Predicción del precio de Ferrum Network - Pronóstico de FRM
Predicción de precio de Ferrum Network hasta $0.00024 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00008 | $0.00024 |
| 2027 | $0.000077 | $0.0002034 |
| 2028 | $0.000139 | $0.000342 |
| 2029 | $0.0003069 | $0.0010097 |
| 2030 | $0.000261 | $0.000754 |
| 2031 | $0.0003086 | $0.000689 |
| 2032 | $0.000471 | $0.001278 |
| 2033 | $0.001094 | $0.0034043 |
| 2034 | $0.00088 | $0.001971 |
| 2035 | $0.00104 | $0.002323 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Ferrum Network hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,986.00, equivalente a un ROI del 39.86% en los próximos 90 días.
Predicción del precio a largo plazo de Ferrum Network para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Ferrum Network'
'name_with_ticker' => 'Ferrum Network <small>FRM</small>'
'name_lang' => 'Ferrum Network'
'name_lang_with_ticker' => 'Ferrum Network <small>FRM</small>'
'name_with_lang' => 'Ferrum Network'
'name_with_lang_with_ticker' => 'Ferrum Network <small>FRM</small>'
'image' => '/uploads/coins/ferrum-network.png?1717253381'
'price_for_sd' => 0.0002327
'ticker' => 'FRM'
'marketcap' => '$66.28K'
'low24h' => '$0.0002298'
'high24h' => '$0.0002439'
'volume24h' => '$53.45K'
'current_supply' => '287.01M'
'max_supply' => '597.09M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.016 USD 0.01x'
'price' => '$0.0002327'
'change_24h_pct' => '-0.5141%'
'ath_price' => '$0.9695'
'ath_days' => 1737
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 abr. 2021'
'ath_pct' => '-99.98%'
'fdv' => '$137.88K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.011478'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000234'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000205'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00008'
'current_year_max_price_prediction' => '$0.00024'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000261'
'grand_prediction_max_price' => '$0.000754'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00023720124805246
107 => 0.00023808687140863
108 => 0.00024008222605115
109 => 0.0002230321390983
110 => 0.00023068712757588
111 => 0.00023518371613103
112 => 0.00021486796545156
113 => 0.00023478213906021
114 => 0.00022273533501747
115 => 0.00021864646878844
116 => 0.00022415158849867
117 => 0.00022200623799369
118 => 0.00022016179160872
119 => 0.00021913255883429
120 => 0.00022317491117159
121 => 0.0002229863306034
122 => 0.0002163722575928
123 => 0.00020774446897457
124 => 0.00021064023803236
125 => 0.00020958817798568
126 => 0.0002057753766581
127 => 0.0002083447443935
128 => 0.00019703054921403
129 => 0.00017756506446843
130 => 0.00019042455993529
131 => 0.00018992948334826
201 => 0.00018967984328314
202 => 0.00019934339871614
203 => 0.00019841447083741
204 => 0.00019672845764144
205 => 0.00020574441170356
206 => 0.00020245346718919
207 => 0.00021259538273844
208 => 0.00021927550425715
209 => 0.00021758120936071
210 => 0.00022386389593688
211 => 0.00021070695070282
212 => 0.00021507716014455
213 => 0.00021597785425364
214 => 0.00020563315622995
215 => 0.00019856645492662
216 => 0.00019809518651598
217 => 0.00018584250030743
218 => 0.00019238778637981
219 => 0.00019814736726116
220 => 0.00019538897498053
221 => 0.0001945157503891
222 => 0.00019897686544738
223 => 0.00019932353229428
224 => 0.00019141949144697
225 => 0.00019306299182754
226 => 0.00019991666162375
227 => 0.00019289029693338
228 => 0.00017923921809015
301 => 0.0001758535617961
302 => 0.00017540185283645
303 => 0.00016621968444719
304 => 0.00017607980753882
305 => 0.00017177559957445
306 => 0.00018537254096155
307 => 0.0001776060409631
308 => 0.00017727124267087
309 => 0.00017676514594794
310 => 0.00016886167430471
311 => 0.00017059203230275
312 => 0.00017634400582921
313 => 0.00017839637478407
314 => 0.00017818229588751
315 => 0.00017631581802095
316 => 0.00017717028203035
317 => 0.00017441775574108
318 => 0.00017344578141946
319 => 0.00017037796309782
320 => 0.00016586911767145
321 => 0.00016649610028235
322 => 0.00015756289768914
323 => 0.00015269561479541
324 => 0.00015134841504018
325 => 0.00014954688322414
326 => 0.0001515519028525
327 => 0.00015753759104859
328 => 0.00015031758114951
329 => 0.00013793938060236
330 => 0.00013868333154667
331 => 0.00014035476843752
401 => 0.00013724005684908
402 => 0.00013429224372855
403 => 0.00013685512807321
404 => 0.00013161032132245
405 => 0.00014098857827599
406 => 0.00014073492270765
407 => 0.00014423055695241
408 => 0.0001464164487833
409 => 0.00014137867580399
410 => 0.00014011168952329
411 => 0.00014083342249009
412 => 0.00012890478422882
413 => 0.00014325573271663
414 => 0.00014337984031509
415 => 0.00014231715570918
416 => 0.00014995859274311
417 => 0.00016608440830869
418 => 0.00016001722783349
419 => 0.00015766783217199
420 => 0.00015320162930209
421 => 0.00015915257944935
422 => 0.00015869563932732
423 => 0.00015662918280613
424 => 0.00015537938345437
425 => 0.00015768217708092
426 => 0.00015509404184015
427 => 0.00015462914163371
428 => 0.00015181235219908
429 => 0.00015080688652667
430 => 0.00015006247977156
501 => 0.00014924296107808
502 => 0.00015105061510456
503 => 0.00014695423326387
504 => 0.00014201439833726
505 => 0.00014160370451286
506 => 0.00014273766627058
507 => 0.00014223597260632
508 => 0.00014160130259661
509 => 0.000140389544706
510 => 0.00014003004202496
511 => 0.00014119825133242
512 => 0.00013987941113514
513 => 0.00014182543168717
514 => 0.00014129622177525
515 => 0.0001383400982265
516 => 0.00013465567378765
517 => 0.00013462287468181
518 => 0.00013382907148012
519 => 0.00013281804375367
520 => 0.00013253679896935
521 => 0.00013663928910217
522 => 0.00014513132089991
523 => 0.00014346413186092
524 => 0.000144668846802
525 => 0.0001505948519619
526 => 0.00015247855080104
527 => 0.00015114154598287
528 => 0.0001493113713249
529 => 0.00014939188972155
530 => 0.00015564615055941
531 => 0.00015603622113623
601 => 0.00015702180364233
602 => 0.00015828855568825
603 => 0.00015135727933388
604 => 0.00014906542722858
605 => 0.00014797942055398
606 => 0.00014463494033366
607 => 0.00014824167551721
608 => 0.00014614018538156
609 => 0.00014642374819798
610 => 0.00014623907754179
611 => 0.00014633992020744
612 => 0.00014098595686204
613 => 0.00014293665970908
614 => 0.00013969323788084
615 => 0.00013535066014401
616 => 0.00013533610230074
617 => 0.0001363989420497
618 => 0.00013576672337809
619 => 0.00013406543918863
620 => 0.00013430709857791
621 => 0.00013218990804187
622 => 0.00013456416384195
623 => 0.0001346322490028
624 => 0.00013371803119318
625 => 0.00013737589983738
626 => 0.00013887453160544
627 => 0.00013827277385871
628 => 0.00013883231067777
629 => 0.00014353341109239
630 => 0.00014429989558337
701 => 0.00014464031736314
702 => 0.00014418419727549
703 => 0.00013891823816341
704 => 0.00013915180584262
705 => 0.00013743804118719
706 => 0.00013599009064541
707 => 0.00013604800107358
708 => 0.00013679243587245
709 => 0.00014004342629962
710 => 0.00014688494399726
711 => 0.0001471445745928
712 => 0.00014745925444855
713 => 0.00014617929332977
714 => 0.00014579324480877
715 => 0.00014630254245555
716 => 0.00014887185679287
717 => 0.0001554808308305
718 => 0.00015314477800706
719 => 0.00015124553069879
720 => 0.00015291168262154
721 => 0.00015265519159277
722 => 0.00015049014918643
723 => 0.00015042938365698
724 => 0.0001462739750733
725 => 0.00014473781513399
726 => 0.00014345408490912
727 => 0.00014205228501619
728 => 0.0001412212510509
729 => 0.00014249809691976
730 => 0.00014279012667717
731 => 0.00013999828086945
801 => 0.00013961776260209
802 => 0.00014189764415484
803 => 0.00014089435328603
804 => 0.00014192626282502
805 => 0.00014216567468962
806 => 0.0001421271238653
807 => 0.00014107957297103
808 => 0.00014174725067262
809 => 0.00014016799386406
810 => 0.00013845078928145
811 => 0.00013735531974338
812 => 0.00013639937727846
813 => 0.0001369297897177
814 => 0.00013503896622129
815 => 0.00013443405373003
816 => 0.00014152105649055
817 => 0.00014675630162786
818 => 0.00014668017909018
819 => 0.00014621680271917
820 => 0.00014552831942432
821 => 0.00014882148995156
822 => 0.00014767421518889
823 => 0.00014850895343674
824 => 0.00014872142935468
825 => 0.00014936452996461
826 => 0.00014959438315629
827 => 0.00014889960716771
828 => 0.00014656785409031
829 => 0.00014075734711784
830 => 0.000138052540437
831 => 0.0001371599091802
901 => 0.00013719235463104
902 => 0.00013629736425409
903 => 0.00013656097903076
904 => 0.00013620568979282
905 => 0.00013553285792985
906 => 0.00013688824424615
907 => 0.00013704443989281
908 => 0.00013672807653092
909 => 0.00013680259155517
910 => 0.00013418323803933
911 => 0.0001343823817982
912 => 0.00013327352404283
913 => 0.00013306562658118
914 => 0.0001302625307349
915 => 0.00012529644012798
916 => 0.0001280481363943
917 => 0.00012472447425164
918 => 0.00012346575303651
919 => 0.0001294243434976
920 => 0.00012882626628088
921 => 0.00012780261806377
922 => 0.00012628842900369
923 => 0.00012572680155222
924 => 0.00012231453094673
925 => 0.00012211291579561
926 => 0.00012380412924674
927 => 0.00012302369243014
928 => 0.00012192766356511
929 => 0.0001179579581186
930 => 0.00011349469487243
1001 => 0.00011362941273476
1002 => 0.0001150490937314
1003 => 0.00011917700769921
1004 => 0.00011756416029835
1005 => 0.00011639402100373
1006 => 0.00011617488908811
1007 => 0.00011891778379588
1008 => 0.00012279955446157
1009 => 0.00012462079440819
1010 => 0.00012281600093297
1011 => 0.00012074275136562
1012 => 0.00012086894046027
1013 => 0.00012170841997327
1014 => 0.00012179663740049
1015 => 0.00012044716506564
1016 => 0.00012082703362332
1017 => 0.0001202499785483
1018 => 0.00011670859261803
1019 => 0.00011664454017641
1020 => 0.00011577542695655
1021 => 0.00011574911055367
1022 => 0.00011427053215625
1023 => 0.00011406366881752
1024 => 0.00011112786166615
1025 => 0.00011306021882362
1026 => 0.0001117640950957
1027 => 0.00010981053091303
1028 => 0.00010947373571159
1029 => 0.00010946361124115
1030 => 0.00011146948484779
1031 => 0.00011303677902265
1101 => 0.00011178664172286
1102 => 0.00011150200969259
1103 => 0.00011454113511775
1104 => 0.00011415437870516
1105 => 0.00011381945014616
1106 => 0.00012245198447409
1107 => 0.00011561865994848
1108 => 0.00011263894042279
1109 => 0.00010895097167635
1110 => 0.00011015179289654
1111 => 0.00011040482357137
1112 => 0.00010153592354253
1113 => 9.7937811905373E-5
1114 => 9.6703075583479E-5
1115 => 9.599246737362E-5
1116 => 9.6316300458109E-5
1117 => 9.307757796827E-5
1118 => 9.5254053044967E-5
1119 => 9.2449593131164E-5
1120 => 9.1979416300113E-5
1121 => 9.699413803191E-5
1122 => 9.7691907265311E-5
1123 => 9.4715006935717E-5
1124 => 9.6626658863702E-5
1125 => 9.5933467300665E-5
1126 => 9.2497667547099E-5
1127 => 9.2366445268545E-5
1128 => 9.0642481726406E-5
1129 => 8.794481260808E-5
1130 => 8.6711905432879E-5
1201 => 8.6069796671444E-5
1202 => 8.6334743260863E-5
1203 => 8.6200778157753E-5
1204 => 8.5326565242477E-5
1205 => 8.625088701874E-5
1206 => 8.3889626836515E-5
1207 => 8.2949354005987E-5
1208 => 8.2524654582601E-5
1209 => 8.0428900261812E-5
1210 => 8.3764177372364E-5
1211 => 8.4421268979857E-5
1212 => 8.5079655260803E-5
1213 => 9.0810458337029E-5
1214 => 9.0524163610422E-5
1215 => 9.3112128507761E-5
1216 => 9.3011564950813E-5
1217 => 9.227343543984E-5
1218 => 8.9159388449456E-5
1219 => 9.0400592077273E-5
1220 => 8.6580360236724E-5
1221 => 8.9442737682178E-5
1222 => 8.8136468151812E-5
1223 => 8.9001086639972E-5
1224 => 8.7446424638755E-5
1225 => 8.8306838780649E-5
1226 => 8.4577089776486E-5
1227 => 8.1094302635382E-5
1228 => 8.2495877849857E-5
1229 => 8.4019550397559E-5
1230 => 8.7323260705521E-5
1231 => 8.5355598101117E-5
]
'min_raw' => 8.0428900261812E-5
'max_raw' => 0.00024008222605115
'avg_raw' => 0.00016025556315648
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00008'
'max' => '$0.00024'
'avg' => '$0.00016'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00015236109973819
'max_diff' => 7.2922260511464E-6
'year' => 2026
]
1 => [
'items' => [
101 => 8.6063243979221E-5
102 => 8.3692748746061E-5
103 => 7.8801739981563E-5
104 => 7.8829422560009E-5
105 => 7.8077047418009E-5
106 => 7.7426885446751E-5
107 => 8.5581607821043E-5
108 => 8.4567439186717E-5
109 => 8.2951494199026E-5
110 => 8.5114500780151E-5
111 => 8.5686434051731E-5
112 => 8.5702716187929E-5
113 => 8.7280789954238E-5
114 => 8.8123008206201E-5
115 => 8.8271452823493E-5
116 => 9.0754585991319E-5
117 => 9.1586899475856E-5
118 => 9.501508092525E-5
119 => 8.8051551871774E-5
120 => 8.7908142573395E-5
121 => 8.514493871852E-5
122 => 8.3392471149234E-5
123 => 8.5264931672291E-5
124 => 8.6923676079368E-5
125 => 8.519648053098E-5
126 => 8.5422015806512E-5
127 => 8.3103396899862E-5
128 => 8.393219405783E-5
129 => 8.4646065821305E-5
130 => 8.4251907792957E-5
131 => 8.3661834147055E-5
201 => 8.678767795406E-5
202 => 8.6611305596188E-5
203 => 8.9522163212109E-5
204 => 9.1791384881145E-5
205 => 9.5858235783951E-5
206 => 9.161426485714E-5
207 => 9.1459597688311E-5
208 => 9.2971494073014E-5
209 => 9.1586668012397E-5
210 => 9.2461830280136E-5
211 => 9.5717233612662E-5
212 => 9.5786015155281E-5
213 => 9.4633835696402E-5
214 => 9.456372547162E-5
215 => 9.4785014140159E-5
216 => 9.6081108783623E-5
217 => 9.5628213490231E-5
218 => 9.615231538965E-5
219 => 9.6807712840206E-5
220 => 9.9518714578467E-5
221 => 0.00010017232791951
222 => 9.8584386360441E-5
223 => 9.8727759703797E-5
224 => 9.8133825970735E-5
225 => 9.7560093426565E-5
226 => 9.884976039895E-5
227 => 0.00010120665213945
228 => 0.00010119199003826
301 => 0.00010173874311062
302 => 0.00010207936574516
303 => 0.00010061716404672
304 => 9.9665324507676E-5
305 => 0.00010003032035407
306 => 0.00010061395666102
307 => 9.9841054965776E-5
308 => 9.5070347659811E-5
309 => 9.6517475502478E-5
310 => 9.6276602668522E-5
311 => 9.5933570461831E-5
312 => 9.7388668697941E-5
313 => 9.7248320923333E-5
314 => 9.3044360187964E-5
315 => 9.3313484114525E-5
316 => 9.3060726505304E-5
317 => 9.3877438050038E-5
318 => 9.1542562908763E-5
319 => 9.2260754776595E-5
320 => 9.2711197983468E-5
321 => 9.2976512492785E-5
322 => 9.3935010428298E-5
323 => 9.3822541758507E-5
324 => 9.392801921787E-5
325 => 9.5349218622163E-5
326 => 0.00010253715751233
327 => 0.00010292838116683
328 => 0.00010100185280875
329 => 0.00010177146288871
330 => 0.00010029397983041
331 => 0.00010128582410572
401 => 0.00010196441876878
402 => 9.8897979972673E-5
403 => 9.8716405368191E-5
404 => 9.7232824211736E-5
405 => 9.8030016690883E-5
406 => 9.6761626136392E-5
407 => 9.7072844812046E-5
408 => 9.6202650263361E-5
409 => 9.7768827196988E-5
410 => 9.9520056368073E-5
411 => 9.9962486014825E-5
412 => 9.879864409216E-5
413 => 9.795594583923E-5
414 => 9.6476445309147E-5
415 => 9.8936887663495E-5
416 => 9.9656395988528E-5
417 => 9.8933108392567E-5
418 => 9.8765506852437E-5
419 => 9.844790223674E-5
420 => 9.8832888173071E-5
421 => 9.9652477391668E-5
422 => 9.9265974251614E-5
423 => 9.9521266384928E-5
424 => 9.8548356028839E-5
425 => 0.00010061764809632
426 => 0.00010390418190174
427 => 0.00010391474864533
428 => 0.00010352824342188
429 => 0.00010337009381181
430 => 0.00010376667162617
501 => 0.00010398179882198
502 => 0.00010526425875368
503 => 0.00010664038935585
504 => 0.00011306219042336
505 => 0.00011125897438085
506 => 0.0001169567783226
507 => 0.00012146300147328
508 => 0.00012281422076291
509 => 0.00012157116259623
510 => 0.0001173187277567
511 => 0.00011711008301616
512 => 0.0001234650159981
513 => 0.00012166945635633
514 => 0.00012145588025037
515 => 0.00011918379132543
516 => 0.00012052687728375
517 => 0.00012023312468278
518 => 0.00011976942183129
519 => 0.0001223319362796
520 => 0.00012712873456959
521 => 0.00012638110857201
522 => 0.00012582304044618
523 => 0.00012337774837
524 => 0.00012485036037562
525 => 0.00012432599144644
526 => 0.00012657901313893
527 => 0.00012524437299884
528 => 0.00012165585322606
529 => 0.00012222733682779
530 => 0.00012214095823106
531 => 0.00012391862363103
601 => 0.00012338501260233
602 => 0.00012203676211355
603 => 0.00012711233963451
604 => 0.00012678275986215
605 => 0.00012725002862694
606 => 0.00012745573478796
607 => 0.00013054514938327
608 => 0.00013181078369272
609 => 0.00013209810483901
610 => 0.00013330035954533
611 => 0.00013206819164669
612 => 0.00013699774176205
613 => 0.00014027560494154
614 => 0.00014408301170181
615 => 0.00014964665631303
616 => 0.00015173863815344
617 => 0.00015136074035857
618 => 0.0001555790322058
619 => 0.00016315920888791
620 => 0.00015289291079157
621 => 0.00016370334761553
622 => 0.00016028088812956
623 => 0.00015216629825574
624 => 0.0001516438143326
625 => 0.00015713910880747
626 => 0.00016932714305026
627 => 0.00016627417870798
628 => 0.00016933213660623
629 => 0.00016576486628493
630 => 0.00016558772124616
701 => 0.00016915888224902
702 => 0.00017750309458606
703 => 0.00017353907208285
704 => 0.00016785567380631
705 => 0.00017205220665024
706 => 0.00016841678153005
707 => 0.00016022515124285
708 => 0.00016627184416369
709 => 0.00016222859280742
710 => 0.00016340862850424
711 => 0.00017190694146686
712 => 0.00017088440196745
713 => 0.0001722076627643
714 => 0.00016987214209363
715 => 0.00016769039750943
716 => 0.00016361800922452
717 => 0.00016241237581968
718 => 0.00016274556951863
719 => 0.00016241221070543
720 => 0.00016013374688721
721 => 0.0001596417128426
722 => 0.00015882163454507
723 => 0.00015907581110078
