Predicción del precio de FrokAI - Pronóstico de FROKAI
Predicción de precio de FrokAI hasta $0.000362 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000121 | $0.000362 |
| 2027 | $0.000116 | $0.0003069 |
| 2028 | $0.00021 | $0.000516 |
| 2029 | $0.000463 | $0.001523 |
| 2030 | $0.000393 | $0.001138 |
| 2031 | $0.000465 | $0.001039 |
| 2032 | $0.00071 | $0.001928 |
| 2033 | $0.001652 | $0.005137 |
| 2034 | $0.001328 | $0.002975 |
| 2035 | $0.00157 | $0.0035055 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en FrokAI hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,964.93, equivalente a un ROI del 39.65% en los próximos 90 días.
Predicción del precio a largo plazo de FrokAI para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'FrokAI'
'name_with_ticker' => 'FrokAI <small>FROKAI</small>'
'name_lang' => 'FrokAI'
'name_lang_with_ticker' => 'FrokAI <small>FROKAI</small>'
'name_with_lang' => 'FrokAI'
'name_with_lang_with_ticker' => 'FrokAI <small>FROKAI</small>'
'image' => '/uploads/coins/frokai.jpg?1720122473'
'price_for_sd' => 0.0003512
'ticker' => 'FROKAI'
'marketcap' => '$0'
'low24h' => '$0.0003009'
'high24h' => '$0.0003784'
'volume24h' => '$25.55'
'current_supply' => '0'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0003512'
'change_24h_pct' => '10.1135%'
'ath_price' => '$1.78'
'ath_days' => 535
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 jul. 2024'
'ath_pct' => '-99.98%'
'fdv' => '$35.13K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.01732'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000354'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00031'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000121'
'current_year_max_price_prediction' => '$0.000362'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000393'
'grand_prediction_max_price' => '$0.001138'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00035793657122672
107 => 0.00035927297645271
108 => 0.00036228396566539
109 => 0.00033655539251021
110 => 0.00034810676650567
111 => 0.00035489211651062
112 => 0.00032423565833508
113 => 0.00035428613690052
114 => 0.00033610751529249
115 => 0.00032993741808499
116 => 0.00033824464112639
117 => 0.00033500730822812
118 => 0.00033222403950475
119 => 0.00033067092773448
120 => 0.00033677083550134
121 => 0.00033648626751305
122 => 0.00032650563446539
123 => 0.00031348630551737
124 => 0.00031785601965723
125 => 0.00031626846154393
126 => 0.00031051494614226
127 => 0.00031439212084089
128 => 0.00029731900566134
129 => 0.00026794559837824
130 => 0.00028735057096125
131 => 0.00028660350062536
201 => 0.00028622679388505
202 => 0.00030080909446714
203 => 0.00029940734273709
204 => 0.00029686314962105
205 => 0.0003104682200405
206 => 0.00030550218632338
207 => 0.00032080633209485
208 => 0.00033088663231003
209 => 0.00032832994211191
210 => 0.0003378105131866
211 => 0.00031795668904543
212 => 0.00032455133302796
213 => 0.00032591048001297
214 => 0.00031030033558339
215 => 0.00029963668665588
216 => 0.00029892554284691
217 => 0.00028043624514796
218 => 0.00029031307873834
219 => 0.00029900428356674
220 => 0.00029484187091868
221 => 0.00029352417542284
222 => 0.00030025599593778
223 => 0.00030077911604593
224 => 0.00028885192214223
225 => 0.00029133196343992
226 => 0.00030167414792384
227 => 0.00029107136692624
228 => 0.00027047189540233
301 => 0.00026536294165443
302 => 0.00026468131304776
303 => 0.00025082542528721
304 => 0.00026570434637328
305 => 0.00025920929858892
306 => 0.00027972707671709
307 => 0.00026800743188933
308 => 0.00026750222142456
309 => 0.0002667385217088
310 => 0.00025481218673379
311 => 0.00025742329613519
312 => 0.00026610302146864
313 => 0.00026920004525171
314 => 0.00026887700029797
315 => 0.00026606048607929
316 => 0.00026734987186572
317 => 0.00026319631099586
318 => 0.00026172960220382
319 => 0.0002571002658061
320 => 0.00025029642018827
321 => 0.00025124253665184
322 => 0.00023776233815988
323 => 0.00023041761057318
324 => 0.00022838468677914
325 => 0.00022566617612
326 => 0.00022869174979177
327 => 0.00023772415045125
328 => 0.00022682915892521
329 => 0.00020815046014861
330 => 0.00020927308177204
331 => 0.00021179527925053
401 => 0.00020709518093537
402 => 0.00020264693232942
403 => 0.00020651432359448
404 => 0.0001985999126859
405 => 0.00021275169799729
406 => 0.00021236893186453
407 => 0.00021764384228809
408 => 0.000220942352028
409 => 0.00021334035498272
410 => 0.00021142847328382
411 => 0.00021251756798969
412 => 0.00019451725849005
413 => 0.00021617283297692
414 => 0.00021636011128435
415 => 0.00021475652071618
416 => 0.00022628744558958
417 => 0.00025062129365813
418 => 0.00024146592118797
419 => 0.00023792068424493
420 => 0.00023118118622465
421 => 0.00024016116718488
422 => 0.00023947164475666
423 => 0.00023635336284263
424 => 0.0002344674162114
425 => 0.00023794233070573
426 => 0.00023403683585037
427 => 0.00023333530165853
428 => 0.00022908476773269
429 => 0.00022756752050814
430 => 0.00022644421106643
501 => 0.00022520755774522
502 => 0.00022793530681701
503 => 0.00022175386855506
504 => 0.00021429965998501
505 => 0.00021367992319807
506 => 0.00021539107095464
507 => 0.00021463401545232
508 => 0.00021367629870758
509 => 0.00021184775662324
510 => 0.00021130526724743
511 => 0.00021306809454037
512 => 0.00021107796530586
513 => 0.00021401450939933
514 => 0.0002132159318923
515 => 0.0002087551428541
516 => 0.00020319534811687
517 => 0.00020314585428165
518 => 0.0002019480056254
519 => 0.00020042236526392
520 => 0.00019999796701728
521 => 0.00020618862268916
522 => 0.00021900309465922
523 => 0.00021648730718718
524 => 0.000218305221464
525 => 0.00022724756045009
526 => 0.00023009006110826
527 => 0.00022807252146941
528 => 0.00022531078877533
529 => 0.00022543229099784
530 => 0.00023486996764684
531 => 0.00023545858396295
601 => 0.00023694582749894
602 => 0.00023885735573765
603 => 0.00022839806299414
604 => 0.00022493965925021
605 => 0.0002233008756914
606 => 0.00021825405661931
607 => 0.00022369661830699
608 => 0.00022052547068531
609 => 0.0002209533668413
610 => 0.00022067469890837
611 => 0.00022082687044319
612 => 0.00021274774228488
613 => 0.00021569135195929
614 => 0.00021079702995309
615 => 0.00020424408220022
616 => 0.00020422211442159
617 => 0.00020582593910055
618 => 0.00020487192142384
619 => 0.00020230468438585
620 => 0.00020266934829008
621 => 0.00019947450877163
622 => 0.00020305725965205
623 => 0.0002031600001276
624 => 0.00020178044588488
625 => 0.00020730016794052
626 => 0.00020956160257038
627 => 0.00020865355041491
628 => 0.00020949789121047
629 => 0.00021659184951474
630 => 0.00021774847424943
701 => 0.00021826217055425
702 => 0.00021757388555752
703 => 0.00020962755574571
704 => 0.00020998000926327
705 => 0.00020739393920802
706 => 0.00020520898252468
707 => 0.00020529636933343
708 => 0.00020641972109315
709 => 0.00021132546411157
710 => 0.00022164931108448
711 => 0.00022204109353047
712 => 0.00022251594528411
713 => 0.00022058448456069
714 => 0.00022000193752492
715 => 0.00022077046743325
716 => 0.00022464756155419
717 => 0.00023462050025403
718 => 0.00023109539764733
719 => 0.00022822943435659
720 => 0.00023074365682072
721 => 0.0002303566119795
722 => 0.00022708956401138
723 => 0.00022699786885616
724 => 0.00022072735926693
725 => 0.00021840929464439
726 => 0.00021647214634166
727 => 0.00021435683096562
728 => 0.00021310280110469
729 => 0.00021502956091746
730 => 0.00021547023368339
731 => 0.00021125733967877
801 => 0.00021068313779312
802 => 0.00021412347797892
803 => 0.00021260951253196
804 => 0.0002141666635387
805 => 0.00021452793592926
806 => 0.00021446976275357
807 => 0.00021288900894912
808 => 0.00021389653428532
809 => 0.00021151343650744
810 => 0.00020892217560372
811 => 0.0002072691125884
812 => 0.00020582659586055
813 => 0.00020662698798072
814 => 0.00020377373621812
815 => 0.00020286092355465
816 => 0.00021355520737145
817 => 0.00022145518980985
818 => 0.00022134032093646
819 => 0.00022064108621157
820 => 0.00021960216524496
821 => 0.00022457155801444
822 => 0.0002228403209397
823 => 0.00022409994056127
824 => 0.00022442056662103
825 => 0.00022539100513753
826 => 0.00022573785349517
827 => 0.00022468943685671
828 => 0.00022117082256473
829 => 0.00021240277028891
830 => 0.00020832121828562
831 => 0.0002069742381409
901 => 0.00020702319831088
902 => 0.00020567265825499
903 => 0.00020607045282841
904 => 0.00020553432153624
905 => 0.00020451901857296
906 => 0.00020656429588379
907 => 0.00020679999504079
908 => 0.00020632260287719
909 => 0.00020643504601357
910 => 0.00020248244279589
911 => 0.00020278295063393
912 => 0.00020110968480504
913 => 0.00020079596763365
914 => 0.00019656609732616
915 => 0.00018907226894694
916 => 0.00019322457731255
917 => 0.0001882091727098
918 => 0.00018630976299096
919 => 0.00019530127318114
920 => 0.00019439877494372
921 => 0.0001928540902678
922 => 0.00019056917969163
923 => 0.00018972168413275
924 => 0.00018457256940147
925 => 0.00018426833223369
926 => 0.0001868203725323
927 => 0.00018564269374484
928 => 0.0001839887867054
929 => 0.00017799850306243
930 => 0.00017126344093297
1001 => 0.00017146673012357
1002 => 0.00017360902807666
1003 => 0.00017983804830352
1004 => 0.00017740426233775
1005 => 0.0001756385226951
1006 => 0.00017530785273797
1007 => 0.00017944687955589
1008 => 0.00018530446965617
1009 => 0.00018805271987503
1010 => 0.00018532928737374
1011 => 0.00018220075475628
1012 => 0.00018239117404048
1013 => 0.00018365794822892
1014 => 0.00018379106828491
1015 => 0.00018175471516929
1016 => 0.00018232793664333
1017 => 0.00018145716080779
1018 => 0.00017611321111242
1019 => 0.00017601655600828
1020 => 0.00017470506457021
1021 => 0.00017466535313068
1022 => 0.00017243417902765
1023 => 0.00017212202234726
1024 => 0.0001676918907431
1025 => 0.00017060781678063
1026 => 0.00016865196668764
1027 => 0.00016570403925911
1028 => 0.00016519581545929
1029 => 0.00016518053763817
1030 => 0.00016820739996276
1031 => 0.00017057244613204
1101 => 0.00016868598953738
1102 => 0.0001682564799382
1103 => 0.0001728425187687
1104 => 0.00017225890352484
1105 => 0.00017175349648758
1106 => 0.0001847799867093
1107 => 0.0001744685032291
1108 => 0.00016997210787283
1109 => 0.00016440696477713
1110 => 0.00016621900343098
1111 => 0.00016660082659973
1112 => 0.00015321766064701
1113 => 0.00014778811188676
1114 => 0.00014592489536047
1115 => 0.00014485258790758
1116 => 0.00014534125187905
1117 => 0.00014045402117228
1118 => 0.00014373832103456
1119 => 0.00013950639234982
1120 => 0.00013879689573394
1121 => 0.00014636410845762
1122 => 0.00014741704190111
1123 => 0.00014292490071042
1124 => 0.00014580958256644
1125 => 0.00014476355682537
1126 => 0.00013957893662075
1127 => 0.00013938092226442
1128 => 0.00013677946209396
1129 => 0.00013270868066913
1130 => 0.00013084822432433
1201 => 0.00012987928250674
1202 => 0.00013027908678498
1203 => 0.00013007693350769
1204 => 0.00012875774663163
1205 => 0.00013015254775524
1206 => 0.00012658940725603
1207 => 0.00012517053599907
1208 => 0.00012452966476986
1209 => 0.00012136717249009
1210 => 0.0001264001040739
1211 => 0.00012739165499912
1212 => 0.00012838515958596
1213 => 0.00013703293872001
1214 => 0.00013660092011284
1215 => 0.00014050615792004
1216 => 0.00014035440756013
1217 => 0.00013924057047685
1218 => 0.00013454147503984
1219 => 0.00013641445072771
1220 => 0.00013064972268549
1221 => 0.00013496904889813
1222 => 0.00013299788879406
1223 => 0.00013430259768413
1224 => 0.00013195661345892
1225 => 0.00013325497799247
1226 => 0.0001276267885076
1227 => 0.00012237126435739
1228 => 0.00012448624069375
1229 => 0.00012678546184825
1230 => 0.00013177075914187
1231 => 0.0001288015572016
]
'min_raw' => 0.00012136717249009
'max_raw' => 0.00036228396566539
'avg_raw' => 0.00024182556907774
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000121'
'max' => '$0.000362'
'avg' => '$0.000241'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00022991282750991
'max_diff' => 1.1003965665393E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00012986939449728
102 => 0.00012629231831056
103 => 0.00011891178839608
104 => 0.00011895356139387
105 => 0.00011781822766011
106 => 0.00011683713355271
107 => 0.00012914260576217
108 => 0.0001276122257722
109 => 0.00012517376554935
110 => 0.00012843774145819
111 => 0.00012930078849475
112 => 0.00012932535823058
113 => 0.00013170667079825
114 => 0.00013297757774249
115 => 0.00013320158059984
116 => 0.00013694862737674
117 => 0.00013820458803161
118 => 0.00014337771221883
119 => 0.0001328697501676
120 => 0.00013265334560412
121 => 0.0001284836722928
122 => 0.00012583919955884
123 => 0.00012866474160334
124 => 0.00013116778612982
125 => 0.00012856144886345
126 => 0.00012890178148766
127 => 0.00012540298665314
128 => 0.00012665364117288
129 => 0.00012773087332664
130 => 0.00012713608904811
131 => 0.00012624566819527
201 => 0.00013096256502299
202 => 0.0001306964192183
203 => 0.00013508890198526
204 => 0.00013851315641157
205 => 0.0001446500325022
206 => 0.00013824588237904
207 => 0.00013801248969436
208 => 0.00014029394062446
209 => 0.00013820423875336
210 => 0.00013952485820184
211 => 0.00014443726029235
212 => 0.00014454105160766
213 => 0.00014280241334865
214 => 0.00014269661705258
215 => 0.00014303054154884
216 => 0.00014498634775339
217 => 0.00014430292896966
218 => 0.00014509379848823
219 => 0.00014608279293143
220 => 0.00015017369327344
221 => 0.00015115999549622
222 => 0.00014876379243393
223 => 0.00014898014274131
224 => 0.00014808389701877
225 => 0.00014721813488072
226 => 0.00014916424173265
227 => 0.00015272079025536
228 => 0.00015269866515159
301 => 0.00015352371527944
302 => 0.000154037714674
303 => 0.00015183125300198
304 => 0.00015039492758734
305 => 0.00015094570614707
306 => 0.00015182641305848
307 => 0.00015066010476557
308 => 0.00014346110969517
309 => 0.00014564482492594
310 => 0.00014528134793332
311 => 0.00014476371249552
312 => 0.00014695945504623
313 => 0.00014674767032067
314 => 0.00014040389555749
315 => 0.0001408100034355
316 => 0.00014042859232262
317 => 0.00014166100965771
318 => 0.00013813768417282
319 => 0.00013922143536201
320 => 0.00013990115394833
321 => 0.00014030151341752
322 => 0.0001417478863493
323 => 0.00014157817117973
324 => 0.00014173733661606
325 => 0.00014388192584558
326 => 0.00015472852223434
327 => 0.00015531887854412
328 => 0.00015241174816211
329 => 0.00015357308940911
330 => 0.00015134356817228
331 => 0.00015284026071506
401 => 0.00015386425974096
402 => 0.00014923700504661
403 => 0.00014896300905425
404 => 0.00014672428579019
405 => 0.00014792724886453
406 => 0.00014601324811715
407 => 0.00014648287695165
408 => 0.00014516975378888
409 => 0.00014753311404166
410 => 0.00015017571803332
411 => 0.00015084334416121
412 => 0.00014908710724986
413 => 0.00014781547598438
414 => 0.0001455829103836
415 => 0.00014929571673368
416 => 0.00015038145445616
417 => 0.00014929001381563
418 => 0.00014903710317077
419 => 0.00014855783795576
420 => 0.00014913878155177
421 => 0.00015037554129535
422 => 0.00014979230823965
423 => 0.00015017754394818
424 => 0.00014870942268057
425 => 0.0001518319834326
426 => 0.000156791361392
427 => 0.00015680730660308
428 => 0.00015622407040353
429 => 0.00015598542271667
430 => 0.00015658385845114
501 => 0.00015690848528797
502 => 0.0001588437167189
503 => 0.00016092029714732
504 => 0.0001706107919237
505 => 0.00016788973976763
506 => 0.00017648772322335
507 => 0.0001832876118284
508 => 0.00018532660109796
509 => 0.00018345082691182
510 => 0.00017703390474837
511 => 0.00017671905993349
512 => 0.00018630865080034
513 => 0.00018359915214937
514 => 0.00018327686590639
515 => 0.00017984828479228
516 => 0.00018187500086875
517 => 0.0001814317283327
518 => 0.0001807320009489
519 => 0.00018459883404054
520 => 0.00019183720039351
521 => 0.00019070903311643
522 => 0.00018986690857826
523 => 0.00018617696399078
524 => 0.00018839913481141
525 => 0.00018760786234506
526 => 0.0001910076710144
527 => 0.00018899369967367
528 => 0.00018357862503222
529 => 0.00018444099351719
530 => 0.00018431064825553
531 => 0.0001869931445041
601 => 0.00018618792571393
602 => 0.00018415341636345
603 => 0.00019181246044423
604 => 0.00019131512472347
605 => 0.00019202023306873
606 => 0.00019233064356852
607 => 0.000196992568733
608 => 0.00019890241030791
609 => 0.0001993359777819
610 => 0.00020115017956563
611 => 0.00019929083878882
612 => 0.00020672952758354
613 => 0.00021167582157251
614 => 0.00021742119657465
615 => 0.00022581673366399
616 => 0.00022897353327265
617 => 0.00022840328567876
618 => 0.00023476868608297
619 => 0.00024620716911441
620 => 0.00023071533013817
621 => 0.00024702827419728
622 => 0.00024186378445016
623 => 0.00022961887216494
624 => 0.00022883044417181
625 => 0.00023712284093771
626 => 0.00025551457885087
627 => 0.00025090765710099
628 => 0.00025552211412447
629 => 0.00025013910489527
630 => 0.00024987179311547
701 => 0.00025526067338131
702 => 0.00026785208585502
703 => 0.0002618703777708
704 => 0.00025329413245707
705 => 0.00025962669853557
706 => 0.00025414084374705
707 => 0.00024177967751445
708 => 0.00025090413427475
709 => 0.0002448028698887
710 => 0.00024658354319761
711 => 0.0002594074934425
712 => 0.00025786448182107
