Predicción del precio de Froth - Pronóstico de FROTH
Predicción de precio de Froth hasta $0.002745 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000919 | $0.002745 |
| 2027 | $0.000885 | $0.002325 |
| 2028 | $0.001597 | $0.003913 |
| 2029 | $0.00351 | $0.011546 |
| 2030 | $0.002985 | $0.00863 |
| 2031 | $0.003529 | $0.007879 |
| 2032 | $0.005387 | $0.014615 |
| 2033 | $0.012518 | $0.038929 |
| 2034 | $0.010064 | $0.022546 |
| 2035 | $0.011899 | $0.026564 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Froth hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.65, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Froth para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Froth'
'name_with_ticker' => 'Froth <small>FROTH</small>'
'name_lang' => 'Froth'
'name_lang_with_ticker' => 'Froth <small>FROTH</small>'
'name_with_lang' => 'Froth'
'name_with_lang_with_ticker' => 'Froth <small>FROTH</small>'
'image' => '/uploads/coins/froth.png?1733083733'
'price_for_sd' => 0.002661
'ticker' => 'FROTH'
'marketcap' => '$2.61M'
'low24h' => '$0.002492'
'high24h' => '$0.002719'
'volume24h' => '$8.04K'
'current_supply' => '978.84M'
'max_supply' => '978.84M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002661'
'change_24h_pct' => '4.8202%'
'ath_price' => '$0.01057'
'ath_days' => 96
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 oct. 2025'
'ath_pct' => '-74.79%'
'fdv' => '$2.61M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.131254'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002684'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002352'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000919'
'current_year_max_price_prediction' => '$0.002745'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002985'
'grand_prediction_max_price' => '$0.00863'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0027124333102933
107 => 0.0027225605516606
108 => 0.002745377743571
109 => 0.0025504073369058
110 => 0.0026379433254681
111 => 0.0026893625177355
112 => 0.0024570487364251
113 => 0.0026847704212247
114 => 0.0025470133358957
115 => 0.0025002565120931
116 => 0.0025632084156002
117 => 0.0025386759975807
118 => 0.0025175844651595
119 => 0.00250581502767
120 => 0.0025520399578576
121 => 0.0025498835096136
122 => 0.0024742505519543
123 => 0.0023755904418816
124 => 0.0024087040132297
125 => 0.0023966735423176
126 => 0.0023530735637703
127 => 0.0023824546850297
128 => 0.0022530750964485
129 => 0.0020304842388604
130 => 0.0021775345775255
131 => 0.0021718732994469
201 => 0.0021690186263211
202 => 0.002279522891655
203 => 0.0022689004563103
204 => 0.0022496206321445
205 => 0.0023527194746801
206 => 0.0023150870102795
207 => 0.0024310613982383
208 => 0.0025074496309012
209 => 0.0024880751041974
210 => 0.0025599186062332
211 => 0.0024094668830336
212 => 0.0024594409104051
213 => 0.0024697404881853
214 => 0.0023514472509668
215 => 0.0022706384181026
216 => 0.0022652493902387
217 => 0.0021251380101953
218 => 0.002199984378475
219 => 0.0022658460852079
220 => 0.0022343034387577
221 => 0.0022243179792014
222 => 0.0022753315264929
223 => 0.0022792957160189
224 => 0.0021889117747193
225 => 0.0022077054582027
226 => 0.0022860782425182
227 => 0.0022057306651218
228 => 0.0020496284469428
301 => 0.0020109129385524
302 => 0.0020057475760647
303 => 0.0019007480467442
304 => 0.0020135000939484
305 => 0.0019642808037768
306 => 0.0021197639516913
307 => 0.0020309528114754
308 => 0.0020271243407253
309 => 0.0020213370456719
310 => 0.0019309596133098
311 => 0.0019507465272117
312 => 0.0020165212426534
313 => 0.0020399904021282
314 => 0.0020375423765179
315 => 0.0020161989106645
316 => 0.0020259698400359
317 => 0.001994494272113
318 => 0.0019833795939722
319 => 0.0019482986124265
320 => 0.0018967392609229
321 => 0.0019039089049813
322 => 0.0018017563384145
323 => 0.0017460981985018
324 => 0.0017306927589364
325 => 0.001710091961312
326 => 0.0017330196738447
327 => 0.0018014669530282
328 => 0.0017189050124326
329 => 0.0015773583563283
330 => 0.0015858655515439
331 => 0.0016049786933845
401 => 0.0015693614800107
402 => 0.0015356527766784
403 => 0.0015649597593523
404 => 0.0015049845751843
405 => 0.0016122264078564
406 => 0.0016093258168244
407 => 0.0016492989402541
408 => 0.0016742949546658
409 => 0.0016166872340026
410 => 0.0016021990480437
411 => 0.0016104521772173
412 => 0.0014740463360508
413 => 0.0016381516728998
414 => 0.0016395708626675
415 => 0.0016274188982614
416 => 0.0017147999239496
417 => 0.0018992011429771
418 => 0.0018298219868571
419 => 0.0018029562806114
420 => 0.0017518845533995
421 => 0.0018199345975702
422 => 0.001814709415924
423 => 0.0017910791629283
424 => 0.0017767875121857
425 => 0.0018031203168849
426 => 0.0017735245862712
427 => 0.0017682083798166
428 => 0.0017359979527919
429 => 0.0017245002958252
430 => 0.0017159878883419
501 => 0.0017066165641146
502 => 0.0017272873701714
503 => 0.0016804446041758
504 => 0.0016239568204381
505 => 0.0016192604724266
506 => 0.0016322275021935
507 => 0.0016264905568035
508 => 0.0016192330061393
509 => 0.0016053763654449
510 => 0.0016012653961512
511 => 0.001614624051997
512 => 0.0015995429084051
513 => 0.0016217959572874
514 => 0.0016157443593088
515 => 0.0015819406249322
516 => 0.0015398086561536
517 => 0.0015394335932567
518 => 0.0015303563296936
519 => 0.0015187950697703
520 => 0.0015155789917454
521 => 0.0015624916070153
522 => 0.0016595993166474
523 => 0.0016405347496561
524 => 0.0016543108531227
525 => 0.0017220756474679
526 => 0.0017436160378318
527 => 0.0017283271789637
528 => 0.0017073988459692
529 => 0.0017083195864078
530 => 0.0017798380356873
531 => 0.0017842985536425
601 => 0.0017955688434978
602 => 0.0018100543509453
603 => 0.0017307941235191
604 => 0.0017045864368238
605 => 0.0016921677809205
606 => 0.0016539231273629
607 => 0.001695166707376
608 => 0.0016711358395285
609 => 0.0016743784246125
610 => 0.0016722666868227
611 => 0.001673419838451
612 => 0.0016121964315786
613 => 0.0016345030232354
614 => 0.0015974139881714
615 => 0.0015477559336602
616 => 0.0015475894624491
617 => 0.0015597432009402
618 => 0.0015525136817099
619 => 0.001533059231349
620 => 0.0015358226442004
621 => 0.0015116122398229
622 => 0.0015387622256353
623 => 0.0015395407900811
624 => 0.0015290865666736
625 => 0.0015709148657936
626 => 0.0015880519540718
627 => 0.0015811707602738
628 => 0.0015875691511711
629 => 0.0016413269684859
630 => 0.0016500918383263
701 => 0.0016539846145345
702 => 0.0016487688101095
703 => 0.001588551745387
704 => 0.0015912226282701
705 => 0.001571625461832
706 => 0.0015550679212904
707 => 0.0015557301360792
708 => 0.0015642428642472
709 => 0.0016014184474219
710 => 0.0016796522705926
711 => 0.0016826211869938
712 => 0.0016862196002814
713 => 0.0016715830450231
714 => 0.0016671685199042
715 => 0.0016729924180216
716 => 0.0017023729286656
717 => 0.0017779475787726
718 => 0.0017512344499636
719 => 0.0017295162604273
720 => 0.0017485689678325
721 => 0.0017456359528675
722 => 0.0017208783548812
723 => 0.0017201834915634
724 => 0.0016726657455448
725 => 0.0016550995167684
726 => 0.0016404198611934
727 => 0.0016243900605277
728 => 0.0016148870573692
729 => 0.0016294879892583
730 => 0.0016328273951345
731 => 0.0016009022023784
801 => 0.0015965509165734
802 => 0.0016226217181312
803 => 0.0016111489303831
804 => 0.0016229489770934
805 => 0.0016256866891492
806 => 0.0016252458544533
807 => 0.001613266946403
808 => 0.0016209019451781
809 => 0.0016028428969723
810 => 0.0015832063944299
811 => 0.0015706795292052
812 => 0.001559748177849
813 => 0.0015658135269153
814 => 0.0015441916649831
815 => 0.0015372743961889
816 => 0.001618315379386
817 => 0.0016781812250111
818 => 0.0016773107519063
819 => 0.0016720119707479
820 => 0.0016641390567651
821 => 0.0017017969759704
822 => 0.0016886777099131
823 => 0.0016982230721211
824 => 0.0017006527674206
825 => 0.0017080067233149
826 => 0.0017106351304533
827 => 0.0017026902585351
828 => 0.0016760262979933
829 => 0.0016095822434565
830 => 0.0015786523567073
831 => 0.001568444978902
901 => 0.0015688159976987
902 => 0.0015585816429862
903 => 0.0015615961191206
904 => 0.0015575333312066
905 => 0.0015498393937914
906 => 0.0015653384479609
907 => 0.0015671245695702
908 => 0.0015635069051271
909 => 0.0015643589960649
910 => 0.001534406279601
911 => 0.0015366835195798
912 => 0.0015240035579998
913 => 0.0015216262180628
914 => 0.0014895723793591
915 => 0.0014327843578173
916 => 0.0014642504342981
917 => 0.0014262438387092
918 => 0.0014118501650658
919 => 0.0014799875774182
920 => 0.0014731484710556
921 => 0.001461442893851
922 => 0.0014441279055094
923 => 0.0014377056079041
924 => 0.0013986857607066
925 => 0.0013963802599714
926 => 0.001415719549867
927 => 0.0014067951330045
928 => 0.0013942618717886
929 => 0.0013488676701411
930 => 0.0012978295579855
1001 => 0.0012993700777774
1002 => 0.0013156043516562
1003 => 0.001362807692449
1004 => 0.0013443645305752
1005 => 0.0013309838050248
1006 => 0.0013284779973524
1007 => 0.0013598434266368
1008 => 0.0014042320803349
1009 => 0.0014250582435099
1010 => 0.0014044201483034
1011 => 0.0013807122157642
1012 => 0.0013821552077659
1013 => 0.0013917547870813
1014 => 0.0013927635671366
1015 => 0.0013773321402684
1016 => 0.0013816759965417
1017 => 0.001375077281652
1018 => 0.0013345809805544
1019 => 0.0013338485308827
1020 => 0.0013239100855023
1021 => 0.001323609153326
1022 => 0.0013067013784725
1023 => 0.0013043358638925
1024 => 0.0012707644506924
1025 => 0.0012928612565243
1026 => 0.0012780398793066
1027 => 0.0012557005678301
1028 => 0.0012518492621114
1029 => 0.0012517334872109
1030 => 0.0012746709651186
1031 => 0.0012925932187401
1101 => 0.0012782977035089
1102 => 0.0012750428917977
1103 => 0.0013097957655918
1104 => 0.001305373145622
1105 => 0.001301543185251
1106 => 0.0014002575632552
1107 => 0.0013221174302859
1108 => 0.0012880438722284
1109 => 0.0012458713737391
1110 => 0.0012596029518994
1111 => 0.0012624963971767
1112 => 0.0011610791404741
1113 => 0.0011199341720606
1114 => 0.0011058147694165
1115 => 0.0010976888535758
1116 => 0.0011013919354632
1117 => 0.0010643566380676
1118 => 0.0010892449704247
1119 => 0.0010571755333959
1120 => 0.001051798987915
1121 => 0.0011091431139635
1122 => 0.0011171222141036
1123 => 0.0010830808939938
1124 => 0.0011049409322934
1125 => 0.0010970141785287
1126 => 0.0010577252718489
1127 => 0.0010562247246033
1128 => 0.0010365109323033
1129 => 0.001005662664696
1130 => 0.00099156417862997
1201 => 0.00098422156467811
1202 => 0.00098725127029934
1203 => 0.00098571935842672
1204 => 0.00097572259723278
1205 => 0.00098629236107657
1206 => 0.00095929098218366
1207 => 0.00094853881554361
1208 => 0.00094368231132067
1209 => 0.00091971703341183
1210 => 0.00095785644797225
1211 => 0.00096537039310834
1212 => 0.00097289914303752
1213 => 0.0010384317710752
1214 => 0.0010351579461717
1215 => 0.0010647517288817
1216 => 0.0010636017689051
1217 => 0.0010551611426887
1218 => 0.0010195515290973
1219 => 0.0010337448863945
1220 => 0.00099005993877124
1221 => 0.0010227916718183
1222 => 0.0010078542757655
1223 => 0.0010177413231872
1224 => 0.00099996352044383
1225 => 0.0010098024905095
1226 => 0.00096715222824909
1227 => 0.00092732601345573
1228 => 0.00094335324488827
1229 => 0.00096077667839167
1230 => 0.00099855512163534
1231 => 0.0009760545925048
]
'min_raw' => 0.00091971703341183
'max_raw' => 0.002745377743571
'avg_raw' => 0.0018325473884914
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000919'
'max' => '$0.002745'
'avg' => '$0.001832'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0017422729665882
'max_diff' => 8.3387743570992E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00098414663361934
102 => 0.00095703965047694
103 => 0.00090111020152722
104 => 0.00090142675613436
105 => 0.00089282322890272
106 => 0.00088538852523904
107 => 0.00097863904894342
108 => 0.00096704187224815
109 => 0.0009485632889852
110 => 0.00097329760699237
111 => 0.00097983775325988
112 => 0.00098002394202975
113 => 0.00099806946196263
114 => 0.0010077003591856
115 => 0.0010093978465639
116 => 0.0010377928620775
117 => 0.0010473104967384
118 => 0.0010865122869204
119 => 0.0010068832448436
120 => 0.0010052433371234
121 => 0.00097364566957049
122 => 0.00095360592926908
123 => 0.00097501780773367
124 => 0.00099398580904041
125 => 0.00097423505824419
126 => 0.00097681408933707
127 => 0.00095030032008876
128 => 0.00095977774500624
129 => 0.00096794098009217
130 => 0.0009634337214905
131 => 0.00095668613721001
201 => 0.00099243064924149
202 => 0.0009904138037888
203 => 0.0010236999151553
204 => 0.0010496488192781
205 => 0.0010961538943877
206 => 0.0010476234241465
207 => 0.0010458547809197
208 => 0.0010631435521604
209 => 0.0010473078499176
210 => 0.0010573154671052
211 => 0.0010945415125416
212 => 0.0010953280402217
213 => 0.0010821526881974
214 => 0.0010813509668293
215 => 0.0010838814373081
216 => 0.0010987024819404
217 => 0.0010935235535412
218 => 0.0010995167405992
219 => 0.0011070113127862
220 => 0.0011380120409843
221 => 0.0011454862116004
222 => 0.0011273278519164
223 => 0.0011289673484854
224 => 0.0011221756235055
225 => 0.0011156149022749
226 => 0.0011303624454848
227 => 0.0011573138705644
228 => 0.0011571462071478
301 => 0.0011633984139054
302 => 0.0011672934869194
303 => 0.0011505729821759
304 => 0.0011396885484178
305 => 0.0011438623329152
306 => 0.0011505363052196
307 => 0.0011416980536464
308 => 0.00108714427066
309 => 0.0011036924035089
310 => 0.0011009379850405
311 => 0.0010970153581927
312 => 0.0011136546337353
313 => 0.0011120497350174
314 => 0.0010639767875629
315 => 0.0010670542616866
316 => 0.0010641639389572
317 => 0.0010735031630002
318 => 0.0010468035011706
319 => 0.0010550161373244
320 => 0.0010601670257314
321 => 0.0010632009385741
322 => 0.0010741615121355
323 => 0.0010728754153345
324 => 0.0010740815665526
325 => 0.00109033320366
326 => 0.0011725284072609
327 => 0.0011770021108394
328 => 0.0011549719582386
329 => 0.0011637725696771
330 => 0.0011468773201974
331 => 0.0011582192143614
401 => 0.0011659790502956
402 => 0.0011309138438398
403 => 0.0011288375098847
404 => 0.0011118725277005
405 => 0.0011209885481806
406 => 0.0011064843041317
407 => 0.0011100431382844
408 => 0.0011000923277399
409 => 0.0011180018055334
410 => 0.001138027384558
411 => 0.0011430866366536
412 => 0.0011297779225349
413 => 0.0011201415364258
414 => 0.0011032232168413
415 => 0.0011313587593597
416 => 0.0011395864494072
417 => 0.0011313155428065
418 => 0.0011293989930243
419 => 0.00112576713465
420 => 0.0011301695089473
421 => 0.0011395416396402
422 => 0.0011351219158815
423 => 0.0011380412212896
424 => 0.0011269158394485
425 => 0.0011505785173587
426 => 0.0011881605446136
427 => 0.0011882813769765
428 => 0.0011838616293939
429 => 0.0011820531639078
430 => 0.0011865880931404
501 => 0.0011890481062165
502 => 0.0012037132357907
503 => 0.0012194495041084
504 => 0.0012928838020752
505 => 0.0012722637450582
506 => 0.0013374190228402
507 => 0.0013889483882119
508 => 0.0014043997917808
509 => 0.0013901852275421
510 => 0.0013415579711373
511 => 0.0013391720859495
512 => 0.0014118417369164
513 => 0.0013913092320374
514 => 0.0013888669559159
515 => 0.0013628852642741
516 => 0.0013782436619295
517 => 0.0013748845550682
518 => 0.0013695820405544
519 => 0.0013988847934057
520 => 0.0014537369308686
521 => 0.0014451877108449
522 => 0.0014388061146842
523 => 0.0014108438179624
524 => 0.001427683366194
525 => 0.001421687125609
526 => 0.0014474507804703
527 => 0.0014321889620653
528 => 0.0013911536781187
529 => 0.0013976886823412
530 => 0.0013967009295996
531 => 0.0014170288110296
601 => 0.0014109268855933
602 => 0.0013955094307258
603 => 0.001453549452226
604 => 0.0014497806560653
605 => 0.0014551239473544
606 => 0.0014574762294266
607 => 0.0014928041677338
608 => 0.0015072768936904
609 => 0.0015105624558633
610 => 0.0015243104261612
611 => 0.0015102203938381
612 => 0.0015665905691531
613 => 0.0016040734464467
614 => 0.0016476117372744
615 => 0.001711232882163
616 => 0.0017351550211696
617 => 0.0017308337008768
618 => 0.0017790705268333
619 => 0.0018657510308326
620 => 0.0017483543090255
621 => 0.0018719733421499
622 => 0.0018328369835131
623 => 0.0017400453812183
624 => 0.0017340706959716
625 => 0.0017969102463783
626 => 0.0019362823210978
627 => 0.0019013711971256
628 => 0.0019363394231901
629 => 0.0018955471300391
630 => 0.0018935214488598
701 => 0.0019343582325618
702 => 0.0020297756035789
703 => 0.0019844463872754
704 => 0.0019194558405244
705 => 0.0019674438488804
706 => 0.0019258721949619
707 => 0.0018321996235102
708 => 0.001901344501247
709 => 0.0018551092906372
710 => 0.0018686031830921
711 => 0.0019657827188254
