Predicción del precio de GRDM - Pronóstico de GRDM
Predicción de precio de GRDM hasta $0.013385 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004484 | $0.013385 |
| 2027 | $0.004316 | $0.01134 |
| 2028 | $0.00779 | $0.019081 |
| 2029 | $0.017113 | $0.056294 |
| 2030 | $0.014554 | $0.04208 |
| 2031 | $0.0172074 | $0.038414 |
| 2032 | $0.026265 | $0.071256 |
| 2033 | $0.061036 | $0.1898024 |
| 2034 | $0.04907 | $0.109923 |
| 2035 | $0.058016 | $0.129517 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en GRDM hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.65, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de GRDM para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'GRDM'
'name_with_ticker' => 'GRDM <small>GRDM</small>'
'name_lang' => 'GRDM'
'name_lang_with_ticker' => 'GRDM <small>GRDM</small>'
'name_with_lang' => 'GRDM'
'name_with_lang_with_ticker' => 'GRDM <small>GRDM</small>'
'image' => '/uploads/coins/grdm.jpg?1757598998'
'price_for_sd' => 0.01297
'ticker' => 'GRDM'
'marketcap' => '$5.19M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$1.12'
'current_supply' => '400M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01297'
'change_24h_pct' => '0%'
'ath_price' => '$0.02841'
'ath_days' => 114
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 sept. 2025'
'ath_pct' => '-54.32%'
'fdv' => '$12.98M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.639932'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0130896'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01147'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004484'
'current_year_max_price_prediction' => '$0.013385'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014554'
'grand_prediction_max_price' => '$0.04208'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013224496885277
107 => 0.013273872356155
108 => 0.013385117813215
109 => 0.012434537562677
110 => 0.012861320187599
111 => 0.013112014995616
112 => 0.011979366732639
113 => 0.013089626181199
114 => 0.012417990075366
115 => 0.01219002669341
116 => 0.012496949355322
117 => 0.012377341295483
118 => 0.012274509309254
119 => 0.012217127294061
120 => 0.01244249742315
121 => 0.012431983637253
122 => 0.012063234363605
123 => 0.011582215968275
124 => 0.011743661530638
125 => 0.011685006844271
126 => 0.011472434694273
127 => 0.011615682657312
128 => 0.01098489112422
129 => 0.0098996470772258
130 => 0.010616592536594
131 => 0.010588990916295
201 => 0.010575072927707
202 => 0.011113837625505
203 => 0.011062047831228
204 => 0.010968048847488
205 => 0.011470708329221
206 => 0.011287230856665
207 => 0.011852665194355
208 => 0.012225096819157
209 => 0.012130636112206
210 => 0.012480909855452
211 => 0.011747380910321
212 => 0.01199102980182
213 => 0.012041245500675
214 => 0.011464505589242
215 => 0.011070521282067
216 => 0.011044247020528
217 => 0.010361132526268
218 => 0.010726046775194
219 => 0.011047156213072
220 => 0.010893369711428
221 => 0.010844685499248
222 => 0.011093402580956
223 => 0.011112730028322
224 => 0.010672062180136
225 => 0.01076369097991
226 => 0.011145798306987
227 => 0.010754062855654
228 => 0.0099929848633367
301 => 0.0098042269985155
302 => 0.0097790432198507
303 => 0.0092671169198805
304 => 0.0098168407016237
305 => 0.0095768715392114
306 => 0.010334931248
307 => 0.0099019316078957
308 => 0.0098832658588362
309 => 0.0098550498414627
310 => 0.0094144137276693
311 => 0.0095108850327041
312 => 0.0098315703436346
313 => 0.0099459944753532
314 => 0.0099340591009657
315 => 0.0098299988106618
316 => 0.009877637078688
317 => 0.0097241776191027
318 => 0.0096699878899407
319 => 0.0094989501986461
320 => 0.0092475720428112
321 => 0.0092825277171719
322 => 0.0087844818137905
323 => 0.0085131199723317
324 => 0.0084380105911074
325 => 0.0083375711874972
326 => 0.0084493554890042
327 => 0.0087830709123224
328 => 0.0083805393101241
329 => 0.007690427112464
330 => 0.0077319040314374
331 => 0.0078250903537627
401 => 0.0076514382585987
402 => 0.0074870911240416
403 => 0.0076299776236345
404 => 0.0073375679878975
405 => 0.007860426661238
406 => 0.0078462847994186
407 => 0.0080411741794765
408 => 0.0081630425083593
409 => 0.0078821754656243
410 => 0.0078115381639217
411 => 0.0078517763812579
412 => 0.0071867282804278
413 => 0.0079868255612644
414 => 0.0079937448357738
415 => 0.0079344978066106
416 => 0.0083605249084239
417 => 0.0092595749744353
418 => 0.0089213161753967
419 => 0.0087903321444827
420 => 0.0085413314059663
421 => 0.0088731101058385
422 => 0.0088476346782423
423 => 0.0087324251333832
424 => 0.0086627460411768
425 => 0.0087911319050447
426 => 0.0086468376118601
427 => 0.0086209183918622
428 => 0.008463876119064
429 => 0.0084078191726432
430 => 0.0083663168412046
501 => 0.0083206268522255
502 => 0.0084214075826774
503 => 0.0081930251886641
504 => 0.0079176184100862
505 => 0.0078947213163901
506 => 0.0079579422052181
507 => 0.0079299716681533
508 => 0.0078945874042197
509 => 0.0078270292080394
510 => 0.0078069861343851
511 => 0.0078721164002444
512 => 0.0077985881274197
513 => 0.0079070830992648
514 => 0.0078775784702236
515 => 0.007712768010819
516 => 0.0075073531577537
517 => 0.0075055245346892
518 => 0.0074612682415441
519 => 0.0074049011982457
520 => 0.0073892211763033
521 => 0.0076179441211816
522 => 0.008091393771978
523 => 0.0079984442768367
524 => 0.0080656098129237
525 => 0.0083959977742973
526 => 0.0085010181721053
527 => 0.0084264771812856
528 => 0.0083244408755635
529 => 0.0083289299551723
530 => 0.0086776189003149
531 => 0.0086993662021129
601 => 0.008754314617811
602 => 0.0088249388604034
603 => 0.008438504795187
604 => 0.008310728945452
605 => 0.0082501816591134
606 => 0.008063719451939
607 => 0.0082648029563151
608 => 0.0081476402095693
609 => 0.0081634494669547
610 => 0.0081531536673428
611 => 0.0081587758701298
612 => 0.0078602805115829
613 => 0.0079690365317832
614 => 0.0077882085546231
615 => 0.0075461001920988
616 => 0.0075452885599735
617 => 0.0076045442387066
618 => 0.0075692966423212
619 => 0.0074744462667466
620 => 0.0074879193149159
621 => 0.007369881235946
622 => 0.0075022512748512
623 => 0.0075060471739243
624 => 0.007455077498701
625 => 0.0076590118071799
626 => 0.0077425638597582
627 => 0.00770901452765
628 => 0.0077402099491818
629 => 0.0080023067480016
630 => 0.0080450399622943
701 => 0.0080640192332854
702 => 0.0080385895244289
703 => 0.0077450005975264
704 => 0.007758022514871
705 => 0.007662476325574
706 => 0.0075817498640273
707 => 0.0075849784991347
708 => 0.0076264823940751
709 => 0.007807732337451
710 => 0.008189162158018
711 => 0.008203637140887
712 => 0.0082211812423892
713 => 0.0081498205646208
714 => 0.0081282975013761
715 => 0.0081566919773698
716 => 0.0082999369633476
717 => 0.0086684019579167
718 => 0.0085381618198864
719 => 0.0084322745603593
720 => 0.0085251662339648
721 => 0.0085108662889222
722 => 0.008390160361807
723 => 0.0083867725484564
724 => 0.008155099282303
725 => 0.0080694549507511
726 => 0.0079978841369392
727 => 0.00791973067666
728 => 0.0078733986856788
729 => 0.0079445856813393
730 => 0.0079608669895066
731 => 0.0078052153793593
801 => 0.0077840006400487
802 => 0.0079111091048683
803 => 0.0078551734085824
804 => 0.007912704659351
805 => 0.0079260524030232
806 => 0.0079239031088674
807 => 0.0078654998177711
808 => 0.0079027243339047
809 => 0.0078146772560864
810 => 0.0077189392832025
811 => 0.0076578644211891
812 => 0.0076045685036775
813 => 0.0076341401762898
814 => 0.007528722563001
815 => 0.0074949973468725
816 => 0.0078901135054167
817 => 0.0081819900599479
818 => 0.0081777460592492
819 => 0.0081519117964643
820 => 0.0081135273222548
821 => 0.008297128899977
822 => 0.008233165781528
823 => 0.0082797042944971
824 => 0.0082915502992629
825 => 0.0083274045879008
826 => 0.0083402194143086
827 => 0.008301484108435
828 => 0.0081714836908042
829 => 0.0078475350101368
830 => 0.0076967360248034
831 => 0.0076469698478877
901 => 0.0076487787538991
902 => 0.0075988810507909
903 => 0.0076135781606145
904 => 0.0075937699957793
905 => 0.0075562581236912
906 => 0.0076318239238941
907 => 0.0076405321784233
908 => 0.0076228942177119
909 => 0.0076270485959629
910 => 0.007481013814544
911 => 0.0074921165218044
912 => 0.0074302952369146
913 => 0.0074187044912645
914 => 0.0072624256664581
915 => 0.0069855550753358
916 => 0.0071389682592962
917 => 0.0069536667062301
918 => 0.0068834902003073
919 => 0.0072156948646601
920 => 0.0071823507302822
921 => 0.007125280066574
922 => 0.007040860660381
923 => 0.0070095486814449
924 => 0.0068193070095968
925 => 0.0068080665167241
926 => 0.0069023554262493
927 => 0.0068588443387867
928 => 0.0067977382930518
929 => 0.0065764183896205
930 => 0.006327581541662
1001 => 0.0063350923619692
1002 => 0.0064142427335307
1003 => 0.0066443831137275
1004 => 0.0065544632857156
1005 => 0.0064892254187818
1006 => 0.0064770083273482
1007 => 0.0066299308048533
1008 => 0.0068463481487725
1009 => 0.0069478863244742
1010 => 0.0068472650761141
1011 => 0.0067316768038306
1012 => 0.00673871212638
1013 => 0.0067855149754212
1014 => 0.0067904332930988
1015 => 0.0067151972105087
1016 => 0.0067363757270599
1017 => 0.0067042036238144
1018 => 0.006506763485582
1019 => 0.0065031924195708
1020 => 0.0064547374254962
1021 => 0.0064532702275329
1022 => 0.0063708361949473
1023 => 0.006359303103949
1024 => 0.0061956253288622
1025 => 0.0063033585360863
1026 => 0.0062310967569276
1027 => 0.006122181210905
1028 => 0.006103404129718
1029 => 0.0061028396679835
1030 => 0.0062146715806783
1031 => 0.0063020517150747
1101 => 0.0062323537815141
1102 => 0.00621648491308
1103 => 0.0063859229116108
1104 => 0.0063643603818361
1105 => 0.0063456873701146
1106 => 0.0068269703493107
1107 => 0.0064459973162978
1108 => 0.0062798713287237
1109 => 0.0060742588726313
1110 => 0.0061412073251229
1111 => 0.0061553143477403
1112 => 0.005660853455269
1113 => 0.0054602507327746
1114 => 0.0053914114379686
1115 => 0.005351793450563
1116 => 0.0053698478649151
1117 => 0.0051892818863176
1118 => 0.0053106252102208
1119 => 0.0051542703356175
1120 => 0.0051280569320675
1121 => 0.0054076388165103
1122 => 0.0054465410024368
1123 => 0.0052805721913124
1124 => 0.0053871510359641
1125 => 0.0053485040653366
1126 => 0.0051569505911769
1127 => 0.005149634657436
1128 => 0.0050535198575328
1129 => 0.004903118807177
1130 => 0.0048343814913654
1201 => 0.004798582500486
1202 => 0.0048133538618313
1203 => 0.004805885009524
1204 => 0.0047571456960926
1205 => 0.0048086786899177
1206 => 0.0046770331855978
1207 => 0.0046246108850378
1208 => 0.0046009329480629
1209 => 0.0044840899857465
1210 => 0.0046700390990931
1211 => 0.0047066734169475
1212 => 0.0047433799157251
1213 => 0.0050628849269927
1214 => 0.0050469233595416
1215 => 0.0051912081557012
1216 => 0.0051856015138452
1217 => 0.0051444491527217
1218 => 0.0049708341103766
1219 => 0.0050400339718648
1220 => 0.0048270475542503
1221 => 0.0049866314599957
1222 => 0.0049138040297968
1223 => 0.0049620084325876
1224 => 0.0048753325699539
1225 => 0.004923302571094
1226 => 0.0047153607727544
1227 => 0.0045211876472849
1228 => 0.0045993285812408
1229 => 0.0046842767129505
1230 => 0.0048684659068785
1231 => 0.0047587643425028
]
'min_raw' => 0.0044840899857465
'max_raw' => 0.013385117813215
'avg_raw' => 0.0089346038994809
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004484'
'max' => '$0.013385'
'avg' => '$0.008934'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0084944700142535
'max_diff' => 0.0004065578132152
'year' => 2026
]
1 => [
'items' => [
101 => 0.0047982171733277
102 => 0.0046660567943884
103 => 0.0043933721828907
104 => 0.0043949155481783
105 => 0.0043529689614565
106 => 0.004316720986227
107 => 0.0047713648868159
108 => 0.0047148227309212
109 => 0.0046247302055574
110 => 0.0047453226308915
111 => 0.004777209182209
112 => 0.0047781169474978
113 => 0.0048660980680805
114 => 0.004913053607907
115 => 0.0049213297253184
116 => 0.0050597699195133
117 => 0.0051061732465371
118 => 0.0052973019833035
119 => 0.0049090697584129
120 => 0.0049010743712245
121 => 0.0047470196136202
122 => 0.0046493156508381
123 => 0.0047537094875412
124 => 0.0048461881756804
125 => 0.004749893184244
126 => 0.0047624672772274
127 => 0.0046331991188138
128 => 0.0046794064028145
129 => 0.0047192063405892
130 => 0.0046972311542822
131 => 0.0046643332367696
201 => 0.004838605977866
202 => 0.004828772826833
203 => 0.004991059609855
204 => 0.0051175737624599
205 => 0.0053443097410376
206 => 0.0051076989273778
207 => 0.0050990758888853
208 => 0.005183367473329
209 => 0.0051061603419347
210 => 0.0051549525838763
211 => 0.0053364485565357
212 => 0.0053402832804404
213 => 0.0052760467142742
214 => 0.0052721379133852
215 => 0.0052844752485884
216 => 0.0053567354062235
217 => 0.0053314854868155
218 => 0.0053607053328042
219 => 0.0053972451976433
220 => 0.0055483895711994
221 => 0.0055848299679669
222 => 0.0054962986960014
223 => 0.0055042920786172
224 => 0.0054711789526644
225 => 0.0054391920879001
226 => 0.0055110938885837
227 => 0.0056424958425662
228 => 0.0056416783978303
301 => 0.0056721610970652
302 => 0.0056911515661563
303 => 0.0056096305709444
304 => 0.0055565634006716
305 => 0.005576912730506
306 => 0.0056094517520619
307 => 0.0055663607643654
308 => 0.005300383226615
309 => 0.0053810638208576
310 => 0.0053676346248961
311 => 0.005348509816801
312 => 0.0054296347781964
313 => 0.0054218100777642
314 => 0.0051874299212213
315 => 0.0052024341783986
316 => 0.0051883423797959
317 => 0.005233875863992
318 => 0.0051037013843599
319 => 0.0051437421775562
320 => 0.0051688553876899
321 => 0.0051836472613873
322 => 0.0052370856520653
323 => 0.0052308152737029
324 => 0.0052366958765423
325 => 0.0053159309027057
326 => 0.0057166744748626
327 => 0.0057384860633042
328 => 0.0056310778246039
329 => 0.0056739852974308
330 => 0.0055916123324359
331 => 0.0056469098556879
401 => 0.0056847430166921
402 => 0.0055137822370125
403 => 0.0055036590491661
404 => 0.005420946101643
405 => 0.0054653913545411
406 => 0.0053946757614534
407 => 0.0054120268944707
408 => 0.0053635116139097
409 => 0.0054508294596234
410 => 0.0055484643789528
411 => 0.0055731308152952
412 => 0.0055082440408469
413 => 0.0054612617398995
414 => 0.0053787762963679
415 => 0.0055159514272689
416 => 0.0055560656158807
417 => 0.0055157407245132
418 => 0.0055063965660671
419 => 0.0054886894026962
420 => 0.0055101532244834
421 => 0.0055558471453946
422 => 0.0055342987361271
423 => 0.0055485318400824
424 => 0.0054942899249179
425 => 0.0056096575577859
426 => 0.0057928891235132
427 => 0.0057934782429584
428 => 0.0057719297175369
429 => 0.0057631125252039
430 => 0.0057852226199602
501 => 0.0057972164393619
502 => 0.0058687164315056
503 => 0.0059454387717612
504 => 0.0063034684571544
505 => 0.0062029351541749
506 => 0.0065206003903371
507 => 0.006771832348473
508 => 0.0068471658276759
509 => 0.0067778625715233
510 => 0.0065407798759138
511 => 0.0065291474678044
512 => 0.0068834491087773
513 => 0.0067833426671593
514 => 0.0067714353244649
515 => 0.0066447613159694
516 => 0.0067196413438714
517 => 0.0067032639833455
518 => 0.0066774115185474
519 => 0.0068202773955965
520 => 0.0070877095637076
521 => 0.0070460277523446
522 => 0.0070149142137256
523 => 0.0068785837445122
524 => 0.0069606851374913
525 => 0.006931450404
526 => 0.0070570613718989
527 => 0.0069826522171392
528 => 0.0067825842624066
529 => 0.0068144457436304
530 => 0.0068096299448398
531 => 0.0069087387426986
601 => 0.006878988741613
602 => 0.0068038207796574
603 => 0.0070867955096306
604 => 0.0070684207046543
605 => 0.0070944719770455
606 => 0.0071059405528145
607 => 0.0072781822843751
608 => 0.0073487442106749
609 => 0.0073647630033053
610 => 0.0074317913758348
611 => 0.0073630952763353
612 => 0.0076379286538222
613 => 0.0078206768128788
614 => 0.0080329482037573
615 => 0.0083431337590018
616 => 0.0084597663971506
617 => 0.0084386977550073
618 => 0.0086738769028949
619 => 0.0090964886039102
620 => 0.0085241196627134
621 => 0.0091268255476139
622 => 0.0089360158230285
623 => 0.0084836093985568
624 => 0.0084544797583422
625 => 0.008760854641541
626 => 0.0094403646449863
627 => 0.0092701550960619
628 => 0.0094406430468325
629 => 0.009241759796258
630 => 0.0092318835665473
