Predicción del precio de Ferma - Pronóstico de FERMA
Predicción de precio de Ferma hasta $0.038879 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.013024 | $0.038879 |
| 2027 | $0.012538 | $0.032938 |
| 2028 | $0.022628 | $0.055424 |
| 2029 | $0.049708 | $0.163517 |
| 2030 | $0.042274 | $0.122228 |
| 2031 | $0.049981 | $0.11158 |
| 2032 | $0.076293 | $0.206976 |
| 2033 | $0.177288 | $0.551309 |
| 2034 | $0.142531 | $0.319288 |
| 2035 | $0.168516 | $0.3762014 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Ferma hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.61, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Ferma para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Ferma'
'name_with_ticker' => 'Ferma <small>FERMA</small>'
'name_lang' => 'Ferma'
'name_lang_with_ticker' => 'Ferma <small>FERMA</small>'
'name_with_lang' => 'Ferma'
'name_with_lang_with_ticker' => 'Ferma <small>FERMA</small>'
'image' => '/uploads/coins/ferma.png?1717575988'
'price_for_sd' => 0.03769
'ticker' => 'FERMA'
'marketcap' => '$414.68K'
'low24h' => '$0.03731'
'high24h' => '$0.03815'
'volume24h' => '$52.48K'
'current_supply' => '11M'
'max_supply' => '11M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03769'
'change_24h_pct' => '0.9191%'
'ath_price' => '$0.4502'
'ath_days' => 1689
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '23 may. 2021'
'ath_pct' => '-91.64%'
'fdv' => '$414.68K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.85'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0380207'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.033318'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013024'
'current_year_max_price_prediction' => '$0.038879'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.042274'
'grand_prediction_max_price' => '$0.122228'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.038412479544789
107 => 0.038555897799679
108 => 0.038879026451064
109 => 0.036117927503692
110 => 0.037357579869456
111 => 0.038085759494624
112 => 0.034795817456715
113 => 0.038020727918504
114 => 0.036069862913909
115 => 0.035407710030341
116 => 0.036299211656057
117 => 0.035951792605501
118 => 0.035653102106965
119 => 0.035486427676628
120 => 0.03614104807911
121 => 0.036110509254893
122 => 0.035039423220088
123 => 0.033642235150736
124 => 0.034111177327945
125 => 0.033940806238609
126 => 0.033323359432545
127 => 0.03373944402902
128 => 0.031907218041738
129 => 0.02875496846144
130 => 0.030837441090201
131 => 0.030757268159288
201 => 0.030716841331969
202 => 0.032281761957167
203 => 0.032131330947916
204 => 0.0318582971931
205 => 0.033318344953522
206 => 0.032785407880554
207 => 0.034427794363674
208 => 0.035509576324354
209 => 0.035235201427145
210 => 0.036252622589871
211 => 0.034121980808578
212 => 0.034829694541812
213 => 0.034975553361383
214 => 0.033300328190796
215 => 0.032155943321441
216 => 0.032079625897598
217 => 0.030095420240085
218 => 0.03115536688638
219 => 0.032088076071547
220 => 0.031641380753008
221 => 0.031499970359802
222 => 0.03222240539052
223 => 0.032278544779645
224 => 0.030998560758223
225 => 0.031264709968099
226 => 0.032374596416906
227 => 0.031236743677264
228 => 0.02902608167133
301 => 0.028477806929064
302 => 0.028404656971738
303 => 0.026917692386496
304 => 0.02851444526902
305 => 0.027817419845482
306 => 0.030019314806793
307 => 0.028761604213892
308 => 0.028707386823986
309 => 0.028625429287182
310 => 0.027345537442931
311 => 0.027625752415452
312 => 0.028557229662056
313 => 0.028889591237487
314 => 0.028854923202212
315 => 0.028552664915382
316 => 0.02869103721128
317 => 0.02824529183409
318 => 0.028087889864017
319 => 0.027591085949642
320 => 0.026860921441095
321 => 0.026962455294368
322 => 0.025515808345001
323 => 0.024727598307621
324 => 0.024509432157715
325 => 0.024217691264271
326 => 0.024542385067923
327 => 0.025511710175955
328 => 0.024342498441875
329 => 0.022337966934461
330 => 0.022458442693612
331 => 0.022729115954851
401 => 0.022224718123216
402 => 0.021747347906474
403 => 0.022162382579661
404 => 0.021313036154698
405 => 0.022831755412507
406 => 0.022790678312745
407 => 0.023356762935087
408 => 0.023710747266664
409 => 0.022894927986168
410 => 0.022689751643333
411 => 0.022806629412957
412 => 0.020874900229529
413 => 0.023198899448599
414 => 0.023218997490352
415 => 0.02304690585499
416 => 0.024284363693719
417 => 0.026895785706216
418 => 0.025913263700907
419 => 0.025532801483567
420 => 0.024809542530287
421 => 0.025773242142665
422 => 0.025699245048491
423 => 0.025364602126068
424 => 0.025162209042437
425 => 0.025535124504737
426 => 0.025116000689785
427 => 0.025040714535867
428 => 0.02458456235527
429 => 0.024421736780398
430 => 0.024301187207036
501 => 0.024168473971721
502 => 0.024461206298748
503 => 0.02379783633356
504 => 0.022997877186501
505 => 0.022931369239101
506 => 0.023115003529311
507 => 0.023033759025858
508 => 0.022930980271676
509 => 0.022734747639813
510 => 0.022676529609786
511 => 0.022865709964001
512 => 0.022652136373992
513 => 0.022967275840005
514 => 0.022881575342712
515 => 0.022402859331391
516 => 0.021806201937917
517 => 0.021800890435584
518 => 0.021672341578875
519 => 0.021508615282405
520 => 0.021463070372277
521 => 0.022127429517111
522 => 0.023502633064321
523 => 0.023232647702172
524 => 0.023427739795538
525 => 0.024387399805155
526 => 0.024692446864229
527 => 0.024475931687134
528 => 0.024179552358651
529 => 0.024192591544954
530 => 0.025205409430502
531 => 0.025268577639676
601 => 0.025428183325422
602 => 0.025633321736167
603 => 0.024510867645527
604 => 0.024139724058226
605 => 0.0239638556363
606 => 0.023422248966413
607 => 0.024006325326039
608 => 0.023666009043929
609 => 0.023711929337245
610 => 0.023682023685981
611 => 0.023698354193783
612 => 0.022831330899523
613 => 0.023147228618548
614 => 0.022621987391298
615 => 0.021918748349105
616 => 0.021916390845249
617 => 0.022088507604547
618 => 0.021986125821187
619 => 0.021710619074641
620 => 0.021749753507632
621 => 0.021406894695439
622 => 0.021791382775092
623 => 0.021802408517452
624 => 0.021654359663578
625 => 0.022246716599413
626 => 0.022489405719342
627 => 0.022391956792209
628 => 0.022482568442836
629 => 0.02324386681288
630 => 0.023367991664974
701 => 0.023423119725047
702 => 0.023349255427618
703 => 0.022496483579505
704 => 0.022534307637235
705 => 0.022256779798271
706 => 0.02202229801951
707 => 0.022031676060965
708 => 0.022152230175746
709 => 0.022678697065399
710 => 0.023786615597757
711 => 0.023828660296182
712 => 0.023879619697204
713 => 0.023672342203106
714 => 0.023609825327508
715 => 0.023692301223397
716 => 0.024108377172561
717 => 0.02517863747733
718 => 0.024800336005342
719 => 0.024492771020003
720 => 0.02476258843107
721 => 0.024721052155535
722 => 0.02437044418939
723 => 0.024360603791516
724 => 0.023687675008335
725 => 0.02343890855904
726 => 0.023231020694163
727 => 0.023004012572767
728 => 0.022869434549023
729 => 0.023076207558112
730 => 0.023123498991757
731 => 0.022671386193609
801 => 0.022609764889836
802 => 0.022978969960336
803 => 0.022816496574161
804 => 0.022983604480988
805 => 0.023022374948797
806 => 0.02301613201052
807 => 0.022846491135404
808 => 0.022954615170439
809 => 0.022698869594255
810 => 0.022420784691898
811 => 0.022243383849496
812 => 0.022088578085693
813 => 0.022174473320815
814 => 0.021868272491457
815 => 0.02177031268354
816 => 0.022917985180237
817 => 0.023765783193106
818 => 0.023753455874234
819 => 0.02367841649093
820 => 0.023566923188523
821 => 0.024100220743041
822 => 0.023914430538668
823 => 0.02404960843564
824 => 0.024084016883818
825 => 0.024188160893291
826 => 0.024225383425198
827 => 0.024112871081066
828 => 0.023735265911933
829 => 0.022794309732077
830 => 0.022356292090291
831 => 0.022211738972741
901 => 0.022216993204018
902 => 0.022072058049463
903 => 0.022114747948018
904 => 0.022057212244909
905 => 0.021948253542603
906 => 0.022167745427985
907 => 0.022193039823067
908 => 0.022141807794286
909 => 0.022153874791691
910 => 0.021729695474871
911 => 0.021761944907059
912 => 0.021582375970573
913 => 0.021548708959717
914 => 0.021094774325135
915 => 0.020290563321094
916 => 0.020736174283984
917 => 0.020197938903196
918 => 0.019994101008895
919 => 0.02095903789722
920 => 0.020862184996815
921 => 0.020696414932266
922 => 0.02045120645729
923 => 0.020360256248686
924 => 0.019807671572549
925 => 0.019775021921958
926 => 0.020048897808493
927 => 0.019922513510351
928 => 0.019745022090283
929 => 0.019102166158813
930 => 0.018379383249556
1001 => 0.018401199522335
1002 => 0.018631103317916
1003 => 0.019299579610317
1004 => 0.019038394358118
1005 => 0.018848901460893
1006 => 0.018813415137378
1007 => 0.019257600771816
1008 => 0.019886216504312
1009 => 0.020181148941515
1010 => 0.019888879853478
1011 => 0.019553136862027
1012 => 0.019573571982233
1013 => 0.019709517681871
1014 => 0.019723803652735
1015 => 0.019505269480237
1016 => 0.019566785569724
1017 => 0.019473337004644
1018 => 0.018899843333242
1019 => 0.018889470651295
1020 => 0.018748726055498
1021 => 0.018744464365073
1022 => 0.018505022697238
1023 => 0.018471523152726
1024 => 0.017996097188169
1025 => 0.018309023997763
1026 => 0.018099129123282
1027 => 0.017782768038245
1028 => 0.017728227267941
1029 => 0.017726587706526
1030 => 0.018051419803815
1031 => 0.01830522814558
1101 => 0.018102780334488
1102 => 0.018056686892188
1103 => 0.01854884426567
1104 => 0.01848621275378
1105 => 0.018431974268414
1106 => 0.019829930860185
1107 => 0.018723339133885
1108 => 0.018240801979171
1109 => 0.017643570618891
1110 => 0.0178380321613
1111 => 0.01787900806552
1112 => 0.016442774303093
1113 => 0.015860094444547
1114 => 0.015660140674922
1115 => 0.015545064453571
1116 => 0.015597506132677
1117 => 0.015073025918455
1118 => 0.015425485296514
1119 => 0.014971329764207
1120 => 0.014895189111266
1121 => 0.015707275462105
1122 => 0.015820272533685
1123 => 0.015338191920888
1124 => 0.015647765716066
1125 => 0.015535509954536
1126 => 0.014979114957303
1127 => 0.014957864760974
1128 => 0.014678685309592
1129 => 0.014241823527973
1130 => 0.014042165971207
1201 => 0.013938182582137
1202 => 0.013981088155063
1203 => 0.01395939378446
1204 => 0.013817823341633
1205 => 0.013967508436526
1206 => 0.013585124873225
1207 => 0.013432856657245
1208 => 0.013364080636683
1209 => 0.013024693215077
1210 => 0.013564809529124
1211 => 0.013671219247197
1212 => 0.013777838625286
1213 => 0.014705887519414
1214 => 0.014659524819302
1215 => 0.015078621048761
1216 => 0.015062335739952
1217 => 0.014942802706402
1218 => 0.014438512500083
1219 => 0.014639513588213
1220 => 0.014020863481452
1221 => 0.014484398205555
1222 => 0.014272860315148
1223 => 0.014412877032021
1224 => 0.014161114350285
1225 => 0.014300450213384
1226 => 0.013696452938892
1227 => 0.013132448782443
1228 => 0.013359420519306
1229 => 0.013606164754642
1230 => 0.014141169126114
1231 => 0.013822524936156
]
'min_raw' => 0.013024693215077
'max_raw' => 0.038879026451064
'avg_raw' => 0.025951859833071
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013024'
'max' => '$0.038879'
'avg' => '$0.025951'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.024673426784923
'max_diff' => 0.0011809064510642
'year' => 2026
]
1 => [
'items' => [
101 => 0.013937121436135
102 => 0.013553242344426
103 => 0.012761190128587
104 => 0.012765673058112
105 => 0.012643833080501
106 => 0.012538545550917
107 => 0.013859125054472
108 => 0.013694890117933
109 => 0.013433203241094
110 => 0.013783481524766
111 => 0.013876100662633
112 => 0.01387873739928
113 => 0.014134291393057
114 => 0.014270680605345
115 => 0.014294719795156
116 => 0.014696839525972
117 => 0.014831624755654
118 => 0.015386786041195
119 => 0.014259108933581
120 => 0.014235885165638
121 => 0.013788410658548
122 => 0.013504615251859
123 => 0.013807842372842
124 => 0.014076460207402
125 => 0.013796757363437
126 => 0.01383328065001
127 => 0.013457802434549
128 => 0.013592018228684
129 => 0.013707622951413
130 => 0.013643792818454
131 => 0.01354823602
201 => 0.014054436608246
202 => 0.014025874787241
203 => 0.014497260412516
204 => 0.014864739216528
205 => 0.015523326928011
206 => 0.014836056318125
207 => 0.014811009445447
208 => 0.015055846643515
209 => 0.014831587272355
210 => 0.014973311453757
211 => 0.01550049297134
212 => 0.015511631486084
213 => 0.015325047012944
214 => 0.015313693330797
215 => 0.015349528919874
216 => 0.015559419084402
217 => 0.015486077011643
218 => 0.015570950315034
219 => 0.015677085680552
220 => 0.016116106552794
221 => 0.016221952998793
222 => 0.015964801010105
223 => 0.015988018955474
224 => 0.015891837052725
225 => 0.015798926539825
226 => 0.016007775804334
227 => 0.016389451940166
228 => 0.016387077552734
301 => 0.016475618997523
302 => 0.01653077958411
303 => 0.016293989966463
304 => 0.01613984863237
305 => 0.016198956228129
306 => 0.016293470560944
307 => 0.016168306503829
308 => 0.015395735961688
309 => 0.015630084512176
310 => 0.015591077454316
311 => 0.015535526660503
312 => 0.015771165940183
313 => 0.015748437956812
314 => 0.015067646615787
315 => 0.015111228668617
316 => 0.015070296984768
317 => 0.01520255562912
318 => 0.014824444871524
319 => 0.014940749193946
320 => 0.015013694174683
321 => 0.015056659328728
322 => 0.015211878926617
323 => 0.015193665698343
324 => 0.015210746766775
325 => 0.015440896453991
326 => 0.016604914594093
327 => 0.016668269533197
328 => 0.016356286642066
329 => 0.016480917653483
330 => 0.016241653365369
331 => 0.016402273084911
401 => 0.016512165017723
402 => 0.016015584504349
403 => 0.015986180229128
404 => 0.015745928412187
405 => 0.015875026130052
406 => 0.015669622378473
407 => 0.015720021274393
408 => 0.015579101567706
409 => 0.015832728982909
410 => 0.016116323842821
411 => 0.016187971103936
412 => 0.015999498006029
413 => 0.015863031062162
414 => 0.015623440063738
415 => 0.016021885233751
416 => 0.016138402743859
417 => 0.016021273216874
418 => 0.01599413174614
419 => 0.015942698708144
420 => 0.016005043508291
421 => 0.016137768164476
422 => 0.016075177667659
423 => 0.016116519793509
424 => 0.015958966241582
425 => 0.016294068353679
426 => 0.016826291154403
427 => 0.016828002337735
428 => 0.016765411503532
429 => 0.016739800682714
430 => 0.016804022676936
501 => 0.016838860474277
502 => 0.017046542627292
503 => 0.017269393851899
504 => 0.018309343279534
505 => 0.018017329641679
506 => 0.018940034640744
507 => 0.019669774496756
508 => 0.019888591571917
509 => 0.019687290158908
510 => 0.018998648899091
511 => 0.018964860873547
512 => 0.019993981652555
513 => 0.019703207895767
514 => 0.019668621282632
515 => 0.019300678153876
516 => 0.019518178113614
517 => 0.019470607681887
518 => 0.019395515428182
519 => 0.019810490200183
520 => 0.020587285928316
521 => 0.020466215029342
522 => 0.020375841219575
523 => 0.019979849492599
524 => 0.020218324960193
525 => 0.02013340841388
526 => 0.020498263786214
527 => 0.020282131546179
528 => 0.019701004998576
529 => 0.0197935513167
530 => 0.019779563126893
531 => 0.020067439081909
601 => 0.019981025865734
602 => 0.019762689559552
603 => 0.020584630924965
604 => 0.020531258624573
605 => 0.020606928343923
606 => 0.020640240494544
607 => 0.02114054171944
608 => 0.021345499123426
609 => 0.021392028042415
610 => 0.021586721724227
611 => 0.02138718388625
612 => 0.022185477506228
613 => 0.022716296181789
614 => 0.023332869389133
615 => 0.024233848564317
616 => 0.02457262506871
617 => 0.024511428125462
618 => 0.025194540253353
619 => 0.026422077562444
620 => 0.024759548512264
621 => 0.02651019563904
622 => 0.025955960970896
623 => 0.024641880542982
624 => 0.024557269255415
625 => 0.025447179777985
626 => 0.027420915666334
627 => 0.02692651721223
628 => 0.027421724325091
629 => 0.026844038923464
630 => 0.026815351974158
701 => 0.027393667434552
702 => 0.028744933030098
703 => 0.028102997397088
704 => 0.027182625258092
705 => 0.02786221372295
706 => 0.027273491301747
707 => 0.025946934913747
708 => 0.026926139155049
709 => 0.026271373165021
710 => 0.026462468690186
711 => 0.027838689412134
712 => 0.027673098893841
713 => 0.027887388357782
714 => 0.027509173062858