712 => 0.0019540898199808
713 => 0.001969221513819
714 => 0.00194251447026
715 => 0.0019175658802617
716 => 0.0018709974843232
717 => 0.00185721087808
718 => 0.0018610210000555
719 => 0.0018572089899727
720 => 0.0018311544004308
721 => 0.0018255279142999
722 => 0.001816150190913
723 => 0.0018190567395171
724 => 0.001801423876
725 => 0.0018347007325922
726 => 0.0018408772104103
727 => 0.0018650933315785
728 => 0.0018676075296121
729 => 0.0019350490823706
730 => 0.0018979034084205
731 => 0.0019228239335094
801 => 0.0019205948071844
802 => 0.0017420564566087
803 => 0.0017666574660609
804 => 0.0018049289165463
805 => 0.0017876876799784
806 => 0.0017633126052993
807 => 0.0017436284255871
808 => 0.0017138048805124
809 => 0.0017557809474946
810 => 0.001810975011919
811 => 0.00186900734217
812 => 0.0019387293845376
813 => 0.0019231682363352
814 => 0.0018677039370856
815 => 0.0018701920250332
816 => 0.001885572405699
817 => 0.0018656534152819
818 => 0.001859778916143
819 => 0.0018847653397264
820 => 0.0018849374074933
821 => 0.001862018201728
822 => 0.0018365476986902
823 => 0.0018364409763524
824 => 0.0018319087463527
825 => 0.0018963534036877
826 => 0.0019317914491321
827 => 0.0019358543639311
828 => 0.0019315179825946
829 => 0.0019331868836662
830 => 0.0019125662658461
831 => 0.0019596988833285
901 => 0.0020029524340632
902 => 0.001991359558489
903 => 0.0019739801899788
904 => 0.0019601366858567
905 => 0.0019880984688707
906 => 0.001986853374689
907 => 0.0020025746520311
908 => 0.0020018614440804
909 => 0.0019965749698174
910 => 0.0019913597472856
911 => 0.002012037515122
912 => 0.0020060826500599
913 => 0.0020001185354476
914 => 0.0019881565905324
915 => 0.0019897824175132
916 => 0.0019724060497961
917 => 0.0019643669470017
918 => 0.0018434781294782
919 => 0.0018111726872798
920 => 0.0018213366370333
921 => 0.001824682873199
922 => 0.0018106235033538
923 => 0.0018307810281561
924 => 0.0018276394992678
925 => 0.0018398613504394
926 => 0.0018322256684384
927 => 0.0018325390394912
928 => 0.0018549939521569
929 => 0.0018615127088337
930 => 0.0018581972165751
1001 => 0.0018605192737046
1002 => 0.0019140301001761
1003 => 0.0019064225718318
1004 => 0.0019023812240225
1005 => 0.0019035007049847
1006 => 0.0019171738684333
1007 => 0.0019210016076718
1008 => 0.0019047832075476
1009 => 0.0019124318988036
1010 => 0.0019449990554083
1011 => 0.0019563957170785
1012 => 0.0019927683904218
1013 => 0.0019773166323128
1014 => 0.0020056790030582
1015 => 0.0020928552612849
1016 => 0.0021624976884947
1017 => 0.0020984516343376
1018 => 0.0022263410829986
1019 => 0.002325921363433
1020 => 0.0023220993064103
1021 => 0.0023047351811832
1022 => 0.0021913656793873
1023 => 0.0020870413735907
1024 => 0.0021743130852336
1025 => 0.0021745355587741
1026 => 0.0021670388413466
1027 => 0.0021204773732538
1028 => 0.0021654186031848
1029 => 0.0021689858748141
1030 => 0.0021669891513158
1031 => 0.0021312905828982
1101 => 0.0020767854671227
1102 => 0.0020874356362784
1103 => 0.002104880830613
1104 => 0.0020718534382888
1105 => 0.0020612991852409
1106 => 0.0020809215496857
1107 => 0.0021441488964088
1108 => 0.0021321961327618
1109 => 0.0021318839977981
1110 => 0.0021830229894402
1111 => 0.0021464185079096
1112 => 0.002087569969018
1113 => 0.002072709936831
1114 => 0.0020199668334844
1115 => 0.0020563966828304
1116 => 0.0020577077282536
1117 => 0.0020377554720708
1118 => 0.0020891889846441
1119 => 0.002088715015771
1120 => 0.0021375434810914
1121 => 0.0022308851676497
1122 => 0.002203279437869
1123 => 0.0021711769776288
1124 => 0.0021746674051616
1125 => 0.0022129487800869
1126 => 0.0021898029869283
1127 => 0.0021981263755263
1128 => 0.0022129361816414
1129 => 0.0022218713053774
1130 => 0.0021733817783597
1201 => 0.0021620765500897
1202 => 0.0021389500206452
1203 => 0.0021329167407903
1204 => 0.0021517528164719
1205 => 0.0021467901760182
1206 => 0.0020575975399624
1207 => 0.0020482764132314
1208 => 0.0020485622788807
1209 => 0.0020251238625203
1210 => 0.0019893746517061
1211 => 0.0020833214432513
1212 => 0.0020757762011057
1213 => 0.0020674468377323
1214 => 0.0020684671372189
1215 => 0.0021092462552764
1216 => 0.0020855923074082
1217 => 0.0021484802046217
1218 => 0.0021355523435378
1219 => 0.0021222929315985
1220 => 0.0021204600769769
1221 => 0.0021153563346201
1222 => 0.0020978537030598
1223 => 0.0020767182237056
1224 => 0.0020627627495121
1225 => 0.0019027895991985
1226 => 0.0019324796853757
1227 => 0.001966635423186
1228 => 0.0019784258470076
1229 => 0.0019582575111883
1230 => 0.0020986500718854
1231 => 0.0021243011455811
]
'min_raw' => 0.00088538852523904
'max_raw' => 0.002325921363433
'avg_raw' => 0.001605654944336
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000885'
'max' => '$0.002325'
'avg' => '$0.0016056'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.4328508172784E-5
'max_diff' => -0.00041945638013798
'year' => 2027
]
2 => [
'items' => [
101 => 0.0020466023701786
102 => 0.0020320681017209
103 => 0.0020996029361058
104 => 0.0020588711751739
105 => 0.0020772126846275
106 => 0.0020375683734582
107 => 0.0021181225530789
108 => 0.0021175088651954
109 => 0.0020861714699242
110 => 0.0021126576218182
111 => 0.0021080550011344
112 => 0.0020726751590539
113 => 0.0021192441571787
114 => 0.0021192672548208
115 => 0.0020891056932061
116 => 0.0020538835924549
117 => 0.0020475867127495
118 => 0.0020428428597582
119 => 0.0020760459875951
120 => 0.0021058158081902
121 => 0.0021612100637532
122 => 0.0021751374957368
123 => 0.0022294971899704
124 => 0.0021971286387798
125 => 0.0022114771982797
126 => 0.0022270545893445
127 => 0.0022345229634605
128 => 0.0022223536486135
129 => 0.0023067966291011
130 => 0.0023139262039203
131 => 0.0023163166886866
201 => 0.0022878429907793
202 => 0.002313134298873
203 => 0.002301301333376
204 => 0.0023320874223066
205 => 0.0023369150741474
206 => 0.0023328262247869
207 => 0.0023343585976805
208 => 0.0022623014105969
209 => 0.0022585648653147
210 => 0.0022076168052583
211 => 0.0022283785163203
212 => 0.0021895654926246
213 => 0.002201873502257
214 => 0.0022072987556279
215 => 0.0022044649111473
216 => 0.0022295523523131
217 => 0.0022082229022966
218 => 0.0021519309768166
219 => 0.0020956237146392
220 => 0.0020949168228294
221 => 0.0020800921146038
222 => 0.0020693765658375
223 => 0.0020714407606844
224 => 0.0020787152525621
225 => 0.0020689537591452
226 => 0.002071036868686
227 => 0.0021056303667489
228 => 0.0021125678460759
229 => 0.0020889915806747
301 => 0.0019943294730499
302 => 0.0019710991543969
303 => 0.0019877966467674
304 => 0.0019798163208705
305 => 0.001597866289271
306 => 0.0016875997836504
307 => 0.0016342831883517
308 => 0.0016588539284439
309 => 0.0016044314909093
310 => 0.0016304047306252
311 => 0.0016256084216405
312 => 0.0017698972251955
313 => 0.0017676443539907
314 => 0.0017687226842172
315 => 0.0017172511729355
316 => 0.001799246688011
317 => 0.0018396406272005
318 => 0.0018321647841064
319 => 0.0018340462927525
320 => 0.0018017157404766
321 => 0.0017690357146343
322 => 0.0017327885365552
323 => 0.0018001313131395
324 => 0.0017926439459629
325 => 0.0018098172723964
326 => 0.0018534938767725
327 => 0.0018599254226782
328 => 0.0018685694855977
329 => 0.0018654712043673
330 => 0.0019392848330895
331 => 0.0019303455156132
401 => 0.0019518866987138
402 => 0.0019075748507424
403 => 0.0018574317886434
404 => 0.0018669623454482
405 => 0.001866044476188
406 => 0.0018543589470244
407 => 0.0018438097737908
408 => 0.0018262483725679
409 => 0.0018818152446354
410 => 0.0018795593311065
411 => 0.001916079948927
412 => 0.0019096245749849
413 => 0.0018665140079013
414 => 0.0018680537102386
415 => 0.0018784089484122
416 => 0.0019142485459649
417 => 0.0019248881786645
418 => 0.001919959476882
419 => 0.0019316253484194
420 => 0.0019408455776266
421 => 0.0019327832672506
422 => 0.0020469285802662
423 => 0.0019995274881187
424 => 0.0020226304506167
425 => 0.0020281403710419
426 => 0.0020140268257339
427 => 0.002017087548343
428 => 0.0020217237090989
429 => 0.0020498735693552
430 => 0.0021237469478955
501 => 0.0021564649643779
502 => 0.0022548987312436
503 => 0.0021537481885658
504 => 0.0021477463339658
505 => 0.0021654772277933
506 => 0.002223268269216
507 => 0.0022701024802525
508 => 0.0022856400899838
509 => 0.0022876936416077
510 => 0.0023168432303844
511 => 0.0023335512310635
512 => 0.0023133037035966
513 => 0.0022961460440729
514 => 0.0022346894373461
515 => 0.0022418032069155
516 => 0.0022908100248629
517 => 0.0023600350417008
518 => 0.0024194373077831
519 => 0.0023986367045791
520 => 0.0025573306240886
521 => 0.0025730644780014
522 => 0.0025708905681271
523 => 0.0026067346288519
524 => 0.0025355914678291
525 => 0.002505176388158
526 => 0.0022998557248096
527 => 0.0023575424562895
528 => 0.0024413935083185
529 => 0.0024302955071571
530 => 0.0023694006318287
531 => 0.0024193911135596
601 => 0.0024028626969525
602 => 0.0023898260490098
603 => 0.0024495494605138
604 => 0.0023838811162626
605 => 0.0024407384163509
606 => 0.0023678183408742
607 => 0.0023987317199824
608 => 0.0023811837908887
609 => 0.0023925394516056
610 => 0.0023261544910886
611 => 0.0023619742043798
612 => 0.0023246642732514
613 => 0.0023246465834862
614 => 0.0023238229646886
615 => 0.0023677179332035
616 => 0.0023691493465509
617 => 0.0023367108984968
618 => 0.0023320360113484
619 => 0.0023493215193435
620 => 0.0023290847165629
621 => 0.0023385533892151
622 => 0.0023293715130117
623 => 0.0023273044792784
624 => 0.0023108340028148
625 => 0.0023037380686891
626 => 0.0023065205672994
627 => 0.0022970224650658
628 => 0.0022912995149087
629 => 0.0023226845258578
630 => 0.0023059167805754
701 => 0.0023201146284099
702 => 0.0023039343888913
703 => 0.0022478466293247
704 => 0.0022155899656807
705 => 0.0021096453871976
706 => 0.0021396911382316
707 => 0.0021596115022517
708 => 0.0021530278220619
709 => 0.0021671721146556
710 => 0.0021680404593457
711 => 0.0021634420056395
712 => 0.0021581175853461
713 => 0.0021555259520061
714 => 0.0021748418636365
715 => 0.0021860554004816
716 => 0.0021616107772812
717 => 0.002155883744082
718 => 0.0021805986077622
719 => 0.0021956746603299
720 => 0.0023069877619873
721 => 0.0022987413278799
722 => 0.0023194382592084
723 => 0.0023171081023611
724 => 0.0023388017836731
725 => 0.0023742617841845
726 => 0.0023021616883728
727 => 0.002314675771972
728 => 0.0023116076076659
729 => 0.0023451050210442
730 => 0.0023452095963124
731 => 0.0023251262236722
801 => 0.002336013745796
802 => 0.00232993662963
803 => 0.0023409187999134
804 => 0.0022986311917248
805 => 0.0023501329338333
806 => 0.0023793311029099
807 => 0.0023797365195159
808 => 0.0023935762199272
809 => 0.0024076381570865
810 => 0.0024346288209271
811 => 0.0024068854021211
812 => 0.0023569776924567
813 => 0.0023605808678935
814 => 0.0023313199959777
815 => 0.0023318118765211
816 => 0.0023291861796315
817 => 0.0023370660936503
818 => 0.0023003603897259
819 => 0.0023089751450707
820 => 0.0022969144371401
821 => 0.0023146495543484
822 => 0.0022955694999521
823 => 0.0023116061281041
824 => 0.0023185270051919
825 => 0.0023440651906415
826 => 0.0022917974891968
827 => 0.0021852201077385
828 => 0.0022076239654469
829 => 0.0021744869001112
830 => 0.0021775538616697
831 => 0.0021837496121213
901 => 0.0021636671577844
902 => 0.002167498257201
903 => 0.0021673613833708
904 => 0.0021661818786475
905 => 0.0021609576566533
906 => 0.0021533815011809
907 => 0.0021835625727652
908 => 0.0021886909249442
909 => 0.0022000906165696
910 => 0.0022340083663621
911 => 0.0022306191833222
912 => 0.0022361470814761
913 => 0.002224079710844
914 => 0.0021781136323833
915 => 0.0021806098115932
916 => 0.0021494824168473
917 => 0.002199294619102
918 => 0.0021874984321192
919 => 0.0021798933536326
920 => 0.002177818237507
921 => 0.0022118200628408
922 => 0.002221993941894
923 => 0.0022156542632116
924 => 0.0022026513972762
925 => 0.0022276207438245
926 => 0.0022343014875886
927 => 0.002235797059741
928 => 0.0022800379544272
929 => 0.002238269634299
930 => 0.0022483236840952
1001 => 0.0023267625105506
1002 => 0.0022556293187737
1003 => 0.0022933101569174
1004 => 0.0022914658759719
1005 => 0.0023107421177161
1006 => 0.0022898846615175
1007 => 0.0022901432146845
1008 => 0.0023072592114677
1009 => 0.002283222880872
1010 => 0.0022772711473928
1011 => 0.0022690488702185
1012 => 0.0022870019116227
1013 => 0.0022977639479983
1014 => 0.0023844980573409
1015 => 0.0024405322475322
1016 => 0.0024380996555563
1017 => 0.0024603289925943
1018 => 0.0024503144726613
1019 => 0.0024179749461007
1020 => 0.0024731745745545
1021 => 0.0024557071024612
1022 => 0.0024571470996376
1023 => 0.0024570935028708
1024 => 0.0024687078447799
1025 => 0.0024604780190985
1026 => 0.0024442561879061
1027 => 0.0024550249964927
1028 => 0.0024870045080757
1029 => 0.0025862698932804
1030 => 0.0026418201179323
1031 => 0.0025829257000054
1101 => 0.0026235502808637
1102 => 0.0025991900083669
1103 => 0.002594763022199
1104 => 0.0026202782611109
1105 => 0.0026458381610709
1106 => 0.002644210105942
1107 => 0.0026256549310864
1108 => 0.0026151735836306
1109 => 0.0026945418580748
1110 => 0.0027530190506821
1111 => 0.0027490312981824
1112 => 0.0027666319408296
1113 => 0.0028183079720094
1114 => 0.0028230325806754
1115 => 0.0028224373885773
1116 => 0.0028107269530368
1117 => 0.0028616087167139
1118 => 0.0029040551791528
1119 => 0.0028080163255562
1120 => 0.0028445866637649
1121 => 0.0028610042668094
1122 => 0.0028851101789622
1123 => 0.0029257808933839
1124 => 0.0029699600766201
1125 => 0.0029762074975298
1126 => 0.0029717746534278
1127 => 0.0029426372944833
1128 => 0.0029909786839477
1129 => 0.0030192959361508
1130 => 0.0030361582118089
1201 => 0.0030789181372629
1202 => 0.0028611056563366
1203 => 0.0027069271563543
1204 => 0.0026828499572175
1205 => 0.0027318118884512
1206 => 0.0027447227592535
1207 => 0.0027395184034219
1208 => 0.0025659764843959
1209 => 0.0026819362949292
1210 => 0.0028066993008852
1211 => 0.0028114919560573
1212 => 0.0028739509255103
1213 => 0.0028942901262439
1214 => 0.0029445777833378
1215 => 0.0029414322766948
1216 => 0.0029536765209457
1217 => 0.0029508617812332
1218 => 0.0030440090766842
1219 => 0.0031467643760739
1220 => 0.0031432062867979
1221 => 0.0031284339967651
1222 => 0.0031503733665136
1223 => 0.0032564278474108
1224 => 0.0032466640502982
1225 => 0.0032561487475149
1226 => 0.0033811929574614
1227 => 0.0035437682177233
1228 => 0.0034682356870424
1229 => 0.0036321195447197
1230 => 0.0037352757460176
1231 => 0.0039136737296121
]
'min_raw' => 0.001597866289271
'max_raw' => 0.0039136737296121
'avg_raw' => 0.0027557700094415
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001597'
'max' => '$0.003913'
'avg' => '$0.002755'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00071247776403191
'max_diff' => 0.0015877523661791
'year' => 2028
]
3 => [
'items' => [
101 => 0.0038913374234375
102 => 0.0039607864493059
103 => 0.0038513507736571
104 => 0.0036000643417685
105 => 0.0035602973020363
106 => 0.003639911922642
107 => 0.00383563669872
108 => 0.0036337478529179
109 => 0.0036745897034831
110 => 0.0036628272477727
111 => 0.0036622004764951
112 => 0.0036861217868976
113 => 0.0036514226785072
114 => 0.0035100522686744
115 => 0.0035748414943997
116 => 0.003549823262913
117 => 0.0035775828559802
118 => 0.0037273899308369
119 => 0.0036611566520882
120 => 0.003591385273281
121 => 0.0036788940658136
122 => 0.0037903228299913
123 => 0.0037833498181858
124 => 0.0037698192607903
125 => 0.0038460903043917
126 => 0.0039720677231023
127 => 0.0040061189131615
128 => 0.0040312548055172
129 => 0.0040347206203987
130 => 0.0040704206676699
131 => 0.0038784525159225
201 => 0.0041831109028374
202 => 0.0042357169902395
203 => 0.0042258292261069
204 => 0.0042842986782518
205 => 0.0042670954822039
206 => 0.0042421707502293
207 => 0.0043348572686881
208 => 0.0042285996546914
209 => 0.0040777803490848
210 => 0.0039950378951614
211 => 0.0041039998331311
212 => 0.0041705390864016
213 => 0.0042145173001221
214 => 0.0042278250810216
215 => 0.0038933544570794
216 => 0.0037130933413657
217 => 0.0038286386498403
218 => 0.0039696119006904
219 => 0.0038776694023961
220 => 0.003881273374259
221 => 0.0037501875337548
222 => 0.0039812100888843
223 => 0.0039475520458075
224 => 0.0041221700328302
225 => 0.0040804960488303
226 => 0.0042228902386161
227 => 0.0041853930762965
228 => 0.004341041700647
301 => 0.0044031341509186
302 => 0.004507397038843
303 => 0.0045840932436264
304 => 0.0046291307220399
305 => 0.0046264268407673
306 => 0.004804887767824
307 => 0.0046996555940885
308 => 0.0045674591825577
309 => 0.0045650681665475
310 => 0.0046335345613169