701 => 0.0094309837312678
702 => 0.0098961921185223
703 => 0.0096751890518133
704 => 0.0093583269635108
705 => 0.0095922929985932
706 => 0.0093896099664705
707 => 0.0089329083676893
708 => 0.0092700249400277
709 => 0.0090446046886322
710 => 0.0091103943019891
711 => 0.0095841941416906
712 => 0.0095271852914588
713 => 0.0096009600225361
714 => 0.0094707495532056
715 => 0.0093491124425445
716 => 0.0091220677426051
717 => 0.0090548510001215
718 => 0.0090734272895389
719 => 0.009054841794635
720 => 0.0089278123716674
721 => 0.0089003803798721
722 => 0.0088546591917235
723 => 0.0088688300997474
724 => 0.0087828608898227
725 => 0.0089451025510957
726 => 0.0089752160330966
727 => 0.0090932819843394
728 => 0.0091055399830662
729 => 0.0094343519767138
730 => 0.0092532478560738
731 => 0.0093747481359766
801 => 0.0093638800073371
802 => 0.0084934144175913
803 => 0.0086133568956754
804 => 0.0087999497515511
805 => 0.0087158899228997
806 => 0.0085970489921573
807 => 0.0085010785687352
808 => 0.0083556735637711
809 => 0.0085603283160023
810 => 0.0088294275525797
811 => 0.0091123647837872
812 => 0.0094522953283012
813 => 0.0093764267879934
814 => 0.0091060100187082
815 => 0.0091181407174388
816 => 0.0091931279237371
817 => 0.0090960126782747
818 => 0.009067371496473
819 => 0.0091891930651728
820 => 0.0091900319833645
821 => 0.0090782891566905
822 => 0.0089541074535638
823 => 0.0089535871276934
824 => 0.008931490193075
825 => 0.009245690791838
826 => 0.009418469351894
827 => 0.0094382781353579
828 => 0.0094171360629388
829 => 0.0094252728075141
830 => 0.0093247367703332
831 => 0.0095545323382929
901 => 0.009765415475879
902 => 0.0097088942901448
903 => 0.0096241609977693
904 => 0.0095566668490839
905 => 0.0096929948137094
906 => 0.0096869243440447
907 => 0.0097635735956426
908 => 0.0097600963428426
909 => 0.0097343220824544
910 => 0.0097088952106248
911 => 0.0098097098833059
912 => 0.0097806768766078
913 => 0.0097515987736312
914 => 0.0096932781864769
915 => 0.0097012049228736
916 => 0.0096164862608956
917 => 0.0095772915314024
918 => 0.0089878968411302
919 => 0.0088303913208624
920 => 0.0088799457638592
921 => 0.0088962603731742
922 => 0.0088277137689049
923 => 0.0089259919912493
924 => 0.0089106754343993
925 => 0.0089702631972165
926 => 0.0089330353500082
927 => 0.0089345631938432
928 => 0.0090440423546689
929 => 0.0090758246208142
930 => 0.0090596599037384
1001 => 0.0090709811174842
1002 => 0.0093318737098718
1003 => 0.0092947831261098
1004 => 0.0092750794927289
1005 => 0.0092805375338324
1006 => 0.0093472011847877
1007 => 0.0093658633673548
1008 => 0.0092867903884498
1009 => 0.0093240816624168
1010 => 0.0094828631740012
1011 => 0.0095384277168005
1012 => 0.0097157630649223
1013 => 0.0096404278571557
1014 => 0.0097787088914427
1015 => 0.010203737647362
1016 => 0.010543280027344
1017 => 0.010231022822531
1018 => 0.010854549162905
1019 => 0.011340053858428
1020 => 0.011321419379564
1021 => 0.011236760405973
1022 => 0.010684026217931
1023 => 0.010175391977291
1024 => 0.010600886117337
1025 => 0.010601970789403
1026 => 0.010565420465421
1027 => 0.010338409542266
1028 => 0.01055752097737
1029 => 0.010574913247393
1030 => 0.010565178201158
1031 => 0.01039112945863
1101 => 0.010125389198374
1102 => 0.010177314209136
1103 => 0.010262368436005
1104 => 0.010101343040371
1105 => 0.010049885669593
1106 => 0.010145554712035
1107 => 0.010453820300217
1108 => 0.010395544476432
1109 => 0.010394022659162
1110 => 0.010643351346109
1111 => 0.010464885814753
1112 => 0.010177969149808
1113 => 0.010105518907944
1114 => 0.009848369357656
1115 => 0.010025983467975
1116 => 0.010032375483605
1117 => 0.0099350980505557
1118 => 0.010185862677374
1119 => 0.010183551837191
1120 => 0.010421615528966
1121 => 0.010876703895
1122 => 0.010742111871626
1123 => 0.010585595992011
1124 => 0.01060261360784
1125 => 0.010789254850426
1126 => 0.010676407294553
1127 => 0.010716988062446
1128 => 0.010789193426573
1129 => 0.010832756715509
1130 => 0.010596345520963
1201 => 0.01054122676266
1202 => 0.010428473127226
1203 => 0.010399057808388
1204 => 0.010490893291767
1205 => 0.010466697886492
1206 => 0.010031838259443
1207 => 0.0099863930088799
1208 => 0.0099877867498338
1209 => 0.0098735125064898
1210 => 0.0096992168564293
1211 => 0.010157255418136
1212 => 0.010120468511385
1213 => 0.010079858613413
1214 => 0.010084833094198
1215 => 0.010283652109467
1216 => 0.01016832704001
1217 => 0.010474937638569
1218 => 0.010411907717064
1219 => 0.010347261315905
1220 => 0.010338325214088
1221 => 0.010313441865013
1222 => 0.010228107602351
1223 => 0.010125061352393
1224 => 0.010057021292457
1225 => 0.0092770705301573
1226 => 0.0094218248548752
1227 => 0.0095883515106913
1228 => 0.0096458358449653
1229 => 0.0095475049133948
1230 => 0.010231990306864
1231 => 0.010357052384116
]
'min_raw' => 0.004316720986227
'max_raw' => 0.011340053858428
'avg_raw' => 0.0078283874223276
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004316'
'max' => '$0.01134'
'avg' => '$0.007828'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016736899951952
'max_diff' => -0.0020450639547871
'year' => 2027
]
2 => [
'items' => [
101 => 0.0099782311945217
102 => 0.0099073692171159
103 => 0.010236636006305
104 => 0.010038047881196
105 => 0.010127472101773
106 => 0.0099341858493192
107 => 0.010326928591951
108 => 0.010323936550276
109 => 0.010171150752895
110 => 0.01030028426261
111 => 0.010277844137477
112 => 0.010105349348529
113 => 0.010332396984434
114 => 0.010332509597229
115 => 0.010185456589099
116 => 0.010013730869647
117 => 0.0099830303669893
118 => 0.009959901662269
119 => 0.010121783858227
120 => 0.010266926928931
121 => 0.010537002199492
122 => 0.010604905539341
123 => 0.010869936795353
124 => 0.010712123586536
125 => 0.010782080137981
126 => 0.010858027870534
127 => 0.010894440006405
128 => 0.010835108384986
129 => 0.011246811016791
130 => 0.011281571333158
131 => 0.01129322616656
201 => 0.011154402355534
202 => 0.011277710391842
203 => 0.011220018645187
204 => 0.011370116542756
205 => 0.011393653809641
206 => 0.011373718581952
207 => 0.011381189681972
208 => 0.011029874115048
209 => 0.011011656549566
210 => 0.010763258751555
211 => 0.010864482690308
212 => 0.010675249388599
213 => 0.01073525721789
214 => 0.010761708097266
215 => 0.010747891658954
216 => 0.01087020573993
217 => 0.010766213783985
218 => 0.010491761914385
219 => 0.010217235270556
220 => 0.010213788812167
221 => 0.010141510792645
222 => 0.01008926702291
223 => 0.010099331026408
224 => 0.010134797887405
225 => 0.010087205624473
226 => 0.010097361846759
227 => 0.010266022807251
228 => 0.010299846560042
229 => 0.010184900232263
301 => 0.0097233741395522
302 => 0.0096101144787505
303 => 0.009691523276898
304 => 0.0096526151147816
305 => 0.0077904137533501
306 => 0.0082279103407952
307 => 0.0079679647245156
308 => 0.00808775962402
309 => 0.0078224224623895
310 => 0.0079490552634317
311 => 0.0079256708089687
312 => 0.0086291523751152
313 => 0.0086181684780671
314 => 0.0086234258883291
315 => 0.0083724759984125
316 => 0.0087722459870818
317 => 0.0089691870587641
318 => 0.0089327385078126
319 => 0.0089419118228339
320 => 0.0087842838781214
321 => 0.0086249520713916
322 => 0.0084482285767389
323 => 0.0087765589861195
324 => 0.0087400542493834
325 => 0.0088237829814663
326 => 0.009036728721492
327 => 0.0090680857906129
328 => 0.0091102300095036
329 => 0.009095124307061
330 => 0.0094550034235071
331 => 0.0094114196879466
401 => 0.0095164439507509
402 => 0.0093004010739525
403 => 0.009055928051877
404 => 0.0091023943809483
405 => 0.0090979192998002
406 => 0.0090409463805247
407 => 0.0089895137764342
408 => 0.0089038929816698
409 => 0.0091748098457977
410 => 0.0091638111158664
411 => 0.0093418677688293
412 => 0.0093103945258681
413 => 0.0091002085065639
414 => 0.0091077153413626
415 => 0.0091582024130459
416 => 0.0093329387445928
417 => 0.0093848123847526
418 => 0.0093607824478234
419 => 0.009417659526137
420 => 0.0094626128497708
421 => 0.0094233049714719
422 => 0.0099798216352051
423 => 0.0097487171162166
424 => 0.0098613558507567
425 => 0.0098882195252386
426 => 0.0098194087879355
427 => 0.0098343313729288
428 => 0.0098569350230326
429 => 0.0099941799602142
430 => 0.010354350387521
501 => 0.010513867418013
502 => 0.010993782274678
503 => 0.010500621749215
504 => 0.010471359644535
505 => 0.010557806802261
506 => 0.01083956762727
507 => 0.011067908311491
508 => 0.011143662089737
509 => 0.011153674202091
510 => 0.011295793326097
511 => 0.011377253357613
512 => 0.011278536326339
513 => 0.011194883978438
514 => 0.01089525165157
515 => 0.010929934909277
516 => 0.011168868161144
517 => 0.011506375452506
518 => 0.011795991820143
519 => 0.011694578262346
520 => 0.012468292121522
521 => 0.012545002690322
522 => 0.012534403770063
523 => 0.012709161861852
524 => 0.012362302638518
525 => 0.012214013600461
526 => 0.011212970565549
527 => 0.011494222826344
528 => 0.011903039504777
529 => 0.011848931084403
530 => 0.011552037484824
531 => 0.011795766599724
601 => 0.011715182132224
602 => 0.011651621819254
603 => 0.011942803934743
604 => 0.011622637237661
605 => 0.011899845597059
606 => 0.011544323008778
607 => 0.011695041510935
608 => 0.011609486399677
609 => 0.011664851041901
610 => 0.011341190474744
611 => 0.011515829860366
612 => 0.011333924902141
613 => 0.011333838655506
614 => 0.011329823093471
615 => 0.011543833470133
616 => 0.011550812340832
617 => 0.011392658349128
618 => 0.011369865888093
619 => 0.01145414156255
620 => 0.011355476819595
621 => 0.011401641431835
622 => 0.011356875098672
623 => 0.011346797254153
624 => 0.011266495274427
625 => 0.011231898973612
626 => 0.011245465074598
627 => 0.011199156978127
628 => 0.011171254674966
629 => 0.011324272623082
630 => 0.01124252130613
701 => 0.01131174306128
702 => 0.011232856134805
703 => 0.010959399678244
704 => 0.010802131978326
705 => 0.01028559808131
706 => 0.010432086453746
707 => 0.010529208396224
708 => 0.010497109594814
709 => 0.010566070240829
710 => 0.010570303864419
711 => 0.010547884055429
712 => 0.010521924788774
713 => 0.010509289253404
714 => 0.010603464181953
715 => 0.010658135897759
716 => 0.010538955882475
717 => 0.0105110336724
718 => 0.010631531247961
719 => 0.010705034699443
720 => 0.01124774288717
721 => 0.011207537311699
722 => 0.011308445416186
723 => 0.011297084712181
724 => 0.011402852481605
725 => 0.011575738083819
726 => 0.011224213314944
727 => 0.011285225860009
728 => 0.011270266992944
729 => 0.011433583981128
730 => 0.011434093838939
731 => 0.011336177146234
801 => 0.011389259373866
802 => 0.011359630330637
803 => 0.011413174016358
804 => 0.011207000341726
805 => 0.011458097622355
806 => 0.01160045360012
807 => 0.011602430213009
808 => 0.011669905816663
809 => 0.011738464937898
810 => 0.011870058200869
811 => 0.011734794873216
812 => 0.011491469314389
813 => 0.0115090366338
814 => 0.011366374947688
815 => 0.011368773116406
816 => 0.011355971503844
817 => 0.011394390106802
818 => 0.01121543106461
819 => 0.011257432394114
820 => 0.011198630286849
821 => 0.011285098035711
822 => 0.011192073031566
823 => 0.011270259779326
824 => 0.011304002587727
825 => 0.011428514277158
826 => 0.0111736825538
827 => 0.010654063419281
828 => 0.01076329366113
829 => 0.010601733553585
830 => 0.010616686556641
831 => 0.010646894002567
901 => 0.01054898178706
902 => 0.01056766035221
903 => 0.010566993022424
904 => 0.010561242334847
905 => 0.010535771586044
906 => 0.010498833961046
907 => 0.010645982090236
908 => 0.010670985424755
909 => 0.010726564740133
910 => 0.010891931082886
911 => 0.010875407085638
912 => 0.010902358410724
913 => 0.010843523819387
914 => 0.010619415724591
915 => 0.010631585872355
916 => 0.010479823934725
917 => 0.01072268384618
918 => 0.010665171413553
919 => 0.010628092774098
920 => 0.010617975523792
921 => 0.010783751777724
922 => 0.010833354631125
923 => 0.010802445461609
924 => 0.010739049853167
925 => 0.010860788162604
926 => 0.010893360198482
927 => 0.010900651876105
928 => 0.011116348819421
929 => 0.010912706939142
930 => 0.010961725563752
1001 => 0.01134415487997
1002 => 0.010997344261798
1003 => 0.011181057581043
1004 => 0.011172065770064
1005 => 0.01126604728767
1006 => 0.011164356542506
1007 => 0.011165617121167
1008 => 0.011249066341942
1009 => 0.01113187696151
1010 => 0.011102859222877
1011 => 0.011062771424785
1012 => 0.011150301665337
1013 => 0.011202772085895
1014 => 0.011625645140321
1015 => 0.011898840418834
1016 => 0.011886980291292
1017 => 0.011995359655793
1018 => 0.011946533759444
1019 => 0.011788862060513
1020 => 0.012057988424574
1021 => 0.011972825582259
1022 => 0.011979846303507
1023 => 0.011979584991911
1024 => 0.012036210836985
1025 => 0.011996086236068
1026 => 0.011916996528954
1027 => 0.011969499967498
1028 => 0.012125416409652
1029 => 0.0126093858302
1030 => 0.01288022152968
1031 => 0.012593081181019
1101 => 0.012791146748563
1102 => 0.012672377986015
1103 => 0.012650794168795
1104 => 0.012775193982143
1105 => 0.012899811540896
1106 => 0.01289187394114
1107 => 0.012801407992667
1108 => 0.012750306073864
1109 => 0.013137266923443
1110 => 0.013422373085707
1111 => 0.013402930756816
1112 => 0.013488742873555
1113 => 0.013740689902367
1114 => 0.013763724781179
1115 => 0.013760822915899
1116 => 0.013703728565323
1117 => 0.013951803134645
1118 => 0.01415875130483
1119 => 0.01369051287278
1120 => 0.013868811938013
1121 => 0.013948856132834
1122 => 0.014066384758873
1123 => 0.014264675251085
1124 => 0.014480071319584
1125 => 0.014510530685367
1126 => 0.014488918307729
1127 => 0.014346858810397
1128 => 0.014582547758758
1129 => 0.014720608817121
1130 => 0.014802821017906
1201 => 0.015011297480289
1202 => 0.013949350458531
1203 => 0.013197651574339
1204 => 0.013080262938908
1205 => 0.013318977345136
1206 => 0.013381924430346
1207 => 0.013356550539227
1208 => 0.012510445103596
1209 => 0.013075808368895
1210 => 0.013684091705264
1211 => 0.013707458345526
1212 => 0.014011977702317
1213 => 0.014111141687559
1214 => 0.01435631968404
1215 => 0.014340983733605
1216 => 0.014400680674114
1217 => 0.014386957381298
1218 => 0.014841097991462
1219 => 0.015342082525005
1220 => 0.015324735023642
1221 => 0.015252712569565
1222 => 0.015359678195522
1223 => 0.015876747922904
1224 => 0.015829144428281
1225 => 0.015875387168452
1226 => 0.016485041517808
1227 => 0.017277678894291
1228 => 0.016909419253423
1229 => 0.01770843671025
1230 => 0.018211375845227
1231 => 0.019081157074292
]
'min_raw' => 0.0077904137533501
'max_raw' => 0.019081157074292
'avg_raw' => 0.013435785413821
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00779'
'max' => '$0.019081'
'avg' => '$0.013435'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0034736927671231
'max_diff' => 0.0077411032158636
'year' => 2028
]
3 => [
'items' => [
101 => 0.01897225618065
102 => 0.019310855630376
103 => 0.018777300852729
104 => 0.01755215123404
105 => 0.017358266617198
106 => 0.017746428530056
107 => 0.018700686716531
108 => 0.017716375543847
109 => 0.017915500412112
110 => 0.017858152436656
111 => 0.017855096606757
112 => 0.017971725205037
113 => 0.017802549340293
114 => 0.017113296433167
115 => 0.01742917697871
116 => 0.017307200330246
117 => 0.017442542515678
118 => 0.018172928471092
119 => 0.017850007429977
120 => 0.017509836345138
121 => 0.017936486375533
122 => 0.018479758477084
123 => 0.018445761485322
124 => 0.018379793111666
125 => 0.018751653379977
126 => 0.019365857598393
127 => 0.019531874530558
128 => 0.019654424835816
129 => 0.019671322452407
130 => 0.019845378405101
131 => 0.018909435679717
201 => 0.020394800821614
202 => 0.020651282349236
203 => 0.020603074452113
204 => 0.020888142875672
205 => 0.020804268513973
206 => 0.020682747723356
207 => 0.021134641810489
208 => 0.020616581705563
209 => 0.019881260608574
210 => 0.019477848911764
211 => 0.020009093976417
212 => 0.020333506799503
213 => 0.020547923039032
214 => 0.02061280526356
215 => 0.018982090249201
216 => 0.018103225300063
217 => 0.018666567656254
218 => 0.019353884210619
219 => 0.018905617601554
220 => 0.018923188803949
221 => 0.018284078421815
222 => 0.019410431298085
223 => 0.019246331158132
224 => 0.0200976829745
225 => 0.019894501030998
226 => 0.020588745387959
227 => 0.020405927582109
