Predicción del precio de Divi - Pronóstico de DIVI
Predicción de precio de Divi hasta $0.001335 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000447 | $0.001335 |
| 2027 | $0.00043 | $0.001131 |
| 2028 | $0.000777 | $0.0019038 |
| 2029 | $0.0017075 | $0.005617 |
| 2030 | $0.001452 | $0.004198 |
| 2031 | $0.001716 | $0.003832 |
| 2032 | $0.00262 | $0.0071099 |
| 2033 | $0.00609 | $0.018938 |
| 2034 | $0.004896 | $0.010967 |
| 2035 | $0.005788 | $0.012923 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Divi hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,961.30, equivalente a un ROI del 39.61% en los próximos 90 días.
Predicción del precio a largo plazo de Divi para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Divi'
'name_with_ticker' => 'Divi <small>DIVI</small>'
'name_lang' => 'Divi'
'name_lang_with_ticker' => 'Divi <small>DIVI</small>'
'name_with_lang' => 'Divi'
'name_with_lang_with_ticker' => 'Divi <small>DIVI</small>'
'image' => '/uploads/coins/divi.png?1717233510'
'price_for_sd' => 0.001294
'ticker' => 'DIVI'
'marketcap' => '$5.85M'
'low24h' => '$0.001148'
'high24h' => '$0.001301'
'volume24h' => '$55.1K'
'current_supply' => '4.53B'
'max_supply' => '4.53B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0000273294 ETH'
'price' => '$0.001294'
'change_24h_pct' => '10.9636%'
'ath_price' => '$0.1833'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 dic. 2021'
'ath_pct' => '-99.29%'
'fdv' => '$5.85M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.063851'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001306'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001144'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000447'
'current_year_max_price_prediction' => '$0.001335'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001452'
'grand_prediction_max_price' => '$0.004198'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0013195191898405
107 => 0.0013244457955099
108 => 0.0013355456896418
109 => 0.0012406983095903
110 => 0.0012832819986606
111 => 0.0013082959264374
112 => 0.0011952820907275
113 => 0.0013060620062726
114 => 0.00123904722772
115 => 0.001216301405351
116 => 0.0012469256586366
117 => 0.0012349913573481
118 => 0.001224730945906
119 => 0.001219005460025
120 => 0.0012414925317625
121 => 0.0012404434829881
122 => 0.0012036502690731
123 => 0.0011556550214042
124 => 0.0011717638019122
125 => 0.001165911330933
126 => 0.0011447012211208
127 => 0.0011589942742158
128 => 0.0010960549019338
129 => 0.00098777098322664
130 => 0.0010593066567508
131 => 0.0010565526111359
201 => 0.0010551638964509
202 => 0.0011089209780035
203 => 0.0011037534749991
204 => 0.0010943744064458
205 => 0.0011445289671716
206 => 0.0011262218778326
207 => 0.0011826400134827
208 => 0.001219800646518
209 => 0.0012103755079597
210 => 0.0012453252629423
211 => 0.0011721349156799
212 => 0.0011964458131534
213 => 0.0012014562554293
214 => 0.0011439100676776
215 => 0.0011045989423982
216 => 0.0011019773385217
217 => 0.001033817264694
218 => 0.0010702278259638
219 => 0.0011022676131099
220 => 0.0010869230414549
221 => 0.0010820654084749
222 => 0.0011068820018774
223 => 0.0011088104637246
224 => 0.0010648413292409
225 => 0.0010739839046215
226 => 0.0011121099637851
227 => 0.0010730232257519
228 => 0.00099708407853597
301 => 0.00097825012008556
302 => 0.00097573732284955
303 => 0.00092465813379195
304 => 0.00097950869524729
305 => 0.00095556495526838
306 => 0.0010312029429717
307 => 0.00098799893005023
308 => 0.00098613649140395
309 => 0.00098332114222975
310 => 0.00093935517415315
311 => 0.00094898092697889
312 => 0.0009809783954152
313 => 0.00099239545263056
314 => 0.00099120456002581
315 => 0.00098082159036371
316 => 0.00098557486070561
317 => 0.00097026292078518
318 => 0.0009648559561088
319 => 0.00094779008828736
320 => 0.00092270797715615
321 => 0.00092619579854647
322 => 0.00087650157330416
323 => 0.00084942552192
324 => 0.00084193122775349
325 => 0.00083190954438591
326 => 0.00084306320355654
327 => 0.0008763607958078
328 => 0.00083619683507451
329 => 0.00076733854157154
330 => 0.00077147704233989
331 => 0.00078077502483447
401 => 0.00076344829596813
402 => 0.00074705000121827
403 => 0.00076130698806757
404 => 0.00073213082136751
405 => 0.00078430082518939
406 => 0.00078288977279075
407 => 0.00080233552404415
408 => 0.00081449535136989
409 => 0.00078647088617491
410 => 0.00077942280896458
411 => 0.00078343771406083
412 => 0.00071708027613143
413 => 0.00079691270567198
414 => 0.00079760309983776
415 => 0.0007916915258399
416 => 0.0008341998300205
417 => 0.00092390561051413
418 => 0.00089015468748577
419 => 0.00087708530996214
420 => 0.00085224041373605
421 => 0.00088534476281334
422 => 0.0008828028653125
423 => 0.00087130744082769
424 => 0.00086435497223137
425 => 0.00087716510879441
426 => 0.0008627676545477
427 => 0.00086018147614941
428 => 0.0008445120488456
429 => 0.00083891877621165
430 => 0.00083477773982808
501 => 0.0008302188656596
502 => 0.00084027460607461
503 => 0.00081748697535137
504 => 0.00079000732659813
505 => 0.00078772269113822
506 => 0.00079403077051024
507 => 0.0007912399149694
508 => 0.00078770932959561
509 => 0.00078096848061933
510 => 0.00077896861472352
511 => 0.00078546720868791
512 => 0.00077813067499368
513 => 0.00078895613010118
514 => 0.00078601220531169
515 => 0.00076956768074813
516 => 0.00074907171459915
517 => 0.00074888925750868
518 => 0.000744473435222
519 => 0.00073884922161659
520 => 0.00073728469405614
521 => 0.00076010630440109
522 => 0.0008073463548218
523 => 0.00079807200256561
524 => 0.00080477367254456
525 => 0.0008377392559544
526 => 0.00084821802361071
527 => 0.00084078044253147
528 => 0.00083059942282019
529 => 0.00083104733601794
530 => 0.00086583896237563
531 => 0.00086800887343528
601 => 0.00087349153864318
602 => 0.00088053831283634
603 => 0.00084198053864768
604 => 0.0008292312683211
605 => 0.00082318995673778
606 => 0.00080458505534297
607 => 0.00082464884643357
608 => 0.00081295853458227
609 => 0.00081453595704893
610 => 0.00081350865859815
611 => 0.00081406963301789
612 => 0.00078428624261009
613 => 0.00079513774470578
614 => 0.00077709501778825
615 => 0.00075293783183683
616 => 0.00075285684847892
617 => 0.00075876928551706
618 => 0.00075525233661309
619 => 0.00074578831754151
620 => 0.00074713263678172
621 => 0.00073535498567833
622 => 0.00074856265686693
623 => 0.0007489414056173
624 => 0.00074385573278298
625 => 0.00076420397255641
626 => 0.00077254066299418
627 => 0.00076919316418896
628 => 0.00077230579355425
629 => 0.00079845739377305
630 => 0.00080272124568303
701 => 0.00080461496704719
702 => 0.00080207763128921
703 => 0.00077278379679909
704 => 0.00077408310292572
705 => 0.0007645496566716
706 => 0.00075649489919668
707 => 0.00075681704725404
708 => 0.00076095823964133
709 => 0.00077904306967432
710 => 0.0008171015283198
711 => 0.00081854581900502
712 => 0.00082029634144845
713 => 0.00081317608692895
714 => 0.00081102855003422
715 => 0.00081386170552468
716 => 0.00082815446157323
717 => 0.00086491931057552
718 => 0.00085192415749641
719 => 0.00084135889576148
720 => 0.00085062747867712
721 => 0.00084920065298681
722 => 0.00083715680825398
723 => 0.0008368187776456
724 => 0.00081370278895322
725 => 0.00080515733425924
726 => 0.00079801611270076
727 => 0.0007902180851852
728 => 0.00078559515308173
729 => 0.00079269807787772
730 => 0.00079432260081791
731 => 0.00077879193161358
801 => 0.00077667515878882
802 => 0.00078935783851386
803 => 0.00078377666402483
804 => 0.00078951704039326
805 => 0.00079084885695077
806 => 0.00079063440381068
807 => 0.00078480701665032
808 => 0.00078852121945115
809 => 0.00077973602257005
810 => 0.00077018344045577
811 => 0.00076408948821375
812 => 0.00075877170663712
813 => 0.00076172232092712
814 => 0.00075120391974418
815 => 0.00074783887151217
816 => 0.00078726293111444
817 => 0.00081638590782269
818 => 0.00081596244820739
819 => 0.00081338474670421
820 => 0.00080955480513813
821 => 0.00082787427749244
822 => 0.00082149213963361
823 => 0.00082613567817137
824 => 0.00082731765361793
825 => 0.00083089513730643
826 => 0.00083217378022996
827 => 0.00082830883324045
828 => 0.00081533759908014
829 => 0.00078301451682059
830 => 0.00076796803477427
831 => 0.00076300244508001
901 => 0.0007631829348344
902 => 0.0007582042216666
903 => 0.00075967067582479
904 => 0.00075769424875597
905 => 0.00075395137403669
906 => 0.00076149120896035
907 => 0.00076236010469687
908 => 0.00076060021713138
909 => 0.00076101473436191
910 => 0.0007464436169774
911 => 0.00074755142738534
912 => 0.00074138299826018
913 => 0.00074022649216074
914 => 0.00072463324047891
915 => 0.00069700753484658
916 => 0.00071231485745902
917 => 0.00069382576427847
918 => 0.00068682366453551
919 => 0.00071997051566873
920 => 0.00071664349116549
921 => 0.00071094907143874
922 => 0.00070252583784181
923 => 0.00069940157856477
924 => 0.00068041956821771
925 => 0.00067929800978132
926 => 0.00068870600666671
927 => 0.00068436453981351
928 => 0.00067826747610954
929 => 0.0006561845294232
930 => 0.00063135598593538
1001 => 0.00063210540359661
1002 => 0.00064000290132862
1003 => 0.00066296594110709
1004 => 0.00065399388420102
1005 => 0.00064748455397317
1006 => 0.00064626555209125
1007 => 0.00066152391279687
1008 => 0.00068311768992072
1009 => 0.0006932490070137
1010 => 0.00068320917946723
1011 => 0.00067167596616455
1012 => 0.00067237793941852
1013 => 0.00067704785298762
1014 => 0.00067753859487471
1015 => 0.00067003165864815
1016 => 0.0006721448172238
1017 => 0.00066893473611612
1018 => 0.00064923447428366
1019 => 0.00064887815901732
1020 => 0.000644043397054
1021 => 0.0006438970023832
1022 => 0.0006356718661957
1023 => 0.00063452111278539
1024 => 0.00061818960565502
1025 => 0.00062893905310459
1026 => 0.00062172888812674
1027 => 0.00061086146879914
1028 => 0.00060898792161089
1029 => 0.00060893160052004
1030 => 0.00062009001025898
1031 => 0.00062880866059004
1101 => 0.00062185431203347
1102 => 0.00062027094167152
1103 => 0.00063717719470247
1104 => 0.00063502571990037
1105 => 0.00063316255659727
1106 => 0.0006811842040219
1107 => 0.00064317132290942
1108 => 0.00062659553704499
1109 => 0.00060607985438138
1110 => 0.0006127598641057
1111 => 0.00061416744030438
1112 => 0.00056483092172816
1113 => 0.00054481510228626
1114 => 0.00053794642733405
1115 => 0.00053399340779024
1116 => 0.00053579484843525
1117 => 0.00051777826331608
1118 => 0.00052988570648298
1119 => 0.00051428486667381
1120 => 0.00051166933511027
1121 => 0.00053956556926227
1122 => 0.00054344716727708
1123 => 0.00052688706422791
1124 => 0.00053752133122263
1125 => 0.00053366519818298
1126 => 0.00051455229829521
1127 => 0.00051382232610447
1128 => 0.0005042321447917
1129 => 0.00048922536806225
1130 => 0.00048236686841132
1201 => 0.00047879490224488
1202 => 0.00048026876510139
1203 => 0.00047952353494019
1204 => 0.00047466040404529
1205 => 0.00047980228391051
1206 => 0.00046666690562632
1207 => 0.00046143629215461
1208 => 0.00045907374539876
1209 => 0.00044741534112737
1210 => 0.00046596904683906
1211 => 0.00046962436059769
1212 => 0.0004732868764536
1213 => 0.00050516657647359
1214 => 0.00050357395675168
1215 => 0.00051797046340041
1216 => 0.00051741104162552
1217 => 0.00051330492472135
1218 => 0.00049598189292614
1219 => 0.00050288654464636
1220 => 0.00048163509987264
1221 => 0.00049755812725489
1222 => 0.00049029152251916
1223 => 0.00049510128088419
1224 => 0.00048645290166543
1225 => 0.00049123927180792
1226 => 0.00047049117109306
1227 => 0.00045111688657918
1228 => 0.00045891366423819
1229 => 0.00046738965322321
1230 => 0.00048576775698456
1231 => 0.00047482191000036
]
'min_raw' => 0.00044741534112737
'max_raw' => 0.0013355456896418
'avg_raw' => 0.00089148051538458
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000447'
'max' => '$0.001335'
'avg' => '$0.000891'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00084756465887263
'max_diff' => 4.0565689641796E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00047875845048418
102 => 0.00046557169883231
103 => 0.00043836366356512
104 => 0.00043851765808995
105 => 0.00043433229462336
106 => 0.00043071552951516
107 => 0.00047607917219853
108 => 0.00047043748613778
109 => 0.0004614481977656
110 => 0.00047348071747188
111 => 0.00047666230666399
112 => 0.0004767528820355
113 => 0.00048553149780892
114 => 0.00049021664662085
115 => 0.00049104242440555
116 => 0.00050485576599956
117 => 0.0005094858158995
118 => 0.00052855633616814
119 => 0.00048981914447747
120 => 0.00048902137750631
121 => 0.00047365003969977
122 => 0.00046390129425162
123 => 0.00047431754464102
124 => 0.00048354492052605
125 => 0.00047393675998973
126 => 0.00047519138291643
127 => 0.00046229321241197
128 => 0.00046690370145199
129 => 0.00047087487571319
130 => 0.00046868222670099
131 => 0.00046539972500431
201 => 0.00048278838093109
202 => 0.00048180724481701
203 => 0.0004979999609795
204 => 0.0005106233411804
205 => 0.00053324669519954
206 => 0.00050963804589845
207 => 0.00050877765288203
208 => 0.00051718813262886
209 => 0.00050948452829887
210 => 0.00051435294031604
211 => 0.00053246231875822
212 => 0.00053284494138831
213 => 0.00052643551935275
214 => 0.0005260455054394
215 => 0.00052727650505272
216 => 0.00053448650823753
217 => 0.00053196711158374
218 => 0.00053488262117483
219 => 0.00053852851056235
220 => 0.00055360945489421
221 => 0.00055724541951633
222 => 0.0005484119105161
223 => 0.00054920947747422
224 => 0.00054590550262289
225 => 0.00054271390431519
226 => 0.0005498881512154
227 => 0.0005629992284357
228 => 0.00056291766510478
301 => 0.00056595918017696
302 => 0.00056785401886967
303 => 0.00055971998409389
304 => 0.00055442502655161
305 => 0.00055645545020023
306 => 0.00055970214183123
307 => 0.00055540259186211
308 => 0.00052886377770738
309 => 0.00053691395861591
310 => 0.000535574014879
311 => 0.00053366577205491
312 => 0.00054176029120864
313 => 0.00054097955508956
314 => 0.00051759347719494
315 => 0.00051909057802581
316 => 0.00051768452085501
317 => 0.00052222777922607
318 => 0.00050923917743713
319 => 0.00051323438386784
320 => 0.00051574013988845
321 => 0.00051721604943471
322 => 0.00052254804675646
323 => 0.00052192239841244
324 => 0.00052250915557695
325 => 0.00053041510001
326 => 0.00057040065395988
327 => 0.00057257697943822
328 => 0.00056185995682923
329 => 0.0005661411959776
330 => 0.00055792215301681
331 => 0.00056343965161919
401 => 0.00056721458403367
402 => 0.00055015639033039
403 => 0.00054914631480605
404 => 0.00054089334893128
405 => 0.0005453280253205
406 => 0.00053827213632074
407 => 0.00054000340467676
408 => 0.00053516262742406
409 => 0.00054387506268978
410 => 0.00055361691909243
411 => 0.00055607809673731
412 => 0.00054960379795724
413 => 0.00054491597896338
414 => 0.00053668571307375
415 => 0.00055037282867165
416 => 0.00055437535837976
417 => 0.00055035180508702
418 => 0.00054941945987271
419 => 0.00054765266737632
420 => 0.00054979429325299
421 => 0.00055435355974338
422 => 0.00055220349386295
423 => 0.00055362365025626
424 => 0.00054821147854386
425 => 0.00055972267679786
426 => 0.00057800522994593
427 => 0.0005780640113438
428 => 0.00057591393387371
429 => 0.00057503416849701
430 => 0.00057724027845894
501 => 0.00057843700261392
502 => 0.0005855711576994
503 => 0.00059322639034341
504 => 0.0006289500208533
505 => 0.00061891896835654
506 => 0.00065061509855321
507 => 0.00067568262231138
508 => 0.00068319927661649
509 => 0.0006762843083417
510 => 0.0006526285754129
511 => 0.00065146791229978
512 => 0.00068681956448824
513 => 0.00067683110353675
514 => 0.00067564300788959
515 => 0.00066300367752309
516 => 0.00067047508718121
517 => 0.00066884098029001
518 => 0.00066626146261901
519 => 0.0006805163917838
520 => 0.000707200346634
521 => 0.00070304140203005
522 => 0.00069993694281109
523 => 0.00068633410620811
524 => 0.00069452605214666
525 => 0.00069160905710433
526 => 0.00070414231897696
527 => 0.00069671789228936
528 => 0.00067675543112112
529 => 0.0006799345188593
530 => 0.00067945400614311
531 => 0.00068934292379276
601 => 0.00068637451617236
602 => 0.00067887437691398
603 => 0.00070710914377724
604 => 0.00070527573506716
605 => 0.00070787508944247
606 => 0.00070901940562618
607 => 0.00072620541066344
608 => 0.00073324596703639
609 => 0.00073484429659533
610 => 0.00074153228061346
611 => 0.00073467789346035
612 => 0.000762100329168
613 => 0.00078033464877011
614 => 0.00080151474931746
615 => 0.00083246456889148
616 => 0.00084410198735315
617 => 0.00084199979187054
618 => 0.00086546559184616
619 => 0.0009076331127869
620 => 0.00085052305346823
621 => 0.00091066008460485
622 => 0.00089162139486241
623 => 0.00084648100397448
624 => 0.00084357449497155
625 => 0.00087414409177157
626 => 0.00094194451525935
627 => 0.0009249612781617
628 => 0.00094197229375117
629 => 0.00092212804047276
630 => 0.00092114260603699
701 => 0.00094100850266264
702 => 0.00098742625296211
703 => 0.00096537491973818
704 => 0.00093375892635294
