Predicción del precio de Marlin - Pronóstico de POND
Predicción de precio de Marlin hasta $0.004365 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001462 | $0.004365 |
| 2027 | $0.0014077 | $0.003698 |
| 2028 | $0.00254 | $0.006222 |
| 2029 | $0.00558 | $0.018358 |
| 2030 | $0.004746 | $0.013723 |
| 2031 | $0.005611 | $0.012527 |
| 2032 | $0.008565 | $0.023238 |
| 2033 | $0.0199051 | $0.061898 |
| 2034 | $0.0160027 | $0.035848 |
| 2035 | $0.01892 | $0.042238 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Marlin hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.38, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Marlin para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Marlin'
'name_with_ticker' => 'Marlin <small>POND</small>'
'name_lang' => 'Marlin'
'name_lang_with_ticker' => 'Marlin <small>POND</small>'
'name_with_lang' => 'Marlin'
'name_with_lang_with_ticker' => 'Marlin <small>POND</small>'
'image' => '/uploads/coins/marlin.png?1717126201'
'price_for_sd' => 0.004232
'ticker' => 'POND'
'marketcap' => '$34.72M'
'low24h' => '$0.004084'
'high24h' => '$0.004301'
'volume24h' => '$2.16M'
'current_supply' => '8.2B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.004232'
'change_24h_pct' => '3.5229%'
'ath_price' => '$0.3233'
'ath_days' => 1842
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21 dic. 2020'
'ath_pct' => '-98.69%'
'fdv' => '$42.33M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.208694'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004268'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00374'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001462'
'current_year_max_price_prediction' => '$0.004365'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004746'
'grand_prediction_max_price' => '$0.013723'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0043127647856734
107 => 0.0043288670838495
108 => 0.004365146383844
109 => 0.0040551437375399
110 => 0.0041943258245309
111 => 0.0042760822610402
112 => 0.0039067037065666
113 => 0.0042687808346609
114 => 0.0040497472811614
115 => 0.0039754040033301
116 => 0.0040754974329478
117 => 0.0040364909260818
118 => 0.0040029554220172
119 => 0.0039842420345361
120 => 0.0040577396023387
121 => 0.0040543108529521
122 => 0.0039340545667639
123 => 0.0037771851437047
124 => 0.0038298356711467
125 => 0.0038107072409257
126 => 0.0037413833421882
127 => 0.0037880992797378
128 => 0.0035823859331643
129 => 0.003228466812434
130 => 0.0034622766244243
131 => 0.0034532752009988
201 => 0.0034487362751256
202 => 0.0036244378868078
203 => 0.0036075482309704
204 => 0.0035768933402416
205 => 0.0037408203410801
206 => 0.0036809847806447
207 => 0.0038653838788755
208 => 0.0039868410511561
209 => 0.0039560355835378
210 => 0.0040702666411212
211 => 0.0038310486329598
212 => 0.0039105072595104
213 => 0.0039268835723176
214 => 0.0037387975073355
215 => 0.0036103115875433
216 => 0.0036017430415399
217 => 0.0033789661630706
218 => 0.0034979717733568
219 => 0.0036026917856218
220 => 0.0035525390263481
221 => 0.0035366621610331
222 => 0.0036177736226555
223 => 0.0036240766778962
224 => 0.0034803663504393
225 => 0.0035102482782318
226 => 0.0036348608845836
227 => 0.0035071083602747
228 => 0.003258906073799
301 => 0.0031973484750879
302 => 0.0031891355566882
303 => 0.003022186466789
304 => 0.0032014620481829
305 => 0.0031232034526176
306 => 0.0033704214183264
307 => 0.0032292118421701
308 => 0.003223124579574
309 => 0.0032139227893527
310 => 0.0030702228110964
311 => 0.0031016839737245
312 => 0.0032062656699706
313 => 0.0032435815973884
314 => 0.0032396892404383
315 => 0.0032057531626047
316 => 0.0032212889252561
317 => 0.0031712428207374
318 => 0.0031535704996122
319 => 0.0030977917929864
320 => 0.0030158125035074
321 => 0.0030272122265177
322 => 0.0028647898030118
323 => 0.0027762934462754
324 => 0.002751798821094
325 => 0.0027190435846006
326 => 0.0027554986122143
327 => 0.0028643296806933
328 => 0.0027330563223084
329 => 0.0025079973571129
330 => 0.0025215237844029
331 => 0.0025519136504914
401 => 0.0024952823360846
402 => 0.0024416855497045
403 => 0.0024882836070173
404 => 0.002392923156564
405 => 0.0025634375053388
406 => 0.0025588255700653
407 => 0.002622382774752
408 => 0.0026621263991676
409 => 0.0025705302120407
410 => 0.0025474940186807
411 => 0.0025606164813552
412 => 0.002343731403993
413 => 0.0026046586368276
414 => 0.0026069151463724
415 => 0.0025875935416832
416 => 0.0027265292379431
417 => 0.0030197268921819
418 => 0.0029094141408089
419 => 0.0028666977092568
420 => 0.0027854937416506
421 => 0.0028936932070713
422 => 0.0028853851763016
423 => 0.0028478131104339
424 => 0.0028250894077651
425 => 0.0028669585266791
426 => 0.0028199013605866
427 => 0.0028114486005119
428 => 0.0027602340711532
429 => 0.0027419528142847
430 => 0.0027284180994971
501 => 0.0027135177084095
502 => 0.0027463842582025
503 => 0.0026719043324169
504 => 0.0025820888432765
505 => 0.0025746216571715
506 => 0.002595239214529
507 => 0.002586117480195
508 => 0.0025745779858169
509 => 0.0025525459484549
510 => 0.0025460095136096
511 => 0.0025672497558295
512 => 0.0025432707607463
513 => 0.002578653074195
514 => 0.0025690310427297
515 => 0.0025152831571355
516 => 0.0024482933916692
517 => 0.0024476970422407
518 => 0.0024332642071563
519 => 0.0024148818216849
520 => 0.0024097682625788
521 => 0.002484359248603
522 => 0.0026387603573527
523 => 0.0026084477251997
524 => 0.0026303517084937
525 => 0.0027380976271312
526 => 0.0027723468146332
527 => 0.0027480375525807
528 => 0.0027147615353533
529 => 0.0027162255112327
530 => 0.0028299397354342
531 => 0.0028370319521129
601 => 0.0028549516956243
602 => 0.0028779836301553
603 => 0.0027519599906243
604 => 0.0027102898091439
605 => 0.0026905441653848
606 => 0.0026297352251328
607 => 0.0026953124538301
608 => 0.0026571034109651
609 => 0.0026622591162543
610 => 0.0026589014564211
611 => 0.002660734965734
612 => 0.0025633898431032
613 => 0.0025988572894808
614 => 0.0025398857808536
615 => 0.0024609295506643
616 => 0.0024606648616951
617 => 0.0024799892871767
618 => 0.0024684943627354
619 => 0.0024375618166254
620 => 0.0024419556388028
621 => 0.0024034611331315
622 => 0.0024466295687568
623 => 0.0024478674850264
624 => 0.0024312452859101
625 => 0.002497752217087
626 => 0.0025250001610547
627 => 0.0025140590735143
628 => 0.0025242325051862
629 => 0.002609707351919
630 => 0.0026236434814655
701 => 0.002629832989641
702 => 0.0026215398686385
703 => 0.0025257948284761
704 => 0.0025300415281466
705 => 0.0024988820636936
706 => 0.0024725555997343
707 => 0.0024736085202285
708 => 0.0024871437449044
709 => 0.0025462528648942
710 => 0.0026706445232399
711 => 0.002675365095745
712 => 0.00268108656733
713 => 0.0026578144670126
714 => 0.0026507953788729
715 => 0.0026600553679096
716 => 0.0027067703345815
717 => 0.0028269339118515
718 => 0.0027844600781888
719 => 0.0027499281902765
720 => 0.0027802219657058
721 => 0.0027755584764289
722 => 0.0027361939337623
723 => 0.0027350891021573
724 => 0.0026595359591745
725 => 0.0026316056824756
726 => 0.0026082650527211
727 => 0.0025827776943516
728 => 0.0025676679339662
729 => 0.0025908833931815
730 => 0.0025961930433812
731 => 0.0025454320360703
801 => 0.0025385134983422
802 => 0.0025799660326648
803 => 0.0025617243178157
804 => 0.0025804863739107
805 => 0.0025848393318627
806 => 0.0025841384053753
807 => 0.0025650919600252
808 => 0.0025772315963182
809 => 0.0025485177374856
810 => 0.0025172957286873
811 => 0.0024973780322739
812 => 0.0024799972004541
813 => 0.0024896410961276
814 => 0.0024552623689574
815 => 0.0024442639222286
816 => 0.0025731189606926
817 => 0.0026683055630311
818 => 0.0026669215121351
819 => 0.0026584964582545
820 => 0.0026459785371476
821 => 0.0027058545706833
822 => 0.0026849949578585
823 => 0.0027001720690675
824 => 0.0027040352808515
825 => 0.0027157280593968
826 => 0.0027199072226985
827 => 0.0027072748885853
828 => 0.0026648792323917
829 => 0.0025592332880154
830 => 0.0025100548157224
831 => 0.0024938251007335
901 => 0.0024944150200487
902 => 0.0024781424118189
903 => 0.0024829354242297
904 => 0.0024764755977039
905 => 0.0024642422490639
906 => 0.0024888857213217
907 => 0.0024917256519296
908 => 0.0024859735710371
909 => 0.0024873283943156
910 => 0.0024397036212713
911 => 0.0024433244293302
912 => 0.0024231633099477
913 => 0.0024193833431094
914 => 0.0023684177889399
915 => 0.0022781249221534
916 => 0.0023281559352938
917 => 0.0022677255068453
918 => 0.0022448395879214
919 => 0.0023531779686164
920 => 0.0023423038000335
921 => 0.0023236919503071
922 => 0.0022961611455125
923 => 0.0022859497022117
924 => 0.0022239082052661
925 => 0.0022202424626481
926 => 0.0022509919037956
927 => 0.0022368020947297
928 => 0.0022168742287002
929 => 0.0021446975179968
930 => 0.0020635469982785
1001 => 0.0020659964223748
1002 => 0.0020918088928381
1003 => 0.002166862131996
1004 => 0.0021375375330228
1005 => 0.0021162622000067
1006 => 0.002112277969667
1007 => 0.0021621489539201
1008 => 0.0022327268449326
1009 => 0.0022658404123044
1010 => 0.0022330258727129
1011 => 0.0021953302964906
1012 => 0.0021976246515508
1013 => 0.0022128879678769
1014 => 0.0022144919266111
1015 => 0.0021899559816583
1016 => 0.0021968627064424
1017 => 0.0021863707599312
1018 => 0.0021219817035584
1019 => 0.0021208171097085
1020 => 0.0021050149968608
1021 => 0.002104536515164
1022 => 0.0020776531791883
1023 => 0.0020738920146496
1024 => 0.002020513519368
1025 => 0.0020556474066073
1026 => 0.0020320814396591
1027 => 0.0019965619688184
1028 => 0.0019904383986574
1029 => 0.001990254316744
1030 => 0.0020267248712889
1031 => 0.0020552212269433
1101 => 0.0020324913797436
1102 => 0.0020273162341358
1103 => 0.002082573249942
1104 => 0.0020755412910018
1105 => 0.0020694516599108
1106 => 0.0022264073688975
1107 => 0.0021021646778278
1108 => 0.0020479877729966
1109 => 0.0019809335653527
1110 => 0.0020027667534782
1111 => 0.0020073673270125
1112 => 0.0018461140450584
1113 => 0.0017806936086525
1114 => 0.0017582437801951
1115 => 0.0017453235865238
1116 => 0.0017512114810214
1117 => 0.0016923254152042
1118 => 0.001731897825319
1119 => 0.0016809074698365
1120 => 0.0016723587708029
1121 => 0.0017635358428985
1122 => 0.0017762225998319
1123 => 0.0017220969532877
1124 => 0.0017568543805153
1125 => 0.0017442508542382
1126 => 0.0016817815531301
1127 => 0.0016793956853208
1128 => 0.0016480507859269
1129 => 0.0015990020879439
1130 => 0.0015765855168134
1201 => 0.001564910771939
1202 => 0.0015697279992104
1203 => 0.0015672922616924
1204 => 0.0015513974267911
1205 => 0.0015682033350231
1206 => 0.001525271184171
1207 => 0.0015081752557738
1208 => 0.0015004534215393
1209 => 0.0014623486665756
1210 => 0.0015229902769843
1211 => 0.0015349374381777
1212 => 0.0015469081389693
1213 => 0.0016511049166157
1214 => 0.0016458995400615
1215 => 0.0016929536089901
1216 => 0.0016911251743984
1217 => 0.0016777045917146
1218 => 0.0016210853609503
1219 => 0.0016436527771922
1220 => 0.0015741937777548
1221 => 0.0016262371828862
1222 => 0.0016024867461688
1223 => 0.0016182071363413
1224 => 0.0015899404573607
1225 => 0.0016055844046111
1226 => 0.0015377705533071
1227 => 0.001474446933126
1228 => 0.0014999302064186
1229 => 0.0015276334388534
1230 => 0.0015877011054245
1231 => 0.0015519252987622
]
'min_raw' => 0.0014623486665756
'max_raw' => 0.004365146383844
'avg_raw' => 0.0029137475252098
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001462'
'max' => '$0.004365'
'avg' => '$0.002913'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027702113334244
'max_diff' => 0.00013258638384398
'year' => 2026
]
1 => [
'items' => [
101 => 0.001564791631671
102 => 0.0015216915702248
103 => 0.0014327638325373
104 => 0.0014332671538751
105 => 0.001419587558828
106 => 0.0014077663914537
107 => 0.0015560345805191
108 => 0.0015375950874356
109 => 0.0015082141685082
110 => 0.0015475416960438
111 => 0.001557940518536
112 => 0.0015582365583933
113 => 0.0015869289072929
114 => 0.0016022420190439
115 => 0.0016049410213609
116 => 0.0016500890522936
117 => 0.0016652220767453
118 => 0.001727552862756
119 => 0.0016009428084986
120 => 0.0015983353577493
121 => 0.0015480951150069
122 => 0.0015162319587929
123 => 0.001550276812573
124 => 0.0015804359054362
125 => 0.0015490322420903
126 => 0.0015531328975558
127 => 0.0015109760452875
128 => 0.0015260451363091
129 => 0.0015390246675228
130 => 0.0015318581332882
131 => 0.0015211294846748
201 => 0.0015779632037512
202 => 0.0015747564225877
203 => 0.0016276812883932
204 => 0.0016689400059819
205 => 0.001742883003779
206 => 0.0016657196308421
207 => 0.0016629074908357
208 => 0.0016903966104802
209 => 0.0016652178683043
210 => 0.0016811299642188
211 => 0.0017403193191271
212 => 0.001741569896927
213 => 0.001720621107501
214 => 0.0017193463717606
215 => 0.0017233698159245
216 => 0.0017469352540625
217 => 0.0017387007658843
218 => 0.0017482299240758
219 => 0.00176014628231
220 => 0.0018094373923976
221 => 0.0018213213121655
222 => 0.0017924495482355
223 => 0.001795056345255
224 => 0.0017842575129975
225 => 0.0017738259763458
226 => 0.0017972745473353
227 => 0.0018401272717013
228 => 0.0018398606871271
301 => 0.0018498016862421
302 => 0.0018559948463351
303 => 0.0018294092695458
304 => 0.0018121030366348
305 => 0.0018187393475571
306 => 0.0018293509532419
307 => 0.0018152981468531
308 => 0.0017285577159286
309 => 0.0017548692216709
310 => 0.0017504897005485
311 => 0.0017442527299022
312 => 0.001770709152387
313 => 0.0017681573658974
314 => 0.0016917214534867
315 => 0.0016966146326035
316 => 0.0016920190239155
317 => 0.0017068683757596
318 => 0.0016644159545733
319 => 0.0016774740334088
320 => 0.0016856639380425
321 => 0.0016904878547896
322 => 0.0017079151498707
323 => 0.001705870257938
324 => 0.001707788036517
325 => 0.001733628114487
326 => 0.0018643183616152
327 => 0.0018714315434146
328 => 0.0018364036347103
329 => 0.0018503965933427
330 => 0.0018235331726921
331 => 0.0018415667669441
401 => 0.0018539048941277
402 => 0.0017981512698704
403 => 0.0017948499020799
404 => 0.0017678756065365
405 => 0.0017823700650593
406 => 0.001759308339361
407 => 0.0017649668801825
408 => 0.001749145106743
409 => 0.0017776211488504
410 => 0.0018094617886561
411 => 0.001817505991696
412 => 0.0017963451567452
413 => 0.0017810233176738
414 => 0.0017541232155921
415 => 0.0017988586848619
416 => 0.0018119406993651
417 => 0.0017987899706089
418 => 0.001795742659407
419 => 0.0017899680101857
420 => 0.0017969677785378
421 => 0.0018118694519046
422 => 0.0018048420979355
423 => 0.0018094837890382
424 => 0.001791794449046
425 => 0.001829418070478
426 => 0.0018891734359295
427 => 0.0018893655592004
428 => 0.0018823381673512
429 => 0.0018794627100138
430 => 0.0018866732405089
501 => 0.001890584657511
502 => 0.0019139021909467
503 => 0.0019389228333348
504 => 0.0020556832539984
505 => 0.0020228973951004
506 => 0.0021264941864217
507 => 0.0022084257979971
508 => 0.0022329935058734
509 => 0.0022103923706272
510 => 0.0021330751078392
511 => 0.0021292815540654
512 => 0.0022448261871769
513 => 0.0022121795360434
514 => 0.0022082963207719
515 => 0.0021669854710784
516 => 0.0021914052996955
517 => 0.0021860643249597
518 => 0.0021776333350497
519 => 0.0022242246669512
520 => 0.0023114394810338
521 => 0.0022978462343637
522 => 0.002287699506297
523 => 0.002243239497577
524 => 0.0022700143533289
525 => 0.0022604803400342
526 => 0.0023014445115825
527 => 0.0022771782438248
528 => 0.0022119322055522
529 => 0.0022223228522009
530 => 0.002220752326863
531 => 0.0022530736270277
601 => 0.0022433715749822
602 => 0.0022188578454888
603 => 0.0023111413902808
604 => 0.00230514901019
605 => 0.0023136448351099
606 => 0.0023173849599817
607 => 0.0023735563274782
608 => 0.0023965679394582
609 => 0.0024017919782526
610 => 0.0024236512298517
611 => 0.0024012481001595
612 => 0.0024908765920889
613 => 0.0025504743092545
614 => 0.0026197001246128
615 => 0.0027208576469963
616 => 0.0027588938111719
617 => 0.0027520229185621
618 => 0.0028287193975385
619 => 0.002966541265392
620 => 0.0027798806585333
621 => 0.0029764347308029
622 => 0.0029142079808482
623 => 0.0027666694761172
624 => 0.0027571697357772
625 => 0.0028570845241383
626 => 0.0030786859082813
627 => 0.0030231772749356
628 => 0.00307877670052
629 => 0.0030139170172384
630 => 0.0030106961872831
701 => 0.0030756266104726
702 => 0.0032273400834278
703 => 0.0031552666993213
704 => 0.0030519318300857
705 => 0.0031282326894606
706 => 0.0030621338237589
707 => 0.0029131945794254
708 => 0.0030231348285298
709 => 0.0029496209148717
710 => 0.0029710761830917
711 => 0.0031255914952317
712 => 0.0031069998040782
713 => 0.003131059173975
714 => 0.0030885950158504
715 => 0.0030489267961789
