Predicción del precio de dicki - Pronóstico de $DICKI
Predicción de precio de dicki hasta $0.001512 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0005068 | $0.001512 |
| 2027 | $0.000487 | $0.001281 |
| 2028 | $0.00088 | $0.002156 |
| 2029 | $0.001934 | $0.006363 |
| 2030 | $0.001645 | $0.004756 |
| 2031 | $0.001945 | $0.004342 |
| 2032 | $0.002968 | $0.008054 |
| 2033 | $0.006899 | $0.021453 |
| 2034 | $0.005546 | $0.012424 |
| 2035 | $0.006557 | $0.014639 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en dicki hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,960.46, equivalente a un ROI del 39.6% en los próximos 90 días.
Predicción del precio a largo plazo de dicki para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'dicki'
'name_with_ticker' => 'dicki <small>$DICKI</small>'
'name_lang' => 'dicki'
'name_lang_with_ticker' => 'dicki <small>$DICKI</small>'
'name_with_lang' => 'dicki'
'name_with_lang_with_ticker' => 'dicki <small>$DICKI</small>'
'image' => '/uploads/coins/dicki.png?1717254700'
'price_for_sd' => 0.001466
'ticker' => '$DICKI'
'marketcap' => '$0'
'low24h' => '$0.001403'
'high24h' => '$0.001551'
'volume24h' => '$329.85'
'current_supply' => '0'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001466'
'change_24h_pct' => '3.2408%'
'ath_price' => '$0.7711'
'ath_days' => 604
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 may. 2024'
'ath_pct' => '-99.81%'
'fdv' => '$14.74K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.072333'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001479'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001296'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0005068'
'current_year_max_price_prediction' => '$0.001512'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001645'
'grand_prediction_max_price' => '$0.004756'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.001494798878358
107 => 0.0015003799147578
108 => 0.0015129542747413
109 => 0.0014055077454238
110 => 0.001453748082623
111 => 0.0014820847612192
112 => 0.0013540586164244
113 => 0.0014795540959721
114 => 0.0014036373403954
115 => 0.0013778700533212
116 => 0.0014125623107846
117 => 0.0013990427043118
118 => 0.0013874193405644
119 => 0.0013809333038786
120 => 0.001406407468915
121 => 0.0014052190686678
122 => 0.001363538390346
123 => 0.0013091676445968
124 => 0.0013274162515291
125 => 0.001320786361549
126 => 0.0012967587849883
127 => 0.0013129504704896
128 => 0.0012416504819665
129 => 0.0011189825575634
130 => 0.0012000207458442
131 => 0.001196900863748
201 => 0.0011953276777197
202 => 0.0012562256364817
203 => 0.0012503717029017
204 => 0.0012397467561321
205 => 0.0012965636495087
206 => 0.0012758247191312
207 => 0.0013397372158482
208 => 0.0013818341197871
209 => 0.001371156983256
210 => 0.0014107493248825
211 => 0.0013278366625758
212 => 0.0013553769231155
213 => 0.0013610529326436
214 => 0.0012958625378639
215 => 0.0012513294788322
216 => 0.0012483596315088
217 => 0.0011711454441814
218 => 0.0012123926398006
219 => 0.0012486884650205
220 => 0.00123130558141
221 => 0.0012258026797578
222 => 0.0012539158108652
223 => 0.0012561004419249
224 => 0.0012062906222462
225 => 0.0012166476610293
226 => 0.001259838234469
227 => 0.0012155593693942
228 => 0.0011295327674653
301 => 0.0011081969807762
302 => 0.0011053503935353
303 => 0.0010474860478716
304 => 0.0011096227400638
305 => 0.0010824984087621
306 => 0.0011681838463447
307 => 0.0011192407839377
308 => 0.0011171309463386
309 => 0.0011139416173617
310 => 0.001064135384703
311 => 0.001075039784304
312 => 0.0011112876693649
313 => 0.0011242213231162
314 => 0.0011228722370676
315 => 0.0011111100349531
316 => 0.0011164947108489
317 => 0.001099148793643
318 => 0.0010930235892536
319 => 0.0010736907593303
320 => 0.0010452768401736
321 => 0.0010492279699051
322 => 0.00099293256114937
323 => 0.00096225983463578
324 => 0.00095377002819685
325 => 0.00094241710421329
326 => 0.00095505237116978
327 => 0.00099277308332951
328 => 0.00094727390156937
329 => 0.00086926874583812
330 => 0.00087395698861188
331 => 0.00088449007817276
401 => 0.00086486173545942
402 => 0.00084628515636318
403 => 0.00086243598472186
404 => 0.00082938417191473
405 => 0.0008884842318436
406 => 0.00088688574084853
407 => 0.00090891458846682
408 => 0.00092268967896
409 => 0.00089094255511173
410 => 0.00088295823931724
411 => 0.0008875064684607
412 => 0.00081233437202491
413 => 0.0009027714244396
414 => 0.00090355352782436
415 => 0.00089685668381529
416 => 0.00094501162229538
417 => 0.0010466335623903
418 => 0.0010083993007935
419 => 0.00099359383906659
420 => 0.00096544864550093
421 => 0.0010029504448309
422 => 0.0010000708917616
423 => 0.00098704846074396
424 => 0.00097917245383204
425 => 0.00099368423805881
426 => 0.00097737428317154
427 => 0.0009744445671062
428 => 0.00095669367531274
429 => 0.00095035741455659
430 => 0.00094566629934655
501 => 0.00094050184243975
502 => 0.00095189334747367
503 => 0.00092607869838952
504 => 0.00089494876223529
505 => 0.00089236064487464
506 => 0.000899506664457
507 => 0.00089634508275039
508 => 0.00089234550843778
509 => 0.00088470923185575
510 => 0.00088244371171709
511 => 0.0008898055530936
512 => 0.00088149446340154
513 => 0.00089375792897066
514 => 0.00089042294490436
515 => 0.00087179399500958
516 => 0.00084857542612005
517 => 0.00084836873215434
518 => 0.00084336632957318
519 => 0.0008369950177698
520 => 0.00083522266458197
521 => 0.00086107580700582
522 => 0.00091459103810374
523 => 0.00090408471772827
524 => 0.00091167661093057
525 => 0.000949021211513
526 => 0.00096089193704683
527 => 0.00095246637723646
528 => 0.00094093295130212
529 => 0.00094144036351011
530 => 0.00098085357133318
531 => 0.00098331172475988
601 => 0.00098952268543881
602 => 0.0009975055251285
603 => 0.00095382588935439
604 => 0.00093938305659319
605 => 0.00093253924117308
606 => 0.00091146293856904
607 => 0.00093419192398188
608 => 0.00092094871753401
609 => 0.00092273567853618
610 => 0.00092157191783926
611 => 0.00092220740987293
612 => 0.00088846771217239
613 => 0.00090076068470816
614 => 0.0008803212336062
615 => 0.00085295510301674
616 => 0.00085286336215121
617 => 0.0008595611838434
618 => 0.0008555770574151
619 => 0.00084485587563777
620 => 0.00084637876890669
621 => 0.00083303662140736
622 => 0.00084799874718048
623 => 0.0008484278074106
624 => 0.00084266657399545
625 => 0.00086571779312442
626 => 0.00087516189640956
627 => 0.00087136972915813
628 => 0.00087489582784606
629 => 0.00090452130277306
630 => 0.00090935154783626
701 => 0.00091149682362525
702 => 0.00090862243826258
703 => 0.00087543732714347
704 => 0.0008769092279356
705 => 0.00086610939654453
706 => 0.00085698467707728
707 => 0.00085734961800312
708 => 0.00086204090993979
709 => 0.00088252805696785
710 => 0.00092564205010513
711 => 0.00092727819462877
712 => 0.00092926124952113
713 => 0.00092119516867038
714 => 0.0009187623615038
715 => 0.00092197186211733
716 => 0.00093816321111363
717 => 0.00097981175664048
718 => 0.00096509037903846
719 => 0.00095312166989613
720 => 0.00096362145455477
721 => 0.0009620050950066
722 => 0.00094836139377333
723 => 0.00094797846052148
724 => 0.00092179183569968
725 => 0.00091211123674366
726 => 0.00090402140367574
727 => 0.00089518751715601
728 => 0.00088995049311255
729 => 0.00089799694222816
730 => 0.00089983726034369
731 => 0.00088224355872455
801 => 0.00087984560220482
802 => 0.00089421299873344
803 => 0.00088789044319172
804 => 0.00089439334835821
805 => 0.00089590207813772
806 => 0.00089565913789422
807 => 0.0008890576637678
808 => 0.00089326524651719
809 => 0.00088331305897409
810 => 0.0008724915497912
811 => 0.00086558810113637
812 => 0.00085956392657544
813 => 0.00086290648874892
814 => 0.00085099086492819
815 => 0.00084717881705381
816 => 0.0008918398121553
817 => 0.00092483136942338
818 => 0.00092435165911461
819 => 0.00092143154598146
820 => 0.00091709285018891
821 => 0.00093784580849234
822 => 0.00093061589278792
823 => 0.00093587626054256
824 => 0.00093721524491305
825 => 0.00094126794732624
826 => 0.00094271644009742
827 => 0.00093833808890002
828 => 0.00092364380751098
829 => 0.00088702705537985
830 => 0.00086998185841778
831 => 0.00086435665951009
901 => 0.00086456112480661
902 => 0.00085892105915528
903 => 0.00086058231125961
904 => 0.00085834334346863
905 => 0.00085410328013701
906 => 0.00086264467678638
907 => 0.0008636289931816
908 => 0.00086163532914155
909 => 0.00086210490919468
910 => 0.0008455982224481
911 => 0.0008468531899908
912 => 0.00083986537123947
913 => 0.000838555239463
914 => 0.00082089064215861
915 => 0.00078959524750956
916 => 0.0008069359340626
917 => 0.00078599082317604
918 => 0.00077805859231308
919 => 0.00081560853950333
920 => 0.00081183956627884
921 => 0.0008053887224518
922 => 0.00079584657995795
923 => 0.00079230730648698
924 => 0.00077080380127522
925 => 0.00076953325947057
926 => 0.000780190977297
927 => 0.00077527280722978
928 => 0.00076836583379874
929 => 0.0007433494761802
930 => 0.0007152228075856
1001 => 0.00071607177491253
1002 => 0.0007250183448772
1003 => 0.00075103170365882
1004 => 0.00074086783434717
1005 => 0.0007334938305446
1006 => 0.00073211290129412
1007 => 0.00074939812203509
1008 => 0.00077386033074927
1009 => 0.00078533745176689
1010 => 0.00077396397340378
1011 => 0.00076089873385179
1012 => 0.00076169395444483
1013 => 0.00076698420078522
1014 => 0.00076754013087553
1015 => 0.00075903600305552
1016 => 0.00076142986522364
1017 => 0.00075779336969092
1018 => 0.00073547620331907
1019 => 0.0007350725565479
1020 => 0.00072959556400733
1021 => 0.00072942972284989
1022 => 0.00072011199223856
1023 => 0.0007188083773156
1024 => 0.00070030745764098
1025 => 0.00071248481899676
1026 => 0.00070431688433947
1027 => 0.00069200588018992
1028 => 0.00068988345843424
1029 => 0.00068981965587337
1030 => 0.00070246030444479
1031 => 0.00071233710565846
1101 => 0.00070445896905983
1102 => 0.00070266527006758
1103 => 0.00072181728260554
1104 => 0.00071938001443562
1105 => 0.00071726935591916
1106 => 0.00077167000826277
1107 => 0.00072860764699696
1108 => 0.00070982999957142
1109 => 0.00068658909510378
1110 => 0.00069415645078925
1111 => 0.00069575100381977
1112 => 0.00063986081806299
1113 => 0.00061718617666215
1114 => 0.00060940509420921
