Predicción del precio de Divi - Pronóstico de DIVI
Predicción de precio de Divi hasta $0.001336 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000447 | $0.001336 |
| 2027 | $0.000431 | $0.001132 |
| 2028 | $0.000778 | $0.0019055 |
| 2029 | $0.001709 | $0.005622 |
| 2030 | $0.001453 | $0.0042024 |
| 2031 | $0.001718 | $0.003836 |
| 2032 | $0.002623 | $0.007116 |
| 2033 | $0.006095 | $0.018955 |
| 2034 | $0.00490049 | $0.010977 |
| 2035 | $0.005793 | $0.012934 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Divi hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,958.94, equivalente a un ROI del 39.59% en los próximos 90 días.
Predicción del precio a largo plazo de Divi para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Divi'
'name_with_ticker' => 'Divi <small>DIVI</small>'
'name_lang' => 'Divi'
'name_lang_with_ticker' => 'Divi <small>DIVI</small>'
'name_with_lang' => 'Divi'
'name_with_lang_with_ticker' => 'Divi <small>DIVI</small>'
'image' => '/uploads/coins/divi.png?1717233510'
'price_for_sd' => 0.001296
'ticker' => 'DIVI'
'marketcap' => '$5.85M'
'low24h' => '$0.001148'
'high24h' => '$0.001301'
'volume24h' => '$60.65K'
'current_supply' => '4.53B'
'max_supply' => '4.53B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0000273294 ETH'
'price' => '$0.001296'
'change_24h_pct' => '4.9748%'
'ath_price' => '$0.1833'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 dic. 2021'
'ath_pct' => '-99.29%'
'fdv' => '$5.85M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.0639081'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001307'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001145'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000447'
'current_year_max_price_prediction' => '$0.001336'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001453'
'grand_prediction_max_price' => '$0.0042024'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0013206909817356
107 => 0.0013256219624506
108 => 0.0013367317137835
109 => 0.0012418001050281
110 => 0.0012844216103137
111 => 0.001309457751574
112 => 0.0011963435545373
113 => 0.0013072218475885
114 => 0.0012401475569234
115 => 0.0012173815352496
116 => 0.0012480329842381
117 => 0.0012360880847578
118 => 0.0012258185616126
119 => 0.0012200879912448
120 => 0.001242595032505
121 => 0.0012415450521285
122 => 0.0012047191641984
123 => 0.0011566812946089
124 => 0.0011728043804325
125 => 0.0011669467121981
126 => 0.0011457177668622
127 => 0.0011600235128259
128 => 0.0010970282475741
129 => 0.0009886481679173
130 => 0.0010602473683102
131 => 0.00105749087698
201 => 0.0010561009290544
202 => 0.0011099057492931
203 => 0.0011047336573156
204 => 0.0010953462597311
205 => 0.0011455453599439
206 => 0.001127222013093
207 => 0.0011836902505639
208 => 0.0012208838838989
209 => 0.0012114503753971
210 => 0.0012464311673211
211 => 0.0011731758237658
212 => 0.0011975083104006
213 => 0.0012025232021727
214 => 0.0011449259108395
215 => 0.0011055798755275
216 => 0.0011029559435498
217 => 0.0010347353405364
218 => 0.0010711782360087
219 => 0.0011032464759148
220 => 0.0010878882775957
221 => 0.001083026330821
222 => 0.0011078649624654
223 => 0.0011097951368726
224 => 0.0010657869558364
225 => 0.0010749376502317
226 => 0.0011130975670363
227 => 0.0010739761182365
228 => 0.00099796953367065
301 => 0.00097911884982509
302 => 0.00097660382111305
303 => 0.00092547927145729
304 => 0.0009803785426577
305 => 0.00095641353956973
306 => 0.0010321186971798
307 => 0.00098887631716784
308 => 0.00098701222459297
309 => 0.00098419437526313
310 => 0.00094018936344587
311 => 0.00094982366436945
312 => 0.00098184954798492
313 => 0.00099327674405632
314 => 0.00099208479388581
315 => 0.00098169260368354
316 => 0.00098645009514152
317 => 0.00097112455753548
318 => 0.0009657127912333
319 => 0.00094863176816004
320 => 0.00092352738299541
321 => 0.0009270183017267
322 => 0.00087727994579586
323 => 0.0008501798496704
324 => 0.00084267890023639
325 => 0.00083264831716699
326 => 0.00084381188128445
327 => 0.00087713904328281
328 => 0.00083693941516094
329 => 0.00076801997242206
330 => 0.00077216214836368
331 => 0.00078146838788143
401 => 0.00076412627210704
402 => 0.00074771341494002
403 => 0.00076198306262955
404 => 0.00073278098619212
405 => 0.00078499731930433
406 => 0.00078358501382822
407 => 0.00080304803377608
408 => 0.00081521865957084
409 => 0.0007871693074008
410 => 0.00078011497118354
411 => 0.0007841334416946
412 => 0.00071771707540057
413 => 0.00079762039969932
414 => 0.00079831140696591
415 => 0.00079239458322666
416 => 0.00083494063667738
417 => 0.00092472607990524
418 => 0.00089094518455183
419 => 0.00087786420083802
420 => 0.00085299724123594
421 => 0.00088613098845176
422 => 0.00088358683363256
423 => 0.00087208120069807
424 => 0.00086512255799954
425 => 0.00087794407053522
426 => 0.00086353383070697
427 => 0.00086094535566691
428 => 0.00084526201321275
429 => 0.00083966377350323
430 => 0.00083551905969464
501 => 0.00083095613704256
502 => 0.00084102080740357
503 => 0.00081821294024786
504 => 0.00079070888834085
505 => 0.00078842222402275
506 => 0.00079473590525061
507 => 0.00079194257130557
508 => 0.00078840885061449
509 => 0.00078166201546366
510 => 0.00077966037359774
511 => 0.00078616473860342
512 => 0.00077882168974004
513 => 0.00078965675833452
514 => 0.00078671021920852
515 => 0.00077025109117366
516 => 0.00074973692369256
517 => 0.00074955430457206
518 => 0.00074513456083823
519 => 0.00073950535268028
520 => 0.00073793943574958
521 => 0.00076078131270242
522 => 0.00080806331439496
523 => 0.0007987807261003
524 => 0.0008054883474611
525 => 0.00083848320577937
526 => 0.00084897127904874
527 => 0.00084152709306577
528 => 0.00083133703215489
529 => 0.00083178534311953
530 => 0.00086660786599324
531 => 0.0008687797040307
601 => 0.00087426723808984
602 => 0.00088132027013279
603 => 0.00084272825492086
604 => 0.00082996766267357
605 => 0.00082392098613611
606 => 0.00080529956275902
607 => 0.00082538117139102
608 => 0.00081368047802137
609 => 0.00081525930130954
610 => 0.00081423109057192
611 => 0.00081479256316197
612 => 0.00078498272377505
613 => 0.00079584386248861
614 => 0.00077778511282482
615 => 0.00075360647421479
616 => 0.00075352541894004
617 => 0.00075944310648599
618 => 0.00075592303437453
619 => 0.00074645061083189
620 => 0.00074779612388754
621 => 0.00073600801370465
622 => 0.00074922741389437
623 => 0.00074960649899052
624 => 0.00074451630985189
625 => 0.00076488261976984
626 => 0.00077322671356055
627 => 0.00076987624202708
628 => 0.00077299163554609
629 => 0.00079916645955232
630 => 0.00080343409795297
701 => 0.00080532950102617
702 => 0.00080278991200087
703 => 0.00077347006327912
704 => 0.00077477052324756
705 => 0.00076522861086794
706 => 0.00075716670040912
707 => 0.00075748913454832
708 => 0.00076163400449915
709 => 0.00077973489466786
710 => 0.00081782715092213
711 => 0.0008192727242019
712 => 0.00082102480118734
713 => 0.00081389822356424
714 => 0.00081174877956096
715 => 0.00081458445101986
716 => 0.00082888989967328
717 => 0.00086568739750131
718 => 0.00085268070414664
719 => 0.00084210605998805
720 => 0.00085138287381873
721 => 0.00084995478104357
722 => 0.00083790024083942
723 => 0.00083756191004479
724 => 0.0008144253933234
725 => 0.0008058723498845
726 => 0.00079872478660275
727 => 0.00079091983409094
728 => 0.00078629279661757
729 => 0.0007934020291276
730 => 0.00079502799471661
731 => 0.00077948353358531
801 => 0.00077736488097187
802 => 0.00079005882348219
803 => 0.00078447269266127
804 => 0.00079021816673996
805 => 0.00079155116600998
806 => 0.00079133652242593
807 => 0.00078550396028586
808 => 0.00078922146146443
809 => 0.00078042846293666
810 => 0.00077086739770339
811 => 0.00076476803375997
812 => 0.00075944552975612
813 => 0.0007623987643232
814 => 0.00075187102233086
815 => 0.00074850298578593
816 => 0.00078796205571156
817 => 0.00081711089492211
818 => 0.00081668705925578
819 => 0.00081410706863869
820 => 0.00081027372591367
821 => 0.00082860946677653
822 => 0.00082222166129462
823 => 0.00082686932350172
824 => 0.0008280523485952
825 => 0.00083163300924878
826 => 0.00083291278766426
827 => 0.00082904440842943
828 => 0.00081606165523463
829 => 0.00078370986863632
830 => 0.00076865002464283
831 => 0.00076368002528344
901 => 0.00076386067532078
902 => 0.00075887754083363
903 => 0.00076034529726852
904 => 0.00075836711504431
905 => 0.00075462091648534
906 => 0.0007621674471187
907 => 0.0007630371144734
908 => 0.00076127566404924
909 => 0.00076169054938957
910 => 0.0007471064922029
911 => 0.0007482152863959
912 => 0.00074204137943055
913 => 0.0007408838463021
914 => 0.00072527674711727
915 => 0.00069762650862615
916 => 0.00071294742482383
917 => 0.00069444191250386
918 => 0.00068743359458402
919 => 0.00072060988159949
920 => 0.0007172799025501
921 => 0.00071158042592464
922 => 0.00070314971212058
923 => 0.00070002267836194
924 => 0.00068102381114304
925 => 0.00067990125671274
926 => 0.00068931760831899
927 => 0.00068497228604958
928 => 0.00067886980788109
929 => 0.00065676725055313
930 => 0.00063191665821126
1001 => 0.00063266674138881
1002 => 0.00064057125245105
1003 => 0.00066355468443307
1004 => 0.00065457465994028
1005 => 0.00064805954913686
1006 => 0.00064683946472689
1007 => 0.00066211137553738
1008 => 0.00068372432889847
1009 => 0.00069386464305291
1010 => 0.00068381589969178
1011 => 0.00067227244438127
1012 => 0.0006729750410188
1013 => 0.00067764910167944
1014 => 0.00067814027936722
1015 => 0.00067062667664646
1016 => 0.00067274171180117
1017 => 0.00066952877999829
1018 => 0.00064981102345463
1019 => 0.00064945439176444
1020 => 0.00064461533631685
1021 => 0.00064446881164106
1022 => 0.00063623637116576
1023 => 0.00063508459583509
1024 => 0.00061873858559796
1025 => 0.00062949757903631
1026 => 0.00062228101111037
1027 => 0.0006114039410297
1028 => 0.00060952873004797
1029 => 0.00060947235894148
1030 => 0.00062064067784597
1031 => 0.0006293670707274
1101 => 0.00062240654639912
1102 => 0.00062082176993367
1103 => 0.00063774303647139
1104 => 0.00063558965106369
1105 => 0.00063372483318848
1106 => 0.00068178912597793
1107 => 0.00064374248773154
1108 => 0.00062715198182993
1109 => 0.00060661808032506
1110 => 0.00061330402219596
1111 => 0.00061471284838508
1112 => 0.00056533251677981
1113 => 0.00054529892239749
1114 => 0.00053842414775555
1115 => 0.00053446761775407
1116 => 0.00053627065815872
1117 => 0.00051823807350837
1118 => 0.00053035626862483
1119 => 0.00051474157457406
1120 => 0.00051212372030184
1121 => 0.00054004472755402
1122 => 0.000543929772601
1123 => 0.00052735496344169
1124 => 0.00053799867413983
1125 => 0.00053413911668204
1126 => 0.00051500924368667
1127 => 0.00051427862324807
1128 => 0.00050467992542655
1129 => 0.00048965982201001
1130 => 0.00048279523170548
1201 => 0.00047922009347377
1202 => 0.00048069526518623
1203 => 0.00047994937322741
1204 => 0.00047508192365536
1205 => 0.00048022836973925
1206 => 0.00046708132665326
1207 => 0.00046184606816349
1208 => 0.00045948142336074
1209 => 0.00044781266590636
1210 => 0.00046638284813627
1211 => 0.00047004140797656
1212 => 0.00047370717630991
1213 => 0.00050561518692544
1214 => 0.00050402115288619
1215 => 0.00051843044427495
1216 => 0.00051787052570857
1217 => 0.00051376076238945
1218 => 0.00049642234696934
1219 => 0.00050333313032826
1220 => 0.0004820628133237
1221 => 0.00049799998106448
1222 => 0.00049072692325963
1223 => 0.00049554095290462
1224 => 0.00048688489353937
1225 => 0.00049167551419203
1226 => 0.00047090898823831
1227 => 0.00045151749849563
1228 => 0.00045932120004096
1229 => 0.00046780471608225
1230 => 0.00048619914041946
1231 => 0.00047524357303493
]
'min_raw' => 0.00044781266590636
'max_raw' => 0.0013367317137835
'avg_raw' => 0.00089227218984495
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000447'
'max' => '$0.001336'
'avg' => '$0.000892'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00084831733409364
'max_diff' => 4.0601713783549E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00047918360934227
102 => 0.00046598514726677
103 => 0.00043875295005071
104 => 0.00043890708132954
105 => 0.00043471800107351
106 => 0.00043109802411658
107 => 0.000476501951738
108 => 0.0004708552556084
109 => 0.0004618579843472
110 => 0.00047390118946766
111 => 0.00047708560405288
112 => 0.00047717625985936
113 => 0.00048596267143514
114 => 0.00049065198086818
115 => 0.00049147849198039
116 => 0.00050530410043786
117 => 0.00050993826202862
118 => 0.00052902571776986
119 => 0.00049025412572517
120 => 0.00048945565030136
121 => 0.00047407066206124
122 => 0.00046431325929231
123 => 0.00047473875977665
124 => 0.00048397432998304
125 => 0.0004743576369716
126 => 0.00047561337405943
127 => 0.00046270374940426
128 => 0.00046731833276419
129 => 0.00047129303360526
130 => 0.00046909843742293
131 => 0.00046581302071834
201 => 0.00048321711854717
202 => 0.00048223511114046
203 => 0.00049844220715714
204 => 0.0005110767974827
205 => 0.00053372024204928
206 => 0.00051009062721459
207 => 0.00050922947013081
208 => 0.00051764741875878
209 => 0.00050993697328454
210 => 0.00051480970866873
211 => 0.00053293516904669
212 => 0.00053331813146275
213 => 0.00052690301757454
214 => 0.00052651265731144
215 => 0.00052774475010733
216 => 0.00053496115609655
217 => 0.00053243952210616
218 => 0.00053535762079981
219 => 0.00053900674789972
220 => 0.0005541010847828
221 => 0.00055774027830368
222 => 0.00054889892475346
223 => 0.00054969719998661
224 => 0.00054639029105824
225 => 0.00054319585846889
226 => 0.00055037647642034
227 => 0.00056349919686201
228 => 0.00056341756109921
301 => 0.00056646177717244
302 => 0.00056835829856642
303 => 0.00056021704040496
304 => 0.00055491738070421
305 => 0.00055694960745959
306 => 0.00056019918229758
307 => 0.00055589581413631
308 => 0.0005293334323309
309 => 0.00053739076215914
310 => 0.00053604962849242
311 => 0.00053413969106359
312 => 0.00054224139851137
313 => 0.00054145996906379
314 => 0.00051805312328891
315 => 0.00051955155361209
316 => 0.00051814424779982
317 => 0.00052269154078695
318 => 0.00050969140454029
319 => 0.00051369015889251
320 => 0.00051619814013623
321 => 0.000517675360356
322 => 0.0005230120927292
323 => 0.00052238588878154
324 => 0.00052297316701258
325 => 0.00053088613227692
326 => 0.00057090719518218
327 => 0.00057308545333462
328 => 0.00056235891353153
329 => 0.00056664395461122
330 => 0.00055841761277369
331 => 0.00056394001116093
401 => 0.00056771829588376
402 => 0.00055064495374364
403 => 0.00054963398122717
404 => 0.0005413736863506
405 => 0.00054581230093026
406 => 0.00053875014598635
407 => 0.00054048295178589
408 => 0.00053563787570708
409 => 0.00054435804800392
410 => 0.00055410855560956
411 => 0.00055657191888996
412 => 0.0005500918706438
413 => 0.00054539988865759
414 => 0.00053716231392476
415 => 0.00055086158429179
416 => 0.00055486766842481
417 => 0.00055084054203728
418 => 0.00054990736885884
419 => 0.0005481390073719
420 => 0.00055028253510788
421 => 0.00055484585043027
422 => 0.00055269387519543
423 => 0.00055411529275096
424 => 0.00054869831478869
425 => 0.00056021973550017
426 => 0.0005785185243709
427 => 0.00057857735796927
428 => 0.00057642537113448
429 => 0.00057554482448689
430 => 0.00057775289357286
501 => 0.00057895068047227
502 => 0.00058609117100567
503 => 0.00059375320183771
504 => 0.00062950855652488
505 => 0.00061946859600609
506 => 0.00065119287378011
507 => 0.00067628265861747
508 => 0.00068380598804687
509 => 0.00067688487897182
510 => 0.00065320813869706
511 => 0.00065204644486333
512 => 0.00068742949089572
513 => 0.00067743215974539
514 => 0.00067624300901631
515 => 0.00066359245436068
516 => 0.00067107049896383
517 => 0.00066943494091283
518 => 0.00066685313251508
519 => 0.00068112072069279
520 => 0.00070782837208507
521 => 0.00070366573415282
522 => 0.0007005585180356
523 => 0.00068694360150699
524 => 0.00069514282225891
525 => 0.00069222323679488
526 => 0.00070476762876308
527 => 0.00069733660885342
528 => 0.00067735642012928
529 => 0.00068053833103917
530 => 0.00068005739160625
531 => 0.00068995509105586
601 => 0.00068698404735709
602 => 0.00067947724764052
603 => 0.0007077370882361
604 => 0.00070590205137732
605 => 0.00070850371409525
606 => 0.00070964904648277
607 => 0.00072685031345906
608 => 0.00073389712216009
609 => 0.00073549687110697
610 => 0.00074219079435321
611 => 0.00073533032019858
612 => 0.00076277710825227
613 => 0.00078102762074349
614 => 0.00080222653016482
615 => 0.00083320383455908
616 => 0.00084485158756741
617 => 0.00084274752524144
618 => 0.00086623416389408
619 => 0.00090843913147422
620 => 0.0008512783558756
621 => 0.00091146879137816
622 => 0.00089241319443004
623 => 0.00084723271686161
624 => 0.00084432362674904
625 => 0.00087492037071451
626 => 0.00094278100400246
627 => 0.00092578268503276
628 => 0.00094280880716281
629 => 0.00092294693130238
630 => 0.00092196062175688
701 => 0.00094184416018481
702 => 0.00098830313151692
703 => 0.00096623221572553