715 => 0.027155860338322
716 => 0.026496375900628
717 => 0.026301135070817
718 => 0.026355092612147
719 => 0.026301108332139
720 => 0.025932132850224
721 => 0.025852452630035
722 => 0.025719648772183
723 => 0.025760810240881
724 => 0.02551110013498
725 => 0.025982354697556
726 => 0.026069823697051
727 => 0.026412763468325
728 => 0.026448368613038
729 => 0.027403450994594
730 => 0.02687740766834
731 => 0.027230322947987
801 => 0.027198754883608
802 => 0.024670360650495
803 => 0.025018751067607
804 => 0.025560737225697
805 => 0.025316573196122
806 => 0.024971382383887
807 => 0.024692622295047
808 => 0.024270272255772
809 => 0.024864721825538
810 => 0.025646359797116
811 => 0.026468192241896
812 => 0.027455570075705
813 => 0.027235198837544
814 => 0.026449733900099
815 => 0.02648496928341
816 => 0.026702780558428
817 => 0.026420695167039
818 => 0.026337502678157
819 => 0.026691351187963
820 => 0.026693787948179
821 => 0.026369214614227
822 => 0.026008510749832
823 => 0.02600699938747
824 => 0.025942815618787
825 => 0.026855457073327
826 => 0.027357317594866
827 => 0.027414855094872
828 => 0.027353444862681
829 => 0.027377079223766
830 => 0.027085057644025
831 => 0.027752532379004
901 => 0.028365073202231
902 => 0.02820089917658
903 => 0.027954778973417
904 => 0.027758732376842
905 => 0.028154716828877
906 => 0.028137084264566
907 => 0.028359723192509
908 => 0.028349623004712
909 => 0.028274757907119
910 => 0.028200901850248
911 => 0.02849373276743
912 => 0.028409402166002
913 => 0.028324940575858
914 => 0.028155539926401
915 => 0.028178564288109
916 => 0.027932486581069
917 => 0.027818639774042
918 => 0.026106656953048
919 => 0.025649159202626
920 => 0.025793097308134
921 => 0.025840485469819
922 => 0.025641381862536
923 => 0.025926845289859
924 => 0.025882356117091
925 => 0.026055437463035
926 => 0.025947303752408
927 => 0.025951741597611
928 => 0.026269739784028
929 => 0.026362056010406
930 => 0.026315103232587
1001 => 0.026347987348724
1002 => 0.027105787925594
1003 => 0.026998052916661
1004 => 0.026940820840404
1005 => 0.026956674516658
1006 => 0.027150308811476
1007 => 0.027204515841985
1008 => 0.02697483684466
1009 => 0.027083154787557
1010 => 0.027544358840818
1011 => 0.02770575415757
1012 => 0.028220850534498
1013 => 0.028002028438471
1014 => 0.028403685866127
1015 => 0.029638243863633
1016 => 0.030624494216956
1017 => 0.02971749763352
1018 => 0.031528620809173
1019 => 0.032938839991608
1020 => 0.032884713430544
1021 => 0.032638809097129
1022 => 0.031033312050543
1023 => 0.029555909731662
1024 => 0.030791819505222
1025 => 0.030794970093402
1026 => 0.030688804347779
1027 => 0.030029418019679
1028 => 0.030665859132864
1029 => 0.030716377517214
1030 => 0.030688100655901
1031 => 0.030182550704159
1101 => 0.029410669369099
1102 => 0.029561493134347
1103 => 0.029808545538544
1104 => 0.029340823796868
1105 => 0.029191358360142
1106 => 0.029469243043978
1107 => 0.030364645394868
1108 => 0.030195374767145
1109 => 0.030190954426979
1110 => 0.030915165954296
1111 => 0.030396786795366
1112 => 0.029563395505031
1113 => 0.029352953213141
1114 => 0.028606024847844
1115 => 0.029121930930222
1116 => 0.029140497471677
1117 => 0.028857940982791
1118 => 0.029586323406847
1119 => 0.02957961123458
1120 => 0.030271101940804
1121 => 0.031592972459055
1122 => 0.03120203030151
1123 => 0.030747407106672
1124 => 0.030796837253284
1125 => 0.031338963957629
1126 => 0.031011181776633
1127 => 0.031129054534298
1128 => 0.031338785543093
1129 => 0.031465321468027
1130 => 0.030778630680964
1201 => 0.030618530210282
1202 => 0.030291020834896
1203 => 0.03020557975211
1204 => 0.030472329304655
1205 => 0.03040205022196
1206 => 0.029138937025761
1207 => 0.029006934668863
1208 => 0.029010982992693
1209 => 0.028679056789902
1210 => 0.02817278965923
1211 => 0.029503229450997
1212 => 0.029396376516225
1213 => 0.029278419145997
1214 => 0.029292868250795
1215 => 0.029870367071613
1216 => 0.029535388591149
1217 => 0.030425983783355
1218 => 0.030242904185579
1219 => 0.030055129286943
1220 => 0.030029173076189
1221 => 0.029956895760415
1222 => 0.029709029951424
1223 => 0.029409717092641
1224 => 0.029212084817236
1225 => 0.02694660409894
1226 => 0.02736706414256
1227 => 0.027850765096607
1228 => 0.028017736727634
1229 => 0.027732120198677
1230 => 0.02972030783284
1231 => 0.030083568872255
]
'min_raw' => 0.012538545550917
'max_raw' => 0.032938839991608
'avg_raw' => 0.022738692771262
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.012538'
'max' => '$0.032938'
'avg' => '$0.022738'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00048614766416049
'max_diff' => -0.0059401864594559
'year' => 2027
]
2 => [
'items' => [
101 => 0.028983227488937
102 => 0.028777398542761
103 => 0.029733801944285
104 => 0.029156973777605
105 => 0.029416719465742
106 => 0.028855291361287
107 => 0.029996069925385
108 => 0.029987379104053
109 => 0.029543590476967
110 => 0.029918677585647
111 => 0.029853496970073
112 => 0.029352460703095
113 => 0.03001195366873
114 => 0.030012280769013
115 => 0.029585143864239
116 => 0.029086341471755
117 => 0.028997167385165
118 => 0.028929986689773
119 => 0.029400197132927
120 => 0.029821786345948
121 => 0.030606259350552
122 => 0.030803494502529
123 => 0.03157331643138
124 => 0.031114924954698
125 => 0.031318123959148
126 => 0.031538725222732
127 => 0.031644489580837
128 => 0.031472152234933
129 => 0.032668002561786
130 => 0.03276896896928
131 => 0.032802822132356
201 => 0.032399588130517
202 => 0.032757754302244
203 => 0.03259018021171
204 => 0.033026161441856
205 => 0.03309452886563
206 => 0.033036624089935
207 => 0.033058324989347
208 => 0.032037877697832
209 => 0.031984962122478
210 => 0.031263454497817
211 => 0.031557474187982
212 => 0.03100781846995
213 => 0.031182119960219
214 => 0.031258950396324
215 => 0.031218818536591
216 => 0.03157409762012
217 => 0.031272037820399
218 => 0.030474852345707
219 => 0.029677449678366
220 => 0.029667438937427
221 => 0.029457496890442
222 => 0.029305747243276
223 => 0.029334979608928
224 => 0.029437998278324
225 => 0.029299759610933
226 => 0.029329259839499
227 => 0.029819160192692
228 => 0.029917406214716
229 => 0.029583527844681
301 => 0.028242958010576
302 => 0.027913978810721
303 => 0.028150442535635
304 => 0.028037428105341
305 => 0.022628392712554
306 => 0.023899165344733
307 => 0.023144115398053
308 => 0.023492077151661
309 => 0.022721366675337
310 => 0.023089190111036
311 => 0.023021266553223
312 => 0.025064631340871
313 => 0.025032727010269
314 => 0.025047997924989
315 => 0.024319077377249
316 => 0.025480267602148
317 => 0.026052311661982
318 => 0.025946441530967
319 => 0.025973086762061
320 => 0.025515233411988
321 => 0.025052430946235
322 => 0.024539111786927
323 => 0.025492795336756
324 => 0.025386762005936
325 => 0.025629964317249
326 => 0.026248496270022
327 => 0.026339577449642
328 => 0.026461991478705
329 => 0.02641811476331
330 => 0.027463436133114
331 => 0.027336840817978
401 => 0.027641899103497
402 => 0.027014371065356
403 => 0.026304263524692
404 => 0.026439231753008
405 => 0.026426233227275
406 => 0.026260747075684
407 => 0.026111353577413
408 => 0.025862655494149
409 => 0.026649573029987
410 => 0.026617625615112
411 => 0.027134817127128
412 => 0.027043398503649
413 => 0.026432882562123
414 => 0.026454687258412
415 => 0.026601334319932
416 => 0.02710888147424
417 => 0.027259556026084
418 => 0.027189757570327
419 => 0.027354965337869
420 => 0.027485538821272
421 => 0.02737136335704
422 => 0.028987847155814
423 => 0.028316570381706
424 => 0.028643746010692
425 => 0.028721775470375
426 => 0.028521904650181
427 => 0.028565249474243
428 => 0.028630905071941
429 => 0.029029553004474
430 => 0.030075720529152
501 => 0.030539061004329
502 => 0.031933043684714
503 => 0.030500587027876
504 => 0.030415590977954
505 => 0.030666689352936
506 => 0.031485104754374
507 => 0.03214835356739
508 => 0.032368391462409
509 => 0.032397473102666
510 => 0.032810278821565
511 => 0.033046891361267
512 => 0.032760153349422
513 => 0.032517172907105
514 => 0.031646847122568
515 => 0.031747589701947
516 => 0.032441606172256
517 => 0.033421945313935
518 => 0.034263178284398
519 => 0.033968607818071
520 => 0.036215972541808
521 => 0.036438789574504
522 => 0.036408003465123
523 => 0.036915613825226
524 => 0.035908110633473
525 => 0.035477383499543
526 => 0.032569708036679
527 => 0.033386646239203
528 => 0.03457411389367
529 => 0.034416948096826
530 => 0.033554577345051
531 => 0.034262524098852
601 => 0.034028454762504
602 => 0.03384383456538
603 => 0.03468961547879
604 => 0.033759644621731
605 => 0.03456483672298
606 => 0.033532169524482
607 => 0.033969953391148
608 => 0.033721446095205
609 => 0.033882260771589
610 => 0.032942141459434
611 => 0.033449407020166
612 => 0.032921037544373
613 => 0.032920787028445
614 => 0.032909123242982
615 => 0.033530747588105
616 => 0.033551018735682
617 => 0.033091637405415
618 => 0.033025433378838
619 => 0.033270224364027
620 => 0.032983638231231
621 => 0.033117730079015
622 => 0.032987699736699
623 => 0.032958427167786
624 => 0.032725178358368
625 => 0.032624688357961
626 => 0.032664093076429
627 => 0.032529584457773
628 => 0.032448538149644
629 => 0.03289300109239
630 => 0.032655542471665
701 => 0.032856607153127
702 => 0.032627468572215
703 => 0.031833174419844
704 => 0.031376367453307
705 => 0.029876019430585
706 => 0.030301516268653
707 => 0.0305836211125
708 => 0.030490385463291
709 => 0.030690691715198
710 => 0.030702988892245
711 => 0.03063786728787
712 => 0.030562464812597
713 => 0.030525763057653
714 => 0.030799307869824
715 => 0.030958109840384
716 => 0.030611934107656
717 => 0.030530829976991
718 => 0.030880832755665
719 => 0.031094334248466
720 => 0.032670709315184
721 => 0.032553926358617
722 => 0.032847028662102
723 => 0.032814029840751
724 => 0.033121247749662
725 => 0.033623419190756
726 => 0.032602364241669
727 => 0.032779584075407
728 => 0.032736133864778
729 => 0.033210511871167
730 => 0.033211992827523
731 => 0.032927579515754
801 => 0.033081764586143
802 => 0.032995702709698
803 => 0.033151228152394
804 => 0.032552366651033
805 => 0.033281715316587
806 => 0.033695209011766
807 => 0.033700950372124
808 => 0.03389694310195
809 => 0.034096083066587
810 => 0.034478314887271
811 => 0.034085422828565
812 => 0.033378648262223
813 => 0.033429675103045
814 => 0.033015293433397
815 => 0.033022259264128
816 => 0.032985075113764
817 => 0.033096667548098
818 => 0.032576854914982
819 => 0.032698853900988
820 => 0.032528054606155
821 => 0.032779212791096
822 => 0.032509008102035
823 => 0.032736112911771
824 => 0.032834123819009
825 => 0.033195786176743
826 => 0.032455590277739
827 => 0.030946280732813
828 => 0.031263555897766
829 => 0.030794281007374
830 => 0.030837714185135
831 => 0.030925456116552
901 => 0.030641055809457
902 => 0.030695310425567
903 => 0.030693372068896
904 => 0.030676668358287
905 => 0.030602684854351
906 => 0.030495394136453
907 => 0.030922807334217
908 => 0.03099543316521
909 => 0.03115687139107
910 => 0.031637202046636
911 => 0.031589205687168
912 => 0.03166748974081
913 => 0.031496596091256
914 => 0.030845641451403
915 => 0.030880991420185
916 => 0.030440176743038
917 => 0.031145598768689
918 => 0.030978545521899
919 => 0.030870845206948
920 => 0.030841458178177
921 => 0.031322979480531
922 => 0.031467058201117
923 => 0.031377278011211
924 => 0.031193136222408
925 => 0.031546742893543
926 => 0.031641353121272
927 => 0.031662532862169
928 => 0.032289056086068
929 => 0.03169754855058
930 => 0.031839930293451
1001 => 0.032950752006671
1002 => 0.031943389995699
1003 => 0.032477012119764
1004 => 0.032450894093627
1005 => 0.03272387711551
1006 => 0.032428501518055
1007 => 0.03243216305259
1008 => 0.032674553482551
1009 => 0.032334159839015
1010 => 0.032249873585909
1011 => 0.032133432730912
1012 => 0.032387677077894
1013 => 0.032540085065426
1014 => 0.033768381513606
1015 => 0.034561917036254
1016 => 0.034527467566414
1017 => 0.034842271234039
1018 => 0.034700449298503
1019 => 0.034242468857921
1020 => 0.03502418562523
1021 => 0.034776817731635
1022 => 0.034797210440231
1023 => 0.034796451422598
1024 => 0.034960929446563
1025 => 0.034844381692394
1026 => 0.034614654105547
1027 => 0.034767157998634
1028 => 0.035220040039962
1029 => 0.036625799792362
1030 => 0.037412481573645
1031 => 0.036578440561342
1101 => 0.037153750883375
1102 => 0.036808769694183
1103 => 0.036746076349806
1104 => 0.037107413747141
1105 => 0.037469383617757
1106 => 0.037446327701837
1107 => 0.037183556163128
1108 => 0.037035123188493
1109 => 0.038159107401128
1110 => 0.038987239822426
1111 => 0.038930766743164
1112 => 0.039180020548998
1113 => 0.039911837432059
1114 => 0.039978745596418
1115 => 0.039970316705576
1116 => 0.039804477839066
1117 => 0.04052504659887
1118 => 0.0411261577355
1119 => 0.039766090933015
1120 => 0.040283986566819
1121 => 0.040516486602389
1122 => 0.040857865634258
1123 => 0.04143382928279
1124 => 0.042059478571909
1125 => 0.042147952241286
1126 => 0.042085175939008
1127 => 0.041672543414479
1128 => 0.04235713633218
1129 => 0.042758154807691
1130 => 0.042996952132712
1201 => 0.043602502416881
1202 => 0.040517922443457
1203 => 0.038334503424695
1204 => 0.037993531015962
1205 => 0.038686911817197
1206 => 0.038869750804875
1207 => 0.038796048638203
1208 => 0.036338412024814
1209 => 0.037980592067812
1210 => 0.039747439715659
1211 => 0.039815311529526
1212 => 0.04069983240508
1213 => 0.040987868659896
1214 => 0.041700023901519
1215 => 0.041655478397256
1216 => 0.041828876865726
1217 => 0.041789015560668
1218 => 0.043108133183795
1219 => 0.044563315812967
1220 => 0.044512927465716
1221 => 0.044303727745833
1222 => 0.044614425003712
1223 => 0.046116329423865
1224 => 0.045978058132386
1225 => 0.046112376914138
1226 => 0.047883206869122
1227 => 0.050185537708225
1228 => 0.049115873883225
1229 => 0.051436736596002
1230 => 0.052897596650049
1231 => 0.055424003057774
]
'min_raw' => 0.022628392712554
'max_raw' => 0.055424003057774
'avg_raw' => 0.039026197885164
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.022628'
'max' => '$0.055424'
'avg' => '$0.039026'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010089847161637
'max_diff' => 0.022485163066165
'year' => 2028
]
3 => [
'items' => [
101 => 0.055107684532713
102 => 0.056091196007614
103 => 0.054541408355185
104 => 0.050982782641448
105 => 0.050419616500377
106 => 0.051547089376439
107 => 0.054318871425043
108 => 0.051459796095794
109 => 0.052038183311233
110 => 0.051871607754277
111 => 0.051862731650747
112 => 0.052201496420753
113 => 0.051710100453077
114 => 0.049708064880319
115 => 0.050625585985244
116 => 0.05027128702365
117 => 0.050664408136276
118 => 0.052785920645638
119 => 0.051847949394708
120 => 0.050859872876449
121 => 0.052099140102078
122 => 0.053677153138724
123 => 0.053578403918852
124 => 0.05338678915833
125 => 0.05446691153077
126 => 0.05625095724388
127 => 0.056733177631257
128 => 0.057089142862657
129 => 0.057138224453986
130 => 0.057643795348705
131 => 0.054925213227528
201 => 0.059239672871977
202 => 0.059984660868031
203 => 0.059844634001361
204 => 0.060672656805088
205 => 0.060429031491321
206 => 0.060076056635312
207 => 0.06138864890472
208 => 0.059883867788578
209 => 0.057748020440889
210 => 0.056576252343676
211 => 0.058119331097922
212 => 0.059061635447113
213 => 0.059684438680115
214 => 0.059872898562114
215 => 0.055136249018784
216 => 0.052583457621556
217 => 0.054219767639366
218 => 0.056216178793179
219 => 0.054914123062767
220 => 0.054965161182282
221 => 0.05310877188494
222 => 0.056380428054189
223 => 0.055903775269289
224 => 0.058376650760535
225 => 0.057786479178483
226 => 0.05980301314512
227 => 0.059271992170292
228 => 0.061476230547821
301 => 0.062355560913989
302 => 0.063832093455628
303 => 0.064918236803827
304 => 0.0655560409525
305 => 0.065517749583757
306 => 0.068045047373567
307 => 0.066554788163976
308 => 0.064682671369601
309 => 0.064648810683243
310 => 0.06561840649915
311 => 0.067650413333669
312 => 0.068177283141363
313 => 0.068471731486963
314 => 0.068020773595856
315 => 0.066403204031684
316 => 0.065704745695139
317 => 0.066299852434162
