Predicción del precio de Opus - Pronóstico de OPUS
Predicción de precio de Opus hasta $0.006192 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002074 | $0.006192 |
| 2027 | $0.001997 | $0.005246 |
| 2028 | $0.003604 | $0.008827 |
| 2029 | $0.007917 | $0.026043 |
| 2030 | $0.006733 | $0.019467 |
| 2031 | $0.00796 | $0.017771 |
| 2032 | $0.012151 | $0.032965 |
| 2033 | $0.028237 | $0.0878083 |
| 2034 | $0.0227013 | $0.050853 |
| 2035 | $0.02684 | $0.059918 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Opus hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.97, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Opus para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Opus'
'name_with_ticker' => 'Opus <small>OPUS</small>'
'name_lang' => 'Opus'
'name_lang_with_ticker' => 'Opus <small>OPUS</small>'
'name_with_lang' => 'Opus'
'name_with_lang_with_ticker' => 'Opus <small>OPUS</small>'
'image' => '/uploads/coins/opus-2.jpg?1731569845'
'price_for_sd' => 0.006004
'ticker' => 'OPUS'
'marketcap' => '$6M'
'low24h' => '$0.004915'
'high24h' => '$0.006265'
'volume24h' => '$132.29K'
'current_supply' => '999.92M'
'max_supply' => '999.92M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006004'
'change_24h_pct' => '17.7581%'
'ath_price' => '$0.08401'
'ath_days' => 403
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 nov. 2024'
'ath_pct' => '-92.91%'
'fdv' => '$6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.296051'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0060556'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005306'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002074'
'current_year_max_price_prediction' => '$0.006192'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006733'
'grand_prediction_max_price' => '$0.019467'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.006118047758254
107 => 0.006140890327732
108 => 0.0061923558031364
109 => 0.0057525889506584
110 => 0.0059500313565446
111 => 0.0060660102721511
112 => 0.0055420133120917
113 => 0.0060556525370294
114 => 0.0057449335881497
115 => 0.0056394709100579
116 => 0.0057814625124572
117 => 0.0057261282469108
118 => 0.0056785550947312
119 => 0.0056520084584044
120 => 0.0057562714201651
121 => 0.0057514074283778
122 => 0.0055808129863684
123 => 0.0053582794910862
124 => 0.0054329690365159
125 => 0.0054058336244431
126 => 0.0053074913905533
127 => 0.0053737621823084
128 => 0.0050819391542992
129 => 0.0045798728022504
130 => 0.0049115532131221
131 => 0.0048987838781024
201 => 0.0048923450003422
202 => 0.0051415936621391
203 => 0.0051176341544523
204 => 0.0050741474133887
205 => 0.005306692722451
206 => 0.0052218105564674
207 => 0.0054833973912751
208 => 0.0056556953990552
209 => 0.0056119950510255
210 => 0.0057740421601312
211 => 0.0054346897327909
212 => 0.0055474089966971
213 => 0.005570640280766
214 => 0.0053038231494342
215 => 0.0051215542262221
216 => 0.0051093989670617
217 => 0.0047933697724167
218 => 0.0049621900172975
219 => 0.0051107448465362
220 => 0.0050395986116513
221 => 0.0050170758391201
222 => 0.0051321397993889
223 => 0.005141081254558
224 => 0.0049372151291304
225 => 0.0049796053522074
226 => 0.0051563796292265
227 => 0.0049751510939826
228 => 0.0046230536535168
301 => 0.0045357286201533
302 => 0.0045240778509829
303 => 0.0042872454346654
304 => 0.0045415640964435
305 => 0.004430547185261
306 => 0.0047812482774998
307 => 0.0045809296944607
308 => 0.0045722943607175
309 => 0.0045592407872367
310 => 0.0043553893430884
311 => 0.0044000198539217
312 => 0.0045483784693506
313 => 0.0046013144947151
314 => 0.0045957928335775
315 => 0.0045476514311982
316 => 0.0045696903186836
317 => 0.0044986953832359
318 => 0.0044736255938975
319 => 0.0043944984427567
320 => 0.0042782033900132
321 => 0.0042943749303762
322 => 0.0040639640006355
323 => 0.0039384238972792
324 => 0.0039036760512621
325 => 0.0038572097793557
326 => 0.003908924540316
327 => 0.0040633112754212
328 => 0.0038770881179113
329 => 0.0035578215763963
330 => 0.0035770100395451
331 => 0.0036201208191345
401 => 0.003539784166576
402 => 0.0034637522670735
403 => 0.0035298558350279
404 => 0.0033945783925716
405 => 0.0036364684517598
406 => 0.0036299260035478
407 => 0.0037200876592322
408 => 0.0037764675928351
409 => 0.0036465300991007
410 => 0.0036138511708148
411 => 0.0036324665735409
412 => 0.0033247954328003
413 => 0.0036949443630675
414 => 0.0036981454263872
415 => 0.0036707359788218
416 => 0.003867828857123
417 => 0.0042837563051489
418 => 0.0041272676685587
419 => 0.0040666705385769
420 => 0.0039514753501853
421 => 0.0041049660991037
422 => 0.0040931804044154
423 => 0.0040398810234432
424 => 0.004007645391527
425 => 0.004067040531731
426 => 0.0040002856763588
427 => 0.0039882946700332
428 => 0.0039156422180436
429 => 0.0038897085981593
430 => 0.0038705083784441
501 => 0.0038493708231123
502 => 0.0038959950030237
503 => 0.0037903384774228
504 => 0.0036629270651851
505 => 0.0036523341848681
506 => 0.0036815820587588
507 => 0.0036686420518103
508 => 0.0036522722330932
509 => 0.0036210177911074
510 => 0.0036117452658157
511 => 0.003641876474624
512 => 0.003607860096638
513 => 0.0036580531153243
514 => 0.003644403391548
515 => 0.0035681571441146
516 => 0.0034731260898363
517 => 0.0034722801141188
518 => 0.0034518058293567
519 => 0.0034257287493829
520 => 0.0034184747022969
521 => 0.0035242887769126
522 => 0.0037433207446184
523 => 0.003700319528367
524 => 0.0037313923140505
525 => 0.0038842396657472
526 => 0.0039328252425714
527 => 0.003898340350954
528 => 0.0038511353043727
529 => 0.0038532120868527
530 => 0.0040145260209603
531 => 0.0040245869731589
601 => 0.0040500077535785
602 => 0.0040826806403294
603 => 0.0039039046848493
604 => 0.0038447917554266
605 => 0.0038167807700057
606 => 0.0037305177765248
607 => 0.0038235450193638
608 => 0.0037693420287852
609 => 0.0037766558640521
610 => 0.0037718927192398
611 => 0.0037744937183897
612 => 0.0036364008385585
613 => 0.0036867146260209
614 => 0.0036030581958451
615 => 0.0034910516267146
616 => 0.0034906761414203
617 => 0.0035180895905354
618 => 0.0035017829983134
619 => 0.0034579023779247
620 => 0.0034641354129403
621 => 0.0034095274674967
622 => 0.0034707658062259
623 => 0.0034725219026593
624 => 0.0034489418065737
625 => 0.0035432879166484
626 => 0.0035819415949251
627 => 0.0035664206705469
628 => 0.0035808526054951
629 => 0.0037021064230411
630 => 0.003721876085976
701 => 0.0037306564643411
702 => 0.0037188919205091
703 => 0.003583068902691
704 => 0.0035890932310953
705 => 0.0035448907064693
706 => 0.0035075442311076
707 => 0.0035090378942656
708 => 0.0035282388373035
709 => 0.0036120904816703
710 => 0.003788551323916
711 => 0.003795247883888
712 => 0.0038033643099265
713 => 0.0037703507262389
714 => 0.0037603935135013
715 => 0.0037735296472769
716 => 0.0038397990617541
717 => 0.0040102619877599
718 => 0.0039500090048734
719 => 0.0039010223918931
720 => 0.0039439968581729
721 => 0.0039373812759341
722 => 0.0038815391041523
723 => 0.0038799718003785
724 => 0.003772792818907
725 => 0.0037331711898043
726 => 0.0037000603908985
727 => 0.0036639042628727
728 => 0.0036424696982147
729 => 0.0036754029313649
730 => 0.0036829351514409
731 => 0.0036109260615835
801 => 0.0036011114887187
802 => 0.0036599156659204
803 => 0.0036340381399746
804 => 0.0036606538171416
805 => 0.0036668288825494
806 => 0.0036658345547949
807 => 0.0036388154456926
808 => 0.003656036620113
809 => 0.0036153034087296
810 => 0.0035710121592807
811 => 0.0035427571015747
812 => 0.0035181008162366
813 => 0.0035317815563739
814 => 0.003483012215789
815 => 0.0034674099222029
816 => 0.0036502024737081
817 => 0.003785233296856
818 => 0.0037832698952093
819 => 0.0037713181926313
820 => 0.0037535603869146
821 => 0.0038384999676594
822 => 0.0038089087161484
823 => 0.0038304388240544
824 => 0.0038359191401323
825 => 0.0038525064063344
826 => 0.0038584349282779
827 => 0.0038405148173413
828 => 0.0037803727362808
829 => 0.0036305043884155
830 => 0.0035607402679224
831 => 0.0035377169461463
901 => 0.0035385538001653
902 => 0.0035154696304392
903 => 0.0035222689529834
904 => 0.0035131051035367
905 => 0.003495750989658
906 => 0.0035307099887445
907 => 0.0035347386877236
908 => 0.0035265788396079
909 => 0.0035285007792299
910 => 0.0034609407219485
911 => 0.0034660771663709
912 => 0.0034374767911193
913 => 0.0034321145655423
914 => 0.0033598153074258
915 => 0.0032317266917275
916 => 0.0033027002186871
917 => 0.003216974178508
918 => 0.0031845084281307
919 => 0.0033381962409568
920 => 0.0033227702471855
921 => 0.0032963676513672
922 => 0.0032573127093688
923 => 0.0032428268514796
924 => 0.0031548153646099
925 => 0.0031496151764426
926 => 0.0031932360458453
927 => 0.0031731065155184
928 => 0.0031448370312902
929 => 0.0030424478250474
930 => 0.0029273284573292
1001 => 0.0029308031874261
1002 => 0.0029674205164253
1003 => 0.0030738903390099
1004 => 0.0030322907373795
1005 => 0.0030021097490961
1006 => 0.0029964577572278
1007 => 0.003067204268706
1008 => 0.0031673254042999
1009 => 0.0032143000010364
1010 => 0.0031677496023102
1011 => 0.0031142750107051
1012 => 0.0031175297613187
1013 => 0.003139182158997
1014 => 0.0031414575198446
1015 => 0.0031066510579865
1016 => 0.0031164488731195
1017 => 0.0031015650960014
1018 => 0.003010223383301
1019 => 0.003008571301366
1020 => 0.0029861545719852
1021 => 0.0029854758023285
1022 => 0.0029473393535366
1023 => 0.0029420038007258
1024 => 0.0028662815669325
1025 => 0.0029161221705233
1026 => 0.0028826917103837
1027 => 0.0028323041215051
1028 => 0.0028236172821902
1029 => 0.0028233561453107
1030 => 0.0028750929326304
1031 => 0.0029155175960408
1101 => 0.0028832732475507
1102 => 0.0028759318344299
1103 => 0.0029543189198568
1104 => 0.0029443434487221
1105 => 0.0029357047550543
1106 => 0.0031583606547457
1107 => 0.0029821111360835
1108 => 0.0029052562859759
1109 => 0.0028101338146276
1110 => 0.0028411061709478
1111 => 0.002847632501503
1112 => 0.0026188801050246
1113 => 0.0025260752862626
1114 => 0.0024942281697393
1115 => 0.002475899703928
1116 => 0.0024842522159526
1117 => 0.0024007169941473
1118 => 0.0024568540447455
1119 => 0.0023845196037186
1120 => 0.0023723924992838
1121 => 0.0025017354403577
1122 => 0.0025197327549976
1123 => 0.0024429506194163
1124 => 0.0024922571803581
1125 => 0.0024743779359481
1126 => 0.0023857595700976
1127 => 0.0023823750003547
1128 => 0.0023379094194571
1129 => 0.0022683293955854
1130 => 0.0022365294575947
1201 => 0.0022199677737895
1202 => 0.0022268014473083
1203 => 0.0022233461328633
1204 => 0.0022007978688451
1205 => 0.0022246385729628
1206 => 0.0021637354256011
1207 => 0.0021394833015917
1208 => 0.0021285291798216
1209 => 0.0020744741310838
1210 => 0.002160499752015
1211 => 0.0021774478830607
1212 => 0.00219442940716
1213 => 0.0023422419806662
1214 => 0.0023348576822078
1215 => 0.0024016081439722
1216 => 0.0023990143437743
1217 => 0.0023799760307933
1218 => 0.0022996565199769
1219 => 0.0023316704454307
1220 => 0.0022331365589525
1221 => 0.002306964846355
1222 => 0.0022732726991275
1223 => 0.0022955734974861
1224 => 0.0022554746512554
1225 => 0.0022776670084002
1226 => 0.0021814669136658
1227 => 0.0020916366187746
1228 => 0.0021277869517486
1229 => 0.0021670864979834
1230 => 0.0022522979275585
1231 => 0.0022015467030826
]
'min_raw' => 0.0020744741310838
'max_raw' => 0.0061923558031364
'avg_raw' => 0.0041334149671101
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002074'
'max' => '$0.006192'
'avg' => '$0.004133'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039297958689162
'max_diff' => 0.00018808580313638
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022197987625204
102 => 0.0021586574187616
103 => 0.0020325053624258
104 => 0.0020332193693646
105 => 0.0020138136238693
106 => 0.0019970442264761
107 => 0.0022073760917207
108 => 0.0021812179994228
109 => 0.0021395385028325
110 => 0.0021953281652959
111 => 0.0022100798375522
112 => 0.002210499796923
113 => 0.0022512024945166
114 => 0.0022729255315187
115 => 0.0022767543109434
116 => 0.002340800885047
117 => 0.0023622684518918
118 => 0.0024506903215218
119 => 0.0022710824835995
120 => 0.0022673835783717
121 => 0.0021961132402571
122 => 0.0021509124650853
123 => 0.0021992081760041
124 => 0.0022419915828561
125 => 0.0021974426399663
126 => 0.0022032597914282
127 => 0.002143456475381
128 => 0.0021648333468603
129 => 0.0021832459883538
130 => 0.0021730796099661
131 => 0.0021578600494615
201 => 0.0022384838313898
202 => 0.0022339347216462
203 => 0.0023090134409106
204 => 0.0023675426715078
205 => 0.0024724375160896
206 => 0.0023629742774766
207 => 0.0023589850019846
208 => 0.0023979808098191
209 => 0.0023622624818368
210 => 0.0023848352321668
211 => 0.0024688006970381
212 => 0.0024705747549998
213 => 0.002440856998397
214 => 0.002439048670207
215 => 0.0024447562904392
216 => 0.0024781860004134
217 => 0.0024665046325572
218 => 0.0024800226071765
219 => 0.0024969270414325
220 => 0.0025668509488468
221 => 0.0025837093661982
222 => 0.0025427521521217
223 => 0.0025464501299743
224 => 0.002531131007609
225 => 0.0025163329273522
226 => 0.0025495968506835
227 => 0.0026103873243754
228 => 0.0026100091499936
301 => 0.0026241113582921
302 => 0.0026328969172331
303 => 0.0025951828668361
304 => 0.0025706324068117
305 => 0.0025800466153714
306 => 0.0025951001398732
307 => 0.0025751649602619
308 => 0.0024521157968271
309 => 0.0024894410526022
310 => 0.0024832283049295
311 => 0.0024743805967475
312 => 0.0025119114300571
313 => 0.0025082914896273
314 => 0.0023998602197078
315 => 0.0024068016378037
316 => 0.0024002823503329
317 => 0.0024213475018716
318 => 0.0023611248945238
319 => 0.0023796489629386
320 => 0.0023912670849959
321 => 0.0023981102481423
322 => 0.0024228324458281
323 => 0.0024199315812722
324 => 0.0024226521240143
325 => 0.002459308616764
326 => 0.0026447045781029
327 => 0.0026547952712255
328 => 0.0026051050077924
329 => 0.0026249552879368
330 => 0.0025868470908386
331 => 0.0026124293788534
401 => 0.0026299321305934
402 => 0.0025508405610659
403 => 0.0025461572716185
404 => 0.0025078917884351
405 => 0.0025284534916301
406 => 0.002495738343408
407 => 0.0025037654964544
408 => 0.0024813208767421
409 => 0.0025217167235451
410 => 0.0025668855571508
411 => 0.0025782969882909
412 => 0.0025482784258913
413 => 0.0025265430083943
414 => 0.0024883827753613
415 => 0.0025518440933515
416 => 0.0025704021166804
417 => 0.0025517466159553
418 => 0.0025474237288066
419 => 0.002539231865471
420 => 0.0025491616713387
421 => 0.0025703010456999
422 => 0.0025603321071341
423 => 0.0025669167666869
424 => 0.0025418228345431
425 => 0.0025951953517561
426 => 0.0026799637538861
427 => 0.00268023629816
428 => 0.0026702673058579
429 => 0.0026661882089929
430 => 0.0026764170000638
501 => 0.0026819656996129
502 => 0.0027150437342969
503 => 0.0027505377833999
504 => 0.0029161730232968
505 => 0.0028696633107339
506 => 0.0030166247492549
507 => 0.0031328521665706
508 => 0.0031677036870146
509 => 0.0031356419280968
510 => 0.0030259603827815
511 => 0.0030205788829049
512 => 0.00318448941796
513 => 0.0031381771842288
514 => 0.0031326684913908
515 => 0.0030740653066777
516 => 0.0031087070469888
517 => 0.0031011303902191
518 => 0.0030891702668454
519 => 0.0031552642941943
520 => 0.003278986413137
521 => 0.0032597031606411
522 => 0.0032453091071772
523 => 0.0031822385549446
524 => 0.0032202211147065
525 => 0.0032066962526833
526 => 0.0032648076430245
527 => 0.0032303837427113
528 => 0.003137826323509
529 => 0.0031525663975902
530 => 0.0031503384650457
531 => 0.0031961891589377
601 => 0.0031824259187155
602 => 0.0031476509715002
603 => 0.0032785635443847
604 => 0.0032700628100756
605 => 0.0032821149077876
606 => 0.0032874206139239
607 => 0.0033671047901004
608 => 0.0033997488474707
609 => 0.0034071596200084
610 => 0.0034381689497282
611 => 0.0034063880796361
612 => 0.0035335342193807
613 => 0.0036180789831279
614 => 0.003716282076854
615 => 0.003859783191291
616 => 0.0039137409377789
617 => 0.0039039939538329
618 => 0.0040127948610435
619 => 0.0042083076727927
620 => 0.0039435126830126
621 => 0.0042223424502235
622 => 0.004134068165169
623 => 0.0039247714232914
624 => 0.003911295180561
625 => 0.0040530333641456
626 => 0.0043673950135417
627 => 0.0042886509858283
628 => 0.0043675238105618
629 => 0.0042755144709334
630 => 0.0042709454317053
701 => 0.0043630551223047
702 => 0.0045782744350282
703 => 0.0044760318069286
704 => 0.0043294419286268