1115 => 0.00060492697124919
1116 => 0.0006069677081148
1117 => 0.00058655787138387
1118 => 0.0006002736192146
1119 => 0.00058260042580617
1120 => 0.0005796374574177
1121 => 0.00061123931652052
1122 => 0.0006156365305993
1123 => 0.00059687664923191
1124 => 0.00060892353001869
1125 => 0.00060455516358123
1126 => 0.00058290338198202
1127 => 0.00058207644318465
1128 => 0.00057121234027509
1129 => 0.00055421212292647
1130 => 0.00054644256742143
1201 => 0.00054239611545603
1202 => 0.00054406576040073
1203 => 0.00054322153682471
1204 => 0.00053771240693635
1205 => 0.00054353731370115
1206 => 0.00052865708393474
1207 => 0.00052273165654359
1208 => 0.00052005527845988
1209 => 0.00050684821806812
1210 => 0.00052786652435783
1211 => 0.00053200739547855
1212 => 0.00053615642539455
1213 => 0.00057227089815036
1214 => 0.00057046672114992
1215 => 0.00058677560256405
1216 => 0.00058614186942241
1217 => 0.00058149031225673
1218 => 0.00056186615771877
1219 => 0.00056968799595068
1220 => 0.0005456135936564
1221 => 0.00056365177275551
1222 => 0.00055541990110704
1223 => 0.00056086856867064
1224 => 0.00055107137310474
1225 => 0.0005564935456472
1226 => 0.00053298934963746
1227 => 0.00051104146211652
1228 => 0.00051987393275373
1229 => 0.0005294758384519
1230 => 0.00055029521652562
1231 => 0.00053789536670105
]
'min_raw' => 0.00050684821806812
'max_raw' => 0.0015129542747413
'avg_raw' => 0.0010099012464047
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0005068'
'max' => '$0.001512'
'avg' => '$0.0010099'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00096015178193188
'max_diff' => 4.595427474132E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0005423548215882
102 => 0.00052741639421999
103 => 0.00049659415160855
104 => 0.00049676860215444
105 => 0.00049202727162773
106 => 0.00048793006980705
107 => 0.00053931963861622
108 => 0.00053292853338594
109 => 0.00052274514364866
110 => 0.00053637601548383
111 => 0.00053998023434808
112 => 0.00054008284139221
113 => 0.00055002757361943
114 => 0.00055533507899178
115 => 0.00055627054981771
116 => 0.0005719188008474
117 => 0.00057716388818712
118 => 0.00059876766062693
119 => 0.00055488477424242
120 => 0.00055398103507526
121 => 0.00053656782980398
122 => 0.00052552409972905
123 => 0.00053732400345054
124 => 0.00054777710730028
125 => 0.00053689263687851
126 => 0.00053831391893188
127 => 0.00052370240668455
128 => 0.00052892533477742
129 => 0.00053342402405539
130 => 0.00053094011225683
131 => 0.00052722157607169
201 => 0.00054692007199023
202 => 0.00054580860565148
203 => 0.00056415229791728
204 => 0.00057845251780849
205 => 0.00060408106832362
206 => 0.00057733633981453
207 => 0.00057636165560699
208 => 0.00058588935007995
209 => 0.00057716242954674
210 => 0.00058267754208067
211 => 0.0006031924984311
212 => 0.00060362594713174
213 => 0.00059636512292892
214 => 0.00059592330111631
215 => 0.00059731782182918
216 => 0.00060548557320149
217 => 0.00060263150990235
218 => 0.00060593430420815
219 => 0.00061006449906174
220 => 0.0006271487361425
221 => 0.00063126768786425
222 => 0.000621260770612
223 => 0.00062216428319717
224 => 0.00061842142144881
225 => 0.00061480586389781
226 => 0.00062293310926268
227 => 0.00063778580990839
228 => 0.00063769341202853
301 => 0.00064113894988309
302 => 0.00064328549142211
303 => 0.00063407096377221
304 => 0.00062807264509971
305 => 0.00063037278216168
306 => 0.00063405075141424
307 => 0.0006291800663035
308 => 0.0005991159414792
309 => 0.00060823547644716
310 => 0.00060671753990602
311 => 0.00060455581368403
312 => 0.0006137255766136
313 => 0.00061284113060926
314 => 0.0005863485390083
315 => 0.00058804450876759
316 => 0.00058645167654659
317 => 0.00059159844331546
318 => 0.00057688448725098
319 => 0.0005814104010364
320 => 0.00058424901173482
321 => 0.00058592097524342
322 => 0.0005919612539126
323 => 0.0005912524969274
324 => 0.00059191719658326
325 => 0.0006008733352752
326 => 0.00064617041140338
327 => 0.00064863583131467
328 => 0.0006364952019865
329 => 0.00064134514393978
330 => 0.00063203431595519
331 => 0.00063828473715837
401 => 0.0006425611166021
402 => 0.00062323698019637
403 => 0.00062209273025103
404 => 0.0006127434731673
405 => 0.00061776723435511
406 => 0.0006097740690841
407 => 0.00061173531225255
408 => 0.00060625150537545
409 => 0.00061612126593918
410 => 0.00062715719185516
411 => 0.00062994530256346
412 => 0.00062261098364706
413 => 0.00061730045339641
414 => 0.00060797691167369
415 => 0.00062348216934725
416 => 0.00062801637920517
417 => 0.00062345835307314
418 => 0.00062240215882351
419 => 0.00062040067262897
420 => 0.00062282678358132
421 => 0.00062799168492451
422 => 0.00062555601283181
423 => 0.00062716481716006
424 => 0.00062103371405261
425 => 0.00063407401416428
426 => 0.00065478514906075
427 => 0.00065485173874605
428 => 0.00065241605352417
429 => 0.00065141942360895
430 => 0.00065391858445634
501 => 0.0006552742766951
502 => 0.00066335610460781
503 => 0.00067202822795239
504 => 0.00071249724365766
505 => 0.000701133705987
506 => 0.00073704022423324
507 => 0.00076543761828815
508 => 0.00077395275509768
509 => 0.00076611922990106
510 => 0.00073932116336215
511 => 0.00073800632237083
512 => 0.00077805394763182
513 => 0.00076673865919815
514 => 0.00076539274164391
515 => 0.00075107445283044
516 => 0.00075953833487377
517 => 0.00075768715971324
518 => 0.00075476498915975
519 => 0.00077091348649928
520 => 0.0008011420319326
521 => 0.00079643062964531
522 => 0.00079291378639352
523 => 0.00077750400300182
524 => 0.00078678413450335
525 => 0.00078347965742487
526 => 0.000797677788027
527 => 0.0007892671299854
528 => 0.00076665293475937
529 => 0.00077025431988648
530 => 0.00076970997776949
531 => 0.00078091249996447
601 => 0.00077754978086523
602 => 0.00076905335289566
603 => 0.00080103871405057
604 => 0.0007989617626091
605 => 0.00080190640489591
606 => 0.00080320272749665
607 => 0.00082267165318636
608 => 0.0008306474491053
609 => 0.00083245809441486
610 => 0.00084003448366766
611 => 0.00083226958694832
612 => 0.00086333471010322
613 => 0.00088399120430103
614 => 0.00090798478528527
615 => 0.00094304585596983
616 => 0.00095622914288025
617 => 0.00095384770009891
618 => 0.00098043060374547
619 => 0.0010281994906936
620 => 0.00096350315791587
621 => 0.0010316285534258
622 => 0.0010100608397529
623 => 0.00095892417862096
624 => 0.0009556315805057
625 => 0.00099026192113306
626 => 0.0010670686835978
627 => 0.0010478294607355
628 => 0.0010671001520741
629 => 0.0010446198670045
630 => 0.0010435035313721
701 => 0.0010660083348052
702 => 0.0011185920346997
703 => 0.0010936114899504
704 => 0.0010577957535713
705 => 0.001084241535959
706 => 0.0010613317518132
707 => 0.0010097095960877
708 => 0.0010478147488643
709 => 0.0010223349183749
710 => 0.001029771287494
711 => 0.0010833261013441
712 => 0.0010768822444532
713 => 0.0010852211919551
714 => 0.0010705031678825
715 => 0.0010567542125793
716 => 0.001031090766495
717 => 0.0010234930853021
718 => 0.0010255928110479
719 => 0.0010234920447823
720 => 0.0010091335825574
721 => 0.001006032874007
722 => 0.0010008648905779
723 => 0.0010024666647401
724 => 0.00099274934394647
725 => 0.001011087935985
726 => 0.0010144917402665
727 => 0.0010278370382405
728 => 0.0010292225913474
729 => 0.0010663890562465
730 => 0.0010459183919372
731 => 0.001059651880908
801 => 0.0010584234283899
802 => 0.0009600324651276
803 => 0.00097358987175432
804 => 0.00099468094191693
805 => 0.00098517944339695
806 => 0.00097174654749793
807 => 0.00096089876383317
808 => 0.00094446326233822
809 => 0.00096759591507651
810 => 0.000998012893544
811 => 0.001029994016117
812 => 0.0010684172394024
813 => 0.0010598416232607
814 => 0.0010292757206843
815 => 0.0010306468847455
816 => 0.0010391228814385
817 => 0.0010281456955956
818 => 0.0010249083091904
819 => 0.0010386781142599
820 => 0.0010387729393396
821 => 0.0010261423603901
822 => 0.0010121057832593
823 => 0.0010120469694886
824 => 0.0010095492961654
825 => 0.0010450641975401
826 => 0.0010645938023347
827 => 0.0010668328400508
828 => 0.0010644430972566
829 => 0.0010653628144126
830 => 0.0010539989676882
831 => 0.0010799733514562
901 => 0.0011038100146021
902 => 0.001097421279683
903 => 0.001087843657827
904 => 0.001080214620698
905 => 0.0010956241209897
906 => 0.0010949379601985
907 => 0.0011036018221442
908 => 0.0011032087793214
909 => 0.0011002954484134
910 => 0.0010974213837272
911 => 0.0011088167253385
912 => 0.0011055350499581
913 => 0.0011022482772293
914 => 0.001095656151342
915 => 0.0010965521307337
916 => 0.0010869761625892
917 => 0.0010825458815591
918 => 0.0010159250845963
919 => 0.0009981218307505
920 => 0.001003723096829
921 => 0.0010055671790589
922 => 0.00099781918016972
923 => 0.0010089278202792
924 => 0.0010071965504851
925 => 0.001013931908495
926 => 0.0010097239492257
927 => 0.0010098966453419
928 => 0.0010222713563214
929 => 0.0010258637875646
930 => 0.0010240366480399
1001 => 0.0010253163139323
1002 => 0.0010548056743107
1003 => 0.0010506132302816
1004 => 0.0010483860779496
1005 => 0.0010490030143662
1006 => 0.0010565381782019
1007 => 0.0010586476126712
1008 => 0.0010497097905974
1009 => 0.0010539249191563
1010 => 0.0010718724015807
1011 => 0.0010781530046898
1012 => 0.0010981976749532
1013 => 0.0010896823427597
1014 => 0.0011053126035359
1015 => 0.0011533546964132
1016 => 0.0011917340444636
1017 => 0.0011564388099028
1018 => 0.0012269175950169
1019 => 0.0012817954388094
1020 => 0.0012796891357608
1021 => 0.0012701199143482
1022 => 0.0012076429481933
1023 => 0.0011501507124586
1024 => 0.0011982454089
1025 => 0.001198368012172
1026 => 0.0011942366350946
1027 => 0.001168577006887
1028 => 0.0011933437356534
1029 => 0.0011953096286434
1030 => 0.0011942092513421
1031 => 0.0011745360745576
1101 => 0.0011444987698184
1102 => 0.0011503679872653
1103 => 0.0011599818851721
1104 => 0.0011417807707654
1105 => 0.001135964411868
1106 => 0.0011467781296658
1107 => 0.0011816221815377
1108 => 0.0011750351153692
1109 => 0.0011748631004511
1110 => 0.0012030453628709
1111 => 0.0011828729450912
1112 => 0.0011504420168932
1113 => 0.0011422527798118
1114 => 0.0011131865051039
1115 => 0.0011332626845751
1116 => 0.0011339851905334
1117 => 0.0011229896722106
1118 => 0.0011513342426053
1119 => 0.0011510730423992
