0.0017127508938768
611 => 0.0016915099637761
612 => 0.0017101439859881
613 => 0.0017072754243268
614 => 0.0016830618770875
615 => 0.0016823822834622
616 => 0.0016359087447706
617 => 0.0016187285356676
618 => 0.0016043714670247
619 => 0.0015886939228675
620 => 0.0015793997491751
621 => 0.0015936798240931
622 => 0.0015969458461837
623 => 0.0015657222128025
624 => 0.001561466546948
625 => 0.001586964439976
626 => 0.0015757437679116
627 => 0.0015872845073891
628 => 0.0015899620579425
629 => 0.0015895309106342
630 => 0.001577815240313
701 => 0.0015852824592094
702 => 0.0015676202604343
703 => 0.0015484152720429
704 => 0.0015361636859623
705 => 0.0015254725521698
706 => 0.0015314046145702
707 => 0.0015102578952646
708 => 0.0015034926341594
709 => 0.001582752733465
710 => 0.0016413030210118
711 => 0.0016404516766424
712 => 0.0016352693367417
713 => 0.0016275694308486
714 => 0.0016643998134291
715 => 0.0016515688445848
716 => 0.0016609044464824
717 => 0.0016632807489793
718 => 0.0016704731009409
719 => 0.0016730437485637
720 => 0.0016652734660182
721 => 0.0016391954487355
722 => 0.0015742115090904
723 => 0.0015439613097648
724 => 0.0015339782401305
725 => 0.0015343411057511
726 => 0.0015243316520299
727 => 0.001527279884743
728 => 0.0015233063770088
729 => 0.0015157815146549
730 => 0.0015309399755244
731 => 0.0015326868469287
801 => 0.0015291486810317
802 => 0.0015299820471839
803 => 0.0015006875447267
804 => 0.0015029147421243
805 => 0.0014905134239964
806 => 0.0014881883263475
807 => 0.0014568388740266
808 => 0.0014012987750642
809 => 0.0014320733812972
810 => 0.0013949019845323
811 => 0.0013808246133388
812 => 0.0014474646990883
813 => 0.0014407758827873
814 => 0.0014293275368386
815 => 0.001412393047136
816 => 0.0014061118801772
817 => 0.0013679494981114
818 => 0.0013656946609905
819 => 0.0013846089680134
820 => 0.0013758806661239
821 => 0.0013636228246047
822 => 0.0013192261651795
823 => 0.0012693096207568
824 => 0.0012708162874687
825 => 0.0012866938115192
826 => 0.001332859854072
827 => 0.001314821982566
828 => 0.0013017352998276
829 => 0.001299284557535
830 => 0.001329960728304
831 => 0.0013733739367987
901 => 0.0013937424429086
902 => 0.0013735578719544
903 => 0.0013503709236567
904 => 0.0013517822057616
905 => 0.0013611708333401
906 => 0.0013621574453505
907 => 0.0013470651256655
908 => 0.0013513135252531
909 => 0.0013448598177978
910 => 0.0013052534270572
911 => 0.0013045370730419
912 => 0.0012948170260148
913 => 0.0012945227068538
914 => 0.0012779864820814
915 => 0.0012756729499263
916 => 0.0012428392719636
917 => 0.0012644504982281
918 => 0.0012499548222902
919 => 0.0012281064194673
920 => 0.0012243397465855
921 => 0.0012242265158503
922 => 0.0012466599403359
923 => 0.0012641883506016
924 => 0.0012502069807792
925 => 0.0012470236938881
926 => 0.0012810128697274
927 => 0.0012766874372837
928 => 0.0012729416406834
929 => 0.0013694867601383
930 => 0.0012930637645801
1001 => 0.0012597389764447
1002 => 0.0012184932229215
1003 => 0.0012319230482478
1004 => 0.0012347529097692
1005 => 0.0011355643076517
1006 => 0.0010953235041258
1007 => 0.0010815143767984
1008 => 0.0010735670287891
1009 => 0.0010771887350734
1010 => 0.0010409672921246
1011 => 0.0010653087008336
1012 => 0.0010339439929623
1013 => 0.0010286855976181
1014 => 0.0010847695806337
1015 => 0.0010925733392325
1016 => 0.0010592800806124
1017 => 0.0010806597423355
1018 => 0.0010729071797952
1019 => 0.0010344816508566
1020 => 0.0010330140782902
1021 => 0.0010137334985915
1022 => 0.00098356312481886
1023 => 0.00096977445442557
1024 => 0.00096259319516602
1025 => 0.00096555632269647
1026 => 0.00096405807474388
1027 => 0.00095428099339926
1028 => 0.00096461848560191
1029 => 0.00093821046477083
1030 => 0.00092769457809201
1031 => 0.00092294479604591
1101 => 0.00089950615756936
1102 => 0.00093680745459539
1103 => 0.00094415628001887
1104 => 0.00095151958489861
1105 => 0.001015612126735
1106 => 0.0010124102444685
1107 => 0.0010413537007777
1108 => 0.0010402290112892
1109 => 0.0010319738686969
1110 => 0.00099714678000495
1111 => 0.0010110282368244
1112 => 0.00096830327039153
1113 => 0.0010003157202583
1114 => 0.00098570657501099
1115 => 0.00099537635355473
1116 => 0.00097798921984431
1117 => 0.00098761197753681
1118 => 0.00094589895915023
1119 => 0.00090694792949885
1120 => 0.000922622960882
1121 => 0.00093966351265277
1122 => 0.00097661177074363
1123 => 0.00095460569304122
1124 => 0.00096251991072494
1125 => 0.00093600860630854
1126 => 0.00088130821271781
1127 => 0.00088161781100509
1128 => 0.000873203347164
1129 => 0.00086593202187347
1130 => 0.00095713335578537
1201 => 0.00094579102823369
1202 => 0.00092771851372723
1203 => 0.00095190929256731
1204 => 0.00095830571845192
1205 => 0.00095848781570454
1206 => 0.00097613678349189
1207 => 0.00098555604076375
1208 => 0.00098721622568331
1209 => 0.0010149872578279
1210 => 0.001024295741494
1211 => 0.0010626360683287
1212 => 0.00098475688259292
1213 => 0.00098315301201251
1214 => 0.00095224970643469
1215 => 0.0009326503414753
1216 => 0.00095359169172144
1217 => 0.00097214286926015
1218 => 0.00095282614323202
1219 => 0.00095534849985295
1220 => 0.00092941737339469
1221 => 0.00093868653093061
1222 => 0.00094667037809091
1223 => 0.00094226216695784
1224 => 0.0009356628615318
1225 => 0.00097062188425682
1226 => 0.00096864935918916
1227 => 0.0010012040048552
1228 => 0.0010265826791568
1229 => 0.0010720658004861
1230 => 0.0010246017922903
1231 => 0.0010228720151793
]
'min_raw' => 0.00086593202187347
'max_raw' => 0.0025036641331313
'avg_raw' => 0.0016847980775024
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000865'
'max' => '$0.0025036'
'avg' => '$0.001684'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015226386216354
'max_diff' => -0.00084573902292035
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010397808639043
102 => 0.0010242931528374
103 => 0.0010340808516141
104 => 0.001070488850896
105 => 0.0010712580945498
106 => 0.0010583722722333
107 => 0.0010575881687743
108 => 0.0010600630319056
109 => 0.0010745583825668
110 => 0.0010694932616487
111 => 0.0010753547478083
112 => 0.0010826846260052
113 => 0.0011130041100316
114 => 0.0011203140349842
115 => 0.0011025547071109
116 => 0.0011041581755751
117 => 0.001097515699446
118 => 0.0010910991507353
119 => 0.0011055226151753
120 => 0.0011318817799333
121 => 0.0011317178009374
122 => 0.0011378326148123
123 => 0.0011416420931985
124 => 0.0011252890232563
125 => 0.0011146437760429
126 => 0.0011187258411992
127 => 0.0011252531522799
128 => 0.0011166091221886
129 => 0.001063254164161
130 => 0.0010794386500986
131 => 0.0010767447602577
201 => 0.001072908333536
202 => 0.0010891819592972
203 => 0.0010876123283928
204 => 0.0010405957888736
205 => 0.0010436056351888
206 => 0.0010407788275969
207 => 0.0010499128212367
208 => 0.0010237998872056
209 => 0.0010318320498403
210 => 0.0010368697469479
211 => 0.0010398369892457
212 => 0.0010505567030825
213 => 0.0010492988683902
214 => 0.0010504785143119
215 => 0.0010663730200323
216 => 0.0011467619756302
217 => 0.0011511373691152
218 => 0.0011295913313703
219 => 0.0011381985484726
220 => 0.0011216745738276
221 => 0.0011327672287078
222 => 0.0011403565414539
223 => 0.0011060618964951
224 => 0.001104031190191
225 => 0.0010874390152248
226 => 0.0010963547102228
227 => 0.0010821691984198
228 => 0.0010856498268281
301 => 0.0010759176863627
302 => 0.0010934336015506
303 => 0.0011130191164287
304 => 0.0011179671909423
305 => 0.001104950937177
306 => 0.0010955263116379
307 => 0.0010789797738561
308 => 0.001106497034951
309 => 0.0011145439206685
310 => 0.001106454768086
311 => 0.0011045803346811
312 => 0.001101028286766
313 => 0.0011053339184379
314 => 0.0011145000956007
315 => 0.0011101774957234
316 => 0.0011130326490968
317 => 0.001102151748659
318 => 0.0011252944368029
319 => 0.0011620505951665
320 => 0.0011621687722258
321 => 0.0011578461490482
322 => 0.0011560774247761
323 => 0.0011605126984751
324 => 0.0011629186525123
325 => 0.0011772615143648
326 => 0.0011926519765772
327 => 0.0012644725483382
328 => 0.0012443056191824
329 => 0.0013080291030736
330 => 0.0013584261053728
331 => 0.0013735379627685
401 => 0.0013596357650323
402 => 0.0013120770975587
403 => 0.0013097436424418
404 => 0.0013808163703989
405 => 0.0013607350694139
406 => 0.0013583464625599
407 => 0.0013329357212483
408 => 0.0013479566165449
409 => 0.0013446713264003
410 => 0.0013394853351851
411 => 0.0013681441570466
412 => 0.0014217909131805
413 => 0.001413429563141
414 => 0.0014071882032083
415 => 0.0013798403808159
416 => 0.0013963098782534
417 => 0.0013904454056683
418 => 0.00141564290158
419 => 0.0014007164631948
420 => 0.0013605829338084
421 => 0.001366974330645
422 => 0.0013660082838709
423 => 0.0013858894580281
424 => 0.0013799216230272
425 => 0.0013648429683066
426 => 0.0014216075544002
427 => 0.0014179215779205
428 => 0.0014231474498372
429 => 0.0014254480402704
430 => 0.0014599996435214
501 => 0.0014741543298453
502 => 0.0014773676914535
503 => 0.0014908135486985
504 => 0.0014770331462764
505 => 0.0015321645812254
506 => 0.0015688237684582
507 => 0.0016114053008935
508 => 0.0016736283646185
509 => 0.0016970248121746
510 => 0.001692798453337
511 => 0.0017399752701113
512 => 0.0018247509611729
513 => 0.0017099340443304
514 => 0.0018308365365628
515 => 0.0017925602034084
516 => 0.0017018077060612
517 => 0.0016959643151337
518 => 0.0017574229599954
519 => 0.0018937323191233
520 => 0.0018595883706697
521 => 0.0018937881663912
522 => 0.001853892288053
523 => 0.0018519111214246
524 => 0.0018918505126296
525 => 0.001985171077163
526 => 0.0019408379750222
527 => 0.0018772756021808
528 => 0.0019242090691469
529 => 0.0018835509565736
530 => 0.0017919368494568
531 => 0.0018595622614358
601 => 0.0018143430743063
602 => 0.0018275404370949
603 => 0.0019225844425947
604 => 0.0019111484963977
605 => 0.0019259476697167
606 => 0.0018998275161705
607 => 0.0018754271739881
608 => 0.0018298821233116
609 => 0.0018163984791501
610 => 0.0018201248733057
611 => 0.0018163966325343
612 => 0.0017909145952614
613 => 0.0017854117517384
614 => 0.0017762401047818
615 => 0.0017790827816831
616 => 0.0017618374021447
617 => 0.0017943829964109
618 => 0.0018004237454975
619 => 0.0018241077149272
620 => 0.0018265666632019
621 => 0.0018925261809432
622 => 0.001856196786976
623 => 0.0018805696809782
624 => 0.0018783895399321
625 => 0.0017037745878643
626 => 0.0017278349876185
627 => 0.0017652654190666
628 => 0.001748403060435
629 => 0.0017245636305141
630 => 0.0017053120126636
701 => 0.0016761438430412
702 => 0.0017171974816597
703 => 0.0017711786508753
704 => 0.0018279357147357
705 => 0.0018961256080938
706 => 0.0018809064177141
707 => 0.0018266609521113
708 => 0.0018290943640719
709 => 0.0018441367593
710 => 0.0018246554907338
711 => 0.0018189100843141
712 => 0.0018433474286847
713 => 0.0018435157152448
714 => 0.0018211001613695
715 => 0.0017961893752401
716 => 0.0017960849981366
717 => 0.0017916523643545
718 => 0.0018546808437556
719 => 0.0018893401345282
720 => 0.0018933137663591
721 => 0.0018890726774458
722 => 0.0018907049042457
723 => 0.0018705374266105
724 => 0.0019166343000048
