Predicción del precio de Jackal Protocol - Pronóstico de JKL
Predicción de precio de Jackal Protocol hasta $0.015694 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.005257 | $0.015694 |
| 2027 | $0.005061 | $0.013296 |
| 2028 | $0.009134 | $0.022373 |
| 2029 | $0.020066 | $0.0660085 |
| 2030 | $0.017065 | $0.049341 |
| 2031 | $0.020176 | $0.045042 |
| 2032 | $0.030798 | $0.083552 |
| 2033 | $0.071567 | $0.222552 |
| 2034 | $0.057537 | $0.12889 |
| 2035 | $0.068026 | $0.151864 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Jackal Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.52, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Jackal Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Jackal Protocol'
'name_with_ticker' => 'Jackal Protocol <small>JKL</small>'
'name_lang' => 'Jackal Protocol'
'name_lang_with_ticker' => 'Jackal Protocol <small>JKL</small>'
'name_with_lang' => 'Jackal Protocol'
'name_with_lang_with_ticker' => 'Jackal Protocol <small>JKL</small>'
'image' => '/uploads/coins/jackal-protocol.png?1718416735'
'price_for_sd' => 0.01521
'ticker' => 'JKL'
'marketcap' => '$1.93M'
'low24h' => '$0.01386'
'high24h' => '$0.01597'
'volume24h' => '$5.43K'
'current_supply' => '126.77M'
'max_supply' => '176.08M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01521'
'change_24h_pct' => '-4.1828%'
'ath_price' => '$1.09'
'ath_days' => 546
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 jul. 2024'
'ath_pct' => '-98.60%'
'fdv' => '$2.68M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.75035'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.015348'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013449'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005257'
'current_year_max_price_prediction' => '$0.015694'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.017065'
'grand_prediction_max_price' => '$0.049341'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015506342526848
107 => 0.015564237581041
108 => 0.015694678094332
109 => 0.01458007818993
110 => 0.015080500824073
111 => 0.015374452238372
112 => 0.014046369054525
113 => 0.01534820030394
114 => 0.014560675485355
115 => 0.014293377733702
116 => 0.014653258942502
117 => 0.014513012885437
118 => 0.014392437561097
119 => 0.014325154458368
120 => 0.014589411499471
121 => 0.014577083592648
122 => 0.014144707783322
123 => 0.013580691165948
124 => 0.013769993655953
125 => 0.013701218286614
126 => 0.013451967475929
127 => 0.013619932427673
128 => 0.012880299785311
129 => 0.011607800266887
130 => 0.012448452426472
131 => 0.012416088232782
201 => 0.012399768738724
202 => 0.013031495602733
203 => 0.012970769641177
204 => 0.012860551426323
205 => 0.013449943231979
206 => 0.013234807294476
207 => 0.013897805561459
208 => 0.014334499100134
209 => 0.01422373949317
210 => 0.014634451877016
211 => 0.013774354802985
212 => 0.014060044549873
213 => 0.014118924810758
214 => 0.013442670228587
215 => 0.012980705159498
216 => 0.012949897356178
217 => 0.012148913589086
218 => 0.012576792652151
219 => 0.01295330852081
220 => 0.012772986638534
221 => 0.012715902117569
222 => 0.013007534555059
223 => 0.013030196893115
224 => 0.012513493183793
225 => 0.01262093224684
226 => 0.013068971000002
227 => 0.012609642819809
228 => 0.011717243196527
301 => 0.011495915751563
302 => 0.01146638659053
303 => 0.010866129006087
304 => 0.011510705909753
305 => 0.011229330817716
306 => 0.012118191362071
307 => 0.01161047898619
308 => 0.011588592520418
309 => 0.011555507917356
310 => 0.011038841418097
311 => 0.011151958545566
312 => 0.011527977105497
313 => 0.011662144763833
314 => 0.011648149977865
315 => 0.011526134409417
316 => 0.011581992511832
317 => 0.011402054101701
318 => 0.01133851410399
319 => 0.01113796439316
320 => 0.010843211721511
321 => 0.010884198888327
322 => 0.01030021671956
323 => 0.0099820322397357
324 => 0.0098939629693244
325 => 0.0097761930602623
326 => 0.0099072653939267
327 => 0.010298562371449
328 => 0.0098265751982724
329 => 0.0090173862959115
330 => 0.0090660199277341
331 => 0.0091752852589848
401 => 0.0089716700370617
402 => 0.0087789653176416
403 => 0.0089465064365493
404 => 0.0086036424312701
405 => 0.0092167187359707
406 => 0.009200136740055
407 => 0.009428653674063
408 => 0.0095715500025378
409 => 0.0092422202286392
410 => 0.0091593946811061
411 => 0.0092065758771922
412 => 0.0084267758033019
413 => 0.0093649273714923
414 => 0.0093730405452116
415 => 0.0093035706261763
416 => 0.0098031073740576
417 => 0.010857285721506
418 => 0.01046066142297
419 => 0.010307076506544
420 => 0.010015111468148
421 => 0.010404137546642
422 => 0.010374266413566
423 => 0.010239177821505
424 => 0.010157475819524
425 => 0.010308014263294
426 => 0.010138822440406
427 => 0.010108430939935
428 => 0.0099242915133599
429 => 0.0098585621158826
430 => 0.0098098986867531
501 => 0.0097563250328513
502 => 0.0098744951636359
503 => 0.0096067061007026
504 => 0.0092837787424907
505 => 0.0092569308267778
506 => 0.009331060282554
507 => 0.0092982635166619
508 => 0.0092567738084805
509 => 0.0091775586565125
510 => 0.0091540572130875
511 => 0.0092304255029393
512 => 0.0091442101562446
513 => 0.0092714255966856
514 => 0.009236830036037
515 => 0.0090435820465139
516 => 0.0088027235019988
517 => 0.0088005793557347
518 => 0.0087486867774061
519 => 0.0086825937768032
520 => 0.0086642082160385
521 => 0.0089323965908251
522 => 0.0094875385004305
523 => 0.0093785508601549
524 => 0.0094573055997567
525 => 0.0098447009721666
526 => 0.0099678423116705
527 => 0.0098804395056531
528 => 0.0097607971540063
529 => 0.0097660608102835
530 => 0.010174914944064
531 => 0.010200414674877
601 => 0.010264844268117
602 => 0.010347654503231
603 => 0.0098945424467746
604 => 0.0097447192731721
605 => 0.009673724741646
606 => 0.0094550890628872
607 => 0.0096908688980222
608 => 0.0095534900851882
609 => 0.009572027180568
610 => 0.0095599548728837
611 => 0.0095665471692052
612 => 0.009216547368649
613 => 0.0093440689005237
614 => 0.0091320396205741
615 => 0.0088481562161252
616 => 0.0088472045394112
617 => 0.0089166846004727
618 => 0.0088753551413982
619 => 0.0087641386297064
620 => 0.0087799364102651
621 => 0.0086415312293651
622 => 0.0087967413051331
623 => 0.0088011921747377
624 => 0.0087414278412171
625 => 0.0089805503778007
626 => 0.0090785190761444
627 => 0.0090391809115451
628 => 0.0090757590056486
629 => 0.0093830797886581
630 => 0.0094331864856345
701 => 0.0094554405705688
702 => 0.0094256230448581
703 => 0.0090813762654053
704 => 0.0090966450739244
705 => 0.0089846126880251
706 => 0.0088899571276222
707 => 0.0088937428536353
708 => 0.0089424081160439
709 => 0.0091549321711623
710 => 0.0096021765161816
711 => 0.0096191491121437
712 => 0.0096397203935754
713 => 0.0095560466536952
714 => 0.0095308098530975
715 => 0.0095641037072568
716 => 0.0097320651682556
717 => 0.010164107647036
718 => 0.010011394979888
719 => 0.0098872372043826
720 => 0.0099961570461969
721 => 0.0099793896902915
722 => 0.0098378563323796
723 => 0.0098338839624145
724 => 0.0095622361976297
725 => 0.0094618142041091
726 => 0.0093778940698673
727 => 0.0092862554740659
728 => 0.0092319290427212
729 => 0.0093153991321881
730 => 0.0093344897292382
731 => 0.0091519809198115
801 => 0.0091271056434798
802 => 0.009276146276984
803 => 0.0092105590509737
804 => 0.0092780171394102
805 => 0.0092936679945722
806 => 0.0092911478464214
807 => 0.0092226672498217
808 => 0.0092663147399736
809 => 0.0091630754138214
810 => 0.0090508181526762
811 => 0.0089792050139402
812 => 0.0089167130522885
813 => 0.008951387224667
814 => 0.0088277801313915
815 => 0.0087882357345334
816 => 0.0092515279524097
817 => 0.0095937668949857
818 => 0.0095887906052191
819 => 0.0095584987210631
820 => 0.0095134911256915
821 => 0.0097287725823191
822 => 0.0096537728275187
823 => 0.0097083414155752
824 => 0.009722231411472
825 => 0.0097642722456526
826 => 0.0097792982303404
827 => 0.0097338792683966
828 => 0.0095814476846543
829 => 0.0092016026707287
830 => 0.0090247837913743
831 => 0.0089664306160359
901 => 0.008968551643131
902 => 0.0089100442471665
903 => 0.0089272772973956
904 => 0.0089040512955729
905 => 0.0088600668670939
906 => 0.0089486713101533
907 => 0.0089588821468084
908 => 0.0089382008110541
909 => 0.0089430720142995
910 => 0.0087718393873678
911 => 0.0087848578320957
912 => 0.0087123694775468
913 => 0.008698778784929
914 => 0.0085155345369124
915 => 0.0081908907898726
916 => 0.0083707749396637
917 => 0.0081535001822552
918 => 0.0080712149393747
919 => 0.0084607404811899
920 => 0.0084216429205484
921 => 0.0083547248920312
922 => 0.0082557391809152
923 => 0.0082190244177912
924 => 0.0079959571395312
925 => 0.0079827771347139
926 => 0.0080933353011428
927 => 0.0080423165114101
928 => 0.0079706668082988
929 => 0.0077111588466435
930 => 0.0074193859776097
1001 => 0.007428192766507
1002 => 0.0075210002875194
1003 => 0.0077908506716625
1004 => 0.0076854154581187
1005 => 0.0076089210009631
1006 => 0.0075945958885527
1007 => 0.0077739046620221
1008 => 0.0080276641428306
1009 => 0.0081467224136776
1010 => 0.0080287392831217
1011 => 0.0078932066154019
1012 => 0.0079014558608881
1013 => 0.0079563343953807
1014 => 0.0079621013534151
1015 => 0.0078738835197129
1016 => 0.0078987163231612
1017 => 0.0078609930239641
1018 => 0.0076294852064237
1019 => 0.0076252979641236
1020 => 0.0075684822121313
1021 => 0.007566761853741
1022 => 0.0074701040862486
1023 => 0.0074565809964128
1024 => 0.0072646611323495
1025 => 0.0073909833680628
1026 => 0.0073062530445614
1027 => 0.0071785444611819
1028 => 0.007156527453271
1029 => 0.0071558655954269
1030 => 0.0072869937554409
1031 => 0.0073894510591665
1101 => 0.0073077269648149
1102 => 0.007289119972686
1103 => 0.0074877939687612
1104 => 0.007462510891807
1105 => 0.0074406159102229
1106 => 0.0080049427645826
1107 => 0.0075582340243833
1108 => 0.007363443516413
1109 => 0.0071223532730855
1110 => 0.0072008534719955
1111 => 0.0072173946173137
1112 => 0.0066376160418937
1113 => 0.0064023999460527
1114 => 0.0063216826458916
1115 => 0.0062752286984738
1116 => 0.0062963983456441
1117 => 0.0060846762712909
1118 => 0.0062269570068161
1119 => 0.0060436235868477
1120 => 0.0060128871423714
1121 => 0.0063407100079276
1122 => 0.0063863246445564
1123 => 0.0061917184333414
1124 => 0.0063166871248252
1125 => 0.0062713717400984
1126 => 0.0060467663121342
1127 => 0.0060381880368717
1128 => 0.0059254889283818
1129 => 0.0057491366464427
1130 => 0.005668538921433
1201 => 0.0056265629264665
1202 => 0.0056438830400855
1203 => 0.0056351254606355
1204 => 0.0055779763308692
1205 => 0.0056384011818574
1206 => 0.005484040656855
1207 => 0.0054225730520318
1208 => 0.0053948095609708
1209 => 0.0052578057103709
1210 => 0.0054758397625642
1211 => 0.0055187952175669
1212 => 0.0055618353080856
1213 => 0.0059364699113328
1214 => 0.005917754225261
1215 => 0.0060869349124415
1216 => 0.006080360862041
1217 => 0.0060321077895117
1218 => 0.0058285360137556
1219 => 0.005909676095254
1220 => 0.0056599395363704
1221 => 0.0058470591467213
1222 => 0.0057616655708589
1223 => 0.005818187492824
1224 => 0.0057165559807545
1225 => 0.005772803055796
1226 => 0.0055289815494904
1227 => 0.0053013044575633
1228 => 0.0053929283656634
1229 => 0.0054925340322331
1230 => 0.0057085044964079
1231 => 0.005579874269663
]
'min_raw' => 0.0052578057103709
'max_raw' => 0.015694678094332
'avg_raw' => 0.010476241902351
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005257'
'max' => '$0.015694'
'avg' => '$0.010476'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0099601642896291
'max_diff' => 0.00047670809433208
'year' => 2026
]
1 => [
'items' => [
101 => 0.0056261345632479
102 => 0.0054711703236183
103 => 0.0051514348339157
104 => 0.0051532445020642
105 => 0.0051040601627898
106 => 0.0050615577126255
107 => 0.0055946489985498
108 => 0.005528350670219
109 => 0.0054227129609346
110 => 0.0055641132326875
111 => 0.005601501708863
112 => 0.0056025661062177
113 => 0.0057057280944194
114 => 0.0057607856660154
115 => 0.0057704898016424
116 => 0.00593281741904
117 => 0.0059872274952386
118 => 0.0062113348986986
119 => 0.0057561144157314
120 => 0.0057467394494508
121 => 0.0055661030244868
122 => 0.0054515405480257
123 => 0.0055739472152626
124 => 0.005682382812258
125 => 0.0055694724207485
126 => 0.0055842161342112
127 => 0.0054326431587276
128 => 0.0054868233652916
129 => 0.0055334906580465
130 => 0.0055077237219639
131 => 0.0054691493715145
201 => 0.0056734923298876
202 => 0.0056619624993497
203 => 0.0058522513600111
204 => 0.0060005951345836
205 => 0.0062664536982392
206 => 0.0059890164275442
207 => 0.0059789055106868
208 => 0.00607774134481
209 => 0.0059872123639874
210 => 0.006044423554913
211 => 0.0062572360908995
212 => 0.0062617324844393
213 => 0.0061864120993719
214 => 0.0061818288470954
215 => 0.0061962949509623
216 => 0.0062810233731514
217 => 0.0062514166589971
218 => 0.0062856782981667
219 => 0.0063285230025812
220 => 0.0065057468658176
221 => 0.0065484749392554
222 => 0.0064446678727677
223 => 0.0064540404885931
224 => 0.0064152137961591
225 => 0.0063777076977648
226 => 0.0064620159296293
227 => 0.0066160908804442
228 => 0.0066151323881717
301 => 0.0066508747819717
302 => 0.0066731419972031
303 => 0.0065775548088321
304 => 0.0065153310640409
305 => 0.0065391916071936
306 => 0.0065773451353098
307 => 0.0065268189322459
308 => 0.0062149478009218
309 => 0.0063095495797605
310 => 0.0062938032179711
311 => 0.0062713784839599
312 => 0.0063665013041162
313 => 0.0063573264760585
314 => 0.0060825047554003
315 => 0.0061000979502999
316 => 0.0060835746558526
317 => 0.0061369648005599
318 => 0.0059843291209617
319 => 0.0060312788279891
320 => 0.0060607252441105
321 => 0.0060780694094241
322 => 0.0061407284275421
323 => 0.0061333761149736
324 => 0.0061402713974697
325 => 0.0062331781799713
326 => 0.0067030688041065
327 => 0.006728643914023
328 => 0.0066027027191374
329 => 0.0066530137424139
330 => 0.0065564275795342
331 => 0.0066212665177464
401 => 0.0066656276725408
402 => 0.0064651681441847
403 => 0.006453298231887
404 => 0.0063563134235554
405 => 0.0064084275660525
406 => 0.0063255102182002
407 => 0.0063458552350375
408 => 0.0062889687943139
409 => 0.006391353061639
410 => 0.0065058345814152
411 => 0.0065347571343229
412 => 0.0064586743495647
413 => 0.0064035853992999
414 => 0.0063068673500633
415 => 0.0064677116214461
416 => 0.0065147473880388
417 => 0.0064674645625879
418 => 0.0064565080987808
419 => 0.0064357456196643
420 => 0.006460912956876
421 => 0.0065144912211525
422 => 0.0064892247011549
423 => 0.0065059136827521
424 => 0.0064423124945066
425 => 0.0065775864521688
426 => 0.0067924340523872
427 => 0.006793124822553
428 => 0.0067678581663594
429 => 0.0067575195950227
430 => 0.0067834447175862
501 => 0.0067975080330727
502 => 0.0068813451255887
503 => 0.0069713056660754
504 => 0.007391112255668
505 => 0.0072732322451936
506 => 0.007645709625886
507 => 0.0079402908738791
508 => 0.0080286229096754
509 => 0.0079473615930862
510 => 0.0076693710186847
511 => 0.0076557314748804
512 => 0.0080711667576296
513 => 0.0079537872621116
514 => 0.0079398253446182
515 => 0.0077912941315202
516 => 0.0078790944744097
517 => 0.0078598912514664
518 => 0.0078295780245967
519 => 0.007997094962605
520 => 0.0083106717162163
521 => 0.0082617978384618
522 => 0.0082253157559121
523 => 0.0080654618899534
524 => 0.0081617296219141
525 => 0.0081274505264498
526 => 0.0082747352746157
527 => 0.0081874870525589
528 => 0.0079528979969871
529 => 0.0079902570773025
530 => 0.0079846103274689
531 => 0.0081008200389123
601 => 0.0080659367680393
602 => 0.0079777988089745
603 => 0.0083095999449626
604 => 0.0082880546247665
605 => 0.0083186009628587
606 => 0.0083320484055638
607 => 0.008534009910048
608 => 0.0086167470763879
609 => 0.008635529861665
610 => 0.0087141237705657
611 => 0.0086335743736141
612 => 0.0089558293921673
613 => 0.0091701101754036
614 => 0.0094190083319207
615 => 0.0097827154361099
616 => 0.0099194726717638
617 => 0.0098947687012094
618 => 0.010170527276674
619 => 0.010666059307015
620 => 0.0099949298923443
621 => 0.010701630795622
622 => 0.010477897448898
623 => 0.0099474297086083
624 => 0.0099132738399375
625 => 0.010272512752519
626 => 0.011069270085161
627 => 0.010869691410081
628 => 0.011069596524376
629 => 0.010836396589965
630 => 0.010824816247658
701 => 0.011058270524074
702 => 0.011603749165848
703 => 0.011344612710102