1120 => 0.0011779819934564
1121 => 0.0012294218013374
1122 => 0.0012142085189478
1123 => 0.0011965171267291
1124 => 0.0011984406715923
1125 => 0.0012195372110291
1126 => 0.0012067817616985
1127 => 0.0012113687102119
1128 => 0.0012195302681332
1129 => 0.0012244543386672
1130 => 0.0011977321736196
1201 => 0.0011915019586781
1202 => 0.0011787571254161
1203 => 0.0011754322363117
1204 => 0.0011858126370739
1205 => 0.001183077768218
1206 => 0.0011339244667053
1207 => 0.0011287876732108
1208 => 0.0011289452113336
1209 => 0.0011160284998506
1210 => 0.0010963274144729
1211 => 0.0011481006905547
1212 => 0.0011439425719188
1213 => 0.0011393523307576
1214 => 0.0011399146091083
1215 => 0.0011623876334962
1216 => 0.0011493521444363
1217 => 0.0011840091285768
1218 => 0.0011768846945218
1219 => 0.0011695775456162
1220 => 0.0011685674750563
1221 => 0.0011657548461443
1222 => 0.001156109295072
1223 => 0.0011444617125444
1224 => 0.0011367709696634
1225 => 0.0010486111300283
1226 => 0.0010649730834624
1227 => 0.0010837960194493
1228 => 0.0010902936215238
1229 => 0.001079179023555
1230 => 0.0011565481671441
1231 => 0.0011706842552254
]
'min_raw' => 0.00048793006980705
'max_raw' => 0.0012817954388094
'avg_raw' => 0.00088486275430823
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000487'
'max' => '$0.001281'
'avg' => '$0.000884'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.8918148261066E-5
'max_diff' => -0.00023115883593192
'year' => 2027
]
2 => [
'items' => [
101 => 0.0011278651223528
102 => 0.001119855410886
103 => 0.0011570732824943
104 => 0.0011346263562148
105 => 0.001144734205744
106 => 0.0011228865637599
107 => 0.0011672792855596
108 => 0.0011669410873976
109 => 0.0011496713159624
110 => 0.0011642676085212
111 => 0.001161731143492
112 => 0.0011422336140752
113 => 0.0011678973920192
114 => 0.0011679101209329
115 => 0.0011512883414037
116 => 0.0011318777418891
117 => 0.0011284075851538
118 => 0.0011257932882037
119 => 0.0011440912489536
120 => 0.0011604971433458
121 => 0.0011910244454434
122 => 0.0011986997345016
123 => 0.0012286568986685
124 => 0.001210818865995
125 => 0.001218726234838
126 => 0.0012273108022826
127 => 0.0012314265596026
128 => 0.0012247201539134
129 => 0.0012712559607254
130 => 0.0012751850086406
131 => 0.0012765023844204
201 => 0.0012608107721942
202 => 0.0012747485965186
203 => 0.0012682275500894
204 => 0.0012851935012993
205 => 0.0012878539790812
206 => 0.0012856006490492
207 => 0.0012864451266899
208 => 0.0012467350250548
209 => 0.0012446758467975
210 => 0.0012165988051472
211 => 0.0012280404071548
212 => 0.001206650880612
213 => 0.0012134337198152
214 => 0.0012164235307068
215 => 0.0012148618231673
216 => 0.0012286872981654
217 => 0.0012169328200591
218 => 0.0011859108197213
219 => 0.0011548803674603
220 => 0.001154490805409
221 => 0.0011463210350617
222 => 0.0011404157874686
223 => 0.0011415533476549
224 => 0.0011455622581259
225 => 0.0011401827823042
226 => 0.0011413307662171
227 => 0.0011603949481481
228 => 0.0011642181338748
229 => 0.0011512254549603
301 => 0.001099057974284
302 => 0.0010862559436738
303 => 0.0010954577894011
304 => 0.0010910598998182
305 => 0.00088057049288708
306 => 0.00093002185681204
307 => 0.00090063953557747
308 => 0.00091418026101796
309 => 0.00088418851955266
310 => 0.00089850215058175
311 => 0.00089585894558079
312 => 0.00097537527539989
313 => 0.00097413373728091
314 => 0.00097472799587773
315 => 0.00094636248471873
316 => 0.00099154951420257
317 => 0.0010138102697993
318 => 0.0010096903963892
319 => 0.0010107272797674
320 => 0.00099291018797187
321 => 0.00097490050427254
322 => 0.00095492499337954
323 => 0.00099203702357097
324 => 0.00098791079933717
325 => 0.0009973748731609
326 => 0.0010214446775627
327 => 0.0010249890476932
328 => 0.001029752717092
329 => 0.0010280452807136
330 => 0.001068723342365
331 => 0.0010637969606965
401 => 0.0010756681231008
402 => 0.0010512482413679
403 => 0.0010236148272307
404 => 0.0010288670358538
405 => 0.0010283612059278
406 => 0.0010219214104053
407 => 0.0010161078509503
408 => 0.0010064299124178
409 => 0.0010370523419998
410 => 0.0010358091272819
411 => 0.0010559353284858
412 => 0.0010523778269275
413 => 0.0010286199608531
414 => 0.0010294684776877
415 => 0.0010351751611842
416 => 0.001054926057923
417 => 0.0010607894688187
418 => 0.0010580733032753
419 => 0.0010645022656476
420 => 0.0010695834553767
421 => 0.0010651403848462
422 => 0.0011280448939517
423 => 0.001101922556084
424 => 0.0011146544018027
425 => 0.0011176908719862
426 => 0.0011099130174612
427 => 0.0011115997556036
428 => 0.0011141547042807
429 => 0.0011296678523376
430 => 0.0011703788416045
501 => 0.0011884094616217
502 => 0.0012426554715587
503 => 0.0011869122696276
504 => 0.0011836046987133
505 => 0.0011933760431755
506 => 0.0012252241935318
507 => 0.001251034128051
508 => 0.0012595967723418
509 => 0.0012607284671387
510 => 0.0012767925570621
511 => 0.0012860001938287
512 => 0.0012748419540179
513 => 0.0012653865140947
514 => 0.001231518301942
515 => 0.0012354386397188
516 => 0.0012624458793887
517 => 0.0013005951961409
518 => 0.0013333312786742
519 => 0.0013218682435387
520 => 0.0014093231099809
521 => 0.0014179939027675
522 => 0.0014167958795647
523 => 0.0014365492359196
524 => 0.0013973428462561
525 => 0.0013805813550869
526 => 0.0012674308875299
527 => 0.0012992215535658
528 => 0.0013454311536494
529 => 0.0013393151398012
530 => 0.0013057564930344
531 => 0.0013333058214313
601 => 0.0013241971519161
602 => 0.0013170127663505
603 => 0.0013499258293884
604 => 0.0013137365645841
605 => 0.0013450701380496
606 => 0.0013048845059758
607 => 0.0013219206057176
608 => 0.0013122500915607
609 => 0.0013185080993938
610 => 0.0012819239134734
611 => 0.0013016638521652
612 => 0.0012811026671249
613 => 0.001281092918446
614 => 0.0012806390291467
615 => 0.0013048291721643
616 => 0.0013056180118596
617 => 0.0012877414596203
618 => 0.0012851651691584
619 => 0.0012946910652846
620 => 0.001283538735757
621 => 0.001288756840551
622 => 0.0012836967868355
623 => 0.001282557662163
624 => 0.0012734809229671
625 => 0.0012695704141514
626 => 0.0012711038254194
627 => 0.0012658695022339
628 => 0.0012627156331808
629 => 0.0012800116452103
630 => 0.0012707710837021
701 => 0.0012785953966309
702 => 0.0012696786045415
703 => 0.0012387691182985
704 => 0.0012209927458982
705 => 0.001162607591696
706 => 0.0011791655490012
707 => 0.001190143491825
708 => 0.0011865152817872
709 => 0.0011943100808793
710 => 0.0011947886182368
711 => 0.0011922544495934
712 => 0.0011893202069514
713 => 0.0011878919799071
714 => 0.0011985368141709
715 => 0.0012047164987496
716 => 0.0011912452752533
717 => 0.0011880891560705
718 => 0.001201709306792
719 => 0.0012100175908639
720 => 0.0012713612924298
721 => 0.0012668167528803
722 => 0.0012782226553288
723 => 0.0012769385257509
724 => 0.0012888937286197
725 => 0.0013084354326645
726 => 0.0012687016843951
727 => 0.001275598089205
728 => 0.0012739072500069
729 => 0.0012923673890104
730 => 0.0012924250195494
731 => 0.0012813572440644
801 => 0.001287357264709
802 => 0.0012840082177872
803 => 0.0012900603982258
804 => 0.0012667560577839
805 => 0.001295138228894
806 => 0.0013112290910067
807 => 0.0013114525126427
808 => 0.0013190794535791
809 => 0.0013268288672932
810 => 0.0013417031920856
811 => 0.0013264140304478
812 => 0.0012989103170312
813 => 0.0013008959963034
814 => 0.0012847705791905
815 => 0.0012850416503655
816 => 0.0012835946511893
817 => 0.001287937204642
818 => 0.0012677090040638
819 => 0.001272456522308
820 => 0.0012658099689647
821 => 0.0012755836408961
822 => 0.0012650687855438
823 => 0.001273906434633
824 => 0.0012777204710072
825 => 0.0012917943473383
826 => 0.0012629900625666
827 => 0.0012042561760384
828 => 0.0012166027510662
829 => 0.0011983411967976
830 => 0.0012000313731718
831 => 0.0012034457984372
901 => 0.0011923785290214
902 => 0.0011944898152562
903 => 0.001194414385255
904 => 0.0011937643702553
905 => 0.001190885346042
906 => 0.0011867101913352
907 => 0.0012033427226423
908 => 0.0012061689138175
909 => 0.001212451186709
910 => 0.0012311429695278
911 => 0.0012292752196416
912 => 0.0012323215971982
913 => 0.0012256713720969
914 => 0.0012003398580409
915 => 0.0012017154811277
916 => 0.0011845614391921
917 => 0.0012120125192892
918 => 0.0012055117411857
919 => 0.0012013206472522
920 => 0.0012001770684423
921 => 0.0012189151845752
922 => 0.0012245219226062
923 => 0.0012210281797195
924 => 0.0012138624111301
925 => 0.001227622805191
926 => 0.0012313045061373
927 => 0.0012321287032033
928 => 0.0012565094831854
929 => 0.0012334913179676
930 => 0.0012390320191164
1001 => 0.0012822589878165
1002 => 0.0012430580921195
1003 => 0.0012638236808545
1004 => 0.0012628073133448
1005 => 0.0012734302858724
1006 => 0.0012619359195362
1007 => 0.0012620784059828
1008 => 0.0012715108859249
1009 => 0.001258264669003
1010 => 0.0012549847194112
1011 => 0.0012504534925415
1012 => 0.0012603472606398
1013 => 0.0012662781271581
1014 => 0.001314076555554
1015 => 0.0013449565201709
1016 => 0.0013436159394667
1017 => 0.0013558663376406
1018 => 0.0013503474210625
1019 => 0.0013325253836151
1020 => 0.0013629454283718
1021 => 0.0013533192533821
1022 => 0.0013541128235524
1023 => 0.0013540832868311
1024 => 0.0013604838516644
1025 => 0.0013559484648768
1026 => 0.0013470087519706
1027 => 0.0013529433505967
1028 => 0.0013705669868583
1029 => 0.0014252712945737
1030 => 0.0014558845499069
1031 => 0.0014234283381635
1101 => 0.0014458161984181
1102 => 0.0014323914598756
1103 => 0.0014299517855311
1104 => 0.0014440130162208
1105 => 0.0014580988592335
1106 => 0.0014572016519284
1107 => 0.0014469760532172
1108 => 0.0014411998719702
1109 => 0.0014849390515351
1110 => 0.0015171653339609
1111 => 0.0015149677175472
1112 => 0.0015246672816942
1113 => 0.0015531455020258
1114 => 0.0015557491935923
1115 => 0.0015554211883001
1116 => 0.0015489676670855
1117 => 0.0015770081733663
1118 => 0.0016004000570314
1119 => 0.0015474738633845
1120 => 0.0015676274650705
1121 => 0.0015766750661759
1122 => 0.0015899596289008
1123 => 0.001612372912969
1124 => 0.001636719684297
1125 => 0.0016401625847115
1126 => 0.0016377196821095
1127 => 0.0016216623319423
1128 => 0.0016483028596468
1129 => 0.0016639082559789
1130 => 0.0016732009123715
1201 => 0.0016967655428325
