Predicción del precio de Fluffys - Pronóstico de FLUFF
Predicción de precio de Fluffys hasta $0.000884 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000296 | $0.000884 |
| 2027 | $0.000285 | $0.000749 |
| 2028 | $0.000514 | $0.00126 |
| 2029 | $0.00113 | $0.003719 |
| 2030 | $0.000961 | $0.00278 |
| 2031 | $0.001137 | $0.002538 |
| 2032 | $0.001735 | $0.0047084 |
| 2033 | $0.004033 | $0.012541 |
| 2034 | $0.003242 | $0.007263 |
| 2035 | $0.003833 | $0.008558 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Fluffys hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,959.75, equivalente a un ROI del 39.6% en los próximos 90 días.
Predicción del precio a largo plazo de Fluffys para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Fluffys'
'name_with_ticker' => 'Fluffys <small>FLUFF</small>'
'name_lang' => 'Fluffys'
'name_lang_with_ticker' => 'Fluffys <small>FLUFF</small>'
'name_with_lang' => 'Fluffys'
'name_with_lang_with_ticker' => 'Fluffys <small>FLUFF</small>'
'image' => '/uploads/coins/fluffys.png?1717088065'
'price_for_sd' => 0.0008575
'ticker' => 'FLUFF'
'marketcap' => '$0'
'low24h' => '$0.0008386'
'high24h' => '$0.0008666'
'volume24h' => '$100.43'
'current_supply' => '0'
'max_supply' => '103.97M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0008575'
'change_24h_pct' => '1.1922%'
'ath_price' => '$0.01646'
'ath_days' => 616
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 abr. 2024'
'ath_pct' => '-94.80%'
'fdv' => '$89.15K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.042284'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000864'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000757'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000296'
'current_year_max_price_prediction' => '$0.000884'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000961'
'grand_prediction_max_price' => '$0.00278'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00087383068991292
107 => 0.00087709325650851
108 => 0.00088444398563917
109 => 0.00082163281003446
110 => 0.00084983318384175
111 => 0.00086639826143583
112 => 0.00079155663822306
113 => 0.00086491888317908
114 => 0.00082053940720944
115 => 0.00080547634650798
116 => 0.00082575677333515
117 => 0.00081785347127724
118 => 0.00081105867626532
119 => 0.00080726706389927
120 => 0.00082215877109211
121 => 0.00082146405515212
122 => 0.00079709833182882
123 => 0.00076531423902751
124 => 0.00077598202384891
125 => 0.00077210631761228
126 => 0.00075806025823468
127 => 0.00076752560632751
128 => 0.00072584500362973
129 => 0.00065413569305742
130 => 0.00070150906013707
131 => 0.00069968523703682
201 => 0.00069876558272587
202 => 0.00073436535878254
203 => 0.00073094326174126
204 => 0.00072473212210208
205 => 0.00075794618578437
206 => 0.00074582260574813
207 => 0.0007831846227451
208 => 0.00080779366356306
209 => 0.00080155201479255
210 => 0.00082469693662766
211 => 0.0007762277880653
212 => 0.000792327294973
213 => 0.00079564538103372
214 => 0.00075753632939421
215 => 0.000731503159139
216 => 0.00072976704348285
217 => 0.00068462911385216
218 => 0.00070874143152024
219 => 0.00072995927323264
220 => 0.00071979757362343
221 => 0.0007165806830993
222 => 0.00073301507912867
223 => 0.00073429217245124
224 => 0.00070517430935645
225 => 0.00071122883513666
226 => 0.00073647721412129
227 => 0.00071059264076692
228 => 0.00066030314296041
301 => 0.0006478306521977
302 => 0.00064616659201634
303 => 0.00061234020786213
304 => 0.00064866412367
305 => 0.00063280776099944
306 => 0.00068289782068733
307 => 0.00065428664723199
308 => 0.00065305327672875
309 => 0.000651188856317
310 => 0.00062207309012515
311 => 0.00062844759251769
312 => 0.00064963740933464
313 => 0.0006571981746953
314 => 0.00065640952492466
315 => 0.00064953356767217
316 => 0.00065268134569176
317 => 0.0006425412559321
318 => 0.00063896057919025
319 => 0.00062765897845022
320 => 0.00061104874750928
321 => 0.00061335850199809
322 => 0.00058044928820073
323 => 0.00056251860189976
324 => 0.0005575556242543
325 => 0.00055091892312968
326 => 0.00055830525730591
327 => 0.00058035606053287
328 => 0.00055375811350229
329 => 0.00050815779894741
330 => 0.00051089845555132
331 => 0.00051705589723204
401 => 0.00050558154539556
402 => 0.0004947220343517
403 => 0.00050416349814436
404 => 0.00048484204372913
405 => 0.00051939080268878
406 => 0.0005184563555807
407 => 0.00053133399643993
408 => 0.000539386649545
409 => 0.00052082789121521
410 => 0.00051616041368349
411 => 0.00051881922101059
412 => 0.0004748750584602
413 => 0.00052774282083907
414 => 0.0005282000234435
415 => 0.00052428517716859
416 => 0.00055243562852629
417 => 0.00061184186123701
418 => 0.00058949084688107
419 => 0.00058083585855946
420 => 0.00056438271943332
421 => 0.00058630555042816
422 => 0.0005846222190572
423 => 0.00057700955621323
424 => 0.00057240539397224
425 => 0.00058088870407258
426 => 0.00057135421797018
427 => 0.00056964156227603
428 => 0.00055926473215726
429 => 0.00055556067592055
430 => 0.00055281834014561
501 => 0.00054979929791376
502 => 0.00055645855277878
503 => 0.0005413678051567
504 => 0.00052316984288871
505 => 0.00052165687923081
506 => 0.0005258343049114
507 => 0.00052398610502051
508 => 0.00052164803076078
509 => 0.00051718401026234
510 => 0.00051585963073916
511 => 0.0005201632216919
512 => 0.0005153047184212
513 => 0.00052247370465348
514 => 0.0005205241370764
515 => 0.00050963401107042
516 => 0.00049606088202593
517 => 0.00049594005270683
518 => 0.00049301574431859
519 => 0.00048929119791345
520 => 0.00048825511430962
521 => 0.00050336836439813
522 => 0.00053465233977983
523 => 0.00052851054685031
524 => 0.00053294862167814
525 => 0.00055477955730696
526 => 0.00056171895526423
527 => 0.00055679353496281
528 => 0.00055005131586754
529 => 0.00055034793929039
530 => 0.00057338814294745
531 => 0.00057482513218785
601 => 0.00057845594040805
602 => 0.00058312255503729
603 => 0.00055758827961318
604 => 0.00054914527721417
605 => 0.00054514451427758
606 => 0.000532823712923
607 => 0.00054611064087824
608 => 0.0005383689169617
609 => 0.00053941354001299
610 => 0.00053873322788043
611 => 0.00053910472430731
612 => 0.00051938114560654
613 => 0.00052656738104433
614 => 0.00051461887083573
615 => 0.00049862115694962
616 => 0.00049856752700316
617 => 0.00050248294481283
618 => 0.00050015390108932
619 => 0.00049388650431455
620 => 0.00049477675844513
621 => 0.00048697719549184
622 => 0.0004957237666033
623 => 0.00049597458696604
624 => 0.00049260668065918
625 => 0.00050608198025061
626 => 0.00051160282148801
627 => 0.00050938599340929
628 => 0.0005114472829204
629 => 0.00052876576607507
630 => 0.00053158943448767
701 => 0.00053284352147549
702 => 0.0005311632110465
703 => 0.00051176383300048
704 => 0.00051262427790934
705 => 0.00050631090408225
706 => 0.0005009767684853
707 => 0.00050119010593532
708 => 0.00050393254502124
709 => 0.00051590893735139
710 => 0.0005411125489633
711 => 0.00054206900760037
712 => 0.00054322826337037
713 => 0.00053851298755852
714 => 0.00053709081525455
715 => 0.0005389670276173
716 => 0.00054843217899579
717 => 0.0005727791181048
718 => 0.00056417328374629
719 => 0.00055717660645503
720 => 0.00056331457873012
721 => 0.00056236968600938
722 => 0.00055439384053997
723 => 0.00055416998512202
724 => 0.00053886178763417
725 => 0.00053320269557371
726 => 0.00052847353467228
727 => 0.0005233094144258
728 => 0.00052024795084081
729 => 0.00052495175031767
730 => 0.00052602756491175
731 => 0.00051574262514724
801 => 0.00051434082586149
802 => 0.00052273972968904
803 => 0.00051904368525723
804 => 0.00052284515861284
805 => 0.00052372713303977
806 => 0.00052358511484344
807 => 0.00051972601996864
808 => 0.00052218569196197
809 => 0.00051636783443422
810 => 0.00051004178818674
811 => 0.00050600616480745
812 => 0.00050248454816126
813 => 0.00050443854575412
814 => 0.00049747290112142
815 => 0.00049524445121269
816 => 0.000521352410435
817 => 0.00054063864062039
818 => 0.0005403582111953
819 => 0.00053865116919072
820 => 0.00053611485103273
821 => 0.00054824663152478
822 => 0.00054402016178396
823 => 0.00054709527165377
824 => 0.0005478780161776
825 => 0.00055024714810364
826 => 0.00055109390913343
827 => 0.00054853440918805
828 => 0.00053994441475478
829 => 0.00051853896533923
830 => 0.00050857467085339
831 => 0.00050528628770461
901 => 0.00050540581418654
902 => 0.00050210874022521
903 => 0.00050307987627131
904 => 0.00050177101874017
905 => 0.00049929235922284
906 => 0.00050428549551361
907 => 0.00050486090795684
908 => 0.00050369545028304
909 => 0.0005039699577554
910 => 0.0004943204659898
911 => 0.00049505409589115
912 => 0.00049096915137529
913 => 0.0004902032735233
914 => 0.00047987688950401
915 => 0.00046158220338054
916 => 0.00047171923540109
917 => 0.00045947512620266
918 => 0.00045483809652069
919 => 0.00047678907382909
920 => 0.00047458580453266
921 => 0.00047081476523532
922 => 0.0004652366121611
923 => 0.00046316762092509
924 => 0.00045059708513811
925 => 0.00044985435082261
926 => 0.00045608464779166
927 => 0.00045320958011187
928 => 0.00044917189621617
929 => 0.00043454781443941
930 => 0.00041810550465525
1001 => 0.00041860179463496
1002 => 0.00042383178745725
1003 => 0.00043903869694869
1004 => 0.00043309709432818
1005 => 0.00042878639345497
1006 => 0.00042797912876061
1007 => 0.00043808373653364
1008 => 0.00045238387351327
1009 => 0.00045909317783657
1010 => 0.00045244446101678
1011 => 0.00044480677312653
1012 => 0.00044527164379877
1013 => 0.00044836422011546
1014 => 0.00044868920615967
1015 => 0.00044371785651013
1016 => 0.00044511726231663
1017 => 0.0004429914369322
1018 => 0.00042994525047196
1019 => 0.0004297092863288
1020 => 0.00042650754177328
1021 => 0.0004264105942206
1022 => 0.00042096362801905
1023 => 0.00042020155979435
1024 => 0.00040938627779397
1025 => 0.00041650492915831
1026 => 0.00041173011156908
1027 => 0.00040453333519651
1028 => 0.00040329260823724
1029 => 0.00040325531048663
1030 => 0.00041064479065151
1031 => 0.00041641857878022
1101 => 0.00041181317156532
1102 => 0.00041076460961456
1103 => 0.00042196050798695
1104 => 0.00042053572786619
1105 => 0.00041930187747045
1106 => 0.00045110345309202
1107 => 0.00042593002447965
1108 => 0.00041495297275559
1109 => 0.00040136678676148
1110 => 0.00040579051742866
1111 => 0.00040672266247836
1112 => 0.00037405033425662
1113 => 0.00036079517476614
1114 => 0.00035624650353915
1115 => 0.00035362867893925
1116 => 0.000354821654482
1117 => 0.00034289045626543
1118 => 0.00035090841879077
1119 => 0.0003405770096543
1120 => 0.00033884491529125
1121 => 0.00035731875464327
1122 => 0.00035988928146649
1123 => 0.00034892261543852
1124 => 0.00035596499037043
1125 => 0.00035341132732379
1126 => 0.000340754112011
1127 => 0.00034027069948623
1128 => 0.0003339197537649
1129 => 0.00032398175349645
1130 => 0.00031943982070161
1201 => 0.0003170743426672
1202 => 0.00031805038500645
1203 => 0.00031755686813233
1204 => 0.00031433633670107
1205 => 0.00031774146522415
1206 => 0.00030904276894393
1207 => 0.00030557887799499
1208 => 0.00030401431881501
1209 => 0.00029629372518804
1210 => 0.00030858062301212
1211 => 0.00031100129666973
1212 => 0.00031342673980222
1213 => 0.00033453856635023
1214 => 0.00033348387915729
1215 => 0.00034301773772794
1216 => 0.00034264726951552
1217 => 0.0003399280586129
1218 => 0.00032845615510325
1219 => 0.00033302865137518
1220 => 0.00031895521857386
1221 => 0.00032949999132902
1222 => 0.0003246877974038
1223 => 0.00032787298372227
1224 => 0.00032214573152499
1225 => 0.00032531542936341
1226 => 0.00031157532819502
1227 => 0.00029874501505241
1228 => 0.00030390830760119
1229 => 0.00030952139709583
1230 => 0.00032169200530882
1231 => 0.0003144432914625
]
'min_raw' => 0.00029629372518804
'max_raw' => 0.00088444398563917
'avg_raw' => 0.00059036885541361
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000296'
'max' => '$0.000884'
'avg' => '$0.00059'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00056128627481196
'max_diff' => 2.6863985639169E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00031705020306586
102 => 0.00030831748558635
103 => 0.00029029939504871
104 => 0.00029040137548439
105 => 0.00028762968480062
106 => 0.00028523453937637
107 => 0.00031527589344547
108 => 0.00031153977618345
109 => 0.00030558676229735
110 => 0.00031355510794726
111 => 0.00031566206501174
112 => 0.00031572204711733
113 => 0.00032153554641073
114 => 0.00032463821202575
115 => 0.00032518507028812
116 => 0.00033433273703525
117 => 0.00033739891426824
118 => 0.00035002806434931
119 => 0.00032437497252543
120 => 0.00032384666398081
121 => 0.00031366723891159
122 => 0.00030721128660235
123 => 0.00031410928348951
124 => 0.00032021996706106
125 => 0.00031385711488362
126 => 0.00031468796905085
127 => 0.00030614635986676
128 => 0.00030919958323001
129 => 0.00031182943050404
130 => 0.0003103773834146
131 => 0.00030820359864183
201 => 0.00031971896069351
202 => 0.00031906921883749
203 => 0.00032979258871704
204 => 0.00033815222237369
205 => 0.00035313418034967
206 => 0.00033749972617461
207 => 0.00033692994452314
208 => 0.00034249965156207
209 => 0.00033739806157512
210 => 0.00034062209034597
211 => 0.0003526147394714
212 => 0.00035286812524965
213 => 0.00034862358699481
214 => 0.00034836530645625
215 => 0.00034918051645826
216 => 0.00035395522690261
217 => 0.00035228679636132
218 => 0.0003542175464232
219 => 0.00035663197894026
220 => 0.00036661909552903
221 => 0.00036902695552735
222 => 0.00036317710406369
223 => 0.00036370528015285
224 => 0.00036151727512343
225 => 0.00035940368968063
226 => 0.00036415472109168
227 => 0.00037283732437712
228 => 0.00037278331035271
301 => 0.00037479750554924
302 => 0.00037605233247019
303 => 0.00037066569673604
304 => 0.0003671591949452
305 => 0.00036850381085631
306 => 0.00037065388098011
307 => 0.00036780657209309
308 => 0.00035023166264058
309 => 0.00035556276747891
310 => 0.0003546754109561
311 => 0.00035341170736139
312 => 0.00035877217450054
313 => 0.00035825514436802
314 => 0.00034276808458265
315 => 0.00034375951590246
316 => 0.00034282837680493
317 => 0.0003458370777222
318 => 0.00033723558185187
319 => 0.00033988134404962
320 => 0.00034154074129758
321 => 0.00034251813902471
322 => 0.00034604916982302
323 => 0.00034563484411384
324 => 0.00034602341475519
325 => 0.00035125900127151
326 => 0.0003777388012347
327 => 0.00037918003832231
328 => 0.00037208285979522
329 => 0.00037491804263113
330 => 0.0003694751115725
331 => 0.00037312898765663
401 => 0.000375628876875
402 => 0.00036433235819823
403 => 0.00036366345167599
404 => 0.00035819805570471
405 => 0.00036113484992383
406 => 0.00035646219915824
407 => 0.00035760870421373
408 => 0.00035440297612807
409 => 0.00036017264842817
410 => 0.00036662403857611
411 => 0.00036825391450059
412 => 0.00036396641264897
413 => 0.00036086197874826
414 => 0.0003554116154827
415 => 0.00036447569106259
416 => 0.00036712630298484
417 => 0.00036446176852656
418 => 0.00036384433767135
419 => 0.00036267430731639
420 => 0.00036409256514224
421 => 0.00036711186718307
422 => 0.00036568802009837
423 => 0.00036662849618277
424 => 0.00036304437116376
425 => 0.00037066747993661
426 => 0.00038277481126893
427 => 0.00038281373831891
428 => 0.00038138988355914
429 => 0.00038080727286882
430 => 0.00038226823425908
501 => 0.00038306074588151
502 => 0.00038778522712309
503 => 0.00039285478372693
504 => 0.00041651219237623
505 => 0.00040986928669416
506 => 0.00043085954703336
507 => 0.00044746011771749
508 => 0.00045243790301068
509 => 0.00044785857476384
510 => 0.00043219294020185
511 => 0.00043142430943338
512 => 0.00045483538132931
513 => 0.00044822068122369
514 => 0.00044743388369392
515 => 0.00043906368729266
516 => 0.0004440115100348
517 => 0.00044292934862091
518 => 0.00044122110388794
519 => 0.00045066120501163
520 => 0.00046833223159152
521 => 0.0004655780363812
522 => 0.00046352215742014
523 => 0.00045451389427015
524 => 0.00045993888075486
525 => 0.00045800714697643
526 => 0.00046630710119713
527 => 0.00046139039218328
528 => 0.00044817056836465
529 => 0.00045027586888088
530 => 0.00044995765694312
531 => 0.0004565064360733
601 => 0.00045454065512911
602 => 0.00044957380666411
603 => 0.00046827183394375
604 => 0.00046705768805611
605 => 0.0004687790693324
606 => 0.00046953687460571
607 => 0.00048091803431463
608 => 0.00048558053129088
609 => 0.00048663899973299
610 => 0.00049106801124997
611 => 0.00048652880189171
612 => 0.00050468887572619
613 => 0.00051676426515643
614 => 0.00053079045137351
615 => 0.00055128647932011
616 => 0.00055899317542689
617 => 0.00055760102975516
618 => 0.00057314088422634
619 => 0.00060106565727949
620 => 0.00056324542478902
621 => 0.00060307022143618
622 => 0.00059046215061708
623 => 0.00056056864151449
624 => 0.00055864385194961
625 => 0.00057888808338466
626 => 0.00062378784027253
627 => 0.00061254096042094
628 => 0.00062380623613888
629 => 0.00061066469362355
630 => 0.00061001210527205
701 => 0.00062316798075138
702 => 0.00065390740089828
