Predicción del precio de Ferma - Pronóstico de FERMA
Predicción de precio de Ferma hasta $0.039018 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.013071 | $0.039018 |
| 2027 | $0.012583 | $0.033056 |
| 2028 | $0.0227094 | $0.055622 |
| 2029 | $0.049886 | $0.1641024 |
| 2030 | $0.042425 | $0.122665 |
| 2031 | $0.05016 | $0.111979 |
| 2032 | $0.076566 | $0.207717 |
| 2033 | $0.177923 | $0.553282 |
| 2034 | $0.143041 | $0.320431 |
| 2035 | $0.169119 | $0.377548 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Ferma hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.50, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Ferma para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Ferma'
'name_with_ticker' => 'Ferma <small>FERMA</small>'
'name_lang' => 'Ferma'
'name_lang_with_ticker' => 'Ferma <small>FERMA</small>'
'name_with_lang' => 'Ferma'
'name_with_lang_with_ticker' => 'Ferma <small>FERMA</small>'
'image' => '/uploads/coins/ferma.png?1717575988'
'price_for_sd' => 0.03783
'ticker' => 'FERMA'
'marketcap' => '$417.36K'
'low24h' => '$0.03754'
'high24h' => '$0.03815'
'volume24h' => '$52.13K'
'current_supply' => '11M'
'max_supply' => '11M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03783'
'change_24h_pct' => '0.3609%'
'ath_price' => '$0.4502'
'ath_days' => 1689
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '23 may. 2021'
'ath_pct' => '-91.57%'
'fdv' => '$417.36K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.86'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.038156'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.033437'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013071'
'current_year_max_price_prediction' => '$0.039018'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.042425'
'grand_prediction_max_price' => '$0.122665'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0385499969658
107 => 0.038693928660821
108 => 0.039018214119039
109 => 0.036247230383939
110 => 0.037491320729191
111 => 0.038222107251525
112 => 0.034920387157378
113 => 0.038156842861103
114 => 0.036198993721994
115 => 0.035534470318273
116 => 0.036429163537082
117 => 0.036080500719594
118 => 0.035780740903286
119 => 0.035613469775258
120 => 0.036270433731465
121 => 0.036239785577666
122 => 0.035164865034103
123 => 0.033762675004393
124 => 0.034233296003682
125 => 0.034062314982545
126 => 0.033442657704953
127 => 0.033860231892345
128 => 0.032021446500529
129 => 0.028857911805659
130 => 0.030947839726779
131 => 0.03086737977522
201 => 0.030826808219075
202 => 0.032397331290432
203 => 0.032246361735253
204 => 0.031972350514305
205 => 0.033437625273998
206 => 0.032902780275983
207 => 0.034551046534534
208 => 0.035636701295593
209 => 0.035361344130936
210 => 0.036382407681137
211 => 0.034244138160985
212 => 0.034954385523096
213 => 0.035100766520067
214 => 0.033419544010912
215 => 0.032271062221552
216 => 0.032194471579853
217 => 0.030203162427643
218 => 0.031266903703467
219 => 0.032202952005588
220 => 0.031754657509155
221 => 0.031612740864001
222 => 0.032337762226126
223 => 0.032394102595352
224 => 0.031109536206333
225 => 0.031376638235537
226 => 0.032490498099335
227 => 0.03134857182484
228 => 0.029129995606092
301 => 0.028579758029627
302 => 0.028506346194036
303 => 0.02701405824677
304 => 0.02861652753555
305 => 0.02791700674749
306 => 0.030126784535425
307 => 0.028864571314233
308 => 0.028810159825021
309 => 0.028727908878647
310 => 0.027443434996795
311 => 0.027724653144347
312 => 0.028659465097542
313 => 0.028993016533852
314 => 0.028958224386339
315 => 0.028654884008987
316 => 0.028793751680384
317 => 0.028346410526108
318 => 0.028188445053932
319 => 0.027689862571918
320 => 0.026957084060284
321 => 0.027058981406719
322 => 0.025607155433244
323 => 0.024816123588659
324 => 0.02459717639971
325 => 0.024304391068214
326 => 0.024630247281974
327 => 0.025603042592673
328 => 0.024429645057932
329 => 0.022417937288884
330 => 0.022538844353587
331 => 0.022810486630345
401 => 0.0223042830447
402 => 0.021825203833334
403 => 0.022241724338692
404 => 0.021389337237072
405 => 0.022913493539248
406 => 0.022872269382673
407 => 0.023440380598931
408 => 0.023795632201273
409 => 0.022976892271947
410 => 0.02277098139383
411 => 0.022888277588133
412 => 0.020949632776802
413 => 0.023281951958103
414 => 0.023302121951235
415 => 0.023129414224484
416 => 0.024371302186251
417 => 0.026992073140149
418 => 0.026006033687025
419 => 0.025624209407576
420 => 0.02489836117323
421 => 0.025865510848892
422 => 0.025791248843686
423 => 0.025455407893117
424 => 0.025252290238326
425 => 0.025626540745207
426 => 0.025205916458876
427 => 0.025130360779069
428 => 0.024672575564827
429 => 0.024509167071242
430 => 0.024388185928072
501 => 0.024254997576803
502 => 0.024548777891233
503 => 0.023883033048716
504 => 0.023080210032412
505 => 0.023013463985272
506 => 0.023197755689799
507 => 0.023116220329449
508 => 0.023013073625336
509 => 0.022816138476849
510 => 0.022757712025146
511 => 0.022947569648694
512 => 0.022733231461096
513 => 0.023049499132503
514 => 0.022963491825769
515 => 0.022483062001852
516 => 0.02188426856335
517 => 0.021878938045735
518 => 0.021749928981628
519 => 0.021585616541845
520 => 0.021539908580057
521 => 0.022206646143501
522 => 0.023586772946054
523 => 0.023315821031078
524 => 0.023511611557918
525 => 0.024474707168963
526 => 0.024780846302418
527 => 0.024563555996794
528 => 0.024266115624574
529 => 0.024279201491416
530 => 0.025295645284618
531 => 0.025359039637204
601 => 0.025519216714398
602 => 0.025725089524627
603 => 0.024598617026596
604 => 0.024226144738061
605 => 0.024049646703777
606 => 0.023506101071518
607 => 0.024092268435828
608 => 0.023750733814834
609 => 0.02379681850369
610 => 0.023766805789616
611 => 0.023783194760951
612 => 0.0229130675065
613 => 0.02323009614548
614 => 0.02270297454446
615 => 0.02199721789287
616 => 0.021994851949104
617 => 0.022167584889736
618 => 0.022064836577607
619 => 0.02178834351157
620 => 0.021827618046591
621 => 0.021483531793207
622 => 0.021869396347634
623 => 0.021880461562365
624 => 0.021731882690726
625 => 0.022326360275869
626 => 0.022569918227549
627 => 0.022472120431369
628 => 0.02256305647346
629 => 0.02332708030642
630 => 0.023451649527889
701 => 0.023506974947485
702 => 0.02343284621444
703 => 0.022577021426588
704 => 0.022614980895178
705 => 0.022336459501173
706 => 0.022101138273101
707 => 0.022110549888126
708 => 0.022231535588974
709 => 0.022759887240293
710 => 0.023871772142462
711 => 0.023913967361722
712 => 0.023965109198386
713 => 0.023757089646844
714 => 0.02369434895962
715 => 0.023777120120814
716 => 0.024194685629938
717 => 0.025268777487334
718 => 0.024889121688747
719 => 0.024580455614802
720 => 0.024851238977428
721 => 0.024809554001222
722 => 0.024457690851764
723 => 0.024447815225076
724 => 0.023772477343812
725 => 0.023522820305809
726 => 0.023314188198348
727 => 0.02308636738348
728 => 0.022951307567803
729 => 0.023158820828271
730 => 0.023206281566165
731 => 0.02275255019544
801 => 0.022690708286205
802 => 0.023061235118011
803 => 0.022898180073966
804 => 0.023065886230337
805 => 0.023104795497171
806 => 0.023098530209055
807 => 0.022928282016319
808 => 0.023036793137495
809 => 0.022780131987193
810 => 0.022501051535497
811 => 0.022323015594642
812 => 0.022167655623206
813 => 0.022253858364933
814 => 0.021946561330673
815 => 0.021848250824746
816 => 0.023000032011218
817 => 0.023850865157399
818 => 0.023838493706487
819 => 0.023763185680736
820 => 0.023651293230147
821 => 0.024186500000242
822 => 0.024000044663338
823 => 0.024135706499801
824 => 0.02417023813089
825 => 0.024274754977934
826 => 0.024312110767226
827 => 0.024199195626722
828 => 0.023820238623768
829 => 0.022875913802556
830 => 0.022436328049126
831 => 0.022291257428615
901 => 0.022296530470142
902 => 0.022151076444926
903 => 0.022193919174144
904 => 0.022136177492104
905 => 0.022026828715532
906 => 0.022247106386117
907 => 0.022272491335623
908 => 0.022221075895187
909 => 0.022233186092675
910 => 0.021807488205683
911 => 0.021839853091464
912 => 0.021659641294705
913 => 0.021625853755299
914 => 0.021170294025929
915 => 0.020363203930913
916 => 0.020810410189683
917 => 0.020270247915804
918 => 0.020065680277892
919 => 0.021034071658973
920 => 0.020936872023308
921 => 0.020770508498716
922 => 0.020524422172648
923 => 0.020433146360536
924 => 0.019878583420552
925 => 0.019845816883579
926 => 0.020120673251094
927 => 0.019993836494716
928 => 0.019815709651925
929 => 0.019170552283765
930 => 0.018445181797689
1001 => 0.018467076173148
1002 => 0.018697803028771
1003 => 0.01936867247925
1004 => 0.019106552178789
1005 => 0.01891638089332
1006 => 0.018880767528079
1007 => 0.019326543355694
1008 => 0.019957409544692
1009 => 0.020253397845735
1010 => 0.0199600824287
1011 => 0.019623137470834
1012 => 0.019643645749167
1013 => 0.019780078137044
1014 => 0.019794415251959
1015 => 0.01957509872289
1016 => 0.019636835041169
1017 => 0.019543051928416
1018 => 0.018967505138559
1019 => 0.018957095322209
1020 => 0.018815846858033
1021 => 0.018811569910673
1022 => 0.018571271037029
1023 => 0.018537651563498
1024 => 0.018060523564777
1025 => 0.018374570658412
1026 => 0.018163924356214
1027 => 0.017846430692362
1028 => 0.017791694665044
1029 => 0.017790049233967
1030 => 0.018116044236458
1031 => 0.018370761217004
1101 => 0.018167588638826
1102 => 0.01812133018111
1103 => 0.018615249487524
1104 => 0.018552393753609
1105 => 0.018497961093414
1106 => 0.019900922396868
1107 => 0.018790369050748
1108 => 0.018306104403671
1109 => 0.017706734943551
1110 => 0.017901892662049
1111 => 0.0179430152608
1112 => 0.016501639753676
1113 => 0.015916873889948
1114 => 0.015716204281953
1115 => 0.0156007160855
1116 => 0.015653345506833
1117 => 0.015126987643283
1118 => 0.015480708832744
1119 => 0.015024927414832
1120 => 0.014948514176878
1121 => 0.015763507812588
1122 => 0.015876909415873
1123 => 0.015393102945142
1124 => 0.015703785020504
1125 => 0.015591127381174
1126 => 0.01503274047907
1127 => 0.015011414206626
1128 => 0.014731235287399
1129 => 0.014292809532138
1130 => 0.014092437197451
1201 => 0.013988081545833
1202 => 0.014031140721542
1203 => 0.014009368684671
1204 => 0.013867291416916
1205 => 0.014017512387349
1206 => 0.013633759883483
1207 => 0.01348094654434
1208 => 0.013411924304291
1209 => 0.01307132186914
1210 => 0.013613371810056
1211 => 0.013720162476981
1212 => 0.01382716355451
1213 => 0.014758534881659
1214 => 0.014712006202183
1215 => 0.015132602804263
1216 => 0.015116259193734
1217 => 0.014996298229607
1218 => 0.014490202654579
1219 => 0.014691923330499
1220 => 0.01407105844437
1221 => 0.014536252631766
1222 => 0.014323957431612
1223 => 0.014464475411044
1224 => 0.01421181141403
1225 => 0.014351646102218
1226 => 0.013745486505782
1227 => 0.013179463203525
1228 => 0.013407247503603
1229 => 0.013654875088083
1230 => 0.01419179478557
1231 => 0.013872009843238
]
'min_raw' => 0.01307132186914
'max_raw' => 0.039018214119039
'avg_raw' => 0.02604476799409
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013071'
'max' => '$0.039018'
'avg' => '$0.026044'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.02476175813086
'max_diff' => 0.0011851341190391
'year' => 2026
]
1 => [
'items' => [
101 => 0.013987016600908
102 => 0.013601763214612
103 => 0.012806875436495
104 => 0.012811374414995
105 => 0.012689098247903
106 => 0.012583433786923
107 => 0.013908740990688
108 => 0.013743918089893
109 => 0.013481294368965
110 => 0.013832826655679
111 => 0.013925777371854
112 => 0.01392842354807
113 => 0.014184892430095
114 => 0.014321769918407
115 => 0.014345895168982
116 => 0.014749454496226
117 => 0.014884722259642
118 => 0.015441871033341
119 => 0.014310156819833
120 => 0.014286849910351
121 => 0.013837773435856
122 => 0.013552962036113
123 => 0.013857274716063
124 => 0.014126854207676
125 => 0.01384615002211
126 => 0.013882804062756
127 => 0.013505981628009
128 => 0.013640677917288
129 => 0.013756696507164
130 => 0.013692637861092
131 => 0.013596738967448
201 => 0.014104751763607
202 => 0.01407608769073
203 => 0.014549160885677
204 => 0.014917955270927
205 => 0.015578900739177
206 => 0.014889169687192
207 => 0.014864033146225
208 => 0.015109746866205
209 => 0.014884684642152
210 => 0.015026916198869
211 => 0.015555985036499
212 => 0.015567163427342
213 => 0.015379910978173
214 => 0.015368516649623
215 => 0.015404480530804
216 => 0.015615122106188
217 => 0.015541517467387
218 => 0.015626694618849
219 => 0.015733209951031
220 => 0.016173802526502
221 => 0.016280027904828
222 => 0.016021955307038
223 => 0.016045256373102
224 => 0.015948730137278
225 => 0.015855487002941
226 => 0.016065083951863
227 => 0.016448126495657
228 => 0.016445743607872
301 => 0.016534602032749
302 => 0.016589960095305
303 => 0.016352322766238
304 => 0.016197629603183
305 => 0.01625694880528
306 => 0.016351801501237
307 => 0.016226189354373
308 => 0.015450852994722
309 => 0.015686040517562
310 => 0.015646893813679
311 => 0.015591144146948
312 => 0.015827627019815
313 => 0.015804817669823
314 => 0.015121589082607
315 => 0.015165327160031
316 => 0.01512424893996
317 => 0.015256981072821
318 => 0.014877516671387
319 => 0.014994237365537
320 => 0.015067443490719
321 => 0.015110562460847
322 => 0.015266337747904
323 => 0.01524805931592
324 => 0.015265201534908
325 => 0.015496175162463
326 => 0.016664360510059
327 => 0.016727942261073
328 => 0.016414842465147
329 => 0.016539919657999
330 => 0.016299798799099
331 => 0.016460993540349
401 => 0.016571278888409
402 => 0.016072920607176
403 => 0.01604341106408
404 => 0.015802299140979
405 => 0.015931859031176
406 => 0.015725719930187
407 => 0.01577629925513
408 => 0.015634875053163
409 => 0.015889410459426
410 => 0.016174020594432
411 => 0.016245924354129
412 => 0.016056776518881
413 => 0.015919821020711
414 => 0.01567937228187
415 => 0.016079243893312
416 => 0.016196178538364
417 => 0.016078629685402
418 => 0.016051391047677
419 => 0.015999773878409
420 => 0.016062341874148
421 => 0.016195541687174
422 => 0.016132727115165
423 => 0.016174217246627
424 => 0.016016099649931
425 => 0.016352401434082
426 => 0.016886529602745
427 => 0.016888246912146
428 => 0.016825432001544
429 => 0.016799729493491
430 => 0.016864181403697
501 => 0.016899143921028
502 => 0.017107569580174
503 => 0.017331218616483
504 => 0.018374891083217
505 => 0.018081832030881
506 => 0.019007840331721
507 => 0.019740192670556
508 => 0.019959793115086
509 => 0.019757771039117
510 => 0.019066664430248
511 => 0.019032755442918
512 => 0.020065560494254
513 => 0.019773745761783
514 => 0.019739035327903
515 => 0.019369774955617
516 => 0.019588053569425
517 => 0.019540312834631
518 => 0.019464951749202
519 => 0.019881412138927
520 => 0.020660988810817
521 => 0.020539484475679
522 => 0.020448787125923
523 => 0.020051377740892
524 => 0.02029070695528
525 => 0.020205486406086
526 => 0.020571647967722
527 => 0.02035474197008
528 => 0.019771534978177
529 => 0.019864412613913
530 => 0.019850374346116
531 => 0.020139280902628
601 => 0.020052558325465
602 => 0.019833440371077
603 => 0.020658324302503
604 => 0.020604760928242
605 => 0.020680701546652
606 => 0.020714132955418
607 => 0.021216225268392
608 => 0.021421916423856
609 => 0.021468611917277
610 => 0.021664002606242
611 => 0.021463750418938
612 => 0.022264901945543
613 => 0.022797620962248
614 => 0.02341640151362
615 => 0.024320606211707
616 => 0.024660595542549
617 => 0.024599179513059
618 => 0.025284737195604
619 => 0.026516669112045
620 => 0.024848188175654
621 => 0.026605102653062
622 => 0.026048883814067
623 => 0.024730098952761
624 => 0.024645184755145
625 => 0.025538281174629
626 => 0.027519083075699
627 => 0.02702291466555
628 => 0.02751989462947
629 => 0.026940141102912
630 => 0.026911351453772
701 => 0.027491737294719
702 => 0.028847840447278
703 => 0.028203606672264
704 => 0.027279939583179
705 => 0.027961960987908
706 => 0.02737113092903
707 => 0.026039825443459
708 => 0.027022535254918
709 => 0.026365425189959
710 => 0.026557204840806
711 => 0.027938352459604
712 => 0.027772169124047
713 => 0.02798722574842
714 => 0.027607656435413