1202 => 0.0015767309410801
1203 => 0.001491764483853
1204 => 0.0014784957446264
1205 => 0.001505478247611
1206 => 0.0015125933184666
1207 => 0.0015097252423262
1208 => 0.0014140877699047
1209 => 0.0014779922331268
1210 => 0.0015467480623138
1211 => 0.0015493892537298
1212 => 0.0015838098594374
1213 => 0.0015950186196041
1214 => 0.0016227317188106
1215 => 0.0016209982569098
1216 => 0.0016277459555548
1217 => 0.0016261947764902
1218 => 0.0016775274570888
1219 => 0.0017341550267659
1220 => 0.0017321941940926
1221 => 0.0017240533109645
1222 => 0.0017361439106365
1223 => 0.0017945896311225
1224 => 0.0017892088857537
1225 => 0.0017944358215487
1226 => 0.001863346619858
1227 => 0.0019529404601069
1228 => 0.0019113151262368
1229 => 0.0020016301233678
1230 => 0.0020584786266695
1231 => 0.0021567922348848
]
'min_raw' => 0.00088057049288708
'max_raw' => 0.0021567922348848
'avg_raw' => 0.0015186813638859
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00088'
'max' => '$0.002156'
'avg' => '$0.001518'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00039264042308003
'max_diff' => 0.00087499679607537
'year' => 2028
]
3 => [
'items' => [
101 => 0.0021444828869315
102 => 0.0021827556531511
103 => 0.0021224465850567
104 => 0.0019839647742382
105 => 0.0019620494975891
106 => 0.0020059244364238
107 => 0.0021137866922949
108 => 0.0020025274701372
109 => 0.0020250350658754
110 => 0.0020185528767886
111 => 0.0020182074684797
112 => 0.0020313902987535
113 => 0.0020122679158712
114 => 0.001934359887958
115 => 0.0019700646780357
116 => 0.0019562773439019
117 => 0.0019715754190373
118 => 0.0020541328211367
119 => 0.0020176322257459
120 => 0.0019791818135692
121 => 0.0020274071632683
122 => 0.0020888146054633
123 => 0.0020849718380905
124 => 0.0020775152632352
125 => 0.0021195475852812
126 => 0.0021889726669864
127 => 0.0022077379875987
128 => 0.0022215901636346
129 => 0.0022235001446756
130 => 0.0022431741364437
131 => 0.0021373821242222
201 => 0.0023052767645493
202 => 0.0023342675309379
203 => 0.002328818468401
204 => 0.002361040485124
205 => 0.0023515599504104
206 => 0.0023378241430608
207 => 0.0023889028933863
208 => 0.0023303452279807
209 => 0.0022472299941425
210 => 0.002201631333026
211 => 0.0022616793283233
212 => 0.0022983485436652
213 => 0.002322584562406
214 => 0.0023299183670332
215 => 0.0021455944569797
216 => 0.0020462540925336
217 => 0.002109930127204
218 => 0.002187619284187
219 => 0.0021369505570325
220 => 0.0021389366752084
221 => 0.0020666963857934
222 => 0.0021940109468455
223 => 0.0021754622861842
224 => 0.002271692770507
225 => 0.0022487265931255
226 => 0.0023271988174448
227 => 0.0023065344508909
228 => 0.0023923110811269
301 => 0.0024265297012377
302 => 0.0024839880901065
303 => 0.0025262547148562
304 => 0.0025510744853409
305 => 0.0025495843994176
306 => 0.0026479326952385
307 => 0.0025899401412206
308 => 0.0025170878255787
309 => 0.0025157701570348
310 => 0.0025535014036311
311 => 0.0026325757454349
312 => 0.0026530785717797
313 => 0.0026645368546595
314 => 0.0026469880955634
315 => 0.0025840413345408
316 => 0.0025568612422786
317 => 0.0025800194683691
318 => 0.0025516989478695
319 => 0.0026005881115864
320 => 0.0026677233755317
321 => 0.0026538602090086
322 => 0.0027002026962132
323 => 0.0027481622950982
324 => 0.002816746675504
325 => 0.0028346771722143
326 => 0.0028643156014408
327 => 0.0028948232808316
328 => 0.002904621525247
329 => 0.0029233294140525
330 => 0.002923230814244
331 => 0.0029796082963457
401 => 0.0030417944049691
402 => 0.0030652682213627
403 => 0.0031192449678061
404 => 0.0030268116810927
405 => 0.0030969233908619
406 => 0.0031601659080836
407 => 0.0030847655718689
408 => 0.0031886873693157
409 => 0.0031927224172187
410 => 0.0032536468499245
411 => 0.0031918882656681
412 => 0.0031552162154771
413 => 0.0032610870502949
414 => 0.0033123146123631
415 => 0.0032968844537644
416 => 0.0031794601849475
417 => 0.0031111142239322
418 => 0.002932239661004
419 => 0.0031441243075986
420 => 0.0032473271381949
421 => 0.0031791929145482
422 => 0.0032135558538245
423 => 0.0034010289082954
424 => 0.0034724065094566
425 => 0.0034575604673822
426 => 0.0034600692041061
427 => 0.0034985832620975
428 => 0.0036693758053108
429 => 0.0035670329544773
430 => 0.0036452702292261
501 => 0.0036867669976473
502 => 0.003725311508797
503 => 0.0036306583715312
504 => 0.0035075160306791
505 => 0.0034685116821674
506 => 0.0031724183087853
507 => 0.0031570053628325
508 => 0.0031483536092091
509 => 0.0030938055264283
510 => 0.00305094567534
511 => 0.0030168619304703
512 => 0.0029274160056644
513 => 0.0029576013795737
514 => 0.0028150432442486
515 => 0.0029062468872795
516 => 0.002678720661114
517 => 0.002868211263243
518 => 0.0027650801435846
519 => 0.0028343299167326
520 => 0.0028340883107978
521 => 0.0027065775227718
522 => 0.0026330319613207
523 => 0.0026798980555134
524 => 0.0027301422287232
525 => 0.0027382941767848
526 => 0.0028034370588584
527 => 0.0028216170370036
528 => 0.0027665308544817
529 => 0.0026740056858021
530 => 0.002695497172212
531 => 0.0026325964370345
601 => 0.0025223653180779
602 => 0.0026015352321632
603 => 0.0026285673216874
604 => 0.0026405062324054
605 => 0.0025321065870411
606 => 0.0024980450649968
607 => 0.0024799109964643
608 => 0.00266001265281
609 => 0.0026698790281011
610 => 0.0026194012571469
611 => 0.0028475655683587
612 => 0.0027959249576643
613 => 0.0028536201720668
614 => 0.0026935470450834
615 => 0.0026996620541012
616 => 0.0026238808705016
617 => 0.0026663132696168
618 => 0.0026363234175822
619 => 0.0026628851510935
620 => 0.002678806144642
621 => 0.002754574893295
622 => 0.0028690764206436
623 => 0.0027432575689114
624 => 0.0026884364934525
625 => 0.0027224471803417
626 => 0.0028130221214037
627 => 0.0029502477935585
628 => 0.0028690074337189
629 => 0.0029050605258649
630 => 0.0029129365226084
701 => 0.0028530328889442
702 => 0.0029524565259774
703 => 0.0030057384607796
704 => 0.0030603947007439
705 => 0.0031078511824717
706 => 0.0030385637965857
707 => 0.0031127112314404
708 => 0.0030529614877317
709 => 0.00299935979081
710 => 0.0029994410824585
711 => 0.0029658159549837
712 => 0.0029006630334625
713 => 0.0028886478351089
714 => 0.0029511524142968
715 => 0.0030012751675999
716 => 0.0030054035176338
717 => 0.0030331540492624
718 => 0.003049576528027
719 => 0.0032105391451975
720 => 0.0032752796413761
721 => 0.0033544430946284
722 => 0.003385281721078
723 => 0.0034780949304316
724 => 0.0034031407259582
725 => 0.0033869239123364
726 => 0.0031617894254139
727 => 0.0031986551850352
728 => 0.0032576808232056
729 => 0.0031627627364468
730 => 0.0032229664153633
731 => 0.0032348518968697
801 => 0.0031595374561796
802 => 0.0031997661530971
803 => 0.0030929306610617
804 => 0.0028714051424222
805 => 0.0029527031472061
806 => 0.0030125658433395
807 => 0.0029271343949399
808 => 0.0030802669595425
809 => 0.0029908100765994
810 => 0.0029624565393941
811 => 0.0028518392819904
812 => 0.0029040463694363
813 => 0.0029746572027403
814 => 0.0029310279171488
815 => 0.0030215652357212
816 => 0.0031497902242407
817 => 0.0032411709869897
818 => 0.0032481860672741
819 => 0.0031894343588621
820 => 0.0032835843465407
821 => 0.0032842701264151
822 => 0.0031780685556996
823 => 0.0031130206849692
824 => 0.0030982416718774
825 => 0.003135162544177
826 => 0.0031799912991177
827 => 0.0032506737511811
828 => 0.003293385676622
829 => 0.0034047557255173
830 => 0.0034348892675188
831 => 0.0034679968942594
901 => 0.0035122388935988
902 => 0.0035653627572215
903 => 0.0034491307679582
904 => 0.0034537488815752
905 => 0.0033455152625147
906 => 0.0032298521182774
907 => 0.003317626027139
908 => 0.0034323787369018
909 => 0.0034060543384917
910 => 0.0034030923059119
911 => 0.0034080736231118
912 => 0.0033882258863851
913 => 0.0032984553087617
914 => 0.0032533730866727
915 => 0.0033115406548689
916 => 0.0033424541286246
917 => 0.0033903982304814
918 => 0.0033844881079504
919 => 0.0035079869655129
920 => 0.0035559748871501
921 => 0.0035436975232763
922 => 0.0035459568537004
923 => 0.0036328366936226
924 => 0.003729464943818
925 => 0.0038199700513466
926 => 0.0039120357340095
927 => 0.0038010469601746
928 => 0.0037446937056572
929 => 0.0038028358797127
930 => 0.0037719848237485
1001 => 0.0039492641423366
1002 => 0.0039615385777182
1003 => 0.0041388050769938
1004 => 0.0043070520933085
1005 => 0.0042013791568196
1006 => 0.004301023976315
1007 => 0.0044087979727606
1008 => 0.0046167114976048
1009 => 0.0045466935369233
1010 => 0.0044930608763625
1011 => 0.0044423782712838
1012 => 0.0045478407268157
1013 => 0.0046835164910537
1014 => 0.0047127397511842
1015 => 0.0047600925967403
1016 => 0.0047103068696686
1017 => 0.0047702682942085
1018 => 0.0049819584712195
1019 => 0.0049247579167503
1020 => 0.0048435239339559
1021 => 0.0050106329977654
1022 => 0.005071109118338
1023 => 0.0054955622041069
1024 => 0.0060314517581725
1025 => 0.0058095899639488
1026 => 0.0056718731888388
1027 => 0.0057042398976752
1028 => 0.0058999286218138
1029 => 0.0059627776291574
1030 => 0.0057919323618454
1031 => 0.0058522777985077
1101 => 0.0061847870875495
1102 => 0.0063631676529452
1103 => 0.0061209028854316
1104 => 0.0054525040002218
1105 => 0.0048362097026056
1106 => 0.0049996787024273
1107 => 0.0049811463908812
1108 => 0.005338386140578
1109 => 0.0049233937024437
1110 => 0.0049303811107944
1111 => 0.0052950082001915
1112 => 0.0051977319440312
1113 => 0.0050401568672531
1114 => 0.0048373601750491
1115 => 0.0044624717330863
1116 => 0.0041304225855022
1117 => 0.0047816474302663
1118 => 0.0047535654307845
1119 => 0.0047128985340157
1120 => 0.0048033983121568
1121 => 0.0052428395459994
1122 => 0.0052327090032269
1123 => 0.0051682636587563
1124 => 0.005217144884542
1125 => 0.0050315877520357
1126 => 0.0050794100501399
1127 => 0.0048361120784401
1128 => 0.0049460929226692
1129 => 0.0050398187819089
1130 => 0.0050586356357864
1201 => 0.0051010309683846
1202 => 0.0047387674931135
1203 => 0.0049014131580134
1204 => 0.0049969522483042
1205 => 0.0045653031626285
1206 => 0.004988419933738
1207 => 0.0047324612919725
1208 => 0.0046455850845876
1209 => 0.0047625524527615
1210 => 0.0047169701556296
1211 => 0.0046777811732379
1212 => 0.0046559130477112
1213 => 0.0047418009736807
1214 => 0.004737794199276