704 => 0.010973077057925
705 => 0.011247413201758
706 => 0.011009757845358
707 => 0.010474253811844
708 => 0.010869538796029
709 => 0.010605222984173
710 => 0.010682364389874
711 => 0.011237916912387
712 => 0.011171071363068
713 => 0.011257575693617
714 => 0.011104897814411
715 => 0.01096227260014
716 => 0.010696052046216
717 => 0.010617237264713
718 => 0.010639018834862
719 => 0.010617226470849
720 => 0.010468278517622
721 => 0.010436113221304
722 => 0.010382502984913
723 => 0.010399119038865
724 => 0.010298316110223
725 => 0.010488552063519
726 => 0.010523861532804
727 => 0.01066229939525
728 => 0.010676672473379
729 => 0.011062219949753
730 => 0.010849866878629
731 => 0.010992331652421
801 => 0.010979588262123
802 => 0.0099589265530593
803 => 0.010099564731194
804 => 0.010318353601679
805 => 0.010219789512087
806 => 0.010080442949848
807 => 0.0099679131295503
808 => 0.0097974189450342
809 => 0.01003738623569
810 => 0.010352917705226
811 => 0.010684674872153
812 => 0.011083259370626
813 => 0.010994299950602
814 => 0.010677223612204
815 => 0.01069144742512
816 => 0.010779373439703
817 => 0.010665501261897
818 => 0.010631918133613
819 => 0.010774759633581
820 => 0.010775743304487
821 => 0.010644719602008
822 => 0.010499110733788
823 => 0.010498500627313
824 => 0.010472590935628
825 => 0.010841005866557
826 => 0.011043596827618
827 => 0.011066823554811
828 => 0.011042033483816
829 => 0.01105157419826
830 => 0.010933690981806
831 => 0.011203137057437
901 => 0.011450407421891
902 => 0.011384133682057
903 => 0.011284779924678
904 => 0.0112056398714
905 => 0.011365490800612
906 => 0.011358372890363
907 => 0.011448247730972
908 => 0.01144417048906
909 => 0.011413948960526
910 => 0.011384134761363
911 => 0.011502344691002
912 => 0.011468302129659
913 => 0.011434206690816
914 => 0.011365823068465
915 => 0.011375117538474
916 => 0.011275780935922
917 => 0.011229823278248
918 => 0.010538730374665
919 => 0.010354047768716
920 => 0.010412152676109
921 => 0.010431282320316
922 => 0.010350908213529
923 => 0.010466144036247
924 => 0.010448184655341
925 => 0.010518054100559
926 => 0.010474402704565
927 => 0.010476194173083
928 => 0.01060456362124
929 => 0.010641829818163
930 => 0.010622875929633
1001 => 0.010636150583458
1002 => 0.010942059377976
1003 => 0.010898568929808
1004 => 0.010875465496015
1005 => 0.010881865305068
1006 => 0.010960031560825
1007 => 0.010981913844718
1008 => 0.010889197070223
1009 => 0.010932922837064
1010 => 0.011119101602647
1011 => 0.011184253633796
1012 => 0.011392187642473
1013 => 0.011303853579855
1014 => 0.011465994574799
1015 => 0.011964360715321
1016 => 0.012362490072683
1017 => 0.011996353862261
1018 => 0.012727467725589
1019 => 0.013296744740244
1020 => 0.013274894940241
1021 => 0.013175628325122
1022 => 0.012527521578949
1023 => 0.011931124088393
1024 => 0.012430035913618
1025 => 0.012431307742463
1026 => 0.012388450774213
1027 => 0.012122269825151
1028 => 0.012379188254166
1029 => 0.012399581506071
1030 => 0.012388166708008
1031 => 0.012184086398456
1101 => 0.011872493486117
1102 => 0.01193337799534
1103 => 0.012033108063458
1104 => 0.01184429823864
1105 => 0.011783962059219
1106 => 0.011896138496189
1107 => 0.012257594348995
1108 => 0.012189263213793
1109 => 0.012187478811705
1110 => 0.01247982838501
1111 => 0.012270569183511
1112 => 0.011934145943981
1113 => 0.011849194639122
1114 => 0.01154767473693
1115 => 0.011755935607351
1116 => 0.011763430545318
1117 => 0.011649368194963
1118 => 0.011943401475079
1119 => 0.011940691906639
1120 => 0.012219832745031
1121 => 0.012753445187525
1122 => 0.012595629730806
1123 => 0.012412107524914
1124 => 0.012432061477213
1125 => 0.012650907083385
1126 => 0.012518588034134
1127 => 0.012566170886806
1128 => 0.012650835061038
1129 => 0.012701915059446
1130 => 0.012424711851519
1201 => 0.012360082523589
1202 => 0.012227873600456
1203 => 0.012193382760207
1204 => 0.012301064169469
1205 => 0.012272693922569
1206 => 0.011762800624804
1207 => 0.011709513938168
1208 => 0.011711148164771
1209 => 0.011577156257581
1210 => 0.011372786437373
1211 => 0.01190985812259
1212 => 0.011866723749954
1213 => 0.011819106740899
1214 => 0.011824939552809
1215 => 0.012058064168314
1216 => 0.011922840118246
1217 => 0.012282355418137
1218 => 0.012208449880499
1219 => 0.012132648944691
1220 => 0.012122170946409
1221 => 0.012092994053155
1222 => 0.011992935629943
1223 => 0.011872109071336
1224 => 0.011792328911526
1225 => 0.010877800080735
1226 => 0.01104753131216
1227 => 0.011242791622426
1228 => 0.011310194699074
1229 => 0.011194897072317
1230 => 0.011997488282995
1231 => 0.012144129431147
]
'min_raw' => 0.0050615577126255
'max_raw' => 0.013296744740244
'avg_raw' => 0.0091791512264349
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005061'
'max' => '$0.013296'
'avg' => '$0.009179'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019624799774536
'max_diff' => -0.0023979333540878
'year' => 2027
]
2 => [
'items' => [
101 => 0.011699943828229
102 => 0.011616854837901
103 => 0.012002935583368
104 => 0.0117700816974
105 => 0.011874935787993
106 => 0.011648298596251
107 => 0.012108807872711
108 => 0.012105299563589
109 => 0.011926151053972
110 => 0.012077566147544
111 => 0.012051254048893
112 => 0.01184899582276
113 => 0.012115219819241
114 => 0.012115351863022
115 => 0.01194292531754
116 => 0.011741568861442
117 => 0.011705571082919
118 => 0.011678451592423
119 => 0.011868266055786
120 => 0.012038453110103
121 => 0.012355129025239
122 => 0.012434748874338
123 => 0.012745510445965
124 => 0.012560467060767
125 => 0.012642494396712
126 => 0.012731546673356
127 => 0.012774241609568
128 => 0.012704672502147
129 => 0.01318741313745
130 => 0.013228171237861
131 => 0.013241837076372
201 => 0.013079059650258
202 => 0.013223644103178
203 => 0.013155997825791
204 => 0.013331994646877
205 => 0.013359593195663
206 => 0.013336218206688
207 => 0.013344978421686
208 => 0.012933044450738
209 => 0.01291168350122
210 => 0.012620425438832
211 => 0.012739115252126
212 => 0.012517230335124
213 => 0.012587592327973
214 => 0.012618607223987
215 => 0.012602406802389
216 => 0.012745825796089
217 => 0.01262389035288
218 => 0.012302082670207
219 => 0.011980187311247
220 => 0.011976146177226
221 => 0.011891396811137
222 => 0.011830138542075
223 => 0.01184193905795
224 => 0.01188352561506
225 => 0.011827721455775
226 => 0.011839630102501
227 => 0.01203739298505
228 => 0.012077052920765
229 => 0.011942272963069
301 => 0.011401111984263
302 => 0.011268309722665
303 => 0.011363765354719
304 => 0.011318143710727
305 => 0.0091346253194553
306 => 0.0096476105768985
307 => 0.009342812156259
308 => 0.0094832772915907
309 => 0.0091721570312863
310 => 0.0093206399267135
311 => 0.0092932205576552
312 => 0.010118085671287
313 => 0.010105206537102
314 => 0.010111371097088
315 => 0.0098171205873041
316 => 0.010285869639161
317 => 0.010516792277777
318 => 0.010474054643176
319 => 0.010484810785059
320 => 0.010299984630709
321 => 0.010113160618272
322 => 0.0099059440364691
323 => 0.010290926832715
324 => 0.010248123317648
325 => 0.010346299180993
326 => 0.010595988043497
327 => 0.010632755676976
328 => 0.010682171749233
329 => 0.010664459605004
330 => 0.011086434739203
331 => 0.01103533076617
401 => 0.011158476637563
402 => 0.010905156237008
403 => 0.010618500158386
404 => 0.010672984107439
405 => 0.010667736865013
406 => 0.010600933446425
407 => 0.010540626307107
408 => 0.010440231911573
409 => 0.010757894634617
410 => 0.010744998108182
411 => 0.010953777880598
412 => 0.010916874027845
413 => 0.010670421067255
414 => 0.010679223182957
415 => 0.010738421641204
416 => 0.010943308181112
417 => 0.011004132455896
418 => 0.010975956228388
419 => 0.011042647268955
420 => 0.011095357148206
421 => 0.011049266818253
422 => 0.011701808694486
423 => 0.011430827812413
424 => 0.011562902008862
425 => 0.011594400926489
426 => 0.011513717111339
427 => 0.011531214541774
428 => 0.011557718381119
429 => 0.011718644503638
430 => 0.012140961213478
501 => 0.012328002409458
502 => 0.012890725076016
503 => 0.012312471241871
504 => 0.012278160052405
505 => 0.012379523397249
506 => 0.012709901172762
507 => 0.012977641329009
508 => 0.013066466185136
509 => 0.013078205856212
510 => 0.013244847191271
511 => 0.013340362896851
512 => 0.013224612550093
513 => 0.013126526250782
514 => 0.012775193301571
515 => 0.01281586104709
516 => 0.013096021485454
517 => 0.01349176460601
518 => 0.0138313533735
519 => 0.013712441222989
520 => 0.014619656992499
521 => 0.014709603730401
522 => 0.014697175999549
523 => 0.014902088054361
524 => 0.014495379355174
525 => 0.014321503506661
526 => 0.01314773362202
527 => 0.013477515082153
528 => 0.013956871801842
529 => 0.013893427142496
530 => 0.013545305479416
531 => 0.013831089292002
601 => 0.013736600226275
602 => 0.013662072779781
603 => 0.014003497460026
604 => 0.013628086999144
605 => 0.013953126795321
606 => 0.013536259894618
607 => 0.013712984403676
608 => 0.013612667025132
609 => 0.013677584663485
610 => 0.013298077476156
611 => 0.013502850342423
612 => 0.013289558251688
613 => 0.013289457123466
614 => 0.013284748688741
615 => 0.013535685887608
616 => 0.013543868940654
617 => 0.013358425971547
618 => 0.013331700742535
619 => 0.013430517921452
620 => 0.0133148288852
621 => 0.013368959057124
622 => 0.013316468432964
623 => 0.013304651687844
624 => 0.013210493852274
625 => 0.013169928067787
626 => 0.013185834957136
627 => 0.013131536543224
628 => 0.013098819784783
629 => 0.013278240502019
630 => 0.013182383250611
701 => 0.013263549003454
702 => 0.013171050384155
703 => 0.012850409869934
704 => 0.012666006119493
705 => 0.012060345911522
706 => 0.012232110395183
707 => 0.012345990425554
708 => 0.012308353076196
709 => 0.012389212666338
710 => 0.012394176788459
711 => 0.012367888511437
712 => 0.012337450054384
713 => 0.012322634296842
714 => 0.012433058815234
715 => 0.012497163964879
716 => 0.01235741981012
717 => 0.012324679709889
718 => 0.012465968765836
719 => 0.012552155008344
720 => 0.013188505799154
721 => 0.013141362877185
722 => 0.013259682359996
723 => 0.013246361401992
724 => 0.01337037906975
725 => 0.013573095542758
726 => 0.013160916272716
727 => 0.013232456341908
728 => 0.013214916369044
729 => 0.013406413193551
730 => 0.013407011025735
731 => 0.013292199113467
801 => 0.013354440513718
802 => 0.013319699071601
803 => 0.013382481553093
804 => 0.01314073325472
805 => 0.013435156587022
806 => 0.013602075644217
807 => 0.013604393315488
808 => 0.013683511623847
809 => 0.013763900407363
810 => 0.013918199676935
811 => 0.013759597084481
812 => 0.013474286460308
813 => 0.013494884965825
814 => 0.013327607451264
815 => 0.013330419416505
816 => 0.013315408925671
817 => 0.0133604565386
818 => 0.013150618672511
819 => 0.013199867200264
820 => 0.013130918973011
821 => 0.013232306461928
822 => 0.013123230283805
823 => 0.013214907910738
824 => 0.01325447293536
825 => 0.013400468727992
826 => 0.013101666586528
827 => 0.012492388792956
828 => 0.012620466371944
829 => 0.012431029572345
830 => 0.012448562669384
831 => 0.012483982315776
901 => 0.012369175653233
902 => 0.012391077146472
903 => 0.012390294671015
904 => 0.012383551720255
905 => 0.012353686073284
906 => 0.012310374976437
907 => 0.012482913055821
908 => 0.012512230637633
909 => 0.012577399990322
910 => 0.012771299779131
911 => 0.012751924617757
912 => 0.012783526309825
913 => 0.012714539993476
914 => 0.012451762746742
915 => 0.012466032815499
916 => 0.012288084829436
917 => 0.012572849460237
918 => 0.012505413436954
919 => 0.012461936994046
920 => 0.012450074043792
921 => 0.012644454472672
922 => 0.012702616143533
923 => 0.012666373693337
924 => 0.012592039370624
925 => 0.012734783245203
926 => 0.01277297548416
927 => 0.012781525317987
928 => 0.013034440095318
929 => 0.012795660444507
930 => 0.012853137079723
1001 => 0.013301553380247
1002 => 0.012894901672891
1003 => 0.013110314151693
1004 => 0.013099770831808
1005 => 0.013209968566802
1006 => 0.013090731401107
1007 => 0.013092209488681
1008 => 0.013190057611914
1009 => 0.013052647569835
1010 => 0.013018622911014
1011 => 0.012971618088542
1012 => 0.013074251398772
1013 => 0.013135775426549
1014 => 0.013631613906015
1015 => 0.013951948176731
1016 => 0.013938041621218
1017 => 0.014065121506629
1018 => 0.014007870854333
1019 => 0.01382299339611
1020 => 0.014138556673892
1021 => 0.014038699249074
1022 => 0.014046931373849
1023 => 0.014046624973754
1024 => 0.01411302143157
1025 => 0.014065973456061
1026 => 0.013973237066957
1027 => 0.01403479980987
1028 => 0.01421761914724
1029 => 0.014785095980016
1030 => 0.015102663533706
1031 => 0.014765978014535
1101 => 0.014998219177261
1102 => 0.014858957235613
1103 => 0.014833649198131
1104 => 0.01497951381081
1105 => 0.015125633740184
1106 => 0.015116326532377
1107 => 0.015010250966993
1108 => 0.014950331571675
1109 => 0.015404061307491
1110 => 0.015738361647756
1111 => 0.015715564605727
1112 => 0.015816183335244
1113 => 0.016111603037126
1114 => 0.016138612512346
1115 => 0.016135209939274
1116 => 0.016068264136795
1117 => 0.016359143198393
1118 => 0.016601799629109
1119 => 0.016052768117771
1120 => 0.016261832129938
1121 => 0.016355687700622
1122 => 0.016493495524079
1123 => 0.016726000421523
1124 => 0.016978562409026
1125 => 0.01701427744326
1126 => 0.016988935917349
1127 => 0.016822364497361
1128 => 0.017098720837777
1129 => 0.01726060390064
1130 => 0.017357001559947
1201 => 0.017601449984907
1202 => 0.016356267320674
1203 => 0.015474865141336
1204 => 0.015337221463431
1205 => 0.015617125295022
1206 => 0.015690933703221
1207 => 0.015661181626424
1208 => 0.014669083339998
1209 => 0.015331998271272
1210 => 0.016045238997852
1211 => 0.016072637478924
1212 => 0.016429700699811
1213 => 0.016545975121047
1214 => 0.016833457815207
1215 => 0.016815475694414
1216 => 0.016885473155593
1217 => 0.016869381951455
1218 => 0.017401883105762
1219 => 0.01798931095615
1220 => 0.017968970197597
1221 => 0.017884520493973
1222 => 0.018009942704669
1223 => 0.018616231198864
1224 => 0.018560413869893
1225 => 0.018614635650479
1226 => 0.019329483954056
1227 => 0.020258888434692
1228 => 0.019827086742753
1229 => 0.020763972166672
1230 => 0.021353691878867
1231 => 0.022373551142951
]
'min_raw' => 0.0091346253194553
'max_raw' => 0.022373551142951
'avg_raw' => 0.015754088231203
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009134'
'max' => '$0.022373'
'avg' => '$0.015754'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0040730676068297
'max_diff' => 0.009076806402707
'year' => 2028
]
3 => [
'items' => [
101 => 0.022245859740175
102 => 0.02264288346761
103 => 0.022017265479206
104 => 0.020580720119573
105 => 0.020353381317536
106 => 0.020808519356349
107 => 0.02192743181305
108 => 0.020773280821216
109 => 0.021006764063695
110 => 0.020939520874154
111 => 0.020935937770348
112 => 0.021072690269067
113 => 0.020874323637145
114 => 0.020066142293216
115 => 0.020436527040496
116 => 0.020293503702235
117 => 0.020452198759132
118 => 0.021308610530385
119 => 0.020929970472007
120 => 0.020531103928727
121 => 0.021031371089572
122 => 0.021668383095775
123 => 0.021628520029248
124 => 0.021551169018715
125 => 0.02198719261512
126 => 0.022707375853455
127 => 0.022902038488846
128 => 0.02304573446659
129 => 0.023065547714157
130 => 0.023269636477966
131 => 0.022172199757975
201 => 0.023913860016774
202 => 0.024214596631075
203 => 0.024158070611842
204 => 0.024492326701706
205 => 0.02439398008081
206 => 0.024251491257243
207 => 0.024781358257987
208 => 0.024173908499696
209 => 0.0233117100436
210 => 0.022838690918234
211 => 0.02346160065988
212 => 0.02384198990255
213 => 0.024093402994654
214 => 0.024169480444417
215 => 0.022257390646547
216 => 0.021226880294856
217 => 0.021887425615464
218 => 0.022693336495009
219 => 0.022167722882348
220 => 0.022188325940846
221 => 0.021438939058018
222 => 0.02275964060584
223 => 0.02256722549917
224 => 0.023565475412946
225 => 0.023327235059568
226 => 0.024141269112413
227 => 0.023926906665047
228 => 0.024816713199221
301 => 0.025171681116254
302 => 0.025767727495296
303 => 0.026206181638064
304 => 0.026463650296989
305 => 0.026448192844448
306 => 0.027468411941485
307 => 0.026866824383702
308 => 0.026111088627827
309 => 0.026097419752319
310 => 0.026488826009145
311 => 0.027309106146391
312 => 0.027521792851388
313 => 0.027640655704228
314 => 0.027458613107458
315 => 0.026805632929654