724 => 0.00015753382397907
725 => 0.00016044387226854
726 => 0.00016098400287432
727 => 0.00016310169334151
728 => 0.00016332155899098
729 => 0.00016921929679866
730 => 0.00016597092192165
731 => 0.00016815021224034
801 => 0.00016795527600196
802 => 0.0001523421660239
803 => 0.00015449351482324
804 => 0.00015784033842457
805 => 0.00015633259892868
806 => 0.0001542010080382
807 => 0.00015247963410547
808 => 0.00014987157657786
809 => 0.00015354236746466
810 => 0.00015836906713572
811 => 0.00016344397205991
812 => 0.00016954113780537
813 => 0.00016818032138981
814 => 0.0001633299897874
815 => 0.00016354757211991
816 => 0.00016489258048403
817 => 0.0001631506724456
818 => 0.00016263694975898
819 => 0.00016482200287563
820 => 0.00016483705013556
821 => 0.00016283277442074
822 => 0.00016060538874229
823 => 0.00016059605591497
824 => 0.00016019971414748
825 => 0.00016583537460488
826 => 0.00016893441802692
827 => 0.00016928971836089
828 => 0.00016891050348355
829 => 0.00016905644823934
830 => 0.00016725318315482
831 => 0.00017137491239638
901 => 0.00017515741874521
902 => 0.00017414362624226
903 => 0.00017262380716125
904 => 0.00017141319805882
905 => 0.00017385844521144
906 => 0.00017374956220491
907 => 0.00017512438185204
908 => 0.00017506201209151
909 => 0.00017459971195376
910 => 0.00017414364275246
911 => 0.00017595190558388
912 => 0.00017543115492825
913 => 0.000174909595403
914 => 0.00017386352792836
915 => 0.00017400570587151
916 => 0.00017248614920869
917 => 0.00017178313276628
918 => 0.00016121145224483
919 => 0.00015838635376988
920 => 0.00015927518726028
921 => 0.00015956781432387
922 => 0.00015833832784711
923 => 0.00016010109562563
924 => 0.00015982637013458
925 => 0.00016089516631121
926 => 0.00016022742886179
927 => 0.00016025483303963
928 => 0.00016221850650175
929 => 0.00016278856926187
930 => 0.0001624986307411
1001 => 0.00016270169374254
1002 => 0.00016738119490306
1003 => 0.00016671591948006
1004 => 0.00016636250517102
1005 => 0.0001664604033499
1006 => 0.00016765611622605
1007 => 0.00016799085054787
1008 => 0.00016657255770496
1009 => 0.00016724143280873
1010 => 0.00017008941810769
1011 => 0.00017108605178032
1012 => 0.00017426682805205
1013 => 0.00017291557775803
1014 => 0.00017539585615345
1015 => 0.00018301938635176
1016 => 0.00018910958978233
1017 => 0.00018350878701928
1018 => 0.00019469267003679
1019 => 0.00020340092719866
1020 => 0.00020306668978443
1021 => 0.00020154820372264
1022 => 0.00019163408446485
1023 => 0.00018251096411263
1024 => 0.00019014284167541
1025 => 0.00019016229690083
1026 => 0.00018950671184981
1027 => 0.00018543492940234
1028 => 0.00018936502264674
1029 => 0.00018967697917647
1030 => 0.00018950236647576
1031 => 0.00018638054042008
1101 => 0.00018161408904297
1102 => 0.00018254544223278
1103 => 0.00018407101775679
1104 => 0.00018118278502145
1105 => 0.00018025981965832
1106 => 0.00018197578786973
1107 => 0.00018750499498307
1108 => 0.00018645973040681
1109 => 0.00018643243432448
1110 => 0.00019090451944289
1111 => 0.00018770347163448
1112 => 0.00018255718957911
1113 => 0.00018125768548901
1114 => 0.00017664532142
1115 => 0.00017983109771114
1116 => 0.00017994574812833
1117 => 0.00017820093101152
1118 => 0.00018269877187191
1119 => 0.00018265732347655
1120 => 0.00018692735395823
1121 => 0.00019509004848898
1122 => 0.00019267593805443
1123 => 0.00018986859027352
1124 => 0.00019017382681662
1125 => 0.00019352151830639
1126 => 0.00019149742761131
1127 => 0.00019222530473772
1128 => 0.00019352041657718
1129 => 0.00019430178970575
1130 => 0.00019006139924807
1201 => 0.00018907276139106
1202 => 0.00018705035530036
1203 => 0.00018652274730129
1204 => 0.00018816995486328
1205 => 0.0001877359738674
1206 => 0.00017993611220472
1207 => 0.00017912098326295
1208 => 0.00017914598210385
1209 => 0.0001770963016225
1210 => 0.00017397004690876
1211 => 0.00018218565763751
1212 => 0.00018152582911859
1213 => 0.00018079742950038
1214 => 0.00018088665429742
1215 => 0.00018445277246188
1216 => 0.00018238424383321
1217 => 0.00018788376621771
1218 => 0.00018675322974623
1219 => 0.00018559369928016
1220 => 0.00018543341684959
1221 => 0.00018498709654665
1222 => 0.00018345649815938
1223 => 0.00018160820863204
1224 => 0.00018038780779
1225 => 0.00016639821742284
1226 => 0.00016899460402128
1227 => 0.0001719815101347
1228 => 0.00017301257815578
1229 => 0.00017124886495799
1230 => 0.00018352614030638
1231 => 0.0001857693168193
]
'min_raw' => 7.7426885446751E-5
'max_raw' => 0.00020340092719866
'avg_raw' => 0.00014041390632271
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000077'
'max' => '$0.0002034'
'avg' => '$0.00014'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.0020148150603E-6
'max_diff' => -3.6681298852482E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00017897458884288
102 => 0.00017770357266541
103 => 0.00018360946791538
104 => 0.00018004749111332
105 => 0.00018165144904918
106 => 0.00017818456930993
107 => 0.00018522900128522
108 => 0.00018517533451622
109 => 0.00018243489137212
110 => 0.00018475109515177
111 => 0.00018434859774608
112 => 0.0001812546441858
113 => 0.00018532708513166
114 => 0.00018532910501156
115 => 0.00018269148806774
116 => 0.00017961132892595
117 => 0.0001790606692215
118 => 0.00017864582110493
119 => 0.00018154942184316
120 => 0.00018415278118573
121 => 0.00018899698749474
122 => 0.00019021493605632
123 => 0.00019496867037563
124 => 0.0001921380530436
125 => 0.00019339282904426
126 => 0.00019475506589187
127 => 0.00019540817233122
128 => 0.00019434397043593
129 => 0.00020172847654891
130 => 0.00020235195512027
131 => 0.00020256100209218
201 => 0.00020007098817933
202 => 0.00020228270332895
203 => 0.00020124791505475
204 => 0.00020394014667176
205 => 0.00020436232296544
206 => 0.00020400475466405
207 => 0.00020413876008326
208 => 0.00019783738683198
209 => 0.0001975106273865
210 => 0.00019305523916171
211 => 0.00019487084279588
212 => 0.00019147665882595
213 => 0.00019255298952678
214 => 0.00019302742584405
215 => 0.00019277960723593
216 => 0.00019497349430125
217 => 0.00019310824211421
218 => 0.00018818553491678
219 => 0.00018326148653107
220 => 0.00018319966911463
221 => 0.00018190325409135
222 => 0.00018096618347977
223 => 0.00018114669652392
224 => 0.00018178284803622
225 => 0.00018092920919741
226 => 0.00018111137632426
227 => 0.00018413656440313
228 => 0.00018474324429769
229 => 0.00018268150897083
301 => 0.00017440334412649
302 => 0.00017237186170949
303 => 0.00017383205098479
304 => 0.00017313417455943
305 => 0.00013973279143775
306 => 0.00014757995095247
307 => 0.00014291743523318
308 => 0.00014506613698866
309 => 0.00014030691579186
310 => 0.00014257826559913
311 => 0.00014215883022614
312 => 0.00015477683051148
313 => 0.00015457981779252
314 => 0.0001546741173554
315 => 0.00015017295352261
316 => 0.00015734342972816
317 => 0.000160875864149
318 => 0.0001602221045504
319 => 0.00016038664175667
320 => 0.00015755934741511
321 => 0.00015470149174479
322 => 0.00015153168998556
323 => 0.00015742078985486
324 => 0.00015676602247969
325 => 0.00015826782326048
326 => 0.00016208732548727
327 => 0.00016264976169905
328 => 0.00016340568167134
329 => 0.00016313473817132
330 => 0.00016958971156725
331 => 0.00016880797169771
401 => 0.00017069173986138
402 => 0.00016681668582689
403 => 0.00016243169436335
404 => 0.0001632651378844
405 => 0.00016318487057119
406 => 0.00016216297554755
407 => 0.00016124045441221
408 => 0.00015970471664059
409 => 0.00016456401819641
410 => 0.00016436673942737
411 => 0.00016756045338664
412 => 0.00016699593342226
413 => 0.00016322593093864
414 => 0.00016336057731488
415 => 0.00016426613890393
416 => 0.00016740029790314
417 => 0.00016833072968392
418 => 0.00016789971661177
419 => 0.00016891989258357
420 => 0.00016972619807576
421 => 0.00016902115213929
422 => 0.00017900311578938
423 => 0.00017485790854178
424 => 0.0001768782537121
425 => 0.00017736009413065
426 => 0.00017612587003054
427 => 0.0001763935290436
428 => 0.00017679895951567
429 => 0.00017926065395069
430 => 0.0001857208524452
501 => 0.00018858203038235
502 => 0.00019719002537433
503 => 0.00018834444938419
504 => 0.00018781958951157
505 => 0.00018937014934617
506 => 0.00019442395365527
507 => 0.00019851958736809
508 => 0.00019987834535341
509 => 0.00020005792765182
510 => 0.0002026070479608
511 => 0.00020406815618363
512 => 0.00020229751770677
513 => 0.00020079708699121
514 => 0.00019542273040838
515 => 0.00019604482681673
516 => 0.00020033045416693
517 => 0.00020638415522129
518 => 0.00021157886050617
519 => 0.00020975985576917
520 => 0.00022363757789533
521 => 0.00022501349735872
522 => 0.00022482338977768
523 => 0.00022795793907957
524 => 0.00022173649705519
525 => 0.000219076710055
526 => 0.00020112149714253
527 => 0.00020616617958731
528 => 0.00021349892178463
529 => 0.00021252840585844
530 => 0.00020720317246999
531 => 0.00021157482083912
601 => 0.0002101294171742
602 => 0.00020898936733383
603 => 0.00021421215666212
604 => 0.0002084694852553
605 => 0.00021344163424443
606 => 0.00020706480173558
607 => 0.00020976816482958
608 => 0.00020823360519047
609 => 0.00020922665334553
610 => 0.00020342131412234
611 => 0.00020655373425053
612 => 0.00020329099514656
613 => 0.00020328944818341
614 => 0.00020321742303685
615 => 0.00020705602112346
616 => 0.00020718119766926
617 => 0.00020434446788345
618 => 0.00020393565080327
619 => 0.00020544726181841
620 => 0.00020367756121123
621 => 0.00020450559298697
622 => 0.00020370264145019
623 => 0.00020352188014651
624 => 0.00020208154332482
625 => 0.00020146100661915
626 => 0.00020170433505071
627 => 0.00020087372966941
628 => 0.00020037325988287
629 => 0.00020311786699966
630 => 0.0002016515341343
701 => 0.00020289313045787
702 => 0.00020147817474521
703 => 0.00019657332177826
704 => 0.00019375248896909
705 => 0.00018448767639463
706 => 0.00018711516574778
707 => 0.00018885719390725
708 => 0.00018828145361094
709 => 0.00018951836654934
710 => 0.00018959430295797
711 => 0.00018919216995286
712 => 0.00018872655144937
713 => 0.00018849991411219
714 => 0.00019018908314304
715 => 0.00019116970262026
716 => 0.00018903202973839
717 => 0.00018853120289138
718 => 0.00019069250819912
719 => 0.00019201090318829
720 => 0.00020174519104618
721 => 0.00020102404356033
722 => 0.00020283398223176
723 => 0.00020263021091313
724 => 0.00020452731498663
725 => 0.00020762827837081
726 => 0.00020132315276778
727 => 0.00020241750455763
728 => 0.00020214919477103
729 => 0.00020507853066649
730 => 0.00020508767573341
731 => 0.0002033313925329
801 => 0.00020428350214834
802 => 0.00020375206068076
803 => 0.00020471244724129
804 => 0.00020101441219599
805 => 0.00020551821970295
806 => 0.00020807158834045
807 => 0.00020810704186646
808 => 0.00020931731833585
809 => 0.00021054702932323
810 => 0.00021290735247826
811 => 0.00021048120119151
812 => 0.0002061167912077
813 => 0.00020643188751157
814 => 0.00020387303553494
815 => 0.00020391605029896
816 => 0.00020368643411749
817 => 0.00020437552956279
818 => 0.00020116562989504
819 => 0.0002019189869312
820 => 0.00020086428266892
821 => 0.00020241521183654
822 => 0.00020074666842996
823 => 0.00020214906538393
824 => 0.00020275429341907
825 => 0.00020498759789836
826 => 0.00020041680754252
827 => 0.00019109665659167
828 => 0.00019305586531745
829 => 0.0001901580417195
830 => 0.00019042624632628
831 => 0.00019096806231643
901 => 0.0001892118594212
902 => 0.0001895468875893
903 => 0.00018953491802557
904 => 0.0001894317707919
905 => 0.00018897491459108
906 => 0.00018831238271364
907 => 0.0001909517057968
908 => 0.00019140017821921
909 => 0.00019239707686026
910 => 0.0001953631710132
911 => 0.00019506678826201
912 => 0.00019555020082601
913 => 0.00019449491391304
914 => 0.00019047519805954
915 => 0.00019069348796982
916 => 0.00018797140929075
917 => 0.00019232746718837
918 => 0.00019129589518106
919 => 0.00019063083399717
920 => 0.0001904493658914
921 => 0.00019342281241804
922 => 0.00019431251422188
923 => 0.00019375811176339
924 => 0.00019262101614654
925 => 0.00019480457588304
926 => 0.00019538880435154
927 => 0.00019551959156012
928 => 0.00019938844075714
929 => 0.00019573581725268
930 => 0.00019661504003416
1001 => 0.00020347448519005
1002 => 0.00019725391497238
1003 => 0.00020054908975195
1004 => 0.00020038780809375
1005 => 0.00020207350800835
1006 => 0.00020024953149886
1007 => 0.00020027214187372
1008 => 0.00020176892919867
1009 => 0.00019966696134779
1010 => 0.00019914648454787
1011 => 0.00019842744957651
1012 => 0.00019999743613111
1013 => 0.00020093857206621
1014 => 0.00020852343651493
1015 => 0.00021342360486065
1016 => 0.00021321087562949
1017 => 0.00021515482258988
1018 => 0.00021427905667971
1019 => 0.0002114509775404
1020 => 0.00021627816378369
1021 => 0.00021475064007826
1022 => 0.0002148765672766
1023 => 0.00021487188025999
1024 => 0.00021588754998566
1025 => 0.00021516785490026
1026 => 0.00021374926201175
1027 => 0.0002146909901741
1028 => 0.0002174875861423
1029 => 0.00022616830583764
1030 => 0.00023102615158339
1031 => 0.00022587585742405
1101 => 0.00022942846136998
1102 => 0.00022729816492464
1103 => 0.00022691102668969
1104 => 0.0002291423245031
1105 => 0.00023137752790796
1106 => 0.00023123515511412
1107 => 0.00022961251222116
1108 => 0.00022869592242396
1109 => 0.00023563664744843
1110 => 0.00024075045541429
1111 => 0.00024040172799442
1112 => 0.00024194089741349
1113 => 0.00024645994643258
1114 => 0.00024687311164032
1115 => 0.00024682106232064
1116 => 0.00024579698924393
1117 => 0.00025024657987589
1118 => 0.00025395850666418
1119 => 0.00024555994591498
1120 => 0.00024875800790304
1121 => 0.00025019372096461
1122 => 0.00025230177369585
1123 => 0.00025585841200412
1124 => 0.00025972186455862
1125 => 0.00026026819911043
1126 => 0.00025988054860141
1127 => 0.00025733249778653
1128 => 0.00026155993367224
1129 => 0.00026403626646852
1130 => 0.00026551086597884
1201 => 0.00026925020498703
1202 => 0.0002502025874397
1203 => 0.00023671973701168
1204 => 0.00023461419522262
1205 => 0.00023889589724701
1206 => 0.0002400249479249
1207 => 0.00023956982901235
1208 => 0.00022439365504848
1209 => 0.00023453429580748
1210 => 0.00024544477261487
1211 => 0.00024586388846336
1212 => 0.00025132590128045
1213 => 0.00025310455654917
1214 => 0.00025750219278931
1215 => 0.00025722711944514
1216 => 0.00025829787388794
1217 => 0.00025805172598442
1218 => 0.00026619742108773
1219 => 0.0002751833324341
1220 => 0.00027487217889762
1221 => 0.0002735803478251
1222 => 0.00027549893725772
1223 => 0.00028477336075596
1224 => 0.00028391952045985
1225 => 0.00028474895357758
1226 => 0.00029568402156561
1227 => 0.00030990116544533
1228 => 0.00030329587473529
1229 => 0.00031762745495487
1230 => 0.00032664842501867
1231 => 0.0003422492599583
]
'min_raw' => 0.00013973279143775
'max_raw' => 0.0003422492599583
'avg_raw' => 0.00024099102569803
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000139'
'max' => '$0.000342'
'avg' => '$0.00024'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 6.2305905991002E-5
'max_diff' => 0.00013884833275964
'year' => 2028
]
3 => [
'items' => [
101 => 0.00034029595858813
102 => 0.00034636924914591
103 => 0.00033679914146922
104 => 0.00031482423980566
105 => 0.00031134662750086
106 => 0.00031830889540224
107 => 0.00033542495166963
108 => 0.00031776984987951
109 => 0.0003213414539776
110 => 0.00032031283175708
111 => 0.00032025802085031
112 => 0.0003223499302296
113 => 0.00031931550656828
114 => 0.00030695271868967
115 => 0.00031261851152007
116 => 0.00031043067681453
117 => 0.00031285824253421
118 => 0.00032595881351903
119 => 0.00032016673880804
120 => 0.00031406525860994
121 => 0.0003217178688052
122 => 0.00033146227130593
123 => 0.00033085248410981
124 => 0.00032966924207806
125 => 0.00033633911545849
126 => 0.00034735579219343
127 => 0.00035033355564629
128 => 0.00035253167974949
129 => 0.00035283476392572
130 => 0.00035595671930656
131 => 0.0003391691783897
201 => 0.00036581143695939
202 => 0.00037041181903683
203 => 0.00036954713787258
204 => 0.00037466026893799
205 => 0.00037315585607093
206 => 0.00037097619786171
207 => 0.00037908159819455
208 => 0.00036978941078502
209 => 0.00035660032061107
210 => 0.00034936452489101
211 => 0.00035889320439017
212 => 0.00036471203645522
213 => 0.00036855791430299
214 => 0.00036972167461599
215 => 0.00034047234740307
216 => 0.00032470858227737
217 => 0.00033481297499101
218 => 0.00034714103146959
219 => 0.0003391006954135
220 => 0.00033941586136453
221 => 0.00032795245511169
222 => 0.00034815528855908
223 => 0.00034521190565837
224 => 0.000360482181354
225 => 0.00035683780750762
226 => 0.00036929012454872
227 => 0.00036601101214921
228 => 0.00037962242438687
301 => 0.00038505238524275
302 => 0.0003941701346257
303 => 0.00040087718818771
304 => 0.00040481569832481
305 => 0.00040457924494916
306 => 0.00042018558427032
307 => 0.0004109830712166
308 => 0.00039942254595532
309 => 0.00039921345252634
310 => 0.00040520081237306
311 => 0.00041774867605984
312 => 0.00042100215454983
313 => 0.00042282040517803
314 => 0.00042003569104718
315 => 0.00041004702267741
316 => 0.00040573396631905
317 => 0.00040940881529765
318 => 0.00040491479078019
319 => 0.00041267273789789
320 => 0.00042332605629859
321 => 0.00042112618817663
322 => 0.00042848001748567
323 => 0.00043609045717512
324 => 0.00044697372773727
325 => 0.00044981901766856
326 => 0.00045452217372829
327 => 0.00045936326622004
328 => 0.00046091809465729
329 => 0.00046388674457893
330 => 0.00046387109832847