705 => 0.0044376816135737
706 => 0.0043439143813628
707 => 0.0041326305633958
708 => 0.0042885907717544
709 => 0.004184304621916
710 => 0.0042147408645955
711 => 0.0044339348401617
712 => 0.0044075608411062
713 => 0.0044416912380505
714 => 0.0043814519807918
715 => 0.0043251790156533
716 => 0.0042201413473368
717 => 0.0041890448720428
718 => 0.0041976388190801
719 => 0.0041890406133094
720 => 0.0041302730032324
721 => 0.0041175821434316
722 => 0.0040964301544309
723 => 0.0041029860402857
724 => 0.0040632141127317
725 => 0.0041382719573256
726 => 0.0041522033546897
727 => 0.0042068241946803
728 => 0.0042124951114858
729 => 0.0043646133733807
730 => 0.0042808291909725
731 => 0.0043370388541102
801 => 0.0043320109327733
802 => 0.0039293075183311
803 => 0.0039847964957589
804 => 0.0040711199312363
805 => 0.0040322313405624
806 => 0.0039772519718783
807 => 0.0039328531838586
808 => 0.0038655844799997
809 => 0.0039602638889001
810 => 0.0040847572435715
811 => 0.0042156524684056
812 => 0.0043729145044488
813 => 0.0043378154487359
814 => 0.004212712564031
815 => 0.0042183245880511
816 => 0.0042530159122936
817 => 0.0042080874953604
818 => 0.0041948372280999
819 => 0.0042511955290437
820 => 0.0042515836376883
821 => 0.0041998880642261
822 => 0.0041424378945129
823 => 0.0041421971762041
824 => 0.0041319744734065
825 => 0.0042773330670513
826 => 0.0043572655961445
827 => 0.0043664297317873
828 => 0.0043566487767997
829 => 0.0043604130781822
830 => 0.004313902100696
831 => 0.0044202124028276
901 => 0.0045177732490628
902 => 0.0044916248581883
903 => 0.0044524247030546
904 => 0.0044211998913553
905 => 0.0044842692848907
906 => 0.004481460904077
907 => 0.0045169211401811
908 => 0.0045153124590432
909 => 0.0045033885153683
910 => 0.0044916252840298
911 => 0.0045382651666315
912 => 0.0045248336294558
913 => 0.004511381229393
914 => 0.0044844003816076
915 => 0.0044880675269261
916 => 0.0044488741402519
917 => 0.0044307414862091
918 => 0.0041580698757253
919 => 0.0040852031116021
920 => 0.004108128478935
921 => 0.0041156761051179
922 => 0.0040839643959902
923 => 0.0041294308408096
924 => 0.0041223449435454
925 => 0.0041499120246893
926 => 0.0041326893092141
927 => 0.0041333961354647
928 => 0.0041840444694071
929 => 0.004198747896224
930 => 0.0041912696146737
1001 => 0.004196507146731
1002 => 0.0043172038623678
1003 => 0.0043000446490679
1004 => 0.0042909291589982
1005 => 0.0042934542120439
1006 => 0.0043242948106558
1007 => 0.0043329284944329
1008 => 0.0042963469695912
1009 => 0.0043135990281818
1010 => 0.0043870561040486
1011 => 0.0044127619232915
1012 => 0.0044948025588217
1013 => 0.0044599502386925
1014 => 0.0045239231806628
1015 => 0.0047205541942965
1016 => 0.0048776366538183
1017 => 0.0047331771323349
1018 => 0.0050216390649161
1019 => 0.0052462480568372
1020 => 0.0052376271896214
1021 => 0.0051984614165804
1022 => 0.0049427500508172
1023 => 0.0047074406396003
1024 => 0.0049042869538486
1025 => 0.0049047887555854
1026 => 0.0048878794826171
1027 => 0.0047828574404511
1028 => 0.0048842249431982
1029 => 0.0048922711274536
1030 => 0.0048877674039237
1031 => 0.0048072472504322
1101 => 0.0046843078586624
1102 => 0.0047083299215389
1103 => 0.0047476785505674
1104 => 0.0046731833868325
1105 => 0.0046493776681981
1106 => 0.0046936370283628
1107 => 0.0048362499086173
1108 => 0.0048092897697054
1109 => 0.0048085857315239
1110 => 0.0049239326386674
1111 => 0.0048413691465732
1112 => 0.0047086329166811
1113 => 0.0046751152680575
1114 => 0.0045561501956375
1115 => 0.0046383197948971
1116 => 0.0046412769324907
1117 => 0.0045962734827292
1118 => 0.0047122846986011
1119 => 0.0047112156348234
1120 => 0.004821351018303
1121 => 0.0050318885065549
1122 => 0.0049696222113582
1123 => 0.0048972132845981
1124 => 0.0049050861426187
1125 => 0.0049914319632352
1126 => 0.0049392253090071
1127 => 0.0049579991858652
1128 => 0.004991403546724
1129 => 0.0050115572270138
1130 => 0.0049021863381726
1201 => 0.0048766867521693
1202 => 0.0048245235483452
1203 => 0.0048109151421398
1204 => 0.0048534009832336
1205 => 0.0048422074651523
1206 => 0.0046410283965266
1207 => 0.0046200040645054
1208 => 0.0046206488507527
1209 => 0.004567782168233
1210 => 0.0044871477879328
1211 => 0.004699050124933
1212 => 0.0046820314017005
1213 => 0.0046632440483965
1214 => 0.0046655453919771
1215 => 0.0047575250144323
1216 => 0.004704172188326
1217 => 0.0048460194208859
1218 => 0.0048168598941897
1219 => 0.0047869525356627
1220 => 0.0047828184277138
1221 => 0.0047713066462569
1222 => 0.0047318284642957
1223 => 0.0046841561873067
1224 => 0.0046526788207366
1225 => 0.0042918502724576
1226 => 0.0043588179521751
1227 => 0.004435858163394
1228 => 0.0044624521355875
1229 => 0.0044169613059037
1230 => 0.0047336247195215
1231 => 0.0047914821766341
]
'min_raw' => 0.0019970442264761
'max_raw' => 0.0052462480568372
'avg_raw' => 0.0036216461416566
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001997'
'max' => '$0.005246'
'avg' => '$0.003621'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.7429904607681E-5
'max_diff' => -0.00094610774629921
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046162281650916
102 => 0.0045834452951061
103 => 0.00473577395902
104 => 0.0046439011532581
105 => 0.0046852714720673
106 => 0.0045958514711564
107 => 0.0047775460094798
108 => 0.0047761618015194
109 => 0.0047054785223543
110 => 0.0047652195458864
111 => 0.0047548380728933
112 => 0.0046750368248012
113 => 0.0047800758513832
114 => 0.0047801279494299
115 => 0.0047120968300206
116 => 0.0046326513764775
117 => 0.0046184484058018
118 => 0.0046077483752984
119 => 0.0046826399204872
120 => 0.0047497874457237
121 => 0.0048747323429057
122 => 0.0049061464586748
123 => 0.0050287578438776
124 => 0.0049557487338293
125 => 0.0049881127266875
126 => 0.0050232484191013
127 => 0.0050400937621168
128 => 0.005012645179644
129 => 0.0052031111297236
130 => 0.0052191922916362
131 => 0.005224584166124
201 => 0.0051603601194017
202 => 0.0052174061047164
203 => 0.0051907161773521
204 => 0.0052601559536786
205 => 0.0052710449972581
206 => 0.0052618223647352
207 => 0.0052652787190392
208 => 0.0051027496311423
209 => 0.0050943216405257
210 => 0.0049794053904441
211 => 0.0050262346117704
212 => 0.0049386896270839
213 => 0.0049664510435412
214 => 0.0049786880113951
215 => 0.0049722961138301
216 => 0.0050288822656822
217 => 0.0049807724768208
218 => 0.0048538028340341
219 => 0.0047267985984532
220 => 0.0047252041637309
221 => 0.0046917661903134
222 => 0.0046675966600028
223 => 0.0046722525690008
224 => 0.0046886605995894
225 => 0.0046666429954369
226 => 0.0046713415676037
227 => 0.0047493691719952
228 => 0.0047650170515885
229 => 0.0047118394427092
301 => 0.0044983236695665
302 => 0.0044459263632735
303 => 0.0044835885079532
304 => 0.0044655884285491
305 => 0.0036040783867261
306 => 0.0038064773920933
307 => 0.0036862187759249
308 => 0.0037416394790882
309 => 0.0036188865727979
310 => 0.0036774706937106
311 => 0.0036666523457276
312 => 0.0039921039569362
313 => 0.0039870224776712
314 => 0.0039894547128894
315 => 0.0038733577887676
316 => 0.0040583033412686
317 => 0.0041494141708576
318 => 0.0041325519811369
319 => 0.004136795831008
320 => 0.0040638724296754
321 => 0.003990160770817
322 => 0.003908403197
323 => 0.0040602986636104
324 => 0.0040434104806654
325 => 0.0040821458961648
326 => 0.0041806609639739
327 => 0.0041951676819311
328 => 0.0042146648579782
329 => 0.0042076765082688
330 => 0.0043741673502808
331 => 0.0043540042107712
401 => 0.0044025915756582
402 => 0.0043026436797534
403 => 0.0041895431483958
404 => 0.0042110398618719
405 => 0.0042089695554985
406 => 0.0041826121791781
407 => 0.0041588179183538
408 => 0.0041192071780729
409 => 0.0042445414216082
410 => 0.0042394530802079
411 => 0.0043218274129294
412 => 0.0043072669494793
413 => 0.0042100286110097
414 => 0.0042135014972912
415 => 0.0042368583265462
416 => 0.0043176965792812
417 => 0.004341694876581
418 => 0.0043305779091049
419 => 0.0043568909465302
420 => 0.0043776876984421
421 => 0.0043595026983779
422 => 0.0046169639505163
423 => 0.0045100480884926
424 => 0.0045621581357272
425 => 0.0045745860749424
426 => 0.004542752169974
427 => 0.004549655804075
428 => 0.0045601129286102
429 => 0.0046236065410735
430 => 0.0047902321522021
501 => 0.004864029501112
502 => 0.0050860524664046
503 => 0.0048579016585937
504 => 0.0048443641338401
505 => 0.0048843571743405
506 => 0.005014708158485
507 => 0.0051203453878886
508 => 0.0051553913512398
509 => 0.0051600232538425
510 => 0.0052257718109009
511 => 0.0052634576576687
512 => 0.0052177882067153
513 => 0.005179088128823
514 => 0.0050404692534435
515 => 0.0050565147657153
516 => 0.0051670524336994
517 => 0.0053231934003632
518 => 0.0054571785934594
519 => 0.0054102616486925
520 => 0.0057682048190625
521 => 0.005803693422338
522 => 0.0057987900448493
523 => 0.005879638364523
524 => 0.0057191709144446
525 => 0.0056505679706256
526 => 0.0051874555249278
527 => 0.0053175712320577
528 => 0.0055067020537986
529 => 0.005481669880337
530 => 0.0053443180221074
531 => 0.0054570743997583
601 => 0.005419793615089
602 => 0.0053903887134391
603 => 0.0055250982683177
604 => 0.0053769795791652
605 => 0.0055052244565694
606 => 0.0053407490747751
607 => 0.0054104759613442
608 => 0.0053708956082176
609 => 0.0053965089474761
610 => 0.005246773889537
611 => 0.0053275672921879
612 => 0.0052434126183627
613 => 0.00524337271809
614 => 0.0052415149990011
615 => 0.0053405225995575
616 => 0.0053437512338571
617 => 0.0052705844674538
618 => 0.0052600399933353
619 => 0.0052990284407338
620 => 0.0052533831799208
621 => 0.0052747403101673
622 => 0.0052540300656391
623 => 0.0052493677533713
624 => 0.0052122176559944
625 => 0.0051962123725813
626 => 0.0052024884566129
627 => 0.0051810649462698
628 => 0.0051681565063659
629 => 0.0052389471854035
630 => 0.0052011265812815
701 => 0.0052331506353979
702 => 0.0051966551839745
703 => 0.0050701460490293
704 => 0.0049973893077126
705 => 0.0047584252792043
706 => 0.0048261951812553
707 => 0.0048711266964281
708 => 0.0048562768309315
709 => 0.0048881800881533
710 => 0.0048901386890392
711 => 0.0048797666149012
712 => 0.0048677570817944
713 => 0.0048619115052468
714 => 0.0049054796436413
715 => 0.0049307724144154
716 => 0.0048756361750818
717 => 0.004862718525644
718 => 0.0049184643077654
719 => 0.0049524692026562
720 => 0.0052035422408301
721 => 0.0051849419392069
722 => 0.0052316250461562
723 => 0.0052263692447243
724 => 0.0052753005780093
725 => 0.0053552826280059
726 => 0.00519265675703
727 => 0.0052208829850519
728 => 0.0052139625657797
729 => 0.0052895178887619
730 => 0.0052897537642331
731 => 0.005244454573837
801 => 0.0052690119998462
802 => 0.0052553047183456
803 => 0.0052800756286673
804 => 0.0051846935208387
805 => 0.0053008586323117
806 => 0.0053667167650025
807 => 0.0053676312052388
808 => 0.0053988474374517
809 => 0.0054305649373024
810 => 0.0054914439162536
811 => 0.0054288670556215
812 => 0.0053162973750791
813 => 0.0053244245424164
814 => 0.005258424979902
815 => 0.0052595344444717
816 => 0.0052536120356485
817 => 0.0052713856303449
818 => 0.0051885938253786
819 => 0.0052080248965223
820 => 0.0051808212831329
821 => 0.0052208238497091
822 => 0.0051777877007343
823 => 0.005213959228544
824 => 0.0052295696608415
825 => 0.005287172492088
826 => 0.0051692797157237
827 => 0.0049288883640778
828 => 0.0049794215406572
829 => 0.0049046790032009
830 => 0.0049115967096074
831 => 0.0049255715774933
901 => 0.0048802744583828
902 => 0.0048889157212328
903 => 0.0048886069945161
904 => 0.0048859465544599
905 => 0.0048741630243215
906 => 0.0048570745743204
907 => 0.0049251496995771
908 => 0.004936716989889
909 => 0.0049624296433685
910 => 0.0050389330590638
911 => 0.005031288563761
912 => 0.0050437570527668
913 => 0.0050165384112747
914 => 0.0049128593043212
915 => 0.004918489578644
916 => 0.0048482799676196
917 => 0.0049606342257618
918 => 0.00493402725443
919 => 0.0049168735669238
920 => 0.0049121930243599
921 => 0.0049888860772253
922 => 0.0050118338406589
923 => 0.0049975343344542
924 => 0.0049682056300451
925 => 0.0050245254127637
926 => 0.0050395942106783
927 => 0.0050429675588155
928 => 0.0051427554155457
929 => 0.0050485445915019
930 => 0.0050712220732243
1001 => 0.0052481453120498
1002 => 0.0050877003481732
1003 => 0.0051726916238883
1004 => 0.0051685317432153
1005 => 0.0052120104039232
1006 => 0.0051649652239902
1007 => 0.0051655484053786
1008 => 0.0052041545105877
1009 => 0.0051499391984694
1010 => 0.0051365147247572
1011 => 0.0051179689104718
1012 => 0.005158463017479
1013 => 0.0051827374032389
1014 => 0.0053783711248916
1015 => 0.0055047594310609
1016 => 0.0054992725813647
1017 => 0.0055494121166362
1018 => 0.0055268237967709
1019 => 0.005453880153428
1020 => 0.0055783860580846
1021 => 0.0055389871803029
1022 => 0.0055422351759176
1023 => 0.0055421142853586
1024 => 0.0055683110947737
1025 => 0.0055497482544008
1026 => 0.0055131589905893
1027 => 0.0055374486514568
1028 => 0.0056095802605207
1029 => 0.0058334789883232
1030 => 0.0059587756826651
1031 => 0.0058259359699967
1101 => 0.0059175670250007
1102 => 0.0058626210434815
1103 => 0.0058526357241381
1104 => 0.0059101867981625
1105 => 0.0059678386077233
1106 => 0.0059641664366899
1107 => 0.0059223141834019
1108 => 0.0058986729074811
1109 => 0.0060776925691618
1110 => 0.0062095912063678
1111 => 0.00620059660357
1112 => 0.0062402958551178
1113 => 0.0063568540855138
1114 => 0.0063675107093459
1115 => 0.0063661682196827
1116 => 0.0063397546656112
1117 => 0.0064545213804349
1118 => 0.006550261793069
1119 => 0.0063336406910046
1120 => 0.0064161271708922
1121 => 0.0064531580092622
1122 => 0.006507530266544
1123 => 0.0065992653784268
1124 => 0.0066989140414682
1125 => 0.0067130054550143
1126 => 0.0067030069227671
1127 => 0.0066372859507915
1128 => 0.0067463227069472
1129 => 0.0068101938814767
1130 => 0.0068482277042431
1201 => 0.0069446751505542
1202 => 0.0064533866991132
1203 => 0.0061056283145629
1204 => 0.0060513208211234
1205 => 0.0061617572445693
1206 => 0.006190878448718
1207 => 0.0061791397278406
1208 => 0.0057877060492202
1209 => 0.0060492600038146
1210 => 0.006330670066877
1211 => 0.0063414801734778
1212 => 0.0064823599350538
1213 => 0.0065282361602795
1214 => 0.0066416628338806
1215 => 0.0066345679645641
1216 => 0.0066621855545734
1217 => 0.0066558367489003
1218 => 0.0068659357769424
1219 => 0.0070977062048803
1220 => 0.0070896807319457
1221 => 0.0070563609907464
1222 => 0.0071058464882875
1223 => 0.007345058407948
1224 => 0.0073230356076785
1225 => 0.0073444288822426
1226 => 0.0076264732169154
1227 => 0.0079931709723288
1228 => 0.0078228030490865
1229 => 0.0081924524204728
1230 => 0.0084251271054893
1231 => 0.0088275139142138
]
'min_raw' => 0.0036040783867261
'max_raw' => 0.0088275139142138
'avg_raw' => 0.0062157961504699
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003604'
'max' => '$0.008827'
'avg' => '$0.006215'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00160703416025
'max_diff' => 0.0035812658573766
'year' => 2028
]
3 => [
'items' => [
101 => 0.0087771331039646
102 => 0.0089337793357503
103 => 0.0086869409388263
104 => 0.0081201500852182
105 => 0.0080304532630465
106 => 0.0082100285725196
107 => 0.0086514969481567
108 => 0.0081961251623182
109 => 0.0082882462815159
110 => 0.0082617153929896
111 => 0.0082603016746891
112 => 0.008314257552213
113 => 0.0082359917377152
114 => 0.0079171227296998
115 => 0.0080632585169664
116 => 0.0080068284714859
117 => 0.0080694418140851
118 => 0.0084073402003863
119 => 0.0082579472693111
120 => 0.0081005739521195
121 => 0.0082979550158125
122 => 0.0085492889373858
123 => 0.0085335609122643
124 => 0.0085030419697239
125 => 0.008675075650904
126 => 0.0089592248910744
127 => 0.0090360292888884
128 => 0.0090927247251579
129 => 0.0091005420679422
130 => 0.0091810655570721
131 => 0.0087480704614885
201 => 0.0094352447982824
202 => 0.0095539008234387
203 => 0.0095315984084977
204 => 0.0096634795866501
205 => 0.0096246767985351
206 => 0.0095684576465273
207 => 0.00977751736583
208 => 0.0095378472678989
209 => 0.009197665737512
210 => 0.009011035421914
211 => 0.0092568052765316
212 => 0.0094068883505606
213 => 0.0095060837154175
214 => 0.0095361001728877
215 => 0.0087816826381797
216 => 0.0083750934288867
217 => 0.0086357124504887
218 => 0.0089536856438073
219 => 0.0087463041043447
220 => 0.0087544330680665
221 => 0.0084587614917028
222 => 0.0089798460175979
223 => 0.0089039283851856