311 => 0.0047770213419156
312 => 0.0048142253764771
313 => 0.0048350173563292
314 => 0.0048031737154116
315 => 0.0046889517328796
316 => 0.0046396312599409
317 => 0.0046816537318363
318 => 0.0046302638597404
319 => 0.0047189771964294
320 => 0.0048407995558498
321 => 0.0048156437203673
322 => 0.0048997359068116
323 => 0.0049867624730255
324 => 0.0051112143713189
325 => 0.0051437507059733
326 => 0.005197532029911
327 => 0.0052528906784874
328 => 0.0052706703844527
329 => 0.0053046173598593
330 => 0.0053044384425423
331 => 0.005406739937825
401 => 0.0055195816551355
402 => 0.0055621767911284
403 => 0.0056601219576347
404 => 0.0054923942924007
405 => 0.0056196176531972
406 => 0.005734376309243
407 => 0.0055975563085612
408 => 0.0057861308045294
409 => 0.0057934527248889
410 => 0.0059040050293323
411 => 0.0057919390895201
412 => 0.0057253946921867
413 => 0.0059175058739021
414 => 0.0060104624232887
415 => 0.005982463154108
416 => 0.0057693873331482
417 => 0.0056453680660977
418 => 0.0053207857226967
419 => 0.005705267529369
420 => 0.005892537401911
421 => 0.0057689023494194
422 => 0.0058312566784747
423 => 0.0061714416793411
424 => 0.0063009621023234
425 => 0.0062740227597591
426 => 0.0062785750651932
427 => 0.0063484619344724
428 => 0.0066583788002586
429 => 0.0064726694304628
430 => 0.0066146372852743
501 => 0.0066899365235632
502 => 0.006759878652558
503 => 0.0065881228891836
504 => 0.0063646711646267
505 => 0.0062938946235943
506 => 0.0057566092800297
507 => 0.0057286412445851
508 => 0.0057129419387719
509 => 0.0056139600363305
510 => 0.0055361873744364
511 => 0.0054743396661844
512 => 0.0053120328104422
513 => 0.0053668066096874
514 => 0.0051081233577078
515 => 0.0052736197351528
516 => 0.0048607550188677
517 => 0.0052046010229312
518 => 0.0050174612756788
519 => 0.0051431205828515
520 => 0.0051426821693666
521 => 0.0049113035445422
522 => 0.0047778491824921
523 => 0.0048628914961119
524 => 0.0049540636069795
525 => 0.004968855975228
526 => 0.0050870629968034
527 => 0.0051200520356737
528 => 0.0050200937077858
529 => 0.0048521993153022
530 => 0.0048911973534128
531 => 0.0047770588884946
601 => 0.0045770356189981
602 => 0.0047206958232217
603 => 0.0047697477332369
604 => 0.0047914118511253
605 => 0.0045947119384032
606 => 0.0045329045552631
607 => 0.0044999988230934
608 => 0.0048268078266215
609 => 0.0048447111615644
610 => 0.0047531151687202
611 => 0.0051671377418645
612 => 0.005073431682381
613 => 0.0051781243093661
614 => 0.0048876586902123
615 => 0.0048987548680278
616 => 0.0047612437890024
617 => 0.004838240804763
618 => 0.0047838217957531
619 => 0.0048320202067889
620 => 0.0048609101356343
621 => 0.0049983986504447
622 => 0.0052061709209195
623 => 0.00497786245117
624 => 0.0048783851814626
625 => 0.0049401003201076
626 => 0.0051044558670453
627 => 0.0053534629338615
628 => 0.0052060457385721
629 => 0.0052714669865352
630 => 0.0052857586188264
701 => 0.0051770586367012
702 => 0.0053574708572505
703 => 0.0054541552319092
704 => 0.0055533333942966
705 => 0.0056394470137886
706 => 0.0055137194552646
707 => 0.0056482659652229
708 => 0.0055398452288527
709 => 0.0054425806199989
710 => 0.0054427281302615
711 => 0.0053817126203183
712 => 0.0052634873813544
713 => 0.0052416848333889
714 => 0.0053551044412638
715 => 0.0054460562259027
716 => 0.0054535474505153
717 => 0.0055039030317628
718 => 0.0055337029460413
719 => 0.0058257826169901
720 => 0.0059432594768554
721 => 0.0060869079573756
722 => 0.006142867136123
723 => 0.0063112842016766
724 => 0.0061752737430767
725 => 0.0061458470248128
726 => 0.0057373223125818
727 => 0.0058042182113237
728 => 0.0059113249997035
729 => 0.0057390884640723
730 => 0.0058483329025447
731 => 0.0058699000688127
801 => 0.0057332359324987
802 => 0.0058062341526128
803 => 0.0056123725224538
804 => 0.0052103965746943
805 => 0.0053579183713913
806 => 0.0054665440690602
807 => 0.0053115218050348
808 => 0.0055893932131102
809 => 0.0054270664729427
810 => 0.0053756166893673
811 => 0.0051748927404674
812 => 0.0052696267177748
813 => 0.005397755778543
814 => 0.0053185869155904
815 => 0.0054828741934817
816 => 0.0057155487927924
817 => 0.0058813665682731
818 => 0.0058940959981071
819 => 0.0057874862774011
820 => 0.0059583290352065
821 => 0.0059595734381839
822 => 0.0057668621094661
823 => 0.0056488274936477
824 => 0.0056220097805868
825 => 0.0056890056857353
826 => 0.0057703510827119
827 => 0.0058986101015041
828 => 0.0059761143403621
829 => 0.0061782042902316
830 => 0.0062328840362934
831 => 0.0062929604993522
901 => 0.0063732411808937
902 => 0.0064696387226286
903 => 0.0062587263892278
904 => 0.0062671063294236
905 => 0.0060707076848408
906 => 0.0058608275666894
907 => 0.0060201004144402
908 => 0.0062283284756954
909 => 0.0061805607283719
910 => 0.0061751858809915
911 => 0.006184224883427
912 => 0.0061482095618939
913 => 0.0059853135973896
914 => 0.0059035082637982
915 => 0.0060090580148975
916 => 0.0060651530101278
917 => 0.0061521514557323
918 => 0.0061414270609971
919 => 0.0063655257139234
920 => 0.0064526036740591
921 => 0.0064303254055804
922 => 0.0064344251431369
923 => 0.006592075630577
924 => 0.006767415395906
925 => 0.0069316442242564
926 => 0.0070987048422468
927 => 0.0068973067467725
928 => 0.0067950492143983
929 => 0.0069005528857781
930 => 0.0068445711526723
1001 => 0.0071662587963591
1002 => 0.0071885317508522
1003 => 0.0075101961328608
1004 => 0.0078154939344691
1005 => 0.0076237418552572
1006 => 0.0078045554292507
1007 => 0.0080001200514717
1008 => 0.0083773959369524
1009 => 0.0082503426914482
1010 => 0.0081530218965701
1011 => 0.008061054215661
1012 => 0.0082524243601746
1013 => 0.0084986189938787
1014 => 0.0085516469599557
1015 => 0.0086375725232425
1016 => 0.0085472322999244
1017 => 0.0086560371482619
1018 => 0.0090401660741661
1019 => 0.008936371047587
1020 => 0.0087889654239614
1021 => 0.0090921983188286
1022 => 0.009201937124693
1023 => 0.0099721415349083
1024 => 0.010944556418362
1025 => 0.010541970271392
1026 => 0.010292072058594
1027 => 0.010350804066266
1028 => 0.010705897063382
1029 => 0.010819941663968
1030 => 0.010509929126046
1031 => 0.010619430795398
1101 => 0.0112227957595
1102 => 0.011546481704474
1103 => 0.011106872714376
1104 => 0.0098940089458421
1105 => 0.0087756931603538
1106 => 0.0090723208650814
1107 => 0.0090386924887947
1108 => 0.0096869328714092
1109 => 0.0089338955705304
1110 => 0.0089465747874054
1111 => 0.0096082200946339
1112 => 0.0094317044701375
1113 => 0.0091457717648665
1114 => 0.0087777807855344
1115 => 0.0080975154251931
1116 => 0.0074949854249359
1117 => 0.0086766855098122
1118 => 0.0086257284533702
1119 => 0.0085519350842294
1120 => 0.0087161542419756
1121 => 0.0095135558575699
1122 => 0.0094951731693933
1123 => 0.0093782318861437
1124 => 0.0094669308188153
1125 => 0.0091302224131162
1126 => 0.0092169998359727
1127 => 0.0087755160134197
1128 => 0.0089750851392067
1129 => 0.0091451582816999
1130 => 0.0091793029830313
1201 => 0.0092562327386027
1202 => 0.0085988764001318
1203 => 0.0088940100971371
1204 => 0.00906737349384
1205 => 0.0082841113605218
1206 => 0.0090518909198441
1207 => 0.0085874332887648
1208 => 0.008429789392857
1209 => 0.0086420361306929
1210 => 0.0085593233705415
1211 => 0.0084882117964196
1212 => 0.0084485303162077
1213 => 0.0086043808956567
1214 => 0.0085971102798437
1215 => 0.0083421084825711
1216 => 0.008009469033232
1217 => 0.008121113750948
1218 => 0.008080552178327
1219 => 0.0079335518066015
1220 => 0.0080326123082519
1221 => 0.007596399992356
1222 => 0.0068459193752004
1223 => 0.0073417098587364
1224 => 0.0073226224644365
1225 => 0.0073129977346861
1226 => 0.0076855705804209
1227 => 0.0076497562980215
1228 => 0.0075847530247722
1229 => 0.007932357970512
1230 => 0.0078054774893707
1231 => 0.0081964932354472
]
'min_raw' => 0.0035100522686744
'max_raw' => 0.011546481704474
'avg_raw' => 0.0075282669865743
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00351'
'max' => '$0.011546'
'avg' => '$0.007528'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0019121859794034
'max_diff' => 0.0076328079748621
'year' => 2029
]
4 => [
'items' => [
101 => 0.008454041495126
102 => 0.0083887189256581
103 => 0.0086309443087248
104 => 0.0081236858197535
105 => 0.0082921767421116
106 => 0.0083269024876912
107 => 0.0079280685794389
108 => 0.0076556159575448
109 => 0.0076374464738517
110 => 0.0071650511737713
111 => 0.0074174009300326
112 => 0.0076394582726002
113 => 0.0075331100378562
114 => 0.0074994433637994
115 => 0.0076714391001449
116 => 0.0076848046419028
117 => 0.007380068873406
118 => 0.0074434330894032
119 => 0.007707672403536
120 => 0.0074367749366553
121 => 0.006910465409356
122 => 0.0067799333697873
123 => 0.006762517989526
124 => 0.006408504745589
125 => 0.0067886561448345
126 => 0.0066227098716397
127 => 0.0071469321603204
128 => 0.0068474992004865
129 => 0.0068345912440571
130 => 0.0068150789747286
131 => 0.0065103651515691
201 => 0.0065770781132673
202 => 0.0067988421586232
203 => 0.006877970068357
204 => 0.0068697163790959
205 => 0.006797755393818
206 => 0.0068306987643784
207 => 0.0067245766895723
208 => 0.0066871027762183
209 => 0.0065688247976612
210 => 0.0063949888443078
211 => 0.0064191617998194
212 => 0.0060747472895748
213 => 0.0058870919849319
214 => 0.0058351514698639
215 => 0.0057656944423715
216 => 0.0058429968259373
217 => 0.0060737716065406
218 => 0.0057954082595321
219 => 0.0053181738260045
220 => 0.0053468564286274
221 => 0.0054112977207799
222 => 0.0052912117991755
223 => 0.0051775605524243
224 => 0.0052763710906574
225 => 0.0050741605699013
226 => 0.0054357338961411
227 => 0.0054259543509639
228 => 0.0055607265274416
301 => 0.0056450023351966
302 => 0.0054507738829381
303 => 0.0054019259524447
304 => 0.0054297519536684
305 => 0.0049698501366241
306 => 0.0055231427372791
307 => 0.0055279276346655
308 => 0.0054869564382474
309 => 0.0057815676671036
310 => 0.0064032892515368
311 => 0.0061693725827802
312 => 0.0060787929784689
313 => 0.0059066010844599
314 => 0.006136036559484
315 => 0.0061184194947531
316 => 0.0060387484469666
317 => 0.0059905631486766
318 => 0.0060793460382179
319 => 0.0059795619661457
320 => 0.0059616380049186
321 => 0.0058530383013445
322 => 0.0058142731481403
323 => 0.0057855729719931
324 => 0.005753976898076
325 => 0.0058236699638859
326 => 0.0056657363078744
327 => 0.0054752838011516
328 => 0.0054594497359423
329 => 0.0055031689821305
330 => 0.0054838264702073
331 => 0.0054593571314368
401 => 0.0054126384998961
402 => 0.0053987780799036
403 => 0.0054438177207594
404 => 0.0053929705922074
405 => 0.0054679983001723
406 => 0.0054475949150783
407 => 0.0053336232645263
408 => 0.0051915723902291
409 => 0.0051903078394861
410 => 0.0051597032116289
411 => 0.0051207236166161
412 => 0.0051098803850159
413 => 0.0052680495427324
414 => 0.0055954549656009
415 => 0.0055311774469441
416 => 0.0055776245415987
417 => 0.0058060982769204
418 => 0.0058787232069343
419 => 0.0058271757518262
420 => 0.0057566144159657
421 => 0.0057597187566387
422 => 0.006000848201643
423 => 0.0060158871493526
424 => 0.0060538857184661
425 => 0.0061027246181714
426 => 0.0058354932276314
427 => 0.005747132182176
428 => 0.0057052618167551
429 => 0.0055763172971293
430 => 0.0057153729066781
501 => 0.0056343511579489
502 => 0.0056452837599495
503 => 0.0056381638885545
504 => 0.0056420518197798
505 => 0.0054356328290276
506 => 0.0055108410601949
507 => 0.0053857927890029
508 => 0.0052183671912039
509 => 0.0052178059218931
510 => 0.0052587830997627
511 => 0.0052344082709287
512 => 0.0051688162332707
513 => 0.0051781332726343
514 => 0.0050965062039593
515 => 0.0051880442766772
516 => 0.0051906692610638
517 => 0.0051554221169549
518 => 0.0052964491477968
519 => 0.0053542280373998
520 => 0.0053310276120803
521 => 0.0053526002337118
522 => 0.0055338484680398
523 => 0.0055633998386502
524 => 0.0055765246054214
525 => 0.0055589391566464
526 => 0.0053559131187132
527 => 0.0053649181868289
528 => 0.0052988449719524
529 => 0.0052430200680056
530 => 0.0052452527714004
531 => 0.0052739540287586
601 => 0.0053992941029483
602 => 0.0056630648998797
603 => 0.0056730748088093
604 => 0.0056852071104416
605 => 0.0056358589424967
606 => 0.0056209750628461
607 => 0.0056406107419605
608 => 0.0057396691848783
609 => 0.0059944743941677
610 => 0.0059044092153371
611 => 0.0058311848229998
612 => 0.005895422356234
613 => 0.005885533491503
614 => 0.0058020615213718
615 => 0.0057997187411823
616 => 0.0056395093428973
617 => 0.0055802835761428
618 => 0.005530790092471
619 => 0.0054767445003615
620 => 0.0054447044617343
621 => 0.0054939325230028
622 => 0.0055051915630642
623 => 0.0053975535467414
624 => 0.0053828828828527
625 => 0.0054707824105099
626 => 0.0054321011056126
627 => 0.0054718857869496
628 => 0.0054811161742865
629 => 0.0054796298693314
630 => 0.0054392421444991
701 => 0.0054649840759279
702 => 0.0054040967340597
703 => 0.0053378908947611
704 => 0.0052956556940581
705 => 0.0052587998797583
706 => 0.0052792496276043
707 => 0.0052063500105097
708 => 0.0051830279558217
709 => 0.0054562632887717
710 => 0.0056581051669966
711 => 0.0056551703061491
712 => 0.0056373050955246
713 => 0.0056107610163622
714 => 0.0057377273201547
715 => 0.0056934947986847
716 => 0.005725677653805
717 => 0.0057338695411432
718 => 0.0057586639168776
719 => 0.005767525775054
720 => 0.0057407390846886
721 => 0.0056508396801037
722 => 0.005426818911257
723 => 0.0053225366386264
724 => 0.0052881217516996
725 => 0.0052893726674762
726 => 0.0052548668260234
727 => 0.0052650303427746
728 => 0.0052513323696676
729 => 0.0052253917224986
730 => 0.0052776478657405
731 => 0.0052836698994494
801 => 0.0052714726912024
802 => 0.0052743455752899
803 => 0.0051733579005001
804 => 0.0051810357740806
805 => 0.005138284398327
806 => 0.0051302690307487
807 => 0.0050221972756317
808 => 0.0048307324961904
809 => 0.0049368225699367
810 => 0.004808680679373
811 => 0.00476015140375
812 => 0.0049898814466984
813 => 0.0049668229221059
814 => 0.0049273567513032
815 => 0.0048689780592155
816 => 0.0048473248344487
817 => 0.0047157666953437
818 => 0.00470799353865
819 => 0.004773197304759
820 => 0.0047431080102243
821 => 0.0047008512449907
822 => 0.0045478015248139
823 => 0.0043757229663144
824 => 0.0043809169363482
825 => 0.0044356519241716
826 => 0.0045948012832866
827 => 0.0045326188753685
828 => 0.004487504824963
829 => 0.0044790563194454
830 => 0.0045848070541422
831 => 0.0047344664992021
901 => 0.0048046833623828
902 => 0.0047351005834885
903 => 0.0046551676336977
904 => 0.0046600327819778
905 => 0.0046923984338608
906 => 0.004695799606248
907 => 0.0046437714731742
908 => 0.0046584170878779
909 => 0.0046361690599198
910 => 0.0044996329534078
911 => 0.0044971634482016
912 => 0.0044636552857214
913 => 0.0044626406718785
914 => 0.0044056349284968
915 => 0.0043976594309357
916 => 0.00428447106745
917 => 0.0043589719910622
918 => 0.0043090006829772
919 => 0.0042336821346532
920 => 0.0042206971885329
921 => 0.0042203068453727
922 => 0.0042976421535822
923 => 0.004358068282959
924 => 0.0043098699552759
925 => 0.0042988961303478
926 => 0.0044160678707128
927 => 0.0044011566987072
928 => 0.0043882437199171
929 => 0.0047210661373761
930 => 0.0044576112235002
1001 => 0.0043427298435696
1002 => 0.004200542320523
1003 => 0.0042468392949987
1004 => 0.0042565947477648
1005 => 0.0039146593860653
1006 => 0.0037759362524092
1007 => 0.0037283317006094
1008 => 0.0037009346080191
1009 => 0.0037134198071435
1010 => 0.0035885527162523
1011 => 0.0036724654664423
1012 => 0.0035643411204829
1013 => 0.0035462137220158
1014 => 0.0037395534466273
1015 => 0.0037664555398327
1016 => 0.0036516828523932
1017 => 0.0037253854977396
1018 => 0.0036986598939936
1019 => 0.0035661946020587
1020 => 0.0035611354022555
1021 => 0.0034946689751428
1022 => 0.0033906618871477
1023 => 0.0033431278570512
1024 => 0.0033183717214675
1025 => 0.0033285865854968
1026 => 0.0033234216376636
1027 => 0.0032897168593466
1028 => 0.0033253535561033
1029 => 0.0032343165219898
1030 => 0.0031980648414706
1031 => 0.0031816907984126
1101 => 0.0031008901907407
1102 => 0.0032294798897401
1103 => 0.0032548136803733
1104 => 0.0032801973864
1105 => 0.0035011452171709
1106 => 0.0034901072879377
1107 => 0.0035898847925165
1108 => 0.0035860076221676
1109 => 0.0035575494615734
1110 => 0.0034374891631663
1111 => 0.0034853430582423
1112 => 0.0033380562073448
1113 => 0.0034484135305695
1114 => 0.0033980510568817
1115 => 0.0034313859275556
1116 => 0.0033714468243999
1117 => 0.0034046195989112
1118 => 0.0032608212619541
1119 => 0.0031265443982007
1120 => 0.0031805813279611
1121 => 0.0032393256504831
1122 => 0.0033666983094858
1123 => 0.0032908362045854
1124 => 0.0033181190861714