331 => 0.00047281732468052
401 => 0.00048268528938839
402 => 0.0004864102176217
403 => 0.00049497548470046
404 => 0.00048030776499084
405 => 0.00049143339888121
406 => 0.000501468999143
407 => 0.00048950414279166
408 => 0.000505994909818
409 => 0.00050663520893275
410 => 0.00051630296536737
411 => 0.00050650284210285
412 => 0.00050068356019149
413 => 0.00051748360902395
414 => 0.0005256126234574
415 => 0.00052316409815394
416 => 0.00050453069969593
417 => 0.00049368526256932
418 => 0.00046530066168038
419 => 0.00049892344755683
420 => 0.00051530012576714
421 => 0.00050448828805568
422 => 0.0005099411501103
423 => 0.00053969019738384
424 => 0.00055101670847744
425 => 0.00054866087334826
426 => 0.00054905897070474
427 => 0.00055517055050013
428 => 0.00058227266102134
429 => 0.00056603244817503
430 => 0.00057844748238687
501 => 0.00058503237176709
502 => 0.00059114878400332
503 => 0.00057612880866309
504 => 0.00055658804143271
505 => 0.00055039866018524
506 => 0.00050341326387331
507 => 0.00050096746994804
508 => 0.00049959457170264
509 => 0.00049093864246574
510 => 0.0004841374531441
511 => 0.00047872889488355
512 => 0.00046453522287568
513 => 0.00046932517051873
514 => 0.00044670341978775
515 => 0.00046117601423981
516 => 0.0004250711538519
517 => 0.00045514035444467
518 => 0.00043877505564081
519 => 0.0004497639136443
520 => 0.00044972557455394
521 => 0.00042949160294891
522 => 0.00041782107039934
523 => 0.00042525798796385
524 => 0.00043323095393625
525 => 0.00043452454084099
526 => 0.00044486169933992
527 => 0.00044774657808049
528 => 0.00043900526081445
529 => 0.00042432296087108
530 => 0.00042773332428031
531 => 0.0004177519594937
601 => 0.00040026000163282
602 => 0.00041282303114879
603 => 0.00041711260178296
604 => 0.00041900712054646
605 => 0.00040180578895521
606 => 0.00039640075711017
607 => 0.00039352316350847
608 => 0.00042210248496772
609 => 0.00042366812471143
610 => 0.00041565809042347
611 => 0.00045186420494767
612 => 0.00044366964614498
613 => 0.00045282497604323
614 => 0.00042742386954666
615 => 0.00042839422602196
616 => 0.00041636893513569
617 => 0.00042310229450178
618 => 0.00041834337312813
619 => 0.00042255830560535
620 => 0.00042508471875338
621 => 0.00043710803640774
622 => 0.00045527764141896
623 => 0.00043531215369248
624 => 0.00042661290477901
625 => 0.0004320098698785
626 => 0.00044638269914218
627 => 0.00046815827120824
628 => 0.0004552666942709
629 => 0.00046098775720252
630 => 0.00046223755494071
701 => 0.00045273178337923
702 => 0.00046850876256461
703 => 0.000476963773882
704 => 0.00048563686597557
705 => 0.0004931674688259
706 => 0.00048217264226802
707 => 0.00049393868273143
708 => 0.00048445733110366
709 => 0.00047595157852943
710 => 0.00047596447824506
711 => 0.00047062869540603
712 => 0.0004602899438035
713 => 0.00045838331938309
714 => 0.0004683018203982
715 => 0.00047625551892678
716 => 0.00047691062363324
717 => 0.00048131419981445
718 => 0.00048392019083804
719 => 0.00050946244554229
720 => 0.00051973575168095
721 => 0.00053229775596357
722 => 0.00053719136458742
723 => 0.00055191937208941
724 => 0.00054002530988127
725 => 0.00053745195470538
726 => 0.00050172662600007
727 => 0.00050757664657419
728 => 0.00051694309395639
729 => 0.00050188107526753
730 => 0.00051143445932681
731 => 0.00051332049970845
801 => 0.00050136927363603
802 => 0.00050775293986331
803 => 0.00049079981498879
804 => 0.00045564717321368
805 => 0.00046854789750382
806 => 0.0004780471729182
807 => 0.00046449053564966
808 => 0.0004887902832392
809 => 0.000474594872346
810 => 0.00047009560859275
811 => 0.00045254237658797
812 => 0.00046082682640836
813 => 0.00047203166341234
814 => 0.000465108376846
815 => 0.00047947523600787
816 => 0.00049982254008247
817 => 0.00051432324066894
818 => 0.00051543642440405
819 => 0.00050611344539844
820 => 0.00052105357875339
821 => 0.00052116240131436
822 => 0.00050430986985775
823 => 0.00049398778817586
824 => 0.00049164258949989
825 => 0.00049750135559575
826 => 0.000504614979224
827 => 0.00051583118100712
828 => 0.00052260889683766
829 => 0.000540281585101
830 => 0.00054506330782939
831 => 0.00055031697138013
901 => 0.00055733748605376
902 => 0.00056576741394247
903 => 0.00054732321163804
904 => 0.00054805603417988
905 => 0.00053088104837136
906 => 0.00051252711289284
907 => 0.00052645546207068
908 => 0.00054466492581006
909 => 0.00054048765470858
910 => 0.00054001762637576
911 => 0.00054080808365658
912 => 0.00053765855766298
913 => 0.00052341336832081
914 => 0.00051625952341278
915 => 0.00052548980848462
916 => 0.00053039529420758
917 => 0.00053800327476058
918 => 0.00053706543057244
919 => 0.0005566627714395
920 => 0.00056427770550761
921 => 0.00056232947951159
922 => 0.00056268799998153
923 => 0.00057647447437519
924 => 0.00059180786930565
925 => 0.0006061696170777
926 => 0.00062077900376284
927 => 0.00060316681789983
928 => 0.00059422443608721
929 => 0.00060345069150534
930 => 0.00059855511051153
1001 => 0.0006266865710256
1002 => 0.00062863433231563
1003 => 0.0006567637586049
1004 => 0.0006834619337432
1005 => 0.00066669328828633
1006 => 0.00068250536567578
1007 => 0.00069960741655006
1008 => 0.0007326000473943
1009 => 0.0007214892900207
1010 => 0.0007129786240003
1011 => 0.00070493608573425
1012 => 0.0007216713311489
1013 => 0.00074320095702276
1014 => 0.0007478382322278
1015 => 0.00075535238963543
1016 => 0.00074745217190876
1017 => 0.0007569671139801
1018 => 0.00079055904056932
1019 => 0.00078148220548078
1020 => 0.00076859164048099
1021 => 0.00079510924032026
1022 => 0.00080470585661753
1023 => 0.00087205993557876
1024 => 0.00095709724252554
1025 => 0.00092189123906451
1026 => 0.00090003773662562
1027 => 0.00090517382807077
1028 => 0.00093622657387323
1029 => 0.0009461997302601
1030 => 0.00091908925324743
1031 => 0.00092866513204813
1101 => 0.0009814291657196
1102 => 0.0010097353769115
1103 => 0.00097129174008155
1104 => 0.00086522727076457
1105 => 0.00076743098614148
1106 => 0.00079337096464762
1107 => 0.00079043017609627
1108 => 0.00084711854782901
1109 => 0.00078126572596582
1110 => 0.00078237451859702
1111 => 0.00084023514582317
1112 => 0.00082479892246151
1113 => 0.00079979421753774
1114 => 0.00076761354815929
1115 => 0.00070812460446159
1116 => 0.00065543358805662
1117 => 0.00075877280524314
1118 => 0.00075431663028788
1119 => 0.00074786342858454
1120 => 0.00076222433066597
1121 => 0.00083195679476019
1122 => 0.00083034923576086
1123 => 0.00082012276559092
1124 => 0.00082787945308285
1125 => 0.00079843443271737
1126 => 0.00080602308491621
1127 => 0.00076741549471034
1128 => 0.00078486773787878
1129 => 0.00079974056867116
1130 => 0.00080272650964875
1201 => 0.00080945398713719
1202 => 0.00075196842857662
1203 => 0.00077777775668299
1204 => 0.00079293831893847
1205 => 0.00072444234712222
1206 => 0.000791584373807
1207 => 0.0007509677328959
1208 => 0.0007371818349292
1209 => 0.00075574273038742
1210 => 0.00074850953137629
1211 => 0.00074229085161422
1212 => 0.0007388207214565
1213 => 0.00075244979458973
1214 => 0.0007518139820378
1215 => 0.00072951417310273
1216 => 0.00070042498140342
1217 => 0.00071018826895788
1218 => 0.00070664117505803
1219 => 0.00069378604918078
1220 => 0.00070244885188823
1221 => 0.00066430225290875
1222 => 0.00059867301205222
1223 => 0.00064202969884006
1224 => 0.00064036051356173
1225 => 0.00063951883465287
1226 => 0.00067210018648312
1227 => 0.00066896824128432
1228 => 0.0006632837300804
1229 => 0.00069368164867468
1230 => 0.00068258599947806
1231 => 0.00071678017583829
]
'min_raw' => 0.00030695271868967
'max_raw' => 0.0010097353769115
'avg_raw' => 0.00065834404780057
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0003069'
'max' => '$0.0010097'
'avg' => '$0.000658'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00016721992725191
'max_diff' => 0.00066748611695317
'year' => 2029
]
4 => [
'items' => [
101 => 0.00073930267192979
102 => 0.00073359023839456
103 => 0.0007547727548293
104 => 0.00071041319538406
105 => 0.00072514766163515
106 => 0.00072818441470841
107 => 0.00069330654307777
108 => 0.00066948066625226
109 => 0.00066789175190288
110 => 0.00062658096489552
111 => 0.00064864885386583
112 => 0.00066806768292841
113 => 0.00065876757076944
114 => 0.00065582343309286
115 => 0.00067086439397696
116 => 0.00067203320545477
117 => 0.00064538417989556
118 => 0.0006509253561742
119 => 0.00067403298240006
120 => 0.00065034310328137
121 => 0.00060431753787354
122 => 0.00059290256129917
123 => 0.00059137959300439
124 => 0.00056042127120149
125 => 0.0005936653646167
126 => 0.00057915342695465
127 => 0.00062499646414937
128 => 0.00059881116716488
129 => 0.00059768237134777
130 => 0.00059597603091186
131 => 0.00056932892446394
201 => 0.00057516294726408
202 => 0.00059455612759849
203 => 0.00060147583282162
204 => 0.00060075405087537
205 => 0.00059446109043494
206 => 0.0005973419754994
207 => 0.00058806164093988
208 => 0.00058478456165345
209 => 0.00057444119799381
210 => 0.00055923931084129
211 => 0.00056135322648844
212 => 0.00053123431024914
213 => 0.0005148239261501
214 => 0.00051028174811687
215 => 0.00050420775782015
216 => 0.00051096782148316
217 => 0.00053114898714368
218 => 0.00050680621968395
219 => 0.00046507225232085
220 => 0.00046758053487059
221 => 0.00047321590104409
222 => 0.00046271443346146
223 => 0.00045277567571586
224 => 0.00046141661921875
225 => 0.00044373338707784
226 => 0.00047535283516568
227 => 0.00047449761770738
228 => 0.00048628339262098
301 => 0.0004936532795429
302 => 0.0004766680762171
303 => 0.00047239634351354
304 => 0.00047482971660091
305 => 0.0004346114798721
306 => 0.00048299670464998
307 => 0.0004834151420831
308 => 0.00047983222674
309 => 0.000505595865208
310 => 0.00055996517825584
311 => 0.00053950925568669
312 => 0.00053158810418438
313 => 0.00051652998938817
314 => 0.00053659403329174
315 => 0.00053505342776779
316 => 0.00052808622533119
317 => 0.00052387243955853
318 => 0.00053163646904637
319 => 0.00052291039038428
320 => 0.00052134294687996
321 => 0.00051184594463916
322 => 0.00050845594692526
323 => 0.00050594612757759
324 => 0.00050318306308556
325 => 0.00050927769484221
326 => 0.00049546645746606
327 => 0.00047881145912272
328 => 0.00047742677622005
329 => 0.00048125000745689
330 => 0.00047955851224068
331 => 0.00047741867799172
401 => 0.00047333315166128
402 => 0.0004721210632725
403 => 0.00047605976251435
404 => 0.00047161320071073
405 => 0.00047817434486873
406 => 0.00047639007670242
407 => 0.00046642329976787
408 => 0.00045400100553399
409 => 0.00045389042105867
410 => 0.00045121405814263
411 => 0.00044780530757519
412 => 0.00044685707114897
413 => 0.00046068890305849
414 => 0.0004893203811593
415 => 0.0004836993369149
416 => 0.00048776111744926
417 => 0.00050774105758636
418 => 0.00051409207973818
419 => 0.00050958427464702
420 => 0.00050341371300893
421 => 0.00050368518640488
422 => 0.00052477186347826
423 => 0.00052608701366188
424 => 0.00052940997389236
425 => 0.00053368091685698
426 => 0.00051031163470197
427 => 0.00050258449531694
428 => 0.00049892294799094
429 => 0.00048764679942401
430 => 0.00049980715890953
501 => 0.00049272183819583
502 => 0.00049367789002913
503 => 0.00049305526001848
504 => 0.00049339525810635
505 => 0.00047534399688553
506 => 0.00048192092772804
507 => 0.00047098550458566
508 => 0.00045634420055686
509 => 0.00045629511777185
510 => 0.00045987855619058
511 => 0.00045774698679916
512 => 0.00045201098837452
513 => 0.00045282575987759
514 => 0.00044568750416781
515 => 0.00045369247336305
516 => 0.00045392202723641
517 => 0.00045083967806262
518 => 0.00046317243758076
519 => 0.00046822517921791
520 => 0.00046619631096141
521 => 0.00046808282841249
522 => 0.00048393291668075
523 => 0.00048651717265631
524 => 0.00048766492845429
525 => 0.00048612708773351
526 => 0.00046837253892962
527 => 0.00046916002866724
528 => 0.00046338195148021
529 => 0.00045850008513594
530 => 0.00045869533418769
531 => 0.00046120524808685
601 => 0.00047216618928897
602 => 0.00049523284386605
603 => 0.00049610820654574
604 => 0.00049716917164967
605 => 0.00049285369337368
606 => 0.00049155210383208
607 => 0.00049326923640622
608 => 0.00050193185907829
609 => 0.00052421447646997
610 => 0.00051633831127777
611 => 0.0005099348663767
612 => 0.00051555241391129
613 => 0.00051468763650013
614 => 0.00050738804486874
615 => 0.00050718316964369
616 => 0.00049317291948244
617 => 0.00048799364899578
618 => 0.00048366546291546
619 => 0.0004789391967059
620 => 0.000476137307671
621 => 0.0004804422826644
622 => 0.00048142688138036
623 => 0.0004720139783192
624 => 0.00047073103441383
625 => 0.0004784178142452
626 => 0.00047503514903345
627 => 0.0004785143040898
628 => 0.00047932149790651
629 => 0.00047919152111077
630 => 0.00047565963013308
701 => 0.00047791075211975
702 => 0.0004725861775295
703 => 0.00046679650238785
704 => 0.00046310305035698
705 => 0.00045988002359473
706 => 0.00046166834616584
707 => 0.00045529330273463
708 => 0.00045325379803671
709 => 0.00047714812264252
710 => 0.0004947991171361
711 => 0.00049454246468561
712 => 0.00049298015889885
713 => 0.00049065888940189
714 => 0.00050176204375629
715 => 0.0004978939267938
716 => 0.000500708305076
717 => 0.0005014246824679
718 => 0.00050359294107413
719 => 0.00050436790715773
720 => 0.00050202542140454
721 => 0.00049416375310626
722 => 0.00047457322317196
723 => 0.00046545377860391
724 => 0.0004624442100001
725 => 0.00046255360210286
726 => 0.00045953607956077
727 => 0.00046042487518529
728 => 0.00045922699271407
729 => 0.00045695849311246
730 => 0.00046152827270791
731 => 0.00046205489723584
801 => 0.00046098825607346
802 => 0.00046123948868018
803 => 0.0004524081554241
804 => 0.00045307958251091
805 => 0.00044934099117072
806 => 0.00044864005036382
807 => 0.00043918921701219
808 => 0.00042244569580959
809 => 0.00043172323188876
810 => 0.0004205172729241
811 => 0.0004162734064662
812 => 0.00043636321022127
813 => 0.00043434675112868
814 => 0.00043089544969586
815 => 0.00042579025556248
816 => 0.00042389668939827
817 => 0.00041239198081475
818 => 0.00041171222125641
819 => 0.00041741426548366
820 => 0.00041478296826814
821 => 0.00041108763042738
822 => 0.00039770349135851
823 => 0.00038265528770894
824 => 0.00038310949838749
825 => 0.00038789605198663
826 => 0.00040181360213084
827 => 0.00039637577451344
828 => 0.00039243056818513
829 => 0.0003916917496323
830 => 0.00040093961064232
831 => 0.00041402727145829
901 => 0.00042016770909323
902 => 0.00041408272188486
903 => 0.00040709261621887
904 => 0.00040751807156173
905 => 0.00041034843535041
906 => 0.00041064586656542
907 => 0.00040609602637133
908 => 0.00040737677973512
909 => 0.00040543119826098
910 => 0.00039349116834541
911 => 0.00039327521106648
912 => 0.00039034493516621
913 => 0.00039025620757651
914 => 0.00038527107727857
915 => 0.00038457362308931
916 => 0.00037467534430696
917 => 0.00038119042137625
918 => 0.00037682044973507
919 => 0.00037023387169971
920 => 0.00036909834316379
921 => 0.00036906420780481
922 => 0.00037582715071522
923 => 0.00038111139245077
924 => 0.00037689646726272
925 => 0.00037593681050029
926 => 0.00038618343405618
927 => 0.00038487945780865
928 => 0.00038375022278803
929 => 0.00041285541497894
930 => 0.00038981638425336
1001 => 0.00037977005183512
1002 => 0.00036733580772075
1003 => 0.00037138446030329
1004 => 0.00037223757088951
1005 => 0.00034233545523542
1006 => 0.00033020417063863
1007 => 0.00032604117092283
1008 => 0.00032364530573021
1009 => 0.00032473713158387
1010 => 0.00031381755258899
1011 => 0.00032115569026672
1012 => 0.00031170025786619
1013 => 0.0003101150238536
1014 => 0.00032702250828905
1015 => 0.00032937508597615
1016 => 0.00031933825867438
1017 => 0.00032578352661686
1018 => 0.00032344638286499
1019 => 0.00031186234411596
1020 => 0.00031141991904217
1021 => 0.00030560745559656
1022 => 0.00029651207581888
1023 => 0.00029235524319886
1024 => 0.00029019032867908
1025 => 0.00029108361460328
1026 => 0.00029063194190501
1027 => 0.00028768447202555
1028 => 0.00029080088742831
1029 => 0.00028283973386602
1030 => 0.00027966953837014
1031 => 0.00027823763461263
1101 => 0.00027117165259919
1102 => 0.00028241677223903
1103 => 0.00028463220247037
1104 => 0.00028685199778364
1105 => 0.00030617380046703
1106 => 0.00030520853780781
1107 => 0.00031393404214513
1108 => 0.00031359498509176
1109 => 0.00031110632991095
1110 => 0.00030060710306706
1111 => 0.00030479190775631
1112 => 0.00029191172938583
1113 => 0.00030156243478799
1114 => 0.00029715825586554
1115 => 0.0003000733774641
1116 => 0.00029483172598396
1117 => 0.00029773267233556
1118 => 0.00028515756316526
1119 => 0.0002734151031586
1120 => 0.00027814061184905
1121 => 0.00028327778022305
1122 => 0.00029441647018403
1123 => 0.00028778235833547
1124 => 0.00029016823581976
1125 => 0.00028217594563846
1126 => 0.00026568556810963
1127 => 0.0002657789018556
1128 => 0.00026324221653519
1129 => 0.00026105015005624
1130 => 0.0002885443658857
1201 => 0.00028512502552807
1202 => 0.0002796767541804
1203 => 0.00028696948188496
1204 => 0.00028889779484119
1205 => 0.00028895269120017
1206 => 0.00029427327708087
1207 => 0.00029711287471917
1208 => 0.00029761336611044
1209 => 0.00030598542295258
1210 => 0.00030879162597597
1211 => 0.00032034997908059
1212 => 0.00029687195469872
1213 => 0.00029638844023672
1214 => 0.00028707210551928
1215 => 0.00028116353875605
1216 => 0.00028747667014055
1217 => 0.00029306924271885
1218 => 0.00028724588233852
1219 => 0.00028800629026634
1220 => 0.00028018890474177
1221 => 0.00028298325222463