725 => 0.0019589373495398
726 => 0.0019475992285916
727 => 0.0019306017734814
728 => 0.0019170624817777
729 => 0.0019444098017511
730 => 0.0019431920686414
731 => 0.0019585678693065
801 => 0.0019578703341734
802 => 0.0019527000307228
803 => 0.0019475994132394
804 => 0.0019678227850134
805 => 0.0019619987787199
806 => 0.001956165726136
807 => 0.0019444666461833
808 => 0.00194605674545
809 => 0.0019290622251901
810 => 0.0019211997825015
811 => 0.0018029675091029
812 => 0.0017713719822999
813 => 0.0017813125782184
814 => 0.0017845852805022
815 => 0.0017708348667467
816 => 0.0017905494278806
817 => 0.0017874769344108
818 => 0.0017994302091533
819 => 0.001791962322045
820 => 0.0017922688067368
821 => 0.0018142302704009
822 => 0.0018206057767333
823 => 0.001817363142756
824 => 0.0018196341724427
825 => 0.0018719690930314
826 => 0.0018645287409003
827 => 0.0018605762021223
828 => 0.0018616710823759
829 => 0.0018750437766597
830 => 0.0018787874009371
831 => 0.0018629254018139
901 => 0.0018704060122975
902 => 0.0019022575023061
903 => 0.0019134037211709
904 => 0.0019489771012986
905 => 0.0019338648971539
906 => 0.0019616040019024
907 => 0.0020468645529416
908 => 0.002114976580693
909 => 0.0020523379451242
910 => 0.0021774170100753
911 => 0.0022748090036659
912 => 0.002271070936737
913 => 0.0022540883899371
914 => 0.0021432101945343
915 => 0.0020411784260238
916 => 0.0021265323328806
917 => 0.0021267499175423
918 => 0.0021194179412467
919 => 0.0020738796661757
920 => 0.0021178333079842
921 => 0.0021213221884547
922 => 0.0021193693431594
923 => 0.0020844552544326
924 => 0.002031147894149
925 => 0.0020415640247487
926 => 0.0020586258591541
927 => 0.002026324247153
928 => 0.002016001924895
929 => 0.0020351930858748
930 => 0.0020970310051892
1001 => 0.0020853409047455
1002 => 0.0020850356289795
1003 => 0.0021350508360517
1004 => 0.0020992507417452
1005 => 0.0020416954055126
1006 => 0.0020271619240522
1007 => 0.0019755778557941
1008 => 0.0020112071554761
1009 => 0.0020124893905421
1010 => 0.0019929755872288
1011 => 0.0020432788431047
1012 => 0.0020428152897461
1013 => 0.0020905707445487
1014 => 0.0021818612380016
1015 => 0.0021548621469552
1016 => 0.002123465141561
1017 => 0.0021268788665919
1018 => 0.0021643190043893
1019 => 0.0021416818424018
1020 => 0.0021498223236844
1021 => 0.0021643066827959
1022 => 0.0021730454562743
1023 => 0.0021256214915705
1024 => 0.0021145646968476
1025 => 0.0020919463752521
1026 => 0.0020860456773388
1027 => 0.0021044678283316
1028 => 0.0020996142424092
1029 => 0.0020123816236498
1030 => 0.0020032653296318
1031 => 0.0020035449133542
1101 => 0.0019806215585897
1102 => 0.0019456579403382
1103 => 0.0020375402415339
1104 => 0.0020301608068559
1105 => 0.0020220144820943
1106 => 0.0020230123603953
1107 => 0.0020628953531643
1108 => 0.0020397612032189
1109 => 0.0021012671324613
1110 => 0.0020886233624465
1111 => 0.0020756553274402
1112 => 0.0020738627499863
1113 => 0.0020688711628896
1114 => 0.0020517531534473
1115 => 0.0020310821284129
1116 => 0.0020174333271916
1117 => 0.001860975603212
1118 => 0.0018900132467099
1119 => 0.0019234184086898
1120 => 0.0019349497367424
1121 => 0.0019152246021647
1122 => 0.0020525320219866
1123 => 0.0020776194107152
1124 => 0.0020016280738462
1125 => 0.0019874131974239
1126 => 0.0020534639469183
1127 => 0.0020136272705974
1128 => 0.0020315657235055
1129 => 0.0019927926001274
1130 => 0.002071576593415
1201 => 0.0020709763913854
1202 => 0.0020403276385794
1203 => 0.0020662317545774
1204 => 0.0020617302769538
1205 => 0.0020271279105203
1206 => 0.00207267355015
1207 => 0.0020726961402191
1208 => 0.0020431973820046
1209 => 0.0020087492905186
1210 => 0.0020025907853885
1211 => 0.0019979511790517
1212 => 0.0020304246647597
1213 => 0.0020595402905035
1214 => 0.0021137172516369
1215 => 0.0021273386268787
1216 => 0.0021805037612737
1217 => 0.0021488465123049
1218 => 0.0021628797607428
1219 => 0.0021781148370463
1220 => 0.0021854190928775
1221 => 0.0021735171999684
1222 => 0.0022561045373263
1223 => 0.0022630774390099
1224 => 0.0022654153926291
1225 => 0.0022375674071444
1226 => 0.0022623029361569
1227 => 0.0022507300012866
1228 => 0.0022808395627653
1229 => 0.0022855611264634
1230 => 0.0022815621299856
1231 => 0.0022830608288282
]
'min_raw' => 0.0010237998872056
'max_raw' => 0.0022855611264634
'avg_raw' => 0.0016546805068345
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001023'
'max' => '$0.002285'
'avg' => '$0.001654'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015786786533212
'max_diff' => -0.00021810300666796
'year' => 2031
]
6 => [
'items' => [
101 => 0.002212587105798
102 => 0.0022089326714803
103 => 0.0021591042002527
104 => 0.0021794096705914
105 => 0.0021414495670597
106 => 0.002153487106922
107 => 0.0021587931397954
108 => 0.0021560215693371
109 => 0.0021805577114183
110 => 0.0021596969782466
111 => 0.0021046420735844
112 => 0.0020495721692503
113 => 0.0020488808114603
114 => 0.0020343818777137
115 => 0.002023901804227
116 => 0.0020259206381812
117 => 0.0020330352723561
118 => 0.0020234882887551
119 => 0.0020255256217507
120 => 0.0020593589241568
121 => 0.0020661439516663
122 => 0.0020430857771077
123 => 0.0019505038789764
124 => 0.0019277840489509
125 => 0.0019441146122194
126 => 0.0019363096548
127 => 0.001562753014196
128 => 0.0016505146058619
129 => 0.0015983696481961
130 => 0.0016224004437626
131 => 0.0015691739448571
201 => 0.0015945764199747
202 => 0.0015898855103703
203 => 0.0017310035527149
204 => 0.0017288001885852
205 => 0.0017298548223946
206 => 0.0016795144028359
207 => 0.0017597080580843
208 => 0.0017992143363302
209 => 0.0017919027756524
210 => 0.0017937429379536
211 => 0.0017621228528696
212 => 0.0017301609739363
213 => 0.0016947103313015
214 => 0.0017605732434852
215 => 0.0017532504119678
216 => 0.0017700463527971
217 => 0.0018127631593264
218 => 0.0018190533713532
219 => 0.0018275074801063
220 => 0.0018244772839228
221 => 0.0018966688506069
222 => 0.0018879259755462
223 => 0.0019089937889458
224 => 0.001865655698364
225 => 0.0018166145351814
226 => 0.001825935657026
227 => 0.0018250379580366
228 => 0.0018136092195711
229 => 0.0018032918654979
301 => 0.0017861163778624
302 => 0.0018404621622349
303 => 0.0018382558226365
304 => 0.0018739738961464
305 => 0.0018676603797067
306 => 0.0018254971717425
307 => 0.0018270030389635
308 => 0.0018371307197195
309 => 0.0018721827384517
310 => 0.0018825885641349
311 => 0.001877768171078
312 => 0.0018891776838956
313 => 0.0018981952976233
314 => 0.0018903101573422
315 => 0.0020019471154338
316 => 0.0019555876671326
317 => 0.0019781829396676
318 => 0.0019835717790282
319 => 0.0019697683803213
320 => 0.0019727618432381
321 => 0.0019772961238874
322 => 0.0020048273880865
323 => 0.0020770773915804
324 => 0.0021090764263055
325 => 0.0022053471010804
326 => 0.0021064193519196
327 => 0.0021005493886881
328 => 0.002117890644311
329 => 0.0021744117216897
330 => 0.0022202167461503
331 => 0.0022354129153191
401 => 0.0022374213399362
402 => 0.0022659303635192
403 => 0.0022822712041751
404 => 0.0022624686181944
405 => 0.002245687999993
406 => 0.0021855819084824
407 => 0.0021925393522382
408 => 0.0022404692403507
409 => 0.0023081730303659
410 => 0.0023662699255777
411 => 0.0023459264177557
412 => 0.0025011330221589
413 => 0.0025165211230234
414 => 0.0025143949850408
415 => 0.0025494513688664
416 => 0.0024798715860809
417 => 0.0024501248808953
418 => 0.0022493161601163
419 => 0.0023057352197739
420 => 0.0023877436363615
421 => 0.0023768895149103
422 => 0.0023173328106932
423 => 0.002366224746477
424 => 0.0023500595435147
425 => 0.0023373093772434
426 => 0.0023957203606734
427 => 0.0023314950850011
428 => 0.0023871029401068
429 => 0.0023157852907442
430 => 0.0023460193451859
501 => 0.0023288570336281
502 => 0.0023399631525398
503 => 0.0022750370083174
504 => 0.0023100695797467
505 => 0.0022735795381696
506 => 0.0022735622371387
507 => 0.0022727567174484
508 => 0.0023156870895424
509 => 0.0023170870474351
510 => 0.0022853614375935
511 => 0.0022807892815682
512 => 0.0022976949387578
513 => 0.0022779028417874
514 => 0.0022871634393899
515 => 0.0022781833358548
516 => 0.0022761617253992
517 => 0.0022600531893398
518 => 0.002253113189092
519 => 0.0022558345420109
520 => 0.002246545161545
521 => 0.0022409479738027
522 => 0.0022716432959273
523 => 0.0022552440235619
524 => 0.0022691298722387
525 => 0.0022533051951377
526 => 0.0021984499698221
527 => 0.0021669021496597
528 => 0.0020632857141206
529 => 0.0020926712067037
530 => 0.0021121538186878
531 => 0.0021057148155433
601 => 0.0021195482858611
602 => 0.0021203975485879
603 => 0.002115900146372
604 => 0.0021106927307589
605 => 0.0021081580488266
606 => 0.002127049491324
607 => 0.0021380166095505
608 => 0.0021141091594441
609 => 0.002108507978385
610 => 0.002132679730409
611 => 0.0021474244851801
612 => 0.0022562914700477
613 => 0.002248226252173
614 => 0.0022684683663195
615 => 0.0022661894149071
616 => 0.0022874063753543
617 => 0.0023220871387289
618 => 0.0022515714498944
619 => 0.002263810535227
620 => 0.0022608097941452
621 => 0.0022935710984398
622 => 0.0022936733756557
623 => 0.0022740313371826
624 => 0.0022846796048946
625 => 0.0022787360339777
626 => 0.0022894768699463
627 => 0.0022481185362711
628 => 0.0022984885223312
629 => 0.0023270450586571
630 => 0.0023274415661917
701 => 0.0023409771377715
702 => 0.002354730062424
703 => 0.0023811276036671
704 => 0.002353993849326
705 => 0.002305182866684
706 => 0.0023087068619722
707 => 0.0022800890007085
708 => 0.0022805700721266
709 => 0.0022780020751946
710 => 0.0022857088272972
711 => 0.0022498097349694
712 => 0.0022582351801847
713 => 0.002246439507544
714 => 0.0022637848937383
715 => 0.0022451241254882
716 => 0.002260808347097
717 => 0.0022675771372031
718 => 0.0022925541184165
719 => 0.0022414350050549
720 => 0.0021371996724508
721 => 0.0021591112030954
722 => 0.0021267023281585
723 => 0.0021297018929232
724 => 0.0021357614911251
725 => 0.0021161203507756
726 => 0.0021198672613908
727 => 0.002119733395377
728 => 0.0021185798103905
729 => 0.0021134703912088
730 => 0.0021060607225275
731 => 0.002135578561978
801 => 0.0021405942180935
802 => 0.0021517434003299
803 => 0.002184915804103
804 => 0.0021816010987069
805 => 0.0021870075207337
806 => 0.0021752053318049
807 => 0.0021302493626181
808 => 0.0021326906880346
809 => 0.0021022473209708
810 => 0.0021509648949881
811 => 0.0021394279304202
812 => 0.0021319899743109
813 => 0.0021299604590743
814 => 0.0021632150908201
815 => 0.0021731653978409
816 => 0.0021669650342458
817 => 0.0021542479076187
818 => 0.0021786685502236
819 => 0.0021852024839605
820 => 0.002186665190762
821 => 0.0022299338872642
822 => 0.0021890834302412
823 => 0.0021989165412653
824 => 0.0022756316664896
825 => 0.0022060616338748
826 => 0.0022429144317477
827 => 0.0022411106790645
828 => 0.0022599633234256
829 => 0.0022395642119594
830 => 0.0022398170833942
831 => 0.0022565569543981
901 => 0.0022330488246247
902 => 0.0022272278810973
903 => 0.0022191862893045
904 => 0.0022367448107883
905 => 0.0022472703503142
906 => 0.0023320984687362
907 => 0.002386901301869
908 => 0.0023845221663505
909 => 0.0024062630114344