1125 => 0.0032267259999576
1126 => 0.0030381559579542
1127 => 0.0030392232439133
1128 => 0.0030102158511728
1129 => 0.0029851492286963
1130 => 0.0032995498799092
1201 => 0.0032604491889921
1202 => 0.0031981473553876
1203 => 0.0032815408354437
1204 => 0.003303591395203
1205 => 0.0033042191436399
1206 => 0.0033650608739916
1207 => 0.0033975321163868
1208 => 0.0034032553135973
1209 => 0.0034989910908783
1210 => 0.0035310804606374
1211 => 0.0036632520332177
1212 => 0.0033947771583335
1213 => 0.00338924809496
1214 => 0.0032827143527268
1215 => 0.0032151489691706
1216 => 0.0032873406123436
1217 => 0.0033512925530528
1218 => 0.0032847015177899
1219 => 0.0032933969011818
1220 => 0.0032040038770289
1221 => 0.0032359576768308
1222 => 0.0032634805938619
1223 => 0.0032482840567996
1224 => 0.0032255341052967
1225 => 0.0033460492232129
1226 => 0.0033392492879575
1227 => 0.0034514757363918
1228 => 0.0035389642783366
1229 => 0.0036957593859492
1230 => 0.0035321355172416
1231 => 0.0035261724131199
]
'min_raw' => 0.0029851492286963
'max_raw' => 0.0086309443087248
'avg_raw' => 0.0058080467687105
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002985'
'max' => '$0.00863'
'avg' => '$0.005808'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00052490303997813
'max_diff' => -0.0029155373957494
'year' => 2030
]
5 => [
'items' => [
101 => 0.0035844627124213
102 => 0.0035310715366963
103 => 0.0035648129167538
104 => 0.0036903231279822
105 => 0.0036929749609691
106 => 0.0036485533417454
107 => 0.0036458502821786
108 => 0.0036543819400698
109 => 0.0037043521268199
110 => 0.0036868910081406
111 => 0.0037070974567377
112 => 0.0037323659301204
113 => 0.003836887049642
114 => 0.0038620867377041
115 => 0.0038008645602535
116 => 0.0038063922374016
117 => 0.0037834934624488
118 => 0.0037613735327651
119 => 0.0038110959043377
120 => 0.0039019645156822
121 => 0.0039013992267671
122 => 0.0039224789783656
123 => 0.0039356114889774
124 => 0.0038792371398463
125 => 0.0038425395115042
126 => 0.0038566117173413
127 => 0.0038791134809276
128 => 0.0038493146986815
129 => 0.0036653828105193
130 => 0.0037211759957732
131 => 0.0037118892815996
201 => 0.0036986638713133
202 => 0.003754764350522
203 => 0.0037493533224443
204 => 0.0035872720237553
205 => 0.0035976479426259
206 => 0.0035879030177479
207 => 0.0036193908636526
208 => 0.0035293710896831
209 => 0.0035570605658637
210 => 0.0035744271457515
211 => 0.0035846561947217
212 => 0.0036216105337267
213 => 0.0036172743685699
214 => 0.0036213409916123
215 => 0.003676134520773
216 => 0.0039532613883992
217 => 0.0039683447923581
218 => 0.0038940685947685
219 => 0.0039237404706723
220 => 0.003866776957463
221 => 0.0039050169455028
222 => 0.0039311797741292
223 => 0.0038129549823889
224 => 0.0038059544774946
225 => 0.0037487558556031
226 => 0.003779491155112
227 => 0.0037305890836471
228 => 0.0037425879414628
301 => 0.0037090380889686
302 => 0.0037694211437491
303 => 0.0038369387815718
304 => 0.0038539964032382
305 => 0.0038091251444019
306 => 0.0037766353958444
307 => 0.0037195941001659
308 => 0.0038144550461274
309 => 0.0038421952775615
310 => 0.0038143093385011
311 => 0.003807847557101
312 => 0.0037956024930239
313 => 0.003810445405331
314 => 0.0038420441983036
315 => 0.0038271427910758
316 => 0.0038369854330788
317 => 0.0037994754314519
318 => 0.0038792558021016
319 => 0.0040059662308851
320 => 0.0040063736256328
321 => 0.0039914721380809
322 => 0.0039853747704317
323 => 0.0040006646009579
324 => 0.0040089587067966
325 => 0.0040584032150427
326 => 0.0041114591423469
327 => 0.0043590480049609
328 => 0.0042895260430817
329 => 0.0045092016111202
330 => 0.0046829364641362
331 => 0.0047350319500513
401 => 0.0046871065542914
402 => 0.0045231563642759
403 => 0.004515112185788
404 => 0.0047601229876561
405 => 0.0046908962139227
406 => 0.0046826619094649
407 => 0.0045950628221107
408 => 0.004646844732095
409 => 0.0046355192687867
410 => 0.0046176414708938
411 => 0.0047164377479849
412 => 0.0049013755590949
413 => 0.0048725512668976
414 => 0.0048510352698927
415 => 0.00475675843423
416 => 0.0048135341467925
417 => 0.0047933174030162
418 => 0.0048801813641421
419 => 0.0048287250778434
420 => 0.0046903717530253
421 => 0.0047124049760211
422 => 0.0047090746986899
423 => 0.0047776115701785
424 => 0.0047570385025474
425 => 0.004705057477049
426 => 0.0049007434617618
427 => 0.0048880367023772
428 => 0.004906051982015
429 => 0.0049139828652525
430 => 0.0050330934757734
501 => 0.0050818892817893
502 => 0.0050929667840458
503 => 0.0051393190257579
504 => 0.0050918134980461
505 => 0.0052818694797606
506 => 0.0054082456175267
507 => 0.0055550380047987
508 => 0.0057695411366771
509 => 0.0058501962985283
510 => 0.0058356266654562
511 => 0.005998260491956
512 => 0.0062905098630293
513 => 0.0058946986190794
514 => 0.0063114888200634
515 => 0.0061795378545062
516 => 0.0058666844888664
517 => 0.0058465404204181
518 => 0.0060584083519316
519 => 0.0065283110324959
520 => 0.0064106057406066
521 => 0.0065285035561866
522 => 0.0063909694918014
523 => 0.0063841397662765
524 => 0.0065218238336612
525 => 0.0068435301618735
526 => 0.0066906995443212
527 => 0.0064715793784552
528 => 0.0066333742990433
529 => 0.0064932125654169
530 => 0.0061773889507575
531 => 0.0064105157335882
601 => 0.0062546304929779
602 => 0.0063001260935031
603 => 0.0066277736830866
604 => 0.0065883502582599
605 => 0.0066393678204964
606 => 0.006549323158511
607 => 0.0064652072454767
608 => 0.0063081986472684
609 => 0.0062617161417693
610 => 0.0062745622340239
611 => 0.006261709775884
612 => 0.00617386490817
613 => 0.0061548948173509
614 => 0.0061232771682204
615 => 0.0061330767997676
616 => 0.0060736263693328
617 => 0.0061858216146491
618 => 0.0062066460408409
619 => 0.0062882923840751
620 => 0.006296769178281
621 => 0.0065241530820253
622 => 0.0063989138488742
623 => 0.0064829351391071
624 => 0.0064754194840696
625 => 0.0058734649699542
626 => 0.0059564089909096
627 => 0.0060854438582487
628 => 0.0060273138254151
629 => 0.0059451315593212
630 => 0.005878764973116
701 => 0.0057782128086833
702 => 0.005919738049189
703 => 0.0061058286909226
704 => 0.0063014887440517
705 => 0.0065365614777317
706 => 0.0064840959801226
707 => 0.0062970942228087
708 => 0.006305482985037
709 => 0.0063573390122756
710 => 0.0062901807453847
711 => 0.0062703744613934
712 => 0.0063546179330014
713 => 0.006355198071491
714 => 0.0062779243690852
715 => 0.0061920487897995
716 => 0.0061916889679868
717 => 0.0061764082381126
718 => 0.0063936878996996
719 => 0.006513169744121
720 => 0.0065268681450292
721 => 0.0065122477325967
722 => 0.0065178745490786
723 => 0.0064483506964126
724 => 0.0066072616069489
725 => 0.0067530939731173
726 => 0.0067140077837301
727 => 0.0066554120294094
728 => 0.0066087376887392
729 => 0.0067030127924
730 => 0.0066988148704368
731 => 0.0067518202546202
801 => 0.0067494156242197
802 => 0.0067315919071522
803 => 0.0067140084202712
804 => 0.0067837249582071
805 => 0.0067636477148949
806 => 0.0067435392860783
807 => 0.0067032087536403
808 => 0.0067086903428178
809 => 0.0066501047058803
810 => 0.0066230003095367
811 => 0.0062154152210685
812 => 0.0061064951672029
813 => 0.0061407636334212
814 => 0.0061520457022805
815 => 0.0061046435552534
816 => 0.0061726060574779
817 => 0.0061620141734963
818 => 0.0062032209980238
819 => 0.0061774767630513
820 => 0.0061785333154345
821 => 0.0062542416212388
822 => 0.0062762200645
823 => 0.0062650416508696
824 => 0.0062728706286027
825 => 0.0064532861160579
826 => 0.0064276368031043
827 => 0.0064140111168075
828 => 0.0064177855250313
829 => 0.0064638855502278
830 => 0.0064767910403147
831 => 0.0064221095719636
901 => 0.0064478976685478
902 => 0.0065577001108066
903 => 0.0065961247513171
904 => 0.0067187577589531
905 => 0.0066666610776814
906 => 0.0067622867908471
907 => 0.0070562076319104
908 => 0.0072910119375269
909 => 0.0070750761943836
910 => 0.0075062643995004
911 => 0.0078420062674582
912 => 0.0078291199353587
913 => 0.0077705755748309
914 => 0.0073883423843203
915 => 0.0070366057036366
916 => 0.0073308483725569
917 => 0.0073315984576315
918 => 0.0073063227514204
919 => 0.0071493375109275
920 => 0.0073008600053364
921 => 0.0073128873106937
922 => 0.0073061552180123
923 => 0.0071857950021978
924 => 0.0070020271989352
925 => 0.0070379349878147
926 => 0.0070967526784985
927 => 0.0069853985193785
928 => 0.0069498141183532
929 => 0.0070159722900685
930 => 0.0072291477039376
1001 => 0.0071888481267867
1002 => 0.0071877957419639
1003 => 0.0073602144226956
1004 => 0.0072367998575719
1005 => 0.0070383879000252
1006 => 0.0069882862640124
1007 => 0.0068104592086732
1008 => 0.0069332849891942
1009 => 0.0069377052703727
1010 => 0.0068704348456304
1011 => 0.0070438465242445
1012 => 0.0070422485050976
1013 => 0.0072068770850196
1014 => 0.0075215850981595
1015 => 0.0074285104528332
1016 => 0.0073202747668114
1017 => 0.007332042986932
1018 => 0.0074611113152129
1019 => 0.0073830736575909
1020 => 0.0074111365433697
1021 => 0.0074610688386742
1022 => 0.0074911942321806
1023 => 0.0073277084064099
1024 => 0.0072895920399918
1025 => 0.0072116193313269
1026 => 0.0071912777070658
1027 => 0.0072547848513194
1028 => 0.0072380529625491
1029 => 0.0069373337628558
1030 => 0.006905906933302
1031 => 0.0069068707492973
1101 => 0.00682784649212
1102 => 0.0067073155319298
1103 => 0.0070240636987799
1104 => 0.0069986243880941
1105 => 0.0069705413579432
1106 => 0.0069739813688972
1107 => 0.0071114710125354
1108 => 0.0070317200758318
1109 => 0.0072437510119798
1110 => 0.0072001638257411
1111 => 0.0071554587926449
1112 => 0.0071492791953224
1113 => 0.0071320715716346
1114 => 0.0070730602273342
1115 => 0.0070018004830595
1116 => 0.006954748627476
1117 => 0.0064153879822251
1118 => 0.0065154901806671
1119 => 0.0066306486353722
1120 => 0.0066704008724679
1121 => 0.0066024019201447
1122 => 0.0070757452404304
1123 => 0.0071622296262964
1124 => 0.0069002627802716
1125 => 0.0068512594794161
1126 => 0.0070789578886764
1127 => 0.006941627912894
1128 => 0.00700346759258
1129 => 0.0068698040295952
1130 => 0.0071413980702997
1201 => 0.007139328978754
1202 => 0.0070336727626903
1203 => 0.0071229726730048
1204 => 0.0071074546160248
1205 => 0.0069881690083087
1206 => 0.0071451796368302
1207 => 0.0071452575121431
1208 => 0.007043565701346
1209 => 0.0069248119295349
1210 => 0.006903581559974
1211 => 0.0068875873284087
1212 => 0.0069995339920791
1213 => 0.0070999050206779
1214 => 0.0072866706208121
1215 => 0.007333627930127
1216 => 0.0075169054345083
1217 => 0.007407772604269
1218 => 0.0074561497744073
1219 => 0.007508670035961
1220 => 0.0075338501807186
1221 => 0.0074928204860773
1222 => 0.0077775258904119
1223 => 0.0078015637496859
1224 => 0.0078096234359738
1225 => 0.0077136223755091
1226 => 0.0077988937865297
1227 => 0.0077589981172055
1228 => 0.007862795565451
1229 => 0.0078790723306883
1230 => 0.007865286489595
1231 => 0.0078704529917926
]
'min_raw' => 0.0035293710896831
'max_raw' => 0.0078790723306883
'avg_raw' => 0.0057042217101857
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003529'
'max' => '$0.007879'
'avg' => '$0.0057042'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00054422186098687
'max_diff' => -0.00075187197803653
'year' => 2031
]
6 => [
'items' => [
101 => 0.007627507154668
102 => 0.0076149091313717
103 => 0.0074431341898117
104 => 0.0075131337481937
105 => 0.0073822729289647
106 => 0.007423770242758
107 => 0.0074420618632772
108 => 0.0074325073587583
109 => 0.0075170914181981
110 => 0.0074451776882926
111 => 0.0072553855313601
112 => 0.0070655416656813
113 => 0.0070631583305912
114 => 0.0070131757917806
115 => 0.0069770475709791
116 => 0.0069840071480229
117 => 0.0070085336052774
118 => 0.0069756220486968
119 => 0.0069826453979515
120 => 0.0070992797919116
121 => 0.0071226699878218
122 => 0.0070431809629793
123 => 0.0067240210580251
124 => 0.0066456984167973
125 => 0.0067019951781063
126 => 0.0066750889521764
127 => 0.0053873177537388
128 => 0.0056898604950315
129 => 0.0055100998715361
130 => 0.0055929418372314
131 => 0.0054094527894304
201 => 0.005497023380526
202 => 0.0054808522899166
203 => 0.0059673320650247
204 => 0.0059597363524675
205 => 0.0059633720181125
206 => 0.0057898322242003
207 => 0.0060662858280213
208 => 0.0062024768142136
209 => 0.0061772714872751
210 => 0.0061836151250381
211 => 0.006074610410793
212 => 0.0059644274220189
213 => 0.005842217530428
214 => 0.0060692684034047
215 => 0.0060440242222174
216 => 0.0061019252912915
217 => 0.0062491840123485
218 => 0.0062708684184056
219 => 0.0063000124800479
220 => 0.0062895664085647
221 => 0.0065384342113044
222 => 0.00650829467831
223 => 0.0065809222810911
224 => 0.0064315217919009
225 => 0.0062624609571576
226 => 0.0062945938948272
227 => 0.0062914992345329
228 => 0.0062521006571001
229 => 0.0062165333830231
301 => 0.0061573238927024
302 => 0.006344671481433
303 => 0.0063370655114674
304 => 0.0064601973242374
305 => 0.0064384325802917
306 => 0.0062930822934859
307 => 0.0062982735074145
308 => 0.0063331869158963
309 => 0.0064540226212863
310 => 0.0064898948857683
311 => 0.0064732774235977
312 => 0.006512609723971
313 => 0.0065436963704791
314 => 0.006516513728154
315 => 0.0069013626203572
316 => 0.0067415465287433
317 => 0.0068194397798027
318 => 0.0068380168612067
319 => 0.0067904320578243
320 => 0.0068007514977939
321 => 0.0068163826374687
322 => 0.0069112918566834
323 => 0.0071603611101065
324 => 0.0072706721869758
325 => 0.0076025485043899
326 => 0.0072615123876462
327 => 0.0072412767158263
328 => 0.0073010576622973
329 => 0.0074959041932953
330 => 0.0076538090056652
331 => 0.0077061951416754
401 => 0.00771311883435
402 => 0.0078113987080697
403 => 0.0078677308988747
404 => 0.0077994649463829
405 => 0.0077416166993892
406 => 0.0075344114590465
407 => 0.0075583960298173
408 => 0.0077236259380737
409 => 0.007957022915479
410 => 0.0081573018029094
411 => 0.0080871711169551
412 => 0.0086222187462371
413 => 0.0086752665332068
414 => 0.0086679370442879
415 => 0.0087887877975741
416 => 0.0085489236631289
417 => 0.0084463770985049
418 => 0.0077541241469947
419 => 0.0079486189897381
420 => 0.0082313286659473
421 => 0.0081939109801941
422 => 0.0079885996564797
423 => 0.0081571460558596
424 => 0.0081014193452914
425 => 0.0080574653765629
426 => 0.0082588270282042
427 => 0.0080374216207438
428 => 0.0082291199776415
429 => 0.0079832648520547
430 => 0.0080874914680212
501 => 0.0080283273999244
502 => 0.0080666138028585
503 => 0.0078427922736256
504 => 0.0079635609378392
505 => 0.0078377679001438
506 => 0.0078377082578651
507 => 0.0078349313695859
508 => 0.0079829263205829
509 => 0.0079877524306217
510 => 0.007878383938227
511 => 0.007862622229816
512 => 0.0079209015268573
513 => 0.007852671733394
514 => 0.0078845960243223
515 => 0.0078536386876444
516 => 0.0078466695390969
517 => 0.0077911381777679
518 => 0.0077672137404408
519 => 0.0077765951287735
520 => 0.0077445716139566
521 => 0.0077252762879383
522 => 0.0078310930435846
523 => 0.0077745594196785
524 => 0.0078224284549147
525 => 0.0077678756477092
526 => 0.0075787718504083
527 => 0.0074700162568442
528 => 0.0071128167136741
529 => 0.0072141180610125
530 => 0.0072812809591017
531 => 0.0072590836216838
601 => 0.0073067720916866
602 => 0.007309699776435
603 => 0.0072941957687107
604 => 0.0072762441139524
605 => 0.0072675062412048
606 => 0.0073326311858605
607 => 0.0073704384082379
608 => 0.0072880216544486
609 => 0.0072687125621686
610 => 0.0073520404506034
611 => 0.0074028704144116
612 => 0.007778170308282
613 => 0.0077503668799414
614 => 0.0078201480289291
615 => 0.0078122917424321
616 => 0.00788543350358
617 => 0.0080049893710422
618 => 0.0077618988641452
619 => 0.0078040909707052
620 => 0.0077937464405347
621 => 0.0079066853084547
622 => 0.0079070378912726
623 => 0.0078393253982398
624 => 0.0078760334392226
625 => 0.0078555440177784
626 => 0.0078925711716395
627 => 0.007749995548205
628 => 0.0079236372674607
629 => 0.0080220809330535
630 => 0.0080234478234458
701 => 0.0080701093396395
702 => 0.0081175201425451
703 => 0.0082085210501118
704 => 0.0081149821766239
705 => 0.0079467148490451
706 => 0.0079588632065961
707 => 0.0078602081340033
708 => 0.0078618665435971
709 => 0.0078530138232136
710 => 0.0078795815034861
711 => 0.0077558256599945
712 => 0.0077848709091023
713 => 0.0077442073902626
714 => 0.0078040025761567
715 => 0.007739672840633
716 => 0.0077937414520891
717 => 0.0078170756723906
718 => 0.0079031794476533
719 => 0.0077269552430179
720 => 0.0073676221604364
721 => 0.0074431583308875
722 => 0.0073314344015521
723 => 0.0073417748765751
724 => 0.0073626642817959
725 => 0.0072949548848872
726 => 0.007307871704049
727 => 0.0073074102243743
