Predicción del precio de Elmo - Pronóstico de ELMO
Predicción de precio de Elmo hasta $0.001062 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000355 | $0.001062 |
| 2027 | $0.000342 | $0.00090027 |
| 2028 | $0.000618 | $0.001514 |
| 2029 | $0.001358 | $0.004469 |
| 2030 | $0.001155 | $0.00334 |
| 2031 | $0.001366 | $0.003049 |
| 2032 | $0.002085 | $0.005656 |
| 2033 | $0.004845 | $0.015068 |
| 2034 | $0.003895 | $0.008726 |
| 2035 | $0.0046058 | $0.010282 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Elmo hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,963.22, equivalente a un ROI del 39.63% en los próximos 90 días.
Predicción del precio a largo plazo de Elmo para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Elmo'
'name_with_ticker' => 'Elmo <small>ELMO</small>'
'name_lang' => 'Elmo'
'name_lang_with_ticker' => 'Elmo <small>ELMO</small>'
'name_with_lang' => 'Elmo'
'name_with_lang_with_ticker' => 'Elmo <small>ELMO</small>'
'image' => '/uploads/coins/elmoerc.png?1733997528'
'price_for_sd' => 0.00103
'ticker' => 'ELMO'
'marketcap' => '$298.27K'
'low24h' => '$0.001008'
'high24h' => '$0.001044'
'volume24h' => '$260.18'
'current_supply' => '289.48M'
'max_supply' => '289.48M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00103'
'change_24h_pct' => '1.5028%'
'ath_price' => '$0.03034'
'ath_days' => 947
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 jun. 2023'
'ath_pct' => '-96.61%'
'fdv' => '$298.27K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.0508033'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0010391'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00091'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000355'
'current_year_max_price_prediction' => '$0.001062'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001155'
'grand_prediction_max_price' => '$0.00334'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0010498745905359
107 => 0.0010537944411525
108 => 0.0010626260647442
109 => 0.00098716080811004
110 => 0.0010210424927952
111 => 0.0010409448082633
112 => 0.0009510254229263
113 => 0.001039167391128
114 => 0.00098584712588708
115 => 0.0009677494270208
116 => 0.00099211559435373
117 => 0.00098262007524721
118 => 0.00097445638551502
119 => 0.00096990090637446
120 => 0.00098779273046801
121 => 0.00098695805548869
122 => 0.00095768355861823
123 => 0.00091949617083187
124 => 0.00093231311163125
125 => 0.00092765659687937
126 => 0.00091078078671622
127 => 0.0009221530451731
128 => 0.00087207537429732
129 => 0.00078591934436637
130 => 0.00084283665676932
131 => 0.00084064540215593
201 => 0.00083954047221437
202 => 0.00088231225940622
203 => 0.00087820073898075
204 => 0.00087073828914839
205 => 0.00091064373297293
206 => 0.00089607770917301
207 => 0.00094096676233753
208 => 0.00097053359599361
209 => 0.00096303449059156
210 => 0.00099084224055401
211 => 0.00093260838806068
212 => 0.00095195133792233
213 => 0.00095593789308064
214 => 0.00091015130599049
215 => 0.00087887343457039
216 => 0.00087678755714051
217 => 0.00082255603845422
218 => 0.00085152607799491
219 => 0.00087701851392902
220 => 0.00086480961540953
221 => 0.00086094464286872
222 => 0.00088068994936942
223 => 0.00088222432879164
224 => 0.00084724031535882
225 => 0.00085451459955113
226 => 0.00088484957388217
227 => 0.00085375023602951
228 => 0.0007933293026298
301 => 0.00077834407576191
302 => 0.0007763447702652
303 => 0.00073570364650615
304 => 0.00077934546027587
305 => 0.00076029463903749
306 => 0.00082047595506564
307 => 0.00078610071010923
308 => 0.0007846188620041
309 => 0.00078237883125332
310 => 0.00074739733717023
311 => 0.0007550560611845
312 => 0.00078051482626454
313 => 0.00078959880045862
314 => 0.00078865126752737
315 => 0.00078039006442667
316 => 0.00078417200090196
317 => 0.00077198906580102
318 => 0.00076768701785101
319 => 0.00075410857114927
320 => 0.00073415200563934
321 => 0.00073692708847423
322 => 0.00069738791027965
323 => 0.00067584486749623
324 => 0.00066988203718652
325 => 0.00066190829129255
326 => 0.00067078269300258
327 => 0.00069727590075566
328 => 0.00066531947135787
329 => 0.00061053241463824
330 => 0.0006138252100997
331 => 0.00062122314386183
401 => 0.00060743714323832
402 => 0.0005943898506195
403 => 0.00060573341299126
404 => 0.00058251941481414
405 => 0.00062402844463535
406 => 0.0006229057417064
407 => 0.00063837774112256
408 => 0.00064805269987487
409 => 0.00062575505225588
410 => 0.00062014725417895
411 => 0.00062334171082378
412 => 0.00057054445822485
413 => 0.00063406307918974
414 => 0.00063461239086151
415 => 0.00062990885083101
416 => 0.0006637305555774
417 => 0.00073510490184654
418 => 0.00070825100175366
419 => 0.00069785235997427
420 => 0.00067808453435029
421 => 0.0007044239882969
422 => 0.00070240152919329
423 => 0.00069325520213193
424 => 0.00068772347498694
425 => 0.0006979158518636
426 => 0.00068646052669788
427 => 0.00068440283552684
428 => 0.00067193546582037
429 => 0.00066748518206434
430 => 0.00066419036914227
501 => 0.00066056310385671
502 => 0.00066856394721847
503 => 0.00065043298356213
504 => 0.00062856881879286
505 => 0.00062675105006584
506 => 0.00063177006934101
507 => 0.00062954952693379
508 => 0.0006267404189631
509 => 0.00062137706683202
510 => 0.00061978587482461
511 => 0.00062495647691206
512 => 0.00061911916862016
513 => 0.0006277324349795
514 => 0.00062539010312352
515 => 0.00061230602778331
516 => 0.00059599842556428
517 => 0.00059585325369818
518 => 0.00059233980754991
519 => 0.00058786490562994
520 => 0.00058662009028769
521 => 0.00060477808980807
522 => 0.00064236460539209
523 => 0.00063498547301385
524 => 0.00064031765240103
525 => 0.00066654669753403
526 => 0.0006748841222469
527 => 0.00066896641566843
528 => 0.00066086589391557
529 => 0.00066122227576185
530 => 0.00068890421078606
531 => 0.00069063069911816
601 => 0.00069499297814715
602 => 0.00070059973947931
603 => 0.00066992127136762
604 => 0.00065977732267266
605 => 0.00065497055701615
606 => 0.00064016757924649
607 => 0.00065613132165966
608 => 0.00064682993259112
609 => 0.00064808500775716
610 => 0.00064726763840878
611 => 0.00064771397734327
612 => 0.00062401684201556
613 => 0.00063265083264421
614 => 0.00061829514863405
615 => 0.0005990744992456
616 => 0.00059901006488923
617 => 0.00060371429159717
618 => 0.00060091603347488
619 => 0.00059338599281757
620 => 0.00059445559955215
621 => 0.00058508471906413
622 => 0.00059559339410867
623 => 0.0005958947453071
624 => 0.00059184833300355
625 => 0.00060803839682737
626 => 0.00061467147918582
627 => 0.00061200804392507
628 => 0.00061448460546775
629 => 0.00063529210927896
630 => 0.00063868464029522
701 => 0.00064019137847463
702 => 0.00063817254891878
703 => 0.00061486492844055
704 => 0.00061589872052041
705 => 0.00060831344017018
706 => 0.00060190467759139
707 => 0.00060216099448501
708 => 0.00060545593153133
709 => 0.0006198451148581
710 => 0.00065012630288059
711 => 0.00065127545183078
712 => 0.00065266825388146
713 => 0.00064700302797514
714 => 0.00064529434163289
715 => 0.00064754853996769
716 => 0.00065892056207971
717 => 0.00068817249042571
718 => 0.00067783290527763
719 => 0.00066942666160701
720 => 0.00067680120361316
721 => 0.00067566595067488
722 => 0.00066608327339765
723 => 0.00066581431956258
724 => 0.00064742209810032
725 => 0.00064062291259634
726 => 0.000634941004279
727 => 0.00062873650872644
728 => 0.00062505827578631
729 => 0.00063070971330933
730 => 0.00063200226393669
731 => 0.00061964529702239
801 => 0.00061796108809253
802 => 0.0006280520540184
803 => 0.00062361139614355
804 => 0.00062817872289085
805 => 0.00062923838187403
806 => 0.00062906775237172
807 => 0.00062443119554407
808 => 0.0006273863986019
809 => 0.0006203964623817
810 => 0.00061279595659671
811 => 0.00060794730743412
812 => 0.00060371621795978
813 => 0.00060606387231251
814 => 0.00059769491320979
815 => 0.00059501751475896
816 => 0.00062638524230008
817 => 0.0006495569198946
818 => 0.00064921999452539
819 => 0.00064716904799046
820 => 0.00064412175745886
821 => 0.00065869763379692
822 => 0.00065361968993459
823 => 0.00065731431837084
824 => 0.00065825475637094
825 => 0.00066110117895542
826 => 0.00066211853037108
827 => 0.00065904338779695
828 => 0.00064872283372116
829 => 0.00062300499421311
830 => 0.00061103327049813
831 => 0.00060708240226736
901 => 0.00060722600882378
902 => 0.00060326469890978
903 => 0.00060443148221291
904 => 0.00060285893929305
905 => 0.00059988092344183
906 => 0.00060587998822553
907 => 0.00060657132455669
908 => 0.00060517107115269
909 => 0.00060550088151925
910 => 0.00059390738139018
911 => 0.00059478881002524
912 => 0.00058988090337872
913 => 0.0005889607300482
914 => 0.00057655396942613
915 => 0.00055457359459542
916 => 0.00056675285593824
917 => 0.00055204202089941
918 => 0.00054647080476468
919 => 0.00057284407544462
920 => 0.00057019693054902
921 => 0.00056566616917397
922 => 0.00055896422880686
923 => 0.00055647841393242
924 => 0.00054137538966866
925 => 0.00054048302242365
926 => 0.00054796848906473
927 => 0.00054451420376905
928 => 0.00053966307897378
929 => 0.00052209279671593
930 => 0.00050233798213757
1001 => 0.00050293425581536
1002 => 0.00050921789478134
1003 => 0.00052748842253911
1004 => 0.00052034981126081
1005 => 0.00051517066687228
1006 => 0.00051420076881281
1007 => 0.00052634107364612
1008 => 0.00054352214845775
1009 => 0.00055158312435448
1010 => 0.00054359494205629
1011 => 0.00053441854834642
1012 => 0.00053497707291223
1013 => 0.00053869268662512
1014 => 0.00053908314509039
1015 => 0.00053311025613378
1016 => 0.00053479158938867
1017 => 0.00053223749043016
1018 => 0.00051656298983627
1019 => 0.0005162794878249
1020 => 0.0005124327125937
1021 => 0.0005123162337685
1022 => 0.00050577190947717
1023 => 0.00050485631327003
1024 => 0.00049186216017749
1025 => 0.00050041495109292
1026 => 0.00049467818798853
1027 => 0.0004860315328246
1028 => 0.00048454084621522
1029 => 0.00048449603437568
1030 => 0.00049337421587232
1031 => 0.000500311204373
1101 => 0.00049477798143885
1102 => 0.00049351817383377
1103 => 0.00050696962313062
1104 => 0.00050525780359491
1105 => 0.00050377537891704
1106 => 0.00054198377165204
1107 => 0.00051173884736423
1108 => 0.00049855033405481
1109 => 0.00048222704440366
1110 => 0.00048754198982325
1111 => 0.00048866192691595
1112 => 0.00044940735779905
1113 => 0.00043348178399717
1114 => 0.00042801672721095
1115 => 0.00042487150976592
1116 => 0.00042630482485078
1117 => 0.00041196994054559
1118 => 0.00042160321987578
1119 => 0.00040919042176509
1120 => 0.00040710937576709
1121 => 0.00042930499643962
1122 => 0.00043239338739127
1123 => 0.00041921735210368
1124 => 0.00042767849976466
1125 => 0.00042461037000404
1126 => 0.00040940320356181
1127 => 0.00040882240166006
1128 => 0.00040119198009709
1129 => 0.00038925184789181
1130 => 0.00038379488707748
1201 => 0.00038095285450587
1202 => 0.00038212553253503
1203 => 0.00038153259063895
1204 => 0.00037766324368566
1205 => 0.00038175437707702
1206 => 0.00037130322183514
1207 => 0.00036714148760715
1208 => 0.00036526172880787
1209 => 0.00035598572698465
1210 => 0.00037074797094212
1211 => 0.00037365631897159
1212 => 0.00037657039734511
1213 => 0.00040193546006082
1214 => 0.00040066829320846
1215 => 0.00041212286441845
1216 => 0.00041167776084484
1217 => 0.000408410731584
1218 => 0.00039462767253274
1219 => 0.00040012135421117
1220 => 0.00038321265591266
1221 => 0.00039588180235763
1222 => 0.00039010013299635
1223 => 0.00039392701413074
1224 => 0.00038704593679514
1225 => 0.00039085420910538
1226 => 0.00037434599618198
1227 => 0.00035893085923092
1228 => 0.00036513436033592
1229 => 0.00037187827549347
1230 => 0.00038650080187265
1231 => 0.00037779174579443
]
'min_raw' => 0.00035598572698465
'max_raw' => 0.0010626260647442
'avg_raw' => 0.00070930589586442
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000355'
'max' => '$0.001062'
'avg' => '$0.0007093'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00067436427301535
'max_diff' => 3.2276064744185E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00038092385168603
102 => 0.00037043182125737
103 => 0.00034878376558273
104 => 0.00034890629122688
105 => 0.00034557620948986
106 => 0.00034269853266919
107 => 0.00037879208564978
108 => 0.00037430328178201
109 => 0.00036715096029884
110 => 0.00037672462682602
111 => 0.00037925605621032
112 => 0.00037932812244612
113 => 0.00038631282241225
114 => 0.00039004055803625
115 => 0.00039069758759692
116 => 0.00040168816390805
117 => 0.00040537206011834
118 => 0.000420545507244
119 => 0.0003897242857128
120 => 0.00038908954293783
121 => 0.00037685934794719
122 => 0.0003691027649324
123 => 0.00037739044782226
124 => 0.00038473220348115
125 => 0.00037708747676058
126 => 0.0003780857166813
127 => 0.00036782329565605
128 => 0.00037149162828079
129 => 0.00037465129051498
130 => 0.00037290671074562
131 => 0.00037029499039228
201 => 0.0003841302632414
202 => 0.00038334962292638
203 => 0.00039623334707503
204 => 0.00040627713137286
205 => 0.00042427738837576
206 => 0.00040549318181861
207 => 0.00040480861067121
208 => 0.00041150040344572
209 => 0.00040537103563973
210 => 0.00040924458451453
211 => 0.0004236532997672
212 => 0.00042395773321553
213 => 0.00041885808071562
214 => 0.00041854776639754
215 => 0.00041952721044423
216 => 0.0004252638448181
217 => 0.0004232592884989
218 => 0.00042557901182064
219 => 0.00042847986135533
220 => 0.00044047900496552
221 => 0.00044337195786703
222 => 0.00043634358214047
223 => 0.00043697816577519
224 => 0.00043434936032023
225 => 0.00043180996718958
226 => 0.00043751815209871
227 => 0.0004479499722148
228 => 0.00044788507640327
301 => 0.0004503050559046
302 => 0.00045181268308573
303 => 0.00044534084357376
304 => 0.0004411279140276
305 => 0.00044274341929127
306 => 0.000445326647389
307 => 0.00044190571323505
308 => 0.00042079012290599
309 => 0.0004271952441427
310 => 0.00042612911877448
311 => 0.00042461082660487
312 => 0.00043105122553771
313 => 0.00043043003334918
314 => 0.00041182291558773
315 => 0.00041301408289618
316 => 0.00041189535441703
317 => 0.00041551019500346
318 => 0.00040517582238517
319 => 0.00040835460579949
320 => 0.00041034830895772
321 => 0.00041152261543426
322 => 0.00041576501565702
323 => 0.00041526721895647
324 => 0.00041573407191517
325 => 0.00042202443149339
326 => 0.00045383891164926
327 => 0.00045557050360945
328 => 0.00044704351149747
329 => 0.00045044987665873
330 => 0.00044391040043929
331 => 0.00044830039463608
401 => 0.00045130391717176
402 => 0.00043773157637718
403 => 0.00043692791043909
404 => 0.00043036144347507
405 => 0.00043388989087784
406 => 0.00042827587735569
407 => 0.00042965335990417
408 => 0.00042580179861186
409 => 0.00043273384209982
410 => 0.00044048494385001
411 => 0.00044244317825239
412 => 0.00043729190661264
413 => 0.00043356204646012
414 => 0.0004270136407246
415 => 0.0004379037854035
416 => 0.00044108839557876
417 => 0.00043788705800198
418 => 0.00043714523813484
419 => 0.00043573949082703
420 => 0.00043744347407158
421 => 0.00044107105150782
422 => 0.00043936035297973
423 => 0.00044049029949616
424 => 0.0004361841085713
425 => 0.00044534298602193
426 => 0.00045988948761741
427 => 0.00045993625699863
428 => 0.00045822554924924
429 => 0.0004575255644959
430 => 0.0004592808544612
501 => 0.00046023302726162
502 => 0.00046590931314428
503 => 0.00047200019404958
504 => 0.0005004236775751
505 => 0.00049244247713954
506 => 0.00051766148264398
507 => 0.00053760644171997
508 => 0.0005435870628595
509 => 0.0005380851728211
510 => 0.000519263504206
511 => 0.00051834002335023
512 => 0.00054646754256472
513 => 0.00053852023006463
514 => 0.00053757492253088
515 => 0.0005275184474941
516 => 0.0005334630697595
517 => 0.00053216289366771
518 => 0.00053011050210003
519 => 0.00054145242727644
520 => 0.00056268349870603
521 => 0.00055937443712001
522 => 0.00055690437614898
523 => 0.00054608128799791
524 => 0.00055259920448911
525 => 0.00055027829926906
526 => 0.00056025038097724
527 => 0.00055434314068197
528 => 0.00053846002135604
529 => 0.00054098946046014
530 => 0.00054060714082808
531 => 0.00054847525176441
601 => 0.00054611344015984
602 => 0.00054014595920657
603 => 0.000562610933212
604 => 0.00056115218275684
605 => 0.00056322035738548
606 => 0.00056413083181743
607 => 0.00057780486561729
608 => 0.00058340667974482
609 => 0.00058467838962532
610 => 0.00058999967978662
611 => 0.00058454599107853
612 => 0.00060636463432505
613 => 0.00062087275893086
614 => 0.00063772469224177
615 => 0.00066234989618167
616 => 0.00067160920065894
617 => 0.00066993659018194
618 => 0.00068860713876561
619 => 0.00072215769954747
620 => 0.0006767181177632
621 => 0.00072456610771796
622 => 0.0007094179865299
623 => 0.00067350206369605
624 => 0.00067118950168646
625 => 0.00069551218162198
626 => 0.00074945754474778
627 => 0.00073594484312801
628 => 0.00074947964668683
629 => 0.00073369057939205
630 => 0.00073290651912015
701 => 0.00074871280693018
702 => 0.00078564505995422
703 => 0.0007680999309273
704 => 0.00074294468622508
705 => 0.00076151892745425
706 => 0.00074542820073667