910 => 0.0023964685616008
911 => 0.0023648396994427
912 => 0.0024188263104176
913 => 0.0024017426878094
914 => 0.0024031510409007
915 => 0.0024030986219283
916 => 0.0024144577374865
917 => 0.0024064087630658
918 => 0.0023905434082724
919 => 0.0024010755711894
920 => 0.0024323523297357
921 => 0.0025294363479514
922 => 0.0025837658507371
923 => 0.0025261656436656
924 => 0.002565897495206
925 => 0.002542072542188
926 => 0.0025377428394937
927 => 0.0025626973784218
928 => 0.002587695596967
929 => 0.0025861033185159
930 => 0.0025679558955249
1001 => 0.0025577048767511
1002 => 0.0026353290252497
1003 => 0.0026925211755706
1004 => 0.0026886210543397
1005 => 0.0027058349210653
1006 => 0.0027563753661765
1007 => 0.002760996151084
1008 => 0.0027604140383931
1009 => 0.0027489609408709
1010 => 0.002798724572589
1011 => 0.002840238269676
1012 => 0.0027463098797063
1013 => 0.0027820765809938
1014 => 0.002798133405533
1015 => 0.0028217095878016
1016 => 0.0028614865591156
1017 => 0.0029046949002833
1018 => 0.0029108050334797
1019 => 0.00290646960158
1020 => 0.0028779725390774
1021 => 0.0029252516215658
1022 => 0.0029529465992565
1023 => 0.0029694383246831
1024 => 0.0030112585964034
1025 => 0.0027982325670149
1026 => 0.0026474421553331
1027 => 0.0026238940551091
1028 => 0.002671780042898
1029 => 0.0026844071959943
1030 => 0.0026793172064143
1031 => 0.002509588888802
1101 => 0.0026230004706429
1102 => 0.0027450217967871
1103 => 0.0027497091328718
1104 => 0.0028107955600852
1105 => 0.0028306878048031
1106 => 0.002879870385491
1107 => 0.002876794001678
1108 => 0.0028887691774097
1109 => 0.0028860162918901
1110 => 0.0029771166660001
1111 => 0.0030776139071798
1112 => 0.0030741340072794
1113 => 0.0030596863398304
1114 => 0.0030811435896855
1115 => 0.0031848675125219
1116 => 0.0031753182758492
1117 => 0.0031845945458747
1118 => 0.0033068908965229
1119 => 0.0034658935488187
1120 => 0.003392020853222
1121 => 0.0035523033463712
1122 => 0.0036531926795987
1123 => 0.003827670349264
1124 => 0.0038058248857013
1125 => 0.0038737477621257
1126 => 0.0037667169466382
1127 => 0.0035209525597821
1128 => 0.0034820594048139
1129 => 0.0035599244859919
1130 => 0.0037513481901044
1201 => 0.0035538958723302
1202 => 0.0035938402190535
1203 => 0.00358233624451
1204 => 0.0035817232465953
1205 => 0.0036051188837559
1206 => 0.0035711822918201
1207 => 0.0034329185111973
1208 => 0.0034962839870631
1209 => 0.0034718155337713
1210 => 0.0034989651069426
1211 => 0.0036454801560129
1212 => 0.0035807023603364
1213 => 0.003512464214712
1214 => 0.0035980499925817
1215 => 0.003707030098274
1216 => 0.0037002103191158
1217 => 0.0036869770971025
1218 => 0.0037615720767227
1219 => 0.003884781128777
1220 => 0.0039180840404532
1221 => 0.0039426675690045
1222 => 0.0039460572222496
1223 => 0.003980972757332
1224 => 0.0037932231253463
1225 => 0.0040911866130601
1226 => 0.004142636676313
1227 => 0.0041329661968081
1228 => 0.0041901507767641
1229 => 0.0041733256227083
1230 => 0.0041489486142671
1231 => 0.0042395983370064
]
'min_raw' => 0.001562753014196
'max_raw' => 0.0042395983370064
'avg_raw' => 0.0029011756756012
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001562'
'max' => '$0.004239'
'avg' => '$0.0029011'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00053895312699039
'max_diff' => 0.001954037210543
'year' => 2032
]
7 => [
'items' => [
101 => 0.0041356757449413
102 => 0.0039881707089953
103 => 0.0039072465289566
104 => 0.004013814017199
105 => 0.0040788910635758
106 => 0.0041219028515534
107 => 0.004134918192607
108 => 0.0038077975948227
109 => 0.003631497735557
110 => 0.0037445039240643
111 => 0.0038823792733137
112 => 0.0037924572208197
113 => 0.0037959819950325
114 => 0.0036677767792758
115 => 0.0038937225901362
116 => 0.0038608041859972
117 => 0.0040315849249019
118 => 0.0039908267309612
119 => 0.0041300917938679
120 => 0.0040934186355241
121 => 0.0042456468654407
122 => 0.0043063748277692
123 => 0.0044083465280714
124 => 0.0044833573259132
125 => 0.0045274051011338
126 => 0.0045247606379286
127 => 0.0046992998678672
128 => 0.0045963801819086
129 => 0.0044670888000372
130 => 0.0044647503268482
131 => 0.0045317121655925
201 => 0.0046720458095172
202 => 0.0047084322816154
203 => 0.0047287673555845
204 => 0.0046976234819318
205 => 0.0045859115391442
206 => 0.0045376748886408
207 => 0.00457877391242
208 => 0.0045285133380175
209 => 0.0046152771900626
210 => 0.0047344224906794
211 => 0.0047098194572536
212 => 0.0047920637093031
213 => 0.0048771778578267
214 => 0.004998894912931
215 => 0.0050307162583048
216 => 0.0050833157321502
217 => 0.0051374578687643
218 => 0.0051548468638732
219 => 0.0051880478510244
220 => 0.0051878728654337
221 => 0.0052879262748981
222 => 0.0053982882839336
223 => 0.0054399473874581
224 => 0.0055357401989163
225 => 0.0053716983662746
226 => 0.0054961259807101
227 => 0.0056083628035562
228 => 0.005474549436378
301 => 0.0056589799885172
302 => 0.0056661410089282
303 => 0.0057742639151785
304 => 0.0056646606358514
305 => 0.005599578558453
306 => 0.0057874680773085
307 => 0.0058783818970183
308 => 0.0058509979146405
309 => 0.0056426044566315
310 => 0.0055213105256544
311 => 0.0052038609124353
312 => 0.005579893692096
313 => 0.0057630482900422
314 => 0.0056421301304697
315 => 0.0057031142167688
316 => 0.0060358236174601
317 => 0.006162497815905
318 => 0.006136150468148
319 => 0.0061406027362046
320 => 0.0062089538343862
321 => 0.0065120602453603
322 => 0.006330431857953
323 => 0.00646927995464
324 => 0.0065429244844688
325 => 0.006611329628028
326 => 0.0064433482151143
327 => 0.0062248068650506
328 => 0.0061555856457436
329 => 0.0056301072025367
330 => 0.0056027537675305
331 => 0.0055873994555677
401 => 0.0054905926905525
402 => 0.0054145290908551
403 => 0.0053540404923154
404 => 0.0051953003463225
405 => 0.0052488704857292
406 => 0.00499587182466
407 => 0.0051577314022901
408 => 0.0047539394303572
409 => 0.0050902293833261
410 => 0.0049072020511531
411 => 0.005030099982203
412 => 0.0050296712028992
413 => 0.0048033771470118
414 => 0.0046728554582124
415 => 0.0047560289582955
416 => 0.0048451975527053
417 => 0.0048596648571491
418 => 0.0049752742673397
419 => 0.005007538368708
420 => 0.0049097766352953
421 => 0.0047455717392523
422 => 0.0047837127914882
423 => 0.0046720825310062
424 => 0.0044764547933076
425 => 0.0046169580498554
426 => 0.0046649320391329
427 => 0.0046861200858157
428 => 0.0044937426737866
429 => 0.0044332935142102
430 => 0.0044011108888694
501 => 0.0047207382311315
502 => 0.0047382481384585
503 => 0.0046486649769219
504 => 0.0050535893616912
505 => 0.0049619425024454
506 => 0.0050643344982486
507 => 0.0047802518907734
508 => 0.0047911042289469
509 => 0.0046566149699424
510 => 0.0047319199684094
511 => 0.0046786968226863
512 => 0.0047258360687117
513 => 0.004754091138417
514 => 0.0048885583290575
515 => 0.0050917647826456
516 => 0.0048684734148614
517 => 0.0047711821683265
518 => 0.00483154111049
519 => 0.0049922849274798
520 => 0.0052358200385439
521 => 0.0050916423511931
522 => 0.0051556259605435
523 => 0.0051696035327539
524 => 0.0050632922438495
525 => 0.0052397398874066
526 => 0.005334299613047
527 => 0.0054312983251759
528 => 0.0055155195890752
529 => 0.0053925549065042
530 => 0.00552414474315
531 => 0.0054181065635466
601 => 0.0053229793544169
602 => 0.0053231236231263
603 => 0.0052634489352525
604 => 0.0051478217080023
605 => 0.0051264982732574
606 => 0.0052374254736532
607 => 0.0053263785835256
608 => 0.0053337051877114
609 => 0.0053829541999125
610 => 0.005412099258028
611 => 0.005697760448345
612 => 0.0058126557422038
613 => 0.0059531475326777
614 => 0.0060078770027507
615 => 0.0061725930860696
616 => 0.0060395714712034
617 => 0.0060107914080819
618 => 0.0056112440681705
619 => 0.0056766699226979
620 => 0.0057814230284523
621 => 0.0056129714083014
622 => 0.005719815189069
623 => 0.0057409084146532
624 => 0.0056072474867075
625 => 0.005678641563471
626 => 0.0054890400624555
627 => 0.0050958975772467
628 => 0.0052401775673784
629 => 0.0053464162042349
630 => 0.0051948005703112
701 => 0.0054665657257842
702 => 0.0053078061323284
703 => 0.0052574869630073
704 => 0.0050611739434068
705 => 0.0051538261318772
706 => 0.0052791395434349
707 => 0.00520171042434
708 => 0.0053623874725027
709 => 0.0055899490237045
710 => 0.0057521229366156
711 => 0.0057645726359275
712 => 0.0056603056747339
713 => 0.0058273941454694
714 => 0.0058286112025641
715 => 0.005640134724998
716 => 0.0055246939319302
717 => 0.0054984655408557
718 => 0.0055639892041388
719 => 0.0056435470277
720 => 0.0057689875414408
721 => 0.0058447886167257
722 => 0.006042437619285
723 => 0.0060959157723365
724 => 0.0061546720489772
725 => 0.0062331885543339
726 => 0.0063274677502333
727 => 0.006121190236923
728 => 0.0061293860270762
729 => 0.0059373032627882
730 => 0.0057320352816916
731 => 0.0058878080923288
801 => 0.0060914603206484
802 => 0.0060447422744562
803 => 0.0060394855398965
804 => 0.0060483259093293
805 => 0.0060131020281691
806 => 0.0058537857191395
807 => 0.0057737780661178
808 => 0.005877008350645
809 => 0.0059318706526199
810 => 0.0060169572984874
811 => 0.006006468573423
812 => 0.0062256426355391
813 => 0.0063108070485978
814 => 0.0062890183473467
815 => 0.0062930279927512
816 => 0.0064472140946114
817 => 0.0066187007506703
818 => 0.0067793206337267
819 => 0.0069427100775562
820 => 0.0067457377258212
821 => 0.0066457273131759
822 => 0.0067489125305903
823 => 0.0066941610017932
824 => 0.0070087795266201
825 => 0.007030563030661
826 => 0.0073451588049875
827 => 0.0076437476561914
828 => 0.0074562093485251
829 => 0.0076330495257435
830 => 0.0078243165953963
831 => 0.0081933018047204
901 => 0.0080690405672762
902 => 0.0079738584068158
903 => 0.0078839117250976
904 => 0.0080710764911196
905 => 0.0083118609725767
906 => 0.0083637236436775
907 => 0.0084477609839259
908 => 0.0083594059962517
909 => 0.0084658198469226
910 => 0.0088415075004062
911 => 0.0087399933801483
912 => 0.0085958270101729
913 => 0.0088923963311724
914 => 0.0089997236155581
915 => 0.0097530027051121
916 => 0.010704048672081
917 => 0.010310309396851
918 => 0.010065902722829
919 => 0.010123344088628
920 => 0.010470633880828
921 => 0.010582172339655
922 => 0.01027897235895
923 => 0.010386067717923
924 => 0.010976173675249
925 => 0.011292746588489
926 => 0.010862798050895
927 => 0.0096765870876789
928 => 0.008582846405915
929 => 0.0088729556865036
930 => 0.008840066297224
1001 => 0.0094740615311535
1002 => 0.0087375723019531
1003 => 0.0087499728917409
1004 => 0.0093970784756955
1005 => 0.0092244418000947
1006 => 0.0089447924952562
1007 => 0.0085848881553188
1008 => 0.0079195716958224
1009 => 0.0073302823539244
1010 => 0.0084860144586168
1011 => 0.0084361771887
1012 => 0.0083640054363909
1013 => 0.0085246158613556
1014 => 0.0093044944949196
1015 => 0.0092865157681952
1016 => 0.0091721442816012
1017 => 0.0092588940461587
1018 => 0.0089295848421004
1019 => 0.0090144553222174
1020 => 0.008582673151803
1021 => 0.0087778567256466
1022 => 0.0089441924934449
1023 => 0.0089775868614736
1024 => 0.0090528260778008
1025 => 0.0084099152120769
1026 => 0.0086985633159156
1027 => 0.0088681170342511
