Predicción del precio de Kepler - Pronóstico de AVIA
Predicción de precio de Kepler hasta $0.012977 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004347 | $0.012977 |
| 2027 | $0.004185 | $0.010995 |
| 2028 | $0.007553 | $0.01850066 |
| 2029 | $0.016592 | $0.054582 |
| 2030 | $0.014111 | $0.040800073 |
| 2031 | $0.016683 | $0.037245 |
| 2032 | $0.025466 | $0.069089 |
| 2033 | $0.059179 | $0.184028 |
| 2034 | $0.047577 | $0.106579 |
| 2035 | $0.056251 | $0.125576 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Kepler hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.89, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Kepler para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Kepler'
'name_with_ticker' => 'Kepler <small>AVIA</small>'
'name_lang' => 'Kepler'
'name_lang_with_ticker' => 'Kepler <small>AVIA</small>'
'name_with_lang' => 'Kepler'
'name_with_lang_with_ticker' => 'Kepler <small>AVIA</small>'
'image' => '/uploads/coins/kepler.png?1733339459'
'price_for_sd' => 0.01258
'ticker' => 'AVIA'
'marketcap' => '$1.25M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$109.63'
'current_supply' => '99.38M'
'max_supply' => '99.53M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01258'
'change_24h_pct' => '0%'
'ath_price' => '$0.3539'
'ath_days' => 388
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 dic. 2024'
'ath_pct' => '-96.44%'
'fdv' => '$1.25M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.620464'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012691'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011121'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004347'
'current_year_max_price_prediction' => '$0.012977'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014111'
'grand_prediction_max_price' => '$0.040800073'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012822174874963
107 => 0.012870048221497
108 => 0.012977909315711
109 => 0.01205624807515
110 => 0.012470046913609
111 => 0.012713114963497
112 => 0.011614924671215
113 => 0.012691407272369
114 => 0.012040204003463
115 => 0.011819175833251
116 => 0.012116761146194
117 => 0.012000791860329
118 => 0.011901088278287
119 => 0.011845451966383
120 => 0.012063965776916
121 => 0.012053771846474
122 => 0.011696240840739
123 => 0.011229856218586
124 => 0.011386390206334
125 => 0.011329519941071
126 => 0.011123414763349
127 => 0.0112623047679
128 => 0.010650703478481
129 => 0.009598475248304
130 => 0.010293609447781
131 => 0.010266847537262
201 => 0.010253352968422
202 => 0.010775727107231
203 => 0.010725512887006
204 => 0.010634373585599
205 => 0.011121740918606
206 => 0.010943845286043
207 => 0.011492077708121
208 => 0.011853179038751
209 => 0.011761592060898
210 => 0.01210120960771
211 => 0.011389996433258
212 => 0.011626232920891
213 => 0.011674920933582
214 => 0.011115726881369
215 => 0.010733728554445
216 => 0.010708253621139
217 => 0.010045921164864
218 => 0.010399733816845
219 => 0.010711074308826
220 => 0.010561966374165
221 => 0.010514763256525
222 => 0.010755913747444
223 => 0.010774653205903
224 => 0.010347391567125
225 => 0.010436232791443
226 => 0.010806715465475
227 => 0.010426897578618
228 => 0.0096889734673544
301 => 0.0095059580851619
302 => 0.0094815404595347
303 => 0.0089851882278958
304 => 0.0095181880481222
305 => 0.0092855193430862
306 => 0.010020516994496
307 => 0.0096006902778821
308 => 0.0095825923872259
309 => 0.0095552347711157
310 => 0.0091280039012915
311 => 0.0092215403098448
312 => 0.0095324695778732
313 => 0.0096434126435746
314 => 0.0096318403728922
315 => 0.009530945854833
316 => 0.009577134848537
317 => 0.0094283440065042
318 => 0.0093758028633689
319 => 0.0092099685630538
320 => 0.0089662379544853
321 => 0.0090001301904934
322 => 0.0085172360793364
323 => 0.0082541297384478
324 => 0.0081813053709757
325 => 0.0080839215832521
326 => 0.0081923051289274
327 => 0.008515868100992
328 => 0.0081255825089683
329 => 0.0074564652367948
330 => 0.0074966803249728
331 => 0.0075870316881419
401 => 0.0074186625206104
402 => 0.007259315233695
403 => 0.0073978547714139
404 => 0.0071143409623769
405 => 0.0076212929774608
406 => 0.0076075813461694
407 => 0.0077965417076903
408 => 0.0079147024996064
409 => 0.0076423801292506
410 => 0.0075738917895441
411 => 0.0076129058604624
412 => 0.0069680901730997
413 => 0.0077438465093041
414 => 0.0077505552823136
415 => 0.0076931106947922
416 => 0.0081061769950312
417 => 0.0089778757271455
418 => 0.0086499076001239
419 => 0.008522908428452
420 => 0.0082814829102678
421 => 0.0086031680788193
422 => 0.008578467676945
423 => 0.0084667630923197
424 => 0.0083992038109988
425 => 0.0085236838583132
426 => 0.0083837793555769
427 => 0.0083586486625669
428 => 0.0082063840053895
429 => 0.0081520324503777
430 => 0.0081117927228447
501 => 0.0080674927367048
502 => 0.0081652074672606
503 => 0.0079437730323777
504 => 0.0076767448113943
505 => 0.0076545443041049
506 => 0.0077158418566195
507 => 0.0076887222526979
508 => 0.007654414465875
509 => 0.0075889115576604
510 => 0.0075694782440413
511 => 0.0076326270855999
512 => 0.0075613357252865
513 => 0.0076665300108703
514 => 0.0076379229858568
515 => 0.0074781264695855
516 => 0.0072789608460637
517 => 0.0072771878542503
518 => 0.0072342779473596
519 => 0.0071796257293867
520 => 0.0071644227326199
521 => 0.0073861873579654
522 => 0.0078452334955738
523 => 0.0077551117547182
524 => 0.0078202339485339
525 => 0.0081405706883029
526 => 0.0082423961050136
527 => 0.0081701228360995
528 => 0.0080711907279888
529 => 0.0080755432386567
530 => 0.0084136242008567
531 => 0.0084347098957706
601 => 0.0084879866443149
602 => 0.0085564623222018
603 => 0.0081817845401408
604 => 0.0080578959488159
605 => 0.0079991906611687
606 => 0.0078184010970211
607 => 0.0080133671422285
608 => 0.0078997687769646
609 => 0.0079150970775114
610 => 0.0079051145016716
611 => 0.007910565663099
612 => 0.0076211512740408
613 => 0.0077265986662412
614 => 0.0075512719248501
615 => 0.0073165290994777
616 => 0.0073157421592157
617 => 0.0073731951331656
618 => 0.0073390198561251
619 => 0.0072470550643357
620 => 0.0072601182289478
621 => 0.0071456711612381
622 => 0.0072740141750988
623 => 0.007277694593503
624 => 0.0072282755422754
625 => 0.0074260056630509
626 => 0.007507015854865
627 => 0.0074744871766883
628 => 0.0075047335560893
629 => 0.007758856719926
630 => 0.0078002898838024
701 => 0.0078186917582751
702 => 0.0077940356842628
703 => 0.0075093784610238
704 => 0.0075220042193304
705 => 0.0074293647821986
706 => 0.0073510942199256
707 => 0.0073542246319415
708 => 0.0073944658754107
709 => 0.0075702017457584
710 => 0.0079400275247096
711 => 0.0079540621426817
712 => 0.0079710725090825
713 => 0.0079018828002051
714 => 0.0078810145219513
715 => 0.0079085451675277
716 => 0.0080474322855861
717 => 0.008404687660717
718 => 0.0082784097508615
719 => 0.0081757438445162
720 => 0.0082658095229107
721 => 0.00825194461768
722 => 0.0081349108643854
723 => 0.0081316261167234
724 => 0.0079070009261969
725 => 0.0078239621077273
726 => 0.0077545686556663
727 => 0.0076787928175776
728 => 0.0076338703607296
729 => 0.0077028916713397
730 => 0.0077186776617124
731 => 0.0075677613597773
801 => 0.0075471920254784
802 => 0.0076704335353933
803 => 0.0076161995417863
804 => 0.0076719805491494
805 => 0.0076849222213382
806 => 0.0076828383140438
807 => 0.0076262117959837
808 => 0.0076623038499682
809 => 0.0075769353827358
810 => 0.0074841099965498
811 => 0.007424893183389
812 => 0.0073732186599358
813 => 0.0074018906888886
814 => 0.0072996801409776
815 => 0.007266980929609
816 => 0.0076500766741752
817 => 0.0079330736196595
818 => 0.007928958731993
819 => 0.0079039104115868
820 => 0.0078666936883294
821 => 0.0080447096504712
822 => 0.0079826924488025
823 => 0.008027815144727
824 => 0.0080393007646334
825 => 0.0080740642768427
826 => 0.0080864892444326
827 => 0.0080489323626809
828 => 0.0079228868803354
829 => 0.0076087935223753
830 => 0.007462582216366
831 => 0.0074143300500411
901 => 0.0074160839246431
902 => 0.0073677042334788
903 => 0.0073819542207524
904 => 0.0073627486694432
905 => 0.0073263780015854
906 => 0.0073996449026382
907 => 0.0074080882304562
908 => 0.0073909868602762
909 => 0.0073950148520322
910 => 0.0072534228110325
911 => 0.0072641877463879
912 => 0.0072042472183869
913 => 0.0071930090919805
914 => 0.0070414846568127
915 => 0.0067730371560947
916 => 0.0069217831303219
917 => 0.0067421189103046
918 => 0.0066740773478268
919 => 0.0069961755219624
920 => 0.0069638457988919
921 => 0.006908511366388
922 => 0.0068266602080085
923 => 0.0067963008171686
924 => 0.0066118467690409
925 => 0.0066009482398534
926 => 0.0066923686467838
927 => 0.0066501812745695
928 => 0.0065909342263735
929 => 0.0063763474235844
930 => 0.0061350808100007
1001 => 0.0061423631325169
1002 => 0.006219105553373
1003 => 0.0064422444921374
1004 => 0.0063550602484193
1005 => 0.0062918070792779
1006 => 0.006279961662081
1007 => 0.0064282318583609
1008 => 0.0066380652496634
1009 => 0.006736514382105
1010 => 0.0066389542818
1011 => 0.0065268824915784
1012 => 0.0065337037821585
1013 => 0.006579082772396
1014 => 0.0065838514626456
1015 => 0.0065109042483775
1016 => 0.0065314384619032
1017 => 0.0065002451138698
1018 => 0.0063088115945673
1019 => 0.0063053491692454
1020 => 0.006258368296326
1021 => 0.0062569457341654
1022 => 0.0061770195494016
1023 => 0.0061658373236496
1024 => 0.0060071390326285
1025 => 0.0061115947283612
1026 => 0.0060415313318339
1027 => 0.0059359292669826
1028 => 0.0059177234311985
1029 => 0.0059171761417906
1030 => 0.0060256058502032
1031 => 0.0061103276640876
1101 => 0.0060427501146132
1102 => 0.0060273640165336
1103 => 0.0061916472907083
1104 => 0.0061707407465943
1105 => 0.0061526358142243
1106 => 0.0066192769709451
1107 => 0.006249894082937
1108 => 0.0060888220601274
1109 => 0.0058894648451529
1110 => 0.0059543765595949
1111 => 0.0059680544115793
1112 => 0.0054886362464047
1113 => 0.005294136356501
1114 => 0.0052273913238598
1115 => 0.0051889786139386
1116 => 0.0052064837682062
1117 => 0.0050314110547312
1118 => 0.0051490628136218
1119 => 0.0049974646422806
1120 => 0.0049720487155121
1121 => 0.0052431250252799
1122 => 0.0052808437101793
1123 => 0.0051199240821217
1124 => 0.005223260533856
1125 => 0.005185789299973
1126 => 0.0050000633578151
1127 => 0.0049929699929322
1128 => 0.0048997792437399
1129 => 0.0047539537665387
1130 => 0.0046873076104379
1201 => 0.0046525977136921
1202 => 0.0046669196935718
1203 => 0.0046596780622848
1204 => 0.004612421519709
1205 => 0.0046623867519887
1206 => 0.0045347462305734
1207 => 0.0044839187464763
1208 => 0.0044609611510983
1209 => 0.0043476728416279
1210 => 0.0045279649215352
1211 => 0.0045634847325367
1212 => 0.0045990745285385
1213 => 0.0049088594045485
1214 => 0.004893383427586
1215 => 0.0050332787222204
1216 => 0.0050278426483218
1217 => 0.0049879422441386
1218 => 0.0048196090021873
1219 => 0.0048867036321776
1220 => 0.0046801967898882
1221 => 0.0048349257572317
1222 => 0.0047643139181723
1223 => 0.0048110518234166
1224 => 0.0047270128556003
1225 => 0.0047735234902738
1226 => 0.0045719077974232
1227 => 0.0043836419002488
1228 => 0.0044594055930959
1229 => 0.00454176939185
1230 => 0.0047203550934545
1231 => 0.0046139909228789
]
'min_raw' => 0.0043476728416279
'max_raw' => 0.012977909315711
'avg_raw' => 0.0086627910786694
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004347'
'max' => '$0.012977'
'avg' => '$0.008662'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0082360471583721
'max_diff' => 0.00039418931571087
'year' => 2026
]
1 => [
'items' => [
101 => 0.0046522435006925
102 => 0.0045241037684212
103 => 0.0042597148994407
104 => 0.0042612113117266
105 => 0.0042205408442585
106 => 0.0041853956223806
107 => 0.0046262081273672
108 => 0.0045713861241577
109 => 0.0044840344369697
110 => 0.0046009581414889
111 => 0.0046318746247925
112 => 0.0046327547736087
113 => 0.0047180592901883
114 => 0.0047635863259785
115 => 0.004771610663362
116 => 0.0049058391633261
117 => 0.0049508307859973
118 => 0.0051361449123274
119 => 0.0047597236750714
120 => 0.004751971527401
121 => 0.0046026034977921
122 => 0.004507871931999
123 => 0.0046090898491483
124 => 0.0046987551061191
125 => 0.0046053896472671
126 => 0.0046175812051407
127 => 0.0044922457048702
128 => 0.0045370472486335
129 => 0.0045756363735421
130 => 0.0045543297269315
131 => 0.004522432645702
201 => 0.0046914035775766
202 => 0.0046818695753978
203 => 0.0048392191917843
204 => 0.0049618844699367
205 => 0.0051817225774269
206 => 0.0049523100518411
207 => 0.0049439493475766
208 => 0.0050256765728617
209 => 0.004950818273985
210 => 0.0049981261348544
211 => 0.0051741005496642
212 => 0.0051778186117523
213 => 0.0051155362813245
214 => 0.0051117463958578
215 => 0.0051237083987104
216 => 0.005193770223045
217 => 0.0051692884688401
218 => 0.0051976193746082
219 => 0.0052330476060894
220 => 0.0053795937927546
221 => 0.0054149255822298
222 => 0.0053290876512376
223 => 0.0053368378553197
224 => 0.0053047321128247
225 => 0.0052737183678583
226 => 0.005343432737349
227 => 0.0054708371178326
228 => 0.0054700445417939
301 => 0.0054995998816788
302 => 0.0055180126135775
303 => 0.0054389716893249
304 => 0.0053875189540518
305 => 0.0054072492067782
306 => 0.0054387983105565
307 => 0.005397018257631
308 => 0.0051391324165716
309 => 0.0052173585069378
310 => 0.0052043378604404
311 => 0.0051857948764636
312 => 0.0052644518152311
313 => 0.0052568651616021
314 => 0.0050296154310086
315 => 0.0050441632214512
316 => 0.0050305001303292
317 => 0.0050746483729499
318 => 0.0049484341240013
319 => 0.0049872567769119
320 => 0.0050116059808777
321 => 0.005025947849073
322 => 0.0050777605113054
323 => 0.0050716808934119
324 => 0.0050773825937209
325 => 0.0051542070937759
326 => 0.0055427590520688
327 => 0.0055639070778671
328 => 0.0054597664643092
329 => 0.0055013685853428
330 => 0.005421501610342
331 => 0.0054751168457222
401 => 0.0055117990280901
402 => 0.0053460392995478
403 => 0.0053362240841952
404 => 0.0052560274697784
405 => 0.0052991205877976
406 => 0.0052305563385242
407 => 0.0052473796070202
408 => 0.005200340281679
409 => 0.0052850017018569
410 => 0.0053796663246705
411 => 0.0054035823468124
412 => 0.0053406695890519
413 => 0.0052951166062805
414 => 0.0052151405746193
415 => 0.005348142497654
416 => 0.0053870363131095
417 => 0.005347938204999
418 => 0.0053388783190393
419 => 0.0053217098515164
420 => 0.0053425206905848
421 => 0.0053868244890376
422 => 0.00536593163585
423 => 0.0053797317334651
424 => 0.0053271399919551
425 => 0.0054389978551597
426 => 0.0056166550619896
427 => 0.0056172262589594
428 => 0.0055963332931515
429 => 0.0055877843416881
430 => 0.0056092217924982
501 => 0.0056208507301524
502 => 0.0056901755151162
503 => 0.0057645637714035
504 => 0.0061117013053577
505 => 0.0060142264749167
506 => 0.0063222275463451
507 => 0.0065658164049114
508 => 0.0066388580527456
509 => 0.0065716631736132
510 => 0.0063417931218975
511 => 0.0063305146005073
512 => 0.0066740375064031
513 => 0.0065769765511417
514 => 0.0065654314593588
515 => 0.0064426111885286
516 => 0.0065152131801757
517 => 0.0064993340595955
518 => 0.0064742680909266
519 => 0.0066127876334906
520 => 0.0068720838514457
521 => 0.0068316701042129
522 => 0.0068015031166434
523 => 0.0066693201585918
524 => 0.0067489238234714
525 => 0.0067205784831155
526 => 0.0068423680536817
527 => 0.0067702226100476
528 => 0.0065762412189435
529 => 0.0066071333948479
530 => 0.0066024641046064
531 => 0.0066985577669072
601 => 0.0066697128346758
602 => 0.0065968316686436
603 => 0.0068711976051619
604 => 0.0068533818073479
605 => 0.0068786405353897
606 => 0.0068897602086258
607 => 0.0070567619193144
608 => 0.0071251771767248
609 => 0.0071407086379347
610 => 0.0072056978410487
611 => 0.0071390916473574
612 => 0.0074055639115338
613 => 0.0075827524181234
614 => 0.0077885659865644
615 => 0.0080893149275287
616 => 0.0082023993114145
617 => 0.0081819716296446
618 => 0.0084099960442835
619 => 0.0088197508486917
620 => 0.0082647947909537
621 => 0.0088491648672904
622 => 0.0086641600479992
623 => 0.0082255169495543
624 => 0.0081972735052768
625 => 0.0084943277042948
626 => 0.0091531653273096
627 => 0.0089881339752189
628 => 0.0091534352594808
629 => 0.0089606025308946
630 => 0.0089510267605985
701 => 0.0091440698042641
702 => 0.0095951253980173
703 => 0.0093808457929912