715 => 0.027253078844477
716 => 0.026591233439719
717 => 0.026395293643954
718 => 0.026449444354328
719 => 0.026395266809551
720 => 0.026024970388262
721 => 0.025945004911341
722 => 0.025811725613104
723 => 0.025853034440658
724 => 0.02560243036774
725 => 0.026075372030781
726 => 0.026163154170989
727 => 0.026507321673288
728 => 0.026543054285109
729 => 0.027501555880095
730 => 0.026973629308542
731 => 0.027327808031727
801 => 0.027296126953066
802 => 0.024758681019611
803 => 0.025108318681166
804 => 0.025652245160204
805 => 0.025407207018672
806 => 0.025060780416642
807 => 0.024781022361282
808 => 0.024357160300684
809 => 0.024953738011427
810 => 0.025738174262087
811 => 0.026562948882943
812 => 0.027553861548527
813 => 0.027332701377063
814 => 0.026544424459924
815 => 0.02657978598659
816 => 0.026798377030193
817 => 0.026515281767637
818 => 0.026431791448033
819 => 0.02678690674236
820 => 0.026789352226225
821 => 0.026463616913448
822 => 0.026101621722231
823 => 0.026100104949162
824 => 0.026035691401344
825 => 0.026951600129974
826 => 0.027455257321903
827 => 0.027513000807273
828 => 0.027451370725261
829 => 0.027475089697817
830 => 0.027182022675163
831 => 0.027851886982625
901 => 0.028466620713867
902 => 0.028301858942024
903 => 0.028054857623765
904 => 0.027858109176576
905 => 0.028255511260622
906 => 0.028237815571388
907 => 0.028461251551007
908 => 0.028451115204342
909 => 0.028375982088249
910 => 0.028301861625264
911 => 0.028595740882802
912 => 0.028511108376188
913 => 0.028426344411914
914 => 0.02825633730485
915 => 0.028279444094219
916 => 0.02803248542422
917 => 0.027918231043419
918 => 0.026200119290755
919 => 0.025740983689523
920 => 0.025885437096238
921 => 0.025932994908459
922 => 0.025733178506404
923 => 0.026019663898329
924 => 0.02597501545346
925 => 0.026148716433976
926 => 0.02604019560257
927 => 0.026044649335344
928 => 0.02636378596143
929 => 0.026456432681687
930 => 0.026409311812014
1001 => 0.026442313653924
1002 => 0.027202827171541
1003 => 0.027094706469189
1004 => 0.02703726950099
1005 => 0.027053179933713
1006 => 0.027247507443058
1007 => 0.027301908535786
1008 => 0.0270714072832
1009 => 0.027180113006431
1010 => 0.027642968179139
1011 => 0.027804941294252
1012 => 0.028321881726189
1013 => 0.028102276242819
1014 => 0.028505371611848
1015 => 0.029744349350904
1016 => 0.030734130499601
1017 => 0.029823886850824
1018 => 0.031641493882536
1019 => 0.033056761676967
1020 => 0.033002441341765
1021 => 0.032755656666072
1022 => 0.031144411908953
1023 => 0.029661720461147
1024 => 0.030902054815641
1025 => 0.030905216682988
1026 => 0.030798670861939
1027 => 0.030136923918008
1028 => 0.03077564350271
1029 => 0.030826342743854
1030 => 0.03079796465083
1031 => 0.030290604820466
1101 => 0.029515960135271
1102 => 0.029667323852521
1103 => 0.029915260709112
1104 => 0.029445864514538
1105 => 0.029295863988653
1106 => 0.029574743505041
1107 => 0.030473351413696
1108 => 0.030303474793846
1109 => 0.030299038628776
1110 => 0.031025842847393
1111 => 0.030505607881031
1112 => 0.029669233033729
1113 => 0.029458037354357
1114 => 0.028708434971041
1115 => 0.029226188007189
1116 => 0.029244821017222
1117 => 0.028961252970631
1118 => 0.029692243017877
1119 => 0.029685506815904
1120 => 0.030379473072253
1121 => 0.031706075912571
1122 => 0.031313734174528
1123 => 0.030857483419844
1124 => 0.030907090527339
1125 => 0.031451158055789
1126 => 0.031122202408235
1127 => 0.031240497152655
1128 => 0.031450979002525
1129 => 0.031577967928522
1130 => 0.030888818775137
1201 => 0.030728145141668
1202 => 0.030399463276373
1203 => 0.030313716312855
1204 => 0.030581420833966
1205 => 0.030510890150793
1206 => 0.029243254984879
1207 => 0.029110780056986
1208 => 0.029114842873894
1209 => 0.028781728368866
1210 => 0.028273648792057
1211 => 0.029608851584056
1212 => 0.029501616113707
1213 => 0.029383236453809
1214 => 0.029397737286681
1215 => 0.029977303564466
1216 => 0.029641125854552
1217 => 0.030534909394802
1218 => 0.030351174368519
1219 => 0.030162727232108
1220 => 0.030136678097616
1221 => 0.030064142027652
1222 => 0.029815388854262
1223 => 0.029515004449645
1224 => 0.029316664646865
1225 => 0.027043073463703
1226 => 0.027465038762427
1227 => 0.027950471375261
1228 => 0.028118040767962
1229 => 0.027831401726298
1230 => 0.029826707110712
1231 => 0.030191268631686
]
'min_raw' => 0.012583433786923
'max_raw' => 0.033056761676967
'avg_raw' => 0.022820097731945
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.012583'
'max' => '$0.033056'
'avg' => '$0.02282'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00048788808221728
'max_diff' => -0.0059614524420717
'year' => 2027
]
2 => [
'items' => [
101 => 0.029086988004897
102 => 0.028880422187106
103 => 0.029840249531337
104 => 0.029261356308645
105 => 0.029522031891377
106 => 0.02895859386343
107 => 0.030103456436891
108 => 0.03009473450225
109 => 0.02964935710328
110 => 0.030025787031077
111 => 0.029960373067637
112 => 0.029457543081116
113 => 0.030119397044345
114 => 0.030119725315653
115 => 0.029691059252484
116 => 0.029190471137771
117 => 0.029100977806223
118 => 0.02903355660264
119 => 0.02950545040829
120 => 0.029928548918863
121 => 0.030715830352023
122 => 0.030913771609664
123 => 0.031686349515936
124 => 0.031226316988887
125 => 0.031430243449709
126 => 0.031651634470091
127 => 0.031757777466647
128 => 0.031584823149706
129 => 0.032784954643899
130 => 0.032886282513087
131 => 0.032920256871144
201 => 0.032515579283766
202 => 0.032875027697326
203 => 0.032706853688301
204 => 0.033144395739698
205 => 0.033213007920175
206 => 0.03315489584426
207 => 0.033176674433313
208 => 0.032152573920723
209 => 0.032099468906585
210 => 0.031375378270648
211 => 0.031670450557
212 => 0.031118827060848
213 => 0.031293752553829
214 => 0.031370858044384
215 => 0.031330582511816
216 => 0.031687133501347
217 => 0.031383992321691
218 => 0.030583952907554
219 => 0.029783695523214
220 => 0.029773648943629
221 => 0.029562955300048
222 => 0.029410662386205
223 => 0.029439999404293
224 => 0.029543386882521
225 => 0.029404653318022
226 => 0.029434259157978
227 => 0.029925913363927
228 => 0.030024511108613
229 => 0.029689437447545
301 => 0.02834406834746
302 => 0.028013911395696
303 => 0.028251221665327
304 => 0.028137802641182
305 => 0.022709402796889
306 => 0.023984724819713
307 => 0.023226971779595
308 => 0.023576179243022
309 => 0.02280270960826
310 => 0.023171849858985
311 => 0.02310368313352
312 => 0.025154363206698
313 => 0.025122344657974
314 => 0.025137670242864
315 => 0.024406140145441
316 => 0.025571487453843
317 => 0.026145579442495
318 => 0.026039330294359
319 => 0.026066070915897
320 => 0.02560657844196
321 => 0.025142119134413
322 => 0.024626962282568
323 => 0.025584060037984
324 => 0.025477647105785
325 => 0.025721720086085
326 => 0.026342466395232
327 => 0.02643387364724
328 => 0.026556725920899
329 => 0.026512692126013
330 => 0.027561755766573
331 => 0.027434707237757
401 => 0.027740857637848
402 => 0.027111083037173
403 => 0.026398433297755
404 => 0.026533884714943
405 => 0.026520839654236
406 => 0.026354761059016
407 => 0.026204832729127
408 => 0.025955244301906
409 => 0.026744979017769
410 => 0.02671291723053
411 => 0.02723196029818
412 => 0.027140214394257
413 => 0.026527512793832
414 => 0.026549395551355
415 => 0.026696567612197
416 => 0.027205931795151
417 => 0.02735714576481
418 => 0.027287097429229
419 => 0.027452896643781
420 => 0.027583937582783
421 => 0.027469353368177
422 => 0.02909162421027
423 => 0.028417944252305
424 => 0.028746291176382
425 => 0.028824599983042
426 => 0.028624013621439
427 => 0.028667513620812
428 => 0.028733404266821
429 => 0.029133479366677
430 => 0.030183392191363
501 => 0.030648391434418
502 => 0.032047364599807
503 => 0.030609779720384
504 => 0.030524479382956
505 => 0.030776476694985
506 => 0.031597822039418
507 => 0.032263445296035
508 => 0.032484270930981
509 => 0.032513456684074
510 => 0.032927740255444
511 => 0.033165199872623
512 => 0.03287743533314
513 => 0.032633585016132
514 => 0.031760143448424
515 => 0.031861246688188
516 => 0.032557747750908
517 => 0.033541596525708
518 => 0.034385841126504
519 => 0.0340902160922
520 => 0.036345626425191
521 => 0.036569241147182
522 => 0.036538344822932
523 => 0.03704777243796
524 => 0.036036662365259
525 => 0.035604393219845
526 => 0.032686308222488
527 => 0.033506171079605
528 => 0.034697889891282
529 => 0.03454016143784
530 => 0.033674703382065
531 => 0.034385184598962
601 => 0.034150277289854
602 => 0.033964996148847
603 => 0.034813804974314
604 => 0.033880504803569
605 => 0.034688579508141
606 => 0.033652215341064
607 => 0.034091566482455
608 => 0.033842169525578
609 => 0.034003559921619
610 => 0.033060074964111
611 => 0.03356915654538
612 => 0.033038895496626
613 => 0.033038644083847
614 => 0.033026938541806
615 => 0.033650788314128
616 => 0.033671132032806
617 => 0.033210106108475
618 => 0.033143665070201
619 => 0.03338933241186
620 => 0.033101720295156
621 => 0.033236292194353
622 => 0.033105796340892
623 => 0.033076418975615
624 => 0.03284233513094
625 => 0.032741485374385
626 => 0.032781031162508
627 => 0.032646041000392
628 => 0.032564704544909
629 => 0.033010758673601
630 => 0.032772449946413
701 => 0.032974234443331
702 => 0.032744275541859
703 => 0.031947137801033
704 => 0.031488695456706
705 => 0.029982976158993
706 => 0.030409996283985
707 => 0.03069311106864
708 => 0.030599541634
709 => 0.03080056498617
710 => 0.030812906187349
711 => 0.030747551446368
712 => 0.030671879028773
713 => 0.030635045880835
714 => 0.030909569988734
715 => 0.031068940473425
716 => 0.030721525424867
717 => 0.030640130939843
718 => 0.030991386735246
719 => 0.031205652567528
720 => 0.032787671087527
721 => 0.032670470045713
722 => 0.032964621661123
723 => 0.032931504703352
724 => 0.033239822458329
725 => 0.033743791682912
726 => 0.032719081337324
727 => 0.0328969356215
728 => 0.032853329858276
729 => 0.033329406147119
730 => 0.033330892405327
731 => 0.033045460888391
801 => 0.03320019794432
802 => 0.033113827964689
803 => 0.033269910191484
804 => 0.032668904754345
805 => 0.033400864502252
806 => 0.033815838512872
807 => 0.033821600427412
808 => 0.034018294815008
809 => 0.034218147704576
810 => 0.034601747922584
811 => 0.034207449302695
812 => 0.033498144469712
813 => 0.033549353987613
814 => 0.033133488823559
815 => 0.033140479592099
816 => 0.033103162321756
817 => 0.033215154259167
818 => 0.032693480686754
819 => 0.032815916431493
820 => 0.032644505671875
821 => 0.032896563007985
822 => 0.032625390980901
823 => 0.032853308830256
824 => 0.032951670618442
825 => 0.033314627734423
826 => 0.032571781919759
827 => 0.03105706901742
828 => 0.03137548003361
829 => 0.030904525130019
830 => 0.030948113799398
831 => 0.031036169848629
901 => 0.030750751382925
902 => 0.030805200231611
903 => 0.030803254935586
904 => 0.03078649142537
905 => 0.030712243059056
906 => 0.030604568238309
907 => 0.031033511583602
908 => 0.031106397416477
909 => 0.031268413594314
910 => 0.031750463842932
911 => 0.031702295655568
912 => 0.031780859967638
913 => 0.031609354515508
914 => 0.030956069445433
915 => 0.030991545967787
916 => 0.030549153165556
917 => 0.031257100615726
918 => 0.031089449315076
919 => 0.030981363430911
920 => 0.030951871196007
921 => 0.031435116353953
922 => 0.031579710879151
923 => 0.031489609274425
924 => 0.03130480825445
925 => 0.03165968084432
926 => 0.031754629778496
927 => 0.031775885343276
928 => 0.032404651532455
929 => 0.03181102638853
930 => 0.0319539178608
1001 => 0.033068716337274
1002 => 0.032057747950786
1003 => 0.032593280452394
1004 => 0.032567068923217
1005 => 0.032841029229608
1006 => 0.032544596181791
1007 => 0.03254827082469
1008 => 0.032791529017087
1009 => 0.032449916757712
1010 => 0.032365328758187
1011 => 0.032248471042673
1012 => 0.032503625589343
1013 => 0.032656579200424
1014 => 0.033889272973686
1015 => 0.03468564936888
1016 => 0.034651076569271
1017 => 0.034967007240125
1018 => 0.034824677579312
1019 => 0.034365057559879
1020 => 0.035149572888361
1021 => 0.034901319412914
1022 => 0.034921785127802
1023 => 0.034921023392871
1024 => 0.035086090251348
1025 => 0.034969125253962
1026 => 0.034738575237903
1027 => 0.034891625097882
1028 => 0.035346128465692
1029 => 0.036756920865243
1030 => 0.037546418982545
1031 => 0.036709392087258
1101 => 0.03728676203139
1102 => 0.036940545802857
1103 => 0.036877628015092
1104 => 0.037240259007311
1105 => 0.037603524737076
1106 => 0.037580386280531
1107 => 0.037316674014623
1108 => 0.037167709647062
1109 => 0.038295717744956
1110 => 0.039126814896367
1111 => 0.039070139642387
1112 => 0.039320285781676
1113 => 0.040054722583357
1114 => 0.040121870280241
1115 => 0.040113411213805
1116 => 0.039946978640941
1117 => 0.040670127050866
1118 => 0.041273390177011
1119 => 0.039908454309022
1120 => 0.04042820401923
1121 => 0.040661536409432
1122 => 0.041004137584849
1123 => 0.041582163194402
1124 => 0.042210052320097
1125 => 0.042298842726925
1126 => 0.042235841684269
1127 => 0.041821731927307
1128 => 0.042508775700918
1129 => 0.04291122983034
1130 => 0.043150882054412
1201 => 0.043758600220331
1202 => 0.040662977390838
1203 => 0.038471741689685
1204 => 0.038129548593123
1205 => 0.038825411711061
1206 => 0.039008905265857
1207 => 0.038934939244
1208 => 0.036468504243918
1209 => 0.038116563323288
1210 => 0.039889736319946
1211 => 0.039957851116222
1212 => 0.040845538593648
1213 => 0.041134606023838
1214 => 0.041849310795023
1215 => 0.041804605816992
1216 => 0.041978625055339
1217 => 0.041938621046036
1218 => 0.043262461135812
1219 => 0.04472285334699
1220 => 0.04467228460848
1221 => 0.044462335949547
1222 => 0.044774145509629
1223 => 0.046281426776705
1224 => 0.046142660471323
1225 => 0.046277460116916
1226 => 0.048054629677449
1227 => 0.050365202905564
1228 => 0.049291709663345
1229 => 0.051620881109601
1230 => 0.053086971070945
1231 => 0.055622422062559
]
'min_raw' => 0.022709402796889
'max_raw' => 0.055622422062559
'avg_raw' => 0.039165912429724
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0227094'
'max' => '$0.055622'
'avg' => '$0.039165'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010125969009966
'max_diff' => 0.022565660385592
'year' => 2028
]
3 => [
'items' => [
101 => 0.05530497111105
102 => 0.056292003576086
103 => 0.054736667653835
104 => 0.051165301991095
105 => 0.050600119704327
106 => 0.05173162895513
107 => 0.054513334037171
108 => 0.051644023162849
109 => 0.052224481015726
110 => 0.052057309115048
111 => 0.052048401234895
112 => 0.052388378789342
113 => 0.051895223614581
114 => 0.049886020715682
115 => 0.050806826563941
116 => 0.050451259205199
117 => 0.050845787699025
118 => 0.052974895264276
119 => 0.052033566058093
120 => 0.051041952206755
121 => 0.052285656033063
122 => 0.053869318386954
123 => 0.053770215642962
124 => 0.053577914897885
125 => 0.054661904129345
126 => 0.056452336760674
127 => 0.056936283506381
128 => 0.057293523100206
129 => 0.057342780404582
130 => 0.0578501612529
131 => 0.055121846555057
201 => 0.059451752048625
202 => 0.060199407116139
203 => 0.060058878950574
204 => 0.060889866091981
205 => 0.06064536859487
206 => 0.060291130082038
207 => 0.061608421457202
208 => 0.060098253195509
209 => 0.057954759472934
210 => 0.05677879642323
211 => 0.058327399429313
212 => 0.059273077246331
213 => 0.059898110126974
214 => 0.060087244699002
215 => 0.055333637858535
216 => 0.052771707418645
217 => 0.054413875458022
218 => 0.056417433802446
219 => 0.055110716687291
220 => 0.055161937524263
221 => 0.053298902317269
222 => 0.056582271078992
223 => 0.056103911867887
224 => 0.058585640301303
225 => 0.057993355893554
226 => 0.060017109090862
227 => 0.059484187050655
228 => 0.061696316644282
301 => 0.062578795030198
302 => 0.064060613586944
303 => 0.065150645349373
304 => 0.065790732849257
305 => 0.065752304396671
306 => 0.068288649961536
307 => 0.0667930555951
308 => 0.064914236586329
309 => 0.064880254678058
310 => 0.065853321665772
311 => 0.067892603124129
312 => 0.068421359135942
313 => 0.068716861612324
314 => 0.06826428928323
315 => 0.066640928788678
316 => 0.065939969957755
317 => 0.066537207190434
318 => 0.065806837376048