716 => 0.0029748831183614
717 => 0.0029529624356688
718 => 0.0029590205237415
719 => 0.0029529594335813
720 => 0.0029115326763389
721 => 0.0029025865720567
722 => 0.0028876760063151
723 => 0.0028922974141189
724 => 0.002864261188285
725 => 0.0029171713390134
726 => 0.0029269919292313
727 => 0.002965495524591
728 => 0.002969493095592
729 => 0.0030767250606046
730 => 0.0030176634962356
731 => 0.0030572870927444
801 => 0.0030537427853209
802 => 0.0027698670828906
803 => 0.002808982650029
804 => 0.0028698341973551
805 => 0.002842420657767
806 => 0.0028036643265698
807 => 0.002772366511145
808 => 0.0027249471204105
809 => 0.0027916890022606
810 => 0.0028794474796855
811 => 0.0029717187954031
812 => 0.0030825767353816
813 => 0.0030578345337071
814 => 0.0029696463833263
815 => 0.0029736024393309
816 => 0.0029980572209007
817 => 0.0029663860568167
818 => 0.0029570456122337
819 => 0.0029967739872473
820 => 0.0029970475747317
821 => 0.0029606060728649
822 => 0.0029201080122645
823 => 0.0029199383239119
824 => 0.0029127320851929
825 => 0.0030151989910978
826 => 0.0030715454287727
827 => 0.0030780054570453
828 => 0.0030711106173992
829 => 0.0030737641675326
830 => 0.0030409774169586
831 => 0.0031159182061619
901 => 0.0031846912852109
902 => 0.0031662586309032
903 => 0.0031386254617399
904 => 0.0031166143115075
905 => 0.0031610735034329
906 => 0.0031590938056017
907 => 0.0031840906123617
908 => 0.0031829566128185
909 => 0.0031745511268826
910 => 0.0031662589310896
911 => 0.0031991365501015
912 => 0.0031896683238245
913 => 0.0031801853907768
914 => 0.0031611659167854
915 => 0.0031637509791809
916 => 0.0031361225812738
917 => 0.0031233404202125
918 => 0.0029311273865432
919 => 0.0028797617832047
920 => 0.0028959224476583
921 => 0.0029012429580079
922 => 0.0028788885816081
923 => 0.0029109390149972
924 => 0.0029059439889033
925 => 0.0029253767134421
926 => 0.0029132359908211
927 => 0.0029137342503123
928 => 0.0029494375268657
929 => 0.0029598023399417
930 => 0.0029545307123569
1001 => 0.0029582227796165
1002 => 0.0030433049112887
1003 => 0.0030312089529383
1004 => 0.0030247832161461
1005 => 0.0030265631891518
1006 => 0.0030483034979755
1007 => 0.0030543895974693
1008 => 0.0030286023662515
1009 => 0.003040763773568
1010 => 0.0030925455024094
1011 => 0.0031106661769119
1012 => 0.0031684986715065
1013 => 0.0031439303999121
1014 => 0.0031890265257135
1015 => 0.003327636642025
1016 => 0.0034383679940251
1017 => 0.0033365348665592
1018 => 0.0035398788929547
1019 => 0.0036982113854718
1020 => 0.0036921343206924
1021 => 0.0036645253883255
1022 => 0.0034842680550819
1023 => 0.0033183925695458
1024 => 0.0034571544566419
1025 => 0.0034575081892288
1026 => 0.0034455884200654
1027 => 0.0033715557575118
1028 => 0.0034430122438836
1029 => 0.00344868420028
1030 => 0.003445509412993
1031 => 0.0033887487441919
1101 => 0.0033020856940578
1102 => 0.0033190194466119
1103 => 0.0033467572787349
1104 => 0.0032942437758082
1105 => 0.0032774625297178
1106 => 0.0033086620589626
1107 => 0.0034091934428694
1108 => 0.0033901885670804
1109 => 0.0033896922729689
1110 => 0.0034710031909155
1111 => 0.0034128021216601
1112 => 0.003319233035461
1113 => 0.0032956056071712
1114 => 0.0032117441540849
1115 => 0.0032696675584358
1116 => 0.0032717521186394
1117 => 0.0032400280620392
1118 => 0.0033218072678129
1119 => 0.0033210536580347
1120 => 0.0033986908426884
1121 => 0.0035471039805512
1122 => 0.0035032109127182
1123 => 0.0034521680503806
1124 => 0.0034577178247817
1125 => 0.003518585151952
1126 => 0.0034817833764789
1127 => 0.0034950175515301
1128 => 0.003518565120443
1129 => 0.0035327719534214
1130 => 0.0034556736801469
1201 => 0.0034376983846099
1202 => 0.0034009272384127
1203 => 0.0033913343327358
1204 => 0.0034212836640583
1205 => 0.0034133930733803
1206 => 0.0032715769194261
1207 => 0.0032567563422802
1208 => 0.0032572108682224
1209 => 0.0032199438223091
1210 => 0.0031631026321756
1211 => 0.0033124778860355
1212 => 0.0033004809626452
1213 => 0.0032872372877104
1214 => 0.0032888595623226
1215 => 0.0033536982972261
1216 => 0.0033160885565475
1217 => 0.0034160802162569
1218 => 0.003395524937045
1219 => 0.0033744424924836
1220 => 0.0033715282564582
1221 => 0.0033634133139717
1222 => 0.0033355841567484
1223 => 0.0033019787771281
1224 => 0.0032797895946546
1225 => 0.0030254325320469
1226 => 0.0030726397233399
1227 => 0.0031269472938517
1228 => 0.0031456940495684
1229 => 0.0031136264266789
1230 => 0.0033368503819545
1231 => 0.0033776355496229
]
'min_raw' => 0.0014077663914537
'max_raw' => 0.0036982113854718
'avg_raw' => 0.0025529888884627
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0014077'
'max' => '$0.003698'
'avg' => '$0.002552'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.4582275121919E-5
'max_diff' => -0.00066693499837219
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032540946164047
102 => 0.0032309851519426
103 => 0.0033383654345973
104 => 0.0032736019974508
105 => 0.0033027649692324
106 => 0.0032397305755334
107 => 0.0033678115970607
108 => 0.0033668358342711
109 => 0.0033170094240559
110 => 0.0033591223647732
111 => 0.003351804204975
112 => 0.0032955503105591
113 => 0.0033695949458519
114 => 0.0033696316710673
115 => 0.0033216748345547
116 => 0.0032656717486095
117 => 0.0032556597195763
118 => 0.0032481170006267
119 => 0.0033009099227479
120 => 0.0033482438916425
121 => 0.0034363206726694
122 => 0.0034584652680723
123 => 0.0035448970981789
124 => 0.0034934311516399
125 => 0.003516245339145
126 => 0.0035410133669457
127 => 0.0035528880702875
128 => 0.0035335388784238
129 => 0.00366780308734
130 => 0.0036791391003216
131 => 0.0036829399674182
201 => 0.0036376668316007
202 => 0.003677879972516
203 => 0.003659065575601
204 => 0.0037080154095838
205 => 0.0037156913685752
206 => 0.0037091901043897
207 => 0.0037116265749303
208 => 0.0035970557584499
209 => 0.0035911146572062
210 => 0.0035101073201868
211 => 0.0035431184087982
212 => 0.0034814057609019
213 => 0.0035009754772605
214 => 0.0035096016217643
215 => 0.0035050958134049
216 => 0.0035449848062188
217 => 0.0035110710135441
218 => 0.0034215669387319
219 => 0.0033320384785942
220 => 0.0033309145217055
221 => 0.0033073432584599
222 => 0.0032903055524255
223 => 0.0032935876190528
224 => 0.0033051540499341
225 => 0.003289633290436
226 => 0.0032929454313974
227 => 0.0033479490400365
228 => 0.0033589796214813
229 => 0.0033214933958055
301 => 0.0031709807904808
302 => 0.0031340446196019
303 => 0.0031605936067536
304 => 0.0031479049008688
305 => 0.0025406049389053
306 => 0.002683281056761
307 => 0.0025985077523543
308 => 0.0026375751912571
309 => 0.0025510435993987
310 => 0.0025923410105428
311 => 0.0025847148866445
312 => 0.0028141338620631
313 => 0.0028105518003174
314 => 0.0028122663437166
315 => 0.0027304267200553
316 => 0.0028607994627357
317 => 0.0029250257638323
318 => 0.0029131391848269
319 => 0.0029161307806763
320 => 0.0028647252523532
321 => 0.0028127640615977
322 => 0.0027551311042798
323 => 0.0028622060153276
324 => 0.0028503011130488
325 => 0.0028776066756277
326 => 0.0029470524093149
327 => 0.002957278557399
328 => 0.0029710226041275
329 => 0.0029660963417432
330 => 0.0030834598977236
331 => 0.0030692463967047
401 => 0.0031034968446569
402 => 0.0030330410746314
403 => 0.0029533136831245
404 => 0.0029684672537652
405 => 0.0029670078430552
406 => 0.0029484278696831
407 => 0.0029316547004894
408 => 0.0029037320995932
409 => 0.0029920833405963
410 => 0.0029884964415599
411 => 0.0030465641676454
412 => 0.00303630013302
413 => 0.0029677543977562
414 => 0.0029702025221009
415 => 0.0029866673348477
416 => 0.0030436522397565
417 => 0.0030605692393616
418 => 0.0030527326111186
419 => 0.0030712813288952
420 => 0.0030859414791337
421 => 0.0030731224180535
422 => 0.0032546132899415
423 => 0.0031792456264342
424 => 0.0032159793012228
425 => 0.0032247400662126
426 => 0.0032022995509105
427 => 0.0032071660951449
428 => 0.0032145375836061
429 => 0.0032592958180572
430 => 0.0033767543761564
501 => 0.003428775971971
502 => 0.0035852855096798
503 => 0.0034244563026142
504 => 0.0034149133630444
505 => 0.0034431054569209
506 => 0.0035349931237731
507 => 0.0036094594471871
508 => 0.0036341642227288
509 => 0.003637429366648
510 => 0.0036837771679066
511 => 0.0037103428632527
512 => 0.0036781493257656
513 => 0.0036508686735492
514 => 0.0035531527635091
515 => 0.0035644636461678
516 => 0.0036423844112238
517 => 0.0037524520813756
518 => 0.0038469015929551
519 => 0.0038138286658978
520 => 0.0040661517534973
521 => 0.0040911685569854
522 => 0.0040877120436335
523 => 0.0041447040449789
524 => 0.0040315865285275
525 => 0.0039832265986958
526 => 0.0036567670602069
527 => 0.0037484888744108
528 => 0.0038818119179893
529 => 0.003864166113236
530 => 0.003767343355254
531 => 0.0038468281442108
601 => 0.0038205479872626
602 => 0.0037998197371127
603 => 0.0038947798694181
604 => 0.0037903673032011
605 => 0.0038807703227699
606 => 0.0037648275150735
607 => 0.0038139797402427
608 => 0.003786078560011
609 => 0.003804134043061
610 => 0.0036985820580851
611 => 0.0037555353470485
612 => 0.0036962126140192
613 => 0.0036961844873197
614 => 0.0036948749347001
615 => 0.0037646678670318
616 => 0.0037669438120495
617 => 0.0037153667296051
618 => 0.0037079336662394
619 => 0.0037354175973286
620 => 0.0037032411120761
621 => 0.0037182962870094
622 => 0.0037036971179879
623 => 0.0037004105375356
624 => 0.0036742225053263
625 => 0.0036629399809956
626 => 0.0036673641495005
627 => 0.0036522621815781
628 => 0.0036431626996428
629 => 0.0036930648187126
630 => 0.0036664041295393
701 => 0.0036889786857286
702 => 0.0036632521298148
703 => 0.0035740726784904
704 => 0.0035227846329782
705 => 0.003354332916366
706 => 0.0034021056142335
707 => 0.0034337789623441
708 => 0.0034233109209825
709 => 0.0034458003244215
710 => 0.0034471809911413
711 => 0.0034398694568309
712 => 0.0034314036367651
713 => 0.0034272829437463
714 => 0.0034579952134881
715 => 0.0034758247198008
716 => 0.0034369578065617
717 => 0.0034278518325957
718 => 0.0034671484277815
719 => 0.0034911193281439
720 => 0.0036681069883346
721 => 0.003654995170805
722 => 0.0036879032597399
723 => 0.0036841983139417
724 => 0.0037186912338151
725 => 0.0037750725800126
726 => 0.0036604335387207
727 => 0.0036803309123692
728 => 0.0036754525358481
729 => 0.0037287133715269
730 => 0.0037288796460423
731 => 0.0036969471144768
801 => 0.0037142582578846
802 => 0.0037045956525407
803 => 0.0037220572863766
804 => 0.003654820054488
805 => 0.0037367077451176
806 => 0.0037831327889783
807 => 0.0037837774007574
808 => 0.0038057825030954
809 => 0.0038281409615205
810 => 0.003871056075456
811 => 0.003826944082285
812 => 0.0037475909007864
813 => 0.0037533199441814
814 => 0.0037067952029029
815 => 0.0037075772922092
816 => 0.0037034024381989
817 => 0.0037159314893522
818 => 0.0036575694766465
819 => 0.0036712669243762
820 => 0.0036520904173425
821 => 0.003680289226388
822 => 0.0036499519692852
823 => 0.0036754501833472
824 => 0.0036864543672572
825 => 0.0037270600427882
826 => 0.0036439544779938
827 => 0.0034744966056258
828 => 0.0035101187048757
829 => 0.0034574308220296
830 => 0.0034623072861839
831 => 0.0034721585198592
901 => 0.0034402274483947
902 => 0.0034463188905664
903 => 0.0034461012613872
904 => 0.0034442258506937
905 => 0.0034359193457693
906 => 0.003423873270237
907 => 0.0034718611275712
908 => 0.003480015199637
909 => 0.0034981406917636
910 => 0.0035520698616936
911 => 0.0035466810658802
912 => 0.0035554704154308
913 => 0.0035362833147118
914 => 0.0034631973207564
915 => 0.0034671662418555
916 => 0.003417673732152
917 => 0.0034968750570162
918 => 0.0034781191378819
919 => 0.0034660270748016
920 => 0.0034627276433579
921 => 0.0035167904932691
922 => 0.0035329669452938
923 => 0.0035228868659533
924 => 0.003502212329143
925 => 0.0035419135516969
926 => 0.0035525359239922
927 => 0.0035549138814111
928 => 0.0036252568358222
929 => 0.0035588452711499
930 => 0.0035748311948407
1001 => 0.0036995488080932
1002 => 0.0035864471427274
1003 => 0.0036463596173398
1004 => 0.003643427213477
1005 => 0.003674076408161
1006 => 0.0036409130849299
1007 => 0.0036413241840672
1008 => 0.0036685385925904
1009 => 0.0036303208639641
1010 => 0.003620857616899
1011 => 0.0036077842088558
1012 => 0.0036363295170372
1013 => 0.0036534411382987
1014 => 0.0037913482385654
1015 => 0.0038804425146656
1016 => 0.0038765746971707
1017 => 0.0039119193088235
1018 => 0.0038959962375544
1019 => 0.0038445764401323
1020 => 0.0039323437643554
1021 => 0.0039045705106304
1022 => 0.003906860103923
1023 => 0.0039067748851463
1024 => 0.0039252416708935
1025 => 0.0039121562607356
1026 => 0.0038863635741245
1027 => 0.0039034859631912
1028 => 0.0039543333373532
1029 => 0.00411216514694
1030 => 0.0042004899185781
1031 => 0.0041068478847835
1101 => 0.0041714409057782
1102 => 0.0041327081100281
1103 => 0.0041256692088394
1104 => 0.0041662383994108
1105 => 0.0042068786009799
1106 => 0.0042042899958324
1107 => 0.0041747872963907
1108 => 0.0041581219700793
1109 => 0.0042843174042026
1110 => 0.0043772960503815
1111 => 0.0043709555300488
1112 => 0.0043989405247495
1113 => 0.0044811053347338
1114 => 0.0044886174552359
1115 => 0.0044876711007167
1116 => 0.0044690515262437
1117 => 0.0045499534521221
1118 => 0.0046174432620239
1119 => 0.0044647416327244
1120 => 0.0045228884141505
1121 => 0.004548992377705
1122 => 0.0045873207409
1123 => 0.0046519871141894
1124 => 0.0047222319474902
1125 => 0.0047321653371143
1126 => 0.0047251171218195
1127 => 0.0046787887659752
1128 => 0.004755651500768
1129 => 0.0048006758881567
1130 => 0.0048274868804819
1201 => 0.0048954750960949
1202 => 0.0045491535868971
1203 => 0.0043040100093911
1204 => 0.0042657272998473
1205 => 0.0043435766950977
1206 => 0.0043641049597879
1207 => 0.0043558300420316
1208 => 0.0040798986580696
1209 => 0.0042642745782161
1210 => 0.004462647565526
1211 => 0.004470267879868
1212 => 0.004569577545099
1213 => 0.0046019168429389
1214 => 0.0046818741402651
1215 => 0.0046768727895474
1216 => 0.0046963411190478
1217 => 0.0046918656872401
1218 => 0.0048399697435417
1219 => 0.0050033505113075
1220 => 0.0049976931548388
1221 => 0.004974205236439
1222 => 0.0050090888005479
1223 => 0.0051777152618294
1224 => 0.0051621908394586
1225 => 0.0051772714934247
1226 => 0.0053760915946464
1227 => 0.0056345860080642
1228 => 0.0055144894006168
1229 => 0.0057750644819098
1230 => 0.0059390826830921
1231 => 0.0062227352022385
]
'min_raw' => 0.0025406049389053
'max_raw' => 0.0062227352022385
'avg_raw' => 0.0043816700705719
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00254'
'max' => '$0.006222'
'avg' => '$0.004381'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011328385474517
'max_diff' => 0.0025245238167667
'year' => 2028
]
3 => [
'items' => [
101 => 0.0061872205098233
102 => 0.0062976443539886
103 => 0.00612364179826
104 => 0.0057240967585887
105 => 0.0056608672266637
106 => 0.0057874543508043
107 => 0.0060986564433128
108 => 0.0057776534894369
109 => 0.0058425919689309
110 => 0.005823889682468
111 => 0.005822893117102
112 => 0.0058609279637982
113 => 0.0058057564349011
114 => 0.0055809777010058
115 => 0.0056839924701206
116 => 0.0056442135205899
117 => 0.0056883512308114
118 => 0.0059265442491006
119 => 0.0058212334379026
120 => 0.0057102970530611
121 => 0.0058494358984069
122 => 0.0060266074618266
123 => 0.0060155203837957
124 => 0.0059940068183767
125 => 0.0061152776602302
126 => 0.0063155815619494
127 => 0.0063697229016979
128 => 0.0064096889318292
129 => 0.0064151995721527
130 => 0.0064719625923286
131 => 0.0061667335267198
201 => 0.0066511398926794
202 => 0.0067347834906248
203 => 0.006719061960883
204 => 0.0068120282997386
205 => 0.0067846752445189
206 => 0.0067450449590684
207 => 0.006892416380662
208 => 0.0067234669380654
209 => 0.006483664474443
210 => 0.0063521041001448
211 => 0.0065253534136933
212 => 0.0066311507239096
213 => 0.0067010760159899
214 => 0.0067222353671233
215 => 0.0061904275902073
216 => 0.005903812693861
217 => 0.0060875295563725
218 => 0.006311676808097
219 => 0.006165488377419
220 => 0.0061712186871302
221 => 0.005962792402627
222 => 0.0063301179094618
223 => 0.0062766016728097
224 => 0.006554244003229
225 => 0.0064879824328556
226 => 0.0067143889752993
227 => 0.0066547685449644
228 => 0.0069022496179514
301 => 0.0070009765182485
302 => 0.0071667543494623
303 => 0.0072887011969404
304 => 0.0073603107182511
305 => 0.0073560115511921
306 => 0.0076397641503466
307 => 0.0074724451561859
308 => 0.007262253065461
309 => 0.0072584513536873
310 => 0.0073673128159187
311 => 0.0075954565760721
312 => 0.0076546109337232
313 => 0.0076876701496642
314 => 0.0076370388096509
315 => 0.0074554260333498