704 => 0.0090736234356716
705 => 0.0093004716434071
706 => 0.0091039547320561
707 => 0.0086611471291622
708 => 0.0089880077788542
709 => 0.0087694453708605
710 => 0.0088332335009297
711 => 0.0092926191738278
712 => 0.009237344674281
713 => 0.0093088749949754
714 => 0.0091826258512242
715 => 0.0090646892432979
716 => 0.0088445518065159
717 => 0.0087793799641292
718 => 0.0087973911167276
719 => 0.0087793710386965
720 => 0.0086562061659844
721 => 0.0086296087234489
722 => 0.0085852784872956
723 => 0.0085990182811339
724 => 0.0085156644678978
725 => 0.0086729703352509
726 => 0.0087021676904063
727 => 0.0088166417824452
728 => 0.0088285268624339
729 => 0.0091473355793257
730 => 0.0089717410954245
731 => 0.0090895450353238
801 => 0.0090790075421255
802 => 0.0082350236755798
803 => 0.0083513172058571
804 => 0.0085322334440484
805 => 0.0084507309239694
806 => 0.0083355054292302
807 => 0.0082424546642282
808 => 0.0081014732403208
809 => 0.0082999018871619
810 => 0.0085608144572239
811 => 0.008835144035782
812 => 0.0091647330496335
813 => 0.0090911726185809
814 => 0.0088289825984254
815 => 0.0088407442511996
816 => 0.0089134501606102
817 => 0.008819289401895
818 => 0.0087915195559136
819 => 0.0089096350102074
820 => 0.008910448406426
821 => 0.0088021050738163
822 => 0.0086817012862413
823 => 0.008681196789975
824 => 0.0086597720989387
825 => 0.0089644139358348
826 => 0.0091319361433638
827 => 0.0091511422944815
828 => 0.009130643416367
829 => 0.0091385326209819
830 => 0.0090410551395207
831 => 0.0092638597560918
901 => 0.0094683273053504
902 => 0.009413525634337
903 => 0.0093313701389714
904 => 0.009265929329768
905 => 0.0093981098594275
906 => 0.0093922240685132
907 => 0.0094665414596812
908 => 0.0094631699935397
909 => 0.0094381798501084
910 => 0.0094135265268137
911 => 0.0095112741669919
912 => 0.0094831244163996
913 => 0.0094549309414696
914 => 0.0093983846112923
915 => 0.0094060701966984
916 => 0.0093239288866375
917 => 0.0092859265580726
918 => 0.0087144627167935
919 => 0.008561748905284
920 => 0.0086097957791612
921 => 0.0086256140575781
922 => 0.0085591528111011
923 => 0.0086544411660557
924 => 0.0086395905768713
925 => 0.0086973655320835
926 => 0.0086612702483639
927 => 0.0086627516113983
928 => 0.0087689001444917
929 => 0.0087997155152369
930 => 0.0087840425689653
1001 => 0.0087950193632968
1002 => 0.009047974955649
1003 => 0.009012012759481
1004 => 0.0089929085595199
1005 => 0.0089982005534696
1006 => 0.0090628361307446
1007 => 0.00908093056341
1008 => 0.0090042631807337
1009 => 0.0090404199616127
1010 => 0.0091943709456167
1011 => 0.009248245077147
1012 => 0.0094201854439417
1013 => 0.009347142120131
1014 => 0.0094812163022266
1015 => 0.0098933146287313
1016 => 0.010222527286979
1017 => 0.0099197697211659
1018 => 0.010524326843058
1019 => 0.010995061281019
1020 => 0.010976993709241
1021 => 0.010894910271698
1022 => 0.010358991629202
1023 => 0.0098658313042803
1024 => 0.010278380856771
1025 => 0.010279432530422
1026 => 0.010243994157991
1027 => 0.010023889470419
1028 => 0.010236334991968
1029 => 0.01025319814598
1030 => 0.010243759264008
1031 => 0.010075005516109
1101 => 0.0098173497339739
1102 => 0.0098676950570623
1103 => 0.0099501617232979
1104 => 0.0097940351197651
1105 => 0.0097441432098919
1106 => 0.0098369017626705
1107 => 0.010135789146735
1108 => 0.010079286218114
1109 => 0.010077810698302
1110 => 0.010319554187912
1111 => 0.010146518020861
1112 => 0.0098683300728145
1113 => 0.0097980839470845
1114 => 0.0095487575242033
1115 => 0.0097209681725576
1116 => 0.0097271657272111
1117 => 0.0096328477150576
1118 => 0.0098759834596845
1119 => 0.0098737429209946
1120 => 0.010104564124538
1121 => 0.010545807573228
1122 => 0.010415310173179
1123 => 0.010263555894999
1124 => 0.010280055792727
1125 => 0.010461018945584
1126 => 0.010351604492379
1127 => 0.010390950692616
1128 => 0.010460959390397
1129 => 0.010503197375987
1130 => 0.010273978396606
1201 => 0.010220536487701
1202 => 0.010111213097643
1203 => 0.010082692665794
1204 => 0.010171734285889
1205 => 0.010148274964881
1206 => 0.0097266448467406
1207 => 0.0096825821534671
1208 => 0.0096839334933628
1209 => 0.0095731357560597
1210 => 0.0094041426121686
1211 => 0.009848246504258
1212 => 0.0098125787464933
1213 => 0.0097732043023861
1214 => 0.0097780274471218
1215 => 0.0099707978946004
1216 => 0.0098589812999219
1217 => 0.010156264043254
1218 => 0.010095151648362
1219 => 0.01003247195114
1220 => 0.010023807707713
1221 => 0.0099996813718629
1222 => 0.0099169431892182
1223 => 0.0098170318618808
1224 => 0.0097510617494017
1225 => 0.0089948390246492
1226 => 0.009135189563618
1227 => 0.0092966500653475
1228 => 0.0093523855835322
1229 => 0.0092570461228969
1230 => 0.009920707772225
1231 => 0.01004196515076
]
'min_raw' => 0.0041853956223806
'max_raw' => 0.010995061281019
'avg_raw' => 0.0075902284516997
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004185'
'max' => '$0.010995'
'avg' => '$0.00759'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016227721924726
'max_diff' => -0.001982848034692
'year' => 2027
]
2 => [
'items' => [
101 => 0.0096746686417543
102 => 0.009605962461537
103 => 0.0099252121379617
104 => 0.0097326655563919
105 => 0.009819369270283
106 => 0.0096319632652463
107 => 0.010012757799101
108 => 0.010009856782759
109 => 0.0098617191084545
110 => 0.0099869240563735
111 => 0.0099651666155301
112 => 0.0097979195460876
113 => 0.010018059829516
114 => 0.01001816901635
115 => 0.009875589725623
116 => 0.0097090883286739
117 => 0.0096793218114869
118 => 0.0096568967393554
119 => 0.0098138540772205
120 => 0.0099545815355576
121 => 0.010216440446227
122 => 0.010282277997984
123 => 0.010539246345544
124 => 0.010386234206134
125 => 0.010454062505695
126 => 0.010527699719768
127 => 0.010563004108114
128 => 0.010505477501843
129 => 0.010904655117995
130 => 0.010938357939285
131 => 0.010949658203735
201 => 0.010815057757516
202 => 0.010934614457385
203 => 0.010878677836818
204 => 0.011024209383892
205 => 0.011047030588714
206 => 0.011027701840118
207 => 0.011034945650737
208 => 0.010694317975107
209 => 0.010676654633172
210 => 0.010435813712548
211 => 0.010533958167908
212 => 0.010350481812798
213 => 0.010408664055019
214 => 0.01043431023301
215 => 0.010420914125035
216 => 0.01053950710816
217 => 0.010438678845558
218 => 0.010172576482852
219 => 0.0099064016207345
220 => 0.0099030600121619
221 => 0.009832980869343
222 => 0.0097823264847202
223 => 0.0097920843162594
224 => 0.0098264721873375
225 => 0.0097803277991394
226 => 0.0097901750439413
227 => 0.0099537049195022
228 => 0.0099864996698042
229 => 0.0098750502945418
301 => 0.0094275649707953
302 => 0.009317750949916
303 => 0.0093966830904174
304 => 0.0093589586111386
305 => 0.0075534100359598
306 => 0.0079775968916175
307 => 0.0077255594660102
308 => 0.0078417099074144
309 => 0.0075844449606443
310 => 0.0077072252776541
311 => 0.0076845522363217
312 => 0.0083666321476177
313 => 0.0083559824079731
314 => 0.0083610798747692
315 => 0.008117764503207
316 => 0.0085053724968379
317 => 0.0086963221324331
318 => 0.0086609824368444
319 => 0.0086698766768603
320 => 0.0085170441653615
321 => 0.0083625596275559
322 => 0.0081912125001295
323 => 0.0085095542837427
324 => 0.0084741601116804
325 => 0.0085553416079702
326 => 0.0087618090101839
327 => 0.0087922121194533
328 => 0.0088330742066292
329 => 0.0088184280571381
330 => 0.0091673587578633
331 => 0.0091251009476866
401 => 0.0092269301118108
402 => 0.0090174597954101
403 => 0.0087804242492978
404 => 0.0088254769573379
405 => 0.0088211380192626
406 => 0.0087658983575633
407 => 0.0087160304609132
408 => 0.0086330144631837
409 => 0.0088956893640559
410 => 0.0088850252427812
411 => 0.0090576649705339
412 => 0.0090271492217208
413 => 0.0088233575826762
414 => 0.008830636040933
415 => 0.0088795871706178
416 => 0.009049007589371
417 => 0.0090993031046787
418 => 0.0090760042180584
419 => 0.0091311509545158
420 => 0.0091747366864981
421 => 0.0091366246513951
422 => 0.0096762106972856
423 => 0.009452136951224
424 => 0.0095613489359593
425 => 0.0095873953508043
426 => 0.0095206780068759
427 => 0.009535146609805
428 => 0.0095570626007843
429 => 0.0096901322064194
430 => 0.010039345355607
501 => 0.010194009482207
502 => 0.010659324138079
503 => 0.010181166779522
504 => 0.010152794900677
505 => 0.010236612121356
506 => 0.010509801082911
507 => 0.010731195076917
508 => 0.010804644237255
509 => 0.010814351756307
510 => 0.010952147263909
511 => 0.011031129079132
512 => 0.010935415264904
513 => 0.010854307829
514 => 0.010563791061018
515 => 0.010597419167963
516 => 0.010829083477424
517 => 0.011156322959497
518 => 0.011437128478581
519 => 0.011338800172858
520 => 0.012088975736556
521 => 0.012163352579505
522 => 0.012153076104701
523 => 0.012322517621695
524 => 0.011986210716626
525 => 0.011842432999069
526 => 0.010871844177251
527 => 0.011144540046379
528 => 0.011540919507022
529 => 0.011488457199059
530 => 0.011200595839487
531 => 0.011436910109926
601 => 0.011358777221888
602 => 0.011297150571356
603 => 0.011579474204357
604 => 0.011269047772657
605 => 0.011537822765902
606 => 0.011193116056944
607 => 0.011339249328276
608 => 0.011256297015797
609 => 0.011309977328224
610 => 0.010996163318646
611 => 0.01116548974081
612 => 0.01098911878279
613 => 0.010989035159992
614 => 0.010985141761318
615 => 0.01119264141128
616 => 0.011199407967415
617 => 0.011046065412579
618 => 0.011023966354766
619 => 0.011105678154085
620 => 0.011010015037437
621 => 0.01105477520762
622 => 0.011011370777394
623 => 0.011001599525913
624 => 0.01092374053167
625 => 0.010890196736172
626 => 0.010903350122704
627 => 0.010858450833436
628 => 0.010831397387574
629 => 0.010979760150011
630 => 0.010900495910977
701 => 0.01096761176857
702 => 0.010891124778147
703 => 0.010625987545545
704 => 0.010473504319301
705 => 0.0099726846651513
706 => 0.010114716497803
707 => 0.010208883749794
708 => 0.010177761473573
709 => 0.010244624165618
710 => 0.010248728991873
711 => 0.010226991249105
712 => 0.010201821727757
713 => 0.010189570596726
714 => 0.010280880490265
715 => 0.010333888956814
716 => 0.010218334693327
717 => 0.010191261946168
718 => 0.010308093686479
719 => 0.010379360980577
720 => 0.010905558638565
721 => 0.010866576216465
722 => 0.010964414446022
723 => 0.010953399362824
724 => 0.011055949414251
725 => 0.01122357540745
726 => 0.010882744894312
727 => 0.010941901286361
728 => 0.010927397505151
729 => 0.011085745985302
730 => 0.011086240331973
731 => 0.010991302508029
801 => 0.011042769842579
802 => 0.011014042188366
803 => 0.011065956942305
804 => 0.010866055582452
805 => 0.011109513860735
806 => 0.011247539016416
807 => 0.011249455495837
808 => 0.011314878324194
809 => 0.01138135170684
810 => 0.011508941576218
811 => 0.011377793294633
812 => 0.011141870303089
813 => 0.011158903181052
814 => 0.011020581617431
815 => 0.011022906827905
816 => 0.011010494672163
817 => 0.011047744485888
818 => 0.010874229821826
819 => 0.010914953366665
820 => 0.010857940165413
821 => 0.010941777350796
822 => 0.010851582398107
823 => 0.010927390510989
824 => 0.010960106779429
825 => 0.011080830514307
826 => 0.010833751404308
827 => 0.010329940373236
828 => 0.010435847560086
829 => 0.010279202511905
830 => 0.010293700607504
831 => 0.010322989067969
901 => 0.010228055585015
902 => 0.010246165901865
903 => 0.010245518873907
904 => 0.010239943136516
905 => 0.010215247271095
906 => 0.010179433380306
907 => 0.010322104898274
908 => 0.010346347569314
909 => 0.010400236024004
910 => 0.010560571512274
911 => 0.010544550216025
912 => 0.010570681614925
913 => 0.010513636917848
914 => 0.010296346747394
915 => 0.010308146649064
916 => 0.010161001686156
917 => 0.010396473196476
918 => 0.01034071043476
919 => 0.010304759819523
920 => 0.010294950361076
921 => 0.010455683290009
922 => 0.010503777101526
923 => 0.010473808265644
924 => 0.01041234130892
925 => 0.010530376036904
926 => 0.010561957150627
927 => 0.010569026997323
928 => 0.010778161904397
929 => 0.01058071531543
930 => 0.010628242671844
1001 => 0.010999037539309
1002 => 0.010662777760713
1003 => 0.010840902064923
1004 => 0.010832183807146
1005 => 0.010923306173782
1006 => 0.010824709113419
1007 => 0.01082593134215
1008 => 0.010906841830559
1009 => 0.010793217641872
1010 => 0.010765082694852
1011 => 0.010726214467051
1012 => 0.010811081820489
1013 => 0.010861955960655
1014 => 0.011271964167454
1015 => 0.011536848167692
1016 => 0.01152534885466
1017 => 0.011630431049962
1018 => 0.011583090558536
1019 => 0.01143021562393
1020 => 0.01169115449619
1021 => 0.011608582518861
1022 => 0.011615389652347
1023 => 0.011615136290499
1024 => 0.011670039436855
1025 => 0.011631135525862
1026 => 0.01155445192389
1027 => 0.011605358077553
1028 => 0.011756531154648
1029 => 0.012225777024508
1030 => 0.012488373229962
1031 => 0.012209968403214
1101 => 0.012402008324716
1102 => 0.012286852802635
1103 => 0.012265925618693
1104 => 0.012386540881035
1105 => 0.012507367264427
1106 => 0.012499671146152
1107 => 0.012411957396313
1108 => 0.012362410124683
1109 => 0.012737598665019
1110 => 0.013014031190369
1111 => 0.012995180345367
1112 => 0.013078381844581
1113 => 0.0133226640196
1114 => 0.013344998120239
1115 => 0.013342184536902
1116 => 0.013286827138144
1117 => 0.013527354663499
1118 => 0.013728006956829
1119 => 0.013274013499761
1120 => 0.013446888265001
1121 => 0.013524497316795
1122 => 0.013638450430396
1123 => 0.013830708433801
1124 => 0.014039551619415
1125 => 0.01406908433571
1126 => 0.014048129460228
1127 => 0.013910391765309
1128 => 0.014138910471026
1129 => 0.014272771369411
1130 => 0.014352482471048
1201 => 0.014554616562135
1202 => 0.013524976603878
1203 => 0.012796146264997
1204 => 0.012682328883143
1205 => 0.01291378100479
1206 => 0.012974813083473
1207 => 0.012950211129083
1208 => 0.012129846320317
1209 => 0.012678009832203
1210 => 0.013267787680095
1211 => 0.013290443449178
1212 => 0.013585698571506
1213 => 0.013681845742252
1214 => 0.0139195648157
1215 => 0.013904695422931
1216 => 0.013962576234379
1217 => 0.013949270438183
1218 => 0.014389594964088
1219 => 0.014875338304986
1220 => 0.01485851855766
1221 => 0.014788687205351
1222 => 0.014892398671544
1223 => 0.015393737854771
1224 => 0.015347582576576
1225 => 0.015392418497845
1226 => 0.015983525649107
1227 => 0.016752049029759
1228 => 0.01639499276096
1229 => 0.01716970212408
1230 => 0.017657340602586
1231 => 0.018500660928401
]
'min_raw' => 0.0075534100359598
'max_raw' => 0.018500660928401
'avg_raw' => 0.01302703548218
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007553'
'max' => '$0.01850066'
'avg' => '$0.013027'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033680144135791
'max_diff' => 0.0075055996473821
'year' => 2028
]
3 => [
'items' => [
101 => 0.018395073070169
102 => 0.018723371484438
103 => 0.018206048767082
104 => 0.017018171239861
105 => 0.016830185074166
106 => 0.017206538138456
107 => 0.018131765423017
108 => 0.017177399438661
109 => 0.017370466434327
110 => 0.017314863126587
111 => 0.017311900262616
112 => 0.017424980729536
113 => 0.017260951614388
114 => 0.016592667490998
115 => 0.016898938166525
116 => 0.016780672350378
117 => 0.016911897090694
118 => 0.017620062892975
119 => 0.017306965911222
120 => 0.016977143674879
121 => 0.017390813952667
122 => 0.017917558368821
123 => 0.017884595649909
124 => 0.017820634197871
125 => 0.018181181554093
126 => 0.018776700156107
127 => 0.018937666441244
128 => 0.019056488462122
129 => 0.019072872011286
130 => 0.019241632749999
131 => 0.018334163724756
201 => 0.019774340373275
202 => 0.020023019096397
203 => 0.019976277803127
204 => 0.020252673737877
205 => 0.020171351042385
206 => 0.020053527215758
207 => 0.020491673563438
208 => 0.01998937413241
209 => 0.019276423327806
210 => 0.018885284415832
211 => 0.019400367687395
212 => 0.01971491106741
213 => 0.019922804232883
214 => 0.019985712579143
215 => 0.018404607961953
216 => 0.017552480265369
217 => 0.018098684349215
218 => 0.0187650910285
219 => 0.018330461802005
220 => 0.018347498444822
221 => 0.017727831386392
222 => 0.018819917813251
223 => 0.01866081000675
224 => 0.019486261588333
225 => 0.019289260943725
226 => 0.01996238466466
227 => 0.019785128630105
228 => 0.02052090851929
301 => 0.020814431037531
302 => 0.02130730102879
303 => 0.021669858200702
304 => 0.021882758706662
305 => 0.021869976958854
