Predicción del precio de Divi - Pronóstico de DIVI
Predicción de precio de Divi hasta $0.001334 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000446 | $0.001334 |
| 2027 | $0.00043 | $0.00113 |
| 2028 | $0.000776 | $0.0019019 |
| 2029 | $0.0017057 | $0.005611 |
| 2030 | $0.00145 | $0.004194 |
| 2031 | $0.001715 | $0.003829 |
| 2032 | $0.002618 | $0.0071026 |
| 2033 | $0.006083 | $0.018918 |
| 2034 | $0.004891 | $0.010956 |
| 2035 | $0.005782 | $0.0129098 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Divi hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.14, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Divi para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Divi'
'name_with_ticker' => 'Divi <small>DIVI</small>'
'name_lang' => 'Divi'
'name_lang_with_ticker' => 'Divi <small>DIVI</small>'
'name_with_lang' => 'Divi'
'name_with_lang_with_ticker' => 'Divi <small>DIVI</small>'
'image' => '/uploads/coins/divi.png?1717233510'
'price_for_sd' => 0.001293
'ticker' => 'DIVI'
'marketcap' => '$5.87M'
'low24h' => '$0.001148'
'high24h' => '$0.001301'
'volume24h' => '$60.59K'
'current_supply' => '4.53B'
'max_supply' => '4.53B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0000273294 ETH'
'price' => '$0.001293'
'change_24h_pct' => '4.9315%'
'ath_price' => '$0.1833'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 dic. 2021'
'ath_pct' => '-99.29%'
'fdv' => '$5.87M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.063786'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001304'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001143'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000446'
'current_year_max_price_prediction' => '$0.001334'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00145'
'grand_prediction_max_price' => '$0.004194'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0013181741765348
107 => 0.0013230957604128
108 => 0.0013341843401921
109 => 0.0012394336400443
110 => 0.0012819739226763
111 => 0.0013069623532371
112 => 0.0011940637148763
113 => 0.0013047307101535
114 => 0.001237784241156
115 => 0.001215061604076
116 => 0.0012456546414244
117 => 0.001233732505017
118 => 0.0012234825522253
119 => 0.001217762902451
120 => 0.0012402270526493
121 => 0.0012391790731921
122 => 0.001202423363364
123 => 0.0011544770382475
124 => 0.0011705693987411
125 => 0.0011647228933071
126 => 0.0011435344034001
127 => 0.0011578128872894
128 => 0.0010949376704163
129 => 0.00098676412775562
130 => 0.0010582268834825
131 => 0.0010554756451235
201 => 0.0010540883459842
202 => 0.0011077906318275
203 => 0.0011026283961662
204 => 0.0010932588878922
205 => 0.001143362325033
206 => 0.0011250738964903
207 => 0.0011814345239633
208 => 0.0012185572783938
209 => 0.0012091417470749
210 => 0.0012440558770467
211 => 0.0011709401342249
212 => 0.0011952262510958
213 => 0.0012002315861238
214 => 0.001142744056396
215 => 0.0011034730017628
216 => 0.0011008540701416
217 => 0.0010327634732923
218 => 0.0010691369205211
219 => 0.0011011440488469
220 => 0.0010858151182323
221 => 0.0010809624367385
222 => 0.0011057537340722
223 => 0.0011076802301981
224 => 0.0010637559143661
225 => 0.0010728891705297
226 => 0.0011109763670097
227 => 0.0010719294709001
228 => 0.00099606773003354
301 => 0.00097725296942801
302 => 0.00097474273353839
303 => 0.00092371561055869
304 => 0.00097851026169795
305 => 0.00095459092807031
306 => 0.0010301518164024
307 => 0.00098699184222828
308 => 0.00098513130200438
309 => 0.00098231882257405
310 => 0.00093839766992152
311 => 0.00094801361101756
312 => 0.00097997846376997
313 => 0.00099138388334187
314 => 0.00099019420463867
315 => 0.00097982181855312
316 => 0.00098457024378787
317 => 0.0009692739116457
318 => 0.00096387245840068
319 => 0.00094682398617262
320 => 0.00092176744175804
321 => 0.0009252517079396
322 => 0.00087560813705282
323 => 0.00084855968484998
324 => 0.0008410730297731
325 => 0.00083106156171545
326 => 0.00084220385172972
327 => 0.00087546750305389
328 => 0.00083534448227964
329 => 0.00076655637746485
330 => 0.00077069065977345
331 => 0.00077997916464143
401 => 0.00076267009726956
402 => 0.00074628851764199
403 => 0.00076053097204859
404 => 0.00073138454522101
405 => 0.00078350137107484
406 => 0.00078209175699121
407 => 0.00080151768678663
408 => 0.00081366511934792
409 => 0.00078566922007215
410 => 0.00077862832711325
411 => 0.00078263913973338
412 => 0.00071634934131816
413 => 0.00079610039600582
414 => 0.00079679008643849
415 => 0.00079088453823074
416 => 0.00083334951281434
417 => 0.00092296385434347
418 => 0.00088924733433168
419 => 0.0008761912786959
420 => 0.00085137170738836
421 => 0.00088444231251533
422 => 0.00088190300602339
423 => 0.00087041929906342
424 => 0.00086347391726268
425 => 0.00087627099618757
426 => 0.00086188821756489
427 => 0.00085930467531193
428 => 0.00084365122018069
429 => 0.00083806364888567
430 => 0.00083392683354646
501 => 0.00082937260633306
502 => 0.0008394180967231
503 => 0.00081665369390497
504 => 0.00078920205572823
505 => 0.00078691974904467
506 => 0.00079322139846042
507 => 0.00079043338769658
508 => 0.00078690640112176
509 => 0.00078017242323279
510 => 0.00077817459584181
511 => 0.00078466656565445
512 => 0.00077733751024134
513 => 0.00078815193073769
514 => 0.00078521100675186
515 => 0.0007687832444336
516 => 0.00074830817024844
517 => 0.00074812589914028
518 => 0.00074371457799294
519 => 0.00073809609726522
520 => 0.0007365331644602
521 => 0.0007593315122639
522 => 0.00080652340992044
523 => 0.00079725851120406
524 => 0.00080395335003166
525 => 0.0008368853309379
526 => 0.00084735341736878
527 => 0.00083992341757036
528 => 0.00082975277558385
529 => 0.00083020023221437
530 => 0.00086495639474498
531 => 0.00086712409396924
601 => 0.00087260117058266
602 => 0.00087964076185258
603 => 0.00084112229040368
604 => 0.00082838601567304
605 => 0.00082235086212404
606 => 0.00080376492509149
607 => 0.00082380826474328
608 => 0.00081212986906956
609 => 0.00081370568363675
610 => 0.00081267943233261
611 => 0.00081323983493948
612 => 0.00078348680335987
613 => 0.00079432724429418
614 => 0.0007763029087028
615 => 0.00075217034667256
616 => 0.00075208944586266
617 => 0.00075799585623099
618 => 0.00075448249222605
619 => 0.0007450281200256
620 => 0.0007463710689733
621 => 0.0007346054230742
622 => 0.00074779963140934
623 => 0.00074817799409325
624 => 0.00074309750519083
625 => 0.00076342500358101
626 => 0.00077175319625712
627 => 0.00076840910962693
628 => 0.00077151856622449
629 => 0.00079764350957423
630 => 0.00080190301525143
701 => 0.00080379480630609
702 => 0.00080126005690714
703 => 0.00077199608223069
704 => 0.00077329406394762
705 => 0.0007637703353332
706 => 0.0007557237882398
707 => 0.00075604560792496
708 => 0.00076018257910887
709 => 0.00077824897489914
710 => 0.00081626863976756
711 => 0.0008177114582573
712 => 0.00081946019635685
713 => 0.00081234719966062
714 => 0.00081020185179483
715 => 0.00081303211939108
716 => 0.00082731030653664
717 => 0.00086403768036504
718 => 0.00085105577351527
719 => 0.00084050128117098
720 => 0.00084976041642762
721 => 0.00084833504513036
722 => 0.00083630347693852
723 => 0.00083596579089176
724 => 0.00081287336480658
725 => 0.00080433662067199
726 => 0.0007972026783089
727 => 0.00078941259948469
728 => 0.00078479437963189
729 => 0.00079189006426918
730 => 0.0007935129312994
731 => 0.00077799809282863
801 => 0.00077588347767436
802 => 0.00078855322968064
803 => 0.00078297774419864
804 => 0.00078871226928226
805 => 0.00079004272829151
806 => 0.00078982849374795
807 => 0.00078400704656431
808 => 0.00078771746340111
809 => 0.00077894122145359
810 => 0.00076939837648459
811 => 0.00076331063593461
812 => 0.00075799827488315
813 => 0.00076094588155074
814 => 0.00075043820199251
815 => 0.00074707658382402
816 => 0.00078646045766382
817 => 0.00081555374871728
818 => 0.00081513072074316
819 => 0.00081255564674463
820 => 0.00080872960911751
821 => 0.0008270304080533
822 => 0.0008206547756401
823 => 0.00082529358092262
824 => 0.00082647435155707
825 => 0.00083004818864217
826 => 0.00083132552821842
827 => 0.00082746452084962
828 => 0.0008145065085376
829 => 0.00078221637386687
830 => 0.0007671852290121
831 => 0.0007622247008465
901 => 0.00076240500662394
902 => 0.00075743136836184
903 => 0.00075889632773286
904 => 0.00075692191527719
905 => 0.00075318285574782
906 => 0.00076071500516119
907 => 0.00076158301521426
908 => 0.00075982492153869
909 => 0.00076023901624321
910 => 0.00074568275150117
911 => 0.00074678943269496
912 => 0.00074062729117768
913 => 0.00073947196392891
914 => 0.00072389460677226
915 => 0.00069629706059524
916 => 0.00071158878013594
917 => 0.00069311853327193
918 => 0.00068612357091462
919 => 0.00071923663477429
920 => 0.0007159130015762
921 => 0.0007102243862897
922 => 0.00070180973866966
923 => 0.00069868866401496
924 => 0.00067972600242515
925 => 0.00067860558721656
926 => 0.0006880039943354
927 => 0.0006836669528295
928 => 0.00067757610398915
929 => 0.00065551566690885
930 => 0.00063071243167088
1001 => 0.00063146108543514
1002 => 0.00063935053308374
1003 => 0.00066229016615901
1004 => 0.00065332725465682
1005 => 0.00064682455952442
1006 => 0.00064560680019642
1007 => 0.00066084960773819
1008 => 0.00068242137387669
1009 => 0.00069254236390781
1010 => 0.00068251277016601
1011 => 0.0006709913129071
1012 => 0.00067169257062516
1013 => 0.0006763577240544
1014 => 0.00067684796571809
1015 => 0.00066934868146749
1016 => 0.00067145968605672
1017 => 0.00066825287705137
1018 => 0.0006485726961048
1019 => 0.00064821674403801
1020 => 0.00064338691024793
1021 => 0.00064324066480027
1022 => 0.00063502391266485
1023 => 0.00063387433224138
1024 => 0.0006175594721553
1025 => 0.00062829796246991
1026 => 0.00062109514696292
1027 => 0.00061023880502147
1028 => 0.00060836716757876
1029 => 0.00060831090389716
1030 => 0.00061945793963739
1031 => 0.00062816770286716
1101 => 0.00062122044302245
1102 => 0.00061963868662279
1103 => 0.00063652770675902
1104 => 0.00063437842499985
1105 => 0.00063251716085779
1106 => 0.00068048985882019
1107 => 0.00064251572502664
1108 => 0.00062595683520488
1109 => 0.00060546206460256
1110 => 0.00061213526525428
1111 => 0.00061354140668131
1112 => 0.00056425517784279
1113 => 0.00054425976094121
1114 => 0.00053739808737198
1115 => 0.00053344909722306
1116 => 0.00053524870162222
1117 => 0.00051725048118232
1118 => 0.00052934558298102
1119 => 0.00051376064543177
1120 => 0.00051114777993387
1121 => 0.00053901557887521
1122 => 0.00054289322029658
1123 => 0.00052634999730426
1124 => 0.00053697342456985
1125 => 0.00053312122216667
1126 => 0.00051402780445457
1127 => 0.00051329857633964
1128 => 0.0005037181704978
1129 => 0.00048872669048743
1130 => 0.00048187518184758
1201 => 0.00047830685666042
1202 => 0.00047977921717792
1203 => 0.0004790347466453
1204 => 0.00047417657284068
1205 => 0.000479313211481
1206 => 0.00046619122236061
1207 => 0.00046096594056181
1208 => 0.00045860580199892
1209 => 0.00044695928138105
1210 => 0.0004654940749153
1211 => 0.00046914566273673
1212 => 0.00047280444531419
1213 => 0.00050465164969406
1214 => 0.00050306065336251
1215 => 0.00051744248535311
1216 => 0.00051688363380845
1217 => 0.0005127817023545
1218 => 0.00049547632828525
1219 => 0.00050237394195062
1220 => 0.00048114415921577
1221 => 0.00049705095592562
1222 => 0.00048979175819096
1223 => 0.00049459661386944
1224 => 0.00048595705012317
1225 => 0.0004907385414192
1226 => 0.00047001158967416
1227 => 0.00045065705377073
1228 => 0.0004584458840124
1229 => 0.00046691323324587
1230 => 0.0004852726038245
1231 => 0.00047433791416938
]
'min_raw' => 0.00044695928138105
'max_raw' => 0.0013341843401921
'avg_raw' => 0.00089057181078659
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000446'
'max' => '$0.001334'
'avg' => '$0.00089'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00084670071861895
'max_diff' => 4.0524340192131E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00047827044205575
102 => 0.00046509713193363
103 => 0.00043791683038167
104 => 0.00043807066793668
105 => 0.00043388957069797
106 => 0.00043027649223353
107 => 0.00047559389481409
108 => 0.00046995795944107
109 => 0.00046097783403717
110 => 0.0004729980887463
111 => 0.00047617643487848
112 => 0.00047626691792464
113 => 0.00048503658547274
114 => 0.00048971695861521
115 => 0.00049054189466747
116 => 0.00050434115603561
117 => 0.00050896648642955
118 => 0.00052801756772095
119 => 0.00048931986165402
120 => 0.0004885229078633
121 => 0.00047316723838052
122 => 0.00046342843003101
123 => 0.00047383406292012
124 => 0.00048305203314934
125 => 0.00047345366641053
126 => 0.00047470701047404
127 => 0.00046182198734256
128 => 0.00046642777681538
129 => 0.00047039490317621
130 => 0.00046820448917667
131 => 0.00046492533340212
201 => 0.00048229626471089
202 => 0.00048131612868922
203 => 0.00049749233927994
204 => 0.00051010285220732
205 => 0.00053270314577201
206 => 0.00050911856125731
207 => 0.00050825904525736
208 => 0.00051666095202756
209 => 0.0005089652001414
210 => 0.00051382864968513
211 => 0.00053191956886188
212 => 0.00053230180147678
213 => 0.00052589891269817
214 => 0.0005255092963341
215 => 0.00052673904116396
216 => 0.00053394169504283
217 => 0.00053142486646236
218 => 0.00053433740421399
219 => 0.00053797957727076
220 => 0.00055304514928296
221 => 0.00055667740769085
222 => 0.00054785290286974
223 => 0.0005486496568513
224 => 0.00054534904981013
225 => 0.00054216070476485
226 => 0.00054932763880624
227 => 0.00056242535163333
228 => 0.0005623438714416
301 => 0.00056538228623433
302 => 0.00056727519347861
303 => 0.00055914944989336
304 => 0.00055385988961124
305 => 0.00055588824360687
306 => 0.00055913162581769
307 => 0.00055483645846911
308 => 0.00052832469587865
309 => 0.00053636667107065
310 => 0.0005350280931662
311 => 0.00053312179545364
312 => 0.00054120806369594
313 => 0.00054042812339739
314 => 0.00051706588341751
315 => 0.00051856145822242
316 => 0.00051715683427489
317 => 0.00052169546160837
318 => 0.00050872009937089
319 => 0.00051271123340474
320 => 0.00051521443525621
321 => 0.00051668884037723
322 => 0.00052201540268341
323 => 0.00052139039207573
324 => 0.00052197655114648
325 => 0.00052987443688624
326 => 0.00056981923273081
327 => 0.0005719933398354
328 => 0.00056128724131006
329 => 0.00056556411650248
330 => 0.00055735345138282
331 => 0.00056286532588432
401 => 0.00056663641043182
402 => 0.00054959560449954
403 => 0.00054858655856615
404 => 0.00054034200511085
405 => 0.00054477216114235
406 => 0.00053772346435674
407 => 0.00053945296799498
408 => 0.00053461712504704
409 => 0.00054332067954661
410 => 0.00055305260587277
411 => 0.00055551127478817
412 => 0.00054904357539526
413 => 0.00054436053479264
414 => 0.0005361386581839
415 => 0.0005498118222207
416 => 0.00055381027206718
417 => 0.00054979082006585
418 => 0.00054885942521038
419 => 0.00054709443364226
420 => 0.00054923387651521
421 => 0.00055378849565061
422 => 0.00055164062137696
423 => 0.00055305933017538
424 => 0.00054765267520197
425 => 0.0005591521398526
426 => 0.00057741605721467
427 => 0.00057747477869544
428 => 0.00057532689284396
429 => 0.00057444802423037
430 => 0.00057665188545861
501 => 0.00057784738976781
502 => 0.0005849742728609
503 => 0.00059262170236734
504 => 0.00062830891903897
505 => 0.00061828809140228
506 => 0.00064995191307537
507 => 0.00067499388498613
508 => 0.00068250287740945
509 => 0.00067559495770539
510 => 0.00065196333755629
511 => 0.00065080385753118
512 => 0.00068611947504661
513 => 0.00067614119554075
514 => 0.00067495431094415
515 => 0.0006623278641095
516 => 0.00066979165800464
517 => 0.00066815921679252
518 => 0.00066558232847743
519 => 0.00067982272729698
520 => 0.00070647948263799
521 => 0.00070232477733262
522 => 0.0006992234825534
523 => 0.00068563451160418
524 => 0.00069381810732216
525 => 0.00069090408563344
526 => 0.00070342457209203
527 => 0.00069600771327669
528 => 0.00067606560025958
529 => 0.00067924144748762
530 => 0.00067876142456802
531 => 0.0006886402622386
601 => 0.00068567488037772
602 => 0.000678182386167
603 => 0.00070638837274619
604 => 0.00070455683286768
605 => 0.0007071535376671
606 => 0.00070829668742557
607 => 0.00072546517441109
608 => 0.00073249855419875
609 => 0.00073409525454719
610 => 0.00074077642136435
611 => 0.00073392902103038
612 => 0.00076132350447998
613 => 0.00077953923746154
614 => 0.00080069774869267
615 => 0.00083161602047302
616 => 0.00084324157667244
617 => 0.00084114152400133
618 => 0.00086458340479984
619 => 0.00090670794351102
620 => 0.00084965609766152
621 => 0.00090973182987375
622 => 0.00089071254666304
623 => 0.00084561816831274
624 => 0.00084271462197478
625 => 0.0008732530585501
626 => 0.00094098437165857
627 => 0.00092401844592709
628 => 0.00094101212183519
629 => 0.00092118809621615
630 => 0.00092020366625416
701 => 0.00094004931315893
702 => 0.00098641974888181
703 => 0.00096439089303966
704 => 0.00093280712649288
705 => 0.00095612808821319
706 => 0.00093592531291794