316 => 0.026523679399563
317 => 0.026763911976181
318 => 0.026470128178398
319 => 0.026977281434546
320 => 0.027673711177328
321 => 0.027529901189425
322 => 0.028010636417786
323 => 0.028508146804318
324 => 0.029219609001649
325 => 0.029405611565401
326 => 0.029713066730237
327 => 0.030029539088615
328 => 0.030131181480956
329 => 0.030325248345718
330 => 0.030324225517547
331 => 0.030909059076715
401 => 0.031554148603264
402 => 0.03179765496568
403 => 0.032357584419035
404 => 0.031398724852432
405 => 0.032126030848285
406 => 0.032782079062194
407 => 0.031999911335879
408 => 0.033077947324898
409 => 0.03311980501947
410 => 0.033751806511756
411 => 0.033111151922488
412 => 0.032730733272423
413 => 0.033828987661061
414 => 0.034360398365033
415 => 0.034200333136233
416 => 0.032982228841667
417 => 0.032273239895279
418 => 0.030417679068827
419 => 0.032615671022022
420 => 0.033686248786119
421 => 0.032979456303891
422 => 0.033335921320263
423 => 0.035280678865421
424 => 0.036021116624891
425 => 0.035867110746972
426 => 0.035893135205188
427 => 0.036292661980302
428 => 0.038064383724571
429 => 0.037002726987217
430 => 0.037814323783405
501 => 0.038244791797674
502 => 0.03864463447957
503 => 0.037662747224411
504 => 0.036385326332238
505 => 0.035980713513206
506 => 0.032909179720891
507 => 0.032749293048005
508 => 0.032659543813453
509 => 0.032093687584881
510 => 0.031649079590289
511 => 0.031295510805752
512 => 0.030367640730553
513 => 0.030680769643021
514 => 0.029201938404688
515 => 0.030148042224413
516 => 0.027787791860405
517 => 0.029753478498769
518 => 0.028683644630311
519 => 0.029402009299891
520 => 0.029399502993233
521 => 0.028076765878811
522 => 0.027313838716032
523 => 0.027800005597724
524 => 0.028321215086873
525 => 0.028405779572929
526 => 0.02908154128057
527 => 0.029270131847724
528 => 0.028698693624797
529 => 0.027738880917768
530 => 0.027961823518614
531 => 0.027309320791342
601 => 0.026165834859952
602 => 0.026987106419225
603 => 0.027267524638322
604 => 0.027391373298949
605 => 0.026266886215674
606 => 0.025913547960307
607 => 0.025725433637944
608 => 0.027593723756021
609 => 0.027696072906116
610 => 0.02717244018352
611 => 0.029539309742547
612 => 0.02900361426584
613 => 0.0296021173619
614 => 0.027941593814361
615 => 0.028005028050068
616 => 0.027218909591593
617 => 0.027659083399885
618 => 0.027347982739648
619 => 0.027623521706057
620 => 0.027788678626433
621 => 0.028574668090605
622 => 0.029762453235897
623 => 0.028457267475096
624 => 0.027888579348511
625 => 0.028241390263821
626 => 0.029180972224171
627 => 0.030604486990416
628 => 0.029761737597894
629 => 0.030135735467483
630 => 0.030217437363981
701 => 0.029596025162213
702 => 0.030627399344668
703 => 0.031180121147915
704 => 0.031747099348384
705 => 0.032239390633483
706 => 0.031520635786999
707 => 0.032289806502197
708 => 0.031669990682656
709 => 0.031113951817146
710 => 0.031114795098582
711 => 0.030765983795817
712 => 0.030090117943655
713 => 0.029965477910874
714 => 0.030613871101702
715 => 0.031133821037683
716 => 0.031176646604802
717 => 0.031464517605354
718 => 0.031634876698173
719 => 0.033304627399756
720 => 0.033976214944835
721 => 0.034797419482456
722 => 0.035117324930411
723 => 0.036080125636306
724 => 0.035302585871446
725 => 0.035134360252364
726 => 0.032798920669575
727 => 0.033181348770423
728 => 0.033793653058704
729 => 0.032809017341763
730 => 0.033433542072261
731 => 0.033556836483304
801 => 0.032775559796877
802 => 0.03319287343207
803 => 0.032084612141866
804 => 0.029786610303495
805 => 0.030629957677633
806 => 0.031250945212655
807 => 0.030364719432968
808 => 0.031953244841384
809 => 0.031025261091607
810 => 0.030731134794004
811 => 0.029583643243457
812 => 0.030125215084315
813 => 0.030857698753637
814 => 0.030405109006363
815 => 0.03134430068865
816 => 0.032674446584041
817 => 0.033622387760654
818 => 0.033695158913562
819 => 0.033085696244126
820 => 0.034062364061436
821 => 0.034069478020233
822 => 0.032967792732502
823 => 0.032293016627976
824 => 0.032139706077287
825 => 0.032522705891213
826 => 0.032987738370985
827 => 0.033720964979728
828 => 0.034164038463029
829 => 0.035319339119462
830 => 0.035631930352027
831 => 0.035975373344876
901 => 0.036434319097219
902 => 0.036985401144182
903 => 0.035779664998545
904 => 0.035827571143385
905 => 0.034704806339121
906 => 0.033504971125005
907 => 0.034415496490948
908 => 0.035605887284805
909 => 0.035332810321429
910 => 0.035302083584594
911 => 0.035353757433066
912 => 0.03514786632054
913 => 0.034216628449268
914 => 0.033748966620173
915 => 0.034352369692963
916 => 0.034673051571769
917 => 0.0351704011994
918 => 0.035109092360017
919 => 0.036390211589343
920 => 0.036888015782825
921 => 0.03676065616789
922 => 0.036784093402118
923 => 0.037685344116188
924 => 0.038687720266581
925 => 0.039626577806606
926 => 0.04058162402119
927 => 0.039430278533421
928 => 0.03884569629985
929 => 0.039448835945734
930 => 0.039128801559823
1001 => 0.040967814069635
1002 => 0.041095143305766
1003 => 0.042934022834042
1004 => 0.044679338476077
1005 => 0.043583136991893
1006 => 0.04461680561748
1007 => 0.045734802512291
1008 => 0.047891599910842
1009 => 0.047165266424058
1010 => 0.046608906356278
1011 => 0.046083148780538
1012 => 0.047177166833988
1013 => 0.048584603582386
1014 => 0.04888775197773
1015 => 0.049378968189786
1016 => 0.04886251440587
1017 => 0.049484526103079
1018 => 0.051680500720017
1019 => 0.051087128994116
1020 => 0.050244445754072
1021 => 0.051977956810501
1022 => 0.052605307722969
1023 => 0.057008384972892
1024 => 0.06256745188297
1025 => 0.060265961679396
1026 => 0.058837352441414
1027 => 0.059173109499404
1028 => 0.061203092548673
1029 => 0.061855058675657
1030 => 0.060082789996314
1031 => 0.060708785255185
1101 => 0.064158080678061
1102 => 0.066008517005788
1103 => 0.06349537592598
1104 => 0.05656171935941
1105 => 0.050168571348303
1106 => 0.051864322088056
1107 => 0.05167207657944
1108 => 0.055377914202953
1109 => 0.051072977274695
1110 => 0.05114546137194
1111 => 0.054927931792958
1112 => 0.05391883353259
1113 => 0.052284223586335
1114 => 0.050180505809879
1115 => 0.046291588929758
1116 => 0.042847066798565
1117 => 0.049602567923905
1118 => 0.049311258431299
1119 => 0.048889399116357
1120 => 0.049828201371815
1121 => 0.05438675864065
1122 => 0.054281669140993
1123 => 0.053613143361312
1124 => 0.054120214273084
1125 => 0.052195331603849
1126 => 0.052691417696475
1127 => 0.050167558640995
1128 => 0.051308448339736
1129 => 0.05228071644753
1130 => 0.052475913664846
1201 => 0.052915702962473
1202 => 0.049157751565901
1203 => 0.050844961415306
1204 => 0.051836039131647
1205 => 0.047358313953501
1206 => 0.051747528901859
1207 => 0.049092333992774
1208 => 0.048191120960942
1209 => 0.049404485582516
1210 => 0.048931636209452
1211 => 0.04852510808514
1212 => 0.048298258406733
1213 => 0.049189219470651
1214 => 0.04914765507209
1215 => 0.04768986984343
1216 => 0.045788248439571
1217 => 0.046426495001301
1218 => 0.046194614041831
1219 => 0.045354247531474
1220 => 0.045920553093215
1221 => 0.04342682999999
1222 => 0.039136509030544
1223 => 0.041970826479046
1224 => 0.041861708340423
1225 => 0.041806686026815
1226 => 0.043936597254584
1227 => 0.043731855435446
1228 => 0.043360247028874
1229 => 0.045347422651668
1230 => 0.044622076818064
1231 => 0.046857421764259
]
'min_raw' => 0.020066142293216
'max_raw' => 0.066008517005788
'avg_raw' => 0.043037329649502
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.020066'
'max' => '$0.0660085'
'avg' => '$0.043037'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010931516973761
'max_diff' => 0.043634965862837
'year' => 2029
]
4 => [
'items' => [
101 => 0.048329764518869
102 => 0.047956330771001
103 => 0.049341076248162
104 => 0.046441198913007
105 => 0.04740442184086
106 => 0.047602940751322
107 => 0.045322901212944
108 => 0.043765353729142
109 => 0.043661483069314
110 => 0.040960910375665
111 => 0.042403534510351
112 => 0.043672984049032
113 => 0.043065016233267
114 => 0.042872551785318
115 => 0.043855810909444
116 => 0.043932218564434
117 => 0.042190115933353
118 => 0.04255235423557
119 => 0.044062948172923
120 => 0.042514291144134
121 => 0.039505503508885
122 => 0.0387592825756
123 => 0.038659722947519
124 => 0.036635912592921
125 => 0.038809148626556
126 => 0.03786047285877
127 => 0.040857328242327
128 => 0.039145540519697
129 => 0.039071748772281
130 => 0.038960201723166
131 => 0.037218224548411
201 => 0.037599606841258
202 => 0.038867379668843
203 => 0.039319735296209
204 => 0.039272550898234
205 => 0.038861166890357
206 => 0.039049496382536
207 => 0.038442821469882
208 => 0.038228591931378
209 => 0.03755242457938
210 => 0.036558645367943
211 => 0.036696836462495
212 => 0.034727899808163
213 => 0.033655118619504
214 => 0.033358186925513
215 => 0.032961117454677
216 => 0.033403036978805
217 => 0.034722322058005
218 => 0.033130984350547
219 => 0.030402747470472
220 => 0.030566719155654
221 => 0.030935114848627
222 => 0.030248611911953
223 => 0.029598894496214
224 => 0.030163771075959
225 => 0.02900778114416
226 => 0.031074810709078
227 => 0.031018903352131
228 => 0.031789364149681
301 => 0.032271149097837
302 => 0.031160790772067
303 => 0.030881538655865
304 => 0.031040613352555
305 => 0.028411462959531
306 => 0.031574506471336
307 => 0.031601860602974
308 => 0.031367637920712
309 => 0.033051860942735
310 => 0.03660609684154
311 => 0.035268850327602
312 => 0.034751028058915
313 => 0.033766647547616
314 => 0.035078276132191
315 => 0.034977563521489
316 => 0.034522102901771
317 => 0.034246638897842
318 => 0.034754189771269
319 => 0.034183747727808
320 => 0.034081280662103
321 => 0.0334604417292
322 => 0.033238830476525
323 => 0.033074758327643
324 => 0.03289413101312
325 => 0.033292549859435
326 => 0.03238968033732
327 => 0.03130090820304
328 => 0.031210388580753
329 => 0.031460321216456
330 => 0.031349744630454
331 => 0.031209859182601
401 => 0.030942779767116
402 => 0.03086354300979
403 => 0.031121024030889
404 => 0.030830342970144
405 => 0.031259258709489
406 => 0.031142617361378
407 => 0.030491068272557
408 => 0.029678996873518
409 => 0.029671767734689
410 => 0.02949680828383
411 => 0.029273971117831
412 => 0.029211982916074
413 => 0.030116198745981
414 => 0.031987898452987
415 => 0.031620439014524
416 => 0.031885966117571
417 => 0.033192096662732
418 => 0.033607276286323
419 => 0.033312591623567
420 => 0.032909209081827
421 => 0.032926955866463
422 => 0.034305436123786
423 => 0.034391410246557
424 => 0.034608639118496
425 => 0.03488783960781
426 => 0.033360140674194
427 => 0.032855001384073
428 => 0.032615638364353
429 => 0.031878492908762
430 => 0.032673441084542
501 => 0.03221025882559
502 => 0.032272757936881
503 => 0.032232055308662
504 => 0.03225428169597
505 => 0.031074232932189
506 => 0.031504180680173
507 => 0.030789309159412
508 => 0.029832176441206
509 => 0.02982896779672
510 => 0.030063224673532
511 => 0.029923879516732
512 => 0.029548905282674
513 => 0.029602168602794
514 => 0.029135525872248
515 => 0.029658827479121
516 => 0.029673833896743
517 => 0.029472334273666
518 => 0.03027855260076
519 => 0.030608860907182
520 => 0.030476229538732
521 => 0.030599555136803
522 => 0.031635708613172
523 => 0.031804646840365
524 => 0.031879678041452
525 => 0.031779146171725
526 => 0.030618494120258
527 => 0.030669973974214
528 => 0.030292248963303
529 => 0.029973111132764
530 => 0.029985874972328
531 => 0.030149953302239
601 => 0.030866492992027
602 => 0.032374408526862
603 => 0.032431632819137
604 => 0.032500990330725
605 => 0.032218878474805
606 => 0.032133790839613
607 => 0.032246043393414
608 => 0.032812337185866
609 => 0.034268998567317
610 => 0.03375411714797
611 => 0.033335510539433
612 => 0.033702741390651
613 => 0.033646209079557
614 => 0.033169019481813
615 => 0.033155626359134
616 => 0.03223974695432
617 => 0.031901167191926
618 => 0.031618224600213
619 => 0.031309258676466
620 => 0.031126093320237
621 => 0.03140751855457
622 => 0.031471883835388
623 => 0.030856542642047
624 => 0.030772673911159
625 => 0.031275174812703
626 => 0.031054042901055
627 => 0.031281482555992
628 => 0.031334250506879
629 => 0.031325753651437
630 => 0.031094866538839
701 => 0.031242027099256
702 => 0.030893948503195
703 => 0.030515465309692
704 => 0.030274016612574
705 => 0.030063320600816
706 => 0.030180226993863
707 => 0.029763477048913
708 => 0.029630150354004
709 => 0.031192172412604
710 => 0.032346054901859
711 => 0.032329276993478
712 => 0.032227145791134
713 => 0.032075399541008
714 => 0.0328012360025
715 => 0.032548369092874
716 => 0.032732350897364
717 => 0.032779181988299
718 => 0.032920925595936
719 => 0.032971586752392
720 => 0.032818453551147
721 => 0.032304519824127
722 => 0.031023845839745
723 => 0.030427688642901
724 => 0.03023094683816
725 => 0.030238098029096
726 => 0.030040836258746
727 => 0.030098938690766
728 => 0.030020630604033
729 => 0.029872334032522
730 => 0.030171070098461
731 => 0.030205496647142
801 => 0.030135768079721
802 => 0.03015219168156
803 => 0.029574868924779
804 => 0.029618761520098
805 => 0.029374361971761
806 => 0.029328540002729
807 => 0.028710719226836
808 => 0.027616160167788
809 => 0.028222652137919
810 => 0.027490095123677
811 => 0.027212664682334
812 => 0.028525977242368
813 => 0.028394157086961
814 => 0.028168538281748
815 => 0.027834801045759
816 => 0.027711014658543
817 => 0.026958927755829
818 => 0.02691449044939
819 => 0.027287245026429
820 => 0.027115231614827
821 => 0.026873659638365
822 => 0.025998710427377
823 => 0.025014977828498
824 => 0.025044670532136
825 => 0.025357577568843
826 => 0.026267396979334
827 => 0.02591191479562
828 => 0.025654008392647
829 => 0.025605710276008
830 => 0.026210262324699
831 => 0.027065830131166
901 => 0.027467243403709
902 => 0.027069455041721
903 => 0.026612497189915
904 => 0.026640310097016
905 => 0.026825336907554
906 => 0.026844780609204
907 => 0.026547348023704
908 => 0.026631073554301
909 => 0.026503886817301
910 => 0.025723342047104
911 => 0.025709224467346
912 => 0.025517666192754
913 => 0.02551186588433
914 => 0.025185977472799
915 => 0.025140383431266
916 => 0.02449331221016
917 => 0.024919216447404
918 => 0.024633542246037
919 => 0.024202963840844
920 => 0.024128731961494
921 => 0.024126500461563
922 => 0.024568608208126
923 => 0.024914050160978
924 => 0.024638511671077
925 => 0.024575776898016
926 => 0.025245620146759
927 => 0.0251603764876
928 => 0.02508655602853
929 => 0.026989223418047
930 => 0.025483113712257
1001 => 0.024826363914796
1002 => 0.024013511327034
1003 => 0.024278180228367
1004 => 0.024333949854674
1005 => 0.022379185908798
1006 => 0.021586138419406
1007 => 0.021313994406411
1008 => 0.021157371679381
1009 => 0.021228746622833
1010 => 0.020514910867188
1011 => 0.020994620300735
1012 => 0.020376498875381
1013 => 0.020272868806879
1014 => 0.021378146485964
1015 => 0.02153193941807
1016 => 0.020875810989987
1017 => 0.02129715165836
1018 => 0.021144367674934
1019 => 0.020387094793103
1020 => 0.020358172539139
1021 => 0.019978199626465
1022 => 0.019383615595384
1023 => 0.019111874738361
1024 => 0.018970349740661
1025 => 0.019028745712979
1026 => 0.018999218922429
1027 => 0.018806536641397
1028 => 0.019010263245231
1029 => 0.018489825958078
1030 => 0.018282583636886
1031 => 0.018188977088389
1101 => 0.017727059040788
1102 => 0.018462176070409
1103 => 0.018607003386005
1104 => 0.018752116056151
1105 => 0.020015222777152
1106 => 0.019952121534873
1107 => 0.020522526033521
1108 => 0.02050036116361
1109 => 0.020337672560656
1110 => 0.019651316105767
1111 => 0.019924885555558
1112 => 0.019082881311232
1113 => 0.019713768141804
1114 => 0.019425857738795
1115 => 0.019616425344935
1116 => 0.019273767606307
1117 => 0.019463408546855
1118 => 0.018641347315271
1119 => 0.017873718103932
1120 => 0.018182634507069
1121 => 0.018518461966154
1122 => 0.019246621464696
1123 => 0.01881293567455
1124 => 0.018968905484162
1125 => 0.018446432730993
1126 => 0.017368422204241
1127 => 0.017374523626751
1128 => 0.017208695192947
1129 => 0.017065395214791
1130 => 0.01886274970453
1201 => 0.018639220261761
1202 => 0.01828305534952
1203 => 0.018759796237986
1204 => 0.018885854095792
1205 => 0.018889442785787
1206 => 0.019237260631549
1207 => 0.019422891078182
1208 => 0.01945560924897
1209 => 0.020002908144378
1210 => 0.020186355515072
1211 => 0.020941949272516