224 => 0.0092977891964362
225 => 0.0092037911529008
226 => 0.009524969354887
227 => 0.0094403923704503
228 => 0.0097914667042114
301 => 0.0099315197609068
302 => 0.010166690640616
303 => 0.010339683297048
304 => 0.010441267893727
305 => 0.010435169135577
306 => 0.010837697916864
307 => 0.010600340757823
308 => 0.010302164225281
309 => 0.010296771152542
310 => 0.01045120100394
311 => 0.010774843606709
312 => 0.010858759424799
313 => 0.010905656919104
314 => 0.010833831774062
315 => 0.010576197589464
316 => 0.01046495245479
317 => 0.010559736532614
318 => 0.010443823750323
319 => 0.010643921731939
320 => 0.010918698999321
321 => 0.010861958580194
322 => 0.011051633294337
323 => 0.011247926669113
324 => 0.01152863501113
325 => 0.011602022566334
326 => 0.011723329404406
327 => 0.011848193988002
328 => 0.011888297127058
329 => 0.01196486646279
330 => 0.011964462904595
331 => 0.012195209751533
401 => 0.012449730669342
402 => 0.012545806423641
403 => 0.012766727323005
404 => 0.012388408024836
405 => 0.012675367558316
406 => 0.012934212240579
407 => 0.012625606939472
408 => 0.013050947451235
409 => 0.013067462459464
410 => 0.013316819476207
411 => 0.013064048368714
412 => 0.012913953691958
413 => 0.013347271399778
414 => 0.013556940189212
415 => 0.013493786243493
416 => 0.013013181598279
417 => 0.012733449080661
418 => 0.012001335125683
419 => 0.012868555730324
420 => 0.013290953589673
421 => 0.013012087689867
422 => 0.013152731429068
423 => 0.013920038066265
424 => 0.014212178754284
425 => 0.014151415533394
426 => 0.014161683517477
427 => 0.014319317330003
428 => 0.015018352465272
429 => 0.014599474408711
430 => 0.01491969098789
501 => 0.01508953270686
502 => 0.015247291160821
503 => 0.014859886257964
504 => 0.014355878171456
505 => 0.014196237653638
506 => 0.012984359971977
507 => 0.012921276475729
508 => 0.012885865797659
509 => 0.012662606481368
510 => 0.012487185814638
511 => 0.012347684787502
512 => 0.011981592433763
513 => 0.012105137856396
514 => 0.01152166305395
515 => 0.011894949555478
516 => 0.010963709682282
517 => 0.011739273920622
518 => 0.011317169566272
519 => 0.011600601287757
520 => 0.011599612421182
521 => 0.011077724759818
522 => 0.010776710848261
523 => 0.010968528628342
524 => 0.011174172515103
525 => 0.011207537543861
526 => 0.011474160210901
527 => 0.011548568866237
528 => 0.011323107166761
529 => 0.010944411805788
530 => 0.011032374101021
531 => 0.010774928295156
601 => 0.010323764422887
602 => 0.010647798192516
603 => 0.010758437568226
604 => 0.010807302219526
605 => 0.010363634367671
606 => 0.01022422429612
607 => 0.010150003543791
608 => 0.010887139857456
609 => 0.01092752184871
610 => 0.010720921872017
611 => 0.01165477335728
612 => 0.01144341400515
613 => 0.011679554185777
614 => 0.011024392444705
615 => 0.011049420505507
616 => 0.01073925643785
617 => 0.010912927590567
618 => 0.01079018241751
619 => 0.01089889667768
620 => 0.01096405955698
621 => 0.011274172729764
622 => 0.011742814914913
623 => 0.011227852163113
624 => 0.011003475517752
625 => 0.011142677526592
626 => 0.01151339081996
627 => 0.012075040435876
628 => 0.011742532559001
629 => 0.011890093908408
630 => 0.011922329498706
701 => 0.01167715050041
702 => 0.012084080535263
703 => 0.012302157646834
704 => 0.012525859638606
705 => 0.012720093810075
706 => 0.01243650814378
707 => 0.012739985457124
708 => 0.012495436313526
709 => 0.012276050450693
710 => 0.012276383168489
711 => 0.012138759212018
712 => 0.01187209545462
713 => 0.0118229185664
714 => 0.012078742949278
715 => 0.012283889877686
716 => 0.012300786761297
717 => 0.012414366641694
718 => 0.012481582044947
719 => 0.013140384371735
720 => 0.013405360117468
721 => 0.013729367443616
722 => 0.013855586557203
723 => 0.014235460837043
724 => 0.013928681504192
725 => 0.013862307865797
726 => 0.012940857118834
727 => 0.013091744627029
728 => 0.013333330086127
729 => 0.012944840774073
730 => 0.013191247824658
731 => 0.013239893796059
801 => 0.012931640055907
802 => 0.01309629169738
803 => 0.012659025753438
804 => 0.011752346117581
805 => 0.012085089928885
806 => 0.012330101374361
807 => 0.011980439831974
808 => 0.012607194612933
809 => 0.012241057408741
810 => 0.012125009492698
811 => 0.011672265198143
812 => 0.011885943077447
813 => 0.012174945468778
814 => 0.01199637559107
815 => 0.012366934899716
816 => 0.012891745705318
817 => 0.013265757138414
818 => 0.013294469092128
819 => 0.013054004797468
820 => 0.013439350364284
821 => 0.013442157186047
822 => 0.013007485812495
823 => 0.012741252016455
824 => 0.012680763137834
825 => 0.012831876216173
826 => 0.013015355390289
827 => 0.013304650909341
828 => 0.013479466132632
829 => 0.013935291520144
830 => 0.014058624800467
831 => 0.014194130683228
901 => 0.014375208331062
902 => 0.014592638474644
903 => 0.014116913698792
904 => 0.014135815130999
905 => 0.013692826806584
906 => 0.013219430250995
907 => 0.013578679226973
908 => 0.014048349474177
909 => 0.013940606600529
910 => 0.013928483326256
911 => 0.013948871310867
912 => 0.01386763670269
913 => 0.013500215580599
914 => 0.013315698993263
915 => 0.013553772466128
916 => 0.013680297921525
917 => 0.013876527868666
918 => 0.013852338385769
919 => 0.014357805656046
920 => 0.014554214952739
921 => 0.014503965049818
922 => 0.014513212241287
923 => 0.014868801891218
924 => 0.015264290714532
925 => 0.015634718186911
926 => 0.016011532922046
927 => 0.015557268051512
928 => 0.015326620365417
929 => 0.015564589902851
930 => 0.015438319916625
1001 => 0.016163904711594
1002 => 0.016214142628518
1003 => 0.016939674955448
1004 => 0.017628291528486
1005 => 0.017195783796808
1006 => 0.017603619107204
1007 => 0.018044726246699
1008 => 0.018895693485838
1009 => 0.018609117657084
1010 => 0.018389605063475
1011 => 0.018182166723191
1012 => 0.018613812979412
1013 => 0.019169118992324
1014 => 0.01928872658885
1015 => 0.019482536588841
1016 => 0.01927876907181
1017 => 0.019524184601818
1018 => 0.020390609263796
1019 => 0.020156493671988
1020 => 0.01982401189566
1021 => 0.020507970953983
1022 => 0.020755493078366
1023 => 0.022492732975633
1024 => 0.024686070107732
1025 => 0.023778014132815
1026 => 0.0232143544864
1027 => 0.023346827873493
1028 => 0.024147760344988
1029 => 0.024404994434507
1030 => 0.023705743505288
1031 => 0.023952730754769
1101 => 0.025313654782659
1102 => 0.026043746859952
1103 => 0.02505218375454
1104 => 0.022316500472673
1105 => 0.019794075549464
1106 => 0.020463136225374
1107 => 0.020387285508096
1108 => 0.021849428597334
1109 => 0.02015091009255
1110 => 0.020179508788077
1111 => 0.021671887447965
1112 => 0.021273746407354
1113 => 0.020628808911617
1114 => 0.019798784306913
1115 => 0.018264407057136
1116 => 0.016905366337732
1117 => 0.019570758156868
1118 => 0.019455821614926
1119 => 0.019289376469553
1120 => 0.019659782129334
1121 => 0.02145836687175
1122 => 0.021416903671987
1123 => 0.021153135949803
1124 => 0.021353201442338
1125 => 0.020593736463473
1126 => 0.020789467881223
1127 => 0.019793675984469
1128 => 0.020243815509745
1129 => 0.020627425165407
1130 => 0.02070444048322
1201 => 0.02087795992675
1202 => 0.01939525528008
1203 => 0.020060946136513
1204 => 0.02045197714787
1205 => 0.01868528481273
1206 => 0.020417055320753
1207 => 0.019369444690901
1208 => 0.019013869908546
1209 => 0.019492604509572
1210 => 0.019306041169967
1211 => 0.019145644965942
1212 => 0.01905614112814
1213 => 0.019407670983123
1214 => 0.019391271695219
1215 => 0.018816100623461
1216 => 0.018065813407325
1217 => 0.018317634424398
1218 => 0.018226145488061
1219 => 0.017894577780466
1220 => 0.018118014381747
1221 => 0.017134112668381
1222 => 0.015441360909295
1223 => 0.016559644571736
1224 => 0.01651659186719
1225 => 0.016494882741274
1226 => 0.017335242006508
1227 => 0.017254460853543
1228 => 0.017107842269899
1229 => 0.017891885015198
1230 => 0.017605698866301
1231 => 0.018487657143265
]
'min_raw' => 0.0079171227296998
'max_raw' => 0.026043746859952
'avg_raw' => 0.016980434794826
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007917'
'max' => '$0.026043'
'avg' => '$0.01698'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0043130443429737
'max_diff' => 0.017216232945738
'year' => 2029
]
4 => [
'items' => [
101 => 0.019068571905958
102 => 0.018921233131515
103 => 0.019467586273633
104 => 0.018323435872025
105 => 0.018703476740092
106 => 0.018781802636287
107 => 0.017882210049425
108 => 0.017267677649205
109 => 0.017226695344293
110 => 0.016161180850093
111 => 0.016730370092362
112 => 0.017231233070907
113 => 0.016991358572722
114 => 0.016915421472643
115 => 0.017303367648198
116 => 0.017333514388573
117 => 0.016646165513216
118 => 0.016789087109911
119 => 0.017385093926866
120 => 0.016774069267319
121 => 0.015586948164131
122 => 0.015292525717306
123 => 0.015253244335618
124 => 0.014454747308892
125 => 0.015312200433039
126 => 0.014937899166034
127 => 0.016120312383685
128 => 0.015444924295172
129 => 0.015415809664557
130 => 0.015371798630195
131 => 0.014684499253796
201 => 0.014834974137073
202 => 0.015335175567059
203 => 0.015513653072451
204 => 0.015495036406416
205 => 0.015332724307169
206 => 0.015407029955031
207 => 0.015167665573461
208 => 0.01508314102839
209 => 0.014816358313838
210 => 0.014424261424052
211 => 0.014478784901447
212 => 0.013701938365048
213 => 0.013278671141652
214 => 0.013161516352789
215 => 0.013004852072885
216 => 0.013179212000072
217 => 0.013699737656416
218 => 0.013071873279186
219 => 0.01199544384399
220 => 0.012060139087192
221 => 0.012205490090476
222 => 0.011934629457449
223 => 0.011678282599899
224 => 0.011901155394461
225 => 0.01144505805245
226 => 0.012260607275228
227 => 0.012238548954302
228 => 0.012542535271328
301 => 0.012732624153791
302 => 0.012294530821719
303 => 0.012184351533434
304 => 0.012247114663411
305 => 0.01120977993149
306 => 0.012457762892859
307 => 0.012468555501333
308 => 0.0123761426352
309 => 0.013040655034978
310 => 0.014442983465124
311 => 0.013915371101172
312 => 0.013711063646682
313 => 0.013322675026349
314 => 0.013840179802709
315 => 0.013800443510216
316 => 0.013620740926025
317 => 0.013512056242399
318 => 0.013712311104433
319 => 0.013487242448871
320 => 0.013446813933859
321 => 0.013201861119544
322 => 0.013114424109476
323 => 0.01304968922819
324 => 0.012978422484612
325 => 0.013135619162379
326 => 0.012779390809613
327 => 0.012349814337672
328 => 0.012314099702112
329 => 0.012412710950956
330 => 0.012369082814087
331 => 0.012313890827378
401 => 0.012208514294107
402 => 0.012177251327699
403 => 0.01227884080189
404 => 0.012164152208563
405 => 0.012333381475428
406 => 0.012287360478724
407 => 0.012030290932159
408 => 0.011709887097803
409 => 0.011707034831608
410 => 0.011638004351063
411 => 0.011550083655288
412 => 0.011525626129076
413 => 0.011882385669346
414 => 0.012620867240789
415 => 0.012475885637949
416 => 0.012580649704313
417 => 0.01309598522202
418 => 0.013259794886419
419 => 0.013143526666673
420 => 0.012984371556373
421 => 0.012991373573501
422 => 0.013535254764924
423 => 0.013569175967694
424 => 0.013654883903702
425 => 0.01376504282253
426 => 0.01316228720689
427 => 0.012962983838209
428 => 0.012868542845198
429 => 0.012577701139987
430 => 0.012891348984173
501 => 0.012708599817106
502 => 0.012733258923344
503 => 0.012717199648057
504 => 0.012725969098287
505 => 0.012260379312599
506 => 0.012430015759825
507 => 0.012147962264782
508 => 0.011770324296909
509 => 0.011769058322024
510 => 0.011861484679662
511 => 0.011806505865495
512 => 0.011658559290208
513 => 0.011679574402939
514 => 0.011495459902271
515 => 0.011701929236821
516 => 0.011707850038553
517 => 0.011628348098291
518 => 0.011946442595442
519 => 0.012076766170466
520 => 0.012024436290289
521 => 0.012073094566572
522 => 0.012481910278099
523 => 0.012548565076958
524 => 0.012578168735643
525 => 0.012538503754739
526 => 0.012080566967305
527 => 0.012100878411125
528 => 0.011951846513227
529 => 0.011825930264097
530 => 0.011830966253719
531 => 0.011895703573738
601 => 0.012178415247056
602 => 0.012773365296789
603 => 0.012795943216274
604 => 0.012823308313334
605 => 0.012712000710996
606 => 0.012678429273061
607 => 0.012722718665221
608 => 0.012946150622913
609 => 0.013520878279283
610 => 0.013317731140753
611 => 0.013152569354954
612 => 0.013297460768397
613 => 0.013275155870994
614 => 0.013086880090056
615 => 0.013081595815957
616 => 0.012720234396928
617 => 0.012586647308114
618 => 0.012475011937881
619 => 0.012353109027902
620 => 0.012280840896644
621 => 0.012391877591535
622 => 0.012417272997404
623 => 0.012174489323436
624 => 0.01214139880579
625 => 0.012339661194802
626 => 0.012252413309365
627 => 0.012342149923181
628 => 0.012362969587332
629 => 0.012359617141887
630 => 0.012268520329134
701 => 0.012326582721036
702 => 0.012189247854955
703 => 0.012039916815122
704 => 0.011944652915361
705 => 0.011861522527897
706 => 0.011907648098429
707 => 0.01174321886168
708 => 0.011690614639537
709 => 0.012306912489105
710 => 0.012762178336899
711 => 0.012755558591167
712 => 0.012715262591484
713 => 0.0126553909097
714 => 0.012941770636473
715 => 0.012842001666009
716 => 0.012914591927998
717 => 0.012933069196278
718 => 0.012988994322364
719 => 0.013008982748013
720 => 0.012948563842848
721 => 0.012745790617567
722 => 0.012240499019265
723 => 0.012005284416247
724 => 0.011927659679442
725 => 0.011930481191194
726 => 0.011852651301277
727 => 0.011875575691949
728 => 0.01184467913374
729 => 0.011786168527172
730 => 0.011904035233352
731 => 0.011917618273234
801 => 0.01189010677561
802 => 0.011896586729231
803 => 0.011668803279214
804 => 0.011686121160199
805 => 0.011589692998224
806 => 0.011571613880313
807 => 0.0113278518838
808 => 0.010895992173112
809 => 0.011135284374469
810 => 0.010846253044804
811 => 0.010736792500721
812 => 0.011254961691805
813 => 0.011202951876796
814 => 0.011113933681624
815 => 0.010982257217948
816 => 0.010933417136704
817 => 0.010636680263957
818 => 0.010619147466486
819 => 0.010766218273189
820 => 0.010698350156293
821 => 0.010603037616505
822 => 0.010257825259071
823 => 0.0098696922734317
824 => 0.0098814075685512
825 => 0.010004865449812
826 => 0.010363835890142
827 => 0.010223579928853
828 => 0.010121822619687
829 => 0.010102766534494
830 => 0.010341293337306
831 => 0.010678858736195
901 => 0.010837236868754
902 => 0.010680288949403
903 => 0.01049999563033
904 => 0.010510969249263
905 => 0.010583971819758
906 => 0.010591643357716
907 => 0.010474290941452
908 => 0.010507324959235
909 => 0.010457143265529
910 => 0.010149178303885
911 => 0.010143608194296
912 => 0.010068028626103
913 => 0.010065740106815
914 => 0.0099371604071111
915 => 0.0099191712182931
916 => 0.0096638684203015
917 => 0.0098319094950676
918 => 0.0097191963646669
919 => 0.0095493110908134
920 => 0.0095200228055674
921 => 0.0095191423643462
922 => 0.0096935765549417
923 => 0.00982987112999
924 => 0.0097211570578269
925 => 0.0096964049709291
926 => 0.0099606925022575
927 => 0.0099270595048617
928 => 0.0098979335460264
929 => 0.010648633457174
930 => 0.010054395899656
1001 => 0.0097952744066843
1002 => 0.0094745623532947
1003 => 0.0095789878150489
1004 => 0.0096009917941697
1005 => 0.0088297371184605
1006 => 0.0085168391925789
1007 => 0.0084094644157259
1008 => 0.0083476687135905
1009 => 0.0083758297910352
1010 => 0.0080941849584756
1011 => 0.0082834549439312
1012 => 0.0080395743257796
1013 => 0.0079986869464903
1014 => 0.0084347757027565
1015 => 0.0084954549055974
1016 => 0.0082365785747276
1017 => 0.008402819087417
1018 => 0.0083425379665998
1019 => 0.008043754958998
1020 => 0.0080323436458067
1021 => 0.0078824248353226
1022 => 0.0076478309269171
1023 => 0.0075406152157809
1024 => 0.0074847763425316
1025 => 0.0075078165499122
1026 => 0.0074961667160186
1027 => 0.0074201436696116
1028 => 0.0075005242680493
1029 => 0.0072951850545974
1030 => 0.0072134173252704
1031 => 0.0071764847389303
1101 => 0.0069942343681076
1102 => 0.0072842757551942
1103 => 0.0073414175622954
1104 => 0.0073986719564086
1105 => 0.0078970323679289
1106 => 0.0078721356901212
1107 => 0.0080971895323285
1108 => 0.0080884443538678
1109 => 0.0080242553524397
1110 => 0.0077534525139931
1111 => 0.0078613896988014
1112 => 0.007529175821124
1113 => 0.0077780930466278
1114 => 0.0076644976199397
1115 => 0.0077396863185978
1116 => 0.0076044902589189
1117 => 0.0076793133404537
1118 => 0.0073549680045804
1119 => 0.007052098893604
1120 => 0.0071739822651614
1121 => 0.0073064834290986
1122 => 0.0075937797131831