316 => 0.0073770065573407
317 => 0.0074438222229314
318 => 0.0073621124054496
319 => 0.0075031664741488
320 => 0.0076968638379962
321 => 0.0076568660983241
322 => 0.0077905725452517
323 => 0.0079289446514933
324 => 0.008126822978099
325 => 0.0081785557000869
326 => 0.0082640679223137
327 => 0.0083520880882868
328 => 0.0083803577933874
329 => 0.0084343334319987
330 => 0.0084340489537401
331 => 0.0085967081736748
401 => 0.0087761263303995
402 => 0.0088438525310232
403 => 0.0089995851949129
404 => 0.0087328984655253
405 => 0.0089351834132422
406 => 0.0091176494996035
407 => 0.0089001059092498
408 => 0.0091999390673966
409 => 0.0092115809094909
410 => 0.0093873589032832
411 => 0.0092091742315858
412 => 0.0091033687423174
413 => 0.0094088252253551
414 => 0.009556625995708
415 => 0.0095121072008352
416 => 0.0091733169736887
417 => 0.0089761265300931
418 => 0.0084600411040075
419 => 0.0090713665844372
420 => 0.0093691253933458
421 => 0.0091725458503069
422 => 0.0092716891374666
423 => 0.0098125827648909
424 => 0.010018520037945
425 => 0.0099756865247601
426 => 0.0099829246833887
427 => 0.010094044697903
428 => 0.010586812037169
429 => 0.010291534425223
430 => 0.010517263095714
501 => 0.010636988768618
502 => 0.010748196645995
503 => 0.010475105246768
504 => 0.010119817348883
505 => 0.010007282757651
506 => 0.009152999888911
507 => 0.0091085307556307
508 => 0.0090835688835677
509 => 0.0089261878111379
510 => 0.0088025293985118
511 => 0.0087041916376491
512 => 0.0084461239870041
513 => 0.0085332142434414
514 => 0.008121908271218
515 => 0.0083850472564579
516 => 0.0077285929934593
517 => 0.0082753076103283
518 => 0.0079777557004299
519 => 0.0081775538052937
520 => 0.0081768567285279
521 => 0.0078089650714268
522 => 0.0075967728413138
523 => 0.0077319899889869
524 => 0.0078769535048431
525 => 0.0079004733475749
526 => 0.0080884223298173
527 => 0.0081408748508112
528 => 0.0079819412634254
529 => 0.0077149894379676
530 => 0.0077769962584986
531 => 0.0075955162750748
601 => 0.0072774795846515
602 => 0.0075058990881014
603 => 0.0075838915494759
604 => 0.0076183374635513
605 => 0.0073055849052806
606 => 0.0072073112612836
607 => 0.0071549911978153
608 => 0.0076746170100733
609 => 0.0077030832850578
610 => 0.0075574457975117
611 => 0.0082157410511332
612 => 0.0080667485608805
613 => 0.0082332096765391
614 => 0.0077713697894602
615 => 0.0077890126950965
616 => 0.0075703702912407
617 => 0.0076927954277092
618 => 0.0076062692871996
619 => 0.0076829046865114
620 => 0.0077288396288792
621 => 0.0079474461556679
622 => 0.0082778037457117
623 => 0.0079147936304509
624 => 0.0077566249248311
625 => 0.0078547519002231
626 => 0.0081160769667134
627 => 0.0085119978194302
628 => 0.0082776047059721
629 => 0.0083816243894716
630 => 0.0084043480628027
701 => 0.0082315152586434
702 => 0.0085183704114457
703 => 0.0086720984182396
704 => 0.0088297915436813
705 => 0.0089667120660413
706 => 0.0087668054416337
707 => 0.0089807341852388
708 => 0.0088083453813999
709 => 0.0086536948031295
710 => 0.0086539293442197
711 => 0.0085569147773862
712 => 0.0083689368295243
713 => 0.0083342708118394
714 => 0.0085146078136716
715 => 0.0086592210111634
716 => 0.0086711320467593
717 => 0.0087511973433852
718 => 0.0087985791611902
719 => 0.0092629853881372
720 => 0.0094497734143851
721 => 0.0096781742771647
722 => 0.0097671492851846
723 => 0.010034932160019
724 => 0.0098186757403284
725 => 0.0097718873036118
726 => 0.0091223336403748
727 => 0.0092286980163412
728 => 0.0093989976448991
729 => 0.0091251418185245
730 => 0.0092988403074371
731 => 0.0093331320685855
801 => 0.0091158363023365
802 => 0.0092319033598859
803 => 0.008923663666519
804 => 0.0082845225287052
805 => 0.0085190819582403
806 => 0.0086917966502283
807 => 0.0084453114891934
808 => 0.0088871266000554
809 => 0.008629027333205
810 => 0.0085472222565631
811 => 0.0082280714869675
812 => 0.0083786983649769
813 => 0.0085824233742538
814 => 0.0084565450040951
815 => 0.0087177615229068
816 => 0.0090877137774452
817 => 0.0093513637850669
818 => 0.0093716035588969
819 => 0.0092020942671748
820 => 0.0094737339889533
821 => 0.0094757125877706
822 => 0.0091693018719236
823 => 0.0089816270145694
824 => 0.0089389868921072
825 => 0.0090455102781061
826 => 0.0091748493340107
827 => 0.0093787809763455
828 => 0.0095020125967576
829 => 0.0098233353057911
830 => 0.0099102760178115
831 => 0.010005797501545
901 => 0.010133443661548
902 => 0.010286715604435
903 => 0.0099513653191747
904 => 0.0099646894111792
905 => 0.009652415868786
906 => 0.0093187068041829
907 => 0.0095719503867945
908 => 0.0099030326834771
909 => 0.0098270820388047
910 => 0.0098185360397482
911 => 0.0098329080396988
912 => 0.0097756437339319
913 => 0.0095166394012627
914 => 0.0093865690468491
915 => 0.009554392988529
916 => 0.0096435839445476
917 => 0.0097819113390637
918 => 0.0097648595679525
919 => 0.010121176080948
920 => 0.010259629903446
921 => 0.010224207490878
922 => 0.010230726067279
923 => 0.010481390099495
924 => 0.01076018005631
925 => 0.011021303640441
926 => 0.011286929765739
927 => 0.010966707104129
928 => 0.010804117785151
929 => 0.010971868460148
930 => 0.010882857590733
1001 => 0.011394340448731
1002 => 0.01142975441207
1003 => 0.011941200284036
1004 => 0.012426623318373
1005 => 0.012121737807763
1006 => 0.012409231111924
1007 => 0.012720178560046
1008 => 0.01332004663688
1009 => 0.013118032172215
1010 => 0.012963292258253
1011 => 0.012817063787256
1012 => 0.013121342022284
1013 => 0.013512791110685
1014 => 0.013597105495073
1015 => 0.013733727008357
1016 => 0.013590086192423
1017 => 0.013763085733698
1018 => 0.01437385013425
1019 => 0.014208816201855
1020 => 0.013974441487324
1021 => 0.014456581323123
1022 => 0.014631065855428
1023 => 0.015855689681401
1024 => 0.017401827848378
1025 => 0.016761716494759
1026 => 0.016364378721303
1027 => 0.016457762523043
1028 => 0.017022359841543
1029 => 0.017203690580822
1030 => 0.016710771123008
1031 => 0.016884878608624
1101 => 0.017844227972242
1102 => 0.01835888812621
1103 => 0.017659910509041
1104 => 0.015731458985125
1105 => 0.01395333860863
1106 => 0.014424976202281
1107 => 0.014371507135779
1108 => 0.015402208345716
1109 => 0.014204880197147
1110 => 0.01422504013245
1111 => 0.015277055151876
1112 => 0.014996395580797
1113 => 0.01454176301981
1114 => 0.013956657929452
1115 => 0.012875037054255
1116 => 0.011917015281863
1117 => 0.013795916596761
1118 => 0.013714894955502
1119 => 0.013597563612225
1120 => 0.013858671820111
1121 => 0.015126539160747
1122 => 0.015097310714859
1123 => 0.014911374254605
1124 => 0.015052405420939
1125 => 0.014517039574476
1126 => 0.014655015543163
1127 => 0.013953056945278
1128 => 0.014270371547902
1129 => 0.01454078758252
1130 => 0.014595077605047
1201 => 0.014717395797918
1202 => 0.01367220023221
1203 => 0.014141462355884
1204 => 0.014417109889627
1205 => 0.013171724304032
1206 => 0.014392492620819
1207 => 0.013654005702762
1208 => 0.013403352151072
1209 => 0.013740824137328
1210 => 0.013609310976082
1211 => 0.013496243682754
1212 => 0.013433150190334
1213 => 0.013680952371617
1214 => 0.013669392103672
1215 => 0.013263939638763
1216 => 0.012735043426646
1217 => 0.012912558355859
1218 => 0.012848065517864
1219 => 0.012614335153231
1220 => 0.012771841198282
1221 => 0.012078264287862
1222 => 0.010885001262476
1223 => 0.011673307367681
1224 => 0.011642958440143
1225 => 0.011627655134664
1226 => 0.012220045385545
1227 => 0.012163100731691
1228 => 0.012059745627343
1229 => 0.012612436955687
1230 => 0.012410697186094
1231 => 0.013032411620113
]
'min_raw' => 0.0055809777010058
'max_raw' => 0.01835888812621
'avg_raw' => 0.011969932913608
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00558'
'max' => '$0.018358'
'avg' => '$0.011969'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0030403727621005
'max_diff' => 0.012136152923971
'year' => 2029
]
4 => [
'items' => [
101 => 0.013441912956326
102 => 0.013338050171482
103 => 0.013723188157482
104 => 0.012916647941298
105 => 0.013184548248337
106 => 0.013239762130324
107 => 0.012605616830488
108 => 0.012172417581308
109 => 0.012143528130221
110 => 0.011392420330676
111 => 0.011793656054463
112 => 0.012146726887132
113 => 0.011977633357687
114 => 0.01192410339779
115 => 0.012197576353671
116 => 0.012218827544481
117 => 0.011734298141925
118 => 0.011835047147767
119 => 0.012255187250256
120 => 0.011824460695153
121 => 0.010987629357369
122 => 0.010780083615501
123 => 0.010752393187708
124 => 0.0101895126751
125 => 0.010793952814391
126 => 0.010530098495602
127 => 0.011363611127196
128 => 0.010887513182248
129 => 0.010866989551406
130 => 0.010835965073226
131 => 0.010351470563723
201 => 0.010457544070072
202 => 0.010810148560627
203 => 0.01093596181523
204 => 0.010922838462018
205 => 0.01080842060626
206 => 0.010860800514712
207 => 0.010692066579219
208 => 0.010632483114704
209 => 0.01044442131097
210 => 0.01016802241288
211 => 0.010206457374913
212 => 0.0096588388340912
213 => 0.009360467188736
214 => 0.0092778818497768
215 => 0.0091674452830416
216 => 0.00929035595385
217 => 0.0096572874995697
218 => 0.0092146902065617
219 => 0.0084558881922898
220 => 0.0085014934862833
221 => 0.0086039550415533
222 => 0.0084130186111586
223 => 0.0082323133038701
224 => 0.0083894219074725
225 => 0.0080679074909153
226 => 0.0086428085227409
227 => 0.0086272590609715
228 => 0.0088415466139948
301 => 0.0089755450185235
302 => 0.0086667220785835
303 => 0.0085890539443346
304 => 0.0086332972434226
305 => 0.0079020540626636
306 => 0.008781788445523
307 => 0.0087893964249978
308 => 0.0087242522857968
309 => 0.0091926836859176
310 => 0.01018122004759
311 => 0.0098092929045459
312 => 0.0096652714732018
313 => 0.0093914866269376
314 => 0.009756288678849
315 => 0.0097282775730608
316 => 0.0096016007297898
317 => 0.0095249861797236
318 => 0.0096661508373508
319 => 0.0095074943164435
320 => 0.009478995245699
321 => 0.0093063218842816
322 => 0.009244685350393
323 => 0.0091990521145229
324 => 0.0091488144056592
325 => 0.0092596262729556
326 => 0.0090085120031468
327 => 0.0087056928107928
328 => 0.0086805166714976
329 => 0.0087500302056004
330 => 0.0087192756414339
331 => 0.0086803694304765
401 => 0.0086060868782828
402 => 0.0085840488318426
403 => 0.0086556617914333
404 => 0.0085748149353503
405 => 0.0086941088754568
406 => 0.0086616675245827
407 => 0.0084804527757443
408 => 0.0082545921043987
409 => 0.0082525814706649
410 => 0.0082039201595092
411 => 0.0081419426634753
412 => 0.0081247019419317
413 => 0.0083761906590886
414 => 0.0088967647771794
415 => 0.0087945636215153
416 => 0.0088684144304783
417 => 0.0092316873177444
418 => 0.0093471608446094
419 => 0.009265200470381
420 => 0.0091530080550414
421 => 0.0091579439519302
422 => 0.0095413393980992
423 => 0.0095652513017944
424 => 0.0096256689681595
425 => 0.0097033227434691
426 => 0.0092784252441006
427 => 0.0091379313179203
428 => 0.0090713575013899
429 => 0.0088663359137854
430 => 0.0090874341187943
501 => 0.0089586096631047
502 => 0.0089759924834473
503 => 0.0089646718988952
504 => 0.0089708537035552
505 => 0.008642647826186
506 => 0.0087622287979063
507 => 0.0085634022393104
508 => 0.0082971957966792
509 => 0.0082963033793395
510 => 0.008361457029039
511 => 0.0083227010887352
512 => 0.0082184098498837
513 => 0.0082332239281218
514 => 0.0081034370146506
515 => 0.0082489824092852
516 => 0.0082531561304168
517 => 0.0081971132255713
518 => 0.0084213459873999
519 => 0.0085132143328776
520 => 0.0084763256923529
521 => 0.0085106261275208
522 => 0.0087988105409437
523 => 0.0088457971746991
524 => 0.0088666655336505
525 => 0.0088387046971834
526 => 0.0085158936095706
527 => 0.0085302116540049
528 => 0.0084251553441173
529 => 0.0083363938328234
530 => 0.0083399438277824
531 => 0.0083855787827762
601 => 0.008584869307689
602 => 0.0090042644685497
603 => 0.0090201802083305
604 => 0.0090394705492397
605 => 0.0089610070382134
606 => 0.0089373416924932
607 => 0.0089685623920422
608 => 0.0091260651637115
609 => 0.0095312050540304
610 => 0.0093880015584082
611 => 0.0092715748873722
612 => 0.0093737124662759
613 => 0.0093579891865845
614 => 0.0092252688826395
615 => 0.0092215438657464
616 => 0.008966811169228
617 => 0.008872642291308
618 => 0.0087939477284997
619 => 0.0087080153202867
620 => 0.0086570717082176
621 => 0.0087353442498133
622 => 0.0087532461061698
623 => 0.0085821018260007
624 => 0.0085587754930135
625 => 0.0086985356066054
626 => 0.0086370323913958
627 => 0.0087002899734452
628 => 0.0087149662750942
629 => 0.0087126030525048
630 => 0.0086483866322267
701 => 0.0086893162635508
702 => 0.0085925054837591
703 => 0.0084872383012445
704 => 0.0084200843971775
705 => 0.0083614837092062
706 => 0.0083939987767846
707 => 0.0082780884978842
708 => 0.008241006466851
709 => 0.008675450225404
710 => 0.0089963785009046
711 => 0.0089917120766773
712 => 0.0089633064193004
713 => 0.0089211013743154
714 => 0.0091229776017918
715 => 0.0090526479607816
716 => 0.0091038186508547
717 => 0.0091168437391054
718 => 0.0091562667583347
719 => 0.0091703570991861
720 => 0.0091277663027621
721 => 0.0089848263879352
722 => 0.008628633710506
723 => 0.008462825057639
724 => 0.0084081054404313
725 => 0.0084100943945895
726 => 0.0083552301598253
727 => 0.0083713901358059
728 => 0.0083496103796634
729 => 0.0083083647906185
730 => 0.0083914519778881
731 => 0.0084010270022102
801 => 0.0083816334598836
802 => 0.008386201341158
803 => 0.0082256310937834
804 => 0.0082378389009511
805 => 0.0081698642793485
806 => 0.0081571198572443
807 => 0.0079852859330604
808 => 0.0076808572286431
809 => 0.0078495402824997
810 => 0.0076457948738676
811 => 0.0075686334003719
812 => 0.0079339038148293
813 => 0.0078972407962421
814 => 0.0078344896454517
815 => 0.0077416676149471
816 => 0.0077072390209182
817 => 0.0074980617823674
818 => 0.0074857024751966
819 => 0.007589376362883
820 => 0.0075415344309164
821 => 0.0074743462392788
822 => 0.0072309974199251
823 => 0.0069573927769464
824 => 0.0069656511813005
825 => 0.0070526797276367
826 => 0.0073057269635075
827 => 0.0072068570306912
828 => 0.0071351257600311
829 => 0.0071216926492706
830 => 0.0072898361545611
831 => 0.0075277944417006
901 => 0.0076394391460099
902 => 0.0075288026347395
903 => 0.0074017093676848
904 => 0.007409444945957
905 => 0.0074609062826013
906 => 0.0074663141414585
907 => 0.0073835894900048
908 => 0.0074068759948266
909 => 0.0073715016646397
910 => 0.0071544094655786
911 => 0.0071504829561044
912 => 0.0070972050293702
913 => 0.0070955917949226
914 => 0.0070049527507461
915 => 0.0069922717219077
916 => 0.0068123023982984
917 => 0.0069307587520953
918 => 0.006851304449206
919 => 0.0067315480733766
920 => 0.0067109020290447
921 => 0.0067102813840212
922 => 0.0068332444049624
923 => 0.006929321857603
924 => 0.0068526865908221
925 => 0.0068352382260884
926 => 0.0070215411128006
927 => 0.0069978323722779
928 => 0.0069773007558903
929 => 0.0075064878870366
930 => 0.0070875949797475
1001 => 0.0069049337625982
1002 => 0.0066788558199516
1003 => 0.0067524679380613
1004 => 0.006767979092934
1005 => 0.0062243023944811
1006 => 0.0060037328256293
1007 => 0.0059280416615883
1008 => 0.0058844803265667
1009 => 0.0059043317739448
1010 => 0.0057057932917482
1011 => 0.0058392144353078
1012 => 0.0056672968917657
1013 => 0.0056384743561227
1014 => 0.005945884220473
1015 => 0.0059886585072349
1016 => 0.0058061701109792
1017 => 0.0059233572035631
1018 => 0.0058808635347697
1019 => 0.0056702439246164
1020 => 0.0056621998047215
1021 => 0.0055565182879839
1022 => 0.0053911471782635
1023 => 0.005315568143622
1024 => 0.0052762059261735
1025 => 0.0052924475442471
1026 => 0.0052842352851473
1027 => 0.0052306447395355
1028 => 0.005287307032491
1029 => 0.0051425582884658
1030 => 0.0050849181722751
1031 => 0.0050588834690323
1101 => 0.0049304106272831
1102 => 0.0051348680506381
1103 => 0.0051751487387258
1104 => 0.0052155087922123
1105 => 0.005566815502834
1106 => 0.0055492652123538
1107 => 0.0057079112909566
1108 => 0.0057017465960735
1109 => 0.0056564981645599
1110 => 0.0054656024750097
1111 => 0.0055416900944759
1112 => 0.0053075042284002
1113 => 0.0054829722023551
1114 => 0.0054028959467599
1115 => 0.0054558983397889
1116 => 0.0053605952580896
1117 => 0.0054133399184698
1118 => 0.0051847007841864
1119 => 0.004971200777632
1120 => 0.0050571194127232
1121 => 0.0051505227950551
1122 => 0.0053530451266899
1123 => 0.0052324244967412
1124 => 0.0052758042364417
1125 => 0.0051304893701256
1126 => 0.004830663293776
1127 => 0.0048323602768071
1128 => 0.0047862385670268
1129 => 0.0047463826758968
1130 => 0.0052462792270852
1201 => 0.0051841091887499
1202 => 0.0050850493692761
1203 => 0.0052176448741226
1204 => 0.0052527052301776
1205 => 0.0052537033492254