1222 => 0.00028539012071612
1223 => 0.00028406118940431
1224 => 0.00028207171490953
1225 => 0.00029261071554429
1226 => 0.0002920160638258
1227 => 0.00030183022350747
1228 => 0.00030948106279662
1229 => 0.00032319273455389
1230 => 0.00030888389026956
1231 => 0.00030836241911134
]
'min_raw' => 0.00026105015005624
'max_raw' => 0.0007547727548293
'avg_raw' => 0.00050791145244277
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000261'
'max' => '$0.000754'
'avg' => '$0.0005079'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -4.5902568633432E-5
'max_diff' => -0.00025496262208217
'year' => 2030
]
5 => [
'items' => [
101 => 0.0003134598833296
102 => 0.00030879084558076
103 => 0.00031174151626832
104 => 0.00032271733588893
105 => 0.00032294923766205
106 => 0.00031906458417384
107 => 0.00031882820265604
108 => 0.00031957429285191
109 => 0.00032394416643278
110 => 0.00032241719833097
111 => 0.00032418424447649
112 => 0.00032639396273943
113 => 0.00033553429437607
114 => 0.00033773799738922
115 => 0.00033238414155628
116 => 0.00033286753479341
117 => 0.00033086504574527
118 => 0.00032893066641587
119 => 0.00033327886865494
120 => 0.00034122529371097
121 => 0.00034117585941311
122 => 0.00034301927556968
123 => 0.00034416770856354
124 => 0.00033923779344957
125 => 0.00033602859998838
126 => 0.00033725920896768
127 => 0.00033922697952477
128 => 0.00033662108749697
129 => 0.00032053631473476
130 => 0.00032541540729155
131 => 0.00032460328771467
201 => 0.00032344673068006
202 => 0.00032835269597482
203 => 0.00032787950365396
204 => 0.0003137055565235
205 => 0.00031461292663153
206 => 0.00031376073670507
207 => 0.00031651433669912
208 => 0.00030864214214454
209 => 0.00031106357616949
210 => 0.0003125822768904
211 => 0.00031347680328223
212 => 0.000316708445992
213 => 0.00031632925001949
214 => 0.00031668487463793
215 => 0.00032147654765448
216 => 0.00034571118546855
217 => 0.00034703022333406
218 => 0.00034053479846888
219 => 0.00034312959258593
220 => 0.00033814815530028
221 => 0.00034149222752287
222 => 0.00034378015680733
223 => 0.00033344144431433
224 => 0.00033282925285818
225 => 0.00032782725540887
226 => 0.00033051504551051
227 => 0.00032623857819985
228 => 0.00032728787369341
301 => 0.00032435395201747
302 => 0.00032963442689618
303 => 0.00033553881831341
304 => 0.00033703050075688
305 => 0.00033310652645777
306 => 0.0003302653104627
307 => 0.0003252770711301
308 => 0.00033357262431038
309 => 0.0003359984968627
310 => 0.00033355988223459
311 => 0.00033299480194048
312 => 0.00033192397580421
313 => 0.00033322198276741
314 => 0.0003359852850398
315 => 0.00033468216271832
316 => 0.00033554289796972
317 => 0.00033226266277773
318 => 0.0003392394254566
319 => 0.00035032020364003
320 => 0.00035035583015378
321 => 0.00034905270080799
322 => 0.000348519488356
323 => 0.00034985657814529
324 => 0.00035058189450568
325 => 0.00035490579770389
326 => 0.00035954551810748
327 => 0.00038119706876241
328 => 0.00037511739997858
329 => 0.00039432794377615
330 => 0.00040952098974311
331 => 0.00041407671991722
401 => 0.00040988566252071
402 => 0.00039554828156371
403 => 0.00039484482125387
404 => 0.00041627092148973
405 => 0.00041021706679554
406 => 0.00040949698004287
407 => 0.00040183647360025
408 => 0.00040636478168002
409 => 0.00040537437427671
410 => 0.00040381096773818
411 => 0.0004124506641097
412 => 0.00042862340444618
413 => 0.00042610273119774
414 => 0.00042422116554845
415 => 0.00041597669258878
416 => 0.0004209417067802
417 => 0.00041917376032522
418 => 0.00042676998026237
419 => 0.00042227014784848
420 => 0.0004101712028921
421 => 0.00041209799975505
422 => 0.00041180676828539
423 => 0.00041780029129405
424 => 0.00041600118445524
425 => 0.00041145546380048
426 => 0.00042856812777791
427 => 0.00042745692656486
428 => 0.00042903235582901
429 => 0.00042972590851286
430 => 0.00044014208551696
501 => 0.00044440925995505
502 => 0.0004453779832599
503 => 0.00044943146894097
504 => 0.00044527712884351
505 => 0.00046189745122764
506 => 0.00047294899579038
507 => 0.00048578593350729
508 => 0.00050454414975528
509 => 0.00051159741258772
510 => 0.00051032330378835
511 => 0.00052454556926301
512 => 0.00055010266417777
513 => 0.00051548912337593
514 => 0.00055193726588851
515 => 0.00054039820478307
516 => 0.00051303929848091
517 => 0.00051127770745537
518 => 0.00052980547644663
519 => 0.00057089828483755
520 => 0.0005606050024064
521 => 0.00057091512096014
522 => 0.00055888782001301
523 => 0.00055829056314693
524 => 0.00057033098179858
525 => 0.0005984640762672
526 => 0.00058509909763843
527 => 0.00056593712354689
528 => 0.00058008602702275
529 => 0.00056782893741276
530 => 0.00054021028397809
531 => 0.00056059713132731
601 => 0.00054696502708887
602 => 0.00055094359982817
603 => 0.0005795962553149
604 => 0.00057614869200122
605 => 0.00058061015816489
606 => 0.0005727357871629
607 => 0.00056537988297271
608 => 0.00055164954154509
609 => 0.00054758466434603
610 => 0.00054870805016489
611 => 0.00054758410765181
612 => 0.00053990210781141
613 => 0.00053824318067728
614 => 0.00053547822944114
615 => 0.00053633520344476
616 => 0.0005311362862058
617 => 0.00054094771718682
618 => 0.00054276880523494
619 => 0.00054990874649748
620 => 0.00055065003888521
621 => 0.0005705346736707
622 => 0.00055958255097856
623 => 0.00056693018044123
624 => 0.00056627293930352
625 => 0.00051363224893994
626 => 0.0005208856716193
627 => 0.00053216972105895
628 => 0.00052708627208155
629 => 0.00051989946457138
630 => 0.00051409573217468
701 => 0.00050530248413157
702 => 0.00051767881189288
703 => 0.00053395236682327
704 => 0.0005510627630937
705 => 0.00057161978309504
706 => 0.00056703169554083
707 => 0.00055067846390394
708 => 0.00055141205792912
709 => 0.00055594684753423
710 => 0.00055007388296654
711 => 0.00054834183106164
712 => 0.00055570889019996
713 => 0.00055575962308738
714 => 0.00054900206758078
715 => 0.00054149228125479
716 => 0.00054146081497588
717 => 0.0005401245210351
718 => 0.00055912554373648
719 => 0.00056957418500217
720 => 0.00057077210488445
721 => 0.00056949355544956
722 => 0.00056998561838324
723 => 0.00056390578425084
724 => 0.0005778024821587
725 => 0.00059055546639994
726 => 0.00058713739419552
727 => 0.0005820132180535
728 => 0.00057793156494261
729 => 0.0005861758864394
730 => 0.00058580877978091
731 => 0.00059044408020805
801 => 0.00059023379620588
802 => 0.0005886751190147
803 => 0.00058713744986079
804 => 0.00059323413424582
805 => 0.00059147838705269
806 => 0.00058971991269921
807 => 0.00058619302317436
808 => 0.00058667238603622
809 => 0.00058154909465546
810 => 0.00057917882563685
811 => 0.00054353566666762
812 => 0.00053401064991723
813 => 0.0005370074140865
814 => 0.00053799402666197
815 => 0.00053384872716555
816 => 0.00053979202180334
817 => 0.00053886576562955
818 => 0.00054246928656004
819 => 0.00054021796312936
820 => 0.00054031035822825
821 => 0.00054693102040511
822 => 0.00054885302680136
823 => 0.00054787547883573
824 => 0.00054856011992247
825 => 0.00056433738479751
826 => 0.00056209436226081
827 => 0.00056090280124328
828 => 0.00056123287178841
829 => 0.00056526430123236
830 => 0.00056639288136878
831 => 0.00056161100802685
901 => 0.00056386616713858
902 => 0.00057346834841403
903 => 0.00057682856842404
904 => 0.0005875527776989
905 => 0.00058299694299132
906 => 0.00059135937476899
907 => 0.00061706263909046
908 => 0.00063759618516106
909 => 0.00061871268760986
910 => 0.00065641993003719
911 => 0.00068578042704954
912 => 0.00068465352227174
913 => 0.0006795338404971
914 => 0.00064610769523774
915 => 0.00061534845801433
916 => 0.00064107986605792
917 => 0.00064114546070873
918 => 0.00063893510993773
919 => 0.00062520681113333
920 => 0.00063845739489715
921 => 0.00063950917811727
922 => 0.00063892045920574
923 => 0.0006283950047001
924 => 0.00061232458109915
925 => 0.00061546470340361
926 => 0.00062060828779509
927 => 0.00061087040947791
928 => 0.00060775856731672
929 => 0.00061354407394657
930 => 0.00063218618176613
1001 => 0.00062866199926922
1002 => 0.00062856996862189
1003 => 0.00064364791582963
1004 => 0.00063285535965355
1005 => 0.00061550431040194
1006 => 0.00061112294163368
1007 => 0.00059557203415003
1008 => 0.00060631310133942
1009 => 0.00060669965322561
1010 => 0.00060081688049703
1011 => 0.00061598166498705
1012 => 0.00061584191882827
1013 => 0.00063023862472124
1014 => 0.00065775971923281
1015 => 0.00064962037735493
1016 => 0.00064015520830883
1017 => 0.00064118433462481
1018 => 0.00065247131021094
1019 => 0.00064564694711497
1020 => 0.00064810103566543
1021 => 0.00065246759565399
1022 => 0.00065510204971068
1023 => 0.000640805277228
1024 => 0.00063747201566861
1025 => 0.00063065333233393
1026 => 0.00062887446512866
1027 => 0.00063442814042826
1028 => 0.00063296494320106
1029 => 0.00060666716503638
1030 => 0.00060391890089872
1031 => 0.0006040031862362
1101 => 0.00059709254538921
1102 => 0.00058655215935369
1103 => 0.00061425166452127
1104 => 0.00061202700660199
1105 => 0.00060957115643395
1106 => 0.00060987198406665
1107 => 0.00062189540043656
1108 => 0.00061492121174493
1109 => 0.00063346323542867
1110 => 0.00062965155278355
1111 => 0.00062574211486137
1112 => 0.00062520171145613
1113 => 0.00062369691139366
1114 => 0.00061853639206801
1115 => 0.00061230475488316
1116 => 0.00060819008823855
1117 => 0.00056102320759364
1118 => 0.00056977710628421
1119 => 0.00057984766878474
1120 => 0.00058332398660468
1121 => 0.00057737750441981
1122 => 0.00061877119542891
1123 => 0.0006263342216558
1124 => 0.00060342532189055
1125 => 0.00059914000210868
1126 => 0.00061905214028038
1127 => 0.00060704268680295
1128 => 0.00061245054296849
1129 => 0.00060076171587777
1130 => 0.000624512510109
1201 => 0.00062433156885043
1202 => 0.00061509197345846
1203 => 0.00062290121621373
1204 => 0.00062154416810898
1205 => 0.00061111268766756
1206 => 0.00062484320664529
1207 => 0.0006248500168114
1208 => 0.00061595710713276
1209 => 0.00060557213553636
1210 => 0.000603715547897
1211 => 0.0006023168585082
1212 => 0.00061210655112006
1213 => 0.00062088395890428
1214 => 0.00063721653868679
1215 => 0.00064132293729663
1216 => 0.0006573504844493
1217 => 0.000647806860487
1218 => 0.00065203742537886
1219 => 0.00065663030201893
1220 => 0.00065883229597762
1221 => 0.00065524426498744
1222 => 0.00068014164291713
1223 => 0.00068224374445035
1224 => 0.00068294856091133
1225 => 0.00067455330515695
1226 => 0.00068201025720091
1227 => 0.00067852139628784
1228 => 0.00068759844315018
1229 => 0.00068902183999974
1230 => 0.00068781627350697
1231 => 0.00068826808213382
]
'min_raw' => 0.00030864214214454
'max_raw' => 0.00068902183999974
'avg_raw' => 0.00049883199107214
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0003086'
'max' => '$0.000689'
'avg' => '$0.000498'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 4.75919920883E-5
'max_diff' => -6.5750914829555E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.00066702256226927
102 => 0.00066592086998524
103 => 0.00065089921752008
104 => 0.00065702065193408
105 => 0.00064557692370509
106 => 0.00064920584780996
107 => 0.00065080544297773
108 => 0.00064996990523832
109 => 0.00065736674865132
110 => 0.00065107792067499
111 => 0.00063448066966642
112 => 0.00061787889674791
113 => 0.00061767047501243
114 => 0.00061329952124861
115 => 0.00061014012225749
116 => 0.00061074873458888
117 => 0.00061289356382726
118 => 0.00061001546088307
119 => 0.00061062965006974
120 => 0.00062082928288953
121 => 0.00062287474651108
122 => 0.00061592346191081
123 => 0.00058801305117512
124 => 0.00058116376637262
125 => 0.00058608689646144
126 => 0.00058373395736917
127 => 0.00047111886216434
128 => 0.0004975761083394
129 => 0.00048185611106536
130 => 0.00048910060905154
131 => 0.00047305456250831
201 => 0.00048071257696409
202 => 0.00047929842132002
203 => 0.00052184089024268
204 => 0.0005211766481057
205 => 0.00052149458566576
206 => 0.00050631859754228
207 => 0.00053049435869597
208 => 0.00054240420797252
209 => 0.00054020001184181
210 => 0.00054075476052037
211 => 0.0005312223402524
212 => 0.00052158688033079
213 => 0.00051089967239108
214 => 0.00053075518376425
215 => 0.00052854758984443
216 => 0.00053361101602926
217 => 0.00054648873445603
218 => 0.00054838502741206
219 => 0.00055093366437528
220 => 0.0005500201594483
221 => 0.00057178355292453
222 => 0.00056914786237506
223 => 0.00057549911825935
224 => 0.00056243410303443
225 => 0.0005476497981648
226 => 0.00055045981118518
227 => 0.00055018918433462
228 => 0.00054674379391595
229 => 0.00054363344949979
301 => 0.000538455602381
302 => 0.00055483907684206
303 => 0.00055417393769868
304 => 0.00056494176729034
305 => 0.0005630384488169
306 => 0.00055032762223021
307 => 0.00055078159188841
308 => 0.00055383475601017
309 => 0.000564401791896
310 => 0.00056753880760559
311 => 0.00056608561694045
312 => 0.0005695252114558
313 => 0.00057224372671716
314 => 0.00056986661511763
315 => 0.00060352150248234
316 => 0.00058954564683795
317 => 0.00059635738163565
318 => 0.00059798194024782
319 => 0.00059382066752352
320 => 0.00059472309857341
321 => 0.00059609003571627
322 => 0.00060438981037394
323 => 0.00062617082063482
324 => 0.00063581748181102
325 => 0.00066483993791747
326 => 0.00063501646088834
327 => 0.00063324685918325
328 => 0.00063847467992223
329 => 0.0006555139339957
330 => 0.00066932264900649
331 => 0.00067390379641945
401 => 0.00067450927067658
402 => 0.00068310380777221
403 => 0.0006880300361568
404 => 0.00068206020491004
405 => 0.00067700139799579
406 => 0.00065888137955117
407 => 0.00066097882102531
408 => 0.00067542811284948
409 => 0.00069583858861016
410 => 0.00071335290016088
411 => 0.0007072199986912
412 => 0.00075400970775117
413 => 0.00075864871628564
414 => 0.00075800775530328
415 => 0.00076857610712185
416 => 0.00074760008096942
417 => 0.00073863242339789
418 => 0.00067809516947055
419 => 0.00069510366854163
420 => 0.00071982652081558
421 => 0.00071655435861118
422 => 0.00069859996244611
423 => 0.00071333928014138
424 => 0.00070846600077024
425 => 0.00070462224313768
426 => 0.00072223124200153
427 => 0.00070286942441292
428 => 0.00071963337187411
429 => 0.00069813343585431
430 => 0.00070724801326852
501 => 0.00070207413830571
502 => 0.00070542226949291
503 => 0.00068584916298607
504 => 0.00069641033614686
505 => 0.00068540978346067
506 => 0.00068540456776638
507 => 0.00068516172995613
508 => 0.00069810383140751
509 => 0.00069852587287121
510 => 0.0006889616403442
511 => 0.00068758328501567
512 => 0.00069267978709053
513 => 0.00068671311793688
514 => 0.0006895048848801
515 => 0.00068679767771357
516 => 0.00068618822835787
517 => 0.00068133203220245
518 => 0.0006792398493748
519 => 0.00068006024817043
520 => 0.00067725980413637
521 => 0.00067557243530936
522 => 0.00068482606982598
523 => 0.0006798822261943
524 => 0.00068406835488472
525 => 0.00067929773291043
526 => 0.00066276067868645
527 => 0.00065325004392607
528 => 0.00062201308148272
529 => 0.00063087184528233
530 => 0.00063674521484652
531 => 0.00063480406624059
601 => 0.00063897440457091
602 => 0.00063923042947431
603 => 0.00063787460997155
604 => 0.0006363047446786
605 => 0.00063554062107298
606 => 0.00064123577239451
607 => 0.00064454199942663
608 => 0.00063733468605783
609 => 0.00063564611337655
610 => 0.00064293310511909
611 => 0.00064737816587248
612 => 0.00068019799701162
613 => 0.00067776659791418
614 => 0.00068386893251079
615 => 0.00068318190328317
616 => 0.00068957812211856
617 => 0.00070003323667065
618 => 0.00067877506549024
619 => 0.00068246474895491
620 => 0.00068156012377661
621 => 0.00069143658426785
622 => 0.00069146741749945
623 => 0.00068554598606916
624 => 0.00068875609011177
625 => 0.00068696429809978
626 => 0.00069020230844066
627 => 0.00067773412509688
628 => 0.00069291902655239
629 => 0.00070152788718422
630 => 0.00070164742122245
701 => 0.0007057279528378
702 => 0.00070987400928744
703 => 0.00071783200359713
704 => 0.00070965206514536
705 => 0.00069493715217158
706 => 0.0006959995213594
707 => 0.00068737217326685
708 => 0.00068751720054694
709 => 0.00068674303355981
710 => 0.00068906636696477
711 => 0.00067824396612689
712 => 0.00068078396197203
713 => 0.00067722795291464
714 => 0.00068245701888569
715 => 0.00067683140829641
716 => 0.00068155968753895
717 => 0.0006836002561151
718 => 0.00069112999809136
719 => 0.00067571925928427
720 => 0.00064429571964131
721 => 0.00065090132864786
722 => 0.00064113111406779
723 => 0.00064203538462501
724 => 0.00064386215506417
725 => 0.00063794099438874
726 => 0.0006390705652484
727 => 0.00063903020902862
728 => 0.0006386824409288
729 => 0.00063714211835104
730 => 0.00063490834586976
731 => 0.00064380700791627
801 => 0.00064531906399978
802 => 0.00064868017736931
803 => 0.00065868057089205
804 => 0.0006576812957536
805 => 0.00065931115496393
806 => 0.00065575318145906
807 => 0.00064220042881138
808 => 0.00064293640848441
809 => 0.00063375873016847
810 => 0.00064844548350053
811 => 0.00064496746645583
812 => 0.00064272516624127
813 => 0.00064211333385296
814 => 0.00065213851641695
815 => 0.00065513820816557
816 => 0.00065326900156965
817 => 0.00064943520430795
818 => 0.00065679722841083
819 => 0.0006587669954819
820 => 0.0006592079536869
821 => 0.00067225204886909
822 => 0.00065993697370576
823 => 0.0006629013346989
824 => 0.00068602843295316
825 => 0.00066505534615795
826 => 0.00067616525798902
827 => 0.00067562148561808
828 => 0.00068130494057194
829 => 0.00067515527642424
830 => 0.00067523150888166
831 => 0.0006802780318501
901 => 0.00067319110048614