306 => 0.022713594830079
307 => 0.022216142845181
308 => 0.021591225911718
309 => 0.02157992313598
310 => 0.021903576470961
311 => 0.022581865071127
312 => 0.022757735436452
313 => 0.022856022977993
314 => 0.02270549218671
315 => 0.022165543709808
316 => 0.021932396695083
317 => 0.022131044706548
318 => 0.021888115258544
319 => 0.022307479639763
320 => 0.022883356506575
321 => 0.022764440210842
322 => 0.02316195955855
323 => 0.023573350263171
324 => 0.024161657447494
325 => 0.024315462730427
326 => 0.024569697014426
327 => 0.024831387604272
328 => 0.024915435568971
329 => 0.025075909212134
330 => 0.025075063436823
331 => 0.025558661561616
401 => 0.026092085269051
402 => 0.026293440369821
403 => 0.026756445321255
404 => 0.025963565567552
405 => 0.026564973968682
406 => 0.027107459400729
407 => 0.026460685904593
408 => 0.027352112490119
409 => 0.027386724564419
410 => 0.027909325793001
411 => 0.027379569329552
412 => 0.027065001632599
413 => 0.027973146787005
414 => 0.028412569620918
415 => 0.028280211887201
416 => 0.027272962998315
417 => 0.026686700942045
418 => 0.025152340059284
419 => 0.026969856804372
420 => 0.027855116193215
421 => 0.02727067039036
422 => 0.027565430858138
423 => 0.02917354839393
424 => 0.02978581543366
425 => 0.029658468169466
426 => 0.0296799877608
427 => 0.030010355942005
428 => 0.031475390394551
429 => 0.030597507791353
430 => 0.031268616147864
501 => 0.031624569600296
502 => 0.031955199004417
503 => 0.031143277684393
504 => 0.030086979976535
505 => 0.029752406152095
506 => 0.027212558773434
507 => 0.027080348687377
508 => 0.027006135159697
509 => 0.026538229365389
510 => 0.026170583581247
511 => 0.025878218003884
512 => 0.025110963421131
513 => 0.025369889319816
514 => 0.024147045653385
515 => 0.024929377696249
516 => 0.022977689678033
517 => 0.024603113454326
518 => 0.02371846919184
519 => 0.024312484021668
520 => 0.024310411559886
521 => 0.023216641925599
522 => 0.022585778426932
523 => 0.022987789201858
524 => 0.023418776664232
525 => 0.023488702929987
526 => 0.024047489424879
527 => 0.024203434724528
528 => 0.023730913186202
529 => 0.022937245281896
530 => 0.023121596234429
531 => 0.022582042560763
601 => 0.021636495501297
602 => 0.022315603907074
603 => 0.022547481375095
604 => 0.022649891674741
605 => 0.021720054738569
606 => 0.021427879785482
607 => 0.021272328292044
608 => 0.022817215009829
609 => 0.022901847391613
610 => 0.022468856160589
611 => 0.024426017582731
612 => 0.023983051675705
613 => 0.024477953123136
614 => 0.023104868317762
615 => 0.023157322006431
616 => 0.022507281654907
617 => 0.022871260816048
618 => 0.022614012076549
619 => 0.02284185489674
620 => 0.022978422943731
621 => 0.02362835663003
622 => 0.02461053465302
623 => 0.023531278210676
624 => 0.023061030723509
625 => 0.023352769619775
626 => 0.024129708745433
627 => 0.025306811291587
628 => 0.024609942892867
629 => 0.024919201254626
630 => 0.024986760448724
701 => 0.024472915490978
702 => 0.02532575748812
703 => 0.025782802442864
704 => 0.026251635994304
705 => 0.026658711030602
706 => 0.026064373563988
707 => 0.026700399848194
708 => 0.026187874936877
709 => 0.025728087107575
710 => 0.02572878441592
711 => 0.02544035279417
712 => 0.024881480182306
713 => 0.024778415498034
714 => 0.025314571001251
715 => 0.025744516940716
716 => 0.025779929347592
717 => 0.0260179695111
718 => 0.026158839227855
719 => 0.02753955395515
720 => 0.028094888840339
721 => 0.028773941825997
722 => 0.02903847123324
723 => 0.02983460991
724 => 0.029191663269295
725 => 0.029052557719254
726 => 0.02712138570441
727 => 0.027437615013654
728 => 0.027943928649345
729 => 0.027129734629776
730 => 0.027646153333562
731 => 0.027748105324933
801 => 0.027102068628546
802 => 0.027447144741684
803 => 0.026530724893126
804 => 0.024630510101432
805 => 0.025327872970388
806 => 0.025841366771744
807 => 0.025108547803881
808 => 0.026422097439764
809 => 0.025654748859649
810 => 0.025411536198981
811 => 0.024462676898138
812 => 0.024910501963192
813 => 0.025516191775915
814 => 0.02514194589065
815 => 0.025918562295876
816 => 0.027018458241705
817 => 0.027802309592639
818 => 0.027862483966243
819 => 0.027358520061554
820 => 0.028166125435073
821 => 0.028172007958536
822 => 0.027261025798042
823 => 0.02670305429711
824 => 0.026576281998116
825 => 0.026892984056176
826 => 0.027277518821086
827 => 0.02788382296947
828 => 0.028250199868182
829 => 0.02920551650873
830 => 0.029463997800588
831 => 0.029747990373708
901 => 0.030127492031463
902 => 0.030583181073827
903 => 0.029586159391528
904 => 0.029625772921646
905 => 0.028697360135795
906 => 0.027705217926251
907 => 0.028458130191022
908 => 0.02944246282149
909 => 0.02921665582847
910 => 0.029191247928937
911 => 0.029233976968388
912 => 0.029063725869817
913 => 0.028293686460784
914 => 0.02790697749027
915 => 0.028405930722214
916 => 0.028671102159138
917 => 0.029082359932429
918 => 0.029031663731273
919 => 0.03009101958941
920 => 0.030502653242623
921 => 0.030397339739334
922 => 0.03041671995845
923 => 0.031161963025407
924 => 0.03199082658679
925 => 0.032767166690205
926 => 0.033556893187983
927 => 0.032604847071362
928 => 0.032121456767384
929 => 0.032620192171956
930 => 0.032355556146081
1001 => 0.033876233246901
1002 => 0.033981521629996
1003 => 0.035502088768554
1004 => 0.036945288048812
1005 => 0.036038840438483
1006 => 0.036893579707726
1007 => 0.037818049915328
1008 => 0.039601502935678
1009 => 0.039000898701058
1010 => 0.038540845270007
1011 => 0.038106097000626
1012 => 0.039010739134864
1013 => 0.04017454678855
1014 => 0.040425219810342
1015 => 0.040831405870111
1016 => 0.040404350894333
1017 => 0.040918691574095
1018 => 0.042734540186404
1019 => 0.042243881862419
1020 => 0.041547068165099
1021 => 0.042980506248562
1022 => 0.043499261918618
1023 => 0.047140160885524
1024 => 0.051736946229277
1025 => 0.049833846912844
1026 => 0.048652531754502
1027 => 0.048930168837882
1028 => 0.050608759234417
1029 => 0.051147869193988
1030 => 0.049682382481527
1031 => 0.050200017163352
1101 => 0.053052235152923
1102 => 0.054582358594219
1103 => 0.052504245437944
1104 => 0.046770813658944
1105 => 0.041484327715659
1106 => 0.042886541841383
1107 => 0.042727574275296
1108 => 0.04579192668365
1109 => 0.042232179823664
1110 => 0.042292116831306
1111 => 0.045419836802259
1112 => 0.044585414736704
1113 => 0.043233757855208
1114 => 0.041494196306727
1115 => 0.038278455894391
1116 => 0.03543018493363
1117 => 0.04101630020531
1118 => 0.040775416757104
1119 => 0.040426581827174
1120 => 0.041202876215851
1121 => 0.044972341412259
1122 => 0.044885443038913
1123 => 0.04433263992363
1124 => 0.044751936214389
1125 => 0.04316025318817
1126 => 0.043570466145976
1127 => 0.041483490309276
1128 => 0.042426890547274
1129 => 0.043230857806601
1130 => 0.043392266136849
1201 => 0.043755927346612
1202 => 0.040648482125728
1203 => 0.042043633800106
1204 => 0.04286315470077
1205 => 0.039160529457145
1206 => 0.042789965704552
1207 => 0.040594388417874
1208 => 0.039849176510311
1209 => 0.040852506169641
1210 => 0.04046150762563
1211 => 0.040125350037694
1212 => 0.039937768327705
1213 => 0.040674502896064
1214 => 0.040640133347862
1215 => 0.03943469260001
1216 => 0.037862244284487
1217 => 0.038390009553033
1218 => 0.038198267483145
1219 => 0.03750336948665
1220 => 0.037971646833983
1221 => 0.035909590386068
1222 => 0.032361929443798
1223 => 0.034705622930055
1224 => 0.034615393280282
1225 => 0.034569895399278
1226 => 0.03633111627927
1227 => 0.036161815529938
1228 => 0.035854533012102
1229 => 0.037497726002236
1230 => 0.036897938456772
1231 => 0.038746342344172
]
'min_raw' => 0.016592667490998
'max_raw' => 0.054582358594219
'avg_raw' => 0.035587513042609
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016592'
'max' => '$0.054582'
'avg' => '$0.035587'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0090392574550387
'max_diff' => 0.036081697665818
'year' => 2029
]
4 => [
'items' => [
101 => 0.039963820691681
102 => 0.039655028801454
103 => 0.04080007307187
104 => 0.038402168198884
105 => 0.039198656010445
106 => 0.039362811044523
107 => 0.037477449255804
108 => 0.036189515226306
109 => 0.036103624710062
110 => 0.033870524591155
111 => 0.035063428649721
112 => 0.036113134855534
113 => 0.035610407043442
114 => 0.0354512584367
115 => 0.036264314153425
116 => 0.036327495545965
117 => 0.034886953100371
118 => 0.035186487490856
119 => 0.03643559569263
120 => 0.035155013169053
121 => 0.032667050507711
122 => 0.032050001368923
123 => 0.031967675639337
124 => 0.03029418943616
125 => 0.032091235542912
126 => 0.031306776759473
127 => 0.033784872657097
128 => 0.032369397570669
129 => 0.032308379268767
130 => 0.032216141156004
131 => 0.030775702450085
201 => 0.031091066982026
202 => 0.032139386717572
203 => 0.032513439009382
204 => 0.032474422290826
205 => 0.032134249378959
206 => 0.032289978796045
207 => 0.031788320083886
208 => 0.0316111739515
209 => 0.031052052029807
210 => 0.03023029726629
211 => 0.030344567306272
212 => 0.028716456095916
213 => 0.027829374698112
214 => 0.027583842258745
215 => 0.027255506019316
216 => 0.027620928710658
217 => 0.028711843861418
218 => 0.027395968739041
219 => 0.025139993139632
220 => 0.025275581117152
221 => 0.025580207046207
222 => 0.025012538642715
223 => 0.024475288139607
224 => 0.024942383863548
225 => 0.023986497262078
226 => 0.025695721375193
227 => 0.025649491652978
228 => 0.026286584704637
301 => 0.026684972064305
302 => 0.02576681817971
303 => 0.025535904960686
304 => 0.025667443624663
305 => 0.023493402515126
306 => 0.026108919164217
307 => 0.02613153826081
308 => 0.025937859823328
309 => 0.027330541693952
310 => 0.030269534829338
311 => 0.029163767391081
312 => 0.02873558081699
313 => 0.027921597826641
314 => 0.029006181831753
315 => 0.028922902702307
316 => 0.028546282896278
317 => 0.028318502062466
318 => 0.028738195232906
319 => 0.02826649743411
320 => 0.028181767548058
321 => 0.027668396625605
322 => 0.027485146563179
323 => 0.027349475512353
324 => 0.027200115016156
325 => 0.02752956705245
326 => 0.026782985395184
327 => 0.025882681104823
328 => 0.025807830544507
329 => 0.026014499522468
330 => 0.025923063884416
331 => 0.02580739278585
401 => 0.025586545157537
402 => 0.02552102438388
403 => 0.025733935112106
404 => 0.025493571313405
405 => 0.025848241191682
406 => 0.02575179060957
407 => 0.025213025498325
408 => 0.024541524693321
409 => 0.024535546927636
410 => 0.02439087318068
411 => 0.024206609412088
412 => 0.02415535144705
413 => 0.024903046364514
414 => 0.026450752467038
415 => 0.026146900725645
416 => 0.026366464748781
417 => 0.027446502432109
418 => 0.027789813933772
419 => 0.02754613956167
420 => 0.027212583051956
421 => 0.027227257845555
422 => 0.028367121413671
423 => 0.02843821330623
424 => 0.028617839583611
425 => 0.028848710112425
426 => 0.02758545781104
427 => 0.027167758775762
428 => 0.026969829799788
429 => 0.02636028516194
430 => 0.027017626795451
501 => 0.026634621975779
502 => 0.026686302411261
503 => 0.026652645459855
504 => 0.026671024431196
505 => 0.025695243612219
506 => 0.026050766857124
507 => 0.025459640507602
508 => 0.024668188682638
509 => 0.024665535458602
510 => 0.024859242171513
511 => 0.024744017838929
512 => 0.024433952122635
513 => 0.024477995494165
514 => 0.024092129214943
515 => 0.024524846646798
516 => 0.024537255434406
517 => 0.024370635652864
518 => 0.025037296560135
519 => 0.025310428077787
520 => 0.025200755368234
521 => 0.02530273314812
522 => 0.026159527137308
523 => 0.026299221942088
524 => 0.026361265146651
525 => 0.026278135471686
526 => 0.025318393769403
527 => 0.025360962395036
528 => 0.025048622064867
529 => 0.024784727399488
530 => 0.024795281802158
531 => 0.024930957964068
601 => 0.025523463720432
602 => 0.026770357154577
603 => 0.026817675848936
604 => 0.026875027486882
605 => 0.026641749552731
606 => 0.026571390695622
607 => 0.026664212189311
608 => 0.027132479804633
609 => 0.028336991244661
610 => 0.027911236455141
611 => 0.027565091183993
612 => 0.027868753906885
613 => 0.027822007410883
614 => 0.027427419940615
615 => 0.027416345184539
616 => 0.026659005671848
617 => 0.026379034497793
618 => 0.026145069629273
619 => 0.025889586100657
620 => 0.025738126901008
621 => 0.025970837068644
622 => 0.026024060637328
623 => 0.025515235788714
624 => 0.025445884842021
625 => 0.025861402197146
626 => 0.025678548501204
627 => 0.025866618062034
628 => 0.025910251813377
629 => 0.02590322577444
630 => 0.025712305515263
701 => 0.025833992395139
702 => 0.025546166647629
703 => 0.025233199377241
704 => 0.025033545757284
705 => 0.024859321493661
706 => 0.024955991241093
707 => 0.024611381242698
708 => 0.024501133568583
709 => 0.025792767618279
710 => 0.026746911578195
711 => 0.026733037947135
712 => 0.026648585786068
713 => 0.026523107005217
714 => 0.027123300250255
715 => 0.026914204924926
716 => 0.027066339244602
717 => 0.027105063814017
718 => 0.027222271422541
719 => 0.027264163068254
720 => 0.027137537419291
721 => 0.026712566275348
722 => 0.025653578589688
723 => 0.02516061696333
724 => 0.024997931415707
725 => 0.025003844726379
726 => 0.024840729219857
727 => 0.024888774046852
728 => 0.024824021189724
729 => 0.024701394943722
730 => 0.024948419415954
731 => 0.024976886685186
801 => 0.024919228221645
802 => 0.024932808877076
803 => 0.024455421425205
804 => 0.024491716156339
805 => 0.02428962248127
806 => 0.02425173235347
807 => 0.023740857141203
808 => 0.022835767650127
809 => 0.023337275087346
810 => 0.022731524625802
811 => 0.022502117747398
812 => 0.023588094229673
813 => 0.023479092311151
814 => 0.023292528408638
815 => 0.023016561513496
816 => 0.022914202707654
817 => 0.022292303006221
818 => 0.022255557854155
819 => 0.022563788138889
820 => 0.022421550468041
821 => 0.022221794908551
822 => 0.021498300520975
823 => 0.020684853288581
824 => 0.02070940614738
825 => 0.020968148577281
826 => 0.021720477088388
827 => 0.021426529323683
828 => 0.021213266847728
829 => 0.021173329196628
830 => 0.02167323251528
831 => 0.022380700444156
901 => 0.022712628567682
902 => 0.022383697878075
903 => 0.02200584001274
904 => 0.022028838470178
905 => 0.022181836904024
906 => 0.02219791487614
907 => 0.021951968250223
908 => 0.022021200784778
909 => 0.021916030234033
910 => 0.021270598758243
911 => 0.021258924949532
912 => 0.021100525656384
913 => 0.02109572938874
914 => 0.02082625267654
915 => 0.020788551021699
916 => 0.020253488653561
917 => 0.020605668324588
918 => 0.020369444691525
919 => 0.020013399956979
920 => 0.019952017710542
921 => 0.019950172486092
922 => 0.020315750818326
923 => 0.020601396328925
924 => 0.020373553902759
925 => 0.02032167859886
926 => 0.020875571127632
927 => 0.020805083254503
928 => 0.020744041210972
929 => 0.022317354450701
930 => 0.021071954254292
1001 => 0.0205288886837
1002 => 0.019856741914737
1003 => 0.02007559629197
1004 => 0.020121712124893
1005 => 0.018505320309099
1006 => 0.01784955035074
1007 => 0.017624514813201
1008 => 0.017495003679812
1009 => 0.017554023529596
1010 => 0.016963753652928
1011 => 0.017360424772211
1012 => 0.016849300953288
1013 => 0.016763609381705
1014 => 0.017677562086031
1015 => 0.017804733265603
1016 => 0.017262181504558
1017 => 0.0176105875663
1018 => 0.017484250685106
1019 => 0.016858062704149
1020 => 0.016834146929204
1021 => 0.016519947811931
1022 => 0.016028287034338
1023 => 0.015803584865958
1024 => 0.015686558025712
1025 => 0.015734845580805
1026 => 0.015710429915326
1027 => 0.015551101182686
1028 => 0.015719562451778
1029 => 0.01528921352225
1030 => 0.015117845110954
1031 => 0.015040441975289
1101 => 0.014658482530373
1102 => 0.015266349865371
1103 => 0.015386107388077
1104 => 0.015506100870097
1105 => 0.016550562208054
1106 => 0.016498383871227
1107 => 0.016970050624264
1108 => 0.016951722521581
1109 => 0.01681719552312
1110 => 0.016249648245229
1111 => 0.016475862474639
1112 => 0.015779610238013
1113 => 0.016301289754243
1114 => 0.016063217008893
1115 => 0.016220797119561
1116 => 0.015937453872155
1117 => 0.016094267724225
1118 => 0.015414506339421
1119 => 0.014779754722793
1120 => 0.015035197302879
1121 => 0.015312892600835
1122 => 0.01591500676225
1123 => 0.015556392535045
1124 => 0.015685363771853
1125 => 0.015253331718071
1126 => 0.014361926187261
1127 => 0.014366971445759
1128 => 0.014229848125169
1129 => 0.014111353555847
1130 => 0.015597583692956
1201 => 0.015412747481585
