Predicción del precio de Divi - Pronóstico de DIVI
Predicción de precio de Divi hasta $0.001323 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000443 | $0.001323 |
| 2027 | $0.000426 | $0.001121 |
| 2028 | $0.00077 | $0.001887 |
| 2029 | $0.001692 | $0.005567 |
| 2030 | $0.001439 | $0.004161 |
| 2031 | $0.0017017 | $0.003799 |
| 2032 | $0.002597 | $0.007047 |
| 2033 | $0.006036 | $0.01877 |
| 2034 | $0.004852 | $0.010871 |
| 2035 | $0.005737 | $0.0128088 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Divi hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,962.01, equivalente a un ROI del 39.62% en los próximos 90 días.
Predicción del precio a largo plazo de Divi para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Divi'
'name_with_ticker' => 'Divi <small>DIVI</small>'
'name_lang' => 'Divi'
'name_lang_with_ticker' => 'Divi <small>DIVI</small>'
'name_with_lang' => 'Divi'
'name_with_lang_with_ticker' => 'Divi <small>DIVI</small>'
'image' => '/uploads/coins/divi.png?1717233510'
'price_for_sd' => 0.001283
'ticker' => 'DIVI'
'marketcap' => '$5.83M'
'low24h' => '$0.001148'
'high24h' => '$0.001301'
'volume24h' => '$53.43K'
'current_supply' => '4.53B'
'max_supply' => '4.53B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0000273294 ETH'
'price' => '$0.001283'
'change_24h_pct' => '9.636%'
'ath_price' => '$0.1833'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 dic. 2021'
'ath_pct' => '-99.30%'
'fdv' => '$5.83M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.063287'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001294'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001134'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000443'
'current_year_max_price_prediction' => '$0.001323'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001439'
'grand_prediction_max_price' => '$0.004161'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.001307862407858
107 => 0.0013127454913348
108 => 0.0013237473277447
109 => 0.0012297378401917
110 => 0.0012719453401295
111 => 0.001296738292035
112 => 0.0011847228333506
113 => 0.0012945241065739
114 => 0.0012281013441657
115 => 0.0012055564609679
116 => 0.0012359101761312
117 => 0.0012240813038121
118 => 0.0012139115340068
119 => 0.0012082366277167
120 => 0.0012305250461153
121 => 0.0012294852647566
122 => 0.0011930170862608
123 => 0.0011454458340462
124 => 0.0011614123077626
125 => 0.0011556115381749
126 => 0.0011345888008752
127 => 0.0011487555875202
128 => 0.001086372228782
129 => 0.00097904490247781
130 => 0.0010499486217593
131 => 0.0010472189056954
201 => 0.0010458424590732
202 => 0.0010991246444783
203 => 0.0010940027917808
204 => 0.0010847065789814
205 => 0.0011344180686369
206 => 0.0011162727061988
207 => 0.0011721924376481
208 => 0.0012090247894421
209 => 0.0011996829136254
210 => 0.0012343239185138
211 => 0.0011617801430693
212 => 0.0011858762753208
213 => 0.0011908424547821
214 => 0.0011338046365711
215 => 0.0010948407902251
216 => 0.0010922423458942
217 => 0.0010246844058791
218 => 0.0010607733121265
219 => 0.0010925300561639
220 => 0.0010773210401929
221 => 0.0010725063200929
222 => 0.0010971036808984
223 => 0.0010990151064951
224 => 0.0010554344003258
225 => 0.0010644962091599
226 => 0.0011022854583983
227 => 0.0010635440170363
228 => 0.0009882757248483
301 => 0.00096960814772013
302 => 0.00096711754881952
303 => 0.00091648959910371
304 => 0.00097085560448633
305 => 0.00094712338621845
306 => 0.001022093179371
307 => 0.00097927083559335
308 => 0.00097742484994103
309 => 0.00097463437188032
310 => 0.00093105680414565
311 => 0.00094059752198064
312 => 0.00097231232115649
313 => 0.00098362851879522
314 => 0.00098244814667063
315 => 0.00097215690133858
316 => 0.00097686818075189
317 => 0.00096169150824307
318 => 0.00095633230930508
319 => 0.00093941720329299
320 => 0.00091455667037252
321 => 0.00091801367995362
322 => 0.00086875845912588
323 => 0.0008419216006465
324 => 0.00083449351192351
325 => 0.00082456036124194
326 => 0.0008356154877241
327 => 0.00086861892527386
328 => 0.00082880977751898
329 => 0.00076055978598027
330 => 0.00076466172676407
331 => 0.00077387756982813
401 => 0.00075670390724716
402 => 0.00074045047689053
403 => 0.00075458151590314
404 => 0.00072566309476444
405 => 0.00077737222286335
406 => 0.00077597363586143
407 => 0.00079524760114568
408 => 0.0008073000071795
409 => 0.00077952311328433
410 => 0.0007725372995864
411 => 0.00077651673655627
412 => 0.00071074550774973
413 => 0.00078987268856524
414 => 0.00079055698371076
415 => 0.00078469763322718
416 => 0.00082683041423382
417 => 0.00091574372370176
418 => 0.00088229096015034
419 => 0.00086933703898809
420 => 0.00084471162538941
421 => 0.00087752352689728
422 => 0.00087500408480687
423 => 0.00086361021220403
424 => 0.00085671916250278
425 => 0.00086941613286845
426 => 0.00085514586736332
427 => 0.00085258253555793
428 => 0.00083705153374977
429 => 0.00083150767271981
430 => 0.0008274032187207
501 => 0.000822884618163
502 => 0.00083285152502819
503 => 0.00081026520281587
504 => 0.00078302831239229
505 => 0.0007807638596608
506 => 0.00078701621274515
507 => 0.00078425001193827
508 => 0.00078075061615558
509 => 0.00077406931660268
510 => 0.00077208711774871
511 => 0.00077852830239793
512 => 0.00077125658047336
513 => 0.00078198640228426
514 => 0.00077906848445981
515 => 0.00076276923268888
516 => 0.0007424543302264
517 => 0.00074227348498254
518 => 0.00073789667257011
519 => 0.00073232214390474
520 => 0.00073077143755797
521 => 0.00075339143921217
522 => 0.00080021416567667
523 => 0.0007910217440988
524 => 0.00079766421076607
525 => 0.00083033857247811
526 => 0.00084072476951403
527 => 0.0008333528928685
528 => 0.00082326181343853
529 => 0.00082370576972036
530 => 0.00085819004291002
531 => 0.00086034078472959
601 => 0.00086577501545203
602 => 0.00087275953764379
603 => 0.00083454238719968
604 => 0.00082190574537125
605 => 0.00081591780341874
606 => 0.0007974772598302
607 => 0.00081736380511772
608 => 0.00080577676680546
609 => 0.00080734025414337
610 => 0.00080632203096347
611 => 0.00080687804967164
612 => 0.00077735776910821
613 => 0.00078811340780526
614 => 0.00077023007238099
615 => 0.0007462862937465
616 => 0.00074620602580474
617 => 0.00075206623170441
618 => 0.00074858035192541
619 => 0.00073919993907028
620 => 0.00074053238244205
621 => 0.00072885877644254
622 => 0.00074194976956785
623 => 0.00074232517240886
624 => 0.0007372844269844
625 => 0.00075745290810287
626 => 0.00076571595127303
627 => 0.00076239802465142
628 => 0.00076548315669634
629 => 0.00079140373071666
630 => 0.0007956299152759
701 => 0.00079750690729104
702 => 0.00079499198664455
703 => 0.00076595693720636
704 => 0.00076724476511551
705 => 0.00075779553840543
706 => 0.0007498119375704
707 => 0.00075013123973533
708 => 0.00075423584836
709 => 0.00077216091495604
710 => 0.00080988316086704
711 => 0.00081131469252476
712 => 0.00081304975065464
713 => 0.00080599239727006
714 => 0.0008038638319595
715 => 0.00080667195903346
716 => 0.00082083845125616
717 => 0.00085727851541808
718 => 0.0008443981629932
719 => 0.00083392623597715
720 => 0.00084311293918148
721 => 0.00084169871823093
722 => 0.00082976127018666
723 => 0.00082942622577896
724 => 0.00080651444634899
725 => 0.00079804448316971
726 => 0.00079096634797134
727 => 0.00078323720911412
728 => 0.00077865511651649
729 => 0.0007856952932703
730 => 0.00078730546499082
731 => 0.00077191199547737
801 => 0.00076981392246351
802 => 0.00078238456195931
803 => 0.00077685269219789
804 => 0.00078254235743128
805 => 0.00078386240857048
806 => 0.00078364984993371
807 => 0.00077787394257159
808 => 0.00078155533368417
809 => 0.0007728477462274
810 => 0.00076337955270552
811 => 0.00075733943512786
812 => 0.00075206863143602
813 => 0.00075499317966516
814 => 0.00074456769922967
815 => 0.0007412323782149
816 => 0.00078030816120915
817 => 0.00080917386224246
818 => 0.00080875414351736
819 => 0.00080619921372123
820 => 0.00080240310629276
821 => 0.00082056074235328
822 => 0.00081423498502318
823 => 0.00081883750201554
824 => 0.00082000903575712
825 => 0.00082355491554951
826 => 0.00082482226279662
827 => 0.00082099145918659
828 => 0.00080813481437808
829 => 0.00077609727788838
830 => 0.00076118371816875
831 => 0.00075626199505629
901 => 0.00075644089034374
902 => 0.000751506159692
903 => 0.00075295965902805
904 => 0.00075100069193983
905 => 0.00074729088219977
906 => 0.00075476410936768
907 => 0.00075562532918086
908 => 0.00075388098866145
909 => 0.00075429184399982
910 => 0.00073984944951672
911 => 0.00074094747340204
912 => 0.00073483353687846
913 => 0.0007336872474849
914 => 0.00071823174835465
915 => 0.00069085009133498
916 => 0.00070602218732563
917 => 0.00068769642888846
918 => 0.00068075618648775
919 => 0.00071361021458358
920 => 0.00071031258139165
921 => 0.00070466846681376
922 => 0.00069631964501651
923 => 0.00069322298579979
924 => 0.0006744086646822
925 => 0.00067329701422008
926 => 0.00068262189979536
927 => 0.00067831878595209
928 => 0.00067227558439948
929 => 0.00065038772096546
930 => 0.00062577851564309
1001 => 0.00062652131286383
1002 => 0.00063434904320633
1003 => 0.00065710922489042
1004 => 0.0006482164281513
1005 => 0.00064176460208399
1006 => 0.00064055636900276
1007 => 0.00065567993562162
1008 => 0.00067708295087247
1009 => 0.0006871247667627
1010 => 0.00067717363218997
1011 => 0.00066574230459995
1012 => 0.00066643807654269
1013 => 0.00067106673556636
1014 => 0.00067155314218404
1015 => 0.0006641125230824
1016 => 0.00066620701377584
1017 => 0.00066302529088826
1018 => 0.00064349906340024
1019 => 0.00064314589586332
1020 => 0.00063835384473481
1021 => 0.00063820874333112
1022 => 0.00063005626892834
1023 => 0.000628915681404
1024 => 0.00061272844865747
1025 => 0.00062338293427069
1026 => 0.00061623646470694
1027 => 0.00060546504939262
1028 => 0.00060360805333244
1029 => 0.00060355222978848
1030 => 0.0006146120648719
1031 => 0.00062325369365839
1101 => 0.00061636078060467
1102 => 0.00061479139791584
1103 => 0.00063154829919258
1104 => 0.00062941583076257
1105 => 0.00062756912685513
1106 => 0.00067516654560709
1107 => 0.00063748947459201
1108 => 0.00062106012109741
1109 => 0.00060072567629823
1110 => 0.00060734667406001
1111 => 0.00060874181557111
1112 => 0.00055984114138826
1113 => 0.00054000214396246
1114 => 0.00053319414766278
1115 => 0.00052927604954137
1116 => 0.00053106157605568
1117 => 0.00051320415149016
1118 => 0.00052520463613273
1119 => 0.00050974161590951
1120 => 0.00050714919024807
1121 => 0.00053479898590781
1122 => 0.0005386462934461
1123 => 0.00052223248422299
1124 => 0.00053277280689856
1125 => 0.00052895073937495
1126 => 0.00051000668500968
1127 => 0.00050928316147595
1128 => 0.00049977770091117
1129 => 0.00048490349574713
1130 => 0.00047810558485896
1201 => 0.00047456517384623
1202 => 0.00047602601643132
1203 => 0.00047528736971778
1204 => 0.00047046720027204
1205 => 0.00047556365618812
1206 => 0.00046254431732351
1207 => 0.00045735991168368
1208 => 0.00045501823593347
1209 => 0.00044346282332594
1210 => 0.00046185262349983
1211 => 0.00046547564580268
1212 => 0.00046910580657868
1213 => 0.00050070387771773
1214 => 0.00049912532737884
1215 => 0.00051339465365717
1216 => 0.0005128401738776
1217 => 0.00050877033087526
1218 => 0.00049160033270508
1219 => 0.00049844398794992
1220 => 0.00047738028084645
1221 => 0.00049316264240123
1222 => 0.0004859602316748
1223 => 0.00049072750008965
1224 => 0.00048215552163249
1225 => 0.000486899608439
1226 => 0.00046633479879595
1227 => 0.00044713166890596
1228 => 0.000454859568948
1229 => 0.00046326068008627
1230 => 0.00048147642959734
1231 => 0.00047062727946521
]
'min_raw' => 0.00044346282332594
'max_raw' => 0.0013237473277447
'avg_raw' => 0.00088360507553532
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000443'
'max' => '$0.001323'
'avg' => '$0.000883'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00084007717667406
'max_diff' => 4.0207327744699E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00047452904410451
102 => 0.00046145878571038
103 => 0.00043449110930854
104 => 0.0004346437434283
105 => 0.00043049535393664
106 => 0.00042691053974107
107 => 0.00047187343486671
108 => 0.00046628158809965
109 => 0.00045737171211915
110 => 0.00046929793518345
111 => 0.00047245141785626
112 => 0.00047254119307468
113 => 0.00048124225756202
114 => 0.00048588601723866
115 => 0.00048670450000887
116 => 0.00050039581297864
117 => 0.00050498496049332
118 => 0.00052388700962583
119 => 0.00048549202667424
120 => 0.00048470130726687
121 => 0.00046946576159959
122 => 0.00045980313767296
123 => 0.00047012736972659
124 => 0.00047927322992788
125 => 0.00046974994897003
126 => 0.0004709934884157
127 => 0.00045820926181042
128 => 0.00046277902126804
129 => 0.00046671511372601
130 => 0.00046454183482354
131 => 0.00046128833111865
201 => 0.00047852337368939
202 => 0.00047755090504287
203 => 0.00049360057291666
204 => 0.00050611243674704
205 => 0.00052853593349427
206 => 0.00050513584567522
207 => 0.00050428305346817
208 => 0.00051261923408427
209 => 0.0005049836842675
210 => 0.00050980908818148
211 => 0.00052775848632328
212 => 0.00052813772882172
213 => 0.00052178492834641
214 => 0.00052139835986014
215 => 0.00052261848468345
216 => 0.00052976479388346
217 => 0.00052726765386508
218 => 0.0005301574075142
219 => 0.00053377108870191
220 => 0.00054871880626335
221 => 0.00055232265036216
222 => 0.000543567177581
223 => 0.00054435769874226
224 => 0.00054108291157901
225 => 0.00053791950821226
226 => 0.00054503037700274
227 => 0.00055802562948181
228 => 0.00055794478669059
301 => 0.00056095943267413
302 => 0.00056283753214719
303 => 0.00055477535435596
304 => 0.00054952717306835
305 => 0.00055153965972447
306 => 0.00055475766971386
307 => 0.00055049610245617
308 => 0.00052419173519169
309 => 0.00053217079989025
310 => 0.00053084269336808
311 => 0.00052895130817724
312 => 0.00053697431943192
313 => 0.00053620048042414
314 => 0.00051302099779054
315 => 0.00051450487306309
316 => 0.00051311123716061
317 => 0.00051761435987261
318 => 0.00050474050086307
319 => 0.00050870041318764
320 => 0.00051118403307574
321 => 0.0005126469042699
322 => 0.00051793179812336
323 => 0.00051731167682767
324 => 0.00051789325051293
325 => 0.00052572935293737
326 => 0.00056536166997457
327 => 0.00056751876954712
328 => 0.00055689642232976
329 => 0.00056113984052656
330 => 0.00055299340552224
331 => 0.00055846216191701
401 => 0.00056220374615096
402 => 0.00054529624646302
403 => 0.00054429509406026
404 => 0.00053611503582083
405 => 0.00054051053577652
406 => 0.00053351697929939
407 => 0.00053523295343466
408 => 0.00053043494015651
409 => 0.00053907040878226
410 => 0.000548726204522
411 => 0.00055116563984479
412 => 0.00054474853575347
413 => 0.00054010212948359
414 => 0.00053194457069506
415 => 0.00054551077276344
416 => 0.00054947794367076
417 => 0.00054548993490354
418 => 0.00054456582613247
419 => 0.00054281464168111
420 => 0.00054493734819221
421 => 0.000549456337606
422 => 0.00054732526565109
423 => 0.00054873287622196
424 => 0.0005433685162475
425 => 0.00055477802327227
426 => 0.000572899066275
427 => 0.00057295732839135
428 => 0.00057082624494916
429 => 0.00056995425151945
430 => 0.00057214087245609
501 => 0.00057332702461433
502 => 0.00058039815576572
503 => 0.00058798576121745
504 => 0.00062339380512908
505 => 0.00061345136808627
506 => 0.00064486749107862
507 => 0.00066971356549255
508 => 0.00067716381682214
509 => 0.00067030993616033
510 => 0.00064686318065566
511 => 0.00064571277097195
512 => 0.00068075212266076
513 => 0.0006708519009047
514 => 0.00066967430102906
515 => 0.00065714662793864
516 => 0.00066455203431757
517 => 0.00066293236331174
518 => 0.00066037563339202
519 => 0.00067450463289795
520 => 0.00070095285866855
521 => 0.00069683065465231
522 => 0.00069375362057773
523 => 0.00068027095297407
524 => 0.00068839053033431
525 => 0.00068549930435659
526 => 0.00069792184597421
527 => 0.00069056300751292
528 => 0.00067077689698776
529 => 0.00067392790030476
530 => 0.00067345163249234
531 => 0.00068325319032337
601 => 0.00068031100595212
602 => 0.00067287712377348
603 => 0.00070086246150816
604 => 0.0006990452493383
605 => 0.00070162164072262
606 => 0.00070275584788756
607 => 0.00071979002980969
608 => 0.00072676838911017
609 => 0.00072835259884475
610 => 0.00073498150045452
611 => 0.00072818766573391
612 => 0.00075536784853843
613 => 0.00077344108409581
614 => 0.00079443407723589
615 => 0.00082511048259817
616 => 0.000836645094787
617 => 0.00083456147033739
618 => 0.00085781997077809
619 => 0.00089961497906261
620 => 0.00084300943647671
621 => 0.00090261521026866
622 => 0.00088374471046788
623 => 0.00083900309490603
624 => 0.00083612226233284
625 => 0.00086642180385217
626 => 0.00093362327071923
627 => 0.00091679006546176
628 => 0.0009336508038127
629 => 0.00091398185691548
630 => 0.00091300512791913
701 => 0.00093269552696382
702 => 0.00097870321759949
703 => 0.00095684668835098
704 => 0.00092550999423239
705 => 0.00094864852151659