728 => 0.0073034334418491
729 => 0.0072858196126521
730 => 0.0072602760755266
731 => 0.0073620336655484
801 => 0.0073793242629699
802 => 0.007417759119186
803 => 0.0075321151806732
804 => 0.007520688313429
805 => 0.0075393260080004
806 => 0.0074986400253971
807 => 0.0073436621826179
808 => 0.0073520782251017
809 => 0.0072471300404706
810 => 0.0074150753581493
811 => 0.0073753036901531
812 => 0.007349662637066
813 => 0.0073426662381685
814 => 0.0074573057662131
815 => 0.0074916077097585
816 => 0.0074702330404588
817 => 0.0074263929701264
818 => 0.0075105788653179
819 => 0.0075331034593533
820 => 0.0075381458852828
821 => 0.0076873071505178
822 => 0.0075464823430345
823 => 0.0075803802738739
824 => 0.0078448422536921
825 => 0.0076050117312556
826 => 0.0077320553078491
827 => 0.0077258371858777
828 => 0.0077908283807427
829 => 0.0077205060109479
830 => 0.0077213777410021
831 => 0.0077790855191574
901 => 0.007698045352391
902 => 0.0076779786674292
903 => 0.0076502566858748
904 => 0.0077107866184104
905 => 0.0077470715754321
906 => 0.0080395016806629
907 => 0.0082284248650749
908 => 0.0082202232113901
909 => 0.0082951709732166
910 => 0.0082614063200709
911 => 0.0081523713483981
912 => 0.0083384807496453
913 => 0.0082795879479426
914 => 0.0082844429989603
915 => 0.0082842622937189
916 => 0.0083234208583531
917 => 0.00829567342648
918 => 0.0082409803900427
919 => 0.0082772881800469
920 => 0.008385109336087
921 => 0.0087197895127925
922 => 0.0089070809735994
923 => 0.0087085143316818
924 => 0.0088454829423633
925 => 0.0087633505828605
926 => 0.0087484246899128
927 => 0.0088344510993216
928 => 0.008920628086572
929 => 0.0089151389850375
930 => 0.008852578917531
1001 => 0.0088172403227995
1002 => 0.0090848360014042
1003 => 0.0092819959390268
1004 => 0.0092685509530579
1005 => 0.0093278927485808
1006 => 0.0095021220956087
1007 => 0.0095180514435877
1008 => 0.0095160447118742
1009 => 0.0094765621608528
1010 => 0.0096481135795414
1011 => 0.0097912247911715
1012 => 0.0094674230910519
1013 => 0.0095907225395819
1014 => 0.0096460756344872
1015 => 0.0097273504003313
1016 => 0.0098644745535427
1017 => 0.010013427754316
1018 => 0.010034491370094
1019 => 0.010019545726712
1020 => 0.0099213070867257
1021 => 0.010084293456393
1022 => 0.010179767049243
1023 => 0.010236619388911
1024 => 0.010380787462982
1025 => 0.0096464174763569
1026 => 0.0091265938992673
1027 => 0.0090454159413613
1028 => 0.0092104945109287
1029 => 0.0092540244132466
1030 => 0.0092364775642041
1031 => 0.0086513688678978
1101 => 0.0090423354651663
1102 => 0.0094629826504219
1103 => 0.0094791414219472
1104 => 0.009689726198204
1105 => 0.0097583012335149
1106 => 0.0099278495803793
1107 => 0.0099172442851199
1108 => 0.0099585266094779
1109 => 0.0099490365180182
1110 => 0.010263089127968
1111 => 0.010609535794006
1112 => 0.010597539447594
1113 => 0.01054773364038
1114 => 0.010621703757245
1115 => 0.010979273844078
1116 => 0.010946354520426
1117 => 0.010978332839292
1118 => 0.011399928123435
1119 => 0.01194806196405
1120 => 0.011693398763346
1121 => 0.012245944631511
1122 => 0.012593742966323
1123 => 0.013195224223361
1124 => 0.013119915807622
1125 => 0.013354068047114
1126 => 0.012985098026109
1127 => 0.012137868276738
1128 => 0.012003790925835
1129 => 0.012272217177722
1130 => 0.012932116925337
1201 => 0.012251434586286
1202 => 0.012389135736954
1203 => 0.012349477796298
1204 => 0.012347364593176
1205 => 0.01242801696133
1206 => 0.012311026494777
1207 => 0.011834386287859
1208 => 0.012052827685831
1209 => 0.011968476971657
1210 => 0.012062070377796
1211 => 0.012567155389871
1212 => 0.01234384526631
1213 => 0.012108606191379
1214 => 0.012403648195072
1215 => 0.012779338053205
1216 => 0.012755828057062
1217 => 0.01271020883813
1218 => 0.012967361986707
1219 => 0.013392103649352
1220 => 0.013506909614015
1221 => 0.013591657030024
1222 => 0.013603342266872
1223 => 0.013723707468745
1224 => 0.01307647344234
1225 => 0.014103650464393
1226 => 0.014281015560909
1227 => 0.014247678273794
1228 => 0.014444812113907
1229 => 0.014386810337343
1230 => 0.014302774863302
1231 => 0.014615273931452
]
'min_raw' => 0.0053873177537388
'max_raw' => 0.014615273931452
'avg_raw' => 0.010001295842595
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005387'
'max' => '$0.014615'
'avg' => '$0.0100012'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0018579466640557
'max_diff' => 0.0067362016007633
'year' => 2032
]
7 => [
'items' => [
101 => 0.014257018967192
102 => 0.013748521148472
103 => 0.013469549188175
104 => 0.01383692196952
105 => 0.014061263707544
106 => 0.014209539325563
107 => 0.014254407437985
108 => 0.013126716377371
109 => 0.012518953440313
110 => 0.012908522514951
111 => 0.01338382367263
112 => 0.013073833120411
113 => 0.013085984163168
114 => 0.012644019099787
115 => 0.013422927773886
116 => 0.013309447331722
117 => 0.013898184066408
118 => 0.013757677319768
119 => 0.014237769272276
120 => 0.014111344971547
121 => 0.014636125175584
122 => 0.014845474206832
123 => 0.015197003812871
124 => 0.015455590422056
125 => 0.015607437424944
126 => 0.015598321100454
127 => 0.01620001457577
128 => 0.015845216954945
129 => 0.01539950752381
130 => 0.015391446046396
131 => 0.015622285276532
201 => 0.016106060975248
202 => 0.016231496975275
203 => 0.016301598586996
204 => 0.01619423552839
205 => 0.015809128139559
206 => 0.015642840721601
207 => 0.015784522419512
208 => 0.015611257877814
209 => 0.015910361086229
210 => 0.01632109367638
211 => 0.016236279020726
212 => 0.016519801698452
213 => 0.016813217842443
214 => 0.017232816106493
215 => 0.017342514630395
216 => 0.017523842118943
217 => 0.017710487667636
218 => 0.017770433187637
219 => 0.017884887785323
220 => 0.017884284553097
221 => 0.018229201186905
222 => 0.018609654915174
223 => 0.018753267390072
224 => 0.019083496357261
225 => 0.018517990823553
226 => 0.01894693326693
227 => 0.019333850087981
228 => 0.018872551903215
301 => 0.019508343982223
302 => 0.019533030347915
303 => 0.019905765160862
304 => 0.019527927020591
305 => 0.019303567939
306 => 0.019951284200928
307 => 0.020264693697204
308 => 0.020170292206314
309 => 0.01945189219947
310 => 0.01903375258186
311 => 0.017939400549468
312 => 0.019235707804326
313 => 0.019867101254367
314 => 0.019450257042967
315 => 0.019660489016817
316 => 0.020807446498197
317 => 0.021244133647109
318 => 0.021153305772809
319 => 0.021168654188411
320 => 0.021404282647532
321 => 0.022449188998234
322 => 0.021823056892154
323 => 0.02230171142653
324 => 0.022555588065646
325 => 0.022791402836755
326 => 0.022212316288934
327 => 0.021458933198689
328 => 0.021220305149138
329 => 0.019408810101245
330 => 0.019314513917078
331 => 0.019261582611438
401 => 0.018927858216661
402 => 0.018665642257172
403 => 0.018457118390731
404 => 0.017909889494693
405 => 0.018094563183033
406 => 0.017222394538296
407 => 0.01778037712944
408 => 0.016388374913191
409 => 0.017547675722452
410 => 0.016916720998911
411 => 0.017340390126296
412 => 0.017338911984622
413 => 0.016558802796687
414 => 0.01610885209755
415 => 0.016395578195383
416 => 0.016702971332607
417 => 0.016752844834927
418 => 0.017151388061119
419 => 0.017262612908892
420 => 0.01692559642755
421 => 0.016359528761279
422 => 0.016491013369525
423 => 0.01610618756616
424 => 0.015431795147874
425 => 0.015916155556449
426 => 0.016081537495761
427 => 0.016154579581762
428 => 0.01549139209287
429 => 0.015283004185359
430 => 0.015172060211944
501 => 0.016273919584415
502 => 0.016334281928146
503 => 0.016025459643244
504 => 0.017421365654733
505 => 0.017105429132836
506 => 0.017458407634122
507 => 0.016479082519483
508 => 0.016516494057699
509 => 0.016052865854047
510 => 0.016312466668444
511 => 0.016128989180153
512 => 0.016291493488066
513 => 0.016388897900199
514 => 0.016852450027024
515 => 0.017552968743126
516 => 0.016783210797377
517 => 0.016447816237278
518 => 0.016655893136033
519 => 0.017210029337471
520 => 0.01804957404836
521 => 0.017552546682102
522 => 0.017773118987176
523 => 0.017821304223255
524 => 0.01745481464433
525 => 0.018063087041891
526 => 0.01838906516134
527 => 0.018723451260227
528 => 0.019013789340605
529 => 0.018589890099024
530 => 0.019043523051086
531 => 0.018677974968719
601 => 0.018350040549171
602 => 0.01835053789032
603 => 0.018144819838579
604 => 0.01774621519119
605 => 0.017672706378519
606 => 0.018055108505174
607 => 0.018361758797134
608 => 0.018387015983936
609 => 0.018556793341827
610 => 0.01865726583338
611 => 0.019642032836335
612 => 0.020038114271344
613 => 0.020522435152634
614 => 0.020711105430726
615 => 0.021278935325744
616 => 0.020820366568628
617 => 0.020721152333493
618 => 0.019343782743922
619 => 0.019569326937052
620 => 0.019930444952032
621 => 0.019349737446981
622 => 0.019718062698493
623 => 0.019790777905338
624 => 0.01933000522817
625 => 0.019576123823857
626 => 0.018922505802789
627 => 0.017567215829854
628 => 0.018064595867061
629 => 0.018430834990755
630 => 0.017908166604285
701 => 0.018845029456973
702 => 0.018297733519207
703 => 0.018124266981774
704 => 0.017447512173959
705 => 0.017766914392566
706 => 0.018198910466632
707 => 0.017931987117793
708 => 0.018485893145375
709 => 0.019270371801773
710 => 0.019829438008834
711 => 0.019872356170259
712 => 0.019512914053646
713 => 0.020088922339448
714 => 0.020093117930967
715 => 0.01944337823152
716 => 0.019045416283374
717 => 0.018954998491437
718 => 0.01918087986315
719 => 0.01945514154841
720 => 0.019887575785027
721 => 0.02014888673751
722 => 0.020830247112965
723 => 0.02101460369443
724 => 0.021217155684037
725 => 0.021487827606873
726 => 0.021812838649093
727 => 0.021101732991604
728 => 0.021129986545043
729 => 0.020467814802716
730 => 0.019760189331007
731 => 0.020297188857274
801 => 0.020999244303815
802 => 0.020838192008676
803 => 0.020820070335473
804 => 0.020850545963267
805 => 0.020729117792209
806 => 0.02017990267485
807 => 0.01990409028118
808 => 0.02025995863626
809 => 0.020449086829106
810 => 0.020742408162499
811 => 0.020706250116897
812 => 0.021461814371306
813 => 0.021755403793492
814 => 0.021680291055897
815 => 0.021694113607304
816 => 0.022225643232513
817 => 0.022816813493152
818 => 0.023370522454026
819 => 0.02393377899138
820 => 0.023254751251323
821 => 0.02290998284153
822 => 0.023265695835618
823 => 0.023076949513932
824 => 0.024161541864136
825 => 0.024236636685258
826 => 0.02532115060709
827 => 0.026350483460424
828 => 0.025703977937658
829 => 0.026313603526378
830 => 0.026972963304082
831 => 0.028244975292541
901 => 0.02781660640475
902 => 0.027488482550097
903 => 0.027178407092934
904 => 0.027823624896198
905 => 0.028653687292492
906 => 0.028832474782415
907 => 0.029122178818168
908 => 0.028817590447898
909 => 0.029184433590579
910 => 0.030479551083291
911 => 0.030129598904442
912 => 0.029632610552856
913 => 0.030654981428946
914 => 0.031024973474636
915 => 0.033621771417632
916 => 0.036900336089036
917 => 0.035542988786859
918 => 0.034700439515073
919 => 0.034898458579479
920 => 0.036095679411057
921 => 0.036480188744271
922 => 0.035434959828281
923 => 0.035804152351667
924 => 0.037838439453731
925 => 0.038929769216244
926 => 0.03744759681361
927 => 0.033358341938552
928 => 0.029587862189463
929 => 0.030587963205838
930 => 0.030474582787329
1001 => 0.032660170496012
1002 => 0.030121252660713
1003 => 0.030164001525642
1004 => 0.032394784873563
1005 => 0.031799650121646
1006 => 0.030835608042641
1007 => 0.029594900763513
1008 => 0.027301338606512
1009 => 0.025269866643343
1010 => 0.029254050983169
1011 => 0.029082245709667
1012 => 0.02883344621352
1013 => 0.029387122569277
1014 => 0.032075617789056
1015 => 0.03201363927243
1016 => 0.031619363571374
1017 => 0.031918418215638
1018 => 0.030783182317594
1019 => 0.031075758457361
1020 => 0.029587264926207
1021 => 0.030260126167269
1022 => 0.030833539641313
1023 => 0.030948660885759
1024 => 0.031208034927731
1025 => 0.028991712137423
1026 => 0.029986776002453
1027 => 0.030571282798283
1028 => 0.027930459830184
1029 => 0.030519082219097
1030 => 0.028953130888517
1031 => 0.028421623487118
1101 => 0.029137228182326
1102 => 0.028858356336655
1103 => 0.028618598699651
1104 => 0.028484809818644
1105 => 0.029010270928397
1106 => 0.028985757539565
1107 => 0.028126001176404
1108 => 0.027004484048812
1109 => 0.027380902009377
1110 => 0.027244145835366
1111 => 0.026748523818856
1112 => 0.027082513216353
1113 => 0.025611792937939
1114 => 0.023081495140316
1115 => 0.024753087370543
1116 => 0.024688732888022
1117 => 0.024656282439691
1118 => 0.025912437801292
1119 => 0.025791687447709
1120 => 0.025572524373565
1121 => 0.026744498717129
1122 => 0.026316712316449
1123 => 0.027635049204193
1124 => 0.028503391143146
1125 => 0.028283151539508
1126 => 0.029099831330154
1127 => 0.027389573918931
1128 => 0.027957652827321
1129 => 0.028074733103017
1130 => 0.02673003673565
1201 => 0.0258114436989
1202 => 0.025750184016076
1203 => 0.024157470280268
1204 => 0.025008285102
1205 => 0.025756966936015
1206 => 0.02539840643758
1207 => 0.025284896895465
1208 => 0.025864792528912
1209 => 0.025909855386102
1210 => 0.024882417466643
1211 => 0.025096054344826
1212 => 0.025986955641024
1213 => 0.025073605917979
1214 => 0.023299116600931
1215 => 0.022859018716069
1216 => 0.022800301545615
1217 => 0.021606721177266
1218 => 0.022888428161146
1219 => 0.022328928715071
1220 => 0.024096380761389
1221 => 0.023086821631567
1222 => 0.023043301555261
1223 => 0.022977514576917
1224 => 0.021950150647695
1225 => 0.022175078055811
1226 => 0.022922771017799
1227 => 0.023189556290001
1228 => 0.023161728400403
1229 => 0.022919106914383
1230 => 0.02303017778826
1231 => 0.022672379803845
]
'min_raw' => 0.012518953440313
'max_raw' => 0.038929769216244
'avg_raw' => 0.025724361328278
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.012518'
'max' => '$0.038929'
'avg' => '$0.025724'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0071316356865743
'max_diff' => 0.024314495284792
'year' => 2033
]
8 => [
'items' => [
101 => 0.022546033888627
102 => 0.022147251426017
103 => 0.021561151372447
104 => 0.021642652179656
105 => 0.020481434612113
106 => 0.019848741650835
107 => 0.019673620577912
108 => 0.019439441360386
109 => 0.019700071743659
110 => 0.020478145028644
111 => 0.019539623569496
112 => 0.017930594357413
113 => 0.018027299754712
114 => 0.018244568070352
115 => 0.017839690001531
116 => 0.017456506888233
117 => 0.017789653516617
118 => 0.017107886628
119 => 0.018326956341661
120 => 0.01829398392231
121 => 0.018748377724797
122 => 0.019032519494592
123 => 0.018377664707205
124 => 0.018212970499093
125 => 0.018306787804968
126 => 0.016756196719484
127 => 0.018621661352248
128 => 0.018637793967857
129 => 0.018499656718616
130 => 0.019492959045804
131 => 0.021589136774935
201 => 0.020800470394682
202 => 0.020495074934681
203 => 0.019914517941975
204 => 0.020688075664692
205 => 0.020628678500968
206 => 0.020360062000901
207 => 0.020197601903526
208 => 0.020496939614238
209 => 0.020160510648545
210 => 0.020100078761857
211 => 0.019733927279068
212 => 0.019603227858543
213 => 0.01950646321088
214 => 0.019399934841702
215 => 0.019634909878894
216 => 0.019102425531075
217 => 0.01846030160769
218 => 0.018406915951338
219 => 0.018554318442242
220 => 0.018489103812842
221 => 0.018406603728782
222 => 0.018249088600752
223 => 0.018202357227044
224 => 0.018354211520756
225 => 0.01818277687681
226 => 0.018435738032481
227 => 0.018366946595118
228 => 0.017982683218035
301 => 0.017503748777667
302 => 0.017499485256549
303 => 0.017396299616981
304 => 0.017264877190927
305 => 0.017228318478537
306 => 0.017761596836796
307 => 0.018865467078714
308 => 0.018648750936849
309 => 0.01880535055931
310 => 0.019575665709474
311 => 0.019820525731526
312 => 0.019646729887701
313 => 0.019408827417412
314 => 0.019419293918729
315 => 0.020232278677682
316 => 0.02028298353987
317 => 0.020411098368612
318 => 0.020575762128791
319 => 0.019674772838086
320 => 0.019376857404162
321 => 0.01923568854385
322 => 0.018800943093312
323 => 0.019269778789459
324 => 0.01899660830686
325 => 0.019033468337795
326 => 0.019009463194293
327 => 0.019022571625866
328 => 0.018326615586831
329 => 0.018580185389083
330 => 0.018158576412168
331 => 0.017594089319907
401 => 0.017592196961239
402 => 0.017730354377361
403 => 0.017648172940151
404 => 0.017427024805697
405 => 0.017458437854407
406 => 0.017183226493349
407 => 0.017491853496502
408 => 0.017500703814632
409 => 0.017381865607391
410 => 0.017857348088067
411 => 0.018052153648357
412 => 0.017973931794591
413 => 0.018046665394574
414 => 0.018657756470958
415 => 0.018757390980182
416 => 0.018801642047693
417 => 0.018742351479371
418 => 0.018057835017654