318 => 0.065572088030442
319 => 0.066828413565889
320 => 0.068553616862712
321 => 0.068197369204112
322 => 0.06938825171518
323 => 0.070620689829643
324 => 0.072383131685583
325 => 0.072843899249759
326 => 0.07360553051192
327 => 0.074389499263521
328 => 0.074641288897985
329 => 0.075122033435911
330 => 0.075119499674894
331 => 0.076568255697775
401 => 0.078166278455252
402 => 0.078769495051888
403 => 0.080156558354294
404 => 0.077781261057418
405 => 0.079582951342548
406 => 0.081208121078967
407 => 0.079270526721324
408 => 0.08194104914175
409 => 0.082044739475801
410 => 0.08361034041314
411 => 0.0820233039303
412 => 0.081080926732789
413 => 0.083801534391589
414 => 0.085117950739345
415 => 0.084721435422049
416 => 0.081703934279055
417 => 0.07994761918712
418 => 0.075351003823645
419 => 0.080795893280687
420 => 0.083447940105609
421 => 0.081697066118466
422 => 0.082580105115323
423 => 0.087397679555822
424 => 0.089231899987918
425 => 0.088850394960211
426 => 0.088914863029786
427 => 0.089904575081489
428 => 0.094293503363125
429 => 0.091663555802208
430 => 0.093674052170274
501 => 0.094740412194512
502 => 0.095730906813914
503 => 0.093298565077701
504 => 0.090134124217085
505 => 0.089131812962338
506 => 0.081522976206399
507 => 0.081126903209749
508 => 0.08090457543449
509 => 0.079502830260366
510 => 0.078401442523822
511 => 0.077525578103817
512 => 0.075227048310469
513 => 0.076002734641674
514 => 0.072339357891529
515 => 0.074683056514171
516 => 0.068836218765614
517 => 0.073705638982335
518 => 0.071055434943743
519 => 0.072834975678648
520 => 0.072828767028667
521 => 0.069552068331803
522 => 0.067662136906409
523 => 0.068866474767901
524 => 0.07015762055588
525 => 0.070367104616043
526 => 0.072041108832511
527 => 0.072508287426726
528 => 0.071092714475769
529 => 0.068715056049114
530 => 0.069267331873011
531 => 0.067650945054465
601 => 0.064818289328383
602 => 0.066852752124279
603 => 0.067547407171813
604 => 0.067854206414429
605 => 0.065068614840536
606 => 0.064193321489883
607 => 0.063727322654419
608 => 0.068355471156885
609 => 0.068609011579305
610 => 0.067311862931203
611 => 0.073175097821306
612 => 0.071848067188156
613 => 0.073330685535783
614 => 0.069217218630674
615 => 0.069374358605967
616 => 0.067426977451856
617 => 0.068517380774102
618 => 0.067746718851278
619 => 0.06842928696124
620 => 0.068838415472018
621 => 0.070785477080043
622 => 0.07372787129829
623 => 0.070494651004587
624 => 0.069085890622053
625 => 0.069959877640208
626 => 0.072287420242217
627 => 0.075813766428974
628 => 0.073726098512083
629 => 0.074652570082699
630 => 0.074854962905027
701 => 0.073315593872779
702 => 0.075870525160926
703 => 0.077239733594469
704 => 0.07864425812952
705 => 0.079863767429422
706 => 0.078083260144064
707 => 0.07998865816509
708 => 0.078453243708172
709 => 0.077075818212087
710 => 0.077077907197988
711 => 0.076213828063319
712 => 0.074539565858919
713 => 0.074230806220637
714 => 0.075837012851024
715 => 0.07712503846026
716 => 0.077231126418664
717 => 0.077944243577082
718 => 0.078366258965743
719 => 0.082502583476724
720 => 0.084166247412512
721 => 0.086200544181646
722 => 0.086993017419907
723 => 0.089378077749695
724 => 0.087451947828262
725 => 0.087035217503835
726 => 0.08124984129106
727 => 0.082197196321799
728 => 0.083714003132176
729 => 0.081274852876688
730 => 0.082821932298798
731 => 0.083127358548345
801 => 0.081191971484359
802 => 0.082225745338373
803 => 0.079480348474699
804 => 0.073787713447614
805 => 0.075876862691037
806 => 0.077415179734228
807 => 0.075219811640471
808 => 0.079154923976053
809 => 0.076856112586813
810 => 0.076127499738831
811 => 0.073284921249617
812 => 0.074626508875646
813 => 0.076441025349535
814 => 0.075319865128853
815 => 0.077646440929821
816 => 0.080941492739095
817 => 0.083289742882111
818 => 0.083470012369753
819 => 0.081960244848335
820 => 0.084379656936615
821 => 0.084397279712346
822 => 0.081668172993177
823 => 0.079996610323416
824 => 0.079616827767848
825 => 0.080565599052412
826 => 0.081717582544714
827 => 0.083533939436179
828 => 0.084631525864744
829 => 0.087493449155582
830 => 0.088267803540311
831 => 0.089118584239549
901 => 0.090255489624782
902 => 0.091620636036311
903 => 0.088633773405714
904 => 0.088752447026236
905 => 0.085971121900552
906 => 0.082998877121388
907 => 0.085254440413231
908 => 0.088203289372305
909 => 0.087526820162905
910 => 0.087450703557835
911 => 0.087578710574577
912 => 0.087068674882108
913 => 0.084761802347877
914 => 0.083603305402972
915 => 0.085098062025991
916 => 0.085892458647162
917 => 0.087124498527932
918 => 0.086972623607421
919 => 0.090146226028862
920 => 0.091379391965079
921 => 0.091063895348449
922 => 0.091121954318759
923 => 0.093354542342596
924 => 0.09583763939185
925 => 0.098163387451991
926 => 0.10052923827197
927 => 0.097677112767756
928 => 0.096228979331363
929 => 0.0977230833904
930 => 0.096930290745637
1001 => 0.10148591244002
1002 => 0.10180133380194
1003 => 0.10635662607302
1004 => 0.11068014087239
1005 => 0.10796461869072
1006 => 0.11052523379823
1007 => 0.11329474780701
1008 => 0.11863758966741
1009 => 0.11683830849227
1010 => 0.11546008731044
1011 => 0.11415767495313
1012 => 0.11686778831656
1013 => 0.12035430586348
1014 => 0.12110526834963
1015 => 0.12232211446696
1016 => 0.12104274956346
1017 => 0.1225836036723
1018 => 0.12802349576213
1019 => 0.12655358890021
1020 => 0.12446608485695
1021 => 0.12876035720908
1022 => 0.13031443767976
1023 => 0.14122178830122
1024 => 0.15499276902099
1025 => 0.14929149257787
1026 => 0.14575252631058
1027 => 0.1465842673288
1028 => 0.15161296331055
1029 => 0.15322802085705
1030 => 0.14883773770193
1031 => 0.15038845993284
1101 => 0.15893309188882
1102 => 0.16351701278858
1103 => 0.15729143250399
1104 => 0.14011530340889
1105 => 0.12427812795773
1106 => 0.12847886004468
1107 => 0.12800262738992
1108 => 0.13718276846206
1109 => 0.12651853210768
1110 => 0.12669809049793
1111 => 0.13606806716551
1112 => 0.13356831803267
1113 => 0.12951904458114
1114 => 0.12430769213512
1115 => 0.11467402514689
1116 => 0.10614121764074
1117 => 0.12287601814851
1118 => 0.12215438312036
1119 => 0.12110934865927
1120 => 0.12343495976788
1121 => 0.13472746717507
1122 => 0.13446713832906
1123 => 0.13281105903165
1124 => 0.13406718058272
1125 => 0.12929884039998
1126 => 0.13052775023816
1127 => 0.12427561926822
1128 => 0.12710184357869
1129 => 0.12951035665893
1130 => 0.12999390131844
1201 => 0.13108335212671
1202 => 0.12177411425187
1203 => 0.12595368875281
1204 => 0.12840879719894
1205 => 0.11731652792171
1206 => 0.12818953869969
1207 => 0.12161206113165
1208 => 0.11937956645466
1209 => 0.12238532642842
1210 => 0.12121397884345
1211 => 0.12020692297373
1212 => 0.11964496849501
1213 => 0.12185206688612
1214 => 0.12174910310812
1215 => 0.11813786176093
1216 => 0.11342714463656
1217 => 0.11500821592752
1218 => 0.11443379790489
1219 => 0.11235203288948
1220 => 0.1137548911566
1221 => 0.10757741331855
1222 => 0.096949383775533
1223 => 0.103970585637
1224 => 0.10370027700293
1225 => 0.10356397513211
1226 => 0.10884021427923
1227 => 0.10833302562879
1228 => 0.10741247326182
1229 => 0.11233512622336
1230 => 0.11053829167337
1231 => 0.11607571236897
]
'min_raw' => 0.049708064880319
'max_raw' => 0.16351701278858
'avg_raw' => 0.10661253883445
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.049708'
'max' => '$0.163517'
'avg' => '$0.106612'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.027079672167765
'max_diff' => 0.10809300973081
'year' => 2029
]
4 => [
'items' => [
101 => 0.11972301577701
102 => 0.11879794165483
103 => 0.12222824813903
104 => 0.11504464061674
105 => 0.11743074687934
106 => 0.11792252007306
107 => 0.11227438144994
108 => 0.10841600796451
109 => 0.10815869844171
110 => 0.10146881053459
111 => 0.10504249465568
112 => 0.10818718879315
113 => 0.10668112433943
114 => 0.10620434932577
115 => 0.10864008947064
116 => 0.1088293673406
117 => 0.10451381184675
118 => 0.10541115248979
119 => 0.10915321214174
120 => 0.1053168621877
121 => 0.097863460891195
122 => 0.096014914318327
123 => 0.095768284130034
124 => 0.09075487921434
125 => 0.096138443039496
126 => 0.093788373159275
127 => 0.10121221575273
128 => 0.096971756678216
129 => 0.096788958962812
130 => 0.096512633405383
131 => 0.092197388693297
201 => 0.093142153037136
202 => 0.096282693607728
203 => 0.097403273864038
204 => 0.097286388162661
205 => 0.096267303245617
206 => 0.096733835102081
207 => 0.095230973441936
208 => 0.094700281710379
209 => 0.093025272627323
210 => 0.0905634720083
211 => 0.090905800483476
212 => 0.08602832929202
213 => 0.083370824119926
214 => 0.082635261713646
215 => 0.081651636922698
216 => 0.082746364751109
217 => 0.086014512028957
218 => 0.082072433035749
219 => 0.075314015106584
220 => 0.075720207539911
221 => 0.07663280133798
222 => 0.07493218883269
223 => 0.073322701818023
224 => 0.074722020195467
225 => 0.071858389424231
226 => 0.076978857435526
227 => 0.076840363125766
228 => 0.078748956952759
301 => 0.079942439841066
302 => 0.077191848178192
303 => 0.07650008181337
304 => 0.076894143373801
305 => 0.070381183562851
306 => 0.078216709186389
307 => 0.078284471137358
308 => 0.077704252173683
309 => 0.081876427673504
310 => 0.090681019312298
311 => 0.087368377773906
312 => 0.086085622845119
313 => 0.083647104787809
314 => 0.0868962853143
315 => 0.086646798944978
316 => 0.085518526968006
317 => 0.08483614455591
318 => 0.086093455073183
319 => 0.084680349868781
320 => 0.084426517344536
321 => 0.082888568420123
322 => 0.082339590626325
323 => 0.081933149323232
324 => 0.081485697384625
325 => 0.082472664863117
326 => 0.08023606671047
327 => 0.077538948594799
328 => 0.077314712406704
329 => 0.077933848237083
330 => 0.077659926721382
331 => 0.077313400975872
401 => 0.076651788957022
402 => 0.076455502804133
403 => 0.077093337576518
404 => 0.076373259306573
405 => 0.07743577401857
406 => 0.077146828808527
407 => 0.075532804353475
408 => 0.07352113229409
409 => 0.073503224193136
410 => 0.073069812747746
411 => 0.072517798108193
412 => 0.072364240263854
413 => 0.074604173504735
414 => 0.0792407682778
415 => 0.078330493779537
416 => 0.078988260393215
417 => 0.082223821116961
418 => 0.083252308574335
419 => 0.082522312538152
420 => 0.081523048939629
421 => 0.081567011466616
422 => 0.084981797680428
423 => 0.085194773707922
424 => 0.085732895420727
425 => 0.08642453389486
426 => 0.082640101561026
427 => 0.081388765044021
428 => 0.080795812380757
429 => 0.078969747679464
430 => 0.080939001904853
501 => 0.079791601799592
502 => 0.079946425274561
503 => 0.079845596283379
504 => 0.079900655730591
505 => 0.076977426160361
506 => 0.07804249737533
507 => 0.076271609906485
508 => 0.073900590377149
509 => 0.0738926418883
510 => 0.074472945559084
511 => 0.074127758228417
512 => 0.07319886799717
513 => 0.07333081247028
514 => 0.072174840047333
515 => 0.073471168451982
516 => 0.073508342512141
517 => 0.073009185464866
518 => 0.075006358231075
519 => 0.075824601542929
520 => 0.075496045681432
521 => 0.075801549187824
522 => 0.078368319794583
523 => 0.078786815399538
524 => 0.078972683502991
525 => 0.078723644867169
526 => 0.075848465042628
527 => 0.075975991494055
528 => 0.075040287008613
529 => 0.074249715320524
530 => 0.074281334042046
531 => 0.074687790656849
601 => 0.07646281053206
602 => 0.080198235216305
603 => 0.080339991852512
604 => 0.080511805030928
605 => 0.079812954487926
606 => 0.079602174477057
607 => 0.07988024771833
608 => 0.081283076830433
609 => 0.084891534171151
610 => 0.083616064346178
611 => 0.082579087524605
612 => 0.083488795764069
613 => 0.083348753311132
614 => 0.082166654074605
615 => 0.082133476486139
616 => 0.079864650111256
617 => 0.079025916659139
618 => 0.078325008208439
619 => 0.077559634477953
620 => 0.077105895274961
621 => 0.077803044911536
622 => 0.077962491281853
623 => 0.076438161417391
624 => 0.076230400889457
625 => 0.077475201561723
626 => 0.076927411196705
627 => 0.077490827171673
628 => 0.077621544510758
629 => 0.07760049600849
630 => 0.077028539954089
701 => 0.077393087687189
702 => 0.076530823621498
703 => 0.075593240957934
704 => 0.074995121632044
705 => 0.074473183191189
706 => 0.074762784973416
707 => 0.073730407498975
708 => 0.073400129167248
709 => 0.077269587117799
710 => 0.080127997309554
711 => 0.080086434893311
712 => 0.079833434373418
713 => 0.07945752692014
714 => 0.081255576858842
715 => 0.080629172213342
716 => 0.081084933930803
717 => 0.081200944416156
718 => 0.081552073215196
719 => 0.081677571580313
720 => 0.081298228356711
721 => 0.080025106165429
722 => 0.076852606709581
723 => 0.075375799648884
724 => 0.074888428720688
725 => 0.074906143728278
726 => 0.074417484735648
727 => 0.074561416709137
728 => 0.074367431069092
729 => 0.074000069197014
730 => 0.074740101413014
731 => 0.07482538323203
801 => 0.07465265087009
802 => 0.074693335594329
803 => 0.073263185412417
804 => 0.073371916624625
805 => 0.072766487418157
806 => 0.072652976740502
807 => 0.071122504427303
808 => 0.068411050878961
809 => 0.069913459351907
810 => 0.068098761187189
811 => 0.067411507495046
812 => 0.070664859583773
813 => 0.070338313268005
814 => 0.069779407921682
815 => 0.068952670428391
816 => 0.068646025450143
817 => 0.066782947634316
818 => 0.066672867057823
819 => 0.06759625873068
820 => 0.067170145245624
821 => 0.066571720530809
822 => 0.064404286875089
823 => 0.061967373833439
824 => 0.062040928920277
825 => 0.062816065618447
826 => 0.065069880109802
827 => 0.064189275796643
828 => 0.063550387263676
829 => 0.06343074264637
830 => 0.064928345524926
831 => 0.067047767355587
901 => 0.068042152659142
902 => 0.06705674702325
903 => 0.065924766086744
904 => 0.065993664521254
905 => 0.06645201493901
906 => 0.06650018108719
907 => 0.065763377867045
908 => 0.065970783657667
909 => 0.06565571529613
910 => 0.06372214134295
911 => 0.063687169121567
912 => 0.063212638890364
913 => 0.063198270303554
914 => 0.062390976003165
915 => 0.062278029949979
916 => 0.060675098117296
917 => 0.061730152703692
918 => 0.061022477479989
919 => 0.05995584399416
920 => 0.059771955979164
921 => 0.059766428083382
922 => 0.060861622178446
923 => 0.061717354723038
924 => 0.061034787793488
925 => 0.060879380534633
926 => 0.062538723480657
927 => 0.062327556965529
928 => 0.062144688125306
929 => 0.066857996376673
930 => 0.063127045111686
1001 => 0.061500137404899
1002 => 0.059486530176355
1003 => 0.060142170843458
1004 => 0.060280323965382
1005 => 0.055437961560719
1006 => 0.053473415736224
1007 => 0.052799257641606
1008 => 0.052411270126956
1009 => 0.052588080909423
1010 => 0.050819759249135
1011 => 0.052008100650189
1012 => 0.05047688356489
1013 => 0.050220170037528
1014 => 0.052958175867441
1015 => 0.053339153383475
1016 => 0.051713784939636
1017 => 0.05275753460383
1018 => 0.052379056466387
1019 => 0.050503131886958
1020 => 0.05043148536639
1021 => 0.04949021235437
1022 => 0.048017302356928
1023 => 0.047344142964646
1024 => 0.046993555708507
1025 => 0.047138214843199
1026 => 0.047065070758056
1027 => 0.046587756125933
1028 => 0.047092429874045
1029 => 0.04580319699321
1030 => 0.045289814072006
1031 => 0.045057930916891
1101 => 0.043913662529673
1102 => 0.045734702392198
1103 => 0.046093470185971
1104 => 0.046452944863127
1105 => 0.049581926503982
1106 => 0.049425611423616
1107 => 0.0508386236216
1108 => 0.050783716565949
1109 => 0.050380702597804
1110 => 0.04868045295878
1111 => 0.049358142160859
1112 => 0.047272320133144
1113 => 0.048835159818419
1114 => 0.048121945051805
1115 => 0.048594021188398
1116 => 0.047745185729415
1117 => 0.048214966319973
1118 => 0.046178547339282
1119 => 0.044276967948302
1120 => 0.045042219005795
1121 => 0.045874134422364
1122 => 0.047677939013592
1123 => 0.046603607880122
1124 => 0.046989977980676
1125 => 0.045695702821394
1126 => 0.043025243476374
1127 => 0.043040357986256
1128 => 0.042629565995144
1129 => 0.04227458173821
1130 => 0.046727007734365
1201 => 0.046173278179305
1202 => 0.045290982603648
1203 => 0.046471970292697
1204 => 0.046784242182476
1205 => 0.046793132124176
1206 => 0.047654750256402
1207 => 0.048114596008025
1208 => 0.048195645814834
1209 => 0.049551420562384