705 => 0.00095710368386927
706 => 0.00093688029445331
707 => 0.00089131133792888
708 => 0.00092494829140036
709 => 0.00090245621853926
710 => 0.00090902060114449
711 => 0.00095629559285518
712 => 0.00095060734077843
713 => 0.0009579684656837
714 => 0.00094497627290009
715 => 0.00093283951615944
716 => 0.00091018535841563
717 => 0.00090347857914417
718 => 0.00090533209165016
719 => 0.00090347766063542
720 => 0.00089080286758021
721 => 0.00088806574722672
722 => 0.0008835037600549
723 => 0.00088491771063746
724 => 0.00087633984009802
725 => 0.00089252805408443
726 => 0.00089553272925036
727 => 0.00090731316140465
728 => 0.00090853624495099
729 => 0.00094134458081674
730 => 0.00092327430074357
731 => 0.00093539740472957
801 => 0.00093431300020198
802 => 0.00084745933312266
803 => 0.0008594270021298
804 => 0.00087804493944348
805 => 0.00086965758391969
806 => 0.00085779982554797
807 => 0.00084822404989003
808 => 0.00083371577059492
809 => 0.00085413589509596
810 => 0.0008809861873767
811 => 0.00090921721267296
812 => 0.00094313493979637
813 => 0.00093556489794829
814 => 0.00090858314435707
815 => 0.00090979352611298
816 => 0.00091727562986041
817 => 0.00090758562568669
818 => 0.0009047278542845
819 => 0.00091688301595381
820 => 0.00091696672187187
821 => 0.00090581720099388
822 => 0.00089342654887877
823 => 0.00089337463159399
824 => 0.0008911698347296
825 => 0.00092252026893695
826 => 0.00093975983786458
827 => 0.00094173632665918
828 => 0.00093962680442087
829 => 0.00094043867580645
830 => 0.00093040735049544
831 => 0.00095333598545929
901 => 0.0009743775683091
902 => 0.0009687379746175
903 => 0.00096028342195831
904 => 0.00095354896353884
905 => 0.00096715155023804
906 => 0.00096654584846478
907 => 0.00097419378843918
908 => 0.0009738468337053
909 => 0.00097127511914548
910 => 0.00096873806646153
911 => 0.00097879719357798
912 => 0.00097590032651308
913 => 0.00097299895981349
914 => 0.00096717982472045
915 => 0.0009679707418252
916 => 0.00095951764896372
917 => 0.00095560686141879
918 => 0.00089679800003443
919 => 0.00088108235063754
920 => 0.00088602681385935
921 => 0.0008876546595349
922 => 0.00088081518877722
923 => 0.00089062123292784
924 => 0.00088909297133414
925 => 0.00089503854319211
926 => 0.00089132400802197
927 => 0.00089147645384104
928 => 0.00090240010975402
929 => 0.00090557129353812
930 => 0.00090395840387093
1001 => 0.0009050880165072
1002 => 0.00093111946293039
1003 => 0.00092741862368781
1004 => 0.00092545262660065
1005 => 0.00092599722122966
1006 => 0.00093264881391128
1007 => 0.00093451089669864
1008 => 0.00092662112108237
1009 => 0.00093034198487325
1010 => 0.00094618495064693
1011 => 0.00095172909203351
1012 => 0.00096942333000064
1013 => 0.0009619065032222
1014 => 0.00097570396409467
1015 => 0.0010181126549156
1016 => 0.0010519916516015
1017 => 0.0010208351261404
1018 => 0.0010830495890899
1019 => 0.0011314924726308
1020 => 0.0011296331540747
1021 => 0.0011211860168252
1022 => 0.0010660350818346
1023 => 0.0010152843692022
1024 => 0.0010577394953083
1025 => 0.0010578477221557
1026 => 0.0010542007891716
1027 => 0.0010315500016214
1028 => 0.0010534125908633
1029 => 0.0010551479638041
1030 => 0.0010541766164302
1031 => 0.001036810310723
1101 => 0.0010102951717379
1102 => 0.0010154761664273
1103 => 0.001023962741418
1104 => 0.0010078958844756
1105 => 0.0010027615501573
1106 => 0.0010123072545021
1107 => 0.0010430655028274
1108 => 0.0010372508341519
1109 => 0.0010370989896538
1110 => 0.0010619766080509
1111 => 0.0010441696022047
1112 => 0.0010155415153622
1113 => 0.0010083125458764
1114 => 0.00098265457421913
1115 => 0.0010003766266333
1116 => 0.0010010144117498
1117 => 0.00099130822475749
1118 => 0.0010163291189428
1119 => 0.001016098546998
1120 => 0.0010398521621583
1121 => 0.0010852601528943
1122 => 0.0010718307756421
1123 => 0.0010562138710099
1124 => 0.0010579118615533
1125 => 0.0010765346268156
1126 => 0.0010652748778216
1127 => 0.0010693239620656
1128 => 0.0010765284980417
1129 => 0.0010808751734746
1130 => 0.00105728644185
1201 => 0.0010517867801288
1202 => 0.0010405364023663
1203 => 0.0010376013888063
1204 => 0.0010467645867471
1205 => 0.0010443504078302
1206 => 0.0010009608083804
1207 => 0.0009964263538204
1208 => 0.00099656541906805
1209 => 0.00098516331747545
1210 => 0.00096777237572881
1211 => 0.0010134747322798
1212 => 0.0010098041934447
1213 => 0.0010057522026479
1214 => 0.0010062485484001
1215 => 0.0010260863923823
1216 => 0.0010145794410375
1217 => 0.00104517255714
1218 => 0.0010388835321826
1219 => 0.0010324332174656
1220 => 0.0010315415874904
1221 => 0.0010290587666394
1222 => 0.0010205442501243
1223 => 0.0010102624597892
1224 => 0.0010034735312165
1225 => 0.00092565128913709
1226 => 0.00094009464459588
1227 => 0.00095671040849794
1228 => 0.00096244610361344
1229 => 0.00095263480022036
1230 => 0.0010209316601828
1231 => 0.0010334101546229
]
'min_raw' => 0.00043071552951516
'max_raw' => 0.0011314924726308
'avg_raw' => 0.00078110400107298
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00043'
'max' => '$0.001131'
'avg' => '$0.000781'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.6699811612212E-5
'max_diff' => -0.00020405321701099
'year' => 2027
]
2 => [
'items' => [
101 => 0.0009956119810119
102 => 0.00098854148601854
103 => 0.0010213952006575
104 => 0.0010015803945269
105 => 0.0010105030005142
106 => 0.00099121720677421
107 => 0.0010304044507253
108 => 0.0010301059095829
109 => 0.0010148611866019
110 => 0.0010277459220741
111 => 0.0010255068822081
112 => 0.0010082956275086
113 => 0.0010309500781984
114 => 0.0010309613145233
115 => 0.0010162886001029
116 => 0.00099915408193016
117 => 0.00099609083478012
118 => 0.00099378308954192
119 => 0.001009935436653
120 => 0.0010244175805657
121 => 0.0010513652599593
122 => 0.00105814054682
123 => 0.0010845849424934
124 => 0.0010688385924241
125 => 0.0010758187454604
126 => 0.0010833966889843
127 => 0.0010870298337793
128 => 0.0010811098193012
129 => 0.0011221888507295
130 => 0.001125657179611
131 => 0.0011268200802841
201 => 0.001112968462015
202 => 0.0011252719410496
203 => 0.0011195155506577
204 => 0.001134492079286
205 => 0.0011368405902049
206 => 0.0011348514850073
207 => 0.0011355969394417
208 => 0.0011005432329553
209 => 0.001098725513351
210 => 0.0010739407775662
211 => 0.001084040740598
212 => 0.0010651593438138
213 => 0.001071146829234
214 => 0.0010737860557564
215 => 0.0010724074735959
216 => 0.001084611777354
217 => 0.0010742356259851
218 => 0.0010468512565254
219 => 0.0010194594262125
220 => 0.0010191155440958
221 => 0.0010119037586804
222 => 0.0010066909587295
223 => 0.001007695128934
224 => 0.0010112339557109
225 => 0.0010064852756839
226 => 0.0010074986473319
227 => 0.0010243273687476
228 => 0.0010277022488106
229 => 0.0010162330877058
301 => 0.00097018275087816
302 => 0.00095888188271213
303 => 0.00096700472264392
304 => 0.00096312252833441
305 => 0.00077731504899722
306 => 0.00082096776014619
307 => 0.00079503080148747
308 => 0.0008069837453395
309 => 0.00078050882689183
310 => 0.00079314404564442
311 => 0.00079081078210513
312 => 0.00086100304985505
313 => 0.00085990709414044
314 => 0.00086043167014434
315 => 0.00083539229070284
316 => 0.00087528070204639
317 => 0.0008949311678151
318 => 0.00089129438958153
319 => 0.00089220968831161
320 => 0.00087648182359905
321 => 0.00086058395025417
322 => 0.00084295076204952
323 => 0.00087571104620582
324 => 0.00087206866184434
325 => 0.00088042298108105
326 => 0.00090167036710989
327 => 0.0009047991254136
328 => 0.00090900420830253
329 => 0.00090749698542503
330 => 0.00094340514921326
331 => 0.00093905643364881
401 => 0.00094953558694827
402 => 0.00092797917355601
403 => 0.00090358604564911
404 => 0.00090822238179278
405 => 0.00090777586533909
406 => 0.00090209119839581
407 => 0.00089695933525805
408 => 0.00088841622902716
409 => 0.00091544788128353
410 => 0.00091435044556751
411 => 0.00093211665418033
412 => 0.00092897630423627
413 => 0.00090800427873586
414 => 0.00090875329872943
415 => 0.00091379081815287
416 => 0.00093122573039481
417 => 0.00093640159940756
418 => 0.00093400393065813
419 => 0.00093967903474322
420 => 0.00094416440561944
421 => 0.00094024232826729
422 => 0.00099577067264457
423 => 0.00097271143263646
424 => 0.00098395034577125
425 => 0.00098663076033038
426 => 0.00097976493480022
427 => 0.00098125388651093
428 => 0.00098350924263761
429 => 0.00099720332339475
430 => 0.0010331405537157
501 => 0.0010490569083919
502 => 0.0010969420467342
503 => 0.0010477352767024
504 => 0.0010448155506065
505 => 0.0010534411100146
506 => 0.0010815547553782
507 => 0.001104338224365
508 => 0.0011118968154378
509 => 0.0011128958080268
510 => 0.0011270762273649
511 => 0.0011352041792804
512 => 0.0011253543514752
513 => 0.0011170076537303
514 => 0.0010871108184382
515 => 0.0010905714585297
516 => 0.001114411837008
517 => 0.0011480877757999
518 => 0.0011769852346677
519 => 0.0011668663517503
520 => 0.0012440662855917
521 => 0.0012517203436986
522 => 0.0012506628003536
523 => 0.0012680998837977
524 => 0.0012334908241614
525 => 0.0012186947806479
526 => 0.0011188123045218
527 => 0.00114687520616
528 => 0.0011876662817675
529 => 0.0011822674299522
530 => 0.0011526438604974
531 => 0.0011769627625338
601 => 0.0011689221729982
602 => 0.0011625802264271
603 => 0.0011916339131162
604 => 0.0011596881911419
605 => 0.0011873475987536
606 => 0.0011518741223916
607 => 0.0011669125739551
608 => 0.0011583760215196
609 => 0.0011639002171459
610 => 0.0011316058823925
611 => 0.0011490311215248
612 => 0.0011308809351557
613 => 0.0011308723296041
614 => 0.0011304716632341
615 => 0.001151825277007
616 => 0.0011525216175855
617 => 0.0011367412647438
618 => 0.0011344670693639
619 => 0.0011428759616375
620 => 0.0011330313510774
621 => 0.0011376375823973
622 => 0.0011331708691317
623 => 0.0011321653178922
624 => 0.0011241529145358
625 => 0.0011207009508642
626 => 0.001122054554766
627 => 0.0011174340068186
628 => 0.0011146499595477
629 => 0.0011299178461584
630 => 0.0011217608302471
701 => 0.001128667666482
702 => 0.0011207964548802
703 => 0.0010935114061446
704 => 0.0010778194860827
705 => 0.0010262805583466
706 => 0.0010408969343187
707 => 0.00105058760671
708 => 0.0010473848395425
709 => 0.0010542656227246
710 => 0.0010546880469286
711 => 0.0010524510341748
712 => 0.001049860859985
713 => 0.001048600106435
714 => 0.0010579967304806
715 => 0.0010634517870149
716 => 0.0010515601953289
717 => 0.0010487741617779
718 => 0.0010607972175252
719 => 0.0010681312745855
720 => 0.0011222818312684
721 => 0.0011182701831254
722 => 0.0011283386327183
723 => 0.0011272050798071
724 => 0.0011377584190102
725 => 0.0011550086684335
726 => 0.0011199340881104
727 => 0.0011260218224668
728 => 0.0011245292505889
729 => 0.001140824758978
730 => 0.0011408756317765
731 => 0.0011311056604762
801 => 0.0011364021204178
802 => 0.0011334457817792
803 => 0.0011387882852723
804 => 0.0011182166051186
805 => 0.0011432706909701
806 => 0.0011574747431982
807 => 0.0011576719664772
808 => 0.001164404574503
809 => 0.0011712452941836
810 => 0.0011843754599094
811 => 0.0011708791009879
812 => 0.0011466004651323
813 => 0.0011483533042216
814 => 0.0011341187489026
815 => 0.0011343580343492
816 => 0.0011330807098821
817 => 0.0011369140567603
818 => 0.0011190578091906
819 => 0.0011232486348046
820 => 0.0011173814544035
821 => 0.0011260090683624
822 => 0.0011167271819383
823 => 0.0011245285308255
824 => 0.0011278953343865
825 => 0.0011403189120083
826 => 0.0011148922094223
827 => 0.001063045441613
828 => 0.0010739442607878
829 => 0.0010578240511444
830 => 0.0010593160379209
831 => 0.0010623300886573
901 => 0.0010525605640846
902 => 0.0010544242815
903 => 0.0010543576963991
904 => 0.0010537839019722
905 => 0.0010512424713139
906 => 0.0010475568940526
907 => 0.0010622390995006
908 => 0.0010647338923077
909 => 0.0010702795076786
910 => 0.0010867794973954
911 => 0.0010851307593262
912 => 0.0010878199195226
913 => 0.0010819494979127
914 => 0.0010595883499426
915 => 0.0010608026678601
916 => 0.0010456601039707
917 => 0.0010698922782748
918 => 0.0010641537795505
919 => 0.0010604541320918
920 => 0.0010594446490057
921 => 0.0010759855390056
922 => 0.0010809348325403
923 => 0.0010778507649442
924 => 0.0010715252523281
925 => 0.001083672106521
926 => 0.0010869220922684
927 => 0.0010876496442224
928 => 0.0011091715409239
929 => 0.0010888524791695
930 => 0.0010937434792879
1001 => 0.0011319016660141
1002 => 0.0010972974561233
1003 => 0.0011156280778684
1004 => 0.0011147308893219
1005 => 0.0011241082151323
1006 => 0.0011139616749018
1007 => 0.0011140874534285
1008 => 0.0011224138834731
1009 => 0.0011107209141551
1010 => 0.0011078255705133
1011 => 0.0011038256740091
1012 => 0.0011125593016928
1013 => 0.0011177947165011
1014 => 0.0011599883148679
1015 => 0.0011872473036748
1016 => 0.0011860639190802
1017 => 0.0011968778390714
1018 => 0.0011920060690712
1019 => 0.0011762738386325
1020 => 0.0012031268376503
1021 => 0.0011946294251839
1022 => 0.0011953299415432
1023 => 0.0011953038682894
1024 => 0.0012009539047228
1025 => 0.0011969503360915
1026 => 0.0011890588913612
1027 => 0.0011942976006515
1028 => 0.0012098546943707
1029 => 0.0012581443906251
1030 => 0.0012851679444025
1031 => 0.001256517538756
1101 => 0.0012762802049267
1102 => 0.0012644296473822
1103 => 0.0012622760485528
1104 => 0.0012746884633576
1105 => 0.0012871226044514
1106 => 0.001286330603418
1107 => 0.0012773040554841
1108 => 0.0012722051875965
1109 => 0.001310815523488
1110 => 0.0013392629612629
1111 => 0.0013373230367207
1112 => 0.0013458852327528
1113 => 0.0013710241051216
1114 => 0.0013733224885604
1115 => 0.0013730329450749
1116 => 0.0013673361619103
1117 => 0.0013920886464525
1118 => 0.0014127376045362
1119 => 0.0013660175212036
1120 => 0.0013838079173258
1121 => 0.0013917945993159
1122 => 0.001403521418019
1123 => 0.0014233065268143
1124 => 0.0014447984027068
1125 => 0.0014478375896045
1126 => 0.0014456811410621
1127 => 0.0014315066711783
1128 => 0.0014550233382314
1129 => 0.0014687988502573
1130 => 0.0014770018524218
1201 => 0.0014978033010615
1202 => 0.0013918439223449
1203 => 0.0013168406075664
1204 => 0.0013051277569027
1205 => 0.0013289462993124
1206 => 0.0013352270589965
1207 => 0.0013326952926432
1208 => 0.001248272242857
1209 => 0.0013046832870174
1210 => 0.0013653768273586
1211 => 0.0013677083134253
1212 => 0.0013980927687622
1213 => 0.0014079871929208
1214 => 0.0014324506620486
1215 => 0.001430920465394
1216 => 0.0014368769308278
1217 => 0.0014355076425762
1218 => 0.0014808210677443
1219 => 0.0015308085048134
1220 => 0.001529077598818
1221 => 0.0015218913133148
1222 => 0.0015325641727308
1223 => 0.0015841565647655
1224 => 0.0015794067640582
1225 => 0.0015840207908583
1226 => 0.0016448511286869
1227 => 0.0017239392208789
1228 => 0.0016871948617411
1229 => 0.0017669195481655
1230 => 0.0018171020122457
1231 => 0.0019038873949087
]
'min_raw' => 0.00077731504899722
'max_raw' => 0.0019038873949087
'avg_raw' => 0.001340601221953
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000777'
'max' => '$0.0019038'
'avg' => '$0.00134'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00034659951948206
'max_diff' => 0.0007723949222779
'year' => 2028
]
3 => [
'items' => [
101 => 0.0018930214375723
102 => 0.0019268063501824
103 => 0.0018735691061463
104 => 0.0017513256328173
105 => 0.0017319801352338
106 => 0.001770710311302
107 => 0.0018659246699305
108 => 0.0017677116723097
109 => 0.0017875800338155
110 => 0.0017818579443652
111 => 0.0017815530385357
112 => 0.0017931900539058
113 => 0.0017763099561656
114 => 0.0017075374013005
115 => 0.001739055457916
116 => 0.0017268848226353
117 => 0.0017403890498602
118 => 0.0018132657946255
119 => 0.0017810452486002
120 => 0.001747103520747
121 => 0.0017896739797472
122 => 0.0018438808028513
123 => 0.0018404886372805
124 => 0.0018339064182579
125 => 0.0018710100422545
126 => 0.0019322943587553
127 => 0.0019488592632451
128 => 0.0019610871370849
129 => 0.0019627731542958
130 => 0.0019801401794218
131 => 0.0018867533082653
201 => 0.0020349606711357
202 => 0.0020605519885576
203 => 0.0020557418815337
204 => 0.0020841855538009
205 => 0.0020758167038736
206 => 0.0020636915533612
207 => 0.0021087808240473
208 => 0.0020570896137222
209 => 0.0019837204484081
210 => 0.0019434686732392
211 => 0.0019964754577997
212 => 0.0020288448514489
213 => 0.0020502389615709
214 => 0.0020567128063672
215 => 0.0018940026652349
216 => 0.0018063109234827
217 => 0.001862520324558
218 => 0.0019310996732355
219 => 0.0018863723465208
220 => 0.001888125573048
221 => 0.0018243561592875
222 => 0.0019367418513606
223 => 0.001920368201338
224 => 0.0020053147266197
225 => 0.0019850415566228
226 => 0.0020543121503849
227 => 0.0020360708815369
228 => 0.0021117893686692
301 => 0.0021419955231825
302 => 0.0021927163578229
303 => 0.0022300268102552
304 => 0.0022519362215588
305 => 0.0022506208626842
306 => 0.0023374368654941
307 => 0.0022862445017573
308 => 0.00222193482779
309 => 0.0022207716686823