704 => 0.000934588145928
705 => 0.00095795363463024
706 => 0.00093771228594246
707 => 0.00089210286215213
708 => 0.0009257696867386
709 => 0.00090325763991359
710 => 0.00090982785198336
711 => 0.00095714482599529
712 => 0.00095145152249699
713 => 0.0009588191844095
714 => 0.0009458154539792
715 => 0.00093366791925724
716 => 0.00091099364361091
717 => 0.00090428090842031
718 => 0.00090613606692808
719 => 0.00090427998909588
720 => 0.00089159394025911
721 => 0.00088885438922066
722 => 0.00088428835080076
723 => 0.00088570355703449
724 => 0.00087711806896342
725 => 0.00089332065880589
726 => 0.00089632800225738
727 => 0.00090811889596087
728 => 0.00090934306565995
729 => 0.0009421805367913
730 => 0.00092409420950344
731 => 0.0009362280793465
801 => 0.00093514271181933
802 => 0.00084821191480971
803 => 0.00086019021164072
804 => 0.00087882468251315
805 => 0.00087042987864355
806 => 0.00085856159005351
807 => 0.00084897731067967
808 => 0.00083445614738543
809 => 0.00085489440586784
810 => 0.00088176854240572
811 => 0.00091002463811163
812 => 0.00094397248568956
813 => 0.00093639572130667
814 => 0.00090939000671479
815 => 0.0009106014633437
816 => 0.00091809021153298
817 => 0.00090839160220334
818 => 0.00090553129297269
819 => 0.00091769724896772
820 => 0.00091778102922037
821 => 0.00090662160707053
822 => 0.00089421995150368
823 => 0.00089416798811403
824 => 0.0008919612332917
825 => 0.00092333950808294
826 => 0.00094059438651672
827 => 0.00094257263052152
828 => 0.00094046123493337
829 => 0.00094127382729696
830 => 0.00093123359372165
831 => 0.00095418259033603
901 => 0.00097524285904993
902 => 0.00096959825714759
903 => 0.00096113619646854
904 => 0.00095439575754961
905 => 0.00096801042395252
906 => 0.00096740418428907
907 => 0.00097505891597529
908 => 0.00097471165313013
909 => 0.00097213765477307
910 => 0.00096959834907318
911 => 0.00097966640914318
912 => 0.00097676696953111
913 => 0.00097386302628849
914 => 0.00096803872354393
915 => 0.00096883034301834
916 => 0.00096036974343337
917 => 0.00095645548293467
918 => 0.00089759439665834
919 => 0.00088186479106383
920 => 0.00088681364518951
921 => 0.00088844293646463
922 => 0.00088159739195186
923 => 0.00089141214430707
924 => 0.0008898825255489
925 => 0.00089583337733988
926 => 0.00089211554349683
927 => 0.00089226812469458
928 => 0.00090320148130124
929 => 0.00090637548123798
930 => 0.00090476115925283
1001 => 0.00090589177503551
1002 => 0.0009319463385442
1003 => 0.0009282422127913
1004 => 0.00092627446981104
1005 => 0.00092681954806437
1006 => 0.00093347704765698
1007 => 0.00093534078405691
1008 => 0.00092744400196797
1009 => 0.00093116817005187
1010 => 0.00094702520508579
1011 => 0.00095257426991721
1012 => 0.00097028422115687
1013 => 0.00096276071910098
1014 => 0.00097657043273411
1015 => 0.001019016784364
1016 => 0.0010529258671102
1017 => 0.0010217416732647
1018 => 0.0010840113854323
1019 => 0.0011324972884145
1020 => 0.0011306363187005
1021 => 0.0011221816800164
1022 => 0.0010669817685357
1023 => 0.0010161859870068
1024 => 0.0010586788151585
1025 => 0.0010587871381162
1026 => 0.0010551369664929
1027 => 0.0010324660640331
1028 => 0.0010543480682294
1029 => 0.0010560849822587
1030 => 0.001055112772285
1031 => 0.0010377310445238
1101 => 0.0010111923589126
1102 => 0.0010163779545564
1103 => 0.0010248720660042
1104 => 0.0010087909409762
1105 => 0.0010036520471401
1106 => 0.001013206228496
1107 => 0.0010439917915177
1108 => 0.0010381719591571
1109 => 0.0010380199798144
1110 => 0.0010629196906461
1111 => 0.0010450968713845
1112 => 0.001016443361524
1113 => 0.0010092079723909
1114 => 0.00098352721531038
1115 => 0.0010012650056976
1116 => 0.0010019033571957
1117 => 0.0009921885506764
1118 => 0.0010172316645317
1119 => 0.0010170008878288
1120 => 0.0010407755972588
1121 => 0.0010862239123159
1122 => 0.0010727826091778
1123 => 0.0010571518360377
1124 => 0.0010588513344724
1125 => 0.0010774906375809
1126 => 0.0010662208894276
1127 => 0.001070273569439
1128 => 0.0010774845033643
1129 => 0.0010818350388389
1130 => 0.0010582253593685
1201 => 0.0010527208137025
1202 => 0.0010414604451027
1203 => 0.0010385228251197
1204 => 0.001047694160389
1205 => 0.0010452778375736
1206 => 0.0010018497062241
1207 => 0.0009973112248662
1208 => 0.00099745041360999
1209 => 0.00098603818644261
1210 => 0.00096863180076401
1211 => 0.0010143747430461
1212 => 0.0010107009446088
1213 => 0.0010066453554634
1214 => 0.0010071421419928
1215 => 0.0010269976028653
1216 => 0.0010154804328345
1217 => 0.0010461007169885
1218 => 0.0010398061070965
1219 => 0.0010333500642124
1220 => 0.0010324576424299
1221 => 0.0010299726167233
1222 => 0.0010214505389377
1223 => 0.0010111596179142
1224 => 0.0010043646604702
1225 => 0.00092647330876868
1226 => 0.00094092949057133
1227 => 0.00095756001001285
1228 => 0.00096330079868144
1229 => 0.00095348078241333
1230 => 0.0010218382930337
1231 => 0.0010343278689334
]
'min_raw' => 0.00043109802411658
'max_raw' => 0.0011324972884145
'avg_raw' => 0.00078179765626552
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000431'
'max' => '$0.001132'
'avg' => '$0.000781'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.6714641789785E-5
'max_diff' => -0.00020423442536908
'year' => 2027
]
2 => [
'items' => [
101 => 0.00099649612885832
102 => 0.00098941935495004
103 => 0.001022302245153
104 => 0.0010024698425908
105 => 0.0010114003722502
106 => 0.00099209745186509
107 => 0.0010313194958366
108 => 0.0010310206895765
109 => 0.0010157624286015
110 => 0.0010286586062935
111 => 0.0010264175780601
112 => 0.0010091910389988
113 => 0.0010318656078513
114 => 0.0010318768541546
115 => 0.0010171911097093
116 => 0.0010000413753202
117 => 0.00099697540787005
118 => 0.00099466561325115
119 => 0.0010108323043669
120 => 0.0010253273090694
121 => 0.0010522989192042
122 => 0.0010590802228218
123 => 0.001085548102298
124 => 0.0010697877687676
125 => 0.0010767741204912
126 => 0.0010843587935669
127 => 0.0010879951647565
128 => 0.0010820698930414
129 => 0.0011231854044819
130 => 0.0011266568133942
131 => 0.0011278207467749
201 => 0.001113956827651
202 => 0.0011262712327237
203 => 0.0011205097304004
204 => 0.0011354995588542
205 => 0.0011378501553555
206 => 0.0011358592837438
207 => 0.0011366054001749
208 => 0.0011015205644337
209 => 0.0010997012306133
210 => 0.0010748944848776
211 => 0.0010850034171271
212 => 0.0010661052528204
213 => 0.0010720980553948
214 => 0.001074739625668
215 => 0.0010733598192651
216 => 0.0010855749609892
217 => 0.0010751895951351
218 => 0.0010477809071339
219 => 0.0010203647516539
220 => 0.0010200205641546
221 => 0.0010128023743521
222 => 0.0010075849452022
223 => 0.0010085900071547
224 => 0.0010121319765676
225 => 0.001007379079501
226 => 0.0010083933510682
227 => 0.0010252370171392
228 => 0.0010286148942462
229 => 0.0010171355480148
301 => 0.00097104431643401
302 => 0.00095973341259299
303 => 0.00096786346596894
304 => 0.00096397782409773
305 => 0.00077800533943131
306 => 0.00082169681613483
307 => 0.00079573682429995
308 => 0.00080770038289926
309 => 0.00078120195354315
310 => 0.00079384839293356
311 => 0.00079151305735217
312 => 0.00086176765896664
313 => 0.00086067072999448
314 => 0.00086119577184526
315 => 0.00083613415631799
316 => 0.00087605799034996
317 => 0.00089572590660874
318 => 0.00089208589875388
319 => 0.00089300201031006
320 => 0.00087726017855213
321 => 0.00086134818718662
322 => 0.00084369933992435
323 => 0.0008764887166742
324 => 0.00087284309771294
325 => 0.00088120483595776
326 => 0.00090247109061309
327 => 0.00090560262739373
328 => 0.00090981144458383
329 => 0.00090830288322518
330 => 0.00094424293506446
331 => 0.00093989035764663
401 => 0.00095037881690162
402 => 0.00092880326045278
403 => 0.0009043884703603
404 => 0.00090902892377726
405 => 0.00090858201079704
406 => 0.00090289229561596
407 => 0.00089775587515484
408 => 0.00088920518226457
409 => 0.00091626083983383
410 => 0.00091516242954595
411 => 0.00093294441534444
412 => 0.00092980127662956
413 => 0.0009088106270351
414 => 0.00090956031219183
415 => 0.00091460230515721
416 => 0.00093205270037886
417 => 0.00093723316579416
418 => 0.00093483336780794
419 => 0.00094051351163858
420 => 0.0009450028657242
421 => 0.00094107730539242
422 => 0.00099665496141624
423 => 0.00097357524377449
424 => 0.00098482413756544
425 => 0.00098750693245225
426 => 0.00098063500976278
427 => 0.00098212528372903
428 => 0.00098438264271254
429 => 0.00099808888442419
430 => 0.0010340580286086
501 => 0.0010499885177176
502 => 0.0010979161801986
503 => 0.0010486657123602
504 => 0.0010457433934174
505 => 0.001054376612707
506 => 0.0010825152242416
507 => 0.001105318925965
508 => 0.0011128842294038
509 => 0.0011138841091428
510 => 0.0011280771213258
511 => 0.0011362122912251
512 => 0.0011263537163335
513 => 0.0011179996063487
514 => 0.0010880762213334
515 => 0.0010915399346276
516 => 0.0011154014844254
517 => 0.001149107328953
518 => 0.0011780304500531
519 => 0.0011679025811164
520 => 0.0012451710719424
521 => 0.0012528319271943
522 => 0.0012517734447036
523 => 0.0012692260130556
524 => 0.0012345862190306
525 => 0.0012197770359706
526 => 0.0011198058597506
527 => 0.0011478936824971
528 => 0.0011887209823992
529 => 0.0011833173361626
530 => 0.0011536674596569
531 => 0.001178007957963
601 => 0.0011699602280253
602 => 0.0011636126495227
603 => 0.0011926921371815
604 => 0.0011607180459812
605 => 0.0011884020163806
606 => 0.0011528970379893
607 => 0.0011679488443686
608 => 0.0011594047110938
609 => 0.0011649338124522
610 => 0.0011326107988891
611 => 0.0011500515124109
612 => 0.0011318852078668
613 => 0.0011318765946731
614 => 0.0011314755724935
615 => 0.0011528481492279
616 => 0.0011535451081879
617 => 0.001137750741689
618 => 0.0011354745267221
619 => 0.0011438908864672
620 => 0.0011340375334538
621 => 0.0011386478553125
622 => 0.0011341771754063
623 => 0.0011331707311925
624 => 0.0011251512124645
625 => 0.0011216961832952
626 => 0.0011230509892576
627 => 0.0011184263380575
628 => 0.0011156398184286
629 => 0.0011309212636036
630 => 0.0011227570038983
701 => 0.0011296699737118
702 => 0.001121791772123
703 => 0.0010944824930472
704 => 0.0010787766378603
705 => 0.0010271919412576
706 => 0.0010418212972235
707 => 0.0010515205753641
708 => 0.0010483149639965
709 => 0.001055201857621
710 => 0.0010556246569565
711 => 0.0010533856576356
712 => 0.0010507931832556
713 => 0.0010495313101002
714 => 0.0010589362787671
715 => 0.0010643961796349
716 => 0.0010524940276851
717 => 0.0010497055200121
718 => 0.0010617392527691
719 => 0.0010690798227992
720 => 0.0011232784675917
721 => 0.0011192632569262
722 => 0.0011293406477514
723 => 0.0011282060881947
724 => 0.0011387687992337
725 => 0.0011560343676479
726 => 0.0011209286395331
727 => 0.0011270217800691
728 => 0.0011255278827208
729 => 0.0011418378622482
730 => 0.001141888780224
731 => 0.0011321101327534
801 => 0.0011374112961876
802 => 0.0011344523321885
803 => 0.001139799580063
804 => 0.0011192096313398
805 => 0.001144285966337
806 => 0.0011585026323971
807 => 0.0011587000308191
808 => 0.0011654386177011
809 => 0.0011722854122459
810 => 0.0011854272381445
811 => 0.0011719188938543
812 => 0.0011476186974872
813 => 0.0011493730931757
814 => 0.0011351258969367
815 => 0.0011353653948795
816 => 0.0011340869360913
817 => 0.0011379236871525
818 => 0.0011200515824385
819 => 0.0011242461296926
820 => 0.0011183737389736
821 => 0.0011270090146385
822 => 0.0011177188854853
823 => 0.0011255271623183
824 => 0.0011288969557509
825 => 0.0011413315660638
826 => 0.0011158822834318
827 => 0.0010639894733801
828 => 0.0010748979711925
829 => 0.001058763446084
830 => 0.0010602567578113
831 => 0.0010632734851591
901 => 0.0010534952848129
902 => 0.0010553606572925
903 => 0.0010552940130611
904 => 0.001054719709079
905 => 0.001052176021517
906 => 0.0010484871712988
907 => 0.0010631824152
908 => 0.0010656794234944
909 => 0.0010712299636191
910 => 0.0010877446060627
911 => 0.0010860944038405
912 => 0.0010887859521312
913 => 0.0010829103173251
914 => 0.0010605293116582
915 => 0.0010617447079442
916 => 0.0010465886967826
917 => 0.0010708423903383
918 => 0.0010650987955712
919 => 0.0010613958626606
920 => 0.0010603854831085
921 => 0.0010769410621564
922 => 0.0010818947508845
923 => 0.0010788079444989
924 => 0.0010724768145454
925 => 0.0010846344556866
926 => 0.0010878873275663
927 => 0.0010886155256189
928 => 0.0011101565347247
929 => 0.0010898194287371
930 => 0.0010947147722818
1001 => 0.0011329068451797
1002 => 0.0010982719052071
1003 => 0.0011166188053619
1004 => 0.001115720820072
1005 => 0.001125106473366
1006 => 0.0011149509225552
1007 => 0.0011150768127788
1008 => 0.0011234106370646
1009 => 0.0011117072838683
1010 => 0.0011088093690323
1011 => 0.0011048059204416
1012 => 0.0011135473039762
1013 => 0.0011187873680664
1014 => 0.0011610184362305
1015 => 0.0011883016322352
1016 => 0.0011871171967424
1017 => 0.0011979407199769
1018 => 0.0011930646236276
1019 => 0.0011773184222666
1020 => 0.0012041952679452
1021 => 0.0011956903093975
1022 => 0.0011963914478466
1023 => 0.0011963653514385
1024 => 0.0012020204053564
1025 => 0.0011980132813775
1026 => 0.0011901148286923
1027 => 0.0011953581901901
1028 => 0.0012109290993025
1029 => 0.001259261678961
1030 => 0.0012863092308595
1031 => 0.0012576333823748
1101 => 0.0012774135986746
1102 => 0.0012655525173065
1103 => 0.0012633970059853
1104 => 0.001275820443568
1105 => 0.0012882656267337
1106 => 0.0012874729223681
1107 => 0.001278438358457
1108 => 0.0012733349625472
1109 => 0.0013119795861392
1110 => 0.0013404522865077
1111 => 0.001338510639226
1112 => 0.00134708043887
1113 => 0.0013722416356788
1114 => 0.0013745420601846
1115 => 0.0013742522595715
1116 => 0.0013685504174094
1117 => 0.0013933248832619
1118 => 0.0014139921785414
1119 => 0.0013672306056909
1120 => 0.0013850368004784
1121 => 0.0013930305749983
1122 => 0.0014047678076395
1123 => 0.0014245704864938
1124 => 0.0014460814481308
1125 => 0.0014491233339619
1126 => 0.0014469649703971
1127 => 0.0014327779129518
1128 => 0.0014563154638541
1129 => 0.0014701032091492
1130 => 0.0014783134959455
1201 => 0.0014991334171994
1202 => 0.0013930799418283
1203 => 0.001318010020761
1204 => 0.0013062867685635
1205 => 0.0013301264629012
1206 => 0.00133641280018
1207 => 0.0013338787855053
1208 => 0.0012493807642854
1209 => 0.001305841903969
1210 => 0.0013665893428812
1211 => 0.0013689228994116
1212 => 0.0013993343375
1213 => 0.0014092375483486
1214 => 0.0014337227421281
1215 => 0.0014321911865906
1216 => 0.0014381529416314
1217 => 0.0014367824373907
1218 => 0.0014821361029015
1219 => 0.0015321679310443
1220 => 0.0015304354879272
1221 => 0.001523242820682
1222 => 0.0015339251580732
1223 => 0.0015855633664531
1224 => 0.0015808093477109
1225 => 0.0015854274719726
1226 => 0.0016463118298545
1227 => 0.0017254701557999
1228 => 0.0016886931660323
1229 => 0.0017684886515342
1230 => 0.0018187156798808
1231 => 0.0019055781318345
]
'min_raw' => 0.00077800533943131
'max_raw' => 0.0019055781318345
'avg_raw' => 0.0013417917356329
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000778'
'max' => '$0.0019055'
'avg' => '$0.001341'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00034690731531474
'max_diff' => 0.00077308084342002
'year' => 2028
]
3 => [
'items' => [
101 => 0.0018947025250433
102 => 0.0019285174401628
103 => 0.0018752329190794
104 => 0.0017528808880936
105 => 0.0017335182108454
106 => 0.0017722827810375
107 => 0.0018675816942633
108 => 0.0017692814791199
109 => 0.001789167484617
110 => 0.001783440313696
111 => 0.0017831351370966
112 => 0.0017947824866553
113 => 0.0017778873986354
114 => 0.0017090537706742
115 => 0.0017405998167297
116 => 0.0017284183733821
117 => 0.001741934592963
118 => 0.0018148760555283
119 => 0.0017826268962209
120 => 0.0017486550265995
121 => 0.0017912632900661
122 => 0.0018455182512469
123 => 0.0018421230732817
124 => 0.001835535008955
125 => 0.0018726715826247
126 => 0.001934010322332
127 => 0.0019505899371958
128 => 0.001962828669933
129 => 0.0019645161844024
130 => 0.0019818986322214
131 => 0.001888428829358
201 => 0.002036767806977
202 => 0.0020623818506302
203 => 0.0020575674720168
204 => 0.0020860364035336
205 => 0.0020776601216943
206 => 0.0020655242035074
207 => 0.002110653515477
208 => 0.0020589164010516
209 => 0.0019854820806462
210 => 0.0019451945601056
211 => 0.001998248417055
212 => 0.0020306465561695
213 => 0.0020520596652156
214 => 0.0020585392590748
215 => 0.0018956846240798
216 => 0.0018079150081497
217 => 0.0018641743256802
218 => 0.0019328145758782
219 => 0.0018880475293024
220 => 0.0018898023127729
221 => 0.0018259762689287
222 => 0.0019384617645091
223 => 0.001922073573955
224 => 0.00200709553554
225 => 0.0019868043620639
226 => 0.0020561364712029
227 => 0.0020378790032946
228 => 0.0021136647318208
301 => 0.0021438977107465
302 => 0.0021946635877504
303 => 0.0022320071735286
304 => 0.0022539360413666
305 => 0.0022526195143948
306 => 0.0023395126136874
307 => 0.0022882747888482
308 => 0.002223908005022