706 => 0.00092860378781341
707 => 0.00088343739261242
708 => 0.00091677719342694
709 => 0.00089448381808513
710 => 0.00090099021019089
711 => 0.00094784756927006
712 => 0.00094220956785646
713 => 0.00094950566375053
714 => 0.00093662824546957
715 => 0.00092459870621267
716 => 0.00090214467786437
717 => 0.00089549714704065
718 => 0.00089733428540722
719 => 0.00089549623664612
720 => 0.00088293341414841
721 => 0.00088022047382615
722 => 0.00087569878776574
723 => 0.00087710024734869
724 => 0.0008685981546892
725 => 0.00088464336015964
726 => 0.00088762149168482
727 => 0.00089929785416711
728 => 0.00090051013285487
729 => 0.00093302863616543
730 => 0.00091511799099322
731 => 0.00092713399810545
801 => 0.00092605917333029
802 => 0.0008399727813837
803 => 0.00085183472664727
804 => 0.00087028819099391
805 => 0.00086197493031883
806 => 0.00085022192472767
807 => 0.00084073074255653
808 => 0.00082635063104403
809 => 0.00084659036185229
810 => 0.00087320345560973
811 => 0.00090118508483085
812 => 0.00093480317891105
813 => 0.0009273000116701
814 => 0.00090055661794628
815 => 0.00090175630705267
816 => 0.0009091723130481
817 => 0.00089956791146882
818 => 0.00089673538594289
819 => 0.00090878316753723
820 => 0.00090886613398772
821 => 0.00089781510924005
822 => 0.00088553391754919
823 => 0.00088548245890759
824 => 0.00088329713946844
825 => 0.00091437062038899
826 => 0.00093145789301202
827 => 0.00093341692128073
828 => 0.00093132603480082
829 => 0.00093213073402262
830 => 0.00092218802657564
831 => 0.00094491410738113
901 => 0.00096576980650471
902 => 0.00096018003362256
903 => 0.0009518001694392
904 => 0.0009451252039882
905 => 0.00095860762389576
906 => 0.00095800727296058
907 => 0.00096558765016698
908 => 0.00096524376047051
909 => 0.00096269476472841
910 => 0.00096018012465523
911 => 0.00097015038830336
912 => 0.00096727911249023
913 => 0.0009644033767927
914 => 0.00095863564859819
915 => 0.00095941957865165
916 => 0.00095104116136998
917 => 0.00094716492216519
918 => 0.00088887558492347
919 => 0.00087329876935344
920 => 0.00087819955262709
921 => 0.00087981301772956
922 => 0.00087303396763125
923 => 0.00088275338407713
924 => 0.00088123862331945
925 => 0.00088713167132219
926 => 0.00088344995077648
927 => 0.00088360104987191
928 => 0.00089442820497126
929 => 0.00089757137415861
930 => 0.00089597273294143
1001 => 0.00089709236645173
1002 => 0.00092289384812867
1003 => 0.00091922570251915
1004 => 0.00091727707327294
1005 => 0.00091781685689131
1006 => 0.00092440968864978
1007 => 0.00092625532158688
1008 => 0.00091843524514206
1009 => 0.00092212323840076
1010 => 0.00093782624562028
1011 => 0.00094332140943388
1012 => 0.00096085933449862
1013 => 0.00095340891221936
1014 => 0.00096708448475967
1015 => 0.0010091185324023
1016 => 0.0010426982381941
1017 => 0.001011816953008
1018 => 0.0010734818063449
1019 => 0.0011214967399655
1020 => 0.0011196538468401
1021 => 0.0011112813325579
1022 => 0.0010566176071739
1023 => 0.0010063152320853
1024 => 0.0010483953047986
1025 => 0.0010485025755577
1026 => 0.0010448878599927
1027 => 0.0010224371720653
1028 => 0.0010441066247175
1029 => 0.0010458266671772
1030 => 0.001044863900796
1031 => 0.0010276510110005
1101 => 0.0010013701097565
1102 => 0.001006505334952
1103 => 0.0010149169385779
1104 => 0.00099899201806964
1105 => 0.00099390304104229
1106 => 0.0010033644175536
1107 => 0.0010338509440293
1108 => 0.0010280876427955
1109 => 0.0010279371397089
1110 => 0.0010525949864072
1111 => 0.0010349452896676
1112 => 0.001006570106587
1113 => 0.0009994049986364
1114 => 0.000973973692407
1115 => 0.00099153918620285
1116 => 0.00099217133705332
1117 => 0.00098255089561633
1118 => 0.0010073507523883
1119 => 0.0010071222173422
1120 => 0.0010306659903756
1121 => 0.0010756728417782
1122 => 0.0010623621011658
1123 => 0.001046883158038
1124 => 0.0010485661483406
1125 => 0.0010670243979852
1126 => 0.0010558641188892
1127 => 0.0010598774330644
1128 => 0.0010670183233536
1129 => 0.0010713265997634
1130 => 0.0010479462536658
1201 => 0.0010424951765792
1202 => 0.0010313441859282
1203 => 0.0010284351006104
1204 => 0.0010375173498227
1205 => 0.0010351244980358
1206 => 0.00099211820722215
1207 => 0.00098762381054737
1208 => 0.00098776164727687
1209 => 0.00097646027314124
1210 => 0.00095922296494383
1211 => 0.0010045215817004
1212 => 0.0010008834688211
1213 => 0.00099686727376998
1214 => 0.00099735923474765
1215 => 0.0010170218289691
1216 => 0.0010056165313359
1217 => 0.0010359393843854
1218 => 0.0010297059173868
1219 => 0.0010233125854807
1220 => 0.0010224288322657
1221 => 0.0010199679449353
1222 => 0.0010115286466235
1223 => 0.0010013376867888
1224 => 0.00099460873238017
1225 => 0.00091747398080204
1226 => 0.00093178974202273
1227 => 0.00094825872038445
1228 => 0.00095394374571962
1229 => 0.00094421911649203
1230 => 0.0010119126342577
1231 => 0.0010242808922645
]
'min_raw' => 0.00042691053974107
'max_raw' => 0.0011214967399655
'avg_raw' => 0.00077420363985329
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000426'
'max' => '$0.001121'
'avg' => '$0.000774'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.6552283584873E-5
'max_diff' => -0.00020225058777918
'year' => 2027
]
2 => [
'items' => [
101 => 0.0009868166320005
102 => 0.00097980859856078
103 => 0.0010123720797633
104 => 0.00099273231987451
105 => 0.0010015761025499
106 => 0.00098246068169621
107 => 0.0010213017410955
108 => 0.0010210058372995
109 => 0.001005895787928
110 => 0.0010186666981876
111 => 0.0010164474382534
112 => 0.0009993882297274
113 => 0.0010218425484338
114 => 0.0010218536854957
115 => 0.0010073105914965
116 => 0.00099032744159804
117 => 0.0009872912555203
118 => 0.00098500389716493
119 => 0.0010010135526121
120 => 0.0010153677596251
121 => 0.0010420773801666
122 => 0.0010487928133757
123 => 0.0010750035962624
124 => 0.0010593963512333
125 => 0.001066314840807
126 => 0.0010738258399195
127 => 0.0010774268891018
128 => 0.0010715591727021
129 => 0.0011122753073139
130 => 0.0011157129965852
131 => 0.001116865624062
201 => 0.0011031363725577
202 => 0.0011153311612648
203 => 0.0011096256234777
204 => 0.0011244698477558
205 => 0.0011267976116632
206 => 0.0011248260784462
207 => 0.0011255649474517
208 => 0.0010908209093789
209 => 0.0010890192477154
210 => 0.0010644534630939
211 => 0.0010744642019083
212 => 0.0010557496055219
213 => 0.0010616841968178
214 => 0.0010643001081141
215 => 0.0010629337045045
216 => 0.0010750301940608
217 => 0.0010647457067884
218 => 0.0010376032539503
219 => 0.001010453406169
220 => 0.0010101125619459
221 => 0.0010029644862597
222 => 0.000997797736774
223 => 0.00099879303602524
224 => 0.0010023006004055
225 => 0.00099759387075582
226 => 0.00099859829016383
227 => 0.0010152783447484
228 => 0.0010186234107387
229 => 0.0010072555695022
301 => 0.00096161204656609
302 => 0.00095041101154946
303 => 0.00095846209339324
304 => 0.00095461419482799
305 => 0.00077044815980933
306 => 0.00081371523796355
307 => 0.00078800740933545
308 => 0.0007998547595276
309 => 0.00077361372350827
310 => 0.00078613732130723
311 => 0.00078382467008233
312 => 0.0008533968513884
313 => 0.00085231057747071
314 => 0.00085283051931077
315 => 0.00082801234058342
316 => 0.00086754837318308
317 => 0.00088702524451142
318 => 0.00088342059398869
319 => 0.00088432780686611
320 => 0.0008687388838919
321 => 0.00085298145416086
322 => 0.00083550403953809
323 => 0.00086797491563346
324 => 0.00086436470850799
325 => 0.00087264522474229
326 => 0.00089370490895629
327 => 0.00089680602745477
328 => 0.00090097396216516
329 => 0.00089948005426528
330 => 0.00093507100126734
331 => 0.00093076070274876
401 => 0.00094114728202102
402 => 0.00091978130042632
403 => 0.00089560366417432
404 => 0.00090019904239935
405 => 0.00089975647052258
406 => 0.00089412202257097
407 => 0.00088903549489345
408 => 0.00088056785943066
409 => 0.00090736071100917
410 => 0.00090627297016458
411 => 0.00092388223007816
412 => 0.00092076962234121
413 => 0.00089998286608954
414 => 0.00090072526915564
415 => 0.00090571828656191
416 => 0.00092299917681427
417 => 0.00092812932161391
418 => 0.00092575283414179
419 => 0.00093137780371458
420 => 0.00093582355031643
421 => 0.00093193612103985
422 => 0.00098697392173332
423 => 0.00096411838966331
424 => 0.00097525801696646
425 => 0.00097791475243977
426 => 0.00097110958039002
427 => 0.00097258537853267
428 => 0.00097482081058786
429 => 0.0009883939162845
430 => 0.0010240136730423
501 => 0.0010397894208384
502 => 0.0010872515364447
503 => 0.0010384794645929
504 => 0.0010355855316881
505 => 0.0010441348919274
506 => 0.0010720001781635
507 => 0.0010945823754046
508 => 0.0011020741930277
509 => 0.001103064360403
510 => 0.0011171195083105
511 => 0.0011251756569781
512 => 0.0011154128436675
513 => 0.0011071398815958
514 => 0.0010775071583331
515 => 0.001080937226738
516 => 0.0011045669966125
517 => 0.0011379454383467
518 => 0.0011665876137897
519 => 0.0011565581222301
520 => 0.0012330760631117
521 => 0.0012406625044023
522 => 0.001239614303515
523 => 0.0012568973457889
524 => 0.0012225940265055
525 => 0.0012079286929163
526 => 0.0011089285898978
527 => 0.0011367435806843
528 => 0.0011771743033096
529 => 0.0011718231455627
530 => 0.0011424612740759
531 => 0.0011665653401772
601 => 0.0011585957821203
602 => 0.0011523098610235
603 => 0.0011811068841535
604 => 0.0011494433743056
605 => 0.0011768584355775
606 => 0.0011416983359237
607 => 0.0011566039361028
608 => 0.0011481427965384
609 => 0.0011536181907948
610 => 0.0011216091478525
611 => 0.0011388804504486
612 => 0.0011208906048817
613 => 0.0011208820753526
614 => 0.0011204849485146
615 => 0.0011416499220448
616 => 0.0011423401110718
617 => 0.0011266991636545
618 => 0.0011244450587741
619 => 0.001132779665941
620 => 0.0011230220237857
621 => 0.0011275875631363
622 => 0.0011231603093216
623 => 0.0011221636412357
624 => 0.001114222020358
625 => 0.0011108005517245
626 => 0.0011121421977361
627 => 0.0011075624682326
628 => 0.0011048030155507
629 => 0.0011199360239218
630 => 0.0011118510680129
701 => 0.0011186968884742
702 => 0.0011108952120472
703 => 0.0010838512025227
704 => 0.00106829790666
705 => 0.0010172142796493
706 => 0.0010317015329005
707 => 0.0010413065967942
708 => 0.0010381321232346
709 => 0.0010449521207987
710 => 0.0010453708132595
711 => 0.0010431535625297
712 => 0.0010405862702321
713 => 0.0010393366543218
714 => 0.0010486502675262
715 => 0.0010540571334731
716 => 0.0010422705934551
717 => 0.0010395091720401
718 => 0.001051426014751
719 => 0.0010586952819206
720 => 0.0011123674664522
721 => 0.0011083912576632
722 => 0.001118370761432
723 => 0.0011172472224556
724 => 0.0011277073322649
725 => 0.0011448051910308
726 => 0.0011100404635232
727 => 0.0011160744181447
728 => 0.0011145950318158
729 => 0.0011307465838381
730 => 0.0011307970072205
731 => 0.0011211133449533
801 => 0.0011263630153678
802 => 0.0011234327933596
803 => 0.0011287281005717
804 => 0.0011083381529707
805 => 0.0011331709081899
806 => 0.0011472494802118
807 => 0.001147444961198
808 => 0.0011541180926019
809 => 0.00116089838059
810 => 0.0011739125529445
811 => 0.0011605354223865
812 => 0.00113647126675
813 => 0.0011382086210602
814 => 0.0011240998154153
815 => 0.0011243369869871
816 => 0.0011230709465491
817 => 0.0011268704292067
818 => 0.0011091719257506
819 => 0.0011133257291365
820 => 0.0011075103800716
821 => 0.0011160617767115
822 => 0.0011068618875235
823 => 0.001114594318411
824 => 0.0011179313792479
825 => 0.0011302452055778
826 => 0.0011050431253625
827 => 0.0010536543777725
828 => 0.0010644569155443
829 => 0.0010484791136589
830 => 0.0010499579200551
831 => 0.0010529453443259
901 => 0.0010432621248399
902 => 0.0010451093779645
903 => 0.001045043381084
904 => 0.001044474655622
905 => 0.00104195567625
906 => 0.0010383026577957
907 => 0.0010528551589777
908 => 0.0010553279125026
909 => 0.0010608245372792
910 => 0.0010771787642179
911 => 0.0010755445912875
912 => 0.0010782099951382
913 => 0.0010723914334977
914 => 0.0010502278264416
915 => 0.0010514314169371
916 => 0.0010364226241722
917 => 0.0010604407287038
918 => 0.0010547529245272
919 => 0.0010510859601732
920 => 0.0010500853949751
921 => 0.0010664801608791
922 => 0.0010713857317941
923 => 0.0010683289092005
924 => 0.0010620592768793
925 => 0.0010740988243864
926 => 0.0010773200993916
927 => 0.0010780412240692
928 => 0.0010993729938976
929 => 0.0010792334330362
930 => 0.0010840812255056
1001 => 0.0011219023184881
1002 => 0.001087603806107
1003 => 0.0011057724930634
1004 => 0.0011048832303821
1005 => 0.0011141777158342
1006 => 0.0011041208112894
1007 => 0.0011042454786743
1008 => 0.0011124983520927
1009 => 0.0011009086797901
1010 => 0.0010980389139421
1011 => 0.0010940743529766
1012 => 0.0011027308268041
1013 => 0.001107919991365
1014 => 0.0011497408467047
1015 => 0.0011767590265168
1016 => 0.0011755860960758
1017 => 0.0011863044846729
1018 => 0.0011814757524407
1019 => 0.0011658825023077
1020 => 0.0011924982788905
1021 => 0.0011840759335283
1022 => 0.0011847702614468
1023 => 0.001184744418527
1024 => 0.0011903445418987
1025 => 0.0011863763412461
1026 => 0.0011785546104324
1027 => 0.0011837470403714
1028 => 0.0011991667009626
1029 => 0.0012470298005707
1030 => 0.001273814625213
1031 => 0.0012454173204952
1101 => 0.0012650054010345
1102 => 0.0012532595326576
1103 => 0.0012511249589643
1104 => 0.0012634277210907
1105 => 0.0012757520175737
1106 => 0.0012749670131671
1107 => 0.0012660202067801
1108 => 0.0012609663828689
1109 => 0.0012992356306798
1110 => 0.0013274317605673
1111 => 0.0013255089735382
1112 => 0.0013339955301607
1113 => 0.0013589123228836
1114 => 0.0013611904021428
1115 => 0.0013609034165172
1116 => 0.0013552569593803
1117 => 0.0013797907776705
1118 => 0.0014002573205195
1119 => 0.001353949967695
1120 => 0.0013715832014428
1121 => 0.0013794993281795
1122 => 0.001391122550838
1123 => 0.0014107328757411
1124 => 0.0014320348899677
1125 => 0.001435047228344
1126 => 0.0014329098301123
1127 => 0.001418860579101
1128 => 0.0014421694972536
1129 => 0.001455823314846
1130 => 0.0014639538507602
1201 => 0.0014845715370465
1202 => 0.0013795482154833
1203 => 0.001305207488483
1204 => 0.0012935981104688
1205 => 0.001317206237177
1206 => 0.0013234315119186
1207 => 0.0013209221114761
1208 => 0.0012372448644741
1209 => 0.0012931575670808
1210 => 0.001353314933812
1211 => 0.0013556258232667
1212 => 0.0013857418588836
1213 => 0.0013955488745785
1214 => 0.001419796230649
1215 => 0.001418279551925
1216 => 0.0014241833972685
1217 => 0.0014228262054644
1218 => 0.0014677393267019
1219 => 0.00151728516909
1220 => 0.0015155695541142
1221 => 0.0015084467530712
1222 => 0.0015190253272382
1223 => 0.0015701619462379
1224 => 0.001565454105808
1225 => 0.0015700273717727
1226 => 0.0016303203275069
1227 => 0.0017087097465342
1228 => 0.001672289991227
1229 => 0.0017513103807413
1230 => 0.0018010495272497
1231 => 0.0018870682380123
]
'min_raw' => 0.00077044815980933
'max_raw' => 0.0018870682380123
'avg_raw' => 0.0013287581989108
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00077'
'max' => '$0.001887'
'avg' => '$0.001328'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00034353762006826
'max_diff' => 0.00076557149804675
'year' => 2028
]
3 => [
'items' => [
101 => 0.0018762982717737
102 => 0.0019097847246391
103 => 0.0018570177844469
104 => 0.0017358542238076
105 => 0.0017166796265409
106 => 0.0017550676558469
107 => 0.0018494408800465
108 => 0.0017520955071711
109 => 0.0017717883493209
110 => 0.0017661168094569
111 => 0.0017658145972001
112 => 0.0017773488098582
113 => 0.0017606178328135
114 => 0.0016924528224878
115 => 0.0017236924450211
116 => 0.0017116293265111
117 => 0.001725014255863
118 => 0.0017972471992105
119 => 0.0017653112931383
120 => 0.0017316694103536
121 => 0.0017738637970971
122 => 0.0018275917509859
123 => 0.00182422955219
124 => 0.0018177054812358
125 => 0.0018544813276154
126 => 0.0019152242515226
127 => 0.0019316428197699
128 => 0.0019437626711872
129 => 0.0019454337939311
130 => 0.00196264739679
131 => 0.0018700855158311
201 => 0.0020169835980706
202 => 0.0020423488388957
203 => 0.0020375812249021
204 => 0.0020657736225468
205 => 0.0020574787039876
206 => 0.0020454606684283
207 => 0.00209015161539
208 => 0.0020389170510718
209 => 0.0019661960372745
210 => 0.0019262998508467
211 => 0.0019788383674684
212 => 0.0020109218062277
213 => 0.0020321269183576
214 => 0.0020385435724756
215 => 0.00187727083116
216 => 0.0017903537681872
217 => 0.0018460666090466
218 => 0.00191404011999
219 => 0.0018697079195457
220 => 0.0018714456578712
221 => 0.0018082395903349
222 => 0.0019196324544745
223 => 0.0019034034511308
224 => 0.0019875995491865
225 => 0.0019675054746696
226 => 0.0020361641241603
227 => 0.0020180840007474
228 => 0.0020931335821879
301 => 0.0021230728921108
302 => 0.0021733456531529
303 => 0.0022103265008224
304 => 0.0022320423619048
305 => 0.0022307386230596
306 => 0.0023167876834672
307 => 0.00226604755887
308 => 0.0022023060038468
309 => 0.0022011531202185