228 => 0.021164794072986
301 => 0.021467526461687
302 => 0.02197586125885
303 => 0.022349794404938
304 => 0.022569375100522
305 => 0.022556192299185
306 => 0.023426280409757
307 => 0.022913219849516
308 => 0.022268694866764
309 => 0.022257037443276
310 => 0.022590846064833
311 => 0.023290417359694
312 => 0.023471806018103
313 => 0.023573177532658
314 => 0.023417923529349
315 => 0.022861033062589
316 => 0.022620570582541
317 => 0.022825451582411
318 => 0.022574899725195
319 => 0.023007422523184
320 => 0.023601368706708
321 => 0.023478721168528
322 => 0.023888713500317
323 => 0.024313012431267
324 => 0.024919778958984
325 => 0.025078410197828
326 => 0.025340621603432
327 => 0.025610523271759
328 => 0.025697208413571
329 => 0.025862717246111
330 => 0.025861844932866
331 => 0.026360616939755
401 => 0.026910777909036
402 => 0.027118450938684
403 => 0.027595983619202
404 => 0.026778225638556
405 => 0.027398504460603
406 => 0.027958011484674
407 => 0.027290944144809
408 => 0.028210341066057
409 => 0.028246039165111
410 => 0.028785038078089
411 => 0.028238659420089
412 => 0.02791422151707
413 => 0.028850861586554
414 => 0.029304072212291
415 => 0.029167561483469
416 => 0.028128708096764
417 => 0.027524050867183
418 => 0.025941546267703
419 => 0.027816091324899
420 => 0.02872912754103
421 => 0.028126343553537
422 => 0.028430352734978
423 => 0.030088928253611
424 => 0.030720406426294
425 => 0.030589063380741
426 => 0.030611258193349
427 => 0.030951992353189
428 => 0.03246299526365
429 => 0.031557567294929
430 => 0.032249733051277
501 => 0.032616855272656
502 => 0.032957858851815
503 => 0.032120461836687
504 => 0.031031020623811
505 => 0.030685948860062
506 => 0.028066408565555
507 => 0.027930050117139
508 => 0.027853507987959
509 => 0.02737092069058
510 => 0.026991739266626
511 => 0.026690200120194
512 => 0.025898871352744
513 => 0.026165921582059
514 => 0.024904708689894
515 => 0.025711588003661
516 => 0.023698661774716
517 => 0.025375086552607
518 => 0.024462684763682
519 => 0.025075338025978
520 => 0.025073200536461
521 => 0.023945111638681
522 => 0.023294453505056
523 => 0.023709078191796
524 => 0.024153588768928
525 => 0.024225709114555
526 => 0.024802028680721
527 => 0.02496286708369
528 => 0.024475519213866
529 => 0.023656948352777
530 => 0.023847083694194
531 => 0.023290600418431
601 => 0.022315384882476
602 => 0.023015801706029
603 => 0.023254954804744
604 => 0.023360578437387
605 => 0.022401565962037
606 => 0.022100223421108
607 => 0.021939791180826
608 => 0.023533151884972
609 => 0.023620439781154
610 => 0.023173862563024
611 => 0.025192433935159
612 => 0.024735569065129
613 => 0.025245999059563
614 => 0.023829830904865
615 => 0.023883930435498
616 => 0.023213493735962
617 => 0.023588893489106
618 => 0.023323573043283
619 => 0.023558564898825
620 => 0.023699418048128
621 => 0.024369744735598
622 => 0.025382740606617
623 => 0.024269620281916
624 => 0.023784617816266
625 => 0.024085510618198
626 => 0.024886827800931
627 => 0.026100864351443
628 => 0.025382130278777
629 => 0.02570109225533
630 => 0.025770771257576
701 => 0.025240803361374
702 => 0.026120405023714
703 => 0.026591790700434
704 => 0.027075334865226
705 => 0.027495182714915
706 => 0.026882196692444
707 => 0.027538179604583
708 => 0.027009573173971
709 => 0.026535358559383
710 => 0.026536077747207
711 => 0.026238595992306
712 => 0.025662187607072
713 => 0.025555889057144
714 => 0.026108867537898
715 => 0.026552303912206
716 => 0.026588827455911
717 => 0.026834336617311
718 => 0.026979626410082
719 => 0.028403663891135
720 => 0.02897642354627
721 => 0.029676783210784
722 => 0.029949612770221
723 => 0.030770731929313
724 => 0.030107611520308
725 => 0.029964141248597
726 => 0.027972374754669
727 => 0.028298526406469
728 => 0.028820726669954
729 => 0.027980985644676
730 => 0.028513608043475
731 => 0.028618758987483
801 => 0.027952451565968
802 => 0.028308355149243
803 => 0.027363180750122
804 => 0.025403342825655
805 => 0.026122586883574
806 => 0.026652192605134
807 => 0.025896379940553
808 => 0.027251144887826
809 => 0.026459719173654
810 => 0.026208875217395
811 => 0.025230243511704
812 => 0.025692120005801
813 => 0.026316814577503
814 => 0.02593082596073
815 => 0.026731810297016
816 => 0.027866217731916
817 => 0.028674664025157
818 => 0.028736726493034
819 => 0.028216949688176
820 => 0.029049895335133
821 => 0.029055962434823
822 => 0.028116396342373
823 => 0.027540917342273
824 => 0.027410167302632
825 => 0.02773680653671
826 => 0.02813340686781
827 => 0.028758735051212
828 => 0.029136607775855
829 => 0.030121899433517
830 => 0.030388491105555
831 => 0.03068139452758
901 => 0.031072803827475
902 => 0.031542791047283
903 => 0.030514485766729
904 => 0.030555342252527
905 => 0.02959779861313
906 => 0.028574525908787
907 => 0.02935106233864
908 => 0.030366280422361
909 => 0.030133388272239
910 => 0.030107183147796
911 => 0.030151252898414
912 => 0.029975659822769
913 => 0.029181458849408
914 => 0.028782616092548
915 => 0.029297225004537
916 => 0.029570716738652
917 => 0.029994878567278
918 => 0.02994259166893
919 => 0.031035186987817
920 => 0.031459736490368
921 => 0.031351118560118
922 => 0.031371106873321
923 => 0.032139733468564
924 => 0.032994604322589
925 => 0.033795303687529
926 => 0.034609809472384
927 => 0.03362789095804
928 => 0.03312933329277
929 => 0.033643717542607
930 => 0.033370778019161
1001 => 0.034939169480003
1002 => 0.035047761501861
1003 => 0.036616039550149
1004 => 0.038104522165051
1005 => 0.037169632903567
1006 => 0.038051191368809
1007 => 0.039004668723484
1008 => 0.040844081236779
1009 => 0.040224631813614
1010 => 0.039750143263479
1011 => 0.039301753876314
1012 => 0.040234781011194
1013 => 0.041435105514744
1014 => 0.041693643916244
1015 => 0.042112574895944
1016 => 0.041672120195232
1017 => 0.042202599367746
1018 => 0.044075423951078
1019 => 0.043569370216782
1020 => 0.042850692561884
1021 => 0.044329107702439
1022 => 0.044864140394613
1023 => 0.048619280027085
1024 => 0.053360298930162
1025 => 0.051397485973079
1026 => 0.05017910463104
1027 => 0.050465453146811
1028 => 0.052196712756597
1029 => 0.052752738395826
1030 => 0.051241269034868
1031 => 0.051775145565508
1101 => 0.054716857738914
1102 => 0.05629499193852
1103 => 0.054151673723754
1104 => 0.04823834377445
1105 => 0.042785983502283
1106 => 0.044232194969444
1107 => 0.044068239470235
1108 => 0.047228742214492
1109 => 0.043557301002582
1110 => 0.043619118656654
1111 => 0.046844977250632
1112 => 0.045984373482976
1113 => 0.044590305597176
1114 => 0.042796161740617
1115 => 0.039479520883547
1116 => 0.036541879585068
1117 => 0.042303270669773
1118 => 0.04205482900979
1119 => 0.041695048669145
1120 => 0.042495700884953
1121 => 0.046383440775819
1122 => 0.046293815787948
1123 => 0.045723667342187
1124 => 0.046156119913239
1125 => 0.044514494570593
1126 => 0.044937578800507
1127 => 0.042785119820559
1128 => 0.043758121174123
1129 => 0.044587314553601
1130 => 0.044753787400949
1201 => 0.045128859226338
1202 => 0.041923911544256
1203 => 0.04336283896119
1204 => 0.044208074009373
1205 => 0.040389271311768
1206 => 0.044132588558429
1207 => 0.041868120535476
1208 => 0.041099526077317
1209 => 0.042134337260608
1210 => 0.041731070336093
1211 => 0.041384365115023
1212 => 0.041190897644514
1213 => 0.04195074876958
1214 => 0.041915300806377
1215 => 0.040672036885021
1216 => 0.039050249781533
1217 => 0.039594574766811
1218 => 0.039396816396586
1219 => 0.038680114551552
1220 => 0.039163085060194
1221 => 0.037036327365915
1222 => 0.033377351292154
1223 => 0.035794582963949
1224 => 0.035701522174027
1225 => 0.035654596703777
1226 => 0.037471079497755
1227 => 0.037296466590502
1228 => 0.036979542454024
1229 => 0.03867429399125
1230 => 0.038055686882538
1231 => 0.039962088229424
]
'min_raw' => 0.017113296433167
'max_raw' => 0.05629499193852
'avg_raw' => 0.036704144185843
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017113'
'max' => '$0.056294'
'avg' => '$0.0367041'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.009322882679817
'max_diff' => 0.037213834864228
'year' => 2029
]
4 => [
'items' => [
101 => 0.041217767454792
102 => 0.040899286586272
103 => 0.042080258966955
104 => 0.03960711491509
105 => 0.040428594163802
106 => 0.040597899898441
107 => 0.038653381020351
108 => 0.037325035421603
109 => 0.037236449914415
110 => 0.034933281703486
111 => 0.03616361557124
112 => 0.037246258460189
113 => 0.036727756532864
114 => 0.036563614312478
115 => 0.037402181318328
116 => 0.037467345156523
117 => 0.035981602739917
118 => 0.036290535635673
119 => 0.037578837166795
120 => 0.03625807374253
121 => 0.033692046154663
122 => 0.033055635834765
123 => 0.032970726966721
124 => 0.031244731704819
125 => 0.033098163815455
126 => 0.03228909103027
127 => 0.034844942264489
128 => 0.033385053746808
129 => 0.033322120870653
130 => 0.033226988598099
131 => 0.031741353176213
201 => 0.03206661291655
202 => 0.033147825831885
203 => 0.033533614780813
204 => 0.033493373832764
205 => 0.033142527298747
206 => 0.033303143045395
207 => 0.032785743763206
208 => 0.03260303930793
209 => 0.03202637379026
210 => 0.0311788347872
211 => 0.031296690283834
212 => 0.02961749374813
213 => 0.028702578353772
214 => 0.028449341831005
215 => 0.028110703369278
216 => 0.02848759194634
217 => 0.029612736795324
218 => 0.028255573394653
219 => 0.025928811938147
220 => 0.026068654266292
221 => 0.026382838458073
222 => 0.025797358295225
223 => 0.025243250456715
224 => 0.02572500226611
225 => 0.024739122763834
226 => 0.026501977285828
227 => 0.026454297011351
228 => 0.027111380162958
301 => 0.027522267742361
302 => 0.02657530489827
303 => 0.02633714630384
304 => 0.026472812262932
305 => 0.024230556158808
306 => 0.026928140002156
307 => 0.026951468819253
308 => 0.026751713323934
309 => 0.02818809344196
310 => 0.031219303509189
311 => 0.030078840351755
312 => 0.029637218546515
313 => 0.028797695171931
314 => 0.029916310222599
315 => 0.029830418039821
316 => 0.029441981015655
317 => 0.029207053091442
318 => 0.029639914995088
319 => 0.02915341671131
320 => 0.029066028251465
321 => 0.028536549264384
322 => 0.028347549355755
323 => 0.02820762134771
324 => 0.028053574359894
325 => 0.028393363628898
326 => 0.027623356442333
327 => 0.02669480326007
328 => 0.02661760411005
329 => 0.026830757750675
330 => 0.026736453132121
331 => 0.026617152615818
401 => 0.026389375440633
402 => 0.026321798818445
403 => 0.02654139005704
404 => 0.026293484351631
405 => 0.026659282724084
406 => 0.026559805807324
407 => 0.026004135836743
408 => 0.025311565318026
409 => 0.025305399987694
410 => 0.025156186805479
411 => 0.024966141383577
412 => 0.024913275094855
413 => 0.025684430472438
414 => 0.027280699025297
415 => 0.026967313312901
416 => 0.027193766607167
417 => 0.028307692685889
418 => 0.028661776289388
419 => 0.028410456134554
420 => 0.028066433605865
421 => 0.028081568851183
422 => 0.029257197974416
423 => 0.029330520520776
424 => 0.029515782940678
425 => 0.029753897505405
426 => 0.028451008074564
427 => 0.028020202876157
428 => 0.02781606347299
429 => 0.027187393123126
430 => 0.027865360197332
501 => 0.027470337816637
502 => 0.027523639831679
503 => 0.027488926824457
504 => 0.027507882473683
505 => 0.026501484532062
506 => 0.02686816304727
507 => 0.026258488897269
508 => 0.025442203649552
509 => 0.025439467175175
510 => 0.025639251833123
511 => 0.025520412101001
512 => 0.02520061743751
513 => 0.025246042760071
514 => 0.024848069135668
515 => 0.025294363963618
516 => 0.025307162102364
517 => 0.02513531428376
518 => 0.025822893043035
519 => 0.026104594621721
520 => 0.025991480706179
521 => 0.026096658247868
522 => 0.026980335904103
523 => 0.027124413919629
524 => 0.027188403856866
525 => 0.02710266581801
526 => 0.026112810253234
527 => 0.026156714556723
528 => 0.025834573908686
529 => 0.02556239900744
530 => 0.02557328457612
531 => 0.025713217855621
601 => 0.02632431469418
602 => 0.027610331964802
603 => 0.027659135380155
604 => 0.02771828654326
605 => 0.02747768903592
606 => 0.027405122525499
607 => 0.02750085648375
608 => 0.02798381695502
609 => 0.029226122409614
610 => 0.028787008691169
611 => 0.028430002402861
612 => 0.028743193165911
613 => 0.02869497990281
614 => 0.028288011442122
615 => 0.028276589192881
616 => 0.027495486601134
617 => 0.027206730757811
618 => 0.026965424762129
619 => 0.026701924914298
620 => 0.026545713371908
621 => 0.026785725297895
622 => 0.026840618865105
623 => 0.026315828594245
624 => 0.026244301619494
625 => 0.026672856683063
626 => 0.026484265577729
627 => 0.026678236206399
628 => 0.0267232390561
629 => 0.026715992560795
630 => 0.026519081787276
701 => 0.026644586842353
702 => 0.026347729972238
703 => 0.026024942712448
704 => 0.025819024551059
705 => 0.025639333644167
706 => 0.025739036603008
707 => 0.025383613759781
708 => 0.025269906838985
709 => 0.026602068553646
710 => 0.027586150735418
711 => 0.027571841790756
712 => 0.027484739770086
713 => 0.02735532383537
714 => 0.027974349373313
715 => 0.0277586932537
716 => 0.027915601099391
717 => 0.02795554073152
718 => 0.028076425968929
719 => 0.028119632050866
720 => 0.027989033262701
721 => 0.027550727778319
722 => 0.026458512184074
723 => 0.025950082876574
724 => 0.025782292736539
725 => 0.02578839158945
726 => 0.025620157999675
727 => 0.025669710331564
728 => 0.02560292572086
729 => 0.02547645182512
730 => 0.02573122719634
731 => 0.025760587684476
801 => 0.025701120068494
802 => 0.025715126844817
803 => 0.02522276038344
804 => 0.025260193936135
805 => 0.025051759157905
806 => 0.025012680149705
807 => 0.024485775180832
808 => 0.023552286652375
809 => 0.024069529913064
810 => 0.023444772789561
811 => 0.023208167800275
812 => 0.024328219019929
813 => 0.024215796942861
814 => 0.024023379215622
815 => 0.023738753293668
816 => 0.023633182770552
817 => 0.022991769691667
818 => 0.022953871585161
819 => 0.023271773226666
820 => 0.023125072557439
821 => 0.022919049257956
822 => 0.022172853751475
823 => 0.021333882945349
824 => 0.021359206200403
825 => 0.021626067204225
826 => 0.022402001563947
827 => 0.022098830585803
828 => 0.021878876562674
829 => 0.021837685785935
830 => 0.02235327459555
831 => 0.02308294078035
901 => 0.023425283828897
902 => 0.0230860322649
903 => 0.022696318334781
904 => 0.022720038415947
905 => 0.02287783748916
906 => 0.022894419940596
907 => 0.022640756235327
908 => 0.022712161082517
909 => 0.02260369059024
910 => 0.021938007379359
911 => 0.021925967280978
912 => 0.021762597885436
913 => 0.021757651125066
914 => 0.021479719028844
915 => 0.021440834407328
916 => 0.020888983361006
917 => 0.021252213390854
918 => 0.021008577757265
919 => 0.020641361389609
920 => 0.020578053149413
921 => 0.020576150027265
922 => 0.020953199128771
923 => 0.021247807352574
924 => 0.02101281590342
925 => 0.020959312905566
926 => 0.021530584947396
927 => 0.021457885372813
928 => 0.021394928010085
929 => 0.02301760717655
930 => 0.021733129997059
1001 => 0.021173024631407
1002 => 0.020479787880288
1003 => 0.020705509262055
1004 => 0.020753072073731
1005 => 0.019085962652607
1006 => 0.018409616568082
1007 => 0.018177520079437
1008 => 0.01804394526886
1009 => 0.018104816987367
1010 => 0.017496026183811
1011 => 0.017905143672271
1012 => 0.017377982296198
1013 => 0.017289601975967
1014 => 0.01823223181915
1015 => 0.018363393255065
1016 => 0.017803817820787
1017 => 0.018163155836627
1018 => 0.018032854876912
1019 => 0.017387018964945
1020 => 0.017362352783556
1021 => 0.017038295025161
1022 => 0.01653120738322
1023 => 0.016299454723876
1024 => 0.01617875592672
1025 => 0.016228558602799
1026 => 0.016203376845786
1027 => 0.016039048847682
1028 => 0.016212795934282
1029 => 0.015768943925272
1030 => 0.015592198478926
1031 => 0.015512366661274
1101 => 0.01511842245611
1102 => 0.01574536287431
1103 => 0.015868878034683
1104 => 0.015992636558077
1105 => 0.017069870010694
1106 => 0.017016054471631
1107 => 0.017502520735526
1108 => 0.017483617551065
1109 => 0.017344869492371
1110 => 0.01675951425569
1111 => 0.016992826420077
1112 => 0.016274727842853
1113 => 0.016812776122866
1114 => 0.016567233357302
1115 => 0.016729757866835
1116 => 0.01643752414445
1117 => 0.016599258352452
1118 => 0.015898168061318
1119 => 0.015243499812062
1120 => 0.01550695742652