1215 => 0.0045972648822617
1216 => 0.0044139501169243
1217 => 0.0044754765692736
1218 => 0.0044531234323215
1219 => 0.0043721127803952
1220 => 0.0044267041785302
1221 => 0.0041863112892183
1222 => 0.0037727278176924
1223 => 0.0040459537273868
1224 => 0.0040354348270761
1225 => 0.0040301307205454
1226 => 0.0042354524402712
1227 => 0.0042157154944976
1228 => 0.0041798927446537
1229 => 0.0043714548675018
1230 => 0.0043015321157881
1231 => 0.0045170175606975
]
'min_raw' => 0.001934359887958
'max_raw' => 0.0063631676529452
'avg_raw' => 0.0041487637704516
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001934'
'max' => '$0.006363'
'avg' => '$0.004148'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0010537893950709
'max_diff' => 0.0042063754180605
'year' => 2029
]
4 => [
'items' => [
101 => 0.0046589502114395
102 => 0.0046229515001711
103 => 0.004756439844214
104 => 0.0044768940144698
105 => 0.0045697479256788
106 => 0.004588884988089
107 => 0.0043690910206413
108 => 0.0042189447029171
109 => 0.0042089316553182
110 => 0.0039485986318215
111 => 0.0040876664316387
112 => 0.0042100403404612
113 => 0.0041514327347342
114 => 0.0041328793176134
115 => 0.0042276647019382
116 => 0.0042350303380822
117 => 0.0040670930534249
118 => 0.0041020125327873
119 => 0.0042476325666089
120 => 0.0040983432815575
121 => 0.0038082985869689
122 => 0.0037363634925292
123 => 0.0037267660249041
124 => 0.0035316723435396
125 => 0.0037411705395107
126 => 0.0036497189627667
127 => 0.0039386133979429
128 => 0.0037735984459422
129 => 0.0037664849811727
130 => 0.0037557319358551
131 => 0.0035878067450861
201 => 0.0036245716896619
202 => 0.003746783964891
203 => 0.0037903906815126
204 => 0.0037858421437097
205 => 0.0037461850580697
206 => 0.0037643398687985
207 => 0.0037058568978856
208 => 0.0036852053436385
209 => 0.0036200233577771
210 => 0.0035242238455439
211 => 0.0035375453552925
212 => 0.0033477414542527
213 => 0.0032443262153108
214 => 0.0032157022401626
215 => 0.0031774250643162
216 => 0.0032200257490261
217 => 0.0033472037636487
218 => 0.0031938000956929
219 => 0.002930800266999
220 => 0.0029466070048334
221 => 0.0029821200516847
222 => 0.0029159417238196
223 => 0.0028533094904213
224 => 0.0029077631358474
225 => 0.0027963266413643
226 => 0.0029955866196488
227 => 0.0029901971956559
228 => 0.003064468993406
301 => 0.0031109126727498
302 => 0.003003875028182
303 => 0.0029769553500337
304 => 0.0029922900221381
305 => 0.0027388420506567
306 => 0.0030437568869862
307 => 0.0030463938031526
308 => 0.0030238149260173
309 => 0.0031861726631734
310 => 0.0035287981292208
311 => 0.0033998886468163
312 => 0.0033499709989196
313 => 0.0032550775137783
314 => 0.0033815174485114
315 => 0.0033718088342942
316 => 0.0033279027989211
317 => 0.0033013482917323
318 => 0.0033502757854333
319 => 0.0032952856338062
320 => 0.0032854078915456
321 => 0.0032255595205363
322 => 0.0032041963750134
323 => 0.0031883799525595
324 => 0.0031709676255273
325 => 0.0032093748800787
326 => 0.0031223389883702
327 => 0.0030173822352035
328 => 0.0030086562168255
329 => 0.0030327495207666
330 => 0.0030220900273082
331 => 0.0030086051832718
401 => 0.0029828589436277
402 => 0.0029752205843067
403 => 0.0030000415464949
404 => 0.0029720201273364
405 => 0.0030133672577105
406 => 0.0030021231260898
407 => 0.0029393143208878
408 => 0.0028610312948081
409 => 0.0028603344116718
410 => 0.0028434684621128
411 => 0.0028219871395369
412 => 0.0028160115270224
413 => 0.0029031772017131
414 => 0.0030836075396739
415 => 0.0030481847470001
416 => 0.0030737813449807
417 => 0.0031996912731612
418 => 0.0032397142530861
419 => 0.0032113068899316
420 => 0.0031724211391559
421 => 0.0031741319148415
422 => 0.0033070162967593
423 => 0.0033153041326602
424 => 0.0033362448202246
425 => 0.0033631595215825
426 => 0.0032158905799553
427 => 0.0031671955609345
428 => 0.0031441211594257
429 => 0.0030730609336957
430 => 0.0031496932949022
501 => 0.0031050428997521
502 => 0.0031110677635325
503 => 0.0031071440630917
504 => 0.0031092866688518
505 => 0.002995530922424
506 => 0.0030369775375963
507 => 0.0029680645011691
508 => 0.0028757976812445
509 => 0.0028754883705112
510 => 0.0028980705439735
511 => 0.0028846377835576
512 => 0.0028484905706663
513 => 0.0028536251116475
514 => 0.0028086411298345
515 => 0.0028590869815009
516 => 0.0028605335880227
517 => 0.0028411091873271
518 => 0.0029188279820051
519 => 0.0029506694355972
520 => 0.0029378838789484
521 => 0.0029497723668591
522 => 0.0030496567239601
523 => 0.0030659422324276
524 => 0.0030731751795285
525 => 0.0030634839885951
526 => 0.0029515980695466
527 => 0.002956560685832
528 => 0.0029201483002769
529 => 0.0028893836715255
530 => 0.0028906140953363
531 => 0.0029064311136364
601 => 0.0029755049602084
602 => 0.0031208667981936
603 => 0.003126383173687
604 => 0.0031330691817091
605 => 0.003105873826965
606 => 0.0030976714477497
607 => 0.0031084925031484
608 => 0.0031630827667333
609 => 0.0033035037457857
610 => 0.0032538695933867
611 => 0.0032135162548848
612 => 0.0032489170119329
613 => 0.0032434673428657
614 => 0.0031974666515849
615 => 0.0031961755653907
616 => 0.0031078855315123
617 => 0.0030752467162542
618 => 0.0030479712792516
619 => 0.0030181872140881
620 => 0.0030005302218882
621 => 0.0030276593868666
622 => 0.00303386414788
623 => 0.0029745457545181
624 => 0.0029664608766918
625 => 0.0030149015571877
626 => 0.002993584619752
627 => 0.0030155096185392
628 => 0.003020596406327
629 => 0.0030197773163345
630 => 0.002997519985417
701 => 0.0030117061444206
702 => 0.0029781516492795
703 => 0.0029416661755358
704 => 0.0029183907164126
705 => 0.002898079791286
706 => 0.0029093494730241
707 => 0.0028691751153903
708 => 0.0028563225298331
709 => 0.0030069001929489
710 => 0.0031181335316752
711 => 0.0031165161548769
712 => 0.0031066707895727
713 => 0.00309204257379
714 => 0.0031620126216353
715 => 0.0031376364560613
716 => 0.0031553721532132
717 => 0.0031598866325032
718 => 0.0031735506016399
719 => 0.0031784342961484
720 => 0.0031636723793997
721 => 0.0031141295837746
722 => 0.0029906736474645
723 => 0.0029332045758492
724 => 0.0029142388249931
725 => 0.0029149281940156
726 => 0.0028959123188954
727 => 0.00290151334635
728 => 0.002893964510123
729 => 0.0028796688405687
730 => 0.0029084667557133
731 => 0.0029117854471626
801 => 0.0029050636696584
802 => 0.0029066468915925
803 => 0.0028509934447664
804 => 0.0028552246554556
805 => 0.0028316647366616
806 => 0.0028272475359067
807 => 0.0027676901127922
808 => 0.0026621755047582
809 => 0.0027206408401599
810 => 0.0026500229364649
811 => 0.0026232788662997
812 => 0.0027498811349053
813 => 0.0027371737785376
814 => 0.0027154243081912
815 => 0.002683252308562
816 => 0.0026713194009505
817 => 0.0025988188318022
818 => 0.0025945351114015
819 => 0.0026304683511514
820 => 0.0026138863973941
821 => 0.0025905990542419
822 => 0.0025062546579446
823 => 0.0024114236310366
824 => 0.0024142859836524
825 => 0.0024444499689179
826 => 0.0025321558242448
827 => 0.0024978876292419
828 => 0.002473025660585
829 => 0.0024683697612036
830 => 0.0025266480897474
831 => 0.0026091241343241
901 => 0.002647820049142
902 => 0.0026094735727699
903 => 0.0025654232054345
904 => 0.0025681043471844
905 => 0.0025859407820742
906 => 0.0025878151391875
907 => 0.0025591428785031
908 => 0.002567213951937
909 => 0.0025549532533565
910 => 0.002479709368799
911 => 0.0024783484455283
912 => 0.0024598823827863
913 => 0.0024593232377454
914 => 0.0024279078584461
915 => 0.0024235126297178
916 => 0.0023611354873419
917 => 0.0024021923113491
918 => 0.0023746535493851
919 => 0.002333146139368
920 => 0.002325990246236
921 => 0.0023257751314474
922 => 0.0023683939606479
923 => 0.002401694285516
924 => 0.0023751325979398
925 => 0.0023690850165554
926 => 0.0024336573639779
927 => 0.0024254399441784
928 => 0.0024183237116287
929 => 0.0026017393091374
930 => 0.0024565515516117
1001 => 0.002393241402303
1002 => 0.0023148830702622
1003 => 0.0023403969382917
1004 => 0.0023457730851622
1005 => 0.0021573354217551
1006 => 0.0020808862851792
1007 => 0.0020546518224313
1008 => 0.0020395535182191
1009 => 0.0020464340050412
1010 => 0.0019776208155335
1011 => 0.0020238644169478
1012 => 0.0019642780114683
1013 => 0.0019542881566787
1014 => 0.0020608360310152
1015 => 0.0020756615452855
1016 => 0.0020124112954823
1017 => 0.0020530281951412
1018 => 0.0020382999427078
1019 => 0.0019652994493669
1020 => 0.0019625113674765
1021 => 0.0019258822860095
1022 => 0.0018685648663014
1023 => 0.0018423692674631
1024 => 0.0018287263721475
1025 => 0.0018343556966494
1026 => 0.0018315093379211
1027 => 0.0018129349218673
1028 => 0.0018325740017068
1029 => 0.0017824042681449
1030 => 0.0017624262759955
1031 => 0.0017534026804275
1101 => 0.0017088741542292
1102 => 0.0017797388413362
1103 => 0.0017937000774261
1104 => 0.001807688821464
1105 => 0.0019294512877921
1106 => 0.0019233683790715
1107 => 0.001978354911409
1108 => 0.0019762182358761
1109 => 0.0019605351861307
1110 => 0.0018943709789912
1111 => 0.0019207428526934
1112 => 0.0018395743245372
1113 => 0.0019003913047553
1114 => 0.0018726369747616
1115 => 0.0018910075378661
1116 => 0.0018579756089973
1117 => 0.0018762568422882
1118 => 0.0017970108044308
1119 => 0.0017230119693013
1120 => 0.0017527912607181
1121 => 0.0017851647561631
1122 => 0.0018553587429012
1123 => 0.0018135517834878
1124 => 0.0018285871469891
1125 => 0.0017782211961494
1126 => 0.0016743018532447
1127 => 0.0016748900254399
1128 => 0.00165890429854
1129 => 0.0016450902965441
1130 => 0.0018183538156893
1201 => 0.0017968057581927
1202 => 0.0017624717487119
1203 => 0.0018084291847813
1204 => 0.0018205810603206
1205 => 0.0018209270071337
1206 => 0.0018544563661568
1207 => 0.0018723509910779
1208 => 0.0018755049962799
1209 => 0.0019282641671525
1210 => 0.0019459483453187
1211 => 0.0020187869724268
1212 => 0.0018708327571761
1213 => 0.001867785737477
1214 => 0.0018090759001537
1215 => 0.0017718411931575
1216 => 0.0018116253923974
1217 => 0.0018468687618392
1218 => 0.0018101710098828
1219 => 0.0018149629615565
1220 => 0.0017656992278714
1221 => 0.0017833086945897
1222 => 0.0017984763395788
1223 => 0.0017901016575288
1224 => 0.0017775643531607
1225 => 0.0018439792074551
1226 => 0.0018402318210939
1227 => 0.0019020788602837
1228 => 0.0019502930500564
