Predicción del precio de ELLA - Pronóstico de ELLA
Predicción de precio de ELLA hasta $0.001136 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00038 | $0.001136 |
| 2027 | $0.000366 | $0.000962 |
| 2028 | $0.000661 | $0.001619 |
| 2029 | $0.001452 | $0.004778 |
| 2030 | $0.001235 | $0.003571 |
| 2031 | $0.00146 | $0.00326 |
| 2032 | $0.002229 | $0.006048 |
| 2033 | $0.00518 | $0.0161099 |
| 2034 | $0.004164 | $0.00933 |
| 2035 | $0.004924 | $0.010993 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en ELLA hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,963.27, equivalente a un ROI del 39.63% en los próximos 90 días.
Predicción del precio a largo plazo de ELLA para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'ELLA'
'name_with_ticker' => 'ELLA <small>ELLA</small>'
'name_lang' => 'ELLA'
'name_lang_with_ticker' => 'ELLA <small>ELLA</small>'
'name_with_lang' => 'ELLA'
'name_with_lang_with_ticker' => 'ELLA <small>ELLA</small>'
'image' => '/uploads/coins/ella.jpg?1758092156'
'price_for_sd' => 0.001101
'ticker' => 'ELLA'
'marketcap' => '$1.1M'
'low24h' => '$0.001034'
'high24h' => '$0.001111'
'volume24h' => '$634.39'
'current_supply' => '999.95M'
'max_supply' => '999.95M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001101'
'change_24h_pct' => '5.8933%'
'ath_price' => '$0.001365'
'ath_days' => 71
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 oct. 2025'
'ath_pct' => '-19.35%'
'fdv' => '$1.1M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.054315'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001111'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000973'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00038'
'current_year_max_price_prediction' => '$0.001136'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001235'
'grand_prediction_max_price' => '$0.003571'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0011224645510637
107 => 0.0011266554262427
108 => 0.0011360976820125
109 => 0.0010554146402736
110 => 0.0010916389572847
111 => 0.0011129173497692
112 => 0.0010167807984096
113 => 0.0011110170392514
114 => 0.0010540101280205
115 => 0.0010346611261337
116 => 0.0010607120081372
117 => 0.0010505599540851
118 => 0.0010418318141597
119 => 0.0010369613621129
120 => 0.0010560902547253
121 => 0.001055197869021
122 => 0.001023899287949
123 => 0.00098307156483397
124 => 0.0009967746888357
125 => 0.0009917962154184
126 => 0.00097375358551825
127 => 0.00098591213959551
128 => 0.00093237202074264
129 => 0.00084025902902951
130 => 0.00090111169285245
131 => 0.00089876893149022
201 => 0.00089758760497562
202 => 0.00094331669999447
203 => 0.00093892090265813
204 => 0.0009309424874489
205 => 0.00097360705566618
206 => 0.00095803391434745
207 => 0.0010060266663982
208 => 0.0010376377968754
209 => 0.0010296201916735
210 => 0.0010593506126771
211 => 0.00099709038113628
212 => 0.0010177707326072
213 => 0.0010220329243837
214 => 0.00097308058151703
215 => 0.0009396401094661
216 => 0.00093741001122959
217 => 0.00087942884107419
218 => 0.00091040191416355
219 => 0.00093765693672934
220 => 0.00092460389599552
221 => 0.00092047169324769
222 => 0.00094158222092091
223 => 0.00094322268972057
224 => 0.00090581982723941
225 => 0.00091359706674385
226 => 0.00094602944833587
227 => 0.00091277985394065
228 => 0.00084818132332116
301 => 0.00083215999458297
302 => 0.00083002245399762
303 => 0.00078657133979202
304 => 0.00083323061637822
305 => 0.00081286259175747
306 => 0.000877204937488
307 => 0.00084045293468164
308 => 0.00083886862929596
309 => 0.00083647371933843
310 => 0.00079907355039875
311 => 0.00080726181049181
312 => 0.00083448083414835
313 => 0.00084419288843326
314 => 0.00084317984160283
315 => 0.00083434744608315
316 => 0.00083839087152288
317 => 0.00082536558935871
318 => 0.00082076609112874
319 => 0.00080624880952329
320 => 0.00078491241606468
321 => 0.00078787937243881
322 => 0.00074560639402627
323 => 0.00072257383179034
324 => 0.00071619872212773
325 => 0.00070767365905271
326 => 0.00071716165068638
327 => 0.00074548663998974
328 => 0.00071132069340818
329 => 0.00065274557445659
330 => 0.00065626603891272
331 => 0.00066417547731038
401 => 0.00064943629118251
402 => 0.00063548688847861
403 => 0.00064761476237884
404 => 0.0006227957122969
405 => 0.00066717474093837
406 => 0.00066597441258441
407 => 0.00068251617008123
408 => 0.00069286007051503
409 => 0.00066902072889266
410 => 0.00066302519894307
411 => 0.000666440525284
412 => 0.00060999278860185
413 => 0.00067790318571808
414 => 0.00067849047765238
415 => 0.00067346172755561
416 => 0.00070962191752172
417 => 0.0007859311969963
418 => 0.00075722057652431
419 => 0.00074610295649445
420 => 0.00072496835269078
421 => 0.00075312895741058
422 => 0.00075096666234196
423 => 0.00074118794401564
424 => 0.00073527374466042
425 => 0.00074617083831166
426 => 0.00073392347416424
427 => 0.0007317235110283
428 => 0.00071839412800802
429 => 0.00071363614471806
430 => 0.00071011352331095
501 => 0.00070623546326735
502 => 0.00071478949737118
503 => 0.000695404930715
504 => 0.00067202904362016
505 => 0.00067008559153883
506 => 0.00067545163360544
507 => 0.00067307755944581
508 => 0.00067007422538512
509 => 0.0006643400427539
510 => 0.00066263883325865
511 => 0.00066816693880871
512 => 0.00066192602995126
513 => 0.00067113483093033
514 => 0.00066863054661022
515 => 0.00065464181797042
516 => 0.00063720668279454
517 => 0.00063705147352004
518 => 0.00063329510224575
519 => 0.00062851079865374
520 => 0.00062717991484448
521 => 0.00064659338666635
522 => 0.00068677869234131
523 => 0.00067888935528445
524 => 0.00068459020983981
525 => 0.00071263277190907
526 => 0.00072154665912162
527 => 0.00071521979311514
528 => 0.00070655918870137
529 => 0.00070694021134226
530 => 0.00073653611836736
531 => 0.00073838197878544
601 => 0.00074304587256478
602 => 0.00074904029408746
603 => 0.00071624066902106
604 => 0.00070539535195126
605 => 0.0007002562390483
606 => 0.00068442976039418
607 => 0.00070149726076292
608 => 0.00069155275920129
609 => 0.0006928946122145
610 => 0.00069202072867931
611 => 0.00069249792818127
612 => 0.00066716233609542
613 => 0.00067639329425199
614 => 0.00066104503594292
615 => 0.00064049544098992
616 => 0.00064042655154202
617 => 0.00064545603579418
618 => 0.00064246430175726
619 => 0.00063441362238842
620 => 0.00063555718339463
621 => 0.00062553838566881
622 => 0.00063677364683473
623 => 0.00063709583392327
624 => 0.00063276964638558
625 => 0.00065007911637896
626 => 0.00065717082035843
627 => 0.0006543232310452
628 => 0.00065697102590112
629 => 0.00067921719285738
630 => 0.00068284428873957
701 => 0.00068445520513793
702 => 0.00068229679056965
703 => 0.00065737764499522
704 => 0.00065848291506583
705 => 0.00065037317664587
706 => 0.00064352130226419
707 => 0.00064379534130611
708 => 0.00064731809541961
709 => 0.00066270216924009
710 => 0.00069507704565461
711 => 0.00069630564854882
712 => 0.00069779475109747
713 => 0.00069173782266913
714 => 0.00068991099509814
715 => 0.00069232105220848
716 => 0.00070447935359963
717 => 0.00073575380572432
718 => 0.00072469932559303
719 => 0.00071571186117306
720 => 0.00072359629047239
721 => 0.00072238254438195
722 => 0.00071213730590782
723 => 0.00071184975618667
724 => 0.00069218586795393
725 => 0.00068491657619935
726 => 0.00067884181191217
727 => 0.00067220832789631
728 => 0.00066827577621531
729 => 0.0006743179629101
730 => 0.00067569988249625
731 => 0.00066248853568874
801 => 0.00066068787793648
802 => 0.00067147654892622
803 => 0.00066672885706583
804 => 0.00067161197588133
805 => 0.00067274490133315
806 => 0.00067256247424192
807 => 0.00066760533867073
808 => 0.0006707648690599
809 => 0.00066329163778819
810 => 0.00065516562122324
811 => 0.00064998172892353
812 => 0.00064545809534849
813 => 0.00064796807017105
814 => 0.00063902046823193
815 => 0.00063615795029196
816 => 0.00066969449125573
817 => 0.00069446829464424
818 => 0.00069410807373147
819 => 0.00069191532156627
820 => 0.00068865733663231
821 => 0.00070424101170898
822 => 0.00069881197091769
823 => 0.00070276205170489
824 => 0.0007037675130496
825 => 0.00070681074171446
826 => 0.00070789843438781
827 => 0.00070461067167782
828 => 0.00069357653845673
829 => 0.00066608052756366
830 => 0.00065328106026888
831 => 0.00064905702286961
901 => 0.00064921055860648
902 => 0.00064497535756978
903 => 0.00064622281408348
904 => 0.00064454154310267
905 => 0.00064135762260813
906 => 0.00064777147205256
907 => 0.00064851060845189
908 => 0.00064701353935177
909 => 0.00064736615331954
910 => 0.0006349710605771
911 => 0.00063591343255758
912 => 0.00063066618561942
913 => 0.00062968239007502
914 => 0.0006164178067454
915 => 0.00059291767464489
916 => 0.00060593902904159
917 => 0.00059021106400988
918 => 0.00058425464533481
919 => 0.00061245140492943
920 => 0.0006096212323225
921 => 0.0006047772070659
922 => 0.00059761188412807
923 => 0.00059495419615064
924 => 0.00057880692532159
925 => 0.00057785285841867
926 => 0.00058585588185453
927 => 0.0005821627619061
928 => 0.00057697622280461
929 => 0.00055819110393003
930 => 0.00053707041077588
1001 => 0.00053770791174226
1002 => 0.00054442601127013
1003 => 0.00056395979170656
1004 => 0.00055632760575221
1005 => 0.00055079036727309
1006 => 0.00054975340895473
1007 => 0.00056273311332831
1008 => 0.00058110211434907
1009 => 0.00058972043864478
1010 => 0.00058117994101013
1011 => 0.0005713690771805
1012 => 0.00057196621900265
1013 => 0.00057593873602112
1014 => 0.0005763561913914
1015 => 0.00056997032761141
1016 => 0.00057176791086006
1017 => 0.00056903721753089
1018 => 0.00055227895761026
1019 => 0.00055197585382931
1020 => 0.00054786310658135
1021 => 0.00054773857422919
1022 => 0.00054074176518751
1023 => 0.00053976286323592
1024 => 0.00052587027420772
1025 => 0.00053501441837672
1026 => 0.00052888100655727
1027 => 0.00051963650821978
1028 => 0.00051804275322193
1029 => 0.00051799484302218
1030 => 0.00052748687578278
1031 => 0.00053490349844738
1101 => 0.00052898769988181
1102 => 0.00052764078722137
1103 => 0.00054202229062402
1104 => 0.00054019211322572
1105 => 0.00053860719140217
1106 => 0.00057945737178063
1107 => 0.00054712126643175
1108 => 0.00053302087881928
1109 => 0.00051556897155785
1110 => 0.00052125140056233
1111 => 0.00052244877184582
1112 => 0.00048048008082482
1113 => 0.00046345338810447
1114 => 0.00045761046880022
1115 => 0.00045424778613388
1116 => 0.00045578020285084
1117 => 0.00044045418237066
1118 => 0.00045075352160233
1119 => 0.00043748248334275
1120 => 0.00043525755059084
1121 => 0.00045898781096513
1122 => 0.00046228973806604
1123 => 0.00044820269122521
1124 => 0.00045724885578275
1125 => 0.00045396859076309
1126 => 0.00043770997720352
1127 => 0.00043708901775581
1128 => 0.00042893101698952
1129 => 0.00041616532549051
1130 => 0.00041033106192622
1201 => 0.00040729252680655
1202 => 0.00040854628561679
1203 => 0.00040791234679668
1204 => 0.0004037754671827
1205 => 0.0004081494678937
1206 => 0.00039697570353897
1207 => 0.00039252622053978
1208 => 0.00039051649229627
1209 => 0.00038059913329356
1210 => 0.00039638206173643
1211 => 0.00039949149746777
1212 => 0.00040260705974805
1213 => 0.00042972590231319
1214 => 0.00042837112157569
1215 => 0.00044061767963772
1216 => 0.0004401418009114
1217 => 0.00043664888417103
1218 => 0.00042191284300029
1219 => 0.00042778636636627
1220 => 0.00040970857439397
1221 => 0.00042325368530998
1222 => 0.00041707226234527
1223 => 0.00042116373998766
1224 => 0.00041380689427298
1225 => 0.0004178784764482
1226 => 0.00040022886003213
1227 => 0.0003837478965596
1228 => 0.00039038031737026
1229 => 0.00039759051730077
1230 => 0.00041322406787489
1231 => 0.00040391285412694
]
'min_raw' => 0.00038059913329356
'max_raw' => 0.0011360976820125
'avg_raw' => 0.00075834840765302
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00038'
'max' => '$0.001136'
'avg' => '$0.000758'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00072099086670644
'max_diff' => 3.4507682012468E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00040726151868667
102 => 0.00039604405297123
103 => 0.00037289921708961
104 => 0.00037303021434718
105 => 0.00036946988558445
106 => 0.00036639324171694
107 => 0.00040498235903425
108 => 0.00040018319229217
109 => 0.00039253634818809
110 => 0.00040277195289491
111 => 0.00040547840924029
112 => 0.00040555545824761
113 => 0.00041302309122251
114 => 0.00041700856827986
115 => 0.00041771102588527
116 => 0.00042946150772017
117 => 0.00043340011423862
118 => 0.00044962267707568
119 => 0.00041667042839653
120 => 0.00041599179851981
121 => 0.00040291598884374
122 => 0.00039462310362681
123 => 0.00040348380978942
124 => 0.00041133318584248
125 => 0.00040315989083776
126 => 0.0004042271506177
127 => 0.0003932551698566
128 => 0.00039717713669902
129 => 0.00040055526288969
130 => 0.00039869006016428
131 => 0.00039589776140751
201 => 0.00041068962651923
202 => 0.00040985501151984
203 => 0.00042362953637539
204 => 0.00043436776352601
205 => 0.00045361258626763
206 => 0.00043352961048145
207 => 0.00043279770702121
208 => 0.00043995218074613
209 => 0.00043339901892597
210 => 0.00043754039098885
211 => 0.00045294534720294
212 => 0.00045327082965293
213 => 0.00044781857925512
214 => 0.00044748680932291
215 => 0.0004485339736529
216 => 0.00045466724784119
217 => 0.00045252409338332
218 => 0.00045500420598
219 => 0.00045810562475898
220 => 0.00047093440780314
221 => 0.00047402738396345
222 => 0.00046651305541818
223 => 0.00046719151515145
224 => 0.00046438095000259
225 => 0.00046166597928506
226 => 0.00046776883696842
227 => 0.00047892192933673
228 => 0.00047885254652796
301 => 0.00048143984717227
302 => 0.00048305171403932
303 => 0.00047613240148728
304 => 0.00047162818344607
305 => 0.00047335538725391
306 => 0.00047611722375625
307 => 0.0004724597608993
308 => 0.00044988420584463
309 => 0.00045673218711618
310 => 0.00045559234818341
311 => 0.00045396907893401
312 => 0.00046085477705643
313 => 0.00046019063467475
314 => 0.00044029699187877
315 => 0.0004415705183458
316 => 0.00044037443924128
317 => 0.00044423921552275
318 => 0.00043319030832366
319 => 0.00043658887776257
320 => 0.00043872042865505
321 => 0.00043997592850607
322 => 0.00044451165487224
323 => 0.00044397943973433
324 => 0.000444478571632
325 => 0.00045120385644567
326 => 0.00048521803919417
327 => 0.00048706935611311
328 => 0.00047795279451691
329 => 0.00048159468105836
330 => 0.00047460305529181
331 => 0.00047929658050872
401 => 0.00048250777125951
402 => 0.00046799701773314
403 => 0.00046713778508332
404 => 0.00046011730239016
405 => 0.000463889712129
406 => 0.00045788753698865
407 => 0.00045936026082092
408 => 0.00045524239659614
409 => 0.00046265373234215
410 => 0.00047094075731133
411 => 0.00047303438708308
412 => 0.0004675269485179
413 => 0.00046353920003882
414 => 0.00045653802735557
415 => 0.00046818113355913
416 => 0.00047158593263028
417 => 0.00046816324959907
418 => 0.00046737013915364
419 => 0.00046586719629267
420 => 0.00046768899558647
421 => 0.00047156738936332
422 => 0.00046973841048084
423 => 0.00047094648325518
424 => 0.00046634255559864
425 => 0.00047613469206764
426 => 0.00049168696138639
427 => 0.0004917369644753
428 => 0.00048990797573394
429 => 0.00048915959294709
430 => 0.00049103624638804
501 => 0.0004920542538954
502 => 0.00049812300700404
503 => 0.00050463502087939
504 => 0.00053502374822143
505 => 0.00052649071518625
506 => 0.00055345340191758
507 => 0.00057477738645538
508 => 0.00058117151703344
509 => 0.00057528921776872
510 => 0.00055516618973968
511 => 0.0005541788579826
512 => 0.00058425115758128
513 => 0.00057575435554607
514 => 0.00057474368798058
515 => 0.0005639918926336
516 => 0.00057034753531943
517 => 0.00056895746303238
518 => 0.00056676316592262
519 => 0.00057888928942928
520 => 0.00060158831012722
521 => 0.00059805045488138
522 => 0.00059540961005674
523 => 0.00058383819677354
524 => 0.00059080677213875
525 => 0.00058832539592547
526 => 0.00059898696285798
527 => 0.00059267128678978
528 => 0.00057568998391382
529 => 0.00057839431236792
530 => 0.00057798555856244
531 => 0.00058639768291469
601 => 0.00058387257198591
602 => 0.00057749249012701
603 => 0.00060151072734217
604 => 0.00059995111661388
605 => 0.00060216228804995
606 => 0.00060313571409886
607 => 0.00061775519184292
608 => 0.00062374432410355
609 => 0.00062510396198123
610 => 0.00063079317441272
611 => 0.00062496240919318
612 => 0.00064828962733647
613 => 0.00066380086622084
614 => 0.00068181796838609
615 => 0.00070814579719005
616 => 0.00071804530436637
617 => 0.00071625704700202
618 => 0.00073621850632582
619 => 0.00077208880501238
620 => 0.00072350745993766
621 => 0.00077466373426606
622 => 0.00075846824844128
623 => 0.00072006904289507
624 => 0.00071759658675478
625 => 0.00074360097457462
626 => 0.00080127620392944
627 => 0.0007868292131231
628 => 0.00080129983403091
629 => 0.00078441908608966
630 => 0.00078358081467226
701 => 0.00080047997378194