1121 => 0.015793365983469
1122 => 0.016414372710476
1123 => 0.016044506227065
1124 => 0.0161775242007
1125 => 0.015731936255963
1126 => 0.014812561050066
1127 => 0.014817764613888
1128 => 0.014676338768138
1129 => 0.014554126188899
1130 => 0.016086989841958
1201 => 0.015896354015712
1202 => 0.015592600776389
1203 => 0.015999186557897
1204 => 0.016106694291912
1205 => 0.016109754885961
1206 => 0.016406389376651
1207 => 0.016564703257508
1208 => 0.01659260676518
1209 => 0.017059367545494
1210 => 0.017215819602331
1211 => 0.017860223482522
1212 => 0.016551271430794
1213 => 0.016524314424669
1214 => 0.016004908053646
1215 => 0.015675492321653
1216 => 0.016027463430643
1217 => 0.01633926178436
1218 => 0.016014596497631
1219 => 0.016056990930019
1220 => 0.015621154308713
1221 => 0.015776945392811
1222 => 0.015911133661761
1223 => 0.015837042786869
1224 => 0.015726125161116
1225 => 0.016313697875057
1226 => 0.01628054471982
1227 => 0.01682770593928
1228 => 0.017254257237724
1229 => 0.018018713419699
1230 => 0.017220963541806
1231 => 0.017191890365487
]
'min_raw' => 0.014554126188899
'max_raw' => 0.042080258966955
'avg_raw' => 0.028317192577927
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014554'
'max' => '$0.04208'
'avg' => '$0.028317'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0025591702442678
'max_diff' => -0.014214732971565
'year' => 2030
]
5 => [
'items' => [
101 => 0.017476085327489
102 => 0.017215776093563
103 => 0.017380282543835
104 => 0.0179922088873
105 => 0.018005137926677
106 => 0.017788559858994
107 => 0.017775381063893
108 => 0.017816977250896
109 => 0.018060607417405
110 => 0.017975475551228
111 => 0.018073992302044
112 => 0.018197189007481
113 => 0.018706782815488
114 => 0.018829644157377
115 => 0.018531154792889
116 => 0.018558105040459
117 => 0.018446461824424
118 => 0.01833861587662
119 => 0.018581037817648
120 => 0.019024068679692
121 => 0.019021312607692
122 => 0.019124087156397
123 => 0.01918811484881
124 => 0.018913261121839
125 => 0.018734341452232
126 => 0.018802950638514
127 => 0.018912658221492
128 => 0.018767373947956
129 => 0.017870612109472
130 => 0.0181426323659
131 => 0.018097354894119
201 => 0.018032874268375
202 => 0.018306392739684
203 => 0.018280011215873
204 => 0.017489782154189
205 => 0.017540370054826
206 => 0.017492858571979
207 => 0.017646377892993
208 => 0.017207485546421
209 => 0.017342485876241
210 => 0.017427156817555
211 => 0.017477028652462
212 => 0.017657199917582
213 => 0.017636058899149
214 => 0.017655885762193
215 => 0.017923032184916
216 => 0.019274167117465
217 => 0.019347706410733
218 => 0.018985572034951
219 => 0.019130237575291
220 => 0.018852511372714
221 => 0.019038950833108
222 => 0.01916650797686
223 => 0.01859010177207
224 => 0.018555970737468
225 => 0.01827709826006
226 => 0.018426948533274
227 => 0.018188525973974
228 => 0.018247026530359
301 => 0.018083453874719
302 => 0.01837785208788
303 => 0.018707035035052
304 => 0.018790199647336
305 => 0.018571429357033
306 => 0.01841302524919
307 => 0.018134919817373
308 => 0.018597415348468
309 => 0.018732663136056
310 => 0.018596704949416
311 => 0.018565200466827
312 => 0.018505499529247
313 => 0.018577866302959
314 => 0.018731926547558
315 => 0.018659274581251
316 => 0.01870726248496
317 => 0.018524382080934
318 => 0.018913352109859
319 => 0.019531130126528
320 => 0.019533116383868
321 => 0.01946046402594
322 => 0.019430736246392
323 => 0.019505281974541
324 => 0.019545719974035
325 => 0.019786787189518
326 => 0.020045461916272
327 => 0.02125258399741
328 => 0.020913628947404
329 => 0.021984659469803
330 => 0.022831705557113
331 => 0.023085697641861
401 => 0.022852036875144
402 => 0.022052696014311
403 => 0.022013476538222
404 => 0.023208029257313
405 => 0.022870513400189
406 => 0.02283036696295
407 => 0.022403276699211
408 => 0.022655739941239
409 => 0.022600522526795
410 => 0.022513359136767
411 => 0.022995041415815
412 => 0.02389670764212
413 => 0.023756174504978
414 => 0.023651273037246
415 => 0.023191625342004
416 => 0.023468435920569
417 => 0.023369868975499
418 => 0.023793375123648
419 => 0.023542499463295
420 => 0.022867956385615
421 => 0.022975379594059
422 => 0.022959142792208
423 => 0.023293295023744
424 => 0.023192990818005
425 => 0.022939556786212
426 => 0.023893625844982
427 => 0.023831673907116
428 => 0.023919507590825
429 => 0.02395817469474
430 => 0.024538899718231
501 => 0.024776804179227
502 => 0.024830812656977
503 => 0.025056803494731
504 => 0.02482518979906
505 => 0.025751809719511
506 => 0.026367957896839
507 => 0.027083645711501
508 => 0.028129457967472
509 => 0.028522693050022
510 => 0.02845165865207
511 => 0.029244581568857
512 => 0.030669446424636
513 => 0.028739664577868
514 => 0.030771729548391
515 => 0.030128401240042
516 => 0.028603081393928
517 => 0.028504868778178
518 => 0.029537833087294
519 => 0.031828848505783
520 => 0.031254975127933
521 => 0.031829787157045
522 => 0.031159238392148
523 => 0.031125939994142
524 => 0.031797220100227
525 => 0.033365702657667
526 => 0.032620575388317
527 => 0.031552252735
528 => 0.032341085557268
529 => 0.031657725563588
530 => 0.03011792423741
531 => 0.031254536297777
601 => 0.030494516181857
602 => 0.030716330456574
603 => 0.032313779695776
604 => 0.032121570376989
605 => 0.032370307033604
606 => 0.031931293345251
607 => 0.031521185334225
608 => 0.030755688276625
609 => 0.030529062336418
610 => 0.030591693593144
611 => 0.030529031299478
612 => 0.030100742731031
613 => 0.030008253855453
614 => 0.029854101677459
615 => 0.029901879883242
616 => 0.029612028689803
617 => 0.030159037778136
618 => 0.030260567485158
619 => 0.030658635082875
620 => 0.030699963781408
621 => 0.031808576374911
622 => 0.031197971187888
623 => 0.031607617864458
624 => 0.031570975209962
625 => 0.028636139700167
626 => 0.029040534139144
627 => 0.029669644980226
628 => 0.029386231399058
629 => 0.028985550903851
630 => 0.028661979920843
701 => 0.028171736794753
702 => 0.028861744580439
703 => 0.029769031444469
704 => 0.030722974073531
705 => 0.031869073637553
706 => 0.031613277556933
707 => 0.030701548539392
708 => 0.0307424480371
709 => 0.030995272638575
710 => 0.030667841808128
711 => 0.03057127606402
712 => 0.030982005988202
713 => 0.030984834459457
714 => 0.03060808571769
715 => 0.030189398435509
716 => 0.030187644120509
717 => 0.030113142762684
718 => 0.031172492018199
719 => 0.031755026996442
720 => 0.031821813692895
721 => 0.031750531719642
722 => 0.031777965322067
723 => 0.03143900105351
724 => 0.0322137728547
725 => 0.032924780076462
726 => 0.032734214952576
727 => 0.032448530741442
728 => 0.032220969506859
729 => 0.032680608757708
730 => 0.032660141745407
731 => 0.032918570048649
801 => 0.03290684624806
802 => 0.03281994652966
803 => 0.032734218056039
804 => 0.033074121763639
805 => 0.032976234954536
806 => 0.032878196100182
807 => 0.032681564168778
808 => 0.032708289713967
809 => 0.03242265483024
810 => 0.032290507063265
811 => 0.030303321714789
812 => 0.029772280856522
813 => 0.029939357120866
814 => 0.029994362965222
815 => 0.029763253303156
816 => 0.030094605191357
817 => 0.030042964350569
818 => 0.030243868653192
819 => 0.030118352367164
820 => 0.030123503599325
821 => 0.030492620233639
822 => 0.030599776362915
823 => 0.030545275890709
824 => 0.030583446153275
825 => 0.031463063743449
826 => 0.031338010250714
827 => 0.031271578075106
828 => 0.031289980241755
829 => 0.031514741395258
830 => 0.031577662246735
831 => 0.031311062177658
901 => 0.031436792311432
902 => 0.031972135263509
903 => 0.03215947499895
904 => 0.032757373506301
905 => 0.03250337559358
906 => 0.032969599755152
907 => 0.034402613880295
908 => 0.035547404720495
909 => 0.034494607753365
910 => 0.036596870343157
911 => 0.038233783320968
912 => 0.038170955874458
913 => 0.037885522234297
914 => 0.036021940328643
915 => 0.034307044474619
916 => 0.035741627674834
917 => 0.035745284722436
918 => 0.035622052753269
919 => 0.034856669576453
920 => 0.03559541907778
921 => 0.035654058330451
922 => 0.035621235942391
923 => 0.035034418455262
924 => 0.034138456614417
925 => 0.034313525413489
926 => 0.034600291677675
927 => 0.034057383313861
928 => 0.033883891195645
929 => 0.034206446051635
930 => 0.035245785004608
1001 => 0.035049303996029
1002 => 0.035044173082853
1003 => 0.035884802158468
1004 => 0.035283093159436
1005 => 0.034315733591693
1006 => 0.034071462542932
1007 => 0.033204464880528
1008 => 0.033803303254091
1009 => 0.033824854381064
1010 => 0.033496876723844
1011 => 0.034342347170988
1012 => 0.034334556011976
1013 => 0.03513720436987
1014 => 0.036671566569209
1015 => 0.036217780165486
1016 => 0.035690075949777
1017 => 0.035747452029676
1018 => 0.036376726009928
1019 => 0.03599625259654
1020 => 0.036133073488749
1021 => 0.036376518915121
1022 => 0.036523395585262
1023 => 0.035726318737146
1024 => 0.035540481995257
1025 => 0.035160325241186
1026 => 0.035061149440011
1027 => 0.035370779183971
1028 => 0.035289202685818
1029 => 0.033823043092292
1030 => 0.033669821257133
1031 => 0.033674520352067
1101 => 0.03328923676226
1102 => 0.032701586809148
1103 => 0.034245895799172
1104 => 0.034121866174682
1105 => 0.033984947068377
1106 => 0.034001718877649
1107 => 0.034672051068731
1108 => 0.034283224545317
1109 => 0.035316983585228
1110 => 0.035104473804263
1111 => 0.03488651394929
1112 => 0.034856385258113
1113 => 0.034772489309409
1114 => 0.034484778884996
1115 => 0.034137351258801
1116 => 0.033907949446322
1117 => 0.031278290996806
1118 => 0.031766340309017
1119 => 0.032327796555621
1120 => 0.032521609002054
1121 => 0.032190079401017
1122 => 0.034497869694342
1123 => 0.034919525219353
1124 => 0.033642303130185
1125 => 0.033403387025936
1126 => 0.034513532994361
1127 => 0.033843979265576
1128 => 0.03414547926865
1129 => 0.033493801173687
1130 => 0.034817960750893
1201 => 0.034807872873488
1202 => 0.034292744890455
1203 => 0.034728127534271
1204 => 0.034652469085667
1205 => 0.034070890861526
1206 => 0.03483639781794
1207 => 0.03483677749984
1208 => 0.034340978016019
1209 => 0.033761992763378
1210 => 0.033658483875227
1211 => 0.033580503832468
1212 => 0.034126300958395
1213 => 0.034615660954838
1214 => 0.035526238585587
1215 => 0.035755179436748
1216 => 0.036648750820286
1217 => 0.03611667256859
1218 => 0.036352535966
1219 => 0.036608599048803
1220 => 0.036731365107107
1221 => 0.03653132440309
1222 => 0.037919408570379
1223 => 0.038036605403898
1224 => 0.038075900488429
1225 => 0.037607846317186
1226 => 0.038023587970692
1227 => 0.037829076218933
1228 => 0.038335141760089
1229 => 0.038414499298712
1230 => 0.038347286286725
1231 => 0.038372475622057
]
'min_raw' => 0.017207485546421
'max_raw' => 0.038414499298712
'avg_raw' => 0.027810992422566
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0172074'
'max' => '$0.038414'
'avg' => '$0.02781'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0026533593575219
'max_diff' => -0.0036657596682429
'year' => 2031
]
6 => [
'items' => [
101 => 0.037187990660103
102 => 0.03712656886617
103 => 0.036289078347598
104 => 0.036630361924333
105 => 0.035992348635774
106 => 0.036194669221841
107 => 0.036283850208399
108 => 0.036237267121998
109 => 0.036649657585704
110 => 0.036299041445748
111 => 0.035373707805773
112 => 0.034448122059266
113 => 0.034436502084184
114 => 0.034192811695075
115 => 0.034016668177869
116 => 0.03405059966831
117 => 0.034170178666377
118 => 0.034009718029119
119 => 0.034043960441639
120 => 0.034612612645469
121 => 0.034726651789505
122 => 0.0343391022201
123 => 0.032783034775804
124 => 0.032401171921874
125 => 0.032675647368609
126 => 0.032544465783552
127 => 0.026265923878739
128 => 0.027740974168346
129 => 0.026864549374236
130 => 0.027268446241728
131 => 0.026373843476042
201 => 0.026800794805976
202 => 0.026721952485103
203 => 0.029093789700881
204 => 0.029056756725112
205 => 0.029074482450871
206 => 0.028228387376255
207 => 0.029576239804103
208 => 0.030240240377266
209 => 0.030117351542977
210 => 0.030148280015032
211 => 0.029616826394202
212 => 0.029079628083621
213 => 0.028483792482959
214 => 0.029590781381482
215 => 0.029467703112897
216 => 0.029750000378868
217 => 0.030467961808762
218 => 0.030573684356584
219 => 0.030715776532989
220 => 0.030664846602557
221 => 0.031878204169613
222 => 0.031731258562251
223 => 0.032085355196856
224 => 0.031356951554098
225 => 0.030532693691609
226 => 0.030689358164249
227 => 0.030674270115717
228 => 0.030482181940658
229 => 0.030308773325057
301 => 0.030020096837656
302 => 0.030933511959875
303 => 0.030896428974004
304 => 0.031496759410987
305 => 0.031390645174952
306 => 0.030681988336149
307 => 0.030707298153783
308 => 0.030877518840858
309 => 0.03146665458237
310 => 0.03164155018187
311 => 0.031560531571797
312 => 0.031752296612362
313 => 0.031903859881534
314 => 0.031771330625461
315 => 0.03364766541199
316 => 0.032868480391018
317 => 0.033248249748705
318 => 0.033338822502783
319 => 0.033106822297753
320 => 0.03315713483492
321 => 0.033233344619381
322 => 0.033696075507224
323 => 0.034910415249187
324 => 0.035448238054612
325 => 0.037066304500443
326 => 0.035403579357477
327 => 0.035304920128534
328 => 0.035596382756353
329 => 0.036546359049784
330 => 0.037316225608874
331 => 0.037571634761191
401 => 0.037605391297015
402 => 0.038084555846042
403 => 0.038359204029654
404 => 0.038026372666511
405 => 0.037744332935144
406 => 0.036734101625446
407 => 0.036851038650312
408 => 0.037656618790771
409 => 0.038794548187603
410 => 0.03977100999146
411 => 0.039429087100879
412 => 0.042037717396069
413 => 0.042296352434538
414 => 0.042260617434894
415 => 0.04284982654258
416 => 0.041680366454171
417 => 0.041180399609154
418 => 0.037805313126353
419 => 0.038753574760031
420 => 0.040131928734036
421 => 0.039949498417014
422 => 0.038948500917585
423 => 0.039770250645095
424 => 0.03949855448669
425 => 0.039284256453872
426 => 0.040265997285929
427 => 0.039186532913392
428 => 0.040121160251173
429 => 0.038922491022987
430 => 0.039430648975842
501 => 0.039142193944967
502 => 0.039328859701662
503 => 0.038237615502232
504 => 0.038826424383789
505 => 0.038213119116935
506 => 0.038212828330384
507 => 0.038199289582625
508 => 0.038920840509267
509 => 0.03894437025908
510 => 0.038411143034089
511 => 0.038334296660393
512 => 0.038618437980762
513 => 0.03828578291134
514 => 0.038441430124617
515 => 0.03829049730687
516 => 0.038256519150463
517 => 0.037985775419311
518 => 0.037869131575676
519 => 0.037914870632307
520 => 0.037758739651927
521 => 0.037664665088743
522 => 0.038180575784186
523 => 0.037904945511389
524 => 0.038138331491785
525 => 0.037872358711465
526 => 0.036950381176051
527 => 0.036420142145698
528 => 0.034678612048664
529 => 0.035172507823821
530 => 0.035499961233723
531 => 0.035391737883704
601 => 0.035624243516422
602 => 0.035638517473938
603 => 0.035562927522627
604 => 0.035475404042682
605 => 0.035432802452996
606 => 0.035750319799684
607 => 0.035934649306579
608 => 0.035532825564168
609 => 0.035438683883433
610 => 0.035844949872307
611 => 0.036092771890828
612 => 0.037922550436424
613 => 0.037786994531659
614 => 0.038127213251116
615 => 0.038088909844387
616 => 0.038445513263469
617 => 0.03902840914182
618 => 0.037843218840882
619 => 0.038048926896328
620 => 0.037998492031625
621 => 0.038549126659716
622 => 0.038550845680921
623 => 0.038220712715141
624 => 0.038399683151686
625 => 0.038299786763804
626 => 0.038480313038514
627 => 0.037785184099907
628 => 0.038631776112598
629 => 0.03911173923061
630 => 0.039118403518969
701 => 0.039345902227684
702 => 0.039577054091575
703 => 0.040020729965228
704 => 0.039564680212264
705 => 0.038744291102229
706 => 0.038803520546133
707 => 0.038322526711088
708 => 0.038330612304354
709 => 0.038287450773822
710 => 0.038416981775997
711 => 0.037813608870724
712 => 0.037955219285587
713 => 0.037756963875509
714 => 0.038048495927785
715 => 0.037734855631511
716 => 0.037998467710407
717 => 0.038112233944779
718 => 0.038532033798825
719 => 0.037672850851739
720 => 0.035920918661059
721 => 0.036289196047665
722 => 0.035744484865311
723 => 0.035794899959099
724 => 0.035896746472055
725 => 0.03556662860146
726 => 0.03562960468796
727 => 0.035627354738994
728 => 0.035607965894329
729 => 0.03552208948643
