Predicción del precio de METAVERSE - Pronóstico de METAV
Predicción de precio de METAVERSE hasta $0.002996 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0010039 | $0.002996 |
| 2027 | $0.000966 | $0.002538 |
| 2028 | $0.001744 | $0.004272 |
| 2029 | $0.003831 | $0.0126038 |
| 2030 | $0.003258 | $0.009421 |
| 2031 | $0.003852 | $0.00860059 |
| 2032 | $0.00588 | $0.015953 |
| 2033 | $0.013665 | $0.042494 |
| 2034 | $0.010986 | $0.02461 |
| 2035 | $0.012989 | $0.028997 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en METAVERSE hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.83, equivalente a un ROI del 39.57% en los próximos 90 días.
Predicción del precio a largo plazo de METAVERSE para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'METAVERSE'
'name_with_ticker' => 'METAVERSE <small>METAV</small>'
'name_lang' => 'METAVERSE'
'name_lang_with_ticker' => 'METAVERSE <small>METAV</small>'
'name_with_lang' => 'METAVERSE'
'name_with_lang_with_ticker' => 'METAVERSE <small>METAV</small>'
'image' => '/uploads/coins/metaverse.jpg?1735518317'
'price_for_sd' => 0.002905
'ticker' => 'METAV'
'marketcap' => '$2.91M'
'low24h' => '$0.002886'
'high24h' => '$0.002935'
'volume24h' => '$408.33K'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002905'
'change_24h_pct' => '0.1572%'
'ath_price' => '$0.07101'
'ath_days' => 369
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 ene. 2025'
'ath_pct' => '-95.91%'
'fdv' => '$2.91M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.143273'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00293'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002568'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0010039'
'current_year_max_price_prediction' => '$0.002996'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003258'
'grand_prediction_max_price' => '$0.009421'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029608226235702
107 => 0.002971877260468
108 => 0.0029967839218625
109 => 0.0027839592272275
110 => 0.0028795112669139
111 => 0.0029356391382143
112 => 0.0026820513737296
113 => 0.0029306265234572
114 => 0.0027802544227861
115 => 0.0027292158733051
116 => 0.0027979325563637
117 => 0.0027711535981466
118 => 0.0027481306223847
119 => 0.0027352834063247
120 => 0.0027857413543793
121 => 0.0027833874307923
122 => 0.0027008284343092
123 => 0.0025931335889323
124 => 0.0026292795140036
125 => 0.0026161473605554
126 => 0.0025685547423774
127 => 0.0026006264206747
128 => 0.0024593989805582
129 => 0.0022164245102014
130 => 0.0023769408878284
131 => 0.002370761181898
201 => 0.0023676450939405
202 => 0.0024882687153804
203 => 0.0024766735374394
204 => 0.0024556281759362
205 => 0.0025681682278094
206 => 0.0025270895949984
207 => 0.0026536842619788
208 => 0.0027370676972819
209 => 0.0027159189609175
210 => 0.0027943414848471
211 => 0.0026301122431127
212 => 0.0026846626094834
213 => 0.0026959053643888
214 => 0.0025667795010384
215 => 0.0024785706519505
216 => 0.0024726881273709
217 => 0.0023197461389807
218 => 0.0024014465146741
219 => 0.0024733394642931
220 => 0.0024389083205439
221 => 0.002428008449034
222 => 0.0024836935286841
223 => 0.0024880207362834
224 => 0.0023893599444432
225 => 0.0024098746472477
226 => 0.0024954243682281
227 => 0.002407719013777
228 => 0.0022373218366667
301 => 0.0021950609808181
302 => 0.0021894226036258
303 => 0.0020748078108135
304 => 0.002197885053284
305 => 0.0021441585386806
306 => 0.0023138799545703
307 => 0.0022169359920483
308 => 0.0022127569315835
309 => 0.0022064396687559
310 => 0.0021077859819049
311 => 0.0021293848695564
312 => 0.0022011828617135
313 => 0.0022268011941773
314 => 0.0022241289922166
315 => 0.0022008310123826
316 => 0.0022114967082456
317 => 0.0021771387856961
318 => 0.0021650062881455
319 => 0.0021267127885696
320 => 0.0020704319230422
321 => 0.0020782581225844
322 => 0.0019667510012852
323 => 0.0019059960034705
324 => 0.0018891798208134
325 => 0.0018666925185677
326 => 0.0018917198214385
327 => 0.0019664351156207
328 => 0.0018763126191031
329 => 0.0017218039201817
330 => 0.0017310901562569
331 => 0.0017519535716096
401 => 0.0017130747351251
402 => 0.001676279179246
403 => 0.0017082699297651
404 => 0.0016428025571799
405 => 0.0017598649908125
406 => 0.0017566987800464
407 => 0.0018003324162122
408 => 0.0018276174243591
409 => 0.0017647343142069
410 => 0.0017489193820576
411 => 0.0017579282861584
412 => 0.0016090311689537
413 => 0.0017881643451122
414 => 0.0017897134962583
415 => 0.0017764487236286
416 => 0.0018718316098166
417 => 0.0020731192503417
418 => 0.0019973867431996
419 => 0.001968060827407
420 => 0.0019123122400482
421 => 0.0019865939226803
422 => 0.0019808902484289
423 => 0.0019550960704099
424 => 0.0019394956710613
425 => 0.0019682398851955
426 => 0.001935933944832
427 => 0.0019301309102348
428 => 0.00189497083434
429 => 0.001882420286927
430 => 0.0018731283612742
501 => 0.0018628988641361
502 => 0.0018854625857908
503 => 0.0018343302240166
504 => 0.0017726696082841
505 => 0.0017675431952631
506 => 0.001781697672333
507 => 0.0017754353699065
508 => 0.0017675132137683
509 => 0.0017523876602298
510 => 0.0017479002316013
511 => 0.0017624821976532
512 => 0.001746020008162
513 => 0.0017703108654982
514 => 0.0017637050963772
515 => 0.0017268058070477
516 => 0.0016808156306766
517 => 0.0016804062216393
518 => 0.0016704977135791
519 => 0.0016578777388104
520 => 0.0016543671505356
521 => 0.0017055757579858
522 => 0.0018115760428632
523 => 0.0017907656505699
524 => 0.0018058032917366
525 => 0.0018797736029761
526 => 0.0019032865405543
527 => 0.0018865976143958
528 => 0.0018637527829418
529 => 0.0018647578395863
530 => 0.0019428255442652
531 => 0.0019476945312463
601 => 0.0019599968905526
602 => 0.0019758088989076
603 => 0.0018892904677917
604 => 0.0018606828292612
605 => 0.0018471269430341
606 => 0.0018053800602429
607 => 0.001850400494226
608 => 0.0018241690153113
609 => 0.0018277085380118
610 => 0.0018254034192097
611 => 0.0018266621699471
612 => 0.0017598322694765
613 => 0.0017841815727318
614 => 0.0017436961334448
615 => 0.0016894906749434
616 => 0.0016893089592396
617 => 0.001702575668415
618 => 0.0016946841106711
619 => 0.0016734481316927
620 => 0.0016764646022756
621 => 0.00165003714589
622 => 0.0016796733739653
623 => 0.001680523234943
624 => 0.0016691116728378
625 => 0.0017147703711992
626 => 0.0017334767771718
627 => 0.0017259654425348
628 => 0.00173294976191
629 => 0.001791630416323
630 => 0.0018011979234088
701 => 0.0018054471780622
702 => 0.001799753739745
703 => 0.0017340223365511
704 => 0.0017369378037942
705 => 0.0017155460396068
706 => 0.0016974722530771
707 => 0.0016981951097537
708 => 0.0017074873854578
709 => 0.0017480672984423
710 => 0.0018334653330017
711 => 0.0018367061259881
712 => 0.0018406340616282
713 => 0.0018246571733576
714 => 0.001819838390977
715 => 0.0018261956087703
716 => 0.0018582666205355
717 => 0.0019407619699902
718 => 0.0019116026038138
719 => 0.0018878955852198
720 => 0.001908693031893
721 => 0.0019054914279934
722 => 0.0018784666691008
723 => 0.0018777081741274
724 => 0.0018258390214742
725 => 0.0018066641767418
726 => 0.0017906402412712
727 => 0.0017731425220526
728 => 0.0017627692875711
729 => 0.0017787072902855
730 => 0.0017823525000793
731 => 0.0017475037785954
801 => 0.0017427540266276
802 => 0.0017712122448532
803 => 0.0017586888440414
804 => 0.0017715694723417
805 => 0.0017745578885954
806 => 0.0017740766847495
807 => 0.0017610008159986
808 => 0.0017693349848124
809 => 0.0017496221910324
810 => 0.0017281874885626
811 => 0.001714513483816
812 => 0.001702581101081
813 => 0.0017092018805365
814 => 0.0016856000106842
815 => 0.0016780492975067
816 => 0.001766511555943
817 => 0.0018318595773795
818 => 0.0018309093912671
819 => 0.0018251253776763
820 => 0.0018165315067246
821 => 0.0018576379253474
822 => 0.001843317271048
823 => 0.0018537367435816
824 => 0.0018563889366452
825 => 0.0018644163262595
826 => 0.0018672854280692
827 => 0.0018586130096811
828 => 0.0018295073143239
829 => 0.0017569786887802
830 => 0.0017232164178023
831 => 0.0017120743060246
901 => 0.0017124793006258
902 => 0.0017013077415481
903 => 0.0017045982663706
904 => 0.0017001634313002
905 => 0.0016917649265787
906 => 0.0017086832965363
907 => 0.0017106329810684
908 => 0.0017066840313608
909 => 0.001707614151971
910 => 0.0016749185350108
911 => 0.0016774043117571
912 => 0.0016635631909562
913 => 0.0016609681476633
914 => 0.0016259789995629
915 => 0.001563990651945
916 => 0.0015983382138798
917 => 0.0015568511890607
918 => 0.0015411394241306
919 => 0.0016155164756286
920 => 0.0016080510825565
921 => 0.0015952735747454
922 => 0.0015763729776269
923 => 0.0015693625623024
924 => 0.0015267694980187
925 => 0.0015242528725557
926 => 0.0015453631453241
927 => 0.0015356214808016
928 => 0.0015219404943552
929 => 0.0014723893482654
930 => 0.0014166774542399
1001 => 0.001418359046128
1002 => 0.0014360799630609
1003 => 0.0014876059190345
1004 => 0.0014674738366276
1005 => 0.0014528677798523
1006 => 0.0014501325044747
1007 => 0.0014843702025117
1008 => 0.0015328237182536
1009 => 0.0015555570237534
1010 => 0.0015330290084238
1011 => 0.0015071500374078
1012 => 0.0015087251704619
1013 => 0.0015192038249991
1014 => 0.0015203049834307
1015 => 0.0015034604337005
1016 => 0.001508202075782
1017 => 0.0015009990878753
1018 => 0.0014567943643875
1019 => 0.0014559948411143
1020 => 0.0014451462890729
1021 => 0.0014448177992286
1022 => 0.0014263617059081
1023 => 0.0014237795708716
1024 => 0.0013871338773789
1025 => 0.0014112541838092
1026 => 0.0013950755486287
1027 => 0.0013706905292574
1028 => 0.0013664865427266
1029 => 0.001366360165815
1030 => 0.0013913981283187
1031 => 0.0014109616006395
1101 => 0.0013953569829143
1102 => 0.0013918041139411
1103 => 0.0014297394595118
1104 => 0.0014249118409996
1105 => 0.0014207311545028
1106 => 0.0015284852373617
1107 => 0.001443189472623
1108 => 0.0014059956506848
1109 => 0.0013599612331212
1110 => 0.0013749502716056
1111 => 0.001378108682249
1112 => 0.0012674042063359
1113 => 0.0012224914142453
1114 => 0.0012070790365026
1115 => 0.0011982089952127
1116 => 0.0012022511844115
1117 => 0.0011618244037849
1118 => 0.0011889918689632
1119 => 0.0011539856941312
1120 => 0.0011481167950007
1121 => 0.0012107121720332
1122 => 0.0012194219530704
1123 => 0.0011822633212489
1124 => 0.0012061251783143
1125 => 0.0011974725372378
1126 => 0.0011545857745249
1127 => 0.001152947815643
1128 => 0.0011314287456563
1129 => 0.0010977555680401
1130 => 0.0010823660222975
1201 => 0.0010743510132566
1202 => 0.0010776581621963
1203 => 0.001075985966492
1204 => 0.0010650737584045
1205 => 0.0010766114414862
1206 => 0.0010471374289122
1207 => 0.001035400639617
1208 => 0.0010300994041838
1209 => 0.0010039395215635
1210 => 0.001045571528165
1211 => 0.0010537735579317
1212 => 0.0010619917482307
1213 => 0.0011335254839873
1214 => 0.0011299518607011
1215 => 0.0011622556747829
1216 => 0.0011610004079706
1217 => 0.0011517868369074
1218 => 0.0011129162961506
1219 => 0.0011284094008955
1220 => 0.0010807240326537
1221 => 0.0011164531528303
1222 => 0.0011001478744654
1223 => 0.0011109403218135
1224 => 0.0010915345283659
1225 => 0.0011022744957054
1226 => 0.0010557185634646
1227 => 0.0010122452889978
1228 => 0.0010297402037072
1229 => 0.0010487591767825
1230 => 0.0010899971563541
1231 => 0.0010654361559272
]
'min_raw' => 0.0010039395215635
'max_raw' => 0.0029967839218625
'avg_raw' => 0.002000361721713
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0010039'
'max' => '$0.002996'
'avg' => '$0.00200036'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0019018204784365
'max_diff' => 9.1023921862534E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.001074269220435
102 => 0.0010446799329711
103 => 0.00098362878117113
104 => 0.00098397432406018
105 => 0.00097458293442739
106 => 0.00096646740261932
107 => 0.0010682572822805
108 => 0.0010555981016848
109 => 0.001035427354198
110 => 0.0010624267012626
111 => 0.0010695657571638
112 => 0.001069768996049
113 => 0.0010894670227133
114 => 0.0010999798630751
115 => 0.0011018327967541
116 => 0.0011328280673145
117 => 0.0011432172731688
118 => 0.0011860089417473
119 => 0.0010990879220195
120 => 0.0010972978408182
121 => 0.0010628066374446
122 => 0.0010409317709807
123 => 0.0010643044282661
124 => 0.0010850094119352
125 => 0.0010634499990021
126 => 0.0010662652031871
127 => 0.0010373234527933
128 => 0.0010476687667231
129 => 0.0010565795447438
130 => 0.0010516595368721
131 => 0.0010442940469571
201 => 0.0010833118393908
202 => 0.0010811103026297
203 => 0.0011174445679592
204 => 0.0011457697260717
205 => 0.001196533473137
206 => 0.0011435588567004
207 => 0.0011416282511224
208 => 0.001160500230326
209 => 0.0011432143839671
210 => 0.0011541384421788
211 => 0.0011947734384739
212 => 0.0011956319919138
213 => 0.0011812501156114
214 => 0.0011803749771314
215 => 0.0011831371737957
216 => 0.0011993154459345
217 => 0.0011936622605411
218 => 0.0012002042697995
219 => 0.0012083851525519
220 => 0.0012422247522382
221 => 0.0012503833651591
222 => 0.0012305621655171
223 => 0.0012323517979162
224 => 0.0012249381251459
225 => 0.0012177766101429
226 => 0.0012338746500144
227 => 0.0012632941342873
228 => 0.0012631111172025
301 => 0.0012699358657207
302 => 0.0012741876275083
303 => 0.0012559359534361
304 => 0.0012440547847477
305 => 0.0012486107808413
306 => 0.0012558959178115
307 => 0.0012462483091084
308 => 0.0011866987989861
309 => 0.0012047623163198
310 => 0.0012017556637746
311 => 0.0011974738249288
312 => 0.0012156368312888
313 => 0.0012138849650165
314 => 0.0011614097687176
315 => 0.0011647690605293
316 => 0.001161614058379
317 => 0.0011718085157794
318 => 0.0011426638498121
319 => 0.0011516285527713
320 => 0.0011572511304285
321 => 0.0011605628718632
322 => 0.0011725271528078
323 => 0.0011711232825302
324 => 0.0011724398862602
325 => 0.001190179756448
326 => 0.0012799019322696
327 => 0.0012847853123387
328 => 0.0012607377628659
329 => 0.0012703442845634
330 => 0.0012519018636196
331 => 0.0012642823843526
401 => 0.001272752822207
402 => 0.0012344765423145
403 => 0.0012322100694303
404 => 0.001213691530055
405 => 0.0012236423441716
406 => 0.0012078098834232
407 => 0.0012116946154949
408 => 0.0012008325659576
409 => 0.0012203820925122
410 => 0.0012422415008896
411 => 0.0012477640506999
412 => 0.0012332365997561
413 => 0.0012227177678672
414 => 0.0012042501641888
415 => 0.0012349622006833
416 => 0.0012439433360867
417 => 0.0012349150266025
418 => 0.0012328229700225
419 => 0.0012288585265837
420 => 0.0012336640454392
421 => 0.0012438944228945
422 => 0.001239069965812
423 => 0.001242256604711
424 => 0.0012301124232757
425 => 0.0012559419954997
426 => 0.0012969655724163
427 => 0.0012970974699241
428 => 0.001292272986836
429 => 0.0012902989123013
430 => 0.0012952491247238
501 => 0.0012979344118947
502 => 0.0013139424911556
503 => 0.0013311197979924
504 => 0.0014112787939541
505 => 0.0013887704686495
506 => 0.0014598922985467
507 => 0.0015161404319816
508 => 0.0015330067877659
509 => 0.0015174905340677
510 => 0.0014644102683376
511 => 0.0014618058972681
512 => 0.001541130224179
513 => 0.0015187174685423
514 => 0.0015160515425761
515 => 0.0014876905944489
516 => 0.0015044554273639
517 => 0.0015007887124801
518 => 0.0014950006236543
519 => 0.0015269867570076
520 => 0.0015868619432232
521 => 0.0015775298339456
522 => 0.0015705638472739
523 => 0.0015400409214469
524 => 0.001558422540337
525 => 0.001551877197927
526 => 0.0015800001426976
527 => 0.001563340733215
528 => 0.0015185476698748
529 => 0.0015256811128516
530 => 0.0015246029072962
531 => 0.0015467923012248
601 => 0.001540131595942
602 => 0.0015233022976892
603 => 0.001586657296346
604 => 0.0015825433751322
605 => 0.00158837597484
606 => 0.0015909436656105
607 => 0.0016295067368526
608 => 0.0016453047932599
609 => 0.0016488912286482
610 => 0.0016638981603696
611 => 0.001648517842516
612 => 0.0017100500799111
613 => 0.0017509654272732
614 => 0.0017984907087188
615 => 0.0018679379185023
616 => 0.0018940507118035
617 => 0.0018893336694202
618 => 0.001941987751288
619 => 0.0020366059659699
620 => 0.0019084587158457
621 => 0.0020433980813923
622 => 0.0020006778362101
623 => 0.0018993889033876
624 => 0.0018928670902319
625 => 0.001961461131528
626 => 0.0021135961131909
627 => 0.0020754880257851
628 => 0.0021136584443701
629 => 0.0020691306235495
630 => 0.0020669194419358
701 => 0.0021114958275008
702 => 0.0022156509821057
703 => 0.0021661707723505
704 => 0.0020952287586212
705 => 0.0021476112375789
706 => 0.0021022326865362
707 => 0.0019999821103803
708 => 0.0020754588852488
709 => 0.002024989715349
710 => 0.0020397193022144
711 => 0.0021457979906214
712 => 0.0021330343221828
713 => 0.0021495516910262