1028 => 0.0081020671663944
1029 => 0.0088529746914017
1030 => 0.0083987235642522
1031 => 0.0082445439090747
1101 => 0.0084521265031462
1102 => 0.0083712313643559
1103 => 0.0083016824743459
1104 => 0.0082628729987187
1105 => 0.0084152987457499
1106 => 0.0084081879024627
1107 => 0.008158789795757
1108 => 0.0078334601323267
1109 => 0.0079426514459561
1110 => 0.0079029812180405
1111 => 0.0077592111945132
1112 => 0.0078560948315118
1113 => 0.0074294683258567
1114 => 0.0066954795969933
1115 => 0.0071803750339633
1116 => 0.0071617070871047
1117 => 0.0071522938617746
1118 => 0.007516679381132
1119 => 0.00748165212125
1120 => 0.0074180773015763
1121 => 0.0077580435930939
1122 => 0.0076339513234981
1123 => 0.0080163744585765
1124 => 0.0082682630689168
1125 => 0.0082043759695916
1126 => 0.0084412784250999
1127 => 0.0079451669932866
1128 => 0.0081099553103991
1129 => 0.0081439179541693
1130 => 0.0077538484618282
1201 => 0.0074873830141561
1202 => 0.0074696128067249
1203 => 0.0070075984416622
1204 => 0.007254402786229
1205 => 0.0074715803959901
1206 => 0.0073675691745779
1207 => 0.0073346423291256
1208 => 0.0075028584415798
1209 => 0.0075159302741911
1210 => 0.0072178911053636
1211 => 0.0072798628862358
1212 => 0.0075382955144244
1213 => 0.0072733510470753
1214 => 0.0067586072254491
1215 => 0.0066309436407957
1216 => 0.0066139109652962
1217 => 0.0062676771985895
1218 => 0.0066394747319694
1219 => 0.0064771751450947
1220 => 0.0069898775953843
1221 => 0.0066970247054573
1222 => 0.0066844004026902
1223 => 0.0066653169174751
1224 => 0.0063672992117339
1225 => 0.006432546149278
1226 => 0.0066494369070637
1227 => 0.0067268259728909
1228 => 0.0067187536592952
1229 => 0.0066483740240262
1230 => 0.0066805934606503
1231 => 0.0065768034292882
]
'min_raw' => 0.003631497735557
'max_raw' => 0.011292746588489
'avg_raw' => 0.0074621221620229
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003631'
'max' => '$0.011292'
'avg' => '$0.007462'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.002068744721361
'max_diff' => 0.0070531482514825
'year' => 2033
]
8 => [
'items' => [
101 => 0.0065401530090116
102 => 0.0064244742011261
103 => 0.0062544583106209
104 => 0.0062781000629637
105 => 0.0059412540967951
106 => 0.005757722536658
107 => 0.0057069234197191
108 => 0.0056389927175072
109 => 0.0057145963732906
110 => 0.0059402998544954
111 => 0.0056680535704977
112 => 0.00520130641244
113 => 0.0052293587119377
114 => 0.0052923839001066
115 => 0.0051749368789072
116 => 0.0050637831299233
117 => 0.0051604222964761
118 => 0.004962655372588
119 => 0.0053162830880159
120 => 0.0053067184493438
121 => 0.0054385289934641
122 => 0.0055209528317271
123 => 0.0053309925695653
124 => 0.0052832180773387
125 => 0.0053104325993406
126 => 0.0048606371717469
127 => 0.005401771110933
128 => 0.0054064508597101
129 => 0.0053663800095222
130 => 0.0056545171265028
131 => 0.0062625763155524
201 => 0.0060337999895078
202 => 0.0059452108812622
203 => 0.0057768029217292
204 => 0.0060011965287317
205 => 0.0059839666007995
206 => 0.0059060463324339
207 => 0.0058589199110003
208 => 0.0059457517874666
209 => 0.0058481604805803
210 => 0.0058306304002337
211 => 0.0057244171862491
212 => 0.0056865039012499
213 => 0.0056584344144079
214 => 0.0056275326674456
215 => 0.0056956942210088
216 => 0.0055412311732355
217 => 0.0053549638798201
218 => 0.0053394777698127
219 => 0.0053822362810959
220 => 0.0053633188228499
221 => 0.0053393872003007
222 => 0.0052936952154646
223 => 0.0052801393796186
224 => 0.0053241892697617
225 => 0.0052744595120582
226 => 0.0053478384784697
227 => 0.0053278834598492
228 => 0.0052164163479708
301 => 0.0050774870561597
302 => 0.0050762502940486
303 => 0.0050463182060176
304 => 0.0050081951915906
305 => 0.0049975902411134
306 => 0.0051522836154176
307 => 0.0054724942706442
308 => 0.0054096292570316
309 => 0.0054550556720324
310 => 0.0056785086736609
311 => 0.0057495376634125
312 => 0.0056991229689007
313 => 0.00563011222561
314 => 0.0056331483480793
315 => 0.0058689789488762
316 => 0.0058836874141722
317 => 0.0059208509608445
318 => 0.0059686166207354
319 => 0.0057072576673246
320 => 0.0056208383648773
321 => 0.0055798881050174
322 => 0.0054537771543939
323 => 0.0055897770027055
324 => 0.0055105357151885
325 => 0.0055212280721424
326 => 0.0055142646606492
327 => 0.0055180671541883
328 => 0.0053161842418625
329 => 0.0053897397644605
330 => 0.005267439441813
331 => 0.0051036930386435
401 => 0.0051031441032832
402 => 0.0051432208034796
403 => 0.0051193816140014
404 => 0.005055230968077
405 => 0.0050643432645481
406 => 0.0049845099590529
407 => 0.0050740364732639
408 => 0.0050766037733502
409 => 0.0050421311888367
410 => 0.005180059136257
411 => 0.0052365683288536
412 => 0.0052138777352526
413 => 0.0052349762963181
414 => 0.0054122415821657
415 => 0.0054411435583856
416 => 0.005453979907065
417 => 0.0054367809003249
418 => 0.0052382163803329
419 => 0.0052470235611561
420 => 0.0051824023119319
421 => 0.0051278041659569
422 => 0.0051299878054664
423 => 0.0051580583497597
424 => 0.0052806440630041
425 => 0.0055386184697046
426 => 0.005548408409862
427 => 0.0055602741029256
428 => 0.0055120103660167
429 => 0.0054974535611432
430 => 0.0055166577442014
501 => 0.0056135393677082
502 => 0.0058627452064718
503 => 0.0057746592191544
504 => 0.0057030439403253
505 => 0.005765869847199
506 => 0.0057561982912815
507 => 0.0056745606262282
508 => 0.0056722693288729
509 => 0.0055155805484953
510 => 0.0054576562740206
511 => 0.0054092504147127
512 => 0.0053563924800155
513 => 0.005325056524513
514 => 0.0053732027941019
515 => 0.0053842144156068
516 => 0.0052789417556978
517 => 0.005264593481148
518 => 0.0053505614076979
519 => 0.0053127301284307
520 => 0.0053516405373276
521 => 0.005360668085959
522 => 0.0053592144427073
523 => 0.0053197142422575
524 => 0.0053448904921113
525 => 0.0052853411558058
526 => 0.0052205901965948
527 => 0.0051792831187454
528 => 0.0051432372147331
529 => 0.0051632375772793
530 => 0.0050919399367237
531 => 0.005069130386572
601 => 0.0053363613451444
602 => 0.0055337677274587
603 => 0.0055308973604784
604 => 0.0055134247396839
605 => 0.005487463969375
606 => 0.0056116401756605
607 => 0.0055683796683722
608 => 0.0055998553019608
609 => 0.0056078671717372
610 => 0.0056321166885298
611 => 0.0056407838064667
612 => 0.0056145857563608
613 => 0.0055266619003831
614 => 0.0053075640108361
615 => 0.0052055733518085
616 => 0.0051719147355406
617 => 0.0051731381623151
618 => 0.0051393905902561
619 => 0.0051493307626875
620 => 0.0051359338039401
621 => 0.0051105632051448
622 => 0.0051616710142962
623 => 0.0051675607131987
624 => 0.00515563153985
625 => 0.005158441292016
626 => 0.0050596728317047
627 => 0.0050671819832284
628 => 0.0050253700733279
629 => 0.0050175308442716
630 => 0.0049118339770227
701 => 0.0047245766556853
702 => 0.0048283353892142
703 => 0.0047030094297971
704 => 0.0046555465899676
705 => 0.0048802282917342
706 => 0.0048576764805772
707 => 0.004819077582913
708 => 0.0047619817685526
709 => 0.0047408043756139
710 => 0.0046121372400665
711 => 0.0046045348992859
712 => 0.0046683058059681
713 => 0.0046388777267572
714 => 0.0045975495582599
715 => 0.0044478631213321
716 => 0.0042795660067492
717 => 0.0042846458387605
718 => 0.0043381780196302
719 => 0.004493830055307
720 => 0.0044330141121605
721 => 0.0043888914476252
722 => 0.0043806285988802
723 => 0.0044840554503699
724 => 0.0046304261138232
725 => 0.0046990999542564
726 => 0.0046310462640426
727 => 0.0045528698489959
728 => 0.0045576280851451
729 => 0.0045892824985189
730 => 0.0045926089297951
731 => 0.004541724120265
801 => 0.0045560478960883
802 => 0.0045342887708192
803 => 0.0044007530592074
804 => 0.0043983378216307
805 => 0.0043655660044469
806 => 0.0043645736868469
807 => 0.0043088206505044
808 => 0.0043010204153176
809 => 0.0041903193776921
810 => 0.0042631831358908
811 => 0.0042143099524101
812 => 0.0041406465368862
813 => 0.0041279469362845
814 => 0.0041275651709552
815 => 0.0042032010278599
816 => 0.0042622992868655
817 => 0.0042151601223612
818 => 0.0042044274483579
819 => 0.0043190243277485
820 => 0.0043044408302723
821 => 0.0042918116155113
822 => 0.0046173202263184
823 => 0.004359654761111
824 => 0.0042472979112499
825 => 0.0041082349735598
826 => 0.0041535145672879
827 => 0.0041630556429821
828 => 0.0038286343458159
829 => 0.0036929596672051
830 => 0.0036464012302983
831 => 0.0036196061916188
901 => 0.003631817027216
902 => 0.0035096939034137
903 => 0.0035917626623389
904 => 0.0034860143599368
905 => 0.0034682853129043
906 => 0.0036573763773001
907 => 0.0036836872942568
908 => 0.0035714367483584
909 => 0.0036435197705378
910 => 0.0036173814646666
911 => 0.0034878271110654
912 => 0.0034828790876952
913 => 0.0034178732671138
914 => 0.0033161517455112
915 => 0.0032696622805861
916 => 0.003245450163613
917 => 0.0032554405549608
918 => 0.0032503891073843
919 => 0.0032174249950169
920 => 0.0032522785717188
921 => 0.0031632420857377
922 => 0.0031277870396043
923 => 0.0031117728178167
924 => 0.0030327478117595
925 => 0.0031585117389762
926 => 0.0031832888169701
927 => 0.0032081147134616
928 => 0.0034242071930613
929 => 0.0034134118234515
930 => 0.0035109967071658
1001 => 0.0035072047380317
1002 => 0.0034793719484261
1003 => 0.0033619499873517
1004 => 0.0034087522881907
1005 => 0.0032647020809005
1006 => 0.0033726342906643
1007 => 0.0033233785374849
1008 => 0.0033559808709675
1009 => 0.0032973589357319
1010 => 0.0033298027351317
1011 => 0.0031891643813314
1012 => 0.0030578382653877
1013 => 0.0031106877280918
1014 => 0.0031681411381202
1015 => 0.0032927147699186
1016 => 0.0032185197425296
1017 => 0.0032452030800033
1018 => 0.0031558183662033
1019 => 0.0029713921701526
1020 => 0.0029724360023936
1021 => 0.0029440660500743
1022 => 0.0029195502691895
1023 => 0.0032270419339473
1024 => 0.0031888004847108
1025 => 0.0031278677402696
1026 => 0.0032094286400752
1027 => 0.0032309946365293
1028 => 0.0032316085901301
1029 => 0.0032911133172368
1030 => 0.0033228710007604
1031 => 0.0033284684301271
1101 => 0.0034221004039141
1102 => 0.0034534846064919
1103 => 0.0035827516952514
1104 => 0.003320176583192
1105 => 0.0033147690215515
1106 => 0.003210576369196
1107 => 0.0031444957418514
1108 => 0.0032151009662847
1109 => 0.0032776475565583
1110 => 0.0032125198661037
1111 => 0.0032210241675565
1112 => 0.003133595564249
1113 => 0.0031648471760333
1114 => 0.0031917652741487
1115 => 0.003176902682542
1116 => 0.0031546526635493
1117 => 0.0032725194494278
1118 => 0.0032658689434448
1119 => 0.0033756292042005
1120 => 0.0034611951764911
1121 => 0.003614544695583
1122 => 0.0034545164781194
1123 => 0.0034486844138205
1124 => 0.003505693777835
1125 => 0.0034534758786553
1126 => 0.0034864757884363
1127 => 0.0036092278999407
1128 => 0.0036118214586265
1129 => 0.003568376009027
1130 => 0.0035657323494706
1201 => 0.0035740765233073
1202 => 0.0036229486100945
1203 => 0.0036058712012835
1204 => 0.0036256336111067
1205 => 0.0036503468072033
1206 => 0.003752571064437
1207 => 0.0037772169867775
1208 => 0.0037173401729358
1209 => 0.0037227463788135
1210 => 0.0037003508067814
1211 => 0.0036787169648141