730 => 0.035397551704847
731 => 0.035893671895965
801 => 0.035977972383973
802 => 0.036165361926192
803 => 0.036722906096296
804 => 0.036667194285905
805 => 0.036758062560113
806 => 0.036559697627722
807 => 0.035804101539389
808 => 0.035845134042267
809 => 0.035333458073866
810 => 0.036152277221275
811 => 0.035958370039284
812 => 0.035833356817614
813 => 0.035799245801841
814 => 0.036358172016102
815 => 0.036525411499503
816 => 0.036421199076472
817 => 0.036207456356472
818 => 0.036617905566234
819 => 0.036727724459305
820 => 0.036752308859498
821 => 0.037479546163368
822 => 0.036792953346186
823 => 0.036958223061427
824 => 0.03824761020142
825 => 0.037078313988709
826 => 0.037697716270999
827 => 0.037667399752495
828 => 0.037984265000684
829 => 0.03764140755354
830 => 0.037645657682509
831 => 0.037927012556589
901 => 0.037531900378562
902 => 0.037434065046807
903 => 0.037298906236698
904 => 0.037594020553885
905 => 0.037770928240166
906 => 0.039196674267215
907 => 0.040117771222606
908 => 0.040077783974553
909 => 0.040443192568774
910 => 0.040278572650318
911 => 0.039746971509084
912 => 0.040654349835318
913 => 0.040367217366576
914 => 0.040390888218433
915 => 0.040390007188144
916 => 0.040580925178302
917 => 0.040445642284898
918 => 0.040178985815496
919 => 0.040356004824222
920 => 0.040881687994683
921 => 0.042513424685723
922 => 0.043426566155665
923 => 0.042458452422658
924 => 0.043126244312127
925 => 0.042725807137025
926 => 0.042653035790335
927 => 0.043072458446355
928 => 0.043492615246211
929 => 0.043465853074448
930 => 0.043160840813042
1001 => 0.042988547125974
1002 => 0.044293212647074
1003 => 0.045254467978623
1004 => 0.045188916809349
1005 => 0.045478238352143
1006 => 0.046327695350164
1007 => 0.046405359052321
1008 => 0.046395575210929
1009 => 0.046203077621763
1010 => 0.047039478352245
1011 => 0.047737218556684
1012 => 0.046158519991661
1013 => 0.04675966773854
1014 => 0.047029542329885
1015 => 0.047425798298162
1016 => 0.048094348536857
1017 => 0.048820571420273
1018 => 0.048923267298616
1019 => 0.048850399658481
1020 => 0.04837143614495
1021 => 0.049166077889624
1022 => 0.049631560387012
1023 => 0.049908744561829
1024 => 0.050611637510117
1025 => 0.047031208983485
1026 => 0.04449680371349
1027 => 0.044101019733325
1028 => 0.044905862020428
1029 => 0.04511809251304
1030 => 0.045032542667582
1031 => 0.042179839118157
1101 => 0.044086000839518
1102 => 0.046136870577072
1103 => 0.046215652836121
1104 => 0.047242361108405
1105 => 0.047576699408055
1106 => 0.048403334140972
1107 => 0.04835162791336
1108 => 0.048552900316194
1109 => 0.048506631276335
1110 => 0.050037798050585
1111 => 0.05172690238305
1112 => 0.05166841407104
1113 => 0.051425585338673
1114 => 0.05178622741469
1115 => 0.053529564101214
1116 => 0.05336906559552
1117 => 0.053524976222572
1118 => 0.055580468426134
1119 => 0.058252900681122
1120 => 0.057011287590869
1121 => 0.059705230732176
1122 => 0.06140092513984
1123 => 0.064333453279819
1124 => 0.063966286313688
1125 => 0.065107897998697
1126 => 0.063308980814255
1127 => 0.059178303337632
1128 => 0.058524607815358
1129 => 0.059833322805157
1130 => 0.063050670905038
1201 => 0.059731997063922
1202 => 0.06040336045973
1203 => 0.060210007756572
1204 => 0.060199704812717
1205 => 0.060592926274569
1206 => 0.060022538035101
1207 => 0.057698673736625
1208 => 0.058763687049998
1209 => 0.058352434263565
1210 => 0.058808749891039
1211 => 0.061271297133636
1212 => 0.06018254629789
1213 => 0.059035635735367
1214 => 0.060474116100599
1215 => 0.062305795921022
1216 => 0.062191172689705
1217 => 0.061968755712157
1218 => 0.063222508569225
1219 => 0.065293340973982
1220 => 0.065853078651709
1221 => 0.066266265562075
1222 => 0.066323237056164
1223 => 0.06691007885287
1224 => 0.063754482608806
1225 => 0.068762494889595
1226 => 0.06962724026694
1227 => 0.069464703976023
1228 => 0.070425832068894
1229 => 0.070143043802505
1230 => 0.069733327972627
1231 => 0.071256920437635
]
'min_raw' => 0.026265923878739
'max_raw' => 0.071256920437635
'avg_raw' => 0.048761422158187
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026265'
'max' => '$0.071256'
'avg' => '$0.048761'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0090584383323177
'max_diff' => 0.032842421138923
'year' => 2032
]
7 => [
'items' => [
101 => 0.069510244624075
102 => 0.067031058207097
103 => 0.065670927505996
104 => 0.06746205733182
105 => 0.068555837814634
106 => 0.06927875713627
107 => 0.069497512086198
108 => 0.063999442562402
109 => 0.061036288025992
110 => 0.062935636111195
111 => 0.065252971861146
112 => 0.06374160969171
113 => 0.063800852227365
114 => 0.061646046952741
115 => 0.065443624314531
116 => 0.064890349235571
117 => 0.067760741323942
118 => 0.067075699215717
119 => 0.069416392535804
120 => 0.068800009539449
121 => 0.071358580895807
122 => 0.072379264280413
123 => 0.074093150539849
124 => 0.075353892249063
125 => 0.076094223894859
126 => 0.076049777159759
127 => 0.078983339972165
128 => 0.077253520472568
129 => 0.07508045949392
130 => 0.075041155676736
131 => 0.07616661475009
201 => 0.078525268213221
202 => 0.079136832739199
203 => 0.079478613878053
204 => 0.078955164166411
205 => 0.077077569076878
206 => 0.076266833036841
207 => 0.076957603632237
208 => 0.076112850552662
209 => 0.07757113136386
210 => 0.079573662389609
211 => 0.079160147651658
212 => 0.080542465423034
213 => 0.081973018892339
214 => 0.08401877460362
215 => 0.084553610900664
216 => 0.085437674961674
217 => 0.08634766728037
218 => 0.086639932288154
219 => 0.08719795687252
220 => 0.087195015807512
221 => 0.088876660451886
222 => 0.09073156657083
223 => 0.091431750689556
224 => 0.093041785462189
225 => 0.090284657336403
226 => 0.092375970691417
227 => 0.094262387686608
228 => 0.092013323577097
301 => 0.095113134487328
302 => 0.09523349312065
303 => 0.097050765587457
304 => 0.095208611795069
305 => 0.094114746753513
306 => 0.097272694141898
307 => 0.098800725408727
308 => 0.098340469955628
309 => 0.094837903231923
310 => 0.092799259166574
311 => 0.087463734422482
312 => 0.093783893959375
313 => 0.096862259308214
314 => 0.094829931009348
315 => 0.095854919189819
316 => 0.10144692234893
317 => 0.10357599509653
318 => 0.10313316284837
319 => 0.10320799420867
320 => 0.10435680321787
321 => 0.10945125502535
322 => 0.10639854141384
323 => 0.10873222658684
324 => 0.10997000478787
325 => 0.11111972216312
326 => 0.10829637966142
327 => 0.10462325254985
328 => 0.10345981900623
329 => 0.094627856012839
330 => 0.094168113983762
331 => 0.093910046851231
401 => 0.092282970084948
402 => 0.091004533440485
403 => 0.089987873155498
404 => 0.087319852967233
405 => 0.088220231460218
406 => 0.083967964139213
407 => 0.086688414080091
408 => 0.079901692761182
409 => 0.085553875944082
410 => 0.082477649610864
411 => 0.084543252858778
412 => 0.084536046163638
413 => 0.080732615684121
414 => 0.078538876359105
415 => 0.079936812438617
416 => 0.081435510884158
417 => 0.08167866966472
418 => 0.083621771319396
419 => 0.084164049224386
420 => 0.082520921855733
421 => 0.079761053046777
422 => 0.080402107625192
423 => 0.078525885408534
424 => 0.075237878141688
425 => 0.077599382363837
426 => 0.078405703733289
427 => 0.078761821185154
428 => 0.075528443668397
429 => 0.074512446252591
430 => 0.07397153775346
501 => 0.079343664612379
502 => 0.079637961848602
503 => 0.078132295578652
504 => 0.084938049891957
505 => 0.083397698085365
506 => 0.085118648448683
507 => 0.080343938641417
508 => 0.080526338986054
509 => 0.078265914845174
510 => 0.079531601322471
511 => 0.078637054915297
512 => 0.079429346362863
513 => 0.079904242589794
514 => 0.082164295817314
515 => 0.085579682121567
516 => 0.081826719231256
517 => 0.080191499556529
518 => 0.081205980645905
519 => 0.083907677473668
520 => 0.088000886465046
521 => 0.085577624358643
522 => 0.086653026931805
523 => 0.086887954552711
524 => 0.085101130789488
525 => 0.088066769205895
526 => 0.089656078926051
527 => 0.091286381837623
528 => 0.092701928175691
529 => 0.090635203003612
530 => 0.092846895191153
531 => 0.091064661704222
601 => 0.089465814022534
602 => 0.089468238814491
603 => 0.088465258308331
604 => 0.086521857193968
605 => 0.086163464211357
606 => 0.088027869766943
607 => 0.08952294646266
608 => 0.089646088140254
609 => 0.090473839418817
610 => 0.090963694098955
611 => 0.095764935889447
612 => 0.097696035055538
613 => 0.100057346562
614 => 0.10097721046999
615 => 0.10374567104358
616 => 0.10150991428703
617 => 0.10102619424918
618 => 0.094310814454207
619 => 0.095410457519431
620 => 0.09717109216663
621 => 0.094339846671057
622 => 0.096135620275117
623 => 0.096490144024244
624 => 0.094243642032507
625 => 0.095443595811915
626 => 0.092256874335309
627 => 0.085649143941452
628 => 0.088074125498743
629 => 0.089859728164875
630 => 0.087311452997084
701 => 0.091879137603482
702 => 0.089210790552574
703 => 0.088365052640682
704 => 0.085065527519059
705 => 0.086622776366096
706 => 0.08872897772937
707 => 0.087427590159056
708 => 0.090128164771784
709 => 0.093952898640348
710 => 0.096678631761927
711 => 0.096887879705439
712 => 0.0951354159182
713 => 0.097943750321324
714 => 0.097964205971523
715 => 0.094796393292415
716 => 0.092856125664917
717 => 0.092415292777591
718 => 0.093516579760509
719 => 0.094853745466564
720 => 0.096962083095924
721 => 0.09823610736929
722 => 0.10155808698396
723 => 0.10245691941907
724 => 0.10344446375629
725 => 0.10476412753822
726 => 0.10634872226326
727 => 0.10288171921589
728 => 0.10301946971026
729 => 0.099791044476478
730 => 0.096341009111166
731 => 0.098959155900458
801 => 0.10238203454999
802 => 0.10159682240584
803 => 0.10150846999919
804 => 0.10165705424026
805 => 0.1010650299262
806 => 0.098387325895175
807 => 0.097042599694108
808 => 0.098777639569727
809 => 0.099699736045878
810 => 0.10112982726512
811 => 0.10095353833679
812 => 0.10463729973698
813 => 0.10606869802594
814 => 0.10570248509064
815 => 0.10576987708414
816 => 0.1083613553138
817 => 0.11124361208332
818 => 0.11394322589526
819 => 0.11668938901587
820 => 0.1133787821894
821 => 0.11169786021276
822 => 0.11343214262425
823 => 0.11251190796492
824 => 0.11779984927675
825 => 0.11816597486009
826 => 0.12345353379357
827 => 0.12847205685225
828 => 0.12532001243527
829 => 0.12829224834928
830 => 0.13150696382023
831 => 0.13770867153249
901 => 0.13562015455371
902 => 0.1340203832792
903 => 0.13250860715482
904 => 0.13565437328194
905 => 0.13970135114965
906 => 0.14057303142088
907 => 0.14198548646776
908 => 0.14050046269275
909 => 0.14228901025975
910 => 0.14860336909889
911 => 0.14689717360217
912 => 0.14447410171221
913 => 0.14945868157824
914 => 0.15126258165469
915 => 0.16392329710105
916 => 0.17990797334014
917 => 0.17329021241611
918 => 0.16918235465676
919 => 0.1701477986699
920 => 0.17598486131698
921 => 0.17785954058011
922 => 0.17276351610222
923 => 0.17456351809934
924 => 0.18448170607576
925 => 0.18980249571154
926 => 0.18257614870876
927 => 0.16263894392917
928 => 0.14425593059992
929 => 0.14913193353272
930 => 0.14857914612012
1001 => 0.15923500178164
1002 => 0.14685648140385
1003 => 0.14706490394052
1004 => 0.15794111141238
1005 => 0.15503952572429
1006 => 0.1503393285166
1007 => 0.14429024724109
1008 => 0.13310796103101
1009 => 0.12320349829362
1010 => 0.14262843058318
1011 => 0.14179079218091
1012 => 0.14057776764336
1013 => 0.14327722248871
1014 => 0.15638500896409
1015 => 0.15608283206007
1016 => 0.15416053676869
1017 => 0.15561858080487
1018 => 0.15008372634752
1019 => 0.15151018436747
1020 => 0.14425301863669
1021 => 0.14753356063301
1022 => 0.15032924400436
1023 => 0.15089051883195
1024 => 0.15215509967793
1025 => 0.14134939480549
1026 => 0.14620083905439
1027 => 0.14905060803177
1028 => 0.1361752481165
1029 => 0.14879610356368
1030 => 0.14116129152419
1031 => 0.13856992164695
1101 => 0.14205885979963
1102 => 0.14069921720843
1103 => 0.1395302763494
1104 => 0.13887798726512
1105 => 0.14143987838439
1106 => 0.14132036310155
1107 => 0.13712861198878
1108 => 0.13166064353981
1109 => 0.13349587323123
1110 => 0.13282911707897
1111 => 0.13041270676992
1112 => 0.13204107555973
1113 => 0.12487056350798
1114 => 0.11253407021375
1115 => 0.12068393556093
1116 => 0.12037017461041
1117 => 0.12021196211123
1118 => 0.12633636067391
1119 => 0.12574764106602
1120 => 0.12467910921295
1121 => 0.13039308234448
1122 => 0.12830740528769
1123 => 0.13473497052941
1124 => 0.13896858070646
1125 => 0.13789480022262
1126 => 0.14187653105695
1127 => 0.13353815321668
1128 => 0.13630782785757
1129 => 0.13687865396245
1130 => 0.13032257280299
1201 => 0.12584396287469
1202 => 0.12554529065236
1203 => 0.11777999822714
1204 => 0.12192815476145
1205 => 0.12557836084925
1206 => 0.12383019540063
1207 => 0.12327677844455
1208 => 0.12610406565165
1209 => 0.12632377008172
1210 => 0.12131448579291
1211 => 0.12235607461996
1212 => 0.12669967317848
1213 => 0.12224662708081
1214 => 0.11359508591399
1215 => 0.1114493840877
1216 => 0.11116310791095
1217 => 0.1053437943803
1218 => 0.11159277014381
1219 => 0.1088649247609
1220 => 0.11748215564091
1221 => 0.11256003957738
1222 => 0.11234785699159
1223 => 0.11202711189275
1224 => 0.10701818834411
1225 => 0.10811482426757
1226 => 0.1117602090995
1227 => 0.11306092347573
1228 => 0.11292524830985
1229 => 0.11174234472509
1230 => 0.11228387192874
1231 => 0.11053942412518
]
'min_raw' => 0.061036288025992
'max_raw' => 0.18980249571154
'avg_raw' => 0.12541939186877
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.061036'
'max' => '$0.1898024'
'avg' => '$0.125419'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.034770364147253
'max_diff' => 0.11854557527391
'year' => 2033
]
8 => [
'items' => [
101 => 0.1099234232982
102 => 0.10797915524387
103 => 0.10512161832178
104 => 0.10551897635709
105 => 0.099857447999199
106 => 0.09677274686977
107 => 0.095918942252851
108 => 0.094777199036156
109 => 0.096047905187239
110 => 0.099841409600694
111 => 0.095265638441211
112 => 0.087420799741303
113 => 0.087892287914123
114 => 0.088951581852352
115 => 0.086977594606392
116 => 0.085109381342282
117 => 0.086733641202492
118 => 0.08340967962866
119 => 0.089353266728136
120 => 0.089192509353805
121 => 0.091407911075529
122 => 0.092793247236743
123 => 0.089600495893053
124 => 0.088797527564233
125 => 0.089254934817205
126 => 0.081695011812827
127 => 0.090790104079968
128 => 0.090868758815576
129 => 0.090195269216624
130 => 0.095038125069406
131 => 0.1052580614434
201 => 0.10141291028351
202 => 0.099923951534097
203 => 0.097093439863035
204 => 0.10086492860557
205 => 0.10057533711453
206 => 0.099265694567752
207 => 0.098473618669125
208 => 0.099933042798719
209 => 0.098292779868737
210 => 0.097998143575101
211 => 0.096212968203117
212 => 0.095575741815623
213 => 0.095103964767036
214 => 0.094584584592397
215 => 0.095730207836175
216 => 0.093134074846485
217 => 0.090003392962973
218 => 0.089743110638806
219 => 0.090461773020086
220 => 0.090143818414492
221 => 0.089741588394481
222 => 0.088973621745452
223 => 0.088745782445696
224 => 0.089486149637988
225 => 0.088650318243979
226 => 0.089883632995931
227 => 0.089548239625818
228 => 0.087674759524365
301 => 0.085339709666782
302 => 0.085318922825116
303 => 0.084815840163549
304 => 0.084175088755059
305 => 0.083996846371624
306 => 0.086596850567495
307 => 0.09197878144137
308 => 0.090922179632137
309 => 0.091685682724217
310 => 0.095441362270463
311 => 0.09663517986099
312 => 0.095787836412353
313 => 0.094627940437991
314 => 0.094678969974291
315 => 0.098642685643076
316 => 0.098889897727346
317 => 0.099514522910654
318 => 0.10031734279026
319 => 0.095924560109342
320 => 0.094472070305056
321 => 0.09378380005472
322 => 0.091664194077792
323 => 0.093950007402626
324 => 0.092618161866531
325 => 0.092797873331672
326 => 0.092680836004241
327 => 0.092744746299048
328 => 0.089351605374411
329 => 0.090587887589112
330 => 0.088532328626292
331 => 0.085780165922399
401 => 0.085770939707983
402 => 0.086444527630775
403 => 0.0860438511768
404 => 0.084965641141488
405 => 0.085118795787997
406 => 0.083776999927692
407 => 0.085281714099436
408 => 0.085324863917755
409 => 0.084745466999299
410 => 0.087063686791411
411 => 0.088013463331727
412 => 0.087632091868115
413 => 0.087986705293182