714 => 0.0021203989673525
715 => 0.0020931657264788
716 => 0.0020423328600209
717 => 0.0020272837542927
718 => 0.0020314427857059
719 => 0.0020272816932833
720 => 0.0019988411716782
721 => 0.0019926994437455
722 => 0.0019824629614489
723 => 0.0019856356753478
724 => 0.0019663880938418
725 => 0.0020027122568969
726 => 0.0020094543416474
727 => 0.0020358880383351
728 => 0.0020386324724156
729 => 0.0021122499414308
730 => 0.0020717026765885
731 => 0.0020989052825271
801 => 0.0020964720254111
802 => 0.0019015841416968
803 => 0.0019284379725623
804 => 0.0019702141061926
805 => 0.0019513940146183
806 => 0.0019247868083556
807 => 0.0019033000627102
808 => 0.0018707454459249
809 => 0.0019165654438942
810 => 0.0019768138688101
811 => 0.0020401604718965
812 => 0.002116267264871
813 => 0.0020992811146599
814 => 0.0020387377083407
815 => 0.0020414536413212
816 => 0.0020582424703263
817 => 0.0020364994113387
818 => 0.0020300869587683
819 => 0.0020573614978131
820 => 0.0020575493225736
821 => 0.0020325313054719
822 => 0.0020047283577121
823 => 0.0020046118623458
824 => 0.0019996645963365
825 => 0.0020700107311821
826 => 0.0021086939925508
827 => 0.0021131289661255
828 => 0.0021083954834932
829 => 0.0021102172130931
830 => 0.0020877082756302
831 => 0.0021391570318524
901 => 0.0021863714983165
902 => 0.0021737170127141
903 => 0.0021547461398551
904 => 0.0021396349258619
905 => 0.0021701572909386
906 => 0.0021687981780684
907 => 0.0021859591211409
908 => 0.0021851806016367
909 => 0.0021794100219372
910 => 0.0021737172187997
911 => 0.0021962885397544
912 => 0.0021897883618038
913 => 0.0021832780872814
914 => 0.0021702207350536
915 => 0.002171995446081
916 => 0.0021530278488107
917 => 0.0021442525704152
918 => 0.0020122934381844
919 => 0.0019770296461633
920 => 0.0019881243529938
921 => 0.0019917770185564
922 => 0.001976430171077
923 => 0.0019984336080808
924 => 0.0019950043957311
925 => 0.0020083454549614
926 => 0.0020000105403558
927 => 0.0020003526081585
928 => 0.0020248638148225
929 => 0.0020319795223952
930 => 0.0020283604160929
1001 => 0.0020308951140913
1002 => 0.0020893061596354
1003 => 0.0020810019768391
1004 => 0.0020765905452371
1005 => 0.0020778125419391
1006 => 0.0020927378164225
1007 => 0.0020969160783881
1008 => 0.0020792124888387
1009 => 0.0020875616040134
1010 => 0.0021231110767671
1011 => 0.0021355513803049
1012 => 0.0021752548575134
1013 => 0.0021583881147222
1014 => 0.0021893477510909
1015 => 0.0022845071183706
1016 => 0.0023605270054809
1017 => 0.0022906159756396
1018 => 0.0024302168172435
1019 => 0.0025389160969835
1020 => 0.002534744037579
1021 => 0.0025157898038966
1022 => 0.0023920385638325
1023 => 0.0022781608276984
1024 => 0.0023734243894787
1025 => 0.0023736672358888
1026 => 0.0023654840114468
1027 => 0.0023146587072475
1028 => 0.0023637154010309
1029 => 0.0023676093432357
1030 => 0.0023654297710838
1031 => 0.0023264621295204
1101 => 0.0022669657432772
1102 => 0.0022785911947349
1103 => 0.0022976339213754
1104 => 0.002261582067116
1105 => 0.0022500613152212
1106 => 0.0022714805849063
1107 => 0.0023404979347138
1108 => 0.002327450604523
1109 => 0.0023271098860033
1110 => 0.0023829318974886
1111 => 0.0023429753844092
1112 => 0.0022787378289076
1113 => 0.0022625169989542
1114 => 0.00220494398028
1115 => 0.0022447098693463
1116 => 0.0022461409729
1117 => 0.0022243616018559
1118 => 0.0022805051048349
1119 => 0.0022799877325711
1120 => 0.002333287632792
1121 => 0.0024351770234861
1122 => 0.0024050433169855
1123 => 0.0023700010948631
1124 => 0.0023738111560233
1125 => 0.0024155981229176
1126 => 0.0023903327688296
1127 => 0.0023994183663159
1128 => 0.0024155843707776
1129 => 0.0024253377226486
1130 => 0.0023724077987846
1201 => 0.0023600673016009
1202 => 0.0023348229752892
1203 => 0.0023282372017621
1204 => 0.0023487981788029
1205 => 0.0023433810877827
1206 => 0.0022460206941878
1207 => 0.002235845991349
1208 => 0.002236158034959
1209 => 0.0022105732608901
1210 => 0.0021715503393857
1211 => 0.0022741002471616
1212 => 0.0022658640543822
1213 => 0.0022567719349844
1214 => 0.0022578856677317
1215 => 0.0023023991069584
1216 => 0.0022765790642243
1217 => 0.0023452258796545
1218 => 0.0023311141581142
1219 => 0.0023166405241648
1220 => 0.0023146398270754
1221 => 0.0023090687128373
1222 => 0.0022899632891945
1223 => 0.0022668923420879
1224 => 0.002251658904437
1225 => 0.0020770363171037
1226 => 0.0021094452535799
1227 => 0.0021467287808283
1228 => 0.00215959890503
1229 => 0.0021375836669974
1230 => 0.0022908325849765
1231 => 0.0023188326390346
]
'min_raw' => 0.00096646740261932
'max_raw' => 0.0025389160969835
'avg_raw' => 0.0017526917498014
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000966'
'max' => '$0.002538'
'avg' => '$0.001752'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.7472118944154E-5
'max_diff' => -0.00045786782487903
'year' => 2027
]
2 => [
'items' => [
101 => 0.0022340186488943
102 => 0.0022181534142714
103 => 0.0022918727071171
104 => 0.0022474109617141
105 => 0.0022674320829467
106 => 0.0022241573698097
107 => 0.0023120882459493
108 => 0.0023114183599976
109 => 0.0022772112631704
110 => 0.0023061228671687
111 => 0.0023010987644943
112 => 0.0022624790364248
113 => 0.0023133125602139
114 => 0.0023133377730074
115 => 0.0022804141860377
116 => 0.002241966644357
117 => 0.0022350931319948
118 => 0.0022299148637565
119 => 0.0022661585463936
120 => 0.0022986545189151
121 => 0.0023591214673427
122 => 0.0023743242948366
123 => 0.0024336619426551
124 => 0.0023983292624768
125 => 0.0024139917819651
126 => 0.0024309956624682
127 => 0.0024391479480784
128 => 0.0024258642361523
129 => 0.0025180400275646
130 => 0.0025258224885531
131 => 0.0025284318804045
201 => 0.0024973507221615
202 => 0.002524958065317
203 => 0.0025120415037136
204 => 0.0025456468086813
205 => 0.0025509165495943
206 => 0.0025464532665175
207 => 0.0025481259654605
208 => 0.0024694701884139
209 => 0.0024653914714318
210 => 0.0024097778759677
211 => 0.0024324408271943
212 => 0.0023900735261398
213 => 0.0024035086337357
214 => 0.0024094307011496
215 => 0.002406337349207
216 => 0.0024337221564534
217 => 0.0024104394759474
218 => 0.002348992654065
219 => 0.0022875290910371
220 => 0.0022867574660704
221 => 0.0022705751948472
222 => 0.0022588783766836
223 => 0.0022611315988288
224 => 0.002269072247561
225 => 0.0022584168517439
226 => 0.0022606907206838
227 => 0.0022984520957946
228 => 0.0023060248702713
229 => 0.0022802896237256
301 => 0.0021769588952661
302 => 0.0021516012753167
303 => 0.0021698278296729
304 => 0.0021611167106311
305 => 0.0017441898537229
306 => 0.00184214063439
307 => 0.0017839416066119
308 => 0.0018107623962206
309 => 0.0017513562594242
310 => 0.0017797079816458
311 => 0.0017744724537906
312 => 0.001931974410529
313 => 0.0019295152341114
314 => 0.0019306923117257
315 => 0.0018745073303315
316 => 0.001964011531281
317 => 0.0020081045191357
318 => 0.0019999440805807
319 => 0.0020019978871553
320 => 0.0019667066856177
321 => 0.0019310340076994
322 => 0.0018914675179022
323 => 0.0019649771653794
324 => 0.0019568041474315
325 => 0.001975550110045
326 => 0.0020232263710121
327 => 0.002030246881544
328 => 0.0020396825188939
329 => 0.0020363005145783
330 => 0.0021168735782621
331 => 0.0021071156486118
401 => 0.0021306294515211
402 => 0.0020822597749402
403 => 0.0020275248945971
404 => 0.0020379282059323
405 => 0.0020369262833926
406 => 0.0020241706595087
407 => 0.0020126554526089
408 => 0.00199348587751
409 => 0.002054141249686
410 => 0.0020516787523454
411 => 0.0020915437219502
412 => 0.0020844972013449
413 => 0.0020374388121666
414 => 0.0020391195117423
415 => 0.0020504230241053
416 => 0.002089544609455
417 => 0.0021011585595874
418 => 0.0020957785151502
419 => 0.0021085126812734
420 => 0.0021185772469635
421 => 0.0021097766357673
422 => 0.0022343747314582
423 => 0.0021826329151784
424 => 0.0022078515164159
425 => 0.0022138660042144
426 => 0.0021984600201896
427 => 0.0022018010264776
428 => 0.0022068617406343
429 => 0.0022375894060044
430 => 0.002318227691057
501 => 0.0023539418385834
502 => 0.0024613896135217
503 => 0.0023509762757963
504 => 0.0023444248052715
505 => 0.0023637793941498
506 => 0.0024268626125406
507 => 0.002477985635941
508 => 0.0024949460921608
509 => 0.0024971876964369
510 => 0.0025290066398152
511 => 0.0025472446647715
512 => 0.0025251429831678
513 => 0.0025064141221512
514 => 0.0024393296667015
515 => 0.0024470948750847
516 => 0.0025005894604584
517 => 0.002576153713114
518 => 0.0026409957030131
519 => 0.002618290298122
520 => 0.0027915165099236
521 => 0.0028086911812582
522 => 0.0028063181970033
523 => 0.0028454446542371
524 => 0.0027677866045925
525 => 0.0027345862838155
526 => 0.0025104635144846
527 => 0.0025734328708176
528 => 0.0026649625283083
529 => 0.0026528482349208
530 => 0.0025863769510563
531 => 0.0026409452785837
601 => 0.0026229032829938
602 => 0.0026086728125089
603 => 0.0026738653565124
604 => 0.0026021834764185
605 => 0.0026642474467206
606 => 0.0025846497628385
607 => 0.0026183940144989
608 => 0.0025992391452307
609 => 0.0026116346931797
610 => 0.0025391705731523
611 => 0.002578270453352
612 => 0.0025375438895875
613 => 0.0025375245798935
614 => 0.0025366255387412
615 => 0.0025845401604009
616 => 0.002586102654493
617 => 0.0025506936766915
618 => 0.0025455906897981
619 => 0.0025644591069267
620 => 0.0025423691321154
621 => 0.0025527048922969
622 => 0.0025426821917621
623 => 0.0025404258707613
624 => 0.0025224471211458
625 => 0.0025147013814755
626 => 0.0025177386855833
627 => 0.0025073708008256
628 => 0.0025011237752363
629 => 0.0025353828481161
630 => 0.0025170796074834
701 => 0.0025325776139837
702 => 0.0025149156795723
703 => 0.0024536917199639
704 => 0.0024184811733614
705 => 0.0023028347891252
706 => 0.0023356319602357
707 => 0.0023573765186131
708 => 0.0023501899421991
709 => 0.0023656294891723
710 => 0.0023665773519616
711 => 0.0023615577978531
712 => 0.0023557457972401
713 => 0.0023529168367655
714 => 0.0023740015904193
715 => 0.0023862419995956
716 => 0.0023595588759509
717 => 0.0023533073934175
718 => 0.0023802855046379
719 => 0.0023967421368976
720 => 0.0025182486633203
721 => 0.002509247067382
722 => 0.0025318393067132
723 => 0.0025292957672707
724 => 0.0025529760333157
725 => 0.0025916832602722
726 => 0.0025129806451588
727 => 0.0025266406978108
728 => 0.0025232915683572
729 => 0.0025598564855426
730 => 0.0025599706372228
731 => 0.0025380481428171
801 => 0.0025499326826863
802 => 0.0025432990585666
803 => 0.002555286913939
804 => 0.0025091268455803
805 => 0.0025653448261697
806 => 0.0025972167985573
807 => 0.0025976593409248
808 => 0.0026127664028849
809 => 0.0026281160527784
810 => 0.0026575783690762
811 => 0.0026272943647675
812 => 0.0025728163891047
813 => 0.0025767495229848
814 => 0.0025448091057864
815 => 0.00254534602997
816 => 0.0025424798865984
817 => 0.0025510813986098
818 => 0.0025110143937618
819 => 0.0025204180397148
820 => 0.0025072528803129
821 => 0.0025266120793253
822 => 0.0025057847813782
823 => 0.0025232899533056
824 => 0.0025308446052038
825 => 0.0025587214333482
826 => 0.0025016673511953
827 => 0.0023853302154638
828 => 0.002409785691846
829 => 0.0023736141213405
830 => 0.0023769619379056
831 => 0.0023837250601683
901 => 0.002361803568159
902 => 0.0023659854980088
903 => 0.0023658360900468
904 => 0.0023645485729468
905 => 0.002358845946227
906 => 0.002350576009253
907 => 0.0023835208928051
908 => 0.0023891188704938
909 => 0.0024015624814531
910 => 0.0024385862270859
911 => 0.0024348866818171
912 => 0.0024409207936432
913 => 0.0024277483614071
914 => 0.0023775729692576
915 => 0.0023802977344524
916 => 0.0023463198688118
917 => 0.002400693591036
918 => 0.0023878171759152
919 => 0.0023795156673208
920 => 0.0023772505237879
921 => 0.002414366044125
922 => 0.0024254715895243
923 => 0.0024185513588969
924 => 0.0024043577639846
925 => 0.0024316136621758
926 => 0.0024389061906977
927 => 0.0024405387188957
928 => 0.0024888309446904
929 => 0.0024432377178579
930 => 0.0024542124607142
1001 => 0.0025398342716004
1002 => 0.0024621871041288
1003 => 0.002503318540477
1004 => 0.0025013053707054
1005 => 0.0025223468217292
1006 => 0.0024995793575675
1007 => 0.0024998615875724
1008 => 0.0025185449706101
1009 => 0.0024923075286995
1010 => 0.0024858107691044
1011 => 0.0024768355422545
1012 => 0.0024964326217292
1013 => 0.0025081801845745
1014 => 0.0026028569134741
1015 => 0.0026640223981266
1016 => 0.0026613670431253
1017 => 0.0026856320172205
1018 => 0.002674700424149
1019 => 0.0026393994265123
1020 => 0.00269965392498
1021 => 0.0026805868805095
1022 => 0.0026821587444892
1023 => 0.0026821002396334
1024 => 0.0026947781573363
1025 => 0.0026857946907297
1026 => 0.0026680873559142
1027 => 0.0026798423111314
1028 => 0.0027147503256534
1029 => 0.0028231058738381
1030 => 0.0028837430741224
1031 => 0.0028194554382427
1101 => 0.0028638001886268
1102 => 0.0028372091400465
1103 => 0.0028323767555043
1104 => 0.0028602285357968
1105 => 0.0028881290669437
1106 => 0.002886351923727
1107 => 0.0028660975708224
1108 => 0.0028546564008018
1109 => 0.002941292773271
1110 => 0.0030051249766941
1111 => 0.0030007720483572
1112 => 0.0030199844583883
1113 => 0.0030763926884571
1114 => 0.0030815499500837
1115 => 0.003080900253657
1116 => 0.0030681174426111
1117 => 0.0031236586706481
1118 => 0.0031699921402316
1119 => 0.0030651585911848
1120 => 0.0031050778342899
1121 => 0.0031229988686375
1122 => 0.003149312263991
1123 => 0.0031937073725894
1124 => 0.0032419322357484
1125 => 0.0032487517601577
1126 => 0.003243912981245
1127 => 0.0032121073876378
1128 => 0.0032648756083485
1129 => 0.0032957859944739
1130 => 0.0033141924220399
1201 => 0.0033608680598098
1202 => 0.0031231095428445
1203 => 0.0029548122471715
1204 => 0.0029285301942097
1205 => 0.0029819757823982
1206 => 0.0029960689577829
1207 => 0.0029903880164566
1208 => 0.0028009541092559
1209 => 0.0029275328638926
1210 => 0.0030637209608376
1211 => 0.0030689525002848
1212 => 0.0031371311091743
1213 => 0.0031593328589643
1214 => 0.0032142255754949
1215 => 0.0032107920211303
1216 => 0.0032241575240716
1217 => 0.0032210850264036
1218 => 0.0033227622247514
1219 => 0.003434927273739
1220 => 0.0034310433547556
1221 => 0.003414918301887
1222 => 0.003438866755127
1223 => 0.0035546331060194
1224 => 0.0035439751955472
1225 => 0.0035543284477323
1226 => 0.00369082349974
1227 => 0.0038682864835449
1228 => 0.0037858371105753
1229 => 0.0039647285257514
1230 => 0.0040773311889783
1231 => 0.0042720658516965
]
'min_raw' => 0.0017441898537229
'max_raw' => 0.0042720658516965
'avg_raw' => 0.0030081278527097
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001744'
'max' => '$0.004272'
'avg' => '$0.0030081'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00077772245110363
'max_diff' => 0.001733149754713
'year' => 2028
]
3 => [
'items' => [
101 => 0.0042476841128357
102 => 0.004323492888003
103 => 0.0042040357116525
104 => 0.0039297378884733
105 => 0.0038863292079853
106 => 0.0039732344856052
107 => 0.0041868826305405
108 => 0.003966505945212
109 => 0.0040110878616347
110 => 0.0039982482667058
111 => 0.0039975640992568
112 => 0.0040236759880749
113 => 0.0039857993314397
114 => 0.0038314830184273
115 => 0.0039022052752891
116 => 0.0038748960155531
117 => 0.0039051976752704
118 => 0.0040687232354099
119 => 0.0039964246873098
120 => 0.0039202640399434
121 => 0.0040157863931414
122 => 0.0041374191738044
123 => 0.0041298076129856
124 => 0.0041150380036116
125 => 0.0041982935183413
126 => 0.0043358072370977
127 => 0.0043729766427027
128 => 0.0044004143380252
129 => 0.0044041975326465
130 => 0.0044431667884885
131 => 0.0042336192783094
201 => 0.0045661765585253
202 => 0.0046236000141092
203 => 0.0046128067844178
204 => 0.0046766305385508
205 => 0.0046578519710325
206 => 0.0046306447729655
207 => 0.0047318189989681
208 => 0.0046158309131951
209 => 0.0044512004279343
210 => 0.0043608808876984
211 => 0.0044798209441505
212 => 0.0045524534861898
213 => 0.0046004589761805
214 => 0.004614985408446
215 => 0.0042498858550193
216 => 0.0040531174450719
217 => 0.0041792437398938
218 => 0.0043331265243484
219 => 0.004232764451672
220 => 0.0042366984549104
221 => 0.0040936085139626
222 => 0.0043457868090701
223 => 0.0043090465526262
224 => 0.0044996550680493
225 => 0.0044541648161147
226 => 0.0046095986610623
227 => 0.0045686677205322
228 => 0.0047385697662546
301 => 0.0048063482922075
302 => 0.0049201589861676
303 => 0.0050038785959376
304 => 0.0050530403520955
305 => 0.0050500888646569
306 => 0.005244892234844
307 => 0.005130023493356
308 => 0.0049857212815634
309 => 0.0049831113098197
310 => 0.0050578474700852
311 => 0.0052144739591376
312 => 0.0052550849289261
313 => 0.0052777809207875
314 => 0.0052430212191986
315 => 0.0051183394330303