1123 => 0.0074226684165252
1124 => 0.0074842065092379
1125 => 0.0072780642000029
1126 => 0.0068527337344114
1127 => 0.0068551410586559
1128 => 0.0067897132328525
1129 => 0.0067331740387395
1130 => 0.0074423226073135
1201 => 0.0073541287728315
1202 => 0.007213603440108
1203 => 0.0074017021822131
1204 => 0.0074514384751541
1205 => 0.0074528543974932
1206 => 0.0075900863842019
1207 => 0.0076633271201085
1208 => 0.0076762361172555
1209 => 0.0078921736134349
1210 => 0.0079645530138698
1211 => 0.008262673520745
1212 => 0.0076571131553713
1213 => 0.0076446420381465
1214 => 0.0074043491172569
1215 => 0.0072519515479479
1216 => 0.0074147839092093
1217 => 0.007559031152453
1218 => 0.0074088312811921
1219 => 0.0074284442134864
1220 => 0.0072268131580991
1221 => 0.0072988867727771
1222 => 0.0073609662791022
1223 => 0.0073266896245742
1224 => 0.007275375813737
1225 => 0.0075472045234809
1226 => 0.0075318668823718
1227 => 0.0077850000262003
1228 => 0.0079823354135395
1229 => 0.0083359957055711
1230 => 0.0079669327541081
1231 => 0.0079534826332644
]
'min_raw' => 0.0067331740387395
'max_raw' => 0.019467586273633
'avg_raw' => 0.013100380156186
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006733'
'max' => '$0.019467'
'avg' => '$0.01310038'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011839486909603
'max_diff' => -0.0065761605863194
'year' => 2030
]
5 => [
'items' => [
101 => 0.0080849597219786
102 => 0.0079645328854126
103 => 0.0080406384891292
104 => 0.0083237339162243
105 => 0.0083297152765029
106 => 0.0082295197852891
107 => 0.008223422880543
108 => 0.0082426665206492
109 => 0.0083553771218152
110 => 0.0083159925745208
111 => 0.0083615693697446
112 => 0.0084185638500686
113 => 0.0086543171858474
114 => 0.0087111565169645
115 => 0.0085730664101643
116 => 0.008585534400679
117 => 0.0085338849100775
118 => 0.0084839921493227
119 => 0.0085961437892469
120 => 0.0088011031155545
121 => 0.008799828074223
122 => 0.0088473746540864
123 => 0.0088769957794441
124 => 0.0087498402254197
125 => 0.008667066635389
126 => 0.0086988072968272
127 => 0.0087495613056884
128 => 0.0086823484557989
129 => 0.0082674796102603
130 => 0.0083933243160722
131 => 0.0083723776035334
201 => 0.0083425469376708
202 => 0.0084690847624931
203 => 0.0084568798805979
204 => 0.0080912962836349
205 => 0.0081146997593794
206 => 0.0080927195265096
207 => 0.0081637421556443
208 => 0.0079606974303629
209 => 0.0080231526203324
210 => 0.0080623239300002
211 => 0.0080853961323227
212 => 0.0081687487478689
213 => 0.0081589682804868
214 => 0.008168140780284
215 => 0.0082917307048643
216 => 0.0089168061324511
217 => 0.0089508276088234
218 => 0.0087832934163956
219 => 0.0088502200218047
220 => 0.0087217355746589
221 => 0.0088079880447988
222 => 0.0088669997942934
223 => 0.0086003370456343
224 => 0.0085845470082856
225 => 0.008455532260122
226 => 0.0085248574780163
227 => 0.0084145560716869
228 => 0.0084416201786208
301 => 0.0083659465762273
302 => 0.0085021439940715
303 => 0.0086544338701604
304 => 0.0086929083069699
305 => 0.0085916986280106
306 => 0.0085184161504012
307 => 0.008389756260468
308 => 0.0086037205247997
309 => 0.008666290196133
310 => 0.0086033918729529
311 => 0.0085888169571165
312 => 0.0085611975179429
313 => 0.0085946765517027
314 => 0.0086659494282654
315 => 0.0086323384558818
316 => 0.0086545390952903
317 => 0.0085699331510651
318 => 0.008749882319199
319 => 0.0090356849053213
320 => 0.0090366038073691
321 => 0.0090029926538098
322 => 0.0089892396939358
323 => 0.009023726777183
324 => 0.0090424346051103
325 => 0.0091539595084822
326 => 0.0092736301731484
327 => 0.0098320809487438
328 => 0.0096752702056335
329 => 0.010170760956127
330 => 0.010562629808346
331 => 0.010680134142778
401 => 0.010572035684107
402 => 0.010202236696355
403 => 0.010184092593797
404 => 0.010736728406603
405 => 0.010580583477162
406 => 0.010562010534654
407 => 0.01036442580585
408 => 0.010481222851918
409 => 0.010455677624633
410 => 0.01041535323365
411 => 0.010638193861394
412 => 0.011055331623412
413 => 0.010990316791308
414 => 0.010941786235094
415 => 0.010729139464797
416 => 0.010857200316892
417 => 0.010811600300305
418 => 0.011007526910047
419 => 0.010891464326742
420 => 0.010579400525748
421 => 0.010629097714632
422 => 0.010621586084509
423 => 0.01077617490016
424 => 0.010729771174832
425 => 0.010612525012386
426 => 0.01105390589189
427 => 0.011025245072665
428 => 0.011065879561551
429 => 0.011083768120222
430 => 0.011352428883573
501 => 0.011462490602132
502 => 0.011487476539147
503 => 0.011592026659299
504 => 0.011484875236914
505 => 0.011913557324123
506 => 0.012198605897823
507 => 0.012529704484642
508 => 0.013013528510895
509 => 0.013195450820388
510 => 0.013162588183501
511 => 0.013529418038399
512 => 0.014188603133479
513 => 0.01329582833804
514 => 0.014235922365464
515 => 0.013938299450289
516 => 0.013232640872417
517 => 0.01318720477917
518 => 0.01366508496097
519 => 0.014724977209938
520 => 0.01445948622277
521 => 0.014725411458084
522 => 0.01441519554564
523 => 0.014399790710882
524 => 0.014710344963631
525 => 0.015435971902611
526 => 0.015091253743621
527 => 0.014597015734348
528 => 0.0149619533892
529 => 0.014645810619182
530 => 0.013933452475541
531 => 0.014459283206816
601 => 0.014107675171609
602 => 0.014210293088794
603 => 0.01494932088105
604 => 0.014860399101861
605 => 0.014975472118067
606 => 0.014772371256448
607 => 0.014582643025631
608 => 0.014228501193406
609 => 0.014123657255865
610 => 0.014152632348312
611 => 0.014123642897249
612 => 0.01392550379685
613 => 0.013882715676984
614 => 0.013811400269284
615 => 0.013833503896161
616 => 0.013699410065625
617 => 0.013952472829045
618 => 0.013999443507917
619 => 0.014183601483451
620 => 0.014202721375391
621 => 0.014715598715928
622 => 0.014433114495314
623 => 0.014622629299016
624 => 0.01460567731119
625 => 0.013247934633544
626 => 0.013435019595058
627 => 0.01372606508468
628 => 0.013594949486108
629 => 0.013409582706053
630 => 0.01325988909242
701 => 0.013033087960809
702 => 0.013352306198222
703 => 0.013772044235345
704 => 0.014213366624686
705 => 0.01474358655889
706 => 0.014625247642016
707 => 0.014203454531829
708 => 0.014222375862632
709 => 0.014339340084387
710 => 0.014187860789894
711 => 0.014143186588721
712 => 0.014333202535164
713 => 0.014334511070557
714 => 0.014160215835359
715 => 0.013966518577128
716 => 0.013965706978544
717 => 0.013931240422335
718 => 0.014421327069422
719 => 0.01469082517197
720 => 0.01472172269511
721 => 0.014688745522484
722 => 0.014701437127411
723 => 0.014544622119523
724 => 0.014903054725508
725 => 0.015231987930071
726 => 0.015143826804615
727 => 0.015011660744714
728 => 0.014906384112024
729 => 0.015119026975693
730 => 0.015109558323704
731 => 0.015229114985484
801 => 0.015223691204713
802 => 0.01518348879611
803 => 0.01514382824037
804 => 0.015301077860854
805 => 0.015255792495506
806 => 0.015210436789478
807 => 0.015119468977427
808 => 0.0151318330139
809 => 0.014999689774333
810 => 0.014938554265246
811 => 0.014019222893176
812 => 0.01377354751054
813 => 0.013850841987101
814 => 0.013876289335735
815 => 0.01376937109437
816 => 0.013922664387444
817 => 0.013898773790096
818 => 0.013991718128845
819 => 0.013933650541169
820 => 0.013936033655222
821 => 0.014106798049262
822 => 0.014156371679336
823 => 0.014131158130972
824 => 0.014148816835976
825 => 0.014555754239521
826 => 0.014497900753863
827 => 0.014467167242669
828 => 0.014475680635307
829 => 0.014579661866749
830 => 0.014608770934388
831 => 0.014485433769343
901 => 0.014543600289382
902 => 0.014791265949276
903 => 0.014877934913576
904 => 0.015154540644161
905 => 0.015037033613534
906 => 0.015252722853835
907 => 0.01591567804464
908 => 0.016445292524065
909 => 0.015958237161541
910 => 0.016930806707008
911 => 0.017688091604969
912 => 0.017659025749261
913 => 0.017526975610987
914 => 0.016664826888119
915 => 0.015871464779422
916 => 0.016535145871281
917 => 0.016536837730872
918 => 0.016479826936491
919 => 0.016125737788924
920 => 0.016467505401689
921 => 0.016494633673672
922 => 0.016479449055351
923 => 0.016207969736117
924 => 0.015793470993411
925 => 0.015874463055566
926 => 0.016007129705569
927 => 0.015755964059951
928 => 0.015675701417513
929 => 0.015824924940398
930 => 0.016305754223089
1001 => 0.016214856232451
1002 => 0.016212482518568
1003 => 0.016601382669266
1004 => 0.016323014091271
1005 => 0.015875484624842
1006 => 0.015762477532381
1007 => 0.01536137848484
1008 => 0.015638419025642
1009 => 0.0156483892215
1010 => 0.015496656948588
1011 => 0.015887796862545
1012 => 0.015884192439379
1013 => 0.016255521574187
1014 => 0.016965363415087
1015 => 0.016755428253537
1016 => 0.016511296501536
1017 => 0.016537840392017
1018 => 0.016828961354698
1019 => 0.016652942975016
1020 => 0.016716240411594
1021 => 0.016828865546447
1022 => 0.016896815086629
1023 => 0.016528063498869
1024 => 0.016442089864335
1025 => 0.016266217980724
1026 => 0.016220336289093
1027 => 0.016363580268608
1028 => 0.01632584054089
1029 => 0.015647551265145
1030 => 0.015576666261863
1031 => 0.015578840203713
1101 => 0.015400596492564
1102 => 0.01512873204967
1103 => 0.015843175573414
1104 => 0.015785795759827
1105 => 0.015722452886471
1106 => 0.015730212027028
1107 => 0.016040327745948
1108 => 0.015860444967755
1109 => 0.016338692815788
1110 => 0.016240379435679
1111 => 0.01613954468834
1112 => 0.016125606254756
1113 => 0.016086793479847
1114 => 0.015953690033087
1115 => 0.015792959622846
1116 => 0.015686831483775
1117 => 0.014470272841008
1118 => 0.01469605904871
1119 => 0.01495580549961
1120 => 0.015045468933592
1121 => 0.014892093425245
1122 => 0.015959746232991
1123 => 0.016154816689125
1124 => 0.015563935553365
1125 => 0.015453405818382
1126 => 0.015966992544015
1127 => 0.015657236965034
1128 => 0.015796719883283
1129 => 0.015495234107107
1130 => 0.016107829928572
1201 => 0.016103162974791
1202 => 0.015864849364137
1203 => 0.01606627039596
1204 => 0.016031268534953
1205 => 0.015762213055465
1206 => 0.016116359467177
1207 => 0.016116535119379
1208 => 0.015887163450509
1209 => 0.015619307557184
1210 => 0.015571421249931
1211 => 0.015535345350037
1212 => 0.015787847423402
1213 => 0.016014239992827
1214 => 0.01643550043705
1215 => 0.016541415321629
1216 => 0.016954808167294
1217 => 0.016708652855433
1218 => 0.016817770316936
1219 => 0.016936232757005
1220 => 0.016993028007086
1221 => 0.01690048319488
1222 => 0.017542652443481
1223 => 0.017596871203621
1224 => 0.017615050284905
1225 => 0.017398514427401
1226 => 0.017590848949713
1227 => 0.017500861996173
1228 => 0.017734983050188
1229 => 0.017771696220865
1230 => 0.017740601471411
1231 => 0.017752254811262
]
'min_raw' => 0.0079606974303629
'max_raw' => 0.017771696220865
'avg_raw' => 0.012866196825614
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00796'
'max' => '$0.017771'
'avg' => '$0.012866'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012275233916234
'max_diff' => -0.0016958900527671
'year' => 2031
]
6 => [
'items' => [
101 => 0.017204276643999
102 => 0.017175861085211
103 => 0.016788412924865
104 => 0.016946300914078
105 => 0.016651136886012
106 => 0.016744736439838
107 => 0.016785994231315
108 => 0.016764443502407
109 => 0.016955227664095
110 => 0.016793022152031
111 => 0.016364935136638
112 => 0.015936731489224
113 => 0.015931355741238
114 => 0.015818617279296
115 => 0.015737128020392
116 => 0.015752825742644
117 => 0.015808146563345
118 => 0.015733912673725
119 => 0.015749754237829
120 => 0.016012829753748
121 => 0.016065587672297
122 => 0.015886295651219
123 => 0.015166412314873
124 => 0.014989751138443
125 => 0.015116731688717
126 => 0.015056043164281
127 => 0.012151401909564
128 => 0.012833804287207
129 => 0.012428343966607
130 => 0.012615198736672
131 => 0.01220132874278
201 => 0.01239884919665
202 => 0.012362374381112
203 => 0.013459657210608
204 => 0.013442524648489
205 => 0.01345072509934
206 => 0.013059296214035
207 => 0.013682853056778
208 => 0.013990039579892
209 => 0.013933187529969
210 => 0.013947495966105
211 => 0.013701629627163
212 => 0.013453105622938
213 => 0.013177454254683
214 => 0.013689580425363
215 => 0.013632640737468
216 => 0.013763239895245
217 => 0.014095390324465
218 => 0.014144300736885
219 => 0.014210036827177
220 => 0.014186475118221
221 => 0.014747810616084
222 => 0.014679829183482
223 => 0.01484364487646
224 => 0.014506663567277
225 => 0.014125337229378
226 => 0.014197814899716
227 => 0.014190834717234
228 => 0.014101968982756
229 => 0.014021744971125
301 => 0.013888194594734
302 => 0.014310767747371
303 => 0.014293612049083
304 => 0.014571342863046
305 => 0.014522251243945
306 => 0.01419440539683
307 => 0.014206114475398
308 => 0.014284863655952
309 => 0.014557415468995
310 => 0.014638327403849
311 => 0.014600845771842
312 => 0.014689562014638
313 => 0.014759679715693
314 => 0.01469836771834
315 => 0.015566416305295
316 => 0.015205942011855
317 => 0.015381634674314
318 => 0.015423536339069
319 => 0.015316206105896
320 => 0.015339482190263
321 => 0.015374739115727
322 => 0.01558881226313
323 => 0.016150602144478
324 => 0.016399415058694
325 => 0.017147980987327
326 => 0.016378754609812
327 => 0.016333111899945
328 => 0.016467951228217
329 => 0.016907438672075
330 => 0.017263601966365
331 => 0.017381761878635
401 => 0.017397378661649
402 => 0.017619054512189
403 => 0.017746114975709
404 => 0.01759213723328
405 => 0.017461657218713
406 => 0.01699429400231
407 => 0.017048392567196
408 => 0.017421078032298
409 => 0.017947518202819
410 => 0.018399258635891
411 => 0.018241074880973
412 => 0.019447905270669
413 => 0.019567557574348
414 => 0.019551025494801
415 => 0.019823611249231
416 => 0.019282584037812
417 => 0.019051284423022
418 => 0.017489868478873
419 => 0.01792856266985
420 => 0.018566230440042
421 => 0.018481832719526
422 => 0.018018741339904
423 => 0.018398907339553
424 => 0.018273212571179
425 => 0.018174071892282
426 => 0.018628254561676
427 => 0.018128862059881
428 => 0.018561248617821
429 => 0.018006708384797
430 => 0.018241797451041
501 => 0.018108349527062
502 => 0.018194706688639
503 => 0.017689864486629
504 => 0.017962265084482
505 => 0.017678531726188
506 => 0.017678397199633
507 => 0.017672133770023
508 => 0.018005944807789
509 => 0.018016830373746
510 => 0.017770143512477
511 => 0.017734592081795
512 => 0.017866044354285
513 => 0.017712148170604
514 => 0.017784155226337
515 => 0.017714329190967
516 => 0.017698609879644
517 => 0.017573355732601
518 => 0.01751939280212
519 => 0.017540553057615
520 => 0.017468322196752
521 => 0.017424800490377
522 => 0.0176634762072
523 => 0.017535961399852
524 => 0.017643932734154
525 => 0.017520885771649
526 => 0.017094351390595
527 => 0.016849046957532
528 => 0.016043363051481
529 => 0.016271854007789
530 => 0.016423343748213
531 => 0.016373276389907
601 => 0.016480840449044
602 => 0.016487444008676
603 => 0.016452473836565
604 => 0.016411982857216
605 => 0.016392274087761
606 => 0.016539167108188
607 => 0.016624443450738
608 => 0.016438547770336
609 => 0.016394995013374
610 => 0.016582945809843
611 => 0.016697595687113
612 => 0.017544105964676
613 => 0.017481393749122
614 => 0.017638789103512
615 => 0.017621068802036
616 => 0.017786044208483
617 => 0.018055709274215
618 => 0.017507404796044
619 => 0.017602571494512
620 => 0.017579238817768
621 => 0.017833978864306
622 => 0.017834774134926
623 => 0.017682044751817
624 => 0.017764841828152
625 => 0.017718626771561
626 => 0.01780214362516
627 => 0.01748055618925
628 => 0.01787221497297
629 => 0.018094260265405
630 => 0.018097343364506
701 => 0.01820259107086
702 => 0.018309528836051
703 => 0.01851478656402
704 => 0.018303804309422
705 => 0.017924267772109
706 => 0.017951669084207
707 => 0.017729146951248
708 => 0.017732887588505
709 => 0.017712919773668
710 => 0.0177728446891
711 => 0.017493706338317
712 => 0.017559219551312
713 => 0.017467500669474
714 => 0.017602372115575
715 => 0.017457272734619
716 => 0.017579227566045
717 => 0.017631859228421
718 => 0.01782607119567
719 => 0.017428587469147
720 => 0.016618091243484
721 => 0.016788467376436
722 => 0.016536467693044
723 => 0.016559791223173
724 => 0.016606908465944
725 => 0.016454186066319
726 => 0.016483320687332
727 => 0.016482279793652
728 => 0.016473309934256
729 => 0.016433580939695
730 => 0.016375966037439
731 => 0.016605486075095
801 => 0.016644486001984
802 => 0.01673117800839
803 => 0.016989114615705
804 => 0.01696334066607