1206 => 0.0053504416067761
1207 => 0.0054020708321721
1208 => 0.0054111707069221
1209 => 0.0055633904453464
1210 => 0.0056144124938393
1211 => 0.0058245650906712
1212 => 0.0053976904531106
1213 => 0.0053888992508627
1214 => 0.0052195107647952
1215 => 0.0051120819090051
1216 => 0.0052268665104605
1217 => 0.0053285499976893
1218 => 0.005222670354185
1219 => 0.0052364960003854
1220 => 0.0050943612296655
1221 => 0.0051451677221353
1222 => 0.0051889291178239
1223 => 0.0051647666473006
1224 => 0.0051285942594504
1225 => 0.0053202131113198
1226 => 0.005309401224737
1227 => 0.0054878411048961
1228 => 0.0056269477518384
1229 => 0.0058762517314464
1230 => 0.005616090032215
1231 => 0.0056066087058459
]
'min_raw' => 0.0047463826758968
'max_raw' => 0.013723188157482
'avg_raw' => 0.0092347854166895
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004746'
'max' => '$0.013723'
'avg' => '$0.009234'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00083459502510898
'max_diff' => -0.0046356999687276
'year' => 2030
]
5 => [
'items' => [
101 => 0.0056992901919564
102 => 0.0056143983047867
103 => 0.0056680470471096
104 => 0.0058676080896519
105 => 0.0058718245000166
106 => 0.0058011941938692
107 => 0.0057968963333213
108 => 0.0058104616562278
109 => 0.0058899141761963
110 => 0.0058621510243899
111 => 0.0058942792465372
112 => 0.0059344560802972
113 => 0.006100644499353
114 => 0.0061407119645591
115 => 0.0060433687967072
116 => 0.0060521577948589
117 => 0.0060157487779526
118 => 0.0059805781238247
119 => 0.0060596366180427
120 => 0.0062041175701245
121 => 0.0062032187616202
122 => 0.0062367355341948
123 => 0.0062576162058408
124 => 0.0061679810775502
125 => 0.006109631905008
126 => 0.006132006690615
127 => 0.00616778446006
128 => 0.0061204044421847
129 => 0.0058279530232989
130 => 0.0059166641019199
131 => 0.0059018982406872
201 => 0.0058808698587019
202 => 0.0059700695342377
203 => 0.0059614660079282
204 => 0.0057037569926505
205 => 0.0057202546876737
206 => 0.0057047602721269
207 => 0.0057548258986178
208 => 0.0056116945966548
209 => 0.0056557208211346
210 => 0.0056833336564081
211 => 0.005699597828516
212 => 0.0057583551706169
213 => 0.005751460674696
214 => 0.0057579265990701
215 => 0.0058450482260425
216 => 0.006285679518737
217 => 0.0063096621078002
218 => 0.0061915630680331
219 => 0.0062387413050195
220 => 0.0061481694067519
221 => 0.0062089709288379
222 => 0.006250569786058
223 => 0.0060625925492808
224 => 0.006051461757281
225 => 0.005960516036571
226 => 0.0060093851154516
227 => 0.0059316308971414
228 => 0.0059507090625876
301 => 0.0058973648487954
302 => 0.0059933738128944
303 => 0.0061007267530418
304 => 0.0061278483452191
305 => 0.0060565031127802
306 => 0.0060048444626145
307 => 0.0059141488903407
308 => 0.0060649776483146
309 => 0.0061090845735693
310 => 0.0060647459734131
311 => 0.0060544717509394
312 => 0.0060350021179168
313 => 0.006058602325624
314 => 0.0061088443577819
315 => 0.0060851511432409
316 => 0.0061008009288659
317 => 0.0060411600840522
318 => 0.0061680107505073
319 => 0.0063694801371135
320 => 0.006370127894135
321 => 0.0063464345518788
322 => 0.0063367397467077
323 => 0.0063610505536949
324 => 0.0063742381692039
325 => 0.0064528548611607
326 => 0.0065372137038576
327 => 0.0069308796140772
328 => 0.0068203398017671
329 => 0.0071696236166037
330 => 0.0074458617653125
331 => 0.00752869350768
401 => 0.0074524922022366
402 => 0.0071918116526281
403 => 0.0071790214212221
404 => 0.0075685882188263
405 => 0.0074585177552134
406 => 0.007445425223808
407 => 0.007306142809835
408 => 0.0073884759669556
409 => 0.0073704684977388
410 => 0.0073420428266245
411 => 0.0074991287550332
412 => 0.0077931795898567
413 => 0.0077473490096582
414 => 0.0077131386075594
415 => 0.007563238584061
416 => 0.0076535118795894
417 => 0.0076213672881228
418 => 0.007759480852525
419 => 0.0076776654365632
420 => 0.0074576838631943
421 => 0.007492716653822
422 => 0.0074874215179948
423 => 0.0075963950381011
424 => 0.0075636838922542
425 => 0.0074810341417731
426 => 0.0077921745560706
427 => 0.0077719708282201
428 => 0.007800615095097
429 => 0.0078132251872296
430 => 0.0080026108745034
501 => 0.0080801961309134
502 => 0.0080978093424396
503 => 0.0081715093353701
504 => 0.0080959756194763
505 => 0.0083981643376779
506 => 0.0085991022020815
507 => 0.0088325018717541
508 => 0.0091735615210628
509 => 0.009301803104181
510 => 0.0092786374100366
511 => 0.0095372249436825
512 => 0.010001900993566
513 => 0.0093725617253148
514 => 0.010035257502939
515 => 0.0098254556709336
516 => 0.0093280193014235
517 => 0.0092959902636166
518 => 0.0096328599484039
519 => 0.010380004486756
520 => 0.010192853253942
521 => 0.010380310599128
522 => 0.010161631648586
523 => 0.01015077239552
524 => 0.010369689850601
525 => 0.010881202416966
526 => 0.010638201970448
527 => 0.01028980124421
528 => 0.010547054918748
529 => 0.01032419797816
530 => 0.009822038917283
531 => 0.010192710142922
601 => 0.0099448528504458
602 => 0.010017190785209
603 => 0.010538149948003
604 => 0.010475466763249
605 => 0.010556584608628
606 => 0.010413413734758
607 => 0.010279669562588
608 => 0.010030026133262
609 => 0.0099561190211109
610 => 0.0099765442880102
611 => 0.0099561088993631
612 => 0.0098164356949965
613 => 0.009786273279812
614 => 0.009736001266392
615 => 0.0097515826654587
616 => 0.0096570565726329
617 => 0.0098354468398826
618 => 0.0098685576454538
619 => 0.0099983752054443
620 => 0.010011853295176
621 => 0.010373393351912
622 => 0.010174263164096
623 => 0.010307856886156
624 => 0.010295907006222
625 => 0.0093388002559098
626 => 0.0094706811214785
627 => 0.0096758463618079
628 => 0.0095834196991344
629 => 0.0094527500226223
630 => 0.009347227252774
701 => 0.0091873494661966
702 => 0.0094123743806234
703 => 0.0097082582143627
704 => 0.010019357397482
705 => 0.010393122681974
706 => 0.010309702621583
707 => 0.010012370115474
708 => 0.010025708234497
709 => 0.010108159237937
710 => 0.010001377697018
711 => 0.0099698857359777
712 => 0.010103832726082
713 => 0.010104755145387
714 => 0.0099818900775793
715 => 0.0098453480387807
716 => 0.0098447759226526
717 => 0.009820479585688
718 => 0.010165953912957
719 => 0.010355929861561
720 => 0.010377710297907
721 => 0.010354463864657
722 => 0.010363410494197
723 => 0.010252867675539
724 => 0.010505535778537
725 => 0.010737409016134
726 => 0.010675262035208
727 => 0.010582094876088
728 => 0.01050788274631
729 => 0.010657780015928
730 => 0.010651105326472
731 => 0.010735383805685
801 => 0.010731560447052
802 => 0.010703220764366
803 => 0.010675263047308
804 => 0.010786112235248
805 => 0.010754189449305
806 => 0.010722217078458
807 => 0.010658091593998
808 => 0.010666807312348
809 => 0.010573656239851
810 => 0.010530560291411
811 => 0.0098825006285094
812 => 0.0097093179106218
813 => 0.0097638047191286
814 => 0.0097817431912383
815 => 0.009706373850474
816 => 0.009814434124335
817 => 0.0097975930451179
818 => 0.0098631118326498
819 => 0.0098221785386949
820 => 0.0098238584553569
821 => 0.0099442345449797
822 => 0.0099791802359137
823 => 0.0099614065754584
824 => 0.0099738546379959
825 => 0.010260714985174
826 => 0.010219932617082
827 => 0.010198267796857
828 => 0.010204269100119
829 => 0.010277568069178
830 => 0.01029808777854
831 => 0.010211144328082
901 => 0.010252147361932
902 => 0.010426733076005
903 => 0.010487828195235
904 => 0.010682814488497
905 => 0.010599980845515
906 => 0.010752025582165
907 => 0.011219359266759
908 => 0.011592697751043
909 => 0.01124936025203
910 => 0.011934948834049
911 => 0.012468777886992
912 => 0.012448288638801
913 => 0.012355203195732
914 => 0.011747453011536
915 => 0.011188192230994
916 => 0.011656037621385
917 => 0.011657230255498
918 => 0.011617041921552
919 => 0.011367435630957
920 => 0.011608356163692
921 => 0.011627479560686
922 => 0.011616775543691
923 => 0.011425402985925
924 => 0.011133212461777
925 => 0.01119030579079
926 => 0.011283825828386
927 => 0.011106772886893
928 => 0.01105019374407
929 => 0.0111553851352
930 => 0.011494333714919
1001 => 0.011430257449319
1002 => 0.011428584159072
1003 => 0.011702729595875
1004 => 0.011506500627412
1005 => 0.011191025920507
1006 => 0.011111364396413
1007 => 0.010828619652313
1008 => 0.011023912454165
1009 => 0.011030940694431
1010 => 0.010923980822701
1011 => 0.011199705124608
1012 => 0.011197164276626
1013 => 0.011458923465141
1014 => 0.01195930872132
1015 => 0.011811320178605
1016 => 0.011639225604535
1017 => 0.011657937056401
1018 => 0.011863155499576
1019 => 0.011739075744151
1020 => 0.011783695689317
1021 => 0.011863087961945
1022 => 0.011910987291221
1023 => 0.011651045080047
1024 => 0.011590440116149
1025 => 0.011466463629466
1026 => 0.011434120478221
1027 => 0.01153509673977
1028 => 0.011508493062396
1029 => 0.011030349998051
1030 => 0.010980381387465
1031 => 0.010981913853413
1101 => 0.010856265406214
1102 => 0.010664621365153
1103 => 0.011168250462589
1104 => 0.01112780199778
1105 => 0.011083150023094
1106 => 0.011088619635213
1107 => 0.011307227956836
1108 => 0.011180424090309
1109 => 0.011517552952214
1110 => 0.011448249393228
1111 => 0.01137716845946
1112 => 0.011367342909235
1113 => 0.011339982814074
1114 => 0.011246154867526
1115 => 0.011132851983884
1116 => 0.011058039605975
1117 => 0.01020045701075
1118 => 0.010359619352095
1119 => 0.010542721117709
1120 => 0.010605927113465
1121 => 0.010497808884003
1122 => 0.011250424034214
1123 => 0.011387934074537
1124 => 0.010971407192839
1125 => 0.010893492019954
1126 => 0.011255532139976
1127 => 0.011037177689998
1128 => 0.011135502685453
1129 => 0.010922977826176
1130 => 0.011354811932587
1201 => 0.011351522080216
1202 => 0.011183528859407
1203 => 0.011325515579267
1204 => 0.01130084189257
1205 => 0.011111177960025
1206 => 0.011360824617546
1207 => 0.011360948439174
1208 => 0.011199258616632
1209 => 0.011010440302357
1210 => 0.010976684047455
1211 => 0.0109512532439
1212 => 0.011129248266716
1213 => 0.011288838047596
1214 => 0.011585795064153
1215 => 0.01166045711364
1216 => 0.011951868063322
1217 => 0.011778347031328
1218 => 0.011855266657337
1219 => 0.011938773792316
1220 => 0.011978810183698
1221 => 0.011913573032412
1222 => 0.012366254186801
1223 => 0.012404474346023
1224 => 0.012417289234807
1225 => 0.01226464769653
1226 => 0.012400229108717
1227 => 0.012336795055939
1228 => 0.012501832838781
1229 => 0.012527712870438
1230 => 0.012505793404333
1231 => 0.01251400813487
]
'min_raw' => 0.0056116945966548
'max_raw' => 0.012527712870438
'avg_raw' => 0.0090697037335465
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005611'
'max' => '$0.012527'
'avg' => '$0.009069'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00086531192075801
'max_diff' => -0.001195475287044
'year' => 2031
]
6 => [
'items' => [
101 => 0.012127724628027
102 => 0.012107693790389
103 => 0.011834571897877
104 => 0.011945871087891
105 => 0.011737802586869
106 => 0.011803783251886
107 => 0.011832866900339
108 => 0.011817675252869
109 => 0.011952163777102
110 => 0.011837821057314
111 => 0.01153605182011
112 => 0.011234200366078
113 => 0.011230410866956
114 => 0.01115093870723
115 => 0.0110934948918
116 => 0.011104560608581
117 => 0.01114355763784
118 => 0.011091228313567
119 => 0.011102395428065
120 => 0.011287843934821
121 => 0.011325034310292
122 => 0.011198646883222
123 => 0.010691183125915
124 => 0.010566650246996
125 => 0.010656162010769
126 => 0.010613381152981
127 => 0.0085658269308918
128 => 0.0090468694235706
129 => 0.0087610503090804
130 => 0.0088927689069426
131 => 0.008601021603549
201 => 0.0087402587085147
202 => 0.0087145466993525
203 => 0.0094880487924977
204 => 0.0094759716212306
205 => 0.0094817523240065
206 => 0.0092058243189723
207 => 0.0096453851232535
208 => 0.0098619285815377
209 => 0.0098218521505269
210 => 0.0098319385247995
211 => 0.009658621197039
212 => 0.0094834304145921
213 => 0.0092891168751904
214 => 0.0096501274135195
215 => 0.0096099892043127
216 => 0.0097020518149612
217 => 0.0099361929546338
218 => 0.0099706711268663
219 => 0.01001701013999
220 => 0.010000400902421
221 => 0.01039610032547
222 => 0.01034817851443
223 => 0.010463656290991
224 => 0.010226109743285
225 => 0.0099573032764311
226 => 0.010008394597835
227 => 0.010003474092733
228 => 0.0099408304152966
229 => 0.009884278504295
301 => 0.0097901355058796
302 => 0.010088017883408
303 => 0.010075924402878
304 => 0.010271703795534
305 => 0.010237097886183
306 => 0.01000599115403
307 => 0.010014245176181
308 => 0.010069757441894
309 => 0.010261886027352
310 => 0.010318922872628
311 => 0.010292501133371
312 => 0.010355039430385
313 => 0.010404467150453
314 => 0.010361246791023
315 => 0.010973155936881
316 => 0.010719048597364
317 => 0.010842898746577
318 => 0.010872436277397
319 => 0.01079677651331
320 => 0.010813184406967
321 => 0.010838037894975
322 => 0.010988943407347
323 => 0.011384963136673
324 => 0.011560357578994
325 => 0.012088040412526
326 => 0.011545793512168
327 => 0.011513618825141
328 => 0.011608670437955
329 => 0.011918476122139
330 => 0.012169544530602
331 => 0.012252838406173
401 => 0.012263847066862
402 => 0.012420111914706
403 => 0.012509680011323
404 => 0.012401137252004
405 => 0.012309158628382
406 => 0.011979702615375
407 => 0.012017838045959
408 => 0.0122805533456
409 => 0.012651654180196
410 => 0.01297009730274
411 => 0.012858589620089
412 => 0.013709314526566
413 => 0.013793660426144
414 => 0.013782006550051
415 => 0.013974159061642
416 => 0.013592775457313
417 => 0.013429726577503
418 => 0.012329045450811
419 => 0.012638291951212
420 => 0.013087799900954
421 => 0.013028305838238
422 => 0.012701861149753
423 => 0.012969849665171
424 => 0.012881244281198
425 => 0.012811357538618
426 => 0.01313152225459
427 => 0.012779487997737
428 => 0.01308428808995
429 => 0.012693378818933
430 => 0.01285909897779
501 => 0.012765028200641
502 => 0.012825903522337
503 => 0.012470027635587
504 => 0.012662049625679
505 => 0.01246203888949
506 => 0.012461944058358
507 => 0.012457528810271
508 => 0.012692840554415
509 => 0.012700514061943
510 => 0.012526618327485
511 => 0.012501557235388
512 => 0.012594221227922
513 => 0.012485735961403
514 => 0.012536495534809
515 => 0.012487273417171
516 => 0.012476192481715
517 => 0.012387897702731
518 => 0.012349857884229
519 => 0.012364774277229
520 => 0.012313856937993
521 => 0.012283177399343
522 => 0.012451425877841
523 => 0.012361537502904
524 => 0.012437649195201
525 => 0.012350910315767
526 => 0.012050235569316
527 => 0.011877314343055
528 => 0.011309367619573
529 => 0.011470436605817
530 => 0.011577225510334
531 => 0.011541931778029
601 => 0.011617756371883
602 => 0.011622411386124
603 => 0.011597760037722
604 => 0.011569216934305
605 => 0.011555323730094
606 => 0.011658872291791
607 => 0.011718985717141
608 => 0.011587943205554
609 => 0.011557241778569
610 => 0.011689732992838
611 => 0.011770552557005
612 => 0.012367278810222
613 => 0.012323071401983
614 => 0.012434023321396
615 => 0.012421531837966
616 => 0.012537827125539
617 => 0.012727920770663
618 => 0.012341407239105
619 => 0.012408492623552
620 => 0.012392044836513
621 => 0.012571617462557
622 => 0.012572178068695
623 => 0.012464515309063
624 => 0.012522881037688
625 => 0.01249030288915
626 => 0.01254917600676
627 => 0.012322480985094
628 => 0.012598571051267
629 => 0.012755096327937
630 => 0.012757269681555
701 => 0.012831461420435
702 => 0.012906844524033
703 => 0.013051535826904
704 => 0.012902809162127
705 => 0.012635264370443
706 => 0.012654580240238
707 => 0.012497718826764
708 => 0.012500355695464
709 => 0.012486279883689
710 => 0.012528522454403
711 => 0.01233175085386
712 => 0.012377932755206
713 => 0.012313277822881
714 => 0.012408352076356
715 => 0.012306067895954
716 => 0.012392036904892
717 => 0.012429138279232
718 => 0.012566043149283
719 => 0.012285846935333
720 => 0.011714507887474
721 => 0.01183461028215
722 => 0.011656969406584
723 => 0.011673410745944
724 => 0.011706624868072
725 => 0.011598967031273
726 => 0.011619504753846
727 => 0.011618771001874
728 => 0.011612447923784
729 => 0.011584441962489
730 => 0.011543827777802
731 => 0.011705622189209
801 => 0.011733114212479
802 => 0.011794225574665
803 => 0.011976051536298
804 => 0.011957882834979
805 => 0.011987516740642
806 => 0.011922826090968
807 => 0.011676411559646
808 => 0.011689793054232
809 => 0.01152292560231
810 => 0.01178995839875
811 => 0.011726721507892
812 => 0.011685952272976
813 => 0.011674828009505
814 => 0.011857104682528
815 => 0.011911644719933
816 => 0.011877659028668
817 => 0.011807953384362
818 => 0.011941808828053
819 => 0.011977622897877
820 => 0.011985640347339
821 => 0.012222806529324
822 => 0.011998895302324
823 => 0.012052792960149
824 => 0.012473287100736
