Predicción del precio de Minima - Pronóstico de MINIMA
Predicción de precio de Minima hasta $0.009578 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0032089 | $0.009578 |
| 2027 | $0.003089 | $0.008115 |
| 2028 | $0.005575 | $0.013655 |
| 2029 | $0.012246 | $0.040287 |
| 2030 | $0.010415 | $0.030114 |
| 2031 | $0.012314 | $0.02749 |
| 2032 | $0.018796 | $0.050994 |
| 2033 | $0.04368 | $0.13583 |
| 2034 | $0.035116 | $0.078665 |
| 2035 | $0.041518 | $0.092687 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Minima hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.56, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Minima para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Minima'
'name_with_ticker' => 'Minima <small>MINIMA</small>'
'name_lang' => 'Minima'
'name_lang_with_ticker' => 'Minima <small>MINIMA</small>'
'name_with_lang' => 'Minima'
'name_with_lang_with_ticker' => 'Minima <small>MINIMA</small>'
'image' => '/uploads/coins/minima.png?1717622187'
'price_for_sd' => 0.009287
'ticker' => 'MINIMA'
'marketcap' => '$5.44M'
'low24h' => '$0.009186'
'high24h' => '$0.009612'
'volume24h' => '$84.18K'
'current_supply' => '586.66M'
'max_supply' => '999.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009287'
'change_24h_pct' => '-0.4751%'
'ath_price' => '$0.132'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 dic. 2024'
'ath_pct' => '-92.97%'
'fdv' => '$9.28M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.457961'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009367'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008208'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0032089'
'current_year_max_price_prediction' => '$0.009578'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010415'
'grand_prediction_max_price' => '$0.030114'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0094639925250173
107 => 0.0094993276376764
108 => 0.009578939450753
109 => 0.0088986652245528
110 => 0.0092040883803147
111 => 0.0093834958700453
112 => 0.0085729263045424
113 => 0.0093674735159151
114 => 0.0088868231637482
115 => 0.0087236832150967
116 => 0.0089433296639021
117 => 0.0088577332291894
118 => 0.0087841424410148
119 => 0.0087430775167632
120 => 0.0089043616272719
121 => 0.0088968375307404
122 => 0.0086329454220513
123 => 0.0082887089238848
124 => 0.0084042459918474
125 => 0.0083622702918908
126 => 0.0082101449402751
127 => 0.0083126590595791
128 => 0.0078612387593728
129 => 0.0070845935956533
130 => 0.0075976691800911
131 => 0.0075779163282091
201 => 0.0075679560445697
202 => 0.0079535181659071
203 => 0.0079164552643721
204 => 0.0078491857351651
205 => 0.0082089094826178
206 => 0.0080776054758304
207 => 0.0084822534856343
208 => 0.0087487808358836
209 => 0.0086811808786038
210 => 0.0089318511397518
211 => 0.0084069077325411
212 => 0.0085812728753425
213 => 0.0086172092896143
214 => 0.0082044705474127
215 => 0.0079225192134279
216 => 0.0079037162739316
217 => 0.0074148515160891
218 => 0.0076759991237501
219 => 0.0079057982114695
220 => 0.0077957422815815
221 => 0.0077609018620064
222 => 0.0079388940096508
223 => 0.0079527255239224
224 => 0.0076373655327312
225 => 0.007702938861052
226 => 0.0079763905408084
227 => 0.0076960485803269
228 => 0.0071513899447106
301 => 0.0070163070725829
302 => 0.0069982845273698
303 => 0.006631929064602
304 => 0.0070253339560224
305 => 0.0068536021783218
306 => 0.0073961008064154
307 => 0.0070862284995268
308 => 0.0070728705237108
309 => 0.0070526779840758
310 => 0.006737340703318
311 => 0.0068063795270743
312 => 0.00703587509215
313 => 0.0071177616952217
314 => 0.0071092202516441
315 => 0.0070347504386803
316 => 0.007068842337708
317 => 0.0069590204525348
318 => 0.0069202400591353
319 => 0.0067978384701788
320 => 0.0066179419487147
321 => 0.0066429576633937
322 => 0.006286535581888
323 => 0.0060923379151321
324 => 0.0060385865604582
325 => 0.0059667080025644
326 => 0.0060467054348338
327 => 0.0062855258829132
328 => 0.005997457753945
329 => 0.0055035851524587
330 => 0.005533267737326
331 => 0.0055999556926843
401 => 0.0054756831290592
402 => 0.0053580695769937
403 => 0.0054603250182255
404 => 0.0052510646863683
405 => 0.0056252438040362
406 => 0.0056151233075281
407 => 0.0057545941435133
408 => 0.0058418081194845
409 => 0.0056408081407309
410 => 0.0055902571896361
411 => 0.0056190533087923
412 => 0.0051431176032881
413 => 0.0057157000425908
414 => 0.0057206517593029
415 => 0.0056782521545396
416 => 0.0059831346269688
417 => 0.0066265317390223
418 => 0.0063844598648789
419 => 0.0062907223185495
420 => 0.0061125271744555
421 => 0.00634996162378
422 => 0.0063317303626263
423 => 0.0062492816856887
424 => 0.0061994164686213
425 => 0.006291294660019
426 => 0.0061880317439362
427 => 0.0061694828867326
428 => 0.0060570969934342
429 => 0.006016980342759
430 => 0.005987279571689
501 => 0.0059545819410784
502 => 0.0060267047664635
503 => 0.005863264955593
504 => 0.0056661725658853
505 => 0.0056497864662503
506 => 0.0056950299280231
507 => 0.0056750130641683
508 => 0.0056496906332072
509 => 0.0056013432163489
510 => 0.0055869995705462
511 => 0.0056336094608574
512 => 0.0055809896122215
513 => 0.0056586330652353
514 => 0.0056375183422238
515 => 0.0055195732158889
516 => 0.005372569919597
517 => 0.0053712612819102
518 => 0.0053395896628578
519 => 0.0052992510941348
520 => 0.0052880298271375
521 => 0.0054517133501786
522 => 0.005790533344238
523 => 0.0057240148721288
524 => 0.0057720812853149
525 => 0.0060085204651129
526 => 0.0060836773703964
527 => 0.006030332779215
528 => 0.0059573114126548
529 => 0.0059605239821938
530 => 0.0062100600968009
531 => 0.0062256233581817
601 => 0.0062649466987926
602 => 0.0063154883042524
603 => 0.0060389402331729
604 => 0.0059474985929155
605 => 0.0059041684707725
606 => 0.0057707284654396
607 => 0.0059146320709096
608 => 0.005830785602569
609 => 0.0058420993557514
610 => 0.0058347312591492
611 => 0.0058387547381225
612 => 0.005625139213347
613 => 0.0057029694832737
614 => 0.0055735615640914
615 => 0.0054002988870269
616 => 0.0053997180497797
617 => 0.0054421238445301
618 => 0.0054168992184736
619 => 0.0053490203983401
620 => 0.005358662264361
621 => 0.005274189372369
622 => 0.0053689188028799
623 => 0.0053716353039888
624 => 0.0053351593132952
625 => 0.0054811030711395
626 => 0.0055408963478071
627 => 0.0055168870693411
628 => 0.0055392117928261
629 => 0.0057267790149579
630 => 0.005757360656297
701 => 0.00577094300127
702 => 0.0057527444583221
703 => 0.0055426401773247
704 => 0.0055519591956193
705 => 0.0054835824226392
706 => 0.0054258112548378
707 => 0.00542812179858
708 => 0.005457823688556
709 => 0.0055875335840742
710 => 0.0058605004123763
711 => 0.0058708593039742
712 => 0.005883414582781
713 => 0.005832345954096
714 => 0.0058169431670237
715 => 0.0058372634189688
716 => 0.005939775407765
717 => 0.0062034640746825
718 => 0.0061102588886199
719 => 0.0060344816215259
720 => 0.0061009587141719
721 => 0.0060907250868237
722 => 0.0060043429732466
723 => 0.0060019185150231
724 => 0.0058361236210363
725 => 0.0057748330236965
726 => 0.0057236140130376
727 => 0.0056676841905043
728 => 0.0056345271169219
729 => 0.0056854714515649
730 => 0.0056971230236534
731 => 0.0055857323456019
801 => 0.0055705502077862
802 => 0.0056615142400178
803 => 0.0056214843609136
804 => 0.0056626560842655
805 => 0.0056722082772477
806 => 0.0056706701541719
807 => 0.0056288743629848
808 => 0.005655513753919
809 => 0.0055925036527749
810 => 0.0055239896315918
811 => 0.0054802819546514
812 => 0.0054421412095388
813 => 0.0054633039116804
814 => 0.0053878627427024
815 => 0.0053637275944156
816 => 0.0056464889276758
817 => 0.0058553677647517
818 => 0.0058523305837355
819 => 0.005833842525399
820 => 0.0058063730208767
821 => 0.0059377658424122
822 => 0.0058919912106717
823 => 0.0059252960798614
824 => 0.0059337735668711
825 => 0.0059594323667939
826 => 0.0059686031823179
827 => 0.0059408826082634
828 => 0.0058478489759536
829 => 0.0056160180096098
830 => 0.005508100068961
831 => 0.0054724853510314
901 => 0.0054737798783862
902 => 0.0054380710349173
903 => 0.005448588889677
904 => 0.0054344133542626
905 => 0.0054075683196181
906 => 0.0054616463064384
907 => 0.0054678782906481
908 => 0.0054552558423405
909 => 0.0054582288858562
910 => 0.0053537204049869
911 => 0.0053616659578069
912 => 0.005317424110033
913 => 0.0053091292969189
914 => 0.005197289758325
915 => 0.0049991498043056
916 => 0.0051089385727431
917 => 0.0049763291791076
918 => 0.0049261079923776
919 => 0.0051638472793603
920 => 0.0051399848488086
921 => 0.0050991427404534
922 => 0.0050387287499547
923 => 0.0050163206132093
924 => 0.0048801758678979
925 => 0.0048721317100409
926 => 0.0049396087220346
927 => 0.0049084704027417
928 => 0.0048647404094508
929 => 0.0047063548065896
930 => 0.0045282769493026
1001 => 0.0045336520004566
1002 => 0.0045902952536033
1003 => 0.0047549931515106
1004 => 0.0046906428334957
1005 => 0.004643955939441
1006 => 0.0046352128875874
1007 => 0.0047446504863536
1008 => 0.0048995276164935
1009 => 0.0049721925007746
1010 => 0.0049001838073174
1011 => 0.004817464097497
1012 => 0.0048224988629476
1013 => 0.0048559929018753
1014 => 0.0048595126517864
1015 => 0.0048056706244169
1016 => 0.00482082683974
1017 => 0.0047978031627509
1018 => 0.0046565068995675
1019 => 0.0046539512982218
1020 => 0.0046192749165265
1021 => 0.0046182249294701
1022 => 0.0045592317537777
1023 => 0.0045509782006977
1024 => 0.0044338436697306
1025 => 0.0045109419727292
1026 => 0.0044592284789203
1027 => 0.0043812840457704
1028 => 0.0043678463961163
1029 => 0.0043674424441413
1030 => 0.0044474739489299
1031 => 0.0045100067579991
1101 => 0.0044601280572856
1102 => 0.0044487716439911
1103 => 0.0045700284271762
1104 => 0.0045545973962358
1105 => 0.0045412342229608
1106 => 0.0048856600681967
1107 => 0.0046130201358087
1108 => 0.0044941335635442
1109 => 0.0043469888544192
1110 => 0.0043948999136783
1111 => 0.0044049954778241
1112 => 0.0040511389772058
1113 => 0.003907579438975
1114 => 0.0038583152153812
1115 => 0.0038299629582091
1116 => 0.0038428834378277
1117 => 0.0037136630155656
1118 => 0.0038005012764342
1119 => 0.0036886073134856
1120 => 0.0036698479264629
1121 => 0.0038699281932171
1122 => 0.003897768193484
1123 => 0.0037789941031353
1124 => 0.0038552662969177
1125 => 0.0038276089391894
1126 => 0.0036905254143253
1127 => 0.0036852898319936
1128 => 0.0036165061379357
1129 => 0.0035088729758827
1130 => 0.0034596817326411
1201 => 0.003434062506063
1202 => 0.0034446334982579
1203 => 0.0034392884811265
1204 => 0.0034044086288349
1205 => 0.0034412877534309
1206 => 0.0033470768295944
1207 => 0.0033095612806137
1208 => 0.0032926163774933
1209 => 0.0032089987600099
1210 => 0.0033420715743492
1211 => 0.0033682885951812
1212 => 0.003394557271643
1213 => 0.0036232081658565
1214 => 0.0036117854133423
1215 => 0.0037150415329645
1216 => 0.0037110291900318
1217 => 0.0036815788720773
1218 => 0.0035573328249696
1219 => 0.0036068550848739
1220 => 0.0034544332663563
1221 => 0.0035686380564659
1222 => 0.0035165197595659
1223 => 0.0035510168078577
1224 => 0.0034889880045556
1225 => 0.0035233173054095
1226 => 0.0033745056234078
1227 => 0.0032355473685914
1228 => 0.0032914682267739
1229 => 0.003352260594944
1230 => 0.0034840739387442
1231 => 0.0034055669986133
]
'min_raw' => 0.0032089987600099
'max_raw' => 0.009578939450753
'avg_raw' => 0.0063939691053814
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0032089'
'max' => '$0.009578'
'avg' => '$0.006393'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0060789912399901
'max_diff' => 0.00029094945075299
'year' => 2026
]
1 => [
'items' => [
101 => 0.0034338010629605
102 => 0.0033392216737228
103 => 0.0031440773784585
104 => 0.0031451818739771
105 => 0.0031151631756003
106 => 0.003089222637401
107 => 0.0034145844650791
108 => 0.003374120578598
109 => 0.0033096466712729
110 => 0.0033959475583188
111 => 0.003418766882633
112 => 0.003419416516716
113 => 0.0034823794161564
114 => 0.0035159827268745
115 => 0.0035219054560337
116 => 0.0036209789387066
117 => 0.0036541870632878
118 => 0.0037909666286478
119 => 0.0035131317207334
120 => 0.0035074098936392
121 => 0.0033971619887806
122 => 0.0033272410245688
123 => 0.0034019495370201
124 => 0.0034681310803231
125 => 0.0033992184338113
126 => 0.0034082169706204
127 => 0.0033157073730484
128 => 0.0033487752011993
129 => 0.0033772576695203
130 => 0.0033615313246355
131 => 0.0033379882251794
201 => 0.0034627049484966
202 => 0.0034556679421983
203 => 0.0035718070221764
204 => 0.0036623457402046
205 => 0.0038246073086429
206 => 0.0036552789030906
207 => 0.0036491079029729
208 => 0.0037094304189837
209 => 0.0036541778282249
210 => 0.0036890955583298
211 => 0.003818981522497
212 => 0.0038217258082482
213 => 0.0037757554861026
214 => 0.0037729581878223
215 => 0.0037817872910506
216 => 0.0038334996244306
217 => 0.0038154297461881
218 => 0.0038363406667637
219 => 0.0038624900931428
220 => 0.0039706552077738
221 => 0.0039967334507201
222 => 0.0039333768403794
223 => 0.0039390972329192
224 => 0.003915400121474
225 => 0.0038925090087418
226 => 0.0039439648871852
227 => 0.0040380015164084
228 => 0.0040374165194185
301 => 0.0040592311895874
302 => 0.0040728215483801
303 => 0.004014481779691
304 => 0.0039765047354871
305 => 0.003991067550777
306 => 0.0040143538095624
307 => 0.0039835161308973
308 => 0.0037931716927739
309 => 0.0038509100360508
310 => 0.0038412995524688
311 => 0.0038276130551733
312 => 0.0038856694058155
313 => 0.0038800697291667
314 => 0.0037123376733631
315 => 0.0037230753353704
316 => 0.003712990666154
317 => 0.0037455762955212
318 => 0.0036524180973021
319 => 0.0036810729316442
320 => 0.0036990449751212
321 => 0.0037096306467969
322 => 0.0037478733515526
323 => 0.0037433860115452
324 => 0.0037475944121972
325 => 0.0038042982476501
326 => 0.0040910867889642
327 => 0.0041066960565047
328 => 0.004029830314314
329 => 0.0040605366622094
330 => 0.0040015871889902
331 => 0.0040411603652894
401 => 0.0040682353274636
402 => 0.0039458887796142
403 => 0.0039386442110731
404 => 0.0038794514324084
405 => 0.0039112582788125
406 => 0.0038606512991905
407 => 0.0038730684818327
408 => 0.0038383489566545
409 => 0.0039008371893868
410 => 0.0039707087432712
411 => 0.0039883610570937
412 => 0.0039419254192257
413 => 0.0039083029571516
414 => 0.003849272989677
415 => 0.0039474411411558
416 => 0.0039761485002684
417 => 0.0039472903536195
418 => 0.003940603290478
419 => 0.0039279313179081
420 => 0.003943291709363
421 => 0.0039759921538255
422 => 0.0039605712280994
423 => 0.0039707570212232
424 => 0.0039319392813793
425 => 0.0040145010925819
426 => 0.0041456291183536
427 => 0.004146050716398
428 => 0.0041306297075474
429 => 0.0041243197629759
430 => 0.0041401426538818
501 => 0.0041487259231093
502 => 0.0041998942508768
503 => 0.0042547999052076
504 => 0.0045110206367552
505 => 0.0044390748806205
506 => 0.0046664091562891
507 => 0.0048462010526818
508 => 0.0049001127810632
509 => 0.0048505165276951
510 => 0.00468085042406
511 => 0.0046725257955808
512 => 0.0049260785855929
513 => 0.004854438308961
514 => 0.0048459169260131
515 => 0.0047552638085512
516 => 0.0048088510285782
517 => 0.0047971307174812
518 => 0.0047786296330374
519 => 0.0048808703159308
520 => 0.0050722557472186
521 => 0.0050424265329512
522 => 0.005020160408238
523 => 0.0049225967313162
524 => 0.0049813518564593
525 => 0.0049604302817761
526 => 0.0050503226437743
527 => 0.0049970723998862
528 => 0.0048538955634054
529 => 0.004876696946532
530 => 0.0048732505633424
531 => 0.0049441768851704
601 => 0.0049228865638572
602 => 0.0048690932864085
603 => 0.0050716016126207
604 => 0.005058451848327
605 => 0.0050770952076408
606 => 0.0050853025909759
607 => 0.0052085658405442
608 => 0.0052590628499083
609 => 0.0052705265551086
610 => 0.0053184948084256
611 => 0.005269333061268
612 => 0.0054660151016302
613 => 0.0055967971817559
614 => 0.0057487072978062
615 => 0.0059706888069456
616 => 0.0060541559078258
617 => 0.0060390783231368
618 => 0.0062073821699263
619 => 0.0065098204414228
620 => 0.0061002097448473
621 => 0.0065315308029537
622 => 0.0063949795357983
623 => 0.0060712189378253
624 => 0.0060503725722025
625 => 0.0062696270080877
626 => 0.0067559122444236
627 => 0.006634103308123
628 => 0.0067561114802066
629 => 0.0066137824666254
630 => 0.006606714631458
701 => 0.0067491988777012
702 => 0.0070821210854605
703 => 0.0069239622239564
704 => 0.0066972027138465
705 => 0.0068646384073429