702 => 0.0008399657801669
703 => 0.00082120755365673
704 => 0.00079431303624854
705 => 0.00081417152937771
706 => 0.00079696826481245
707 => 0.00075820449485635
708 => 0.0007868181657815
709 => 0.00076768501890428
710 => 0.00077326908833709
711 => 0.00081348411723219
712 => 0.00080864533855976
713 => 0.00081490716622072
714 => 0.00080385520429969
715 => 0.00079353092913101
716 => 0.00077425990283794
717 => 0.00076855470200267
718 => 0.00077013141426192
719 => 0.00076855392066238
720 => 0.00075777195856128
721 => 0.00075544359487211
722 => 0.00075156288671553
723 => 0.0007527656804438
724 => 0.00074546881376823
725 => 0.00075923950879463
726 => 0.00076179547113847
727 => 0.00077181663459802
728 => 0.00077285706503233
729 => 0.00080076586262484
730 => 0.00078539416589917
731 => 0.00079570682719119
801 => 0.0007947843656987
802 => 0.00072090127011583
803 => 0.00073108170881108
804 => 0.00074691927662323
805 => 0.00073978447379117
806 => 0.00072969753187338
807 => 0.00072155178544716
808 => 0.00070921014666609
809 => 0.00072658076625026
810 => 0.00074942128384399
811 => 0.0007734363382511
812 => 0.00080228885259253
813 => 0.00079584930727182
814 => 0.00077289696056487
815 => 0.00077392658607145
816 => 0.00078029132581038
817 => 0.00077204840955088
818 => 0.00076961741262511
819 => 0.00077995734416328
820 => 0.00078002854958906
821 => 0.00077054407824279
822 => 0.00076000382398135
823 => 0.00075995965993113
824 => 0.00075808412349209
825 => 0.00078475273985564
826 => 0.00079941778235436
827 => 0.00080109910584294
828 => 0.00079930461588749
829 => 0.00079999524385058
830 => 0.00079146197874274
831 => 0.00081096649231811
901 => 0.00082886576277134
902 => 0.00082406837592773
903 => 0.00081687641106045
904 => 0.00081114766463169
905 => 0.0008227188653313
906 => 0.0008222036179789
907 => 0.00082870942825891
908 => 0.00082841428712523
909 => 0.00082622662782396
910 => 0.00082406845405594
911 => 0.00083262536909726
912 => 0.00083016111498521
913 => 0.00082769303320588
914 => 0.00082274291735301
915 => 0.00082341572031013
916 => 0.00081622499723698
917 => 0.00081289823971824
918 => 0.00076287178864378
919 => 0.00074950308625524
920 => 0.00075370915217171
921 => 0.00075509389828186
922 => 0.00074927582186991
923 => 0.00075761744890345
924 => 0.00075631741516624
925 => 0.00076137508594341
926 => 0.00075821527282037
927 => 0.00075834495265313
928 => 0.0007676372893048
929 => 0.00077033489416721
930 => 0.00076896287056185
1001 => 0.00076992378886483
1002 => 0.00079206774557869
1003 => 0.00078891958305785
1004 => 0.00078724718446386
1005 => 0.00078771045030377
1006 => 0.00079336870601595
1007 => 0.00079495270868605
1008 => 0.00078824117806694
1009 => 0.00079140637470581
1010 => 0.00080488338027085
1011 => 0.00080959956948616
1012 => 0.00082465138156219
1013 => 0.00081825710426767
1014 => 0.0008299940769796
1015 => 0.00086606952966723
1016 => 0.00089488909750556
1017 => 0.00086838543190242
1018 => 0.00092130889808768
1019 => 0.00096251740793323
1020 => 0.00096093575668899
1021 => 0.00095375009982742
1022 => 0.00090683530695317
1023 => 0.00086366361509014
1024 => 0.00089977856850043
1025 => 0.00089987063294378
1026 => 0.00089676832641707
1027 => 0.00087750016701888
1028 => 0.00089609783623617
1029 => 0.00089757405168182
1030 => 0.00089674776358963
1031 => 0.00088197491095563
1101 => 0.00085941949546305
1102 => 0.00086382676966027
1103 => 0.00087104597470126
1104 => 0.00085737851347472
1105 => 0.00085301093147216
1106 => 0.00086113109738139
1107 => 0.00088729596384469
1108 => 0.00088234964740255
1109 => 0.00088222047909061
1110 => 0.00090338291839468
1111 => 0.00088823517899321
1112 => 0.00086388235950194
1113 => 0.00085773295140617
1114 => 0.00083590669540383
1115 => 0.0008509821681671
1116 => 0.0008515247075935
1117 => 0.00084326802522866
1118 => 0.00086455234377067
1119 => 0.00086435620502828
1120 => 0.00088456249773118
1121 => 0.00092318934024217
1122 => 0.00091176548220019
1123 => 0.00089848077820959
1124 => 0.00089992519387825
1125 => 0.00091576686864185
1126 => 0.00090618863044952
1127 => 0.00090963303168533
1128 => 0.00091576165512805
1129 => 0.00091945920581621
1130 => 0.0008993931732363
1201 => 0.00089471482117263
1202 => 0.00088514455472882
1203 => 0.00088264785085111
1204 => 0.00089044263317944
1205 => 0.00088838898342965
1206 => 0.00085147910925553
1207 => 0.00084762182203973
1208 => 0.00084774011953171
1209 => 0.00083804078742358
1210 => 0.00082324697785224
1211 => 0.00086212422611323
1212 => 0.00085900183899114
1213 => 0.00085555496526191
1214 => 0.00085597718762615
1215 => 0.00087285248342405
1216 => 0.0008630639596384
1217 => 0.00088908835443004
1218 => 0.00088373852122579
1219 => 0.00087825148498663
1220 => 0.00087749300943916
1221 => 0.00087538096861902
1222 => 0.00086813799479096
1223 => 0.00085939166865834
1224 => 0.00085361658655178
1225 => 0.00078741617909198
1226 => 0.00079970258964646
1227 => 0.00081383698504784
1228 => 0.00081871612170036
1229 => 0.00081037002083024
1230 => 0.0008684675497234
1231 => 0.00087908252809389
]
'min_raw' => 0.00036639324171694
'max_raw' => 0.00096251740793323
'avg_raw' => 0.00066445532482509
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000366'
'max' => '$0.000962'
'avg' => '$0.000664'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.4205891576624E-5
'max_diff' => -0.00017358027407924
'year' => 2027
]
2 => [
'items' => [
101 => 0.00084692906621175
102 => 0.0008409144663108
103 => 0.00086886186589158
104 => 0.00085200616751372
105 => 0.00085959628746118
106 => 0.00084319059970841
107 => 0.00087652569064729
108 => 0.00087627173310589
109 => 0.00086330362982349
110 => 0.00087426418191604
111 => 0.00087235951626402
112 => 0.00085771855959721
113 => 0.00087698983508823
114 => 0.00087699939340044
115 => 0.00086451787594201
116 => 0.00084994219610607
117 => 0.0008473364088136
118 => 0.00084537329812699
119 => 0.00085911348257315
120 => 0.00087143288898314
121 => 0.00089435625007228
122 => 0.00090011972769571
123 => 0.00092261496455641
124 => 0.00090922014627907
125 => 0.00091515789572948
126 => 0.00092160416270384
127 => 0.00092469474014497
128 => 0.00091965881005418
129 => 0.00095460317230774
130 => 0.00095755354714953
131 => 0.00095854278231334
201 => 0.00094675973997368
202 => 0.0009572258394267
203 => 0.00095232909809341
204 => 0.0009650690586887
205 => 0.00096706684718202
206 => 0.00096537479140156
207 => 0.00096600892100229
208 => 0.00093619007242681
209 => 0.00093464380782121
210 => 0.00091356038020597
211 => 0.00092215203280001
212 => 0.00090609035008408
213 => 0.00091118367512697
214 => 0.00091342876427489
215 => 0.0009122560571117
216 => 0.00092263779194686
217 => 0.00091381119648867
218 => 0.00089051635984785
219 => 0.00086721517654437
220 => 0.00086692264916872
221 => 0.00086078785890496
222 => 0.00085635352918715
223 => 0.0008572077384071
224 => 0.00086021808311446
225 => 0.00085617856248025
226 => 0.00085704059901645
227 => 0.00087135614923683
228 => 0.00087422703073969
229 => 0.00086447065366715
301 => 0.0008252973918824
302 => 0.00081568417518174
303 => 0.0008225939647078
304 => 0.00081929153036178
305 => 0.00066123220808417
306 => 0.00069836590132623
307 => 0.00067630232174287
308 => 0.00068647023431137
309 => 0.00066394903289299
310 => 0.00067469733064714
311 => 0.00067271251251694
312 => 0.0007324223923843
313 => 0.00073149010473843
314 => 0.00073193634149894
315 => 0.00071063629825583
316 => 0.00074456784550131
317 => 0.0007612837458134
318 => 0.00075819007754491
319 => 0.00075896868719763
320 => 0.00074558959370684
321 => 0.00073206588036918
322 => 0.00071706600099316
323 => 0.00074493392283268
324 => 0.00074183548564542
325 => 0.00074894218577049
326 => 0.00076701652512361
327 => 0.0007696780402511
328 => 0.00077325514357286
329 => 0.00077197300666756
330 => 0.00080251870941778
331 => 0.00079881942326769
401 => 0.00080773363853214
402 => 0.00078939642141003
403 => 0.00076864611965174
404 => 0.00077259007363751
405 => 0.00077221023915341
406 => 0.00076737451021702
407 => 0.0007630090303533
408 => 0.00075574173634653
409 => 0.0007787365299411
410 => 0.00077780298331458
411 => 0.00079291601806862
412 => 0.00079024464237566
413 => 0.00077240454170152
414 => 0.00077304170438721
415 => 0.00077732692965839
416 => 0.00079215814324979
417 => 0.00079656105722974
418 => 0.00079452145204844
419 => 0.0007993490462268
420 => 0.0008031645798285
421 => 0.00079982821850218
422 => 0.00084706405911947
423 => 0.00082744844482385
424 => 0.00083700895874697
425 => 0.00083928908498382
426 => 0.00083344858957403
427 => 0.00083471518389595
428 => 0.00083663372916737
429 => 0.00084828276036574
430 => 0.00087885318890461
501 => 0.00089239262360453
502 => 0.00093312668092318
503 => 0.00089126836203073
504 => 0.0008887846626146
505 => 0.00089612209638837
506 => 0.00092003730017228
507 => 0.00093941832659828
508 => 0.00094584813118202
509 => 0.00094669793600227
510 => 0.00095876067684669
511 => 0.00096567481494192
512 => 0.0009572959428266
513 => 0.00095019572601334
514 => 0.00092476363069962
515 => 0.00092770746498148
516 => 0.0009479875639235
517 => 0.00097663439817098
518 => 0.0010012163621504
519 => 0.00099260861513276
520 => 0.0010582796487552
521 => 0.0010647906634967
522 => 0.0010638910517857
523 => 0.0010787241123359
524 => 0.0010492835078441
525 => 0.001036697079039
526 => 0.00095173087347925
527 => 0.00097560291151505
528 => 0.0010103023207557
529 => 0.0010057097238266
530 => 0.00098051008531817
531 => 0.0010011972459649
601 => 0.00099435742370777
602 => 0.00098896257210908
603 => 0.0010136774331261
604 => 0.00098650242820736
605 => 0.0010100312292939
606 => 0.00097985529852613
607 => 0.00099264793459607
608 => 0.00098538621565259
609 => 0.00099008543777182
610 => 0.00096261388128367
611 => 0.00097743686633034
612 => 0.00096199719637227
613 => 0.00096198987595841
614 => 0.00096164904438834
615 => 0.00097981374762403
616 => 0.00098040609794441
617 => 0.00096698235480789
618 => 0.00096504778370364
619 => 0.00097220090702582
620 => 0.00096382647302152
621 => 0.00096774481798407
622 => 0.00096394515569875
623 => 0.00096308977168519
624 => 0.00095627392633357
625 => 0.00095333747275053
626 => 0.00095448893186353
627 => 0.00095055840829299
628 => 0.0009481901256685
629 => 0.00096117793336552
630 => 0.00095423907163967
701 => 0.00096011445328875
702 => 0.00095341871436735
703 => 0.00093020836607118
704 => 0.00091685984932108
705 => 0.00087301765299006
706 => 0.00088545124548346
707 => 0.00089369473017007
708 => 0.00089097025853032
709 => 0.00089682347784306
710 => 0.00089718281797099
711 => 0.00089527987670591
712 => 0.00089307651450282
713 => 0.00089200403963593
714 => 0.00089999738863156
715 => 0.00090463779676728
716 => 0.00089452207414197
717 => 0.00089215210186486
718 => 0.0009023796559434
719 => 0.00090861845802305
720 => 0.0009546822672991
721 => 0.00095126971152379
722 => 0.00095983455683958
723 => 0.00095887028669528
724 => 0.00096784760907309
725 => 0.00098252173706129
726 => 0.00095268513191056
727 => 0.00095786373489255
728 => 0.00095659406103277
729 => 0.00097045602730744
730 => 0.00097049930285306
731 => 0.00096218836161483
801 => 0.0009666938576897
802 => 0.00096417901338253
803 => 0.00096872367694718
804 => 0.00095122413476087
805 => 0.00097253668818495
806 => 0.00098461953262579
807 => 0.00098478730293257
808 => 0.00099051447530215
809 => 0.0009963336141251
810 => 0.0010075029443556
811 => 0.00099602210756713
812 => 0.00097536919982169
813 => 0.00097686027305242
814 => 0.00096475148079787
815 => 0.0009649550317833
816 => 0.00096386846067049
817 => 0.00096712934237329
818 => 0.00095193971491935
819 => 0.00095550469012219
820 => 0.00095051370396174
821 => 0.00095785288546336
822 => 0.00094995713937779
823 => 0.00095659344875759
824 => 0.00095945745988878
825 => 0.0009700257226206
826 => 0.0009483961983795
827 => 0.00090429213426185
828 => 0.00091356334324947
829 => 0.00089985049691903
830 => 0.0009011196730554
831 => 0.00090368361083875
901 => 0.00089537304961467
902 => 0.00089695844280034
903 => 0.00089690180139951
904 => 0.00089641369640729
905 => 0.00089425179846381
906 => 0.00089111661872728
907 => 0.00090360620984018
908 => 0.00090572843474591
909 => 0.00091044587782332
910 => 0.00092448178854949
911 => 0.00092307927007838
912 => 0.00092536683589469
913 => 0.00092037309256181
914 => 0.00090135131848621
915 => 0.00090238429233503
916 => 0.00088950309188795
917 => 0.000910116476567
918 => 0.00090523495499162
919 => 0.0009020878062758
920 => 0.00090122907759055
921 => 0.00091529978062456
922 => 0.00091950995550358
923 => 0.0009168864570533
924 => 0.0009115055851921
925 => 0.00092183844987757
926 => 0.00092460308855883
927 => 0.00092522198920362
928 => 0.00094352984429598
929 => 0.00092624519492838
930 => 0.0009304057818258
1001 => 0.00096286549310756
1002 => 0.00093342901410897
1003 => 0.00094902217354634
1004 => 0.00094825896953477
1005 => 0.00095623590225918
1006 => 0.00094760462822215
1007 => 0.00094771162320833
1008 => 0.00095479459906338
1009 => 0.00094484783689639
1010 => 0.00094238487870221
1011 => 0.00093898231959699
1012 => 0.0009464116829231
1013 => 0.0009508652502359
1014 => 0.00098675773199229
1015 => 0.001009945912103
1016 => 0.0010089392520499
1017 => 0.0010181382405464
1018 => 0.0010139940119756
1019 => 0.0010006112047284
1020 => 0.0010234540248399
1021 => 0.0010162256007724
1022 => 0.00101682150327
1023 => 0.0010167993237493
1024 => 0.0010216055938344
1025 => 0.0010181999109909
1026 => 0.0010114869605203
1027 => 0.001015943330323
1028 => 0.0010291771554555
1029 => 0.0010702553547304
1030 => 0.0010932432592583
1031 => 0.0010688714540133
1101 => 0.0010856827989199
1102 => 0.0010756019824706
1103 => 0.0010737699982435
1104 => 0.0010843287651934
1105 => 0.0010949060138671
1106 => 0.0010942322888533
1107 => 0.0010865537494639
1108 => 0.0010822163373986
1109 => 0.001115060674697
1110 => 0.0011392598229298
1111 => 0.0011376096032535
1112 => 0.0011448931362246
1113 => 0.001166277814299
1114 => 0.0011682329612606
1115 => 0.001167986657682
1116 => 0.0011631406219392
1117 => 0.0011841966146548
1118 => 0.0012017618942231
1119 => 0.0011620189046801
1120 => 0.0011771525148241
1121 => 0.0011839464799923
1122 => 0.0011939220365377
1123 => 0.0012107524725272
1124 => 0.0012290347900646
1125 => 0.0012316201102198
1126 => 0.0012297857018507
1127 => 0.0012177280219798
1128 => 0.0012377327519825
1129 => 0.0012494510536495
1130 => 0.0012564290341236
1201 => 0.0012741240315807
1202 => 0.0011839884372082
1203 => 0.0011201859834816
1204 => 0.0011102223090136
1205 => 0.0011304838328465
1206 => 0.0011358266350986
1207 => 0.0011336729582101
1208 => 0.0010618574958755
1209 => 0.001109844215467
1210 => 0.0011614738909095
1211 => 0.0011634571970117
1212 => 0.0011893040920638
1213 => 0.0011977209005928
1214 => 0.0012185310389397
1215 => 0.0012172293591201
1216 => 0.001222296296646
1217 => 0.0012211314954559
1218 => 0.001259677894652
1219 => 0.0013022002971609
1220 => 0.001300727881575
1221 => 0.0012946147831121
1222 => 0.0013036937767676
1223 => 0.0013475814531344
1224 => 0.0013435409791802
1225 => 0.00134746595546
1226 => 0.0013992119992975
1227 => 0.0014664892170751
1228 => 0.0014352321948952
1229 => 0.0015030509390598
1230 => 0.0015457392435943
1231 => 0.0016195642522336
]
'min_raw' => 0.00066123220808417
'max_raw' => 0.0016195642522336
'avg_raw' => 0.0011403982301589
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000661'
'max' => '$0.001619'
'avg' => '$0.00114'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00029483896636723
'max_diff' => 0.00065704684430038
'year' => 2028
]
3 => [
'items' => [
101 => 0.0016103209975561
102 => 0.0016390605316665
103 => 0.001593773642558
104 => 0.0014897857911745
105 => 0.0014733293156436
106 => 0.0015062755964009
107 => 0.0015872708127915
108 => 0.0015037247687992
109 => 0.0015206260246883
110 => 0.0015157584618552
111 => 0.0015154990901177
112 => 0.0015253982543993
113 => 0.0015110390003031
114 => 0.0014525368159343
115 => 0.001479348022275
116 => 0.001468994927927
117 => 0.0014804824579804
118 => 0.001542475919861
119 => 0.001515067132624
120 => 0.001486194201779
121 => 0.0015224072644749
122 => 0.0015685189374453
123 => 0.0015656333518215
124 => 0.00156003410963
125 => 0.0015915967446966
126 => 0.0016437289708422
127 => 0.0016578201020851
128 => 0.0016682218870881
129 => 0.0016696561175004
130 => 0.0016844295821166
131 => 0.0016049889394832
201 => 0.0017310632795227
202 => 0.0017528328353142
203 => 0.001748741061081
204 => 0.0017729370061403
205 => 0.001765817945312
206 => 0.0017555035431182
207 => 0.0017938592626622
208 => 0.0017498875253519
209 => 0.0016874751801278
210 => 0.0016532345331616
211 => 0.0016983253792009
212 => 0.0017258607854234
213 => 0.0017440599373557
214 => 0.0017495669897342
215 => 0.0016111556904324
216 => 0.0015365596767513
217 => 0.0015843748662758
218 => 0.0016427126975239
219 => 0.0016046648698851
220 => 0.0016061562726945
