Predicción del precio de Hydranet - Pronóstico de HDN
Predicción de precio de Hydranet hasta $0.031541 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.010566 | $0.031541 |
| 2027 | $0.010172 | $0.026722 |
| 2028 | $0.018357 | $0.044964 |
| 2029 | $0.040326 | $0.132657 |
| 2030 | $0.034296 | $0.09916 |
| 2031 | $0.040548 | $0.090522 |
| 2032 | $0.061894 | $0.167914 |
| 2033 | $0.143829 | $0.447262 |
| 2034 | $0.115632 | $0.25903 |
| 2035 | $0.136713 | $0.3052026 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Hydranet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.59, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Hydranet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Hydranet'
'name_with_ticker' => 'Hydranet <small>HDN</small>'
'name_lang' => 'Hydranet'
'name_lang_with_ticker' => 'Hydranet <small>HDN</small>'
'name_with_lang' => 'Hydranet'
'name_with_lang_with_ticker' => 'Hydranet <small>HDN</small>'
'image' => '/uploads/coins/hydranet.png?1717202913'
'price_for_sd' => 0.03058
'ticker' => 'HDN'
'marketcap' => '$6.26M'
'low24h' => '$0.02661'
'high24h' => '$0.03394'
'volume24h' => '$126.8K'
'current_supply' => '204.63M'
'max_supply' => '300M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03058'
'change_24h_pct' => '-7.7832%'
'ath_price' => '$0.1784'
'ath_days' => 779
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 nov. 2023'
'ath_pct' => '-82.85%'
'fdv' => '$9.18M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.50'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.030845'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0270303'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010566'
'current_year_max_price_prediction' => '$0.031541'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034296'
'grand_prediction_max_price' => '$0.09916'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031163061617068
107 => 0.031279413176955
108 => 0.031541559182438
109 => 0.029301550267433
110 => 0.030307248507064
111 => 0.030898002001665
112 => 0.02822895622126
113 => 0.030845243548223
114 => 0.029262556695793
115 => 0.028725369006919
116 => 0.029448621460891
117 => 0.029166769276192
118 => 0.028924449318704
119 => 0.02878923061884
120 => 0.029320307398576
121 => 0.029295532032027
122 => 0.028426587342817
123 => 0.02729308441846
124 => 0.027673525205839
125 => 0.027535307501133
126 => 0.027034388708838
127 => 0.027371947493679
128 => 0.025885509439831
129 => 0.023328170026511
130 => 0.025017626776375
131 => 0.02495258452928
201 => 0.024919787278864
202 => 0.026189367333232
203 => 0.0260673265052
204 => 0.025845821207294
205 => 0.027030320590336
206 => 0.02659796238176
207 => 0.027930388504183
208 => 0.028808010524329
209 => 0.028585417191922
210 => 0.029410824943784
211 => 0.027682289793198
212 => 0.02825643983343
213 => 0.028374771360984
214 => 0.027015704051814
215 => 0.02608729389397
216 => 0.026025379521093
217 => 0.024415644250192
218 => 0.025275551838578
219 => 0.026032234930964
220 => 0.025669842450691
221 => 0.025555119817604
222 => 0.026141212869742
223 => 0.026186757319441
224 => 0.025148339039727
225 => 0.02536425908251
226 => 0.026264681554634
227 => 0.025341570746458
228 => 0.023548117235468
301 => 0.023103315968308
302 => 0.023043971279955
303 => 0.021837634965782
304 => 0.023133039715879
305 => 0.022567560827773
306 => 0.024353901859823
307 => 0.023333553442655
308 => 0.023289568261736
309 => 0.023223078209553
310 => 0.022184734710819
311 => 0.02241206594687
312 => 0.023167749599028
313 => 0.023437386039503
314 => 0.023409260749695
315 => 0.02316404633687
316 => 0.023276304239361
317 => 0.022914682422193
318 => 0.022786986232044
319 => 0.02238394193033
320 => 0.021791578150639
321 => 0.021873949967383
322 => 0.020700322319402
323 => 0.020060867687648
324 => 0.019883875073455
325 => 0.019647193152726
326 => 0.019910608926188
327 => 0.020696997579734
328 => 0.019748446021898
329 => 0.018122220909145
330 => 0.018219959809374
331 => 0.018439550099249
401 => 0.018030345046802
402 => 0.017643066806637
403 => 0.017979773815583
404 => 0.017290720797163
405 => 0.018522818864535
406 => 0.018489494064728
407 => 0.018948744031811
408 => 0.019235922460986
409 => 0.018574069156858
410 => 0.018407614840711
411 => 0.018502434784115
412 => 0.016935272333682
413 => 0.018820673425206
414 => 0.018836978452138
415 => 0.018697364912474
416 => 0.019701282788482
417 => 0.021819862636698
418 => 0.021022767678122
419 => 0.020714108417839
420 => 0.020127346938412
421 => 0.020909171771299
422 => 0.020849139822501
423 => 0.020577652583594
424 => 0.020413456254411
425 => 0.020715993025465
426 => 0.020375968600452
427 => 0.020314890870473
428 => 0.019944826280028
429 => 0.019812730058105
430 => 0.019714931274295
501 => 0.019607264422831
502 => 0.019844750668253
503 => 0.019306575592208
504 => 0.018657589208451
505 => 0.018603633012772
506 => 0.01875261081292
507 => 0.018686699226447
508 => 0.018603317453454
509 => 0.018444118941135
510 => 0.018396888143268
511 => 0.01855036532321
512 => 0.018377098535331
513 => 0.018632763119177
514 => 0.018563236498938
515 => 0.018174866450072
516 => 0.017690813576177
517 => 0.017686504490264
518 => 0.017582216092589
519 => 0.017449389138284
520 => 0.017412439718266
521 => 0.017951417290442
522 => 0.019067084734606
523 => 0.018848052519657
524 => 0.019006325742282
525 => 0.019784873348829
526 => 0.020032350221207
527 => 0.019856696999004
528 => 0.019616252034634
529 => 0.019626830392787
530 => 0.020448503623681
531 => 0.020499750375207
601 => 0.020629234383484
602 => 0.020795657926297
603 => 0.019885039647981
604 => 0.019583940353769
605 => 0.019441262803819
606 => 0.019001871173132
607 => 0.019475717376236
608 => 0.019199627485805
609 => 0.019236881444598
610 => 0.019212619755062
611 => 0.019225868278117
612 => 0.018522474468015
613 => 0.018778754203126
614 => 0.018352639437232
615 => 0.017782119599328
616 => 0.017780207016782
617 => 0.017919840938854
618 => 0.017836781218129
619 => 0.017613269645321
620 => 0.017645018409293
621 => 0.017366865829274
622 => 0.017678791168623
623 => 0.017687736071233
624 => 0.017567627824895
625 => 0.018048191847564
626 => 0.018245079319754
627 => 0.018166021499047
628 => 0.018239532412302
629 => 0.018857154297059
630 => 0.018957853613007
701 => 0.019002577597327
702 => 0.01894265338313
703 => 0.018250821406571
704 => 0.018281507096628
705 => 0.018056355863264
706 => 0.017866126796923
707 => 0.017873734961957
708 => 0.017971537430103
709 => 0.018398646544538
710 => 0.019297472496409
711 => 0.019331582284249
712 => 0.019372924342164
713 => 0.01920476541577
714 => 0.019154047074505
715 => 0.019220957658148
716 => 0.019558509427647
717 => 0.02042678422321
718 => 0.020119877920334
719 => 0.019870358318815
720 => 0.020089254279349
721 => 0.020055556961988
722 => 0.01977111769168
723 => 0.019763134428717
724 => 0.01921720452826
725 => 0.019015386674284
726 => 0.018846732569697
727 => 0.018662566690314
728 => 0.01855338698372
729 => 0.018721136634338
730 => 0.01875950296419
731 => 0.018392715421352
801 => 0.01834272363459
802 => 0.01864225025973
803 => 0.018510439759484
804 => 0.01864601012773
805 => 0.018677463616064
806 => 0.018672398880007
807 => 0.018534773579411
808 => 0.018622491841966
809 => 0.018415012000951
810 => 0.018189408836312
811 => 0.018045488072847
812 => 0.017919898118404
813 => 0.01798958272446
814 => 0.017741169827777
815 => 0.017661697542564
816 => 0.018592774868335
817 => 0.019280571699651
818 => 0.019270570861326
819 => 0.019209693330031
820 => 0.019119241667082
821 => 0.019551892325114
822 => 0.019401165486978
823 => 0.01951083185537
824 => 0.019538746548809
825 => 0.019623235918481
826 => 0.019653433606031
827 => 0.01956215522061
828 => 0.019255813810421
829 => 0.018492440142298
830 => 0.018137087639098
831 => 0.018019815394179
901 => 0.01802407801755
902 => 0.017906495835785
903 => 0.017941129057978
904 => 0.017894451814478
905 => 0.017806056407727
906 => 0.017984124557185
907 => 0.01800464525259
908 => 0.017963082018751
909 => 0.017972871664931
910 => 0.017628745840631
911 => 0.017654908979651
912 => 0.017509229296939
913 => 0.017481916112625
914 => 0.017113650560512
915 => 0.016461214753997
916 => 0.016822727524282
917 => 0.016386070934166
918 => 0.016220702467061
919 => 0.01700353107026
920 => 0.016924956790784
921 => 0.01679047177974
922 => 0.016591540419274
923 => 0.016517754842598
924 => 0.016069457036385
925 => 0.016042969210418
926 => 0.016265157708236
927 => 0.016162625361532
928 => 0.016018631114724
929 => 0.015497098549248
930 => 0.014910723272154
1001 => 0.014928422255946
1002 => 0.01511493732169
1003 => 0.015657255030323
1004 => 0.015445362119368
1005 => 0.01529163138128
1006 => 0.015262842235165
1007 => 0.015623198672953
1008 => 0.016133178529432
1009 => 0.016372449667936
1010 => 0.016135339236451
1011 => 0.015862959539694
1012 => 0.01587953802975
1013 => 0.015989827296795
1014 => 0.016001417139355
1015 => 0.015824125957852
1016 => 0.015874032386956
1017 => 0.015798219957607
1018 => 0.015332959218632
1019 => 0.015324544127221
1020 => 0.015210361638534
1021 => 0.015206904238156
1022 => 0.015012651340742
1023 => 0.014985474017586
1024 => 0.014599773099463
1025 => 0.014853642611782
1026 => 0.014683360271666
1027 => 0.014426704619568
1028 => 0.014382457088407
1029 => 0.01438112695419
1030 => 0.014644654921741
1031 => 0.014850563134047
1101 => 0.014686322405876
1102 => 0.014648927975745
1103 => 0.015048202657745
1104 => 0.014997391314991
1105 => 0.014953389019864
1106 => 0.016087515426793
1107 => 0.015189765878722
1108 => 0.01479829583401
1109 => 0.014313777315534
1110 => 0.014471538988304
1111 => 0.014504781690758
1112 => 0.013339601994851
1113 => 0.012866888737335
1114 => 0.012704671361179
1115 => 0.012611312967784
1116 => 0.012653857559975
1117 => 0.012228360184476
1118 => 0.012514301457888
1119 => 0.012145856697104
1120 => 0.012084085733935
1121 => 0.012742910607765
1122 => 0.01283458224016
1123 => 0.012443482576222
1124 => 0.012694631873754
1125 => 0.012603561647232
1126 => 0.012152172625027
1127 => 0.012134932884572
1128 => 0.01190844174032
1129 => 0.011554026956895
1130 => 0.011392049890651
1201 => 0.011307690828202
1202 => 0.011342499021493
1203 => 0.011324898933817
1204 => 0.011210046456569
1205 => 0.011331482143371
1206 => 0.011021264144281
1207 => 0.010897732837447
1208 => 0.010841936612054
1209 => 0.010566600282379
1210 => 0.011004782825513
1211 => 0.011091110306589
1212 => 0.01117760787947
1213 => 0.011930510197
1214 => 0.011892897324896
1215 => 0.012232899370504
1216 => 0.012219687516236
1217 => 0.01212271342516
1218 => 0.011713595686377
1219 => 0.011876662725234
1220 => 0.011374767725878
1221 => 0.011750821584938
1222 => 0.011579206308047
1223 => 0.011692798287192
1224 => 0.011488549666514
1225 => 0.011601589286416
1226 => 0.01111158175489
1227 => 0.010654019616544
1228 => 0.010838155978086
1229 => 0.01103833326163
1230 => 0.011472368616575
1231 => 0.011213860739883
]
'min_raw' => 0.010566600282379
'max_raw' => 0.031541559182438
'avg_raw' => 0.021054079732409
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010566'
'max' => '$0.031541'
'avg' => '$0.021054'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.020016919717621
'max_diff' => 0.00095803918243807
'year' => 2026
]
1 => [
'items' => [
101 => 0.011306829947607
102 => 0.010995398664591
103 => 0.010352826971781
104 => 0.010356463857779
105 => 0.010257618202026
106 => 0.010172201123753
107 => 0.011243553479217
108 => 0.011110313878241
109 => 0.010898014012053
110 => 0.011182185819407
111 => 0.011257325355684
112 => 0.011259464472649
113 => 0.011466788887758
114 => 0.011577437965267
115 => 0.011596940344759
116 => 0.011923169791474
117 => 0.012032517598943
118 => 0.012482905742425
119 => 0.011568050164103
120 => 0.011549209315504
121 => 0.0111861846995
122 => 0.010955948748838
123 => 0.011201949152017
124 => 0.011419871926831
125 => 0.011192956167571
126 => 0.011222586575277
127 => 0.01091797070817
128 => 0.011026856547152
129 => 0.01112064370019
130 => 0.011068859946836
131 => 0.010991337161704
201 => 0.011402004744454
202 => 0.011378833270016
203 => 0.01176125636428
204 => 0.012059382513597
205 => 0.012593677869596
206 => 0.012036112812164
207 => 0.012015792925351
208 => 0.012214423078362
209 => 0.012032487189701
210 => 0.012147464391121
211 => 0.012575153264906
212 => 0.012584189656866
213 => 0.012432818448806
214 => 0.012423607497039
215 => 0.012452679993367
216 => 0.012622958512419
217 => 0.012563457965732
218 => 0.012632313504728
219 => 0.012718418410596
220 => 0.01307458480899
221 => 0.013160455321847
222 => 0.012951834494361
223 => 0.012970670619255
224 => 0.012892640703005
225 => 0.01281726478162
226 => 0.012986698845124
227 => 0.013296342926414
228 => 0.013294416646655
301 => 0.013366248054893
302 => 0.013410998427142
303 => 0.013218897070175
304 => 0.013093846150552
305 => 0.013141798630332
306 => 0.01321847568977
307 => 0.013116933293384
308 => 0.012490166583877
309 => 0.012680287565529
310 => 0.012648642137741
311 => 0.012603575200356
312 => 0.012794743317569
313 => 0.012776304686306
314 => 0.012223996093886
315 => 0.012259353098012
316 => 0.012226146270413
317 => 0.012333444323863
318 => 0.012026692742693
319 => 0.012121047463057
320 => 0.012180225859149
321 => 0.012215082389077
322 => 0.012341008076524
323 => 0.012326232150531
324 => 0.012340089584218
325 => 0.012526804135553
326 => 0.013471142263506
327 => 0.013522540504246
328 => 0.013269436768819
329 => 0.013370546718872
330 => 0.013176437725087
331 => 0.013306744393032
401 => 0.01339589690581
402 => 0.01299303384361
403 => 0.012969178907626
404 => 0.012774268756975
405 => 0.012879002431659
406 => 0.012712363624618
407 => 0.012753250959088
408 => 0.012638926407417
409 => 0.012844687838634
410 => 0.013074761090829
411 => 0.013132886680202
412 => 0.012979983279202
413 => 0.012869271140053
414 => 0.012674897094554
415 => 0.012998145464128
416 => 0.013092673138206
417 => 0.012997648950497
418 => 0.012975629769886
419 => 0.012933903462414
420 => 0.012984482203269
421 => 0.013092158320193
422 => 0.013041380251917
423 => 0.013074920060607
424 => 0.01294710089598
425 => 0.013218960663718
426 => 0.013650739401501
427 => 0.013652127640746
428 => 0.013601349298758
429 => 0.013580571895251
430 => 0.013632673555618
501 => 0.013660936569046
502 => 0.013829423784864
503 => 0.014010217280263
504 => 0.014853901636911
505 => 0.014616998445622
506 => 0.015365565397847
507 => 0.015957584667804
508 => 0.016135105360999
509 => 0.015971794676253
510 => 0.01541311764561
511 => 0.015385706285177
512 => 0.016220605636317
513 => 0.015984708328807
514 => 0.015956649094698
515 => 0.015658146250599
516 => 0.015834598401758
517 => 0.015796005727903
518 => 0.015735085304204
519 => 0.016071743716851
520 => 0.016701938211623
521 => 0.016603716489686
522 => 0.016530398530635
523 => 0.01620914057661
524 => 0.016402609620495
525 => 0.016333718999623
526 => 0.016629716825957
527 => 0.016454374270791
528 => 0.015982921174691
529 => 0.016058001634175
530 => 0.016046653373765
531 => 0.016280199768857
601 => 0.016210094938028
602 => 0.016032964280403
603 => 0.016699784275351
604 => 0.016656484693927
605 => 0.016717873600724
606 => 0.016744898896011
607 => 0.01715078047625
608 => 0.017317057172911
609 => 0.017354804894137
610 => 0.017512754895664
611 => 0.01735087495421
612 => 0.01799851013847
613 => 0.018429149745443
614 => 0.018929359809453
615 => 0.019660301156762
616 => 0.019935141864936
617 => 0.019885494351008
618 => 0.02043968573842
619 => 0.021435555342616
620 => 0.020086788071018
621 => 0.021507043283073
622 => 0.021057406880571
623 => 0.019991327058853
624 => 0.01992268408659
625 => 0.020644645719299
626 => 0.022245887134415
627 => 0.021844794321058
628 => 0.02224654317857
629 => 0.021777881796135
630 => 0.021754608808309
701 => 0.022223781341297
702 => 0.023320028537886
703 => 0.022799242586998
704 => 0.022052568224447
705 => 0.022603900954215
706 => 0.022126285520254
707 => 0.021050084271398
708 => 0.021844487612943
709 => 0.021313292721756
710 => 0.021468323630878
711 => 0.022584816282876
712 => 0.022450476933114
713 => 0.022624324491194
714 => 0.022317488101566
715 => 0.022030854529995
716 => 0.021495831682969
717 => 0.021337437794273
718 => 0.021381212166693
719 => 0.021337416101868