316 => 0.0050645024699138
317 => 0.005110373122296
318 => 0.0050542772561426
319 => 0.0051511144588435
320 => 0.0052840926214622
321 => 0.0052566331567341
322 => 0.0053484260303671
323 => 0.0054434219976854
324 => 0.0055792704974863
325 => 0.0056147863257897
326 => 0.0056734926394292
327 => 0.0057339207201836
328 => 0.0057533285911395
329 => 0.005790384238703
330 => 0.0057901889371491
331 => 0.0059018586252144
401 => 0.0060250337492727
402 => 0.0060715295070941
403 => 0.0061784439384132
404 => 0.0059953567215077
405 => 0.0061342304786849
406 => 0.0062594980838943
407 => 0.0061101488807865
408 => 0.0063159919633693
409 => 0.0063239843838155
410 => 0.0064446604435151
411 => 0.0063223321382739
412 => 0.0062496939811075
413 => 0.0064593976191307
414 => 0.0065608666039675
415 => 0.0065303033199527
416 => 0.0062977152195045
417 => 0.0061623389688707
418 => 0.0058080332088336
419 => 0.0062277236864674
420 => 0.0064321426755837
421 => 0.0062971858237067
422 => 0.0063652502098222
423 => 0.0067365874305171
424 => 0.0068779686018532
425 => 0.0068485623065442
426 => 0.0068535314863826
427 => 0.0069298182001858
428 => 0.0072681155010497
429 => 0.007065399916702
430 => 0.0072203683853278
501 => 0.0073025631023065
502 => 0.0073789101361977
503 => 0.0071914259506888
504 => 0.0069475117800314
505 => 0.0068702539233639
506 => 0.0062837670244963
507 => 0.0062532378344268
508 => 0.0062361008749116
509 => 0.0061280547692394
510 => 0.0060431601265002
511 => 0.005975648754658
512 => 0.0057984787543418
513 => 0.0058582684285686
514 => 0.0055758964263175
515 => 0.0057565480267085
516 => 0.0053058754930052
517 => 0.0056812089708799
518 => 0.0054769320231919
519 => 0.0056140984995535
520 => 0.0056136199386393
521 => 0.0053610529669867
522 => 0.0052153776086756
523 => 0.0053082076167612
524 => 0.0054077287542841
525 => 0.0054238757240179
526 => 0.0055529074765839
527 => 0.0055889174651968
528 => 0.005479805518554
529 => 0.0052965363064596
530 => 0.0053391055645035
531 => 0.00521451494402
601 => 0.0049961746739318
602 => 0.0051529904677646
603 => 0.0052065342744828
604 => 0.005230182269853
605 => 0.0050154696907707
606 => 0.0049480023367861
607 => 0.0049120832836307
608 => 0.0052688196087452
609 => 0.0052883624299217
610 => 0.0051883785937063
611 => 0.0056403150142563
612 => 0.0055380278834238
613 => 0.0056523076695192
614 => 0.0053352428505259
615 => 0.0053473551535958
616 => 0.0051972515870952
617 => 0.0052812995544116
618 => 0.0052218971601048
619 => 0.0052745093092306
620 => 0.0053060448144886
621 => 0.005456123750471
622 => 0.0056829226312537
623 => 0.0054337069621267
624 => 0.0053251201262539
625 => 0.0053924867885138
626 => 0.0055718930875869
627 => 0.0058437028143222
628 => 0.0056827859854144
629 => 0.0057541981415387
630 => 0.0057697985207462
701 => 0.0056511444085744
702 => 0.0058480777606844
703 => 0.0059536159439639
704 => 0.0060618762819588
705 => 0.0061558757000539
706 => 0.0060186347222678
707 => 0.0061655022412203
708 => 0.0060471529465516
709 => 0.0059409813945086
710 => 0.0059411424129274
711 => 0.0058745394474119
712 => 0.005745487809212
713 => 0.0057216887071206
714 => 0.0058454946416954
715 => 0.0059447752767588
716 => 0.0059529525053848
717 => 0.0060079193661791
718 => 0.0060404481881934
719 => 0.0063592748647234
720 => 0.0064875095914963
721 => 0.0066443125880351
722 => 0.0067053961921197
723 => 0.00688923594073
724 => 0.0067407704129928
725 => 0.0067086489621749
726 => 0.0062627138655697
727 => 0.006335735712657
728 => 0.0064526507354041
729 => 0.0062646417512323
730 => 0.0063838901779865
731 => 0.0064074323434548
801 => 0.0062582532778927
802 => 0.0063379362624563
803 => 0.0061263218798137
804 => 0.00568753524652
805 => 0.0058485662556411
806 => 0.0059671392808058
807 => 0.0057979209539472
808 => 0.0061012382551876
809 => 0.005924046549543
810 => 0.0058678852855555
811 => 0.005648780171804
812 => 0.0057521893513654
813 => 0.0058920517473992
814 => 0.0058056330473991
815 => 0.0059849648257324
816 => 0.0062389464498906
817 => 0.006419948880133
818 => 0.0064338439992109
819 => 0.0063174715627861
820 => 0.0065039591348359
821 => 0.0065053174932051
822 => 0.0062949587501089
823 => 0.0061661151912448
824 => 0.0061368416635817
825 => 0.0062099726750973
826 => 0.0062987672238066
827 => 0.0064387714786857
828 => 0.0065233731177241
829 => 0.0067439693230942
830 => 0.0068036563312785
831 => 0.0068692342573028
901 => 0.0069568665899547
902 => 0.0070620916737723
903 => 0.0068318651808468
904 => 0.0068410125086066
905 => 0.0066266287860972
906 => 0.0063975290328601
907 => 0.0065713871878796
908 => 0.0067986835981866
909 => 0.0067465415505219
910 => 0.0067406745049943
911 => 0.0067505412481891
912 => 0.00671122784705
913 => 0.0065334147907207
914 => 0.0064441181870008
915 => 0.0065593335877928
916 => 0.0066205654456662
917 => 0.0067155307172486
918 => 0.0067038242430524
919 => 0.0069484445841232
920 => 0.0070434966517282
921 => 0.0070191782653275
922 => 0.0070236534336799
923 => 0.0071957406618002
924 => 0.0073871370519077
925 => 0.0075664050282215
926 => 0.0077487641134666
927 => 0.0075289231186074
928 => 0.0074173014193254
929 => 0.0075324665206776
930 => 0.007471358296834
1001 => 0.0078225042769162
1002 => 0.0078468168627065
1003 => 0.0081979374509377
1004 => 0.0085311926998309
1005 => 0.008321881048889
1006 => 0.0085192525081234
1007 => 0.0087327258332166
1008 => 0.0091445505121201
1009 => 0.0090058624484323
1010 => 0.0088996295651665
1011 => 0.0087992400037938
1012 => 0.0090081347446162
1013 => 0.0092768744915093
1014 => 0.0093347584590328
1015 => 0.0094285525997983
1016 => 0.0093299395293852
1017 => 0.0094487081108244
1018 => 0.0098680133928636
1019 => 0.0097547134043465
1020 => 0.0095938092067702
1021 => 0.0099248104564328
1022 => 0.010044598521951
1023 => 0.010885333899254
1024 => 0.011946797042145
1025 => 0.011507344331046
1026 => 0.011234561852216
1027 => 0.011298672205228
1028 => 0.011686282612216
1029 => 0.011810770772802
1030 => 0.011472369038688
1031 => 0.011591898252073
1101 => 0.012250515969678
1102 => 0.012603843244187
1103 => 0.01212397734722
1104 => 0.010800046369246
1105 => 0.0095793215442694
1106 => 0.0099031127378085
1107 => 0.0098664048648718
1108 => 0.010574007438204
1109 => 0.0097520112370912
1110 => 0.0097658515449911
1111 => 0.010488086590176
1112 => 0.010295406662364
1113 => 0.0099832898558892
1114 => 0.0095816003423658
1115 => 0.0088390401248348
1116 => 0.0081813338323441
1117 => 0.0094712473326315
1118 => 0.0094156239169436
1119 => 0.0093350729680992
1120 => 0.0095143303882295
1121 => 0.010384753537276
1122 => 0.010364687466405
1123 => 0.010237037361328
1124 => 0.010333858840973
1125 => 0.0099663165823825
1126 => 0.010061040591203
1127 => 0.0095791281752202
1128 => 0.0097969727136846
1129 => 0.0099826201934013
1130 => 0.010019891673512
1201 => 0.010103866221331
1202 => 0.0093863129044237
1203 => 0.0097084732774567
1204 => 0.0098977123142688
1205 => 0.0090427234613765
1206 => 0.0098808119336459
1207 => 0.0093738218975884
1208 => 0.0092017418646156
1209 => 0.009433424959193
1210 => 0.009343137831917
1211 => 0.0092655142617231
1212 => 0.0092221989758127
1213 => 0.0093923214705402
1214 => 0.0093843850528208
1215 => 0.0091060316320932
1216 => 0.008742930941891
1217 => 0.0088647994518967
1218 => 0.0088205234796882
1219 => 0.0086600616446907
1220 => 0.0087681935472432
1221 => 0.0082920353727055
1222 => 0.0074728299819617
1223 => 0.0080140221560268
1224 => 0.0079931868460291
1225 => 0.0079826807379222
1226 => 0.0083893716992791
1227 => 0.0083502777473015
1228 => 0.0082793218416531
1229 => 0.0086587584838392
1230 => 0.0085202590052982
1231 => 0.0089470817635803
]
'min_raw' => 0.0038314830184273
'max_raw' => 0.012603843244187
'avg_raw' => 0.0082176631313071
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003831'
'max' => '$0.0126038'
'avg' => '$0.008217'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0020872931647043
'max_diff' => 0.0083317773924903
'year' => 2029
]
4 => [
'items' => [
101 => 0.00922821483735
102 => 0.0091569103961398
103 => 0.0094213174108543
104 => 0.0088676070562274
105 => 0.0090515274250309
106 => 0.0090894331581387
107 => 0.008654076294573
108 => 0.0083566740013281
109 => 0.008336840659003
110 => 0.0078211860670768
111 => 0.0080966445878653
112 => 0.0083390366869111
113 => 0.0082229496818549
114 => 0.0081862000040548
115 => 0.0083739461379032
116 => 0.0083885356204401
117 => 0.0080558938724744
118 => 0.0081250606252706
119 => 0.0084134974824469
120 => 0.0081177927565225
121 => 0.0075432867771442
122 => 0.0074008013510918
123 => 0.007381791168729
124 => 0.0069953593926132
125 => 0.0074103229085812
126 => 0.0072291802135304
127 => 0.0078014078167733
128 => 0.0074745544787192
129 => 0.0074604644845891
130 => 0.0074391653919088
131 => 0.0071065475989104
201 => 0.0071793697566135
202 => 0.0074214416999466
203 => 0.0075078156964635
204 => 0.0074988061809855
205 => 0.0074202554153624
206 => 0.0074562155536197
207 => 0.0073403754189503
208 => 0.0072994698563947
209 => 0.0071703606490077
210 => 0.0069806057814777
211 => 0.0070069923596419
212 => 0.006631038315003
213 => 0.0064261985980923
214 => 0.0063695016641955
215 => 0.0062936841546607
216 => 0.0063780654536402
217 => 0.0066299732844306
218 => 0.0063261189952697
219 => 0.0058051821294035
220 => 0.0058364913226753
221 => 0.0059068337841741
222 => 0.005775751072533
223 => 0.0056516922869028
224 => 0.0057595513358008
225 => 0.005538823518344
226 => 0.0059335076863741
227 => 0.0059228325857185
228 => 0.0060699464364549
301 => 0.0061619397464005
302 => 0.0059499249501637
303 => 0.0058966038022591
304 => 0.0059269779514166
305 => 0.0054249609250962
306 => 0.0060289209351936
307 => 0.0060341440064409
308 => 0.0059894208994029
309 => 0.0063110109596065
310 => 0.0069896662930911
311 => 0.0067343288577866
312 => 0.0066354544852219
313 => 0.0064474942306996
314 => 0.006697940109875
315 => 0.0066787097739186
316 => 0.0065917429018357
317 => 0.0065391450662468
318 => 0.0066360581910571
319 => 0.0065271364575928
320 => 0.0065075711212935
321 => 0.0063890264706159
322 => 0.006346711423762
323 => 0.0063153830476818
324 => 0.0062808935838803
325 => 0.0063569687467876
326 => 0.0061845724191184
327 => 0.0059766793481697
328 => 0.0059593952887545
329 => 0.0060071180964299
330 => 0.0059860043065787
331 => 0.0059592942040518
401 => 0.0059082973442643
402 => 0.0058931676653408
403 => 0.0059423317819653
404 => 0.0058868283607423
405 => 0.0059687266821847
406 => 0.0059464548703932
407 => 0.0058220463401929
408 => 0.0056669872496261
409 => 0.0056656068984726
410 => 0.0056321996717579
411 => 0.0055896505457265
412 => 0.0055778143522567
413 => 0.005750467747546
414 => 0.0061078551087136
415 => 0.0060376914181617
416 => 0.0060883918752497
417 => 0.006337787944036
418 => 0.0064170634547017
419 => 0.0063607955749745
420 => 0.0062837726307523
421 => 0.0062871612494001
422 => 0.0065503719662381
423 => 0.0065667880957865
424 => 0.0066082663591111
425 => 0.006661577649239
426 => 0.0063698747182078
427 => 0.0062734220675809
428 => 0.0062277174507245
429 => 0.0060869649207196
430 => 0.00623875445712
501 => 0.0061503131945355
502 => 0.0061622469424419
503 => 0.0061544750734623
504 => 0.0061587190394566
505 => 0.0059333973641055
506 => 0.0060154927400448
507 => 0.0058789932548856
508 => 0.0056962357670437
509 => 0.0056956230998614
510 => 0.0057403527360984
511 => 0.0057137457981938
512 => 0.0056421472124195
513 => 0.0056523174535929
514 => 0.0055632154392829
515 => 0.0056631360513742
516 => 0.0056660014169959
517 => 0.0056275265386282
518 => 0.0057814680279422
519 => 0.0058445379817185
520 => 0.0058192129925651
521 => 0.0058427611129682
522 => 0.0060406070362742
523 => 0.0060728645543958
524 => 0.0060871912131335
525 => 0.0060679953883436
526 => 0.0058463773732554
527 => 0.0058562070746171
528 => 0.0057840832481341
529 => 0.0057231462149775
530 => 0.0057255833767311
531 => 0.0057569129330334
601 => 0.0058937309428597
602 => 0.006181656378677
603 => 0.0061925829384955
604 => 0.0062058262477457
605 => 0.0061519590534709
606 => 0.006135712192238
607 => 0.0061571459958749
608 => 0.0062652756511677
609 => 0.0065434144814957
610 => 0.0064451016425899
611 => 0.006365171774229
612 => 0.0064352918177193
613 => 0.006424497386643
614 => 0.0063333815252279
615 => 0.0063308242064688
616 => 0.0061559437369101
617 => 0.0060912944091498
618 => 0.0060372685919551
619 => 0.0059782738099581
620 => 0.0059432997256673
621 => 0.005997035814575
622 => 0.0060093258938949
623 => 0.005891830996352
624 => 0.0058758168759755
625 => 0.0059717657456125
626 => 0.0059295422254197
627 => 0.0059729701630309
628 => 0.0059830458170747
629 => 0.0059814234047117
630 => 0.0059373372002899
701 => 0.0059654364323188
702 => 0.0058989733717863
703 => 0.0058267047758861
704 => 0.0057806019141943
705 => 0.0057403710527111
706 => 0.0057626934728934
707 => 0.0056831181208564
708 => 0.0056576603642044
709 => 0.0059559170447602
710 => 0.0061762424614864
711 => 0.0061730388426687
712 => 0.0061535376370202
713 => 0.0061245628011016
714 => 0.0062631559614471
715 => 0.0062148728756405
716 => 0.0062500028547516
717 => 0.006258944908836
718 => 0.006286009813375
719 => 0.0062956831904406
720 => 0.0062664435263561
721 => 0.0061683116423646
722 => 0.0059237763175572
723 => 0.0058099444637489
724 => 0.0057723780559727
725 => 0.0057737435235466
726 => 0.0057360778321427
727 => 0.005747172066319
728 => 0.0057322197102488
729 => 0.0057039035652153
730 => 0.0057609450307304
731 => 0.005767518528253
801 => 0.005754204368607
802 => 0.0057573403351832
803 => 0.0056471047798666
804 => 0.0056554857497183
805 => 0.0056088194445819
806 => 0.0056000700749396
807 => 0.0054821017192549
808 => 0.005273103677373
809 => 0.0053889088805064
810 => 0.005249032479797
811 => 0.005196059167375
812 => 0.0054468265893404
813 => 0.0054216564953806
814 => 0.0053785762356984
815 => 0.0053148515529156
816 => 0.0052912154481976
817 => 0.0051476099582125
818 => 0.0051391249797587
819 => 0.0052102997382697
820 => 0.0051774550361907
821 => 0.0051313286352105
822 => 0.0049642634866184
823 => 0.0047764269462311
824 => 0.004782096550687
825 => 0.0048418438593611
826 => 0.0050155672173535
827 => 0.0049476904959413
828 => 0.0048984451557611
829 => 0.0048892229838548
830 => 0.0050046577731863
831 => 0.0051680221844264
901 => 0.0052446691111076
902 => 0.0051687143345683
903 => 0.0050814615769756
904 => 0.0050867722480399
905 => 0.0051221017634083
906 => 0.0051258143959411
907 => 0.0050690218204766
908 => 0.0050850085978054
909 => 0.0050607232211814
910 => 0.0049116839096669
911 => 0.0049089882611303
912 => 0.0048724116105011
913 => 0.0048713040840566
914 => 0.0048090780768632
915 => 0.0048003722283087
916 => 0.0046768187141776
917 => 0.0047581420113332
918 => 0.004703594613266
919 => 0.0046213788179482
920 => 0.0046072047838464
921 => 0.0046067786952657
922 => 0.0046911959339416
923 => 0.0047571555467492
924 => 0.0047045434886091
925 => 0.0046925647428125
926 => 0.0048204664089656
927 => 0.004804189756098
928 => 0.0047900942796879
929 => 0.0051533946931964
930 => 0.0048658140672196
1001 => 0.0047404124997655
1002 => 0.0045852042469292
1003 => 0.0046357408366806
1004 => 0.0046463896386782
1005 => 0.0042731417689973
1006 => 0.0041217151547528
1007 => 0.0040697512471357
1008 => 0.0040398452836402
1009 => 0.0040534738067406
1010 => 0.0039171720933502
1011 => 0.0040087690989708
1012 => 0.0038907433364718
1013 => 0.0038709559332998
1014 => 0.0040820006172344
1015 => 0.0041113662520987
1016 => 0.0039860833305798
1017 => 0.0040665352476575
1018 => 0.0040373622641599
1019 => 0.0038927665494153
1020 => 0.0038872440566862
1021 => 0.0038146910098125
1022 => 0.0037011595404935
1023 => 0.0036492726125586
1024 => 0.0036222494499872
1025 => 0.0036333997335351
1026 => 0.003627761808969
1027 => 0.0035909705375359
1028 => 0.0036298706415812
1029 => 0.0035304969503781
1030 => 0.0034909255458328
1031 => 0.0034730520604493
1101 => 0.0033848521897703
1102 => 0.0035252174066811
1103 => 0.0035528711226869
1104 => 0.003580579325056
1105 => 0.0038217603094852
1106 => 0.0038097115890735
1107 => 0.0039186261536305
1108 => 0.0039143939339328
1109 => 0.0038833297358222
1110 => 0.0037522749938061
1111 => 0.0038045110781476
1112 => 0.0036437365298345
1113 => 0.0037641997530373
1114 => 0.003709225368632
1115 => 0.0037456128583706
1116 => 0.0036801848708929
1117 => 0.0037163954206185
1118 => 0.0035594288446372
1119 => 0.0034128556645651
1120 => 0.003471840990964
1121 => 0.0035359647865498
1122 => 0.0036750015138191
1123 => 0.0035921923860856
1124 => 0.0036219736797784
1125 => 0.003522211331236
1126 => 0.0033163731104869
1127 => 0.0033175381324624
1128 => 0.0032858744066295
1129 => 0.0032585123245303
1130 => 0.0036017040105504
1201 => 0.0035590226993361
1202 => 0.003491015615908