309 => 0.0022227438129772
310 => 0.0022560802824052
311 => 0.0023259443769124
312 => 0.0023440591201369
313 => 0.0023541827903407
314 => 0.0023386780370161
315 => 0.0022830630504011
316 => 0.0022590487811551
317 => 0.0022795096343131
318 => 0.0022544877691221
319 => 0.0022976825283371
320 => 0.0023569981586421
321 => 0.0023447497155435
322 => 0.0023856944244328
323 => 0.0024280678906241
324 => 0.0024886638503892
325 => 0.0025045058781337
326 => 0.002530692147577
327 => 0.0025576464205755
328 => 0.0025663034066246
329 => 0.0025828322790974
330 => 0.0025827451637806
331 => 0.0026325560334987
401 => 0.002687498965312
402 => 0.0027082386501397
403 => 0.0027559284118081
404 => 0.0026742613661995
405 => 0.002736206758417
406 => 0.002792083052791
407 => 0.0027254650311291
408 => 0.0028172824539817
409 => 0.0028208475164483
410 => 0.002874675727057
411 => 0.0028201105233677
412 => 0.0027877098795953
413 => 0.00288124932413
414 => 0.0029265101148754
415 => 0.0029128771963584
416 => 0.0028091300133033
417 => 0.0027487447028393
418 => 0.0025907046978985
419 => 0.0027779099105711
420 => 0.0028690921088129
421 => 0.0028088938734379
422 => 0.0028392543618388
423 => 0.0030048913421329
424 => 0.0030679551800286
425 => 0.0030548383425958
426 => 0.0030570548722004
427 => 0.0030910829744393
428 => 0.0032419823193848
429 => 0.003151559934074
430 => 0.003220684459582
501 => 0.0032573478586644
502 => 0.0032914028670055
503 => 0.0032077745297156
504 => 0.0030989752916456
505 => 0.0030645140058675
506 => 0.0028029083453074
507 => 0.0027892906345794
508 => 0.002781646600889
509 => 0.0027334520497406
510 => 0.0026955843341366
511 => 0.0026654705207501
512 => 0.0025864428816781
513 => 0.0026131123899843
514 => 0.0024871588276537
515 => 0.0025677394533126
516 => 0.0023667145265779
517 => 0.0025341340590505
518 => 0.0024430152191577
519 => 0.0025041990695124
520 => 0.0025039856048224
521 => 0.002391326737962
522 => 0.0023263474546875
523 => 0.0023677547830215
524 => 0.0024121467259135
525 => 0.0024193491692952
526 => 0.0024769044820029
527 => 0.0024929669326323
528 => 0.0024442969573411
529 => 0.0023625487317919
530 => 0.0023815369801084
531 => 0.0023259626584414
601 => 0.0022285707973553
602 => 0.0022985193322861
603 => 0.0023224028375315
604 => 0.0023329511540611
605 => 0.0022371774442138
606 => 0.0022070832652313
607 => 0.0021910613768557
608 => 0.0023501855485253
609 => 0.0023589027298519
610 => 0.0023143043976999
611 => 0.0025158930880142
612 => 0.0024702673588122
613 => 0.0025212424769059
614 => 0.0023798139955991
615 => 0.0023852167540437
616 => 0.0023182622445012
617 => 0.0023557522959431
618 => 0.0023292555359447
619 => 0.0023527234702705
620 => 0.0023667900533434
621 => 0.0024337335763098
622 => 0.0025348984465499
623 => 0.0024237344463484
624 => 0.0023752986995628
625 => 0.0024053479644556
626 => 0.002485373116711
627 => 0.0026066153187901
628 => 0.0025348374949325
629 => 0.002566691274294
630 => 0.0025736499080085
701 => 0.0025207235980554
702 => 0.0026085667873313
703 => 0.0026556426661011
704 => 0.0027039327767383
705 => 0.0027458617267465
706 => 0.0026846446446275
707 => 0.0027501556976188
708 => 0.0026973653531654
709 => 0.0026500069568252
710 => 0.0026500787799638
711 => 0.0026203701661438
712 => 0.0025628059833414
713 => 0.0025521902648396
714 => 0.0026074145731033
715 => 0.0026516992385694
716 => 0.0026553467357264
717 => 0.0026798650019567
718 => 0.0026943746593535
719 => 0.0028365890267654
720 => 0.0028937888217974
721 => 0.0029637316484259
722 => 0.0029909783211594
723 => 0.0030729810376144
724 => 0.003006757184142
725 => 0.0029924292368756
726 => 0.0027935174696399
727 => 0.0028260892603815
728 => 0.0028782398400692
729 => 0.0027943774134907
730 => 0.002847568820685
731 => 0.0028580699312132
801 => 0.0027915278003259
802 => 0.0028270708275486
803 => 0.0027326790850183
804 => 0.0025369559285942
805 => 0.0026087846831549
806 => 0.0026616748238089
807 => 0.0025861940717883
808 => 0.0027214903982767
809 => 0.0026424530774252
810 => 0.0026174020411758
811 => 0.0025196690174276
812 => 0.0025657952425477
813 => 0.0026281816224865
814 => 0.0025896340928794
815 => 0.0026696260047549
816 => 0.0027829158850341
817 => 0.0028636530002501
818 => 0.0028698509934397
819 => 0.0028179424373224
820 => 0.0029011262297763
821 => 0.0029017321328905
822 => 0.0028079004751867
823 => 0.0027504291073
824 => 0.0027373714915954
825 => 0.002769991975722
826 => 0.0028095992655252
827 => 0.002872048922371
828 => 0.002909785942086
829 => 0.0030081840753338
830 => 0.0030348077888951
831 => 0.0030640591782934
901 => 0.0031031480553239
902 => 0.0031500842743814
903 => 0.0030473904991641
904 => 0.0030514707142986
905 => 0.0029558436927083
906 => 0.002853652505837
907 => 0.0029312028783611
908 => 0.0030325896743425
909 => 0.0030093314313219
910 => 0.0030067144038593
911 => 0.0030111155181485
912 => 0.0029935795624542
913 => 0.0029142650847616
914 => 0.0028744338505993
915 => 0.0029258263047003
916 => 0.00295313910684
917 => 0.002995498881032
918 => 0.0029902771447565
919 => 0.0030993913739674
920 => 0.0031417898639958
921 => 0.0031309425159129
922 => 0.0031329386890161
923 => 0.0032096991299967
924 => 0.0032950725273557
925 => 0.0033750359799945
926 => 0.0034563782385288
927 => 0.0033583169710233
928 => 0.0033085275069621
929 => 0.0033598975247253
930 => 0.0033326398702148
1001 => 0.0034892704381778
1002 => 0.003500115198867
1003 => 0.0036567344406571
1004 => 0.0038053847509883
1005 => 0.0037120201544162
1006 => 0.0038000587637499
1007 => 0.0038952796976375
1008 => 0.0040789763281463
1009 => 0.0040171137655163
1010 => 0.0039697280120517
1011 => 0.0039249487039939
1012 => 0.0040181273355472
1013 => 0.0041380001564754
1014 => 0.0041638196139758
1015 => 0.0042056569989182
1016 => 0.0041616701042833
1017 => 0.0042146474738736
1018 => 0.004401680867963
1019 => 0.0043511427938906
1020 => 0.004279370604307
1021 => 0.0044270155060625
1022 => 0.0044804476220528
1023 => 0.0048554621946892
1024 => 0.005328933583722
1025 => 0.0051329133196816
1026 => 0.0050112372162574
1027 => 0.0050398339867579
1028 => 0.0052127297100147
1029 => 0.0052682583288888
1030 => 0.0051173124009261
1031 => 0.0051706290545193
1101 => 0.0054644090577952
1102 => 0.0056220126039618
1103 => 0.0054079658192874
1104 => 0.0048174192295893
1105 => 0.0042729083039115
1106 => 0.0044173371210478
1107 => 0.0044009633753325
1108 => 0.0047165933390507
1109 => 0.0043499374775381
1110 => 0.0043561110219046
1111 => 0.0046782678790145
1112 => 0.0045923219527043
1113 => 0.0044531005592044
1114 => 0.0042739247741557
1115 => 0.003942701763739
1116 => 0.003649328306576
1117 => 0.0042247012159448
1118 => 0.0041998900898451
1119 => 0.0041639599024498
1120 => 0.0042439186464457
1121 => 0.0046321756106041
1122 => 0.0046232250309151
1123 => 0.0045662860095595
1124 => 0.0046094737554202
1125 => 0.0044455295385453
1126 => 0.0044877816961744
1127 => 0.0042728220505989
1128 => 0.0043699927879068
1129 => 0.0044528018526214
1130 => 0.0044694269983721
1201 => 0.0045068843006492
1202 => 0.0041868157538168
1203 => 0.0043305171346257
1204 => 0.0044149282328524
1205 => 0.004033555820162
1206 => 0.0044073897264593
1207 => 0.0041812440725047
1208 => 0.0041044868409588
1209 => 0.0042078303412391
1210 => 0.004167557278675
1211 => 0.004132932864396
1212 => 0.0041136118463053
1213 => 0.0041894959073053
1214 => 0.0041859558251585
1215 => 0.0040617947729011
1216 => 0.0038998317416831
1217 => 0.0039541918512151
1218 => 0.0039344423137934
1219 => 0.0038628674424361
1220 => 0.003911100263748
1221 => 0.0036987073287625
1222 => 0.003333296323344
1223 => 0.0035746980263652
1224 => 0.0035654043233935
1225 => 0.0035607180169192
1226 => 0.0037421247248866
1227 => 0.0037246866556804
1228 => 0.003693036389317
1229 => 0.0038622861604739
1230 => 0.0038005077172709
1231 => 0.0039908943223905
]
'min_raw' => 0.0017090537706742
'max_raw' => 0.0056220126039618
'avg_raw' => 0.003665533187318
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001709'
'max' => '$0.005622'
'avg' => '$0.003665'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00093104843124286
'max_diff' => 0.0037164344721273
'year' => 2029
]
4 => [
'items' => [
101 => 0.0041162952539558
102 => 0.0040844895214156
103 => 0.0042024297036681
104 => 0.0039554441983468
105 => 0.004037482875876
106 => 0.004054390933614
107 => 0.0038601976445697
108 => 0.0037275397394628
109 => 0.003718692969603
110 => 0.0034886824435329
111 => 0.0036115522099795
112 => 0.003719672519756
113 => 0.003667891281848
114 => 0.0036514988888468
115 => 0.0037352440696136
116 => 0.0037417517873882
117 => 0.0035933751324714
118 => 0.0036242273375062
119 => 0.0037528861612535
120 => 0.0036209854652523
121 => 0.0033647239587784
122 => 0.0033011675620804
123 => 0.0032926879671841
124 => 0.0031203179786176
125 => 0.0033054147044145
126 => 0.0032246150233203
127 => 0.003479860247768
128 => 0.0033340655444711
129 => 0.0033277806262081
130 => 0.0033182800504566
131 => 0.0031699140807829
201 => 0.0032023967989922
202 => 0.0033103743015775
203 => 0.0033489018909536
204 => 0.0033448831477344
205 => 0.0033098451529079
206 => 0.0033258853675159
207 => 0.0032742142474823
208 => 0.0032559680995571
209 => 0.0031983782377066
210 => 0.0031137370503919
211 => 0.0031255069266225
212 => 0.0029578105869806
213 => 0.0028664407208253
214 => 0.002841150746109
215 => 0.0028073319349776
216 => 0.0028449706708147
217 => 0.0029573355243204
218 => 0.0028217996714591
219 => 0.0025894329584631
220 => 0.0026033985938478
221 => 0.0026347752301228
222 => 0.0025763050760015
223 => 0.0025209679821539
224 => 0.0025690790956141
225 => 0.0024706222560814
226 => 0.0026466732687972
227 => 0.0026419115822805
228 => 0.0027075325128993
301 => 0.0027485666274923
302 => 0.0026539962783078
303 => 0.0026302120912333
304 => 0.002643760645122
305 => 0.0024198332291191
306 => 0.0026892328656642
307 => 0.0026915626449081
308 => 0.0026716136605718
309 => 0.0028150606502515
310 => 0.0031177785407137
311 => 0.0030038838935229
312 => 0.0029597804436467
313 => 0.0028759397531925
314 => 0.002987652495255
315 => 0.0029790746996549
316 => 0.0029402826549186
317 => 0.0029168211052236
318 => 0.0029600497299071
319 => 0.0029114646002353
320 => 0.0029027373759162
321 => 0.002849859891856
322 => 0.0028309850358187
323 => 0.0028170108438384
324 => 0.0028016266315438
325 => 0.0028355603703588
326 => 0.0027586620538489
327 => 0.0026659302225728
328 => 0.0026582205741745
329 => 0.0026795075912414
330 => 0.0026700896708214
331 => 0.0026581754847949
401 => 0.0026354280590349
402 => 0.0026286793837338
403 => 0.0026506093044707
404 => 0.0026258517025525
405 => 0.0026623828927991
406 => 0.002652448430415
407 => 0.0025969553311059
408 => 0.0025277903831899
409 => 0.0025271746700751
410 => 0.0025122731954998
411 => 0.0024932939271765
412 => 0.0024880143289158
413 => 0.0025650273118313
414 => 0.0027244418816616
415 => 0.0026931449871365
416 => 0.0027157602008657
417 => 0.0028270046693131
418 => 0.0028623659405947
419 => 0.0028372673478167
420 => 0.0028029108460083
421 => 0.0028044223577257
422 => 0.0029218289248253
423 => 0.0029291514284014
424 => 0.0029476530326092
425 => 0.002971432822569
426 => 0.0028413171488735
427 => 0.0027982939211957
428 => 0.0027779071290842
429 => 0.0027151237000621
430 => 0.002782830245618
501 => 0.0027433805410059
502 => 0.0027487036539519
503 => 0.0027452369696626
504 => 0.0027471300137007
505 => 0.0026466240589512
506 => 0.0026832431464245
507 => 0.0026223568111113
508 => 0.002540836842939
509 => 0.0025405635594211
510 => 0.002560515456142
511 => 0.0025486472872546
512 => 0.0025167103499371
513 => 0.002521246841145
514 => 0.0024815024046438
515 => 0.0025260725353325
516 => 0.002527350647201
517 => 0.0025101887191345
518 => 0.0025788551549532
519 => 0.0026069878497346
520 => 0.0025956915010371
521 => 0.0026061952677962
522 => 0.0026944455144011
523 => 0.0027088341552259
524 => 0.00271522463902
525 => 0.0027066622373127
526 => 0.0026078083203009
527 => 0.0026121929118797
528 => 0.0025800216880968
529 => 0.0025528403941202
530 => 0.0025539275033322
531 => 0.002567902221757
601 => 0.0026289306367246
602 => 0.0027573613382023
603 => 0.0027622351894417
604 => 0.0027681424393242
605 => 0.0027441146853062
606 => 0.0027368676847797
607 => 0.0027464283490837
608 => 0.0027946601679932
609 => 0.0029187255010397
610 => 0.0028748725262961
611 => 0.0028392193752173
612 => 0.0028704968007339
613 => 0.0028656818862362
614 => 0.0028250391623168
615 => 0.0028238984564212
616 => 0.002745892074955
617 => 0.0027170548918463
618 => 0.002692956383215
619 => 0.002666641440897
620 => 0.0026510410610061
621 => 0.0026750103347644
622 => 0.0026804923912691
623 => 0.0026280831552853
624 => 0.0026209399700795
625 => 0.0026637384835158
626 => 0.0026449044534419
627 => 0.0026642757204344
628 => 0.0026687700205403
629 => 0.0026680463347107
630 => 0.002648381444239
701 => 0.0026609152590102
702 => 0.0026312690505662
703 => 0.0025990332516
704 => 0.0025784688202208
705 => 0.0025605236263664
706 => 0.0025704806628976
707 => 0.002534985645747
708 => 0.0025236300753869
709 => 0.0026566690845854
710 => 0.0027549464310908
711 => 0.0027535174395505
712 => 0.0027448188210558
713 => 0.0027318944384229
714 => 0.0027937146689026
715 => 0.002772177736738
716 => 0.0027878476543587
717 => 0.0027918363060575
718 => 0.0028039087534448
719 => 0.0028082236157239
720 => 0.002795181105052
721 => 0.0027514088462289
722 => 0.0026423325389831
723 => 0.0025915572235143
724 => 0.0025748005236798
725 => 0.0025754095978933
726 => 0.0025586086120585
727 => 0.0025635572553542
728 => 0.002556887675873
729 => 0.0025442571058802
730 => 0.0025697007607926
731 => 0.0025726329049972
801 => 0.0025666940519116
802 => 0.0025680928668029
803 => 0.0025189216997717
804 => 0.0025226600768069
805 => 0.0025018443184248
806 => 0.0024979416146658
807 => 0.0024453211901113
808 => 0.0023520964805605
809 => 0.0024037520191932
810 => 0.0023413593923928
811 => 0.0023177303592209
812 => 0.002429586527188
813 => 0.0024183592703313
814 => 0.0023991430869638
815 => 0.0023707183467597
816 => 0.00236017533412
817 => 0.0022961193268329
818 => 0.0022923345561969
819 => 0.002324082443066
820 => 0.002309431885654
821 => 0.0022888569544475
822 => 0.002214336639265
823 => 0.0021305511321715
824 => 0.0021330800899737
825 => 0.0021597307008954
826 => 0.0022372209464747
827 => 0.002206944166932
828 => 0.0021849780159878
829 => 0.002180864416216
830 => 0.0022323547297643
831 => 0.0023052243109894
901 => 0.0023394130881353
902 => 0.0023055330483123
903 => 0.0022666134827947
904 => 0.0022689823364118
905 => 0.0022847412582617
906 => 0.0022863972981289
907 => 0.0022610646619729
908 => 0.0022681956506641
909 => 0.0022573630267709
910 => 0.0021908832339342
911 => 0.0021896808252914
912 => 0.0021733656119978
913 => 0.0021728715938234
914 => 0.0021451153459903
915 => 0.0021412320550485
916 => 0.002086120340292
917 => 0.0021223950378384
918 => 0.0020980638752314
919 => 0.0020613910740416
920 => 0.0020550686692937
921 => 0.0020548786101724
922 => 0.0020925333771061
923 => 0.0021219550199631
924 => 0.002098487126222
925 => 0.0020931439417232
926 => 0.0021501951732602
927 => 0.0021429348840136
928 => 0.0021366475203499
929 => 0.0022986996392313
930 => 0.0021704227420521
1001 => 0.0021144866930927
1002 => 0.0020452552105378
1003 => 0.0020677973303531
1004 => 0.0020725472862108
1005 => 0.001906058050579
1006 => 0.0018385133884181
1007 => 0.0018153346057314
1008 => 0.0018019948885953
1009 => 0.0018080739652038
1010 => 0.0017472758470603
1011 => 0.0017881331879608
1012 => 0.0017354871567855
1013 => 0.001726660878334
1014 => 0.0018207985036672
1015 => 0.0018338972042883
1016 => 0.0017780140779914
1017 => 0.0018139000917304
1018 => 0.0018008873242957
1019 => 0.0017363896218868
1020 => 0.0017339262840677
1021 => 0.0017015636042028
1022 => 0.0016509222768638
1023 => 0.0016277778313817
1024 => 0.0016157240032253
1025 => 0.001620697647647
1026 => 0.0016181828208314
1027 => 0.0016017718747647
1028 => 0.00161912347705
1029 => 0.0015747973033883
1030 => 0.001557146263876
1031 => 0.0015491736988293
1101 => 0.0015098316683852
1102 => 0.0015724423343021
1103 => 0.0015847774242361
1104 => 0.0015971368181078
1105 => 0.0017047169036442
1106 => 0.0016993425065889
1107 => 0.0017479244385307
1108 => 0.0017460366339919
1109 => 0.001732180280027
1110 => 0.0016737226019086
1111 => 0.0016970227904987
1112 => 0.0016253084316717
1113 => 0.0016790417054073
1114 => 0.0016545200832295
1115 => 0.0016707509202824
1116 => 0.0016415664117857
1117 => 0.0016577183237866
1118 => 0.0015877025316611
1119 => 0.0015223227701231
1120 => 0.0015486334947202
1121 => 0.0015772362613536
1122 => 0.0016392543472642
1123 => 0.0016023168869339
1124 => 0.0016156009944287
1125 => 0.001571101458054
1126 => 0.0014792862038487
1127 => 0.0014798058682164
1128 => 0.001465682091661
1129 => 0.0014534770866119
1130 => 0.0016065595985886
1201 => 0.0015875213683479
1202 => 0.0015571864401213
1203 => 0.0015977909470147
1204 => 0.0016085274231175