1212 => 0.0037273466821877
1213 => 0.0038162184465074
1214 => 0.003815665579874
1215 => 0.0038362821017759
1216 => 0.0038491260241243
1217 => 0.0037939905070792
1218 => 0.0037580993128719
1219 => 0.003771862280547
1220 => 0.0037938695655779
1221 => 0.0037647256146182
1222 => 0.0035848356485039
1223 => 0.0036394027728075
1224 => 0.0036303201351273
1225 => 0.0036173853545843
1226 => 0.0036722530200266
1227 => 0.0036669608998441
1228 => 0.0035084413542652
1229 => 0.0035185892612578
1230 => 0.0035090584821003
1231 => 0.0035398543793719
]
'min_raw' => 0.0029195502691895
'max_raw' => 0.0065401530090116
'avg_raw' => 0.0047298516391005
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002919'
'max' => '$0.00654'
'avg' => '$0.004729'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00071194746636749
'max_diff' => -0.0047525935794773
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034518127991392
102 => 0.0034788937962497
103 => 0.0034958787437688
104 => 0.0035058830083421
105 => 0.0035420252719692
106 => 0.003537784394485
107 => 0.0035417616530703
108 => 0.0035953510888255
109 => 0.0038663880652017
110 => 0.0038811400098165
111 => 0.0038084960392631
112 => 0.0038375158726602
113 => 0.0037818041384777
114 => 0.0038192037988706
115 => 0.0038447916966631
116 => 0.0037291649068087
117 => 0.0037223182387252
118 => 0.0036663765623978
119 => 0.0036964364505576
120 => 0.003648609007113
121 => 0.0036603441888013
122 => 0.0036275315977459
123 => 0.003686587728724
124 => 0.0037526216595524
125 => 0.0037693044382387
126 => 0.003725419229903
127 => 0.0036936434468919
128 => 0.0036378556395179
129 => 0.0037306320064932
130 => 0.0037577626435053
131 => 0.0037304895008068
201 => 0.0037241697177136
202 => 0.0037121937401717
203 => 0.0037267104779633
204 => 0.0037576148842295
205 => 0.0037430409369491
206 => 0.0037526672858877
207 => 0.0037159815703817
208 => 0.0037940087592295
209 => 0.0039179347133854
210 => 0.0039183331555919
211 => 0.0039037591297525
212 => 0.0038977957523808
213 => 0.0039127495873179
214 => 0.0039208614293328
215 => 0.0039692193894549
216 => 0.0040211094073321
217 => 0.0042632574793763
218 => 0.0041952632697175
219 => 0.0044101114446883
220 => 0.0045800284565464
221 => 0.0046309791388322
222 => 0.0045841069085441
223 => 0.0044237595407167
224 => 0.0044158921338735
225 => 0.0046555187983202
226 => 0.0045878132900175
227 => 0.004579759935242
228 => 0.0044940858467887
301 => 0.0045447298440069
302 => 0.0045336532589127
303 => 0.0045161683274563
304 => 0.0046127935462572
305 => 0.0047936673300598
306 => 0.0047654764546306
307 => 0.0047444332738597
308 => 0.0046522281812997
309 => 0.0047077562417738
310 => 0.004687983763009
311 => 0.004772938879708
312 => 0.0047226133505617
313 => 0.0045873003542019
314 => 0.0046088493948697
315 => 0.0046055923007234
316 => 0.0046726230674537
317 => 0.0046525020950872
318 => 0.0046016633579388
319 => 0.0047930491231303
320 => 0.0047806215960823
321 => 0.0047982409881081
322 => 0.0048059975893757
323 => 0.0049224907320523
324 => 0.0049702142452421
325 => 0.0049810483182538
326 => 0.0050263819647152
327 => 0.0049799203758319
328 => 0.0051657998579166
329 => 0.0052893988671344
330 => 0.0054329654766878
331 => 0.0056427548803121
401 => 0.0057216376367353
402 => 0.0057073881728396
403 => 0.0058664481043742
404 => 0.0061522752656381
405 => 0.0057651620142424
406 => 0.0061727932079465
407 => 0.0060437418783482
408 => 0.005737763497405
409 => 0.0057180620969204
410 => 0.0059252742089772
411 => 0.0063848507300925
412 => 0.0062697320240269
413 => 0.0063850390230555
414 => 0.0062505272837968
415 => 0.0062438476421886
416 => 0.0063785060881155
417 => 0.0066931428868735
418 => 0.0065436707377676
419 => 0.0063293657599497
420 => 0.0064876052206157
421 => 0.0063505235554161
422 => 0.0060416401969792
423 => 0.0062696439949219
424 => 0.0061171843484119
425 => 0.0061616801784641
426 => 0.0064821276787672
427 => 0.0064435705877318
428 => 0.0064934670338222
429 => 0.0064054011124901
430 => 0.0063231336552449
501 => 0.0061695753370351
502 => 0.0061241142893467
503 => 0.0061366780874106
504 => 0.0061241080633524
505 => 0.0060381935955878
506 => 0.006019640374454
507 => 0.0059887175263958
508 => 0.0059983018100378
509 => 0.0059401578088901
510 => 0.0060498875522195
511 => 0.0060702543595167
512 => 0.0061501065160106
513 => 0.0061583970317972
514 => 0.0063807841510086
515 => 0.0062582970628107
516 => 0.0063404719766003
517 => 0.0063331214788506
518 => 0.0057443949767276
519 => 0.0058255162943423
520 => 0.0059517156072788
521 => 0.00589486298786
522 => 0.005814486685466
523 => 0.0057495785117781
524 => 0.0056512359914394
525 => 0.0057896512003153
526 => 0.0059716524811706
527 => 0.0061630128846275
528 => 0.0063929198709508
529 => 0.0063416073080158
530 => 0.0061587149334382
531 => 0.0061669193517588
601 => 0.006217635837497
602 => 0.0061519533803874
603 => 0.0061325823415118
604 => 0.0062149745542181
605 => 0.006215541944105
606 => 0.0061399663392102
607 => 0.0060559778845594
608 => 0.0060556259698677
609 => 0.0060406810355948
610 => 0.0062531859544035
611 => 0.0063700421730777
612 => 0.0063834395502255
613 => 0.0063691404228509
614 => 0.0063746435894653
615 => 0.0063066475305699
616 => 0.0064620663575999
617 => 0.0066046940426116
618 => 0.0065664667762324
619 => 0.0065091586696039
620 => 0.0064635100023419
621 => 0.006555713400961
622 => 0.0065516077287621
623 => 0.0066034483142087
624 => 0.0066010965258071
625 => 0.0065836644867445
626 => 0.0065664673987855
627 => 0.0066346519086723
628 => 0.0066150158648346
629 => 0.0065953493207972
630 => 0.006555905055933
701 => 0.0065612661866279
702 => 0.006503967975052
703 => 0.0064774592005892
704 => 0.0060788308361122
705 => 0.0059723043115664
706 => 0.0060058197247359
707 => 0.0060168538689786
708 => 0.0059704933889788
709 => 0.0060369624082683
710 => 0.0060266032820202
711 => 0.0060669045823656
712 => 0.0060417260795888
713 => 0.0060427594141254
714 => 0.0061168040221691
715 => 0.0061382994868925
716 => 0.0061273667200445
717 => 0.0061350236551915
718 => 0.0063114744938639
719 => 0.0062863888271849
720 => 0.0062730625667375
721 => 0.0062767540319548
722 => 0.0063218410043842
723 => 0.006334462895007
724 => 0.0062809830575136
725 => 0.0063062044580388
726 => 0.0064135939804025
727 => 0.0064511742355093
728 => 0.0065711123702643
729 => 0.00652016051889
730 => 0.0066136848472319
731 => 0.0069011467477619
801 => 0.0071307912047558
802 => 0.0069196006716457
803 => 0.0073413134718697
804 => 0.0076696773779524
805 => 0.0076570742243183
806 => 0.0075998163820988
807 => 0.0072259828050297
808 => 0.0068819755738662
809 => 0.0071697522300531
810 => 0.0071704858319315
811 => 0.0071457655619485
812 => 0.0069922300881659
813 => 0.0071404228602683
814 => 0.0071521858643607
815 => 0.0071456017101043
816 => 0.0070278864223381
817 => 0.0068481569353409
818 => 0.0068832756468885
819 => 0.0069408008128059
820 => 0.0068318936727175
821 => 0.006797091242543
822 => 0.0068617955816707
823 => 0.0070702864440247
824 => 0.007030872454202
825 => 0.0070298431956433
826 => 0.0071984729582376
827 => 0.0070777704408005
828 => 0.0068837186063068
829 => 0.0068347179588679
830 => 0.0066607986712511
831 => 0.0067809253426873
901 => 0.0067852484877349
902 => 0.0067194563374541
903 => 0.0068890572767009
904 => 0.006887494374188
905 => 0.0070485052242344
906 => 0.0073562974966094
907 => 0.0072652681761302
908 => 0.0071594109803749
909 => 0.0071709205926552
910 => 0.0072971526312259
911 => 0.0072208298591089
912 => 0.0072482760601034
913 => 0.0072971110881136
914 => 0.0073265744730176
915 => 0.0071666812649832
916 => 0.0071294025096142
917 => 0.0070531432591943
918 => 0.007033248644206
919 => 0.0070953602124716
920 => 0.0070789960086677
921 => 0.0067848851441337
922 => 0.0067541489223725
923 => 0.0067550915584127
924 => 0.0066778038673664
925 => 0.0065599215873497
926 => 0.0068697091808485
927 => 0.0068448289016159
928 => 0.0068173629989239
929 => 0.0068207274152854
930 => 0.0069551957099475
1001 => 0.0068771973082318
1002 => 0.0070845688428796
1003 => 0.007041939489515
1004 => 0.0069982168540918
1005 => 0.0069921730540522
1006 => 0.0069753435696543
1007 => 0.0069176290056783
1008 => 0.0068479352015697
1009 => 0.0068019173153233
1010 => 0.0062744091753969
1011 => 0.0063723116177935
1012 => 0.0064849394536825
1013 => 0.0065238181313036
1014 => 0.0064573134629101
1015 => 0.0069202550153372
1016 => 0.0070048388979815
1017 => 0.0067486288001819
1018 => 0.006700702351873
1019 => 0.0069233970653095
1020 => 0.0067890849297857
1021 => 0.006849565676188
1022 => 0.0067188393836658
1023 => 0.0069844651175577
1024 => 0.0069824414945102
1025 => 0.006879107084597
1026 => 0.0069664446202522
1027 => 0.0069512675741609
1028 => 0.0068346032798703
1029 => 0.006988163583777
1030 => 0.0069882397477719
1031 => 0.0068887826249142
1101 => 0.0067726384793803
1102 => 0.0067518746493611
1103 => 0.0067362318926697
1104 => 0.0068457185169604
1105 => 0.0069438838819436
1106 => 0.0071265452889197
1107 => 0.0071724707065614
1108 => 0.0073517206690454
1109 => 0.0072449860439084
1110 => 0.0072923001207868
1111 => 0.0073436662442232
1112 => 0.0073682930527252
1113 => 0.0073281649898185
1114 => 0.0076066139637842
1115 => 0.007630123588643
1116 => 0.0076380061625007
1117 => 0.007544114735155
1118 => 0.0076275122982002
1119 => 0.0075884933402883
1120 => 0.0076900098289963
1121 => 0.0077059289106533
1122 => 0.0076924460148275
1123 => 0.0076974989826111
1124 => 0.0074598919050964
1125 => 0.0074475707246501
1126 => 0.0072795705549934
1127 => 0.0073480318659231
1128 => 0.0072200467265761
1129 => 0.0072606321326561
1130 => 0.0072785217929442
1201 => 0.007269177249639
1202 => 0.0073519025657245
1203 => 0.0072815691473862
1204 => 0.007095947692507
1205 => 0.0069102756651865
1206 => 0.0069079447041286
1207 => 0.0068590605367186
1208 => 0.006823726237263
1209 => 0.0068305328768898
1210 => 0.0068545203627385
1211 => 0.0068223320409786
1212 => 0.0068292010514155
1213 => 0.0069432723926433
1214 => 0.006966148586607
1215 => 0.0068884063412125
1216 => 0.006576260007801
1217 => 0.0064996585146221
1218 => 0.0065547181488455
1219 => 0.0065284031899813
1220 => 0.005268930895293
1221 => 0.0055648252289134
1222 => 0.0053890148634983
1223 => 0.0054700363685275
1224 => 0.0052905795113121
1225 => 0.005376225729715
1226 => 0.0053604100004751
1227 => 0.0058361993327869
1228 => 0.0058287705367897
1229 => 0.0058323263083104
1230 => 0.0056626000691124
1231 => 0.0059329785767244
]
'min_raw' => 0.0034518127991392
'max_raw' => 0.0077059289106533
'avg_raw' => 0.0055788708548962
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003451'
'max' => '$0.0077059'
'avg' => '$0.005578'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053226252994963
'max_diff' => 0.0011657759016417
'year' => 2035
]
10 => [
'items' => [
101 => 0.0060661767520707
102 => 0.0060415253147688
103 => 0.0060477295504433
104 => 0.0059411202259386
105 => 0.005833358519608
106 => 0.0057138342028798
107 => 0.0059358956097088
108 => 0.0059112061719841
109 => 0.0059678348591454
110 => 0.0061118575547512
111 => 0.0061330654437682
112 => 0.0061615690616762
113 => 0.0061513525436818
114 => 0.0063947514510118