310 => 0.0022341657747898
311 => 0.0023033512421919
312 => 0.0023212900272816
313 => 0.0023313153608927
314 => 0.0023159612134829
315 => 0.0022608864448102
316 => 0.0022371054389327
317 => 0.0022573675449424
318 => 0.0022325887304352
319 => 0.0022753639159821
320 => 0.0023341033820245
321 => 0.0023219739145678
322 => 0.0023625209057243
323 => 0.0024044827759034
324 => 0.0024644901348851
325 => 0.0024801782805889
326 => 0.0025061101888707
327 => 0.0025328026406807
328 => 0.0025413755368204
329 => 0.0025577438555644
330 => 0.002557657586445
331 => 0.002606984616695
401 => 0.0026613938585917
402 => 0.0026819320878309
403 => 0.0027291586134818
404 => 0.0026482848433195
405 => 0.0027096285269985
406 => 0.002764962065209
407 => 0.0026989911398205
408 => 0.0027899166912144
409 => 0.0027934471243333
410 => 0.0028467524729053
411 => 0.0027927172900584
412 => 0.0027606313709703
413 => 0.0028532622171339
414 => 0.0028980833657482
415 => 0.002884582871019
416 => 0.002781843439528
417 => 0.0027220446836987
418 => 0.002565539805375
419 => 0.002750926594257
420 => 0.0028412230913147
421 => 0.0027816095934146
422 => 0.0028116751742454
423 => 0.0029757032344605
424 => 0.00303815449976
425 => 0.003025165073145
426 => 0.0030273600724188
427 => 0.0030610576416037
428 => 0.0032104912209602
429 => 0.0031209471563666
430 => 0.0031894002385963
501 => 0.0032257075065851
502 => 0.003259431720519
503 => 0.0031766157097445
504 => 0.0030688732965357
505 => 0.0030347467515536
506 => 0.0027756822059021
507 => 0.0027621967712406
508 => 0.0027546269881147
509 => 0.0027069005762725
510 => 0.002669400689929
511 => 0.0026395793880271
512 => 0.0025613193864421
513 => 0.0025877298396306
514 => 0.0024629997312357
515 => 0.0025427976344231
516 => 0.0023437253697112
517 => 0.0025095186672276
518 => 0.0024192849130856
519 => 0.0024798744521629
520 => 0.002479663060969
521 => 0.0023680985095968
522 => 0.0023037504046582
523 => 0.0023447555215908
524 => 0.0023887162619328
525 => 0.0023958487441516
526 => 0.0024528449914977
527 => 0.0024687514190018
528 => 0.0024205542010644
529 => 0.0023396000395054
530 => 0.0023584038448677
531 => 0.0023033693461427
601 => 0.0022069235039984
602 => 0.0022761925916093
603 => 0.0022998441036664
604 => 0.0023102899587878
605 => 0.0022154465499187
606 => 0.0021856446917015
607 => 0.0021697784324484
608 => 0.0023273569464129
609 => 0.0023359894531213
610 => 0.0022918243282879
611 => 0.0024914548804439
612 => 0.0024462723382144
613 => 0.0024967523078763
614 => 0.0023566975966233
615 => 0.0023620478752018
616 => 0.0022957437304183
617 => 0.0023328696210525
618 => 0.0023066302381755
619 => 0.0023298702159744
620 => 0.0023438001628451
621 => 0.0024100934277709
622 => 0.0025102756298247
623 => 0.0024001914246765
624 => 0.0023522261600586
625 => 0.0023819835404607
626 => 0.0024612313658531
627 => 0.0025812958779442
628 => 0.0025102152702628
629 => 0.0025417596369248
630 => 0.0025486506777293
701 => 0.0024962384691721
702 => 0.0025832283908337
703 => 0.002629846996557
704 => 0.0026776680396679
705 => 0.0027191897114859
706 => 0.0026585672634421
707 => 0.0027234419727355
708 => 0.0026711644089728
709 => 0.0026242660299225
710 => 0.0026243371554047
711 => 0.0025949171171505
712 => 0.0025379120858695
713 => 0.0025273994834871
714 => 0.0025820873686752
715 => 0.0026259418736341
716 => 0.0026295539407114
717 => 0.0026538340479825
718 => 0.0026682027653605
719 => 0.002809035728989
720 => 0.0028656799119918
721 => 0.0029349433467481
722 => 0.0029619253580589
723 => 0.0030431315385182
724 => 0.0029775509525538
725 => 0.0029633621802592
726 => 0.0027663825488042
727 => 0.00279863795242
728 => 0.0028502819657923
729 => 0.002767234139563
730 => 0.0028199088703309
731 => 0.0028303079779878
801 => 0.0027644122062064
802 => 0.0027996099851031
803 => 0.0027061351197677
804 => 0.0025123131264517
805 => 0.0025834441701192
806 => 0.0026358205607089
807 => 0.002561072993375
808 => 0.0026950551146907
809 => 0.0026167855253704
810 => 0.0025919778231588
811 => 0.0024951941322467
812 => 0.0025408723088113
813 => 0.0026026526966634
814 => 0.0025644795997118
815 => 0.0026436945076058
816 => 0.0027558839430279
817 => 0.002835836815706
818 => 0.0028419746044915
819 => 0.0027905702637859
820 => 0.0028729460478248
821 => 0.0028735460654798
822 => 0.002780625844569
823 => 0.0027237127266431
824 => 0.0027107819465041
825 => 0.0027430855705201
826 => 0.0027823081336534
827 => 0.0028441511837702
828 => 0.0028815216437433
829 => 0.0029789639835927
830 => 0.0030053290868651
831 => 0.0030342963419616
901 => 0.0030730055279412
902 => 0.0031194858305413
903 => 0.0030177895745775
904 => 0.0030218301564124
905 => 0.0029271320109394
906 => 0.0028259334614136
907 => 0.0029027305459264
908 => 0.0030031325180388
909 => 0.0029801001947019
910 => 0.0029775085878188
911 => 0.0029818669517443
912 => 0.0029645013321137
913 => 0.0028859572781241
914 => 0.0028465129459223
915 => 0.0028974061977849
916 => 0.0029244536961519
917 => 0.0029664020073293
918 => 0.0029612309925553
919 => 0.0030692853372286
920 => 0.0031112719881749
921 => 0.0031005300061528
922 => 0.0031025067893651
923 => 0.0031785216153595
924 => 0.0032630657355066
925 => 0.0033422524606036
926 => 0.0034228045985212
927 => 0.003325695852258
928 => 0.0032763900197404
929 => 0.0033272610532014
930 => 0.0033002681667854
1001 => 0.0034553772987422
1002 => 0.0034661167185034
1003 => 0.0036212146343045
1004 => 0.003768421025116
1005 => 0.0036759633285237
1006 => 0.0037631467720241
1007 => 0.0038574427743402
1008 => 0.0040393550617831
1009 => 0.0039780934031237
1010 => 0.0039311679326833
1011 => 0.0038868235898593
1012 => 0.0039790971278099
1013 => 0.0040978055602775
1014 => 0.0041233742196558
1015 => 0.0041648052158283
1016 => 0.0041212455892941
1017 => 0.004173708361519
1018 => 0.0043589250007833
1019 => 0.0043088778299016
1020 => 0.0042378028017654
1021 => 0.0043840135500694
1022 => 0.0044369266515008
1023 => 0.0048082985081523
1024 => 0.005277170817781
1025 => 0.0050830546028131
1026 => 0.0049625604040915
1027 => 0.0049908793989517
1028 => 0.0051620956940988
1029 => 0.0052170849339664
1030 => 0.0050676052240784
1031 => 0.0051204039846602
1101 => 0.0054113303465258
1102 => 0.0055674030056314
1103 => 0.0053554353712113
1104 => 0.0047706250746044
1105 => 0.0042314032731305
1106 => 0.0043744291763555
1107 => 0.0043582144775403
1108 => 0.0046707785595621
1109 => 0.0043076842214278
1110 => 0.0043137977988746
1111 => 0.0046328253751015
1112 => 0.0045477142872814
1113 => 0.0044098452252175
1114 => 0.0042324098698586
1115 => 0.0039044042046936
1116 => 0.0036138804399424
1117 => 0.0041836644462467
1118 => 0.0041590943238099
1119 => 0.0041235131454333
1120 => 0.0042026952076249
1121 => 0.004587180825407
1122 => 0.0045783171874587
1123 => 0.0045219312450989
1124 => 0.0045646994854159
1125 => 0.0044023477459086
1126 => 0.00444418948586
1127 => 0.0042313178576421
1128 => 0.0043275447239011
1129 => 0.0044095494201305
1130 => 0.0044260130769988
1201 => 0.0044631065365783
1202 => 0.0041461469857607
1203 => 0.0042884525186343
1204 => 0.0043720436869723
1205 => 0.0039943757473485
1206 => 0.004364578406101
1207 => 0.0041406294251523
1208 => 0.0040646177774175
1209 => 0.0041669574473193
1210 => 0.00412707557843
1211 => 0.0040927874895009
1212 => 0.0040736541467343
1213 => 0.004148801105493
1214 => 0.0041452954100468
1215 => 0.0040223404001215
1216 => 0.0038619506019612
1217 => 0.0039157826828394
1218 => 0.0038962249831779
1219 => 0.0038253453566111
1220 => 0.0038731096668784
1221 => 0.0036627798174256
1222 => 0.0033009182434362
1223 => 0.0035399750833333
1224 => 0.0035307716550411
1225 => 0.0035261308691539
1226 => 0.0037057754772909
1227 => 0.0036885067933248
1228 => 0.0036571639628309
1229 => 0.0038247697209498
1230 => 0.0037635913646208
1231 => 0.0039521286433931
]
'min_raw' => 0.0016924528224878
'max_raw' => 0.0055674030056314
'avg_raw' => 0.0036299279140596
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001692'
'max' => '$0.005567'
'avg' => '$0.003629'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00092200466267848
'max_diff' => 0.0036803347676192
'year' => 2029
]
4 => [
'items' => [
101 => 0.0040763114890192
102 => 0.0040448147024742
103 => 0.0041616092690133
104 => 0.0039170228652574
105 => 0.0039982646574818
106 => 0.004015008478263
107 => 0.0038227014919113
108 => 0.003691332163587
109 => 0.0036825713271078
110 => 0.003454795015602
111 => 0.0035764712826623
112 => 0.0036835413623692
113 => 0.0036322631031634
114 => 0.0036160299381933
115 => 0.0036989616574818
116 => 0.0037054061623327
117 => 0.003558470768775
118 => 0.0035890232899344
119 => 0.0037164323821031
120 => 0.0035858129077098
121 => 0.0033320406055338
122 => 0.0032691015659175
123 => 0.0032607043378361
124 => 0.0030900086706386
125 => 0.0032733074534994
126 => 0.0031932926226787
127 => 0.0034460585145164
128 => 0.0033016799927094
129 => 0.0032954561232
130 => 0.0032860478315934
131 => 0.0031391230194873
201 => 0.0031712902157796
202 => 0.0032782188754576
203 => 0.0033163722258682
204 => 0.0033123925188392
205 => 0.0032776948666904
206 => 0.0032935792741634
207 => 0.0032424100631985
208 => 0.0032243411498117
209 => 0.003167310688917
210 => 0.0030834916664686
211 => 0.003095147215632
212 => 0.0029290797997216
213 => 0.0028385974576687
214 => 0.0028135531379266
215 => 0.0027800628268932
216 => 0.0028173359576721
217 => 0.0029286093515976
218 => 0.002794390030556
219 => 0.002564280419021
220 => 0.002578110398762
221 => 0.0026091822570821
222 => 0.0025512800546635
223 => 0.0024964804794378
224 => 0.0025441242640665
225 => 0.0024466237881777
226 => 0.0026209647237792
227 => 0.002616249290056
228 => 0.0026812328096771
301 => 0.0027218683380923
302 => 0.0026282166010039
303 => 0.0026046634423874
304 => 0.0026180803919667
305 => 0.0023963281020449
306 => 0.0026631109166478
307 => 0.0026654180655068
308 => 0.0026456628562647
309 => 0.0027877164690454
310 => 0.0030874938996456
311 => 0.0029747055717346
312 => 0.0029310305221222
313 => 0.0028480042208827
314 => 0.0029586318376703
315 => 0.0029501373627607
316 => 0.0029117221257854
317 => 0.0028884884705999
318 => 0.002931297192662
319 => 0.0028831839961933
320 => 0.0028745415440453
321 => 0.0028221776871092
322 => 0.0028034861725867
323 => 0.0027896477193648
324 => 0.0027744129421059
325 => 0.0028080170644691
326 => 0.0027318657022036
327 => 0.0026400346245216
328 => 0.0026323998640383
329 => 0.0026534801089876
330 => 0.0026441536698372
331 => 0.0026323552126358
401 => 0.0026098287447198
402 => 0.0026031456228909
403 => 0.0026248625266449
404 => 0.0026003454084808
405 => 0.0026365217518485
406 => 0.0026266837881809
407 => 0.0025717297228578
408 => 0.0025032366108643
409 => 0.0025026268784984
410 => 0.0024878701498706
411 => 0.0024690752372742
412 => 0.0024638469225592
413 => 0.0025401118374144
414 => 0.0026979779287478
415 => 0.0026669850376037
416 => 0.0026893805777346
417 => 0.0027995444694978
418 => 0.0028345622579455
419 => 0.0028097074611471
420 => 0.0027756846823123
421 => 0.0027771815119125
422 => 0.0028934476465865
423 => 0.0029006990227912
424 => 0.0029190209110778
425 => 0.0029425697152911
426 => 0.0028137179243325
427 => 0.0027711126041458
428 => 0.0027509238397882
429 => 0.0026887502596018
430 => 0.0027557991354729
501 => 0.0027167326268219
502 => 0.0027220040335409
503 => 0.0027185710229998
504 => 0.0027204456788944
505 => 0.0026209159919346
506 => 0.0026571793787364
507 => 0.0025968844647789
508 => 0.0025161563434115
509 => 0.0025158857144417
510 => 0.0025356438077789
511 => 0.0025238909207277
512 => 0.0024922642038671
513 => 0.0024967566297233
514 => 0.0024573982520708
515 => 0.0025015354493767
516 => 0.002502801146265
517 => 0.0024858059211328
518 => 0.0025538053633421
519 => 0.0025816647902975
520 => 0.0025704781690425
521 => 0.002580879907129
522 => 0.0026682729321552
523 => 0.0026825218084595
524 => 0.0026888502180859
525 => 0.0026803709875401
526 => 0.0025824772911969
527 => 0.0025868192929058
528 => 0.0025549605653289
529 => 0.0025280432977163
530 => 0.0025291198472584
531 => 0.0025429588218111
601 => 0.0026033944353278
602 => 0.0027305776210998
603 => 0.0027354041300302
604 => 0.002741253999653
605 => 0.0027174596399882
606 => 0.002710283033432
607 => 0.002719750829919
608 => 0.0027675141475207
609 => 0.0028903743680066
610 => 0.0028469473605287
611 => 0.0028116405274675
612 => 0.002842614138716
613 => 0.0028378459940435
614 => 0.0027975980545162
615 => 0.0027964684289036
616 => 0.0027192197649061
617 => 0.0026906626926932
618 => 0.0026667982656923
619 => 0.0026407389344039
620 => 0.0026252900892995
621 => 0.0026490265367545
622 => 0.0026544553431288
623 => 0.0026025551859265
624 => 0.0025954813862775
625 => 0.0026378641749916
626 => 0.0026192130898681
627 => 0.0026383961934423
628 => 0.0026428468380211
629 => 0.0026421301817368
630 => 0.0026226563068045
701 => 0.0026350683739671
702 => 0.0026057101349122
703 => 0.002573787459405
704 => 0.0025534227812844
705 => 0.0025356518986416
706 => 0.0025455122171816
707 => 0.0025103619820096
708 => 0.0024991167143436
709 => 0.0026308634448927
710 => 0.0027281861712654
711 => 0.0027267710602799
712 => 0.0027181569360928
713 => 0.0027053580948619
714 => 0.0027665778325656
715 => 0.0027452501000769
716 => 0.0027607678074541
717 => 0.0027647177152578
718 => 0.0027766728965432
719 => 0.0027809458462702
720 => 0.0027680300244408
721 => 0.0027246829488467
722 => 0.0026166661577823
723 => 0.002566384049956
724 => 0.0025497901168586
725 => 0.0025503932748104
726 => 0.0025337554858861
727 => 0.0025386560603777
728 => 0.0025320512660691
729 => 0.0025195433835198
730 => 0.0025447398906805
731 => 0.002547643553409
801 => 0.0025417623875619
802 => 0.0025431476150202
803 => 0.0024944540736847
804 => 0.0024981561378756
805 => 0.0024775425740249
806 => 0.0024736777793032
807 => 0.002421568484917
808 => 0.002329249316549
809 => 0.0023804030974634
810 => 0.0023186165234289
811 => 0.0022952170116226
812 => 0.0024059866611427
813 => 0.0023948684606027
814 => 0.0023758389342438
815 => 0.0023476902986583
816 => 0.0023372496959073
817 => 0.0022738158986854
818 => 0.0022700678915394
819 => 0.0023015073942992
820 => 0.0022869991455427
821 => 0.0022666240695853
822 => 0.0021928276098557
823 => 0.0021098559559514
824 => 0.0021123603486416
825 => 0.002138752088006
826 => 0.0022154896296191
827 => 0.0021855069445379
828 => 0.0021637541624999
829 => 0.0021596805203103
830 => 0.0022106706810595
831 => 0.0022828324412886
901 => 0.0023166891246597
902 => 0.0022831381796817
903 => 0.0022445966606021
904 => 0.0022469425042843
905 => 0.0022625483513453
906 => 0.0022641883052166
907 => 0.002239101738428
908 => 0.0022461634600336
909 => 0.0022354360591773
910 => 0.0021696020199238
911 => 0.0021684112909157
912 => 0.0021522545559656
913 => 0.0021517653364524
914 => 0.0021242786998159
915 => 0.0021204331293443
916 => 0.0020658567439828
917 => 0.0021017790861002
918 => 0.0020776842650155
919 => 0.0020413676862471
920 => 0.0020351066943788
921 => 0.0020349184814029
922 => 0.0020722074875597
923 => 0.0021013433423526
924 => 0.0020781034047441
925 => 0.002072812121438
926 => 0.002129309184022
927 => 0.002122119417826
928 => 0.0021158931266693
929 => 0.0022763711471372
930 => 0.0021493402716808
1001 => 0.0020939475593129
1002 => 0.0020253885589668
1003 => 0.002047711715184
1004 => 0.0020524155321944
1005 => 0.0018875434950508
1006 => 0.0018206549301152
1007 => 0.0017977012952717
1008 => 0.0017844911539025
1009 => 0.0017905111812069
1010 => 0.0017303036275187
1011 => 0.0017707640993382
1012 => 0.001718629447062
1013 => 0.0017098889029471
1014 => 0.001803112119461
1015 => 0.0018160835854368
1016 => 0.0017607432816655
1017 => 0.001796280715468
1018 => 0.001783394347964
1019 => 0.0017195231460398
1020 => 0.001717083735931
1021 => 0.0016850354119868
1022 => 0.0016348859907924
1023 => 0.001611966359618
1024 => 0.001600029616705
1025 => 0.0016049549494733
1026 => 0.001602464550508
1027 => 0.0015862130126882
1028 => 0.0016033960696324
1029 => 0.0015595004596692
1030 => 0.0015420208740909
1031 => 0.0015341257508084
1101 => 0.001495165870429
1102 => 0.0015571683656501
1103 => 0.0015693836382955
1104 => 0.0015816229788015
1105 => 0.0016881580817537
1106 => 0.0016828358890753
1107 => 0.0017309459188752
1108 => 0.0017290764515859
1109 => 0.0017153546917561
1110 => 0.0016574648441544
1111 => 0.0016805387056211
1112 => 0.0016095209465007
1113 => 0.0016627322803719
1114 => 0.0016384488497515
1115 => 0.0016545220280522
1116 => 0.0016256210042075
1117 => 0.0016416160240972
1118 => 0.0015722803325965
1119 => 0.0015075356394527
1120 => 0.0015335907939892
1121 => 0.0015619157267387
1122 => 0.0016233313979983
1123 => 0.0015867527308643
1124 => 0.0015999078027582
1125 => 0.0015558405140461
1126 => 0.0014649171102343
1127 => 0.0014654317268256
1128 => 0.0014514451420232
1129 => 0.0014393586906791
1130 => 0.0015909542308043
1201 => 0.0015721009290189
1202 => 0.0015420606600829
1203 => 0.0015822707538065
1204 => 0.001592902940807
1205 => 0.0015932056242238