1205 => 0.0016088330754984
1206 => 0.0016384570755738
1207 => 0.0016542674097244
1208 => 0.0016570540496444
1209 => 0.0017036680538319
1210 => 0.001719292453182
1211 => 0.0017836471428572
1212 => 0.0016529260133324
1213 => 0.0016502338976933
1214 => 0.0015983623356961
1215 => 0.0015654645710206
1216 => 0.0016006148737887
1217 => 0.0016317532435465
1218 => 0.0015993298916424
1219 => 0.0016035636969067
1220 => 0.0015600379960606
1221 => 0.0015755963860385
1222 => 0.001588997367429
1223 => 0.0015815981331784
1224 => 0.0015705211213784
1225 => 0.0016292002523236
1226 => 0.0016258893457903
1227 => 0.0016805327015539
1228 => 0.0017231311049555
1229 => 0.0017994750592265
1230 => 0.0017198061630443
1231 => 0.0017169027118123
]
'min_raw' => 0.0014534770866119
'max_raw' => 0.0042024297036681
'avg_raw' => 0.00282795339514
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001453'
'max' => '$0.0042024'
'avg' => '$0.002827'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00025557668406225
'max_diff' => -0.0014195829002936
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017452844133339
102 => 0.0017192881080914
103 => 0.0017357168756427
104 => 0.0017968281307862
105 => 0.0017981193153096
106 => 0.0017764903109465
107 => 0.0017751741840654
108 => 0.0017793282709487
109 => 0.0018036588875747
110 => 0.0017951570225213
111 => 0.001804995596002
112 => 0.0018172988827933
113 => 0.0018681904934476
114 => 0.0018804602884836
115 => 0.0018506510477054
116 => 0.0018533424883878
117 => 0.0018421930140548
118 => 0.0018314227615516
119 => 0.0018556327163097
120 => 0.0018998768844778
121 => 0.0018996016438039
122 => 0.0019098654308352
123 => 0.0019162596851259
124 => 0.0018888108648301
125 => 0.0018709426921386
126 => 0.0018777944865299
127 => 0.0018887506549742
128 => 0.0018742415487669
129 => 0.0017846846239837
130 => 0.0018118504740444
131 => 0.0018073287482521
201 => 0.0018008892608632
202 => 0.0018282047331666
203 => 0.0018255700892264
204 => 0.0017466522744826
205 => 0.0017517043369343
206 => 0.0017469595071332
207 => 0.0017622910229212
208 => 0.0017184601559251
209 => 0.0017319422354077
210 => 0.0017403980692726
211 => 0.0017453786203797
212 => 0.0017633717861747
213 => 0.001761260495845
214 => 0.0017632405454034
215 => 0.0017899196602577
216 => 0.0019248534680242
217 => 0.0019321976174663
218 => 0.0018960323396171
219 => 0.0019104796547893
220 => 0.0018827439689392
221 => 0.0019013631206633
222 => 0.0019141018713978
223 => 0.0018565379063497
224 => 0.0018531293419265
225 => 0.0018252791810348
226 => 0.0018402442799843
227 => 0.001816433731527
228 => 0.0018222760072608
301 => 0.0018059404949887
302 => 0.0018353411647104
303 => 0.0018682156818616
304 => 0.001876521083148
305 => 0.0018546731480635
306 => 0.0018388538032133
307 => 0.0018110802448725
308 => 0.0018572682913674
309 => 0.0018707750837177
310 => 0.0018571973459372
311 => 0.001854051087414
312 => 0.0018480889331978
313 => 0.0018553159866159
314 => 0.0018707015228259
315 => 0.0018634459880755
316 => 0.0018682383966042
317 => 0.0018499746772031
318 => 0.0018888199515317
319 => 0.00195051559579
320 => 0.0019507139573746
321 => 0.0019434583835142
322 => 0.001940489559014
323 => 0.0019479342180998
324 => 0.001951972640258
325 => 0.0019760473026245
326 => 0.0020018803745206
327 => 0.0021224320492075
328 => 0.0020885816213508
329 => 0.0021955422387842
330 => 0.0022801342000762
331 => 0.0023054996305095
401 => 0.0022821646280466
402 => 0.002202336845153
403 => 0.0021984201132857
404 => 0.0023177165233493
405 => 0.0022840098233846
406 => 0.0022800005186777
407 => 0.0022373482904227
408 => 0.0022625610399026
409 => 0.0022570466417426
410 => 0.0022483418944735
411 => 0.0022964460641459
412 => 0.0023864927754836
413 => 0.0023724581510689
414 => 0.0023619819549908
415 => 0.0023160783133515
416 => 0.0023437225585679
417 => 0.002333878972337
418 => 0.0023761732656792
419 => 0.0023511190632366
420 => 0.0022837544619809
421 => 0.0022944824967675
422 => 0.0022928609758913
423 => 0.002326231760621
424 => 0.002316214679359
425 => 0.0022909049800065
426 => 0.0023861850056136
427 => 0.002379998050726
428 => 0.0023887697382218
429 => 0.0023926313063309
430 => 0.0024506265788955
501 => 0.0024743853864236
502 => 0.0024797790516889
503 => 0.0025023480812684
504 => 0.002479217513673
505 => 0.0025717562758696
506 => 0.0026332891529438
507 => 0.0027047627561184
508 => 0.00280920490065
509 => 0.0028484761131377
510 => 0.0028413821201048
511 => 0.0029205689621069
512 => 0.0030628659569601
513 => 0.0028701444111914
514 => 0.0030730806668503
515 => 0.0030088333913204
516 => 0.0028565042567983
517 => 0.0028466960563776
518 => 0.0029498551148536
519 => 0.003178651977862
520 => 0.0031213409586709
521 => 0.0031787457181583
522 => 0.003111780016983
523 => 0.0031084546054884
524 => 0.0031754933435225
525 => 0.0033321330090305
526 => 0.0032577193754977
527 => 0.0031510291848569
528 => 0.0032298075613428
529 => 0.0031615624410361
530 => 0.0030077870843787
531 => 0.0031212971340147
601 => 0.0030453961964032
602 => 0.003067548125114
603 => 0.0032270806065609
604 => 0.0032078852363226
605 => 0.0032327258228544
606 => 0.0031888828378171
607 => 0.0031479265763882
608 => 0.0030714786729793
609 => 0.003048846217616
610 => 0.0030551010140479
611 => 0.0030488431180495
612 => 0.0030060712186847
613 => 0.0029968346310892
614 => 0.0029814399137658
615 => 0.0029862113803894
616 => 0.0029572648079382
617 => 0.0030118929708207
618 => 0.0030220324392335
619 => 0.0030617862605687
620 => 0.003065913634178
621 => 0.0031766274607363
622 => 0.0031156481455382
623 => 0.0031565583348739
624 => 0.0031528989424781
625 => 0.0028598056910457
626 => 0.0029001913551094
627 => 0.002963018774673
628 => 0.0029347151073202
629 => 0.0028947003437214
630 => 0.0028623862766595
701 => 0.0028134271607777
702 => 0.0028823361762048
703 => 0.0029729442038346
704 => 0.0030682116032847
705 => 0.0031826691415567
706 => 0.003157123551447
707 => 0.0030660718992217
708 => 0.0030701564098272
709 => 0.0030954052471951
710 => 0.0030627057087049
711 => 0.0030530619764334
712 => 0.0030940803464705
713 => 0.0030943628174417
714 => 0.0030567380465375
715 => 0.003014924998938
716 => 0.0030147498007418
717 => 0.0030073095727876
718 => 0.0031131036170075
719 => 0.0031712796443441
720 => 0.0031779494321229
721 => 0.0031708307144845
722 => 0.0031735704263717
723 => 0.0031397190778858
724 => 0.003217093222219
725 => 0.0032880993885689
726 => 0.0032690682191616
727 => 0.00324053779078
728 => 0.0032178119303624
729 => 0.0032637147286855
730 => 0.0032616707493339
731 => 0.0032874792116503
801 => 0.0032863083907227
802 => 0.003277629975551
803 => 0.0032690685290952
804 => 0.0033030136965507
805 => 0.0032932380334662
806 => 0.0032834471860769
807 => 0.0032638101427338
808 => 0.0032664791430608
809 => 0.0032379536408599
810 => 0.0032247564383036
811 => 0.0030263021763732
812 => 0.0029732687129053
813 => 0.002989954120108
814 => 0.0029954473893955
815 => 0.00297236715813
816 => 0.0030054582809397
817 => 0.003000301064502
818 => 0.0030203647767905
819 => 0.0030078298404178
820 => 0.0030083442785789
821 => 0.0030452068537208
822 => 0.0030559082161091
823 => 0.0030504654168279
824 => 0.0030542773668762
825 => 0.0031421221468173
826 => 0.0031296334282276
827 => 0.0031229990453862
828 => 0.0031248368147735
829 => 0.0031472830394617
830 => 0.003153566756856
831 => 0.0031269422047075
901 => 0.0031394984974154
902 => 0.0031929615981351
903 => 0.0032116706576376
904 => 0.0032713809947114
905 => 0.0032460149822559
906 => 0.0032925753959334
907 => 0.0034356862339633
908 => 0.0035500130738984
909 => 0.0034448733871376
910 => 0.0036548200692431
911 => 0.0038182936763251
912 => 0.0038120192870058
913 => 0.0037835138823984
914 => 0.0035974035269062
915 => 0.0034261420030333
916 => 0.0035694095399014
917 => 0.0035697747583161
918 => 0.0035574679498415
919 => 0.0034810314193661
920 => 0.0035548081242667
921 => 0.0035606642511841
922 => 0.0035573863773802
923 => 0.0034987826686797
924 => 0.0034093056372698
925 => 0.0034267892350295
926 => 0.0034554277248157
927 => 0.0034012090890357
928 => 0.0033838829496809
929 => 0.0034160955391742
930 => 0.0035198912142813
1001 => 0.0035002692431497
1002 => 0.0034997568341848
1003 => 0.0035837079476965
1004 => 0.0035236170682064
1005 => 0.0034270097591875
1006 => 0.0034026151395664
1007 => 0.0033160306740963
1008 => 0.0033758348727998
1009 => 0.0033779871194438
1010 => 0.003345232970998
1011 => 0.0034296675778155
1012 => 0.0034288894980493
1013 => 0.0035090475907898
1014 => 0.0036622797581049
1015 => 0.0036169614661328
1016 => 0.0035642612231854
1017 => 0.003569991200813
1018 => 0.0036328349125981
1019 => 0.0035948381698704
1020 => 0.003608502063478
1021 => 0.0036328142306586
1022 => 0.0036474823647558
1023 => 0.0035678806820462
1024 => 0.0035493217220179
1025 => 0.00351135660311
1026 => 0.0035014522122394
1027 => 0.0035323740094217
1028 => 0.0035242272083474
1029 => 0.0033778062314473
1030 => 0.0033625044246826
1031 => 0.0033629737092501
1101 => 0.003324496588579
1102 => 0.0032658097439886
1103 => 0.0034200352675629
1104 => 0.003407648799635
1105 => 0.0033939750976792
1106 => 0.0033956500481477
1107 => 0.0034625941207433
1108 => 0.0034237631778812
1109 => 0.0035270016037466
1110 => 0.0035057788870198
1111 => 0.0034840118876896
1112 => 0.0034810030253432
1113 => 0.0034726245876742
1114 => 0.0034438918074278
1115 => 0.0034091952487079
1116 => 0.0033862855752766
1117 => 0.0031236694448144
1118 => 0.0031724094710604
1119 => 0.0032284804284633
1120 => 0.0032478358982685
1121 => 0.0032147270278089
1122 => 0.0034451991474345
1123 => 0.0034873086245747
1124 => 0.0033597562715838
1125 => 0.0033358964342675
1126 => 0.0034467633943967
1127 => 0.0033798970645041
1128 => 0.0034100069687605
1129 => 0.0033449258249953
1130 => 0.003477165684641
1201 => 0.0034761582384729
1202 => 0.003424713946298
1203 => 0.0034681943097689
1204 => 0.0034606385266166
1205 => 0.0034025580474529
1206 => 0.0034790069394268
1207 => 0.0034790448571234
1208 => 0.0034295308444005
1209 => 0.0033717093175512
1210 => 0.003361372194234
1211 => 0.0033535845604117
1212 => 0.0034080916882308
1213 => 0.0034569626085941
1214 => 0.0035478992752614
1215 => 0.0035707629138635
1216 => 0.0036600012174461
1217 => 0.0036068641525968
1218 => 0.0036304191252043
1219 => 0.003655991380024
1220 => 0.0036682516593732
1221 => 0.0036482741920966
1222 => 0.0037868980095115
1223 => 0.0037986021070253
1224 => 0.0038025263896817
1225 => 0.0037557832184075
1226 => 0.0037973020948744
1227 => 0.0037778767875362
1228 => 0.0038284160407244
1229 => 0.0038363412409419
1230 => 0.0038296288783049
1231 => 0.0038321444619447
]
'min_raw' => 0.0017184601559251
'max_raw' => 0.0038363412409419
'avg_raw' => 0.0027774006984335
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001718'
'max' => '$0.003836'
'avg' => '$0.002777'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00026498306931315
'max_diff' => -0.00036608846272619
'year' => 2031
]
6 => [
'items' => [
101 => 0.0037138534886982
102 => 0.0037077194777008
103 => 0.0036240818025014
104 => 0.0036581647733636
105 => 0.003594448292976
106 => 0.0036146534452594
107 => 0.0036235596838641
108 => 0.0036189075702416
109 => 0.0036600917733985
110 => 0.0036250767873383
111 => 0.0035326664821287
112 => 0.0034402309997932
113 => 0.0034390705476088
114 => 0.0034147339167317
115 => 0.0033971429900838
116 => 0.0034005316266278
117 => 0.0034124736237958
118 => 0.003396448899499
119 => 0.0033998685869019
120 => 0.0034566581830474
121 => 0.0034680469315495
122 => 0.003429343514268
123 => 0.0032739437090064
124 => 0.0032358082070044
125 => 0.0032632192495836
126 => 0.0032501185367279
127 => 0.0026230993204909
128 => 0.0027704081846383
129 => 0.0026828822596982
130 => 0.0027232182327848
131 => 0.0026338769281494
201 => 0.0026765152815004
202 => 0.0026686415345398
203 => 0.0029055098289026
204 => 0.0029018114562878
205 => 0.002903581671545
206 => 0.0028190846850487
207 => 0.0029536906788805
208 => 0.0030200024317171
209 => 0.0030077298910972
210 => 0.0030108186251697
211 => 0.0029577439403383
212 => 0.0029040955505097
213 => 0.0028445912297618
214 => 0.0029551429027551
215 => 0.0029428514438982
216 => 0.0029710436281885
217 => 0.0030427442905215
218 => 0.0030533024854143
219 => 0.003067492806421
220 => 0.0030624065864759
221 => 0.0031835809805063
222 => 0.0031689059618549
223 => 0.0032042685345139
224 => 0.0031315250395894
225 => 0.0030492088702064
226 => 0.0030648544828878
227 => 0.0030633476845725
228 => 0.0030441644125963
229 => 0.0030268466123982
301 => 0.0029980173543283
302 => 0.0030892373927888
303 => 0.0030855340258146
304 => 0.0031454872324328
305 => 0.0031348899208087
306 => 0.0030641184801806
307 => 0.0030666460960278
308 => 0.0030836455273313
309 => 0.0031424807531688
310 => 0.003159947054005
311 => 0.003151855967546
312 => 0.0031710069690459
313 => 0.0031861431397823
314 => 0.0031729078390498
315 => 0.0033602917866422
316 => 0.0032824769072386
317 => 0.0033204033380274
318 => 0.0033294485682951
319 => 0.0033062794011652
320 => 0.00331130396389
321 => 0.0033189148073067
322 => 0.0033651263581768
323 => 0.0034863988390799
324 => 0.0035401095953422
325 => 0.0037017010555994
326 => 0.0035356496647245
327 => 0.0035257968623789
328 => 0.0035549043639658
329 => 0.00364977565733
330 => 0.0037266599297942
331 => 0.0037521668785306
401 => 0.00375553804288
402 => 0.0038033907743795
403 => 0.0038308190676744
404 => 0.0037975801941237
405 => 0.0037694137290446
406 => 0.0036685249472815
407 => 0.0036802030984816
408 => 0.003760653979585
409 => 0.0038742955876768
410 => 0.0039718119098137
411 => 0.0039376650925883
412 => 0.0041981812041218
413 => 0.0042240103124675
414 => 0.0042204415648492
415 => 0.0042792841175473
416 => 0.004162493633519
417 => 0.0041125634388879
418 => 0.0037755036384976
419 => 0.0038702036939167
420 => 0.0040078557860075
421 => 0.0039896370154505
422 => 0.0038896703867231
423 => 0.0039717360761616
424 => 0.0039446025928018
425 => 0.0039232012887068
426 => 0.0040212448116132
427 => 0.0039134419307716
428 => 0.0040067803698062
429 => 0.0038870728562818
430 => 0.0039378210723731
501 => 0.0039090139305047
502 => 0.003927655681764
503 => 0.0038186763848152
504 => 0.0038774789681259
505 => 0.0038162300040246
506 => 0.0038162009640407
507 => 0.0038148488897635
508 => 0.0038869080244092
509 => 0.003889257870203
510 => 0.0038360060608245
511 => 0.0038283316431434
512 => 0.0038567079876354
513 => 0.0038234867200117
514 => 0.0038390307420407
515 => 0.003823957532604
516 => 0.0038205642356695
517 => 0.003793525868373
518 => 0.0037818769963063
519 => 0.0037864448191981
520 => 0.0037708524847943
521 => 0.0037614575393166
522 => 0.0038129799986406
523 => 0.0037854536270339
524 => 0.0038087611874081
525 => 0.0037821992807131
526 => 0.003690124139636
527 => 0.0036371707523257
528 => 0.0034632493462013
529 => 0.0035125732412294
530 => 0.0035452750346622
531 => 0.0035344670921277
601 => 0.0035576867348103
602 => 0.0035591122322889
603 => 0.0035515632897566
604 => 0.0035428225813835
605 => 0.003538568087939
606 => 0.0035702775964332
607 => 0.0035886860334071
608 => 0.0035485570971267
609 => 0.0035391554488197
610 => 0.0035797280189785
611 => 0.0036044772633373
612 => 0.0037872117782838
613 => 0.0037736742151918
614 => 0.00380765084194
615 => 0.003803825595182
616 => 0.0038394385129152
617 => 0.003897650582267
618 => 0.0037792891689242
619 => 0.0037998326176508
620 => 0.0037947958384405
621 => 0.0038497860731435
622 => 0.0038499577466539
623 => 0.0038169883539835
624 => 0.0038348615966174
625 => 0.0038248852429059
626 => 0.0038429138624477
627 => 0.0037734934127833
628 => 0.0038580400270001
629 => 0.0039059725091975
630 => 0.0039066380517593
701 => 0.0039293576679052
702 => 0.0039524421137409
703 => 0.0039967506972909
704 => 0.0039512063713942
705 => 0.0038692765627568
706 => 0.0038751916303087
707 => 0.0038271562134815
708 => 0.0038279636975167
709 => 0.0038236532844533
710 => 0.0038365891585293
711 => 0.0037763321096956
712 => 0.0037904743186168
713 => 0.0037706751433105
714 => 0.0037997895781104
715 => 0.0037684672590542
716 => 0.0037947934095531
717 => 0.0038061549033827
718 => 0.0038480790602094
719 => 0.0037622750270034
720 => 0.0035873147948739
721 => 0.0036240935568553
722 => 0.0035696948789754
723 => 0.0035747296837236
724 => 0.0035849007905981
725 => 0.0035519329054387
726 => 0.0035582221389897
727 => 0.0035579974433106
728 => 0.0035560611373386
729 => 0.0035474849171285
730 => 0.0035350477010704
731 => 0.0035845937418726
801 => 0.0035930125796728
802 => 0.0036117266132294
803 => 0.0036674068832437
804 => 0.0036618431112381
805 => 0.003670917854218
806 => 0.0036511077412455
807 => 0.0035756486180476
808 => 0.003579746411482
809 => 0.0035286468616919
810 => 0.0036104198828539
811 => 0.0035910549520916
812 => 0.0035785702552528
813 => 0.0035751636900504
814 => 0.0036309819806843
815 => 0.0036476836880865
816 => 0.0036372763048433
817 => 0.0036159304581798
818 => 0.0036569207941068