310 => 0.0022540785601051
311 => 0.0023238806672278
312 => 0.0023419793380254
313 => 0.0023520940259352
314 => 0.0023366030293066
315 => 0.0022810373874599
316 => 0.0022570444250347
317 => 0.002277487124164
318 => 0.0022524874597901
319 => 0.0022956438941665
320 => 0.0023549068962822
321 => 0.0023426693206966
322 => 0.0023835777011194
323 => 0.0024259135711699
324 => 0.0024864557667649
325 => 0.0025022837385645
326 => 0.0025284467740653
327 => 0.0025553771317051
328 => 0.0025640264367855
329 => 0.0025805406439057
330 => 0.0025804536058826
331 => 0.0026302202805738
401 => 0.0026851144639038
402 => 0.0027058357473077
403 => 0.0027534831959165
404 => 0.0026718886099396
405 => 0.0027337790406941
406 => 0.0027896057584527
407 => 0.0027230468440755
408 => 0.0028147828013064
409 => 0.0028183447006475
410 => 0.0028721251518168
411 => 0.0028176083614689
412 => 0.0027852364653841
413 => 0.0028786929164218
414 => 0.0029239135492284
415 => 0.0029102927266093
416 => 0.0028066375939355
417 => 0.0027463058607415
418 => 0.0025884060778507
419 => 0.0027754451914478
420 => 0.0028665464876753
421 => 0.0028064016635867
422 => 0.0028367352144415
423 => 0.0030022252322184
424 => 0.0030652331163027
425 => 0.0030521279168715
426 => 0.0030543424798455
427 => 0.0030883403904234
428 => 0.0032391058489171
429 => 0.0031487636914717
430 => 0.0032178268857827
501 => 0.0032544577550193
502 => 0.0032884825478269
503 => 0.0032049284103377
504 => 0.0030962257051185
505 => 0.0030617949953464
506 => 0.002800421446156
507 => 0.0027868158178328
508 => 0.0027791785663623
509 => 0.0027310267761514
510 => 0.002693192658931
511 => 0.0026631055642266
512 => 0.0025841480429552
513 => 0.002610793888562
514 => 0.0024849520793708
515 => 0.0025654612093314
516 => 0.0023646146433057
517 => 0.0025318856316799
518 => 0.0024408476375864
519 => 0.0025019772021612
520 => 0.0025017639268691
521 => 0.0023892050173409
522 => 0.0023242833873695
523 => 0.0023656539767749
524 => 0.0024100065326189
525 => 0.0024172025855847
526 => 0.0024747068319567
527 => 0.0024907550310695
528 => 0.002442128238539
529 => 0.0023604525446489
530 => 0.0023794239455154
531 => 0.0023238989325364
601 => 0.0022265934830297
602 => 0.0022964799556556
603 => 0.0023203422701014
604 => 0.0023308812275667
605 => 0.0022351924935832
606 => 0.002205125015862
607 => 0.0021891173430139
608 => 0.0023481003306993
609 => 0.0023568097776485
610 => 0.0023122510156647
611 => 0.0025136608450669
612 => 0.0024680755975979
613 => 0.0025190054876776
614 => 0.0023777024897356
615 => 0.0023831004545467
616 => 0.0023162053508399
617 => 0.0023536621389832
618 => 0.0023271888884122
619 => 0.0023506360006565
620 => 0.0023646901030596
621 => 0.0024315742299381
622 => 0.0025326493409714
623 => 0.0024215839717715
624 => 0.0023731911999258
625 => 0.0024032138034076
626 => 0.0024831679528121
627 => 0.0026043025819376
628 => 0.0025325884434337
629 => 0.0025644139603167
630 => 0.0025713664199369
701 => 0.0025184870692059
702 => 0.0026062523190254
703 => 0.0026532864294072
704 => 0.0027015336943213
705 => 0.0027434254425884
706 => 0.0026822626757345
707 => 0.0027477156036065
708 => 0.0026949720977388
709 => 0.0026476557204521
710 => 0.0026477274798651
711 => 0.0026180452252111
712 => 0.0025605321166144
713 => 0.0025499258169797
714 => 0.0026051011271071
715 => 0.0026493465007079
716 => 0.0026529907615987
717 => 0.0026774872738335
718 => 0.00269198405744
719 => 0.0028340722442044
720 => 0.0028912212883362
721 => 0.0029611020577246
722 => 0.0029883245556657
723 => 0.0030702545146628
724 => 0.0030040894187467
725 => 0.0029897741840473
726 => 0.0027910389026057
727 => 0.0028235817938084
728 => 0.0028756861025458
729 => 0.0027918980834655
730 => 0.0028450422962285
731 => 0.0028555340895762
801 => 0.0027890509986391
802 => 0.0028245624900734
803 => 0.0027302544972472
804 => 0.002534704997501
805 => 0.0026064700215194
806 => 0.0026593132350428
807 => 0.0025838994538236
808 => 0.0027190757377426
809 => 0.002640108543282
810 => 0.0026150797337318
811 => 0.0025174334242617
812 => 0.0025635187235805
813 => 0.002625849750787
814 => 0.0025873364227331
815 => 0.0026672573612504
816 => 0.0027804467243266
817 => 0.0028611122049979
818 => 0.0028673046989766
819 => 0.0028154421990724
820 => 0.0028985521861509
821 => 0.0028991575516735
822 => 0.0028054091467348
823 => 0.0027479887707031
824 => 0.0027349427404552
825 => 0.0027675342818393
826 => 0.0028071064298101
827 => 0.0028695006777808
828 => 0.002907204215073
829 => 0.0030055150439198
830 => 0.0030321151354134
831 => 0.0030613405713211
901 => 0.0031003947664844
902 => 0.003147289341068
903 => 0.0030446866815887
904 => 0.0030487632765251
905 => 0.0029532211006484
906 => 0.0028511205835902
907 => 0.0029286021490283
908 => 0.0030298989888978
909 => 0.0030066613819087
910 => 0.0030040466764211
911 => 0.0030084438857923
912 => 0.0029909234889918
913 => 0.0029116793835993
914 => 0.0028718834899656
915 => 0.0029232303457684
916 => 0.0029505189144419
917 => 0.0029928411046413
918 => 0.0029876240013862
919 => 0.0030966414182685
920 => 0.0031390022899534
921 => 0.0031281645662525
922 => 0.0031301589682378
923 => 0.0032068513030044
924 => 0.0032921489522464
925 => 0.0033720414567777
926 => 0.0034533115438498
927 => 0.0033553372818589
928 => 0.0033055919938323
929 => 0.0033569164332041
930 => 0.0033296829632296
1001 => 0.0034861745596749
1002 => 0.0034970096982778
1003 => 0.0036534899785995
1004 => 0.00380200839795
1005 => 0.0037087266397398
1006 => 0.0037966871362293
1007 => 0.0038918235847072
1008 => 0.0040753572291536
1009 => 0.0040135495544955
1010 => 0.0039662058443572
1011 => 0.0039214662670396
1012 => 0.0040145622252296
1013 => 0.0041343286881968
1014 => 0.004160125237211
1015 => 0.0042019255016542
1016 => 0.0041579776346854
1017 => 0.0042109079997506
1018 => 0.0043977754472119
1019 => 0.0043472822133833
1020 => 0.0042755737041542
1021 => 0.0044230876069845
1022 => 0.004476472314973
1023 => 0.0048511541534249
1024 => 0.0053242054518052
1025 => 0.0051283591080535
1026 => 0.0050067909625647
1027 => 0.0050353623603896
1028 => 0.005208104680761
1029 => 0.0052635840314971
1030 => 0.0051127720313173
1031 => 0.0051660413793534
1101 => 0.0054595607243591
1102 => 0.0056170244357267
1103 => 0.0054031675654917
1104 => 0.0048131449421998
1105 => 0.004269117137478
1106 => 0.0044134178091815
1107 => 0.0043970585911815
1108 => 0.0047124085101062
1109 => 0.0043460779664557
1110 => 0.0043522460333037
1111 => 0.0046741170545903
1112 => 0.0045882473843774
1113 => 0.0044491495159887
1114 => 0.0042701327058521
1115 => 0.0039392035752638
1116 => 0.0036460904156603
1117 => 0.0042209528215721
1118 => 0.0041961637093097
1119 => 0.0041602654012132
1120 => 0.0042401532012793
1121 => 0.004628065681853
1122 => 0.0046191230436256
1123 => 0.004562234541797
1124 => 0.0046053839690417
1125 => 0.0044415852127683
1126 => 0.0044837998818883
1127 => 0.0042690309606942
1128 => 0.0043661154826164
1129 => 0.0044488510744352
1130 => 0.0044654614694142
1201 => 0.0045028855374497
1202 => 0.0041831009735734
1203 => 0.0043266748543723
1204 => 0.0044110110582883
1205 => 0.0040299770208184
1206 => 0.0044034792404854
1207 => 0.0041775342357727
1208 => 0.0041008451075932
1209 => 0.0042040969156626
1210 => 0.0041638595856423
1211 => 0.0041292658921061
1212 => 0.0041099620167178
1213 => 0.0041857787490778
1214 => 0.0041822418078926
1215 => 0.004058190918358
1216 => 0.0038963715899214
1217 => 0.0039506834680831
1218 => 0.0039309514535704
1219 => 0.0038594400874957
1220 => 0.0039076301139148
1221 => 0.0036954256259795
1222 => 0.0033303388339164
1223 => 0.0035715263516642
1224 => 0.0035622408945924
1225 => 0.0035575587460749
1226 => 0.003738804499729
1227 => 0.0037213819025661
1228 => 0.003689759718113
1229 => 0.0038588593212798
1230 => 0.0037971356914133
1231 => 0.0039873533747457
]
'min_raw' => 0.0017075374013005
'max_raw' => 0.0056170244357267
'avg_raw' => 0.0036622809185136
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0017075'
'max' => '$0.005617'
'avg' => '$0.003662'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0009302223523033
'max_diff' => 0.0037131370408179
'year' => 2029
]
4 => [
'items' => [
101 => 0.0041126430434969
102 => 0.0040808655308054
103 => 0.0041987010698434
104 => 0.0039519347040614
105 => 0.004033900592226
106 => 0.0040507936481769
107 => 0.0038567726584254
108 => 0.0037242324549308
109 => 0.0037153935344267
110 => 0.0034855870867322
111 => 0.0036083478361578
112 => 0.0037163722154673
113 => 0.0036646369208085
114 => 0.0036482590720675
115 => 0.0037319299493633
116 => 0.0037384318931218
117 => 0.0035901868863832
118 => 0.003621011717593
119 => 0.0037495563879395
120 => 0.0036177727217119
121 => 0.0033617385849713
122 => 0.0032982385791108
123 => 0.0032897665077917
124 => 0.0031175494556489
125 => 0.0033024819531395
126 => 0.003221753962102
127 => 0.0034767727185195
128 => 0.0033311073725469
129 => 0.0033248280306196
130 => 0.0033153358843174
131 => 0.0031671015533413
201 => 0.0031995554510419
202 => 0.0033074371498668
203 => 0.0033459305553818
204 => 0.0033419153778194
205 => 0.0033069084706879
206 => 0.0033229344535083
207 => 0.0032713091790211
208 => 0.0032530792201125
209 => 0.0031955404552516
210 => 0.0031109743663957
211 => 0.0031227337997251
212 => 0.0029551862497806
213 => 0.0028638974521494
214 => 0.0028386299161321
215 => 0.0028048411109667
216 => 0.0028424464515841
217 => 0.0029547116086229
218 => 0.0028192960108524
219 => 0.0025871354667746
220 => 0.002601088711056
221 => 0.0026324375082009
222 => 0.0025740192321144
223 => 0.0025187312364729
224 => 0.0025667996630263
225 => 0.0024684301799822
226 => 0.002644324990261
227 => 0.0026395675285825
228 => 0.0027051302365923
301 => 0.002746127943393
302 => 0.0026516415023825
303 => 0.0026278784179868
304 => 0.0026414149508306
305 => 0.0024176862159232
306 => 0.0026868468258414
307 => 0.0026891745379731
308 => 0.0026692432535064
309 => 0.0028125629688863
310 => 0.0031150122708782
311 => 0.0030012186774739
312 => 0.0029571543586782
313 => 0.0028733880564367
314 => 0.0029850016806226
315 => 0.0029764314957289
316 => 0.0029376738694934
317 => 0.0029142331362151
318 => 0.0029574234060126
319 => 0.0029088813838216
320 => 0.0029001619027906
321 => 0.0028473313346313
322 => 0.0028284732254361
323 => 0.002814511432151
324 => 0.0027991408696015
325 => 0.0028330445004801
326 => 0.0027562144125151
327 => 0.0026635648581758
328 => 0.0026558620502145
329 => 0.0026771301802333
330 => 0.0026677206159261
331 => 0.0026558170008407
401 => 0.0026330897578862
402 => 0.0026263470703923
403 => 0.0026482575336605
404 => 0.00262352189809
405 => 0.0026600206757941
406 => 0.0026500950278281
407 => 0.002594651165142
408 => 0.002525547584288
409 => 0.0025249324174688
410 => 0.0025100441643264
411 => 0.0024910817354857
412 => 0.0024858068215838
413 => 0.0025627514742157
414 => 0.0027220246024042
415 => 0.0026907554762578
416 => 0.0027133506244875
417 => 0.0028244963905373
418 => 0.0028598262872947
419 => 0.0028347499634108
420 => 0.0028004239446381
421 => 0.0028019341152566
422 => 0.0029192365125953
423 => 0.0029265525192313
424 => 0.0029450377077672
425 => 0.0029687963989495
426 => 0.0028387961712546
427 => 0.0027958111162229
428 => 0.0027754424124288
429 => 0.0027127146884235
430 => 0.0027803611608946
501 => 0.0027409464582965
502 => 0.0027462648482749
503 => 0.0027428012398244
504 => 0.0027446926042466
505 => 0.0026442758240768
506 => 0.0026808624210201
507 => 0.0026200301075146
508 => 0.0025385824684786
509 => 0.0025383094274333
510 => 0.0025582436217006
511 => 0.0025463859829253
512 => 0.0025144773818688
513 => 0.0025190098480445
514 => 0.0024793006750601
515 => 0.0025238312606026
516 => 0.0025251082384579
517 => 0.0025079615374266
518 => 0.0025765670484915
519 => 0.0026046747823515
520 => 0.0025933884564148
521 => 0.0026038829036368
522 => 0.0026920548496209
523 => 0.002706430724028
524 => 0.0027128155378227
525 => 0.0027042607331635
526 => 0.0026054945249498
527 => 0.0026098752262705
528 => 0.0025777325466207
529 => 0.0025505753694288
530 => 0.0025516615140959
531 => 0.0025656238333584
601 => 0.0026265981004572
602 => 0.0027549148509371
603 => 0.0027597843778195
604 => 0.0027656863864551
605 => 0.0027416799512223
606 => 0.0027344393806455
607 => 0.0027439915621862
608 => 0.0027921805870922
609 => 0.0029161358423432
610 => 0.0028723217764444
611 => 0.0028367002588621
612 => 0.002867949933274
613 => 0.0028631392908413
614 => 0.0028225326274502
615 => 0.0028213929336535
616 => 0.0027434557638703
617 => 0.002714644166745
618 => 0.0026905670396764
619 => 0.0026642754454668
620 => 0.0026486889071171
621 => 0.0026726369139772
622 => 0.0026781141064906
623 => 0.0026257513709515
624 => 0.0026186145235845
625 => 0.0026613750637538
626 => 0.0026425577442989
627 => 0.0026619118240054
628 => 0.0026664021365135
629 => 0.002665679092779
630 => 0.0026460316501127
701 => 0.002658554344173
702 => 0.0026289344395256
703 => 0.0025967272419873
704 => 0.0025761810565371
705 => 0.0025582517846759
706 => 0.0025681999867599
707 => 0.0025327364628003
708 => 0.0025213909677459
709 => 0.0026543119371949
710 => 0.0027525020864681
711 => 0.0027510743628101
712 => 0.0027423834622228
713 => 0.0027294705468348
714 => 0.002791235926902
715 => 0.0027697181035243
716 => 0.0027853741179059
717 => 0.0027893592306469
718 => 0.0028014209666746
719 => 0.0028057320005633
720 => 0.0027927010619462
721 => 0.002748967640352
722 => 0.0026399881117884
723 => 0.0025892578470574
724 => 0.0025725160147168
725 => 0.0025731245485251
726 => 0.0025563384694772
727 => 0.0025612827220561
728 => 0.0025546190602039
729 => 0.0025419996967687
730 => 0.0025674207766282
731 => 0.0025703503192683
801 => 0.0025644167354698
802 => 0.0025658143092532
803 => 0.0025166867696684
804 => 0.0025204218298036
805 => 0.0024996245403422
806 => 0.0024957252992832
807 => 0.0024431515625519
808 => 0.0023500095672473
809 => 0.0024016192741583
810 => 0.0023392820056328
811 => 0.0023156739374784
812 => 0.0024274308603133
813 => 0.0024162135649152
814 => 0.0023970144312348
815 => 0.0023686149110714
816 => 0.00235808125279
817 => 0.0022940820796232
818 => 0.0022903006670502
819 => 0.0023220203853947
820 => 0.0023073828267876
821 => 0.0022868261508263
822 => 0.0022123719542912
823 => 0.0021286607864484
824 => 0.0021311875004159
825 => 0.0021578144654051
826 => 0.0022352359572464
827 => 0.0022049860409786
828 => 0.0021830393796485
829 => 0.0021789294296956
830 => 0.0022303740581193
831 => 0.0023031789853218
901 => 0.0023373374282467
902 => 0.0023034874487154
903 => 0.0022646024148422
904 => 0.0022669691666782
905 => 0.0022827141063193
906 => 0.0022843686768542
907 => 0.0022590585172488
908 => 0.0022661831789226
909 => 0.0022553601663473
910 => 0.0021889393581509
911 => 0.0021877380163532
912 => 0.0021714372788416
913 => 0.0021709436989881
914 => 0.0021432120780712
915 => 0.0021393322326053
916 => 0.0020842694160859
917 => 0.0021205119286645
918 => 0.0020962023540441
919 => 0.0020595620910421
920 => 0.00205324529589
921 => 0.0020530554054
922 => 0.0020906767628901
923 => 0.002120072301198
924 => 0.0020966252295024
925 => 0.0020912867857797
926 => 0.0021482873982305
927 => 0.002141033550724
928 => 0.0021347517655657
929 => 0.0022966601026222
930 => 0.0021684970199769
1001 => 0.0021126106006505
1002 => 0.002043440544191
1003 => 0.0020659626633599
1004 => 0.0020707084047876
1005 => 0.0019043668878421
1006 => 0.0018368821551339
1007 => 0.0018137239379769
1008 => 0.001800396056594
1009 => 0.0018064697395012
1010 => 0.0017457255648941
1011 => 0.001786546654846
1012 => 0.0017339473342135
1013 => 0.0017251288869365
1014 => 0.0018191829880328
1015 => 0.0018322700667443
1016 => 0.0017764365231245
1017 => 0.001812290696758
1018 => 0.0017992894749882
1019 => 0.0017348489985965
1020 => 0.0017323878463904
1021 => 0.0017000538805294
1022 => 0.0016494574850463
1023 => 0.001626333574628
1024 => 0.0016142904413112
1025 => 0.0016192596728337
1026 => 0.0016167470773149
1027 => 0.0016003506919698
1028 => 0.00161768689893
1029 => 0.001573400053962
1030 => 0.0015557646754524
1031 => 0.0015477991841173
1101 => 0.0015084920601525
1102 => 0.0015710471743378
1103 => 0.0015833713198809
1104 => 0.0015957197477978
1105 => 0.0017032043821848
1106 => 0.0016978347535992
1107 => 0.0017463735808974
1108 => 0.0017444874513258
1109 => 0.0017306433915034
1110 => 0.0016722375803504
1111 => 0.0016955170956925
1112 => 0.0016238663659095
1113 => 0.001677551964439
1114 => 0.0016530520992343
1115 => 0.0016692685353686
1116 => 0.001640109921022
1117 => 0.0016562475021311
1118 => 0.0015862938319848
1119 => 0.0015209720790769
1120 => 0.0015472594593079
1121 => 0.0015758368479456
1122 => 0.0016377999078952
1123 => 0.0016008952205733
1124 => 0.001614167541655
1125 => 0.0015697074877911
1126 => 0.0014779736972834
1127 => 0.0014784929005755
1128 => 0.0014643816554351
1129 => 0.0014521874793583
1130 => 0.0016051341678537
1201 => 0.0015861128294099
1202 => 0.0015558048160511
1203 => 0.0015963732963245