703 => 0.00063930425463642
704 => 0.00061836706363168
705 => 0.00063382675965081
706 => 0.00062043414023172
707 => 0.00059025682032236
708 => 0.00061253236014388
709 => 0.00059763734103608
710 => 0.0006019844994745
711 => 0.00063329161417222
712 => 0.00062952465930344
713 => 0.00063439944771427
714 => 0.00062579557376458
715 => 0.00061775819878918
716 => 0.00060275584153429
717 => 0.00059831438315839
718 => 0.00059954184246656
719 => 0.00059831377489052
720 => 0.00058992009388519
721 => 0.00058810747927126
722 => 0.00058508637550223
723 => 0.00058602274188672
724 => 0.00058034218294588
725 => 0.00059106257133062
726 => 0.00059305236988256
727 => 0.00060085377454277
728 => 0.00060166374225476
729 => 0.0006233905431874
730 => 0.00061142378633776
731 => 0.00061945211999257
801 => 0.00061873399026488
802 => 0.00056121652450179
803 => 0.00056914192380305
804 => 0.0005814713579885
805 => 0.00057591696460011
806 => 0.00056806435187681
807 => 0.00056172294607229
808 => 0.00055211506783641
809 => 0.00056563797195045
810 => 0.00058341915285989
811 => 0.00060211470234604
812 => 0.00062457618007272
813 => 0.00061956303972455
814 => 0.00060169480064382
815 => 0.00060249635679622
816 => 0.00060745126152967
817 => 0.00060103420969929
818 => 0.00059914169583878
819 => 0.00060719125918676
820 => 0.00060724669210558
821 => 0.00059986309844811
822 => 0.0005916575852812
823 => 0.00059162320388143
824 => 0.00059016311206923
825 => 0.00061092444071333
826 => 0.0006223410722605
827 => 0.00062364997066857
828 => 0.00062225297296888
829 => 0.00062279062193864
830 => 0.00061614753558965
831 => 0.00063133166103738
901 => 0.00064526611610258
902 => 0.00064153138447889
903 => 0.0006359324908516
904 => 0.00063147270239821
905 => 0.00064048080005339
906 => 0.00064007968364487
907 => 0.00064514441079374
908 => 0.00064491464551498
909 => 0.00064321156826884
910 => 0.00064153144530115
911 => 0.00064819294295557
912 => 0.00064627453861148
913 => 0.00064435315445556
914 => 0.00064049952438166
915 => 0.00064102329671072
916 => 0.00063542536981136
917 => 0.000632835512684
918 => 0.00059389027542474
919 => 0.00058348283545672
920 => 0.00058675722793363
921 => 0.0005878352429566
922 => 0.00058330591174502
923 => 0.0005897998092127
924 => 0.0005887877421711
925 => 0.00059272510299054
926 => 0.00059026521089089
927 => 0.0005903661657207
928 => 0.00059760018388149
929 => 0.00059970025012928
930 => 0.00059863213948604
1001 => 0.00059938020756788
1002 => 0.00061661912077394
1003 => 0.00061416829858545
1004 => 0.00061286634814451
1005 => 0.00061322699731434
1006 => 0.00061763190924496
1007 => 0.00061886504408626
1008 => 0.00061364016511283
1009 => 0.00061610424824136
1010 => 0.00062659600146395
1011 => 0.00063026752131006
1012 => 0.00064198525022931
1013 => 0.00063700735071839
1014 => 0.00064614450070913
1015 => 0.00067422898469669
1016 => 0.00069666481380443
1017 => 0.0006760318981571
1018 => 0.00071723244112785
1019 => 0.00074931297369745
1020 => 0.00074808166942451
1021 => 0.00074248768653491
1022 => 0.00070596485310951
1023 => 0.00067235599726668
1024 => 0.0007004712322866
1025 => 0.00070054290380262
1026 => 0.00069812778018024
1027 => 0.00068312765478268
1028 => 0.00069760580833106
1029 => 0.0006987550315828
1030 => 0.00069811177216496
1031 => 0.0006866112111923
1101 => 0.00066905198024601
1102 => 0.00067248301194206
1103 => 0.00067810311185133
1104 => 0.00066746309024741
1105 => 0.00066406295864332
1106 => 0.00067038445019684
1107 => 0.00069075361311734
1108 => 0.00068690294085774
1109 => 0.00068680238424326
1110 => 0.00070327719310897
1111 => 0.0006914847854474
1112 => 0.00067252628823943
1113 => 0.00066773901766256
1114 => 0.00065074743220655
1115 => 0.00066248358080297
1116 => 0.00066290594389749
1117 => 0.00065647817525177
1118 => 0.00067304786623957
1119 => 0.00067289517362008
1120 => 0.00068862562913997
1121 => 0.00071869635200472
1122 => 0.00070980295956321
1123 => 0.00069946091175208
1124 => 0.00070058537910303
1125 => 0.00071291801052105
1126 => 0.00070546142003912
1127 => 0.00070814286196562
1128 => 0.00071291395183754
1129 => 0.00071579246881677
1130 => 0.00070017120480758
1201 => 0.00069652914091561
1202 => 0.00068907875638335
1203 => 0.0006871350901269
1204 => 0.00069320327287105
1205 => 0.00069160452111003
1206 => 0.00066287044591487
1207 => 0.00065986757518209
1208 => 0.00065995966894035
1209 => 0.00065240880770405
1210 => 0.00064089193190436
1211 => 0.00067115759386903
1212 => 0.0006687268376456
1213 => 0.00066604347090052
1214 => 0.00066637216801572
1215 => 0.00067950946607612
1216 => 0.00067188916975163
1217 => 0.00069214897647229
1218 => 0.00068798416927606
1219 => 0.0006837125504905
1220 => 0.00068312208265765
1221 => 0.00068147787386259
1222 => 0.00067583927012122
1223 => 0.00066903031727595
1224 => 0.00066453445682611
1225 => 0.00061299790926361
1226 => 0.0006225627927169
1227 => 0.00063356631926336
1228 => 0.00063736469253333
1229 => 0.00063086731221562
1230 => 0.00067609582629816
1231 => 0.00068435951165385
]
'min_raw' => 0.00028523453937637
'max_raw' => 0.00074931297369745
'avg_raw' => 0.00051727375653691
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000285'
'max' => '$0.000749'
'avg' => '$0.000517'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.1059185811673E-5
'max_diff' => -0.00013513101194172
'year' => 2027
]
2 => [
'items' => [
101 => 0.00065932826968461
102 => 0.00065464594633104
103 => 0.0006764027986377
104 => 0.00066328075702976
105 => 0.00066918961156234
106 => 0.00065641790003353
107 => 0.00068236903184062
108 => 0.00068217132769628
109 => 0.00067207575129043
110 => 0.00068060846333713
111 => 0.00067912569463929
112 => 0.00066772781374139
113 => 0.00068273036499511
114 => 0.00068273780607336
115 => 0.00067302103327949
116 => 0.00066167396993132
117 => 0.00065964538301034
118 => 0.0006581171152677
119 => 0.00066881375138217
120 => 0.00067840432187489
121 => 0.00069624999585779
122 => 0.00070073682229985
123 => 0.00071824920460815
124 => 0.00070782143360597
125 => 0.000712443929429
126 => 0.00071746230253684
127 => 0.0007198682951493
128 => 0.00071594785929998
129 => 0.0007431517974089
130 => 0.00074544864329242
131 => 0.00074621875584952
201 => 0.00073704574098043
202 => 0.00074519352515505
203 => 0.00074138144676599
204 => 0.00075129941570843
205 => 0.00075285467987759
206 => 0.00075153742645644
207 => 0.00075203109185191
208 => 0.00072881732977948
209 => 0.00072761357375368
210 => 0.00071120027492718
211 => 0.00071788881551996
212 => 0.00070538490947186
213 => 0.00070935002688422
214 => 0.00071109781285856
215 => 0.00071018486865154
216 => 0.00071826697556967
217 => 0.0007113955336239
218 => 0.00069326066855937
219 => 0.00067512086266299
220 => 0.00067489313217632
221 => 0.00067011724147797
222 => 0.00066666514725108
223 => 0.0006673301430688
224 => 0.00066967367506722
225 => 0.00066652893691102
226 => 0.00066720002623892
227 => 0.0006783445805268
228 => 0.00068057954140991
229 => 0.00067298427107351
301 => 0.00064248816468061
302 => 0.0006350043436781
303 => 0.00064038356580408
304 => 0.00063781264409414
305 => 0.00051476458301984
306 => 0.00054367289977156
307 => 0.00052649655959136
308 => 0.00053441220739181
309 => 0.00051687961185956
310 => 0.00052524708540961
311 => 0.00052370191857613
312 => 0.00057018563645361
313 => 0.00056945985713521
314 => 0.00056980724928754
315 => 0.00055322531673148
316 => 0.00057964078554182
317 => 0.00059265399534732
318 => 0.00059024559654769
319 => 0.00059085173863864
320 => 0.00058043620927124
321 => 0.00056990809437904
322 => 0.00055823079469832
323 => 0.00057992577414724
324 => 0.00057751366277817
325 => 0.00058304617840854
326 => 0.00059711692337032
327 => 0.0005991888940155
328 => 0.00060197364357449
329 => 0.00060097550908956
330 => 0.0006247551219805
331 => 0.00062187525395647
401 => 0.0006288149072998
402 => 0.0006145395138598
403 => 0.00059838555114964
404 => 0.00060145589134801
405 => 0.0006011601928968
406 => 0.00059739561222589
407 => 0.00059399711712196
408 => 0.00058833958029399
409 => 0.0006062408639756
410 => 0.00060551410454971
411 => 0.00061727949488947
412 => 0.00061519984786401
413 => 0.00060131145605206
414 => 0.00060180748268265
415 => 0.00060514350015563
416 => 0.00061668949471959
417 => 0.00062011713201743
418 => 0.00061852931385334
419 => 0.00062228756167283
420 => 0.00062525792751326
421 => 0.00062266059388984
422 => 0.00065943336070559
423 => 0.00064416274413533
424 => 0.00065160553639941
425 => 0.00065338059849892
426 => 0.00064883381425657
427 => 0.0006498198489506
428 => 0.00065131342283368
429 => 0.00066038211097999
430 => 0.00068418097272199
501 => 0.00069472132658319
502 => 0.0007264325012265
503 => 0.00069384609692382
504 => 0.00069191255454845
505 => 0.00069762469468744
506 => 0.0007162425111718
507 => 0.0007313305027498
508 => 0.00073633606000334
509 => 0.00073699762702714
510 => 0.00074638838519793
511 => 0.00075177099265415
512 => 0.00074524810015453
513 => 0.00073972063173642
514 => 0.00071992192595737
515 => 0.00072221368006138
516 => 0.00073800159321482
517 => 0.0007603029504475
518 => 0.0007794398350139
519 => 0.00077273876502651
520 => 0.00082386319881212
521 => 0.00082893197759738
522 => 0.0008282316362625
523 => 0.00083977906867074
524 => 0.0008168597669341
525 => 0.00080706132140112
526 => 0.00074091573314785
527 => 0.00075949994540353
528 => 0.00078651318932969
529 => 0.0007829378852016
530 => 0.00076332014539634
531 => 0.00077942495319909
601 => 0.0007741002000956
602 => 0.00076990034639867
603 => 0.00078914069036601
604 => 0.00076798514182415
605 => 0.00078630214654984
606 => 0.00076281039852399
607 => 0.00077276937494975
608 => 0.000767116178269
609 => 0.00077077448935117
610 => 0.00074938807751636
611 => 0.00076092766621663
612 => 0.00074890799268778
613 => 0.00074890229379752
614 => 0.00074863695883818
615 => 0.00076277805144148
616 => 0.00076323919196359
617 => 0.00075278890316375
618 => 0.0007512828532835
619 => 0.00075685150904348
620 => 0.0007503320715818
621 => 0.00075338247533727
622 => 0.00075042446520405
623 => 0.00074975855481784
624 => 0.0007444524675652
625 => 0.00074216645928285
626 => 0.00074306286203354
627 => 0.00074000297731815
628 => 0.00073815928609627
629 => 0.00074827020224912
630 => 0.00074286834762184
701 => 0.00074744229055398
702 => 0.00074222970530519
703 => 0.0007241606138176
704 => 0.0007137688882259
705 => 0.0006796380494115
706 => 0.00068931751296009
707 => 0.00069573500730694
708 => 0.00069361402546359
709 => 0.00069817071517412
710 => 0.00069845045891444
711 => 0.0006969690326396
712 => 0.00069525373079578
713 => 0.00069441881672036
714 => 0.00070064158220632
715 => 0.00070425410701957
716 => 0.00069637908871964
717 => 0.00069453408211518
718 => 0.00070249616040809
719 => 0.00070735302356722
720 => 0.00074321337229855
721 => 0.00074055672183714
722 => 0.00074722439315397
723 => 0.00074647371568745
724 => 0.00075346249747084
725 => 0.00076488620200711
726 => 0.00074165861656684
727 => 0.00074569012224979
728 => 0.0007447016901574
729 => 0.0007554931325614
730 => 0.00075552682226666
731 => 0.00074905681347293
801 => 0.00075256431020392
802 => 0.00075060652175182
803 => 0.00075414451009574
804 => 0.00074052124065054
805 => 0.00075711291229373
806 => 0.00076651932097171
807 => 0.00076664992896533
808 => 0.00077110849202482
809 => 0.00077563865031582
810 => 0.00078433389466175
811 => 0.00077539614467036
812 => 0.00075931800250827
813 => 0.00076047879244029
814 => 0.00075105218357341
815 => 0.00075121064657152
816 => 0.00075036475866865
817 => 0.00075290333194064
818 => 0.00074107831472738
819 => 0.00074385362263182
820 => 0.00073996817531342
821 => 0.00074568167604614
822 => 0.00073953489373324
823 => 0.00074470121350551
824 => 0.00074693082585301
825 => 0.0007551581434154
826 => 0.00073831971223985
827 => 0.00070398501121132
828 => 0.00071120258163553
829 => 0.0007005272280502
830 => 0.00070151527266846
831 => 0.00070351128004348
901 => 0.00069704156708807
902 => 0.00069827578443588
903 => 0.00069823168950716
904 => 0.00069785170323348
905 => 0.00069616868102161
906 => 0.0006937279658386
907 => 0.0007034510239152
908 => 0.00070510316094863
909 => 0.00070877565691748
910 => 0.00071970251384296
911 => 0.00071861066316308
912 => 0.00072039151692242
913 => 0.00071650392316484
914 => 0.00070169560699299
915 => 0.00070249976980608
916 => 0.00069247184664101
917 => 0.0007085192203763
918 => 0.0007047189904608
919 => 0.00070226895751232
920 => 0.00070160044332293
921 => 0.00071255438581324
922 => 0.00071583197708835
923 => 0.00071378960215667
924 => 0.0007096006315862
925 => 0.00071764469343949
926 => 0.0007197969450397
927 => 0.000720278754801
928 => 0.00073453129010916
929 => 0.00072107531319881
930 => 0.00072431430058204
1001 => 0.00074958395553626
1002 => 0.0007266678654668
1003 => 0.00073880702946638
1004 => 0.00073821288055776
1005 => 0.00074442286609304
1006 => 0.00073770348048798
1007 => 0.00073778677532566
1008 => 0.00074330082178013
1009 => 0.00073555733799835
1010 => 0.00073363994251712
1011 => 0.00073099107439246
1012 => 0.00073677478103577
1013 => 0.00074024185159388
1014 => 0.00076818389400952
1015 => 0.00078623572772198
1016 => 0.00078545205001219
1017 => 0.0007926133972964
1018 => 0.00078938714475444
1019 => 0.00077896872425404
1020 => 0.0007967516976572
1021 => 0.00079112442080123
1022 => 0.00079158832666809
1023 => 0.00079157106006856
1024 => 0.0007953127072327
1025 => 0.00079266140729998
1026 => 0.00078743542298224
1027 => 0.00079090467525883
1028 => 0.00080120711423993
1029 => 0.00083318620095469
1030 => 0.00085108212154682
1031 => 0.00083210884406426
1101 => 0.00084519635680942
1102 => 0.00083734851271993
1103 => 0.00083592232599573
1104 => 0.00084414225115928
1105 => 0.0008523765642137
1106 => 0.00085185207407004
1107 => 0.0008458743856292
1108 => 0.00084249774110719
1109 => 0.00086806682468673
1110 => 0.00088690568991016
1111 => 0.00088562100559928
1112 => 0.0008912911843458
1113 => 0.0009079390045176
1114 => 0.00090946107255684
1115 => 0.00090926932696823
1116 => 0.00090549672252161
1117 => 0.00092188866347338
1118 => 0.00093556310900411
1119 => 0.00090462347359324
1120 => 0.00091640488172813
1121 => 0.00092169393541315
1122 => 0.00092945983541427
1123 => 0.00094256221043212
1124 => 0.00095679486493484
1125 => 0.00095880751833464
1126 => 0.00095737944443315
1127 => 0.00094799262619432
1128 => 0.00096356616658208
1129 => 0.00097268878129677
1130 => 0.00097812108959204
1201 => 0.00099189651957894
1202 => 0.0009217265988081
1203 => 0.00087205684121515
1204 => 0.00086430019132701
1205 => 0.00088007364388972
1206 => 0.00088423297753958
1207 => 0.00088255635536069
1208 => 0.00082664852741303
1209 => 0.00086400584818326
1210 => 0.00090419918423928
1211 => 0.00090574317396971
1212 => 0.00092586479840238
1213 => 0.00093241722413091
1214 => 0.00094861776920081
1215 => 0.00094760442069575
1216 => 0.0009515489956133
1217 => 0.00095064220615027
1218 => 0.00098065030446503
1219 => 0.0010137536931519
1220 => 0.001012607428064
1221 => 0.0010078484242788
1222 => 0.0010149163564306
1223 => 0.0010490826011302
1224 => 0.0010459371208212
1225 => 0.00104899268701
1226 => 0.001089276615036
1227 => 0.0011416514517918
1228 => 0.0011173180817711
1229 => 0.0011701144929773
1230 => 0.0012033470352142
1231 => 0.0012608192807038
]
'min_raw' => 0.00051476458301984
'max_raw' => 0.0012608192807038
'avg_raw' => 0.00088779193186182
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000514'
'max' => '$0.00126'
'avg' => '$0.000887'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00022953004364347
'max_diff' => 0.00051150630700635
'year' => 2028
]
3 => [
'items' => [
101 => 0.0012536234725117
102 => 0.00127599699593
103 => 0.0012407414740374
104 => 0.0011597876694555
105 => 0.0011469764200017
106 => 0.0011726248658407
107 => 0.0012356790671972
108 => 0.0011706390646491
109 => 0.0011837965724563
110 => 0.0011800072093227
111 => 0.0011798052902651
112 => 0.0011875117194308
113 => 0.0011763331419856
114 => 0.001130789606486
115 => 0.0011516619404157
116 => 0.0011436021299137
117 => 0.0011525450905644
118 => 0.0012008065608388
119 => 0.0011794690144207
120 => 0.0011569916425908
121 => 0.0011851832549936
122 => 0.0012210808652714
123 => 0.0012188344573345
124 => 0.001214475487011
125 => 0.0012390467744959
126 => 0.001279631342709
127 => 0.0012906011884151
128 => 0.0012986989042466
129 => 0.0012998154424478
130 => 0.0013113164798442
131 => 0.0012494725031292
201 => 0.0013476204824418
202 => 0.0013645679271859
203 => 0.0013613825099736
204 => 0.0013802188815492
205 => 0.001374676743199
206 => 0.0013666470542645
207 => 0.0013965067098229
208 => 0.0013622750242752
209 => 0.0013136874562895
210 => 0.0012870313555395
211 => 0.0013221342592935
212 => 0.0013435703776935
213 => 0.0013577382883627
214 => 0.0013620254895708
215 => 0.0012542732749943
216 => 0.0011962008075494
217 => 0.0012334245933794
218 => 0.0012788401811405
219 => 0.0012492202172461
220 => 0.0012503812637527
221 => 0.0012081509792289
222 => 0.0012825766242643