221 => 0.0015519100692748
222 => 0.0016475122828463
223 => 0.0016335838444701
224 => 0.0017058446074048
225 => 0.0016885989964016
226 => 0.0017475248434281
227 => 0.0017320076930858
228 => 0.0017964185166044
301 => 0.0018221137379594
302 => 0.0018652600137563
303 => 0.0018969985898694
304 => 0.0019156360888252
305 => 0.0019145171632954
306 => 0.0019883682193236
307 => 0.0019448208317432
308 => 0.0018901150496109
309 => 0.0018891255946067
310 => 0.0019174584943599
311 => 0.0019768364794912
312 => 0.0019922323271212
313 => 0.0020008365056062
314 => 0.0019876589067428
315 => 0.0019403913385936
316 => 0.0019199814423188
317 => 0.0019373712652766
318 => 0.0019161050061238
319 => 0.00195281653568
320 => 0.0020032293069202
321 => 0.0019928192690128
322 => 0.0020276184649772
323 => 0.0020636319718181
324 => 0.0021151329040685
325 => 0.0021285971548327
326 => 0.0021508530493464
327 => 0.0021737616754815
328 => 0.0021811193087913
329 => 0.0021951673137192
330 => 0.002195093273799
331 => 0.0022374278821891
401 => 0.0022841242662372
402 => 0.0023017510701915
403 => 0.0023422829339369
404 => 0.0022728735376788
405 => 0.0023255213620583
406 => 0.0023730110175091
407 => 0.002316391892512
408 => 0.0023944281657563
409 => 0.0023974581374124
410 => 0.0024432071120711
411 => 0.0023968317618114
412 => 0.0023692942268626
413 => 0.0024487940584419
414 => 0.0024872615227219
415 => 0.0024756748094222
416 => 0.0023874993491045
417 => 0.0023361774491762
418 => 0.0022018581378087
419 => 0.002360965164286
420 => 0.0024384615556674
421 => 0.0023872986521726
422 => 0.002413102244727
423 => 0.0025538782788611
424 => 0.0026074766780861
425 => 0.0025963285857284
426 => 0.0025982124298236
427 => 0.0026271331531657
428 => 0.0027553835673976
429 => 0.0026785329463685
430 => 0.0027372823666074
501 => 0.0027684428472654
502 => 0.0027973864382929
503 => 0.0027263101264452
504 => 0.0026338408890496
505 => 0.0026045519999719
506 => 0.0023822115097306
507 => 0.0023706377216378
508 => 0.0023641410036596
509 => 0.002323180115786
510 => 0.0022909960780489
511 => 0.0022654021363236
512 => 0.0021982359902385
513 => 0.0022209025928593
514 => 0.0021138537746638
515 => 0.0021823398149681
516 => 0.002011487316344
517 => 0.0021537783541076
518 => 0.0020763358114324
519 => 0.0021283363960283
520 => 0.0021281549708874
521 => 0.0020324054078461
522 => 0.0019771790581263
523 => 0.0020123714376094
524 => 0.0020501004619899
525 => 0.00205622186926
526 => 0.0021051385341976
527 => 0.0021187901239215
528 => 0.0020774251697263
529 => 0.0020079467780659
530 => 0.0020240850238152
531 => 0.0019768520170912
601 => 0.0018940779895988
602 => 0.0019535277412397
603 => 0.001973826500271
604 => 0.001982791588654
605 => 0.0019013928392765
606 => 0.0018758155849692
607 => 0.00186219846939
608 => 0.001997439221683
609 => 0.0020048480153824
610 => 0.0019669435793186
611 => 0.0021382752245728
612 => 0.0020994975965327
613 => 0.002142821707803
614 => 0.0020226206471666
615 => 0.0020272124895551
616 => 0.0019703073811424
617 => 0.0020021704394528
618 => 0.0019796506568333
619 => 0.0019995962192182
620 => 0.002011551507073
621 => 0.0020684472779174
622 => 0.0021544280124177
623 => 0.00205994894706
624 => 0.0020187830653186
625 => 0.0020443221468253
626 => 0.0021123360863784
627 => 0.0022153806863709
628 => 0.0021543762092095
629 => 0.0021814489602505
630 => 0.0021873631519702
701 => 0.0021423807090198
702 => 0.0022170392532048
703 => 0.0022570493735584
704 => 0.0022980914781135
705 => 0.0023337271875249
706 => 0.002281698359019
707 => 0.0023373766635599
708 => 0.0022925097786437
709 => 0.0022522595446206
710 => 0.002252320587611
711 => 0.0022270710278462
712 => 0.0021781468241527
713 => 0.0021691244503596
714 => 0.0022160599782313
715 => 0.0022536978267733
716 => 0.0022567978602523
717 => 0.0022776361071077
718 => 0.0022899679669457
719 => 0.0024108369577084
720 => 0.0024594514656738
721 => 0.0025188963657885
722 => 0.0025420535045142
723 => 0.0026117481897847
724 => 0.0025554640711032
725 => 0.0025432866479827
726 => 0.0023742301384742
727 => 0.0024019131324355
728 => 0.0024462362767792
729 => 0.0023749610107992
730 => 0.0024201687617588
731 => 0.0024290937294293
801 => 0.0023725391045351
802 => 0.0024027473732721
803 => 0.0023225231676339
804 => 0.0021561766808731
805 => 0.0022172244443972
806 => 0.002262176146806
807 => 0.0021980245249638
808 => 0.0023130138241053
809 => 0.0022458394494077
810 => 0.0022245483975673
811 => 0.0021414844135295
812 => 0.0021806874165694
813 => 0.0022337100395137
814 => 0.0022009482230757
815 => 0.0022689339113962
816 => 0.0023652197771788
817 => 0.0024338388190579
818 => 0.0024391065370474
819 => 0.0023949890902378
820 => 0.0024656875803039
821 => 0.0024662025416207
822 => 0.0023864543560144
823 => 0.0023376090363703
824 => 0.0023265112769757
825 => 0.0023542356557873
826 => 0.0023878981698671
827 => 0.0024409745722996
828 => 0.0024730475306817
829 => 0.0025566767959595
830 => 0.0025793044773047
831 => 0.0026041654388188
901 => 0.0026373873502382
902 => 0.0026772787728205
903 => 0.0025899986112305
904 => 0.002593466414761
905 => 0.0025121923367645
906 => 0.0024253393285434
907 => 0.0024912499354029
908 => 0.0025774192861511
909 => 0.0025576519418808
910 => 0.0025554277118402
911 => 0.0025591682498185
912 => 0.0025442643177798
913 => 0.0024768543855343
914 => 0.0024430015395691
915 => 0.0024866803476463
916 => 0.0025098936902192
917 => 0.0025458955601336
918 => 0.0025414575697594
919 => 0.0026341945203404
920 => 0.0026702292951163
921 => 0.0026610100577137
922 => 0.0026627066192691
923 => 0.0027279458577558
924 => 0.0028005053084257
925 => 0.0028684668090408
926 => 0.002937600166481
927 => 0.002854257205766
928 => 0.0028119407901942
929 => 0.0028556005294702
930 => 0.002832434057255
1001 => 0.0029655554782254
1002 => 0.0029747725165839
1003 => 0.0031078843113603
1004 => 0.0032342232552608
1005 => 0.0031548720281942
1006 => 0.0032296966612603
1007 => 0.0033106256024631
1008 => 0.0034667506602907
1009 => 0.0034141732333601
1010 => 0.0033738997483246
1011 => 0.0033358414995661
1012 => 0.0034150346736557
1013 => 0.0035169154269801
1014 => 0.0035388595654445
1015 => 0.0035744174530628
1016 => 0.0035370326820438
1017 => 0.0035820585209388
1018 => 0.0037410195175942
1019 => 0.0036980668531104
1020 => 0.003637067164558
1021 => 0.0037625516046411
1022 => 0.0038079639356987
1023 => 0.0041266914576838
1024 => 0.0045290981201672
1025 => 0.0043624991195544
1026 => 0.004259085743758
1027 => 0.0042833903400682
1028 => 0.004430335630882
1029 => 0.0044775297944809
1030 => 0.0043492397890152
1031 => 0.0043945539877696
1101 => 0.0046442396781006
1102 => 0.0047781880400872
1103 => 0.0045962681728443
1104 => 0.0040943584741679
1105 => 0.0036315748100159
1106 => 0.003754325877169
1107 => 0.0037404097155629
1108 => 0.0040086658408993
1109 => 0.0036970424462678
1110 => 0.0037022893850307
1111 => 0.0039760927629509
1112 => 0.0039030467159001
1113 => 0.0037847214747085
1114 => 0.0036324387152231
1115 => 0.003350929949864
1116 => 0.0031015897859328
1117 => 0.0035906032670123
1118 => 0.0035695161164948
1119 => 0.0035389787976049
1120 => 0.0036069362963114
1121 => 0.0039369186199574
1122 => 0.0039293114593488
1123 => 0.0038809185847644
1124 => 0.0039176241536214
1125 => 0.0037782868110191
1126 => 0.00381419721686
1127 => 0.003631501502719
1128 => 0.0037140875955577
1129 => 0.0037844676018835
1130 => 0.0037985974301472
1201 => 0.0038304326547122
1202 => 0.0035584041463796
1203 => 0.0036805369602836
1204 => 0.003752278546155
1205 => 0.0034281474512065
1206 => 0.0037458715165688
1207 => 0.0035536687352584
1208 => 0.0034884322244927
1209 => 0.0035762645919819
1210 => 0.0035420362329516
1211 => 0.003512608699814
1212 => 0.003496187630694
1213 => 0.0035606820276735
1214 => 0.0035576732869669
1215 => 0.0034521479356855
1216 => 0.0033144944167026
1217 => 0.003360695455996
1218 => 0.0033439101852836
1219 => 0.0032830781988791
1220 => 0.0033240716128337
1221 => 0.0031435573640695
1222 => 0.002832991981385
1223 => 0.0030381609860613
1224 => 0.0030302622025622
1225 => 0.0030262792777407
1226 => 0.0031804581143002
1227 => 0.0031656373766759
1228 => 0.0031387375927629
1229 => 0.0032825841632524
1230 => 0.0032300782300143
1231 => 0.0033918891443004
]
'min_raw' => 0.0014525368159343
'max_raw' => 0.0047781880400872
'avg_raw' => 0.0031153624280108
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001452'
'max' => '$0.004778'
'avg' => '$0.003115'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00079130460785015
'max_diff' => 0.0031586237878536
'year' => 2029
]
4 => [
'items' => [
101 => 0.003498468277723
102 => 0.0034714363620133
103 => 0.0035716745521389
104 => 0.0033617598346283
105 => 0.0034314850834686
106 => 0.0034458553606196
107 => 0.0032808091189013
108 => 0.0031680622326424
109 => 0.0031605433007375
110 => 0.0029650557374426
111 => 0.0030694836158343
112 => 0.0031613758272997
113 => 0.0031173665891314
114 => 0.003103434579066
115 => 0.0031746101970062
116 => 0.0031801411520981
117 => 0.0030540347898584
118 => 0.0030802562958372
119 => 0.0031896043347312
120 => 0.0030775010058152
121 => 0.0028597025497062
122 => 0.0028056855212919
123 => 0.0027984786539701
124 => 0.002651980188766
125 => 0.0028092951974231
126 => 0.0027406229803642
127 => 0.0029575576912337
128 => 0.0028336457478292
129 => 0.0028283041516087
130 => 0.0028202295454796
131 => 0.0026941322647031
201 => 0.0027217395552929
202 => 0.0028135103939225
203 => 0.002846255263018
204 => 0.0028428397049006
205 => 0.0028130606667478
206 => 0.0028266933579208
207 => 0.0027827777097081
208 => 0.0027672701802991
209 => 0.0027183241518021
210 => 0.002646387011597
211 => 0.0026563903121586
212 => 0.0025138640140356
213 => 0.002436208122375
214 => 0.0024147139950516
215 => 0.0023859711496933
216 => 0.0024179605759166
217 => 0.0025134602549405
218 => 0.0023982673806506
219 => 0.0022007772775211
220 => 0.0022126467692259
221 => 0.002239313993003
222 => 0.0021896197979157
223 => 0.0021425884127833
224 => 0.0021834783863791
225 => 0.0020997992262171
226 => 0.0022494262197266
227 => 0.002245379228877
228 => 0.0023011509191862
301 => 0.0023360261016868
302 => 0.0022556500969973
303 => 0.0022354357491777
304 => 0.0022469507603866
305 => 0.0020566332751076
306 => 0.0022855979203375
307 => 0.0022875780160974
308 => 0.0022706232340501
309 => 0.0023925398391446
310 => 0.0026498219026369
311 => 0.0025530220412041
312 => 0.002515538209066
313 => 0.002444281416771
314 => 0.0025392268616944
315 => 0.002531936532904
316 => 0.0024989669013385
317 => 0.0024790267652961
318 => 0.0025157670773521
319 => 0.0024744742340454
320 => 0.002467056904736
321 => 0.0024221159592553
322 => 0.0024060740864015
323 => 0.0023941973223858
324 => 0.0023811221721913
325 => 0.002409962695396
326 => 0.0023446062755274
327 => 0.0022657928401349
328 => 0.0022592403557552
329 => 0.0022773323412278
330 => 0.0022693279844461
331 => 0.0022592020339744
401 => 0.0022398688368854
402 => 0.0022341330902975
403 => 0.0022527714841195
404 => 0.0022317298241803
405 => 0.0022627779396192
406 => 0.0022543345701904
407 => 0.0022071705949194
408 => 0.0021483868193917
409 => 0.0021478635204864
410 => 0.0021351986524736
411 => 0.0021190680388837
412 => 0.0021145808712015
413 => 0.0021800347468542
414 => 0.0023155223105858
415 => 0.0022889228598827
416 => 0.002308143689037
417 => 0.0024026911449227
418 => 0.0024327449380076
419 => 0.002411413467539
420 => 0.0023822136350939
421 => 0.0023834982795298
422 => 0.0024832829463852
423 => 0.0024895063936586
424 => 0.0025052310371583
425 => 0.0025254416478392
426 => 0.0024148554219311
427 => 0.0023782896782344
428 => 0.0023609628002807
429 => 0.0023076027225289
430 => 0.0023651469916369
501 => 0.0023316184103189
502 => 0.0023361425614382
503 => 0.0023331962020867
504 => 0.0023348051135245
505 => 0.0022493843959325
506 => 0.0022805072158423
507 => 0.0022287594913721
508 => 0.0021594750972612
509 => 0.0021592428316779
510 => 0.0021762000889814
511 => 0.0021661132487997
512 => 0.0021389698212272
513 => 0.0021428254170005
514 => 0.0021090463409778
515 => 0.0021469268084196
516 => 0.002148013084683
517 => 0.0021334270413549
518 => 0.0021917871279462
519 => 0.0022156973030399
520 => 0.002206096456858
521 => 0.0022150236820779
522 => 0.0022900281871487
523 => 0.0023022571941512
524 => 0.0023076885112589
525 => 0.0023004112658463
526 => 0.0022163946267429
527 => 0.0022201211219534
528 => 0.0021927785726667
529 => 0.0021696769998063
530 => 0.0021706009415689
531 => 0.0021824781530134
601 => 0.0022343466319809
602 => 0.0023435007881541
603 => 0.0023476431085903
604 => 0.0023526637217989
605 => 0.0023322423647215
606 => 0.0023260830880209
607 => 0.0023342087638332
608 => 0.002375201325839
609 => 0.0024806453246899
610 => 0.0024433743731281
611 => 0.0024130725093514
612 => 0.0024396554132073
613 => 0.0024355631835224
614 => 0.0024010206467072
615 => 0.0024000511527462
616 => 0.0023337529806807
617 => 0.0023092440560044
618 => 0.0022887625640837
619 => 0.0022663973095891
620 => 0.0022531384370346
621 => 0.0022735100913281
622 => 0.0022781693296954
623 => 0.0022336263515471
624 => 0.0022275553082174
625 => 0.0022639300657003
626 => 0.0022479228911197
627 => 0.0022643866671347
628 => 0.0022682064043938
629 => 0.0022675913387191
630 => 0.0022508780100447
701 => 0.0022615305873431
702 => 0.0022363340663462
703 => 0.0022089366341571
704 => 0.0021914587793408
705 => 0.0021762070329126
706 => 0.0021846695882677
707 => 0.0021545021236283
708 => 0.0021448509445391
709 => 0.002257921733845
710 => 0.002341448341621
711 => 0.0023402338316638
712 => 0.0023328408146458
713 => 0.0023218562909757
714 => 0.0023743977395141
715 => 0.0023560933494428
716 => 0.0023694113226026
717 => 0.0023728013057254
718 => 0.0023830617636404
719 => 0.0023867289954289
720 => 0.0023756440739079
721 => 0.0023384417233744
722 => 0.0022457370029383
723 => 0.0022025827053236
724 => 0.0021883410683191
725 => 0.0021888587247755
726 => 0.002174579448788
727 => 0.0021787853355185
728 => 0.0021731168130241
729 => 0.0021623820027826
730 => 0.0021840067439851
731 => 0.0021864987939603
801 => 0.0021814513209672
802 => 0.0021826401835783
803 => 0.0021408492629994
804 => 0.0021440265359259
805 => 0.0021263350765228
806 => 0.0021230181411585
807 => 0.0020782956723591
808 => 0.0019990633362553
809 => 0.0020429657417258
810 => 0.0019899378095299
811 => 0.001969855328103
812 => 0.0020649226717112
813 => 0.0020553805471706
814 => 0.0020390485778189
815 => 0.0020148901912671
816 => 0.0020059296106974
817 => 0.0019514879597308
818 => 0.0019482712565567
819 => 0.001975254008824
820 => 0.0019628023970725
821 => 0.0019453156183792
822 => 0.0018819802785584
823 => 0.0018107703869895
824 => 0.0018129197660066
825 => 0.0018355703076075
826 => 0.0019014298121539
827 => 0.0018756973643467
828 => 0.0018570281782167
829 => 0.0018535320008482
830 => 0.0018972939803577
831 => 0.0019592263497819
901 => 0.0019882836318571
902 => 0.0019594887478034
903 => 0.0019264107354291
904 => 0.0019284240407736
905 => 0.0019418176592537
906 => 0.0019432251391804
907 => 0.0019216947535993
908 => 0.0019277554310254
909 => 0.0019185487078152
910 => 0.0018620470644685
911 => 0.001861025128909
912 => 0.0018471587144196
913 => 0.0018467388448997
914 => 0.0018231486147141
915 => 0.0018198481784396
916 => 0.0017730083445814
917 => 0.0018038384650709
918 => 0.0017831592389005
919 => 0.0017519907673254
920 => 0.0017466173110778
921 => 0.0017464557784943
922 => 0.0017784588296593
923 => 0.001803464490785
924 => 0.0017835189628933
925 => 0.0017789777528202
926 => 0.0018274659956268
927 => 0.0018212954247495
928 => 0.0018159517501657
929 => 0.0019536809853802
930 => 0.0018446575485616
1001 => 0.0017971171072685
1002 => 0.0017382767834834
1003 => 0.0017574354896065
1004 => 0.0017614725104866
1005 => 0.0016199721385489
1006 => 0.0015625654552765
1007 => 0.0015428656449026
1008 => 0.001531528125518
1009 => 0.0015366947754692
1010 => 0.0014850220273917
1011 => 0.0015197469686881
1012 => 0.0014750027366417
1013 => 0.0014675012205288
1014 => 0.0015475094501745
1015 => 0.0015586421279285
1016 => 0.0015111466659784
1017 => 0.0015416464413672
1018 => 0.0015305867988326
1019 => 0.0014757697480764
1020 => 0.0014736761399444
1021 => 0.0014461708707875
1022 => 0.0014031304506264
1023 => 0.0013834598236841
1024 => 0.0013732151903844
1025 => 0.0013774423257478
1026 => 0.0013753049567556
1027 => 0.0013613571783093
1028 => 0.0013761044270895
1029 => 0.0013384313004402
1030 => 0.0013234295578554
1031 => 0.0013166536187677
1101 => 0.0012832165504822
1102 => 0.0013364297956562
1103 => 0.0013469134753182
1104 => 0.0013574178110678
1105 => 0.0014488508821533
1106 => 0.0014442831443091
1107 => 0.0014855732698426
1108 => 0.001483968811492
1109 => 0.0014721921988342
1110 => 0.0014225086071895
1111 => 0.0014423116012942
1112 => 0.0013813610635085
1113 => 0.0014270293506512
1114 => 0.0014061882515525
1115 => 0.0014199829540817