805 => 0.017005379047276
806 => 0.01691360949714
807 => 0.016564048149402
808 => 0.016583031012375
809 => 0.016346314406927
810 => 0.016725124632578
811 => 0.016635417371093
812 => 0.016577582516034
813 => 0.016561801739994
814 => 0.016820377722268
815 => 0.016897747708846
816 => 0.016849535925317
817 => 0.016750652150737
818 => 0.016940538230295
819 => 0.016991343734534
820 => 0.017002717213298
821 => 0.017339158939229
822 => 0.017021520568376
823 => 0.017097979281294
824 => 0.017694488333381
825 => 0.017153536935761
826 => 0.017440090955736
827 => 0.017426065627613
828 => 0.017572656967773
829 => 0.017414040859039
830 => 0.017416007095807
831 => 0.017546170274911
901 => 0.017363379564912
902 => 0.017318118014525
903 => 0.017255589506834
904 => 0.017392118215817
905 => 0.01747396100219
906 => 0.018133553753453
907 => 0.018559680751852
908 => 0.018541181455022
909 => 0.01871023039882
910 => 0.018634072301328
911 => 0.018388137715035
912 => 0.018807918065309
913 => 0.018675081998127
914 => 0.01868603284211
915 => 0.01868562525115
916 => 0.018773949623095
917 => 0.018711363710762
918 => 0.018588000453241
919 => 0.018669894740705
920 => 0.018913091496733
921 => 0.019667981689629
922 => 0.020090428242538
923 => 0.019642549876704
924 => 0.019951490376126
925 => 0.019766236163228
926 => 0.019732569961909
927 => 0.01992660742607
928 => 0.020120984527125
929 => 0.020108603546103
930 => 0.019967495752112
1001 => 0.019887787539764
1002 => 0.020491364827874
1003 => 0.020936070292082
1004 => 0.020905744360767
1005 => 0.021039593159073
1006 => 0.021432577370689
1007 => 0.021468506921961
1008 => 0.021463980624332
1009 => 0.021374925482644
1010 => 0.021761869474428
1011 => 0.022084664960006
1012 => 0.021354311790394
1013 => 0.021632420716357
1014 => 0.021757272773332
1015 => 0.021940592634907
1016 => 0.022249883969361
1017 => 0.022585856394053
1018 => 0.022633366578655
1019 => 0.022599655829108
1020 => 0.0223780729836
1021 => 0.022745698019683
1022 => 0.022961044143952
1023 => 0.023089277832845
1024 => 0.023414457131829
1025 => 0.021758043817131
1026 => 0.020585552143905
1027 => 0.020402450638146
1028 => 0.020774794750218
1029 => 0.020872978923183
1030 => 0.020833401006174
1031 => 0.019513655029678
1101 => 0.020395502448707
1102 => 0.021344296123745
1103 => 0.021380743152888
1104 => 0.021855729104952
1105 => 0.022010404001276
1106 => 0.02239282995052
1107 => 0.022368909103271
1108 => 0.022462023736186
1109 => 0.0224406182946
1110 => 0.023148981836289
1111 => 0.023930412015777
1112 => 0.023903353573457
1113 => 0.023791013739693
1114 => 0.02395785754962
1115 => 0.024764377237998
1116 => 0.024690125829307
1117 => 0.024762254748131
1118 => 0.025713186914187
1119 => 0.026949533998582
1120 => 0.026375126650663
1121 => 0.027621425314387
1122 => 0.028405904259747
1123 => 0.029762579479112
1124 => 0.029592717059881
1125 => 0.030120860767037
1126 => 0.029288627878101
1127 => 0.027377652943088
1128 => 0.027075233844704
1129 => 0.02768068453814
1130 => 0.029169125988938
1201 => 0.027633808219941
1202 => 0.027944401005007
1203 => 0.027854950262013
1204 => 0.02785018381206
1205 => 0.028032099820212
1206 => 0.027768221162287
1207 => 0.02669313203904
1208 => 0.027185839048684
1209 => 0.026995581210527
1210 => 0.027206686466624
1211 => 0.028345934467351
1212 => 0.027842245769949
1213 => 0.027311650643584
1214 => 0.02797713468053
1215 => 0.028824524544689
1216 => 0.028771496409896
1217 => 0.028668599664357
1218 => 0.029248623231463
1219 => 0.030206652233364
1220 => 0.030465603622906
1221 => 0.030656756244637
1222 => 0.030683112961624
1223 => 0.030954603527196
1224 => 0.029494730331684
1225 => 0.031811586585164
1226 => 0.032211643658278
1227 => 0.0321364495092
1228 => 0.03258109610899
1229 => 0.032450269799736
1230 => 0.032260723003646
1231 => 0.032965582443359
]
'min_raw' => 0.012151401909564
'max_raw' => 0.032965582443359
'avg_raw' => 0.022558492176462
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012151'
'max' => '$0.032965'
'avg' => '$0.022558'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0041907044792015
'max_diff' => 0.015193886222493
'year' => 2032
]
7 => [
'items' => [
101 => 0.032157517974952
102 => 0.031010572194537
103 => 0.030381335055386
104 => 0.031209965279332
105 => 0.031715980841887
106 => 0.032050424940101
107 => 0.032151627522144
108 => 0.029608056132125
109 => 0.028237212225842
110 => 0.029115907453012
111 => 0.030187976274465
112 => 0.02948877493525
113 => 0.029516182303984
114 => 0.028519304941144
115 => 0.030276177801159
116 => 0.030020216203081
117 => 0.031348145426696
118 => 0.031031224460183
119 => 0.032114099192125
120 => 0.031828941984121
121 => 0.033012613611623
122 => 0.033484812270464
123 => 0.034277707310511
124 => 0.034860964129632
125 => 0.035203463689746
126 => 0.03518290130084
127 => 0.036540055190612
128 => 0.035739788957159
129 => 0.034734465959672
130 => 0.034716282838401
131 => 0.035236953864336
201 => 0.036328137495577
202 => 0.036611065535082
203 => 0.036769183711412
204 => 0.036527020220229
205 => 0.035658388579413
206 => 0.035283317840971
207 => 0.035602888976969
208 => 0.035212080938704
209 => 0.035886725254118
210 => 0.036813155995431
211 => 0.036621851710854
212 => 0.037261353252253
213 => 0.037923170070077
214 => 0.038869597843619
215 => 0.039117029109742
216 => 0.039526023583674
217 => 0.039947013245037
218 => 0.040082223778277
219 => 0.040340382639597
220 => 0.040339022014967
221 => 0.04111700111965
222 => 0.041975136164123
223 => 0.042299062277539
224 => 0.04304391251395
225 => 0.041768382586762
226 => 0.042735886688766
227 => 0.043608599606972
228 => 0.042568115288156
301 => 0.044002180519891
302 => 0.044057862023177
303 => 0.044898586614678
304 => 0.044046351177849
305 => 0.043540296495891
306 => 0.045001257401081
307 => 0.045708170363265
308 => 0.045495242426007
309 => 0.043874850309922
310 => 0.042931712596473
311 => 0.0404633392827
312 => 0.043387234098656
313 => 0.044811377972328
314 => 0.043871162121337
315 => 0.044345352307487
316 => 0.046932380206435
317 => 0.047917352932703
318 => 0.047712485491118
319 => 0.047747104716341
320 => 0.048278578120915
321 => 0.050635423884548
322 => 0.049223147271722
323 => 0.050302779825233
324 => 0.05087541303871
325 => 0.051407306680583
326 => 0.050101144002854
327 => 0.04840184555047
328 => 0.047863606398903
329 => 0.043777676184585
330 => 0.043564985772634
331 => 0.043445596199227
401 => 0.042692861826886
402 => 0.042101418801524
403 => 0.041631081348883
404 => 0.040396775418503
405 => 0.040813317436576
406 => 0.038846091403218
407 => 0.04010465290515
408 => 0.036964912655578
409 => 0.039579781633307
410 => 0.038156627332233
411 => 0.039112237169792
412 => 0.039108903137093
413 => 0.037349322449771
414 => 0.036334433030836
415 => 0.036981160068668
416 => 0.037674502790481
417 => 0.03778699531441
418 => 0.038685932251337
419 => 0.038936806227848
420 => 0.038176646366833
421 => 0.036899848517645
422 => 0.037196419537353
423 => 0.036328423028587
424 => 0.034807292533979
425 => 0.035899795011597
426 => 0.036272823391399
427 => 0.036437573974878
428 => 0.034941716836448
429 => 0.034471686046915
430 => 0.034221445598508
501 => 0.036706752145243
502 => 0.036842902848136
503 => 0.036146336602369
504 => 0.039294882084359
505 => 0.038582269272016
506 => 0.039378432377781
507 => 0.037169508825825
508 => 0.03725389268022
509 => 0.036208152871153
510 => 0.036793697287871
511 => 0.036379853367113
512 => 0.036746391085463
513 => 0.036966092282551
514 => 0.038011660496005
515 => 0.039591720342786
516 => 0.037855487471542
517 => 0.037098985946228
518 => 0.037568315237807
519 => 0.038818200988771
520 => 0.040711841881956
521 => 0.039590768360116
522 => 0.040088281752046
523 => 0.040196966295352
524 => 0.039370328184745
525 => 0.040742321208199
526 => 0.041477583415519
527 => 0.042231810299154
528 => 0.042886684369256
529 => 0.041930555496026
530 => 0.042953750446073
531 => 0.042129235934557
601 => 0.041389561180985
602 => 0.041390682962261
603 => 0.040926674184421
604 => 0.040027598708488
605 => 0.039861795396433
606 => 0.040724325164392
607 => 0.041415992356422
608 => 0.04147296137922
609 => 0.041855903875871
610 => 0.042082525300768
611 => 0.044303723341644
612 => 0.045197107568399
613 => 0.046289520889976
614 => 0.046715077443772
615 => 0.047995850100228
616 => 0.04696152216087
617 => 0.046737738804962
618 => 0.043631003277942
619 => 0.044139731046449
620 => 0.044954253288757
621 => 0.04364443444971
622 => 0.044475213024348
623 => 0.044639226313277
624 => 0.043599927306768
625 => 0.044155061811604
626 => 0.042680789152669
627 => 0.039623855458028
628 => 0.040745724449272
629 => 0.041571797643846
630 => 0.040392889341098
701 => 0.042506036843722
702 => 0.041271579696908
703 => 0.040880316045761
704 => 0.039353857047073
705 => 0.040074286935659
706 => 0.041048678675533
707 => 0.040446617865489
708 => 0.041695984446216
709 => 0.043465420718422
710 => 0.044726426377748
711 => 0.044823230734301
712 => 0.044012488576173
713 => 0.045311708058661
714 => 0.045321171454201
715 => 0.043855646570486
716 => 0.042958020739288
717 => 0.042754078261819
718 => 0.043263566555815
719 => 0.043882179401453
720 => 0.044857559441908
721 => 0.045446961172442
722 => 0.046983808291151
723 => 0.047399635056614
724 => 0.04785650260106
725 => 0.048467018533172
726 => 0.049200099442745
727 => 0.047596160146919
728 => 0.047659887645259
729 => 0.046166321581037
730 => 0.044570232042376
731 => 0.04578146504685
801 => 0.047364991076625
802 => 0.047001728455754
803 => 0.046960853990124
804 => 0.047029593503682
805 => 0.046755705350594
806 => 0.045516919384941
807 => 0.044894808828201
808 => 0.045697490163726
809 => 0.046124079570321
810 => 0.046785682537444
811 => 0.046704126007002
812 => 0.04840834419934
813 => 0.049070551855999
814 => 0.048901130799962
815 => 0.048932308351619
816 => 0.05013120368284
817 => 0.051464621862789
818 => 0.052713543948337
819 => 0.053984001136208
820 => 0.052452415409441
821 => 0.051674770632465
822 => 0.052477101542428
823 => 0.052051373467976
824 => 0.054497733262926
825 => 0.054667113907337
826 => 0.057113296802629
827 => 0.059435015656302
828 => 0.057976785642224
829 => 0.059351830865377
830 => 0.0608390543833
831 => 0.063708149842692
901 => 0.062741939427964
902 => 0.06200183739273
903 => 0.061302444545581
904 => 0.06275777003501
905 => 0.064630023027769
906 => 0.065033288390193
907 => 0.065686732336545
908 => 0.06499971592628
909 => 0.065827151520069
910 => 0.068748362759766
911 => 0.067959025696555
912 => 0.066838040174531
913 => 0.069144055892162
914 => 0.069978594015964
915 => 0.075835819619813
916 => 0.083230808894593
917 => 0.080169234776716
918 => 0.078268816925371
919 => 0.078715460198951
920 => 0.081415859945916
921 => 0.082283142638238
922 => 0.079925569310236
923 => 0.08075830406596
924 => 0.085346754442674
925 => 0.087808310854667
926 => 0.084465186616047
927 => 0.075241639431925
928 => 0.066737107693241
929 => 0.068992892474395
930 => 0.068737156485364
1001 => 0.0736668739943
1002 => 0.067940200268649
1003 => 0.068036622767315
1004 => 0.073068281613675
1005 => 0.071725921297938
1006 => 0.069551469502962
1007 => 0.066752983597736
1008 => 0.061579723573312
1009 => 0.056997622902651
1010 => 0.06598417751258
1011 => 0.06559666093681
1012 => 0.065035479508357
1013 => 0.066284328051207
1014 => 0.072348382083439
1015 => 0.072208586010569
1016 => 0.07131927471955
1017 => 0.071993809495758
1018 => 0.069433220295365
1019 => 0.070093142435838
1020 => 0.066735760531962
1021 => 0.068253437369168
1022 => 0.069546804106006
1023 => 0.069806466627048
1024 => 0.070391499545652
1025 => 0.065392457310269
1026 => 0.067636880509787
1027 => 0.06895526886549
1028 => 0.062998742311046
1029 => 0.068837527487201
1030 => 0.065305435106816
1031 => 0.064106589902666
1101 => 0.065720677034209
1102 => 0.065091665709295
1103 => 0.064550878708919
1104 => 0.064249110270809
1105 => 0.065434317719918
1106 => 0.065379026375788
1107 => 0.063439796950193
1108 => 0.060910151217608
1109 => 0.061759183358254
1110 => 0.061450722021839
1111 => 0.060332818346365
1112 => 0.06108615044743
1113 => 0.057768857126991
1114 => 0.05206162638708
1115 => 0.055831997831071
1116 => 0.055686842631852
1117 => 0.055613648798142
1118 => 0.058446978732888
1119 => 0.058174619435706
1120 => 0.057680284644369
1121 => 0.06032373950026
1122 => 0.059358842918375
1123 => 0.062332426825519
1124 => 0.064291021506113
1125 => 0.063794258541213
1126 => 0.065636326305022
1127 => 0.061778743343971
1128 => 0.063060077664267
1129 => 0.063324158891827
1130 => 0.060291119677671
1201 => 0.058219180785049
1202 => 0.058081006082744
1203 => 0.054488549573704
1204 => 0.056407610843538
1205 => 0.05809630534484
1206 => 0.057287551726703
1207 => 0.057031524492028
1208 => 0.05833951210845
1209 => 0.058441153948403
1210 => 0.056123709225969
1211 => 0.056605579367693
1212 => 0.058615057962927
1213 => 0.056554945662884
1214 => 0.052552483981335
1215 => 0.051559818145949
1216 => 0.051427378225047
1217 => 0.048735189750159
1218 => 0.051626152823686
1219 => 0.050364169969098
1220 => 0.054350758685865
1221 => 0.052073640591352
1222 => 0.051975478581515
1223 => 0.051827092306412
1224 => 0.04950981447317
1225 => 0.050017151047961
1226 => 0.051703615092108
1227 => 0.052305364462437
1228 => 0.052242597073125
1229 => 0.051695350498245
1230 => 0.051945877177869
1231 => 0.051138843453518
]
'min_raw' => 0.028237212225842
'max_raw' => 0.087808310854667
'avg_raw' => 0.058022761540255
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028237'
'max' => '$0.0878083'
'avg' => '$0.058022'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016085810316278
'max_diff' => 0.054842728411309
'year' => 2033
]
8 => [
'items' => [
101 => 0.050853863048495
102 => 0.049954386500208
103 => 0.048632404460964
104 => 0.048816234171708
105 => 0.046197041836548
106 => 0.044769966841294
107 => 0.044374971291154
108 => 0.043846766733507
109 => 0.044434633401439
110 => 0.046189621993747
111 => 0.044072733409824
112 => 0.040443476415158
113 => 0.040661600944491
114 => 0.041151662000147
115 => 0.04023843646501
116 => 0.039374145137213
117 => 0.040125576324561
118 => 0.038587812292271
119 => 0.041337493436694
120 => 0.04126312226763
121 => 0.04228803335913
122 => 0.042928931297937
123 => 0.041451869042157
124 => 0.04108039187923
125 => 0.041292002153929
126 => 0.037794555680862
127 => 0.042002217366505
128 => 0.042038605399489
129 => 0.041727028969262
130 => 0.043967478919886
131 => 0.048695527129569
201 => 0.046916645207788
202 => 0.046227808360683
203 => 0.044918329010801
204 => 0.046663132495329
205 => 0.046529158810892
206 => 0.045923279001855
207 => 0.04555684100289
208 => 0.046232014251586
209 => 0.045473179565565
210 => 0.045336872004573
211 => 0.04451099648905
212 => 0.044216196504951
213 => 0.043997938333049
214 => 0.04375765753139
215 => 0.044287657105604
216 => 0.043086608343183
217 => 0.041638261275965
218 => 0.041517846888658
219 => 0.041850321598953
220 => 0.041703226289479
221 => 0.041517142652908
222 => 0.041161858313832
223 => 0.041056453039876
224 => 0.041398969044862
225 => 0.041012288445157
226 => 0.041582856733604
227 => 0.04142769373013
228 => 0.040560965805864
301 => 0.039480701908453
302 => 0.039471085293835
303 => 0.039238344209126
304 => 0.038941913444892
305 => 0.0388594531877
306 => 0.040062292885874
307 => 0.042552135063133
308 => 0.042063319466863
309 => 0.042416538831005
310 => 0.04415402850853
311 => 0.044706324228878
312 => 0.044314317808416
313 => 0.043777715242185
314 => 0.043801323031795
315 => 0.04563505644125
316 => 0.045749424144695
317 => 0.04603839443488
318 => 0.046409802920761
319 => 0.044377570279578
320 => 0.043705605057151
321 => 0.043387190655554
322 => 0.042406597540518
323 => 0.043464083145385
324 => 0.042847931569477
325 => 0.042931071467802
326 => 0.042876926499949
327 => 0.042906493313664
328 => 0.041336724844776
329 => 0.041908665970237
330 => 0.040957702919352
331 => 0.03968447014483
401 => 0.039680201822117
402 => 0.039991823739893
403 => 0.039806458829433
404 => 0.039307646621552
405 => 0.039378500541354
406 => 0.038757745647887
407 => 0.039453871424551
408 => 0.039473833820968
409 => 0.039205787478725
410 => 0.040278265284521
411 => 0.040717660316614
412 => 0.040541226472041
413 => 0.040705281247742
414 => 0.042083631961758
415 => 0.042308363269801
416 => 0.042408174071917
417 => 0.042274440819479
418 => 0.04073047496852
419 => 0.04079895641946
420 => 0.04029648497062
421 => 0.039871949545488