706 => 0.0067195901141944
707 => 0.0063927557132698
708 => 0.006634010163125
709 => 0.006472690183038
710 => 0.0065197719294692
711 => 0.0068588425330762
712 => 0.0068180446609806
713 => 0.0068708408852535
714 => 0.0067776569313297
715 => 0.006690608424604
716 => 0.0065281259224936
717 => 0.0064800228639093
718 => 0.0064933168187352
719 => 0.0064800162760855
720 => 0.006389108809446
721 => 0.0063694773506806
722 => 0.0063367573926643
723 => 0.0063468986758279
724 => 0.0062853755821959
725 => 0.0064014823711993
726 => 0.0064230328143678
727 => 0.0065075256529018
728 => 0.0065162979796926
729 => 0.0067516093323295
730 => 0.0066220037935437
731 => 0.0067089543785651
801 => 0.0067011766998301
802 => 0.0060782358117113
803 => 0.0061640715698401
804 => 0.0062976050727437
805 => 0.006237448410686
806 => 0.0061524009650275
807 => 0.0060837205927027
808 => 0.0059796628057019
809 => 0.0061261221426527
810 => 0.0063187005965288
811 => 0.0065211820870858
812 => 0.0067644503308771
813 => 0.0067101556908174
814 => 0.0065166343564819
815 => 0.0065253155821728
816 => 0.0065789795034573
817 => 0.0065094798495125
818 => 0.0064889830447697
819 => 0.0065761635572355
820 => 0.0065767639215113
821 => 0.006496796170334
822 => 0.0064079266488444
823 => 0.0064075542823045
824 => 0.0063917408093331
825 => 0.0066165956483372
826 => 0.006740243074401
827 => 0.0067544190525315
828 => 0.0067392889181246
829 => 0.0067451119063642
830 => 0.0066731641935228
831 => 0.0068376153296468
901 => 0.006988531954686
902 => 0.0069480830753121
903 => 0.0068874444549835
904 => 0.0068391428731402
905 => 0.0069367047576761
906 => 0.0069323604805344
907 => 0.0069872138296231
908 => 0.0069847253648601
909 => 0.0069662802467004
910 => 0.0069480837340453
911 => 0.0070202308498821
912 => 0.0069994536391684
913 => 0.0069786441557075
914 => 0.0069369075508543
915 => 0.0069425802486255
916 => 0.0068819520984097
917 => 0.0068539027419645
918 => 0.0064321077208449
919 => 0.0063193903086519
920 => 0.0063548535011023
921 => 0.0063665289048584
922 => 0.0063174741426207
923 => 0.0063878060705351
924 => 0.0063768449140696
925 => 0.0064194883618148
926 => 0.0063928465870268
927 => 0.0063939399747572
928 => 0.0064722877537833
929 => 0.0064950324473498
930 => 0.0064834643126297
1001 => 0.0064915662376552
1002 => 0.0066782716802598
1003 => 0.0066517281368254
1004 => 0.0066376274084083
1005 => 0.0066415334065459
1006 => 0.0066892406501412
1007 => 0.006702596073629
1008 => 0.0066460082058424
1009 => 0.0066726953714211
1010 => 0.0067863259353497
1011 => 0.0068260902017918
1012 => 0.0069529986523442
1013 => 0.0068990856869317
1014 => 0.0069980452682448
1015 => 0.007302213283394
1016 => 0.0075452037407209
1017 => 0.0073217396741577
1018 => 0.0077679607043904
1019 => 0.0081154077830316
1020 => 0.0081020721854499
1021 => 0.0080414867506931
1022 => 0.0076459274890186
1023 => 0.0072819279589694
1024 => 0.007586429022092
1025 => 0.0075872052579231
1026 => 0.0075610483465522
1027 => 0.0073985900164941
1028 => 0.0075553951488151
1029 => 0.0075678417707861
1030 => 0.0075608749723063
1031 => 0.0074363185515544
1101 => 0.0072461439189407
1102 => 0.0072833035869397
1103 => 0.0073441718811587
1104 => 0.0072289355017457
1105 => 0.0071921104961048
1106 => 0.0072605751878352
1107 => 0.0074811826897755
1108 => 0.007439478119426
1109 => 0.0074383890445527
1110 => 0.0076168188819984
1111 => 0.0074891016259563
1112 => 0.0072837722893549
1113 => 0.0072319239239018
1114 => 0.0070478971557874
1115 => 0.0071750051000049
1116 => 0.0071795794886313
1117 => 0.0071099637665951
1118 => 0.007289421221524
1119 => 0.0072877674894839
1120 => 0.0074581356342217
1121 => 0.0077838155396072
1122 => 0.0076874959658498
1123 => 0.0075754867811099
1124 => 0.0075876652851689
1125 => 0.0077212334155873
1126 => 0.0076404750748725
1127 => 0.0076695163372607
1128 => 0.0077211894581585
1129 => 0.0077523651349675
1130 => 0.0075831795850425
1201 => 0.0075437343402747
1202 => 0.0074630432128793
1203 => 0.0074419924039131
1204 => 0.007507713643501
1205 => 0.0074903984188353
1206 => 0.0071791950289802
1207 => 0.007146672543221
1208 => 0.0071476699614278
1209 => 0.0070658906246265
1210 => 0.0069411575067147
1211 => 0.0072689486931594
1212 => 0.0072426224734532
1213 => 0.0072135603643851
1214 => 0.0072171203069198
1215 => 0.0073594033510814
1216 => 0.0072768720000017
1217 => 0.0074962951234694
1218 => 0.0074511883257473
1219 => 0.0074049247088671
1220 => 0.0073985296677901
1221 => 0.0073807221223175
1222 => 0.0073196534229963
1223 => 0.0072459092989061
1224 => 0.0071972170405751
1225 => 0.0066390522764772
1226 => 0.0067426444099987
1227 => 0.0068618177168951
1228 => 0.0069029558648787
1229 => 0.0068325862160796
1230 => 0.007322432045639
1231 => 0.0074119315989713
]
'min_raw' => 0.003089222637401
'max_raw' => 0.0081154077830316
'avg_raw' => 0.0056023152102163
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003089'
'max' => '$0.008115'
'avg' => '$0.0056023'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00011977612260893
'max_diff' => -0.0014635316677214
'year' => 2027
]
2 => [
'items' => [
101 => 0.0071408316140162
102 => 0.0070901198757705
103 => 0.0073257566987558
104 => 0.0071836388890656
105 => 0.0072476345300671
106 => 0.007109310957966
107 => 0.0073903737774264
108 => 0.0073882325496511
109 => 0.0072788927647893
110 => 0.007371306002228
111 => 0.0073552469280449
112 => 0.007231802580228
113 => 0.0073942871834359
114 => 0.0073943677737719
115 => 0.0072891306080944
116 => 0.0071662366379608
117 => 0.007144266098727
118 => 0.0071277142487409
119 => 0.0072435637896174
120 => 0.0073474341257151
121 => 0.007540711069553
122 => 0.0075893054853807
123 => 0.0077789727254698
124 => 0.0076660351187271
125 => 0.0077160988970093
126 => 0.0077704502102885
127 => 0.0077965082285779
128 => 0.0077540480861256
129 => 0.0080486793801347
130 => 0.0080735552886186
131 => 0.0080818959655575
201 => 0.007982547950942
202 => 0.0080707922406129
203 => 0.0080295056598196
204 => 0.0081369218733014
205 => 0.0081537661071344
206 => 0.0081394996403288
207 => 0.0081448462660156
208 => 0.0078934304331008
209 => 0.0078803931958399
210 => 0.0077026295407087
211 => 0.0077750695441373
212 => 0.0076396464298672
213 => 0.0076825904944149
214 => 0.0077015198288815
215 => 0.0076916322187864
216 => 0.007779165193243
217 => 0.0077047442831496
218 => 0.0075083352654829
219 => 0.0073118727363105
220 => 0.0073094063092917
221 => 0.0072576811932123
222 => 0.0072202934082145
223 => 0.007227495622008
224 => 0.0072528771628158
225 => 0.0072188181869216
226 => 0.0072260863962625
227 => 0.0073467870991477
228 => 0.0073709927643133
229 => 0.0072887324563167
301 => 0.0069584454496045
302 => 0.0068773921896951
303 => 0.006935651665562
304 => 0.0069078073884884
305 => 0.0055751396947718
306 => 0.0058882302016712
307 => 0.0057022024540206
308 => 0.0057879325988632
309 => 0.0055980464401636
310 => 0.0056886700678813
311 => 0.0056719351928868
312 => 0.0061753754629594
313 => 0.0061675149356017
314 => 0.006171277354078
315 => 0.0059916873172752
316 => 0.0062777791223029
317 => 0.0064187182329882
318 => 0.0063926341545733
319 => 0.0063991989551509
320 => 0.0062863939310026
321 => 0.0061723695532913
322 => 0.0060458989701836
323 => 0.0062808656813613
324 => 0.0062547413940938
325 => 0.0063146611098635
326 => 0.0064670538178296
327 => 0.0064894942229612
328 => 0.0065196543550262
329 => 0.0065088440946253
330 => 0.0067663883549099
331 => 0.0067351980456577
401 => 0.0068103577168911
402 => 0.006655748570786
403 => 0.0064807936463332
404 => 0.0065140468577642
405 => 0.006510844306098
406 => 0.0064700721476689
407 => 0.0064332648660855
408 => 0.0063719911126365
409 => 0.0065658703353585
410 => 0.0065579991929811
411 => 0.0066854238388703
412 => 0.0066629002949724
413 => 0.0065124825563761
414 => 0.0065178547553367
415 => 0.0065539853751376
416 => 0.0066790338628007
417 => 0.0067161567678894
418 => 0.0066989599591603
419 => 0.0067396635298651
420 => 0.0067718339725318
421 => 0.0067437036421592
422 => 0.0071419697986193
423 => 0.0069765819234375
424 => 0.0070571908230397
425 => 0.0070764155706196
426 => 0.0070271717839466
427 => 0.0070378509979881
428 => 0.0070540270973495
429 => 0.0071522452050667
430 => 0.007409997939355
501 => 0.0075241548707892
502 => 0.0078676016314125
503 => 0.0075146757267748
504 => 0.0074937345641461
505 => 0.0075555996968329
506 => 0.0077572393028506
507 => 0.0079206492644828
508 => 0.007974861776103
509 => 0.0079820268544646
510 => 0.0080837331302438
511 => 0.0081420292708107
512 => 0.0080713833132236
513 => 0.0080115182611086
514 => 0.0077970890751566
515 => 0.0078219098373018
516 => 0.007992900274917
517 => 0.008234434339335
518 => 0.008441695693942
519 => 0.0083691199913461
520 => 0.0089228213716913
521 => 0.0089777186018852
522 => 0.0089701335797123
523 => 0.0090951976398973
524 => 0.0088469709492831
525 => 0.0087408492298799
526 => 0.0080244617648731
527 => 0.0082257374214751
528 => 0.0085183034088509
529 => 0.0084795812033555
530 => 0.008267111963012
531 => 0.0084415345169706
601 => 0.0083838649659343
602 => 0.0083383785983201
603 => 0.0085467604663269
604 => 0.0083176360425981
605 => 0.0085160177174531
606 => 0.0082615911674559
607 => 0.0083694515110422
608 => 0.0083082247634048
609 => 0.0083478459727942
610 => 0.0081162211922983
611 => 0.0082412003014802
612 => 0.0081110216504632
613 => 0.0081109599288328
614 => 0.0081080862278965
615 => 0.0082612408335175
616 => 0.0082662351997083
617 => 0.0081530537147507
618 => 0.0081367424945412
619 => 0.0081970536247122
620 => 0.0081264450867919
621 => 0.00815948237728
622 => 0.0081274457526652
623 => 0.0081202336336699
624 => 0.008062766242474
625 => 0.0080380077102481
626 => 0.0080477161686826
627 => 0.008014576194992
628 => 0.0079946081621182
629 => 0.0081041140835698
630 => 0.0080456094871945
701 => 0.0080951474151012
702 => 0.0080386926940665
703 => 0.0078429960348092
704 => 0.0077304488166157
705 => 0.0073607959683686
706 => 0.0074656290575786
707 => 0.0075351335041824
708 => 0.0075121622849945
709 => 0.007561513352492
710 => 0.0075645431072235
711 => 0.0075484985721055
712 => 0.0075299210558711
713 => 0.0075208785483693
714 => 0.0075882739909005
715 => 0.0076273993137162
716 => 0.0075421092052487
717 => 0.0075221269261702
718 => 0.0076083599348267
719 => 0.0076609620202921
720 => 0.0080493462648094
721 => 0.008020573505511
722 => 0.0080927874849812
723 => 0.0080846572991067
724 => 0.0081603490541805
725 => 0.0082840730840039
726 => 0.0080325075375902
727 => 0.0080761706179655
728 => 0.0080654654389853
729 => 0.008182341776043
730 => 0.0081827066512098
731 => 0.0081126334487377
801 => 0.0081506212686057
802 => 0.0081294175096967
803 => 0.0081677355679051
804 => 0.0080201892277686
805 => 0.0081998847434117
806 => 0.0083017605214581
807 => 0.0083031750667351
808 => 0.0083514633769929
809 => 0.0084005270968852
810 => 0.008494700634669
811 => 0.0083979006480292
812 => 0.0082237668953529
813 => 0.0082363387898476
814 => 0.0081342442343665
815 => 0.008135960462289
816 => 0.0081267991031354
817 => 0.0081542930315904
818 => 0.0080262225989468
819 => 0.0080562804735047
820 => 0.0080141992731049
821 => 0.0080760791416542
822 => 0.0080095066322039
823 => 0.0080654602766238
824 => 0.0080896080146628
825 => 0.0081787136878901
826 => 0.0079963456518186
827 => 0.0076244848810381
828 => 0.0077026545234322
829 => 0.0075870354822384
830 => 0.0075977364646936
831 => 0.0076193541523019
901 => 0.0075492841538962
902 => 0.0075626513014326
903 => 0.0075621737328594
904 => 0.0075580583048993
905 => 0.0075398303920822
906 => 0.0075133963122149
907 => 0.0076187015504257
908 => 0.007636594962405
909 => 0.0076763698007101
910 => 0.0077947127399756
911 => 0.0077828874896243
912 => 0.0078021749635722
913 => 0.0077600705162385
914 => 0.007599689569247
915 => 0.0076083990262846
916 => 0.0074997919574655
917 => 0.0076735924737784
918 => 0.0076324342174608
919 => 0.0076058992218625
920 => 0.0075986589024685
921 => 0.0077172951909904
922 => 0.0077527930279121
923 => 0.0077306731581137
924 => 0.0076853046598175
925 => 0.0077724255885387
926 => 0.0077957354737276
927 => 0.0078009536973859
928 => 0.0079553152792987
929 => 0.0078095807950715
930 => 0.0078446605339012
1001 => 0.0081183426422972
1002 => 0.0078701507355314
1003 => 0.0080016235238852
1004 => 0.0079951886150467
1005 => 0.0080624456447719
1006 => 0.0079896715755236
1007 => 0.0079905736973309
1008 => 0.008050293383341
1009 => 0.0079664278548419
1010 => 0.0079456615705819
1011 => 0.0079169730976077
1012 => 0.0079796133288001
1013 => 0.008017163314426
1014 => 0.008319788621145
1015 => 0.0085152983706761
1016 => 0.0085068107768287
1017 => 0.0085843714964843
1018 => 0.0085494296819047
1019 => 0.0084365933454422
1020 => 0.0086291912128584
1021 => 0.0085682451889708
1022 => 0.0085732695051307
1023 => 0.0085730824998323
1024 => 0.0086136062777236
1025 => 0.0085848914671379
1026 => 0.0085282916279586
1027 => 0.0085658652426097
1028 => 0.0086774454453104
1029 => 0.0090237938181921
1030 => 0.0092176149561623
1031 => 0.0090121255423173
1101 => 0.0091538693883747
1102 => 0.0090688735892367
1103 => 0.0090534273241273
1104 => 0.0091424529342393
1105 => 0.0092316343718967
1106 => 0.0092259538998599
1107 => 0.0091612127556381
1108 => 0.0091246421260129
1109 => 0.0094015671855945
1110 => 0.0096056008521989
1111 => 0.0095916871239955
1112 => 0.0096530977952983
1113 => 0.009833401425604
1114 => 0.0098498861299205
1115 => 0.0098478094360732
1116 => 0.0098069503764238
1117 => 0.0099844827158447
1118 => 0.010132583316774
1119 => 0.0097974926846467
1120 => 0.0099250908107023
1121 => 0.0099823737204435
1122 => 0.010066482027017
1123 => 0.010208386838396
1124 => 0.010362533101945
1125 => 0.010384331073739
1126 => 0.010368864369622
1127 => 0.010267200765137
1128 => 0.010435869446061
1129 => 0.010534671603578
1130 => 0.010593506027333
1201 => 0.01074270033686
1202 => 0.0099827274801927
1203 => 0.0094447809191421
1204 => 0.0093607727955915
1205 => 0.0095316066182879
1206 => 0.0095766541349587
1207 => 0.0095584955374735
1208 => 0.0089529877750495
1209 => 0.0093575849225351
1210 => 0.0097928974337352
1211 => 0.0098096195601564
1212 => 0.010027546105219
1213 => 0.010098511921402
1214 => 0.010273971354462
1215 => 0.010262996319152
1216 => 0.010305717898932
1217 => 0.010295896947575
1218 => 0.010620898599977
1219 => 0.010979423685788
1220 => 0.010967009102106
1221 => 0.010915466879145
1222 => 0.010992015869498
1223 => 0.011362052179938
1224 => 0.011327985166184
1225 => 0.011361078368225
1226 => 0.011797372032566
1227 => 0.012364615858261
1228 => 0.012101074150877
1229 => 0.012672883823817
1230 => 0.013032807702604
1231 => 0.013655258834143
]
'min_raw' => 0.0055751396947718
'max_raw' => 0.013655258834143
'avg_raw' => 0.0096151992644573
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005575'
'max' => '$0.013655'
'avg' => '$0.009615'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0024859170573709
'max_diff' => 0.0055398510511111
'year' => 2028
]
3 => [
'items' => [
101 => 0.013577324886838
102 => 0.013819640544588
103 => 0.013437806855856
104 => 0.012561039525206
105 => 0.012422287739
106 => 0.012700072328739
107 => 0.013382978636788
108 => 0.012678565178841
109 => 0.012821067103954
110 => 0.012780026539935
111 => 0.012777839662689
112 => 0.012861303872474
113 => 0.012740234682981
114 => 0.012246977025055
115 => 0.012473034102897
116 => 0.012385742608989
117 => 0.012482599029491
118 => 0.013005293184315
119 => 0.012774197638995
120 => 0.012530757254678
121 => 0.012836085520357
122 => 0.013224873324742
123 => 0.013200543682663
124 => 0.013153334008027
125 => 0.013419452472131
126 => 0.013859002209436
127 => 0.013977810737176
128 => 0.01406551276342
129 => 0.014077605391101
130 => 0.014202166971743
131 => 0.013532367959069
201 => 0.014595356193842
202 => 0.01477890489753
203 => 0.014744405348551
204 => 0.01494841200779
205 => 0.014888388073492
206 => 0.014801422810162
207 => 0.015124816758516
208 => 0.014754071693274
209 => 0.014227845748668
210 => 0.013939147787888
211 => 0.014319328551243
212 => 0.014551491676944
213 => 0.014704936734684
214 => 0.014751369116442
215 => 0.01358436254975
216 => 0.012955410735454
217 => 0.01335856163747
218 => 0.013850433561919
219 => 0.013529635585694
220 => 0.013542210259011
221 => 0.013084836649138
222 => 0.013890900977636
223 => 0.013773464185042
224 => 0.014382726472761
225 => 0.014237321138162
226 => 0.014734150882372
227 => 0.014603318960143
228 => 0.015146394954599