1206 => 0.0016225418706318
1207 => 0.0016381986305986
1208 => 0.001640958202403
1209 => 0.0016871194199775
1210 => 0.0017025920512273
1211 => 0.0017663216295765
1212 => 0.0016368702639031
1213 => 0.0016342042982149
1214 => 0.0015828365922858
1215 => 0.0015502583810943
1216 => 0.001585067250278
1217 => 0.0016159031564902
1218 => 0.0015837947498466
1219 => 0.0015879874299088
1220 => 0.0015448845173429
1221 => 0.0015602917804047
1222 => 0.0015735625909359
1223 => 0.0015662352293828
1224 => 0.0015552658144893
1225 => 0.0016133749638288
1226 => 0.0016100962178915
1227 => 0.00166420879368
1228 => 0.0017063934161346
1229 => 0.0017819958009764
1230 => 0.0017031007711525
1231 => 0.0017002255226864
]
'min_raw' => 0.0014393586906791
'max_raw' => 0.0041616092690133
'avg_raw' => 0.0028004839798462
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001439'
'max' => '$0.004161'
'avg' => '$0.00280048'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00025309413180873
'max_diff' => -0.0014057937366182
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017283315376471
102 => 0.0017025877483428
103 => 0.0017188569345377
104 => 0.0017793745835598
105 => 0.0017806532261212
106 => 0.0017592343157803
107 => 0.0017579309731395
108 => 0.0017620447091676
109 => 0.0017861389895749
110 => 0.0017777197076581
111 => 0.0017874627138423
112 => 0.0017996464922658
113 => 0.0018500437656406
114 => 0.001862194377632
115 => 0.0018326746898628
116 => 0.0018353399871504
117 => 0.0018242988135911
118 => 0.0018136331782784
119 => 0.0018376079688705
120 => 0.0018814223699032
121 => 0.0018811498027884
122 => 0.0018913138921977
123 => 0.0018976460356959
124 => 0.0018704638403894
125 => 0.001852769230762
126 => 0.0018595544700304
127 => 0.0018704042153839
128 => 0.0018560360438415
129 => 0.001767349033097
130 => 0.0017942510068087
131 => 0.0017897732029438
201 => 0.0017833962657206
202 => 0.0018104464083145
203 => 0.001807837356072
204 => 0.0017296861120331
205 => 0.0017346891011153
206 => 0.0017299903603696
207 => 0.0017451729529911
208 => 0.0017017678385163
209 => 0.0017151189593908
210 => 0.0017234926572443
211 => 0.0017284248296098
212 => 0.0017462432182163
213 => 0.0017441524359724
214 => 0.0017461132522564
215 => 0.0017725332186796
216 => 0.0019061563426106
217 => 0.0019134291544233
218 => 0.0018776151691514
219 => 0.0018919221498679
220 => 0.0018644558754849
221 => 0.0018828941694862
222 => 0.0018955091819601
223 => 0.0018385043663182
224 => 0.0018351289110941
225 => 0.0018075492736264
226 => 0.001822369008611
227 => 0.0017987897446739
228 => 0.0018045752712764
301 => 0.0017883984345226
302 => 0.0018175135199034
303 => 0.0018500687093861
304 => 0.0018582934358928
305 => 0.0018366577214211
306 => 0.0018209920382804
307 => 0.0017934882592823
308 => 0.0018392276567179
309 => 0.0018526032504109
310 => 0.0018391574004184
311 => 0.0018360417031775
312 => 0.0018301374625359
313 => 0.0018372943157407
314 => 0.0018525304040551
315 => 0.0018453453461724
316 => 0.0018500912034883
317 => 0.0018320048893068
318 => 0.0018704728388271
319 => 0.0019315692004817
320 => 0.0019317656352747
321 => 0.0019245805386618
322 => 0.0019216405519329
323 => 0.0019290128970858
324 => 0.0019330120919018
325 => 0.0019568529042693
326 => 0.0019824350457996
327 => 0.0021018157379583
328 => 0.0020682941173097
329 => 0.002174215769382
330 => 0.0022579860439661
331 => 0.0022831050864838
401 => 0.0022599967493098
402 => 0.0021809443761256
403 => 0.002177065689558
404 => 0.0022952033101462
405 => 0.0022618240212842
406 => 0.0022578536610861
407 => 0.0022156157366076
408 => 0.0022405835812431
409 => 0.0022351227473651
410 => 0.0022265025539356
411 => 0.0022741394622251
412 => 0.0023633115019668
413 => 0.002349413203323
414 => 0.0023390387681089
415 => 0.0022935810129533
416 => 0.0023209567349141
417 => 0.0023112087646713
418 => 0.0023530922310493
419 => 0.0023282813933994
420 => 0.0022615711403416
421 => 0.002272194968021
422 => 0.0022705891978394
423 => 0.0023036358343897
424 => 0.0022937160543652
425 => 0.0022686522015828
426 => 0.0023630067216292
427 => 0.0023568798639248
428 => 0.002365566347355
429 => 0.0023693904059994
430 => 0.0024268223396385
501 => 0.0024503503652335
502 => 0.0024556916389596
503 => 0.0024780414435521
504 => 0.0024551355554612
505 => 0.0025467754394464
506 => 0.0026077106149611
507 => 0.0026784899570169
508 => 0.002781917599454
509 => 0.0028208073497695
510 => 0.0028137822644637
511 => 0.0028921999225562
512 => 0.0030331147110217
513 => 0.0028422651721206
514 => 0.0030432302000023
515 => 0.0029796069924278
516 => 0.0028287575118012
517 => 0.0028190445836474
518 => 0.0029212016033262
519 => 0.0031477760407251
520 => 0.0030910217139427
521 => 0.003147868870472
522 => 0.003081553642766
523 => 0.0030782605327618
524 => 0.0031446480878807
525 => 0.0032997662290133
526 => 0.0032260754146778
527 => 0.0031204215625988
528 => 0.0031984347228179
529 => 0.003130852503659
530 => 0.0029785708488219
531 => 0.0030909783149786
601 => 0.0030158146435399
602 => 0.0030377513987863
603 => 0.003195734256398
604 => 0.0031767253409994
605 => 0.0032013246377034
606 => 0.0031579075228965
607 => 0.0031173490914163
608 => 0.0030416437671497
609 => 0.0030192311528618
610 => 0.0030254251931296
611 => 0.0030192280834031
612 => 0.0029768716502438
613 => 0.0029677247825358
614 => 0.0029524796022891
615 => 0.0029572047211198
616 => 0.0029285393221212
617 => 0.0029826368526053
618 => 0.0029926778309689
619 => 0.0030320455022956
620 => 0.0030361327845299
621 => 0.0031457711888109
622 => 0.0030853841981315
623 => 0.0031258970050412
624 => 0.0031222731582698
625 => 0.002832026877462
626 => 0.0028720202540927
627 => 0.0029342373975171
628 => 0.0029062086587377
629 => 0.0028665825798185
630 => 0.0028345823964753
701 => 0.0027860988465236
702 => 0.0028543385120365
703 => 0.0029440664157066
704 => 0.0030384084322406
705 => 0.0031517541835724
706 => 0.0031264567313651
707 => 0.0030362895122611
708 => 0.0030403343478429
709 => 0.0030653379298255
710 => 0.0030329560193431
711 => 0.0030234059617718
712 => 0.0030640258985663
713 => 0.0030643056257467
714 => 0.003027046324252
715 => 0.0029856394290209
716 => 0.002985465932618
717 => 0.0029780979755548
718 => 0.0030828643859596
719 => 0.0031404753186034
720 => 0.0031470803191863
721 => 0.0031400307494383
722 => 0.0031427438490469
723 => 0.0031092213167117
724 => 0.0031858438848317
725 => 0.0032561603305253
726 => 0.0032373140209877
727 => 0.00320906072383
728 => 0.0031865556117808
729 => 0.0032320125318116
730 => 0.0032299884067185
731 => 0.0032555461777149
801 => 0.0032543867295936
802 => 0.0032457926124839
803 => 0.0032373143279106
804 => 0.0032709297679019
805 => 0.0032612490610319
806 => 0.0032515533173502
807 => 0.0032321070190525
808 => 0.0032347500939599
809 => 0.0032065016751324
810 => 0.0031934326640231
811 => 0.002996906093881
812 => 0.0029443877726481
813 => 0.002960911105617
814 => 0.0029663510158585
815 => 0.0029434949751539
816 => 0.0029762646662892
817 => 0.0029711575446374
818 => 0.0029910263674181
819 => 0.0029786131895488
820 => 0.0029791226306984
821 => 0.0030156271400437
822 => 0.0030262245544079
823 => 0.0030208346239306
824 => 0.0030246095464809
825 => 0.0031116010433567
826 => 0.0030992336343324
827 => 0.0030926636947799
828 => 0.0030944836129357
829 => 0.0031167118055062
830 => 0.0031229344858116
831 => 0.0030965685520976
901 => 0.0031090028788567
902 => 0.0031619466640463
903 => 0.003180473992504
904 => 0.0032396043313185
905 => 0.0032144847124321
906 => 0.0032605928600498
907 => 0.0034023135864005
908 => 0.0035155299089378
909 => 0.0034114114998701
910 => 0.0036193188581981
911 => 0.0037812045591957
912 => 0.0037749911163567
913 => 0.003746762599904
914 => 0.0035624600332723
915 => 0.0033928620636613
916 => 0.0035347379667511
917 => 0.0035350996376051
918 => 0.0035229123717062
919 => 0.003447218309902
920 => 0.0035202783824318
921 => 0.003526077625674
922 => 0.0035228315916016
923 => 0.0034647971318904
924 => 0.0033761892384724
925 => 0.003393503008749
926 => 0.0034218633176533
927 => 0.0033681713363172
928 => 0.0033510134949685
929 => 0.0033829131864487
930 => 0.0034857006389626
1001 => 0.003466269266472
1002 => 0.0034657618348079
1003 => 0.003548897486507
1004 => 0.003489390301687
1005 => 0.0033937213908385
1006 => 0.0033695637291314
1007 => 0.0032838203046219
1008 => 0.0033430435933382
1009 => 0.0033451749340659
1010 => 0.0033127389440833
1011 => 0.0033963533926607
1012 => 0.003395582870797
1013 => 0.0034749623453529
1014 => 0.0036267060871347
1015 => 0.0035818279958338
1016 => 0.0035296396583733
1017 => 0.0035353139776809
1018 => 0.0035975472550717
1019 => 0.0035599195949137
1020 => 0.0035734507638559
1021 => 0.0035975267740269
1022 => 0.0036120524287368
1023 => 0.0035332239595053
1024 => 0.0035148452725258
1025 => 0.0034772489290085
1026 => 0.0034674407447538
1027 => 0.0034980621820752
1028 => 0.0034899945152124
1029 => 0.0033449958031307
1030 => 0.003329842630953
1031 => 0.0033303073571099
1101 => 0.0032922039851749
1102 => 0.0032340871971169
1103 => 0.0033868146461602
1104 => 0.0033745484945828
1105 => 0.003361007612566
1106 => 0.0033626662933498
1107 => 0.003428960102566
1108 => 0.003390506345303
1109 => 0.0034927419614336
1110 => 0.0034717253922411
1111 => 0.0034501698273515
1112 => 0.0034471901916852
1113 => 0.0034388931382371
1114 => 0.003410439454766
1115 => 0.0033760799221733
1116 => 0.0033533927825839
1117 => 0.0030933275822619
1118 => 0.003141594170712
1119 => 0.0031971204810858
1120 => 0.0032162879409192
1121 => 0.0031835006745264
1122 => 0.0034117340958839
1123 => 0.0034534345412779
1124 => 0.0033271211721268
1125 => 0.0033034930980995
1126 => 0.0034132831484835
1127 => 0.0033470663268141
1128 => 0.0033768837575574
1129 => 0.0033124347815531
1130 => 0.0034433901251141
1201 => 0.0034423924648064
1202 => 0.0033914478784006
1203 => 0.0034345058939773
1204 => 0.0034270235041651
1205 => 0.003369507191584
1206 => 0.0034452134948129
1207 => 0.0034452510441948
1208 => 0.00339621798741
1209 => 0.0033389581118018
1210 => 0.0033287213984609
1211 => 0.0033210094100675
1212 => 0.0033749870811661
1213 => 0.0034233832922892
1214 => 0.0035134366427512
1215 => 0.0035360781946721
1216 => 0.0036244496791531
1217 => 0.0035718287628742
1218 => 0.0035951549335057
1219 => 0.0036204787914145
1220 => 0.00363261998015
1221 => 0.0036128365646376
1222 => 0.0037501138551908
1223 => 0.003761704264581
1224 => 0.0037655904285928
1225 => 0.0037193012986003
1226 => 0.0037604168801394
1227 => 0.0037411802611422
1228 => 0.0037912285996863
1229 => 0.0037990768182193
1230 => 0.0037924296563304
1231 => 0.0037949208047684
]
'min_raw' => 0.0017017678385163
'max_raw' => 0.0037990768182193
'avg_raw' => 0.0027504223283678
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0017017'
'max' => '$0.003799'
'avg' => '$0.00275'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00026240914783718
'max_diff' => -0.00036253245079396
'year' => 2031
]
6 => [
'items' => [
101 => 0.0036777788546548
102 => 0.0036717044265684
103 => 0.0035888791685885
104 => 0.0036226310734287
105 => 0.0035595335051009
106 => 0.0035795423939946
107 => 0.0035883621215673
108 => 0.0035837551963984
109 => 0.0036245393554874
110 => 0.0035898644886085
111 => 0.0034983518138392
112 => 0.0034068142065029
113 => 0.0034056650264077
114 => 0.003381564790169
115 => 0.0033641447335469
116 => 0.003367500454462
117 => 0.0033793264526605
118 => 0.0033634573850331
119 => 0.0033668438551936
120 => 0.0034230818237898
121 => 0.0034343599473209
122 => 0.0033960324769148
123 => 0.0032421421526067
124 => 0.0032043770810168
125 => 0.0032315218655617
126 => 0.0032185484068973
127 => 0.0025976197617699
128 => 0.0027434977365778
129 => 0.0026568219974949
130 => 0.0026967661658233
131 => 0.0026082926807935
201 => 0.0026505168651424
202 => 0.0026427196000735
203 => 0.0028772870667215
204 => 0.0028736246183668
205 => 0.0028753776385817
206 => 0.0027917014162525
207 => 0.0029249999104799
208 => 0.0029906675419952
209 => 0.0029785142110891
210 => 0.0029815729426449
211 => 0.0029290138004535
212 => 0.0028758865259667
213 => 0.0028169602023319
214 => 0.0029264380281316
215 => 0.0029142659627515
216 => 0.0029421843013626
217 => 0.0030131884970303
218 => 0.0030236441345611
219 => 0.0030376966174331
220 => 0.0030326598026473
221 => 0.0031526571653454
222 => 0.0031381246929546
223 => 0.0031731437701388
224 => 0.003101106871467
225 => 0.0030195902828148
226 => 0.0030350839213395
227 => 0.0030335917593576
228 => 0.0030145948247042
229 => 0.0029974452415094
301 => 0.0029688960173552
302 => 0.0030592299870693
303 => 0.0030555625928681
304 => 0.003114933442106
305 => 0.0031044390678055
306 => 0.003034355067818
307 => 0.0030368581315883
308 => 0.0030536924383749
309 => 0.003111956166374
310 => 0.0031292528077412
311 => 0.0031212403143079
312 => 0.0031402052919454
313 => 0.0031551944370057
314 => 0.003142087697788
315 => 0.0033276514854426
316 => 0.0032505924633463
317 => 0.0032881504945428
318 => 0.0032971078636784
319 => 0.0032741637509907
320 => 0.0032791395074656
321 => 0.0032866764227126
322 => 0.0033324390962128
323 => 0.0034525335930135
324 => 0.0035057226281357
325 => 0.0036657444646016
326 => 0.0035013060191959
327 => 0.0034915489223595
328 => 0.0035203736873035
329 => 0.0036143234453406
330 => 0.0036904608999776
331 => 0.0037157200861559
401 => 0.0037190585045931
402 => 0.0037664464170624
403 => 0.0037936082847575
404 => 0.0037606922780628
405 => 0.0037327994088385
406 => 0.0036328906134676
407 => 0.0036444553285744
408 => 0.0037241247474841
409 => 0.0038366624941994
410 => 0.0039332315884381
411 => 0.0038994164574084
412 => 0.0041574020374025
413 => 0.0041829802538824
414 => 0.0041794461714076
415 => 0.0042377171550976
416 => 0.0041220611191524
417 => 0.0040726159230557
418 => 0.0037388301637623
419 => 0.0038326103471795
420 => 0.0039689253512936
421 => 0.003950883549344
422 => 0.0038518879496459
423 => 0.0039331564913986
424 => 0.0039062865699929
425 => 0.0038850931481461
426 => 0.003982184322173
427 => 0.0038754285880449
428 => 0.0039678603811818
429 => 0.0038493156503992
430 => 0.0038995709220786
501 => 0.0038710435992994
502 => 0.0038895042733147
503 => 0.0037815835502347
504 => 0.0038398149527812
505 => 0.0037791609324417
506 => 0.0037791321745387
507 => 0.0037777932336779
508 => 0.0038491524196263
509 => 0.0038514794401182
510 => 0.0037987448938846
511 => 0.0037911450219039
512 => 0.0038192457318707
513 => 0.0037863471600872
514 => 0.0038017401947636
515 => 0.0037868133994264
516 => 0.0037834530633896
517 => 0.0037566773341343
518 => 0.0037451416137571
519 => 0.0037496650669559
520 => 0.0037342241891885
521 => 0.0037249205018127
522 => 0.0037759424960885
523 => 0.0037486835027683
524 => 0.0037717646644132
525 => 0.003745460767644
526 => 0.0036542800013798
527 => 0.0036018409784822
528 => 0.0034296089634707
529 => 0.0034784537492748
530 => 0.0035108378927965
531 => 0.0035001349335558
601 => 0.0035231290315003
602 => 0.0035245406823637
603 => 0.0035170650667249
604 => 0.0035084092615008
605 => 0.0035041960942137
606 => 0.0035355975913882
607 => 0.0035538272174237
608 => 0.0035140880748429
609 => 0.0035047777497459
610 => 0.0035449562169533
611 => 0.0035694650587395
612 => 0.0037504245761601
613 => 0.003737018510618
614 => 0.0037706651043211
615 => 0.0037668770142192
616 => 0.0038021440047427
617 => 0.0038597906293065
618 => 0.0037425789233186
619 => 0.0037629228226023
620 => 0.0037579349683072
621 => 0.0038123910536155
622 => 0.0038125610595698
623 => 0.0037799119161442
624 => 0.0037976115464671
625 => 0.0037877320983848
626 => 0.0038055855963569
627 => 0.0037368394644394
628 => 0.0038205648324286
629 => 0.0038680317209349
630 => 0.0038686907987279
701 => 0.0038911897271594
702 => 0.0039140499414958
703 => 0.0039579281322095
704 => 0.0039128262025717
705 => 0.0038316922217376
706 => 0.0038375498330927
707 => 0.0037899810098154
708 => 0.0037907806503287
709 => 0.0037865121065998
710 => 0.0037993223276514
711 => 0.003739650587579
712 => 0.0037536554257038
713 => 0.0037340485703168
714 => 0.0037628802011278
715 => 0.0037318621324145
716 => 0.0037579325630128
717 => 0.0037691836966106
718 => 0.0038107006218059
719 => 0.0037257300488068
720 => 0.0035524692984596
721 => 0.0035888908087661
722 => 0.0035350205341749
723 => 0.0035400064331869
724 => 0.0035500787426911
725 => 0.0035174310921334
726 => 0.0035236592350141
727 => 0.0035234367219236
728 => 0.0035215192243213
729 => 0.0035130263094991
730 => 0.003500709902735
731 => 0.0035497746764932
801 => 0.0035581117376446
802 => 0.0035766439918407
803 => 0.0036317834097804
804 => 0.0036262736816512
805 => 0.0036352602768263
806 => 0.0036156425900166
807 => 0.0035409164414131
808 => 0.0035449744308007
809 => 0.0034943712381135
810 => 0.0035753499544322
811 => 0.0035561731255411
812 => 0.0035438096992024
813 => 0.0035404362237795
814 => 0.0035957123216711
815 => 0.0036122517965069
816 => 0.0036019455057121
817 => 0.0035808070026094
818 => 0.003621399177604
819 => 0.0036322599311862