223 => 0.0012717334338009
224 => 0.0013279879251066
225 => 0.001314562339286
226 => 0.001360435693159
227 => 0.0013483557017008
228 => 0.0013984990708608
301 => 0.0014185026183963
302 => 0.001452091688012
303 => 0.0014767999443533
304 => 0.0014913091050706
305 => 0.0014904380294837
306 => 0.0015479305526807
307 => 0.0015140292203872
308 => 0.001471441157096
309 => 0.0014706708733946
310 => 0.0014927278348507
311 => 0.0015389531750307
312 => 0.001550938733188
313 => 0.0015576370250981
314 => 0.0015473783578686
315 => 0.0015105808913944
316 => 0.0014946919319382
317 => 0.0015082297857423
318 => 0.0014916741538609
319 => 0.0015202538191781
320 => 0.0015594998039458
321 => 0.0015513956632867
322 => 0.0015784865904693
323 => 0.0016065228500547
324 => 0.001646615960449
325 => 0.0016570977841497
326 => 0.0016744238401388
327 => 0.0016922580430645
328 => 0.001697985908399
329 => 0.0017089221805747
330 => 0.0017088645410221
331 => 0.0017418217333198
401 => 0.0017781745370235
402 => 0.0017918968788523
403 => 0.0018234506472332
404 => 0.0017694159246567
405 => 0.0018104018824372
406 => 0.0018473722423002
407 => 0.0018032946551625
408 => 0.0018640453402711
409 => 0.0018664041517099
410 => 0.0019020194039252
411 => 0.0018659165227482
412 => 0.0018444787471499
413 => 0.0019063688020394
414 => 0.0019363154500821
415 => 0.0019272952759777
416 => 0.0018586513056628
417 => 0.0018186975706611
418 => 0.0017141309396618
419 => 0.0018379946310228
420 => 0.0018983250219313
421 => 0.0018584950645251
422 => 0.0018785829782705
423 => 0.0019881761221377
424 => 0.0020299020956917
425 => 0.0020212233848791
426 => 0.0020226899441427
427 => 0.0020452045220924
428 => 0.0021450465597263
429 => 0.0020852188964558
430 => 0.0021309549033263
501 => 0.002155213116457
502 => 0.0021777454967377
503 => 0.0021224130922002
504 => 0.0020504264468915
505 => 0.0020276252545284
506 => 0.0018545347602237
507 => 0.0018455246483012
508 => 0.0018404669994448
509 => 0.0018085792388237
510 => 0.0017835241937683
511 => 0.001763599491706
512 => 0.0017113111234749
513 => 0.0017289569128118
514 => 0.001645620167282
515 => 0.001698936063799
516 => 0.0015659286056975
517 => 0.0016767011691424
518 => 0.0016164126990697
519 => 0.0016568947852703
520 => 0.0016567535470852
521 => 0.0015822131915328
522 => 0.0015392198700677
523 => 0.0015666168878304
524 => 0.0015959886656499
525 => 0.0016007541377826
526 => 0.0016388354144075
527 => 0.0016494630801592
528 => 0.0016172607567733
529 => 0.0015631723217656
530 => 0.001575735831592
531 => 0.0015389652709421
601 => 0.0014745262777623
602 => 0.0015208074876609
603 => 0.0015366099275615
604 => 0.0015435891852667
605 => 0.0014802208363427
606 => 0.001460309125317
607 => 0.0014497082974423
608 => 0.0015549922636652
609 => 0.001560759957
610 => 0.0015312516224295
611 => 0.0016646320927833
612 => 0.0016344439844538
613 => 0.0016681714977239
614 => 0.0015745958247598
615 => 0.0015781705414834
616 => 0.0015338703182854
617 => 0.0015586754831343
618 => 0.0015411439921269
619 => 0.0015566714709439
620 => 0.0015659785777246
621 => 0.0016102715316918
622 => 0.0016772069235279
623 => 0.001603655641409
624 => 0.001571608294516
625 => 0.0015914902882873
626 => 0.0016444386577187
627 => 0.0017246581477845
628 => 0.0016771665950979
629 => 0.0016982425397214
630 => 0.0017028466960181
701 => 0.0016678281832998
702 => 0.0017259493302984
703 => 0.0017570969251502
704 => 0.0017890479123817
705 => 0.0018167900593484
706 => 0.0017762859854642
707 => 0.0018196311505512
708 => 0.0017847025989427
709 => 0.0017533680773026
710 => 0.0017534155988376
711 => 0.0017337589956884
712 => 0.0016956718501955
713 => 0.0016886479962049
714 => 0.0017251869716787
715 => 0.0017544877697548
716 => 0.0017569011238257
717 => 0.00177312355117
718 => 0.0017827238165681
719 => 0.0018768194683971
720 => 0.0019146655179627
721 => 0.0019609429509826
722 => 0.001978970619197
723 => 0.0020332274372458
724 => 0.0019894106501481
725 => 0.001979930612639
726 => 0.0018483213193227
727 => 0.0018698723337304
728 => 0.0019043775871606
729 => 0.0018488902982427
730 => 0.0018840842116478
731 => 0.0018910322356629
801 => 0.0018470048613978
802 => 0.0018705217843033
803 => 0.0018080678093478
804 => 0.001678568249515
805 => 0.0017260935003279
806 => 0.0017610880817526
807 => 0.0017111464992587
808 => 0.0018006648528729
809 => 0.0017483700787254
810 => 0.0017317951459125
811 => 0.0016671304236192
812 => 0.0016976496833682
813 => 0.0017389274191725
814 => 0.0017134225774973
815 => 0.0017663489535445
816 => 0.0018413068169764
817 => 0.0018947262542758
818 => 0.0018988271353599
819 => 0.0018644820160007
820 => 0.0019195202889614
821 => 0.0019199211826933
822 => 0.0018578377859556
823 => 0.0018198120511356
824 => 0.0018111725241776
825 => 0.0018327557563976
826 => 0.0018589617847971
827 => 0.0019002813875514
828 => 0.0019252499581169
829 => 0.0019903547478453
830 => 0.0020079702372453
831 => 0.0020273243194131
901 => 0.0020531873417672
902 => 0.0020842425312461
903 => 0.0020162955446391
904 => 0.0020189952050861
905 => 0.0019557239119477
906 => 0.0018881094612081
907 => 0.0019394204010592
908 => 0.0020065026293062
909 => 0.0019911138920271
910 => 0.0019893823447198
911 => 0.0019922943269995
912 => 0.0019806917216402
913 => 0.0019282135676127
914 => 0.0019018593671907
915 => 0.0019358630094087
916 => 0.0019539344319195
917 => 0.0019819616322401
918 => 0.0019785066882182
919 => 0.0020507017463426
920 => 0.0020787545628645
921 => 0.0020715774519505
922 => 0.0020728982130855
923 => 0.0021236864974212
924 => 0.0021801735150098
925 => 0.0022330810611001
926 => 0.0022869008894151
927 => 0.0022220189857577
928 => 0.00218907595644
929 => 0.0022230647537315
930 => 0.0022050298194616
1001 => 0.002308663901285
1002 => 0.0023158393002588
1003 => 0.0024194658881584
1004 => 0.0025178198596997
1005 => 0.002456045492369
1006 => 0.0025142959383832
1007 => 0.0025772985449761
1008 => 0.0026988407948984
1009 => 0.0026579096410325
1010 => 0.0026265570186442
1011 => 0.002596928941982
1012 => 0.0026585802661913
1013 => 0.0027378937098826
1014 => 0.002754977065999
1015 => 0.0027826586292519
1016 => 0.002753554850232
1017 => 0.0027886071463854
1018 => 0.0029123571545661
1019 => 0.0028789188099841
1020 => 0.0028314309851956
1021 => 0.0029291197315771
1022 => 0.0029644729091372
1023 => 0.0032126000238568
1024 => 0.0035258707558102
1025 => 0.003396174615735
1026 => 0.003315668036322
1027 => 0.0033345889921256
1028 => 0.0034489848585515
1029 => 0.0034857251801042
1030 => 0.0033858523209757
1031 => 0.003421129103234
1101 => 0.0036155076418137
1102 => 0.0037197854913516
1103 => 0.0035781621652955
1104 => 0.0031874290255693
1105 => 0.0028271552261489
1106 => 0.0029227160610958
1107 => 0.0029118824280108
1108 => 0.0031207179184982
1109 => 0.0028781213165246
1110 => 0.0028822060211282
1111 => 0.0030953600083983
1112 => 0.0030384941789791
1113 => 0.0029463788181452
1114 => 0.002827827770224
1115 => 0.002608675193497
1116 => 0.0024145656447682
1117 => 0.0027952591705847
1118 => 0.0027788429735052
1119 => 0.0027550698873901
1120 => 0.0028079743180228
1121 => 0.0030648632159906
1122 => 0.0030589410954242
1123 => 0.0030212675858734
1124 => 0.0030498426108286
1125 => 0.0029413694781123
1126 => 0.0029693254743006
1127 => 0.0028270981569384
1128 => 0.0028913908443236
1129 => 0.0029461811799519
1130 => 0.0029571811510141
1201 => 0.0029819646474896
1202 => 0.0027701923836021
1203 => 0.0028652719127806
1204 => 0.0029211222284258
1205 => 0.0026687884704887
1206 => 0.0029161344013463
1207 => 0.0027665058996386
1208 => 0.0027157197388143
1209 => 0.0027840966137963
1210 => 0.0027574500791171
1211 => 0.002734540953337
1212 => 0.0027217572675229
1213 => 0.0027719656980294
1214 => 0.0027696234147342
1215 => 0.0026874726773892
1216 => 0.0025803103894151
1217 => 0.0026162775707414
1218 => 0.0026032103565714
1219 => 0.0025558530867153
1220 => 0.0025877661686598
1221 => 0.0024472371066175
1222 => 0.0022054641594387
1223 => 0.0023651867740507
1224 => 0.0023590376271329
1225 => 0.0023559369484153
1226 => 0.0024759640788874
1227 => 0.0024644262397895
1228 => 0.0024434849488481
1229 => 0.0025554684834848
1230 => 0.0025145929869513
1231 => 0.0026405616357893
]
'min_raw' => 0.001130789606486
'max_raw' => 0.0037197854913516
'avg_raw' => 0.0024252875489188
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00113'
'max' => '$0.003719'
'avg' => '$0.002425'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0006160250234662
'max_diff' => 0.0024589662106478
'year' => 2029
]
4 => [
'items' => [
101 => 0.0027235327350554
102 => 0.0027024885804477
103 => 0.0027805233003415
104 => 0.0026171061819557
105 => 0.0026713867935267
106 => 0.0026825739523418
107 => 0.0025540866240501
108 => 0.0024663139729568
109 => 0.0024604605378103
110 => 0.0023082748566309
111 => 0.002389571219117
112 => 0.0024611086538328
113 => 0.0024268477741332
114 => 0.0024160018031349
115 => 0.0024714115167609
116 => 0.0024757173260617
117 => 0.0023775444176933
118 => 0.0023979576740748
119 => 0.002483084346607
120 => 0.0023958127003395
121 => 0.0022262581473843
122 => 0.0021842062739763
123 => 0.0021785957788939
124 => 0.0020645477630352
125 => 0.0021870163812363
126 => 0.0021335555474366
127 => 0.0023024376808506
128 => 0.0022059731119776
129 => 0.0022018147172148
130 => 0.0021955286936269
131 => 0.0020973628551131
201 => 0.0021188549349831
202 => 0.0021902978818073
203 => 0.0022157895300965
204 => 0.002213130542333
205 => 0.0021899477723923
206 => 0.0022005607257561
207 => 0.002166372705173
208 => 0.002154300203543
209 => 0.0021161960675954
210 => 0.0020601935142887
211 => 0.0020679810128096
212 => 0.0019570253008439
213 => 0.0018965707400997
214 => 0.001879837714464
215 => 0.0018574616132626
216 => 0.0018823651546352
217 => 0.0019567109772528
218 => 0.0018670341418298
219 => 0.0017132894975958
220 => 0.0017225298126823
221 => 0.0017432900572077
222 => 0.0017046034788774
223 => 0.0016679898792062
224 => 0.0016998224335651
225 => 0.0016346788010233
226 => 0.001751162353973
227 => 0.0017480118003071
228 => 0.0017914296655522
301 => 0.0018185797477142
302 => 0.0017560075982742
303 => 0.0017402708719032
304 => 0.0017492352264385
305 => 0.0016010744143164
306 => 0.001779321766286
307 => 0.0017808632567878
308 => 0.001767664079246
309 => 0.0018625752914003
310 => 0.0020628675525952
311 => 0.0019875095471961
312 => 0.0019583286497979
313 => 0.0019028557425126
314 => 0.0019767700978149
315 => 0.0019710946285712
316 => 0.0019454280042936
317 => 0.0019299047498458
318 => 0.0019585068221349
319 => 0.0019263606365641
320 => 0.0019205862983175
321 => 0.0018856000910849
322 => 0.0018731116068739
323 => 0.0018638656303449
324 => 0.0018536867186774
325 => 0.0018761388613891
326 => 0.001825259352179
327 => 0.0017639036518513
328 => 0.0017588025892469
329 => 0.0017728870715876
330 => 0.0017666557366182
331 => 0.0017587727560124
401 => 0.001743721999234
402 => 0.0017392567612064
403 => 0.0017537666185706
404 => 0.0017373858355836
405 => 0.0017615565731884
406 => 0.0017549834699878
407 => 0.0017182666498343
408 => 0.0016725038976152
409 => 0.0016720965131298
410 => 0.0016622370032302
411 => 0.0016496794349857
412 => 0.0016461862067784
413 => 0.0016971415846252
414 => 0.001802617691802
415 => 0.0017819102081339
416 => 0.0017968734872724
417 => 0.0018704780109322
418 => 0.0018938746756384
419 => 0.0018772682772103
420 => 0.0018545364148039
421 => 0.0018555365013836
422 => 0.0019332181566291
423 => 0.0019380630661805
424 => 0.0019503045895898
425 => 0.0019660384066249
426 => 0.0018799478142863
427 => 0.0018514816422265
428 => 0.0018379927906614
429 => 0.0017964523486836
430 => 0.0018412501539483
501 => 0.0018151483912538
502 => 0.0018186704108045
503 => 0.0018163766909517
504 => 0.001817629217092
505 => 0.001751129794446
506 => 0.0017753586889515
507 => 0.0017350734525648
508 => 0.0016811360432731
509 => 0.0016809552261643
510 => 0.0016941563306754
511 => 0.0016863037971529
512 => 0.0016651728313511
513 => 0.0016681743853079
514 => 0.0016418776142628
515 => 0.0016713672894312
516 => 0.0016722129477959
517 => 0.0016608578165426
518 => 0.0017062907299304
519 => 0.0017249046316152
520 => 0.0017174304409738
521 => 0.0017243802224751
522 => 0.001782770697569
523 => 0.0017922908927643
524 => 0.0017965191346013
525 => 0.0017908538506744
526 => 0.0017254474931709
527 => 0.0017283485432555
528 => 0.0017070625626118
529 => 0.0016890781520292
530 => 0.0016897974341367
531 => 0.0016990437589859
601 => 0.001739423001892
602 => 0.0018243987381015
603 => 0.0018276235051742
604 => 0.0018315320169394
605 => 0.0018156341353297
606 => 0.001810839182114
607 => 0.0018171649630879
608 => 0.0018490773817963
609 => 0.0019311647868513
610 => 0.0019021496154714
611 => 0.0018785598294915
612 => 0.0018992544315565
613 => 0.0018960686597783
614 => 0.0018691775399224
615 => 0.0018684227957517
616 => 0.0018168101391372
617 => 0.0017977301151502
618 => 0.0017817854189915
619 => 0.0017643742270331
620 => 0.0017540522888118
621 => 0.0017699114771568
622 => 0.0017735386611717
623 => 0.0017388622686841
624 => 0.0017341360045217
625 => 0.001762453495169
626 => 0.0017499920233176
627 => 0.0017628089561464
628 => 0.0017657825945043
629 => 0.00176530377024
630 => 0.0017522925624362
701 => 0.0017605855182906
702 => 0.0017409702054459
703 => 0.0017196414988521
704 => 0.0017060351128706
705 => 0.0016941617364765
706 => 0.0017007497757846
707 => 0.0016772646185797
708 => 0.001669751244127
709 => 0.0017577760514445
710 => 0.0018228009230361
711 => 0.0018218554356505
712 => 0.0018161000243502
713 => 0.0018075486506004
714 => 0.0018484517955433
715 => 0.0018342019577294
716 => 0.0018445699053528
717 => 0.0018472089831643
718 => 0.0018551966768605
719 => 0.0018580515907914
720 => 0.001849422058027
721 => 0.0018204602920609
722 => 0.0017482903248757
723 => 0.0017146950103318
724 => 0.0017036079969581
725 => 0.001704010988837
726 => 0.0016928946737821
727 => 0.001696168926764
728 => 0.0016917560222163
729 => 0.0016833990485991
730 => 0.0017002337562131
731 => 0.0017021737994395
801 => 0.0016982443775226
802 => 0.0016991698986311
803 => 0.0016666359634374
804 => 0.0016691094478702
805 => 0.0016553367722333
806 => 0.0016527545615834
807 => 0.0016179384368973
808 => 0.0015562566253378
809 => 0.0015904343365401
810 => 0.0015491524675212
811 => 0.0015335183982013
812 => 0.0016075276507649
813 => 0.0016000991745046
814 => 0.0015873848522281
815 => 0.0015685777196841
816 => 0.0015616019712796
817 => 0.001519219532227
818 => 0.0015167153516262
819 => 0.0015377212328428
820 => 0.0015280277414296
821 => 0.0015144144082732
822 => 0.001465108295542
823 => 0.0014096719001393
824 => 0.0014113451764558
825 => 0.0014289784624026
826 => 0.0014802496194655
827 => 0.001460217091401
828 => 0.0014456832624434
829 => 0.001442961513165
830 => 0.0014770299037529
831 => 0.0015252438139834
901 => 0.0015478647019381
902 => 0.0015254480889816
903 => 0.0014996970910133
904 => 0.001501264434941
905 => 0.0015116912719095
906 => 0.0015127869850473
907 => 0.0014960257326153
908 => 0.0015007439269953
909 => 0.0014935765582914
910 => 0.001449590429785
911 => 0.0014487948602019
912 => 0.0014379999548943
913 => 0.0014376730894517
914 => 0.0014193082626082
915 => 0.0014167388963827
916 => 0.0013802744180195
917 => 0.0014042754481028
918 => 0.0013881768172336
919 => 0.0013639123832305
920 => 0.0013597291856626
921 => 0.0013596034336924
922 => 0.0013845175819853
923 => 0.0014039843117742
924 => 0.00138845685981
925 => 0.0013849215599847
926 => 0.0014226693130199
927 => 0.0014178655673678
928 => 0.0014137055546138
929 => 0.0015209267871371
930 => 0.0014360528150178
1001 => 0.0013990429187369
1002 => 0.0013532361441005
1003 => 0.0013681510608999
1004 => 0.0013712938530153
1005 => 0.0012611368173066
1006 => 0.0012164461216387
1007 => 0.0012011099590189
1008 => 0.0011922837806096
1009 => 0.0011963059809429
1010 => 0.0011560791131461
1011 => 0.0011831122335965
1012 => 0.0011482791663769
1013 => 0.001142439289301
1014 => 0.0012047251284786
1015 => 0.0012133918391315
1016 => 0.00117641695895
1017 => 0.0012001608177159
1018 => 0.0011915509644631
1019 => 0.0011488762793375
1020 => 0.0011472464202594
1021 => 0.0011258337633511
1022 => 0.001092327101597
1023 => 0.0010770136580716
1024 => 0.0010690382837261
1025 => 0.001072329078618
1026 => 0.0010706651520207
1027 => 0.0010598069054499
1028 => 0.0010712875340039
1029 => 0.0010419592721716
1030 => 0.0010302805219961
1031 => 0.0010250055014867
1101 => 0.00099897498103877
1102 => 0.0010404011148965
1103 => 0.0010485625851391
1104 => 0.0010567401359994
1105 => 0.0011279201331866
1106 => 0.0011243641816797
1107 => 0.0011565082514834
1108 => 0.00115525919204
1109 => 0.0011460911826326
1110 => 0.001107412859007
1111 => 0.0011228293494293
1112 => 0.001075379788164
1113 => 0.0011109322257205
1114 => 0.001094707577925
1115 => 0.0011054466559803
1116 => 0.0010861368253333
1117 => 0.0010968236828967
1118 => 0.0010504979725042
1119 => 0.0010072396759601
1120 => 0.0010246480772779
1121 => 0.0010435730004024