1116 => 0.0013951788351161
1117 => 0.0014089064586886
1118 => 0.001349399544685
1119 => 0.0012938328256733
1120 => 0.0013161944954972
1121 => 0.001340504187963
1122 => 0.0013932137952233
1123 => 0.0013618203879839
1124 => 0.0013731106443433
1125 => 0.0013352901755053
1126 => 0.0012572557454096
1127 => 0.0012576974118094
1128 => 0.0012456935148116
1129 => 0.0012353203952079
1130 => 0.0013654262984494
1201 => 0.0013492455727113
1202 => 0.0013234637039288
1203 => 0.0013579737598249
1204 => 0.0013670987663521
1205 => 0.0013673585424597
1206 => 0.0013925361884081
1207 => 0.0014059735025641
1208 => 0.0014083418874247
1209 => 0.0014479594573235
1210 => 0.0014612387441852
1211 => 0.0015159342474135
1212 => 0.0014048334403392
1213 => 0.0014025453923294
1214 => 0.0013584593870827
1215 => 0.001330499345583
1216 => 0.001360373835045
1217 => 0.0013868385544339
1218 => 0.0013592817196842
1219 => 0.001362880060546
1220 => 0.0013258872613707
1221 => 0.0013391104464029
1222 => 0.001350500034708
1223 => 0.001344211373495
1224 => 0.0013347969432844
1225 => 0.0013846687492437
1226 => 0.0013818547865023
1227 => 0.0014282965587594
1228 => 0.0014645012413167
1229 => 0.0015293865048207
1230 => 0.001461675349809
1231 => 0.0014592076861929
]
'min_raw' => 0.0012353203952079
'max_raw' => 0.0035716745521389
'avg_raw' => 0.0024034974736734
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001235'
'max' => '$0.003571'
'avg' => '$0.0024034'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00021721642072641
'max_diff' => -0.0012065134879483
'year' => 2030
]
5 => [
'items' => [
101 => 0.0014833294938659
102 => 0.0014612350512621
103 => 0.0014751979763135
104 => 0.001527136861729
105 => 0.0015282342485336
106 => 0.0015098516056534
107 => 0.0015087330201635
108 => 0.0015122636078128
109 => 0.0015329423699501
110 => 0.0015257165750651
111 => 0.0015340784478408
112 => 0.0015445350977882
113 => 0.0015877882354987
114 => 0.0015982164205679
115 => 0.0015728813372438
116 => 0.0015751688116031
117 => 0.0015656927949763
118 => 0.0015565390816489
119 => 0.0015771152924163
120 => 0.0016147187220201
121 => 0.0016144847930362
122 => 0.001623208057798
123 => 0.0016286425794772
124 => 0.0016053136341171
125 => 0.0015901273485167
126 => 0.0015959507367443
127 => 0.0016052624613372
128 => 0.0015929310699591
129 => 0.0015168160099174
130 => 0.0015399044568852
131 => 0.0015360614103424
201 => 0.001530588444735
202 => 0.0015538040566988
203 => 0.00155156485429
204 => 0.0014844920486736
205 => 0.001488785832072
206 => 0.0014847531678635
207 => 0.0014977835309265
208 => 0.0014605313688947
209 => 0.0014719898830386
210 => 0.0014791765556927
211 => 0.0014834095610966
212 => 0.0014987020792144
213 => 0.0014969076787189
214 => 0.0014985905367602
215 => 0.0015212653040539
216 => 0.0016359464959848
217 => 0.0016421883402318
218 => 0.0016114512163123
219 => 0.0016237300910552
220 => 0.0016001573366435
221 => 0.0016159818846038
222 => 0.0016268086384183
223 => 0.0015778846197956
224 => 0.001574987656927
225 => 0.0015513176093726
226 => 0.0015640365521884
227 => 0.0015437997996442
228 => 0.001548765190867
301 => 0.001534881524133
302 => 0.0015598693600436
303 => 0.0015878096433088
304 => 0.0015948684622569
305 => 0.0015762997486173
306 => 0.0015628547762043
307 => 0.0015392498336965
308 => 0.0015785053791575
309 => 0.0015899848969414
310 => 0.0015784450821376
311 => 0.0015757710548976
312 => 0.0015707037781097
313 => 0.0015768461016227
314 => 0.0015899223770222
315 => 0.0015837558470247
316 => 0.0015878289487283
317 => 0.0015723064851983
318 => 0.0016053213569687
319 => 0.0016577569188016
320 => 0.001657925507707
321 => 0.0016517589444696
322 => 0.0016492357196533
323 => 0.0016555629877532
324 => 0.0016589952711393
325 => 0.0016794564959519
326 => 0.0017014122053869
327 => 0.0018038699212938
328 => 0.0017751002046583
329 => 0.0018660067854477
330 => 0.0019379020881099
331 => 0.0019594603457778
401 => 0.0019396277631178
402 => 0.0018717815691729
403 => 0.0018684527112206
404 => 0.0019698435688985
405 => 0.001941196007609
406 => 0.0019377884713494
407 => 0.0019015380426707
408 => 0.0019229665357227
409 => 0.0019182798099552
410 => 0.0019108815840487
411 => 0.0019517656560703
412 => 0.0020282969891485
413 => 0.0020163688631819
414 => 0.0020074650704778
415 => 0.0019684512427032
416 => 0.0019919462810774
417 => 0.0019835801479301
418 => 0.00201952636521
419 => 0.0019982326223996
420 => 0.0019409789741566
421 => 0.0019500968063498
422 => 0.0019487186643563
423 => 0.0019770807289257
424 => 0.0019685671411317
425 => 0.0019470562497013
426 => 0.002028035413372
427 => 0.002022777076913
428 => 0.0020302321957888
429 => 0.0020335141696751
430 => 0.0020828047595886
501 => 0.0021029975371531
502 => 0.0021075816511846
503 => 0.0021267632281055
504 => 0.0021071043960768
505 => 0.0021857537407013
506 => 0.0022380509655601
507 => 0.0022987968834241
508 => 0.0023875629963869
509 => 0.0024209398759934
510 => 0.0024149106414374
511 => 0.0024822120952122
512 => 0.0026031513116182
513 => 0.0024393559148576
514 => 0.0026118328653728
515 => 0.0025572286541818
516 => 0.0024277630517358
517 => 0.0024194269932375
518 => 0.0025071026023405
519 => 0.0027015586648662
520 => 0.0026528496267059
521 => 0.0027016383354031
522 => 0.002644723715143
523 => 0.002641897424533
524 => 0.0026988741193329
525 => 0.0028320032723707
526 => 0.0027687586020341
527 => 0.0026780818588772
528 => 0.0027450361549379
529 => 0.0026870341473625
530 => 0.0025563393905556
531 => 0.0026528123798224
601 => 0.0025883036392922
602 => 0.0026071307192522
603 => 0.0027427184968957
604 => 0.0027264042167688
605 => 0.0027475164059146
606 => 0.0027102539446745
607 => 0.0026754449301255
608 => 0.0026104713195183
609 => 0.0025912358365778
610 => 0.0025965518320423
611 => 0.0025912332022344
612 => 0.002554881064238
613 => 0.0025470308234988
614 => 0.0025339467450065
615 => 0.0025380020480378
616 => 0.0025134001525901
617 => 0.0025598290123108
618 => 0.0025684466178047
619 => 0.0026022336700638
620 => 0.0026057415539136
621 => 0.0026998380135268
622 => 0.0026480112647986
623 => 0.0026827811223517
624 => 0.0026796709790256
625 => 0.0024305689639149
626 => 0.0024648930237515
627 => 0.0025182904893738
628 => 0.0024942350034895
629 => 0.0024602261745659
630 => 0.002432762221772
701 => 0.0023911515249559
702 => 0.0024497177816619
703 => 0.0025267261814032
704 => 0.0026076946140143
705 => 0.0027049728805347
706 => 0.0026832615038912
707 => 0.002605876064487
708 => 0.0026093475187686
709 => 0.0026308066831704
710 => 0.0026030151154994
711 => 0.0025948188396374
712 => 0.0026296806407293
713 => 0.0026299207147937
714 => 0.0025979431574651
715 => 0.0025624059543256
716 => 0.0025622570521469
717 => 0.0025559335500969
718 => 0.0026458486521099
719 => 0.0026952928667749
720 => 0.0027009615663029
721 => 0.0026949113181309
722 => 0.0026972398185265
723 => 0.0026684693194419
724 => 0.0027342301487229
725 => 0.0027945787887431
726 => 0.002778404064057
727 => 0.00275415585238
728 => 0.0027348409838272
729 => 0.0027738540948613
730 => 0.0027721169024393
731 => 0.0027940516960195
801 => 0.0027930566070812
802 => 0.0027856807610095
803 => 0.0027784043274717
804 => 0.0028072545639583
805 => 0.0027989461591708
806 => 0.0027906248491358
807 => 0.0027739351879318
808 => 0.0027762035900754
809 => 0.002751959565194
810 => 0.0027407431699527
811 => 0.0025720754974199
812 => 0.002527001983944
813 => 0.0025411830288395
814 => 0.0025458517970297
815 => 0.0025262357462017
816 => 0.0025543601241391
817 => 0.0025499769696286
818 => 0.0025670292597692
819 => 0.0025563757292138
820 => 0.0025568129538238
821 => 0.0025881427156152
822 => 0.0025972378787495
823 => 0.0025926120053724
824 => 0.0025958518085201
825 => 0.0026705117046226
826 => 0.0026598974548859
827 => 0.0026542588462631
828 => 0.0026558207793866
829 => 0.002674897983567
830 => 0.0026802385591607
831 => 0.0026576101650943
901 => 0.0026682818465492
902 => 0.0027137205117462
903 => 0.0027296214729595
904 => 0.0027803697082578
905 => 0.0027588109559251
906 => 0.0027983829788727
907 => 0.0029200138863167
908 => 0.0030171810714016
909 => 0.0029278221123938
910 => 0.0031062572736358
911 => 0.0032451946416663
912 => 0.003239861994069
913 => 0.0032156350502737
914 => 0.0030574585506119
915 => 0.0029119021773444
916 => 0.0030336662642327
917 => 0.0030339766659312
918 => 0.0030235170228803
919 => 0.0029585530782094
920 => 0.0030212564184233
921 => 0.0030262335818644
922 => 0.0030234476938719
923 => 0.0029736399898088
924 => 0.0028975928317067
925 => 0.0029124522643687
926 => 0.0029367923181932
927 => 0.0028907115184362
928 => 0.0028759859107798
929 => 0.0029033636170746
930 => 0.0029915802911283
1001 => 0.0029749034399028
1002 => 0.0029744679399209
1003 => 0.0030458185815489
1004 => 0.0029947469205754
1005 => 0.0029126396894011
1006 => 0.0028919065306682
1007 => 0.0028183177846958
1008 => 0.002869145793653
1009 => 0.0028709750032081
1010 => 0.0028431370221518
1011 => 0.0029148985881399
1012 => 0.0029142372926759
1013 => 0.0029823642192821
1014 => 0.0031125973156479
1015 => 0.0030740809806711
1016 => 0.0030292906736583
1017 => 0.0030341606219311
1018 => 0.003087571934427
1019 => 0.0030552782356303
1020 => 0.0030668912748773
1021 => 0.0030875543567012
1022 => 0.0031000209070011
1023 => 0.0030323668771923
1024 => 0.0030165934865775
1025 => 0.0029843266650875
1026 => 0.0029759088536496
1027 => 0.0030021895064838
1028 => 0.0029952654829712
1029 => 0.002870821265228
1030 => 0.0028578161520728
1031 => 0.0028582150003262
1101 => 0.0028255130249379
1102 => 0.0027756346630974
1103 => 0.0029067120199321
1104 => 0.0028961846737518
1105 => 0.0028845632983207
1106 => 0.0028859868505004
1107 => 0.0029428830884785
1108 => 0.0029098803971223
1109 => 0.0029976234611275
1110 => 0.002979586124966
1111 => 0.002961086199193
1112 => 0.0029585289459296
1113 => 0.0029514080528465
1114 => 0.002926987860897
1115 => 0.0028974990116918
1116 => 0.0028780279191662
1117 => 0.0026548286234506
1118 => 0.0026962531144449
1119 => 0.0027439082153726
1120 => 0.002760358565247
1121 => 0.0027322191034573
1122 => 0.0029280989783605
1123 => 0.0029638881190507
1124 => 0.002855480477432
1125 => 0.00283520183394
1126 => 0.0029294284428518
1127 => 0.0028725982789435
1128 => 0.0028981888982717
1129 => 0.0028428759766046
1130 => 0.0029552675630868
1201 => 0.0029544113275052
1202 => 0.0029106884618845
1203 => 0.0029476427285059
1204 => 0.0029412210152806
1205 => 0.0028918580076795
1206 => 0.002956832458475
1207 => 0.0029568646849919
1208 => 0.0029147823774491
1209 => 0.0028656394552408
1210 => 0.0028568538614539
1211 => 0.002850235096714
1212 => 0.0028965610878833
1213 => 0.0029380968267081
1214 => 0.0030153845390781
1215 => 0.0030348165062786
1216 => 0.0031106607679217
1217 => 0.0030654992029033
1218 => 0.0030855187397358
1219 => 0.0031072527789039
1220 => 0.0031176728765239
1221 => 0.0031006938866254
1222 => 0.0032185112437007
1223 => 0.0032284586384684
1224 => 0.0032317939138894
1225 => 0.0031920665639755
1226 => 0.003227353749001
1227 => 0.0032108440437163
1228 => 0.003253797710339
1229 => 0.0032605333937253
1230 => 0.003254828509526
1231 => 0.0032569665217483
]
'min_raw' => 0.0014605313688947
'max_raw' => 0.0032605333937253
'avg_raw' => 0.00236053238131
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00146'
'max' => '$0.00326'
'avg' => '$0.00236'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0002252109736868
'max_diff' => -0.00031114115841354
'year' => 2031
]
6 => [
'items' => [
101 => 0.0031564301918905
102 => 0.003151216852816
103 => 0.0030801326046133
104 => 0.0031090999611842
105 => 0.0030549468765165
106 => 0.0030721193775032
107 => 0.0030796888523126
108 => 0.0030757349882361
109 => 0.0031107377320624
110 => 0.0030809782492219
111 => 0.0030024380810938
112 => 0.0029238765147495
113 => 0.0029228902382789
114 => 0.0029022063645872
115 => 0.0028872557123486
116 => 0.0028901357383726
117 => 0.0029002853257291
118 => 0.0028866657998805
119 => 0.0028895722162478
120 => 0.0029378380932956
121 => 0.002947517470721
122 => 0.0029146231642524
123 => 0.0027825477771554
124 => 0.0027501361458757
125 => 0.002773432983689
126 => 0.0027622985957227
127 => 0.0022293905553143
128 => 0.0023545893946716
129 => 0.0022802004956763
130 => 0.002314482322802
131 => 0.0022385505198399
201 => 0.0022747891561402
202 => 0.0022680972032386
203 => 0.0024694132320221
204 => 0.0024662699591338
205 => 0.0024677744775272
206 => 0.0023959598946115
207 => 0.0025103624751746
208 => 0.0025667213001437
209 => 0.0025562907815835
210 => 0.0025589159183884
211 => 0.0025138073705857
212 => 0.0024682112268723
213 => 0.0024176380862979
214 => 0.002511596730456
215 => 0.0025011501331532
216 => 0.0025251108687988
217 => 0.0025860497658379
218 => 0.0025950232499113
219 => 0.002607083703506
220 => 0.0026027608894139
221 => 0.0027057478588691
222 => 0.0026932754573381
223 => 0.0027233303564729
224 => 0.0026615051486821
225 => 0.0025915440575642
226 => 0.0026048413737853
227 => 0.0026035607353029
228 => 0.0025872567375741
229 => 0.0025725382174255
301 => 0.0025480360282954
302 => 0.0026255645803447
303 => 0.0026224170627152
304 => 0.0026733717145469
305 => 0.0026643649848886
306 => 0.0026042158399097
307 => 0.0026063640783897
308 => 0.0026208120145764
309 => 0.0026708164866821
310 => 0.0026856612185671
311 => 0.0026787845472977
312 => 0.0026950611181219
313 => 0.0027079254560521
314 => 0.0026966766809031
315 => 0.0028559356154453
316 => 0.0027898002023292
317 => 0.0028220341425148
318 => 0.0028297217473156
319 => 0.0028100301092711
320 => 0.0028143005204583
321 => 0.0028207690297894
322 => 0.0028600445517841
323 => 0.0029631148859621
324 => 0.003008764035346
325 => 0.0031461017535569
326 => 0.0030049735089565
327 => 0.0029965995429687
328 => 0.0030213382132202
329 => 0.0031019699924839
330 => 0.0031673144762192
331 => 0.0031889930112879
401 => 0.0031918581875708
402 => 0.0032325285605215
403 => 0.0032558400598392
404 => 0.0032275901075083
405 => 0.0032036512308011
406 => 0.0031179051458386
407 => 0.0031278304886519
408 => 0.0031962062581462
409 => 0.0032927910598697
410 => 0.0033756708676843
411 => 0.0033466492476405
412 => 0.0035680637225036
413 => 0.0035900160632892
414 => 0.0035869829595968
415 => 0.0036369936588528
416 => 0.0035377326053314
417 => 0.0034952965818587
418 => 0.0032088270876629
419 => 0.0032893133305931
420 => 0.0034063048114834
421 => 0.0033908205502921
422 => 0.0033058582096783
423 => 0.0033756064161302
424 => 0.0033525454778491
425 => 0.0033343563590276
426 => 0.003417684238483
427 => 0.0033260618121012
428 => 0.0034053908076928
429 => 0.0033036505502932
430 => 0.0033467818159563
501 => 0.0033222984235413
502 => 0.0033381421790055
503 => 0.0032455199083029
504 => 0.0032954966372955
505 => 0.0032434407120685
506 => 0.0032434160307821
507 => 0.0032422668933475
508 => 0.0033035104585257
509 => 0.0033055076089875
510 => 0.0032602485217869
511 => 0.0032537259802415
512 => 0.0032778432349373
513 => 0.0032496082460075
514 => 0.0032628192196188
515 => 0.0032500083929399
516 => 0.0032471244060172
517 => 0.0032241443075471
518 => 0.0032142438492752
519 => 0.003218126074067
520 => 0.0032048740394286
521 => 0.0031968892092119
522 => 0.0032406785096422
523 => 0.0032172836528776
524 => 0.0032370929123135
525 => 0.0032145177610584
526 => 0.0031362624512832
527 => 0.0030912569950965
528 => 0.0029434399692021
529 => 0.0029853606943793
530 => 0.0030131541785419
531 => 0.003003968432192
601 => 0.0030237029697636
602 => 0.0030249145100932
603 => 0.0030184986107589
604 => 0.0030110698212573
605 => 0.0030074538973658
606 => 0.0030344040315824
607 => 0.0030500494915949
608 => 0.0030159436265065
609 => 0.003007953099508
610 => 0.0030424360121489
611 => 0.0030634705689396
612 => 0.0032187779179863
613 => 0.0032072722479328
614 => 0.0032361492218934
615 => 0.0032328981177787
616 => 0.0032631657869521
617 => 0.0033126406339792
618 => 0.0032120444365883
619 => 0.0032295044581006
620 => 0.0032252236640366
621 => 0.0032719602511432
622 => 0.0032721061576666
623 => 0.0032440852390306
624 => 0.0032592758336107
625 => 0.0032507968604482
626 => 0.0032661195109547
627 => 0.0032071185826946
628 => 0.0032789753445588
629 => 0.0033197134981884
630 => 0.003320279147491
701 => 0.0033395887089935
702 => 0.0033592083418143
703 => 0.0033968665185041
704 => 0.0033581580757054
705 => 0.0032885253553017
706 => 0.0032935526128025
707 => 0.0032527269743074
708 => 0.0032534132606663
709 => 0.0032497498102975
710 => 0.003260744100626
711 => 0.0032095312111591
712 => 0.0032215507739541
713 => 0.0032047233156546
714 => 0.0032294678784926
715 => 0.0032028468193017
716 => 0.003225221599708
717 => 0.0032348778131957
718 => 0.0032705094488486
719 => 0.0031975839977446
720 => 0.0030488840663245
721 => 0.0030801425947214
722 => 0.0030339087759179
723 => 0.0030381878918728
724 => 0.0030468323871177
725 => 0.0030188127497259
726 => 0.00302415801354
727 => 0.0030239670431025