820 => 0.0036346912533841
821 => 0.0037066128046971
822 => 0.0036387108691537
823 => 0.0036550555399262
824 => 0.0037825719955011
825 => 0.0036669321663627
826 => 0.0037281891629332
827 => 0.0037251909517171
828 => 0.0037565279583389
829 => 0.0037226204025155
830 => 0.0037230407273077
831 => 0.0037508658662351
901 => 0.0037117904769019
902 => 0.0037021148609845
903 => 0.0036887480668927
904 => 0.0037179339727777
905 => 0.0037354296033908
906 => 0.0038764315370073
907 => 0.0039675252165929
908 => 0.0039635705997196
909 => 0.003999708395209
910 => 0.0039834279873568
911 => 0.0039308542558473
912 => 0.0040205912048504
913 => 0.0039921946794324
914 => 0.0039945356544861
915 => 0.0039944485232777
916 => 0.0040133297302133
917 => 0.0039999506646622
918 => 0.0039735791531281
919 => 0.0039910857931914
920 => 0.0040430742554409
921 => 0.0042044480374643
922 => 0.0042947549438029
923 => 0.0041990114483101
924 => 0.0042650540294445
925 => 0.0042254520141416
926 => 0.0042182551499032
927 => 0.004259734771364
928 => 0.0043012869974112
929 => 0.0042986403002472
930 => 0.0042684755178674
1001 => 0.004251436197704
1002 => 0.0043804636385721
1003 => 0.0044755288590785
1004 => 0.0044690460483653
1005 => 0.0044976590665305
1006 => 0.0045816677728307
1007 => 0.0045893484761034
1008 => 0.00458838088403
1009 => 0.0045693434595701
1010 => 0.0046520609408317
1011 => 0.0047210653189758
1012 => 0.0045649368458517
1013 => 0.0046243885245456
1014 => 0.0046510782985247
1015 => 0.0046902668052251
1016 => 0.0047563843847852
1017 => 0.0048282056130092
1018 => 0.0048383619221598
1019 => 0.0048311555347933
1020 => 0.0047837875041213
1021 => 0.0048623751490495
1022 => 0.0049084099483414
1023 => 0.0049358226178321
1024 => 0.0050053365866271
1025 => 0.0046512431254825
1026 => 0.0044005981740974
1027 => 0.0043614563455817
1028 => 0.0044410527930448
1029 => 0.0044620417414711
1030 => 0.0044535811226784
1031 => 0.0041714574422524
1101 => 0.0043599710227911
1102 => 0.0045627957847785
1103 => 0.0045705871099163
1104 => 0.004672125426633
1105 => 0.0047051904647522
1106 => 0.0047869421186406
1107 => 0.0047818285304313
1108 => 0.0048017337572002
1109 => 0.0047971578902765
1110 => 0.0049485856142629
1111 => 0.0051156328810546
1112 => 0.0051098485653834
1113 => 0.0050858335443686
1114 => 0.0051214999457452
1115 => 0.0052939106269473
1116 => 0.005278037814247
1117 => 0.0052934568997423
1118 => 0.0054967388095197
1119 => 0.0057610342087449
1120 => 0.0056382424609806
1121 => 0.0059046652212555
1122 => 0.0060723642263849
1123 => 0.0063623823153554
1124 => 0.0063260706222471
1125 => 0.0064389725360323
1126 => 0.0062610651131042
1127 => 0.0058525537090389
1128 => 0.0057879052156268
1129 => 0.0059173331365985
1130 => 0.0062355190509157
1201 => 0.0059073123298291
1202 => 0.0059737081220476
1203 => 0.005954586129422
1204 => 0.0059535671996982
1205 => 0.0059924556029683
1206 => 0.0059360459457423
1207 => 0.0057062228543003
1208 => 0.0058115494227522
1209 => 0.0057708777764757
1210 => 0.0058160060002916
1211 => 0.0060595444119307
1212 => 0.0059518702749144
1213 => 0.0058384443183044
1214 => 0.0059807056391282
1215 => 0.0061618531868304
1216 => 0.0061505172988486
1217 => 0.0061285209381304
1218 => 0.006252513271807
1219 => 0.0064573122806956
1220 => 0.0065126686298492
1221 => 0.0065535315550836
1222 => 0.0065591658620886
1223 => 0.0066172027259429
1224 => 0.0063051238818257
1225 => 0.0068004010221929
1226 => 0.0068859217025794
1227 => 0.0068698473591358
1228 => 0.006964899996125
1229 => 0.0069369330990701
1230 => 0.0068964134531093
1231 => 0.0070470921010129
]
'min_raw' => 0.0025976197617699
'max_raw' => 0.0070470921010129
'avg_raw' => 0.0048223559313914
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002597'
'max' => '$0.007047'
'avg' => '$0.004822'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00089585192325367
'max_diff' => 0.0032480152827936
'year' => 2032
]
7 => [
'items' => [
101 => 0.0068743511903313
102 => 0.0066291672150946
103 => 0.0064946544370906
104 => 0.0066717917140025
105 => 0.0067799632677736
106 => 0.0068514577838134
107 => 0.0068730919811688
108 => 0.00632934967412
109 => 0.0060363027279515
110 => 0.0062241424606554
111 => 0.00645331989856
112 => 0.0063038507895867
113 => 0.006309709695676
114 => 0.0060966060260708
115 => 0.0064721748447188
116 => 0.0064174576268727
117 => 0.0067013306498512
118 => 0.006633582074694
119 => 0.0068650695050457
120 => 0.0068041111066455
121 => 0.0070571460102665
122 => 0.0071580884839675
123 => 0.007327586607753
124 => 0.007452270117591
125 => 0.0075254866593834
126 => 0.0075210910128426
127 => 0.0078112114277603
128 => 0.0076401375551186
129 => 0.0074252284520645
130 => 0.0074213414244198
131 => 0.007532645894177
201 => 0.0077659095278982
202 => 0.0078263913942742
203 => 0.0078601925064905
204 => 0.0078084249265061
205 => 0.0076227364987284
206 => 0.0075425571770757
207 => 0.0076108722821424
208 => 0.0075273287790297
209 => 0.0076715483035691
210 => 0.0078695925143898
211 => 0.007828697168007
212 => 0.0079654041795917
213 => 0.0081068815545848
214 => 0.0083092005549715
215 => 0.0083620942335235
216 => 0.0084495254728035
217 => 0.0085395209376885
218 => 0.0085684250555638
219 => 0.0086236119850087
220 => 0.0086233211226495
221 => 0.0087896306490407
222 => 0.0089730752068275
223 => 0.0090423212806408
224 => 0.0092015488091235
225 => 0.0089288772465949
226 => 0.009135701758998
227 => 0.0093222626463389
228 => 0.0090998370654485
301 => 0.0094063989101923
302 => 0.0094183020119397
303 => 0.009598024716311
304 => 0.0094158413247266
305 => 0.0093076614083538
306 => 0.0096199727734735
307 => 0.0097710904053391
308 => 0.0097255725447851
309 => 0.0093791793784752
310 => 0.009177563698181
311 => 0.0086498965740909
312 => 0.0092749410760991
313 => 0.0095793820202292
314 => 0.0093783909499774
315 => 0.0094797591548601
316 => 0.010032791211949
317 => 0.010243350013114
318 => 0.010199555254389
319 => 0.01020695584769
320 => 0.010320569554887
321 => 0.010824395300806
322 => 0.010522491235262
323 => 0.010753285581241
324 => 0.010875698070158
325 => 0.010989401611985
326 => 0.01071018164963
327 => 0.010346920581161
328 => 0.010231860552115
329 => 0.0093584063491419
330 => 0.0093129392646579
331 => 0.0092874172123433
401 => 0.0091265042826658
402 => 0.0090000707977002
403 => 0.0088995261962813
404 => 0.0086356671369984
405 => 0.0087247118238425
406 => 0.0083041755550112
407 => 0.0085732197569191
408 => 0.0079020337176611
409 => 0.0084610173955561
410 => 0.0081567879935469
411 => 0.0083610698547725
412 => 0.0083603571346032
413 => 0.0079842094604638
414 => 0.0077672553320219
415 => 0.0079055069466461
416 => 0.0080537236519501
417 => 0.0080777713137248
418 => 0.0082699381410032
419 => 0.0083235677718844
420 => 0.0081610674865861
421 => 0.007888124878851
422 => 0.0079515232214698
423 => 0.0077659705666322
424 => 0.0074407966762093
425 => 0.0076743422413025
426 => 0.007754084965499
427 => 0.0077893038953469
428 => 0.0074695327205896
429 => 0.0073690536749109
430 => 0.0073155594740924
501 => 0.0078468464357042
502 => 0.0078759515347738
503 => 0.0077270457328875
504 => 0.0084001140772414
505 => 0.0082477779815703
506 => 0.0084179747236846
507 => 0.0079457704863871
508 => 0.0079638093241592
509 => 0.007740260270814
510 => 0.0078654328031342
511 => 0.0077769648917893
512 => 0.0078553200995018
513 => 0.007902285887934
514 => 0.0081257982590793
515 => 0.0084635695478017
516 => 0.0080924129643109
517 => 0.0079306947258238
518 => 0.0080310238114433
519 => 0.0082982133876603
520 => 0.0087030192728119
521 => 0.0084633660413245
522 => 0.0085697200758828
523 => 0.0085929537010722
524 => 0.0084162422806182
525 => 0.0087095348749426
526 => 0.0088667127589458
527 => 0.0090279447445528
528 => 0.0091679379600377
529 => 0.008963545143934
530 => 0.0091822747557243
531 => 0.0090060172995954
601 => 0.008847896140287
602 => 0.0088481359448161
603 => 0.0087489442318004
604 => 0.0085567477888723
605 => 0.0085213038159739
606 => 0.0087056878390717
607 => 0.0088535463643643
608 => 0.0088657247007019
609 => 0.0089475867775492
610 => 0.008996031911381
611 => 0.0094708600808981
612 => 0.0096618398986625
613 => 0.0098953664047619
614 => 0.0099863381397204
615 => 0.010260130446773
616 => 0.010039020922504
617 => 0.0099911824860843
618 => 0.0093270519059551
619 => 0.009435803251246
620 => 0.0096099246480007
621 => 0.0093299231036547
622 => 0.0095075196360709
623 => 0.0095425809535787
624 => 0.0093204087583218
625 => 0.0094390805273024
626 => 0.0091239234926172
627 => 0.008470439109933
628 => 0.0087102623898689
629 => 0.0088868530475449
630 => 0.0086348364055702
701 => 0.0090865664819189
702 => 0.0088226750969176
703 => 0.0087390341968925
704 => 0.008412721225761
705 => 0.008566728387197
706 => 0.0087750252782093
707 => 0.0086463220166764
708 => 0.0089134006092491
709 => 0.009291655123591
710 => 0.0095612218159567
711 => 0.0095819157993737
712 => 0.0094086024757482
713 => 0.0096863381829288
714 => 0.0096883611843447
715 => 0.0093750741720612
716 => 0.009183187621427
717 => 0.0091395905933902
718 => 0.009248504517127
719 => 0.0093807461271631
720 => 0.0095892542883758
721 => 0.0097152514032973
722 => 0.010043785055306
723 => 0.010132676841742
724 => 0.010230341964729
725 => 0.010360852687848
726 => 0.010517564273216
727 => 0.010174688246028
728 => 0.010188311349789
729 => 0.0098690299407129
730 => 0.0095278319655298
731 => 0.0097867586977658
801 => 0.010125270956585
802 => 0.010047615870389
803 => 0.010038878086842
804 => 0.010053572615108
805 => 0.0099950232160947
806 => 0.009730206454298
807 => 0.0095972171343643
808 => 0.0097688072862727
809 => 0.009859999815413
810 => 0.010001431475285
811 => 0.0099839970379459
812 => 0.010348309805125
813 => 0.010489870730205
814 => 0.010453653387836
815 => 0.010460318250451
816 => 0.010716607543477
817 => 0.011001653947235
818 => 0.01126863751954
819 => 0.0115402246765
820 => 0.011212815758558
821 => 0.011046577701801
822 => 0.011218092942817
823 => 0.011127084541682
824 => 0.011650045809448
825 => 0.011686254512976
826 => 0.01220917796469
827 => 0.012705494588933
828 => 0.012393767009682
829 => 0.012687712076397
830 => 0.013005637631742
831 => 0.013618967609566
901 => 0.013412419650244
902 => 0.013254207150422
903 => 0.013104697102568
904 => 0.013415803778101
905 => 0.013816037546123
906 => 0.013902244066364
907 => 0.01404193156258
908 => 0.013895067240484
909 => 0.014071949139874
910 => 0.014696419970566
911 => 0.014527682439757
912 => 0.014288048020095
913 => 0.014781007766111
914 => 0.014959407981861
915 => 0.016211514124917
916 => 0.017792349852449
917 => 0.017137873480924
918 => 0.016731618877297
919 => 0.016827098345638
920 => 0.017404366038666
921 => 0.017589766100106
922 => 0.017085784821879
923 => 0.017263799529472
924 => 0.018244678070332
925 => 0.018770887937151
926 => 0.018056224258596
927 => 0.016084495513435
928 => 0.014266471562502
929 => 0.014748693380975
930 => 0.014694024391845
1001 => 0.015747856016909
1002 => 0.014523658105452
1003 => 0.01454427045865
1004 => 0.015619894205693
1005 => 0.015332936230842
1006 => 0.014868101062383
1007 => 0.014269865373649
1008 => 0.013163971372921
1009 => 0.012184450216341
1010 => 0.014105516774645
1011 => 0.014022676891418
1012 => 0.013902712464322
1013 => 0.014169680315317
1014 => 0.015466000419598
1015 => 0.015436116045415
1016 => 0.015246006904009
1017 => 0.01539020301222
1018 => 0.014842822787435
1019 => 0.014983895134978
1020 => 0.014266183578219
1021 => 0.014590619176157
1022 => 0.014867103734879
1023 => 0.014922612103466
1024 => 0.015047675292221
1025 => 0.013979024037231
1026 => 0.014458817076769
1027 => 0.01474065053697
1028 => 0.013467316710594
1029 => 0.014715480821303
1030 => 0.013960421196416
1031 => 0.013704142619114
1101 => 0.014049187961316
1102 => 0.013914723455892
1103 => 0.01379911877015
1104 => 0.013734609369165
1105 => 0.013987972587213
1106 => 0.013976152890256
1107 => 0.013561601489848
1108 => 0.013020836087293
1109 => 0.01320233470641
1110 => 0.013136394556526
1111 => 0.012897418946898
1112 => 0.013058459653762
1113 => 0.012349317881571
1114 => 0.011129276320497
1115 => 0.011935273146626
1116 => 0.011904243145576
1117 => 0.011888596411948
1118 => 0.012494280750668
1119 => 0.012436058177015
1120 => 0.012330383635718
1121 => 0.012895478151076
1122 => 0.012689211051377
1123 => 0.01332487765001
1124 => 0.013743568784208
1125 => 0.013637375169336
1126 => 0.014031156204759
1127 => 0.013206516068018
1128 => 0.013480428442624
1129 => 0.013536881403404
1130 => 0.012888504972474
1201 => 0.012445584110115
1202 => 0.012416046338263
1203 => 0.011648082601188
1204 => 0.012058322630747
1205 => 0.012419316879873
1206 => 0.012246428648827
1207 => 0.012191697399767
1208 => 0.012471307481456
1209 => 0.012493035579501
1210 => 0.01199763264142
1211 => 0.012100642599618
1212 => 0.012530211249284
1213 => 0.012089818571806
1214 => 0.011234207537203
1215 => 0.011022004170874
1216 => 0.010993692330121
1217 => 0.010418179970574
1218 => 0.011036184614502
1219 => 0.010766409025932
1220 => 0.011618626877814
1221 => 0.011131844611356
1222 => 0.011110860400768
1223 => 0.01107913968875
1224 => 0.010583772426772
1225 => 0.010692226374913
1226 => 0.011052743816538
1227 => 0.011181380501229
1228 => 0.011167962641127
1229 => 0.011050977084395
1230 => 0.011104532473204
1231 => 0.010932011905915
]
'min_raw' => 0.0060363027279515
'max_raw' => 0.018770887937151
'avg_raw' => 0.012403595332551
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006036'
'max' => '$0.01877'
'avg' => '$0.0124035'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0034386829661816
'max_diff' => 0.011723795836139
'year' => 2033
]
8 => [
'items' => [
101 => 0.0108710913029
102 => 0.010678809122254
103 => 0.010396207436012
104 => 0.010435504933781
105 => 0.0098755970465823
106 => 0.0095705295130757
107 => 0.0094860908405266
108 => 0.0093731759186588
109 => 0.0094988448814067
110 => 0.0098740108978866
111 => 0.0094214810861014
112 => 0.0086456504650711
113 => 0.0086922792073461
114 => 0.0087970401470401
115 => 0.0086018188289832
116 => 0.0084170582351257
117 => 0.008577692581384
118 => 0.0082489629196591
119 => 0.008836765556135
120 => 0.0088208671421162
121 => 0.0090399636155232
122 => 0.0091769691366568
123 => 0.008861215766508
124 => 0.0087818046478034
125 => 0.0088270408300517
126 => 0.0080793875023298
127 => 0.0089788643879446
128 => 0.008986643101403
129 => 0.0089200370341784
130 => 0.009398980707535
131 => 0.010409701244595
201 => 0.010029427522414
202 => 0.0098821740433511
203 => 0.0096022450720111
204 => 0.009975233805784
205 => 0.0099465940905609
206 => 0.0098170744370326
207 => 0.0097387405464527
208 => 0.0098830731416943
209 => 0.0097208561406442
210 => 0.0096917175098305
211 => 0.0095151691102425
212 => 0.00945214936403
213 => 0.0094054920528226
214 => 0.009354126937636
215 => 0.0094674255823485
216 => 0.0092106759477521
217 => 0.0089010610579059
218 => 0.0088753199298947
219 => 0.0089463934475167
220 => 0.00891494870677
221 => 0.0088751693845736
222 => 0.008799219825247
223 => 0.0087766872134003
224 => 0.0088499072706327
225 => 0.0087672460950119
226 => 0.0088892171624277
227 => 0.0088560477810576
228 => 0.0086707663130504
301 => 0.0084398370039281
302 => 0.0084377812486863
303 => 0.0083880279078359
304 => 0.008324659547798
305 => 0.0083070319197071
306 => 0.0085641644047878
307 => 0.009096420953577
308 => 0.0089919262572299
309 => 0.0090674343843879
310 => 0.009438859636865
311 => 0.0095569245554804
312 => 0.009473124872768
313 => 0.009358414698532
314 => 0.0093634613640344
315 => 0.0097554607545301
316 => 0.0097799092756791
317 => 0.0098416828012307
318 => 0.0099210792387608
319 => 0.0094866464293993
320 => 0.0093429996177814
321 => 0.0092749317892151
322 => 0.0090653092227958
323 => 0.0092913691889984
324 => 0.009159653727545
325 => 0.009177426643336
326 => 0.0091658520086114
327 => 0.0091721725418444
328 => 0.0088366012533186
329 => 0.0089588657937498
330 => 0.0087555772816854
331 => 0.0084833967842377
401 => 0.0084824843397715
402 => 0.008549100130924
403 => 0.0085094744516703
404 => 0.0084028427676681
405 => 0.0084179892950932
406 => 0.0082852897769237
407 => 0.0084341014192014
408 => 0.0084383688046282
409 => 0.0083810682165264
410 => 0.0086103330835045
411 => 0.0087042630865678
412 => 0.0086665466119816
413 => 0.0087016167981664
414 => 0.0089962684836284
415 => 0.009044309564913
416 => 0.009065646239804
417 => 0.0090370579220178
418 => 0.008707002490077
419 => 0.0087216418519876
420 => 0.0086142279276565
421 => 0.0085234744805972
422 => 0.0085271041425405
423 => 0.0085737632114512
424 => 0.0087775261019028
425 => 0.0092063330923796
426 => 0.0092226060042144
427 => 0.0092423292480725
428 => 0.0091621049031936
429 => 0.0091379084731345
430 => 0.0091698298100109
501 => 0.0093308671700335
502 => 0.0097450989812285
503 => 0.0095986817935398
504 => 0.0094796423408295
505 => 0.0095840720336624
506 => 0.0095679959009978
507 => 0.0094322971628602
508 => 0.0094284885512393
509 => 0.0091680392872423