1203 => 0.0035820457995706
1204 => 0.0036061156249742
1205 => 0.0036068008590653
1206 => 0.0036732141312363
1207 => 0.0037086589064993
1208 => 0.0037149062017658
1209 => 0.0038194089204807
1210 => 0.0038544368533697
1211 => 0.0039987119516011
1212 => 0.0037056516649571
1213 => 0.0036996162812073
1214 => 0.0035833267809343
1215 => 0.0035095741413969
1216 => 0.0035883766872615
1217 => 0.0036581849852774
1218 => 0.0035854959193435
1219 => 0.0035949875768045
1220 => 0.0034974084447032
1221 => 0.0035322883929045
1222 => 0.0035623317031319
1223 => 0.0035457435530885
1224 => 0.0035209102895979
1225 => 0.0036524615009235
1226 => 0.0036450388660271
1227 => 0.0037675423783627
1228 => 0.0038630426265385
1229 => 0.0040341961439809
1230 => 0.0038555885260951
1231 => 0.0038490793545984
]
'min_raw' => 0.0032585123245303
'max_raw' => 0.0094213174108543
'avg_raw' => 0.0063399148676923
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003258'
'max' => '$0.009421'
'avg' => '$0.006339'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.000572970693897
'max_diff' => -0.0031825258333325
'year' => 2030
]
5 => [
'items' => [
101 => 0.003912707550083
102 => 0.0038544271122245
103 => 0.0038912583371787
104 => 0.0040282620642323
105 => 0.0040311567370973
106 => 0.0039826672370332
107 => 0.0039797166465476
108 => 0.0039890295854519
109 => 0.0040435757594988
110 => 0.0040245156502522
111 => 0.0040465724912152
112 => 0.0040741549085859
113 => 0.0041882474815336
114 => 0.0042157548146127
115 => 0.0041489262561475
116 => 0.0041549601267293
117 => 0.0041299644113784
118 => 0.0041058188635447
119 => 0.0041600945289006
120 => 0.0042592843741294
121 => 0.0042586673192502
122 => 0.0042816774353681
123 => 0.0042960125470836
124 => 0.0042344757536579
125 => 0.0041944175639083
126 => 0.0042097784228272
127 => 0.0042343407707543
128 => 0.0042018131844374
129 => 0.0040010378534459
130 => 0.004061940263291
131 => 0.004051803124317
201 => 0.0040373666057
202 => 0.0040986044497436
203 => 0.0040926979102949
204 => 0.0039157741222721
205 => 0.0039271002091535
206 => 0.0039164628991285
207 => 0.0039508342240081
208 => 0.003852570947884
209 => 0.0038827960698065
210 => 0.0039017529829333
211 => 0.0039129187503989
212 => 0.0039532571589231
213 => 0.003948523912267
214 => 0.0039529629336652
215 => 0.0040127741445615
216 => 0.0043152787245462
217 => 0.004331743381396
218 => 0.0042506653894021
219 => 0.004283054448011
220 => 0.0042208745381904
221 => 0.0042626163282222
222 => 0.0042911750008354
223 => 0.0041621238508132
224 => 0.0041544822792439
225 => 0.0040920457308169
226 => 0.0041255955953547
227 => 0.0040722153485544
228 => 0.0040853129939575
301 => 0.0040486908355784
302 => 0.0041146034292617
303 => 0.0041883039507812
304 => 0.0042069236130389
305 => 0.0041579432979077
306 => 0.0041224783217926
307 => 0.004060213506624
308 => 0.0041637612819113
309 => 0.0041940418069666
310 => 0.004163602231204
311 => 0.004156548716382
312 => 0.0041431823185396
313 => 0.0041593844608713
314 => 0.0041938768927241
315 => 0.0041776108988375
316 => 0.0041883548743695
317 => 0.0041474099187809
318 => 0.004234496124897
319 => 0.0043728099786463
320 => 0.0043732546803027
321 => 0.0043569885987363
322 => 0.004350332868617
323 => 0.0043670228554124
324 => 0.0043760764885898
325 => 0.0044300488454662
326 => 0.004487963334748
327 => 0.0047582249861552
328 => 0.0046823365959095
329 => 0.0049221288109755
330 => 0.0051117733199705
331 => 0.0051686394160688
401 => 0.005116325283415
402 => 0.0049373614615601
403 => 0.0049285806426679
404 => 0.0051960281490958
405 => 0.0051204619786581
406 => 0.0051114736231341
407 => 0.005015852706425
408 => 0.005072376511081
409 => 0.0050600139258485
410 => 0.0050404989802607
411 => 0.005148342462062
412 => 0.00535021583274
413 => 0.0053187519747633
414 => 0.0052952656643501
415 => 0.0051923554888817
416 => 0.0052543304003335
417 => 0.0052322623214168
418 => 0.0053270807931921
419 => 0.0052709124309987
420 => 0.0051198894905956
421 => 0.0051439403916329
422 => 0.0051403051463248
423 => 0.0052151182371691
424 => 0.0051926612042728
425 => 0.0051359200502293
426 => 0.0053495258515054
427 => 0.0053356554789085
428 => 0.0053553204960423
429 => 0.0053639776447455
430 => 0.0054939957318259
501 => 0.005547259981988
502 => 0.0055593518992967
503 => 0.0056099488173457
504 => 0.0055580930018829
505 => 0.005765553236304
506 => 0.0059035021865538
507 => 0.006063736991057
508 => 0.0062978831074913
509 => 0.0063859242132433
510 => 0.0063700203755146
511 => 0.0065475472887224
512 => 0.0068665592055553
513 => 0.0064345018048063
514 => 0.0068894592969123
515 => 0.0067454250076484
516 => 0.0064039222988698
517 => 0.0063819335504769
518 => 0.0066132031497897
519 => 0.0071261368621915
520 => 0.0069976527848809
521 => 0.0071263470161138
522 => 0.006976218359384
523 => 0.0069687632061937
524 => 0.0071190556023499
525 => 0.0074702219779809
526 => 0.0073033959961934
527 => 0.007064210043892
528 => 0.0072408212289257
529 => 0.0070878242758559
530 => 0.0067430793194389
531 => 0.0069975545355284
601 => 0.0068273942055662
602 => 0.0068770560360699
603 => 0.0072347077402115
604 => 0.0071916741409401
605 => 0.0072473636032013
606 => 0.0071490731599573
607 => 0.0070572543869873
608 => 0.0068858678286871
609 => 0.0068351287180296
610 => 0.0068491511828134
611 => 0.0068351217691924
612 => 0.0067392325649473
613 => 0.0067185253004202
614 => 0.006684012285669
615 => 0.0066947093120909
616 => 0.0066298147472201
617 => 0.0067522841990325
618 => 0.0067750156084861
619 => 0.0068641386624104
620 => 0.0068733917135233
621 => 0.0071215981501154
622 => 0.0069848902157802
623 => 0.0070766057009274
624 => 0.0070684018046762
625 => 0.0064113236980958
626 => 0.0065018632637334
627 => 0.0066427144149845
628 => 0.0065792611622651
629 => 0.0064895531086943
630 => 0.0064171090455943
701 => 0.006307348882212
702 => 0.0064618342044153
703 => 0.0066649659754302
704 => 0.0068785434704547
705 => 0.0071351428365748
706 => 0.0070778728452027
707 => 0.0068737465237918
708 => 0.006882903481456
709 => 0.0069395081906055
710 => 0.0068661999491767
711 => 0.0068445799176325
712 => 0.0069365379302695
713 => 0.0069371711945633
714 => 0.0068528212032025
715 => 0.0067590816236905
716 => 0.0067586888514296
717 => 0.0067420087986724
718 => 0.0069791857037146
719 => 0.007109609020198
720 => 0.0071245618432451
721 => 0.0071086025760691
722 => 0.0071147446646045
723 => 0.0070388542104244
724 => 0.0072123172840649
725 => 0.0073715041541573
726 => 0.0073288386724411
727 => 0.0072648770500929
728 => 0.0072139285370834
729 => 0.0073168368219431
730 => 0.007312254478011
731 => 0.0073701137957187
801 => 0.0073674889628558
802 => 0.0073480330505097
803 => 0.007328839367273
804 => 0.0074049401517511
805 => 0.0073830243479626
806 => 0.0073610745028775
807 => 0.0073170507282063
808 => 0.0073230342903416
809 => 0.0072590837118692
810 => 0.0072294972480886
811 => 0.00678458782068
812 => 0.0066656934838416
813 => 0.0067031000625283
814 => 0.0067154152794934
815 => 0.0066636723117341
816 => 0.0067378584358231
817 => 0.0067262966069664
818 => 0.0067712769196043
819 => 0.0067431751730863
820 => 0.0067443284785657
821 => 0.0068269697231511
822 => 0.0068509608280352
823 => 0.0068387587584592
824 => 0.0068473046697277
825 => 0.0070442415879085
826 => 0.0070162434558313
827 => 0.0070013700061888
828 => 0.0070054900533867
829 => 0.007055811658357
830 => 0.007069898960291
831 => 0.0070102100720998
901 => 0.0070383596968281
902 => 0.0071582172262019
903 => 0.0072001605781341
904 => 0.0073340236235506
905 => 0.0072771562226318
906 => 0.0073815387981817
907 => 0.00770237524878
908 => 0.0079586816057116
909 => 0.0077229716875691
910 => 0.0081936456716563
911 => 0.0085601328824411
912 => 0.0085460664928748
913 => 0.0084821609706726
914 => 0.0080649250247606
915 => 0.007680978286695
916 => 0.0080021660363265
917 => 0.0080029848099532
918 => 0.0079753944974125
919 => 0.0078040334357953
920 => 0.0079694315039149
921 => 0.0079825602019247
922 => 0.0079752116222418
923 => 0.0078438294980771
924 => 0.0076432332779529
925 => 0.0076824292992057
926 => 0.0077466331815949
927 => 0.0076250818378991
928 => 0.0075862388185327
929 => 0.0076584553817217
930 => 0.007891152195235
1001 => 0.0078471622105611
1002 => 0.0078460134542838
1003 => 0.0080342212633751
1004 => 0.0078995050898531
1005 => 0.0076829236865567
1006 => 0.0076282340258666
1007 => 0.0074341225737866
1008 => 0.0075681960451395
1009 => 0.0075730211106871
1010 => 0.0074995904406248
1011 => 0.0076888821807327
1012 => 0.0076871378240235
1013 => 0.0078668421588986
1014 => 0.0082103693533139
1015 => 0.0081087714579787
1016 => 0.0079906241595234
1017 => 0.0080034700467348
1018 => 0.0081443577230917
1019 => 0.0080591738178135
1020 => 0.0080898065440748
1021 => 0.0081443113567917
1022 => 0.0081771954635822
1023 => 0.0079987385298253
1024 => 0.0079571316819847
1025 => 0.007872018673322
1026 => 0.0078498142780714
1027 => 0.007919137047686
1028 => 0.0079008729471022
1029 => 0.0075726155826114
1030 => 0.0075383108616154
1031 => 0.0075393629384325
1101 => 0.0074531020863875
1102 => 0.0073215335820421
1103 => 0.0076672877559145
1104 => 0.007639518856926
1105 => 0.0076088641415847
1106 => 0.0076126191693006
1107 => 0.0077626993374824
1108 => 0.0076756452607068
1109 => 0.0079070927916973
1110 => 0.0078595141372753
1111 => 0.007810715269898
1112 => 0.0078039697799767
1113 => 0.0077851863793601
1114 => 0.0077207711096505
1115 => 0.0076429858007186
1116 => 0.0075916252021137
1117 => 0.00700287295716
1118 => 0.0071121419492092
1119 => 0.0072378459643797
1120 => 0.0072812384866893
1121 => 0.0072070125746076
1122 => 0.0077237020010718
1123 => 0.00781810613823
1124 => 0.0075321498489483
1125 => 0.007478659102742
1126 => 0.0077272088454878
1127 => 0.0075773029666418
1128 => 0.0076448055747073
1129 => 0.0074989018580222
1130 => 0.0077953669460644
1201 => 0.0077931083788084
1202 => 0.0076777767635923
1203 => 0.0077752542550161
1204 => 0.007758315142078
1205 => 0.0076281060325482
1206 => 0.0077994948070863
1207 => 0.0077995798137802
1208 => 0.0076885756416602
1209 => 0.007558947070562
1210 => 0.0075357725437398
1211 => 0.0075183136508389
1212 => 0.0076405117573033
1213 => 0.0077500741974557
1214 => 0.0079539427357469
1215 => 0.0080052001300703
1216 => 0.0082052611525125
1217 => 0.0080861345544426
1218 => 0.0081389418324193
1219 => 0.0081962716027085
1220 => 0.0082237576028177
1221 => 0.0081789706406199
1222 => 0.0084897477568748
1223 => 0.0085159868674515
1224 => 0.0085247846142604
1225 => 0.008419992319227
1226 => 0.0085130724041587
1227 => 0.0084695233149076
1228 => 0.0085828259468536
1229 => 0.0086005932462634
1230 => 0.0085855449757533
1231 => 0.0085911845970237
]
'min_raw' => 0.003852570947884
'max_raw' => 0.0086005932462634
'avg_raw' => 0.0062265820970737
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003852'
'max' => '$0.00860059'
'avg' => '$0.006226'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00059405862335366
'max_diff' => -0.00082072416459095
'year' => 2031
]
6 => [
'items' => [
101 => 0.0083259911531403
102 => 0.0083122394740681
103 => 0.0081247343541438
104 => 0.0082011440764808
105 => 0.008058299762985
106 => 0.008103597166254
107 => 0.0081235638300055
108 => 0.0081131343779599
109 => 0.0082054641675375
110 => 0.0081269649846667
111 => 0.0079197927346101
112 => 0.0077125640406125
113 => 0.0077099624531642
114 => 0.0076554027959249
115 => 0.0076159661568406
116 => 0.0076235630526182
117 => 0.0076503355042171
118 => 0.007614410093284
119 => 0.0076220766011712
120 => 0.0077493917137724
121 => 0.0077749238516347
122 => 0.0076881556711282
123 => 0.0073397689058061
124 => 0.0072542739197341
125 => 0.0073157260202834
126 => 0.007286355874243
127 => 0.0058806578672737
128 => 0.0062109057629979
129 => 0.0060146836775175
130 => 0.0061051118422509
131 => 0.0059048199044381
201 => 0.0060004097153622
202 => 0.0059827577676655
203 => 0.0065137866112443
204 => 0.0065054953262581
205 => 0.006509463925616
206 => 0.0063200323381351
207 => 0.0066218020006202
208 => 0.0067704645876465
209 => 0.0067429510993146
210 => 0.0067498756515729
211 => 0.0066308889016359
212 => 0.0065106159774475
213 => 0.0063772147946523
214 => 0.0066250577034013
215 => 0.006597501802768
216 => 0.0066607051245208
217 => 0.0068214489670215
218 => 0.0068451191084362
219 => 0.0068769320185365
220 => 0.0068655293548627
221 => 0.0071371870645044
222 => 0.0071042875234115
223 => 0.0071835659516014
224 => 0.0070204842099459
225 => 0.0068359417394018
226 => 0.0068710172299043
227 => 0.0068676391781097
228 => 0.0068246327016161
229 => 0.0067858083775872
301 => 0.0067211768167645
302 => 0.0069256806388787
303 => 0.0069173781571687
304 => 0.0070517856854744
305 => 0.0070280278492813
306 => 0.006869367204655
307 => 0.0068750338006171
308 => 0.006913144381735
309 => 0.0070450455381233
310 => 0.0070842027818549
311 => 0.0070660635864121
312 => 0.0071089977165677
313 => 0.0071429311024772
314 => 0.0071132592273903
315 => 0.0075333504061732
316 => 0.0073588992600878
317 => 0.0074439255348666
318 => 0.0074642038003974
319 => 0.0074122614496461
320 => 0.007423525885608
321 => 0.007440588436715
322 => 0.0075441889058472
323 => 0.0078160665138874
324 => 0.0079364792557549
325 => 0.0082987469307233
326 => 0.0079264806537691
327 => 0.0079043919134856
328 => 0.0079696472611831
329 => 0.0081823367363175
330 => 0.0083547015790073
331 => 0.0084118849412938
401 => 0.0084194426666144
402 => 0.008526722455742
403 => 0.0085882132302203
404 => 0.0085136958676034
405 => 0.0084505502050785
406 => 0.0082243702798428
407 => 0.0082505512220564
408 => 0.0084309119515164
409 => 0.0086856821050726
410 => 0.0089043014011404
411 => 0.0088277485433091
412 => 0.0094117928106664
413 => 0.009469698414168
414 => 0.0094616977320764
415 => 0.0095936153143622
416 => 0.0093317857780733
417 => 0.0092198485786015
418 => 0.0084642030140501
419 => 0.008676508595307
420 => 0.0089851072259335
421 => 0.0089442630399847
422 => 0.0087201504655586
423 => 0.0089041313916561
424 => 0.0088433015438728
425 => 0.0087953225190934
426 => 0.0090151237327993
427 => 0.0087734432693934
428 => 0.0089826962784352
429 => 0.0087143271298939
430 => 0.0088280982303154
501 => 0.0087635162512272
502 => 0.0088053087065669
503 => 0.0085609908666111
504 => 0.008692818842571
505 => 0.008555506389401
506 => 0.0085554412854196
507 => 0.0085524101054054
508 => 0.0087139575976232
509 => 0.0087192256555446
510 => 0.008599841814711
511 => 0.0085826367381207
512 => 0.0086462529238205
513 => 0.0085717750314715
514 => 0.0086066227685433
515 => 0.0085728305339275
516 => 0.0085652231901421
517 => 0.0085046065805773
518 => 0.0084784912784883
519 => 0.0084887317613458
520 => 0.0084537757140224
521 => 0.0084327134310946
522 => 0.008548220287201
523 => 0.0084865096335166
524 => 0.0085387622444685
525 => 0.0084792137994836
526 => 0.0082727929451434
527 => 0.0081540781289515
528 => 0.0077641682703262
529 => 0.0078747462225507
530 => 0.0079480595192766
531 => 0.007923829475146
601 => 0.0079758849857209
602 => 0.0079790807712929
603 => 0.0079621569941619
604 => 0.0079425614283143
605 => 0.0079330233905624
606 => 0.0080041121095969
607 => 0.0080453815037327
608 => 0.0079554174894085
609 => 0.0079343401795826
610 => 0.0080252987651138
611 => 0.0080807834497427
612 => 0.0084904511868916
613 => 0.0084601016777142
614 => 0.008536272989959
615 => 0.0085276972691443
616 => 0.0086075369394184
617 => 0.0087380410575545
618 => 0.0084726896958586
619 => 0.0085187455170892
620 => 0.0085074536933077
621 => 0.0086307348644793
622 => 0.0086311197348391
623 => 0.0085572065143705
624 => 0.0085972760702916
625 => 0.0085749103434272
626 => 0.0086153282347804
627 => 0.0084596963415159
628 => 0.0086492391880874
629 => 0.0087566977682221
630 => 0.0087581898307115
701 => 0.0088091243448514
702 => 0.0088608767611456
703 => 0.0089602110175368
704 => 0.0088581063826486
705 => 0.0086744300841706
706 => 0.0086876909196499
707 => 0.0085800015730568
708 => 0.0085818118504286
709 => 0.0085721484479435
710 => 0.0086011490462285
711 => 0.0084660603419944
712 => 0.0084977653908667
713 => 0.008453378136781
714 => 0.0085186490278675
715 => 0.0084484283387232
716 => 0.0085074482480484
717 => 0.0085329192843722
718 => 0.0086269079567591
719 => 0.0084345461353918
720 => 0.0080423073598735
721 => 0.0081247607059229
722 => 0.0080028057305452
723 => 0.0080140931278318
724 => 0.0080368954667265
725 => 0.0079629856259076
726 => 0.0079770852943691
727 => 0.0079765815549938
728 => 0.0079722406011996
729 => 0.0079530137970691
730 => 0.0079251311271726
731 => 0.008036207102207
801 => 0.0080550810748228
802 => 0.0080970355779571
803 => 0.0082218637212735
804 => 0.0082093904461059
805 => 0.0082297348754155
806 => 0.0081853231004617