1204 => 0.0016071002464172
1205 => 0.001607405627606
1206 => 0.0016370033435894
1207 => 0.0016527996499155
1208 => 0.0016555838173706
1209 => 0.0017021564629715
1210 => 0.0017177669994689
1211 => 0.0017820645900158
1212 => 0.0016514594436864
1213 => 0.0016487697166448
1214 => 0.0015969441780375
1215 => 0.0015640756021234
1216 => 0.0015991947175506
1217 => 0.0016303054595819
1218 => 0.0015979108755133
1219 => 0.0016021409243056
1220 => 0.0015586538419283
1221 => 0.0015741984276208
1222 => 0.001587587518901
1223 => 0.0015801948496705
1224 => 0.0015691276660232
1225 => 0.0016277547335175
1226 => 0.0016244467646082
1227 => 0.0016790416376893
1228 => 0.0017216022453729
1229 => 0.0017978784629606
1230 => 0.0017182802535387
1231 => 0.0017153793784132
]
'min_raw' => 0.0014521874793583
'max_raw' => 0.0041987010698434
'avg_raw' => 0.0028254442746009
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001452'
'max' => '$0.004198'
'avg' => '$0.002825'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00025534992194219
'max_diff' => -0.0014183233658833
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017437358980805
102 => 0.0017177626582335
103 => 0.001734176849251
104 => 0.0017952338830253
105 => 0.0017965239219365
106 => 0.001774914108052
107 => 0.0017735991489133
108 => 0.0017777495500552
109 => 0.0018020585791792
110 => 0.0017935642574623
111 => 0.001803394101603
112 => 0.0018156864722209
113 => 0.0018665329289537
114 => 0.0018787918375321
115 => 0.0018490090452019
116 => 0.0018516980978855
117 => 0.0018405585159981
118 => 0.0018297978194735
119 => 0.0018539862937874
120 => 0.0018981912060219
121 => 0.0018979162095571
122 => 0.0019081708899748
123 => 0.0019145594709206
124 => 0.0018871350047739
125 => 0.001869282685738
126 => 0.0018761284008289
127 => 0.0018870748483397
128 => 0.0018725786154338
129 => 0.0017831011506303
130 => 0.0018102428976091
131 => 0.0018057251837482
201 => 0.0017992914098375
202 => 0.0018265826463056
203 => 0.0018239503399708
204 => 0.0017451025455853
205 => 0.0017501501255608
206 => 0.0017454095056417
207 => 0.0017607274184399
208 => 0.0017169354406733
209 => 0.0017304055580908
210 => 0.0017388538894606
211 => 0.0017438300215405
212 => 0.001761807222779
213 => 0.0017596978057057
214 => 0.001761676098452
215 => 0.0017883315420834
216 => 0.0019231456289277
217 => 0.0019304832622241
218 => 0.0018943500722592
219 => 0.0019087845689545
220 => 0.001881073491777
221 => 0.0018996761235343
222 => 0.0019124035717271
223 => 0.0018548906806915
224 => 0.0018514851405399
225 => 0.0018236596898895
226 => 0.001838611510955
227 => 0.0018148220885658
228 => 0.0018206591807014
301 => 0.0018043381622217
302 => 0.0018337127460029
303 => 0.0018665580950191
304 => 0.0018748561272827
305 => 0.0018530275769246
306 => 0.0018372222678938
307 => 0.0018094733518281
308 => 0.0018556204176703
309 => 0.0018691152260289
310 => 0.0018555495351869
311 => 0.0018524060682026
312 => 0.0018464492039475
313 => 0.0018536698451142
314 => 0.0018690417304044
315 => 0.0018617926331757
316 => 0.0018665807896079
317 => 0.0018483332748138
318 => 0.0018871440834133
319 => 0.0019487849877992
320 => 0.0019489831733861
321 => 0.0019417340370821
322 => 0.0019387678466913
323 => 0.0019462059004536
324 => 0.0019502407394947
325 => 0.0019742940414562
326 => 0.0020001041927867
327 => 0.0021205489071951
328 => 0.0020867285133565
329 => 0.0021935942292677
330 => 0.002278111135777
331 => 0.0023034540605628
401 => 0.0022801397622366
402 => 0.0022003828070767
403 => 0.0021964695503559
404 => 0.0023156601138828
405 => 0.0022819833204128
406 => 0.0022779775729882
407 => 0.0022353631882076
408 => 0.0022605535675072
409 => 0.0022550440620338
410 => 0.0022463470381098
411 => 0.0022944085270363
412 => 0.002384375343828
413 => 0.0023703531717275
414 => 0.0023598862707244
415 => 0.0023140233573977
416 => 0.0023416430750729
417 => 0.0023318082226296
418 => 0.0023740649900776
419 => 0.0023490330171434
420 => 0.0022817281855802
421 => 0.0022924467018463
422 => 0.0022908266196753
423 => 0.0023241677959533
424 => 0.0023141596024135
425 => 0.0022888723592609
426 => 0.0023840678470288
427 => 0.0023778863815583
428 => 0.0023866502863158
429 => 0.0023905084282228
430 => 0.0024484522440945
501 => 0.0024721899714618
502 => 0.0024775788511616
503 => 0.0025001278562188
504 => 0.0024770178113741
505 => 0.0025694744679358
506 => 0.0026309527495538
507 => 0.0027023629372966
508 => 0.0028067124148378
509 => 0.0028459487836799
510 => 0.0028388610848397
511 => 0.0029179776677873
512 => 0.0030601484086814
513 => 0.0028675978563915
514 => 0.003070354055502
515 => 0.0030061637837965
516 => 0.0028539698043164
517 => 0.002844170306287
518 => 0.0029472378361994
519 => 0.0031758316976628
520 => 0.0031185715280564
521 => 0.0031759253547874
522 => 0.0031090190693778
523 => 0.0031056966083767
524 => 0.0031726758658427
525 => 0.0033291765517612
526 => 0.0032548289422218
527 => 0.0031482334131653
528 => 0.0032269418930105
529 => 0.0031587573236427
530 => 0.0030051184051976
531 => 0.0031185277422838
601 => 0.0030426941482862
602 => 0.0030648264225503
603 => 0.0032242173577374
604 => 0.0032050390187196
605 => 0.003229857565275
606 => 0.0031860534802191
607 => 0.0031451335575068
608 => 0.0030687534830107
609 => 0.0030461411084446
610 => 0.0030523903552667
611 => 0.0030461380116282
612 => 0.0030034040619168
613 => 0.0029941756695454
614 => 0.0029787946112878
615 => 0.0029835618443958
616 => 0.0029546409549843
617 => 0.0030092206486644
618 => 0.0030193511207661
619 => 0.0030590696702578
620 => 0.0030631933818273
621 => 0.0031738089768035
622 => 0.0031128837659101
623 => 0.003153757657407
624 => 0.0031501015118316
625 => 0.0028572683093442
626 => 0.0028976181409578
627 => 0.0029603898164737
628 => 0.0029321112617388
629 => 0.0028921320015063
630 => 0.0028598466053162
701 => 0.0028109309287371
702 => 0.0028797788041799
703 => 0.0029703064392319
704 => 0.0030654893120455
705 => 0.0031798452971022
706 => 0.0031543223724879
707 => 0.0030633515064492
708 => 0.0030674323930455
709 => 0.0030926588282137
710 => 0.0030599883026075
711 => 0.0030503531268018
712 => 0.0030913351030162
713 => 0.0030916173233631
714 => 0.0030540259352883
715 => 0.0030122499865945
716 => 0.0030120749438441
717 => 0.0030046413172818
718 => 0.0031103414950293
719 => 0.0031684659052971
720 => 0.0031751297752621
721 => 0.0031680173737535
722 => 0.003170754654813
723 => 0.0031369333411622
724 => 0.003214238834769
725 => 0.0032851820004235
726 => 0.0032661677165484
727 => 0.00323766260198
728 => 0.0032149569052338
729 => 0.0032608189759925
730 => 0.0032587768101752
731 => 0.003284562373761
801 => 0.0032833925916521
802 => 0.0032747218764623
803 => 0.003266168026207
804 => 0.0033000830755859
805 => 0.0032903160860238
806 => 0.0032805339256292
807 => 0.003260914305384
808 => 0.0032635809376227
809 => 0.0032350807448641
810 => 0.0032218952516139
811 => 0.003023617069553
812 => 0.0029706306603798
813 => 0.0029873012633435
814 => 0.0029927896586912
815 => 0.002969729905515
816 => 0.003002791668005
817 => 0.002997639027342
818 => 0.0030176849379678
819 => 0.0030051611233011
820 => 0.0030056751050235
821 => 0.0030425049735994
822 => 0.0030531968411324
823 => 0.0030477588710112
824 => 0.0030515674388814
825 => 0.0031393342779547
826 => 0.003126856640064
827 => 0.0031202281436231
828 => 0.0031220642824372
829 => 0.0031444905915627
830 => 0.0031507687336867
831 => 0.0031241678043499
901 => 0.0031367129564033
902 => 0.0031901286216298
903 => 0.0032088210813942
904 => 0.0032684784400727
905 => 0.0032431349337811
906 => 0.0032896540364206
907 => 0.0034326378984036
908 => 0.0035468633010863
909 => 0.0034418169002148
910 => 0.0036515773057243
911 => 0.0038149058697565
912 => 0.003808637047431
913 => 0.0037801569344342
914 => 0.0035942117065981
915 => 0.0034231021356562
916 => 0.0035662425574453
917 => 0.0035666074518175
918 => 0.0035543115626409
919 => 0.0034779428509878
920 => 0.0035516540970141
921 => 0.0035575050280438
922 => 0.0035542300625553
923 => 0.0034956783503868
924 => 0.0034062807080707
925 => 0.0034237487933915
926 => 0.0034523618734864
927 => 0.003398191343553
928 => 0.0033808805769312
929 => 0.0034130645855893
930 => 0.0035167681672903
1001 => 0.0034971636058837
1002 => 0.0034966516515571
1003 => 0.0035805282788825
1004 => 0.0035204907154266
1005 => 0.003423969121888
1006 => 0.0033995961465561
1007 => 0.0033130885037313
1008 => 0.00337283964076
1009 => 0.0033749899778088
1010 => 0.0033422648907
1011 => 0.0034266245823486
1012 => 0.0034258471929388
1013 => 0.0035059341648761
1014 => 0.0036590303759273
1015 => 0.0036137522929124
1016 => 0.0035610988086076
1017 => 0.0035668237022743
1018 => 0.0036296116555563
1019 => 0.0035916486256925
1020 => 0.0036053003959192
1021 => 0.0036295909919671
1022 => 0.0036442461116643
1023 => 0.0035647150560794
1024 => 0.0035461725626124
1025 => 0.0035082411285098
1026 => 0.0034983455253761
1027 => 0.0035292398869874
1028 => 0.0035211003142167
1029 => 0.0033748092503063
1030 => 0.0033595210201719
1031 => 0.0033599898883636
1101 => 0.0033215469067748
1102 => 0.0032629121324793
1103 => 0.0034170008184276
1104 => 0.0034046253404762
1105 => 0.0033909637706037
1106 => 0.0033926372349612
1107 => 0.0034595219109813
1108 => 0.0034207254211326
1109 => 0.003523872248015
1110 => 0.0035026683612854
1111 => 0.0034809206748708
1112 => 0.0034779144821576
1113 => 0.0034695434783133
1114 => 0.0034408361914182
1115 => 0.0034061704174518
1116 => 0.0033832810707812
1117 => 0.0031208979482349
1118 => 0.0031695947295671
1119 => 0.0032256159376385
1120 => 0.0032449542341738
1121 => 0.0032118747397808
1122 => 0.0034421423714787
1123 => 0.003484214486704
1124 => 0.0033567753053903
1125 => 0.003332936637874
1126 => 0.0034437052305524
1127 => 0.0033768982282576
1128 => 0.0034069814173003
1129 => 0.0033419580172146
1130 => 0.0034740805461616
1201 => 0.0034730739938568
1202 => 0.0034216753459738
1203 => 0.0034651171312018
1204 => 0.0034575680519686
1205 => 0.0033995391050979
1206 => 0.0034759201672818
1207 => 0.0034759580513357
1208 => 0.0034264879702512
1209 => 0.0033687177459379
1210 => 0.0033583897943024
1211 => 0.0033506090701102
1212 => 0.0034050678361161
1213 => 0.0034538953954288
1214 => 0.0035447513779313
1215 => 0.0035675947306173
1216 => 0.0036567538569189
1217 => 0.0036036639382854
1218 => 0.0036271980115861
1219 => 0.0036527475772519
1220 => 0.0036649969785863
1221 => 0.003645037236451
1222 => 0.003783538058958
1223 => 0.0037952317719331
1224 => 0.0037991525727435
1225 => 0.0037524508746602
1226 => 0.0037939329132267
1227 => 0.0037745248411221
1228 => 0.0038250192530204
1229 => 0.0038329374215511
1230 => 0.0038262310145026
1231 => 0.003828744366174
]
'min_raw' => 0.0017169354406733
'max_raw' => 0.0038329374215511
'avg_raw' => 0.0027749364311122
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001716'
'max' => '$0.003832'
'avg' => '$0.002774'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00026474796131495
'max_diff' => -0.00036576364829235
'year' => 2031
]
6 => [
'items' => [
101 => 0.0037105583473837
102 => 0.0037044297788285
103 => 0.0036208663117151
104 => 0.0036549190422338
105 => 0.0035912590947189
106 => 0.003611446319846
107 => 0.0036203446563311
108 => 0.0036156966703274
109 => 0.003656844332525
110 => 0.003621860413745
111 => 0.003529532100196
112 => 0.0034371786318596
113 => 0.0034360192092942
114 => 0.0034117041712553
115 => 0.0033941288522746
116 => 0.0033975144822282
117 => 0.0034094458837795
118 => 0.0033934353775263
119 => 0.0033968520307887
120 => 0.0034535912399857
121 => 0.0034649698837447
122 => 0.0034263008063287
123 => 0.0032710388805823
124 => 0.0032329372145591
125 => 0.0032603239365077
126 => 0.0032472348473471
127 => 0.0026207719580978
128 => 0.0027679501214715
129 => 0.002680501854493
130 => 0.002720802039218
131 => 0.0026315400032519
201 => 0.0026741405254391
202 => 0.0026662737645131
203 => 0.0029029318958996
204 => 0.0028992368046906
205 => 0.0029010054493125
206 => 0.0028165834333318
207 => 0.0029510699970965
208 => 0.0030173229143875
209 => 0.0030050612626612
210 => 0.0030081472562338
211 => 0.002955119662271
212 => 0.0029015188723346
213 => 0.0028420673471927
214 => 0.0029525209324757
215 => 0.0029402403792978
216 => 0.0029684075498843
217 => 0.0030400445953257
218 => 0.0030505934223896
219 => 0.0030647711529391
220 => 0.0030596894457767
221 => 0.0031807563270166
222 => 0.0031660943288735
223 => 0.0032014255258537
224 => 0.003128746573081
225 => 0.0030465034392691
226 => 0.0030621351702761
227 => 0.0030606297088777
228 => 0.0030414634573877
229 => 0.0030241610225235
301 => 0.0029953573434054
302 => 0.0030864964462774
303 => 0.0030827963651404
304 => 0.0031426963778756
305 => 0.0031321084687869
306 => 0.0030613998205923
307 => 0.0030639251937955
308 => 0.00308090954224
309 => 0.0031396925661304
310 => 0.0031571433698745
311 => 0.0031490594622859
312 => 0.0031681934719319
313 => 0.0031833162129997
314 => 0.0031700926553762
315 => 0.0033573103453094
316 => 0.0032795645076773
317 => 0.0033174572879871
318 => 0.0033264944928138
319 => 0.0033033458826823
320 => 0.0033083659873302
321 => 0.0033159700779752
322 => 0.0033621406273381
323 => 0.0034833055084225
324 => 0.0035369686094576
325 => 0.0036984166966123
326 => 0.003532512635943
327 => 0.0035226685755622
328 => 0.0035517502513239
329 => 0.0036465373694993
330 => 0.0037233534258792
331 => 0.0037488377434051
401 => 0.0037522059166663
402 => 0.0038000161905102
403 => 0.0038274201478686
404 => 0.0037942107657305
405 => 0.0037660692915357
406 => 0.0036652700240181
407 => 0.0036769378137006
408 => 0.0037573173142223
409 => 0.0038708580930383
410 => 0.003968287893167
411 => 0.0039341713729332
412 => 0.0041944563398067
413 => 0.0042202625311035
414 => 0.0042166969498803
415 => 0.0042754872941305
416 => 0.0041588004332393
417 => 0.0041089145395068
418 => 0.0037721537976759
419 => 0.0038667698298382
420 => 0.0040042997891909
421 => 0.0039860971833597
422 => 0.0038862192506914
423 => 0.0039682121267988
424 => 0.0039411027178034
425 => 0.0039197204021583
426 => 0.0040176769352942
427 => 0.0039099697032787
428 => 0.0040032253271598
429 => 0.0038836240249264
430 => 0.0039343272143239
501 => 0.0039055456317845
502 => 0.0039241708430256
503 => 0.003815288238686
504 => 0.0038740386490118
505 => 0.003812844028463
506 => 0.0038128150142451
507 => 0.0038114641396047
508 => 0.003883459339302
509 => 0.0038858071001794
510 => 0.0038326025388244
511 => 0.0038249349303217
512 => 0.0038532860977125
513 => 0.0038200943058804
514 => 0.003835624536372
515 => 0.0038205647007411
516 => 0.0038171744145319
517 => 0.0037901600372075
518 => 0.0037785215006803
519 => 0.0037830852707407
520 => 0.0037675067707398
521 => 0.0037581201609902
522 => 0.003809596906668
523 => 0.0037820949580183
524 => 0.003805381838604
525 => 0.003778843499138
526 => 0.003686850052345
527 => 0.0036339436482812
528 => 0.0034601765550861
529 => 0.0035094566871588
530 => 0.003542129465707
531 => 0.0035313311125918
601 => 0.0035545301534913
602 => 0.0035559543861877
603 => 0.0035484121415051
604 => 0.0035396791883839
605 => 0.0035354284697671
606 => 0.0035671098437881
607 => 0.0035855019477533
608 => 0.0035454086161397
609 => 0.003536015309508
610 => 0.0035765518813828
611 => 0.0036012791668093
612 => 0.0037838515493368
613 => 0.0037703259975381
614 => 0.0038042724782973
615 => 0.003800450625515
616 => 0.0038360319454491
617 => 0.0038941923657535
618 => 0.0037759359693653
619 => 0.0037964611907798
620 => 0.0037914288804855
621 => 0.0038463703247355
622 => 0.0038465418459274
623 => 0.0038136017055708
624 => 0.0038314590900509
625 => 0.0038214915879258
626 => 0.0038395042114545
627 => 0.0037701453555477
628 => 0.0038546169552163
629 => 0.0039025069089988
630 => 0.0039031718610535
701 => 0.0039258713190682
702 => 0.0039489352830751
703 => 0.0039932045535384
704 => 0.0039477006371491
705 => 0.0038658435212816
706 => 0.0038717533406504
707 => 0.0038237605435676
708 => 0.0038245673111572
709 => 0.0038202607225366
710 => 0.0038331851191719
711 => 0.0037729815338073
712 => 0.0037871111949592
713 => 0.0037673295866034
714 => 0.0037964181894265
715 => 0.0037651236613071
716 => 0.0037914264537531
717 => 0.0038027778670215
718 => 0.00384466482636
719 => 0.0037589369233556
720 => 0.0035841319258607
721 => 0.0036208780556398
722 => 0.0035665276433503
723 => 0.0035715579809343
724 => 0.0035817200634263
725 => 0.0035487814292432
726 => 0.0035550650826297
727 => 0.0035548405863133
728 => 0.0035529059983417
729 => 0.0035443373874403
730 => 0.0035319112063853
731 => 0.0035814132871318
801 => 0.003589824655262
802 => 0.0036085220846673
803 => 0.0036641529519901
804 => 0.0036585941164784
805 => 0.0036676608078319
806 => 0.0036478682715145
807 => 0.0035724760999277
808 => 0.0035765702575675
809 => 0.0035255160461943
810 => 0.003607216513697
811 => 0.0035878687645989
812 => 0.0035753951448907
813 => 0.0035719916021861
814 => 0.0036277603676688
815 => 0.0036444472563695
816 => 0.0036340491071467
817 => 0.0036127221997281