319 => 0.067067660581254
320 => 0.068799040139305
321 => 0.068441517107185
322 => 0.069636663000716
323 => 0.070873513267507
324 => 0.072642264699439
325 => 0.073104681820422
326 => 0.073869039737258
327 => 0.074655815112179
328 => 0.074908506158412
329 => 0.075390971771099
330 => 0.075388428939168
331 => 0.076842371536681
401 => 0.078446115246591
402 => 0.07905149137033
403 => 0.080443520386234
404 => 0.078059719479014
405 => 0.079867859850271
406 => 0.081498847725835
407 => 0.079554316742851
408 => 0.082234399685283
409 => 0.082338461232739
410 => 0.083909667051767
411 => 0.082316948947569
412 => 0.081371198021433
413 => 0.084101545508364
414 => 0.08542267465215
415 => 0.085024739802336
416 => 0.081996435946785
417 => 0.080233833212792
418 => 0.075620761877257
419 => 0.08108514414405
420 => 0.083746685347989
421 => 0.081989543198048
422 => 0.082875743491623
423 => 0.087710564941959
424 => 0.08955135191874
425 => 0.089168481095642
426 => 0.089233179962156
427 => 0.09022643520218
428 => 0.094631075932099
429 => 0.091991713107958
430 => 0.094009407091975
501 => 0.095079584705761
502 => 0.096073625315092
503 => 0.093632575748337
504 => 0.090456806128128
505 => 0.089450906579669
506 => 0.081814830040723
507 => 0.081417339095072
508 => 0.081194215382069
509 => 0.079787451933063
510 => 0.078682121207083
511 => 0.077803121175485
512 => 0.075496362600943
513 => 0.076274825904242
514 => 0.072598334194353
515 => 0.074950423303474
516 => 0.069082653762495
517 => 0.073969506597936
518 => 0.071309814777539
519 => 0.073095726302753
520 => 0.073089495425685
521 => 0.069801066084
522 => 0.067904368667486
523 => 0.069113018081856
524 => 0.070408786196772
525 => 0.070619020213929
526 => 0.072299017397925
527 => 0.07276786850056
528 => 0.071347227771012
529 => 0.068961057281122
530 => 0.069515310263169
531 => 0.067893136748495
601 => 0.065050340060032
602 => 0.067092086272154
603 => 0.067789228198217
604 => 0.068097125788066
605 => 0.065301561742368
606 => 0.064423134824561
607 => 0.063955467704237
608 => 0.068600185068012
609 => 0.068854633170056
610 => 0.067552840704662
611 => 0.073437066089272
612 => 0.072105284660744
613 => 0.073593210810781
614 => 0.069465017614453
615 => 0.069622720153902
616 => 0.06766836733753
617 => 0.068762674324796
618 => 0.067989253417357
619 => 0.068674265134377
620 => 0.06908485833315
621 => 0.071038890459456
622 => 0.073991818506013
623 => 0.070747023221015
624 => 0.069333219449017
625 => 0.07021033535763
626 => 0.072546210607251
627 => 0.076085181181679
628 => 0.073990039373197
629 => 0.074919827729987
630 => 0.07512294512254
701 => 0.073578065119331
702 => 0.076142143110992
703 => 0.077516253337255
704 => 0.078925806097354
705 => 0.080149681264177
706 => 0.078362799728241
707 => 0.080275019111099
708 => 0.078734107840677
709 => 0.077351751134628
710 => 0.077353847599139
711 => 0.076486675044426
712 => 0.074806418948896
713 => 0.074496553945127
714 => 0.076108510826371
715 => 0.077401147592244
716 => 0.077507615347593
717 => 0.078223285479256
718 => 0.078646811691185
719 => 0.082797944324056
720 => 0.084467564208967
721 => 0.086509143799949
722 => 0.087304454107758
723 => 0.089698052999736
724 => 0.087765027495867
725 => 0.087346805268804
726 => 0.081540717297095
727 => 0.082491463877199
728 => 0.084013700885346
729 => 0.081565818424685
730 => 0.0831184364211
731 => 0.083424956102539
801 => 0.081482640315365
802 => 0.082520115099806
803 => 0.079764889662168
804 => 0.074051874891392
805 => 0.076148503329583
806 => 0.077692327577594
807 => 0.075489100023526
808 => 0.079438300137511
809 => 0.077131258958959
810 => 0.076400037662864
811 => 0.073547282687584
812 => 0.074893673223307
813 => 0.076714685701329
814 => 0.075589511705335
815 => 0.077924416692748
816 => 0.08123126485134
817 => 0.083587921775365
818 => 0.083768836631266
819 => 0.082253664112869
820 => 0.084681737743302
821 => 0.084699423608911
822 => 0.081960546634811
823 => 0.080282999738306
824 => 0.079901857553831
825 => 0.080854025457976
826 => 0.0820101330735
827 => 0.083832992557828
828 => 0.084934508367073
829 => 0.087806677398742
830 => 0.088583803987172
831 => 0.089437630497797
901 => 0.090578606026336
902 => 0.091948639688468
903 => 0.088951084031783
904 => 0.089070182506166
905 => 0.086278900182644
906 => 0.083296014709584
907 => 0.085559652961713
908 => 0.088519058857194
909 => 0.087840167874918
910 => 0.087763778770927
911 => 0.087892244055269
912 => 0.087380382425139
913 => 0.08506525124254
914 => 0.083902606856126
915 => 0.085402714736816
916 => 0.086199955313283
917 => 0.087436405920697
918 => 0.087283987285027
919 => 0.090468951264626
920 => 0.091706531958787
921 => 0.091389905858157
922 => 0.091448172680705
923 => 0.093688753412924
924 => 0.096180739997725
925 => 0.098514814280982
926 => 0.10088913489273
927 => 0.098026798723956
928 => 0.096573480941803
929 => 0.09807293392232
930 => 0.097277303064529
1001 => 0.10184923397284
1002 => 0.10216578454935
1003 => 0.10673738485502
1004 => 0.11107637792114
1005 => 0.10835113411744
1006 => 0.11092091627665
1007 => 0.11370034519924
1008 => 0.11906231453702
1009 => 0.11725659190041
1010 => 0.11587343666005
1011 => 0.11456636164127
1012 => 0.11728617726304
1013 => 0.12078517661033
1014 => 0.12153882755674
1015 => 0.12276003000674
1016 => 0.12147608495209
1017 => 0.1230224553485
1018 => 0.12848182235741
1019 => 0.12700665320044
1020 => 0.12491167585226
1021 => 0.12922132178262
1022 => 0.13078096589149
1023 => 0.1417273650395
1024 => 0.15554764613707
1025 => 0.14982595901382
1026 => 0.14627432317873
1027 => 0.1471090418459
1028 => 0.15215574065669
1029 => 0.15377658014051
1030 => 0.14937057968663
1031 => 0.15092685353317
1101 => 0.1595020754371
1102 => 0.1641024068625
1103 => 0.15785453887987
1104 => 0.14061691890982
1105 => 0.1247230460637
1106 => 0.12893881685292
1107 => 0.12846087927602
1108 => 0.13767388543107
1109 => 0.12697147090392
1110 => 0.12715167211668
1111 => 0.13655519348228
1112 => 0.13404649519911
1113 => 0.12998272527017
1114 => 0.12475271608142
1115 => 0.11508456037873
1116 => 0.10652120525638
1117 => 0.1233159166742
1118 => 0.12259169817867
1119 => 0.12154292247396
1120 => 0.1238768593154
1121 => 0.1352097941179
1122 => 0.13494853328957
1123 => 0.1332865251962
1124 => 0.13454714368676
1125 => 0.12976173275377
1126 => 0.13099504211298
1127 => 0.12472052839304
1128 => 0.12755687064129
1129 => 0.12997400624503
1130 => 0.13045928200379
1201 => 0.13155263306706
1202 => 0.12221006794026
1203 => 0.12640460539889
1204 => 0.12886850318083
1205 => 0.11773652336467
1206 => 0.12864845973191
1207 => 0.12204743466674
1208 => 0.11980694761555
1209 => 0.12282346826825
1210 => 0.12164792723623
1211 => 0.12063726608698
1212 => 0.12007329980034
1213 => 0.12228829964645
1214 => 0.12218496725613
1215 => 0.11856079759495
1216 => 0.113833216012
1217 => 0.11541994756882
1218 => 0.11484347311854
1219 => 0.11275425534405
1220 => 0.11416213587094
1221 => 0.10796254254254
1222 => 0.097296464447841
1223 => 0.104342802348
1224 => 0.10407152600379
1225 => 0.10393473616963
1226 => 0.10922986435513
1227 => 0.10872085995949
1228 => 0.10779701199721
1229 => 0.11273728815173
1230 => 0.11093402089924
1231 => 0.11649126566822
]
'min_raw' => 0.049886020715682
'max_raw' => 0.1641024068625
'avg_raw' => 0.10699421378909
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.049886'
'max' => '$0.1641024'
'avg' => '$0.106994'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.027176617918793
'max_diff' => 0.10847998479994
'year' => 2029
]
4 => [
'items' => [
101 => 0.12015162649312
102 => 0.11922324058766
103 => 0.12266582763554
104 => 0.11545650265914
105 => 0.11785115122838
106 => 0.11834468497967
107 => 0.11267632591084
108 => 0.10880413937358
109 => 0.1085459086777
110 => 0.10183207084226
111 => 0.10541854882175
112 => 0.10857450102515
113 => 0.1070630448315
114 => 0.10658456295407
115 => 0.10902902309585
116 => 0.10921897858425
117 => 0.10488797331811
118 => 0.10578852645804
119 => 0.10954398275605
120 => 0.10569389859484
121 => 0.098213813977287
122 => 0.096358649571873
123 => 0.096111136442727
124 => 0.091079783440301
125 => 0.096482620528257
126 => 0.094124137352332
127 => 0.10157455744611
128 => 0.097318917445949
129 => 0.097135465311182
130 => 0.096858150502904
131 => 0.092527457131141
201 => 0.093475603749636
202 => 0.096627387516319
203 => 0.097751979471657
204 => 0.097634675317205
205 => 0.096611942056412
206 => 0.097080144105961
207 => 0.095571902171956
208 => 0.095039310553718
209 => 0.093358304905691
210 => 0.090887690992755
211 => 0.091231245010504
212 => 0.086336312377682
213 => 0.083669293285583
214 => 0.082931097551636
215 => 0.08194395136488
216 => 0.083042598340126
217 => 0.086322445648549
218 => 0.082366253936168
219 => 0.075583640739873
220 => 0.075991287349981
221 => 0.076907148251528
222 => 0.07520044752052
223 => 0.073585198511157
224 => 0.074989526475504
225 => 0.072115643850624
226 => 0.077254443236608
227 => 0.077115453114536
228 => 0.079030879744409
301 => 0.08022863532458
302 => 0.07746819649026
303 => 0.076773953588449
304 => 0.077169425896901
305 => 0.070633149563639
306 => 0.078496726520722
307 => 0.078564731060789
308 => 0.077982434901982
309 => 0.082169546870928
310 => 0.091005659118378
311 => 0.087681158259096
312 => 0.086393811042812
313 => 0.08394656304361
314 => 0.087207375699338
315 => 0.08695699616398
316 => 0.08582468495147
317 => 0.085139859597118
318 => 0.086401671310403
319 => 0.084983507161991
320 => 0.084728765912391
321 => 0.083185311101031
322 => 0.082634367956094
323 => 0.082226471585262
324 => 0.081777417760045
325 => 0.082767918601232
326 => 0.080523313383865
327 => 0.077816539533084
328 => 0.07759150057509
329 => 0.078212852923738
330 => 0.077937950763703
331 => 0.07759018444931
401 => 0.076926203846614
402 => 0.076729214985495
403 => 0.077369333218723
404 => 0.07664667705462
405 => 0.077712995589872
406 => 0.07742301595038
407 => 0.075803213256506
408 => 0.073784339372173
409 => 0.073766367159871
410 => 0.073331404093108
411 => 0.072777413230451
412 => 0.072623305646053
413 => 0.074871257891336
414 => 0.079524451763522
415 => 0.078610918464919
416 => 0.079271039895818
417 => 0.082518183989644
418 => 0.083550353452042
419 => 0.082817744015906
420 => 0.08181490303434
421 => 0.081859022948025
422 => 0.085286034162644
423 => 0.085499772648443
424 => 0.086039820847406
425 => 0.086733935400677
426 => 0.082935954725764
427 => 0.081680138399783
428 => 0.081085062954496
429 => 0.079252460906193
430 => 0.081228765099863
501 => 0.080077257279995
502 => 0.080232635026003
503 => 0.08013144506508
504 => 0.080186701626179
505 => 0.077253006837451
506 => 0.078321891028005
507 => 0.076544663747711
508 => 0.074165155922522
509 => 0.074157178977929
510 => 0.074739560147097
511 => 0.074393137039098
512 => 0.073460921362826
513 => 0.073593338199706
514 => 0.072433227373088
515 => 0.073734196658542
516 => 0.073771503802557
517 => 0.073270559763381
518 => 0.075274882446789
519 => 0.076096055085552
520 => 0.075766322987706
521 => 0.076072920202569
522 => 0.078648879897832
523 => 0.079068873725161
524 => 0.079255407240025
525 => 0.079005477041062
526 => 0.076120004017042
527 => 0.076247987015636
528 => 0.075308932690008
529 => 0.074515530739958
530 => 0.074547262657115
531 => 0.074955174394474
601 => 0.07673654887523
602 => 0.080485346452218
603 => 0.080627610579929
604 => 0.080800038852853
605 => 0.080098686411366
606 => 0.079887151803975
607 => 0.080166220552839
608 => 0.081574071820343
609 => 0.085195447508254
610 => 0.083915411476597
611 => 0.082874722257911
612 => 0.083787687270497
613 => 0.083647143462866
614 => 0.082460812288169
615 => 0.082427515923294
616 => 0.08015056710603
617 => 0.079308830971904
618 => 0.07860541325537
619 => 0.0778372994721
620 => 0.07738193587397
621 => 0.078081581319752
622 => 0.078241598511164
623 => 0.076711811516253
624 => 0.076503307201604
625 => 0.077752564284394
626 => 0.077202812819256
627 => 0.07776824583433
628 => 0.077899431144022
629 => 0.077878307287708
630 => 0.077304303619551
701 => 0.077670156440598
702 => 0.076804805452846
703 => 0.07586386622518
704 => 0.075263605620515
705 => 0.07473979862993
706 => 0.075030437192147
707 => 0.073994363786346
708 => 0.073662903051792
709 => 0.077546213736776
710 => 0.0804148570924
711 => 0.080373145881901
712 => 0.080119239615246
713 => 0.079741986406001
714 => 0.081546473398322
715 => 0.080917826212053
716 => 0.081375219565294
717 => 0.081491645370432
718 => 0.081844031217376
719 => 0.081969978869072
720 => 0.081589277589379
721 => 0.080311597595986
722 => 0.077127740530618
723 => 0.075645646472031
724 => 0.075156530746469
725 => 0.07517430917413
726 => 0.074683900772838
727 => 0.074828348025582
728 => 0.074633667913187
729 => 0.074264990878488
730 => 0.075007672424159
731 => 0.075093259553741
801 => 0.074919908806598
802 => 0.074960739182938
803 => 0.073525469035665
804 => 0.07363458950772
805 => 0.073026992852962
806 => 0.072913075804882
807 => 0.071377124371149
808 => 0.06865596376657
809 => 0.070163750890958
810 => 0.06834255607165
811 => 0.067652841997974
812 => 0.070917841150213
813 => 0.070590125792308
814 => 0.070029219554016
815 => 0.06919952232448
816 => 0.06889177955127
817 => 0.067022031880764
818 => 0.066911557213675
819 => 0.067838254646611
820 => 0.067410615667023
821 => 0.066810048580134
822 => 0.064634855469933
823 => 0.062189218232379
824 => 0.062263036647853
825 => 0.063040948350421
826 => 0.065302831541322
827 => 0.06441907464766
828 => 0.063777898881367
829 => 0.063657825934013
830 => 0.065160790259891
831 => 0.067287799661769
901 => 0.068285744883977
902 => 0.067296811476815
903 => 0.066160778026625
904 => 0.066229923118866
905 => 0.066689914439998
906 => 0.066738253023922
907 => 0.065998812033973
908 => 0.066206960341343
909 => 0.065890764028968
910 => 0.063950267843573
911 => 0.063915170420959
912 => 0.063438941362335
913 => 0.063424521335705
914 => 0.06261433690608
915 => 0.062500986503835
916 => 0.060892316144134
917 => 0.061951147846392
918 => 0.061240939131677
919 => 0.060170487077302
920 => 0.059985940739649
921 => 0.059980393053893
922 => 0.061079507965037
923 => 0.061938304048719
924 => 0.061253293516336
925 => 0.061097329896483
926 => 0.062762613322404
927 => 0.06255069082706
928 => 0.062367167312846
929 => 0.067097349299074
930 => 0.063353041156271
1001 => 0.061720309088372
1002 => 0.059699493106937
1003 => 0.060357480980331
1004 => 0.060496128693108
1005 => 0.055636430537215
1006 => 0.053664851600606
1007 => 0.052988280006947
1008 => 0.052598903489478
1009 => 0.052776347257971
1010 => 0.051001694971879
1011 => 0.052194290658172
1012 => 0.05065759178604
1013 => 0.050399959219276
1014 => 0.05314776716311
1015 => 0.053530108586033
1016 => 0.051898921291673
1017 => 0.052946407599887
1018 => 0.05256657450338
1019 => 0.05068393407761
1020 => 0.050612031061111
1021 => 0.04966738827347
1022 => 0.0481892052297
1023 => 0.047513635913751
1024 => 0.047161793548442
1025 => 0.04730697056564
1026 => 0.047233564623255
1027 => 0.046754541195501
1028 => 0.047261021685409
1029 => 0.045967173325881
1030 => 0.045451952483872
1031 => 0.04521923918257
1101 => 0.044070874292356
1102 => 0.045898433512871
1103 => 0.046258485702297
1104 => 0.046619247305761
1105 => 0.049759430761515
1106 => 0.049602556070132
1107 => 0.051020626879162
1108 => 0.050965523255188
1109 => 0.050561066489229
1110 => 0.048854729923554
1111 => 0.049534845266107
1112 => 0.04744155595512
1113 => 0.049009990636749
1114 => 0.048294222547452
1115 => 0.04876798872576
1116 => 0.047916114419388
1117 => 0.048387576833562
1118 => 0.046343867433465
1119 => 0.044435480351422
1120 => 0.045203471022528
1121 => 0.046038364712407
1122 => 0.04784862695902
1123 => 0.046770449699276
1124 => 0.047158203012276
1125 => 0.045859294322848
1126 => 0.043179274681633
1127 => 0.043194443301753
1128 => 0.042782180667353
1129 => 0.042425925559902
1130 => 0.046894291327389
1201 => 0.046338579409792
1202 => 0.04545312519888
1203 => 0.046638340846738
1204 => 0.046951730675933
1205 => 0.046960652443796
1206 => 0.047825355185629
1207 => 0.048286847193952
1208 => 0.04836818716064
1209 => 0.049728815608054
1210 => 0.050184880316504