720 => 0.021038075736071
721 => 0.020973433212577
722 => 0.020865692841368
723 => 0.020899086087534
724 => 0.020696502669103
725 => 0.021078819435553
726 => 0.02114978079637
727 => 0.02142799905642
728 => 0.021456884599132
729 => 0.022231718493182
730 => 0.021804953004894
731 => 0.022091264139597
801 => 0.022065653776844
802 => 0.020014432241227
803 => 0.020297072470754
804 => 0.020736771970508
805 => 0.020538687941867
806 => 0.020258643469894
807 => 0.02003249254374
808 => 0.019689850765498
809 => 0.020172112488521
810 => 0.02080623537148
811 => 0.021472967001906
812 => 0.022274001369875
813 => 0.022095219824012
814 => 0.021457992221584
815 => 0.021486577786334
816 => 0.021663282499613
817 => 0.021434433840601
818 => 0.021366941903402
819 => 0.021654010143851
820 => 0.021655987025053
821 => 0.021392668985575
822 => 0.021100039171389
823 => 0.021098813041782
824 => 0.021046742392817
825 => 0.021787145048911
826 => 0.022194291646611
827 => 0.022240970347888
828 => 0.022191149798099
829 => 0.022210323750406
830 => 0.021973414116067
831 => 0.022514919286795
901 => 0.023011857980766
902 => 0.022878667795235
903 => 0.022678996773024
904 => 0.022519949186373
905 => 0.022841201238425
906 => 0.022826896390245
907 => 0.023007517654794
908 => 0.022999323630915
909 => 0.022938587493157
910 => 0.022878669964314
911 => 0.023116236193405
912 => 0.023047820934624
913 => 0.022979299408049
914 => 0.022841868996382
915 => 0.022860548071805
916 => 0.02266091152561
917 => 0.022568550524594
918 => 0.021179662674337
919 => 0.020808506457529
920 => 0.020925279758918
921 => 0.020963724561753
922 => 0.020802196900548
923 => 0.021033786073664
924 => 0.020997693146348
925 => 0.02113810961288
926 => 0.021050383500765
927 => 0.021053983811006
928 => 0.021311967601557
929 => 0.021386861393496
930 => 0.021348769806449
1001 => 0.021375447848313
1002 => 0.021990232062982
1003 => 0.021902829407349
1004 => 0.021856398488543
1005 => 0.021869260170367
1006 => 0.022026350718337
1007 => 0.022070327494943
1008 => 0.021883994802271
1009 => 0.021971870377311
1010 => 0.022346033422763
1011 => 0.022476969312876
1012 => 0.022894853821326
1013 => 0.022717329054832
1014 => 0.023043183446824
1015 => 0.024044748755861
1016 => 0.024844868427766
1017 => 0.024109045311138
1018 => 0.025578363193967
1019 => 0.026722437926882
1020 => 0.026678526433077
1021 => 0.026479030540468
1022 => 0.025176531873845
1023 => 0.023977953181657
1024 => 0.024980615152011
1025 => 0.024983171143573
1026 => 0.024897041591103
1027 => 0.02436209833788
1028 => 0.024878426725447
1029 => 0.024919410997823
1030 => 0.02489647070389
1031 => 0.024486330965885
1101 => 0.023860123392446
1102 => 0.023982482853367
1103 => 0.024182910146421
1104 => 0.023803459467156
1105 => 0.023682201983403
1106 => 0.02390764271588
1107 => 0.024634059728359
1108 => 0.024496734799997
1109 => 0.024493148691144
1110 => 0.025080682969509
1111 => 0.024660135224033
1112 => 0.023984026198018
1113 => 0.023813299752167
1114 => 0.02320733588451
1115 => 0.02362587728627
1116 => 0.023640939846204
1117 => 0.02341170899785
1118 => 0.024002627017999
1119 => 0.023997181604414
1120 => 0.024558170318005
1121 => 0.025630570040653
1122 => 0.025313408673081
1123 => 0.024944584509653
1124 => 0.024984685922602
1125 => 0.025424499443936
1126 => 0.025158578148971
1127 => 0.02525420530071
1128 => 0.025424354700789
1129 => 0.025527010058428
1130 => 0.024969915396414
1201 => 0.024840029981781
1202 => 0.024574330007026
1203 => 0.024505013843138
1204 => 0.024721420928563
1205 => 0.024664405307329
1206 => 0.023639673896367
1207 => 0.02353258376237
1208 => 0.02353586806389
1209 => 0.023266584830095
1210 => 0.022855863263177
1211 => 0.023935215018127
1212 => 0.023848527966686
1213 => 0.023752832170941
1214 => 0.023764554359887
1215 => 0.024233064374086
1216 => 0.023961304905528
1217 => 0.02468382199319
1218 => 0.024535294200818
1219 => 0.024382957231019
1220 => 0.024361899621495
1221 => 0.024303262884902
1222 => 0.024102175697355
1223 => 0.023859350834926
1224 => 0.02369901682762
1225 => 0.02186109029819
1226 => 0.022202198771325
1227 => 0.022594612976652
1228 => 0.02273007278783
1229 => 0.022498359407277
1230 => 0.024111325153929
1231 => 0.024406029538767
]
'min_raw' => 0.010172201123753
'max_raw' => 0.026722437926882
'avg_raw' => 0.018447319525317
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010172'
'max' => '$0.026722'
'avg' => '$0.018447'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00039439915862662
'max_diff' => -0.0048191212555559
'year' => 2027
]
2 => [
'items' => [
101 => 0.023513350734001
102 => 0.023346366977465
103 => 0.024122272581208
104 => 0.023654306651548
105 => 0.02386503168102
106 => 0.023409559427731
107 => 0.024335043882411
108 => 0.024327993241477
109 => 0.023967958885592
110 => 0.024272257457777
111 => 0.02421937809244
112 => 0.023812900191371
113 => 0.024347929956897
114 => 0.024348195324985
115 => 0.024001670085268
116 => 0.023597004469407
117 => 0.023524659815066
118 => 0.023470157836157
119 => 0.023851627535241
120 => 0.024193652074614
121 => 0.024830074947313
122 => 0.024990086778544
123 => 0.02561462360843
124 => 0.025242742334379
125 => 0.025407592486497
126 => 0.025586560646099
127 => 0.025672364563148
128 => 0.025532551684809
129 => 0.026502714451236
130 => 0.026584625913742
131 => 0.026612090118588
201 => 0.026284956692308
202 => 0.026575527741377
203 => 0.026439579170219
204 => 0.02679327958477
205 => 0.026848744326045
206 => 0.026801767663401
207 => 0.026819373047733
208 => 0.025991510275027
209 => 0.025948581222938
210 => 0.0253632405516
211 => 0.02560177120179
212 => 0.025155849584331
213 => 0.025297255922729
214 => 0.025359586489326
215 => 0.025327028538564
216 => 0.025615257366863
217 => 0.02537020398155
218 => 0.0247234678072
219 => 0.024076555430013
220 => 0.024068433972081
221 => 0.023898113362119
222 => 0.023775002756893
223 => 0.023798718227043
224 => 0.023882294637109
225 => 0.023770145144006
226 => 0.023794077924483
227 => 0.024191521543685
228 => 0.024271226027077
229 => 0.024000359049957
301 => 0.022912789050902
302 => 0.022645896645171
303 => 0.022837733613704
304 => 0.022746047898629
305 => 0.018357835910444
306 => 0.0193887812258
307 => 0.018776228527011
308 => 0.019058520992807
309 => 0.018433263307096
310 => 0.01873166904728
311 => 0.018676564403101
312 => 0.020334293962303
313 => 0.020308410795368
314 => 0.020320799697673
315 => 0.019729445111551
316 => 0.02067148902427
317 => 0.02113557373048
318 => 0.021049684002575
319 => 0.021071300596667
320 => 0.020699855890962
321 => 0.020324396094362
322 => 0.019907953397085
323 => 0.020681652454753
324 => 0.020595630327024
325 => 0.020792934138251
326 => 0.0212947332823
327 => 0.021368625112411
328 => 0.021467936481416
329 => 0.021432340425092
330 => 0.022280382900946
331 => 0.022177679361555
401 => 0.022425165341661
402 => 0.021916067903777
403 => 0.021339975828839
404 => 0.021449472098416
405 => 0.021438926727143
406 => 0.021304672047416
407 => 0.02118347292549
408 => 0.020981710535125
409 => 0.021620116593455
410 => 0.021594198473353
411 => 0.022013782711283
412 => 0.021939617121605
413 => 0.021444321162338
414 => 0.021462010754419
415 => 0.021580981762494
416 => 0.02199274177983
417 => 0.022114980187735
418 => 0.022058354486835
419 => 0.022192383320708
420 => 0.022298314246205
421 => 0.022205686614009
422 => 0.023517098551513
423 => 0.02297250888374
424 => 0.023237938098582
425 => 0.023301241402322
426 => 0.023139091320917
427 => 0.023174255867415
428 => 0.023227520573593
429 => 0.023550933439211
430 => 0.02439966237886
501 => 0.024775558648736
502 => 0.025906461123056
503 => 0.024744345696252
504 => 0.024675390576137
505 => 0.024879100261745
506 => 0.025543059732355
507 => 0.026081136520743
508 => 0.026259647633846
509 => 0.026283240824339
510 => 0.026618139539715
511 => 0.026810097237877
512 => 0.026577474026958
513 => 0.026380350212369
514 => 0.025674277176422
515 => 0.025756007052906
516 => 0.026319044854261
517 => 0.027114368911437
518 => 0.027796839691859
519 => 0.027557862211063
520 => 0.029381091697724
521 => 0.029561857454102
522 => 0.029536881471428
523 => 0.029948692766008
524 => 0.029131331210178
525 => 0.028781893309426
526 => 0.026422970618533
527 => 0.027085731675468
528 => 0.028049093794315
529 => 0.027921589205463
530 => 0.027221969884013
531 => 0.027796308967867
601 => 0.027606414505501
602 => 0.027456636864305
603 => 0.02814279727445
604 => 0.027388335717579
605 => 0.028041567463152
606 => 0.027203790992638
607 => 0.027558953840065
608 => 0.027357346230572
609 => 0.027487811062013
610 => 0.026725116323239
611 => 0.027136647890913
612 => 0.026707995257033
613 => 0.026707792019873
614 => 0.026698329489222
615 => 0.027202637412045
616 => 0.027219082875303
617 => 0.02684639855837
618 => 0.026792688925876
619 => 0.026991281587562
620 => 0.026758781592229
621 => 0.026867566876708
622 => 0.026762076587674
623 => 0.026738328501647
624 => 0.026549099711782
625 => 0.026467574746153
626 => 0.026499542785816
627 => 0.026390419385794
628 => 0.026324668590115
629 => 0.026685250001038
630 => 0.026492605898994
701 => 0.026655724529494
702 => 0.026469830262827
703 => 0.025825439744284
704 => 0.025454843942763
705 => 0.024237649988267
706 => 0.024582844683837
707 => 0.024811709124131
708 => 0.024736069427979
709 => 0.024898572763989
710 => 0.024908549149023
711 => 0.024855717657961
712 => 0.024794545559443
713 => 0.024764770364915
714 => 0.024986690270574
715 => 0.025115522245289
716 => 0.024834678732525
717 => 0.024768881026903
718 => 0.025052829324103
719 => 0.025226037621363
720 => 0.026504910370998
721 => 0.026410167347
722 => 0.026647953744855
723 => 0.026621182645586
724 => 0.026870420672881
725 => 0.027277819511659
726 => 0.026449463761916
727 => 0.026593237677685
728 => 0.026557987633763
729 => 0.026942838370244
730 => 0.026944039832236
731 => 0.026713302590995
801 => 0.026838388992756
802 => 0.026768569194859
803 => 0.02689474300637
804 => 0.026408901996153
805 => 0.027000603903302
806 => 0.027336060756227
807 => 0.027340718574955
808 => 0.027499722460891
809 => 0.027661279617886
810 => 0.027971374512075
811 => 0.027652631239591
812 => 0.027079243121425
813 => 0.027120639891524
814 => 0.026784462647638
815 => 0.026790113847843
816 => 0.026759947298255
817 => 0.026850479384399
818 => 0.026428768698
819 => 0.026527743353195
820 => 0.026389178256328
821 => 0.026592936464226
822 => 0.026373726314966
823 => 0.026557970635125
824 => 0.026637484375909
825 => 0.026930891791212
826 => 0.026330389801163
827 => 0.025105925593043
828 => 0.025363322814783
829 => 0.024982612105714
830 => 0.025017848331306
831 => 0.025089031114806
901 => 0.024858304423925
902 => 0.024902319805511
903 => 0.02490074726635
904 => 0.024887195973408
905 => 0.024827175050022
906 => 0.024740132836335
907 => 0.025086882225484
908 => 0.025145801703556
909 => 0.025276772404731
910 => 0.025666452373151
911 => 0.025627514155019
912 => 0.025691024004323
913 => 0.025552382359885
914 => 0.025024279519558
915 => 0.025052958044567
916 => 0.02469533637816
917 => 0.025267627214677
918 => 0.02513210119072
919 => 0.025044726681426
920 => 0.025020885737046
921 => 0.025411531646735
922 => 0.025528419025538
923 => 0.025455582655088
924 => 0.025306193134319
925 => 0.025593065177243
926 => 0.02566982003377
927 => 0.025687002615536
928 => 0.02619528487334
929 => 0.025715409947436
930 => 0.025830920611648
1001 => 0.026732101839854
1002 => 0.02591485482038
1003 => 0.026347768793379
1004 => 0.026326579907176
1005 => 0.026548044046752
1006 => 0.026308413383677
1007 => 0.026311383892941
1008 => 0.026508029045604
1009 => 0.026231876393828
1010 => 0.026163497113705
1011 => 0.026069031627957
1012 => 0.026275293560138
1013 => 0.026398938260056
1014 => 0.027395423734367
1015 => 0.02803919879603
1016 => 0.028011250822768
1017 => 0.028266642981975
1018 => 0.028151586475128
1019 => 0.027780038664146
1020 => 0.028414225472064
1021 => 0.028213542230536
1022 => 0.028230086313137
1023 => 0.028229470541556
1024 => 0.028362907353139
1025 => 0.028268355142829
1026 => 0.028081983030721
1027 => 0.02820570553636
1028 => 0.028573117146504
1029 => 0.029713574057956
1030 => 0.030351788854649
1031 => 0.029675152725829
1101 => 0.03014188726697
1102 => 0.029862012856807
1103 => 0.029811151350938
1104 => 0.030104295134186
1105 => 0.030397952026821
1106 => 0.030379247352274
1107 => 0.030166067527669
1108 => 0.030045647653987
1109 => 0.03095750728112
1110 => 0.031629349921268
1111 => 0.0315835347573
1112 => 0.031785747991165
1113 => 0.032379452300012
1114 => 0.032433733181468
1115 => 0.032426895038037
1116 => 0.032292354209723
1117 => 0.032876933204029
1118 => 0.033364599285769
1119 => 0.032261211895226
1120 => 0.032681367369143
1121 => 0.032869988697949
1122 => 0.033146940770061
1123 => 0.033614205338272
1124 => 0.034121778595154
1125 => 0.034193555018935
1126 => 0.034142626211444
1127 => 0.033807868004229
1128 => 0.034363260718518
1129 => 0.034688596744986
1130 => 0.034882326903566
1201 => 0.035373594352099
1202 => 0.032871153559061
1203 => 0.031099801586371
1204 => 0.030823179397203
1205 => 0.031385701496507
1206 => 0.031534034088063
1207 => 0.0314742414064
1208 => 0.029480423716862
1209 => 0.030812682359698
1210 => 0.0322460806399
1211 => 0.032301143305541
1212 => 0.033018732455555
1213 => 0.033252408897773
1214 => 0.033830162220094
1215 => 0.033794023592478
1216 => 0.0339346973324
1217 => 0.033902358875721
1218 => 0.034972525245006
1219 => 0.036153077671571
1220 => 0.036112198894966
1221 => 0.035942480515985
1222 => 0.036194541250055
1223 => 0.037412997869957
1224 => 0.037300821909766
1225 => 0.037409791299966
1226 => 0.038846420324035
1227 => 0.040714242413422
1228 => 0.03984645152663
1229 => 0.041729308050867
1230 => 0.042914466426938
1231 => 0.044964075290691
]
'min_raw' => 0.018357835910444
'max_raw' => 0.044964075290691
'avg_raw' => 0.031660955600567
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018357'
'max' => '$0.044964'
'avg' => '$0.03166'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0081856347866916
'max_diff' => 0.018241637363808
'year' => 2028
]
3 => [
'items' => [
101 => 0.044707454166412
102 => 0.045505351856346
103 => 0.044248048795509
104 => 0.041361026824955
105 => 0.040904144547039
106 => 0.041818834437529
107 => 0.044067510279166
108 => 0.041748015632918
109 => 0.042217246378938
110 => 0.042082107892518
111 => 0.042074906936878
112 => 0.042349738125244
113 => 0.041951081152288
114 => 0.040326880927445
115 => 0.041071242319018
116 => 0.040783808638562
117 => 0.041102737736629
118 => 0.04282386654253
119 => 0.042062914470855
120 => 0.041261313278072
121 => 0.042266699063367
122 => 0.043546900656086
123 => 0.043466787941157
124 => 0.043311335789678
125 => 0.044187611428356
126 => 0.04563496205878
127 => 0.046026175118258
128 => 0.046314960600766
129 => 0.046354779239733
130 => 0.04676493596824
131 => 0.044559419866252
201 => 0.048059630561778
202 => 0.048664020257526
203 => 0.048550420044111
204 => 0.049222173754329
205 => 0.049024526772036
206 => 0.048738167304555
207 => 0.049803039821362
208 => 0.048582249411624
209 => 0.04684949111824
210 => 0.045898865648416
211 => 0.047150725951849
212 => 0.047915193355252
213 => 0.048420457679642
214 => 0.048573350358914
215 => 0.04473062780295
216 => 0.04265961347245
217 => 0.043987109914073
218 => 0.045606747191764
219 => 0.044550422699397
220 => 0.044591828619611
221 => 0.043085787490689
222 => 0.045739998413816
223 => 0.045353302207744
224 => 0.047359482808899
225 => 0.046880691707829
226 => 0.048516654108588
227 => 0.048085850381398
228 => 0.049874092567054
301 => 0.050587470789636
302 => 0.051785343853807
303 => 0.052666504156031
304 => 0.053183938339408
305 => 0.053152873531885
306 => 0.055203205551111
307 => 0.053994196392518
308 => 0.052475395947745
309 => 0.052447925639453
310 => 0.05323453391137
311 => 0.054883049053867
312 => 0.055310485045396
313 => 0.055549363452771
314 => 0.055183512856459
315 => 0.053871220065274
316 => 0.053304578691515
317 => 0.053787373559139
318 => 0.053196956923071
319 => 0.054216181678573
320 => 0.055615794962537
321 => 0.055326780354069
322 => 0.056292912858685
323 => 0.057292758360859
324 => 0.05872258233484
325 => 0.059096391267867
326 => 0.05971428321948
327 => 0.060350297004622