707 => 0.00089040280577698
708 => 0.00092400547240343
709 => 0.00090153632617917
710 => 0.00090809401757292
711 => 0.00095532082090305
712 => 0.00094963836697975
713 => 0.00095699198853757
714 => 0.0009440130389658
715 => 0.00093188865347327
716 => 0.00090925758758279
717 => 0.00090255764467068
718 => 0.0009044092678529
719 => 0.00090255672709819
720 => 0.0008898948537227
721 => 0.00088716052337281
722 => 0.00088260318632923
723 => 0.0008840156956426
724 => 0.00087544656870469
725 => 0.00089161828170849
726 => 0.00089461989414664
727 => 0.00090638831826186
728 => 0.00090761015509374
729 => 0.00094038504874159
730 => 0.00092233318808007
731 => 0.00093444393473448
801 => 0.00093336063556294
802 => 0.0008465955002297
803 => 0.00085855097034335
804 => 0.00087714993000699
805 => 0.00086877112388882
806 => 0.0008569254523764
807 => 0.0008473594375054
808 => 0.00083286594680058
809 => 0.00085326525664477
810 => 0.00088008817986512
811 => 0.00090829042869118
812 => 0.00094217358277114
813 => 0.00093461125722388
814 => 0.00090765700669428
815 => 0.00090886615468295
816 => 0.00091634063176668
817 => 0.00090666050481539
818 => 0.00090380564639893
819 => 0.00091594841805959
820 => 0.00091603203865447
821 => 0.00090489388271459
822 => 0.00089251586064843
823 => 0.00089246399628402
824 => 0.00089026144681485
825 => 0.00092157992487372
826 => 0.00093880192115082
827 => 0.00094077639526936
828 => 0.00093866902331086
829 => 0.00093948006713909
830 => 0.00092945896696623
831 => 0.00095236423029643
901 => 0.00097338436502398
902 => 0.00096775051988732
903 => 0.00095930458512918
904 => 0.000952576991283
905 => 0.00096616571258316
906 => 0.0009655606282143
907 => 0.0009732007724847
908 => 0.00097285417140898
909 => 0.00097028507825121
910 => 0.00096775061163772
911 => 0.00097779948527706
912 => 0.00097490557104891
913 => 0.00097200716177263
914 => 0.00096619395824481
915 => 0.00096698406915133
916 => 0.00095853959270291
917 => 0.00095463279150492
918 => 0.00089588387521393
919 => 0.00088018424510476
920 => 0.00088512366833255
921 => 0.0008867498547112
922 => 0.00087991735556807
923 => 0.0008897134042143
924 => 0.00088818670040937
925 => 0.00089412621182251
926 => 0.00089041546295519
927 => 0.00089056775338306
928 => 0.00090148027458678
929 => 0.0009046482259174
930 => 0.00090303698030215
1001 => 0.0009041654415008
1002 => 0.00093017035353019
1003 => 0.00092647328662989
1004 => 0.00092450929352437
1005 => 0.00092505333303677
1006 => 0.00093169814561188
1007 => 0.0009335583303396
1008 => 0.00092567659693541
1009 => 0.00092939366797258
1010 => 0.00094522048468231
1011 => 0.00095075897481047
1012 => 0.00096843517667348
1013 => 0.00096092601195264
1014 => 0.00097470940878678
1015 => 0.0010170748715487
1016 => 0.0010509193346699
1017 => 0.001019794567702
1018 => 0.0010819456141578
1019 => 0.0011303391188617
1020 => 0.0011284816955476
1021 => 0.0011200431686405
1022 => 0.001064948450143
1023 => 0.0010142494687656
1024 => 0.0010566613194803
1025 => 0.0010567694360098
1026 => 0.0010531262204202
1027 => 0.001030498521288
1028 => 0.0010523388255388
1029 => 0.0010540724295779
1030 => 0.0010531020723185
1031 => 0.0010357534684473
1101 => 0.0010092653568939
1102 => 0.0010144410704878
1103 => 0.0010229189949364
1104 => 0.0010068685152749
1105 => 0.0010017394144902
1106 => 0.0010112753887003
1107 => 0.0010420022845045
1108 => 0.0010361935428415
1109 => 0.0010360418531217
1110 => 0.0010608941132458
1111 => 0.0010431052584504
1112 => 0.0010145063528112
1113 => 0.0010072847519641
1114 => 0.00098165293401004
1115 => 0.00099935692196829
1116 => 0.00099999405697711
1117 => 0.00099029776370274
1118 => 0.0010152931535711
1119 => 0.0010150628166531
1120 => 0.0010387922192603
1121 => 0.0010841539246886
1122 => 0.0010707382362795
1123 => 0.0010551372502824
1124 => 0.0010568335100287
1125 => 0.0010754372927198
1126 => 0.0010641890210217
1127 => 0.0010682339779501
1128 => 0.001075431170193
1129 => 0.0010797734149694
1130 => 0.0010562087278287
1201 => 0.001050714672027
1202 => 0.0010394757620081
1203 => 0.0010365437401683
1204 => 0.0010456975978712
1205 => 0.001043285879777
1206 => 0.00099994050824673
1207 => 0.00099541067575044
1208 => 0.00099554959924599
1209 => 0.00098415912005227
1210 => 0.00096678590525362
1211 => 0.0010124416764437
1212 => 0.0010087748790651
1213 => 0.0010047270185466
1214 => 0.0010052228583633
1215 => 0.0010250404812193
1216 => 0.0010135452591489
1217 => 0.0010441071910529
1218 => 0.0010378245766292
1219 => 0.001031380836852
1220 => 0.0010304901157337
1221 => 0.0010280098256735
1222 => 0.0010195039881819
1223 => 0.0010092326782891
1224 => 0.0010024506698123
1225 => 0.00092470775355997
1226 => 0.00093913638660667
1227 => 0.00095573521371562
1228 => 0.000961465062318
1229 => 0.00095166375979017
1230 => 0.0010198910033453
1231 => 0.0010323567781969
]
'min_raw' => 0.00043027649223353
'max_raw' => 0.0011303391188617
'avg_raw' => 0.00078030780554764
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00043'
'max' => '$0.00113'
'avg' => '$0.00078'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.6682789147519E-5
'max_diff' => -0.00020384522133039
'year' => 2027
]
2 => [
'items' => [
101 => 0.00099459713304904
102 => 0.00098753384515803
103 => 0.0010203540713235
104 => 0.0010005594628363
105 => 0.001009472973826
106 => 0.00099020683849598
107 => 0.0010293541380757
108 => 0.0010290559012425
109 => 0.0010138267175242
110 => 0.001026698319318
111 => 0.0010244615617517
112 => 0.0010072678508415
113 => 0.0010298992093794
114 => 0.0010299104342509
115 => 0.001015252676033
116 => 0.0009981356234303
117 => 0.00099507549871168
118 => 0.00099277010580611
119 => 0.0010089059884944
120 => 0.0010233733704572
121 => 0.0010502935815217
122 => 0.0010570619621918
123 => 0.0010834794025436
124 => 0.0010677491030559
125 => 0.0010747221410774
126 => 0.0010822923602461
127 => 0.0010859218017011
128 => 0.0010800078216167
129 => 0.0011210449803354
130 => 0.0011245097738773
131 => 0.0011256714891815
201 => 0.0011118339901545
202 => 0.0011241249279975
203 => 0.0011183744052138
204 => 0.0011333356679556
205 => 0.0011356817849885
206 => 0.0011336947073272
207 => 0.0011344394019044
208 => 0.0010994214263888
209 => 0.0010976055596238
210 => 0.0010728460874348
211 => 0.0010829357553646
212 => 0.0010640736047802
213 => 0.0010700549870322
214 => 0.0010726915233361
215 => 0.0010713143463931
216 => 0.0010835062100509
217 => 0.0010731406353085
218 => 0.0010457841793052
219 => 0.0010184202700536
220 => 0.0010180767384631
221 => 0.0010108723041703
222 => 0.0010056648177346
223 => 0.0010066679643676
224 => 0.0010102031839449
225 => 0.0010054593443461
226 => 0.0010064716830433
227 => 0.0010232832505939
228 => 0.0010266546905715
229 => 0.0010151972202208
301 => 0.00096919382345754
302 => 0.00095790447450105
303 => 0.00096601903465345
304 => 0.00096214079754521
305 => 0.00077652271562938
306 => 0.00082013093066358
307 => 0.00079422041008531
308 => 0.00080616117005351
309 => 0.00077971323803988
310 => 0.00079233557745167
311 => 0.00079000469225634
312 => 0.00086012541157044
313 => 0.00085903057298624
314 => 0.00085955461427893
315 => 0.00083454075799675
316 => 0.00087438851025447
317 => 0.00089401894589545
318 => 0.00089038587470543
319 => 0.00089130024045251
320 => 0.000875588407479
321 => 0.00085970673916648
322 => 0.00084209152483666
323 => 0.00087481841575516
324 => 0.00087117974415168
325 => 0.00087952554765735
326 => 0.00090075127578447
327 => 0.00090387684487989
328 => 0.00090807764144053
329 => 0.0009065719549066
330 => 0.00094244351675796
331 => 0.00093809923392957
401 => 0.00094856770561051
402 => 0.00092703326511796
403 => 0.00090266500163279
404 => 0.00090729661186277
405 => 0.00090685055055256
406 => 0.00090117167810833
407 => 0.00089604504598521
408 => 0.00088751064791987
409 => 0.00091451474625187
410 => 0.00091341842917487
411 => 0.00093116652832238
412 => 0.00092802937940222
413 => 0.00090707873112283
414 => 0.00090782698762476
415 => 0.00091285937220007
416 => 0.00093027651267398
417 => 0.00093544710581598
418 => 0.00093305188106009
419 => 0.00093872120039376
420 => 0.00094320199923832
421 => 0.00093928391974104
422 => 0.00099475566292404
423 => 0.00097171992767802
424 => 0.00098294738475531
425 => 0.00098562506711223
426 => 0.00097876624006058
427 => 0.0009802536740519
428 => 0.00098250673124725
429 => 0.00099618685334357
430 => 0.0010320874520995
501 => 0.0010479875829049
502 => 0.0010958239109315
503 => 0.001046667298382
504 => 0.0010437505484236
505 => 0.0010523673156199
506 => 0.0010804523041611
507 => 0.001103212549485
508 => 0.0011107634359289
509 => 0.001111761410224
510 => 0.0011259273751663
511 => 0.0011340470420917
512 => 0.0011242072544205
513 => 0.0011158690646379
514 => 0.0010860027038107
515 => 0.0010894598163999
516 => 0.0011132758938855
517 => 0.0011469175060938
518 => 0.0011757855091817
519 => 0.0011656769406518
520 => 0.0012427981829978
521 => 0.0012504444391644
522 => 0.0012493879737953
523 => 0.0012668072832582
524 => 0.0012322335013549
525 => 0.0012174525397558
526 => 0.0011176718759113
527 => 0.0011457061724512
528 => 0.0011864556688685
529 => 0.0011810623202149
530 => 0.0011514689466795
531 => 0.0011757630599542
601 => 0.0011677306663584
602 => 0.0011613951842651
603 => 0.0011904192559282
604 => 0.0011585060968915
605 => 0.0011861373106948
606 => 0.0011506999931838
607 => 0.0011657231157414
608 => 0.001157195264791
609 => 0.00116271382949
610 => 0.0011304524130225
611 => 0.0011478598902467
612 => 0.0011297282047395
613 => 0.0011297196079597
614 => 0.0011293193499972
615 => 0.0011506511975883
616 => 0.0011513468283724
617 => 0.001135582560772
618 => 0.0011333106835266
619 => 0.0011417110044418
620 => 0.0011318764286976
621 => 0.0011364779647902
622 => 0.0011320158045382
623 => 0.001131011278278
624 => 0.0011230070421306
625 => 0.0011195585971173
626 => 0.0011209108212625
627 => 0.0011162949831356
628 => 0.0011135137737019
629 => 0.0011287660974388
630 => 0.0011206173961432
701 => 0.0011275171920964
702 => 0.001119654003784
703 => 0.0010923967672652
704 => 0.0010767208423031
705 => 0.0010252344492662
706 => 0.0010398359264628
707 => 0.0010495167209505
708 => 0.00104631721843
709 => 0.001053190987887
710 => 0.0010536129815052
711 => 0.001051378248985
712 => 0.0010487907150135
713 => 0.0010475312465758
714 => 0.0010569182924474
715 => 0.0010623677885293
716 => 0.0010504883181896
717 => 0.0010477051245005
718 => 0.0010597159248974
719 => 0.0010670425062011
720 => 0.0011211378660973
721 => 0.0011171303071105
722 => 0.0011271884937237
723 => 0.0011260560962665
724 => 0.0011365986782319
725 => 0.0011538313441178
726 => 0.0011187925160426
727 => 0.001124874045045
728 => 0.0011233829945766
729 => 0.0011396618926157
730 => 0.0011397127135585
731 => 0.0011299527009928
801 => 0.0011352437621428
802 => 0.0011322904369615
803 => 0.0011376274947299
804 => 0.0011170767837169
805 => 0.0011421053314185
806 => 0.0011562949051613
807 => 0.0011564919274065
808 => 0.0011632176727452
809 => 0.0011700514195382
810 => 0.0011831682014134
811 => 0.0011696855996108
812 => 0.0011454317114728
813 => 0.0011471827638568
814 => 0.0011329627181156
815 => 0.0011332017596536
816 => 0.0011319257371899
817 => 0.0011357551766579
818 => 0.0011179171303321
819 => 0.0011221036841506
820 => 0.0011162424842883
821 => 0.0011248613039411
822 => 0.0011155888787366
823 => 0.0011233822755469
824 => 0.0011267456472551
825 => 0.0011391565612663
826 => 0.0011137557766461
827 => 0.0010619618573237
828 => 0.0010728495671058
829 => 0.0010567457891269
830 => 0.0010582362550902
831 => 0.0010612472335421
901 => 0.0010514876672487
902 => 0.0010533494849382
903 => 0.0010532829677089
904 => 0.0010527097581625
905 => 0.0010501709180373
906 => 0.0010464890975615
907 => 0.0010611563371325
908 => 0.0010636485869456
909 => 0.0010691885495556
910 => 0.0010856717204903
911 => 0.001084024663014
912 => 0.0010867110820936
913 => 0.0010808466443264
914 => 0.0010585082895386
915 => 0.0010597213696767
916 => 0.001044594240917
917 => 0.0010688017148628
918 => 0.0010630690655094
919 => 0.0010593731891781
920 => 0.0010583647350791
921 => 0.0010748887646064
922 => 0.0010798330132234
923 => 0.0010767520892815
924 => 0.0010704330243917
925 => 0.0010825674970439
926 => 0.0010858141700134
927 => 0.0010865409803585
928 => 0.001108040939344
929 => 0.0010877425892311
930 => 0.0010926286038515
1001 => 0.0011307478951457
1002 => 0.0010961789580445
1003 => 0.0011144908950063
1004 => 0.0011135946209827
1005 => 0.0011229623882902
1006 => 0.0011128261906389
1007 => 0.0011129518409569
1008 => 0.0011212697836984
1009 => 0.0011095887332668
1010 => 0.001106696340909
1011 => 0.0011027005215823
1012 => 0.0011114252468979
1013 => 0.0011166553251393
1014 => 0.0011588059146953
1015 => 0.0011860371178488
1016 => 0.0011848549395028
1017 => 0.0011956578366408
1018 => 0.0011907910325369
1019 => 0.0011750748382874
1020 => 0.0012019004654857
1021 => 0.0011934117146082
1022 => 0.0011941115169167
1023 => 0.0011940854702399
1024 => 0.0011997297474739
1025 => 0.0011957302597632
1026 => 0.0011878468589463
1027 => 0.0011930802283115
1028 => 0.0012086214643621
1029 => 0.0012568619379265
1030 => 0.0012838579460345
1031 => 0.0012552367443413
1101 => 0.0012749792660161
1102 => 0.0012631407879909
1103 => 0.0012609893843695
1104 => 0.0012733891469422
1105 => 0.0012858106136578
1106 => 0.0012850194199275
1107 => 0.0012760020729414
1108 => 0.0012709084024356
1109 => 0.0013094793820101
1110 => 0.0013378978227211
1111 => 0.0013359598755843
1112 => 0.0013445133439921
1113 => 0.0013696265917865
1114 => 0.0013719226324353
1115 => 0.0013716333840875
1116 => 0.0013659424077722
1117 => 0.0013906696615931
1118 => 0.001411297571765
1119 => 0.0013646251111834
1120 => 0.0013823973731855
1121 => 0.0013903759141848
1122 => 0.0014020907794981
1123 => 0.0014218557209212
1124 => 0.0014433256896985
1125 => 0.0014463617786898
1126 => 0.0014442075282602
1127 => 0.0014300475067079
1128 => 0.0014535402027339
1129 => 0.0014673016730945
1130 => 0.0014754963137686
1201 => 0.0014962765590598
1202 => 0.0013904251869378
1203 => 0.0013154983245952
1204 => 0.0013037974130834
1205 => 0.0013275916767583
1206 => 0.0013338660343337
1207 => 0.0013313368486624
1208 => 0.0012469998530436
1209 => 0.0013033533962555
1210 => 0.0013639850704109
1211 => 0.0013663141799455
1212 => 0.0013966676637762
1213 => 0.0014065520023429
1214 => 0.0014309905353487
1215 => 0.0014294618984553
1216 => 0.0014354122923402
1217 => 0.0014340443998325
1218 => 0.0014793116360855
1219 => 0.0015292481199222
1220 => 0.0015275189782753
1221 => 0.0015203400179021
1222 => 0.0015310019982509
1223 => 0.0015825418010892
1224 => 0.0015777968419524
1225 => 0.0015824061655792
1226 => 0.0016431744977815
1227 => 0.0017221819738391
1228 => 0.0016854750689895
1229 => 0.0017651184903858
1230 => 0.0018152498024385
1231 => 0.0019019467229591
]
'min_raw' => 0.00077652271562938
'max_raw' => 0.0019019467229591
'avg_raw' => 0.0013392347192943
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000776'
'max' => '$0.0019019'
'avg' => '$0.001339'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00034624622339585
'max_diff' => 0.00077160760409738
'year' => 2028
]
3 => [
'items' => [
101 => 0.0018910918415186
102 => 0.0019248423164659
103 => 0.0018716593382579
104 => 0.0017495404702393
105 => 0.001730214691923
106 => 0.0017689053895187
107 => 0.0018640226941747
108 => 0.0017659098071014
109 => 0.0017857579163738
110 => 0.0017800416595681
111 => 0.0017797370645354
112 => 0.0017913622180541
113 => 0.001774499326548
114 => 0.001705796872976
115 => 0.001737282802582
116 => 0.0017251245730826
117 => 0.0017386150351682
118 => 0.0018114174951546
119 => 0.0017792297922007
120 => 0.0017453226618555
121 => 0.001787849727903
122 => 0.0018420012968668
123 => 0.0018386125890008
124 => 0.0018320370793707
125 => 0.0018691028828731
126 => 0.0019303247309977
127 => 0.0019468727505364
128 => 0.0019590881602506
129 => 0.0019607724588691
130 => 0.0019781217814259
131 => 0.001884830101446
201 => 0.0020328863934743
202 => 0.0020584516251351
203 => 0.0020536464211531
204 => 0.0020820611001947
205 => 0.0020737007808098
206 => 0.0020615879897151
207 => 0.0021066312999715
208 => 0.0020549927795702
209 => 0.0019816984009696
210 => 0.0019414876552709
211 => 0.0019944404089153
212 => 0.0020267768077695
213 => 0.0020481491104309
214 => 0.0020546163563028
215 => 0.0018920720689955
216 => 0.0018044697132563
217 => 0.0018606218189221
218 => 0.0019291312632456
219 => 0.0018844495280237
220 => 0.0018862009674506
221 => 0.0018224965551776
222 => 0.0019347676901814
223 => 0.0019184107301602
224 => 0.0020032706676851
225 => 0.0019830181625513
226 => 0.002052218147359
227 => 0.0020339954722151
228 => 0.0021096367779214
301 => 0.0021398121426742
302 => 0.0021904812765148
303 => 0.0022277536976284
304 => 0.0022496407762141
305 => 0.0022483267581122
306 => 0.002335054267568
307 => 0.0022839140852703
308 => 0.0022196699634888
309 => 0.0022185079900134
310 => 0.0022517809310303