1229 => 0.0020367014974464
1230 => 0.0019465297780207
1231 => 0.0019432435621647
]
'min_raw' => 0.0016450902965441
'max_raw' => 0.004756439844214
'avg_raw' => 0.0032007650703791
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001645'
'max' => '$0.004756'
'avg' => '$0.00320076'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00028926959141391
'max_diff' => -0.0016067278087312
'year' => 2030
]
5 => [
'items' => [
101 => 0.0019753668492827
102 => 0.0019459434274109
103 => 0.0019645380143719
104 => 0.0020337056220158
105 => 0.0020351670245725
106 => 0.0020106866488381
107 => 0.0020091970157499
108 => 0.0020138987396956
109 => 0.0020414368837016
110 => 0.0020318142100242
111 => 0.0020429498116199
112 => 0.0020568750519298
113 => 0.0021144757500309
114 => 0.0021283630833369
115 => 0.0020946240631602
116 => 0.0020976703189224
117 => 0.0020850509992195
118 => 0.0020728608945061
119 => 0.0021002624696799
120 => 0.0021503393868894
121 => 0.0021500278609864
122 => 0.0021616447324229
123 => 0.0021688819470884
124 => 0.002137814523779
125 => 0.0021175907735854
126 => 0.0021253458462803
127 => 0.0021377463764029
128 => 0.0021213245214917
129 => 0.0020199612256364
130 => 0.0020507083744865
131 => 0.0020455905454591
201 => 0.0020383021345747
202 => 0.0020692186305042
203 => 0.0020662366590505
204 => 0.0019769150368142
205 => 0.0019826331172665
206 => 0.0019772627722254
207 => 0.0019946154557224
208 => 0.0019450063255554
209 => 0.0019602657598721
210 => 0.0019698363340273
211 => 0.0019754734757293
212 => 0.0019958386969812
213 => 0.0019934490733218
214 => 0.0019956901546194
215 => 0.0020258864015169
216 => 0.0021786086562239
217 => 0.002186920991585
218 => 0.0021459880121734
219 => 0.002162339930081
220 => 0.0021309478234697
221 => 0.0021520215549467
222 => 0.0021664396668085
223 => 0.0021012869917485
224 => 0.0020974290731688
225 => 0.0020659074001667
226 => 0.0020828453617592
227 => 0.002055895846983
228 => 0.0020625083152551
301 => 0.0020440192775018
302 => 0.002077295864327
303 => 0.0021145042590565
304 => 0.0021239045689692
305 => 0.0020991764006768
306 => 0.0020812715771673
307 => 0.0020498366053003
308 => 0.0021021136640892
309 => 0.0021174010691936
310 => 0.0021020333658583
311 => 0.0020984723332045
312 => 0.0020917241827603
313 => 0.0020999039852218
314 => 0.0021173178107023
315 => 0.0021091057721886
316 => 0.0021145299683044
317 => 0.0020938585261176
318 => 0.0021378248083888
319 => 0.0022076538456975
320 => 0.0022078783574707
321 => 0.002199666274691
322 => 0.0021963060673494
323 => 0.0022047321626322
324 => 0.0022093029736665
325 => 0.0022365514207295
326 => 0.002265790090054
327 => 0.0024022342019608
328 => 0.0023639212413273
329 => 0.0024849825745075
330 => 0.0025807263712064
331 => 0.0026094357494676
401 => 0.002583024472348
402 => 0.0024926729200308
403 => 0.0024882398418292
404 => 0.0026232632064326
405 => 0.0025851129214703
406 => 0.0025805750664672
407 => 0.0025322999560616
408 => 0.0025608365253
409 => 0.0025545951590014
410 => 0.0025447428569608
411 => 0.0025991886431932
412 => 0.0027011062946112
413 => 0.00268522147286
414 => 0.0026733641902985
415 => 0.0026214090297166
416 => 0.0026526976409921
417 => 0.0026415563658108
418 => 0.0026894263544177
419 => 0.0026610692336171
420 => 0.0025848238955398
421 => 0.0025969662169365
422 => 0.0025951309294844
423 => 0.0026329010151999
424 => 0.0026215633729792
425 => 0.0025929170728782
426 => 0.0027007579511586
427 => 0.0026937553643655
428 => 0.0027036834314238
429 => 0.0027080540735786
430 => 0.0027736949158184
501 => 0.0028005858686114
502 => 0.0028066905856878
503 => 0.0028322349110203
504 => 0.0028060550196032
505 => 0.0029107932512176
506 => 0.0029804380635959
507 => 0.0030613340970626
508 => 0.0031795449447614
509 => 0.0032239933170076
510 => 0.0032159641164032
511 => 0.0033055902320067
512 => 0.0034666463694695
513 => 0.0032485181665557
514 => 0.0034782076938805
515 => 0.0034054906414226
516 => 0.0032330798181687
517 => 0.0032219785937413
518 => 0.0033387372049796
519 => 0.0035976965671064
520 => 0.0035328301839864
521 => 0.0035978026652714
522 => 0.0035220088146359
523 => 0.0035182450111111
524 => 0.0035941215271211
525 => 0.003771411142592
526 => 0.0036871874918836
527 => 0.0035664322361068
528 => 0.0036555960378125
529 => 0.0035783541010547
530 => 0.0034043063988825
531 => 0.0035327805818857
601 => 0.0034468735544455
602 => 0.0034719457921213
603 => 0.0036525095860946
604 => 0.0036307836726912
605 => 0.0036588990164006
606 => 0.0036092761706601
607 => 0.003562920607934
608 => 0.0034763945076964
609 => 0.0034507783951013
610 => 0.0034578577670514
611 => 0.0034507748869161
612 => 0.0034023643290491
613 => 0.0033919100736869
614 => 0.0033744858567385
615 => 0.0033798863501588
616 => 0.0033471237246613
617 => 0.0034089535680788
618 => 0.0034204297318598
619 => 0.0034654243357181
620 => 0.0034700958247545
621 => 0.0035954051560416
622 => 0.0035263868821064
623 => 0.0035726902990132
624 => 0.0035685484855804
625 => 0.003236816483504
626 => 0.0032825262264939
627 => 0.0033536362420786
628 => 0.003321601276445
629 => 0.0032763113300667
630 => 0.0032397372700728
701 => 0.0031843238292925
702 => 0.0032623171830699
703 => 0.0033648701496187
704 => 0.0034726967372243
705 => 0.0036022433171546
706 => 0.0035733300286026
707 => 0.0034702749540233
708 => 0.0034748979293871
709 => 0.0035034753440127
710 => 0.0034664649955407
711 => 0.0034555499212484
712 => 0.0035019757804173
713 => 0.0035022954897942
714 => 0.0034597106110271
715 => 0.003412385311228
716 => 0.0034121870164939
717 => 0.0034037659365028
718 => 0.0035235069060588
719 => 0.003589352332137
720 => 0.0035969014041217
721 => 0.0035888442194446
722 => 0.0035919451100486
723 => 0.0035536311074186
724 => 0.0036412055557662
725 => 0.0037215725297853
726 => 0.0037000324639582
727 => 0.0036677408431826
728 => 0.0036420190118597
729 => 0.0036939732179501
730 => 0.0036916597789364
731 => 0.0037208705943778
801 => 0.0037195454230595
802 => 0.0037097229245009
803 => 0.0037000328147505
804 => 0.0037384530045905
805 => 0.0037273886069259
806 => 0.0037163070231958
807 => 0.0036940812105193
808 => 0.0036971020675937
809 => 0.0036648160224217
810 => 0.0036498790206163
811 => 0.0034252623523407
812 => 0.0033652374390162
813 => 0.0033841224986678
814 => 0.0033903399506555
815 => 0.0033642170314527
816 => 0.0034016705871622
817 => 0.003395833490178
818 => 0.0034185422199561
819 => 0.0034043547914892
820 => 0.0034049370485022
821 => 0.0034466592505447
822 => 0.0034587713832965
823 => 0.003452611054822
824 => 0.0034569255377218
825 => 0.003556350975119
826 => 0.0035422158573676
827 => 0.0035347068577855
828 => 0.0035367869019872
829 => 0.0035621922329476
830 => 0.0035693043385369
831 => 0.0035391698473963
901 => 0.0035533814476236
902 => 0.0036138926376708
903 => 0.0036350681295505
904 => 0.003702650134818
905 => 0.003673940097806
906 => 0.0037266386132828
907 => 0.0038886158836106
908 => 0.004018014535123
909 => 0.0038990141875667
910 => 0.0041366383322504
911 => 0.0043216628140456
912 => 0.0043145612662599
913 => 0.0042822979681655
914 => 0.004071652514772
915 => 0.0038778134280125
916 => 0.0040399680549292
917 => 0.0040403814204206
918 => 0.0040264521941606
919 => 0.0039399389661609
920 => 0.0040234417213545
921 => 0.0040300698668243
922 => 0.0040263598679274
923 => 0.003960030378861
924 => 0.0038587575087953
925 => 0.0038785459851931
926 => 0.0039109599132068
927 => 0.0038495935852232
928 => 0.0038299833251155
929 => 0.0038664425296603
930 => 0.0039839216832807
1001 => 0.0039617129297992
1002 => 0.0039611329694931
1003 => 0.0040561514348643
1004 => 0.0039881387199268
1005 => 0.003878795581252
1006 => 0.0038511849966777
1007 => 0.0037531860221577
1008 => 0.0038208742629191
1009 => 0.003823310242201
1010 => 0.0037862380844931
1011 => 0.0038818037825336
1012 => 0.0038809231278022
1013 => 0.0039716485350147
1014 => 0.0041450814386981
1015 => 0.0040937887949641
1016 => 0.0040341410309251
1017 => 0.0040406263967292
1018 => 0.0041117548523538
1019 => 0.0040687489643785
1020 => 0.0040842141815421
1021 => 0.0041117314438954
1022 => 0.0041283332914883
1023 => 0.0040382376463485
1024 => 0.0040172320416936
1025 => 0.0039742619465349
1026 => 0.0039630518507829
1027 => 0.0039980500966891
1028 => 0.0039888292953991
1029 => 0.003823105507575
1030 => 0.0038057864496689
1031 => 0.0038063176004489
1101 => 0.0037627680058678
1102 => 0.0036963444210313
1103 => 0.0038709016360355
1104 => 0.003856882248744
1105 => 0.0038414059301886
1106 => 0.003843301690905
1107 => 0.0039190710616454
1108 => 0.003875121000171
1109 => 0.0039919694418741
1110 => 0.0039679489150456
1111 => 0.0039433123523417
1112 => 0.003939906828928
1113 => 0.0039304238541797
1114 => 0.0038979032053085
1115 => 0.0038586325676086
1116 => 0.0038327026910346
1117 => 0.0035354656365817
1118 => 0.0035906311049398
1119 => 0.0036540939477951
1120 => 0.0036760010668373
1121 => 0.0036385274237891
1122 => 0.0038993828931406
1123 => 0.003947043701057
1124 => 0.0038026760050407
1125 => 0.0037756707036103
1126 => 0.0039011533562065
1127 => 0.0038254719770606
1128 => 0.003859551297456
1129 => 0.0037858904471528
1130 => 0.0039355636081013
1201 => 0.003934423349386
1202 => 0.0038761971092554
1203 => 0.0039254095286977
1204 => 0.0039168576597614
1205 => 0.0038511203780588
1206 => 0.0039376475971848
1207 => 0.0039376905136059
1208 => 0.0038816490234278
1209 => 0.0038162048319594
1210 => 0.0038045049562477
1211 => 0.0037956906715561
1212 => 0.0038573835237473
1213 => 0.0039126971421134
1214 => 0.0040156220724839
1215 => 0.004041499845415
1216 => 0.0041425025159462
1217 => 0.0040823603433757
1218 => 0.0041090205895047
1219 => 0.0041379640579998
1220 => 0.0041518406211571
1221 => 0.0041292295061497
1222 => 0.0042861282278424
1223 => 0.0042993752872059
1224 => 0.0043038169116238
1225 => 0.0042509115454497
1226 => 0.0042979038932675
1227 => 0.0042759177299465
1228 => 0.0043331196189755
1229 => 0.0043420896055656
1230 => 0.0043344923460403
1231 => 0.0043373395613656
]
'min_raw' => 0.0019450063255554
'max_raw' => 0.0043420896055656
'avg_raw' => 0.0031435479655605
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001945'
'max' => '$0.004342'
'avg' => '$0.003143'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00029991602901128