328 => 0.060554567491357
329 => 0.060944583231945
330 => 0.060942527656475
331 => 0.062117866341823
401 => 0.063414301308972
402 => 0.063903675496532
403 => 0.065028964456576
404 => 0.063101946547329
405 => 0.064563611767479
406 => 0.065882070383908
407 => 0.064310149667733
408 => 0.066476676164427
409 => 0.066560797478839
410 => 0.067830929453036
411 => 0.066543407369343
412 => 0.065778880865963
413 => 0.067986040234788
414 => 0.069054015128494
415 => 0.068732332399041
416 => 0.066284310944476
417 => 0.064859457457339
418 => 0.06113034104779
419 => 0.065547640520741
420 => 0.067699178239623
421 => 0.066278738981557
422 => 0.066995125921308
423 => 0.070903500775345
424 => 0.072391556871231
425 => 0.072082051605584
426 => 0.072134352900588
427 => 0.072937280959799
428 => 0.076497906154901
429 => 0.07436429700335
430 => 0.075995361254901
501 => 0.076860471852684
502 => 0.077664034789042
503 => 0.07569073818602
504 => 0.073123508298974
505 => 0.072310358828767
506 => 0.06613750429114
507 => 0.065816180405108
508 => 0.065635811570769
509 => 0.064498611583933
510 => 0.063605083899573
511 => 0.062894517510413
512 => 0.061029779112173
513 => 0.061659073581609
514 => 0.058687069775966
515 => 0.060588452489469
516 => 0.05584506265412
517 => 0.059795498659589
518 => 0.057645455946097
519 => 0.059089151802993
520 => 0.059084114884153
521 => 0.056425813087418
522 => 0.054892560088405
523 => 0.055869608574475
524 => 0.056917082109749
525 => 0.057087031166723
526 => 0.058445107947061
527 => 0.058824117984691
528 => 0.057675699876386
529 => 0.055746766442974
530 => 0.056194813685268
531 => 0.05488348042534
601 => 0.052585419327022
602 => 0.054235926928132
603 => 0.054799482790847
604 => 0.055048381164891
605 => 0.052788502008796
606 => 0.052078398913587
607 => 0.05170034598404
608 => 0.055455044422269
609 => 0.055660735278467
610 => 0.054608391776399
611 => 0.059365084193054
612 => 0.058288498201245
613 => 0.059491308524068
614 => 0.056154158094239
615 => 0.056281641734727
616 => 0.054701781241038
617 => 0.055586397551188
618 => 0.054961179255688
619 => 0.055514929295276
620 => 0.055846844785808
621 => 0.057426446039936
622 => 0.059813535168562
623 => 0.057190506287629
624 => 0.056047615041741
625 => 0.056756658342826
626 => 0.058644934090247
627 => 0.061505768506649
628 => 0.059812096952481
629 => 0.060563719627812
630 => 0.060727915745007
701 => 0.059479065044093
702 => 0.061551815413333
703 => 0.062662619175203
704 => 0.063802073986431
705 => 0.064791430672221
706 => 0.063346950677678
707 => 0.064892751329913
708 => 0.06364710887476
709 => 0.062529638820337
710 => 0.062531333561138
711 => 0.061830328272367
712 => 0.060472042193021
713 => 0.060221553400142
714 => 0.061524627733944
715 => 0.062569569948054
716 => 0.062655636393744
717 => 0.063234170094545
718 => 0.063576540379308
719 => 0.066932234599817
720 => 0.068281922575065
721 => 0.069932295482911
722 => 0.070575208740438
723 => 0.072510147148434
724 => 0.070947527235963
725 => 0.07060944458856
726 => 0.065915916924291
727 => 0.066684481816379
728 => 0.067915028364093
729 => 0.065936208183624
730 => 0.067191314126512
731 => 0.067439098626417
801 => 0.065868968631097
802 => 0.066707642902909
803 => 0.064480372686567
804 => 0.059862083572851
805 => 0.061556956889325
806 => 0.062804954138439
807 => 0.061023908187002
808 => 0.064216364118956
809 => 0.062351397269175
810 => 0.061760292311991
811 => 0.059454181129883
812 => 0.060542576837479
813 => 0.062014647616327
814 => 0.061105079021595
815 => 0.062992570428075
816 => 0.065665761635221
817 => 0.067570836880722
818 => 0.067717084902658
819 => 0.06649224914993
820 => 0.068455056260474
821 => 0.068469353167429
822 => 0.066255298728433
823 => 0.064899202712454
824 => 0.064591094844373
825 => 0.065360808706944
826 => 0.066295383433124
827 => 0.067768947295652
828 => 0.068659391076131
829 => 0.070981196200731
830 => 0.071609410096079
831 => 0.072299626704513
901 => 0.0732219689483
902 => 0.074329477295664
903 => 0.071906312082117
904 => 0.072002588953397
905 => 0.069746171057548
906 => 0.067334864932774
907 => 0.069164745707925
908 => 0.071557071402597
909 => 0.071008269244955
910 => 0.070946517791209
911 => 0.071050366607984
912 => 0.070636587703324
913 => 0.06876508105291
914 => 0.067825222129324
915 => 0.069037879924334
916 => 0.069682353573193
917 => 0.070681875998564
918 => 0.070558663762278
919 => 0.073133326189163
920 => 0.074133762154501
921 => 0.073877807823499
922 => 0.073924909580288
923 => 0.075736151108481
924 => 0.077750624198062
925 => 0.079637444079591
926 => 0.081556798303883
927 => 0.079242941872829
928 => 0.078068108275965
929 => 0.079280236662517
930 => 0.07863706427867
1001 => 0.082332923573576
1002 => 0.082588816852363
1003 => 0.086284408894576
1004 => 0.08979196580555
1005 => 0.087588932154176
1006 => 0.089666293660606
1007 => 0.091913129499579
1008 => 0.096247640368935
1009 => 0.094787929598067
1010 => 0.093669814024166
1011 => 0.092613200209525
1012 => 0.094811845825074
1013 => 0.097640368285256
1014 => 0.098249604931928
1015 => 0.099236801045848
1016 => 0.098198885040659
1017 => 0.099448940546212
1018 => 0.10386218578304
1019 => 0.10266968796325
1020 => 0.10097614935557
1021 => 0.10445998261746
1022 => 0.10572076833188
1023 => 0.11456962275429
1024 => 0.12574166699053
1025 => 0.12111636731713
1026 => 0.11824529455236
1027 => 0.11892006475484
1028 => 0.12299971711235
1029 => 0.12430997196789
1030 => 0.1207482475986
1031 => 0.12200630885904
1101 => 0.12893835009394
1102 => 0.13265716780995
1103 => 0.12760651384776
1104 => 0.11367195987789
1105 => 0.10082366473336
1106 => 0.10423161117196
1107 => 0.10384525580671
1108 => 0.11129286932385
1109 => 0.10264124728464
1110 => 0.10278691841145
1111 => 0.11038854068897
1112 => 0.10836055819013
1113 => 0.10507548626638
1114 => 0.10084764939388
1115 => 0.093032101907484
1116 => 0.08610965354612
1117 => 0.099686168927401
1118 => 0.099100724896869
1119 => 0.098252915182714
1120 => 0.10013962395897
1121 => 0.10930094622486
1122 => 0.10908974809432
1123 => 0.10774621334209
1124 => 0.10876527261029
1125 => 0.10489684024958
1126 => 0.1058938233515
1127 => 0.10082162949776
1128 => 0.10311447295318
1129 => 0.10506843797743
1130 => 0.10546072538499
1201 => 0.10634456894493
1202 => 0.098792222495561
1203 => 0.10218300432608
1204 => 0.10417477097823
1205 => 0.095175896782762
1206 => 0.10399689216897
1207 => 0.098660752946332
1208 => 0.096849587148047
1209 => 0.099288083292487
1210 => 0.098337798973484
1211 => 0.097520800318572
1212 => 0.097064901031313
1213 => 0.098855463472791
1214 => 0.098771931594711
1215 => 0.095842223907259
1216 => 0.09202053965914
1217 => 0.093303222335317
1218 => 0.092837211693848
1219 => 0.091148329012593
1220 => 0.092286432023286
1221 => 0.087274802344945
1222 => 0.078652553965202
1223 => 0.084348675351471
1224 => 0.084129380874287
1225 => 0.084018802654679
1226 => 0.088299280447228
1227 => 0.087887811274899
1228 => 0.087140990698004
1229 => 0.091134613067034
1230 => 0.089676887180537
1231 => 0.094169254879306
]
'min_raw' => 0.040326880927445
'max_raw' => 0.13265716780995
'avg_raw' => 0.0864920243687
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.040326'
'max' => '$0.132657'
'avg' => '$0.086492'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.021969045017
'max_diff' => 0.087693092519264
'year' => 2029
]
4 => [
'items' => [
101 => 0.097128218793841
102 => 0.09637772983266
103 => 0.099160649696194
104 => 0.093332772753522
105 => 0.095268559700038
106 => 0.09566752270683
107 => 0.091085332386914
108 => 0.087955132720217
109 => 0.087746384089337
110 => 0.082319049235369
111 => 0.085218287706442
112 => 0.087769497582347
113 => 0.086547666033673
114 => 0.086160870666542
115 => 0.088136924311535
116 => 0.088290480603506
117 => 0.084789380873402
118 => 0.0855173703727
119 => 0.088553207602955
120 => 0.085440875063654
121 => 0.079394121336424
122 => 0.07789444280916
123 => 0.077694358049064
124 => 0.07362711094212
125 => 0.077994658499344
126 => 0.076088106947618
127 => 0.082110880455524
128 => 0.078670704528591
129 => 0.078522405420173
130 => 0.07829822956705
131 => 0.074797381966242
201 => 0.075563845100347
202 => 0.078111685293745
203 => 0.079020783378223
204 => 0.078925956999991
205 => 0.078099199486828
206 => 0.078477684842671
207 => 0.077258451638462
208 => 0.076827915017911
209 => 0.075469023015025
210 => 0.073471827174281
211 => 0.07374954950545
212 => 0.069792581950216
213 => 0.067636616013961
214 => 0.06703987305798
215 => 0.066241883437638
216 => 0.067130008108967
217 => 0.069781372358299
218 => 0.066583264555301
219 => 0.06110033304824
220 => 0.061429866574275
221 => 0.062170230567894
222 => 0.060790567163783
223 => 0.059484831538165
224 => 0.06062006272696
225 => 0.05829687236721
226 => 0.062450977023697
227 => 0.062338620134482
228 => 0.063887013462312
301 => 0.064855255586434
302 => 0.062623770962443
303 => 0.062062558614086
304 => 0.06238225067339
305 => 0.057098453055964
306 => 0.063455214470539
307 => 0.063510188007222
308 => 0.063039471210736
309 => 0.066424250421007
310 => 0.073567190293788
311 => 0.070879728989557
312 => 0.069839062743611
313 => 0.067860755449345
314 => 0.07049673245869
315 => 0.07029433055202
316 => 0.069378992371411
317 => 0.06882539298375
318 => 0.069845416829799
319 => 0.068699000741121
320 => 0.068493072910187
321 => 0.067245374306416
322 => 0.06680000267154
323 => 0.066470267243832
324 => 0.066107260937061
325 => 0.066907962394263
326 => 0.065093467551194
327 => 0.062905364647574
328 => 0.06272344756674
329 => 0.063225736621237
330 => 0.063003511105644
331 => 0.062722383636468
401 => 0.062185634737299
402 => 0.062026392804741
403 => 0.062543851832351
404 => 0.061959670759915
405 => 0.062821661754284
406 => 0.062587247899953
407 => 0.061277831165071
408 => 0.059645813105241
409 => 0.059631284721235
410 => 0.059279669107291
411 => 0.058831833757171
412 => 0.058707256207853
413 => 0.060524456722657
414 => 0.064286007404068
415 => 0.063547524999028
416 => 0.06408115421939
417 => 0.066706081831322
418 => 0.067540467384828
419 => 0.066948240282455
420 => 0.066137563297749
421 => 0.066173228970821
422 => 0.068943557636172
423 => 0.069116339636876
424 => 0.069552904011068
425 => 0.070114012604982
426 => 0.0670437995023
427 => 0.066028622209784
428 => 0.065547574888698
429 => 0.064066135328495
430 => 0.065663740885145
501 => 0.064732884543576
502 => 0.064858488866634
503 => 0.064776688886466
504 => 0.064821357206928
505 => 0.062449815866784
506 => 0.063313880886589
507 => 0.061877205202997
508 => 0.05995365773708
509 => 0.059947209331491
510 => 0.060417994848687
511 => 0.06013795320122
512 => 0.059384368328415
513 => 0.059491411502777
514 => 0.058553600659248
515 => 0.059605278718795
516 => 0.059635437082457
517 => 0.059230483744241
518 => 0.060850738898578
519 => 0.061514558757312
520 => 0.061248009795157
521 => 0.061495856971562
522 => 0.063578212277006
523 => 0.063917727051325
524 => 0.06406851708699
525 => 0.06386647841505
526 => 0.061533918603912
527 => 0.061637377550346
528 => 0.060878264447502
529 => 0.060236893868966
530 => 0.060262545328562
531 => 0.060592293178269
601 => 0.062032321377391
602 => 0.065062775828146
603 => 0.065177779359319
604 => 0.06531716699399
605 => 0.064750207433171
606 => 0.064579207004555
607 => 0.064804800708855
608 => 0.065942880066833
609 => 0.068870329161085
610 => 0.067835573133425
611 => 0.066994300376001
612 => 0.067732323389769
613 => 0.067618710531615
614 => 0.066659703672856
615 => 0.066632787544402
616 => 0.064792146769404
617 => 0.06411170378425
618 => 0.063543074695581
619 => 0.062922146575192
620 => 0.062554039571726
621 => 0.06311961923069
622 => 0.063248973990437
623 => 0.062012324181472
624 => 0.061843773382088
625 => 0.062853648311029
626 => 0.062409240006734
627 => 0.062866324968497
628 => 0.062972372600428
629 => 0.062955296489203
630 => 0.062491283179551
701 => 0.062787031426047
702 => 0.062087498656287
703 => 0.061326861835598
704 => 0.060841622933347
705 => 0.060418187633532
706 => 0.060653134148073
707 => 0.059815592723272
708 => 0.0595476463651
709 => 0.06268683857468
710 => 0.065005793611901
711 => 0.064972075087253
712 => 0.064766822240158
713 => 0.064461858143394
714 => 0.065920570043651
715 => 0.065412383985466
716 => 0.065782131803161
717 => 0.065876248141032
718 => 0.066161109949738
719 => 0.066262923561651
720 => 0.065955172112351
721 => 0.064922320659824
722 => 0.062348553040698
723 => 0.061150457266242
724 => 0.060755065704808
725 => 0.06076943743711
726 => 0.060373000901965
727 => 0.060489769228605
728 => 0.060332393643243
729 => 0.060034362357811
730 => 0.060634731556028
731 => 0.060703918513296
801 => 0.060563785168555
802 => 0.060596791644143
803 => 0.059436547401418
804 => 0.059524758251275
805 => 0.059033589029982
806 => 0.058941500722123
807 => 0.057699867701692
808 => 0.055500134828414
809 => 0.056719000373446
810 => 0.055246782193478
811 => 0.054689230860979
812 => 0.05732859215201
813 => 0.057063673482877
814 => 0.056610247878699
815 => 0.055939536907944
816 => 0.055690763684634
817 => 0.054179296331834
818 => 0.054089990777266
819 => 0.054839114810365
820 => 0.054493419844874
821 => 0.054007933188403
822 => 0.052249549731659
823 => 0.050272544545523
824 => 0.050332217905081
825 => 0.050961066471301
826 => 0.052789528489371
827 => 0.052075116746197
828 => 0.051556802829594
829 => 0.051459738213474
830 => 0.052674705102761
831 => 0.054394137794536
901 => 0.055200857143378
902 => 0.054401422769106
903 => 0.053483075604546
904 => 0.053538971141242
905 => 0.053910819105237
906 => 0.053949895068606
907 => 0.053352145472091
908 => 0.053520408482172
909 => 0.053264801583567
910 => 0.051696142518644
911 => 0.051667770450431
912 => 0.051282796217855
913 => 0.051271139351091
914 => 0.050616202145155
915 => 0.050524571902678
916 => 0.049224154328446
917 => 0.050080093113832
918 => 0.049505974315398
919 => 0.048640641865225
920 => 0.048491458224651
921 => 0.048486973584271
922 => 0.049375476525804
923 => 0.050069710439649
924 => 0.049515961357699
925 => 0.049389883425714
926 => 0.050736065892547
927 => 0.050564751902917
928 => 0.050416395092754
929 => 0.05424018145589
930 => 0.051213356175697
1001 => 0.049893487588386
1002 => 0.048259899575341
1003 => 0.048791804069654
1004 => 0.048903884161909
1005 => 0.044975399466909
1006 => 0.043381613715409
1007 => 0.042834686506043
1008 => 0.042519922164638
1009 => 0.042663364227578
1010 => 0.041228770118805
1011 => 0.042192841085897
1012 => 0.040950603850921
1013 => 0.040742338735887
1014 => 0.042963612795688
1015 => 0.043272690104615
1016 => 0.041954070281941
1017 => 0.042800837673256
1018 => 0.042493788046218
1019 => 0.040971898442877
1020 => 0.040913773454292
1021 => 0.040150142748342
1022 => 0.038955208561572
1023 => 0.038409091573853
1024 => 0.038124669105044
1025 => 0.038242027358958
1026 => 0.038182687434557
1027 => 0.037795454288771
1028 => 0.038204883185195
1029 => 0.037158961542532
1030 => 0.036742467116861
1031 => 0.036554346247382
1101 => 0.035626030588515
1102 => 0.037103393625619
1103 => 0.037394452755258
1104 => 0.037686085361295
1105 => 0.040224548090809
1106 => 0.040097733666463
1107 => 0.041244074301415
1108 => 0.041199529612326
1109 => 0.040872574693751
1110 => 0.039493205673755
1111 => 0.040042997580237
1112 => 0.038350823548718
1113 => 0.039618715389781
1114 => 0.039040102501949
1115 => 0.039423085790373
1116 => 0.038734447305576
1117 => 0.039115568276249
1118 => 0.037463473672477
1119 => 0.035920770977074
1120 => 0.036541599576003
1121 => 0.037216511263402
1122 => 0.038679891765982
1123 => 0.037808314411272
1124 => 0.038121766586014
1125 => 0.037071754271888
1126 => 0.034905278946657
1127 => 0.03491754096172
1128 => 0.034584275932163
1129 => 0.034296286289136
1130 => 0.037908425555018
1201 => 0.037459198937834
1202 => 0.036743415116677
1203 => 0.037701520205414
1204 => 0.037954858398048
1205 => 0.037962070580241
1206 => 0.038661079320711
1207 => 0.039034140410804
1208 => 0.039099894044873
1209 => 0.040199799401086
1210 => 0.040568473168386
1211 => 0.042086988239232
1212 => 0.039002488783743
1213 => 0.038938965547268
1214 => 0.03771500270884
1215 => 0.036938746126622
1216 => 0.037768153661141
1217 => 0.038502895511306
1218 => 0.03773783318621
1219 => 0.03783773417452