707 => 0.00070917128993114
708 => 0.00073593451021974
709 => 0.00071803870698538
710 => 0.0007232616537624
711 => 0.00076087597036119
712 => 0.00075635011627289
713 => 0.00076220699054596
714 => 0.00075186976075507
715 => 0.00074221315809887
716 => 0.00072418839213235
717 => 0.00071885214753988
718 => 0.00072032689356727
719 => 0.00071885141672899
720 => 0.00070876672582687
721 => 0.00070658893778672
722 => 0.00070295919564207
723 => 0.00070408420450919
724 => 0.00069725922735872
725 => 0.00071013936935388
726 => 0.00071253003720761
727 => 0.00072190313043698
728 => 0.0007228762760701
729 => 0.00074898020729627
730 => 0.00073460260063564
731 => 0.00074424834048643
801 => 0.00074338553472495
802 => 0.00067428047065046
803 => 0.00068380253876078
804 => 0.00069861588855086
805 => 0.00069194249454945
806 => 0.00068250787676516
807 => 0.00067488891705215
808 => 0.0006633454140083
809 => 0.00067959267286918
810 => 0.00070095609056787
811 => 0.00072341808759794
812 => 0.00075040470526123
813 => 0.00074438160635764
814 => 0.00072291359155223
815 => 0.000723876631014
816 => 0.00072982976202464
817 => 0.00072211991646688
818 => 0.00071984613249783
819 => 0.00072951737902362
820 => 0.00072958397958323
821 => 0.00072071287050305
822 => 0.00071085425615627
823 => 0.00071081294820218
824 => 0.00070905870300209
825 => 0.00073400265571606
826 => 0.00074771930759068
827 => 0.00074929189962261
828 => 0.00074761345961717
829 => 0.00074825942456036
830 => 0.00074027800706032
831 => 0.00075852116064957
901 => 0.00077526288244396
902 => 0.00077077574336835
903 => 0.0007640488840096
904 => 0.00075869061652091
905 => 0.0007695135058362
906 => 0.0007690315796118
907 => 0.00077511665810925
908 => 0.00077484060379949
909 => 0.00077279442077217
910 => 0.00077077581644399
911 => 0.00077877935443256
912 => 0.00077647446402474
913 => 0.00077416599348549
914 => 0.00076953600240986
915 => 0.00077016529509305
916 => 0.0007634395972214
917 => 0.00076032798163899
918 => 0.00071353674908916
919 => 0.00070103260280421
920 => 0.00070496666177082
921 => 0.00070626185613043
922 => 0.00070082003564272
923 => 0.00070862220833311
924 => 0.00070740624798385
925 => 0.00071213683838978
926 => 0.00070918137088252
927 => 0.00070930266429992
928 => 0.00071799406406667
929 => 0.00072051721439482
930 => 0.0007192339197736
1001 => 0.00072013269533753
1002 => 0.00074084459885892
1003 => 0.00073790002850757
1004 => 0.00073633578419588
1005 => 0.00073676909056045
1006 => 0.00074206142597839
1007 => 0.00074354299094461
1008 => 0.00073726549607501
1009 => 0.00074022599894528
1010 => 0.00075283144442313
1011 => 0.00075724263693395
1012 => 0.00077132104593597
1013 => 0.00076534028756814
1014 => 0.00077631822839344
1015 => 0.0008100606758346
1016 => 0.00083701647765036
1017 => 0.00081222680830496
1018 => 0.00086172770553894
1019 => 0.00090027125451756
1020 => 0.00089879188891012
1021 => 0.00089207092961735
1022 => 0.00084819012383845
1023 => 0.00080781035213476
1024 => 0.00084158974578057
1025 => 0.00084167585640177
1026 => 0.00083877417653013
1027 => 0.00082075209205595
1028 => 0.00083814704705556
1029 => 0.00083952779541424
1030 => 0.000838754943504
1031 => 0.00082493745359266
1101 => 0.00080384070039702
1102 => 0.00080796295547296
1103 => 0.00081471529337907
1104 => 0.00080193170903755
1105 => 0.00079784657925575
1106 => 0.00080544161274786
1107 => 0.00082991439314752
1108 => 0.00082528795577413
1109 => 0.00082516714079741
1110 => 0.00084496100179555
1111 => 0.00083079286910344
1112 => 0.00080801495031075
1113 => 0.00080226322541176
1114 => 0.0007818484768465
1115 => 0.00079594901639537
1116 => 0.00079645646971102
1117 => 0.00078873374830413
1118 => 0.00080864160659058
1119 => 0.00080845815217176
1120 => 0.00082735770072107
1121 => 0.00086348653920108
1122 => 0.00085280146387037
1123 => 0.00084037588379365
1124 => 0.00084172688887195
1125 => 0.00085654408001628
1126 => 0.00084758526800685
1127 => 0.00085080691926849
1128 => 0.00085653920366124
1129 => 0.00085999763316001
1130 => 0.00084122927408929
1201 => 0.00083685347179552
1202 => 0.00082790211600036
1203 => 0.00082556687435838
1204 => 0.00083285756687736
1205 => 0.00083093672698258
1206 => 0.0007964138202248
1207 => 0.00079280598438497
1208 => 0.00079291663155938
1209 => 0.00078384455679689
1210 => 0.00077000746523667
1211 => 0.00080637051568712
1212 => 0.00080345005383538
1213 => 0.00080022608997686
1214 => 0.00080062100715384
1215 => 0.00081640497489626
1216 => 0.00080724947649618
1217 => 0.00083159086954946
1218 => 0.00082658701090696
1219 => 0.00082145482217156
1220 => 0.00082074539735804
1221 => 0.00081876994255268
1222 => 0.00081199537299074
1223 => 0.00080381467315618
1224 => 0.00079841306652532
1225 => 0.0007364938499146
1226 => 0.00074798569635003
1227 => 0.00076120601815924
1228 => 0.00076576962027067
1229 => 0.00075796326306742
1230 => 0.00081230361555343
1231 => 0.00082223212158929
]
'min_raw' => 0.00034269853266919
'max_raw' => 0.00090027125451756
'avg_raw' => 0.00062148489359338
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000342'
'max' => '$0.00090027'
'avg' => '$0.000621'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.3287194315466E-5
'max_diff' => -0.00016235481022662
'year' => 2027
]
2 => [
'items' => [
101 => 0.00079215802918625
102 => 0.00078653239441474
103 => 0.00081267243123249
104 => 0.00079690679354185
105 => 0.0008040060592286
106 => 0.00078866132990456
107 => 0.00081984063522585
108 => 0.00081960310115892
109 => 0.00080747364717239
110 => 0.00081772537862289
111 => 0.00081594388800064
112 => 0.00080224976432338
113 => 0.00082027476337218
114 => 0.00082028370354683
115 => 0.00080860936780186
116 => 0.00079497629949246
117 => 0.00079253902887743
118 => 0.00079070287287025
119 => 0.00080355447740924
120 => 0.00081507718585298
121 => 0.00083651808954509
122 => 0.00084190884215659
123 => 0.00086294930848201
124 => 0.00085042073522694
125 => 0.00085597448947873
126 => 0.00086200387534555
127 => 0.00086489458465343
128 => 0.00086018432896025
129 => 0.00089286883376508
130 => 0.00089562840739796
131 => 0.00089655366856685
201 => 0.00088553263744395
202 => 0.00089532189258554
203 => 0.00089074182429084
204 => 0.00090265788961401
205 => 0.00090452648080865
206 => 0.00090294385054385
207 => 0.00090353697088274
208 => 0.00087564651197357
209 => 0.00087420024454523
210 => 0.00085448028553747
211 => 0.00086251631459571
212 => 0.00084749334344823
213 => 0.00085225728235285
214 => 0.00085435718122952
215 => 0.00085326031322456
216 => 0.0008629706596215
217 => 0.00085471488149139
218 => 0.00083292652563044
219 => 0.0008111322335465
220 => 0.00081085862396263
221 => 0.00080512057155814
222 => 0.00080097301064641
223 => 0.00080177197802064
224 => 0.00080458764325837
225 => 0.00080080935906419
226 => 0.00080161564756089
227 => 0.00081500540887823
228 => 0.00081769063001901
229 => 0.000808565199399
301 => 0.00077192527866632
302 => 0.00076293375021424
303 => 0.00076939668255584
304 => 0.00076630781716271
305 => 0.00061847021632325
306 => 0.00065320246773435
307 => 0.00063256574334169
308 => 0.00064207609539186
309 => 0.00062101134364082
310 => 0.00063106454727465
311 => 0.0006292080876477
312 => 0.00068505652011471
313 => 0.00068418452365875
314 => 0.00068460190221719
315 => 0.00066467933614856
316 => 0.00069641652485251
317 => 0.00071205140524046
318 => 0.00070915780498952
319 => 0.00070988606183251
320 => 0.00069737219643955
321 => 0.00068472306378815
322 => 0.00067069322899019
323 => 0.00069675892790481
324 => 0.00069386086714182
325 => 0.00070050797584276
326 => 0.00071741344480353
327 => 0.00071990283932563
328 => 0.00072324861080829
329 => 0.00072204938989999
330 => 0.00075061969720913
331 => 0.00074715964448104
401 => 0.00075549737603064
402 => 0.0007383460296479
403 => 0.00071893765319508
404 => 0.00072262655105113
405 => 0.00072227128052335
406 => 0.00071774827894417
407 => 0.00071366511535555
408 => 0.00070686779840471
409 => 0.0007283755150508
410 => 0.00072750234103267
411 => 0.00074163801343241
412 => 0.00073913939602916
413 => 0.00072245301749486
414 => 0.00072304897476862
415 => 0.00072705707384192
416 => 0.0007409291504983
417 => 0.00074504732733291
418 => 0.00074313962374215
419 => 0.00074765501663939
420 => 0.00075122379907797
421 => 0.00074810320076773
422 => 0.00079228429208122
423 => 0.00077393722267292
424 => 0.00078287945664443
425 => 0.00078501212675594
426 => 0.00077954933711054
427 => 0.0007807340205768
428 => 0.00078252849322125
429 => 0.00079342417972462
430 => 0.00082201761380174
501 => 0.00083468145111242
502 => 0.0008727812304843
503 => 0.00083362989571289
504 => 0.00083130681753189
505 => 0.00083816973829987
506 => 0.0008605383420624
507 => 0.00087866599443581
508 => 0.00088467998253742
509 => 0.00088547483034517
510 => 0.00089675747182617
511 => 0.00090322447151427
512 => 0.00089538746238745
513 => 0.00088874641772152
514 => 0.00086495902004498
515 => 0.00086771247609697
516 => 0.00088668105782422
517 => 0.00091347529675784
518 => 0.00093646754122831
519 => 0.00092841645857537
520 => 0.0009898405360387
521 => 0.00099593048242434
522 => 0.00099508904874538
523 => 0.0010089628529174
524 => 0.00098142617698704
525 => 0.00096965371452885
526 => 0.00089018228695735
527 => 0.00091251051650754
528 => 0.00094496590944967
529 => 0.00094067031649231
530 => 0.00091710034260258
531 => 0.00093644966128954
601 => 0.00093005217142249
602 => 0.00092500620573226
603 => 0.00094812275276781
604 => 0.0009227051597268
605 => 0.00094471234951565
606 => 0.00091648790097623
607 => 0.00092845323524275
608 => 0.00092166113281498
609 => 0.00092605645549451
610 => 0.00090036148892113
611 => 0.00091422586917407
612 => 0.00089978468512076
613 => 0.00089977783811922
614 => 0.00089945904818084
615 => 0.00091644903717755
616 => 0.00091700308010877
617 => 0.00090444745256975
618 => 0.00090263799048562
619 => 0.00090932852018814
620 => 0.00090149566215899
621 => 0.00090516060713141
622 => 0.00090160666960867
623 => 0.00090080660341492
624 => 0.00089443153986311
625 => 0.00089168498719896
626 => 0.00089276198126852
627 => 0.00088908564528063
628 => 0.00088687051986904
629 => 0.00089901840398258
630 => 0.00089252827954496
701 => 0.00089802369933102
702 => 0.00089176097490754
703 => 0.0008700516435166
704 => 0.00085756637746165
705 => 0.00081655946292024
706 => 0.00082818897301527
707 => 0.00083589935023987
708 => 0.00083335107061313
709 => 0.00083882576130466
710 => 0.00083916186284953
711 => 0.00083738198509785
712 => 0.00083532111467786
713 => 0.00083431799693069
714 => 0.00084179441477912
715 => 0.00084613472698479
716 => 0.0008366731897459
717 => 0.0008344564839518
718 => 0.00084402262048611
719 => 0.00084985795824586
720 => 0.00089294281367081
721 => 0.00088975094841868
722 => 0.00089776190382961
723 => 0.00089685999318847
724 => 0.0009052567507044
725 => 0.00091898190050845
726 => 0.00089107483334458
727 => 0.00089591853525045
728 => 0.00089473097140054
729 => 0.00090769648211787
730 => 0.00090773695902709
731 => 0.00089996348767676
801 => 0.00090417761260594
802 => 0.00090182540367894
803 => 0.00090607616313014
804 => 0.00088970831911225
805 => 0.00090964258632646
806 => 0.00092094403130111
807 => 0.00092110095187554
808 => 0.00092645774709971
809 => 0.00093190056129213
810 => 0.00094234756916526
811 => 0.00093160919991267
812 => 0.00091229191898644
813 => 0.00091368656427488
814 => 0.00090236084953575
815 => 0.00090255123684667
816 => 0.00090153493446005
817 => 0.00090458493442598
818 => 0.0008903776225884
819 => 0.00089371205027951
820 => 0.00088904383198557
821 => 0.00089590838745556
822 => 0.00088852326052152
823 => 0.00089473039872129
824 => 0.00089740919379842
825 => 0.00090729400530337
826 => 0.00088706326582515
827 => 0.0008458114185284
828 => 0.00085448305696048
829 => 0.00084165702257694
830 => 0.00084284412089129
831 => 0.00084524224841158
901 => 0.00083746913249982
902 => 0.00083895199805675
903 => 0.00083889901966429
904 => 0.00083844248049933
905 => 0.0008364203928387
906 => 0.00083348796567294
907 => 0.00084516985294786
908 => 0.00084715483323238
909 => 0.00085156719851784
910 => 0.0008646954046714
911 => 0.00086338358729224
912 => 0.00086552321586443
913 => 0.00086085241870484
914 => 0.00084306078577535
915 => 0.00084402695704155
916 => 0.0008319787858702
917 => 0.000851259099693
918 => 0.00084669326689206
919 => 0.00084374964478279
920 => 0.0008429464502178
921 => 0.00085610719865514
922 => 0.00086004510085705
923 => 0.00085759126446761
924 => 0.00085255837444302
925 => 0.0008622230111306
926 => 0.0008648088601899
927 => 0.00086538773643184
928 => 0.00088251161963195
929 => 0.00086634477128011
930 => 0.00087023629236305
1001 => 0.00090059682896847
1002 => 0.00087306401173502
1003 => 0.00088764875907868
1004 => 0.00088693491159157
1005 => 0.00089439597481164
1006 => 0.0008863228866354
1007 => 0.00088642296223886
1008 => 0.00089304788092208
1009 => 0.00088374437744187
1010 => 0.00088144069914471
1011 => 0.00087825818407644
1012 => 0.00088520708929803
1013 => 0.00088937264370642
1014 => 0.00092294395297548
1015 => 0.000944632549801
1016 => 0.0009436909906132
1017 => 0.00095229507906475
1018 => 0.00094841885841291
1019 => 0.00093590151943277
1020 => 0.000957267090745
1021 => 0.00095050613000833
1022 => 0.0009510634953969
1023 => 0.0009510427502293
1024 => 0.00095553819806573
1025 => 0.00095235276127188
1026 => 0.0009460739383728
1027 => 0.0009502421140336
1028 => 0.00096262010559611
1029 => 0.0010010417712093
1030 => 0.0010225430443058
1031 => 0.00099974736757109
1101 => 0.0010154715201364
1102 => 0.0010060426316857
1103 => 0.001004329122169
1104 => 0.0010142050519858
1105 => 0.0010240982683103
1106 => 0.0010234681132
1107 => 0.0010162861461707
1108 => 0.0010122292352315
1109 => 0.001042949524028
1110 => 0.0010655837095069
1111 => 0.0010640402097988
1112 => 0.0010708527155376
1113 => 0.0010908544430895
1114 => 0.0010926831503871
1115 => 0.0010924527752999
1116 => 0.0010879201334571
1117 => 0.0011076144317846
1118 => 0.0011240437619375
1119 => 0.0010868709578311
1120 => 0.0011010258750071
1121 => 0.0011073804733703
1122 => 0.001116710909092
1123 => 0.001132452918117
1124 => 0.0011495529152798
1125 => 0.0011519710423705
1126 => 0.0011502552654816
1127 => 0.0011389773576801
1128 => 0.0011576883786211
1129 => 0.0011686488558608
1130 => 0.001175175569231
1201 => 0.0011917262283964
1202 => 0.0011074197172065
1203 => 0.0010477433782808
1204 => 0.0010384240562207
1205 => 0.0010573752640941
1206 => 0.0010623725464772
1207 => 0.0010603581482146
1208 => 0.00099318700321838
1209 => 0.0010380704140437
1210 => 0.0010863611901874
1211 => 0.0010882162355695
1212 => 0.0011123916078196
1213 => 0.0011202641000062
1214 => 0.0011397284434059
1215 => 0.0011385109434267
1216 => 0.0011432502012992
1217 => 0.0011421607279868
1218 => 0.0011782143254338
1219 => 0.0012179867974289
1220 => 0.0012166096031924
1221 => 0.0012108918397766
1222 => 0.0012193836934726
1223 => 0.0012604331468487
1224 => 0.0012566539709859
1225 => 0.0012603251184272
1226 => 0.0013087247374033
1227 => 0.0013716511268379
1228 => 0.0013424155012393
1229 => 0.0014058483964636
1230 => 0.0014457760415739
1231 => 0.0015148267751967
]
'min_raw' => 0.00061847021632325
'max_raw' => 0.0015148267751967
'avg_raw' => 0.00106664849576
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000618'
'max' => '$0.001514'
'avg' => '$0.001066'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00027577168365406
'max_diff' => 0.00061455552067911
'year' => 2028
]
3 => [
'items' => [
101 => 0.0015061812832651
102 => 0.0015330622271467
103 => 0.0014907040483389
104 => 0.0013934411077957
105 => 0.0013780488751472
106 => 0.001408864514703
107 => 0.0014846217576047
108 => 0.0014064786495269
109 => 0.0014222868985172
110 => 0.0014177341217445
111 => 0.0014174915236183
112 => 0.001426750507376
113 => 0.0014133198685194
114 => 0.0013586010296916
115 => 0.0013836783510662
116 => 0.0013739947929716
117 => 0.0013847394226347
118 => 0.0014427237575039
119 => 0.0014170875008843
120 => 0.0013900817870559
121 => 0.0014239529452444
122 => 0.001467082569011
123 => 0.001464383594667
124 => 0.0014591464563561
125 => 0.0014886679308074
126 => 0.0015374287576206
127 => 0.0015506086131713
128 => 0.0015603377130886
129 => 0.0015616791915927
130 => 0.0015754972539092
131 => 0.0015011940502334
201 => 0.0016191151427085
202 => 0.0016394768578745
203 => 0.0016356496993299
204 => 0.001658280888785
205 => 0.0016516222187494
206 => 0.0016419748505812
207 => 0.0016778500996596
208 => 0.0016367220215746
209 => 0.001578345892614
210 => 0.0015463195937173
211 => 0.0015884944075923
212 => 0.0016142490947276
213 => 0.0016312713046183
214 => 0.0016364222150461
215 => 0.0015069619964206
216 => 0.0014371901187744
217 => 0.0014819130924094
218 => 0.0015364782068589
219 => 0.0015008909382675
220 => 0.0015022858918207
221 => 0.0014515477989791
222 => 0.0015409674022374
223 => 0.0015279397181799
224 => 0.0015955273661158
225 => 0.0015793970315111
226 => 0.0016345121346655
227 => 0.0016199984808967
228 => 0.0016802438462435
301 => 0.0017042773535584
302 => 0.001744633352857