414 => 0.090966086207582
415 => 0.091451855296132
416 => 0.091667601837161
417 => 0.091378530053122
418 => 0.08804116290697
419 => 0.088189189331483
420 => 0.087103069645485
421 => 0.086185412963289
422 => 0.086222114418101
423 => 0.086693909239769
424 => 0.088754264896389
425 => 0.093090161911147
426 => 0.093254706033358
427 => 0.093454138309568
428 => 0.092642947015591
429 => 0.092398283959272
430 => 0.09272105768345
501 => 0.094349392631558
502 => 0.09853791220672
503 => 0.097057409647041
504 => 0.095853738020627
505 => 0.096909682544533
506 => 0.096747128161844
507 => 0.095375005583005
508 => 0.095336494672213
509 => 0.092702952749296
510 => 0.091729392263241
511 => 0.090915812251355
512 => 0.090027404117419
513 => 0.089500725995911
514 => 0.090309942961472
515 => 0.09049502045587
516 => 0.088725653417979
517 => 0.08848449522875
518 => 0.089929398546332
519 => 0.089293550467689
520 => 0.089947535984847
521 => 0.090099266234611
522 => 0.090074834169755
523 => 0.089410935748965
524 => 0.089834084804641
525 => 0.088833211141164
526 => 0.087744911358496
527 => 0.087050643900626
528 => 0.086444803462419
529 => 0.086780958949189
530 => 0.085582626018422
531 => 0.085199255196192
601 => 0.089690731425733
602 => 0.093008633208001
603 => 0.092960389602054
604 => 0.092666719058097
605 => 0.092230384198671
606 => 0.094317472018829
607 => 0.093590372354924
608 => 0.094119398111625
609 => 0.094254057369846
610 => 0.094661630387709
611 => 0.09480730270951
612 => 0.094366979777094
613 => 0.092889202234989
614 => 0.089206721102936
615 => 0.087492516195298
616 => 0.086926800023436
617 => 0.086947362731835
618 => 0.086380151438213
619 => 0.086547220584812
620 => 0.086322051607071
621 => 0.085895636037458
622 => 0.086754628989373
623 => 0.086853619925008
624 => 0.08665312070583
625 => 0.086700345530124
626 => 0.085040297629663
627 => 0.085166507466101
628 => 0.084463755058846
629 => 0.084331997454292
630 => 0.082555500564405
701 => 0.079408178816627
702 => 0.08115210058281
703 => 0.079045688321769
704 => 0.078247958081159
705 => 0.082024288967702
706 => 0.081645250085808
707 => 0.080996500284245
708 => 0.08003686411643
709 => 0.079680925727046
710 => 0.077518356749553
711 => 0.077390580637506
712 => 0.078462408217026
713 => 0.077967796668413
714 => 0.077273174730118
715 => 0.074757324482312
716 => 0.071928675834386
717 => 0.072014054956815
718 => 0.072913795462841
719 => 0.075529912330651
720 => 0.074507750211116
721 => 0.073766159865435
722 => 0.073627282285813
723 => 0.075365625954691
724 => 0.07782574644041
725 => 0.078979979930217
726 => 0.077836169596411
727 => 0.076522221872057
728 => 0.076602195781791
729 => 0.077134226374308
730 => 0.077190135267074
731 => 0.076334890374528
801 => 0.076575636802154
802 => 0.076209920964275
803 => 0.073965523542272
804 => 0.073924929509969
805 => 0.073374118186812
806 => 0.073357439838853
807 => 0.072420372371839
808 => 0.072289270155562
809 => 0.070428665823877
810 => 0.071653321229421
811 => 0.070831886680677
812 => 0.069593791058897
813 => 0.069380342907036
814 => 0.069373926397845
815 => 0.070645173768297
816 => 0.071638465963741
817 => 0.070846175886339
818 => 0.070665786793612
819 => 0.072591870367582
820 => 0.072346758676153
821 => 0.072134493532176
822 => 0.077605469633752
823 => 0.073274765143765
824 => 0.071386330798161
825 => 0.06904903469152
826 => 0.069810070089512
827 => 0.069970431429805
828 => 0.064349655622622
829 => 0.062069307577671
830 => 0.061286778061747
831 => 0.060836421261989
901 => 0.061041654510864
902 => 0.058989073812259
903 => 0.060368441988273
904 => 0.058591080603609
905 => 0.058293100183436
906 => 0.06147124251204
907 => 0.061913462450627
908 => 0.060026814805649
909 => 0.061238348014234
910 => 0.06079902923123
911 => 0.058621548363212
912 => 0.058538384610519
913 => 0.057445801253102
914 => 0.05573611986457
915 => 0.054954749593135
916 => 0.054547805171604
917 => 0.054715718371116
918 => 0.054630816319214
919 => 0.054076773000592
920 => 0.054662573433698
921 => 0.053166095396563
922 => 0.052570185784233
923 => 0.052301027237342
924 => 0.050972816845322
925 => 0.053086590236867
926 => 0.053503030223617
927 => 0.053920290725785
928 => 0.057552258521319
929 => 0.057370815674089
930 => 0.059010970646801
1001 => 0.058947237240613
1002 => 0.058479438473646
1003 => 0.056505872424977
1004 => 0.057292500676544
1005 => 0.054871381187392
1006 => 0.056685448528787
1007 => 0.055857583951437
1008 => 0.056405546682428
1009 => 0.055420260284299
1010 => 0.055965558458502
1011 => 0.05360178359338
1012 => 0.051394523883539
1013 => 0.052282789624707
1014 => 0.053248436070865
1015 => 0.055342203608276
1016 => 0.054095172936201
1017 => 0.05454365232133
1018 => 0.053041321455692
1019 => 0.049941583760286
1020 => 0.049959127939011
1021 => 0.04948230082603
1022 => 0.049070252582515
1023 => 0.054238409409926
1024 => 0.053595667411969
1025 => 0.052571542158216
1026 => 0.053942374507484
1027 => 0.054304844338665
1028 => 0.054315163345186
1029 => 0.055315287240907
1030 => 0.055849053543336
1031 => 0.055943132167615
1101 => 0.057516848726639
1102 => 0.058044337759401
1103 => 0.060216990432304
1104 => 0.055803767201793
1105 => 0.055712879773562
1106 => 0.053961664929864
1107 => 0.052851016790379
1108 => 0.054037711958176
1109 => 0.055088961876798
1110 => 0.053994330195183
1111 => 0.054137265983866
1112 => 0.052667812385993
1113 => 0.053193072903014
1114 => 0.053645498020506
1115 => 0.053395695462946
1116 => 0.053021728943699
1117 => 0.055002771371767
1118 => 0.054890993194208
1119 => 0.056735785447194
1120 => 0.058173932930756
1121 => 0.060751350320913
1122 => 0.058061680910477
1123 => 0.057963658666693
1124 => 0.058921841822943
1125 => 0.058044191066552
1126 => 0.058598836049117
1127 => 0.060661988439443
1128 => 0.060705579598378
1129 => 0.059975371522187
1130 => 0.059930938294389
1201 => 0.060071182743023
1202 => 0.060892598859125
1203 => 0.060605570828591
1204 => 0.060937726932186
1205 => 0.061353093225886
1206 => 0.063071224328287
1207 => 0.06348545992037
1208 => 0.062479082188138
1209 => 0.062569946829425
1210 => 0.062193533931883
1211 => 0.061829923789298
1212 => 0.062647266288833
1213 => 0.06414097577164
1214 => 0.064131683482471
1215 => 0.064478195048919
1216 => 0.064694068884159
1217 => 0.063767380354002
1218 => 0.063164140196152
1219 => 0.06339546085784
1220 => 0.063765347633389
1221 => 0.063275511561739
1222 => 0.060252016413379
1223 => 0.061169151699773
1224 => 0.061016495542493
1225 => 0.060799094610903
1226 => 0.06172128123337
1227 => 0.061632334083944
1228 => 0.058968021630444
1229 => 0.059138582269376
1230 => 0.058978393987811
1231 => 0.059495995096985
]
'min_raw' => 0.049070252582515
'max_raw' => 0.1099234232982
'avg_raw' => 0.079496837940357
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.04907'
'max' => '$0.109923'
'avg' => '$0.079496'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011966035443477
'max_diff' => -0.079879072413345
'year' => 2034
]
9 => [
'items' => [
101 => 0.058016238908035
102 => 0.058471401945446
103 => 0.058756875935622
104 => 0.05892502230895
105 => 0.059532482308459
106 => 0.059461203888793
107 => 0.059528051541813
108 => 0.06042875435759
109 => 0.06498420011591
110 => 0.065232142977511
111 => 0.064011181646147
112 => 0.064498931615629
113 => 0.063562558333416
114 => 0.064191151990922
115 => 0.064621219806839
116 => 0.062677826043992
117 => 0.062562750877878
118 => 0.061622512850042
119 => 0.062127743508397
120 => 0.061323885203584
121 => 0.061521123913816
122 => 0.060969627285048
123 => 0.061962211414947
124 => 0.063072074704154
125 => 0.063352470000837
126 => 0.062614870693029
127 => 0.062080800184013
128 => 0.061143148303942
129 => 0.062702484277434
130 => 0.063158481635986
131 => 0.062700089117434
201 => 0.062593869554811
202 => 0.062392583675575
203 => 0.06263657330563
204 => 0.063155998176441
205 => 0.062911046999638
206 => 0.0630728415674
207 => 0.062456247516923
208 => 0.063767687126465
209 => 0.065850568841548
210 => 0.065857265646847
211 => 0.065612313149666
212 => 0.065512083865395
213 => 0.065763419992463
214 => 0.06589975953105
215 => 0.066712534478825
216 => 0.067584674380171
217 => 0.071654570755298
218 => 0.070511760139116
219 => 0.074122814322348
220 => 0.076978689344584
221 => 0.077835041391473
222 => 0.077047237802813
223 => 0.074352204282318
224 => 0.074219973080466
225 => 0.078247490973888
226 => 0.077109532696991
227 => 0.076974176180907
228 => 0.075534211538219
301 => 0.076385408985138
302 => 0.076199239617184
303 => 0.075905362162151
304 => 0.077529387595944
305 => 0.080569418230255
306 => 0.080095600946671
307 => 0.079741918324227
308 => 0.078192184028139
309 => 0.07912547022007
310 => 0.078793144883043
311 => 0.080221025429781
312 => 0.079375180625321
313 => 0.07710091154383
314 => 0.077463096391147
315 => 0.07740835288009
316 => 0.078534970458477
317 => 0.078196787825813
318 => 0.077342317293425
319 => 0.08055902773604
320 => 0.080350152452181
321 => 0.080646289849156
322 => 0.080776658689658
323 => 0.082734613651282
324 => 0.083536725151489
325 => 0.083718818504975
326 => 0.084480762392641
327 => 0.083699860646935
328 => 0.086824024403271
329 => 0.088901411001225
330 => 0.091314402436086
331 => 0.094840431473372
401 => 0.096166251008984
402 => 0.095926753576826
403 => 0.098600148550883
404 => 0.10340417989303
405 => 0.096897785663587
406 => 0.10374903458595
407 => 0.1015800082786
408 => 0.096437285922998
409 => 0.096106155232011
410 => 0.099588866519461
411 => 0.10731318495649
412 => 0.10537833079651
413 => 0.10731634968475
414 => 0.10505554770768
415 => 0.10494327983398
416 => 0.10720654757893
417 => 0.11249479602929
418 => 0.10998254741755
419 => 0.10638062300399
420 => 0.10904022793882
421 => 0.10673623200945
422 => 0.10154468433275
423 => 0.10537685124999
424 => 0.10281439036626
425 => 0.10356225268005
426 => 0.10894816432036
427 => 0.10830011718245
428 => 0.10913875018646
429 => 0.10765858488522
430 => 0.10627587709322
501 => 0.10369495031822
502 => 0.1029308651383
503 => 0.10314203079313
504 => 0.10293076049509
505 => 0.10148675568442
506 => 0.10117492298304
507 => 0.10065518815237
508 => 0.10081627570894
509 => 0.099839022173491
510 => 0.10168330150576
511 => 0.10202561600156
512 => 0.10336772869946
513 => 0.10350707129204
514 => 0.1072448360519
515 => 0.10518613803275
516 => 0.10656729040343
517 => 0.10644374713549
518 => 0.096548744310542
519 => 0.09791218839547
520 => 0.10003327951929
521 => 0.099077730843083
522 => 0.097726808578874
523 => 0.096635866418656
524 => 0.094982977491363
525 => 0.097309386915608
526 => 0.10036836792243
527 => 0.10358465209846
528 => 0.10744880679668
529 => 0.10658637245175
530 => 0.10351241441423
531 => 0.10365030992626
601 => 0.10450272572178
602 => 0.10339876981644
603 => 0.10307319166818
604 => 0.10445799628381
605 => 0.10446753267212
606 => 0.1031972979855
607 => 0.10178566458181
608 => 0.1017797497863
609 => 0.10152856325688
610 => 0.10510023323325
611 => 0.10706429058369
612 => 0.10728946659368
613 => 0.10704913444411
614 => 0.10714162875004
615 => 0.10599878705287
616 => 0.10861098427342
617 => 0.11100819476253
618 => 0.11036569114252
619 => 0.10940248687884
620 => 0.10863524828863
621 => 0.11018495411385
622 => 0.11011594815292
623 => 0.11098725722019
624 => 0.11094772960797
625 => 0.11065474114024
626 => 0.11036570160606
627 => 0.11151171068755
628 => 0.11118167847642
629 => 0.11085113363411
630 => 0.11018817534898
701 => 0.1102782823905
702 => 0.10931524443763
703 => 0.10886969901501
704 => 0.10216976487177
705 => 0.10037932354203
706 => 0.10094263283216
707 => 0.10112808887679
708 => 0.10034888651558
709 => 0.1014660625409
710 => 0.10129195184073
711 => 0.10196931472372
712 => 0.10154612780211
713 => 0.10156349554098
714 => 0.10280799804447
715 => 0.10316928241573
716 => 0.10298553026859
717 => 0.10311422397379
718 => 0.106079916092
719 => 0.10565828951029
720 => 0.10543430879208
721 => 0.10549635298174
722 => 0.10625415090309
723 => 0.10646629294684
724 => 0.10556743220053
725 => 0.10599134012474
726 => 0.10779628626412
727 => 0.1084279152618
728 => 0.11044377182328
729 => 0.10958740012697
730 => 0.11115930743844
731 => 0.11599081461121
801 => 0.11985055685569
802 => 0.11630097837707
803 => 0.12338890347385
804 => 0.12890786986415
805 => 0.12869604274177
806 => 0.12773368329563
807 => 0.12145048678958
808 => 0.11566859568753
809 => 0.12050539310646
810 => 0.12051772309778
811 => 0.12010223790995
812 => 0.11752169509197
813 => 0.12001244061353
814 => 0.12021014694798
815 => 0.12009948397505
816 => 0.1181209878469
817 => 0.11510018994643
818 => 0.11569044662542
819 => 0.1166572991065
820 => 0.11482684565325
821 => 0.11424190486385
822 => 0.11532942108088
823 => 0.11883362492516
824 => 0.11817117548687
825 => 0.11815387625487
826 => 0.12098811587415
827 => 0.11895941197394
828 => 0.1156978916524
829 => 0.11487431475705
830 => 0.11195117160641
831 => 0.11397019699243
901 => 0.11404285812167
902 => 0.11293705855169
903 => 0.1157876211931
904 => 0.11576135275653
905 => 0.11846753773429
906 => 0.12364074701511
907 => 0.1221107744726
908 => 0.1203315828662
909 => 0.12052503032545
910 => 0.12264667148438
911 => 0.12136387880733
912 => 0.12182517999795
913 => 0.12264597324978
914 => 0.12314117819776
915 => 0.12045377795421
916 => 0.11982721640422
917 => 0.11854549136618
918 => 0.11821111322828
919 => 0.1192550515277
920 => 0.11898001066869
921 => 0.11403675123512
922 => 0.11352015312028
923 => 0.11353599644693
924 => 0.11223698592425
925 => 0.11025568307892
926 => 0.115462428659
927 => 0.11504425412056
928 => 0.11458262179426
929 => 0.1146391691202
930 => 0.11689924090353
1001 => 0.11558828513284
1002 => 0.11907367591065
1003 => 0.11835718434717
1004 => 0.11762231747865
1005 => 0.11752073649283
1006 => 0.11723787544435
1007 => 0.11626783966114
1008 => 0.1150964631628
1009 => 0.11432301893571
1010 => 0.10545694187627
1011 => 0.10710243420691
1012 => 0.10899542314195
1013 => 0.10964887533666
1014 => 0.1085311001401
1015 => 0.11631197623882
1016 => 0.11773361728044
1017 => 0.11342737383402
1018 => 0.11262185150795
1019 => 0.11636478614841
1020 => 0.11410733900506
1021 => 0.11512386731549
1022 => 0.11292668911961
1023 => 0.11739118558403
1024 => 0.11735717360104
1025 => 0.11562038364116
1026 => 0.11708830662223
1027 => 0.11683321888046
1028 => 0.11487238729327
1029 => 0.11745334744281
1030 => 0.11745462756685
1031 => 0.11578300499153
1101 => 0.11383091578879
1102 => 0.11348192834563
1103 => 0.11321901318707
1104 => 0.11505920630348
1105 => 0.11670911769751
1106 => 0.11977919375408
1107 => 0.12055108381791
1108 => 0.12356382212466
1109 => 0.12176988315056
1110 => 0.12256511306238
1111 => 0.1234284476238
1112 => 0.12384236196063
1113 => 0.12316791076064
1114 => 0.1278479334436
1115 => 0.12824307075023
1116 => 0.12837555687122
1117 => 0.12679747955437
1118 => 0.12819918156533
1119 => 0.12754337161389
1120 => 0.12924960691827
1121 => 0.1295171664003
1122 => 0.12929055303772
1123 => 0.12937548064046
1124 => 0.12538190689313
1125 => 0.12517481902655
1126 => 0.12235116127147
1127 => 0.12350182267809
1128 => 0.12135071633105
1129 => 0.12203285431255
1130 => 0.12233353423514
1201 => 0.12217647610701
1202 => 0.12356687934758
1203 => 0.12238475255248
1204 => 0.11926492558057
1205 => 0.11614424861389
1206 => 0.11610507105662
1207 => 0.11528345189582
1208 => 0.11468957172962
1209 => 0.11480397411866
1210 => 0.11520714305938
1211 => 0.11466613881786
1212 => 0.1147815895024
1213 => 0.11669884010964
1214 => 0.11708333104572
1215 => 0.11577668061462
1216 => 0.11053029058502
1217 => 0.10924281331218
1218 => 0.11016822644411
1219 => 0.10972593857129
1220 => 0.088557396185412
1221 => 0.093530631221546
1222 => 0.090575703838179
1223 => 0.091937470326106
1224 => 0.088921254642425
1225 => 0.090360750860086
1226 => 0.090094928470669
1227 => 0.09809174324005
1228 => 0.097966883976685
1229 => 0.098026647498652
1230 => 0.095173978882113
1231 => 0.099718357446654
]
'min_raw' => 0.058016238908035
'max_raw' => 0.1295171664003
'avg_raw' => 0.093766702654167
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.058016'
'max' => '$0.129517'
'avg' => '$0.093766'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0089459863255197