818 => 0.0036536761667059
819 => 0.00366463372056
820 => 0.0036670867127688
821 => 0.0037396492901091
822 => 0.0036711421547725
823 => 0.0036876325031504
824 => 0.0038162854938171
825 => 0.0036996149841815
826 => 0.0037614179551983
827 => 0.0037583930213742
828 => 0.0037900093300479
829 => 0.0037557995612521
830 => 0.0037562236323363
831 => 0.0037842967725643
901 => 0.0037448731101316
902 => 0.0037351112568971
903 => 0.0037216253265693
904 => 0.0037510713620672
905 => 0.0037687229286185
906 => 0.0039109815913752
907 => 0.0040028871752992
908 => 0.0039988973115173
909 => 0.0040353571977716
910 => 0.0040189316850798
911 => 0.0039658893717665
912 => 0.0040564261327712
913 => 0.0040277765133704
914 => 0.0040301383531845
915 => 0.0040300504453886
916 => 0.004049099937697
917 => 0.0040356016265362
918 => 0.004008995069665
919 => 0.0040266577437921
920 => 0.0040791095714281
921 => 0.0042419216538289
922 => 0.0043330334521136
923 => 0.0042364366091688
924 => 0.0043030678179488
925 => 0.0042631128358081
926 => 0.0042558518269953
927 => 0.0042977011501168
928 => 0.0043396237249385
929 => 0.0043369534381586
930 => 0.0043065198015861
1001 => 0.0042893286125113
1002 => 0.004419506055657
1003 => 0.004515418578252
1004 => 0.0045088779872167
1005 => 0.0045377460289322
1006 => 0.0046225034922638
1007 => 0.0046302526524957
1008 => 0.0046292764364189
1009 => 0.0046100693342428
1010 => 0.0046935240640403
1011 => 0.0047631434678835
1012 => 0.0046056234450356
1013 => 0.0046656050076476
1014 => 0.0046925326635894
1015 => 0.0047320704515874
1016 => 0.0047987773272427
1017 => 0.0048712386873293
1018 => 0.0048814855181439
1019 => 0.0048742149013249
1020 => 0.0048264246864819
1021 => 0.0049057127713325
1022 => 0.0049521578719036
1023 => 0.0049798148664164
1024 => 0.0050499484028159
1025 => 0.0046926989596252
1026 => 0.0044398200472854
1027 => 0.0044003293535077
1028 => 0.0044806352321994
1029 => 0.004501811251983
1030 => 0.0044932752249607
1031 => 0.0042086370183773
1101 => 0.0043988307922573
1102 => 0.0046034633010054
1103 => 0.0046113240690586
1104 => 0.0047137673816018
1105 => 0.0047471271234592
1106 => 0.0048296074176085
1107 => 0.0048244482527525
1108 => 0.0048445308918297
1109 => 0.0048399142408887
1110 => 0.0049926916175251
1111 => 0.0051612277516152
1112 => 0.0051553918812037
1113 => 0.0051311628178992
1114 => 0.0051671471085756
1115 => 0.0053410944603862
1116 => 0.005325080175681
1117 => 0.0053406366891786
1118 => 0.0055457304202065
1119 => 0.0058123814447858
1120 => 0.0056884952725436
1121 => 0.0059572926190235
1122 => 0.0061264863002975
1123 => 0.0064190892771078
1124 => 0.0063824539433111
1125 => 0.0064963621349635
1126 => 0.0063168690497902
1127 => 0.0059047166446945
1128 => 0.0058394919489321
1129 => 0.0059700734416008
1130 => 0.0062910952993711
1201 => 0.0059599633208798
1202 => 0.0060269508888614
1203 => 0.0060076584647762
1204 => 0.0060066304534842
1205 => 0.0060458654632749
1206 => 0.0059889530352131
1207 => 0.005757081564939
1208 => 0.0058633468933385
1209 => 0.0058223127467632
1210 => 0.0058678431916867
1211 => 0.006113552224755
1212 => 0.0060049184042637
1213 => 0.0058904814990712
1214 => 0.0060340107737649
1215 => 0.0062167728624597
1216 => 0.0062053359394043
1217 => 0.0061831435284137
1218 => 0.0063082409872108
1219 => 0.0065148653390274
1220 => 0.0065707150710395
1221 => 0.0066119422014134
1222 => 0.0066176267261539
1223 => 0.0066761808638932
1224 => 0.006361320507726
1225 => 0.0068610119791509
1226 => 0.0069472948925676
1227 => 0.0069310772809056
1228 => 0.0070269771078283
1229 => 0.0069987609460039
1230 => 0.0069578801545004
1231 => 0.007109901778651
]
'min_raw' => 0.0026207719580978
'max_raw' => 0.007109901778651
'avg_raw' => 0.0048653368683744
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00262'
'max' => '$0.0071099'
'avg' => '$0.004865'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00090383651742449
'max_diff' => 0.0032769643570999
'year' => 2032
]
7 => [
'items' => [
101 => 0.0069356212540748
102 => 0.0066882519907468
103 => 0.0065525403204758
104 => 0.0067312563954368
105 => 0.006840392066084
106 => 0.0069125238020495
107 => 0.0069343508217695
108 => 0.0063857622208827
109 => 0.0060901033911235
110 => 0.0062796173112638
111 => 0.0065108373733871
112 => 0.0063600360686063
113 => 0.0063659471942491
114 => 0.0061509441635174
115 => 0.0065298603708602
116 => 0.0064746554666373
117 => 0.0067610586074016
118 => 0.0066927061993294
119 => 0.0069262568425168
120 => 0.0068647551310312
121 => 0.0071200452968937
122 => 0.0072218874557616
123 => 0.0073928962909671
124 => 0.0075186910862755
125 => 0.0075925601961515
126 => 0.0075881253718706
127 => 0.007880831586644
128 => 0.0077082329581684
129 => 0.0074914084024296
130 => 0.007487486730289
131 => 0.0075997832401338
201 => 0.0078351259177256
202 => 0.0078961468499285
203 => 0.0079302492264012
204 => 0.007878020249721
205 => 0.0076906768087658
206 => 0.0076097828608142
207 => 0.0076787068481923
208 => 0.0075944187343346
209 => 0.0077399236659207
210 => 0.0079397330151647
211 => 0.0078984731746776
212 => 0.0080363986354049
213 => 0.0081791369770761
214 => 0.0083832592164459
215 => 0.0084366243284418
216 => 0.0085248348292776
217 => 0.0086156324102777
218 => 0.0086447941462315
219 => 0.0087004729485225
220 => 0.0087001794937506
221 => 0.0088679713120703
222 => 0.009053050883757
223 => 0.0091229141374668
224 => 0.0092835608370902
225 => 0.0090084589937169
226 => 0.0092171269020578
227 => 0.0094053505786777
228 => 0.0091809425518601
301 => 0.0094902367364639
302 => 0.0095022459287764
303 => 0.0096835704747249
304 => 0.0094997633098263
305 => 0.0093906192020428
306 => 0.0097057141516374
307 => 0.0098581786723484
308 => 0.0098122551179128
309 => 0.0094627746011326
310 => 0.0092593619504421
311 => 0.0087269918082149
312 => 0.0093576072383617
313 => 0.0096647616190819
314 => 0.0094619791454896
315 => 0.0095642508300175
316 => 0.010122211979096
317 => 0.010334647459357
318 => 0.010290462364499
319 => 0.010297928918181
320 => 0.010412555247353
321 => 0.010920871516773
322 => 0.010616276625457
323 => 0.010849128006915
324 => 0.010972631540032
325 => 0.011087348504518
326 => 0.01080563989641
327 => 0.010439141136382
328 => 0.01032305559451
329 => 0.0094418164248966
330 => 0.0093959440990905
331 => 0.0093701945725418
401 => 0.009207847449995
402 => 0.0090802870822926
403 => 0.0089788463418829
404 => 0.0087126355462784
405 => 0.008802473875095
406 => 0.0083781894294127
407 => 0.0086496315820427
408 => 0.0079724633620275
409 => 0.0085364291778185
410 => 0.0082294882246626
411 => 0.0084355908195563
412 => 0.0084348717470188
413 => 0.0080553715249322
414 => 0.0078364837168002
415 => 0.0079759675473828
416 => 0.0081255052860077
417 => 0.0081497672809942
418 => 0.0083436468624556
419 => 0.0083977544862138
420 => 0.008233805860183
421 => 0.0079584305558178
422 => 0.0080223939583799
423 => 0.0078351875004888
424 => 0.0075071153838271
425 => 0.0077427425056032
426 => 0.0078231959647707
427 => 0.0078587287956716
428 => 0.007536107548272
429 => 0.007434732947891
430 => 0.0073807619612635
501 => 0.0079167842040827
502 => 0.0079461487125461
503 => 0.0077959157355241
504 => 0.008474983037339
505 => 0.0083212891928369
506 => 0.0084930028730519
507 => 0.00801658995003
508 => 0.0080347895652645
509 => 0.0078092480526502
510 => 0.0079355362290249
511 => 0.0078462798164212
512 => 0.0079253333923779
513 => 0.0079727177798563
514 => 0.0081982222833277
515 => 0.0085390040770153
516 => 0.0081645394304216
517 => 0.0080013798214681
518 => 0.0081026031252184
519 => 0.0083721741221562
520 => 0.0087805879816024
521 => 0.0085387987567153
522 => 0.0086461007088729
523 => 0.0086695414118877
524 => 0.0084912549889797
525 => 0.0087871616563201
526 => 0.0089457404432893
527 => 0.0091084094654635
528 => 0.0092496504195347
529 => 0.0090434358808387
530 => 0.0092641149969364
531 => 0.0090862865844696
601 => 0.0089267561149235
602 => 0.0089269980567945
603 => 0.0088269222628799
604 => 0.0086330128018089
605 => 0.0085972529220825
606 => 0.0087832803323941
607 => 0.0089324566986026
608 => 0.0089447435786302
609 => 0.0090273352799217
610 => 0.0090762121979838
611 => 0.0095552724399406
612 => 0.0097479544322499
613 => 0.0099835623251621
614 => 0.010075344877585
615 => 0.01035157745451
616 => 0.01012849721413
617 => 0.010080232400883
618 => 0.0094101825242484
619 => 0.0095199031540104
620 => 0.0096955764687255
621 => 0.0094130793125035
622 => 0.0095922587362443
623 => 0.0096276325500299
624 => 0.009403480167234
625 => 0.009523209639938
626 => 0.0092052436577508
627 => 0.0085459348665262
628 => 0.0087878956554782
629 => 0.0089660602392677
630 => 0.0087117974106653
701 => 0.0091675536896048
702 => 0.0089013102801676
703 => 0.0088169239013135
704 => 0.0084877025514873
705 => 0.0086430823557134
706 => 0.0088532357657537
707 => 0.008723385391305
708 => 0.0089928444154178
709 => 0.0093744702556584
710 => 0.0096464395556256
711 => 0.0096673179814208
712 => 0.0094924599420699
713 => 0.0097726710660588
714 => 0.0097747120981837
715 => 0.0094586328056281
716 => 0.0092650359988746
717 => 0.0092210503970491
718 => 0.0093309350542945
719 => 0.0094643553140172
720 => 0.0096747218772776
721 => 0.009801841985635
722 => 0.010133303808935
723 => 0.010222987874565
724 => 0.010321523472182
725 => 0.010453197417852
726 => 0.010611305750135
727 => 0.010265373720212
728 => 0.010279118244659
729 => 0.009956991128149
730 => 0.0096127521064569
731 => 0.0098739866139214
801 => 0.010215515981861
802 => 0.010137168767499
803 => 0.010128353105395
804 => 0.010143178603793
805 => 0.010084107362745
806 => 0.0098169303287679
807 => 0.0096827556949211
808 => 0.0098558752041833
809 => 0.0099478805186932
810 => 0.010090572737791
811 => 0.01007298290992
812 => 0.010440542742292
813 => 0.010583365378719
814 => 0.010546825236596
815 => 0.010553549502134
816 => 0.010812123063287
817 => 0.011099710042998
818 => 0.011369073199942
819 => 0.011643080972602
820 => 0.011312753907955
821 => 0.011145034196268
822 => 0.011318078126969
823 => 0.011226258581569
824 => 0.011753880924879
825 => 0.011790412351164
826 => 0.012317996541373
827 => 0.012818736761438
828 => 0.012504230800908
829 => 0.012800795756028
830 => 0.013121554934286
831 => 0.013740351430447
901 => 0.013531962540063
902 => 0.013372339915899
903 => 0.013221497307356
904 => 0.013535376830145
905 => 0.013939177821867
906 => 0.014026152687926
907 => 0.014167085197897
908 => 0.01401891189607
909 => 0.014197370317367
910 => 0.014827406963152
911 => 0.014657165499973
912 => 0.014415395254579
913 => 0.014912748677063
914 => 0.015092738947248
915 => 0.016356004925039
916 => 0.017950930404915
917 => 0.017290620783401
918 => 0.016880745293269
919 => 0.016977075755827
920 => 0.017559488549443
921 => 0.017746541053894
922 => 0.01723806786593
923 => 0.017417669191981
924 => 0.018407290156534
925 => 0.018938190053175
926 => 0.018217156684168
927 => 0.016227854215675
928 => 0.014393626489247
929 => 0.014880146278647
930 => 0.014824990032996
1001 => 0.015888214301678
1002 => 0.014653105297379
1003 => 0.014673901365398
1004 => 0.015759111985983
1005 => 0.015469596397631
1006 => 0.015000618222856
1007 => 0.014397050548925
1008 => 0.013281299880413
1009 => 0.012293048398302
1010 => 0.014231237135445
1011 => 0.014147658912732
1012 => 0.014026625260645
1013 => 0.014295972556156
1014 => 0.015603846567595
1015 => 0.015573695838456
1016 => 0.015381892282713
1017 => 0.015527373589265
1018 => 0.014975114646425
1019 => 0.015117444350697
1020 => 0.014393335938204
1021 => 0.01472066318209
1022 => 0.014999612006321
1023 => 0.015055615112694
1024 => 0.01518179297094
1025 => 0.014103616987186
1026 => 0.014587686350308
1027 => 0.014872031749977
1028 => 0.0135873488897
1029 => 0.014846637700399
1030 => 0.014084848342034
1031 => 0.013826285592113
1101 => 0.01417440627183
1102 => 0.014038743304386
1103 => 0.013922108251374
1104 => 0.013857023887749
1105 => 0.014112645294256
1106 => 0.014100720250108
1107 => 0.013682474015086
1108 => 0.013136888851397
1109 => 0.013320005140554
1110 => 0.013253477275979
1111 => 0.013012371712494
1112 => 0.013174847751086
1113 => 0.012459385504368
1114 => 0.011228469895381
1115 => 0.012041650450643
1116 => 0.012010343883835
1117 => 0.011994557693211
1118 => 0.01260564040583
1119 => 0.012546898903089
1120 => 0.012440282500415
1121 => 0.013010413618649
1122 => 0.012802308091148
1123 => 0.013443640291078
1124 => 0.013866063156718
1125 => 0.013758923054043
1126 => 0.014156213800924
1127 => 0.013324223770013
1128 => 0.013600577484635
1129 => 0.013657533602209
1130 => 0.013003378289149
1201 => 0.012556509739406
1202 => 0.012526708701812
1203 => 0.011751900218837
1204 => 0.012165796656407
1205 => 0.01253000839327
1206 => 0.012355579235285
1207 => 0.01230036017479
1208 => 0.012582462379307
1209 => 0.01260438413664
1210 => 0.012104565746285
1211 => 0.01220849381683
1212 => 0.012641891147605
1213 => 0.012197573316077
1214 => 0.011334336348324
1215 => 0.011120241645136
1216 => 0.011091677465182
1217 => 0.010511035650072
1218 => 0.011134548476937
1219 => 0.010862368418906
1220 => 0.011722181961008
1221 => 0.011231061077032
1222 => 0.011209889837314
1223 => 0.011177886403336
1224 => 0.010678104007059
1225 => 0.010787524589016
1226 => 0.011151255268664
1227 => 0.011281038472881
1228 => 0.011267501021399
1229 => 0.011149472789901
1230 => 0.011203505509878
1231 => 0.011029447292583
]
'min_raw' => 0.0060901033911235
'max_raw' => 0.018938190053175
'avg_raw' => 0.012514146722149
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00609'
'max' => '$0.018938'
'avg' => '$0.012514'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0034693314330257
'max_diff' => 0.011828288274524
'year' => 2033
]
8 => [
'items' => [
101 => 0.010967983713347
102 => 0.010773987750391
103 => 0.010488867277597
104 => 0.010528515028085
105 => 0.0099636167656506
106 => 0.0096558302108565
107 => 0.0095706389490511
108 => 0.009456717633377
109 => 0.0095835066647896
110 => 0.0099620164798488
111 => 0.0095054533375505
112 => 0.0087227078542606
113 => 0.0087697521915398
114 => 0.0088754468498169
115 => 0.0086784855533576
116 => 0.0084920782159676
117 => 0.0086541442721229
118 => 0.0083224846921016
119 => 0.0089155263255401
120 => 0.0088994862113355
121 => 0.0091205354588328
122 => 0.00925876208968
123 => 0.0089401944569803
124 => 0.0088600755588548
125 => 0.008905714924428
126 => 0.0081513978744464
127 => 0.0090588916629793
128 => 0.009066739706947
129 => 0.0089995399898096
130 => 0.009482752416476
131 => 0.010502481354478
201 => 0.0101188183095
202 => 0.0099702523822076
203 => 0.009687828445824
204 => 0.010064141572381
205 => 0.010035246595661
206 => 0.009904572552837
207 => 0.0098255404840093
208 => 0.0099711594940798
209 => 0.0098074966771673
210 => 0.0097780983380964
211 => 0.0095999763890349
212 => 0.0095363949572522
213 => 0.0094893217964101
214 => 0.0094374988716361
215 => 0.0095518073302192
216 => 0.0092927693245399
217 => 0.0089803948834994
218 => 0.0089544243286652
219 => 0.009026131313917
220 => 0.0089944063109003
221 => 0.0089542724415563
222 => 0.0088776459551695
223 => 0.0088549125135244
224 => 0.0089287851701731
225 => 0.0088453872478602
226 => 0.0089684454251528
227 => 0.0089349804100487
228 => 0.0087480475560356
301 => 0.0085150600085286
302 => 0.0085129859306479
303 => 0.0084627891457136
304 => 0.0083988559929628
305 => 0.0083810712524599
306 => 0.0086404955209125
307 => 0.0091774959926945
308 => 0.0090720699507515
309 => 0.0091482510705507
310 => 0.0095229867807371
311 => 0.0096421039943095
312 => 0.0095575574175617
313 => 0.0094418248487035
314 => 0.0094469164943806
315 => 0.0098424097167999
316 => 0.0098670761439603
317 => 0.0099294002477038
318 => 0.010009504333804
319 => 0.0095711994898043
320 => 0.0094262723756443
321 => 0.0093575978687051
322 => 0.0091461069677112
323 => 0.0093741817725736
324 => 0.0092412923509172
325 => 0.0092592236740477
326 => 0.0092475458763354
327 => 0.0092539227435356
328 => 0.0089153605583173
329 => 0.0090387148243062
330 => 0.0088336144321462
331 => 0.0085590080306435
401 => 0.0085580874536962
402 => 0.0086252969814294
403 => 0.0085853181244246
404 => 0.0084777360481752
405 => 0.0084930175743333
406 => 0.0083591353252104
407 => 0.0085092733033932
408 => 0.008513578723388
409 => 0.0084557674237167
410 => 0.0086870756941557
411 => 0.0087818428812842
412 => 0.0087437902454025
413 => 0.0087791730069102
414 => 0.0090764508787642
415 => 0.0091249201430193
416 => 0.0091464469885016
417 => 0.0091176038673159
418 => 0.008784606700687
419 => 0.0087993765410403
420 => 0.008691005252471
421 => 0.0085994429335149
422 => 0.0086031049460921
423 => 0.0086501798803038
424 => 0.0088557588789146
425 => 0.0092883877619472
426 => 0.0093048057118107
427 => 0.0093247047459906
428 => 0.0092437653735276
429 => 0.0092193532843072
430 => 0.0092515591312837
501 => 0.0094140317932047
502 => 0.009831955590563
503 => 0.0096842334083847
504 => 0.009564132974841
505 => 0.0096694934339032
506 => 0.0096532740170731