819 => 0.0036678880787575
820 => 0.0036703432493329
821 => 0.0037429702654783
822 => 0.0036744022927499
823 => 0.0036909072852927
824 => 0.0038196745255534
825 => 0.0037029004073014
826 => 0.0037647582621131
827 => 0.0037617306420128
828 => 0.0037933750273788
829 => 0.0037591348787824
830 => 0.0037595593264607
831 => 0.0037876573968894
901 => 0.003748198724486
902 => 0.0037384282022904
903 => 0.003724930295855
904 => 0.0037544024807457
905 => 0.0037720697226755
906 => 0.0039144547174699
907 => 0.0040064419176517
908 => 0.0040024485106928
909 => 0.0040389407749523
910 => 0.0040225006756726
911 => 0.0039694112584192
912 => 0.004060028420106
913 => 0.0040313533585652
914 => 0.0040337172957984
915 => 0.0040336293099365
916 => 0.0040526957190437
917 => 0.0040391854207805
918 => 0.0040125552361001
919 => 0.0040302335954697
920 => 0.0040827320026681
921 => 0.00424568866946
922 => 0.0043368813790854
923 => 0.0042401987538356
924 => 0.0043068891341009
925 => 0.0042668986701539
926 => 0.0042596312132415
927 => 0.0043015177004285
928 => 0.0043434775043665
929 => 0.0043408048462529
930 => 0.0043103441832537
1001 => 0.0042931377276361
1002 => 0.0044234307741577
1003 => 0.0045194284713507
1004 => 0.0045128820719789
1005 => 0.004541775749803
1006 => 0.0046266084815425
1007 => 0.0046343645233744
1008 => 0.0046333874403741
1009 => 0.0046141632814346
1010 => 0.0046976921227544
1011 => 0.0047673733517335
1012 => 0.0046097134440795
1013 => 0.0046697482729944
1014 => 0.0046966998418957
1015 => 0.004736272741213
1016 => 0.0048030388555492
1017 => 0.0048755645645555
1018 => 0.004885820495013
1019 => 0.004878543421562
1020 => 0.0048307107668766
1021 => 0.004910069263083
1022 => 0.004956555608975
1023 => 0.0049842371641325
1024 => 0.0050544329822405
1025 => 0.0046968662856098
1026 => 0.0044437628055167
1027 => 0.0044042370422416
1028 => 0.0044846142361354
1029 => 0.0045058090611691
1030 => 0.004497265453774
1031 => 0.0042123744757675
1101 => 0.0044027371502019
1102 => 0.004607551381745
1103 => 0.0046154191305108
1104 => 0.0047179534172849
1105 => 0.004751342784081
1106 => 0.0048338963244103
1107 => 0.0048287325779858
1108 => 0.0048488330513423
1109 => 0.0048442123006093
1110 => 0.0049971253503706
1111 => 0.0051658111520649
1112 => 0.0051599700991402
1113 => 0.0051357195193468
1114 => 0.0051717357656783
1115 => 0.0053458375904959
1116 => 0.0053298090843916
1117 => 0.0053453794127671
1118 => 0.0055506552761759
1119 => 0.0058175430987585
1120 => 0.0056935469100696
1121 => 0.0059625829605824
1122 => 0.0061319268933919
1123 => 0.0064247897146966
1124 => 0.0063881218470894
1125 => 0.0065021311942967
1126 => 0.0063224787112577
1127 => 0.0059099602964431
1128 => 0.0058446776782417
1129 => 0.0059753751331002
1130 => 0.0062966820725987
1201 => 0.0059652560341411
1202 => 0.0060323030900709
1203 => 0.0060129935334526
1204 => 0.0060119646092407
1205 => 0.0060512344614701
1206 => 0.0059942714926337
1207 => 0.0057621941101518
1208 => 0.0058685538069026
1209 => 0.005827483220175
1210 => 0.0058730540981644
1211 => 0.0061189813318134
1212 => 0.0060102510396442
1213 => 0.0058957125093755
1214 => 0.006039369244467
1215 => 0.0062222936340484
1216 => 0.0062108465544951
1217 => 0.0061886344356537
1218 => 0.006313842986574
1219 => 0.006520650830031
1220 => 0.0065765501590963
1221 => 0.0066178139010008
1222 => 0.0066235034738527
1223 => 0.0066821096102781
1224 => 0.0063669696440709
1225 => 0.0068671048638101
1226 => 0.0069534644003025
1227 => 0.006937232386678
1228 => 0.0070332173769244
1229 => 0.0070049761578897
1230 => 0.00696405906242
1231 => 0.0071162156885534
]
'min_raw' => 0.0026230993204909
'max_raw' => 0.0071162156885534
'avg_raw' => 0.0048696575045222
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002623'
'max' => '$0.007116'
'avg' => '$0.004869'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00090463916456579
'max_diff' => 0.0032798744476115
'year' => 2032
]
7 => [
'items' => [
101 => 0.006941780395098
102 => 0.0066941914568307
103 => 0.0065583592685434
104 => 0.0067372340513503
105 => 0.0068464666393408
106 => 0.0069186624315051
107 => 0.0069405088345921
108 => 0.0063914330625591
109 => 0.0060955116745717
110 => 0.006285193891526
111 => 0.0065166192873776
112 => 0.0063656840643119
113 => 0.0063716004392979
114 => 0.0061564064762852
115 => 0.006535659178121
116 => 0.0064804052494808
117 => 0.0067670627290085
118 => 0.0066986496209492
119 => 0.0069324076675249
120 => 0.0068708513397763
121 => 0.0071263682146928
122 => 0.0072283008139402
123 => 0.0073994615126189
124 => 0.0075253680193163
125 => 0.0075993027282567
126 => 0.0075948639656541
127 => 0.0078878301166018
128 => 0.0077150782128456
129 => 0.0074980611072303
130 => 0.0074941359524699
131 => 0.0076065321866243
201 => 0.0078420838590108
202 => 0.0079031589805231
203 => 0.0079372916414272
204 => 0.0078850162830861
205 => 0.0076975064727993
206 => 0.0076165406874138
207 => 0.0076855258823669
208 => 0.0076011629169046
209 => 0.0077467970633599
210 => 0.0079467838522181
211 => 0.0079054873711524
212 => 0.0080435353158407
213 => 0.0081864004155259
214 => 0.0083907039245487
215 => 0.0084441164271443
216 => 0.0085324052628393
217 => 0.0086232834761411
218 => 0.0086524711090171
219 => 0.0087081993565681
220 => 0.0087079056411952
221 => 0.0088758464661336
222 => 0.0090610903967351
223 => 0.0091310156921303
224 => 0.0092918050531883
225 => 0.0090164589071077
226 => 0.0092253121218584
227 => 0.0094137029494985
228 => 0.0091890956383438
301 => 0.009498664489979
302 => 0.0095106843469899
303 => 0.0096921699172228
304 => 0.0095081995233634
305 => 0.009398958490744
306 => 0.0097143332587081
307 => 0.0098669331747139
308 => 0.0098209688381136
309 => 0.0094711779670467
310 => 0.0092675846768495
311 => 0.0087347417661907
312 => 0.0093659172109668
313 => 0.0096733443584771
314 => 0.0094703818050036
315 => 0.0095727443113489
316 => 0.010131200954815
317 => 0.010343825087257
318 => 0.010299600754064
319 => 0.010307073938379
320 => 0.010421802060844
321 => 0.010930569737783
322 => 0.010625704352619
323 => 0.010858762516489
324 => 0.010982375726252
325 => 0.011097194564519
326 => 0.010815235786602
327 => 0.010448411559329
328 => 0.010332222928318
329 => 0.0094502011790153
330 => 0.0094042881165379
331 => 0.0093785157232611
401 => 0.0092160244292283
402 => 0.0090883507822298
403 => 0.008986819957918
404 => 0.0087203727552532
405 => 0.0088102908645129
406 => 0.0083856296353184
407 => 0.0086573128406872
408 => 0.0079795432650888
409 => 0.0085440099076788
410 => 0.008236796377266
411 => 0.0084430820004568
412 => 0.0084423622893508
413 => 0.0080625250541401
414 => 0.0078434428638714
415 => 0.007983050562317
416 => 0.0081327210971236
417 => 0.0081570046378438
418 => 0.0083510563930212
419 => 0.0084052120667627
420 => 0.0082411178470394
421 => 0.0079654979971213
422 => 0.0080295182020378
423 => 0.0078421454964622
424 => 0.0075137820371279
425 => 0.0077496184062978
426 => 0.0078301433117255
427 => 0.0078657076973651
428 => 0.007542799947908
429 => 0.0074413353223602
430 => 0.0073873164070893
501 => 0.0079238146615683
502 => 0.007953205247025
503 => 0.0078028388564185
504 => 0.0084825092002859
505 => 0.0083286788687947
506 => 0.0085005450384166
507 => 0.0080237090394697
508 => 0.0080419248167743
509 => 0.0078161830132369
510 => 0.0079425833391451
511 => 0.0078532476628659
512 => 0.0079323714419241
513 => 0.007979797908852
514 => 0.0082055026703807
515 => 0.0085465870935009
516 => 0.0081717899055988
517 => 0.0080084854036352
518 => 0.008109798598194
519 => 0.0083796089862008
520 => 0.0087883855353707
521 => 0.0085463815908674
522 => 0.0086537788319445
523 => 0.0086772403513491
524 => 0.0084987956021454
525 => 0.0087949650478048
526 => 0.0089536846598099
527 => 0.0091164981393313
528 => 0.0092578645216695
529 => 0.0090514668552653
530 => 0.0092723419442611
531 => 0.0090943556122323
601 => 0.0089346834725137
602 => 0.0089349256292399
603 => 0.0088347609635566
604 => 0.0086406793022353
605 => 0.0086048876661407
606 => 0.00879108027709
607 => 0.0089403891185654
608 => 0.0089526869098905
609 => 0.0090353519562965
610 => 0.0090842722792419
611 => 0.0095637579480612
612 => 0.0097566110505738
613 => 0.0099924281738038
614 => 0.010084292233227
615 => 0.010360770117002
616 => 0.010137491771417
617 => 0.010089184096864
618 => 0.0094185391860524
619 => 0.0095283572526275
620 => 0.0097041865730816
621 => 0.0094214385467847
622 => 0.0096007770898457
623 => 0.0096361823171557
624 => 0.009411830877046
625 => 0.0095316666748621
626 => 0.0092134183247004
627 => 0.0085535240378621
628 => 0.0087956996987868
629 => 0.0089740225006735
630 => 0.0087195338753383
701 => 0.0091756948861817
702 => 0.0089092150407216
703 => 0.0088247537229992
704 => 0.0084952400099301
705 => 0.0086507577983527
706 => 0.0088610978339946
707 => 0.0087311321466217
708 => 0.0090008304623666
709 => 0.009382795203375
710 => 0.0096550060242112
711 => 0.0096759029909798
712 => 0.0095008896698907
713 => 0.009781349633856
714 => 0.0097833924785084
715 => 0.0094670324934429
716 => 0.0092732637640901
717 => 0.0092292391010882
718 => 0.0093392213408105
719 => 0.0094727600836748
720 => 0.0096833134618263
721 => 0.0098105464585099
722 => 0.010142302634693
723 => 0.010232066343774
724 => 0.010330689445397
725 => 0.010462480323403
726 => 0.010620729062938
727 => 0.010274489829942
728 => 0.01028824656014
729 => 0.0099658333803826
730 => 0.0096212886590851
731 => 0.0098827551544441
801 => 0.010224587815696
802 => 0.010146171025513
803 => 0.010137347534708
804 => 0.01015218619881
805 => 0.010093062499865
806 => 0.0098256482007645
807 => 0.0096913544138582
808 => 0.0098646276609663
809 => 0.0099567146802992
810 => 0.010099533616453
811 => 0.01008192816803
812 => 0.010449814409927
813 => 0.010592763879225
814 => 0.010556191287826
815 => 0.010562921524812
816 => 0.010821724710821
817 => 0.011109567080597
818 => 0.011379169444039
819 => 0.011653420547822
820 => 0.011322800138008
821 => 0.011154931483737
822 => 0.011328129085166
823 => 0.011236227999915
824 => 0.011764318895399
825 => 0.01180088276322
826 => 0.012328935471721
827 => 0.012830120371436
828 => 0.012515335115585
829 => 0.012812163433613
830 => 0.013133207460329
831 => 0.013752553475378
901 => 0.013543979526365
902 => 0.013384215150191
903 => 0.013233238586683
904 => 0.013547396848489
905 => 0.013951556433502
906 => 0.014038608537121
907 => 0.014179666201448
908 => 0.014031361315119
909 => 0.014209978215455
910 => 0.014840574361882
911 => 0.014670181716691
912 => 0.014428196768536
913 => 0.014925991863042
914 => 0.015106141972615
915 => 0.01637052978694
916 => 0.01796687163178
917 => 0.017305975625871
918 => 0.016895736148022
919 => 0.016992152156327
920 => 0.017575082158481
921 => 0.017762300773899
922 => 0.017253376039065
923 => 0.017433136859104
924 => 0.018423636651214
925 => 0.018955008010643
926 => 0.018233334331843
927 => 0.01624226527403
928 => 0.014406408671569
929 => 0.014893360512242
930 => 0.014838155285384
1001 => 0.015902323744641
1002 => 0.014666117908456
1003 => 0.014686932444311
1004 => 0.01577310678033
1005 => 0.015483334089223
1006 => 0.01501393944091
1007 => 0.014409835771965
1008 => 0.013293094267093
1009 => 0.012303965173587
1010 => 0.014243875108778
1011 => 0.014160222664875
1012 => 0.014039081529506
1013 => 0.014308668017429
1014 => 0.015617703479325
1015 => 0.015587525974994
1016 => 0.015395552089138
1017 => 0.01554116258958
1018 => 0.014988413216166
1019 => 0.015130869315564
1020 => 0.014406117862503
1021 => 0.014733735787581
1022 => 0.015012932330811
1023 => 0.01506898517044
1024 => 0.015195275080252
1025 => 0.014116141628135
1026 => 0.014600640866442
1027 => 0.014885238777508
1028 => 0.013599415061551
1029 => 0.014859822176882
1030 => 0.014097356315588
1031 => 0.013838563950412
1101 => 0.01418699377682
1102 => 0.01405121033461
1103 => 0.013934471704469
1104 => 0.013869329543026
1105 => 0.014125177952743
1106 => 0.014113242318625
1107 => 0.013694624662291
1108 => 0.013148554994642
1109 => 0.013331833899231
1110 => 0.013265246954945
1111 => 0.013023927278966
1112 => 0.013186547603527
1113 => 0.012470449994422
1114 => 0.011238441277472
1115 => 0.012052343973337
1116 => 0.012021009604902
1117 => 0.012005209395436
1118 => 0.01261683477676
1119 => 0.012558041108944
1120 => 0.012451330026149
1121 => 0.013021967446246
1122 => 0.012813677111754
1123 => 0.013455578843283
1124 => 0.013878376839269
1125 => 0.013771141591405
1126 => 0.014168785150189
1127 => 0.013336056275021
1128 => 0.013612655404068
1129 => 0.013669662101215
1130 => 0.01301492586906
1201 => 0.012567660480113
1202 => 0.012537832977869
1203 => 0.011762336430401
1204 => 0.012176600426469
1205 => 0.012541135599599
1206 => 0.012366551540742
1207 => 0.012311283443258
1208 => 0.012593636167115
1209 => 0.012615577391947
1210 => 0.012115315140568
1211 => 0.012219335503874
1212 => 0.012653117710811
1213 => 0.01220840530523
1214 => 0.011344401744546
1215 => 0.011130116915713
1216 => 0.011101527369494
1217 => 0.010520369918554
1218 => 0.011144436452619
1219 => 0.010872014686556
1220 => 0.011732591781434
1221 => 0.011241034760207
1222 => 0.011219844719485
1223 => 0.011187812865029
1224 => 0.010687586639693
1225 => 0.010797104392007
1226 => 0.011161158080722
1227 => 0.011291056538213
1228 => 0.01127750706487
1229 => 0.011159374019038
1230 => 0.011213454722481
1231 => 0.011039241933725
]
'min_raw' => 0.0060955116745717
'max_raw' => 0.018955008010643
'avg_raw' => 0.012525259842607
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006095'
'max' => '$0.018955'
'avg' => '$0.012525'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0034724123540808
'max_diff' => 0.011838792322089
'year' => 2033
]
8 => [
'items' => [
101 => 0.01097772377209
102 => 0.010783555532065
103 => 0.010498181859575
104 => 0.010537864819033
105 => 0.0099724649017458
106 => 0.0096644050187628
107 => 0.0095791381033172
108 => 0.0094651156204335
109 => 0.0095920172461611
110 => 0.0099708631948188
111 => 0.009513894604086
112 => 0.0087304540078942
113 => 0.0087775401226432
114 => 0.0088833286424911
115 => 0.0086861924356156
116 => 0.0084996195601956
117 => 0.0086618295382374
118 => 0.0083298754297161
119 => 0.0089234437105764
120 => 0.008907389352035
121 => 0.0091286349011235
122 => 0.0092669842833843
123 => 0.0089481337484176
124 => 0.0088679437011371
125 => 0.0089136235965025
126 => 0.0081586366793358
127 => 0.0090669363628298
128 => 0.0090747913762107
129 => 0.0090075319827271
130 => 0.0094911735235811
131 => 0.010511808026363
201 => 0.010127804271488
202 => 0.0099791064110263
203 => 0.0096964316695902
204 => 0.010073078978988
205 => 0.01004415834224
206 => 0.0099133682550376
207 => 0.0098342660022077
208 => 0.0099800143284543
209 => 0.0098162061716605
210 => 0.0097867817255532
211 => 0.0096085015962562
212 => 0.0095448637013262
213 => 0.0094977487374176
214 => 0.009445879791575
215 => 0.0095602897611678
216 => 0.0093010217181856
217 => 0.0089883698747086
218 => 0.0089623762568633
219 => 0.0090341469211164
220 => 0.009002393744882
221 => 0.0089622242348719
222 => 0.0088855297007474
223 => 0.0088627760707922
224 => 0.0089367143296549
225 => 0.0088532423462672
226 => 0.0089764098047099
227 => 0.0089429150711798
228 => 0.0087558162124546
301 => 0.0085226217616135
302 => 0.0085205458418591
303 => 0.0084703044799409
304 => 0.0084063145516988
305 => 0.008388514017553
306 => 0.0086481686663272
307 => 0.0091856460184799
308 => 0.0090801263535093
309 => 0.0091563751255408
310 => 0.0095314436177523
311 => 0.0096506666127233
312 => 0.0095660449548443
313 => 0.009450209610303
314 => 0.0094553057775885
315 => 0.0098511502156295
316 => 0.0098758385476775
317 => 0.0099382179980049
318 => 0.010018393220106
319 => 0.0095796991418556
320 => 0.009434643325954
321 => 0.0093659078329895
322 => 0.0091542291186425
323 => 0.0093825064641043
324 => 0.0092494990307142
325 => 0.0092674462776595
326 => 0.009255758109542
327 => 0.0092621406396846
328 => 0.008923277796145
329 => 0.0090467416062241
330 => 0.0088414590757678
331 => 0.0085666088115322
401 => 0.0085656874170716
402 => 0.0086329566298631
403 => 0.0085929422698501
404 => 0.0084852646559185
405 => 0.0085005597527535
406 => 0.0083665586102218
407 => 0.0085168299176258
408 => 0.0085211391610256
409 => 0.0084632765223416
410 => 0.0086947902048419
411 => 0.0087896415494594
412 => 0.0087515551211398
413 => 0.0087869693041179
414 => 0.0090845111719816
415 => 0.0091330234791052
416 => 0.0091545694413864
417 => 0.0091257007062226
418 => 0.0087924078232571
419 => 0.0088071907798874
420 => 0.0086987232527802
421 => 0.0086070796224009
422 => 0.0086107448870086
423 => 0.0086578616258615
424 => 0.0088636231877926
425 => 0.0092966362645699
426 => 0.0093130687943051
427 => 0.009332985499715
428 => 0.009251974249479
429 => 0.0092275404812346
430 => 0.0092597749284397
501 => 0.0094223918733312
502 => 0.0098406868056623
503 => 0.0096928334395973
504 => 0.0095726263515117
505 => 0.009678080375361
506 => 0.0096618465549654
507 => 0.0095248167736868