713 => 0.00025986128173823
714 => 0.0002563369821498
715 => 0.00025304473060317
716 => 0.00024689949860557
717 => 0.00024508019836736
718 => 0.00024558298750164
719 => 0.00024507994921003
720 => 0.00024164174838498
721 => 0.00024089926924416
722 => 0.00023966177148071
723 => 0.00024004532378317
724 => 0.00023771846594514
725 => 0.00024210972743886
726 => 0.00024292478426776
727 => 0.00024612037818208
728 => 0.00024645215534324
729 => 0.00025535183890817
730 => 0.00025045004275371
731 => 0.00025373859081484
801 => 0.00025344443212324
802 => 0.00022988425654398
803 => 0.00023313064086562
804 => 0.00023818099609856
805 => 0.00023590581791171
806 => 0.00023268924826522
807 => 0.00023009169581412
808 => 0.00022615613823733
809 => 0.00023169535995097
810 => 0.00023897884747385
811 => 0.0002466368766064
812 => 0.00025583749683522
813 => 0.00025378402550717
814 => 0.00024646487741104
815 => 0.00024679320904799
816 => 0.00024882282603389
817 => 0.00024619428762701
818 => 0.00024541908033565
819 => 0.00024871632445617
820 => 0.0002487390307643
821 => 0.0002457145796577
822 => 0.00024235345572143
823 => 0.00024233937248941
824 => 0.00024174129294956
825 => 0.00025024550191677
826 => 0.00025492195697622
827 => 0.00025545810501231
828 => 0.00025488586994159
829 => 0.00025510610050911
830 => 0.00025238497434867
831 => 0.00025860466182655
901 => 0.00026431246211959
902 => 0.00026278264971168
903 => 0.00026048924343659
904 => 0.00025866243487307
905 => 0.00026235231167093
906 => 0.00026218800726552
907 => 0.0002642626094634
908 => 0.00026416849352422
909 => 0.00026347088283481
910 => 0.00026278267462556
911 => 0.00026551134238372
912 => 0.00026472552989044
913 => 0.0002639384968133
914 => 0.00026235998148836
915 => 0.00026257452793739
916 => 0.00026028151765122
917 => 0.00025922066617183
918 => 0.00024326800526039
919 => 0.00023900493299662
920 => 0.00024034618231364
921 => 0.00024078775641432
922 => 0.00023893246190185
923 => 0.00024159247764668
924 => 0.0002411779170105
925 => 0.000242790729936
926 => 0.00024178311444035
927 => 0.00024182446733176
928 => 0.00024478764965821
929 => 0.00024564787409386
930 => 0.00024521035700303
1001 => 0.00024551677897624
1002 => 0.00025257814401627
1003 => 0.00025157424371732
1004 => 0.00025104094169198
1005 => 0.00025118866999765
1006 => 0.00025299300016275
1007 => 0.0002534981140962
1008 => 0.00025135791086643
1009 => 0.00025236724308196
1010 => 0.00025666485155234
1011 => 0.0002581687712934
1012 => 0.00026296856118444
1013 => 0.00026092952512926
1014 => 0.00026467226405595
1015 => 0.00027617616752286
1016 => 0.0002853662816218
1017 => 0.00027691467289889
1018 => 0.00029379114708761
1019 => 0.00030693190302997
1020 => 0.00030642753892983
1021 => 0.00030413614418012
1022 => 0.00028917574290481
1023 => 0.00027540895860426
1024 => 0.00028692545824021
1025 => 0.00028695481616617
1026 => 0.00028596553863396
1027 => 0.00027982122084477
1028 => 0.00028575172969348
1029 => 0.00028622247194945
1030 => 0.00028595898146658
1031 => 0.00028124814742372
1101 => 0.00027405557454794
1102 => 0.00027546098607128
1103 => 0.00027776307881613
1104 => 0.00027340473698327
1105 => 0.00027201198268643
1106 => 0.0002746013779066
1107 => 0.00028294494882793
1108 => 0.00028136764507627
1109 => 0.00028132645530093
1110 => 0.00028807482963143
1111 => 0.00028324445000112
1112 => 0.00027547871281134
1113 => 0.00027351776175343
1114 => 0.00026655770655276
1115 => 0.00027136504147073
1116 => 0.00027153804889609
1117 => 0.00026890512069129
1118 => 0.00027569236042426
1119 => 0.00027562981481525
1120 => 0.00028207328879439
1121 => 0.00029439079098419
1122 => 0.00029074789947919
1123 => 0.00028651161300435
1124 => 0.00028697221480365
1125 => 0.00029202387967984
1126 => 0.0002889695277774
1127 => 0.00029006789401721
1128 => 0.00029202221717098
1129 => 0.00029320130885277
1130 => 0.00028680256165583
1201 => 0.00028531070759677
1202 => 0.00028225889776154
1203 => 0.00028146273754026
1204 => 0.00028394837297295
1205 => 0.00028329349585523
1206 => 0.00027152350829191
1207 => 0.00027029347910395
1208 => 0.00027033120234307
1209 => 0.00026723823546524
1210 => 0.00026252071857945
1211 => 0.00027491807128701
1212 => 0.00027392239036375
1213 => 0.00027282323568406
1214 => 0.00027295787586063
1215 => 0.00027833914648572
1216 => 0.00027521773776249
1217 => 0.00028351651444202
1218 => 0.00028181053544077
1219 => 0.00028006080451538
1220 => 0.00027981893840339
1221 => 0.00027914544127714
1222 => 0.000276835769034
1223 => 0.00027404670101063
1224 => 0.00027220511671666
1225 => 0.00025109483146309
1226 => 0.00025501277761328
1227 => 0.00025952001752703
1228 => 0.00026107589868363
1229 => 0.00025841445630157
1230 => 0.00027694085900093
1231 => 0.00028032581129896
]
'min_raw' => 0.00011683713355271
'max_raw' => 0.00030693190302997
'avg_raw' => 0.00021188451829134
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000116'
'max' => '$0.0003069'
'avg' => '$0.000211'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.5300389373873E-6
'max_diff' => -5.5352062635422E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00027007256999325
102 => 0.00026815460718204
103 => 0.00027706660032353
104 => 0.00027169157901236
105 => 0.00027411195077966
106 => 0.00026888043089132
107 => 0.00027951047541334
108 => 0.00027942949228428
109 => 0.00027529416487477
110 => 0.00027878931528379
111 => 0.00027818194688879
112 => 0.00027351317242832
113 => 0.00027965848389128
114 => 0.0002796615318891
115 => 0.00027568136916721
116 => 0.00027103341047771
117 => 0.00027020246524391
118 => 0.00026957645963203
119 => 0.00027395799177398
120 => 0.00027788645979175
121 => 0.00028519636482302
122 => 0.00028703424862694
123 => 0.00029420763146849
124 => 0.00028993623125202
125 => 0.00029182968764409
126 => 0.00029388530240344
127 => 0.0002948708397118
128 => 0.00029326495955467
129 => 0.00030440817578978
130 => 0.00030534900465935
131 => 0.00030566445644117
201 => 0.00030190702662329
202 => 0.00030524450373897
203 => 0.00030368300872217
204 => 0.00030774558496007
205 => 0.00030838264878775
206 => 0.00030784307838991
207 => 0.00030804529250419
208 => 0.00029853652324557
209 => 0.00029804344339676
210 => 0.00029132026467084
211 => 0.00029406000969688
212 => 0.0002889381876901
213 => 0.00029056237020906
214 => 0.00029127829438764
215 => 0.00029090433622509
216 => 0.00029421491076997
217 => 0.00029140024610113
218 => 0.00028397188326633
219 => 0.00027654149657904
220 => 0.00027644821412684
221 => 0.0002744919244693
222 => 0.00027307788535922
223 => 0.00027335027945755
224 => 0.000274310231789
225 => 0.00027302209118462
226 => 0.00027329698129295
227 => 0.00027786198867447
228 => 0.00027877746834869
229 => 0.00027566631071469
301 => 0.00026317456387626
302 => 0.00026010905786894
303 => 0.00026231248279538
304 => 0.00026125938759928
305 => 0.00021085671625179
306 => 0.00022269807625149
307 => 0.00021566234223426
308 => 0.00021890473216796
309 => 0.00021172306963085
310 => 0.00021515053541674
311 => 0.0002145176076371
312 => 0.0002335581641053
313 => 0.00023326087200548
314 => 0.00023340317000132
315 => 0.00022661091590456
316 => 0.00023743116111048
317 => 0.00024276160298235
318 => 0.00024177508005699
319 => 0.0002420233666235
320 => 0.00023775698079806
321 => 0.00023344447794196
322 => 0.00022866124858512
323 => 0.00023754789750512
324 => 0.00023655985384537
325 => 0.00023882607051395
326 => 0.00024458969756935
327 => 0.00024543841354715
328 => 0.00024657909642814
329 => 0.00024617024281464
330 => 0.00025591079461894
331 => 0.00025473114952521
401 => 0.00025757375479404
402 => 0.00025172630008707
403 => 0.00024510935004063
404 => 0.00024636701592007
405 => 0.00024624589258237
406 => 0.00024470385347456
407 => 0.00024331176951725
408 => 0.00024099434194556
409 => 0.00024832702569714
410 => 0.00024802933212788
411 => 0.00025284864498329
412 => 0.00025199678462379
413 => 0.00024630785265744
414 => 0.00024651103397556
415 => 0.00024787752598553
416 => 0.00025260697043436
417 => 0.00025401099155191
418 => 0.00025336059302969
419 => 0.00025490003808908
420 => 0.00025611675269579
421 => 0.00025505283871082
422 => 0.00027011561714203
423 => 0.00026386050136414
424 => 0.00026690920127147
425 => 0.00026763629823538
426 => 0.00026577385465152
427 => 0.00026617775197575
428 => 0.00026678954636654
429 => 0.00027050424210575
430 => 0.00028025267858133
501 => 0.00028457019473652
502 => 0.00029755965511188
503 => 0.00028421168512255
504 => 0.00028341967182278
505 => 0.00028575946588051
506 => 0.00029338565419486
507 => 0.00029956596353221
508 => 0.00030161632869
509 => 0.00030188731829345
510 => 0.00030573393963517
511 => 0.000307938751253
512 => 0.0003052668586281
513 => 0.00030300270938731
514 => 0.00029489280784335
515 => 0.0002958315510296
516 => 0.00030229856067598
517 => 0.00031143359270645
518 => 0.00031927240052669
519 => 0.00031652752323808
520 => 0.00033746899936883
521 => 0.00033954526118894
522 => 0.00033925838893898
523 => 0.00034398842235437
524 => 0.00033460026927938
525 => 0.00033058665195292
526 => 0.00030349224415235
527 => 0.00031110466757778
528 => 0.00032216977208859
529 => 0.00032070526401457
530 => 0.00031266948934773
531 => 0.00031926630467102
601 => 0.00031708519122366
602 => 0.00031536485655324
603 => 0.00032324604318171
604 => 0.0003145803547424
605 => 0.0003220833252175
606 => 0.00031246068797489
607 => 0.00031654006160632
608 => 0.00031422441183602
609 => 0.00031572292103277
610 => 0.00030696266688816
611 => 0.00031168948738144
612 => 0.00030676601561529
613 => 0.00030676368124862
614 => 0.0003066549953365
615 => 0.00031244743803536
616 => 0.00031263632938381
617 => 0.00030835570547746
618 => 0.00030773880069664
619 => 0.00031001982100421
620 => 0.00030734934362421
621 => 0.00030859884318253
622 => 0.00030738718969295
623 => 0.00030711442097112
624 => 0.00030494095338779
625 => 0.00030400456379216
626 => 0.00030437174628039
627 => 0.0003031183631525
628 => 0.0003023631544811
629 => 0.00030650476532343
630 => 0.00030429206972248
701 => 0.00030616563798806
702 => 0.00030403047048626
703 => 0.00029662904967682
704 => 0.0002923724143007
705 => 0.00027839181650373
706 => 0.00028235669669608
707 => 0.00028498541636557
708 => 0.00028411662453048
709 => 0.00028598312557005
710 => 0.00028609771357479
711 => 0.0002854908950601
712 => 0.00028478827695835
713 => 0.00028444628132364
714 => 0.00028699523659301
715 => 0.00028847499092077
716 => 0.00028524924355213
717 => 0.00028449349607666
718 => 0.00028775490476475
719 => 0.00028974436218043
720 => 0.00030443339795825
721 => 0.00030334518674287
722 => 0.00030607638334281
723 => 0.00030576889251928
724 => 0.00030863162166976
725 => 0.00031331097395119
726 => 0.00030379654239558
727 => 0.00030544791872934
728 => 0.00030504303938815
729 => 0.0003094634058702
730 => 0.00030947720577186
731 => 0.00030682697525219
801 => 0.00030826370821198
802 => 0.00030746176328853
803 => 0.00030891098615456
804 => 0.00030333065301864
805 => 0.00031012689641846
806 => 0.0003139799284859
807 => 0.0003140334278399
808 => 0.00031585973446032
809 => 0.00031771536775921
810 => 0.00032127709428483
811 => 0.00031761603313954
812 => 0.00031103014053628
813 => 0.00031150562070993
814 => 0.00030764431428633
815 => 0.00030770922354491
816 => 0.00030736273283557
817 => 0.00030840257753691
818 => 0.00030355884045504
819 => 0.00030469565586663
820 => 0.00030310410763322
821 => 0.0003054444590143
822 => 0.0003029266278022
823 => 0.00030504284414307
824 => 0.00030595613296211
825 => 0.00030932618836606
826 => 0.00030242886787893
827 => 0.00028836476449814
828 => 0.00029132120953955
829 => 0.00028694839509955
830 => 0.00028735311572445
831 => 0.00028817071579756
901 => 0.00028552060645852
902 => 0.00028602616380587
903 => 0.00028600810173987
904 => 0.000285852452613
905 => 0.00028516305682184
906 => 0.00028416329653185
907 => 0.00028814603381717
908 => 0.00028882277849068
909 => 0.00029032709806895
910 => 0.00029480293274418
911 => 0.00029435569131268
912 => 0.00029508516064333
913 => 0.00029349273319031
914 => 0.00028742698386681
915 => 0.00028775638323827
916 => 0.00028364876779782
917 => 0.00029022205710696
918 => 0.00028866541543538
919 => 0.00028766183842315
920 => 0.00028738800313729
921 => 0.00029187493254096
922 => 0.00029321749214254
923 => 0.00029238089909466
924 => 0.00029066502234614
925 => 0.00029396001295672
926 => 0.00029484161343962
927 => 0.00029503897127556
928 => 0.00030087706288573
929 => 0.00029536525574346
930 => 0.00029669200250526
1001 => 0.00030704290200422
1002 => 0.00029765606448515
1003 => 0.00030262848167046
1004 => 0.00030238510772445
1005 => 0.00030492882809903
1006 => 0.0003021764484081
1007 => 0.00030221056745306
1008 => 0.00030446921881915
1009 => 0.0003012973503254
1010 => 0.00030051195108027
1011 => 0.00029942692764825
1012 => 0.00030179603661728
1013 => 0.00030321621029863
1014 => 0.00031466176716769
1015 => 0.00032205611888591
1016 => 0.0003217351105766
1017 => 0.00032466852562126
1018 => 0.00032334699527664
1019 => 0.00031907942519177
1020 => 0.00032636364695191
1021 => 0.00032405861440222
1022 => 0.000324248638485
1023 => 0.00032424156577915
1024 => 0.00032577421091525
1025 => 0.00032468819137146
1026 => 0.00032254753537303
1027 => 0.00032396860272502
1028 => 0.00032818866471956
1029 => 0.00034128786663794
1030 => 0.0003486183535728
1031 => 0.00034084656212003
1101 => 0.00034620743979572
1102 => 0.00034299282346633
1103 => 0.00034240863205273
1104 => 0.00034577565939881
1105 => 0.00034914858028054
1106 => 0.00034893373980191
1107 => 0.00034648517244318
1108 => 0.00034510203887233
1109 => 0.00035557558965456
1110 => 0.00036329232345862
1111 => 0.00036276609394682
1112 => 0.00036508869987289
1113 => 0.00037190794270732
1114 => 0.00037253140881057
1115 => 0.00037245286641176
1116 => 0.00037090754062291
1117 => 0.00037762197078398
1118 => 0.00038322326655352
1119 => 0.00037054984235154
1120 => 0.00037537571638035
1121 => 0.00037754220671183
1122 => 0.00038072325728716
1123 => 0.00038609022281373
1124 => 0.00039192017089288
1125 => 0.00039274458947339
1126 => 0.00039215962503845
1127 => 0.00038831461756284
1128 => 0.00039469381631679
1129 => 0.00039843060133624
1130 => 0.00040065577130051
1201 => 0.00040629843209694
1202 => 0.00037755558621855
1203 => 0.00035720997129371
1204 => 0.00035403270972895
1205 => 0.00036049379606052
1206 => 0.00036219753299996
1207 => 0.00036151075877598
1208 => 0.00033860991943568
1209 => 0.00035391214154926
1210 => 0.0003703760458961
1211 => 0.00037100849151342
1212 => 0.00037925066627345
1213 => 0.00038193465623348
1214 => 0.00038857068724184
1215 => 0.00038815560169547
1216 => 0.0003897713696437
1217 => 0.0003893999325736
1218 => 0.00040169178263541
1219 => 0.00041525151861098
1220 => 0.00041478198807147
1221 => 0.00041283261559347
1222 => 0.0004157277661407
1223 => 0.00042972286681711
1224 => 0.00042843442221374
1225 => 0.00042968603639646
1226 => 0.00044618704882326
1227 => 0.00046764071221974
1228 => 0.00045767333165949
1229 => 0.00047929967943875
1230 => 0.00049291231900236
1231 => 0.00051645397155441
]
'min_raw' => 0.00021085671625179
'max_raw' => 0.00051645397155441
'avg_raw' => 0.0003636553439031
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00021'
'max' => '$0.000516'
'avg' => '$0.000363'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 9.4019582699081E-5
'max_diff' => 0.00020952206852444
'year' => 2028
]
3 => [
'items' => [
101 => 0.00051350644070981
102 => 0.0005226710332917
103 => 0.00050822974532973
104 => 0.0004750696291032
105 => 0.00046982191377853
106 => 0.00048032797275184
107 => 0.00050615609357149
108 => 0.00047951455331275
109 => 0.00048490410220908
110 => 0.00048335191176436
111 => 0.00048326920213195
112 => 0.00048642589239681
113 => 0.00048184694852573
114 => 0.00046319150745868
115 => 0.00047174118616251
116 => 0.00046843974462567
117 => 0.00047210294014956
118 => 0.00049187169557527
119 => 0.00048313145757329
120 => 0.00047392432683749
121 => 0.00048547211200606
122 => 0.00050017641077515
123 => 0.00049925624218434
124 => 0.00049747073051755
125 => 0.00050753556629691
126 => 0.00052415972628423
127 => 0.00052865316992752
128 => 0.00053197013816058
129 => 0.00053242749203929
130 => 0.00053713852123377
131 => 0.00051180612992282
201 => 0.00055200928551525
202 => 0.0005589512598963
203 => 0.00055764645642802
204 => 0.00056536216878962
205 => 0.00056309201048411
206 => 0.00055980290727634
207 => 0.00057203395254856
208 => 0.00055801204613842
209 => 0.00053810971529815
210 => 0.00052719090297571
211 => 0.00054156967583736
212 => 0.00055035029067396
213 => 0.00055615371852896
214 => 0.00055790983229135
215 => 0.00051377261134822
216 => 0.00048998509722236
217 => 0.00050523262105263
218 => 0.00052383565245344
219 => 0.0005117027891441
220 => 0.00051217837441527
221 => 0.00049488009979654
222 => 0.00052536616592222
223 => 0.00052092460251588
224 => 0.00054396744132494
225 => 0.00053846808291282
226 => 0.00055725862344377
227 => 0.00055231044438238
228 => 0.00057285005901723
301 => 0.00058104386738294
302 => 0.0005948025468934
303 => 0.0006049234875492
304 => 0.00061086669748503
305 => 0.0006105098894529
306 => 0.00063405984811409
307 => 0.00062017326026447
308 => 0.00060272843310789
309 => 0.00060241291122235
310 => 0.00061144783440186