1212 => 0.019407141631713
1213 => 0.019375533278359
1214 => 0.01876650495996
1215 => 0.018380249572075
1216 => 0.018792952196825
1217 => 0.019158550382827
1218 => 0.018777865114701
1219 => 0.018827574574013
1220 => 0.018316535704683
1221 => 0.018499208053855
1222 => 0.018656550089584
1223 => 0.018569675065592
1224 => 0.018439618949876
1225 => 0.019128575500801
1226 => 0.019089701872156
1227 => 0.019731274051419
1228 => 0.020231425444422
1229 => 0.021127786153439
1230 => 0.020192387025239
1231 => 0.020158297363133
]
'min_raw' => 0.017065395214791
'max_raw' => 0.049341076248162
'avg_raw' => 0.033203235731477
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.017065'
'max' => '$0.049341'
'avg' => '$0.0332032'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0030007470784248
'max_diff' => -0.016667440757626
'year' => 2030
]
5 => [
'items' => [
101 => 0.020491529278377
102 => 0.020186304499002
103 => 0.020379196023566
104 => 0.021096708346741
105 => 0.021111868251488
106 => 0.020857920314532
107 => 0.02084246755949
108 => 0.020891241038668
109 => 0.021176908829628
110 => 0.021077087725782
111 => 0.021192603234314
112 => 0.021337057146569
113 => 0.021934579774845
114 => 0.02207864045762
115 => 0.021728647685379
116 => 0.021760248114009
117 => 0.021629341209674
118 => 0.021502886780346
119 => 0.02178713787029
120 => 0.022306612324132
121 => 0.022303380700515
122 => 0.022423888676666
123 => 0.022498964147466
124 => 0.022176685268189
125 => 0.021966893568303
126 => 0.022047341055432
127 => 0.02217597833927
128 => 0.022005625718013
129 => 0.020954130424607
130 => 0.021273086926847
131 => 0.021219996968698
201 => 0.021144390412334
202 => 0.021465103641754
203 => 0.021434170068392
204 => 0.020507589449753
205 => 0.020566906134675
206 => 0.020511196693826
207 => 0.020691205294287
208 => 0.020176583443839
209 => 0.020334877659006
210 => 0.020434158306842
211 => 0.020492635371128
212 => 0.020703894625426
213 => 0.020679105790279
214 => 0.020702353716628
215 => 0.021015595420377
216 => 0.022599864466364
217 => 0.022686092735045
218 => 0.022261473203554
219 => 0.022431100331135
220 => 0.022105453339555
221 => 0.022324062346648
222 => 0.022473629077234
223 => 0.021797765781744
224 => 0.021757745543702
225 => 0.021430754491149
226 => 0.021606460961071
227 => 0.021326899333682
228 => 0.021395493978393
301 => 0.021203697371809
302 => 0.021548893077337
303 => 0.021934875514107
304 => 0.022032389920543
305 => 0.021775871499801
306 => 0.021590135257795
307 => 0.021264043602155
308 => 0.021806341292911
309 => 0.02196492566391
310 => 0.021805508316721
311 => 0.02176856783404
312 => 0.021698565686108
313 => 0.021783419120645
314 => 0.021964061979368
315 => 0.021878874143144
316 => 0.021935142209787
317 => 0.021720706363124
318 => 0.022176791955908
319 => 0.022901165640225
320 => 0.022903494620067
321 => 0.022818306324649
322 => 0.022783449109571
323 => 0.022870857470328
324 => 0.02291827292036
325 => 0.023200935531097
326 => 0.023504243774192
327 => 0.024919651000964
328 => 0.02452221031553
329 => 0.025778043810074
330 => 0.026771245054689
331 => 0.027069062680522
401 => 0.026795084478158
402 => 0.025857819847881
403 => 0.025811833173662
404 => 0.027212502234216
405 => 0.026816749069902
406 => 0.026769675490283
407 => 0.026268892135205
408 => 0.026564917121282
409 => 0.026500172114402
410 => 0.026397968953609
411 => 0.026962764005763
412 => 0.028020009923793
413 => 0.027855228232679
414 => 0.027732226344265
415 => 0.027193267874545
416 => 0.027517841254049
417 => 0.027402266890401
418 => 0.027898847701935
419 => 0.027604684229794
420 => 0.026813750850449
421 => 0.02693970959806
422 => 0.026920671186752
423 => 0.027312480342387
424 => 0.027194868959166
425 => 0.026897705676583
426 => 0.028016396372183
427 => 0.027943754820895
428 => 0.028046743932451
429 => 0.028092082924401
430 => 0.028773010237272
501 => 0.029051964370111
502 => 0.029115291842045
503 => 0.029380276693155
504 => 0.029108698777554
505 => 0.030195204071733
506 => 0.03091766669302
507 => 0.031756844205232
508 => 0.032983108100225
509 => 0.033444194668318
510 => 0.033360903506817
511 => 0.034290642796845
512 => 0.03596136363408
513 => 0.03369860395576
514 => 0.036081295391441
515 => 0.0353269627924
516 => 0.033538453769937
517 => 0.033423294874027
518 => 0.034634493949055
519 => 0.037320816923877
520 => 0.036647923486707
521 => 0.037321917536483
522 => 0.036535667676118
523 => 0.036496623743516
524 => 0.037283731135708
525 => 0.039122850460552
526 => 0.038249153807676
527 => 0.036996495416568
528 => 0.037921438879039
529 => 0.03712016725237
530 => 0.03531467801568
531 => 0.036647408937777
601 => 0.035756249724162
602 => 0.036016337359325
603 => 0.037889421476415
604 => 0.037664047039881
605 => 0.037955702429867
606 => 0.037440938300492
607 => 0.036960067432803
608 => 0.036062486248323
609 => 0.035796756709815
610 => 0.035870194794312
611 => 0.035796720317548
612 => 0.035294531894028
613 => 0.035186084351783
614 => 0.035005333696845
615 => 0.03506135588284
616 => 0.034721491771087
617 => 0.035362885569473
618 => 0.035481933910396
619 => 0.035948686829058
620 => 0.035997146665467
621 => 0.037297046900127
622 => 0.036581083694812
623 => 0.037061413626226
624 => 0.03701844839612
625 => 0.033577216183687
626 => 0.034051387620312
627 => 0.034789049572505
628 => 0.034456733862919
629 => 0.033986917199465
630 => 0.03360751505375
701 => 0.03303268200713
702 => 0.033841748481556
703 => 0.0349055848608
704 => 0.036024127311642
705 => 0.037367982776523
706 => 0.037068049880964
707 => 0.035999004868492
708 => 0.036046961446814
709 => 0.03634341014378
710 => 0.035959482146004
711 => 0.035846254284295
712 => 0.036327854374313
713 => 0.03633117088945
714 => 0.035889415328761
715 => 0.035398484863469
716 => 0.035396427846894
717 => 0.035309071512421
718 => 0.036551208173957
719 => 0.037234257743621
720 => 0.037312568275993
721 => 0.037228986820846
722 => 0.037261154005703
723 => 0.036863702511086
724 => 0.037772158767201
725 => 0.038605848064824
726 => 0.038382401523887
727 => 0.038047423394225
728 => 0.037780597179216
729 => 0.03831954574749
730 => 0.038295547216128
731 => 0.038598566516104
801 => 0.038584819810332
802 => 0.038482925816883
803 => 0.038382405162842
804 => 0.038780958193775
805 => 0.038666181321432
806 => 0.038551226168904
807 => 0.038320666011757
808 => 0.038352002966312
809 => 0.038017082675347
810 => 0.037862133223836
811 => 0.035532065248842
812 => 0.034909394948756
813 => 0.035105299700786
814 => 0.035169796631819
815 => 0.034898809719247
816 => 0.035287335341048
817 => 0.035226784034441
818 => 0.03546235374712
819 => 0.035315180017886
820 => 0.03532122007907
821 => 0.035754026635999
822 => 0.035879672220767
823 => 0.03581576786227
824 => 0.035860524284448
825 => 0.036891917143035
826 => 0.03674528606063
827 => 0.036667391220569
828 => 0.036688968623609
829 => 0.03695251161229
830 => 0.037026289260207
831 => 0.036713688181719
901 => 0.03686111265746
902 => 0.037488827364209
903 => 0.037708491985996
904 => 0.03840955601374
905 => 0.038111731554335
906 => 0.038658401239114
907 => 0.040338677476694
908 => 0.041680998401544
909 => 0.040446544605293
910 => 0.042911546040243
911 => 0.044830903240806
912 => 0.044757235114591
913 => 0.044422550791141
914 => 0.042237413647052
915 => 0.040226617868501
916 => 0.041908733920157
917 => 0.041913021979903
918 => 0.041768526719271
919 => 0.04087107906535
920 => 0.041737297486245
921 => 0.041806054758853
922 => 0.041767568970227
923 => 0.041079497958143
924 => 0.040028940699469
925 => 0.040234217073135
926 => 0.040570463960725
927 => 0.039933878454069
928 => 0.039730450812616
929 => 0.040108661501769
930 => 0.041327335145546
1001 => 0.041096951952485
1002 => 0.041090935716263
1003 => 0.042076612713853
1004 => 0.041371080705988
1005 => 0.040236806265593
1006 => 0.039950387010152
1007 => 0.038933791608463
1008 => 0.039635957673398
1009 => 0.039661227380033
1010 => 0.039276658202231
1011 => 0.04026801193489
1012 => 0.040258876435719
1013 => 0.041200019261348
1014 => 0.042999130866848
1015 => 0.042467045036196
1016 => 0.041848287105922
1017 => 0.041915563249239
1018 => 0.042653416489758
1019 => 0.042207293576989
1020 => 0.0423677224869
1021 => 0.042653173661389
1022 => 0.042825393442311
1023 => 0.041890783473076
1024 => 0.041672881181685
1025 => 0.04122712956681
1026 => 0.041110841290837
1027 => 0.04147389668024
1028 => 0.041378244412069
1029 => 0.039659103559039
1030 => 0.039479443774688
1031 => 0.039484953683779
1101 => 0.039033190613672
1102 => 0.038344143496197
1103 => 0.040154918180054
1104 => 0.040009487631165
1105 => 0.039848943560622
1106 => 0.039868609293212
1107 => 0.040654605210626
1108 => 0.04019868788478
1109 => 0.041410818818921
1110 => 0.041161641138853
1111 => 0.040906072991524
1112 => 0.040870745688767
1113 => 0.040772373756095
1114 => 0.04043501979638
1115 => 0.040027644618194
1116 => 0.039758660239322
1117 => 0.036675262435946
1118 => 0.037247523132952
1119 => 0.037905856901655
1120 => 0.038133111080504
1121 => 0.037744377082072
1122 => 0.040450369384
1123 => 0.040944780253153
1124 => 0.039447177480866
1125 => 0.039167037148889
1126 => 0.040468735337526
1127 => 0.039683652203646
1128 => 0.040037175090761
1129 => 0.039273051975499
1130 => 0.040825691152814
1201 => 0.040813862643665
1202 => 0.040209850935743
1203 => 0.040720357495185
1204 => 0.040631644417533
1205 => 0.039949716686904
1206 => 0.040847309478207
1207 => 0.040847754673033
1208 => 0.040266406536506
1209 => 0.039587519186513
1210 => 0.039466150162937
1211 => 0.039374714907308
1212 => 0.040014687622959
1213 => 0.040588485158669
1214 => 0.041656180116154
1215 => 0.041924623996272
1216 => 0.042972378331694
1217 => 0.042348491639183
1218 => 0.042625052529288
1219 => 0.042925298497423
1220 => 0.043069247455727
1221 => 0.042834690352897
1222 => 0.044462284108697
1223 => 0.044599702889871
1224 => 0.044645778218531
1225 => 0.044096962761628
1226 => 0.044584439339215
1227 => 0.044356365192089
1228 => 0.044949750762087
1229 => 0.04504280119619
1230 => 0.04496399078887
1231 => 0.044993526465355
]
'min_raw' => 0.020176583443839
'max_raw' => 0.04504280119619
'avg_raw' => 0.032609692320014
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.020176'
'max' => '$0.045042'
'avg' => '$0.0326096'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0031111882290476
'max_diff' => -0.0042982750519726
'year' => 2031
]
6 => [
'items' => [
101 => 0.043604662321993
102 => 0.043532642389318
103 => 0.042550645496989
104 => 0.042950816489168
105 => 0.042202715999984
106 => 0.042439946371393
107 => 0.042544515258696
108 => 0.042489894406201
109 => 0.042973441556654
110 => 0.042562327696613
111 => 0.041477330626588
112 => 0.040392037949838
113 => 0.040378412984342
114 => 0.04009267457956
115 => 0.039886138048502
116 => 0.039925924311661
117 => 0.040066136292437
118 => 0.039877988673288
119 => 0.03991813950716
120 => 0.040584910873037
121 => 0.040718627115268
122 => 0.040264207077859
123 => 0.038439645055163
124 => 0.037991892958227
125 => 0.038313728286195
126 => 0.038159911728276
127 => 0.030798027023717
128 => 0.032527592634674
129 => 0.031499943479142
130 => 0.031973531489875
131 => 0.030924567810536
201 => 0.031425188259213
202 => 0.031332741942074
203 => 0.034113832262925
204 => 0.03407040936283
205 => 0.034091193607217
206 => 0.033099107469567
207 => 0.034679527624917
208 => 0.035458099423513
209 => 0.03531400650461
210 => 0.035350271587938
211 => 0.034727117304398
212 => 0.034097227102829
213 => 0.033398581929882
214 => 0.034696578306065
215 => 0.03455226326657
216 => 0.034883270044258
217 => 0.03572511347691
218 => 0.03584907812022
219 => 0.036015687857954
220 => 0.035955970127065
221 => 0.037378688753378
222 => 0.037206388140332
223 => 0.037621583043504
224 => 0.036767495626766
225 => 0.035801014644005
226 => 0.035984711082184
227 => 0.035967019637994
228 => 0.03574178724816
229 => 0.035538457517438
301 => 0.035199970803583
302 => 0.036270992852829
303 => 0.036227511313546
304 => 0.036931426892785
305 => 0.036807002976684
306 => 0.035976069613259
307 => 0.036005746560892
308 => 0.036205338295975
309 => 0.036896127569997
310 => 0.037101200859047
311 => 0.037006202740802
312 => 0.037231056240294
313 => 0.037408771278277
314 => 0.037253374512916
315 => 0.039453465007651
316 => 0.038539834044463
317 => 0.038985131418918
318 => 0.039091332218881
319 => 0.038819301102938
320 => 0.038878294911282
321 => 0.038967654456072
322 => 0.039510228113649
323 => 0.040934098386082
324 => 0.041564720837131
325 => 0.043461979595472
326 => 0.041512356421259
327 => 0.041396673850444
328 => 0.041738427444547
329 => 0.04285231918093
330 => 0.043755023810737
331 => 0.044054503014723
401 => 0.044094084135393
402 => 0.044655927031072
403 => 0.044977964901126
404 => 0.044587704525602
405 => 0.044256999719309
406 => 0.043072456151761
407 => 0.04320957029511
408 => 0.044154150773229
409 => 0.045488426334085
410 => 0.046633373573012
411 => 0.046232452955379
412 => 0.049291194262065
413 => 0.049594455968785
414 => 0.049552555006541
415 => 0.050243430305842
416 => 0.048872183531037
417 => 0.048285948968153
418 => 0.044328501852089
419 => 0.045440383069533
420 => 0.047056567717582
421 => 0.046842659619031
422 => 0.045668943126878
423 => 0.046632483203802
424 => 0.046313906721687
425 => 0.046062632232493
426 => 0.04721376937945
427 => 0.045948046800263
428 => 0.047043941166627
429 => 0.045638445306189
430 => 0.04623428432699
501 => 0.045896057281293
502 => 0.046114931631406
503 => 0.04483539665298
504 => 0.045525802668383
505 => 0.044806673492895
506 => 0.044806332532032
507 => 0.044790457715626
508 => 0.045636510001481
509 => 0.045664099736148
510 => 0.045038865818587
511 => 0.044948759843077
512 => 0.045281928860991
513 => 0.044891875198118
514 => 0.045074378852008
515 => 0.044897403047875
516 => 0.044857562066684
517 => 0.044540102350169
518 => 0.044403331975558
519 => 0.044456963163582
520 => 0.044273892270085
521 => 0.04416358543479
522 => 0.044768514909703
523 => 0.044445325494042
524 => 0.044718981496564
525 => 0.04440711594355
526 => 0.043326054063448
527 => 0.04270432394418
528 => 0.040662298267158
529 => 0.041241414216036
530 => 0.041625368689282
531 => 0.041498471738164
601 => 0.041771095491765
602 => 0.041787832376078
603 => 0.041699199614712
604 => 0.04159657423161
605 => 0.041546621870656
606 => 0.041918925844007
607 => 0.042135060831713
608 => 0.04166390365732
609 => 0.041553518123549
610 => 0.042029884040161
611 => 0.042320466974107
612 => 0.044465968093917
613 => 0.044307022441084
614 => 0.044705944838186
615 => 0.044661032298235
616 => 0.045079166523719
617 => 0.045762639265677
618 => 0.044372948079293
619 => 0.044614150417343
620 => 0.044555013174229
621 => 0.045200658087936
622 => 0.045202673720882
623 => 0.044815577342759
624 => 0.045025428569261
625 => 0.044908295371595
626 => 0.045119970891279
627 => 0.044304899624986
628 => 0.045297568445824
629 => 0.045860347701074
630 => 0.045868161891579
701 => 0.046134914792075
702 => 0.046405951188265
703 => 0.046926181948456
704 => 0.046391442234718
705 => 0.045429497545567
706 => 0.045498946845061
707 => 0.044934959025773
708 => 0.044944439762908
709 => 0.044893830845063
710 => 0.045045712017178
711 => 0.044338229001246
712 => 0.044504273850988
713 => 0.044271810088992
714 => 0.044613645086524
715 => 0.044245887136529
716 => 0.04455498465646
717 => 0.044688380899316
718 => 0.045180615907274
719 => 0.044173183625629
720 => 0.042118961006186
721 => 0.042550783505835
722 => 0.041912084109929
723 => 0.04197119817072
724 => 0.042090617981451
725 => 0.04170353930314
726 => 0.041777381716711
727 => 0.041774743546077
728 => 0.04175200921681
729 => 0.041651315102894
730 => 0.041505288715992
731 => 0.042087012896858
801 => 0.042185859170827
802 => 0.042405582193397
803 => 0.043059328869015
804 => 0.042994004159713
805 => 0.043100551470881
806 => 0.042867959288838
807 => 0.041981987454954
808 => 0.042030099988073
809 => 0.041430135929129
810 => 0.042390239763506
811 => 0.042162874502774
812 => 0.042016290640082
813 => 0.041976293875056
814 => 0.042631661062235
815 => 0.042827757196261
816 => 0.042705563245058
817 => 0.042454939886174
818 => 0.042936210825376
819 => 0.043064978625515
820 => 0.043093804987193
821 => 0.04394652481691
822 => 0.043141462553138
823 => 0.043335249041659
824 => 0.044847115906303
825 => 0.043476061283437
826 => 0.044202339495336
827 => 0.044166791956233