825 => 0.012091956939449
826 => 0.01229395603056
827 => 0.012284069226202
828 => 0.012387405125938
829 => 0.012275592666275
830 => 0.012276978715719
831 => 0.012368733994104
901 => 0.012239880253764
902 => 0.012207974255581
903 => 0.012163896347607
904 => 0.01226013884711
905 => 0.012317831872889
906 => 0.012782795289804
907 => 0.01308318286204
908 => 0.013070142245313
909 => 0.013189309071183
910 => 0.013135623324685
911 => 0.012962257887662
912 => 0.013258171548999
913 => 0.013164532084998
914 => 0.013172251608638
915 => 0.013171964287583
916 => 0.013234226345039
917 => 0.013190107971098
918 => 0.013103146127401
919 => 0.013160875457586
920 => 0.013332310929623
921 => 0.01386445189511
922 => 0.014162245029327
923 => 0.01384652437451
924 => 0.014064304254535
925 => 0.013933713929426
926 => 0.013909981782628
927 => 0.01404676364109
928 => 0.014183784918088
929 => 0.014175057255103
930 => 0.014075586844122
1001 => 0.014019398532928
1002 => 0.014444875249758
1003 => 0.014758359246912
1004 => 0.014736981739929
1005 => 0.014831335103413
1006 => 0.015108359496839
1007 => 0.015133687135591
1008 => 0.015130496435257
1009 => 0.015067719239944
1010 => 0.015340485731435
1011 => 0.015568032337507
1012 => 0.015053188133037
1013 => 0.015249234066294
1014 => 0.015337245401938
1015 => 0.015466472154451
1016 => 0.015684499346858
1017 => 0.015921334706669
1018 => 0.015954825823314
1019 => 0.015931062273357
1020 => 0.015774862987085
1021 => 0.016034011063824
1022 => 0.016185813929408
1023 => 0.016276209061916
1024 => 0.01650543607764
1025 => 0.015337788929984
1026 => 0.014511270243045
1027 => 0.014382197415005
1028 => 0.014644672086363
1029 => 0.014713884564003
1030 => 0.014685985101051
1031 => 0.013755663175109
1101 => 0.014377299462599
1102 => 0.015046127839274
1103 => 0.015071820261112
1104 => 0.015406649731017
1105 => 0.015515683931542
1106 => 0.015785265541918
1107 => 0.01576840313879
1108 => 0.015834041970936
1109 => 0.015818952740132
1110 => 0.016318295906247
1111 => 0.016869145571651
1112 => 0.016850071399332
1113 => 0.016770880242573
1114 => 0.016888492614459
1115 => 0.017457028501793
1116 => 0.01740468682789
1117 => 0.017455532305634
1118 => 0.018125868158079
1119 => 0.018997400120421
1120 => 0.018592486023535
1121 => 0.019471033102885
1122 => 0.020024031919557
1123 => 0.020980386191845
1124 => 0.02086064592681
1125 => 0.02123294762696
1126 => 0.020646285861851
1127 => 0.019299191865255
1128 => 0.019086009083825
1129 => 0.019512806410896
1130 => 0.020562045993225
1201 => 0.019479762122522
1202 => 0.019698706739995
1203 => 0.019635650675434
1204 => 0.019632290685724
1205 => 0.019760527826869
1206 => 0.019574513165239
1207 => 0.018816655970361
1208 => 0.019163977456693
1209 => 0.019029859951073
1210 => 0.019178673322681
1211 => 0.019981757713948
1212 => 0.019626694961428
1213 => 0.019252665194604
1214 => 0.019721781526052
1215 => 0.020319127821845
1216 => 0.020281746964189
1217 => 0.020209212476349
1218 => 0.020618085586518
1219 => 0.021293424175936
1220 => 0.021475965482926
1221 => 0.021610713743853
1222 => 0.021629293252444
1223 => 0.021820673738034
1224 => 0.020791572632921
1225 => 0.022424782515927
1226 => 0.022706792746209
1227 => 0.022653786511043
1228 => 0.022967229013197
1229 => 0.022875006277794
1230 => 0.0227413900035
1231 => 0.023238263040547
]
'min_raw' => 0.0085658269308918
'max_raw' => 0.023238263040547
'avg_raw' => 0.015902044985719
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008565'
'max' => '$0.023238'
'avg' => '$0.015902'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.002954132334237
'max_diff' => 0.010710550170108
'year' => 2032
]
7 => [
'items' => [
101 => 0.022668638199159
102 => 0.021860127450582
103 => 0.021416562463384
104 => 0.022000684619894
105 => 0.02235738763782
106 => 0.022593145642097
107 => 0.022664485871742
108 => 0.020871458822236
109 => 0.019905116688392
110 => 0.020524530917051
111 => 0.021280259025702
112 => 0.02078737452512
113 => 0.020806694664389
114 => 0.020103970894328
115 => 0.021342434486469
116 => 0.021162000758213
117 => 0.02209809125959
118 => 0.021874685748841
119 => 0.02263803121389
120 => 0.02243701677045
121 => 0.023271416486602
122 => 0.023604281123846
123 => 0.024163212656022
124 => 0.024574364966352
125 => 0.024815801467068
126 => 0.02480130652517
127 => 0.025757998224193
128 => 0.025193870553541
129 => 0.024485193244519
130 => 0.024472375507847
131 => 0.024839409528225
201 => 0.025608612144071
202 => 0.025808055190917
203 => 0.025919516645583
204 => 0.025748809547761
205 => 0.025136489392662
206 => 0.024872092654225
207 => 0.025097366335684
208 => 0.024821875981247
209 => 0.025297449621947
210 => 0.025950513807677
211 => 0.025815658635819
212 => 0.026266459256722
213 => 0.026732990473747
214 => 0.027400151067322
215 => 0.027574571551367
216 => 0.027862881978878
217 => 0.028159648113828
218 => 0.028254961398302
219 => 0.028436944032339
220 => 0.028435984894029
221 => 0.028984401810543
222 => 0.029589322652516
223 => 0.029817666266411
224 => 0.030342729815622
225 => 0.029443576888019
226 => 0.03012559471233
227 => 0.030740791861873
228 => 0.030007328458587
301 => 0.031018236884962
302 => 0.03105748816839
303 => 0.031650135946888
304 => 0.031049373885804
305 => 0.030692643291632
306 => 0.031722511150485
307 => 0.03222083176685
308 => 0.032070733541733
309 => 0.03092847863733
310 => 0.030263637289351
311 => 0.028523619243369
312 => 0.03058474578202
313 => 0.031588660395111
314 => 0.03092587874101
315 => 0.031260147255632
316 => 0.033083807884481
317 => 0.033778139778664
318 => 0.03363372359842
319 => 0.033658127555589
320 => 0.034032776442675
321 => 0.035694175930927
322 => 0.034698626846628
323 => 0.035459686819062
324 => 0.035863350284235
325 => 0.036238295407097
326 => 0.035317548687971
327 => 0.034119670734843
328 => 0.033740252503592
329 => 0.030859978167509
330 => 0.030710047379918
331 => 0.030625886685476
401 => 0.030095265411783
402 => 0.02967834244006
403 => 0.029346789813588
404 => 0.02847669671173
405 => 0.028770327591756
406 => 0.027383580789939
407 => 0.028270772250452
408 => 0.026057490870579
409 => 0.027900777371749
410 => 0.026897560333115
411 => 0.027571193593122
412 => 0.027568843350138
413 => 0.026328470942846
414 => 0.025613050024232
415 => 0.026068944078172
416 => 0.02655769869291
417 => 0.026636997484783
418 => 0.027270680600592
419 => 0.027447527937242
420 => 0.026911672250982
421 => 0.026011625533469
422 => 0.026220685858068
423 => 0.025608813423427
424 => 0.024536530517052
425 => 0.025306662820673
426 => 0.025569619849457
427 => 0.025685756653699
428 => 0.024631289567804
429 => 0.024299953115821
430 => 0.024123552368967
501 => 0.025875507074111
502 => 0.025971483107673
503 => 0.025480456150326
504 => 0.027699944558618
505 => 0.027197605975408
506 => 0.027758841248795
507 => 0.026201715824877
508 => 0.026261200113018
509 => 0.025524031983293
510 => 0.025936796878347
511 => 0.025645067954557
512 => 0.025903449553849
513 => 0.026058322419117
514 => 0.026795369586806
515 => 0.027909193266469
516 => 0.02668527931831
517 => 0.026152002484327
518 => 0.026482844432867
519 => 0.027363920139673
520 => 0.028698794936919
521 => 0.02790852219009
522 => 0.028259231815431
523 => 0.028335846266583
524 => 0.027753128400559
525 => 0.028720280575819
526 => 0.029238585283671
527 => 0.029770258665881
528 => 0.030231895766503
529 => 0.029557896625278
530 => 0.03027917232037
531 => 0.029697951432426
601 => 0.029176536210428
602 => 0.029177326982089
603 => 0.028850235596669
604 => 0.028216454821252
605 => 0.028099575922323
606 => 0.028707594714728
607 => 0.029195168206642
608 => 0.029235327094756
609 => 0.02950527283231
610 => 0.029665023939133
611 => 0.031230801957092
612 => 0.03186057082871
613 => 0.032630640284011
614 => 0.032930625735587
615 => 0.033833474394093
616 => 0.033104350776566
617 => 0.032946600295512
618 => 0.03075658476952
619 => 0.031115199689214
620 => 0.031689376776837
621 => 0.030766052738212
622 => 0.031351689320822
623 => 0.031467306387708
624 => 0.030734678540694
625 => 0.031126006728765
626 => 0.03008675508197
627 => 0.027931846112422
628 => 0.028722679605516
629 => 0.029304999248108
630 => 0.028473957318634
701 => 0.029963567811452
702 => 0.02909336811335
703 => 0.028817556586004
704 => 0.027741517483917
705 => 0.028249366519559
706 => 0.028936239611962
707 => 0.028511831898424
708 => 0.029392541629153
709 => 0.030639861484571
710 => 0.031528775892723
711 => 0.031597015703287
712 => 0.031025503291485
713 => 0.031941355578741
714 => 0.031948026562795
715 => 0.030914941441404
716 => 0.030282182556794
717 => 0.030138418406874
718 => 0.030497569439995
719 => 0.030933645097142
720 => 0.031621214867326
721 => 0.032036698879302
722 => 0.033120060826844
723 => 0.033413187507428
724 => 0.033735244858932
725 => 0.034165612799351
726 => 0.0346823798559
727 => 0.033551722955737
728 => 0.033596646062189
729 => 0.032543794011767
730 => 0.031418670601635
731 => 0.032272499021312
801 => 0.033388766100006
802 => 0.033132693198788
803 => 0.033103879766306
804 => 0.033152335967561
805 => 0.032959265362602
806 => 0.032086014171902
807 => 0.031647472890775
808 => 0.032213303027242
809 => 0.032514016562572
810 => 0.032980397030894
811 => 0.032922905794076
812 => 0.034124251794866
813 => 0.034591058523955
814 => 0.034471629386868
815 => 0.034493607222315
816 => 0.035338738507736
817 => 0.036278698311629
818 => 0.037159094706596
819 => 0.038054671733461
820 => 0.036975018672609
821 => 0.036426837432051
822 => 0.036992420544782
823 => 0.036692314184009
824 => 0.038416814350342
825 => 0.038536215000265
826 => 0.040260590465608
827 => 0.04189722811703
828 => 0.040869285331581
829 => 0.041838589078699
830 => 0.042886970109702
831 => 0.044909467212198
901 => 0.044228361340383
902 => 0.043706644916863
903 => 0.043213625417552
904 => 0.044239520730977
905 => 0.045559318662621
906 => 0.045843590496229
907 => 0.046304219466874
908 => 0.045819924427272
909 => 0.046403204459124
910 => 0.048462439277793
911 => 0.04790601585242
912 => 0.047115805138861
913 => 0.048741373257187
914 => 0.049329660039973
915 => 0.053458564769744
916 => 0.058671477547628
917 => 0.056513297427754
918 => 0.05517364538331
919 => 0.055488495390726
920 => 0.057392074668975
921 => 0.058003443916563
922 => 0.056341531550002
923 => 0.056928547093555
924 => 0.060163060452625
925 => 0.061898273094153
926 => 0.059541621256808
927 => 0.053039712303742
928 => 0.047044655309988
929 => 0.048634814385666
930 => 0.048454539694866
1001 => 0.051929620785427
1002 => 0.047892745337747
1003 => 0.047960715967141
1004 => 0.051507658054481
1005 => 0.05056139471556
1006 => 0.049028569294761
1007 => 0.047055846631886
1008 => 0.043409086334801
1009 => 0.040179049042239
1010 => 0.046513896006116
1011 => 0.046240725885862
1012 => 0.04584513507019
1013 => 0.046725479623071
1014 => 0.051000182881696
1015 => 0.05090163713572
1016 => 0.050274739378306
1017 => 0.050750235802081
1018 => 0.048945212472682
1019 => 0.049410408084285
1020 => 0.047043705662331
1021 => 0.048113553999278
1022 => 0.049025280539835
1023 => 0.049208323141194
1024 => 0.049620727468442
1025 => 0.046096777645434
1026 => 0.047678927658234
1027 => 0.048608292563345
1028 => 0.044409388111468
1029 => 0.048525293722839
1030 => 0.046035433519097
1031 => 0.045190337569501
1101 => 0.046328147932706
1102 => 0.045884742127608
1103 => 0.045503527854048
1104 => 0.045290803739308
1105 => 0.046126286094499
1106 => 0.046087309844012
1107 => 0.044720298550783
1108 => 0.042937088045274
1109 => 0.043535592022813
1110 => 0.043318149916768
1111 => 0.042530111673874
1112 => 0.043061154301484
1113 => 0.040722711324011
1114 => 0.036699541722957
1115 => 0.039357370794431
1116 => 0.039255047266341
1117 => 0.039203451103475
1118 => 0.041200736193688
1119 => 0.041008743317471
1120 => 0.040660274367137
1121 => 0.042523711768328
1122 => 0.041843532050124
1123 => 0.043939685671134
1124 => 0.045320348016647
1125 => 0.044970167386077
1126 => 0.046268686995352
1127 => 0.043549380345647
1128 => 0.044452624935033
1129 => 0.044638782393062
1130 => 0.042500717240051
1201 => 0.041040155726436
1202 => 0.040942752925098
1203 => 0.038410340538263
1204 => 0.039763134794392
1205 => 0.040953537757355
1206 => 0.040383427117097
1207 => 0.040202947119963
1208 => 0.041124980283988
1209 => 0.041196630157513
1210 => 0.039563005448034
1211 => 0.039902687755301
1212 => 0.04131921944409
1213 => 0.03986699479119
1214 => 0.037045559510155
1215 => 0.036345804551064
1216 => 0.036252444340478
1217 => 0.034354653393157
1218 => 0.036392565523439
1219 => 0.035502962265921
1220 => 0.038313208297336
1221 => 0.036708010835844
1222 => 0.036638813981546
1223 => 0.036534212787304
1224 => 0.034900705722188
1225 => 0.035258339954659
1226 => 0.036447170612623
1227 => 0.036871358784521
1228 => 0.03682711248292
1229 => 0.036441344693835
1230 => 0.036617947212227
1231 => 0.036049048968088
]
'min_raw' => 0.019905116688392
'max_raw' => 0.061898273094153
'avg_raw' => 0.040901694891272
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0199051'
'max' => '$0.061898'
'avg' => '$0.0409016'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0113392897575
'max_diff' => 0.038660010053607
'year' => 2033
]
8 => [
'items' => [
101 => 0.03584815915749
102 => 0.035214095656145
103 => 0.034282197473681
104 => 0.034411783631616
105 => 0.032565449487731
106 => 0.031559468653773
107 => 0.031281026417548
108 => 0.030908681822365
109 => 0.031323083730345
110 => 0.032560219055081
111 => 0.031067971380548
112 => 0.028509617411566
113 => 0.028663378844325
114 => 0.029008835131555
115 => 0.028365079625723
116 => 0.027755819065758
117 => 0.028285521691776
118 => 0.027201513388934
119 => 0.029139832356042
120 => 0.029087406260058
121 => 0.029809891706155
122 => 0.030261676682494
123 => 0.029220458579157
124 => 0.028958595041921
125 => 0.029107764413765
126 => 0.026642326976067
127 => 0.029608412868971
128 => 0.029634063702942
129 => 0.029414425689407
130 => 0.030993774859751
131 => 0.034326694220534
201 => 0.033072715890637
202 => 0.032587137579605
203 => 0.031664052855377
204 => 0.032894008443063
205 => 0.032799567044225
206 => 0.032372467222842
207 => 0.032114155918237
208 => 0.032590102417228
209 => 0.032055180879945
210 => 0.031959094273188
211 => 0.0313769139795
212 => 0.03116910210217
213 => 0.031015246461423
214 => 0.030845866518504
215 => 0.031219476465731
216 => 0.030372827172832
217 => 0.02935185112365
218 => 0.029266968012274
219 => 0.029501337745782
220 => 0.029397646585479
221 => 0.029266471578892
222 => 0.029016022767929
223 => 0.028941719955708
224 => 0.029183168048825
225 => 0.028910587228994
226 => 0.0293127950769
227 => 0.029203416797445
228 => 0.028592438619727
301 => 0.027830933597197
302 => 0.027824154605185
303 => 0.0276600895972
304 => 0.027451128142191
305 => 0.027392999845798
306 => 0.028240911614074
307 => 0.029996063598541
308 => 0.029651485266763
309 => 0.029900478425281
310 => 0.031125278327601
311 => 0.031514605385531
312 => 0.031238270261529
313 => 0.030860005700187
314 => 0.030876647421161
315 => 0.032169291935735
316 => 0.032249912588519
317 => 0.032453614968896
318 => 0.032715430093966
319 => 0.031282858509449
320 => 0.030809173428359
321 => 0.030584715157892
322 => 0.029893470561133
323 => 0.030638918595904
324 => 0.03020457794931
325 => 0.030263185341725
326 => 0.03022501720053
327 => 0.030245859586541
328 => 0.029139290556388
329 => 0.02954246615142
330 => 0.028872108527487
331 => 0.027974574920215
401 => 0.027971566072848
402 => 0.028191236151693
403 => 0.028060567793105
404 => 0.027708942599935
405 => 0.027758889299001
406 => 0.0273213036588
407 => 0.027812020118465
408 => 0.02782609211066
409 => 0.027637139544183
410 => 0.02839315595612
411 => 0.028702896496941
412 => 0.028578523869929
413 => 0.028694170181878
414 => 0.029665804052126
415 => 0.029824222768335
416 => 0.029894581897521
417 => 0.029800309985209
418 => 0.028711929865372
419 => 0.028760204151837
420 => 0.028405999468253
421 => 0.028106733835795
422 => 0.028118702891652
423 => 0.028272564328544
424 => 0.028944486247308
425 => 0.030358506313385
426 => 0.030412167341257
427 => 0.030477206072441
428 => 0.030212660866869
429 => 0.030132871501511
430 => 0.0302381342698
501 => 0.030769165860976
502 => 0.03213512328715
503 => 0.031652302703511
504 => 0.031259762053462
505 => 0.031604126031754
506 => 0.03155111389651
507 => 0.031103638125524
508 => 0.031091078970997
509 => 0.030232229899816
510 => 0.029914732953248
511 => 0.029649408740461
512 => 0.029359681626561
513 => 0.029187921681701
514 => 0.029451823020505
515 => 0.029512180379079
516 => 0.028935155489577
517 => 0.028856509129318
518 => 0.029327720110032
519 => 0.029120357725936
520 => 0.029333635080319
521 => 0.029383117255995