1122 => 0.0010846070557173
1123 => 0.0010601675108954
1124 => 0.0010689568953748
1125 => 0.0010395139286938
1126 => 0.00097876467846325
1127 => 0.0009791085126222
1128 => 0.00096976356396859
1129 => 0.00096168816394702
1130 => 0.0010629746866113
1201 => 0.0010503781064151
1202 => 0.0010303071044719
1203 => 0.0010571729381627
1204 => 0.0010642766910087
1205 => 0.0010644789248655
1206 => 0.0010840795436188
1207 => 0.001094540397361
1208 => 0.001096384168173
1209 => 0.0011272261652806
1210 => 0.0011375639958953
1211 => 0.0011801440571327
1212 => 0.0010936528670069
1213 => 0.0010918716378633
1214 => 0.0010575509955377
1215 => 0.0010357843015869
1216 => 0.0010590413796947
1217 => 0.0010796439759905
1218 => 0.0010581911756341
1219 => 0.0010609924584673
1220 => 0.0010321938267471
1221 => 0.0010424879824855
1222 => 0.00105135469618
1223 => 0.0010464590180392
1224 => 0.001039129950909
1225 => 0.0010779547980432
1226 => 0.0010757641480121
1227 => 0.0011119187382428
1228 => 0.0011401038267671
1229 => 0.0011906165440901
1230 => 0.0011379038902761
1231 => 0.0011359828316573
]
'min_raw' => 0.00096168816394702
'max_raw' => 0.0027805233003415
'avg_raw' => 0.0018711057321443
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000961'
'max' => '$0.00278'
'avg' => '$0.001871'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00016910144253902
'max_diff' => -0.00093926219101002
'year' => 2030
]
5 => [
'items' => [
101 => 0.0011547614878036
102 => 0.0011375611209809
103 => 0.0011484311590764
104 => 0.0011888652129028
105 => 0.001189719520745
106 => 0.0011754087636746
107 => 0.0011745379528063
108 => 0.0011772864902442
109 => 0.0011933847598669
110 => 0.0011877595298109
111 => 0.0011942691884451
112 => 0.0012024096162467
113 => 0.001236081877104
114 => 0.0012442001451997
115 => 0.0012244769625664
116 => 0.0012262577451271
117 => 0.0012188807334088
118 => 0.0012117546325225
119 => 0.0012277730666313
120 => 0.0012570470698082
121 => 0.0012568649577538
122 => 0.0012636559574855
123 => 0.0012678866940587
124 => 0.0012497252755981
125 => 0.0012379028599941
126 => 0.0012424363264165
127 => 0.001249685437952
128 => 0.0012400855372467
129 => 0.0011808305029865
130 => 0.0011988046951548
131 => 0.0011958129106849
201 => 0.0011915522457864
202 => 0.0012096254350019
203 => 0.0012078822318122
204 => 0.0011556665284738
205 => 0.0011590092083881
206 => 0.0011558698079107
207 => 0.0011660138531141
208 => 0.00113701330925
209 => 0.001145933681221
210 => 0.0011515284548979
211 => 0.0011548238195746
212 => 0.0011667289364398
213 => 0.001165332008384
214 => 0.0011666421014305
215 => 0.0011842942469072
216 => 0.0012735727412437
217 => 0.0012784319727086
218 => 0.0012545033397953
219 => 0.0012640623566727
220 => 0.0012457111345952
221 => 0.0012580304329183
222 => 0.0012664589839548
223 => 0.0012283719825383
224 => 0.001226116717497
225 => 0.0012076897533981
226 => 0.0012175913601482
227 => 0.001201837191858
228 => 0.001205702713699
301 => 0.0011948943776414
302 => 0.0012143472306268
303 => 0.0012360985429323
304 => 0.001241593783406
305 => 0.0012271381715695
306 => 0.0012166713559285
307 => 0.0011982950756465
308 => 0.0012288552392976
309 => 0.0012377919624533
310 => 0.0012288082984954
311 => 0.0012267265872594
312 => 0.0012227817482288
313 => 0.0012275635035082
314 => 0.0012377432911398
315 => 0.0012329426912839
316 => 0.0012361135720644
317 => 0.0012240294443272
318 => 0.0012497312877833
319 => 0.0012905520006771
320 => 0.0012906832459439
321 => 0.001285882620211
322 => 0.001283918307592
323 => 0.0012888440409203
324 => 0.0012915160491867
325 => 0.0013074449675455
326 => 0.0013245373315805
327 => 0.0014042999365491
328 => 0.0013819029162491
329 => 0.0014526730444759
330 => 0.0015086430275523
331 => 0.0015254259782062
401 => 0.0015099864533034
402 => 0.001457168672638
403 => 0.0014545771803381
404 => 0.001533509243744
405 => 0.0015112073205143
406 => 0.0015085545777102
407 => 0.0014803338761549
408 => 0.001497015805976
409 => 0.001493367223215
410 => 0.0014876077568319
411 => 0.0015194357168573
412 => 0.001579014816723
413 => 0.0015697288552797
414 => 0.0015627973158256
415 => 0.0015324253276785
416 => 0.0015507160483722
417 => 0.0015442030730689
418 => 0.0015721869482083
419 => 0.0015556099204944
420 => 0.0015110383615113
421 => 0.0015181365291891
422 => 0.0015170636554241
423 => 0.0015391433214827
424 => 0.0015325155537829
425 => 0.0015157694774089
426 => 0.0015788111818368
427 => 0.0015747176042076
428 => 0.0015805213613636
429 => 0.0015830763547509
430 => 0.0016214487293167
501 => 0.0016371686633973
502 => 0.0016407373636497
503 => 0.001655670085203
504 => 0.0016403658239341
505 => 0.0017015937807629
506 => 0.0017423067993037
507 => 0.0017895970654117
508 => 0.0018587008546206
509 => 0.001884684518609
510 => 0.0018799908022802
511 => 0.0019323845065878
512 => 0.0020265348285819
513 => 0.001899021274216
514 => 0.0020332933565904
515 => 0.0019907843655564
516 => 0.0018899963125188
517 => 0.0018835067501163
518 => 0.0019517615898067
519 => 0.0021031442549551
520 => 0.0020652246143034
521 => 0.0021032062779028
522 => 0.0020588986497992
523 => 0.0020566984026099
524 => 0.0021010543553023
525 => 0.0022046944564853
526 => 0.0021554589293044
527 => 0.0020848677280439
528 => 0.0021369911725339
529 => 0.0020918370211196
530 => 0.001990092080132
531 => 0.0020651956178688
601 => 0.0020149760210098
602 => 0.0020296327691939
603 => 0.0021351868921902
604 => 0.0021224863408497
605 => 0.0021389220303237
606 => 0.002109913468599
607 => 0.0020828148977178
608 => 0.0020322334028018
609 => 0.0020172587157948
610 => 0.0020213971805507
611 => 0.0020172566649772
612 => 0.0019889567834396
613 => 0.001982845426716
614 => 0.001972659564432
615 => 0.0019758165890724
616 => 0.0019566641879994
617 => 0.0019928087259121
618 => 0.0019995174706533
619 => 0.0020258204511419
620 => 0.002028551313833
621 => 0.0021018047400942
622 => 0.0020614579838833
623 => 0.0020885260713209
624 => 0.0020861048468057
625 => 0.0018921806952443
626 => 0.0019189017323222
627 => 0.001960471280492
628 => 0.0019417442553877
629 => 0.0019152686233392
630 => 0.0018938881309264
701 => 0.0018614944986535
702 => 0.001907087914013
703 => 0.0019670384068916
704 => 0.0020300717572657
705 => 0.0021058021976315
706 => 0.0020889000449414
707 => 0.0020286560293601
708 => 0.0020313585318908
709 => 0.00204806433914
710 => 0.0020264288008696
711 => 0.0020200480582578
712 => 0.0020471877230881
713 => 0.0020473746190441
714 => 0.0020224803175219
715 => 0.0019948148569891
716 => 0.0019946989376993
717 => 0.0019897761362141
718 => 0.0020597744052474
719 => 0.0020982663755924
720 => 0.0021026794179596
721 => 0.0020979693426798
722 => 0.0020997820637188
723 => 0.0020773844342877
724 => 0.0021285787733565
725 => 0.0021755597614814
726 => 0.0021629678530615
727 => 0.0021440907922948
728 => 0.0021290543041518
729 => 0.0021594257343215
730 => 0.0021580733423451
731 => 0.0021751494235355
801 => 0.0021743747538564
802 => 0.002168632710016
803 => 0.002162968058128
804 => 0.0021854277625608
805 => 0.002178959728376
806 => 0.0021724816475475
807 => 0.0021594888647015
808 => 0.0021612547996776
809 => 0.0021423809983016
810 => 0.0021336491141787
811 => 0.0020023425276894
812 => 0.001967253117213
813 => 0.0019782929600597
814 => 0.0019819275629742
815 => 0.0019666566065666
816 => 0.0019885512352683
817 => 0.0019851389805773
818 => 0.0019984140674778
819 => 0.0019901203695196
820 => 0.0019904607457768
821 => 0.0020148507430689
822 => 0.0020219312630453
823 => 0.0020183300534385
824 => 0.0020208522172048
825 => 0.0020789744166616
826 => 0.0020707112985421
827 => 0.0020663216817312
828 => 0.002067537635587
829 => 0.0020823891037022
830 => 0.0020865467039144
831 => 0.0020689306596661
901 => 0.0020772384879707
902 => 0.0021126121664715
903 => 0.00212499095197
904 => 0.0021644980931269
905 => 0.00214771475738
906 => 0.0021785212965092
907 => 0.0022732100950694
908 => 0.0023488540593257
909 => 0.0022792887436765
910 => 0.0024181992508325
911 => 0.0025263610061822
912 => 0.002522209577859
913 => 0.0025033490739873
914 => 0.0023802097911508
915 => 0.0022668951871813
916 => 0.002361687664994
917 => 0.0023619293105142
918 => 0.0023537865526028
919 => 0.0023032125825496
920 => 0.0023520266880704
921 => 0.0023559013744998
922 => 0.0023537325804616
923 => 0.0023149576361988
924 => 0.002255755463117
925 => 0.0022673234260272
926 => 0.0022862719852542
927 => 0.002250398409554
928 => 0.0022389346284612
929 => 0.0022602479785863
930 => 0.0023289240335023
1001 => 0.0023159412231337
1002 => 0.0023156021894873
1003 => 0.0023711481578125
1004 => 0.0023313892320619
1005 => 0.0022674693350852
1006 => 0.0022513287180988
1007 => 0.0021940404014192
1008 => 0.0022336096458038
1009 => 0.0022350336724654
1010 => 0.0022133620017039
1011 => 0.0022692278717281
1012 => 0.0022687130579009
1013 => 0.0023217493869515
1014 => 0.0024231349285608
1015 => 0.0023931502350275
1016 => 0.0023582812987735
1017 => 0.002362072518955
1018 => 0.0024036528468177
1019 => 0.0023785124314054
1020 => 0.0023875531000729
1021 => 0.0024036391626829
1022 => 0.00241334428365
1023 => 0.0023606761014012
1024 => 0.0023483966287086
1025 => 0.0023232771370889
1026 => 0.0023167239306028
1027 => 0.0023371832323917
1028 => 0.0023317929292082
1029 => 0.0022349139885386
1030 => 0.0022247896002093
1031 => 0.0022251001007451
1101 => 0.0021996418449026
1102 => 0.0021608118940613
1103 => 0.0022628546864563
1104 => 0.002254659222139
1105 => 0.0022456120638113
1106 => 0.002246720289084
1107 => 0.0022910136067116
1108 => 0.0022653212456214
1109 => 0.0023336285984747
1110 => 0.002319586660235
1111 => 0.0023051845992646
1112 => 0.002303193795741
1113 => 0.0022976502309935
1114 => 0.0022786392848047
1115 => 0.002255682424901
1116 => 0.0022405243175034
1117 => 0.0020667652492296
1118 => 0.0020990139215912
1119 => 0.0021361130795843
1120 => 0.0021489195602579
1121 => 0.0021270131888841
1122 => 0.0022795042818674
1123 => 0.0023073658739962
1124 => 0.0022229712940715
1125 => 0.0022071845139755
1126 => 0.0022805392605423
1127 => 0.0022362973811095
1128 => 0.0022562194967091
1129 => 0.0022131587795973
1130 => 0.0023006548323351
1201 => 0.0022999882590092
1202 => 0.0022659503183062
1203 => 0.0022947189527066
1204 => 0.0022897196945182
1205 => 0.0022512909432963
1206 => 0.0023018730922929
1207 => 0.0023018981804078
1208 => 0.0022691374025298
1209 => 0.0022308799862248
1210 => 0.0022240404637893
1211 => 0.0022188878023947
1212 => 0.0022549522578699
1213 => 0.0022872875358784
1214 => 0.0023474554716569
1215 => 0.0023625831202665
1216 => 0.0024216273398945
1217 => 0.0023864693819169
1218 => 0.0024020544493166
1219 => 0.0024189742446213
1220 => 0.0024270862166953
1221 => 0.0024138681935132
1222 => 0.0025055881701657
1223 => 0.0025133321464226
1224 => 0.0025159286346765
1225 => 0.0024850011746059
1226 => 0.0025124719978107
1227 => 0.0024996193093712
1228 => 0.0025330584341111
1229 => 0.0025383021158425
1230 => 0.0025338609039654
1231 => 0.0025355253313129
]
'min_raw' => 0.00113701330925
'max_raw' => 0.0025383021158425
'avg_raw' => 0.0018376577125463
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001137'
'max' => '$0.002538'
'avg' => '$0.001837'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.000175325145303
'max_diff' => -0.00024222118449903
'year' => 2031
]
6 => [
'items' => [
101 => 0.0024572585117526
102 => 0.002453199964268
103 => 0.0023978613813345
104 => 0.0024204122629221
105 => 0.0023782544706861
106 => 0.0023916231408775
107 => 0.0023975159233165
108 => 0.0023944378681828
109 => 0.002421687255932
110 => 0.002398519709663
111 => 0.0023373767459621
112 => 0.0022762171239017
113 => 0.0022754493146662
114 => 0.0022593470657347
115 => 0.0022477080890312
116 => 0.0022499501688592
117 => 0.0022578515506121
118 => 0.0022472488463598
119 => 0.0022495114708828
120 => 0.0022870861137523
121 => 0.0022946214404097
122 => 0.0022690134561857
123 => 0.0021661937043119
124 => 0.0021409614792982
125 => 0.0021590979022613
126 => 0.0021504298602202
127 => 0.0017355647313669
128 => 0.0018330311396095
129 => 0.0017751199094782
130 => 0.0018018080686903
131 => 0.0017426956987666
201 => 0.0017709072200389
202 => 0.0017656975821797
203 => 0.0019224206823932
204 => 0.001919973666749
205 => 0.0019211449236447
206 => 0.0018652377803184
207 => 0.0019542993776815
208 => 0.0019981743230941
209 => 0.0019900542383921
210 => 0.0019920978887712
211 => 0.00195698120432
212 => 0.0019214849299114
213 => 0.0018821140987548
214 => 0.001955260236662
215 => 0.0019471276347729
216 => 0.0019657808974886
217 => 0.0020132213965153
218 => 0.0020202071902059
219 => 0.002029596167769
220 => 0.0020262308876656
221 => 0.0021064055127669
222 => 0.002096695836658
223 => 0.0021200933624161
224 => 0.002071962876757
225 => 0.0020174986636461
226 => 0.0020278505299892
227 => 0.0020268535620159
228 => 0.0020141610154493
229 => 0.0020027027519311
301 => 0.0019836279715189
302 => 0.0020439833992792
303 => 0.0020415330791341
304 => 0.0020812009140979
305 => 0.0020741892389553
306 => 0.0020273635563047
307 => 0.0020290359447212
308 => 0.0020402835605447
309 => 0.0020792116873327
310 => 0.0020907682057923
311 => 0.0020854147659942
312 => 0.0020980859609101
313 => 0.0021081007567254
314 => 0.002099343665074
315 => 0.0022233256157859
316 => 0.0021718396658589
317 => 0.0021969335596164
318 => 0.0022029183054157
319 => 0.0021875885048963
320 => 0.00219091298971
321 => 0.0021959486783348
322 => 0.0022265243935757
323 => 0.0023067639175223
324 => 0.0023423014564693
325 => 0.0024492178957828
326 => 0.0023393505585662
327 => 0.002332831485452
328 => 0.0023520903647395
329 => 0.002414861632871
330 => 0.0024657318498861
331 => 0.0024826084356433
401 => 0.0024848389550531
402 => 0.0025165005518678
403 => 0.0025346483887081
404 => 0.0025126560012318
405 => 0.0024940197555446
406 => 0.002427267036709
407 => 0.0024349938456759
408 => 0.0024882238971496
409 => 0.0025634144800906
410 => 0.0026279358225008
411 => 0.0026053426971846
412 => 0.0027777122950868
413 => 0.0027948020366521
414 => 0.0027924407869453
415 => 0.0028313737615256
416 => 0.002754099735546
417 => 0.002721063592326
418 => 0.0024980491233925
419 => 0.0025607070925209
420 => 0.0026517841304224
421 => 0.0026397297429347
422 => 0.0025735871635145
423 => 0.0026278856474232
424 => 0.0026099328705724
425 => 0.0025957727706088
426 => 0.0026606429336126
427 => 0.0025893155246705
428 => 0.0026510725849555
429 => 0.0025718685163449
430 => 0.0026054459006779
501 => 0.0025863857533752
502 => 0.0025987200046038
503 => 0.0025266142239512
504 => 0.0025655207529225
505 => 0.0025249955844332
506 => 0.0025249763702268
507 => 0.0025240817748863
508 => 0.0025717594558978
509 => 0.0025733142233639
510 => 0.0025380803450594
511 => 0.0025330025927391
512 => 0.002551777704425
513 => 0.0025297969658504
514 => 0.0025400816150843
515 => 0.0025301084773985
516 => 0.002527863314039
517 => 0.0025099734704076
518 => 0.0025022660338796
519 => 0.0025052883183384
520 => 0.0024949717033862
521 => 0.0024887555697092
522 => 0.0025228452294401
523 => 0.0025046324994188
524 => 0.002520053867357
525 => 0.0025024792722596
526 => 0.0024415580687655
527 => 0.002406521640406
528 => 0.0022914471344042
529 => 0.0023240821215568
530 => 0.0023457191518024
531 => 0.0023385681134353
601 => 0.0023539313109323
602 => 0.0023548744864839
603 => 0.0023498797543683
604 => 0.0023440964944434
605 => 0.0023412815233462
606 => 0.0023622620116417
607 => 0.0023744418912681
608 => 0.0023478907172536
609 => 0.0023416701486725
610 => 0.0023685148515315
611 => 0.0023848901047679
612 => 0.0025057957742052
613 => 0.0024968386916931
614 => 0.0025193192110598
615 => 0.0025167882495708
616 => 0.0025403514152946
617 => 0.0025788672327163
618 => 0.0025005538067061
619 => 0.002514146309587
620 => 0.0025108137417773
621 => 0.0025471978432769
622 => 0.0025473114304703
623 => 0.0025254973441006
624 => 0.0025373231142148
625 => 0.0025307222937601
626 => 0.0025426508684761
627 => 0.0024967190643953
628 => 0.0025526590437338
629 => 0.0025843734073261
630 => 0.0025848137612954
701 => 0.0025998461179374
702 => 0.002615119862901
703 => 0.0026444364862959
704 => 0.0026143022381861
705 => 0.0025600936593466
706 => 0.0025640073436462
707 => 0.0025322248737067
708 => 0.0025327591427684
709 => 0.0025299071726458
710 => 0.0025384661496698
711 => 0.002498597278539
712 => 0.0025079544229047
713 => 0.0024948543659974
714 => 0.0025141178326216
715 => 0.0024933935268991
716 => 0.0025108121347122
717 => 0.0025183294284084
718 => 0.0025460684039829
719 => 0.0024892964576528
720 => 0.0023735346159629
721 => 0.0023978691585628
722 => 0.0023618764586205
723 => 0.002365207720034
724 => 0.0023719373982556
725 => 0.0023501243093256
726 => 0.002354285559284
727 => 0.0023541368901532
728 => 0.0023528557399017
729 => 0.0023471813130095
730 => 0.0023389522713647
731 => 0.0023717342405122
801 => 0.0023773045358689
802 => 0.0023896866124334
803 => 0.0024265272734464
804 => 0.0024228460226486
805 => 0.0024288502954335