807 => 0.0080161532626958
808 => 0.0080253399987872
809 => 0.0079107812525208
810 => 0.0080941060532519
811 => 0.0080506923206696
812 => 0.0080227032048508
813 => 0.0080150661152823
814 => 0.0081402036834215
815 => 0.0081776468050999
816 => 0.0081543147643844
817 => 0.0081064600681725
818 => 0.0081983552318702
819 => 0.00822294250093
820 => 0.0082284466837289
821 => 0.0083912672946512
822 => 0.008237546547168
823 => 0.0082745486589401
824 => 0.0085632285722667
825 => 0.0083014357259844
826 => 0.0084401132353373
827 => 0.0084333256928974
828 => 0.0085042684140913
829 => 0.0084275063190966
830 => 0.0084284578772626
831 => 0.0084914502076066
901 => 0.0084029888403652
902 => 0.0083810845618011
903 => 0.0083508239578464
904 => 0.0084168968795195
905 => 0.0084565046078414
906 => 0.0087757138094444
907 => 0.0089819375113881
908 => 0.0089729847966104
909 => 0.0090547958508987
910 => 0.0090179392216384
911 => 0.0088989194434695
912 => 0.0091020716918882
913 => 0.0090377858202374
914 => 0.009043085469389
915 => 0.0090428882161829
916 => 0.0090856327008622
917 => 0.0090553443159924
918 => 0.0089956428003751
919 => 0.0090352754525949
920 => 0.0091529702607554
921 => 0.0095182985566031
922 => 0.0097227411109156
923 => 0.0095059908581278
924 => 0.0096555022800993
925 => 0.0095658487032831
926 => 0.0095495559814128
927 => 0.0096434602032182
928 => 0.0097375287919329
929 => 0.0097315370295015
930 => 0.00966324806457
1001 => 0.0096246733610486
1002 => 0.0099167739395867
1003 => 0.01013198867005
1004 => 0.01011731246825
1005 => 0.010182088450038
1006 => 0.010372272736012
1007 => 0.010389660803654
1008 => 0.010387470306791
1009 => 0.010344372166882
1010 => 0.010531633294974
1011 => 0.010687849822574
1012 => 0.010334396192719
1013 => 0.01046898670792
1014 => 0.010529408726429
1015 => 0.010618126176006
1016 => 0.010767807384213
1017 => 0.010930400877306
1018 => 0.010953393379976
1019 => 0.010937079099039
1020 => 0.010829844319597
1021 => 0.011007756059883
1022 => 0.011111972584799
1023 => 0.011174031140433
1024 => 0.011331401311963
1025 => 0.010529781872245
1026 => 0.0099623557897418
1027 => 0.0098737440132269
1028 => 0.010053939545256
1029 => 0.01010145567002
1030 => 0.010082301979708
1031 => 0.0094436123357273
1101 => 0.0098703814444312
1102 => 0.010329549121631
1103 => 0.010347187622131
1104 => 0.010577056562081
1105 => 0.010651911311575
1106 => 0.010836985937845
1107 => 0.010825409469581
1108 => 0.010870472195897
1109 => 0.010860113055495
1110 => 0.0112029248286
1111 => 0.011581097122375
1112 => 0.011568002218356
1113 => 0.011513635476794
1114 => 0.01159437935892
1115 => 0.011984693693503
1116 => 0.011948759804234
1117 => 0.011983666516817
1118 => 0.012443869114441
1119 => 0.013042197954409
1120 => 0.012764214137011
1121 => 0.013367359033077
1122 => 0.013747006773813
1123 => 0.014403568285108
1124 => 0.01432136355026
1125 => 0.014576958128536
1126 => 0.014174199918237
1127 => 0.013249385656526
1128 => 0.013103030259563
1129 => 0.013396037470591
1130 => 0.014116367107678
1201 => 0.013373351726884
1202 => 0.013523662770713
1203 => 0.013480373179978
1204 => 0.013478066461657
1205 => 0.013566104517881
1206 => 0.013438400725572
1207 => 0.012918112502229
1208 => 0.013156557528909
1209 => 0.013064482453038
1210 => 0.013166646614369
1211 => 0.013717984457369
1212 => 0.013474224854726
1213 => 0.013217443914764
1214 => 0.013539504197729
1215 => 0.013949597609863
1216 => 0.013923934701141
1217 => 0.013874137931955
1218 => 0.014154839712581
1219 => 0.014618476816269
1220 => 0.014743796062351
1221 => 0.01483630416777
1222 => 0.01484905947257
1223 => 0.014980447039388
1224 => 0.014273942978679
1225 => 0.015395183067335
1226 => 0.015588790257013
1227 => 0.01555240012955
1228 => 0.015767586372641
1229 => 0.015704273121176
1230 => 0.015612542153347
1231 => 0.015953658120074
]
'min_raw' => 0.0058806578672737
'max_raw' => 0.015953658120074
'avg_raw' => 0.010917157993674
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00588'
'max' => '$0.015953'
'avg' => '$0.010917'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0020280869193898
'max_diff' => 0.0073530648738102
'year' => 2032
]
7 => [
'items' => [
101 => 0.01556259619086
102 => 0.01500753301567
103 => 0.014703014379856
104 => 0.015104029084314
105 => 0.015348914770841
106 => 0.015510768631981
107 => 0.015559745512568
108 => 0.014328786877753
109 => 0.013665368445683
110 => 0.014090612054532
111 => 0.014609438606074
112 => 0.014271060870989
113 => 0.014284324637571
114 => 0.013801886911444
115 => 0.014652123639926
116 => 0.014528251300202
117 => 0.015170901217813
118 => 0.015017527657387
119 => 0.015541583717673
120 => 0.015403582193968
121 => 0.015976418803303
122 => 0.016204938835699
123 => 0.016588659536395
124 => 0.016870926045851
125 => 0.017036678339101
126 => 0.017026727193136
127 => 0.017683520356459
128 => 0.017296232374652
129 => 0.016809707392735
130 => 0.016800907690779
131 => 0.017052885873026
201 => 0.017580963016178
202 => 0.017717885736188
203 => 0.017794406857332
204 => 0.01767721209658
205 => 0.017256838749509
206 => 0.017075323669585
207 => 0.017229979776679
208 => 0.017040848647454
209 => 0.017367342037318
210 => 0.017815687196825
211 => 0.017723105694336
212 => 0.018032591776563
213 => 0.018352877312784
214 => 0.018810900014502
215 => 0.018930644109263
216 => 0.019128576544442
217 => 0.01933231403766
218 => 0.019397749029602
219 => 0.019522684732505
220 => 0.01952202625968
221 => 0.019898528409521
222 => 0.020313821940096
223 => 0.020470585633821
224 => 0.020831055103541
225 => 0.020213763769003
226 => 0.020681986337182
227 => 0.02110433481405
228 => 0.020600793548544
301 => 0.021294807872977
302 => 0.021321754876524
303 => 0.021728622637135
304 => 0.021316184215324
305 => 0.021071279597004
306 => 0.021778310053639
307 => 0.022120419820355
308 => 0.022017373574438
309 => 0.021233186554995
310 => 0.020776756074315
311 => 0.019582189467512
312 => 0.020997205214707
313 => 0.021686418108591
314 => 0.021231401660101
315 => 0.021460885489993
316 => 0.022712874855503
317 => 0.023189551345581
318 => 0.023090405967865
319 => 0.023107159904627
320 => 0.023364365886383
321 => 0.024504958855409
322 => 0.02382148910963
323 => 0.024343976121155
324 => 0.024621101348101
325 => 0.024878510703245
326 => 0.024246394682074
327 => 0.023424021026158
328 => 0.023163540768433
329 => 0.021186159241693
330 => 0.021083227945893
331 => 0.021025449490424
401 => 0.020661164501612
402 => 0.020374936286462
403 => 0.020147316982802
404 => 0.019549975957122
405 => 0.019751561018159
406 => 0.018799524097986
407 => 0.019408603581396
408 => 0.017889129669064
409 => 0.019154592694665
410 => 0.018465858703374
411 => 0.018928325055085
412 => 0.018926711553551
413 => 0.018075164374961
414 => 0.017584009733686
415 => 0.017896992587131
416 => 0.018232535050634
417 => 0.018286975686437
418 => 0.018722015248922
419 => 0.018843425439668
420 => 0.018475546893609
421 => 0.017857641949585
422 => 0.01800116717517
423 => 0.017581101199571
424 => 0.016844951734938
425 => 0.017373667132374
426 => 0.017554193815034
427 => 0.017633924682474
428 => 0.016910006231345
429 => 0.016682535336966
430 => 0.016561431741464
501 => 0.017764193168122
502 => 0.017830083154155
503 => 0.017492980669706
504 => 0.019016715864784
505 => 0.018671847661723
506 => 0.019057149939303
507 => 0.017988143765309
508 => 0.018028981240763
509 => 0.01752289658641
510 => 0.017806270176259
511 => 0.017605990856511
512 => 0.017783376390551
513 => 0.017889700548267
514 => 0.018395702159108
515 => 0.01916037042026
516 => 0.018320122392115
517 => 0.01795401429368
518 => 0.018181145698879
519 => 0.018786026561952
520 => 0.019702452032789
521 => 0.019159909709272
522 => 0.019400680779483
523 => 0.019453278547164
524 => 0.019053227923812
525 => 0.019717202469898
526 => 0.020073031823266
527 => 0.020438039111311
528 => 0.020754964712248
529 => 0.020292247173783
530 => 0.020787421267894
531 => 0.020388398358035
601 => 0.020030433557661
602 => 0.020030976442502
603 => 0.019806419894196
604 => 0.019371313285907
605 => 0.019291072951606
606 => 0.019708493303879
607 => 0.020043224896548
608 => 0.020070794993776
609 => 0.020256119602608
610 => 0.020365792797119
611 => 0.021440739196808
612 => 0.021873091531185
613 => 0.022401763781651
614 => 0.022607711417543
615 => 0.023227539965265
616 => 0.022726978072966
617 => 0.022618678358886
618 => 0.021115177046487
619 => 0.021361375302165
620 => 0.021755562464103
621 => 0.021121677047599
622 => 0.02152373144406
623 => 0.021603105498598
624 => 0.021100137863706
625 => 0.02136879460945
626 => 0.020655321943926
627 => 0.019175922174672
628 => 0.01971884946475
629 => 0.020118626697597
630 => 0.019548095294147
701 => 0.020570750752217
702 => 0.019973336545506
703 => 0.019783984922918
704 => 0.019045256734474
705 => 0.019393908003164
706 => 0.019865463836273
707 => 0.019574097155661
708 => 0.020178726766857
709 => 0.021035043545137
710 => 0.021645305875886
711 => 0.021692154239983
712 => 0.021299796445713
713 => 0.021928552315025
714 => 0.021933132115105
715 => 0.021223892925977
716 => 0.020789487871697
717 => 0.020690790129368
718 => 0.020937356440537
719 => 0.021236733460948
720 => 0.021708767581058
721 => 0.021994007913774
722 => 0.022737763421714
723 => 0.022939002337021
724 => 0.023160102893117
725 => 0.023455561420947
726 => 0.023810335137619
727 => 0.02303411044282
728 => 0.023064951297008
729 => 0.022342141608774
730 => 0.021569715795501
731 => 0.022155890703538
801 => 0.022922236420217
802 => 0.022746435866074
803 => 0.022726654712453
804 => 0.022759921126009
805 => 0.022627373249294
806 => 0.022027864115369
807 => 0.021726794381438
808 => 0.02211525114929
809 => 0.022321698633182
810 => 0.022641880676586
811 => 0.022602411481513
812 => 0.02342716604028
813 => 0.023747640722534
814 => 0.023665649584929
815 => 0.023680737927475
816 => 0.024260942031829
817 => 0.024906248323946
818 => 0.025510662822178
819 => 0.026125499209987
820 => 0.025384289947011
821 => 0.025007949594703
822 => 0.025396236774483
823 => 0.025190206131354
824 => 0.026374119319431
825 => 0.026456090899874
826 => 0.027639918477551
827 => 0.028763511816333
828 => 0.02805780297151
829 => 0.028723254626354
830 => 0.029442994846137
831 => 0.030831490503741
901 => 0.030363894014127
902 => 0.030005722431253
903 => 0.02966725201611
904 => 0.030371555219357
905 => 0.031277630038817
906 => 0.031472789876652
907 => 0.031789023370741
908 => 0.031456542518899
909 => 0.031856979083378
910 => 0.033270696116733
911 => 0.032888697295095
912 => 0.032346197558994
913 => 0.033462191382001
914 => 0.033866065208231
915 => 0.036700663231078
916 => 0.040279460326327
917 => 0.038797814829245
918 => 0.037878109656805
919 => 0.038094262188027
920 => 0.039401117737285
921 => 0.039820838262184
922 => 0.038679893189166
923 => 0.039082894277357
924 => 0.041303469895482
925 => 0.04249473747001
926 => 0.04087683609522
927 => 0.036413110369072
928 => 0.032297351393377
929 => 0.033389036008773
930 => 0.033265272852305
1001 => 0.03565100433153
1002 => 0.032879586749535
1003 => 0.032926250313919
1004 => 0.035361316193601
1005 => 0.0347116823645
1006 => 0.03365935876017
1007 => 0.032305034520259
1008 => 0.029801440902955
1009 => 0.027583938218236
1010 => 0.031932971643339
1011 => 0.031745433413845
1012 => 0.031473850265928
1013 => 0.032078229173251
1014 => 0.035012921591263
1015 => 0.034945267432356
1016 => 0.034514886190841
1017 => 0.034841326569324
1018 => 0.033602132183506
1019 => 0.033921500792663
1020 => 0.032296699436127
1021 => 0.03303117750698
1022 => 0.033657100946338
1023 => 0.033782764343744
1024 => 0.034065890394631
1025 => 0.031646609288704
1026 => 0.032732795478904
1027 => 0.033370828103764
1028 => 0.030488173492822
1029 => 0.033313847290547
1030 => 0.031604494987065
1031 => 0.031024315141653
1101 => 0.031805450870617
1102 => 0.03150104151736
1103 => 0.031239328230947
1104 => 0.031093287720323
1105 => 0.031666867588871
1106 => 0.031640109402427
1107 => 0.030701621410428
1108 => 0.029477402082531
1109 => 0.029888290272603
1110 => 0.029739010741052
1111 => 0.029198002461271
1112 => 0.029562576720255
1113 => 0.027957176190499
1114 => 0.025195168020512
1115 => 0.027019835220204
1116 => 0.026949587517871
1117 => 0.026914165440876
1118 => 0.028285352411347
1119 => 0.028153544422802
1120 => 0.027914311632925
1121 => 0.029193608763476
1122 => 0.02872664810185
1123 => 0.030165710831212
1124 => 0.031113570617511
1125 => 0.030873162715653
1126 => 0.031764629426072
1127 => 0.029897756306625
1128 => 0.030517856670956
1129 => 0.030645658496622
1130 => 0.029177822435465
1201 => 0.028175109839825
1202 => 0.028108240341456
1203 => 0.026369674882923
1204 => 0.027298402517661
1205 => 0.02811564440287
1206 => 0.027724248960387
1207 => 0.027600344855903
1208 => 0.02823334405419
1209 => 0.028282533513168
1210 => 0.027161008635596
1211 => 0.027394209171717
1212 => 0.028366694173705
1213 => 0.027369705044807
1214 => 0.025432718024606
1215 => 0.024952318462656
1216 => 0.024888224305571
1217 => 0.023585342592592
1218 => 0.024984421058505
1219 => 0.024373685815162
1220 => 0.026302991131151
1221 => 0.02520098228173
1222 => 0.025153476882789
1223 => 0.025081665504762
1224 => 0.023960221393035
1225 => 0.024205746382012
1226 => 0.025021908839883
1227 => 0.02531312479958
1228 => 0.025282748589121
1229 => 0.025017909198584
1230 => 0.025139151315375
1231 => 0.024748588213637
]
'min_raw' => 0.013665368445683
'max_raw' => 0.04249473747001
'avg_raw' => 0.028080052957847
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.013665'
'max' => '$0.042494'
'avg' => '$0.02808'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0077847105784095
'max_diff' => 0.026541079349937
'year' => 2033
]
8 => [
'items' => [
101 => 0.024610672253546
102 => 0.024175371546723
103 => 0.023535599762584
104 => 0.023624563953117
105 => 0.022357008643343
106 => 0.021666377236327
107 => 0.02147521956524
108 => 0.021219595538434
109 => 0.021504092979257
110 => 0.022353417818411
111 => 0.021328951868076
112 => 0.019572576854157
113 => 0.019678137985211
114 => 0.019915302505308
115 => 0.019473347991108
116 => 0.019055075133848
117 => 0.019418729447686
118 => 0.018674530200406
119 => 0.020005235428888
120 => 0.019969243581716
121 => 0.020465248200635
122 => 0.020775410067884
123 => 0.020060587379971
124 => 0.019880811407047
125 => 0.019983219971587
126 => 0.018290634517638
127 => 0.020326927858823
128 => 0.020344537808197
129 => 0.02019375073035
130 => 0.021278014071028
131 => 0.023566147910073
201 => 0.022705259919854
202 => 0.022371898069564
203 => 0.021738176948476
204 => 0.022582572715688
205 => 0.022517736295392
206 => 0.022224521414332
207 => 0.02204718413938
208 => 0.022373933505936
209 => 0.022006696276889
210 => 0.021940730379548
211 => 0.021541048813265
212 => 0.021398380678455
213 => 0.021292754871223
214 => 0.021176471236039
215 => 0.021432963959179
216 => 0.020851717704115
217 => 0.020150791700781
218 => 0.020092517287728
219 => 0.020253418065706
220 => 0.020182231449105
221 => 0.020092176473595
222 => 0.019920237000335
223 => 0.019869226231524
224 => 0.020034986483252
225 => 0.019847852823474
226 => 0.020123978732175
227 => 0.020048887763752
228 => 0.019629435718255
301 => 0.019106643168529
302 => 0.019101989218242
303 => 0.018989354420955
304 => 0.018845897071855
305 => 0.018805990519195
306 => 0.019388103495688
307 => 0.020593059935854
308 => 0.020356498154485
309 => 0.020527438285351
310 => 0.021368294543541
311 => 0.02163557746259
312 => 0.021445866377592
313 => 0.021186178143577
314 => 0.021197603107933
315 => 0.022085036416538
316 => 0.022140384543448
317 => 0.022280231404167
318 => 0.022459974140908
319 => 0.021476477342889
320 => 0.021151280497191
321 => 0.020997184190465
322 => 0.020522627208526
323 => 0.021034396228107
324 => 0.020736210336531
325 => 0.020776445800785
326 => 0.020750242401906
327 => 0.02076455122956
328 => 0.020004863469657
329 => 0.020281653761352
330 => 0.019821436217048
331 => 0.019205256587069
401 => 0.019203190936889
402 => 0.019354000028385
403 => 0.019264292879603
404 => 0.019022893248811
405 => 0.019057182926991
406 => 0.018756769264841
407 => 0.019093658584741
408 => 0.019103319364988
409 => 0.018973598626341
410 => 0.019492623105415
411 => 0.019705267857975
412 => 0.01961988288891
413 => 0.019699277020926
414 => 0.020366328364514
415 => 0.020475086839009
416 => 0.020523390169198
417 => 0.02045867010571
418 => 0.019711469494964
419 => 0.019744611019393
420 => 0.01950144050288
421 => 0.019295987041105
422 => 0.019304204102115
423 => 0.019409833888548
424 => 0.019871125361005
425 => 0.020841886070175
426 => 0.020878725729472
427 => 0.020923376471227
428 => 0.020741759464842
429 => 0.020686982037876
430 => 0.020759247603298
501 => 0.021123814285489