422 => 0.039888928736098
423 => 0.040107195130358
424 => 0.041060377275248
425 => 0.043066292906012
426 => 0.043142415937894
427 => 0.043234679273201
428 => 0.042859397920671
429 => 0.042746209473789
430 => 0.042895534251643
501 => 0.043648850696525
502 => 0.045586585116179
503 => 0.044901660355343
504 => 0.044344805863294
505 => 0.044833317379714
506 => 0.044758114860841
507 => 0.044123329920412
508 => 0.044105513621352
509 => 0.042887158367647
510 => 0.04243676017096
511 => 0.042060373726087
512 => 0.041649369554103
513 => 0.041405712503966
514 => 0.041780080473125
515 => 0.041865702857063
516 => 0.041047140749664
517 => 0.040935573759117
518 => 0.041604029245909
519 => 0.041309866908704
520 => 0.041612420167394
521 => 0.041682615118664
522 => 0.041671312114783
523 => 0.041364172850412
524 => 0.041559934258497
525 => 0.041096900169091
526 => 0.040593420142333
527 => 0.040272231253175
528 => 0.039991951347861
529 => 0.040147466929293
530 => 0.039593082277512
531 => 0.039415723469849
601 => 0.041493614698209
602 => 0.043028575289694
603 => 0.043006256354782
604 => 0.042870395578474
605 => 0.042668534023232
606 => 0.043634083266441
607 => 0.043297705216873
608 => 0.04354244835326
609 => 0.043604745753308
610 => 0.043793301220475
611 => 0.043860693593097
612 => 0.04365698703602
613 => 0.042973322949809
614 => 0.041269697047802
615 => 0.040476654591568
616 => 0.040214937371844
617 => 0.040224450295709
618 => 0.039962041387944
619 => 0.040039332571623
620 => 0.039935162668493
621 => 0.039737890073369
622 => 0.040135285902444
623 => 0.040181082069747
624 => 0.040088325134714
625 => 0.040110172750764
626 => 0.039342184945699
627 => 0.039400573390537
628 => 0.039075459110038
629 => 0.039014504101756
630 => 0.038192643511594
701 => 0.036736598345526
702 => 0.037543388709252
703 => 0.036568899401763
704 => 0.036199845535095
705 => 0.037946889140252
706 => 0.037771534417741
707 => 0.037471403357667
708 => 0.037027446967025
709 => 0.036862779223206
710 => 0.035862310139233
711 => 0.035803197088457
712 => 0.036299056581411
713 => 0.036070234486896
714 => 0.035748881604493
715 => 0.034584974039447
716 => 0.033276356579785
717 => 0.033315855515216
718 => 0.033732102381441
719 => 0.034942396283529
720 => 0.034469513517686
721 => 0.034126431645363
722 => 0.03406218272368
723 => 0.03486639249277
724 => 0.036004517803189
725 => 0.03653850073472
726 => 0.036009339866876
727 => 0.035401468353942
728 => 0.035438466676329
729 => 0.035684599939629
730 => 0.035710465065464
731 => 0.035314803200745
801 => 0.035426179698061
802 => 0.035256988614158
803 => 0.034218663244548
804 => 0.034199883231177
805 => 0.033945061440216
806 => 0.033937345537658
807 => 0.033503830102959
808 => 0.033443178296894
809 => 0.032582407088793
810 => 0.033148969304621
811 => 0.032768949116095
812 => 0.032196169054287
813 => 0.032097421555737
814 => 0.03209445308669
815 => 0.032682570138888
816 => 0.033142096814447
817 => 0.032775559729975
818 => 0.032692106340864
819 => 0.033583170204704
820 => 0.033469774205803
821 => 0.03337157400208
822 => 0.035902611164709
823 => 0.033899097751196
824 => 0.033025451546356
825 => 0.031944148466952
826 => 0.03229622620201
827 => 0.032370414153884
828 => 0.029770075167449
829 => 0.028715117964503
830 => 0.028353096407676
831 => 0.028144747883488
901 => 0.028239694922237
902 => 0.027290109705448
903 => 0.02792824667582
904 => 0.027105986144521
905 => 0.026968131490581
906 => 0.028438435179077
907 => 0.028643019347942
908 => 0.027770199724246
909 => 0.028330691219321
910 => 0.028127449211792
911 => 0.027120081441299
912 => 0.027081607402162
913 => 0.026576145665618
914 => 0.025785195924605
915 => 0.025423710668947
916 => 0.025235446009242
917 => 0.025313127677041
918 => 0.025273849448704
919 => 0.025017532439983
920 => 0.02528854123961
921 => 0.02459622574513
922 => 0.024320540136864
923 => 0.024196019343467
924 => 0.023581549493924
925 => 0.02455944428053
926 => 0.024752101872685
927 => 0.024945139059812
928 => 0.026625395981665
929 => 0.026541455094206
930 => 0.027300239835965
1001 => 0.027270754856216
1002 => 0.027054337156369
1003 => 0.026141306479695
1004 => 0.02650522423421
1005 => 0.025385141951189
1006 => 0.02622438375582
1007 => 0.025841388843762
1008 => 0.026094892790795
1009 => 0.0256390698365
1010 => 0.025891341079876
1011 => 0.024797788134911
1012 => 0.023776643781607
1013 => 0.024187582078439
1014 => 0.024634319003589
1015 => 0.025602958483766
1016 => 0.025026044800474
1017 => 0.025233524776508
1018 => 0.024538501588525
1019 => 0.023104470228159
1020 => 0.023112586689923
1021 => 0.022891992207202
1022 => 0.022701366366809
1023 => 0.025092310276929
1024 => 0.024794958606476
1025 => 0.024321167636033
1026 => 0.024955355677675
1027 => 0.025123045061803
1028 => 0.025127818942826
1029 => 0.025590506167245
1030 => 0.025837442421859
1031 => 0.025880966007018
1101 => 0.026609014351661
1102 => 0.026853046553596
1103 => 0.027858180656635
1104 => 0.025816491605903
1105 => 0.025774444363474
1106 => 0.024964280003978
1107 => 0.024450460958995
1108 => 0.02499946163358
1109 => 0.025485801285197
1110 => 0.024979391932621
1111 => 0.025045518303182
1112 => 0.024365705122513
1113 => 0.024608706346419
1114 => 0.024818011736247
1115 => 0.024702445602386
1116 => 0.024529437506533
1117 => 0.025445926979909
1118 => 0.025394215052069
1119 => 0.026247671119679
1120 => 0.02691300115561
1121 => 0.028105391521967
1122 => 0.026861070013958
1123 => 0.026815721992476
1124 => 0.027259006176513
1125 => 0.026852978689097
1126 => 0.027109574045551
1127 => 0.028064050043094
1128 => 0.028084216616878
1129 => 0.027746400522825
1130 => 0.027725844382801
1201 => 0.027790725658968
1202 => 0.028170737320002
1203 => 0.028037949569057
1204 => 0.028191614916225
1205 => 0.028383775785864
1206 => 0.029178634617215
1207 => 0.029370272390472
1208 => 0.028904691954251
1209 => 0.028946728654759
1210 => 0.028772588791144
1211 => 0.028604371864858
1212 => 0.02898249894904
1213 => 0.029673533627489
1214 => 0.029669234736619
1215 => 0.029829541350225
1216 => 0.029929411042449
1217 => 0.029500697214339
1218 => 0.029221620276483
1219 => 0.029328636132584
1220 => 0.029499756816991
1221 => 0.029273144000937
1222 => 0.027874384722986
1223 => 0.028298678934828
1224 => 0.02822805563105
1225 => 0.028127479458384
1226 => 0.028554110569361
1227 => 0.028512960957934
1228 => 0.027280370336541
1229 => 0.027359276788992
1230 => 0.027285168899261
1231 => 0.02752462665203
]
'min_raw' => 0.022701366366809
'max_raw' => 0.050853863048495
'avg_raw' => 0.036777614707652
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0227013'
'max' => '$0.050853'
'avg' => '$0.036777'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0055358458590325
'max_diff' => -0.036954447806172
'year' => 2034
]
9 => [
'items' => [
101 => 0.026840047184614
102 => 0.027050619218078
103 => 0.027182688023477
104 => 0.027260477564457
105 => 0.027541506727265
106 => 0.027508531198636
107 => 0.027539456922105
108 => 0.027956148981601
109 => 0.030063634427082
110 => 0.030178340209975
111 => 0.029613486983341
112 => 0.029839134706144
113 => 0.029405940422095
114 => 0.029696746647127
115 => 0.029895708880616
116 => 0.028996636805714
117 => 0.028943399592367
118 => 0.028508417361412
119 => 0.028742152173674
120 => 0.028370263281237
121 => 0.02846151180732
122 => 0.028206372973488
123 => 0.02866557207675
124 => 0.029179028026523
125 => 0.029308747276426
126 => 0.02896751177758
127 => 0.028720434787901
128 => 0.028286648986244
129 => 0.029008044441947
130 => 0.029219002457322
131 => 0.029006936369299
201 => 0.028957796022969
202 => 0.028864675155467
203 => 0.02897755205522
204 => 0.029217853534665
205 => 0.02910453179463
206 => 0.029179382800395
207 => 0.028894127952441
208 => 0.029500839136454
209 => 0.030464442509665
210 => 0.030467540652075
211 => 0.030354218301194
212 => 0.030307849236778
213 => 0.030424124845757
214 => 0.030487199593753
215 => 0.030863213591891
216 => 0.031266691592952
217 => 0.03314954737266
218 => 0.032620849004087
219 => 0.034291430663436
220 => 0.035612643858102
221 => 0.036008817925531
222 => 0.035644356424926
223 => 0.034397553319181
224 => 0.034336379210625
225 => 0.036199629437302
226 => 0.035673175905999
227 => 0.035610555933612
228 => 0.034944385225525
301 => 0.035338174620851
302 => 0.035252047103552
303 => 0.035116090603991
304 => 0.035867413338668
305 => 0.037273822426939
306 => 0.037054620381311
307 => 0.03689099622274
308 => 0.036174042790158
309 => 0.036605808893919
310 => 0.036452065254305
311 => 0.037112645498212
312 => 0.036721332395365
313 => 0.035669187502718
314 => 0.035836745044787
315 => 0.035811419059382
316 => 0.036332626044393
317 => 0.036176172644646
318 => 0.035780869022094
319 => 0.037269015473571
320 => 0.037172383520518
321 => 0.037309385536808
322 => 0.037369698061307
323 => 0.038275506582239
324 => 0.038646587350625
325 => 0.038730829181732
326 => 0.039083327211283
327 => 0.038722058709639
328 => 0.040167390296291
329 => 0.041128451463978
330 => 0.042244773466002
331 => 0.043876019950027
401 => 0.044489383717894
402 => 0.044378585043235
403 => 0.045615377510264
404 => 0.047837866081163
405 => 0.044827813526794
406 => 0.047997406175523
407 => 0.046993949737642
408 => 0.044614772574837
409 => 0.044461581614209
410 => 0.046072788011675
411 => 0.049646288728386
412 => 0.04875116732916
413 => 0.049647752826327
414 => 0.048601838218939
415 => 0.048549899743021
416 => 0.049596955088371
417 => 0.052043456974796
418 => 0.050881215634308
419 => 0.049214857679448
420 => 0.050445270461915
421 => 0.049379373040415
422 => 0.046977607823872
423 => 0.048750482846695
424 => 0.047565011807507
425 => 0.047910995279849
426 => 0.050402679078713
427 => 0.050102873091856
428 => 0.050490849800136
429 => 0.049806081065141
430 => 0.049166399088537
501 => 0.047972385175798
502 => 0.04761889652041
503 => 0.04771658806757
504 => 0.047618848109331
505 => 0.046950808298708
506 => 0.046806545165209
507 => 0.046566100289064
508 => 0.046640624210305
509 => 0.046188517498523
510 => 0.04704173627367
511 => 0.047200101196875
512 => 0.047821002668886
513 => 0.047885466719472
514 => 0.049614668481043
515 => 0.048662253208824
516 => 0.049301215601007
517 => 0.049244060790503
518 => 0.044666336558251
519 => 0.045297106567853
520 => 0.046278386756259
521 => 0.045836321361476
522 => 0.045211344320624
523 => 0.044706641850987
524 => 0.04394196600101
525 => 0.045018232575554
526 => 0.046433408672889
527 => 0.047921357920696
528 => 0.04970903144764
529 => 0.04931004352724
530 => 0.04788793860759
531 => 0.047951733195437
601 => 0.048346086235263
602 => 0.047835363217936
603 => 0.047684741029629
604 => 0.048325393059551
605 => 0.048329804877985
606 => 0.047742156323612
607 => 0.047089092493976
608 => 0.047086356132684
609 => 0.046970149732049
610 => 0.048622511079458
611 => 0.049531142747957
612 => 0.049635315904418
613 => 0.049524131064519
614 => 0.049566921696628
615 => 0.04903820894906
616 => 0.050246689505104
617 => 0.05135571076967
618 => 0.051058469379983
619 => 0.050612862281488
620 => 0.050257914764192
621 => 0.050974855025302
622 => 0.050942930804043
623 => 0.051346024436413
624 => 0.051327737780867
625 => 0.05119219255342
626 => 0.05105847422073
627 => 0.05158865229501
628 => 0.051435969524017
629 => 0.051283049594508
630 => 0.050976345265008
701 => 0.051018031477207
702 => 0.05057250131906
703 => 0.050366378681829
704 => 0.047266788775228
705 => 0.046438477070162
706 => 0.046699080794416
707 => 0.046784878307012
708 => 0.046424395991457
709 => 0.046941235031654
710 => 0.046860686214708
711 => 0.047174054541965
712 => 0.046978275615966
713 => 0.046986310451379
714 => 0.047562054528276
715 => 0.047729195483189
716 => 0.047644186244527
717 => 0.04770372380134
718 => 0.049075741668854
719 => 0.048880684602755
720 => 0.048777064424021
721 => 0.048805767921684
722 => 0.049156347903228
723 => 0.049254491157103
724 => 0.04883865129403
725 => 0.049034763777397
726 => 0.049869785841194
727 => 0.050161996305367
728 => 0.051094591838027
729 => 0.050698408680189
730 => 0.051425620012807
731 => 0.053660819724659
801 => 0.055446451918542
802 => 0.053804310758676
803 => 0.057083396883854
804 => 0.059636635789272
805 => 0.05953863822744
806 => 0.059093421966801
807 => 0.05618662735435
808 => 0.053511751614107
809 => 0.055749398752043
810 => 0.055755102974774
811 => 0.055562887101155
812 => 0.054369050818415
813 => 0.055521344186305
814 => 0.055612809049334
815 => 0.055561613048508
816 => 0.054646301569629
817 => 0.053248790119218
818 => 0.053521860511458
819 => 0.053969155384434
820 => 0.053122332874406
821 => 0.052851721771667
822 => 0.053354839297528
823 => 0.05497598879455
824 => 0.054669519872818
825 => 0.054661516730733
826 => 0.055972720740954
827 => 0.055034181645172
828 => 0.053525304803597
829 => 0.053144293501459
830 => 0.051791960058836
831 => 0.052726021584502
901 => 0.052759636795933
902 => 0.052248060844203
903 => 0.053566816372624
904 => 0.053554663808267
905 => 0.054806625911646
906 => 0.057199907237813
907 => 0.056492096183444
908 => 0.055668988936836
909 => 0.055758483516831
910 => 0.056740018167926
911 => 0.056146559911617
912 => 0.056359971638324
913 => 0.056739695143718
914 => 0.056968791762526
915 => 0.055725520038981
916 => 0.055435653927661
917 => 0.054842689593082
918 => 0.054687996266394
919 => 0.055170953344302
920 => 0.055043711217399
921 => 0.052756811567577
922 => 0.052517817829981
923 => 0.052525147426709
924 => 0.051924186309991
925 => 0.051007576359803
926 => 0.053416372580962
927 => 0.053222912533321
928 => 0.053009347613344
929 => 0.053035508097457
930 => 0.054081084895384
1001 => 0.053474597549692
1002 => 0.055087043559534
1003 => 0.054755573134474
1004 => 0.054415601743764
1005 => 0.054368607341786
1006 => 0.054237747361359
1007 => 0.05378897979762
1008 => 0.053247065997655
1009 => 0.052889247567148
1010 => 0.048787535165646
1011 => 0.049548789128801
1012 => 0.05042454242293
1013 => 0.050726848950702
1014 => 0.050209732715973
1015 => 0.053809398698427
1016 => 0.054467092360666
1017 => 0.052474895357448
1018 => 0.052102236639014
1019 => 0.053833830141967
1020 => 0.05278946758099
1021 => 0.053259743978251
1022 => 0.052243263634809
1023 => 0.054308673216951
1024 => 0.054292938256443
1025 => 0.053489447279598
1026 => 0.054168552351159
1027 => 0.05405054113302
1028 => 0.053143401799073
1029 => 0.054337431151873
1030 => 0.054338023375535
1031 => 0.053564680779722
1101 => 0.052661585934276
1102 => 0.052500133906058
1103 => 0.052378501490824
1104 => 0.053229829860306
1105 => 0.053993128214348
1106 => 0.055413437213511
1107 => 0.055770536641611
1108 => 0.057164319482937
1109 => 0.056334389662982
1110 => 0.056702286802777
1111 => 0.057101691190253
1112 => 0.057293180341219
1113 => 0.056981159045594
1114 => 0.059146277502079
1115 => 0.059329079837322
1116 => 0.059390371879094
1117 => 0.058660306117469
1118 => 0.059308775387812
1119 => 0.059005378091263
1120 => 0.059794733570685
1121 => 0.059918514588855
1122 => 0.059813676470102
1123 => 0.05985296651902
1124 => 0.058005419869479
1125 => 0.057909614829116
1126 => 0.056603306305741
1127 => 0.057135636684761
1128 => 0.056140470556442
1129 => 0.056456047987079
1130 => 0.056595151511572
1201 => 0.056522491724432
1202 => 0.057165733845689
1203 => 0.056618846636937
1204 => 0.05517552137646
1205 => 0.053731802882981
1206 => 0.053713678173323
1207 => 0.053333572577738
1208 => 0.053058825851942
1209 => 0.053111751818494
1210 => 0.053298269827866
1211 => 0.053047985086166
1212 => 0.053101396025566
1213 => 0.053988373494835
1214 => 0.054166250500663
1215 => 0.053561754933827
1216 => 0.051134618004687
1217 => 0.050538992514264
1218 => 0.050967116305013
1219 => 0.050762500707739
1220 => 0.040969299921885
1221 => 0.043270067181921
1222 => 0.041903029402681
1223 => 0.042533023305739
1224 => 0.041137631725852
1225 => 0.041803585726513
1226 => 0.041680608339337
1227 => 0.045380174008822
1228 => 0.045322410379479
1229 => 0.045350058772062
1230 => 0.044030328956564
1231 => 0.046132694387222
]
'min_raw' => 0.026840047184614
'max_raw' => 0.059918514588855
'avg_raw' => 0.043379280886735
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.02684'
'max' => '$0.059918'
'avg' => '$0.043379'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0041386808178048
'max_diff' => 0.0090646515403595
'year' => 2035
]
10 => [
'items' => [
101 => 0.047168395196979
102 => 0.046976714541378
103 => 0.047024956432795
104 => 0.046196000905212
105 => 0.045358084873576