902 => 0.00067143627661668
903 => 0.00066901200000932
904 => 0.00067430531929112
905 => 0.00067747842480432
906 => 0.00070305132485152
907 => 0.00071957258454794
908 => 0.0007188553530928
909 => 0.00072540950599179
910 => 0.00072245680008164
911 => 0.00071292173381328
912 => 0.00072919692925591
913 => 0.00072404677643476
914 => 0.0007244713487759
915 => 0.00072445554617216
916 => 0.00072787994756405
917 => 0.00072545344533612
918 => 0.00072067056036952
919 => 0.00072384566261824
920 => 0.00073327458117713
921 => 0.00076254223369846
922 => 0.00077892079979422
923 => 0.00076155622345396
924 => 0.00077353407569253
925 => 0.00076635163249452
926 => 0.00076504636890627
927 => 0.00077256934526842
928 => 0.00078010548960481
929 => 0.00077962546979023
930 => 0.0007741546159873
1001 => 0.00077106426949181
1002 => 0.00079446540849774
1003 => 0.00081170696908931
1004 => 0.00081053121024585
1005 => 0.00081572062740361
1006 => 0.00083095691668141
1007 => 0.00083234993202558
1008 => 0.00083217444411031
1009 => 0.00082872171023367
1010 => 0.00084372381570984
1011 => 0.000856238836035
1012 => 0.0008279225021003
1013 => 0.0008387049913746
1014 => 0.00084354559819995
1015 => 0.00085065304516288
1016 => 0.00086264449953577
1017 => 0.00087567039956091
1018 => 0.00087751240464619
1019 => 0.00087620541389013
1020 => 0.00086761448266856
1021 => 0.00088186757790738
1022 => 0.00089021670682206
1023 => 0.00089518842202434
1024 => 0.00090779586456279
1025 => 0.00084357549213976
1026 => 0.00079811712057913
1027 => 0.00079101813943309
1028 => 0.0008054541967472
1029 => 0.00080926086993553
1030 => 0.00080772640474648
1031 => 0.00075655887466066
1101 => 0.00079074875297656
1102 => 0.00082753418727784
1103 => 0.00082894726562275
1104 => 0.00084736282318113
1105 => 0.00085335968360134
1106 => 0.00086818662121815
1107 => 0.00086725919223327
1108 => 0.00087086931559486
1109 => 0.00087003941075265
1110 => 0.00089750319050771
1111 => 0.0009277998179883
1112 => 0.00092675074211603
1113 => 0.00092239524346227
1114 => 0.00092886390168598
1115 => 0.00096013326802986
1116 => 0.0009572544858583
1117 => 0.00096005097752389
1118 => 0.00099691932270759
1119 => 0.0010448534159073
1120 => 0.0010225832171118
1121 => 0.0010709031404211
1122 => 0.0011013179708152
1123 => 0.0011539172750297
1124 => 0.001147331583085
1125 => 0.0011678081062242
1126 => 0.0011355418200286
1127 => 0.0010614519048313
1128 => 0.0010497268921465
1129 => 0.0010732006644661
1130 => 0.0011309086431764
1201 => 0.0010713832348512
1202 => 0.0010834251474293
1203 => 0.0010799570757967
1204 => 0.0010797722769978
1205 => 0.0010868252955225
1206 => 0.0010765945242917
1207 => 0.0010349125218167
1208 => 0.0010540151379174
1209 => 0.0010466387004579
1210 => 0.001054823407769
1211 => 0.001098992897497
1212 => 0.0010794645132192
1213 => 0.0010588929467395
1214 => 0.001084694256301
1215 => 0.0011175481896647
1216 => 0.001115492249559
1217 => 0.0011115028664376
1218 => 0.0011339908102155
1219 => 0.0011711343049871
1220 => 0.0011811740423692
1221 => 0.0011885851712513
1222 => 0.0011896070407121
1223 => 0.0012001329312466
1224 => 0.0011435325649767
1225 => 0.0012333587998475
1226 => 0.00124886930921
1227 => 0.0012459539762946
1228 => 0.0012631932546691
1229 => 0.001258121021653
1230 => 0.0012507721518218
1231 => 0.0012781000749449
]
'min_raw' => 0.00047111886216434
'max_raw' => 0.0012781000749449
'avg_raw' => 0.00087460946855463
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000471'
'max' => '$0.001278'
'avg' => '$0.000874'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00016247672001981
'max_diff' => 0.00058907823494517
'year' => 2032
]
7 => [
'items' => [
101 => 0.0012467708163339
102 => 0.0012023028779795
103 => 0.0011779068875222
104 => 0.0012100334957248
105 => 0.00122965209429
106 => 0.0012426187399644
107 => 0.0012465424391108
108 => 0.0011479262902897
109 => 0.0010947776555774
110 => 0.0011288453210776
111 => 0.0011704102242126
112 => 0.0011433016698411
113 => 0.0011443642738492
114 => 0.0011057145993183
115 => 0.0011738298628029
116 => 0.0011639060418528
117 => 0.0012153908424972
118 => 0.0012031035816321
119 => 0.0012450874379292
120 => 0.0012340316815339
121 => 0.0012799235082116
122 => 0.001298231000345
123 => 0.0013289721289705
124 => 0.0013515854283264
125 => 0.0013648643902316
126 => 0.0013640671711669
127 => 0.0014166850337881
128 => 0.0013856581185285
129 => 0.00134668100048
130 => 0.0013459760273857
131 => 0.0013661628291331
201 => 0.0014084688276169
202 => 0.0014194381574965
203 => 0.0014255685164357
204 => 0.001416179658321
205 => 0.0013825021655258
206 => 0.0013679603948856
207 => 0.0013803504047867
208 => 0.0013651984873633
209 => 0.0013913549477132
210 => 0.0014272733544921
211 => 0.001419856345529
212 => 0.0014446502944724
213 => 0.0014703094232294
214 => 0.0015070031297753
215 => 0.0015165962234305
216 => 0.0015324532424497
217 => 0.0015487753237799
218 => 0.0015540175364108
219 => 0.0015640265468861
220 => 0.0015639737944603
221 => 0.0015941366212118
222 => 0.0016274071531837
223 => 0.0016399660087885
224 => 0.0016688444047524
225 => 0.0016193911636839
226 => 0.0016569020151122
227 => 0.0016907377420581
228 => 0.0016503973935099
301 => 0.0017059971658878
302 => 0.0017081559790575
303 => 0.001740751494858
304 => 0.0017077096950489
305 => 0.0016880895797955
306 => 0.0017447321173761
307 => 0.0017721396570881
308 => 0.0017638842830769
309 => 0.0017010604792334
310 => 0.0016644943307568
311 => 0.0015687936671102
312 => 0.0016821552371606
313 => 0.0017373703511298
314 => 0.0017009174854272
315 => 0.001719302190551
316 => 0.0018196031804459
317 => 0.0018577913033897
318 => 0.0018498484407726
319 => 0.0018511906538042
320 => 0.0018717962717812
321 => 0.0019631729296124
322 => 0.0019084179181456
323 => 0.0019502760727809
324 => 0.0019724774870686
325 => 0.0019930993979573
326 => 0.0019424585024365
327 => 0.0018765754414265
328 => 0.0018557075104219
329 => 0.0016972929663406
330 => 0.0016890468013616
331 => 0.0016844179790746
401 => 0.0016552339093147
402 => 0.0016323032246729
403 => 0.001614067892884
404 => 0.0015662129367389
405 => 0.0015823625796409
406 => 0.0015060917676512
407 => 0.0015548871302906
408 => 0.0014331570727319
409 => 0.001534537481895
410 => 0.0014793607343891
411 => 0.0015164104363654
412 => 0.0015162811734455
413 => 0.0014480609254884
414 => 0.001408712910187
415 => 0.0014337869969847
416 => 0.0014606684084154
417 => 0.0014650298269801
418 => 0.0014998822785765
419 => 0.0015096088486662
420 => 0.0014801368872044
421 => 0.0014306344878599
422 => 0.0014421327661981
423 => 0.0014084798979434
424 => 0.001349504540766
425 => 0.0013918616719018
426 => 0.0014063242587831
427 => 0.0014127117610653
428 => 0.0013547162706468
429 => 0.001336492828414
430 => 0.0013267908206787
501 => 0.0014231479983231
502 => 0.0014284266620285
503 => 0.0014014202721839
504 => 0.0015234917151324
505 => 0.0014958631880033
506 => 0.00152673102196
507 => 0.0014410894179582
508 => 0.0014443610425628
509 => 0.0014038169347607
510 => 0.0014265189259716
511 => 0.0014104738903031
512 => 0.0014246848294272
513 => 0.0014332028077443
514 => 0.0014737402626572
515 => 0.0015350003545139
516 => 0.0014676853186982
517 => 0.0014383551936243
518 => 0.0014565514382613
519 => 0.0015050104356027
520 => 0.0015784282971453
521 => 0.0015349634454399
522 => 0.0015542524085457
523 => 0.0015584661888781
524 => 0.0015264168163868
525 => 0.0015796100032238
526 => 0.0016081166641904
527 => 0.0016373585997199
528 => 0.0016627485529997
529 => 0.0016256787276255
530 => 0.0016653487545266
531 => 0.0016333817155467
601 => 0.00160470397689
602 => 0.0016047474691819
603 => 0.0015867575048077
604 => 0.0015518996819511
605 => 0.0015454713646015
606 => 0.0015789122832615
607 => 0.0016057287331601
608 => 0.0016079374644159
609 => 0.0016227844289587
610 => 0.0016315707096393
611 => 0.0017176882046779
612 => 0.0017523253735837
613 => 0.0017946790480737
614 => 0.0018111781912099
615 => 0.0018608346967795
616 => 0.0018207330356278
617 => 0.0018120567889864
618 => 0.0016916063489936
619 => 0.0017113301017947
620 => 0.0017429097330882
621 => 0.0016921270854822
622 => 0.001724336986834
623 => 0.0017306959036599
624 => 0.0016904015105487
625 => 0.0017119244869273
626 => 0.0016547658427835
627 => 0.0015362462567597
628 => 0.0015797419494037
629 => 0.0016117694196815
630 => 0.0015660622706364
701 => 0.0016479905661888
702 => 0.0016001297472704
703 => 0.0015849601653977
704 => 0.0015257782181661
705 => 0.0015537098191374
706 => 0.001591487709393
707 => 0.0015681453653662
708 => 0.0016165842340925
709 => 0.0016851865903834
710 => 0.0017340767148173
711 => 0.0017378298915002
712 => 0.0017063968168732
713 => 0.0017567685195662
714 => 0.0017571354224283
715 => 0.0017003159360161
716 => 0.0016655143169609
717 => 0.0016576073158883
718 => 0.0016773605548265
719 => 0.0017013446335465
720 => 0.0017391608409485
721 => 0.0017620123830762
722 => 0.0018215970854237
723 => 0.0018377189974517
724 => 0.0018554320909121
725 => 0.0018791022462909
726 => 0.0019075243367265
727 => 0.001845338420924
728 => 0.0018478091832879
729 => 0.0017899025195152
730 => 0.0017280209446185
731 => 0.0017749813463179
801 => 0.0018363758246594
802 => 0.001822291863493
803 => 0.0018207071301525
804 => 0.0018233722120628
805 => 0.0018127533652825
806 => 0.001764724714848
807 => 0.0017406050272751
808 => 0.0017717255778327
809 => 0.0017882647654378
810 => 0.0018139156030444
811 => 0.0018107535958859
812 => 0.0018768273988619
813 => 0.0019025016807302
814 => 0.0018959331007638
815 => 0.0018971418775594
816 => 0.0019436239385185
817 => 0.00199532155007
818 => 0.0020437431853886
819 => 0.0020929997525924
820 => 0.0020336190383117
821 => 0.0020034691736933
822 => 0.0020345761379921
823 => 0.0020180703448729
824 => 0.002112917528072
825 => 0.0021194845412496
826 => 0.0022143248659178
827 => 0.0023043396274036
828 => 0.0022478029684963
829 => 0.0023011144913788
830 => 0.0023587752499285
831 => 0.0024700122082918
901 => 0.0024325515140784
902 => 0.0024038572093949
903 => 0.0023767412301189
904 => 0.0024331652784518
905 => 0.0025057539152361
906 => 0.0025213888123541
907 => 0.0025467233186756
908 => 0.0025200871830345
909 => 0.0025521674745401
910 => 0.0026654250003491
911 => 0.0026348218171237
912 => 0.0025913603772364
913 => 0.0026807663164942
914 => 0.0027131219783548
915 => 0.0029402109580842
916 => 0.0032269201755704
917 => 0.0031082206768969
918 => 0.0030345400676614
919 => 0.0030518567585591
920 => 0.0031565532590656
921 => 0.0031901784521275
922 => 0.0030987735860862
923 => 0.0031310593300293
924 => 0.0033089569534198
925 => 0.0034043933207298
926 => 0.0032747779151087
927 => 0.0029171741516217
928 => 0.0025874471500964
929 => 0.0026749055987013
930 => 0.0026649905247812
1001 => 0.0028561193279338
1002 => 0.0026340919413249
1003 => 0.0026378303130944
1004 => 0.0028329114574873
1005 => 0.0027808671527008
1006 => 0.0026965620442776
1007 => 0.0025880626706855
1008 => 0.0023874915436233
1009 => 0.0022098401030447
1010 => 0.0025582554887028
1011 => 0.0025432311837209
1012 => 0.00252147376363
1013 => 0.0025698925476437
1014 => 0.0028050004189025
1015 => 0.0027995804215001
1016 => 0.0027651011633328
1017 => 0.0027912533767664
1018 => 0.0026919774348186
1019 => 0.0027175631055297
1020 => 0.0025873949196548
1021 => 0.0026462363759739
1022 => 0.0026963811633782
1023 => 0.0027064484718559
1024 => 0.0027291306319057
1025 => 0.0025353140577052
1026 => 0.0026223320093656
1027 => 0.0026734469034866
1028 => 0.002442507952272
1029 => 0.0026688819829464
1030 => 0.0025319401423513
1031 => 0.0024854600248559
1101 => 0.0025480393797736
1102 => 0.0025236521443018
1103 => 0.0025026854313096
1104 => 0.0024909856452061
1105 => 0.0025369370168263
1106 => 0.0025347933304165
1107 => 0.0024596079676689
1108 => 0.0023615317269122
1109 => 0.002394449332553
1110 => 0.0023824900578195
1111 => 0.0023391481034081
1112 => 0.0023683553475539
1113 => 0.002239741425784
1114 => 0.002018467858149
1115 => 0.0021646479547214
1116 => 0.0021590201800167
1117 => 0.0021561824008113
1118 => 0.0022660327032644
1119 => 0.0022554731313612
1120 => 0.0022363074049573
1121 => 0.0023387961098128
1122 => 0.0023013863538729
1123 => 0.0024166744068326
1124 => 0.0024926105748755
1125 => 0.0024733507063821
1126 => 0.0025447690394579
1127 => 0.0023952076877028
1128 => 0.0024448859693959
1129 => 0.0024551245944017
1130 => 0.0023375314151038
1201 => 0.002257200807917
1202 => 0.0022518436722536
1203 => 0.0021125614696312
1204 => 0.0021869648980254
1205 => 0.0022524368359893
1206 => 0.0022210808585322
1207 => 0.0022111544928025
1208 => 0.0022618661425496
1209 => 0.0022658068720508
1210 => 0.0021759578218024
1211 => 0.0021946402844984
1212 => 0.0022725492596419
1213 => 0.0021926771782186
1214 => 0.0020374987710438
1215 => 0.0019990123805551
1216 => 0.001993877586619
1217 => 0.0018894994432195
1218 => 0.0020015842251974
1219 => 0.0019526562141786
1220 => 0.0021072192147393
1221 => 0.002018933657757
1222 => 0.0020151278438496
1223 => 0.0020093747979371
1224 => 0.0019195322181063
1225 => 0.0019392020332955
1226 => 0.0020045874947815
1227 => 0.0020279177640597
1228 => 0.0020254842258347
1229 => 0.0020042670703493
1230 => 0.0020139801754811
1231 => 0.0019826908795814
]
'min_raw' => 0.0010947776555774
'max_raw' => 0.0034043933207298
'avg_raw' => 0.0022495854881536
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.001094'
'max' => '$0.0034043'
'avg' => '$0.002249'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00062365879341307
'max_diff' => 0.0021262932457848
'year' => 2033
]
8 => [
'items' => [
101 => 0.0019716419779689
102 => 0.0019367686052398
103 => 0.0018855143813432
104 => 0.0018926415955365
105 => 0.0017910935666001
106 => 0.0017357648108738
107 => 0.00172045054051
108 => 0.0016999716581521
109 => 0.0017227636847645
110 => 0.001790805893793
111 => 0.0017087325537448
112 => 0.0015680235690075
113 => 0.0015764804187467
114 => 0.0015954804492493
115 => 0.0015600740181054
116 => 0.0015265648024642
117 => 0.0015556983467756
118 => 0.0014960780950087
119 => 0.0016026852718362
120 => 0.0015998018464662
121 => 0.0016395384094439
122 => 0.0016643864977502
123 => 0.0016071196988683
124 => 0.0015927172538154
125 => 0.0016009215410721
126 => 0.0014653229479933
127 => 0.0016284571114804
128 => 0.0016298679025006
129 => 0.0016177878532702
130 => 0.0017046517591248
131 => 0.0018879616940098
201 => 0.001818993122881
202 => 0.0017922864075539
203 => 0.0017415169221944
204 => 0.0018091642470421
205 => 0.0018039699879565
206 => 0.0017804795785069
207 => 0.0017662725055773
208 => 0.0017924494730628
209 => 0.0017630288896182
210 => 0.001757744144408
211 => 0.0017257243382936
212 => 0.0017142947243191
213 => 0.0017058326931584
214 => 0.0016965168283125
215 => 0.0017170653047937
216 => 0.0016704997537102
217 => 0.0016143462639808
218 => 0.001609677708899
219 => 0.0016225679999434
220 => 0.0016168650057256
221 => 0.0016096504051567
222 => 0.0015958757678913
223 => 0.0015917891272632
224 => 0.0016050687267484
225 => 0.0015900768331784
226 => 0.0016121981887916
227 => 0.0016061824040952
228 => 0.0015725787198023
301 => 0.0015306960874959
302 => 0.0015303232442165
303 => 0.0015212996997874
304 => 0.0015098068592579
305 => 0.0015066098139432
306 => 0.0015532448009338
307 => 0.0016497778283366
308 => 0.0016308260852179
309 => 0.0016445206618739
310 => 0.001711884425001
311 => 0.0017332973396001
312 => 0.0017180989600103
313 => 0.0016972944806327
314 => 0.0016982097721408
315 => 0.0017693049761184
316 => 0.0017737390967834
317 => 0.0017849426892021
318 => 0.0017993424715951
319 => 0.0017205513052183
320 => 0.00169449871529
321 => 0.0016821535528393
322 => 0.0016441352306704
323 => 0.001685134731685
324 => 0.0016612460782174
325 => 0.0016644694737228
326 => 0.0016623702331713
327 => 0.0016635165604624
328 => 0.0016026554729576
329 => 0.0016248300544798
330 => 0.0015879605118684
331 => 0.0015385963331121
401 => 0.0015384308470756
402 => 0.001550512659892
403 => 0.0015433259248674
404 => 0.0015239866057041
405 => 0.0015267336647122
406 => 0.0015026665372096
407 => 0.0015296558497405
408 => 0.0015304298066515
409 => 0.0015200374512093
410 => 0.0015616182109705
411 => 0.0015786538821713
412 => 0.0015718134111934
413 => 0.0015781739364922
414 => 0.0016316136157064
415 => 0.001640326615155
416 => 0.0016441963539617
417 => 0.0016390114166029
418 => 0.0015791507157276
419 => 0.0015818057923588
420 => 0.0015623246017102
421 => 0.0015458650484895
422 => 0.0015465233442994
423 => 0.001554985694247
424 => 0.0015919412727784
425 => 0.0016697121091474
426 => 0.0016726634555379
427 => 0.00167624057346
428 => 0.0016616906371554
429 => 0.0016573022371418
430 => 0.0016630916695019
501 => 0.0016922983066458
502 => 0.0017674257069045
503 => 0.0017408706660627
504 => 0.0017192810045045
505 => 0.001738220958222
506 => 0.0017353053008035
507 => 0.001710694217977
508 => 0.0017100034668518
509 => 0.0016627669302687
510 => 0.0016453046582179
511 => 0.0016307118766637
512 => 0.0016147769401608
513 => 0.001605330175658
514 => 0.001619844699412
515 => 0.0016231643427254
516 => 0.0015914280828668
517 => 0.0015871025479175
518 => 0.0016130190627928
519 => 0.0016016141708613
520 => 0.0016133443850406
521 => 0.0016160658953501
522 => 0.0016156276695086
523 => 0.0016037196524885
524 => 0.0016113094674349
525 => 0.001593357292454
526 => 0.0015738369984917
527 => 0.001561384267101
528 => 0.0015505176073476
529 => 0.0015565470617527
530 => 0.0015350531577331
531 => 0.0015281768252504
601 => 0.0016087382089073