828 => 0.044538331313525
829 => 0.044136314884513
830 => 0.044141298359963
831 => 0.044471200138983
901 => 0.044007912588449
902 => 0.04389319607571
903 => 0.043734716034975
904 => 0.044080751406043
905 => 0.044288183961164
906 => 0.045959938013019
907 => 0.047039967371765
908 => 0.046993080448927
909 => 0.047421539155024
910 => 0.047228514583695
911 => 0.046605187325566
912 => 0.047669130948531
913 => 0.047332454668933
914 => 0.047360209852362
915 => 0.047359176803048
916 => 0.04758303709623
917 => 0.047424411562016
918 => 0.047111744351504
919 => 0.047319307437409
920 => 0.047935695597389
921 => 0.049848983359063
922 => 0.050919684538187
923 => 0.049784525803667
924 => 0.050567543098358
925 => 0.050098011739133
926 => 0.050012683923814
927 => 0.050504476649403
928 => 0.050997130193055
929 => 0.050965750292125
930 => 0.050608109117472
1001 => 0.05040608669272
1002 => 0.051935868175422
1003 => 0.053062985112729
1004 => 0.052986123293892
1005 => 0.053325366365434
1006 => 0.054321394515874
1007 => 0.054412458847319
1008 => 0.054400986834647
1009 => 0.05417527438758
1010 => 0.055155993452287
1011 => 0.055974126550177
1012 => 0.054123028477543
1013 => 0.054827902390949
1014 => 0.055144343000296
1015 => 0.055608971698515
1016 => 0.056392878193223
1017 => 0.057244408567404
1018 => 0.057364824298869
1019 => 0.057279383574971
1020 => 0.056717776402834
1021 => 0.057649531099133
1022 => 0.058195331147889
1023 => 0.058520342586511
1024 => 0.059344517518109
1025 => 0.05514629722977
1026 => 0.052174588244596
1027 => 0.051710512974564
1028 => 0.052654228285034
1029 => 0.052903078486416
1030 => 0.052802767282271
1031 => 0.049457838643497
1101 => 0.051692902617529
1102 => 0.054097643524071
1103 => 0.054190019415907
1104 => 0.055393882994483
1105 => 0.055785910323703
1106 => 0.056755178298463
1107 => 0.056694550322738
1108 => 0.05693055165017
1109 => 0.056876299031967
1110 => 0.058671663851758
1111 => 0.060652217862243
1112 => 0.060583637574636
1113 => 0.060298909502777
1114 => 0.060721779242838
1115 => 0.062765923230725
1116 => 0.06257773120906
1117 => 0.062760543727949
1118 => 0.065170704692575
1119 => 0.068304256787987
1120 => 0.066848407236182
1121 => 0.070007181854177
1122 => 0.071995463036757
1123 => 0.075433989749918
1124 => 0.075003469270329
1125 => 0.076342062486688
1126 => 0.07423274775953
1127 => 0.069389334783134
1128 => 0.068622846139779
1129 => 0.070157375814359
1130 => 0.073929867282098
1201 => 0.070038566632882
1202 => 0.070825771686178
1203 => 0.070599056577871
1204 => 0.070586975893226
1205 => 0.071048046490412
1206 => 0.070379239541369
1207 => 0.067654399714895
1208 => 0.068903177749786
1209 => 0.068420964579268
1210 => 0.068956016043331
1211 => 0.071843468122871
1212 => 0.070566856730246
1213 => 0.069222050331604
1214 => 0.070908735991931
1215 => 0.073056466445603
1216 => 0.072922065333655
1217 => 0.072661271001169
1218 => 0.074131354998645
1219 => 0.076559503068278
1220 => 0.077215821734411
1221 => 0.077700302755906
1222 => 0.077767104503396
1223 => 0.0784552040196
1224 => 0.074755119497567
1225 => 0.080627248658944
1226 => 0.081641203150819
1227 => 0.081450621730454
1228 => 0.082577589474446
1229 => 0.082246006975752
1230 => 0.081765595958843
1231 => 0.083552079545984
]
'min_raw' => 0.030798027023717
'max_raw' => 0.083552079545984
'avg_raw' => 0.05717505328485
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.030798'
'max' => '$0.083552'
'avg' => '$0.057175'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010621443579878
'max_diff' => 0.038509278349794
'year' => 2032
]
7 => [
'items' => [
101 => 0.081504020275119
102 => 0.078597057983618
103 => 0.077002240977306
104 => 0.079102424661436
105 => 0.080384933551024
106 => 0.081232590344156
107 => 0.08148909077759
108 => 0.075042346526222
109 => 0.071567908927563
110 => 0.073794983593796
111 => 0.076512168391082
112 => 0.074740025398824
113 => 0.07480949004901
114 => 0.072282879853035
115 => 0.076735717329951
116 => 0.076086976363823
117 => 0.079452645643701
118 => 0.078649401658875
119 => 0.081393974302087
120 => 0.080671236344483
121 => 0.08367128119876
122 => 0.084868080314103
123 => 0.086877692295672
124 => 0.088355971049907
125 => 0.08922404460936
126 => 0.089171928728912
127 => 0.092611668643996
128 => 0.09058337419143
129 => 0.088035358326709
130 => 0.087989272758604
131 => 0.089308926280607
201 => 0.092074558033461
202 => 0.092791646108671
203 => 0.093192400515759
204 => 0.092578631190942
205 => 0.090377062931856
206 => 0.089426436919786
207 => 0.090236397824356
208 => 0.089245885238801
209 => 0.090955787850215
210 => 0.093303849351176
211 => 0.092818983936469
212 => 0.094439816322749
213 => 0.096117207326009
214 => 0.098515951797015
215 => 0.099143072426986
216 => 0.10017967898107
217 => 0.10124668763273
218 => 0.10158938205496
219 => 0.10224369203882
220 => 0.10224024350223
221 => 0.10421205067873
222 => 0.10638701505621
223 => 0.10720801375816
224 => 0.10909585500318
225 => 0.10586299302894
226 => 0.10831515597284
227 => 0.11052706832986
228 => 0.10788993523138
301 => 0.11152460883443
302 => 0.11166573497409
303 => 0.11379657213026
304 => 0.11163656045347
305 => 0.1103539524148
306 => 0.11405679376376
307 => 0.11584848205412
308 => 0.11530881095982
309 => 0.11120188728536
310 => 0.10881148155259
311 => 0.10255532867508
312 => 0.10996601200418
313 => 0.11357553968118
314 => 0.11119253948068
315 => 0.11239438617097
316 => 0.11895127201311
317 => 0.12144770961487
318 => 0.12092846804512
319 => 0.12101621132297
320 => 0.12236324373933
321 => 0.1283367272978
322 => 0.1247572774853
323 => 0.12749363274753
324 => 0.12894498571195
325 => 0.13029308323009
326 => 0.12698258179614
327 => 0.1226756680715
328 => 0.12131148770297
329 => 0.11095559707454
330 => 0.11041652799397
331 => 0.11011393218359
401 => 0.10820610840214
402 => 0.10670708150683
403 => 0.10551499966438
404 => 0.10238662092403
405 => 0.10344235691438
406 => 0.098456374145639
407 => 0.1016462292287
408 => 0.093688480339028
409 => 0.10031593008013
410 => 0.096708910499211
411 => 0.099130927137318
412 => 0.099122476949435
413 => 0.094662776417607
414 => 0.092090514222424
415 => 0.093729659807137
416 => 0.095486953989487
417 => 0.095772069058326
418 => 0.098050446835815
419 => 0.098686293099946
420 => 0.096759649234806
421 => 0.093523573681076
422 => 0.094275240225182
423 => 0.092075281723899
424 => 0.088219939070581
425 => 0.090988913472018
426 => 0.09193436307588
427 => 0.09235192748202
428 => 0.088560640771578
429 => 0.087369336174317
430 => 0.08673509560275
501 => 0.093034166175697
502 => 0.093379243481031
503 => 0.091613779197929
504 => 0.099593845165743
505 => 0.097787710464962
506 => 0.09980560543948
507 => 0.094207034364901
508 => 0.094420907319425
509 => 0.091770454051638
510 => 0.093254530778247
511 => 0.092205633181906
512 => 0.093134632044669
513 => 0.093691470132604
514 => 0.096341488487091
515 => 0.10034618903296
516 => 0.095945664115255
517 => 0.094028292391935
518 => 0.095217819025375
519 => 0.098385685204211
520 => 0.10318516462523
521 => 0.10034377620946
522 => 0.10160473613848
523 => 0.10188019978677
524 => 0.099785065162893
525 => 0.10326241522729
526 => 0.10512595537674
527 => 0.10703756196477
528 => 0.10869735640316
529 => 0.10627402425638
530 => 0.10886733702446
531 => 0.10677758471471
601 => 0.10490286085825
602 => 0.10490570404049
603 => 0.10372966237999
604 => 0.10145093347198
605 => 0.10103070089937
606 => 0.10321680381161
607 => 0.10496985132252
608 => 0.10511424071205
609 => 0.10608481788892
610 => 0.10665919546445
611 => 0.11228887653311
612 => 0.11455318083009
613 => 0.11732192926335
614 => 0.11840051281621
615 => 0.12164666261673
616 => 0.11902513301342
617 => 0.11845794859354
618 => 0.11058385098499
619 => 0.11187323402727
620 => 0.11393766068493
621 => 0.11061789262019
622 => 0.11272352135199
623 => 0.11313921706697
624 => 0.11050508817168
625 => 0.11191209022864
626 => 0.10817550991239
627 => 0.10042763627295
628 => 0.10327104082549
629 => 0.10536474365579
630 => 0.10237677156526
701 => 0.10773259588704
702 => 0.10460383388491
703 => 0.1036121665373
704 => 0.099743318659329
705 => 0.10156926593212
706 => 0.10403888576362
707 => 0.10251294783187
708 => 0.10567949816097
709 => 0.11016417791511
710 => 0.1133602277752
711 => 0.11360558079795
712 => 0.11155073485662
713 => 0.11484363859145
714 => 0.11486762380021
715 => 0.11115321493542
716 => 0.10887816018764
717 => 0.10836126296219
718 => 0.10965257357504
719 => 0.11122046304812
720 => 0.11369258775175
721 => 0.1151864409351
722 => 0.11908161775878
723 => 0.12013554092379
724 => 0.12129348295261
725 => 0.1228408505992
726 => 0.12469886219586
727 => 0.12063363859903
728 => 0.12079515751106
729 => 0.11700967758455
730 => 0.11296434939034
731 => 0.11603424923247
801 => 0.12004773490439
802 => 0.11912703685674
803 => 0.11902343951822
804 => 0.1191976615061
805 => 0.11850348524536
806 => 0.11536375174542
807 => 0.11378699723752
808 => 0.11582141282568
809 => 0.11690261416938
810 => 0.11857946316277
811 => 0.11837275613035
812 => 0.12269213905691
813 => 0.12437052065081
814 => 0.12394111881709
815 => 0.12402013908863
816 => 0.12705876879443
817 => 0.13043834996915
818 => 0.13360377371429
819 => 0.13682377870595
820 => 0.13294193700956
821 => 0.13097097719485
822 => 0.13300450462082
823 => 0.13192548634463
824 => 0.13812584541721
825 => 0.13855514482667
826 => 0.14475505554272
827 => 0.15063950908389
828 => 0.14694358924562
829 => 0.15042867518523
830 => 0.15419807977213
831 => 0.16146987278413
901 => 0.15902098872246
902 => 0.15714518191011
903 => 0.15537255353629
904 => 0.15906111178539
905 => 0.16380638304672
906 => 0.16482846902676
907 => 0.16648463878133
908 => 0.1647433787912
909 => 0.16684053465581
910 => 0.17424441639487
911 => 0.17224382219311
912 => 0.16940265681503
913 => 0.17524731037166
914 => 0.17736246777329
915 => 0.19220775013444
916 => 0.21095053234343
917 => 0.20319089743716
918 => 0.19837424164899
919 => 0.19950627001181
920 => 0.20635049959132
921 => 0.20854864890727
922 => 0.20257332131901
923 => 0.20468390803989
924 => 0.21631344838023
925 => 0.2225523236525
926 => 0.21407909304002
927 => 0.19070178583339
928 => 0.1691468409586
929 => 0.17486418297121
930 => 0.17421601381676
1001 => 0.18671050409776
1002 => 0.17219610868304
1003 => 0.17244049387758
1004 => 0.18519335698569
1005 => 0.18179111174787
1006 => 0.17627991018925
1007 => 0.16918707882904
1008 => 0.15607532405221
1009 => 0.14446187719804
1010 => 0.16723852089615
1011 => 0.16625635060325
1012 => 0.16483402246964
1013 => 0.167999259819
1014 => 0.18336875391918
1015 => 0.18301443733397
1016 => 0.1807604559928
1017 => 0.1824700809744
1018 => 0.17598020466406
1019 => 0.17765279356097
1020 => 0.16914342654521
1021 => 0.17299001581889
1022 => 0.17626808562591
1023 => 0.17692620667232
1024 => 0.17840898699438
1025 => 0.16573879148905
1026 => 0.17142733729355
1027 => 0.17476882500903
1028 => 0.15967186194612
1029 => 0.17447040658971
1030 => 0.16551823157394
1031 => 0.16247972891644
1101 => 0.16657067245248
1102 => 0.16497642777791
1103 => 0.1636057898239
1104 => 0.16284095029502
1105 => 0.16584488772693
1106 => 0.16570475045525
1107 => 0.16078972577751
1108 => 0.15437827644743
1109 => 0.15653016929126
1110 => 0.15574836644699
1111 => 0.15291501208481
1112 => 0.15482435082441
1113 => 0.14641658930942
1114 => 0.13195147262028
1115 => 0.14150757178363
1116 => 0.14113967236088
1117 => 0.14095416078902
1118 => 0.14813530519909
1119 => 0.14744500386125
1120 => 0.14619210017362
1121 => 0.15289200152604
1122 => 0.15044644740602
1123 => 0.15798306895891
1124 => 0.16294717535177
1125 => 0.16168811739852
1126 => 0.16635688345461
1127 => 0.15657974455617
1128 => 0.1598273179075
1129 => 0.16049663827427
1130 => 0.15280932578335
1201 => 0.14755794569722
1202 => 0.14720773851559
1203 => 0.13810256913099
1204 => 0.14296647712189
1205 => 0.14724651487168
1206 => 0.14519670893388
1207 => 0.14454780161018
1208 => 0.14786292839613
1209 => 0.14812054213954
1210 => 0.14224692148913
1211 => 0.14346823321572
1212 => 0.14856130614181
1213 => 0.14333990084547
1214 => 0.13319556326638
1215 => 0.13067962729033
1216 => 0.13034395505322
1217 => 0.12352053714477
1218 => 0.13084775416266
1219 => 0.12764922757715
1220 => 0.13775333473657
1221 => 0.13198192291652
1222 => 0.13173312888813
1223 => 0.13135704022408
1224 => 0.12548384255842
1225 => 0.12676969958602
1226 => 0.1310440841873
1227 => 0.13256923276742
1228 => 0.13241014727534
1229 => 0.13102313737087
1230 => 0.13165810340249
1231 => 0.12961265657779
]
'min_raw' => 0.071567908927563
'max_raw' => 0.2225523236525
'avg_raw' => 0.14706011629003
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.071567'
'max' => '$0.222552'
'avg' => '$0.14706'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.040769881903846
'max_diff' => 0.13900024410652
'year' => 2033
]
8 => [
'items' => [
101 => 0.1288903667317
102 => 0.12661062129594
103 => 0.12326002530113
104 => 0.12372594622461
105 => 0.11708753882776
106 => 0.11347058215101
107 => 0.1124694562136
108 => 0.11113070877018
109 => 0.11262067129961
110 => 0.11706873305367
111 => 0.11170342686933
112 => 0.10250498574874
113 => 0.10305782773347
114 => 0.10429989953289
115 => 0.10198530695179
116 => 0.099794739322807
117 => 0.10169926014984
118 => 0.097801759386139
119 => 0.10477089387966
120 => 0.10458239832238
121 => 0.10718006069318
122 => 0.10880443228304
123 => 0.10506078166496
124 => 0.10411926365842
125 => 0.10465559510456
126 => 0.095791230993058
127 => 0.10645565302975
128 => 0.10654787939438
129 => 0.10575818126822
130 => 0.11143665677567
131 => 0.12342001125732
201 => 0.118911391272
202 => 0.11716551733993
203 => 0.11384660971883
204 => 0.11826885706671
205 => 0.1179292974682
206 => 0.11639368018958
207 => 0.11546493406805
208 => 0.11717617727388
209 => 0.11525289209735
210 => 0.11490741723131
211 => 0.11281421542344
212 => 0.11206703761264
213 => 0.11151385690753
214 => 0.11090485930562
215 => 0.11224815626269
216 => 0.10920406863254
217 => 0.10553319736617
218 => 0.10522800413975
219 => 0.10607066947076
220 => 0.10569785279085
221 => 0.10522621923692
222 => 0.10432574234072
223 => 0.10405859008127
224 => 0.10492670532065
225 => 0.10394665382965
226 => 0.10539277319079
227 => 0.104999508742
228 => 0.10280276549933
301 => 0.10006481008046
302 => 0.10004043653417
303 => 0.099450548530322
304 => 0.098699237467164
305 => 0.098490239917062
306 => 0.10153886671793
307 => 0.107849432958
308 => 0.10661051780602
309 => 0.10750576097245
310 => 0.11190947129659
311 => 0.11330927838444
312 => 0.11231572846973
313 => 0.11095569606699
314 => 0.11101553059043
315 => 0.11566317302041
316 => 0.11595304077785
317 => 0.11668544308603
318 => 0.11762678702891
319 => 0.11247604341369
320 => 0.11077293102935
321 => 0.10996590189657
322 => 0.10748056452719
323 => 0.11016078780334
324 => 0.10859913647893
325 => 0.1088098565962
326 => 0.10867262484339
327 => 0.10874756266
328 => 0.10476894586454
329 => 0.10621854471486
330 => 0.10380830547188
331 => 0.10058126568757
401 => 0.10057044751867
402 => 0.10136026093413
403 => 0.10089044900921
404 => 0.099626197199222
405 => 0.099805778201731
406 => 0.098232459655742
407 => 0.099996807559066
408 => 0.10004740274379
409 => 0.099368032696334
410 => 0.1020862540745
411 => 0.10319991159099
412 => 0.10275273567223
413 => 0.10316853653645
414 => 0.10666200032395
415 => 0.10723158735182
416 => 0.1074845602848
417 => 0.1071456100671
418 => 0.10323239064144
419 => 0.10340595856326
420 => 0.10213243231706
421 => 0.10105643683991
422 => 0.10109947101614
423 => 0.10165267256102
424 => 0.10406853615234
425 => 0.10915257865734
426 => 0.10934551435402
427 => 0.10957935804672
428 => 0.10862819822807
429 => 0.10834131932539
430 => 0.10871978664775
501 => 0.11062908570637
502 => 0.11554032125478
503 => 0.11380436260158
504 => 0.11239300119472
505 => 0.11363114564884
506 => 0.11344054301503
507 => 0.11183166496992
508 => 0.11178650912173
509 => 0.10869855776374
510 => 0.10755701245595
511 => 0.10660305175357
512 => 0.10556135157034
513 => 0.10494379678362
514 => 0.10589264160965
515 => 0.10610965364777
516 => 0.10403498785267
517 => 0.10375221857096
518 => 0.105446435444
519 => 0.10470087376495
520 => 0.1054677024409
521 => 0.10564561327145
522 => 0.1056169655301
523 => 0.10483851350995
524 => 0.10533467561382
525 => 0.10416110432513
526 => 0.10288502181338
527 => 0.10207096067363