301 => 0.015363042671983
302 => 0.015726827907995
303 => 0.015994429808478
304 => 0.01615157076285
305 => 0.01614213660937
306 => 0.016764807357906
307 => 0.016397640171953
308 => 0.015936391651736
309 => 0.015928049121226
310 => 0.016166936265788
311 => 0.016667578185304
312 => 0.016797387350991
313 => 0.016869932965718
314 => 0.016758826831433
315 => 0.016360293166191
316 => 0.016188208350151
317 => 0.016334829599194
318 => 0.016155524410922
319 => 0.01646505547003
320 => 0.016890107726452
321 => 0.016802336116339
322 => 0.01709574344949
323 => 0.017399389171949
324 => 0.017833616192648
325 => 0.017947139215239
326 => 0.018134788454687
327 => 0.018327941161644
328 => 0.018389976605507
329 => 0.018508421516309
330 => 0.018507797253163
331 => 0.018864738964128
401 => 0.019258456724887
402 => 0.019407076064986
403 => 0.019748818042627
404 => 0.019163596881985
405 => 0.019607493854868
406 => 0.02000790003587
407 => 0.01953051928007
408 => 0.02018847743649
409 => 0.020214024460738
410 => 0.020599754196067
411 => 0.020208743212436
412 => 0.019976562138506
413 => 0.020646860199228
414 => 0.020971196316621
415 => 0.020873503638527
416 => 0.020130057534554
417 => 0.019697340014138
418 => 0.018564834798233
419 => 0.019906336147057
420 => 0.020559742321938
421 => 0.020128365370412
422 => 0.020345926813063
423 => 0.021532871499631
424 => 0.021984783187299
425 => 0.021890788715365
426 => 0.021906672233841
427 => 0.02215051557773
428 => 0.023231851251513
429 => 0.022583889850617
430 => 0.023079232062951
501 => 0.023341959786284
502 => 0.02358599593769
503 => 0.022986720278254
504 => 0.022207071450434
505 => 0.021960123939233
506 => 0.020085473434094
507 => 0.019987889734107
508 => 0.019933113046215
509 => 0.019587753777376
510 => 0.019316395993934
511 => 0.019100602209672
512 => 0.01853429487829
513 => 0.018725406978505
514 => 0.017822831289808
515 => 0.018400267230118
516 => 0.016959734637505
517 => 0.01815945298629
518 => 0.017506500833546
519 => 0.017944940643022
520 => 0.01794341096783
521 => 0.017136104271118
522 => 0.016670466616514
523 => 0.016967189052916
524 => 0.017285299058595
525 => 0.017336911336766
526 => 0.017749349262649
527 => 0.01786445182244
528 => 0.01751568569265
529 => 0.016929882801413
530 => 0.017065951452306
531 => 0.016667709189647
601 => 0.015969804942505
602 => 0.016471051957041
603 => 0.01664219972608
604 => 0.01671778833096
605 => 0.01603147965874
606 => 0.015815826573442
607 => 0.015701014680335
608 => 0.016841288970125
609 => 0.016903755769743
610 => 0.01658416679098
611 => 0.018028739279659
612 => 0.017701788035131
613 => 0.018067072680269
614 => 0.017053604648442
615 => 0.017092320492073
616 => 0.01661252848426
617 => 0.016881179948922
618 => 0.01669130575274
619 => 0.016859475565443
620 => 0.016960275857787
621 => 0.017439989136452
622 => 0.018164930541359
623 => 0.017368335969648
624 => 0.017021248307309
625 => 0.017236579540929
626 => 0.017810034992077
627 => 0.01867884935521
628 => 0.018164493765717
629 => 0.01839275604201
630 => 0.018442621194698
701 => 0.018063354425484
702 => 0.018692833461972
703 => 0.019030176391504
704 => 0.019376220433921
705 => 0.019676680780018
706 => 0.019238002833708
707 => 0.019707451118273
708 => 0.019329158669691
709 => 0.018989791236159
710 => 0.018990305916471
711 => 0.01877741576805
712 => 0.018364914279598
713 => 0.018288842676219
714 => 0.01868457676378
715 => 0.019001918025846
716 => 0.019028055772152
717 => 0.019203752200415
718 => 0.019307727536844
719 => 0.020326827181461
720 => 0.020736717488961
721 => 0.021237923598145
722 => 0.0214331716241
723 => 0.022020798181935
724 => 0.021546242011788
725 => 0.021443568799278
726 => 0.020018178981152
727 => 0.020251586484018
728 => 0.020625294416582
729 => 0.020024341287315
730 => 0.020405507727492
731 => 0.020480758056992
801 => 0.02000392112994
802 => 0.020258620335586
803 => 0.019582214758442
804 => 0.018179674334537
805 => 0.018694394890401
806 => 0.019073402472583
807 => 0.018532511921512
808 => 0.019502037298951
809 => 0.018935660588517
810 => 0.018756146362186
811 => 0.018055797363827
812 => 0.018386335132147
813 => 0.018833392196646
814 => 0.018557162906748
815 => 0.019130380159323
816 => 0.019942208660426
817 => 0.020520765995535
818 => 0.02056518044375
819 => 0.020193206837606
820 => 0.020789296915356
821 => 0.020793638780806
822 => 0.020121246738004
823 => 0.019709410355683
824 => 0.019615840263109
825 => 0.019849596699857
826 => 0.020133420167889
827 => 0.020580930670915
828 => 0.020851351895439
829 => 0.021556467028662
830 => 0.021747250966477
831 => 0.02195686467206
901 => 0.022236973225192
902 => 0.022573315361586
903 => 0.021837417915125
904 => 0.021866656492557
905 => 0.021181398979607
906 => 0.020449103051152
907 => 0.021004824378873
908 => 0.021731356090359
909 => 0.021564688912998
910 => 0.021545935450843
911 => 0.021577473572411
912 => 0.021451811963522
913 => 0.020883449163753
914 => 0.020598020923848
915 => 0.020966296173835
916 => 0.021162018079158
917 => 0.021465565685569
918 => 0.021428147035966
919 => 0.022210053071448
920 => 0.022513878113225
921 => 0.022436146666132
922 => 0.022450451123109
923 => 0.023000511848671
924 => 0.023612292504112
925 => 0.0241853058195
926 => 0.024768199575408
927 => 0.024065498401931
928 => 0.023708710082622
929 => 0.024076824555156
930 => 0.023881497834443
1001 => 0.025003903109326
1002 => 0.025081616015311
1003 => 0.026203940127517
1004 => 0.027269159353871
1005 => 0.026600114243183
1006 => 0.027230993648108
1007 => 0.027913341160887
1008 => 0.029229700219931
1009 => 0.028786396798915
1010 => 0.028446833325867
1011 => 0.028125947484595
1012 => 0.028793659981089
1013 => 0.02965266144086
1014 => 0.029837682127881
1015 => 0.030137486324198
1016 => 0.029822278870084
1017 => 0.030201911529602
1018 => 0.031542181636743
1019 => 0.031180028822902
1020 => 0.030665713608278
1021 => 0.031723728136957
1022 => 0.032106619481958
1023 => 0.034793951462933
1024 => 0.038186819097061
1025 => 0.036782149617762
1026 => 0.03591022594356
1027 => 0.036115148689304
1028 => 0.03735410909347
1029 => 0.03775202385265
1030 => 0.036670354367755
1031 => 0.037052418316129
1101 => 0.039157628235371
1102 => 0.040287005813823
1103 => 0.03875315936664
1104 => 0.034521337852093
1105 => 0.030619405150446
1106 => 0.031654373409242
1107 => 0.031537040127499
1108 => 0.033798825555438
1109 => 0.031171391598064
1110 => 0.031215630847476
1111 => 0.033524187602793
1112 => 0.032908304239157
1113 => 0.031910652066448
1114 => 0.030626689115374
1115 => 0.028253164848117
1116 => 0.026150868213987
1117 => 0.030273956043517
1118 => 0.030096160998958
1119 => 0.029838687426689
1120 => 0.030411667000224
1121 => 0.033193893166222
1122 => 0.033129753847908
1123 => 0.032721732228965
1124 => 0.033031213030796
1125 => 0.031856398585569
1126 => 0.032159175018132
1127 => 0.03061878706437
1128 => 0.031315106751754
1129 => 0.031908511552953
1130 => 0.032027646352302
1201 => 0.032296063138409
1202 => 0.030002471089546
1203 => 0.031032226583161
1204 => 0.031637111460618
1205 => 0.028904219578365
1206 => 0.031583090975023
1207 => 0.029962544754757
1208 => 0.029412507027811
1209 => 0.030153060365183
1210 => 0.029864466009398
1211 => 0.029616349529122
1212 => 0.029477896269946
1213 => 0.030021676909023
1214 => 0.029996308892252
1215 => 0.029106578223448
1216 => 0.027945960836055
1217 => 0.028335502127231
1218 => 0.028193978124177
1219 => 0.027681076880152
1220 => 0.028026710390693
1221 => 0.026504715331388
1222 => 0.023886201938275
1223 => 0.025616072093
1224 => 0.02554947397378
1225 => 0.025515892182085
1226 => 0.026815841793261
1227 => 0.026690881633087
1228 => 0.026464077718757
1229 => 0.027676911448404
1230 => 0.027234210822167
1231 => 0.028598509838843
]
'min_raw' => 0.012246977025055
'max_raw' => 0.040287005813823
'avg_raw' => 0.026266991419439
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012246'
'max' => '$0.040287'
'avg' => '$0.026266'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0066718373302827
'max_diff' => 0.026631746979681
'year' => 2029
]
4 => [
'items' => [
101 => 0.029497125408554
102 => 0.029269207432907
103 => 0.030114359719606
104 => 0.028344476371817
105 => 0.028932360624557
106 => 0.029053522754275
107 => 0.027661945268443
108 => 0.0267113266607
109 => 0.026647931237409
110 => 0.024999689574896
111 => 0.025880166966868
112 => 0.026654950635174
113 => 0.026283889383697
114 => 0.026166422476619
115 => 0.026766535429417
116 => 0.02681316934547
117 => 0.025749911117437
118 => 0.025970996172054
119 => 0.026892957602139
120 => 0.025947765109525
121 => 0.024111410492693
122 => 0.02365596915813
123 => 0.02359520488865
124 => 0.022360011867807
125 => 0.023686403925883
126 => 0.023107398247436
127 => 0.024936470248098
128 => 0.023891714130829
129 => 0.023846676782742
130 => 0.023778596225564
131 => 0.022715414567343
201 => 0.022948183781774
202 => 0.023721944102296
203 => 0.023998030501692
204 => 0.023969232428326
205 => 0.023718152254602
206 => 0.023833095472394
207 => 0.023462823319014
208 => 0.023332072515106
209 => 0.022919387012134
210 => 0.022312853330043
211 => 0.022397195558625
212 => 0.021195493626234
213 => 0.020540742634318
214 => 0.020359516189235
215 => 0.020117172612896
216 => 0.020386889541034
217 => 0.021192089355645
218 => 0.020220847546554
219 => 0.018555721589559
220 => 0.018655798496811
221 => 0.018880641594306
222 => 0.018461647969611
223 => 0.018065105667306
224 => 0.018409867026666
225 => 0.01770433120772
226 => 0.018965902227289
227 => 0.018931780266721
228 => 0.019402015927788
301 => 0.01969606393686
302 => 0.019018378475122
303 => 0.018847942414151
304 => 0.018945030540367
305 => 0.01734038008049
306 => 0.019270881751029
307 => 0.019287576809641
308 => 0.019144623581936
309 => 0.020172556123945
310 => 0.022341814407786
311 => 0.021525652183193
312 => 0.021209609501196
313 => 0.020608812131696
314 => 0.021409338954737
315 => 0.021347870984892
316 => 0.021069889514214
317 => 0.020901765453393
318 => 0.02121153919042
319 => 0.020863381059261
320 => 0.020800842292159
321 => 0.020421925406371
322 => 0.020286669317764
323 => 0.02018653109446
324 => 0.020076288749981
325 => 0.020319455891222
326 => 0.019768407157868
327 => 0.019103896405418
328 => 0.019048649526458
329 => 0.019201191016622
330 => 0.019133702762603
331 => 0.019048326418662
401 => 0.018885319727215
402 => 0.01883695912395
403 => 0.018994107623333
404 => 0.018816696129856
405 => 0.019078476452585
406 => 0.019007286689769
407 => 0.018609626461665
408 => 0.018113994584775
409 => 0.018109582421447
410 => 0.01800279934657
411 => 0.017866795045772
412 => 0.017828961760647
413 => 0.018380832186598
414 => 0.019523187452226
415 => 0.019298915779339
416 => 0.019460975047285
417 => 0.020258146249631
418 => 0.020511543003082
419 => 0.020331687989513
420 => 0.020085491353966
421 => 0.020096322756461
422 => 0.020937651188915
423 => 0.020990123811252
424 => 0.02112270519959
425 => 0.0212931097511
426 => 0.020360708621485
427 => 0.020052406747106
428 => 0.019906316215088
429 => 0.019456413920625
430 => 0.019941594973496
501 => 0.019658900751512
502 => 0.019697045860267
503 => 0.019672203808149
504 => 0.019685769248418
505 => 0.018965549592478
506 => 0.019227959781472
507 => 0.018791651946976
508 => 0.018207484734439
509 => 0.018205526401107
510 => 0.018348500498787
511 => 0.01826345391091
512 => 0.018034595729682
513 => 0.018067103954145
514 => 0.017782297701085
515 => 0.01810168458985
516 => 0.018110843462999
517 => 0.017987862113703
518 => 0.018479921682743
519 => 0.018681518889661
520 => 0.018600569931039
521 => 0.018675839294931
522 => 0.019308235279873
523 => 0.01941134341879
524 => 0.019457137243156
525 => 0.019395779585025
526 => 0.01868739833263
527 => 0.018718818053443
528 => 0.018488280989427
529 => 0.01829350146373
530 => 0.018301291623274
531 => 0.018401433619048
601 => 0.018838759587843
602 => 0.019759086307399
603 => 0.019794012033656
604 => 0.019836343032735
605 => 0.019664161585626
606 => 0.019612230013623
607 => 0.019680741161771
608 => 0.020026367489156
609 => 0.020915412239823
610 => 0.020601164447635
611 => 0.020345676101027
612 => 0.020569808260166
613 => 0.020535304871072
614 => 0.02024406154414
615 => 0.020235887313969
616 => 0.019676898253463
617 => 0.019470252725359
618 => 0.019297564254926
619 => 0.019108992953359
620 => 0.018997201564823
621 => 0.019168963945892
622 => 0.019208248034675
623 => 0.018832686586576
624 => 0.018781498948947
625 => 0.019088190534522
626 => 0.018953227002325
627 => 0.019092040342124
628 => 0.019124246227676
629 => 0.019119060338338
630 => 0.018978142910261
701 => 0.019067959476699
702 => 0.018855516521467
703 => 0.018624516715552
704 => 0.018477153231175
705 => 0.018348559046126
706 => 0.018419910573929
707 => 0.018165555405585
708 => 0.018084182068074
709 => 0.019037531644927
710 => 0.019741781227583
711 => 0.019731541159737
712 => 0.019669207380261
713 => 0.019576592027905
714 => 0.020019592099265
715 => 0.019865259732469
716 => 0.019977549424214
717 => 0.020006131863547
718 => 0.020092642298927
719 => 0.020123562343752
720 => 0.020030100492938
721 => 0.019716431106205
722 => 0.018934796817256
723 => 0.018570943945768
724 => 0.018450866437728
725 => 0.018455231027086
726 => 0.018334836168219
727 => 0.018370297849874
728 => 0.01832250404252
729 => 0.018231994133956
730 => 0.018414321842125
731 => 0.018435333411992
801 => 0.018392775946251
802 => 0.018402799770036
803 => 0.018050442130235
804 => 0.018077231116309
805 => 0.017928066637672
806 => 0.017900100096133
807 => 0.017523025283376
808 => 0.01685498259471
809 => 0.017225143092704
810 => 0.01677804126357
811 => 0.016608717026178
812 => 0.017410271630667
813 => 0.017329817780041
814 => 0.017192115760216
815 => 0.01698842577328
816 => 0.016912875175756
817 => 0.016453853661616
818 => 0.016426732221776
819 => 0.016654235678807
820 => 0.016549250661304
821 => 0.016401811935793
822 => 0.015867803817616
823 => 0.015267401888774
824 => 0.015285524249014
825 => 0.015476500931704
826 => 0.016031791393338
827 => 0.015814829803355
828 => 0.015657421680475
829 => 0.01562794387073
830 => 0.01599692037566
831 => 0.016519099433102
901 => 0.016764094163756
902 => 0.016521311826279
903 => 0.016242416549314
904 => 0.016259391612546
905 => 0.01637231910327
906 => 0.016384186185837
907 => 0.01620265403143
908 => 0.016253754269565
909 => 0.016176128335135
910 => 0.015699738118822
911 => 0.015691121730458
912 => 0.015574207888545
913 => 0.015570667783876
914 => 0.015371768173257
915 => 0.015343940742804
916 => 0.014949013493576
917 => 0.015208955804968
918 => 0.01503460015007
919 => 0.014771805051799
920 => 0.014726499077803
921 => 0.014725137125516
922 => 0.014994968931533
923 => 0.015205802663211
924 => 0.015037633141335
925 => 0.014999344201034
926 => 0.01540816991142
927 => 0.015356143113244
928 => 0.015311088241561
929 => 0.016472344025818
930 => 0.01555311945866
1001 => 0.015152285079875
1002 => 0.014656176419744
1003 => 0.01481771190108
1004 => 0.014851749800447
1005 => 0.013658697903141
1006 => 0.013174676896988
1007 => 0.013008579127624
1008 => 0.012912987513077
1009 => 0.01295654981219
1010 => 0.012520874136651
1011 => 0.012813655396024
1012 => 0.012436397087756
1013 => 0.01237314850467
1014 => 0.01304773309319
1015 => 0.013141597597816
1016 => 0.012741142459664
1017 => 0.012998299486155
1018 => 0.012905050773599
1019 => 0.012442864098654
1020 => 0.012425211967286
1021 => 0.012193302940445
1022 => 0.011830410219876
1023 => 0.011664558508865
1024 => 0.011578181497779
1025 => 0.011613822336007
1026 => 0.011595801237572
1027 => 0.011478201380337
1028 => 0.011602541923731
1029 => 0.011284903216419
1030 => 0.011158416923779
1031 => 0.011101285999853
1101 => 0.010819363364512
1102 => 0.011268027648904
1103 => 0.011356420165053
1104 => 0.011444986841765
1105 => 0.012215899295501
1106 => 0.012177386687889
1107 => 0.012525521904307
1108 => 0.012511994009976
1109 => 0.012412700206837
1110 => 0.011993795984431
1111 => 0.012160763741233
1112 => 0.011646862938349
1113 => 0.012031912361727
1114 => 0.011856191884946
1115 => 0.011972501091769
1116 => 0.011763366650723
1117 => 0.011879110285347
1118 => 0.011377381309778
1119 => 0.010908873851909
1120 => 0.011097414929541
1121 => 0.011302380643214
1122 => 0.011746798534751
1123 => 0.01148210690492
1124 => 0.011577300024106
1125 => 0.011258419009969
1126 => 0.010600476393946
1127 => 0.0106042002777
1128 => 0.010502990140284
1129 => 0.010415529804634
1130 => 0.011512509922689