602 => 0.0016682497691956
603 => 0.0016673844475398
604 => 0.0016621170245031
605 => 0.0016542907023282
606 => 0.0016917257624315
607 => 0.0016786841360292
608 => 0.0016881730089012
609 => 0.0016905883252939
610 => 0.0016978987605678
611 => 0.0017005116128251
612 => 0.001692613758561
613 => 0.0016661075950092
614 => 0.0016000567555686
615 => 0.0015693099115082
616 => 0.001559162940839
617 => 0.001559531763951
618 => 0.0015493579760237
619 => 0.0015523546125255
620 => 0.0015483158681402
621 => 0.0015406674633518
622 => 0.0015560747943097
623 => 0.0015578503456734
624 => 0.0015542540905239
625 => 0.001555101138798
626 => 0.0015253256821411
627 => 0.0015275894454418
628 => 0.0015149845237183
629 => 0.0015126212528497
630 => 0.0014807571083686
701 => 0.0014243051576386
702 => 0.0014555850182665
703 => 0.001417803345242
704 => 0.0014034948531819
705 => 0.0014712290291674
706 => 0.0014644303965521
707 => 0.0014527940928092
708 => 0.0014355815743552
709 => 0.001429197283828
710 => 0.0013904083556056
711 => 0.0013881164987953
712 => 0.0014073413390115
713 => 0.0013984697367381
714 => 0.0013860106472077
715 => 0.0013408850878863
716 => 0.0012901490186497
717 => 0.0012916804216644
718 => 0.0013078186213104
719 => 0.001354742613314
720 => 0.0013364085978449
721 => 0.0013231070592635
722 => 0.00132061608093
723 => 0.0013517958899903
724 => 0.0013959218521826
725 => 0.0014166247663805
726 => 0.0013961088071672
727 => 0.0013725411778808
728 => 0.0013739756302736
729 => 0.0013835183993968
730 => 0.0013845212095041
731 => 0.0013691811056301
801 => 0.0013734992550155
802 => 0.0013669395912392
803 => 0.0013266829467526
804 => 0.001325954831709
805 => 0.0013160752019259
806 => 0.0013157760506625
807 => 0.0012989683358123
808 => 0.0012966168203185
809 => 0.0012632440823281
810 => 0.0012852101195354
811 => 0.0012704764550455
812 => 0.0012482693473391
813 => 0.0012444408336001
814 => 0.001244325743854
815 => 0.0012671274780501
816 => 0.0012849436679955
817 => 0.0012707327534473
818 => 0.0012674972036717
819 => 0.0013020444103868
820 => 0.0012976479634275
821 => 0.0012938406687148
822 => 0.0013919708562461
823 => 0.0013142931556211
824 => 0.0012804212444604
825 => 0.0012384983222976
826 => 0.0012521486371475
827 => 0.0012550249590513
828 => 0.0011542078884245
829 => 0.0011133064154271
830 => 0.001099270571234
831 => 0.0010911927444631
901 => 0.0010948739115575
902 => 0.0010580577885956
903 => 0.0010827988321085
904 => 0.0010509191816129
905 => 0.001045574454462
906 => 0.0011025792186789
907 => 0.0011105110986027
908 => 0.0010766712346059
909 => 0.0010984019054682
910 => 0.0010905220621346
911 => 0.0010514656667205
912 => 0.0010499739996951
913 => 0.001030376873375
914 => 0.0009997111654354
915 => 0.00098569611403622
916 => 0.00097839695358327
917 => 0.00098140872944396
918 => 0.00097988588340693
919 => 0.00096994828292259
920 => 0.00098045549503416
921 => 0.0009536139099689
922 => 0.00094292537451856
923 => 0.00093809761102778
924 => 0.00091427415933837
925 => 0.00095218786531328
926 => 0.00095965734301462
927 => 0.00096714153789447
928 => 0.0010322863446467
929 => 0.0010290318941987
930 => 0.0010584505412672
1001 => 0.0010573073867395
1002 => 0.0010489167120451
1003 => 0.0010135178357083
1004 => 0.0010276271968919
1005 => 0.00098420077625044
1006 => 0.0010167388033046
1007 => 0.0010018898065776
1008 => 0.0010117183425744
1009 => 0.0009940457486487
1010 => 0.0010038264918107
1011 => 0.00096142863327696
1012 => 0.00092183810953212
1013 => 0.00093777049200648
1014 => 0.00095509081384505
1015 => 0.000992645684727
1016 => 0.00097027831345067
1017 => 0.00097832246596559
1018 => 0.00095137590161548
1019 => 0.00089577744245564
1020 => 0.00089609212369651
1021 => 0.00088753951203304
1022 => 0.00088014880685405
1023 => 0.00097284747510793
1024 => 0.00096131893036147
1025 => 0.00094294970312663
1026 => 0.00096753764374454
1027 => 0.00097403908550701
1028 => 0.00097422417241403
1029 => 0.00099216289918226
1030 => 0.0010017368008742
1031 => 0.001003424242543
1101 => 0.0010316512167047
1102 => 0.0010411125261208
1103 => 0.0010800823205915
1104 => 0.0010009245222047
1105 => 0.00099929431943818
1106 => 0.00096788364649261
1107 => 0.00094796250112743
1108 => 0.00096924766435904
1109 => 0.00098810341326772
1110 => 0.0009684695471714
1111 => 0.00097103331559004
1112 => 0.00094467645450152
1113 => 0.00095409779213509
1114 => 0.00096221271729635
1115 => 0.00095773213259555
1116 => 0.00095102448043571
1117 => 0.00098655745688534
1118 => 0.00098455254709919
1119 => 0.0010176416716687
1120 => 0.0010434370104966
1121 => 0.0010896668691446
1122 => 0.0010414236016284
1123 => 0.0010396654252105
1124 => 0.0010568518817159
1125 => 0.0010411098949639
1126 => 0.0010510582871963
1127 => 0.0010880640293544
1128 => 0.0010888459023733
1129 => 0.00107574852192
1130 => 0.0010749515451291
1201 => 0.0010774670403148
1202 => 0.0010922003741876
1203 => 0.0010870520946228
1204 => 0.0010930098140736
1205 => 0.0011004600334747
1206 => 0.0011312772997453
1207 => 0.0011387072383117
1208 => 0.0011206563395767
1209 => 0.0011222861336251
1210 => 0.00111553460199
1211 => 0.0011090127070269
1212 => 0.0011236729744577
1213 => 0.0011504649013357
1214 => 0.0011502982301491
1215 => 0.0011565134364242
1216 => 0.001160385458444
1217 => 0.0011437639054416
1218 => 0.0011329438856285
1219 => 0.0011370929697206
1220 => 0.0011437274455392
1221 => 0.0011349414986298
1222 => 0.0010807105642591
1223 => 0.0010971607654617
1224 => 0.0010944226476078
1225 => 0.0010905232348174
1226 => 0.0011070640393323
1227 => 0.0011054686383853
1228 => 0.0010576801860415
1229 => 0.0010607394477113
1230 => 0.0010578662298762
1231 => 0.0010671501845064
]
'min_raw' => 0.00088014880685405
'max_raw' => 0.0019716419779689
'avg_raw' => 0.0014258953924115
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00088'
'max' => '$0.001971'
'avg' => '$0.001425'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00021462884872335
'max_diff' => -0.0014327513427609
'year' => 2034
]
9 => [
'items' => [
101 => 0.0010406085309465
102 => 0.0010487725648208
103 => 0.0010538929703336
104 => 0.0010569089285175
105 => 0.0010678046375396
106 => 0.0010665261518437
107 => 0.0010677251650737
108 => 0.0010838806251929
109 => 0.0011655893985914
110 => 0.0011700366268473
111 => 0.0011481368484182
112 => 0.0011568853779466
113 => 0.0011400901143452
114 => 0.0011513648873193
115 => 0.00115907880064
116 => 0.001124221109644
117 => 0.0011221570634077
118 => 0.0011052924797791
119 => 0.0011143545517623
120 => 0.0010999361436509
121 => 0.001103473916667
122 => 0.0010935819948967
123 => 0.0011113854846212
124 => 0.0011312925525158
125 => 0.00113632186402
126 => 0.0011230919107074
127 => 0.0011135125526126
128 => 0.001096694355435
129 => 0.0011246633921594
130 => 0.0011328423908385
131 => 0.0011246204313612
201 => 0.001122715223697
202 => 0.0011191048586158
203 => 0.0011234811797162
204 => 0.0011327978462552
205 => 0.0011284042783672
206 => 0.0011313063073619
207 => 0.0011202467653934
208 => 0.0011437694078673
209 => 0.0011811290251479
210 => 0.0011812491424264
211 => 0.0011768555508555
212 => 0.0011750577878459
213 => 0.0011795658794231
214 => 0.0011820113341721
215 => 0.0011965896756902
216 => 0.0012122328169658
217 => 0.0012852325316619
218 => 0.0012647345038883
219 => 0.0013295041935392
220 => 0.0013807286087614
221 => 0.0013960885711143
222 => 0.0013819581284917
223 => 0.0013336186475912
224 => 0.0013312468820425
225 => 0.0014034864749103
226 => 0.0013830754811422
227 => 0.0013806476583807
228 => 0.0013548197260699
301 => 0.0013700872329172
302 => 0.0013667480052089
303 => 0.0013614768709107
304 => 0.0013906062104317
305 => 0.0014451337336208
306 => 0.0014366351077759
307 => 0.0014302912778226
308 => 0.0014024944616283
309 => 0.0014192343536209
310 => 0.0014132735987139
311 => 0.0014388847845831
312 => 0.0014237132854314
313 => 0.0013829208477896
314 => 0.0013894171779377
315 => 0.0013884352707046
316 => 0.0014086428519827
317 => 0.001402577037666
318 => 0.0013872508231064
319 => 0.0014449473644744
320 => 0.001441200872003
321 => 0.00144651254176
322 => 0.0014488509030559
323 => 0.0014839697710595
324 => 0.0014983568476021
325 => 0.0015016229658585
326 => 0.0015152895758376
327 => 0.0015012829281523
328 => 0.0015573195054642
329 => 0.0015945805595517
330 => 0.0016378611913106
331 => 0.0017011058270476
401 => 0.0017248863951302
402 => 0.0017205906483577
403 => 0.0017685420093724
404 => 0.0018547095392169
405 => 0.0017380075697632
406 => 0.0018608950269725
407 => 0.0018219902768239
408 => 0.0017297478140884
409 => 0.0017238084869554
410 => 0.0017862761536769
411 => 0.0019248234261752
412 => 0.0018901189058046
413 => 0.001924880190338
414 => 0.0018843293054754
415 => 0.0018823156122523
416 => 0.0019229107243715
417 => 0.0020177634165624
418 => 0.0019727024580025
419 => 0.0019080965245065
420 => 0.0019558005404203
421 => 0.0019144749070375
422 => 0.0018213566887097
423 => 0.0018900923679119
424 => 0.0018441307767088
425 => 0.0018575448124745
426 => 0.0019541492409125
427 => 0.0019425255404992
428 => 0.0019575676851597
429 => 0.0019310186935554
430 => 0.0019062177490054
501 => 0.0018599249442603
502 => 0.001846219926983
503 => 0.0018500075007036
504 => 0.0018462180500496
505 => 0.0018203176512476
506 => 0.0018147244625923
507 => 0.0018054022364569
508 => 0.0018082915841421
509 => 0.0017907630716942
510 => 0.0018238429962589
511 => 0.0018299829217574
512 => 0.0018540557322189
513 => 0.0018565550512595
514 => 0.0019235974857396
515 => 0.0018866716394303
516 => 0.0019114446851588
517 => 0.0019092287507759
518 => 0.0017317469879595
519 => 0.0017562024089407
520 => 0.0017942473694537
521 => 0.0017771081663113
522 => 0.0017528773430239
523 => 0.0017333096540448
524 => 0.0017036626043424
525 => 0.0017453902574773
526 => 0.0018002576841084
527 => 0.0018579465797439
528 => 0.0019272560079237
529 => 0.0019117869504047
530 => 0.0018566508881947
531 => 0.0018591242516685
601 => 0.001874413611431
602 => 0.0018546125013538
603 => 0.0018487727674284
604 => 0.0018736113216649
605 => 0.0018737823711369
606 => 0.0018509988009489
607 => 0.0018256790320343
608 => 0.0018255729412781
609 => 0.0018210675329597
610 => 0.0018851308076064
611 => 0.0019203591311345
612 => 0.0019243980016537
613 => 0.0019200872829685
614 => 0.0019217463075042
615 => 0.0019012477222463
616 => 0.0019481014094791
617 => 0.0019910989862334
618 => 0.001979574717154
619 => 0.0019622981995326
620 => 0.0019485366210974
621 => 0.0019763329266239
622 => 0.0019750952008943
623 => 0.0019907234399107
624 => 0.0019900144527158
625 => 0.0019847592637424
626 => 0.0019795749048334
627 => 0.0020001303018944
628 => 0.0019942106776504
629 => 0.0019882818585949
630 => 0.0019763907043223
701 => 0.0019780069096791
702 => 0.0019607333750921
703 => 0.0019527418476089
704 => 0.0018325684486183
705 => 0.0018004541896289
706 => 0.001810557989253
707 => 0.0018138844224343
708 => 0.0017999082557666
709 => 0.0018199464885854
710 => 0.0018168235512263
711 => 0.0018289730736333
712 => 0.0018213825795044
713 => 0.0018216940960311
714 => 0.0018440161208002
715 => 0.0018504962995554
716 => 0.0018472004283391
717 => 0.0018495087435631
718 => 0.0019027028936228
719 => 0.0018951403865375
720 => 0.0018911229553748
721 => 0.0018922358112624
722 => 0.0019058280570981
723 => 0.001909633143823
724 => 0.001893510723991
725 => 0.0019011141503864
726 => 0.0019334885749594
727 => 0.0019448177913262
728 => 0.0019809752116368
729 => 0.001965614896842
730 => 0.0019938094194267
731 => 0.0020804697696312
801 => 0.0021497000538146
802 => 0.002086033023417
803 => 0.0022131656238964
804 => 0.002312156589458
805 => 0.0023083571513216
806 => 0.0022910957867737
807 => 0.0021783972042928
808 => 0.0020746902884527
809 => 0.0021614455271812
810 => 0.0021616666841261
811 => 0.0021542143321799
812 => 0.0021079284142816
813 => 0.0021526036825676
814 => 0.0021561498431274
815 => 0.0021541649362141
816 => 0.0021186776314846
817 => 0.0020644950763128
818 => 0.0020750822178987
819 => 0.0020924241717881
820 => 0.0020595922351648
821 => 0.0020491004420565
822 => 0.0020686066815902
823 => 0.0021314598496542
824 => 0.0021195778223153
825 => 0.0021192675345625
826 => 0.002170103886282
827 => 0.0021337160296222
828 => 0.0020752157556588
829 => 0.0020604436649592
830 => 0.0020080126946484
831 => 0.0020442269525948
901 => 0.0020455302392673
902 => 0.0020256960602908
903 => 0.0020768251899703
904 => 0.0020763540260392
905 => 0.0021248935251033
906 => 0.0022176828167105
907 => 0.0021902404572985
908 => 0.0021583279790226
909 => 0.0021617977502482
910 => 0.0021998525764683
911 => 0.0021768437598285
912 => 0.0021851178907153
913 => 0.0021998400525803
914 => 0.0022087222983641
915 => 0.00216051973177
916 => 0.0021492814077016
917 => 0.0021262917407734
918 => 0.0021202941657943
919 => 0.0021390187698122
920 => 0.0021340854982035
921 => 0.002045420703069
922 => 0.0020361547386512
923 => 0.0020364389125512
924 => 0.00201313920445
925 => 0.001977601557025
926 => 0.0020709923726152
927 => 0.0020634917831197
928 => 0.0020552117128161
929 => 0.0020562259741829
930 => 0.0020967637619222
1001 => 0.002073249797826
1002 => 0.0021357655252385
1003 => 0.0021229141710773
1004 => 0.0021097332281744
1005 => 0.0021079112203639
1006 => 0.0021028376818915
1007 => 0.0020854386306891
1008 => 0.0020644282308414
1009 => 0.0020505553449722
1010 => 0.0018915289137915
1011 => 0.0019210432944044
1012 => 0.0019549968989792
1013 => 0.0019667175472179
1014 => 0.0019466685673614
1015 => 0.0020862302866139
1016 => 0.0021117295575715
1017 => 0.0020344906025646
1018 => 0.0020200423477286
1019 => 0.0020871775117955
1020 => 0.0020466868009231
1021 => 0.0020649197655497
1022 => 0.0020255100689255
1023 => 0.0021055875299036
1024 => 0.0021049774738174
1025 => 0.0020738255328654
1026 => 0.0021001549400387
1027 => 0.0020955795576075
1028 => 0.0020604090929965
1029 => 0.0021067024963642
1030 => 0.0021067254573147
1031 => 0.00207674239145
1101 => 0.0020417287346572
1102 => 0.0020354691198083
1103 => 0.0020307533408806
1104 => 0.002063759973016
1105 => 0.0020933536161795
1106 => 0.0021484200492205
1107 => 0.0021622650588332
1108 => 0.002216303053066
1109 => 0.0021841260585626
1110 => 0.0021983897034641
1111 => 0.0022138749077205
1112 => 0.0022212990840906
1113 => 0.0022092017870988
1114 => 0.0022931450350682
1115 => 0.0023002324171515
1116 => 0.0023026087550584
1117 => 0.0022743035641445
1118 => 0.0022994451985885
1119 => 0.0022876822604355
1120 => 0.0023182861576711
1121 => 0.0023230852395278
1122 => 0.0023190205879275
1123 => 0.0023205438922571
1124 => 0.002248913138719
1125 => 0.0022451987062657
1126 => 0.0021945521562011
1127 => 0.0022151909997128
1128 => 0.0021766076710132
1129 => 0.0021888428419962
1130 => 0.0021942359887845
1201 => 0.0021914189149606
1202 => 0.0022163578889587
1203 => 0.0021951546663646
1204 => 0.0021391958758061
1205 => 0.0020832218393125
1206 => 0.0020825191308798
1207 => 0.0020677821550949
1208 => 0.0020571300208141
1209 => 0.0020591819997814
1210 => 0.0020664134413058
1211 => 0.0020567097162867
1212 => 0.0020587804980109
1213 => 0.0020931692721784
1214 => 0.0021000656955882
1215 => 0.0020766289542352
1216 => 0.0019825270557971
1217 => 0.0019594342138837
1218 => 0.0019760328907001
1219 => 0.0019680997922736
1220 => 0.0015884101362557
1221 => 0.0016776125889208
1222 => 0.0016246115205762
1223 => 0.0016490368513313
1224 => 0.0015949364851116
1225 => 0.0016207560155148
1226 => 0.0016159880910276
1227 => 0.0017594229952207
1228 => 0.00175718345648
1229 => 0.0017582554051614
1230 => 0.0017070885016494
1231 => 0.0017885987682768
]
'min_raw' => 0.0010406085309465
'max_raw' => 0.0023230852395278
'avg_raw' => 0.0016818468852372
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00104'
'max' => '$0.002323'
'avg' => '$0.001681'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00016045972409248
'max_diff' => 0.00035144326155891
'year' => 2035
]
10 => [
'items' => [
101 => 0.0018287536566318
102 => 0.0018213220554851
103 => 0.0018231924293862
104 => 0.0017910532089204
105 => 0.0017585665830684
106 => 0.0017225339153426
107 => 0.0017894781582047
108 => 0.0017820351011748
109 => 0.0017991067960741
110 => 0.0018425249228435
111 => 0.0018489184069397
112 => 0.0018575113144014
113 => 0.0018544313687612
114 => 0.0019278081693379
115 => 0.0019189217546323
116 => 0.0019403354572767
117 => 0.0018962858462757
118 => 0.0018464395302005
119 => 0.0018559136852876
120 => 0.0018550012479663
121 => 0.0018433848736203
122 => 0.0018328981302639
123 => 0.0018154406571972
124 => 0.0018706786852003
125 => 0.0018684361221399
126 => 0.001904740611394
127 => 0.0018983234402754
128 => 0.0018554680009967
129 => 0.0018569985913945
130 => 0.0018672925473961
131 => 0.0019029200466521
201 => 0.0019134967141364
202 => 0.0019085971803504
203 => 0.0019201940134037
204 => 0.0019293596774081
205 => 0.0019213450796856
206 => 0.0020348148821449
207 => 0.0019876943090768
208 => 0.0020106605485274
209 => 0.0020161378613114
210 => 0.0020021078397906
211 => 0.002005150449081
212 => 0.0020097591730947
213 => 0.0020377424428248
214 => 0.0021111786396209
215 => 0.0021437030312848
216 => 0.0022415542683309
217 => 0.0021410023333185
218 => 0.0021350359976202
219 => 0.0021526619602364
220 => 0.0022101109949879
221 => 0.0022566680417405
222 => 0.0022721137000888
223 => 0.0022741550988195
224 => 0.0023031321806889
225 => 0.0023197413036258
226 => 0.002299613600777
227 => 0.002282557480071
228 => 0.0022214645727857
229 => 0.0022285362431544
301 => 0.002277253039357