522 => 0.02937514948604
523 => 0.029158639341625
524 => 0.02929663645125
525 => 0.028970232148069
526 => 0.028615316492701
527 => 0.028388902416603
528 => 0.028191326105739
529 => 0.028300952926209
530 => 0.027910153328299
531 => 0.027785128671686
601 => 0.029249886135542
602 => 0.030331918222889
603 => 0.030316185047807
604 => 0.030220413390741
605 => 0.030078116134912
606 => 0.030758755930397
607 => 0.030521634635472
608 => 0.030694160189677
609 => 0.030738075184097
610 => 0.030870992645856
611 => 0.030918499213793
612 => 0.030774901370055
613 => 0.03029296946747
614 => 0.029092040986939
615 => 0.028533005537407
616 => 0.02834851452759
617 => 0.028355220425398
618 => 0.028170241827392
619 => 0.028224726314664
620 => 0.028151294346216
621 => 0.028012231963076
622 => 0.028292366215918
623 => 0.028324649078927
624 => 0.028259262396958
625 => 0.028274663327594
626 => 0.027733289527914
627 => 0.027774449002102
628 => 0.027545267819532
629 => 0.027502299110621
630 => 0.026922949038173
701 => 0.025896546406697
702 => 0.026465273099849
703 => 0.025778331229596
704 => 0.025518175934463
705 => 0.026749710639172
706 => 0.026626098712275
707 => 0.02641452882624
708 => 0.026101572869766
709 => 0.02598549446127
710 => 0.025280238797208
711 => 0.025238568530182
712 => 0.025588112280797
713 => 0.025426809866954
714 => 0.025200280187918
715 => 0.024379812653395
716 => 0.023457335497127
717 => 0.02348517928399
718 => 0.023778602104101
719 => 0.024631768527034
720 => 0.024298421645665
721 => 0.024056574658517
722 => 0.024011283987718
723 => 0.02457819155521
724 => 0.025380484534018
725 => 0.025756902449381
726 => 0.025383883727238
727 => 0.024955379903995
728 => 0.02498146094622
729 => 0.025154966435632
730 => 0.025173199409334
731 => 0.024894287471307
801 => 0.024972799548126
802 => 0.024853532524144
803 => 0.024121591018116
804 => 0.024108352517283
805 => 0.023928722267553
806 => 0.023923283134981
807 => 0.023617687269324
808 => 0.023574932295234
809 => 0.022968153155628
810 => 0.023367537022813
811 => 0.023099651293299
812 => 0.022695884311067
813 => 0.022626274731141
814 => 0.022624182183113
815 => 0.02303876059322
816 => 0.023362692432711
817 => 0.023104311280256
818 => 0.02304548290035
819 => 0.023673616090153
820 => 0.023593680416189
821 => 0.023524456638067
822 => 0.025308647997392
823 => 0.023896321314298
824 => 0.02328046626768
825 => 0.022518228699789
826 => 0.02276641709543
827 => 0.022818714037038
828 => 0.020985670089909
829 => 0.02024200438885
830 => 0.019986806344697
831 => 0.019839936262316
901 => 0.019906866803135
902 => 0.019237480448895
903 => 0.019687319149573
904 => 0.019107687148621
905 => 0.019010509957376
906 => 0.020046963777704
907 => 0.020191180271927
908 => 0.019575907903018
909 => 0.019971012367406
910 => 0.019827741996256
911 => 0.019117623275633
912 => 0.019090501963785
913 => 0.018734189351656
914 => 0.018176629109392
915 => 0.017921809117338
916 => 0.017789096653028
917 => 0.017843856402317
918 => 0.0178161681974
919 => 0.017635483931298
920 => 0.017826524808032
921 => 0.017338494311517
922 => 0.017144156635475
923 => 0.017056378815807
924 => 0.016623223660162
925 => 0.017312566137765
926 => 0.017448375289961
927 => 0.017584452028139
928 => 0.018768907130452
929 => 0.018709735100775
930 => 0.019244621431101
1001 => 0.019223836731897
1002 => 0.019071278485904
1003 => 0.018427660340674
1004 => 0.018684195061972
1005 => 0.017894621064163
1006 => 0.018486223589135
1007 => 0.01821624090265
1008 => 0.018394942171256
1009 => 0.018073621177458
1010 => 0.018251453482445
1011 => 0.017480580678134
1012 => 0.016760750499941
1013 => 0.017050431176798
1014 => 0.017365347201546
1015 => 0.018048165382311
1016 => 0.017641484506975
1017 => 0.017787742328052
1018 => 0.017297803110708
1019 => 0.016286918561107
1020 => 0.016292640057876
1021 => 0.016137137493237
1022 => 0.016002760573642
1023 => 0.017688196697636
1024 => 0.017478586072816
1025 => 0.017144598975324
1026 => 0.017591653977436
1027 => 0.017709862415712
1028 => 0.017713227643768
1029 => 0.018039387433149
1030 => 0.01821345897121
1031 => 0.018244139834262
1101 => 0.018757359310002
1102 => 0.018929383708742
1103 => 0.019637927861346
1104 => 0.018198690217375
1105 => 0.018169050065214
1106 => 0.017597944958111
1107 => 0.017235741070372
1108 => 0.017622745368184
1109 => 0.01796557834469
1110 => 0.017608597734335
1111 => 0.017655211865775
1112 => 0.01717599456276
1113 => 0.017347292199318
1114 => 0.017494836800205
1115 => 0.017413371343866
1116 => 0.017291413612754
1117 => 0.017937469950232
1118 => 0.017901016919757
1119 => 0.018502639433988
1120 => 0.018971647206269
1121 => 0.019812192979366
1122 => 0.018935039646498
1123 => 0.018903072692679
1124 => 0.019215554793915
1125 => 0.01892933586936
1126 => 0.019110216349738
1127 => 0.019783050337576
1128 => 0.019797266259501
1129 => 0.019559131251075
1130 => 0.01954464071417
1201 => 0.01959037714745
1202 => 0.019858256865722
1203 => 0.019764651461045
1204 => 0.019872974005136
1205 => 0.020008433005214
1206 => 0.020568748862966
1207 => 0.020703839119329
1208 => 0.020375639832634
1209 => 0.020405272553531
1210 => 0.020282517011034
1211 => 0.020163936695106
1212 => 0.020430487928049
1213 => 0.020917615545331
1214 => 0.020914585149706
1215 => 0.021027589288508
1216 => 0.021097989930804
1217 => 0.020795778837647
1218 => 0.020599050528612
1219 => 0.020674488680444
1220 => 0.020795115928052
1221 => 0.020635370889818
1222 => 0.019649350512739
1223 => 0.019948446107919
1224 => 0.019898661975854
1225 => 0.019827763317835
1226 => 0.020128506251627
1227 => 0.020099498861995
1228 => 0.019230614924317
1229 => 0.019286238054921
1230 => 0.019233997551119
1231 => 0.019402797306303
]
'min_raw' => 0.016002760573642
'max_raw' => 0.03584815915749
'avg_raw' => 0.025925459865566
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0160027'
'max' => '$0.035848'
'avg' => '$0.025925'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0039023561147494
'max_diff' => -0.026050113936664
'year' => 2034
]
9 => [
'items' => [
101 => 0.018920220128627
102 => 0.019068657618273
103 => 0.019161756220264
104 => 0.019216592012054
105 => 0.019414696493254
106 => 0.019391451218899
107 => 0.019413251534362
108 => 0.019706988182338
109 => 0.021192607349552
110 => 0.021273466322989
111 => 0.020875287165003
112 => 0.021034351884882
113 => 0.020728982406344
114 => 0.020933978983084
115 => 0.021074232434541
116 => 0.020440454056595
117 => 0.020402925814241
118 => 0.020096295967239
119 => 0.020261061478616
120 => 0.019998907702957
121 => 0.020063231069753
122 => 0.019883377328579
123 => 0.02020707825417
124 => 0.02056902618702
125 => 0.020660468528615
126 => 0.020419923096282
127 => 0.020245752350557
128 => 0.019939965896473
129 => 0.02044849558451
130 => 0.020597205162453
131 => 0.020447714476405
201 => 0.020413074218011
202 => 0.020347430990949
203 => 0.020427000738948
204 => 0.020596395258155
205 => 0.020516511931122
206 => 0.02056927627599
207 => 0.02036819300371
208 => 0.020795878882094
209 => 0.02147514698518
210 => 0.021477330943203
211 => 0.02139744718557
212 => 0.021364760473066
213 => 0.02144672605615
214 => 0.021491189022568
215 => 0.021756250688343
216 => 0.022040672416241
217 => 0.023367944517423
218 => 0.022995251822576
219 => 0.024172886590515
220 => 0.025104242795219
221 => 0.025383515797738
222 => 0.02512659777623
223 => 0.024247695103091
224 => 0.02420457194492
225 => 0.025518023601728
226 => 0.025146913348783
227 => 0.025102770965058
228 => 0.02463317058196
301 => 0.02491076256951
302 => 0.024850049129804
303 => 0.024754209995025
304 => 0.025283836170044
305 => 0.026275249089625
306 => 0.026120728088697
307 => 0.026005385329527
308 => 0.025499986934617
309 => 0.025804349653171
310 => 0.025695971918778
311 => 0.026161631443941
312 => 0.025885785056856
313 => 0.025144101823619
314 => 0.025262217323132
315 => 0.025244364402996
316 => 0.025611776234323
317 => 0.025501488322281
318 => 0.025222828918112
319 => 0.026271860548047
320 => 0.026203742269019
321 => 0.026300318414673
322 => 0.026342834220707
323 => 0.026981361287837
324 => 0.027242945396653
325 => 0.027302329569029
326 => 0.027550814240763
327 => 0.027296147044032
328 => 0.028314997405591
329 => 0.028992473444461
330 => 0.029779396726207
331 => 0.030929303145876
401 => 0.0313616785969
402 => 0.031283573841715
403 => 0.032155419765407
404 => 0.033722107510236
405 => 0.031600246228262
406 => 0.033834571310462
407 => 0.033127209785961
408 => 0.03145006833626
409 => 0.031342080199098
410 => 0.032477859860848
411 => 0.03499690983587
412 => 0.034365916387955
413 => 0.034997941915103
414 => 0.034260650565673
415 => 0.034224037835794
416 => 0.034962133319927
417 => 0.036686733650093
418 => 0.035867440678908
419 => 0.034692783305835
420 => 0.035560132030419
421 => 0.034808754295849
422 => 0.033115689962478
423 => 0.034365433879157
424 => 0.033529765712732
425 => 0.033773658110258
426 => 0.035530108299826
427 => 0.035318767566027
428 => 0.035592262045189
429 => 0.035109551448065
430 => 0.034658623633877
501 => 0.033816933382355
502 => 0.033567750393708
503 => 0.033636615607105
504 => 0.033567716267528
505 => 0.033096798307335
506 => 0.032995103618667
507 => 0.032825608015542
508 => 0.032878141790354
509 => 0.032559440468791
510 => 0.033160895709634
511 => 0.03327253110234
512 => 0.03371022006942
513 => 0.03375566238996
514 => 0.034974619933168
515 => 0.034303238602118
516 => 0.034753659163262
517 => 0.03471336930875
518 => 0.031486417077012
519 => 0.031931062622905
520 => 0.032622791554856
521 => 0.032311168608628
522 => 0.031870606671202
523 => 0.031514829285294
524 => 0.030975790165538
525 => 0.031734477375265
526 => 0.032732070378667
527 => 0.033780962994806
528 => 0.035041138746929
529 => 0.034759882189118
530 => 0.03375740488568
531 => 0.033802375285202
601 => 0.034080364599848
602 => 0.033720343179389
603 => 0.033614165834042
604 => 0.034065777463061
605 => 0.034068887464149
606 => 0.033654639309869
607 => 0.033194278292999
608 => 0.033192349363529
609 => 0.033110432567136
610 => 0.034275223381771
611 => 0.034915740556186
612 => 0.034989174817988
613 => 0.034910797845274
614 => 0.034940962031401
615 => 0.034568259200441
616 => 0.035420147350423
617 => 0.036201924159852
618 => 0.0359923912747
619 => 0.035678271693001
620 => 0.03542806031613
621 => 0.035933449426141
622 => 0.035910945244628
623 => 0.036195096021429
624 => 0.036182205300859
625 => 0.036086656082072
626 => 0.035992394687063
627 => 0.036366130463448
628 => 0.036258500561862
629 => 0.036150703481311
630 => 0.035934499933358
701 => 0.035963885586285
702 => 0.035649820241762
703 => 0.035504519242732
704 => 0.03331954084318
705 => 0.03273564321859
706 => 0.032919349297618
707 => 0.032979830108761
708 => 0.032725717114254
709 => 0.033090049872104
710 => 0.033033268997717
711 => 0.033254170164256
712 => 0.033116160705816
713 => 0.03312182466213
714 => 0.033527681052684
715 => 0.033645502889498
716 => 0.033585577752356
717 => 0.033627547264297
718 => 0.034594716952756
719 => 0.034457216351403
720 => 0.034384171897422
721 => 0.03440440571037
722 => 0.034651538302123
723 => 0.034720721934875
724 => 0.034427586021458
725 => 0.034565830612824
726 => 0.035154458537008
727 => 0.035360444997018
728 => 0.036017854898258
729 => 0.035738575487682
730 => 0.036251204932724
731 => 0.037826853078526
801 => 0.039085589843952
802 => 0.03792800349497
803 => 0.040239513265513
804 => 0.042039355188265
805 => 0.041970274257476
806 => 0.04165643018715
807 => 0.039607358009371
808 => 0.037721771241434
809 => 0.039299144639057
810 => 0.039303165688237
811 => 0.039167667914478
812 => 0.038326102878783
813 => 0.039138383275434
814 => 0.039202859143551
815 => 0.039166769802922
816 => 0.038521543863209
817 => 0.037536403110952
818 => 0.037728897255849
819 => 0.038044206591965
820 => 0.03744726023828
821 => 0.037256499708022
822 => 0.037611159827447
823 => 0.038753948628603
824 => 0.038537911025469
825 => 0.038532269410575
826 => 0.039456569890983
827 => 0.038794970223539
828 => 0.037731325223468
829 => 0.037462740833196
830 => 0.036509447187856
831 => 0.037167890504208
901 => 0.037191586706959
902 => 0.036830964031721
903 => 0.037760587766059
904 => 0.03775202111969
905 => 0.038634560499211
906 => 0.040321644326201
907 => 0.039822690622206
908 => 0.03924246175047
909 => 0.039305548716829
910 => 0.039997457025889
911 => 0.039579113467501
912 => 0.039729552727892
913 => 0.039997229318051
914 => 0.040158725250929
915 => 0.039282311937369
916 => 0.039077978070284
917 => 0.038659982689668
918 => 0.038550935497119
919 => 0.038891384012871
920 => 0.038801687857194
921 => 0.037189595132874
922 => 0.037021122473584
923 => 0.037026289289521
924 => 0.036602656777296
925 => 0.035956515512701
926 => 0.037654536176967
927 => 0.037518161353842
928 => 0.037367614103686
929 => 0.037386055282819
930 => 0.038123108501917
1001 => 0.037695580412761
1002 => 0.038832233908259
1003 => 0.038598572120516
1004 => 0.038358917789604
1005 => 0.038325790261023
1006 => 0.038233543789968
1007 => 0.037917196317323
1008 => 0.037535187734568
1009 => 0.037282952579216
1010 => 0.03439155298491
1011 => 0.034928179931116
1012 => 0.03554552031764
1013 => 0.035758623745232
1014 => 0.035394095586027
1015 => 0.037931590110874
1016 => 0.038395214812469
1017 => 0.036990865349846
1018 => 0.0367281689046
1019 => 0.03794881244609
1020 => 0.037212615172968
1021 => 0.037544124759977
1022 => 0.036827582358912
1023 => 0.03828354119837
1024 => 0.038272449231412
1025 => 0.037706048358541
1026 => 0.038184766497746
1027 => 0.038101577440384
1028 => 0.037462112249897
1029 => 0.038303813385502
1030 => 0.038304230858764
1031 => 0.037759082333243
1101 => 0.037122468203791
1102 => 0.0370086566336
1103 => 0.036922914903894
1104 => 0.037523037550532
1105 => 0.038061105638974
1106 => 0.039062316953172
1107 => 0.039314045265755
1108 => 0.040296557628271
1109 => 0.039711519354051
1110 => 0.039970859243499
1111 => 0.040252409379361
1112 => 0.040387394868157
1113 => 0.040167443257885
1114 => 0.041693689375095
1115 => 0.04182255131036
1116 => 0.041865757602603
1117 => 0.041351115999207
1118 => 0.041808238196389
1119 => 0.041594365858624
1120 => 0.042150802266044
1121 => 0.042238058599664
1122 => 0.042164155589322
1123 => 0.04219185212686
1124 => 0.040889470314087
1125 => 0.040821934946483
1126 => 0.039901085417116
1127 => 0.040276338406909
1128 => 0.039574820928835
1129 => 0.039797279347563
1130 => 0.039895336898877
1201 => 0.039844117198787
1202 => 0.040297554647927
1203 => 0.039912040185008
1204 => 0.038894604132917
1205 => 0.037876890881055
1206 => 0.037864114320189
1207 => 0.037596168385104
1208 => 0.037402492550784
1209 => 0.037439801387493
1210 => 0.037571282594325
1211 => 0.037394850624023
1212 => 0.037432501330215
1213 => 0.038057753918344
1214 => 0.038183143865796
1215 => 0.03775701983134
1216 => 0.036046070343592
1217 => 0.035626199047707
1218 => 0.035927994208779
1219 => 0.035783755559884
1220 => 0.02888028354444
1221 => 0.030502151893821
1222 => 0.029538492794064
1223 => 0.029982591243055
1224 => 0.028998944840517
1225 => 0.029468392461133
1226 => 0.029381702627088
1227 => 0.031989618938319
1228 => 0.03194889991219
1229 => 0.031968389955195
1230 => 0.031038079421544
1231 => 0.032520089362334
]
'min_raw' => 0.018920220128627
'max_raw' => 0.042238058599664
'avg_raw' => 0.030579139364145
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01892'
'max' => '$0.042238'
'avg' => '$0.030579'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029174595549847
'max_diff' => 0.0063898994421743
'year' => 2035
]
10 => [
'items' => [
101 => 0.03325018075052
102 => 0.03311506026532
103 => 0.033149067180388
104 => 0.032564715709215
105 => 0.031974047754765
106 => 0.031318906090134
107 => 0.032536078325061
108 => 0.03240074955036
109 => 0.032711145069768
110 => 0.033500568269387
111 => 0.033616813834258
112 => 0.03377304905229
113 => 0.033717049848206
114 => 0.035051178079869
115 => 0.034889606348153
116 => 0.035278947734229
117 => 0.034478042963669
118 => 0.033571743193202
119 => 0.033744001150396
120 => 0.033727411323907
121 => 0.033516203791788
122 => 0.033325535075518
123 => 0.033008125383506
124 => 0.034012456616828
125 => 0.033971682602879
126 => 0.034631766494101
127 => 0.034515090254615
128 => 0.033735897771806
129 => 0.033763726783765
130 => 0.033950890263357
131 => 0.034598665203221
201 => 0.034790968909254
202 => 0.034701886170642
203 => 0.034912738405309
204 => 0.035079387414452
205 => 0.034933666955084
206 => 0.036996761362478
207 => 0.036140020726088
208 => 0.036557590151101
209 => 0.036657177998505
210 => 0.036402085821487
211 => 0.036457406180516
212 => 0.03654120145055
213 => 0.037049989921399
214 => 0.038385198088036
215 => 0.03897655269597