303 => 0.0017743193902195
304 => 0.0017917515991622
305 => 0.0017907050347239
306 => 0.0018597801312467
307 => 0.0018190489601273
308 => 0.0017678810096012
309 => 0.001766955542809
310 => 0.0017934561494419
311 => 0.0018489941508581
312 => 0.0018633943465802
313 => 0.0018714420914781
314 => 0.001859116690023
315 => 0.0018149059230022
316 => 0.0017958159379562
317 => 0.0018120811583055
318 => 0.0017921901915047
319 => 0.0018265275806224
320 => 0.0018736801499517
321 => 0.0018639433308466
322 => 0.0018964920572892
323 => 0.0019301765649314
324 => 0.0019783469237257
325 => 0.0019909404392577
326 => 0.0020117570415436
327 => 0.0020331841631935
328 => 0.0020400659771903
329 => 0.0020532054954117
330 => 0.0020531362436649
331 => 0.0020927330662166
401 => 0.0021364095877028
402 => 0.00215289646345
403 => 0.0021908071251391
404 => 0.0021258864455445
405 => 0.002175129526772
406 => 0.0022195480186734
407 => 0.0021665904614691
408 => 0.002239580116547
409 => 0.0022424141394556
410 => 0.0022852045206678
411 => 0.0022418282716641
412 => 0.0022160715934675
413 => 0.0022904301583308
414 => 0.0023264099255953
415 => 0.0023155725268822
416 => 0.0022330993875669
417 => 0.0021850964830461
418 => 0.0020594636228463
419 => 0.0022082811726886
420 => 0.0022807658601494
421 => 0.0022329116697374
422 => 0.0022570465398692
423 => 0.0023887185655502
424 => 0.0024388507477973
425 => 0.0024284236043403
426 => 0.0024301856199391
427 => 0.0024572360355162
428 => 0.0025771924751207
429 => 0.0025053117959411
430 => 0.0025602618818562
501 => 0.0025894072092883
502 => 0.002616479013694
503 => 0.0025499992182053
504 => 0.0024635099810567
505 => 0.0024361152090806
506 => 0.0022281535136039
507 => 0.0022173282042225
508 => 0.0022112516300263
509 => 0.0021729396892675
510 => 0.0021428369983548
511 => 0.0021188982208998
512 => 0.0020560757201338
513 => 0.0020772764699685
514 => 0.0019771505158225
515 => 0.0020412075530392
516 => 0.0018814041125964
517 => 0.002014493166382
518 => 0.0019420588452232
519 => 0.0019906965437665
520 => 0.0019905268514182
521 => 0.0019009694278036
522 => 0.0018493145748785
523 => 0.0018822310575994
524 => 0.0019175201399898
525 => 0.0019232456748809
526 => 0.0019689988913393
527 => 0.0019817676305908
528 => 0.0019430777545434
529 => 0.0018780925414903
530 => 0.0018931871243276
531 => 0.0018490086836391
601 => 0.0017715876656316
602 => 0.0018271927924059
603 => 0.0018461788274714
604 => 0.0018545641421669
605 => 0.0017784294628206
606 => 0.0017545062936057
607 => 0.0017417697990505
608 => 0.001868264510445
609 => 0.0018751941762809
610 => 0.0018397410261086
611 => 0.0019999926266929
612 => 0.0019637227540078
613 => 0.0020042450881316
614 => 0.001891817449149
615 => 0.0018961123363621
616 => 0.0018428872903349
617 => 0.0018726897596113
618 => 0.0018516263349052
619 => 0.0018702820146075
620 => 0.0018814641521008
621 => 0.0019346804644216
622 => 0.0020151008111862
623 => 0.0019267317219685
624 => 0.0018882280443277
625 => 0.0019121155093832
626 => 0.0019757309766792
627 => 0.0020721116660484
628 => 0.0020150523580997
629 => 0.0020403743100375
630 => 0.0020459060300406
701 => 0.0020038326088096
702 => 0.0020736629731021
703 => 0.0021110856326273
704 => 0.002149473537772
705 => 0.0021828046802043
706 => 0.0021341405642891
707 => 0.0021862181440454
708 => 0.0021442528076921
709 => 0.0021066055626865
710 => 0.0021066626580171
711 => 0.0020830459912866
712 => 0.0020372857236047
713 => 0.0020288468281557
714 => 0.0020727470279964
715 => 0.0021079508309043
716 => 0.0021108503847266
717 => 0.0021303410188531
718 => 0.0021418753753597
719 => 0.0022549277493213
720 => 0.0023003983493469
721 => 0.0023559989383438
722 => 0.0023776585012357
723 => 0.0024428460201569
724 => 0.0023902018043566
725 => 0.0023788118971205
726 => 0.0022206882988925
727 => 0.002246581029244
728 => 0.0022880377888138
729 => 0.0022213719055883
730 => 0.0022636560641238
731 => 0.0022720038527197
801 => 0.0022191066243863
802 => 0.0022473613195935
803 => 0.0021723252260565
804 => 0.0020167363929753
805 => 0.0020738361879508
806 => 0.0021158808566359
807 => 0.002055877930352
808 => 0.002163430853282
809 => 0.0021006006560492
810 => 0.0020806864999078
811 => 0.0020029942768908
812 => 0.0020396620155069
813 => 0.0020892556570167
814 => 0.0020586125524433
815 => 0.0021222015955183
816 => 0.0022122606390909
817 => 0.0022764420766495
818 => 0.0022813691304812
819 => 0.0022401047659534
820 => 0.0023062311734549
821 => 0.0023067128321417
822 => 0.0022321219743457
823 => 0.0021864354892693
824 => 0.0021760554237347
825 => 0.0022019868625717
826 => 0.0022334724165276
827 => 0.0022831163595974
828 => 0.0023131151546745
829 => 0.0023913361021041
830 => 0.0024125004477083
831 => 0.0024357536468986
901 => 0.0024668270920379
902 => 0.0025041387299954
903 => 0.0024225029902971
904 => 0.0024257465304233
905 => 0.00234972845994
906 => 0.0022684922495345
907 => 0.0023301404069957
908 => 0.0024107371721655
909 => 0.002392248185184
910 => 0.0023901677964529
911 => 0.0023936664332469
912 => 0.0023797263408568
913 => 0.00231667581962
914 => 0.0022850122425721
915 => 0.002325866335204
916 => 0.0023475784672313
917 => 0.0023812520905089
918 => 0.002377101105676
919 => 0.0024638407429558
920 => 0.0024975451431323
921 => 0.0024889221152746
922 => 0.0024905089599251
923 => 0.0025515291665127
924 => 0.0026193961860006
925 => 0.002682962605593
926 => 0.0027476250978437
927 => 0.0026696719396155
928 => 0.0026300921333496
929 => 0.0026709283903627
930 => 0.0026492600975796
1001 => 0.0027737725351442
1002 => 0.0027823935061704
1003 => 0.0029068969400686
1004 => 0.0030250655244311
1005 => 0.0029508459538031
1006 => 0.0030208316659824
1007 => 0.0030965269197232
1008 => 0.0032425553453014
1009 => 0.0031933781089086
1010 => 0.0031557091165373
1011 => 0.0031201121007616
1012 => 0.0031941838397236
1013 => 0.0032894759485734
1014 => 0.0033100009561232
1015 => 0.0033432593095101
1016 => 0.0033082922175617
1017 => 0.0033504062283148
1018 => 0.0034990871921071
1019 => 0.0034589122832472
1020 => 0.0034018574542274
1021 => 0.0035192267956698
1022 => 0.0035617023040761
1023 => 0.0038598176666677
1024 => 0.0042362006264711
1025 => 0.0040803756096487
1026 => 0.0039836499932652
1027 => 0.0040063828074776
1028 => 0.0041438251230306
1029 => 0.0041879672325851
1030 => 0.0040679737621182
1031 => 0.0041103574844529
1101 => 0.0043438959615928
1102 => 0.004469181861767
1103 => 0.0042990267811892
1104 => 0.0038295756623235
1105 => 0.0033967202911245
1106 => 0.0035115330272979
1107 => 0.0034985168260698
1108 => 0.0037494247852383
1109 => 0.0034579541249576
1110 => 0.0034628617433586
1111 => 0.0037189582134065
1112 => 0.0036506360658027
1113 => 0.0035399629367241
1114 => 0.003397528327445
1115 => 0.0031342247785859
1116 => 0.0029010094825986
1117 => 0.0033583983843046
1118 => 0.0033386749431553
1119 => 0.0033101124775209
1120 => 0.0033736751540087
1121 => 0.003682317468453
1122 => 0.0036752022641274
1123 => 0.0036299389644169
1124 => 0.0036642707783149
1125 => 0.0035339444037559
1126 => 0.0035675324779562
1127 => 0.0033966517246222
1128 => 0.0034738969617398
1129 => 0.003539725481895
1130 => 0.003552941531924
1201 => 0.0035827179674677
1202 => 0.0033282815859097
1203 => 0.0034425160513695
1204 => 0.0035096180975053
1205 => 0.0032064486118707
1206 => 0.0035036254115385
1207 => 0.0033238524145766
1208 => 0.003262834759308
1209 => 0.0033449869936624
1210 => 0.0033129721880388
1211 => 0.0032854477381361
1212 => 0.0032700886221603
1213 => 0.003330412156259
1214 => 0.0033275979912911
1215 => 0.0032288969812122
1216 => 0.0031001455371322
1217 => 0.0031433587478876
1218 => 0.0031276589832942
1219 => 0.0030707610110977
1220 => 0.0031091033744707
1221 => 0.0029402630108017
1222 => 0.0026497819406676
1223 => 0.002841682633274
1224 => 0.0028342946653564
1225 => 0.0028305693169147
1226 => 0.0029747773836629
1227 => 0.0029609151054912
1228 => 0.0029357549348698
1229 => 0.0030702989248333
1230 => 0.0030211885586246
1231 => 0.0031725351354224
]
'min_raw' => 0.0013586010296916
'max_raw' => 0.004469181861767
'avg_raw' => 0.0029138914457293
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001358'
'max' => '$0.004469'
'avg' => '$0.002913'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00074013081336832
'max_diff' => 0.0029543550865703
'year' => 2029
]
4 => [
'items' => [
101 => 0.0032722217793843
102 => 0.0032469380219504
103 => 0.0033406937924239
104 => 0.003144354292985
105 => 0.0032095703989251
106 => 0.0032230113479738
107 => 0.0030686386728819
108 => 0.0029631831456378
109 => 0.0029561504642516
110 => 0.0027733051126771
111 => 0.0028709796236121
112 => 0.002956929151189
113 => 0.0029157659974324
114 => 0.0029027349726674
115 => 0.0029693076521077
116 => 0.0029744809194567
117 => 0.0028565298756621
118 => 0.0028810556326908
119 => 0.0029833321165682
120 => 0.0028784785277115
121 => 0.0026747651322995
122 => 0.0026242413936793
123 => 0.0026175005956101
124 => 0.0024804762093838
125 => 0.0026276176314825
126 => 0.0025633864575915
127 => 0.0027662919663057
128 => 0.0026503934279322
129 => 0.0026453972735864
130 => 0.0026378448535162
131 => 0.0025199023038852
201 => 0.0025457242266143
202 => 0.0026315602305559
203 => 0.002662187483774
204 => 0.0026589928103417
205 => 0.0026311395873089
206 => 0.0026438906501817
207 => 0.0026028150339035
208 => 0.0025883103788807
209 => 0.0025425296978089
210 => 0.0024752447438693
211 => 0.0024846011293972
212 => 0.0023512920295769
213 => 0.0022786581567454
214 => 0.0022585540580447
215 => 0.002231670017054
216 => 0.0022615906820103
217 => 0.0023509143816465
218 => 0.0022431710488052
219 => 0.0020584526619648
220 => 0.0020695545517587
221 => 0.002094497201945
222 => 0.002048016738335
223 => 0.0020040268803378
224 => 0.0020422724928564
225 => 0.0019640048772527
226 => 0.0021039554693628
227 => 0.0021001701980532
228 => 0.0021523351243053
301 => 0.0021849549232228
302 => 0.0021097768475033
303 => 0.002090869764763
304 => 0.0021016400983709
305 => 0.0019236304750471
306 => 0.0021377879403587
307 => 0.0021396399830118
308 => 0.0021237816694083
309 => 0.0022378139083168
310 => 0.0024784574999609
311 => 0.0023879177009183
312 => 0.0023528579541491
313 => 0.0022862093499124
314 => 0.0023750146578553
315 => 0.0023681957957839
316 => 0.0023373583155204
317 => 0.0023187077112382
318 => 0.0023530720214869
319 => 0.0023144495929054
320 => 0.0023075119434588
321 => 0.0022654773360495
322 => 0.0022504728936571
323 => 0.0022393642018539
324 => 0.0022271346236961
325 => 0.0022541100256913
326 => 0.0021929802158605
327 => 0.0021192636578336
328 => 0.0021131349236579
329 => 0.0021300568975609
330 => 0.0021225701838016
331 => 0.0021130990801528
401 => 0.0020950161639856
402 => 0.0020896513490391
403 => 0.0021070843949769
404 => 0.0020874035025229
405 => 0.0021164437314124
406 => 0.0021085463960236
407 => 0.0020644325225131
408 => 0.0020094503030712
409 => 0.0020089608459891
410 => 0.0019971150169992
411 => 0.0019820275727484
412 => 0.0019778305909117
413 => 0.0020390515540458
414 => 0.002165777115544
415 => 0.0021408978555362
416 => 0.0021588756706209
417 => 0.0022473087275403
418 => 0.0022754189370602
419 => 0.0022554669761698
420 => 0.0022281555015196
421 => 0.0022293570677962
422 => 0.0023226886444212
423 => 0.0023285096203725
424 => 0.0023432173486833
425 => 0.0023621209359663
426 => 0.0022586863388255
427 => 0.0022244853075725
428 => 0.0022082789615639
429 => 0.0021583696885027
430 => 0.0022121925606016
501 => 0.0021808322779547
502 => 0.0021850638515036
503 => 0.0021823080336786
504 => 0.0021838128965586
505 => 0.0021039163503201
506 => 0.0021330264525306
507 => 0.0020846252616085
508 => 0.0020198215002524
509 => 0.0020196042553212
510 => 0.0020354648841057
511 => 0.0020260303614782
512 => 0.0020006423036715
513 => 0.0020042485574547
514 => 0.0019726539796353
515 => 0.0020080847112402
516 => 0.0020091007378454
517 => 0.0019954579762525
518 => 0.0020500439067887
519 => 0.0020724078070672
520 => 0.0020634278491305
521 => 0.0020717777492796
522 => 0.0021419317011127
523 => 0.0021533698562929
524 => 0.0021584499292619
525 => 0.0021516433044642
526 => 0.0020730600347357
527 => 0.0020765455369101
528 => 0.0020509712346219
529 => 0.002029363644142
530 => 0.0020302278344443
531 => 0.0020413369447411
601 => 0.002089851080948
602 => 0.0021919462205309
603 => 0.0021958206564475
604 => 0.0022005165858037
605 => 0.0021814158811271
606 => 0.0021756549258275
607 => 0.0021832551128964
608 => 0.0022215966794163
609 => 0.0023202215981392
610 => 0.0022853609649257
611 => 0.002257018727485
612 => 0.0022818825107329
613 => 0.0022780549261906
614 => 0.0022457462607093
615 => 0.0022448394640766
616 => 0.0021828288053127
617 => 0.002159904876682
618 => 0.002140747926092
619 => 0.0021198290361524
620 => 0.0021074276169888
621 => 0.0021264818331684
622 => 0.0021308397578515
623 => 0.0020891773811641
624 => 0.0020834989531694
625 => 0.0021175213493172
626 => 0.0021025493612553
627 => 0.0021179484222644
628 => 0.0021215211365092
629 => 0.0021209458472292
630 => 0.0021053133721707
701 => 0.0021152770456059
702 => 0.0020917099876177
703 => 0.0020660843517132
704 => 0.0020497367925397
705 => 0.0020354713789717
706 => 0.0020433866595299
707 => 0.0020151701296131
708 => 0.0020061430938061
709 => 0.0021119015772358
710 => 0.0021900265060406
711 => 0.0021888905386349
712 => 0.0021819756291999
713 => 0.0021717014764176
714 => 0.0022208450611465
715 => 0.0022037244188839
716 => 0.0022161811166075
717 => 0.0022193518689841
718 => 0.0022289487814585
719 => 0.0022323788527857
720 => 0.0022220107948974
721 => 0.0021872143262728
722 => 0.0021005048348092
723 => 0.0020601413324651
724 => 0.0020468207043842
725 => 0.0020473048839155
726 => 0.0020339490509706
727 => 0.0020378829423393
728 => 0.0020325810040936
729 => 0.0020225404157328
730 => 0.0020427666814923
731 => 0.0020450975702004
801 => 0.0020403765180862
802 => 0.0020414884967637
803 => 0.0020024002016462
804 => 0.0020053719998287
805 => 0.0019888246499109
806 => 0.0019857222212826
807 => 0.0019438919616329
808 => 0.0018697835932704
809 => 0.0019108468232166
810 => 0.0018612482158055
811 => 0.0018424644716373
812 => 0.0019313837950577
813 => 0.0019224587612244
814 => 0.0019071829829208
815 => 0.0018845869230586
816 => 0.0018762058246553
817 => 0.0018252849238906
818 => 0.0018222762454209
819 => 0.0018475140188199
820 => 0.0018358676547751
821 => 0.0018195117488331
822 => 0.0017602723154828
823 => 0.0016936675788948
824 => 0.0016956779572299
825 => 0.0017168636847134
826 => 0.0017784640446562
827 => 0.0017543957183295
828 => 0.0017369338714272
829 => 0.0017336637924036
830 => 0.0017745956777582
831 => 0.0018325228710299
901 => 0.0018597010140651
902 => 0.0018327682997297
903 => 0.0018018294476615
904 => 0.00180371255223
905 => 0.0018162400032789
906 => 0.0018175564612555
907 => 0.0017974184491245
908 => 0.0018030871815803
909 => 0.0017944758586202
910 => 0.0017416281855092
911 => 0.0017406723386844
912 => 0.0017277026674191
913 => 0.0017273099509277
914 => 0.0017052453046693
915 => 0.0017021583081321
916 => 0.0016583476137578
917 => 0.001687183945466
918 => 0.0016678420481315
919 => 0.0016386892465561
920 => 0.0016336632925762
921 => 0.0016335122063305
922 => 0.0016634456151013
923 => 0.0016868341561564
924 => 0.0016681785087166
925 => 0.0016639309794191
926 => 0.0017092834798737
927 => 0.0017035119607936
928 => 0.0016985138624926
929 => 0.0018273361262234
930 => 0.0017253632523539
1001 => 0.0016808972589386
1002 => 0.001625862148224
1003 => 0.0016437818577838
1004 => 0.0016475578038834
1005 => 0.0015152082834392
1006 => 0.0014615140994781
1007 => 0.0014430882789653
1008 => 0.0014324839587573
1009 => 0.0014373164806368
1010 => 0.0013889854173722
1011 => 0.001421464691208
1012 => 0.0013796140757439
1013 => 0.0013725976838677
1014 => 0.0014474317686139
1015 => 0.0014578444943319
1016 => 0.0014134205714384
1017 => 0.0014419479215159
1018 => 0.001431603507818
1019 => 0.0013803314844275
1020 => 0.0013783732702655
1021 => 0.0013526467712269
1022 => 0.0013123897818634
1023 => 0.0012939912574851
1024 => 0.0012844091462455
1025 => 0.0012883629120946
1026 => 0.001286363767094
1027 => 0.0012733179936919
1028 => 0.0012871115355546
1029 => 0.0012518747359803
1030 => 0.0012378431584676
1031 => 0.0012315054204353
1101 => 0.0012002307326585
1102 => 0.0012500026688281
1103 => 0.0012598083672638
1104 => 0.0012696333859546
1105 => 0.0013551534658327
1106 => 0.0013508811243193
1107 => 0.0013895010108864
1108 => 0.0013880003131118
1109 => 0.0013769852958622
1110 => 0.0013305147499684
1111 => 0.0013490370813038
1112 => 0.0012920282244628
1113 => 0.0013347431362335
1114 => 0.0013152498343187
1115 => 0.0013281524312476
1116 => 0.0013049523985892
1117 => 0.0013177922545683
1118 => 0.0012621336621304
1119 => 0.0012101604516494
1120 => 0.0012310759887395
1121 => 0.0012538135695383
1122 => 0.0013031144381379
1123 => 0.0012737512475233
1124 => 0.0012843113612135
1125 => 0.0012489367480931
1126 => 0.0011759488169671
1127 => 0.0011763619207308
1128 => 0.0011651343176555
1129 => 0.0011554320293417
1130 => 0.0012771239631871