419 => 0.01808819623352
420 => 0.017865425776479
421 => 0.017677208215252
422 => 0.01768473593063
423 => 0.017781504223671
424 => 0.018204097034766
425 => 0.019093418692509
426 => 0.019127167799335
427 => 0.019168072701339
428 => 0.019001691907733
429 => 0.018951509868332
430 => 0.019017712931386
501 => 0.019351695387723
502 => 0.020210788940774
503 => 0.019907127902196
504 => 0.019660246751067
505 => 0.019876828079288
506 => 0.019843487081429
507 => 0.019562055506304
508 => 0.019554156659328
509 => 0.019013999487547
510 => 0.018814315679923
511 => 0.018647444944199
512 => 0.018465226457059
513 => 0.018357201229863
514 => 0.018523177075424
515 => 0.018561137715072
516 => 0.018198228627993
517 => 0.018148765460419
518 => 0.018445124854864
519 => 0.018314708134761
520 => 0.018448844965566
521 => 0.018479965860918
522 => 0.018474954679991
523 => 0.018338784645938
524 => 0.018425575364995
525 => 0.018220289440868
526 => 0.017997071831328
527 => 0.01785467290339
528 => 0.017730410952288
529 => 0.017799358704907
530 => 0.017553572556183
531 => 0.017474940620509
601 => 0.018396172622231
602 => 0.019076696606817
603 => 0.019066801518564
604 => 0.019006567713634
605 => 0.01891707249749
606 => 0.01934514825523
607 => 0.019196015220878
608 => 0.019304521963852
609 => 0.019332141483952
610 => 0.019415737452828
611 => 0.019445615826385
612 => 0.019355302629631
613 => 0.019052200510497
614 => 0.0182968988477
615 => 0.01794530388477
616 => 0.017829271690726
617 => 0.017833489240603
618 => 0.017717150387023
619 => 0.017751417393344
620 => 0.017705233720652
621 => 0.017617773017604
622 => 0.017793958252951
623 => 0.017814261960046
624 => 0.017773138220859
625 => 0.017782824350139
626 => 0.01744233735385
627 => 0.017468223840679
628 => 0.01732408459252
629 => 0.017297060221115
630 => 0.016932688753409
701 => 0.016287151881878
702 => 0.016644841972486
703 => 0.01621280264187
704 => 0.016049182800901
705 => 0.016823733679941
706 => 0.016745990254383
707 => 0.016612927304081
708 => 0.016416099467837
709 => 0.016343094108756
710 => 0.015899536657668
711 => 0.015873328917171
712 => 0.016093167966989
713 => 0.015991719809698
714 => 0.015849248175439
715 => 0.015333230358273
716 => 0.014753055484151
717 => 0.014770567316751
718 => 0.014955110149672
719 => 0.015491693325382
720 => 0.015282040995649
721 => 0.015129935824944
722 => 0.015101451098736
723 => 0.015457997084047
724 => 0.015962584351955
725 => 0.016199325408554
726 => 0.015964722211397
727 => 0.015695222690437
728 => 0.015711625877537
729 => 0.015820748932558
730 => 0.015832216222724
731 => 0.015656799739577
801 => 0.015706178452075
802 => 0.015631167672507
803 => 0.015170826656755
804 => 0.015162500547537
805 => 0.01504952543827
806 => 0.01504610459686
807 => 0.014853905753035
808 => 0.014827015806176
809 => 0.014445393336125
810 => 0.014696578401572
811 => 0.014528096647478
812 => 0.014274154903231
813 => 0.014230375250806
814 => 0.014229059181589
815 => 0.014489800572596
816 => 0.014693531486607
817 => 0.014531027459724
818 => 0.014494028442811
819 => 0.014889081146121
820 => 0.014838807088639
821 => 0.014795270079093
822 => 0.015917404096475
823 => 0.015029147460508
824 => 0.01464181686731
825 => 0.014162421706143
826 => 0.014318515187939
827 => 0.014351406378044
828 => 0.01319854743291
829 => 0.012730832702448
830 => 0.012570330632411
831 => 0.012477959421939
901 => 0.012520054142476
902 => 0.012099056027594
903 => 0.012381973723461
904 => 0.012017424942058
905 => 0.011956307152512
906 => 0.012608165532588
907 => 0.012698867818074
908 => 0.012311903689199
909 => 0.012560397303739
910 => 0.012470290064787
911 => 0.012023674084597
912 => 0.012006616639239
913 => 0.01178252043969
914 => 0.011431853280972
915 => 0.011271588979781
916 => 0.011188121940243
917 => 0.011222562067497
918 => 0.011205148085272
919 => 0.011091510071984
920 => 0.011211661683174
921 => 0.010904723966657
922 => 0.010782498894775
923 => 0.010727292665406
924 => 0.010454867775322
925 => 0.010888416923344
926 => 0.010973831567213
927 => 0.011059414504316
928 => 0.011804355541845
929 => 0.011767140392791
930 => 0.012103547215722
1001 => 0.012090475065195
1002 => 0.011994526389866
1003 => 0.011589734711444
1004 => 0.011751077459745
1005 => 0.011254489558705
1006 => 0.011626566978859
1007 => 0.011456766382625
1008 => 0.011569157226469
1009 => 0.011367068355365
1010 => 0.011478912680679
1011 => 0.010994086547949
1012 => 0.010541362726893
1013 => 0.010723552008318
1014 => 0.010921612593098
1015 => 0.011351058405801
1016 => 0.011095284022606
1017 => 0.011187270162703
1018 => 0.010879131991672
1019 => 0.010243354929518
1020 => 0.010246953358645
1021 => 0.010149152908788
1022 => 0.010064639041013
1023 => 0.01112466278733
1024 => 0.01099283207798
1025 => 0.010782777096207
1026 => 0.011063944036563
1027 => 0.011138289038313
1028 => 0.011140405535996
1029 => 0.01134553767771
1030 => 0.011455016738515
1031 => 0.011474312897492
1101 => 0.011797092754653
1102 => 0.011905284305204
1103 => 0.012350909990083
1104 => 0.011445728205094
1105 => 0.011427086581903
1106 => 0.011067900632015
1107 => 0.010840099224091
1108 => 0.011083498389309
1109 => 0.011299116822392
1110 => 0.011074600497765
1111 => 0.011103917589963
1112 => 0.01080252276781
1113 => 0.010910257234785
1114 => 0.011003052671144
1115 => 0.010951816485451
1116 => 0.010875113435607
1117 => 0.011281438569759
1118 => 0.011258512113289
1119 => 0.011636891419585
1120 => 0.011931865147007
1121 => 0.012460510799408
1122 => 0.011908841502207
1123 => 0.01188873648033
1124 => 0.012085266294123
1125 => 0.011905254217513
1126 => 0.012019015636125
1127 => 0.012442182076125
1128 => 0.012451122916185
1129 => 0.012301352325554
1130 => 0.012292238771503
1201 => 0.012321003851745
1202 => 0.01248948182518
1203 => 0.012430610444456
1204 => 0.01249873789667
1205 => 0.012583932318869
1206 => 0.012936332570767
1207 => 0.013021295078455
1208 => 0.012814880232784
1209 => 0.012833517182219
1210 => 0.012756312363724
1211 => 0.012681733476431
1212 => 0.012849375923693
1213 => 0.013155745791085
1214 => 0.013153839880041
1215 => 0.013224911734297
1216 => 0.013269188910707
1217 => 0.01307911885668
1218 => 0.012955390240578
1219 => 0.013002835665048
1220 => 0.013078701932002
1221 => 0.012978233257175
1222 => 0.012358094054521
1223 => 0.012546204673961
1224 => 0.012514893868747
1225 => 0.012470303474598
1226 => 0.012659450157061
1227 => 0.012641206498111
1228 => 0.012094738083426
1229 => 0.012129721218321
1230 => 0.012096865523726
1231 => 0.012203028994605
]
'min_raw' => 0.010064639041013
'max_raw' => 0.022546033888627
'avg_raw' => 0.01630533646482
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010064'
'max' => '$0.022546'
'avg' => '$0.0163053'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0024543143993002
'max_diff' => -0.016383735327617
'year' => 2034
]
9 => [
'items' => [
101 => 0.011899521041687
102 => 0.011992878043848
103 => 0.012051430680435
104 => 0.012085918633208
105 => 0.012210512767233
106 => 0.012195893083665
107 => 0.012209603987175
108 => 0.012394344196302
109 => 0.013328696778884
110 => 0.013379551528421
111 => 0.013129124142449
112 => 0.013229164943683
113 => 0.013037108481832
114 => 0.013166037271339
115 => 0.013254247074684
116 => 0.01285564393514
117 => 0.012832041244129
118 => 0.012639192096942
119 => 0.012742818305106
120 => 0.012577941556928
121 => 0.012618396543787
122 => 0.012505280873727
123 => 0.01270886655873
124 => 0.012936506988581
125 => 0.012994017950954
126 => 0.012842731368976
127 => 0.012733189913352
128 => 0.012540871202476
129 => 0.012860701504765
130 => 0.012954229631806
131 => 0.01286021024133
201 => 0.012838423894192
202 => 0.012797138805734
203 => 0.012847182720876
204 => 0.01295372025754
205 => 0.012903479122689
206 => 0.012936664277393
207 => 0.012810196688044
208 => 0.013079181777777
209 => 0.01350639483506
210 => 0.013507768394895
211 => 0.013457526989225
212 => 0.013436969288491
213 => 0.013488520019612
214 => 0.013516484176523
215 => 0.013683189788181
216 => 0.013862071551333
217 => 0.014696834687739
218 => 0.014462436539395
219 => 0.015203088054295
220 => 0.015788847241018
221 => 0.015964490808972
222 => 0.015802906991123
223 => 0.015250137478849
224 => 0.01522301596945
225 => 0.016049086994056
226 => 0.015815684093155
227 => 0.015787921560775
228 => 0.015492575121787
301 => 0.015667161446597
302 => 0.015628976856334
303 => 0.015568700612551
304 => 0.015901799158499
305 => 0.016525329900602
306 => 0.016428146787011
307 => 0.01635560410091
308 => 0.016037743167275
309 => 0.016229166446133
310 => 0.016161004283003
311 => 0.016453872192587
312 => 0.016280383730768
313 => 0.015813915836623
314 => 0.015888202386264
315 => 0.015876974123729
316 => 0.016108050971045
317 => 0.016038687437161
318 => 0.015863429780494
319 => 0.016523198740312
320 => 0.016480357013889
321 => 0.016541096786974
322 => 0.016567836313527
323 => 0.016969426052935
324 => 0.017133944519732
325 => 0.017171293091996
326 => 0.017327572911139
327 => 0.017167404707728
328 => 0.017808191719364
329 => 0.018234277691142
330 => 0.018729198473547
331 => 0.019452410758805
401 => 0.01972434526815
402 => 0.019675222733029
403 => 0.020223554033804
404 => 0.021208893192577
405 => 0.019874387948941
406 => 0.021279625210921
407 => 0.020834743318023
408 => 0.019779936353044
409 => 0.019712019219856
410 => 0.020426346743101
411 => 0.022010656438181
412 => 0.021613804828655
413 => 0.022011305545246
414 => 0.021547599844849
415 => 0.021524572948406
416 => 0.021988784394388
417 => 0.023073439740774
418 => 0.022558160643404
419 => 0.021819381705705
420 => 0.022364884576629
421 => 0.021892319505927
422 => 0.020827498139003
423 => 0.021613501363709
424 => 0.021087923391431
425 => 0.021241314985003
426 => 0.022346001708908
427 => 0.022213082879649
428 => 0.022385092152662
429 => 0.022081500288061
430 => 0.02179789761448
501 => 0.021268532163631
502 => 0.021111813151035
503 => 0.021155124647957
504 => 0.021111791688009
505 => 0.020815616583378
506 => 0.020751657597732
507 => 0.020645056486215
508 => 0.020678096628165
509 => 0.020477655351257
510 => 0.020855929454063
511 => 0.020926140460884
512 => 0.021201416807463
513 => 0.021229996910959
514 => 0.02199663761787
515 => 0.021574384799378
516 => 0.021857668445577
517 => 0.021832328889892
518 => 0.019802797218429
519 => 0.020082448776047
520 => 0.020517498840208
521 => 0.020321509376
522 => 0.020044426128082
523 => 0.019820666549124
524 => 0.019481647906411
525 => 0.019958810135753
526 => 0.020586227726792
527 => 0.021245909256465
528 => 0.022038473390321
529 => 0.021861582302108
530 => 0.021231092821278
531 => 0.021259376118816
601 => 0.021434212335123
602 => 0.02120778354946
603 => 0.021141005280153
604 => 0.02142503802637
605 => 0.021426994003792
606 => 0.021166460321053
607 => 0.02087692480985
608 => 0.020875711645486
609 => 0.020824191597849
610 => 0.021556765146871
611 => 0.021959606527294
612 => 0.022005791642348
613 => 0.021956497901067
614 => 0.021975469105687
615 => 0.021741064582424
616 => 0.022276843812102
617 => 0.02276852781633
618 => 0.0226367459999
619 => 0.022439186323183
620 => 0.022281820524915
621 => 0.022599675618985
622 => 0.022585522031997
623 => 0.022764233385489
624 => 0.022756126006207
625 => 0.022696032099702
626 => 0.022636748146043
627 => 0.022871802321147
628 => 0.022804110493572
629 => 0.022736313521891
630 => 0.022600336315988
701 => 0.022618817876613
702 => 0.022421292311359
703 => 0.022329907946718
704 => 0.020955706364266
705 => 0.020588474798102
706 => 0.020704013324505
707 => 0.020742051607353
708 => 0.020582231959139
709 => 0.020811372280379
710 => 0.020775661004034
711 => 0.020914592689897
712 => 0.020827794204282
713 => 0.020831356444408
714 => 0.021086612283212
715 => 0.021160714139153
716 => 0.021123025337147
717 => 0.021149421282176
718 => 0.021757704694338
719 => 0.021671226244937
720 => 0.021625286292272
721 => 0.02163801197312
722 => 0.02179344142667
723 => 0.021836953187531
724 => 0.021652590799247
725 => 0.021739537167348
726 => 0.022109743767585
727 => 0.022239295125789
728 => 0.022652760872997
729 => 0.022477113274816
730 => 0.022799522043128
731 => 0.02379049667967
801 => 0.02458215578957
802 => 0.02385411335541
803 => 0.02530789449356
804 => 0.026439871642129
805 => 0.02639642447376
806 => 0.026199038074804
807 => 0.024910312186328
808 => 0.023724407409933
809 => 0.024716467111564
810 => 0.024718996075763
811 => 0.024633777267578
812 => 0.024104490568897
813 => 0.02461535923776
814 => 0.024655910137491
815 => 0.024633212416996
816 => 0.024227409546096
817 => 0.023607823567138
818 => 0.023728889184347
819 => 0.023927197135007
820 => 0.023551758813035
821 => 0.023431783520554
822 => 0.023654840415509
823 => 0.0243735762068
824 => 0.02423770336881
825 => 0.024234155179904
826 => 0.024815476799879
827 => 0.024399375977035
828 => 0.023730416209485
829 => 0.023561495045684
830 => 0.022961938713119
831 => 0.023376054407568
901 => 0.023390957694175
902 => 0.023164150760486
903 => 0.02374882034215
904 => 0.023743432509026
905 => 0.024298489260233
906 => 0.025359549298747
907 => 0.025045741633765
908 => 0.024680817461568
909 => 0.024720494837335
910 => 0.025155657717397
911 => 0.02489254830631
912 => 0.024987164285001
913 => 0.025155514504782
914 => 0.025257084372276
915 => 0.024705880496474
916 => 0.024577368505896
917 => 0.024314478074752
918 => 0.024245894868348
919 => 0.024460013639127
920 => 0.024403600907954
921 => 0.023389705130644
922 => 0.023283747380653
923 => 0.023286996953572
924 => 0.023020561153202
925 => 0.022614182605717
926 => 0.023682121164903
927 => 0.02359635075281
928 => 0.023501666855962
929 => 0.023513265093067
930 => 0.023976821025814
1001 => 0.023707935174685
1002 => 0.024422812279435
1003 => 0.024275855037871
1004 => 0.024125128897582
1005 => 0.024104293953763
1006 => 0.024046277249102
1007 => 0.023847316381753
1008 => 0.023607059178734
1009 => 0.023448420562579
1010 => 0.021629928490157
1011 => 0.021967430041117
1012 => 0.022355694811262
1013 => 0.022489722254042
1014 => 0.022260459038749
1015 => 0.023856369090868
1016 => 0.024147957235962
1017 => 0.023264717724648
1018 => 0.023099499674513
1019 => 0.023867200758729
1020 => 0.023404183157306
1021 => 0.023612679954876
1022 => 0.023162023920181
1023 => 0.024077722190507
1024 => 0.024070746103901
1025 => 0.023714518794761
1026 => 0.024015599677107
1027 => 0.023963279464562
1028 => 0.023561099709892
1029 => 0.024090472006085
1030 => 0.024090734568139
1031 => 0.023747873528141
1101 => 0.023347486895357
1102 => 0.023275907222125
1103 => 0.023221981553721
1104 => 0.023599417546152
1105 => 0.023937825476754
1106 => 0.024567518737165
1107 => 0.024725838583975
1108 => 0.025343771486023
1109 => 0.02497582252946
1110 => 0.025138929536168
1111 => 0.025316005264844
1112 => 0.025400901880915
1113 => 0.02526256740083
1114 => 0.026222471549041
1115 => 0.026303516869853
1116 => 0.026330690664882
1117 => 0.026007016386945
1118 => 0.026294514902661
1119 => 0.026160003868108
1120 => 0.026509964211774
1121 => 0.026564842462179
1122 => 0.026518362536436
1123 => 0.026535781759309
1124 => 0.025716672907507
1125 => 0.025674197792397
1126 => 0.025095046583984
1127 => 0.025331054982282
1128 => 0.024889848593841
1129 => 0.025029759684545
1130 => 0.025091431160206
1201 => 0.025059217481146
1202 => 0.025344398543018
1203 => 0.025101936381785
1204 => 0.024462038873822
1205 => 0.023821967026211
1206 => 0.023813931445555
1207 => 0.023645411826286
1208 => 0.023523603007462
1209 => 0.023547067707367
1210 => 0.023629760370383
1211 => 0.02351879675956
1212 => 0.023542476471927
1213 => 0.023935717474317
1214 => 0.024014579152879
1215 => 0.023746576355876
1216 => 0.02267050645329
1217 => 0.022406436200079
1218 => 0.022596244661346
1219 => 0.022505528442091
1220 => 0.018163717937245
1221 => 0.019183761912373
1222 => 0.018577686419772
1223 => 0.018856993890955
1224 => 0.018238347755498
1225 => 0.01853359811736
1226 => 0.018479076156341
1227 => 0.020119276683051
1228 => 0.020093667207849
1229 => 0.020105925108405
1230 => 0.019520823577068
1231 => 0.020452906203725
]
'min_raw' => 0.011899521041687
'max_raw' => 0.026564842462179
'avg_raw' => 0.019232181751933
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.011899'
'max' => '$0.026564'
'avg' => '$0.019232'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0018348820006742
'max_diff' => 0.0040188085735521
'year' => 2035
]
10 => [
'items' => [
101 => 0.020912083622223
102 => 0.020827102102671
103 => 0.020848490120287
104 => 0.020480973115744
105 => 0.020109483476361
106 => 0.01969744429444
107 => 0.020462962164867
108 => 0.020377849645502
109 => 0.020573067142408
110 => 0.021069560201728
111 => 0.021142670690706
112 => 0.021240931929307