115 => 0.0063652742373364
116 => 0.0064363058411208
117 => 0.0062901884429555
118 => 0.0061248427373407
119 => 0.0061562695504197
120 => 0.0061532428956017
121 => 0.0061147101059362
122 => 0.0060799244263435
123 => 0.0060220160706263
124 => 0.0062052466769398
125 => 0.0061978078489419
126 => 0.0063182338275371
127 => 0.0062969473660648
128 => 0.0061547911666724
129 => 0.0061598683031442
130 => 0.006194014485905
131 => 0.0063121948143147
201 => 0.006347278782117
202 => 0.0063310264903765
203 => 0.0063694944594278
204 => 0.0063998979737005
205 => 0.0063733126727197
206 => 0.0067497044711692
207 => 0.0065934003545084
208 => 0.0066695818934118
209 => 0.0066877507415526
210 => 0.0066412116190897
211 => 0.0066513042883109
212 => 0.0066665919320932
213 => 0.006759415511512
214 => 0.0070030114426259
215 => 0.0071108984223027
216 => 0.0074354817237101
217 => 0.0071019399104998
218 => 0.0070821489196371
219 => 0.0071406161736972
220 => 0.0073311809322552
221 => 0.0074856157702288
222 => 0.0075368507155442
223 => 0.0075436222593644
224 => 0.0076397424228108
225 => 0.0076948367079634
226 => 0.0076280709067572
227 => 0.0075714938809056
228 => 0.0073688419969044
229 => 0.0073922995042803
301 => 0.0075538984684095
302 => 0.0077821665233734
303 => 0.0079780442617757
304 => 0.0079094547048156
305 => 0.00843274460774
306 => 0.0084846266641674
307 => 0.0084774582415169
308 => 0.0085956532871436
309 => 0.0083610601915769
310 => 0.008260767098195
311 => 0.0075837264760713
312 => 0.0077739472747599
313 => 0.0080504443769297
314 => 0.0080138489486466
315 => 0.0078130493622622
316 => 0.0079778919372833
317 => 0.0079233898268774
318 => 0.0078804017511056
319 => 0.0080773384598646
320 => 0.00786079845887
321 => 0.0080482842247753
322 => 0.0078078317907098
323 => 0.0079097680161342
324 => 0.0078519040844829
325 => 0.0078893491397981
326 => 0.0076704461115538
327 => 0.0077885608720238
328 => 0.007665532149193
329 => 0.0076654738175596
330 => 0.0076627579516842
331 => 0.0078075006985018
401 => 0.007812220754279
402 => 0.0077052556456867
403 => 0.0076898403024295
404 => 0.0077468389059598
405 => 0.0076801084691838
406 => 0.0077113312205549
407 => 0.0076810541745157
408 => 0.0076742381737201
409 => 0.0076199271197339
410 => 0.0075965284243631
411 => 0.0076057036557281
412 => 0.0075743838609234
413 => 0.0075555125516671
414 => 0.0076590039732892
415 => 0.0076037126815485
416 => 0.0076505297898411
417 => 0.0075971757861516
418 => 0.0074122275641306
419 => 0.0073058618858544
420 => 0.0069565118391661
421 => 0.0070555870790395
422 => 0.0071212740655764
423 => 0.0070995645169178
424 => 0.0071462050279165
425 => 0.0071490683764933
426 => 0.0071339050709239
427 => 0.0071163479056142
428 => 0.0071078020485137
429 => 0.007171495865852
430 => 0.0072084722706522
501 => 0.0071278666334538
502 => 0.007108981860451
503 => 0.0071904786100178
504 => 0.0072401915801744
505 => 0.0076072442205058
506 => 0.0075800517753456
507 => 0.0076482994764497
508 => 0.0076406158326518
509 => 0.0077121502961203
510 => 0.0078290789111715
511 => 0.0075913303430175
512 => 0.0076325952737221
513 => 0.0076224780656597
514 => 0.0077329350904101
515 => 0.0077332799251846
516 => 0.0076670554211091
517 => 0.0077029567991383
518 => 0.0076829176348252
519 => 0.0077191311131945
520 => 0.007579688603662
521 => 0.0077495145283838
522 => 0.0078457948843601
523 => 0.0078471317371963
524 => 0.0078927678618009
525 => 0.0079391368074653
526 => 0.0080281379607841
527 => 0.0079366546136047
528 => 0.0077720849777533
529 => 0.0077839663739051
530 => 0.0076874792566191
531 => 0.0076891012224925
601 => 0.0076804430415446
602 => 0.0077064268943269
603 => 0.0075853905981489
604 => 0.007613797574938
605 => 0.0075740276410823
606 => 0.0076325088216528
607 => 0.0075695927386444
608 => 0.0076224731868357
609 => 0.0076452946352604
610 => 0.0077295062712583
611 => 0.0075571546115371
612 => 0.0072057179101841
613 => 0.0072795941655666
614 => 0.0071703253810012
615 => 0.0071804386230283
616 => 0.0072008689814337
617 => 0.0071346475054447
618 => 0.0071472804761849
619 => 0.0071468291375732
620 => 0.0071429397452505
621 => 0.007125712981751
622 => 0.0071007307664655
623 => 0.0072002522230427
624 => 0.007217162857818
625 => 0.0072547531041392
626 => 0.0073665961794832
627 => 0.007355420418815
628 => 0.0073736485481427
629 => 0.0073338566441669
630 => 0.0071822844553278
701 => 0.0071905155544176
702 => 0.0070878736168739
703 => 0.0072521283190256
704 => 0.0072132306375
705 => 0.007188153049176
706 => 0.0071813103968596
707 => 0.0072934307095545
708 => 0.0073269788643834
709 => 0.0073060739056269
710 => 0.0072631972253224
711 => 0.0073455331268597
712 => 0.0073675627406383
713 => 0.0073724943587424
714 => 0.0075183777899234
715 => 0.0073806476219827
716 => 0.0074138006423262
717 => 0.0076724510430988
718 => 0.0074378908209135
719 => 0.0075621426019222
720 => 0.0075560611238169
721 => 0.00761962413053
722 => 0.0075508471020013
723 => 0.0075516996756984
724 => 0.0076081393195286
725 => 0.0075288800187126
726 => 0.0075092543012044
727 => 0.0074821415130291
728 => 0.0075413412941085
729 => 0.0075768288854899
730 => 0.0078628328092596
731 => 0.0080476043873784
801 => 0.0080395829658719
802 => 0.0081128837429695
803 => 0.0080798610715289
804 => 0.0079732221545065
805 => 0.0081552417826332
806 => 0.0080976431562692
807 => 0.0081023915170443
808 => 0.0081022147828191
809 => 0.0081405128339918
810 => 0.0081133751547711
811 => 0.0080598840034014
812 => 0.0080953939260081
813 => 0.0082008457011204
814 => 0.0085281712467246
815 => 0.0087113469585313
816 => 0.0085171438388716
817 => 0.0086511025503295
818 => 0.0085707750578241
819 => 0.0085561771629
820 => 0.0086403131331665
821 => 0.0087245963723113
822 => 0.0087192278943442
823 => 0.0086580425907174
824 => 0.0086234805652182
825 => 0.0088851958014262
826 => 0.0090780231292616
827 => 0.009064873598234
828 => 0.0091229113517331
829 => 0.0092933119910466
830 => 0.009308891289975
831 => 0.0093069286563961
901 => 0.0092683137384702
902 => 0.0094360952971935
903 => 0.0095760616253161
904 => 0.0092593755006625
905 => 0.0093799654312048
906 => 0.0094341021361902
907 => 0.0095135908807452
908 => 0.00964770171667
909 => 0.0097933816556268
910 => 0.0098139823962945
911 => 0.0097993651849546
912 => 0.0097032853491256
913 => 0.0098626900766553
914 => 0.0099560656275413
915 => 0.010011668631232
916 => 0.010152668597135
917 => 0.0094344364660498
918 => 0.0089260360652143
919 => 0.0088466420012331
920 => 0.0090080929523563
921 => 0.0090506662806203
922 => 0.0090335050253795
923 => 0.0084612541524969
924 => 0.0088436292188174
925 => 0.0092550326391695
926 => 0.0092708363200383
927 => 0.0094767934743064
928 => 0.0095438615662051
929 => 0.0097096840708123
930 => 0.0096993118280005
1001 => 0.00973968696906
1002 => 0.0097304054233304
1003 => 0.010037556695067
1004 => 0.010376390160198
1005 => 0.010364657434725
1006 => 0.010315946115217
1007 => 0.010388290731201
1008 => 0.010738003178817
1009 => 0.010705807260668
1010 => 0.010737082852708
1011 => 0.011149413537377
1012 => 0.011685502080802
1013 => 0.011436435129971
1014 => 0.01197683874619
1015 => 0.012316994177035
1016 => 0.012905257821953
1017 => 0.01283160431635
1018 => 0.013060611036439
1019 => 0.01269974916937
1020 => 0.011871137380363
1021 => 0.011740006392954
1022 => 0.012002533950512
1023 => 0.012647932333704
1024 => 0.011982208058648
1025 => 0.01211688321245
1026 => 0.012078096759095
1027 => 0.012076029993828
1028 => 0.012154910017946
1029 => 0.012040490428857
1030 => 0.011574324439218
1031 => 0.011787965565136
1101 => 0.01170546846653
1102 => 0.011797005148
1103 => 0.012290990865294
1104 => 0.01207258800453
1105 => 0.011842518332322
1106 => 0.012131076757818
1107 => 0.012498510792907
1108 => 0.012475517431334
1109 => 0.012430900699402
1110 => 0.012682402881246
1111 => 0.013097810802429
1112 => 0.01321009389428
1113 => 0.013292978977158
1114 => 0.013304407429732
1115 => 0.013422127593987
1116 => 0.012789116601486
1117 => 0.01379372130346
1118 => 0.013967188783846
1119 => 0.013934584087024
1120 => 0.014127385890845
1121 => 0.014070658709251
1122 => 0.013988469923344
1123 => 0.014294101792521
1124 => 0.013943719517729
1125 => 0.013446395990565
1126 => 0.013173554467618
1127 => 0.013532854194532
1128 => 0.013752265999926
1129 => 0.013897283246079
1130 => 0.013941165377144
1201 => 0.012838255442883
1202 => 0.012243848158506
1203 => 0.012624856412898
1204 => 0.013089712779042
1205 => 0.012786534300901
1206 => 0.012798418323252
1207 => 0.012366165487325
1208 => 0.013127957563674
1209 => 0.01301697086583
1210 => 0.013592770050578
1211 => 0.01345535095406
1212 => 0.013924892836827
1213 => 0.013801246723032
1214 => 0.014314494828432
1215 => 0.014519243393313
1216 => 0.014863048100319
1217 => 0.015115952242329
1218 => 0.015264462391803
1219 => 0.015255546399476
1220 => 0.015844017599154
1221 => 0.015497016692321
1222 => 0.015061101771506
1223 => 0.015053217445882
1224 => 0.015278983960335
1225 => 0.015752128638609
1226 => 0.01587480816971
1227 => 0.015943369291347
1228 => 0.015838365546931
1229 => 0.015461720932344
1230 => 0.015299087697396
1231 => 0.01543765592551
]
'min_raw' => 0.0057138342028798
'max_raw' => 0.015943369291347
'avg_raw' => 0.010828601747113
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005713'
'max' => '$0.015943'
'avg' => '$0.010828'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022620214037406
'max_diff' => 0.0082374403806935
'year' => 2036
]
11 => [
'items' => [
101 => 0.015268198889831
102 => 0.01556072927466
103 => 0.015962435974148
104 => 0.015879485129224
105 => 0.016156777367119
106 => 0.016443745661347
107 => 0.016854123210644
108 => 0.016961411098267
109 => 0.017138753896715
110 => 0.017321297890393
111 => 0.017379926101463
112 => 0.017491865547663
113 => 0.017491275571527
114 => 0.017828612627042
115 => 0.018200705845734
116 => 0.018341162421813
117 => 0.018664134573685
118 => 0.018111056081898
119 => 0.018530572471226
120 => 0.018908986755576
121 => 0.018457825645584
122 => 0.019079646128652
123 => 0.019103790008934
124 => 0.019468333936257
125 => 0.019098798827749
126 => 0.018879370059915
127 => 0.019512852690763
128 => 0.019819374981315
129 => 0.01972704797284
130 => 0.019024434879596
131 => 0.018615483922835
201 => 0.017545180388242
202 => 0.018813001158639
203 => 0.01943051967306
204 => 0.019022835655825
205 => 0.019228447760555
206 => 0.020350200734015
207 => 0.020777291638182
208 => 0.020688459715706
209 => 0.020703470848306
210 => 0.020933921347946
211 => 0.02195586577476
212 => 0.021343492985727
213 => 0.021811629037772
214 => 0.022059926711786
215 => 0.022290559429191
216 => 0.021724198367464
217 => 0.020987370947655
218 => 0.02075398677389
219 => 0.018982299514885
220 => 0.018890075499006
221 => 0.018838307364219
222 => 0.018511916597138
223 => 0.018255462860167
224 => 0.018051521327011
225 => 0.017516317841913
226 => 0.017696933307071
227 => 0.016843930657473
228 => 0.017389651524128
301 => 0.016028238698901
302 => 0.017162063754351
303 => 0.016544974325369
304 => 0.016959333280363
305 => 0.016957887621004
306 => 0.016194921412233
307 => 0.015754858425713
308 => 0.016035283688231