1210 => 0.050005858374661
1211 => 0.051877623408985
1212 => 0.048075581308763
1213 => 0.047997280753712
1214 => 0.046488589211385
1215 => 0.045531753183772
1216 => 0.046554104592805
1217 => 0.047459768376324
1218 => 0.046516730709667
1219 => 0.046639871520321
1220 => 0.045373920501842
1221 => 0.045826438422417
1222 => 0.046216207816362
1223 => 0.046001000066611
1224 => 0.045678823649062
1225 => 0.047385514274129
1226 => 0.047289216100488
1227 => 0.048878525647198
1228 => 0.050117506091475
1229 => 0.052337980541865
1230 => 0.050020799696932
1231 => 0.049936352416983
]
'min_raw' => 0.04227458173821
'max_raw' => 0.12222824813903
'avg_raw' => 0.082251414938622
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.042274'
'max' => '$0.122228'
'avg' => '$0.082251'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0074334831421081
'max_diff' => -0.041288764649547
'year' => 2030
]
5 => [
'items' => [
101 => 0.050761838124254
102 => 0.0500057319971
103 => 0.050483564969565
104 => 0.052260994262732
105 => 0.05229854854286
106 => 0.051669465964756
107 => 0.051631186232707
108 => 0.051752008423241
109 => 0.052459667767013
110 => 0.052212389848124
111 => 0.052498546116173
112 => 0.052856388911149
113 => 0.054336578433371
114 => 0.054693447116021
115 => 0.05382644123238
116 => 0.05390472215622
117 => 0.053580438155894
118 => 0.053267183874846
119 => 0.053971333751528
120 => 0.055258181491264
121 => 0.055250176078262
122 => 0.055548699741135
123 => 0.055734677510002
124 => 0.05493632478198
125 => 0.054416626512281
126 => 0.054615911898143
127 => 0.054934573570009
128 => 0.054512574212772
129 => 0.051907798690789
130 => 0.052697921190454
131 => 0.052566406171494
201 => 0.052379112791721
202 => 0.053173587074971
203 => 0.053096958092219
204 => 0.050801622554619
205 => 0.050948562488538
206 => 0.050810558458681
207 => 0.051256477712118
208 => 0.049981650894032
209 => 0.050373779037186
210 => 0.050619718132599
211 => 0.05076457814919
212 => 0.051287911860561
213 => 0.051226504689827
214 => 0.051284094704608
215 => 0.052060060443594
216 => 0.055984628872099
217 => 0.05619823447259
218 => 0.055146362373193
219 => 0.055566564529642
220 => 0.054759868277369
221 => 0.055301408875915
222 => 0.055671917199801
223 => 0.053997661328816
224 => 0.053898522761967
225 => 0.053088496987303
226 => 0.053523758956402
227 => 0.052831225867122
228 => 0.053001149263452
301 => 0.052526028633657
302 => 0.053381151171714
303 => 0.054337311041871
304 => 0.05457887478497
305 => 0.053943424576606
306 => 0.053483316747542
307 => 0.052675518968646
308 => 0.054018904677898
309 => 0.05441175159822
310 => 0.054016841220265
311 => 0.053925331856731
312 => 0.053751921778187
313 => 0.053962121624656
314 => 0.054409612069524
315 => 0.054198583839575
316 => 0.054337971703295
317 => 0.053806768902936
318 => 0.054936589069952
319 => 0.056731015401205
320 => 0.056736784775278
321 => 0.056525755407808
322 => 0.056439406737331
323 => 0.056655935674688
324 => 0.056773393740721
325 => 0.057473608619516
326 => 0.058224967082254
327 => 0.061731229184474
328 => 0.060746684816705
329 => 0.063857649142259
330 => 0.066318018015613
331 => 0.067055775061841
401 => 0.066377073293463
402 => 0.064055271206592
403 => 0.063941352519468
404 => 0.06741110507681
405 => 0.066430741054626
406 => 0.06631412987368
407 => 0.06507358392611
408 => 0.065806900225728
409 => 0.065646513193901
410 => 0.065393334417759
411 => 0.066792450834174
412 => 0.069411471865719
413 => 0.069003272876929
414 => 0.068698571267604
415 => 0.067363457512844
416 => 0.068167494201662
417 => 0.067881192137082
418 => 0.069111327498297
419 => 0.068382622561148
420 => 0.066423313832943
421 => 0.066735340205876
422 => 0.066688178047317
423 => 0.067658771928511
424 => 0.067367423736998
425 => 0.066631287636953
426 => 0.069402520336557
427 => 0.069222571899451
428 => 0.069477697641328
429 => 0.069590011882928
430 => 0.071276812392579
501 => 0.071967840589788
502 => 0.072124716088705
503 => 0.072781139430014
504 => 0.072108383677985
505 => 0.074799886352823
506 => 0.076589578578055
507 => 0.078668398194381
508 => 0.081706112387871
509 => 0.082848321025051
510 => 0.082641991258257
511 => 0.084945151490809
512 => 0.089083879232327
513 => 0.083478546465573
514 => 0.089380975479777
515 => 0.0875123346007
516 => 0.083081820691822
517 => 0.082796547828418
518 => 0.085796943286834
519 => 0.09245153163624
520 => 0.09078463273043
521 => 0.092454258085699
522 => 0.090506551421405
523 => 0.090409831368962
524 => 0.092359662320378
525 => 0.096915548618111
526 => 0.094751217812902
527 => 0.091648118887949
528 => 0.093939398844567
529 => 0.091954480098195
530 => 0.087481902618842
531 => 0.090783358084252
601 => 0.088575768834571
602 => 0.089220060739527
603 => 0.093860084988238
604 => 0.093301784994651
605 => 0.09402427688354
606 => 0.092749097610557
607 => 0.091557879092277
608 => 0.089334381266858
609 => 0.08867611317787
610 => 0.088858034795661
611 => 0.088676023026551
612 => 0.087431996428229
613 => 0.087163349002766
614 => 0.086715591523948
615 => 0.086854370289467
616 => 0.086012455233217
617 => 0.087601322892886
618 => 0.087896230731575
619 => 0.089052476113715
620 => 0.089172521344986
621 => 0.092392648276124
622 => 0.090619056474488
623 => 0.091808934979574
624 => 0.091702501046508
625 => 0.083177843362721
626 => 0.084352465977855
627 => 0.086179810150122
628 => 0.085356594077422
629 => 0.084192759153519
630 => 0.083252900051587
701 => 0.081828917406632
702 => 0.083833145634242
703 => 0.086468492627637
704 => 0.089239358093723
705 => 0.092568371396928
706 => 0.091825374381639
707 => 0.089177124505633
708 => 0.089295923060523
709 => 0.090030288981344
710 => 0.089079218389701
711 => 0.088798729105122
712 => 0.089991754060849
713 => 0.089999969768044
714 => 0.088905648111638
715 => 0.087689509849292
716 => 0.087684414185568
717 => 0.087468014128286
718 => 0.09054504851086
719 => 0.092237106298011
720 => 0.09243109799642
721 => 0.092224049111063
722 => 0.09230373400956
723 => 0.091319162865167
724 => 0.093569600535747
725 => 0.09563482468749
726 => 0.095081300497745
727 => 0.094251489049215
728 => 0.093590504261328
729 => 0.094925593488117
730 => 0.094866144066473
731 => 0.095616786756187
801 => 0.095582733267859
802 => 0.095330320364408
803 => 0.095081309512204
804 => 0.096068609394282
805 => 0.095784282883795
806 => 0.095499514735703
807 => 0.094928368618884
808 => 0.095005996861892
809 => 0.094176328692009
810 => 0.093792486233589
811 => 0.088020416625783
812 => 0.086477931018762
813 => 0.086963228390921
814 => 0.087123000886576
815 => 0.086451709173651
816 => 0.087414169049293
817 => 0.087264170697172
818 => 0.087847726539175
819 => 0.087483146184141
820 => 0.087498108689082
821 => 0.088570261776512
822 => 0.088881512379058
823 => 0.088723207810502
824 => 0.088834078903955
825 => 0.091389056456818
826 => 0.091025820352384
827 => 0.090832858411467
828 => 0.090886310187827
829 => 0.09153916173192
830 => 0.091721924519893
831 => 0.090947545744737
901 => 0.091312747251731
902 => 0.092867728917539
903 => 0.093411884496232
904 => 0.095148567893923
905 => 0.094410793919498
906 => 0.095765009979665
907 => 0.099927408462343
908 => 0.10325262038637
909 => 0.10019461808084
910 => 0.10630094631614
911 => 0.11105559874808
912 => 0.11087310726845
913 => 0.11004402363985
914 => 0.10463097825506
915 => 0.09964981318802
916 => 0.10381676927804
917 => 0.10382739170606
918 => 0.10346944648243
919 => 0.10124627944036
920 => 0.10339208508836
921 => 0.10356241134828
922 => 0.10346707393614
923 => 0.10176257697747
924 => 0.099160125165279
925 => 0.099668638019992
926 => 0.10050159244939
927 => 0.09892463594204
928 => 0.098420702786777
929 => 0.099357610399617
930 => 0.10237652194064
1001 => 0.10180581420117
1002 => 0.10179091071568
1003 => 0.10423264044287
1004 => 0.10248488891646
1005 => 0.099675051995573
1006 => 0.098965531115854
1007 => 0.096447209983384
1008 => 0.098186623359533
1009 => 0.098249221750323
1010 => 0.09729656282058
1011 => 0.099752355017319
1012 => 0.099729724459892
1013 => 0.10206113365427
1014 => 0.1065179123966
1015 => 0.10519982361773
1016 => 0.10366702977555
1017 => 0.10383368696596
1018 => 0.10566150499974
1019 => 0.10455636449149
1020 => 0.10495378072357
1021 => 0.10566090346267
1022 => 0.10608752816804
1023 => 0.10377230223624
1024 => 0.10323251232148
1025 => 0.10212829159639
1026 => 0.10184022102047
1027 => 0.10273958576074
1028 => 0.1025026349267
1029 => 0.09824396059797
1030 => 0.097798905435577
1031 => 0.097812554642015
1101 => 0.096693442274959
1102 => 0.094986527297455
1103 => 0.099472197943738
1104 => 0.099111935813921
1105 => 0.098714234304677
1106 => 0.098762950470306
1107 => 0.10071002806437
1108 => 0.099580624730039
1109 => 0.10258332859993
1110 => 0.10196606295382
1111 => 0.10133296677305
1112 => 0.10124545359628
1113 => 0.10100176557991
1114 => 0.10016606869946
1115 => 0.099156914498715
1116 => 0.098490583483945
1117 => 0.090852357071394
1118 => 0.092269967464044
1119 => 0.093900799001536
1120 => 0.09446375551313
1121 => 0.093500779444643
1122 => 0.10020409286405
1123 => 0.10142885282051
1124 => 0.097718975023276
1125 => 0.097025008360725
1126 => 0.10024958920292
1127 => 0.098304772766099
1128 => 0.099180523488514
1129 => 0.097287629436686
1130 => 0.10113384401216
1201 => 0.10110454230127
1202 => 0.099608277960711
1203 => 0.10087291033537
1204 => 0.1006531493392
1205 => 0.09896387058385
1206 => 0.10118739716182
1207 => 0.10118850000326
1208 => 0.099748378107065
1209 => 0.098066631015533
1210 => 0.09776597435666
1211 => 0.097539469951739
1212 => 0.099124817289876
1213 => 0.100546234756
1214 => 0.10319114026118
1215 => 0.10385613234658
1216 => 0.10645164072695
1217 => 0.10490614185945
1218 => 0.10559124148986
1219 => 0.10633501405192
1220 => 0.1066916059695
1221 => 0.10611055857558
1222 => 0.11014245144417
1223 => 0.11048286673628
1224 => 0.11059700503914
1225 => 0.10923747344905
1226 => 0.11044505570338
1227 => 0.1098800679575
1228 => 0.11135000911417
1229 => 0.11158051465669
1230 => 0.11138528466265
1231 => 0.11145845076013
]
'min_raw' => 0.049981650894032
'max_raw' => 0.11158051465669
'avg_raw' => 0.080781082775362
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.049981'
'max' => '$0.11158'
'avg' => '$0.080781'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.007707069155822
'max_diff' => -0.010647733482342
'year' => 2031
]
6 => [
'items' => [
101 => 0.10801794147143
102 => 0.10783953291468
103 => 0.10540691958408
104 => 0.10639822749727
105 => 0.10454502486819
106 => 0.10513269451197
107 => 0.10539173369143
108 => 0.10525642632442
109 => 0.10645427455933
110 => 0.10543585885543
111 => 0.1027480923698
112 => 0.10005959360398
113 => 0.10002584169198
114 => 0.099318007422882
115 => 0.09880637289264
116 => 0.098904931854374
117 => 0.099252266490775
118 => 0.098786185172152
119 => 0.098885647252403
120 => 0.10053738049694
121 => 0.10086862381951
122 => 0.099742929584299
123 => 0.095223104793014
124 => 0.094113928452111
125 => 0.09491118241003
126 => 0.094530146367875
127 => 0.076293205894303
128 => 0.080577704546207
129 => 0.078032000935072
130 => 0.079205178281275
131 => 0.07660667410106
201 => 0.077846816495131
202 => 0.077617807477695
203 => 0.084507154522425
204 => 0.084399586844309
205 => 0.084451073799468
206 => 0.081993467281158
207 => 0.085908501196115
208 => 0.087837187682689
209 => 0.087480239144352
210 => 0.087570075401297
211 => 0.086026390865226
212 => 0.084466020040105
213 => 0.082735328655697
214 => 0.085950739328006
215 => 0.085593240550136
216 => 0.08641321412257
217 => 0.088498637785865
218 => 0.088805724342039
219 => 0.089218451787702
220 => 0.089070518378372
221 => 0.092594892358672
222 => 0.092168067415089
223 => 0.093196592723206
224 => 0.091080838130007
225 => 0.088686660978532
226 => 0.089141715783479
227 => 0.089097890346443
228 => 0.088539942232479
229 => 0.088036251622738
301 => 0.087197748671468
302 => 0.089850896084372
303 => 0.089743183144625
304 => 0.091486930436546
305 => 0.091178706164841
306 => 0.089120309043125
307 => 0.089193825099017
308 => 0.089688255905503
309 => 0.091399486572063
310 => 0.091907496343367
311 => 0.09167216597661
312 => 0.092229175499317
313 => 0.092669413114957
314 => 0.092284462565824
315 => 0.097734550552685
316 => 0.095471294041731
317 => 0.096574389517532
318 => 0.096837471288695
319 => 0.096163592863875
320 => 0.096309732964442
321 => 0.096531095396005
322 => 0.097875164733253
323 => 0.10140239158379
324 => 0.10296457634524
325 => 0.10766448627693
326 => 0.10283485864747
327 => 0.10254828853092
328 => 0.1033948842333
329 => 0.10615422889919
330 => 0.10839041857883
331 => 0.10913229170444
401 => 0.10923034248498
402 => 0.11062214578742
403 => 0.11141990148479
404 => 0.11045314425844
405 => 0.10963391873282
406 => 0.10669955458605
407 => 0.10703921522604
408 => 0.10937914021037
409 => 0.11268442207164
410 => 0.11552069776456
411 => 0.11452753287109
412 => 0.12210467994316
413 => 0.12285592312549
414 => 0.12275212560829
415 => 0.1244635693776
416 => 0.12106670202498
417 => 0.11961447542053
418 => 0.10981104459006
419 => 0.11256540877668
420 => 0.11656903888006
421 => 0.11603914342303
422 => 0.11313160022462
423 => 0.11551849213232
424 => 0.11472931102262
425 => 0.11410685113825
426 => 0.11695846053835
427 => 0.11382299886528
428 => 0.11653776025136
429 => 0.11305605069311
430 => 0.11453206956466
501 => 0.11369420986617
502 => 0.11423640777532
503 => 0.11106672987735
504 => 0.11277701113151
505 => 0.11099557655429
506 => 0.11099473192236
507 => 0.11095540665533
508 => 0.11305125653533
509 => 0.11311960212468
510 => 0.1115707658967
511 => 0.11134755439888
512 => 0.1121728842962
513 => 0.11120663914068
514 => 0.11165873916747
515 => 0.11122033278993
516 => 0.11112163828009
517 => 0.11033522363423
518 => 0.10999641458187
519 => 0.11012927034133
520 => 0.10967576514244
521 => 0.10940251185611
522 => 0.11090104969899
523 => 0.11010044138038
524 => 0.11077834499182
525 => 0.11000578826833
526 => 0.10732777007777
527 => 0.10578761349684
528 => 0.10072908538728
529 => 0.10216367768407
530 => 0.10311481386103
531 => 0.10280046336022
601 => 0.10347580987346
602 => 0.10351727066444
603 => 0.10329770862864
604 => 0.10304348391882
605 => 0.1029197413896
606 => 0.10384201682212
607 => 0.10437742875306
608 => 0.10321027310095
609 => 0.1029368248619
610 => 0.10411688366662
611 => 0.10483671885579
612 => 0.11015157745223
613 => 0.10975783556064
614 => 0.11074605044058
615 => 0.1106347926105
616 => 0.11167059923966
617 => 0.1133637053138
618 => 0.10992114726517
619 => 0.11051865630771
620 => 0.11037216088898
621 => 0.11197155945753
622 => 0.11197655260529
623 => 0.11101763326755
624 => 0.11153747899723
625 => 0.11124731537214
626 => 0.11177168026063
627 => 0.10975257689762
628 => 0.11221162684503
629 => 0.11360574970754
630 => 0.11362510710483
701 => 0.11428591027722
702 => 0.1149573245715
703 => 0.11624604584151
704 => 0.11492138283473
705 => 0.11253844303889
706 => 0.1127104835953
707 => 0.11131336686488
708 => 0.11133685264952
709 => 0.11121148369046
710 => 0.11158772537395
711 => 0.10983514078924
712 => 0.11024646888826
713 => 0.1096706071409
714 => 0.11051740449674
715 => 0.10960639052248
716 => 0.11037209024445
717 => 0.11070254086111
718 => 0.11192191075067
719 => 0.10942628859835
720 => 0.104337546091
721 => 0.10540726146109
722 => 0.1038250684044
723 => 0.10397150639563
724 => 0.10426733444335
725 => 0.10330845895179
726 => 0.10349138217794
727 => 0.10348484687309
728 => 0.10342852914656
729 => 0.10317908859767
730 => 0.10281735045148
731 => 0.10425840388878
801 => 0.10450326694854
802 => 0.10504756719829
803 => 0.10666703553914
804 => 0.1065052124622
805 => 0.10676915261467
806 => 0.10619297274378
807 => 0.10399823372732
808 => 0.10411741861512
809 => 0.10263118115442
810 => 0.1050095607649
811 => 0.10444632908006
812 => 0.10408320994881
813 => 0.10398412952957
814 => 0.1056076122192
815 => 0.10609338368491
816 => 0.10579068350639
817 => 0.10516983660907
818 => 0.10636204618884
819 => 0.1066810311771
820 => 0.10675244015225
821 => 0.10886480694408
822 => 0.10687049799045
823 => 0.10735054797731
824 => 0.11109576093853
825 => 0.10769936958677