106 => 0.044428707040139
107 => 0.046155376180093
108 => 0.045963400046956
109 => 0.046403724225541
110 => 0.047523592587661
111 => 0.047688497457949
112 => 0.047910131275917
113 => 0.047830691329145
114 => 0.049723273151383
115 => 0.049494069005053
116 => 0.050046385051174
117 => 0.048910229039983
118 => 0.047624560668401
119 => 0.047868924194173
120 => 0.047845390021594
121 => 0.047545772993394
122 => 0.047275292137119
123 => 0.046825017718928
124 => 0.048249752606158
125 => 0.048191910971608
126 => 0.049128299801429
127 => 0.048962783980163
128 => 0.047857428817151
129 => 0.047896906793042
130 => 0.048162415153375
131 => 0.049081342620009
201 => 0.049354142857459
202 => 0.049227770918262
203 => 0.049526883924822
204 => 0.049763290649387
205 => 0.049556572969646
206 => 0.052483259385782
207 => 0.051267895137937
208 => 0.051860255215887
209 => 0.05200152960409
210 => 0.051639658229389
211 => 0.051718135172919
212 => 0.05183700635868
213 => 0.052558768921257
214 => 0.054452882729141
215 => 0.055291772840983
216 => 0.057815615132572
217 => 0.055222114695109
218 => 0.055068227112122
219 => 0.055522847321572
220 => 0.057004609922573
221 => 0.0582054393358
222 => 0.058603823729678
223 => 0.058656476803939
224 => 0.059403872410948
225 => 0.059832265634783
226 => 0.059313118925801
227 => 0.058873196446866
228 => 0.057297448732505
229 => 0.057479845821061
301 => 0.058736380886721
302 => 0.060511310676511
303 => 0.062034385086121
304 => 0.061501057512378
305 => 0.065569970429447
306 => 0.065973386525156
307 => 0.065917647464733
308 => 0.066836689367122
309 => 0.065012578350509
310 => 0.06423273555042
311 => 0.058968312680144
312 => 0.060447400773673
313 => 0.062597342181416
314 => 0.062312789374235
315 => 0.060751444455833
316 => 0.062033200665991
317 => 0.06160941197869
318 => 0.061275152258007
319 => 0.062806460837891
320 => 0.06112272415162
321 => 0.062580545619979
322 => 0.060710874507576
323 => 0.06150349370781
324 => 0.06105356471508
325 => 0.0613447239146
326 => 0.059642613183568
327 => 0.06056103081763
328 => 0.059604403990514
329 => 0.059603950424841
330 => 0.059582832834612
331 => 0.060708300054382
401 => 0.060745001500013
402 => 0.059913279524116
403 => 0.05979341539345
404 => 0.060236615907856
405 => 0.059717744179885
406 => 0.059960520995663
407 => 0.059725097642315
408 => 0.059672098886702
409 => 0.059249795784981
410 => 0.059067855997294
411 => 0.059139199276056
412 => 0.058895667885658
413 => 0.058748931414027
414 => 0.059553643257101
415 => 0.05912371818133
416 => 0.059487751073245
417 => 0.059072889648294
418 => 0.057634799202894
419 => 0.056807738180213
420 => 0.054091318639907
421 => 0.05486169185183
422 => 0.055372450088344
423 => 0.055203644494223
424 => 0.055566304229487
425 => 0.055588568591832
426 => 0.055470664215019
427 => 0.055334146051156
428 => 0.055267696558915
429 => 0.055762956633029
430 => 0.05605047177574
501 => 0.055423711510441
502 => 0.05527687034959
503 => 0.05591055958219
504 => 0.056297109648005
505 => 0.059151178150269
506 => 0.058939739537101
507 => 0.059470408963419
508 => 0.059410663729802
509 => 0.059966889830852
510 => 0.060876084427381
511 => 0.059027437597831
512 => 0.059348298766043
513 => 0.059269631017364
514 => 0.060128504869652
515 => 0.060131186180069
516 => 0.059616248401692
517 => 0.059895404525262
518 => 0.059739587235333
519 => 0.060021170138204
520 => 0.058936915645514
521 => 0.060257420579571
522 => 0.061006061785722
523 => 0.061016456669596
524 => 0.061371306659728
525 => 0.061731854801227
526 => 0.06242389556171
527 => 0.061712554160023
528 => 0.060432920226078
529 => 0.060525305662916
530 => 0.059775056755644
531 => 0.059787668575318
601 => 0.059720345693488
602 => 0.05992238672969
603 => 0.058981252291208
604 => 0.059202134662807
605 => 0.058892898049082
606 => 0.059347626546038
607 => 0.058858413852627
608 => 0.059269593081394
609 => 0.059447044405722
610 => 0.060101843612748
611 => 0.058761699477349
612 => 0.056029054865488
613 => 0.056603489893014
614 => 0.055753855366405
615 => 0.055832492276629
616 => 0.055991351350254
617 => 0.055476437117181
618 => 0.055574666526039
619 => 0.055571157080325
620 => 0.055540914573117
621 => 0.055406965494163
622 => 0.055212712828663
623 => 0.055986555660198
624 => 0.056118046636593
625 => 0.056410334788834
626 => 0.057279986068954
627 => 0.05719308739828
628 => 0.05733482273554
629 => 0.057025415290112
630 => 0.055846844800621
701 => 0.055910846848474
702 => 0.055112740286182
703 => 0.056389925409648
704 => 0.056087471114391
705 => 0.055892476862658
706 => 0.055839270874463
707 => 0.056711077851897
708 => 0.056971936163445
709 => 0.056809386769239
710 => 0.056475993219397
711 => 0.057116207394048
712 => 0.057287501698717
713 => 0.057325848176441
714 => 0.058460184945031
715 => 0.057389245000896
716 => 0.057647030889677
717 => 0.059658202805717
718 => 0.057834347400622
719 => 0.05880048428553
720 => 0.058753196912547
721 => 0.059247439850577
722 => 0.058712654565759
723 => 0.058719283870298
724 => 0.059158138116352
725 => 0.05854184647555
726 => 0.058389243998359
727 => 0.058178424769079
728 => 0.058638740843545
729 => 0.058914679511882
730 => 0.061138542524059
731 => 0.0625752594504
801 => 0.062512887779556
802 => 0.063082848096193
803 => 0.06282607575331
804 => 0.061996890125019
805 => 0.063412208884097
806 => 0.062964342809272
807 => 0.063001264344324
808 => 0.062999890122945
809 => 0.063297681909571
810 => 0.06308666913653
811 => 0.062670741300849
812 => 0.062946853608714
813 => 0.063766808451114
814 => 0.066311973441213
815 => 0.067736281488624
816 => 0.066226228308345
817 => 0.067267842771684
818 => 0.066643245258863
819 => 0.066529737310617
820 => 0.067183948168298
821 => 0.067839304135481
822 => 0.067797560793553
823 => 0.067321806014279
824 => 0.067053064211298
825 => 0.069088067178582
826 => 0.070587422699505
827 => 0.070485176704785
828 => 0.070936457273301
829 => 0.072261430980045
830 => 0.072382569970678
831 => 0.072367309242206
901 => 0.072067053614375
902 => 0.073371662298242
903 => 0.07445998981473
904 => 0.071997553111751
905 => 0.072935216772582
906 => 0.073356164199565
907 => 0.07397423991185
908 => 0.075017037239993
909 => 0.076149791726687
910 => 0.076309975631126
911 => 0.076196317485421
912 => 0.075449235451371
913 => 0.076688708927283
914 => 0.077414763420242
915 => 0.077847112255338
916 => 0.078943476965154
917 => 0.073358763827567
918 => 0.06940562629053
919 => 0.068788286780123
920 => 0.070043670950212
921 => 0.070374705744363
922 => 0.070241266033923
923 => 0.065791650332447
924 => 0.068764860474324
925 => 0.071963784592375
926 => 0.072086668295777
927 => 0.073688116595622
928 => 0.074209613807636
929 => 0.075498989595638
930 => 0.075418338789039
1001 => 0.075732281274968
1002 => 0.075660111334179
1003 => 0.078048408471349
1004 => 0.080683054879203
1005 => 0.080591825451762
1006 => 0.080213063858911
1007 => 0.080775589412743
1008 => 0.083494826851517
1009 => 0.083244483043047
1010 => 0.083487670728741
1011 => 0.086693804918561
1012 => 0.090862235432599
1013 => 0.088925580955247
1014 => 0.093127563913786
1015 => 0.095772489448641
1016 => 0.10034661467077
1017 => 0.099773911664915
1018 => 0.10155458504741
1019 => 0.098748653757716
1020 => 0.092305668344309
1021 => 0.09128604123988
1022 => 0.093327360524018
1023 => 0.098345744795047
1024 => 0.09316931374441
1025 => 0.094216499004156
1026 => 0.093914909578901
1027 => 0.093898839160101
1028 => 0.094512181682553
1029 => 0.093622496363942
1030 => 0.089997758324589
1031 => 0.091658954407309
1101 => 0.091017486822583
1102 => 0.091729242932413
1103 => 0.095570297106618
1104 => 0.093872075496907
1105 => 0.092083136983397
1106 => 0.094326862876575
1107 => 0.097183896966456
1108 => 0.097005108907695
1109 => 0.096658185346088
1110 => 0.098613775298541
1111 => 0.1018438369659
1112 => 0.10271690965515
1113 => 0.10336139406516
1114 => 0.10345025757665
1115 => 0.10436560697334
1116 => 0.099443542569583
1117 => 0.10725498518593
1118 => 0.10860380553903
1119 => 0.10835028321552
1120 => 0.10984944027095
1121 => 0.1094083502353
1122 => 0.10876927997855
1123 => 0.11114576279125
1124 => 0.10842131701876
1125 => 0.10455430924289
1126 => 0.10243279229631
1127 => 0.10522657694946
1128 => 0.10693264374749
1129 => 0.10806024537476
1130 => 0.10840145694586
1201 => 0.099825628417927
1202 => 0.095203732478627
1203 => 0.098166314785574
1204 => 0.10178086966656
1205 => 0.099423463534716
1206 => 0.099515869391924
1207 => 0.096154827763352
1208 => 0.10207824727184
1209 => 0.10121525487325
1210 => 0.10569246096373
1211 => 0.10462393979841
1212 => 0.10827492756106
1213 => 0.10731350012523
1214 => 0.11130433165867
1215 => 0.11289638240481
1216 => 0.11556968339049
1217 => 0.11753617447785
1218 => 0.11869093565732
1219 => 0.11862160812751
1220 => 0.12319734722033
1221 => 0.12049919374144
1222 => 0.117109677066
1223 => 0.11704837140313
1224 => 0.11880385011917
1225 => 0.1224828519159
1226 => 0.1234367635545
1227 => 0.12396987002545
1228 => 0.12315339890761
1229 => 0.12022474668468
1230 => 0.11896016950342
1231 => 0.12003762590018
]
'min_raw' => 0.044428707040139
'max_raw' => 0.12396987002545
'avg_raw' => 0.084199288532796
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.044428'
'max' => '$0.123969'
'avg' => '$0.084199'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017588659855525
'max_diff' => 0.064051355436598
'year' => 2036
]
11 => [
'items' => [
101 => 0.11871998931383
102 => 0.1209945997254
103 => 0.12411812565107
104 => 0.12347312989918
105 => 0.12562925399458
106 => 0.12786061560245
107 => 0.13105156291842
108 => 0.13188579470725
109 => 0.1332647481312
110 => 0.13468414416704
111 => 0.13514001591996
112 => 0.13601041654498
113 => 0.13600582910404
114 => 0.13862883997225
115 => 0.14152210218776
116 => 0.14261424169494
117 => 0.14512555627079
118 => 0.14082501806661
119 => 0.1440870256955
120 => 0.1470294382301
121 => 0.14352137270492
122 => 0.14835642375695
123 => 0.14854415783284
124 => 0.1513787194906
125 => 0.14850534821415
126 => 0.14679914952232
127 => 0.1517248812152
128 => 0.15410828762229
129 => 0.15339038621567
130 => 0.14792712106413
131 => 0.14474726641546
201 => 0.13642497345176
202 => 0.14628308896357
203 => 0.1510846894642
204 => 0.14791468607881
205 => 0.14951345139832
206 => 0.15823579658014
207 => 0.16155670089536
208 => 0.16086597601266
209 => 0.16098269714754
210 => 0.16277459683735
211 => 0.17072086687916
212 => 0.16595927767701
213 => 0.16959933420871
214 => 0.17153000706792
215 => 0.17332332361712
216 => 0.16891950495579
217 => 0.16319020158235
218 => 0.16137549070419
219 => 0.14759949171608
220 => 0.14688239114261
221 => 0.14647986086036
222 => 0.14394196436977
223 => 0.14194787291653
224 => 0.14036209735704
225 => 0.13620054873628
226 => 0.13760494923224
227 => 0.13097230931344
228 => 0.13521563728716
301 => 0.12462978382607
302 => 0.1334459971488
303 => 0.12864773306127
304 => 0.13186963834715
305 => 0.13185839742313
306 => 0.12592584828582
307 => 0.12250407775257
308 => 0.12468456311366
309 => 0.12702221650789
310 => 0.1274014929063
311 => 0.13043232155092
312 => 0.13127816067819
313 => 0.12871522863411
314 => 0.12441041554239
315 => 0.12541032544127
316 => 0.12248381461038
317 => 0.11735521694587
318 => 0.12103866532525
319 => 0.12229635655176
320 => 0.12285182464648
321 => 0.11780843786685
322 => 0.11622369624344
323 => 0.1153799931004
324 => 0.12375937764128
325 => 0.12421841924182
326 => 0.12186989751152
327 => 0.13248543842847
328 => 0.13008281457862
329 => 0.13276713407604
330 => 0.1253195940985
331 => 0.12560410015509
401 => 0.1220783153776
402 => 0.12405251925997
403 => 0.12265721558747
404 => 0.12389302309574
405 => 0.12463376102077
406 => 0.12815896725167
407 => 0.13348624934134
408 => 0.12763241899604
409 => 0.12508182128619
410 => 0.12666419776027
411 => 0.13087827483389
412 => 0.13726281731505
413 => 0.13348303966531
414 => 0.13516044080148
415 => 0.13552687832735
416 => 0.1327398102234
417 => 0.13736558049147
418 => 0.13984456835782
419 => 0.14238749695443
420 => 0.14459545060363
421 => 0.14137179535275
422 => 0.14482156856402
423 => 0.14204166032268
424 => 0.13954779524857
425 => 0.13955157741247
426 => 0.13798713942192
427 => 0.13495584368336
428 => 0.13439682624075
429 => 0.13730490557333
430 => 0.13963690980192
501 => 0.13982898483974
502 => 0.14112010220339
503 => 0.14188417215963
504 => 0.14937309643354
505 => 0.15238520372814
506 => 0.1560683515117
507 => 0.15750314514423
508 => 0.16182135957616
509 => 0.15833405071415
510 => 0.15757954950565
511 => 0.14710497377095
512 => 0.14882018496071
513 => 0.15156640356878
514 => 0.1471502579043
515 => 0.1499512858718
516 => 0.15050426812647
517 => 0.14700019896448
518 => 0.14887187370579
519 => 0.14390126050576
520 => 0.13359459512599
521 => 0.13737705475636
522 => 0.14016221820645
523 => 0.13618744655499
524 => 0.14331207089533
525 => 0.1391500124378
526 => 0.1378308397208
527 => 0.13268427663276
528 => 0.13511325630094
529 => 0.13839848608178
530 => 0.13636859602618
531 => 0.14058092268109
601 => 0.14654670061093
602 => 0.15079826923195
603 => 0.15112465187873
604 => 0.14839117808839
605 => 0.15277158728221
606 => 0.15280349378098
607 => 0.14786237431586
608 => 0.14483596615574
609 => 0.14414835985414
610 => 0.14586613520869
611 => 0.14795183160793
612 => 0.15124039351318
613 => 0.15322760259839
614 => 0.15840918995836
615 => 0.15981117893021
616 => 0.16135153975379
617 => 0.16340993684376
618 => 0.16588157031246
619 => 0.16047377699312
620 => 0.16068863870309
621 => 0.15565297644011
622 => 0.1502716491251
623 => 0.15435540576527
624 => 0.15969437433292
625 => 0.15846960904446
626 => 0.15833179792983
627 => 0.15856355799903
628 => 0.15764012496863
629 => 0.15346347159616
630 => 0.15136598241974
701 => 0.15407227858388
702 => 0.15551055455174
703 => 0.15774119514704
704 => 0.15746622161055
705 => 0.16321211223074
706 => 0.16544479157903
707 => 0.16487357666
708 => 0.16497869395215
709 => 0.16902085326557
710 => 0.17351656575555
711 => 0.17772739376393
712 => 0.18201082887332
713 => 0.17684698066363
714 => 0.17422509700463
715 => 0.17693021168453
716 => 0.17549483975813
717 => 0.18374291260619
718 => 0.1843139912746
719 => 0.19256146769311
720 => 0.2003893049055
721 => 0.19547278060267
722 => 0.20010884157512
723 => 0.20512311950043
724 => 0.21479647515562
725 => 0.2115388292837
726 => 0.20904352359964
727 => 0.20668547178543
728 => 0.21159220328062
729 => 0.21790463496224
730 => 0.21926427228674
731 => 0.22146740417386
801 => 0.2191510803807
802 => 0.22194083725487
803 => 0.23178990490196
804 => 0.22912859988359
805 => 0.22534911893138
806 => 0.23312401192425
807 => 0.23593771547423
808 => 0.25568576053604
809 => 0.28061848317763
810 => 0.27029617228693
811 => 0.26388878081818
812 => 0.2653946697987
813 => 0.27449925608148
814 => 0.27742336023038
815 => 0.26947463715451
816 => 0.27228226052312
817 => 0.28775254132358
818 => 0.296051850627
819 => 0.28478027384701
820 => 0.25368244054824
821 => 0.22500881802383
822 => 0.23261435390735
823 => 0.23175212216542
824 => 0.24837300892868
825 => 0.22906512863906
826 => 0.22939022382531
827 => 0.24635481292502
828 => 0.2418289513999
829 => 0.23449763535777
830 => 0.22506234474425
831 => 0.20762033738642
901 => 0.19217146506324
902 => 0.22247026135182
903 => 0.22116372216107
904 => 0.21927165979461
905 => 0.22348223984864
906 => 0.24392762139705
907 => 0.24345628917711
908 => 0.24045791406971
909 => 0.24273215516221
910 => 0.23409894989846
911 => 0.23632392346936
912 => 0.22500427597552
913 => 0.23012122939297
914 => 0.2344819056462
915 => 0.23535737596495
916 => 0.23732985529572
917 => 0.22047523537715
918 => 0.22804246489494
919 => 0.23248750328313
920 => 0.21240465813342
921 => 0.23209053000579
922 => 0.22018183394251
923 => 0.21613984363602
924 => 0.22158185109198
925 => 0.21946109549386
926 => 0.21763779436555
927 => 0.21662036100767
928 => 0.22061637067088
929 => 0.22042995204382
930 => 0.21389170464276
1001 => 0.20536282744112
1002 => 0.20822539858084
1003 => 0.20718539964903
1004 => 0.20341630935763
1005 => 0.20595622113234
1006 => 0.19477173509646
1007 => 0.17552940819072
1008 => 0.18824147875306
1009 => 0.18775207786449
1010 => 0.1875052997439
1011 => 0.19705806943568
1012 => 0.19613979104971
1013 => 0.19447310678736
1014 => 0.20338569939412
1015 => 0.20013248320137
1016 => 0.2101581289533
1017 => 0.21676166766364
1018 => 0.2150867966446
1019 => 0.22129745671934
1020 => 0.20829134643832
1021 => 0.2126114545591