1202 => 0.01511823516953
1203 => 0.015512451602669
1204 => 0.015616688684647
1205 => 0.015619656167831
1206 => 0.01590726630125
1207 => 0.016060763881013
1208 => 0.016087818494743
1209 => 0.016540379253906
1210 => 0.016692071650957
1211 => 0.017316871166098
1212 => 0.016047740683798
1213 => 0.01602160377669
1214 => 0.01551799903632
1215 => 0.015198604948302
1216 => 0.015539868222781
1217 => 0.015842180896886
1218 => 0.015527392733798
1219 => 0.015568497422357
1220 => 0.015145920032549
1221 => 0.015296971565291
1222 => 0.015427077494127
1223 => 0.015355240647497
1224 => 0.015247697411149
1225 => 0.015817394705137
1226 => 0.015785250151149
1227 => 0.016315765368596
1228 => 0.016729339918102
1229 => 0.017470539446112
1230 => 0.016697059099029
1231 => 0.016668870400875
]
'min_raw' => 0.014111353555847
'max_raw' => 0.04080007307187
'avg_raw' => 0.027455713313858
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014111'
'max' => '$0.040800073'
'avg' => '$0.027455'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024813139351514
'max_diff' => -0.01378228552235
'year' => 2030
]
5 => [
'items' => [
101 => 0.016944419446936
102 => 0.016692029465834
103 => 0.016851531221685
104 => 0.017444841247357
105 => 0.017457376953274
106 => 0.017247387727823
107 => 0.017234609864371
108 => 0.017274940592149
109 => 0.017511158924453
110 => 0.01742861698089
111 => 0.017524136607688
112 => 0.017643585363647
113 => 0.018137676063517
114 => 0.018256799658519
115 => 0.017967391081166
116 => 0.01799352143533
117 => 0.017885274682957
118 => 0.017780709676493
119 => 0.018015756540532
120 => 0.018445309304423
121 => 0.018442637078972
122 => 0.018542284970882
123 => 0.018604364782014
124 => 0.018337872787436
125 => 0.018164396298147
126 => 0.018230918222736
127 => 0.018337288228813
128 => 0.018196423863385
129 => 0.017326943745239
130 => 0.017590688470479
131 => 0.017546788451741
201 => 0.017484269486633
202 => 0.01774946684734
203 => 0.017723887914947
204 => 0.016957699582181
205 => 0.017006748473353
206 => 0.016960682407708
207 => 0.017109531290036
208 => 0.016683991137708
209 => 0.016814884422507
210 => 0.016896979463685
211 => 0.016945334073623
212 => 0.017120024081784
213 => 0.017099526225591
214 => 0.017118749906262
215 => 0.017377769071913
216 => 0.018687799127129
217 => 0.018759101172616
218 => 0.01840798382314
219 => 0.018548248278772
220 => 0.018278971196423
221 => 0.018459738705804
222 => 0.018583415244725
223 => 0.01802454474697
224 => 0.017991452063132
225 => 0.017721063578477
226 => 0.017866355034544
227 => 0.017635185881116
228 => 0.017691906705413
301 => 0.017533310335845
302 => 0.017818752224846
303 => 0.018137920609935
304 => 0.01821855514835
305 => 0.018006440393132
306 => 0.01785285533131
307 => 0.017583210556816
308 => 0.018031635826226
309 => 0.018162769040513
310 => 0.018030947039276
311 => 0.018000401001222
312 => 0.017942516314304
313 => 0.01801268151119
314 => 0.018162054860866
315 => 0.018091613147651
316 => 0.018138141140253
317 => 0.017960824411913
318 => 0.018337961007375
319 => 0.018936944683832
320 => 0.018938870514295
321 => 0.018868428421373
322 => 0.018839605034646
323 => 0.018911882896767
324 => 0.018951090671975
325 => 0.019184824024582
326 => 0.019435629224277
327 => 0.020606027656372
328 => 0.020277384460065
329 => 0.021315831576334
330 => 0.022137108419821
331 => 0.022383373435099
401 => 0.022156821208708
402 => 0.021381798280334
403 => 0.021343771958026
404 => 0.022501983419257
405 => 0.022174735632013
406 => 0.022135810549015
407 => 0.021721713430873
408 => 0.021966496114621
409 => 0.02191295855094
410 => 0.021828446887522
411 => 0.022295475196403
412 => 0.023169710498722
413 => 0.023033452728329
414 => 0.022931742623546
415 => 0.022486078551756
416 => 0.022754467865648
417 => 0.02265889957163
418 => 0.02306952161187
419 => 0.022826278211623
420 => 0.022172256408168
421 => 0.022276411536052
422 => 0.022260668698003
423 => 0.022584655189496
424 => 0.022487402486589
425 => 0.022241678546911
426 => 0.0231667224575
427 => 0.023106655251311
428 => 0.023191816816412
429 => 0.023229307571079
430 => 0.023792365498352
501 => 0.024023032315312
502 => 0.024075397721153
503 => 0.024294513356853
504 => 0.024069945924527
505 => 0.024968375767697
506 => 0.025565779188571
507 => 0.026259694004014
508 => 0.027273690056096
509 => 0.027654961951666
510 => 0.027586088596364
511 => 0.028354888830475
512 => 0.029736405761704
513 => 0.027865332667246
514 => 0.029835577179031
515 => 0.029211820514167
516 => 0.027732904682676
517 => 0.027637679938401
518 => 0.028639218910052
519 => 0.03086053595462
520 => 0.030304121228925
521 => 0.030861446049781
522 => 0.030211297042202
523 => 0.030179011664089
524 => 0.030829869763643
525 => 0.032350635189678
526 => 0.031628176540808
527 => 0.030592354913525
528 => 0.031357189483941
529 => 0.030694618996949
530 => 0.029201662247952
531 => 0.030303695749071
601 => 0.02956679733098
602 => 0.029781863465053
603 => 0.031330714334513
604 => 0.031144352500148
605 => 0.031385521970457
606 => 0.030959864167866
607 => 0.030562232660171
608 => 0.029820023922556
609 => 0.029600292505796
610 => 0.029661018364281
611 => 0.029600262413077
612 => 0.029185003445631
613 => 0.029095328311149
614 => 0.02894586582492
615 => 0.028992190499127
616 => 0.028711157298224
617 => 0.02924152501275
618 => 0.029339965934151
619 => 0.029725923327786
620 => 0.029765994704758
621 => 0.030840880552272
622 => 0.030248851490184
623 => 0.030646035698363
624 => 0.03061050780434
625 => 0.02776495727321
626 => 0.028157049029895
627 => 0.028767020758125
628 => 0.028492229321354
629 => 0.028103738521054
630 => 0.027790011370253
701 => 0.027314682656541
702 => 0.027983698693211
703 => 0.028863383639509
704 => 0.029788304966697
705 => 0.030899537338067
706 => 0.030651523208948
707 => 0.029767531250471
708 => 0.029807186483972
709 => 0.030052319533714
710 => 0.029734849961612
711 => 0.029641221987057
712 => 0.030039456487766
713 => 0.030042198909906
714 => 0.029676911799723
715 => 0.02927096202359
716 => 0.029269261079205
717 => 0.029197026237552
718 => 0.030224147460061
719 => 0.030788960278772
720 => 0.030853715158196
721 => 0.030784601759447
722 => 0.030811200763613
723 => 0.030482548629206
724 => 0.031233749949697
725 => 0.031923126567491
726 => 0.031738358907539
727 => 0.031461365919
728 => 0.03124072766184
729 => 0.031686383546137
730 => 0.031666539191136
731 => 0.031917105464133
801 => 0.031905738330649
802 => 0.031821482317315
803 => 0.031738361916587
804 => 0.032067924909969
805 => 0.031973016060495
806 => 0.031877959791363
807 => 0.031687309891231
808 => 0.031713222379018
809 => 0.031436277217225
810 => 0.031308149713231
811 => 0.029381419474027
812 => 0.028866534196385
813 => 0.029028527586187
814 => 0.029081860016267
815 => 0.028857781283593
816 => 0.029179052625143
817 => 0.029128982826873
818 => 0.02932377512209
819 => 0.029202077352937
820 => 0.029207071871833
821 => 0.029564959062211
822 => 0.029668855236139
823 => 0.029616012803534
824 => 0.029653021831998
825 => 0.030505879272409
826 => 0.030384630217228
827 => 0.030320219073247
828 => 0.030338061400323
829 => 0.030555984761818
830 => 0.030616991404862
831 => 0.030358501971423
901 => 0.030480407082543
902 => 0.030999463573627
903 => 0.031181103969453
904 => 0.031760812920594
905 => 0.031514542254644
906 => 0.03196658272034
907 => 0.033356000999937
908 => 0.034465964462111
909 => 0.033445196191116
910 => 0.035483502736404
911 => 0.037070616759619
912 => 0.037009700679932
913 => 0.036732950639375
914 => 0.034926063519554
915 => 0.033263339052726
916 => 0.034654278672238
917 => 0.034657824463378
918 => 0.034538341516498
919 => 0.033796243195132
920 => 0.034512518103506
921 => 0.034569373404604
922 => 0.034537549555034
923 => 0.033968584511984
924 => 0.033099880053563
925 => 0.033269622825354
926 => 0.033547664948206
927 => 0.033021273203984
928 => 0.032853059146504
929 => 0.033165801083393
930 => 0.034173520766416
1001 => 0.033983017197663
1002 => 0.033978042379598
1003 => 0.034793097432809
1004 => 0.034209693914599
1005 => 0.033271763825298
1006 => 0.033034924107971
1007 => 0.032194302665812
1008 => 0.032774922890102
1009 => 0.032795818378316
1010 => 0.032477818615267
1011 => 0.033297567753472
1012 => 0.03329001362085
1013 => 0.034068243424018
1014 => 0.03555592651791
1015 => 0.035115945422607
1016 => 0.034604295278577
1017 => 0.034659925835753
1018 => 0.035270055740056
1019 => 0.034901157272003
1020 => 0.035033815733166
1021 => 0.035269854945586
1022 => 0.035412263262963
1023 => 0.034639435470422
1024 => 0.034459252343354
1025 => 0.034090660901057
1026 => 0.033994502273847
1027 => 0.034294712312685
1028 => 0.034215617574028
1029 => 0.032794062193443
1030 => 0.032645501746712
1031 => 0.032650057883518
1101 => 0.03227649557655
1102 => 0.031706723393197
1103 => 0.03320405067172
1104 => 0.033083794336172
1105 => 0.032951040648829
1106 => 0.032967302218047
1107 => 0.033617241240524
1108 => 0.03324024378478
1109 => 0.034242553309543
1110 => 0.034036508603434
1111 => 0.033825179628091
1112 => 0.03379596752646
1113 => 0.033714623900694
1114 => 0.033435666341312
1115 => 0.033098808325608
1116 => 0.032876385485498
1117 => 0.030326727771211
1118 => 0.030799929412306
1119 => 0.031344304766699
1120 => 0.031532220957588
1121 => 0.031210777309668
1122 => 0.033448358895754
1123 => 0.033857186613405
1124 => 0.032618820789469
1125 => 0.032387173105954
1126 => 0.03346354567932
1127 => 0.032814361436385
1128 => 0.033106689061229
1129 => 0.032474836630978
1130 => 0.033758711988096
1201 => 0.033748931008954
1202 => 0.033249474497395
1203 => 0.033671611720834
1204 => 0.033598254989975
1205 => 0.033034369818532
1206 => 0.033776588153814
1207 => 0.033776956284849
1208 => 0.033296240251594
1209 => 0.032734869167024
1210 => 0.032634509276096
1211 => 0.032558901579736
1212 => 0.03308809420276
1213 => 0.033562566653821
1214 => 0.034445442253549
1215 => 0.034667418155928
1216 => 0.035533804880684
1217 => 0.035017913769695
1218 => 0.035246601617288
1219 => 0.035494874625721
1220 => 0.035613905835901
1221 => 0.035419950866479
1222 => 0.036765806069028
1223 => 0.036879437484062
1224 => 0.036917537114614
1225 => 0.036463722312684
1226 => 0.036866816073475
1227 => 0.036678221851863
1228 => 0.037168891623514
1229 => 0.037245834908895
1230 => 0.037180666683514
1231 => 0.037205089696761
]
'min_raw' => 0.016683991137708
'max_raw' => 0.037245834908895
'avg_raw' => 0.026964913023301
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016683'
'max' => '$0.037245'
'avg' => '$0.026964'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025726375818608
'max_diff' => -0.003554238162975
'year' => 2031
]
6 => [
'items' => [
101 => 0.036056639706512
102 => 0.035997086515961
103 => 0.035185074537101
104 => 0.035515975420576
105 => 0.034897372079411
106 => 0.035093537571215
107 => 0.035180005450869
108 => 0.035134839537547
109 => 0.035534684060048
110 => 0.035194734533083
111 => 0.034297551838544
112 => 0.03340012470718
113 => 0.033388858240574
114 => 0.033152581517791
115 => 0.032981796723459
116 => 0.033014695933763
117 => 0.033130637041988
118 => 0.03297505801548
119 => 0.033008258688842
120 => 0.033559611081587
121 => 0.033670180871886
122 => 0.033294421522042
123 => 0.031785693510603
124 => 0.031415447872239
125 => 0.031681573094805
126 => 0.031554382379078
127 => 0.025466849298486
128 => 0.026897024898117
129 => 0.026047263120991
130 => 0.02643887244355
131 => 0.02557148571385
201 => 0.025985448124896
202 => 0.025909004383063
203 => 0.028208684425296
204 => 0.028172778084543
205 => 0.02818996454974
206 => 0.027369609786781
207 => 0.028676457199234
208 => 0.029320257227321
209 => 0.029201106976305
210 => 0.029231094527494
211 => 0.028715809044551
212 => 0.028194953639573
213 => 0.027617244836381
214 => 0.028690556385746
215 => 0.028571222463496
216 => 0.028844931546148
217 => 0.029541050807805
218 => 0.029643557013384
219 => 0.029781326393198
220 => 0.029731945877627
221 => 0.030908390096685
222 => 0.030765914939329
223 => 0.031109239075658
224 => 0.030402995279163
225 => 0.029603813386152
226 => 0.029755711736789
227 => 0.029741082704133
228 => 0.029554838328004
229 => 0.029386705232783
301 => 0.029106811000446
302 => 0.029992437768112
303 => 0.02995648293869
304 => 0.030538549834129
305 => 0.030435663856464
306 => 0.029748566117147
307 => 0.029773105947326
308 => 0.029938148098717
309 => 0.030509360869099
310 => 0.03067893571048
311 => 0.030600381887563
312 => 0.030786312959751
313 => 0.030933265298188
314 => 0.030804767910941
315 => 0.032624019937356
316 => 0.031868539658179
317 => 0.032236755489652
318 => 0.032324572795804
319 => 0.032099630612694
320 => 0.032148412517635
321 => 0.032222303811347
322 => 0.032670957277369
323 => 0.033848353791137
324 => 0.034369814692276
325 => 0.035938655541779
326 => 0.034326514623522
327 => 0.034230856853135
328 => 0.034513452464586
329 => 0.035434528121914
330 => 0.036180973429941
331 => 0.036428612402076
401 => 0.036461341980318
402 => 0.036925929154772
403 => 0.037192221859131
404 => 0.036869516051937
405 => 0.036596056669047
406 => 0.035616559102563
407 => 0.035729938612967
408 => 0.036511011006599
409 => 0.037614321767539
410 => 0.038561077180345
411 => 0.038229556432537
412 => 0.040758825721133
413 => 0.041009592439958
414 => 0.040974944587675
415 => 0.041546228492252
416 => 0.040412346281612
417 => 0.03992758966863
418 => 0.036655181691524
419 => 0.037574594853304
420 => 0.038911015879193
421 => 0.038734135545095
422 => 0.037763590873458
423 => 0.03856034093518
424 => 0.038296910448097
425 => 0.038089131893193
426 => 0.039041005733062
427 => 0.037994381345304
428 => 0.038900575000299
429 => 0.037738372264395
430 => 0.038231070791388
501 => 0.037951391278321
502 => 0.038132378199507
503 => 0.03707433235642
504 => 0.037645228210739
505 => 0.037050581211949
506 => 0.037050299271846
507 => 0.03703717240639
508 => 0.037736771963398
509 => 0.037759585879835
510 => 0.03724258075017
511 => 0.037168072233847
512 => 0.037443569270187
513 => 0.037121034393422
514 => 0.03727194643225
515 => 0.037125605365341
516 => 0.037092660908766
517 => 0.036830153873734
518 => 0.036717058625261
519 => 0.036761406186293
520 => 0.036610025097757
521 => 0.036518812516221
522 => 0.037019027928135
523 => 0.036751783012181
524 => 0.036978068811933
525 => 0.036720187583571
526 => 0.035826258892565
527 => 0.035312151049243
528 => 0.033623602619166
529 => 0.034102472859298
530 => 0.034419964323933
531 => 0.034315033396765
601 => 0.0345404656312
602 => 0.034554305339509
603 => 0.034481015022085
604 => 0.034396154223579
605 => 0.034354848679963
606 => 0.034662706361082
607 => 0.034841428106984
608 => 0.034451828839897
609 => 0.034360551182691
610 => 0.034754457552082
611 => 0.034994740209858
612 => 0.036768852351712
613 => 0.036637420393937
614 => 0.036967288815734
615 => 0.036930150693683
616 => 0.037275905351887
617 => 0.037841068091229
618 => 0.036691934220159
619 => 0.036891384126117
620 => 0.036842483615147
621 => 0.037376366571515
622 => 0.037378033295829
623 => 0.037057943794055
624 => 0.037231469505826
625 => 0.037134612213945
626 => 0.037309646431423
627 => 0.03663566504001
628 => 0.037456501622955
629 => 0.037921863071944
630 => 0.037928324616115
701 => 0.038148902249598
702 => 0.038373021900213
703 => 0.03880320005286
704 => 0.038361024465015
705 => 0.037565593627409
706 => 0.037623021164658
707 => 0.037156660355606
708 => 0.037164499965061
709 => 0.037122651515388
710 => 0.03724824186306
711 => 0.036663225058767
712 => 0.036800527333419
713 => 0.036608303344864
714 => 0.036890966268707
715 => 0.036586867688508
716 => 0.03684246003384
717 => 0.036952765217065
718 => 0.037359793717867
719 => 0.036526749247994
720 => 0.034828115181772
721 => 0.03518518865644
722 => 0.034657048939891
723 => 0.034705930281427
724 => 0.034804678370738
725 => 0.034484603504916
726 => 0.034545663702597
727 => 0.034543482202662
728 => 0.034524683214762
729 => 0.034441419380284
730 => 0.034320670347043
731 => 0.034801697330882
801 => 0.034883433188862
802 => 0.035065121876222
803 => 0.035605704169189
804 => 0.035551687250314
805 => 0.03563979108614
806 => 0.035447460907212
807 => 0.034714851926811
808 => 0.034754636119135
809 => 0.034258526603357
810 => 0.035052435240497
811 => 0.03486442719614
812 => 0.034743217186879
813 => 0.034710143912849
814 => 0.035252066204761