728 => 0.0030223213630429
729 => 0.0030150323731875
730 => 0.0030044618958146
731 => 0.0030465714242471
801 => 0.0030537266536858
802 => 0.0030696318423826
803 => 0.0031169548953519
804 => 0.0031122262064058
805 => 0.0031199388942683
806 => 0.0031031021399694
807 => 0.0030389689006157
808 => 0.0030424516440669
809 => 0.0029990217774229
810 => 0.0030685212430489
811 => 0.0030520628522405
812 => 0.0030414520206182
813 => 0.0030385567569014
814 => 0.0030859971145657
815 => 0.0031001920131153
816 => 0.0030913467049234
817 => 0.0030732047197629
818 => 0.0031080426944675
819 => 0.0031173638668023
820 => 0.0031194505335365
821 => 0.003181176745194
822 => 0.0031229003430754
823 => 0.003136928052283
824 => 0.0032463682351341
825 => 0.003147121091001
826 => 0.0031996945167238
827 => 0.0031971213211135
828 => 0.0032240161067256
829 => 0.0031949151636934
830 => 0.0031952759047594
831 => 0.0032191566523723
901 => 0.0031856204492655
902 => 0.0031773164137556
903 => 0.0031658444481733
904 => 0.0031908930653288
905 => 0.0032059085784621
906 => 0.0033269225866368
907 => 0.003405103154827
908 => 0.0034017091301753
909 => 0.003432724162144
910 => 0.0034187516061769
911 => 0.0033736305371853
912 => 0.0034506467000259
913 => 0.00342627556361
914 => 0.0034282846904852
915 => 0.0034282099106825
916 => 0.0034444145858374
917 => 0.0034329320883535
918 => 0.0034102989071586
919 => 0.0034253238690821
920 => 0.0034699426344727
921 => 0.0036084406513161
922 => 0.0036859459763964
923 => 0.0036037747334278
924 => 0.0036604553565107
925 => 0.003626467180032
926 => 0.0036202905173051
927 => 0.0036558901372664
928 => 0.0036915520696497
929 => 0.0036892805587277
930 => 0.0036633918270778
1001 => 0.0036487679394711
1002 => 0.0037595049157912
1003 => 0.0038410940335886
1004 => 0.0038355302027352
1005 => 0.0038600871426674
1006 => 0.0039321870778258
1007 => 0.0039387789923109
1008 => 0.0039379485625992
1009 => 0.0039216098147528
1010 => 0.003992601564276
1011 => 0.0040518241307092
1012 => 0.0039178278666982
1013 => 0.0039688518898937
1014 => 0.0039917582177975
1015 => 0.0040253915031615
1016 => 0.0040821364931638
1017 => 0.0041437766031715
1018 => 0.004152493190576
1019 => 0.0041463083546854
1020 => 0.0041056550451603
1021 => 0.0041731023890502
1022 => 0.004212611461266
1023 => 0.0042361382096215
1024 => 0.0042957981289734
1025 => 0.0039918996794804
1026 => 0.0037767852521962
1027 => 0.0037431920280858
1028 => 0.0038115051703026
1029 => 0.0038295188011181
1030 => 0.0038222575291236
1031 => 0.0035801266838672
1101 => 0.0037419172592957
1102 => 0.0039159903147188
1103 => 0.0039226771697124
1104 => 0.0040098217809532
1105 => 0.0040381996385515
1106 => 0.0041083624729056
1107 => 0.0041039737685135
1108 => 0.0041210573021442
1109 => 0.004117130093608
1110 => 0.0042470919697212
1111 => 0.0043904592185993
1112 => 0.0043854948666506
1113 => 0.0043648841283801
1114 => 0.0043954945893649
1115 => 0.0045434649543753
1116 => 0.0045298422143419
1117 => 0.0045430755459021
1118 => 0.0047175409454936
1119 => 0.0049443707823763
1120 => 0.004838985549801
1121 => 0.0050676411807056
1122 => 0.0052115677798458
1123 => 0.0054604739507708
1124 => 0.0054293096722823
1125 => 0.0055262070180655
1126 => 0.0053735191096066
1127 => 0.0050229168084673
1128 => 0.0049674326522604
1129 => 0.0050785133380694
1130 => 0.0053515943650359
1201 => 0.0050699130447173
1202 => 0.0051268968089552
1203 => 0.0051104854810212
1204 => 0.0051096109910993
1205 => 0.0051429867146126
1206 => 0.0050945734868958
1207 => 0.0048973292878046
1208 => 0.0049877251418807
1209 => 0.0049528189614565
1210 => 0.0049915499710653
1211 => 0.0052005652560409
1212 => 0.0051081546162511
1213 => 0.0050108075140634
1214 => 0.0051329023832582
1215 => 0.005288371108092
1216 => 0.0052786421546961
1217 => 0.0052597639187209
1218 => 0.0053661795464807
1219 => 0.0055419469866864
1220 => 0.0055894562194833
1221 => 0.0056245265638504
1222 => 0.0056293621718203
1223 => 0.0056791719392239
1224 => 0.0054113322662171
1225 => 0.0058364007058895
1226 => 0.0059097982831423
1227 => 0.0058960025806366
1228 => 0.0059775808987109
1229 => 0.0059535784880912
1230 => 0.0059188027609663
1231 => 0.0060481217473198
]
'min_raw' => 0.0022293905553143
'max_raw' => 0.0060481217473198
'avg_raw' => 0.004138756151317
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002229'
'max' => '$0.006048'
'avg' => '$0.004138'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00076885918641959
'max_diff' => 0.0027875883535944
'year' => 2032
]
7 => [
'items' => [
101 => 0.0058998679649695
102 => 0.0056894403855556
103 => 0.0055739956537035
104 => 0.0057260225892672
105 => 0.0058188601338071
106 => 0.0058802198451711
107 => 0.0058987872567553
108 => 0.0054321238975909
109 => 0.0051806182293377
110 => 0.0053418304791696
111 => 0.0055385205502398
112 => 0.0054102396429412
113 => 0.0054152680116394
114 => 0.0052323731494611
115 => 0.0055547026872507
116 => 0.0055077419848129
117 => 0.0057513741921324
118 => 0.0056932294105849
119 => 0.0058919020179062
120 => 0.0058395848621544
121 => 0.0060567504506673
122 => 0.0061433836834487
123 => 0.0062888543646747
124 => 0.0063958631899568
125 => 0.006458700818915
126 => 0.0064549282833704
127 => 0.0067039222748855
128 => 0.0065570992172765
129 => 0.0063726548533819
130 => 0.0063693188367535
131 => 0.0064648451864114
201 => 0.0066650422089201
202 => 0.0067169503841084
203 => 0.0067459599725952
204 => 0.0067015307779967
205 => 0.0065421648718655
206 => 0.0064733514816015
207 => 0.0065319824838222
208 => 0.0064602818063257
209 => 0.0065840572913416
210 => 0.0067540274692854
211 => 0.006718929299675
212 => 0.0068362572184711
213 => 0.0069576792711681
214 => 0.0071313182599304
215 => 0.007176713921426
216 => 0.0072517512236358
217 => 0.0073289892560795
218 => 0.007353796030477
219 => 0.007401159859892
220 => 0.0074009102291315
221 => 0.007543644317027
222 => 0.0077010844360823
223 => 0.0077605144362786
224 => 0.0078971704447406
225 => 0.0076631518192471
226 => 0.0078406576348962
227 => 0.0080007723238703
228 => 0.0078098769909215
301 => 0.0080729817344834
302 => 0.0080831974954677
303 => 0.0082374433576211
304 => 0.008081085626397
305 => 0.0079882409047076
306 => 0.0082562801373784
307 => 0.0083859758789111
308 => 0.0083469104660625
309 => 0.0080496207453874
310 => 0.0078765853765985
311 => 0.0074237184404481
312 => 0.007960158888714
313 => 0.0082214433828819
314 => 0.0080489440816692
315 => 0.0081359426955158
316 => 0.0086105789232675
317 => 0.0087912896683754
318 => 0.0087537030966564
319 => 0.0087600546085493
320 => 0.0088575628464775
321 => 0.0092899680722186
322 => 0.0090308608378798
323 => 0.0092289386099689
324 => 0.0093339983460625
325 => 0.0094315836839888
326 => 0.0091919449362045
327 => 0.0088801784463293
328 => 0.008781428911919
329 => 0.0080317924257532
330 => 0.007992770591142
331 => 0.0079708664528922
401 => 0.0078327639596287
402 => 0.0077242532293802
403 => 0.0076379614679414
404 => 0.0074115061170248
405 => 0.0074879281502926
406 => 0.0071270055858366
407 => 0.0073579110522653
408 => 0.0067818699246134
409 => 0.0072616140928764
410 => 0.0070005111533816
411 => 0.0071758347549113
412 => 0.007175223067382
413 => 0.0068523967305673
414 => 0.0066661972367063
415 => 0.0067848508011872
416 => 0.0069120568410425
417 => 0.0069326955930365
418 => 0.0070976215441262
419 => 0.0071436488320038
420 => 0.0070041840009259
421 => 0.0067699327526165
422 => 0.0068243439748967
423 => 0.0066650945950235
424 => 0.0063860161822346
425 => 0.0065864551705412
426 => 0.0066548938538293
427 => 0.006685120275235
428 => 0.0064106787086295
429 => 0.0063244432099857
430 => 0.0062785321540937
501 => 0.0067345057926574
502 => 0.0067594850578802
503 => 0.0066316876052881
504 => 0.007209344209256
505 => 0.0070786027289512
506 => 0.007224672994892
507 => 0.0068194067267862
508 => 0.0068348884439912
509 => 0.0066430288979899
510 => 0.0067504574236912
511 => 0.0066745304043085
512 => 0.0067417782604439
513 => 0.0067820863481381
514 => 0.0069739144118758
515 => 0.0072638044612266
516 => 0.0069452616960556
517 => 0.0068064680516542
518 => 0.0068925748480357
519 => 0.0071218885938208
520 => 0.0074693106570398
521 => 0.0072636298030935
522 => 0.0073549074733875
523 => 0.0073748475836858
524 => 0.0072231861367049
525 => 0.0074749026309176
526 => 0.0076097995451074
527 => 0.0077481758660828
528 => 0.0078683241483693
529 => 0.0076929053205247
530 => 0.0078806286116196
531 => 0.0077293567766188
601 => 0.0075936503024283
602 => 0.0075938561131324
603 => 0.0075087254595174
604 => 0.0073437740909857
605 => 0.0073133545278204
606 => 0.0074716009369735
607 => 0.0075984995711236
608 => 0.0076089515504357
609 => 0.0076792091545884
610 => 0.0077207868810151
611 => 0.008128305122175
612 => 0.0082922123299372
613 => 0.0084926349609842
614 => 0.0085707108709776
615 => 0.0088056913682947
616 => 0.0086159255325282
617 => 0.0085748685002771
618 => 0.0080048826753207
619 => 0.0080982178222261
620 => 0.0082476563979238
621 => 0.0080073468623923
622 => 0.0081597679510567
623 => 0.0081898591026791
624 => 0.0079991812363305
625 => 0.0081010305234516
626 => 0.0078305490130672
627 => 0.0072697002190123
628 => 0.0074755270159525
629 => 0.0076270848190512
630 => 0.007410793147087
701 => 0.0077984875974392
702 => 0.0075720045031814
703 => 0.0075002202354074
704 => 0.007220164213882
705 => 0.0073523398756972
706 => 0.0075311093508754
707 => 0.0074206505993974
708 => 0.0076498690941792
709 => 0.0079745036131298
710 => 0.0082058575036538
711 => 0.0082236179826355
712 => 0.0080748729305354
713 => 0.0083132378258041
714 => 0.0083149740538372
715 => 0.008046097478225
716 => 0.0078814120727736
717 => 0.0078439952021539
718 => 0.0079374698809714
719 => 0.0080509653974333
720 => 0.0082299161939105
721 => 0.0083380524123582
722 => 0.0086200143190512
723 => 0.0086963051265209
724 => 0.0087801255940025
725 => 0.0088921355878328
726 => 0.0090266323041991
727 => 0.0087323611456921
728 => 0.0087440530874096
729 => 0.0084700318590694
730 => 0.0081772008779687
731 => 0.008399423090727
801 => 0.0086899490729264
802 => 0.0086233020916072
803 => 0.0086158029447345
804 => 0.0086284144296845
805 => 0.0085781647822567
806 => 0.0083508874892797
807 => 0.0082367502555778
808 => 0.0083840164065671
809 => 0.0084622818117556
810 => 0.0085836646297424
811 => 0.008568701635345
812 => 0.0088813707389159
813 => 0.0090028644979407
814 => 0.0089717811953711
815 => 0.0089775012711054
816 => 0.0091974599185213
817 => 0.0094420991723939
818 => 0.0096712361166384
819 => 0.0099043240579847
820 => 0.0096233274471146
821 => 0.0094806546975763
822 => 0.009627856556771
823 => 0.0095497491782661
824 => 0.0099985773433085
825 => 0.010029653231647
826 => 0.010478448941305
827 => 0.010904409511369
828 => 0.010636871309188
829 => 0.010889147783659
830 => 0.011162005359203
831 => 0.011688391891972
901 => 0.011511123426237
902 => 0.011375338559635
903 => 0.011247022516803
904 => 0.011514027832337
905 => 0.011857525905257
906 => 0.011931512100181
907 => 0.012051398000859
908 => 0.011925352635246
909 => 0.012077160394685
910 => 0.012613108493211
911 => 0.012468290586044
912 => 0.012262625877228
913 => 0.012685705428012
914 => 0.01283881627276
915 => 0.013913428365978
916 => 0.015270170523677
917 => 0.01470847036154
918 => 0.014359804944951
919 => 0.014441749588303
920 => 0.014937185895675
921 => 0.01509630431324
922 => 0.01466376560289
923 => 0.014816545587727
924 => 0.015658378325176
925 => 0.01610999457959
926 => 0.015496639045941
927 => 0.013804415454637
928 => 0.012244108020425
929 => 0.012657971813538
930 => 0.012611052503087
1001 => 0.013515496758704
1002 => 0.012464836726853
1003 => 0.012482527147221
1004 => 0.013405674352221
1005 => 0.013159394504677
1006 => 0.012760452692795
1007 => 0.012247020737147
1008 => 0.011297894280425
1009 => 0.010457226509356
1010 => 0.012105969602647
1011 => 0.012034872802419
1012 => 0.011931914099734
1013 => 0.012161037551264
1014 => 0.013273595994067
1015 => 0.01324794792096
1016 => 0.013084787965616
1017 => 0.013208543353719
1018 => 0.012738757774912
1019 => 0.012859832215389
1020 => 0.012243860859756
1021 => 0.012522305637738
1022 => 0.01275959674284
1023 => 0.012807236445345
1024 => 0.01291457112763
1025 => 0.011997408019363
1026 => 0.012409187328481
1027 => 0.012651069094084
1028 => 0.011558238477355
1029 => 0.012629467346509
1030 => 0.011981442250152
1031 => 0.011761492799437
1101 => 0.012057625758687
1102 => 0.011942222456469
1103 => 0.011843005473931
1104 => 0.01178764069291
1105 => 0.012005088055182
1106 => 0.011994943875826
1107 => 0.011639157786436
1108 => 0.011175049336523
1109 => 0.011330819366154
1110 => 0.011274226654038
1111 => 0.011069127364721
1112 => 0.011207339521938
1113 => 0.010598723129127
1114 => 0.0095516302584233
1115 => 0.010243371882132
1116 => 0.010216740582089
1117 => 0.010203311872975
1118 => 0.010723136584858
1119 => 0.010673167433207
1120 => 0.010582472933661
1121 => 0.011067461689113
1122 => 0.010890434269354
1123 => 0.011435991064147
1124 => 0.011795330053598
1125 => 0.011704190062475
1126 => 0.01204215011889
1127 => 0.011334407993026
1128 => 0.011569491537552
1129 => 0.011617941930268
1130 => 0.011061477003154
1201 => 0.010681343004396
1202 => 0.010655992400523
1203 => 0.0099968924323685
1204 => 0.010348978315288
1205 => 0.010658799321953
1206 => 0.010510419102842
1207 => 0.010463446358204
1208 => 0.010703419923412
1209 => 0.010722067924664
1210 => 0.010296891519908
1211 => 0.010385299158042
1212 => 0.01075397370561
1213 => 0.010376009505365
1214 => 0.0096416868043907
1215 => 0.0094595646217435
1216 => 0.0094352661654005
1217 => 0.0089413363617688
1218 => 0.0094717348968391
1219 => 0.0092402017224839
1220 => 0.0099716122460785
1221 => 0.0095538344776346
1222 => 0.0095358249130388
1223 => 0.0095086008147236
1224 => 0.0090834550287545
1225 => 0.0091765349364575
1226 => 0.0094859467261325
1227 => 0.0095963483384619
1228 => 0.0095848325458022
1229 => 0.0094844304395641
1230 => 0.0095303940096579
1231 => 0.0093823293356164
]
'min_raw' => 0.0051806182293377
'max_raw' => 0.01610999457959
'avg_raw' => 0.010645306404464
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00518'
'max' => '$0.0161099'
'avg' => '$0.010645'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0029512276740234
'max_diff' => 0.01006187283227
'year' => 2033
]
8 => [
'items' => [
101 => 0.0093300446175126
102 => 0.0091650196651323
103 => 0.0089224785744401
104 => 0.0089562054006918
105 => 0.0084756680357018
106 => 0.0082138457752069
107 => 0.0081413768242639
108 => 0.0080444683143769
109 => 0.0081523228983193
110 => 0.0084743067337231
111 => 0.0080859259155448
112 => 0.007420074244525
113 => 0.0074600930645094
114 => 0.0075500034713199
115 => 0.0073824560230454
116 => 0.007223886424445
117 => 0.0073617498252698
118 => 0.0070796196944912
119 => 0.0075840975497318
120 => 0.0075704528375304
121 => 0.0077584909852628
122 => 0.0078760750979711
123 => 0.007605081786487
124 => 0.0075369277014926
125 => 0.0075757513657359
126 => 0.0069340826765753
127 => 0.0077060529637689
128 => 0.0077127289948693
129 => 0.0076555647634515
130 => 0.0080666151094734
131 => 0.0089340595493977
201 => 0.0086076920582264
202 => 0.0084813127011353
203 => 0.0082410654509222
204 => 0.0085611806473609
205 => 0.0085366007948494
206 => 0.0084254413801601
207 => 0.0083582118193175
208 => 0.0084820843465408
209 => 0.008342862642358
210 => 0.0083178545987302
211 => 0.0081663330633654
212 => 0.0081122467690308
213 => 0.0080722034299429
214 => 0.0080281196481843
215 => 0.0081253574857498
216 => 0.0079050037531236
217 => 0.0076392787531191
218 => 0.0076171865945531
219 => 0.0076781849867163
220 => 0.0076511977389803
221 => 0.0076170573899937
222 => 0.0075518741662074
223 => 0.0075325356961292
224 => 0.0075953763421914
225 => 0.0075244329166245
226 => 0.0076291138055368
227 => 0.0076006463960104
228 => 0.0074416297605008
301 => 0.0072434361571569
302 => 0.007241671818362
303 => 0.0071989713316242
304 => 0.0071445858417025
305 => 0.0071294570425777
306 => 0.0073501393541847
307 => 0.0078069451347452
308 => 0.0077172632295853
309 => 0.0077820675970347
310 => 0.0081008409456457
311 => 0.0082021694073201
312 => 0.0081302488653198
313 => 0.0080317995915639
314 => 0.0080361308599706
315 => 0.0083725618310164
316 => 0.0083935446180059
317 => 0.0084465613514248
318 => 0.008514702836395
319 => 0.0081418536548623
320 => 0.0080185696970502
321 => 0.0079601509183052
322 => 0.0077802436906833
323 => 0.0079742582115935
324 => 0.0078612142587893
325 => 0.0078764677501539
326 => 0.0078665338938921
327 => 0.0078719584511354
328 => 0.00758395653789
329 => 0.0076888892981417
330 => 0.0075144182321797
331 => 0.0072808210601527
401 => 0.0072800379605224
402 => 0.0073372105374391
403 => 0.0073032020515259
404 => 0.0072116860903715
405 => 0.0072246855007104
406 => 0.00711079698752
407 => 0.0072385136282298
408 => 0.0072421760844932
409 => 0.0071929982210475
410 => 0.0073897633275611