510 => 0.0090717571244854
511 => 0.0089912965426907
512 => 0.0089034356878476
513 => 0.0088513488279741
514 => 0.0089313779177943
515 => 0.0089496815175125
516 => 0.0087746965139517
517 => 0.0087508467045581
518 => 0.0088937432357795
519 => 0.0088308598001086
520 => 0.0088955369731303
521 => 0.0089105426320619
522 => 0.0089081263753643
523 => 0.0088424688464072
524 => 0.0088843169974288
525 => 0.0087853336447286
526 => 0.0086777041154861
527 => 0.008609043181386
528 => 0.0085491274098324
529 => 0.0085823721622154
530 => 0.0084638606902218
531 => 0.0084259464851664
601 => 0.0088701397854759
602 => 0.0091982701522972
603 => 0.0091934990068097
604 => 0.0091644558856938
605 => 0.0091213036988974
606 => 0.009327710318791
607 => 0.0092558023796507
608 => 0.0093081214134847
609 => 0.0093214388034183
610 => 0.0093617465318063
611 => 0.0093761530801387
612 => 0.0093326064850871
613 => 0.0091864587933252
614 => 0.0088222726407601
615 => 0.0086527430036393
616 => 0.00859679539965
617 => 0.0085988289887954
618 => 0.008542733521824
619 => 0.0085592561508695
620 => 0.0085369876257259
621 => 0.0084948164264386
622 => 0.0085797682094948
623 => 0.0085895581111114
624 => 0.0085697293498478
625 => 0.008574399740937
626 => 0.0084102260666498
627 => 0.0084227078345394
628 => 0.0083532077648238
629 => 0.008340177339588
630 => 0.0081644872154103
701 => 0.007853226693739
702 => 0.0080256952375348
703 => 0.0078173774893766
704 => 0.0077384844016201
705 => 0.008111952008667
706 => 0.0080744662192984
707 => 0.0080103068425804
708 => 0.0079154017524288
709 => 0.0078802005313142
710 => 0.0076663290551742
711 => 0.0076536923874039
712 => 0.0077596928659945
713 => 0.0077107772923787
714 => 0.0076420813012457
715 => 0.0073932713849631
716 => 0.0071135266609291
717 => 0.007121970395735
718 => 0.0072109519876146
719 => 0.0074696779668071
720 => 0.0073685892507317
721 => 0.0072952482273597
722 => 0.0072815136583051
723 => 0.0074534305452904
724 => 0.0076967289580758
725 => 0.0078108791298596
726 => 0.0076977597764141
727 => 0.0075678143539545
728 => 0.0075757235297105
729 => 0.0076283397326421
730 => 0.0076338689516171
731 => 0.0075492878402012
801 => 0.0075730969276281
802 => 0.007536928746678
803 => 0.0073149646869489
804 => 0.0073109500609641
805 => 0.0072564765010526
806 => 0.0072548270633076
807 => 0.0071621539488318
808 => 0.0071491883394977
809 => 0.00696518024585
810 => 0.0070862949303167
811 => 0.0070050575587828
812 => 0.0068826136779224
813 => 0.0068615043067102
814 => 0.0068608697335213
815 => 0.0069865922212141
816 => 0.0070848257898488
817 => 0.0070064707176413
818 => 0.006988630786549
819 => 0.0071791145775499
820 => 0.0071548737788467
821 => 0.0071338814035062
822 => 0.0076749442537312
823 => 0.0072466507881174
824 => 0.0070598903909734
825 => 0.0068287389346702
826 => 0.0069040030144093
827 => 0.0069198622618698
828 => 0.0063639846776422
829 => 0.0061384652109513
830 => 0.0060610754285048
831 => 0.0060165365145759
901 => 0.0060368334569378
902 => 0.0058338394861208
903 => 0.0059702547917202
904 => 0.0057944791716459
905 => 0.0057650098169171
906 => 0.0060793184000308
907 => 0.006123052603207
908 => 0.0059364689053055
909 => 0.0060562858445151
910 => 0.0060128385567777
911 => 0.0057974923401454
912 => 0.0057892676986496
913 => 0.0056812145369291
914 => 0.0055121322620514
915 => 0.0054348571253492
916 => 0.0053946115632212
917 => 0.0054112176665256
918 => 0.0054028211125398
919 => 0.0053480279181342
920 => 0.0054059617943045
921 => 0.0052579646806198
922 => 0.0051990310374567
923 => 0.0051724120780901
924 => 0.0050410561212989
925 => 0.0052501018628129
926 => 0.00529128650738
927 => 0.0053325522984195
928 => 0.0056917428360661
929 => 0.0056737986918672
930 => 0.0058360050162726
1001 => 0.0058297019767845
1002 => 0.0057834381054959
1003 => 0.0055882584425664
1004 => 0.0056660535774671
1005 => 0.0054266122442909
1006 => 0.0056060179715346
1007 => 0.0055241446897829
1008 => 0.0055783365326172
1009 => 0.0054808947129196
1010 => 0.0055348230392144
1011 => 0.0053010529144564
1012 => 0.0050827616611919
1013 => 0.0051706084338244
1014 => 0.0052661079221731
1015 => 0.00547317514573
1016 => 0.005349847615647
1017 => 0.0053942008589951
1018 => 0.0052456249184223
1019 => 0.0049390703144014
1020 => 0.0049408053801684
1021 => 0.0048936486329949
1022 => 0.0048528983184392
1023 => 0.0053640132660339
1024 => 0.0053004480427689
1025 => 0.0051991651787068
1026 => 0.0053347363170749
1027 => 0.0053705834778627
1028 => 0.0053716039961352
1029 => 0.005470513199091
1030 => 0.005523301058439
1031 => 0.0055326051474447
1101 => 0.0056882409153705
1102 => 0.0057404079718938
1103 => 0.0059552766947551
1104 => 0.0055188223773816
1105 => 0.005509833887932
1106 => 0.0053366440810134
1107 => 0.0052268043674432
1108 => 0.0053441649001736
1109 => 0.0054481303108624
1110 => 0.005339874576126
1111 => 0.0053540104896793
1112 => 0.0052086860106142
1113 => 0.0052606326737277
1114 => 0.0053053761379722
1115 => 0.0052806714269156
1116 => 0.0052436872787424
1117 => 0.0054396063327918
1118 => 0.0054285518119494
1119 => 0.0056109961392397
1120 => 0.0057532245390816
1121 => 0.0060081232579658
1122 => 0.0057421231566394
1123 => 0.0057324290556924
1124 => 0.0058271904474318
1125 => 0.0057403934644184
1126 => 0.0057952461615529
1127 => 0.005999285640438
1128 => 0.0060035966731057
1129 => 0.0059313813214708
1130 => 0.0059269870107609
1201 => 0.0059408567589917
1202 => 0.0060220923075936
1203 => 0.0059937061107958
1204 => 0.0060265553363808
1205 => 0.0060676337959799
1206 => 0.0062375517217881
1207 => 0.006278518358446
1208 => 0.0061789906701331
1209 => 0.0061879769060235
1210 => 0.0061507508184983
1211 => 0.0061147908843905
1212 => 0.0061956235647382
1213 => 0.0063433468768439
1214 => 0.0063424278977861
1215 => 0.0063766968348638
1216 => 0.006398046098764
1217 => 0.0063063994294881
1218 => 0.0062467408177309
1219 => 0.0062696177256547
1220 => 0.0063061983996191
1221 => 0.00625775510611
1222 => 0.0059587406574557
1223 => 0.0060494425400605
1224 => 0.0060343453116996
1225 => 0.006012845022628
1226 => 0.006104046466964
1227 => 0.0060952498651704
1228 => 0.0058317574895474
1229 => 0.0058486254165358
1230 => 0.0058327832840558
1231 => 0.005883972455094
]
'min_raw' => 0.0048528983184392
'max_raw' => 0.0108710913029
'avg_raw' => 0.0078619948106698
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004852'
'max' => '$0.010871'
'avg' => '$0.007861'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0011834044095123
'max_diff' => -0.007899796634251
'year' => 2034
]
9 => [
'items' => [
101 => 0.0057376290811938
102 => 0.0057826433173679
103 => 0.005810875824314
104 => 0.0058275049877976
105 => 0.0058875809290244
106 => 0.0058805317107154
107 => 0.0058871427397168
108 => 0.0059762195010957
109 => 0.0064267391926974
110 => 0.0064512599854956
111 => 0.0063305106336986
112 => 0.0063787476180659
113 => 0.0062861431563496
114 => 0.0063483091518957
115 => 0.0063908415472033
116 => 0.0061986458313177
117 => 0.0061872652483628
118 => 0.0060942785750918
119 => 0.0061442443462733
120 => 0.0060647452116575
121 => 0.0060842515185305
122 => 0.0060297101839842
123 => 0.0061278737270961
124 => 0.0062376358213677
125 => 0.0062653660610172
126 => 0.0061924197391183
127 => 0.0061396017946666
128 => 0.0060468708835219
129 => 0.0062010844553986
130 => 0.0062461812033888
131 => 0.0062008475813797
201 => 0.006190342790601
202 => 0.006170436231057
203 => 0.0061945660613126
204 => 0.0062459355968142
205 => 0.006221710672518
206 => 0.0062377116618039
207 => 0.0061767323907946
208 => 0.006306429768349
209 => 0.006512420417279
210 => 0.0065130827108982
211 => 0.0064888576560206
212 => 0.0064789452855008
213 => 0.0065038016619044
214 => 0.0065172852264415
215 => 0.0065976661898509
216 => 0.0066839181661081
217 => 0.007086418504615
218 => 0.0069733980201934
219 => 0.007330520265369
220 => 0.0076129575947831
221 => 0.0076976482003868
222 => 0.0076197368282323
223 => 0.0073532062327814
224 => 0.0073401289702172
225 => 0.0077384382061357
226 => 0.00762589760327
227 => 0.0076125112566604
228 => 0.0074701031453232
301 => 0.0075542839767112
302 => 0.0075358723940284
303 => 0.007506808810038
304 => 0.0076674199722387
305 => 0.007968069730021
306 => 0.0079212106457951
307 => 0.0078862325131508
308 => 0.0077329685178848
309 => 0.0078252676757876
310 => 0.0077924017135323
311 => 0.0079336147446359
312 => 0.0078499632732618
313 => 0.0076250449975166
314 => 0.0076608639742693
315 => 0.0076554500079909
316 => 0.0077668690503626
317 => 0.0077334238194333
318 => 0.0076489192898752
319 => 0.0079670421418337
320 => 0.0079463850133198
321 => 0.0079756720986755
322 => 0.0079885651793823
323 => 0.0081822009534161
324 => 0.008261527334384
325 => 0.0082795358116675
326 => 0.0083548897382646
327 => 0.0082776609373279
328 => 0.0085866312042765
329 => 0.0087920784028824
330 => 0.0090307158962793
331 => 0.0093794294138435
401 => 0.009510548922228
402 => 0.0094868633566435
403 => 0.0097512539658483
404 => 0.010226358013516
405 => 0.0095828954684218
406 => 0.010260463090855
407 => 0.010045953004487
408 => 0.0095373534485802
409 => 0.0095046056331747
410 => 0.0098490351573972
411 => 0.01061294669201
412 => 0.010421595516802
413 => 0.010613259673983
414 => 0.01038967325379
415 => 0.010378570303494
416 => 0.010602400580608
417 => 0.011125392223439
418 => 0.010876938497979
419 => 0.010520719159178
420 => 0.010783745975562
421 => 0.010555887805228
422 => 0.010042459573979
423 => 0.010421449194165
424 => 0.010168029628149
425 => 0.010241990930038
426 => 0.010774641164487
427 => 0.01071055127906
428 => 0.010793489525366
429 => 0.010647105691508
430 => 0.010510360108073
501 => 0.010255114321732
502 => 0.010179548627861
503 => 0.010200432267078
504 => 0.010179538278967
505 => 0.010036730607338
506 => 0.010005891304247
507 => 0.0099544911146609
508 => 0.0099704221826959
509 => 0.0098737747886177
510 => 0.010056168389614
511 => 0.010090022249205
512 => 0.010222753101646
513 => 0.010236533659064
514 => 0.010606187193807
515 => 0.010402588238646
516 => 0.010539179995656
517 => 0.010526961943257
518 => 0.0095483763431655
519 => 0.0096832168047243
520 => 0.0098929862476419
521 => 0.0097984853979433
522 => 0.0096648833062627
523 => 0.0095569924539396
524 => 0.0093935267802641
525 => 0.0096236015768822
526 => 0.009926125468708
527 => 0.010244206164202
528 => 0.010626359278364
529 => 0.010541067152036
530 => 0.010237062077552
531 => 0.010250699523118
601 => 0.010335000845467
602 => 0.010225822973442
603 => 0.010193624287577
604 => 0.010330577240473
605 => 0.010331520360192
606 => 0.010205898023841
607 => 0.010066291785632
608 => 0.010065706830397
609 => 0.010040865248744
610 => 0.010394092515981
611 => 0.010588331797656
612 => 0.010610601018268
613 => 0.010586832901677
614 => 0.01059598030643
615 => 0.010482956748194
616 => 0.010741295086227
617 => 0.01097837189222
618 => 0.010914830243807
619 => 0.010819572279858
620 => 0.010743694723327
621 => 0.010896955902912
622 => 0.01089013142384
623 => 0.010976301233141
624 => 0.010972392072851
625 => 0.010943416406993
626 => 0.010914831278619
627 => 0.011028168081505
628 => 0.010995528902407
629 => 0.010962839025649
630 => 0.010897274473241
701 => 0.010906185784825
702 => 0.010810944268507
703 => 0.010766881185102
704 => 0.010104278132822
705 => 0.0099272089460728
706 => 0.0099829185167996
707 => 0.010001259553981
708 => 0.0099241988169878
709 => 0.010034684118557
710 => 0.010017465101341
711 => 0.010084454224543
712 => 0.010042602328696
713 => 0.0100443199451
714 => 0.010167397447021
715 => 0.010203127369438
716 => 0.01018495484252
717 => 0.010197682257455
718 => 0.010490980162724
719 => 0.010449282579734
720 => 0.010427131569834
721 => 0.010433267550959
722 => 0.010508211454133
723 => 0.010529191655237
724 => 0.010440297068909
725 => 0.010482220269715
726 => 0.010660723937899
727 => 0.01072319011933
728 => 0.010922552184992
729 => 0.010837859636121
730 => 0.010993316474982
731 => 0.011471137798498
801 => 0.011852854534444
802 => 0.011501812048957
803 => 0.012202786223188
804 => 0.0127485951666
805 => 0.01272764611026
806 => 0.012632471696187
807 => 0.012011082725194
808 => 0.011439271329699
809 => 0.011917615842425
810 => 0.011918835240961
811 => 0.011877745023095
812 => 0.011622537208931
813 => 0.011868864344357
814 => 0.011888416897838
815 => 0.011877472667332
816 => 0.011681805434579
817 => 0.011383057735515
818 => 0.011441432320811
819 => 0.011537051082336
820 => 0.011356024818607
821 => 0.011298175958577
822 => 0.011405727995568
823 => 0.011752283068109
824 => 0.011686768839102
825 => 0.011685057997819
826 => 0.011965355651868
827 => 0.011764723023589
828 => 0.011442168611273
829 => 0.011360719368193
830 => 0.011071629426045
831 => 0.01127130487879
901 => 0.011278490842859
902 => 0.011169130638024
903 => 0.011451042589177
904 => 0.011448444720918
905 => 0.011716078161481
906 => 0.012227692781308
907 => 0.012076383163198
908 => 0.011900426539777
909 => 0.011919557903491
910 => 0.012129381743203
911 => 0.012002517459901
912 => 0.012048138740705
913 => 0.01212931268993
914 => 0.012178286948934
915 => 0.011912511261291
916 => 0.011850546234981
917 => 0.01172378753792
918 => 0.011690718559919
919 => 0.011793960873769
920 => 0.011766760171674
921 => 0.011277886890404
922 => 0.011226796912446
923 => 0.011228363769131
924 => 0.011099895590359
925 => 0.010903950781837
926 => 0.011418882039377
927 => 0.011377525852938
928 => 0.011331871823824
929 => 0.011337464181892
930 => 0.011560978388151
1001 => 0.011431328860783
1002 => 0.01177602337843
1003 => 0.011705164548067
1004 => 0.011632488456081
1005 => 0.0116224424064
1006 => 0.011594468311418
1007 => 0.011498534731023
1008 => 0.01138268916798
1009 => 0.011306197892889
1010 => 0.010429369912831
1011 => 0.010592104085656
1012 => 0.010779314917805
1013 => 0.010843939346862
1014 => 0.010733394789085
1015 => 0.011502899703941
1016 => 0.011643495667019
1017 => 0.011217621324008
1018 => 0.011137957622765
1019 => 0.011508122442932
1020 => 0.011284867805562
1021 => 0.0113853993551
1022 => 0.011168105132818
1023 => 0.011609630216644
1024 => 0.011606266535262
1025 => 0.011434503305357
1026 => 0.011579676411089
1027 => 0.011554449011433
1028 => 0.011360528747905
1029 => 0.011615777834887
1030 => 0.011615904435249
1031 => 0.011450586060921
1101 => 0.011257530392551
1102 => 0.011223016598818
1103 => 0.011197015091515
1104 => 0.011379004578225
1105 => 0.011542175782942
1106 => 0.011845796941349
1107 => 0.011922134514433
1108 => 0.01222008514426
1109 => 0.012042670051151
1110 => 0.012121315864016
1111 => 0.012206697019011
1112 => 0.012247631884504
1113 => 0.01218093071787
1114 => 0.012643770687364
1115 => 0.012682848561839
1116 => 0.012695951035129
1117 => 0.012539884001555
1118 => 0.012678508055313
1119 => 0.012613650451306
1120 => 0.012782391918971
1121 => 0.0128088527357
1122 => 0.012786441365301
1123 => 0.012794840446186
1124 => 0.012399888182789
1125 => 0.012379407824392
1126 => 0.012100156684438
1127 => 0.01221395358809
1128 => 0.012001215731141
1129 => 0.012068677097022
1130 => 0.012098413424307
1201 => 0.012082880854455
1202 => 0.012220387494283
1203 => 0.012103478759678
1204 => 0.011794937387483
1205 => 0.011486311953397
1206 => 0.011482437412473
1207 => 0.011401181783369
1208 => 0.011342448846238
1209 => 0.011353762893592
1210 => 0.011393635072183
1211 => 0.011340131402735
1212 => 0.011351549123317
1213 => 0.011541159360848
1214 => 0.011579184341747
1215 => 0.011449960599334
1216 => 0.01093110862665
1217 => 0.010803781051112
1218 => 0.010895301587393
1219 => 0.010851560665728
1220 => 0.0087580563868275
1221 => 0.0092498941637673
1222 => 0.0089576608579424
1223 => 0.0090923354102744
1224 => 0.0087940408784749
1225 => 0.0089364026640055
1226 => 0.008910113640438
1227 => 0.0097009742312193
1228 => 0.0096886260308875
1229 => 0.0096945364609341
1230 => 0.009412416235264
1231 => 0.0098618414151553
]
'min_raw' => 0.0057376290811938
'max_raw' => 0.0128088527357
'avg_raw' => 0.0092732409084467
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005737'
'max' => '$0.0128088'
'avg' => '$0.009273'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0008847307627547
'max_diff' => 0.0019377614327992
'year' => 2035
]
10 => [
'items' => [
101 => 0.010083244419577
102 => 0.010042268615908
103 => 0.010052581342903
104 => 0.0098753745254421
105 => 0.009696252210282
106 => 0.0094975779960428
107 => 0.0098666901292242
108 => 0.0098256511609687
109 => 0.0099197797887922
110 => 0.010159175391841
111 => 0.010194427303765
112 => 0.010241806230881
113 => 0.010224824258171
114 => 0.010629403744456
115 => 0.010580406499166
116 => 0.010698475762846
117 => 0.010455598329519
118 => 0.010180759459571
119 => 0.010232997343589
120 => 0.010227966415287
121 => 0.01016391692378
122 => 0.010106095906693
123 => 0.010009840204214
124 => 0.010314407490021
125 => 0.010302042614422
126 => 0.010502215577768
127 => 0.01046683306212
128 => 0.010230539963054
129 => 0.010238979217314
130 => 0.010295737257979
131 => 0.010492177484771