1201 => 0.011376083104319
1202 => 0.011158704824348
1203 => 0.011449674290359
1204 => 0.011526611235479
1205 => 0.011528801522146
1206 => 0.011741085333538
1207 => 0.011854381241732
1208 => 0.011874350136604
1209 => 0.012208383300526
1210 => 0.012320346811068
1211 => 0.012781508665324
1212 => 0.011844768875477
1213 => 0.011825477335943
1214 => 0.01145376882745
1215 => 0.011218025414884
1216 => 0.011469910380595
1217 => 0.011693046074489
1218 => 0.011460702275447
1219 => 0.011491041470557
1220 => 0.011179138903529
1221 => 0.011290629394862
1222 => 0.011386660025388
1223 => 0.011333637555631
1224 => 0.011254260352088
1225 => 0.011674751492196
1226 => 0.011651025734153
1227 => 0.01204259675087
1228 => 0.012347854359914
1229 => 0.012894930566645
1230 => 0.012324028025193
1231 => 0.012303222067451
]
'min_raw' => 0.010415529804634
'max_raw' => 0.030114359719606
'avg_raw' => 0.02026494476212
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010415'
'max' => '$0.030114'
'avg' => '$0.020264'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018314472204202
'max_diff' => -0.010172646094218
'year' => 2030
]
5 => [
'items' => [
101 => 0.012506603641765
102 => 0.012320315674409
103 => 0.012438043239336
104 => 0.012875962835874
105 => 0.012885215386884
106 => 0.012730223236225
107 => 0.012720791949771
108 => 0.012750559887734
109 => 0.012924911630165
110 => 0.012863987774071
111 => 0.012934490402746
112 => 0.013022655019478
113 => 0.013387341255303
114 => 0.013475265872121
115 => 0.01326165463694
116 => 0.013280941339774
117 => 0.013201044874056
118 => 0.013123865889273
119 => 0.01329735297598
120 => 0.013614404036834
121 => 0.013612431678639
122 => 0.013685981362165
123 => 0.013731802205683
124 => 0.013535105602396
125 => 0.01340706334639
126 => 0.013456162894883
127 => 0.013534674142172
128 => 0.013430702755535
129 => 0.012788943192978
130 => 0.012983612048498
131 => 0.012951209632119
201 => 0.012905064650926
202 => 0.013100805690482
203 => 0.013081925989703
204 => 0.012516405652883
205 => 0.01255260843002
206 => 0.012518607263668
207 => 0.012628471988136
208 => 0.012314382618742
209 => 0.012410994393344
210 => 0.012471588392694
211 => 0.012507278723817
212 => 0.012636216672921
213 => 0.01262108729279
214 => 0.012635276209409
215 => 0.012826457149574
216 => 0.013793384739551
217 => 0.013846012474868
218 => 0.013586854258477
219 => 0.013690382854256
220 => 0.013491630589576
221 => 0.01362505431638
222 => 0.013716339441664
223 => 0.013303839513626
224 => 0.01327941394499
225 => 0.013079841359015
226 => 0.013187080362349
227 => 0.013016455397287
228 => 0.013058320795505
301 => 0.012941261492327
302 => 0.013151944931773
303 => 0.01338752175397
304 => 0.013447037762468
305 => 0.013290476767363
306 => 0.013177116289035
307 => 0.012978092632354
308 => 0.013309073408946
309 => 0.013405862274478
310 => 0.01330856501824
311 => 0.013286019117982
312 => 0.013243294677734
313 => 0.013295083309953
314 => 0.01340533514153
315 => 0.01335334241379
316 => 0.013387684526456
317 => 0.013256807806405
318 => 0.013535170717156
319 => 0.013977278011111
320 => 0.013978699458353
321 => 0.013926706450353
322 => 0.013905432031684
323 => 0.013958780013092
324 => 0.013987719104557
325 => 0.014160236694084
326 => 0.01434535494105
327 => 0.015209221026224
328 => 0.014966650886323
329 => 0.015733124268712
330 => 0.016339305200069
331 => 0.016521072356304
401 => 0.016353855125374
402 => 0.015781814011259
403 => 0.015753746945134
404 => 0.01660861787915
405 => 0.016367077684722
406 => 0.016338347247169
407 => 0.016032703932447
408 => 0.016213376986109
409 => 0.016173861138959
410 => 0.016111483441052
411 => 0.016456195041644
412 => 0.017101464385335
413 => 0.017000893106823
414 => 0.016925821312781
415 => 0.016596878564361
416 => 0.016794975570933
417 => 0.016724437021191
418 => 0.017027515395752
419 => 0.01684797848067
420 => 0.016365247780187
421 => 0.01644212423534
422 => 0.016430504513798
423 => 0.016669637559759
424 => 0.016597855755008
425 => 0.016416487964364
426 => 0.017099258924868
427 => 0.017054923576464
428 => 0.017117780964029
429 => 0.017145452729964
430 => 0.017561043381849
501 => 0.017731297574509
502 => 0.017769948256962
503 => 0.017931676572057
504 => 0.017765924309151
505 => 0.018429051540134
506 => 0.018869992454191
507 => 0.01938216801648
508 => 0.020130594172798
509 => 0.020412009330902
510 => 0.02036117420144
511 => 0.02092862237149
512 => 0.021948314119406
513 => 0.020567283057796
514 => 0.022021512119077
515 => 0.021561119988157
516 => 0.020469538527848
517 => 0.020399253550704
518 => 0.021138485189147
519 => 0.022778029814805
520 => 0.022367342481639
521 => 0.022778701552157
522 => 0.022298829345774
523 => 0.022274999646046
524 => 0.022755395230188
525 => 0.023877865697534
526 => 0.023344622053674
527 => 0.022580086533495
528 => 0.023144607664105
529 => 0.022655567216806
530 => 0.02155362221524
531 => 0.022367028436775
601 => 0.02182312686091
602 => 0.021981866256145
603 => 0.02312506646936
604 => 0.022987513595173
605 => 0.023165519751424
606 => 0.022851343544874
607 => 0.022557853426916
608 => 0.022010032326884
609 => 0.021847849506419
610 => 0.021892671003269
611 => 0.021847827295111
612 => 0.021541326424379
613 => 0.021475137590527
614 => 0.021364819967641
615 => 0.021399012011869
616 => 0.021191582606283
617 => 0.021583044751725
618 => 0.021655703575472
619 => 0.021940577079691
620 => 0.02197015359193
621 => 0.022763522246259
622 => 0.022326548123473
623 => 0.022619708091569
624 => 0.022593485104694
625 => 0.020493196408057
626 => 0.02078259765945
627 => 0.021232815187501
628 => 0.021029992801369
629 => 0.020743249400508
630 => 0.020511688730105
701 => 0.020160850636149
702 => 0.020654648516143
703 => 0.021303940218785
704 => 0.021986620701004
705 => 0.022806816569393
706 => 0.022623758399701
707 => 0.02197128770976
708 => 0.022000557068281
709 => 0.022181488725587
710 => 0.021947165790001
711 => 0.02187805938177
712 => 0.022171994566297
713 => 0.022174018736369
714 => 0.021904401880105
715 => 0.021604772083731
716 => 0.021603516623944
717 => 0.021550200395759
718 => 0.022308314184325
719 => 0.022725200114087
720 => 0.022772995414089
721 => 0.022721983109584
722 => 0.022741615720982
723 => 0.022499038983908
724 => 0.023053497470962
725 => 0.023562323408944
726 => 0.023425947188084
727 => 0.023221499845993
728 => 0.023058647690499
729 => 0.023387584395766
730 => 0.023372937362074
731 => 0.023557879258265
801 => 0.023549489225578
802 => 0.023487300221905
803 => 0.023425949409049
804 => 0.023669198447244
805 => 0.023599146630704
806 => 0.023528986004344
807 => 0.023388268127124
808 => 0.023407394023715
809 => 0.02320298198234
810 => 0.023108411618742
811 => 0.021686300256249
812 => 0.021306265631362
813 => 0.021425832260669
814 => 0.021465196699584
815 => 0.021299805143805
816 => 0.021536934149187
817 => 0.02149997784488
818 => 0.021643753206223
819 => 0.021553928602457
820 => 0.021557615035527
821 => 0.021821770042581
822 => 0.021898455364924
823 => 0.021859452591054
824 => 0.021886768796936
825 => 0.022516259232035
826 => 0.022426765822135
827 => 0.022379224231795
828 => 0.022392393577224
829 => 0.022553241879819
830 => 0.022598270622554
831 => 0.022407480675473
901 => 0.02249745831746
902 => 0.022880571697178
903 => 0.02301463969774
904 => 0.023442520399242
905 => 0.023260749072271
906 => 0.023594398209805
907 => 0.024619921909214
908 => 0.025439181201143
909 => 0.024685756498963
910 => 0.026190221856549
911 => 0.027361663940169
912 => 0.02731670204186
913 => 0.027112434018638
914 => 0.025778778350837
915 => 0.02455152852164
916 => 0.025578175115543
917 => 0.025580792248843
918 => 0.025492602395939
919 => 0.024944862793669
920 => 0.025473542245074
921 => 0.025515506900045
922 => 0.025492017852564
923 => 0.025072067183747
924 => 0.024430880132321
925 => 0.024556166547385
926 => 0.024761388251033
927 => 0.024372860752295
928 => 0.024248702674737
929 => 0.024479536162958
930 => 0.025223329758074
1001 => 0.02508271988742
1002 => 0.025079047995448
1003 => 0.02568063664997
1004 => 0.02525002900429
1005 => 0.024557746810302
1006 => 0.024382936426239
1007 => 0.023762477329203
1008 => 0.024191030637525
1009 => 0.024206453508153
1010 => 0.023971739240894
1011 => 0.024576792579506
1012 => 0.024571216906473
1013 => 0.02514562500118
1014 => 0.026243677540432
1015 => 0.025918929372691
1016 => 0.025541282586109
1017 => 0.02558234326282
1018 => 0.026032677539955
1019 => 0.025760395155868
1020 => 0.025858309799606
1021 => 0.026032529334415
1022 => 0.026137640305392
1023 => 0.025567219411662
1024 => 0.025434227014949
1025 => 0.02516217124526
1026 => 0.02509119697311
1027 => 0.025312780720891
1028 => 0.02525440123202
1029 => 0.024205157275597
1030 => 0.024095505444213
1031 => 0.024098868309335
1101 => 0.023823143565658
1102 => 0.02340259715003
1103 => 0.024507768020778
1104 => 0.024419007333001
1105 => 0.024321022403226
1106 => 0.024333024998029
1107 => 0.024812742215305
1108 => 0.024534482002985
1109 => 0.025274282383389
1110 => 0.025122201665613
1111 => 0.024966220651279
1112 => 0.0249446593238
1113 => 0.024884619940956
1114 => 0.024678722557514
1115 => 0.024430089094494
1116 => 0.024265919745946
1117 => 0.022384028273971
1118 => 0.02273329638471
1119 => 0.023135097509326
1120 => 0.023273797647426
1121 => 0.023036541463448
1122 => 0.024688090877751
1123 => 0.024989844870471
1124 => 0.024075812343598
1125 => 0.023904834177522
1126 => 0.024699300177855
1127 => 0.024220140060136
1128 => 0.024435905831805
1129 => 0.023969538251023
1130 => 0.024917161170013
1201 => 0.024909941871073
1202 => 0.024541295152551
1203 => 0.024852872834662
1204 => 0.024798728544845
1205 => 0.024382527307571
1206 => 0.024930355491599
1207 => 0.024930627207544
1208 => 0.024575812756038
1209 => 0.024161467155549
1210 => 0.024087391948588
1211 => 0.024031586230747
1212 => 0.024422181046169
1213 => 0.024772387136318
1214 => 0.025424033846632
1215 => 0.025587873312349
1216 => 0.026227349654454
1217 => 0.025846572628268
1218 => 0.026015366152088
1219 => 0.026198615399497
1220 => 0.026286471827472
1221 => 0.026143314492722
1222 => 0.027136684470973
1223 => 0.027220555333208
1224 => 0.027248676507834
1225 => 0.026913717740301
1226 => 0.027211239523946
1227 => 0.027072038934265
1228 => 0.027434200197579
1229 => 0.027490991707974
1230 => 0.027442891319086
1231 => 0.027460917840878
]
'min_raw' => 0.012314382618742
'max_raw' => 0.027490991707974
'avg_raw' => 0.019902687163358
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012314'
'max' => '$0.02749'
'avg' => '$0.0199026'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0018988528141081
'max_diff' => -0.0026233680116317
'year' => 2031
]
6 => [
'items' => [
101 => 0.026613251806913
102 => 0.026569295851258
103 => 0.02596995327692
104 => 0.026214189806079
105 => 0.025757601321378
106 => 0.025902390233259
107 => 0.025966211806017
108 => 0.025932875038251
109 => 0.026227998572989
110 => 0.025977083278707
111 => 0.025314876562803
112 => 0.024652489429123
113 => 0.024644173698229
114 => 0.024469778858035
115 => 0.024343723330583
116 => 0.02436800609723
117 => 0.024453581734146
118 => 0.024338749518997
119 => 0.02436325479424
120 => 0.024770205641072
121 => 0.024851816731163
122 => 0.024574470359521
123 => 0.023460884656489
124 => 0.023187607931746
125 => 0.023384033822178
126 => 0.023290154897999
127 => 0.018796972724747
128 => 0.019852579228039
129 => 0.019225373688792
130 => 0.019514418857617
131 => 0.018874204416133
201 => 0.019179748304123
202 => 0.019123325504687
203 => 0.020820709524314
204 => 0.020794207207523
205 => 0.0208068924641
206 => 0.020201392116443
207 => 0.021165970611386
208 => 0.021641156663116
209 => 0.021553212371608
210 => 0.021575346055095
211 => 0.021195016040384
212 => 0.020810574890002
213 => 0.02038417048916
214 => 0.021176377160748
215 => 0.021088297302286
216 => 0.021290320807464
217 => 0.021804123462091
218 => 0.021879782854732
219 => 0.021981469845702
220 => 0.021945022298012
221 => 0.022813350752728
222 => 0.022708190447446
223 => 0.02296159652649
224 => 0.022440320995931
225 => 0.021850448253175
226 => 0.02196256377718
227 => 0.021951766150643
228 => 0.021814299971878
229 => 0.021690201652217
301 => 0.021483612914467
302 => 0.022137290250089
303 => 0.022110752144018
304 => 0.022540373234138
305 => 0.022464433533343
306 => 0.021957289625834
307 => 0.021975402369705
308 => 0.022097219276923
309 => 0.022518828983686
310 => 0.022643991450031
311 => 0.022586011208758
312 => 0.022723246139221
313 => 0.022831711032741
314 => 0.022736867659892
315 => 0.024079649812453
316 => 0.023522033044265
317 => 0.023793811577207
318 => 0.023858629155902
319 => 0.023692600291042
320 => 0.023728606006782
321 => 0.023783144855158
322 => 0.024114294062696
323 => 0.024983325402071
324 => 0.025368213466583
325 => 0.026526168198712
326 => 0.025336253870726
327 => 0.025265649278858
328 => 0.025474231892997
329 => 0.026154073902714
330 => 0.026705021997276
331 => 0.0268878032652
401 => 0.026911960827146
402 => 0.027254870636841
403 => 0.027451420144869
404 => 0.027213232366521
405 => 0.027011393163671
406 => 0.026288430192266
407 => 0.026372115124769
408 => 0.026948621323359
409 => 0.027762970284914
410 => 0.028461766412497
411 => 0.028217072364122
412 => 0.030083915226151
413 => 0.030269005070552
414 => 0.030243431638727
415 => 0.030665093849335
416 => 0.029828180231295
417 => 0.029470383445145
418 => 0.027055033090299
419 => 0.02773364801915
420 => 0.028720054671893
421 => 0.028589500052567
422 => 0.02787314517462
423 => 0.028461222993085
424 => 0.028266786075407
425 => 0.028113425611239
426 => 0.028815999627981
427 => 0.028043490636423
428 => 0.028712348303763
429 => 0.027854531426953
430 => 0.028218190105923
501 => 0.028011759851549
502 => 0.028145345525269
503 => 0.027364406406302
504 => 0.027785782198671
505 => 0.027346875787984
506 => 0.027346667689198
507 => 0.027336978805856
508 => 0.02785335025162
509 => 0.027870189105928
510 => 0.027488589827315
511 => 0.027433595409565
512 => 0.027636938595726
513 => 0.027398876980397
514 => 0.027510264511867
515 => 0.027402250795253
516 => 0.027377934632526
517 => 0.027184179310864
518 => 0.027100704190878
519 => 0.027133436936314
520 => 0.027021703201257
521 => 0.026954379584299
522 => 0.027323586443932
523 => 0.027126334112592
524 => 0.027293354695158
525 => 0.027103013661647
526 => 0.026443208711856
527 => 0.026063747907921
528 => 0.024817437521718
529 => 0.025170889601202
530 => 0.025405228695572
531 => 0.025327779626281
601 => 0.02549417019593
602 => 0.025504385225538
603 => 0.025450289955194
604 => 0.025387654562169
605 => 0.025357167116799
606 => 0.025584395556693
607 => 0.025716309314208
608 => 0.025428747758745
609 => 0.025361376109714
610 => 0.025652116718996
611 => 0.025829468322702
612 => 0.027138932919215
613 => 0.02704192355239
614 => 0.027285398025993
615 => 0.027257986536686
616 => 0.027513186573547
617 => 0.027930330778232
618 => 0.027082159974753
619 => 0.027229373098697
620 => 0.027193279840353
621 => 0.027587336570789
622 => 0.027588566772888
623 => 0.027352310078399
624 => 0.027480388665309
625 => 0.027408898711748
626 => 0.027538090720279
627 => 0.027040627933152
628 => 0.027646483910083
629 => 0.027989965208506
630 => 0.027994734446668
701 => 0.028157541856085
702 => 0.028322963613221
703 => 0.028640476270845
704 => 0.02831410835753
705 => 0.027727004252752
706 => 0.027769391272782
707 => 0.027425172350963
708 => 0.027430958733227
709 => 0.027400070571215
710 => 0.027492768270566
711 => 0.027060969865316
712 => 0.027162312087962
713 => 0.027020432382798
714 => 0.027229064679927
715 => 0.027004610816371
716 => 0.027193262435091
717 => 0.027274678219831
718 => 0.027575104218276
719 => 0.026960237652132
720 => 0.025706483100955
721 => 0.025970037507917
722 => 0.025580219838268
723 => 0.025616298947735
724 => 0.025689184490805
725 => 0.025452938599049
726 => 0.025498006870233
727 => 0.025496396714445
728 => 0.025482521261748
729 => 0.025421064581053
730 => 0.025331940235212
731 => 0.025686984198016
801 => 0.025747313085782
802 => 0.025881416730119
803 => 0.026280418212293
804 => 0.026240548555121
805 => 0.026305577620144
806 => 0.02616361953632
807 => 0.025622883976098
808 => 0.025652248518575
809 => 0.025286072203348
810 => 0.025872052778462
811 => 0.025733284843709
812 => 0.025643820253435
813 => 0.025619409011096
814 => 0.026019399540768
815 => 0.02613908297633
816 => 0.026064504290944
817 => 0.025911541231411
818 => 0.026205275525184