502 => 0.022061578770973
503 => 0.021730110170619
504 => 0.021460621038915
505 => 0.021697035661167
506 => 0.021660641483151
507 => 0.021353437994883
508 => 0.021344815816141
509 => 0.020755194103259
510 => 0.020537224381043
511 => 0.020355072566409
512 => 0.020156167540022
513 => 0.020038249973023
514 => 0.020219424948509
515 => 0.020260861809002
516 => 0.019864719558705
517 => 0.019810726833785
518 => 0.020134225146703
519 => 0.01999186560042
520 => 0.020138285924119
521 => 0.020172256695187
522 => 0.020166786618632
523 => 0.020018146902423
524 => 0.020112885425034
525 => 0.019888800576146
526 => 0.019645141959436
527 => 0.019489702942444
528 => 0.019354061784124
529 => 0.01942932338227
530 => 0.019161029527104
531 => 0.019075196923148
601 => 0.020080790145258
602 => 0.02082363267038
603 => 0.020812831445866
604 => 0.020747081769492
605 => 0.020649391087234
606 => 0.021116667603604
607 => 0.02095387780879
608 => 0.02107232098606
609 => 0.021102469745719
610 => 0.021193720960984
611 => 0.021226335427134
612 => 0.021127751858225
613 => 0.020796893359998
614 => 0.019972425439499
615 => 0.019588633396898
616 => 0.019461975630278
617 => 0.019466579399537
618 => 0.019339586891234
619 => 0.019376991876335
620 => 0.019326578963904
621 => 0.019231109103953
622 => 0.019423428387445
623 => 0.01944559139329
624 => 0.019400701774478
625 => 0.019411274904736
626 => 0.019039608033585
627 => 0.019067865058581
628 => 0.018910526352676
629 => 0.018881027242066
630 => 0.018483288694587
701 => 0.017778637204605
702 => 0.01816908253223
703 => 0.01769747948138
704 => 0.017518876260071
705 => 0.018364356131249
706 => 0.018279493402144
707 => 0.018134245298858
708 => 0.017919393081741
709 => 0.017839702304464
710 => 0.017355526368764
711 => 0.017326918671504
712 => 0.017566889339087
713 => 0.017456151132884
714 => 0.017300632751537
715 => 0.016737360938942
716 => 0.016104056928698
717 => 0.01612317239596
718 => 0.016324614618579
719 => 0.016910335049028
720 => 0.016681483943785
721 => 0.016515449841168
722 => 0.016484356644714
723 => 0.016873553096345
724 => 0.01742434761458
725 => 0.017682768079203
726 => 0.017426681247108
727 => 0.017132502483091
728 => 0.017150407781364
729 => 0.017269523709056
730 => 0.017282041108848
731 => 0.017090560975539
801 => 0.017144461511464
802 => 0.017062581668625
803 => 0.016560085224262
804 => 0.016550996657016
805 => 0.01642767592572
806 => 0.016423941822987
807 => 0.016214142495253
808 => 0.016184790119029
809 => 0.015768220819905
810 => 0.016042407994077
811 => 0.015858497633115
812 => 0.015581301339078
813 => 0.015533512593504
814 => 0.015532076006106
815 => 0.015816694620125
816 => 0.016039082059859
817 => 0.015861696832583
818 => 0.0158213096548
819 => 0.016252539052045
820 => 0.016197661180502
821 => 0.01615013729767
822 => 0.017375030006639
823 => 0.016405431847921
824 => 0.015982631707991
825 => 0.015459336247259
826 => 0.015629723887958
827 => 0.015665627067369
828 => 0.014407195815406
829 => 0.013896650413212
830 => 0.013721450470676
831 => 0.013620620426784
901 => 0.01366656994393
902 => 0.013207019200952
903 => 0.013515844900501
904 => 0.01311791280194
905 => 0.013051198190633
906 => 0.013762750077188
907 => 0.013861758365376
908 => 0.013439358248501
909 => 0.013710607503902
910 => 0.013612248753247
911 => 0.013124734205635
912 => 0.013106114735831
913 => 0.012861497072804
914 => 0.012478717797481
915 => 0.012303777397319
916 => 0.012212666918012
917 => 0.012250260877482
918 => 0.01223125222118
919 => 0.012107207880859
920 => 0.012238362297566
921 => 0.011903316959625
922 => 0.011769899206414
923 => 0.011709637502556
924 => 0.011412265480644
925 => 0.011885516609445
926 => 0.011978753043679
927 => 0.012072173182492
928 => 0.012885331710213
929 => 0.012844708608131
930 => 0.013211921666706
1001 => 0.013197652442512
1002 => 0.013092917329749
1003 => 0.012651057117092
1004 => 0.012827174722456
1005 => 0.012285112107898
1006 => 0.012691262275399
1007 => 0.012505912300188
1008 => 0.012628595262335
1009 => 0.012408000234518
1010 => 0.012530086631057
1011 => 0.01200086286108
1012 => 0.011506681151055
1013 => 0.011705554297232
1014 => 0.01192175215103
1015 => 0.012390524184253
1016 => 0.012111327428551
1017 => 0.0122117371395
1018 => 0.011875381416204
1019 => 0.011181383483783
1020 => 0.011185311436713
1021 => 0.011078554974377
1022 => 0.010986301804219
1023 => 0.012143396534514
1024 => 0.011999493513841
1025 => 0.011770202883961
1026 => 0.012077117503703
1027 => 0.012158270600553
1028 => 0.012160580915133
1029 => 0.012384497899084
1030 => 0.012504002433558
1031 => 0.012525065625722
1101 => 0.012877403838016
1102 => 0.012995502959323
1103 => 0.013481936525976
1104 => 0.01249386330874
1105 => 0.012473514591051
1106 => 0.012081436421807
1107 => 0.011832774248361
1108 => 0.012098462533562
1109 => 0.012333826084182
1110 => 0.012088749823398
1111 => 0.012120751609214
1112 => 0.011791756752577
1113 => 0.011909356933178
1114 => 0.012010650051166
1115 => 0.011954721945147
1116 => 0.011870994863486
1117 => 0.012314528957082
1118 => 0.012289503025297
1119 => 0.012702532170059
1120 => 0.013024517924398
1121 => 0.013601573958012
1122 => 0.012999385904324
1123 => 0.012977439778167
1124 => 0.013191966681622
1125 => 0.012995470116372
1126 => 0.013119649162779
1127 => 0.013581566793835
1128 => 0.013591326385499
1129 => 0.013427840650604
1130 => 0.013417892528779
1201 => 0.013449291752503
1202 => 0.013633197986594
1203 => 0.013568935497535
1204 => 0.013643301676801
1205 => 0.01373629772271
1206 => 0.014120968798092
1207 => 0.014213711692069
1208 => 0.013988394541382
1209 => 0.01400873815732
1210 => 0.013924463357869
1211 => 0.01384305495756
1212 => 0.014026049152713
1213 => 0.014360474641116
1214 => 0.014358394197509
1215 => 0.014435974410516
1216 => 0.01448430624051
1217 => 0.014276830645114
1218 => 0.0141417716616
1219 => 0.014193561869905
1220 => 0.01427637554083
1221 => 0.014166706512559
1222 => 0.013489778466435
1223 => 0.013695115193298
1224 => 0.013660937121495
1225 => 0.013612263391052
1226 => 0.013818731057735
1227 => 0.013798816747602
1228 => 0.013202305843859
1229 => 0.013240492536542
1230 => 0.013204628103119
1231 => 0.01332051342468
]
'min_raw' => 0.010986301804219
'max_raw' => 0.024610672253546
'avg_raw' => 0.017798487028882
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010986'
'max' => '$0.02461'
'avg' => '$0.017798'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0026790666414639
'max_diff' => -0.017884065216465
'year' => 2034
]
9 => [
'items' => [
101 => 0.012989211928705
102 => 0.013091118037517
103 => 0.013155032593654
104 => 0.013192678758233
105 => 0.01332868251891
106 => 0.013312724047344
107 => 0.013327690517911
108 => 0.013529348191333
109 => 0.014549263502947
110 => 0.014604775243042
111 => 0.01433141513235
112 => 0.014440617104781
113 => 0.014230973197559
114 => 0.014371708556969
115 => 0.014467996115588
116 => 0.014032891153224
117 => 0.014007127061161
118 => 0.013796617878959
119 => 0.013909733589625
120 => 0.013729758360648
121 => 0.013773917986572
122 => 0.01365044382272
123 => 0.013872672734194
124 => 0.014121159188103
125 => 0.014183936679388
126 => 0.014018796127226
127 => 0.013899223484169
128 => 0.013689293312637
129 => 0.014038411866493
130 => 0.014140504770836
131 => 0.014037875615929
201 => 0.014014094198246
202 => 0.013969028454708
203 => 0.014023655108777
204 => 0.014139948750953
205 => 0.014085106816909
206 => 0.014121330880536
207 => 0.013983282104084
208 => 0.014276899328169
209 => 0.014743234142849
210 => 0.014744733485532
211 => 0.014689891255869
212 => 0.014667450997084
213 => 0.014723722452822
214 => 0.014754247409184
215 => 0.014936218978623
216 => 0.015131481722697
217 => 0.016042687749482
218 => 0.01578682474341
219 => 0.016595300938263
220 => 0.017234700640897
221 => 0.017426428654156
222 => 0.017250047903458
223 => 0.016646658883219
224 => 0.016617053739267
225 => 0.017518771679777
226 => 0.017263995060285
227 => 0.017233690192089
228 => 0.016911297595365
301 => 0.017101871549128
302 => 0.017060190229889
303 => 0.01699439422835
304 => 0.017357996056634
305 => 0.018038626220224
306 => 0.017932543626319
307 => 0.017853357890999
308 => 0.017506389049448
309 => 0.017715341790358
310 => 0.017640937721546
311 => 0.017960624819151
312 => 0.017771249264466
313 => 0.017262064876812
314 => 0.01734315416884
315 => 0.017330897685479
316 => 0.017583135244544
317 => 0.017507419790234
318 => 0.017316113027835
319 => 0.018036299900318
320 => 0.017989534970709
321 => 0.018055836948944
322 => 0.018085025130219
323 => 0.018523390188384
324 => 0.018702974326596
325 => 0.018743743070034
326 => 0.0189143341118
327 => 0.01873949860951
328 => 0.019438965274271
329 => 0.019904069791327
330 => 0.020444312621946
331 => 0.021233752601064
401 => 0.02153058933594
402 => 0.021476968436668
403 => 0.022075512819081
404 => 0.023151083769384
405 => 0.021694372077474
406 => 0.023228293026227
407 => 0.022742671363821
408 => 0.021591271138216
409 => 0.021517134537804
410 => 0.022296876138615
411 => 0.024026267961866
412 => 0.023593074924742
413 => 0.024026976510488
414 => 0.023520807262675
415 => 0.023495671693192
416 => 0.024002392999913
417 => 0.025186374953006
418 => 0.024623909507991
419 => 0.023817477370377
420 => 0.024412934311317
421 => 0.023897094402136
422 => 0.022734762712252
423 => 0.02359274367019
424 => 0.023019036237508
425 => 0.023186474566329
426 => 0.024392322257287
427 => 0.024247231472834
428 => 0.024434992382961
429 => 0.024103599291145
430 => 0.023794025887494
501 => 0.023216184140358
502 => 0.023045113686285
503 => 0.02309239140532
504 => 0.023045090257795
505 => 0.022721793110912
506 => 0.022651977122824
507 => 0.022535614083968
508 => 0.022571679855392
509 => 0.022352883299137
510 => 0.022765797606466
511 => 0.022842438140495
512 => 0.023142922739174
513 => 0.023174120047028
514 => 0.024010965377219
515 => 0.023550045031965
516 => 0.023859270193509
517 => 0.023831610184521
518 => 0.021616225472456
519 => 0.021921485939274
520 => 0.022396375429631
521 => 0.022182438357922
522 => 0.021879981392092
523 => 0.021635731175467
524 => 0.021265667121414
525 => 0.021786525171043
526 => 0.022471398119227
527 => 0.023191489555207
528 => 0.024056632233276
529 => 0.023863542458902
530 => 0.023175316314621
531 => 0.023206189636704
601 => 0.023397036365616
602 => 0.023149872511421
603 => 0.023076979065607
604 => 0.023387021925516
605 => 0.023389157020296
606 => 0.023104765135295
607 => 0.022788715598282
608 => 0.022787391339182
609 => 0.022731153376747
610 => 0.023530811871259
611 => 0.023970543188648
612 => 0.024020957675524
613 => 0.023967149892
614 => 0.023987858372324
615 => 0.023731988407553
616 => 0.024316831271137
617 => 0.024853540917726
618 => 0.024709691267311
619 => 0.024494040191906
620 => 0.024322263723183
621 => 0.024669226190415
622 => 0.024653776497919
623 => 0.024848853227179
624 => 0.024840003419922
625 => 0.024774406453078
626 => 0.024709693609985
627 => 0.02496627271804
628 => 0.024892382055455
629 => 0.024818376620261
630 => 0.024669947390315
701 => 0.024690121387814
702 => 0.024474507547607
703 => 0.02437475471931
704 => 0.022874711522218
705 => 0.022473850964629
706 => 0.022599969856316
707 => 0.022641491470134
708 => 0.022467036441755
709 => 0.022717160138631
710 => 0.02267817862542
711 => 0.022829832889903
712 => 0.022735085889517
713 => 0.022738974339462
714 => 0.023017605065409
715 => 0.023098492750531
716 => 0.023057352621034
717 => 0.023086165757533
718 => 0.023750152326875
719 => 0.02365575466981
720 => 0.023605607795909
721 => 0.02361949882269
722 => 0.023789161627189
723 => 0.023836657949204
724 => 0.023635412695322
725 => 0.023730321120438
726 => 0.024134429148907
727 => 0.024275844088338
728 => 0.024727172691979
729 => 0.024535440279426
730 => 0.024887373420651
731 => 0.025969095913929
801 => 0.026833250691062
802 => 0.026038538245304
803 => 0.027625448444062
804 => 0.028861085662543
805 => 0.028813659848036
806 => 0.02859819791819
807 => 0.027191457796064
808 => 0.025896954562371
809 => 0.026979861484866
810 => 0.026982622037313
811 => 0.026889599372289
812 => 0.026311843588999
813 => 0.026869494723388
814 => 0.026913759045345
815 => 0.026888982795882
816 => 0.026446018791454
817 => 0.025769694630125
818 => 0.025901846752357
819 => 0.026118314624404
820 => 0.02570849578269
821 => 0.025577533830963
822 => 0.025821017015754
823 => 0.026605570568887
824 => 0.026457255264277
825 => 0.026453382152284
826 => 0.027087937920885
827 => 0.026633732936273
828 => 0.025903513613828
829 => 0.025719123604501
830 => 0.025064663291385
831 => 0.025516701360762
901 => 0.025532969406131
902 => 0.02528539277525
903 => 0.025923603092951
904 => 0.025917721872519
905 => 0.026523607584106
906 => 0.02768183350438
907 => 0.027339289106919
908 => 0.026940947241397
909 => 0.026984258047001
910 => 0.027459270684302
911 => 0.027172067200306
912 => 0.027275347575605
913 => 0.027459114357084
914 => 0.027569985419023
915 => 0.026968305407396
916 => 0.026828025015004
917 => 0.026541060563898
918 => 0.026466196895049
919 => 0.026699923452766
920 => 0.026638344762489
921 => 0.025531602139911
922 => 0.025415941377994
923 => 0.025419488528436
924 => 0.025128654043226
925 => 0.024685061645006
926 => 0.025850795982002
927 => 0.0257571712003
928 => 0.025653816687283
929 => 0.025666477025395
930 => 0.026172482790682
1001 => 0.025878973892912
1002 => 0.026659315402797
1003 => 0.026498900647577
1004 => 0.026334371859187
1005 => 0.026311628968962
1006 => 0.026248299422368
1007 => 0.026031118843212
1008 => 0.025768860243351
1009 => 0.025595694399272
1010 => 0.023610675100042
1011 => 0.023979083135653
1012 => 0.024402902999174
1013 => 0.02454920391771
1014 => 0.024298946072839
1015 => 0.026041000548267
1016 => 0.026359290687782
1017 => 0.025395169093638
1018 => 0.025214821308199
1019 => 0.026052824119056
1020 => 0.025547405982432
1021 => 0.025774995738406
1022 => 0.02528307117093
1023 => 0.026282623913796
1024 => 0.026275008996604
1025 => 0.025886160403707
1026 => 0.026214812571704
1027 => 0.026157701169782
1028 => 0.025718692066092
1029 => 0.026296541285429
1030 => 0.026296827891433
1031 => 0.025922569575067
1101 => 0.025485517797231
1102 => 0.025407383262056
1103 => 0.0253485193857
1104 => 0.025760518833244
1105 => 0.026129916249623
1106 => 0.026817273260119
1107 => 0.026990091143757
1108 => 0.027664610848736
1109 => 0.027262967206189
1110 => 0.027441010630774
1111 => 0.027634301953941
1112 => 0.02772697292232
1113 => 0.027575970552345
1114 => 0.028623777297563
1115 => 0.028712244290829
1116 => 0.028741906508434
1117 => 0.028388591969365
1118 => 0.028702417974356
1119 => 0.028555589179446
1120 => 0.028937596913589
1121 => 0.028997500604022
1122 => 0.028946764309361
1123 => 0.02896577868622
1124 => 0.028071660474952
1125 => 0.028025295728848
1126 => 0.027393109125834
1127 => 0.02765072983945
1128 => 0.027169120263427
1129 => 0.027321843621112
1130 => 0.027389162621978
1201 => 0.027353998996245
1202 => 0.027665295328066
1203 => 0.02740062985238
1204 => 0.026702134147009
1205 => 0.026003448136951
1206 => 0.025994676703232
1207 => 0.025810725009616
1208 => 0.025677761627565
1209 => 0.025703375092077
1210 => 0.025793640281836
1211 => 0.025672515250643
1212 => 0.025698363417243
1213 => 0.026127615208235
1214 => 0.026213698593635
1215 => 0.025921153615097
1216 => 0.024746543312226
1217 => 0.024458290997615
1218 => 0.024665481045065
1219 => 0.024566457547132
1220 => 0.019827048573934
1221 => 0.02094050241154
1222 => 0.020278925950554
1223 => 0.020583810821446
1224 => 0.019908512569174
1225 => 0.020230800290572
1226 => 0.020171285516493
1227 => 0.021961686337869
1228 => 0.021933731691659
1229 => 0.021947112101472
1230 => 0.021308430278589
1231 => 0.022325867764543
]
'min_raw' => 0.012989211928705
'max_raw' => 0.028997500604022
'avg_raw' => 0.020993356266363
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012989'
'max' => '$0.028997'
'avg' => '$0.020993'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0020029101244855
'max_diff' => 0.0043868283504764
'year' => 2035
]
10 => [
'items' => [
101 => 0.022827094055993
102 => 0.022734330409151
103 => 0.022757677020547
104 => 0.022356504885745
105 => 0.021950996324656
106 => 0.021501224923089
107 => 0.022336844593775
108 => 0.022243937950899
109 => 0.022457032362903
110 => 0.022998991450671
111 => 0.023078796985047
112 => 0.023186056432557
113 => 0.023147611555872
114 => 0.024063524490465
115 => 0.023952601390697
116 => 0.024219894146383
117 => 0.023670052668388
118 => 0.023047854844604
119 => 0.023166114309726
120 => 0.023154724972252
121 => 0.023009725634138
122 => 0.022878826715047
123 => 0.022660916895302
124 => 0.023350415809561
125 => 0.023322423412814
126 => 0.023775587778531
127 => 0.023695486575087