1022 => 0.21350182285538
1023 => 0.20327571938482
1024 => 0.19629003275019
1025 => 0.19582416709432
1026 => 0.18371194915679
1027 => 0.19018219821261
1028 => 0.19587574962464
1029 => 0.19314898033571
1030 => 0.19228576663876
1031 => 0.1966957382083
1101 => 0.19703843076811
1102 => 0.1892250040876
1103 => 0.19084966291352
1104 => 0.19762476029467
1105 => 0.19067894784263
1106 => 0.17718436884033
1107 => 0.17383752667061
1108 => 0.17339099623063
1109 => 0.16431409482495
1110 => 0.17406117866794
1111 => 0.16980631536487
1112 => 0.18324737755819
1113 => 0.17556991491923
1114 => 0.17523895484961
1115 => 0.1747386601631
1116 => 0.16692579616116
1117 => 0.16863631684417
1118 => 0.17432234811417
1119 => 0.17635118812904
1120 => 0.17613956349369
1121 => 0.17429448345895
1122 => 0.17513915165051
1123 => 0.17241818110357
1124 => 0.17145734977134
1125 => 0.16842470178934
1126 => 0.16396754704619
1127 => 0.16458734175054
1128 => 0.15575655192638
1129 => 0.15094506894469
1130 => 0.14961331386969
1201 => 0.14783243532551
1202 => 0.14981446883999
1203 => 0.15573153540834
1204 => 0.14859429775121
1205 => 0.13635800440706
1206 => 0.13709342648667
1207 => 0.13874570155079
1208 => 0.1356666978997
1209 => 0.13275267934514
1210 => 0.13528618205653
1211 => 0.13010150325841
1212 => 0.13937224521344
1213 => 0.13912149762451
1214 => 0.14257705692651
1215 => 0.14473788907327
1216 => 0.13975787055271
1217 => 0.13850540936219
1218 => 0.1392188681775
1219 => 0.12742698320964
1220 => 0.14161340835234
1221 => 0.14173609314608
1222 => 0.140685591458
1223 => 0.14823942488975
1224 => 0.16418036953048
1225 => 0.15818274493362
1226 => 0.15586028341056
1227 => 0.1514452823575
1228 => 0.15732800912387
1229 => 0.15687630749305
1230 => 0.15483354141571
1231 => 0.15359807011831
]
'min_raw' => 0.1153799931004
'max_raw' => 0.296051850627
'avg_raw' => 0.2057159218637
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.115379'
'max' => '$0.296051'
'avg' => '$0.205715'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.070951286060263
'max_diff' => 0.17208198060155
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036216461416566
]
1 => [
'year' => 2028
'avg' => 0.0062157961504699
]
2 => [
'year' => 2029
'avg' => 0.016980434794826
]
3 => [
'year' => 2030
'avg' => 0.013100380156186
]
4 => [
'year' => 2031
'avg' => 0.012866196825614
]
5 => [
'year' => 2032
'avg' => 0.022558492176462
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036216461416566
'min' => '$0.003621'
'max_raw' => 0.022558492176462
'max' => '$0.022558'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022558492176462
]
1 => [
'year' => 2033
'avg' => 0.058022761540255
]
2 => [
'year' => 2034
'avg' => 0.036777614707652
]
3 => [
'year' => 2035
'avg' => 0.043379280886735
]
4 => [
'year' => 2036
'avg' => 0.084199288532796
]
5 => [
'year' => 2037
'avg' => 0.2057159218637
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022558492176462
'min' => '$0.022558'
'max_raw' => 0.2057159218637
'max' => '$0.205715'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.2057159218637
]
]
]
]
'prediction_2025_max_price' => '$0.006192'
'last_price' => 0.00600427
'sma_50day_nextmonth' => '$0.00465'
'sma_200day_nextmonth' => '$0.00673'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00454'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003945'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003477'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003375'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004145'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006094'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.006389'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00488'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004352'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003824'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00369'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004392'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.005387'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006432'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006946'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00541'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004669'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004472'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004924'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.005788'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.0072022'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004853'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.002426'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '76.67'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 159.13
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004313'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004578'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 379.99
'cci_20_action' => 'SELL'
'adx_14' => 32.93
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000162'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 90.03
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004285'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767691478
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Opus para 2026
La previsión del precio de Opus para 2026 sugiere que el precio medio podría oscilar entre $0.002074 en el extremo inferior y $0.006192 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Opus podría potencialmente ganar 3.13% para 2026 si OPUS alcanza el objetivo de precio previsto.
Predicción de precio de Opus 2027-2032
La predicción del precio de OPUS para 2027-2032 está actualmente dentro de un rango de precios de $0.003621 en el extremo inferior y $0.022558 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Opus alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Opus | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001997 | $0.003621 | $0.005246 |
| 2028 | $0.003604 | $0.006215 | $0.008827 |
| 2029 | $0.007917 | $0.01698 | $0.026043 |
| 2030 | $0.006733 | $0.01310038 | $0.019467 |
| 2031 | $0.00796 | $0.012866 | $0.017771 |
| 2032 | $0.012151 | $0.022558 | $0.032965 |
Predicción de precio de Opus 2032-2037
La predicción de precio de Opus para 2032-2037 se estima actualmente entre $0.022558 en el extremo inferior y $0.205715 en el extremo superior. Comparado con el precio actual, Opus podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Opus | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012151 | $0.022558 | $0.032965 |
| 2033 | $0.028237 | $0.058022 | $0.0878083 |
| 2034 | $0.0227013 | $0.036777 | $0.050853 |
| 2035 | $0.02684 | $0.043379 | $0.059918 |
| 2036 | $0.044428 | $0.084199 | $0.123969 |
| 2037 | $0.115379 | $0.205715 | $0.296051 |
Opus Histograma de precios potenciales
Pronóstico de precio de Opus basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Opus es Alcista, con 27 indicadores técnicos mostrando señales alcistas y 7 indicando señales bajistas. La predicción de precio de OPUS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Opus
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Opus aumentar durante el próximo mes, alcanzando $0.00673 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Opus alcance $0.00465 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 76.67, lo que sugiere que el mercado de OPUS está en un estado SELL.
Promedios Móviles y Osciladores Populares de OPUS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00454 | BUY |
| SMA 5 | $0.003945 | BUY |
| SMA 10 | $0.003477 | BUY |
| SMA 21 | $0.003375 | BUY |
| SMA 50 | $0.004145 | BUY |
| SMA 100 | $0.006094 | SELL |
| SMA 200 | $0.006389 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00488 | BUY |
| EMA 5 | $0.004352 | BUY |
| EMA 10 | $0.003824 | BUY |
| EMA 21 | $0.00369 | BUY |
| EMA 50 | $0.004392 | BUY |
| EMA 100 | $0.005387 | BUY |
| EMA 200 | $0.006432 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.006946 | SELL |
| SMA 50 | $0.00541 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.005788 | BUY |
| EMA 50 | $0.0072022 | SELL |
| EMA 100 | $0.004853 | BUY |
| EMA 200 | $0.002426 | BUY |
Osciladores de Opus
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 76.67 | SELL |
| Stoch RSI (14) | 159.13 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 379.99 | SELL |
| Índice Direccional Medio (14) | 32.93 | SELL |
| Oscilador Asombroso (5, 34) | 0.000162 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 90.03 | SELL |
| VWMA (10) | 0.004313 | BUY |
| Promedio Móvil de Hull (9) | 0.004578 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.004285 | NEUTRAL |
Predicción de precios de Opus basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Opus
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Opus por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.008437 | $0.011855 | $0.016658 | $0.0234084 | $0.032892 | $0.046219 |
| Amazon.com acción | $0.012528 | $0.02614 | $0.054544 | $0.11381 | $0.237472 | $0.4955012 |
| Apple acción | $0.008516 | $0.01208 | $0.017134 | $0.0243043 | $0.034473 | $0.048898 |
| Netflix acción | $0.009473 | $0.014948 | $0.023585 | $0.037214 | $0.058719 | $0.092649 |
| Google acción | $0.007775 | $0.010069 | $0.013039 | $0.016886 | $0.021867 | $0.028318 |
| Tesla acción | $0.013611 | $0.030855 | $0.069947 | $0.158565 | $0.359455 | $0.814858 |
| Kodak acción | $0.0045025 | $0.003376 | $0.002531 | $0.001898 | $0.001423 | $0.001067 |
| Nokia acción | $0.003977 | $0.002634 | $0.001745 | $0.001156 | $0.000766 | $0.0005074 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Opus
Podría preguntarse cosas como: "¿Debo invertir en Opus ahora?", "¿Debería comprar OPUS hoy?", "¿Será Opus una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Opus regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Opus, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Opus a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Opus es de $0.006004 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Opus basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Opus ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00616 | $0.00632 | $0.006484 | $0.006653 |
| Si Opus ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.006316 | $0.006644 | $0.00699 | $0.007353 |
| Si Opus ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.006784 | $0.007666 | $0.008662 | $0.009788 |
| Si Opus ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.007564 | $0.009531 | $0.0120088 | $0.01513 |
| Si Opus ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.009125 | $0.013869 | $0.02108 | $0.032039 |
| Si Opus ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0138077 | $0.031753 | $0.073021 | $0.167924 |
| Si Opus ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.021611 | $0.077785 | $0.279976 | $1.00 |
Cuadro de preguntas
¿Es OPUS una buena inversión?
La decisión de adquirir Opus depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Opus ha experimentado un aumento de 17.7581% durante las últimas 24 horas, y Opus ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Opus dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Opus subir?
Parece que el valor medio de Opus podría potencialmente aumentar hasta $0.006192 para el final de este año. Mirando las perspectivas de Opus en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.019467. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Opus la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Opus, el precio de Opus aumentará en un 0.86% durante la próxima semana y alcanzará $0.0060556 para el 13 de enero de 2026.
¿Cuál será el precio de Opus el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Opus, el precio de Opus disminuirá en un -11.62% durante el próximo mes y alcanzará $0.005306 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Opus este año en 2026?
Según nuestra predicción más reciente sobre el valor de Opus en 2026, se anticipa que OPUS fluctúe dentro del rango de $0.002074 y $0.006192. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Opus no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Opus en 5 años?
El futuro de Opus parece estar en una tendencia alcista, con un precio máximo de $0.019467 proyectada después de un período de cinco años. Basado en el pronóstico de Opus para 2030, el valor de Opus podría potencialmente alcanzar su punto más alto de aproximadamente $0.019467, mientras que su punto más bajo se anticipa que esté alrededor de $0.006733.
¿Cuánto será Opus en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Opus, se espera que el valor de OPUS en 2026 crezca en un 3.13% hasta $0.006192 si ocurre lo mejor. El precio estará entre $0.006192 y $0.002074 durante 2026.
¿Cuánto será Opus en 2027?
Según nuestra última simulación experimental para la predicción de precios de Opus, el valor de OPUS podría disminuir en un -12.62% hasta $0.005246 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.005246 y $0.001997 a lo largo del año.
¿Cuánto será Opus en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Opus sugiere que el valor de OPUS en 2028 podría aumentar en un 47.02% , alcanzando $0.008827 en el mejor escenario. Se espera que el precio oscile entre $0.008827 y $0.003604 durante el año.
¿Cuánto será Opus en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Opus podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.026043 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.026043 y $0.007917.
¿Cuánto será Opus en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Opus, se espera que el valor de OPUS en 2030 aumente en un 224.23% , alcanzando $0.019467 en el mejor escenario. Se pronostica que el precio oscile entre $0.019467 y $0.006733 durante el transcurso de 2030.
¿Cuánto será Opus en 2031?
Nuestra simulación experimental indica que el precio de Opus podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.017771 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.017771 y $0.00796 durante el año.
¿Cuánto será Opus en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Opus, OPUS podría experimentar un 449.04% aumento en valor, alcanzando $0.032965 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.032965 y $0.012151 a lo largo del año.
¿Cuánto será Opus en 2033?
Según nuestra predicción experimental de precios de Opus, se anticipa que el valor de OPUS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0878083. A lo largo del año, el precio de OPUS podría oscilar entre $0.0878083 y $0.028237.
¿Cuánto será Opus en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Opus sugieren que OPUS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.050853 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.050853 y $0.0227013.
¿Cuánto será Opus en 2035?
Basado en nuestra predicción experimental para el precio de Opus, OPUS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.059918 en 2035. El rango de precios esperado para el año está entre $0.059918 y $0.02684.
¿Cuánto será Opus en 2036?
Nuestra reciente simulación de predicción de precios de Opus sugiere que el valor de OPUS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.123969 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.123969 y $0.044428.
¿Cuánto será Opus en 2037?
Según la simulación experimental, el valor de Opus podría aumentar en un 4830.69% en 2037, con un máximo de $0.296051 bajo condiciones favorables. Se espera que el precio caiga entre $0.296051 y $0.115379 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Opus?
Los traders de Opus utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Opus
Las medias móviles son herramientas populares para la predicción de precios de Opus. Una media móvil simple (SMA) calcula el precio de cierre promedio de OPUS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de OPUS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de OPUS.
¿Cómo leer gráficos de Opus y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Opus en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de OPUS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Opus?
La acción del precio de Opus está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de OPUS. La capitalización de mercado de Opus puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de OPUS, grandes poseedores de Opus, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Opus.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