819 => 0.026283866430542
820 => 0.026301460035931
821 => 0.026821900886531
822 => 0.026330546898103
823 => 0.026448820686756
824 => 0.027371559023088
825 => 0.026534762681222
826 => 0.026978032366293
827 => 0.026956336621873
828 => 0.027183098393328
829 => 0.026937735537934
830 => 0.026940777104591
831 => 0.02714212619547
901 => 0.026859367710831
902 => 0.026789352733592
903 => 0.026692627543995
904 => 0.026903823456861
905 => 0.027030425855055
906 => 0.028050748205282
907 => 0.028709922975882
908 => 0.02868130646064
909 => 0.028942807842075
910 => 0.028824999074661
911 => 0.028444563488296
912 => 0.029093920645043
913 => 0.028888436870391
914 => 0.02890537670311
915 => 0.028904746201691
916 => 0.029041374948131
917 => 0.028944560959437
918 => 0.02875373064997
919 => 0.028880412715072
920 => 0.029256613158758
921 => 0.0304243508792
922 => 0.031077832378026
923 => 0.030385010472435
924 => 0.030862909745657
925 => 0.030576340474646
926 => 0.030524262313406
927 => 0.030824418373468
928 => 0.031125099816979
929 => 0.031105947708909
930 => 0.030887668421083
1001 => 0.030764367990022
1002 => 0.031698040162691
1003 => 0.032385953914824
1004 => 0.032339042808761
1005 => 0.032546093174614
1006 => 0.033153999452587
1007 => 0.033209578784116
1008 => 0.033202577065819
1009 => 0.033064817893523
1010 => 0.033663380570793
1011 => 0.03416271208688
1012 => 0.033032930625381
1013 => 0.033463136615995
1014 => 0.033656269945552
1015 => 0.03393984697342
1016 => 0.03441828895246
1017 => 0.034938003842166
1018 => 0.035011497225954
1019 => 0.034959350153174
1020 => 0.034616584212727
1021 => 0.035185262446531
1022 => 0.035518380818748
1023 => 0.035716745186124
1024 => 0.036219764217108
1025 => 0.033657462671245
1026 => 0.031843738282434
1027 => 0.031560499028623
1028 => 0.03213647718908
1029 => 0.032288358036653
1030 => 0.032227135057439
1031 => 0.030185623361225
1101 => 0.031549750892043
1102 => 0.033017437416103
1103 => 0.033073817232834
1104 => 0.033808571794656
1105 => 0.034047837998593
1106 => 0.034639411727342
1107 => 0.03460240862954
1108 => 0.034746447418497
1109 => 0.03471333539532
1110 => 0.035809101157282
1111 => 0.037017893515517
1112 => 0.036976036879876
1113 => 0.036802258676597
1114 => 0.037060348942052
1115 => 0.038307952197812
1116 => 0.038193092882457
1117 => 0.038304668923631
1118 => 0.03977566347401
1119 => 0.041688165636038
1120 => 0.040799616369698
1121 => 0.042727512604491
1122 => 0.043941021090905
1123 => 0.046039658539039
1124 => 0.045776898794525
1125 => 0.046593882952571
1126 => 0.045306504012232
1127 => 0.042350421743005
1128 => 0.041882610408471
1129 => 0.042819180547077
1130 => 0.045121646843662
1201 => 0.042746667689616
1202 => 0.0432271228793
1203 => 0.043088751752349
1204 => 0.043081378543033
1205 => 0.043362783953607
1206 => 0.04295459072845
1207 => 0.041291538096602
1208 => 0.042053705317347
1209 => 0.041759395951142
1210 => 0.042085954135164
1211 => 0.043848253971492
1212 => 0.04306909920587
1213 => 0.042248322953681
1214 => 0.043277758518757
1215 => 0.044588583745539
1216 => 0.044506554658626
1217 => 0.044347383944517
1218 => 0.045244620926041
1219 => 0.046726593553748
1220 => 0.047127164799969
1221 => 0.047422858304611
1222 => 0.047463629443119
1223 => 0.047883597508866
1224 => 0.045625323373762
1225 => 0.049209262422766
1226 => 0.049828109692211
1227 => 0.049711792054146
1228 => 0.05039961474906
1229 => 0.050197239863839
1230 => 0.0499040304068
1231 => 0.050994375682321
]
'min_raw' => 0.018796972724747
'max_raw' => 0.050994375682321
'avg_raw' => 0.034895674203534
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.018796'
'max' => '$0.050994'
'avg' => '$0.034895'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0064825901060043
'max_diff' => 0.023503383974348
'year' => 2032
]
7 => [
'items' => [
101 => 0.049744382810263
102 => 0.047970175298102
103 => 0.046996809967085
104 => 0.04827861595411
105 => 0.049061370141522
106 => 0.049578720866884
107 => 0.049735270883787
108 => 0.045800626766388
109 => 0.043680071812476
110 => 0.045039323225722
111 => 0.046697703760402
112 => 0.045616110986158
113 => 0.045658507375182
114 => 0.044116440316691
115 => 0.046834142477835
116 => 0.046438196132429
117 => 0.048492366472811
118 => 0.048002122235331
119 => 0.04967721840548
120 => 0.049236109445294
121 => 0.051067128076955
122 => 0.051797570981976
123 => 0.053024098303865
124 => 0.053926336794712
125 => 0.054456148493609
126 => 0.054424340586481
127 => 0.056523718488651
128 => 0.055285788686419
129 => 0.053730657097161
130 => 0.053702529673089
131 => 0.05450795435955
201 => 0.056195903544901
202 => 0.056633564210001
203 => 0.056878156815026
204 => 0.056503554726101
205 => 0.055159870649005
206 => 0.054579674677148
207 => 0.055074018455066
208 => 0.054469478494118
209 => 0.055513084070669
210 => 0.056946177429396
211 => 0.056650249317884
212 => 0.057639492626646
213 => 0.058663255379784
214 => 0.060127282096834
215 => 0.060510032893423
216 => 0.061142705405475
217 => 0.061793933242471
218 => 0.062003090072632
219 => 0.062402435358961
220 => 0.06240033061218
221 => 0.063603784511572
222 => 0.064931231430467
223 => 0.065432311911883
224 => 0.06658451884916
225 => 0.06461140484722
226 => 0.066108034483192
227 => 0.067458031877908
228 => 0.065848509330067
301 => 0.068066861191608
302 => 0.068152994767499
303 => 0.06945350950095
304 => 0.068135188670121
305 => 0.067352373969004
306 => 0.069612330679444
307 => 0.070705852543657
308 => 0.07037647485878
309 => 0.067869894413484
310 => 0.06641095708203
311 => 0.062592636677618
312 => 0.06711560213581
313 => 0.069318606673784
314 => 0.067864189163938
315 => 0.06859771275749
316 => 0.072599579638086
317 => 0.074123231444525
318 => 0.073806322519915
319 => 0.073859874911409
320 => 0.074682009769927
321 => 0.078327808490532
322 => 0.076143161388193
323 => 0.077813242240766
324 => 0.078699047103046
325 => 0.079521832025573
326 => 0.077501332299692
327 => 0.074872691843356
328 => 0.074040091068015
329 => 0.06771957600602
330 => 0.067390565748437
331 => 0.067205882320825
401 => 0.06604147943372
402 => 0.065126577721249
403 => 0.064399013911369
404 => 0.062489669205299
405 => 0.063134016994196
406 => 0.060090920043932
407 => 0.062037785631977
408 => 0.057180929421209
409 => 0.061225863595798
410 => 0.059024389825158
411 => 0.060502620253696
412 => 0.060497462846988
413 => 0.057775571954667
414 => 0.05620564209239
415 => 0.057206062503217
416 => 0.058278592597095
417 => 0.058452606996402
418 => 0.059843170259015
419 => 0.060231246575553
420 => 0.059055357218892
421 => 0.057080281871635
422 => 0.057539046828131
423 => 0.056196345235189
424 => 0.05384331233983
425 => 0.05553330164529
426 => 0.056110338297758
427 => 0.056365190556541
428 => 0.054051252951609
429 => 0.05332416351811
430 => 0.052937067204587
501 => 0.056781581584023
502 => 0.056992192760229
503 => 0.055914676205339
504 => 0.060785153207752
505 => 0.059682814259817
506 => 0.060914396944259
507 => 0.057497418716876
508 => 0.057627951886733
509 => 0.056010299634384
510 => 0.056916076804137
511 => 0.056275902695117
512 => 0.056842898959885
513 => 0.057182754183175
514 => 0.058800140994706
515 => 0.061244331555141
516 => 0.058558557340161
517 => 0.057388327053698
518 => 0.058114331341794
519 => 0.060047776432721
520 => 0.062977044716709
521 => 0.06124285893557
522 => 0.062012461136855
523 => 0.062180584980617
524 => 0.060901860588652
525 => 0.063024193108994
526 => 0.064161568348443
527 => 0.065328279997475
528 => 0.066341303031811
529 => 0.064862269708313
530 => 0.066445047375554
531 => 0.065169607973627
601 => 0.064025406977597
602 => 0.064027142258202
603 => 0.063309368259283
604 => 0.061918590691032
605 => 0.061662109969091
606 => 0.062996355074575
607 => 0.064066293295691
608 => 0.064154418532241
609 => 0.064746791306862
610 => 0.065097351412957
611 => 0.06853331701605
612 => 0.069915290805412
613 => 0.071605142195619
614 => 0.07226343454691
615 => 0.074244658513428
616 => 0.072644659253322
617 => 0.072298489348931
618 => 0.067492688059579
619 => 0.068279637751484
620 => 0.069539620137576
621 => 0.067513464705045
622 => 0.068798593970293
623 => 0.069052305710013
624 => 0.067444616718766
625 => 0.068303352873131
626 => 0.066022804244662
627 => 0.061294041283222
628 => 0.063029457573958
629 => 0.064307308098748
630 => 0.06248365784204
701 => 0.065752480342177
702 => 0.06384290171979
703 => 0.063237656972432
704 => 0.060876381427658
705 => 0.061990812590961
706 => 0.063498096696445
707 => 0.062566770359841
708 => 0.064499412347647
709 => 0.067236548819173
710 => 0.069187195268077
711 => 0.069336941681151
712 => 0.068082806697668
713 => 0.070092566012482
714 => 0.070107204914986
715 => 0.067840188197768
716 => 0.066451653081273
717 => 0.066136174981303
718 => 0.066924301128154
719 => 0.067881231766544
720 => 0.069390044671683
721 => 0.070301788710372
722 => 0.072679133611601
723 => 0.073322374978054
724 => 0.074029102221189
725 => 0.074973507764627
726 => 0.076107508760136
727 => 0.073626379140675
728 => 0.07372495904586
729 => 0.071414565497797
730 => 0.06894557864774
731 => 0.070819231903377
801 => 0.073268784293475
802 => 0.072706854268672
803 => 0.072643625661693
804 => 0.072749958640479
805 => 0.072326281752696
806 => 0.070410006891453
807 => 0.069447665652651
808 => 0.070689331370139
809 => 0.0713492214388
810 => 0.072372653386832
811 => 0.07224649379721
812 => 0.074882744586773
813 => 0.075907111927512
814 => 0.075645034926601
815 => 0.075693263402004
816 => 0.07754783154225
817 => 0.079610492735231
818 => 0.081542447134575
819 => 0.08350771412896
820 => 0.081138508061553
821 => 0.079935571332839
822 => 0.081176694977917
823 => 0.080518137301758
824 => 0.08430240504986
825 => 0.08456441953813
826 => 0.088348413640601
827 => 0.091939874633482
828 => 0.089684142331561
829 => 0.091811196291858
830 => 0.094111778571174
831 => 0.098549975043998
901 => 0.097055346609585
902 => 0.095910484652639
903 => 0.094828595635257
904 => 0.097079834935383
905 => 0.09997601833057
906 => 0.10059982849459
907 => 0.10161063927413
908 => 0.10054789533551
909 => 0.10182785335218
910 => 0.10634666759308
911 => 0.10512564409651
912 => 0.10339159444206
913 => 0.10695876429372
914 => 0.10824970919601
915 => 0.11731023659339
916 => 0.12874952670431
917 => 0.12401358548396
918 => 0.12107383394063
919 => 0.12176474528515
920 => 0.12594198678925
921 => 0.12728358418135
922 => 0.12363665999327
923 => 0.12492481527007
924 => 0.13202267749385
925 => 0.13583045285023
926 => 0.13065898246381
927 => 0.11639110077117
928 => 0.10323546224333
929 => 0.10672492998704
930 => 0.10632933263569
1001 => 0.1139551001188
1002 => 0.10509652308994
1003 => 0.10524567880801
1004 => 0.11302913908685
1005 => 0.11095264532675
1006 => 0.10758899137261
1007 => 0.10326002063963
1008 => 0.095257517858405
1009 => 0.08816947797877
1010 => 0.10207075646083
1011 => 0.10147130805485
1012 => 0.10060321792971
1013 => 0.10253505856604
1014 => 0.11191552833353
1015 => 0.11169927814377
1016 => 0.11032360476835
1017 => 0.11136704089898
1018 => 0.10740607197397
1019 => 0.10842690385553
1020 => 0.10323337832297
1021 => 0.10558106876447
1022 => 0.10758177448192
1023 => 0.10798344577565
1024 => 0.10888843171027
1025 => 0.10115542598404
1026 => 0.104627318526
1027 => 0.10666673012206
1028 => 0.097452594336626
1029 => 0.10648459628329
1030 => 0.10102081155873
1031 => 0.099166320959928
1101 => 0.10166314824066
1102 => 0.10069013222112
1103 => 0.099853590184928
1104 => 0.099386785355118
1105 => 0.10122017974532
1106 => 0.10113464970564
1107 => 0.098134860636751
1108 => 0.094221758083436
1109 => 0.095535123743541
1110 => 0.095057965686357
1111 => 0.093328683332504
1112 => 0.094494010844653
1113 => 0.089362498239907
1114 => 0.080533997516256
1115 => 0.086366375518591
1116 => 0.086141835309907
1117 => 0.086028611954601
1118 => 0.090411482828267
1119 => 0.089990170923799
1120 => 0.089225485691692
1121 => 0.093314639288543
1122 => 0.091822043218815
1123 => 0.096421872605854
1124 => 0.099451617738469
1125 => 0.09868317637085
1126 => 0.1015326663121
1127 => 0.095565381035725
1128 => 0.097547473838607
1129 => 0.097955980418219
1130 => 0.093264179767901
1201 => 0.090059102761823
1202 => 0.08984536066607
1203 => 0.084288198824348
1204 => 0.087256789824353
1205 => 0.089869027055715
1206 => 0.088617968139691
1207 => 0.088221920261199
1208 => 0.090245242980106
1209 => 0.090402472483953
1210 => 0.086817623133822
1211 => 0.087563026831129
1212 => 0.090671484161952
1213 => 0.087484701681872
1214 => 0.081293303881038
1215 => 0.079757751623659
1216 => 0.079552880646682
1217 => 0.075388341138486
1218 => 0.079860364568026
1219 => 0.077908206498255
1220 => 0.084075050450217
1221 => 0.080552582258304
1222 => 0.080400735694819
1223 => 0.080171197343062
1224 => 0.076586606153398
1225 => 0.07737140381128
1226 => 0.079980190754139
1227 => 0.080911035325439
1228 => 0.080813940610468
1229 => 0.0799674062749
1230 => 0.080354945358766
1231 => 0.079106546942067
]
'min_raw' => 0.043680071812476
'max_raw' => 0.13583045285023
'avg_raw' => 0.089755262331353
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.04368'
'max' => '$0.13583'
'avg' => '$0.089755'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.02488309908773
'max_diff' => 0.084836077167907
'year' => 2033
]
8 => [
'items' => [
101 => 0.078665711477964
102 => 0.077274313491909
103 => 0.075229342835913
104 => 0.075513708548163
105 => 0.071462086582955
106 => 0.069254547900457
107 => 0.068643530288033
108 => 0.067826452000517
109 => 0.068735821454771
110 => 0.071450608846987
111 => 0.0681759992777
112 => 0.06256191085831
113 => 0.062899327138257
114 => 0.063657401339504
115 => 0.062244735080642
116 => 0.060907765022722
117 => 0.062070152016274
118 => 0.059691388743759
119 => 0.063944863516311
120 => 0.063829818943939
121 => 0.065415251306031
122 => 0.066406654698394
123 => 0.064121790849657
124 => 0.063547153770628
125 => 0.063874493166642
126 => 0.058464302108048
127 => 0.064973123273591
128 => 0.065029411829315
129 => 0.064547435041431
130 => 0.068013181374774
131 => 0.075326987131519
201 => 0.072575239208677
202 => 0.071509679240931
203 => 0.069484048963327
204 => 0.07218308103821
205 => 0.071975837486318
206 => 0.071038603549881
207 => 0.070471761540775
208 => 0.071516185322877
209 => 0.070342345876047
210 => 0.070131492056446
211 => 0.068853947320879
212 => 0.068397921974864
213 => 0.068060298963566
214 => 0.067688609202279
215 => 0.06850846419636
216 => 0.066650564918866
217 => 0.06441012052232
218 => 0.064223851812692
219 => 0.064738156096888
220 => 0.064510614736582
221 => 0.0642227624322
222 => 0.063673173991224
223 => 0.063510122840885
224 => 0.064039959978313
225 => 0.063441804741581
226 => 0.064324415376581
227 => 0.064084394120935
228 => 0.062743654898132
301 => 0.061072597421283
302 => 0.061057721504578
303 => 0.060697694912274
304 => 0.060239146916615
305 => 0.06011158935438
306 => 0.061972259025838
307 => 0.065823789560601
308 => 0.065067641957312
309 => 0.065614036093811
310 => 0.068301754459234
311 => 0.069156099305091
312 => 0.068549705569768
313 => 0.067719636424122
314 => 0.067756155253859
315 => 0.070592752803549
316 => 0.070769667913282
317 => 0.0712166753206
318 => 0.071791206163281
319 => 0.068647550656619
320 => 0.067608089362199
321 => 0.067115534933786
322 => 0.065598657936827
323 => 0.067234479730842
324 => 0.066281356424343
325 => 0.066409965321718
326 => 0.066326208608585
327 => 0.06637194543756
328 => 0.063943674583426
329 => 0.064828408856514
330 => 0.063357366530471
331 => 0.061387805988151
401 => 0.061381203330597
402 => 0.061863250483055
403 => 0.061576509974266
404 => 0.060804898637887
405 => 0.060914502386317
406 => 0.059954258219587
407 => 0.061031093413939
408 => 0.061061973194212
409 => 0.060647332988777
410 => 0.062306346180297
411 => 0.062986045238489
412 => 0.062713120172818
413 => 0.062966896088319
414 => 0.065099063304031
415 => 0.065446699593169
416 => 0.06560109666924
417 => 0.065394225040998
418 => 0.063005868190948
419 => 0.063111801973325
420 => 0.06233453016641
421 => 0.061677817396452
422 => 0.061704082463246
423 => 0.062041718193688
424 => 0.063516193230606
425 => 0.066619139020748
426 => 0.06673689354526
427 => 0.06687961546411
428 => 0.066299093693856
429 => 0.066124002773103
430 => 0.066354992892378
501 => 0.067520296186016
502 => 0.070517772634013
503 => 0.06945826426257
504 => 0.068596867464357
505 => 0.069352544687299
506 => 0.069236214102021
507 => 0.068254266891311
508 => 0.068226706903583