302 => 0.002346068383398
303 => 0.0024051191076015
304 => 0.0023844416021109
305 => 0.0025421963729598
306 => 0.002557837114119
307 => 0.0025556760694165
308 => 0.0025913080054315
309 => 0.0025205858687592
310 => 0.002490350785155
311 => 0.0022862452069628
312 => 0.0023435905490765
313 => 0.0024269453716125
314 => 0.0024159130482853
315 => 0.0023553785480789
316 => 0.0024050731867548
317 => 0.0023886425851135
318 => 0.0023756830878927
319 => 0.0024350530569832
320 => 0.0023697733371843
321 => 0.0024262941564711
322 => 0.0023538056211028
323 => 0.0023845360552142
324 => 0.0023670919745487
325 => 0.0023783804326054
326 => 0.002312388337467
327 => 0.0023479960701361
328 => 0.0023109069387206
329 => 0.0023108893536431
330 => 0.0023100706090115
331 => 0.0023537058076435
401 => 0.0023551287499043
402 => 0.0023228822721861
403 => 0.0023182350509623
404 => 0.0023354182635341
405 => 0.002315301221903
406 => 0.002324713859067
407 => 0.0023155863210939
408 => 0.0023135315200408
409 => 0.002297158515654
410 => 0.002290104575179
411 => 0.0022928706069969
412 => 0.0022834287144153
413 => 0.0022777396326067
414 => 0.0023089389074476
415 => 0.0022922703934753
416 => 0.0023063842186212
417 => 0.0022902997335607
418 => 0.0022345439006643
419 => 0.0022024781315584
420 => 0.0020971605317855
421 => 0.002127028472435
422 => 0.0021468309479863
423 => 0.0021402862299347
424 => 0.0021543468167791
425 => 0.002155210022616
426 => 0.0021506387825022
427 => 0.0021453458720625
428 => 0.0021427695759768
429 => 0.00216197117628
430 => 0.0021731183515523
501 => 0.0021488183913308
502 => 0.0021431252506435
503 => 0.0021676938520649
504 => 0.0021826806847392
505 => 0.0022933350368323
506 => 0.0022851374050204
507 => 0.0023057118521643
508 => 0.0023033954851565
509 => 0.0023249607835298
510 => 0.0023602109321949
511 => 0.0022885375238621
512 => 0.0023009775492687
513 => 0.0022979275423211
514 => 0.0023312267184198
515 => 0.0023313306748128
516 => 0.0023113661553245
517 => 0.0023221892452264
518 => 0.0023161480933591
519 => 0.002327065271294
520 => 0.0022850279206497
521 => 0.0023362248760829
522 => 0.0023652502507546
523 => 0.0023656532681101
524 => 0.0023794110653448
525 => 0.0023933897841332
526 => 0.0024202207175578
527 => 0.0023926414839626
528 => 0.002343029127509
529 => 0.002346610979398
530 => 0.0023175232729618
531 => 0.0023180122425621
601 => 0.0023154020845144
602 => 0.0023232353652991
603 => 0.0022867468852784
604 => 0.0022953106586071
605 => 0.0022833213257975
606 => 0.0023009514868006
607 => 0.0022819843479312
608 => 0.0022979260715154
609 => 0.0023048059909378
610 => 0.0023301930417206
611 => 0.002278234659889
612 => 0.0021722880020613
613 => 0.0021945592740158
614 => 0.0021616183134245
615 => 0.0021646671247423
616 => 0.002170826208819
617 => 0.0021508626021995
618 => 0.002154671029217
619 => 0.0021545349654044
620 => 0.0021533624409755
621 => 0.0021481691358627
622 => 0.002140637815985
623 => 0.0021706402763596
624 => 0.0021757382790135
625 => 0.0021870705074043
626 => 0.0022207875323714
627 => 0.002217418406475
628 => 0.0022229135905958
629 => 0.0022109176345143
630 => 0.0021652235827397
701 => 0.0021677049895918
702 => 0.0021367618063845
703 => 0.00218627922064
704 => 0.0021745528433463
705 => 0.0021669927716206
706 => 0.0021649299360066
707 => 0.002198730538957
708 => 0.0022088442091193
709 => 0.0022025420485773
710 => 0.0021896161334423
711 => 0.0022144377117052
712 => 0.0022210789189101
713 => 0.002222565640285
714 => 0.0022665447179014
715 => 0.0022250235821771
716 => 0.0022350181322305
717 => 0.0023129927586772
718 => 0.002242280532253
719 => 0.0022797383756608
720 => 0.0022779050091471
721 => 0.0022970671743302
722 => 0.0022763331523004
723 => 0.002276590175353
724 => 0.0022936048798781
725 => 0.0022697107959907
726 => 0.002263794284797
727 => 0.0022556206669577
728 => 0.002273467462484
729 => 0.0022841658092609
730 => 0.0023703866272129
731 => 0.0024260892077569
801 => 0.0024236710118304
802 => 0.0024457687959257
803 => 0.0024358135417983
804 => 0.0024036654001574
805 => 0.0024585383578901
806 => 0.0024411742580814
807 => 0.0024426057333723
808 => 0.0024425524537905
809 => 0.0024540980621673
810 => 0.0024459169404928
811 => 0.0024297911098976
812 => 0.0024404961888077
813 => 0.0024722864460351
814 => 0.002570964379913
815 => 0.0026261858590198
816 => 0.0025676399775326
817 => 0.0026080241426219
818 => 0.0025838080339176
819 => 0.0025794072465993
820 => 0.0026047714866417
821 => 0.0026301801234286
822 => 0.0026285617031098
823 => 0.0026101163375505
824 => 0.0025996970185798
825 => 0.0026785955925536
826 => 0.0027367267178554
827 => 0.0027327625648259
828 => 0.0027502590470868
829 => 0.0028016292601506
830 => 0.0028063259086407
831 => 0.0028057342388822
901 => 0.0027940931055549
902 => 0.0028446737515814
903 => 0.0028868690163785
904 => 0.0027913985195344
905 => 0.002827752434932
906 => 0.0028440728788041
907 => 0.0028680361324657
908 => 0.0029084661581005
909 => 0.0029523838894746
910 => 0.0029585943382243
911 => 0.002954187727639
912 => 0.0029252228032258
913 => 0.0029732781089428
914 => 0.0030014277799963
915 => 0.0030181902649148
916 => 0.0030606971376567
917 => 0.0028441736683093
918 => 0.0026909075947904
919 => 0.0026669728842216
920 => 0.0027156450593494
921 => 0.0027284795237773
922 => 0.0027233059672595
923 => 0.0025507910671723
924 => 0.0026660646289754
925 => 0.0027900892889992
926 => 0.002794853581297
927 => 0.0028569429193382
928 => 0.0028771617529324
929 => 0.0029271518082912
930 => 0.0029240249167177
1001 => 0.002936196699682
1002 => 0.0029333986175644
1003 => 0.0030259946684685
1004 => 0.0031281418632623
1005 => 0.0031246048307148
1006 => 0.0031099199629124
1007 => 0.0031317294957409
1008 => 0.0032371563475268
1009 => 0.0032274503324452
1010 => 0.0032368788993406
1011 => 0.0033611830991931
1012 => 0.0035227962410676
1013 => 0.0034477107109727
1014 => 0.0036106247059993
1015 => 0.0037131704301687
1016 => 0.003890512656694
1017 => 0.0038683085365041
1018 => 0.003937346563893
1019 => 0.0038285585272246
1020 => 0.0035787592053442
1021 => 0.0035392275064632
1022 => 0.003618370968725
1023 => 0.0038129374479894
1024 => 0.0036122433778896
1025 => 0.0036528435268863
1026 => 0.0036411506812439
1027 => 0.003640527619191
1028 => 0.0036643073635732
1029 => 0.0036298136040788
1030 => 0.0034892798225898
1031 => 0.0035536856264754
1101 => 0.0035288154525744
1102 => 0.0035564107647119
1103 => 0.0037053312831451
1104 => 0.003639489972124
1105 => 0.0035701314994771
1106 => 0.0036571224160536
1107 => 0.0037678917461775
1108 => 0.00376096000057
1109 => 0.0037475095168465
1110 => 0.0038233291893515
1111 => 0.0039485610752501
1112 => 0.003982410750786
1113 => 0.0040073978892404
1114 => 0.0040108431934721
1115 => 0.0040463319683034
1116 => 0.0038554998817131
1117 => 0.0041583553040475
1118 => 0.0042106500692724
1119 => 0.0042008208208061
1120 => 0.0042589442514535
1121 => 0.0042418428637079
1122 => 0.0042170656359901
1123 => 0.0043092036367744
1124 => 0.0042035748540284
1125 => 0.0040536480952144
1126 => 0.0039713953101139
1127 => 0.0040797124126771
1128 => 0.0041458578874665
1129 => 0.0041895758386599
1130 => 0.004202804864276
1201 => 0.0038703136333658
1202 => 0.0036911193007143
1203 => 0.0038059808134767
1204 => 0.003946119786365
1205 => 0.0038547214026429
1206 => 0.0038583040462448
1207 => 0.0037279939701297
1208 => 0.003957649336624
1209 => 0.0039241904814315
1210 => 0.0040977750813582
1211 => 0.0040563477234822
1212 => 0.0041978992262071
1213 => 0.0041606239716322
1214 => 0.0043153514693412
1215 => 0.0043770764572571
1216 => 0.0044807223186951
1217 => 0.0045569646362835
1218 => 0.0046017355834545
1219 => 0.004599047703718
1220 => 0.0047764525012069
1221 => 0.0046718430901792
1222 => 0.0045404290153833
1223 => 0.0045380521493763
1224 => 0.004606113360865
1225 => 0.0047487509884637
1226 => 0.004785734850007
1227 => 0.0048064037831785
1228 => 0.0047747485925356
1229 => 0.0046612025742891
1230 => 0.0046121739793016
1231 => 0.0046539477627261
]
'min_raw' => 0.0017225339153426
'max_raw' => 0.0048064037831785
'avg_raw' => 0.0032644688492605
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.001722'
'max' => '$0.0048064'
'avg' => '$0.003264'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.00068192538439604
'max_diff' => 0.0024833185436507
'year' => 2036
]
11 => [
'items' => [
101 => 0.0046028620152601
102 => 0.0046910503475155
103 => 0.0048121517637136
104 => 0.0047871448001556
105 => 0.0048707393300765
106 => 0.0049572508741436
107 => 0.0050809662676361
108 => 0.0051133100526628
109 => 0.0051667730993879
110 => 0.0052218041361641
111 => 0.0052394786220486
112 => 0.0052732246996729
113 => 0.0052730468411863
114 => 0.0053747429174803
115 => 0.0054869168388978
116 => 0.0055292598974007
117 => 0.0056266254256182
118 => 0.0054598903706408
119 => 0.0055863608251554
120 => 0.0057004403408884
121 => 0.0055644300392851
122 => 0.0057518885537093
123 => 0.0057591671430343
124 => 0.005869065200302
125 => 0.0057576624653409
126 => 0.0056915118769312
127 => 0.0058824861470399
128 => 0.0059748925807124
129 => 0.0059470590108618
130 => 0.0057352441699855
131 => 0.0056119588474296
201 => 0.0052892973783381
202 => 0.0056715038264151
203 => 0.0058576654381585
204 => 0.0057347620563844
205 => 0.0057967473732885
206 => 0.0061349191635106
207 => 0.0062636730862253
208 => 0.0062368931703585
209 => 0.006241418535305
210 => 0.0063108918149529
211 => 0.0066189745965453
212 => 0.0064343642525121
213 => 0.0065754919433078
214 => 0.0066503455616321
215 => 0.0067198737739692
216 => 0.0065491344590865
217 => 0.0063270051190828
218 => 0.0062566474327483
219 => 0.0057225417372279
220 => 0.0056947392162726
221 => 0.0056791328187578
222 => 0.0055807366899956
223 => 0.0055034242857565
224 => 0.00544194259148
225 => 0.0052805962657105
226 => 0.0053350459142866
227 => 0.0050778935466054
228 => 0.0052424105185275
301 => 0.0048319891305472
302 => 0.0051738002581946
303 => 0.004987768001661
304 => 0.0051126836586018
305 => 0.0051122478396425
306 => 0.0048822385106694
307 => 0.0047495739298899
308 => 0.0048341129641453
309 => 0.004924745519584
310 => 0.0049394503467794
311 => 0.0050569578206574
312 => 0.0050897516308021
313 => 0.0049903848550672
314 => 0.00482348405953
315 => 0.0048622513077314
316 => 0.0047487883128425
317 => 0.0045499487785907
318 => 0.0046927588034956
319 => 0.0047415204249116
320 => 0.0047630563348172
321 => 0.0045675204897554
322 => 0.0045060788819473
323 => 0.0044733678854952
324 => 0.0047982428373665
325 => 0.0048160402205937
326 => 0.0047249862917067
327 => 0.0051365586843637
328 => 0.0050434071761858
329 => 0.0051474802334941
330 => 0.0048587335862962
331 => 0.0048697640970681
401 => 0.0047330668069143
402 => 0.0048096081552842
403 => 0.0047555111972992
404 => 0.0048034243707322
405 => 0.0048321433293346
406 => 0.0049688181888082
407 => 0.0051753608655459
408 => 0.0049484035225078
409 => 0.004849514958057
410 => 0.0049108648672718
411 => 0.0050742477601075
412 => 0.0053217812061699
413 => 0.0051752364240261
414 => 0.0052402705098497
415 => 0.0052544775644371
416 => 0.005146420867467
417 => 0.0053257654107177
418 => 0.0054218776084382
419 => 0.0055204688356824
420 => 0.0056060728358351
421 => 0.0054810893314535
422 => 0.0056148395968234
423 => 0.0055070604930354
424 => 0.0054103714949386
425 => 0.0054105181322372
426 => 0.0053498637113302
427 => 0.005232338127874
428 => 0.0052106646071188
429 => 0.0053234129991516
430 => 0.0054138265322495
501 => 0.005421273423887
502 => 0.0054713310014251
503 => 0.005500954560178
504 => 0.0057913057072323
505 => 0.0059080873404882
506 => 0.0060508857110703
507 => 0.0061065137240872
508 => 0.0062739340995217
509 => 0.0061387285491403
510 => 0.0061094759778325
511 => 0.0057033689098158
512 => 0.005769868919453
513 => 0.0058763418511787
514 => 0.0057051246092435
515 => 0.0058137225404748
516 => 0.0058351620725186
517 => 0.0056993067128797
518 => 0.0057718729304264
519 => 0.0055791585710064
520 => 0.0051795615119537
521 => 0.0053262102764753
522 => 0.0054341931286035
523 => 0.0052800882844268
524 => 0.0055563152529324
525 => 0.0053949491604135
526 => 0.0053438038560235
527 => 0.0051442677889804
528 => 0.0052384411317772
529 => 0.0053658119263422
530 => 0.0052871115837452
531 => 0.0054504266115498
601 => 0.0056817242454482
602 => 0.0058465607133765
603 => 0.0058592148106014
604 => 0.0057532360049092
605 => 0.0059230677173787
606 => 0.0059243047559945
607 => 0.0057327338905461
608 => 0.0056153978021299
609 => 0.0055887387959645
610 => 0.0056553382201717
611 => 0.0057362022160911
612 => 0.0058637021995902
613 => 0.0059407477693174
614 => 0.0061416417533532
615 => 0.0061959979053514
616 => 0.0062557188366419
617 => 0.0063355244180991
618 => 0.0064313514803695
619 => 0.0062216873235595
620 => 0.0062300176713724
621 => 0.0060347813115488
622 => 0.005826143261351
623 => 0.005984473534351
624 => 0.0061914693045049
625 => 0.0061439842461216
626 => 0.0061386412070218
627 => 0.0061476267167522
628 => 0.0061118245334482
629 => 0.0059498925852551
630 => 0.0058685713746202
701 => 0.0059734964835927
702 => 0.0060292595093323
703 => 0.0061157430992075
704 => 0.0061050821713083
705 => 0.0063278546111673
706 => 0.0064144172450076
707 => 0.0063922708190473
708 => 0.0063963462944075
709 => 0.0065530638082051
710 => 0.0067273659149629
711 => 0.0068906228391303
712 => 0.0070566947944415
713 => 0.0068564885704151
714 => 0.0067548361968578
715 => 0.0068597154988101
716 => 0.0068040650649112
717 => 0.0071238489650855
718 => 0.0071459901085083
719 => 0.0074657508846669
720 => 0.0077692419376464
721 => 0.007578624644877
722 => 0.0077583681663671
723 => 0.007952775439563
724 => 0.0083278186110012
725 => 0.0082015172650387
726 => 0.0081047724134258
727 => 0.0080133489961193
728 => 0.0082035866144753
729 => 0.00844832427137
730 => 0.008501038418597
731 => 0.0085864554754588
801 => 0.0084966498844694
802 => 0.0086048108270548
803 => 0.0089866664827078
804 => 0.0088834857138172
805 => 0.0087369524348564
806 => 0.0090383908011874
807 => 0.0091474801741506
808 => 0.0099131265241546
809 => 0.010879786668308
810 => 0.010479583021196
811 => 0.010231163702942
812 => 0.010289548135317
813 => 0.010642539696451
814 => 0.010755909382495
815 => 0.010447731494953
816 => 0.010556585134775
817 => 0.011156379392452
818 => 0.011478149767992
819 => 0.011041142378482
820 => 0.0098354563227879
821 => 0.0087237587163413
822 => 0.0090186309819666
823 => 0.0089852016179964
824 => 0.0096296057220125
825 => 0.0088810248866034
826 => 0.0088936290680291
827 => 0.0095513587664804
828 => 0.0093758877592753
829 => 0.0090916472002316
830 => 0.0087258339869817
831 => 0.0080495944286626
901 => 0.0074506301935242
902 => 0.0086253369918559
903 => 0.0085746814986461
904 => 0.0085013248377549
905 => 0.0086645721485486
906 => 0.0094572547512052
907 => 0.0094389808515507
908 => 0.0093227316253748
909 => 0.0094109056388556
910 => 0.0090761898693533
911 => 0.0091624537444905
912 => 0.0087235826177606
913 => 0.0089219706959197
914 => 0.0090910373476508
915 => 0.0091249799810604
916 => 0.009201454467286
917 => 0.008547988355528
918 => 0.0088413754549502
919 => 0.0090137128892072
920 => 0.0082350860915447
921 => 0.0089983219408934
922 => 0.0085366129643531
923 => 0.0083799020030792
924 => 0.0085908926673353
925 => 0.0085086694002796
926 => 0.0084379786635773
927 => 0.0083985320178764
928 => 0.0085534602755162
929 => 0.008546232687118
930 => 0.0082927399873402
1001 => 0.0079620690941645
1002 => 0.0080730530998163
1003 => 0.0080327315700824
1004 => 0.0078866011447458
1005 => 0.0079850754075678
1006 => 0.0075514445907836
1007 => 0.0068054053086749
1008 => 0.0072982617102372
1009 => 0.0072792872749016
1010 => 0.0072697195041833
1011 => 0.0076400874684069
1012 => 0.0076044851344895
1013 => 0.0075398665498105
1014 => 0.0078854143737637
1015 => 0.0077592847697467
1016 => 0.0081479864894549
1017 => 0.0084040105817058
1018 => 0.0083390745903992
1019 => 0.008579866486633
1020 => 0.0080756099471504
1021 => 0.0082431037423056
1022 => 0.0082776239813507
1023 => 0.0078811503672541
1024 => 0.0076103101166199
1025 => 0.0075922481597075
1026 => 0.0071226484891934
1027 => 0.0073735048427059
1028 => 0.0075942480526557
1029 => 0.0074885291854549
1030 => 0.0074550617503604
1031 => 0.007626039618057
1101 => 0.0076393260627034
1102 => 0.0073363937167305
1103 => 0.007399382944078
1104 => 0.007662058493205
1105 => 0.007392764194196
1106 => 0.0068695693601956
1107 => 0.0067398098076289
1108 => 0.0067224974913735
1109 => 0.0063705792934529
1110 => 0.0067484809614009
1111 => 0.0065835167562065
1112 => 0.0071046367038408
1113 => 0.0068069757845745
1114 => 0.0067941442172722
1115 => 0.0067747474213132
1116 => 0.0064718368908053
1117 => 0.006538155046018
1118 => 0.0067586066944855
1119 => 0.0068372663262243
1120 => 0.0068290614821945
1121 => 0.006757526361141
1122 => 0.0067902747732402
1123 => 0.0066847807275655
1124 => 0.0066475285843691
1125 => 0.006529950573432
1126 => 0.006357143379109
1127 => 0.0063811732793677
1128 => 0.0060387970099517
1129 => 0.00585225224709
1130 => 0.0058006191153503
1201 => 0.0057315731336909
1202 => 0.0058084180427031
1203 => 0.0060378271009978
1204 => 0.0057611111048476
1205 => 0.0052867009388184
1206 => 0.0053152137981523
1207 => 0.0053792737275318
1208 => 0.005259898472932
1209 => 0.005146919812859
1210 => 0.0052451455915441
1211 => 0.0050441317501588
1212 => 0.0054035652899082
1213 => 0.0053938436199589
1214 => 0.0055278182163565
1215 => 0.0056115952809194
1216 => 0.0054185162702486