'max_diff' => 0.0195937431021
'year' => 2035
]
10 => [
'items' => [
101 => 0.10195708173811
102 => 0.10154275345348
103 => 0.10164703095637
104 => 0.099855197968838
105 => 0.098043996358725
106 => 0.09603509503118
107 => 0.09976738539005
108 => 0.099352418414464
109 => 0.10030420335605
110 => 0.1027248604434
111 => 0.1030813113947
112 => 0.10356038508801
113 => 0.10338867127174
114 => 0.10747959102299
115 => 0.10698415364836
116 => 0.10817801517416
117 => 0.10572215143709
118 => 0.10294310850586
119 => 0.10347131371333
120 => 0.10342044330429
121 => 0.10277280461091
122 => 0.10218814535641
123 => 0.10121485242439
124 => 0.10429449528155
125 => 0.10416946740564
126 => 0.10619352338766
127 => 0.10583575183221
128 => 0.10344646582334
129 => 0.10353179964057
130 => 0.10410571057147
131 => 0.10609202285612
201 => 0.10668169558066
202 => 0.10640853568026
203 => 0.10705508490313
204 => 0.10756609104696
205 => 0.10711925940721
206 => 0.1134454531415
207 => 0.11081837644234
208 => 0.11209879534643
209 => 0.11240416771039
210 => 0.11162196282139
211 => 0.11179159505316
212 => 0.11204854166227
213 => 0.11360867115747
214 => 0.11770290237999
215 => 0.11951620951807
216 => 0.12497163350998
217 => 0.11936563960271
218 => 0.11903300312416
219 => 0.12001568972312
220 => 0.12321860112165
221 => 0.12581425997599
222 => 0.12667538976513
223 => 0.12678920228246
224 => 0.12840473901371
225 => 0.12933073454008
226 => 0.1282085703617
227 => 0.12725765371601
228 => 0.12385158832327
229 => 0.12424584966689
301 => 0.12696191935425
302 => 0.13079852776336
303 => 0.13409073690945
304 => 0.13293792001157
305 => 0.14173309918055
306 => 0.14260510527007
307 => 0.14248462222383
308 => 0.14447118186766
309 => 0.14052826553049
310 => 0.13884259240595
311 => 0.12746325268817
312 => 0.13066038299163
313 => 0.13530759964859
314 => 0.13469252309787
315 => 0.13131759014113
316 => 0.13408817672017
317 => 0.13317213415289
318 => 0.13244961337343
319 => 0.13575962113166
320 => 0.13212013163386
321 => 0.13527129295678
322 => 0.13122989596555
323 => 0.13294318598205
324 => 0.13197063970617
325 => 0.13259999633745
326 => 0.12892079033084
327 => 0.13090600058433
328 => 0.12883819905752
329 => 0.12883721865036
330 => 0.12879157181705
331 => 0.1312243311433
401 => 0.13130366333759
402 => 0.1295058505198
403 => 0.12924675760564
404 => 0.13020475990538
405 => 0.12908319011358
406 => 0.12960796556009
407 => 0.12909908502726
408 => 0.12898452530066
409 => 0.12807169390835
410 => 0.12767842104573
411 => 0.12783263346856
412 => 0.12730622696749
413 => 0.12698904800964
414 => 0.12872847693906
415 => 0.12779917023043
416 => 0.12858604735783
417 => 0.12768930155935
418 => 0.12458078992829
419 => 0.12279305201735
420 => 0.11692136170544
421 => 0.11858656579409
422 => 0.11969059782764
423 => 0.11932571524714
424 => 0.12010962422087
425 => 0.12015774986521
426 => 0.11990289306685
427 => 0.11960780154352
428 => 0.11946416730954
429 => 0.12053469921226
430 => 0.12115617901423
501 => 0.11980140221225
502 => 0.11948399696289
503 => 0.12085375110896
504 => 0.12168930034679
505 => 0.12785852646432
506 => 0.1274014902672
507 => 0.12854856143316
508 => 0.12841941882311
509 => 0.12962173214781
510 => 0.13158700629816
511 => 0.1275910544512
512 => 0.12828461352221
513 => 0.12811456885462
514 => 0.12997107194731
515 => 0.12997686774732
516 => 0.12886380140404
517 => 0.12946721272617
518 => 0.12913040507988
519 => 0.12973906201901
520 => 0.12739538627015
521 => 0.1302497303481
522 => 0.13186795951043
523 => 0.13189042862392
524 => 0.13265745640381
525 => 0.13343680105142
526 => 0.13493268523591
527 => 0.13339508165341
528 => 0.13062908249119
529 => 0.13082877869658
530 => 0.12920707439981
531 => 0.12923433554202
601 => 0.12908881342839
602 => 0.12952553624579
603 => 0.12749122236951
604 => 0.12796867177014
605 => 0.12730023981332
606 => 0.12828316048168
607 => 0.12722570032513
608 => 0.12811448685393
609 => 0.12849805765602
610 => 0.12991344217343
611 => 0.12701664688109
612 => 0.12110988518421
613 => 0.12235155810546
614 => 0.12051502632363
615 => 0.12068500433221
616 => 0.12102838696134
617 => 0.11991537151253
618 => 0.12012769978502
619 => 0.12012011392499
620 => 0.12005474308152
621 => 0.11976520477659
622 => 0.11934531695103
623 => 0.12101802081339
624 => 0.12130224579438
625 => 0.12193404271909
626 => 0.12381384181509
627 => 0.12362600555668
628 => 0.12393237428739
629 => 0.12326357306844
630 => 0.12071602810259
701 => 0.12085437205084
702 => 0.1191292207993
703 => 0.12188992672292
704 => 0.12123615512067
705 => 0.12081466431566
706 => 0.12069965664443
707 => 0.12258411539879
708 => 0.12314797499337
709 => 0.12279661553324
710 => 0.12207596702972
711 => 0.12345982519708
712 => 0.12383008726238
713 => 0.12391297528406
714 => 0.12636490662815
715 => 0.12405001100864
716 => 0.12460722939234
717 => 0.12895448815696
718 => 0.12501212433815
719 => 0.12710048237818
720 => 0.12699826811941
721 => 0.1280666014265
722 => 0.12691063360591
723 => 0.12692496321246
724 => 0.127873570814
725 => 0.12654142251993
726 => 0.12621156386827
727 => 0.1257558665035
728 => 0.12675086502812
729 => 0.12734732164372
730 => 0.13215432391632
731 => 0.13525986661036
801 => 0.13512504681173
802 => 0.13635704739916
803 => 0.13580201985069
804 => 0.13400968948781
805 => 0.13706897886584
806 => 0.13610089170052
807 => 0.13618069963021
808 => 0.13617772917508
809 => 0.13682142250836
810 => 0.1363653067881
811 => 0.13546625588415
812 => 0.13606308783114
813 => 0.13783546534238
814 => 0.14333697952044
815 => 0.14641569973985
816 => 0.14315163669748
817 => 0.14540314367656
818 => 0.14405304178308
819 => 0.14380768810698
820 => 0.1452218008749
821 => 0.14663838886003
822 => 0.14654815832945
823 => 0.14551978819485
824 => 0.14493888799974
825 => 0.14933765889296
826 => 0.15257859835599
827 => 0.15235758801214
828 => 0.15333305579346
829 => 0.15619705936948
830 => 0.15645890796361
831 => 0.15642592105927
901 => 0.15577690199764
902 => 0.1585968854561
903 => 0.16094936527003
904 => 0.15562667283684
905 => 0.15765348443624
906 => 0.158563385463
907 => 0.15989939012575
908 => 0.1621534539322
909 => 0.1646019650869
910 => 0.16494821141073
911 => 0.16470253307456
912 => 0.16308767414852
913 => 0.16576686427081
914 => 0.1673362710097
915 => 0.16827081680748
916 => 0.17064066945705
917 => 0.15856900470197
918 => 0.15002408038766
919 => 0.14868966706578
920 => 0.15140324902904
921 => 0.15211879895234
922 => 0.15183036167548
923 => 0.14221227248919
924 => 0.14863902981672
925 => 0.15555368032404
926 => 0.15581930021082
927 => 0.15928091883331
928 => 0.16040816375333
929 => 0.16319522046916
930 => 0.16302088931275
1001 => 0.1636994932713
1002 => 0.16354349397301
1003 => 0.16870592965505
1004 => 0.17440086284145
1005 => 0.17420366541398
1006 => 0.17338495138905
1007 => 0.17460088132756
1008 => 0.18047866268206
1009 => 0.17993753076447
1010 => 0.1804631943289
1011 => 0.1873934298031
1012 => 0.19640372173405
1013 => 0.1922175365136
1014 => 0.20130035389963
1015 => 0.20701750598467
1016 => 0.21690472935118
1017 => 0.21566680029009
1018 => 0.21951582379088
1019 => 0.21345064890715
1020 => 0.19952378140002
1021 => 0.19731980130711
1022 => 0.20173222526678
1023 => 0.2125797390136
1024 => 0.20139059845587
1025 => 0.20365414701793
1026 => 0.20300224487978
1027 => 0.20296750778525
1028 => 0.20429328139772
1029 => 0.20237017762512
1030 => 0.19453510689579
1031 => 0.19812587363868
1101 => 0.19673930615647
1102 => 0.19827780615344
1103 => 0.20658045611141
1104 => 0.20290965665454
1105 => 0.19904276761825
1106 => 0.20389270460113
1107 => 0.21006834099948
1108 => 0.20968188077236
1109 => 0.2089319864039
1110 => 0.21315910169573
1111 => 0.22014105772927
1112 => 0.22202825238937
1113 => 0.22342134090545
1114 => 0.2236134242754
1115 => 0.22559200236498
1116 => 0.21495268931142
1117 => 0.23183755236435
1118 => 0.23475310177867
1119 => 0.23420509932592
1120 => 0.23744560979485
1121 => 0.23649216941108
1122 => 0.2351107838852
1123 => 0.2402476822548
1124 => 0.23435864280037
1125 => 0.22599989270426
1126 => 0.22141411708421
1127 => 0.22745303634466
1128 => 0.23114079360779
1129 => 0.2335781665733
1130 => 0.23431571415996
1201 => 0.21577858889753
1202 => 0.20578810649718
1203 => 0.21219189117469
1204 => 0.22000495044686
1205 => 0.21490928737267
1206 => 0.21510902771782
1207 => 0.20784395129072
1208 => 0.22064774850438
1209 => 0.21878234294724
1210 => 0.22846007027755
1211 => 0.22615040298156
1212 => 0.23404221393222
1213 => 0.23196403562553
1214 => 0.24059043758724
1215 => 0.24403174288027
1216 => 0.24981023006368
1217 => 0.25406090875847
1218 => 0.25655698859057
1219 => 0.25640713332001
1220 => 0.26629784515685
1221 => 0.26046563794182
1222 => 0.25313901113404
1223 => 0.2530064955703
1224 => 0.25680105941315
1225 => 0.26475342424003
1226 => 0.26681535673743
1227 => 0.26796769570948
1228 => 0.26620284846058
1229 => 0.25987240552672
1230 => 0.25713895236395
1231 => 0.25946793365439
]
'min_raw' => 0.09603509503118
'max_raw' => 0.26796769570948
'avg_raw' => 0.18200139537033
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.096035'
'max' => '$0.267967'
'avg' => '$0.1820013'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.038018856123145
'max_diff' => 0.13845052930918
'year' => 2036
]
11 => [
'items' => [
101 => 0.25661978966783
102 => 0.2615364852367
103 => 0.26828815840226
104 => 0.26689396459258
105 => 0.27155454546912
106 => 0.27637775636894
107 => 0.28327516457962
108 => 0.28507840249618
109 => 0.28805908620126
110 => 0.29112718883738
111 => 0.29211258071642
112 => 0.29399399956264
113 => 0.29398408355662
114 => 0.29965386588381
115 => 0.30590781136924
116 => 0.30826853101082
117 => 0.31369687565579
118 => 0.30440102568316
119 => 0.31145203467043
120 => 0.31781222127514
121 => 0.31022934460529
122 => 0.32068057351102
123 => 0.32108637104643
124 => 0.32721343204618
125 => 0.32100248192008
126 => 0.31731443956125
127 => 0.32796167966204
128 => 0.33311354376189
129 => 0.33156176036776
130 => 0.31975261211739
131 => 0.31287918131748
201 => 0.29489008712833
202 => 0.31619894626641
203 => 0.32657786996463
204 => 0.31972573321237
205 => 0.32318155242522
206 => 0.34203538149737
207 => 0.34921369891301
208 => 0.34772065907078
209 => 0.34797295822659
210 => 0.3518462480084
211 => 0.36902254796056
212 => 0.35873011088571
213 => 0.36659829337917
214 => 0.37077154900286
215 => 0.37464790140421
216 => 0.36512880504026
217 => 0.35274460053406
218 => 0.3488220031134
219 => 0.31904442325322
220 => 0.31749437090402
221 => 0.31662427954902
222 => 0.31113847663262
223 => 0.30682813822822
224 => 0.30340039709643
225 => 0.29440498075647
226 => 0.29744066970799
227 => 0.2831038535514
228 => 0.29227604046282
301 => 0.26939413570237
302 => 0.28845086592635
303 => 0.27807915406863
304 => 0.28504347963479
305 => 0.28501918175897
306 => 0.27219565035024
307 => 0.26479930505396
308 => 0.26951254414682
309 => 0.27456551059174
310 => 0.27538533739721
311 => 0.28193664028898
312 => 0.28376496810629
313 => 0.27822504946338
314 => 0.2689199590861
315 => 0.27108131935423
316 => 0.26475550515712
317 => 0.25366975909561
318 => 0.26163173545554
319 => 0.26435030424821
320 => 0.2655509791005
321 => 0.25464942105554
322 => 0.25122391483348
323 => 0.24940020406363
324 => 0.2675127048384
325 => 0.2685049485175
326 => 0.2634284895661
327 => 0.286374565396
328 => 0.28118116173615
329 => 0.28698346603899
330 => 0.2708851985642
331 => 0.27150017406093
401 => 0.26387899625218
402 => 0.2681463465778
403 => 0.26513032091077
404 => 0.26780158684226
405 => 0.26940273262756
406 => 0.27702265987602
407 => 0.28853787325547
408 => 0.27588449684728
409 => 0.27037123954654
410 => 0.27379163336818
411 => 0.28290059284944
412 => 0.29670113274259
413 => 0.2885309353641
414 => 0.29215673022172
415 => 0.29294880509773
416 => 0.28692440402797
417 => 0.29692326100315
418 => 0.30228172968672
419 => 0.3077784097772
420 => 0.31255102308628
421 => 0.30558291487447
422 => 0.31303978950019
423 => 0.30703086486743
424 => 0.30164023828064
425 => 0.30164841363602
426 => 0.29826679483363
427 => 0.29171448229263
428 => 0.29050613532956
429 => 0.29679210882885
430 => 0.30183286429139
501 => 0.30224804505487
502 => 0.30503886628229
503 => 0.30669044553694
504 => 0.32287816744558
505 => 0.3293890031091
506 => 0.33735032971463
507 => 0.34045171510327
508 => 0.34978577321487
509 => 0.34224776321461
510 => 0.34061686733475
511 => 0.31797549550315
512 => 0.32168301887218
513 => 0.3276191215088
514 => 0.31807337964923
515 => 0.32412795573222
516 => 0.32532325730446
517 => 0.31774901899356
518 => 0.32179474693893
519 => 0.31105049299077
520 => 0.28877206863088
521 => 0.29694806325809
522 => 0.30296834731375
523 => 0.29437665967065
524 => 0.30977692722668
525 => 0.3007804088465
526 => 0.29792894442902
527 => 0.28680436511598
528 => 0.29205473832741
529 => 0.29915594327397
530 => 0.29476822422068
531 => 0.30387340007559
601 => 0.31676875734784
602 => 0.32595875687185
603 => 0.32666425092263
604 => 0.32075569691084
605 => 0.33022419242262
606 => 0.33029316007543
607 => 0.3196126584582
608 => 0.31307091068693
609 => 0.31158461182935
610 => 0.31529767778166
611 => 0.31980602531755
612 => 0.32691443283437
613 => 0.33120989462155
614 => 0.34241018082564
615 => 0.34544065713509
616 => 0.34877023181617
617 => 0.3532195703929
618 => 0.35856214214126
619 => 0.34687289930863
620 => 0.34733733471785
621 => 0.33645247364068
622 => 0.32482043853275
623 => 0.33364770322603
624 => 0.34518817757067
625 => 0.34254078000491
626 => 0.34224289369734
627 => 0.34274385583991
628 => 0.34074780453125
629 => 0.33171973843932
630 => 0.32718590016663
701 => 0.3330357082439
702 => 0.33614462089196
703 => 0.34096627328343
704 => 0.34037190285345
705 => 0.35279196160622
706 => 0.35761802087446
707 => 0.35638330839492
708 => 0.35661052520617
709 => 0.36534787498869
710 => 0.37506560491989
711 => 0.38416754136786
712 => 0.39342642206
713 => 0.38226448000536
714 => 0.37659713420289
715 => 0.38244438843695
716 => 0.37934175303429
717 => 0.39717041635938
718 => 0.39840483432571
719 => 0.41623220843551
720 => 0.43315250930993
721 => 0.42252517148939
722 => 0.43254627238835
723 => 0.44338491004293
724 => 0.4642944005842
725 => 0.45725281977465
726 => 0.45185907923017
727 => 0.446762020478
728 => 0.45736819060597
729 => 0.47101285903789
730 => 0.47395178993112
731 => 0.47871398073616
801 => 0.47370711939765
802 => 0.4797373323922
803 => 0.50102663407282
804 => 0.49527407683285
805 => 0.48710452078238
806 => 0.50391037981296
807 => 0.509992354865
808 => 0.55267884093531
809 => 0.60657229288987
810 => 0.5842600498972
811 => 0.57041012066007
812 => 0.57366518255551
813 => 0.59334524680083
814 => 0.59966585882241
815 => 0.58248425650213
816 => 0.58855308890755
817 => 0.62199295213583
818 => 0.63993236587855
819 => 0.61556823243124
820 => 0.54834855454565
821 => 0.48636894164508
822 => 0.50280872596465
823 => 0.50094496460872
824 => 0.53687192593961
825 => 0.49513688024518
826 => 0.49583959137918
827 => 0.53250948422308
828 => 0.52272658549345
829 => 0.50687954245044
830 => 0.48648464259668
831 => 0.44878278391711
901 => 0.4153891962905
902 => 0.48088171171021
903 => 0.4780575553549
904 => 0.47396775843589
905 => 0.4830691589169
906 => 0.5272629761751
907 => 0.52624416564587
908 => 0.51976301286062
909 => 0.52467891012597
910 => 0.50601776189181
911 => 0.5108271646982
912 => 0.48635912375773
913 => 0.49741970013848
914 => 0.50684554181334
915 => 0.50873791908154
916 => 0.51300154169397
917 => 0.47656935328631
918 => 0.4929263362885
919 => 0.50253453136023
920 => 0.45912435647699
921 => 0.50167645177715
922 => 0.47593514994044
923 => 0.46719816547568
924 => 0.4789613640473
925 => 0.47437723412386
926 => 0.47043606840482
927 => 0.46823683021577
928 => 0.47687442498992
929 => 0.47647147086955
930 => 0.46233868933414
1001 => 0.44390305194707
1002 => 0.45009065698334
1003 => 0.44784264206456
1004 => 0.43969554599919
1005 => 0.44518570506312
1006 => 0.42100982305151
1007 => 0.37941647460353
1008 => 0.40689431462698
1009 => 0.40583644767622
1010 => 0.4053030231892
1011 => 0.4259518605351
1012 => 0.42396695127403
1013 => 0.42036432152888
1014 => 0.43962938087871
1015 => 0.43259737506441
1016 => 0.45426836003514
1017 => 0.46854227232829