311 => 0.002321511887416
312 => 0.0023395921098627
313 => 0.002349696487661
314 => 0.0023342212813269
315 => 0.0022787122786926
316 => 0.0022547437727922
317 => 0.0022751656342538
318 => 0.0022501914525568
319 => 0.0022933038966837
320 => 0.002352506490791
321 => 0.0023402813892202
322 => 0.0023811480708815
323 => 0.0024234407871007
324 => 0.0024839212707788
325 => 0.0024997331087981
326 => 0.0025258694757736
327 => 0.0025527723827407
328 => 0.0025614128714049
329 => 0.002577910245251
330 => 0.0025778232959475
331 => 0.0026275392424339
401 => 0.0026823774709832
402 => 0.0027030776327526
403 => 0.0027506765133279
404 => 0.0026691650984065
405 => 0.00273099244296
406 => 0.0027867622553861
407 => 0.0027202711858922
408 => 0.0028119136347573
409 => 0.0028154719033805
410 => 0.0028691975350193
411 => 0.0028147363147677
412 => 0.0027823974160287
413 => 0.0028757586049655
414 => 0.0029209331434422
415 => 0.0029073262048104
416 => 0.0028037767299654
417 => 0.0027435064941596
418 => 0.0025857676617958
419 => 0.0027726161225412
420 => 0.002863624557326
421 => 0.0028035410401053
422 => 0.0028338436713419
423 => 0.0029991650017079
424 => 0.0030621086605478
425 => 0.0030490168195185
426 => 0.0030512291251424
427 => 0.0030851923809442
428 => 0.0032358041610759
429 => 0.0031455540912673
430 => 0.0032145468880304
501 => 0.0032511404186615
502 => 0.0032851305292913
503 => 0.0032016615602693
504 => 0.0030930696579743
505 => 0.0030586740441395
506 => 0.0027975669184344
507 => 0.0027839751586107
508 => 0.0027763456919491
509 => 0.0027282429838577
510 => 0.0026904474317384
511 => 0.0026603910054343
512 => 0.0025815139672037
513 => 0.0026081326521468
514 => 0.0024824191161245
515 => 0.0025628461814574
516 => 0.0023622043425063
517 => 0.0025293048280892
518 => 0.0024383596309132
519 => 0.0024994268848537
520 => 0.0024992138269576
521 => 0.0023867696510627
522 => 0.0023219141970566
523 => 0.0023632426165613
524 => 0.0024075499629244
525 => 0.002414738680804
526 => 0.0024721843119038
527 => 0.002488216152754
528 => 0.0024396389265227
529 => 0.0023580464863631
530 => 0.0023769985492868
531 => 0.0023215301341064
601 => 0.0022243238700645
602 => 0.0022941391059579
603 => 0.0023179770970512
604 => 0.0023285053119384
605 => 0.002232914115468
606 => 0.0022028772861512
607 => 0.0021868859302563
608 => 0.0023457068632817
609 => 0.0023544074325108
610 => 0.0023098940901981
611 => 0.0025110986183797
612 => 0.0024655598368998
613 => 0.0025164378130851
614 => 0.0023752788482226
615 => 0.0023806713107761
616 => 0.0023138443946374
617 => 0.0023512630022989
618 => 0.0023248167364618
619 => 0.0023482399485778
620 => 0.0023622797253426
621 => 0.0024290956758419
622 => 0.002530067758916
623 => 0.0024191156009529
624 => 0.0023707721568642
625 => 0.002400764157683
626 => 0.002480636808163
627 => 0.002601647962246
628 => 0.0025300069234524
629 => 0.0025617999999253
630 => 0.0025687453727591
701 => 0.0025159199230481
702 => 0.0026035957119263
703 => 0.002650581879463
704 => 0.0026987799649382
705 => 0.0027406290120766
706 => 0.0026795285897008
707 => 0.0027449148000444
708 => 0.0026922250567273
709 => 0.0026449569100064
710 => 0.0026450285962735
711 => 0.002615376597358
712 => 0.0025579221130669
713 => 0.0025473266246537
714 => 0.0026024456934419
715 => 0.0026466459668148
716 => 0.0026502865130348
717 => 0.0026747580554661
718 => 0.0026892400622
719 => 0.0028311834155257
720 => 0.0028882742064503
721 => 0.0029580837449196
722 => 0.0029852784944034
723 => 0.0030671249404923
724 => 0.0030010272880321
725 => 0.0029867266451487
726 => 0.0027881939387055
727 => 0.0028207036582635
728 => 0.0028727548559974
729 => 0.0027890522437845
730 => 0.002842142285548
731 => 0.002852623384393
801 => 0.0027862080610507
802 => 0.0028216833548845
803 => 0.0027274714921534
804 => 0.0025321213200722
805 => 0.0026038131925117
806 => 0.0026566025418504
807 => 0.0025812656314642
808 => 0.0027163041273904
809 => 0.0026374174258307
810 => 0.0026124141286657
811 => 0.0025148673521061
812 => 0.0025609056757225
813 => 0.0026231731676189
814 => 0.0025846990969998
815 => 0.0026645385704452
816 => 0.0027776125572537
817 => 0.0028581958139258
818 => 0.0028643819957668
819 => 0.0028125723603855
820 => 0.0028955976317286
821 => 0.0028962023801896
822 => 0.0028025495349464
823 => 0.0027451876886962
824 => 0.0027321549565377
825 => 0.0027647132766871
826 => 0.0028042450879459
827 => 0.0028665757361642
828 => 0.002904240841458
829 => 0.0030024514600359
830 => 0.003029024437504
831 => 0.0030582200833181
901 => 0.0030972344697294
902 => 0.0031440812436995
903 => 0.0030415831692412
904 => 0.0030456556088197
905 => 0.0029502108210666
906 => 0.0028482143771853
907 => 0.002925616964055
908 => 0.0030268105499525
909 => 0.0030035966295386
910 => 0.0030009845892747
911 => 0.0030053773164791
912 => 0.0029878747785828
913 => 0.0029087114483522
914 => 0.002868956119499
915 => 0.0029202506363857
916 => 0.0029475113892546
917 => 0.0029897904395669
918 => 0.0029845786542134
919 => 0.0030934849473793
920 => 0.0031358026397482
921 => 0.0031249759631641
922 => 0.0031269683322141
923 => 0.0032035824928915
924 => 0.0032887931964687
925 => 0.0033686042649114
926 => 0.0034497915116965
927 => 0.0033519171169049
928 => 0.0033022225352832
929 => 0.0033534946585884
930 => 0.0033262889482553
1001 => 0.0034826210295673
1002 => 0.0034934451236884
1003 => 0.0036497659004116
1004 => 0.0037981329318537
1005 => 0.0037049462576764
1006 => 0.0037928170942056
1007 => 0.0038878565681264
1008 => 0.0040712031329185
1009 => 0.0040094584601065
1010 => 0.0039621630083948
1011 => 0.0039174690350572
1012 => 0.0040104700986042
1013 => 0.0041301144811292
1014 => 0.0041558847351854
1015 => 0.0041976423917512
1016 => 0.0041537393217556
1017 => 0.0042066157338008
1018 => 0.0043932927033932
1019 => 0.0043428509383662
1020 => 0.0042712155231094
1021 => 0.0044185790619558
1022 => 0.0044719093538031
1023 => 0.0048462092712781
1024 => 0.0053187783786485
1025 => 0.0051231316651411
1026 => 0.005001687436587
1027 => 0.0050302297109929
1028 => 0.0052027959515307
1029 => 0.0052582187510128
1030 => 0.0051075604766359
1031 => 0.0051607755261196
1101 => 0.005453995680763
1102 => 0.0056112988861003
1103 => 0.0053976600046132
1104 => 0.0048082388036311
1105 => 0.0042647655377456
1106 => 0.0044089191207785
1107 => 0.0043925765780691
1108 => 0.0047076050542741
1109 => 0.0043416479189525
1110 => 0.0043478096985619
1111 => 0.0046693526300339
1112 => 0.0045835704885586
1113 => 0.0044446144055151
1114 => 0.0042657800709298
1115 => 0.003935188263275
1116 => 0.0036423738800005
1117 => 0.0042166503167268
1118 => 0.0041918864725212
1119 => 0.0041560247563155
1120 => 0.0042358311250884
1121 => 0.0046233481984169
1122 => 0.0046144146756063
1123 => 0.0045575841614088
1124 => 0.0046006896055465
1125 => 0.004437057812746
1126 => 0.0044792294515774
1127 => 0.0042646794488036
1128 => 0.0043616650104569
1129 => 0.0044443162681693
1130 => 0.0044609097318278
1201 => 0.0044982956527338
1202 => 0.0041788370519027
1203 => 0.0043222645848641
1204 => 0.0044065148231365
1205 => 0.0040258691815719
1206 => 0.0043989906826718
1207 => 0.0041732759883935
1208 => 0.0040966650310345
1209 => 0.0041998115923922
1210 => 0.0041596152771178
1211 => 0.0041250568456516
1212 => 0.0041057726471043
1213 => 0.0041815120978949
1214 => 0.0041779787619873
1215 => 0.0040540543201
1216 => 0.0038923999374644
1217 => 0.0039466564544012
1218 => 0.0039269445531405
1219 => 0.003855506080086
1220 => 0.0039036469854106
1221 => 0.0036916588019156
1222 => 0.0033269441503994
1223 => 0.0035678858207029
1224 => 0.0035586098284903
1225 => 0.003553932452584
1226 => 0.0037349934586784
1227 => 0.0037175886207306
1228 => 0.0036859986694266
1229 => 0.0038549259058571
1230 => 0.003793265192168
1231 => 0.0039832889826666
]
'min_raw' => 0.001705796872976
'max_raw' => 0.0056112988861003
'avg_raw' => 0.0036585478795381
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0017057'
'max' => '$0.005611'
'avg' => '$0.003658'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00092927415734659
'max_diff' => 0.0037093521631412
'year' => 2029
]
4 => [
'items' => [
101 => 0.0041084509410572
102 => 0.0040767058198441
103 => 0.0041944212466707
104 => 0.0039479064149686
105 => 0.0040297887536016
106 => 0.0040466645901099
107 => 0.0038528413699815
108 => 0.0037204362674681
109 => 0.0037116063566591
110 => 0.003482034155448
111 => 0.0036046697722929
112 => 0.0037125840401098
113 => 0.003660901480311
114 => 0.0036445403258513
115 => 0.0037281259156847
116 => 0.0037346212318769
117 => 0.0035865273343515
118 => 0.0036173207451708
119 => 0.0037457343872661
120 => 0.0036140850508655
121 => 0.0033583118950362
122 => 0.00329487661605
123 => 0.0032864131804891
124 => 0.0031143716727631
125 => 0.0032991156647195
126 => 0.0032184699613993
127 => 0.0034732287719037
128 => 0.0033277119056425
129 => 0.0033214389643789
130 => 0.0033119564936185
131 => 0.0031638732609735
201 => 0.0031962940777424
202 => 0.0033040658105119
203 => 0.0033425199788995
204 => 0.003338508894091
205 => 0.0033035376702266
206 => 0.0033195473174301
207 => 0.0032679746656569
208 => 0.0032497632889239
209 => 0.0031922831745207
210 => 0.0031078032856349
211 => 0.0031195507323297
212 => 0.0029521739670815
213 => 0.002860978222017
214 => 0.0028357364417237
215 => 0.002801982078189
216 => 0.0028395490869019
217 => 0.0029516998097353
218 => 0.0028164222438951
219 => 0.0025844983458799
220 => 0.0025984373673298
221 => 0.0026297542099948
222 => 0.0025713954808701
223 => 0.0025161638414304
224 => 0.0025641832708387
225 => 0.0024659140578509
226 => 0.0026416295748977
227 => 0.0026368769625986
228 => 0.002702372841179
301 => 0.002743328758166
302 => 0.0026489386291465
303 => 0.0026251997669561
304 => 0.0026387225017309
305 => 0.002415221818168
306 => 0.0026841080670883
307 => 0.0026864334065347
308 => 0.0026665224384401
309 => 0.0028096960650585
310 => 0.0031118370741975
311 => 0.0029981594729655
312 => 0.0029541400698448
313 => 0.0028704591523343
314 => 0.0029819590064358
315 => 0.0029733975573095
316 => 0.0029346794375271
317 => 0.0029112625978749
318 => 0.0029544088429337
319 => 0.0029059163006337
320 => 0.0028972057075507
321 => 0.0028444289906864
322 => 0.0028255901039535
323 => 0.0028116425422141
324 => 0.0027962876471982
325 => 0.0028301567194019
326 => 0.0027534049459407
327 => 0.0026608498312157
328 => 0.0026531548748865
329 => 0.0026744013258588
330 => 0.0026650013529158
331 => 0.0026531098714325
401 => 0.0026304057948285
402 => 0.002623669980296
403 => 0.0026455581097741
404 => 0.0026208476877505
405 => 0.0026573092614927
406 => 0.0026473937309457
407 => 0.00259200638334
408 => 0.0025229732412007
409 => 0.0025223587014337
410 => 0.0025074856241969
411 => 0.0024885425241536
412 => 0.002483272987081
413 => 0.002560139208431
414 => 0.0027192499862131
415 => 0.0026880127333362
416 => 0.0027105848498622
417 => 0.0028216173227251
418 => 0.0028569112069852
419 => 0.0028318604439188
420 => 0.0027975694143698
421 => 0.00279907804564
422 => 0.0029162608742097
423 => 0.0029235694234882
424 => 0.0029420357696877
425 => 0.0029657702431428
426 => 0.002835902527379
427 => 0.0027929612879063
428 => 0.0027726133463549
429 => 0.002709949562021
430 => 0.0027775270810383
501 => 0.0027381525546648
502 => 0.0027434655234979
503 => 0.0027400054455754
504 => 0.0027418948820906
505 => 0.0026415804588296
506 => 0.002678129762295
507 => 0.0026173594564298
508 => 0.0025359948386631
509 => 0.0025357220759343
510 => 0.0025556359508635
511 => 0.0025437903988256
512 => 0.0025119143228686
513 => 0.0025164421690074
514 => 0.0024767734724075
515 => 0.0025212586669996
516 => 0.0025225343432048
517 => 0.0025054051201619
518 => 0.002573940700205
519 => 0.0026020197832684
520 => 0.002590744961718
521 => 0.002601228711732
522 => 0.002689310782221
523 => 0.0027036720030008
524 => 0.0027100503086223
525 => 0.0027015042240531
526 => 0.002602838690286
527 => 0.0026072149262669
528 => 0.0025751050103178
529 => 0.0025479755150005
530 => 0.0025490605525377
531 => 0.0025630086397183
601 => 0.0026239207544807
602 => 0.0027521067090328
603 => 0.0027569712723054
604 => 0.002762867264901
605 => 0.0027388852999261
606 => 0.0027316521098132
607 => 0.0027411945546169
608 => 0.0027893344594494
609 => 0.0029131633645352
610 => 0.0028693939592234
611 => 0.0028338087513935
612 => 0.0028650265723634
613 => 0.0028602208335185
614 => 0.0028196555613424
615 => 0.0028185170292593
616 => 0.0027406593024514
617 => 0.0027118770735852
618 => 0.0026878244888321
619 => 0.0026615596941903
620 => 0.0026459890435228
621 => 0.0026699126396823
622 => 0.0026753842491796
623 => 0.002623074888064
624 => 0.0026159453154336
625 => 0.0026586622688966
626 => 0.0026398641303261
627 => 0.0026591984820173
628 => 0.0026636842174567
629 => 0.0026629619107357
630 => 0.0026433344951156
701 => 0.0026558444245339
702 => 0.0026262547120702
703 => 0.002594080343997
704 => 0.0025735551017003
705 => 0.0025556441055181
706 => 0.0025655821671932
707 => 0.0025301547919399
708 => 0.0025188208615841
709 => 0.0026516063419293
710 => 0.0027496964039447
711 => 0.0027482701355951
712 => 0.0027395880938231
713 => 0.0027266883408379
714 => 0.0027883907621709
715 => 0.0027668948723573
716 => 0.0027825349282384
717 => 0.0027865159788712
718 => 0.002798565420121
719 => 0.0028028720596833
720 => 0.0027898544037725
721 => 0.0027461655605629
722 => 0.0026372971170954
723 => 0.0025866185627765
724 => 0.0025698937957332
725 => 0.0025705017092503
726 => 0.0025537327406013
727 => 0.0025586719534009
728 => 0.0025520150839576
729 => 0.0025394085837015
730 => 0.0025648037513266
731 => 0.002567730307823
801 => 0.0025618027722497
802 => 0.0025631989214571
803 => 0.0025141214585933
804 => 0.0025178527115042
805 => 0.0024970766211517
806 => 0.0024931813546701
807 => 0.0024406612074402
808 => 0.0023476141537052
809 => 0.0023991712537704
810 => 0.0023368975269169
811 => 0.0023133135229566
812 => 0.0024249565296398
813 => 0.0024137506682638
814 => 0.0023945711046589
815 => 0.002366200532716
816 => 0.0023556776116112
817 => 0.0022917436741304
818 => 0.0022879661160297
819 => 0.0023196535018067
820 => 0.002305030863567
821 => 0.0022844951414523
822 => 0.0022101168376255
823 => 0.0021264909983141
824 => 0.0021290151367497
825 => 0.0021556149603206
826 => 0.0022329575348279
827 => 0.0022027384529278
828 => 0.0021808141622852
829 => 0.0021767084016896
830 => 0.0022281005915355
831 => 0.0023008313071641
901 => 0.002334954931679
902 => 0.0023011394561346
903 => 0.0022622940585837
904 => 0.0022646583979404
905 => 0.0022803872884377
906 => 0.0022820401724345
907 => 0.0022567558120002
908 => 0.0022638732113585
909 => 0.0022530612309047
910 => 0.002186708126817
911 => 0.002185508009572
912 => 0.0021692238877405
913 => 0.0021687308110032
914 => 0.0021410274575033
915 => 0.0021371515668444
916 => 0.0020821448769971
917 => 0.0021183504468302
918 => 0.0020940656514639
919 => 0.0020574627366427
920 => 0.002051152380331
921 => 0.0020509626834003
922 => 0.0020885456926597
923 => 0.0021179112674851
924 => 0.0020944880958765
925 => 0.0020891550937403
926 => 0.0021460976042834
927 => 0.0021388511507743
928 => 0.00213257576877
929 => 0.002294319069297
930 => 0.0021662866259427
1001 => 0.0021104571728039
1002 => 0.002041357622819
1003 => 0.0020638567847242
1004 => 0.0020685976887191
1005 => 0.0019024257271354
1006 => 0.0018350097830163
1007 => 0.0018118751715109
1008 => 0.0017985608755142
1009 => 0.0018046283673903
1010 => 0.0017439461105815
1011 => 0.0017847255907489
1012 => 0.001732179885696
1013 => 0.0017233704272454
1014 => 0.0018173286570437
1015 => 0.0018304023958242
1016 => 0.0017746257644946
1017 => 0.0018104433912246
1018 => 0.00179745542187
1019 => 0.0017330806309938
1020 => 0.0017306219874913
1021 => 0.0016983209803129
1022 => 0.0016477761587863
1023 => 0.00162467581905
1024 => 0.0016126449615489
1025 => 0.0016176091278306
1026 => 0.0016150990934526
1027 => 0.0015987194212835
1028 => 0.001616037957088
1029 => 0.0015717962546205
1030 => 0.0015541788522184
1031 => 0.001546221480274
1101 => 0.0015069544228767
1102 => 0.0015694457733354
1103 => 0.0015817573566211
1104 => 0.001594093197529
1105 => 0.0017014682705966
1106 => 0.0016961041153849
1107 => 0.0017445934660487
1108 => 0.0017427092590481
1109 => 0.0017288793107634
1110 => 0.0016705330338663
1111 => 0.0016937888199151
1112 => 0.0016222111252084
1113 => 0.0016758420008928
1114 => 0.0016513671089094
1115 => 0.0016675670152937
1116 => 0.001638438122928
1117 => 0.0016545592546657
1118 => 0.0015846768897477
1119 => 0.0015194217206587
1120 => 0.0015456823056173
1121 => 0.0015742305647294
1122 => 0.0016361304644455
1123 => 0.0015992633948377
1124 => 0.0016125221871669
1125 => 0.001568107452359
1126 => 0.0014764671680085
1127 => 0.0014769858420659
1128 => 0.0014628889808107
1129 => 0.0014507072345107
1130 => 0.0016034980212711
1201 => 0.0015844960716725
1202 => 0.0015542189519009
1203 => 0.0015947460798801
1204 => 0.0016054620957698
1205 => 0.0016057671656773