311 => 0.00063038255477598
312 => 0.00063529205228001
313 => 0.0006380357916188
314 => 0.00063383365931119
315 => 0.00061876076346115
316 => 0.00061225236345442
317 => 0.00061779770882666
318 => 0.00061101622795337
319 => 0.00062272296648813
320 => 0.00063879881892077
321 => 0.00063547921896424
322 => 0.00064657614391669
323 => 0.00065806029381192
324 => 0.00067448314394754
325 => 0.00067877668510937
326 => 0.00068587374538113
327 => 0.00069317895166363
328 => 0.00069552518704073
329 => 0.00070000487836971
330 => 0.00069998126818517
331 => 0.00071348111952305
401 => 0.00072837187360433
402 => 0.00073399278854827
403 => 0.00074691777252278
404 => 0.00072478419041188
405 => 0.00074157276669526
406 => 0.0007567164827482
407 => 0.00073866152016776
408 => 0.00076354607981814
409 => 0.00076451229087974
410 => 0.00077910093077129
411 => 0.00076431254939598
412 => 0.00075553125574151
413 => 0.00078088252149119
414 => 0.00079314920043007
415 => 0.00078945437690414
416 => 0.00076133658743583
417 => 0.00074497082793655
418 => 0.00070213847860769
419 => 0.00075287524660752
420 => 0.00077758764628842
421 => 0.00076127258829073
422 => 0.00076950095455452
423 => 0.00081439225283301
424 => 0.00083148395272114
425 => 0.00082792899862441
426 => 0.00082852972734723
427 => 0.00083775209837057
428 => 0.00087864917034055
429 => 0.00085414269682943
430 => 0.00087287697758864
501 => 0.00088281357255184
502 => 0.00089204323572613
503 => 0.00086937810003509
504 => 0.00083989109151803
505 => 0.00083055131814027
506 => 0.00075965037730751
507 => 0.00075595967542999
508 => 0.00075388797262642
509 => 0.00074082617949811
510 => 0.00073056318802551
511 => 0.00072240167616605
512 => 0.00070098343181309
513 => 0.00070821146054306
514 => 0.00067407524937944
515 => 0.00069591438756888
516 => 0.00064143217030411
517 => 0.00068680657979004
518 => 0.00066211135162809
519 => 0.00067869353316281
520 => 0.00067863567949357
521 => 0.00064810262590272
522 => 0.00063049179780008
523 => 0.00064171410289076
524 => 0.00065374530477566
525 => 0.00065569732680366
526 => 0.00067129609409393
527 => 0.00067564937475026
528 => 0.00066245873112633
529 => 0.0006403031474496
530 => 0.00064544938422264
531 => 0.00063038750947613
601 => 0.00060399215332952
602 => 0.00062294975893272
603 => 0.00062942271899273
604 => 0.00063228154691163
605 => 0.00060632474566857
606 => 0.00059816855516843
607 => 0.00059382626778323
608 => 0.00063695245036067
609 => 0.00063931499999412
610 => 0.00062722786203856
611 => 0.00068186287174714
612 => 0.00066949728638604
613 => 0.00068331267487636
614 => 0.00064498241717579
615 => 0.00064644668463849
616 => 0.00062830052637341
617 => 0.00063846116247512
618 => 0.00063127995237102
619 => 0.00063764028348747
620 => 0.00064145263973404
621 => 0.0006595958203931
622 => 0.00068701374576937
623 => 0.00065688583422439
624 => 0.0006437586717246
625 => 0.00065190268950951
626 => 0.00067359128207682
627 => 0.00070645061003493
628 => 0.00068699722652813
629 => 0.00069563030778857
630 => 0.00069751625198493
701 => 0.00068317204719041
702 => 0.00070697950132606
703 => 0.00071973810940877
704 => 0.00073282580127969
705 => 0.00074418947742241
706 => 0.00072759828934193
707 => 0.00074535323884143
708 => 0.00073104588371533
709 => 0.00071821070710004
710 => 0.00071823017276483
711 => 0.00071017847898204
712 => 0.00069457730769919
713 => 0.00069170021234972
714 => 0.00070666722569475
715 => 0.00071866935301602
716 => 0.00071965790570851
717 => 0.00072630290008514
718 => 0.00073023533930834
719 => 0.00076877858958759
720 => 0.00078428100369639
721 => 0.00080323706222296
722 => 0.00081062151532398
723 => 0.00083284607168508
724 => 0.00081489793743327
725 => 0.00081101474568884
726 => 0.00075710524155378
727 => 0.00076593291983583
728 => 0.00078006688450965
729 => 0.00075733830542539
730 => 0.0007717543574566
731 => 0.00077460039150129
801 => 0.0007565659970053
802 => 0.0007661989463258
803 => 0.00074061668890099
804 => 0.00068757136907299
805 => 0.00070703855593084
806 => 0.00072137295804246
807 => 0.00070091599881015
808 => 0.00073758430644042
809 => 0.00071616343811033
810 => 0.0007093740512327
811 => 0.00068288623243189
812 => 0.00069538746329623
813 => 0.00071229555704063
814 => 0.00070184832088347
815 => 0.00072352790456998
816 => 0.00075423197680386
817 => 0.00077611352713684
818 => 0.00077779332086711
819 => 0.00076372494995302
820 => 0.000786269604126
821 => 0.00078643381731909
822 => 0.00076100335531436
823 => 0.00074542733893387
824 => 0.00074188843524
825 => 0.00075072931051022
826 => 0.00076146376520387
827 => 0.0007783890083946
828 => 0.00078861657838023
829 => 0.00081528465661876
830 => 0.00082250027395638
831 => 0.00083042804977195
901 => 0.00084102200309706
902 => 0.00085374276029774
903 => 0.00082591046773577
904 => 0.00082701629660514
905 => 0.00080109925113575
906 => 0.00077340317117143
907 => 0.00079442104349925
908 => 0.00082189911567747
909 => 0.00081559561555922
910 => 0.00081488634302709
911 => 0.00081607914269033
912 => 0.00081132650945423
913 => 0.00078983052546817
914 => 0.00077903537688235
915 => 0.00079296387269418
916 => 0.00080036624833214
917 => 0.00081184668739163
918 => 0.00081043148095488
919 => 0.00084000385906296
920 => 0.00085149479097347
921 => 0.00084855491886606
922 => 0.0008490959260858
923 => 0.00086989970943133
924 => 0.00089303779513591
925 => 0.00091470966573759
926 => 0.00093675522334211
927 => 0.0009101784431971
928 => 0.00089668439326738
929 => 0.00091060680833367
930 => 0.00090321937892732
1001 => 0.00094566973955012
1002 => 0.0009486089104164
1003 => 0.00099105620139495
1004 => 0.001031343735063
1005 => 0.0010060398569922
1006 => 0.0010299002743013
1007 => 0.0010557072609893
1008 => 0.0011054931253433
1009 => 0.0010887269977167
1010 => 0.0010758844067135
1011 => 0.0010637482202703
1012 => 0.0010890016976931
1013 => 0.0011214898929634
1014 => 0.0011284875390566
1015 => 0.001139826399034
1016 => 0.0011279049742176
1017 => 0.0011422630173071
1018 => 0.0011929532186571
1019 => 0.0011792562787976
1020 => 0.0011598044223041
1021 => 0.0011998194679312
1022 => 0.0012143007573891
1023 => 0.0013159380307148
1024 => 0.001444259286715
1025 => 0.0013911334441281
1026 => 0.0013581565192742
1027 => 0.001365906878838
1028 => 0.0014127654575806
1029 => 0.0014278149458558
1030 => 0.0013869052488542
1031 => 0.0014013552454395
1101 => 0.0014809761473172
1102 => 0.0015236902066303
1103 => 0.0014656787768197
1104 => 0.0013056275427389
1105 => 0.0011580529954542
1106 => 0.0011971964107626
1107 => 0.0011927587622282
1108 => 0.001278301488386
1109 => 0.0011789296113118
1110 => 0.0011806027788683
1111 => 0.0012679144380118
1112 => 0.0012446211842531
1113 => 0.0012068890963386
1114 => 0.0011583284814528
1115 => 0.0010685596935232
1116 => 0.00098904897466613
1117 => 0.0011449878045698
1118 => 0.001138263438668
1119 => 0.001128525560347
1120 => 0.0011501961548019
1121 => 0.0012554224101695
1122 => 0.0012529966043991
1123 => 0.001237564865745
1124 => 0.0012492697035051
1125 => 0.0012048371816872
1126 => 0.0012162884542694
1127 => 0.0011580296188919
1128 => 0.0011843650455864
1129 => 0.0012068081402243
1130 => 0.0012113139237485
1201 => 0.0012214656840996
1202 => 0.0011347200033953
1203 => 0.0011736662673122
1204 => 0.0011965435485919
1205 => 0.0010931831594875
1206 => 0.0011945004460283
1207 => 0.001133209954086
1208 => 0.0011124070405685
1209 => 0.0011404154230443
1210 => 0.0011295005291544
1211 => 0.001120116544332
1212 => 0.0011148801195637
1213 => 0.0011354463844816
1214 => 0.0011344869436412
1215 => 0.0011008365424955
1216 => 0.0010569409659667
1217 => 0.001071673762273
1218 => 0.0010663211992542
1219 => 0.0010469228203799
1220 => 0.001059994985572
1221 => 0.0010024317857373
1222 => 0.00090339729229651
1223 => 0.00096882251217207
1224 => 0.0009663037123758
1225 => 0.00096503361930005
1226 => 0.0010141988638163
1227 => 0.0010094727599912
1228 => 0.0010008948352706
1229 => 0.0010467652800655
1230 => 0.0010300219506708
1231 => 0.0010816209466406
]
'min_raw' => 0.00046319150745868
'max_raw' => 0.0015236902066303
'avg_raw' => 0.00099344085704447
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000463'
'max' => '$0.001523'
'avg' => '$0.000993'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00025233479120689
'max_diff' => 0.0010072362350759
'year' => 2029
]
4 => [
'items' => [
101 => 0.0011156073826002
102 => 0.0011069873230948
103 => 0.0011389517303855
104 => 0.0010720131761438
105 => 0.0010942474787542
106 => 0.0010988299377068
107 => 0.001046199245897
108 => 0.0010102460090257
109 => 0.0010078483380233
110 => 0.00094551037994973
111 => 0.00097881081397822
112 => 0.0010081138178577
113 => 0.00099407995300438
114 => 0.00098963725064161
115 => 0.0010123340535084
116 => 0.0010140977894761
117 => 0.00097388442249973
118 => 0.00098224605488584
119 => 0.0010171154519416
120 => 0.00098136743554569
121 => 0.00091191487909367
122 => 0.00089468968483686
123 => 0.00089239152639968
124 => 0.00084567543342781
125 => 0.00089584075468257
126 => 0.00087394224760784
127 => 0.00094311936907251
128 => 0.00090360576829624
129 => 0.0009019024159416
130 => 0.00089932754903011
131 => 0.00085911707799172
201 => 0.00086792061564038
202 => 0.00089718491560117
203 => 0.00090762674751312
204 => 0.00090653757889729
205 => 0.00089704150456628
206 => 0.00090138875876725
207 => 0.00088738473830216
208 => 0.00088243962720746
209 => 0.0008668314963326
210 => 0.00084389185580278
211 => 0.00084708175351544
212 => 0.0008016323231424
213 => 0.00077686906129132
214 => 0.00077001491678549
215 => 0.00076084926829787
216 => 0.00077105020117103
217 => 0.00080150357061657
218 => 0.0007647703460225
219 => 0.00070179380899209
220 => 0.00070557880617442
221 => 0.00071408257106735
222 => 0.0006982358614474
223 => 0.00068323828070564
224 => 0.00069627746036841
225 => 0.00066959347142361
226 => 0.00071730720364707
227 => 0.00071601668090661
228 => 0.00073380140968211
301 => 0.0007449225655648
302 => 0.00071929190177217
303 => 0.00071284585914101
304 => 0.00071651781798002
305 => 0.00065582851776052
306 => 0.00072884179908692
307 => 0.00072947322097577
308 => 0.00072406660341606
309 => 0.00076294392169022
310 => 0.00084498718938833
311 => 0.0008141192118975
312 => 0.0008021661980235
313 => 0.00077944350991141
314 => 0.00080972014268105
315 => 0.00080739536967339
316 => 0.00079688186448876
317 => 0.00079052326374897
318 => 0.00080223918057738
319 => 0.00078907153199962
320 => 0.00078670626049226
321 => 0.0007723752885985
322 => 0.0007672597836501
323 => 0.00076347246744042
324 => 0.00075930300442757
325 => 0.00076849980086847
326 => 0.00074765865019407
327 => 0.00072252626556394
328 => 0.00072043677971811
329 => 0.00072620603384791
330 => 0.00072365356836593
331 => 0.00072042455949539
401 => 0.00071425950219328
402 => 0.00071243046138736
403 => 0.00071837395668217
404 => 0.00071166409702163
405 => 0.00072156486045573
406 => 0.00071887240063588
407 => 0.00070383253895124
408 => 0.00068508730282221
409 => 0.0006849204309012
410 => 0.00068088180052554
411 => 0.00067573799753001
412 => 0.00067430710921092
413 => 0.00069517933702645
414 => 0.00073838422395136
415 => 0.00072990207084268
416 => 0.00073603129574972
417 => 0.0007661810159755
418 => 0.00077576470540155
419 => 0.00076896242964906
420 => 0.00075965105505296
421 => 0.00076006070827916
422 => 0.00079188049401882
423 => 0.00079386505502446
424 => 0.00079887940044207
425 => 0.00080532425135753
426 => 0.00077006001562829
427 => 0.00075839976594757
428 => 0.00075287449276283
429 => 0.00073585878990364
430 => 0.00075420876662116
501 => 0.00074351702101221
502 => 0.00074495970277689
503 => 0.00074402015438503
504 => 0.00074453321133897
505 => 0.0007172938666865
506 => 0.00072721845222006
507 => 0.0007107169038655
508 => 0.00068862318300448
509 => 0.0006885491171051
510 => 0.00069395652398568
511 => 0.00069073998678126
512 => 0.00068208436786889
513 => 0.00068331385768203
514 => 0.00067254223318901
515 => 0.00068462172792204
516 => 0.00068496812460847
517 => 0.00068031686116173
518 => 0.00069892698944701
519 => 0.00070655157418991
520 => 0.00070349001294955
521 => 0.00070633676689179
522 => 0.00073025454259897
523 => 0.00073415418364496
524 => 0.00073588614660176
525 => 0.00073356554568077
526 => 0.00070677393992523
527 => 0.0007079622615672
528 => 0.00069924314582227
529 => 0.0006918764118156
530 => 0.00069217104254243
531 => 0.00069595850143025
601 => 0.00071249855652489
602 => 0.00074730612738204
603 => 0.00074862704925207
604 => 0.00075022804509255
605 => 0.00074371599041327
606 => 0.00074175189241003
607 => 0.00074434304465302
608 => 0.00075741493817183
609 => 0.0007910393972867
610 => 0.00077915426773339
611 => 0.00076949147240349
612 => 0.00077796834897873
613 => 0.00077666340027393
614 => 0.00076564831995142
615 => 0.00076533916333364
616 => 0.00074419770246055
617 => 0.00073638218574354
618 => 0.00072985095499352
619 => 0.0007227190215166
620 => 0.00071849097228691
621 => 0.00072498717751773
622 => 0.00072647293651486
623 => 0.00071226887024343
624 => 0.00071033290849646
625 => 0.00072193225562977
626 => 0.00071682781542365
627 => 0.00072207785875968
628 => 0.00072329591384767
629 => 0.00072309977892432
630 => 0.0007177701571079
701 => 0.00072116709912207
702 => 0.0007131323185814
703 => 0.00070439570152843
704 => 0.00069882228415911
705 => 0.00069395873829785
706 => 0.00069665731621262
707 => 0.00068703737868731
708 => 0.00068395976706188
709 => 0.00072001629160129
710 => 0.00074665163395151
711 => 0.00074626434552498
712 => 0.000743906826831
713 => 0.00074040403225696
714 => 0.00075715868693118
715 => 0.00075132170026258
716 => 0.00075556859576054
717 => 0.00075664960890642
718 => 0.00075992151011865
719 => 0.00076109093357262
720 => 0.00075755612367793
721 => 0.0007456928699307
722 => 0.00071613076951693
723 => 0.00070236953197295
724 => 0.0006978280943719
725 => 0.00069799316700328
726 => 0.00069343972691313
727 => 0.00069478091909055
728 => 0.00069297331500751
729 => 0.00068955015018062
730 => 0.00069644594543079
731 => 0.00069724062159459
801 => 0.00069563106058459
802 => 0.0006960101704694
803 => 0.00068268369275905
804 => 0.00068369687591578
805 => 0.00067805534335002
806 => 0.00067699762400363
807 => 0.00066273632094181
808 => 0.00063747035535887
809 => 0.00065147015291844
810 => 0.00063456036613591
811 => 0.00062815637365629
812 => 0.00065847187802967
813 => 0.00065542904221178
814 => 0.0006502210299805
815 => 0.00064251729444559
816 => 0.00063965990399856
817 => 0.00062229930418234
818 => 0.00062127354733
819 => 0.00062987792937455
820 => 0.0006259073031197
821 => 0.00062033104006413
822 => 0.0006001343805336
823 => 0.00057742664833712
824 => 0.00057811205203641
825 => 0.00058533495915574
826 => 0.00060633653574691
827 => 0.00059813085644177
828 => 0.00059217754195658
829 => 0.00059106266510948
830 => 0.00060501768300372
831 => 0.00062476695699071
901 => 0.0006340328744803
902 => 0.00062485063165821
903 => 0.00061430256551126
904 => 0.00061494457742259
905 => 0.00061921559504229
906 => 0.00061966441860518
907 => 0.00061279871190223
908 => 0.000614731368123
909 => 0.00061179548659786
910 => 0.00059377798709728
911 => 0.00059345210766542
912 => 0.00058903032271655
913 => 0.00058889643282563
914 => 0.00058137387356165
915 => 0.00058032141551962
916 => 0.00056538491751428
917 => 0.00057521616573328
918 => 0.00056862188059168
919 => 0.00055868273744867
920 => 0.00055696922542452
921 => 0.00055691771518395
922 => 0.00056712299284008
923 => 0.00057509691112206
924 => 0.00056873659100497
925 => 0.00056728846940394
926 => 0.00058275061950795
927 => 0.00058078291996659
928 => 0.00057907890485407
929 => 0.00062299862611711
930 => 0.00058823273963883
1001 => 0.00057307282876687
1002 => 0.00055430956027383
1003 => 0.00056041897510778
1004 => 0.00056170631857927
1005 => 0.00051658404018686
1006 => 0.00049827793746269
1007 => 0.00049199597285868
1008 => 0.00048838061341513
1009 => 0.00049002817811238
1010 => 0.00047355053856893
1011 => 0.00048462378485713
1012 => 0.00047035554183271
1013 => 0.00046796342445678
1014 => 0.00049347681048059
1015 => 0.00049702684909877
1016 => 0.00048188128144309
1017 => 0.00049160718772271
1018 => 0.00048808043890551
1019 => 0.00047060012990702
1020 => 0.00046993251067973
1021 => 0.00046116150608686
1022 => 0.00044743658230017
1023 => 0.00044116392384078
1024 => 0.00043789706885342
1025 => 0.00043924503689094
1026 => 0.00043856346300267
1027 => 0.00043411573234734
1028 => 0.0004388184017175
1029 => 0.00042680502475388
1030 => 0.00042202120124861
1031 => 0.00041986045915514
1101 => 0.00040919789563574
1102 => 0.00042616677585862
1103 => 0.00042950985903085
1104 => 0.00043285952910965
1105 => 0.00046201612022878
1106 => 0.00046055953933214
1107 => 0.0004737263212541
1108 => 0.00047321468432077
1109 => 0.0004694593048289
1110 => 0.00045361597648265
1111 => 0.00045993084478129
1112 => 0.00044049466170649
1113 => 0.00045505757159811
1114 => 0.00044841166768524
1115 => 0.00045281058479999
1116 => 0.00044490093519329
1117 => 0.00044927846186707
1118 => 0.00043030262807119
1119 => 0.00041258326146979
1120 => 0.00041971405185075
1121 => 0.00042746603649965
1122 => 0.00044427431438742
1123 => 0.00043426344274275
1124 => 0.00043786373073914
1125 => 0.00042580336863216