508 => 0.0095209708041182
509 => 0.0092579668427734
510 => 0.0091607402665746
511 => 0.0090794904622199
512 => 0.0089907677969444
513 => 0.0089381700269584
514 => 0.0090189841069158
515 => 0.0090374672431662
516 => 0.0088607658449508
517 => 0.0088366820973082
518 => 0.0089809802734554
519 => 0.0089174800261112
520 => 0.0089827916052351
521 => 0.0089979444518242
522 => 0.0089955044945237
523 => 0.0089292029433394
524 => 0.0089714615749235
525 => 0.0088715073133226
526 => 0.0087628220664763
527 => 0.0086934876503185
528 => 0.0086329841763451
529 => 0.0086665550201881
530 => 0.0085468810916818
531 => 0.0085085949933923
601 => 0.0089571453013921
602 => 0.0092884942366401
603 => 0.009283676291893
604 => 0.0092543482923199
605 => 0.0092107728339217
606 => 0.0094192040571346
607 => 0.0093465907866811
608 => 0.0093994230079778
609 => 0.0094128710256592
610 => 0.0094535741248969
611 => 0.0094681219843247
612 => 0.0094241482489957
613 => 0.0092765670222919
614 => 0.0089088086369481
615 => 0.0087376161158258
616 => 0.0086811197324184
617 => 0.0086831732686534
618 => 0.008626527571904
619 => 0.0086432122682788
620 => 0.0086207253154028
621 => 0.0085781404668338
622 => 0.00866392552579
623 => 0.0086738114546915
624 => 0.008653788196876
625 => 0.0086585043989441
626 => 0.0084927203762771
627 => 0.0085053245754565
628 => 0.0084351427927615
629 => 0.0084219845545602
630 => 0.0082445711193339
701 => 0.0079302575023419
702 => 0.0081044177573165
703 => 0.0078940566599449
704 => 0.0078143897248795
705 => 0.0081915206047287
706 => 0.0081536671243742
707 => 0.0080888784205196
708 => 0.0079930424243698
709 => 0.0079574959211651
710 => 0.0077415266203492
711 => 0.0077287660019056
712 => 0.0078358062190516
713 => 0.0077864108418677
714 => 0.0077170410248093
715 => 0.0074657905793292
716 => 0.0071833018924459
717 => 0.0071918284502424
718 => 0.0072816828456511
719 => 0.007542946618818
720 => 0.0074408663427325
721 => 0.0073668059311963
722 => 0.0073529366423633
723 => 0.0075265398294305
724 => 0.0077722247101226
725 => 0.007887494559254
726 => 0.0077732656395622
727 => 0.007642045607142
728 => 0.0076500323625004
729 => 0.0077031646677699
730 => 0.0077087481218034
731 => 0.0076233373703352
801 => 0.0076473799965771
802 => 0.0076108570488117
803 => 0.0073867157857917
804 => 0.0073826617811033
805 => 0.0073276539003921
806 => 0.0073259882836257
807 => 0.007232406156177
808 => 0.0072193133696442
809 => 0.0070335003755657
810 => 0.0071558030509617
811 => 0.0070737688374847
812 => 0.0069501239278602
813 => 0.0069288074988363
814 => 0.0069281667012395
815 => 0.007055122376928
816 => 0.0071543194999741
817 => 0.00707519585775
818 => 0.007057180938163
819 => 0.0072495331484798
820 => 0.0072250545763877
821 => 0.0072038562908257
822 => 0.007750226323752
823 => 0.0073177318089055
824 => 0.0071291395145086
825 => 0.006895720737487
826 => 0.0069717230682849
827 => 0.0069877378760905
828 => 0.0064264077942506
829 => 0.0061986762499574
830 => 0.0061205273658381
831 => 0.0060755515781645
901 => 0.0060960476093778
902 => 0.0058910625092679
903 => 0.0060288158866824
904 => 0.0058513161169464
905 => 0.0058215577029159
906 => 0.0061389492792059
907 => 0.006183112462872
908 => 0.0059946986009269
909 => 0.0061156908017291
910 => 0.0060718173478008
911 => 0.0058543588410433
912 => 0.0058460535256016
913 => 0.0057369404909468
914 => 0.0055661997201589
915 => 0.0054881666063223
916 => 0.0054475262831216
917 => 0.0054642952725383
918 => 0.0054558163583497
919 => 0.0054004857079104
920 => 0.0054589878464652
921 => 0.0053095390572103
922 => 0.0052500273451383
923 => 0.0052231472854566
924 => 0.0050905028830416
925 => 0.0053015991145174
926 => 0.0053431877314384
927 => 0.0053848582907821
928 => 0.0057475720601698
929 => 0.0057294519052697
930 => 0.0058932492806936
1001 => 0.0058868844158887
1002 => 0.0058401667510762
1003 => 0.0056430726079153
1004 => 0.0057216308205139
1005 => 0.0054798408527921
1006 => 0.005661006336729
1007 => 0.0055783299755117
1008 => 0.0056330533758365
1009 => 0.0055346557678424
1010 => 0.005589113066844
1011 => 0.0053530499353463
1012 => 0.0051326175046517
1013 => 0.005221325949587
1014 => 0.0053177621742729
1015 => 0.005526860480885
1016 => 0.0054023232544904
1017 => 0.0054471115503758
1018 => 0.0052970782566299
1019 => 0.0049875167167405
1020 => 0.004989268801438
1021 => 0.0049416495026908
1022 => 0.0049004994760417
1023 => 0.0054166278530506
1024 => 0.0053524391305873
1025 => 0.0052501628021544
1026 => 0.0053870637320616
1027 => 0.0054232625108389
1028 => 0.0054242930391812
1029 => 0.0055241724237171
1030 => 0.0055774780691482
1031 => 0.0055868734201954
1101 => 0.0057440357897994
1102 => 0.0057967145430689
1103 => 0.0060136908724098
1104 => 0.0055729554575592
1105 => 0.0055638788017244
1106 => 0.0053889902088941
1107 => 0.0052780730984419
1108 => 0.0053965847983405
1109 => 0.0055015699859904
1110 => 0.0053922523913195
1111 => 0.0054065269613631
1112 => 0.0052597770220931
1113 => 0.0053122332201557
1114 => 0.0053574155645402
1115 => 0.0053324685296665
1116 => 0.0052951216110105
1117 => 0.0054929623978384
1118 => 0.0054817994453012
1119 => 0.0056660333343354
1120 => 0.0058096568255293
1121 => 0.0060670557975187
1122 => 0.0057984465517358
1123 => 0.0057886573631945
1124 => 0.0058843482514217
1125 => 0.0057966998932925
1126 => 0.0058520906301117
1127 => 0.0060581314934797
1128 => 0.0060624848122477
1129 => 0.0059895611139489
1130 => 0.0059851237002801
1201 => 0.0059991294942362
1202 => 0.0060811618669004
1203 => 0.0060524972352913
1204 => 0.006085668672689
1205 => 0.0061271500630939
1206 => 0.0062987346815535
1207 => 0.0063401031521671
1208 => 0.0062395992156689
1209 => 0.0062486735958398
1210 => 0.0062110823646947
1211 => 0.0061747697064253
1212 => 0.0062563952591771
1213 => 0.0064055675611852
1214 => 0.0064046395680365
1215 => 0.0064392446426072
1216 => 0.0064608033173808
1217 => 0.0063682577033379
1218 => 0.0063080139115926
1219 => 0.0063311152147598
1220 => 0.0063680547016051
1221 => 0.0063191362370338
1222 => 0.0060171888124625
1223 => 0.0061087803726012
1224 => 0.0060935350583957
1225 => 0.0060718238770734
1226 => 0.0061639198990495
1227 => 0.0061550370130602
1228 => 0.0058889600907856
1229 => 0.0059059934720652
1230 => 0.0058899959471176
1231 => 0.005941687223009
]
'min_raw' => 0.0049004994760417
'max_raw' => 0.01097772377209
'avg_raw' => 0.0079391116240658
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00490049'
'max' => '$0.010977'
'avg' => '$0.007939'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00119501219853
'max_diff' => -0.0079772842385526
'year' => 2034
]
9 => [
'items' => [
101 => 0.0057939083947581
102 => 0.0058393641670225
103 => 0.0058678736012653
104 => 0.0058846658770541
105 => 0.0059453310917746
106 => 0.0059382127290225
107 => 0.0059448886043513
108 => 0.006034839102759
109 => 0.0064897778564212
110 => 0.0065145391690173
111 => 0.0063926054097697
112 => 0.0064413155415521
113 => 0.0063478027402648
114 => 0.0064105785102502
115 => 0.0064535280977426
116 => 0.0062594471705952
117 => 0.0062479549576643
118 => 0.0061540561957818
119 => 0.0062045120717197
120 => 0.0061242331451965
121 => 0.0061439307857277
122 => 0.0060888544655932
123 => 0.0061879808762494
124 => 0.0062988196060499
125 => 0.0063268218463516
126 => 0.0062531600078403
127 => 0.0061998239822064
128 => 0.0061061834911723
129 => 0.0062619097146764
130 => 0.0063074488080997
131 => 0.0062616705172053
201 => 0.0062510626869296
202 => 0.0062309608677252
203 => 0.0062553273829013
204 => 0.0063072007924169
205 => 0.0062827382504408
206 => 0.0062988961903905
207 => 0.0062373187852974
208 => 0.006368288339787
209 => 0.0065762995118561
210 => 0.0065769683017876
211 => 0.0065525056279493
212 => 0.0065424960288703
213 => 0.0065675962167476
214 => 0.0065812120390074
215 => 0.0066623814440154
216 => 0.0067494794495206
217 => 0.0071559278373768
218 => 0.0070417987564963
219 => 0.0074024239459251
220 => 0.0076876316494431
221 => 0.0077731529691068
222 => 0.0076944773791052
223 => 0.0074253324356817
224 => 0.0074121269007336
225 => 0.0078143430762724
226 => 0.0077006985840148
227 => 0.0076871809332745
228 => 0.0075433759678295
301 => 0.007628382512999
302 => 0.0076097903345996
303 => 0.0075804416714357
304 => 0.0077426282380119
305 => 0.0080462270121478
306 => 0.0079989082960674
307 => 0.0079635870695655
308 => 0.0078088197368886
309 => 0.0079020242396953
310 => 0.0078688359014605
311 => 0.0080114340643571
312 => 0.0079269620715932
313 => 0.0076998376152135
314 => 0.007736007933504
315 => 0.0077305408626589
316 => 0.0078430527932487
317 => 0.0078092795044035
318 => 0.00772394608597
319 => 0.0080451893445432
320 => 0.0080243295941803
321 => 0.008053903950992
322 => 0.0080669234974779
323 => 0.0082624586080303
324 => 0.0083425630863979
325 => 0.0083607482054136
326 => 0.0084368412643602
327 => 0.0083588549407879
328 => 0.0086708558383836
329 => 0.0088783182295277
330 => 0.0091192964727585
331 => 0.0094714304549643
401 => 0.0096038360896952
402 => 0.0095799181968979
403 => 0.0098469021633568
404 => 0.010326666416363
405 => 0.0096768922694155
406 => 0.010361106023926
407 => 0.010144491848876
408 => 0.0096309035365538
409 => 0.0095978345040487
410 => 0.0099456424720361
411 => 0.010717047069756
412 => 0.010523818967226
413 => 0.01071736312171
414 => 0.010491583584801
415 => 0.010480371727774
416 => 0.010706397513551
417 => 0.011234519082044
418 => 0.010983628321194
419 => 0.010623914894577
420 => 0.01088952169103
421 => 0.010659428503194
422 => 0.010140964151971
423 => 0.010523671209337
424 => 0.010267765898946
425 => 0.010342452673193
426 => 0.010880327572593
427 => 0.010815609041657
428 => 0.010899360813463
429 => 0.01075154112839
430 => 0.010613454233508
501 => 0.010355704789742
502 => 0.010279397886338
503 => 0.010300486369204
504 => 0.010279387435933
505 => 0.010135178990986
506 => 0.010104037191029
507 => 0.010052132826749
508 => 0.010068220159604
509 => 0.009970624769599
510 => 0.010154807434774
511 => 0.010188993360443
512 => 0.010323026144598
513 => 0.010336941872885
514 => 0.010710221268919
515 => 0.010504625250289
516 => 0.010642556809892
517 => 0.010630218912939
518 => 0.0096420345526178
519 => 0.0097781976386457
520 => 0.0099900246701748
521 => 0.0098945968795957
522 => 0.0097596843103809
523 => 0.0096507351771856
524 => 0.0094856660997738
525 => 0.00971799765636
526 => 0.010023488947564
527 => 0.010344689636168
528 => 0.010730591217622
529 => 0.010644462477031
530 => 0.01033747547453
531 => 0.010351246687208
601 => 0.010436374905211
602 => 0.010326126128183
603 => 0.010293611611525
604 => 0.010431907909917
605 => 0.010432860280518
606 => 0.010306005738537
607 => 0.010165030129261
608 => 0.010164439436311
609 => 0.010139354188303
610 => 0.010496046194694
611 => 0.01069219073258
612 => 0.010714678387746
613 => 0.010690677134215
614 => 0.010699914264124
615 => 0.010585782079278
616 => 0.010846654408987
617 => 0.011086056656328
618 => 0.011021891739958
619 => 0.010925699408738
620 => 0.010849077583672
621 => 0.011003842073049
622 => 0.010996950653959
623 => 0.011083965686548
624 => 0.011080018182046
625 => 0.011050758299388
626 => 0.011021892784921
627 => 0.011136341286973
628 => 0.011103381956368
629 => 0.01107037143082
630 => 0.011004163768174
701 => 0.011013162489121
702 => 0.010916986766863
703 => 0.010872491477045
704 => 0.010203389077313
705 => 0.010024583052553
706 => 0.010080839067874
707 => 0.010099360008805
708 => 0.010021543397683
709 => 0.010133112428585
710 => 0.0101157245133
711 => 0.010183370720084
712 => 0.010141108306942
713 => 0.010142842771119
714 => 0.010267127516873
715 => 0.01030320790731
716 => 0.010284857129529
717 => 0.010297709385259
718 => 0.010593884193957
719 => 0.010551777607298
720 => 0.01052940932235
721 => 0.010535605490148
722 => 0.01061128450383
723 => 0.01063247049574
724 => 0.010542703959304
725 => 0.010585038376821
726 => 0.010765292953572
727 => 0.01082837185391
728 => 0.011029689424197
729 => 0.010944166142204
730 => 0.011101147827663
731 => 0.01158365600976
801 => 0.011969116932646
802 => 0.011614631138114
803 => 0.012322481034842
804 => 0.012873643714481
805 => 0.012852489172827
806 => 0.01275638121101
807 => 0.012128897153658
808 => 0.011551476968823
809 => 0.012034513471993
810 => 0.012035744831377
811 => 0.011994251567371
812 => 0.011736540468246
813 => 0.011985283779743
814 => 0.012005028120506
815 => 0.011993976540123
816 => 0.011796390044659
817 => 0.011494711986174
818 => 0.011553659156686
819 => 0.011650215824476
820 => 0.011467413908519
821 => 0.011408997620012
822 => 0.0115176046145
823 => 0.011867558979906
824 => 0.011801402134274
825 => 0.011799674511673
826 => 0.012082721552157
827 => 0.011880120956545
828 => 0.011554402669281
829 => 0.011472154506051
830 => 0.011180228935584
831 => 0.011381862966909
901 => 0.011389119416734
902 => 0.011278686518427
903 => 0.011563363690349
904 => 0.011560740340093
905 => 0.011830998946227
906 => 0.012347631896658
907 => 0.012194838111252
908 => 0.012017155562741
909 => 0.012036474582367
910 => 0.012248356544258
911 => 0.012120247873304
912 => 0.012166316644585
913 => 0.012248286813655
914 => 0.012297741451861
915 => 0.012029358820993
916 => 0.011966785991513
917 => 0.011838783942475
918 => 0.011805390597152
919 => 0.011909645595243
920 => 0.01188217808663
921 => 0.011388509540225
922 => 0.011336918430379
923 => 0.011338500656063
924 => 0.011208772357334
925 => 0.011010905563413
926 => 0.011530887683825
927 => 0.011489125842411
928 => 0.0114430240016
929 => 0.011448671214046
930 => 0.011674377828688
1001 => 0.011543456593738
1002 => 0.01189153215442
1003 => 0.011819978283253
1004 => 0.011746589325288
1005 => 0.011736444735815
1006 => 0.01170819624825
1007 => 0.01161132167359
1008 => 0.01149433980343
1009 => 0.011417098239954
1010 => 0.010531669620828
1011 => 0.010696000022236
1012 => 0.010885047169869
1013 => 0.010950305487673
1014 => 0.010838676619332
1015 => 0.011615729461699
1016 => 0.011757704503867
1017 => 0.011327652840337
1018 => 0.011247207732984
1019 => 0.011621003429544
1020 => 0.011395558929853
1021 => 0.01149707657426
1022 => 0.011277650954235
1023 => 0.011723506873723
1024 => 0.011720110198629
1025 => 0.011546662175836
1026 => 0.01169325925698
1027 => 0.011667784406554
1028 => 0.011471962016004
1029 => 0.011729714792785
1030 => 0.011729842634947
1031 => 0.011562902684093
1101 => 0.011367953369351
1102 => 0.011333101036372
1103 => 0.011306844485225
1104 => 0.011490619072233
1105 => 0.011655390792297
1106 => 0.011961990112961
1107 => 0.012039076466796
1108 => 0.012339949637744
1109 => 0.012160794313694
1110 => 0.012240211548395
1111 => 0.012326430190918
1112 => 0.012367766578729
1113 => 0.012300411153024
1114 => 0.012767791031844
1115 => 0.012807252213766
1116 => 0.012820483206726
1117 => 0.012662885341271
1118 => 0.012802869132035
1119 => 0.012737375352113
1120 => 0.012907771972775
1121 => 0.012934492338628
1122 => 0.012911861139355
1123 => 0.012920342605229
1124 => 0.012521516330116
1125 => 0.012500835083776
1126 => 0.012218844822445
1127 => 0.012333757938304
1128 => 0.012118933376134
1129 => 0.012187056457736
1130 => 0.012217084463006
1201 => 0.012201399537128
1202 => 0.01234025495346
1203 => 0.01222219948329
1204 => 0.011910631687394
1205 => 0.011598979005061
1206 => 0.011595066459501
1207 => 0.01151301380937
1208 => 0.011453704772017
1209 => 0.011465129796712
1210 => 0.011505393073928
1211 => 0.011451364597151
1212 => 0.011462894311984
1213 => 0.011654364400312
1214 => 0.011692762361024
1215 => 0.011562271087473
1216 => 0.011038329794366
1217 => 0.01090975328683
1218 => 0.011002171530664
1219 => 0.010958001562608
1220 => 0.0088439624979812
1221 => 0.0093406246182306
1222 => 0.0090455248514303
1223 => 0.0091815204008593
1224 => 0.0088802999546704
1225 => 0.009024058139908
1226 => 0.008997511252303
1227 => 0.0097961292443635
1228 => 0.0097836599228806
1229 => 0.0097896283272127
1230 => 0.009504740837849
1231 => 0.0099585743439436
]
'min_raw' => 0.0057939083947581
'max_raw' => 0.012934492338628
'avg_raw' => 0.0093642003666929
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005793'
'max' => '$0.012934'
'avg' => '$0.009364'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0008934089187164
'max_diff' => 0.0019567685665379
'year' => 2035
]
10 => [
'items' => [
101 => 0.010182149048371
102 => 0.010140771320829
103 => 0.010151185203403
104 => 0.009972240197938
105 => 0.00979136090602
106 => 0.0095907379341594
107 => 0.0099634706181276
108 => 0.0099220291064294
109 => 0.01001708102408
110 => 0.010258824813116
111 => 0.010294422504346
112 => 0.010342266162357
113 => 0.010325117616704
114 => 0.010733665546303
115 => 0.010684187696343
116 => 0.010803415078999
117 => 0.010558155307072
118 => 0.010280620594866
119 => 0.010333370870363
120 => 0.010328290594642
121 => 0.01026361285384
122 => 0.010205224681382
123 => 0.010108024825005
124 => 0.010415579553454
125 => 0.01040309339314
126 => 0.010605229815053
127 => 0.010569500239031
128 => 0.01033088938585
129 => 0.010339411419151