1206 => 0.0016353347120943
1207 => 0.0016511149169174
1208 => 0.0016538962464128
1209 => 0.0017004214195491
1210 => 0.0017160160439026
1211 => 0.0017802480945805
1212 => 0.0016497760767883
1213 => 0.0016470890914414
1214 => 0.0015953163796815
1215 => 0.0015624813073893
1216 => 0.001597564625173
1217 => 0.001628643655379
1218 => 0.0015962820917825
1219 => 0.0016005078287983
1220 => 0.001557065073707
1221 => 0.0015725938144805
1222 => 0.001585969257982
1223 => 0.0015785841242527
1224 => 0.0015675282216154
1225 => 0.0016260955293227
1226 => 0.0016227909322947
1227 => 0.0016773301556883
1228 => 0.0017198473804608
1229 => 0.0017960458481163
1230 => 0.0017165287748018
1231 => 0.0017136308565985
]
'min_raw' => 0.0014507072345107
'max_raw' => 0.0041944212466707
'avg_raw' => 0.0028225642405907
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00145'
'max' => '$0.004194'
'avg' => '$0.002822'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00025508963846525
'max_diff' => -0.0014168776394296
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017419584718767
102 => 0.0017160117070923
103 => 0.0017324091667841
104 => 0.0017934039638562
105 => 0.001794692687804
106 => 0.0017731049012515
107 => 0.0017717912824778
108 => 0.0017759374530298
109 => 0.0018002217034556
110 => 0.0017917360401772
111 => 0.0018015558645537
112 => 0.001813835705303
113 => 0.0018646303331868
114 => 0.0018768767460051
115 => 0.0018471243118936
116 => 0.00184981062357
117 => 0.0018386823964896
118 => 0.0018279326685663
119 => 0.0018520964870662
120 => 0.0018962563403159
121 => 0.0018959816241607
122 => 0.0019062258517697
123 => 0.0019126079207024
124 => 0.0018852114088834
125 => 0.0018673772870869
126 => 0.0018742160241983
127 => 0.0018851513137678
128 => 0.0018706698571731
129 => 0.0017812835986072
130 => 0.0018083976794398
131 => 0.0018038845705784
201 => 0.0017974573547471
202 => 0.0018247207726912
203 => 0.001822091149521
204 => 0.0017433237263293
205 => 0.0017483661612017
206 => 0.0017436303734949
207 => 0.0017589326724266
208 => 0.0017151853327321
209 => 0.0017286417197793
210 => 0.0017370814395895
211 => 0.0017420524993947
212 => 0.0017600113760987
213 => 0.001757904109198
214 => 0.0017598803854294
215 => 0.0017865086586137
216 => 0.0019211853266603
217 => 0.0019285154805548
218 => 0.0018924191219006
219 => 0.0019068389052138
220 => 0.0018791560745125
221 => 0.0018977397442211
222 => 0.0019104542190617
223 => 0.00185299995211
224 => 0.0018495978832962
225 => 0.0018218007957053
226 => 0.0018367373760691
227 => 0.0018129722027321
228 => 0.0018188033449986
301 => 0.0018024989628718
302 => 0.0018318436045299
303 => 0.0018646554735999
304 => 0.001872945047507
305 => 0.0018511387474434
306 => 0.0018353495490922
307 => 0.0018076289180728
308 => 0.0018537289452527
309 => 0.0018672099980729
310 => 0.0018536581350213
311 => 0.0018505178722381
312 => 0.0018445670799384
313 => 0.0018517803609557
314 => 0.0018671365773641
315 => 0.0018598948692907
316 => 0.0018646781450556
317 => 0.0018464492303322
318 => 0.0018852204782688
319 => 0.001946798550801
320 => 0.0019469965343732
321 => 0.0019397547872643
322 => 0.001936791620373
323 => 0.0019442220923727
324 => 0.0019482528186186
325 => 0.00197228160255
326 => 0.0019980654450575
327 => 0.0021183873876678
328 => 0.0020846014676588
329 => 0.0021913582531271
330 => 0.0022757890097989
331 => 0.0023011061020152
401 => 0.0022778155684374
402 => 0.0021981399111977
403 => 0.0021942306433407
404 => 0.0023132997134516
405 => 0.0022796572474364
406 => 0.0022756555831533
407 => 0.0022330846360999
408 => 0.0022582493383229
409 => 0.0022527454488028
410 => 0.0022440572899359
411 => 0.0022920697887889
412 => 0.0023819449005363
413 => 0.002367937021527
414 => 0.0023574807896534
415 => 0.0023116646253465
416 => 0.00233925618967
417 => 0.002329431362096
418 => 0.0023716450563436
419 => 0.0023466385990191
420 => 0.0022794023726681
421 => 0.002290109963328
422 => 0.0022884915325404
423 => 0.0023217987234652
424 => 0.0023118007314849
425 => 0.0022865392641442
426 => 0.002381637717175
427 => 0.0023754625526006
428 => 0.002384217524128
429 => 0.0023880717333508
430 => 0.002445956485888
501 => 0.002469670016897
502 => 0.0024750534035998
503 => 0.002497579423988
504 => 0.0024744929356918
505 => 0.0025668553492639
506 => 0.0026282709647931
507 => 0.0026996083626489
508 => 0.0028038514746012
509 => 0.002843047848998
510 => 0.0028359673747963
511 => 0.0029150033125684
512 => 0.0030570291358745
513 => 0.0028646748543602
514 => 0.0030672243798674
515 => 0.0030030995386386
516 => 0.0028510606936416
517 => 0.002841271184444
518 => 0.0029442336554832
519 => 0.0031725945064777
520 => 0.0031153927033509
521 => 0.0031726880681356
522 => 0.0031058499816918
523 => 0.0031025309073442
524 => 0.0031694418914625
525 => 0.0033257830529826
526 => 0.0032515112275052
527 => 0.0031450243534846
528 => 0.0032236526041421
529 => 0.0031555375367215
530 => 0.0030020552256158
531 => 0.0031153489622101
601 => 0.0030395926669693
602 => 0.0030617023813468
603 => 0.0032209308460444
604 => 0.0032017720559057
605 => 0.0032265653044014
606 => 0.0031828058697588
607 => 0.0031419276575732
608 => 0.0030656254388729
609 => 0.0030430361135697
610 => 0.0030492789904047
611 => 0.0030430330199099
612 => 0.0030003426298007
613 => 0.0029911236441212
614 => 0.0029757582640957
615 => 0.0029805206378639
616 => 0.0029516292281155
617 => 0.0030061532875807
618 => 0.0030162734334818
619 => 0.0030559514970314
620 => 0.003060071005216
621 => 0.0031705738474197
622 => 0.0031097107388588
623 => 0.0031505429667494
624 => 0.0031468905479591
625 => 0.0028543558364347
626 => 0.0028946645386272
627 => 0.002957372229671
628 => 0.0029291224998541
629 => 0.0028891839913115
630 => 0.0028569315042961
701 => 0.0028080656884817
702 => 0.0028768433858557
703 => 0.0029672787442098
704 => 0.0030623645951449
705 => 0.0031766040147718
706 => 0.0031511071062045
707 => 0.0030602289686583
708 => 0.0030643056955221
709 => 0.0030895064168612
710 => 0.0030568691930001
711 => 0.0030472438385291
712 => 0.0030881840409643
713 => 0.0030884659736381
714 => 0.0030509129032456
715 => 0.0030091795376437
716 => 0.003009004673318
717 => 0.0030015786240056
718 => 0.0031071710593674
719 => 0.003165236222217
720 => 0.0031718932995611
721 => 0.003164788147871
722 => 0.0031675226387631
723 => 0.0031337357998795
724 => 0.0032109624943916
725 => 0.0032818333462045
726 => 0.0032628384439837
727 => 0.0032343623852704
728 => 0.0032116798329123
729 => 0.0032574951555101
730 => 0.0032554550713148
731 => 0.0032812143511403
801 => 0.0032800457614146
802 => 0.0032713838844648
803 => 0.0032628387533266
804 => 0.0032967192323916
805 => 0.0032869621985248
806 => 0.0032771900092893
807 => 0.0032575903877304
808 => 0.0032602543018155
809 => 0.0032317831598951
810 => 0.0032186111068919
811 => 0.0030205350338985
812 => 0.0029676026348723
813 => 0.0029842562451443
814 => 0.0029897390460566
815 => 0.0029667027981657
816 => 0.0029997308601147
817 => 0.0029945834716453
818 => 0.0030146089490582
819 => 0.0030020979001758
820 => 0.003002611357986
821 => 0.0030394036851122
822 => 0.0030500846542027
823 => 0.0030446522271173
824 => 0.0030484569128352
825 => 0.0031361342893473
826 => 0.0031236693701719
827 => 0.0031170476302951
828 => 0.0031188818974947
829 => 0.0031412853470177
830 => 0.0031475570897012
831 => 0.0031209832752439
901 => 0.0031335156397633
902 => 0.0031868768572932
903 => 0.0032055502634454
904 => 0.0032651468121395
905 => 0.0032398291390101
906 => 0.0032863008237624
907 => 0.0034291389393263
908 => 0.0035432479096845
909 => 0.0034383085847904
910 => 0.0036478551771636
911 => 0.0038110172569995
912 => 0.0038047548246147
913 => 0.0037763037419884
914 => 0.0035905480519836
915 => 0.0034196128965798
916 => 0.0035626074123652
917 => 0.003562971934793
918 => 0.0035506885790715
919 => 0.0034743977116317
920 => 0.0035480338222546
921 => 0.0035538787893088
922 => 0.0035506071620606
923 => 0.003492115132868
924 => 0.0034028086154247
925 => 0.0034202588951635
926 => 0.0034488428093518
927 => 0.0033947274965643
928 => 0.0033774343751662
929 => 0.0034095855779962
930 => 0.0035131834524832
1001 => 0.0034935988744131
1002 => 0.0034930874419322
1003 => 0.0035768785720699
1004 => 0.0035169022061489
1005 => 0.0034204789990746
1006 => 0.0033961308676225
1007 => 0.003309711403834
1008 => 0.0033694016352883
1009 => 0.0033715497804538
1010 => 0.0033388580507057
1011 => 0.0034231317527692
1012 => 0.0034223551557686
1013 => 0.0035023604933927
1014 => 0.0036553006502974
1015 => 0.0036100687201726
1016 => 0.0035574689066575
1017 => 0.0035631879648212
1018 => 0.0036259119170389
1019 => 0.0035879875836795
1020 => 0.0036016254383734
1021 => 0.0036258912745124
1022 => 0.0036405314559419
1023 => 0.0035610814680131
1024 => 0.0035425578752947
1025 => 0.0035046651054904
1026 => 0.0034947795891505
1027 => 0.0035256424594975
1028 => 0.0035175111835624
1029 => 0.0033713692371707
1030 => 0.0033560965906467
1031 => 0.0033565649809112
1101 => 0.0033181611850518
1102 => 0.003259586178399
1103 => 0.0034135177985506
1104 => 0.0034011549351808
1105 => 0.0033875072908301
1106 => 0.0033891790493907
1107 => 0.0034559955484718
1108 => 0.0034172386046907
1109 => 0.003520280291871
1110 => 0.0034990980187034
1111 => 0.003477372500157
1112 => 0.0034743693717185
1113 => 0.0034660069006122
1114 => 0.0034373288756506
1115 => 0.0034026984372273
1116 => 0.0033798324221431
1117 => 0.0031177167521611
1118 => 0.003166363895853
1119 => 0.003222328000344
1120 => 0.0032416465849521
1121 => 0.0032086008091745
1122 => 0.0034386337242947
1123 => 0.0034806629545395
1124 => 0.0033533536746292
1125 => 0.0033295393063616
1126 => 0.0034401949903137
1127 => 0.0033734560857834
1128 => 0.0034035086104069
1129 => 0.0033385514900229
1130 => 0.003470539343733
1201 => 0.0034695338174279
1202 => 0.0034181875612538
1203 => 0.0034615850653682
1204 => 0.0034540436810682
1205 => 0.0033960738843078
1206 => 0.0034723770896892
1207 => 0.0034724149351271
1208 => 0.0034229952799234
1209 => 0.0033652839419991
1210 => 0.0033549665178592
1211 => 0.0033471937247207
1212 => 0.0034015969797757
1213 => 0.0034503747681435
1214 => 0.0035411381392566
1215 => 0.003563958207239
1216 => 0.0036530264517921
1217 => 0.0035999906488148
1218 => 0.003623500733346
1219 => 0.0036490242558091
1220 => 0.0036612611710744
1221 => 0.0036413217743187
1222 => 0.0037796814200618
1223 => 0.0037913632133925
1224 => 0.0037952800176491
1225 => 0.0037486259235764
1226 => 0.0037900656786397
1227 => 0.003770677389586
1228 => 0.0038211203314818
1229 => 0.0038290304288589
1230 => 0.0038223308577904
1231 => 0.0038248416475503
]
'min_raw' => 0.0017151853327321
'max_raw' => 0.0038290304288589
'avg_raw' => 0.0027721078807955
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001715'
'max' => '$0.003829'
'avg' => '$0.002772'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00026447809822136
'max_diff' => -0.00036539081781177
'year' => 2031
]
6 => [
'items' => [
101 => 0.0037067760982227
102 => 0.0037006537766447
103 => 0.0036171754875081
104 => 0.0036511935073716
105 => 0.003587598449763
106 => 0.0036077650976324
107 => 0.0036166543638583
108 => 0.0036120111156433
109 => 0.0036531168351745
110 => 0.0036181685762293
111 => 0.0035259343748471
112 => 0.0034336750443185
113 => 0.0034325168035765
114 => 0.0034082265503608
115 => 0.0033906691462676
116 => 0.0033940513251783
117 => 0.0034059705648042
118 => 0.0033899763783925
119 => 0.0033933895489893
120 => 0.0034500709227324
121 => 0.0034614379680035
122 => 0.0034228083067809
123 => 0.003267704642739
124 => 0.003229641814535
125 => 0.0032570006206293
126 => 0.003243924873449
127 => 0.0026181005508292
128 => 0.0027651286924453
129 => 0.0026777695633009
130 => 0.0027180286692109
131 => 0.0026288576198913
201 => 0.0026714147184818
202 => 0.0026635559763085
203 => 0.0028999728771483
204 => 0.0028962815524225
205 => 0.0028980483942281
206 => 0.0028137124313611
207 => 0.0029480619101792
208 => 0.003014247294496
209 => 0.003001998141326
210 => 0.0030050809892812
211 => 0.0029521074474459
212 => 0.0028985612939075
213 => 0.0028391703689396
214 => 0.0029495113665899
215 => 0.0029372433312348
216 => 0.0029653817904395
217 => 0.0030369458147531
218 => 0.0030474838891786
219 => 0.0030616471680731
220 => 0.0030565706408002
221 => 0.0031775141160546
222 => 0.0031628670631905
223 => 0.0031981622463482
224 => 0.0031255573767409
225 => 0.0030433980750628
226 => 0.0030590138723219
227 => 0.0030575099454715
228 => 0.0030383632305396
229 => 0.0030210784324065
301 => 0.0029923041134765
302 => 0.0030833503163688
303 => 0.0030796540068013
304 => 0.0031394929622098
305 => 0.0031289158455968
306 => 0.0030582792721952
307 => 0.0030608020712331
308 => 0.0030777691071786
309 => 0.0031364922123123
310 => 0.0031539252280899
311 => 0.0031458495605961
312 => 0.0031649640665488
313 => 0.0031800713926927
314 => 0.003166861314116
315 => 0.0033538881691709
316 => 0.0032762215794853
317 => 0.0033140757348974
318 => 0.0033231037279136
319 => 0.0032999787136409
320 => 0.003304993701192
321 => 0.0033125900408295
322 => 0.0033587135275929
323 => 0.0034797549027984
324 => 0.0035333633039204
325 => 0.003694646823688
326 => 0.0035289118724722
327 => 0.0035190778463465
328 => 0.0035481298785523
329 => 0.0036428203782503
330 => 0.0037195581344291
331 => 0.0037450164752609
401 => 0.0037483812152733
402 => 0.0037961427551123
403 => 0.0038235187790481
404 => 0.0037903432479227
405 => 0.0037622304589167
406 => 0.0036615339381854
407 => 0.0036731898346475
408 => 0.0037534874026756
409 => 0.0038669124470184
410 => 0.003964242934929
411 => 0.0039301611903727
412 => 0.0041901808433755
413 => 0.0042159607298857
414 => 0.0042123987831335
415 => 0.0042711292011652
416 => 0.0041545612816139
417 => 0.0041047262376086
418 => 0.0037683087629935
419 => 0.0038628283510699
420 => 0.0040002181232797
421 => 0.0039820340717425
422 => 0.0038822579467246
423 => 0.003964167245791
424 => 0.0039370854699791
425 => 0.0039157249497723
426 => 0.0040135816337802
427 => 0.0039059841899825
428 => 0.0039991447564701
429 => 0.0038796653663271
430 => 0.003930316872911
501 => 0.0039015646280363
502 => 0.0039201708542128
503 => 0.0038113992361724
504 => 0.0038700897609852
505 => 0.0038089575173836
506 => 0.0038089285327405
507 => 0.0038075790350747
508 => 0.0038795008485701
509 => 0.0038818462163262
510 => 0.0038286958874852
511 => 0.003821036094735
512 => 0.0038493583631923
513 => 0.0038162004044427
514 => 0.0038317148046479
515 => 0.0038166703198202
516 => 0.0038132834894001
517 => 0.0037862966483913
518 => 0.0037746699752661
519 => 0.003779229093381
520 => 0.0037636664728685
521 => 0.0037542894310851
522 => 0.0038057137054473
523 => 0.0037782397901049
524 => 0.0038015029338896
525 => 0.0037749916455041
526 => 0.0036830919695413
527 => 0.0036302394940736
528 => 0.0034566495252843
529 => 0.0035058794250953
530 => 0.003538518899602
531 => 0.0035277315534722
601 => 0.0035509069471077
602 => 0.0035523297280542
603 => 0.0035447951713381
604 => 0.0035360711198974
605 => 0.0035318247341264
606 => 0.0035634738146651
607 => 0.0035818471711768
608 => 0.0035417947075286
609 => 0.0035324109756893
610 => 0.0035729062277948
611 => 0.0035976083081859
612 => 0.0037799945908933
613 => 0.0037664828259704
614 => 0.0038003947043769
615 => 0.0037965767472886
616 => 0.0038321217984445
617 => 0.003890222934625
618 => 0.0037720870794368
619 => 0.003792591379067
620 => 0.0037875641983111
621 => 0.0038424496396063
622 => 0.003842620985963
623 => 0.0038097144221755
624 => 0.0038275536042527
625 => 0.0038175962622096
626 => 0.0038355905250971
627 => 0.0037663023681121
628 => 0.0038506878641254
629 => 0.0038985290026837
630 => 0.003899193276939
701 => 0.0039218695969249
702 => 0.0039449100513544
703 => 0.0039891341972312
704 => 0.0039436766639286
705 => 0.0038619029867188
706 => 0.003867806782086
707 => 0.0038198629050578
708 => 0.0038206688502924
709 => 0.0038163666514669
710 => 0.0038292778739965
711 => 0.0037691356553963
712 => 0.0037832509138912
713 => 0.0037634894693395
714 => 0.0037925484215459
715 => 0.0037612857925887
716 => 0.0037875617740523
717 => 0.0037989016165894
718 => 0.0038407458796807
719 => 0.0037551053609076
720 => 0.0035804785457759
721 => 0.0036171872194621
722 => 0.0035628922076762
723 => 0.0035679174177327
724 => 0.003578069141803
725 => 0.0035451640826536
726 => 0.0035514413309817
727 => 0.0035512170634991
728 => 0.0035492844474932
729 => 0.0035407245707548
730 => 0.0035283110559641
731 => 0.0035777626782119
801 => 0.00358616547246
802 => 0.0036048438431873
803 => 0.0036604180048121
804 => 0.0036548648355368
805 => 0.0036639222850236
806 => 0.0036441499236493
807 => 0.0035688346008683
808 => 0.0035729245852483
809 => 0.0035219224144926
810 => 0.0036035396030126
811 => 0.0035842115754768
812 => 0.0035717506703882
813 => 0.0035683505969853
814 => 0.0036240625162075
815 => 0.0036407323956161
816 => 0.0036303448454427
817 => 0.0036090396769837
818 => 0.0036499518987326
819 => 0.0036608982833245