1126 => 0.00040091939673333
1127 => 0.00040106023731189
1128 => 0.00039723238036205
1129 => 0.00039392455308112
1130 => 0.00043541331177597
1201 => 0.00043025352879205
1202 => 0.00042203208990287
1203 => 0.00043303681256303
1204 => 0.00043594663590281
1205 => 0.00043602947448256
1206 => 0.00044405823606241
1207 => 0.00044834318755681
1208 => 0.00044909842882974
1209 => 0.0004617318586485
1210 => 0.00046596641768478
1211 => 0.00048340796705799
1212 => 0.0004479796393598
1213 => 0.00044725001626511
1214 => 0.00043319167157873
1215 => 0.00042427564712498
1216 => 0.00043380215940107
1217 => 0.00044224134877906
1218 => 0.00043345390071685
1219 => 0.00043460135592062
1220 => 0.00042280492485798
1221 => 0.00042702159388921
1222 => 0.00043065355730555
1223 => 0.00042864820058399
1224 => 0.00042564608451144
1225 => 0.00044154943148932
1226 => 0.0004406521023271
1227 => 0.00045546166464927
1228 => 0.00046700677752135
1229 => 0.00048769768372392
1230 => 0.00046610564446021
1231 => 0.00046531874472886
]
'min_raw' => 0.00039392455308112
'max_raw' => 0.0011389517303855
'avg_raw' => 0.0007664381417333
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000393'
'max' => '$0.001138'
'avg' => '$0.000766'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -6.9266954377559E-5
'max_diff' => -0.00038473847624478
'year' => 2030
]
5 => [
'items' => [
101 => 0.00047301081582551
102 => 0.00046596524006877
103 => 0.00047041780074202
104 => 0.00048698030736314
105 => 0.00048733024702919
106 => 0.00048146830675109
107 => 0.00048111160715243
108 => 0.00048223745690544
109 => 0.00048883159407409
110 => 0.00048652739992999
111 => 0.0004891938717286
112 => 0.00049252833554322
113 => 0.00050632109166385
114 => 0.00050964647846937
115 => 0.00050156751254732
116 => 0.00050229695271374
117 => 0.00049927519768632
118 => 0.00049635622019231
119 => 0.00050291765531641
120 => 0.00051490880697104
121 => 0.00051483421063894
122 => 0.00051761592474813
123 => 0.00051934890959319
124 => 0.00051190967001574
125 => 0.00050706699859924
126 => 0.00050892398696752
127 => 0.00051189335180833
128 => 0.00050796106196974
129 => 0.00048368914747209
130 => 0.00049105169583477
131 => 0.000489826207777
201 => 0.00048808096375829
202 => 0.00049548406306988
203 => 0.00049477001608129
204 => 0.00047338153655903
205 => 0.00047475075762329
206 => 0.00047346480342694
207 => 0.00047761998451681
208 => 0.00046574084665378
209 => 0.00046939478945323
210 => 0.00047168650812346
211 => 0.00047303634802604
212 => 0.00047791289534804
213 => 0.0004773406888047
214 => 0.00047787732618589
215 => 0.00048510795850365
216 => 0.00052167801551353
217 => 0.00052366844302929
218 => 0.00051386684997701
219 => 0.00051778239307352
220 => 0.00051026540656336
221 => 0.00051531160996706
222 => 0.00051876409417621
223 => 0.00050316298190961
224 => 0.00050223918529156
225 => 0.00049469117350413
226 => 0.00049874704749746
227 => 0.00049229386034642
228 => 0.00049387724675038
301 => 0.00048944996032776
302 => 0.00049741819442454
303 => 0.00050632791828315
304 => 0.00050857886638549
305 => 0.00050265759102232
306 => 0.00049837019742832
307 => 0.00049084294663251
308 => 0.00050336093246167
309 => 0.00050702157299682
310 => 0.00050334170467532
311 => 0.00050248899877852
312 => 0.00050087312264488
313 => 0.00050283181453901
314 => 0.0005070016363623
315 => 0.00050503522539495
316 => 0.00050633407448259
317 => 0.00050138420112789
318 => 0.00051191213271359
319 => 0.00052863302175639
320 => 0.00052868678214881
321 => 0.00052672036058177
322 => 0.00052591574324368
323 => 0.0005279334111039
324 => 0.000529027913149
325 => 0.00053555268103194
326 => 0.00054255401692855
327 => 0.00057522619663585
328 => 0.00056605197931388
329 => 0.00059504068082687
330 => 0.00061796698001186
331 => 0.00062484157469188
401 => 0.00061851727106093
402 => 0.00059688216997165
403 => 0.00059582064869651
404 => 0.00062815262382797
405 => 0.00061901735995506
406 => 0.00061793074938554
407 => 0.00060637104878344
408 => 0.00061320426353606
409 => 0.00061170973923245
410 => 0.00060935055950457
411 => 0.00062238785724669
412 => 0.00064679251477235
413 => 0.00064298882003155
414 => 0.00064014953835586
415 => 0.00062770863255546
416 => 0.00063520083662421
417 => 0.00063253300625905
418 => 0.00064399569855478
419 => 0.00063720545356851
420 => 0.00061894815134644
421 => 0.00062185568690216
422 => 0.00062141621875206
423 => 0.00063046044214002
424 => 0.00062774559077038
425 => 0.00062088610045033
426 => 0.00064670910230605
427 => 0.00064503230020062
428 => 0.00064740962221579
429 => 0.00064845619288799
430 => 0.00066417419906524
501 => 0.00067061336327596
502 => 0.00067207516628522
503 => 0.00067819187426257
504 => 0.00067192297701856
505 => 0.00069700303564262
506 => 0.00071367981116563
507 => 0.00073305074411462
508 => 0.00076135688356903
509 => 0.00077200025385032
510 => 0.00077007762427412
511 => 0.00079153901615495
512 => 0.00083010466030486
513 => 0.00077787284359078
514 => 0.00083287307341947
515 => 0.00081546063566389
516 => 0.00077417605898181
517 => 0.00077151781895667
518 => 0.00079947621360957
519 => 0.00086148524205394
520 => 0.0008459526837292
521 => 0.00086151064775497
522 => 0.000843361456309
523 => 0.00084246019598031
524 => 0.00086062918203619
525 => 0.00090308200829564
526 => 0.00088291426186017
527 => 0.00085399885201062
528 => 0.00087534954066992
529 => 0.00085685359824028
530 => 0.00081517706325798
531 => 0.00084594080627458
601 => 0.00082536996742034
602 => 0.00083137363180395
603 => 0.00087461047539422
604 => 0.00086940810398293
605 => 0.00087614045431575
606 => 0.00086425803219461
607 => 0.00085315797624749
608 => 0.0008324388975212
609 => 0.00082630499974858
610 => 0.00082800018841841
611 => 0.00082630415969727
612 => 0.00081471202556807
613 => 0.00081220870530657
614 => 0.00080803639519775
615 => 0.00080932956856426
616 => 0.00080148440490731
617 => 0.0008162898496215
618 => 0.00081903787062558
619 => 0.00082981203861694
620 => 0.00083093064847973
621 => 0.00086093655297497
622 => 0.00084440980500773
623 => 0.00085549737439493
624 => 0.00085450559782868
625 => 0.0007750708209443
626 => 0.00078601623233999
627 => 0.00080304385761239
628 => 0.00079537293550758
629 => 0.0007845280463707
630 => 0.00077577021692651
701 => 0.00076250120978452
702 => 0.00078117708252816
703 => 0.0008057338692284
704 => 0.00083155344911532
705 => 0.00086257398258356
706 => 0.00085565056063226
707 => 0.00083097354181956
708 => 0.00083208053485692
709 => 0.00083892353022821
710 => 0.00083006122947071
711 => 0.00082744756396466
712 => 0.00083856445272324
713 => 0.00083864100862638
714 => 0.00082844386056006
715 => 0.00081711159654273
716 => 0.00081706411394272
717 => 0.00081504764701752
718 => 0.00084372018129538
719 => 0.00085948717602801
720 => 0.00086129483656433
721 => 0.00085936550607123
722 => 0.00086010802880564
723 => 0.00085093356197274
724 => 0.00087190367254912
725 => 0.00089114791974299
726 => 0.00088599005040166
727 => 0.00087825767102467
728 => 0.00087209845840904
729 => 0.00088453913565201
730 => 0.00088398517187782
731 => 0.00089097983803207
801 => 0.00089066251957216
802 => 0.00088831047642719
803 => 0.00088599013440052
804 => 0.00089519002825668
805 => 0.00089254060657188
806 => 0.00088988706960342
807 => 0.00088456499497698
808 => 0.00088528835330901
809 => 0.00087755730903634
810 => 0.00087398057420728
811 => 0.00082019506416514
812 => 0.00080582181838964
813 => 0.00081034393410501
814 => 0.00081183273201519
815 => 0.00080557747703387
816 => 0.00081454590583392
817 => 0.00081314818570535
818 => 0.00081858589708669
819 => 0.00081518865109361
820 => 0.00081532807525417
821 => 0.0008253186513506
822 => 0.00082821895809434
823 => 0.00082674383867613
824 => 0.00082777696175251
825 => 0.00085158484699373
826 => 0.00084820012704574
827 => 0.00084640206203334
828 => 0.00084690013832997
829 => 0.00085298356345592
830 => 0.00085468659034848
831 => 0.0008474707457351
901 => 0.00085087377976907
902 => 0.00086536346677641
903 => 0.00087043403718372
904 => 0.00088661686391198
905 => 0.000879742111491
906 => 0.00089236101709201
907 => 0.00093114723080758
908 => 0.00096213234212543
909 => 0.00093363715324366
910 => 0.00099053736424874
911 => 0.0010348423403667
912 => 0.0010331418415895
913 => 0.0010254162442108
914 => 0.00097497620680921
915 => 0.00092856053237371
916 => 0.00096738921495264
917 => 0.00096748819724973
918 => 0.00096415277898074
919 => 0.00094343678257192
920 => 0.00096343190721024
921 => 0.0009650190475924
922 => 0.00096413067103308
923 => 0.00094824776515766
924 => 0.00092399750353756
925 => 0.0009287359466112
926 => 0.00093649761302745
927 => 0.00092180315924826
928 => 0.00091710739089745
929 => 0.00092583771766808
930 => 0.00095396864955886
1001 => 0.0009486506598363
1002 => 0.00094851178563296
1003 => 0.00097126440084468
1004 => 0.00095497843867477
1005 => 0.00092879571355296
1006 => 0.00092218423015198
1007 => 0.0008987179181074
1008 => 0.00091492618342073
1009 => 0.00091550949003434
1010 => 0.00090663238876669
1011 => 0.00092951604139633
1012 => 0.00092930516450876
1013 => 0.0009510297868984
1014 => 0.00099255910551185
1015 => 0.0009802768424642
1016 => 0.0009659939068462
1017 => 0.00096754685797072
1018 => 0.00098457889879676
1019 => 0.00097428093810966
1020 => 0.00097798415657268
1021 => 0.00098457329353209
1022 => 0.00098854868345877
1023 => 0.00096697486053805
1024 => 0.00096194497041999
1025 => 0.00095165558048998
1026 => 0.0009489712707178
1027 => 0.00095735176412063
1028 => 0.00095514380019618
1029 => 0.00091546046537214
1030 => 0.00091131333608704
1031 => 0.00091144052262148
1101 => 0.00090101236884884
1102 => 0.00088510693130188
1103 => 0.00092690547151095
1104 => 0.00092354846376196
1105 => 0.00091984258701885
1106 => 0.00092029653577444
1107 => 0.00093843986539522
1108 => 0.00092791581795506
1109 => 0.00095589572293219
1110 => 0.00095014389562182
1111 => 0.00094424455564458
1112 => 0.00094342908716143
1113 => 0.00094115834457823
1114 => 0.00093337112335432
1115 => 0.000923967585787
1116 => 0.00091775855576459
1117 => 0.00084658375515913
1118 => 0.00085979338414673
1119 => 0.0008749898582014
1120 => 0.00088023562014903
1121 => 0.00087126238134194
1122 => 0.00093372544151496
1123 => 0.00094513804451759
1124 => 0.00091056852559694
1125 => 0.00090410198007104
1126 => 0.00093414938716308
1127 => 0.00091602712754045
1128 => 0.00092418757993888
1129 => 0.00090654914538229
1130 => 0.00094238908265429
1201 => 0.00094211604238059
1202 => 0.00092817349730009
1203 => 0.0009399576409277
1204 => 0.00093790985597887
1205 => 0.00092216875692196
1206 => 0.00094288810357128
1207 => 0.00094289838010872
1208 => 0.00092947898360581
1209 => 0.00091380806637404
1210 => 0.00091100647650354
1211 => 0.00090889585487677
1212 => 0.00092366849640215
1213 => 0.00093691360060096
1214 => 0.00096155945577514
1215 => 0.00096775600933701
1216 => 0.0009919415704169
1217 => 0.00097754024636742
1218 => 0.00098392416679019
1219 => 0.00099085481546978
1220 => 0.00099417762331294
1221 => 0.00098876328624421
1222 => 0.0010263334177754
1223 => 0.0010295054879957
1224 => 0.0010305690557023
1225 => 0.0010179006187359
1226 => 0.0010291531558466
1227 => 0.0010238884663774
1228 => 0.0010375857258035
1229 => 0.0010397336309769
1230 => 0.001037914431709
1231 => 0.0010385962107134
]
'min_raw' => 0.00046574084665378
'max_raw' => 0.0010397336309769
'avg_raw' => 0.00075273723881533
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000465'
'max' => '$0.001039'
'avg' => '$0.000752'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 7.1816293572654E-5
'max_diff' => -9.921809940859E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.0010065367312769
102 => 0.0010048742781409
103 => 0.00098220661166911
104 => 0.00099144385330729
105 => 0.00097417527281723
106 => 0.00097965131757672
107 => 0.00098206510592903
108 => 0.00098080427987507
109 => 0.00099196611309007
110 => 0.00098247627464544
111 => 0.00095743103071618
112 => 0.00093237896322696
113 => 0.00093206445492661
114 => 0.00092546868776242
115 => 0.00092070115617772
116 => 0.0009216195518982
117 => 0.00092485609820542
118 => 0.00092051304222263
119 => 0.00092143985341508
120 => 0.00093683109452053
121 => 0.00093991769815891
122 => 0.00092942821298178
123 => 0.0008873114163701
124 => 0.00087697584883961
125 => 0.00088440484981732
126 => 0.00088085426583891
127 => 0.00071091814038872
128 => 0.00075084211236506
129 => 0.0007271206439067
130 => 0.0007380525879446
131 => 0.00071383911129309
201 => 0.00072539505148824
202 => 0.00072326109128956
203 => 0.00078745765679131
204 => 0.00078645531572049
205 => 0.00078693508334838
206 => 0.00076403452444114
207 => 0.0008005157365983
208 => 0.00081848769352888
209 => 0.00081516156260917
210 => 0.00081599867810299
211 => 0.00080161426042298
212 => 0.0007870743559543
213 => 0.00077094736422329
214 => 0.00080090932150309
215 => 0.00079757806332124
216 => 0.00080521877104154
217 => 0.00082465124206243
218 => 0.00082751274723704
219 => 0.00083135863921023
220 => 0.00082998016070707
221 => 0.00086282111117887
222 => 0.00085884385538516
223 => 0.0008684278975134
224 => 0.00084871279571259
225 => 0.00082640328665033
226 => 0.00083064359497027
227 => 0.00083023521918065
228 => 0.00082503612666693
229 => 0.00082034261841268
301 => 0.0008125292495571
302 => 0.00083725190477717
303 => 0.00083624821012411
304 => 0.00085249685988983
305 => 0.00084962475321277
306 => 0.00083044412189968
307 => 0.00083112916189939
308 => 0.00083573638511642
309 => 0.00085168203727492
310 => 0.00085641579249835
311 => 0.00085422292847133
312 => 0.00085941327496968
313 => 0.00086351551321451
314 => 0.00085992845293406
315 => 0.0009107136620645
316 => 0.00088962410250112
317 => 0.0008999030070921
318 => 0.00090235446527023
319 => 0.00089607510669557
320 => 0.00089743687472344
321 => 0.00089949958222609
322 => 0.00091202393826263
323 => 0.00094489147245415
324 => 0.0009594482796107
325 => 0.0010032431521614
326 => 0.00095823953941688
327 => 0.00095556921128009
328 => 0.00096345799030492
329 => 0.00098917021665024
330 => 0.0010100075610765
331 => 0.0010169205103579
401 => 0.0010178341707258
402 => 0.001030803323142
403 => 0.0010382369994465
404 => 0.0010292285269161
405 => 0.0010215947896729
406 => 0.00099425169040224
407 => 0.00099741672859561
408 => 0.0010192207031306
409 => 0.0010500201014089
410 => 0.0010764491892629
411 => 0.0010671946438431
412 => 0.0011378002927051
413 => 0.0011448005543916
414 => 0.0011438333445721
415 => 0.0011597809824725
416 => 0.0011281281689202
417 => 0.0011145959778823
418 => 0.0010232452903115
419 => 0.0010489111073728
420 => 0.0010862178797719
421 => 0.0010812801885516
422 => 0.0010541870132225
423 => 0.0010764286366599
424 => 0.0010690748603916
425 => 0.0010632746319404
426 => 0.0010898466029052
427 => 0.001060629629313
428 => 0.0010859264181105
429 => 0.0010534830248159
430 => 0.0010672369178271
501 => 0.001059429542953
502 => 0.0010644818713324
503 => 0.0010349460628624
504 => 0.0010508828681716
505 => 0.0010342830393662
506 => 0.001034275168886
507 => 0.0010339087267451
508 => 0.0010534383517197
509 => 0.001054075212089
510 => 0.0010396427897251
511 => 0.0010375628521857
512 => 0.0010452534714084
513 => 0.001036249770475
514 => 0.0010404625454731
515 => 0.001036377371138
516 => 0.0010354577123483
517 => 0.0010281297146444
518 => 0.0010249726117461
519 => 0.0010262105931411
520 => 0.001021984724417
521 => 0.0010194384856543
522 => 0.0010334022157673
523 => 0.0010259419580632
524 => 0.001032258824279
525 => 0.001025059957974
526 => 0.0010001055509643
527 => 0.00098575400760492
528 => 0.00093861744603828
529 => 0.00095198531642586
530 => 0.00096084822832288
531 => 0.00095791903599379
601 => 0.00096421207456364
602 => 0.00096459841602189
603 => 0.00096255248503289
604 => 0.00096018355904763
605 => 0.00095903049688783
606 => 0.00096762447754089
607 => 0.00097261357257007
608 => 0.00096173774010221
609 => 0.00095918968472406
610 => 0.00097018575182024
611 => 0.00097689334639668
612 => 0.0010264184560773
613 => 0.0010227494759882
614 => 0.001031957896011
615 => 0.0010309211692311
616 => 0.0010405730604313
617 => 0.0010563498233501
618 => 0.0010242712530839
619 => 0.0010298389836886
620 => 0.001028473904722
621 => 0.0010433774789364
622 => 0.0010434240062683
623 => 0.0010344885690381
624 => 0.0010393326145215
625 => 0.0010366288012221
626 => 0.0010415149572964
627 => 0.0010227004745222
628 => 0.0010456144836433
629 => 0.0010586052502688
630 => 0.001058785627076
701 => 0.0010649431473554
702 => 0.0010711995445788
703 => 0.0010832081542317
704 => 0.0010708646309732
705 => 0.001048659834249
706 => 0.0010502629488515
707 => 0.0010372442846565
708 => 0.0010374631307536
709 => 0.0010362949131358
710 => 0.0010398008221461
711 => 0.0010234698243956
712 => 0.0010273026769257
713 => 0.0010219366609384
714 => 0.0010298273190179
715 => 0.0010213382752969
716 => 0.0010284732464396
717 => 0.0010315524634568
718 => 0.001042914840541
719 => 0.0010196600429631
720 => 0.0009722419364904
721 => 0.00098220979735993
722 => 0.00096746654817533
723 => 0.00096883109201887
724 => 0.00097158768774837
725 => 0.00096265265908706
726 => 0.00096435718098053
727 => 0.00096429628346395
728 => 0.00096377150156565
729 => 0.00096144715552366
730 => 0.00095807639390494