826 => 0.10949851383436
827 => 0.10941045508574
828 => 0.11033083640308
829 => 0.1093349569538
830 => 0.10934730207312
831 => 0.11016453833089
901 => 0.10901687739619
902 => 0.10873270040916
903 => 0.1083401119369
904 => 0.10919731450352
905 => 0.10971116867427
906 => 0.11385245590623
907 => 0.11652791632372
908 => 0.11641176753097
909 => 0.11747315007526
910 => 0.11699498751791
911 => 0.11545087448731
912 => 0.11808648714602
913 => 0.11725246902208
914 => 0.11732122446289
915 => 0.11731866538195
916 => 0.11787321452323
917 => 0.11748026563295
918 => 0.11670572303483
919 => 0.11721990055785
920 => 0.1187468239794
921 => 0.12348644113163
922 => 0.12613879368159
923 => 0.12332676617773
924 => 0.12526646509535
925 => 0.12410333693017
926 => 0.12389196194249
927 => 0.12511023620538
928 => 0.12633064289609
929 => 0.12625290826586
930 => 0.12536695567698
1001 => 0.12486650353973
1002 => 0.1286560947867
1003 => 0.13144820106347
1004 => 0.13125779813391
1005 => 0.13209817474263
1006 => 0.13456554645769
1007 => 0.13479113200521
1008 => 0.13476271341124
1009 => 0.13420357609431
1010 => 0.13663302397649
1011 => 0.13865971214188
1012 => 0.13407415196047
1013 => 0.13582027324816
1014 => 0.13660416335072
1015 => 0.13775514659099
1016 => 0.13969704824451
1017 => 0.14180646850421
1018 => 0.14210476365755
1019 => 0.14189310897152
1020 => 0.14050188960598
1021 => 0.14281004242477
1022 => 0.14416210421317
1023 => 0.14496722606677
1024 => 0.14700888112802
1025 => 0.13660900438912
1026 => 0.12924745472592
1027 => 0.12809784244394
1028 => 0.13043562422561
1029 => 0.13105207863797
1030 => 0.13080358663732
1031 => 0.12251749320857
1101 => 0.12805421787689
1102 => 0.13401126807897
1103 => 0.13424010263808
1104 => 0.13722232652528
1105 => 0.13819346086845
1106 => 0.14059454198667
1107 => 0.14044435370898
1108 => 0.14102897875172
1109 => 0.14089458357869
1110 => 0.14534208074291
1111 => 0.15024833057477
1112 => 0.15007844274401
1113 => 0.14937311128257
1114 => 0.1504206487797
1115 => 0.15548442439186
1116 => 0.15501823307885
1117 => 0.15547109822936
1118 => 0.16144157505799
1119 => 0.16920404422563
1120 => 0.1655975979581
1121 => 0.17342254863169
1122 => 0.1783479402979
1123 => 0.18686589588961
1124 => 0.18579940589771
1125 => 0.18911538350192
1126 => 0.18389016622903
1127 => 0.17189201117986
1128 => 0.16999325721623
1129 => 0.17379461073552
1130 => 0.18313986743203
1201 => 0.1735002953452
1202 => 0.17545036822376
1203 => 0.17488874710355
1204 => 0.17485882070079
1205 => 0.17600098977466
1206 => 0.17434421396147
1207 => 0.16759421125026
1208 => 0.17068769771479
1209 => 0.16949315402941
1210 => 0.17081858930747
1211 => 0.17797141685206
1212 => 0.17480898129249
1213 => 0.17147761232588
1214 => 0.17565588829996
1215 => 0.18097626942636
1216 => 0.18064332953712
1217 => 0.1799972869939
1218 => 0.18363899498432
1219 => 0.18965402966416
1220 => 0.19127986936776
1221 => 0.19248003099812
1222 => 0.19264551301005
1223 => 0.19435008057943
1224 => 0.18518419115254
1225 => 0.19973069306975
1226 => 0.20224247211185
1227 => 0.20177036175451
1228 => 0.20456209844798
1229 => 0.20374069869324
1230 => 0.20255061932229
1231 => 0.20697611580086
]
'min_raw' => 0.076293205894303
'max_raw' => 0.20697611580086
'avg_raw' => 0.14163466084758
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.076293'
'max' => '$0.206976'
'avg' => '$0.141634'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.026311555000271
'max_diff' => 0.09539560114417
'year' => 2032
]
7 => [
'items' => [
101 => 0.20190264120733
102 => 0.19470148275449
103 => 0.1907507848045
104 => 0.19595338255876
105 => 0.19913042746165
106 => 0.20123025204445
107 => 0.20186565769445
108 => 0.18589571305681
109 => 0.17728879863085
110 => 0.18280573209941
111 => 0.18953677168947
112 => 0.18514679988776
113 => 0.18531887847107
114 => 0.17905993234612
115 => 0.19009054954048
116 => 0.18848348139736
117 => 0.19682095376675
118 => 0.19483114907339
119 => 0.20163003413182
120 => 0.19983965984048
121 => 0.20727140342533
122 => 0.21023612714775
123 => 0.2152143597001
124 => 0.21887636783066
125 => 0.22102676904797
126 => 0.22089766702484
127 => 0.22941862797348
128 => 0.22439411500177
129 => 0.21808214252251
130 => 0.21796797885438
131 => 0.22123703884273
201 => 0.2280880917555
202 => 0.22986447009701
203 => 0.23085722325193
204 => 0.22933678723719
205 => 0.22388303851648
206 => 0.22152813747001
207 => 0.22353458138965
208 => 0.22108087289162
209 => 0.22531666214823
210 => 0.23113330551332
211 => 0.22993219165993
212 => 0.23394733519076
213 => 0.23810258633975
214 => 0.24404478210682
215 => 0.2455982921192
216 => 0.24816618509497
217 => 0.25080939047594
218 => 0.25165831680793
219 => 0.25327918058206
220 => 0.25327063782989
221 => 0.25815521990995
222 => 0.26354306520717
223 => 0.26557685207796
224 => 0.27025343284369
225 => 0.26224495216932
226 => 0.26831947675563
227 => 0.27379884998769
228 => 0.26726611533238
301 => 0.27626996812277
302 => 0.27661956732345
303 => 0.28189810019046
304 => 0.27654729588521
305 => 0.27337000536913
306 => 0.28254272403753
307 => 0.28698111366325
308 => 0.28564423458717
309 => 0.27547051880836
310 => 0.2695489798539
311 => 0.25405117023051
312 => 0.27240899518497
313 => 0.28135055621519
314 => 0.27544736232542
315 => 0.27842458995513
316 => 0.29466737853358
317 => 0.30085158078158
318 => 0.29956530994483
319 => 0.29978266854242
320 => 0.30311955182423
321 => 0.31791712995095
322 => 0.30905007813224
323 => 0.31582860700555
324 => 0.31942391427815
325 => 0.32276343604159
326 => 0.31456262605727
327 => 0.3038934927615
328 => 0.30051413038698
329 => 0.27486040603231
330 => 0.27352501827117
331 => 0.27277542465446
401 => 0.26804934293318
402 => 0.26433593728298
403 => 0.26138289924004
404 => 0.25363324556354
405 => 0.25624852618589
406 => 0.24389719570397
407 => 0.25179913924203
408 => 0.23208611755959
409 => 0.24850370779232
410 => 0.23956835984488
411 => 0.24556820567617
412 => 0.24554727277929
413 => 0.23449965435101
414 => 0.2281276185995
415 => 0.23218812778371
416 => 0.2365413159528
417 => 0.23724760608735
418 => 0.24289162817841
419 => 0.24446675342617
420 => 0.23969405038988
421 => 0.2316776090016
422 => 0.23353964550053
423 => 0.22808988448928
424 => 0.21853938793909
425 => 0.22539872129711
426 => 0.22774079928913
427 => 0.22877519435565
428 => 0.21938337788048
429 => 0.21643226523773
430 => 0.21486111762896
501 => 0.23046524343203
502 => 0.23132007266785
503 => 0.22694664543674
504 => 0.24671495122671
505 => 0.24224077479673
506 => 0.24723952606886
507 => 0.2333706852052
508 => 0.23390049360306
509 => 0.22733476208017
510 => 0.23101113301065
511 => 0.22841279253195
512 => 0.23071411857007
513 => 0.2320935239086
514 => 0.23865817805955
515 => 0.24857866559778
516 => 0.23767763764133
517 => 0.2329279036551
518 => 0.23587461190664
519 => 0.24372208429315
520 => 0.25561140666343
521 => 0.24857268852531
522 => 0.25169635210982
523 => 0.25237873364092
524 => 0.24718864347338
525 => 0.25580277269097
526 => 0.26041915451974
527 => 0.26515460705044
528 => 0.26926626779848
529 => 0.26326316317485
530 => 0.26968734563338
531 => 0.26451058859266
601 => 0.25986650236384
602 => 0.25987354552565
603 => 0.25696024239503
604 => 0.25131535047964
605 => 0.25027434580227
606 => 0.25568978359838
607 => 0.260032451867
608 => 0.26039013482558
609 => 0.26279445911344
610 => 0.26421731346048
611 => 0.27816322033821
612 => 0.28377237945102
613 => 0.29063115303823
614 => 0.29330303188974
615 => 0.30134442931121
616 => 0.29485034780301
617 => 0.29344531241902
618 => 0.27393951259558
619 => 0.27713358622393
620 => 0.28224760628519
621 => 0.27402384090278
622 => 0.27923992718806
623 => 0.28026969311258
624 => 0.27374440050194
625 => 0.27722984122654
626 => 0.26797354402317
627 => 0.24878042758227
628 => 0.25582414011621
629 => 0.2610106834292
630 => 0.25360884662539
701 => 0.26687635260557
702 => 0.25912574950887
703 => 0.25666918042177
704 => 0.24708522858289
705 => 0.25160848493071
706 => 0.25772625390792
707 => 0.25394618394698
708 => 0.26179039669628
709 => 0.27289989392442
710 => 0.28081718323118
711 => 0.28142497439479
712 => 0.27633468778772
713 => 0.28449190456132
714 => 0.28455132098008
715 => 0.27534994713625
716 => 0.26971415689037
717 => 0.26843369348871
718 => 0.27163254211571
719 => 0.27551653488892
720 => 0.28164050896248
721 => 0.28534109823743
722 => 0.29499027242559
723 => 0.29760106229741
724 => 0.3004695288245
725 => 0.30430268470701
726 => 0.30890537114496
727 => 0.29883495524981
728 => 0.29923507164693
729 => 0.28985763979976
730 => 0.27983650901131
731 => 0.28744129812816
801 => 0.29738354827574
802 => 0.29510278510667
803 => 0.29484615265839
804 => 0.2952777372525
805 => 0.29355811630578
806 => 0.28578033449593
807 => 0.28187438116251
808 => 0.28691405747759
809 => 0.28959242114887
810 => 0.29374632962516
811 => 0.29323427272709
812 => 0.30393429486482
813 => 0.30809199991567
814 => 0.30702828104544
815 => 0.30722403091739
816 => 0.31475135731407
817 => 0.32312329237993
818 => 0.33096471434324
819 => 0.33894134556123
820 => 0.32932520529473
821 => 0.32444272230848
822 => 0.32948019845854
823 => 0.32680724270571
824 => 0.34216683931165
825 => 0.34323030445541
826 => 0.3585887903877
827 => 0.37316582239193
828 => 0.36401024976472
829 => 0.37264354237613
830 => 0.38198115221803
831 => 0.39999491657567
901 => 0.39392851447189
902 => 0.38928174553303
903 => 0.38489057133884
904 => 0.39402790775768
905 => 0.40578294508801
906 => 0.40831486754062
907 => 0.41241754918266
908 => 0.4081040810881
909 => 0.41329917829507
910 => 0.43164015427707
911 => 0.42668426066646
912 => 0.41964609503974
913 => 0.43412453409148
914 => 0.43936422490079
915 => 0.47613911904795
916 => 0.52256894200385
917 => 0.50334669042545
918 => 0.49141481857256
919 => 0.49421909148578
920 => 0.51117369108057
921 => 0.51661897035833
922 => 0.50181682418106
923 => 0.50704519245055
924 => 0.53585401565727
925 => 0.55130902500996
926 => 0.53031904642432
927 => 0.47240852798116
928 => 0.4190123852313
929 => 0.4331754467482
930 => 0.43156979510316
1001 => 0.46252128166489
1002 => 0.42656606424287
1003 => 0.42717145789197
1004 => 0.4587629884176
1005 => 0.45033490968931
1006 => 0.43668250153624
1007 => 0.41911206291947
1008 => 0.38663148206752
1009 => 0.35786252581894
1010 => 0.41428507411734
1011 => 0.41185203123697
1012 => 0.40832862458943
1013 => 0.4161695848111
1014 => 0.45424306195213
1015 => 0.45336534507221
1016 => 0.44778175809725
1017 => 0.45201685960628
1018 => 0.43594006776529
1019 => 0.44008342308446
1020 => 0.41900392700947
1021 => 0.42853273959289
1022 => 0.43665320959995
1023 => 0.43828351417948
1024 => 0.44195667364258
1025 => 0.41056992819733
1026 => 0.42466165543582
1027 => 0.43293922497214
1028 => 0.39554086466646
1029 => 0.4321999796338
1030 => 0.41002355478834
1031 => 0.40249654311707
1101 => 0.41263067272405
1102 => 0.40868139256045
1103 => 0.40528603338529
1104 => 0.40339136462588
1105 => 0.41083275094618
1106 => 0.41048560137996
1107 => 0.3983100490491
1108 => 0.3824275373725
1109 => 0.38775822961684
1110 => 0.38582153914896
1111 => 0.37880272305534
1112 => 0.38353255764735
1113 => 0.36270475981863
1114 => 0.32687161618903
1115 => 0.35054408846961
1116 => 0.34963272403751
1117 => 0.34917317276375
1118 => 0.36696238142353
1119 => 0.36525235947777
1120 => 0.36214865290162
1121 => 0.37874572105011
1122 => 0.37268756791384
1123 => 0.39135736839943
1124 => 0.40365450648622
1125 => 0.40053555449667
1126 => 0.41210107230452
1127 => 0.38788103799966
1128 => 0.39592596185662
1129 => 0.39758400951376
1130 => 0.37854091580545
1201 => 0.36553214021629
1202 => 0.3646646031954
1203 => 0.34210917904349
1204 => 0.35415810456442
1205 => 0.36476066040441
1206 => 0.35968285894862
1207 => 0.35807537870273
1208 => 0.3662876466591
1209 => 0.36692581021262
1210 => 0.35237561356263
1211 => 0.35540106019097
1212 => 0.36801767556978
1213 => 0.35508315385432
1214 => 0.32995349100331
1215 => 0.32372098717149
1216 => 0.32288945627249
1217 => 0.30598641157447
1218 => 0.32413747287941
1219 => 0.3162140482016
1220 => 0.34124405182158
1221 => 0.32694704799245
1222 => 0.32633073273244
1223 => 0.32539908182313
1224 => 0.31084993299557
1225 => 0.31403527194216
1226 => 0.32462382374146
1227 => 0.32840193831202
1228 => 0.32800785000913
1229 => 0.32457193406108
1230 => 0.32614487878736
1231 => 0.32107787577373
]
'min_raw' => 0.17728879863085
'max_raw' => 0.55130902500996
'avg_raw' => 0.36429891182041
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.177288'
'max' => '$0.551309'
'avg' => '$0.364298'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10099559273655
'max_diff' => 0.3443329092091
'year' => 2033
]
8 => [
'items' => [
101 => 0.31928861154907
102 => 0.31364120148015
103 => 0.30534106881568
104 => 0.30649525317035
105 => 0.29005051851419
106 => 0.28109055428539
107 => 0.27861055427729
108 => 0.27529419462012
109 => 0.27898514592506
110 => 0.29000393264708
111 => 0.27671293809432
112 => 0.25392646018847
113 => 0.25529596633688
114 => 0.25837284004233
115 => 0.25263910624777
116 => 0.24721260840703
117 => 0.25193050801387
118 => 0.24227557693633
119 => 0.25953959233607
120 => 0.25907264910135
121 => 0.26550760644283
122 => 0.26953151732707
123 => 0.26025770549551
124 => 0.25792536689893
125 => 0.25925397296242
126 => 0.23729507423947
127 => 0.26371309593816
128 => 0.26394156008684
129 => 0.26198531134121
130 => 0.27605209233085
131 => 0.305737387758
201 => 0.29456858553007
202 => 0.29024368772857
203 => 0.28202205384646
204 => 0.29297689284206
205 => 0.29213573212931
206 => 0.28833168438552
207 => 0.28603098444072
208 => 0.29027009463232
209 => 0.28550571177582
210 => 0.28464989769831
211 => 0.27946459552349
212 => 0.27761367856329
213 => 0.27624333333309
214 => 0.27473471788198
215 => 0.27806234764358
216 => 0.27052150081764
217 => 0.26142797878388
218 => 0.26067195082004
219 => 0.26275941049885
220 => 0.26183586498408
221 => 0.26066752923943
222 => 0.2584368581256
223 => 0.25777506565688
224 => 0.25992557012418
225 => 0.2574977759628
226 => 0.2610801184967
227 => 0.26010591954753
228 => 0.25466412340973
301 => 0.24788163061106
302 => 0.24782125219839
303 => 0.24635997525044
304 => 0.24449881935275
305 => 0.2439810883595
306 => 0.25153317966827
307 => 0.26716578266237
308 => 0.26409672863814
309 => 0.26631443469996
310 => 0.2772233535797
311 => 0.28069097084894
312 => 0.27822973824625
313 => 0.27486065125748
314 => 0.27500887398658
315 => 0.28652206411921
316 => 0.28724012766541
317 => 0.28905444259059
318 => 0.29138634999479
319 => 0.27862687216064
320 => 0.27440790372803
321 => 0.2724087224252
322 => 0.26625201779303
323 => 0.27289149590287
324 => 0.26902295633906
325 => 0.26954495449435
326 => 0.26920500251093
327 => 0.26939063928133
328 => 0.25953476669193
329 => 0.26312572865409
330 => 0.25715505791347
331 => 0.24916100003101
401 => 0.24913420114591
402 => 0.25109073548747
403 => 0.24992691230192
404 => 0.24679509403422
405 => 0.24723995403738
406 => 0.243342512306
407 => 0.24771317402903
408 => 0.24783850896827
409 => 0.24615556613335
410 => 0.25288917355277
411 => 0.25564793800661
412 => 0.25454018898054
413 => 0.25557021538191
414 => 0.2642242616888
415 => 0.26563524883933
416 => 0.26626191612702
417 => 0.26542226497903
418 => 0.25572839546194
419 => 0.25615835979654
420 => 0.25300356679507
421 => 0.25033809915273
422 => 0.25044470387989
423 => 0.25181510073459
424 => 0.25779970417179
425 => 0.27039394929375
426 => 0.27087189168985
427 => 0.2714511718165
428 => 0.26909494841858
429 => 0.26838428889574
430 => 0.26932183224315
501 => 0.274051568537
502 => 0.28621773439568
503 => 0.28191739883033
504 => 0.27842115907698
505 => 0.28148830392013
506 => 0.28101614101261
507 => 0.27703061090512
508 => 0.27691875034923
509 => 0.26926924382191
510 => 0.2664413954296
511 => 0.2640782336522
512 => 0.26149772268318
513 => 0.25996790928123
514 => 0.26231839795438
515 => 0.26285598252409
516 => 0.25771659796074
517 => 0.25701611883544
518 => 0.26121305121119
519 => 0.25936613775003
520 => 0.26126573404608
521 => 0.2617064566812
522 => 0.26163549018624
523 => 0.25970710041613
524 => 0.26093619855019
525 => 0.25802901505136