130 => 0.010396726188653
131 => 0.010595093260309
201 => 0.010653982113036
202 => 0.010626702450138
203 => 0.010691271388775
204 => 0.010742304045186
205 => 0.010697680304708
206 => 0.011329458366745
207 => 0.011067100067974
208 => 0.011194971677318
209 => 0.011225468302683
210 => 0.011147351838085
211 => 0.011164292502115
212 => 0.011189952992067
213 => 0.011345758462213
214 => 0.011754637098552
215 => 0.011935726663255
216 => 0.012480543553468
217 => 0.011920689695795
218 => 0.011887470284786
219 => 0.011985608258608
220 => 0.012305473447887
221 => 0.012564694140389
222 => 0.012650692598892
223 => 0.012662058714863
224 => 0.012823397540084
225 => 0.01291587394591
226 => 0.01280380676307
227 => 0.012708841559536
228 => 0.012368687987992
229 => 0.012408061690106
301 => 0.012679307452647
302 => 0.013062458068532
303 => 0.013391241156989
304 => 0.013276112778659
305 => 0.014154461037348
306 => 0.014241545679467
307 => 0.014229513397709
308 => 0.014427905172387
309 => 0.014034137901434
310 => 0.013865794764221
311 => 0.012729374114441
312 => 0.013048661963033
313 => 0.01351276560208
314 => 0.013451339745153
315 => 0.013114295276951
316 => 0.013390985478536
317 => 0.01329950304499
318 => 0.013227347054042
319 => 0.013557907636701
320 => 0.013194442697387
321 => 0.013509139761274
322 => 0.013105537521715
323 => 0.013276638675393
324 => 0.013179513385334
325 => 0.01324236535123
326 => 0.012874934042876
327 => 0.013073191057973
328 => 0.012866685899239
329 => 0.012866587988906
330 => 0.012862029376082
331 => 0.013104981779548
401 => 0.013112904448703
402 => 0.01293336225546
403 => 0.012907487420438
404 => 0.013003160247066
405 => 0.012891152423838
406 => 0.012943560179357
407 => 0.012892739801364
408 => 0.012881299063836
409 => 0.012790137320738
410 => 0.012750862335267
411 => 0.012766263069062
412 => 0.012713692424997
413 => 0.012682016710385
414 => 0.012855728279179
415 => 0.012762921195477
416 => 0.012841504262561
417 => 0.012751948939645
418 => 0.012441511173023
419 => 0.012262975130619
420 => 0.011676586967066
421 => 0.011842885922837
422 => 0.011953142302562
423 => 0.011916702569721
424 => 0.011994989216169
425 => 0.011999795380443
426 => 0.011974343593645
427 => 0.011944873685108
428 => 0.011930529363421
429 => 0.012037440185196
430 => 0.01209950551569
501 => 0.011964208005308
502 => 0.011932509691638
503 => 0.012069302944615
504 => 0.012152746749908
505 => 0.012768848925166
506 => 0.012723206086039
507 => 0.012837760655293
508 => 0.012824863568778
509 => 0.01294493500733
510 => 0.013141201063387
511 => 0.012742137294572
512 => 0.012811400966251
513 => 0.012794419113487
514 => 0.012979822529084
515 => 0.01298040133831
516 => 0.012869242729072
517 => 0.012929503614482
518 => 0.012895867641417
519 => 0.01295665239092
520 => 0.012722596498096
521 => 0.013007651310784
522 => 0.013169259021051
523 => 0.013171502944265
524 => 0.013248103716334
525 => 0.013325934537174
526 => 0.013475324020139
527 => 0.013321768145575
528 => 0.013045536075597
529 => 0.013065479138825
530 => 0.012903524377267
531 => 0.012906246866068
601 => 0.012891714007482
602 => 0.012935328210083
603 => 0.012732167362927
604 => 0.012779848807683
605 => 0.012713094505803
606 => 0.012811255855436
607 => 0.012705650469883
608 => 0.012794410924323
609 => 0.012832716994004
610 => 0.012974067215797
611 => 0.012684772927196
612 => 0.012094882289238
613 => 0.01221888445307
614 => 0.012035475512603
615 => 0.012052450708331
616 => 0.012086743305282
617 => 0.011975589778723
618 => 0.01199679436874
619 => 0.01199603679157
620 => 0.011989508400797
621 => 0.011960593075586
622 => 0.011918660133308
623 => 0.012085708069066
624 => 0.012114092768494
625 => 0.012177188439203
626 => 0.012364918357028
627 => 0.012346159711261
628 => 0.012376755840796
629 => 0.012309964661811
630 => 0.012055548959562
701 => 0.012069364956225
702 => 0.011897079256451
703 => 0.012172782706508
704 => 0.012107492490427
705 => 0.012065399463381
706 => 0.012053913990963
707 => 0.012242109254944
708 => 0.012298420227526
709 => 0.012263331008301
710 => 0.012191361995956
711 => 0.012329563775388
712 => 0.012366540741299
713 => 0.012374818520308
714 => 0.012619685575899
715 => 0.012388503868582
716 => 0.012444151603282
717 => 0.012878299344063
718 => 0.012484587251467
719 => 0.012693145327742
720 => 0.012682937495193
721 => 0.012789628749794
722 => 0.012674185698231
723 => 0.012675616753212
724 => 0.012770351359407
725 => 0.012637313690483
726 => 0.012604371692744
727 => 0.012558862558803
728 => 0.012658230087845
729 => 0.012717796427498
730 => 0.013197857378451
731 => 0.013507998646205
801 => 0.013494534595832
802 => 0.013617570812592
803 => 0.013562141870059
804 => 0.013383147193204
805 => 0.013688669280519
806 => 0.013591989308506
807 => 0.013599959487933
808 => 0.013599662837456
809 => 0.013663946566935
810 => 0.013618395653082
811 => 0.013528610126172
812 => 0.01358821394905
813 => 0.013765215994241
814 => 0.014314635773601
815 => 0.014622098360975
816 => 0.01429612613978
817 => 0.014520977413018
818 => 0.014386146771776
819 => 0.014361644033398
820 => 0.01450286724937
821 => 0.014644337657887
822 => 0.014635326604458
823 => 0.014532626352461
824 => 0.01447461358603
825 => 0.014913905689147
826 => 0.015237568627578
827 => 0.015215496985041
828 => 0.015312914037118
829 => 0.015598933515009
830 => 0.015625083551555
831 => 0.015621789248002
901 => 0.01555697365395
902 => 0.015838596974257
903 => 0.016073532102748
904 => 0.015541970716629
905 => 0.015744382333814
906 => 0.015835251430063
907 => 0.015968674223002
908 => 0.016193780838948
909 => 0.016438306330447
910 => 0.01647288491603
911 => 0.016448349754821
912 => 0.01628707861998
913 => 0.016554641330573
914 => 0.016711373291321
915 => 0.016804703587199
916 => 0.017041373688866
917 => 0.015835812606666
918 => 0.014982456552411
919 => 0.014849192681928
920 => 0.015120190002898
921 => 0.015191649835274
922 => 0.015162844466446
923 => 0.014202314643644
924 => 0.014844135691197
925 => 0.015534681172518
926 => 0.015561207836791
927 => 0.015906909343365
928 => 0.016019483924689
929 => 0.016297818949613
930 => 0.016280409018022
1001 => 0.016348179167313
1002 => 0.016332599983607
1003 => 0.016848157006925
1004 => 0.017416892964604
1005 => 0.017397199446859
1006 => 0.017315436923964
1007 => 0.017436868213045
1008 => 0.018023864670819
1009 => 0.017969823443414
1010 => 0.018022319892617
1011 => 0.018714421798003
1012 => 0.019614252725353
1013 => 0.019196190918051
1014 => 0.020103264745852
1015 => 0.020674219638535
1016 => 0.021661627087593
1017 => 0.021537998811887
1018 => 0.021922389285874
1019 => 0.021316678396373
1020 => 0.019925843759709
1021 => 0.019705738854556
1022 => 0.020146394448617
1023 => 0.02122970322807
1024 => 0.020112277199983
1025 => 0.020338331030126
1026 => 0.020273227511838
1027 => 0.02026975842202
1028 => 0.020402159470545
1029 => 0.020210104844085
1030 => 0.019427639745922
1031 => 0.019786238889315
1101 => 0.019647766538706
1102 => 0.019801411935504
1103 => 0.020630572773843
1104 => 0.020263981002488
1105 => 0.019877806350862
1106 => 0.020362155063016
1107 => 0.020978897413863
1108 => 0.020940302785939
1109 => 0.020865413076465
1110 => 0.021287562447675
1111 => 0.021984829530752
1112 => 0.022173298021462
1113 => 0.022312421608236
1114 => 0.02233160440034
1115 => 0.022529199081048
1116 => 0.02146668268261
1117 => 0.023152923494287
1118 => 0.023444090701001
1119 => 0.023389363333783
1120 => 0.023712983429857
1121 => 0.023617766188142
1122 => 0.023479811344026
1123 => 0.023992818032271
1124 => 0.023404697261703
1125 => 0.022569933870227
1126 => 0.022111966163916
1127 => 0.022715054982788
1128 => 0.023083340279574
1129 => 0.023326753433405
1130 => 0.02340041010668
1201 => 0.021549162806024
1202 => 0.020551443185853
1203 => 0.021190970023504
1204 => 0.021971236903223
1205 => 0.021462348260696
1206 => 0.02148229573203
1207 => 0.02075675426137
1208 => 0.022035431224187
1209 => 0.021849138746071
1210 => 0.022815624452085
1211 => 0.022584964881812
1212 => 0.023373096456307
1213 => 0.023165554999577
1214 => 0.024027047982977
1215 => 0.024370720858046
1216 => 0.0249478011037
1217 => 0.025372303681542
1218 => 0.025621579714691
1219 => 0.025606614116672
1220 => 0.026594369948835
1221 => 0.026011924844169
1222 => 0.025280236520936
1223 => 0.025267002587616
1224 => 0.025645954338322
1225 => 0.026440133247465
1226 => 0.026646052283773
1227 => 0.026761132933078
1228 => 0.026584882912682
1229 => 0.025952680495783
1230 => 0.025679698697505
1231 => 0.025912287098682
]
'min_raw' => 0.0095907379341594
'max_raw' => 0.026761132933078
'avg_raw' => 0.018175935433619
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.00959'
'max' => '$0.026761'
'avg' => '$0.018175'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0037968295394014
'max_diff' => 0.01382664059445
'year' => 2036
]
11 => [
'items' => [
101 => 0.025627851470592
102 => 0.026118867163217
103 => 0.026793136584484
104 => 0.026653902615343
105 => 0.027119340899059
106 => 0.02760102055717
107 => 0.028289844101856
108 => 0.028469928083499
109 => 0.028767600057175
110 => 0.029074002298236
111 => 0.029172410440293
112 => 0.029360302117733
113 => 0.029359311835847
114 => 0.029925536052381
115 => 0.030550098897722
116 => 0.030785856913175
117 => 0.031327969469936
118 => 0.030399620714372
119 => 0.03110378390957
120 => 0.031738956737986
121 => 0.030981677506846
122 => 0.032025410503541
123 => 0.032065936290653
124 => 0.032677827561611
125 => 0.032057558534312
126 => 0.03168924476587
127 => 0.032752552814824
128 => 0.033267054085823
129 => 0.033112082115848
130 => 0.031932737772427
131 => 0.031246308780098
201 => 0.029449791704907
202 => 0.031577843784232
203 => 0.032614355875941
204 => 0.031930053456512
205 => 0.032275175793378
206 => 0.034158051357021
207 => 0.034874928464492
208 => 0.034725823037488
209 => 0.034751019400167
210 => 0.035137833275119
211 => 0.036853179018945
212 => 0.035825304087841
213 => 0.036611075958931
214 => 0.037027846526046
215 => 0.037414966255658
216 => 0.036464322550178
217 => 0.035227549057076
218 => 0.034835810975592
219 => 0.031862013067027
220 => 0.031707213971336
221 => 0.031620320548033
222 => 0.031072469805421
223 => 0.030642009190676
224 => 0.030299690927853
225 => 0.02940134558132
226 => 0.029704510764571
227 => 0.028272735781441
228 => 0.029188734676657
301 => 0.026903587232167
302 => 0.028806725927462
303 => 0.027770934060711
304 => 0.028466440441701
305 => 0.028464013885458
306 => 0.027183366127557
307 => 0.026444715227236
308 => 0.026915412329644
309 => 0.027420036987407
310 => 0.027501910640368
311 => 0.028156169681209
312 => 0.028338759316257
313 => 0.027785504197767
314 => 0.026856232630605
315 => 0.027072081221229
316 => 0.026440341062436
317 => 0.025333240733686
318 => 0.026128379517912
319 => 0.026399874858631
320 => 0.026519782667841
321 => 0.025431076645847
322 => 0.025088981576779
323 => 0.024906853032463
324 => 0.026715694354551
325 => 0.026814786765403
326 => 0.026307815981227
327 => 0.028599371998644
328 => 0.028080722295931
329 => 0.028660181086124
330 => 0.027052495224048
331 => 0.027113910989015
401 => 0.0263528067376
402 => 0.026778974261388
403 => 0.026477772791595
404 => 0.026744544136935
405 => 0.026904445781393
406 => 0.02766542514309
407 => 0.028815415089394
408 => 0.027551760202878
409 => 0.027001167672952
410 => 0.027342752181868
411 => 0.028252436742593
412 => 0.029630655417986
413 => 0.028814722222917
414 => 0.029176819519445
415 => 0.029255921670149
416 => 0.028654282739594
417 => 0.029652838703525
418 => 0.030187972956849
419 => 0.03073690997033
420 => 0.031213536598269
421 => 0.030517652455762
422 => 0.031262348239318
423 => 0.030662254894274
424 => 0.03012390912726
425 => 0.030124725575569
426 => 0.029787013411944
427 => 0.02913265354045
428 => 0.029011979540465
429 => 0.029639740927834
430 => 0.030143146111278
501 => 0.030184608973335
502 => 0.030463319948783
503 => 0.030628258233101
504 => 0.032244877642145
505 => 0.03289509534184
506 => 0.033690169237036
507 => 0.033999895327124
508 => 0.034932059815341
509 => 0.034179261284407
510 => 0.034016388586915
511 => 0.031755262447182
512 => 0.032125521725893
513 => 0.032718342555815
514 => 0.031765037844318
515 => 0.032369690263266
516 => 0.032489061459055
517 => 0.031732644915008
518 => 0.032136679674013
519 => 0.031063683142053
520 => 0.02883880348163
521 => 0.029655315630602
522 => 0.030256543407263
523 => 0.029398517239118
524 => 0.030936495935321
525 => 0.030038040531323
526 => 0.029753273301721
527 => 0.028642294812196
528 => 0.029166633893768
529 => 0.029875810009407
530 => 0.029437621620515
531 => 0.030346928321784
601 => 0.031634749114021
602 => 0.032552526901622
603 => 0.032622982484062
604 => 0.03203291285297
605 => 0.032978503202569
606 => 0.032985390795941
607 => 0.031918761018744
608 => 0.03126545621923
609 => 0.031117023994216
610 => 0.031487836794154
611 => 0.031938071989098
612 => 0.032647967403904
613 => 0.033076942335347
614 => 0.034195481445826
615 => 0.034498126058092
616 => 0.034830640730859
617 => 0.035274982877404
618 => 0.035808529551318
619 => 0.034641159803622
620 => 0.034687541579947
621 => 0.033600503034227
622 => 0.032438846451028
623 => 0.033320398995139
624 => 0.034472911678543
625 => 0.034208523995557
626 => 0.03417877498027
627 => 0.034228804572293
628 => 0.034029464893416
629 => 0.033127858913728
630 => 0.032675078035081
701 => 0.033259280885257
702 => 0.033569758700249
703 => 0.034051282714789
704 => 0.033991924716258
705 => 0.035232278865811
706 => 0.035714242981965
707 => 0.035590935936646
708 => 0.035613627400534
709 => 0.036486200411224
710 => 0.037456681057437
711 => 0.038365664248817
712 => 0.039290320992824
713 => 0.038175611197956
714 => 0.037609630309864
715 => 0.038193578115352
716 => 0.0378837271901
717 => 0.039664222514353
718 => 0.039787500147519
719 => 0.041567866721695
720 => 0.043257646602696
721 => 0.04219632613499
722 => 0.043197103533113
723 => 0.044279525883761
724 => 0.046367694214859
725 => 0.045664472583593
726 => 0.045125815834931
727 => 0.044616787810216
728 => 0.045675994323724
729 => 0.047038646582116
730 => 0.047332148827253
731 => 0.047807734590861
801 => 0.047307714312287
802 => 0.047909933662402
803 => 0.050036032596899
804 => 0.049461541897203
805 => 0.048645672749647
806 => 0.05032402366572
807 => 0.050931412337823
808 => 0.055194384130558
809 => 0.060576562113466
810 => 0.058348305087256
811 => 0.056965154045683
812 => 0.057290227349234
813 => 0.059255616550369
814 => 0.059886837183439
815 => 0.058170961907955
816 => 0.058777038063217
817 => 0.062116577266801
818 => 0.063908132904279
819 => 0.061474959710561
820 => 0.054761931370141
821 => 0.048572212659528
822 => 0.050214004788248
823 => 0.050027876511593
824 => 0.053615794769844
825 => 0.049447840484012
826 => 0.049518018144871
827 => 0.053180130753032
828 => 0.052203141893679
829 => 0.050620545064806
830 => 0.048583767367785
831 => 0.044818595415707
901 => 0.041483677618164
902 => 0.048024219404846
903 => 0.047742179349801
904 => 0.047333743554101
905 => 0.048242673220062
906 => 0.052656177673781
907 => 0.052554432111003
908 => 0.051907178751652
909 => 0.052398114720091
910 => 0.050534481615898
911 => 0.051014782300986
912 => 0.04857123217646
913 => 0.049675818884413
914 => 0.050617149522792
915 => 0.050806135585085
916 => 0.051231930833298
917 => 0.047593557056791
918 => 0.049227080065401
919 => 0.050186621792552
920 => 0.045851377360857
921 => 0.050100927949011
922 => 0.047530221063993
923 => 0.046657684536497
924 => 0.047832440022825
925 => 0.047374636667316
926 => 0.046981044225364
927 => 0.046761412879978
928 => 0.047624023656106
929 => 0.047583781832356
930 => 0.046172383177075
1001 => 0.04433127116723
1002 => 0.044949208790175
1003 => 0.044724706258563
1004 => 0.043911080122597
1005 => 0.044459365900644
1006 => 0.042044992815209
1007 => 0.03789118940991
1008 => 0.040635319173889
1009 => 0.040529673163015
1010 => 0.040476401653667
1011 => 0.042538539329122
1012 => 0.042340312373237
1013 => 0.041980528507263
1014 => 0.043904472409753
1015 => 0.043202207004647
1016 => 0.045366423508644
1017 => 0.046791916470924
1018 => 0.046430365345823
1019 => 0.047771048366853
1020 => 0.04496344482495
1021 => 0.045896018100067
1022 => 0.046088220159578
1023 => 0.043880731240642
1024 => 0.042372744754734
1025 => 0.042272179248429
1026 => 0.039657538495203
1027 => 0.041054258480933
1028 => 0.042283314268176
1029 => 0.041694691924669
1030 => 0.041508351675307
1031 => 0.042460323597028
1101 => 0.042534299968434
1102 => 0.040847630860715
1103 => 0.041198342778074
1104 => 0.042660869774466
1105 => 0.041161490850223
1106 => 0.038248442522575
1107 => 0.037525966261274
1108 => 0.037429574610138
1109 => 0.035470161689175
1110 => 0.037574245579709
1111 => 0.036655756575549
1112 => 0.039557252334504
1113 => 0.037899933518023
1114 => 0.037828489816285
1115 => 0.037720492182597
1116 => 0.036033944539196
1117 => 0.036403191287407
1118 => 0.037630623716326
1119 => 0.03806858543498