1201 => 0.0012619896475486
1202 => 0.001237875096309
1203 => 0.0012701533814174
1204 => 0.0012786882723254
1205 => 0.0012789312486709
1206 => 0.0013024806522629
1207 => 0.0013150489731814
1208 => 0.0013172641942175
1209 => 0.001354319689588
1210 => 0.0013667402028624
1211 => 0.0014178985392229
1212 => 0.0013139826389614
1213 => 0.0013118425593793
1214 => 0.0012706076030834
1215 => 0.0012444557419017
1216 => 0.0012723982433924
1217 => 0.0012971514851814
1218 => 0.0012713767553052
1219 => 0.0012747423908928
1220 => 0.0012401419219068
1221 => 0.0012525099614659
1222 => 0.0012631629832891
1223 => 0.001257281010794
1224 => 0.0012484754132782
1225 => 0.0012951220016369
1226 => 0.0012924900183123
1227 => 0.0013359283937923
1228 => 0.0013697917137871
1229 => 0.0014304808370102
1230 => 0.0013671485731313
1231 => 0.0013648404937126
]
'min_raw' => 0.0011554320293417
'max_raw' => 0.0033406937924239
'avg_raw' => 0.0022480629108828
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001155'
'max' => '$0.00334'
'avg' => '$0.002248'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00020316900034992
'max_diff' => -0.001128488069343
'year' => 2030
]
5 => [
'items' => [
101 => 0.001387402340258
102 => 0.0013667367487613
103 => 0.0013797966892352
104 => 0.0014283766786939
105 => 0.0014294030973199
106 => 0.00141220926287
107 => 0.0014111630164812
108 => 0.0014144652804672
109 => 0.0014338067437777
110 => 0.0014270482421939
111 => 0.001434869351331
112 => 0.0014446497680681
113 => 0.0014851057185033
114 => 0.0014948595111903
115 => 0.0014711628517227
116 => 0.0014733023947523
117 => 0.0014644391936236
118 => 0.0014558774523888
119 => 0.0014751229963427
120 => 0.0015102946061905
121 => 0.0015100758054311
122 => 0.0015182349352774
123 => 0.0015233180055777
124 => 0.0015014977468137
125 => 0.0014872935607115
126 => 0.0014927403494989
127 => 0.0015014498833857
128 => 0.0014899159650436
129 => 0.0014187232780058
130 => 0.0014403185914466
131 => 0.0014367240753332
201 => 0.0014316050472795
202 => 0.0014533193019359
203 => 0.001451224909102
204 => 0.0013884897124618
205 => 0.0013925058162069
206 => 0.0013887339450323
207 => 0.0014009216324496
208 => 0.0013660785736442
209 => 0.0013767960638611
210 => 0.001383517973255
211 => 0.0013874772295281
212 => 0.0014017807780741
213 => 0.0014001024217431
214 => 0.001401676449088
215 => 0.0014228848355848
216 => 0.0015301495766464
217 => 0.0015359877598361
218 => 0.001507238410595
219 => 0.001518723208561
220 => 0.0014966749079155
221 => 0.0015114760798496
222 => 0.0015216026657779
223 => 0.0014758425711984
224 => 0.0014731329553779
225 => 0.0014509936535527
226 => 0.0014628900603194
227 => 0.0014439620217716
228 => 0.0014486063003566
301 => 0.0014356204925521
302 => 0.0014589923611516
303 => 0.001485125741867
304 => 0.0014917280658742
305 => 0.0014743601938905
306 => 0.0014617847099757
307 => 0.0014397063028433
308 => 0.0014764231859539
309 => 0.0014871603215021
310 => 0.0014763667883518
311 => 0.0014738656908775
312 => 0.0014691261156831
313 => 0.0014748712141604
314 => 0.001487101844756
315 => 0.0014813341052314
316 => 0.0014851437988019
317 => 0.0014706251754501
318 => 0.0015015049702273
319 => 0.0015505495159608
320 => 0.0015507072021949
321 => 0.00154493943158
322 => 0.0015425793841128
323 => 0.0015484974667812
324 => 0.0015517077838564
325 => 0.0015708457780154
326 => 0.0015913816082394
327 => 0.0016872133674099
328 => 0.0016603041929118
329 => 0.0017453318307047
330 => 0.001812577652742
331 => 0.0018327417344676
401 => 0.0018141917280734
402 => 0.0017507331582507
403 => 0.0017476195780701
404 => 0.0018424534729024
405 => 0.0018156585539447
406 => 0.0018124713835954
407 => 0.0017785652758882
408 => 0.0017986079848963
409 => 0.0017942243504274
410 => 0.0017873045689636
411 => 0.0018255446615638
412 => 0.0018971267011947
413 => 0.0018859699690261
414 => 0.0018776419860082
415 => 0.001841151188663
416 => 0.0018631267991794
417 => 0.0018553017051896
418 => 0.0018889232748973
419 => 0.0018690066018114
420 => 0.0018154555560801
421 => 0.0018239837366193
422 => 0.0018226947192871
423 => 0.0018492226046429
424 => 0.0018412595919217
425 => 0.0018211398132515
426 => 0.0018968820415653
427 => 0.001891963762559
428 => 0.0018989367577148
429 => 0.0019020064858294
430 => 0.0019481094454762
501 => 0.0019669963529133
502 => 0.0019712840115634
503 => 0.0019892251128628
504 => 0.0019708376206191
505 => 0.0020444006996538
506 => 0.0020933158546872
507 => 0.0021501333244093
508 => 0.0022331589187695
509 => 0.0022643773102786
510 => 0.0022587379872775
511 => 0.0023216870453634
512 => 0.0024348051034648
513 => 0.0022816023809888
514 => 0.0024429252197613
515 => 0.0023918522715677
516 => 0.0022707592301637
517 => 0.0022629622658905
518 => 0.0023449678794484
519 => 0.0025268484375719
520 => 0.0024812894206342
521 => 0.0025269229558026
522 => 0.0024736890130607
523 => 0.0024710454991127
524 => 0.002524337502024
525 => 0.0026488571716221
526 => 0.0025897025441461
527 => 0.0025048898803494
528 => 0.0025675142314657
529 => 0.0025132632229187
530 => 0.0023910205167612
531 => 0.0024812545825126
601 => 0.0024209176324628
602 => 0.002438527162176
603 => 0.0025653464567366
604 => 0.0025500872236928
605 => 0.0025698340842184
606 => 0.0025349813922561
607 => 0.0025024234821983
608 => 0.0024416517252931
609 => 0.0024236602040849
610 => 0.0024286324132798
611 => 0.002423657740105
612 => 0.0023896565006378
613 => 0.0023823139362122
614 => 0.002370076007151
615 => 0.0023738690530921
616 => 0.0023508581661246
617 => 0.0023942844641241
618 => 0.002402344767704
619 => 0.0024339468059353
620 => 0.0024372278343802
621 => 0.0025252390610276
622 => 0.0024767639563588
623 => 0.0025092852417098
624 => 0.0025063762318458
625 => 0.0022733836835572
626 => 0.0023054880010007
627 => 0.002355432244053
628 => 0.0023329324302557
629 => 0.002301122957692
630 => 0.0022754351030808
701 => 0.0022365153766268
702 => 0.0022912941442237
703 => 0.002363322398541
704 => 0.0024390545897744
705 => 0.0025300418553717
706 => 0.0025097345568989
707 => 0.0024373536461335
708 => 0.0024406006009162
709 => 0.0024606719977529
710 => 0.0024346777151706
711 => 0.0024270114937685
712 => 0.0024596187766551
713 => 0.0024598433250917
714 => 0.0024299337614668
715 => 0.0023966947548901
716 => 0.0023965554822389
717 => 0.0023906409220693
718 => 0.0024747412001756
719 => 0.0025209878496369
720 => 0.0025262899534675
721 => 0.0025206309758042
722 => 0.00252280889171
723 => 0.0024958989853639
724 => 0.0025574070513863
725 => 0.0026138529352858
726 => 0.0025987242326103
727 => 0.002576044156628
728 => 0.0025579783836875
729 => 0.0025944685106441
730 => 0.0025928436627315
731 => 0.0026133599297322
801 => 0.0026124291933534
802 => 0.0026055303444169
803 => 0.0025987244789899
804 => 0.0026257089661076
805 => 0.0026179378671753
806 => 0.0026101546975799
807 => 0.0025945443594128
808 => 0.00259666606363
809 => 0.0025739899036825
810 => 0.0025634988745003
811 => 0.002405738967099
812 => 0.0023635803648877
813 => 0.0023768443193609
814 => 0.0023812111575719
815 => 0.0023628636798618
816 => 0.0023891692498177
817 => 0.0023850695546046
818 => 0.0024010190704374
819 => 0.0023910545053926
820 => 0.0023914634546178
821 => 0.0024207671157455
822 => 0.0024292740932376
823 => 0.0024249473758254
824 => 0.0024279776603897
825 => 0.002497809289171
826 => 0.0024878814646481
827 => 0.0024826075057392
828 => 0.0024840684283998
829 => 0.0025019119067604
830 => 0.0025069071064836
831 => 0.0024857420942501
901 => 0.0024957236363729
902 => 0.0025382237758855
903 => 0.0025530964194154
904 => 0.0026005627582888
905 => 0.0025803982138885
906 => 0.0026174111078364
907 => 0.0027311761252067
908 => 0.0028220594930225
909 => 0.002738479392065
910 => 0.0029053751231317
911 => 0.0030353273895378
912 => 0.0030303396051063
913 => 0.0030076794216083
914 => 0.0028597322212647
915 => 0.0027235890017401
916 => 0.0028374785858189
917 => 0.0028377689137903
918 => 0.0028279856975143
919 => 0.0027672229814478
920 => 0.002825871286706
921 => 0.002830526576198
922 => 0.0028279208520239
923 => 0.0027813342200814
924 => 0.0027102050437541
925 => 0.0027241035145492
926 => 0.0027468694932329
927 => 0.0027037687461041
928 => 0.0026899954458301
929 => 0.002715602631517
930 => 0.0027981143192695
1001 => 0.0027825159626575
1002 => 0.0027821086265285
1003 => 0.0028488450108469
1004 => 0.0028010761622881
1005 => 0.002724278818775
1006 => 0.0027048864767055
1007 => 0.0026360567266055
1008 => 0.0026835976801627
1009 => 0.0026853085944457
1010 => 0.0026592709000392
1011 => 0.0027263916341742
1012 => 0.0027257731047928
1013 => 0.0027894942522511
1014 => 0.0029113051536214
1015 => 0.0028752796761358
1016 => 0.0028333859653808
1017 => 0.0028379409733265
1018 => 0.0028878981677728
1019 => 0.0028576929075988
1020 => 0.0028685549297559
1021 => 0.0028878817268014
1022 => 0.0028995420633163
1023 => 0.0028362632303444
1024 => 0.0028215099074022
1025 => 0.0027913297863751
1026 => 0.0027834563561378
1027 => 0.0028080374349855
1028 => 0.0028015611891714
1029 => 0.0026851647987252
1030 => 0.0026730007283002
1031 => 0.0026733737829738
1101 => 0.00264278664952
1102 => 0.0025961339292499
1103 => 0.0027187344926307
1104 => 0.0027088879515974
1105 => 0.0026980181323584
1106 => 0.0026993496231929
1107 => 0.0027525663724379
1108 => 0.0027216979703655
1109 => 0.0028037666765064
1110 => 0.002786895817735
1111 => 0.0027695922850956
1112 => 0.0027672004098064
1113 => 0.0027605400260083
1114 => 0.0027376990917448
1115 => 0.0027101172910944
1116 => 0.0026919053972103
1117 => 0.0024831404353456
1118 => 0.0025218859979378
1119 => 0.0025664592359309
1120 => 0.0025818457390701
1121 => 0.0025555260607369
1122 => 0.0027387383530658
1123 => 0.0027722130043518
1124 => 0.0026708161021089
1125 => 0.0026518488817075
1126 => 0.0027399818408776
1127 => 0.0026868268926819
1128 => 0.0027107625625997
1129 => 0.0026590267363489
1130 => 0.0027641499411092
1201 => 0.0027633490784185
1202 => 0.0027224537774515
1203 => 0.0027570182057898
1204 => 0.0027510117857772
1205 => 0.0027048410917062
1206 => 0.0027656136344644
1207 => 0.0027656437768874
1208 => 0.0027262829388472
1209 => 0.0026803180972116
1210 => 0.0026721006691683
1211 => 0.0026659099409937
1212 => 0.0027092400229673
1213 => 0.0027480896389752
1214 => 0.0028203791427292
1215 => 0.0028385544415292
1216 => 0.0029094938427438
1217 => 0.0028672528832973
1218 => 0.0028859777535079
1219 => 0.0029063062489162
1220 => 0.0029160524771706
1221 => 0.0029001715212415
1222 => 0.0030103696111503
1223 => 0.0030196737063208
1224 => 0.0030227932889514
1225 => 0.0029856351130567
1226 => 0.0030186402702305
1227 => 0.0030031982502048
1228 => 0.003043374096395
1229 => 0.0030496741820686
1230 => 0.0030443382336351
1231 => 0.003046337980268
]
'min_raw' => 0.0013660785736442
'max_raw' => 0.0030496741820686
'avg_raw' => 0.0022078763778564
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001366'
'max' => '$0.003049'
'avg' => '$0.0022078'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00021064654430251
'max_diff' => -0.00029101961035539
'year' => 2031
]
6 => [
'items' => [
101 => 0.002952303350806
102 => 0.0029474271591963
103 => 0.002880939940598
104 => 0.0029080339736255
105 => 0.0028573829775314
106 => 0.0028734449301559
107 => 0.0028805248858289
108 => 0.0028768267187693
109 => 0.0029095658296013
110 => 0.0028817308972356
111 => 0.002808269934236
112 => 0.0027347889568461
113 => 0.0027338664630313
114 => 0.0027145202187315
115 => 0.0027005364275442
116 => 0.0027032302018285
117 => 0.002712723413761
118 => 0.0026999846648089
119 => 0.0027027031227688
120 => 0.0027478476378935
121 => 0.0027569010484458
122 => 0.0027261340219932
123 => 0.0026025999711254
124 => 0.0025722844051808
125 => 0.002594074632798
126 => 0.0025836603074673
127 => 0.0020852155145454
128 => 0.0022023177251063
129 => 0.0021327395680064
130 => 0.0021648043839351
131 => 0.0020937831027125
201 => 0.0021276781806562
202 => 0.00212141899741
203 => 0.0023097158866856
204 => 0.0023067758897535
205 => 0.0023081831107037
206 => 0.0022410127882542
207 => 0.0023480169357893
208 => 0.0024007310266098
209 => 0.002390975051339
210 => 0.0023934304201304
211 => 0.0023512390492679
212 => 0.0023085916153994
213 => 0.0022612890478463
214 => 0.0023491713715859
215 => 0.0023394003573874
216 => 0.0023618115484589
217 => 0.0024188095173623
218 => 0.0024272026847975
219 => 0.0024384831869456
220 => 0.0024344399299264
221 => 0.0025307667157343
222 => 0.0025191009063884
223 => 0.0025472121504297
224 => 0.0024893851886315
225 => 0.0024239484923712
226 => 0.0024363858690435
227 => 0.0024351880496549
228 => 0.0024199384340449
229 => 0.0024061717629284
301 => 0.0023832541342552
302 => 0.0024557689025483
303 => 0.0024528249353831
304 => 0.0025004843417999
305 => 0.002492060078777
306 => 0.0024358007885429
307 => 0.0024378101000997
308 => 0.0024513236859619
309 => 0.0024980943609264
310 => 0.0025119790816462
311 => 0.0025055471257983
312 => 0.002520771088206
313 => 0.0025328034873621
314 => 0.002522282172286
315 => 0.0026712418062747
316 => 0.0026093833808131
317 => 0.0026395327469749
318 => 0.0026467231931541
319 => 0.0026283050164649
320 => 0.0026322992594833
321 => 0.0026383494492902
322 => 0.0026750850170488
323 => 0.0027714897763696
324 => 0.0028141867880235
325 => 0.0029426428542174
326 => 0.0028106413955767
327 => 0.0028028089752973
328 => 0.0028259477918204
329 => 0.0029013651011318
330 => 0.002962483746741
331 => 0.0029827603275089
401 => 0.0029854402123872
402 => 0.0030234804258692
403 => 0.0030452843668292
404 => 0.0030188613433956
405 => 0.0029964705976415
406 => 0.002916269725592
407 => 0.0029255531949114
408 => 0.0029895070925489
409 => 0.0030798457398276
410 => 0.0031573656973271
411 => 0.003130220910054
412 => 0.0033373164757138
413 => 0.0033578491551395
414 => 0.0033550122027438
415 => 0.0034017887021478
416 => 0.0033089468766993
417 => 0.0032692551975945
418 => 0.0030013117310193
419 => 0.0030765929158549
420 => 0.0031860185391225
421 => 0.003171535647558
422 => 0.0030920678349858
423 => 0.0031573054138652
424 => 0.0031357358301199
425 => 0.0031187230044972
426 => 0.0031966620567734
427 => 0.003110964867236
428 => 0.003185163644102
429 => 0.0030900029452832
430 => 0.0031303449051558
501 => 0.0031074448576111
502 => 0.0031222639948968
503 => 0.0030356316211293
504 => 0.0030823763471323
505 => 0.0030336868868452
506 => 0.0030336638017015
507 => 0.003032588979167
508 => 0.0030898719132726
509 => 0.0030917399076973
510 => 0.0030494077328435
511 => 0.0030433070050943
512 => 0.0030658645931042
513 => 0.0030394555653862
514 => 0.003051812183239
515 => 0.0030398298347531
516 => 0.0030371323557221
517 => 0.0030156383838644
518 => 0.0030063781897991
519 => 0.0030100093504979
520 => 0.0029976143270411
521 => 0.0029901458770609
522 => 0.0030311033164878
523 => 0.0030092214088204
524 => 0.003027749600307
525 => 0.0030066343876638
526 => 0.0029334398611821
527 => 0.0028913449149844
528 => 0.0027530872395967
529 => 0.0027922969448286
530 => 0.0028182930199627
531 => 0.0028097013172859
601 => 0.0028281596191831
602 => 0.0028292928090075
603 => 0.0028232918269006
604 => 0.0028163434583942
605 => 0.0028129613768742
606 => 0.002838168641637
607 => 0.0028528023072694
608 => 0.002820902073885
609 => 0.0028134282955347
610 => 0.0028456811927465
611 => 0.0028653554414138
612 => 0.0030106190395675
613 => 0.0029998574430211
614 => 0.003026866938496
615 => 0.0030238260838001
616 => 0.0030521363380079
617 => 0.0030984116388316
618 => 0.0030043210134794
619 => 0.0030206518926315
620 => 0.0030166479381985
621 => 0.003060362062805
622 => 0.0030604985335305
623 => 0.0030342897321464
624 => 0.0030484979485659
625 => 0.0030405673119426
626 => 0.0030548990442108
627 => 0.0029997137153382
628 => 0.0030669234890169
629 => 0.0031050270997907
630 => 0.0031055561684632
701 => 0.003123616977561
702 => 0.0031419678056159
703 => 0.0031771906220469
704 => 0.0031409854603828
705 => 0.0030758558990506
706 => 0.0030805580430116
707 => 0.0030423726050324
708 => 0.0030430145091436
709 => 0.0030395879746912
710 => 0.0030498712625205
711 => 0.0030019703187372
712 => 0.0030132125745001
713 => 0.0029974733505975
714 => 0.0030206176786326
715 => 0.0029957182075614
716 => 0.0030166460073704
717 => 0.0030256777520005
718 => 0.0030590050841249
719 => 0.002990795733509
720 => 0.002851712250236
721 => 0.0028809492846442
722 => 0.0028377054142349
723 => 0.0028417077990823
724 => 0.0028497932534489
725 => 0.0028235856504508
726 => 0.0028285852352064
727 => 0.0028284066148573
728 => 0.0028268673611881
729 => 0.0028200497514627
730 => 0.0028101628685378
731 => 0.0028495491670885
801 => 0.0028562416667046
802 => 0.0028711182643261
803 => 0.0029153809279549
804 => 0.0029109580440729
805 => 0.0029181719511881
806 => 0.0029024240324599
807 => 0.002842438299866
808 => 0.0028456958137459
809 => 0.0028050745634653
810 => 0.0028700794876274
811 => 0.0028546854635627
812 => 0.0028447608361042
813 => 0.0028420528095511
814 => 0.0028864251917617
815 => 0.002899702103971
816 => 0.0028914288232626
817 => 0.0028744600831595