1211 => 0.052063346305917
1212 => 0.048247692821312
1213 => 0.048169111948757
1214 => 0.046655019261477
1215 => 0.045694757742346
1216 => 0.046720769189232
1217 => 0.047629675266643
1218 => 0.046683261506868
1219 => 0.04680684316401
1220 => 0.045536360016357
1221 => 0.045990497959855
1222 => 0.046381662735782
1223 => 0.046165684538118
1224 => 0.045842354722751
1225 => 0.047555155333323
1226 => 0.047458512410355
1227 => 0.049053511716035
1228 => 0.050296927734308
1229 => 0.052525351526252
1230 => 0.050199875128999
1231 => 0.050115125526151
]
'min_raw' => 0.042425925559902
'max_raw' => 0.12266582763554
'avg_raw' => 0.082545876597721
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.042425'
'max' => '$0.122665'
'avg' => '$0.082545'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0074600951557804
'max_diff' => -0.041436579226961
'year' => 2030
]
5 => [
'items' => [
101 => 0.050943566488248
102 => 0.050184753486509
103 => 0.050664297110274
104 => 0.052448089634748
105 => 0.052485778359926
106 => 0.051854443654004
107 => 0.051816026879773
108 => 0.05193728161609
109 => 0.052647474394023
110 => 0.052399311215394
111 => 0.052686491928427
112 => 0.053045615807542
113 => 0.054531104436932
114 => 0.05488925071638
115 => 0.054019140934878
116 => 0.054097702105941
117 => 0.053772257162612
118 => 0.053457881425168
119 => 0.054164552172051
120 => 0.055456006851628
121 => 0.055447972779093
122 => 0.055747565162463
123 => 0.055934208735345
124 => 0.055132997889089
125 => 0.054611439089515
126 => 0.054811437920921
127 => 0.055131240407745
128 => 0.054707730284633
129 => 0.052093629615814
130 => 0.052886580769337
131 => 0.05275459492406
201 => 0.052566631030359
202 => 0.053363949546936
203 => 0.053287046230941
204 => 0.050983493347644
205 => 0.051130959329374
206 => 0.050992461242416
207 => 0.05143997689542
208 => 0.050160586172626
209 => 0.050554118142129
210 => 0.050800937704269
211 => 0.050946316322526
212 => 0.051471523578724
213 => 0.051409896569128
214 => 0.051467692757279
215 => 0.052246436468645
216 => 0.056185054928161
217 => 0.056399425240841
218 => 0.055343787418948
219 => 0.055765493907259
220 => 0.054955909666773
221 => 0.055499388991154
222 => 0.055871223742018
223 => 0.054190974002576
224 => 0.054091480517737
225 => 0.053278554835105
226 => 0.053715375050487
227 => 0.053020362679329
228 => 0.053190894404711
301 => 0.052714072833856
302 => 0.053572256727167
303 => 0.054531839668184
304 => 0.054774268214164
305 => 0.054136543081743
306 => 0.053674788057736
307 => 0.05286409834714
308 => 0.054212293403259
309 => 0.054606546723168
310 => 0.054210222558408
311 => 0.05411838558958
312 => 0.053944354699595
313 => 0.054155307065587
314 => 0.054604399534918
315 => 0.054392615819817
316 => 0.05453250269479
317 => 0.053999398178113
318 => 0.055133263123217
319 => 0.056934113535503
320 => 0.056939903564047
321 => 0.056728118707353
322 => 0.056641460906962
323 => 0.05685876502211
324 => 0.056976643590296
325 => 0.057679365251924
326 => 0.058433413592516
327 => 0.061952228180995
328 => 0.060964159125314
329 => 0.064086260763429
330 => 0.066555437805019
331 => 0.067295836035766
401 => 0.066614704501907
402 => 0.064284590318581
403 => 0.06417026380035
404 => 0.067652438139073
405 => 0.066668564394695
406 => 0.066551535743462
407 => 0.065306548617365
408 => 0.066042490203543
409 => 0.065881528983034
410 => 0.065627443821969
411 => 0.067031569102262
412 => 0.069659966279844
413 => 0.069250305930765
414 => 0.068944513483774
415 => 0.067604619995905
416 => 0.068411535151647
417 => 0.068124208120129
418 => 0.069358747389771
419 => 0.068627433674828
420 => 0.066661110583415
421 => 0.066974254016808
422 => 0.066926923016808
423 => 0.067900991642902
424 => 0.067608600419218
425 => 0.066869828937672
426 => 0.069650982704034
427 => 0.069470390048036
428 => 0.069726429145012
429 => 0.069839145473773
430 => 0.071531984761931
501 => 0.072225486853474
502 => 0.072382923969717
503 => 0.073041697319306
504 => 0.072366533088651
505 => 0.075067671395212
506 => 0.076863770753285
507 => 0.078950032584115
508 => 0.081998621853273
509 => 0.083144919619504
510 => 0.082937851188148
511 => 0.085249256778955
512 => 0.089402801245977
513 => 0.083777401279314
514 => 0.089700961103748
515 => 0.087825630454119
516 => 0.083379255219607
517 => 0.083092961073825
518 => 0.086104098006114
519 => 0.092782509910743
520 => 0.091109643474555
521 => 0.092785246120945
522 => 0.090830566629056
523 => 0.090733500316951
524 => 0.09269031170095
525 => 0.0972625081599
526 => 0.095090429008474
527 => 0.091976220929247
528 => 0.094275703712504
529 => 0.092283678918562
530 => 0.087795089525177
531 => 0.091108364265118
601 => 0.088892871803151
602 => 0.08953947028561
603 => 0.094196105911032
604 => 0.093635807192652
605 => 0.0943608856165
606 => 0.093081141177014
607 => 0.091885658073358
608 => 0.089654200082644
609 => 0.088993575381143
610 => 0.089176148281852
611 => 0.088993484907081
612 => 0.087745004669434
613 => 0.087475395480983
614 => 0.087026035021715
615 => 0.087165310617904
616 => 0.086320381489441
617 => 0.087914937326116
618 => 0.088210900940581
619 => 0.089371285703591
620 => 0.089491760699116
621 => 0.092723415747057
622 => 0.090943474452408
623 => 0.092137612745597
624 => 0.092030797776988
625 => 0.083475621653528
626 => 0.084654449440383
627 => 0.086488335540191
628 => 0.085662172338001
629 => 0.084494170862521
630 => 0.083550947046794
701 => 0.082121866516381
702 => 0.084133269919877
703 => 0.086778051506569
704 => 0.089558836724709
705 => 0.092899767960038
706 => 0.09215411100104
707 => 0.089496380339167
708 => 0.089615604195186
709 => 0.090352599160231
710 => 0.089398123717444
711 => 0.089116630275791
712 => 0.090313926283974
713 => 0.09032217140356
714 => 0.089223932054422
715 => 0.088003439993535
716 => 0.087998326087236
717 => 0.087781151313555
718 => 0.090869201538837
719 => 0.092567316925649
720 => 0.092762003118097
721 => 0.092554212993719
722 => 0.092634183165697
723 => 0.09164608723753
724 => 0.093904581518574
725 => 0.095977199212794
726 => 0.095421693395724
727 => 0.094588911206132
728 => 0.093925560079896
729 => 0.095265428951985
730 => 0.09520576670026
731 => 0.095959096705347
801 => 0.095924921304871
802 => 0.095671604758335
803 => 0.095421702442456
804 => 0.096412536877241
805 => 0.096127192472337
806 => 0.095841404848758
807 => 0.095268214017774
808 => 0.095346120171396
809 => 0.09451348177339
810 => 0.094128265151532
811 => 0.088335531422696
812 => 0.086787523687317
813 => 0.08727455843347
814 => 0.087434902917756
815 => 0.086761207967492
816 => 0.087727113468137
817 => 0.087576578119008
818 => 0.088162223102233
819 => 0.087796337542463
820 => 0.087811353613462
821 => 0.088887345029718
822 => 0.089199709915451
823 => 0.089040838613474
824 => 0.089152106627589
825 => 0.091716231049594
826 => 0.091351694552868
827 => 0.091158041804464
828 => 0.091211684939219
829 => 0.091866873704489
830 => 0.092050290786784
831 => 0.091273139720609
901 => 0.091639648656074
902 => 0.093200197186373
903 => 0.093746300852581
904 => 0.095489201610484
905 => 0.094748786390936
906 => 0.096107850570837
907 => 0.10028515052073
908 => 0.10362226676787
909 => 0.10055331675484
910 => 0.10668150576353
911 => 0.11145317994329
912 => 0.11127003514064
913 => 0.11043798337658
914 => 0.10500555918444
915 => 0.10000656144995
916 => 0.1041884353235
917 => 0.10419909578002
918 => 0.10383986910556
919 => 0.1016087430824
920 => 0.1037622307562
921 => 0.10393316678743
922 => 0.1038374880655
923 => 0.1021268889747
924 => 0.099515120334596
925 => 0.10002545367518
926 => 0.10086139009758
927 => 0.099278788055375
928 => 0.098773050809652
929 => 0.099713312569898
930 => 0.10274303187273
1001 => 0.1021702809885
1002 => 0.10215532414824
1003 => 0.10460579531516
1004 => 0.10285178680442
1005 => 0.10003189061292
1006 => 0.099319829634703
1007 => 0.096792492863786
1008 => 0.098538133373523
1009 => 0.098600955867765
1010 => 0.097644886400595
1011 => 0.10010947038098
1012 => 0.10008675880572
1013 => 0.10242651449018
1014 => 0.10689924858676
1015 => 0.10557644102453
1016 => 0.1040381597507
1017 => 0.10420541357707
1018 => 0.10603977523483
1019 => 0.10493067830215
1020 => 0.10532951729204
1021 => 0.10603917154425
1022 => 0.10646732357433
1023 => 0.10414380908883
1024 => 0.10360208671572
1025 => 0.10249391285904
1026 => 0.10220481098488
1027 => 0.10310739546834
1028 => 0.10286959634572
1029 => 0.098595675880384
1030 => 0.098149027411887
1031 => 0.098162725482749
1101 => 0.097039606671736
1102 => 0.095326580905542
1103 => 0.099828310339647
1104 => 0.099466758464426
1105 => 0.099067633176073
1106 => 0.099116523746519
1107 => 0.1010705719161
1108 => 0.099937125295944
1109 => 0.10295057890387
1110 => 0.10233110343479
1111 => 0.10169574075742
1112 => 0.10160791428179
1113 => 0.10136335385759
1114 => 0.10052466516612
1115 => 0.099511898173783
1116 => 0.098843181681069
1117 => 0.091177610269972
1118 => 0.092600295735294
1119 => 0.094236965681286
1120 => 0.0948019375881
1121 => 0.09383551404663
1122 => 0.10056282545796
1123 => 0.10179197007879
1124 => 0.098068810847162
1125 => 0.097372359770514
1126 => 0.10060848467459
1127 => 0.098656705757254
1128 => 0.099535591684223
1129 => 0.097635921035014
1130 => 0.10149590513319
1201 => 0.1014664985216
1202 => 0.099964877525717
1203 => 0.10123403730878
1204 => 0.10101348956399
1205 => 0.099318163157962
1206 => 0.10154965000416
1207 => 0.10155075679379
1208 => 0.10010547923331
1209 => 0.098417711454607
1210 => 0.09811597843907
1211 => 0.097888663143991
1212 => 0.099479686056315
1213 => 0.1009061922245
1214 => 0.10356056654264
1215 => 0.10422793931259
1216 => 0.10683273966326
1217 => 0.10528170787986
1218 => 0.10596926018022
1219 => 0.10671569546246
1220 => 0.10707356398602
1221 => 0.10649043643117
1222 => 0.11053676355434
1223 => 0.1108783975398
1224 => 0.11099294446
1225 => 0.10962854572047
1226 => 0.11084045114267
1227 => 0.11027344072971
1228 => 0.11174864430421
1229 => 0.11197997506103
1230 => 0.11178404613983
1231 => 0.11185747417335
]
'min_raw' => 0.050160586172626
'max_raw' => 0.11197997506103
'avg_raw' => 0.081070280616829
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.05016'
'max' => '$0.111979'
'avg' => '$0.08107'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0077346606127241
'max_diff' => -0.010685852574508
'year' => 2031
]
6 => [
'items' => [
101 => 0.10840464779474
102 => 0.1082256005319
103 => 0.10578427839845
104 => 0.10677913521317
105 => 0.10491929808277
106 => 0.10550907159527
107 => 0.10576903814001
108 => 0.10563324637001
109 => 0.10683538292481
110 => 0.10581332127295
111 => 0.10311593253122
112 => 0.10041780888773
113 => 0.10038393614323
114 => 0.09967356781374
115 => 0.099160101621966
116 => 0.099259013426693
117 => 0.099607591527822
118 => 0.099139841629048
119 => 0.099239659785473
120 => 0.10089730626703
121 => 0.10122973544711
122 => 0.10010001120473
123 => 0.095564005353118
124 => 0.094450858139424
125 => 0.095250966281959
126 => 0.094868566123391
127 => 0.076566337049583
128 => 0.080866174289673
129 => 0.078311357010287
130 => 0.07948873435412
131 => 0.076880927478594
201 => 0.078125509606464
202 => 0.077895680732308
203 => 0.084809691772939
204 => 0.084701739000451
205 => 0.084753410279907
206 => 0.082287005482646
207 => 0.086216055294872
208 => 0.088151646516436
209 => 0.087793420095416
210 => 0.087883577967902
211 => 0.086334367011282
212 => 0.084768410028375
213 => 0.083031522735279
214 => 0.086258444640094
215 => 0.085899666009672
216 => 0.086722575103383
217 => 0.088815464623797
218 => 0.089123650555792
219 => 0.089537855573707
220 => 0.089389392559905
221 => 0.092926383867339
222 => 0.092498030882189
223 => 0.093530238330836
224 => 0.091406909295201
225 => 0.089004160943136
226 => 0.089460844853102
227 => 0.089416862520152
228 => 0.08885691694113
229 => 0.088351423109247
301 => 0.087509918301166
302 => 0.090172564033213
303 => 0.090064465479054
304 => 0.091814455420065
305 => 0.091505127699496
306 => 0.089439361476202
307 => 0.089513140720999
308 => 0.090009341599352
309 => 0.091726698504854
310 => 0.092236526960981
311 => 0.092000354106952
312 => 0.092559357734542
313 => 0.093001171409376
314 => 0.092614842729818
315 => 0.098084442137267
316 => 0.095813083124154
317 => 0.096920127703131
318 => 0.097184151312132
319 => 0.096507860389495
320 => 0.096654523674453
321 => 0.09687667858781
322 => 0.098225559719327
323 => 0.10176541411033
324 => 0.1033331915235
325 => 0.10804992722379
326 => 0.10320300943385
327 => 0.10291541339073
328 => 0.10376503992213
329 => 0.10653426309538
330 => 0.1087784583774
331 => 0.10952298742318
401 => 0.10962138922741
402 => 0.11101817521264
403 => 0.11181878689086
404 => 0.11084856865492
405 => 0.11002641028604
406 => 0.10708154105876
407 => 0.10742241769043
408 => 0.10977071965155
409 => 0.11308783448591
410 => 0.11593426410077
411 => 0.11493754365773
412 => 0.12254181706313
413 => 0.12329574971061
414 => 0.12319158059629
415 => 0.12490915136745
416 => 0.12150012316389
417 => 0.12004269756006
418 => 0.11020417025728
419 => 0.11296839512105
420 => 0.11698635829777
421 => 0.11645456580474
422 => 0.11353661354534
423 => 0.11593205057232
424 => 0.11514004417896
425 => 0.11451535587614
426 => 0.11737717409314
427 => 0.11423048740654
428 => 0.11695496769098
429 => 0.11346079354504
430 => 0.11494209659276
501 => 0.11410123734031
502 => 0.11464537632848
503 => 0.11146435092223
504 => 0.11318075501641
505 => 0.1113929428689
506 => 0.11139209521316
507 => 0.11135262916091
508 => 0.11345598222409
509 => 0.11352457249197
510 => 0.11197019140029
511 => 0.11174618080098
512 => 0.11257446539533
513 => 0.11160476106343
514 => 0.11205847961708
515 => 0.11161850373621
516 => 0.11151945589811
517 => 0.11073022587258
518 => 0.11039020387725
519 => 0.1105235352629
520 => 0.11006840650662
521 => 0.10979417496823
522 => 0.11129807760562
523 => 0.11049460309372
524 => 0.11117493361322
525 => 0.11039961112169
526 => 0.10771200557412
527 => 0.10616633520279
528 => 0.10108969746459
529 => 0.1025294256296
530 => 0.1034839668925
531 => 0.10316849101081
601 => 0.10384625527765
602 => 0.10388786449906
603 => 0.10366751642692
604 => 0.10341238158772
605 => 0.10328819605784
606 => 0.10421377325428
607 => 0.10475110197031
608 => 0.10357976787835
609 => 0.10330534068931
610 => 0.10448962412741
611 => 0.10521203634051
612 => 0.11054592223369
613 => 0.1101507707385
614 => 0.11114252344686
615 => 0.11103086731159
616 => 0.11207038214855
617 => 0.11376954957524
618 => 0.1103146671021
619 => 0.11091431523859
620 => 0.11076729536342
621 => 0.11237241980984
622 => 0.11237743083315
623 => 0.11141507854561
624 => 0.11193678533307
625 => 0.11164558291659
626 => 0.11217182504154
627 => 0.11014549324937
628 => 0.11261334664323
629 => 0.1140124604926
630 => 0.11403188718975
701 => 0.1146950560503
702 => 0.11536887402076
703 => 0.11666220893789
704 => 0.11533280361188
705 => 0.11294133284539
706 => 0.11311398931033
707 => 0.11171187087495
708 => 0.11173544073916
709 => 0.11160962295679
710 => 0.1119872115928
711 => 0.11022835272132
712 => 0.1106411533829
713 => 0.11006323003933
714 => 0.11091305894611
715 => 0.10999878352417
716 => 0.11076722446598
717 => 0.11109885810225
718 => 0.11232259335964
719 => 0.10981803683166
720 => 0.10471107652755
721 => 0.10578462149938
722 => 0.1041967641609
723 => 0.10434372640298
724 => 0.10464061352084
725 => 0.10367830523643
726 => 0.10386188333128
727 => 0.10385532462991
728 => 0.10379880528482
729 => 0.10354847173394
730 => 0.10318543855818
731 => 0.1046316509947
801 => 0.10487739066897
802 => 0.10542363952415
803 => 0.10704890559304
804 => 0.10688650318635
805 => 0.10715138824968
806 => 0.10657314564369
807 => 0.10437054941903
808 => 0.10449016099104
809 => 0.10299860277143
810 => 0.105385497027
811 => 0.10482024896181
812 => 0.10445582985703
813 => 0.10435639472798
814 => 0.10598568951709
815 => 0.10647320005406
816 => 0.10616941620304
817 => 0.10554634666179
818 => 0.10674282437495
819 => 0.10706295133565
820 => 0.10713461595632
821 => 0.10925454506219
822 => 0.10725309644387
823 => 0.10773486501899
824 => 0.11149348591517
825 => 0.10808493541656
826 => 0.10989052063542