128 => 0.023160551134397
129 => 0.023179656458312
130 => 0.023308148943347
131 => 0.023752862901155
201 => 0.023884884282267
202 => 0.023823726718394
203 => 0.023968482135779
204 => 0.024082890915526
205 => 0.023982850117046
206 => 0.025399216856142
207 => 0.024811042637325
208 => 0.025097714659087
209 => 0.025166084247107
210 => 0.02499095698505
211 => 0.025028935817353
212 => 0.02508646339968
213 => 0.025435759614513
214 => 0.026352413951909
215 => 0.026758393918064
216 => 0.027979804676942
217 => 0.026724682933389
218 => 0.026650209203337
219 => 0.026870222164082
220 => 0.027587319579002
221 => 0.02816845968026
222 => 0.028361257378624
223 => 0.028386738777206
224 => 0.028748440076285
225 => 0.028955760515588
226 => 0.028704520024888
227 => 0.028491620014997
228 => 0.027729038605686
229 => 0.027817309480254
301 => 0.028425408272013
302 => 0.029284383632211
303 => 0.030021473852416
304 => 0.029763370547488
305 => 0.031732516571552
306 => 0.031927749356597
307 => 0.031900774498336
308 => 0.032345543837204
309 => 0.031462767275252
310 => 0.031085363192027
311 => 0.028537651413653
312 => 0.029253454503563
313 => 0.030293916332389
314 => 0.030156207307812
315 => 0.029400596116094
316 => 0.03002090065357
317 => 0.029815808574764
318 => 0.029654043942932
319 => 0.030395119080972
320 => 0.029580276525008
321 => 0.030285787654571
322 => 0.029380962333328
323 => 0.029764549541644
324 => 0.029546806890178
325 => 0.029687713071212
326 => 0.028863978416074
327 => 0.029308445640958
328 => 0.028845487118247
329 => 0.028845267615628
330 => 0.02883504778058
331 => 0.029379716429478
401 => 0.029397478054564
402 => 0.02899496710008
403 => 0.028936958983136
404 => 0.029151445394763
405 => 0.028900337980828
406 => 0.029017829559357
407 => 0.028903896681051
408 => 0.02887824799035
409 => 0.028673874859086
410 => 0.028585825294781
411 => 0.028620351797703
412 => 0.028502495043599
413 => 0.028431482086186
414 => 0.02882092151598
415 => 0.028612859738583
416 => 0.028789033064568
417 => 0.028588261324762
418 => 0.02789229900251
419 => 0.027492043711315
420 => 0.026177435400323
421 => 0.026550256686554
422 => 0.026797437585036
423 => 0.026715744299562
424 => 0.026891253087865
425 => 0.026902027902043
426 => 0.026844968205866
427 => 0.026778900387492
428 => 0.026746742227287
429 => 0.026986422806768
430 => 0.027125565450434
501 => 0.026822245495053
502 => 0.026751181873404
503 => 0.027057855095048
504 => 0.027244925583091
505 => 0.028626148960977
506 => 0.02852382347185
507 => 0.028780640369195
508 => 0.02875172672773
509 => 0.029020911750287
510 => 0.02946091549609
511 => 0.028566264853891
512 => 0.028721545270685
513 => 0.028683474098436
514 => 0.029099125174257
515 => 0.029100422791546
516 => 0.02885121920828
517 => 0.028986316513635
518 => 0.028910908903987
519 => 0.029047180646571
520 => 0.028522456852558
521 => 0.029161513793233
522 => 0.029523817898675
523 => 0.029528848491531
524 => 0.029700577762088
525 => 0.029875064646862
526 => 0.030209977027581
527 => 0.029865724122338
528 => 0.029246446658149
529 => 0.02929115649081
530 => 0.028928074340141
531 => 0.02893417781669
601 => 0.028901596980534
602 => 0.028999374522409
603 => 0.028543913524492
604 => 0.02865080931034
605 => 0.028501154584171
606 => 0.028721219950538
607 => 0.028484465994436
608 => 0.028683455739364
609 => 0.028769333116661
610 => 0.029086222487693
611 => 0.028437661176679
612 => 0.027115200759782
613 => 0.027393197972697
614 => 0.026982018258587
615 => 0.027020074506599
616 => 0.027096954184191
617 => 0.02684776199565
618 => 0.026895300012275
619 => 0.026893601619801
620 => 0.026878965791009
621 => 0.02681414127851
622 => 0.026720132910248
623 => 0.027094633315154
624 => 0.027158268231566
625 => 0.027299720768054
626 => 0.027720587568468
627 => 0.027678533050384
628 => 0.027747125714204
629 => 0.027597388314216
630 => 0.027027020395127
701 => 0.027057994117257
702 => 0.026671751305983
703 => 0.027289843670977
704 => 0.027143471240526
705 => 0.027049103982405
706 => 0.02702335500172
707 => 0.027445265049528
708 => 0.027571507148462
709 => 0.027492841544198
710 => 0.027331496094812
711 => 0.027641327055134
712 => 0.027724224749397
713 => 0.027742782485993
714 => 0.02829174354349
715 => 0.027773463310911
716 => 0.027898218514155
717 => 0.028871522996924
718 => 0.02798887013789
719 => 0.028456431042828
720 => 0.028433546369601
721 => 0.028672734707169
722 => 0.028413925944536
723 => 0.028417134189328
724 => 0.028629517229067
725 => 0.028331263553237
726 => 0.028257411748751
727 => 0.028155386009789
728 => 0.028378155478274
729 => 0.028511695699635
730 => 0.029587931809314
731 => 0.030283229418496
801 => 0.030253044715565
802 => 0.030528876396963
803 => 0.030404611698164
804 => 0.030003328206372
805 => 0.030688270195553
806 => 0.030471525890986
807 => 0.03048939402811
808 => 0.030488728975154
809 => 0.030632844989575
810 => 0.030530725585319
811 => 0.030329437757189
812 => 0.030463062011211
813 => 0.030859878274113
814 => 0.032091608129971
815 => 0.032780900475559
816 => 0.032050111865265
817 => 0.032554200062996
818 => 0.032251926769348
819 => 0.032196994720041
820 => 0.032513599360041
821 => 0.032830758174552
822 => 0.032810556529183
823 => 0.032580315516133
824 => 0.032450258210011
825 => 0.033435095704363
826 => 0.034160707193933
827 => 0.034111225354905
828 => 0.034329622100017
829 => 0.03497084169842
830 => 0.035029466782473
831 => 0.035022081369364
901 => 0.034876772981646
902 => 0.035508136949161
903 => 0.036034831878654
904 => 0.034843138288252
905 => 0.035296919607062
906 => 0.035500636660998
907 => 0.035799753736301
908 => 0.03630441438018
909 => 0.036852609694057
910 => 0.036930130522095
911 => 0.036875125784889
912 => 0.036513576239106
913 => 0.037113418092881
914 => 0.0374647913828
915 => 0.037674026135912
916 => 0.03820461065646
917 => 0.035501894748169
918 => 0.033588778094584
919 => 0.033290017303387
920 => 0.033897559120474
921 => 0.034057763052584
922 => 0.033993185048429
923 => 0.031839798321863
924 => 0.033278680167926
925 => 0.034826796049668
926 => 0.034886265485586
927 => 0.035661284665562
928 => 0.035913662679672
929 => 0.036537654703639
930 => 0.036498623832646
1001 => 0.0366505559606
1002 => 0.036615629395481
1003 => 0.037771443222857
1004 => 0.039046477514468
1005 => 0.03900232713131
1006 => 0.03881902586637
1007 => 0.039091259502316
1008 => 0.040407231532237
1009 => 0.040286077915744
1010 => 0.040403768334326
1011 => 0.041955373522536
1012 => 0.043972680980474
1013 => 0.043035439131904
1014 => 0.045068984259223
1015 => 0.046348993123274
1016 => 0.048562636098265
1017 => 0.048285477095374
1018 => 0.049147232061076
1019 => 0.047789304635371
1020 => 0.044671228783542
1021 => 0.044177781344476
1022 => 0.045165675613567
1023 => 0.047594317276814
1024 => 0.045089189044789
1025 => 0.045595973223442
1026 => 0.045450019345897
1027 => 0.045442242084026
1028 => 0.045739068537207
1029 => 0.045308506285442
1030 => 0.04355431821508
1031 => 0.044358252270231
1101 => 0.044047814723453
1102 => 0.044392268326256
1103 => 0.04625114235711
1104 => 0.045429289838047
1105 => 0.044563534971092
1106 => 0.045649383700639
1107 => 0.047032042271458
1108 => 0.046945517982973
1109 => 0.046777624698964
1110 => 0.047724030350315
1111 => 0.04928721521551
1112 => 0.049709737803187
1113 => 0.050021635339315
1114 => 0.050064640739996
1115 => 0.050507623094708
1116 => 0.048125595327491
1117 => 0.051905934568877
1118 => 0.0525586947261
1119 => 0.052436002870679
1120 => 0.053161518313086
1121 => 0.05294805326538
1122 => 0.052638775902893
1123 => 0.053788872200668
1124 => 0.052470379603254
1125 => 0.050598945354826
1126 => 0.049572239513367
1127 => 0.050924288587399
1128 => 0.0517499377769
1129 => 0.052295639370009
1130 => 0.052460768342362
1201 => 0.048310505362296
1202 => 0.046073743800178
1203 => 0.047507482316972
1204 => 0.049256742258808
1205 => 0.048115878100191
1206 => 0.048160597815268
1207 => 0.046534025338907
1208 => 0.049400657830614
1209 => 0.048983013588746
1210 => 0.051149752654355
1211 => 0.05063264298718
1212 => 0.052399534582857
1213 => 0.05193425281073
1214 => 0.053865611433278
1215 => 0.054636082677259
1216 => 0.055929823810178
1217 => 0.056881505054028
1218 => 0.057440350483177
1219 => 0.057406799499787
1220 => 0.059621223505765
1221 => 0.058315455035522
1222 => 0.056675102090898
1223 => 0.056645433281377
1224 => 0.057494995315378
1225 => 0.059275444272685
1226 => 0.059737088782835
1227 => 0.059995085085307
1228 => 0.059599954767156
1229 => 0.058182636677976
1230 => 0.057570645913035
1231 => 0.058092079775844
]
'min_raw' => 0.021501224923089
'max_raw' => 0.059995085085307
'avg_raw' => 0.040748155004198
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0215012'
'max' => '$0.059995'
'avg' => '$0.040748'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0085120129943839
'max_diff' => 0.030997584481285
'year' => 2036
]
11 => [
'items' => [
101 => 0.057454410968951
102 => 0.058555206227916
103 => 0.060066833235656
104 => 0.059754688236178
105 => 0.060798142170037
106 => 0.061878007217025
107 => 0.063422262733993
108 => 0.063825988309744
109 => 0.064493331334153
110 => 0.065180246517033
111 => 0.065400865160891
112 => 0.06582209460596
113 => 0.06581987451886
114 => 0.067089277803588
115 => 0.068489468936791
116 => 0.069018008675076
117 => 0.070233356659411
118 => 0.068152115827111
119 => 0.069730760905982
120 => 0.071154738283173
121 => 0.069457013750389
122 => 0.071796931499748
123 => 0.071887785203588
124 => 0.073259568265086
125 => 0.071869003330422
126 => 0.071043290311059
127 => 0.073427092858897
128 => 0.074580539822719
129 => 0.074233112210153
130 => 0.07158917092391
131 => 0.070050283691339
201 => 0.066022718974525
202 => 0.07079354335944
203 => 0.073117272750476
204 => 0.071583153026159
205 => 0.072356873780689
206 => 0.076578043337611
207 => 0.078185191404398
208 => 0.07785091584132
209 => 0.077907402908836
210 => 0.078774590833873
211 => 0.082620179662603
212 => 0.080315813696377
213 => 0.082077415134611
214 => 0.083011762185524
215 => 0.083879635798139
216 => 0.081748412499829
217 => 0.078975722302616
218 => 0.078097494927542
219 => 0.07143061505377
220 => 0.071083575003549
221 => 0.07088877090697
222 => 0.069660558633625
223 => 0.068695520222431
224 => 0.06792808584827
225 => 0.06591410887517
226 => 0.066593766982678
227 => 0.063383908037218
228 => 0.065437462040107
301 => 0.060314449658399
302 => 0.06458104660102
303 => 0.06225893186351
304 => 0.063818169456672
305 => 0.063812729423599
306 => 0.060941678657858
307 => 0.059285716493479
308 => 0.060340960035633
309 => 0.061472264878158
310 => 0.061655815282691
311 => 0.063122581541103
312 => 0.063531924475791
313 => 0.062291596273293
314 => 0.060208286613771
315 => 0.060692191932444
316 => 0.059275910167641
317 => 0.056793930851316
318 => 0.058576531727502
319 => 0.05918519004206
320 => 0.059454008228268
321 => 0.057013266627912
322 => 0.056246332626002
323 => 0.055838023398585
324 => 0.059893217522685
325 => 0.060115370210887
326 => 0.058978805648824
327 => 0.064116185242822
328 => 0.062953438018272
329 => 0.064252511548081
330 => 0.06064828259683
331 => 0.060785968996505
401 => 0.059079669250652
402 => 0.06003508309334
403 => 0.059359827383753
404 => 0.059957895096434
405 => 0.060316374417489
406 => 0.062022394176345
407 => 0.064600526606249
408 => 0.061767571715117
409 => 0.060533212700389
410 => 0.061299002090828
411 => 0.063338400152111
412 => 0.066428192609821
413 => 0.064598973286988
414 => 0.065410749760303
415 => 0.065588086806301
416 => 0.064239288199024
417 => 0.066477924738377
418 => 0.067677628246468
419 => 0.068908275802107
420 => 0.069976812592707
421 => 0.068416728105865
422 => 0.070086242136112
423 => 0.068740908536632
424 => 0.067534005219866
425 => 0.06753583559401
426 => 0.066778727513359
427 => 0.065311735205341
428 => 0.065041199316042
429 => 0.06644856117709
430 => 0.067577132111986
501 => 0.067670086619674
502 => 0.068294921477301
503 => 0.068664692309733
504 => 0.072288949146644
505 => 0.073746655227874
506 => 0.075529110631039
507 => 0.076223477464254
508 => 0.078313272687943
509 => 0.076625593319944
510 => 0.076260453272677
511 => 0.071191293626815
512 => 0.072021368234845
513 => 0.073350397772588
514 => 0.071213208834381
515 => 0.07256876330259
516 => 0.072836378469184
517 => 0.071140587972066
518 => 0.072046382947359
519 => 0.069640860042474
520 => 0.06465296043204
521 => 0.066483477696511
522 => 0.06783135454861
523 => 0.065907768088647
524 => 0.069355722365054
525 => 0.067341498657
526 => 0.066703086441336
527 => 0.064212412777643
528 => 0.065387914872085
529 => 0.066977798286387
530 => 0.065995435180134
531 => 0.068033986128171
601 => 0.070921117932272
602 => 0.072978659987545
603 => 0.073136612517948
604 => 0.071813750821019
605 => 0.073933645132738
606 => 0.073949086248458
607 => 0.071557836804816
608 => 0.070093209835117
609 => 0.069760443506
610 => 0.070591759038816
611 => 0.071601129564968
612 => 0.073192625557288
613 => 0.074154333253884
614 => 0.076661956876256
615 => 0.077340447929266
616 => 0.078085903890891
617 => 0.079082062945726
618 => 0.080278207300994
619 => 0.077661111548203
620 => 0.077765093641338
621 => 0.075328090312496
622 => 0.072723802753998
623 => 0.074700132381871
624 => 0.077283920470201
625 => 0.076691196627906
626 => 0.076624503087398
627 => 0.076736663123287
628 => 0.076289768702747
629 => 0.074268481801327
630 => 0.073253404173359
701 => 0.074563113287359
702 => 0.075259165393004
703 => 0.076338681506736
704 => 0.076205608359898
705 => 0.078986325937305
706 => 0.080066828703351
707 => 0.079790389858477
708 => 0.079841261258806
709 => 0.081797459905193
710 => 0.083973155122911
711 => 0.086010980802574
712 => 0.088083944610577
713 => 0.085584905830875
714 => 0.084316048057827
715 => 0.085625185393799
716 => 0.08493053869589
717 => 0.08892218466767
718 => 0.089198557574205
719 => 0.093189914904548
720 => 0.096978188293033
721 => 0.094598841651693
722 => 0.09684245836635
723 => 0.099269112768007
724 => 0.10395052281929
725 => 0.10237398860801
726 => 0.10116638810961
727 => 0.1000252114737
728 => 0.10239981889633
729 => 0.10545471341027
730 => 0.10611270842915
731 => 0.10717891173319
801 => 0.10605792932813
802 => 0.10740802916286
803 => 0.11217447484339
804 => 0.11088653914593
805 => 0.10905746340955
806 => 0.11282011450001
807 => 0.11418180330272
808 => 0.12373884844206
809 => 0.13580501271232
810 => 0.13080954147373
811 => 0.12770869127308
812 => 0.12843746462339
813 => 0.13284361934945
814 => 0.1342587364031
815 => 0.13041196043118
816 => 0.13177070673665
817 => 0.1392575324688
818 => 0.14327397426797
819 => 0.13781910682459
820 => 0.12276934389151
821 => 0.10889277515184
822 => 0.11257346605163
823 => 0.11215618992873
824 => 0.12019985017739
825 => 0.1108558223055
826 => 0.11101315177076
827 => 0.11922314639498
828 => 0.11703286058418
829 => 0.1134848780813
830 => 0.10891867935054
831 => 0.10047763867447
901 => 0.093001173551848
902 => 0.1076642433844
903 => 0.10703194515016
904 => 0.10611628360563
905 => 0.10815398928806
906 => 0.11804850966907
907 => 0.11782040894885
908 => 0.11636934854482
909 => 0.11746996507221
910 => 0.11329193468264
911 => 0.11436870824602
912 => 0.10889057703245
913 => 0.11136692112795
914 => 0.11347726570432
915 => 0.11390094862222
916 => 0.11485552787002
917 => 0.10669875271257
918 => 0.11036090528793
919 => 0.11251207682866
920 => 0.10279300554735
921 => 0.11231996203862
922 => 0.10655676140426
923 => 0.10460064454859
924 => 0.10723429819595
925 => 0.10620796080827
926 => 0.10532557619089
927 => 0.10483319041309
928 => 0.10676705498597
929 => 0.10667683789218
930 => 0.10351266010402
1001 => 0.099385119167745
1002 => 0.10077045738787
1003 => 0.10026715102488
1004 => 0.098443103837607
1005 => 0.099672291405534
1006 => 0.094259571433976
1007 => 0.084947268051614
1008 => 0.091099260909569
1009 => 0.090862415876618
1010 => 0.090742987870938
1011 => 0.095366040475097
1012 => 0.094921640639178
1013 => 0.094115050585408
1014 => 0.098428290178734
1015 => 0.096853899705911
1016 => 0.1017058001701
1017 => 0.10490157561707
1018 => 0.10409102359121
1019 => 0.10709666584561
1020 => 0.10080237278247
1021 => 0.10289308445484
1022 => 0.10332397723291
1023 => 0.098375065471679
1024 => 0.09499434994832
1025 => 0.09476889476589
1026 => 0.088907199939682
1027 => 0.092038470001895
1028 => 0.094793858075883
1029 => 0.093474241015195
1030 => 0.093056489676219
1031 => 0.095190690667835
1101 => 0.095356536363078
1102 => 0.091575236935979
1103 => 0.092361488825053
1104 => 0.09564028990599
1105 => 0.09227887145035
1106 => 0.085748184475629
1107 => 0.084128483812087
1108 => 0.083912385886564
1109 => 0.079519629226958
1110 => 0.084236719955325
1111 => 0.082177583442221
1112 => 0.088682371014874