731 => 0.00097150447072824
801 => 0.00097378616264377
802 => 0.00097885808113016
803 => 0.0009939486702305
804 => 0.00099244076451878
805 => 0.000994900221297
806 => 0.0009895312409594
807 => 0.00096908014361812
808 => 0.00097019073659695
809 => 0.00095634162435491
810 => 0.00097850392819308
811 => 0.00097325560211609
812 => 0.00096987197215186
813 => 0.00096894871736702
814 => 0.00098407671311888
815 => 0.00098860324655012
816 => 0.00098578261468013
817 => 0.00097999741642381
818 => 0.00099110670731628
819 => 0.00099407908489575
820 => 0.00099474449061873
821 => 0.0010144280240849
822 => 0.00099584458148271
823 => 0.0010003178008206
824 => 0.0010352165811581
825 => 0.0010035682030945
826 => 0.0010203330547978
827 => 0.001019512502547
828 => 0.0010280888333868
829 => 0.0010188089930938
830 => 0.001018924027836
831 => 0.0010265392286108
901 => 0.0010158450525313
902 => 0.0010131970241415
903 => 0.0010095387918866
904 => 0.0010175264081816
905 => 0.0010223146229016
906 => 0.0010609041169889
907 => 0.001085834690064
908 => 0.0010847523881371
909 => 0.0010946426017647
910 => 0.0010901869699415
911 => 0.0010757985594481
912 => 0.0011003578216806
913 => 0.001092586243507
914 => 0.0010932269229692
915 => 0.0010932030768476
916 => 0.0010983704969298
917 => 0.0010947089062145
918 => 0.0010874915350599
919 => 0.0010922827628529
920 => 0.0011065109965029
921 => 0.0011506758703277
922 => 0.0011753911188269
923 => 0.0011491879813347
924 => 0.0011672625547028
925 => 0.001156424251311
926 => 0.0011544546091731
927 => 0.0011658067769487
928 => 0.0011771788151913
929 => 0.0011764544655179
930 => 0.0011681989497144
1001 => 0.001163535618313
1002 => 0.0011988479260152
1003 => 0.0012248654328008
1004 => 0.0012230912132616
1005 => 0.0012309220413005
1006 => 0.0012539135946211
1007 => 0.0012560156541172
1008 => 0.001255750842936
1009 => 0.0012505406691477
1010 => 0.0012731788392223
1011 => 0.0012920639989792
1012 => 0.001249334664452
1013 => 0.0012656054356719
1014 => 0.0012729099090841
1015 => 0.0012836350431926
1016 => 0.001301730142175
1017 => 0.0013213862191579
1018 => 0.0013241658039611
1019 => 0.0013221935555278
1020 => 0.0013092298443739
1021 => 0.0013307377583543
1022 => 0.0013433365899414
1023 => 0.0013508389058323
1024 => 0.0013698635306655
1025 => 0.0012729550190251
1026 => 0.0012043583578205
1027 => 0.0011936459986256
1028 => 0.0012154300022912
1029 => 0.0012211742703336
1030 => 0.0012188587630884
1031 => 0.001141646984367
1101 => 0.00119323949459
1102 => 0.0012487486975684
1103 => 0.0012508810321232
1104 => 0.0012786700997769
1105 => 0.0012877193593173
1106 => 0.0013100932011749
1107 => 0.001308693711275
1108 => 0.0013141413857217
1109 => 0.001312889059707
1110 => 0.00135433189038
1111 => 0.0014000494869321
1112 => 0.0013984664319366
1113 => 0.0013918939865262
1114 => 0.0014016551887291
1115 => 0.0014488406477664
1116 => 0.0014444965668298
1117 => 0.0014487164714317
1118 => 0.0015043507868926
1119 => 0.0015766833108808
1120 => 0.0015430775914216
1121 => 0.0016159923328627
1122 => 0.0016618882975556
1123 => 0.0017412606227605
1124 => 0.0017313228167279
1125 => 0.0017622218804692
1126 => 0.0017135320698469
1127 => 0.0016017304228237
1128 => 0.0015840373842228
1129 => 0.001619459295561
1130 => 0.0017065406081662
1201 => 0.0016167167951309
1202 => 0.0016348880355212
1203 => 0.0016296547170664
1204 => 0.0016293758557661
1205 => 0.0016400188573871
1206 => 0.0016245806284341
1207 => 0.0015616825063953
1208 => 0.0015905083450647
1209 => 0.001579377304424
1210 => 0.001591728023889
1211 => 0.0016583797630171
1212 => 0.0016289114403696
1213 => 0.0015978689562725
1214 => 0.0016368031202089
1215 => 0.0016863796901302
1216 => 0.0016832772774822
1217 => 0.0016772573002372
1218 => 0.0017111915967717
1219 => 0.0017672411128307
1220 => 0.0017823910717963
1221 => 0.0017935744617774
1222 => 0.0017951164623109
1223 => 0.0018110000261536
1224 => 0.0017255901001977
1225 => 0.0018611378461722
1226 => 0.0018845431974711
1227 => 0.0018801439614794
1228 => 0.0019061580244003
1229 => 0.0018985040271759
1230 => 0.0018874145860731
1231 => 0.0019286524091527
]
'min_raw' => 0.00071091814038872
'max_raw' => 0.0019286524091527
'avg_raw' => 0.0013197852747707
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00071'
'max' => '$0.001928'
'avg' => '$0.001319'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00024517729373494
'max_diff' => 0.00088891877817578
'year' => 2032
]
7 => [
'items' => [
101 => 0.0018813765727126
102 => 0.0018142744747483
103 => 0.001777460936676
104 => 0.001825939973273
105 => 0.0018555444292375
106 => 0.001875111091433
107 => 0.0018810319515909
108 => 0.0017322202296188
109 => 0.0016520189649522
110 => 0.0017034270560941
111 => 0.0017661484752841
112 => 0.0017252416795472
113 => 0.0017268451484933
114 => 0.0016685228078892
115 => 0.0017713087083011
116 => 0.0017563336671766
117 => 0.001834024207021
118 => 0.0018154827361816
119 => 0.0018788363554953
120 => 0.001862153224319
121 => 0.0019314039690905
122 => 0.0019590299660689
123 => 0.0020054183146388
124 => 0.0020395417726813
125 => 0.0020595797199216
126 => 0.0020583767167298
127 => 0.0021377770465616
128 => 0.002090957446096
129 => 0.0020321409933786
130 => 0.0020310771893125
131 => 0.0020615390636104
201 => 0.0021253787953317
202 => 0.0021419315089367
203 => 0.0021511822176792
204 => 0.0021370144352206
205 => 0.0020861951145062
206 => 0.0020642515894815
207 => 0.0020829481085677
208 => 0.0020600838723355
209 => 0.0020995539586439
210 => 0.0021537548175007
211 => 0.0021425625544802
212 => 0.0021799766117199
213 => 0.0022186962248894
214 => 0.0022740670107285
215 => 0.002288542984521
216 => 0.0023124712187282
217 => 0.0023371012317428
218 => 0.0023450117281257
219 => 0.0023601153202034
220 => 0.0023600357168178
221 => 0.002405551408133
222 => 0.0024557566251573
223 => 0.0024747079323305
224 => 0.0025182854181941
225 => 0.0024436605007899
226 => 0.0025002643578703
227 => 0.0025513224538432
228 => 0.0024904488869461
301 => 0.0025743489171918
302 => 0.0025776065652447
303 => 0.0026267931831853
304 => 0.0025769331228867
305 => 0.0025473263782403
306 => 0.0026327999406842
307 => 0.0026741579051588
308 => 0.0026617005496768
309 => 0.002566899459363
310 => 0.0025117211585903
311 => 0.0023673089023689
312 => 0.0025383714580084
313 => 0.0026216910388972
314 => 0.002566683681777
315 => 0.0025944261931216
316 => 0.0027457803394778
317 => 0.0028034061989551
318 => 0.002791420423019
319 => 0.0027934458218495
320 => 0.0028245396896401
321 => 0.0029624270231292
322 => 0.0028798017366992
323 => 0.0029429656722645
324 => 0.0029764675959339
325 => 0.0030075860497205
326 => 0.0029311689623089
327 => 0.0028317514543765
328 => 0.0028002617563512
329 => 0.0025612142841879
330 => 0.0025487708251313
331 => 0.0025417859344874
401 => 0.00249774718701
402 => 0.002463144794721
403 => 0.0024356276876682
404 => 0.0023634145814582
405 => 0.0023877843849661
406 => 0.0022726917657138
407 => 0.0023463239448794
408 => 0.0021626333455443
409 => 0.0023156163350662
410 => 0.0022323546491525
411 => 0.0022882626319277
412 => 0.0022880675742427
413 => 0.0021851232523114
414 => 0.0021257471158146
415 => 0.0021635839009441
416 => 0.0022041479380908
417 => 0.002210729316644
418 => 0.0022633216496343
419 => 0.0022779990393035
420 => 0.0022335258633841
421 => 0.0021588267661645
422 => 0.0021761776627436
423 => 0.0021253955004492
424 => 0.002036401714336
425 => 0.0021003186052049
426 => 0.0021221426419749
427 => 0.0021317813799005
428 => 0.0020442662122635
429 => 0.0020167670465452
430 => 0.0020021267214572
501 => 0.002147529656991
502 => 0.0021554951580281
503 => 0.0021147425285139
504 => 0.0022989482782409
505 => 0.0022572568438584
506 => 0.0023038363907131
507 => 0.0021746032507425
508 => 0.0021795401307249
509 => 0.0021183590912099
510 => 0.0021526163852198
511 => 0.0021284044339777
512 => 0.0021498487344009
513 => 0.0021627023596565
514 => 0.0022238733599649
515 => 0.0023163148096294
516 => 0.0022147364523919
517 => 0.0021704773075147
518 => 0.0021979354320736
519 => 0.0022710600361635
520 => 0.0023818475545393
521 => 0.0023162591138542
522 => 0.0023453661500663
523 => 0.0023517247425967
524 => 0.0023033622546516
525 => 0.0023836307484534
526 => 0.0024266472863818
527 => 0.0024707733532781
528 => 0.0025090867807798
529 => 0.0024531484318067
530 => 0.0025130104836552
531 => 0.0024647722369399
601 => 0.0024214975428581
602 => 0.002421563172706
603 => 0.002394416324966
604 => 0.0023418158867469
605 => 0.0023321155589037
606 => 0.00238257788936
607 => 0.0024230438995854
608 => 0.0024263768740067
609 => 0.0024487809364862
610 => 0.0024620394298813
611 => 0.0025919906892017
612 => 0.0026442581607135
613 => 0.0027081698355055
614 => 0.0027330670347017
615 => 0.0028079986781421
616 => 0.0027474852904134
617 => 0.0027343928383313
618 => 0.0025526331812985
619 => 0.0025823963149553
620 => 0.002630049963655
621 => 0.0025534189724137
622 => 0.0026020236983335
623 => 0.0026116193008189
624 => 0.0025508150806545
625 => 0.0025832932418396
626 => 0.0024970408748357
627 => 0.0023181948755296
628 => 0.0023838298551764
629 => 0.0024321592926918
630 => 0.0023631872263807
701 => 0.0024868169856557
702 => 0.0024145950325235
703 => 0.0023917041406457
704 => 0.0023023986102383
705 => 0.0023445473829055
706 => 0.0024015542014502
707 => 0.0023663306153436
708 => 0.0024394248453628
709 => 0.0025429457685892
710 => 0.0026167209432579
711 => 0.002622384485099
712 => 0.0025749519903399
713 => 0.0026509628659015
714 => 0.002651516522147
715 => 0.0025657759439999
716 => 0.0025132603172904
717 => 0.0025013286564081
718 => 0.0025311362846319
719 => 0.0025673282480872
720 => 0.0026243928871875
721 => 0.0026588758534602
722 => 0.0027487891411472
723 => 0.0027731170987793
724 => 0.0027998461484411
725 => 0.0028355644017229
726 => 0.0028784533227599
727 => 0.0027846148051986
728 => 0.0027883431844382
729 => 0.0027009620561678
730 => 0.0026075827888896
731 => 0.0026784460128638
801 => 0.0027710902516704
802 => 0.0027498375609254
803 => 0.0027474461990635
804 => 0.0027514678064067
805 => 0.0027354439716329
806 => 0.0026629687608223
807 => 0.002626572163672
808 => 0.0026735330597581
809 => 0.0026984906860388
810 => 0.0027371977878665
811 => 0.0027324263205585
812 => 0.0028321316580274
813 => 0.0028708741372349
814 => 0.0028609621531695
815 => 0.0028627861967827
816 => 0.0029329276048059
817 => 0.0030109392762085
818 => 0.0030840075010237
819 => 0.0031583356376591
820 => 0.0030687301678686
821 => 0.0030232340364061
822 => 0.0030701744308341
823 => 0.0030452671968167
824 => 0.003188391551446
825 => 0.003198301171228
826 => 0.0033414151763374
827 => 0.003477247408885
828 => 0.0033919336173091
829 => 0.0034723806801476
830 => 0.0035593907375527
831 => 0.0037272472551602
901 => 0.0036707190852935
902 => 0.003627419393085
903 => 0.0035865013931705
904 => 0.003671645255443
905 => 0.0037811814740501
906 => 0.0038047745264132
907 => 0.0038430042844811
908 => 0.0038028103683851
909 => 0.0038512195131082
910 => 0.0040221250660365
911 => 0.0039759448770102
912 => 0.003910361584757
913 => 0.0040452751048502
914 => 0.0040940997833088
915 => 0.0044367769464144
916 => 0.0048694210201228
917 => 0.0046903035327134
918 => 0.0045791195281932
919 => 0.0046052504065753
920 => 0.0047632373763674
921 => 0.0048139777768089
922 => 0.0046760478771441
923 => 0.0047247670494982
924 => 0.0049932144791328
925 => 0.005137227912307
926 => 0.0049416383264719
927 => 0.0044020144163481
928 => 0.003904456526852
929 => 0.0040364312844701
930 => 0.0040214694426098
1001 => 0.0043098827162533
1002 => 0.0039748434947747
1003 => 0.0039804846960084
1004 => 0.0042748620507159
1005 => 0.0041963272193855
1006 => 0.0040691108506114
1007 => 0.0039053853471301
1008 => 0.0036027236111689
1009 => 0.0033346476712811
1010 => 0.0038604063236029
1011 => 0.0038377346544847
1012 => 0.0038049027178484
1013 => 0.0038779666400458
1014 => 0.0042327443066802
1015 => 0.004224565533161
1016 => 0.004172536348879
1017 => 0.0042120000265927
1018 => 0.0040621926771041
1019 => 0.0041008014421173
1020 => 0.0039043777111402
1021 => 0.0039931694409214
1022 => 0.0040688379014198
1023 => 0.0040840294651555
1024 => 0.0041182568339526
1025 => 0.003825787715068
1026 => 0.003957097763005
1027 => 0.0040342301140804
1028 => 0.0036857433458229
1029 => 0.0040273416511423
1030 => 0.0038206964783933
1031 => 0.0037505580030559
1101 => 0.0038449902200562
1102 => 0.0038081898932529
1103 => 0.003776551133255
1104 => 0.0037588961615534
1105 => 0.0038282367596149
1106 => 0.0038250019378354
1107 => 0.0037115472609766
1108 => 0.0035635502600185
1109 => 0.003613222911376
1110 => 0.0035951763714543
1111 => 0.0035297733827278
1112 => 0.0035738471003425
1113 => 0.0033797687531656
1114 => 0.0030458670441625
1115 => 0.0032664527408159
1116 => 0.0032579604314458
1117 => 0.0032536782239658
1118 => 0.00341944227846
1119 => 0.0034035078894478
1120 => 0.0033745868173607
1121 => 0.0035292422245588
1122 => 0.0034727909205227
1123 => 0.0036467605379619
1124 => 0.0037613481796567
1125 => 0.003732285047201
1126 => 0.0038400552780651
1127 => 0.0036143672689386
1128 => 0.0036893317725391
1129 => 0.0037047818528349
1130 => 0.0035273338008405
1201 => 0.0034061149525541
1202 => 0.0033980310373695
1203 => 0.0031878542594272
1204 => 0.0033001289977163
1205 => 0.0033989261211663
1206 => 0.0033516099660002
1207 => 0.0033366310848046
1208 => 0.0034131549403102
1209 => 0.0034191014992655
1210 => 0.0032835193248969
1211 => 0.0033117111522772
1212 => 0.0034292757589544
1213 => 0.0033087488258286
1214 => 0.003074584682728
1215 => 0.0030165087376665
1216 => 0.0030087603360433
1217 => 0.0028512537669751
1218 => 0.0030203896500165
1219 => 0.0029465573045091
1220 => 0.0031797927993196
1221 => 0.0030465699355509
1222 => 0.003040826964163
1223 => 0.0030321456205994
1224 => 0.002896573210088
1225 => 0.0029262549519139
1226 => 0.0030249215823998
1227 => 0.0030601269477164
1228 => 0.0030564547396848
1229 => 0.0030244380620831
1230 => 0.0030390951331372
1231 => 0.0029918796004097
]
'min_raw' => 0.0016520189649522
'max_raw' => 0.005137227912307
'avg_raw' => 0.0033946234386296
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.001652'
'max' => '$0.005137'
'avg' => '$0.003394'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00094110082456352
'max_diff' => 0.0032085755031544
'year' => 2033
]
8 => [
'items' => [
101 => 0.0029752068130973
102 => 0.0029225829101278
103 => 0.0028452403104869
104 => 0.0028559952733367
105 => 0.0027027593456561
106 => 0.0026192682794095
107 => 0.002596159052667
108 => 0.0025652564288658
109 => 0.0025996495862541
110 => 0.0027023252475261
111 => 0.0025784766161753
112 => 0.0023661468246959
113 => 0.0023789082069562
114 => 0.0024075792440066
115 => 0.002354150956141
116 => 0.0023035855655725
117 => 0.002347548070172
118 => 0.002257581138428
119 => 0.0024184513178858
120 => 0.0024141002303649
121 => 0.0024740626851216
122 => 0.0025115584386344
123 => 0.0024251428661817
124 => 0.0024034095834025
125 => 0.0024157898489962
126 => 0.0022111716361145
127 => 0.002457341011731
128 => 0.0024594698947137
129 => 0.0024412411061332
130 => 0.0025723186990222
131 => 0.0028489333041444
201 => 0.0027448597629007
202 => 0.0027045593420917
203 => 0.0026279482126744
204 => 0.0027300279939042
205 => 0.0027221898593984
206 => 0.002686742842639
207 => 0.0026653043763014
208 => 0.0027048054078676
209 => 0.0026604097613518
210 => 0.0026524350833268
211 => 0.0026041172110304
212 => 0.0025868699289438
213 => 0.0025741007279209
214 => 0.0025600430922704
215 => 0.0025910507335707
216 => 0.0025207833389893
217 => 0.0024360477495218
218 => 0.0024290029021093
219 => 0.0024484543452044
220 => 0.0024398485296245
221 => 0.0024289617007752
222 => 0.0024081757796506
223 => 0.0024020090408739
224 => 0.0024220479502219
225 => 0.002399425189909
226 => 0.0024328063050763
227 => 0.0024237284888121
228 => 0.0023730205450927
301 => 0.0023098196727331
302 => 0.0023092570524008
303 => 0.0022956405281211
304 => 0.0022782978371928
305 => 0.0022734734973236
306 => 0.002343845670656
307 => 0.0024895139633923
308 => 0.0024609157919813
309 => 0.0024815809016842
310 => 0.0025832327884117
311 => 0.0026155448664235
312 => 0.0025926105188042
313 => 0.002561216569254
314 => 0.0025625977437072
315 => 0.002669880372915
316 => 0.0026765714589032
317 => 0.002693477674569
318 => 0.0027152069393956
319 => 0.0025963111065642
320 => 0.002556997760673
321 => 0.0025383689163684
322 => 0.0024809992861802
323 => 0.0025428675138378
324 => 0.0025068195470434
325 => 0.0025116836493378
326 => 0.0025085158963375
327 => 0.0025102457036782
328 => 0.0024184063513921
329 => 0.0024518677844309
330 => 0.0023962316620522
331 => 0.0023217411396349
401 => 0.0023214914212841
402 => 0.002339722871115
403 => 0.0023288780913589
404 => 0.0022996950678798
405 => 0.002303840378625
406 => 0.002267523094596
407 => 0.0023082499544518
408 => 0.0023094178550647
409 => 0.0022937357956132
410 => 0.0023564811424447
411 => 0.0023821879622369
412 => 0.0023718656947636
413 => 0.0023814637244339
414 => 0.0024621041751165
415 => 0.0024752520871672
416 => 0.0024810915211979
417 => 0.0024732674531736
418 => 0.0023829376838386
419 => 0.0023869441932205
420 => 0.0023575470857372
421 => 0.0023327096277048
422 => 0.0023337029957708