216 => 0.040755672210863
217 => 0.038927448927835
218 => 0.03881896972416
219 => 0.039139442873054
220 => 0.040183974367223
221 => 0.041030469035392
222 => 0.041311300152273
223 => 0.041348416620385
224 => 0.041875274464953
225 => 0.042177259556142
226 => 0.041811300064885
227 => 0.041501187713601
228 => 0.040390403763863
229 => 0.04051898003061
301 => 0.041404743005544
302 => 0.042655935378818
303 => 0.043729588599465
304 => 0.043353632662187
305 => 0.046221911080092
306 => 0.04650628916936
307 => 0.046466997312468
308 => 0.047114852920955
309 => 0.045828991471608
310 => 0.045279260789619
311 => 0.041568237523874
312 => 0.042610883690876
313 => 0.044126431127077
314 => 0.043925842740884
315 => 0.042825211682017
316 => 0.043728753672111
317 => 0.043430014433815
318 => 0.043194386401869
319 => 0.044273844094956
320 => 0.043086936019729
321 => 0.044114590811089
322 => 0.042796612911442
323 => 0.04335534999724
324 => 0.043038183804269
325 => 0.043243429201548
326 => 0.042043568802909
327 => 0.04269098434905
328 => 0.042016634187685
329 => 0.042016314457905
330 => 0.042001428140717
331 => 0.042794798115037
401 => 0.042820669881417
402 => 0.042234368271679
403 => 0.042149873049963
404 => 0.042462296170384
405 => 0.042096530520116
406 => 0.042267669965775
407 => 0.042101714159582
408 => 0.042064354012044
409 => 0.041766662000156
410 => 0.041638408096222
411 => 0.041688699756651
412 => 0.041517028392481
413 => 0.041413590185944
414 => 0.041980851677935
415 => 0.041677786746027
416 => 0.041934402630557
417 => 0.041641956442629
418 => 0.04062821054253
419 => 0.040045194555215
420 => 0.038130322524224
421 => 0.038673377856822
422 => 0.039033424104166
423 => 0.038914428821566
424 => 0.039170076733651
425 => 0.039185771439167
426 => 0.039102657696926
427 => 0.039006422630941
428 => 0.038959580722953
429 => 0.039308701928244
430 => 0.039511378538794
501 => 0.039069559561884
502 => 0.038966047557298
503 => 0.039412750936449
504 => 0.039685239739679
505 => 0.041697143964495
506 => 0.041548095601156
507 => 0.041922177743874
508 => 0.041880061835362
509 => 0.042272159516889
510 => 0.042913073513342
511 => 0.041609916156182
512 => 0.041836099213594
513 => 0.041780644351246
514 => 0.042386085997314
515 => 0.042387976120047
516 => 0.042024983609176
517 => 0.0422217677382
518 => 0.042111928235869
519 => 0.04231042306228
520 => 0.041546104969393
521 => 0.04247696190349
522 => 0.043004697802027
523 => 0.04301202541549
524 => 0.043262168043026
525 => 0.043516327439886
526 => 0.04400416426954
527 => 0.04350272193548
528 => 0.042600675990934
529 => 0.04266580079454
530 => 0.042136931587298
531 => 0.04214582197422
601 => 0.042098364392079
602 => 0.042240788168523
603 => 0.041577358979139
604 => 0.041733064483844
605 => 0.041515075865446
606 => 0.04183562534891
607 => 0.041490767093431
608 => 0.041780617609232
609 => 0.041905707483155
610 => 0.042367291810923
611 => 0.041422590712917
612 => 0.039496281223441
613 => 0.039901214832374
614 => 0.039302286217913
615 => 0.039357719341463
616 => 0.039469703073151
617 => 0.039106727159954
618 => 0.039175971525506
619 => 0.039173497629504
620 => 0.03915217893026
621 => 0.039057754876442
622 => 0.038920821317177
623 => 0.039466322471363
624 => 0.039559013747246
625 => 0.039765054971516
626 => 0.040378093895846
627 => 0.040316836850852
628 => 0.040416749632767
629 => 0.040198640590832
630 => 0.039367836794367
701 => 0.039412953437633
702 => 0.038850348173164
703 => 0.039750667889995
704 => 0.03953746029741
705 => 0.039400003975472
706 => 0.039362497744508
707 => 0.039977056273756
708 => 0.040160941817732
709 => 0.040046356686826
710 => 0.039811339240356
711 => 0.040262642214249
712 => 0.040383391851119
713 => 0.040410423241739
714 => 0.041210045582717
715 => 0.040455113247904
716 => 0.040636832964275
717 => 0.042054558317225
718 => 0.040768877054825
719 => 0.041449931093632
720 => 0.041416597042467
721 => 0.041765001243108
722 => 0.041388017728857
723 => 0.041392690891327
724 => 0.041702050218552
725 => 0.041267610836714
726 => 0.041160037536235
727 => 0.04101142579208
728 => 0.041335914098592
729 => 0.041530430163002
730 => 0.043098086785843
731 => 0.044110864458025
801 => 0.044066897108264
802 => 0.044468676381645
803 => 0.044287671139111
804 => 0.043703157464196
805 => 0.044700851033427
806 => 0.04438513904285
807 => 0.044411165955763
808 => 0.044410197232765
809 => 0.044620118106477
810 => 0.044471369928486
811 => 0.04417817200098
812 => 0.044372810468233
813 => 0.04495081713145
814 => 0.046744967549484
815 => 0.047748997892748
816 => 0.046684523662122
817 => 0.04741878373253
818 => 0.046978489333899
819 => 0.046898474744044
820 => 0.047359644329654
821 => 0.047821621131573
822 => 0.047792195206472
823 => 0.047456823771049
824 => 0.047267380956914
825 => 0.048701905413544
826 => 0.049758838596702
827 => 0.04968676283938
828 => 0.050004881791905
829 => 0.050938888875567
830 => 0.051024282777939
831 => 0.051013525108996
901 => 0.050801867412035
902 => 0.051721518682046
903 => 0.052488707951213
904 => 0.050752874770567
905 => 0.051413857322032
906 => 0.051710593684913
907 => 0.052146290703333
908 => 0.052881384604707
909 => 0.053679891555627
910 => 0.05379280919367
911 => 0.053712688725872
912 => 0.053186051926721
913 => 0.054059787760587
914 => 0.054571601720439
915 => 0.054876375220877
916 => 0.055649230108511
917 => 0.051712426227669
918 => 0.04892576076896
919 => 0.048490582717646
920 => 0.049375534397525
921 => 0.049608889098152
922 => 0.049514824110931
923 => 0.046378178784615
924 => 0.048474068929146
925 => 0.050729070497213
926 => 0.050815694291225
927 => 0.051944595226059
928 => 0.052312211645653
929 => 0.053221124866622
930 => 0.05316427209718
1001 => 0.053385578002518
1002 => 0.053334703607365
1003 => 0.05501827395495
1004 => 0.056875502060953
1005 => 0.056811192157266
1006 => 0.056544193643303
1007 => 0.05694073196655
1008 => 0.058857590404605
1009 => 0.058681116796659
1010 => 0.058852545874792
1011 => 0.061112630002666
1012 => 0.06405106086212
1013 => 0.062685864714269
1014 => 0.065647947530497
1015 => 0.067512421650049
1016 => 0.070736836849592
1017 => 0.07033312418603
1018 => 0.07158836536136
1019 => 0.069610394260877
1020 => 0.065068572800255
1021 => 0.064349812168718
1022 => 0.065788789154974
1023 => 0.069326373662364
1024 => 0.065677378029642
1025 => 0.06641556509368
1026 => 0.066202967169576
1027 => 0.066191638729684
1028 => 0.066623999204284
1029 => 0.065996837785471
1030 => 0.063441669341039
1031 => 0.06461268798142
1101 => 0.064160501447435
1102 => 0.06466223611963
1103 => 0.06736989121435
1104 => 0.066172772354539
1105 => 0.064911704881767
1106 => 0.066493363345898
1107 => 0.068507358087552
1108 => 0.068381325916115
1109 => 0.068136770826168
1110 => 0.069515315063712
1111 => 0.07179226626857
1112 => 0.072407717029712
1113 => 0.07286203019925
1114 => 0.072924672309646
1115 => 0.073569924978573
1116 => 0.07010023875314
1117 => 0.075606719900765
1118 => 0.076557537081488
1119 => 0.076378822858846
1120 => 0.077435616138716
1121 => 0.077124680747521
1122 => 0.076674184149946
1123 => 0.078349426284917
1124 => 0.076428896362242
1125 => 0.073702945924999
1126 => 0.072207435601941
1127 => 0.07417684423472
1128 => 0.075379493363869
1129 => 0.076174367935385
1130 => 0.07641489650045
1201 => 0.07036958061789
1202 => 0.06711149064578
1203 => 0.069199888963825
1204 => 0.071747879045393
1205 => 0.070086084539585
1206 => 0.07015122373802
1207 => 0.067781941484652
1208 => 0.071957507952323
1209 => 0.071349163040025
1210 => 0.07450525752117
1211 => 0.073752030244004
1212 => 0.076325702774496
1213 => 0.075647968544058
1214 => 0.078461205442994
1215 => 0.079583481807328
1216 => 0.081467958491413
1217 => 0.082854187211427
1218 => 0.083668207230148
1219 => 0.083619336521536
1220 => 0.086844889378875
1221 => 0.084942893551136
1222 => 0.082553538525497
1223 => 0.082510322631402
1224 => 0.083747803456603
1225 => 0.086341223779939
1226 => 0.087013659937048
1227 => 0.087389460013445
1228 => 0.086813909114749
1229 => 0.084749428961007
1230 => 0.083857996897773
1231 => 0.084617522842921
]
'min_raw' => 0.031318906090134
'max_raw' => 0.087389460013445
'avg_raw' => 0.05935418305179
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.031318'
'max' => '$0.087389'
'avg' => '$0.059354'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012398685961507
'max_diff' => 0.045151401413781
'year' => 2036
]
11 => [
'items' => [
101 => 0.083688687878814
102 => 0.085292117611925
103 => 0.087493969109598
104 => 0.087039295482393
105 => 0.08855920124966
106 => 0.090132143820031
107 => 0.092381522340933
108 => 0.092969593180542
109 => 0.093941651916084
110 => 0.094942219659618
111 => 0.095263575052785
112 => 0.095877142209062
113 => 0.095873908407283
114 => 0.097722934330556
115 => 0.099762467183493
116 => 0.10053234362018
117 => 0.10230263203511
118 => 0.099271075162847
119 => 0.10157054587448
120 => 0.10364472601585
121 => 0.1011718029429
122 => 0.10458015128179
123 => 0.10471248972431
124 => 0.10671064308686
125 => 0.10468513185405
126 => 0.10348238974966
127 => 0.10695466113886
128 => 0.10863478388857
129 => 0.10812871724306
130 => 0.10427752508318
131 => 0.10203596606073
201 => 0.096169373734519
202 => 0.10311860576284
203 => 0.10650337397196
204 => 0.10426875935122
205 => 0.10539576898615
206 => 0.11154436812023
207 => 0.11388535657818
208 => 0.11339844734367
209 => 0.11348072698909
210 => 0.11474388186905
211 => 0.1203454062389
212 => 0.11698884299417
213 => 0.11955480982674
214 => 0.12091578938245
215 => 0.12217994304202
216 => 0.119075581194
217 => 0.11503685204186
218 => 0.11375761698506
219 => 0.10404657096663
220 => 0.10354106884843
221 => 0.10325731519121
222 => 0.10146828852016
223 => 0.10006260361236
224 => 0.098944750783945
225 => 0.096011171143071
226 => 0.097001168155733
227 => 0.092325654493836
228 => 0.095316882444687
301 => 0.087854649746075
302 => 0.094069418878921
303 => 0.090687002590791
304 => 0.092958204158476
305 => 0.092950280150166
306 => 0.088768277978946
307 => 0.086356186402744
308 => 0.087893265035109
309 => 0.089541135342457
310 => 0.089808496755723
311 => 0.091945003623015
312 => 0.092541256765615
313 => 0.09073458190714
314 => 0.087700011559792
315 => 0.088404873040301
316 => 0.086341902407339
317 => 0.082726625724094
318 => 0.085323180554676
319 => 0.086209758536294
320 => 0.086601321880209
321 => 0.08304611247957
322 => 0.081928988498538
323 => 0.081334241064615
324 => 0.087241078670578
325 => 0.087564668568564
326 => 0.085909136899464
327 => 0.093392297027752
328 => 0.091698627422298
329 => 0.093590871330718
330 => 0.088340914248953
331 => 0.088541469679481
401 => 0.086056055862679
402 => 0.087447721524677
403 => 0.086464137090255
404 => 0.087335288691896
405 => 0.087857453370026
406 => 0.090342459354878
407 => 0.094097793655548
408 => 0.089971282328388
409 => 0.088173302250413
410 => 0.089288758978565
411 => 0.092259367238801
412 => 0.096759990815698
413 => 0.094095531074684
414 => 0.095277973062286
415 => 0.095536284033394
416 => 0.093571610064032
417 => 0.09683243114733
418 => 0.098579931656733
419 => 0.1003725055851
420 => 0.10192894730032
421 => 0.099656512138566
422 => 0.10208834350243
423 => 0.10012871669918
424 => 0.098370728874166
425 => 0.098373395016031
426 => 0.097270583573297
427 => 0.095133747439815
428 => 0.094739682071853
429 => 0.096789659880962
430 => 0.098433547950246
501 => 0.098568946445325
502 => 0.099479087346499
503 => 0.10001769935662
504 => 0.1052968292633
505 => 0.10742013898302
506 => 0.11001648191609
507 => 0.1110279038104
508 => 0.11407192109743
509 => 0.11161362991516
510 => 0.11108176315449
511 => 0.10369797290661
512 => 0.10490706814605
513 => 0.10684294628474
514 => 0.10372989482409
515 => 0.1057044094502
516 => 0.10609422046333
517 => 0.10362411452668
518 => 0.10494350483442
519 => 0.10143959534902
520 => 0.09417416930725
521 => 0.096840519643447
522 => 0.098803850974707
523 => 0.096001935087992
524 => 0.10102426086581
525 => 0.098090321828256
526 => 0.097160404007262
527 => 0.093532463047926
528 => 0.095244711528479
529 => 0.097560552115464
530 => 0.096129631878072
531 => 0.099099006224414
601 => 0.10330443220205
602 => 0.10630146919115
603 => 0.10653154447682
604 => 0.10460465047871
605 => 0.10769251040796
606 => 0.10771500209645
607 => 0.10423188348198
608 => 0.1020984927247
609 => 0.10161378185595
610 => 0.10282468463925
611 => 0.10429494416315
612 => 0.10661313364791
613 => 0.10801396700246
614 => 0.11166659744651
615 => 0.11265489451555
616 => 0.11374073336147
617 => 0.11519174891992
618 => 0.1169340651306
619 => 0.11312197645176
620 => 0.11327343784159
621 => 0.10972367364581
622 => 0.10593024151494
623 => 0.10880898364428
624 => 0.11257255603538
625 => 0.11170918837048
626 => 0.11161204187118
627 => 0.11177541533681
628 => 0.11112446431243
629 => 0.10818023695454
630 => 0.10670166440724
701 => 0.10860940021734
702 => 0.10962327689686
703 => 0.11119571120745
704 => 0.11100187548861
705 => 0.11505229740557
706 => 0.1166261688841
707 => 0.11622350521013
708 => 0.11629760501678
709 => 0.11914702415076
710 => 0.12231616425549
711 => 0.12528448216843
712 => 0.1283039826417
713 => 0.12466385696807
714 => 0.12281562564274
715 => 0.12472252859506
716 => 0.12371069904695
717 => 0.1295249717585
718 => 0.129927539386
719 => 0.13574139165946
720 => 0.14125942976762
721 => 0.13779364889781
722 => 0.14106172415584
723 => 0.14459641399749
724 => 0.1514154041848
725 => 0.14911900818468
726 => 0.1473600048377
727 => 0.14569775517425
728 => 0.14915663284919
729 => 0.15360642372108
730 => 0.15456486605531
731 => 0.15611790878993
801 => 0.15448507425151
802 => 0.15645164360221
803 => 0.16339449756454
804 => 0.16151847713765
805 => 0.15885422654614
806 => 0.16433494295061
807 => 0.16631839291165
808 => 0.180239283479
809 => 0.19781498286358
810 => 0.1905385279101
811 => 0.18602179751074
812 => 0.18708333629287
813 => 0.19350138673314
814 => 0.19556266083582
815 => 0.18995940726095
816 => 0.19193857115015
817 => 0.20284395876677
818 => 0.20869434933636
819 => 0.20074873313057
820 => 0.17882709314652
821 => 0.15861433993057
822 => 0.16397567227558
823 => 0.16336786356917
824 => 0.17508434208841
825 => 0.16147373467091
826 => 0.16170290239347
827 => 0.17366166528053
828 => 0.17047127236736
829 => 0.16530324444268
830 => 0.1586520722537
831 => 0.14635676530341
901 => 0.13546646905753
902 => 0.15682484788113
903 => 0.15590383574857
904 => 0.15457007369426
905 => 0.15753821681799
906 => 0.1719506773047
907 => 0.1716184234419
908 => 0.16950479388417
909 => 0.17110796327503
910 => 0.16502220109726
911 => 0.1665906405807
912 => 0.15861113812719
913 => 0.16221820648963
914 => 0.16529215617584
915 => 0.16590929708594
916 => 0.16729974706841
917 => 0.15541850420582
918 => 0.16075283343616
919 => 0.16388625209993
920 => 0.14972935258228
921 => 0.16360641571437
922 => 0.15521167820096
923 => 0.15236237820419
924 => 0.15619858528312
925 => 0.15470361165362
926 => 0.15341832111478
927 => 0.15270110691002
928 => 0.15551799400206
929 => 0.1553865828523
930 => 0.1507776088355
1001 => 0.1447653901164
1002 => 0.14678328806288
1003 => 0.14605016682103
1004 => 0.14339324086604
1005 => 0.14518368816124
1006 => 0.13729946439781
1007 => 0.12373506719913
1008 => 0.1326961234773
1009 => 0.13235113255835
1010 => 0.13217717249292
1011 => 0.13891115862056
1012 => 0.13826384123388
1013 => 0.13708895383851
1014 => 0.14337166313767
1015 => 0.14107838972911
1016 => 0.14814571801111
1017 => 0.15280071750378
1018 => 0.15162005905898
1019 => 0.1559981085814
1020 => 0.14682977635599
1021 => 0.14987512855163
1022 => 0.15050277141847
1023 => 0.14329413548015
1024 => 0.13836975036385
1025 => 0.13804135001869
1026 => 0.12950314484909
1027 => 0.13406418513271
1028 => 0.13807771183362
1029 => 0.13615554400614
1030 => 0.13554704309509
1031 => 0.1386557422819
1101 => 0.13889731483292
1102 => 0.13338943506888
1103 => 0.13453469768369
1104 => 0.13931063317153
1105 => 0.13441435636319
1106 => 0.12490169032686
1107 => 0.12254241762695
1108 => 0.12222764715876
1109 => 0.11582911248033
1110 => 0.12270007551006
1111 => 0.11970071601722
1112 => 0.12917565671725
1113 => 0.12376362140452
1114 => 0.12353031937909
1115 => 0.12317764914968
1116 => 0.11767016603182
1117 => 0.11887595481582
1118 => 0.12288418038065
1119 => 0.12431436041807
1120 => 0.12416518092305
1121 => 0.1228645378887
1122 => 0.12345996560946
1123 => 0.12154188546013
1124 => 0.12086457143802
1125 => 0.11872678207434
1126 => 0.11558482228911
1127 => 0.116021731068
1128 => 0.10979668659496
1129 => 0.10640495197793
1130 => 0.10546616453828
1201 => 0.10421077873936
1202 => 0.10560796370473
1203 => 0.10977905182611
1204 => 0.10474783460601
1205 => 0.096122165581018