806 => 0.0024157430016567
807 => 0.0023658157297997
808 => 0.0023685270208689
809 => 0.0023347171777906
810 => 0.002388822018731
811 => 0.0023760092782473
812 => 0.0023677488211057
813 => 0.002365494878842
814 => 0.0024024268607279
815 => 0.002413477488546
816 => 0.0024065914788698
817 => 0.0023924680721269
818 => 0.0024195891882837
819 => 0.0024268456548192
820 => 0.0024284701100683
821 => 0.00247652352794
822 => 0.0024311557623205
823 => 0.0024420762344219
824 => 0.002527274640371
825 => 0.0024500114427515
826 => 0.0024909394817055
827 => 0.0024889362671779
828 => 0.0025098736669775
829 => 0.0024872187892775
830 => 0.0024874996236382
831 => 0.0025060906162378
901 => 0.0024799829200348
902 => 0.0024735182873016
903 => 0.0024645874434812
904 => 0.0024840876142346
905 => 0.0024957770846844
906 => 0.0025899856315399
907 => 0.0026508486492402
908 => 0.002648206425127
909 => 0.002672351407485
910 => 0.0026614738717901
911 => 0.0026263474396821
912 => 0.0026863039760784
913 => 0.0026673312192745
914 => 0.0026688953102936
915 => 0.0026688370947477
916 => 0.0026814523193951
917 => 0.0026725132765641
918 => 0.0026548935055702
919 => 0.0026665903318362
920 => 0.0027013257241543
921 => 0.0028091454477217
922 => 0.0028694827934513
923 => 0.0028055130637469
924 => 0.0028496385267082
925 => 0.0028231789724415
926 => 0.0028183704843277
927 => 0.0028460845359134
928 => 0.0028738470972778
929 => 0.0028720787421397
930 => 0.0028519245482125
1001 => 0.0028405399554568
1002 => 0.0029267479059216
1003 => 0.00299026445531
1004 => 0.002985933052462
1005 => 0.0030050504559852
1006 => 0.0030611797440081
1007 => 0.0030663115026698
1008 => 0.0030656650190305
1009 => 0.0030529454197439
1010 => 0.0031082119931116
1011 => 0.0031543163409377
1012 => 0.0030500012000136
1013 => 0.0030897230400921
1014 => 0.003107555453861
1015 => 0.0031337387279126
1016 => 0.0031779143000639
1017 => 0.0032259006884121
1018 => 0.0032326864898685
1019 => 0.0032278716390047
1020 => 0.0031962233259457
1021 => 0.0032487306046729
1022 => 0.0032794881371041
1023 => 0.0032978035437933
1024 => 0.0033442483677639
1025 => 0.0031076655807776
1026 => 0.0029402005252212
1027 => 0.0029140484385714
1028 => 0.0029672297351538
1029 => 0.0029812532189498
1030 => 0.0029756003702156
1031 => 0.0027871032249301
1101 => 0.0029130560401118
1102 => 0.0030485706788338
1103 => 0.0030537763480079
1104 => 0.0031216178096296
1105 => 0.0031437097704491
1106 => 0.0031983310392382
1107 => 0.0031949144640037
1108 => 0.0032082138737396
1109 => 0.003205156569755
1110 => 0.0033063309683217
1111 => 0.0034179413544843
1112 => 0.0034140766417108
1113 => 0.0033980313281858
1114 => 0.003421861354903
1115 => 0.0035370552343187
1116 => 0.0035264500278464
1117 => 0.0035367520825849
1118 => 0.0036725721584586
1119 => 0.0038491575772749
1120 => 0.0037671159213485
1121 => 0.0039451227078582
1122 => 0.0040571685442317
1123 => 0.004250940232484
1124 => 0.0042266790627691
1125 => 0.0043021129590434
1126 => 0.0041832465055206
1127 => 0.0039103051013584
1128 => 0.003867111079372
1129 => 0.0039535866052356
1130 => 0.0041661782474128
1201 => 0.003946891337874
1202 => 0.0039912527940739
1203 => 0.003978476691704
1204 => 0.0039777959075036
1205 => 0.0040037786714816
1206 => 0.0039660893171617
1207 => 0.0038125361074769
1208 => 0.0038829086385807
1209 => 0.003855734424755
1210 => 0.0038858862409664
1211 => 0.0040486031575047
1212 => 0.0039766621300163
1213 => 0.0039008781015718
1214 => 0.0039959280910634
1215 => 0.0041169593904062
1216 => 0.0041093854692075
1217 => 0.0040946888964285
1218 => 0.0041775327076961
1219 => 0.0043143664129509
1220 => 0.0043513520136389
1221 => 0.0043786540279295
1222 => 0.0043824185144288
1223 => 0.0044211950649875
1224 => 0.0042126837796843
1225 => 0.0045435965444101
1226 => 0.0046007360375976
1227 => 0.0045899961810677
1228 => 0.0046535043229481
1229 => 0.0046348186165609
1230 => 0.0046077459597032
1231 => 0.0047084198731529
]
'min_raw' => 0.0017355647313669
'max_raw' => 0.0047084198731529
'avg_raw' => 0.0032219923022599
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001735'
'max' => '$0.0047084'
'avg' => '$0.003221'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00059855142211686
'max_diff' => 0.0021701177573104
'year' => 2032
]
7 => [
'items' => [
101 => 0.0045930053553487
102 => 0.0044291889776094
103 => 0.0043393160728611
104 => 0.0044576679636741
105 => 0.0045299413334818
106 => 0.0045777094334751
107 => 0.0045921640316708
108 => 0.0042288699172069
109 => 0.0040330745387262
110 => 0.0041585771315338
111 => 0.0043116989564853
112 => 0.0042118331802154
113 => 0.0042157477295743
114 => 0.0040733653768778
115 => 0.0043242966353475
116 => 0.0042877380616525
117 => 0.004477404006653
118 => 0.0044321387067143
119 => 0.0045868039220726
120 => 0.004546075387473
121 => 0.0047151372574944
122 => 0.0047825806146134
123 => 0.0048958285079365
124 => 0.0049791341192668
125 => 0.0050280527676224
126 => 0.0050251158754643
127 => 0.005218955931423
128 => 0.0051046552226799
129 => 0.0049610665938899
130 => 0.0049584695286114
131 => 0.0050328361141284
201 => 0.0051886880758955
202 => 0.0052290982220279
203 => 0.0052516819808624
204 => 0.0052170941680611
205 => 0.005093028940726
206 => 0.0050394582045877
207 => 0.0050851020238712
208 => 0.0050292835551056
209 => 0.0051256418920912
210 => 0.0052579624698026
211 => 0.0052306387937574
212 => 0.0053219777461818
213 => 0.0054165039528031
214 => 0.005551680673709
215 => 0.0055870208741333
216 => 0.0056454368815672
217 => 0.0057055661418755
218 => 0.0057248780397575
219 => 0.0057617504449443
220 => 0.0057615561091682
221 => 0.0058726735839976
222 => 0.0059952395997562
223 => 0.0060415054332953
224 => 0.0061478911664055
225 => 0.0059657093266551
226 => 0.0061038963448599
227 => 0.0062285444943261
228 => 0.0060799338318925
301 => 0.0062847590082138
302 => 0.0062927119056665
303 => 0.0064127912150879
304 => 0.0062910678305772
305 => 0.0062187888734095
306 => 0.0064274555144954
307 => 0.0065284227291792
308 => 0.006498010582418
309 => 0.0062665726439322
310 => 0.0061318658368933
311 => 0.0057793121398701
312 => 0.0061969272231804
313 => 0.0064003353482619
314 => 0.006266045866028
315 => 0.0063337736697141
316 => 0.0067032746058113
317 => 0.0068439566388632
318 => 0.0068146957594301
319 => 0.0068196403663792
320 => 0.0068955498378545
321 => 0.0072321742384854
322 => 0.0070304610947349
323 => 0.0071846632350849
324 => 0.0072664514943094
325 => 0.0073424209875862
326 => 0.0071558639225031
327 => 0.0069131559218975
328 => 0.006836280109917
329 => 0.0062526934235763
330 => 0.0062223152021638
331 => 0.0062052629859306
401 => 0.0060977511746642
402 => 0.0060132763409724
403 => 0.0059460988168712
404 => 0.0057698049327228
405 => 0.0058292989434617
406 => 0.0055483232875224
407 => 0.0057280815550265
408 => 0.0052796376237529
409 => 0.0056531150553009
410 => 0.0054498482692444
411 => 0.0055863364492387
412 => 0.0055858602548366
413 => 0.0053345422418503
414 => 0.0051895872568329
415 => 0.0052819582150184
416 => 0.0053809872146091
417 => 0.0053970543366191
418 => 0.0055254480195097
419 => 0.0055612799365915
420 => 0.0054527075550014
421 => 0.0052703446200391
422 => 0.0053127033705752
423 => 0.0051887288581053
424 => 0.0049714682936126
425 => 0.0051275086240368
426 => 0.0051807876534526
427 => 0.005204318708082
428 => 0.0049906678954479
429 => 0.0049235341715334
430 => 0.0048877927402279
501 => 0.0052427649830401
502 => 0.0052622111638058
503 => 0.0051627217535952
504 => 0.0056124233217202
505 => 0.005510642006821
506 => 0.0056243566725909
507 => 0.0053088597579474
508 => 0.0053209121649597
509 => 0.0051715508695051
510 => 0.0052551832146344
511 => 0.0051960745686933
512 => 0.0052484265476188
513 => 0.0052798061079315
514 => 0.0054291428946672
515 => 0.0056548202415225
516 => 0.0054068369586719
517 => 0.0052987870911479
518 => 0.0053658206212642
519 => 0.0055443397455395
520 => 0.0058148053570423
521 => 0.0056546842714049
522 => 0.0057257432901784
523 => 0.0057412665245847
524 => 0.0056231991640405
525 => 0.005819158669035
526 => 0.0059241749597338
527 => 0.0060318999439313
528 => 0.0061254345293245
529 => 0.0059888722163196
530 => 0.0061350134666734
531 => 0.0060172494162917
601 => 0.0059116028888756
602 => 0.0059117631110487
603 => 0.005845489501151
604 => 0.0057170760309621
605 => 0.0056933946168431
606 => 0.0058165883237228
607 => 0.0059153780101528
608 => 0.0059235148018978
609 => 0.0059782098483028
610 => 0.0060105778133615
611 => 0.0063278278730515
612 => 0.006455428471489
613 => 0.0066114560679026
614 => 0.0066722376099392
615 => 0.0068551682600805
616 => 0.0067074369031904
617 => 0.0066754742948534
618 => 0.0062317443737702
619 => 0.0063044051234894
620 => 0.0064207419945093
621 => 0.0062336627259238
622 => 0.0063523214621295
623 => 0.0063757472101921
624 => 0.006227305843964
625 => 0.0063065947914393
626 => 0.0060960268544795
627 => 0.0056594100471324
628 => 0.0058196447483552
629 => 0.0059376314228723
630 => 0.0057692498906843
701 => 0.0060710672698662
702 => 0.0058947517877234
703 => 0.0058388682445199
704 => 0.0056208466185613
705 => 0.0057237444335918
706 => 0.0058629152017753
707 => 0.0057769238473763
708 => 0.0059553688194212
709 => 0.0062080944893725
710 => 0.0063882018518536
711 => 0.0064020282587429
712 => 0.0062862312909236
713 => 0.0064717966708603
714 => 0.0064731483120669
715 => 0.0062638298054414
716 => 0.0061356233856236
717 => 0.0061064946172924
718 => 0.0061792639916152
719 => 0.0062676194460106
720 => 0.0064069313715391
721 => 0.0064911146504508
722 => 0.0067106199944915
723 => 0.0067700118468775
724 => 0.0068352654861651
725 => 0.0069224644717306
726 => 0.0070271692112628
727 => 0.0067980812020103
728 => 0.0068071832956914
729 => 0.0065938597134149
730 => 0.0063658928720562
731 => 0.0065388912881795
801 => 0.0067650637042459
802 => 0.0067131795021019
803 => 0.0067073414694627
804 => 0.0067171594210267
805 => 0.0066780404269898
806 => 0.0065011066667785
807 => 0.0064122516400643
808 => 0.0065268972938605
809 => 0.0065878263565622
810 => 0.0066823220192399
811 => 0.0066706734342534
812 => 0.0069140841132177
813 => 0.0070086661427064
814 => 0.00698446801217
815 => 0.0069889210505492
816 => 0.0071601572971119
817 => 0.0073506072207097
818 => 0.0075289887062399
819 => 0.0077104460149842
820 => 0.0074916921468936
821 => 0.0073806224235401
822 => 0.0074952180266303
823 => 0.0074344119865807
824 => 0.0077838215289486
825 => 0.007808013887559
826 => 0.00815739816364
827 => 0.0084890054455465
828 => 0.0082807288531426
829 => 0.0084771242987958
830 => 0.0086895419856253
831 => 0.0090993301670471
901 => 0.0089613279240662
902 => 0.0088556203687138
903 => 0.0087557272396809
904 => 0.0089635889836107
905 => 0.0092309997965038
906 => 0.0092885975243721
907 => 0.0093819278475442
908 => 0.0092838024246177
909 => 0.0094019836883719
910 => 0.0098192154809028
911 => 0.0097064757675541
912 => 0.0095463672507855
913 => 0.0098757316796214
914 => 0.0099949273860453
915 => 0.010831505277004
916 => 0.011887719421649
917 => 0.01145043983029
918 => 0.011179006277009
919 => 0.01124279960052
920 => 0.01162849325104
921 => 0.011752365810282
922 => 0.01141563749283
923 => 0.01153457562716
924 => 0.012189936441057
925 => 0.012541516491221
926 => 0.012064023559598
927 => 0.010746639498895
928 => 0.0095319512306357
929 => 0.0098541412575037
930 => 0.0098176149071774
1001 => 0.010521718343784
1002 => 0.0097037869626762
1003 => 0.0097175588294321
1004 => 0.010436222379449
1005 => 0.010244495265317
1006 => 0.0099339218949764
1007 => 0.0095342187599403
1008 => 0.008795330546761
1009 => 0.0081408766509259
1010 => 0.0094244114523894
1011 => 0.0093690630977937
1012 => 0.0092889104781725
1013 => 0.0094672814597201
1014 => 0.010333400314629
1015 => 0.01031343347167
1016 => 0.010186414603939
1017 => 0.01028275729562
1018 => 0.0099170325553146
1019 => 0.010011288148289
1020 => 0.009531758817808
1021 => 0.0097485261020992
1022 => 0.0099332555440092
1023 => 0.0099703427144388
1024 => 0.010053902003134
1025 => 0.0093398970299704
1026 => 0.0096604643008364
1027 => 0.0098487675393789
1028 => 0.0089980066571135
1029 => 0.0098319507321413
1030 => 0.0093274677919053
1031 => 0.0091562387049098
1101 => 0.0093867761128325
1102 => 0.00929693546076
1103 => 0.0092196957437282
1104 => 0.0091765946544777
1105 => 0.0093458758833709
1106 => 0.0093379787117082
1107 => 0.0090610017651682
1108 => 0.0086996966294315
1109 => 0.0088209624924215
1110 => 0.0087769054675237
1111 => 0.0086172371258247
1112 => 0.0087248343097008
1113 => 0.0082510307655994
1114 => 0.0074358763941381
1115 => 0.0079743923407791
1116 => 0.007953660062626
1117 => 0.0079432059078473
1118 => 0.0083478857582604
1119 => 0.0083089851281959
1120 => 0.0082383801037126
1121 => 0.008615940409181
1122 => 0.0084781258187823
1123 => 0.0089028379131898
1124 => 0.0091825807672226
1125 => 0.0091116289307066
1126 => 0.009374728437039
1127 => 0.0088237562129822
1128 => 0.009006767084645
1129 => 0.0090444853716526
1130 => 0.0086112813736186
1201 => 0.0083153497523666
1202 => 0.0082956144870966
1203 => 0.007782509837735
1204 => 0.008056606199788
1205 => 0.0082977996555164
1206 => 0.0081822867075907
1207 => 0.0081457187591286
1208 => 0.0083325364772012
1209 => 0.008347053813881
1210 => 0.0080160569991034
1211 => 0.0080848817182016
1212 => 0.0083718922379984
1213 => 0.0080776497894958
1214 => 0.0075059847762864
1215 => 0.0073642039491233
1216 => 0.0073452877732406
1217 => 0.0069607669251951
1218 => 0.0073736784219457
1219 => 0.007193431488274
1220 => 0.0077628293920533
1221 => 0.0074375923631567
1222 => 0.007423572044884
1223 => 0.0074023782774813
1224 => 0.0070714052992123
1225 => 0.0071438673470231
1226 => 0.0073847422302279
1227 => 0.0074706891022051
1228 => 0.0074617241393159
1229 => 0.0073835618118913
1230 => 0.0074193441251304
1231 => 0.0073040768268029
]
'min_raw' => 0.0040330745387262
'max_raw' => 0.012541516491221
'avg_raw' => 0.0082872955149738
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004033'
'max' => '$0.012541'
'avg' => '$0.008287'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0022975098073593
'max_diff' => 0.0078330966180685
'year' => 2033
]
8 => [
'items' => [
101 => 0.0072633735446821
102 => 0.0071349027899892
103 => 0.0069460862715423
104 => 0.0069723423665113
105 => 0.0065982474369385
106 => 0.0063944206645866
107 => 0.0063380041003932
108 => 0.0062625615129434
109 => 0.0063465255413908
110 => 0.0065971876730056
111 => 0.0062948359613403
112 => 0.0057764751591969
113 => 0.0058076295266496
114 => 0.005877624140501
115 => 0.0057471896406496
116 => 0.0056237443330781
117 => 0.0057310700125772
118 => 0.0055114337072793
119 => 0.0059041661386714
120 => 0.0058935438270221
121 => 0.0060399301910344
122 => 0.0061314685886019
123 => 0.005920502218117
124 => 0.0058674447464538
125 => 0.0058976686936408
126 => 0.0053981341713136
127 => 0.005999107563312
128 => 0.006004304806162
129 => 0.0059598028575429
130 => 0.0062798026358102
131 => 0.006955101978388
201 => 0.0067010272018571
202 => 0.0066026417689336
203 => 0.0064156109890266
204 => 0.0066648183984638
205 => 0.0066456831576602
206 => 0.0065591463419218
207 => 0.006506808605752
208 => 0.0066032424894075
209 => 0.0064948593803805
210 => 0.0064753907958306
211 => 0.006357432355487
212 => 0.0063153265590514
213 => 0.0062841531036505
214 => 0.0062498341922946
215 => 0.0063255331590058
216 => 0.0061539893414098
217 => 0.0059471243140369
218 => 0.0059299257253214
219 => 0.0059774125408802
220 => 0.005956403159973
221 => 0.0059298251404885
222 => 0.0058790804631996
223 => 0.0058640256014365
224 => 0.0059129465985861
225 => 0.0058577176450755
226 => 0.0059392109744571
227 => 0.0059170492980969
228 => 0.005793255975463
301 => 0.0056389636613028
302 => 0.0056375901360677
303 => 0.005604348110072
304 => 0.0055620093919945
305 => 0.0055502317292039
306 => 0.0057220313432054
307 => 0.0060776514026587
308 => 0.0060078346757212
309 => 0.0060582844160395
310 => 0.0063064472064623
311 => 0.0063853306950223
312 => 0.0063293410633002
313 => 0.006252699002109
314 => 0.0062560708638364
315 => 0.0065179799880564
316 => 0.0065343149388697
317 => 0.0065755880897201
318 => 0.006628635752354
319 => 0.0063383753096313
320 => 0.0062423996230869
321 => 0.0061969210182737
322 => 0.0060568645178843
323 => 0.0062079034460174
324 => 0.006119899530726
325 => 0.0061317742655406
326 => 0.0061240408289145
327 => 0.0061282638082451
328 => 0.0059040563619529
329 => 0.0059857457713853
330 => 0.0058499212842824
331 => 0.0056680675430657
401 => 0.005667457905559
402 => 0.0057119663510898
403 => 0.0056854909860724
404 => 0.0056142464595546
405 => 0.0056243664082818
406 => 0.0055357050087213
407 => 0.0056351315074549
408 => 0.0056379827036735
409 => 0.0055996980858631
410 => 0.005752878325375
411 => 0.0058156363944862
412 => 0.0057904366389074
413 => 0.0058138683124574
414 => 0.0060107358759291
415 => 0.006042833878709
416 => 0.0060570896912687
417 => 0.0060379887909719
418 => 0.0058174666901228
419 => 0.0058272477830278
420 => 0.0057554806131477