1220 => 0.036810700510967
1221 => 0.037177816719262
1222 => 0.037494026653739
1223 => 0.037319434113882
1224 => 0.037058060631341
1225 => 0.038442655058478
1226 => 0.038364530814629
1227 => 0.039653896976868
1228 => 0.040659050103792
1229 => 0.042460464199852
1230 => 0.040580594680772
1231 => 0.040512084763692
]
'min_raw' => 0.034296286289136
'max_raw' => 0.099160649696194
'avg_raw' => 0.066728467992665
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034296'
'max' => '$0.09916'
'avg' => '$0.066728'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0060305946383089
'max_diff' => -0.033496518113761
'year' => 2030
]
5 => [
'items' => [
101 => 0.041181780192484
102 => 0.040568370641506
103 => 0.040956024303546
104 => 0.042398007201795
105 => 0.042428474028189
106 => 0.041918115431815
107 => 0.041887060064844
108 => 0.041985080015989
109 => 0.042559185931442
110 => 0.04235857568409
111 => 0.042590726941155
112 => 0.042881035642942
113 => 0.044081875521872
114 => 0.044371393951257
115 => 0.043668014265945
116 => 0.043731521576121
117 => 0.04346843826561
118 => 0.043214303084081
119 => 0.043785561858696
120 => 0.044829548497423
121 => 0.044823053910727
122 => 0.045065238518711
123 => 0.04521611752312
124 => 0.044568434386016
125 => 0.044146816479731
126 => 0.044308491613245
127 => 0.044567013672561
128 => 0.044224656393682
129 => 0.042111468673126
130 => 0.042752474836588
131 => 0.042645780067388
201 => 0.04249383374152
202 => 0.043138370395635
203 => 0.043076203262988
204 => 0.041214056282691
205 => 0.041333264890648
206 => 0.041221305752972
207 => 0.041583068631489
208 => 0.040548834258861
209 => 0.040866957786207
210 => 0.041066481880335
211 => 0.041184003104593
212 => 0.04160857035167
213 => 0.041558752285562
214 => 0.041605473590733
215 => 0.042234994736551
216 => 0.045418896666529
217 => 0.045592189423694
218 => 0.044738832508565
219 => 0.045079731764438
220 => 0.044425279739634
221 => 0.044864617768333
222 => 0.045165201689592
223 => 0.043806920748384
224 => 0.043726492166216
225 => 0.043069338985103
226 => 0.043422455881575
227 => 0.042860621509286
228 => 0.042998476012113
301 => 0.042613022804268
302 => 0.043306761835422
303 => 0.044082469868399
304 => 0.044278444351167
305 => 0.043762919859323
306 => 0.043389646152508
307 => 0.042734300487344
308 => 0.043824154933842
309 => 0.044142861586711
310 => 0.043822480903472
311 => 0.04374824169871
312 => 0.043607558539832
313 => 0.043778088295918
314 => 0.044141125841833
315 => 0.04396992403943
316 => 0.044083005846105
317 => 0.043652054608514
318 => 0.044568648796085
319 => 0.046024420956351
320 => 0.046029101501889
321 => 0.045857898776645
322 => 0.045787846310089
323 => 0.04596351069564
324 => 0.046058801418671
325 => 0.046626867830203
326 => 0.047236425722542
327 => 0.050080966435141
328 => 0.049282230785657
329 => 0.051806076528359
330 => 0.053802110830484
331 => 0.054400634241689
401 => 0.053850020866083
402 => 0.051966402251683
403 => 0.051873982936184
404 => 0.054688904389363
405 => 0.053893560147269
406 => 0.053798956480437
407 => 0.052792533300756
408 => 0.053387454047883
409 => 0.053257336153525
410 => 0.053051938691697
411 => 0.054187006034677
412 => 0.056311750772576
413 => 0.055980589379444
414 => 0.055733392761607
415 => 0.054650249140095
416 => 0.055302543529131
417 => 0.055070273991072
418 => 0.056068251328467
419 => 0.055477071661699
420 => 0.053887534632393
421 => 0.054140673643492
422 => 0.05410241219121
423 => 0.054889830167952
424 => 0.05465346683625
425 => 0.054056258457199
426 => 0.056304488626051
427 => 0.056158501064199
428 => 0.056365478049502
429 => 0.056456595719409
430 => 0.05782505380493
501 => 0.058385667296793
502 => 0.058512936374367
503 => 0.059045475832233
504 => 0.058499686307523
505 => 0.060683233547702
506 => 0.062135165048907
507 => 0.063821658203269
508 => 0.066286077988417
509 => 0.06721272262479
510 => 0.067045332565304
511 => 0.068913827520369
512 => 0.072271471420311
513 => 0.067724008396195
514 => 0.072512498002692
515 => 0.070996517479047
516 => 0.067402154928807
517 => 0.067170720355323
518 => 0.069604864405752
519 => 0.075003561631922
520 => 0.073651249208283
521 => 0.075005773530594
522 => 0.073425648958823
523 => 0.073347182455499
524 => 0.074929030407047
525 => 0.078625104367883
526 => 0.07686923817435
527 => 0.074351773429868
528 => 0.076210630221104
529 => 0.07460031643946
530 => 0.070971828790969
531 => 0.073650215120459
601 => 0.07185925445798
602 => 0.072381951991997
603 => 0.076146284919234
604 => 0.075693350422239
605 => 0.076279489601956
606 => 0.075244969291689
607 => 0.074278564193022
608 => 0.072474697310173
609 => 0.071940661255724
610 => 0.072088249608569
611 => 0.071940588118266
612 => 0.070931341175705
613 => 0.07071339439455
614 => 0.070350140210824
615 => 0.070462727871716
616 => 0.069779703732552
617 => 0.071068711403143
618 => 0.071307962585501
619 => 0.072245994873838
620 => 0.072343384497816
621 => 0.07495579106878
622 => 0.073516921429202
623 => 0.074482239409459
624 => 0.074395892283379
625 => 0.067480055664331
626 => 0.068432996931493
627 => 0.069915474493753
628 => 0.069247620361406
629 => 0.068303430872066
630 => 0.067540947235186
701 => 0.066385706557359
702 => 0.068011685626969
703 => 0.070149675199909
704 => 0.072397607441606
705 => 0.075098350739649
706 => 0.074495576275643
707 => 0.072347118924247
708 => 0.072443497151581
709 => 0.073039269429529
710 => 0.072267690197967
711 => 0.072040136419564
712 => 0.073008007034702
713 => 0.073014672227696
714 => 0.07212687707332
715 => 0.071140255224028
716 => 0.071136121242455
717 => 0.07096056141401
718 => 0.073456880662295
719 => 0.074829603842508
720 => 0.074986984342866
721 => 0.074819010880892
722 => 0.074883657199777
723 => 0.074084899827102
724 => 0.075910622316896
725 => 0.077586085818772
726 => 0.077137025809212
727 => 0.076463821017241
728 => 0.075927580974499
729 => 0.077010704697096
730 => 0.076962474902724
731 => 0.077571452106725
801 => 0.077543825383129
802 => 0.077339049254214
803 => 0.077137033122413
804 => 0.077938004250138
805 => 0.077707337428556
806 => 0.077476312317688
807 => 0.077012956089667
808 => 0.077075933896587
809 => 0.076402845342915
810 => 0.076091443779549
811 => 0.071408711423354
812 => 0.070157332325085
813 => 0.070551041663571
814 => 0.070680661000459
815 => 0.070136059213206
816 => 0.070916878279406
817 => 0.070795188455031
818 => 0.071268612375508
819 => 0.070972837663671
820 => 0.070984976361015
821 => 0.071854786722711
822 => 0.07210729637115
823 => 0.071978867925951
824 => 0.072068814806699
825 => 0.074141602709319
826 => 0.073846918553592
827 => 0.073690373469135
828 => 0.073733737527378
829 => 0.074263379277571
830 => 0.074411650050258
831 => 0.073783416367582
901 => 0.074079695004108
902 => 0.075341211835076
903 => 0.075782671330246
904 => 0.07719159812625
905 => 0.076593060981631
906 => 0.077691701814661
907 => 0.081068549181133
908 => 0.083766208517535
909 => 0.081285329506293
910 => 0.086239237332751
911 => 0.09009656517152
912 => 0.089948514504352
913 => 0.089275900174063
914 => 0.08488443498199
915 => 0.080843343239188
916 => 0.084223888075861
917 => 0.084232505779865
918 => 0.083942113980338
919 => 0.082138515453552
920 => 0.083879352661132
921 => 0.084017533996878
922 => 0.083940189194243
923 => 0.082557374432517
924 => 0.080446071878248
925 => 0.080858615343608
926 => 0.081534369955527
927 => 0.080255025497985
928 => 0.079846197425587
929 => 0.080606286594899
930 => 0.083055452269291
1001 => 0.082592451685598
1002 => 0.082580360869225
1003 => 0.084561273709067
1004 => 0.083143367623487
1005 => 0.080863818837853
1006 => 0.080288202705926
1007 => 0.078245153219074
1008 => 0.079656294776735
1009 => 0.079707079249189
1010 => 0.078934211439575
1011 => 0.080926532801086
1012 => 0.080908173208998
1013 => 0.082799585823853
1014 => 0.086415256361318
1015 => 0.085345924667048
1016 => 0.08410240824957
1017 => 0.08423761296312
1018 => 0.085720474957096
1019 => 0.084823902745091
1020 => 0.085146316363652
1021 => 0.08571998694547
1022 => 0.08606609665092
1023 => 0.084187813102831
1024 => 0.083749895359084
1025 => 0.08285406934362
1026 => 0.08262036505757
1027 => 0.083349996655143
1028 => 0.083157764507447
1029 => 0.079702811010926
1030 => 0.07934174914736
1031 => 0.079352822399238
1101 => 0.078444915175745
1102 => 0.077060138737218
1103 => 0.080699248536963
1104 => 0.080406977090735
1105 => 0.080084332034111
1106 => 0.080123854212561
1107 => 0.081703468435755
1108 => 0.080787212413872
1109 => 0.083223229219458
1110 => 0.082722457397597
1111 => 0.082208842668091
1112 => 0.082137845467386
1113 => 0.081940147616076
1114 => 0.081262168123802
1115 => 0.080443467146631
1116 => 0.079902889846838
1117 => 0.073706192232932
1118 => 0.074856263265541
1119 => 0.076179315156285
1120 => 0.076636027367172
1121 => 0.075854789526927
1122 => 0.081293016155436
1123 => 0.08228663256452
1124 => 0.079276903649409
1125 => 0.078713906255814
1126 => 0.081329926170831
1127 => 0.079752146366647
1128 => 0.080462620515863
1129 => 0.078926964013841
1130 => 0.082047299468057
1201 => 0.082023527739887
1202 => 0.080809646772225
1203 => 0.081835610653795
1204 => 0.081657324181641
1205 => 0.080286855558807
1206 => 0.082090745767861
1207 => 0.082091640474899
1208 => 0.080923306435572
1209 => 0.079558948058847
1210 => 0.079315033005795
1211 => 0.079131275778697
1212 => 0.080417427502519
1213 => 0.081570587116407
1214 => 0.083716331265339
1215 => 0.084255822326004
1216 => 0.086361491851733
1217 => 0.08510766817235
1218 => 0.085663471969685
1219 => 0.08626687561494
1220 => 0.08655616951191
1221 => 0.086084780631164
1222 => 0.089355752132776
1223 => 0.089631922347489
1224 => 0.08972451983162
1225 => 0.08862156664519
1226 => 0.089601247224147
1227 => 0.089142887124864
1228 => 0.090335412767096
1229 => 0.09052241601473
1230 => 0.090364030916818
1231 => 0.090423388699262
]
'min_raw' => 0.040548834258861
'max_raw' => 0.09052241601473
'avg_raw' => 0.065535625136796
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.040548'
'max' => '$0.090522'
'avg' => '$0.065535'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0062525479697254
'max_diff' => -0.0086382336814638
'year' => 2031
]
6 => [
'items' => [
101 => 0.087632191561551
102 => 0.087487453265222
103 => 0.085513936324626
104 => 0.086318159065419
105 => 0.084814703198905
106 => 0.085291464541488
107 => 0.08550161639855
108 => 0.085391844994434
109 => 0.086363628612538
110 => 0.085537414014872
111 => 0.083356897849376
112 => 0.08117578760371
113 => 0.081148405541269
114 => 0.080574157713379
115 => 0.08015908171255
116 => 0.080239040075922
117 => 0.080520823777577
118 => 0.080142703931555
119 => 0.080223394971866
120 => 0.08156340388263
121 => 0.081832133113178
122 => 0.080918886188489
123 => 0.077252068004963
124 => 0.076352221625209
125 => 0.076999013358247
126 => 0.076689888568577
127 => 0.061894725475237
128 => 0.065370629584261
129 => 0.063305365393229
130 => 0.064257134150693
131 => 0.062149034209219
201 => 0.063155129996275
202 => 0.062969340841141
203 => 0.068558491788972
204 => 0.068471224884547
205 => 0.068512994933634
206 => 0.066519201659463
207 => 0.069695368482603
208 => 0.071260062470947
209 => 0.070970479256687
210 => 0.071043361112891
211 => 0.069791009354166
212 => 0.068525120436163
213 => 0.067121054807191
214 => 0.069729635198065
215 => 0.069439605588552
216 => 0.070104829163415
217 => 0.071796680012074
218 => 0.072045811476255
219 => 0.072380646690557
220 => 0.072260632101423
221 => 0.075119866517197
222 => 0.074773594363611
223 => 0.075608010624456
224 => 0.073891553068583
225 => 0.071949218416466
226 => 0.07231839273413
227 => 0.072282838278626
228 => 0.071830189252564
229 => 0.07142155795114
301 => 0.070741301965425
302 => 0.072893732563171
303 => 0.072806347811702
304 => 0.074221005364318
305 => 0.073970950900643
306 => 0.072301025993513
307 => 0.072360667688264
308 => 0.07276178674828
309 => 0.074150064394894
310 => 0.074562199721559
311 => 0.074371282217494
312 => 0.07482316978849
313 => 0.075180323299664
314 => 0.074868022770661
315 => 0.079289539677815
316 => 0.077453417590882
317 => 0.078348330720398
318 => 0.078561762228653
319 => 0.078015061908238
320 => 0.078133621631865
321 => 0.07831320730757
322 => 0.079403616363966
323 => 0.082265165240352
324 => 0.083532525758481
325 => 0.08734544240774
326 => 0.083427289109961
327 => 0.083194802108201
328 => 0.083881623535784
329 => 0.086120209247116
330 => 0.087934372706487
331 => 0.088536235387561
401 => 0.088615781476535
402 => 0.089744915877304
403 => 0.090392114658715
404 => 0.089607809261868
405 => 0.088943192558238
406 => 0.086562618021096
407 => 0.086838176005859
408 => 0.088736497263174
409 => 0.091417987849695
410 => 0.093718985734475
411 => 0.092913256473097
412 => 0.099060401981194
413 => 0.099669866349484
414 => 0.099585658080128
415 => 0.10097410861155
416 => 0.09821831705971
417 => 0.09704016278035
418 => 0.089086890233282
419 => 0.091321435409237
420 => 0.094569478052724
421 => 0.094139587429324
422 => 0.091780772041195
423 => 0.093717196361482
424 => 0.093076953923608
425 => 0.092571968149174
426 => 0.094885405878167
427 => 0.092341686064355
428 => 0.094544102501737
429 => 0.091719480639713
430 => 0.092916936976494
501 => 0.092237202845291
502 => 0.092677074133261
503 => 0.090105595571836
504 => 0.091493102984468
505 => 0.09004787070177
506 => 0.090047185473493
507 => 0.090015281890751
508 => 0.091715591262203
509 => 0.091771038289763
510 => 0.090514507095235
511 => 0.090333421319397
512 => 0.091002990343567
513 => 0.090219100376669
514 => 0.090585877558436
515 => 0.090230209683863
516 => 0.090150141353785
517 => 0.089512143277221
518 => 0.089237276163714
519 => 0.089345058641373
520 => 0.088977141479448
521 => 0.088755458081242
522 => 0.089971183483157
523 => 0.089321670443137
524 => 0.089871636294446
525 => 0.089244880795656
526 => 0.087072273172476
527 => 0.085822783553477
528 => 0.081718929154124
529 => 0.082882777170965
530 => 0.083654409610218
531 => 0.083399385093648
601 => 0.083947276436627
602 => 0.083980912515297
603 => 0.083802787454604
604 => 0.083596541453554
605 => 0.083496152306362
606 => 0.084244370762244
607 => 0.084678736759759
608 => 0.083731853248607
609 => 0.083510011690253
610 => 0.084467363198899
611 => 0.085051347066129
612 => 0.089363155829567
613 => 0.089043723109413
614 => 0.089845436551494
615 => 0.089755175921212
616 => 0.09059549933148
617 => 0.0919690729601
618 => 0.08917621371589
619 => 0.089660957510878
620 => 0.089542109526716
621 => 0.090839660654183
622 => 0.090843711467171
623 => 0.090065764748768
624 => 0.090487502285559
625 => 0.090252099962286
626 => 0.090677503776971
627 => 0.089039456890686
628 => 0.091034421181947
629 => 0.092165437382432
630 => 0.092181141543473
701 => 0.092717234246204
702 => 0.093261935480574
703 => 0.094307442066467
704 => 0.093232776869343
705 => 0.091299558796264
706 => 0.091439130896884
707 => 0.090305685847975
708 => 0.090324739264021
709 => 0.090223030635926
710 => 0.090528265885108
711 => 0.089106438863014
712 => 0.089440138823192
713 => 0.088972956924799
714 => 0.08965994194867
715 => 0.088920859625677
716 => 0.08954205221462
717 => 0.089810138343147
718 => 0.090799381928893
719 => 0.088774747543733
720 => 0.084646380976694
721 => 0.085514213680692
722 => 0.084230620944691
723 => 0.08434942233939
724 => 0.084589420063784
725 => 0.083811508916654
726 => 0.083959909848729
727 => 0.083954607923154
728 => 0.08390891879288
729 => 0.083706554059158
730 => 0.083413085158618
731 => 0.084582174933405
801 => 0.08478082606735
802 => 0.085222402930443
803 => 0.086536236150557
804 => 0.086404953229547
805 => 0.086619081120591
806 => 0.086151641136719
807 => 0.084371105539591
808 => 0.084467797188931
809 => 0.083262050772292
810 => 0.085191569283682
811 => 0.084734633831785
812 => 0.084440044573406
813 => 0.084359663164907
814 => 0.08567675312345
815 => 0.086070847081902
816 => 0.085825274173657
817 => 0.085321596974339
818 => 0.086288806095826
819 => 0.086547590453458
820 => 0.086605522727533
821 => 0.088319231846853
822 => 0.086701300030369
823 => 0.087090752299456
824 => 0.090129147728818
825 => 0.087373742344295
826 => 0.08883334202935
827 => 0.088761902220157
828 => 0.08950858402887
829 => 0.088700652517833
830 => 0.08871066779721