509 => 0.066342036258717
510 => 0.065645316433184
511 => 0.065063085198393
512 => 0.064427303889533
513 => 0.064050391418059
514 => 0.064629500277898
515 => 0.064761949325958
516 => 0.063495717682828
517 => 0.063323134988756
518 => 0.064357167082045
519 => 0.063902128110391
520 => 0.06437014697716
521 => 0.064478731368843
522 => 0.064461246780871
523 => 0.063986133833571
524 => 0.064288956658108
525 => 0.063572690402249
526 => 0.062793858428716
527 => 0.062297012152548
528 => 0.061863447879496
529 => 0.062104014537089
530 => 0.061246438328508
531 => 0.060972082439784
601 => 0.064186367098884
602 => 0.066560793735945
603 => 0.066526268632266
604 => 0.066316105942756
605 => 0.066003846816088
606 => 0.067497452485959
607 => 0.066977110136164
608 => 0.067355702671698
609 => 0.06745207036147
610 => 0.067743746334319
611 => 0.067847995424215
612 => 0.0675328822689
613 => 0.066475324031831
614 => 0.063839989454674
615 => 0.062613234095058
616 => 0.062208384393159
617 => 0.062223099910904
618 => 0.061817180238532
619 => 0.061936741774089
620 => 0.061775601615739
621 => 0.061470441139814
622 => 0.06208517173762
623 => 0.062156013712405
624 => 0.062012528245394
625 => 0.062046324267125
626 => 0.060858325883714
627 => 0.060948646820608
628 => 0.060445728366553
629 => 0.06035143721919
630 => 0.059080103161459
701 => 0.05682775059537
702 => 0.058075772558137
703 => 0.056568337525558
704 => 0.055997449037352
705 => 0.058699946349142
706 => 0.058428690574646
707 => 0.057964418600759
708 => 0.057277663588623
709 => 0.057022939474298
710 => 0.055475316391517
711 => 0.055383874563538
712 => 0.056150918352703
713 => 0.055796954036369
714 => 0.055299854079466
715 => 0.053499408425778
716 => 0.051475111403963
717 => 0.051536212206774
718 => 0.052180103426029
719 => 0.054052303986572
720 => 0.053320802838169
721 => 0.052790090361994
722 => 0.052690703868365
723 => 0.053934733915851
724 => 0.055695297065396
725 => 0.056521313904782
726 => 0.055702756303455
727 => 0.054762441405321
728 => 0.054819674016171
729 => 0.055200416935493
730 => 0.055240427632898
731 => 0.054628379300147
801 => 0.054800667320723
802 => 0.054538946063121
803 => 0.052932763188319
804 => 0.052903712433375
805 => 0.0525095292527
806 => 0.052497593542648
807 => 0.051826989618719
808 => 0.051733167494095
809 => 0.050401642700385
810 => 0.051278056351833
811 => 0.050690204088224
812 => 0.049804172066633
813 => 0.049651419812146
814 => 0.049646827894922
815 => 0.05055658466796
816 => 0.051267425314254
817 => 0.050700430030031
818 => 0.050571336194555
819 => 0.051949720620423
820 => 0.051774308637978
821 => 0.051622402992467
822 => 0.05553765794538
823 => 0.052438428138995
824 => 0.051086987045559
825 => 0.049414322060728
826 => 0.049958950214098
827 => 0.050073711368265
828 => 0.046051253600273
829 => 0.044419342984764
830 => 0.043859332758775
831 => 0.043537038956336
901 => 0.043683912289218
902 => 0.042215001331236
903 => 0.043202133788545
904 => 0.041930181062885
905 => 0.041716934049136
906 => 0.043991343087323
907 => 0.044307813818081
908 => 0.042957651360915
909 => 0.043824674229863
910 => 0.043510279685063
911 => 0.04195198504164
912 => 0.041892469648301
913 => 0.041110572172937
914 => 0.039887054029178
915 => 0.039327873406105
916 => 0.03903664728258
917 => 0.039156812857031
918 => 0.039096053465461
919 => 0.038699557336235
920 => 0.039118780159467
921 => 0.03804783908094
922 => 0.037621381714312
923 => 0.037428760815542
924 => 0.03647823896728
925 => 0.037990941926848
926 => 0.038288963466413
927 => 0.038587572200474
928 => 0.041186757361635
929 => 0.041056909416205
930 => 0.042230671604383
1001 => 0.042185061364161
1002 => 0.041850285374405
1003 => 0.040437920541605
1004 => 0.041000863990977
1005 => 0.039268211554647
1006 => 0.040566432568859
1007 => 0.039973978712978
1008 => 0.040366123324231
1009 => 0.039661011954945
1010 => 0.040051249700043
1011 => 0.038359635429314
1012 => 0.036780029824963
1013 => 0.037415709231716
1014 => 0.038106765445615
1015 => 0.039605151395195
1016 => 0.038712725085041
1017 => 0.039033675332547
1018 => 0.037958545729823
1019 => 0.035740246263815
1020 => 0.035752801597886
1021 => 0.035411564553321
1022 => 0.035116685925393
1023 => 0.03881523098212
1024 => 0.038355258438971
1025 => 0.037622352391181
1026 => 0.038603376260676
1027 => 0.038862774542713
1028 => 0.038870159247132
1029 => 0.039585888938424
1030 => 0.039967874002969
1031 => 0.040035200526213
1101 => 0.041161416659825
1102 => 0.041538909452662
1103 => 0.043093748841577
1104 => 0.039935465239023
1105 => 0.039870422466595
1106 => 0.038617181278349
1107 => 0.037822355903804
1108 => 0.038671603651747
1109 => 0.039423921222546
1110 => 0.038640557882351
1111 => 0.038742848596878
1112 => 0.037691247315802
1113 => 0.038067145291347
1114 => 0.038390919266812
1115 => 0.038212150308115
1116 => 0.03794452452443
1117 => 0.039362239761057
1118 => 0.039282246711335
1119 => 0.040602455732815
1120 => 0.041631653074111
1121 => 0.043476158700744
1122 => 0.041551320923099
1123 => 0.041481172183945
1124 => 0.042166887361393
1125 => 0.041538804473241
1126 => 0.041935731177869
1127 => 0.043412207672166
1128 => 0.043443403293889
1129 => 0.042920836436735
1130 => 0.042889038195987
1201 => 0.042989402877158
1202 => 0.043577241949613
1203 => 0.043371832915227
1204 => 0.043609537450139
1205 => 0.043906790610907
1206 => 0.045136355716573
1207 => 0.045432799700876
1208 => 0.044712594507603
1209 => 0.04477762097276
1210 => 0.044508244460402
1211 => 0.044248030124741
1212 => 0.044832953950054
1213 => 0.04590191373752
1214 => 0.045895263794162
1215 => 0.046143241687245
1216 => 0.046297729860276
1217 => 0.045634553529372
1218 => 0.045202850123624
1219 => 0.045368392679389
1220 => 0.045633098831106
1221 => 0.045282552042008
1222 => 0.043118814870625
1223 => 0.043775154508357
1224 => 0.04366590749927
1225 => 0.043510326473439
1226 => 0.044170281054503
1227 => 0.04410662682519
1228 => 0.042199935526233
1229 => 0.042321995716947
1230 => 0.042207358410706
1231 => 0.042577774999757
]
'min_raw' => 0.035116685925393
'max_raw' => 0.078665711477964
'avg_raw' => 0.056891198701679
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.035116'
'max' => '$0.078665'
'avg' => '$0.056891'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0085633858870829
'max_diff' => -0.057164741372265
'year' => 2034
]
9 => [
'items' => [
101 => 0.041518800761829
102 => 0.041844534105115
103 => 0.042048831004464
104 => 0.042169163447663
105 => 0.042603886745228
106 => 0.042552876983816
107 => 0.042600715906837
108 => 0.04324529579443
109 => 0.046505359672766
110 => 0.046682797756738
111 => 0.045809027736328
112 => 0.04615808162513
113 => 0.045487974488324
114 => 0.04593782189859
115 => 0.046245596071808
116 => 0.044854823764604
117 => 0.044772471254609
118 => 0.044099598347279
119 => 0.044461162134209
120 => 0.043885888151847
121 => 0.044027040264889
122 => 0.043632366651404
123 => 0.044342700576945
124 => 0.045136964280431
125 => 0.045337626658356
126 => 0.044809770332621
127 => 0.044427567565362
128 => 0.043756545411473
129 => 0.044872470208094
130 => 0.045198800625818
131 => 0.044870756133333
201 => 0.044794741056511
202 => 0.044650692623288
203 => 0.04482530161258
204 => 0.04519702336028
205 => 0.045021726248688
206 => 0.045137513079232
207 => 0.044696253080057
208 => 0.045634773068333
209 => 0.047125368676849
210 => 0.047130161185468
211 => 0.046954863128958
212 => 0.046883134941084
213 => 0.047063001385038
214 => 0.047160571552375
215 => 0.047742226650259
216 => 0.048366365744449
217 => 0.051278950563815
218 => 0.050461108401433
219 => 0.053045326923621
220 => 0.055089108255893
221 => 0.055701948913716
222 => 0.0551381643449
223 => 0.053209487790027
224 => 0.053114857717007
225 => 0.055997114756226
226 => 0.055182745126911
227 => 0.055085878450807
228 => 0.054055380675889
301 => 0.054664532490498
302 => 0.054531302052925
303 => 0.05432099128936
304 => 0.05548321051775
305 => 0.057658781161271
306 => 0.057319698074106
307 => 0.057066588279149
308 => 0.055957534836802
309 => 0.056625432725149
310 => 0.05638760707985
311 => 0.057409456979939
312 => 0.056804135735873
313 => 0.055176575476015
314 => 0.055435769811906
315 => 0.055396593109462
316 => 0.056202846869655
317 => 0.055960829503294
318 => 0.05534933533444
319 => 0.057651345297326
320 => 0.057501865574789
321 => 0.057713793645525
322 => 0.057807090936357
323 => 0.0592082838348
324 => 0.05978230773212
325 => 0.059912621206514
326 => 0.060457899512367
327 => 0.059899054185528
328 => 0.062134833942852
329 => 0.063621497020106
330 => 0.06534833268732
331 => 0.06787170372679
401 => 0.068820514580118
402 => 0.06864912039194
403 => 0.070562311515231
404 => 0.074000273435934
405 => 0.069344030791208
406 => 0.074247065602345
407 => 0.072694821389398
408 => 0.069014478284182
409 => 0.068777507576601
410 => 0.071269878657115
411 => 0.07679771783187
412 => 0.075413056814827
413 => 0.076799982641253
414 => 0.075182059993824
415 => 0.075101716497457
416 => 0.076721403749538
417 => 0.080505891298582
418 => 0.078708023123426
419 => 0.076130338238977
420 => 0.078033660644435
421 => 0.076384826632654
422 => 0.072669542124529
423 => 0.075411997990643
424 => 0.073578195853619
425 => 0.074113396807486
426 => 0.077967776142029
427 => 0.077504007023074
428 => 0.078104167206866
429 => 0.0770449001914
430 => 0.076055377767878
501 => 0.074208360681475
502 => 0.073661549979033
503 => 0.073812668785
504 => 0.073661475092058
505 => 0.072628086007178
506 => 0.072404925732688
507 => 0.072032982164996
508 => 0.072148263029323
509 => 0.071448900306133
510 => 0.072768742260505
511 => 0.073013716557644
512 => 0.073974187466351
513 => 0.074073906742333
514 => 0.076748804551634
515 => 0.075275515788102
516 => 0.076263925088311
517 => 0.076175512457232
518 => 0.069094242479048
519 => 0.070069979003468
520 => 0.071587918832476
521 => 0.070904088997026
522 => 0.069937313601239
523 => 0.069156590633924
524 => 0.067973715505419
525 => 0.069638589533685
526 => 0.07182772184124
527 => 0.074129426750271
528 => 0.076894774384791
529 => 0.076277580984961
530 => 0.074077730499779
531 => 0.074176414185552
601 => 0.074786437900405
602 => 0.073996401763172
603 => 0.073763404682964
604 => 0.074754427679498
605 => 0.074761252310219
606 => 0.073852220255275
607 => 0.072841997477316
608 => 0.07283776460699
609 => 0.072658005221246
610 => 0.07521403878921
611 => 0.076619598807449
612 => 0.076780743998366
613 => 0.076608752452162
614 => 0.076674945172196
615 => 0.075857080766985
616 => 0.077726476267142
617 => 0.07944201844214
618 => 0.078982216492028
619 => 0.078292908004111
620 => 0.07774384059189
621 => 0.078852873659322
622 => 0.078803490162609
623 => 0.079427034677848
624 => 0.079398747096869
625 => 0.079189072529089
626 => 0.078982223980167
627 => 0.079802355095545
628 => 0.079566170505219
629 => 0.079329619054988
630 => 0.078855178907335
701 => 0.078919663203017
702 => 0.078230473733929
703 => 0.077911623150365
704 => 0.073116875403077
705 => 0.071835562132099
706 => 0.072238689370685
707 => 0.072371409324822
708 => 0.071813780147245
709 => 0.072613277144708
710 => 0.07248867638453
711 => 0.072973425053375
712 => 0.072670575130421
713 => 0.072683004196898
714 => 0.073573621245893
715 => 0.073832171164172
716 => 0.073700670588982
717 => 0.073792769084269
718 => 0.075915140035824
719 => 0.075613406756116
720 => 0.075453116965038
721 => 0.075497518332606
722 => 0.076039829614875
723 => 0.076191647164812
724 => 0.075548385537699
725 => 0.075851751439697
726 => 0.077143444947537
727 => 0.077595464571761
728 => 0.079038094230553
729 => 0.0784252395108
730 => 0.079550160872637
731 => 0.08300778562497
801 => 0.085769975526567
802 => 0.083229751540733
803 => 0.088302161532254
804 => 0.09225176030465
805 => 0.092100168125365
806 => 0.091411464223532
807 => 0.086914951026674
808 => 0.082777192543691
809 => 0.086238603213212
810 => 0.086247427060854
811 => 0.085950088814569
812 => 0.08410334650356
813 => 0.085885826185192
814 => 0.086027312949305
815 => 0.085948117985769
816 => 0.084532224985835
817 => 0.082370418075702
818 => 0.082792829971307
819 => 0.083484749273278
820 => 0.08217480168516
821 => 0.081756194058233
822 => 0.08253446528005
823 => 0.085042217315993
824 => 0.084568141320016
825 => 0.08455576127987
826 => 0.086584059430167
827 => 0.085132235688691
828 => 0.082798157938061
829 => 0.082208772523324
830 => 0.080116851358595
831 => 0.081561748758241
901 => 0.081613748043353
902 => 0.08082239250406
903 => 0.082862372078665
904 => 0.082843573307754
905 => 0.084780230302952
906 => 0.088482391102621
907 => 0.08738747998189
908 => 0.086114217474471
909 => 0.086252656412767
910 => 0.087770989869462
911 => 0.086852970801363
912 => 0.087183096858908
913 => 0.087770490184136
914 => 0.088124879161401
915 => 0.086201665292676
916 => 0.085753272141922
917 => 0.084836017120091
918 => 0.084596722406272
919 => 0.085343807482399
920 => 0.085146976959745
921 => 0.08160937770479
922 => 0.081239678899631
923 => 0.081251017034177
924 => 0.080321391810384
925 => 0.078903490208482
926 => 0.082629650959775
927 => 0.08233038810386
928 => 0.082000025072035
929 => 0.082040492658408
930 => 0.083657892749239
1001 => 0.082719719015895
1002 => 0.085214007649642
1003 => 0.084701256891723
1004 => 0.084175356011649
1005 => 0.084102660490691
1006 => 0.083900233519617
1007 => 0.083206036116046
1008 => 0.082367751036439
1009 => 0.081814242615872
1010 => 0.07546931412864
1011 => 0.076646895949119
1012 => 0.07800159649362
1013 => 0.07846923369296
1014 => 0.07766930790398
1015 => 0.083237622061801
1016 => 0.084255006716045
1017 => 0.08117328223598
1018 => 0.080596817411741
1019 => 0.083275414999707
1020 => 0.081659893208926
1021 => 0.082387362572395
1022 => 0.080814971713042
1023 => 0.084009948545338
1024 => 0.083985608174926
1025 => 0.082742690025338
1026 => 0.083793195934233
1027 => 0.083610644680882
1028 => 0.08220739315117
1029 => 0.084054434121764
1030 => 0.084055350231041
1031 => 0.082859068535434
1101 => 0.081462073414702
1102 => 0.081212323682667
1103 => 0.081024170808735
1104 => 0.082341088499388
1105 => 0.083521832782933
1106 => 0.085718905163279
1107 => 0.08627130136085
1108 => 0.088427340495068
1109 => 0.087143524166282
1110 => 0.087712623316628
1111 => 0.088330460948318
1112 => 0.088626675029178
1113 => 0.088144010080142
1114 => 0.091493226316694
1115 => 0.091776002784393
1116 => 0.091870815288005
1117 => 0.090741478417192
1118 => 0.09174459388306
1119 => 0.091275269376273
1120 => 0.092496321360829
1121 => 0.092687797903182
1122 => 0.092525624083785
1123 => 0.092586401760579
1124 => 0.089728436544913
1125 => 0.089580235971513
1126 => 0.087559510637373
1127 => 0.088382971147483
1128 => 0.086843551193322
1129 => 0.087331717118569
1130 => 0.087546896007003
1201 => 0.08743449876698
1202 => 0.088429528369214
1203 => 0.087583549936197
1204 => 0.085350873759732
1205 => 0.083117589292137
1206 => 0.08308955222484
1207 => 0.082501567845267
1208 => 0.082076562833547
1209 => 0.082158433876667
1210 => 0.082446958111231
1211 => 0.082059793280526
1212 => 0.082142414526912
1213 => 0.083514477719405
1214 => 0.083789635207552
1215 => 0.082854542551856
1216 => 0.079100010606011
1217 => 0.07817863904897
1218 => 0.078840902652579
1219 => 0.078524383305293
1220 => 0.06337530590421
1221 => 0.066934356930153
1222 => 0.064819689664491
1223 => 0.065794225631671
1224 => 0.063635697943863
1225 => 0.064665860494614
1226 => 0.064475627087003
1227 => 0.070198475816743
1228 => 0.07010912140535
1229 => 0.070151890633553
1230 => 0.068110403936745
1231 => 0.071362547677165
]
'min_raw' => 0.041518800761829
'max_raw' => 0.092687797903182
'avg_raw' => 0.067103299332505
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.041518'
'max' => '$0.092687'
'avg' => '$0.0671032'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0064021148364352
'max_diff' => 0.014022086425218
'year' => 2035
]
10 => [
'items' => [
101 => 0.072964670627003
102 => 0.072668160308109
103 => 0.072742785567311
104 => 0.071460476368918
105 => 0.070164306189583
106 => 0.06872665398154
107 => 0.071397634084901
108 => 0.071100666692558
109 => 0.071781803045097
110 => 0.073514124567728
111 => 0.073769215492384
112 => 0.074112060282
113 => 0.073989174830277
114 => 0.076916804840107
115 => 0.076562249528792
116 => 0.077416625816537
117 => 0.075659108970961
118 => 0.073670311835161
119 => 0.074048317151999
120 => 0.074011912200261
121 => 0.073548435380974
122 => 0.073130029231969
123 => 0.072433500879079