421 => 0.0056948449172371
422 => 0.0056972700270812
423 => 0.005728444656868
424 => 0.0058645860935146
425 => 0.0061510877209615
426 => 0.0061619602482931
427 => 0.0061751380685931
428 => 0.0061215372507913
429 => 0.0061053707312516
430 => 0.0061266985434573
501 => 0.0062342934911864
502 => 0.006511056908489
503 => 0.0064132302324071
504 => 0.0063336956219896
505 => 0.0064034689177028
506 => 0.0063927278657289
507 => 0.0063020625776568
508 => 0.0062995179049907
509 => 0.0061255022297343
510 => 0.0060611725967372
511 => 0.0060074139404153
512 => 0.005948710891117
513 => 0.005913909755749
514 => 0.0059673801165075
515 => 0.0059796094206556
516 => 0.0058626955423552
517 => 0.0058467606127545
518 => 0.005942235009536
519 => 0.0059002202871567
520 => 0.0059434334710388
521 => 0.0059534593003752
522 => 0.0059518449109376
523 => 0.0059079767154135
524 => 0.0059359369950722
525 => 0.005869802598319
526 => 0.0057978913749151
527 => 0.005752016494611
528 => 0.0057119845771258
529 => 0.0057341966116153
530 => 0.0056550147644175
531 => 0.0056296828978832
601 => 0.00592646468145
602 => 0.0061457005759127
603 => 0.0061425127991803
604 => 0.0061231080281512
605 => 0.0060942764745161
606 => 0.0062321842834573
607 => 0.0061841399603759
608 => 0.0062190962196551
609 => 0.0062279940547513
610 => 0.0062549251217309
611 => 0.0062645506633726
612 => 0.0062354555911627
613 => 0.0061378089751623
614 => 0.0058944828920509
615 => 0.0057812139435163
616 => 0.0057438333038564
617 => 0.0057451920191121
618 => 0.0057077125867879
619 => 0.0057187519593177
620 => 0.0057038735435358
621 => 0.0056756974235202
622 => 0.0057324568156025
623 => 0.0057389978067897
624 => 0.0057257494864535
625 => 0.0057288699454888
626 => 0.0056191795115364
627 => 0.0056275190369947
628 => 0.0055810834995073
629 => 0.0055723773960171
630 => 0.0054549924008536
701 => 0.0052470278666942
702 => 0.0053622604062243
703 => 0.005223075702619
704 => 0.0051703643463712
705 => 0.0054198917085502
706 => 0.0053948460821992
707 => 0.0053519788569582
708 => 0.0052885692965142
709 => 0.005265050073737
710 => 0.0051221547214238
711 => 0.0051137117016921
712 => 0.0051845344967976
713 => 0.00515185221372
714 => 0.0051059539105305
715 => 0.0049397149090146
716 => 0.0047528072314689
717 => 0.0047584487993942
718 => 0.0048179006540805
719 => 0.004990764939756
720 => 0.0049232238727601
721 => 0.0048742220537101
722 => 0.0048650454859913
723 => 0.0049799094434378
724 => 0.0051424660079675
725 => 0.0052187339110468
726 => 0.0051431547353859
727 => 0.0050563334478585
728 => 0.0050616178573392
729 => 0.005096772666157
730 => 0.0051004669395015
731 => 0.0050439552066938
801 => 0.0050598629284598
802 => 0.0050356976444646
803 => 0.0048873953411921
804 => 0.0048847130227975
805 => 0.0048483172458768
806 => 0.0048472151962162
807 => 0.0047852969003219
808 => 0.0047766341027053
809 => 0.0046536915680353
810 => 0.0047346127166594
811 => 0.0046803350587133
812 => 0.0045985258253835
813 => 0.0045844218827216
814 => 0.0045839979011742
815 => 0.0046679976915941
816 => 0.0047336311302013
817 => 0.0046812792418116
818 => 0.004669359731624
819 => 0.0047966289164461
820 => 0.0047804327525931
821 => 0.0047664069791505
822 => 0.0051279108505499
823 => 0.0048417523278384
824 => 0.0047169708785787
825 => 0.0045625301397654
826 => 0.0046128168230808
827 => 0.0046234129661205
828 => 0.0042520108293099
829 => 0.004101333028661
830 => 0.0040496260856515
831 => 0.0040198680089206
901 => 0.0040334291381653
902 => 0.0038978014448381
903 => 0.003988945497829
904 => 0.0038715033797311
905 => 0.0038518138264423
906 => 0.0040618148818879
907 => 0.0040910353019448
908 => 0.0039663719119092
909 => 0.0040464259894816
910 => 0.0040173972681189
911 => 0.0038735165877666
912 => 0.0038680214040918
913 => 0.0037958271363414
914 => 0.003682857086877
915 => 0.0036312267428806
916 => 0.0036043372114521
917 => 0.003615432356186
918 => 0.0036098223114915
919 => 0.0035732129750795
920 => 0.0036119207158013
921 => 0.0035130384333997
922 => 0.0034736627117987
923 => 0.0034558776118614
924 => 0.0033681138947781
925 => 0.0035077849973597
926 => 0.0035353019640984
927 => 0.0035628731477621
928 => 0.0038028614779076
929 => 0.0037908723391335
930 => 0.0038992483147039
1001 => 0.0038950370235839
1002 => 0.0038641264397768
1003 => 0.003733719771239
1004 => 0.0037856975450428
1005 => 0.0036257180364142
1006 => 0.0037455855618279
1007 => 0.0036908830290166
1008 => 0.0037270905804586
1009 => 0.0036619861382626
1010 => 0.0036980176246704
1011 => 0.0035418272577244
1012 => 0.0033959788907279
1013 => 0.0034546725311865
1014 => 0.003518479230797
1015 => 0.0036568284131972
1016 => 0.0035744287815156
1017 => 0.0036040628049434
1018 => 0.0035047937871361
1019 => 0.0032999734486065
1020 => 0.0033011327094791
1021 => 0.00326962556265
1022 => 0.0032423987876708
1023 => 0.0035838933704328
1024 => 0.0035414231208359
1025 => 0.0034737523364721
1026 => 0.0035643323704731
1027 => 0.0035882831691615
1028 => 0.0035889650147293
1029 => 0.0036550498693274
1030 => 0.0036903193680727
1031 => 0.0036965357700934
1101 => 0.0038005217166613
1102 => 0.003835376434343
1103 => 0.0039789380836499
1104 => 0.0036873269975185
1105 => 0.0036813214590996
1106 => 0.003565607017308
1107 => 0.0034922190889508
1108 => 0.0035706319515487
1109 => 0.0036400950433873
1110 => 0.003567765429199
1111 => 0.0035772101498505
1112 => 0.0034801135523494
1113 => 0.0035148210171365
1114 => 0.0035447157614116
1115 => 0.0035282096407547
1116 => 0.0035034991792261
1117 => 0.0036343998620032
1118 => 0.003627013932477
1119 => 0.0037489116576727
1120 => 0.0038439396514527
1121 => 0.0040142468045922
1122 => 0.0038365224119784
1123 => 0.0038300454287211
1124 => 0.0038933589790023
1125 => 0.0038353667413684
1126 => 0.003872015833729
1127 => 0.0040083420692201
1128 => 0.004011222427756
1129 => 0.003962972711148
1130 => 0.0039600367115075
1201 => 0.0039693035973761
1202 => 0.0040235800373546
1203 => 0.0040046141814796
1204 => 0.0040265619500549
1205 => 0.0040540079707344
1206 => 0.0041675363491368
1207 => 0.004194907656821
1208 => 0.0041284095695442
1209 => 0.0041344136022778
1210 => 0.0041095414922229
1211 => 0.0040855153455565
1212 => 0.0041395226145256
1213 => 0.0042382219600821
1214 => 0.0042376079565759
1215 => 0.0042605042863039
1216 => 0.004274768510041
1217 => 0.0042135360197114
1218 => 0.0041736759200879
1219 => 0.0041889608186476
1220 => 0.0042134017043063
1221 => 0.0041810349688345
1222 => 0.0039812524837721
1223 => 0.0040418537275855
1224 => 0.0040317667173655
1225 => 0.0040174015881899
1226 => 0.0040783366074598
1227 => 0.0040724592761993
1228 => 0.0038964103868099
1229 => 0.0039076804655194
1230 => 0.0038970957576239
1231 => 0.0039312971142617
]
'min_raw' => 0.0032423987876708
'max_raw' => 0.0072633735446821
'avg_raw' => 0.0052528861661765
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003242'
'max' => '$0.007263'
'avg' => '$0.005252'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00079067575105535
'max_diff' => -0.0052781429465392
'year' => 2034
]
9 => [
'items' => [
101 => 0.0038335197558706
102 => 0.0038635954127712
103 => 0.0038824585828374
104 => 0.0038935691349202
105 => 0.0039337080676198
106 => 0.0039289982271493
107 => 0.0039334152973233
108 => 0.0039929307382315
109 => 0.0042939394151125
110 => 0.0043103226532569
111 => 0.0042296455967459
112 => 0.0042618744895375
113 => 0.0042000020630618
114 => 0.0042415374374641
115 => 0.0042699548857461
116 => 0.0041415419013209
117 => 0.0041339381177766
118 => 0.0040718103217876
119 => 0.0041051942802538
120 => 0.0040520780019424
121 => 0.0040651108787115
122 => 0.0040286698190794
123 => 0.0040942564710746
124 => 0.0041675925391406
125 => 0.0041861201260631
126 => 0.0041373820214976
127 => 0.0041020924217945
128 => 0.0040401355098327
129 => 0.004143171235225
130 => 0.0041733020212866
131 => 0.0041430129710329
201 => 0.0041359943362603
202 => 0.0041226940360486
203 => 0.0041388160578248
204 => 0.0041731379225547
205 => 0.0041569523649734
206 => 0.0041676432109087
207 => 0.0041269007305558
208 => 0.0042135562902136
209 => 0.0043511861737461
210 => 0.0043516286763264
211 => 0.0043354430314989
212 => 0.0043288202143601
213 => 0.0043454276681802
214 => 0.0043544365306042
215 => 0.0044081419909721
216 => 0.0044657700896669
217 => 0.0047346952811659
218 => 0.0046591821635145
219 => 0.0048977885918437
220 => 0.0050864952974851
221 => 0.0051430801873628
222 => 0.0050910247512001
223 => 0.004912945916067
224 => 0.0049042085188454
225 => 0.0051703334814792
226 => 0.0050951409902397
227 => 0.0050861970826673
228 => 0.0049910490170671
301 => 0.005047293308154
302 => 0.0050349918566393
303 => 0.0050155734136158
304 => 0.0051228836029983
305 => 0.0053237586978757
306 => 0.0052924504305444
307 => 0.0052690802613303
308 => 0.0051666789827879
309 => 0.005228347424624
310 => 0.0052063884736674
311 => 0.0053007380624717
312 => 0.0052448474561633
313 => 0.0050945713331647
314 => 0.0051185033010688
315 => 0.0051148860322645
316 => 0.005189329167934
317 => 0.0051669831863982
318 => 0.0051105226207295
319 => 0.0053230721286394
320 => 0.0053092703458582
321 => 0.0053288381183151
322 => 0.0053374524569041
323 => 0.0054668275968264
324 => 0.0055198284521098
325 => 0.0055318605741697
326 => 0.0055822072874557
327 => 0.0055306079020784
328 => 0.0057370422333261
329 => 0.0058743090178287
330 => 0.0060337514517126
331 => 0.006266739701703
401 => 0.0063543454389612
402 => 0.006338520246654
403 => 0.0065151692787386
404 => 0.0068326036627073
405 => 0.0064026828114505
406 => 0.0068553905117533
407 => 0.0067120684805991
408 => 0.006372254522986
409 => 0.0063503745102591
410 => 0.0065805004676759
411 => 0.0070908976924238
412 => 0.0069630489765018
413 => 0.0070911068071225
414 => 0.0069417205455113
415 => 0.0069343022584961
416 => 0.0070838514498324
417 => 0.0074332812868918
418 => 0.0072672802694865
419 => 0.0070292771059165
420 => 0.0072050149381572
421 => 0.0070527745641017
422 => 0.0067097343919571
423 => 0.0069629512129982
424 => 0.0067936323359679
425 => 0.0068430485857719
426 => 0.0071989316810075
427 => 0.0071561108854389
428 => 0.0072115249600036
429 => 0.0071137205688357
430 => 0.0070223558451481
501 => 0.0068518168035516
502 => 0.006801328600808
503 => 0.0068152817236711
504 => 0.0068013216863333
505 => 0.0067059066598948
506 => 0.0066853017940199
507 => 0.0066509594481753
508 => 0.0066616035771665
509 => 0.0065970299197709
510 => 0.0067188937528748
511 => 0.0067415127541593
512 => 0.006830195089292
513 => 0.0068394023835178
514 => 0.0070863814245483
515 => 0.0069503495190629
516 => 0.0070416114656922
517 => 0.0070334481381949
518 => 0.0063796193218535
519 => 0.0064697111639648
520 => 0.0066098657979126
521 => 0.0065467263252943
522 => 0.0064574618833731
523 => 0.0063853760604652
524 => 0.0062761586676059
525 => 0.0064298800507211
526 => 0.0066320073230711
527 => 0.0068445286647054
528 => 0.0070998591317291
529 => 0.0070428723438637
530 => 0.0068397554392286
531 => 0.0068488671151935
601 => 0.0069051919106964
602 => 0.0068322461828728
603 => 0.0068107330636679
604 => 0.0069022363384741
605 => 0.0069028664712384
606 => 0.0068189335955916
607 => 0.0067256575638644
608 => 0.0067252667338856
609 => 0.0067086691649793
610 => 0.0069446732161481
611 => 0.00707445158159
612 => 0.0070893304620396
613 => 0.007073450114387
614 => 0.00707956182993
615 => 0.0070040466585505
616 => 0.0071766519469956
617 => 0.0073350516285666
618 => 0.00729259713019
619 => 0.0072289518018608
620 => 0.0071782552322723
621 => 0.0072806546295551
622 => 0.0072760949455857
623 => 0.007333668145533
624 => 0.0073310562926244
625 => 0.0073116965909197
626 => 0.0072925978215859
627 => 0.0073683222831676
628 => 0.0073465148543297
629 => 0.0073246735525315
630 => 0.0072808674780391
701 => 0.0072868214511044
702 => 0.0072231871120386
703 => 0.0071937469550774
704 => 0.0067510376311958
705 => 0.0066327312339102
706 => 0.006669952834845
707 => 0.0066822071523312
708 => 0.0066307200566187
709 => 0.0067045393259207
710 => 0.006693034670994
711 => 0.006737792553316
712 => 0.0067098297716025
713 => 0.0067109773739179
714 => 0.0067932099526435
715 => 0.0068170824200899
716 => 0.0068049406904722
717 => 0.0068134443417023
718 => 0.0070094073951331
719 => 0.0069815477154809
720 => 0.0069667478159297
721 => 0.0069708474892497
722 => 0.0070209202508965
723 => 0.0070349378902862
724 => 0.0069755441671901
725 => 0.0070035545903532
726 => 0.00712281941713
727 => 0.0071645553566972
728 => 0.0072977564414085
729 => 0.0072411702531627
730 => 0.0073450366506807
731 => 0.007664286545987
801 => 0.00791932545277
802 => 0.0076847811341637
803 => 0.0081531276074619
804 => 0.0085178025172359
805 => 0.008503805686801
806 => 0.0084402161811992
807 => 0.0080250434918056
808 => 0.0076429953931495
809 => 0.0079625948502945
810 => 0.0079634095750369
811 => 0.0079359556982295
812 => 0.0077654420272333
813 => 0.0079300221920886
814 => 0.0079430859679075
815 => 0.0079357737273873
816 => 0.007805041295625
817 => 0.0076054370357161
818 => 0.0076444392303172
819 => 0.007708325620697
820 => 0.0075873753556108
821 => 0.0075487244172807
822 => 0.0076205838652782
823 => 0.0078521299792365
824 => 0.007808357527648
825 => 0.0078072144520387
826 => 0.0079944915623426
827 => 0.0078604415682949
828 => 0.0076449311728934
829 => 0.0075905119558217
830 => 0.007397360396394
831 => 0.0075307708664729
901 => 0.007535572071785
902 => 0.0074625045207447
903 => 0.0076508602019621
904 => 0.0076491244712003
905 => 0.0078279401574728
906 => 0.008169768589521
907 => 0.0080686731018088
908 => 0.0079511100487573
909 => 0.0079638924122938
910 => 0.0081040833907286
911 => 0.0080193207249182
912 => 0.0080498019705299
913 => 0.0081040372537127
914 => 0.0081367587466432
915 => 0.0079591842930163
916 => 0.0079177831935079
917 => 0.0078330910737251
918 => 0.0078109964805271
919 => 0.0078799764449311
920 => 0.0078618026614087
921 => 0.0075351685490697
922 => 0.0075010334669552
923 => 0.00750208034119
924 => 0.0074162460541785
925 => 0.0072853281638966
926 => 0.0076293725628563
927 => 0.0076017409827216
928 => 0.0075712378567673
929 => 0.0075749743156482
930 => 0.0077243123284901
1001 => 0.0076376887392914
1002 => 0.0078679917485032
1003 => 0.0078206483733514
1004 => 0.0077720908192699
1005 => 0.0077653786861965
1006 => 0.007746688170611
1007 => 0.0076825914382336
1008 => 0.0076051907822714
1009 => 0.0075540841648752
1010 => 0.0069682433347192
1011 => 0.0070769719851168
1012 => 0.007202054386471
1013 => 0.0072452323301821
1014 => 0.0071713734696414
1015 => 0.0076855078362228
1016 => 0.0077794451393192
1017 => 0.0074949029208614
1018 => 0.0074416766895702
1019 => 0.007688997339085
1020 => 0.0075398327537078
1021 => 0.0076070015573697
1022 => 0.007461819343224
1023 => 0.0077568183938086
1024 => 0.0077545709953017
1025 => 0.0076398097017686
1026 => 0.0077368051612114
1027 => 0.0077199498131922
1028 => 0.0075903845954378
1029 => 0.0077609258423127
1030 => 0.0077610104286435
1031 => 0.0076505551787435
1101 => 0.0075215676286237
1102 => 0.0074985077012122
1103 => 0.007481135143573
1104 => 0.0076027289731476
1105 => 0.0077117496205302
1106 => 0.0079146100167986
1107 => 0.0079656139402646
1108 => 0.0081646856490759
1109 => 0.0080461481391043
1110 => 0.008098694281957
1111 => 0.0081557405531292
1112 => 0.0081830906333364
1113 => 0.0081385251453251
1114 => 0.0084477654502933
1115 => 0.0084738748069108
1116 => 0.0084826290483396
1117 => 0.0083783549574252
1118 => 0.008470974755812
1119 => 0.0084276410193921
1120 => 0.0085403833630979
1121 => 0.0085580628021575
1122 => 0.0085430889462383
1123 => 0.0085487006792468
1124 => 0.0082848186326844
1125 => 0.0082711349564815
1126 => 0.0080845570605049
1127 => 0.0081605889322295
1128 => 0.0080184509923427
1129 => 0.0080635243972638
1130 => 0.0080833923246779
1201 => 0.0080730144468918
1202 => 0.0081648876601795
1203 => 0.0080867766604274
1204 => 0.0078806288894445
1205 => 0.0076744249536391
1206 => 0.0076718362311952
1207 => 0.0076175463746994
1208 => 0.0075783047521361
1209 => 0.0075858640808132
1210 => 0.0076125041410498
1211 => 0.0075767563834062
1212 => 0.0075843849799568
1213 => 0.0077110705117692
1214 => 0.0077364763916943
1215 => 0.0076501372849907
1216 => 0.0073034733129022
1217 => 0.007218401104611
1218 => 0.0072795493208755
1219 => 0.0072503244119506
1220 => 0.0058515776650634
1221 => 0.0061801924653408
1222 => 0.0059849407097202
1223 => 0.0060749217018115
1224 => 0.0058756202195198
1225 => 0.0059707373331551
1226 => 0.0059531726753875
1227 => 0.0064815755498146
1228 => 0.0064733252657248
1229 => 0.0064772742401233
1230 => 0.0062887794030865
1231 => 0.0065890567966786
]
'min_raw' => 0.0038335197558706
'max_raw' => 0.0085580628021575
'avg_raw' => 0.0061957912790141
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003833'
'max' => '$0.008558'
'avg' => '$0.006195'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0005911209681998
'max_diff' => 0.0012946892574754
'year' => 2035
]
10 => [
'items' => [
101 => 0.0067369842383879