815 => 0.035414217848092
816 => 0.03531317582556
817 => 0.03510593568948
818 => 0.035503898015799
819 => 0.03561037594564
820 => 0.035634212427376
821 => 0.036339325367907
822 => 0.035673620407924
823 => 0.03583386220833
824 => 0.037084022992059
825 => 0.035950299671612
826 => 0.0365508581995
827 => 0.036521463984715
828 => 0.03682868940579
829 => 0.036496262532949
830 => 0.036500383362448
831 => 0.03677317872311
901 => 0.036390086837963
902 => 0.036295227899767
903 => 0.036164180956043
904 => 0.036450317163409
905 => 0.036621842878898
906 => 0.038004214173979
907 => 0.038897289074392
908 => 0.038858518337647
909 => 0.039212810295713
910 => 0.039053198523662
911 => 0.038537770008251
912 => 0.039417543634246
913 => 0.039139146447689
914 => 0.039162097173496
915 => 0.039161242946336
916 => 0.039346352737491
917 => 0.039215185485394
918 => 0.038956641367469
919 => 0.039128275018696
920 => 0.03963796560269
921 => 0.041220060814622
922 => 0.042105422255193
923 => 0.041166760944207
924 => 0.04181423694735
925 => 0.041425982064753
926 => 0.041355424603003
927 => 0.041762087381078
928 => 0.042169461968512
929 => 0.042143513968421
930 => 0.04184778093686
1001 => 0.04168072885128
1002 => 0.042945703209851
1003 => 0.04387771476897
1004 => 0.043814157828923
1005 => 0.044094677492467
1006 => 0.044918291900778
1007 => 0.044993592880402
1008 => 0.044984106687743
1009 => 0.0447974653529
1010 => 0.045608420697729
1011 => 0.046284933913786
1012 => 0.04475426327647
1013 => 0.04533712261721
1014 => 0.045598786953824
1015 => 0.045982987832282
1016 => 0.046631199113786
1017 => 0.04733532849505
1018 => 0.047434900109946
1019 => 0.047364249284236
1020 => 0.046899857029279
1021 => 0.047670323800269
1022 => 0.048121645165045
1023 => 0.048390396709464
1024 => 0.049071905910117
1025 => 0.045600402903685
1026 => 0.043143100530839
1027 => 0.042759357281442
1028 => 0.043539714269048
1029 => 0.043745488183449
1030 => 0.043662540976572
1031 => 0.040896623747776
1101 => 0.042744795299652
1102 => 0.044733272490793
1103 => 0.044809657998033
1104 => 0.045805131257016
1105 => 0.046129298155968
1106 => 0.046930784609112
1107 => 0.046880651413246
1108 => 0.047075800610152
1109 => 0.047030939189296
1110 => 0.048515524070861
1111 => 0.050153241658214
1112 => 0.050096532705787
1113 => 0.04986109142601
1114 => 0.050210761875183
1115 => 0.051901061933815
1116 => 0.051745446190922
1117 => 0.051896613629825
1118 => 0.053889572660088
1119 => 0.056480702894547
1120 => 0.055276862755419
1121 => 0.057888849461658
1122 => 0.05953295663777
1123 => 0.062376269995001
1124 => 0.062020273159062
1125 => 0.063127154183835
1126 => 0.06138296452395
1127 => 0.057377952505965
1128 => 0.056744144023549
1129 => 0.058013044655934
1130 => 0.061132513043137
1201 => 0.057914801495175
1202 => 0.058565740350571
1203 => 0.058378269916426
1204 => 0.058368280413689
1205 => 0.058749539102937
1206 => 0.058196503489066
1207 => 0.055943336908951
1208 => 0.056975949874624
1209 => 0.05657720841843
1210 => 0.057019641792222
1211 => 0.059407272237173
1212 => 0.058351643903459
1213 => 0.057239625206174
1214 => 0.058634343429273
1215 => 0.060410299004457
1216 => 0.060299162896261
1217 => 0.060083512395071
1218 => 0.061299122979185
1219 => 0.063306955523657
1220 => 0.063849664592304
1221 => 0.06425028133158
1222 => 0.064305519611451
1223 => 0.064874508224521
1224 => 0.061814913048449
1225 => 0.066670569168852
1226 => 0.067509006846052
1227 => 0.06735141531242
1228 => 0.068283303503777
1229 => 0.068009118358158
1230 => 0.067611867100487
1231 => 0.069089108102091
]
'min_raw' => 0.025466849298486
'max_raw' => 0.069089108102091
'avg_raw' => 0.047277978700289
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025466'
'max' => '$0.069089'
'avg' => '$0.047277'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0087828581607784
'max_diff' => 0.031843273193196
'year' => 2032
]
7 => [
'items' => [
101 => 0.067395570500954
102 => 0.064991807086596
103 => 0.063673054936429
104 => 0.06540969414847
105 => 0.066470199114907
106 => 0.067171125436938
107 => 0.067383225318473
108 => 0.062052420712417
109 => 0.059179412689731
110 => 0.061020977893169
111 => 0.063267814539405
112 => 0.061802431757434
113 => 0.061859871988151
114 => 0.059770621236881
115 => 0.063452666872076
116 => 0.062916223793906
117 => 0.065699291432402
118 => 0.065035090004962
119 => 0.067304573626091
120 => 0.066706942529969
121 => 0.069187675796867
122 => 0.070177307460205
123 => 0.071839053046818
124 => 0.073061439864852
125 => 0.073779248784935
126 => 0.073736154229807
127 => 0.076580470782162
128 => 0.074903276684089
129 => 0.072796325612613
130 => 0.072758217515075
131 => 0.073849437330721
201 => 0.076136334702777
202 => 0.076729293918348
203 => 0.077060677226868
204 => 0.076553152154333
205 => 0.07473267816646
206 => 0.073946606728509
207 => 0.074616362368325
208 => 0.073797308773588
209 => 0.075211225063954
210 => 0.07715283412685
211 => 0.076751899533316
212 => 0.078092163768025
213 => 0.07947919625104
214 => 0.081462714997278
215 => 0.081981280247031
216 => 0.082838448885602
217 => 0.083720756979922
218 => 0.084004130560947
219 => 0.084545178652783
220 => 0.084542327062271
221 => 0.086172811903755
222 => 0.087971287175826
223 => 0.088650169956234
224 => 0.090211223475967
225 => 0.087537974029263
226 => 0.089565664442665
227 => 0.091394691951936
228 => 0.089214049953429
301 => 0.092219556923948
302 => 0.092336253948989
303 => 0.094098240478003
304 => 0.092312129575072
305 => 0.09125154262238
306 => 0.094313417415128
307 => 0.095794962179187
308 => 0.095348708839041
309 => 0.091952698886287
310 => 0.089976075432066
311 => 0.084802870590179
312 => 0.090930755191212
313 => 0.093915469027531
314 => 0.091944969198505
315 => 0.092938774695136
316 => 0.09836065524224
317 => 0.10042495631381
318 => 0.099995596121476
319 => 0.10006815092611
320 => 0.10118201031461
321 => 0.10612147625681
322 => 0.10316163376832
323 => 0.10542432244759
324 => 0.10662444436434
325 => 0.10773918448414
326 => 0.10500173506714
327 => 0.10144035359675
328 => 0.10031231458845
329 => 0.091749041824816
330 => 0.09130328628906
331 => 0.091053070199065
401 => 0.089475493145415
402 => 0.08823594971597
403 => 0.087250218759578
404 => 0.084663366365823
405 => 0.085536353110867
406 => 0.081413450313278
407 => 0.084051137416472
408 => 0.07747088500055
409 => 0.082951114745786
410 => 0.079968474850925
411 => 0.081971237322481
412 => 0.081964249872889
413 => 0.078276529186334
414 => 0.076149528855096
415 => 0.077504936250252
416 => 0.078958040570233
417 => 0.07919380185732
418 => 0.081077789538077
419 => 0.081603570003597
420 => 0.080010430646729
421 => 0.077334523895238
422 => 0.077956076002675
423 => 0.076136933121477
424 => 0.0729489551945
425 => 0.07523861659841
426 => 0.07602040767101
427 => 0.076365691146325
428 => 0.073230680996881
429 => 0.072245592743544
430 => 0.071721140023159
501 => 0.076929833452716
502 => 0.077215177436748
503 => 0.075755317270868
504 => 0.082354023650267
505 => 0.080860533167837
506 => 0.082529127950764
507 => 0.077899676663726
508 => 0.078076527937273
509 => 0.075884871507742
510 => 0.077112052661744
511 => 0.07624472057599
512 => 0.077012908551741
513 => 0.077473357257048
514 => 0.079664654057326
515 => 0.082976135835316
516 => 0.079337347388673
517 => 0.07775187515406
518 => 0.07873549321138
519 => 0.081354997717693
520 => 0.085323681134727
521 => 0.082974140674646
522 => 0.084016826833046
523 => 0.084244607372778
524 => 0.082512143222229
525 => 0.085387559559119
526 => 0.086928518533899
527 => 0.088509223585493
528 => 0.089881705491442
529 => 0.087877855227437
530 => 0.090022262250574
531 => 0.088294248728723
601 => 0.086744041960868
602 => 0.086746392984637
603 => 0.085773925634254
604 => 0.083889647604116
605 => 0.083542157825347
606 => 0.085349843537625
607 => 0.086799436290398
608 => 0.086918831692597
609 => 0.087721400723297
610 => 0.088196352808547
611 => 0.092851528910044
612 => 0.094723879247703
613 => 0.097013353798814
614 => 0.097905233164188
615 => 0.10058947029751
616 => 0.098421730809271
617 => 0.09795272673527
618 => 0.091441645457099
619 => 0.092507834651642
620 => 0.094214906424061
621 => 0.091469794441873
622 => 0.093210936156892
623 => 0.093554674413861
624 => 0.091376516587148
625 => 0.092539964795039
626 => 0.089450191293233
627 => 0.083043484454279
628 => 0.085394692055285
629 => 0.087125972257547
630 => 0.08465522194361
701 => 0.089083946250099
702 => 0.086496776937675
703 => 0.085676768471664
704 => 0.082477623091632
705 => 0.083987496564609
706 => 0.086029622056116
707 => 0.084767825924934
708 => 0.087386242356778
709 => 0.091094618330425
710 => 0.093737427886852
711 => 0.093940309988698
712 => 0.092241160498404
713 => 0.094964058400427
714 => 0.094983891738988
715 => 0.091912451782141
716 => 0.090031211910422
717 => 0.089603790253404
718 => 0.090671573353585
719 => 0.091968059160839
720 => 0.094012255927918
721 => 0.095247521221543
722 => 0.098468437973229
723 => 0.099339925695315
724 => 0.10029742648332
725 => 0.1015769428184
726 => 0.10311333023992
727 => 0.09975180202822
728 => 0.099885361810744
729 => 0.096755153283534
730 => 0.093410076554899
731 => 0.095948572822232
801 => 0.099267319009763
802 => 0.098505994967455
803 => 0.098420330460256
804 => 0.098564394400011
805 => 0.09799038093463
806 => 0.09539413930464
807 => 0.094090323011392
808 => 0.095772578668693
809 => 0.096666622681964
810 => 0.098053206977715
811 => 0.09788228119602
812 => 0.10145397343359
813 => 0.10284182503475
814 => 0.10248675320565
815 => 0.10255209496749
816 => 0.10506473399894
817 => 0.10785930536555
818 => 0.11047679022655
819 => 0.11313940825075
820 => 0.10992951829883
821 => 0.10829973413973
822 => 0.10998125537684
823 => 0.1090890165393
824 => 0.114216085555
825 => 0.11457107268961
826 => 0.11969777095986
827 => 0.12456361809421
828 => 0.12150746668983
829 => 0.12438927981208
830 => 0.12750619566146
831 => 0.13351923203628
901 => 0.13149425292641
902 => 0.12994315066372
903 => 0.12847736652034
904 => 0.13152743063602
905 => 0.13545128939488
906 => 0.13629645098929
907 => 0.1376659356488
908 => 0.13622608998194
909 => 0.13796022549388
910 => 0.14408248586878
911 => 0.14242819707279
912 => 0.1400788410423
913 => 0.14491177762015
914 => 0.1466607985801
915 => 0.15893634364648
916 => 0.17443472637024
917 => 0.16801829415474
918 => 0.1640354076216
919 => 0.16497148043222
920 => 0.17063096514957
921 => 0.17244861201772
922 => 0.16750762124964
923 => 0.16925286271951
924 => 0.17886931480686
925 => 0.18402823281899
926 => 0.17702172922338
927 => 0.15769106368506
928 => 0.13986730723661
929 => 0.14459497006095
930 => 0.14405899981313
1001 => 0.15439067790415
1002 => 0.14238874283212
1003 => 0.14259082463805
1004 => 0.15313615089056
1005 => 0.15032283863905
1006 => 0.14576563309342
1007 => 0.1399005798804
1008 => 0.12905848656439
1009 => 0.11945534216025
1010 => 0.13828931980884
1011 => 0.13747716444526
1012 => 0.13630104312413
1013 => 0.13891837385469
1014 => 0.15162738894004
1015 => 0.15133440500725
1016 => 0.1494705907086
1017 => 0.15088427742722
1018 => 0.14551780697657
1019 => 0.14690086860396
1020 => 0.13986448386253
1021 => 0.14304522363104
1022 => 0.14575585537706
1023 => 0.14630005483166
1024 => 0.14752616399039
1025 => 0.13704919547328
1026 => 0.14175304674983
1027 => 0.14451611868354
1028 => 0.13203245916562
1029 => 0.1442693568729
1030 => 0.13686681476055
1031 => 0.13435428078517
1101 => 0.13773707678184
1102 => 0.13641879789206
1103 => 0.13528541911456
1104 => 0.1346529742828
1105 => 0.13713692631718
1106 => 0.13702104698582
1107 => 0.13295681934325
1108 => 0.12765520006263
1109 => 0.12943459751293
1110 => 0.12878812573729
1111 => 0.12644522862588
1112 => 0.1280240583965
1113 => 0.12107169111417
1114 => 0.10911050455753
1115 => 0.1170124307779
1116 => 0.11670821521405
1117 => 0.11655481593169
1118 => 0.1224928950931
1119 => 0.12192208579652
1120 => 0.12088606133386
1121 => 0.12642620122416
1122 => 0.12440397563881
1123 => 0.13063599839661
1124 => 0.13474081164686
1125 => 0.1336996982298
1126 => 0.13756029493194
1127 => 0.1294755912363
1128 => 0.13216100550198
1129 => 0.13271446566031
1130 => 0.12635783675789
1201 => 0.12201547725676
1202 => 0.12172589138456
1203 => 0.11419683842359
1204 => 0.11821879774295
1205 => 0.12175795550399
1206 => 0.12006297358619
1207 => 0.11952639294716
1208 => 0.12226766706183
1209 => 0.12248068753797
1210 => 0.11762379810718
1211 => 0.11863369921753
1212 => 0.12284515472976
1213 => 0.1185275813441
1214 => 0.11013924152738
1215 => 0.10805881727496
1216 => 0.10778125032986
1217 => 0.10213897475678
1218 => 0.10819784117144
1219 => 0.10555298361392
1220 => 0.11390805694789
1221 => 0.10913568386868
1222 => 0.10892995640366
1223 => 0.10861896916662
1224 => 0.10376242950139
1225 => 0.10482570303888
1226 => 0.10836018621862
1227 => 0.10962132963595
1228 => 0.10948978204528
1229 => 0.10834286532281
1230 => 0.10886791792519
1231 => 0.10717654055246
]
'min_raw' => 0.059179412689731
'max_raw' => 0.18402823281899
'avg_raw' => 0.12160382275436
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059179'
'max' => '$0.184028'
'avg' => '$0.1216038'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.033712563391245
'max_diff' => 0.1149391247169
'year' => 2033
]
8 => [
'items' => [
101 => 0.10657927999917
102 => 0.10469416140353
103 => 0.10192355784525
104 => 0.10230882726313
105 => 0.096819536646321
106 => 0.093828679779579
107 => 0.093000850017725
108 => 0.091893841462786
109 => 0.093125889579642
110 => 0.096803986175696
111 => 0.092367421329133
112 => 0.084761242088539
113 => 0.085218386421198
114 => 0.086245454009311
115 => 0.084331520353594
116 => 0.082520142772734
117 => 0.084094988617583
118 => 0.080872150202855
119 => 0.086634918634438
120 => 0.086479051898335
121 => 0.088627055602421
122 => 0.089970246400058
123 => 0.086874626474688
124 => 0.086096086434904
125 => 0.086539578224237
126 => 0.07920964683673
127 => 0.088028043828681
128 => 0.088104305692059
129 => 0.087451305317894
130 => 0.092146829478646
131 => 0.10205585002855
201 => 0.098327677908245
202 => 0.096884016978666
203 => 0.094139616496227
204 => 0.097796367192701
205 => 0.097515585793409
206 => 0.096245785822627
207 => 0.095477806838281
208 => 0.09689283166446
209 => 0.095302469602931
210 => 0.095016796876453
211 => 0.093285930968992
212 => 0.09266809058941
213 => 0.092210666169301
214 => 0.091707086828356
215 => 0.092817857370327
216 => 0.090300705188187
217 => 0.087265266415998
218 => 0.087012902525993
219 => 0.087709701414357
220 => 0.087401419776832
221 => 0.087011426592117
222 => 0.086266823394172
223 => 0.086045915531272
224 => 0.086763758916439
225 => 0.085953355587455
226 => 0.087149149844324
227 => 0.08682395997277
228 => 0.085007475784828
301 => 0.082743463938069
302 => 0.082723309483708
303 => 0.082235531845047
304 => 0.081614273684354
305 => 0.081441453876511
306 => 0.083962359493132
307 => 0.089180558675183
308 => 0.088156101314823
309 => 0.088896376748297
310 => 0.09253779920346
311 => 0.093695297900563
312 => 0.092873732742219
313 => 0.091749123681545
314 => 0.091798600772727
315 => 0.095641730375364
316 => 0.095881421654602
317 => 0.096487044189898
318 => 0.097265440296662
319 => 0.093006296965081
320 => 0.091597995504828
321 => 0.09093066414337
322 => 0.088875541839817
323 => 0.091091815051328
324 => 0.089800487561262
325 => 0.089974731757701
326 => 0.089861254996185
327 => 0.089923220981237
328 => 0.086633307823216
329 => 0.087831979265254
330 => 0.085838955506716
331 => 0.083170520421449
401 => 0.08316157489137
402 => 0.083814670598119
403 => 0.083426183716107
404 => 0.082380775505523
405 => 0.082529270807649
406 => 0.081228295706927
407 => 0.082687232739791
408 => 0.082729069833566
409 => 0.082167299607076
410 => 0.084414993400717
411 => 0.085335875381916
412 => 0.084966106184556
413 => 0.0853099313893
414 => 0.088198672143294
415 => 0.08866966293079
416 => 0.088878845926691
417 => 0.08859856842362
418 => 0.085362732267347
419 => 0.085506255360715
420 => 0.084453178130646
421 => 0.083563438841782
422 => 0.083599023747268
423 => 0.084056465399756
424 => 0.086054139924767
425 => 0.090258128193308
426 => 0.090417666475024
427 => 0.090611031526523
428 => 0.089824518684586
429 => 0.089587298885544
430 => 0.089900253032106
501 => 0.091479049990568
502 => 0.095540144406925
503 => 0.094104682408808
504 => 0.092937629460042