818 => 0.0029070450805151
819 => 0.0029157634511567
820 => 0.0029177151728223
821 => 0.0029754495405828
822 => 0.0029209418826313
823 => 0.0029340624176597
824 => 0.0030364250865299
825 => 0.0029435962709474
826 => 0.0029927697648911
827 => 0.002990362978249
828 => 0.0030155184738103
829 => 0.0029882994933791
830 => 0.0029886369052632
831 => 0.0030109732811407
901 => 0.0029796058696074
902 => 0.0029718388573908
903 => 0.002961108785642
904 => 0.0029845375047537
905 => 0.0029985819622713
906 => 0.0031117699753459
907 => 0.0031848945937926
908 => 0.0031817200612534
909 => 0.003210729346186
910 => 0.0031976603976293
911 => 0.003155457315325
912 => 0.0032274928307008
913 => 0.0032046977795419
914 => 0.0032065769758634
915 => 0.0032065070320825
916 => 0.0032216637483252
917 => 0.0032109238257746
918 => 0.003189754335997
919 => 0.0032038076312501
920 => 0.0032455408940068
921 => 0.0033750822221367
922 => 0.0034475752655525
923 => 0.0033707180498981
924 => 0.0034237331280974
925 => 0.0033919429723817
926 => 0.0033861657554129
927 => 0.0034194631423056
928 => 0.0034528188118661
929 => 0.0034506941999157
930 => 0.0034264796966473
1001 => 0.0034128015381712
1002 => 0.003516377136671
1003 => 0.0035926898732814
1004 => 0.0035874858562516
1005 => 0.0036104546949839
1006 => 0.0036778919159014
1007 => 0.0036840575302314
1008 => 0.0036832808045408
1009 => 0.0036679986861088
1010 => 0.0037343993879318
1011 => 0.0037897920216017
1012 => 0.0036644613172346
1013 => 0.0037121856087582
1014 => 0.0037336105808038
1015 => 0.0037650687962695
1016 => 0.0038181440787692
1017 => 0.0038757979130873
1018 => 0.003883950797402
1019 => 0.0038781659358293
1020 => 0.0038401416822782
1021 => 0.0039032271957424
1022 => 0.0039401812099923
1023 => 0.0039621864798006
1024 => 0.0040179881827066
1025 => 0.0037337428941372
1026 => 0.0035325399509803
1027 => 0.0035011192060006
1028 => 0.0035650145264766
1029 => 0.0035818632129304
1030 => 0.0035750715285473
1031 => 0.003348599323453
1101 => 0.0034999268767103
1102 => 0.0036627426000332
1103 => 0.0036689970150539
1104 => 0.0037505059704655
1105 => 0.0037770486275125
1106 => 0.0038426740202419
1107 => 0.0038385691340588
1108 => 0.0038545478728604
1109 => 0.0038508746375231
1110 => 0.0039724318584975
1111 => 0.0041065275246542
1112 => 0.0041018842181333
1113 => 0.0040826063795754
1114 => 0.0041112372571938
1115 => 0.0042496383552325
1116 => 0.0042368965999575
1117 => 0.004249274129867
1118 => 0.0044124568243987
1119 => 0.0046246175397575
1120 => 0.0045260475868857
1121 => 0.0047399160218775
1122 => 0.0048745348650262
1123 => 0.0051073442344037
1124 => 0.0050781953547473
1125 => 0.0051688263338119
1126 => 0.0050260127766076
1127 => 0.0046980839818847
1128 => 0.0046461879948588
1129 => 0.0047500850751003
1130 => 0.0050055059087454
1201 => 0.0047420409640833
1202 => 0.0047953395792509
1203 => 0.0047799895744971
1204 => 0.004779171637977
1205 => 0.0048103889481577
1206 => 0.0047651066115552
1207 => 0.0045806182260999
1208 => 0.0046651681659572
1209 => 0.0046325193737567
1210 => 0.0046687456428319
1211 => 0.0048642438761806
1212 => 0.0047778094471213
1213 => 0.0046867577974702
1214 => 0.0048009567721113
1215 => 0.0049463713098545
1216 => 0.0049372715294176
1217 => 0.0049196141519568
1218 => 0.005019147864193
1219 => 0.0051835483961659
1220 => 0.0052279851993433
1221 => 0.0052607875389784
1222 => 0.0052653104274141
1223 => 0.0053118989892604
1224 => 0.0050613805503834
1225 => 0.005458959746651
1226 => 0.0055276106909428
1227 => 0.005514707158706
1228 => 0.005591009794013
1229 => 0.0055685596230946
1230 => 0.0055360328477579
1231 => 0.0056569887547553
]
'min_raw' => 0.0020852155145454
'max_raw' => 0.0056569887547553
'avg_raw' => 0.0038711021346504
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002085'
'max' => '$0.005656'
'avg' => '$0.003871'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00071913694090127
'max_diff' => 0.0026073145726868
'year' => 2032
]
7 => [
'items' => [
101 => 0.0055183225680211
102 => 0.0053215033735393
103 => 0.0052135244708044
104 => 0.0053557198003354
105 => 0.0054425535261469
106 => 0.005499945095246
107 => 0.0055173117493785
108 => 0.0050808275836589
109 => 0.0048455868268576
110 => 0.0049963734549265
111 => 0.0051803435479076
112 => 0.005060358587228
113 => 0.0050650617705251
114 => 0.0048939947480889
115 => 0.0051954791835518
116 => 0.005151555437188
117 => 0.0053794319110228
118 => 0.0053250473617192
119 => 0.0055108717800176
120 => 0.0054619379830252
121 => 0.005665059438489
122 => 0.0057460900863673
123 => 0.0058821531555684
124 => 0.0059822417031491
125 => 0.0060410156126772
126 => 0.0060374870476045
127 => 0.0062703785582007
128 => 0.0061330505710118
129 => 0.005960534253381
130 => 0.0059574139774771
131 => 0.0060467626229532
201 => 0.0062340128722672
202 => 0.0062825641375341
203 => 0.0063096976713328
204 => 0.0062681417197949
205 => 0.0061190820320869
206 => 0.0060547188146843
207 => 0.0061095581406932
208 => 0.0060424943573814
209 => 0.0061582652621518
210 => 0.0063172434417326
211 => 0.0062844150763171
212 => 0.0063941553799978
213 => 0.0065077250492906
214 => 0.0066701347771125
215 => 0.0067125946939799
216 => 0.0067827793219557
217 => 0.0068550223585921
218 => 0.0068782248749553
219 => 0.0069225256780106
220 => 0.006922292190911
221 => 0.0070557956427062
222 => 0.007203054084294
223 => 0.0072586407369527
224 => 0.0073864591796753
225 => 0.0071675745758052
226 => 0.0073336010622058
227 => 0.0074833611088516
228 => 0.0073048110073584
301 => 0.0075509007254286
302 => 0.00756045583153
303 => 0.0077047265893163
304 => 0.007558480537367
305 => 0.0074716400985535
306 => 0.0077223451915394
307 => 0.0078436534888988
308 => 0.0078071144424945
309 => 0.0075290504952023
310 => 0.0073672053511545
311 => 0.0069436253915846
312 => 0.0074453741509877
313 => 0.0076897613354809
314 => 0.0075284175914341
315 => 0.0076097899911262
316 => 0.0080537314187571
317 => 0.0082227555713202
318 => 0.0081875997291551
319 => 0.0081935404877666
320 => 0.0082847428524842
321 => 0.0086891843637019
322 => 0.0084468336352994
323 => 0.0086321016864546
324 => 0.0087303671927536
325 => 0.0088216416714004
326 => 0.0085975003994392
327 => 0.0083058958979071
328 => 0.0082135325115476
329 => 0.0075123751358262
330 => 0.0074758768494478
331 => 0.0074553892552923
401 => 0.0073262178721697
402 => 0.007224724548055
403 => 0.0071440132885134
404 => 0.0069322028410539
405 => 0.0070036826493106
406 => 0.0066661010043362
407 => 0.0068820737776319
408 => 0.006343285321059
409 => 0.0067920043578784
410 => 0.0065477869868887
411 => 0.0067117723833031
412 => 0.0067112002537034
413 => 0.0064092511472871
414 => 0.0062350932042233
415 => 0.0063460734238721
416 => 0.0064650530289564
417 => 0.0064843570695859
418 => 0.0066386172332632
419 => 0.0066816679291344
420 => 0.0065512223107998
421 => 0.0063321201278683
422 => 0.0063830125677746
423 => 0.006234061870553
424 => 0.0059730315029779
425 => 0.0061605080701233
426 => 0.0062245208129095
427 => 0.0062527924868494
428 => 0.0059960990998796
429 => 0.0059154404646091
430 => 0.0058724984839826
501 => 0.006298984235028
502 => 0.0063223480872074
503 => 0.0062028153161418
504 => 0.0067431147759211
505 => 0.0066208283678818
506 => 0.006757452246559
507 => 0.0063783946122824
508 => 0.0063928751243806
509 => 0.0062134231656459
510 => 0.0063139042715531
511 => 0.0062428874645551
512 => 0.0063057863911695
513 => 0.0063434877484401
514 => 0.0065229102608741
515 => 0.00679405307476
516 => 0.0064961105207299
517 => 0.0063662926833231
518 => 0.0064468309395271
519 => 0.0066613149290056
520 => 0.0069862691522989
521 => 0.006793889711796
522 => 0.0068792644406765
523 => 0.0068979150208795
524 => 0.0067560615437267
525 => 0.0069914994923392
526 => 0.0071176726016952
527 => 0.0072471001040482
528 => 0.007359478377865
529 => 0.0071954039134366
530 => 0.0073709871095256
531 => 0.0072294980480843
601 => 0.0071025677331012
602 => 0.0071027602339945
603 => 0.0070231349932496
604 => 0.0068688510558803
605 => 0.0068403987306891
606 => 0.0069884113194661
607 => 0.007107103398821
608 => 0.0071168794469734
609 => 0.0071825934807235
610 => 0.0072214823689884
611 => 0.0076026463408646
612 => 0.007755953643507
613 => 0.0079434149112193
614 => 0.0080164416397314
615 => 0.0082362259110217
616 => 0.0080587322619491
617 => 0.0080203303944848
618 => 0.0074872056432218
619 => 0.0075745047913749
620 => 0.0077142791506829
621 => 0.0074895104709247
622 => 0.0076320744636129
623 => 0.0076602196156877
624 => 0.0074818729171953
625 => 0.0075771355947661
626 => 0.0073241461665536
627 => 0.0067995675529547
628 => 0.0069920834982949
629 => 0.0071338400342318
630 => 0.006931535978995
701 => 0.0072941581677589
702 => 0.0070823217711244
703 => 0.0070151798033316
704 => 0.006753235049132
705 => 0.006876862889936
706 => 0.0070440713148036
707 => 0.0069407559483012
708 => 0.0071551508466739
709 => 0.0074587911998005
710 => 0.0076751833975342
711 => 0.0076917953035236
712 => 0.0075526696175321
713 => 0.0077756194172217
714 => 0.0077772433631126
715 => 0.0075257550782861
716 => 0.0073717199041224
717 => 0.0073367227884597
718 => 0.0074241524449739
719 => 0.0075303081883872
720 => 0.0076976862084766
721 => 0.0077988292405281
722 => 0.0080625566259991
723 => 0.0081339136948509
724 => 0.0082123134794075
725 => 0.0083170797691733
726 => 0.0084428785615624
727 => 0.0081676379655442
728 => 0.0081785737875367
729 => 0.00792227355549
730 => 0.0076483800003768
731 => 0.007856231067394
801 => 0.0081279686882504
802 => 0.0080656317777826
803 => 0.0080586176019274
804 => 0.0080704135001456
805 => 0.008023413505386
806 => 0.0078108342709896
807 => 0.0077040783102921
808 => 0.0078418207359421
809 => 0.007915024704965
810 => 0.0080285576768626
811 => 0.0080145623416859
812 => 0.008307011084743
813 => 0.0084206478231041
814 => 0.0083915746826411
815 => 0.0083969248401705
816 => 0.0086026587269751
817 => 0.0088314771215027
818 => 0.0090457957432243
819 => 0.0092638098504385
820 => 0.0090009853349563
821 => 0.008867539254757
822 => 0.009005221546373
823 => 0.008932165384423
824 => 0.0093519677608529
825 => 0.0093810339665646
826 => 0.0098008059865045
827 => 0.01019921961895
828 => 0.0099489831547325
829 => 0.010184944869591
830 => 0.010440156702452
831 => 0.010932501734668
901 => 0.010766697248725
902 => 0.01063969361098
903 => 0.010519675786988
904 => 0.010769413826422
905 => 0.011090697824492
906 => 0.011159899320456
907 => 0.011272032180924
908 => 0.011154138189096
909 => 0.011296128516656
910 => 0.011797416766655
911 => 0.011661964256512
912 => 0.01146959991703
913 => 0.011865318846169
914 => 0.012008527988306
915 => 0.013013644747034
916 => 0.01428264617423
917 => 0.013757271250658
918 => 0.013431154081854
919 => 0.013507799352126
920 => 0.013971195714929
921 => 0.014120023919196
922 => 0.01371545755584
923 => 0.013858357234828
924 => 0.014645748515641
925 => 0.015068158675261
926 => 0.014494468941244
927 => 0.012911681717958
928 => 0.011452279612964
929 => 0.011839378768942
930 => 0.011795493737739
1001 => 0.01264144743991
1002 => 0.011658733758942
1003 => 0.01167528013702
1004 => 0.012538727265871
1005 => 0.012308374375125
1006 => 0.011935232193485
1007 => 0.011455003963834
1008 => 0.010567257665588
1009 => 0.0097809560125954
1010 => 0.01132307462857
1011 => 0.011256575669689
1012 => 0.011160275322635
1013 => 0.011374581324218
1014 => 0.012415190436085
1015 => 0.012391201027933
1016 => 0.012238592652777
1017 => 0.012354344760305
1018 => 0.011914940289382
1019 => 0.012028184826593
1020 => 0.011452048436214
1021 => 0.011712486146246
1022 => 0.01193443159795
1023 => 0.011978990433338
1024 => 0.012079383764698
1025 => 0.011221533740094
1026 => 0.011606683215988
1027 => 0.01183292244945
1028 => 0.010810765362015
1029 => 0.011812717690317
1030 => 0.01120660047971
1031 => 0.011000875194855
1101 => 0.011277857188667
1102 => 0.011169917036305
1103 => 0.011077116431762
1104 => 0.01102533209991
1105 => 0.011228717106779
1106 => 0.011219228953111
1107 => 0.010886451606545
1108 => 0.010452357123691
1109 => 0.010598053480802
1110 => 0.010545120628353
1111 => 0.010353285142603
1112 => 0.010482559097694
1113 => 0.0099133020235259
1114 => 0.0089339248148281
1115 => 0.0095809313980291
1116 => 0.0095560223483836
1117 => 0.0095434620760168
1118 => 0.010029669641344
1119 => 0.0099829320026547
1120 => 0.0098981027307776
1121 => 0.010351727186501
1122 => 0.010186148158052
1123 => 0.010696423708406
1124 => 0.011032524188423
1125 => 0.010947278234979
1126 => 0.01126338236095
1127 => 0.010601410030605
1128 => 0.010821290685025
1129 => 0.01086660778316
1130 => 0.010346129531132
1201 => 0.0099905788583584
1202 => 0.0099668676820588
1203 => 0.0093503918133706
1204 => 0.0096797082464045
1205 => 0.0099694930794344
1206 => 0.0098307086326245
1207 => 0.009786773622832
1208 => 0.010011228059521
1209 => 0.010028670091574
1210 => 0.009630989912342
1211 => 0.0097136802144978
1212 => 0.010058512520607
1213 => 0.0097049913251325
1214 => 0.0090181573896858
1215 => 0.0088478130774729
1216 => 0.0088250860061552
1217 => 0.0083630987212561
1218 => 0.008859196298948
1219 => 0.008642636411697
1220 => 0.0093267465007372
1221 => 0.0089359864868334
1222 => 0.0089191416036362
1223 => 0.0088936780920764
1224 => 0.0084960265515094
1225 => 0.0085830869668198
1226 => 0.0088724890469872
1227 => 0.0089757509695388
1228 => 0.0089649799050167
1229 => 0.0088710708189117
1230 => 0.0089140619176382
1231 => 0.0087755726095483
]
'min_raw' => 0.0048455868268576
'max_raw' => 0.015068158675261
'avg_raw' => 0.0099568727510591
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004845'
'max' => '$0.015068'
'avg' => '$0.009956'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0027603713123122
'max_diff' => 0.0094111699205053
'year' => 2033
]
8 => [
'items' => [
101 => 0.0087266691524561
102 => 0.0085723163899174
103 => 0.0083454604700245
104 => 0.0083770061770738
105 => 0.0079275452396857
106 => 0.0076826550662991
107 => 0.0076148726939064
108 => 0.0075242312727224
109 => 0.0076251108836167
110 => 0.0079262719733218
111 => 0.0075630078042481
112 => 0.0069402168663898
113 => 0.0069776476629392
114 => 0.0070617435494825
115 => 0.0069050314212591
116 => 0.0067567165437476
117 => 0.0068856642965775
118 => 0.0066217795660991
119 => 0.0070936327584366
120 => 0.0070808704519372
121 => 0.0072567481428349
122 => 0.0073667280723268
123 => 0.007113259941273
124 => 0.0070495133917636
125 => 0.0070858263234833
126 => 0.0064856544502123
127 => 0.0072077012965071
128 => 0.0072139455876175
129 => 0.0071604781761111
130 => 0.0075449458310678
131 => 0.008356292501495
201 => 0.0080510312477361
202 => 0.0079328248637104
203 => 0.0077081144412692
204 => 0.0080075277371874
205 => 0.0079845374676359
206 => 0.0078805667499233
207 => 0.0078176849354422
208 => 0.0079335466066852
209 => 0.0078033283921909
210 => 0.0077799376227105
211 => 0.0076382150090674
212 => 0.0075876264839649
213 => 0.0075501727539662
214 => 0.0075089398773652
215 => 0.0075998893285544
216 => 0.0073937859067628
217 => 0.0071452453846497
218 => 0.0071245819294817
219 => 0.0071816355459501
220 => 0.0071563935678051
221 => 0.0071244610806017
222 => 0.007063493266235
223 => 0.0070454054180836
224 => 0.0071041821495991
225 => 0.0070378266466144
226 => 0.0071357378058396
227 => 0.0071091113882019
228 => 0.006960378383729
301 => 0.0067750019921446
302 => 0.0067733517534194
303 => 0.0067334127139308
304 => 0.0066825443422672
305 => 0.0066683939249811
306 => 0.0068748046764987
307 => 0.007302068754786
308 => 0.0072181865926553
309 => 0.0072788000513845
310 => 0.007576958276987
311 => 0.0076717338109753
312 => 0.0076044643818319
313 => 0.0075123818382228
314 => 0.0075164330028148
315 => 0.0078311069296088
316 => 0.0078507327564361
317 => 0.0079003208892968
318 => 0.0079640556536276
319 => 0.0076153186877944
320 => 0.0075000075230854
321 => 0.0074453666960264
322 => 0.0072770940973461
323 => 0.0074585616684205
324 => 0.0073528282859716
325 => 0.0073670953316307
326 => 0.0073578038994288
327 => 0.0073628776496949
328 => 0.0070935008658529
329 => 0.007191647607858
330 => 0.0070284596134009
331 => 0.0068099692075349
401 => 0.0068092367510818
402 => 0.0068627119683824
403 => 0.0068309028166466
404 => 0.0067453052072135
405 => 0.0067574639436241
406 => 0.0066509406186432
407 => 0.0067703978039439
408 => 0.0067738234085799
409 => 0.0067278258853623
410 => 0.0069118661612329
411 => 0.0069872676124197
412 => 0.0069569910572754
413 => 0.0069851433285996
414 => 0.0072216722751971
415 => 0.007260236813974
416 => 0.0072773646346682
417 => 0.0072544156239393
418 => 0.0069894666435411
419 => 0.0070012182574719
420 => 0.0069149927117666
421 => 0.0068421412118698
422 => 0.0068450548898099
423 => 0.0068825100307889
424 => 0.0070460788281593
425 => 0.0073902997193179
426 => 0.0074033626505152
427 => 0.0074191953041989
428 => 0.0073547959448132
429 => 0.0073353724818036
430 => 0.0073609970431344
501 => 0.007490268311579
502 => 0.0078227891108254
503 => 0.0077052540520543
504 => 0.0076096962197311
505 => 0.0076935262008851
506 => 0.0076806212323676
507 => 0.0075716903109782