102 => 0.0067096068058889
103 => 0.0067164971158253
104 => 0.0065980987624294
105 => 0.0064784205949901
106 => 0.0063456790889621
107 => 0.0065922963998162
108 => 0.0065648767647471
109 => 0.0066277675423223
110 => 0.0067877164969807
111 => 0.0068112695881411
112 => 0.0068429251815126
113 => 0.0068315789046875
114 => 0.0071018932508303
115 => 0.0070691563999209
116 => 0.0071480427915777
117 => 0.0069857674988148
118 => 0.0068021376017413
119 => 0.0068370396418613
120 => 0.0068336782947333
121 => 0.0067908844878187
122 => 0.0067522521523766
123 => 0.0066879401984585
124 => 0.0068914327370337
125 => 0.0068831713115885
126 => 0.0070169141866888
127 => 0.0069932738344058
128 => 0.0068353977760848
129 => 0.0068410363503935
130 => 0.0068789584724257
131 => 0.0070102073697664
201 => 0.0070491709786035
202 => 0.0070311214825588
203 => 0.0070738433008924
204 => 0.0071076088841944
205 => 0.007078083738291
206 => 0.0074960975412597
207 => 0.0073225090664464
208 => 0.0074071148812495
209 => 0.0074272928695537
210 => 0.00737560737681
211 => 0.0073868161094674
212 => 0.0074037942852465
213 => 0.0075068824439094
214 => 0.00777741560104
215 => 0.0078972328947517
216 => 0.0082577091345644
217 => 0.0078872837364462
218 => 0.0078653042262945
219 => 0.0079302368824243
220 => 0.0081418745954796
221 => 0.0083133870837913
222 => 0.0083702876709571
223 => 0.0083778080228774
224 => 0.00848455730708
225 => 0.0085457440060286
226 => 0.0084715951361929
227 => 0.0084087617327174
228 => 0.0081837002806373
229 => 0.0082097517565375
301 => 0.0083892205914847
302 => 0.0086427308915093
303 => 0.0088602691021816
304 => 0.0087840948027762
305 => 0.0093652509365644
306 => 0.0094228701934196
307 => 0.0094149090751758
308 => 0.009546174317187
309 => 0.0092856395434964
310 => 0.0091742558801202
311 => 0.0084223470277382
312 => 0.008633602745294
313 => 0.0089406753373747
314 => 0.0089000331283497
315 => 0.0086770288039068
316 => 0.0088600999334042
317 => 0.0087995708928288
318 => 0.0087518291271748
319 => 0.0089705434108324
320 => 0.0087300580716633
321 => 0.0089382763121548
322 => 0.0086712342649826
323 => 0.0087844427605594
324 => 0.0087201801431912
325 => 0.0087617659323586
326 => 0.0085186562586233
327 => 0.0086498323374171
328 => 0.0085131989024785
329 => 0.0085131341204402
330 => 0.008510117929791
331 => 0.0086708665600708
401 => 0.0086761085671332
402 => 0.0085573150864787
403 => 0.0085401950900134
404 => 0.0086034966898989
405 => 0.0085293870951483
406 => 0.0085640625080919
407 => 0.008530437378082
408 => 0.0085228676530631
409 => 0.0084625507962306
410 => 0.0084365646358607
411 => 0.0084467544789226
412 => 0.0084119712913281
413 => 0.0083910131626395
414 => 0.0085059488304864
415 => 0.0084445433396474
416 => 0.0084965375583366
417 => 0.0084372835839467
418 => 0.0082318834929837
419 => 0.0081137557286044
420 => 0.0077257739973738
421 => 0.0078358051350609
422 => 0.007908755893183
423 => 0.0078846456680588
424 => 0.007936443761044
425 => 0.0079396237432666
426 => 0.0079227836552181
427 => 0.0079032849906067
428 => 0.0078937941190177
429 => 0.007964531300117
430 => 0.0080055966146491
501 => 0.0079160774777157
502 => 0.0078951043964381
503 => 0.0079856131863647
504 => 0.0080408234959348
505 => 0.0084484654018069
506 => 0.0084182659727539
507 => 0.0084940606133384
508 => 0.0084855272999721
509 => 0.0085649721583377
510 => 0.0086948309258633
511 => 0.0084307917424014
512 => 0.0084766198148623
513 => 0.0084653838298196
514 => 0.0085880553682822
515 => 0.0085884383354352
516 => 0.0085148906202291
517 => 0.0085547620298178
518 => 0.0085325069028003
519 => 0.0085727249252817
520 => 0.0084178626409672
521 => 0.0086064681869117
522 => 0.0087133953779893
523 => 0.0087148800621411
524 => 0.0087655627020852
525 => 0.008817059199609
526 => 0.0089159022422062
527 => 0.0088143025207981
528 => 0.0086315345125185
529 => 0.0086447297723792
530 => 0.0085375729559971
531 => 0.00853937428144
601 => 0.0085297586650536
602 => 0.0085586158536588
603 => 0.0084241951710855
604 => 0.0084557434366092
605 => 0.0084115756801297
606 => 0.0084765238027856
607 => 0.0084066503591171
608 => 0.0084653784114875
609 => 0.0084907234920247
610 => 0.0085842473848478
611 => 0.0083928368041052
612 => 0.0080025376726138
613 => 0.0080845832819728
614 => 0.0079632313811873
615 => 0.0079744629616242
616 => 0.0079971525415997
617 => 0.0079236081893306
618 => 0.0079376381340947
619 => 0.0079371368857405
620 => 0.0079328173982205
621 => 0.0079136856717777
622 => 0.0078859408833389
623 => 0.0079964675810836
624 => 0.0080152482207845
625 => 0.0080569952564105
626 => 0.0081812061171489
627 => 0.0081687945230673
628 => 0.0081890383479664
629 => 0.0081448461918759
630 => 0.0079765129089991
701 => 0.0079856542161352
702 => 0.007871661969669
703 => 0.0080540802183789
704 => 0.0080108811692811
705 => 0.0079830304613014
706 => 0.0079754311375941
707 => 0.0080999498930311
708 => 0.0081372078562502
709 => 0.008113991193861
710 => 0.0080663731419624
711 => 0.008157813878621
712 => 0.0081822795621758
713 => 0.0081877565264641
714 => 0.0083497719798009
715 => 0.0081968113905385
716 => 0.0082336305246714
717 => 0.0085208828986916
718 => 0.0082603846335733
719 => 0.008398376374411
720 => 0.0083916223967714
721 => 0.008462214301998
722 => 0.0083858318001195
723 => 0.0083867786527738
724 => 0.0084494594823053
725 => 0.0083614355617756
726 => 0.0083396396011692
727 => 0.0083095286376972
728 => 0.0083752748248508
729 => 0.0084146866906051
730 => 0.008732317383759
731 => 0.0089375212972558
801 => 0.0089286128541841
802 => 0.0090100193479529
803 => 0.008973344976912
804 => 0.0088549137586108
805 => 0.0090570614071026
806 => 0.0089930934329029
807 => 0.0089983668749748
808 => 0.0089981705971975
809 => 0.0090407037078629
810 => 0.0090105651008542
811 => 0.0089511588127753
812 => 0.0089905954791774
813 => 0.0091077082795255
814 => 0.0094712300052656
815 => 0.009674661579012
816 => 0.0094589831690898
817 => 0.0096077552482051
818 => 0.0095185450136479
819 => 0.0095023328602542
820 => 0.009595772720109
821 => 0.0096893761340689
822 => 0.0096834140012584
823 => 0.0096154627293119
824 => 0.0095770787799891
825 => 0.0098677349038281
826 => 0.010081885384675
827 => 0.010067281757564
828 => 0.010131737418277
829 => 0.010320981231668
830 => 0.010338283314284
831 => 0.010336103649558
901 => 0.010293218632509
902 => 0.010479553743207
903 => 0.010634997770806
904 => 0.01028329199013
905 => 0.010417216947244
906 => 0.010477340175286
907 => 0.010565618911809
908 => 0.010714559937557
909 => 0.010876349396175
910 => 0.010899228199555
911 => 0.010882994593705
912 => 0.010776290096612
913 => 0.010953322052782
914 => 0.011057023220796
915 => 0.01111877489319
916 => 0.011275366859881
917 => 0.010477711475874
918 => 0.0099130913490287
919 => 0.0098249177630083
920 => 0.010004222217436
921 => 0.010051503372142
922 => 0.010032444397965
923 => 0.0093969131121851
924 => 0.0098215718223149
925 => 0.010278468888096
926 => 0.010296020165165
927 => 0.010524752389562
928 => 0.010599236977876
929 => 0.010783396399134
930 => 0.010771877177193
1001 => 0.010816717065653
1002 => 0.010806409151814
1003 => 0.011147525700353
1004 => 0.011523827909689
1005 => 0.011510797760747
1006 => 0.01145669986595
1007 => 0.011537044464786
1008 => 0.011925428671816
1009 => 0.011889672477763
1010 => 0.01192440657458
1011 => 0.012382333443043
1012 => 0.012977703511382
1013 => 0.012701094340461
1014 => 0.013301256649215
1015 => 0.013679027009339
1016 => 0.014332341784989
1017 => 0.014250543557435
1018 => 0.01450487420535
1019 => 0.014104107658307
1020 => 0.013183866658014
1021 => 0.013038234997176
1022 => 0.013329793270154
1023 => 0.014046560834429
1024 => 0.013307219708796
1025 => 0.013456787455591
1026 => 0.013413711934452
1027 => 0.01341141662299
1028 => 0.0134990193258
1029 => 0.013371947036324
1030 => 0.012854231669129
1031 => 0.013091497570999
1101 => 0.012999877811842
1102 => 0.013101536765332
1103 => 0.013650148209973
1104 => 0.013407594013034
1105 => 0.013152082870061
1106 => 0.01347255054581
1107 => 0.01388061602168
1108 => 0.013855080017564
1109 => 0.013805529496358
1110 => 0.014084843190017
1111 => 0.014546187580708
1112 => 0.014670887115679
1113 => 0.014762937763026
1114 => 0.014775629992087
1115 => 0.014906367839588
1116 => 0.014203357483395
1117 => 0.015319052973259
1118 => 0.015511702763893
1119 => 0.015475492587769
1120 => 0.015689614722116
1121 => 0.015626614558437
1122 => 0.015535337205689
1123 => 0.015874766333713
1124 => 0.015485638228952
1125 => 0.014933319874109
1126 => 0.014630307101025
1127 => 0.015029338763966
1128 => 0.015273013476238
1129 => 0.015434066960428
1130 => 0.015482801647432
1201 => 0.014257930176132
1202 => 0.013597792387588
1203 => 0.01402093314155
1204 => 0.014537194064998
1205 => 0.014200489627898
1206 => 0.014213687804367
1207 => 0.013733635761432
1208 => 0.014579668018824
1209 => 0.014456408235173
1210 => 0.015095880210796
1211 => 0.01494326509173
1212 => 0.015464729663691
1213 => 0.015327410565713
1214 => 0.015897414464013
1215 => 0.016124804451284
1216 => 0.016506627630339
1217 => 0.016787498315151
1218 => 0.016952430953473
1219 => 0.016942529016515
1220 => 0.01759607429866
1221 => 0.017210701478912
1222 => 0.016726582391908
1223 => 0.016717826205001
1224 => 0.01696855834018
1225 => 0.017494024110515
1226 => 0.017630269739546
1227 => 0.017706412459204
1228 => 0.017589797233501
1229 => 0.017171502657583
1230 => 0.016990885180504
1231 => 0.017144776503968
]
'min_raw' => 0.0063456790889621
'max_raw' => 0.017706412459204
'avg_raw' => 0.012026045774083
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.006345'
'max' => '$0.0177064'
'avg' => '$0.012026'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0025121593330914
'max_diff' => 0.009148349657047
'year' => 2036
]
11 => [
'items' => [
101 => 0.016956580639403
102 => 0.017281459500074
103 => 0.017727587566156
104 => 0.017635463884692
105 => 0.017943419539873
106 => 0.018262121245105
107 => 0.018717878997377
108 => 0.018837030950481
109 => 0.01903398459802
110 => 0.01923671459724
111 => 0.019301826009263
112 => 0.0194261438977
113 => 0.019425488681062
114 => 0.019800129005424
115 => 0.02021336888484
116 => 0.020369357372795
117 => 0.02072804429959
118 => 0.020113805507342
119 => 0.020579712687129
120 => 0.02099997262571
121 => 0.02049892140165
122 => 0.021189503784055
123 => 0.02121631753307
124 => 0.021621173308454
125 => 0.021210774419121
126 => 0.020967080868674
127 => 0.021670615017735
128 => 0.022011033031347
129 => 0.021908496355234
130 => 0.021128187187148
131 => 0.020674013782287
201 => 0.01948535437826
202 => 0.020893372788595
203 => 0.021579177483809
204 => 0.021126411118665
205 => 0.021354760137397
206 => 0.022600558341181
207 => 0.023074877637721
208 => 0.022976222539783
209 => 0.022992893627333
210 => 0.023248827710242
211 => 0.024383780379334
212 => 0.023703690432017
213 => 0.024223593714257
214 => 0.024499348540506
215 => 0.02475548499111
216 => 0.024126494821184
217 => 0.023308187851811
218 => 0.023048995684421
219 => 0.021081392426702
220 => 0.02097897013227
221 => 0.020921477394692
222 => 0.020558993816772
223 => 0.020274181017136
224 => 0.020047687304444
225 => 0.019453300165591
226 => 0.019653888376537
227 => 0.018706559335443
228 => 0.019312626884655
301 => 0.017800666861011
302 => 0.019059872096836
303 => 0.018374543936013
304 => 0.018834723364164
305 => 0.018833117841491
306 => 0.017985781614244
307 => 0.017497055761824
308 => 0.017808490896481
309 => 0.018142374082585
310 => 0.018196545506212
311 => 0.018629433772238
312 => 0.018750243582384
313 => 0.018384184217572
314 => 0.017769334850173
315 => 0.017912150334998
316 => 0.017494161610582
317 => 0.016761652448747
318 => 0.01728775331716
319 => 0.017467387284659
320 => 0.017546723878227
321 => 0.016826385246808
322 => 0.016600039209504
323 => 0.01647953447847
324 => 0.017676348178482
325 => 0.017741912334622
326 => 0.017406476841969
327 => 0.018922677076063
328 => 0.018579514266736
329 => 0.018962911201683
330 => 0.017899191326672
331 => 0.017939826858386
401 => 0.017436244822688
402 => 0.017718217113315
403 => 0.017518928186691
404 => 0.017695436538737
405 => 0.017801234917182
406 => 0.018304734320023
407 => 0.019065621251234
408 => 0.018229528299464
409 => 0.017865230627306
410 => 0.018091238854225
411 => 0.018693128545526
412 => 0.019605022238014
413 => 0.01906516281849
414 => 0.019304743261467
415 => 0.019357080930066
416 => 0.018959008580791
417 => 0.019619699733336
418 => 0.01997376948943
419 => 0.02033697179477
420 => 0.020652330179799
421 => 0.020191900807027
422 => 0.020684626235851
423 => 0.020287576517966
424 => 0.019931381874777
425 => 0.01993192207502
426 => 0.019708475972175
427 => 0.019275520991891
428 => 0.019195677450805
429 => 0.01961103363466
430 => 0.019944109959734
501 => 0.019971543721195
502 => 0.020155951888836
503 => 0.02026508274289
504 => 0.021334713468827
505 => 0.021764927795248
506 => 0.022290985730056
507 => 0.022495914942664
508 => 0.023112678401425
509 => 0.022614591817396
510 => 0.02250682765183
511 => 0.021010761242664
512 => 0.021255742033354
513 => 0.021647979916379
514 => 0.021017229100885
515 => 0.021417295314491
516 => 0.021496276859618
517 => 0.020995796429535
518 => 0.021263124651725
519 => 0.020553180150881
520 => 0.019081096101298
521 => 0.019621338583701
522 => 0.020019138894402
523 => 0.019451428802607
524 => 0.020469027168735
525 => 0.019874567210737
526 => 0.019686151943162
527 => 0.018951076809458
528 => 0.01929800397693
529 => 0.019767227938453
530 => 0.019477302083372
531 => 0.020078941765252
601 => 0.020931024006235
602 => 0.021538268553535
603 => 0.021584885249691
604 => 0.021194467688002
605 => 0.02182011432222
606 => 0.021824671474916
607 => 0.021118939515677
608 => 0.020686682620175
609 => 0.020588472944041
610 => 0.020833819970166
611 => 0.021131716553441
612 => 0.021601416436808
613 => 0.021885246239148
614 => 0.022625323831954
615 => 0.02282556760888
616 => 0.023045574809602
617 => 0.023339572277475
618 => 0.02369259161706
619 => 0.022920205399451
620 => 0.022950893743784
621 => 0.022231658392362
622 => 0.021463052270585
623 => 0.022046328508908
624 => 0.02280888460053
625 => 0.022633953390562
626 => 0.02261427005592
627 => 0.022647371965086
628 => 0.02251547954549
629 => 0.021918935019817
630 => 0.02161935409359
701 => 0.022005889919668
702 => 0.022211316508498
703 => 0.022529915232692
704 => 0.022490641215132
705 => 0.023311317313651
706 => 0.023630207229579
707 => 0.023548621543015
708 => 0.023563635272812
709 => 0.024140970233431
710 => 0.02478308544763
711 => 0.025384511080293
712 => 0.025996307065669
713 => 0.025258763126494
714 => 0.024884283799567
715 => 0.025270650876196
716 => 0.025065639066826
717 => 0.026243697733915
718 => 0.026325263960027
719 => 0.027503237440065
720 => 0.028621274543094
721 => 0.027919055470396
722 => 0.028581216427308
723 => 0.029297397488983
724 => 0.030679026953144
725 => 0.030213742755925
726 => 0.029857342352789
727 => 0.029520545693939
728 => 0.030221366076041
729 => 0.031122960301738
730 => 0.03131715506259
731 => 0.03163182476328
801 => 0.031300988048985
802 => 0.031699444430885
803 => 0.033106170549596
804 => 0.032726060734806
805 => 0.032186243692101
806 => 0.033296718859411
807 => 0.033698595505598
808 => 0.036519176272969
809 => 0.040080276004156
810 => 0.038605957332003
811 => 0.037690800156231
812 => 0.037905883800356
813 => 0.039206276871352
814 => 0.039623921853343
815 => 0.038488618821433
816 => 0.038889627045322
817 => 0.041099221785209
818 => 0.042284598470872
819 => 0.040674697714414
820 => 0.036233045376934
821 => 0.032137639073671
822 => 0.033223925243846
823 => 0.033100774103533
824 => 0.035474707998984
825 => 0.032716995241433
826 => 0.032763428051722
827 => 0.035186452386092
828 => 0.034540031034835
829 => 0.033492911233191
830 => 0.032145284207035
831 => 0.029654071008774
901 => 0.027447534006454
902 => 0.031775061203126
903 => 0.031588450361308
904 => 0.031318210208178
905 => 0.03191960042593
906 => 0.034839780615742
907 => 0.034772461010666
908 => 0.034344208029936
909 => 0.034669034141371
910 => 0.033435967645346
911 => 0.033753756957774
912 => 0.032136990340389
913 => 0.032867836373585
914 => 0.033490664584382
915 => 0.033615706568829
916 => 0.03389743254459
917 => 0.031490114927332
918 => 0.032570929862349
919 => 0.033205807378007
920 => 0.030337407665221
921 => 0.033149108338294
922 => 0.031448208883414
923 => 0.030870898061775
924 => 0.031648171028195
925 => 0.031345266997258
926 => 0.031084847898581
927 => 0.030939529566951
928 => 0.031510273049002
929 => 0.031483647183378
930 => 0.030549800070206
1001 => 0.02933163457955
1002 => 0.029740490903134
1003 => 0.029591949567727
1004 => 0.029053616606002
1005 => 0.029416388023635
1006 => 0.02781892629479
1007 => 0.025070576419148
1008 => 0.026886220531231
1009 => 0.026816320207956
1010 => 0.026781073295234
1011 => 0.028145479664747
1012 => 0.028014323474529
1013 => 0.027776273704998
1014 => 0.029049244635303
1015 => 0.028584593121867
1016 => 0.030016539600613