820 => 0.0036633487751475
821 => 0.0037358373879462
822 => 0.0036674000833549
823 => 0.0036838736227784
824 => 0.0038123954747806
825 => 0.0036958438898178
826 => 0.0037575838637831
827 => 0.0037545620133368
828 => 0.0037861460948507
829 => 0.0037519711967825
830 => 0.0037523948356023
831 => 0.0037804393602955
901 => 0.0037410558832205
902 => 0.0037313039804456
903 => 0.0037178317966066
904 => 0.0037472478171491
905 => 0.0037648813910922
906 => 0.0039069950466404
907 => 0.0039988069492946
908 => 0.0039948211524637
909 => 0.004031243874399
910 => 0.0040148351045733
911 => 0.0039618468583912
912 => 0.0040522913333958
913 => 0.0040236709171468
914 => 0.0040260303494885
915 => 0.0040259425312989
916 => 0.0040449726060643
917 => 0.0040314880540123
918 => 0.0040049086177569
919 => 0.0040225532879536
920 => 0.0040749516503527
921 => 0.0042375977750176
922 => 0.0043286167011546
923 => 0.0042321183213774
924 => 0.004298681611583
925 => 0.004258767356385
926 => 0.0042515137488693
927 => 0.0042933204141069
928 => 0.0043352002563777
929 => 0.0043325326914766
930 => 0.0043021300765417
1001 => 0.0042849564108027
1002 => 0.004415001161378
1003 => 0.0045108159183473
1004 => 0.0045042819942723
1005 => 0.0045331206101935
1006 => 0.0046177916784831
1007 => 0.0046255329398351
1008 => 0.0046245577188356
1009 => 0.0046053701948575
1010 => 0.0046887398575162
1011 => 0.0047582882968557
1012 => 0.0046009288374375
1013 => 0.0046608492595974
1014 => 0.0046877494676204
1015 => 0.0047272469539302
1016 => 0.0047938858338822
1017 => 0.0048662733326001
1018 => 0.0048765097186073
1019 => 0.004869246512879
1020 => 0.0048215050115942
1021 => 0.0049007122764537
1022 => 0.0049471100345695
1023 => 0.0049747388377336
1024 => 0.0050448008855634
1025 => 0.0046879155941472
1026 => 0.0044352944465329
1027 => 0.0043958440064393
1028 => 0.0044760680276815
1029 => 0.0044972224623085
1030 => 0.0044886951362358
1031 => 0.004204347067286
1101 => 0.0043943469727035
1102 => 0.0045987708952869
1103 => 0.004606623650696
1104 => 0.0047089625406439
1105 => 0.0047422882782238
1106 => 0.0048246844984968
1107 => 0.0048195305924846
1108 => 0.0048395927609109
1109 => 0.004834980815818
1110 => 0.0049876024633026
1111 => 0.005155966805012
1112 => 0.0051501368832244
1113 => 0.0051259325171072
1114 => 0.005161880128249
1115 => 0.0053356501719125
1116 => 0.0053196522109002
1117 => 0.0053351928673206
1118 => 0.0055400775420503
1119 => 0.0058064567637042
1120 => 0.0056826968712094
1121 => 0.0059512202269734
1122 => 0.0061202414456153
1123 => 0.0064125461661364
1124 => 0.006375948175496
1125 => 0.0064897402581638
1126 => 0.0063104301340187
1127 => 0.0058986978444266
1128 => 0.0058335396335507
1129 => 0.0059639880217929
1130 => 0.0062846826553186
1201 => 0.0059538882065278
1202 => 0.0060208074926906
1203 => 0.0060015347337738
1204 => 0.0060005077703551
1205 => 0.0060397027870857
1206 => 0.0059828483710434
1207 => 0.005751213252173
1208 => 0.005857370262117
1209 => 0.0058163779424993
1210 => 0.005861861977295
1211 => 0.0061073205540445
1212 => 0.0059987974662619
1213 => 0.0058844772089827
1214 => 0.0060278601813068
1215 => 0.0062104359768102
1216 => 0.0061990107116479
1217 => 0.0061768409218425
1218 => 0.0063018108662027
1219 => 0.0065082246015276
1220 => 0.0065640174047483
1221 => 0.0066052025114523
1222 => 0.0066108812418386
1223 => 0.0066693756941297
1224 => 0.0063548362816605
1225 => 0.0068540184071942
1226 => 0.0069402133706459
1227 => 0.0069240122899322
1228 => 0.0070198143641702
1229 => 0.0069916269636653
1230 => 0.0069507878428014
1231 => 0.0071026545081543
]
'min_raw' => 0.0026181005508292
'max_raw' => 0.0071026545081543
'avg_raw' => 0.0048603775294917
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002618'
'max' => '$0.0071026'
'avg' => '$0.00486'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00090291521809708
'max_diff' => 0.0032736240792954
'year' => 2032
]
7 => [
'items' => [
101 => 0.0069285516313352
102 => 0.0066814345166331
103 => 0.0065458611800852
104 => 0.0067243950860406
105 => 0.0068334195124328
106 => 0.0069054777230222
107 => 0.0069272824940078
108 => 0.0063792530808717
109 => 0.0060838956222959
110 => 0.0062732163669628
111 => 0.0065042007416763
112 => 0.0063535531517963
113 => 0.006359458252106
114 => 0.0061446743784274
115 => 0.0065232043486132
116 => 0.0064680557158952
117 => 0.006754166919992
118 => 0.0066858841849484
119 => 0.0069191967651163
120 => 0.0068577577436021
121 => 0.0071127876868983
122 => 0.0072145260359392
123 => 0.0073853605582886
124 => 0.0075110271283503
125 => 0.0075848209419091
126 => 0.0075803906381366
127 => 0.0078727984913882
128 => 0.007700375796278
129 => 0.0074837722543106
130 => 0.0074798545796118
131 => 0.0075920366232927
201 => 0.0078271394112071
202 => 0.0078880981435068
203 => 0.0079221657587192
204 => 0.0078699900201193
205 => 0.007682837542223
206 => 0.0076020260511521
207 => 0.0076708797828788
208 => 0.0075866775856456
209 => 0.007732034201034
210 => 0.0079316398804599
211 => 0.0078904220969848
212 => 0.0080282069674265
213 => 0.0081707998129425
214 => 0.0083747139862758
215 => 0.0084280247021051
216 => 0.008516145288146
217 => 0.0086068503172866
218 => 0.0086359823280775
219 => 0.0086916043758094
220 => 0.008691311220162
221 => 0.0088589320047977
222 => 0.0090438229210344
223 => 0.0091136149616792
224 => 0.0092740979107863
225 => 0.0089992764844336
226 => 0.0092077316932432
227 => 0.0093957635095617
228 => 0.0091715842265049
301 => 0.0094805631411249
302 => 0.0094925600922183
303 => 0.0096736998102925
304 => 0.0094900800038533
305 => 0.0093810471489248
306 => 0.0096958209156954
307 => 0.009848130026155
308 => 0.0098022532825519
309 => 0.0094531289985183
310 => 0.0092499236905658
311 => 0.0087180962042775
312 => 0.0093480688350237
313 => 0.0096549101269066
314 => 0.0094523343536998
315 => 0.0095545017905763
316 => 0.010111894198272
317 => 0.010324113138636
318 => 0.010279973082563
319 => 0.010287432025432
320 => 0.010401941513607
321 => 0.0109097396457
322 => 0.010605455234281
323 => 0.010838069265491
324 => 0.010961446908893
325 => 0.011076046939995
326 => 0.01079462548332
327 => 0.010428500303088
328 => 0.010312533089619
329 => 0.0094321921853865
330 => 0.0093863666181944
331 => 0.0093606433386727
401 => 0.0091984616999185
402 => 0.0090710313571473
403 => 0.0089696940173904
404 => 0.0087037545759769
405 => 0.0087935013307197
406 => 0.0083696493669817
407 => 0.00864081483299
408 => 0.0079643368646006
409 => 0.0085277278183267
410 => 0.0082210997364569
411 => 0.0084269922466966
412 => 0.0084262739071247
413 => 0.0080471605174935
414 => 0.0078284958262488
415 => 0.007967837478067
416 => 0.0081172227897702
417 => 0.0081414600540016
418 => 0.0083351420099803
419 => 0.0083891944807143
420 => 0.0082254129709218
421 => 0.0079503183623216
422 => 0.0080142165656595
423 => 0.0078272009311977
424 => 0.0074994632252559
425 => 0.0077348501674146
426 => 0.0078152216187009
427 => 0.0078507182302495
428 => 0.0075284258373856
429 => 0.0074271545702395
430 => 0.0073732385973591
501 => 0.0079087144615775
502 => 0.0079380490381878
503 => 0.0077879691967583
504 => 0.0084663443111739
505 => 0.0083128071299985
506 => 0.0084843457788941
507 => 0.0080084184734559
508 => 0.0080265995374447
509 => 0.0078012879239768
510 => 0.0079274473721914
511 => 0.0078382819405021
512 => 0.0079172549355076
513 => 0.007964591023096
514 => 0.0081898656651452
515 => 0.0085303000928752
516 => 0.0081562171458703
517 => 0.0079932238488938
518 => 0.0080943439736289
519 => 0.0083636401912528
520 => 0.0087716377459727
521 => 0.0085300949818625
522 => 0.0086372875589125
523 => 0.0086607043683321
524 => 0.0084825996764764
525 => 0.0087782047200073
526 => 0.0089366218643266
527 => 0.0090991250745892
528 => 0.0092402220588235
529 => 0.0090342177188881
530 => 0.0092546718921812
531 => 0.0090770247439072
601 => 0.0089176568870808
602 => 0.0089178985823354
603 => 0.0088179247977553
604 => 0.0086242129926239
605 => 0.0085884895636854
606 => 0.0087743273523953
607 => 0.0089233516600367
608 => 0.0089356260157923
609 => 0.0090181335296479
610 => 0.0090669606264527
611 => 0.0095455325523588
612 => 0.0097380181399129
613 => 0.0099733858728082
614 => 0.01006507486937
615 => 0.010341025876695
616 => 0.010118173026635
617 => 0.010069957410714
618 => 0.0094005905298299
619 => 0.0095101993190761
620 => 0.0096856935663342
621 => 0.0094034843653287
622 => 0.0095824811477628
623 => 0.0096178189042855
624 => 0.0093938950046672
625 => 0.0095135024346339
626 => 0.0091958605617738
627 => 0.0085372238176885
628 => 0.0087789379709848
629 => 0.0089569209479151
630 => 0.0087029172946927
701 => 0.0091582090117949
702 => 0.0088922369897926
703 => 0.0088079366277264
704 => 0.0084790508600573
705 => 0.008634272282423
706 => 0.0088442114787293
707 => 0.0087144934634632
708 => 0.0089836778223983
709 => 0.0093649146634968
710 => 0.0096366067395099
711 => 0.0096574638834923
712 => 0.0094827840805712
713 => 0.0097627095795438
714 => 0.0097647485312022
715 => 0.0094489914248319
716 => 0.009255591955323
717 => 0.0092116511889346
718 => 0.0093214238384675
719 => 0.0094547081001494
720 => 0.0096648602324043
721 => 0.009791850764596
722 => 0.010122974721978
723 => 0.010212567370778
724 => 0.010311002529015
725 => 0.010442542256698
726 => 0.010600489425875
727 => 0.010254910011652
728 => 0.01026864052602
729 => 0.0099468417603679
730 => 0.0096029536286576
731 => 0.009863921854365
801 => 0.010205103094329
802 => 0.01012683574091
803 => 0.010118029064793
804 => 0.010132839451253
805 => 0.010073828422747
806 => 0.0098069237278675
807 => 0.0096728858610107
808 => 0.0098458289059628
809 => 0.0099377404375455
810 => 0.010080287207502
811 => 0.010062715309308
812 => 0.010429900480311
813 => 0.01057257753466
814 => 0.010536074638662
815 => 0.010542792050017
816 => 0.010801102041771
817 => 0.011088395878103
818 => 0.011357484467588
819 => 0.011631212938437
820 => 0.011301222583025
821 => 0.011133673831522
822 => 0.011306541374951
823 => 0.011214815423121
824 => 0.011741899950022
825 => 0.011778394139065
826 => 0.012305440551756
827 => 0.012805670356918
828 => 0.012491484978843
829 => 0.012787747639148
830 => 0.013108179860916
831 => 0.013726345604961
901 => 0.013518169129699
902 => 0.01335870921219
903 => 0.013208020360649
904 => 0.013521579939525
905 => 0.013924969328512
906 => 0.014011855539284
907 => 0.014152644393822
908 => 0.014004622128117
909 => 0.014182898643041
910 => 0.014812293079392
911 => 0.014642225146871
912 => 0.014400701342908
913 => 0.014897547802723
914 => 0.015077354605088
915 => 0.01633933290964
916 => 0.017932632648861
917 => 0.017272996094654
918 => 0.016863538399119
919 => 0.016959770670036
920 => 0.017541589798199
921 => 0.017728451636149
922 => 0.017220496745463
923 => 0.017399915000153
924 => 0.018388527223511
925 => 0.018918885962865
926 => 0.01819858755814
927 => 0.016211312826955
928 => 0.01437895476693
929 => 0.014864978636608
930 => 0.014809878612863
1001 => 0.015872019114974
1002 => 0.014638169082926
1003 => 0.014658943953081
1004 => 0.015743048395949
1005 => 0.015453827916847
1006 => 0.014985327781263
1007 => 0.014382375336394
1008 => 0.013267761975702
1009 => 0.012280517838845
1010 => 0.014216730939968
1011 => 0.014133237910273
1012 => 0.0140123276303
1013 => 0.014281400374521
1014 => 0.015587941242826
1015 => 0.015557821246951
1016 => 0.015366213200555
1017 => 0.015511546214991
1018 => 0.014959850201157
1019 => 0.015102034825807
1020 => 0.014378664512052
1021 => 0.014705658104482
1022 => 0.014984322590386
1023 => 0.015040268611629
1024 => 0.015166317854165
1025 => 0.014089240877576
1026 => 0.014572816818746
1027 => 0.014856872379245
1028 => 0.01357349902288
1029 => 0.01483150421435
1030 => 0.014070491363694
1031 => 0.013812192172151
1101 => 0.014159958005232
1102 => 0.014024433321867
1103 => 0.013907917157386
1104 => 0.013842899135604
1105 => 0.014098259981904
1106 => 0.014086347093202
1107 => 0.013668527185251
1108 => 0.013123498147847
1109 => 0.013306427782768
1110 => 0.013239967731427
1111 => 0.012999107931848
1112 => 0.013161418355241
1113 => 0.012446685394045
1114 => 0.011217024482895
1115 => 0.012029376146333
1116 => 0.011998101490959
1117 => 0.011982331391527
1118 => 0.01259279121485
1119 => 0.012534109588542
1120 => 0.012427601862181
1121 => 0.012997151833929
1122 => 0.012789258432713
1123 => 0.013429936909416
1124 => 0.013851929190659
1125 => 0.013744898298116
1126 => 0.01414178407829
1127 => 0.01331064211209
1128 => 0.013586714133634
1129 => 0.013643612194655
1130 => 0.012990123675687
1201 => 0.012543710628334
1202 => 0.012513939967557
1203 => 0.011739921262954
1204 => 0.012153395807292
1205 => 0.012517236295571
1206 => 0.012342984936848
1207 => 0.012287822162287
1208 => 0.01256963681417
1209 => 0.012591536226201
1210 => 0.012092227311108
1211 => 0.012196049445613
1212 => 0.012629005005491
1213 => 0.012185140076353
1214 => 0.011322783023964
1215 => 0.011108906551952
1216 => 0.01108037148806
1217 => 0.010500321533207
1218 => 0.011123198800502
1219 => 0.010851296181255
1220 => 0.011710233297563
1221 => 0.0112196130233
1222 => 0.011198463363867
1223 => 0.011166492551653
1224 => 0.010667219593949
1225 => 0.010776528641235
1226 => 0.011139888562649
1227 => 0.011269539476152
1228 => 0.011256015823675
1229 => 0.011138107900804
1230 => 0.011192085544108
1231 => 0.011018204747967
]
'min_raw' => 0.0060838956222959
'max_raw' => 0.018918885962865
'avg_raw' => 0.01250139079258
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006083'
'max' => '$0.018918'
'avg' => '$0.0125013'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0034657950714668
'max_diff' => 0.01181623145471
'year' => 2033
]
8 => [
'items' => [
101 => 0.010956803819834
102 => 0.01076300560099
103 => 0.010478175757414
104 => 0.010517783094127
105 => 0.0099534606442196
106 => 0.0096459878226511
107 => 0.0095608833980675
108 => 0.0094470782047557
109 => 0.0095737379974762
110 => 0.0099518619896224
111 => 0.009495764231614
112 => 0.0087138166170465
113 => 0.0087608130010559
114 => 0.0088663999225734
115 => 0.0086696393928529
116 => 0.008483422064332
117 => 0.0086453229231915
118 => 0.008314001410666
119 => 0.0089064385444549
120 => 0.0088904147802717
121 => 0.0091112387076817
122 => 0.0092493244412542
123 => 0.0089310815311566
124 => 0.0088510442998873
125 => 0.0088966371443076
126 => 0.008143088985356
127 => 0.0090496577466291
128 => 0.0090574977909227
129 => 0.0089903665718522
130 => 0.0094730864500598
131 => 0.010491775957183
201 => 0.010108503987913
202 => 0.009960089496955
203 => 0.0096779534411533
204 => 0.010053882983928
205 => 0.010025017460457
206 => 0.009894476616398
207 => 0.0098155251065989
208 => 0.0099609956841892
209 => 0.0097974996921839
210 => 0.0097681313194503
211 => 0.0095901909337896
212 => 0.0095266743118805
213 => 0.0094796491336885
214 => 0.0094278790330977
215 => 0.0095420709746957
216 => 0.0092832970118336
217 => 0.0089712409805463
218 => 0.0089452968980379
219 => 0.0090169307908709
220 => 0.0089852381258084
221 => 0.0089451451657506
222 => 0.0088685967863323
223 => 0.0088458865173563
224 => 0.0089196838740723
225 => 0.0088363709609931
226 => 0.0089593037025306
227 => 0.0089258727990113
228 => 0.0087391304895373
301 => 0.0085063804310747
302 => 0.0085043084673446
303 => 0.0084541628490354
304 => 0.0083902948646745
305 => 0.0083725282525269
306 => 0.0086316880844366
307 => 0.0091681411804886
308 => 0.009062822601499
309 => 0.0091389260683011
310 => 0.0095132798025981
311 => 0.0096322755975215
312 => 0.0095478152008547
313 => 0.0094322006006068
314 => 0.0094372870562637
315 => 0.0098323771442303
316 => 0.0098570184283894
317 => 0.00991927900388
318 => 0.0099993014382218
319 => 0.0095614433674499
320 => 0.0094166639805063
321 => 0.0093480594749178
322 => 0.0091367841509902
323 => 0.0093646264744688
324 => 0.0092318725097589
325 => 0.0092497855551194
326 => 0.0092381196608288
327 => 0.0092444900279558
328 => 0.0089062729462021
329 => 0.0090295014746266
330 => 0.0088246101455546
331 => 0.0085502836560582
401 => 0.0085493640174742
402 => 0.0086165050371403
403 => 0.0085765669314145
404 => 0.008469094515809
405 => 0.0084843604651903
406 => 0.0083506146850235
407 => 0.008500599624448
408 => 0.0085049006558388
409 => 0.0084471482844255
410 => 0.0086782207775422
411 => 0.0087728913665093
412 => 0.0087348775184693
413 => 0.0087702242135936
414 => 0.0090671990639409
415 => 0.0091156189224686
416 => 0.0091371238251903
417 => 0.0091083101043969
418 => 0.0087756523686936
419 => 0.0087904071538419
420 => 0.008682146330377
421 => 0.0085906773427937
422 => 0.0085943356226054
423 => 0.0086413625723593
424 => 0.0088467320200286
425 => 0.0092789199154587
426 => 0.009295321130165
427 => 0.0093151998808462
428 => 0.009234343011566
429 => 0.009209955806095
430 => 0.009242128824983
501 => 0.0094044358751465
502 => 0.0098219336741014
503 => 0.0096743620682103
504 => 0.009554384055532
505 => 0.0096596371184908
506 => 0.0096434342344491
507 => 0.0095066655871306
508 => 0.0095028269467225
509 => 0.0092403241849368