526 => 0.25486788964122
527 => 0.25285128857462
528 => 0.2510915366807
529 => 0.25206794930883
530 => 0.24858721657546
531 => 0.24747366012074
601 => 0.26051980775795
602 => 0.27015713728728
603 => 0.27001700669912
604 => 0.26916399778238
605 => 0.26789659955863
606 => 0.2739588504628
607 => 0.27184688346632
608 => 0.27338351591701
609 => 0.27377465336797
610 => 0.27495850862896
611 => 0.27538163512897
612 => 0.2741026529657
613 => 0.26981023261124
614 => 0.259113929199
615 => 0.25413477108649
616 => 0.25249156597492
617 => 0.25255129335984
618 => 0.2509037454491
619 => 0.25138902214673
620 => 0.25073498601768
621 => 0.24949639981758
622 => 0.25199147010122
623 => 0.25227900370822
624 => 0.25169662449015
625 => 0.25183379587844
626 => 0.24701194469022
627 => 0.24737853956355
628 => 0.24533729272423
629 => 0.24495458354945
630 => 0.23979448929134
701 => 0.23065263434546
702 => 0.23571810940681
703 => 0.22959972784628
704 => 0.2272826040407
705 => 0.23825150774964
706 => 0.23715053404729
707 => 0.23526614565064
708 => 0.23247874247103
709 => 0.23144486751761
710 => 0.2251633705856
711 => 0.22479222623638
712 => 0.22790550573056
713 => 0.2264688343654
714 => 0.22445120365872
715 => 0.21714354976308
716 => 0.20892732730332
717 => 0.20917532341405
718 => 0.21178875091024
719 => 0.21938764382415
720 => 0.2164186249005
721 => 0.21426456760583
722 => 0.21386117742527
723 => 0.21891045008961
724 => 0.22605622876499
725 => 0.22940886824169
726 => 0.22608650434146
727 => 0.22226995158164
728 => 0.22250224746393
729 => 0.2240476078984
730 => 0.22421000342984
731 => 0.22172581993116
801 => 0.22242510303485
802 => 0.22136282805656
803 => 0.21484364847559
804 => 0.21472573718952
805 => 0.21312582538437
806 => 0.21307738069076
807 => 0.21035553159351
808 => 0.20997472608955
809 => 0.20457032950253
810 => 0.20812751970213
811 => 0.20574154327711
812 => 0.20214531400966
813 => 0.20152532272845
814 => 0.20150668504188
815 => 0.2051992083974
816 => 0.20808437041683
817 => 0.20578304835855
818 => 0.20525908193513
819 => 0.21085367252927
820 => 0.21014170988034
821 => 0.20952515481804
822 => 0.2254164026602
823 => 0.2128372399836
824 => 0.20735200706309
825 => 0.20056298970649
826 => 0.202773527991
827 => 0.20323932088711
828 => 0.18691295795684
829 => 0.18028935454935
830 => 0.17801638346512
831 => 0.17670825647106
901 => 0.17730438636868
902 => 0.17134236643075
903 => 0.17534894243175
904 => 0.17018633712249
905 => 0.16932080954183
906 => 0.17855218735884
907 => 0.17983667965315
908 => 0.17435663646515
909 => 0.17787571133025
910 => 0.17659964586537
911 => 0.17027483517295
912 => 0.17003327392665
913 => 0.16685970624904
914 => 0.16189368735738
915 => 0.15962408346781
916 => 0.15844205405652
917 => 0.15892978242891
918 => 0.15868317203909
919 => 0.15707387243185
920 => 0.1587754152088
921 => 0.1544286765397
922 => 0.15269777017761
923 => 0.15191595993058
924 => 0.1480579791728
925 => 0.15419774221025
926 => 0.15540735287532
927 => 0.15661934684707
928 => 0.16716892690774
929 => 0.16664189970071
930 => 0.17140596897958
1001 => 0.17122084600796
1002 => 0.16986205627682
1003 => 0.16412954591122
1004 => 0.16641442237077
1005 => 0.15938192777689
1006 => 0.16465115088978
1007 => 0.16224649750907
1008 => 0.1638381351629
1009 => 0.16097622714914
1010 => 0.16256012520924
1011 => 0.15569419643761
1012 => 0.14928288875688
1013 => 0.15186298612535
1014 => 0.15466784703479
1015 => 0.16074950015173
1016 => 0.15712731772783
1017 => 0.15842999149734
1018 => 0.15406625243442
1019 => 0.14506261230717
1020 => 0.1451135719325
1021 => 0.14372855805388
1022 => 0.14253170384742
1023 => 0.15754336895191
1024 => 0.15567643109686
1025 => 0.15270170996362
1026 => 0.15668349241118
1027 => 0.1577363388897
1028 => 0.15776631194882
1029 => 0.16067131763787
1030 => 0.16222171969487
1031 => 0.16249498477725
1101 => 0.16706607399578
1102 => 0.16859824280771
1103 => 0.1749090293034
1104 => 0.16209017891239
1105 => 0.16182618312427
1106 => 0.15673952425584
1107 => 0.15351348478458
1108 => 0.15696041393843
1109 => 0.16001392261599
1110 => 0.15683440528207
1111 => 0.1572495831226
1112 => 0.15298134087793
1113 => 0.15450703664094
1114 => 0.15582117136545
1115 => 0.15509558341184
1116 => 0.15400934312644
1117 => 0.15976356972618
1118 => 0.15943889371043
1119 => 0.16479736180921
1120 => 0.16897467087994
1121 => 0.17646115551801
1122 => 0.16864861851892
1123 => 0.16836389861865
1124 => 0.17114708131429
1125 => 0.16859781671694
1126 => 0.17020886394484
1127 => 0.1762015909029
1128 => 0.17632820778031
1129 => 0.17420721194709
1130 => 0.17407814915788
1201 => 0.1744855096088
1202 => 0.17687143249353
1203 => 0.1760377177256
1204 => 0.17700251356212
1205 => 0.17820900552917
1206 => 0.18319956784687
1207 => 0.1844027755262
1208 => 0.18147960465709
1209 => 0.18174353425721
1210 => 0.18065018810933
1211 => 0.17959402943006
1212 => 0.18196811990147
1213 => 0.18630681690083
1214 => 0.18627982609197
1215 => 0.1872863194636
1216 => 0.18791335649589
1217 => 0.18522165453416
1218 => 0.18346945553369
1219 => 0.18414136012579
1220 => 0.18521575020073
1221 => 0.18379294990475
1222 => 0.17501076737277
1223 => 0.17767472054498
1224 => 0.17723130847647
1225 => 0.17659983577016
1226 => 0.17927846128456
1227 => 0.17902010131915
1228 => 0.17128121729892
1229 => 0.17177663554515
1230 => 0.17131134532335
1231 => 0.1728147932194
]
'min_raw' => 0.14253170384742
'max_raw' => 0.31928861154907
'avg_raw' => 0.23091015769825
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.142531'
'max' => '$0.319288'
'avg' => '$0.23091'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.034757094783431
'max_diff' => -0.23202041346089
'year' => 2034
]
9 => [
'items' => [
101 => 0.16851662559666
102 => 0.16983871300881
103 => 0.17066791383992
104 => 0.17115631949966
105 => 0.17292077564554
106 => 0.1727137370821
107 => 0.17290790583774
108 => 0.17552412850293
109 => 0.18875608496425
110 => 0.18947627115977
111 => 0.18592981093729
112 => 0.18734655184534
113 => 0.18462671910906
114 => 0.18645256104622
115 => 0.18770175572826
116 => 0.18205688516643
117 => 0.18172263256666
118 => 0.17899157411319
119 => 0.18045909023103
120 => 0.1781241665694
121 => 0.1786970751638
122 => 0.17709517278858
123 => 0.17997827812839
124 => 0.18320203788758
125 => 0.18401648691288
126 => 0.18187402216966
127 => 0.18032273650027
128 => 0.17759918989008
129 => 0.18212850860102
130 => 0.18345301942058
131 => 0.18212155150954
201 => 0.18181302130141
202 => 0.18122835711449
203 => 0.18193706057255
204 => 0.18344580585021
205 => 0.18273430943941
206 => 0.1832042653537
207 => 0.18141327802489
208 => 0.18522254559951
209 => 0.19127257925817
210 => 0.19129203110566
211 => 0.19058053085964
212 => 0.19028940028845
213 => 0.19101944271832
214 => 0.19141546078861
215 => 0.19377628413991
216 => 0.19630954165521
217 => 0.20813114913224
218 => 0.20481168905762
219 => 0.21530052248182
220 => 0.2235958279158
221 => 0.22608322730571
222 => 0.22379493690818
223 => 0.21596681906925
224 => 0.21558273426206
225 => 0.22728124725952
226 => 0.2239758815119
227 => 0.22358271877381
228 => 0.21940013149943
301 => 0.2218725586021
302 => 0.22133180252643
303 => 0.22047819260629
304 => 0.22519541128742
305 => 0.23402562354948
306 => 0.23264935215923
307 => 0.2316220294098
308 => 0.22712060017097
309 => 0.22983146600337
310 => 0.22886617860366
311 => 0.23301366585931
312 => 0.23055678628716
313 => 0.22395084011545
314 => 0.22500285881677
315 => 0.22484384830644
316 => 0.22811627334158
317 => 0.22713397257261
318 => 0.22465203831593
319 => 0.23399544284394
320 => 0.23338873412463
321 => 0.23424890837568
322 => 0.23462758368276
323 => 0.24031474936971
324 => 0.24264459918264
325 => 0.24317351587994
326 => 0.24538669300518
327 => 0.24311845001691
328 => 0.25219303919984
329 => 0.25822711148953
330 => 0.26523599696452
331 => 0.27547786245431
401 => 0.27932889862102
402 => 0.27863324340679
403 => 0.28639850893235
404 => 0.30035251846962
405 => 0.28145374769467
406 => 0.30135419921049
407 => 0.29505394602235
408 => 0.28011615904996
409 => 0.27915434167388
410 => 0.28927038444285
411 => 0.3117067936714
412 => 0.30608672763129
413 => 0.3117159860861
414 => 0.3051491570829
415 => 0.30482305867331
416 => 0.31139704985886
417 => 0.32675753859349
418 => 0.31946034617497
419 => 0.30899803149805
420 => 0.31672324184384
421 => 0.31003094970785
422 => 0.29495134247082
423 => 0.30608243007271
424 => 0.29863938878845
425 => 0.30081166392903
426 => 0.31645582963971
427 => 0.31457348223207
428 => 0.31700941407823
429 => 0.3127100581292
430 => 0.3086937817266
501 => 0.30119710356854
502 => 0.2989777067477
503 => 0.29959106818345
504 => 0.29897740279623
505 => 0.29478308026483
506 => 0.29387731671352
507 => 0.29236767111225
508 => 0.29283557340942
509 => 0.28999699801665
510 => 0.29535397626242
511 => 0.29634827863036
512 => 0.30024664066273
513 => 0.30065138154124
514 => 0.31150826431166
515 => 0.30552847572422
516 => 0.30954023417878
517 => 0.30918138474247
518 => 0.28043990618899
519 => 0.28440022834544
520 => 0.29056124680334
521 => 0.28778571633912
522 => 0.28386176563682
523 => 0.28069296505579
524 => 0.27589190814903
525 => 0.28264930354916
526 => 0.29153455993145
527 => 0.30087672630601
528 => 0.31210072708205
529 => 0.30959566077061
530 => 0.30066690141875
531 => 0.30106743904081
601 => 0.30354340501465
602 => 0.3003368041133
603 => 0.2993911149072
604 => 0.30341348183978
605 => 0.30344118167019
606 => 0.29975159980252
607 => 0.29565130474296
608 => 0.29563412435694
609 => 0.29490451645525
610 => 0.30527895270778
611 => 0.31098384367286
612 => 0.31163790022811
613 => 0.31093982045544
614 => 0.31120848365415
615 => 0.30788893330026
616 => 0.31547644102716
617 => 0.32243948844411
618 => 0.32057324299256
619 => 0.31777547575826
620 => 0.31554691939741
621 => 0.32004826593848
622 => 0.31984782806278
623 => 0.32237867229935
624 => 0.32226385858592
625 => 0.32141283085903
626 => 0.32057327338544
627 => 0.32390202386894
628 => 0.32294339718779
629 => 0.32198328149462
630 => 0.32005762248562
701 => 0.32031935152675
702 => 0.31752206736641
703 => 0.31622791571882
704 => 0.29676698004307
705 => 0.29156638212609
706 => 0.29320259609871
707 => 0.29374128022277
708 => 0.29147797334455
709 => 0.29472297401208
710 => 0.29421724409535
711 => 0.29618474335924
712 => 0.29495553523805
713 => 0.29500598236811
714 => 0.29862082135771
715 => 0.29967022449502
716 => 0.29913648958966
717 => 0.29951029922201
718 => 0.30812458442433
719 => 0.30689990853789
720 => 0.30624932388192
721 => 0.3064295402778
722 => 0.30863067483935
723 => 0.30924687233909
724 => 0.30663600023325
725 => 0.30786730261164
726 => 0.31311003186326
727 => 0.31494469038855
728 => 0.32080003971523
729 => 0.31831258325072
730 => 0.32287841724592
731 => 0.33691223433966
801 => 0.34812341850041
802 => 0.3378131502244
803 => 0.35840106219993
804 => 0.37443170483344
805 => 0.37381642206873
806 => 0.37102110873014
807 => 0.35277064828856
808 => 0.33597630249119
809 => 0.35002548587628
810 => 0.35006130013397
811 => 0.34885446282159
812 => 0.34135889992267
813 => 0.34859363348028
814 => 0.34916790035739
815 => 0.3488464636161
816 => 0.34309963311578
817 => 0.3343252851336
818 => 0.33603977172649
819 => 0.33884813574024
820 => 0.33353131677611
821 => 0.33183227095965
822 => 0.33499112038914
823 => 0.34516959142337
824 => 0.34324541043422
825 => 0.34319516229237
826 => 0.35142762454369
827 => 0.34553495824829
828 => 0.33606139689298
829 => 0.33366919770983
830 => 0.32517850218815
831 => 0.3310430558278
901 => 0.33125411067282
902 => 0.32804215457867
903 => 0.33632202942791
904 => 0.33624572892354
905 => 0.34410623779616
906 => 0.3591325784883
907 => 0.35468855014431
908 => 0.34952062868917
909 => 0.35008252504226
910 => 0.35624514115732
911 => 0.35251908277531
912 => 0.35385899934848
913 => 0.35624311303311
914 => 0.35768150801325
915 => 0.34987556214026
916 => 0.34805562275571
917 => 0.34433266548686
918 => 0.3433614154277
919 => 0.34639368644113
920 => 0.34559479016081
921 => 0.33123637233034
922 => 0.32973583777758
923 => 0.32978185703004
924 => 0.32600869155058
925 => 0.32025370853093
926 => 0.33537746029439
927 => 0.33416281137102
928 => 0.33282193296597
929 => 0.33298618291964
930 => 0.33955089096866
1001 => 0.33574302877452
1002 => 0.34586685451396
1003 => 0.34378570029199
1004 => 0.34165117231714
1005 => 0.3413561155317
1006 => 0.34053450437076
1007 => 0.33771689399182
1008 => 0.33431446014711
1009 => 0.33206787860907
1010 => 0.30631506497522
1011 => 0.31109463738843
1012 => 0.31659309977811
1013 => 0.31849114696132
1014 => 0.31524440591357
1015 => 0.3378450951175
1016 => 0.34197445882072
1017 => 0.32946634681194
1018 => 0.32712658975795
1019 => 0.33799848920044
1020 => 0.33144140480096
1021 => 0.33439405950455
1022 => 0.32801203505117
1023 => 0.3409798160265
1024 => 0.34088102326244
1025 => 0.33583626357242
1026 => 0.3401000599174
1027 => 0.33935912037559
1028 => 0.33366359911025
1029 => 0.34116037420953
1030 => 0.34116409251645
1031 => 0.33630862099733
1101 => 0.3306384932624
1102 => 0.32962480834584
1103 => 0.32886113293061
1104 => 0.33420624216656
1105 => 0.33899865039378
1106 => 0.3479161339659
1107 => 0.35015820121011
1108 => 0.35890913892714
1109 => 0.35369838159208
1110 => 0.35600824282811
1111 => 0.35851592394964
1112 => 0.35971819849622
1113 => 0.35775915664018
1114 => 0.37135296494439
1115 => 0.37250069886879
1116 => 0.37288552412579
1117 => 0.3683017684503
1118 => 0.37237321633151
1119 => 0.37046832070007
1120 => 0.37542432993781
1121 => 0.37620149546779
1122 => 0.37554326391237
1123 => 0.37578994851831
1124 => 0.36419003124277
1125 => 0.36358851433759
1126 => 0.35538678865384
1127 => 0.35872905249407
1128 => 0.35248085044364
1129 => 0.35446221967744
1130 => 0.35533558835652
1201 => 0.35487939012181
1202 => 0.3589180190769
1203 => 0.35548435942768
1204 => 0.3464223670675
1205 => 0.33735790577355
1206 => 0.33724410884576
1207 => 0.33485759618809
1208 => 0.3331325846482
1209 => 0.33346488306885
1210 => 0.33463594604561
1211 => 0.33306452033911
1212 => 0.3333998636869
1213 => 0.3389687976412
1214 => 0.34008560762991
1215 => 0.33629025092243
1216 => 0.32105134607452
1217 => 0.31731168060094
1218 => 0.31999967798256
1219 => 0.31871498836335
1220 => 0.25722787029418
1221 => 0.27167335663322
1222 => 0.26309033917292
1223 => 0.26704578850427
1224 => 0.25828475023891
1225 => 0.2624659769045
1226 => 0.26169385701331
1227 => 0.28492177157347
1228 => 0.28455909963657
1229 => 0.28473269150059
1230 => 0.2764466995395
1231 => 0.28964650972272
]
'min_raw' => 0.16851662559666
'max_raw' => 0.37620149546779
'avg_raw' => 0.27235906053223
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.168516'
'max' => '$0.3762014'
'avg' => '$0.272359'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.025984921749239
'max_diff' => 0.056912883918721
'year' => 2035
]
10 => [
'items' => [
101 => 0.29614921086879
102 => 0.29494573395044
103 => 0.2952486231629
104 => 0.29004398297292
105 => 0.28478308379441
106 => 0.27894793695886
107 => 0.28978891853336
108 => 0.288583586444
109 => 0.29134818459219
110 => 0.29837933607262
111 => 0.29941469983686
112 => 0.30080623923562
113 => 0.30030747141769
114 => 0.3121901443562
115 => 0.31075107425895
116 => 0.31421881914461
117 => 0.30708540481637
118 => 0.29901326939406
119 => 0.30054751843985
120 => 0.30039975791909
121 => 0.29851859689817
122 => 0.29682036884087
123 => 0.29399329759826
124 => 0.3029385693377
125 => 0.30257540764106
126 => 0.30845457338032
127 => 0.30741537372874
128 => 0.30047534412017
129 => 0.30072320863534
130 => 0.30239021661947
131 => 0.30815975028608
201 => 0.30987254069814
202 => 0.30907910793638
203 => 0.31095710443135
204 => 0.31244139628889
205 => 0.3111435086361
206 => 0.32951886079679
207 => 0.32188813345459
208 => 0.32560729686692
209 => 0.32649429542618
210 => 0.32422226726821
211 => 0.32471498882044
212 => 0.32546132771349
213 => 0.32999295132395
214 => 0.34188524291364
215 => 0.34715225790515
216 => 0.36299833237704
217 => 0.34671490563049
218 => 0.34574871447487
219 => 0.34860307099286
220 => 0.3579063941852
221 => 0.36544586381587
222 => 0.3679471408548