1017 => 0.030959712164007
1018 => 0.030720493093494
1019 => 0.031607551448115
1020 => 0.029749910127055
1021 => 0.030366944058278
1022 => 0.03049411389633
1023 => 0.029033536371621
1024 => 0.028035782249284
1025 => 0.027969243424554
1026 => 0.026239275275409
1027 => 0.027163410296867
1028 => 0.027976610872445
1029 => 0.027587150903657
1030 => 0.027463859512325
1031 => 0.028093728492003
1101 => 0.028142674706187
1102 => 0.027026695835705
1103 => 0.027258743181333
1104 => 0.028226419187262
1105 => 0.027234360228784
1106 => 0.025306951724372
1107 => 0.02482892776677
1108 => 0.024765150559096
1109 => 0.023468711673523
1110 => 0.024860871613378
1111 => 0.024253156492064
1112 => 0.026172921278748
1113 => 0.025076361928499
1114 => 0.025029091446575
1115 => 0.024957635180075
1116 => 0.023841736676046
1117 => 0.024086047529379
1118 => 0.024898174015451
1119 => 0.025187949894941
1120 => 0.025157723896647
1121 => 0.024894194152615
1122 => 0.025014836719942
1123 => 0.024626204975925
1124 => 0.024488971018443
1125 => 0.024055822899454
1126 => 0.023419214824762
1127 => 0.023507739082092
1128 => 0.022246451908563
1129 => 0.021559235714848
1130 => 0.021369023329791
1201 => 0.021114663378971
1202 => 0.021397753963062
1203 => 0.022242878840473
1204 => 0.021223478935071
1205 => 0.019475789299849
1206 => 0.019580828424844
1207 => 0.019816820152312
1208 => 0.019377051129417
1209 => 0.018960846656264
1210 => 0.019322702677934
1211 => 0.018582183540105
1212 => 0.019906308352247
1213 => 0.019870494486895
1214 => 0.020364046333532
1215 => 0.020672674431938
1216 => 0.019961386584646
1217 => 0.019782499614579
1218 => 0.019884401762689
1219 => 0.018200186244276
1220 => 0.020226409994021
1221 => 0.02024393286115
1222 => 0.020093891434354
1223 => 0.021172793028453
1224 => 0.023449611909848
1225 => 0.02259298106184
1226 => 0.022261267705687
1227 => 0.021630680373159
1228 => 0.022470900553182
1229 => 0.022406384752833
1230 => 0.022114619836763
1231 => 0.021938159505162
]
'min_raw' => 0.01647953447847
'max_raw' => 0.042284598470872
'avg_raw' => 0.029382066474671
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.016479'
'max' => '$0.042284'
'avg' => '$0.029382'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.010133855389508
'max_diff' => 0.024578186011668
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00051727375653691
]
1 => [
'year' => 2028
'avg' => 0.00088779193186182
]
2 => [
'year' => 2029
'avg' => 0.0024252875489188
]
3 => [
'year' => 2030
'avg' => 0.0018711057321443
]
4 => [
'year' => 2031
'avg' => 0.0018376577125463
]
5 => [
'year' => 2032
'avg' => 0.0032219923022599
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00051727375653691
'min' => '$0.000517'
'max_raw' => 0.0032219923022599
'max' => '$0.003221'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0032219923022599
]
1 => [
'year' => 2033
'avg' => 0.0082872955149738
]
2 => [
'year' => 2034
'avg' => 0.0052528861661765
]
3 => [
'year' => 2035
'avg' => 0.0061957912790141
]
4 => [
'year' => 2036
'avg' => 0.012026045774083
]
5 => [
'year' => 2037
'avg' => 0.029382066474671
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0032219923022599
'min' => '$0.003221'
'max_raw' => 0.029382066474671
'max' => '$0.029382'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.029382066474671
]
]
]
]
'prediction_2025_max_price' => '$0.000884'
'last_price' => 0.00085758
'sma_50day_nextmonth' => '$0.000789'
'sma_200day_nextmonth' => '$0.001096'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000828'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000811'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000791'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000794'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000871'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001123'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.00112'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000834'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00082'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0008046'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0008094'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000894'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0010078'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0011021'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0011015'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001064'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000824'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000827'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000885'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000989'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00118'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001285'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000642'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '58.31'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 150.93
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000834'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000834'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 233.3
'cci_20_action' => 'SELL'
'adx_14' => 25.09
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.0000011'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.63
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000219'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 19
'sell_pct' => 40.63
'buy_pct' => 59.38
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767689267
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Fluffys para 2026
La previsión del precio de Fluffys para 2026 sugiere que el precio medio podría oscilar entre $0.000296 en el extremo inferior y $0.000884 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Fluffys podría potencialmente ganar 3.13% para 2026 si FLUFF alcanza el objetivo de precio previsto.
Predicción de precio de Fluffys 2027-2032
La predicción del precio de FLUFF para 2027-2032 está actualmente dentro de un rango de precios de $0.000517 en el extremo inferior y $0.003221 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Fluffys alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Fluffys | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000285 | $0.000517 | $0.000749 |
| 2028 | $0.000514 | $0.000887 | $0.00126 |
| 2029 | $0.00113 | $0.002425 | $0.003719 |
| 2030 | $0.000961 | $0.001871 | $0.00278 |
| 2031 | $0.001137 | $0.001837 | $0.002538 |
| 2032 | $0.001735 | $0.003221 | $0.0047084 |
Predicción de precio de Fluffys 2032-2037
La predicción de precio de Fluffys para 2032-2037 se estima actualmente entre $0.003221 en el extremo inferior y $0.029382 en el extremo superior. Comparado con el precio actual, Fluffys podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Fluffys | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001735 | $0.003221 | $0.0047084 |
| 2033 | $0.004033 | $0.008287 | $0.012541 |
| 2034 | $0.003242 | $0.005252 | $0.007263 |
| 2035 | $0.003833 | $0.006195 | $0.008558 |
| 2036 | $0.006345 | $0.012026 | $0.0177064 |
| 2037 | $0.016479 | $0.029382 | $0.042284 |
Fluffys Histograma de precios potenciales
Pronóstico de precio de Fluffys basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Fluffys es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de FLUFF se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Fluffys
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Fluffys aumentar durante el próximo mes, alcanzando $0.001096 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Fluffys alcance $0.000789 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 58.31, lo que sugiere que el mercado de FLUFF está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FLUFF para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000828 | BUY |
| SMA 5 | $0.000811 | BUY |
| SMA 10 | $0.000791 | BUY |
| SMA 21 | $0.000794 | BUY |
| SMA 50 | $0.000871 | SELL |
| SMA 100 | $0.001123 | SELL |
| SMA 200 | $0.00112 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000834 | BUY |
| EMA 5 | $0.00082 | BUY |
| EMA 10 | $0.0008046 | BUY |
| EMA 21 | $0.0008094 | BUY |
| EMA 50 | $0.000894 | SELL |
| EMA 100 | $0.0010078 | SELL |
| EMA 200 | $0.0011021 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0011015 | SELL |
| SMA 50 | $0.001064 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000989 | SELL |
| EMA 50 | $0.00118 | SELL |
| EMA 100 | $0.001285 | SELL |
| EMA 200 | $0.000642 | BUY |
Osciladores de Fluffys
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 58.31 | NEUTRAL |
| Stoch RSI (14) | 150.93 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 233.3 | SELL |
| Índice Direccional Medio (14) | 25.09 | SELL |
| Oscilador Asombroso (5, 34) | -0.0000011 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.63 | SELL |
| VWMA (10) | 0.000834 | BUY |
| Promedio Móvil de Hull (9) | 0.000834 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000219 | SELL |
Predicción de precios de Fluffys basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Fluffys
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Fluffys por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001205 | $0.001693 | $0.002379 | $0.003343 | $0.004698 | $0.0066014 |
| Amazon.com acción | $0.001789 | $0.003733 | $0.00779 | $0.016255 | $0.033917 | $0.070771 |
| Apple acción | $0.001216 | $0.001725 | $0.002447 | $0.003471 | $0.004923 | $0.006984 |
| Netflix acción | $0.001353 | $0.002135 | $0.003368 | $0.005315 | $0.008386 | $0.013232 |
| Google acción | $0.00111 | $0.001438 | $0.001862 | $0.002411 | $0.003123 | $0.004044 |
| Tesla acción | $0.001944 | $0.004407 | $0.00999 | $0.022647 | $0.05134 | $0.116384 |
| Kodak acción | $0.000643 | $0.000482 | $0.000361 | $0.000271 | $0.0002033 | $0.000152 |
| Nokia acción | $0.000568 | $0.000376 | $0.000249 | $0.000165 | $0.0001094 | $0.000072 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Fluffys
Podría preguntarse cosas como: "¿Debo invertir en Fluffys ahora?", "¿Debería comprar FLUFF hoy?", "¿Será Fluffys una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Fluffys regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Fluffys, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Fluffys a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Fluffys es de $0.0008575 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Fluffys basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Fluffys ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000879 | $0.0009027 | $0.000926 | $0.00095 |
| Si Fluffys ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0009021 | $0.000949 | $0.000998 | $0.00105 |
| Si Fluffys ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000969 | $0.001094 | $0.001237 | $0.001398 |
| Si Fluffys ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.00108 | $0.001361 | $0.001715 | $0.002161 |
| Si Fluffys ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0013034 | $0.00198 | $0.00301 | $0.004576 |
| Si Fluffys ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001972 | $0.004535 | $0.010429 | $0.023984 |
| Si Fluffys ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.003086 | $0.01111 | $0.039988 | $0.143931 |
Cuadro de preguntas
¿Es FLUFF una buena inversión?
La decisión de adquirir Fluffys depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Fluffys ha experimentado un aumento de 1.1922% durante las últimas 24 horas, y Fluffys ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Fluffys dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Fluffys subir?
Parece que el valor medio de Fluffys podría potencialmente aumentar hasta $0.000884 para el final de este año. Mirando las perspectivas de Fluffys en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.00278. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Fluffys la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Fluffys, el precio de Fluffys aumentará en un 0.86% durante la próxima semana y alcanzará $0.000864 para el 13 de enero de 2026.
¿Cuál será el precio de Fluffys el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Fluffys, el precio de Fluffys disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000757 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Fluffys este año en 2026?
Según nuestra predicción más reciente sobre el valor de Fluffys en 2026, se anticipa que FLUFF fluctúe dentro del rango de $0.000296 y $0.000884. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Fluffys no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Fluffys en 5 años?
El futuro de Fluffys parece estar en una tendencia alcista, con un precio máximo de $0.00278 proyectada después de un período de cinco años. Basado en el pronóstico de Fluffys para 2030, el valor de Fluffys podría potencialmente alcanzar su punto más alto de aproximadamente $0.00278, mientras que su punto más bajo se anticipa que esté alrededor de $0.000961.
¿Cuánto será Fluffys en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Fluffys, se espera que el valor de FLUFF en 2026 crezca en un 3.13% hasta $0.000884 si ocurre lo mejor. El precio estará entre $0.000884 y $0.000296 durante 2026.
¿Cuánto será Fluffys en 2027?
Según nuestra última simulación experimental para la predicción de precios de Fluffys, el valor de FLUFF podría disminuir en un -12.62% hasta $0.000749 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000749 y $0.000285 a lo largo del año.
¿Cuánto será Fluffys en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Fluffys sugiere que el valor de FLUFF en 2028 podría aumentar en un 47.02% , alcanzando $0.00126 en el mejor escenario. Se espera que el precio oscile entre $0.00126 y $0.000514 durante el año.
¿Cuánto será Fluffys en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Fluffys podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003719 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003719 y $0.00113.
¿Cuánto será Fluffys en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Fluffys, se espera que el valor de FLUFF en 2030 aumente en un 224.23% , alcanzando $0.00278 en el mejor escenario. Se pronostica que el precio oscile entre $0.00278 y $0.000961 durante el transcurso de 2030.
¿Cuánto será Fluffys en 2031?
Nuestra simulación experimental indica que el precio de Fluffys podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.002538 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.002538 y $0.001137 durante el año.
¿Cuánto será Fluffys en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Fluffys, FLUFF podría experimentar un 449.04% aumento en valor, alcanzando $0.0047084 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0047084 y $0.001735 a lo largo del año.
¿Cuánto será Fluffys en 2033?
Según nuestra predicción experimental de precios de Fluffys, se anticipa que el valor de FLUFF aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.012541. A lo largo del año, el precio de FLUFF podría oscilar entre $0.012541 y $0.004033.
¿Cuánto será Fluffys en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Fluffys sugieren que FLUFF podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.007263 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.007263 y $0.003242.
¿Cuánto será Fluffys en 2035?
Basado en nuestra predicción experimental para el precio de Fluffys, FLUFF podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.008558 en 2035. El rango de precios esperado para el año está entre $0.008558 y $0.003833.
¿Cuánto será Fluffys en 2036?
Nuestra reciente simulación de predicción de precios de Fluffys sugiere que el valor de FLUFF podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0177064 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0177064 y $0.006345.
¿Cuánto será Fluffys en 2037?
Según la simulación experimental, el valor de Fluffys podría aumentar en un 4830.69% en 2037, con un máximo de $0.042284 bajo condiciones favorables. Se espera que el precio caiga entre $0.042284 y $0.016479 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Fluffys?
Los traders de Fluffys utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Fluffys
Las medias móviles son herramientas populares para la predicción de precios de Fluffys. Una media móvil simple (SMA) calcula el precio de cierre promedio de FLUFF durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FLUFF por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FLUFF.
¿Cómo leer gráficos de Fluffys y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Fluffys en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FLUFF dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Fluffys?
La acción del precio de Fluffys está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FLUFF. La capitalización de mercado de Fluffys puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FLUFF, grandes poseedores de Fluffys, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Fluffys.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