113 => 0.02120571226998
114 => 0.022044787442312
115 => 0.021943169902546
116 => 0.02218803893602
117 => 0.021684324755906
118 => 0.021114324348118
119 => 0.021222662790921
120 => 0.021212228927677
121 => 0.021079393873141
122 => 0.020959476325363
123 => 0.020759847394872
124 => 0.021391502870468
125 => 0.021365858811697
126 => 0.02178100631524
127 => 0.021707624961461
128 => 0.021217566321463
129 => 0.021235068861662
130 => 0.021352781855935
131 => 0.021760187873137
201 => 0.021881133717359
202 => 0.021825106783457
203 => 0.021957718380259
204 => 0.022062529179361
205 => 0.021970881002931
206 => 0.023268425912285
207 => 0.022729594801406
208 => 0.022992217335686
209 => 0.02305485126265
210 => 0.022894415775781
211 => 0.022929208488119
212 => 0.022981909966864
213 => 0.023301903025796
214 => 0.024141657403172
215 => 0.024513578900511
216 => 0.025632523075537
217 => 0.024482695997554
218 => 0.024414470017204
219 => 0.024616025652003
220 => 0.025272964335013
221 => 0.02580535143448
222 => 0.025981974949522
223 => 0.026005318662771
224 => 0.026336676118699
225 => 0.026526604032986
226 => 0.026296440607983
227 => 0.026101401204408
228 => 0.025402794269985
229 => 0.025483659924888
301 => 0.026040744096558
302 => 0.026827658301137
303 => 0.027502912553134
304 => 0.027266462049071
305 => 0.029070412487027
306 => 0.029249266804474
307 => 0.029224554920855
308 => 0.02963201167309
309 => 0.028823292997029
310 => 0.028477550094826
311 => 0.026143570937252
312 => 0.026799323878758
313 => 0.027752499290256
314 => 0.02762634295032
315 => 0.026934121488038
316 => 0.027502387441081
317 => 0.027314500945686
318 => 0.02716630707135
319 => 0.02784521193848
320 => 0.027098728149196
321 => 0.027745052543428
322 => 0.026916134822455
323 => 0.027267542135056
324 => 0.027068066348765
325 => 0.027197151629328
326 => 0.026442521716799
327 => 0.026849701699994
328 => 0.026425581690815
329 => 0.026425380602708
330 => 0.026416018129999
331 => 0.026914993439962
401 => 0.026931265006907
402 => 0.026562521498934
403 => 0.026509379798578
404 => 0.026705872517484
405 => 0.02647583100517
406 => 0.026583465980918
407 => 0.026479091158936
408 => 0.026455594188038
409 => 0.026268366326241
410 => 0.026187703415442
411 => 0.026219333421194
412 => 0.026111363905178
413 => 0.02604630836635
414 => 0.026403076945902
415 => 0.026212469885851
416 => 0.026373863680259
417 => 0.02618993508201
418 => 0.025552358426605
419 => 0.02518568134983
420 => 0.023981358151157
421 => 0.024322902716342
422 => 0.024549347116414
423 => 0.024474507243541
424 => 0.024635292249658
425 => 0.024645163143192
426 => 0.024592890298694
427 => 0.024532365041332
428 => 0.024502904693304
429 => 0.024722477991089
430 => 0.024849947680951
501 => 0.024572073841396
502 => 0.024506971888657
503 => 0.024787917682282
504 => 0.024959294454096
505 => 0.026224644248882
506 => 0.026130903049058
507 => 0.026366175064834
508 => 0.026339687046401
509 => 0.026586289600706
510 => 0.026989380554979
511 => 0.026169783938939
512 => 0.026312037571965
513 => 0.026277160266263
514 => 0.026657941544595
515 => 0.026659130302182
516 => 0.026430832904386
517 => 0.026554596627434
518 => 0.026485515112509
519 => 0.026610354746905
520 => 0.026129651078183
521 => 0.026715096257932
522 => 0.027047005949595
523 => 0.027051614515986
524 => 0.027208937075636
525 => 0.027368785907749
526 => 0.02767560182109
527 => 0.02736022897845
528 => 0.026792903935469
529 => 0.026833862971123
530 => 0.026501240505999
531 => 0.026506831949731
601 => 0.026476984384881
602 => 0.026566559173816
603 => 0.026149307707127
604 => 0.026247235792369
605 => 0.026110135899564
606 => 0.026311739543573
607 => 0.026094847348896
608 => 0.02627714344737
609 => 0.02635581640026
610 => 0.026646121290132
611 => 0.026051969080622
612 => 0.024840452504864
613 => 0.025095127977307
614 => 0.024718442949237
615 => 0.024753306582726
616 => 0.02482373667088
617 => 0.024595449711883
618 => 0.02463899966951
619 => 0.024637443758568
620 => 0.024624035758634
621 => 0.024564649503738
622 => 0.024478527684926
623 => 0.024821610504173
624 => 0.024879906960571
625 => 0.025009492761739
626 => 0.025395052207128
627 => 0.025356525726416
628 => 0.025419364014906
629 => 0.025282188383954
630 => 0.024759669766817
701 => 0.02478804504164
702 => 0.024434204909908
703 => 0.02500044427403
704 => 0.024866351318611
705 => 0.024779900717927
706 => 0.024756311870571
707 => 0.025142827043249
708 => 0.025258478440798
709 => 0.025186412250922
710 => 0.025038602392981
711 => 0.02532244101629
712 => 0.025398384257698
713 => 0.02541538514877
714 => 0.025918292768617
715 => 0.025443492098113
716 => 0.025557781338616
717 => 0.026449433367719
718 => 0.025640828016892
719 => 0.026069164305276
720 => 0.026048199472914
721 => 0.026267321823941
722 => 0.026030225044427
723 => 0.026033164143167
724 => 0.026227729946246
725 => 0.025954497365949
726 => 0.02588684113659
727 => 0.025793374540292
728 => 0.025997455433901
729 => 0.026119792699834
730 => 0.027105741216438
731 => 0.027742708922878
801 => 0.027715056474859
802 => 0.027967748086543
803 => 0.027853908201089
804 => 0.027486289181516
805 => 0.028113770021564
806 => 0.027915208828859
807 => 0.027931577972334
808 => 0.027930968711996
809 => 0.028062994546624
810 => 0.0279694421428
811 => 0.027785040751906
812 => 0.027907455000834
813 => 0.028270981556256
814 => 0.029399379138642
815 => 0.030030845375025
816 => 0.02936136407832
817 => 0.029823163312075
818 => 0.029546248327713
819 => 0.029495924637548
820 => 0.029785968683042
821 => 0.030076520412242
822 => 0.030058013523181
823 => 0.029847087887778
824 => 0.029727941348379
825 => 0.030630158861729
826 => 0.031294897356691
827 => 0.031249566647798
828 => 0.031449641654515
829 => 0.032037068062324
830 => 0.032090774971187
831 => 0.032084009135109
901 => 0.031950890957757
902 => 0.032529288543203
903 => 0.033011797984919
904 => 0.031920077945853
905 => 0.032335790645065
906 => 0.032522417469168
907 => 0.032796441016634
908 => 0.033258764672889
909 => 0.033760970788876
910 => 0.033831988240086
911 => 0.033781597959954
912 => 0.033450379526436
913 => 0.033999899451114
914 => 0.034321795335162
915 => 0.034513476967656
916 => 0.034999549694879
917 => 0.032523570012898
918 => 0.030770948529817
919 => 0.030497251377073
920 => 0.031053825299787
921 => 0.031200589404613
922 => 0.031141428977984
923 => 0.029168694157403
924 => 0.03048686533651
925 => 0.031905106690248
926 => 0.031959587116615
927 => 0.032669588392324
928 => 0.032900793911631
929 => 0.033472438000572
930 => 0.033436681507167
1001 => 0.033575867745979
1002 => 0.033543871240046
1003 => 0.034602721540944
1004 => 0.035770790663626
1005 => 0.03573034414414
1006 => 0.035562420387788
1007 => 0.035811815801226
1008 => 0.037017388313728
1009 => 0.036906398515683
1010 => 0.037014215650396
1011 => 0.038435653585725
1012 => 0.040283725098842
1013 => 0.039425110337653
1014 => 0.041288057309691
1015 => 0.042460683678014
1016 => 0.044488619730198
1017 => 0.044234712148669
1018 => 0.045024172772102
1019 => 0.04378016458562
1020 => 0.040923670333924
1021 => 0.040471619184372
1022 => 0.041376637033533
1023 => 0.043601535105345
1024 => 0.041306567075511
1025 => 0.041770836118974
1026 => 0.041637126603224
1027 => 0.041630001791358
1028 => 0.041901926881559
1029 => 0.041507485355564
1030 => 0.039900459619983
1031 => 0.040636950044337
1101 => 0.040352555722319
1102 => 0.0406681124256
1103 => 0.042371041807721
1104 => 0.041618136135119
1105 => 0.040825011170123
1106 => 0.041819765884748
1107 => 0.043086430471271
1108 => 0.043007164877861
1109 => 0.042853356496199
1110 => 0.043720366290484
1111 => 0.045152412460608
1112 => 0.045539488785965
1113 => 0.045825220615916
1114 => 0.045864618207788
1115 => 0.046270437889531
1116 => 0.04408824318107
1117 => 0.047551442226132
1118 => 0.048149441032271
1119 => 0.048037042041228
1120 => 0.048701692546615
1121 => 0.048506135507374
1122 => 0.048222804039474
1123 => 0.049276416465729
1124 => 0.048068534841166
1125 => 0.046354098943166
1126 => 0.045413525501827
1127 => 0.046652148483278
1128 => 0.047408532316065
1129 => 0.047908453914491
1130 => 0.048059729888113
1201 => 0.044257640744376
1202 => 0.042208525569433
1203 => 0.043521984903419
1204 => 0.045124495941002
1205 => 0.044079341151344
1206 => 0.044120309240359
1207 => 0.042630193172154
1208 => 0.045256338148545
1209 => 0.044873730914841
1210 => 0.046858697920119
1211 => 0.046384969613954
1212 => 0.048003633150784
1213 => 0.047577384794214
1214 => 0.04934671789111
1215 => 0.050052552766243
1216 => 0.051237759376018
1217 => 0.052109602182827
1218 => 0.052621564954681
1219 => 0.052590828630183
1220 => 0.054619480191107
1221 => 0.053423255241317
1222 => 0.051920514775807
1223 => 0.051893334941871
1224 => 0.052671625522956
1225 => 0.054302709067316
1226 => 0.054725625299068
1227 => 0.054961977777324
1228 => 0.054599995729386
1229 => 0.053301579280604
1230 => 0.05274092964114
1231 => 0.053218619377547
]
'min_raw' => 0.01969744429444
'max_raw' => 0.054961977777324
'avg_raw' => 0.037329711035882
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.019697'
'max' => '$0.054961'
'avg' => '$0.037329'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0077979232527531
'max_diff' => 0.028397135315145
'year' => 2036
]
11 => [
'items' => [
101 => 0.052634445878268
102 => 0.053642893228157
103 => 0.055027706832286
104 => 0.05474174829918
105 => 0.055697664802054
106 => 0.05668693781718
107 => 0.058101642659842
108 => 0.058471498892082
109 => 0.059082857179602
110 => 0.059712145678197
111 => 0.059914256184145
112 => 0.060300147851206
113 => 0.060298114011639
114 => 0.061461024523834
115 => 0.062743750831125
116 => 0.063227950316945
117 => 0.064341340335673
118 => 0.062434698946441
119 => 0.063880908342091
120 => 0.065185425417937
121 => 0.063630126381187
122 => 0.065773743765148
123 => 0.065856975570625
124 => 0.067113677015988
125 => 0.065839769346247
126 => 0.065083327038413
127 => 0.067267147637608
128 => 0.068323829635855
129 => 0.068005548418419
130 => 0.065583412638256
131 => 0.06417362572391
201 => 0.060483941441481
202 => 0.064854531856518
203 => 0.066983318955812
204 => 0.065577899593946
205 => 0.066286711371709
206 => 0.070153758598194
207 => 0.071626079809274
208 => 0.071319847289671
209 => 0.071371595544468
210 => 0.072166033345446
211 => 0.075689008059872
212 => 0.073577959949073
213 => 0.075191777130315
214 => 0.076047739944195
215 => 0.076842805909052
216 => 0.074890375182541
217 => 0.072350291494253
218 => 0.071545740364713
219 => 0.065438158336197
220 => 0.065120232167728
221 => 0.064941770575218
222 => 0.063816595478334
223 => 0.06293251606358
224 => 0.062229463289204
225 => 0.060384442859911
226 => 0.061007083093655
227 => 0.058066505615052
228 => 0.059947782878195
301 => 0.05525455021962
302 => 0.059163213837843
303 => 0.057035905935571
304 => 0.058464335978184
305 => 0.058459352320331
306 => 0.055829159727724
307 => 0.054312119531027
308 => 0.05527883658845
309 => 0.056315234012103
310 => 0.056483386007231
311 => 0.057827102319738
312 => 0.058202104659473
313 => 0.05706583006289
314 => 0.055157293404477
315 => 0.05560060294114
316 => 0.054303135877416
317 => 0.052029374754589
318 => 0.053662429689064
319 => 0.05422002644405
320 => 0.054466292936639
321 => 0.052230310015568
322 => 0.051527715636216
323 => 0.051153660283988
324 => 0.054868656087638
325 => 0.055072171943891
326 => 0.054030956049059
327 => 0.05873735062584
328 => 0.057672148584281
329 => 0.058862240245539
330 => 0.055560377247238
331 => 0.055686512860322
401 => 0.054123358002224
402 => 0.054998620272713
403 => 0.054380013110951
404 => 0.054927907730768
405 => 0.055256313506832
406 => 0.056819211866599
407 => 0.059181059626593
408 => 0.056585766969717
409 => 0.05545496079384
410 => 0.056156506585459
411 => 0.058024815477162
412 => 0.060855399085065
413 => 0.059179636618382
414 => 0.059923311544804
415 => 0.060085771432432
416 => 0.058850126229599
417 => 0.060900959086199
418 => 0.062000017074987
419 => 0.063127423153478
420 => 0.064106318262231
421 => 0.062677112373538
422 => 0.064206567543056
423 => 0.062974096661606
424 => 0.061868442870448
425 => 0.061870119690855
426 => 0.061176526916637
427 => 0.059832603518276
428 => 0.059584763424134
429 => 0.060874058892614
430 => 0.0619079517616
501 => 0.061993108130302
502 => 0.062565524345906
503 => 0.062904274365945
504 => 0.066224485070644
505 => 0.067559901282298
506 => 0.069192822947773
507 => 0.069828937962898
508 => 0.071743416098569
509 => 0.070197319517702
510 => 0.069862811797029
511 => 0.065218914060916
512 => 0.065979352055048
513 => 0.067196886655007
514 => 0.065238990758023
515 => 0.066480825059146
516 => 0.066725989455834
517 => 0.065172462204642
518 => 0.066002268233454
519 => 0.06379854944127
520 => 0.059229094674194
521 => 0.060906046195603
522 => 0.062140846971138
523 => 0.060378634014611
524 => 0.063537332532126
525 => 0.061692086066967
526 => 0.061107231524962
527 => 0.058825505440903
528 => 0.059902392320888
529 => 0.061358897245602
530 => 0.060458946539
531 => 0.062326479383477
601 => 0.064971403944073
602 => 0.066856334693934
603 => 0.067001036271631
604 => 0.065789152080022
605 => 0.067731204231216
606 => 0.067745349960951
607 => 0.065554707200888
608 => 0.064212950707899
609 => 0.063908100809612
610 => 0.064669675624876
611 => 0.065594368045073
612 => 0.067052350265419
613 => 0.067933378385863
614 => 0.070230632462772
615 => 0.070852203548548
616 => 0.071535121723237
617 => 0.072447711008787
618 => 0.07354350842918
619 => 0.071145966057142
620 => 0.071241224885161
621 => 0.069008666624553
622 => 0.066622857941852
623 => 0.068433389336771
624 => 0.07080041829073
625 => 0.070257419233357
626 => 0.070196320746939
627 => 0.070299071453788
628 => 0.06988966789722
629 => 0.068037950784068
630 => 0.067108030042206
701 => 0.068307865047291
702 => 0.068945523953982
703 => 0.069934477308559
704 => 0.069812567933334
705 => 0.072360005568887
706 => 0.073349862803547
707 => 0.073096614964542
708 => 0.073143218661668
709 => 0.074935307903276
710 => 0.076928479711207
711 => 0.07879534813152
712 => 0.080694406872526
713 => 0.078405017438719
714 => 0.077242606674142
715 => 0.078441917868798
716 => 0.077805546467386
717 => 0.081462325299919
718 => 0.081715512732283
719 => 0.085372027138084
720 => 0.088842494718825
721 => 0.086662756211246
722 => 0.088718151446314
723 => 0.090941228971873
724 => 0.095229906200004
725 => 0.093785630587054
726 => 0.092679338102218
727 => 0.091633897049614
728 => 0.093809293920989
729 => 0.096607907243199
730 => 0.097210701748017
731 => 0.098187459131048
801 => 0.097160518175002
802 => 0.098397355442724
803 => 0.10276393449162
804 => 0.10158404628775
805 => 0.099908415361756
806 => 0.10335541015015
807 => 0.10460286416421
808 => 0.11335814973166
809 => 0.12441205942338
810 => 0.11983566822713
811 => 0.11699495453239
812 => 0.11766258963328
813 => 0.12169910325424
814 => 0.12299550331675
815 => 0.11947144105094
816 => 0.12071619941974
817 => 0.12757494041373
818 => 0.13125443490226
819 => 0.1262571871648
820 => 0.11246997885089
821 => 0.099757543130346
822 => 0.10312945353187
823 => 0.1027471835349
824 => 0.11011604508759
825 => 0.1015559063443
826 => 0.10170003712704
827 => 0.10922127893287
828 => 0.1072147405658
829 => 0.10396440538917
830 => 0.099781274174172
831 => 0.092048369230446
901 => 0.08519911967378
902 => 0.09863207534237
903 => 0.098052821867696
904 => 0.097213976995812
905 => 0.099080735485694
906 => 0.10814518482392
907 => 0.10793621992792
908 => 0.10660689187436
909 => 0.10761517548682
910 => 0.10378764839692
911 => 0.10477408927916
912 => 0.099755529415578
913 => 0.10202412806749
914 => 0.10395743162968
915 => 0.10434557094284
916 => 0.10522006863427
917 => 0.097747581608024
918 => 0.10110250890211
919 => 0.10307321437321
920 => 0.0941694953599
921 => 0.10289721647596
922 => 0.09761750223368
923 => 0.095825487921203
924 => 0.09823819911302
925 => 0.09729796321513
926 => 0.096489603602629
927 => 0.096038525049473
928 => 0.097810153867526
929 => 0.097727505265609
930 => 0.094828776660938
1001 => 0.091047503363439
1002 => 0.092316622798144
1003 => 0.091855539809458
1004 => 0.090184515577568
1005 => 0.091310584149626
1006 => 0.086351948048542
1007 => 0.077820872364103
1008 => 0.083456762275159
1009 => 0.083239786644252
1010 => 0.083130377692087
1011 => 0.087365593195689
1012 => 0.086958474948064
1013 => 0.086219551342111
1014 => 0.090170944666073
1015 => 0.088728632949087
1016 => 0.09317349780946
1017 => 0.096101173282336
1018 => 0.095358620082035
1019 => 0.098112113014958
1020 => 0.092345860746659
1021 => 0.094261178448301
1022 => 0.094655922772094
1023 => 0.090122185085814
1024 => 0.087025084528292