411 => 0.0074703781522448
412 => 0.0074380082290329
413 => 0.0074681069921406
414 => 0.0077209899176342
415 => 0.0077622208685452
416 => 0.0077805329333762
417 => 0.0077559971923864
418 => 0.0074727292277949
419 => 0.0074852933665729
420 => 0.0073931060526568
421 => 0.0073152174868575
422 => 0.0073183326210178
423 => 0.0073583774686434
424 => 0.0075332556668239
425 => 0.0079012765252618
426 => 0.0079152426478197
427 => 0.0079321699957805
428 => 0.0078633179646205
429 => 0.0078425515331975
430 => 0.0078699478165152
501 => 0.008008157101327
502 => 0.0083636689053178
503 => 0.0082380072899524
504 => 0.0081358424406208
505 => 0.0082254685569302
506 => 0.0082116713188371
507 => 0.0080952087442815
508 => 0.0080919400277044
509 => 0.0078684111117949
510 => 0.0077857775610903
511 => 0.0077167227811075
512 => 0.0076413167640869
513 => 0.0075966135495645
514 => 0.0076652980043185
515 => 0.0076810069517714
516 => 0.0075308271910529
517 => 0.0075103582446002
518 => 0.0076329982790582
519 => 0.0075790289723746
520 => 0.0076345377426731
521 => 0.0076474162535278
522 => 0.0076453425166629
523 => 0.0075889923621498
524 => 0.0076249082702507
525 => 0.0075399564405446
526 => 0.0074475840850915
527 => 0.0073886562773136
528 => 0.0073372339493878
529 => 0.0073657660456043
530 => 0.0072640543323476
531 => 0.0072315147082245
601 => 0.0076127407687196
602 => 0.0078943565584782
603 => 0.007890261753363
604 => 0.0078653356803227
605 => 0.0078283005918541
606 => 0.0080054477539282
607 => 0.0079437332248309
608 => 0.0079886357011707
609 => 0.0080000652659501
610 => 0.0080346591161729
611 => 0.0080470234441856
612 => 0.0080096498573532
613 => 0.0078842195351443
614 => 0.0075716590977569
615 => 0.0074261613704123
616 => 0.0073781446969323
617 => 0.0073798900118166
618 => 0.0073317464358774
619 => 0.0073459268766352
620 => 0.0073268150572817
621 => 0.0072906218950718
622 => 0.0073635312198275
623 => 0.0073719333403082
624 => 0.0073549154327087
625 => 0.0073589237660056
626 => 0.007218022759525
627 => 0.0072287351570268
628 => 0.007169087166471
629 => 0.0071579038873091
630 => 0.0070071189613287
701 => 0.0067399816083301
702 => 0.0068880016335416
703 => 0.0067092142578512
704 => 0.0066415047696065
705 => 0.0069620309559713
706 => 0.0069298590168728
707 => 0.006874794641942
708 => 0.006793342954998
709 => 0.0067631317319993
710 => 0.0065795779047707
711 => 0.0065687325654365
712 => 0.0066597067985812
713 => 0.0066177253202171
714 => 0.0065587674249648
715 => 0.0063452279048269
716 => 0.0061051387836865
717 => 0.0061123855651073
718 => 0.0061887534475251
719 => 0.0064108033652672
720 => 0.0063240446209028
721 => 0.0062611001564245
722 => 0.0062493125503314
723 => 0.0063968591196117
724 => 0.0066056684271053
725 => 0.0067036370823364
726 => 0.0066065531203547
727 => 0.0064950282922019
728 => 0.0065018162917352
729 => 0.0065469738115534
730 => 0.0065517192283933
731 => 0.0064791280302034
801 => 0.0064995620272885
802 => 0.0064685209171924
803 => 0.00627802168183
804 => 0.0062745761547419
805 => 0.0062278245701689
806 => 0.0062264089507682
807 => 0.0061468728426801
808 => 0.0061357451913515
809 => 0.0059778214212459
810 => 0.0060817673249666
811 => 0.0060120458701556
812 => 0.0059069591921269
813 => 0.0058888422092252
814 => 0.0058882975908423
815 => 0.0059961981122265
816 => 0.0060805064445515
817 => 0.0060132587047124
818 => 0.0059979476978937
819 => 0.006161429193857
820 => 0.0061406246833288
821 => 0.006122608111386
822 => 0.0065869718438598
823 => 0.0062193917148529
824 => 0.0060591057978656
825 => 0.0058607215381237
826 => 0.005925316453436
827 => 0.005938927551189
828 => 0.0054618491679604
829 => 0.0052682985273009
830 => 0.0052018792412286
831 => 0.0051636540030631
901 => 0.0051810737240975
902 => 0.0050068554462781
903 => 0.0051239330102771
904 => 0.0049730747079899
905 => 0.0049477828226761
906 => 0.0052175361549231
907 => 0.0052550707552291
908 => 0.0050949364892372
909 => 0.0051977686113868
910 => 0.0051604802544219
911 => 0.0049756607405931
912 => 0.0049686019946051
913 => 0.0048758660592858
914 => 0.0047307522777266
915 => 0.0046644313856315
916 => 0.004629890889204
917 => 0.0046441429712108
918 => 0.0046369366824273
919 => 0.0045899107735929
920 => 0.0046396321524751
921 => 0.0045126145757233
922 => 0.0044620351532106
923 => 0.0044391896014953
924 => 0.0043264541912692
925 => 0.0045058663626034
926 => 0.0045412128205313
927 => 0.0045766289219003
928 => 0.0048849019047183
929 => 0.0048695014576671
930 => 0.0050087139986878
1001 => 0.0050033044553392
1002 => 0.0049635987835464
1003 => 0.0047960870855187
1004 => 0.0048628542627437
1005 => 0.0046573552691685
1006 => 0.0048113290877283
1007 => 0.004741061867038
1008 => 0.0047875716697304
1009 => 0.0047039428508696
1010 => 0.0047502264921765
1011 => 0.0045495947769731
1012 => 0.0043622477042806
1013 => 0.0044376416353341
1014 => 0.004519603460731
1015 => 0.0046973175816763
1016 => 0.0045914725173509
1017 => 0.0046295384049273
1018 => 0.004502024053699
1019 => 0.0042389255244414
1020 => 0.0042404146335445
1021 => 0.0041999426567313
1022 => 0.0041649689597593
1023 => 0.0046036300962419
1024 => 0.0045490756497139
1025 => 0.004462150279081
1026 => 0.00457850334195
1027 => 0.004609268938544
1028 => 0.0046101447918277
1029 => 0.0046950329829898
1030 => 0.00474033782583
1031 => 0.004748323000743
1101 => 0.0048818964036672
1102 => 0.0049266684464516
1103 => 0.0051110781543039
1104 => 0.0047364940264423
1105 => 0.0047287797128309
1106 => 0.004580140668155
1107 => 0.0044858714361311
1108 => 0.0045865953631225
1109 => 0.0046758230122496
1110 => 0.0045829132199344
1111 => 0.004595045277378
1112 => 0.0044703214722038
1113 => 0.0045149043637531
1114 => 0.0045533051559194
1115 => 0.0045321024955794
1116 => 0.0045003610868301
1117 => 0.0046685073625599
1118 => 0.0046590198907127
1119 => 0.0048156015683384
1120 => 0.0049376681833109
1121 => 0.0051564333793591
1122 => 0.0049281404927952
1123 => 0.0049198205926268
1124 => 0.0050011489513271
1125 => 0.0049266559955036
1126 => 0.0049737329721746
1127 => 0.0051488485506101
1128 => 0.005152548466839
1129 => 0.0050905701029333
1130 => 0.005086798713857
1201 => 0.0050987023366141
1202 => 0.0051684222269053
1203 => 0.0051440599549617
1204 => 0.0051722525928321
1205 => 0.00520750791819
1206 => 0.0053533388918184
1207 => 0.0053884982458517
1208 => 0.0053030792435856
1209 => 0.0053107916230943
1210 => 0.0052788425714427
1211 => 0.0052479801878677
1212 => 0.0053173543190551
1213 => 0.0054441369073519
1214 => 0.0054433481994501
1215 => 0.0054727592956336
1216 => 0.0054910821649013
1217 => 0.0054124269968445
1218 => 0.0053612253746702
1219 => 0.0053808593346557
1220 => 0.0054122544642445
1221 => 0.005370678317263
1222 => 0.0051140510781484
1223 => 0.0051918953890843
1224 => 0.0051789382893522
1225 => 0.0051604858036966
1226 => 0.0052387588602949
1227 => 0.0052312092330376
1228 => 0.0050050685860281
1229 => 0.0050195453765381
1230 => 0.0050059489676076
1231 => 0.0050498817464255
]
'min_raw' => 0.0041649689597593
'max_raw' => 0.0093300446175126
'avg_raw' => 0.0067475067886359
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004164'
'max' => '$0.00933'
'avg' => '$0.006747'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0010156492695784
'max_diff' => -0.0067799499620772
'year' => 2034
]
9 => [
'items' => [
101 => 0.0049242834812724
102 => 0.0049629166617163
103 => 0.0049871470303271
104 => 0.0050014189035853
105 => 0.0050529786961092
106 => 0.0050469287495574
107 => 0.005052602622937
108 => 0.0051290521839694
109 => 0.0055157078293498
110 => 0.0055367526430202
111 => 0.0054331202837279
112 => 0.0054745193672073
113 => 0.0053950421799112
114 => 0.0054483957481939
115 => 0.0054848989045793
116 => 0.0053199481600272
117 => 0.0053101808474563
118 => 0.0052303756295366
119 => 0.005273258433248
120 => 0.0052050288091604
121 => 0.0052217699723406
122 => 0.0051749602206205
123 => 0.0052592084539881
124 => 0.005353411069745
125 => 0.0053772103706592
126 => 0.0053146046561972
127 => 0.005269273993009
128 => 0.0051896882812993
129 => 0.0053220410935558
130 => 0.0053607450892384
131 => 0.0053218377979432
201 => 0.005312822128409
202 => 0.0052957374509327
203 => 0.0053164467235001
204 => 0.0053605342989658
205 => 0.0053397434125459
206 => 0.0053534761593145
207 => 0.0053011410897794
208 => 0.0054124530349779
209 => 0.0055892431926316
210 => 0.0055898116018966
211 => 0.005569020603406
212 => 0.005560513374772
213 => 0.0055818462009266
214 => 0.0055934183839971
215 => 0.0056624048320098
216 => 0.0057364300392688
217 => 0.0060818733818181
218 => 0.0059848742735441
219 => 0.0062913721575703
220 => 0.0065337721900658
221 => 0.0066064573609425
222 => 0.0065395904238375
223 => 0.0063108422440825
224 => 0.0062996187670829
225 => 0.0066414651226273
226 => 0.006544877869631
227 => 0.0065333891232252
228 => 0.0064111682720107
301 => 0.0064834159324254
302 => 0.0064676143092835
303 => 0.0064426706741121
304 => 0.0065805141773677
305 => 0.0068385449100876
306 => 0.0067983284005964
307 => 0.0067683086418513
308 => 0.0066367707976508
309 => 0.0067159859599006
310 => 0.0066877789578899
311 => 0.0068089741391336
312 => 0.0067371807985668
313 => 0.0065441461261934
314 => 0.0065748875340195
315 => 0.0065702410320697
316 => 0.0066658657129415
317 => 0.0066371615572943
318 => 0.0065646360849943
319 => 0.0068376629890947
320 => 0.0068199341405979
321 => 0.0068450695943874
322 => 0.0068561349984853
323 => 0.0070223216637375
324 => 0.0070904030231112
325 => 0.007105858683621
326 => 0.0071705307094247
327 => 0.0071042495847041
328 => 0.0073694213412273
329 => 0.0075457450861144
330 => 0.0077505541893375
331 => 0.0080498353366438
401 => 0.0081623678165364
402 => 0.008142039831283
403 => 0.0083689513815221
404 => 0.0087767063933414
405 => 0.0082244587773336
406 => 0.0088059768579518
407 => 0.0086218749475772
408 => 0.0081853726299309
409 => 0.0081572670266988
410 => 0.0084528714641049
411 => 0.0091084936553991
412 => 0.0089442677324852
413 => 0.0091087622701766
414 => 0.0089168706543178
415 => 0.0089073416182009
416 => 0.0090994425227045
417 => 0.0095482967569523
418 => 0.0093350629353106
419 => 0.0090293399649089
420 => 0.0092550810486772
421 => 0.0090595232305661
422 => 0.0086188767331748
423 => 0.008944142152017
424 => 0.0087266464294631
425 => 0.0087901232440129
426 => 0.0092472669027742
427 => 0.0091922621682999
428 => 0.0092634433880109
429 => 0.0091378103983579
430 => 0.009020449375518
501 => 0.0088013863110432
502 => 0.0087365325373308
503 => 0.0087544557871906
504 => 0.0087365236554583
505 => 0.0086139598841782
506 => 0.0085874922494396
507 => 0.0085433783653017
508 => 0.0085570511026037
509 => 0.0084741040944524
510 => 0.0086306422365603
511 => 0.0086596970951449
512 => 0.0087736125007733
513 => 0.0087854395760855
514 => 0.0091026923592763
515 => 0.0089279548575113
516 => 0.0090451838598053
517 => 0.009034697794438
518 => 0.0081948329587451
519 => 0.0083105589229134
520 => 0.0084905922063511
521 => 0.0084094874561918
522 => 0.0082948243150552
523 => 0.0082022276807387
524 => 0.0080619343112573
525 => 0.0082593945347069
526 => 0.0085190337309894
527 => 0.0087920244545732
528 => 0.0091200049218983
529 => 0.0090468034997048
530 => 0.008785893087875
531 => 0.0087975973383545
601 => 0.008869948409366
602 => 0.0087762471986181
603 => 0.0087486128823036
604 => 0.0088661518786582
605 => 0.0088669613051278
606 => 0.0087591467379927
607 => 0.0086393305764796
608 => 0.008638828542388
609 => 0.0086175084137336
610 => 0.0089206634578425
611 => 0.0090873680796704
612 => 0.009106480495905
613 => 0.009086081661778
614 => 0.0090939323634327
615 => 0.0089969306170768
616 => 0.0092186478442722
617 => 0.0094221174975078
618 => 0.0093675832839455
619 => 0.0092858287453204
620 => 0.0092207073174735
621 => 0.0093522427451335
622 => 0.0093463856795958
623 => 0.0094203403675898
624 => 0.0094169853557594
625 => 0.0093921171757635
626 => 0.0093675841720666
627 => 0.0094648547586402
628 => 0.0094368423918248
629 => 0.0094087865140665
630 => 0.0093525161560823
701 => 0.0093601642322841
702 => 0.0092784238097327
703 => 0.0092406069500732
704 => 0.008671932116128
705 => 0.0085199636185116
706 => 0.0085677760014657
707 => 0.0085835170793822
708 => 0.0085173801944666
709 => 0.0086122034982638
710 => 0.0085974253868097
711 => 0.0086549183735714
712 => 0.008618999251498
713 => 0.008620473384797
714 => 0.0087261038640506
715 => 0.0087567688415622
716 => 0.0087411723865031
717 => 0.0087520956090113
718 => 0.0090038166613082
719 => 0.0089680299772577
720 => 0.0089490190146109
721 => 0.0089542851811873
722 => 0.0090186053070094
723 => 0.0090366114304909
724 => 0.0089603182200319
725 => 0.0089962985391302
726 => 0.0091494981712683
727 => 0.0092031093721684
728 => 0.0093742105906052
729 => 0.0093015237519316
730 => 0.0094349435901297
731 => 0.009845030686576
801 => 0.010172636635086
802 => 0.0098713566659477
803 => 0.01047296327002
804 => 0.010941400306633
805 => 0.010923420912945
806 => 0.010841738080467
807 => 0.010308434968327
808 => 0.0098176814934345
809 => 0.010228217613676
810 => 0.010229264154674
811 => 0.010193998737858
812 => 0.0099749682627627
813 => 0.010186376952101
814 => 0.010203157806137
815 => 0.010193764990266
816 => 0.010025834838555
817 => 0.0097694365355704
818 => 0.0098195361502427
819 => 0.0099016003410804
820 => 0.0097462357074411
821 => 0.0096965872931182
822 => 0.0097888931413417
823 => 0.010086321817005
824 => 0.010030094648758
825 => 0.010028626330163
826 => 0.010269189999955
827 => 0.010096998329273
828 => 0.0098201680668249
829 => 0.0097502647746142
830 => 0.009502155179766
831 => 0.0096735253606637
901 => 0.0096796926683897
902 => 0.0095858349716729
903 => 0.0098277841016342
904 => 0.0098255544978073
905 => 0.01005524918733
906 => 0.010494339164312
907 => 0.010364478651813
908 => 0.01021346500456
909 => 0.010229884375171
910 => 0.010409964344309
911 => 0.010301083884142
912 => 0.01034023805676
913 => 0.01040990507978
914 => 0.010451936924502
915 => 0.010223836639548
916 => 0.010170655551828
917 => 0.010061865710377
918 => 0.010033484471401
919 => 0.010122091527288
920 => 0.010098746698595
921 => 0.0096791743300564
922 => 0.0096353266830654
923 => 0.0096366714277986
924 => 0.0095264144345979
925 => 0.0093582460552565
926 => 0.0098001825153536
927 => 0.009764688832711
928 => 0.0097255065540664
929 => 0.0097303061596294
930 => 0.0099221357983412
1001 => 0.0098108649202594
1002 => 0.010106696786578
1003 => 0.010045882648383
1004 => 0.0099835088570157
1005 => 0.0099748868990966
1006 => 0.009950878310902
1007 => 0.0098685439287807
1008 => 0.0097691202148399
1009 => 0.0097034720669615
1010 => 0.0089509400581793
1011 => 0.0090906056217319
1012 => 0.0092512781216826
1013 => 0.0093067416248109
1014 => 0.0092118674647523
1015 => 0.0098722901388846
1016 => 0.0099929557254398
1017 => 0.0096274517929427
1018 => 0.0095590809305997
1019 => 0.0098767725212373
1020 => 0.0096851656558654
1021 => 0.0097714462156101
1022 => 0.0095849548383849
1023 => 0.0099638909191395
1024 => 0.0099610040610957
1025 => 0.0098135893670226
1026 => 0.009938183257001
1027 => 0.0099165320025122
1028 => 0.00975010117597
1029 => 0.0099691670731982
1030 => 0.0099692757271501
1031 => 0.0098273922891766
1101 => 0.0096617034959019
1102 => 0.009632082253059
1103 => 0.009609766625631
1104 => 0.0097659579392356
1105 => 0.009905998582616
1106 => 0.010166579500927
1107 => 0.010232095735041
1108 => 0.010487809958448
1109 => 0.010335544588908
1110 => 0.010403041855058
1111 => 0.010476319685536
1112 => 0.010511451772169
1113 => 0.010454205922291
1114 => 0.010851435367416
1115 => 0.01088497370338
1116 => 0.010896218817324
1117 => 0.010762275283414
1118 => 0.0108812484914
1119 => 0.010825584867362
1120 => 0.010970406153309
1121 => 0.010993115980117
1122 => 0.010973881564736
1123 => 0.010981090022215
1124 => 0.010642124766878
1125 => 0.010624547630204
1126 => 0.010384882124445
1127 => 0.01048254758956
1128 => 0.010299966683755
1129 => 0.010357864969778
1130 => 0.010383385982581
1201 => 0.010370055253797
1202 => 0.010488069448421
1203 => 0.010387733274284
1204 => 0.010122929613941
1205 => 0.0098580538080171
1206 => 0.0098547285080369
1207 => 0.0097849913837836
1208 => 0.0097345842159398
1209 => 0.0097442944247569
1210 => 0.0097785144671507
1211 => 0.0097325952848673
1212 => 0.0097423944705691
1213 => 0.0099051262448516
1214 => 0.0099377609416341
1215 => 0.0098268554907682
1216 => 0.0093815541019613
1217 => 0.0092722760241942
1218 => 0.0093508229394147
1219 => 0.0093132825730085
1220 => 0.0075165459083202
1221 => 0.0079386625363171
1222 => 0.0076878551696876
1223 => 0.0078034387433225
1224 => 0.0075474293682465
1225 => 0.0076696104606338
1226 => 0.0076470480742089
1227 => 0.0083257991206888
1228 => 0.0083152013566896
1229 => 0.0083202739454948
1230 => 0.0080781460652605
1231 => 0.0084638623529621
]
'min_raw' => 0.0049242834812724
'max_raw' => 0.010993115980117
'avg_raw' => 0.0079586997306947