510 => 0.0091432828908033
511 => 0.0090621879220104
512 => 0.0089736343331263
513 => 0.0089211367972927
514 => 0.0090017968720365
515 => 0.0090202447854724
516 => 0.0088438801223481
517 => 0.0088198422704541
518 => 0.008963865461457
519 => 0.0089004862248224
520 => 0.0089656733414306
521 => 0.0089807973116484
522 => 0.0089783620041087
523 => 0.0089121868020032
524 => 0.0089543649024523
525 => 0.0088546011209932
526 => 0.0087461229926919
527 => 0.0086769207052619
528 => 0.0086165325311278
529 => 0.0086500393999186
530 => 0.0085305935307917
531 => 0.0084923803932876
601 => 0.0089400759110575
602 => 0.009270793403572
603 => 0.0092659846402523
604 => 0.0092367125302574
605 => 0.0091932201124356
606 => 0.0094012541338853
607 => 0.0093287792405838
608 => 0.0093815107809406
609 => 0.0093949331710972
610 => 0.009435558703536
611 => 0.0094500788395003
612 => 0.0094061889037332
613 => 0.0092588889185947
614 => 0.0088918313604918
615 => 0.008720965076342
616 => 0.0086645763565695
617 => 0.0086666259794358
618 => 0.0086100882308637
619 => 0.0086267411316623
620 => 0.0086042970315662
621 => 0.0085617933357951
622 => 0.0086474149164771
623 => 0.0086572820060304
624 => 0.0086372969059976
625 => 0.0086420041205265
626 => 0.0084765360280023
627 => 0.0084891162076991
628 => 0.0084190681685354
629 => 0.0084059350056339
630 => 0.0082288596624084
701 => 0.0079151450244031
702 => 0.0080889733868748
703 => 0.0078790131689756
704 => 0.0077994980530407
705 => 0.0081759102447388
706 => 0.0081381289007414
707 => 0.0080734636629732
708 => 0.0079778102988976
709 => 0.0079423315357059
710 => 0.0077267738017644
711 => 0.0077140375008874
712 => 0.0078208737343772
713 => 0.0077715724886319
714 => 0.0077023348677638
715 => 0.0074515632234845
716 => 0.0071696128676765
717 => 0.0071781231766416
718 => 0.0072678063389513
719 => 0.0075285722287888
720 => 0.0074266864843336
721 => 0.0073527672077271
722 => 0.007338924349224
723 => 0.0075121967053776
724 => 0.0077574133910158
725 => 0.0078724635735031
726 => 0.0077584523367841
727 => 0.0076274823668423
728 => 0.0076354539020563
729 => 0.007688484954524
730 => 0.0076940577683197
731 => 0.007608809781818
801 => 0.0076328065906753
802 => 0.0075963532437069
803 => 0.0073726391206494
804 => 0.0073685928415685
805 => 0.0073136897878926
806 => 0.0073120273452472
807 => 0.0072186235547359
808 => 0.0072055557187735
809 => 0.0070200968235087
810 => 0.0071421664299932
811 => 0.0070602885469054
812 => 0.0069368792640519
813 => 0.0069156034571722
814 => 0.0069149638807261
815 => 0.0070416776204059
816 => 0.0071406857061687
817 => 0.0070617128477366
818 => 0.0070437322586962
819 => 0.0072357179085912
820 => 0.007211285984654
821 => 0.0071901280960934
822 => 0.007735456926377
823 => 0.0073037866046683
824 => 0.0071155537055227
825 => 0.006882579748372
826 => 0.006958437243577
827 => 0.0069744215323951
828 => 0.0064141611621599
829 => 0.0061868635997314
830 => 0.0061088636418339
831 => 0.0060639735633064
901 => 0.0060844305357855
902 => 0.0058798360702549
903 => 0.0060173269347716
904 => 0.0058401654215618
905 => 0.0058104637173387
906 => 0.006127250449058
907 => 0.0061713294721355
908 => 0.0059832746654078
909 => 0.0061040362946347
910 => 0.0060602464491648
911 => 0.0058432023472214
912 => 0.0058349128589955
913 => 0.0057260077581094
914 => 0.0055555923634055
915 => 0.0054777079551703
916 => 0.005437145079138
917 => 0.0054538821123436
918 => 0.0054454193561932
919 => 0.0053901941478828
920 => 0.0054485848004892
921 => 0.0052994208117632
922 => 0.0052400225095566
923 => 0.00521319367448
924 => 0.0050808020489268
925 => 0.005291496000005
926 => 0.0053330053626199
927 => 0.005374596511502
928 => 0.0057366190670375
929 => 0.005718533443228
930 => 0.0058820186744092
1001 => 0.0058756659389556
1002 => 0.0058290373027375
1003 => 0.005632318756572
1004 => 0.0057107272629027
1005 => 0.0054693980678042
1006 => 0.0056502183095621
1007 => 0.0055676995024576
1008 => 0.0056223186178737
1009 => 0.0055241085235486
1010 => 0.0055784620447435
1011 => 0.0053428487723917
1012 => 0.0051228364138379
1013 => 0.0052113758094811
1014 => 0.0053076282582533
1015 => 0.0055163280918593
1016 => 0.0053920281926998
1017 => 0.0054367311367371
1018 => 0.0052869837573946
1019 => 0.0049780121405866
1020 => 0.0049797608863835
1021 => 0.0049322323344502
1022 => 0.0048911607262976
1023 => 0.0054063055313721
1024 => 0.0053422391316269
1025 => 0.0052401577084359
1026 => 0.0053767977499315
1027 => 0.005412927545672
1028 => 0.0054139561101643
1029 => 0.0055136451572495
1030 => 0.0055668492195492
1031 => 0.0055762266661291
1101 => 0.0057330895356422
1102 => 0.0057856679004317
1103 => 0.006002230743831
1104 => 0.0055623352265792
1105 => 0.0055532758678826
1106 => 0.0053787205555291
1107 => 0.0052680148168242
1108 => 0.0053863006721711
1109 => 0.0054910857923791
1110 => 0.0053819765213014
1111 => 0.0053962238886817
1112 => 0.0052497536068149
1113 => 0.0053021098405149
1114 => 0.0053472060821238
1115 => 0.0053223065881419
1116 => 0.005285030840502
1117 => 0.0054824946074758
1118 => 0.0054713529278764
1119 => 0.0056552357273547
1120 => 0.0057985855191332
1121 => 0.0060554939728407
1122 => 0.0057873966084564
1123 => 0.0057776260749077
1124 => 0.0058731346075889
1125 => 0.005785653278573
1126 => 0.0058409384587582
1127 => 0.0060465866756073
1128 => 0.0060509316983732
1129 => 0.0059781469688003
1130 => 0.0059737180113911
1201 => 0.0059876971148832
1202 => 0.0060695731606662
1203 => 0.0060409631544729
1204 => 0.0060740713779566
1205 => 0.006115473718394
1206 => 0.0062867313526718
1207 => 0.0063280209885062
1208 => 0.0062277085796503
1209 => 0.0062367656670196
1210 => 0.0061992460724703
1211 => 0.0061630026142548
1212 => 0.0062444726153912
1213 => 0.0063933606437648
1214 => 0.0063924344190676
1215 => 0.0064269735476805
1216 => 0.0064484911386688
1217 => 0.0063561218863078
1218 => 0.0062959928995323
1219 => 0.0063190501791689
1220 => 0.0063559192714299
1221 => 0.0063070940294578
1222 => 0.0060057220179536
1223 => 0.0060971390345253
1224 => 0.0060819227729041
1225 => 0.0060602529659947
1226 => 0.0061521734830645
1227 => 0.0061433075249515
1228 => 0.0058777376582949
1229 => 0.0058947385795189
1230 => 0.0058787715406233
1231 => 0.0059303643098438
]
'min_raw' => 0.0048911607262976
'max_raw' => 0.010956803819834
'avg_raw' => 0.007923982273066
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004891'
'max' => '$0.010956'
'avg' => '$0.007923'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0011927348959983
'max_diff' => -0.0079620821430303
'year' => 2034
]
9 => [
'items' => [
101 => 0.005782867099722
102 => 0.0058282362481466
103 => 0.0058566913527292
104 => 0.0058734516279307
105 => 0.0059340012345869
106 => 0.0059268964371068
107 => 0.0059335595904
108 => 0.0060233386725677
109 => 0.0064774104617113
110 => 0.0065021245873415
111 => 0.0063804231939718
112 => 0.0064290405001691
113 => 0.0063357059037063
114 => 0.0063983620435993
115 => 0.0064412297832206
116 => 0.006247518710864
117 => 0.0062360483983335
118 => 0.0061423285767902
119 => 0.0061926883003255
120 => 0.0061125623591885
121 => 0.0061322224624571
122 => 0.0060772510997811
123 => 0.0061761886079087
124 => 0.0062868161153299
125 => 0.0063147649925172
126 => 0.0062412435293857
127 => 0.006188009144778
128 => 0.0060945471019033
129 => 0.0062499765621414
130 => 0.006295428872942
131 => 0.0062497378205024
201 => 0.0062391502052829
202 => 0.0062190866935734
203 => 0.0062434067741384
204 => 0.006295181329896
205 => 0.0062707654055266
206 => 0.0062868925537258
207 => 0.0062254324950336
208 => 0.0063561524643738
209 => 0.0065637672351599
210 => 0.0065644347505964
211 => 0.0065400186946162
212 => 0.0065300281705603
213 => 0.0065550805256862
214 => 0.0065686704006406
215 => 0.0066496851233016
216 => 0.0067366171484858
217 => 0.0071422909786062
218 => 0.0070283793904385
219 => 0.0073883173461655
220 => 0.0076729815370515
221 => 0.0077583398810418
222 => 0.0076798142209911
223 => 0.0074111821798307
224 => 0.0073980018103146
225 => 0.0077994514933306
226 => 0.0076860235703182
227 => 0.0076725316798006
228 => 0.0075290007596015
301 => 0.0076138453100894
302 => 0.0075952885623032
303 => 0.0075659958280956
304 => 0.007727873320104
305 => 0.0080308935342404
306 => 0.0079836649921617
307 => 0.007948411076369
308 => 0.0077939386796257
309 => 0.007886965565124
310 => 0.0078538404730107
311 => 0.0079961668904325
312 => 0.007911855873668
313 => 0.007685164242242
314 => 0.007721265631732
315 => 0.0077158089793364
316 => 0.0078281064989732
317 => 0.007794397570974
318 => 0.0077092267701357
319 => 0.008029857844091
320 => 0.0080090378455921
321 => 0.0080385558433493
322 => 0.0080515505788364
323 => 0.0082467130633998
324 => 0.0083266648888225
325 => 0.0083448153529471
326 => 0.0084207634034026
327 => 0.0083429256962647
328 => 0.0086543320221608
329 => 0.0088613990578188
330 => 0.0091019180753078
331 => 0.0094533810052766
401 => 0.0095855343181587
402 => 0.009561662005045
403 => 0.0098281371873563
404 => 0.010306987166559
405 => 0.0096584512766868
406 => 0.010341361143491
407 => 0.010125159764234
408 => 0.0096125501833135
409 => 0.0095795441695722
410 => 0.0099266893292912
411 => 0.010696623882065
412 => 0.01050376400912
413 => 0.010696939331727
414 => 0.010471590056795
415 => 0.010460399565902
416 => 0.010685994620432
417 => 0.011213109761889
418 => 0.010962697116798
419 => 0.010603669186362
420 => 0.010868769823103
421 => 0.010639115117652
422 => 0.010121638789966
423 => 0.01050361653281
424 => 0.01024819889427
425 => 0.010322743339945
426 => 0.010859593225649
427 => 0.010794998027073
428 => 0.010878590195385
429 => 0.010731052206301
430 => 0.010593228459892
501 => 0.010335970202293
502 => 0.010259808714897
503 => 0.01028085701001
504 => 0.010259798284407
505 => 0.010115864653606
506 => 0.010084782199739
507 => 0.010032976748206
508 => 0.010049033423864
509 => 0.0099516240187631
510 => 0.010135455691998
511 => 0.01016957647047
512 => 0.010303353831961
513 => 0.010317243041421
514 => 0.010689811088973
515 => 0.010484606869133
516 => 0.010622275576281
517 => 0.010609961191326
518 => 0.0096236599873003
519 => 0.0097595635910058
520 => 0.0099709869494714
521 => 0.0098757410130602
522 => 0.0097410855430916
523 => 0.0096323440313224
524 => 0.0094675895216015
525 => 0.0096994783302035
526 => 0.010004387454889
527 => 0.01032497604
528 => 0.010710142219213
529 => 0.010624177611841
530 => 0.010317775626195
531 => 0.010331520595444
601 => 0.010416486586897
602 => 0.010306447907991
603 => 0.010273995353372
604 => 0.010412028104236
605 => 0.010412978659929
606 => 0.010286365861229
607 => 0.010145658905372
608 => 0.010145069338089
609 => 0.010120031894362
610 => 0.010476044162413
611 => 0.010671814912941
612 => 0.010694259713988
613 => 0.010670304198999
614 => 0.010679523725958
615 => 0.01056560903974
616 => 0.010825984232084
617 => 0.011064930257016
618 => 0.011000887617997
619 => 0.01090487859791
620 => 0.010828402788989
621 => 0.010982872347851
622 => 0.010975994061553
623 => 0.01106284327194
624 => 0.011058903290091
625 => 0.011029699167202
626 => 0.011000888660968
627 => 0.011115119061595
628 => 0.011082222540698
629 => 0.011049274922419
630 => 0.010983193429931
701 => 0.010992175002257
702 => 0.010896182559481
703 => 0.010851772063138
704 => 0.01018394475381
705 => 0.010005479474871
706 => 0.010061628284621
707 => 0.010080113930694
708 => 0.010002445612591
709 => 0.010113802029397
710 => 0.010096447249794
711 => 0.010163964545025
712 => 0.010121782670225
713 => 0.01012351382908
714 => 0.010247561728745
715 => 0.010283573361755
716 => 0.010265257554556
717 => 0.010278085318089
718 => 0.010573695714438
719 => 0.010531669369166
720 => 0.010509343710856
721 => 0.010515528070784
722 => 0.010591062865009
723 => 0.010612208483346
724 => 0.010522613012579
725 => 0.010564866754538
726 => 0.010744777825001
727 => 0.010807736517578
728 => 0.011008670442399
729 => 0.01092331013982
730 => 0.011079992669511
731 => 0.011561581348774
801 => 0.011946307709171
802 => 0.01159249744866
803 => 0.012298998414922
804 => 0.012849110758702
805 => 0.012827996530687
806 => 0.012732071719222
807 => 0.012105783441322
808 => 0.011529463630567
809 => 0.012011579624096
810 => 0.012012808636911
811 => 0.0119713944455
812 => 0.011714174459468
813 => 0.011962443747542
814 => 0.011982150462048
815 => 0.011971119942363
816 => 0.011773909982157
817 => 0.011472806823415
818 => 0.011531641659894
819 => 0.011628014322245
820 => 0.011445560766972
821 => 0.011387255800811
822 => 0.011495655825877
823 => 0.011844943292683
824 => 0.011778912520368
825 => 0.011777188190052
826 => 0.012059695835421
827 => 0.011857481330302
828 => 0.011532383755598
829 => 0.011450292330474
830 => 0.011158923074698
831 => 0.011360172857484
901 => 0.011367415478889
902 => 0.011257193029579
903 => 0.011541327699888
904 => 0.011538709348881
905 => 0.011808452930474
906 => 0.012324101347419
907 => 0.012171598737011
908 => 0.011994254793343
909 => 0.012013536997234
910 => 0.012225015181382
911 => 0.012097150643669
912 => 0.012143131622934
913 => 0.012224945583663
914 => 0.012274305977498
915 => 0.012006434796175
916 => 0.011943981210049
917 => 0.011816223091065
918 => 0.01178289338254
919 => 0.011886949704692
920 => 0.011859534540169
921 => 0.011366806764605
922 => 0.011315313970547
923 => 0.011316893181026
924 => 0.011187412102018
925 => 0.010989922377512
926 => 0.011508913582015
927 => 0.011467231325016
928 => 0.01142121733924
929 => 0.011426853789946
930 => 0.011652130281577
1001 => 0.011521458539695
1002 => 0.011868870782165
1003 => 0.011797453269281
1004 => 0.011724204166674
1005 => 0.011714078909472
1006 => 0.011685884254288
1007 => 0.011589194290894
1008 => 0.01147243534993
1009 => 0.01139534098362
1010 => 0.010511599701944
1011 => 0.010675616943336
1012 => 0.010864303828916
1013 => 0.010929437785703
1014 => 0.010818021645487
1015 => 0.0115935936792
1016 => 0.011735298163357
1017 => 0.011306066037689
1018 => 0.011225774232409
1019 => 0.011598857596587
1020 => 0.011373842720401
1021 => 0.01147516690537
1022 => 0.011256159438834
1023 => 0.011701165702715
1024 => 0.011697775500574
1025 => 0.011524658013002
1026 => 0.01167097572804
1027 => 0.01164554942435
1028 => 0.011450100207251
1029 => 0.011707361791514
1030 => 0.01170748939005
1031 => 0.01154086757216
1101 => 0.011346289767072
1102 => 0.011311503851244
1103 => 0.011285297336499
1104 => 0.011468721709231
1105 => 0.011633179428269
1106 => 0.011939194470873
1107 => 0.012016133923322
1108 => 0.012316433728379
1109 => 0.0121376198158
1110 => 0.012216885707219
1111 => 0.012302940045198
1112 => 0.012344197659369
1113 => 0.012276970591083
1114 => 0.012743459796668
1115 => 0.012782845778479
1116 => 0.012796051557493
1117 => 0.012638754022042
1118 => 0.012778471049469
1119 => 0.012713102079278
1120 => 0.012883173979693
1121 => 0.012909843425265
1122 => 0.012887255353659
1123 => 0.012895720656632
1124 => 0.012497654414001
1125 => 0.012477012579353
1126 => 0.012195559699262
1127 => 0.012310253828294
1128 => 0.012095838651501
1129 => 0.012163831912783
1130 => 0.012193802694492
1201 => 0.012178147658954
1202 => 0.012316738462263
1203 => 0.01219890796722
1204 => 0.011887933917674
1205 => 0.011576875143456
1206 => 0.011572970053928
1207 => 0.01149107376932
1208 => 0.011431877755601
1209 => 0.011443281007935
1210 => 0.011483467556508
1211 => 0.011429542040343
1212 => 0.01144104978331
1213 => 0.011632154992252
1214 => 0.011670479779005
1215 => 0.011540237179157
1216 => 0.011017294346847
1217 => 0.010888962864096
1218 => 0.010981204988973
1219 => 0.010937119194436
1220 => 0.0088271087970638
1221 => 0.0093228244416997
1222 => 0.0090282870385697
1223 => 0.0091640234249463
1224 => 0.0088633770064414
1225 => 0.0090068612355808
1226 => 0.0089803649376639
1227 => 0.009777461024946
1228 => 0.0097650154659129
1229 => 0.0097709724964177
1230 => 0.0094866279094626
1231 => 0.009939596557279
]
'min_raw' => 0.005782867099722
'max_raw' => 0.012909843425265
'avg_raw' => 0.0093463552624937
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005782'
'max' => '$0.0129098'
'avg' => '$0.009346'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00089170637342447
'max_diff' => 0.0019530396054311
'year' => 2035
]
10 => [
'items' => [
101 => 0.010162745201419
102 => 0.010121446326298
103 => 0.010131840363416
104 => 0.0099532363686239
105 => 0.0097727017734963
106 => 0.0095724611234249
107 => 0.0099444835007653
108 => 0.0099031209630388
109 => 0.009997991742812
110 => 0.010239274847226
111 => 0.010274804700896
112 => 0.010322557184537
113 => 0.010305441318405
114 => 0.010713210689229
115 => 0.010663827127873
116 => 0.01078282730212
117 => 0.010538034915129
118 => 0.010261029093343
119 => 0.010313678844062
120 => 0.010308608249685
121 => 0.010244053763511
122 => 0.010185776859819
123 => 0.010088762234588
124 => 0.010395730864282
125 => 0.010383268498507
126 => 0.010585019714489
127 => 0.010549358227358
128 => 0.010311202088446
129 => 0.010319707881539
130 => 0.01037691342783