1025 => 0.086818543230636
1026 => 0.081448597670638
1027 => 0.084317179244103
1028 => 0.086841412318781
1029 => 0.08563250056441
1030 => 0.085249795218187
1031 => 0.087204953833376
1101 => 0.087356886402577
1102 => 0.083892807723696
1103 => 0.084613099374141
1104 => 0.087616835295016
1105 => 0.084537412935727
1106 => 0.078554598312414
1107 => 0.077070777566949
1108 => 0.076872808527262
1109 => 0.072848568982253
1110 => 0.077169933564326
1111 => 0.07528354211888
1112 => 0.081242630092604
1113 => 0.077838831001243
1114 => 0.077692100025501
1115 => 0.077470294634914
1116 => 0.074006465419282
1117 => 0.074764823879675
1118 => 0.077285722903275
1119 => 0.078185208074856
1120 => 0.078091384402195
1121 => 0.077273369122788
1122 => 0.077647852328785
1123 => 0.076441511443671
1124 => 0.076015527369323
1125 => 0.074671004454531
1126 => 0.072694927203721
1127 => 0.072969712865432
1128 => 0.069054586762839
1129 => 0.066921418270678
1130 => 0.066330985346756
1201 => 0.065541433764998
1202 => 0.066420167298832
1203 => 0.0690434957025
1204 => 0.065879205077509
1205 => 0.06045425075014
1206 => 0.060780299748888
1207 => 0.061512835044256
1208 => 0.060147760367543
1209 => 0.058855831748067
1210 => 0.059979058865219
1211 => 0.057680434200804
1212 => 0.061790612853141
1213 => 0.061679444039238
1214 => 0.063211464469087
1215 => 0.064169468284095
1216 => 0.061961579647919
1217 => 0.061406301626687
1218 => 0.06172261322356
1219 => 0.056494687120037
1220 => 0.062784231371982
1221 => 0.062838623611852
1222 => 0.0623728842316
1223 => 0.065721872377868
1224 => 0.07278928194209
1225 => 0.070130238178138
1226 => 0.069100576062713
1227 => 0.067143187628611
1228 => 0.069751291498827
1229 => 0.069551029814353
1230 => 0.068645370530172
1231 => 0.068097624969271
]
'min_raw' => 0.051153660283988
'max_raw' => 0.13125443490226
'avg_raw' => 0.091204047593122
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.051153'
'max' => '$0.131254'
'avg' => '$0.091204'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.031456215989547
'max_diff' => 0.076292457124932
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.001605654944336
]
1 => [
'year' => 2028
'avg' => 0.0027557700094415
]
2 => [
'year' => 2029
'avg' => 0.0075282669865743
]
3 => [
'year' => 2030
'avg' => 0.0058080467687105
]
4 => [
'year' => 2031
'avg' => 0.0057042217101857
]
5 => [
'year' => 2032
'avg' => 0.010001295842595
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.001605654944336
'min' => '$0.0016056'
'max_raw' => 0.010001295842595
'max' => '$0.0100012'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010001295842595
]
1 => [
'year' => 2033
'avg' => 0.025724361328278
]
2 => [
'year' => 2034
'avg' => 0.01630533646482
]
3 => [
'year' => 2035
'avg' => 0.019232181751933
]
4 => [
'year' => 2036
'avg' => 0.037329711035882
]
5 => [
'year' => 2037
'avg' => 0.091204047593122
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010001295842595
'min' => '$0.0100012'
'max_raw' => 0.091204047593122
'max' => '$0.091204'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.091204047593122
]
]
]
]
'prediction_2025_max_price' => '$0.002745'
'last_price' => 0.00266199
'sma_50day_nextmonth' => '$0.002393'
'sma_200day_nextmonth' => '$0.003153'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0026086'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002543'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002448'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002332'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002714'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003688'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.00316'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0026072'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002557'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002475'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002476'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002732'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002981'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002669'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003338'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00188'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002557'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002589'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002795'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002861'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001834'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000973'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000486'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.78'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 109.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002419'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002627'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 125.06
'cci_20_action' => 'SELL'
'adx_14' => 19.46
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000069'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.24
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000382'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 11
'buy_signals' => 21
'sell_pct' => 34.38
'buy_pct' => 65.63
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767714021
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Froth para 2026
La previsión del precio de Froth para 2026 sugiere que el precio medio podría oscilar entre $0.000919 en el extremo inferior y $0.002745 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Froth podría potencialmente ganar 3.13% para 2026 si FROTH alcanza el objetivo de precio previsto.
Predicción de precio de Froth 2027-2032
La predicción del precio de FROTH para 2027-2032 está actualmente dentro de un rango de precios de $0.0016056 en el extremo inferior y $0.0100012 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Froth alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Froth | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000885 | $0.0016056 | $0.002325 |
| 2028 | $0.001597 | $0.002755 | $0.003913 |
| 2029 | $0.00351 | $0.007528 | $0.011546 |
| 2030 | $0.002985 | $0.005808 | $0.00863 |
| 2031 | $0.003529 | $0.0057042 | $0.007879 |
| 2032 | $0.005387 | $0.0100012 | $0.014615 |
Predicción de precio de Froth 2032-2037
La predicción de precio de Froth para 2032-2037 se estima actualmente entre $0.0100012 en el extremo inferior y $0.091204 en el extremo superior. Comparado con el precio actual, Froth podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Froth | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005387 | $0.0100012 | $0.014615 |
| 2033 | $0.012518 | $0.025724 | $0.038929 |
| 2034 | $0.010064 | $0.0163053 | $0.022546 |
| 2035 | $0.011899 | $0.019232 | $0.026564 |
| 2036 | $0.019697 | $0.037329 | $0.054961 |
| 2037 | $0.051153 | $0.091204 | $0.131254 |
Froth Histograma de precios potenciales
Pronóstico de precio de Froth basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Froth es Alcista, con 21 indicadores técnicos mostrando señales alcistas y 11 indicando señales bajistas. La predicción de precio de FROTH se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Froth
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Froth aumentar durante el próximo mes, alcanzando $0.003153 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Froth alcance $0.002393 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.78, lo que sugiere que el mercado de FROTH está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FROTH para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0026086 | BUY |
| SMA 5 | $0.002543 | BUY |
| SMA 10 | $0.002448 | BUY |
| SMA 21 | $0.002332 | BUY |
| SMA 50 | $0.002714 | SELL |
| SMA 100 | $0.003688 | SELL |
| SMA 200 | $0.00316 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0026072 | BUY |
| EMA 5 | $0.002557 | BUY |
| EMA 10 | $0.002475 | BUY |
| EMA 21 | $0.002476 | BUY |
| EMA 50 | $0.002732 | SELL |
| EMA 100 | $0.002981 | SELL |
| EMA 200 | $0.002669 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.003338 | SELL |
| SMA 50 | $0.00188 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.002861 | SELL |
| EMA 50 | $0.001834 | BUY |
| EMA 100 | $0.000973 | BUY |
| EMA 200 | $0.000486 | BUY |
Osciladores de Froth
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.78 | NEUTRAL |
| Stoch RSI (14) | 109.04 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 125.06 | SELL |
| Índice Direccional Medio (14) | 19.46 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000069 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.24 | SELL |
| VWMA (10) | 0.002419 | BUY |
| Promedio Móvil de Hull (9) | 0.002627 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000382 | SELL |
Predicción de precios de Froth basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Froth
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Froth por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.00374 | $0.005256 | $0.007385 | $0.010378 | $0.014582 | $0.020491 |
| Amazon.com acción | $0.005554 | $0.011589 | $0.024182 | $0.050457 | $0.105283 | $0.21968 |
| Apple acción | $0.003775 | $0.005355 | $0.007596 | $0.010775 | $0.015283 | $0.021679 |
| Netflix acción | $0.0042002 | $0.006627 | $0.010456 | $0.016499 | $0.026033 | $0.041076 |
| Google acción | $0.003447 | $0.004464 | $0.005781 | $0.007486 | $0.009694 | $0.012554 |
| Tesla acción | $0.006034 | $0.013679 | $0.031011 | $0.070299 | $0.159364 | $0.361267 |
| Kodak acción | $0.001996 | $0.001496 | $0.001122 | $0.000841 | $0.000631 | $0.000473 |
| Nokia acción | $0.001763 | $0.001168 | $0.000773 | $0.000512 | $0.000339 | $0.000224 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Froth
Podría preguntarse cosas como: "¿Debo invertir en Froth ahora?", "¿Debería comprar FROTH hoy?", "¿Será Froth una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Froth regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Froth, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Froth a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Froth es de $0.002661 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Froth basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Froth ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002731 | $0.0028021 | $0.002875 | $0.002949 |
| Si Froth ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00280037 | $0.002945 | $0.003099 | $0.00326 |
| Si Froth ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.0030079 | $0.003398 | $0.00384 | $0.004339 |
| Si Froth ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003353 | $0.004225 | $0.005324 | $0.006708 |
| Si Froth ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004045 | $0.006149 | $0.009345 | $0.0142044 |
| Si Froth ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006121 | $0.014077 | $0.032374 | $0.074449 |
| Si Froth ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.009581 | $0.034486 | $0.124127 | $0.446775 |
Cuadro de preguntas
¿Es FROTH una buena inversión?
La decisión de adquirir Froth depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Froth ha experimentado un aumento de 4.8202% durante las últimas 24 horas, y Froth ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Froth dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Froth subir?
Parece que el valor medio de Froth podría potencialmente aumentar hasta $0.002745 para el final de este año. Mirando las perspectivas de Froth en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.00863. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Froth la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Froth, el precio de Froth aumentará en un 0.86% durante la próxima semana y alcanzará $0.002684 para el 13 de enero de 2026.
¿Cuál será el precio de Froth el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Froth, el precio de Froth disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002352 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Froth este año en 2026?
Según nuestra predicción más reciente sobre el valor de Froth en 2026, se anticipa que FROTH fluctúe dentro del rango de $0.000919 y $0.002745. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Froth no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Froth en 5 años?
El futuro de Froth parece estar en una tendencia alcista, con un precio máximo de $0.00863 proyectada después de un período de cinco años. Basado en el pronóstico de Froth para 2030, el valor de Froth podría potencialmente alcanzar su punto más alto de aproximadamente $0.00863, mientras que su punto más bajo se anticipa que esté alrededor de $0.002985.
¿Cuánto será Froth en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Froth, se espera que el valor de FROTH en 2026 crezca en un 3.13% hasta $0.002745 si ocurre lo mejor. El precio estará entre $0.002745 y $0.000919 durante 2026.
¿Cuánto será Froth en 2027?
Según nuestra última simulación experimental para la predicción de precios de Froth, el valor de FROTH podría disminuir en un -12.62% hasta $0.002325 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002325 y $0.000885 a lo largo del año.
¿Cuánto será Froth en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Froth sugiere que el valor de FROTH en 2028 podría aumentar en un 47.02% , alcanzando $0.003913 en el mejor escenario. Se espera que el precio oscile entre $0.003913 y $0.001597 durante el año.
¿Cuánto será Froth en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Froth podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.011546 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.011546 y $0.00351.
¿Cuánto será Froth en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Froth, se espera que el valor de FROTH en 2030 aumente en un 224.23% , alcanzando $0.00863 en el mejor escenario. Se pronostica que el precio oscile entre $0.00863 y $0.002985 durante el transcurso de 2030.
¿Cuánto será Froth en 2031?
Nuestra simulación experimental indica que el precio de Froth podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.007879 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.007879 y $0.003529 durante el año.
¿Cuánto será Froth en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Froth, FROTH podría experimentar un 449.04% aumento en valor, alcanzando $0.014615 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.014615 y $0.005387 a lo largo del año.
¿Cuánto será Froth en 2033?
Según nuestra predicción experimental de precios de Froth, se anticipa que el valor de FROTH aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.038929. A lo largo del año, el precio de FROTH podría oscilar entre $0.038929 y $0.012518.
¿Cuánto será Froth en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Froth sugieren que FROTH podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.022546 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.022546 y $0.010064.
¿Cuánto será Froth en 2035?
Basado en nuestra predicción experimental para el precio de Froth, FROTH podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.026564 en 2035. El rango de precios esperado para el año está entre $0.026564 y $0.011899.
¿Cuánto será Froth en 2036?
Nuestra reciente simulación de predicción de precios de Froth sugiere que el valor de FROTH podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.054961 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.054961 y $0.019697.
¿Cuánto será Froth en 2037?
Según la simulación experimental, el valor de Froth podría aumentar en un 4830.69% en 2037, con un máximo de $0.131254 bajo condiciones favorables. Se espera que el precio caiga entre $0.131254 y $0.051153 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Froth?
Los traders de Froth utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Froth
Las medias móviles son herramientas populares para la predicción de precios de Froth. Una media móvil simple (SMA) calcula el precio de cierre promedio de FROTH durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FROTH por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FROTH.
¿Cómo leer gráficos de Froth y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Froth en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FROTH dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Froth?
La acción del precio de Froth está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FROTH. La capitalización de mercado de Froth puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FROTH, grandes poseedores de Froth, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Froth.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