1018 => 0.46492194645806
1019 => 0.47834662996158
1020 => 0.45023320690617
1021 => 0.45957135833042
1022 => 0.46149593839683
1023 => 0.43939165303677
1024 => 0.42429170697692
1025 => 0.42328471272672
1026 => 0.3971034871597
1027 => 0.41108928653013
1028 => 0.42339621120441
1029 => 0.41750214934137
1030 => 0.41563626543562
1031 => 0.42516866164925
1101 => 0.42590941047451
1102 => 0.40902025875772
1103 => 0.41253204820951
1104 => 0.42717679400993
1105 => 0.41216303818989
1106 => 0.38299376311465
1107 => 0.37575937959921
1108 => 0.37479417948211
1109 => 0.35517395762204
1110 => 0.37624281569826
1111 => 0.3670456945377
1112 => 0.39609929008549
1113 => 0.37950403212615
1114 => 0.37878864372404
1115 => 0.3777072292296
1116 => 0.36081929377349
1117 => 0.36451667835409
1118 => 0.37680734782758
1119 => 0.38119279716002
1120 => 0.38073535886572
1121 => 0.376747116842
1122 => 0.37857291361736
1123 => 0.37269138605418
1124 => 0.37061449625821
1125 => 0.3640592607686
1126 => 0.35442487552888
1127 => 0.35576459588758
1128 => 0.33667635775368
1129 => 0.32627607252885
1130 => 0.32339741065218
1201 => 0.31954794368313
1202 => 0.32383221818937
1203 => 0.33662228317336
1204 => 0.32119475123902
1205 => 0.29474532985313
1206 => 0.29633498514605
1207 => 0.29990646861633
1208 => 0.29325103279718
1209 => 0.28695222134275
1210 => 0.29242852686365
1211 => 0.28122155834589
1212 => 0.30126077721977
1213 => 0.3007187725085
1214 => 0.3081881540877
1215 => 0.31285891167631
1216 => 0.30209432761028
1217 => 0.29938706382821
1218 => 0.30092924431676
1219 => 0.27544043609053
1220 => 0.30610517466826
1221 => 0.30637036460086
1222 => 0.30409964739645
1223 => 0.3204276740215
1224 => 0.35488490303958
1225 => 0.34192070744415
1226 => 0.33690057906472
1227 => 0.32735731134572
1228 => 0.34007314895812
1229 => 0.33909677102745
1230 => 0.33468121974465
1231 => 0.33201068055146
]
'min_raw' => 0.24940020406363
'max_raw' => 0.63993236587855
'avg_raw' => 0.44466628497109
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2494002'
'max' => '$0.639932'
'avg' => '$0.444666'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15336510903245
'max_diff' => 0.37196467016907
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0078283874223276
]
1 => [
'year' => 2028
'avg' => 0.013435785413821
]
2 => [
'year' => 2029
'avg' => 0.036704144185843
]
3 => [
'year' => 2030
'avg' => 0.028317192577927
]
4 => [
'year' => 2031
'avg' => 0.027810992422566
]
5 => [
'year' => 2032
'avg' => 0.048761422158187
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0078283874223276
'min' => '$0.007828'
'max_raw' => 0.048761422158187
'max' => '$0.048761'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.048761422158187
]
1 => [
'year' => 2033
'avg' => 0.12541939186877
]
2 => [
'year' => 2034
'avg' => 0.079496837940357
]
3 => [
'year' => 2035
'avg' => 0.093766702654167
]
4 => [
'year' => 2036
'avg' => 0.18200139537033
]
5 => [
'year' => 2037
'avg' => 0.44466628497109
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.048761422158187
'min' => '$0.048761'
'max_raw' => 0.44466628497109
'max' => '$0.444666'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.44466628497109
]
]
]
]
'prediction_2025_max_price' => '$0.013385'
'last_price' => 0.012978556626931
'sma_50day_nextmonth' => '$0.014536'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.01387'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.015289'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.016419'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.018723'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.014039'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.014826'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.016155'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0180054'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.020456'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010228'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.005114'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.014626'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.016031'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.019398'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009237'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.003879'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.001939'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000969'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '24.56'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -27.69
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.018268'
'vwma_10_action' => 'SELL'
'hma_9' => '0.013675'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -175.19
'cci_20_action' => 'BUY'
'adx_14' => 25.48
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.005081'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 14.32
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 21
'buy_signals' => 8
'sell_pct' => 72.41
'buy_pct' => 27.59
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767712241
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de GRDM para 2026
La previsión del precio de GRDM para 2026 sugiere que el precio medio podría oscilar entre $0.004484 en el extremo inferior y $0.013385 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, GRDM podría potencialmente ganar 3.13% para 2026 si GRDM alcanza el objetivo de precio previsto.
Predicción de precio de GRDM 2027-2032
La predicción del precio de GRDM para 2027-2032 está actualmente dentro de un rango de precios de $0.007828 en el extremo inferior y $0.048761 en el extremo superior. Considerando la volatilidad de precios en el mercado, si GRDM alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de GRDM | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004316 | $0.007828 | $0.01134 |
| 2028 | $0.00779 | $0.013435 | $0.019081 |
| 2029 | $0.017113 | $0.0367041 | $0.056294 |
| 2030 | $0.014554 | $0.028317 | $0.04208 |
| 2031 | $0.0172074 | $0.02781 | $0.038414 |
| 2032 | $0.026265 | $0.048761 | $0.071256 |
Predicción de precio de GRDM 2032-2037
La predicción de precio de GRDM para 2032-2037 se estima actualmente entre $0.048761 en el extremo inferior y $0.444666 en el extremo superior. Comparado con el precio actual, GRDM podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de GRDM | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.026265 | $0.048761 | $0.071256 |
| 2033 | $0.061036 | $0.125419 | $0.1898024 |
| 2034 | $0.04907 | $0.079496 | $0.109923 |
| 2035 | $0.058016 | $0.093766 | $0.129517 |
| 2036 | $0.096035 | $0.1820013 | $0.267967 |
| 2037 | $0.2494002 | $0.444666 | $0.639932 |
GRDM Histograma de precios potenciales
Pronóstico de precio de GRDM basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para GRDM es Bajista, con 8 indicadores técnicos mostrando señales alcistas y 21 indicando señales bajistas. La predicción de precio de GRDM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de GRDM
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de GRDM disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para GRDM alcance $0.014536 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 24.56, lo que sugiere que el mercado de GRDM está en un estado BUY.
Promedios Móviles y Osciladores Populares de GRDM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.01387 | SELL |
| SMA 5 | $0.015289 | SELL |
| SMA 10 | $0.016419 | SELL |
| SMA 21 | $0.018723 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.014039 | SELL |
| EMA 5 | $0.014826 | SELL |
| EMA 10 | $0.016155 | SELL |
| EMA 21 | $0.0180054 | SELL |
| EMA 50 | $0.020456 | SELL |
| EMA 100 | $0.010228 | BUY |
| EMA 200 | $0.005114 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.009237 | BUY |
| EMA 50 | $0.003879 | BUY |
| EMA 100 | $0.001939 | BUY |
| EMA 200 | $0.000969 | BUY |
Osciladores de GRDM
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 24.56 | BUY |
| Stoch RSI (14) | -27.69 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -175.19 | BUY |
| Índice Direccional Medio (14) | 25.48 | SELL |
| Oscilador Asombroso (5, 34) | -0.005081 | SELL |
| Momentum (10) | -0.01 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 14.32 | BUY |
| VWMA (10) | 0.018268 | SELL |
| Promedio Móvil de Hull (9) | 0.013675 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de GRDM basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de GRDM
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de GRDM por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.018237 | $0.025626 | $0.0360089 | $0.050598 | $0.071099 | $0.0999065 |
| Amazon.com acción | $0.02708 | $0.0565051 | $0.1179013 | $0.2460081 | $0.51331 | $1.07 |
| Apple acción | $0.018409 | $0.026111 | $0.037037 | $0.052535 | $0.074517 | $0.105696 |
| Netflix acción | $0.020478 | $0.032311 | $0.050982 | $0.080441 | $0.126924 | $0.200267 |
| Google acción | $0.0168071 | $0.021765 | $0.028185 | $0.03650056 | $0.047268 | $0.061211 |
| Tesla acción | $0.029421 | $0.066696 | $0.151195 | $0.342747 | $0.776983 | $1.76 |
| Kodak acción | $0.009732 | $0.007298 | $0.005473 | $0.0041041 | $0.003077 | $0.0023079 |
| Nokia acción | $0.008597 | $0.005695 | $0.003773 | $0.002499 | $0.001655 | $0.001096 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de GRDM
Podría preguntarse cosas como: "¿Debo invertir en GRDM ahora?", "¿Debería comprar GRDM hoy?", "¿Será GRDM una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de GRDM regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como GRDM, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de GRDM a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de GRDM es de $0.01297 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de GRDM basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si GRDM ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.013315 | $0.013662 | $0.014017 | $0.014381 |
| Si GRDM ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.013653 | $0.014363 | $0.0151097 | $0.015895 |
| Si GRDM ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014665 | $0.016571 | $0.018725 | $0.021158 |
| Si GRDM ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.016352 | $0.0206025 | $0.025957 | $0.032705 |
| Si GRDM ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019725 | $0.02998 | $0.045566 | $0.069254 |
| Si GRDM ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.029846 | $0.068636 | $0.15784 | $0.362979 |
| Si GRDM ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.046714 | $0.168138 | $0.605185 | $2.17 |
Cuadro de preguntas
¿Es GRDM una buena inversión?
La decisión de adquirir GRDM depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de GRDM ha experimentado una caída de 0% durante las últimas 24 horas, y GRDM ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en GRDM dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede GRDM subir?
Parece que el valor medio de GRDM podría potencialmente aumentar hasta $0.013385 para el final de este año. Mirando las perspectivas de GRDM en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.04208. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de GRDM la próxima semana?
Basado en nuestro nuevo pronóstico experimental de GRDM, el precio de GRDM aumentará en un 0.86% durante la próxima semana y alcanzará $0.0130896 para el 13 de enero de 2026.
¿Cuál será el precio de GRDM el próximo mes?
Basado en nuestro nuevo pronóstico experimental de GRDM, el precio de GRDM disminuirá en un -11.62% durante el próximo mes y alcanzará $0.01147 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de GRDM este año en 2026?
Según nuestra predicción más reciente sobre el valor de GRDM en 2026, se anticipa que GRDM fluctúe dentro del rango de $0.004484 y $0.013385. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de GRDM no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará GRDM en 5 años?
El futuro de GRDM parece estar en una tendencia alcista, con un precio máximo de $0.04208 proyectada después de un período de cinco años. Basado en el pronóstico de GRDM para 2030, el valor de GRDM podría potencialmente alcanzar su punto más alto de aproximadamente $0.04208, mientras que su punto más bajo se anticipa que esté alrededor de $0.014554.
¿Cuánto será GRDM en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de GRDM, se espera que el valor de GRDM en 2026 crezca en un 3.13% hasta $0.013385 si ocurre lo mejor. El precio estará entre $0.013385 y $0.004484 durante 2026.
¿Cuánto será GRDM en 2027?
Según nuestra última simulación experimental para la predicción de precios de GRDM, el valor de GRDM podría disminuir en un -12.62% hasta $0.01134 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.01134 y $0.004316 a lo largo del año.
¿Cuánto será GRDM en 2028?
Nuestro nuevo modelo experimental de predicción de precios de GRDM sugiere que el valor de GRDM en 2028 podría aumentar en un 47.02% , alcanzando $0.019081 en el mejor escenario. Se espera que el precio oscile entre $0.019081 y $0.00779 durante el año.
¿Cuánto será GRDM en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de GRDM podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.056294 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.056294 y $0.017113.
¿Cuánto será GRDM en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de GRDM, se espera que el valor de GRDM en 2030 aumente en un 224.23% , alcanzando $0.04208 en el mejor escenario. Se pronostica que el precio oscile entre $0.04208 y $0.014554 durante el transcurso de 2030.
¿Cuánto será GRDM en 2031?
Nuestra simulación experimental indica que el precio de GRDM podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.038414 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.038414 y $0.0172074 durante el año.
¿Cuánto será GRDM en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de GRDM, GRDM podría experimentar un 449.04% aumento en valor, alcanzando $0.071256 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.071256 y $0.026265 a lo largo del año.
¿Cuánto será GRDM en 2033?
Según nuestra predicción experimental de precios de GRDM, se anticipa que el valor de GRDM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.1898024. A lo largo del año, el precio de GRDM podría oscilar entre $0.1898024 y $0.061036.
¿Cuánto será GRDM en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de GRDM sugieren que GRDM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.109923 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.109923 y $0.04907.
¿Cuánto será GRDM en 2035?
Basado en nuestra predicción experimental para el precio de GRDM, GRDM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.129517 en 2035. El rango de precios esperado para el año está entre $0.129517 y $0.058016.
¿Cuánto será GRDM en 2036?
Nuestra reciente simulación de predicción de precios de GRDM sugiere que el valor de GRDM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.267967 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.267967 y $0.096035.
¿Cuánto será GRDM en 2037?
Según la simulación experimental, el valor de GRDM podría aumentar en un 4830.69% en 2037, con un máximo de $0.639932 bajo condiciones favorables. Se espera que el precio caiga entre $0.639932 y $0.2494002 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de GRDM?
Los traders de GRDM utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de GRDM
Las medias móviles son herramientas populares para la predicción de precios de GRDM. Una media móvil simple (SMA) calcula el precio de cierre promedio de GRDM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de GRDM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de GRDM.
¿Cómo leer gráficos de GRDM y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de GRDM en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de GRDM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de GRDM?
La acción del precio de GRDM está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de GRDM. La capitalización de mercado de GRDM puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de GRDM, grandes poseedores de GRDM, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de GRDM.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