124 => 0.074637419654424
125 => 0.074547944576974
126 => 0.075996442077501
127 => 0.075740406074329
128 => 0.074030534982506
129 => 0.074091603363058
130 => 0.074502317570728
131 => 0.075923804132929
201 => 0.076345798126775
202 => 0.076150313695272
203 => 0.076613010844767
204 => 0.076978707806045
205 => 0.076658936752734
206 => 0.081186220530148
207 => 0.079306176664642
208 => 0.080222496963429
209 => 0.080441033955417
210 => 0.079881256045777
211 => 0.080002651830234
212 => 0.080186533365314
213 => 0.081303026038627
214 => 0.084233025873159
215 => 0.08553070285469
216 => 0.089434828079879
217 => 0.085422948845909
218 => 0.085184900534972
219 => 0.085888151381315
220 => 0.088180286182127
221 => 0.090037846148911
222 => 0.090654105955098
223 => 0.090735554861826
224 => 0.091891699226411
225 => 0.092554379615375
226 => 0.091751312890935
227 => 0.091070797926563
228 => 0.088633277792808
229 => 0.088915427385437
301 => 0.090859158284363
302 => 0.093604792664275
303 => 0.095960832596809
304 => 0.095135829528717
305 => 0.10143002057686
306 => 0.10205406390981
307 => 0.10196784129894
308 => 0.10338950488151
309 => 0.10056779218685
310 => 0.099361455341773
311 => 0.091217932986033
312 => 0.093505930598036
313 => 0.09683166949647
314 => 0.096391495482382
315 => 0.093976254997083
316 => 0.095959000420321
317 => 0.095303442777216
318 => 0.094786377264988
319 => 0.097155154614586
320 => 0.094550586614693
321 => 0.096805686938281
322 => 0.093913497447254
323 => 0.095139598073239
324 => 0.094443604058115
325 => 0.094893997483719
326 => 0.092261006720691
327 => 0.093681704624183
328 => 0.092201901017085
329 => 0.092201199397499
330 => 0.092168532650854
331 => 0.093909515032152
401 => 0.093966288405102
402 => 0.092679699794845
403 => 0.092494282275816
404 => 0.093179868024923
405 => 0.092377226667911
406 => 0.092752777507092
407 => 0.09238860172025
408 => 0.092306618079916
409 => 0.091653358485368
410 => 0.091371916290291
411 => 0.091482277026853
412 => 0.091105558938108
413 => 0.09087857266315
414 => 0.092123379367604
415 => 0.091458329360773
416 => 0.092021450915897
417 => 0.091379702832227
418 => 0.089155124377898
419 => 0.087875745784324
420 => 0.083673723302628
421 => 0.084865411665844
422 => 0.085655502283547
423 => 0.08539437733911
424 => 0.085955374761701
425 => 0.085989815447216
426 => 0.085807429466439
427 => 0.085596249865792
428 => 0.085493459315161
429 => 0.086259575864845
430 => 0.086704332308234
501 => 0.085734798447083
502 => 0.085507650228635
503 => 0.086487902491691
504 => 0.087085855805881
505 => 0.091500807116921
506 => 0.091173733263694
507 => 0.091994624450291
508 => 0.091902204700282
509 => 0.092762629442057
510 => 0.094169060252232
511 => 0.091309393170907
512 => 0.091805732496377
513 => 0.091684041555921
514 => 0.093012631334746
515 => 0.093016779047015
516 => 0.092220223106628
517 => 0.092652049004556
518 => 0.092411015634856
519 => 0.092846595511517
520 => 0.091169364992977
521 => 0.093212050718713
522 => 0.094370121897445
523 => 0.094386201716885
524 => 0.094935118264583
525 => 0.095492849268146
526 => 0.096563365361353
527 => 0.09546299315533
528 => 0.09348353067577
529 => 0.09362644147317
530 => 0.092465883345661
531 => 0.092485392537456
601 => 0.09238125094269
602 => 0.092693787707997
603 => 0.091237949237495
604 => 0.091579631616633
605 => 0.09110127428495
606 => 0.09180469264096
607 => 0.091047930769113
608 => 0.091683982872865
609 => 0.091958481875383
610 => 0.092971389104215
611 => 0.090898323547845
612 => 0.086671202544206
613 => 0.087559794628059
614 => 0.086245497138639
615 => 0.086367140375168
616 => 0.086612879072334
617 => 0.085816359554119
618 => 0.08596831037698
619 => 0.085962881624325
620 => 0.085916099566802
621 => 0.085708894077071
622 => 0.085408405122604
623 => 0.086605460631578
624 => 0.08680886368871
625 => 0.087261003488407
626 => 0.08860626484295
627 => 0.088471841510184
628 => 0.088691091543096
629 => 0.088212469952286
630 => 0.086389342258046
701 => 0.086488346863175
702 => 0.085253757850773
703 => 0.087229432271626
704 => 0.08676156649114
705 => 0.086459930378813
706 => 0.086377626170926
707 => 0.087726222168164
708 => 0.08812974322719
709 => 0.087878295982496
710 => 0.087362570347741
711 => 0.088352916027068
712 => 0.088617890751526
713 => 0.088677208820441
714 => 0.09043191148426
715 => 0.088775277207033
716 => 0.08917404554309
717 => 0.092285122267565
718 => 0.089463804977708
719 => 0.090958319669029
720 => 0.090885170951968
721 => 0.091649714096428
722 => 0.09082245609878
723 => 0.09083271095312
724 => 0.091511573470762
725 => 0.090558233498235
726 => 0.090322173114186
727 => 0.089996057384321
728 => 0.090708119149778
729 => 0.091134967974385
730 => 0.094575056014809
731 => 0.096797509775996
801 => 0.096701027196918
802 => 0.097582697361871
803 => 0.097185496877387
804 => 0.095902831736793
805 => 0.098092184727436
806 => 0.097399381834777
807 => 0.097456495663492
808 => 0.097454369883935
809 => 0.097915023241673
810 => 0.097588608119455
811 => 0.096945210407739
812 => 0.09737232783489
813 => 0.098640713896255
814 => 0.10257782314957
815 => 0.10478108164748
816 => 0.1024451842215
817 => 0.10405645498703
818 => 0.10309026668219
819 => 0.10291468152559
820 => 0.10392667863831
821 => 0.10494044711802
822 => 0.1048758744485
823 => 0.10413993058982
824 => 0.10372421457794
825 => 0.10687215549501
826 => 0.10919150473892
827 => 0.1090333406696
828 => 0.10973142543387
829 => 0.11178102389272
830 => 0.11196841348939
831 => 0.11194480670731
901 => 0.11148034203988
902 => 0.11349843789661
903 => 0.11518196896531
904 => 0.11137283188904
905 => 0.11282330142242
906 => 0.11347446392716
907 => 0.11443056367533
908 => 0.11604366421142
909 => 0.11779591924739
910 => 0.11804370732198
911 => 0.11786788982531
912 => 0.11671223052594
913 => 0.11862956889506
914 => 0.11975270074457
915 => 0.12042150005853
916 => 0.12211746384116
917 => 0.11347848528511
918 => 0.10736338687803
919 => 0.10640842595868
920 => 0.10835037654017
921 => 0.10886245342175
922 => 0.10865603587287
923 => 0.10177293665529
924 => 0.10637218786579
925 => 0.11132059545226
926 => 0.11151068394068
927 => 0.11398796024479
928 => 0.11479466295639
929 => 0.11678919508523
930 => 0.11666443655752
1001 => 0.11715007339095
1002 => 0.117038433893
1003 => 0.12073288466338
1004 => 0.12480841249436
1005 => 0.12466728992496
1006 => 0.1240813845798
1007 => 0.12495155392906
1008 => 0.12915793541074
1009 => 0.12877067920979
1010 => 0.1291468656226
1011 => 0.13410642645077
1012 => 0.14055456101668
1013 => 0.13755875512869
1014 => 0.14405879188571
1015 => 0.14815022047211
1016 => 0.15522592315068
1017 => 0.15434001032675
1018 => 0.15709452945562
1019 => 0.15275404147634
1020 => 0.14278740371856
1021 => 0.14121014514264
1022 => 0.14436785675419
1023 => 0.15213078262619
1024 => 0.14412337459257
1025 => 0.1457432628089
1026 => 0.14527673489362
1027 => 0.14525187560363
1028 => 0.14620065359248
1029 => 0.14482440163473
1030 => 0.13921730357582
1031 => 0.14178700357338
1101 => 0.14079471899719
1102 => 0.14189573271419
1103 => 0.14783744965221
1104 => 0.14521047496107
1105 => 0.14244317052205
1106 => 0.1459139844026
1107 => 0.15033352317359
1108 => 0.15005695637997
1109 => 0.14952030120441
1110 => 0.1525453983307
1111 => 0.15754197251305
1112 => 0.15889252643667
1113 => 0.15988947773223
1114 => 0.16002694047226
1115 => 0.16144289212716
1116 => 0.15382896321299
1117 => 0.16591246393934
1118 => 0.16799895071481
1119 => 0.16760677767704
1120 => 0.16992581991519
1121 => 0.1692434988603
1122 => 0.16825492270467
1123 => 0.17193109792656
1124 => 0.1677166596867
1125 => 0.16173479518824
1126 => 0.15845302601652
1127 => 0.16277472439461
1128 => 0.16541383478762
1129 => 0.16715811887845
1130 => 0.16768593819041
1201 => 0.15442001084052
1202 => 0.14727041176099
1203 => 0.15185322280065
1204 => 0.15744456855776
1205 => 0.153797903005
1206 => 0.15394084539061
1207 => 0.14874165863923
1208 => 0.15790458121943
1209 => 0.1565696204718
1210 => 0.16349539919199
1211 => 0.16184250651757
1212 => 0.16749021020671
1213 => 0.16600298055019
1214 => 0.17217638770448
1215 => 0.17463912695665
1216 => 0.17877444945581
1217 => 0.18181640951997
1218 => 0.18360270665308
1219 => 0.18349546407344
1220 => 0.19057366324449
1221 => 0.18639989648676
1222 => 0.18115666175776
1223 => 0.18106182818371
1224 => 0.18377737374707
1225 => 0.18946841227433
1226 => 0.1909440157632
1227 => 0.19176867680796
1228 => 0.19050567971126
1229 => 0.18597535503231
1230 => 0.1840191838052
1231 => 0.18568589836643
]
'min_raw' => 0.06872665398154
'max_raw' => 0.19176867680796
'avg_raw' => 0.13024766539475
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.068726'
'max' => '$0.191768'
'avg' => '$0.130247'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.027207853219711
'max_diff' => 0.099080878904773
'year' => 2036
]
11 => [
'items' => [
101 => 0.18364764968046
102 => 0.18716623874402
103 => 0.19199801305835
104 => 0.19100027076935
105 => 0.1943355736516
106 => 0.19778726125064
107 => 0.20272332954225
108 => 0.20401380057576
109 => 0.20614690012193
110 => 0.20834256024164
111 => 0.20904774709739
112 => 0.21039416761164
113 => 0.21038707131092
114 => 0.21444460015519
115 => 0.21892018012163
116 => 0.22060960794905
117 => 0.2244943540826
118 => 0.21784186246663
119 => 0.22288785377566
120 => 0.22743946424575
121 => 0.22201284660243
122 => 0.229492174784
123 => 0.22978258014877
124 => 0.23416735637163
125 => 0.22972254564828
126 => 0.22708323122908
127 => 0.23470283306347
128 => 0.23838971837592
129 => 0.23727919851494
130 => 0.22882808753977
131 => 0.22390917846702
201 => 0.21103544463693
202 => 0.22628493846259
203 => 0.23371252207123
204 => 0.2288088518926
205 => 0.23128197790124
206 => 0.24477455149059
207 => 0.24991164993397
208 => 0.24884316936878
209 => 0.24902372499561
210 => 0.25179561007072
211 => 0.26408767499878
212 => 0.25672198476606
213 => 0.26235277896183
214 => 0.26533933189993
215 => 0.26811340871123
216 => 0.26130115281864
217 => 0.25243850799429
218 => 0.24963133634989
219 => 0.22832127853411
220 => 0.22721199747991
221 => 0.22658932440953
222 => 0.22266345877964
223 => 0.21957880377964
224 => 0.21712577159775
225 => 0.21068828261505
226 => 0.21286074617224
227 => 0.20260073234218
228 => 0.20916472559809
301 => 0.19278949578861
302 => 0.20642727376652
303 => 0.19900485124682
304 => 0.20398880834339
305 => 0.20397141978659
306 => 0.19479437460678
307 => 0.18950124646711
308 => 0.19287423372934
309 => 0.19649034382251
310 => 0.19707704551907
311 => 0.20176542664499
312 => 0.20307385304082
313 => 0.19910925997687
314 => 0.19245015554824
315 => 0.19399691362901
316 => 0.18946990146397
317 => 0.18153648677376
318 => 0.1872344037084
319 => 0.18917992306961
320 => 0.19003917525331
321 => 0.18223757306432
322 => 0.17978614027552
323 => 0.17848101802827
324 => 0.19144306667396
325 => 0.19215315695894
326 => 0.18852023466433
327 => 0.20494138792381
328 => 0.201224775198
329 => 0.20537714220495
330 => 0.19385656154553
331 => 0.19429666324124
401 => 0.18884263573157
402 => 0.19189652669873
403 => 0.18973813499464
404 => 0.19164980248772
405 => 0.19279564810098
406 => 0.1982487806584
407 => 0.20648953978084
408 => 0.19743426450027
409 => 0.19348875138659
410 => 0.19593652553191
411 => 0.20245527064479
412 => 0.21233150317923
413 => 0.20648457474114
414 => 0.20907934229468
415 => 0.20964618357196
416 => 0.20533487500676
417 => 0.21249046727562
418 => 0.21632520730443
419 => 0.22025885708634
420 => 0.22367433497362
421 => 0.21868767086063
422 => 0.22402411627175
423 => 0.21972388327981
424 => 0.21586612973613
425 => 0.21587198035585
426 => 0.21345195520511
427 => 0.20876285153277
428 => 0.20789810887183
429 => 0.21239660939899
430 => 0.21600398081218
501 => 0.21630110119992
502 => 0.2182983273677
503 => 0.21948026524072
504 => 0.23106486316301
505 => 0.23572428428017
506 => 0.24142173622391
507 => 0.24364121484679
508 => 0.25032104977455
509 => 0.24492654056072
510 => 0.24375940455925
511 => 0.22755630998187
512 => 0.2302095658112
513 => 0.23445768439507
514 => 0.22762635989264
515 => 0.23195926293528
516 => 0.23281466977934
517 => 0.22739423410009
518 => 0.23028952299957
519 => 0.22260049407587
520 => 0.20665713959969
521 => 0.2125082167868
522 => 0.2168165790478
523 => 0.21066801488412
524 => 0.22168907816523
525 => 0.21525080051733
526 => 0.21321017559477
527 => 0.20524897023657
528 => 0.20900635271075
529 => 0.2140882663076
530 => 0.21094823454061
531 => 0.21746427193526
601 => 0.22669271864977
602 => 0.23326945934204
603 => 0.23377433982868
604 => 0.22954593617096
605 => 0.23632198001777
606 => 0.23637133609961
607 => 0.22872793095946
608 => 0.22404638786977
609 => 0.22298273142975
610 => 0.22563995375906
611 => 0.22886631221716
612 => 0.23395338026879
613 => 0.23702738895117
614 => 0.24504277326658
615 => 0.24721150644325
616 => 0.2495942866856
617 => 0.25277841591159
618 => 0.25660177944137
619 => 0.24823647770242
620 => 0.24856884673539
621 => 0.24077919358156
622 => 0.23245483203744
623 => 0.23877198480311
624 => 0.24703082170862
625 => 0.24513623539729
626 => 0.24492305573438
627 => 0.24528156479629
628 => 0.24385310858895
629 => 0.23739225410423
630 => 0.23414765342909
701 => 0.23833401608593
702 => 0.24055888152448
703 => 0.24400945379101
704 => 0.24358409792641
705 => 0.25247240152058
706 => 0.25592612752892
707 => 0.25504251662272
708 => 0.25520512229475
709 => 0.2614579282614
710 => 0.26841233448394
711 => 0.27492605362607
712 => 0.2815520885082
713 => 0.27356414483925
714 => 0.26950835967204
715 => 0.2736928946939
716 => 0.2714725215097
717 => 0.28423144443157
718 => 0.28511484457204
719 => 0.29787284487855
720 => 0.30998170636385
721 => 0.30237634741772
722 => 0.30954785835103
723 => 0.31730443212727
724 => 0.33226812140037
725 => 0.32722887728213
726 => 0.32336889526257
727 => 0.31972123090539
728 => 0.32731144138228
729 => 0.33707612590421
730 => 0.33917934542525
731 => 0.34258736454103
801 => 0.33900424915354
802 => 0.34331971697056
803 => 0.35855521467728
804 => 0.35443844870947
805 => 0.34859197923202
806 => 0.36061894143872
807 => 0.3649714523077
808 => 0.3955196530138
809 => 0.43408801828848
810 => 0.41812046181122
811 => 0.40820888423596
812 => 0.41053834007191
813 => 0.42462220144867
814 => 0.42914549072347
815 => 0.41684963120325
816 => 0.4211927366551
817 => 0.44512367469951
818 => 0.45796185516392
819 => 0.44052588169558
820 => 0.39242072241716
821 => 0.34806556862318
822 => 0.35983055274795
823 => 0.35849676865817
824 => 0.38420757614156
825 => 0.35434026520264
826 => 0.35484315411986
827 => 0.3810856338738
828 => 0.37408459018545
829 => 0.36274379603625
830 => 0.34814836897094
831 => 0.32116737212713
901 => 0.2972695508018
902 => 0.34413868176033
903 => 0.34211759960741
904 => 0.3391907731424
905 => 0.34570410872459
906 => 0.37733101746916
907 => 0.37660191485628
908 => 0.37196373602459
909 => 0.3754817537894
910 => 0.36212707051271
911 => 0.3655688764736
912 => 0.3480585425402
913 => 0.35597394477424
914 => 0.36271946378542
915 => 0.36407372659603
916 => 0.3671249498587
917 => 0.34105258115151
918 => 0.35275830925651
919 => 0.3596343278398
920 => 0.3285682257288
921 => 0.3590202508862
922 => 0.3405987192181
923 => 0.33434617468783
924 => 0.34276440218774
925 => 0.33948381074403
926 => 0.33666335086352
927 => 0.33508948578855
928 => 0.34127090297861
929 => 0.34098253247831
930 => 0.33086853419398
1001 => 0.31767523573138
1002 => 0.32210333975069
1003 => 0.32049456804678
1004 => 0.31466417185613
1005 => 0.31859315492391
1006 => 0.30129190190623
1007 => 0.27152599533021
1008 => 0.29119026496871
1009 => 0.29043321197824
1010 => 0.29005147153082
1011 => 0.30482862668366
1012 => 0.30340814418269
1013 => 0.30082995453402
1014 => 0.31461682138139
1015 => 0.30958442952257
1016 => 0.3250930754508
1017 => 0.33530807269547
1018 => 0.33271721897368
1019 => 0.34232447325565
1020 => 0.32220535432378
1021 => 0.328888118594
1022 => 0.33026542704818
1023 => 0.31444669358457
1024 => 0.30364055268725
1025 => 0.30291990628842
1026 => 0.28418354715041
1027 => 0.29419235896733
1028 => 0.30299969917344
1029 => 0.29878166669192
1030 => 0.29744636361841
1031 => 0.30426813742909
1101 => 0.30479824767872
1102 => 0.29271167780856
1103 => 0.29522485841646
1104 => 0.30570523933289
1105 => 0.29496077970725
1106 => 0.27408604975215
1107 => 0.26890882810756
1108 => 0.26821809130505
1109 => 0.2541770555943
1110 => 0.2692547948137
1111 => 0.26267295758614
1112 => 0.28346490252548