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.004924'
'max' => '$0.010993'
'avg' => '$0.007958'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00075931452151312
'max_diff' => 0.0016630713626044
'year' => 2035
]
10 => [
'items' => [
101 => 0.008653880066193
102 => 0.0086187128446316
103 => 0.0086275636766506
104 => 0.0084754770583557
105 => 0.0083217464764048
106 => 0.0081512356020543
107 => 0.0084680237308165
108 => 0.0084328022986518
109 => 0.0085135875917662
110 => 0.0087190473377516
111 => 0.0087493020658136
112 => 0.0087899647271421
113 => 0.0087753900576212
114 => 0.00912261781546
115 => 0.0090805662429032
116 => 0.0091818984337019
117 => 0.0089734504291371
118 => 0.0087375717259057
119 => 0.0087824045559342
120 => 0.0087780867938796
121 => 0.0087231167272281
122 => 0.0086734922089328
123 => 0.0085908813675924
124 => 0.0088522742936973
125 => 0.008841662218257
126 => 0.0090134593844475
127 => 0.0089830925665747
128 => 0.0087802955247992
129 => 0.00878753846082
130 => 0.008836250686396
131 => 0.009004844255301
201 => 0.0090548943052775
202 => 0.0090317091279787
203 => 0.0090865867229064
204 => 0.0091299597363974
205 => 0.0090920337056182
206 => 0.0096289863225311
207 => 0.009406006159783
208 => 0.0095146851396205
209 => 0.009540604435938
210 => 0.0094742127034448
211 => 0.0094886106929128
212 => 0.0095104197237397
213 => 0.0096428398882742
214 => 0.0099903487160961
215 => 0.010144258010366
216 => 0.010607301715927
217 => 0.010131477985998
218 => 0.010103244575018
219 => 0.01018665272897
220 => 0.010458508402288
221 => 0.010678821891408
222 => 0.010751912585939
223 => 0.010761572727817
224 => 0.010898695729735
225 => 0.010977292077242
226 => 0.010882045390609
227 => 0.010801333796432
228 => 0.010512234884381
229 => 0.010545698870641
301 => 0.010776232551335
302 => 0.011101874953681
303 => 0.011381310012211
304 => 0.011283461594009
305 => 0.012029975954675
306 => 0.012103989804297
307 => 0.012093763483434
308 => 0.012262378047611
309 => 0.011927712475478
310 => 0.011784636459551
311 => 0.010818784559209
312 => 0.011090149546618
313 => 0.011484594492524
314 => 0.011432388224841
315 => 0.01114593176158
316 => 0.011381092709297
317 => 0.011303341145819
318 => 0.011242015261788
319 => 0.011522961025139
320 => 0.011214049617719
321 => 0.01148151286493
322 => 0.011138488483829
323 => 0.011283908557341
324 => 0.011201361090438
325 => 0.011254779418162
326 => 0.010942496965807
327 => 0.01111099699687
328 => 0.010935486810538
329 => 0.010935403595858
330 => 0.010931529198767
331 => 0.011138016154654
401 => 0.011144749686873
402 => 0.010992155514487
403 => 0.010970164310278
404 => 0.011051477318298
405 => 0.010956281081817
406 => 0.011000822801708
407 => 0.010957630205137
408 => 0.010947906641874
409 => 0.010870427635462
410 => 0.010837047549171
411 => 0.010850136741104
412 => 0.010805456581093
413 => 0.010778535168535
414 => 0.010926173852207
415 => 0.010847296459248
416 => 0.010914084760475
417 => 0.010837971061872
418 => 0.010574127821353
419 => 0.010422388783639
420 => 0.0099240133605809
421 => 0.010065352012327
422 => 0.010159059684661
423 => 0.010128089299514
424 => 0.010194625670758
425 => 0.010198710463566
426 => 0.010177078811017
427 => 0.010152032128551
428 => 0.010139840788695
429 => 0.010230705047804
430 => 0.010283454808568
501 => 0.010168464503226
502 => 0.01014152388357
503 => 0.010257785431059
504 => 0.010328704907865
505 => 0.010852334478389
506 => 0.010813542308503
507 => 0.010910903042337
508 => 0.01089994171783
509 => 0.011001991277669
510 => 0.011168799178644
511 => 0.010829632075739
512 => 0.010888499757287
513 => 0.010874066761225
514 => 0.011031642427699
515 => 0.01103213436173
516 => 0.01093765987819
517 => 0.01098887602839
518 => 0.01096028857839
519 => 0.011011949964366
520 => 0.010813024215424
521 => 0.011055294304928
522 => 0.011192645834137
523 => 0.011194552960253
524 => 0.011259656495009
525 => 0.011325805456864
526 => 0.011452772628783
527 => 0.011322264411351
528 => 0.011087492832908
529 => 0.011104442582564
530 => 0.010966796092023
531 => 0.010969109954397
601 => 0.010956758375704
602 => 0.010993826393144
603 => 0.010821158560736
604 => 0.010861683355879
605 => 0.010804948405366
606 => 0.010888376426585
607 => 0.0107986216669
608 => 0.010874059801197
609 => 0.010906616399146
610 => 0.011026750946471
611 => 0.010780877696581
612 => 0.010279525495901
613 => 0.010384915806792
614 => 0.010229035258754
615 => 0.010243462596954
616 => 0.010272608116212
617 => 0.010178137952476
618 => 0.01019615988262
619 => 0.010195516012457
620 => 0.010189967487238
621 => 0.01016539214904
622 => 0.01012975304657
623 => 0.010271728261673
624 => 0.010295852617288
625 => 0.010349478071444
626 => 0.01050903104852
627 => 0.010493087943592
628 => 0.010519091809203
629 => 0.01046232551658
630 => 0.010246095822459
701 => 0.010257838135162
702 => 0.010111411307595
703 => 0.010345733608251
704 => 0.010290242994553
705 => 0.010254467834913
706 => 0.010244706251151
707 => 0.010404654729196
708 => 0.010452513820713
709 => 0.010422691246584
710 => 0.010361524276982
711 => 0.010478982941009
712 => 0.010510409924319
713 => 0.010517445266899
714 => 0.010725559499089
715 => 0.010529076540618
716 => 0.010576371941595
717 => 0.010945357158947
718 => 0.010610738483288
719 => 0.010787993458671
720 => 0.010779317750017
721 => 0.010869995397442
722 => 0.010771879536246
723 => 0.010773095799936
724 => 0.010853611407813
725 => 0.010740541757616
726 => 0.010712544122125
727 => 0.010673865589217
728 => 0.010758318750796
729 => 0.010808944601674
730 => 0.011216951779164
731 => 0.01148054302321
801 => 0.011469099832133
802 => 0.011573669177816
803 => 0.01152655972984
804 => 0.011374430895483
805 => 0.011634096265596
806 => 0.011551927277632
807 => 0.011558701189164
808 => 0.011558449063839
809 => 0.011613084257498
810 => 0.011574370215548
811 => 0.011498060864952
812 => 0.011548718573086
813 => 0.011699153855783
814 => 0.012166109589193
815 => 0.01242742420395
816 => 0.012150378121269
817 => 0.012341480799308
818 => 0.012226887289331
819 => 0.012206062239707
820 => 0.012326088843892
821 => 0.012446325538759
822 => 0.012438666981094
823 => 0.012351381314843
824 => 0.012302075856769
825 => 0.012675433303841
826 => 0.012950516710866
827 => 0.012931757866689
828 => 0.013014553304181
829 => 0.013257643269425
830 => 0.013279868369344
831 => 0.013277068517592
901 => 0.013221981288493
902 => 0.013461334928496
903 => 0.013661007946013
904 => 0.01320923018658
905 => 0.013381261243167
906 => 0.013458491526963
907 => 0.013571888496769
908 => 0.01376320819237
909 => 0.013971032126837
910 => 0.014000420709844
911 => 0.013979568103827
912 => 0.013842502632439
913 => 0.014069906061387
914 => 0.014203113656798
915 => 0.014282435731464
916 => 0.014483583314882
917 => 0.013458968474904
918 => 0.012733695164505
919 => 0.012620433264013
920 => 0.012850755792468
921 => 0.012911490006434
922 => 0.012887008120939
923 => 0.012070647071121
924 => 0.012616135292036
925 => 0.013203034751787
926 => 0.01322557995026
927 => 0.0135193940913
928 => 0.013615072019472
929 => 0.013851630914109
930 => 0.013836834090842
1001 => 0.013894432417212
1002 => 0.013881191559443
1003 => 0.014319367098407
1004 => 0.014802739787582
1005 => 0.014786002128386
1006 => 0.014716511585312
1007 => 0.014819716891676
1008 => 0.015318609308269
1009 => 0.015272679289138
1010 => 0.015317296390414
1011 => 0.015905518665923
1012 => 0.016670291297726
1013 => 0.016314977628336
1014 => 0.017085906052158
1015 => 0.017571164629793
1016 => 0.018410369163141
1017 => 0.018305296622396
1018 => 0.018631992788861
1019 => 0.018117194845162
1020 => 0.0169351147086
1021 => 0.016748046002168
1022 => 0.017122562289779
1023 => 0.018043274038106
1024 => 0.01709356580029
1025 => 0.017285690539897
1026 => 0.017230358601965
1027 => 0.017227410198138
1028 => 0.017339938780182
1029 => 0.017176710202832
1030 => 0.016511687614445
1031 => 0.0168164635477
1101 => 0.016698774923328
1102 => 0.016829359226337
1103 => 0.017534068852613
1104 => 0.017222499928657
1105 => 0.016894287377074
1106 => 0.017305938752955
1107 => 0.017830112413212
1108 => 0.017797310567584
1109 => 0.017733661276958
1110 => 0.018092448995652
1111 => 0.018685061191996
1112 => 0.018845241887359
1113 => 0.018963484001926
1114 => 0.018979787591808
1115 => 0.019147724700216
1116 => 0.018244684542705
1117 => 0.019677832464391
1118 => 0.019925297520554
1119 => 0.019878784346371
1120 => 0.020153831341375
1121 => 0.020072905538176
1122 => 0.01995565674621
1123 => 0.020391664737464
1124 => 0.019891816759522
1125 => 0.019182345483943
1126 => 0.01879311551041
1127 => 0.019305684937845
1128 => 0.019618693200972
1129 => 0.019825571751834
1130 => 0.019888173076325
1201 => 0.018314784979507
1202 => 0.017466816059426
1203 => 0.018010354415215
1204 => 0.01867350872229
1205 => 0.018241000687046
1206 => 0.018257954183181
1207 => 0.017641311386036
1208 => 0.018728067927023
1209 => 0.018569736640062
1210 => 0.019391159636897
1211 => 0.019195120446371
1212 => 0.019864959012833
1213 => 0.019688568069549
1214 => 0.020420757013237
1215 => 0.020712847006099
1216 => 0.021203311564291
1217 => 0.021564099289847
1218 => 0.021775960743063
1219 => 0.021763241376084
1220 => 0.022602742002683
1221 => 0.022107717813096
1222 => 0.021485850762731
1223 => 0.021474603149755
1224 => 0.021796676907063
1225 => 0.022471655145761
1226 => 0.022646667182522
1227 => 0.02274447503549
1228 => 0.022594678903953
1229 => 0.02205736562486
1230 => 0.021825356475187
1231 => 0.02202303499266
]
'min_raw' => 0.0081512356020543
'max_raw' => 0.02274447503549
'avg_raw' => 0.015447855318772
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.008151'
'max' => '$0.022744'
'avg' => '$0.015447'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.003226952120782
'max_diff' => 0.011751359055373
'year' => 2036
]
11 => [
'items' => [
101 => 0.021781291152499
102 => 0.022198608841959
103 => 0.022771675163835
104 => 0.022653339234518
105 => 0.023048918504313
106 => 0.023458301432398
107 => 0.024043737406097
108 => 0.024196792048253
109 => 0.024449785551591
110 => 0.024710198970561
111 => 0.024793836742397
112 => 0.024953527200106
113 => 0.024952685552569
114 => 0.025433923495284
115 => 0.025964743848797
116 => 0.026165116243729
117 => 0.026625861517276
118 => 0.025836851382766
119 => 0.026435324633287
120 => 0.026975162486014
121 => 0.026331545543091
122 => 0.027218621555396
123 => 0.027253064706797
124 => 0.027773115400149
125 => 0.027245944392779
126 => 0.026932911931392
127 => 0.027836624918243
128 => 0.028273903165888
129 => 0.028142191399009
130 => 0.027139858349647
131 => 0.026556457522832
201 => 0.025029585029441
202 => 0.026838231453845
203 => 0.027719170368233
204 => 0.027137576930678
205 => 0.027430898831311
206 => 0.029031168011219
207 => 0.029640446905172
208 => 0.029513721154411
209 => 0.029535135720206
210 => 0.029863891552188
211 => 0.031321775960343
212 => 0.030448177829481
213 => 0.031116010867428
214 => 0.031470227102704
215 => 0.031799242882713
216 => 0.030991284113515
217 => 0.02994014162606
218 => 0.029607200676323
219 => 0.027079748925267
220 => 0.026948184085458
221 => 0.02687433275405
222 => 0.026408710556004
223 => 0.026042859052994
224 => 0.025751920354605
225 => 0.024988410328382
226 => 0.02524607254916
227 => 0.024029196924288
228 => 0.024807710825657
301 => 0.022865547945872
302 => 0.024483038903839
303 => 0.023602712113707
304 => 0.024193827876967
305 => 0.024191765529756
306 => 0.02310333399617
307 => 0.022475549402584
308 => 0.022875598179359
309 => 0.023304482223973
310 => 0.023374067217272
311 => 0.023930126576133
312 => 0.024085310790735
313 => 0.023615095375632
314 => 0.022825300937058
315 => 0.023008752171845
316 => 0.022471831769166
317 => 0.021530899415816
318 => 0.022206693459095
319 => 0.022437439258037
320 => 0.022539349748148
321 => 0.021614050845439
322 => 0.021323301840991
323 => 0.021168509510644
324 => 0.022705856468124
325 => 0.022790075804819
326 => 0.022359197770872
327 => 0.024306807341846
328 => 0.023866003312919
329 => 0.024358489412839
330 => 0.022992105895133
331 => 0.023044303585589
401 => 0.02239743573104
402 => 0.022759638505862
403 => 0.022503645258958
404 => 0.022730376101014
405 => 0.022866277632895
406 => 0.023513039342795
407 => 0.024490423883658
408 => 0.023416434710938
409 => 0.022948482248576
410 => 0.023238797324361
411 => 0.02401194462845
412 => 0.025183302370827
413 => 0.024489835011568
414 => 0.024797584049768
415 => 0.024864813523812
416 => 0.024353476366652
417 => 0.025202156101175
418 => 0.025656970465567
419 => 0.026123515892862
420 => 0.026528604215076
421 => 0.025937167389647
422 => 0.026570089571995
423 => 0.026060066018828
424 => 0.025602522166371
425 => 0.025603216071529
426 => 0.025316192129234
427 => 0.024760047073692
428 => 0.024657485392654
429 => 0.025191024209525
430 => 0.025618871814342
501 => 0.025654111392327
502 => 0.025890989809957
503 => 0.026031172017469
504 => 0.027405148219554
505 => 0.02795777281416
506 => 0.028633511707797
507 => 0.028896750089425
508 => 0.029689003241944
509 => 0.02904919447763
510 => 0.028910767826885
511 => 0.026989020822905
512 => 0.027303706787148
513 => 0.027807549378581
514 => 0.026997329001661
515 => 0.027511227343793
516 => 0.027612681762386
517 => 0.026969798023288
518 => 0.027313190005706
519 => 0.026401242709029
520 => 0.024510301842661
521 => 0.025204261258913
522 => 0.025715248973488
523 => 0.024986006500459
524 => 0.026293145407783
525 => 0.025529541842948
526 => 0.025287516172331
527 => 0.024343287742871
528 => 0.024788927214891
529 => 0.02539166098174
530 => 0.025019241589149
531 => 0.025792067747829
601 => 0.02688659569373
602 => 0.027666621488244
603 => 0.027726502183128
604 => 0.027224997854925
605 => 0.028028661741429
606 => 0.028034515555462
607 => 0.027127979408422
608 => 0.026572731065975
609 => 0.026446577474318
610 => 0.026761733880145
611 => 0.027144391937901
612 => 0.027747737042169
613 => 0.028112325852495
614 => 0.029062980106862
615 => 0.0293201998907
616 => 0.029602806448973
617 => 0.02998045596346
618 => 0.030433921032949
619 => 0.029441765276687
620 => 0.029481185474493
621 => 0.028557303771593
622 => 0.027570003674005
623 => 0.028319241379379
624 => 0.029298770012241
625 => 0.02907406506158
626 => 0.029048781164325
627 => 0.029091301666339
628 => 0.028921881471718
629 => 0.028155600210452
630 => 0.027770778558219
701 => 0.028267296668074
702 => 0.028531173945983
703 => 0.028940424591503
704 => 0.02888997581121
705 => 0.029944161523759
706 => 0.030353786214734
707 => 0.030248986689954
708 => 0.030268272324655
709 => 0.03100987826144
710 => 0.031834696586039
711 => 0.03260724779139
712 => 0.033393120059319
713 => 0.032445720367214
714 => 0.031964689231052
715 => 0.032460990576632
716 => 0.03219764609672
717 => 0.033710901591342
718 => 0.033815676118526
719 => 0.035328822187552
720 => 0.03676497798914
721 => 0.035862954261566
722 => 0.036713522008627
723 => 0.03763348037488
724 => 0.039408229321246
725 => 0.03881055631253
726 => 0.038352748154584
727 => 0.037920121657439
728 => 0.038820348720477
729 => 0.039978476455597
730 => 0.040227926077333
731 => 0.040632129761634
801 => 0.040207159011266
802 => 0.040718989471091
803 => 0.042525975903974
804 => 0.042037712219099
805 => 0.041344299294271
806 => 0.042770741538211
807 => 0.043286965441138
808 => 0.046910095140442
809 => 0.051484446049836
810 => 0.049590634736539
811 => 0.048415084941467
812 => 0.048691367027723
813 => 0.050361765128283
814 => 0.050898243982397
815 => 0.049439909521564
816 => 0.0499550179072
817 => 0.052793315756395
818 => 0.05431597148899
819 => 0.052248000484178
820 => 0.046542550498818
821 => 0.041281865047186
822 => 0.042677235720712
823 => 0.042519043989728
824 => 0.04556844094382
825 => 0.042026067291694
826 => 0.042085711779072
827 => 0.045198167032807
828 => 0.044367817332102
829 => 0.043022757160115
830 => 0.041291685474974
831 => 0.038091639360241
901 => 0.035257269276534
902 => 0.04081612172713
903 => 0.040576413901343
904 => 0.040229281446894
905 => 0.041001787160615
906 => 0.044752855626875
907 => 0.044666381357704
908 => 0.044116276176797
909 => 0.04453352610811
910 => 0.042949611229782
911 => 0.043357822158999
912 => 0.041281031727733
913 => 0.042219827737095
914 => 0.043019871265083
915 => 0.043180491848174
916 => 0.043542378223367
917 => 0.040450098769561
918 => 0.041838441459765
919 => 0.042653962720142
920 => 0.038969407996842
921 => 0.042581130920009
922 => 0.040396269063971
923 => 0.039654694134508
924 => 0.040653127081962
925 => 0.040264036791331
926 => 0.039929519807595
927 => 0.039742853582939
928 => 0.040475992546527
929 => 0.040441790737585
930 => 0.039242233097015
1001 => 0.037677459055117
1002 => 0.038202648585535
1003 => 0.038011842305456
1004 => 0.03732033573195
1005 => 0.037786327669671
1006 => 0.03573433500907
1007 => 0.032203988289803
1008 => 0.034536243469995
1009 => 0.034446454182563
1010 => 0.03440117835222