507 => 0.0095163658163833
508 => 0.0095125232591768
509 => 0.0092497526498535
510 => 0.0091526123385839
511 => 0.0090714346236608
512 => 0.0089827906781626
513 => 0.0089302395758994
514 => 0.0090109819530246
515 => 0.0090294486899889
516 => 0.0088529040712694
517 => 0.0088288416920927
518 => 0.0089730118387193
519 => 0.0089095679323937
520 => 0.0089748215633827
521 => 0.0089899609655075
522 => 0.0089875231730754
523 => 0.0089212804483853
524 => 0.0089635015857163
525 => 0.0088636360092016
526 => 0.0087550471940665
527 => 0.0086857742953326
528 => 0.0086253245034706
529 => 0.0086588655613582
530 => 0.0085392978143442
531 => 0.0085010456856512
601 => 0.0089491980143942
602 => 0.0092802529580861
603 => 0.0092754392880926
604 => 0.0092461373099831
605 => 0.0092026005142014
606 => 0.0094108468054193
607 => 0.0093382979615751
608 => 0.0093910833071305
609 => 0.0094045193929684
610 => 0.0094451863781094
611 => 0.0094597213298518
612 => 0.0094157866105131
613 => 0.0092683363262385
614 => 0.0089009042369785
615 => 0.008729863607564
616 => 0.0086734173509503
617 => 0.0086754690651715
618 => 0.0086188736276949
619 => 0.0086355435204614
620 => 0.0086130765192845
621 => 0.0085705294544069
622 => 0.0086562383999965
623 => 0.0086661155575416
624 => 0.0086461100654954
625 => 0.0086508220830816
626 => 0.0084851851533961
627 => 0.0084977781694156
628 => 0.008427658655976
629 => 0.0084145120925094
630 => 0.0082372560685386
701 => 0.0079232213284028
702 => 0.0080972270585278
703 => 0.007887052605445
704 => 0.0078074563553999
705 => 0.0081842526233569
706 => 0.0081464327287557
707 => 0.0080817015091113
708 => 0.0079859505440892
709 => 0.007950435579757
710 => 0.0077346578991457
711 => 0.007721908602646
712 => 0.0078288538476444
713 => 0.0077795022968389
714 => 0.007710194028614
715 => 0.0074591665067699
716 => 0.007176928459861
717 => 0.007185447452412
718 => 0.0072752221239082
719 => 0.0075362540890473
720 => 0.0074342643843686
721 => 0.0073602696834272
722 => 0.0073464127002134
723 => 0.0075198618566933
724 => 0.007765328751834
725 => 0.0078804963270218
726 => 0.0077663687577019
727 => 0.007635265151132
728 => 0.0076432448201883
729 => 0.0076963299834651
730 => 0.0077019084835417
731 => 0.0076165735133332
801 => 0.0076405948075945
802 => 0.0076041042650584
803 => 0.0073801618728712
804 => 0.0073761114651255
805 => 0.0073211523905239
806 => 0.0073194882515871
807 => 0.007225989155506
808 => 0.0072129079856356
809 => 0.0070272598553772
810 => 0.0071494540169076
811 => 0.0070674925888344
812 => 0.0069439573839818
813 => 0.006922659868102
814 => 0.0069220196390571
815 => 0.0070488626724744
816 => 0.0071479717822105
817 => 0.0070689183429665
818 => 0.0070509194072371
819 => 0.0072431009517705
820 => 0.007218644098455
821 => 0.0071974646212135
822 => 0.0077433498836786
823 => 0.0073112391024793
824 => 0.0071228141378552
825 => 0.0068896024632027
826 => 0.0069655373604249
827 => 0.0069815379589854
828 => 0.00642070592101
829 => 0.0061931764330505
830 => 0.0061150968870507
831 => 0.0060701610044451
901 => 0.0060906388504178
902 => 0.0058858356247072
903 => 0.0060234667795174
904 => 0.0058461244976377
905 => 0.0058163924869589
906 => 0.0061335024554528
907 => 0.0061776264550392
908 => 0.0059893797645516
909 => 0.0061102646142155
910 => 0.0060664300873023
911 => 0.0058491645220574
912 => 0.0058408665755623
913 => 0.0057318503521763
914 => 0.0055612610722777
915 => 0.0054832971938426
916 => 0.0054426929290402
917 => 0.005459447040059
918 => 0.0054509756488436
919 => 0.0053956940908935
920 => 0.005454144323035
921 => 0.0053048281332167
922 => 0.0052453692233087
923 => 0.0052185130131396
924 => 0.0050859863003566
925 => 0.005296895235291
926 => 0.0053384469524338
927 => 0.0053800805392954
928 => 0.0057424724884685
929 => 0.0057243684107968
930 => 0.0058880204559053
1001 => 0.0058816612383692
1002 => 0.0058349850241169
1003 => 0.005638065754051
1004 => 0.0057165542653508
1005 => 0.0054749788273929
1006 => 0.005655983571044
1007 => 0.0055733805649804
1008 => 0.0056280554116028
1009 => 0.0055297451075437
1010 => 0.0055841540889429
1011 => 0.0053483004060355
1012 => 0.0051280635554873
1013 => 0.0052166932932624
1014 => 0.0053130439542638
1015 => 0.0055219567370066
1016 => 0.005397530007098
1017 => 0.0054422785642687
1018 => 0.0052923783885648
1019 => 0.0049830915092194
1020 => 0.0049848420393681
1021 => 0.0049372649911617
1022 => 0.0048961514751487
1023 => 0.0054118219138076
1024 => 0.0053476901432171
1025 => 0.0052455045601397
1026 => 0.0053822840237824
1027 => 0.0054184506849515
1028 => 0.0054194802989507
1029 => 0.0055192710648354
1030 => 0.0055725294144766
1031 => 0.0055819164294357
1101 => 0.0057389393556776
1102 => 0.0057915713693714
1103 => 0.0060083551850148
1104 => 0.0055680108156049
1105 => 0.0055589422130936
1106 => 0.0053842087913355
1107 => 0.0052733900928304
1108 => 0.0053917966424317
1109 => 0.0054966886812725
1110 => 0.0053874680793677
1111 => 0.0054017299842037
1112 => 0.0052551102497976
1113 => 0.005307519905748
1114 => 0.0053526621617957
1115 => 0.0053277372613453
1116 => 0.0052904234789924
1117 => 0.0054880887302606
1118 => 0.0054769356821277
1119 => 0.0056610061084132
1120 => 0.0058045021687052
1121 => 0.0060616727617375
1122 => 0.0057933018413021
1123 => 0.0057835213382836
1124 => 0.0058791273241311
1125 => 0.0057915567325931
1126 => 0.005846898323611
1127 => 0.0060527563758468
1128 => 0.0060571058321037
1129 => 0.0059842468358432
1130 => 0.0059798133592993
1201 => 0.0059938067265213
1202 => 0.0060757663154148
1203 => 0.0060471271166916
1204 => 0.0060802691225099
1205 => 0.0061217137082741
1206 => 0.0062931460871349
1207 => 0.0063344778532966
1208 => 0.0062340630895873
1209 => 0.0062431294184538
1210 => 0.0062055715403797
1211 => 0.0061692911007588
1212 => 0.0062508442306937
1213 => 0.0063998841785805
1214 => 0.0063989570087999
1215 => 0.0064335313797871
1216 => 0.0064550709264825
1217 => 0.0063626074241538
1218 => 0.0063024170841151
1219 => 0.0063254978904968
1220 => 0.0063624046025357
1221 => 0.0063135295411988
1222 => 0.0060118500214968
1223 => 0.006103360316412
1224 => 0.0060881285287133
1225 => 0.0060664366107817
1226 => 0.0061584509199472
1227 => 0.0061495759153578
1228 => 0.0058837350716098
1229 => 0.005900753339908
1230 => 0.0058847700088712
1231 => 0.0059364154213329
]
'min_raw' => 0.0048961514751487
'max_raw' => 0.010967983713347
'avg_raw' => 0.0079320675942481
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004896'
'max' => '$0.010967'
'avg' => '$0.007932'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0011939519159748
'max_diff' => -0.0079702063398276
'year' => 2034
]
9 => [
'items' => [
101 => 0.0057887677108344
102 => 0.0058341831521612
103 => 0.0058626672912181
104 => 0.0058794446679481
105 => 0.0059400560570516
106 => 0.0059329440101143
107 => 0.0059396139622282
108 => 0.0060294846514553
109 => 0.0064840197576696
110 => 0.0065087591006257
111 => 0.0063869335279205
112 => 0.006435600441313
113 => 0.0063421706098833
114 => 0.0064048906816475
115 => 0.0064478021618316
116 => 0.0062538934342831
117 => 0.0062424114178949
118 => 0.006148595968316
119 => 0.006199007076941
120 => 0.0061187993784316
121 => 0.0061384795420997
122 => 0.0060834520887981
123 => 0.0061824905488843
124 => 0.0062932309362815
125 => 0.0063212083314084
126 => 0.0062476118498553
127 => 0.0061943231469664
128 => 0.0061007657390835
129 => 0.0062563537934556
130 => 0.0063018524820141
131 => 0.006256114808214
201 => 0.0062455163898066
202 => 0.0062254324060756
203 => 0.0062497773018983
204 => 0.0063016046863849
205 => 0.0062771638489625
206 => 0.0062933074526721
207 => 0.006231784682543
208 => 0.0063626380334205
209 => 0.0065704646461878
210 => 0.006571132842731
211 => 0.0065466918735634
212 => 0.006536691155568
213 => 0.006561769073136
214 => 0.0065753728146666
215 => 0.0066564702015778
216 => 0.0067434909287959
217 => 0.0071495786926051
218 => 0.0070355508735139
219 => 0.0073958560958346
220 => 0.0076808107469126
221 => 0.0077662561872142
222 => 0.0076876504026553
223 => 0.0074187442598806
224 => 0.0074055504416316
225 => 0.0078074097481821
226 => 0.0076938660877593
227 => 0.0076803604306449
228 => 0.007536683057116
301 => 0.0076216141796605
302 => 0.0076030384972956
303 => 0.0075737158739292
304 => 0.0077357585393908
305 => 0.0080390879434865
306 => 0.007991811211253
307 => 0.0079565213237452
308 => 0.007801891309418
309 => 0.0078950131159071
310 => 0.007861854224247
311 => 0.0080043258659712
312 => 0.0079199288215471
313 => 0.0076930058828583
314 => 0.0077291441087923
315 => 0.0077236818886424
316 => 0.0078360939922702
317 => 0.0078023506690011
318 => 0.0077170929632131
319 => 0.0080380511965594
320 => 0.0080172099541494
321 => 0.0080467580709154
322 => 0.0080597660657217
323 => 0.0082551276864412
324 => 0.0083351610915753
325 => 0.0083533300757227
326 => 0.0084293556205945
327 => 0.0083514384909086
328 => 0.008663162563624
329 => 0.0088704408823758
330 => 0.0091112053160507
331 => 0.0094630268650287
401 => 0.0095953150219758
402 => 0.0095714183504886
403 => 0.00983816543364
404 => 0.010317504012608
405 => 0.0096683063821126
406 => 0.0103519130634
407 => 0.010135491080723
408 => 0.0096223584530614
409 => 0.0095893187612762
410 => 0.0099368181343209
411 => 0.010707538298159
412 => 0.010514481638553
413 => 0.010707854069693
414 => 0.010482274857187
415 => 0.010471072947955
416 => 0.010696898190844
417 => 0.011224551179947
418 => 0.010973883023601
419 => 0.010614488755125
420 => 0.010879859890173
421 => 0.010649970854055
422 => 0.010131966513791
423 => 0.010514334011764
424 => 0.010258655755069
425 => 0.010333276262976
426 => 0.010870673929279
427 => 0.010806012820292
428 => 0.010889690282779
429 => 0.010742001751709
430 => 0.010604037375347
501 => 0.010346516621497
502 => 0.010270277421902
503 => 0.010291347193871
504 => 0.010270266980769
505 => 0.010126186485728
506 => 0.010095072316542
507 => 0.010043214004755
508 => 0.010059287064016
509 => 0.0099617782661734
510 => 0.010145797514049
511 => 0.010179953108026
512 => 0.010313866970698
513 => 0.010327770352163
514 => 0.010700718553559
515 => 0.01049530495137
516 => 0.010633114130276
517 => 0.010620787180204
518 => 0.009633479593057
519 => 0.0097695218674773
520 => 0.0099811609540578
521 => 0.0098858178324233
522 => 0.0097510249652866
523 => 0.0096421724979375
524 => 0.0094772498791673
525 => 0.009709375298028
526 => 0.010014595540044
527 => 0.010335511241191
528 => 0.010721070428889
529 => 0.010635018106598
530 => 0.010328303480366
531 => 0.010342062474444
601 => 0.010427115161867
602 => 0.010316964203802
603 => 0.010284478535867
604 => 0.010422652129944
605 => 0.010423603655547
606 => 0.010296861666106
607 => 0.010156011138381
608 => 0.010155420969527
609 => 0.010130357978573
610 => 0.0104867335076
611 => 0.010682704014934
612 => 0.010705171717778
613 => 0.01068119175952
614 => 0.010690420693723
615 => 0.01057638977342
616 => 0.010837030642413
617 => 0.011076220478511
618 => 0.011012112492891
619 => 0.01091600550896
620 => 0.010839451667119
621 => 0.010994078840669
622 => 0.010987193536037
623 => 0.011074131363957
624 => 0.011070187361905
625 => 0.011040953440273
626 => 0.011012113536926
627 => 0.011126460493781
628 => 0.011093530406563
629 => 0.011060549169823
630 => 0.010994400250369
701 => 0.01100339098714
702 => 0.010907300597434
703 => 0.010862844786359
704 => 0.0101943360522
705 => 0.01001568867428
706 => 0.010071894776076
707 => 0.010090399284179
708 => 0.010012651716365
709 => 0.010124121756898
710 => 0.010106749269157
711 => 0.010174335456393
712 => 0.010132110540859
713 => 0.010133843466121
714 => 0.010258017939404
715 => 0.010294066317274
716 => 0.010275731821343
717 => 0.010288572673824
718 => 0.010584484699444
719 => 0.010542415472135
720 => 0.010520067033598
721 => 0.010526257703804
722 => 0.010601869570776
723 => 0.010623036765273
724 => 0.010533349874796
725 => 0.010575646730819
726 => 0.010755741375493
727 => 0.010818764308654
728 => 0.011019903258582
729 => 0.010934455857693
730 => 0.011091298260102
731 => 0.011573378333592
801 => 0.0119584972537
802 => 0.011604325979057
803 => 0.012311547831236
804 => 0.012862221488106
805 => 0.012841085715961
806 => 0.012745063026574
807 => 0.012118135708643
808 => 0.011541227843724
809 => 0.012023835769531
810 => 0.012025066036383
811 => 0.011983609587552
812 => 0.011726127144321
813 => 0.011974649756653
814 => 0.011994376579119
815 => 0.011983334804324
816 => 0.011785923618798
817 => 0.011484513226185
818 => 0.011543408095427
819 => 0.011639879092668
820 => 0.011457239368932
821 => 0.011398874910667
822 => 0.011507385542874
823 => 0.011857029408932
824 => 0.011790931261403
825 => 0.011789205171647
826 => 0.012072001076754
827 => 0.011869580239873
828 => 0.011544150948335
829 => 0.011461975760337
830 => 0.011170309202783
831 => 0.011371764332966
901 => 0.011379014344458
902 => 0.011268679428478
903 => 0.011553104018677
904 => 0.011550482996006
905 => 0.011820501813387
906 => 0.012336676377782
907 => 0.012184018159682
908 => 0.0120064932612
909 => 0.012025795139896
910 => 0.012237489108102
911 => 0.012109494102421
912 => 0.012155521998877
913 => 0.012237419439368
914 => 0.012286830198615
915 => 0.012018685692029
916 => 0.01195616838071
917 => 0.011828279902344
918 => 0.01179491618549
919 => 0.011899078682638
920 => 0.011871635544755
921 => 0.011378405009065
922 => 0.011326859673777
923 => 0.011328440495621
924 => 0.011198827299191
925 => 0.011001136063904
926 => 0.011520656826707
927 => 0.011478932038766
928 => 0.01143287110212
929 => 0.011438513304039
930 => 0.01166401965898
1001 => 0.011533214584771
1002 => 0.011880981313086
1003 => 0.011809490928569
1004 => 0.011736167085448
1005 => 0.011726031496829
1006 => 0.011697808072924
1007 => 0.011601019450878
1008 => 0.011484141373663
1009 => 0.01140696834328
1010 => 0.010522325326611
1011 => 0.010686509924773
1012 => 0.010875389339061
1013 => 0.010940589755987
1014 => 0.010829059931104
1015 => 0.011605423328146
1016 => 0.01174727240201
1017 => 0.011317602304691
1018 => 0.011237228572797
1019 => 0.011610692616629
1020 => 0.011385448144076
1021 => 0.011486875716274
1022 => 0.011267644783097
1023 => 0.011713105113942
1024 => 0.011709711452571
1025 => 0.011536417322694
1026 => 0.011682884334599
1027 => 0.011657432086905
1028 => 0.011461783441078
1029 => 0.011719307524987
1030 => 0.011719435253719
1031 => 0.011552643421453
1101 => 0.011357867076792
1102 => 0.011323045666778
1103 => 0.011296812411931
1104 => 0.01148042394371
1105 => 0.011645049468964
1106 => 0.011951376757333
1107 => 0.012028394715786
1108 => 0.012329000935003
1109 => 0.012150004567711
1110 => 0.012229351338941
1111 => 0.012315493483397
1112 => 0.012356793195221
1113 => 0.012289497531068
1114 => 0.012756462723968
1115 => 0.012795888893693
1116 => 0.012809108147367
1117 => 0.012651650111671
1118 => 0.012791509700881
1119 => 0.012726074030752
1120 => 0.012896319465874
1121 => 0.012923016123904
1122 => 0.012900405004314
1123 => 0.012908878944951
1124 => 0.012510406531115
1125 => 0.012489743634348
1126 => 0.01220800357076
1127 => 0.01232281472919
1128 => 0.012108180771548
1129 => 0.012176243410491
1130 => 0.012206244773212
1201 => 0.012190573763889
1202 => 0.012329305979826
1203 => 0.01221135525516
1204 => 0.011900063899873
1205 => 0.011588687733463
1206 => 0.011584778659336
1207 => 0.011502798810966
1208 => 0.011443542395953
1209 => 0.011454957283719
1210 => 0.011495184837073
1211 => 0.011441204297422
1212 => 0.011452723782439
1213 => 0.011644023987652
1214 => 0.011682387879517
1215 => 0.01155201238522
1216 => 0.011028535962525
1217 => 0.010900073535354
1218 => 0.010992409780484
1219 => 0.010948279002528
1220 => 0.0088361156331816
1221 => 0.0093323370866473
1222 => 0.0090374991490863
1223 => 0.0091733740355557
1224 => 0.0088724208492196
1225 => 0.0090160514840471
1226 => 0.0089895281503455
1227 => 0.0097874375632582
1228 => 0.0097749793052641
1229 => 0.0097809424140895
1230 => 0.0094963076930537
1231 => 0.0099497385323386
]
'min_raw' => 0.0057887677108344
'max_raw' => 0.012923016123904
'avg_raw' => 0.0093558919173694
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005788'
'max' => '$0.012923'
'avg' => '$0.009355'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00089261623568574
'max_diff' => 0.0019550324105569
'year' => 2035
]
10 => [
'items' => [
101 => 0.010173114868616
102 => 0.01013177385374
103 => 0.010142178496527
104 => 0.0099633922612128
105 => 0.0097826734556547
106 => 0.009582228487866
107 => 0.0099546304622706
108 => 0.0099132257198305
109 => 0.010008193302032
110 => 0.010249722602276
111 => 0.010285288709218
112 => 0.010333089917623
113 => 0.010315956587132
114 => 0.010724142029852
115 => 0.010674708079444
116 => 0.010793829676808
117 => 0.010548787513253
118 => 0.010271499045574
119 => 0.010324202518036
120 => 0.010319126749824
121 => 0.01025450639478
122 => 0.010196170027618
123 => 0.010099056412463
124 => 0.010406338260925
125 => 0.01039386317904
126 => 0.010595820254062
127 => 0.010560122379345