528 => 0.10136058435967
529 => 0.10175474242597
530 => 0.10034964089002
531 => 0.099900120629562
601 => 0.10516658705703
602 => 0.10905698243105
603 => 0.10900041454155
604 => 0.10865607206227
605 => 0.10814444898539
606 => 0.11059165729159
607 => 0.10973909885119
608 => 0.11035940635022
609 => 0.11051730064295
610 => 0.11099519911232
611 => 0.11116600673836
612 => 0.11064970745895
613 => 0.10891694401659
614 => 0.10459906226445
615 => 0.10258907665292
616 => 0.10192574792216
617 => 0.10194985866168
618 => 0.10128477683057
619 => 0.10148067323671
620 => 0.10121665205499
621 => 0.10071665981041
622 => 0.10172386931381
623 => 0.10183994082627
624 => 0.10160484609292
625 => 0.10166021941318
626 => 0.099713735431303
627 => 0.099861722380904
628 => 0.099037712240254
629 => 0.098883220272473
630 => 0.096800194391681
701 => 0.093109812104429
702 => 0.095154642125643
703 => 0.092684775006629
704 => 0.091749398904064
705 => 0.096177323892776
706 => 0.095732883035431
707 => 0.094972193481453
708 => 0.093846975089525
709 => 0.093429620642538
710 => 0.090893907141008
711 => 0.090744083659833
712 => 0.092000851741215
713 => 0.091420896514406
714 => 0.090606419729747
715 => 0.087656467377898
716 => 0.084339744238761
717 => 0.084439855262153
718 => 0.085494843182885
719 => 0.088562362846916
720 => 0.08736382984555
721 => 0.086494280401478
722 => 0.086331439929163
723 => 0.0883697293698
724 => 0.09125433596314
725 => 0.092607728837301
726 => 0.091266557602161
727 => 0.089725892301019
728 => 0.089819665459144
729 => 0.090443496269034
730 => 0.09050905206666
731 => 0.089506237338569
801 => 0.089788523810506
802 => 0.089359704846818
803 => 0.086728043658202
804 => 0.086680445252388
805 => 0.086034593155432
806 => 0.086015037010614
807 => 0.084916281478337
808 => 0.084762557984033
809 => 0.082580912185003
810 => 0.084016878056556
811 => 0.08305370754151
812 => 0.081601982386379
813 => 0.081351704422447
814 => 0.081344180764631
815 => 0.082834777899146
816 => 0.083999459561171
817 => 0.083070462304988
818 => 0.082858947637611
819 => 0.08511737091771
820 => 0.084829965969332
821 => 0.0845810751376
822 => 0.090996051081349
823 => 0.085918097055056
824 => 0.08370381926011
825 => 0.080963230008915
826 => 0.081855579688355
827 => 0.082043610877157
828 => 0.075452987756377
829 => 0.072779172777086
830 => 0.071861620236785
831 => 0.071333555777553
901 => 0.071574201382641
902 => 0.069167454294063
903 => 0.07078482814151
904 => 0.068700788600068
905 => 0.068351392588894
906 => 0.072077913451951
907 => 0.072596437060026
908 => 0.070384254255319
909 => 0.071804833735805
910 => 0.071289711868649
911 => 0.06873651347645
912 => 0.068639000077924
913 => 0.067357894873982
914 => 0.065353213300662
915 => 0.064437020028866
916 => 0.063959858618161
917 => 0.064156744715908
918 => 0.064057193080073
919 => 0.063407551316927
920 => 0.064094429785493
921 => 0.062339739136086
922 => 0.061641007180988
923 => 0.061325406167329
924 => 0.059768017219754
925 => 0.062246515609354
926 => 0.062734811015405
927 => 0.063224068514248
928 => 0.067482721011397
929 => 0.067269970767467
930 => 0.069193129359028
1001 => 0.069118398952621
1002 => 0.068569882969205
1003 => 0.066255784261669
1004 => 0.067178142761649
1005 => 0.064339266665045
1006 => 0.066466345661431
1007 => 0.065495635636423
1008 => 0.06613814762553
1009 => 0.064982853136146
1010 => 0.065622240807511
1011 => 0.062850603970745
1012 => 0.060262488490556
1013 => 0.061304021711585
1014 => 0.062436287436615
1015 => 0.064891328024421
1016 => 0.063429126103969
1017 => 0.06395498920654
1018 => 0.062193435841348
1019 => 0.058558848086115
1020 => 0.058579419458094
1021 => 0.05802031731575
1022 => 0.057537171434515
1023 => 0.063597077583952
1024 => 0.06284343246133
1025 => 0.061642597593067
1026 => 0.063249962783518
1027 => 0.063674975652189
1028 => 0.063687075171062
1029 => 0.064859767321915
1030 => 0.065485633333042
1031 => 0.065595944930162
1101 => 0.067441201367219
1102 => 0.0680597069854
1103 => 0.070607244092496
1104 => 0.06543253297468
1105 => 0.065325963204522
1106 => 0.063272581708042
1107 => 0.061970294700297
1108 => 0.063361750413617
1109 => 0.064594390222973
1110 => 0.063310883262889
1111 => 0.063478482175565
1112 => 0.061755478948024
1113 => 0.062371371527033
1114 => 0.062901861185765
1115 => 0.062608955976954
1116 => 0.062170462702591
1117 => 0.064493327815445
1118 => 0.064362262662396
1119 => 0.066525368057923
1120 => 0.068211663398887
1121 => 0.071233806111244
1122 => 0.068080042643037
1123 => 0.067965106967181
1124 => 0.069088621634935
1125 => 0.068059534981158
1126 => 0.068709882223481
1127 => 0.071129025116176
1128 => 0.071180137793463
1129 => 0.070323934593938
1130 => 0.070271834551435
1201 => 0.07043627774174
1202 => 0.07139942664365
1203 => 0.071062872822746
1204 => 0.071452341424796
1205 => 0.071939377875414
1206 => 0.073953967134347
1207 => 0.074439677784315
1208 => 0.07325965271699
1209 => 0.073366195768389
1210 => 0.072924834000797
1211 => 0.07249848406355
1212 => 0.073456856459073
1213 => 0.07520830084875
1214 => 0.075197405204101
1215 => 0.075603706259292
1216 => 0.075856828450697
1217 => 0.074770242708421
1218 => 0.074062915345064
1219 => 0.074334149664585
1220 => 0.074767859248213
1221 => 0.074193503492006
1222 => 0.070648313697229
1223 => 0.071723697813363
1224 => 0.071544701312842
1225 => 0.071289788529381
1226 => 0.072371095573854
1227 => 0.072266800871548
1228 => 0.069142769624014
1229 => 0.069342759968587
1230 => 0.069154931699256
1231 => 0.069761843263511
]
'min_raw' => 0.057537171434515
'max_raw' => 0.1288903667317
'avg_raw' => 0.093213769083105
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.057537'
'max' => '$0.12889'
'avg' => '$0.093213'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014030737493048
'max_diff' => -0.093661956920807
'year' => 2034
]
9 => [
'items' => [
101 => 0.068026759764975
102 => 0.068560459763159
103 => 0.068895191398893
104 => 0.06909235090387
105 => 0.069804626229386
106 => 0.069721048940987
107 => 0.069799430947791
108 => 0.070855547221816
109 => 0.076197020920496
110 => 0.076487745548618
111 => 0.075056111152209
112 => 0.075628020855835
113 => 0.074530079287777
114 => 0.075267134817984
115 => 0.07577140949257
116 => 0.073492689204557
117 => 0.073357758177874
118 => 0.072255285014405
119 => 0.072847691645181
120 => 0.071905130100072
121 => 0.072136401733839
122 => 0.071489746083929
123 => 0.072653597505911
124 => 0.073954964239914
125 => 0.074283740869453
126 => 0.073418871104375
127 => 0.072792648396764
128 => 0.071693207612782
129 => 0.073521602139179
130 => 0.074056280418012
131 => 0.0735187937018
201 => 0.073394246285337
202 => 0.073158229156192
203 => 0.07344431843501
204 => 0.074053368445277
205 => 0.073766151707823
206 => 0.073955863423019
207 => 0.073232877994563
208 => 0.074770602413514
209 => 0.077212878864344
210 => 0.077220731182485
211 => 0.076933512896826
212 => 0.076815989362539
213 => 0.077110692753488
214 => 0.077270557253712
215 => 0.078223573980683
216 => 0.079246198898584
217 => 0.084018343184222
218 => 0.082678344164859
219 => 0.08691247447121
220 => 0.090261121810525
221 => 0.091265234728984
222 => 0.090341498091165
223 => 0.08718144495246
224 => 0.087026397669645
225 => 0.091748851198893
226 => 0.090414541774807
227 => 0.090255829914549
228 => 0.088567403869326
301 => 0.089565472777687
302 => 0.089347180466641
303 => 0.089002595374429
304 => 0.090906841325498
305 => 0.09447141975269
306 => 0.093915846776408
307 => 0.093501137321902
308 => 0.091684001212362
309 => 0.092778323022348
310 => 0.092388655986166
311 => 0.094062912862418
312 => 0.093071120178257
313 => 0.090404433068589
314 => 0.09082911178032
315 => 0.090764922447376
316 => 0.092085934370839
317 => 0.091689399380947
318 => 0.090687492626441
319 => 0.094459236411146
320 => 0.094214320349308
321 => 0.094561555329387
322 => 0.094714418906216
323 => 0.097010212882386
324 => 0.097950726217209
325 => 0.098164239210217
326 => 0.099057654136387
327 => 0.098142010232972
328 => 0.10180523868967
329 => 0.10424107185807
330 => 0.10707041743
331 => 0.11120485176698
401 => 0.11275943732334
402 => 0.11247861535714
403 => 0.11561329628579
404 => 0.12124624823453
405 => 0.11361719599824
406 => 0.12165060652784
407 => 0.11910732150435
408 => 0.11307723846541
409 => 0.11268897220771
410 => 0.11677261445239
411 => 0.12582973991508
412 => 0.12356103271174
413 => 0.12583345070732
414 => 0.12318255440889
415 => 0.12305091506416
416 => 0.12570470259102
417 => 0.13190542179794
418 => 0.12895969253322
419 => 0.12473626730978
420 => 0.12785477877099
421 => 0.12515323553868
422 => 0.11906590252195
423 => 0.1235592978741
424 => 0.12055469236665
425 => 0.12143159598734
426 => 0.12774682986266
427 => 0.12698696421475
428 => 0.12797030072481
429 => 0.12623473752294
430 => 0.1246134478192
501 => 0.12158719018861
502 => 0.12069126449689
503 => 0.12093886612605
504 => 0.12069114179781
505 => 0.11899797846624
506 => 0.118632340006
507 => 0.11802292655326
508 => 0.11821180926469
509 => 0.11706593368336
510 => 0.11922843765531
511 => 0.11962981744842
512 => 0.12120350750133
513 => 0.12136689322314
514 => 0.12574959762044
515 => 0.12333567768676
516 => 0.12495514358609
517 => 0.12481028331305
518 => 0.11320792864967
519 => 0.11480663075385
520 => 0.11729370952758
521 => 0.11617328391117
522 => 0.11458926422878
523 => 0.11331008340549
524 => 0.11137199365525
525 => 0.11409981776099
526 => 0.1176866163883
527 => 0.12145786035545
528 => 0.12598876288029
529 => 0.12497751818227
530 => 0.12137315828438
531 => 0.12153484723641
601 => 0.12253434471562
602 => 0.12123990466612
603 => 0.12085814902505
604 => 0.12248189735279
605 => 0.12249307921513
606 => 0.12100366949988
607 => 0.11934846316048
608 => 0.11934152778548
609 => 0.11904699980478
610 => 0.12323495028236
611 => 0.12553789959548
612 => 0.12580192902284
613 => 0.12552012831134
614 => 0.12562858222092
615 => 0.12428854675765
616 => 0.12735147045153
617 => 0.13016231212479
618 => 0.12940894651148
619 => 0.1282795443599
620 => 0.12737992114679
621 => 0.12919702387291
622 => 0.1291161111489
623 => 0.1301377618749
624 => 0.13009141389663
625 => 0.1297478711837
626 => 0.12940895878048
627 => 0.13075270815035
628 => 0.13036572991178
629 => 0.12997815058912
630 => 0.1292008009221
701 => 0.12930645565226
702 => 0.12817724850788
703 => 0.12765482561389
704 => 0.11979883875605
705 => 0.11769946236585
706 => 0.11835996891495
707 => 0.11857742482096
708 => 0.11766377352553
709 => 0.11897371478542
710 => 0.11876956182764
711 => 0.11956380156089
712 => 0.11906759505743
713 => 0.11908795954542
714 => 0.1205471970697
715 => 0.12097081993103
716 => 0.1207553619247
717 => 0.12090626132687
718 => 0.12438367435914
719 => 0.12388929742736
720 => 0.12362666953565
721 => 0.12369941925649
722 => 0.12458797284281
723 => 0.12483671933375
724 => 0.12378276297252
725 => 0.12427981488533
726 => 0.12639619884477
727 => 0.12713681345362
728 => 0.12950049976989
729 => 0.12849636381157
730 => 0.13033949882105
731 => 0.1360046674692
801 => 0.14053039618519
802 => 0.13636834902431
803 => 0.14467927346315
804 => 0.15115052027009
805 => 0.15090214303921
806 => 0.14977373147579
807 => 0.14240638903309
808 => 0.13562685067642
809 => 0.14129822238618
810 => 0.14131267987899
811 => 0.14082550401943
812 => 0.13779969659644
813 => 0.14072021247993
814 => 0.14095203242501
815 => 0.14082227490166
816 => 0.13850239544484
817 => 0.13496036829965
818 => 0.13565247192541
819 => 0.13678615178292
820 => 0.13463985930225
821 => 0.13395398880623
822 => 0.13522915255054
823 => 0.13933799582561
824 => 0.13856124280536
825 => 0.1385409586449
826 => 0.14186423746004
827 => 0.13948548703685
828 => 0.13566120156855
829 => 0.13469551905168
830 => 0.13126799667846
831 => 0.13363539859006
901 => 0.13372059717025
902 => 0.13242399533753
903 => 0.1357664136613
904 => 0.13573561268802
905 => 0.13890874143312
906 => 0.14497457182102
907 => 0.14318060729394
908 => 0.14109442173172
909 => 0.14132124794598
910 => 0.14380897166166
911 => 0.14230483711395
912 => 0.14284573438451
913 => 0.14380815294886
914 => 0.14438880396424
915 => 0.14123770120058
916 => 0.1405030284117
917 => 0.13900014572077
918 => 0.13860807167934
919 => 0.13983213827243
920 => 0.13950963997206
921 => 0.13371343655949
922 => 0.1331077010531
923 => 0.13312627809629
924 => 0.13160312736434
925 => 0.12927995690004
926 => 0.13538511017091
927 => 0.1348947809217
928 => 0.13435349537903
929 => 0.13441979976947
930 => 0.13706983988152
1001 => 0.1355326827863
1002 => 0.13961946685903
1003 => 0.13877934691365
1004 => 0.13791768106174
1005 => 0.13779857259402
1006 => 0.13746690475491
1007 => 0.13632949232643
1008 => 0.13495599847114
1009 => 0.13404909885789
1010 => 0.12365320788784
1011 => 0.12558262478177
1012 => 0.12780224304634
1013 => 0.12856844637671
1014 => 0.12725780256046
1015 => 0.13638124453276
1016 => 0.13804818529677
1017 => 0.13299891299072
1018 => 0.13205440030269
1019 => 0.13644316662734
1020 => 0.13379620402871
1021 => 0.1349881311248
1022 => 0.13241183669232
1023 => 0.13764666808045
1024 => 0.13760678743601
1025 => 0.135570319792
1026 => 0.13729152829959
1027 => 0.13699242596453
1028 => 0.13469325901005
1029 => 0.13771955577385
1030 => 0.13772105677929
1031 => 0.13576100094856
1101 => 0.13347208484965
1102 => 0.13306288071296
1103 => 0.13275460036479
1104 => 0.13491231305708
1105 => 0.13684691150999
1106 => 0.14044671960323
1107 => 0.1413517968872
1108 => 0.14488437378095
1109 => 0.14278089623877
1110 => 0.14371334058863
1111 => 0.1447256408327
1112 => 0.14521097479581
1113 => 0.14442014914737
1114 => 0.14990769513002
1115 => 0.15037101214502
1116 => 0.15052635833247
1117 => 0.14867598870245
1118 => 0.15031955001831
1119 => 0.14955058210765
1120 => 0.15155122298576
1121 => 0.15186494902091
1122 => 0.15159923423026
1123 => 0.15169881582565
1124 => 0.14701616339891
1125 => 0.14677334316762
1126 => 0.1434624720843
1127 => 0.14481167652347
1128 => 0.14228940349348
1129 => 0.14308924225359
1130 => 0.14344180355789
1201 => 0.1432576455402
1202 => 0.14488795851814
1203 => 0.14350185943595
1204 => 0.13984371606229
1205 => 0.13618457602991
1206 => 0.13613863850748
1207 => 0.13517525152614
1208 => 0.13447889919176
1209 => 0.13461304135578
1210 => 0.13508577583826
1211 => 0.13445142300425
1212 => 0.13458679434389
1213 => 0.13683486055644
1214 => 0.13728569420289
1215 => 0.13575358532017
1216 => 0.1296019470738
1217 => 0.12809231961792
1218 => 0.12917740989599
1219 => 0.12865880663184
1220 => 0.10383769836004
1221 => 0.1096690495718
1222 => 0.10620425869575
1223 => 0.1078009937388
1224 => 0.1042643394576
1225 => 0.10595221625252
1226 => 0.10564052703989
1227 => 0.11501716722616
1228 => 0.1148707638868
1229 => 0.11494083941786
1230 => 0.11159595173953
1231 => 0.11692444863471
]
'min_raw' => 0.068026759764975
'max_raw' => 0.15186494902091
'avg_raw' => 0.10994585439294
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.068026'
'max' => '$0.151864'
'avg' => '$0.109945'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01048958833046
'max_diff' => 0.022974582289212
'year' => 2035
]
10 => [
'items' => [
101 => 0.11954945781182
102 => 0.11906363847549
103 => 0.11918590873588
104 => 0.11708490056168
105 => 0.11496118176956
106 => 0.11260565079112
107 => 0.11698193619664
108 => 0.11649536796523
109 => 0.11761138042636
110 => 0.12044971433517
111 => 0.12086766978503
112 => 0.12142940614812
113 => 0.12122806364907
114 => 0.12602485882873
115 => 0.1254439352822
116 => 0.12684379388622
117 => 0.12396417853021
118 => 0.12070562041929
119 => 0.12132496578588
120 => 0.12126531784662
121 => 0.12050593111907
122 => 0.11982039073591
123 => 0.11867915914776
124 => 0.12229018476317
125 => 0.12214358371769
126 => 0.12451688423891
127 => 0.12409738031877
128 => 0.12129583047007
129 => 0.12139588837099
130 => 0.12206882584088
131 => 0.12439787010761
201 => 0.1250892890194
202 => 0.12476899623118
203 => 0.12552710550349
204 => 0.12612628416172
205 => 0.12560235311784
206 => 0.13302011182626
207 => 0.12993974124619
208 => 0.13144109243384
209 => 0.13179915584562
210 => 0.13088198394561
211 => 0.13108088568926
212 => 0.1313821676334
213 => 0.1332114926012
214 => 0.13801217063616
215 => 0.14013835825852
216 => 0.14653509862465
217 => 0.13996180797445
218 => 0.13957177611024
219 => 0.14072402221324
220 => 0.14447958597189
221 => 0.14752311765611
222 => 0.14853283270132
223 => 0.14866628321312