'max_diff' => -0.00041435023864838
'year' => 2031
]
6 => [
'items' => [
101 => 0.0042034541812321
102 => 0.0041965115179705
103 => 0.0041018478117701
104 => 0.0041404239717655
105 => 0.0040683076896575
106 => 0.0040911765055939
107 => 0.0041012568617567
108 => 0.0040959914557524
109 => 0.0041426050099725
110 => 0.0041029739663655
111 => 0.0039983811263398
112 => 0.0038937597900648
113 => 0.0038924463544105
114 => 0.0038649014032893
115 => 0.0038449914487381
116 => 0.0038488268123282
117 => 0.0038623431338742
118 => 0.0038442058555585
119 => 0.0038480763634705
120 => 0.0039123525838693
121 => 0.0039252427214733
122 => 0.0038814369973932
123 => 0.0037055506940758
124 => 0.0036623877540643
125 => 0.0036934124193862
126 => 0.0036785846276067
127 => 0.0029689048962373
128 => 0.0031356336222943
129 => 0.0030365690748438
130 => 0.0030822225760497
131 => 0.0029811033257429
201 => 0.0030293627321033
202 => 0.0030204509818999
203 => 0.0032885458395378
204 => 0.0032843599070882
205 => 0.0032863634914372
206 => 0.0031907271901479
207 => 0.0033430784149103
208 => 0.0034181321066012
209 => 0.0034042416657585
210 => 0.0034077375904608
211 => 0.0033476660215227
212 => 0.0032869451155345
213 => 0.0032195962859131
214 => 0.0033447220867827
215 => 0.0033308102336947
216 => 0.0033627190193519
217 => 0.0034438720453928
218 => 0.0034558221367477
219 => 0.0034718831807145
220 => 0.0034661264397554
221 => 0.0036032753646646
222 => 0.0035866657249204
223 => 0.0036266901777845
224 => 0.0035443568415804
225 => 0.0034511888565134
226 => 0.0034688970445838
227 => 0.0034671916036723
228 => 0.0034454793834559
229 => 0.0034258785618635
301 => 0.0033932487164093
302 => 0.0034964943757348
303 => 0.0034923027905149
304 => 0.0035601596830402
305 => 0.0035481653181597
306 => 0.0034680640139684
307 => 0.0034709248477181
308 => 0.0034901653295542
309 => 0.0035567568568729
310 => 0.003576525756078
311 => 0.0035673680143118
312 => 0.0035890437098056
313 => 0.0036061752957347
314 => 0.0035911951732358
315 => 0.0038032821175376
316 => 0.0037152088316133
317 => 0.0037581351383629
318 => 0.0037683728095861
319 => 0.0037421492300227
320 => 0.0037478361854341
321 => 0.0037564503732796
322 => 0.0038087540350469
323 => 0.0039460139777107
324 => 0.0040068054719565
325 => 0.0041896996817945
326 => 0.0040017575846179
327 => 0.0039906058783531
328 => 0.0040235506484209
329 => 0.0041309289109141
330 => 0.0042179489071374
331 => 0.0042468184601887
401 => 0.0042506340482088
402 => 0.0043047952489447
403 => 0.0043358394391599
404 => 0.0042982186545944
405 => 0.0042663389787354
406 => 0.0041521499368597
407 => 0.0041653676293833
408 => 0.0042564244235155
409 => 0.0043850475084458
410 => 0.0044954194962671
411 => 0.0044567710729842
412 => 0.0047516312610978
413 => 0.0047808654443534
414 => 0.0047768262254818
415 => 0.0048434260455679
416 => 0.0047112389655146
417 => 0.0046547264277877
418 => 0.0042732317265058
419 => 0.0043804161765994
420 => 0.0045362150695324
421 => 0.0045155945018369
422 => 0.0044024491812725
423 => 0.0044953336653954
424 => 0.004464623150178
425 => 0.0044404004926456
426 => 0.0045513691825948
427 => 0.0044293545496532
428 => 0.0045349978802325
429 => 0.0043995092160242
430 => 0.0044569476157262
501 => 0.0044243428020726
502 => 0.0044454421124022
503 => 0.004322095975345
504 => 0.0043886505568428
505 => 0.0043193270859435
506 => 0.0043192942175922
507 => 0.0043177638981298
508 => 0.0043993226542155
509 => 0.0044019822823234
510 => 0.0043417102383476
511 => 0.0043330240951844
512 => 0.0043651413190507
513 => 0.0043275404614176
514 => 0.0043451336660471
515 => 0.0043280733416633
516 => 0.0043242327032991
517 => 0.0042936298433824
518 => 0.0042804452898871
519 => 0.0042856152930367
520 => 0.0042679674069678
521 => 0.0042573339172594
522 => 0.0043156486293857
523 => 0.0042844934311054
524 => 0.0043108736484208
525 => 0.0042808100613411
526 => 0.0041765965704413
527 => 0.0041166622897871
528 => 0.0039198126660731
529 => 0.0039756389751672
530 => 0.0040126518758531
531 => 0.0040004191123972
601 => 0.0040266998217515
602 => 0.0040283132438627
603 => 0.0040197691173515
604 => 0.004009876113422
605 => 0.0040050607462265
606 => 0.0040409505481453
607 => 0.0040617857861543
608 => 0.0040163666156056
609 => 0.0040057255394278
610 => 0.0040516468285137
611 => 0.0040796587883282
612 => 0.0042864833610381
613 => 0.0042711611286571
614 => 0.004309616925097
615 => 0.0043052873925702
616 => 0.0043455951937279
617 => 0.0044114814132731
618 => 0.004277516306861
619 => 0.0043007680171693
620 => 0.0042950672347621
621 => 0.0043573068822584
622 => 0.0043575011876442
623 => 0.0043201854098692
624 => 0.0043404148983804
625 => 0.0043291233528604
626 => 0.0043495287017589
627 => 0.0042709564909022
628 => 0.0043666489623796
629 => 0.0044209004274207
630 => 0.0044216537090654
701 => 0.0044473684729286
702 => 0.0044734961623123
703 => 0.0045236459868422
704 => 0.004472097510925
705 => 0.0043793668208931
706 => 0.0043860616771951
707 => 0.0043316937075582
708 => 0.0043326076429501
709 => 0.0043277289842014
710 => 0.0043423702063547
711 => 0.0042741694158175
712 => 0.0042901760050388
713 => 0.0042677666863945
714 => 0.004300719303687
715 => 0.004265267734743
716 => 0.0042950644856722
717 => 0.0043079237755954
718 => 0.0043553748322523
719 => 0.0042582591750935
720 => 0.0040602337759947
721 => 0.0041018611157112
722 => 0.0040402910105135
723 => 0.0040459895581635
724 => 0.0040575015313336
725 => 0.0040201874598062
726 => 0.0040273058087521
727 => 0.0040270514912367
728 => 0.0040248599202824
729 => 0.0040151530891403
730 => 0.0040010762635463
731 => 0.0040571540040945
801 => 0.0040666827049602
802 => 0.0040878638266282
803 => 0.0041508844774201
804 => 0.0041445872282767
805 => 0.0041548583029
806 => 0.004132436604667
807 => 0.0040470296364375
808 => 0.0040516676457177
809 => 0.0039938315956748
810 => 0.0040863848287954
811 => 0.0040644670015495
812 => 0.0040503364357401
813 => 0.0040464807799402
814 => 0.0041096576467359
815 => 0.0041285611554573
816 => 0.0041167817573894
817 => 0.0040926218682923
818 => 0.0041390159975888
819 => 0.0041514291093773
820 => 0.0041542079473288
821 => 0.0042364094492502
822 => 0.0041588020981415
823 => 0.0041774829589041
824 => 0.004323225701887
825 => 0.0041910571451253
826 => 0.0042610697773525
827 => 0.0042576430233331
828 => 0.0042934591168823
829 => 0.0042547050582687
830 => 0.0042551854612715
831 => 0.0042869877259508
901 => 0.0042423271807774
902 => 0.0042312686017298
903 => 0.0042159912539785
904 => 0.0042493487838828
905 => 0.004269345114429
906 => 0.0044305008529455
907 => 0.0045346148096217
908 => 0.0045300949481813
909 => 0.00457139802092
910 => 0.0045527906083584
911 => 0.0044927023648098
912 => 0.0045952656695666
913 => 0.0045628103485106
914 => 0.0045654859257453
915 => 0.004565386340627
916 => 0.0045869662918358
917 => 0.0045716749186309
918 => 0.0045415340524167
919 => 0.004561542966025
920 => 0.0046209622861242
921 => 0.0048054016789194
922 => 0.0049086164066245
923 => 0.0047991880227113
924 => 0.0048746702566302
925 => 0.0048294078133488
926 => 0.0048211822809635
927 => 0.0048685907019579
928 => 0.0049160821051173
929 => 0.004913057108047
930 => 0.0048785807880638
1001 => 0.0048591059897095
1002 => 0.0050065756873843
1003 => 0.0051152288485503
1004 => 0.0051078194313788
1005 => 0.0051405221891022
1006 => 0.0052365384972363
1007 => 0.0052453170251365
1008 => 0.0052442111323932
1009 => 0.0052224526350478
1010 => 0.005316993159699
1011 => 0.0053958605286453
1012 => 0.0052174161715758
1013 => 0.0052853654467397
1014 => 0.0053158700655497
1015 => 0.0053606598962754
1016 => 0.0054362278483568
1017 => 0.0055183146877265
1018 => 0.0055299226668498
1019 => 0.0055216862501689
1020 => 0.0054675477729918
1021 => 0.0055573681721299
1022 => 0.0056099828553974
1023 => 0.0056413136952176
1024 => 0.005720763492047
1025 => 0.0053160584516905
1026 => 0.0050295881089805
1027 => 0.0049848516282845
1028 => 0.0050758250209551
1029 => 0.0050998139791032
1030 => 0.0050901440601533
1031 => 0.0047676956446892
1101 => 0.0049831540041093
1102 => 0.005214969082592
1103 => 0.0052238740438531
1104 => 0.0053399255191662
1105 => 0.0053777166366389
1106 => 0.0054711532854805
1107 => 0.0054653087976554
1108 => 0.0054880591347466
1109 => 0.0054828292262302
1110 => 0.0056559009428017
1111 => 0.0058468247475787
1112 => 0.0058402136633198
1113 => 0.0058127661074751
1114 => 0.0058535304084081
1115 => 0.0060505842355763
1116 => 0.0060324426768939
1117 => 0.0060500656558596
1118 => 0.0062824032235578
1119 => 0.0065844751111993
1120 => 0.0064441323918682
1121 => 0.006748635710287
1122 => 0.0069403044082044
1123 => 0.0072717756023391
1124 => 0.0072302737763034
1125 => 0.0073593130797321
1126 => 0.007155976846007
1127 => 0.0066890757523412
1128 => 0.006615186867043
1129 => 0.0067631142865746
1130 => 0.0071267794129465
1201 => 0.0067516611775709
1202 => 0.0068275471080323
1203 => 0.0068056919549543
1204 => 0.0068045273867252
1205 => 0.0068489742193889
1206 => 0.0067845017704193
1207 => 0.006521829414945
1208 => 0.006642210607521
1209 => 0.0065957256478877
1210 => 0.0066473041762841
1211 => 0.0069256522214363
1212 => 0.0068025879156859
1213 => 0.0066729496665102
1214 => 0.006835544800007
1215 => 0.0070425842786981
1216 => 0.0070296281202073
1217 => 0.0070044877574811
1218 => 0.0071462026658622
1219 => 0.0073802741759357
1220 => 0.007443542764533
1221 => 0.0074902463431662
1222 => 0.0074966859775963
1223 => 0.0075630182144368
1224 => 0.0072063330590696
1225 => 0.0077724015609618
1226 => 0.0078701459539118
1227 => 0.0078517740591272
1228 => 0.0079604128381783
1229 => 0.0079284485534816
1230 => 0.0078821373199988
1231 => 0.0080543528929258
]
'min_raw' => 0.0029689048962373
'max_raw' => 0.0080543528929258
'avg_raw' => 0.0055116288945815
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002968'
'max' => '$0.008054'
'avg' => '$0.005511'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.001023898570682
'max_diff' => 0.0037122632873601
'year' => 2032
]
7 => [
'items' => [
101 => 0.0078569216356451
102 => 0.0075766928218394
103 => 0.0074229537522881
104 => 0.0076254097608502
105 => 0.0077490425805381
106 => 0.0078307560098276
107 => 0.007855482444158
108 => 0.0072340215123284
109 => 0.0068990885378756
110 => 0.0071137767344855