131 => 0.010574902476704
201 => 0.010633679106533
202 => 0.010606451429752
203 => 0.010670897321104
204 => 0.010721832725958
205 => 0.010677294023738
206 => 0.011307868123354
207 => 0.011046009793721
208 => 0.011173637721586
209 => 0.011204076230354
210 => 0.011126108630197
211 => 0.01114301701086
212 => 0.011168628600308
213 => 0.01132413715617
214 => 0.011732236603514
215 => 0.011912981070716
216 => 0.012456759718068
217 => 0.011897972758799
218 => 0.011864816653126
219 => 0.011962767608057
220 => 0.012282023238868
221 => 0.012540749941484
222 => 0.012626584515043
223 => 0.012637928970913
224 => 0.012798960337085
225 => 0.012891260513117
226 => 0.012779406893686
227 => 0.01268462266278
228 => 0.012345117312728
229 => 0.012384415981439
301 => 0.012655144838243
302 => 0.013037565294328
303 => 0.013365721829716
304 => 0.013250812848433
305 => 0.014127487262525
306 => 0.014214405949788
307 => 0.014202396597626
308 => 0.014400410302447
309 => 0.014007393423167
310 => 0.013839371092932
311 => 0.012705116089349
312 => 0.013023795479695
313 => 0.013487014688948
314 => 0.013425705889621
315 => 0.013089303717976
316 => 0.013365466638503
317 => 0.013274158540564
318 => 0.013202140055343
319 => 0.013532070697611
320 => 0.013169298403634
321 => 0.013483395757809
322 => 0.013080562652158
323 => 0.013251337742981
324 => 0.013154397541968
325 => 0.013217129732567
326 => 0.012850398628152
327 => 0.0130482778302
328 => 0.01284216620278
329 => 0.012842068479032
330 => 0.012837518553433
331 => 0.013080007969054
401 => 0.013087915540192
402 => 0.012908715495667
403 => 0.01288288996962
404 => 0.012978380475121
405 => 0.012866586102182
406 => 0.012918893985655
407 => 0.012868170454686
408 => 0.012856751519464
409 => 0.012765763500842
410 => 0.012726563360652
411 => 0.012741934745683
412 => 0.012689464284078
413 => 0.012657848933021
414 => 0.012831229464361
415 => 0.012738599240617
416 => 0.012817032554068
417 => 0.012727647894317
418 => 0.012417801720578
419 => 0.012239605909497
420 => 0.011654335210059
421 => 0.011820317254394
422 => 0.011930363521508
423 => 0.011893993230883
424 => 0.01197213068858
425 => 0.011976927693876
426 => 0.011951524409862
427 => 0.011922110661336
428 => 0.011907793675236
429 => 0.01201450075994
430 => 0.012076447814206
501 => 0.011941408136642
502 => 0.011909770229595
503 => 0.012046302799357
504 => 0.01212958758804
505 => 0.012744515673991
506 => 0.012698959815193
507 => 0.012813296080892
508 => 0.012800423572007
509 => 0.012920266193656
510 => 0.01311615823078
511 => 0.012717854947031
512 => 0.012786986624799
513 => 0.012770037133894
514 => 0.012955087231199
515 => 0.012955664937404
516 => 0.012844718160132
517 => 0.012904864207997
518 => 0.012871292334099
519 => 0.012931961247744
520 => 0.012698351388924
521 => 0.01298286298034
522 => 0.013144162719151
523 => 0.013146402366181
524 => 0.013222857162223
525 => 0.013300539662966
526 => 0.013449644458421
527 => 0.013296381211147
528 => 0.013020675549179
529 => 0.013040580607449
530 => 0.012878934478714
531 => 0.012881651779341
601 => 0.012867146615632
602 => 0.012910677703823
603 => 0.012707904014817
604 => 0.012755494594328
605 => 0.012688867504322
606 => 0.012786841790517
607 => 0.012681437654301
608 => 0.012770028960336
609 => 0.012808262031172
610 => 0.012949342885658
611 => 0.012660599897384
612 => 0.012071833398113
613 => 0.012195599254363
614 => 0.012012539831371
615 => 0.012029482677925
616 => 0.012063709924399
617 => 0.011952768220119
618 => 0.011973932401121
619 => 0.011973176267645
620 => 0.01196666031785
621 => 0.011937800095795
622 => 0.011895947063994
623 => 0.012062676661005
624 => 0.012091007268477
625 => 0.012153982699466
626 => 0.012341354865448
627 => 0.012322631967526
628 => 0.012353169790842
629 => 0.012286505894007
630 => 0.012032575024902
701 => 0.012046364692793
702 => 0.011874407313233
703 => 0.012149585362658
704 => 0.012084419568381
705 => 0.012042406756882
706 => 0.012030943172019
707 => 0.012218779797358
708 => 0.012274983459638
709 => 0.012239961108993
710 => 0.012168129246054
711 => 0.012306067658081
712 => 0.012342974157985
713 => 0.012351236162254
714 => 0.012595636581298
715 => 0.012364895430728
716 => 0.01242043711904
717 => 0.012853757516175
718 => 0.012460795710101
719 => 0.012668956342872
720 => 0.012658767963114
721 => 0.012765255899068
722 => 0.012650032844216
723 => 0.012651461172074
724 => 0.012746015245084
725 => 0.012613231102459
726 => 0.012580351881397
727 => 0.012534929472986
728 => 0.012634107640006
729 => 0.012693560465692
730 => 0.013172706577431
731 => 0.013482256817332
801 => 0.013468818425038
802 => 0.013591620174996
803 => 0.013536296861904
804 => 0.01335764329038
805 => 0.01366258315249
806 => 0.013566087420893
807 => 0.013574042411763
808 => 0.013573746326606
809 => 0.013637907552315
810 => 0.01359244344361
811 => 0.013502829018558
812 => 0.013562319256038
813 => 0.013738983993203
814 => 0.014287356758101
815 => 0.01459423342231
816 => 0.014268882397589
817 => 0.014493305177818
818 => 0.014358731479694
819 => 0.014334275435524
820 => 0.014475229526221
821 => 0.014616430338394
822 => 0.014607436457086
823 => 0.01450493191819
824 => 0.014447029705125
825 => 0.014885484661124
826 => 0.015208530803818
827 => 0.015186501222615
828 => 0.015283732629642
829 => 0.015569207047925
830 => 0.015595307251051
831 => 0.015592019225363
901 => 0.015527327148641
902 => 0.015808413786979
903 => 0.016042901205929
904 => 0.015512352802014
905 => 0.015714378688836
906 => 0.015805074618298
907 => 0.015938243151018
908 => 0.016162920787355
909 => 0.016406980293216
910 => 0.016441492983321
911 => 0.016417004578107
912 => 0.01625604077332
913 => 0.016523093596868
914 => 0.016679526877744
915 => 0.016772679316593
916 => 0.017008898402427
917 => 0.015805634725482
918 => 0.014953904888855
919 => 0.014820894975738
920 => 0.015091375864418
921 => 0.015162699517719
922 => 0.015133949042506
923 => 0.014175249675493
924 => 0.014815847621978
925 => 0.015505077149391
926 => 0.015531553262514
927 => 0.015876595975047
928 => 0.015988956026026
929 => 0.016266760635397
930 => 0.016249383881443
1001 => 0.016317024882988
1002 => 0.016301475388111
1003 => 0.016816049928309
1004 => 0.017383702061205
1005 => 0.017364046072866
1006 => 0.017282439362607
1007 => 0.017403639243353
1008 => 0.017989517077802
1009 => 0.017935578835307
1010 => 0.017987975243442
1011 => 0.018678758228885
1012 => 0.019576874372694
1013 => 0.019159609254508
1014 => 0.020064954496168
1015 => 0.020634821335504
1016 => 0.021620347108805
1017 => 0.021496954428171
1018 => 0.021880612379595
1019 => 0.021276055777007
1020 => 0.019887871616416
1021 => 0.019668186159247
1022 => 0.020108002007821
1023 => 0.021189246354938
1024 => 0.020073949775509
1025 => 0.020299572820962
1026 => 0.020234593368693
1027 => 0.020231130889826
1028 => 0.020363279625242
1029 => 0.020171590992107
1030 => 0.019390617016588
1031 => 0.01974853278726
1101 => 0.019610324319676
1102 => 0.019763676918584
1103 => 0.020591257647466
1104 => 0.020225364480166
1105 => 0.019839925751164
1106 => 0.020323351453034
1107 => 0.020938918494609
1108 => 0.020900397415428
1109 => 0.020825650421254
1110 => 0.021246995313787
1111 => 0.021942933633782
1112 => 0.022131042965169
1113 => 0.022269901427874
1114 => 0.022289047663848
1115 => 0.0224862657937
1116 => 0.021425774204119
1117 => 0.023108801592139
1118 => 0.023399413929357
1119 => 0.023344790854607
1120 => 0.023667794236588
1121 => 0.023572758447804
1122 => 0.023435066500515
1123 => 0.023947095565744
1124 => 0.023360095561074
1125 => 0.02252692295569
1126 => 0.022069827986091
1127 => 0.022671767514858
1128 => 0.023039350980282
1129 => 0.023282300268228
1130 => 0.023355816575966
1201 => 0.021508097147386
1202 => 0.020512278854599
1203 => 0.021150586963195
1204 => 0.021929366909356
1205 => 0.021421448042197
1206 => 0.021441357500172
1207 => 0.020717198674333
1208 => 0.021993438896933
1209 => 0.02180750143137
1210 => 0.022772145331628
1211 => 0.022541925323081
1212 => 0.023328554976481
1213 => 0.02312140902591
1214 => 0.023981260285355
1215 => 0.024324278232292
1216 => 0.024900258751678
1217 => 0.025323952366401
1218 => 0.025572753360934
1219 => 0.025557816282451
1220 => 0.026543689774953
1221 => 0.025962354620221
1222 => 0.025232060655701
1223 => 0.025218851941931
1224 => 0.025597081534501
1225 => 0.026389746998307
1226 => 0.026595273620259
1227 => 0.026710134963472
1228 => 0.026534220817989
1229 => 0.025903223172193
1230 => 0.025630761587969
1231 => 0.0258629067517
]
'min_raw' => 0.0095724611234249
'max_raw' => 0.026710134963472
'avg_raw' => 0.018141298043449
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009572'
'max' => '$0.02671'
'avg' => '$0.018141'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0037895940237028
'max_diff' => 0.013800291538207
'year' => 2036
]
11 => [
'items' => [
101 => 0.025579013164918
102 => 0.026069093142175
103 => 0.026742077626383
104 => 0.026603108991663
105 => 0.02706766030219
106 => 0.027548422036361
107 => 0.028235932908588
108 => 0.028415673709041
109 => 0.028712778417261
110 => 0.029018596755832
111 => 0.029116817364145
112 => 0.02930435098148
113 => 0.029303362586748
114 => 0.029868507765057
115 => 0.03049188039782
116 => 0.030727189135579
117 => 0.031268268603055
118 => 0.030341688976688
119 => 0.031044510267067
120 => 0.031678472663747
121 => 0.030922636559223
122 => 0.031964380542084
123 => 0.032004829100295
124 => 0.032615554306554
125 => 0.031996467309218
126 => 0.031628855426396
127 => 0.032690137157866
128 => 0.033203657957663
129 => 0.033048981313593
130 => 0.031871884414895
131 => 0.031186763531792
201 => 0.029393670030761
202 => 0.031517666738606
203 => 0.032552203577164
204 => 0.031869205214409
205 => 0.032213669860941
206 => 0.034092957279381
207 => 0.034808468253474
208 => 0.034659646972662
209 => 0.034684795319312
210 => 0.03507087205349
211 => 0.036782948909175
212 => 0.035757032771618
213 => 0.036541307218436
214 => 0.036957283557116
215 => 0.037343665563096
216 => 0.036394833473697
217 => 0.035160416866501
218 => 0.034769425309718
219 => 0.031801294487659
220 => 0.031646790388432
221 => 0.031560062555583
222 => 0.031013255837363
223 => 0.030583615539807
224 => 0.03024194962367
225 => 0.029345316229645
226 => 0.029647903679179
227 => 0.028218857191037
228 => 0.029133110491852
301 => 0.026852317791244
302 => 0.028751829726432
303 => 0.027718011740319
304 => 0.028412192713548
305 => 0.028409770781528
306 => 0.027131563519535
307 => 0.026394320246323
308 => 0.026864120353951
309 => 0.027367783362108
310 => 0.027449500990655
311 => 0.02810251322768
312 => 0.028284754906583
313 => 0.027732554111458
314 => 0.02680505343207
315 => 0.027020490685853
316 => 0.026389954417251
317 => 0.025284963859752
318 => 0.026078587369432
319 => 0.026349565328799
320 => 0.026469244632929
321 => 0.025382613328652
322 => 0.025041170180935
323 => 0.024859388714076
324 => 0.026664782976019
325 => 0.026763686549136
326 => 0.026257681885516
327 => 0.028544870946406
328 => 0.02802720962045
329 => 0.028605564151647
330 => 0.027000942013179
331 => 0.027062240739779
401 => 0.026302586904217
402 => 0.026727942292044
403 => 0.026427314813772
404 => 0.026693577780152
405 => 0.026853174704356
406 => 0.027612703888198
407 => 0.028760502329663
408 => 0.027499255556198
409 => 0.026949712275613
410 => 0.027290645836139
411 => 0.02819859683552
412 => 0.029574189076738
413 => 0.028759810783563
414 => 0.029121218041034
415 => 0.029200169448901
416 => 0.028599677045437
417 => 0.029596330088187
418 => 0.030130444550591
419 => 0.030678335469603
420 => 0.031154053803026
421 => 0.03045949578817
422 => 0.031202772425047
423 => 0.030603822661713
424 => 0.030066502805714
425 => 0.03006731769814
426 => 0.029730249103481
427 => 0.029077136227955
428 => 0.028956692193158
429 => 0.029583257272574
430 => 0.030085703130331
501 => 0.03012708697773
502 => 0.030405266821185
503 => 0.030569890787061
504 => 0.032183429448078
505 => 0.032832408045431
506 => 0.033625966789738
507 => 0.033935102643166
508 => 0.034865490730647
509 => 0.03411412678758
510 => 0.033951564472197
511 => 0.031694747299593
512 => 0.032064300985178
513 => 0.032655992092426
514 => 0.031704504068018
515 => 0.032308004217151
516 => 0.032427147930471
517 => 0.03167217286904
518 => 0.032075437669897
519 => 0.031004485918502
520 => 0.02878384615127
521 => 0.029598802295051
522 => 0.030198884328146
523 => 0.029342493277339
524 => 0.030877541089001
525 => 0.029980797847247
526 => 0.029696573290877
527 => 0.02858771196311
528 => 0.029111051825829
529 => 0.029818876483663
530 => 0.02938152313857
531 => 0.030289096998572
601 => 0.031574463625442
602 => 0.032490492428655
603 => 0.032560813745791
604 => 0.031971868594488
605 => 0.032915656958048
606 => 0.03292253142592
607 => 0.031857934296335
608 => 0.031205874482166
609 => 0.031057725120441
610 => 0.031427831272423
611 => 0.031877208466294
612 => 0.032585751052544
613 => 0.033013908498024
614 => 0.034130316038674
615 => 0.034432383909261
616 => 0.034764264917781
617 => 0.035207760293475
618 => 0.035740290201876
619 => 0.034575145079239
620 => 0.034621438467063
621 => 0.033536471461395
622 => 0.032377028615831
623 => 0.033256901209023
624 => 0.034407217580076
625 => 0.03414333373357
626 => 0.03411364141018
627 => 0.034163575662158
628 => 0.033964615859533
629 => 0.033064728046055
630 => 0.032612810019722
701 => 0.033195899570276
702 => 0.033505785716065
703 => 0.033986392103272
704 => 0.033927147221679
705 => 0.035165137661767
706 => 0.035646183311897
707 => 0.03552311124949
708 => 0.035545759470867
709 => 0.036416669642693
710 => 0.037385300870101
711 => 0.038292551836717
712 => 0.039215446487294
713 => 0.038102860964832
714 => 0.037537958651261
715 => 0.038120793643158
716 => 0.037811533192461
717 => 0.039588635474774
718 => 0.039711678181077
719 => 0.041488651958668
720 => 0.043175211671702
721 => 0.042115913733801
722 => 0.043114783977415
723 => 0.044195143584969
724 => 0.046279332549971
725 => 0.04557745102921
726 => 0.045039820784193
727 => 0.044531762800463
728 => 0.045588950812673
729 => 0.04694900630139
730 => 0.04724194922721
731 => 0.047716628679849
801 => 0.047217561276441
802 => 0.047818632993375
803 => 0.049940680278447
804 => 0.049367284370191
805 => 0.048552970002476
806 => 0.050228122530453
807 => 0.050834353718337
808 => 0.055089201680647
809 => 0.060461122992066
810 => 0.058237112295202
811 => 0.056856597087281
812 => 0.057181050907401
813 => 0.059142694719319
814 => 0.059772712452245
815 => 0.058060107074017
816 => 0.058665028246288
817 => 0.061998203380039
818 => 0.063786344898235
819 => 0.061357808537079
820 => 0.054657573033798
821 => 0.048479649903269
822 => 0.05011831331299
823 => 0.049932539735973
824 => 0.053513620595123
825 => 0.049353609067414
826 => 0.049423652992596
827 => 0.053078786811483
828 => 0.052103659773461
829 => 0.050524078856702
830 => 0.04849118259203
831 => 0.04473318582664
901 => 0.041404623292042
902 => 0.047932700944561
903 => 0.047651198365645
904 => 0.04724354091503
905 => 0.04815073845823
906 => 0.052555832215491
907 => 0.052454280546489
908 => 0.051808260640416
909 => 0.052298261045414
910 => 0.050438179416588
911 => 0.050917564805608
912 => 0.048478671288681
913 => 0.049581153015523
914 => 0.05052068978548
915 => 0.050709315702129
916 => 0.051134299523816
917 => 0.047502859298133
918 => 0.049133269345981
919 => 0.05009098250033
920 => 0.045763999627079
921 => 0.050005451961236
922 => 0.047439644003029
923 => 0.046568770244871
924 => 0.047741287031337
925 => 0.047284356099341
926 => 0.046891513715896
927 => 0.046672300916044
928 => 0.04753326783807
929 => 0.047493102702079
930 => 0.046084393711167
1001 => 0.044246790258846
1002 => 0.044863550294722
1003 => 0.044639475591532
1004 => 0.04382739996096
1005 => 0.04437464088558
1006 => 0.041964868805847
1007 => 0.03781898119172
1008 => 0.040557881541584
1009 => 0.040452436857465
1010 => 0.040399266866196
1011 => 0.042457474781474
1012 => 0.042259625581355
1013 => 0.041900527345796
1014 => 0.043820804840256
1015 => 0.043119877723401
1016 => 0.045279969938349
1017 => 0.046702746377119
1018 => 0.046341884250251
1019 => 0.047680012367789
1020 => 0.044877759200269
1021 => 0.045808555295636
1022 => 0.046000391080863
1023 => 0.043797108914051
1024 => 0.042291996157337
1025 => 0.042191622296006
1026 => 0.039581964193178
1027 => 0.040976022487285
1028 => 0.042202736096046
1029 => 0.041615235474271
1030 => 0.041429250328499
1031 => 0.042379408102992
1101 => 0.042453243499622
1102 => 0.040769788631752
1103 => 0.041119832206864
1104 => 0.042579572104986
1105 => 0.041083050506738
1106 => 0.038175553496759
1107 => 0.037454454038993
1108 => 0.037358246078827
1109 => 0.035402567158247
1110 => 0.037502641352832
1111 => 0.036585902688406
1112 => 0.039481869145112
1113 => 0.037827708636422
1114 => 0.037756401083021
1115 => 0.037648609257511
1116 => 0.035965275622489
1117 => 0.036333818707125
1118 => 0.037558912051154
1119 => 0.037996039157968
1120 => 0.03795044321945
1121 => 0.037552908425421