223 => 0.36827772590708
224 => 0.37297028791387
225 => 0.37565997694506
226 => 0.37240048745961
227 => 0.36963841140347
228 => 0.35974499781186
229 => 0.36089018737396
301 => 0.36877940782698
302 => 0.37992339638964
303 => 0.38948609791079
304 => 0.38613757313187
305 => 0.41168445350488
306 => 0.41421732234422
307 => 0.41386736176808
308 => 0.4196376139255
309 => 0.40818483848443
310 => 0.40328855509629
311 => 0.3702356035977
312 => 0.37952213475644
313 => 0.39302065317451
314 => 0.39123407364503
315 => 0.38143108875339
316 => 0.38947866146769
317 => 0.38681788225748
318 => 0.38471921529855
319 => 0.394333615484
320 => 0.38376218754231
321 => 0.39291519509407
322 => 0.3811763682332
323 => 0.38615286891101
324 => 0.38332796644003
325 => 0.38515602454578
326 => 0.37446923421294
327 => 0.38023556686937
328 => 0.37422933581649
329 => 0.37422648808094
330 => 0.37409390019755
331 => 0.38116020439555
401 => 0.38139063632176
402 => 0.37616862684284
403 => 0.37541605369381
404 => 0.37819871106534
405 => 0.3749409480624
406 => 0.37646523486736
407 => 0.37498711715691
408 => 0.37465436172636
409 => 0.37200290984211
410 => 0.37086059146719
411 => 0.37130852393592
412 => 0.36977949949514
413 => 0.36885820696234
414 => 0.37391063192418
415 => 0.37121132508131
416 => 0.373496924437
417 => 0.37089219550556
418 => 0.3618630702028
419 => 0.35667032475992
420 => 0.33961514406338
421 => 0.34445197215204
422 => 0.34765879417887
423 => 0.34659893951813
424 => 0.34887591743871
425 => 0.34901570539019
426 => 0.34827543665716
427 => 0.34741830029862
428 => 0.3470010937219
429 => 0.35011060973386
430 => 0.35191578844031
501 => 0.34798064167101
502 => 0.34705869184152
503 => 0.35103734249069
504 => 0.35346431708828
505 => 0.37138373391773
506 => 0.37005620564005
507 => 0.37338804110276
508 => 0.37301292756084
509 => 0.37650522192877
510 => 0.38221364726662
511 => 0.37060682245395
512 => 0.37262136590762
513 => 0.37212744637538
514 => 0.37751993031571
515 => 0.37753676506196
516 => 0.37430370156519
517 => 0.37605639773725
518 => 0.37507809081671
519 => 0.37684602364824
520 => 0.37003847569055
521 => 0.37832933427363
522 => 0.38302971683911
523 => 0.38309498165559
524 => 0.38532292568709
525 => 0.38758664585691
526 => 0.39193165959439
527 => 0.38746546578203
528 => 0.37943121788879
529 => 0.38001126463622
530 => 0.37530078803603
531 => 0.37537997199869
601 => 0.37495728180022
602 => 0.37622580690447
603 => 0.37031684561557
604 => 0.37170366701941
605 => 0.36976210893282
606 => 0.37261714533952
607 => 0.36954559812034
608 => 0.37212720819243
609 => 0.37324134551782
610 => 0.37735253623415
611 => 0.36893837190883
612 => 0.35178132126066
613 => 0.35538794131604
614 => 0.35005346696024
615 => 0.35054719287165
616 => 0.35154459778858
617 => 0.34831168212222
618 => 0.34892842055048
619 => 0.3489063863139
620 => 0.34871650716692
621 => 0.34787550094097
622 => 0.34665587552533
623 => 0.35151448780032
624 => 0.35234006070212
625 => 0.35417520699596
626 => 0.35963535757482
627 => 0.35908975977277
628 => 0.35997965242454
629 => 0.35803702176226
630 => 0.35063730593647
701 => 0.35103914610692
702 => 0.34602819274239
703 => 0.35404706565227
704 => 0.35214809070326
705 => 0.35092380920007
706 => 0.35058975264904
707 => 0.35606343788507
708 => 0.35770125029719
709 => 0.35668067551146
710 => 0.354587446851
711 => 0.35860706468658
712 => 0.35968254484532
713 => 0.35992330519069
714 => 0.36704529731008
715 => 0.3603213454347
716 => 0.36193986748143
717 => 0.37456711446259
718 => 0.36311594389165
719 => 0.36918188433465
720 => 0.3688849881156
721 => 0.37198811798601
722 => 0.36863044089265
723 => 0.36867206332436
724 => 0.37142743242506
725 => 0.36755801345657
726 => 0.36659989090421
727 => 0.36527625146033
728 => 0.36816636976166
729 => 0.3698988649745
730 => 0.38386150401249
731 => 0.39288200560473
801 => 0.39249040184073
802 => 0.39606892719216
803 => 0.39445676874581
804 => 0.38925068385662
805 => 0.39813683594804
806 => 0.39532488561392
807 => 0.39555669938295
808 => 0.39554807126289
809 => 0.39741777241011
810 => 0.39609291779171
811 => 0.3934814933453
812 => 0.3952150787629
813 => 0.40036320768505
814 => 0.4163431578233
815 => 0.42528574962684
816 => 0.41580480256807
817 => 0.42234463289427
818 => 0.41842306507836
819 => 0.41771039954967
820 => 0.42181789628419
821 => 0.425932582648
822 => 0.4256704949149
823 => 0.42268344390626
824 => 0.42099613458509
825 => 0.43377300605506
826 => 0.44318678730582
827 => 0.4425448305353
828 => 0.44537821894481
829 => 0.45369713494854
830 => 0.45445771237187
831 => 0.4543618970982
901 => 0.45247672659643
902 => 0.46066777974985
903 => 0.46750090039829
904 => 0.45204036409308
905 => 0.45792753392483
906 => 0.46057047413506
907 => 0.46445109448871
908 => 0.47099835149281
909 => 0.47811040917341
910 => 0.47911613210919
911 => 0.47840252355798
912 => 0.47371193033525
913 => 0.48149402871386
914 => 0.48605259943139
915 => 0.48876712397264
916 => 0.49565070655544
917 => 0.46058679603403
918 => 0.43576681737756
919 => 0.43189081930551
920 => 0.43977281380111
921 => 0.44185123289187
922 => 0.4410134247625
923 => 0.4130762822509
924 => 0.43174373603191
925 => 0.45182834669618
926 => 0.45259987838895
927 => 0.46265465443689
928 => 0.46592890167729
929 => 0.47402431430551
930 => 0.47351794404147
1001 => 0.47548904819029
1002 => 0.47503592548124
1003 => 0.49003097268476
1004 => 0.5065727365363
1005 => 0.50599994785371
1006 => 0.50362187358678
1007 => 0.50715371939508
1008 => 0.52422659241302
1009 => 0.52265479585274
1010 => 0.52418166232574
1011 => 0.54431154179884
1012 => 0.57048324855584
1013 => 0.55832386317082
1014 => 0.58470623068743
1015 => 0.60131253256992
1016 => 0.63003141455203
1017 => 0.6264356690844
1018 => 0.63761571909114
1019 => 0.6199985342426
1020 => 0.57954591680987
1021 => 0.57314413525474
1022 => 0.58596066404704
1023 => 0.61746884946431
1024 => 0.58496835916013
1025 => 0.59154316601994
1026 => 0.58964962120201
1027 => 0.5895487222457
1028 => 0.59339962502198
1029 => 0.58781368969541
1030 => 0.56505558428441
1031 => 0.57548548987992
1101 => 0.57145800244429
1102 => 0.5759268000232
1103 => 0.60004305748425
1104 => 0.58938068520094
1105 => 0.57814874214127
1106 => 0.5922360913058
1107 => 0.61017412773062
1108 => 0.6090515976489
1109 => 0.6068734201092
1110 => 0.61915169285483
1111 => 0.63943180223423
1112 => 0.6449134343074
1113 => 0.64895986303678
1114 => 0.64951779719359
1115 => 0.65526486576286
1116 => 0.62436142961813
1117 => 0.67340597643635
1118 => 0.68187461484359
1119 => 0.68028286181213
1120 => 0.68969539698699
1121 => 0.68692599036558
1122 => 0.68291355467773
1123 => 0.69783442503354
1124 => 0.68072885122275
1125 => 0.6564496427302
1126 => 0.64312958876289
1127 => 0.66067051032515
1128 => 0.67138213902942
1129 => 0.6784618442154
1130 => 0.680604158727
1201 => 0.62676037539525
1202 => 0.59774156249256
1203 => 0.61634228886182
1204 => 0.63903645878587
1205 => 0.62423536235835
1206 => 0.62481553731613
1207 => 0.6037130634702
1208 => 0.64090355947409
1209 => 0.63548521702763
1210 => 0.66359558722475
1211 => 0.65688682177739
1212 => 0.67980973743486
1213 => 0.67377336551169
1214 => 0.69883000787577
1215 => 0.70882578089631
1216 => 0.72561023951564
1217 => 0.73795695560106
1218 => 0.74520718344147
1219 => 0.74477190695685
1220 => 0.77350092170969
1221 => 0.75656042542526
1222 => 0.73527916952361
1223 => 0.73489425874585
1224 => 0.74591612273505
1225 => 0.76901492595568
1226 => 0.77500410955688
1227 => 0.77835124613049
1228 => 0.77322498995334
1229 => 0.7548372953729
1230 => 0.7468975820808
1231 => 0.75366244784131
]
'min_raw' => 0.27894793695886
'max_raw' => 0.77835124613049
'avg_raw' => 0.52864959154468
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.278947'
'max' => '$0.778351'
'avg' => '$0.528649'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11043131136221
'max_diff' => 0.4021497506627
'year' => 2036
]
11 => [
'items' => [
101 => 0.74538959832774
102 => 0.75967085753976
103 => 0.77928207675023
104 => 0.77523243753443
105 => 0.788769774277
106 => 0.80277949363619
107 => 0.82281402153571
108 => 0.82805178900506
109 => 0.83670961945744
110 => 0.84562137094209
111 => 0.84848358534053
112 => 0.8539484407201
113 => 0.85391963823473
114 => 0.87038834774827
115 => 0.8885538443352
116 => 0.89541089876455
117 => 0.91117831732465
118 => 0.88417716559672
119 => 0.90465784934923
120 => 0.92313193875876
121 => 0.90110636776741
122 => 0.93146348607913
123 => 0.93264218419247
124 => 0.95043912628897
125 => 0.93239851599261
126 => 0.9216860591863
127 => 0.9526125205956
128 => 0.96757686109715
129 => 0.96306947995424
130 => 0.92876808689984
131 => 0.90880320488622
201 => 0.85655125771844
202 => 0.91844594625481
203 => 0.94859304354805
204 => 0.92869001320085
205 => 0.93872794401784
206 => 0.99349163974536
207 => 1.0143421093917
208 => 1.010005357461
209 => 1.0107381971483
210 => 1.0219887321067
211 => 1.0718797998948
212 => 1.0419839156103
213 => 1.0648381989684
214 => 1.0769600284543
215 => 1.0882194592377
216 => 1.0605698558133
217 => 1.0245981280115
218 => 1.0132043718263
219 => 0.92671104907868
220 => 0.9222086960082
221 => 0.91968138879449
222 => 0.9037470743067
223 => 0.89122706789537
224 => 0.88127069395904
225 => 0.85514219552518
226 => 0.86395979673649
227 => 0.82231642367437
228 => 0.84895837800899
301 => 0.78249454908743
302 => 0.83784760079665
303 => 0.80772145134575
304 => 0.82795035046184
305 => 0.8278797737385
306 => 0.79063195688748
307 => 0.76914819346992
308 => 0.78283848368017
309 => 0.79751556152215
310 => 0.79989686802239
311 => 0.81892608255544
312 => 0.82423672730002
313 => 0.80814522579366
314 => 0.78111723396301
315 => 0.78739522002241
316 => 0.7690209702828
317 => 0.73682080436946
318 => 0.75994752568938
319 => 0.76784400515816
320 => 0.77133154034409
321 => 0.73966637538236
322 => 0.7297164930672
323 => 0.72441925921022
324 => 0.77702965880056
325 => 0.77991177525138
326 => 0.76516645999878
327 => 0.8318166831487
328 => 0.81673168493798
329 => 0.83358532385364
330 => 0.78682555859025
331 => 0.78861184459369
401 => 0.76647502235952
402 => 0.77887016362766
403 => 0.77010967729339
404 => 0.77786875870436
405 => 0.78251952011021
406 => 0.80465270990968
407 => 0.83810032627112
408 => 0.80134674943047
409 => 0.78533268968009
410 => 0.79526772228274
411 => 0.82172602332688
412 => 0.86181170378426
413 => 0.83808017415399
414 => 0.8486118240164
415 => 0.85091252099084
416 => 0.83341376963046
417 => 0.86245690770688
418 => 0.87802136134806
419 => 0.89398727017404
420 => 0.90785002145304
421 => 0.88761013509109
422 => 0.90926971477212
423 => 0.89181591697971
424 => 0.87615805601948
425 => 0.87618180253127
426 => 0.86635939762607
427 => 0.84732725041957
428 => 0.84381743046916
429 => 0.86207595709256
430 => 0.87671756635562
501 => 0.8779235194231
502 => 0.88602986662418
503 => 0.89082711939576
504 => 0.93784671810614
505 => 0.95675838967398
506 => 0.9798832236875
507 => 0.98889164978001
508 => 1.0160037826189
509 => 0.99410853341173
510 => 0.98937135851818
511 => 0.92360619256199
512 => 0.93437523480308
513 => 0.95161751048909
514 => 0.92389051133733
515 => 0.94147691042366
516 => 0.94494883813417
517 => 0.92294835851602
518 => 0.93469976526468
519 => 0.90349151298951
520 => 0.83878058088841
521 => 0.86252894947291
522 => 0.88001574236552
523 => 0.85505993280174
524 => 0.89979225552162
525 => 0.87366055605124
526 => 0.86537806186192
527 => 0.83306509910699
528 => 0.84831557368732
529 => 0.86894205892297
530 => 0.85619728913362
531 => 0.88264460008334
601 => 0.92010104562832
602 => 0.94679473929358
603 => 0.94884394963628
604 => 0.9316816929481
605 => 0.95918431881897
606 => 0.95938464542314
607 => 0.92836157108928
608 => 0.90936011079699
609 => 0.90504293903916
610 => 0.91582808052158
611 => 0.92892323332819
612 => 0.94957063947942
613 => 0.96204743458679
614 => 0.99458029904601
615 => 1.0033827593784
616 => 1.0130539945444
617 => 1.0259777472247
618 => 1.0414960258995
619 => 1.007542915615
620 => 1.0088919359832
621 => 0.97727526979906
622 => 0.94348832769278
623 => 0.96912840514966
624 => 1.002649395668
625 => 0.99495964340565
626 => 0.99409438918876
627 => 0.99554950678007
628 => 0.98975168469812
629 => 0.9635283502988
630 => 0.95035915593022
701 => 0.96735077648549
702 => 0.97638106660059
703 => 0.99038625904505
704 => 0.98865982346252
705 => 1.0247356951516
706 => 1.0387536880122
707 => 1.0351672855747
708 => 1.0358272699348
709 => 1.0612061764224
710 => 1.0894327400068
711 => 1.1158706416267
712 => 1.1427644106887
713 => 1.1103429224028
714 => 1.0938812901305
715 => 1.1108654926758
716 => 1.1018534357353
717 => 1.1536393880651
718 => 1.157224935046
719 => 1.209007142662
720 => 1.2581546238001
721 => 1.2272859714658
722 => 1.2563937202624
723 => 1.2878761237755
724 => 1.3486107879881
725 => 1.3281574897526
726 => 1.3124905838482
727 => 1.2976854334705
728 => 1.328492601155
729 => 1.3681255302247
730 => 1.3766620835469
731 => 1.3904945611431
801 => 1.3759514023056
802 => 1.393467035249
803 => 1.4553049162984
804 => 1.4385957749807
805 => 1.4148661081812
806 => 1.4636811762965
807 => 1.4813471596836
808 => 1.6053362828419
809 => 1.7618776725644
810 => 1.6970685093131
811 => 1.6568393703044
812 => 1.6662941722194
813 => 1.7234577884856
814 => 1.7418169277478
815 => 1.6919104584583
816 => 1.7095382671119
817 => 1.8066692259211
818 => 1.858776868988
819 => 1.788007690713
820 => 1.5927583345986
821 => 1.4127295113178
822 => 1.4604812620555
823 => 1.4550676954312
824 => 1.5594227933378
825 => 1.4381972674864
826 => 1.4402383944416
827 => 1.5467514452589
828 => 1.5183355893968
829 => 1.4723055421281
830 => 1.4130655816028
831 => 1.3035550355387
901 => 1.2065584909622
902 => 1.3967910518468
903 => 1.388587877906
904 => 1.3767084663975
905 => 1.4031448112232
906 => 1.5315121976094
907 => 1.5285529138686
908 => 1.5097274605489
909 => 1.5240064009719
910 => 1.4698023748343
911 => 1.4837719865727
912 => 1.4127009938324
913 => 1.4448280507379
914 => 1.4722067823198
915 => 1.4777034680339
916 => 1.4900877816156
917 => 1.3842651779943
918 => 1.4317764202318
919 => 1.459684823845
920 => 1.3335936410043
921 => 1.4571924065743
922 => 1.3824230418993
923 => 1.3570451965304
924 => 1.3912131220427
925 => 1.3778978482412
926 => 1.3664501577257
927 => 1.3600621497218
928 => 1.3851513032417
929 => 1.383980864242
930 => 1.3429301394886
1001 => 1.2893811424894
1002 => 1.3073539435682
1003 => 1.3008242564404
1004 => 1.2771598279426
1005 => 1.2931067954961
1006 => 1.2228844209662
1007 => 1.1020704754288
1008 => 1.181883868482
1009 => 1.1788111396697
1010 => 1.1772617304654
1011 => 1.2372392894648
1012 => 1.2314738310847
1013 => 1.2210094676693
1014 => 1.2769676417023
1015 => 1.2565421554366
1016 => 1.3194886912576
1017 => 1.360949350876
1018 => 1.3504335864849
1019 => 1.3894275372528
1020 => 1.3077680006051
1021 => 1.3348920230675
1022 => 1.3404822465047
1023 => 1.2762771265209
1024 => 1.2324171313783
1025 => 1.2294921697428
1026 => 1.1534449824453
1027 => 1.1940687760682
1028 => 1.2298160333295
1029 => 1.2126958712006
1030 => 1.2072761393208
1031 => 1.234964374098
1101 => 1.2371159870739
1102 => 1.1880589832061
1103 => 1.1982594877435
1104 => 1.2407972873571
1105 => 1.197187644334
1106 => 1.1124612315348
1107 => 1.0914479097262
1108 => 1.0886443452446
1109 => 1.0316545499124
1110 => 1.0928521203686
1111 => 1.0661377408715
1112 => 1.1505281456153
1113 => 1.1023247990205
1114 => 1.1002468490916
1115 => 1.0971057230051
1116 => 1.0480522519438
1117 => 1.0587918445955
1118 => 1.0944918862559
1119 => 1.1072300633101
1120 => 1.1059013670826
1121 => 1.0943169365757
1122 => 1.0996202295399
1123 => 1.0825364751126
1124 => 1.0765038458567
1125 => 1.0574632085197
1126 => 1.0294787317447
1127 => 1.0333701448791
1128 => 0.97792557385112
1129 => 0.94771642888899
1130 => 0.9393549357136
1201 => 0.92817359758862
1202 => 0.94061789760723
1203 => 0.97776850634764
1204 => 0.93295699026538
1205 => 0.85613078910472
1206 => 0.86074817469996
1207 => 0.87112206921836
1208 => 0.8517903854135
1209 => 0.83349456907744
1210 => 0.84940129699514
1211 => 0.81684902278146
1212 => 0.87505585603675
1213 => 0.87348152431996