831 => 0.08937367065874
901 => 0.088442602712917
902 => 0.088212057195893
903 => 0.087893560215322
904 => 0.088588986720419
905 => 0.089005863458789
906 => 0.092365583807823
907 => 0.094536116375161
908 => 0.09444188783204
909 => 0.095302960327721
910 => 0.094915039281897
911 => 0.093662339896529
912 => 0.095800544996936
913 => 0.095123927436866
914 => 0.095179706966428
915 => 0.095177630849552
916 => 0.095627522376064
917 => 0.095308732997577
918 => 0.094680366409521
919 => 0.095097505475313
920 => 0.096336259370773
921 => 0.10018138947189
922 => 0.10233317521767
923 => 0.10005184926813
924 => 0.10162547735996
925 => 0.10068186124588
926 => 0.10051037812781
927 => 0.10149873285967
928 => 0.10248881757566
929 => 0.10242575345951
930 => 0.10170700279711
1001 => 0.10130099878555
1002 => 0.10437539718243
1003 => 0.10664056155025
1004 => 0.10648609252622
1005 => 0.10716786856227
1006 => 0.10916958409066
1007 => 0.10935259587226
1008 => 0.10932954059425
1009 => 0.10887592679825
1010 => 0.11084687569156
1011 => 0.1124910759339
1012 => 0.10877092831064
1013 => 0.11018751182527
1014 => 0.11082346180446
1015 => 0.11175722505176
1016 => 0.11333264016685
1017 => 0.11504395884007
1018 => 0.11528595806411
1019 => 0.11511424803392
1020 => 0.11398558736622
1021 => 0.11585813267873
1022 => 0.11695502580621
1023 => 0.11760820056166
1024 => 0.11926454306359
1025 => 0.11082738921503
1026 => 0.10485515236726
1027 => 0.10392250134333
1028 => 0.10581908387517
1029 => 0.10631919756386
1030 => 0.10611760236304
1031 => 0.099395306818857
1101 => 0.10388710984851
1102 => 0.10871991222688
1103 => 0.10890555984844
1104 => 0.11132496176819
1105 => 0.11211281820789
1106 => 0.11406075387155
1107 => 0.11393890996542
1108 => 0.11441320130109
1109 => 0.1143041699366
1110 => 0.11791231056728
1111 => 0.12189262549698
1112 => 0.12175479984759
1113 => 0.1211825824835
1114 => 0.12203242284673
1115 => 0.12614053441066
1116 => 0.125762325329
1117 => 0.12612972323606
1118 => 0.13097341829294
1119 => 0.13727091087448
1120 => 0.13434509331244
1121 => 0.14069327554075
1122 => 0.14468911975079
1123 => 0.15159951913405
1124 => 0.15073430309683
1125 => 0.15342447086588
1126 => 0.14918538581417
1127 => 0.13945158967501
1128 => 0.13791117917652
1129 => 0.14099512000391
1130 => 0.14857668760153
1201 => 0.14075634945976
1202 => 0.14233839368061
1203 => 0.14188276483857
1204 => 0.14185848631388
1205 => 0.14278509885356
1206 => 0.14144099903589
1207 => 0.13596489457979
1208 => 0.13847456098114
1209 => 0.1375054582595
1210 => 0.13858074998055
1211 => 0.14438365591503
1212 => 0.14181805287739
1213 => 0.13911539848992
1214 => 0.14250512685883
1215 => 0.14682141590951
1216 => 0.14655131029783
1217 => 0.1460271925158
1218 => 0.14898161701121
1219 => 0.15386146071248
1220 => 0.15518046285614
1221 => 0.15615412327277
1222 => 0.1562883745941
1223 => 0.15767124664049
1224 => 0.15023519511842
1225 => 0.16203639985529
1226 => 0.16407414191164
1227 => 0.1636911308608
1228 => 0.16595599539515
1229 => 0.16528961479508
1230 => 0.16432413385748
1231 => 0.16791442589492
]
'min_raw' => 0.061894725475237
'max_raw' => 0.16791442589492
'avg_raw' => 0.11490457568508
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.061894'
'max' => '$0.167914'
'avg' => '$0.1149045'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021345891216376
'max_diff' => 0.077392009880194
'year' => 2032
]
7 => [
'items' => [
101 => 0.16379844579563
102 => 0.15795633023216
103 => 0.1547512300901
104 => 0.15897196450522
105 => 0.1615494197292
106 => 0.16325295367531
107 => 0.1637684420181
108 => 0.15081243463035
109 => 0.14382986522146
110 => 0.14830561215724
111 => 0.15376633231844
112 => 0.1502048605422
113 => 0.15034446349307
114 => 0.14526674067848
115 => 0.15421559811689
116 => 0.15291182485985
117 => 0.1596758028237
118 => 0.15806152519832
119 => 0.16357728665172
120 => 0.16212480180775
121 => 0.16815398518777
122 => 0.17055918967168
123 => 0.17459790234036
124 => 0.17756879581996
125 => 0.17931336129531
126 => 0.17920862412787
127 => 0.1861214616803
128 => 0.18204520289178
129 => 0.17692446115297
130 => 0.17683184309065
131 => 0.17948394779865
201 => 0.18504203169723
202 => 0.1864831619853
203 => 0.18728855721372
204 => 0.18605506638539
205 => 0.18163057961855
206 => 0.17972010866528
207 => 0.18134788526914
208 => 0.17935725435906
209 => 0.18279364178223
210 => 0.187512535687
211 => 0.18653810275619
212 => 0.18979548594872
213 => 0.19316653486629
214 => 0.19798728622169
215 => 0.19924760913789
216 => 0.20133087499259
217 => 0.20347523987427
218 => 0.204163952082
219 => 0.20547891738142
220 => 0.20547198686521
221 => 0.20943472330239
222 => 0.21380574430833
223 => 0.2154557035487
224 => 0.21924969384266
225 => 0.21275261842154
226 => 0.21768072476148
227 => 0.22212600003861
228 => 0.21682615959603
301 => 0.22413075494168
302 => 0.22441437582638
303 => 0.22869671445517
304 => 0.22435574385808
305 => 0.2217780893744
306 => 0.22921968128534
307 => 0.23282043320309
308 => 0.23173585742157
309 => 0.2234821821721
310 => 0.21867818916013
311 => 0.20610521282674
312 => 0.2209984464058
313 => 0.22825250604057
314 => 0.2234633959101
315 => 0.22587874449401
316 => 0.23905610318842
317 => 0.24407318820846
318 => 0.24302966959636
319 => 0.24320600706402
320 => 0.2459131350743
321 => 0.2579180315145
322 => 0.25072441929621
323 => 0.25622366629759
324 => 0.2591404470781
325 => 0.26184971562101
326 => 0.25519660835275
327 => 0.24654101355031
328 => 0.24379942333922
329 => 0.22298721329067
330 => 0.2219038473748
331 => 0.22129572125687
401 => 0.21746157210449
402 => 0.21444898113256
403 => 0.21205325694134
404 => 0.2057661612398
405 => 0.20788787147944
406 => 0.19786755315003
407 => 0.20427819771891
408 => 0.18828552771613
409 => 0.2016046985192
410 => 0.19435567939948
411 => 0.19922320077663
412 => 0.19920621845309
413 => 0.1902435683487
414 => 0.18507409881422
415 => 0.18836828600035
416 => 0.19189991615679
417 => 0.19247291126784
418 => 0.19705176195065
419 => 0.19832962075415
420 => 0.19445764892201
421 => 0.18795411517743
422 => 0.18946473773648
423 => 0.18504348609627
424 => 0.17729541265779
425 => 0.18286021426969
426 => 0.18476028220705
427 => 0.18559946045267
428 => 0.17798012009817
429 => 0.17558595793486
430 => 0.17431132608808
501 => 0.18697055401724
502 => 0.18766405509979
503 => 0.18411600551029
504 => 0.2001535260947
505 => 0.19652374125848
506 => 0.20057910023942
507 => 0.18932766457284
508 => 0.18975748456738
509 => 0.18443087461056
510 => 0.18741342026217
511 => 0.18530545312755
512 => 0.18717246004761
513 => 0.18829153629754
514 => 0.19361727221007
515 => 0.20166550986848
516 => 0.19282178486238
517 => 0.18896844723275
518 => 0.19135903622618
519 => 0.19772548974382
520 => 0.20737099271579
521 => 0.20166066082254
522 => 0.20419480914904
523 => 0.20474840782197
524 => 0.20053782049187
525 => 0.20752624307657
526 => 0.21127139551356
527 => 0.21511314696381
528 => 0.21844883210463
529 => 0.21357866695265
530 => 0.21879044177602
531 => 0.21459067127049
601 => 0.21082304296274
602 => 0.21082875689967
603 => 0.20846526862595
604 => 0.20388571227693
605 => 0.20304117182317
606 => 0.20743457791733
607 => 0.21095767354774
608 => 0.21124785257835
609 => 0.21319841934253
610 => 0.21435274466114
611 => 0.22566670201267
612 => 0.23021726925343
613 => 0.23578161673759
614 => 0.23794924367211
615 => 0.24447302360776
616 => 0.23920454147422
617 => 0.23806467222432
618 => 0.2222401160126
619 => 0.22483138620576
620 => 0.2289802598054
621 => 0.22230852941014
622 => 0.22654020672528
623 => 0.22737562946647
624 => 0.22208182656427
625 => 0.22490947542606
626 => 0.21740007838862
627 => 0.20182919420308
628 => 0.20754357792184
629 => 0.21175128777962
630 => 0.20574636700569
701 => 0.21650995507043
702 => 0.21022208912857
703 => 0.20822913749579
704 => 0.20045392263777
705 => 0.20412352475529
706 => 0.20908671416288
707 => 0.20602004014169
708 => 0.21238384919908
709 => 0.22139669999022
710 => 0.22781979418853
711 => 0.2283128796052
712 => 0.22418326034958
713 => 0.23080100156159
714 => 0.23084920458157
715 => 0.22338436546015
716 => 0.21881219306267
717 => 0.21777338587404
718 => 0.2203685299014
719 => 0.22351951384064
720 => 0.2284877372841
721 => 0.23148993065878
722 => 0.23931805873963
723 => 0.24143612574828
724 => 0.24376323923301
725 => 0.24687298050381
726 => 0.25060702222072
727 => 0.24243715152325
728 => 0.2427617557166
729 => 0.23515408524268
730 => 0.22702419829099
731 => 0.23319376908261
801 => 0.24125966218904
802 => 0.23940933739841
803 => 0.23920113806075
804 => 0.239551271597
805 => 0.23815618713082
806 => 0.23184627179453
807 => 0.2286774718148
808 => 0.23276603223574
809 => 0.23493892013858
810 => 0.23830887978015
811 => 0.23789346112311
812 => 0.24657411525254
813 => 0.24994715495789
814 => 0.24908418706075
815 => 0.24924299392231
816 => 0.25534972119146
817 => 0.262141657859
818 => 0.26850320282313
819 => 0.27497443959536
820 => 0.26717311108977
821 => 0.26321207759368
822 => 0.26729885307704
823 => 0.26513035248004
824 => 0.27759120012947
825 => 0.2784539621848
826 => 0.29091390877311
827 => 0.30273988178827
828 => 0.29531220002176
829 => 0.30231616937744
830 => 0.30989153327761
831 => 0.32450563929953
901 => 0.31958412252179
902 => 0.31581431780005
903 => 0.31225187055357
904 => 0.31966475775092
905 => 0.32920131870656
906 => 0.33125540259636
907 => 0.33458380321827
908 => 0.3310843969418
909 => 0.33529904635485
910 => 0.35017861079375
911 => 0.34615802113681
912 => 0.34044813748192
913 => 0.35219412455787
914 => 0.35644495161928
915 => 0.38627948211172
916 => 0.4239468092614
917 => 0.40835228848443
918 => 0.39867226620612
919 => 0.40094730105472
920 => 0.41470213381029
921 => 0.41911974953482
922 => 0.40711114715211
923 => 0.41135278852673
924 => 0.43472464952985
925 => 0.44726290309895
926 => 0.43023427064
927 => 0.3832529490511
928 => 0.33993402493199
929 => 0.35142415428495
930 => 0.35012153019655
1001 => 0.37523167914537
1002 => 0.34606213140319
1003 => 0.34655327177769
1004 => 0.37218267201466
1005 => 0.3653451874306
1006 => 0.35426933808327
1007 => 0.34001489088949
1008 => 0.31366422687502
1009 => 0.29032470891477
1010 => 0.33609887840479
1011 => 0.33412501298145
1012 => 0.331266563338
1013 => 0.33762773370295
1014 => 0.36851577134548
1015 => 0.36780370210299
1016 => 0.36327388088325
1017 => 0.36670971035441
1018 => 0.35366702056498
1019 => 0.35702841870024
1020 => 0.33992716299308
1021 => 0.34765764478424
1022 => 0.35424557428498
1023 => 0.35556819866822
1024 => 0.35854813893853
1025 => 0.33308487559649
1026 => 0.34451713327493
1027 => 0.35123251360333
1028 => 0.320892180972
1029 => 0.35063278277882
1030 => 0.33264161683236
1031 => 0.32653514489188
1101 => 0.33475670489323
1102 => 0.33155275496498
1103 => 0.32879818695892
1104 => 0.32726109068205
1105 => 0.33329809696657
1106 => 0.33301646340761
1107 => 0.32313874939371
1108 => 0.3102536741297
1109 => 0.31457832832648
1110 => 0.31300714091294
1111 => 0.30731295503907
1112 => 0.31115014879944
1113 => 0.2942530894381
1114 => 0.26518257703964
1115 => 0.28438744798394
1116 => 0.28364808134346
1117 => 0.28327525915573
1118 => 0.29770718888672
1119 => 0.29631989184435
1120 => 0.29380193412801
1121 => 0.307266710771
1122 => 0.30235188616951
1123 => 0.317498217513
1124 => 0.32747457093912
1125 => 0.32494424500903
1126 => 0.3343270536262
1127 => 0.3146779596246
1128 => 0.32120460046711
1129 => 0.32254973209922
1130 => 0.30710055751731
1201 => 0.29654687079748
1202 => 0.2958430602141
1203 => 0.27754442182953
1204 => 0.28731940675312
1205 => 0.29592098896952
1206 => 0.29180149859761
1207 => 0.29049739101213
1208 => 0.29715979383989
1209 => 0.29767751959923
1210 => 0.28587331742021
1211 => 0.28832778484369
1212 => 0.29856332202088
1213 => 0.28806987556851
1214 => 0.26768282320629
1215 => 0.26262655234741
1216 => 0.26195195260927
1217 => 0.24823894502209
1218 => 0.2629644365437
1219 => 0.25653636487588
1220 => 0.2768425662544
1221 => 0.26524377293133
1222 => 0.26474377213339
1223 => 0.26398794759313
1224 => 0.25218459548563
1225 => 0.25476877945501
1226 => 0.26335900055157
1227 => 0.26642408821459
1228 => 0.26610437445982
1229 => 0.26331690378182
1230 => 0.26459299358405
1231 => 0.26048226371192
]
'min_raw' => 0.14382986522146
'max_raw' => 0.44726290309895
'avg_raw' => 0.29554638416021
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.143829'
'max' => '$0.447262'
'avg' => '$0.295546'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.081935139746228
'max_diff' => 0.27934847720403
'year' => 2033
]
8 => [
'items' => [
101 => 0.25903067943662
102 => 0.25444908017408
103 => 0.24771539495725
104 => 0.24865175518674
105 => 0.23531056280762
106 => 0.2280415731288
107 => 0.22602961258945
108 => 0.22333913487061
109 => 0.22633350920688
110 => 0.23527276888584
111 => 0.22449012514328
112 => 0.20600403876117
113 => 0.20711508405149
114 => 0.20961127294654
115 => 0.20495964145456
116 => 0.20055726262924
117 => 0.20438477384157
118 => 0.1965519753437
119 => 0.21055782922337
120 => 0.21017901012688
121 => 0.21539952633703
122 => 0.21866402225901
123 => 0.21114041605194
124 => 0.20924824943686
125 => 0.21032611353499
126 => 0.19251142096487
127 => 0.21394368588902
128 => 0.21412903300608
129 => 0.21254197846233
130 => 0.22395399788749
131 => 0.24803691837271
201 => 0.23897595495294
202 => 0.23546727604773
203 => 0.22879727488411
204 => 0.23768465540916
205 => 0.23700224324957
206 => 0.23391611666678
207 => 0.2320496176802
208 => 0.23548869929295
209 => 0.23162347740975
210 => 0.23092917735034
211 => 0.22672247439619
212 => 0.22522087283435
213 => 0.22410914681844
214 => 0.22288524571087
215 => 0.22558486657702
216 => 0.21946717052962
217 => 0.21208982882161
218 => 0.21147648268253
219 => 0.21316998529847
220 => 0.21242073645736
221 => 0.21147289556733
222 => 0.20966320917917
223 => 0.20912631388564
224 => 0.21087096312506
225 => 0.20890135585312
226 => 0.21180761867293
227 => 0.2110172759968
228 => 0.20660248605459
301 => 0.20110002322201
302 => 0.20105103976099
303 => 0.19986554316956
304 => 0.19835563501977
305 => 0.19793561311451
306 => 0.20406243152306
307 => 0.21674476226852
308 => 0.21425491728074
309 => 0.21605408545399
310 => 0.22490421216421
311 => 0.2277174013128
312 => 0.22572066628917
313 => 0.22298741223557
314 => 0.22310766154243
315 => 0.23244801805584
316 => 0.23303056463446
317 => 0.234502471902
318 => 0.23639428870173
319 => 0.22604285087061
320 => 0.22262010975148
321 => 0.22099822512278
322 => 0.21600344821475
323 => 0.22138988689025
324 => 0.21825143974434
325 => 0.21867492348894
326 => 0.21839912914471
327 => 0.2185497315058
328 => 0.21055391430177
329 => 0.21346716984314
330 => 0.20862331747041
331 => 0.20213794289128
401 => 0.20211620164162
402 => 0.20370348788204
403 => 0.20275930791572
404 => 0.20021854390345
405 => 0.20057944743932
406 => 0.19741755270451
407 => 0.20096335870808
408 => 0.20106503973676
409 => 0.19969971128403
410 => 0.20516251465947
411 => 0.20740062965962
412 => 0.20650194122386
413 => 0.20733757528325
414 => 0.21435838158095
415 => 0.21550307934674
416 => 0.21601147847981
417 => 0.21533029099147
418 => 0.20746590273409
419 => 0.20781472179527
420 => 0.20525531896945
421 => 0.20309289328485
422 => 0.2031793789718
423 => 0.20429114686935
424 => 0.20914630248225
425 => 0.21936369124254
426 => 0.21975143367718
427 => 0.22022138881921
428 => 0.21830984507605
429 => 0.21773330519211
430 => 0.2184939101166
501 => 0.22233102413019
502 => 0.23220112313943
503 => 0.22871237094782
504 => 0.22587596111037
505 => 0.22836425722841
506 => 0.22798120354495
507 => 0.22474784496492
508 => 0.22465709535862
509 => 0.21845124647628
510 => 0.21615708544482
511 => 0.21423991277195
512 => 0.21214641026224
513 => 0.21090531179965
514 => 0.21281220310736
515 => 0.21324833171111
516 => 0.20907888054005
517 => 0.20851059975208
518 => 0.21191546358222
519 => 0.2104171099567
520 => 0.21195820381793
521 => 0.212315750813
522 => 0.21225817751179
523 => 0.21069372424192
524 => 0.21169086010347
525 => 0.2093323365304
526 => 0.20676779638348
527 => 0.20513177954624
528 => 0.20370413786961
529 => 0.20449627644683
530 => 0.20167244705783
531 => 0.20076904720384
601 => 0.21135305290984
602 => 0.2191715717221
603 => 0.2190578873621
604 => 0.21836586305782