1113 => 0.08496687123925
1114 => 0.084806703469998
1115 => 0.08456458639527
1116 => 0.080783559275855
1117 => 0.081611363918198
1118 => 0.084363112627553
1119 => 0.085344967567719
1120 => 0.085242552053359
1121 => 0.084349627557666
1122 => 0.084758403819281
1123 => 0.083441593053528
1124 => 0.082976599765094
1125 => 0.081508953040318
1126 => 0.079351917802653
1127 => 0.079651866782316
1128 => 0.075378215557529
1129 => 0.073049703550428
1130 => 0.072405202116157
1201 => 0.071543347862681
1202 => 0.072502550847394
1203 => 0.075366108840565
1204 => 0.071912050363082
1205 => 0.065990309377468
1206 => 0.066346216100859
1207 => 0.067145832838665
1208 => 0.065655752337759
1209 => 0.064245516196628
1210 => 0.065471602105267
1211 => 0.06296248238473
1212 => 0.06744904796943
1213 => 0.067327698943819
1214 => 0.06900001314644
1215 => 0.070045745536682
1216 => 0.067635670937057
1217 => 0.067029543692786
1218 => 0.06737482131807
1219 => 0.06166815128754
1220 => 0.068533656456805
1221 => 0.068593029630605
1222 => 0.068084640470029
1223 => 0.071740310023971
1224 => 0.079454913014717
1225 => 0.076552369050412
1226 => 0.075428416297578
1227 => 0.073291781292835
1228 => 0.076138720575821
1229 => 0.075920120058059
1230 => 0.074931525614954
1231 => 0.074333620611162
]
'min_raw' => 0.055838023398585
'max_raw' => 0.14327397426797
'avg_raw' => 0.099555998833275
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.055838'
'max' => '$0.143273'
'avg' => '$0.099555'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.034336798475496
'max_diff' => 0.083278889182658
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017526917498014
]
1 => [
'year' => 2028
'avg' => 0.0030081278527097
]
2 => [
'year' => 2029
'avg' => 0.0082176631313071
]
3 => [
'year' => 2030
'avg' => 0.0063399148676923
]
4 => [
'year' => 2031
'avg' => 0.0062265820970737
]
5 => [
'year' => 2032
'avg' => 0.010917157993674
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017526917498014
'min' => '$0.001752'
'max_raw' => 0.010917157993674
'max' => '$0.010917'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010917157993674
]
1 => [
'year' => 2033
'avg' => 0.028080052957847
]
2 => [
'year' => 2034
'avg' => 0.017798487028882
]
3 => [
'year' => 2035
'avg' => 0.020993356266363
]
4 => [
'year' => 2036
'avg' => 0.040748155004198
]
5 => [
'year' => 2037
'avg' => 0.099555998833275
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010917157993674
'min' => '$0.010917'
'max_raw' => 0.099555998833275
'max' => '$0.099555'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.099555998833275
]
]
]
]
'prediction_2025_max_price' => '$0.002996'
'last_price' => 0.00290576
'sma_50day_nextmonth' => '$0.002677'
'sma_200day_nextmonth' => '$0.003674'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002848'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002819'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002717'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002686'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002801'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.003444'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0038038'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002857'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002818'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002761'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002743'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002914'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003311'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004631'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00372'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004556'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002826'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002836'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003024'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003632'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005965'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003474'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001737'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '59.64'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 99.62
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002718'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0029035'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 182.2
'cci_20_action' => 'SELL'
'adx_14' => 17.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000060'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.13
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000593'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 21
'sell_pct' => 36.36
'buy_pct' => 63.64
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767704869
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de METAVERSE para 2026
La previsión del precio de METAVERSE para 2026 sugiere que el precio medio podría oscilar entre $0.0010039 en el extremo inferior y $0.002996 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, METAVERSE podría potencialmente ganar 3.13% para 2026 si METAV alcanza el objetivo de precio previsto.
Predicción de precio de METAVERSE 2027-2032
La predicción del precio de METAV para 2027-2032 está actualmente dentro de un rango de precios de $0.001752 en el extremo inferior y $0.010917 en el extremo superior. Considerando la volatilidad de precios en el mercado, si METAVERSE alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de METAVERSE | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000966 | $0.001752 | $0.002538 |
| 2028 | $0.001744 | $0.0030081 | $0.004272 |
| 2029 | $0.003831 | $0.008217 | $0.0126038 |
| 2030 | $0.003258 | $0.006339 | $0.009421 |
| 2031 | $0.003852 | $0.006226 | $0.00860059 |
| 2032 | $0.00588 | $0.010917 | $0.015953 |
Predicción de precio de METAVERSE 2032-2037
La predicción de precio de METAVERSE para 2032-2037 se estima actualmente entre $0.010917 en el extremo inferior y $0.099555 en el extremo superior. Comparado con el precio actual, METAVERSE podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de METAVERSE | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00588 | $0.010917 | $0.015953 |
| 2033 | $0.013665 | $0.02808 | $0.042494 |
| 2034 | $0.010986 | $0.017798 | $0.02461 |
| 2035 | $0.012989 | $0.020993 | $0.028997 |
| 2036 | $0.0215012 | $0.040748 | $0.059995 |
| 2037 | $0.055838 | $0.099555 | $0.143273 |
METAVERSE Histograma de precios potenciales
Pronóstico de precio de METAVERSE basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para METAVERSE es Alcista, con 21 indicadores técnicos mostrando señales alcistas y 12 indicando señales bajistas. La predicción de precio de METAV se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de METAVERSE
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de METAVERSE aumentar durante el próximo mes, alcanzando $0.003674 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para METAVERSE alcance $0.002677 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 59.64, lo que sugiere que el mercado de METAV está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de METAV para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002848 | BUY |
| SMA 5 | $0.002819 | BUY |
| SMA 10 | $0.002717 | BUY |
| SMA 21 | $0.002686 | BUY |
| SMA 50 | $0.002801 | BUY |
| SMA 100 | $0.003444 | SELL |
| SMA 200 | $0.0038038 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.002857 | BUY |
| EMA 5 | $0.002818 | BUY |
| EMA 10 | $0.002761 | BUY |
| EMA 21 | $0.002743 | BUY |
| EMA 50 | $0.002914 | SELL |
| EMA 100 | $0.003311 | SELL |
| EMA 200 | $0.004631 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00372 | SELL |
| SMA 50 | $0.004556 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003632 | SELL |
| EMA 50 | $0.005965 | SELL |
| EMA 100 | $0.003474 | SELL |
| EMA 200 | $0.001737 | BUY |
Osciladores de METAVERSE
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 59.64 | NEUTRAL |
| Stoch RSI (14) | 99.62 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 182.2 | SELL |
| Índice Direccional Medio (14) | 17.05 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000060 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.13 | SELL |
| VWMA (10) | 0.002718 | BUY |
| Promedio Móvil de Hull (9) | 0.0029035 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000593 | SELL |
Predicción de precios de METAVERSE basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de METAVERSE
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de METAVERSE por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.004083 | $0.005737 | $0.008062 | $0.011328 | $0.015918 | $0.022368 |
| Amazon.com acción | $0.006063 | $0.01265 | $0.026396 | $0.055078 | $0.114924 | $0.239797 |
| Apple acción | $0.004121 | $0.005846 | $0.008292 | $0.011762 | $0.016683 | $0.023664 |
| Netflix acción | $0.004584 | $0.007234 | $0.011414 | $0.01801 | $0.028417 | $0.044837 |
| Google acción | $0.003762 | $0.004872 | $0.00631 | $0.008172 | $0.010582 | $0.0137046 |
| Tesla acción | $0.006587 | $0.014932 | $0.03385 | $0.076737 | $0.173958 | $0.39435 |
| Kodak acción | $0.002179 | $0.001634 | $0.001225 | $0.000918 | $0.000689 | $0.000516 |
| Nokia acción | $0.001924 | $0.001275 | $0.000844 | $0.000559 | $0.00037 | $0.000245 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de METAVERSE
Podría preguntarse cosas como: "¿Debo invertir en METAVERSE ahora?", "¿Debería comprar METAV hoy?", "¿Será METAVERSE una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de METAVERSE regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como METAVERSE, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de METAVERSE a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de METAVERSE es de $0.002905 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de METAVERSE basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si METAVERSE ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002981 | $0.003058 | $0.003138 | $0.003219 |
| Si METAVERSE ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.003056 | $0.003215 | $0.003382 | $0.003558 |
| Si METAVERSE ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003283 | $0.00371 | $0.004192 | $0.004737 |
| Si METAVERSE ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003661 | $0.004612 | $0.005811 | $0.007322 |
| Si METAVERSE ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004416 | $0.006712 | $0.0102017 | $0.0155052 |
| Si METAVERSE ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006682 | $0.015366 | $0.035338 | $0.081267 |
| Si METAVERSE ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.010458 | $0.037644 | $0.135494 | $0.487688 |
Cuadro de preguntas
¿Es METAV una buena inversión?
La decisión de adquirir METAVERSE depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de METAVERSE ha experimentado un aumento de 0.1572% durante las últimas 24 horas, y METAVERSE ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en METAVERSE dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede METAVERSE subir?
Parece que el valor medio de METAVERSE podría potencialmente aumentar hasta $0.002996 para el final de este año. Mirando las perspectivas de METAVERSE en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.009421. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de METAVERSE la próxima semana?
Basado en nuestro nuevo pronóstico experimental de METAVERSE, el precio de METAVERSE aumentará en un 0.86% durante la próxima semana y alcanzará $0.00293 para el 13 de enero de 2026.
¿Cuál será el precio de METAVERSE el próximo mes?
Basado en nuestro nuevo pronóstico experimental de METAVERSE, el precio de METAVERSE disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002568 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de METAVERSE este año en 2026?
Según nuestra predicción más reciente sobre el valor de METAVERSE en 2026, se anticipa que METAV fluctúe dentro del rango de $0.0010039 y $0.002996. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de METAVERSE no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará METAVERSE en 5 años?
El futuro de METAVERSE parece estar en una tendencia alcista, con un precio máximo de $0.009421 proyectada después de un período de cinco años. Basado en el pronóstico de METAVERSE para 2030, el valor de METAVERSE podría potencialmente alcanzar su punto más alto de aproximadamente $0.009421, mientras que su punto más bajo se anticipa que esté alrededor de $0.003258.
¿Cuánto será METAVERSE en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de METAVERSE, se espera que el valor de METAV en 2026 crezca en un 3.13% hasta $0.002996 si ocurre lo mejor. El precio estará entre $0.002996 y $0.0010039 durante 2026.
¿Cuánto será METAVERSE en 2027?
Según nuestra última simulación experimental para la predicción de precios de METAVERSE, el valor de METAV podría disminuir en un -12.62% hasta $0.002538 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002538 y $0.000966 a lo largo del año.
¿Cuánto será METAVERSE en 2028?
Nuestro nuevo modelo experimental de predicción de precios de METAVERSE sugiere que el valor de METAV en 2028 podría aumentar en un 47.02% , alcanzando $0.004272 en el mejor escenario. Se espera que el precio oscile entre $0.004272 y $0.001744 durante el año.
¿Cuánto será METAVERSE en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de METAVERSE podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0126038 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0126038 y $0.003831.
¿Cuánto será METAVERSE en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de METAVERSE, se espera que el valor de METAV en 2030 aumente en un 224.23% , alcanzando $0.009421 en el mejor escenario. Se pronostica que el precio oscile entre $0.009421 y $0.003258 durante el transcurso de 2030.
¿Cuánto será METAVERSE en 2031?
Nuestra simulación experimental indica que el precio de METAVERSE podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.00860059 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.00860059 y $0.003852 durante el año.
¿Cuánto será METAVERSE en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de METAVERSE, METAV podría experimentar un 449.04% aumento en valor, alcanzando $0.015953 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.015953 y $0.00588 a lo largo del año.
¿Cuánto será METAVERSE en 2033?
Según nuestra predicción experimental de precios de METAVERSE, se anticipa que el valor de METAV aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.042494. A lo largo del año, el precio de METAV podría oscilar entre $0.042494 y $0.013665.
¿Cuánto será METAVERSE en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de METAVERSE sugieren que METAV podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.02461 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.02461 y $0.010986.
¿Cuánto será METAVERSE en 2035?
Basado en nuestra predicción experimental para el precio de METAVERSE, METAV podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.028997 en 2035. El rango de precios esperado para el año está entre $0.028997 y $0.012989.
¿Cuánto será METAVERSE en 2036?
Nuestra reciente simulación de predicción de precios de METAVERSE sugiere que el valor de METAV podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.059995 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.059995 y $0.0215012.
¿Cuánto será METAVERSE en 2037?
Según la simulación experimental, el valor de METAVERSE podría aumentar en un 4830.69% en 2037, con un máximo de $0.143273 bajo condiciones favorables. Se espera que el precio caiga entre $0.143273 y $0.055838 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de METAVERSE?
Los traders de METAVERSE utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de METAVERSE
Las medias móviles son herramientas populares para la predicción de precios de METAVERSE. Una media móvil simple (SMA) calcula el precio de cierre promedio de METAV durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de METAV por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de METAV.
¿Cómo leer gráficos de METAVERSE y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de METAVERSE en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de METAV dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de METAVERSE?
La acción del precio de METAVERSE está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de METAV. La capitalización de mercado de METAVERSE puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de METAV, grandes poseedores de METAVERSE, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de METAVERSE.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