827 => 0.10980214663477
828 => 0.11072582293506
829 => 0.10972637821805
830 => 0.10973876753314
831 => 0.11055892951255
901 => 0.10940715992947
902 => 0.10912196558332
903 => 0.10872797163672
904 => 0.10958824300514
905 => 0.11010393678378
906 => 0.11426004990426
907 => 0.11694508852188
908 => 0.11682852391421
909 => 0.11789370622857
910 => 0.11741383184
911 => 0.11586419085483
912 => 0.11850923905792
913 => 0.11767223513295
914 => 0.11774123671956
915 => 0.11773866847706
916 => 0.11829520291502
917 => 0.11790084726009
918 => 0.11712353178446
919 => 0.11763955007298
920 => 0.11917193990996
921 => 0.12392852498343
922 => 0.12659037300691
923 => 0.1237682783901
924 => 0.12571492146742
925 => 0.12454762928088
926 => 0.12433549756665
927 => 0.125558133275
928 => 0.12678290904531
929 => 0.12670489612359
930 => 0.12581577180728
1001 => 0.12531352804169
1002 => 0.12911668609875
1003 => 0.13191878817008
1004 => 0.13172770359435
1005 => 0.13257108876761
1006 => 0.13504729372121
1007 => 0.13527368686936
1008 => 0.13524516653628
1009 => 0.13468402749692
1010 => 0.13712217284959
1011 => 0.13915611659787
1012 => 0.13455414002217
1013 => 0.1363065124579
1014 => 0.13709320890221
1015 => 0.13824831268478
1016 => 0.14019716638385
1017 => 0.14231413840895
1018 => 0.14261350146472
1019 => 0.14240108905081
1020 => 0.14100488909299
1021 => 0.14332130514359
1022 => 0.14467820733939
1023 => 0.14548621154483
1024 => 0.14753517577075
1025 => 0.13709806727163
1026 => 0.129710163118
1027 => 0.12855643520178
1028 => 0.13090258628752
1029 => 0.13152124761863
1030 => 0.1312718660118
1031 => 0.12295610820803
1101 => 0.12851265445793
1102 => 0.13449103101515
1103 => 0.13472068480642
1104 => 0.13771358511292
1105 => 0.13868819613585
1106 => 0.14109787317099
1107 => 0.14094714721636
1108 => 0.14153386522808
1109 => 0.14139898891773
1110 => 0.14586240820797
1111 => 0.15078622250929
1112 => 0.1506157264768
1113 => 0.14990786991506
1114 => 0.15095915761673
1115 => 0.15604106164369
1116 => 0.15557320135674
1117 => 0.15602768777327
1118 => 0.16201953902462
1119 => 0.16980979798228
1120 => 0.16619044056724
1121 => 0.17404340471585
1122 => 0.17898642937965
1123 => 0.18753487941741
1124 => 0.18646457137068
1125 => 0.18979242023896
1126 => 0.184548496587
1127 => 0.17250738791028
1128 => 0.17060183637068
1129 => 0.17441679880922
1130 => 0.18379551170577
1201 => 0.1741214297641
1202 => 0.17607848394135
1203 => 0.17551485220664
1204 => 0.17548481866678
1205 => 0.17663107672807
1206 => 0.17496836962537
1207 => 0.16819420177367
1208 => 0.17129876297968
1209 => 0.17009994280476
1210 => 0.1714301231668
1211 => 0.17860855797258
1212 => 0.17543480083243
1213 => 0.17209150550038
1214 => 0.1762847397834
1215 => 0.18162416797732
1216 => 0.18129003615682
1217 => 0.18064168076878
1218 => 0.18429642614436
1219 => 0.1903329947649
1220 => 0.19196465500613
1221 => 0.19316911323839
1222 => 0.19333518767913
1223 => 0.19504585763343
1224 => 0.1858471541448
1225 => 0.20044573282072
1226 => 0.20296650408045
1227 => 0.20249270355888
1228 => 0.20529443472381
1229 => 0.20447009434203
1230 => 0.20327575446387
1231 => 0.20771709430558
]
'min_raw' => 0.076566337049583
'max_raw' => 0.20771709430558
'avg_raw' => 0.14214171567758
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.076566'
'max' => '$0.207717'
'avg' => '$0.142141'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.026405750876957
'max_diff' => 0.095737119244553
'year' => 2032
]
7 => [
'items' => [
101 => 0.20262545657471
102 => 0.19539851783509
103 => 0.19143367630989
104 => 0.19665489946491
105 => 0.19984331825011
106 => 0.2019506602456
107 => 0.20258834066014
108 => 0.18656122331127
109 => 0.17792349596491
110 => 0.18346018016219
111 => 0.19021531700439
112 => 0.18580962901857
113 => 0.18598232364654
114 => 0.1797009703732
115 => 0.19077107739084
116 => 0.18915825591262
117 => 0.19752557659463
118 => 0.19552864836192
119 => 0.20235187356059
120 => 0.2005550896946
121 => 0.20801343906547
122 => 0.21098877655626
123 => 0.2159848312776
124 => 0.21965994946821
125 => 0.22181804916355
126 => 0.22168848495267
127 => 0.2302399511066
128 => 0.2251974502811
129 => 0.21886288081808
130 => 0.2187483084418
131 => 0.22202907172824
201 => 0.22890465154318
202 => 0.23068738935357
203 => 0.23168369658402
204 => 0.23015781737889
205 => 0.2246845441321
206 => 0.22232121249426
207 => 0.224334839522
208 => 0.22187234670001
209 => 0.22612330016423
210 => 0.23196076722526
211 => 0.230755353361
212 => 0.23478487118347
213 => 0.23895499821208
214 => 0.24491846715512
215 => 0.24647753876344
216 => 0.24905462484582
217 => 0.25170729295327
218 => 0.25255925845797
219 => 0.25418592495582
220 => 0.25417735162043
221 => 0.25907942059898
222 => 0.26448655448675
223 => 0.26652762235395
224 => 0.27122094536943
225 => 0.26318379417907
226 => 0.26928006568109
227 => 0.27477905517549
228 => 0.26822293320354
301 => 0.27725901996137
302 => 0.27760987073397
303 => 0.2829073008509
304 => 0.27753734056257
305 => 0.27434867528488
306 => 0.28355423246385
307 => 0.28800851161041
308 => 0.28666684648134
309 => 0.27645670860293
310 => 0.27051397042428
311 => 0.25496067834217
312 => 0.27338422466564
313 => 0.2823577966576
314 => 0.27643346921932
315 => 0.27942135538164
316 => 0.2957222934579
317 => 0.30192863526976
318 => 0.3006377595585
319 => 0.30085589630408
320 => 0.30420472569269
321 => 0.31905527943581
322 => 0.31015648339979
323 => 0.3169592795378
324 => 0.32056745808009
325 => 0.32391893539615
326 => 0.3156887663532
327 => 0.30498143735351
328 => 0.30158997679622
329 => 0.27584441161132
330 => 0.27450424313612
331 => 0.27375196595974
401 => 0.26900896477432
402 => 0.26528226505996
403 => 0.2623186550836
404 => 0.25454125749679
405 => 0.25716590087444
406 => 0.24477035239009
407 => 0.25270058503911
408 => 0.23291699035711
409 => 0.24939335588097
410 => 0.24042601921475
411 => 0.24644734461037
412 => 0.24642633677331
413 => 0.23533916765701
414 => 0.22894431989405
415 => 0.23301936577981
416 => 0.23738813844689
417 => 0.23809695711381
418 => 0.24376118491331
419 => 0.24534194913998
420 => 0.24055215973434
421 => 0.23250701933057
422 => 0.23437572195625
423 => 0.22890645069499
424 => 0.21932176318211
425 => 0.22620565308645
426 => 0.22855611576306
427 => 0.22959421398396
428 => 0.22016877462384
429 => 0.21720709694065
430 => 0.215630324593
501 => 0.23129031346878
502 => 0.23214820300982
503 => 0.22775911882449
504 => 0.2475981955322
505 => 0.24310800146391
506 => 0.24812464836245
507 => 0.23420615677978
508 => 0.23473786190197
509 => 0.22814862493302
510 => 0.23183815734266
511 => 0.22923051475471
512 => 0.23154007958463
513 => 0.232924423221
514 => 0.239512578961
515 => 0.24946858203682
516 => 0.23852852818908
517 => 0.23376179006316
518 => 0.23671904758733
519 => 0.24459461407702
520 => 0.25652650045175
521 => 0.24946258356632
522 => 0.25259742992698
523 => 0.25328225439718
524 => 0.24807358360628
525 => 0.25671855157338
526 => 0.26135146013854
527 => 0.26610386568104
528 => 0.27023024625422
529 => 0.26420565039973
530 => 0.27065283155593
531 => 0.26545754162471
601 => 0.2607968294772
602 => 0.26080389785367
603 => 0.2578801650414
604 => 0.25221506430359
605 => 0.2511703328093
606 => 0.25660515797765
607 => 0.2609633730828
608 => 0.26132233655331
609 => 0.2637352683687
610 => 0.26516321656187
611 => 0.27915905005643
612 => 0.28478829006754
613 => 0.29167161819707
614 => 0.29435306242664
615 => 0.30242324820668
616 => 0.29590591776086
617 => 0.29449585232297
618 => 0.27492022135824
619 => 0.27812572983207
620 => 0.28325805818423
621 => 0.27500485156241
622 => 0.28023961153765
623 => 0.28127306404414
624 => 0.27472441075953
625 => 0.27822232942945
626 => 0.26893289450276
627 => 0.24967106633313
628 => 0.25673999549442
629 => 0.26194510673295
630 => 0.25451677120997
701 => 0.26783177511862
702 => 0.26005342471266
703 => 0.25758806106064
704 => 0.24796979848849
705 => 0.25250924818167
706 => 0.25864891889035
707 => 0.25485531620571
708 => 0.26272761138864
709 => 0.27387688083209
710 => 0.28182251418798
711 => 0.28243248125572
712 => 0.27732397132398
713 => 0.28551039109167
714 => 0.28557002022236
715 => 0.2763357052819
716 => 0.27067973879774
717 => 0.26939469131229
718 => 0.27260499187936
719 => 0.27650288942195
720 => 0.28264878744135
721 => 0.28636262489759
722 => 0.2960463433163
723 => 0.29866647986644
724 => 0.30154521555928
725 => 0.30539209421411
726 => 0.31001125835869
727 => 0.29990479017952
728 => 0.30030633900109
729 => 0.29089533576623
730 => 0.2808383291354
731 => 0.28847034354462
801 => 0.29844818714036
802 => 0.29615925879496
803 => 0.29590170759754
804 => 0.29633483727286
805 => 0.29460906004984
806 => 0.28680343363041
807 => 0.28288349690837
808 => 0.28794121536231
809 => 0.29062916762742
810 => 0.29479794717655
811 => 0.29428405710486
812 => 0.30502238552916
813 => 0.30919497524465
814 => 0.30812744824024
815 => 0.30832389890053
816 => 0.31587817327155
817 => 0.32428008002715
818 => 0.33214957443302
819 => 0.34015476214532
820 => 0.33050419591035
821 => 0.32560423354041
822 => 0.33065974395269
823 => 0.32797721896647
824 => 0.34339180322586
825 => 0.34445907559543
826 => 0.35987254520493
827 => 0.37450176326617
828 => 0.36531341351157
829 => 0.37397761347779
830 => 0.38334865214385
831 => 0.4014269061269
901 => 0.39533878618605
902 => 0.39067538172436
903 => 0.38626848704148
904 => 0.39543853530174
905 => 0.40723565589346
906 => 0.4097766426775
907 => 0.41389401199931
908 => 0.4095651016054
909 => 0.41477879736103
910 => 0.4331854343924
911 => 0.42821179858665
912 => 0.42114843619062
913 => 0.43567870833468
914 => 0.44093715733861
915 => 0.47784370631933
916 => 0.52443974894098
917 => 0.5051486813295
918 => 0.4931740931442
919 => 0.49598840540878
920 => 0.51300370279862
921 => 0.51846847628169
922 => 0.50361333813431
923 => 0.50886042406351
924 => 0.53777238341548
925 => 0.55328272200109
926 => 0.53221759888544
927 => 0.47409975966423
928 => 0.42051245768878
929 => 0.43472622324032
930 => 0.43311482333128
1001 => 0.46417711681458
1002 => 0.42809317901757
1003 => 0.42870073998765
1004 => 0.46040536880465
1005 => 0.45194711739122
1006 => 0.43824583335245
1007 => 0.42061249222501
1008 => 0.38801563026429
1009 => 0.35914368059495
1010 => 0.41576822270944
1011 => 0.41332646948842
1012 => 0.40979044897682
1013 => 0.417659479988
1014 => 0.45586926091487
1015 => 0.45498840179151
1016 => 0.449384825467
1017 => 0.45363508872149
1018 => 0.43750074165422
1019 => 0.44165893026571
1020 => 0.42050396918636
1021 => 0.43006689510344
1022 => 0.43821643655046
1023 => 0.43985257765198
1024 => 0.44353888709712
1025 => 0.41203977649506
1026 => 0.42618195239009
1027 => 0.43448915578573
1028 => 0.39695690862556
1029 => 0.43374726393475
1030 => 0.41149144705868
1031 => 0.40393748853979
1101 => 0.41410789852711
1102 => 0.410144479864
1103 => 0.40673696523721
1104 => 0.40483551352693
1105 => 0.41230354015444
1106 => 0.41195514778604
1107 => 0.39973600674194
1108 => 0.38379663536581
1109 => 0.38914641159167
1110 => 0.3872027877344
1111 => 0.38015884414317
1112 => 0.38490561163466
1113 => 0.36400324988617
1114 => 0.32804182290811
1115 => 0.35179904309812
1116 => 0.35088441596369
1117 => 0.35042321948747
1118 => 0.36827611385892
1119 => 0.36655997000145
1120 => 0.36344515209563
1121 => 0.38010163806966
1122 => 0.37402179662779
1123 => 0.39275843536083
1124 => 0.40509959744024
1125 => 0.40196947954213
1126 => 0.41357640212782
1127 => 0.38926965963088
1128 => 0.39734338447112
1129 => 0.39900736797099
1130 => 0.37989609961826
1201 => 0.36684075236044
1202 => 0.3659701095402
1203 => 0.34333393653282
1204 => 0.35542599744056
1205 => 0.36606651063589
1206 => 0.36097053055251
1207 => 0.35935729549618
1208 => 0.36759896353095
1209 => 0.36823941172236
1210 => 0.35363712508645
1211 => 0.35667340287234
1212 => 0.36933518597865
1213 => 0.35635435842485
1214 => 0.33113473089394
1215 => 0.32487991457765
1216 => 0.32404540678192
1217 => 0.30708184885639
1218 => 0.32529789131247
1219 => 0.3173461006208
1220 => 0.3424657121387
1221 => 0.32811752475886
1222 => 0.32749900307827
1223 => 0.32656401684066
1224 => 0.3119627817784
1225 => 0.31515952430014
1226 => 0.32578598332003
1227 => 0.32957762361395
1228 => 0.3291821244673
1229 => 0.32573390787359
1230 => 0.32731248377246
1231 => 0.32222734078988
]
'min_raw' => 0.17792349596491
'max_raw' => 0.55328272200109
'avg_raw' => 0.365603108983
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.177923'
'max' => '$0.553282'
'avg' => '$0.3656031'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10135715891533
'max_diff' => 0.34556562769551
'year' => 2033
]
8 => [
'items' => [
101 => 0.32043167096463
102 => 0.31476404305824
103 => 0.30643419575802
104 => 0.30759251211504
105 => 0.29108890499019
106 => 0.28209686391585
107 => 0.27960798545967
108 => 0.27627975317068
109 => 0.2799839181528
110 => 0.29104215234478
111 => 0.277703575774
112 => 0.25483552183576
113 => 0.25620993084272
114 => 0.25929781981565
115 => 0.25354355914302
116 => 0.24809763433486
117 => 0.25283242411371
118 => 0.24314292819585
119 => 0.26046874910521
120 => 0.26000013420466
121 => 0.2664581288181
122 => 0.27049644538127
123 => 0.26118943312367
124 => 0.25884874470972
125 => 0.26018210720867
126 => 0.23814459520283
127 => 0.26465719393105
128 => 0.26488647598581
129 => 0.26292322383177
130 => 0.2770403641699
131 => 0.30683193352983
201 => 0.29562314677352
202 => 0.29128276575411
203 => 0.2830316982634
204 => 0.29402575579486
205 => 0.29318158371046
206 => 0.28936391740203
207 => 0.28705498090686
208 => 0.29130926719508
209 => 0.28652782775565
210 => 0.28566894984715
211 => 0.28046508419008
212 => 0.27860754091131
213 => 0.27723228981863
214 => 0.27571827349497
215 => 0.2790578162356
216 => 0.27148997303191
217 => 0.26236389601309
218 => 0.26160516145449
219 => 0.26370009427939
220 => 0.26277324245378
221 => 0.26160072404454
222 => 0.2593620670849
223 => 0.25869790538632
224 => 0.26085610870127
225 => 0.25841962298976
226 => 0.26201479037934
227 => 0.26103710377906
228 => 0.25557582590565
301 => 0.24876905165135
302 => 0.24870845708279
303 => 0.24724194873505
304 => 0.2453741298632
305 => 0.24485454538295
306 => 0.25243367332494
307 => 0.26812224134063
308 => 0.26504220004354
309 => 0.26726784553602
310 => 0.27821581855671
311 => 0.28169584996296
312 => 0.27922580609987
313 => 0.2758446577144
314 => 0.27599341108374
315 => 0.28754781866011
316 => 0.28826845288772
317 => 0.29008926309549
318 => 0.29242951877337
319 => 0.27962436176136
320 => 0.27539028934002
321 => 0.2733839509294
322 => 0.26720520517535
323 => 0.27386845274546
324 => 0.26998606373507
325 => 0.27050993065386
326 => 0.27016876163575
327 => 0.27035506298939
328 => 0.26046390618516
329 => 0.26406772386073
330 => 0.25807567800317
331 => 0.25005300123861
401 => 0.25002610641298
402 => 0.25198964518539
403 => 0.25082165549028
404 => 0.24767862525251
405 => 0.2481250778631
406 => 0.24421368321481
407 => 0.24859999199149
408 => 0.24872577563224
409 => 0.24703680782936
410 => 0.25379452169381
411 => 0.25656316257784
412 => 0.2554514477888
413 => 0.25648516170464
414 => 0.26517018966498
415 => 0.26658622817685
416 => 0.26721513894557
417 => 0.2663724818302
418 => 0.25664390807243
419 => 0.25707541168767
420 => 0.25390932446614
421 => 0.25123431439799
422 => 0.25134130077213
423 => 0.25271660367413
424 => 0.25872263210759
425 => 0.2713619648711
426 => 0.27184161831024
427 => 0.27242297227096
428 => 0.27005831354762
429 => 0.26934510984993
430 => 0.27028600962068
501 => 0.27503267846211
502 => 0.28724239943028
503 => 0.28292666858028
504 => 0.27941791222088
505 => 0.282496037502
506 => 0.28202218424211
507 => 0.27802238585962
508 => 0.27791012484077
509 => 0.27023323293188
510 => 0.26739526078753
511 => 0.26502363884518
512 => 0.26243388959689
513 => 0.26089859943333
514 => 0.26325750290146
515 => 0.26379701203435
516 => 0.25863922837469
517 => 0.25793624152055
518 => 0.26214819899552
519 => 0.26029467354838
520 => 0.26220107043598
521 => 0.26264337086667
522 => 0.26257215031029
523 => 0.26063685686744
524 => 0.26187035519663
525 => 0.25895276392454
526 => 0.25578032162419
527 => 0.25375650108671
528 => 0.25199044924691