1113 => 0.27158865508557
1114 => 0.27107669379519
1115 => 0.27030278921639
1116 => 0.25821708975227
1117 => 0.26086308984864
1118 => 0.26965879716618
1119 => 0.27279720462781
1120 => 0.27246984301735
1121 => 0.26961569340184
1122 => 0.27092230848021
1123 => 0.26671324605791
1124 => 0.26522693851254
1125 => 0.26053574305825
1126 => 0.25364098171627
1127 => 0.2545997405689
1128 => 0.24093941423799
1129 => 0.23349654344452
1130 => 0.23143645490434
1201 => 0.2286816184114
1202 => 0.23174762101656
1203 => 0.24090071624982
1204 => 0.22986014146103
1205 => 0.21093185039192
1206 => 0.21206947293742
1207 => 0.21462537303397
1208 => 0.20986247011301
1209 => 0.20535478221846
1210 => 0.20927385112249
1211 => 0.20125368466926
1212 => 0.21559457183305
1213 => 0.21520669102514
1214 => 0.22055208692528
1215 => 0.22389467268021
1216 => 0.21619109469009
1217 => 0.21425366565827
1218 => 0.21535731328603
1219 => 0.19711647640451
1220 => 0.21906142139552
1221 => 0.21925120219108
1222 => 0.21762618380019
1223 => 0.22931118953374
1224 => 0.25397019627621
1225 => 0.24469248603344
1226 => 0.24109987620717
1227 => 0.23427032230124
1228 => 0.24337029738211
1229 => 0.24267156127762
1230 => 0.23951161162534
1231 => 0.23760046421599
]
'min_raw' => 0.17848101802827
'max_raw' => 0.45796185516392
'avg_raw' => 0.3182214365961
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.178481'
'max' => '$0.457961'
'avg' => '$0.318221'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.10975436404673
'max_diff' => 0.26619317835597
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0056023152102163
]
1 => [
'year' => 2028
'avg' => 0.0096151992644573
]
2 => [
'year' => 2029
'avg' => 0.026266991419439
]
3 => [
'year' => 2030
'avg' => 0.02026494476212
]
4 => [
'year' => 2031
'avg' => 0.019902687163358
]
5 => [
'year' => 2032
'avg' => 0.034895674203534
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0056023152102163
'min' => '$0.0056023'
'max_raw' => 0.034895674203534
'max' => '$0.034895'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.034895674203534
]
1 => [
'year' => 2033
'avg' => 0.089755262331353
]
2 => [
'year' => 2034
'avg' => 0.056891198701679
]
3 => [
'year' => 2035
'avg' => 0.067103299332505
]
4 => [
'year' => 2036
'avg' => 0.13024766539475
]
5 => [
'year' => 2037
'avg' => 0.3182214365961
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.034895674203534
'min' => '$0.034895'
'max_raw' => 0.3182214365961
'max' => '$0.318221'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.3182214365961
]
]
]
]
'prediction_2025_max_price' => '$0.009578'
'last_price' => 0.00928799
'sma_50day_nextmonth' => '$0.008748'
'sma_200day_nextmonth' => '$0.013829'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009471'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009376'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.009157'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00911'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.009029'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.010848'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.015624'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009355'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.009322'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.009215'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009119'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.009563'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.011499'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.016042'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.013363'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019817'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009329'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00934'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.010097'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013188'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021785'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01534'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.00767'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '51.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 73.85
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.009172'
'vwma_10_action' => 'BUY'
'hma_9' => '0.009638'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 52.11
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 55.46
'cci_20_action' => 'NEUTRAL'
'adx_14' => 8.69
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000470'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -47.89
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 54.24
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001621'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 22
'buy_signals' => 9
'sell_pct' => 70.97
'buy_pct' => 29.03
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767710689
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Minima para 2026
La previsión del precio de Minima para 2026 sugiere que el precio medio podría oscilar entre $0.0032089 en el extremo inferior y $0.009578 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Minima podría potencialmente ganar 3.13% para 2026 si MINIMA alcanza el objetivo de precio previsto.
Predicción de precio de Minima 2027-2032
La predicción del precio de MINIMA para 2027-2032 está actualmente dentro de un rango de precios de $0.0056023 en el extremo inferior y $0.034895 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Minima alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Minima | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003089 | $0.0056023 | $0.008115 |
| 2028 | $0.005575 | $0.009615 | $0.013655 |
| 2029 | $0.012246 | $0.026266 | $0.040287 |
| 2030 | $0.010415 | $0.020264 | $0.030114 |
| 2031 | $0.012314 | $0.0199026 | $0.02749 |
| 2032 | $0.018796 | $0.034895 | $0.050994 |
Predicción de precio de Minima 2032-2037
La predicción de precio de Minima para 2032-2037 se estima actualmente entre $0.034895 en el extremo inferior y $0.318221 en el extremo superior. Comparado con el precio actual, Minima podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Minima | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.018796 | $0.034895 | $0.050994 |
| 2033 | $0.04368 | $0.089755 | $0.13583 |
| 2034 | $0.035116 | $0.056891 | $0.078665 |
| 2035 | $0.041518 | $0.0671032 | $0.092687 |
| 2036 | $0.068726 | $0.130247 | $0.191768 |
| 2037 | $0.178481 | $0.318221 | $0.457961 |
Minima Histograma de precios potenciales
Pronóstico de precio de Minima basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Minima es Bajista, con 9 indicadores técnicos mostrando señales alcistas y 22 indicando señales bajistas. La predicción de precio de MINIMA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Minima
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Minima aumentar durante el próximo mes, alcanzando $0.013829 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Minima alcance $0.008748 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.97, lo que sugiere que el mercado de MINIMA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de MINIMA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009471 | SELL |
| SMA 5 | $0.009376 | SELL |
| SMA 10 | $0.009157 | BUY |
| SMA 21 | $0.00911 | BUY |
| SMA 50 | $0.009029 | BUY |
| SMA 100 | $0.010848 | SELL |
| SMA 200 | $0.015624 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009355 | SELL |
| EMA 5 | $0.009322 | SELL |
| EMA 10 | $0.009215 | BUY |
| EMA 21 | $0.009119 | BUY |
| EMA 50 | $0.009563 | SELL |
| EMA 100 | $0.011499 | SELL |
| EMA 200 | $0.016042 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.013363 | SELL |
| SMA 50 | $0.019817 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.013188 | SELL |
| EMA 50 | $0.021785 | SELL |
| EMA 100 | $0.01534 | SELL |
| EMA 200 | $0.00767 | BUY |
Osciladores de Minima
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.97 | NEUTRAL |
| Stoch RSI (14) | 73.85 | NEUTRAL |
| Estocástico Rápido (14) | 52.11 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 55.46 | NEUTRAL |
| Índice Direccional Medio (14) | 8.69 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000470 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -47.89 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 54.24 | NEUTRAL |
| VWMA (10) | 0.009172 | BUY |
| Promedio Móvil de Hull (9) | 0.009638 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001621 | NEUTRAL |
Predicción de precios de Minima basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Minima
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Minima por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.013051 | $0.018339 | $0.025769 | $0.03621 | $0.050881 | $0.071497 |
| Amazon.com acción | $0.019379 | $0.040437 | $0.084375 | $0.176053 | $0.367346 | $0.766489 |
| Apple acción | $0.013174 | $0.018686 | $0.0265057 | $0.037596 | $0.053327 | $0.075641 |
| Netflix acción | $0.014654 | $0.023123 | $0.036484 | $0.057567 | $0.090832 | $0.143319 |
| Google acción | $0.012027 | $0.015576 | $0.02017 | $0.026121 | $0.033826 | $0.0438057 |
| Tesla acción | $0.021055 | $0.04773 | $0.1082013 | $0.245284 | $0.556041 | $1.26 |
| Kodak acción | $0.006965 | $0.005223 | $0.003916 | $0.002937 | $0.0022025 | $0.001651 |
| Nokia acción | $0.006152 | $0.004076 | $0.0027002 | $0.001788 | $0.001184 | $0.000785 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Minima
Podría preguntarse cosas como: "¿Debo invertir en Minima ahora?", "¿Debería comprar MINIMA hoy?", "¿Será Minima una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Minima regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Minima, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Minima a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Minima es de $0.009287 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Minima basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Minima ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009529 | $0.009777 | $0.010031 | $0.010291 |
| Si Minima ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00977 | $0.010278 | $0.010813 | $0.011375 |
| Si Minima ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010495 | $0.011859 | $0.0134004 | $0.015142 |
| Si Minima ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0117022 | $0.014744 | $0.018576 | $0.023405 |
| Si Minima ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.014116 | $0.021455 | $0.0326088 | $0.049561 |
| Si Minima ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.021359 | $0.049118 | $0.112956 | $0.259762 |
| Si Minima ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.03343 | $0.120326 | $0.433095 | $1.55 |
Cuadro de preguntas
¿Es MINIMA una buena inversión?
La decisión de adquirir Minima depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Minima ha experimentado una caída de -0.4751% durante las últimas 24 horas, y Minima ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Minima dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Minima subir?
Parece que el valor medio de Minima podría potencialmente aumentar hasta $0.009578 para el final de este año. Mirando las perspectivas de Minima en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.030114. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Minima la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Minima, el precio de Minima aumentará en un 0.86% durante la próxima semana y alcanzará $0.009367 para el 13 de enero de 2026.
¿Cuál será el precio de Minima el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Minima, el precio de Minima disminuirá en un -11.62% durante el próximo mes y alcanzará $0.008208 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Minima este año en 2026?
Según nuestra predicción más reciente sobre el valor de Minima en 2026, se anticipa que MINIMA fluctúe dentro del rango de $0.0032089 y $0.009578. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Minima no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Minima en 5 años?
El futuro de Minima parece estar en una tendencia alcista, con un precio máximo de $0.030114 proyectada después de un período de cinco años. Basado en el pronóstico de Minima para 2030, el valor de Minima podría potencialmente alcanzar su punto más alto de aproximadamente $0.030114, mientras que su punto más bajo se anticipa que esté alrededor de $0.010415.
¿Cuánto será Minima en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Minima, se espera que el valor de MINIMA en 2026 crezca en un 3.13% hasta $0.009578 si ocurre lo mejor. El precio estará entre $0.009578 y $0.0032089 durante 2026.
¿Cuánto será Minima en 2027?
Según nuestra última simulación experimental para la predicción de precios de Minima, el valor de MINIMA podría disminuir en un -12.62% hasta $0.008115 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008115 y $0.003089 a lo largo del año.
¿Cuánto será Minima en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Minima sugiere que el valor de MINIMA en 2028 podría aumentar en un 47.02% , alcanzando $0.013655 en el mejor escenario. Se espera que el precio oscile entre $0.013655 y $0.005575 durante el año.
¿Cuánto será Minima en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Minima podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.040287 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.040287 y $0.012246.
¿Cuánto será Minima en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Minima, se espera que el valor de MINIMA en 2030 aumente en un 224.23% , alcanzando $0.030114 en el mejor escenario. Se pronostica que el precio oscile entre $0.030114 y $0.010415 durante el transcurso de 2030.
¿Cuánto será Minima en 2031?
Nuestra simulación experimental indica que el precio de Minima podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.02749 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.02749 y $0.012314 durante el año.
¿Cuánto será Minima en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Minima, MINIMA podría experimentar un 449.04% aumento en valor, alcanzando $0.050994 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.050994 y $0.018796 a lo largo del año.
¿Cuánto será Minima en 2033?
Según nuestra predicción experimental de precios de Minima, se anticipa que el valor de MINIMA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.13583. A lo largo del año, el precio de MINIMA podría oscilar entre $0.13583 y $0.04368.
¿Cuánto será Minima en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Minima sugieren que MINIMA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.078665 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.078665 y $0.035116.
¿Cuánto será Minima en 2035?
Basado en nuestra predicción experimental para el precio de Minima, MINIMA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.092687 en 2035. El rango de precios esperado para el año está entre $0.092687 y $0.041518.
¿Cuánto será Minima en 2036?
Nuestra reciente simulación de predicción de precios de Minima sugiere que el valor de MINIMA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.191768 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.191768 y $0.068726.
¿Cuánto será Minima en 2037?
Según la simulación experimental, el valor de Minima podría aumentar en un 4830.69% en 2037, con un máximo de $0.457961 bajo condiciones favorables. Se espera que el precio caiga entre $0.457961 y $0.178481 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Minima?
Los traders de Minima utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Minima
Las medias móviles son herramientas populares para la predicción de precios de Minima. Una media móvil simple (SMA) calcula el precio de cierre promedio de MINIMA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de MINIMA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de MINIMA.
¿Cómo leer gráficos de Minima y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Minima en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de MINIMA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Minima?
La acción del precio de Minima está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de MINIMA. La capitalización de mercado de Minima puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de MINIMA, grandes poseedores de Minima, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Minima.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