224 => 0.15056057576252
225 => 0.15164634892538
226 => 0.15033055882219
227 => 0.1492155644787
228 => 0.14522179313852
229 => 0.14568408304582
301 => 0.1488688020763
302 => 0.15336740528588
303 => 0.15722767483958
304 => 0.15587594298585
305 => 0.16618870285584
306 => 0.1672111708731
307 => 0.16706989885346
308 => 0.16939923316043
309 => 0.16477597892178
310 => 0.16279944816343
311 => 0.14945663891148
312 => 0.15320542406516
313 => 0.15865450344447
314 => 0.15793329735562
315 => 0.15397603025606
316 => 0.15722467289763
317 => 0.15615057004588
318 => 0.15530338056213
319 => 0.15918451982293
320 => 0.15491704777727
321 => 0.15861193214637
322 => 0.15387320472431
323 => 0.1558821175831
324 => 0.15474176148427
325 => 0.155479711637
326 => 0.15116567012295
327 => 0.15349342220649
328 => 0.15106882798334
329 => 0.15106767840999
330 => 0.15101415535813
331 => 0.15386667970937
401 => 0.15395970042606
402 => 0.15185168062056
403 => 0.15154788203313
404 => 0.15267118463815
405 => 0.15135609148109
406 => 0.15197141529218
407 => 0.15137472901249
408 => 0.1512404023628
409 => 0.15017006476424
410 => 0.14970893389723
411 => 0.14988975519206
412 => 0.14927251889304
413 => 0.14890061169646
414 => 0.15094017365596
415 => 0.1498505179767
416 => 0.15077316829525
417 => 0.1497216918095
418 => 0.14607681620341
419 => 0.14398060969849
420 => 0.13709577755873
421 => 0.13904830741296
422 => 0.14034283672635
423 => 0.13991499479599
424 => 0.14083416481524
425 => 0.14089059438923
426 => 0.14059176284615
427 => 0.14024575420195
428 => 0.14007733632943
429 => 0.14133258516901
430 => 0.14206129937013
501 => 0.14047276006152
502 => 0.14010058752753
503 => 0.1417066884742
504 => 0.14268640912385
505 => 0.14992011594339
506 => 0.14938421957764
507 => 0.15072921429134
508 => 0.1505777885272
509 => 0.15198755726162
510 => 0.15429193332967
511 => 0.14960649246964
512 => 0.15041972299258
513 => 0.15022033764859
514 => 0.15239717455265
515 => 0.15240397039985
516 => 0.1510988479348
517 => 0.1518063759963
518 => 0.15141145324239
519 => 0.15212513203572
520 => 0.14937706235495
521 => 0.15272391459033
522 => 0.1546213641414
523 => 0.15464771023026
524 => 0.15554708625837
525 => 0.15646090439128
526 => 0.15821489872062
527 => 0.15641198644142
528 => 0.15316872276111
529 => 0.15340287592315
530 => 0.15150135161405
531 => 0.15153331658122
601 => 0.15136268508131
602 => 0.1518747630571
603 => 0.149489434674
604 => 0.15004926647778
605 => 0.14926549867411
606 => 0.15041801923445
607 => 0.14917809763
608 => 0.15022024149894
609 => 0.15066999624516
610 => 0.15232960094125
611 => 0.148932972667
612 => 0.14200701768431
613 => 0.14346293739076
614 => 0.14130951778489
615 => 0.14150882496806
616 => 0.14191145719757
617 => 0.14060639440867
618 => 0.14085535926154
619 => 0.14084646448505
620 => 0.14076981410667
621 => 0.14043031687136
622 => 0.13993797871269
623 => 0.14189930240316
624 => 0.14223256951707
625 => 0.14297338102824
626 => 0.14517753358822
627 => 0.14495728676998
628 => 0.14531651846848
629 => 0.14453231768766
630 => 0.14154520179314
701 => 0.14170741655766
702 => 0.13968459584478
703 => 0.14292165295469
704 => 0.142155075104
705 => 0.14166085737677
706 => 0.141526005491
707 => 0.14373562171885
708 => 0.14439677352571
709 => 0.14398478808792
710 => 0.14313979393548
711 => 0.14476243250827
712 => 0.14519658213672
713 => 0.14529377222771
714 => 0.14816877666859
715 => 0.14545445303864
716 => 0.14610781771442
717 => 0.15120518240374
718 => 0.14658257601877
719 => 0.14903127371732
720 => 0.14891142270738
721 => 0.15016409359054
722 => 0.14880866713224
723 => 0.14882546926765
724 => 0.14993775614862
725 => 0.1483757498263
726 => 0.14798897509434
727 => 0.14745464857228
728 => 0.14862133098526
729 => 0.14932070432733
730 => 0.1549571398313
731 => 0.15859853421955
801 => 0.15844045168566
802 => 0.1598850301273
803 => 0.15923423430852
804 => 0.15713264293842
805 => 0.16071980314541
806 => 0.15958467556276
807 => 0.1596782541015
808 => 0.15967477110361
809 => 0.1604295317115
810 => 0.15989471464802
811 => 0.15884053531805
812 => 0.15954034875377
813 => 0.16161854446999
814 => 0.16806932773996
815 => 0.17167927151934
816 => 0.16785200459166
817 => 0.17049200206923
818 => 0.16890894430997
819 => 0.16862125562322
820 => 0.17027936913342
821 => 0.17194038495182
822 => 0.17183458542495
823 => 0.1706287732349
824 => 0.16994764052509
825 => 0.17510540559996
826 => 0.17890555904688
827 => 0.17864641405835
828 => 0.17979019575925
829 => 0.18314837420892
830 => 0.1834554039603
831 => 0.18341672526862
901 => 0.1826557199946
902 => 0.18596228279288
903 => 0.18872067565264
904 => 0.18247956926121
905 => 0.18485610087299
906 => 0.18592300248058
907 => 0.18748953057596
908 => 0.19013252605348
909 => 0.19300352016198
910 => 0.19340951020777
911 => 0.19312144084187
912 => 0.19122794305085
913 => 0.19436941906246
914 => 0.19620962203338
915 => 0.19730542079027
916 => 0.20008418411421
917 => 0.18592959130169
918 => 0.17591026698008
919 => 0.17434560480647
920 => 0.17752740686382
921 => 0.17836642269194
922 => 0.17802821646366
923 => 0.16675055602258
924 => 0.17428623025821
925 => 0.18239398211826
926 => 0.18270543388707
927 => 0.18676434399331
928 => 0.18808609150424
929 => 0.19135404615328
930 => 0.19114963470021
1001 => 0.19194532965274
1002 => 0.19176241316267
1003 => 0.19781561100096
1004 => 0.20449318712518
1005 => 0.20426196389739
1006 => 0.20330198332403
1007 => 0.20472771817647
1008 => 0.21161969234921
1009 => 0.21098518980902
1010 => 0.21160155498002
1011 => 0.21972758094432
1012 => 0.23029257061162
1013 => 0.22538407220354
1014 => 0.23603410136671
1015 => 0.24273773019114
1016 => 0.25433096307483
1017 => 0.25287943321991
1018 => 0.25739259370646
1019 => 0.2502808918362
1020 => 0.23395098682998
1021 => 0.23136671685438
1022 => 0.23654049078967
1023 => 0.2492597091601
1024 => 0.23613991733933
1025 => 0.23879403413742
1026 => 0.23802964832102
1027 => 0.23798891744929
1028 => 0.23954344915862
1029 => 0.23728851983532
1030 => 0.22810153211812
1031 => 0.23231187444965
1101 => 0.2306860590782
1102 => 0.23249002244539
1103 => 0.24222526872702
1104 => 0.23792108428663
1105 => 0.23338697562222
1106 => 0.23907375408665
1107 => 0.24631497726095
1108 => 0.24586183452844
1109 => 0.24498254822838
1110 => 0.24993903906386
1111 => 0.25812570980851
1112 => 0.26033853401408
1113 => 0.26197199560344
1114 => 0.26219722235905
1115 => 0.26451719791951
1116 => 0.25204210462182
1117 => 0.27184039806837
1118 => 0.27525901642977
1119 => 0.27461645786504
1120 => 0.27841610829628
1121 => 0.27729815475158
1122 => 0.27567841546685
1123 => 0.28170166960919
1124 => 0.27479649478654
1125 => 0.26499546846312
1126 => 0.25961843157977
1127 => 0.26669934750096
1128 => 0.27102341576411
1129 => 0.27388134982367
1130 => 0.27474615894328
1201 => 0.25301051060248
1202 => 0.24129620166111
1203 => 0.24880493938771
1204 => 0.25796611763954
1205 => 0.25199121381407
1206 => 0.25222541873204
1207 => 0.24370677605402
1208 => 0.25871982849463
1209 => 0.25653255303368
1210 => 0.26788014199431
1211 => 0.26517194881877
1212 => 0.2744254671053
1213 => 0.27198870562129
1214 => 0.28210356630392
1215 => 0.28613865807915
1216 => 0.29291420518163
1217 => 0.29789832521166
1218 => 0.30082509582432
1219 => 0.30064938349478
1220 => 0.31224670677345
1221 => 0.30540817041563
1222 => 0.29681735703094
1223 => 0.29666197632048
1224 => 0.30111128030518
1225 => 0.31043580085017
1226 => 0.31285351336123
1227 => 0.31420468482451
1228 => 0.31213531869388
1229 => 0.30471257759978
1230 => 0.3015074756295
1231 => 0.30423831536893
]
'min_raw' => 0.11260565079112
'max_raw' => 0.31420468482451
'avg_raw' => 0.21340516780782
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.1126056'
'max' => '$0.3142046'
'avg' => '$0.2134051'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.04457889102615
'max_diff' => 0.1623397358036
'year' => 2036
]
11 => [
'items' => [
101 => 0.30089873303135
102 => 0.30666378906732
103 => 0.31458044235423
104 => 0.31294568475632
105 => 0.31841043430957
106 => 0.32406587518876
107 => 0.33215340964774
108 => 0.33426779063586
109 => 0.3377627820065
110 => 0.34136027617175
111 => 0.34251569434244
112 => 0.34472174613549
113 => 0.34471011915361
114 => 0.35135820471638
115 => 0.3586912489662
116 => 0.36145930341014
117 => 0.36782429197257
118 => 0.35692447211521
119 => 0.36519211068513
120 => 0.3726497276276
121 => 0.36375844926732
122 => 0.37601300508481
123 => 0.37648882171778
124 => 0.38367308796014
125 => 0.37639045778463
126 => 0.3720660552334
127 => 0.38455044336556
128 => 0.39059124552818
129 => 0.38877170675512
130 => 0.37492492685044
131 => 0.36686550702959
201 => 0.34577245081244
202 => 0.37075808705387
203 => 0.38292786162607
204 => 0.3748934100743
205 => 0.37894552010088
206 => 0.40105251850479
207 => 0.40946943217485
208 => 0.40771877297015
209 => 0.40801460555744
210 => 0.41255621939602
211 => 0.43269623626869
212 => 0.42062787131665
213 => 0.42985368412948
214 => 0.43474702197926
215 => 0.43929222688282
216 => 0.42813064016644
217 => 0.4136095798447
218 => 0.40901015048817
219 => 0.37409454220921
220 => 0.37227703316749
221 => 0.37125681026621
222 => 0.36482444918704
223 => 0.3597703753508
224 => 0.35575118819049
225 => 0.34520364085096
226 => 0.34876312845155
227 => 0.33195253943655
228 => 0.34270735855765
301 => 0.31587725258384
302 => 0.33822216209974
303 => 0.3260608437486
304 => 0.33422684194378
305 => 0.33419835154536
306 => 0.31916215983595
307 => 0.31048959825528
308 => 0.31601609203563
309 => 0.32194093206179
310 => 0.32290221742248
311 => 0.33058392717054
312 => 0.33272772724343
313 => 0.32623191293813
314 => 0.31532125827314
315 => 0.31785555450628
316 => 0.31043824082301
317 => 0.29743968389592
318 => 0.30677547441398
319 => 0.30996312376259
320 => 0.3113709713113
321 => 0.29858838346786
322 => 0.29457181684397
323 => 0.29243343047567
324 => 0.31367118669942
325 => 0.31483463892688
326 => 0.30888225283562
327 => 0.33578760239652
328 => 0.32969809315254
329 => 0.33650156694406
330 => 0.31762559368636
331 => 0.31834668128467
401 => 0.30941049304359
402 => 0.31441416134228
403 => 0.31087772986453
404 => 0.31400991439096
405 => 0.31588733288163
406 => 0.32482205478215
407 => 0.3383241822718
408 => 0.32348750527693
409 => 0.31702295264514
410 => 0.32103352473988
411 => 0.33171420673518
412 => 0.34789598669212
413 => 0.33831604726894
414 => 0.34256746170702
415 => 0.34349620662948
416 => 0.33643231396747
417 => 0.3481564424904
418 => 0.35443949821248
419 => 0.36088461328816
420 => 0.36648072612034
421 => 0.35831029259581
422 => 0.3670538276527
423 => 0.36000808183856
424 => 0.35368731946746
425 => 0.35369690545488
426 => 0.34973179888789
427 => 0.34204890527876
428 => 0.34063206182051
429 => 0.34800266041797
430 => 0.35391318249485
501 => 0.3544000014026
502 => 0.35767237011795
503 => 0.35960892421561
504 => 0.37858978699038
505 => 0.38622404701632
506 => 0.3955590756669
507 => 0.39919559541968
508 => 0.41014021611108
509 => 0.40130154602415
510 => 0.39938924415299
511 => 0.3728411743138
512 => 0.37718841926272
513 => 0.38414877787268
514 => 0.37295594806362
515 => 0.38005522234318
516 => 0.38145676946916
517 => 0.3725756199897
518 => 0.37731942565849
519 => 0.36472128424253
520 => 0.33859878732792
521 => 0.34818552429697
522 => 0.35524458956697
523 => 0.34517043305021
524 => 0.3632279686828
525 => 0.35267912914944
526 => 0.34933565345096
527 => 0.33629156271605
528 => 0.34244787142983
529 => 0.35077436711507
530 => 0.34562956084062
531 => 0.35630580635666
601 => 0.37142621725806
602 => 0.38220192250243
603 => 0.38302914734863
604 => 0.37610109079268
605 => 0.38720334563786
606 => 0.3872842134438
607 => 0.3747608246244
608 => 0.36709031870303
609 => 0.36534756361882
610 => 0.36970130750645
611 => 0.3749875563315
612 => 0.383322497368
613 => 0.38835912767318
614 => 0.40149198828677
615 => 0.40504536382019
616 => 0.40894944621526
617 => 0.41416650426951
618 => 0.42043092008986
619 => 0.40672473490832
620 => 0.40726930719711
621 => 0.39450629733111
622 => 0.38086719088854
623 => 0.39121757253983
624 => 0.40474931969533
625 => 0.40164512194661
626 => 0.40129583628687
627 => 0.40188323788279
628 => 0.39954277415387
629 => 0.38895694344961
630 => 0.38364080554074
701 => 0.39049997973461
702 => 0.39414532555193
703 => 0.39979893900703
704 => 0.39910201181539
705 => 0.41366511292197
706 => 0.41932389364667
707 => 0.41787613538441
708 => 0.41814255774692
709 => 0.42838750995039
710 => 0.43978200383576
711 => 0.45045445099532
712 => 0.46131092263829
713 => 0.44822302233739
714 => 0.44157779371406
715 => 0.44843397340705
716 => 0.44479598795424
717 => 0.4657009314627
718 => 0.46714834439442
719 => 0.48805177623753
720 => 0.50789162219101
721 => 0.49543057041539
722 => 0.5071807809817
723 => 0.51988959171789
724 => 0.54440694955822
725 => 0.53615036596864
726 => 0.52982595233619
727 => 0.52384941201286
728 => 0.53628564367665
729 => 0.55228465703845
730 => 0.55573069127994
731 => 0.56131458323755
801 => 0.55544380360994
802 => 0.56251451102623
803 => 0.58747721523198
804 => 0.5807320722037
805 => 0.57115288476769
806 => 0.59085854229454
807 => 0.5979899431497
808 => 0.64804184909485
809 => 0.7112344478917
810 => 0.68507229704483
811 => 0.66883260576684
812 => 0.6726493184278
813 => 0.69572511630394
814 => 0.70313633019254
815 => 0.68299009604469
816 => 0.69010608653059
817 => 0.72931589373664
818 => 0.75035069730146
819 => 0.72178260870941
820 => 0.64296438531078
821 => 0.57029038374724
822 => 0.58956680151483
823 => 0.58738145395688
824 => 0.62950750027671
825 => 0.58057120277324
826 => 0.58139516451907
827 => 0.62439233286454
828 => 0.61292142550805
829 => 0.59434002467335
830 => 0.57042604853674
831 => 0.52621885187317
901 => 0.48706330497936
902 => 0.56385634942202
903 => 0.56054489370657
904 => 0.55574941510034
905 => 0.56642123381351
906 => 0.61824055623608
907 => 0.61704595313147
908 => 0.60944649767174
909 => 0.61521061765942
910 => 0.5933295465704
911 => 0.59896879681277
912 => 0.57027887181409
913 => 0.5832479161106
914 => 0.59430015733249
915 => 0.59651905838901
916 => 0.60151835576925
917 => 0.55879990701823
918 => 0.57797923635968
919 => 0.58924529548765
920 => 0.53834483048475
921 => 0.58823915695201
922 => 0.55805627386545
923 => 0.54781175001418
924 => 0.56160465176652
925 => 0.5562295445396
926 => 0.55160834298277
927 => 0.54902963311174
928 => 0.55915761789165
929 => 0.55868513529611
930 => 0.54211378643904
1001 => 0.52049713738959
1002 => 0.5277523943529
1003 => 0.52511649147973
1004 => 0.51556363942913
1005 => 0.52200110829548
1006 => 0.49365375333652
1007 => 0.44488360249691
1008 => 0.47710265801168
1009 => 0.47586225942195
1010 => 0.47523679420541
1011 => 0.49944852395546
1012 => 0.49712112479964
1013 => 0.49289687254186
1014 => 0.51548605772372
1015 => 0.50724070126493
1016 => 0.53265094702062
1017 => 0.54938777830698
1018 => 0.54514277651299
1019 => 0.56088384723393
1020 => 0.52791954081978
1021 => 0.53886896111214
1022 => 0.54112562145915
1023 => 0.51520731068501
1024 => 0.49750191608496
1025 => 0.49632116812142
1026 => 0.46562245383861
1027 => 0.48202145921712
1028 => 0.49645190531326
1029 => 0.48954084148106
1030 => 0.48735300513395
1031 => 0.49853018654755
1101 => 0.49939874926947
1102 => 0.47959542716351
1103 => 0.48371316491899
1104 => 0.50088481587628
1105 => 0.48328048337278
1106 => 0.44907814096987
1107 => 0.44059548716956
1108 => 0.43946374478628
1109 => 0.4164581149121
1110 => 0.44116233865789
1111 => 0.43037828296082
1112 => 0.46444498569504
1113 => 0.44498626779664
1114 => 0.44414744135969
1115 => 0.44287943217115
1116 => 0.42307753618784
1117 => 0.42741289293205
1118 => 0.44182427904326
1119 => 0.44696642396362
1120 => 0.44643005612008
1121 => 0.44175365538921
1122 => 0.44389448769675
1123 => 0.43699812091873
1124 => 0.43456287027395
1125 => 0.42687654937055
1126 => 0.41557978104291
1127 => 0.41715066596598
1128 => 0.39476881194869
1129 => 0.38257398998517
1130 => 0.37919862399084
1201 => 0.37468494351696
1202 => 0.37970845621081
1203 => 0.39470540696839
1204 => 0.37661590257416
1205 => 0.34560271612144
1206 => 0.34746666147115
1207 => 0.3516543932616
1208 => 0.34385058277471
1209 => 0.33646493107305
1210 => 0.34288615601078
1211 => 0.32974546007115
1212 => 0.35324238358548
1213 => 0.35260685765379
1214 => 0.36136505769993
1215 => 0.36684173992514
1216 => 0.35421976049296
1217 => 0.35104536679923