529 => 0.25297035745117
530 => 0.24947716362717
531 => 0.24835962061877
601 => 0.26145247371729
602 => 0.27112430507306
603 => 0.27098367281468
604 => 0.27012761010948
605 => 0.26885567457553
606 => 0.2749396284554
607 => 0.27282010057615
608 => 0.27436223420079
609 => 0.2747547719314
610 => 0.27594286541717
611 => 0.27636750671824
612 => 0.27508394577405
613 => 0.27077615847155
614 => 0.26004156208586
615 => 0.25504457849083
616 => 0.25339549067313
617 => 0.25345543188324
618 => 0.25180198571906
619 => 0.25228899971667
620 => 0.2516326221256
621 => 0.25038960176291
622 => 0.25289360444651
623 => 0.25318216742939
624 => 0.25259770328244
625 => 0.25273536574696
626 => 0.24789625223806
627 => 0.24826415952814
628 => 0.24621560498559
629 => 0.24583152570455
630 => 0.24065295820901
701 => 0.23147837524531
702 => 0.23656198480552
703 => 0.23042169932046
704 => 0.22809628016676
705 => 0.2391044527635
706 => 0.23799953755396
707 => 0.23610840301034
708 => 0.23331102087335
709 => 0.23227344462756
710 => 0.22596945981483
711 => 0.22559698676165
712 => 0.22872141185674
713 => 0.22727959718026
714 => 0.22525474331656
715 => 0.21792092787838
716 => 0.20967529118303
717 => 0.20992417512464
718 => 0.2125469587419
719 => 0.22017305583967
720 => 0.21719340777075
721 => 0.21503163890923
722 => 0.214626804584
723 => 0.21969415374232
724 => 0.2268655144438
725 => 0.23023015643479
726 => 0.22689589840742
727 => 0.22306568231478
728 => 0.22329880982082
729 => 0.22484970267559
730 => 0.22501267958618
731 => 0.22251960266245
801 => 0.2232213892132
802 => 0.2221553112699
803 => 0.21561279289973
804 => 0.21549445948896
805 => 0.21388881996856
806 => 0.213840201842
807 => 0.21110860847225
808 => 0.21072643967721
809 => 0.2053026952457
810 => 0.20887262025513
811 => 0.20647810198828
812 => 0.20286899815038
813 => 0.20224678728837
814 => 0.20222808287852
815 => 0.20593382553919
816 => 0.20882931649455
817 => 0.20651975565871
818 => 0.20599391342535
819 => 0.21160853276221
820 => 0.21089402127321
821 => 0.21027525893183
822 => 0.22622339774916
823 => 0.21359920142645
824 => 0.20809433126582
825 => 0.20128100909554
826 => 0.20349946114994
827 => 0.20396692159364
828 => 0.18758210996776
829 => 0.18093479393173
830 => 0.17865368556699
831 => 0.17734087545294
901 => 0.17793913950715
902 => 0.17195577542232
903 => 0.17597669504303
904 => 0.17079560750675
905 => 0.16992698132057
906 => 0.17919140764903
907 => 0.18048049845064
908 => 0.17498083660185
909 => 0.17851250982315
910 => 0.17723187601918
911 => 0.17088442238194
912 => 0.1706419963417
913 => 0.16745706723032
914 => 0.1624732698948
915 => 0.16019554077934
916 => 0.15900927967985
917 => 0.15949875412927
918 => 0.15925126086948
919 => 0.15763619993845
920 => 0.15934383427152
921 => 0.15498153419376
922 => 0.15324443115336
923 => 0.15245982201049
924 => 0.14858802960686
925 => 0.15474977311494
926 => 0.15596371420963
927 => 0.15718004714328
928 => 0.16776739490496
929 => 0.16723848093032
930 => 0.17201960566951
1001 => 0.17183381995407
1002 => 0.17047016572937
1003 => 0.16471713286558
1004 => 0.16701018922714
1005 => 0.15995251816635
1006 => 0.16524060520008
1007 => 0.16282734311368
1008 => 0.16442467886114
1009 => 0.16155252516124
1010 => 0.16314209360709
1011 => 0.15625158467743
1012 => 0.14981732439098
1013 => 0.15240665855802
1014 => 0.15522156092386
1015 => 0.16132498647679
1016 => 0.15768983656963
1017 => 0.15899717393648
1018 => 0.15461781260316
1019 => 0.14558193926981
1020 => 0.14563308133159
1021 => 0.14424310907645
1022 => 0.14304197010874
1023 => 0.15810737726516
1024 => 0.15623375573642
1025 => 0.15324838504389
1026 => 0.15724442234975
1027 => 0.15830103803906
1028 => 0.15833111840231
1029 => 0.16124652406802
1030 => 0.16280247659442
1031 => 0.16307671997109
1101 => 0.16766417377759
1102 => 0.16920182778355
1103 => 0.17553520701716
1104 => 0.16267046489339
1105 => 0.16240552399523
1106 => 0.15730065478949
1107 => 0.15406306603443
1108 => 0.15752233526143
1109 => 0.16058677555922
1110 => 0.15739587549164
1111 => 0.15781253967689
1112 => 0.15352901704228
1113 => 0.15506017482568
1114 => 0.15637901417797
1115 => 0.15565082860543
1116 => 0.15456069955876
1117 => 0.16033552640122
1118 => 0.16000968803904
1119 => 0.16538733955743
1120 => 0.16957960347557
1121 => 0.17709288987369
1122 => 0.16925238384078
1123 => 0.16896664463775
1124 => 0.17175979118136
1125 => 0.16920140016737
1126 => 0.17081821497555
1127 => 0.17683239601223
1128 => 0.17695946618052
1129 => 0.17483087714112
1130 => 0.17470135230462
1201 => 0.17511017111385
1202 => 0.17750463564873
1203 => 0.17666793616578
1204 => 0.17763618599009
1205 => 0.17884699722176
1206 => 0.18385542584925
1207 => 0.18506294103538
1208 => 0.18212930515792
1209 => 0.18239417963113
1210 => 0.18129691928285
1211 => 0.18023697953505
1212 => 0.18261956929634
1213 => 0.18697379891502
1214 => 0.18694671147855
1215 => 0.18795680811595
1216 => 0.18858608995296
1217 => 0.18588475164605
1218 => 0.18412627973922
1219 => 0.18480058976277
1220 => 0.185878826175
1221 => 0.1844509322264
1222 => 0.17563730931079
1223 => 0.17831079948697
1224 => 0.17786579999467
1225 => 0.17723206660383
1226 => 0.17992028164947
1227 => 0.17966099675038
1228 => 0.17189440737542
1229 => 0.17239159922857
1230 => 0.17192464325876
1231 => 0.17343347352741
]
'min_raw' => 0.14304197010874
'max_raw' => 0.32043167096463
'avg_raw' => 0.23173682053668
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.143041'
'max' => '$0.320431'
'avg' => '$0.231736'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.034881525856173
'max_diff' => -0.23285105103647
'year' => 2034
]
9 => [
'items' => [
101 => 0.1691199183813
102 => 0.17044673889201
103 => 0.17127890827815
104 => 0.17176906243962
105 => 0.17353983537268
106 => 0.17333205560717
107 => 0.17352691949072
108 => 0.17615250828374
109 => 0.18943183540556
110 => 0.19015459988162
111 => 0.18659544326283
112 => 0.18801725613078
113 => 0.18528768634061
114 => 0.18712006482728
115 => 0.18837373165049
116 => 0.18270865234267
117 => 0.18237320311212
118 => 0.17963236741647
119 => 0.18110513727044
120 => 0.17876185453687
121 => 0.17933681415514
122 => 0.17772917693838
123 => 0.18062260385117
124 => 0.18385790473275
125 => 0.18467526950134
126 => 0.18252513469283
127 => 0.18096829539069
128 => 0.17823499843087
129 => 0.18278053219054
130 => 0.18410978478451
131 => 0.18277355019255
201 => 0.18246391544029
202 => 0.18187715814426
203 => 0.18258839877442
204 => 0.18410254538941
205 => 0.18338850180768
206 => 0.18386014017324
207 => 0.18206274107509
208 => 0.18588564590144
209 => 0.19195733879782
210 => 0.1919768602833
211 => 0.19126281285261
212 => 0.19097064002834
213 => 0.19170329602425
214 => 0.19210073184691
215 => 0.19447000699154
216 => 0.19701233361782
217 => 0.20887626267867
218 => 0.20554491887266
219 => 0.21607130252374
220 => 0.2243963053119
221 => 0.22689260963982
222 => 0.22459612711833
223 => 0.21673998446586
224 => 0.21635452462763
225 => 0.22809491852828
226 => 0.22477771950724
227 => 0.22438314923893
228 => 0.22018558822107
301 => 0.22266686666067
302 => 0.22212417466777
303 => 0.22126750880757
304 => 0.22600161522298
305 => 0.23486343981603
306 => 0.23348224134754
307 => 0.23245124076276
308 => 0.22793369632003
309 => 0.23065426710464
310 => 0.22968552395734
311 => 0.23384785929772
312 => 0.23138218404909
313 => 0.2247525884621
314 => 0.22580837341076
315 => 0.22564879363972
316 => 0.22893293401989
317 => 0.22794711659514
318 => 0.22545629696573
319 => 0.23483315106297
320 => 0.2342242703147
321 => 0.23508752400623
322 => 0.23546755497825
323 => 0.24117508082854
324 => 0.24351327154895
325 => 0.24404408177827
326 => 0.2462651821205
327 => 0.24398881877838
328 => 0.25309589516641
329 => 0.2591515695518
330 => 0.2661855469726
331 => 0.27646407853927
401 => 0.28032890149007
402 => 0.2796307558167
403 => 0.28742382114329
404 => 0.30142778630507
405 => 0.28246135756458
406 => 0.3024330530824
407 => 0.29611024486577
408 => 0.28111898032661
409 => 0.28015371962568
410 => 0.29030597802376
411 => 0.31282271003205
412 => 0.30718252404663
413 => 0.31283193535578
414 => 0.30624159697751
415 => 0.3059143311293
416 => 0.31251185733066
417 => 0.32792733691257
418 => 0.32060402040382
419 => 0.31010425043764
420 => 0.31785711718615
421 => 0.31114086651464
422 => 0.29600727399154
423 => 0.30717821110271
424 => 0.29970852358644
425 => 0.30188857551412
426 => 0.31758874764114
427 => 0.31569966139332
428 => 0.31814431392268
429 => 0.31382956619605
430 => 0.30979891144611
501 => 0.302275395035
502 => 0.30004805273054
503 => 0.30066361001211
504 => 0.30004774769092
505 => 0.29583840940359
506 => 0.29492940320122
507 => 0.29341435303945
508 => 0.29388393043591
509 => 0.29103519288823
510 => 0.29641134921991
511 => 0.2974092112096
512 => 0.30132152945357
513 => 0.30172771931227
514 => 0.31262346993336
515 => 0.30662227358692
516 => 0.31064839421448
517 => 0.31028826009023
518 => 0.28144388648666
519 => 0.28541838667317
520 => 0.29160146169651
521 => 0.28881599477945
522 => 0.28487799625762
523 => 0.28169785130911
524 => 0.2768796065256
525 => 0.28366119353219
526 => 0.29257825930448
527 => 0.30195387081566
528 => 0.31321805373194
529 => 0.31070401923457
530 => 0.30174329475124
531 => 0.30214526630575
601 => 0.30463009628575
602 => 0.30141201569104
603 => 0.30046294089927
604 => 0.30449970798339
605 => 0.30452750697973
606 => 0.30082471633749
607 => 0.29670974214217
608 => 0.29669250025005
609 => 0.29596028033792
610 => 0.30637185727324
611 => 0.31209717185851
612 => 0.3127535699489
613 => 0.31205299103712
614 => 0.31232261605528
615 => 0.30899118164681
616 => 0.31660585279839
617 => 0.32359382806
618 => 0.32172090141357
619 => 0.31891311811836
620 => 0.31667658348256
621 => 0.32119404493147
622 => 0.32099288948429
623 => 0.32353279419226
624 => 0.32341756944351
625 => 0.32256349502087
626 => 0.32172093191526
627 => 0.32506159938998
628 => 0.32409954080674
629 => 0.32313598788079
630 => 0.32120343497522
701 => 0.32146610101139
702 => 0.31865880251956
703 => 0.317360017784
704 => 0.29782941158148
705 => 0.29261019542319
706 => 0.29425226707353
707 => 0.29479287969719
708 => 0.2925214701365
709 => 0.29577808796929
710 => 0.29527054752966
711 => 0.29724509047903
712 => 0.29601148176896
713 => 0.29606210950072
714 => 0.29968988968394
715 => 0.30074304970482
716 => 0.30020740401816
717 => 0.30058255189623
718 => 0.30922767640647
719 => 0.30799861615664
720 => 0.30734570239499
721 => 0.30752656396906
722 => 0.30973557863498
723 => 0.31035398213371
724 => 0.30773376305515
725 => 0.30896947351991
726 => 0.31423097184383
727 => 0.31607219848219
728 => 0.32194851007291
729 => 0.31945214846606
730 => 0.32403432823543
731 => 0.33811838666626
801 => 0.34936970708352
802 => 0.33902252784732
803 => 0.35968414494661
804 => 0.37577217759135
805 => 0.37515469210242
806 => 0.37234937148791
807 => 0.35403357404436
808 => 0.33717910416364
809 => 0.35127858389745
810 => 0.35131452637088
811 => 0.35010336855754
812 => 0.34258097139822
813 => 0.34984160544213
814 => 0.35041792820579
815 => 0.35009534071473
816 => 0.34432793644988
817 => 0.33552217613192
818 => 0.33724280062003
819 => 0.34006121863136
820 => 0.33472536535233
821 => 0.33302023691893
822 => 0.33619039509058
823 => 0.34640530524832
824 => 0.34447423565395
825 => 0.34442380762277
826 => 0.35268574224846
827 => 0.34677198009355
828 => 0.33726450320503
829 => 0.33486373990247
830 => 0.3263426475263
831 => 0.33222819638161
901 => 0.33244000680707
902 => 0.32921655184787
903 => 0.3375260688095
904 => 0.33744949514783
905 => 0.34533814479452
906 => 0.36041828007747
907 => 0.35595834202591
908 => 0.35077191931183
909 => 0.35133582726475
910 => 0.3575205056649
911 => 0.3537811079217
912 => 0.35512582142216
913 => 0.35751847027997
914 => 0.35896201474201
915 => 0.35112812343155
916 => 0.34930166862875
917 => 0.34556538310074
918 => 0.34459065594755
919 => 0.34763378254996
920 => 0.34683202620547
921 => 0.33242220496098
922 => 0.33091629846544
923 => 0.33096248246772
924 => 0.32717580898274
925 => 0.32140022301238
926 => 0.33657811810018
927 => 0.33535912071012
928 => 0.3340134419344
929 => 0.33417827990609
930 => 0.34076648973711
1001 => 0.33694499532255
1002 => 0.34710506455428
1003 => 0.34501645975988
1004 => 0.34287429013352
1005 => 0.34257817703907
1006 => 0.34175362449425
1007 => 0.33892592701556
1008 => 0.33551131239177
1009 => 0.33325668804829
1010 => 0.30741167884267
1011 => 0.31220836221773
1012 => 0.31772650920929
1013 => 0.3196313514382
1014 => 0.31637298699459
1015 => 0.33905458710376
1016 => 0.34319873400904
1017 => 0.33064584271693
1018 => 0.32829770928735
1019 => 0.33920853034048
1020 => 0.33262797145182
1021 => 0.33559119671645
1022 => 0.32918632449187
1023 => 0.34220053037435
1024 => 0.34210138393028
1025 => 0.33703856390283
1026 => 0.34131762472134
1027 => 0.34057403260161
1028 => 0.33485812125979
1029 => 0.34238173495917
1030 => 0.3423854665777
1031 => 0.33751261237648
1101 => 0.33182218547439
1102 => 0.33080487154619
1103 => 0.33003846215818
1104 => 0.33540270698875
1105 => 0.34021227213028
1106 => 0.34916168046636
1107 => 0.35141177435475
1108 => 0.36019404059836
1109 => 0.35496462865107
1110 => 0.35728275923508
1111 => 0.35979941790362
1112 => 0.36100599661637
1113 => 0.35903994135252
1114 => 0.37268241575385
1115 => 0.37383425858794
1116 => 0.3742204615268
1117 => 0.36962029591719
1118 => 0.37370631966069
1119 => 0.37179460446599
1120 => 0.37676835631283
1121 => 0.37754830411046
1122 => 0.37688771607331
1123 => 0.37713528381492
1124 => 0.36549383861079
1125 => 0.36489016826344
1126 => 0.35665908024283
1127 => 0.36001330945236
1128 => 0.35374273871753
1129 => 0.35573120129158
1130 => 0.35660769664746
1201 => 0.35614986521422
1202 => 0.36020295253922
1203 => 0.35675700032194
1204 => 0.34766256585352
1205 => 0.33856565361252
1206 => 0.33845144928952
1207 => 0.3360563928703
1208 => 0.33432520575567
1209 => 0.33465869381111
1210 => 0.33583394921601
1211 => 0.33425689777504
1212 => 0.33459344165851
1213 => 0.34018231250426
1214 => 0.34130312069437
1215 => 0.33749417653634
1216 => 0.32220071611383
1217 => 0.3184476625654
1218 => 0.32114528302972
1219 => 0.31985599419679
1220 => 0.25814875105361
1221 => 0.27264595251363
1222 => 0.26403220768453
1223 => 0.26800181760112
1224 => 0.25920941464903
1225 => 0.26340561018709
1226 => 0.26263072609173
1227 => 0.28594179703606
1228 => 0.28557782672659
1229 => 0.28575204005285
1230 => 0.27743638408
1231 => 0.29068344983942
]
'min_raw' => 0.1691199183813
'max_raw' => 0.37754830411046
'avg_raw' => 0.27333411124588
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.169119'
'max' => '$0.377548'
'avg' => '$0.273334'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.026077948272558
'max_diff' => 0.057116633145836
'year' => 2035
]
10 => [
'items' => [
101 => 0.29720943078158
102 => 0.29600164539255
103 => 0.29630561895425
104 => 0.29108234605156
105 => 0.28580261275206
106 => 0.27994657597779
107 => 0.29082636847636
108 => 0.28961672127477
109 => 0.2923912167379
110 => 0.29944753987685
111 => 0.30048661026343
112 => 0.3018831314002
113 => 0.30138257798381
114 => 0.31330779112167
115 => 0.31186356912559
116 => 0.31534372860513
117 => 0.30818477651538
118 => 0.30008374269186
119 => 0.30162348437896
120 => 0.30147519487268
121 => 0.29958729925885
122 => 0.2978829915122
123 => 0.29504579929977
124 => 0.30402309528535
125 => 0.30365863346281
126 => 0.30955884672932
127 => 0.30851592672285
128 => 0.30155105167383
129 => 0.30179980354876
130 => 0.30347277945377
131 => 0.30926296816269
201 => 0.31098189039761
202 => 0.31018561713119
203 => 0.31207033689
204 => 0.31355994254115
205 => 0.31225740842541
206 => 0.33069854470286
207 => 0.32304049920893
208 => 0.32677297729833
209 => 0.32766315132962
210 => 0.32538298926683
211 => 0.32587747477176
212 => 0.32662648557251
213 => 0.33117433248329
214 => 0.34310919870729
215 => 0.34839506971451
216 => 0.36429787344003
217 => 0.34795615171024
218 => 0.34698650157156
219 => 0.34985107674119
220 => 0.35918770601081
221 => 0.36675416708884
222 => 0.36926439874803
223 => 0.3695961673012
224 => 0.37430552877089