508 => 0.0075686329828205
509 => 0.0073595597173521
510 => 0.0072822700914763
511 => 0.0072176810950663
512 => 0.007147151597125
513 => 0.0071053393465752
514 => 0.0071695819667477
515 => 0.0071842750140775
516 => 0.0070438074023015
517 => 0.0070246621858621
518 => 0.0071393710698424
519 => 0.0070888919667809
520 => 0.0071408109761011
521 => 0.0071528566316164
522 => 0.0071509170036435
523 => 0.0070982110225593
524 => 0.0071318042431874
525 => 0.0070523462617808
526 => 0.0069659476412041
527 => 0.0069108307041005
528 => 0.0068627338662767
529 => 0.0068894207873059
530 => 0.006794286786676
531 => 0.0067638515052053
601 => 0.00712042361591
602 => 0.0073838272678837
603 => 0.0073799972744647
604 => 0.0073566831745209
605 => 0.0073220431510969
606 => 0.0074877341781061
607 => 0.0074300107373928
608 => 0.0074720093634666
609 => 0.0074826997764792
610 => 0.0075150564369218
611 => 0.0075266211618811
612 => 0.0074916645308362
613 => 0.0073743458074564
614 => 0.0070819987031235
615 => 0.0069459103368806
616 => 0.0069009989092895
617 => 0.0069026313543834
618 => 0.0068576012311353
619 => 0.0068708646205404
620 => 0.0068529887655754
621 => 0.0068191362209055
622 => 0.0068873304880665
623 => 0.0068951892420833
624 => 0.0068792718852671
625 => 0.006883020999014
626 => 0.0067512320829679
627 => 0.0067612517080244
628 => 0.0067054611624774
629 => 0.0066950011077524
630 => 0.006553967466848
701 => 0.0063041059288328
702 => 0.0064425534755395
703 => 0.0062753283077888
704 => 0.0062119976028868
705 => 0.0065117953099475
706 => 0.0064817039352526
707 => 0.0064302005821811
708 => 0.0063540163887491
709 => 0.006325758930333
710 => 0.0061540755582208
711 => 0.0061439315887013
712 => 0.0062290225037611
713 => 0.0061897559742606
714 => 0.0061346108954443
715 => 0.0059348810099387
716 => 0.0057103184903379
717 => 0.005717096621255
718 => 0.0057885257806058
719 => 0.0059962156949528
720 => 0.0059150676523454
721 => 0.0058561938163673
722 => 0.0058451685166296
723 => 0.0059831732258753
724 => 0.0061784788023384
725 => 0.0062701118090989
726 => 0.006179306282335
727 => 0.0060749937825055
728 => 0.0060813428010325
729 => 0.0061235799768825
730 => 0.0061280185068628
731 => 0.006060121792972
801 => 0.006079234320225
802 => 0.0060502006436416
803 => 0.0058720210240412
804 => 0.0058687983197363
805 => 0.0058250701675519
806 => 0.0058237460964824
807 => 0.0057493536011179
808 => 0.0057389455767654
809 => 0.0055912347619175
810 => 0.0056884584675599
811 => 0.0056232459102886
812 => 0.0055249552043936
813 => 0.0055080098496493
814 => 0.0055075004518236
815 => 0.0056084230293781
816 => 0.0056872791284812
817 => 0.0056243803106423
818 => 0.0056100594690627
819 => 0.0057629685907557
820 => 0.0057435095112227
821 => 0.0057266580738447
822 => 0.0061609913300964
823 => 0.0058171826663265
824 => 0.0056672624650104
825 => 0.0054817077468076
826 => 0.0055421252987025
827 => 0.0055548561646053
828 => 0.0051086305160795
829 => 0.0049275968260465
830 => 0.0048654728857378
831 => 0.0048297196797866
901 => 0.0048460128646991
902 => 0.0046830613105354
903 => 0.0047925674499033
904 => 0.0046514651779495
905 => 0.00462780892287
906 => 0.0048801172643406
907 => 0.0049152244960923
908 => 0.0047654461384776
909 => 0.0048616280909798
910 => 0.0048267511779733
911 => 0.0046538839714141
912 => 0.0046472817156486
913 => 0.0045605430279733
914 => 0.004424813777681
915 => 0.0043627818681955
916 => 0.0043304751111496
917 => 0.0043438055087529
918 => 0.0043370652518078
919 => 0.0042930805159555
920 => 0.0043395864053802
921 => 0.0042207830754605
922 => 0.004173474632223
923 => 0.0041521065059602
924 => 0.004046661712592
925 => 0.0042144712703533
926 => 0.0042475318672414
927 => 0.0042806576037182
928 => 0.0045689945238487
929 => 0.0045545900261506
930 => 0.004684799670066
1001 => 0.0046797399627436
1002 => 0.0046426020630426
1003 => 0.0044859233730918
1004 => 0.0045483727063771
1005 => 0.0043561633653063
1006 => 0.0045001796726013
1007 => 0.0044344566442166
1008 => 0.004477958650593
1009 => 0.0043997381207105
1010 => 0.004443028591594
1011 => 0.0042553717612308
1012 => 0.0040801404534405
1013 => 0.0041506586470161
1014 => 0.0042273199881664
1015 => 0.0043935413087266
1016 => 0.0042945412614971
1017 => 0.0043301454220871
1018 => 0.0042108774441751
1019 => 0.003964793538529
1020 => 0.0039661863467103
1021 => 0.003928331699056
1022 => 0.0038956197566136
1023 => 0.0043059126078331
1024 => 0.0042548862060138
1025 => 0.0041735823128851
1026 => 0.0042824108047261
1027 => 0.0043111867853093
1028 => 0.0043120059970222
1029 => 0.0043914044553995
1030 => 0.0044337794268684
1031 => 0.0044412481992534
1101 => 0.0045661833890272
1102 => 0.0046080600167044
1103 => 0.0047805439195046
1104 => 0.0044301842065967
1105 => 0.0044229687788699
1106 => 0.0042839422447857
1107 => 0.0041957694189469
1108 => 0.004289979513606
1109 => 0.0043734367965136
1110 => 0.0042865354952019
1111 => 0.0042978829705666
1112 => 0.0041812250736528
1113 => 0.0042229247825353
1114 => 0.0042588421893822
1115 => 0.0042390107084489
1116 => 0.0042093220216373
1117 => 0.0043665942510495
1118 => 0.0043577203355112
1119 => 0.0045041758512128
1120 => 0.0046183483988366
1121 => 0.0048229660149626
1122 => 0.0046094368655775
1123 => 0.0046016550146725
1124 => 0.0046777238555178
1125 => 0.0046080483709612
1126 => 0.004652080872085
1127 => 0.0048158716982917
1128 => 0.0048193323403512
1129 => 0.0047613621270684
1130 => 0.0047578346343218
1201 => 0.0047689684479075
1202 => 0.0048341795418367
1203 => 0.0048113927818833
1204 => 0.0048377621973915
1205 => 0.0048707375552674
1206 => 0.0050071376167041
1207 => 0.0050400232097362
1208 => 0.0049601282678932
1209 => 0.0049673418865959
1210 => 0.0049374589851814
1211 => 0.0049085924768467
1212 => 0.0049734801719682
1213 => 0.0050920637101735
1214 => 0.0050913260081368
1215 => 0.0051188350840659
1216 => 0.0051359730104722
1217 => 0.0050624044846074
1218 => 0.0050145140794592
1219 => 0.0050328783081387
1220 => 0.0050622431097181
1221 => 0.0050233556987554
1222 => 0.0047833245838926
1223 => 0.004856134690895
1224 => 0.0048440155288574
1225 => 0.0048267563683755
1226 => 0.0048999674939903
1227 => 0.0048929061023251
1228 => 0.0046813900068211
1229 => 0.0046949305809929
1230 => 0.0046822134539842
1231 => 0.0047233050930287
]
'min_raw' => 0.0038956197566136
'max_raw' => 0.0087266691524561
'avg_raw' => 0.0063111444545348
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003895'
'max' => '$0.008726'
'avg' => '$0.006311'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00094996707024403
'max_diff' => -0.0063414895228045
'year' => 2034
]
9 => [
'items' => [
101 => 0.0046058292876015
102 => 0.0046419640541393
103 => 0.0046646274409694
104 => 0.0046779763499207
105 => 0.0047262017624853
106 => 0.0047205430669364
107 => 0.0047258500100248
108 => 0.0047973555658211
109 => 0.0051590061292954
110 => 0.0051786899715283
111 => 0.0050817595333464
112 => 0.0051204813315317
113 => 0.0050461439465422
114 => 0.0050960471311029
115 => 0.0051301896225758
116 => 0.0049759062688332
117 => 0.0049667706099153
118 => 0.0048921264080947
119 => 0.0049322359740894
120 => 0.004868418770612
121 => 0.0048840772801143
122 => 0.0048402947224614
123 => 0.0049190946092163
124 => 0.0050072051268727
125 => 0.0050294653232225
126 => 0.0049709083302433
127 => 0.0049285092082325
128 => 0.0048540703171205
129 => 0.0049778638520186
130 => 0.0050140648541624
131 => 0.0049776737035656
201 => 0.0049692410788099
202 => 0.0049532612701354
203 => 0.0049726312707617
204 => 0.0050138676957302
205 => 0.0049944213592322
206 => 0.0050072660070895
207 => 0.004958315454801
208 => 0.0050624288388507
209 => 0.0052277859489719
210 => 0.0052283175991196
211 => 0.0052088711577986
212 => 0.0052009140929895
213 => 0.0052208673218936
214 => 0.0052316911300497
215 => 0.0052962162135289
216 => 0.0053654541988949
217 => 0.005688557665698
218 => 0.0055978315051391
219 => 0.0058845081223982
220 => 0.0061112321063502
221 => 0.0061792167156992
222 => 0.0061166740740212
223 => 0.0059027190753278
224 => 0.0058922214223657
225 => 0.006211960519884
226 => 0.0061216195798567
227 => 0.0061108738125029
228 => 0.0059965570031194
301 => 0.0060641323958773
302 => 0.00604935266621
303 => 0.0060260221398809
304 => 0.0061549512819205
305 => 0.0063962951262346
306 => 0.00635867942479
307 => 0.0063306010486038
308 => 0.0062075697776482
309 => 0.0062816620827927
310 => 0.0062552792320754
311 => 0.0063686367017278
312 => 0.0063014862478811
313 => 0.0061209351583832
314 => 0.0061496885144899
315 => 0.0061453425025581
316 => 0.006234783120153
317 => 0.0062079352668036
318 => 0.006140100028299
319 => 0.0063954702392122
320 => 0.0063788879181592
321 => 0.006402397858166
322 => 0.006412747660826
323 => 0.006568187008081
324 => 0.006631865535147
325 => 0.0066463216756405
326 => 0.0067068113512792
327 => 0.0066448166374058
328 => 0.0068928396943814
329 => 0.0070577605547235
330 => 0.0072493246207608
331 => 0.0075292512088082
401 => 0.0076345061953797
402 => 0.0076154928241564
403 => 0.0078277299684559
404 => 0.0082091153989954
405 => 0.0076925817238952
406 => 0.0082364929380174
407 => 0.0080642969273833
408 => 0.0076560232838436
409 => 0.0076297352744297
410 => 0.0079062229259893
411 => 0.008519445926198
412 => 0.0083658405197634
413 => 0.0085196971696153
414 => 0.0083402152149859
415 => 0.0083313024231459
416 => 0.0085109801316902
417 => 0.0089308068914259
418 => 0.0087313629348462
419 => 0.0084454111174247
420 => 0.0086565534895057
421 => 0.0084736424265051
422 => 0.0080614926079818
423 => 0.008365723060604
424 => 0.00816229282092
425 => 0.0082216645798061
426 => 0.0086492446856575
427 => 0.0085977971160848
428 => 0.0086643750350285
429 => 0.0085468667507404
430 => 0.0084370954838596
501 => 0.0082321992625054
502 => 0.0081715395926241
503 => 0.008188303743073
504 => 0.0081715312851437
505 => 0.0080568937323895
506 => 0.008032137763787
507 => 0.0079908767315322
508 => 0.0080036652507446
509 => 0.0079260824387649
510 => 0.0080724972343975
511 => 0.0080996731106696
512 => 0.0082062215889503
513 => 0.0082172838054264
514 => 0.0085140198008155
515 => 0.008350582601001
516 => 0.0084602303851255
517 => 0.0084504224552685
518 => 0.0076648718116931
519 => 0.0077731137594058
520 => 0.0079415042618523
521 => 0.0078656445687481
522 => 0.0077583967111331
523 => 0.0076717883158427
524 => 0.0075405677408146
525 => 0.0077252581802987
526 => 0.0079681064685817
527 => 0.008223442838778
528 => 0.0085302127572671
529 => 0.0084617452826559
530 => 0.0082177079885365
531 => 0.0082286553232814
601 => 0.0082963274390565
602 => 0.0082086859004676
603 => 0.0081828386997717
604 => 0.0082927764305917
605 => 0.0082935335113231
606 => 0.0081926913293429
607 => 0.0080806236979963
608 => 0.008080154130529
609 => 0.0080602127779758
610 => 0.0083437627373052
611 => 0.0084996865448019
612 => 0.0085175629580477
613 => 0.0084984833197587
614 => 0.0085058263152924
615 => 0.0084150976872566
616 => 0.0086224764262074
617 => 0.0088127876647002
618 => 0.0087617801873776
619 => 0.0086853127277307
620 => 0.0086244027129502
621 => 0.0087474317236434
622 => 0.0087419534354628
623 => 0.0088111254620559
624 => 0.0088079874193727
625 => 0.0087847274685209
626 => 0.0087617810180637
627 => 0.0088527611003775
628 => 0.0088265602977666
629 => 0.0088003187980723
630 => 0.0087476874530628
701 => 0.0087548409269636
702 => 0.0086783866705018
703 => 0.0086430154331538
704 => 0.0081111168909054
705 => 0.0079689762201303
706 => 0.0080136965686963
707 => 0.0080284196686076
708 => 0.0079665598665281
709 => 0.0080552509322308
710 => 0.0080414285235881
711 => 0.0080952034297782
712 => 0.0080616072030256
713 => 0.0080629860038904
714 => 0.0081617853432988
715 => 0.0081904672118516
716 => 0.0081758793820146
717 => 0.0081860961979908
718 => 0.0084215384099156
719 => 0.008388066056398
720 => 0.0083702845357205
721 => 0.0083752101384693
722 => 0.008435370671554
723 => 0.0084522123361744
724 => 0.008380853019735
725 => 0.0084145064858911
726 => 0.008557798673523
727 => 0.0086079428295588
728 => 0.0087679789050645
729 => 0.0086999927357753
730 => 0.0088247842918782
731 => 0.009208350990762
801 => 0.0095147706106271
802 => 0.0092329744648728
803 => 0.0097956750744518
804 => 0.010233818213617
805 => 0.010217001550171
806 => 0.010140601159424
807 => 0.0096417868441217
808 => 0.0091827704742783
809 => 0.0095667571585169
810 => 0.0095677360195426
811 => 0.0095347512228256
812 => 0.0093298854832901
813 => 0.009527622339162
814 => 0.0095433179727063
815 => 0.0095345325917273
816 => 0.0093774625095586
817 => 0.0091376455254904
818 => 0.0091845051901366
819 => 0.0092612622767383
820 => 0.0091159450985956
821 => 0.0090695074551007
822 => 0.0091558438694809
823 => 0.0094340377855202
824 => 0.0093814468371606
825 => 0.0093800734749622
826 => 0.0096050798540775
827 => 0.0094440238460467
828 => 0.0091850962405732
829 => 0.0091197136053556
830 => 0.0088876492973537
831 => 0.0090479369414753
901 => 0.0090537054084327
902 => 0.0089659175038473
903 => 0.0091922197452035
904 => 0.0091901343302097
905 => 0.009404974627734
906 => 0.0098156685862695
907 => 0.0096942061737082
908 => 0.0095529586029724
909 => 0.0095683161302817
910 => 0.0097367502992575
911 => 0.0096349111557166
912 => 0.0096715332217817
913 => 0.0097366948673743
914 => 0.0097760085060331
915 => 0.0095626595026813
916 => 0.0095129176443375
917 => 0.0094111632591859
918 => 0.0093846174394355
919 => 0.0094674942629665
920 => 0.0094456591480474
921 => 0.0090532205911215
922 => 0.0090122085784152
923 => 0.0090134663582933
924 => 0.0089103397023284
925 => 0.0087530467987487
926 => 0.009166403157885
927 => 0.0091332048573278
928 => 0.0090965565028571
929 => 0.0091010457171671
930 => 0.0092804697027214
1001 => 0.0091763947299714
1002 => 0.0094530951025797
1003 => 0.009396213824346
1004 => 0.0093378737559583
1005 => 0.0093298093814252
1006 => 0.0093073534324366
1007 => 0.0092303436278644
1008 => 0.0091373496612717
1009 => 0.0090759469895277
1010 => 0.0083720813450966
1011 => 0.0085027147145049
1012 => 0.0086529964984029
1013 => 0.008704873167988
1014 => 0.0086161345349064
1015 => 0.0092338475699668
1016 => 0.0093467096939033
1017 => 0.0090048429586856
1018 => 0.0089408936508532
1019 => 0.0092380400759419
1020 => 0.0090588244569403
1021 => 0.0091395252392032
1022 => 0.0089650942889186
1023 => 0.0093195245132358
1024 => 0.0093168243487595
1025 => 0.0091789429863305
1026 => 0.0092954793696847
1027 => 0.0092752283052573
1028 => 0.0091195605866617
1029 => 0.0093244594575747
1030 => 0.0093245610848584
1031 => 0.0091918532713197
1101 => 0.0090368795985825
1102 => 0.0090091739662119
1103 => 0.0089883014939486
1104 => 0.0091343918905323
1105 => 0.0092653760832963
1106 => 0.0095091051922951
1107 => 0.0095703844811582
1108 => 0.0098095616251841
1109 => 0.0096671432812404
1110 => 0.0097302754884843
1111 => 0.0097988144300435
1112 => 0.0098316745190631
1113 => 0.0097781307673753
1114 => 0.010149671321288
1115 => 0.010181040727746
1116 => 0.010191558618387
1117 => 0.010066277234058
1118 => 0.010177556425816
1119 => 0.010125492577171
1120 => 0.01026094824759
1121 => 0.010282189426296
1122 => 0.010264198903609
1123 => 0.010270941188999
1124 => 0.0099538968704802
1125 => 0.009937456450023
1126 => 0.0097132901505296
1127 => 0.0098046395745268
1128 => 0.0096338662048559
1129 => 0.0096880201995392
1130 => 0.0097118907643974
1201 => 0.0096994221359581
1202 => 0.0098098043339
1203 => 0.0097159569160562
1204 => 0.0094682781504223
1205 => 0.0092205319048743
1206 => 0.0092174216525711
1207 => 0.0091521944392028
1208 => 0.0091050471108975
1209 => 0.0091141293589705
1210 => 0.0091461363857957
1211 => 0.0091031868043129
1212 => 0.0091123522751213
1213 => 0.0092645601597535
1214 => 0.0092950843655195
1215 => 0.0091913511877495
1216 => 0.0087748475103767
1217 => 0.008672636463229
1218 => 0.0087461037369856
1219 => 0.0087109911120284
1220 => 0.007030449692388
1221 => 0.0074252679711093
1222 => 0.007190680356655
1223 => 0.0072987891222527
1224 => 0.0070593359140631
1225 => 0.0071736155358291
1226 => 0.0071525122625125
1227 => 0.0077873683711741
1228 => 0.0077774559662534
1229 => 0.0077822005099362
1230 => 0.0075557310781154
1231 => 0.007916503032321
]
'min_raw' => 0.0046058292876015
'max_raw' => 0.010282189426296
'avg_raw' => 0.0074440093569488
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0046058'
'max' => '$0.010282'
'avg' => '$0.007444'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00071020953098798
'max_diff' => 0.00155552027384
'year' => 2035
]
10 => [
'items' => [
101 => 0.0080942322699026
102 => 0.0080613393181367
103 => 0.0080696177654453
104 => 0.0079273666128748
105 => 0.0077835778120387
106 => 0.0076240939029736
107 => 0.0079203952932096
108 => 0.0078874516366487
109 => 0.0079630125320458
110 => 0.0081551851636746
111 => 0.0081834833136748
112 => 0.0082215163142466
113 => 0.0082078841909149
114 => 0.0085326566745878
115 => 0.0084933245838972
116 => 0.0085881036058468
117 => 0.0083931359667947
118 => 0.0081725115767091
119 => 0.0082144450605096
120 => 0.0082104065288118
121 => 0.0081589913850883