423 => 0.002346472677843
424 => 0.0024022386283843
425 => 0.0025195947837162
426 => 0.0025240483640248
427 => 0.002529446233279
428 => 0.0025074903862707
429 => 0.0025008682927238
430 => 0.0025096045434195
501 => 0.0025536773450686
502 => 0.0026670445565592
503 => 0.0026269730124769
504 => 0.0025943942233873
505 => 0.0026229746045974
506 => 0.0026185748789305
507 => 0.0025814367665749
508 => 0.0025803944234534
509 => 0.0025091145120701
510 => 0.0024827639517968
511 => 0.0024607434513271
512 => 0.002436697639674
513 => 0.0024224424765031
514 => 0.0024443448859894
515 => 0.0024493542261806
516 => 0.0024014642250502
517 => 0.0023949369948558
518 => 0.0024340450035563
519 => 0.0024168350270207
520 => 0.0024345359146744
521 => 0.0024386426724455
522 => 0.0024379813898577
523 => 0.0024200121978013
524 => 0.002431465224969
525 => 0.0024043754014057
526 => 0.0023749192870405
527 => 0.0023561281212563
528 => 0.0023397303368231
529 => 0.0023488287806714
530 => 0.0023163944896623
531 => 0.0023060181071951
601 => 0.0024275851970659
602 => 0.0025173881134199
603 => 0.0025160823434502
604 => 0.0025081338045768
605 => 0.0024963238881131
606 => 0.0025528133761199
607 => 0.0025331335680413
608 => 0.0025474522727214
609 => 0.0025510969840167
610 => 0.0025621284273906
611 => 0.0025660712202122
612 => 0.0025541533618597
613 => 0.002514155573585
614 => 0.00241448488808
615 => 0.0023680879149215
616 => 0.0023527761409766
617 => 0.0023533326948783
618 => 0.0023379804537033
619 => 0.0023425023767685
620 => 0.0023364079133996
621 => 0.0023248664741881
622 => 0.0023481161293231
623 => 0.0023507954354918
624 => 0.0023453686881706
625 => 0.0023466468836159
626 => 0.0023017157335905
627 => 0.0023051317513416
628 => 0.0022861109304169
629 => 0.0022825447557929
630 => 0.0022344617768276
701 => 0.0021492758098514
702 => 0.0021964771047581
703 => 0.0021394645780172
704 => 0.0021178730702597
705 => 0.0022200839098155
706 => 0.0022098247764114
707 => 0.0021922655995619
708 => 0.0021662919173483
709 => 0.0021566580259595
710 => 0.0020981255516007
711 => 0.002094667140757
712 => 0.002123677415559
713 => 0.0021102901719205
714 => 0.0020914894117064
715 => 0.0020233949640135
716 => 0.0019468342595098
717 => 0.0019491451459353
718 => 0.0019734976815754
719 => 0.0020443059633358
720 => 0.0020166399426563
721 => 0.0019965679272223
722 => 0.0019928090420941
723 => 0.0020398593592327
724 => 0.0021064454153302
725 => 0.002137686103072
726 => 0.0021067275303136
727 => 0.0020711639888567
728 => 0.0020733285768396
729 => 0.0020877286109373
730 => 0.0020892418509155
731 => 0.0020660936414182
801 => 0.0020726097268003
802 => 0.0020627111972615
803 => 0.0020019639397537
804 => 0.002000865214497
805 => 0.0019859568578227
806 => 0.0019855054387076
807 => 0.0019601426049407
808 => 0.0019565941691718
809 => 0.0019062347233138
810 => 0.00193938146308
811 => 0.0019171483703268
812 => 0.0018836378552913
813 => 0.0018778606298683
814 => 0.0018776869594959
815 => 0.0019120947656233
816 => 0.0019389793878322
817 => 0.001917535124494
818 => 0.0019126526814115
819 => 0.00196478440002
820 => 0.0019581501636359
821 => 0.0019524049577135
822 => 0.0021004833643289
823 => 0.0019832677507907
824 => 0.0019321550528547
825 => 0.0018688933831209
826 => 0.0018894917017792
827 => 0.0018938320701728
828 => 0.0017416991582359
829 => 0.0016799788548101
830 => 0.0016587987725549
831 => 0.0016466093357747
901 => 0.0016521642151807
902 => 0.001596608703028
903 => 0.001633942925998
904 => 0.0015858365484642
905 => 0.001577771357719
906 => 0.001663791519986
907 => 0.001675760723043
908 => 0.0016246963842621
909 => 0.0016574879563249
910 => 0.001645597276458
911 => 0.0015866611942334
912 => 0.0015844102693969
913 => 0.00155483821504
914 => 0.0015085636762496
915 => 0.0014874149703108
916 => 0.0014764005406363
917 => 0.001480945308987
918 => 0.0014786473350367
919 => 0.0014636515006016
920 => 0.001479506878713
921 => 0.0014390029395329
922 => 0.001422873944589
923 => 0.0014155888517627
924 => 0.0013796392744207
925 => 0.0014368510388215
926 => 0.0014481224771432
927 => 0.0014594161236804
928 => 0.0015577196062868
929 => 0.0015528086420985
930 => 0.0015972013666237
1001 => 0.0015954763469817
1002 => 0.0015828148228326
1003 => 0.0015293979351674
1004 => 0.0015506889545263
1005 => 0.0014851585062986
1006 => 0.0015342583737481
1007 => 0.0015118512447036
1008 => 0.0015266825008786
1009 => 0.0015000145649956
1010 => 0.0015147737018053
1011 => 0.0014507953533121
1012 => 0.0013910532716888
1013 => 0.0014150952293141
1014 => 0.0014412315867842
1015 => 0.0014979018691993
1016 => 0.0014641495165125
1017 => 0.0014762881388564
1018 => 0.0014356257859852
1019 => 0.0013517277373848
1020 => 0.0013522025912286
1021 => 0.0013392967042698
1022 => 0.001328144133647
1023 => 0.0014680263802393
1024 => 0.0014506298116645
1025 => 0.0014229106564471
1026 => 0.001460013847221
1027 => 0.0014698245197685
1028 => 0.0014701038158237
1029 => 0.0014971733460404
1030 => 0.0015116203591695
1031 => 0.0015141667078505
1101 => 0.0015567611985223
1102 => 0.0015710383099606
1103 => 0.0016298437114025
1104 => 0.0015103946310412
1105 => 0.0015079346558368
1106 => 0.0014605359652044
1107 => 0.0014304749662616
1108 => 0.0014625942675203
1109 => 0.0014910475837136
1110 => 0.0014614200890518
1111 => 0.0014652888143841
1112 => 0.0014255163234559
1113 => 0.0014397331174931
1114 => 0.0014519785357269
1115 => 0.0014452173355306
1116 => 0.0014350954915909
1117 => 0.0014887147362631
1118 => 0.0014856893283432
1119 => 0.001535620801683
1120 => 0.0015745459557852
1121 => 0.0016443067906401
1122 => 0.0015715077227545
1123 => 0.0015688546353706
1124 => 0.0015947889901163
1125 => 0.001571034339546
1126 => 0.0015860464587238
1127 => 0.0016418881061541
1128 => 0.0016430679521702
1129 => 0.001623304011255
1130 => 0.0016221013736542
1201 => 0.0016258972547008
1202 => 0.0016481298485528
1203 => 0.0016403610971223
1204 => 0.0016493512929584
1205 => 0.0016605936705142
1206 => 0.0017070969107544
1207 => 0.0017183086845403
1208 => 0.0016910698868787
1209 => 0.0016935292453277
1210 => 0.0016833411872806
1211 => 0.001673499650863
1212 => 0.0016956219874887
1213 => 0.0017360509924877
1214 => 0.0017357994857459
1215 => 0.0017451782290781
1216 => 0.0017510211084764
1217 => 0.0017259391928499
1218 => 0.0017096117880646
1219 => 0.0017158727539991
1220 => 0.0017258841748743
1221 => 0.0017126261851398
1222 => 0.0016307917308
1223 => 0.0016556150766415
1224 => 0.0016514832580939
1225 => 0.0016455990460358
1226 => 0.0016705591122327
1227 => 0.0016681516529575
1228 => 0.0015960389009522
1229 => 0.0016006553253663
1230 => 0.0015963196410109
1231 => 0.0016103291241609
]
'min_raw' => 0.001328144133647
'max_raw' => 0.0029752068130973
'avg_raw' => 0.0021516754733721
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.001328'
'max' => '$0.002975'
'avg' => '$0.002151'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00032387483130521
'max_diff' => -0.0021620210992098
'year' => 2034
]
9 => [
'items' => [
101 => 0.0015702777814807
102 => 0.0015825973047392
103 => 0.0015903239942386
104 => 0.001594875073713
105 => 0.0016113166934787
106 => 0.0016093874591677
107 => 0.0016111967695652
108 => 0.0016355753512512
109 => 0.0017588738516998
110 => 0.0017655847170364
111 => 0.0017325379617352
112 => 0.0017457394886596
113 => 0.0017203954438214
114 => 0.0017374090709116
115 => 0.0017490493624675
116 => 0.0016964491232258
117 => 0.0016933344784307
118 => 0.001667885829704
119 => 0.0016815604920446
120 => 0.0016598031210177
121 => 0.0016651416188271
122 => 0.00165021471355
123 => 0.0016770801711317
124 => 0.001707119927178
125 => 0.0017147091558612
126 => 0.0016947451625641
127 => 0.0016802899157256
128 => 0.0016549112641317
129 => 0.0016971165273325
130 => 0.0017094586324746
131 => 0.0016970516995084
201 => 0.0016941767420433
202 => 0.0016887287028419
203 => 0.0016953325693145
204 => 0.0017093914147194
205 => 0.0017027615228525
206 => 0.0017071406832342
207 => 0.0016904518396297
208 => 0.0017259474960076
209 => 0.0017823231408306
210 => 0.0017825043977471
211 => 0.0017758744701427
212 => 0.0017731616466107
213 => 0.0017799643546705
214 => 0.0017836545447313
215 => 0.0018056532551933
216 => 0.0018292587479864
217 => 0.0019394152829683
218 => 0.0019084837687439
219 => 0.0020062211998214
220 => 0.0020835188181867
221 => 0.0021066969941193
222 => 0.0020853741628788
223 => 0.0020124299090417
224 => 0.0020088509159496
225 => 0.0021178604274517
226 => 0.0020870602475004
227 => 0.0020833966641006
228 => 0.0020444223264481
301 => 0.0020674609870663
302 => 0.0020624220940323
303 => 0.0020544679548671
304 => 0.0020984241144398
305 => 0.0021807061211663
306 => 0.0021678816987822
307 => 0.0021583088623803
308 => 0.002116363479878
309 => 0.0021416239689847
310 => 0.0021326291926466
311 => 0.0021712764600213
312 => 0.0021483826749703
313 => 0.0020868269058445
314 => 0.0020966298649682
315 => 0.0020951481674175
316 => 0.0021256413980175
317 => 0.0021164880870799
318 => 0.0020933608365515
319 => 0.0021804248902125
320 => 0.0021747714348435
321 => 0.0021827867419969
322 => 0.0021863153280875
323 => 0.0022393096833102
324 => 0.0022610197750147
325 => 0.0022659483459203
326 => 0.0022865712539209
327 => 0.0022654352291822
328 => 0.002349994397867
329 => 0.0024062213108781
330 => 0.002471531763751
331 => 0.0025669678891931
401 => 0.0026028527551929
402 => 0.002596370475343
403 => 0.0026687290564557
404 => 0.0027987558182745
405 => 0.0026226526015139
406 => 0.0028080897163748
407 => 0.0027493824667843
408 => 0.0026101886341035
409 => 0.0026012261922664
410 => 0.0026954898718314
411 => 0.0029045576405637
412 => 0.0028521885357233
413 => 0.0029046432976585
414 => 0.0028434520315623
415 => 0.0028404133694402
416 => 0.0029016713744457
417 => 0.0030448040421411
418 => 0.0029768070769668
419 => 0.0028793167538496
420 => 0.0029513020913219
421 => 0.0028889417300749
422 => 0.0027484263826194
423 => 0.0028521484900558
424 => 0.0027827924706486
425 => 0.0028030342442804
426 => 0.002948810281145
427 => 0.0029312701227139
428 => 0.0029539687118987
429 => 0.002913906296113
430 => 0.0028764816825061
501 => 0.0028066258620206
502 => 0.0027859449974251
503 => 0.0027916604443798
504 => 0.0027859421651335
505 => 0.0027468584755799
506 => 0.002738418356542
507 => 0.0027243511217088
508 => 0.0027287111460004
509 => 0.0027022606289992
510 => 0.0027521782195362
511 => 0.0027614433642122
512 => 0.0027977692238234
513 => 0.0028015406950747
514 => 0.0029027076970257
515 => 0.0028469866123935
516 => 0.0028843691266918
517 => 0.0028810252827551
518 => 0.0026132053865303
519 => 0.0026501086052352
520 => 0.0027075184326719
521 => 0.0026816553832288
522 => 0.0026450910823379
523 => 0.0026155634489146
524 => 0.0025708260649229
525 => 0.0026337930737859
526 => 0.0027165879946459
527 => 0.0028036405109001
528 => 0.0029082284052728
529 => 0.0028848856047861
530 => 0.0028016853129646
531 => 0.0028054176172779
601 => 0.0028284892539348
602 => 0.0027986093881849
603 => 0.0027897972324509
604 => 0.0028272785990569
605 => 0.0028275367126293
606 => 0.0027931563159815
607 => 0.0027549487966537
608 => 0.0027547887057526
609 => 0.0027479900467291
610 => 0.0028446614978993
611 => 0.0028978210214568
612 => 0.0029039156751618
613 => 0.0028974108027028
614 => 0.0028999142699431
615 => 0.0028689819144752
616 => 0.0029396841063698
617 => 0.0030045674293744
618 => 0.0029871773127791
619 => 0.0029611070558521
620 => 0.0029403408404961
621 => 0.0029822854524011
622 => 0.0029804177248599
623 => 0.0030040007301509
624 => 0.0030029308688089
625 => 0.0029950007911312
626 => 0.0029871775959872
627 => 0.0030181956804393
628 => 0.0030092629702523
629 => 0.0030003163850991
630 => 0.0029823726389206
701 => 0.0029848114920404
702 => 0.0029587457365108
703 => 0.002946686525315
704 => 0.0027653449230235
705 => 0.0027168845213834
706 => 0.0027321311502418
707 => 0.0027371507363405
708 => 0.0027160607074431
709 => 0.0027462983912981
710 => 0.0027415858802989
711 => 0.00275991950387
712 => 0.0027484654518162
713 => 0.0027489355301078
714 => 0.0027826194549367
715 => 0.0027923980416162
716 => 0.0027874245735081
717 => 0.0027909078200905
718 => 0.0028711777673947
719 => 0.0028597659477765
720 => 0.0028537036460503
721 => 0.0028553829450589
722 => 0.0028758936376022
723 => 0.0028816355116721
724 => 0.0028573067877639
725 => 0.0028687803546017
726 => 0.0029176333459845
727 => 0.0029347291281287
728 => 0.0029892906582919
729 => 0.0029661119505247
730 => 0.0030086574717824
731 => 0.0031394278992914
801 => 0.0032438963654109
802 => 0.0031478228466254
803 => 0.003339665880675
804 => 0.0034890432009313
805 => 0.0034833098505789
806 => 0.0034572624596325
807 => 0.0032872003519222
808 => 0.003130706664924
809 => 0.003261620279171
810 => 0.0032619540048963
811 => 0.003250708409331
812 => 0.0031808629810939
813 => 0.0032482779398271
814 => 0.0032536290944361
815 => 0.0032506338708419
816 => 0.0031970835447738
817 => 0.0031153220946225
818 => 0.0031312980862728
819 => 0.0031574670864974
820 => 0.0031079237096469
821 => 0.0030920915988041
822 => 0.0031215265050432
823 => 0.0032163719059519
824 => 0.0031984419323121
825 => 0.0031979737082396
826 => 0.0032746857389628
827 => 0.0032197764804574
828 => 0.0031314995946897
829 => 0.0031092085168043
830 => 0.0030300902073804
831 => 0.0030847375055092
901 => 0.0030867041644822
902 => 0.0030567743977789
903 => 0.0031339282303053
904 => 0.0031332172441559
905 => 0.0032064633253073
906 => 0.003346482322497
907 => 0.0033050718151116
908 => 0.0032569159004728
909 => 0.0032621517836127
910 => 0.0033195764983968
911 => 0.0032848562049596
912 => 0.0032973418645581
913 => 0.0033195575998556
914 => 0.0033329609045463
915 => 0.0032602232543329
916 => 0.0032432646286241
917 => 0.0032085732320928
918 => 0.0031995228942834
919 => 0.0032277783128984
920 => 0.003220334008372
921 => 0.0030865388744108
922 => 0.0030725565384828
923 => 0.0030729853567635
924 => 0.0030378261082486
925 => 0.0029841998150769
926 => 0.0031251265116726
927 => 0.0031138081256681
928 => 0.0031013135034926
929 => 0.0031028440234158
930 => 0.0031640155259591
1001 => 0.0031285329652491
1002 => 0.003222869168374
1003 => 0.0032034764810174
1004 => 0.0031835864444053
1005 => 0.0031808370354802
1006 => 0.0031731810683228
1007 => 0.0031469259082799
1008 => 0.0031152212248377
1009 => 0.0030942870466165
1010 => 0.0028543162371093
1011 => 0.0028988534235078
1012 => 0.0029500893967671
1013 => 0.0029677758494209
1014 => 0.0029375219482913
1015 => 0.0031481205166962
1016 => 0.0031865989045221
1017 => 0.0030700453579144
1018 => 0.003048242948194
1019 => 0.0031495498790478
1020 => 0.0030884494154743
1021 => 0.0031159629504802
1022 => 0.0030564937368965
1023 => 0.0031773305876736
1024 => 0.0031764100133277
1025 => 0.0031294017491514
1026 => 0.0031691328121345
1027 => 0.0031622285622078
1028 => 0.003109156347729
1029 => 0.0031790130715357
1030 => 0.0031790477195992
1031 => 0.0031338032873773
1101 => 0.0030809676958219
1102 => 0.0030715219399727
1103 => 0.0030644058317992
1104 => 0.0031142128240949
1105 => 0.0031588696176448
1106 => 0.0032419648390832
1107 => 0.0032628569520466
1108 => 0.0033444002598094
1109 => 0.0032958451903083
1110 => 0.0033173690237247
1111 => 0.0033407361896304
1112 => 0.0033519392682647
1113 => 0.0033336844528205
1114 => 0.0034603547743407
1115 => 0.0034710496305553
1116 => 0.003474635523334
1117 => 0.0034319230036199
1118 => 0.0034698617181157
1119 => 0.0034521114500013
1120 => 0.0034982927164685
1121 => 0.0035055345287226
1122 => 0.0034994009713783
1123 => 0.003501699636892
1124 => 0.0033936088636505
1125 => 0.0033880037868337
1126 => 0.0033115781667182
1127 => 0.0033427221718249
1128 => 0.0032844999470489
1129 => 0.0033029628142807
1130 => 0.0033111010702358
1201 => 0.0033068501071668
1202 => 0.0033444830071455
1203 => 0.0033124873542701
1204 => 0.0032280455657595
1205 => 0.0031435807711401
1206 => 0.0031425203844472
1207 => 0.0031202822949514
1208 => 0.0031042082293552
1209 => 0.0031073046646471
1210 => 0.0031182169064903
1211 => 0.0031035739900219
1212 => 0.0031066987986651
1213 => 0.0031585914426343
1214 => 0.0031689981423009
1215 => 0.0031336321106737
1216 => 0.0029916323903966
1217 => 0.0029567853028613
1218 => 0.0029818326983339
1219 => 0.0029698616565568
1220 => 0.0023969101450401
1221 => 0.0025315166039611
1222 => 0.0024515380168737
1223 => 0.0024883958294414
1224 => 0.0024067584023799
1225 => 0.0024457200615578
1226 => 0.0024385252657596
1227 => 0.0026549684684098
1228 => 0.0026515890055083
1229 => 0.0026532065755621
1230 => 0.0025759957423404
1231 => 0.0026989946961651
]
'min_raw' => 0.0015702777814807
'max_raw' => 0.0035055345287226
'avg_raw' => 0.0025379061551016
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00157'
'max' => '$0.0035055'
'avg' => '$0.002537'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0002421336478337
'max_diff' => 0.0005303277156253
'year' => 2035
]
10 => [
'items' => [
101 => 0.0027595884037185
102 => 0.0027483741210997
103 => 0.0027511965144326
104 => 0.0027026984459365
105 => 0.0026536761428766
106 => 0.0025993028643049
107 => 0.0027003216951508
108 => 0.0026890901256097
109 => 0.0027148513051459
110 => 0.0027803692379246
111 => 0.0027900170024047
112 => 0.0028029836957039