201 => 0.010550494318754
202 => 0.010523479637729
203 => 0.010587421383926
204 => 0.010637958333005
205 => 0.01059376804665
206 => 0.011219409312377
207 => 0.01095959943929
208 => 0.011086228963687
209 => 0.011116429359112
210 => 0.011039071681278
211 => 0.01105584779163
212 => 0.011081259027595
213 => 0.011235551076349
214 => 0.011640458057043
215 => 0.011819788602497
216 => 0.01235931339651
217 => 0.011804897697099
218 => 0.011772000963896
219 => 0.011869185671386
220 => 0.01218594383997
221 => 0.012442646584027
222 => 0.012527809693767
223 => 0.012539065404608
224 => 0.012698837060017
225 => 0.012790415193332
226 => 0.012679436578639
227 => 0.012585393822631
228 => 0.012248544343629
229 => 0.012287535588034
301 => 0.012556146596229
302 => 0.012935575466415
303 => 0.013261164909879
304 => 0.013147154834716
305 => 0.014016971229644
306 => 0.01410320997232
307 => 0.014091294566514
308 => 0.014287759256375
309 => 0.013897816856339
310 => 0.013731108925546
311 => 0.012605726933911
312 => 0.012921913369825
313 => 0.013381508923405
314 => 0.013320679728494
315 => 0.01298690915246
316 => 0.013260911714967
317 => 0.01317031789895
318 => 0.013098862797516
319 => 0.013426212469437
320 => 0.013066278058377
321 => 0.01337791830232
322 => 0.012978236465957
323 => 0.013147675623135
324 => 0.013051493762671
325 => 0.013113735213997
326 => 0.012749872961349
327 => 0.012946204200621
328 => 0.012741704936318
329 => 0.01274160797704
330 => 0.012737093644446
331 => 0.01297768612201
401 => 0.012985531834066
402 => 0.012807733629631
403 => 0.012782110130642
404 => 0.012876853636224
405 => 0.012765933804551
406 => 0.01281783249567
407 => 0.012767505763035
408 => 0.012756176155476
409 => 0.01266589991487
410 => 0.01262700642822
411 => 0.012642257566497
412 => 0.012590197569056
413 => 0.012558829537506
414 => 0.012730853753449
415 => 0.012638948154308
416 => 0.012716767902268
417 => 0.012628082477832
418 => 0.012320660158334
419 => 0.012143858331459
420 => 0.011563166067993
421 => 0.011727849673565
422 => 0.011837035074437
423 => 0.011800949300101
424 => 0.011878475506717
425 => 0.011883234986162
426 => 0.011858030426104
427 => 0.011828846774462
428 => 0.0118146417868
429 => 0.011920514126906
430 => 0.011981976583837
501 => 0.011847993290127
502 => 0.011816602879037
503 => 0.011952067386397
504 => 0.012034700657632
505 => 0.012644818304806
506 => 0.012599618818849
507 => 0.012713060658649
508 => 0.012700288848395
509 => 0.012819193969207
510 => 0.013013553588683
511 => 0.012618366138485
512 => 0.012686957015285
513 => 0.012670140116289
514 => 0.012853742609908
515 => 0.012854315796852
516 => 0.012744236930303
517 => 0.012803912469685
518 => 0.012770603220714
519 => 0.012830797535619
520 => 0.012599015152157
521 => 0.012881301075851
522 => 0.013041339004483
523 => 0.013043561131277
524 => 0.013119417839309
525 => 0.013196492647993
526 => 0.013344431031462
527 => 0.013192366726772
528 => 0.012918817845796
529 => 0.012938567191445
530 => 0.012778185582617
531 => 0.012780881626437
601 => 0.012766489933234
602 => 0.012809680487891
603 => 0.012608493050089
604 => 0.012655711339613
605 => 0.012589605457769
606 => 0.012686813314008
607 => 0.012582233729729
608 => 0.012670132006671
609 => 0.012708065989125
610 => 0.01284804320104
611 => 0.012561558981717
612 => 0.011977398265243
613 => 0.01210019593011
614 => 0.011918568538223
615 => 0.011935378844846
616 => 0.011969338339566
617 => 0.011859264506324
618 => 0.011880263124882
619 => 0.011879512906462
620 => 0.01187304792942
621 => 0.011844413474141
622 => 0.011802887848831
623 => 0.01196831315915
624 => 0.011996422142897
625 => 0.0120589049318
626 => 0.012244811329095
627 => 0.01222623489603
628 => 0.012256533829087
629 => 0.012190391428345
630 => 0.011938447001116
701 => 0.011952128795655
702 => 0.011781516598509
703 => 0.012054541994331
704 => 0.011989885976841
705 => 0.011948201821753
706 => 0.011936827913836
707 => 0.012123195137131
708 => 0.01217895913129
709 => 0.012144210752313
710 => 0.012072940813259
711 => 0.012209800165308
712 => 0.012246417954284
713 => 0.012254615326824
714 => 0.012497103858478
715 => 0.012268167742032
716 => 0.01232327494069
717 => 0.012753205573575
718 => 0.01236331781592
719 => 0.012569850056685
720 => 0.012559741378241
721 => 0.012665396283946
722 => 0.012551074592138
723 => 0.012552491746521
724 => 0.012646306145104
725 => 0.01251456074181
726 => 0.012481938727215
727 => 0.012436871647695
728 => 0.012535273967081
729 => 0.012594261707199
730 => 0.013069659570827
731 => 0.013376788271508
801 => 0.013363455004617
802 => 0.01348529610517
803 => 0.013430405573434
804 => 0.013253149567069
805 => 0.013555703955867
806 => 0.013459963087838
807 => 0.013467855848673
808 => 0.013467562079721
809 => 0.013531221387148
810 => 0.013486112933546
811 => 0.013397199541209
812 => 0.013456224400456
813 => 0.013631507130649
814 => 0.014175590103499
815 => 0.014480066143246
816 => 0.014157260263595
817 => 0.014379927436835
818 => 0.014246406477317
819 => 0.014222141747068
820 => 0.014361993186838
821 => 0.01450208941804
822 => 0.014493165893765
823 => 0.014391463223934
824 => 0.014334013966356
825 => 0.01476903899165
826 => 0.01508955801983
827 => 0.015067700770895
828 => 0.015164171559336
829 => 0.015447412777928
830 => 0.015473308805261
831 => 0.01547004650103
901 => 0.015405860495313
902 => 0.015684748258537
903 => 0.015917401337181
904 => 0.015391003289502
905 => 0.015591448775002
906 => 0.015681435211393
907 => 0.015813561997788
908 => 0.016036482033456
909 => 0.016278632318812
910 => 0.016312875024204
911 => 0.016288578186064
912 => 0.016128873563523
913 => 0.016393837295212
914 => 0.016549046835072
915 => 0.016641470564151
916 => 0.016875841763254
917 => 0.015681990936989
918 => 0.014836923983923
919 => 0.014704954576286
920 => 0.014973319556155
921 => 0.015044085261176
922 => 0.015015559694215
923 => 0.014064360008412
924 => 0.014699946706796
925 => 0.015383784552609
926 => 0.015410053549284
927 => 0.015752397073274
928 => 0.01586387815782
929 => 0.016139509566623
930 => 0.016122268746956
1001 => 0.016189380608746
1002 => 0.016173952753935
1003 => 0.016684501897702
1004 => 0.017247713420558
1005 => 0.017228211196424
1006 => 0.017147242876397
1007 => 0.017267494638787
1008 => 0.01784878928779
1009 => 0.017795272991566
1010 => 0.01784725951484
1011 => 0.018532638666344
1012 => 0.019423729057347
1013 => 0.019009728106714
1014 => 0.019907991044024
1015 => 0.020473399948188
1016 => 0.021451216183569
1017 => 0.021328788775053
1018 => 0.021709445459939
1019 => 0.021109618162438
1020 => 0.019732293442276
1021 => 0.019514326533123
1022 => 0.019950701805048
1023 => 0.0210234878302
1024 => 0.019916915955395
1025 => 0.020140774004466
1026 => 0.020076302871274
1027 => 0.020072867478571
1028 => 0.020203982445297
1029 => 0.020013793347563
1030 => 0.019238928749031
1031 => 0.019594044628233
1101 => 0.019456917333208
1102 => 0.019609070290555
1103 => 0.020430177048705
1104 => 0.020067146178187
1105 => 0.019684722646328
1106 => 0.020164366621854
1107 => 0.02077511822625
1108 => 0.020736898488473
1109 => 0.020662736222575
1110 => 0.021080785032434
1111 => 0.021771279189512
1112 => 0.02195791698554
1113 => 0.022095689190926
1114 => 0.022114685650368
1115 => 0.022310360988857
1116 => 0.021258165377267
1117 => 0.022928026835161
1118 => 0.023216365779947
1119 => 0.023162170008752
1120 => 0.023482646610725
1121 => 0.023388354264718
1122 => 0.023251739449369
1123 => 0.023759763030824
1124 => 0.023177354990075
1125 => 0.022350700099366
1126 => 0.021897180876943
1127 => 0.022494411573382
1128 => 0.022859119519218
1129 => 0.023100168271633
1130 => 0.023173109478469
1201 => 0.021339844327378
1202 => 0.020351816088487
1203 => 0.020985130861849
1204 => 0.021757818594402
1205 => 0.021253873057899
1206 => 0.021273626768835
1207 => 0.020555132868338
1208 => 0.021821389361787
1209 => 0.021636906441585
1210 => 0.022594004157938
1211 => 0.022365585106741
1212 => 0.023146061140108
1213 => 0.022940535643923
1214 => 0.023793660487814
1215 => 0.024133995085475
1216 => 0.024705469843799
1217 => 0.025125849002342
1218 => 0.025372703684811
1219 => 0.025357883455604
1220 => 0.02633604469006
1221 => 0.025759257184452
1222 => 0.025034676139031
1223 => 0.025021570753943
1224 => 0.02539684154476
1225 => 0.026183306171797
1226 => 0.026387225006993
1227 => 0.026501187816749
1228 => 0.026326649806534
1229 => 0.02570058830793
1230 => 0.025430258127036
1231 => 0.025660587273377
]
'min_raw' => 0.0094975779960428
'max_raw' => 0.026501187816749
'avg_raw' => 0.017999382906396
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009497'
'max' => '$0.0265011'
'avg' => '$0.017999'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.003759948914849
'max_diff' => 0.013692335081049
'year' => 2036
]
11 => [
'items' => [
101 => 0.025378914519811
102 => 0.025865160715881
103 => 0.026532880599669
104 => 0.026394999084117
105 => 0.026855916318254
106 => 0.027332917165678
107 => 0.028015049800943
108 => 0.0281933845311
109 => 0.028488165058587
110 => 0.028791591051729
111 => 0.028889043303167
112 => 0.029075109888819
113 => 0.029074129226067
114 => 0.029634853405656
115 => 0.030253349539924
116 => 0.030486817512392
117 => 0.031023664241582
118 => 0.030104333031197
119 => 0.03080165631479
120 => 0.031430659371725
121 => 0.030680735996495
122 => 0.031714330659513
123 => 0.031754462798102
124 => 0.032360410443729
125 => 0.031746166419364
126 => 0.031381430278432
127 => 0.032434409850817
128 => 0.032943913497348
129 => 0.032790446852534
130 => 0.031622558107922
131 => 0.030942796765453
201 => 0.029163730216041
202 => 0.031271111393775
203 => 0.032297555292298
204 => 0.031619899866195
205 => 0.031961669846259
206 => 0.033826256038199
207 => 0.034536169737075
208 => 0.03438851265038
209 => 0.034413464267389
210 => 0.034796520813457
211 => 0.036495204491815
212 => 0.035477313856563
213 => 0.036255453107579
214 => 0.036668175360528
215 => 0.037051534790328
216 => 0.036110125192731
217 => 0.034885365138311
218 => 0.034497432217147
219 => 0.031552520389198
220 => 0.03139922493945
221 => 0.031313175558178
222 => 0.030770646381189
223 => 0.030344367059323
224 => 0.030005373915839
225 => 0.029115754675416
226 => 0.029415975054012
227 => 0.027998107662743
228 => 0.028905208973542
301 => 0.026642258381471
302 => 0.028526910878487
303 => 0.027501180208995
304 => 0.028189930766621
305 => 0.02818752778081
306 => 0.026919319635657
307 => 0.026187843644362
308 => 0.026653968615487
309 => 0.027153691585579
310 => 0.027234769956206
311 => 0.027882673831035
312 => 0.028063489875852
313 => 0.027515608818561
314 => 0.026595363760338
315 => 0.026809115698808
316 => 0.026183511968151
317 => 0.025087165493674
318 => 0.025874580672016
319 => 0.026143438834104
320 => 0.026262181914993
321 => 0.025184051073589
322 => 0.02484527895586
323 => 0.024664919522954
324 => 0.0264561906073
325 => 0.026554320480866
326 => 0.026052274173535
327 => 0.028321571088656
328 => 0.027807959306334
329 => 0.028381789505129
330 => 0.026789719950834
331 => 0.026850539151814
401 => 0.026096827910764
402 => 0.026518855842749
403 => 0.026220580103017
404 => 0.026484760156406
405 => 0.026643108591151
406 => 0.027396696155603
407 => 0.028535515637969
408 => 0.027284135303405
409 => 0.026738890971539
410 => 0.027077157488458
411 => 0.027978005799254
412 => 0.029342837103687
413 => 0.028534829501673
414 => 0.028893409554588
415 => 0.028971743344034
416 => 0.028375948452376
417 => 0.029364804911175
418 => 0.029894741120902
419 => 0.030438346017233
420 => 0.030910342917255
421 => 0.030221218267511
422 => 0.030958680424875
423 => 0.030364416105634
424 => 0.029831299577359
425 => 0.029832108095072
426 => 0.029497676309295
427 => 0.028849672583236
428 => 0.02873017075399
429 => 0.029351834361145
430 => 0.029850349702322
501 => 0.029891409813548
502 => 0.030167413521067
503 => 0.030330749672112
504 => 0.031931665997083
505 => 0.032575567786461
506 => 0.033362918706075
507 => 0.033669636261931
508 => 0.034592746140728
509 => 0.033847259942281
510 => 0.033685969313919
511 => 0.031446806694897
512 => 0.031813469448321
513 => 0.032400531894247
514 => 0.031456487138401
515 => 0.032055266246836
516 => 0.032173477926717
517 => 0.031424408858841
518 => 0.031824519013357
519 => 0.030761945067355
520 => 0.028558676846312
521 => 0.029367257778543
522 => 0.029962645510064
523 => 0.029112953806406
524 => 0.030635993297602
525 => 0.029746265068762
526 => 0.029464263934707
527 => 0.028364076970093
528 => 0.028883322867311
529 => 0.029585610378183
530 => 0.02915167834615
531 => 0.030052152467841
601 => 0.031327463971831
602 => 0.032236326895688
603 => 0.032306098105586
604 => 0.031721760134633
605 => 0.03265816546228
606 => 0.032664986152795
607 => 0.031608717117881
608 => 0.030961758215326
609 => 0.030814767791453
610 => 0.031181978689459
611 => 0.03162784051051
612 => 0.032330840333614
613 => 0.032755648403409
614 => 0.033863322548645
615 => 0.034163027412839
616 => 0.034492312193751
617 => 0.034932338208715
618 => 0.035460702260035
619 => 0.03430467179553
620 => 0.034350603040996
621 => 0.03327412347878
622 => 0.032123750683769
623 => 0.032996740239189
624 => 0.034138057953968
625 => 0.033876238409154
626 => 0.033846778361874
627 => 0.033896321989863
628 => 0.0336989186033
629 => 0.032806070401986
630 => 0.032357687624812
701 => 0.032936215802013
702 => 0.033243677780869
703 => 0.033720524496571
704 => 0.033661743073848
705 => 0.034890049003899
706 => 0.035367331546274
707 => 0.035245222247863
708 => 0.035267693297495
709 => 0.036131790542478
710 => 0.037092844394052
711 => 0.037992998148277
712 => 0.038908673209577
713 => 0.037804791183774
714 => 0.037244307969049
715 => 0.037822583578946
716 => 0.037515742400516
717 => 0.039278942826779
718 => 0.039401022998732
719 => 0.041164095925535
720 => 0.042837462075891
721 => 0.041786450778321
722 => 0.042777507093341
723 => 0.043849415300041
724 => 0.045917300141606
725 => 0.045220909276033
726 => 0.04468748478684
727 => 0.044183401222041
728 => 0.045232319099375
729 => 0.046581735191693
730 => 0.046872386493432
731 => 0.047343352639591
801 => 0.046848189323905
802 => 0.047444558997199
803 => 0.049550006002039
804 => 0.048981095636037
805 => 0.048173151459408
806 => 0.04983519966045
807 => 0.050436688443358
808 => 0.054658251723929
809 => 0.059988149749731
810 => 0.057781536969051
811 => 0.056411821209134
812 => 0.056733736902807
813 => 0.058680035233396
814 => 0.059305124484759
815 => 0.057605916418366
816 => 0.058206105433607
817 => 0.061513205916868
818 => 0.063287359221651
819 => 0.060877820733178
820 => 0.054229999607162
821 => 0.048100404926211
822 => 0.049726249454845
823 => 0.049541929141128
824 => 0.053094996041204
825 => 0.048967527311959
826 => 0.049037023299876
827 => 0.052663563860682
828 => 0.051696065013704
829 => 0.05012884078949
830 => 0.048111847397442
831 => 0.044383248562935
901 => 0.041080724595541
902 => 0.047557734621447
903 => 0.047278434171452
904 => 0.04687396572985
905 => 0.047774066478577
906 => 0.05214470021634
907 => 0.052043942962324
908 => 0.051402976719075
909 => 0.051889143965362
910 => 0.050043613320631
911 => 0.05051924858973
912 => 0.048099433967097
913 => 0.049193291236912
914 => 0.050125478230181
915 => 0.050312628570343
916 => 0.050734287842864
917 => 0.047131255525814
918 => 0.048748911256698
919 => 0.049699132444749
920 => 0.045405998547795
921 => 0.049614270991084
922 => 0.047068534749198
923 => 0.046204473633027
924 => 0.047367818094556
925 => 0.046914461626508
926 => 0.046524692357266
927 => 0.046307194407943
928 => 0.047161426186847
929 => 0.047121575253333
930 => 0.045723886263803
1001 => 0.043900657954052
1002 => 0.044512593220234
1003 => 0.044290271401106
1004 => 0.043484548448503
1005 => 0.044027508435197
1006 => 0.041636587439557
1007 => 0.037523132135816
1008 => 0.040240606708011
1009 => 0.040135986893025
1010 => 0.040083232838178
1011 => 0.042125339873701
1012 => 0.041929038401661
1013 => 0.041572749307718
1014 => 0.043478004919888
1015 => 0.042782560992142
1016 => 0.044925755310258
1017 => 0.046337401701287
1018 => 0.045979362514545
1019 => 0.047307022768387
1020 => 0.044526690972831
1021 => 0.045450205667765
1022 => 0.045640540766454
1023 => 0.043454494361379
1024 => 0.041961155750188
1025 => 0.041861567090128
1026 => 0.039272323733061
1027 => 0.040655476634764
1028 => 0.041872593949507
1029 => 0.041289689207864
1030 => 0.041105158980444
1031 => 0.042047883892611
1101 => 0.042121141692179
1102 => 0.04045085609851
1103 => 0.0407981613645
1104 => 0.042246482058372
1105 => 0.040761667399022
1106 => 0.037876915059003
1107 => 0.037161456593857
1108 => 0.037066001246091
1109 => 0.035125621144888
1110 => 0.037209266949596
1111 => 0.036299699717605
1112 => 0.039173011705176
1113 => 0.037531791307757
1114 => 0.03746104157669
1115 => 0.037354092981453
1116 => 0.035683927672255
1117 => 0.036049587730427
1118 => 0.037265097455389
1119 => 0.037698805018952
1120 => 0.037653565766811
1121 => 0.037259140794617
1122 => 0.037439706527105