122 => 0.008112576092261
123 => 0.0080353077071314
124 => 0.008279796311251
125 => 0.0082698705204124
126 => 0.0084305575366203
127 => 0.0084021545456751
128 => 0.0082124724207526
129 => 0.0082192469549522
130 => 0.008264808953175
131 => 0.0084224995492419
201 => 0.008469312854549
202 => 0.0084476270663431
203 => 0.0084989557185038
204 => 0.0085395237923339
205 => 0.0085040504439798
206 => 0.0090062782500022
207 => 0.0087977182497412
208 => 0.0088993689427173
209 => 0.0089236120340314
210 => 0.0088615138654076
211 => 0.0088749807346134
212 => 0.008895379371958
213 => 0.0090192359034516
214 => 0.0093442712802672
215 => 0.0094882272360682
216 => 0.0099213258317573
217 => 0.0094762736979026
218 => 0.0094498661460885
219 => 0.0095278802814967
220 => 0.0097821550053084
221 => 0.0099882207861475
222 => 0.010056584693872
223 => 0.010065620112843
224 => 0.01019387534848
225 => 0.010267388857729
226 => 0.010178301789426
227 => 0.010102809826845
228 => 0.0098324069872835
229 => 0.0098637068522452
301 => 0.010079331883249
302 => 0.010383914939792
303 => 0.010645278888772
304 => 0.010553758343292
305 => 0.011251995501865
306 => 0.011321222864094
307 => 0.011311657881023
308 => 0.011469368114594
309 => 0.011156345418085
310 => 0.011022522150799
311 => 0.010119132046025
312 => 0.010372947816663
313 => 0.010741883945363
314 => 0.01069305386529
315 => 0.010425122586937
316 => 0.010645075638871
317 => 0.010572352281334
318 => 0.010514992351949
319 => 0.010777769308229
320 => 0.010488835250517
321 => 0.010739001607114
322 => 0.010418160667139
323 => 0.010554176401435
324 => 0.010476967292308
325 => 0.010526931048305
326 => 0.010234843951669
327 => 0.010392447059001
328 => 0.010228287144253
329 => 0.010228209311079
330 => 0.010224585471863
331 => 0.010417718883567
401 => 0.010424016957189
402 => 0.010281291074131
403 => 0.010260722044585
404 => 0.010336776527481
405 => 0.010247736646711
406 => 0.010289397846513
407 => 0.010248998522012
408 => 0.010239903783127
409 => 0.010167435356347
410 => 0.01013621396553
411 => 0.010148456677345
412 => 0.010106665990368
413 => 0.010081485589829
414 => 0.010219576456414
415 => 0.010145800076967
416 => 0.010208269168162
417 => 0.010137077754518
418 => 0.0098902972982064
419 => 0.0097483712481256
420 => 0.0092822258427133
421 => 0.0094144241014367
422 => 0.0095020716837392
423 => 0.0094731041583111
424 => 0.0095353376118749
425 => 0.0095391582404846
426 => 0.009518925510336
427 => 0.0094954986007972
428 => 0.0094840956768231
429 => 0.0095690837298859
430 => 0.0096184221552552
501 => 0.0095108682911967
502 => 0.0094856699256862
503 => 0.009594412820461
504 => 0.0096607459234549
505 => 0.010150512286611
506 => 0.010114228812504
507 => 0.01020529321224
508 => 0.010195040758327
509 => 0.010290490756948
510 => 0.010446511164513
511 => 0.010129278051941
512 => 0.010184338751188
513 => 0.010170839139269
514 => 0.010318224362403
515 => 0.010318684482982
516 => 0.010230319679276
517 => 0.01027822367292
518 => 0.010251484977845
519 => 0.010299805413797
520 => 0.010113744224586
521 => 0.010340346668981
522 => 0.010468815653013
523 => 0.010470599444981
524 => 0.01053149272382
525 => 0.010593363821821
526 => 0.010712120006597
527 => 0.010590051776283
528 => 0.01037046291305
529 => 0.010386316519708
530 => 0.010257571649539
531 => 0.010259735874066
601 => 0.010248183073927
602 => 0.0102828538968
603 => 0.010121352520497
604 => 0.010159256570711
605 => 0.010106190678446
606 => 0.010184223396301
607 => 0.010100273091159
608 => 0.010170832629348
609 => 0.010201283786944
610 => 0.010313649214042
611 => 0.010083676626215
612 => 0.0096147469518618
613 => 0.0097133216546337
614 => 0.0095675219263583
615 => 0.0095810162463089
616 => 0.0096082769202142
617 => 0.0095199161569496
618 => 0.0095367726060128
619 => 0.0095361703750353
620 => 0.0095309806738223
621 => 0.0095079946266426
622 => 0.0094746603105812
623 => 0.0096074539660084
624 => 0.0096300181957197
625 => 0.0096801756832512
626 => 0.0098294103439963
627 => 0.0098144982821922
628 => 0.0098388204736902
629 => 0.0097857252662134
630 => 0.009583479180703
701 => 0.0095944621161815
702 => 0.0094575047347751
703 => 0.0096766733750865
704 => 0.0096247713481761
705 => 0.0095913097737842
706 => 0.0095821794731921
707 => 0.0097317840577959
708 => 0.0097765480942739
709 => 0.0097486541507436
710 => 0.0096914428587665
711 => 0.0098013054523626
712 => 0.0098307000476782
713 => 0.0098372804135385
714 => 0.010031935865328
715 => 0.0098481594909411
716 => 0.0098923962908361
717 => 0.010237519175665
718 => 0.0099245403428278
719 => 0.010090332210843
720 => 0.010082217561643
721 => 0.010167031071228
722 => 0.010075260378336
723 => 0.01007639798606
724 => 0.010151706636807
725 => 0.01004594921882
726 => 0.010019762194856
727 => 0.0099835850088054
728 => 0.010062576571031
729 => 0.010109928440105
730 => 0.01049154972872
731 => 0.010738094485211
801 => 0.010727391327117
802 => 0.010825198156631
803 => 0.010781135284127
804 => 0.010638844645613
805 => 0.010881717415061
806 => 0.010804862308579
807 => 0.010811198150179
808 => 0.010810962329838
809 => 0.010862064256858
810 => 0.010825853858142
811 => 0.01075447944535
812 => 0.010801861111465
813 => 0.010942567720573
814 => 0.01137932535265
815 => 0.011623740709829
816 => 0.011364611241251
817 => 0.011543355278794
818 => 0.011436172549281
819 => 0.011416694258918
820 => 0.011528958723576
821 => 0.011641419692318
822 => 0.011634256414791
823 => 0.011552615526419
824 => 0.011506498660139
825 => 0.011855711021898
826 => 0.012113004741365
827 => 0.012095459034616
828 => 0.012172900078035
829 => 0.012400269376675
830 => 0.012421057175858
831 => 0.012418438390963
901 => 0.012366913661706
902 => 0.012590788263851
903 => 0.01277754839566
904 => 0.012354987175575
905 => 0.012515892956451
906 => 0.012588128745546
907 => 0.012694192315331
908 => 0.012873139335877
909 => 0.013067523263543
910 => 0.013095011282226
911 => 0.013075507217547
912 => 0.012947305791931
913 => 0.013160003005066
914 => 0.013284596044156
915 => 0.013358788347674
916 => 0.013546927684972
917 => 0.012588574849188
918 => 0.011910205078793
919 => 0.011804267843368
920 => 0.012019695377382
921 => 0.012076501900099
922 => 0.012053603262021
923 => 0.011290036410761
924 => 0.01180024782192
925 => 0.012349192400534
926 => 0.012370279597446
927 => 0.012645092731389
928 => 0.012734583152773
929 => 0.012955843746178
930 => 0.012942003835818
1001 => 0.012995877269287
1002 => 0.012983492699891
1003 => 0.01339333135726
1004 => 0.013845444257968
1005 => 0.013829789025847
1006 => 0.013764792447213
1007 => 0.013861323450048
1008 => 0.014327952414941
1009 => 0.014284992697431
1010 => 0.014326724403692
1011 => 0.014876906251358
1012 => 0.015592220915778
1013 => 0.015259885437737
1014 => 0.015980957798129
1015 => 0.016434834626592
1016 => 0.017219767669679
1017 => 0.017121490186808
1018 => 0.017427058860377
1019 => 0.016945552981339
1020 => 0.015839918154673
1021 => 0.015664947211153
1022 => 0.01601524347105
1023 => 0.016876412644597
1024 => 0.015988122189134
1025 => 0.016167822191362
1026 => 0.016116068578632
1027 => 0.016113310848548
1028 => 0.016218562189345
1029 => 0.016065889629978
1030 => 0.015443874157848
1031 => 0.015728940183165
1101 => 0.015618862500795
1102 => 0.015741001896219
1103 => 0.016400137839205
1104 => 0.016108718126973
1105 => 0.015801731133151
1106 => 0.016186760949271
1107 => 0.016677036215791
1108 => 0.016646355670722
1109 => 0.016586822589814
1110 => 0.01692240744984
1111 => 0.017476695321465
1112 => 0.017626517105856
1113 => 0.017737112484123
1114 => 0.017752361718261
1115 => 0.017909438307236
1116 => 0.017064797899923
1117 => 0.018405263918232
1118 => 0.018636725369968
1119 => 0.018593220210136
1120 => 0.018850479872353
1121 => 0.018774787553681
1122 => 0.018665121259686
1123 => 0.019072932545
1124 => 0.018605409815061
1125 => 0.017941820159389
1126 => 0.017577761749972
1127 => 0.018057183231246
1128 => 0.018349949200357
1129 => 0.018543448882526
1130 => 0.018602001769435
1201 => 0.01713036493036
1202 => 0.016337234294819
1203 => 0.016845621938939
1204 => 0.017465889951807
1205 => 0.017061352279793
1206 => 0.017077209390645
1207 => 0.016500444980984
1208 => 0.017516920804118
1209 => 0.017368828826594
1210 => 0.018137130267956
1211 => 0.01795376896297
1212 => 0.01858028896311
1213 => 0.018415305250102
1214 => 0.019100143418685
1215 => 0.019373343905386
1216 => 0.019832090042818
1217 => 0.020169545568945
1218 => 0.020367705908383
1219 => 0.020355809104883
1220 => 0.021141019092824
1221 => 0.020678008196083
1222 => 0.020096357386486
1223 => 0.020085837158426
1224 => 0.020387082354771
1225 => 0.021018409643729
1226 => 0.021182103624317
1227 => 0.021273586227922
1228 => 0.021133477435968
1229 => 0.020630912291846
1230 => 0.020413907210677
1231 => 0.020598801827075
]
'min_raw' => 0.0076240939029736
'max_raw' => 0.021273586227922
'avg_raw' => 0.014448840065448
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.007624'
'max' => '$0.021273'
'avg' => '$0.014448'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.003018264615372
'max_diff' => 0.010991396801626
'year' => 2036
]
11 => [
'items' => [
101 => 0.020372691599395
102 => 0.020763021287695
103 => 0.021299027319654
104 => 0.021188344193652
105 => 0.021558341289335
106 => 0.021941249358537
107 => 0.022488825094973
108 => 0.022631981669149
109 => 0.022868614042503
110 => 0.023112186484371
111 => 0.023190415388237
112 => 0.023339778638721
113 => 0.023338991420664
114 => 0.023789107629304
115 => 0.024285599746374
116 => 0.024473014026749
117 => 0.024903962830387
118 => 0.024165978106404
119 => 0.024725747996902
120 => 0.025230674450081
121 => 0.024628680316927
122 => 0.025458388982836
123 => 0.025490604690173
124 => 0.025977023622712
125 => 0.025483944847992
126 => 0.025191156245526
127 => 0.026036425970199
128 => 0.026445425364221
129 => 0.026322231418194
130 => 0.025384719406094
131 => 0.024839047203269
201 => 0.023410917796171
202 => 0.025102598769478
203 => 0.025926567224566
204 => 0.025382585526851
205 => 0.025656938253653
206 => 0.027153717771911
207 => 0.027723594503167
208 => 0.027605064126805
209 => 0.027625093809234
210 => 0.027932588949425
211 => 0.0292961917417
212 => 0.028479089340504
213 => 0.029103733509976
214 => 0.029435042525141
215 => 0.029742780802479
216 => 0.028987072855019
217 => 0.028003907918927
218 => 0.02769249831321
219 => 0.025328497267721
220 => 0.025205440746967
221 => 0.025136365392874
222 => 0.024700855056218
223 => 0.024358663227927
224 => 0.024086539581303
225 => 0.02337240586956
226 => 0.023613405033658
227 => 0.022475224948429
228 => 0.023203392232333
301 => 0.021386829333989
302 => 0.022899716895188
303 => 0.022076320978184
304 => 0.02262920919129
305 => 0.0226272802164
306 => 0.021609237722704
307 => 0.021022052058345
308 => 0.021396229617282
309 => 0.021797377662715
310 => 0.021862462583462
311 => 0.022382561495401
312 => 0.022527709922234
313 => 0.022087903412597
314 => 0.021349185105618
315 => 0.021520772519958
316 => 0.02101857484487
317 => 0.020138492736032
318 => 0.020770583071359
319 => 0.02098640650289
320 => 0.021081726425443
321 => 0.020216266749515
322 => 0.019944320529294
323 => 0.019799538643499
324 => 0.021237465129432
325 => 0.021316237988267
326 => 0.020913224905108
327 => 0.022734882256257
328 => 0.022322585093789
329 => 0.022783222039524
330 => 0.021505202760601
331 => 0.021554024818137
401 => 0.020948990010328
402 => 0.02128776907426
403 => 0.021048330951232
404 => 0.021260399073775
405 => 0.021387511832037
406 => 0.021992447359588
407 => 0.022906624287191
408 => 0.021902090164594
409 => 0.021464400262185
410 => 0.021735940615978
411 => 0.022459088361299
412 => 0.023554694212712
413 => 0.022906073497553
414 => 0.023193920356646
415 => 0.023256802089943
416 => 0.022778533187829
417 => 0.023572328669328
418 => 0.023997730116647
419 => 0.02443410397717
420 => 0.024812995173344
421 => 0.02425980666121
422 => 0.024851797665652
423 => 0.024374757416551
424 => 0.023946802997594
425 => 0.023947452027796
426 => 0.023678989969368
427 => 0.023158810902767
428 => 0.023062881901907
429 => 0.023561916678877
430 => 0.023962095311239
501 => 0.023995055940126
502 => 0.024216615392922
503 => 0.024347731994843
504 => 0.025632852938042
505 => 0.026149739212475
506 => 0.026781777964695
507 => 0.027027992678437
508 => 0.02776901069394
509 => 0.02717057846388
510 => 0.027041103886592
511 => 0.025243636566127
512 => 0.025537971739157
513 => 0.026009230750298
514 => 0.025251407453645
515 => 0.025732071908494
516 => 0.025826965253746
517 => 0.02522565690801
518 => 0.025546841676467
519 => 0.024693870156091
520 => 0.022925216735433
521 => 0.023574297686182
522 => 0.024052239744218
523 => 0.023370157497569
524 => 0.024592763524459
525 => 0.023878542323262
526 => 0.023652168491146
527 => 0.022769003463963
528 => 0.023185823360654
529 => 0.023749578239214
530 => 0.023401243267803
531 => 0.02412409063624
601 => 0.025147835286299
602 => 0.025877416688979
603 => 0.025933424889829
604 => 0.025464352926063
605 => 0.026216043741574
606 => 0.026221518988526
607 => 0.025373608677882
608 => 0.024854268333797
609 => 0.024736273114919
610 => 0.025031048306001
611 => 0.025388959806476
612 => 0.025953286487167
613 => 0.02629429728131
614 => 0.027183472574284
615 => 0.027424057913909
616 => 0.02768838826124
617 => 0.028041615121734
618 => 0.028465754533265
619 => 0.027537761647105
620 => 0.027574632534467
621 => 0.026710498407811
622 => 0.025787047164109
623 => 0.026487831548256
624 => 0.027404013909088
625 => 0.027193840663222
626 => 0.027170191879612
627 => 0.027209962574018
628 => 0.027051498810251
629 => 0.026334773079675
630 => 0.025974837904721
701 => 0.026439246109669
702 => 0.026686058402167
703 => 0.027068842743539
704 => 0.027021656493868
705 => 0.028007667849204
706 => 0.028390802046452
707 => 0.028292779923559
708 => 0.028310818353206
709 => 0.029004464516449
710 => 0.029775941709188
711 => 0.030498531905571
712 => 0.031233581689303
713 => 0.030347450485533
714 => 0.029897527709233
715 => 0.030361733168087
716 => 0.030115419217454
717 => 0.031530812239254
718 => 0.031628810981149
719 => 0.033044101653922
720 => 0.034387381032063
721 => 0.033543691322003
722 => 0.03433925271797
723 => 0.035199717230782
724 => 0.036859692881331
725 => 0.036300671480874
726 => 0.035872469849105
727 => 0.03546782137614
728 => 0.036309830612245
729 => 0.037393062043069
730 => 0.037626379718207
731 => 0.038004443486142
801 => 0.037606955661596
802 => 0.038085685964414
803 => 0.039775814298114
804 => 0.039319126703173
805 => 0.038670556902162
806 => 0.040004750899967
807 => 0.040487590521225
808 => 0.043876411848287
809 => 0.048154938758929
810 => 0.0463836005236
811 => 0.045284073720205
812 => 0.045542488600127
813 => 0.047104861790618
814 => 0.047606646472157
815 => 0.046242622732181
816 => 0.046724418976828
817 => 0.049379163653992
818 => 0.050803348998884
819 => 0.04886911400691
820 => 0.043532636376926
821 => 0.038612160287737
822 => 0.039917292118516
823 => 0.039769330671861
824 => 0.042621522641332
825 => 0.03930823485507
826 => 0.039364022123991
827 => 0.042275194402866
828 => 0.04149854354899
829 => 0.040240468631636
830 => 0.038621345626902
831 => 0.035628247001901
901 => 0.032977176081007
902 => 0.03817653666205
903 => 0.037952330779372
904 => 0.037627647435804
905 => 0.038350195082508
906 => 0.041858681356176
907 => 0.041777799391706
908 => 0.04126326960009
909 => 0.041653535912173
910 => 0.040172053060218
911 => 0.040553864923905
912 => 0.038611380859185
913 => 0.039489464781738
914 => 0.040237769367894
915 => 0.040388002592403
916 => 0.040726485718322
917 => 0.037834184467195
918 => 0.039132742815447
919 => 0.039895524186583
920 => 0.036449250201568
921 => 0.039827402430515
922 => 0.037783835937202
923 => 0.037090218776033
924 => 0.038024082906435
925 => 0.037660155146605
926 => 0.037347271429258
927 => 0.037172676938953
928 => 0.037858403689497
929 => 0.037826413716964
930 => 0.036704431659247
1001 => 0.035240851802794
1002 => 0.03573207724299
1003 => 0.035553610435304
1004 => 0.034906823701572
1005 => 0.035342679866779
1006 => 0.033423389896963
1007 => 0.030121351259905
1008 => 0.032302779127724
1009 => 0.03221879652775
1010 => 0.032176448692535
1011 => 0.033815731444963
1012 => 0.033658152233005
1013 => 0.033372144420281
1014 => 0.034901570943801
1015 => 0.034343309689027
1016 => 0.036063739333347
1017 => 0.03719692556751
1018 => 0.036909512883792
1019 => 0.037975280014186
1020 => 0.035743394084997
1021 => 0.036484737062952
1022 => 0.036637526823252
1023 => 0.034882698057907
1024 => 0.033683934140897
1025 => 0.033603990254541
1026 => 0.031525498822288
1027 => 0.032635812168401
1028 => 0.033612841965092
1029 => 0.033144920513052
1030 => 0.032996790560092
1031 => 0.033753554364298
1101 => 0.033812361393129
1102 => 0.032471554903704
1103 => 0.032750351030675
1104 => 0.033912977226143
1105 => 0.03272105583354
1106 => 0.030405347266968
1107 => 0.029831019525282
1108 => 0.029754393617581
1109 => 0.028196771231622
1110 => 0.029869398851237
1111 => 0.029139252071641
1112 => 0.031445776999881
1113 => 0.030128302331012