309 => 0.016335921829836
310 => 0.016384699356844
311 => 0.016774484554893
312 => 0.016883265225263
313 => 0.016553654715556
314 => 0.016000026444128
315 => 0.016128621664664
316 => 0.015752252447673
317 => 0.01509267987173
318 => 0.015566396410805
319 => 0.015728144065091
320 => 0.015799581043784
321 => 0.015150967167766
322 => 0.014947158605829
323 => 0.014838652637573
324 => 0.015916298537678
325 => 0.015975334412734
326 => 0.015673298529117
327 => 0.017038529363284
328 => 0.016729535578757
329 => 0.017074757341389
330 => 0.016116952996272
331 => 0.01615354241211
401 => 0.015700102485636
402 => 0.015953998545594
403 => 0.015774552993868
404 => 0.015933486252999
405 => 0.016028750193217
406 => 0.01648211571466
407 => 0.017167240460355
408 => 0.016414398024165
409 => 0.016086373793814
410 => 0.016289878181445
411 => 0.016831837183201
412 => 0.017652932813232
413 => 0.017166827674164
414 => 0.017382552880282
415 => 0.017429679240872
416 => 0.017071243307914
417 => 0.017666148857348
418 => 0.017984963574294
419 => 0.01831200150447
420 => 0.018595959375847
421 => 0.01818137536344
422 => 0.018625039685
423 => 0.018267524559118
424 => 0.017946796531967
425 => 0.017947282943994
426 => 0.017746085567473
427 => 0.017356240297964
428 => 0.017284346848967
429 => 0.017658345649791
430 => 0.017958257270234
501 => 0.017982959427773
502 => 0.018149005910866
503 => 0.018247270509145
504 => 0.019210397156526
505 => 0.019597774661504
506 => 0.020071452541911
507 => 0.020255976771352
508 => 0.020811328546371
509 => 0.020362836884577
510 => 0.020265802892403
511 => 0.018918701140387
512 => 0.019139288976814
513 => 0.019492471386493
514 => 0.018924524988237
515 => 0.01928475625469
516 => 0.019355873537429
517 => 0.018905226386952
518 => 0.019145936501336
519 => 0.018506681803108
520 => 0.017181174465894
521 => 0.017667624525931
522 => 0.018025815507437
523 => 0.017514632812198
524 => 0.018430908007912
525 => 0.017895638954335
526 => 0.017725984361797
527 => 0.017064101310077
528 => 0.017376484632274
529 => 0.017798987548444
530 => 0.017537929867487
531 => 0.01807966375348
601 => 0.018846903411198
602 => 0.019393684081198
603 => 0.019435659111638
604 => 0.019084115772288
605 => 0.019647466217117
606 => 0.019651569610084
607 => 0.019016108006962
608 => 0.018626891313315
609 => 0.0185384604616
610 => 0.018759378067075
611 => 0.019027612823761
612 => 0.019450544273816
613 => 0.019706112891401
614 => 0.020372500302942
615 => 0.020552805629681
616 => 0.020750906518607
617 => 0.021015630398264
618 => 0.021333499289602
619 => 0.020638020251641
620 => 0.020665652930354
621 => 0.020018032479767
622 => 0.019325957150147
623 => 0.01985115605692
624 => 0.020537783763244
625 => 0.020380270608757
626 => 0.020362547161176
627 => 0.020392353083934
628 => 0.020273593309349
629 => 0.019736447250347
630 => 0.019466695862228
701 => 0.01981474397382
702 => 0.019999716055292
703 => 0.020286591622394
704 => 0.02025122815354
705 => 0.020990188806208
706 => 0.021277326570825
707 => 0.021203864443319
708 => 0.021217383242745
709 => 0.021737232450096
710 => 0.022315411683815
711 => 0.022856952833661
712 => 0.023407831751019
713 => 0.022743725714974
714 => 0.022406533626237
715 => 0.022754429790911
716 => 0.022569831188942
717 => 0.02363058951136
718 => 0.023704034116109
719 => 0.024764715733627
720 => 0.025771428892268
721 => 0.025139130394465
722 => 0.025735359398544
723 => 0.026380229677719
724 => 0.027624289072679
725 => 0.027205333634994
726 => 0.026884420335595
727 => 0.026581158818306
728 => 0.027212197894375
729 => 0.028024019584644
730 => 0.028198878201196
731 => 0.028482215961143
801 => 0.028184320951452
802 => 0.028543102678566
803 => 0.029809759831961
804 => 0.029467497888022
805 => 0.028981430906275
806 => 0.029981335077834
807 => 0.030343196510492
808 => 0.032882929553189
809 => 0.036089447430734
810 => 0.034761927974299
811 => 0.033937893808905
812 => 0.034131561384124
813 => 0.035302473165523
814 => 0.035678532866827
815 => 0.034656272963132
816 => 0.035017352443069
817 => 0.037006935878077
818 => 0.038074283557479
819 => 0.036624682044932
820 => 0.032625288963846
821 => 0.028937665892743
822 => 0.02991578958703
823 => 0.02980490071481
824 => 0.031942459910137
825 => 0.029459335053852
826 => 0.029501144508103
827 => 0.031682906163875
828 => 0.031100849558979
829 => 0.030157992403226
830 => 0.028944549793408
831 => 0.026701388899304
901 => 0.024714558740227
902 => 0.028611190221836
903 => 0.028443160386784
904 => 0.028199828285003
905 => 0.028741337546234
906 => 0.031370752808682
907 => 0.031310136276296
908 => 0.030924524824082
909 => 0.031217007711963
910 => 0.030106718738846
911 => 0.030392865488028
912 => 0.028937081754408
913 => 0.029595156800903
914 => 0.030155969455228
915 => 0.030268560898557
916 => 0.030522235169438
917 => 0.028354616299047
918 => 0.029327813533906
919 => 0.029899475733137
920 => 0.027316685119764
921 => 0.029848422267015
922 => 0.02831688287703
923 => 0.02779705540512
924 => 0.028496934613985
925 => 0.028224191005636
926 => 0.027989702067218
927 => 0.02785885321055
928 => 0.028372767258692
929 => 0.028348792554086
930 => 0.027507929424908
1001 => 0.026411057750861
1002 => 0.026779203888256
1003 => 0.026645452945152
1004 => 0.026160722273127
1005 => 0.026487372219467
1006 => 0.02504897116954
1007 => 0.022574276924721
1008 => 0.024209135744783
1009 => 0.024146195458595
1010 => 0.024114458112184
1011 => 0.025343009331282
1012 => 0.025224912479065
1013 => 0.025010565535883
1014 => 0.026156785623423
1015 => 0.025738399872635
1016 => 0.027027766172483
1017 => 0.027877026208546
1018 => 0.027661626392716
1019 => 0.028460359561464
1020 => 0.026787685231711
1021 => 0.027343280548009
1022 => 0.027457787972676
1023 => 0.026142641445466
1024 => 0.025244234584616
1025 => 0.025184321089585
1026 => 0.023626607400963
1027 => 0.02445872548
1028 => 0.025190954954166
1029 => 0.024840273859343
1030 => 0.024729258701022
1031 => 0.025296411068635
1101 => 0.02534048366493
1102 => 0.024335623798798
1103 => 0.02454456598474
1104 => 0.025415889633868
1105 => 0.024522610864368
1106 => 0.022787116131489
1107 => 0.022356689442644
1108 => 0.022299262588014
1109 => 0.021131911270293
1110 => 0.022385452612158
1111 => 0.021838248223614
1112 => 0.023566860330508
1113 => 0.022579486365783
1114 => 0.022536922647603
1115 => 0.022472581344834
1116 => 0.021467793842996
1117 => 0.021687778448321
1118 => 0.022419040781025
1119 => 0.022679963419593
1120 => 0.022652747050714
1121 => 0.022415457196656
1122 => 0.022524087276723
1123 => 0.022174151939597
1124 => 0.022050582488784
1125 => 0.021660563311562
1126 => 0.021087342866593
1127 => 0.021167052685231
1128 => 0.020031352992459
1129 => 0.019412563523693
1130 => 0.019241290754252
1201 => 0.019012257648975
1202 => 0.019267160652927
1203 => 0.020028135697923
1204 => 0.019110238343796
1205 => 0.017536567713159
1206 => 0.017631147999464
1207 => 0.017843641821654
1208 => 0.017447660989791
1209 => 0.017072898364584
1210 => 0.017398724061748
1211 => 0.016731939070214
1212 => 0.017924219602278
1213 => 0.017891971755213
1214 => 0.018336380207433
1215 => 0.018614277932786
1216 => 0.017973813646305
1217 => 0.017812738610254
1218 => 0.017904494271241
1219 => 0.016387977583395
1220 => 0.018212448440126
1221 => 0.018228226539858
1222 => 0.018093124870792
1223 => 0.019064599277783
1224 => 0.021114713287001
1225 => 0.020343377931088
1226 => 0.020044693567544
1227 => 0.01947689437411
1228 => 0.020233453086781
1229 => 0.020175361181802
1230 => 0.019912647556788
1231 => 0.019753757536663
]
'min_raw' => 0.014838652637573
'max_raw' => 0.038074283557479
'avg_raw' => 0.026456468097526
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014838'
'max' => '$0.038074'
'avg' => '$0.026456'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.009124818434693
'max_diff' => 0.022130914266132
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046576835054483
]
1 => [
'year' => 2028
'avg' => 0.00079939370305322
]
2 => [
'year' => 2029
'avg' => 0.0021837995200443
]
3 => [
'year' => 2030
'avg' => 0.0016847980775024
]
4 => [
'year' => 2031
'avg' => 0.0016546805068345
]
5 => [
'year' => 2032
'avg' => 0.0029011756756012
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046576835054483
'min' => '$0.000465'
'max_raw' => 0.0029011756756012
'max' => '$0.0029011'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029011756756012
]
1 => [
'year' => 2033
'avg' => 0.0074621221620229
]
2 => [
'year' => 2034
'avg' => 0.0047298516391005
]
3 => [
'year' => 2035
'avg' => 0.0055788708548962
]
4 => [
'year' => 2036
'avg' => 0.010828601747113
]
5 => [
'year' => 2037
'avg' => 0.026456468097526
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029011756756012
'min' => '$0.0029011'
'max_raw' => 0.026456468097526
'max' => '$0.026456'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026456468097526
]
]
]
]
'prediction_2025_max_price' => '$0.000796'
'last_price' => 0.00077219
'sma_50day_nextmonth' => '$0.0007063'
'sma_200day_nextmonth' => '$0.001415'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000749'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000735'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000711'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00070061'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000734'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001047'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001648'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000752'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000739'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000723'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000716'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0008018'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001082'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002375'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001297'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002274'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000745'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000752'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000873'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0014087'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005773'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006628'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003314'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '65.98'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.26
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0007090'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000758'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 268.59
'cci_20_action' => 'SELL'
'adx_14' => 26.44
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000026'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 88.95
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000231'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767711058
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Phil para 2026