128 => 0.010321723235237
129 => 0.010330237707307
130 => 0.010387501623897
131 => 0.010585692693043
201 => 0.010644529296243
202 => 0.010617273837408
203 => 0.010681785486823
204 => 0.010732772864169
205 => 0.010688188716402
206 => 0.011319406229134
207 => 0.011057280709516
208 => 0.01118503886392
209 => 0.011215508430951
210 => 0.011137461275708
211 => 0.011154386909021
212 => 0.011180024631531
213 => 0.011335691862233
214 => 0.011744207718271
215 => 0.011925136610049
216 => 0.012469470107836
217 => 0.011910112984238
218 => 0.011876923047374
219 => 0.011974973947622
220 => 0.012294555334376
221 => 0.012553546031587
222 => 0.012639468187383
223 => 0.012650824218692
224 => 0.012812019894963
225 => 0.01290441425048
226 => 0.012792446499997
227 => 0.012697565554974
228 => 0.012357713786958
229 => 0.012397052554492
301 => 0.012668057652418
302 => 0.01305086831536
303 => 0.013379359688826
304 => 0.013264333458918
305 => 0.014141902397248
306 => 0.014228909772936
307 => 0.014216888166901
308 => 0.014415103917152
309 => 0.01402168601884
310 => 0.013853492245199
311 => 0.012718079892232
312 => 0.013037084450548
313 => 0.013500776310541
314 => 0.013439404954115
315 => 0.01310265953087
316 => 0.013379104237225
317 => 0.013287702972079
318 => 0.013215611002016
319 => 0.01354587829259
320 => 0.013182735839971
321 => 0.013497153686786
322 => 0.01309390954601
323 => 0.013264858889047
324 => 0.01316781977405
325 => 0.01323061597412
326 => 0.012863510671648
327 => 0.013061591781884
328 => 0.012855269846232
329 => 0.012855172022771
330 => 0.012850617454606
331 => 0.013093354296929
401 => 0.013101269936643
402 => 0.012921887043411
403 => 0.012896035166009
404 => 0.012991623106282
405 => 0.012879714662743
406 => 0.012932075919132
407 => 0.012881300631858
408 => 0.012869870045201
409 => 0.012778789185968
410 => 0.01273954904749
411 => 0.012754936116881
412 => 0.012702412116472
413 => 0.012670764506349
414 => 0.012844321948393
415 => 0.012751597208396
416 => 0.012830110552129
417 => 0.012740634687772
418 => 0.012430472359132
419 => 0.012252094724024
420 => 0.011666226837285
421 => 0.011832378243197
422 => 0.011942536797213
423 => 0.011906129395768
424 => 0.011984346581866
425 => 0.011989148481839
426 => 0.011963719277309
427 => 0.011934275516145
428 => 0.011919943921553
429 => 0.012026759885988
430 => 0.012088770148602
501 => 0.01195359268184
502 => 0.011921922492711
503 => 0.012058594374961
504 => 0.01214196414418
505 => 0.012757519678668
506 => 0.012711917336455
507 => 0.012826370266402
508 => 0.012813484622913
509 => 0.012933449527279
510 => 0.013129541444967
511 => 0.012730831748146
512 => 0.01280003396517
513 => 0.012783067179668
514 => 0.012968306094846
515 => 0.01296888439052
516 => 0.012857824407501
517 => 0.012918031826038
518 => 0.012884425696714
519 => 0.012945156514542
520 => 0.012711308289372
521 => 0.012996110185274
522 => 0.013157574508021
523 => 0.013159816440299
524 => 0.013236349247821
525 => 0.013314111012745
526 => 0.013463367948894
527 => 0.013309948317805
528 => 0.013033961336576
529 => 0.013053886705189
530 => 0.012892075639074
531 => 0.012894795712329
601 => 0.012880275748118
602 => 0.012923851253727
603 => 0.01272087066239
604 => 0.012768509801465
605 => 0.012701814727786
606 => 0.012799888983105
607 => 0.012694377296636
608 => 0.012783058997771
609 => 0.012821331080135
610 => 0.012962555887999
611 => 0.012673518277689
612 => 0.012084151024139
613 => 0.012208043166223
614 => 0.012024796956564
615 => 0.012041757090935
616 => 0.012076019261551
617 => 0.011964964356701
618 => 0.011986150132804
619 => 0.011985393227799
620 => 0.011978870629385
621 => 0.011949980959489
622 => 0.011908085222494
623 => 0.012074984943856
624 => 0.012103344458769
625 => 0.012166384147422
626 => 0.012353947500624
627 => 0.012335205498591
628 => 0.012365774481506
629 => 0.012299042563441
630 => 0.012044852593222
701 => 0.01205865633155
702 => 0.011886523493414
703 => 0.012161982323744
704 => 0.012096750036843
705 => 0.012054694357117
706 => 0.01204321907526
707 => 0.012231247361736
708 => 0.012287508372032
709 => 0.012252450285951
710 => 0.012180545128593
711 => 0.012318624287573
712 => 0.012355568445424
713 => 0.012363838879918
714 => 0.012608488675579
715 => 0.012377512085776
716 => 0.012433110446651
717 => 0.012866872986949
718 => 0.012473510218038
719 => 0.012681883249767
720 => 0.012671684474184
721 => 0.012778281066258
722 => 0.012662940442313
723 => 0.012664370227581
724 => 0.012759020779864
725 => 0.0126261011495
726 => 0.012593188379769
727 => 0.012547719624111
728 => 0.012646998988649
729 => 0.01270651247767
730 => 0.013186147491336
731 => 0.013496013584179
801 => 0.013482561479875
802 => 0.013605488531929
803 => 0.013550108769096
804 => 0.013371272906464
805 => 0.013676523917267
806 => 0.013579929725204
807 => 0.013587892833036
808 => 0.013587596445765
809 => 0.013651823139075
810 => 0.013606312640575
811 => 0.013516606776473
812 => 0.013576157715461
813 => 0.013753002714406
814 => 0.014301935017396
815 => 0.014609124806536
816 => 0.014283441806371
817 => 0.014508093578816
818 => 0.01437338256696
819 => 0.014348901568801
820 => 0.014489999483531
821 => 0.014631344371483
822 => 0.014622341313171
823 => 0.014519732182659
824 => 0.014461770888442
825 => 0.014900673226707
826 => 0.015224048993034
827 => 0.015201996933709
828 => 0.015299327551855
829 => 0.015585093257055
830 => 0.015611220091806
831 => 0.015607928711146
901 => 0.015543170625162
902 => 0.015824544073297
903 => 0.016059270754027
904 => 0.015528180999298
905 => 0.015730413025423
906 => 0.01582120149746
907 => 0.015954505910135
908 => 0.016179412798733
909 => 0.016423721333355
910 => 0.016458269238858
911 => 0.016433755846634
912 => 0.016272627800685
913 => 0.016539953114476
914 => 0.016696546013744
915 => 0.016789793501694
916 => 0.017026253616232
917 => 0.015821762176155
918 => 0.014969163267759
919 => 0.014836017636536
920 => 0.015106774513322
921 => 0.015178170942485
922 => 0.015149391131413
923 => 0.014189713545112
924 => 0.014830965132654
925 => 0.015520897922884
926 => 0.015547401051196
927 => 0.0158927958318
928 => 0.016005270530574
929 => 0.016283358600889
930 => 0.016265964116376
1001 => 0.016333674136149
1002 => 0.016318108775178
1003 => 0.016833208367083
1004 => 0.017401439709985
1005 => 0.017381763665445
1006 => 0.017300073686895
1007 => 0.017421397235253
1008 => 0.018007872876499
1009 => 0.017953879597534
1010 => 0.018006329468912
1011 => 0.01869781730226
1012 => 0.019596849848609
1013 => 0.019179158969438
1014 => 0.020085427989926
1015 => 0.020655876299067
1016 => 0.021642407664271
1017 => 0.021518889078578
1018 => 0.02190293849955
1019 => 0.021297765031081
1020 => 0.019908164421739
1021 => 0.019688254806133
1022 => 0.020128519425574
1023 => 0.021210867032077
1024 => 0.020094432447697
1025 => 0.02032028571007
1026 => 0.020255239955313
1027 => 0.020251773943468
1028 => 0.020384057518278
1029 => 0.020192173293569
1030 => 0.019410402442791
1031 => 0.019768683416698
1101 => 0.019630333926607
1102 => 0.019783843000501
1103 => 0.020612268160347
1104 => 0.02024600164999
1105 => 0.019860169634404
1106 => 0.020344088604927
1107 => 0.020960283747004
1108 => 0.020921723362422
1109 => 0.020846900099342
1110 => 0.021268674915702
1111 => 0.021965323343904
1112 => 0.022153624614686
1113 => 0.022292624763128
1114 => 0.022311790535171
1115 => 0.022509209898679
1116 => 0.021447636225013
1117 => 0.023132380908266
1118 => 0.023423289774932
1119 => 0.023368610964936
1120 => 0.023691943926918
1121 => 0.023596811167337
1122 => 0.023458978724577
1123 => 0.023971530244212
1124 => 0.023383931287726
1125 => 0.022549908545645
1126 => 0.02209234717424
1127 => 0.022694900898529
1128 => 0.023062859431725
1129 => 0.02330605661561
1130 => 0.02337964793651
1201 => 0.021530043167387
1202 => 0.020533208780613
1203 => 0.021172168193806
1204 => 0.021951742776524
1205 => 0.021443305648844
1206 => 0.021463235421651
1207 => 0.020738337692507
1208 => 0.022015880140648
1209 => 0.021829752951777
1210 => 0.022795381136892
1211 => 0.022564926220864
1212 => 0.023352358520356
1213 => 0.02314500120617
1214 => 0.024005729824165
1215 => 0.024349097773181
1216 => 0.024925666000532
1217 => 0.025349791935626
1218 => 0.02559884679695
1219 => 0.025583894477257
1220 => 0.026570773916461
1221 => 0.025988845590104
1222 => 0.025257806462224
1223 => 0.025244584270799
1224 => 0.025623199794033
1225 => 0.026416674062635
1226 => 0.026622410395902
1227 => 0.026737388939132
1228 => 0.026561295297744
1229 => 0.025929653806662
1230 => 0.025656914213308
1231 => 0.025889296248872
]
'min_raw' => 0.009582228487866
'max_raw' => 0.026737388939132
'avg_raw' => 0.018159808713499
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009582'
'max' => '$0.026737'
'avg' => '$0.018159'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0037934607770316
'max_diff' => 0.013814372815227
'year' => 2036
]
11 => [
'items' => [
101 => 0.025605112988193
102 => 0.026095693023865
103 => 0.026769364195085
104 => 0.026630253762212
105 => 0.027095279082703
106 => 0.02757653136732
107 => 0.028264743748715
108 => 0.028444667949642
109 => 0.028742075811871
110 => 0.029048206195497
111 => 0.029146527024273
112 => 0.029334251993567
113 => 0.029333262590315
114 => 0.02989898442063
115 => 0.030522993118415
116 => 0.030758541955994
117 => 0.031300173519769
118 => 0.030372648447839
119 => 0.031076186869538
120 => 0.03171079613662
121 => 0.030954188806536
122 => 0.031996995744158
123 => 0.032037485574494
124 => 0.032648833940835
125 => 0.032029115251373
126 => 0.031661128271783
127 => 0.032723492893568
128 => 0.033237537669878
129 => 0.033082703199818
130 => 0.031904405237544
131 => 0.031218585283923
201 => 0.029423662180507
202 => 0.03154982613141
203 => 0.032585418570843
204 => 0.031901723303306
205 => 0.032246539428073
206 => 0.034127744397796
207 => 0.034843985451265
208 => 0.034695012319046
209 => 0.034720186326085
210 => 0.035106656997842
211 => 0.0368204807897
212 => 0.035793517847494
213 => 0.036578592537243
214 => 0.036994993321888
215 => 0.037381769576935
216 => 0.036431969336431
217 => 0.035196293178873
218 => 0.034804902669618
219 => 0.031833743283111
220 => 0.031679081533952
221 => 0.031592265207418
222 => 0.031044900549038
223 => 0.030614821863349
224 => 0.030272807324691
225 => 0.029375259041066
226 => 0.029678155238983
227 => 0.028247650607771
228 => 0.029162836776849
301 => 0.026879716844693
302 => 0.028781166967468
303 => 0.02774629411397
304 => 0.028441183402277
305 => 0.028438758999013
306 => 0.027159247504389
307 => 0.026421251977013
308 => 0.026891531450272
309 => 0.027395708376438
310 => 0.027477509386453
311 => 0.02813118793159
312 => 0.028313615562765
313 => 0.027760851323574
314 => 0.026832404258817
315 => 0.027048061336338
316 => 0.02641688169322
317 => 0.025310763646632
318 => 0.02610519693866
319 => 0.026376451393325
320 => 0.02649625281353
321 => 0.025408512753226
322 => 0.025066721210293
323 => 0.024884754260744
324 => 0.026691990676287
325 => 0.026790995166736
326 => 0.026284474195775
327 => 0.028573997014809
328 => 0.028055807487508
329 => 0.028634752149019
330 => 0.027028492716963
331 => 0.027089853990383
401 => 0.026329425033798
402 => 0.026755214437604
403 => 0.026454280210827
404 => 0.02672081486151
405 => 0.026880574632165
406 => 0.027640878809841
407 => 0.028789848419883
408 => 0.027527314719606
409 => 0.026977210706579
410 => 0.027318492142359
411 => 0.028227369579381
412 => 0.029604365421048
413 => 0.028789156168157
414 => 0.029150932191439
415 => 0.029229964158232
416 => 0.028628859035836
417 => 0.029626529024319
418 => 0.030161188476203
419 => 0.030709638441651
420 => 0.031185842179431
421 => 0.030490575464778
422 => 0.031234610512025
423 => 0.03063504960381
424 => 0.030097181487674
425 => 0.030097997211584
426 => 0.029760584685332
427 => 0.029106805399005
428 => 0.028986238467832
429 => 0.029613442869717
430 => 0.03011640140355
501 => 0.030157827477405
502 => 0.030436291164678
503 => 0.030601083106402
504 => 0.032216268159078
505 => 0.032865908948775
506 => 0.033660277409347
507 => 0.033969728692893
508 => 0.034901066111941
509 => 0.034148935506532
510 => 0.033986207318929
511 => 0.031727087378467
512 => 0.032097018142159
513 => 0.03268931298784
514 => 0.031736854102316
515 => 0.032340970039366
516 => 0.032460235322265
517 => 0.031704489913849
518 => 0.032108166190315
519 => 0.031036121681695
520 => 0.028813216060612
521 => 0.029629003753726
522 => 0.030229698087027
523 => 0.02937243320833
524 => 0.030909047322662
525 => 0.030011389079223
526 => 0.029726874511247
527 => 0.028616881744808
528 => 0.029140755603027
529 => 0.029849302497421
530 => 0.029411502894103
531 => 0.030320002806928
601 => 0.031606680971565
602 => 0.032523644454694
603 => 0.032594037524948
604 => 0.032004491437078
605 => 0.032949242805322
606 => 0.032956124287632
607 => 0.031890440884829
608 => 0.031237715734362
609 => 0.031089415206831
610 => 0.031459899000636
611 => 0.031909734721396
612 => 0.032619000276753
613 => 0.033047594597322
614 => 0.034165141276504
615 => 0.034467517365316
616 => 0.034799737012219
617 => 0.035243684913226
618 => 0.035776758194291
619 => 0.0346104242032
620 => 0.034656764826985
621 => 0.033570690763475
622 => 0.032410064867839
623 => 0.033290835248567
624 => 0.034442325357394
625 => 0.034178172254146
626 => 0.034148449633872
627 => 0.034198434836805
628 => 0.033999272023389
629 => 0.033098465999629
630 => 0.032646086853841
701 => 0.033229771366136
702 => 0.033539973707613
703 => 0.034021070486755
704 => 0.033961765154005
705 => 0.035201018791054
706 => 0.035682555281326
707 => 0.035559357641006
708 => 0.035582028971742
709 => 0.036453827786199
710 => 0.037423447366977
711 => 0.038331624056948
712 => 0.039255460393083
713 => 0.038141739631927
714 => 0.037576260914158
715 => 0.038159690608055
716 => 0.037850114600106
717 => 0.03962903016799
718 => 0.039752198422252
719 => 0.041530985354293
720 => 0.043219265966808
721 => 0.042158887162777
722 => 0.043158776614468
723 => 0.044240238578656
724 => 0.046326554168453
725 => 0.045623956475277
726 => 0.045085777653413
727 => 0.044577201267213
728 => 0.045635467992668
729 => 0.046996911228741
730 => 0.04729015306205
731 => 0.047765316859013
801 => 0.047265740226772
802 => 0.047867425253746
803 => 0.049991637792761
804 => 0.049417656813777
805 => 0.048602511551571
806 => 0.050279373339583
807 => 0.05088622310203
808 => 0.055145412544567
809 => 0.06052281515411
810 => 0.05829653516383
811 => 0.056914611332257
812 => 0.057239396212348
813 => 0.059203041608787
814 => 0.059833702187134
815 => 0.058119349333449
816 => 0.058724887743594
817 => 0.062061463918714
818 => 0.063851429986485
819 => 0.061420415641936
820 => 0.05471334348075
821 => 0.048529116639407
822 => 0.050169452077095
823 => 0.049983488943997
824 => 0.053568223797808
825 => 0.049403967557256
826 => 0.049474082952516
827 => 0.053132946326804
828 => 0.052156824307343
829 => 0.050575631648077
830 => 0.048540661095672
831 => 0.044778829817559
901 => 0.041446870948107
902 => 0.047981609595401
903 => 0.047699819782279
904 => 0.047291746373967
905 => 0.048199869586011
906 => 0.052609458128423
907 => 0.052507802840075
908 => 0.05186112376059
909 => 0.052351624142812
910 => 0.050489644559539
911 => 0.050969519094636
912 => 0.048528137026279
913 => 0.049631743682298
914 => 0.05057223911878
915 => 0.050761057501927
916 => 0.051186474960462
917 => 0.047551329355391
918 => 0.0491834030098
919 => 0.050142093377145
920 => 0.045810695420029
921 => 0.050056475566039
922 => 0.047488049557876
923 => 0.046616287194242
924 => 0.047790000370917
925 => 0.047332603204493
926 => 0.046939359980065
927 => 0.046719923504057
928 => 0.047581768923012
929 => 0.04754156280409
930 => 0.046131416421693
1001 => 0.044291937950776
1002 => 0.044909327304438
1003 => 0.044685023964196
1004 => 0.043872119723454
1005 => 0.044419919031282
1006 => 0.042007688114494
1007 => 0.037857570199011
1008 => 0.040599265215529
1009 => 0.040493712939783
1010 => 0.040440488695937
1011 => 0.042500796725966
1012 => 0.042302745648272
1013 => 0.041943281002936
1014 => 0.043865517873347
1015 => 0.043163875557913
1016 => 0.045326171846361
1017 => 0.046750400030488
1018 => 0.046389169694038
1019 => 0.047728663185102
1020 => 0.044923550708195
1021 => 0.045855296551445
1022 => 0.046047328078395
1023 => 0.043841797768747
1024 => 0.042335149253922
1025 => 0.042234672975033
1026 => 0.03962235207928
1027 => 0.041017832815874
1028 => 0.04224579811516
1029 => 0.041657698030759
1030 => 0.041471523113028
1031 => 0.042422650391303
1101 => 0.042496561126679
1102 => 0.040811388527392
1103 => 0.04116178927326
1104 => 0.042623018632805
1105 => 0.041124970042527
1106 => 0.038214506336466
1107 => 0.037492671097054
1108 => 0.037396364970054
1109 => 0.035438690551293
1110 => 0.037540907579341
1111 => 0.036623233510685
1112 => 0.039522154898148
1113 => 0.037866306548856
1114 => 0.03779492623602
1115 => 0.037687024423954
1116 => 0.036001973181215
1117 => 0.036370892312782
1118 => 0.03759723569408