1123 => 0.03685804138949
1124 => 0.036652643323086
1125 => 0.036004350526324
1126 => 0.03505153921054
1127 => 0.035184033467931
1128 => 0.03329626493472
1129 => 0.032267708446367
1130 => 0.031983017566548
1201 => 0.031602317024003
1202 => 0.032026018705834
1203 => 0.033290917123651
1204 => 0.031765181268594
1205 => 0.029149414163027
1206 => 0.029306626223121
1207 => 0.029659835045475
1208 => 0.029001632741729
1209 => 0.028378699499966
1210 => 0.028920289413508
1211 => 0.02781195440783
1212 => 0.029793772035778
1213 => 0.029740169422922
1214 => 0.030478868479841
1215 => 0.030940792159763
1216 => 0.02987620762711
1217 => 0.02960846749609
1218 => 0.029760984442829
1219 => 0.027240219048927
1220 => 0.030272868168248
1221 => 0.030299094643765
1222 => 0.03007452763783
1223 => 0.031689319671332
1224 => 0.035097034528285
1225 => 0.033814915124087
1226 => 0.033318439738517
1227 => 0.032374639667628
1228 => 0.033632197224785
1229 => 0.033535636425349
1230 => 0.033098951870705
1231 => 0.032834843689517
]
'min_raw' => 0.024664919522954
'max_raw' => 0.063287359221651
'avg_raw' => 0.043976139372303
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.024664'
'max' => '$0.063287'
'avg' => '$0.043976'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.015167341526912
'max_diff' => 0.036786171404902
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00077420363985329
]
1 => [
'year' => 2028
'avg' => 0.0013287581989108
]
2 => [
'year' => 2029
'avg' => 0.0036299279140596
]
3 => [
'year' => 2030
'avg' => 0.0028004839798462
]
4 => [
'year' => 2031
'avg' => 0.0027504223283678
]
5 => [
'year' => 2032
'avg' => 0.0048223559313914
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00077420363985329
'min' => '$0.000774'
'max_raw' => 0.0048223559313914
'max' => '$0.004822'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0048223559313914
]
1 => [
'year' => 2033
'avg' => 0.012403595332551
]
2 => [
'year' => 2034
'avg' => 0.0078619948106698
]
3 => [
'year' => 2035
'avg' => 0.0092732409084467
]
4 => [
'year' => 2036
'avg' => 0.017999382906396
]
5 => [
'year' => 2037
'avg' => 0.043976139372303
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0048223559313914
'min' => '$0.004822'
'max_raw' => 0.043976139372303
'max' => '$0.043976'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.043976139372303
]
]
]
]
'prediction_2025_max_price' => '$0.001323'
'last_price' => 0.00128354
'sma_50day_nextmonth' => '$0.001223'
'sma_200day_nextmonth' => '$0.0014099'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001267'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001269'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001259'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001289'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001345'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001495'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001381'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001269'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001266'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001269'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00129'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00136'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001415'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001446'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001494'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001483'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0017059'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.008699'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001294'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001318'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001379'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001424'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00159'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003289'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0078019'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 56.69
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001259'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001276'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 47.73
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -10.96
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.98
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000042'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -52.27
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 54.88
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000129'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 14
'sell_pct' => 57.58
'buy_pct' => 42.42
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767712672
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Divi para 2026
La previsión del precio de Divi para 2026 sugiere que el precio medio podría oscilar entre $0.000443 en el extremo inferior y $0.001323 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Divi podría potencialmente ganar 3.13% para 2026 si DIVI alcanza el objetivo de precio previsto.
Predicción de precio de Divi 2027-2032
La predicción del precio de DIVI para 2027-2032 está actualmente dentro de un rango de precios de $0.000774 en el extremo inferior y $0.004822 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Divi alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000426 | $0.000774 | $0.001121 |
| 2028 | $0.00077 | $0.001328 | $0.001887 |
| 2029 | $0.001692 | $0.003629 | $0.005567 |
| 2030 | $0.001439 | $0.00280048 | $0.004161 |
| 2031 | $0.0017017 | $0.00275 | $0.003799 |
| 2032 | $0.002597 | $0.004822 | $0.007047 |
Predicción de precio de Divi 2032-2037
La predicción de precio de Divi para 2032-2037 se estima actualmente entre $0.004822 en el extremo inferior y $0.043976 en el extremo superior. Comparado con el precio actual, Divi podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002597 | $0.004822 | $0.007047 |
| 2033 | $0.006036 | $0.0124035 | $0.01877 |
| 2034 | $0.004852 | $0.007861 | $0.010871 |
| 2035 | $0.005737 | $0.009273 | $0.0128088 |
| 2036 | $0.009497 | $0.017999 | $0.0265011 |
| 2037 | $0.024664 | $0.043976 | $0.063287 |
Divi Histograma de precios potenciales
Pronóstico de precio de Divi basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Divi es Bajista, con 14 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de DIVI se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Divi
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Divi aumentar durante el próximo mes, alcanzando $0.0014099 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Divi alcance $0.001223 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 48.09, lo que sugiere que el mercado de DIVI está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DIVI para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001267 | BUY |
| SMA 5 | $0.001269 | BUY |
| SMA 10 | $0.001259 | BUY |
| SMA 21 | $0.001289 | SELL |
| SMA 50 | $0.001345 | SELL |
| SMA 100 | $0.001495 | SELL |
| SMA 200 | $0.001381 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001269 | BUY |
| EMA 5 | $0.001266 | BUY |
| EMA 10 | $0.001269 | BUY |
| EMA 21 | $0.00129 | SELL |
| EMA 50 | $0.00136 | SELL |
| EMA 100 | $0.001415 | SELL |
| EMA 200 | $0.001446 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001494 | SELL |
| SMA 50 | $0.001483 | SELL |
| SMA 100 | $0.0017059 | SELL |
| SMA 200 | $0.008699 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001424 | SELL |
| EMA 50 | $0.00159 | SELL |
| EMA 100 | $0.003289 | SELL |
| EMA 200 | $0.0078019 | SELL |
Osciladores de Divi
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 48.09 | NEUTRAL |
| Stoch RSI (14) | 56.69 | NEUTRAL |
| Estocástico Rápido (14) | 47.73 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -10.96 | NEUTRAL |
| Índice Direccional Medio (14) | 10.98 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000042 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -52.27 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 54.88 | NEUTRAL |
| VWMA (10) | 0.001259 | BUY |
| Promedio Móvil de Hull (9) | 0.001276 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000129 | SELL |
Predicción de precios de Divi basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Divi
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Divi por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0018035 | $0.002534 | $0.003561 | $0.005004 | $0.007031 | $0.00988 |
| Amazon.com acción | $0.002678 | $0.005588 | $0.01166 | $0.024329 | $0.050764 | $0.105923 |
| Apple acción | $0.00182 | $0.002582 | $0.003662 | $0.005195 | $0.007369 | $0.010453 |
| Netflix acción | $0.002025 | $0.003195 | $0.005041 | $0.007955 | $0.012552 | $0.0198058 |
| Google acción | $0.001662 | $0.002152 | $0.002787 | $0.0036097 | $0.004674 | $0.006053 |
| Tesla acción | $0.0029096 | $0.006596 | $0.014952 | $0.033896 | $0.076841 | $0.174193 |
| Kodak acción | $0.000962 | $0.000721 | $0.000541 | $0.0004058 | $0.0003043 | $0.000228 |
| Nokia acción | $0.00085 | $0.000563 | $0.000373 | $0.000247 | $0.000163 | $0.0001084 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Divi
Podría preguntarse cosas como: "¿Debo invertir en Divi ahora?", "¿Debería comprar DIVI hoy?", "¿Será Divi una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Divi regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Divi, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Divi a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Divi es de $0.001283 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Divi
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Divi
basado en el historial de precios del último mes
Predicción de precios de Divi basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Divi ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001316 | $0.001351 | $0.001386 | $0.001422 |
| Si Divi ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00135 | $0.00142 | $0.001494 | $0.001571 |
| Si Divi ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.00145 | $0.001638 | $0.001851 | $0.002092 |
| Si Divi ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001617 | $0.002037 | $0.002567 | $0.003234 |
| Si Divi ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.00195 | $0.002964 | $0.0045063 | $0.006849 |
| Si Divi ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.002951 | $0.006787 | $0.0156099 | $0.035897 |
| Si Divi ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.004619 | $0.016628 | $0.05985 | $0.215422 |
Cuadro de preguntas
¿Es DIVI una buena inversión?
La decisión de adquirir Divi depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Divi ha experimentado un aumento de 9.636% durante las últimas 24 horas, y Divi ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Divi dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Divi subir?
Parece que el valor medio de Divi podría potencialmente aumentar hasta $0.001323 para el final de este año. Mirando las perspectivas de Divi en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.004161. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Divi la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi aumentará en un 0.86% durante la próxima semana y alcanzará $0.001294 para el 13 de enero de 2026.
¿Cuál será el precio de Divi el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001134 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Divi este año en 2026?
Según nuestra predicción más reciente sobre el valor de Divi en 2026, se anticipa que DIVI fluctúe dentro del rango de $0.000443 y $0.001323. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Divi no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Divi en 5 años?
El futuro de Divi parece estar en una tendencia alcista, con un precio máximo de $0.004161 proyectada después de un período de cinco años. Basado en el pronóstico de Divi para 2030, el valor de Divi podría potencialmente alcanzar su punto más alto de aproximadamente $0.004161, mientras que su punto más bajo se anticipa que esté alrededor de $0.001439.
¿Cuánto será Divi en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Divi, se espera que el valor de DIVI en 2026 crezca en un 3.13% hasta $0.001323 si ocurre lo mejor. El precio estará entre $0.001323 y $0.000443 durante 2026.
¿Cuánto será Divi en 2027?
Según nuestra última simulación experimental para la predicción de precios de Divi, el valor de DIVI podría disminuir en un -12.62% hasta $0.001121 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001121 y $0.000426 a lo largo del año.
¿Cuánto será Divi en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Divi sugiere que el valor de DIVI en 2028 podría aumentar en un 47.02% , alcanzando $0.001887 en el mejor escenario. Se espera que el precio oscile entre $0.001887 y $0.00077 durante el año.
¿Cuánto será Divi en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Divi podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.005567 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.005567 y $0.001692.
¿Cuánto será Divi en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Divi, se espera que el valor de DIVI en 2030 aumente en un 224.23% , alcanzando $0.004161 en el mejor escenario. Se pronostica que el precio oscile entre $0.004161 y $0.001439 durante el transcurso de 2030.
¿Cuánto será Divi en 2031?
Nuestra simulación experimental indica que el precio de Divi podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.003799 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.003799 y $0.0017017 durante el año.
¿Cuánto será Divi en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Divi, DIVI podría experimentar un 449.04% aumento en valor, alcanzando $0.007047 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.007047 y $0.002597 a lo largo del año.
¿Cuánto será Divi en 2033?
Según nuestra predicción experimental de precios de Divi, se anticipa que el valor de DIVI aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.01877. A lo largo del año, el precio de DIVI podría oscilar entre $0.01877 y $0.006036.
¿Cuánto será Divi en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Divi sugieren que DIVI podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.010871 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.010871 y $0.004852.
¿Cuánto será Divi en 2035?
Basado en nuestra predicción experimental para el precio de Divi, DIVI podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0128088 en 2035. El rango de precios esperado para el año está entre $0.0128088 y $0.005737.
¿Cuánto será Divi en 2036?
Nuestra reciente simulación de predicción de precios de Divi sugiere que el valor de DIVI podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0265011 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0265011 y $0.009497.
¿Cuánto será Divi en 2037?
Según la simulación experimental, el valor de Divi podría aumentar en un 4830.69% en 2037, con un máximo de $0.063287 bajo condiciones favorables. Se espera que el precio caiga entre $0.063287 y $0.024664 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Noxbox
Predicción de precios de Hourglass
Predicción de precios de KLEVA
Predicción de precios de Acquire.Fi
Predicción de precios de Striker League
Predicción de precios de Aladdin DAO
Predicción de precios de Ēnosys
Predicción de precios de Skeb
Predicción de precios de Pundi X PURSE
Predicción de precios de Roco Finance
Predicción de precios de Darwinia Network Native Token
Predicción de precios de dHedge DAO
Predicción de precios de Sonne Finance
Predicción de precios de Beethoven X
Predicción de precios de EverRise
Predicción de precios de MASQPredicción de precios de Era Swap Token
Predicción de precios de Origin Dollar
Predicción de precios de Panda Swap
Predicción de precios de Warden
Predicción de precios de Dvision Network
Predicción de precios de GooseFX
Predicción de precios de Flamengo Fan Token
Predicción de precios de ritestream
Predicción de precios de Shutter
¿Cómo leer y predecir los movimientos de precio de Divi?
Los traders de Divi utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Divi
Las medias móviles son herramientas populares para la predicción de precios de Divi. Una media móvil simple (SMA) calcula el precio de cierre promedio de DIVI durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DIVI por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DIVI.
¿Cómo leer gráficos de Divi y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Divi en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DIVI dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Divi?
La acción del precio de Divi está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DIVI. La capitalización de mercado de Divi puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DIVI, grandes poseedores de Divi, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Divi.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