1214 => 0.89517743227111
1215 => 0.90874432875782
1216 => 0.87747702469086
1217 => 0.8696133822738
1218 => 0.87409287037718
1219 => 0.80005691021139
1220 => 0.88912711481589
1221 => 0.88989739764403
1222 => 0.88330176841722
1223 => 0.93072890263508
1224 => 1.0308149487289
1225 => 0.9931585522365
1226 => 0.97857685734405
1227 => 0.95085704469435
1228 => 0.98779204921047
1229 => 0.98495601713946
1230 => 0.97213040458112
1231 => 0.96437343408749
]
'min_raw' => 0.72441925921022
'max_raw' => 1.858776868988
'avg_raw' => 1.2915980640991
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.724419'
'max' => '$1.85'
'avg' => '$1.29'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.44547132225135
'max_diff' => 1.0804256228575
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.022738692771262
]
1 => [
'year' => 2028
'avg' => 0.039026197885164
]
2 => [
'year' => 2029
'avg' => 0.10661253883445
]
3 => [
'year' => 2030
'avg' => 0.082251414938622
]
4 => [
'year' => 2031
'avg' => 0.080781082775362
]
5 => [
'year' => 2032
'avg' => 0.14163466084758
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.022738692771262
'min' => '$0.022738'
'max_raw' => 0.14163466084758
'max' => '$0.141634'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14163466084758
]
1 => [
'year' => 2033
'avg' => 0.36429891182041
]
2 => [
'year' => 2034
'avg' => 0.23091015769825
]
3 => [
'year' => 2035
'avg' => 0.27235906053223
]
4 => [
'year' => 2036
'avg' => 0.52864959154468
]
5 => [
'year' => 2037
'avg' => 1.2915980640991
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14163466084758
'min' => '$0.141634'
'max_raw' => 1.2915980640991
'max' => '$1.29'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2915980640991
]
]
]
]
'prediction_2025_max_price' => '$0.038879'
'last_price' => 0.03769812
'sma_50day_nextmonth' => '$0.035054'
'sma_200day_nextmonth' => '$0.041167'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.037037'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.036619'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.035993'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0356079'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.038087'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.039527'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.042182'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.037122'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.036763'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036286'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0362062'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0373098'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.039263'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.044682'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.040263'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.051424'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.080869'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.086226'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.036969'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.036952'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.037714'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0405055'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.052658'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0684052'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.086756'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 124.66
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036062'
'vwma_10_action' => 'BUY'
'hma_9' => '0.037278'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 265.95
'cci_20_action' => 'SELL'
'adx_14' => 15.91
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000555'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.19
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '0.000171'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767693511
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Ferma para 2026
La previsión del precio de Ferma para 2026 sugiere que el precio medio podría oscilar entre $0.013024 en el extremo inferior y $0.038879 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Ferma podría potencialmente ganar 3.13% para 2026 si FERMA alcanza el objetivo de precio previsto.
Predicción de precio de Ferma 2027-2032
La predicción del precio de FERMA para 2027-2032 está actualmente dentro de un rango de precios de $0.022738 en el extremo inferior y $0.141634 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Ferma alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Ferma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.012538 | $0.022738 | $0.032938 |
| 2028 | $0.022628 | $0.039026 | $0.055424 |
| 2029 | $0.049708 | $0.106612 | $0.163517 |
| 2030 | $0.042274 | $0.082251 | $0.122228 |
| 2031 | $0.049981 | $0.080781 | $0.11158 |
| 2032 | $0.076293 | $0.141634 | $0.206976 |
Predicción de precio de Ferma 2032-2037
La predicción de precio de Ferma para 2032-2037 se estima actualmente entre $0.141634 en el extremo inferior y $1.29 en el extremo superior. Comparado con el precio actual, Ferma podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Ferma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.076293 | $0.141634 | $0.206976 |
| 2033 | $0.177288 | $0.364298 | $0.551309 |
| 2034 | $0.142531 | $0.23091 | $0.319288 |
| 2035 | $0.168516 | $0.272359 | $0.3762014 |
| 2036 | $0.278947 | $0.528649 | $0.778351 |
| 2037 | $0.724419 | $1.29 | $1.85 |
Ferma Histograma de precios potenciales
Pronóstico de precio de Ferma basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Ferma es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de FERMA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Ferma
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Ferma aumentar durante el próximo mes, alcanzando $0.041167 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Ferma alcance $0.035054 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.63, lo que sugiere que el mercado de FERMA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FERMA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.037037 | BUY |
| SMA 5 | $0.036619 | BUY |
| SMA 10 | $0.035993 | BUY |
| SMA 21 | $0.0356079 | BUY |
| SMA 50 | $0.038087 | SELL |
| SMA 100 | $0.039527 | SELL |
| SMA 200 | $0.042182 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.037122 | BUY |
| EMA 5 | $0.036763 | BUY |
| EMA 10 | $0.036286 | BUY |
| EMA 21 | $0.0362062 | BUY |
| EMA 50 | $0.0373098 | BUY |
| EMA 100 | $0.039263 | SELL |
| EMA 200 | $0.044682 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.040263 | SELL |
| SMA 50 | $0.051424 | SELL |
| SMA 100 | $0.080869 | SELL |
| SMA 200 | $0.086226 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0405055 | SELL |
| EMA 50 | $0.052658 | SELL |
| EMA 100 | $0.0684052 | SELL |
| EMA 200 | $0.086756 | SELL |
Osciladores de Ferma
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.63 | NEUTRAL |
| Stoch RSI (14) | 124.66 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 265.95 | SELL |
| Índice Direccional Medio (14) | 15.91 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000555 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.19 | SELL |
| VWMA (10) | 0.036062 | BUY |
| Promedio Móvil de Hull (9) | 0.037278 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000171 | NEUTRAL |
Predicción de precios de Ferma basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Ferma
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Ferma por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.052972 | $0.074434 | $0.104593 | $0.14697 | $0.206518 | $0.290193 |
| Amazon.com acción | $0.078659 | $0.164127 | $0.342461 | $0.714566 | $1.49 | $3.11 |
| Apple acción | $0.053471 | $0.075845 | $0.107581 | $0.152596 | $0.216445 | $0.307012 |
| Netflix acción | $0.059481 | $0.093852 | $0.148085 | $0.233655 | $0.368671 | $0.581705 |
| Google acción | $0.048818 | $0.06322 | $0.081869 | $0.106021 | $0.137297 | $0.177799 |
| Tesla acción | $0.085458 | $0.193728 | $0.439168 | $0.99556 | $2.25 | $5.11 |
| Kodak acción | $0.028269 | $0.021199 | $0.015897 | $0.011921 | $0.008939 | $0.0067037 |
| Nokia acción | $0.024973 | $0.016543 | $0.010959 | $0.00726 | $0.0048096 | $0.003186 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Ferma
Podría preguntarse cosas como: "¿Debo invertir en Ferma ahora?", "¿Debería comprar FERMA hoy?", "¿Será Ferma una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Ferma regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Ferma, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Ferma a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Ferma es de $0.03769 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Ferma basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Ferma ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.038678 | $0.039683 | $0.040714 | $0.041773 |
| Si Ferma ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.039657 | $0.041719 | $0.043888 | $0.04617 |
| Si Ferma ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.042597 | $0.048133 | $0.054389 | $0.061458 |
| Si Ferma ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.047497 | $0.059843 | $0.075398 | $0.094996 |
| Si Ferma ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.057296 | $0.087082 | $0.132353 | $0.201158 |
| Si Ferma ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.086692 | $0.199364 | $0.45847 | $1.05 |
| Si Ferma ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.135687 | $0.488383 | $1.75 | $6.32 |
Cuadro de preguntas
¿Es FERMA una buena inversión?
La decisión de adquirir Ferma depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Ferma ha experimentado un aumento de 0.9191% durante las últimas 24 horas, y Ferma ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Ferma dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Ferma subir?
Parece que el valor medio de Ferma podría potencialmente aumentar hasta $0.038879 para el final de este año. Mirando las perspectivas de Ferma en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.122228. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Ferma la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Ferma, el precio de Ferma aumentará en un 0.86% durante la próxima semana y alcanzará $0.0380207 para el 13 de enero de 2026.
¿Cuál será el precio de Ferma el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Ferma, el precio de Ferma disminuirá en un -11.62% durante el próximo mes y alcanzará $0.033318 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Ferma este año en 2026?
Según nuestra predicción más reciente sobre el valor de Ferma en 2026, se anticipa que FERMA fluctúe dentro del rango de $0.013024 y $0.038879. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Ferma no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Ferma en 5 años?
El futuro de Ferma parece estar en una tendencia alcista, con un precio máximo de $0.122228 proyectada después de un período de cinco años. Basado en el pronóstico de Ferma para 2030, el valor de Ferma podría potencialmente alcanzar su punto más alto de aproximadamente $0.122228, mientras que su punto más bajo se anticipa que esté alrededor de $0.042274.
¿Cuánto será Ferma en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Ferma, se espera que el valor de FERMA en 2026 crezca en un 3.13% hasta $0.038879 si ocurre lo mejor. El precio estará entre $0.038879 y $0.013024 durante 2026.
¿Cuánto será Ferma en 2027?
Según nuestra última simulación experimental para la predicción de precios de Ferma, el valor de FERMA podría disminuir en un -12.62% hasta $0.032938 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.032938 y $0.012538 a lo largo del año.
¿Cuánto será Ferma en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Ferma sugiere que el valor de FERMA en 2028 podría aumentar en un 47.02% , alcanzando $0.055424 en el mejor escenario. Se espera que el precio oscile entre $0.055424 y $0.022628 durante el año.
¿Cuánto será Ferma en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Ferma podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.163517 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.163517 y $0.049708.
¿Cuánto será Ferma en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Ferma, se espera que el valor de FERMA en 2030 aumente en un 224.23% , alcanzando $0.122228 en el mejor escenario. Se pronostica que el precio oscile entre $0.122228 y $0.042274 durante el transcurso de 2030.
¿Cuánto será Ferma en 2031?
Nuestra simulación experimental indica que el precio de Ferma podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.11158 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.11158 y $0.049981 durante el año.
¿Cuánto será Ferma en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Ferma, FERMA podría experimentar un 449.04% aumento en valor, alcanzando $0.206976 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.206976 y $0.076293 a lo largo del año.
¿Cuánto será Ferma en 2033?
Según nuestra predicción experimental de precios de Ferma, se anticipa que el valor de FERMA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.551309. A lo largo del año, el precio de FERMA podría oscilar entre $0.551309 y $0.177288.
¿Cuánto será Ferma en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Ferma sugieren que FERMA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.319288 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.319288 y $0.142531.
¿Cuánto será Ferma en 2035?
Basado en nuestra predicción experimental para el precio de Ferma, FERMA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.3762014 en 2035. El rango de precios esperado para el año está entre $0.3762014 y $0.168516.
¿Cuánto será Ferma en 2036?
Nuestra reciente simulación de predicción de precios de Ferma sugiere que el valor de FERMA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.778351 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.778351 y $0.278947.
¿Cuánto será Ferma en 2037?
Según la simulación experimental, el valor de Ferma podría aumentar en un 4830.69% en 2037, con un máximo de $1.85 bajo condiciones favorables. Se espera que el precio caiga entre $1.85 y $0.724419 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Templar DAO
Predicción de precios de PsyFi
Predicción de precios de Bankless DAO
Predicción de precios de Bitcoin Rhodium
Predicción de precios de Aston Villa Fan Token
Predicción de precios de Elon Doge Token
Predicción de precios de Biconomy Exchange Token
Predicción de precios de Treecle
Predicción de precios de ROOK
Predicción de precios de BlackPool Token
Predicción de precios de Tetu
Predicción de precios de SALT
Predicción de precios de Baby Shiba Inu
Predicción de precios de VersaGames
Predicción de precios de King Shiba
Predicción de precios de Galvan
Predicción de precios de Artem
Predicción de precios de CoinBuck
Predicción de precios de BABYTRUMP
Predicción de precios de Charged Particles
Predicción de precios de Gunstar Metaverse
Predicción de precios de GST
Predicción de precios de Blockchain Monster Hunt
Predicción de precios de Modefi
Predicción de precios de Factor
¿Cómo leer y predecir los movimientos de precio de Ferma?
Los traders de Ferma utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Ferma
Las medias móviles son herramientas populares para la predicción de precios de Ferma. Una media móvil simple (SMA) calcula el precio de cierre promedio de FERMA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FERMA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FERMA.
¿Cómo leer gráficos de Ferma y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Ferma en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FERMA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Ferma?
La acción del precio de Ferma está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FERMA. La capitalización de mercado de Ferma puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FERMA, grandes poseedores de Ferma, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Ferma.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