1217 => 0.0053699574212061
1218 => 0.0053976187484974
1219 => 0.0049404386247407
1220 => 0.0054904568466011
1221 => 0.0054952134270238
1222 => 0.0054544846976413
1223 => 0.0057473524208745
1224 => 0.0063653946646303
1225 => 0.0061328623118377
1226 => 0.0060428187565089
1227 => 0.0058716458920073
1228 => 0.0060997235707166
1229 => 0.0060822107635578
1230 => 0.0060030112080507
1231 => 0.0059551110697623
]
'min_raw' => 0.0044733678854952
'max_raw' => 0.011478149767992
'avg_raw' => 0.0079757588267435
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.004473'
'max' => '$0.011478'
'avg' => '$0.007975'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0027508339701527
'max_diff' => 0.0066717459848133
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00014041390632271
]
1 => [
'year' => 2028
'avg' => 0.00024099102569803
]
2 => [
'year' => 2029
'avg' => 0.00065834404780057
]
3 => [
'year' => 2030
'avg' => 0.00050791145244277
]
4 => [
'year' => 2031
'avg' => 0.00049883199107214
]
5 => [
'year' => 2032
'avg' => 0.00087460946855463
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00014041390632271
'min' => '$0.00014'
'max_raw' => 0.00087460946855463
'max' => '$0.000874'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.00087460946855463
]
1 => [
'year' => 2033
'avg' => 0.0022495854881536
]
2 => [
'year' => 2034
'avg' => 0.0014258953924115
]
3 => [
'year' => 2035
'avg' => 0.0016818468852372
]
4 => [
'year' => 2036
'avg' => 0.0032644688492605
]
5 => [
'year' => 2037
'avg' => 0.0079757588267435
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.00087460946855463
'min' => '$0.000874'
'max_raw' => 0.0079757588267435
'max' => '$0.007975'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.0079757588267435
]
]
]
]
'prediction_2025_max_price' => '$0.00024'
'last_price' => 0.00023279
'sma_50day_nextmonth' => '$0.00022'
'sma_200day_nextmonth' => '$0.000345'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000233'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.00023'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000227'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000229'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00024'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000288'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000366'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000232'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000231'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00023'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000231'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000247'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0003071'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00100059'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000327'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000752'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.018355'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.030152'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000231'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000234'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000256'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000449'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004054'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.015157'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.041932'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.50'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.56
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000227'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000233'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 66.76
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 36.05
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.29
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.00000062'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -33.24
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.26
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000037'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 16
'sell_pct' => 54.29
'buy_pct' => 45.71
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767707148
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Ferrum Network para 2026
La previsión del precio de Ferrum Network para 2026 sugiere que el precio medio podría oscilar entre $0.00008 en el extremo inferior y $0.00024 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Ferrum Network podría potencialmente ganar 3.13% para 2026 si FRM alcanza el objetivo de precio previsto.
Predicción de precio de Ferrum Network 2027-2032
La predicción del precio de FRM para 2027-2032 está actualmente dentro de un rango de precios de $0.00014 en el extremo inferior y $0.000874 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Ferrum Network alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Ferrum Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000077 | $0.00014 | $0.0002034 |
| 2028 | $0.000139 | $0.00024 | $0.000342 |
| 2029 | $0.0003069 | $0.000658 | $0.0010097 |
| 2030 | $0.000261 | $0.0005079 | $0.000754 |
| 2031 | $0.0003086 | $0.000498 | $0.000689 |
| 2032 | $0.000471 | $0.000874 | $0.001278 |
Predicción de precio de Ferrum Network 2032-2037
La predicción de precio de Ferrum Network para 2032-2037 se estima actualmente entre $0.000874 en el extremo inferior y $0.007975 en el extremo superior. Comparado con el precio actual, Ferrum Network podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Ferrum Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.000471 | $0.000874 | $0.001278 |
| 2033 | $0.001094 | $0.002249 | $0.0034043 |
| 2034 | $0.00088 | $0.001425 | $0.001971 |
| 2035 | $0.00104 | $0.001681 | $0.002323 |
| 2036 | $0.001722 | $0.003264 | $0.0048064 |
| 2037 | $0.004473 | $0.007975 | $0.011478 |
Ferrum Network Histograma de precios potenciales
Pronóstico de precio de Ferrum Network basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Ferrum Network es Bajista, con 16 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de FRM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Ferrum Network
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Ferrum Network aumentar durante el próximo mes, alcanzando $0.000345 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Ferrum Network alcance $0.00022 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.50, lo que sugiere que el mercado de FRM está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FRM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000233 | SELL |
| SMA 5 | $0.00023 | BUY |
| SMA 10 | $0.000227 | BUY |
| SMA 21 | $0.000229 | BUY |
| SMA 50 | $0.00024 | SELL |
| SMA 100 | $0.000288 | SELL |
| SMA 200 | $0.000366 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000232 | BUY |
| EMA 5 | $0.000231 | BUY |
| EMA 10 | $0.00023 | BUY |
| EMA 21 | $0.000231 | BUY |
| EMA 50 | $0.000247 | SELL |
| EMA 100 | $0.0003071 | SELL |
| EMA 200 | $0.00100059 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.000327 | SELL |
| SMA 50 | $0.000752 | SELL |
| SMA 100 | $0.018355 | SELL |
| SMA 200 | $0.030152 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000449 | SELL |
| EMA 50 | $0.004054 | SELL |
| EMA 100 | $0.015157 | SELL |
| EMA 200 | $0.041932 | SELL |
Osciladores de Ferrum Network
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.50 | NEUTRAL |
| Stoch RSI (14) | 101.56 | SELL |
| Estocástico Rápido (14) | 66.76 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 36.05 | NEUTRAL |
| Índice Direccional Medio (14) | 13.29 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.00000062 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -33.24 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 57.26 | NEUTRAL |
| VWMA (10) | 0.000227 | BUY |
| Promedio Móvil de Hull (9) | 0.000233 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000037 | SELL |
Predicción de precios de Ferrum Network basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Ferrum Network
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Ferrum Network por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000327 | $0.000459 | $0.000645 | $0.0009075 | $0.001275 | $0.001791 |
| Amazon.com acción | $0.000485 | $0.001013 | $0.002114 | $0.004412 | $0.0092069 | $0.01921 |
| Apple acción | $0.00033 | $0.000468 | $0.000664 | $0.000942 | $0.001336 | $0.001895 |
| Netflix acción | $0.000367 | $0.000579 | $0.000914 | $0.001442 | $0.002276 | $0.003592 |
| Google acción | $0.0003014 | $0.00039 | $0.0005055 | $0.000654 | $0.000847 | $0.001097 |
| Tesla acción | $0.000527 | $0.001196 | $0.002711 | $0.006147 | $0.013936 | $0.031592 |
| Kodak acción | $0.000174 | $0.00013 | $0.000098 | $0.000073 | $0.000055 | $0.000041 |
| Nokia acción | $0.000154 | $0.0001021 | $0.000067 | $0.000044 | $0.000029 | $0.000019 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Ferrum Network
Podría preguntarse cosas como: "¿Debo invertir en Ferrum Network ahora?", "¿Debería comprar FRM hoy?", "¿Será Ferrum Network una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Ferrum Network regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Ferrum Network, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Ferrum Network a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Ferrum Network es de $0.0002327 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Ferrum Network
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Ferrum Network
basado en el historial de precios del último mes
Predicción de precios de Ferrum Network basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Ferrum Network ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000238 | $0.000245 | $0.000251 | $0.000257 |
| Si Ferrum Network ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000244 | $0.000257 | $0.000271 | $0.000285 |
| Si Ferrum Network ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000263 | $0.000297 | $0.000335 | $0.000379 |
| Si Ferrum Network ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000293 | $0.000369 | $0.000465 | $0.000586 |
| Si Ferrum Network ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000353 | $0.000537 | $0.000817 | $0.001242 |
| Si Ferrum Network ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.000535 | $0.001231 | $0.002831 | $0.00651 |
| Si Ferrum Network ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.000837 | $0.003015 | $0.010854 | $0.03907 |
Cuadro de preguntas
¿Es FRM una buena inversión?
La decisión de adquirir Ferrum Network depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Ferrum Network ha experimentado una caída de -0.5141% durante las últimas 24 horas, y Ferrum Network ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Ferrum Network dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Ferrum Network subir?
Parece que el valor medio de Ferrum Network podría potencialmente aumentar hasta $0.00024 para el final de este año. Mirando las perspectivas de Ferrum Network en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.000754. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Ferrum Network la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Ferrum Network, el precio de Ferrum Network aumentará en un 0.86% durante la próxima semana y alcanzará $0.000234 para el 13 de enero de 2026.
¿Cuál será el precio de Ferrum Network el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Ferrum Network, el precio de Ferrum Network disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000205 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Ferrum Network este año en 2026?
Según nuestra predicción más reciente sobre el valor de Ferrum Network en 2026, se anticipa que FRM fluctúe dentro del rango de $0.00008 y $0.00024. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Ferrum Network no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Ferrum Network en 5 años?
El futuro de Ferrum Network parece estar en una tendencia alcista, con un precio máximo de $0.000754 proyectada después de un período de cinco años. Basado en el pronóstico de Ferrum Network para 2030, el valor de Ferrum Network podría potencialmente alcanzar su punto más alto de aproximadamente $0.000754, mientras que su punto más bajo se anticipa que esté alrededor de $0.000261.
¿Cuánto será Ferrum Network en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Ferrum Network, se espera que el valor de FRM en 2026 crezca en un 3.13% hasta $0.00024 si ocurre lo mejor. El precio estará entre $0.00024 y $0.00008 durante 2026.
¿Cuánto será Ferrum Network en 2027?
Según nuestra última simulación experimental para la predicción de precios de Ferrum Network, el valor de FRM podría disminuir en un -12.62% hasta $0.0002034 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0002034 y $0.000077 a lo largo del año.
¿Cuánto será Ferrum Network en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Ferrum Network sugiere que el valor de FRM en 2028 podría aumentar en un 47.02% , alcanzando $0.000342 en el mejor escenario. Se espera que el precio oscile entre $0.000342 y $0.000139 durante el año.
¿Cuánto será Ferrum Network en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Ferrum Network podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0010097 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0010097 y $0.0003069.
¿Cuánto será Ferrum Network en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Ferrum Network, se espera que el valor de FRM en 2030 aumente en un 224.23% , alcanzando $0.000754 en el mejor escenario. Se pronostica que el precio oscile entre $0.000754 y $0.000261 durante el transcurso de 2030.
¿Cuánto será Ferrum Network en 2031?
Nuestra simulación experimental indica que el precio de Ferrum Network podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.000689 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.000689 y $0.0003086 durante el año.
¿Cuánto será Ferrum Network en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Ferrum Network, FRM podría experimentar un 449.04% aumento en valor, alcanzando $0.001278 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.001278 y $0.000471 a lo largo del año.
¿Cuánto será Ferrum Network en 2033?
Según nuestra predicción experimental de precios de Ferrum Network, se anticipa que el valor de FRM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0034043. A lo largo del año, el precio de FRM podría oscilar entre $0.0034043 y $0.001094.
¿Cuánto será Ferrum Network en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Ferrum Network sugieren que FRM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.001971 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.001971 y $0.00088.
¿Cuánto será Ferrum Network en 2035?
Basado en nuestra predicción experimental para el precio de Ferrum Network, FRM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.002323 en 2035. El rango de precios esperado para el año está entre $0.002323 y $0.00104.
¿Cuánto será Ferrum Network en 2036?
Nuestra reciente simulación de predicción de precios de Ferrum Network sugiere que el valor de FRM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0048064 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0048064 y $0.001722.
¿Cuánto será Ferrum Network en 2037?
Según la simulación experimental, el valor de Ferrum Network podría aumentar en un 4830.69% en 2037, con un máximo de $0.011478 bajo condiciones favorables. Se espera que el precio caiga entre $0.011478 y $0.004473 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Kompete
Predicción de precios de Dogechain
Predicción de precios de LeisureMeta
Predicción de precios de Octokn
Predicción de precios de Blockchain Bets
Predicción de precios de VeraOne
Predicción de precios de Nest ProtocolPredicción de precios de Kimbo
Predicción de precios de r/CryptoCurrency Moons
Predicción de precios de Serum
Predicción de precios de Electronic USD
Predicción de precios de Poollotto.finance
Predicción de precios de Viberate
Predicción de precios de Lunr Token
Predicción de precios de PEPE (Ordinals)
Predicción de precios de Angle Protocol
Predicción de precios de Effect.AI
Predicción de precios de MixMarvel
Predicción de precios de Dtravel
Predicción de precios de Spectre AI
Predicción de precios de Kleros
Predicción de precios de PondCoin
Predicción de precios de Trustswap
Predicción de precios de UBXS
Predicción de precios de Equilibria Finance
¿Cómo leer y predecir los movimientos de precio de Ferrum Network?
Los traders de Ferrum Network utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Ferrum Network
Las medias móviles son herramientas populares para la predicción de precios de Ferrum Network. Una media móvil simple (SMA) calcula el precio de cierre promedio de FRM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FRM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FRM.
¿Cómo leer gráficos de Ferrum Network y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Ferrum Network en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FRM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Ferrum Network?
La acción del precio de Ferrum Network está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FRM. La capitalización de mercado de Ferrum Network puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FRM, grandes poseedores de Ferrum Network, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Ferrum Network.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