113 => 0.0027983360591882
114 => 0.0029090616165858
115 => 0.0028956520209942
116 => 0.002927965288166
117 => 0.0028614944459801
118 => 0.0027862763785766
119 => 0.0028005728741261
120 => 0.0027991960066395
121 => 0.0027816669032405
122 => 0.002765842412471
123 => 0.0027394990938624
124 => 0.0028228532520175
125 => 0.002819469225419
126 => 0.0028742526825486
127 => 0.0028645691743628
128 => 0.0027999003367418
129 => 0.0028022099969288
130 => 0.0028177435716711
131 => 0.0028715054512134
201 => 0.0028874656374494
202 => 0.0028800722432814
203 => 0.002897571858879
204 => 0.0029114028415306
205 => 0.0028993088173545
206 => 0.0030705346956479
207 => 0.0029994297731539
208 => 0.0030340858176326
209 => 0.0030423510800355
210 => 0.0030211797841902
211 => 0.0030257710801718
212 => 0.0030327256425306
213 => 0.0030749523833304
214 => 0.0031857675695951
215 => 0.0032348468612472
216 => 0.0033825043317122
217 => 0.0032307715092922
218 => 0.0032217683115427
219 => 0.0032483658808018
220 => 0.0033350564470954
221 => 0.0034053110086455
222 => 0.0034286184997946
223 => 0.0034316989695147
224 => 0.003475425372363
225 => 0.0035004885310265
226 => 0.0034701158369386
227 => 0.0034443781588528
228 => 0.0033521889906274
229 => 0.0033628601378723
301 => 0.0034363737603218
302 => 0.0035402160819625
303 => 0.0036293235968823
304 => 0.0035981212508678
305 => 0.003836173125535
306 => 0.0038597749965536
307 => 0.0038565139811187
308 => 0.0039102825557283
309 => 0.003803562884908
310 => 0.0037579381580362
311 => 0.00344994293699
312 => 0.0035364770311422
313 => 0.0036622594189615
314 => 0.0036456116482738
315 => 0.0035542651160666
316 => 0.0036292543023464
317 => 0.0036044605322336
318 => 0.0035849046570512
319 => 0.0036744939123548
320 => 0.0035759868460248
321 => 0.0036612767356209
322 => 0.0035518915700029
323 => 0.0035982637805561
324 => 0.0035719406710747
325 => 0.0035889749489481
326 => 0.0034893929085674
327 => 0.0035431249603394
328 => 0.003487157478559
329 => 0.0034871309426855
330 => 0.0034858954574232
331 => 0.00355174095154
401 => 0.0035538881707392
402 => 0.0035052282510999
403 => 0.0034982155964691
404 => 0.0035241450561203
405 => 0.0034937884498049
406 => 0.0035079921148377
407 => 0.0034942186643493
408 => 0.0034911179705311
409 => 0.0034664111146481
410 => 0.0034557667218045
411 => 0.0034599406625107
412 => 0.0034456928510666
413 => 0.0034371080293057
414 => 0.0034841877202981
415 => 0.0034590349405902
416 => 0.0034803326960662
417 => 0.0034560612157103
418 => 0.0033719256902159
419 => 0.003323538459787
420 => 0.0031646142514954
421 => 0.0032096849598221
422 => 0.0032395668860716
423 => 0.0032296909096244
424 => 0.0032509083285286
425 => 0.0032522109057286
426 => 0.0032453129065568
427 => 0.0032373259072044
428 => 0.0032334382776284
429 => 0.0032624134834127
430 => 0.0032792345656311
501 => 0.0032425659371394
502 => 0.0032339749905324
503 => 0.003271048998468
504 => 0.0032936641218918
505 => 0.0034606414869129
506 => 0.0034482712643823
507 => 0.0034793180954004
508 => 0.0034758226986803
509 => 0.0035083647237353
510 => 0.0035615571814143
511 => 0.0034534020421077
512 => 0.003472174034568
513 => 0.0034675715755254
514 => 0.0035178200165235
515 => 0.0035179768866715
516 => 0.0034878504361973
517 => 0.0035041824737452
518 => 0.003495066378432
519 => 0.0035115403947771
520 => 0.0034481060525187
521 => 0.0035253622340754
522 => 0.0035691615107396
523 => 0.0035697696637386
524 => 0.0035905301732649
525 => 0.0036116240533113
526 => 0.0036521119191705
527 => 0.0036104948687073
528 => 0.0035356298462622
529 => 0.0035410348590702
530 => 0.0034971415238027
531 => 0.0034978793786985
601 => 0.0034939406514378
602 => 0.0035057610684406
603 => 0.0034506999693311
604 => 0.0034636226992375
605 => 0.0034455308016931
606 => 0.0034721347063161
607 => 0.0034435133027247
608 => 0.0034675693560803
609 => 0.0034779511512377
610 => 0.0035162601988728
611 => 0.0034378550252409
612 => 0.0032779815686417
613 => 0.0033115889074972
614 => 0.0032618810135305
615 => 0.0032664816683684
616 => 0.0032757757233298
617 => 0.0032456506503744
618 => 0.0032513975649441
619 => 0.0032511922447153
620 => 0.003249422905906
621 => 0.0032415862109448
622 => 0.0032302214528082
623 => 0.0032754951513364
624 => 0.0032831880349322
625 => 0.0033002883622191
626 => 0.0033511673369622
627 => 0.0033460833275765
628 => 0.0033543755578181
629 => 0.0033362736657597
630 => 0.0032673213632235
701 => 0.0032710658049908
702 => 0.0032243725561526
703 => 0.0032990943108656
704 => 0.0032813992130706
705 => 0.0032699910684087
706 => 0.003266878250442
707 => 0.0033178833443224
708 => 0.0033331448678183
709 => 0.0033236349105384
710 => 0.0033041297107075
711 => 0.0033415854605774
712 => 0.0033516070391114
713 => 0.0033538505009635
714 => 0.0034202149083053
715 => 0.0033575595341173
716 => 0.0033726413054253
717 => 0.0034903049798881
718 => 0.0033836002636275
719 => 0.0034401241316298
720 => 0.0034373575824271
721 => 0.0034662732806337
722 => 0.0034349856511882
723 => 0.0034353734988531
724 => 0.0034610486799415
725 => 0.0034249925186461
726 => 0.0034160645060504
727 => 0.0034037305205932
728 => 0.0034306613266093
729 => 0.0034468051268404
730 => 0.0035769123003881
731 => 0.003660967468108
801 => 0.0036573184115975
802 => 0.0036906639573555
803 => 0.0036756414835813
804 => 0.0036271299530362
805 => 0.0037099332203258
806 => 0.0036837308019195
807 => 0.003685890897457
808 => 0.0036858104985932
809 => 0.0037032328161782
810 => 0.0036908875074373
811 => 0.003666553636689
812 => 0.0036827075957059
813 => 0.0037306790788401
814 => 0.0038795840344338
815 => 0.0039629132203122
816 => 0.0038745675128127
817 => 0.0039355071988497
818 => 0.0038989651022578
819 => 0.0038923243162738
820 => 0.0039305989425125
821 => 0.0039689405634177
822 => 0.0039664983679214
823 => 0.0039386643200083
824 => 0.003922941572605
825 => 0.0040419994834497
826 => 0.0041297193240614
827 => 0.004123737419013
828 => 0.0041501396024771
829 => 0.0042276572297166
830 => 0.0042347444700688
831 => 0.0042338516406828
901 => 0.0042162851759927
902 => 0.0042926113469458
903 => 0.0043562839815862
904 => 0.0042122190469609
905 => 0.0042670770881177
906 => 0.0042917046302087
907 => 0.0043278651686608
908 => 0.0043888740582394
909 => 0.0044551458941304
910 => 0.0044645174583591
911 => 0.0044578678850682
912 => 0.0044141598278155
913 => 0.0044866752614349
914 => 0.004529153101753
915 => 0.0045544476835744
916 => 0.0046185905344562
917 => 0.0042918567215245
918 => 0.0040605782890072
919 => 0.0040244608220686
920 => 0.0040979071113375
921 => 0.0041172743120945
922 => 0.0041094674177538
923 => 0.0038491425150405
924 => 0.0040230902653313
925 => 0.0042102434187019
926 => 0.0042174327335281
927 => 0.0043111255152933
928 => 0.004341635725633
929 => 0.0044170706955476
930 => 0.0044123522176407
1001 => 0.0044307194323824
1002 => 0.0044264971277891
1003 => 0.004566224524849
1004 => 0.0047203645935254
1005 => 0.0047150272130825
1006 => 0.0046928677545078
1007 => 0.0047257783292404
1008 => 0.004884867398768
1009 => 0.0048702210265963
1010 => 0.0048844487295861
1011 => 0.0050720237084262
1012 => 0.005315897863148
1013 => 0.0052025938337149
1014 => 0.0054484309752285
1015 => 0.0056031724245443
1016 => 0.0058707817605716
1017 => 0.0058372757536972
1018 => 0.0059414541044046
1019 => 0.0057772930084774
1020 => 0.0054003459497972
1021 => 0.0053406926348657
1022 => 0.0054601200820211
1023 => 0.0057537208072928
1024 => 0.0054508735503461
1025 => 0.0055121391559973
1026 => 0.0054944946574482
1027 => 0.0054935544571048
1028 => 0.0055294380801409
1029 => 0.0054773870133631
1030 => 0.0052653216035025
1031 => 0.0053625099311323
1101 => 0.0053249808504676
1102 => 0.0053666221634434
1103 => 0.0055913431553899
1104 => 0.005491988648171
1105 => 0.0053873267457206
1106 => 0.0055185959977288
1107 => 0.0056857468645442
1108 => 0.0056752868636979
1109 => 0.0056549900901149
1110 => 0.0057694019400979
1111 => 0.0059583767967432
1112 => 0.0060094559411319
1113 => 0.0060471615212526
1114 => 0.0060523604837102
1115 => 0.006105913028161
1116 => 0.0058179474996699
1117 => 0.0062749561888646
1118 => 0.0063538689648782
1119 => 0.0063390366335871
1120 => 0.0064267448629691
1121 => 0.0064009388769419
1122 => 0.0063635500520236
1123 => 0.0065025862516694
1124 => 0.0063431924684183
1125 => 0.0061169530602127
1126 => 0.0059928336463629
1127 => 0.0061562841029478
1128 => 0.0062560975931493
1129 => 0.0063220679608422
1130 => 0.0063420305542457
1201 => 0.005840301443914
1202 => 0.0055698972806173
1203 => 0.0057432232491005
1204 => 0.0059546928929692
1205 => 0.0058167727751209
1206 => 0.0058221789826232
1207 => 0.0056255411393409
1208 => 0.005972090978862
1209 => 0.0059216015821867
1210 => 0.0061835406614524
1211 => 0.0061210267979932
1212 => 0.0063346279487178
1213 => 0.0062783796071779
1214 => 0.0065118633281076
1215 => 0.0066050063057058
1216 => 0.0067614078616402
1217 => 0.0068764574828544
1218 => 0.0069440168209799
1219 => 0.0069399608117275
1220 => 0.0072076645673095
1221 => 0.0070498090154996
1222 => 0.0068515052387295
1223 => 0.0068479185490481
1224 => 0.0069506228850236
1225 => 0.0071658629976697
1226 => 0.0072216716272626
1227 => 0.0072528610376517
1228 => 0.0072050933699296
1229 => 0.0070337524820493
1230 => 0.0069597683553806
1231 => 0.0070228049748288
]
'min_raw' => 0.0025993028643049
'max_raw' => 0.0072528610376517
'avg_raw' => 0.0049260819509783
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.002599'
'max' => '$0.007252'
'avg' => '$0.004926'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0010290250828242
'max_diff' => 0.0037473265089291
'year' => 2036
]
11 => [
'items' => [
101 => 0.0069457166060421
102 => 0.0070787927577441
103 => 0.007261534737563
104 => 0.0072237992413705
105 => 0.0073499433475203
106 => 0.0074804892266384
107 => 0.0076671756969595
108 => 0.0077159824532814
109 => 0.0077966581655268
110 => 0.0078796999740183
111 => 0.0079063707648663
112 => 0.0079572935800554
113 => 0.0079570251916832
114 => 0.0081104845227564
115 => 0.0082797549171701
116 => 0.0083436505724426
117 => 0.0084905751085148
118 => 0.008238971989341
119 => 0.0084298158454426
120 => 0.0086019617807779
121 => 0.0083967222999273
122 => 0.0086795971096139
123 => 0.0086905804974659
124 => 0.0088564166139529
125 => 0.0086883099395376
126 => 0.0085884887328854
127 => 0.0088766688162386
128 => 0.0090161100809857
129 => 0.0089741092372332
130 => 0.0086544807424395
131 => 0.0084684432489586
201 => 0.0079815472445664
202 => 0.008558296594111
203 => 0.008839214378265
204 => 0.0086537532332433
205 => 0.0087472890471617
206 => 0.009257590118811
207 => 0.0094518797273475
208 => 0.0094114688469588
209 => 0.0094182976205247
210 => 0.0095231327666852
211 => 0.0099880295385301
212 => 0.0097094526166178
213 => 0.0099224142353416
214 => 0.010035368310022
215 => 0.010140286349585
216 => 0.0098826408041063
217 => 0.0095474477350033
218 => 0.0094412780195705
219 => 0.0086353127774106
220 => 0.0085933587864265
221 => 0.0085698087399511
222 => 0.008421329028144
223 => 0.0083046646466796
224 => 0.0082118887990683
225 => 0.0079684172697229
226 => 0.0080505817636952
227 => 0.0076625389623761
228 => 0.0079107949952676
301 => 0.0072914693147412
302 => 0.0078072621448456
303 => 0.007526539557642
304 => 0.0077150372249394
305 => 0.0077143795743358
306 => 0.0073672956056014
307 => 0.007167104815893
308 => 0.0072946741786373
309 => 0.0074314386619678
310 => 0.0074536282392572
311 => 0.0076309469618134
312 => 0.0076804328058256
313 => 0.0075304883881954
314 => 0.0072786351665952
315 => 0.0073371349258125
316 => 0.0071659193201397
317 => 0.0068658705569112
318 => 0.0070813708170107
319 => 0.0071549520806862
320 => 0.0071874497585575
321 => 0.0068923862607556
322 => 0.006799670903606
323 => 0.0067503100254168
324 => 0.0072405461742777
325 => 0.0072674024171578
326 => 0.007130002081493
327 => 0.0077510646275325
328 => 0.0076104990457088
329 => 0.0077675452400095
330 => 0.007331826685829
331 => 0.0073484717213715
401 => 0.0071421955751229
402 => 0.007257696433645
403 => 0.007176064149608
404 => 0.0072483651056782
405 => 0.0072917020006386
406 => 0.0074979442990014
407 => 0.0078096171006013
408 => 0.0074671385772006
409 => 0.0073179157801721
410 => 0.0074104927641877
411 => 0.0076570374722736
412 => 0.008030565325415
413 => 0.0078094293184067
414 => 0.0079075657231841
415 => 0.0079290041618431
416 => 0.0077659466571751
417 => 0.0080365774881949
418 => 0.0081816107491394
419 => 0.0083303848644637
420 => 0.0084595612602438
421 => 0.0082709612111903
422 => 0.0084727902984326
423 => 0.0083101516817452
424 => 0.0081642480293055
425 => 0.0081644693049198
426 => 0.0080729418124321
427 => 0.007895595762531
428 => 0.0078628904299527
429 => 0.0080330277002533
430 => 0.008169461678975
501 => 0.0081806990349372
502 => 0.0082562358957885
503 => 0.0083009378319487
504 => 0.0087390775756543
505 => 0.0089153010050547
506 => 0.0091307836787868
507 => 0.0092147263241435
508 => 0.0094673635915632
509 => 0.0092633384799261
510 => 0.0092191963636453
511 => 0.0086063809899055
512 => 0.0087067294730248
513 => 0.0088673970766873
514 => 0.0086090303395123
515 => 0.0087729045664246
516 => 0.0088052568101479
517 => 0.0086002511366484
518 => 0.0087097535246367
519 => 0.0084189476473351
520 => 0.0078159558740457
521 => 0.0080372487904129
522 => 0.0082001948632494
523 => 0.0079676507262059
524 => 0.0083844770911556
525 => 0.0081409757337947
526 => 0.0080637974936377
527 => 0.0077626976627562
528 => 0.007904805192537
529 => 0.0080970076613492
530 => 0.0079782488815585
531 => 0.0082246911813447
601 => 0.0085737192016025
602 => 0.0088224573538162
603 => 0.0088415523805493
604 => 0.0086816304128378
605 => 0.0089379063867038
606 => 0.0089397730773906
607 => 0.0086506927319516
608 => 0.0084736326299764
609 => 0.00843340420227
610 => 0.0085339027019284
611 => 0.0086559264335603
612 => 0.0088483238484129
613 => 0.008964585576725
614 => 0.0092677345037069
615 => 0.0093497579113873
616 => 0.0094398767684847
617 => 0.0095603033531932
618 => 0.0097049063448782
619 => 0.0093885232313243
620 => 0.0094010937222377
621 => 0.0091064821475186
622 => 0.0087916474283577
623 => 0.009030567735499
624 => 0.0093429242548498
625 => 0.0092712693241875
626 => 0.0092632066807105
627 => 0.0092767658106479
628 => 0.0092227403329597
629 => 0.0089783850996539
630 => 0.0088556714312323
701 => 0.0090140033710918
702 => 0.0090981497505832
703 => 0.0092286534468388
704 => 0.0092125661116765
705 => 0.0095487296181573
706 => 0.009679352591719
707 => 0.0096459336454097
708 => 0.0096520835358025
709 => 0.0098885701900695
710 => 0.010151591986804
711 => 0.010397946608229
712 => 0.01064854911032
713 => 0.010346438012868
714 => 0.010193044629203
715 => 0.010351307446291
716 => 0.010267330967834
717 => 0.01074988472209
718 => 0.010783295697052
719 => 0.011265814557179
720 => 0.011723782412717
721 => 0.011436141008
722 => 0.011707373896995
723 => 0.012000734380384
724 => 0.012566674348866
725 => 0.012376085677489
726 => 0.01223009774212
727 => 0.012092139848605
728 => 0.012379208324811
729 => 0.01274851733342
730 => 0.012828062956677
731 => 0.012956957255119
801 => 0.012821440660752
802 => 0.012984655472004
803 => 0.013560875475947
804 => 0.013405175744447
805 => 0.013184057095736
806 => 0.013638927448091
807 => 0.013803543260345
808 => 0.014958903240711
809 => 0.016417592941463
810 => 0.015813685827079
811 => 0.015438821193219
812 => 0.015526923274084
813 => 0.016059587373036
814 => 0.016230662175706
815 => 0.015765621889029
816 => 0.015929881980084
817 => 0.016834971231498
818 => 0.017320522576142
819 => 0.01666107863187
820 => 0.01484169894355
821 => 0.013164147780731
822 => 0.013609109890224
823 => 0.013558664995789
824 => 0.01453107048425
825 => 0.013401462357344
826 => 0.013420482061159
827 => 0.014412995865326
828 => 0.014148210198369
829 => 0.013719291329084
830 => 0.013167279363147
831 => 0.012146834189186
901 => 0.01124299744139
902 => 0.01301562944499
903 => 0.012939190329672
904 => 0.01282849516305
905 => 0.013074835277899
906 => 0.014270992950743
907 => 0.014243417644799
908 => 0.014067997617431
909 => 0.014201052162108
910 => 0.013695966224092
911 => 0.013826138370912
912 => 0.013163882048056
913 => 0.013463249564254
914 => 0.013718371061827
915 => 0.013769590479603
916 => 0.013884990443182
917 => 0.01289891038932
918 => 0.013341631383715
919 => 0.013601688490574
920 => 0.012426741020825
921 => 0.013578463556841
922 => 0.012881744929413
923 => 0.012645268162901
924 => 0.012963652975564
925 => 0.01283957810443
926 => 0.012732905816149
927 => 0.012673380846426
928 => 0.012907167513997
929 => 0.012896261086519
930 => 0.012513740722337
1001 => 0.012014758500787
1002 => 0.012182233312872
1003 => 0.012121388143557
1004 => 0.011900877400775
1005 => 0.012049475016841
1006 => 0.011395126319217
1007 => 0.01026935339504
1008 => 0.011013073472108
1009 => 0.010984441058153
1010 => 0.01097000329666
1011 => 0.011528888379664
1012 => 0.011475164474606
1013 => 0.011377655060859
1014 => 0.011899086563923
1015 => 0.011708757051062
1016 => 0.012295307762429
1017 => 0.012681647996656
1018 => 0.012583659616459
1019 => 0.012947014474094
1020 => 0.012186091594291
1021 => 0.012438839652035
1022 => 0.012490930676442
1023 => 0.011892652180115
1024 => 0.011483954369888