1120 => 0.03802290243961
1121 => 0.037624608627801
1122 => 0.037806945495253
1123 => 0.037219574914814
1124 => 0.0370121621378
1125 => 0.036357510360163
1126 => 0.035395353099207
1127 => 0.035529146967597
1128 => 0.033622861671501
1129 => 0.03258421626797
1130 => 0.032296732909399
1201 => 0.031912298147561
1202 => 0.03234015583869
1203 => 0.033617461404769
1204 => 0.032076759896586
1205 => 0.029435335228449
1206 => 0.029594089351773
1207 => 0.029950762732359
1208 => 0.029286104247267
1209 => 0.028657060771687
1210 => 0.029203963037794
1211 => 0.028084756584618
1212 => 0.030086013485153
1213 => 0.030031885094451
1214 => 0.030777829910074
1215 => 0.031244284511611
1216 => 0.030169257671538
1217 => 0.029898891328441
1218 => 0.030052904284934
1219 => 0.027507413182203
1220 => 0.030569808980562
1221 => 0.030596292706595
1222 => 0.030369522965565
1223 => 0.032000154187328
1224 => 0.035441294671881
1225 => 0.034146599202037
1226 => 0.033645253983736
1227 => 0.032692196357264
1228 => 0.033962089057575
1229 => 0.033864581111604
1230 => 0.033423613201129
1231 => 0.03315691443297
]
'min_raw' => 0.024906853032463
'max_raw' => 0.063908132904279
'avg_raw' => 0.044407492968371
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0249068'
'max' => '$0.0639081'
'avg' => '$0.0444074'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.015316115098303
'max_diff' => 0.037146999971202
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00078179765626552
]
1 => [
'year' => 2028
'avg' => 0.0013417917356329
]
2 => [
'year' => 2029
'avg' => 0.003665533187318
]
3 => [
'year' => 2030
'avg' => 0.00282795339514
]
4 => [
'year' => 2031
'avg' => 0.0027774006984335
]
5 => [
'year' => 2032
'avg' => 0.0048696575045222
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00078179765626552
'min' => '$0.000781'
'max_raw' => 0.0048696575045222
'max' => '$0.004869'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0048696575045222
]
1 => [
'year' => 2033
'avg' => 0.012525259842607
]
2 => [
'year' => 2034
'avg' => 0.0079391116240658
]
3 => [
'year' => 2035
'avg' => 0.0093642003666929
]
4 => [
'year' => 2036
'avg' => 0.018175935433619
]
5 => [
'year' => 2037
'avg' => 0.044407492968371
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0048696575045222
'min' => '$0.004869'
'max_raw' => 0.044407492968371
'max' => '$0.0444074'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.044407492968371
]
]
]
]
'prediction_2025_max_price' => '$0.001336'
'last_price' => 0.00129613
'sma_50day_nextmonth' => '$0.001231'
'sma_200day_nextmonth' => '$0.001411'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001271'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001272'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001261'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00129'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001345'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001496'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001381'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001275'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00127'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001272'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001291'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001361'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001415'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001447'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001495'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001483'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001706'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.008699'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00130038'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001322'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001381'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001426'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00159'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003289'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007802'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.54
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001260'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001280'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 54.62
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 11.83
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.83
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000040'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -45.38
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.27
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000129'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767678982
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Divi para 2026
La previsión del precio de Divi para 2026 sugiere que el precio medio podría oscilar entre $0.000447 en el extremo inferior y $0.001336 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Divi podría potencialmente ganar 3.13% para 2026 si DIVI alcanza el objetivo de precio previsto.
Predicción de precio de Divi 2027-2032
La predicción del precio de DIVI para 2027-2032 está actualmente dentro de un rango de precios de $0.000781 en el extremo inferior y $0.004869 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Divi alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000431 | $0.000781 | $0.001132 |
| 2028 | $0.000778 | $0.001341 | $0.0019055 |
| 2029 | $0.001709 | $0.003665 | $0.005622 |
| 2030 | $0.001453 | $0.002827 | $0.0042024 |
| 2031 | $0.001718 | $0.002777 | $0.003836 |
| 2032 | $0.002623 | $0.004869 | $0.007116 |
Predicción de precio de Divi 2032-2037
La predicción de precio de Divi para 2032-2037 se estima actualmente entre $0.004869 en el extremo inferior y $0.0444074 en el extremo superior. Comparado con el precio actual, Divi podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002623 | $0.004869 | $0.007116 |
| 2033 | $0.006095 | $0.012525 | $0.018955 |
| 2034 | $0.00490049 | $0.007939 | $0.010977 |
| 2035 | $0.005793 | $0.009364 | $0.012934 |
| 2036 | $0.00959 | $0.018175 | $0.026761 |
| 2037 | $0.0249068 | $0.0444074 | $0.0639081 |
Divi Histograma de precios potenciales
Pronóstico de precio de Divi basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Divi es Bajista, con 16 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de DIVI se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Divi
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Divi aumentar durante el próximo mes, alcanzando $0.001411 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Divi alcance $0.001231 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.15, lo que sugiere que el mercado de DIVI está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DIVI para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001271 | BUY |
| SMA 5 | $0.001272 | BUY |
| SMA 10 | $0.001261 | BUY |
| SMA 21 | $0.00129 | BUY |
| SMA 50 | $0.001345 | SELL |
| SMA 100 | $0.001496 | SELL |
| SMA 200 | $0.001381 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001275 | BUY |
| EMA 5 | $0.00127 | BUY |
| EMA 10 | $0.001272 | BUY |
| EMA 21 | $0.001291 | BUY |
| EMA 50 | $0.001361 | SELL |
| EMA 100 | $0.001415 | SELL |
| EMA 200 | $0.001447 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001495 | SELL |
| SMA 50 | $0.001483 | SELL |
| SMA 100 | $0.001706 | SELL |
| SMA 200 | $0.008699 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001426 | SELL |
| EMA 50 | $0.00159 | SELL |
| EMA 100 | $0.003289 | SELL |
| EMA 200 | $0.007802 | SELL |
Osciladores de Divi
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.15 | NEUTRAL |
| Stoch RSI (14) | 59.54 | NEUTRAL |
| Estocástico Rápido (14) | 54.62 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 11.83 | NEUTRAL |
| Índice Direccional Medio (14) | 10.83 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000040 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -45.38 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56.27 | NEUTRAL |
| VWMA (10) | 0.001260 | BUY |
| Promedio Móvil de Hull (9) | 0.001280 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000129 | SELL |
Predicción de precios de Divi basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Divi
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Divi por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001821 | $0.002559 | $0.003596 | $0.005053 | $0.00710048 | $0.009977 |
| Amazon.com acción | $0.0027044 | $0.005643 | $0.011774 | $0.024568 | $0.051262 | $0.106962 |
| Apple acción | $0.001838 | $0.0026077 | $0.003698 | $0.005246 | $0.007441 | $0.010555 |
| Netflix acción | $0.002045 | $0.003226 | $0.005091 | $0.008033 | $0.012675 | $0.020000079 |
| Google acción | $0.001678 | $0.002173 | $0.002814 | $0.003645 | $0.00472 | $0.006113 |
| Tesla acción | $0.002938 | $0.00666 | $0.015099 | $0.034229 | $0.077595 | $0.175902 |
| Kodak acción | $0.000971 | $0.000728 | $0.000546 | $0.0004098 | $0.0003073 | $0.00023 |
| Nokia acción | $0.000858 | $0.000568 | $0.000376 | $0.000249 | $0.000165 | $0.0001095 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Divi
Podría preguntarse cosas como: "¿Debo invertir en Divi ahora?", "¿Debería comprar DIVI hoy?", "¿Será Divi una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Divi regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Divi, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Divi a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Divi es de $0.001296 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Divi
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Divi
basado en el historial de precios del último mes
Predicción de precios de Divi basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Divi ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001329 | $0.001364 | $0.001399 | $0.001436 |
| Si Divi ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001363 | $0.001434 | $0.0015089 | $0.001587 |
| Si Divi ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001464 | $0.001654 | $0.00187 | $0.002113 |
| Si Divi ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001633 | $0.002057 | $0.002592 | $0.003266 |
| Si Divi ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001969 | $0.002994 | $0.00455 | $0.006916 |
| Si Divi ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00298 | $0.006854 | $0.015763 | $0.036249 |
| Si Divi ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.004665 | $0.016791 | $0.060438 | $0.217535 |
Cuadro de preguntas
¿Es DIVI una buena inversión?
La decisión de adquirir Divi depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Divi ha experimentado un aumento de 4.9748% durante las últimas 24 horas, y Divi ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Divi dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Divi subir?
Parece que el valor medio de Divi podría potencialmente aumentar hasta $0.001336 para el final de este año. Mirando las perspectivas de Divi en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0042024. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Divi la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi aumentará en un 0.86% durante la próxima semana y alcanzará $0.001307 para el 13 de enero de 2026.
¿Cuál será el precio de Divi el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001145 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Divi este año en 2026?
Según nuestra predicción más reciente sobre el valor de Divi en 2026, se anticipa que DIVI fluctúe dentro del rango de $0.000447 y $0.001336. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Divi no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Divi en 5 años?
El futuro de Divi parece estar en una tendencia alcista, con un precio máximo de $0.0042024 proyectada después de un período de cinco años. Basado en el pronóstico de Divi para 2030, el valor de Divi podría potencialmente alcanzar su punto más alto de aproximadamente $0.0042024, mientras que su punto más bajo se anticipa que esté alrededor de $0.001453.
¿Cuánto será Divi en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Divi, se espera que el valor de DIVI en 2026 crezca en un 3.13% hasta $0.001336 si ocurre lo mejor. El precio estará entre $0.001336 y $0.000447 durante 2026.
¿Cuánto será Divi en 2027?
Según nuestra última simulación experimental para la predicción de precios de Divi, el valor de DIVI podría disminuir en un -12.62% hasta $0.001132 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001132 y $0.000431 a lo largo del año.
¿Cuánto será Divi en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Divi sugiere que el valor de DIVI en 2028 podría aumentar en un 47.02% , alcanzando $0.0019055 en el mejor escenario. Se espera que el precio oscile entre $0.0019055 y $0.000778 durante el año.
¿Cuánto será Divi en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Divi podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.005622 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.005622 y $0.001709.
¿Cuánto será Divi en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Divi, se espera que el valor de DIVI en 2030 aumente en un 224.23% , alcanzando $0.0042024 en el mejor escenario. Se pronostica que el precio oscile entre $0.0042024 y $0.001453 durante el transcurso de 2030.
¿Cuánto será Divi en 2031?
Nuestra simulación experimental indica que el precio de Divi podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.003836 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.003836 y $0.001718 durante el año.
¿Cuánto será Divi en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Divi, DIVI podría experimentar un 449.04% aumento en valor, alcanzando $0.007116 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.007116 y $0.002623 a lo largo del año.
¿Cuánto será Divi en 2033?
Según nuestra predicción experimental de precios de Divi, se anticipa que el valor de DIVI aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.018955. A lo largo del año, el precio de DIVI podría oscilar entre $0.018955 y $0.006095.
¿Cuánto será Divi en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Divi sugieren que DIVI podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.010977 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.010977 y $0.00490049.
¿Cuánto será Divi en 2035?
Basado en nuestra predicción experimental para el precio de Divi, DIVI podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.012934 en 2035. El rango de precios esperado para el año está entre $0.012934 y $0.005793.
¿Cuánto será Divi en 2036?
Nuestra reciente simulación de predicción de precios de Divi sugiere que el valor de DIVI podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.026761 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.026761 y $0.00959.
¿Cuánto será Divi en 2037?
Según la simulación experimental, el valor de Divi podría aumentar en un 4830.69% en 2037, con un máximo de $0.0639081 bajo condiciones favorables. Se espera que el precio caiga entre $0.0639081 y $0.0249068 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Noxbox
Predicción de precios de Hourglass
Predicción de precios de KLEVA
Predicción de precios de Acquire.Fi
Predicción de precios de Striker League
Predicción de precios de Aladdin DAO
Predicción de precios de Ēnosys
Predicción de precios de Skeb
Predicción de precios de Pundi X PURSE
Predicción de precios de Roco Finance
Predicción de precios de Darwinia Network Native Token
Predicción de precios de dHedge DAO
Predicción de precios de Sonne Finance
Predicción de precios de Beethoven X
Predicción de precios de EverRise
Predicción de precios de MASQPredicción de precios de Era Swap Token
Predicción de precios de Origin Dollar
Predicción de precios de Panda Swap
Predicción de precios de Warden
Predicción de precios de Dvision Network
Predicción de precios de GooseFX
Predicción de precios de Flamengo Fan Token
Predicción de precios de ritestream
Predicción de precios de Shutter
¿Cómo leer y predecir los movimientos de precio de Divi?
Los traders de Divi utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Divi
Las medias móviles son herramientas populares para la predicción de precios de Divi. Una media móvil simple (SMA) calcula el precio de cierre promedio de DIVI durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DIVI por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DIVI.
¿Cómo leer gráficos de Divi y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Divi en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DIVI dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Divi?
La acción del precio de Divi está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DIVI. La capitalización de mercado de Divi puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DIVI, grandes poseedores de Divi, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Divi.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