1122 => 0.03773489781842
1123 => 0.037148646574262
1124 => 0.036941629058185
1125 => 0.036288224832794
1126 => 0.035327901128992
1127 => 0.035461440030013
1128 => 0.033558787490417
1129 => 0.032522121405432
1130 => 0.032235185896147
1201 => 0.031851483741271
1202 => 0.032278526075533
1203 => 0.033553397514828
1204 => 0.032015632079974
1205 => 0.02937924110362
1206 => 0.029537692693491
1207 => 0.029893686371231
1208 => 0.029230294507897
1209 => 0.02860244978351
1210 => 0.029148309832711
1211 => 0.028031236221102
1212 => 0.030028679380311
1213 => 0.029974654140624
1214 => 0.030719177429321
1215 => 0.031184743120899
1216 => 0.030111764930494
1217 => 0.029841913817249
1218 => 0.029995633275403
1219 => 0.027454993046445
1220 => 0.030511552919687
1221 => 0.030537986176397
1222 => 0.030311648584349
1223 => 0.031939172356152
1224 => 0.035373755152049
1225 => 0.03408152694846
1226 => 0.033581137130226
1227 => 0.03262989571998
1228 => 0.033897368420006
1229 => 0.033800046292299
1230 => 0.033359918722483
1231 => 0.033093728194977
]
'min_raw' => 0.024859388714076
'max_raw' => 0.063786344898235
'avg_raw' => 0.044322866806156
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.024859'
'max' => '$0.063786'
'avg' => '$0.044322'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.015286927590651
'max_diff' => 0.037076209934763
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00078030780554764
]
1 => [
'year' => 2028
'avg' => 0.0013392347192943
]
2 => [
'year' => 2029
'avg' => 0.0036585478795381
]
3 => [
'year' => 2030
'avg' => 0.0028225642405907
]
4 => [
'year' => 2031
'avg' => 0.0027721078807955
]
5 => [
'year' => 2032
'avg' => 0.0048603775294917
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00078030780554764
'min' => '$0.00078'
'max_raw' => 0.0048603775294917
'max' => '$0.00486'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0048603775294917
]
1 => [
'year' => 2033
'avg' => 0.01250139079258
]
2 => [
'year' => 2034
'avg' => 0.007923982273066
]
3 => [
'year' => 2035
'avg' => 0.0093463552624937
]
4 => [
'year' => 2036
'avg' => 0.018141298043449
]
5 => [
'year' => 2037
'avg' => 0.044322866806156
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0048603775294917
'min' => '$0.00486'
'max_raw' => 0.044322866806156
'max' => '$0.044322'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.044322866806156
]
]
]
]
'prediction_2025_max_price' => '$0.001334'
'last_price' => 0.00129366
'sma_50day_nextmonth' => '$0.001229'
'sma_200day_nextmonth' => '$0.001411'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00127'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001271'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00126'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00129'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001345'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001496'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001381'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001274'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001269'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001271'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001291'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001361'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001415'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001447'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001495'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001483'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001706'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.008699'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001299'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001322'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001381'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001425'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00159'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003289'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007802'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.95'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 58.99
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001260'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001279'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 53.26
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 7.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000040'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -46.74
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000129'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767679280
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Divi para 2026
La previsión del precio de Divi para 2026 sugiere que el precio medio podría oscilar entre $0.000446 en el extremo inferior y $0.001334 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Divi podría potencialmente ganar 3.13% para 2026 si DIVI alcanza el objetivo de precio previsto.
Predicción de precio de Divi 2027-2032
La predicción del precio de DIVI para 2027-2032 está actualmente dentro de un rango de precios de $0.00078 en el extremo inferior y $0.00486 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Divi alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00043 | $0.00078 | $0.00113 |
| 2028 | $0.000776 | $0.001339 | $0.0019019 |
| 2029 | $0.0017057 | $0.003658 | $0.005611 |
| 2030 | $0.00145 | $0.002822 | $0.004194 |
| 2031 | $0.001715 | $0.002772 | $0.003829 |
| 2032 | $0.002618 | $0.00486 | $0.0071026 |
Predicción de precio de Divi 2032-2037
La predicción de precio de Divi para 2032-2037 se estima actualmente entre $0.00486 en el extremo inferior y $0.044322 en el extremo superior. Comparado con el precio actual, Divi podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Divi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002618 | $0.00486 | $0.0071026 |
| 2033 | $0.006083 | $0.0125013 | $0.018918 |
| 2034 | $0.004891 | $0.007923 | $0.010956 |
| 2035 | $0.005782 | $0.009346 | $0.0129098 |
| 2036 | $0.009572 | $0.018141 | $0.02671 |
| 2037 | $0.024859 | $0.044322 | $0.063786 |
Divi Histograma de precios potenciales
Pronóstico de precio de Divi basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Divi es Bajista, con 16 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de DIVI se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Divi
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Divi aumentar durante el próximo mes, alcanzando $0.001411 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Divi alcance $0.001229 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 48.95, lo que sugiere que el mercado de DIVI está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DIVI para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00127 | BUY |
| SMA 5 | $0.001271 | BUY |
| SMA 10 | $0.00126 | BUY |
| SMA 21 | $0.00129 | BUY |
| SMA 50 | $0.001345 | SELL |
| SMA 100 | $0.001496 | SELL |
| SMA 200 | $0.001381 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001274 | BUY |
| EMA 5 | $0.001269 | BUY |
| EMA 10 | $0.001271 | BUY |
| EMA 21 | $0.001291 | BUY |
| EMA 50 | $0.001361 | SELL |
| EMA 100 | $0.001415 | SELL |
| EMA 200 | $0.001447 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001495 | SELL |
| SMA 50 | $0.001483 | SELL |
| SMA 100 | $0.001706 | SELL |
| SMA 200 | $0.008699 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001425 | SELL |
| EMA 50 | $0.00159 | SELL |
| EMA 100 | $0.003289 | SELL |
| EMA 200 | $0.007802 | SELL |
Osciladores de Divi
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 48.95 | NEUTRAL |
| Stoch RSI (14) | 58.99 | NEUTRAL |
| Estocástico Rápido (14) | 53.26 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 7.39 | NEUTRAL |
| Índice Direccional Medio (14) | 10.86 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000040 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -46.74 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56 | NEUTRAL |
| VWMA (10) | 0.001260 | BUY |
| Promedio Móvil de Hull (9) | 0.001279 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000129 | SELL |
Predicción de precios de Divi basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Divi
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Divi por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001817 | $0.002554 | $0.003589 | $0.005043 | $0.007086 | $0.009958 |
| Amazon.com acción | $0.002699 | $0.005632 | $0.011752 | $0.024521 | $0.051165 | $0.106759 |
| Apple acción | $0.001834 | $0.0026027 | $0.003691 | $0.005236 | $0.007427 | $0.010535 |
| Netflix acción | $0.002041 | $0.00322 | $0.005081 | $0.008018 | $0.012651 | $0.019961 |
| Google acción | $0.001675 | $0.002169 | $0.0028094 | $0.003638 | $0.004711 | $0.0061014 |
| Tesla acción | $0.002932 | $0.006648 | $0.01507 | $0.034163 | $0.077447 | $0.175566 |
| Kodak acción | $0.00097 | $0.000727 | $0.000545 | $0.000409 | $0.0003067 | $0.00023 |
| Nokia acción | $0.000856 | $0.000567 | $0.000376 | $0.000249 | $0.000165 | $0.0001093 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Divi
Podría preguntarse cosas como: "¿Debo invertir en Divi ahora?", "¿Debería comprar DIVI hoy?", "¿Será Divi una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Divi regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Divi, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Divi a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Divi es de $0.001293 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Divi
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Divi
basado en el historial de precios del último mes
Predicción de precios de Divi basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Divi ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001327 | $0.001361 | $0.001397 | $0.001433 |
| Si Divi ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00136 | $0.001431 | $0.001506 | $0.001584 |
| Si Divi ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001461 | $0.001651 | $0.001866 | $0.002109 |
| Si Divi ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001629 | $0.002053 | $0.002587 | $0.003259 |
| Si Divi ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001966 | $0.002988 | $0.004541 | $0.006903 |
| Si Divi ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.002974 | $0.006841 | $0.015732 | $0.03618 |
| Si Divi ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.004656 | $0.016759 | $0.060322 | $0.217121 |
Cuadro de preguntas
¿Es DIVI una buena inversión?
La decisión de adquirir Divi depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Divi ha experimentado un aumento de 4.9315% durante las últimas 24 horas, y Divi ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Divi dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Divi subir?
Parece que el valor medio de Divi podría potencialmente aumentar hasta $0.001334 para el final de este año. Mirando las perspectivas de Divi en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.004194. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Divi la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi aumentará en un 0.86% durante la próxima semana y alcanzará $0.001304 para el 13 de enero de 2026.
¿Cuál será el precio de Divi el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Divi, el precio de Divi disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001143 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Divi este año en 2026?
Según nuestra predicción más reciente sobre el valor de Divi en 2026, se anticipa que DIVI fluctúe dentro del rango de $0.000446 y $0.001334. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Divi no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Divi en 5 años?
El futuro de Divi parece estar en una tendencia alcista, con un precio máximo de $0.004194 proyectada después de un período de cinco años. Basado en el pronóstico de Divi para 2030, el valor de Divi podría potencialmente alcanzar su punto más alto de aproximadamente $0.004194, mientras que su punto más bajo se anticipa que esté alrededor de $0.00145.
¿Cuánto será Divi en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Divi, se espera que el valor de DIVI en 2026 crezca en un 3.13% hasta $0.001334 si ocurre lo mejor. El precio estará entre $0.001334 y $0.000446 durante 2026.
¿Cuánto será Divi en 2027?
Según nuestra última simulación experimental para la predicción de precios de Divi, el valor de DIVI podría disminuir en un -12.62% hasta $0.00113 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00113 y $0.00043 a lo largo del año.
¿Cuánto será Divi en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Divi sugiere que el valor de DIVI en 2028 podría aumentar en un 47.02% , alcanzando $0.0019019 en el mejor escenario. Se espera que el precio oscile entre $0.0019019 y $0.000776 durante el año.
¿Cuánto será Divi en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Divi podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.005611 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.005611 y $0.0017057.
¿Cuánto será Divi en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Divi, se espera que el valor de DIVI en 2030 aumente en un 224.23% , alcanzando $0.004194 en el mejor escenario. Se pronostica que el precio oscile entre $0.004194 y $0.00145 durante el transcurso de 2030.
¿Cuánto será Divi en 2031?
Nuestra simulación experimental indica que el precio de Divi podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.003829 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.003829 y $0.001715 durante el año.
¿Cuánto será Divi en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Divi, DIVI podría experimentar un 449.04% aumento en valor, alcanzando $0.0071026 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0071026 y $0.002618 a lo largo del año.
¿Cuánto será Divi en 2033?
Según nuestra predicción experimental de precios de Divi, se anticipa que el valor de DIVI aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.018918. A lo largo del año, el precio de DIVI podría oscilar entre $0.018918 y $0.006083.
¿Cuánto será Divi en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Divi sugieren que DIVI podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.010956 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.010956 y $0.004891.
¿Cuánto será Divi en 2035?
Basado en nuestra predicción experimental para el precio de Divi, DIVI podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0129098 en 2035. El rango de precios esperado para el año está entre $0.0129098 y $0.005782.
¿Cuánto será Divi en 2036?
Nuestra reciente simulación de predicción de precios de Divi sugiere que el valor de DIVI podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.02671 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.02671 y $0.009572.
¿Cuánto será Divi en 2037?
Según la simulación experimental, el valor de Divi podría aumentar en un 4830.69% en 2037, con un máximo de $0.063786 bajo condiciones favorables. Se espera que el precio caiga entre $0.063786 y $0.024859 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Noxbox
Predicción de precios de Hourglass
Predicción de precios de KLEVA
Predicción de precios de Acquire.Fi
Predicción de precios de Striker League
Predicción de precios de Aladdin DAO
Predicción de precios de Ēnosys
Predicción de precios de Skeb
Predicción de precios de Pundi X PURSE
Predicción de precios de Roco Finance
Predicción de precios de Darwinia Network Native Token
Predicción de precios de dHedge DAO
Predicción de precios de Sonne Finance
Predicción de precios de Beethoven X
Predicción de precios de EverRise
Predicción de precios de MASQPredicción de precios de Era Swap Token
Predicción de precios de Origin Dollar
Predicción de precios de Panda Swap
Predicción de precios de Warden
Predicción de precios de Dvision Network
Predicción de precios de GooseFX
Predicción de precios de Flamengo Fan Token
Predicción de precios de ritestream
Predicción de precios de Shutter
¿Cómo leer y predecir los movimientos de precio de Divi?
Los traders de Divi utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Divi
Las medias móviles son herramientas populares para la predicción de precios de Divi. Una media móvil simple (SMA) calcula el precio de cierre promedio de DIVI durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DIVI por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DIVI.
¿Cómo leer gráficos de Divi y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Divi en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DIVI dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Divi?
La acción del precio de Divi está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DIVI. La capitalización de mercado de Divi puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DIVI, grandes poseedores de Divi, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Divi.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