505 => 0.093961449531326
506 => 0.093803840456319
507 => 0.092473461251091
508 => 0.092436121937766
509 => 0.089882698894974
510 => 0.088938756534684
511 => 0.088149927645564
512 => 0.087288547091545
513 => 0.086777891825385
514 => 0.087562490402874
515 => 0.087741937380644
516 => 0.086026398878526
517 => 0.08579257731982
518 => 0.08719352309312
519 => 0.086577019090813
520 => 0.087211108745749
521 => 0.087358222984815
522 => 0.087334534203997
523 => 0.086690833220555
524 => 0.087101109031961
525 => 0.08613068442888
526 => 0.085075493426091
527 => 0.084402347307034
528 => 0.083814938038281
529 => 0.084140866841012
530 => 0.082978990171524
531 => 0.082607282440997
601 => 0.086962116818555
602 => 0.090179079795616
603 => 0.090132303879872
604 => 0.089847567522572
605 => 0.089424507052284
606 => 0.091448100482086
607 => 0.090743120994171
608 => 0.091256052474636
609 => 0.091386615064081
610 => 0.091781788699395
611 => 0.091923029307698
612 => 0.091496102091496
613 => 0.090063282209157
614 => 0.086492831290793
615 => 0.084830776750047
616 => 0.084282271067893
617 => 0.084302208207678
618 => 0.083752252889077
619 => 0.083914239377674
620 => 0.083695920598967
621 => 0.083282477649082
622 => 0.084115337903908
623 => 0.084211317289647
624 => 0.084016917754232
625 => 0.084062705882188
626 => 0.082453160758076
627 => 0.082575530978114
628 => 0.081894158042887
629 => 0.081766408831606
630 => 0.08004395738528
701 => 0.076992384974786
702 => 0.078683252313501
703 => 0.07664092234026
704 => 0.075867461033045
705 => 0.07952890656349
706 => 0.079161398984924
707 => 0.078532385762123
708 => 0.077601944107759
709 => 0.077256834247401
710 => 0.075160055984369
711 => 0.075036167138712
712 => 0.076075387063646
713 => 0.075595822825663
714 => 0.074922333010355
715 => 0.072483021169879
716 => 0.069740427032789
717 => 0.069823208710456
718 => 0.070695576877686
719 => 0.073232104978784
720 => 0.072241039567304
721 => 0.071522010240109
722 => 0.071387357661068
723 => 0.073072816602039
724 => 0.075458094118078
725 => 0.076577212961027
726 => 0.075468200175809
727 => 0.074194226001639
728 => 0.074271766906593
729 => 0.074787611808313
730 => 0.07484181981383
731 => 0.074012593593107
801 => 0.07424601591702
802 => 0.073891426062411
803 => 0.071715308779199
804 => 0.071675949718088
805 => 0.071141895442156
806 => 0.071125724490927
807 => 0.070217164941485
808 => 0.070090051179942
809 => 0.068286051048902
810 => 0.069473449398168
811 => 0.068677004926691
812 => 0.067476575245918
813 => 0.067269620716483
814 => 0.067263399413424
815 => 0.068495972284413
816 => 0.069459046066532
817 => 0.06869085941926
818 => 0.068515958210349
819 => 0.070383445542644
820 => 0.070145790757085
821 => 0.069939983245499
822 => 0.075244518678469
823 => 0.071045564965212
824 => 0.069214581478333
825 => 0.066948391718986
826 => 0.06768627453175
827 => 0.067841757282153
828 => 0.062391979422332
829 => 0.060181005223329
830 => 0.059422282197036
831 => 0.058985626368636
901 => 0.059184615912816
902 => 0.057194479812306
903 => 0.058531884185662
904 => 0.056808594544637
905 => 0.056519679428249
906 => 0.059601134781024
907 => 0.060029901291761
908 => 0.058200650149642
909 => 0.059375325511742
910 => 0.058949371896235
911 => 0.056838135399391
912 => 0.056757501694416
913 => 0.055698157433851
914 => 0.054040488795535
915 => 0.053282889746638
916 => 0.052888325584195
917 => 0.053051130447521
918 => 0.052968811326713
919 => 0.052431623380637
920 => 0.052999602310972
921 => 0.051548650849064
922 => 0.050970870285823
923 => 0.050709900209813
924 => 0.04942209727372
925 => 0.051471564433609
926 => 0.051875335282615
927 => 0.052279901684923
928 => 0.055801376007808
929 => 0.055625453102219
930 => 0.057215710490806
1001 => 0.057153916012982
1002 => 0.056700348845295
1003 => 0.054786823573002
1004 => 0.05554952064123
1005 => 0.053202057614666
1006 => 0.054960936526137
1007 => 0.054158257643481
1008 => 0.054689549988489
1009 => 0.053734238447466
1010 => 0.054262947298115
1011 => 0.051971084329825
1012 => 0.049830974937417
1013 => 0.05069221743061
1014 => 0.051628486515736
1015 => 0.053658556449215
1016 => 0.052449463544548
1017 => 0.052884299073931
1018 => 0.051427672841087
1019 => 0.048422236858017
1020 => 0.048439247299292
1021 => 0.047976926450278
1022 => 0.047577413736782
1023 => 0.052588342409318
1024 => 0.051965154217828
1025 => 0.050972185395544
1026 => 0.052301313623184
1027 => 0.052652756222673
1028 => 0.052662761299411
1029 => 0.053632458944532
1030 => 0.054149986751562
1031 => 0.054241203270644
1101 => 0.055767043466947
1102 => 0.056278484974429
1103 => 0.058385040161836
1104 => 0.054106078132901
1105 => 0.054017955725764
1106 => 0.052320017183049
1107 => 0.051243157715912
1108 => 0.052393750672057
1109 => 0.0534130189596
1110 => 0.052351688689942
1111 => 0.052490276017254
1112 => 0.051065526844107
1113 => 0.051574807632828
1114 => 0.052013468855605
1115 => 0.051771265911702
1116 => 0.051408676381925
1117 => 0.053329450583604
1118 => 0.05322107297557
1119 => 0.055009742070581
1120 => 0.056404137539096
1121 => 0.05890314349668
1122 => 0.056295300503814
1123 => 0.056200260339917
1124 => 0.057129293186933
1125 => 0.056278342744341
1126 => 0.056816114050248
1127 => 0.058816500225386
1128 => 0.0588587652331
1129 => 0.058150771898513
1130 => 0.058107690439761
1201 => 0.058243668304267
1202 => 0.059040094903868
1203 => 0.05876179897825
1204 => 0.059083850068966
1205 => 0.059486579889328
1206 => 0.06115244118025
1207 => 0.061554074697745
1208 => 0.060578313473337
1209 => 0.060666413786766
1210 => 0.060301452303592
1211 => 0.059948904083801
1212 => 0.060741380996359
1213 => 0.062189648130232
1214 => 0.062180638535557
1215 => 0.062516608360325
1216 => 0.062725914777831
1217 => 0.061827418412233
1218 => 0.061242530316855
1219 => 0.061466813630019
1220 => 0.061825447532024
1221 => 0.061350513489146
1222 => 0.058419000565653
1223 => 0.05930823432087
1224 => 0.059160222342693
1225 => 0.058949435286897
1226 => 0.059843566704009
1227 => 0.05975732554758
1228 => 0.0571740680901
1229 => 0.057339439851169
1230 => 0.057184124894619
1231 => 0.057685979293684
]
'min_raw' => 0.047577413736782
'max_raw' => 0.10657927999917
'avg_raw' => 0.077078346867975
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.047577'
'max' => '$0.106579'
'avg' => '$0.077078'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011601998952949
'max_diff' => -0.077448952819823
'year' => 2034
]
9 => [
'items' => [
101 => 0.056251240959846
102 => 0.056692556808224
103 => 0.056969345971248
104 => 0.057132376914664
105 => 0.057721356473645
106 => 0.057652246520375
107 => 0.057717060501915
108 => 0.058590361703046
109 => 0.063007219497585
110 => 0.063247619322094
111 => 0.062063802664105
112 => 0.062536714069221
113 => 0.061628827585754
114 => 0.062238297864416
115 => 0.06265528195021
116 => 0.060771011047937
117 => 0.060659436753921
118 => 0.059747803099984
119 => 0.06023766338804
120 => 0.059458260447542
121 => 0.059649498666783
122 => 0.059114779933937
123 => 0.060077167191621
124 => 0.061153265685573
125 => 0.061425130661563
126 => 0.060709970954966
127 => 0.060192148196068
128 => 0.059283022012864
129 => 0.06079491911673
130 => 0.06123704390413
131 => 0.06079259682344
201 => 0.060689608723484
202 => 0.060494446460162
203 => 0.060731013320239
204 => 0.061234635997587
205 => 0.0609971368434
206 => 0.061154009218937
207 => 0.060556173489482
208 => 0.061827715851916
209 => 0.063847231136795
210 => 0.06385372420866
211 => 0.063616223774264
212 => 0.063519043713528
213 => 0.063762733571949
214 => 0.063894925323461
215 => 0.064682973640518
216 => 0.06552858088195
217 => 0.069474660910368
218 => 0.068366617428882
219 => 0.071867814383446
220 => 0.074636806600981
221 => 0.075467106293665
222 => 0.074703269645015
223 => 0.072090225731629
224 => 0.071962017331054
225 => 0.075867008136337
226 => 0.074763669373935
227 => 0.074632430738942
228 => 0.073236273393791
301 => 0.074061575302226
302 => 0.073881069668403
303 => 0.073596132694775
304 => 0.075170751245041
305 => 0.07811829660397
306 => 0.077658894017876
307 => 0.077315971298429
308 => 0.075813383765115
309 => 0.076718277075246
310 => 0.076396061899598
311 => 0.077780502776984
312 => 0.076960390670341
313 => 0.074755310497646
314 => 0.075106476783187
315 => 0.075053398705576
316 => 0.076145741781657
317 => 0.07581784750384
318 => 0.074989372085317
319 => 0.078108222214372
320 => 0.077905701434947
321 => 0.078192829597476
322 => 0.078319232294355
323 => 0.080217621407607
324 => 0.080995330685631
325 => 0.081171884307459
326 => 0.081910647971387
327 => 0.081153503194502
328 => 0.084182622137119
329 => 0.086196809479968
330 => 0.088536391727821
331 => 0.091955150212358
401 => 0.093240635027828
402 => 0.093008423701841
403 => 0.095600487367066
404 => 0.10025836815514
405 => 0.093949914583019
406 => 0.10059273151258
407 => 0.098489692367691
408 => 0.093503424387216
409 => 0.093182367513511
410 => 0.096559126081651
411 => 0.10404845158482
412 => 0.1021724604895
413 => 0.10405152003419
414 => 0.10185949726318
415 => 0.10175064485679
416 => 0.10394505838089
417 => 0.10907242519122
418 => 0.1066366054161
419 => 0.10314426048096
420 => 0.10572295363416
421 => 0.10348905097808
422 => 0.098455443063922
423 => 0.10217102595446
424 => 0.099686521489267
425 => 0.10041163197573
426 => 0.10563369081943
427 => 0.1050053588835
428 => 0.10581847859056
429 => 0.10438334359065
430 => 0.10304270120071
501 => 0.10054029262248
502 => 0.09979945280972
503 => 0.10000419428134
504 => 0.099799351350015
505 => 0.098399276748817
506 => 0.098096930771991
507 => 0.097593007564532
508 => 0.097749194437909
509 => 0.096801671379952
510 => 0.098589843158569
511 => 0.098921743597996
512 => 0.10022302589732
513 => 0.10035812934248
514 => 0.1039821820235
515 => 0.10198611470652
516 => 0.10332524899492
517 => 0.10320546421974
518 => 0.09361149193404
519 => 0.094933456666675
520 => 0.09699001893527
521 => 0.096063540420872
522 => 0.094753716564098
523 => 0.093695963571442
524 => 0.09209335962677
525 => 0.094348993903613
526 => 0.097314913117698
527 => 0.10043334994826
528 => 0.1041799474721
529 => 0.10334375051998
530 => 0.10036330991363
531 => 0.10049701030202
601 => 0.10132349349386
602 => 0.1002531226665
603 => 0.099937449413394
604 => 0.10128012483638
605 => 0.1012893711041
606 => 0.10005778010858
607 => 0.09868909209584
608 => 0.098683357243092
609 => 0.098439812431182
610 => 0.10190282334419
611 => 0.10380712919644
612 => 0.10402545479346
613 => 0.10379243414424
614 => 0.10388211454386
615 => 0.10277404092695
616 => 0.10530676862619
617 => 0.10763105002382
618 => 0.10700809295822
619 => 0.10607419175833
620 => 0.10533029446984
621 => 0.10683285439845
622 => 0.10676594777008
623 => 0.10761074945347
624 => 0.1075724243693
625 => 0.10728834933777
626 => 0.10700810310344
627 => 0.10811924774498
628 => 0.10779925593265
629 => 0.10747876708466
630 => 0.10683597763561
701 => 0.10692334339734
702 => 0.10598960344866
703 => 0.10555761262337
704 => 0.099061507101881
705 => 0.097325535440169
706 => 0.097871707463905
707 => 0.098051521475469
708 => 0.097296024383584
709 => 0.098379213142068
710 => 0.098210399321439
711 => 0.098867155144725
712 => 0.098456842619359
713 => 0.098473681988523
714 => 0.099680323637769
715 => 0.10003061684197
716 => 0.099852454891099
717 => 0.099977233414452
718 => 0.1028527018194
719 => 0.10244390216452
720 => 0.10222673549555
721 => 0.102286892147
722 => 0.1030216359752
723 => 0.10322732413157
724 => 0.10235580895958
725 => 0.10276682055286
726 => 0.10451685575191
727 => 0.10512926902817
728 => 0.10708379823093
729 => 0.10625347948661
730 => 0.10777756547716
731 => 0.11246208621291
801 => 0.1162044055208
802 => 0.11276281402738
803 => 0.11963510685484
804 => 0.12498617259287
805 => 0.12478078977718
806 => 0.12384770769337
807 => 0.11775566161606
808 => 0.11214966998844
809 => 0.11683932002792
810 => 0.11685127491031
811 => 0.11644842981287
812 => 0.11394639351074
813 => 0.11636136437304
814 => 0.1165530559902
815 => 0.1164457596595
816 => 0.11452745429299
817 => 0.11159855656041
818 => 0.11217085616657
819 => 0.11310829459605
820 => 0.1113335280789
821 => 0.11076638263978
822 => 0.11182081391494
823 => 0.115218411183
824 => 0.11457611510042
825 => 0.11455934215398
826 => 0.1173073571712
827 => 0.11534037147763
828 => 0.11217807469736
829 => 0.11137955305477
830 => 0.10854533917222
831 => 0.11050294079602
901 => 0.11057339139341
902 => 0.10950123299026
903 => 0.11226507444277
904 => 0.11223960515722
905 => 0.11486346127288
906 => 0.11987928869065
907 => 0.11839586170934
908 => 0.11667079752647
909 => 0.11685835983399
910 => 0.11891545540425
911 => 0.11767168846355
912 => 0.11811895572727
913 => 0.11891477841168
914 => 0.11939491799635
915 => 0.11678927513668
916 => 0.11618177514379
917 => 0.11493904336185
918 => 0.11461483783663
919 => 0.11562701694257
920 => 0.11536034350897
921 => 0.1105674702935
922 => 0.11006658837519
923 => 0.11008194970853
924 => 0.1088224583093
925 => 0.1069014316129
926 => 0.11194977507249
927 => 0.11154432244116
928 => 0.11109673411572
929 => 0.11115156113168
930 => 0.11334287592326
1001 => 0.11207180268009
1002 => 0.11545115922185
1003 => 0.11475646510962
1004 => 0.11404395471473
1005 => 0.11394546407456
1006 => 0.11367120836106
1007 => 0.11273068347341
1008 => 0.11159494315479
1009 => 0.11084502902029
1010 => 0.10224868002516
1011 => 0.10384411239599
1012 => 0.1056795119104
1013 => 0.10631308446787
1014 => 0.10522931476643
1015 => 0.11277347730688
1016 => 0.11415186850038
1017 => 0.10997663166504
1018 => 0.10919561532694
1019 => 0.11282468060798
1020 => 0.11063591060833
1021 => 0.11162151360515
1022 => 0.10949117902203
1023 => 0.11381985442587
1024 => 0.11378687717181
1025 => 0.11210292467215
1026 => 0.11352618979365
1027 => 0.11327886245395
1028 => 0.11137768422923
1029 => 0.11388012516666
1030 => 0.11388136634615
1031 => 0.11226059867751
1101 => 0.1103678968722
1102 => 0.11002952649304
1103 => 0.109774609866
1104 => 0.11155881974157
1105 => 0.11315853673693
1106 => 0.11613521346182
1107 => 0.11688362071455
1108 => 0.11980470404626
1109 => 0.11806534114719
1110 => 0.11883637819183
1111 => 0.11967344797363
1112 => 0.12007477000924
1113 => 0.11942083728833
1114 => 0.12395848206834
1115 => 0.12434159831761
1116 => 0.12447005388205
1117 => 0.12293998559301
1118 => 0.12429904435062
1119 => 0.12366318576523
1120 => 0.12531751315782
1121 => 0.12557693281649
1122 => 0.12535721359472
1123 => 0.12543955748904
1124 => 0.1215674781647
1125 => 0.12136669042489
1126 => 0.11862893534529
1127 => 0.11974459077669
1128 => 0.11765892642245
1129 => 0.1183203120739
1130 => 0.11861184456715
1201 => 0.118459564537
1202 => 0.11980766826087
1203 => 0.11866150469618
1204 => 0.11563659060225
1205 => 0.1126108523725
1206 => 0.11257286669374
1207 => 0.11177624322656
1208 => 0.11120043036865
1209 => 0.11131135235315
1210 => 0.11170225589427
1211 => 0.11117771034422
1212 => 0.11128964873246
1213 => 0.11314857181879
1214 => 0.11352136558652
1215 => 0.11225446670384
1216 => 0.10716768487725
1217 => 0.10591937585778
1218 => 0.10681663562593
1219 => 0.10638780324769
1220 => 0.085863260448485
1221 => 0.090685197334311
1222 => 0.087820166174257
1223 => 0.089140504346555
1224 => 0.086216049428363
1225 => 0.087611752599139
1226 => 0.087354017186416
1227 => 0.095107549007338
1228 => 0.094986488272589
1229 => 0.095044433639922
1230 => 0.092278550281266
1231 => 0.096684677573522
]
'min_raw' => 0.056251240959846
'max_raw' => 0.12557693281649
'avg_raw' => 0.090914086888168
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056251'
'max' => '$0.125576'
'avg' => '$0.090914'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0086738272230639
'max_diff' => 0.01899765281732
'year' => 2035
]
10 => [
'items' => [
101 => 0.0988552943169
102 => 0.098453570926794
103 => 0.098554676049293
104 => 0.096817355067467
105 => 0.095061254704621
106 => 0.093113469140318
107 => 0.096732213965222
108 => 0.096329871314727
109 => 0.097252700596646
110 => 0.099599715288819
111 => 0.099945322117683
112 => 0.10040982120048
113 => 0.10024333134459
114 => 0.10420979516586
115 => 0.10372943022553
116 => 0.10488697152129
117 => 0.10250582125304
118 => 0.099811323703659
119 => 0.10032345959804
120 => 0.10027413679307
121 => 0.099646200875783
122 => 0.099079328406567
123 => 0.098135645460652