605 => 0.21733765531367
606 => 0.22225580432939
607 => 0.22054241955381
608 => 0.22178905013614
609 => 0.22210636994026
610 => 0.22306680141673
611 => 0.22341007311769
612 => 0.22237246761986
613 => 0.21889013683628
614 => 0.21021249961368
615 => 0.20617303606172
616 => 0.20483994580699
617 => 0.20488840110585
618 => 0.20355178764929
619 => 0.20394548021506
620 => 0.2034148774414
621 => 0.20241004415469
622 => 0.20443423082292
623 => 0.20466749947983
624 => 0.20419503012423
625 => 0.20430631376112
626 => 0.2003944692911
627 => 0.20069187833008
628 => 0.19903586700815
629 => 0.1987253848488
630 => 0.19453913243237
701 => 0.18712257946967
702 => 0.19123206975322
703 => 0.18626838337247
704 => 0.18438856012796
705 => 0.19328735099499
706 => 0.19239415920598
707 => 0.19086540312432
708 => 0.18860405425888
709 => 0.1877652979677
710 => 0.18266928026045
711 => 0.18236818034811
712 => 0.18489390432787
713 => 0.18372836961607
714 => 0.18209151745818
715 => 0.17616300486736
716 => 0.1694973938522
717 => 0.16969858675021
718 => 0.17181879359603
719 => 0.1779835809491
720 => 0.17557489187835
721 => 0.173827360321
722 => 0.17350010019092
723 => 0.17759644588443
724 => 0.1833936332517
725 => 0.18611354385967
726 => 0.18341819505209
727 => 0.18032192346982
728 => 0.18051037917429
729 => 0.1817640905465
730 => 0.18189583788519
731 => 0.179880483387
801 => 0.18044779387324
802 => 0.17958599736869
803 => 0.17429715381102
804 => 0.17420149540217
805 => 0.17290352789899
806 => 0.17286422595884
807 => 0.17065605944277
808 => 0.17034712168284
809 => 0.16596267303906
810 => 0.16884853041373
811 => 0.16691284880112
812 => 0.16399532002977
813 => 0.16349233696991
814 => 0.16347721669176
815 => 0.16647286639243
816 => 0.16881352450283
817 => 0.1669465208115
818 => 0.16652144026134
819 => 0.17106018843572
820 => 0.17048259135892
821 => 0.16998239601552
822 => 0.18287455870707
823 => 0.17266940594871
824 => 0.16821937685631
825 => 0.16271162081685
826 => 0.16450497395582
827 => 0.16488285981203
828 => 0.1516376993848
829 => 0.14626413944905
830 => 0.14442013617743
831 => 0.14335888622424
901 => 0.14384251115425
902 => 0.13900567695636
903 => 0.14225610953119
904 => 0.13806781996324
905 => 0.1373656395873
906 => 0.14485482016432
907 => 0.14589689589045
908 => 0.14145107709521
909 => 0.14430601247444
910 => 0.14327077321936
911 => 0.13813961616676
912 => 0.13794364370959
913 => 0.13536900946948
914 => 0.13134020543115
915 => 0.12949893387838
916 => 0.12853998366705
917 => 0.12893566521381
918 => 0.12873559651572
919 => 0.12743001292894
920 => 0.12881043103865
921 => 0.12528403319649
922 => 0.12387979316163
923 => 0.123245530516
924 => 0.1201156494592
925 => 0.12509668208499
926 => 0.12607800826167
927 => 0.12706126795406
928 => 0.13561987227643
929 => 0.13519230859085
930 => 0.13905727607653
1001 => 0.13890709054726
1002 => 0.13780473921202
1003 => 0.13315410025663
1004 => 0.13500776205458
1005 => 0.1293024791635
1006 => 0.13357726502702
1007 => 0.13162643127824
1008 => 0.1329176861742
1009 => 0.1305958934435
1010 => 0.13188086940514
1011 => 0.12631071710296
1012 => 0.12110938725735
1013 => 0.12320255422351
1014 => 0.1254780660984
1015 => 0.13041195563281
1016 => 0.12747337172982
1017 => 0.1285301976215
1018 => 0.1249900077949
1019 => 0.11768558497741
1020 => 0.1177269272173
1021 => 0.11660330090233
1022 => 0.11563232371406
1023 => 0.12781090344049
1024 => 0.12629630453666
1025 => 0.1238829894092
1026 => 0.12711330760863
1027 => 0.12796745501261
1028 => 0.12799177138841
1029 => 0.13034852816014
1030 => 0.13160632967168
1031 => 0.13182802263971
1101 => 0.13553643034113
1102 => 0.13677943968756
1103 => 0.14189921926825
1104 => 0.1314996140012
1105 => 0.13128544097437
1106 => 0.12715876481026
1107 => 0.1245415615468
1108 => 0.12733796695682
1109 => 0.12981520040269
1110 => 0.12723573935868
1111 => 0.12757256251563
1112 => 0.12410984681376
1113 => 0.12534760474127
1114 => 0.12641372861243
1115 => 0.12582507767464
1116 => 0.12494383872974
1117 => 0.12961209551012
1118 => 0.12934869416753
1119 => 0.13369588220419
1120 => 0.13708482614916
1121 => 0.14315841954474
1122 => 0.13682030821287
1123 => 0.13658932224422
1124 => 0.13884724713904
1125 => 0.13677909401102
1126 => 0.13808609539771
1127 => 0.14294784141519
1128 => 0.1430505624475
1129 => 0.14132985280773
1130 => 0.14122514746977
1201 => 0.14155562857859
1202 => 0.14349126675533
1203 => 0.14281489530022
1204 => 0.1435976094717
1205 => 0.14457640552848
1206 => 0.14862512102026
1207 => 0.14960125261846
1208 => 0.14722975890103
1209 => 0.14744387823122
1210 => 0.14655687448195
1211 => 0.14570003997427
1212 => 0.1476260788169
1213 => 0.15114595265819
1214 => 0.1511240557057
1215 => 0.15194059802031
1216 => 0.15244929711771
1217 => 0.15026558820118
1218 => 0.14884407399371
1219 => 0.14938917299415
1220 => 0.15026079816657
1221 => 0.14910651669821
1222 => 0.1419817567603
1223 => 0.14414295379403
1224 => 0.14378322493048
1225 => 0.14327092728426
1226 => 0.14544402761373
1227 => 0.14523442678564
1228 => 0.13895606823061
1229 => 0.13935798837522
1230 => 0.13898051032581
1231 => 0.14020021912821
]
'min_raw' => 0.11563232371406
'max_raw' => 0.25903067943662
'avg_raw' => 0.18733150157534
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.115632'
'max' => '$0.25903'
'avg' => '$0.187331'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0281975415074
'max_diff' => -0.18823222366233
'year' => 2034
]
9 => [
'items' => [
101 => 0.13671322573295
102 => 0.13778580141607
103 => 0.13845851082975
104 => 0.13885474184241
105 => 0.14028619995827
106 => 0.1401182348702
107 => 0.14027575901256
108 => 0.14239823350745
109 => 0.1531329811573
110 => 0.153717249787
111 => 0.15084009736817
112 => 0.15198946301017
113 => 0.14978293231616
114 => 0.15126419115352
115 => 0.15227763083014
116 => 0.14769809180471
117 => 0.14742692122459
118 => 0.1452112833935
119 => 0.14640184166379
120 => 0.14450757785159
121 => 0.14497236393257
122 => 0.14367278153083
123 => 0.14601177110968
124 => 0.14862712490107
125 => 0.14928786655222
126 => 0.1475497397352
127 => 0.14629122137154
128 => 0.14408167770666
129 => 0.14775619806424
130 => 0.14883073979577
131 => 0.14775055395397
201 => 0.1475002512919
202 => 0.14702592819956
203 => 0.14760088117821
204 => 0.14882488761073
205 => 0.148247668781
206 => 0.14862893198733
207 => 0.14717594980173
208 => 0.15026631109969
209 => 0.1551745485768
210 => 0.15519032936286
211 => 0.15461310742171
212 => 0.15437692063981
213 => 0.15496918538019
214 => 0.15529046470587
215 => 0.15720574027349
216 => 0.15926090726548
217 => 0.1688514748775
218 => 0.16615848186932
219 => 0.17466780400012
220 => 0.1813975730084
221 => 0.18341553647685
222 => 0.18155910503839
223 => 0.17520835336989
224 => 0.17489675519518
225 => 0.18438745940611
226 => 0.18170590076473
227 => 0.18138693789699
228 => 0.17799371188047
301 => 0.17999952871545
302 => 0.17956082715008
303 => 0.17886831526713
304 => 0.18269527406186
305 => 0.18985899929063
306 => 0.18874246553274
307 => 0.18790902487698
308 => 0.18425713053438
309 => 0.18645638660876
310 => 0.18567327364465
311 => 0.18903802391423
312 => 0.18704482039287
313 => 0.18168558532063
314 => 0.18253906117016
315 => 0.18241006001246
316 => 0.18506489469681
317 => 0.18426797922162
318 => 0.18225444947589
319 => 0.18983451445659
320 => 0.18934230719928
321 => 0.1900401445559
322 => 0.19034735414163
323 => 0.19496120611965
324 => 0.19685135364825
325 => 0.19728045022894
326 => 0.19907594419185
327 => 0.19723577670348
328 => 0.20459775867415
329 => 0.20949304710108
330 => 0.2151791765182
331 => 0.22348813988412
401 => 0.22661238697192
402 => 0.22604801969956
403 => 0.23234778089471
404 => 0.24366831172658
405 => 0.22833622264704
406 => 0.24448094967702
407 => 0.23936971549916
408 => 0.22725107121065
409 => 0.2264707733879
410 => 0.23467766000044
411 => 0.25287974462347
412 => 0.24832032887174
413 => 0.25288720219428
414 => 0.24755970187977
415 => 0.24729514658546
416 => 0.2526284573952
417 => 0.2650900288058
418 => 0.25917000334365
419 => 0.25068219519385
420 => 0.25694946064674
421 => 0.25152017530341
422 => 0.2392864758636
423 => 0.24831684237244
424 => 0.24227849345801
425 => 0.24404080468753
426 => 0.25673251596904
427 => 0.25520541568954
428 => 0.25718162485689
429 => 0.25369366740292
430 => 0.25043536514052
501 => 0.24435350200303
502 => 0.24255296216025
503 => 0.24305056659615
504 => 0.2425527155722
505 => 0.23914996904198
506 => 0.23841514625276
507 => 0.23719040941073
508 => 0.23757000657005
509 => 0.23526714299764
510 => 0.23961312235467
511 => 0.24041977441998
512 => 0.24358241577143
513 => 0.2439107716882
514 => 0.25271868283461
515 => 0.2478674333861
516 => 0.25112207035288
517 => 0.25083094498874
518 => 0.22751371897933
519 => 0.2307266269938
520 => 0.23572490359824
521 => 0.23347318676294
522 => 0.23028978597843
523 => 0.22771901916178
524 => 0.22382404456016
525 => 0.22930614651558
526 => 0.23651452763041
527 => 0.24409358812891
528 => 0.25319933271814
529 => 0.25116703652837
530 => 0.24392336256764
531 => 0.24424830849001
601 => 0.2462569963206
602 => 0.24365556307145
603 => 0.24288834962027
604 => 0.24615159297377
605 => 0.2461740651373
606 => 0.24318080179044
607 => 0.23985433734182
608 => 0.23984039933432
609 => 0.23924848711552
610 => 0.24766500174856
611 => 0.25229323379112
612 => 0.25282385313603
613 => 0.25225751888145
614 => 0.25247547845904
615 => 0.24978241220961
616 => 0.25593796305182
617 => 0.26158690522552
618 => 0.26007286805092
619 => 0.25780311109313
620 => 0.25599514034994
621 => 0.25964696760196
622 => 0.25948435748294
623 => 0.26153756664366
624 => 0.26144442121622
625 => 0.26075400420057
626 => 0.26007289270789
627 => 0.26277342278703
628 => 0.26199571349342
629 => 0.26121679620247
630 => 0.2596545583292
701 => 0.2598668924022
702 => 0.25759752734995
703 => 0.2565476152377
704 => 0.24075945616086
705 => 0.23654034416255
706 => 0.23786776268516
707 => 0.23830478332921
708 => 0.23646862038061
709 => 0.23910120637735
710 => 0.23869092063835
711 => 0.24028710243964
712 => 0.23928987734835
713 => 0.23933080381395
714 => 0.24226343017663
715 => 0.243114784086
716 => 0.24268177861642
717 => 0.24298504080475
718 => 0.24997358993587
719 => 0.24898004173064
720 => 0.24845223904877
721 => 0.24859844399872
722 => 0.2503841681379
723 => 0.25088407339995
724 => 0.24876593967693
725 => 0.24976486378549
726 => 0.25401815585739
727 => 0.25550656736708
728 => 0.26025686242793
729 => 0.25823885265632
730 => 0.26194299692953
731 => 0.27332827358955
801 => 0.28242362038679
802 => 0.27405916359094
803 => 0.29076160969864
804 => 0.30376685981708
805 => 0.30326769665616
806 => 0.30099993048116
807 => 0.28619379898378
808 => 0.2725689760329
809 => 0.28396671897185
810 => 0.28399577416257
811 => 0.28301669793595
812 => 0.27693573957967
813 => 0.2828050937664
814 => 0.28327098178738
815 => 0.28301020838525
816 => 0.27834795187105
817 => 0.27122954790289
818 => 0.27262046699922
819 => 0.27489882085298
820 => 0.2705854216934
821 => 0.26920702930385
822 => 0.27176972300592
823 => 0.28002725607241
824 => 0.27846621727882
825 => 0.27842545224727
826 => 0.28510423818972
827 => 0.28032366882714
828 => 0.27263801094336
829 => 0.27069728096634
830 => 0.26380899698025
831 => 0.26856675926467
901 => 0.2687379826592
902 => 0.26613220487918
903 => 0.27284945544895
904 => 0.2727875548024
905 => 0.2791645844876
906 => 0.29135507014271
907 => 0.28774974367713
908 => 0.28355714125606
909 => 0.28401299338748
910 => 0.28901256613029
911 => 0.28598971032085
912 => 0.28707675034602
913 => 0.28901092076502
914 => 0.29017785380155
915 => 0.28384508968161
916 => 0.28236861943412
917 => 0.27934827947841
918 => 0.27856032916128
919 => 0.28102033303375
920 => 0.28037220892657
921 => 0.2687235919959
922 => 0.26750624671435
923 => 0.26754358095617
924 => 0.2644825083641
925 => 0.25981363791961
926 => 0.27208315068398
927 => 0.27109773709728
928 => 0.27000991676252
929 => 0.27014316854651
930 => 0.27546894818515
1001 => 0.27237972703642
1002 => 0.28059292777371
1003 => 0.27890454061354
1004 => 0.27717285269358
1005 => 0.27693348067453
1006 => 0.27626692856602
1007 => 0.2739810733728
1008 => 0.27122076586839
1009 => 0.26939817176024
1010 => 0.24850557311534
1011 => 0.25238311789718
1012 => 0.25684387971935
1013 => 0.25838371682499
1014 => 0.25574971890232
1015 => 0.27408507966519
1016 => 0.2774351267605
1017 => 0.26728761559064
1018 => 0.26538943057091
1019 => 0.27420952435907
1020 => 0.2688899295922
1021 => 0.27128534279
1022 => 0.26610776967732
1023 => 0.27662819851607
1024 => 0.27654805047486
1025 => 0.27245536604192
1026 => 0.27591447489915
1027 => 0.27531336961072
1028 => 0.27069273896577
1029 => 0.27677468074919
1030 => 0.27677769731643
1031 => 0.27283857753236
1101 => 0.26823854800877
1102 => 0.2674161713778
1103 => 0.26679662105712
1104 => 0.27113297139024
1105 => 0.27502092953949
1106 => 0.28225545574869
1107 => 0.28407438752578
1108 => 0.29117379934493
1109 => 0.28694644527072
1110 => 0.28882037657841
1111 => 0.29085479409669
1112 => 0.29183016866818
1113 => 0.29024084814542
1114 => 0.30126915693505
1115 => 0.30220028409554
1116 => 0.30251248297823
1117 => 0.29879379930445
1118 => 0.30209686077552
1119 => 0.30055146769911
1120 => 0.30457215116138
1121 => 0.30520264566692
1122 => 0.30466863925122
1123 => 0.30486876815896
1124 => 0.295458052134
1125 => 0.29497005686263
1126 => 0.28831620671085
1127 => 0.29102769983048
1128 => 0.28595869340858
1129 => 0.28756612756152
1130 => 0.28827466921994
1201 => 0.28790456726696
1202 => 0.29118100358317
1203 => 0.28839536338268
1204 => 0.28104360089193
1205 => 0.27368983541841
1206 => 0.27359751488314
1207 => 0.2716613982387
1208 => 0.27026194052223
1209 => 0.27053152572685
1210 => 0.27148157915049
1211 => 0.27020672169014
1212 => 0.27047877716622
1213 => 0.2749967107653
1214 => 0.27590275012816
1215 => 0.27282367436071
1216 => 0.26046074084588
1217 => 0.25742684595127
1218 => 0.25960754943677
1219 => 0.25856531362599
1220 => 0.2086823882915
1221 => 0.22040164167495
1222 => 0.21343845926274
1223 => 0.2166474140789
1224 => 0.20953980794339
1225 => 0.21293193013281
1226 => 0.21230552902489
1227 => 0.23114974166756
1228 => 0.23085551520651
1229 => 0.2309963458433
1230 => 0.22427413261723
1231 => 0.23498280081433
]
'min_raw' => 0.13671322573295
'max_raw' => 0.30520264566692
'avg_raw' => 0.22095793569994
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.136713'
'max' => '$0.3052026'
'avg' => '$0.220957'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021080902018888
'max_diff' => 0.046171966230302
'year' => 2035
]
10 => [
'items' => [
101 => 0.24025827583948
102 => 0.23928192581455
103 => 0.23952765208119
104 => 0.23530526069024
105 => 0.23103722782165
106 => 0.22630332252484
107 => 0.23509833343794
108 => 0.23412047836025
109 => 0.23636332608732
110 => 0.24206751934483
111 => 0.24290748347012
112 => 0.24403640377259
113 => 0.24363176620617
114 => 0.25327187466433
115 => 0.25210439392256
116 => 0.25491768660308
117 => 0.24913053011422
118 => 0.24258181322513
119 => 0.24382651021206
120 => 0.243706635883
121 => 0.24218049808868
122 => 0.24080276912621
123 => 0.23850923857641
124 => 0.24576630861462
125 => 0.24547168482403
126 => 0.25024130153091
127 => 0.24939822544839
128 => 0.24376795703357
129 => 0.24396904317147
130 => 0.24532144408755
131 => 0.25000211909956
201 => 0.25139166212778
202 => 0.25074797043339
203 => 0.25227154092879
204 => 0.25347570892737
205 => 0.25242276588971
206 => 0.26733021884263
207 => 0.26113960503259
208 => 0.26415686712959
209 => 0.26487646636098
210 => 0.26303322806131
211 => 0.26343296044709
212 => 0.264038446091
213 => 0.26771483635457
214 => 0.27736274817827
215 => 0.28163574264943
216 => 0.29449125734174
217 => 0.28128092994155
218 => 0.28049708378339
219 => 0.28281275017883
220 => 0.29036029819765
221 => 0.29647687696177
222 => 0.29850609901172
223 => 0.29877429420443
224 => 0.30258124967027
225 => 0.30476332554777
226 => 0.30211898514384
227 => 0.2998781835255
228 => 0.29185191026712
229 => 0.29278097325159
301 => 0.29918129590719
302 => 0.30822212863534
303 => 0.31598010365441
304 => 0.31326353119546
305 => 0.333989061456
306 => 0.33604391312513
307 => 0.33575999906577
308 => 0.34044125697098
309 => 0.33114991335072