1206 => 0.096640582986845
1207 => 0.097805312978229
1208 => 0.095634846344744
1209 => 0.093580681829608
1210 => 0.095366611215884
1211 => 0.091711801539808
1212 => 0.098246979266523
1213 => 0.098070221023639
1214 => 0.10050613114748
1215 => 0.10202935573782
1216 => 0.098518816206896
1217 => 0.097635925008376
1218 => 0.098138859960221
1219 => 0.089826465507678
1220 => 0.099826831181107
1221 => 0.099913314758725
1222 => 0.099172789861457
1223 => 0.10449767585591
1224 => 0.11573484617779
1225 => 0.11150697068857
1226 => 0.10986980951093
1227 => 0.10675756491548
1228 => 0.11090444605212
1229 => 0.11058603028225
1230 => 0.1091460334153
1231 => 0.1082751188171
]
'min_raw' => 0.081334241064615
'max_raw' => 0.20869434933636
'avg_raw' => 0.14501429520049
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.081334'
'max' => '$0.208694'
'avg' => '$0.145014'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.050015334974481
'max_diff' => 0.12130488932291
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025529888884627
]
1 => [
'year' => 2028
'avg' => 0.0043816700705719
]
2 => [
'year' => 2029
'avg' => 0.011969932913608
]
3 => [
'year' => 2030
'avg' => 0.0092347854166895
]
4 => [
'year' => 2031
'avg' => 0.0090697037335465
]
5 => [
'year' => 2032
'avg' => 0.015902044985719
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025529888884627
'min' => '$0.002552'
'max_raw' => 0.015902044985719
'max' => '$0.015902'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015902044985719
]
1 => [
'year' => 2033
'avg' => 0.040901694891272
]
2 => [
'year' => 2034
'avg' => 0.025925459865566
]
3 => [
'year' => 2035
'avg' => 0.030579139364145
]
4 => [
'year' => 2036
'avg' => 0.05935418305179
]
5 => [
'year' => 2037
'avg' => 0.14501429520049
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015902044985719
'min' => '$0.015902'
'max_raw' => 0.14501429520049
'max' => '$0.145014'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14501429520049
]
]
]
]
'prediction_2025_max_price' => '$0.004365'
'last_price' => 0.00423256
'sma_50day_nextmonth' => '$0.003926'
'sma_200day_nextmonth' => '$0.006196'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.004124'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004029'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003995'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003981'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004368'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.00532'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.006813'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004132'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004075'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004027'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00407'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004453'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.005266'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.006729'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006142'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.008333'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.013824'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.013047'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004176'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004259'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.00470074'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0058088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.008356'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01252'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.024719'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.23'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 121.45
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003986'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004133'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 190.95
'cci_20_action' => 'SELL'
'adx_14' => 21.66
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000124'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000586'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767704393
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Marlin para 2026
La previsión del precio de Marlin para 2026 sugiere que el precio medio podría oscilar entre $0.001462 en el extremo inferior y $0.004365 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Marlin podría potencialmente ganar 3.13% para 2026 si POND alcanza el objetivo de precio previsto.
Predicción de precio de Marlin 2027-2032
La predicción del precio de POND para 2027-2032 está actualmente dentro de un rango de precios de $0.002552 en el extremo inferior y $0.015902 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Marlin alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Marlin | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0014077 | $0.002552 | $0.003698 |
| 2028 | $0.00254 | $0.004381 | $0.006222 |
| 2029 | $0.00558 | $0.011969 | $0.018358 |
| 2030 | $0.004746 | $0.009234 | $0.013723 |
| 2031 | $0.005611 | $0.009069 | $0.012527 |
| 2032 | $0.008565 | $0.015902 | $0.023238 |
Predicción de precio de Marlin 2032-2037
La predicción de precio de Marlin para 2032-2037 se estima actualmente entre $0.015902 en el extremo inferior y $0.145014 en el extremo superior. Comparado con el precio actual, Marlin podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Marlin | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.008565 | $0.015902 | $0.023238 |
| 2033 | $0.0199051 | $0.0409016 | $0.061898 |
| 2034 | $0.0160027 | $0.025925 | $0.035848 |
| 2035 | $0.01892 | $0.030579 | $0.042238 |
| 2036 | $0.031318 | $0.059354 | $0.087389 |
| 2037 | $0.081334 | $0.145014 | $0.208694 |
Marlin Histograma de precios potenciales
Pronóstico de precio de Marlin basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Marlin es Neutral, con 17 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de POND se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Marlin
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Marlin aumentar durante el próximo mes, alcanzando $0.006196 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Marlin alcance $0.003926 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.23, lo que sugiere que el mercado de POND está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de POND para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.004124 | BUY |
| SMA 5 | $0.004029 | BUY |
| SMA 10 | $0.003995 | BUY |
| SMA 21 | $0.003981 | BUY |
| SMA 50 | $0.004368 | SELL |
| SMA 100 | $0.00532 | SELL |
| SMA 200 | $0.006813 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.004132 | BUY |
| EMA 5 | $0.004075 | BUY |
| EMA 10 | $0.004027 | BUY |
| EMA 21 | $0.00407 | BUY |
| EMA 50 | $0.004453 | SELL |
| EMA 100 | $0.005266 | SELL |
| EMA 200 | $0.006729 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.006142 | SELL |
| SMA 50 | $0.008333 | SELL |
| SMA 100 | $0.013824 | SELL |
| SMA 200 | $0.013047 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0058088 | SELL |
| EMA 50 | $0.008356 | SELL |
| EMA 100 | $0.01252 | SELL |
| EMA 200 | $0.024719 | SELL |
Osciladores de Marlin
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.23 | NEUTRAL |
| Stoch RSI (14) | 121.45 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 190.95 | SELL |
| Índice Direccional Medio (14) | 21.66 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000124 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 63.52 | NEUTRAL |
| VWMA (10) | 0.003986 | BUY |
| Promedio Móvil de Hull (9) | 0.004133 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000586 | SELL |
Predicción de precios de Marlin basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Marlin
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Marlin por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.005947 | $0.008357 | $0.011743 | $0.0165011 | $0.023186 | $0.032581 |
| Amazon.com acción | $0.008831 | $0.018427 | $0.038449 | $0.080228 | $0.16740056 | $0.349291 |
| Apple acción | $0.0060035 | $0.008515 | $0.012078 | $0.017132 | $0.0243014 | $0.034469 |
| Netflix acción | $0.006678 | $0.010537 | $0.016626 | $0.026233 | $0.041392 | $0.06531 |
| Google acción | $0.005481 | $0.007098 | $0.009191 | $0.0119035 | $0.015415 | $0.019962 |
| Tesla acción | $0.009594 | $0.02175 | $0.0493076 | $0.111776 | $0.253389 | $0.574414 |
| Kodak acción | $0.003173 | $0.00238 | $0.001784 | $0.001338 | $0.0010036 | $0.000752 |
| Nokia acción | $0.0028038 | $0.001857 | $0.00123 | $0.000815 | $0.00054 | $0.000357 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Marlin
Podría preguntarse cosas como: "¿Debo invertir en Marlin ahora?", "¿Debería comprar POND hoy?", "¿Será Marlin una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Marlin regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Marlin, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Marlin a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Marlin es de $0.004232 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Marlin
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Marlin
basado en el historial de precios del último mes
Predicción de precios de Marlin basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Marlin ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.004342 | $0.004455 | $0.004571 | $0.00469 |
| Si Marlin ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.004452 | $0.004684 | $0.004927 | $0.005183 |
| Si Marlin ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.004782 | $0.0054042 | $0.0061065 | $0.00690024 |
| Si Marlin ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.005332 | $0.006718 | $0.008465 | $0.010665 |
| Si Marlin ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.006432 | $0.009777 | $0.014859 | $0.022585 |
| Si Marlin ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.009733 | $0.022383 | $0.051474 | $0.118374 |
| Si Marlin ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.015234 | $0.054833 | $0.197362 | $0.710371 |
Cuadro de preguntas
¿Es POND una buena inversión?
La decisión de adquirir Marlin depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Marlin ha experimentado un aumento de 3.5229% durante las últimas 24 horas, y Marlin ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Marlin dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Marlin subir?
Parece que el valor medio de Marlin podría potencialmente aumentar hasta $0.004365 para el final de este año. Mirando las perspectivas de Marlin en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.013723. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Marlin la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Marlin, el precio de Marlin aumentará en un 0.86% durante la próxima semana y alcanzará $0.004268 para el 13 de enero de 2026.
¿Cuál será el precio de Marlin el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Marlin, el precio de Marlin disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00374 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Marlin este año en 2026?
Según nuestra predicción más reciente sobre el valor de Marlin en 2026, se anticipa que POND fluctúe dentro del rango de $0.001462 y $0.004365. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Marlin no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Marlin en 5 años?
El futuro de Marlin parece estar en una tendencia alcista, con un precio máximo de $0.013723 proyectada después de un período de cinco años. Basado en el pronóstico de Marlin para 2030, el valor de Marlin podría potencialmente alcanzar su punto más alto de aproximadamente $0.013723, mientras que su punto más bajo se anticipa que esté alrededor de $0.004746.
¿Cuánto será Marlin en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Marlin, se espera que el valor de POND en 2026 crezca en un 3.13% hasta $0.004365 si ocurre lo mejor. El precio estará entre $0.004365 y $0.001462 durante 2026.
¿Cuánto será Marlin en 2027?
Según nuestra última simulación experimental para la predicción de precios de Marlin, el valor de POND podría disminuir en un -12.62% hasta $0.003698 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003698 y $0.0014077 a lo largo del año.
¿Cuánto será Marlin en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Marlin sugiere que el valor de POND en 2028 podría aumentar en un 47.02% , alcanzando $0.006222 en el mejor escenario. Se espera que el precio oscile entre $0.006222 y $0.00254 durante el año.
¿Cuánto será Marlin en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Marlin podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.018358 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.018358 y $0.00558.
¿Cuánto será Marlin en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Marlin, se espera que el valor de POND en 2030 aumente en un 224.23% , alcanzando $0.013723 en el mejor escenario. Se pronostica que el precio oscile entre $0.013723 y $0.004746 durante el transcurso de 2030.
¿Cuánto será Marlin en 2031?
Nuestra simulación experimental indica que el precio de Marlin podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.012527 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.012527 y $0.005611 durante el año.
¿Cuánto será Marlin en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Marlin, POND podría experimentar un 449.04% aumento en valor, alcanzando $0.023238 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.023238 y $0.008565 a lo largo del año.
¿Cuánto será Marlin en 2033?
Según nuestra predicción experimental de precios de Marlin, se anticipa que el valor de POND aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.061898. A lo largo del año, el precio de POND podría oscilar entre $0.061898 y $0.0199051.
¿Cuánto será Marlin en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Marlin sugieren que POND podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.035848 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.035848 y $0.0160027.
¿Cuánto será Marlin en 2035?
Basado en nuestra predicción experimental para el precio de Marlin, POND podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.042238 en 2035. El rango de precios esperado para el año está entre $0.042238 y $0.01892.
¿Cuánto será Marlin en 2036?
Nuestra reciente simulación de predicción de precios de Marlin sugiere que el valor de POND podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.087389 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.087389 y $0.031318.
¿Cuánto será Marlin en 2037?
Según la simulación experimental, el valor de Marlin podría aumentar en un 4830.69% en 2037, con un máximo de $0.208694 bajo condiciones favorables. Se espera que el precio caiga entre $0.208694 y $0.081334 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Portal
Predicción de precios de Synapse
Predicción de precios de CHEX Token
Predicción de precios de Toshi
Predicción de precios de ANyONe Protocol
Predicción de precios de Helium Mobile
Predicción de precios de COTI
Predicción de precios de Zebec Protocol
Predicción de precios de Nosana
Predicción de precios de Seedify.fund
Predicción de precios de The Doge NFT
Predicción de precios de iExec RLC
Predicción de precios de Avalanche Bridged BTC (Avalanche)
Predicción de precios de Coq Inu
Predicción de precios de Tenset
Predicción de precios de Mog Coin
Predicción de precios de Venus
Predicción de precios de Big Time
Predicción de precios de Delysium
Predicción de precios de Reef Finance
Predicción de precios de Oraichain Token
Predicción de precios de TerraUSD
Predicción de precios de Pundi X
Predicción de precios de MyroPredicción de precios de Tribe
¿Cómo leer y predecir los movimientos de precio de Marlin?
Los traders de Marlin utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Marlin
Las medias móviles son herramientas populares para la predicción de precios de Marlin. Una media móvil simple (SMA) calcula el precio de cierre promedio de POND durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de POND por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de POND.
¿Cómo leer gráficos de Marlin y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Marlin en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de POND dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Marlin?
La acción del precio de Marlin está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de POND. La capitalización de mercado de Marlin puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de POND, grandes poseedores de Marlin, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Marlin.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