1025 => 0.011456698885442
1026 => 0.010748073204536
1027 => 0.011126615323449
1028 => 0.011459716722956
1029 => 0.011300187002305
1030 => 0.011249684658562
1031 => 0.011507690180124
1101 => 0.011527739418817
1102 => 0.011070614651888
1103 => 0.011165665366192
1104 => 0.011562042645702
1105 => 0.011155677675747
1106 => 0.010366176918465
1107 => 0.010170369814957
1108 => 0.010144245537908
1109 => 0.0096132011435377
1110 => 0.010183454581902
1111 => 0.0099345236742138
1112 => 0.01072089342895
1113 => 0.01027172324243
1114 => 0.010252360413434
1115 => 0.010223090657498
1116 => 0.0097659988100953
1117 => 0.0098660728749741
1118 => 0.010198734308342
1119 => 0.010317431655467
1120 => 0.010305050549703
1121 => 0.010197104085835
1122 => 0.010246521424219
1123 => 0.010087330959144
1124 => 0.010031117492664
1125 => 0.0098536923297186
1126 => 0.0095929263551415
1127 => 0.0096291874632772
1128 => 0.0091125418345111
1129 => 0.0088310458755005
1130 => 0.0087531315041035
1201 => 0.0086489411504057
1202 => 0.0087649000817936
1203 => 0.0091110782423579
1204 => 0.0086935139349236
1205 => 0.007977629218558
1206 => 0.0080206551098198
1207 => 0.0081173215129833
1208 => 0.0079371843102004
1209 => 0.007766699565536
1210 => 0.0079149222191572
1211 => 0.0076115924274916
1212 => 0.0081539774691308
1213 => 0.008139307473771
1214 => 0.0083414750764281
1215 => 0.0084678946272665
1216 => 0.0081765384913997
1217 => 0.00810326321114
1218 => 0.0081450041409517
1219 => 0.0074551195502337
1220 => 0.0082850967871216
1221 => 0.0082922744647318
1222 => 0.0082308148313391
1223 => 0.0086727520873096
1224 => 0.0096053775410942
1225 => 0.0092544863306085
1226 => 0.0091186106481654
1227 => 0.0088603108765167
1228 => 0.0092044799859158
1229 => 0.0091780531681884
1230 => 0.0090585410763522
1231 => 0.0089862597903093
]
'min_raw' => 0.0067503100254168
'max_raw' => 0.017320522576142
'avg_raw' => 0.012035416300779
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.00675'
'max' => '$0.01732'
'avg' => '$0.012035'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0041510071611119
'max_diff' => 0.01006766153849
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00021188451829134
]
1 => [
'year' => 2028
'avg' => 0.0003636553439031
]
2 => [
'year' => 2029
'avg' => 0.00099344085704447
]
3 => [
'year' => 2030
'avg' => 0.0007664381417333
]
4 => [
'year' => 2031
'avg' => 0.00075273723881533
]
5 => [
'year' => 2032
'avg' => 0.0013197852747707
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00021188451829134
'min' => '$0.000211'
'max_raw' => 0.0013197852747707
'max' => '$0.001319'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0013197852747707
]
1 => [
'year' => 2033
'avg' => 0.0033946234386296
]
2 => [
'year' => 2034
'avg' => 0.0021516754733721
]
3 => [
'year' => 2035
'avg' => 0.0025379061551016
]
4 => [
'year' => 2036
'avg' => 0.0049260819509783
]
5 => [
'year' => 2037
'avg' => 0.012035416300779
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0013197852747707
'min' => '$0.001319'
'max_raw' => 0.012035416300779
'max' => '$0.012035'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.012035416300779
]
]
]
]
'prediction_2025_max_price' => '$0.000362'
'last_price' => 0.00035128
'sma_50day_nextmonth' => '$0.000558'
'sma_200day_nextmonth' => '$0.002043'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000368'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.00038'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000641'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000927'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001368'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002144'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003297'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000373'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000432'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000588'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000844'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001326'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001963'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004958'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002184'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004634'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000561'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00080086'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001317'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0027024'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01770041'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.028176'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.014088'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '28.11'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 6.32
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000833'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000227'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 1.78
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -120.78
'cci_20_action' => 'BUY'
'adx_14' => 30.83
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.0007039'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -98.22
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 20.87
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000525'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 28
'buy_signals' => 4
'sell_pct' => 87.5
'buy_pct' => 12.5
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767708224
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de FrokAI para 2026
La previsión del precio de FrokAI para 2026 sugiere que el precio medio podría oscilar entre $0.000121 en el extremo inferior y $0.000362 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, FrokAI podría potencialmente ganar 3.13% para 2026 si FROKAI alcanza el objetivo de precio previsto.
Predicción de precio de FrokAI 2027-2032
La predicción del precio de FROKAI para 2027-2032 está actualmente dentro de un rango de precios de $0.000211 en el extremo inferior y $0.001319 en el extremo superior. Considerando la volatilidad de precios en el mercado, si FrokAI alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de FrokAI | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000116 | $0.000211 | $0.0003069 |
| 2028 | $0.00021 | $0.000363 | $0.000516 |
| 2029 | $0.000463 | $0.000993 | $0.001523 |
| 2030 | $0.000393 | $0.000766 | $0.001138 |
| 2031 | $0.000465 | $0.000752 | $0.001039 |
| 2032 | $0.00071 | $0.001319 | $0.001928 |
Predicción de precio de FrokAI 2032-2037
La predicción de precio de FrokAI para 2032-2037 se estima actualmente entre $0.001319 en el extremo inferior y $0.012035 en el extremo superior. Comparado con el precio actual, FrokAI podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de FrokAI | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00071 | $0.001319 | $0.001928 |
| 2033 | $0.001652 | $0.003394 | $0.005137 |
| 2034 | $0.001328 | $0.002151 | $0.002975 |
| 2035 | $0.00157 | $0.002537 | $0.0035055 |
| 2036 | $0.002599 | $0.004926 | $0.007252 |
| 2037 | $0.00675 | $0.012035 | $0.01732 |
FrokAI Histograma de precios potenciales
Pronóstico de precio de FrokAI basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para FrokAI es Bajista, con 4 indicadores técnicos mostrando señales alcistas y 28 indicando señales bajistas. La predicción de precio de FROKAI se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de FrokAI
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de FrokAI aumentar durante el próximo mes, alcanzando $0.002043 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para FrokAI alcance $0.000558 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 28.11, lo que sugiere que el mercado de FROKAI está en un estado BUY.
Promedios Móviles y Osciladores Populares de FROKAI para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000368 | SELL |
| SMA 5 | $0.00038 | SELL |
| SMA 10 | $0.000641 | SELL |
| SMA 21 | $0.000927 | SELL |
| SMA 50 | $0.001368 | SELL |
| SMA 100 | $0.002144 | SELL |
| SMA 200 | $0.003297 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000373 | SELL |
| EMA 5 | $0.000432 | SELL |
| EMA 10 | $0.000588 | SELL |
| EMA 21 | $0.000844 | SELL |
| EMA 50 | $0.001326 | SELL |
| EMA 100 | $0.001963 | SELL |
| EMA 200 | $0.004958 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.002184 | SELL |
| SMA 50 | $0.004634 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0027024 | SELL |
| EMA 50 | $0.01770041 | SELL |
| EMA 100 | $0.028176 | SELL |
| EMA 200 | $0.014088 | SELL |
Osciladores de FrokAI
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 28.11 | BUY |
| Stoch RSI (14) | 6.32 | BUY |
| Estocástico Rápido (14) | 1.78 | BUY |
| Índice de Canal de Materias Primas (20) | -120.78 | BUY |
| Índice Direccional Medio (14) | 30.83 | SELL |
| Oscilador Asombroso (5, 34) | -0.0007039 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -98.22 | BUY |
| Oscilador Ultimate (7, 14, 28) | 20.87 | BUY |
| VWMA (10) | 0.000833 | SELL |
| Promedio Móvil de Hull (9) | 0.000227 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000525 | SELL |
Predicción de precios de FrokAI basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de FrokAI
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de FrokAI por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000493 | $0.000693 | $0.000974 | $0.001369 | $0.001924 | $0.002704 |
| Amazon.com acción | $0.000732 | $0.001529 | $0.003191 | $0.006658 | $0.013893 | $0.028989 |
| Apple acción | $0.000498 | $0.0007067 | $0.0010024 | $0.001421 | $0.002016 | $0.00286 |
| Netflix acción | $0.000554 | $0.000874 | $0.001379 | $0.002177 | $0.003435 | $0.00542 |
| Google acción | $0.000454 | $0.000589 | $0.000762 | $0.000987 | $0.001279 | $0.001656 |
| Tesla acción | $0.000796 | $0.0018052 | $0.004092 | $0.009276 | $0.021029 | $0.047673 |
| Kodak acción | $0.000263 | $0.000197 | $0.000148 | $0.000111 | $0.000083 | $0.000062 |
| Nokia acción | $0.000232 | $0.000154 | $0.0001021 | $0.000067 | $0.000044 | $0.000029 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de FrokAI
Podría preguntarse cosas como: "¿Debo invertir en FrokAI ahora?", "¿Debería comprar FROKAI hoy?", "¿Será FrokAI una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de FrokAI regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como FrokAI, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de FrokAI a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de FrokAI es de $0.0003512 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de FrokAI basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si FrokAI ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00036 | $0.000369 | $0.000379 | $0.000389 |
| Si FrokAI ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000369 | $0.000388 | $0.0004089 | $0.00043 |
| Si FrokAI ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000396 | $0.000448 | $0.0005068 | $0.000572 |
| Si FrokAI ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000442 | $0.000557 | $0.0007025 | $0.000885 |
| Si FrokAI ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000533 | $0.000811 | $0.001233 | $0.001874 |
| Si FrokAI ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0008078 | $0.001857 | $0.004272 | $0.009824 |
| Si FrokAI ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.001264 | $0.00455 | $0.01638 | $0.058957 |
Cuadro de preguntas
¿Es FROKAI una buena inversión?
La decisión de adquirir FrokAI depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de FrokAI ha experimentado un aumento de 10.1135% durante las últimas 24 horas, y FrokAI ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en FrokAI dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede FrokAI subir?
Parece que el valor medio de FrokAI podría potencialmente aumentar hasta $0.000362 para el final de este año. Mirando las perspectivas de FrokAI en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.001138. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de FrokAI la próxima semana?
Basado en nuestro nuevo pronóstico experimental de FrokAI, el precio de FrokAI aumentará en un 0.86% durante la próxima semana y alcanzará $0.000354 para el 13 de enero de 2026.
¿Cuál será el precio de FrokAI el próximo mes?
Basado en nuestro nuevo pronóstico experimental de FrokAI, el precio de FrokAI disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00031 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de FrokAI este año en 2026?
Según nuestra predicción más reciente sobre el valor de FrokAI en 2026, se anticipa que FROKAI fluctúe dentro del rango de $0.000121 y $0.000362. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de FrokAI no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará FrokAI en 5 años?
El futuro de FrokAI parece estar en una tendencia alcista, con un precio máximo de $0.001138 proyectada después de un período de cinco años. Basado en el pronóstico de FrokAI para 2030, el valor de FrokAI podría potencialmente alcanzar su punto más alto de aproximadamente $0.001138, mientras que su punto más bajo se anticipa que esté alrededor de $0.000393.
¿Cuánto será FrokAI en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de FrokAI, se espera que el valor de FROKAI en 2026 crezca en un 3.13% hasta $0.000362 si ocurre lo mejor. El precio estará entre $0.000362 y $0.000121 durante 2026.
¿Cuánto será FrokAI en 2027?
Según nuestra última simulación experimental para la predicción de precios de FrokAI, el valor de FROKAI podría disminuir en un -12.62% hasta $0.0003069 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0003069 y $0.000116 a lo largo del año.
¿Cuánto será FrokAI en 2028?
Nuestro nuevo modelo experimental de predicción de precios de FrokAI sugiere que el valor de FROKAI en 2028 podría aumentar en un 47.02% , alcanzando $0.000516 en el mejor escenario. Se espera que el precio oscile entre $0.000516 y $0.00021 durante el año.
¿Cuánto será FrokAI en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de FrokAI podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.001523 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.001523 y $0.000463.
¿Cuánto será FrokAI en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de FrokAI, se espera que el valor de FROKAI en 2030 aumente en un 224.23% , alcanzando $0.001138 en el mejor escenario. Se pronostica que el precio oscile entre $0.001138 y $0.000393 durante el transcurso de 2030.
¿Cuánto será FrokAI en 2031?
Nuestra simulación experimental indica que el precio de FrokAI podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.001039 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.001039 y $0.000465 durante el año.
¿Cuánto será FrokAI en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de FrokAI, FROKAI podría experimentar un 449.04% aumento en valor, alcanzando $0.001928 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.001928 y $0.00071 a lo largo del año.
¿Cuánto será FrokAI en 2033?
Según nuestra predicción experimental de precios de FrokAI, se anticipa que el valor de FROKAI aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.005137. A lo largo del año, el precio de FROKAI podría oscilar entre $0.005137 y $0.001652.
¿Cuánto será FrokAI en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de FrokAI sugieren que FROKAI podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.002975 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.002975 y $0.001328.
¿Cuánto será FrokAI en 2035?
Basado en nuestra predicción experimental para el precio de FrokAI, FROKAI podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0035055 en 2035. El rango de precios esperado para el año está entre $0.0035055 y $0.00157.
¿Cuánto será FrokAI en 2036?
Nuestra reciente simulación de predicción de precios de FrokAI sugiere que el valor de FROKAI podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.007252 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.007252 y $0.002599.
¿Cuánto será FrokAI en 2037?
Según la simulación experimental, el valor de FrokAI podría aumentar en un 4830.69% en 2037, con un máximo de $0.01732 bajo condiciones favorables. Se espera que el precio caiga entre $0.01732 y $0.00675 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de FrokAI?
Los traders de FrokAI utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de FrokAI
Las medias móviles son herramientas populares para la predicción de precios de FrokAI. Una media móvil simple (SMA) calcula el precio de cierre promedio de FROKAI durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FROKAI por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FROKAI.
¿Cómo leer gráficos de FrokAI y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de FrokAI en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FROKAI dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de FrokAI?
La acción del precio de FrokAI está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FROKAI. La capitalización de mercado de FrokAI puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FROKAI, grandes poseedores de FrokAI, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de FrokAI.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