124 => 0.10112159794033
125 => 0.10100037372264
126 => 0.10296285289923
127 => 0.10261596564226
128 => 0.10029936764252
129 => 0.10038210539328
130 => 0.10093855652957
131 => 0.10286444026572
201 => 0.10343617368277
202 => 0.10317132398436
203 => 0.10379820357553
204 => 0.10429366364446
205 => 0.10386042573195
206 => 0.10999416095513
207 => 0.10744700644794
208 => 0.10868847183176
209 => 0.10898455401066
210 => 0.10822614573534
211 => 0.10839061733369
212 => 0.10863974698937
213 => 0.11015241347404
214 => 0.11412208802341
215 => 0.11588022985884
216 => 0.12116968631591
217 => 0.11573424065392
218 => 0.11541172380245
219 => 0.11636451463665
220 => 0.11946998552278
221 => 0.12198667799394
222 => 0.1228216100781
223 => 0.12293196013625
224 => 0.12449834823136
225 => 0.12539617267607
226 => 0.12430814751651
227 => 0.12338616011478
228 => 0.12008371568304
229 => 0.12046598261827
301 => 0.12309942272613
302 => 0.12681931198734
303 => 0.13001136396197
304 => 0.12889361861469
305 => 0.13742122660914
306 => 0.13826670410963
307 => 0.13814988645662
308 => 0.14007601002667
309 => 0.13625304698837
310 => 0.13461865622308
311 => 0.12358550425603
312 => 0.12668536992235
313 => 0.13119120671707
314 => 0.13059484232127
315 => 0.12732258319958
316 => 0.13000888165999
317 => 0.12912070738066
318 => 0.12842016747617
319 => 0.13162947658499
320 => 0.12810070938869
321 => 0.13115600456492
322 => 0.12723755689842
323 => 0.12889872438129
324 => 0.12795576537638
325 => 0.12856597541727
326 => 0.1249986999869
327 => 0.12692351521841
328 => 0.12491862134506
329 => 0.12491767076432
330 => 0.12487341262094
331 => 0.12723216137188
401 => 0.12730908008396
402 => 0.12556596119315
403 => 0.12531475052835
404 => 0.12624360802096
405 => 0.12515615916528
406 => 0.12566496964053
407 => 0.12517157051624
408 => 0.12506049598079
409 => 0.12417543518452
410 => 0.12379412665824
411 => 0.1239436475565
412 => 0.12343325564742
413 => 0.12312572606051
414 => 0.1248122372457
415 => 0.12391120235312
416 => 0.12467414072575
417 => 0.12380467615964
418 => 0.1207907331658
419 => 0.11905738267818
420 => 0.11336432375549
421 => 0.11497886820375
422 => 0.11604931284331
423 => 0.11569553089632
424 => 0.11645559141389
425 => 0.11650225295671
426 => 0.11625514953455
427 => 0.1159690354276
428 => 0.11582977090343
429 => 0.11686773456926
430 => 0.11747030741353
501 => 0.11615674628359
502 => 0.11584899728952
503 => 0.11717708011558
504 => 0.11798720987227
505 => 0.12396875282309
506 => 0.12352562080116
507 => 0.12463779521593
508 => 0.12451258144454
509 => 0.12567831741449
510 => 0.12758380304858
511 => 0.12370941797231
512 => 0.12438187725539
513 => 0.12421700576853
514 => 0.12601702943044
515 => 0.12602264890784
516 => 0.12494344480467
517 => 0.12552849885708
518 => 0.12520193773515
519 => 0.12579207781987
520 => 0.12351970250285
521 => 0.12628721035123
522 => 0.12785620896699
523 => 0.12787799451429
524 => 0.12862168740582
525 => 0.1293773224554
526 => 0.13082769813113
527 => 0.129336872265
528 => 0.1266550216608
529 => 0.1268486426121
530 => 0.12527627458411
531 => 0.12530270637473
601 => 0.12516161140489
602 => 0.12558504803051
603 => 0.12361262303026
604 => 0.12407554723539
605 => 0.12342745063733
606 => 0.12438046841996
607 => 0.12335517882533
608 => 0.12421692626251
609 => 0.12458882788901
610 => 0.12596115289729
611 => 0.12315248530581
612 => 0.1174254219567
613 => 0.11862932010661
614 => 0.11684866017873
615 => 0.1170134670345
616 => 0.11734640311199
617 => 0.11626724835496
618 => 0.11647311707452
619 => 0.11646576199518
620 => 0.11640237989498
621 => 0.11612165006374
622 => 0.11571453626774
623 => 0.11733635232798
624 => 0.11761193047978
625 => 0.11822450657431
626 => 0.1200471175173
627 => 0.11986499570397
628 => 0.12016204393768
629 => 0.11951358931135
630 => 0.11704354698481
701 => 0.11717768216687
702 => 0.11550501429716
703 => 0.11818173269621
704 => 0.11754785044836
705 => 0.11713918243952
706 => 0.11702767358703
707 => 0.11885480243002
708 => 0.11940150801657
709 => 0.11906083778308
710 => 0.11836211319524
711 => 0.11970387096327
712 => 0.12006286873778
713 => 0.12014323510016
714 => 0.12252057260857
715 => 0.12027610185796
716 => 0.12081636827575
717 => 0.12503137264153
718 => 0.12120894531261
719 => 0.12323377031904
720 => 0.12313466567166
721 => 0.1241704976286
722 => 0.12304969721752
723 => 0.12306359088188
724 => 0.12398333948631
725 => 0.12269171844892
726 => 0.12237189491596
727 => 0.12193006099578
728 => 0.12289478919631
729 => 0.12347310012162
730 => 0.12813386145707
731 => 0.13114492583631
801 => 0.13101420759049
802 => 0.13220872766298
803 => 0.13167058542978
804 => 0.129932782204
805 => 0.13289900040787
806 => 0.13196036485633
807 => 0.13203774483075
808 => 0.13203486474424
809 => 0.13265897532908
810 => 0.13221673578083
811 => 0.13134503623627
812 => 0.13192371107446
813 => 0.13364216846385
814 => 0.13897631292924
815 => 0.14196137084009
816 => 0.13879660869486
817 => 0.14097961924479
818 => 0.13967059080102
819 => 0.13943270139257
820 => 0.14080379334113
821 => 0.14217728520465
822 => 0.14208979971071
823 => 0.14109271514739
824 => 0.14052948737765
825 => 0.14479443674526
826 => 0.1479367787878
827 => 0.14772249212703
828 => 0.14866828375792
829 => 0.15144515723847
830 => 0.15169903974862
831 => 0.15166705638776
901 => 0.15103778209645
902 => 0.15377197466064
903 => 0.15605288620122
904 => 0.1508921232795
905 => 0.15285727424074
906 => 0.15373949382046
907 => 0.15503485390623
908 => 0.15722034349848
909 => 0.15959436486816
910 => 0.15993007751965
911 => 0.15969187332809
912 => 0.15812614241767
913 => 0.16072382492833
914 => 0.16224548641993
915 => 0.16315160101557
916 => 0.16544935686702
917 => 0.15374494210824
918 => 0.14545997559481
919 => 0.14416615843737
920 => 0.14679718650387
921 => 0.14749096762295
922 => 0.14721130532378
923 => 0.13788582227672
924 => 0.14411706169908
925 => 0.15082135138006
926 => 0.15107889045079
927 => 0.15443519804517
928 => 0.1555281493776
929 => 0.15823041691237
930 => 0.15806138934232
1001 => 0.15871934848457
1002 => 0.15856809507203
1003 => 0.16357347665063
1004 => 0.16909515583818
1005 => 0.16890395764578
1006 => 0.16811015093303
1007 => 0.16928908926563
1008 => 0.17498805392628
1009 => 0.17446338458438
1010 => 0.17497305615881
1011 => 0.1816924566733
1012 => 0.19042863316571
1013 => 0.18636980208721
1014 => 0.19517629763038
1015 => 0.20071951976254
1016 => 0.21030594926025
1017 => 0.20910568107297
1018 => 0.21283760772796
1019 => 0.20695695051422
1020 => 0.19345377287458
1021 => 0.19131684332502
1022 => 0.19559503039891
1023 => 0.2061125358607
1024 => 0.1952637967233
1025 => 0.19745848252137
1026 => 0.19682641286388
1027 => 0.19679273255795
1028 => 0.19807817284739
1029 => 0.19621357466351
1030 => 0.18861686622758
1031 => 0.19209839293608
1101 => 0.19075400827729
1102 => 0.19224570328674
1103 => 0.20029576603092
1104 => 0.19673664140219
1105 => 0.19298739272563
1106 => 0.19768978259092
1107 => 0.20367754080591
1108 => 0.20330283765786
1109 => 0.20257575693686
1110 => 0.20667427289242
1111 => 0.2134438204985
1112 => 0.21527360201418
1113 => 0.21662430932081
1114 => 0.21681054903801
1115 => 0.2187289338725
1116 => 0.20841329512226
1117 => 0.22478447874328
1118 => 0.22761132990981
1119 => 0.22707999905148
1120 => 0.23022192515099
1121 => 0.22929749078954
1122 => 0.22795813043911
1123 => 0.23293875161369
1124 => 0.22722887135244
1125 => 0.21912441517553
1126 => 0.2146781502289
1127 => 0.22053335058058
1128 => 0.22410891711701
1129 => 0.22647213914885
1130 => 0.22718724870779
1201 => 0.20921406879358
1202 => 0.19952752165808
1203 => 0.20573648731545
1204 => 0.21331185393735
1205 => 0.20837121357818
1206 => 0.20856487732639
1207 => 0.20152082255166
1208 => 0.21393509648293
1209 => 0.21212644119163
1210 => 0.22150974804239
1211 => 0.21927034655671
1212 => 0.22692206903564
1213 => 0.22490711406979
1214 => 0.2332710794784
1215 => 0.23660769172522
1216 => 0.24221038298986
1217 => 0.24633174549119
1218 => 0.24875188838106
1219 => 0.24860659207968
1220 => 0.25819640391979
1221 => 0.25254162692018
1222 => 0.24543789428007
1223 => 0.2453094101686
1224 => 0.24898853396359
1225 => 0.25669896811955
1226 => 0.25869817151394
1227 => 0.25981545347506
1228 => 0.25810429725874
1229 => 0.25196644210719
1230 => 0.24931614737238
1231 => 0.25157427527287
]
'min_raw' => 0.093113469140318
'max_raw' => 0.25981545347506
'avg_raw' => 0.17646446130769
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.093113'
'max' => '$0.259815'
'avg' => '$0.176464'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.036862228180472
'max_diff' => 0.13423852065857
'year' => 2036
]
11 => [
'items' => [
101 => 0.24881277889372
102 => 0.25357989638317
103 => 0.26012616689754
104 => 0.25877438792308
105 => 0.26329318236466
106 => 0.26796965922066
107 => 0.27465723115846
108 => 0.27640561010307
109 => 0.27929561401362
110 => 0.2822703773544
111 => 0.28322579116734
112 => 0.28504997258373
113 => 0.28504035824723
114 => 0.29053765172711
115 => 0.29660133667243
116 => 0.29889023736466
117 => 0.30415343829572
118 => 0.29514039114584
119 => 0.30197689094344
120 => 0.30814358488957
121 => 0.30079139814405
122 => 0.31092467473295
123 => 0.3113181269004
124 => 0.31725878750094
125 => 0.31123678988943
126 => 0.30766094693061
127 => 0.31798427156763
128 => 0.32297940317781
129 => 0.32147482888509
130 => 0.31002494422754
131 => 0.30336062024819
201 => 0.28591879894214
202 => 0.30657938970976
203 => 0.31664256079498
204 => 0.30999888304551
205 => 0.31334956766269
206 => 0.33162981647086
207 => 0.33858975165855
208 => 0.33714213379313
209 => 0.33738675738257
210 => 0.34114221207809
211 => 0.3577959663647
212 => 0.34781665076516
213 => 0.35544546362318
214 => 0.35949175845535
215 => 0.36325018259793
216 => 0.35402068076591
217 => 0.34201323449076
218 => 0.33820997221712
219 => 0.30933830022591
220 => 0.30783540431545
221 => 0.3069917832985
222 => 0.30167287211921
223 => 0.29749366490467
224 => 0.29417020416366
225 => 0.28544845070985
226 => 0.28839178647075
227 => 0.2744911318368
228 => 0.28338427806265
301 => 0.26119849762382
302 => 0.2796754748273
303 => 0.26961929618051
304 => 0.27637174968178
305 => 0.27634819100763
306 => 0.26391478324447
307 => 0.25674345312528
308 => 0.26131330378957
309 => 0.26621254645689
310 => 0.26700743209663
311 => 0.27335942809813
312 => 0.27513213364645
313 => 0.26976075307533
314 => 0.26073874663683
315 => 0.26283435296244
316 => 0.25670098572998
317 => 0.24595249557166
318 => 0.253672248854
319 => 0.25630811203818
320 => 0.25747225938213
321 => 0.24690235378386
322 => 0.24358105996107
323 => 0.24181283099817
324 => 0.25937430455529
325 => 0.26033636171953
326 => 0.25541434124608
327 => 0.27766234051119
328 => 0.2726269330775
329 => 0.27825271688571
330 => 0.26264419865349
331 => 0.26324046506962
401 => 0.25585114240089
402 => 0.25998866934066
403 => 0.25706439865835
404 => 0.25965439805177
405 => 0.26120683300921
406 => 0.2685949431628
407 => 0.27975983517757
408 => 0.26749140587762
409 => 0.26214587554448
410 => 0.26546221249876
411 => 0.27429405482976
412 => 0.28767474805492
413 => 0.27975310835408
414 => 0.28326859753514
415 => 0.28403657552798
416 => 0.27819545168762
417 => 0.2878901186226
418 => 0.29308556939239
419 => 0.29841502683514
420 => 0.30304244540468
421 => 0.29628632433523
422 => 0.30351634233145
423 => 0.29769022409648
424 => 0.29246359374667
425 => 0.29247152038746
426 => 0.28919277882014
427 => 0.28283980388544
428 => 0.28166821783536
429 => 0.28776295642289
430 => 0.29265035959619
501 => 0.29305290953063
502 => 0.29575882705121
503 => 0.29736016116673
504 => 0.31305541240695
505 => 0.31936817229369
506 => 0.32708729558877
507 => 0.33009432913815
508 => 0.33914442204061
509 => 0.33183573700927
510 => 0.33025445702895
511 => 0.30830189191042
512 => 0.31189662321878
513 => 0.31765213488343
514 => 0.30839679817788
515 => 0.3142671790327
516 => 0.31542611656511
517 => 0.30808230537823
518 => 0.31200495224049
519 => 0.30158756515806
520 => 0.27998690574854
521 => 0.2879141663314
522 => 0.29375129840745
523 => 0.28542099122173
524 => 0.30035274442472
525 => 0.29162992245749
526 => 0.28886520666317
527 => 0.27807906465719
528 => 0.28316970848733
529 => 0.2900548771586
530 => 0.28580064340653
531 => 0.29462881721849
601 => 0.30713186572418
602 => 0.31604228265874
603 => 0.31672631382989
604 => 0.31099751269254
605 => 0.32017795307587
606 => 0.32024482256155
607 => 0.30988924830595
608 => 0.30354651673447
609 => 0.30210543477621
610 => 0.30570554004871
611 => 0.31007673246561
612 => 0.31696888458708
613 => 0.32113366776801
614 => 0.33199321347354
615 => 0.33493149517388
616 => 0.33815977593121
617 => 0.34247375458792
618 => 0.34765379204672
619 => 0.33632016498656
620 => 0.33677047111818
621 => 0.32621675452452
622 => 0.31493859478813
623 => 0.32349731218559
624 => 0.33468669666431
625 => 0.33211983950172
626 => 0.33183101563479
627 => 0.3323167372659
628 => 0.33038141079103
629 => 0.32162800087171
630 => 0.31723209320948
701 => 0.32290393560941
702 => 0.32591826742031
703 => 0.33059323318166
704 => 0.33001694497502
705 => 0.34205915472158
706 => 0.34673839329158
707 => 0.34554124382947
708 => 0.3457615481415
709 => 0.35423308606291
710 => 0.36365517853617
711 => 0.37248021149199
712 => 0.38145741405863
713 => 0.37063504597837
714 => 0.36514011489808
715 => 0.37080948114905
716 => 0.36780123561417
717 => 0.38508750676114
718 => 0.38628437066987
719 => 0.40356939182267
720 => 0.41997493515872
721 => 0.40967090732519
722 => 0.4193871414686
723 => 0.4298960408709
724 => 0.45016941282541
725 => 0.44334205437696
726 => 0.43811240480379
727 => 0.43317041122663
728 => 0.44345391534131
729 => 0.45668347910187
730 => 0.4595330004247
731 => 0.46415031356863
801 => 0.45929577337598
802 => 0.46514253232796
803 => 0.48578416062451
804 => 0.48020661045009
805 => 0.47228559256648
806 => 0.48858017566355
807 => 0.49447712194279
808 => 0.53586497918525
809 => 0.58811885860096
810 => 0.56648540940538
811 => 0.55305682938265
812 => 0.55621286421817
813 => 0.57529421207534
814 => 0.58142253539535
815 => 0.56476364005182
816 => 0.57064784351636
817 => 0.60307038312807
818 => 0.62046403539015
819 => 0.59684111933909
820 => 0.53166643085266
821 => 0.47157239157179
822 => 0.48751203685894
823 => 0.48570497574816
824 => 0.52053894976675
825 => 0.48007358772305
826 => 0.48075492064066
827 => 0.51630922435214
828 => 0.50682394567699
829 => 0.49145900900596
830 => 0.47168457261335
831 => 0.43512969802762
901 => 0.40275202619895
902 => 0.46625209678747
903 => 0.46351385827631
904 => 0.45954848312793
905 => 0.46837299642224
906 => 0.51122232809758
907 => 0.51023451231271
908 => 0.50395053227742
909 => 0.50871687574973
910 => 0.49062344595033
911 => 0.49528653478938
912 => 0.47156287236894
913 => 0.48228695857064
914 => 0.49142604275261
915 => 0.49326084920859
916 => 0.49739476184147
917 => 0.46207093100745
918 => 0.47793029399874
919 => 0.48724618393476
920 => 0.44515665428881
921 => 0.48641420926182
922 => 0.46145602170106
923 => 0.45298483798354
924 => 0.46439017086559
925 => 0.4599455015494
926 => 0.45612423587109
927 => 0.45399190396491
928 => 0.46236672167283
929 => 0.46197602641668
930 => 0.44827319916445
1001 => 0.43039841961261
1002 => 0.43639778234984
1003 => 0.43421815762308
1004 => 0.4263189164361
1005 => 0.43164205123811
1006 => 0.40820165954695
1007 => 0.36787368396786
1008 => 0.39451557991471
1009 => 0.39348989590156
1010 => 0.39297269951107
1011 => 0.4129933479872
1012 => 0.41106882459117
1013 => 0.40757579578238
1014 => 0.42625476422276
1015 => 0.41943668947444
1016 => 0.44044838930832
1017 => 0.45428805377045
1018 => 0.45077786719661
1019 => 0.46379413851614
1020 => 0.4365359955503
1021 => 0.44559005723667
1022 => 0.44745608680185
1023 => 0.42602426865167
1024 => 0.41138370041974
1025 => 0.41040734143337
1026 => 0.38502261371379
1027 => 0.39858293036322
1028 => 0.4105154478507
1029 => 0.40480069797496
1030 => 0.4029915788876
1031 => 0.41223397595488
1101 => 0.41295218936278
1102 => 0.3965768475497
1103 => 0.39998179965227
1104 => 0.41418101594619
1105 => 0.3996240158331
1106 => 0.37134214248584
1107 => 0.36432784686823
1108 => 0.36339201053372
1109 => 0.34436868450796
1110 => 0.36479657564156
1111 => 0.3558792537283
1112 => 0.38404896680637
1113 => 0.36795857777338
1114 => 0.36726495326162
1115 => 0.3662164380795