225 => 0.37700484694093
226 => 0.37373368841997
227 => 0.37096172407803
228 => 0.36103289187408
229 => 0.362182181237
301 => 0.37009964525209
302 => 0.38128352950972
303 => 0.39088046568759
304 => 0.38751995312509
305 => 0.41315829182481
306 => 0.41570022838366
307 => 0.41534901494187
308 => 0.42113992471382
309 => 0.40964614811477
310 => 0.40473233593724
311 => 0.37156105423189
312 => 0.38088083135209
313 => 0.39442767472763
314 => 0.39263469920883
315 => 0.38279661944135
316 => 0.39087300262188
317 => 0.38820269777055
318 => 0.38609651754325
319 => 0.39574533746763
320 => 0.38513606360909
321 => 0.39432183910522
322 => 0.38254098701676
323 => 0.38753530366341
324 => 0.38470028798685
325 => 0.38653489057604
326 => 0.37580984132675
327 => 0.38159681756581
328 => 0.3755690840894
329 => 0.37556622615889
330 => 0.37543316360831
331 => 0.38252476531226
401 => 0.38275602218923
402 => 0.3775153178152
403 => 0.37676005043971
404 => 0.37955266977854
405 => 0.37628324392093
406 => 0.37781298770219
407 => 0.37632957830169
408 => 0.37599563160026
409 => 0.37333468746689
410 => 0.37218827957006
411 => 0.3726378156457
412 => 0.3711033172678
413 => 0.37017872648988
414 => 0.37524923923097
415 => 0.37254026881731
416 => 0.37483405066298
417 => 0.37221999675149
418 => 0.36315854700522
419 => 0.35794721143304
420 => 0.34083097285916
421 => 0.34568511688609
422 => 0.34890341939791
423 => 0.34783977043695
424 => 0.3501248999826
425 => 0.35026518837765
426 => 0.34952226946822
427 => 0.34866206454491
428 => 0.34824336436056
429 => 0.35136401250009
430 => 0.35317565378128
501 => 0.34922641911031
502 => 0.34830116868256
503 => 0.35229406297814
504 => 0.35472972619182
505 => 0.37271329488071
506 => 0.37138101402607
507 => 0.37472477752429
508 => 0.37434832106862
509 => 0.37785311791805
510 => 0.38358197952921
511 => 0.37193360205883
512 => 0.3739553576171
513 => 0.37345966984337
514 => 0.37887145898068
515 => 0.37888835399565
516 => 0.37564371606891
517 => 0.37740268692724
518 => 0.37642087764896
519 => 0.37819513971429
520 => 0.371363220603
521 => 0.37968376062045
522 => 0.38440097064659
523 => 0.38446646911238
524 => 0.38670238922667
525 => 0.38897421355855
526 => 0.39333478252941
527 => 0.38885259965666
528 => 0.3807895890003
529 => 0.38137171232632
530 => 0.37664437212864
531 => 0.37672383957142
601 => 0.37629963613385
602 => 0.37757270258255
603 => 0.37164258709776
604 => 0.37303437334909
605 => 0.37108586444693
606 => 0.37395112193928
607 => 0.37086857852155
608 => 0.37345943080771
609 => 0.37457755676631
610 => 0.37870346562506
611 => 0.37025917842843
612 => 0.35304070520653
613 => 0.35666023703158
614 => 0.35130666515424
615 => 0.35180215861397
616 => 0.35280313425983
617 => 0.34955864469274
618 => 0.35017759105653
619 => 0.35015547793695
620 => 0.34996491901895
621 => 0.34912090197442
622 => 0.34789691027616
623 => 0.35277291647723
624 => 0.35360144494601
625 => 0.35544316109914
626 => 0.36092285912286
627 => 0.36037530807011
628 => 0.36126838655482
629 => 0.35931880123713
630 => 0.35189259428531
701 => 0.35229587305135
702 => 0.34726698037669
703 => 0.35531456100696
704 => 0.35340878769084
705 => 0.35218012323614
706 => 0.35184487075619
707 => 0.35733815189141
708 => 0.35898182770371
709 => 0.35795759924047
710 => 0.35585687678084
711 => 0.35989088492616
712 => 0.36097021532471
713 => 0.36121183759677
714 => 0.36835932658594
715 => 0.36161130283257
716 => 0.36323561921959
717 => 0.37590807198959
718 => 0.36441590600615
719 => 0.37050356263346
720 => 0.37020560352019
721 => 0.37331984265565
722 => 0.36995014501325
723 => 0.36999191645408
724 => 0.37275714982954
725 => 0.36887387826617
726 => 0.36791232561651
727 => 0.36658394751777
728 => 0.36948441249862
729 => 0.37122311007789
730 => 0.38523573563416
731 => 0.39428853079687
801 => 0.39389552508381
802 => 0.39748686162533
803 => 0.3958689316205
804 => 0.39064420884655
805 => 0.39956217353463
806 => 0.39674015636383
807 => 0.39697280003064
808 => 0.39696414102174
809 => 0.3988405357353
810 => 0.39751093811169
811 => 0.39489016471517
812 => 0.39662995640215
813 => 0.40179651572559
814 => 0.41783367439494
815 => 0.4268082808504
816 => 0.41729339181747
817 => 0.42385663486295
818 => 0.41992102775828
819 => 0.41920581087319
820 => 0.4233280125256
821 => 0.42745742954631
822 => 0.42719440353405
823 => 0.42419665882492
824 => 0.42250330890369
825 => 0.43532592182108
826 => 0.4447734045911
827 => 0.44412914960291
828 => 0.44697268159783
829 => 0.45532137948202
830 => 0.45608467978727
831 => 0.45598852149306
901 => 0.45409660204437
902 => 0.46231697932678
903 => 0.46917456267954
904 => 0.4536586773548
905 => 0.45956692336861
906 => 0.462219325356
907 => 0.46611383840571
908 => 0.47268453471673
909 => 0.47982205370163
910 => 0.48083137714501
911 => 0.48011521386136
912 => 0.47540782822401
913 => 0.48321778666559
914 => 0.48779267715461
915 => 0.49051691974631
916 => 0.49742514568812
917 => 0.46223570568769
918 => 0.43732687102674
919 => 0.4334369968065
920 => 0.44134720899511
921 => 0.44343306886648
922 => 0.44259226136778
923 => 0.4145551033447
924 => 0.43328938697193
925 => 0.45344590093152
926 => 0.45422019472269
927 => 0.46431096706369
928 => 0.46759693617266
929 => 0.47572133053493
930 => 0.47521314745553
1001 => 0.4771913081954
1002 => 0.47673656329827
1003 => 0.49178529306131
1004 => 0.50838627674793
1005 => 0.50781143747076
1006 => 0.50542484965188
1007 => 0.50896933953661
1008 => 0.52610333377073
1009 => 0.52452591014832
1010 => 0.52605824283287
1011 => 0.5462601876645
1012 => 0.57252558963877
1013 => 0.56032267341848
1014 => 0.58679949032195
1015 => 0.60346524308694
1016 => 0.63228693922297
1017 => 0.62867832091689
1018 => 0.63989839571928
1019 => 0.62221814100765
1020 => 0.58162070242073
1021 => 0.5751960023636
1022 => 0.5880584145773
1023 => 0.61967939990883
1024 => 0.58706255721967
1025 => 0.59366090201542
1026 => 0.59176057827035
1027 => 0.59165931809383
1028 => 0.59552400717666
1029 => 0.5899180740934
1030 => 0.56707849422408
1031 => 0.5775457390837
1101 => 0.57350383316502
1102 => 0.57798862912584
1103 => 0.60219122325586
1104 => 0.5914906794732
1105 => 0.58021852583975
1106 => 0.59435630798723
1107 => 0.61235856293
1108 => 0.61123201416884
1109 => 0.60904603871135
1110 => 0.62136826791129
1111 => 0.6417209804752
1112 => 0.6472222368974
1113 => 0.65128315192003
1114 => 0.65184308349193
1115 => 0.65761072667803
1116 => 0.62659665563315
1117 => 0.67581678287921
1118 => 0.68431573917603
1119 => 0.68271828763788
1120 => 0.69216451987104
1121 => 0.68938519872026
1122 => 0.68535839843491
1123 => 0.70033268579569
1124 => 0.68316587369923
1125 => 0.65879974516987
1126 => 0.64543200515128
1127 => 0.66303572355258
1128 => 0.67378570009515
1129 => 0.68089075076287
1130 => 0.68304073480193
1201 => 0.62900418968263
1202 => 0.59988148886751
1203 => 0.61854880619756
1204 => 0.64132422168963
1205 => 0.62647013705013
1206 => 0.6270523890455
1207 => 0.60587436793434
1208 => 0.64319800663449
1209 => 0.63776026641709
1210 => 0.66597127228416
1211 => 0.65923848932652
1212 => 0.68224346946617
1213 => 0.67618548721456
1214 => 0.70133183284377
1215 => 0.7113633909254
1216 => 0.72820793823179
1217 => 0.74059885580001
1218 => 0.74787503959655
1219 => 0.74743820481369
1220 => 0.77627006999597
1221 => 0.75926892640662
1222 => 0.73791148319651
1223 => 0.73752519443071
1224 => 0.74858651690654
1225 => 0.77176801429025
1226 => 0.77777863928477
1227 => 0.78113775867217
1228 => 0.77599315039858
1229 => 0.75753962751529
1230 => 0.74957148989577
1231 => 0.75636057400677
]
'min_raw' => 0.27994657597779
'max_raw' => 0.78113775867217
'avg_raw' => 0.53054216732498
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.279946'
'max' => '$0.781137'
'avg' => '$0.530542'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11082665759649
'max_diff' => 0.40358945456171
'year' => 2036
]
11 => [
'items' => [
101 => 0.74805810753166
102 => 0.76239049392836
103 => 0.78207192168356
104 => 0.77800778468091
105 => 0.7915935853513
106 => 0.80565345977724
107 => 0.8257597116748
108 => 0.83101623045318
109 => 0.83970505610633
110 => 0.84864871183396
111 => 0.85152117301539
112 => 0.85700559268311
113 => 0.85697668708427
114 => 0.87350435489696
115 => 0.89173488431362
116 => 0.89861648713069
117 => 0.91444035335473
118 => 0.88734253698046
119 => 0.90789654197762
120 => 0.92643676898517
121 => 0.90433234602293
122 => 0.93479814340637
123 => 0.93598106128179
124 => 0.95384171677581
125 => 0.93573652074506
126 => 0.92498571313582
127 => 0.95602289187617
128 => 0.97104080500665
129 => 0.96651728735192
130 => 0.93209309464579
131 => 0.91205673796774
201 => 0.85961772781673
202 => 0.92173400053726
203 => 0.95198902502292
204 => 0.93201474144145
205 => 0.94208860824526
206 => 0.99704835906452
207 => 1.0179734737962
208 => 1.0136211962096
209 => 1.0143566594771
210 => 1.0256474715686
211 => 1.0757171503461
212 => 1.0457142382166
213 => 1.0686503403519
214 => 1.0808155662222
215 => 1.092115305986
216 => 1.0643667164456
217 => 1.0282662091613
218 => 1.0168316631082
219 => 0.93002869258938
220 => 0.92551022100768
221 => 0.92297386598517
222 => 0.90698250634279
223 => 0.89441767806593
224 => 0.88442566011801
225 => 0.85820362115352
226 => 0.867052789548
227 => 0.82526033240348
228 => 0.85199766545081
301 => 0.78529589473397
302 => 0.84084711144077
303 => 0.81061310979115
304 => 0.830914428758
305 => 0.83084359936863
306 => 0.79346243461161
307 => 0.77190175890477
308 => 0.78564106061922
309 => 0.80037068268424
310 => 0.80276051430789
311 => 0.82185785379766
312 => 0.82718751075332
313 => 0.81103840135979
314 => 0.78391364879472
315 => 0.79021411016585
316 => 0.77177408025618
317 => 0.73945863712499
318 => 0.76266815255531
319 => 0.77059290157358
320 => 0.77409292220305
321 => 0.74231439533724
322 => 0.73232889225062
323 => 0.72701269419379
324 => 0.77981144003399
325 => 0.78270387451755
326 => 0.76790577075065
327 => 0.8347946029908
328 => 0.81965560019421
329 => 0.83656957546373
330 => 0.78964240933473
331 => 0.79143509027666
401 => 0.76921901779
402 => 0.78165853390403
403 => 0.77286668485895
404 => 0.78065354393171
405 => 0.7853209551535
406 => 0.80753338220128
407 => 0.84110074167734
408 => 0.80421558631951
409 => 0.78814419592494
410 => 0.7981147961368
411 => 0.82466781841131
412 => 0.86489700638138
413 => 0.84108051741524
414 => 0.8516498707882
415 => 0.85395880430239
416 => 0.8363974070731
417 => 0.86554452014654
418 => 0.88116469483332
419 => 0.89718776192224
420 => 0.91110014211941
421 => 0.89078779657213
422 => 0.91252491796808
423 => 0.89500863524141
424 => 0.87929471883557
425 => 0.87931855036033
426 => 0.86946098105526
427 => 0.85036069839301
428 => 0.84683831321918
429 => 0.86516220572165
430 => 0.87985623222955
501 => 0.88106650263238
502 => 0.8892018707135
503 => 0.89401629774295
504 => 0.94120422752771
505 => 0.96018360324618
506 => 0.98339122461351
507 => 0.99243190104597
508 => 1.0196410958458
509 => 0.99766746122217
510 => 0.99291332715071
511 => 0.92691272062621
512 => 0.93772031624717
513 => 0.9550243196142
514 => 0.92719805726827
515 => 0.94484741600407
516 => 0.94833177328305
517 => 0.9262525315216
518 => 0.93804600853411
519 => 0.90672603011113
520 => 0.84178343161934
521 => 0.86561681982349
522 => 0.88316621577347
523 => 0.85812106392793
524 => 0.90301352922983
525 => 0.87678827776905
526 => 0.86847613209006
527 => 0.83604748830241
528 => 0.85135255987721
529 => 0.87205288832965
530 => 0.85926249201752
531 => 0.88580448485285
601 => 0.9233950251986
602 => 0.95018428280437
603 => 0.9522408293598
604 => 0.93501713146016
605 => 0.96261821726451
606 => 0.9628192610418
607 => 0.93168512350075
608 => 0.91261563761246
609 => 0.9082830102961
610 => 0.91910676279399
611 => 0.93224879650137
612 => 0.95297012076666
613 => 0.96549158304225
614 => 0.99814091578656
615 => 1.0069748890974
616 => 1.0166807474727
617 => 1.029650767438
618 => 1.0452246018512
619 => 1.0111499387741
620 => 1.0125037886612
621 => 0.98077393419962
622 => 0.94686603418598
623 => 0.97259790361693
624 => 1.0062388999307
625 => 0.99852161820636
626 => 0.99765326636261
627 => 0.99911359330308
628 => 0.99329501490575
629 => 0.96697780046121
630 => 0.95376146012164
701 => 0.9708139110077
702 => 0.97987652973637
703 => 0.99393186104113
704 => 0.99219924478577
705 => 1.0284042687945
706 => 1.0424724463411
707 => 1.0388732045134
708 => 1.0395355516303
709 => 1.0650053150948
710 => 1.0933329303237
711 => 1.1198654801437
712 => 1.14685552942
713 => 1.1143179715778
714 => 1.0977974063431
715 => 1.1148424126626
716 => 1.1057980923836
717 => 1.1577694394261
718 => 1.1613678227347
719 => 1.2133354116572
720 => 1.26265884173
721 => 1.2316796790223
722 => 1.2608916341235
723 => 1.2924867452512
724 => 1.3534388407384
725 => 1.3329123192989
726 => 1.3171893255678
727 => 1.3023311724649
728 => 1.3332486304067
729 => 1.3730234461303
730 => 1.3815905604788
731 => 1.3954725586128
801 => 1.3808773349848
802 => 1.3984556742336
803 => 1.4605149360952
804 => 1.4437459757279
805 => 1.4199313562615
806 => 1.4689211832664
807 => 1.4866504112163
808 => 1.6110834178378
809 => 1.7681852287685
810 => 1.7031440474571
811 => 1.6627708873513
812 => 1.6722595376403
813 => 1.7296278007603
814 => 1.7480526660968
815 => 1.6979675306803
816 => 1.7156584472304
817 => 1.8131371367541
818 => 1.8654313261928
819 => 1.7944087928884
820 => 1.5984604402961
821 => 1.41778711034
822 => 1.4657098132704
823 => 1.4602768659727
824 => 1.5650055571518
825 => 1.443346041569
826 => 1.4453944757982
827 => 1.5522888454012
828 => 1.5237712602246
829 => 1.4775764244948
830 => 1.418124383763
831 => 1.3082217878223
901 => 1.2108779937369
902 => 1.4017915908752
903 => 1.3935590494128
904 => 1.3816371093808
905 => 1.4081680968332
906 => 1.5369950409499
907 => 1.5340251629159
908 => 1.5151323141086
909 => 1.529462373415
910 => 1.4750642958135
911 => 1.4890839190326
912 => 1.4177584907614
913 => 1.450000563153
914 => 1.4774773111245
915 => 1.4829936750799
916 => 1.4954223247441
917 => 1.3892208741516
918 => 1.4369022075569
919 => 1.4649105237957
920 => 1.3383679320774
921 => 1.4624091836229
922 => 1.3873721431737
923 => 1.3619034446267
924 => 1.3961936919744
925 => 1.3828307492346
926 => 1.3713420757653
927 => 1.364931198569
928 => 1.3901101717446
929 => 1.3889355425506
930 => 1.3477378554072
1001 => 1.2939971519612
1002 => 1.3120342960161
1003 => 1.3054812324819
1004 => 1.2817320848716
1005 => 1.2977361428779
1006 => 1.2272623708866
1007 => 1.1060159090834
1008 => 1.1861150356301
1009 => 1.1830313063892
1010 => 1.1814763502699
1011 => 1.2416686300925
1012 => 1.2358825312597
1013 => 1.2253807052206
1014 => 1.2815392106008
1015 => 1.2610406006985
1016 => 1.3242124863373
1017 => 1.3658215759205
1018 => 1.3552681648891
1019 => 1.3944017147562
1020 => 1.3124498353853
1021 => 1.3396709623736
1022 => 1.345281198919
1023 => 1.2808462233616
1024 => 1.2368292085867
1025 => 1.2338937755319
1026 => 1.1575743378304
1027 => 1.1983435654215
1028 => 1.2342187985565
1029 => 1.2170373459154
1030 => 1.2115982112905
1031 => 1.2393855704846
1101 => 1.2415448862767
1102 => 1.1923122573846
1103 => 1.2025492799259
1104 => 1.2452393656863
1105 => 1.2014735992962
1106 => 1.1164438642976
1107 => 1.0953553143898
1108 => 1.0925417130931
1109 => 1.0353478931893
1110 => 1.0967645521335
1111 => 1.0699545346402
1112 => 1.1546470586681
1113 => 1.1062711431585
1114 => 1.1041857541286
1115 => 1.1010333827498
1116 => 1.0518042993118
1117 => 1.0625823399132
1118 => 1.0984101884145
1119 => 1.1111939683893
1120 => 1.1098605154035
1121 => 1.098234612411
1122 => 1.1035568912667
1123 => 1.0864119766676
1124 => 1.0803577504821
1125 => 1.0612489472946
1126 => 1.0331642855505
1127 => 1.0370696300192
1128 => 0.98142656635279
1129 => 0.95110927206639
1130 => 0.94271784458343
1201 => 0.93149647705133
1202 => 0.9439853279051
1203 => 0.9812689365446
1204 => 0.93629699436655
1205 => 0.85919575391723
1206 => 0.86382966984235
1207 => 0.87424070310412
1208 => 0.85483981149669
1209 => 0.83647849578367
1210 => 0.85244217009551
1211 => 0.81977335810944
1212 => 0.87818857295555
1213 => 0.87660860510071
1214 => 0.89838218482268
1215 => 0.91199765106167
1216 => 0.88061840944034