La previsión del precio de Phil para 2026 sugiere que el precio medio podría oscilar entre $0.000266 en el extremo inferior y $0.000796 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Phil podría potencialmente ganar 3.13% para 2026 si PHIL alcanza el objetivo de precio previsto.
Predicción de precio de Phil 2027-2032
La predicción del precio de PHIL para 2027-2032 está actualmente dentro de un rango de precios de $0.000465 en el extremo inferior y $0.0029011 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Phil alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Phil | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000256 | $0.000465 | $0.000674 |
| 2028 | $0.000463 | $0.000799 | $0.001135 |
| 2029 | $0.001018 | $0.002183 | $0.003349 |
| 2030 | $0.000865 | $0.001684 | $0.0025036 |
| 2031 | $0.001023 | $0.001654 | $0.002285 |
| 2032 | $0.001562 | $0.0029011 | $0.004239 |
Predicción de precio de Phil 2032-2037
La predicción de precio de Phil para 2032-2037 se estima actualmente entre $0.0029011 en el extremo inferior y $0.026456 en el extremo superior. Comparado con el precio actual, Phil podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Phil | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001562 | $0.0029011 | $0.004239 |
| 2033 | $0.003631 | $0.007462 | $0.011292 |
| 2034 | $0.002919 | $0.004729 | $0.00654 |
| 2035 | $0.003451 | $0.005578 | $0.0077059 |
| 2036 | $0.005713 | $0.010828 | $0.015943 |
| 2037 | $0.014838 | $0.026456 | $0.038074 |
Phil Histograma de precios potenciales
Pronóstico de precio de Phil basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Phil es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de PHIL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Phil
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Phil aumentar durante el próximo mes, alcanzando $0.001415 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Phil alcance $0.0007063 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 65.98, lo que sugiere que el mercado de PHIL está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PHIL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000749 | BUY |
| SMA 5 | $0.000735 | BUY |
| SMA 10 | $0.000711 | BUY |
| SMA 21 | $0.00070061 | BUY |
| SMA 50 | $0.000734 | BUY |
| SMA 100 | $0.001047 | SELL |
| SMA 200 | $0.001648 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000752 | BUY |
| EMA 5 | $0.000739 | BUY |
| EMA 10 | $0.000723 | BUY |
| EMA 21 | $0.000716 | BUY |
| EMA 50 | $0.0008018 | SELL |
| EMA 100 | $0.001082 | SELL |
| EMA 200 | $0.002375 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001297 | SELL |
| SMA 50 | $0.002274 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0014087 | SELL |
| EMA 50 | $0.005773 | SELL |
| EMA 100 | $0.006628 | SELL |
| EMA 200 | $0.003314 | SELL |
Osciladores de Phil
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 65.98 | NEUTRAL |
| Stoch RSI (14) | 120.26 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 268.59 | SELL |
| Índice Direccional Medio (14) | 26.44 | SELL |
| Oscilador Asombroso (5, 34) | 0.000026 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 88.95 | SELL |
| VWMA (10) | 0.0007090 | BUY |
| Promedio Móvil de Hull (9) | 0.000758 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000231 | SELL |
Predicción de precios de Phil basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Phil
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Phil por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001085 | $0.001524 | $0.002142 | $0.00301 | $0.00423 | $0.005944 |
| Amazon.com acción | $0.001611 | $0.003361 | $0.007014 | $0.014636 | $0.03054 | $0.063724 |
| Apple acción | $0.001095 | $0.001553 | $0.0022036 | $0.003125 | $0.004433 | $0.006288 |
| Netflix acción | $0.001218 | $0.001922 | $0.003033 | $0.004786 | $0.007551 | $0.011915 |
| Google acción | $0.000999 | $0.001294 | $0.001676 | $0.002171 | $0.002812 | $0.003641 |
| Tesla acción | $0.00175 | $0.003968 | $0.008995 | $0.020392 | $0.046228 | $0.104796 |
| Kodak acción | $0.000579 | $0.000434 | $0.000325 | $0.000244 | $0.000183 | $0.000137 |
| Nokia acción | $0.000511 | $0.000338 | $0.000224 | $0.000148 | $0.000098 | $0.000065 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Phil
Podría preguntarse cosas como: "¿Debo invertir en Phil ahora?", "¿Debería comprar PHIL hoy?", "¿Será Phil una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Phil regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Phil, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Phil a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Phil es de $0.0007721 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Phil
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Phil
basado en el historial de precios del último mes
Predicción de precios de Phil basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Phil ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000792 | $0.000812 | $0.000833 | $0.000855 |
| Si Phil ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000812 | $0.000854 | $0.000898 | $0.000945 |
| Si Phil ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000872 | $0.000985 | $0.001114 | $0.001258 |
| Si Phil ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000972 | $0.001225 | $0.001544 | $0.001945 |
| Si Phil ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001173 | $0.001783 | $0.002711 | $0.00412 |
| Si Phil ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001775 | $0.004083 | $0.009391 | $0.021596 |
| Si Phil ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002779 | $0.0100038 | $0.0360069 | $0.12960048 |
Cuadro de preguntas
¿Es PHIL una buena inversión?
La decisión de adquirir Phil depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Phil ha experimentado un aumento de 3.0771% durante las últimas 24 horas, y Phil ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Phil dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Phil subir?
Parece que el valor medio de Phil podría potencialmente aumentar hasta $0.000796 para el final de este año. Mirando las perspectivas de Phil en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0025036. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Phil la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Phil, el precio de Phil aumentará en un 0.86% durante la próxima semana y alcanzará $0.000778 para el 13 de enero de 2026.
¿Cuál será el precio de Phil el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Phil, el precio de Phil disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000682 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Phil este año en 2026?
Según nuestra predicción más reciente sobre el valor de Phil en 2026, se anticipa que PHIL fluctúe dentro del rango de $0.000266 y $0.000796. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Phil no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Phil en 5 años?
El futuro de Phil parece estar en una tendencia alcista, con un precio máximo de $0.0025036 proyectada después de un período de cinco años. Basado en el pronóstico de Phil para 2030, el valor de Phil podría potencialmente alcanzar su punto más alto de aproximadamente $0.0025036, mientras que su punto más bajo se anticipa que esté alrededor de $0.000865.
¿Cuánto será Phil en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Phil, se espera que el valor de PHIL en 2026 crezca en un 3.13% hasta $0.000796 si ocurre lo mejor. El precio estará entre $0.000796 y $0.000266 durante 2026.
¿Cuánto será Phil en 2027?
Según nuestra última simulación experimental para la predicción de precios de Phil, el valor de PHIL podría disminuir en un -12.62% hasta $0.000674 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000674 y $0.000256 a lo largo del año.
¿Cuánto será Phil en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Phil sugiere que el valor de PHIL en 2028 podría aumentar en un 47.02% , alcanzando $0.001135 en el mejor escenario. Se espera que el precio oscile entre $0.001135 y $0.000463 durante el año.
¿Cuánto será Phil en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Phil podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003349 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003349 y $0.001018.
¿Cuánto será Phil en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Phil, se espera que el valor de PHIL en 2030 aumente en un 224.23% , alcanzando $0.0025036 en el mejor escenario. Se pronostica que el precio oscile entre $0.0025036 y $0.000865 durante el transcurso de 2030.
¿Cuánto será Phil en 2031?
Nuestra simulación experimental indica que el precio de Phil podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.002285 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.002285 y $0.001023 durante el año.
¿Cuánto será Phil en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Phil, PHIL podría experimentar un 449.04% aumento en valor, alcanzando $0.004239 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004239 y $0.001562 a lo largo del año.
¿Cuánto será Phil en 2033?
Según nuestra predicción experimental de precios de Phil, se anticipa que el valor de PHIL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.011292. A lo largo del año, el precio de PHIL podría oscilar entre $0.011292 y $0.003631.
¿Cuánto será Phil en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Phil sugieren que PHIL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.00654 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.00654 y $0.002919.
¿Cuánto será Phil en 2035?
Basado en nuestra predicción experimental para el precio de Phil, PHIL podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0077059 en 2035. El rango de precios esperado para el año está entre $0.0077059 y $0.003451.
¿Cuánto será Phil en 2036?
Nuestra reciente simulación de predicción de precios de Phil sugiere que el valor de PHIL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.015943 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.015943 y $0.005713.
¿Cuánto será Phil en 2037?
Según la simulación experimental, el valor de Phil podría aumentar en un 4830.69% en 2037, con un máximo de $0.038074 bajo condiciones favorables. Se espera que el precio caiga entre $0.038074 y $0.014838 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Phil?
Los traders de Phil utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Phil
Las medias móviles son herramientas populares para la predicción de precios de Phil. Una media móvil simple (SMA) calcula el precio de cierre promedio de PHIL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PHIL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PHIL.
¿Cómo leer gráficos de Phil y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Phil en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PHIL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Phil?
La acción del precio de Phil está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PHIL. La capitalización de mercado de Phil puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PHIL, grandes poseedores de Phil, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Phil.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