1114 => 0.03007150863124
1115 => 0.029985656624211
1116 => 0.028644946692045
1117 => 0.028938476960628
1118 => 0.029914216279321
1119 => 0.030262371060721
1120 => 0.030226055664673
1121 => 0.029909434624347
1122 => 0.030054382115246
1123 => 0.029587455744006
1124 => 0.029422574324089
1125 => 0.028902163208624
1126 => 0.028137302636131
1127 => 0.028243661189899
1128 => 0.026728272259134
1129 => 0.025902607941875
1130 => 0.025674074940939
1201 => 0.025368471061035
1202 => 0.025708593712355
1203 => 0.026723979352692
1204 => 0.025499208844365
1205 => 0.023399425715501
1206 => 0.023525626259402
1207 => 0.02380916141227
1208 => 0.023280795530674
1209 => 0.02278074156613
1210 => 0.02321549791764
1211 => 0.022325792124989
1212 => 0.023916678106692
1213 => 0.023873649099294
1214 => 0.024466633013544
1215 => 0.024837438024379
1216 => 0.023982852523951
1217 => 0.023767926581639
1218 => 0.02389035816622
1219 => 0.021866836792824
1220 => 0.024301268146808
1221 => 0.024322321210249
1222 => 0.02414205209938
1223 => 0.025438311640741
1224 => 0.028173823586502
1225 => 0.027144613956794
1226 => 0.026746072880145
1227 => 0.025988446002104
1228 => 0.026997938833661
1229 => 0.026920425534739
1230 => 0.026569881000967
1231 => 0.026357870573176
]
'min_raw' => 0.019799538643499
'max_raw' => 0.050803348998884
'avg_raw' => 0.035301443821191
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.019799'
'max' => '$0.0508033'
'avg' => '$0.0353014'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.012175444740525
'max_diff' => 0.029529762770962
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00062148489359338
]
1 => [
'year' => 2028
'avg' => 0.00106664849576
]
2 => [
'year' => 2029
'avg' => 0.0029138914457293
]
3 => [
'year' => 2030
'avg' => 0.0022480629108828
]
4 => [
'year' => 2031
'avg' => 0.0022078763778564
]
5 => [
'year' => 2032
'avg' => 0.0038711021346504
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00062148489359338
'min' => '$0.000621'
'max_raw' => 0.0038711021346504
'max' => '$0.003871'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0038711021346504
]
1 => [
'year' => 2033
'avg' => 0.0099568727510591
]
2 => [
'year' => 2034
'avg' => 0.0063111444545348
]
3 => [
'year' => 2035
'avg' => 0.0074440093569488
]
4 => [
'year' => 2036
'avg' => 0.014448840065448
]
5 => [
'year' => 2037
'avg' => 0.035301443821191
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0038711021346504
'min' => '$0.003871'
'max_raw' => 0.035301443821191
'max' => '$0.0353014'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.035301443821191
]
]
]
]
'prediction_2025_max_price' => '$0.001062'
'last_price' => 0.00103035
'sma_50day_nextmonth' => '$0.00090012'
'sma_200day_nextmonth' => '$0.001303'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00103'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000995'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000914'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000822'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000725'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000853'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.001398'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001019'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000993'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000937'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000859'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0008096'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000928'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.001161'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00108'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0012094'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.002498'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00096'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00090059'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000885'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.00104'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0015089'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.002937'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.002758'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '78.55'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 101.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000924'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001075'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 99.49
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 138.89
'cci_20_action' => 'SELL'
'adx_14' => 31.49
'adx_14_action' => 'BUY'
'ao_5_34' => '0.000221'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -0.51
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 88.91
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000154'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767693368
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Elmo para 2026
La previsión del precio de Elmo para 2026 sugiere que el precio medio podría oscilar entre $0.000355 en el extremo inferior y $0.001062 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Elmo podría potencialmente ganar 3.13% para 2026 si ELMO alcanza el objetivo de precio previsto.
Predicción de precio de Elmo 2027-2032
La predicción del precio de ELMO para 2027-2032 está actualmente dentro de un rango de precios de $0.000621 en el extremo inferior y $0.003871 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Elmo alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Elmo | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000342 | $0.000621 | $0.00090027 |
| 2028 | $0.000618 | $0.001066 | $0.001514 |
| 2029 | $0.001358 | $0.002913 | $0.004469 |
| 2030 | $0.001155 | $0.002248 | $0.00334 |
| 2031 | $0.001366 | $0.0022078 | $0.003049 |
| 2032 | $0.002085 | $0.003871 | $0.005656 |
Predicción de precio de Elmo 2032-2037
La predicción de precio de Elmo para 2032-2037 se estima actualmente entre $0.003871 en el extremo inferior y $0.0353014 en el extremo superior. Comparado con el precio actual, Elmo podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Elmo | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002085 | $0.003871 | $0.005656 |
| 2033 | $0.004845 | $0.009956 | $0.015068 |
| 2034 | $0.003895 | $0.006311 | $0.008726 |
| 2035 | $0.0046058 | $0.007444 | $0.010282 |
| 2036 | $0.007624 | $0.014448 | $0.021273 |
| 2037 | $0.019799 | $0.0353014 | $0.0508033 |
Elmo Histograma de precios potenciales
Pronóstico de precio de Elmo basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Elmo es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de ELMO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Elmo
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Elmo aumentar durante el próximo mes, alcanzando $0.001303 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Elmo alcance $0.00090012 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 78.55, lo que sugiere que el mercado de ELMO está en un estado SELL.
Promedios Móviles y Osciladores Populares de ELMO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00103 | SELL |
| SMA 5 | $0.000995 | BUY |
| SMA 10 | $0.000914 | BUY |
| SMA 21 | $0.000822 | BUY |
| SMA 50 | $0.000725 | BUY |
| SMA 100 | $0.000853 | BUY |
| SMA 200 | $0.001398 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001019 | BUY |
| EMA 5 | $0.000993 | BUY |
| EMA 10 | $0.000937 | BUY |
| EMA 21 | $0.000859 | BUY |
| EMA 50 | $0.0008096 | BUY |
| EMA 100 | $0.000928 | BUY |
| EMA 200 | $0.001161 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00108 | SELL |
| SMA 50 | $0.0012094 | SELL |
| SMA 100 | $0.002498 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.00104 | SELL |
| EMA 50 | $0.0015089 | SELL |
| EMA 100 | $0.002937 | SELL |
| EMA 200 | $0.002758 | SELL |
Osciladores de Elmo
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 78.55 | SELL |
| Stoch RSI (14) | 101.04 | SELL |
| Estocástico Rápido (14) | 99.49 | SELL |
| Índice de Canal de Materias Primas (20) | 138.89 | SELL |
| Índice Direccional Medio (14) | 31.49 | BUY |
| Oscilador Asombroso (5, 34) | 0.000221 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -0.51 | SELL |
| Oscilador Ultimate (7, 14, 28) | 88.91 | SELL |
| VWMA (10) | 0.000924 | BUY |
| Promedio Móvil de Hull (9) | 0.001075 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000154 | NEUTRAL |
Predicción de precios de Elmo basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Elmo
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Elmo por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001447 | $0.002034 | $0.002858 | $0.004016 | $0.005644 | $0.007931 |
| Amazon.com acción | $0.002149 | $0.004485 | $0.00936 | $0.01953 | $0.040751 | $0.085029 |
| Apple acción | $0.001461 | $0.002072 | $0.00294 | $0.00417 | $0.005915 | $0.008391 |
| Netflix acción | $0.001625 | $0.002565 | $0.004047 | $0.006386 | $0.010076 | $0.015898 |
| Google acción | $0.001334 | $0.001727 | $0.002237 | $0.002897 | $0.003752 | $0.004859 |
| Tesla acción | $0.002335 | $0.005294 | $0.0120031 | $0.02721 | $0.061683 | $0.139832 |
| Kodak acción | $0.000772 | $0.000579 | $0.000434 | $0.000325 | $0.000244 | $0.000183 |
| Nokia acción | $0.000682 | $0.000452 | $0.000299 | $0.000198 | $0.000131 | $0.000087 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Elmo
Podría preguntarse cosas como: "¿Debo invertir en Elmo ahora?", "¿Debería comprar ELMO hoy?", "¿Será Elmo una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Elmo regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Elmo, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Elmo a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Elmo es de $0.00103 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Elmo basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Elmo ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001057 | $0.001084 | $0.001112 | $0.001141 |
| Si Elmo ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001083 | $0.00114 | $0.001199 | $0.001261 |
| Si Elmo ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001164 | $0.001315 | $0.001486 | $0.001679 |
| Si Elmo ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001298 | $0.001635 | $0.00206 | $0.002596 |
| Si Elmo ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001565 | $0.00238 | $0.003617 | $0.005497 |
| Si Elmo ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.002369 | $0.005448 | $0.01253 | $0.028816 |
| Si Elmo ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0037085 | $0.013348 | $0.048044 | $0.172928 |
Cuadro de preguntas
¿Es ELMO una buena inversión?
La decisión de adquirir Elmo depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Elmo ha experimentado un aumento de 1.5028% durante las últimas 24 horas, y Elmo ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Elmo dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Elmo subir?
Parece que el valor medio de Elmo podría potencialmente aumentar hasta $0.001062 para el final de este año. Mirando las perspectivas de Elmo en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.00334. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Elmo la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Elmo, el precio de Elmo aumentará en un 0.86% durante la próxima semana y alcanzará $0.0010391 para el 13 de enero de 2026.
¿Cuál será el precio de Elmo el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Elmo, el precio de Elmo disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00091 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Elmo este año en 2026?
Según nuestra predicción más reciente sobre el valor de Elmo en 2026, se anticipa que ELMO fluctúe dentro del rango de $0.000355 y $0.001062. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Elmo no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Elmo en 5 años?
El futuro de Elmo parece estar en una tendencia alcista, con un precio máximo de $0.00334 proyectada después de un período de cinco años. Basado en el pronóstico de Elmo para 2030, el valor de Elmo podría potencialmente alcanzar su punto más alto de aproximadamente $0.00334, mientras que su punto más bajo se anticipa que esté alrededor de $0.001155.
¿Cuánto será Elmo en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Elmo, se espera que el valor de ELMO en 2026 crezca en un 3.13% hasta $0.001062 si ocurre lo mejor. El precio estará entre $0.001062 y $0.000355 durante 2026.
¿Cuánto será Elmo en 2027?
Según nuestra última simulación experimental para la predicción de precios de Elmo, el valor de ELMO podría disminuir en un -12.62% hasta $0.00090027 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00090027 y $0.000342 a lo largo del año.
¿Cuánto será Elmo en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Elmo sugiere que el valor de ELMO en 2028 podría aumentar en un 47.02% , alcanzando $0.001514 en el mejor escenario. Se espera que el precio oscile entre $0.001514 y $0.000618 durante el año.
¿Cuánto será Elmo en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Elmo podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.004469 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.004469 y $0.001358.
¿Cuánto será Elmo en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Elmo, se espera que el valor de ELMO en 2030 aumente en un 224.23% , alcanzando $0.00334 en el mejor escenario. Se pronostica que el precio oscile entre $0.00334 y $0.001155 durante el transcurso de 2030.
¿Cuánto será Elmo en 2031?
Nuestra simulación experimental indica que el precio de Elmo podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.003049 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.003049 y $0.001366 durante el año.
¿Cuánto será Elmo en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Elmo, ELMO podría experimentar un 449.04% aumento en valor, alcanzando $0.005656 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.005656 y $0.002085 a lo largo del año.
¿Cuánto será Elmo en 2033?
Según nuestra predicción experimental de precios de Elmo, se anticipa que el valor de ELMO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.015068. A lo largo del año, el precio de ELMO podría oscilar entre $0.015068 y $0.004845.
¿Cuánto será Elmo en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Elmo sugieren que ELMO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.008726 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.008726 y $0.003895.
¿Cuánto será Elmo en 2035?
Basado en nuestra predicción experimental para el precio de Elmo, ELMO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.010282 en 2035. El rango de precios esperado para el año está entre $0.010282 y $0.0046058.
¿Cuánto será Elmo en 2036?
Nuestra reciente simulación de predicción de precios de Elmo sugiere que el valor de ELMO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.021273 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.021273 y $0.007624.
¿Cuánto será Elmo en 2037?
Según la simulación experimental, el valor de Elmo podría aumentar en un 4830.69% en 2037, con un máximo de $0.0508033 bajo condiciones favorables. Se espera que el precio caiga entre $0.0508033 y $0.019799 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de KEK
Predicción de precios de Generaitiv
Predicción de precios de Zaibot
Predicción de precios de Hawksight
Predicción de precios de Rubidium
Predicción de precios de VFOX
Predicción de precios de Web3Shot
Predicción de precios de Tomb Shares
Predicción de precios de Long Mao
Predicción de precios de Gyoza
Predicción de precios de Perpy Finance
Predicción de precios de Cope
Predicción de precios de WOOF Token
Predicción de precios de Happycoin
Predicción de precios de Memetic
Predicción de precios de Belt
Predicción de precios de Mogul Productions
Predicción de precios de Ideaology
Predicción de precios de RadioShack
Predicción de precios de Hara Token
Predicción de precios de 42-coin
Predicción de precios de Nuritopia
Predicción de precios de MAPS
Predicción de precios de Lodestar
Predicción de precios de HarryPotterTrumpHomerSimpson777Inu
¿Cómo leer y predecir los movimientos de precio de Elmo?
Los traders de Elmo utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Elmo
Las medias móviles son herramientas populares para la predicción de precios de Elmo. Una media móvil simple (SMA) calcula el precio de cierre promedio de ELMO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ELMO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ELMO.
¿Cómo leer gráficos de Elmo y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Elmo en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ELMO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Elmo?
La acción del precio de Elmo está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ELMO. La capitalización de mercado de Elmo puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ELMO, grandes poseedores de Elmo, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Elmo.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