1218 => 0.35285364571532
1219 => 0.32296682322327
1220 => 0.35892266668616
1221 => 0.35923361431352
1222 => 0.35657109194624
1223 => 0.3757164685781
1224 => 0.41611918486406
1225 => 0.40091805780178
1226 => 0.39503172194677
1227 => 0.38384179318351
1228 => 0.39875170886833
1229 => 0.39760685997466
1230 => 0.3924294191064
1231 => 0.38929808671468
]
'min_raw' => 0.29243343047567
'max_raw' => 0.75035069730146
'avg_raw' => 0.52139206388856
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.292433'
'max' => '$0.75035'
'avg' => '$0.521392'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17982777968454
'max_diff' => 0.43614601247695
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0091791512264349
]
1 => [
'year' => 2028
'avg' => 0.015754088231203
]
2 => [
'year' => 2029
'avg' => 0.043037329649502
]
3 => [
'year' => 2030
'avg' => 0.033203235731477
]
4 => [
'year' => 2031
'avg' => 0.032609692320014
]
5 => [
'year' => 2032
'avg' => 0.05717505328485
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0091791512264349
'min' => '$0.009179'
'max_raw' => 0.05717505328485
'max' => '$0.057175'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.05717505328485
]
1 => [
'year' => 2033
'avg' => 0.14706011629003
]
2 => [
'year' => 2034
'avg' => 0.093213769083105
]
3 => [
'year' => 2035
'avg' => 0.10994585439294
]
4 => [
'year' => 2036
'avg' => 0.21340516780782
]
5 => [
'year' => 2037
'avg' => 0.52139206388856
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.05717505328485
'min' => '$0.057175'
'max_raw' => 0.52139206388856
'max' => '$0.521392'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.52139206388856
]
]
]
]
'prediction_2025_max_price' => '$0.015694'
'last_price' => 0.01521797
'sma_50day_nextmonth' => '$0.013067'
'sma_200day_nextmonth' => '$0.025886'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.013653'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014671'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012857'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011593'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01205'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.020549'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030561'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014493'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0141078'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013268'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012514'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014112'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.02004'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.038752'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023492'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.061332'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.191399'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.013348'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.01324'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.015719'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025996'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.069863'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116622'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.140336'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 43.74
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.013261'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014868'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 72.67
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 151.65
'cci_20_action' => 'SELL'
'adx_14' => 21.26
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002844'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -27.33
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 63.54
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006177'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767686324
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Jackal Protocol para 2026
La previsión del precio de Jackal Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.005257 en el extremo inferior y $0.015694 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Jackal Protocol podría potencialmente ganar 3.13% para 2026 si JKL alcanza el objetivo de precio previsto.
Predicción de precio de Jackal Protocol 2027-2032
La predicción del precio de JKL para 2027-2032 está actualmente dentro de un rango de precios de $0.009179 en el extremo inferior y $0.057175 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Jackal Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Jackal Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005061 | $0.009179 | $0.013296 |
| 2028 | $0.009134 | $0.015754 | $0.022373 |
| 2029 | $0.020066 | $0.043037 | $0.0660085 |
| 2030 | $0.017065 | $0.0332032 | $0.049341 |
| 2031 | $0.020176 | $0.0326096 | $0.045042 |
| 2032 | $0.030798 | $0.057175 | $0.083552 |
Predicción de precio de Jackal Protocol 2032-2037
La predicción de precio de Jackal Protocol para 2032-2037 se estima actualmente entre $0.057175 en el extremo inferior y $0.521392 en el extremo superior. Comparado con el precio actual, Jackal Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Jackal Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.030798 | $0.057175 | $0.083552 |
| 2033 | $0.071567 | $0.14706 | $0.222552 |
| 2034 | $0.057537 | $0.093213 | $0.12889 |
| 2035 | $0.068026 | $0.109945 | $0.151864 |
| 2036 | $0.1126056 | $0.2134051 | $0.3142046 |
| 2037 | $0.292433 | $0.521392 | $0.75035 |
Jackal Protocol Histograma de precios potenciales
Pronóstico de precio de Jackal Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Jackal Protocol es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de JKL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Jackal Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Jackal Protocol aumentar durante el próximo mes, alcanzando $0.025886 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Jackal Protocol alcance $0.013067 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 58.39, lo que sugiere que el mercado de JKL está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de JKL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.013653 | BUY |
| SMA 5 | $0.014671 | BUY |
| SMA 10 | $0.012857 | BUY |
| SMA 21 | $0.011593 | BUY |
| SMA 50 | $0.01205 | BUY |
| SMA 100 | $0.020549 | SELL |
| SMA 200 | $0.030561 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.014493 | BUY |
| EMA 5 | $0.0141078 | BUY |
| EMA 10 | $0.013268 | BUY |
| EMA 21 | $0.012514 | BUY |
| EMA 50 | $0.014112 | BUY |
| EMA 100 | $0.02004 | SELL |
| EMA 200 | $0.038752 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.023492 | SELL |
| SMA 50 | $0.061332 | SELL |
| SMA 100 | $0.191399 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.025996 | SELL |
| EMA 50 | $0.069863 | SELL |
| EMA 100 | $0.116622 | SELL |
| EMA 200 | $0.140336 | SELL |
Osciladores de Jackal Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 58.39 | NEUTRAL |
| Stoch RSI (14) | 43.74 | NEUTRAL |
| Estocástico Rápido (14) | 72.67 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 151.65 | SELL |
| Índice Direccional Medio (14) | 21.26 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002844 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -27.33 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 63.54 | NEUTRAL |
| VWMA (10) | 0.013261 | BUY |
| Promedio Móvil de Hull (9) | 0.014868 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.006177 | NEUTRAL |
Predicción de precios de Jackal Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Jackal Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Jackal Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.021383 | $0.030047 | $0.042222 | $0.059329 | $0.083367 | $0.117145 |
| Amazon.com acción | $0.031753 | $0.066254 | $0.138244 | $0.288456 | $0.60188 | $1.25 |
| Apple acción | $0.021585 | $0.030617 | $0.043428 | $0.061599 | $0.087374 | $0.123934 |
| Netflix acción | $0.024011 | $0.037886 | $0.059778 | $0.094321 | $0.148825 | $0.234822 |
| Google acción | $0.0197072 | $0.02552 | $0.033049 | $0.042798 | $0.055424 | $0.071773 |
| Tesla acción | $0.034497 | $0.0782043 | $0.177283 | $0.401887 | $0.911049 | $2.06 |
| Kodak acción | $0.011411 | $0.008557 | $0.006417 | $0.004812 | $0.0036087 | $0.0027061 |
| Nokia acción | $0.010081 | $0.006678 | $0.004424 | $0.00293 | $0.001941 | $0.001286 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Jackal Protocol
Podría preguntarse cosas como: "¿Debo invertir en Jackal Protocol ahora?", "¿Debería comprar JKL hoy?", "¿Será Jackal Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Jackal Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Jackal Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Jackal Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Jackal Protocol es de $0.01521 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Jackal Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Jackal Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.015613 | $0.016019 | $0.016435 | $0.016862 |
| Si Jackal Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.016009 | $0.016841 | $0.017716 | $0.018637 |
| Si Jackal Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.017195 | $0.01943 | $0.021955 | $0.0248095 |
| Si Jackal Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.019173 | $0.024157 | $0.030436 | $0.038348 |
| Si Jackal Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.023129 | $0.035153 | $0.053428 | $0.0812037 |
| Si Jackal Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.034996 | $0.080479 | $0.185075 | $0.4256099 |
| Si Jackal Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.054774 | $0.19715 | $0.709608 | $2.55 |
Cuadro de preguntas
¿Es JKL una buena inversión?
La decisión de adquirir Jackal Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Jackal Protocol ha experimentado una caída de -4.1828% durante las últimas 24 horas, y Jackal Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Jackal Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Jackal Protocol subir?
Parece que el valor medio de Jackal Protocol podría potencialmente aumentar hasta $0.015694 para el final de este año. Mirando las perspectivas de Jackal Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.049341. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Jackal Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Jackal Protocol, el precio de Jackal Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.015348 para el 13 de enero de 2026.
¿Cuál será el precio de Jackal Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Jackal Protocol, el precio de Jackal Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.013449 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Jackal Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Jackal Protocol en 2026, se anticipa que JKL fluctúe dentro del rango de $0.005257 y $0.015694. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Jackal Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Jackal Protocol en 5 años?
El futuro de Jackal Protocol parece estar en una tendencia alcista, con un precio máximo de $0.049341 proyectada después de un período de cinco años. Basado en el pronóstico de Jackal Protocol para 2030, el valor de Jackal Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.049341, mientras que su punto más bajo se anticipa que esté alrededor de $0.017065.
¿Cuánto será Jackal Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Jackal Protocol, se espera que el valor de JKL en 2026 crezca en un 3.13% hasta $0.015694 si ocurre lo mejor. El precio estará entre $0.015694 y $0.005257 durante 2026.
¿Cuánto será Jackal Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Jackal Protocol, el valor de JKL podría disminuir en un -12.62% hasta $0.013296 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.013296 y $0.005061 a lo largo del año.
¿Cuánto será Jackal Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Jackal Protocol sugiere que el valor de JKL en 2028 podría aumentar en un 47.02% , alcanzando $0.022373 en el mejor escenario. Se espera que el precio oscile entre $0.022373 y $0.009134 durante el año.
¿Cuánto será Jackal Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Jackal Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0660085 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0660085 y $0.020066.
¿Cuánto será Jackal Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Jackal Protocol, se espera que el valor de JKL en 2030 aumente en un 224.23% , alcanzando $0.049341 en el mejor escenario. Se pronostica que el precio oscile entre $0.049341 y $0.017065 durante el transcurso de 2030.
¿Cuánto será Jackal Protocol en 2031?
Nuestra simulación experimental indica que el precio de Jackal Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.045042 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.045042 y $0.020176 durante el año.
¿Cuánto será Jackal Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Jackal Protocol, JKL podría experimentar un 449.04% aumento en valor, alcanzando $0.083552 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.083552 y $0.030798 a lo largo del año.
¿Cuánto será Jackal Protocol en 2033?
Según nuestra predicción experimental de precios de Jackal Protocol, se anticipa que el valor de JKL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.222552. A lo largo del año, el precio de JKL podría oscilar entre $0.222552 y $0.071567.
¿Cuánto será Jackal Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Jackal Protocol sugieren que JKL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.12889 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.12889 y $0.057537.
¿Cuánto será Jackal Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Jackal Protocol, JKL podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.151864 en 2035. El rango de precios esperado para el año está entre $0.151864 y $0.068026.
¿Cuánto será Jackal Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Jackal Protocol sugiere que el valor de JKL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.3142046 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.3142046 y $0.1126056.
¿Cuánto será Jackal Protocol en 2037?
Según la simulación experimental, el valor de Jackal Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $0.75035 bajo condiciones favorables. Se espera que el precio caiga entre $0.75035 y $0.292433 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Alpha Quark Token
Predicción de precios de STEPN Green Satoshi Token on Solana
Predicción de precios de xSUSHI
Predicción de precios de ViciCoin
Predicción de precios de KYVE Network
Predicción de precios de GHO
Predicción de precios de AhaToken
Predicción de precios de Travala.com
Predicción de precios de BiLira
Predicción de precios de ATC Coin
Predicción de precios de Mango Markets
Predicción de precios de Non-Playable Coin
Predicción de precios de Sommelier
Predicción de precios de Mintlayer
Predicción de precios de Bit2Me
Predicción de precios de Tokocrypto
Predicción de precios de Miracle Play
Predicción de precios de Mochi
Predicción de precios de NuNet
Predicción de precios de Machine Xchange Coin
Predicción de precios de enqAI
Predicción de precios de MCDex
Predicción de precios de Bean
Predicción de precios de DeGate
Predicción de precios de Socean Staked Sol
¿Cómo leer y predecir los movimientos de precio de Jackal Protocol?
Los traders de Jackal Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Jackal Protocol
Las medias móviles son herramientas populares para la predicción de precios de Jackal Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de JKL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de JKL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de JKL.
¿Cómo leer gráficos de Jackal Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Jackal Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de JKL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Jackal Protocol?
La acción del precio de Jackal Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de JKL. La capitalización de mercado de Jackal Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de JKL, grandes poseedores de Jackal Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Jackal Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