1011 => 0.036153803661336
1012 => 0.03598532917781
1013 => 0.035679546340503
1014 => 0.037314719790345
1015 => 0.036717859484966
1016 => 0.038557242308169
1017 => 0.039768778799353
1018 => 0.039461493956089
1019 => 0.040600949881911
1020 => 0.038214747891582
1021 => 0.039007348474962
1022 => 0.0391707023567
1023 => 0.037294542003795
1024 => 0.036012893686874
1025 => 0.035927422355996
1026 => 0.033705220796471
1027 => 0.034892302932585
1028 => 0.035936886087568
1029 => 0.035436611819259
1030 => 0.035278239931181
1031 => 0.0360873275607
1101 => 0.036150200598881
1102 => 0.034716688665377
1103 => 0.035014761189772
1104 => 0.036257773166931
1105 => 0.034983440477187
1106 => 0.032507620222079
1107 => 0.031893582567919
1108 => 0.031811658625895
1109 => 0.030146339807873
1110 => 0.031934615500106
1111 => 0.031153985237637
1112 => 0.033619986883389
1113 => 0.032211419968768
1114 => 0.032150699464345
1115 => 0.03205891151615
1116 => 0.030625502816024
1117 => 0.030939328223476
1118 => 0.031982531674807
1119 => 0.03235475841877
1120 => 0.032315932119811
1121 => 0.031977419408778
1122 => 0.032132388794423
1123 => 0.031633178408346
1124 => 0.031456896830857
1125 => 0.030900503682233
1126 => 0.030082759461286
1127 => 0.030196471810725
1128 => 0.028576306534614
1129 => 0.027693554503509
1130 => 0.027449220375784
1201 => 0.027122486568764
1202 => 0.027486125828692
1203 => 0.02857171680995
1204 => 0.027262263765579
1205 => 0.025017298368456
1206 => 0.025152224614058
1207 => 0.025455363827964
1208 => 0.024890465908317
1209 => 0.02435583743566
1210 => 0.024820653516857
1211 => 0.02386943208324
1212 => 0.025570314393703
1213 => 0.025524310293872
1214 => 0.026158294037356
1215 => 0.026554737082813
1216 => 0.025641064212995
1217 => 0.02541127795707
1218 => 0.025542174651648
1219 => 0.023378743866266
1220 => 0.025981495586784
1221 => 0.026004004291744
1222 => 0.02581127109444
1223 => 0.027197156034672
1224 => 0.030121805526913
1225 => 0.029021434744179
1226 => 0.028595337918221
1227 => 0.0277853275406
1228 => 0.028864618275122
1229 => 0.028781745586269
1230 => 0.028406963858742
1231 => 0.028180294700543
]
'min_raw' => 0.021168509510644
'max_raw' => 0.05431597148899
'avg_raw' => 0.037742240499817
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.021168'
'max' => '$0.054315'
'avg' => '$0.037742'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.013017273908589
'max_diff' => 0.031571496453501
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00066445532482509
]
1 => [
'year' => 2028
'avg' => 0.0011403982301589
]
2 => [
'year' => 2029
'avg' => 0.0031153624280108
]
3 => [
'year' => 2030
'avg' => 0.0024034974736734
]
4 => [
'year' => 2031
'avg' => 0.00236053238131
]
5 => [
'year' => 2032
'avg' => 0.004138756151317
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00066445532482509
'min' => '$0.000664'
'max_raw' => 0.004138756151317
'max' => '$0.004138'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.004138756151317
]
1 => [
'year' => 2033
'avg' => 0.010645306404464
]
2 => [
'year' => 2034
'avg' => 0.0067475067886359
]
3 => [
'year' => 2035
'avg' => 0.0079586997306947
]
4 => [
'year' => 2036
'avg' => 0.015447855318772
]
5 => [
'year' => 2037
'avg' => 0.037742240499817
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.004138756151317
'min' => '$0.004138'
'max_raw' => 0.037742240499817
'max' => '$0.037742'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.037742240499817
]
]
]
]
'prediction_2025_max_price' => '$0.001136'
'last_price' => 0.00110159
'sma_50day_nextmonth' => '$0.000983'
'sma_200day_nextmonth' => '$0.000857'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001059'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001039'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000989'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000936'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000895'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001025'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.001064'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001042'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0010038'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000962'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000942'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000888'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.00071'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000972'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001046'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001012'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000973'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.000876'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000449'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000224'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000112'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '72.44'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 108.57
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000993'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001079'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 197.62
'cci_20_action' => 'SELL'
'adx_14' => 16.95
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000111'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 84.32
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0001094'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 2
'buy_signals' => 30
'sell_pct' => 6.25
'buy_pct' => 93.75
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767692989
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de ELLA para 2026
La previsión del precio de ELLA para 2026 sugiere que el precio medio podría oscilar entre $0.00038 en el extremo inferior y $0.001136 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, ELLA podría potencialmente ganar 3.13% para 2026 si ELLA alcanza el objetivo de precio previsto.
Predicción de precio de ELLA 2027-2032
La predicción del precio de ELLA para 2027-2032 está actualmente dentro de un rango de precios de $0.000664 en el extremo inferior y $0.004138 en el extremo superior. Considerando la volatilidad de precios en el mercado, si ELLA alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de ELLA | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000366 | $0.000664 | $0.000962 |
| 2028 | $0.000661 | $0.00114 | $0.001619 |
| 2029 | $0.001452 | $0.003115 | $0.004778 |
| 2030 | $0.001235 | $0.0024034 | $0.003571 |
| 2031 | $0.00146 | $0.00236 | $0.00326 |
| 2032 | $0.002229 | $0.004138 | $0.006048 |
Predicción de precio de ELLA 2032-2037
La predicción de precio de ELLA para 2032-2037 se estima actualmente entre $0.004138 en el extremo inferior y $0.037742 en el extremo superior. Comparado con el precio actual, ELLA podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de ELLA | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002229 | $0.004138 | $0.006048 |
| 2033 | $0.00518 | $0.010645 | $0.0161099 |
| 2034 | $0.004164 | $0.006747 | $0.00933 |
| 2035 | $0.004924 | $0.007958 | $0.010993 |
| 2036 | $0.008151 | $0.015447 | $0.022744 |
| 2037 | $0.021168 | $0.037742 | $0.054315 |
ELLA Histograma de precios potenciales
Pronóstico de precio de ELLA basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para ELLA es Alcista, con 30 indicadores técnicos mostrando señales alcistas y 2 indicando señales bajistas. La predicción de precio de ELLA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de ELLA
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de ELLA aumentar durante el próximo mes, alcanzando $0.000857 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para ELLA alcance $0.000983 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 72.44, lo que sugiere que el mercado de ELLA está en un estado SELL.
Promedios Móviles y Osciladores Populares de ELLA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001059 | BUY |
| SMA 5 | $0.001039 | BUY |
| SMA 10 | $0.000989 | BUY |
| SMA 21 | $0.000936 | BUY |
| SMA 50 | $0.000895 | BUY |
| SMA 100 | $0.001025 | BUY |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001064 | BUY |
| EMA 5 | $0.001042 | BUY |
| EMA 10 | $0.0010038 | BUY |
| EMA 21 | $0.000962 | BUY |
| EMA 50 | $0.000942 | BUY |
| EMA 100 | $0.000888 | BUY |
| EMA 200 | $0.00071 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.000972 | BUY |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000876 | BUY |
| EMA 50 | $0.000449 | BUY |
| EMA 100 | $0.000224 | BUY |
| EMA 200 | $0.000112 | BUY |
Osciladores de ELLA
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 72.44 | SELL |
| Stoch RSI (14) | 108.57 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 197.62 | SELL |
| Índice Direccional Medio (14) | 16.95 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000111 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 84.32 | SELL |
| VWMA (10) | 0.000993 | BUY |
| Promedio Móvil de Hull (9) | 0.001079 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0001094 | NEUTRAL |
Predicción de precios de ELLA basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de ELLA
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de ELLA por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001547 | $0.002175 | $0.003056 | $0.004294 | $0.006034 | $0.008479 |
| Amazon.com acción | $0.002298 | $0.004796 | $0.0100071 | $0.02088 | $0.043568 | $0.0909085 |
| Apple acción | $0.001562 | $0.002216 | $0.003143 | $0.004459 | $0.006324 | $0.008971 |
| Netflix acción | $0.001738 | $0.002742 | $0.004327 | $0.006827 | $0.010773 | $0.016998 |
| Google acción | $0.001426 | $0.001847 | $0.002392 | $0.003098 | $0.004012 | $0.005195 |
| Tesla acción | $0.002497 | $0.005661 | $0.012833 | $0.029091 | $0.065948 | $0.14950035 |
| Kodak acción | $0.000826 | $0.000619 | $0.000464 | $0.000348 | $0.000261 | $0.000195 |
| Nokia acción | $0.000729 | $0.000483 | $0.00032 | $0.000212 | $0.00014 | $0.000093 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de ELLA
Podría preguntarse cosas como: "¿Debo invertir en ELLA ahora?", "¿Debería comprar ELLA hoy?", "¿Será ELLA una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de ELLA regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como ELLA, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de ELLA a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de ELLA es de $0.001101 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de ELLA basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si ELLA ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00113 | $0.001159 | $0.001189 | $0.00122 |
| Si ELLA ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001158 | $0.001219 | $0.001282 | $0.001349 |
| Si ELLA ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001244 | $0.0014065 | $0.001589 | $0.001795 |
| Si ELLA ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001387 | $0.001748 | $0.0022032 | $0.002775 |
| Si ELLA ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001674 | $0.002544 | $0.003867 | $0.005878 |
| Si ELLA ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.002533 | $0.005825 | $0.013397 | $0.0308088 |
| Si ELLA ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.003964 | $0.014271 | $0.051366 | $0.184885 |
Cuadro de preguntas
¿Es ELLA una buena inversión?
La decisión de adquirir ELLA depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de ELLA ha experimentado un aumento de 5.8933% durante las últimas 24 horas, y ELLA ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en ELLA dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede ELLA subir?
Parece que el valor medio de ELLA podría potencialmente aumentar hasta $0.001136 para el final de este año. Mirando las perspectivas de ELLA en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.003571. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de ELLA la próxima semana?
Basado en nuestro nuevo pronóstico experimental de ELLA, el precio de ELLA aumentará en un 0.86% durante la próxima semana y alcanzará $0.001111 para el 13 de enero de 2026.
¿Cuál será el precio de ELLA el próximo mes?
Basado en nuestro nuevo pronóstico experimental de ELLA, el precio de ELLA disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000973 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de ELLA este año en 2026?
Según nuestra predicción más reciente sobre el valor de ELLA en 2026, se anticipa que ELLA fluctúe dentro del rango de $0.00038 y $0.001136. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de ELLA no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará ELLA en 5 años?
El futuro de ELLA parece estar en una tendencia alcista, con un precio máximo de $0.003571 proyectada después de un período de cinco años. Basado en el pronóstico de ELLA para 2030, el valor de ELLA podría potencialmente alcanzar su punto más alto de aproximadamente $0.003571, mientras que su punto más bajo se anticipa que esté alrededor de $0.001235.
¿Cuánto será ELLA en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de ELLA, se espera que el valor de ELLA en 2026 crezca en un 3.13% hasta $0.001136 si ocurre lo mejor. El precio estará entre $0.001136 y $0.00038 durante 2026.
¿Cuánto será ELLA en 2027?
Según nuestra última simulación experimental para la predicción de precios de ELLA, el valor de ELLA podría disminuir en un -12.62% hasta $0.000962 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000962 y $0.000366 a lo largo del año.
¿Cuánto será ELLA en 2028?
Nuestro nuevo modelo experimental de predicción de precios de ELLA sugiere que el valor de ELLA en 2028 podría aumentar en un 47.02% , alcanzando $0.001619 en el mejor escenario. Se espera que el precio oscile entre $0.001619 y $0.000661 durante el año.
¿Cuánto será ELLA en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de ELLA podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.004778 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.004778 y $0.001452.
¿Cuánto será ELLA en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de ELLA, se espera que el valor de ELLA en 2030 aumente en un 224.23% , alcanzando $0.003571 en el mejor escenario. Se pronostica que el precio oscile entre $0.003571 y $0.001235 durante el transcurso de 2030.
¿Cuánto será ELLA en 2031?
Nuestra simulación experimental indica que el precio de ELLA podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.00326 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.00326 y $0.00146 durante el año.
¿Cuánto será ELLA en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de ELLA, ELLA podría experimentar un 449.04% aumento en valor, alcanzando $0.006048 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.006048 y $0.002229 a lo largo del año.
¿Cuánto será ELLA en 2033?
Según nuestra predicción experimental de precios de ELLA, se anticipa que el valor de ELLA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0161099. A lo largo del año, el precio de ELLA podría oscilar entre $0.0161099 y $0.00518.
¿Cuánto será ELLA en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de ELLA sugieren que ELLA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.00933 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.00933 y $0.004164.
¿Cuánto será ELLA en 2035?
Basado en nuestra predicción experimental para el precio de ELLA, ELLA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.010993 en 2035. El rango de precios esperado para el año está entre $0.010993 y $0.004924.
¿Cuánto será ELLA en 2036?
Nuestra reciente simulación de predicción de precios de ELLA sugiere que el valor de ELLA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.022744 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.022744 y $0.008151.
¿Cuánto será ELLA en 2037?
Según la simulación experimental, el valor de ELLA podría aumentar en un 4830.69% en 2037, con un máximo de $0.054315 bajo condiciones favorables. Se espera que el precio caiga entre $0.054315 y $0.021168 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de ELLA?
Los traders de ELLA utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de ELLA
Las medias móviles son herramientas populares para la predicción de precios de ELLA. Una media móvil simple (SMA) calcula el precio de cierre promedio de ELLA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ELLA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ELLA.
¿Cómo leer gráficos de ELLA y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de ELLA en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ELLA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de ELLA?
La acción del precio de ELLA está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ELLA. La capitalización de mercado de ELLA puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ELLA, grandes poseedores de ELLA, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de ELLA.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