310 => 0.32717768394176
311 => 0.30036267026956
312 => 0.30789659534126
313 => 0.31884759788487
314 => 0.31739819163407
315 => 0.30944528086576
316 => 0.31597407065844
317 => 0.31381544857885
318 => 0.31211285378336
319 => 0.31991277060573
320 => 0.31133644165661
321 => 0.31876204244305
322 => 0.30923863262644
323 => 0.31327594026962
324 => 0.31098416918875
325 => 0.31246722594698
326 => 0.30379730644223
327 => 0.30847538455659
328 => 0.30360268301258
329 => 0.30360037271761
330 => 0.30349280756095
331 => 0.30922551931862
401 => 0.30941246284322
402 => 0.30517598019266
403 => 0.30456543685642
404 => 0.30682293556923
405 => 0.30417999581638
406 => 0.30541661069227
407 => 0.30421745162121
408 => 0.30394749565616
409 => 0.30179644059742
410 => 0.30086970693362
411 => 0.30123310308218
412 => 0.2999926446836
413 => 0.29924522362911
414 => 0.3033441267009
415 => 0.30115424813892
416 => 0.303008496404
417 => 0.30089534648115
418 => 0.29357024819298
419 => 0.28935750670595
420 => 0.27552107507657
421 => 0.27944506992262
422 => 0.28204668256522
423 => 0.28118684960236
424 => 0.28303410351777
425 => 0.2831475099054
426 => 0.28254694882697
427 => 0.2818515760348
428 => 0.28151310701609
429 => 0.28403577777905
430 => 0.28550027306613
501 => 0.28230778919899
502 => 0.28155983489651
503 => 0.28478761234806
504 => 0.28675655472888
505 => 0.30129411901568
506 => 0.3002171292976
507 => 0.30292016214143
508 => 0.30261584212463
509 => 0.30544905117186
510 => 0.3100801505606
511 => 0.30066383062754
512 => 0.30229817817608
513 => 0.30189747389977
514 => 0.30627225811815
515 => 0.30628591571696
516 => 0.30366301404136
517 => 0.30508493159142
518 => 0.30429125622325
519 => 0.3057255348852
520 => 0.30020274544331
521 => 0.30692890683525
522 => 0.31074220692022
523 => 0.3107951545956
524 => 0.31260262857165
525 => 0.31443912681316
526 => 0.31796412526244
527 => 0.3143408165196
528 => 0.30782283681324
529 => 0.3082934138951
530 => 0.30447192477809
531 => 0.30453616470056
601 => 0.30419324695987
602 => 0.30522236891333
603 => 0.30042857983955
604 => 0.30155367255347
605 => 0.29997853616544
606 => 0.30229475413719
607 => 0.29980288648414
608 => 0.30189728066804
609 => 0.30280115176754
610 => 0.30613645558367
611 => 0.29931025939864
612 => 0.28539118328452
613 => 0.28831714183619
614 => 0.28398941930918
615 => 0.28438996650586
616 => 0.28519913558976
617 => 0.28257635384519
618 => 0.2830766979487
619 => 0.28305882213646
620 => 0.28290477804383
621 => 0.28222249121543
622 => 0.28123304032791
623 => 0.28517470812685
624 => 0.28584447429432
625 => 0.28733328151815
626 => 0.29176296194868
627 => 0.29132033241461
628 => 0.29204227954919
629 => 0.29046627300795
630 => 0.28446307292921
701 => 0.28478907557575
702 => 0.28072381734953
703 => 0.28722932372536
704 => 0.28568873394708
705 => 0.28469550569489
706 => 0.28442449416408
707 => 0.28886515491559
708 => 0.29019387021128
709 => 0.28936590400577
710 => 0.28766772116266
711 => 0.29092873424413
712 => 0.29180124377364
713 => 0.29199656648038
714 => 0.29777445642352
715 => 0.29231948634385
716 => 0.29363255185977
717 => 0.30387671418386
718 => 0.29458667255368
719 => 0.29950781479784
720 => 0.29926695049337
721 => 0.30178444034311
722 => 0.29906044284567
723 => 0.29909421005933
724 => 0.30132957049637
725 => 0.29819040991193
726 => 0.29741310960511
727 => 0.29633927479837
728 => 0.29868395381343
729 => 0.30008948284225
730 => 0.3114170145672
731 => 0.31873511665973
801 => 0.31841741854777
802 => 0.32132058458512
803 => 0.32001268169534
804 => 0.31578911825689
805 => 0.32299822603763
806 => 0.32071696269392
807 => 0.32090502727224
808 => 0.32089802749925
809 => 0.32241486819131
810 => 0.32134004754457
811 => 0.31922146572179
812 => 0.32062787920583
813 => 0.3248044244514
814 => 0.33776854904573
815 => 0.34502344492053
816 => 0.33733179520455
817 => 0.34263739218334
818 => 0.33945592457357
819 => 0.33887775726841
820 => 0.34221006425162
821 => 0.34554820399709
822 => 0.34533557892647
823 => 0.34291226088664
824 => 0.34154339001536
825 => 0.3519089388581
826 => 0.35954609867291
827 => 0.35902529557371
828 => 0.36132395107934
829 => 0.36807287473862
830 => 0.36868991173775
831 => 0.3686121792583
901 => 0.36708278867478
902 => 0.37372798047582
903 => 0.37927151638727
904 => 0.36672877894304
905 => 0.37150488916531
906 => 0.37364903892075
907 => 0.3767972869023
908 => 0.38210890895481
909 => 0.38787873934199
910 => 0.38869465662171
911 => 0.38811572426652
912 => 0.3843103660248
913 => 0.39062378328285
914 => 0.39432203504477
915 => 0.396524259336
916 => 0.40210873372339
917 => 0.37366228045968
918 => 0.35352646695917
919 => 0.35038196891639
920 => 0.35677642933766
921 => 0.35846259755588
922 => 0.35778290526139
923 => 0.33511821649849
924 => 0.35026264402062
925 => 0.3665567746548
926 => 0.3671826985724
927 => 0.37533988106207
928 => 0.37799619405492
929 => 0.38456379514545
930 => 0.38415298990908
1001 => 0.38575209626126
1002 => 0.38538448940356
1003 => 0.39754958745221
1004 => 0.41096949713441
1005 => 0.41050480833481
1006 => 0.40857553754083
1007 => 0.41144083365945
1008 => 0.4252916186164
1009 => 0.42401646029187
1010 => 0.42525516798643
1011 => 0.44158602404671
1012 => 0.46281845996226
1013 => 0.45295386177777
1014 => 0.47435720137645
1015 => 0.48782946911153
1016 => 0.51112836310088
1017 => 0.50821122682394
1018 => 0.51728131527881
1019 => 0.50298894406351
1020 => 0.47017077078838
1021 => 0.46497716924467
1022 => 0.47537489105812
1023 => 0.50093667554161
1024 => 0.47456985949806
1025 => 0.47990383204346
1026 => 0.47836764759155
1027 => 0.47828579085047
1028 => 0.48140992972202
1029 => 0.47687820334471
1030 => 0.45841513484158
1031 => 0.46687665033302
1101 => 0.46360925284643
1102 => 0.46723467395842
1103 => 0.48679957646245
1104 => 0.4781494666964
1105 => 0.46903727873571
1106 => 0.48046598459479
1107 => 0.49501865448282
1108 => 0.49410797455489
1109 => 0.49234087486002
1110 => 0.50230192331765
1111 => 0.51875465705628
1112 => 0.5232017648734
1113 => 0.52648452894687
1114 => 0.52693716664985
1115 => 0.5315996163033
1116 => 0.50652844942811
1117 => 0.54631703513227
1118 => 0.55318742474588
1119 => 0.551896076247
1120 => 0.55953222515233
1121 => 0.55728547643398
1122 => 0.55403029004517
1123 => 0.56613521031558
1124 => 0.55225789604225
1125 => 0.53256079553654
1126 => 0.52175457663463
1127 => 0.53598507739747
1128 => 0.54467514763731
1129 => 0.55041873127356
1130 => 0.55215673621153
1201 => 0.50847465274417
1202 => 0.48493243247468
1203 => 0.50002272575532
1204 => 0.51843392503411
1205 => 0.50642617428651
1206 => 0.50689685538214
1207 => 0.48977695839745
1208 => 0.51994865604033
1209 => 0.51555289347768
1210 => 0.53835811742866
1211 => 0.5329154677094
1212 => 0.55151224254774
1213 => 0.54661508848701
1214 => 0.56694290119689
1215 => 0.57505221604043
1216 => 0.58866901777679
1217 => 0.59868559256441
1218 => 0.60456751686624
1219 => 0.60421438819371
1220 => 0.62752150264063
1221 => 0.61377811153983
1222 => 0.59651317324866
1223 => 0.59620090498515
1224 => 0.60514266117222
1225 => 0.62388212908931
1226 => 0.62874100047204
1227 => 0.63145644671556
1228 => 0.62729764626824
1229 => 0.61238018022604
1230 => 0.60593889402229
1231 => 0.61142705648992
]
'min_raw' => 0.22630332252484
'max_raw' => 0.63145644671556
'avg_raw' => 0.4288798846202
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2263033'
'max' => '$0.631456'
'avg' => '$0.428879'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.089590096791889
'max_diff' => 0.32625380104864
'year' => 2036
]
11 => [
'items' => [
101 => 0.60471550539519
102 => 0.61630152551333
103 => 0.63221160577589
104 => 0.62892623711694
105 => 0.63990873197379
106 => 0.65127445875848
107 => 0.66752795852731
108 => 0.67177722523224
109 => 0.67880110151034
110 => 0.68603097742367
111 => 0.68835301871642
112 => 0.69278651603136
113 => 0.69276314931207
114 => 0.70612379187944
115 => 0.72086099437591
116 => 0.7264239471513
117 => 0.73921565031532
118 => 0.71731030692169
119 => 0.7339257615162
120 => 0.74891331747226
121 => 0.73104453539704
122 => 0.75567248859548
123 => 0.75662873621003
124 => 0.77106693988032
125 => 0.75643105443535
126 => 0.74774031237752
127 => 0.77283015906061
128 => 0.78497034554779
129 => 0.78131362257773
130 => 0.75348578022095
131 => 0.73728878237699
201 => 0.6948981148518
202 => 0.74511169167595
203 => 0.76956926019687
204 => 0.75342244102699
205 => 0.7615659574119
206 => 0.80599434226389
207 => 0.82290979469063
208 => 0.81939149883381
209 => 0.81998603291753
210 => 0.82911330400982
211 => 0.86958865051305
212 => 0.84533488467713
213 => 0.86387597988743
214 => 0.87371010993207
215 => 0.88284459797956
216 => 0.86041318231952
217 => 0.83123024012875
218 => 0.82198677732036
219 => 0.75181695807957
220 => 0.74816431425601
221 => 0.74611397459141
222 => 0.7331868730324
223 => 0.72302971223815
224 => 0.71495236086336
225 => 0.6937549787546
226 => 0.70090847296063
227 => 0.66712427011674
228 => 0.68873820585763
301 => 0.63481780237069
302 => 0.67972431664805
303 => 0.65528374257554
304 => 0.6716949307381
305 => 0.67163767364863
306 => 0.64141947306941
307 => 0.62399024561307
308 => 0.63509682770393
309 => 0.64700396534692
310 => 0.64893585836907
311 => 0.66437377313129
312 => 0.66868216330456
313 => 0.65562753994005
314 => 0.63370042185797
315 => 0.63879359128412
316 => 0.62388703269721
317 => 0.59776386214616
318 => 0.61652597930273
319 => 0.62293219101204
320 => 0.6257615390567
321 => 0.60007240108615
322 => 0.59200031619748
323 => 0.58770280593411
324 => 0.63038427673635
325 => 0.63272246405487
326 => 0.62075996714695
327 => 0.67483158750123
328 => 0.66259351450243
329 => 0.67626644044277
330 => 0.63833143954277
331 => 0.6397806076634
401 => 0.62182157030199
402 => 0.63187743120107
403 => 0.62477027283312
404 => 0.63106501701438
405 => 0.63483806072242
406 => 0.65279415118252
407 => 0.67992934635784
408 => 0.65011211005063
409 => 0.63712031320089
410 => 0.64518035089783
411 => 0.66664529342413
412 => 0.69916578012166
413 => 0.67991299746093
414 => 0.68845705547231
415 => 0.69032355204911
416 => 0.67612726289185
417 => 0.69968921755226
418 => 0.71231626047176
419 => 0.72526899370879
420 => 0.73651548905116
421 => 0.72009538721721
422 => 0.73766724990868
423 => 0.72350743043068
424 => 0.71080460854368
425 => 0.71082387348099
426 => 0.70285520775266
427 => 0.68741491378753
428 => 0.68456748668375
429 => 0.69938016206801
430 => 0.71125852496062
501 => 0.71223688382197
502 => 0.71881335585164
503 => 0.72270524425575
504 => 0.76085104138173
505 => 0.77619359654438
506 => 0.79495418257757
507 => 0.80226248812619
508 => 0.82425786765499
509 => 0.8064948123081
510 => 0.80265166354895
511 => 0.7492980674459
512 => 0.75803471581885
513 => 0.77202293282512
514 => 0.74952872799215
515 => 0.76379612350643
516 => 0.76661280960571
517 => 0.74876438351944
518 => 0.75829799907708
519 => 0.732979542676
520 => 0.68048121952003
521 => 0.69974766319338
522 => 0.71393425075178
523 => 0.69368824111231
524 => 0.72997842976229
525 => 0.70877845073452
526 => 0.70205907516118
527 => 0.6758443954192
528 => 0.68821671516186
529 => 0.70495045476835
530 => 0.69461094919757
531 => 0.71606697574151
601 => 0.746454431441
602 => 0.76811034197673
603 => 0.76977281388515
604 => 0.755849514244
605 => 0.77816169077626
606 => 0.77832421062354
607 => 0.75315598434724
608 => 0.73774058589027
609 => 0.73423817492657
610 => 0.74298788420201
611 => 0.75361164654782
612 => 0.77036235875772
613 => 0.78048446332692
614 => 0.80687754369395
615 => 0.81401875449235
616 => 0.82186478007996
617 => 0.83234948988969
618 => 0.84493907224069
619 => 0.81739378278203
620 => 0.81848820848306
621 => 0.79283841632965
622 => 0.76542793486144
623 => 0.78622907353106
624 => 0.81342379528207
625 => 0.80718529606489
626 => 0.80648333746198
627 => 0.80766383712499
628 => 0.80296021244557
629 => 0.78168589234504
630 => 0.77100206197484
701 => 0.78478692888822
702 => 0.79211297215883
703 => 0.80347502637345
704 => 0.80207441336763
705 => 0.83134184482893
706 => 0.8427142836936
707 => 0.83980472717792
708 => 0.8403401555992
709 => 0.86092941294521
710 => 0.8838289016177
711 => 0.90527729461317
712 => 0.92709552119807
713 => 0.90079279747009
714 => 0.8874378964875
715 => 0.90121674535921
716 => 0.89390549419654
717 => 0.93591811203519
718 => 0.93882697454086
719 => 0.98083655438906
720 => 1.0207086480727
721 => 0.99566570041277
722 => 1.019280072097
723 => 1.0448209403814
724 => 1.0940934191586
725 => 1.0775001817331
726 => 1.0647900219144
727 => 1.0527789823008
728 => 1.0777720490379
729 => 1.1099252301213
730 => 1.1168507173673
731 => 1.1280726524456
801 => 1.1162741598637
802 => 1.1304841446172
803 => 1.180651634981
804 => 1.167095936244
805 => 1.1478446648502
806 => 1.1874470803554
807 => 1.2017790405762
808 => 1.3023682431119
809 => 1.4293662664458
810 => 1.3767882508716
811 => 1.3441513799227
812 => 1.3518218187526
813 => 1.3981971977198
814 => 1.4130914975631
815 => 1.372603656216
816 => 1.3869046462524
817 => 1.4657045073957
818 => 1.5079781046968
819 => 1.4505648814603
820 => 1.2921640755922
821 => 1.1461112984939
822 => 1.1848510718226
823 => 1.1804591837623
824 => 1.2651198040779
825 => 1.1667726373123
826 => 1.1684285513753
827 => 1.2548398636618
828 => 1.2317868070087
829 => 1.1944438076431
830 => 1.1463839437155
831 => 1.0575408402461
901 => 0.97885002593002
902 => 1.1331808342161
903 => 1.1265258091304
904 => 1.1168883465869
905 => 1.1383354765951
906 => 1.2424766520408
907 => 1.2400758608747
908 => 1.2248032523703
909 => 1.2363873913143
910 => 1.1924130520777
911 => 1.2037462405761
912 => 1.1460881629878
913 => 1.1721520220717
914 => 1.194363686338
915 => 1.1988230067888
916 => 1.2088700834629
917 => 1.123018913317
918 => 1.1615635682546
919 => 1.1842049418846
920 => 1.0819103921237
921 => 1.1821829075379
922 => 1.1215244354463
923 => 1.1009360389588
924 => 1.1286556025143
925 => 1.1178532616386
926 => 1.1085660432883
927 => 1.1033836158742
928 => 1.1237378040528
929 => 1.1227882568458
930 => 1.0894848544079
1001 => 1.0460419235481
1002 => 1.0606227971102
1003 => 1.0553254290487
1004 => 1.0361270838196
1005 => 1.049064450487
1006 => 0.9920948351352
1007 => 0.89408157294543
1008 => 0.9588321361754
1009 => 0.95633930992611
1010 => 0.95508231389055
1011 => 1.0037405725838
1012 => 0.99906320374743
1013 => 0.99057373350857
1014 => 1.0359711680411
1015 => 1.0194004937551
1016 => 1.0704674073628
1017 => 1.1041033794657
1018 => 1.0955722089307
1019 => 1.1272070032702
1020 => 1.0609587109879
1021 => 1.0829637362639
1022 => 1.0874989414757
1023 => 1.0354109707458
1024 => 0.99982847913505
1025 => 0.99745553261471
1026 => 0.93576039573099
1027 => 0.96871743986853
1028 => 0.99771827485441
1029 => 0.98382912545188
1030 => 0.97943223567757
1031 => 1.0018949919655
1101 => 1.0036405405095
1102 => 0.96384184871988
1103 => 0.9721172570036
1104 => 1.0066270852189
1105 => 0.97124769787568
1106 => 0.90251132745791
1107 => 0.88546375723964
1108 => 0.88318929712346
1109 => 0.83695493463165
1110 => 0.88660295739775
1111 => 0.86493026497606
1112 => 0.93339404065746
1113 => 0.89428789916684
1114 => 0.89260211156763
1115 => 0.89005379636016
1116 => 0.850257970646
1117 => 0.85897072732073
1118 => 0.88793325749788
1119 => 0.89826741455134
1120 => 0.89718947730541
1121 => 0.88779132529956
1122 => 0.89209375116151
1123 => 0.87823413839562
1124 => 0.87334002066509
1125 => 0.85789283887439
1126 => 0.83518974903495
1127 => 0.83834675292327
1128 => 0.79336599136475
1129 => 0.76885808515796
1130 => 0.76207461972893
1201 => 0.7530034862567
1202 => 0.76309922839199
1203 => 0.79323856651879
1204 => 0.75688413032059
1205 => 0.69455699942597
1206 => 0.698302966193
1207 => 0.706719041331
1208 => 0.69103574098924
1209 => 0.6761928134154
1210 => 0.68909753469608
1211 => 0.66268870769198
1212 => 0.70991042190478
1213 => 0.70863320687265
1214 => 0.72623454175997
1215 => 0.73724101768076
1216 => 0.71187465407223
1217 => 0.70549508222262
1218 => 0.70912917628353
1219 => 0.64906569650126
1220 => 0.72132607404597
1221 => 0.72195098479166
1222 => 0.71660011959279
1223 => 0.75507653984649
1224 => 0.83627378767822
1225 => 0.8057241168922
1226 => 0.79389436099516
1227 => 0.7714059863874
1228 => 0.80137041032469
1229 => 0.79906961008413
1230 => 0.78866451884377