1116 => 0.34984227552543
1117 => 0.35342717649245
1118 => 0.36534393330268
1119 => 0.36959596638444
1120 => 0.36915244449813
1121 => 0.36528553469314
1122 => 0.36705578620009
1123 => 0.36135318929971
1124 => 0.3593394836449
1125 => 0.35298367468494
1126 => 0.34364239135083
1127 => 0.34494135409186
1128 => 0.32643382752725
1129 => 0.31634994478608
1130 => 0.31355885894676
1201 => 0.30982650231491
1202 => 0.31398043855975
1203 => 0.32638139802984
1204 => 0.31142320989859
1205 => 0.28577844554245
1206 => 0.28731973957681
1207 => 0.2907825696577
1208 => 0.28432960871087
1209 => 0.27822242273066
1210 => 0.28353212544879
1211 => 0.27266610072214
1212 => 0.29209567683287
1213 => 0.29157016124983
1214 => 0.29881230570698
1215 => 0.30334096725981
1216 => 0.29290386855214
1217 => 0.29027896645208
1218 => 0.29177422998342
1219 => 0.26706085455097
1220 => 0.29679269569015
1221 => 0.29704981788697
1222 => 0.29484818153444
1223 => 0.31067946907344
1224 => 0.34408842368315
1225 => 0.33151863108689
1226 => 0.32665122746963
1227 => 0.31739828963516
1228 => 0.32972727991451
1229 => 0.32878060582326
1230 => 0.32449938656717
1231 => 0.32191009180286
]
'min_raw' => 0.24181283099817
'max_raw' => 0.62046403539015
'avg_raw' => 0.43113843319416
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.241812'
'max' => '$0.620464'
'avg' => '$0.431138'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14869936185785
'max_diff' => 0.36064858191509
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0075902284516997
]
1 => [
'year' => 2028
'avg' => 0.01302703548218
]
2 => [
'year' => 2029
'avg' => 0.035587513042609
]
3 => [
'year' => 2030
'avg' => 0.027455713313858
]
4 => [
'year' => 2031
'avg' => 0.026964913023301
]
5 => [
'year' => 2032
'avg' => 0.047277978700289
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0075902284516997
'min' => '$0.00759'
'max_raw' => 0.047277978700289
'max' => '$0.047277'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047277978700289
]
1 => [
'year' => 2033
'avg' => 0.12160382275436
]
2 => [
'year' => 2034
'avg' => 0.077078346867975
]
3 => [
'year' => 2035
'avg' => 0.090914086888168
]
4 => [
'year' => 2036
'avg' => 0.17646446130769
]
5 => [
'year' => 2037
'avg' => 0.43113843319416
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047277978700289
'min' => '$0.047277'
'max_raw' => 0.43113843319416
'max' => '$0.431138'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43113843319416
]
]
]
]
'prediction_2025_max_price' => '$0.012977'
'last_price' => 0.012583723067338
'sma_50day_nextmonth' => '$0.014417'
'sma_200day_nextmonth' => '$0.0375043'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.011617'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011964'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01477'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.019329'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.031628'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037056'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.044595'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012147'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012644'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.014664'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.019377'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.027492'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035718'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.058175'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.032657'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.063912'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.013228'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.015357'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.020941'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033222'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.073337'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.040937'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.020468'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '22.66'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 17.8
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.014258'
'vwma_10_action' => 'SELL'
'hma_9' => '0.010278'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 15.22
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -99.37
'cci_20_action' => 'NEUTRAL'
'adx_14' => 49.66
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.013710'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -84.78
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 19.18
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.002516'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 10
'sell_pct' => 69.7
'buy_pct' => 30.3
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767676045
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Kepler para 2026
La previsión del precio de Kepler para 2026 sugiere que el precio medio podría oscilar entre $0.004347 en el extremo inferior y $0.012977 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Kepler podría potencialmente ganar 3.13% para 2026 si AVIA alcanza el objetivo de precio previsto.
Predicción de precio de Kepler 2027-2032
La predicción del precio de AVIA para 2027-2032 está actualmente dentro de un rango de precios de $0.00759 en el extremo inferior y $0.047277 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Kepler alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Kepler | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004185 | $0.00759 | $0.010995 |
| 2028 | $0.007553 | $0.013027 | $0.01850066 |
| 2029 | $0.016592 | $0.035587 | $0.054582 |
| 2030 | $0.014111 | $0.027455 | $0.040800073 |
| 2031 | $0.016683 | $0.026964 | $0.037245 |
| 2032 | $0.025466 | $0.047277 | $0.069089 |
Predicción de precio de Kepler 2032-2037
La predicción de precio de Kepler para 2032-2037 se estima actualmente entre $0.047277 en el extremo inferior y $0.431138 en el extremo superior. Comparado con el precio actual, Kepler podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Kepler | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025466 | $0.047277 | $0.069089 |
| 2033 | $0.059179 | $0.1216038 | $0.184028 |
| 2034 | $0.047577 | $0.077078 | $0.106579 |
| 2035 | $0.056251 | $0.090914 | $0.125576 |
| 2036 | $0.093113 | $0.176464 | $0.259815 |
| 2037 | $0.241812 | $0.431138 | $0.620464 |
Kepler Histograma de precios potenciales
Pronóstico de precio de Kepler basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Kepler es Bajista, con 10 indicadores técnicos mostrando señales alcistas y 23 indicando señales bajistas. La predicción de precio de AVIA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Kepler
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Kepler aumentar durante el próximo mes, alcanzando $0.0375043 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Kepler alcance $0.014417 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 22.66, lo que sugiere que el mercado de AVIA está en un estado BUY.
Promedios Móviles y Osciladores Populares de AVIA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.011617 | BUY |
| SMA 5 | $0.011964 | BUY |
| SMA 10 | $0.01477 | SELL |
| SMA 21 | $0.019329 | SELL |
| SMA 50 | $0.031628 | SELL |
| SMA 100 | $0.037056 | SELL |
| SMA 200 | $0.044595 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.012147 | BUY |
| EMA 5 | $0.012644 | SELL |
| EMA 10 | $0.014664 | SELL |
| EMA 21 | $0.019377 | SELL |
| EMA 50 | $0.027492 | SELL |
| EMA 100 | $0.035718 | SELL |
| EMA 200 | $0.058175 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.032657 | SELL |
| SMA 50 | $0.063912 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.033222 | SELL |
| EMA 50 | $0.073337 | SELL |
| EMA 100 | $0.040937 | SELL |
| EMA 200 | $0.020468 | SELL |
Osciladores de Kepler
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 22.66 | BUY |
| Stoch RSI (14) | 17.8 | BUY |
| Estocástico Rápido (14) | 15.22 | BUY |
| Índice de Canal de Materias Primas (20) | -99.37 | NEUTRAL |
| Índice Direccional Medio (14) | 49.66 | SELL |
| Oscilador Asombroso (5, 34) | -0.013710 | SELL |
| Momentum (10) | -0.01 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -84.78 | BUY |
| Oscilador Ultimate (7, 14, 28) | 19.18 | BUY |
| VWMA (10) | 0.014258 | SELL |
| Promedio Móvil de Hull (9) | 0.010278 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002516 | SELL |
Predicción de precios de Kepler basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Kepler
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Kepler por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017682 | $0.024846 | $0.034913 | $0.049059 | $0.068936 | $0.096867 |
| Amazon.com acción | $0.026256 | $0.054786 | $0.114314 | $0.238524 | $0.497694 | $1.03 |
| Apple acción | $0.017849 | $0.025317 | $0.03591 | $0.050936 | $0.07225 | $0.102481 |
| Netflix acción | $0.019855 | $0.031328 | $0.049431 | $0.077994 | $0.123063 | $0.194174 |
| Google acción | $0.016295 | $0.021103 | $0.027328 | $0.03539 | $0.04583 | $0.059349 |
| Tesla acción | $0.028526 | $0.064667 | $0.146595 | $0.33232 | $0.753345 | $1.70 |
| Kodak acción | $0.009436 | $0.007076 | $0.0053064 | $0.003979 | $0.002984 | $0.002237 |
| Nokia acción | $0.008336 | $0.005522 | $0.003658 | $0.002423 | $0.0016054 | $0.001063 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Kepler
Podría preguntarse cosas como: "¿Debo invertir en Kepler ahora?", "¿Debería comprar AVIA hoy?", "¿Será Kepler una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Kepler regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Kepler, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Kepler a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Kepler es de $0.01258 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Kepler basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Kepler ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.01291 | $0.013246 | $0.01359 | $0.013943 |
| Si Kepler ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.013237 | $0.013926 | $0.01465 | $0.015411 |
| Si Kepler ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014219 | $0.016067 | $0.018155 | $0.020514 |
| Si Kepler ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015854 | $0.019975 | $0.025168 | $0.03171 |
| Si Kepler ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019125 | $0.029068 | $0.044179 | $0.067147 |
| Si Kepler ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.028938 | $0.066548 | $0.153038 | $0.351936 |
| Si Kepler ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.045292 | $0.163023 | $0.586774 | $2.11 |
Cuadro de preguntas
¿Es AVIA una buena inversión?
La decisión de adquirir Kepler depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Kepler ha experimentado una caída de 0% durante las últimas 24 horas, y Kepler ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Kepler dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Kepler subir?
Parece que el valor medio de Kepler podría potencialmente aumentar hasta $0.012977 para el final de este año. Mirando las perspectivas de Kepler en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.040800073. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Kepler la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Kepler, el precio de Kepler aumentará en un 0.86% durante la próxima semana y alcanzará $0.012691 para el 13 de enero de 2026.
¿Cuál será el precio de Kepler el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Kepler, el precio de Kepler disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011121 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Kepler este año en 2026?
Según nuestra predicción más reciente sobre el valor de Kepler en 2026, se anticipa que AVIA fluctúe dentro del rango de $0.004347 y $0.012977. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Kepler no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Kepler en 5 años?
El futuro de Kepler parece estar en una tendencia alcista, con un precio máximo de $0.040800073 proyectada después de un período de cinco años. Basado en el pronóstico de Kepler para 2030, el valor de Kepler podría potencialmente alcanzar su punto más alto de aproximadamente $0.040800073, mientras que su punto más bajo se anticipa que esté alrededor de $0.014111.
¿Cuánto será Kepler en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Kepler, se espera que el valor de AVIA en 2026 crezca en un 3.13% hasta $0.012977 si ocurre lo mejor. El precio estará entre $0.012977 y $0.004347 durante 2026.
¿Cuánto será Kepler en 2027?
Según nuestra última simulación experimental para la predicción de precios de Kepler, el valor de AVIA podría disminuir en un -12.62% hasta $0.010995 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.010995 y $0.004185 a lo largo del año.
¿Cuánto será Kepler en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Kepler sugiere que el valor de AVIA en 2028 podría aumentar en un 47.02% , alcanzando $0.01850066 en el mejor escenario. Se espera que el precio oscile entre $0.01850066 y $0.007553 durante el año.
¿Cuánto será Kepler en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Kepler podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054582 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054582 y $0.016592.
¿Cuánto será Kepler en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Kepler, se espera que el valor de AVIA en 2030 aumente en un 224.23% , alcanzando $0.040800073 en el mejor escenario. Se pronostica que el precio oscile entre $0.040800073 y $0.014111 durante el transcurso de 2030.
¿Cuánto será Kepler en 2031?
Nuestra simulación experimental indica que el precio de Kepler podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037245 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037245 y $0.016683 durante el año.
¿Cuánto será Kepler en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Kepler, AVIA podría experimentar un 449.04% aumento en valor, alcanzando $0.069089 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.069089 y $0.025466 a lo largo del año.
¿Cuánto será Kepler en 2033?
Según nuestra predicción experimental de precios de Kepler, se anticipa que el valor de AVIA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.184028. A lo largo del año, el precio de AVIA podría oscilar entre $0.184028 y $0.059179.
¿Cuánto será Kepler en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Kepler sugieren que AVIA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.106579 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.106579 y $0.047577.
¿Cuánto será Kepler en 2035?
Basado en nuestra predicción experimental para el precio de Kepler, AVIA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.125576 en 2035. El rango de precios esperado para el año está entre $0.125576 y $0.056251.
¿Cuánto será Kepler en 2036?
Nuestra reciente simulación de predicción de precios de Kepler sugiere que el valor de AVIA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.259815 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.259815 y $0.093113.
¿Cuánto será Kepler en 2037?
Según la simulación experimental, el valor de Kepler podría aumentar en un 4830.69% en 2037, con un máximo de $0.620464 bajo condiciones favorables. Se espera que el precio caiga entre $0.620464 y $0.241812 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Kepler?
Los traders de Kepler utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Kepler
Las medias móviles son herramientas populares para la predicción de precios de Kepler. Una media móvil simple (SMA) calcula el precio de cierre promedio de AVIA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de AVIA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de AVIA.
¿Cómo leer gráficos de Kepler y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Kepler en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de AVIA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Kepler?
La acción del precio de Kepler está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de AVIA. La capitalización de mercado de Kepler puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de AVIA, grandes poseedores de Kepler, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Kepler.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