1119 => 0.038034808828274
1120 => 0.037989166365446
1121 => 0.037591225942482
1122 => 0.03777340103033
1123 => 0.037186551598363
1124 => 0.03697932284972
1125 => 0.036325251916246
1126 => 0.035363948335747
1127 => 0.035497623494633
1128 => 0.033593029562899
1129 => 0.03255530570444
1130 => 0.032268077417399
1201 => 0.031883983747872
1202 => 0.032311461819406
1203 => 0.03358763408759
1204 => 0.032048299577111
1205 => 0.029409218530654
1206 => 0.029567831798322
1207 => 0.029924188718068
1208 => 0.029260119955657
1209 => 0.028631634603102
1210 => 0.029178051626521
1211 => 0.028059838196746
1212 => 0.030059319468729
1213 => 0.030005239103803
1214 => 0.030750522074906
1215 => 0.031216562811482
1216 => 0.030142489796153
1217 => 0.0298723633374
1218 => 0.030026239644869
1219 => 0.027483007046122
1220 => 0.030542685713353
1221 => 0.030569145941523
1222 => 0.03034257740346
1223 => 0.03197176183678
1224 => 0.035409849146453
1225 => 0.034116302403813
1226 => 0.033615402007405
1227 => 0.032663189987678
1228 => 0.033931955967209
1229 => 0.033834534535814
1230 => 0.033393957877063
1231 => 0.033127495739167
]
'min_raw' => 0.024884754260744
'max_raw' => 0.063851429986485
'avg_raw' => 0.044368092123615
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.024884'
'max' => '$0.063851'
'avg' => '$0.044368'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.015302525772878
'max_diff' => 0.037114041047354
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00078110400107298
]
1 => [
'year' => 2028
'avg' => 0.001340601221953
]
2 => [
'year' => 2029
'avg' => 0.0036622809185136
]
3 => [
'year' => 2030
'avg' => 0.0028254442746009
]
4 => [
'year' => 2031
'avg' => 0.0027749364311122
]
5 => [
'year' => 2032
'avg' => 0.0048653368683744
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00078110400107298
'min' => '$0.000781'
'max_raw' => 0.0048653368683744
'max' => '$0.004865'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0048653368683744
]
1 => [
'year' => 2033
'avg' => 0.012514146722149
]
2 => [
'year' => 2034
'avg' => 0.0079320675942481
]
3 => [
'year' => 2035
'avg' => 0.0093558919173694
]
4 => [
'year' => 2036
'avg' => 0.018159808713499
]
5 => [
'year' => 2037
'avg' => 0.044368092123615
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0048653368683744
'min' => '$0.004865'
'max_raw' => 0.044368092123615
'max' => '$0.044368'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.044368092123615
]
]
]
]
'prediction_2025_max_price' => '$0.001335'
'last_price' => 0.00129498
'sma_50day_nextmonth' => '$0.00123'
'sma_200day_nextmonth' => '$0.001411'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001271'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001272'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00126'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00129'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001345'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001496'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001381'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001274'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00127'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001272'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001291'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001361'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001415'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001447'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001495'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001483'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001706'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.008699'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001299'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001322'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001381'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001425'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00159'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003289'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007802'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.06'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.28
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001260'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001279'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 53.99
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 9.76
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000040'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -46.01
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.15
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000129'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767705451
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Divi para 2026
La previsión del precio de Divi para 2026 sugiere que el precio medio podría oscilar entre $0.000447 en el extremo inferior y $0.001335 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Divi podría potencialmente ganar 3.13% para 2026 si DIVI alcanza el objetivo de precio previsto.
Predicción de precio de Divi 2027-2032
La predicción del precio de DIVI para 2027-2032 está actualmente dentro de un rango de precios de $0.000781 en el extremo inferior y $0.004865 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Divi alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00043 | $0.000781 | $0.001131 |
| 2028 | $0.000777 | $0.00134 | $0.0019038 |
| 2029 | $0.0017075 | $0.003662 | $0.005617 |
| 2030 | $0.001452 | $0.002825 | $0.004198 |
| 2031 | $0.001716 | $0.002774 | $0.003832 |
| 2032 | $0.00262 | $0.004865 | $0.0071099 |
Predicción de precio de Divi 2032-2037
La predicción de precio de Divi para 2032-2037 se estima actualmente entre $0.004865 en el extremo inferior y $0.044368 en el extremo superior. Comparado con el precio actual, Divi podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00262 | $0.004865 | $0.0071099 |
| 2033 | $0.00609 | $0.012514 | $0.018938 |
| 2034 | $0.004896 | $0.007932 | $0.010967 |
| 2035 | $0.005788 | $0.009355 | $0.012923 |
| 2036 | $0.009582 | $0.018159 | $0.026737 |
| 2037 | $0.024884 | $0.044368 | $0.063851 |
Divi Histograma de precios potenciales
Pronóstico de precio de Divi basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Divi es Bajista, con 16 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de DIVI se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Divi
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Divi aumentar durante el próximo mes, alcanzando $0.001411 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Divi alcance $0.00123 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.06, lo que sugiere que el mercado de DIVI está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DIVI para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001271 | BUY |
| SMA 5 | $0.001272 | BUY |
| SMA 10 | $0.00126 | BUY |
| SMA 21 | $0.00129 | BUY |
| SMA 50 | $0.001345 | SELL |
| SMA 100 | $0.001496 | SELL |
| SMA 200 | $0.001381 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001274 | BUY |
| EMA 5 | $0.00127 | BUY |
| EMA 10 | $0.001272 | BUY |
| EMA 21 | $0.001291 | BUY |
| EMA 50 | $0.001361 | SELL |
| EMA 100 | $0.001415 | SELL |
| EMA 200 | $0.001447 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001495 | SELL |
| SMA 50 | $0.001483 | SELL |
| SMA 100 | $0.001706 | SELL |
| SMA 200 | $0.008699 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001425 | SELL |
| EMA 50 | $0.00159 | SELL |
| EMA 100 | $0.003289 | SELL |
| EMA 200 | $0.007802 | SELL |
Osciladores de Divi
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.06 | NEUTRAL |
| Stoch RSI (14) | 59.28 | NEUTRAL |
| Estocástico Rápido (14) | 53.99 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 9.76 | NEUTRAL |
| Índice Direccional Medio (14) | 10.84 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000040 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -46.01 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56.15 | NEUTRAL |
| VWMA (10) | 0.001260 | BUY |
| Promedio Móvil de Hull (9) | 0.001279 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000129 | SELL |
Predicción de precios de Divi basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Divi
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Divi por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001819 | $0.002556 | $0.003592 | $0.005048 | $0.007094 | $0.009968 |
| Amazon.com acción | $0.002702 | $0.005637 | $0.011764 | $0.024546 | $0.051217 | $0.106867 |
| Apple acción | $0.001836 | $0.0026054 | $0.003695 | $0.005241 | $0.007435 | $0.010546 |
| Netflix acción | $0.002043 | $0.003223 | $0.005086 | $0.008026 | $0.012664 | $0.019982 |
| Google acción | $0.001676 | $0.002171 | $0.002812 | $0.003641 | $0.004716 | $0.0061076 |
| Tesla acción | $0.002935 | $0.006654 | $0.015086 | $0.034198 | $0.077526 | $0.175745 |
| Kodak acción | $0.000971 | $0.000728 | $0.000546 | $0.0004095 | $0.000307 | $0.00023 |
| Nokia acción | $0.000857 | $0.000568 | $0.000376 | $0.000249 | $0.000165 | $0.0001094 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Divi
Podría preguntarse cosas como: "¿Debo invertir en Divi ahora?", "¿Debería comprar DIVI hoy?", "¿Será Divi una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Divi regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Divi, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Divi a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Divi es de $0.001294 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Divi
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Divi
basado en el historial de precios del último mes
Predicción de precios de Divi basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Divi ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001328 | $0.001363 | $0.001398 | $0.001434 |
| Si Divi ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001362 | $0.001433 | $0.0015076 | $0.001586 |
| Si Divi ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001463 | $0.001653 | $0.001868 | $0.002111 |
| Si Divi ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001631 | $0.002055 | $0.00259 | $0.003263 |
| Si Divi ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001968 | $0.002991 | $0.004546 | $0.00691 |
| Si Divi ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.002978 | $0.006848 | $0.015749 | $0.036217 |
| Si Divi ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.004661 | $0.016776 | $0.060384 | $0.217342 |
Cuadro de preguntas
¿Es DIVI una buena inversión?
La decisión de adquirir Divi depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Divi ha experimentado un aumento de 10.9636% durante las últimas 24 horas, y Divi ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Divi dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Divi subir?
Parece que el valor medio de Divi podría potencialmente aumentar hasta $0.001335 para el final de este año. Mirando las perspectivas de Divi en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.004198. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Divi la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi aumentará en un 0.86% durante la próxima semana y alcanzará $0.001306 para el 13 de enero de 2026.
¿Cuál será el precio de Divi el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001144 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Divi este año en 2026?
Según nuestra predicción más reciente sobre el valor de Divi en 2026, se anticipa que DIVI fluctúe dentro del rango de $0.000447 y $0.001335. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Divi no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Divi en 5 años?
El futuro de Divi parece estar en una tendencia alcista, con un precio máximo de $0.004198 proyectada después de un período de cinco años. Basado en el pronóstico de Divi para 2030, el valor de Divi podría potencialmente alcanzar su punto más alto de aproximadamente $0.004198, mientras que su punto más bajo se anticipa que esté alrededor de $0.001452.
¿Cuánto será Divi en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Divi, se espera que el valor de DIVI en 2026 crezca en un 3.13% hasta $0.001335 si ocurre lo mejor. El precio estará entre $0.001335 y $0.000447 durante 2026.
¿Cuánto será Divi en 2027?
Según nuestra última simulación experimental para la predicción de precios de Divi, el valor de DIVI podría disminuir en un -12.62% hasta $0.001131 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001131 y $0.00043 a lo largo del año.
¿Cuánto será Divi en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Divi sugiere que el valor de DIVI en 2028 podría aumentar en un 47.02% , alcanzando $0.0019038 en el mejor escenario. Se espera que el precio oscile entre $0.0019038 y $0.000777 durante el año.
¿Cuánto será Divi en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Divi podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.005617 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.005617 y $0.0017075.
¿Cuánto será Divi en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Divi, se espera que el valor de DIVI en 2030 aumente en un 224.23% , alcanzando $0.004198 en el mejor escenario. Se pronostica que el precio oscile entre $0.004198 y $0.001452 durante el transcurso de 2030.
¿Cuánto será Divi en 2031?
Nuestra simulación experimental indica que el precio de Divi podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.003832 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.003832 y $0.001716 durante el año.
¿Cuánto será Divi en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Divi, DIVI podría experimentar un 449.04% aumento en valor, alcanzando $0.0071099 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0071099 y $0.00262 a lo largo del año.
¿Cuánto será Divi en 2033?
Según nuestra predicción experimental de precios de Divi, se anticipa que el valor de DIVI aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.018938. A lo largo del año, el precio de DIVI podría oscilar entre $0.018938 y $0.00609.
¿Cuánto será Divi en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Divi sugieren que DIVI podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.010967 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.010967 y $0.004896.
¿Cuánto será Divi en 2035?
Basado en nuestra predicción experimental para el precio de Divi, DIVI podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.012923 en 2035. El rango de precios esperado para el año está entre $0.012923 y $0.005788.
¿Cuánto será Divi en 2036?
Nuestra reciente simulación de predicción de precios de Divi sugiere que el valor de DIVI podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.026737 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.026737 y $0.009582.
¿Cuánto será Divi en 2037?
Según la simulación experimental, el valor de Divi podría aumentar en un 4830.69% en 2037, con un máximo de $0.063851 bajo condiciones favorables. Se espera que el precio caiga entre $0.063851 y $0.024884 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Noxbox
Predicción de precios de Hourglass
Predicción de precios de KLEVA
Predicción de precios de Acquire.Fi
Predicción de precios de Striker League
Predicción de precios de Aladdin DAO
Predicción de precios de Ēnosys
Predicción de precios de Skeb
Predicción de precios de Pundi X PURSE
Predicción de precios de Roco Finance
Predicción de precios de Darwinia Network Native Token
Predicción de precios de dHedge DAO
Predicción de precios de Sonne Finance
Predicción de precios de Beethoven X
Predicción de precios de EverRise
Predicción de precios de MASQPredicción de precios de Era Swap Token
Predicción de precios de Origin Dollar
Predicción de precios de Panda Swap
Predicción de precios de Warden
Predicción de precios de Dvision Network
Predicción de precios de GooseFX
Predicción de precios de Flamengo Fan Token
Predicción de precios de ritestream
Predicción de precios de Shutter
¿Cómo leer y predecir los movimientos de precio de Divi?
Los traders de Divi utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Divi
Las medias móviles son herramientas populares para la predicción de precios de Divi. Una media móvil simple (SMA) calcula el precio de cierre promedio de DIVI durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DIVI por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DIVI.
¿Cómo leer gráficos de Divi y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Divi en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DIVI dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Divi?
La acción del precio de Divi está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DIVI. La capitalización de mercado de Divi puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DIVI, grandes poseedores de Divi, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Divi.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