1217 => 0.87272661503107
1218 => 0.87722213978865
1219 => 0.80292112945102
1220 => 0.89231020711374
1221 => 0.89308324756933
1222 => 0.8864640058621
1223 => 0.93406093013935
1224 => 1.0345052862173
1225 => 0.99671407909593
1226 => 0.98208018145324
1227 => 0.95426113133718
1228 => 0.99132836388508
1229 => 0.98848217876431
1230 => 0.97561065026452
1231 => 0.96782590966623
]
'min_raw' => 0.72701269419379
'max_raw' => 1.8654313261928
'avg_raw' => 1.2962220101933
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.727012'
'max' => '$1.86'
'avg' => '$1.29'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.447066118216
'max_diff' => 1.0842935675206
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.022820097731945
]
1 => [
'year' => 2028
'avg' => 0.039165912429724
]
2 => [
'year' => 2029
'avg' => 0.10699421378909
]
3 => [
'year' => 2030
'avg' => 0.082545876597721
]
4 => [
'year' => 2031
'avg' => 0.081070280616829
]
5 => [
'year' => 2032
'avg' => 0.14214171567758
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.022820097731945
'min' => '$0.02282'
'max_raw' => 0.14214171567758
'max' => '$0.142141'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14214171567758
]
1 => [
'year' => 2033
'avg' => 0.365603108983
]
2 => [
'year' => 2034
'avg' => 0.23173682053668
]
3 => [
'year' => 2035
'avg' => 0.27333411124588
]
4 => [
'year' => 2036
'avg' => 0.53054216732498
]
5 => [
'year' => 2037
'avg' => 1.2962220101933
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14214171567758
'min' => '$0.142141'
'max_raw' => 1.2962220101933
'max' => '$1.29'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2962220101933
]
]
]
]
'prediction_2025_max_price' => '$0.039018'
'last_price' => 0.03783308
'sma_50day_nextmonth' => '$0.035131'
'sma_200day_nextmonth' => '$0.041186'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.037082'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.036646'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0360071'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035614'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.03809'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.039529'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.042183'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.03719'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0368084'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.03631'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036218'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.037315'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.039265'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.044683'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.04027'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.051426'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.080871'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.086227'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.037036'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.036997'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.037738'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.040517'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.052663'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0684079'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.086758'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.42'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 126.34
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036077'
'vwma_10_action' => 'BUY'
'hma_9' => '0.037319'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 277.67
'cci_20_action' => 'SELL'
'adx_14' => 16.02
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000578'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.73
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '0.000171'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767714201
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Ferma para 2026
La previsión del precio de Ferma para 2026 sugiere que el precio medio podría oscilar entre $0.013071 en el extremo inferior y $0.039018 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Ferma podría potencialmente ganar 3.13% para 2026 si FERMA alcanza el objetivo de precio previsto.
Predicción de precio de Ferma 2027-2032
La predicción del precio de FERMA para 2027-2032 está actualmente dentro de un rango de precios de $0.02282 en el extremo inferior y $0.142141 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Ferma alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Ferma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.012583 | $0.02282 | $0.033056 |
| 2028 | $0.0227094 | $0.039165 | $0.055622 |
| 2029 | $0.049886 | $0.106994 | $0.1641024 |
| 2030 | $0.042425 | $0.082545 | $0.122665 |
| 2031 | $0.05016 | $0.08107 | $0.111979 |
| 2032 | $0.076566 | $0.142141 | $0.207717 |
Predicción de precio de Ferma 2032-2037
La predicción de precio de Ferma para 2032-2037 se estima actualmente entre $0.142141 en el extremo inferior y $1.29 en el extremo superior. Comparado con el precio actual, Ferma podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Ferma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.076566 | $0.142141 | $0.207717 |
| 2033 | $0.177923 | $0.3656031 | $0.553282 |
| 2034 | $0.143041 | $0.231736 | $0.320431 |
| 2035 | $0.169119 | $0.273334 | $0.377548 |
| 2036 | $0.279946 | $0.530542 | $0.781137 |
| 2037 | $0.727012 | $1.29 | $1.86 |
Ferma Histograma de precios potenciales
Pronóstico de precio de Ferma basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Ferma es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de FERMA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Ferma
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Ferma aumentar durante el próximo mes, alcanzando $0.041186 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Ferma alcance $0.035131 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 61.42, lo que sugiere que el mercado de FERMA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FERMA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.037082 | BUY |
| SMA 5 | $0.036646 | BUY |
| SMA 10 | $0.0360071 | BUY |
| SMA 21 | $0.035614 | BUY |
| SMA 50 | $0.03809 | SELL |
| SMA 100 | $0.039529 | SELL |
| SMA 200 | $0.042183 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.03719 | BUY |
| EMA 5 | $0.0368084 | BUY |
| EMA 10 | $0.03631 | BUY |
| EMA 21 | $0.036218 | BUY |
| EMA 50 | $0.037315 | BUY |
| EMA 100 | $0.039265 | SELL |
| EMA 200 | $0.044683 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.04027 | SELL |
| SMA 50 | $0.051426 | SELL |
| SMA 100 | $0.080871 | SELL |
| SMA 200 | $0.086227 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.040517 | SELL |
| EMA 50 | $0.052663 | SELL |
| EMA 100 | $0.0684079 | SELL |
| EMA 200 | $0.086758 | SELL |
Osciladores de Ferma
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 61.42 | NEUTRAL |
| Stoch RSI (14) | 126.34 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 277.67 | SELL |
| Índice Direccional Medio (14) | 16.02 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000578 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.73 | SELL |
| VWMA (10) | 0.036077 | BUY |
| Promedio Móvil de Hull (9) | 0.037319 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000171 | NEUTRAL |
Predicción de precios de Ferma basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Ferma
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Ferma por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.053161 | $0.0747012 | $0.104967 | $0.147497 | $0.207258 | $0.291232 |
| Amazon.com acción | $0.07894 | $0.164715 | $0.343687 | $0.717124 | $1.49 | $3.12 |
| Apple acción | $0.053663 | $0.076117 | $0.107966 | $0.153142 | $0.21722 | $0.308111 |
| Netflix acción | $0.059694 | $0.094188 | $0.148615 | $0.234491 | $0.36999 | $0.583787 |
| Google acción | $0.048993 | $0.063446 | $0.082163 | $0.10640077 | $0.137788 | $0.178435 |
| Tesla acción | $0.085764 | $0.194422 | $0.44074 | $0.999125 | $2.26 | $5.13 |
| Kodak acción | $0.02837 | $0.021275 | $0.015954 | $0.011963 | $0.008971 | $0.006727 |
| Nokia acción | $0.025062 | $0.016603 | $0.010998 | $0.007286 | $0.004826 | $0.003197 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Ferma
Podría preguntarse cosas como: "¿Debo invertir en Ferma ahora?", "¿Debería comprar FERMA hoy?", "¿Será Ferma una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Ferma regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Ferma, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Ferma a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Ferma es de $0.03783 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Ferma basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Ferma ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.038816 | $0.039825 | $0.04086 | $0.041922 |
| Si Ferma ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.039799 | $0.041868 | $0.044045 | $0.046335 |
| Si Ferma ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.04275 | $0.0483061 | $0.054584 | $0.061678 |
| Si Ferma ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.047667 | $0.060057 | $0.075668 | $0.095336 |
| Si Ferma ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0575011 | $0.087393 | $0.132826 | $0.201878 |
| Si Ferma ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0870032 | $0.200077 | $0.460111 | $1.05 |
| Si Ferma ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.136173 | $0.490131 | $1.76 | $6.34 |
Cuadro de preguntas
¿Es FERMA una buena inversión?
La decisión de adquirir Ferma depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Ferma ha experimentado un aumento de 0.3609% durante las últimas 24 horas, y Ferma ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Ferma dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Ferma subir?
Parece que el valor medio de Ferma podría potencialmente aumentar hasta $0.039018 para el final de este año. Mirando las perspectivas de Ferma en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.122665. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Ferma la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Ferma, el precio de Ferma aumentará en un 0.86% durante la próxima semana y alcanzará $0.038156 para el 13 de enero de 2026.
¿Cuál será el precio de Ferma el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Ferma, el precio de Ferma disminuirá en un -11.62% durante el próximo mes y alcanzará $0.033437 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Ferma este año en 2026?
Según nuestra predicción más reciente sobre el valor de Ferma en 2026, se anticipa que FERMA fluctúe dentro del rango de $0.013071 y $0.039018. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Ferma no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Ferma en 5 años?
El futuro de Ferma parece estar en una tendencia alcista, con un precio máximo de $0.122665 proyectada después de un período de cinco años. Basado en el pronóstico de Ferma para 2030, el valor de Ferma podría potencialmente alcanzar su punto más alto de aproximadamente $0.122665, mientras que su punto más bajo se anticipa que esté alrededor de $0.042425.
¿Cuánto será Ferma en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Ferma, se espera que el valor de FERMA en 2026 crezca en un 3.13% hasta $0.039018 si ocurre lo mejor. El precio estará entre $0.039018 y $0.013071 durante 2026.
¿Cuánto será Ferma en 2027?
Según nuestra última simulación experimental para la predicción de precios de Ferma, el valor de FERMA podría disminuir en un -12.62% hasta $0.033056 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.033056 y $0.012583 a lo largo del año.
¿Cuánto será Ferma en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Ferma sugiere que el valor de FERMA en 2028 podría aumentar en un 47.02% , alcanzando $0.055622 en el mejor escenario. Se espera que el precio oscile entre $0.055622 y $0.0227094 durante el año.
¿Cuánto será Ferma en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Ferma podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.1641024 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.1641024 y $0.049886.
¿Cuánto será Ferma en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Ferma, se espera que el valor de FERMA en 2030 aumente en un 224.23% , alcanzando $0.122665 en el mejor escenario. Se pronostica que el precio oscile entre $0.122665 y $0.042425 durante el transcurso de 2030.
¿Cuánto será Ferma en 2031?
Nuestra simulación experimental indica que el precio de Ferma podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.111979 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.111979 y $0.05016 durante el año.
¿Cuánto será Ferma en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Ferma, FERMA podría experimentar un 449.04% aumento en valor, alcanzando $0.207717 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.207717 y $0.076566 a lo largo del año.
¿Cuánto será Ferma en 2033?
Según nuestra predicción experimental de precios de Ferma, se anticipa que el valor de FERMA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.553282. A lo largo del año, el precio de FERMA podría oscilar entre $0.553282 y $0.177923.
¿Cuánto será Ferma en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Ferma sugieren que FERMA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.320431 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.320431 y $0.143041.
¿Cuánto será Ferma en 2035?
Basado en nuestra predicción experimental para el precio de Ferma, FERMA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.377548 en 2035. El rango de precios esperado para el año está entre $0.377548 y $0.169119.
¿Cuánto será Ferma en 2036?
Nuestra reciente simulación de predicción de precios de Ferma sugiere que el valor de FERMA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.781137 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.781137 y $0.279946.
¿Cuánto será Ferma en 2037?
Según la simulación experimental, el valor de Ferma podría aumentar en un 4830.69% en 2037, con un máximo de $1.86 bajo condiciones favorables. Se espera que el precio caiga entre $1.86 y $0.727012 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Templar DAO
Predicción de precios de PsyFi
Predicción de precios de Bankless DAO
Predicción de precios de Bitcoin Rhodium
Predicción de precios de Aston Villa Fan Token
Predicción de precios de Elon Doge Token
Predicción de precios de Biconomy Exchange Token
Predicción de precios de Treecle
Predicción de precios de ROOK
Predicción de precios de BlackPool Token
Predicción de precios de Tetu
Predicción de precios de SALT
Predicción de precios de Baby Shiba Inu
Predicción de precios de VersaGames
Predicción de precios de King Shiba
Predicción de precios de Galvan
Predicción de precios de Artem
Predicción de precios de CoinBuck
Predicción de precios de BABYTRUMP
Predicción de precios de Charged Particles
Predicción de precios de Gunstar Metaverse
Predicción de precios de GST
Predicción de precios de Blockchain Monster Hunt
Predicción de precios de Modefi
Predicción de precios de Factor
¿Cómo leer y predecir los movimientos de precio de Ferma?
Los traders de Ferma utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Ferma
Las medias móviles son herramientas populares para la predicción de precios de Ferma. Una media móvil simple (SMA) calcula el precio de cierre promedio de FERMA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FERMA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FERMA.
¿Cómo leer gráficos de Ferma y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Ferma en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FERMA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Ferma?
La acción del precio de Ferma está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FERMA. La capitalización de mercado de Ferma puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FERMA, grandes poseedores de Ferma, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Ferma.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