1231 => 0.78237148719574
]
'min_raw' => 0.58770280593411
'max_raw' => 1.5079781046968
'avg_raw' => 1.0478404553155
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.5877028'
'max' => '$1.50'
'avg' => '$1.04'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36139948340927
'max_diff' => 0.87652165798126
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018447319525317
]
1 => [
'year' => 2028
'avg' => 0.031660955600567
]
2 => [
'year' => 2029
'avg' => 0.0864920243687
]
3 => [
'year' => 2030
'avg' => 0.066728467992665
]
4 => [
'year' => 2031
'avg' => 0.065535625136796
]
5 => [
'year' => 2032
'avg' => 0.11490457568508
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018447319525317
'min' => '$0.018447'
'max_raw' => 0.11490457568508
'max' => '$0.1149045'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11490457568508
]
1 => [
'year' => 2033
'avg' => 0.29554638416021
]
2 => [
'year' => 2034
'avg' => 0.18733150157534
]
3 => [
'year' => 2035
'avg' => 0.22095793569994
]
4 => [
'year' => 2036
'avg' => 0.4288798846202
]
5 => [
'year' => 2037
'avg' => 1.0478404553155
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11490457568508
'min' => '$0.1149045'
'max_raw' => 1.0478404553155
'max' => '$1.04'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0478404553155
]
]
]
]
'prediction_2025_max_price' => '$0.031541'
'last_price' => 0.03058352
'sma_50day_nextmonth' => '$0.029532'
'sma_200day_nextmonth' => '$0.0336027'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.032903'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.032997'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.032676'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.031622'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.029313'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.030439'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.034856'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.032139'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.032451'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.032375'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.031742'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0307062'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.03150021'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.033662'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0329083'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.035356'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.036384'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.031692'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.031333'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.030951'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03239'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.035235'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.037596'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.04094'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.52'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 42.2
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.032630'
'vwma_10_action' => 'SELL'
'hma_9' => '0.033247'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 10.12
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -60.54
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.95
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001811'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -89.88
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 42.73
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000015'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 30
'buy_signals' => 2
'sell_pct' => 93.75
'buy_pct' => 6.25
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767712605
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Hydranet para 2026
La previsión del precio de Hydranet para 2026 sugiere que el precio medio podría oscilar entre $0.010566 en el extremo inferior y $0.031541 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Hydranet podría potencialmente ganar 3.13% para 2026 si HDN alcanza el objetivo de precio previsto.
Predicción de precio de Hydranet 2027-2032
La predicción del precio de HDN para 2027-2032 está actualmente dentro de un rango de precios de $0.018447 en el extremo inferior y $0.1149045 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Hydranet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Hydranet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.010172 | $0.018447 | $0.026722 |
| 2028 | $0.018357 | $0.03166 | $0.044964 |
| 2029 | $0.040326 | $0.086492 | $0.132657 |
| 2030 | $0.034296 | $0.066728 | $0.09916 |
| 2031 | $0.040548 | $0.065535 | $0.090522 |
| 2032 | $0.061894 | $0.1149045 | $0.167914 |
Predicción de precio de Hydranet 2032-2037
La predicción de precio de Hydranet para 2032-2037 se estima actualmente entre $0.1149045 en el extremo inferior y $1.04 en el extremo superior. Comparado con el precio actual, Hydranet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Hydranet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.061894 | $0.1149045 | $0.167914 |
| 2033 | $0.143829 | $0.295546 | $0.447262 |
| 2034 | $0.115632 | $0.187331 | $0.25903 |
| 2035 | $0.136713 | $0.220957 | $0.3052026 |
| 2036 | $0.2263033 | $0.428879 | $0.631456 |
| 2037 | $0.5877028 | $1.04 | $1.50 |
Hydranet Histograma de precios potenciales
Pronóstico de precio de Hydranet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Hydranet es Bajista, con 2 indicadores técnicos mostrando señales alcistas y 30 indicando señales bajistas. La predicción de precio de HDN se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Hydranet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Hydranet aumentar durante el próximo mes, alcanzando $0.0336027 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Hydranet alcance $0.029532 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.52, lo que sugiere que el mercado de HDN está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de HDN para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.032903 | SELL |
| SMA 5 | $0.032997 | SELL |
| SMA 10 | $0.032676 | SELL |
| SMA 21 | $0.031622 | SELL |
| SMA 50 | $0.029313 | BUY |
| SMA 100 | $0.030439 | BUY |
| SMA 200 | $0.034856 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.032139 | SELL |
| EMA 5 | $0.032451 | SELL |
| EMA 10 | $0.032375 | SELL |
| EMA 21 | $0.031742 | SELL |
| EMA 50 | $0.0307062 | SELL |
| EMA 100 | $0.03150021 | SELL |
| EMA 200 | $0.033662 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0329083 | SELL |
| SMA 50 | $0.035356 | SELL |
| SMA 100 | $0.036384 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.03239 | SELL |
| EMA 50 | $0.035235 | SELL |
| EMA 100 | $0.037596 | SELL |
| EMA 200 | $0.04094 | SELL |
Osciladores de Hydranet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.52 | NEUTRAL |
| Stoch RSI (14) | 42.2 | NEUTRAL |
| Estocástico Rápido (14) | 10.12 | BUY |
| Índice de Canal de Materias Primas (20) | -60.54 | NEUTRAL |
| Índice Direccional Medio (14) | 18.95 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001811 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -89.88 | BUY |
| Oscilador Ultimate (7, 14, 28) | 42.73 | NEUTRAL |
| VWMA (10) | 0.032630 | SELL |
| Promedio Móvil de Hull (9) | 0.033247 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000015 | BUY |
Predicción de precios de Hydranet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Hydranet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Hydranet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.042974 | $0.060386 | $0.084853 | $0.119233 | $0.167543 | $0.235426 |
| Amazon.com acción | $0.063814 | $0.133152 | $0.27783 | $0.5797096 | $1.20 | $2.52 |
| Apple acción | $0.04338 | $0.061531 | $0.087278 | $0.123797 | $0.175597 | $0.249071 |
| Netflix acción | $0.048256 | $0.07614 | $0.120137 | $0.189558 | $0.299093 | $0.471922 |
| Google acción | $0.0396055 | $0.051288 | $0.066418 | $0.086012 | $0.111385 | $0.144243 |
| Tesla acción | $0.06933 | $0.157167 | $0.356285 | $0.807673 | $1.83 | $4.15 |
| Kodak acción | $0.022934 | $0.017198 | $0.012896 | $0.009671 | $0.007252 | $0.005438 |
| Nokia acción | $0.02026 | $0.013421 | $0.008891 | $0.00589 | $0.0039019 | $0.002584 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Hydranet
Podría preguntarse cosas como: "¿Debo invertir en Hydranet ahora?", "¿Debería comprar HDN hoy?", "¿Será Hydranet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Hydranet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Hydranet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Hydranet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Hydranet es de $0.03058 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Hydranet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Hydranet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.031378 | $0.032194 | $0.03303 | $0.033889 |
| Si Hydranet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.032173 | $0.033846 | $0.0356055 | $0.037456 |
| Si Hydranet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.034558 | $0.039049 | $0.044124 | $0.049859 |
| Si Hydranet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.038533 | $0.048549 | $0.061168 | $0.077068 |
| Si Hydranet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.046482 | $0.070647 | $0.107374 | $0.163194 |
| Si Hydranet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.070331 | $0.161739 | $0.371944 | $0.855347 |
| Si Hydranet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.110079 | $0.396212 | $1.42 | $5.13 |
Cuadro de preguntas
¿Es HDN una buena inversión?
La decisión de adquirir Hydranet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Hydranet ha experimentado una caída de -7.7832% durante las últimas 24 horas, y Hydranet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Hydranet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Hydranet subir?
Parece que el valor medio de Hydranet podría potencialmente aumentar hasta $0.031541 para el final de este año. Mirando las perspectivas de Hydranet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.09916. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Hydranet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Hydranet, el precio de Hydranet aumentará en un 0.86% durante la próxima semana y alcanzará $0.030845 para el 13 de enero de 2026.
¿Cuál será el precio de Hydranet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Hydranet, el precio de Hydranet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0270303 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Hydranet este año en 2026?
Según nuestra predicción más reciente sobre el valor de Hydranet en 2026, se anticipa que HDN fluctúe dentro del rango de $0.010566 y $0.031541. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Hydranet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Hydranet en 5 años?
El futuro de Hydranet parece estar en una tendencia alcista, con un precio máximo de $0.09916 proyectada después de un período de cinco años. Basado en el pronóstico de Hydranet para 2030, el valor de Hydranet podría potencialmente alcanzar su punto más alto de aproximadamente $0.09916, mientras que su punto más bajo se anticipa que esté alrededor de $0.034296.
¿Cuánto será Hydranet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Hydranet, se espera que el valor de HDN en 2026 crezca en un 3.13% hasta $0.031541 si ocurre lo mejor. El precio estará entre $0.031541 y $0.010566 durante 2026.
¿Cuánto será Hydranet en 2027?
Según nuestra última simulación experimental para la predicción de precios de Hydranet, el valor de HDN podría disminuir en un -12.62% hasta $0.026722 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.026722 y $0.010172 a lo largo del año.
¿Cuánto será Hydranet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Hydranet sugiere que el valor de HDN en 2028 podría aumentar en un 47.02% , alcanzando $0.044964 en el mejor escenario. Se espera que el precio oscile entre $0.044964 y $0.018357 durante el año.
¿Cuánto será Hydranet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Hydranet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.132657 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.132657 y $0.040326.
¿Cuánto será Hydranet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Hydranet, se espera que el valor de HDN en 2030 aumente en un 224.23% , alcanzando $0.09916 en el mejor escenario. Se pronostica que el precio oscile entre $0.09916 y $0.034296 durante el transcurso de 2030.
¿Cuánto será Hydranet en 2031?
Nuestra simulación experimental indica que el precio de Hydranet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.090522 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.090522 y $0.040548 durante el año.
¿Cuánto será Hydranet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Hydranet, HDN podría experimentar un 449.04% aumento en valor, alcanzando $0.167914 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.167914 y $0.061894 a lo largo del año.
¿Cuánto será Hydranet en 2033?
Según nuestra predicción experimental de precios de Hydranet, se anticipa que el valor de HDN aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.447262. A lo largo del año, el precio de HDN podría oscilar entre $0.447262 y $0.143829.
¿Cuánto será Hydranet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Hydranet sugieren que HDN podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.25903 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.25903 y $0.115632.
¿Cuánto será Hydranet en 2035?
Basado en nuestra predicción experimental para el precio de Hydranet, HDN podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.3052026 en 2035. El rango de precios esperado para el año está entre $0.3052026 y $0.136713.
¿Cuánto será Hydranet en 2036?
Nuestra reciente simulación de predicción de precios de Hydranet sugiere que el valor de HDN podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.631456 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.631456 y $0.2263033.
¿Cuánto será Hydranet en 2037?
Según la simulación experimental, el valor de Hydranet podría aumentar en un 4830.69% en 2037, con un máximo de $1.50 bajo condiciones favorables. Se espera que el precio caiga entre $1.50 y $0.5877028 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de LootBot
Predicción de precios de SpaceFalcon
Predicción de precios de OraiDEX
Predicción de precios de Prisma Governance Token
Predicción de precios de Santiment Network Token
Predicción de precios de Roundtable
Predicción de precios de DeFi Yield Protocol
Predicción de precios de NFTX
Predicción de precios de Polka City
Predicción de precios de TONToken
Predicción de precios de Mint Club
Predicción de precios de ZMINE
Predicción de precios de Metaverse Index
Predicción de precios de DOGWIFHOOD
Predicción de precios de Law Blocks
Predicción de precios de MARS4
Predicción de precios de Arianee
Predicción de precios de Dogami
Predicción de precios de Morpheus Labs
Predicción de precios de ScarQuest
Predicción de precios de Diamond
Predicción de precios de WHALE
Predicción de precios de Bitcoin 2
Predicción de precios de Yup
Predicción de precios de IguVerse IGU
¿Cómo leer y predecir los movimientos de precio de Hydranet?
Los traders de Hydranet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Hydranet
Las medias móviles son herramientas populares para la predicción de precios de Hydranet. Una media móvil simple (SMA) calcula el precio de cierre promedio de HDN durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de HDN por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de HDN.
¿Cómo leer gráficos de Hydranet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Hydranet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de HDN dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Hydranet?
La acción del precio de Hydranet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de HDN. La capitalización de mercado de Hydranet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de HDN, grandes poseedores de Hydranet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Hydranet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