111 => 0.0073757111513373
112 => 0.0072048780001586
113 => 0.0072115743362549
114 => 0.0069680111568364
115 => 0.0073972610882423
116 => 0.0073347229837966
117 => 0.0076591707802886
118 => 0.0075817387097996
119 => 0.0078463132928479
120 => 0.0077766419382714
121 => 0.0080658438358454
122 => 0.0081812143026164
123 => 0.0083749392723044
124 => 0.0085174441486093
125 => 0.0086011257376595
126 => 0.0085961018089347
127 => 0.0089276899547536
128 => 0.0087321640099716
129 => 0.0084865373413985
130 => 0.0084820947299062
131 => 0.008609308262117
201 => 0.0088759129263027
202 => 0.008945039636786
203 => 0.0089836720375068
204 => 0.0089245051709993
205 => 0.0087122757714092
206 => 0.0086206361926936
207 => 0.0086987157688134
208 => 0.0086032311566734
209 => 0.0087680643854775
210 => 0.0089944156151034
211 => 0.0089476749812754
212 => 0.0091039219124149
213 => 0.0092656210484877
214 => 0.0094968580754345
215 => 0.0095573119969607
216 => 0.0096572400303868
217 => 0.0097600988014312
218 => 0.009793134266569
219 => 0.00985620921982
220 => 0.0098558767836817
221 => 0.010045957400738
222 => 0.010255622207657
223 => 0.010334765818518
224 => 0.010516752187687
225 => 0.010205106908047
226 => 0.010441493432577
227 => 0.010654719994842
228 => 0.010400502497011
301 => 0.010750882092691
302 => 0.010764486538414
303 => 0.010969897516889
304 => 0.010761674138222
305 => 0.010638031760642
306 => 0.010994982671896
307 => 0.011167699974004
308 => 0.011115676116989
309 => 0.010719771996372
310 => 0.010489338817046
311 => 0.0098862507395104
312 => 0.010600634618818
313 => 0.010948590167565
314 => 0.01071887087556
315 => 0.010834727924474
316 => 0.011466806416574
317 => 0.011707460982313
318 => 0.011657406514942
319 => 0.011665864895961
320 => 0.011795717731445
321 => 0.012371556715243
322 => 0.012026500648308
323 => 0.012290283082476
324 => 0.01243019233442
325 => 0.012560147844853
326 => 0.01224101818409
327 => 0.011825835184384
328 => 0.01169432930018
329 => 0.010696029819243
330 => 0.010644063995865
331 => 0.010614894004478
401 => 0.010430981334957
402 => 0.010286476354633
403 => 0.010171560629154
404 => 0.0098699874487563
405 => 0.009971759544367
406 => 0.0094911148380271
407 => 0.0097986142881409
408 => 0.0090314937312501
409 => 0.0096703745261392
410 => 0.0093226607558263
411 => 0.0095561412008595
412 => 0.009555326609582
413 => 0.0091254150852333
414 => 0.0088774510900136
415 => 0.0090354633986707
416 => 0.0092048651365837
417 => 0.0092323499986243
418 => 0.0094519837736663
419 => 0.0095132788392683
420 => 0.0093275519289012
421 => 0.0090155968627969
422 => 0.0090880569097154
423 => 0.0088759826894756
424 => 0.0085043307758223
425 => 0.008771257668628
426 => 0.0088623982457788
427 => 0.0089026511168128
428 => 0.0085371741442455
429 => 0.0084223333445738
430 => 0.0083611930664362
501 => 0.0089684183751017
502 => 0.0090016835482441
503 => 0.0088314942192264
504 => 0.0096007661244006
505 => 0.0094266562000122
506 => 0.0096211796435212
507 => 0.0090814819199478
508 => 0.0091020990997877
509 => 0.0088465975484084
510 => 0.008989661344561
511 => 0.0088885484646017
512 => 0.0089781032036158
513 => 0.0090317819449328
514 => 0.0092872415710217
515 => 0.0096732914647187
516 => 0.0092490844217118
517 => 0.009064251338317
518 => 0.0091789207437144
519 => 0.0094843004812453
520 => 0.0099469664157058
521 => 0.0096730588704855
522 => 0.0097946143878025
523 => 0.0098211688607077
524 => 0.0096191995774708
525 => 0.0099544133112647
526 => 0.010134057074476
527 => 0.010318334403493
528 => 0.010478337244944
529 => 0.010244729985938
530 => 0.010494723239359
531 => 0.010293272806852
601 => 0.010112550943329
602 => 0.010112825023798
603 => 0.0099994555588849
604 => 0.0097797879351447
605 => 0.009739277855021
606 => 0.0099500164076836
607 => 0.010119008769904
608 => 0.010132927790275
609 => 0.010226490645141
610 => 0.010281860178877
611 => 0.010824556880719
612 => 0.011042833983622
613 => 0.011309739093278
614 => 0.011413713675436
615 => 0.011726639890784
616 => 0.011473926557266
617 => 0.011419250437918
618 => 0.010660193796871
619 => 0.01078448927932
620 => 0.010983498339449
621 => 0.010663475382973
622 => 0.010866456289727
623 => 0.010906529020443
624 => 0.01065260112537
625 => 0.010788234985706
626 => 0.010428031665292
627 => 0.0096811429127816
628 => 0.0099552448119557
629 => 0.01015707607145
630 => 0.009869037978537
701 => 0.010385335111469
702 => 0.010083724984946
703 => 0.0099881290546779
704 => 0.0096151752482909
705 => 0.0097911950885971
706 => 0.010029264442973
707 => 0.0098821652605016
708 => 0.010187418151182
709 => 0.010619737652358
710 => 0.010927834273968
711 => 0.010951486106924
712 => 0.0107534006201
713 => 0.0110708338769
714 => 0.011073146031626
715 => 0.010715080021202
716 => 0.010495766583537
717 => 0.01044593810906
718 => 0.010570419407751
719 => 0.010721562684878
720 => 0.010959873506901
721 => 0.011103879745576
722 => 0.011479371641035
723 => 0.01158096898175
724 => 0.011692593656807
725 => 0.011841758646457
726 => 0.012020869461651
727 => 0.011628985194791
728 => 0.011644555487277
729 => 0.011279638283985
730 => 0.010889671917846
731 => 0.011185607779752
801 => 0.011572504552495
802 => 0.011483750005345
803 => 0.011473763305699
804 => 0.011490558164423
805 => 0.011423640134325
806 => 0.011120972364286
807 => 0.010968974504972
808 => 0.011165090522276
809 => 0.011269317457353
810 => 0.011430964344113
811 => 0.011411037953368
812 => 0.011827422974055
813 => 0.011989217602265
814 => 0.011947823612786
815 => 0.011955441103052
816 => 0.012248362549107
817 => 0.01257415144101
818 => 0.012879295729907
819 => 0.013189701606826
820 => 0.012815495206853
821 => 0.012625496274789
822 => 0.012821526673974
823 => 0.012717510184839
824 => 0.013315219784705
825 => 0.013356603900568
826 => 0.013954270279227
827 => 0.014521526841364
828 => 0.014165243158143
829 => 0.014501202624051
830 => 0.014864570177607
831 => 0.015565565142678
901 => 0.015329494699742
902 => 0.015148668440149
903 => 0.01497778849858
904 => 0.015333362530559
905 => 0.015790802842267
906 => 0.0158893311041
907 => 0.016048984528962
908 => 0.015881128474211
909 => 0.016083292603421
910 => 0.01679702081495
911 => 0.016604165151941
912 => 0.016330279107375
913 => 0.016893698983191
914 => 0.017097598446009
915 => 0.018528671659047
916 => 0.020335460705193
917 => 0.019587438176072
918 => 0.01912311645371
919 => 0.019232243072324
920 => 0.019892021268307
921 => 0.020103921084544
922 => 0.019527904337766
923 => 0.019731363190657
924 => 0.020852441473718
925 => 0.021453864004083
926 => 0.020637051426025
927 => 0.01838349791842
928 => 0.016305618665714
929 => 0.016856765811654
930 => 0.016794282829391
1001 => 0.017998741587177
1002 => 0.01659956560816
1003 => 0.01662312414326
1004 => 0.017852489832613
1005 => 0.017524516143357
1006 => 0.016993240770459
1007 => 0.01630949756388
1008 => 0.015045535007927
1009 => 0.013926008123917
1010 => 0.016121658155105
1011 => 0.01602697773323
1012 => 0.015889866451502
1013 => 0.016194992771997
1014 => 0.017676599572705
1015 => 0.017642443740455
1016 => 0.017425161762143
1017 => 0.017589968227657
1018 => 0.016964349400227
1019 => 0.017125585617132
1020 => 0.016305289519024
1021 => 0.01667609761396
1022 => 0.016992100892117
1023 => 0.017055543228715
1024 => 0.017198482052518
1025 => 0.015977085453213
1026 => 0.016525456667981
1027 => 0.016847573381223
1028 => 0.01539223835209
1029 => 0.016818806086955
1030 => 0.015955823655782
1031 => 0.01566291445708
1101 => 0.016057278105279
1102 => 0.015903594208045
1103 => 0.015771465817824
1104 => 0.015697735905827
1105 => 0.015987313044736
1106 => 0.015973803925087
1107 => 0.01549999952133
1108 => 0.014881940991366
1109 => 0.015089381721102
1110 => 0.015014016559222
1111 => 0.014740883490269
1112 => 0.014924942200531
1113 => 0.01411444079052
1114 => 0.012720015240795
1115 => 0.013641215471353
1116 => 0.01360575026455
1117 => 0.01358786709906
1118 => 0.01428012361222
1119 => 0.014213579121555
1120 => 0.014092800219392
1121 => 0.014738665291015
1122 => 0.014502915851761
1123 => 0.015229440073987
1124 => 0.015707975915385
1125 => 0.015586603746993
1126 => 0.016036669018793
1127 => 0.015094160736543
1128 => 0.015407224181038
1129 => 0.015471746123061
1130 => 0.014730695416286
1201 => 0.014224466623198
1202 => 0.014190706934129
1203 => 0.013312975969539
1204 => 0.013781852766026
1205 => 0.014194444943495
1206 => 0.013996845308934
1207 => 0.013934291167753
1208 => 0.014253866708708
1209 => 0.01427870046522
1210 => 0.013712488184991
1211 => 0.013830221647662
1212 => 0.014321189758557
1213 => 0.013817850510962
1214 => 0.012839944572882
1215 => 0.012597410379631
1216 => 0.012565051847459
1217 => 0.011907279879733
1218 => 0.012613617674146
1219 => 0.012305282298209
1220 => 0.01327931005637
1221 => 0.012722950624724
1222 => 0.012698967081607
1223 => 0.012662712438566
1224 => 0.012096540933726
1225 => 0.012220496511209
1226 => 0.012632543729733
1227 => 0.012779566819346
1228 => 0.012764231106575
1229 => 0.01263052447357
1230 => 0.012691734685471
1231 => 0.012494555265888
]
'min_raw' => 0.0068990885378756
'max_raw' => 0.021453864004083
'avg_raw' => 0.014176476270979
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006899'
'max' => '$0.021453'
'avg' => '$0.014176'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0039301836416382
'max_diff' => 0.013399511111157
'year' => 2033
]
8 => [
'items' => [
101 => 0.012424927108898
102 => 0.012205161492705
103 => 0.011882166748703
104 => 0.011927081148898
105 => 0.011287144044857
106 => 0.010938472346543
107 => 0.010841964615869
108 => 0.010712910445076
109 => 0.01085654162786
110 => 0.011285331183445
111 => 0.010768120006631
112 => 0.0098813977221272
113 => 0.0099346912423271
114 => 0.010054425959228
115 => 0.0098313011064075
116 => 0.0096201321586622
117 => 0.0098037264260485
118 => 0.0094280105046511
119 => 0.010099829433325
120 => 0.010081658614055
121 => 0.010332071165661
122 => 0.010488659273163
123 => 0.010127774381373
124 => 0.010037012807024
125 => 0.010088714724657
126 => 0.0092341971936345
127 => 0.010262238852794
128 => 0.010271129399752
129 => 0.010195003139084
130 => 0.010742403585361
131 => 0.011897589265486
201 => 0.011462961945386
202 => 0.011294661110364
203 => 0.010974721099958
204 => 0.011401022167665
205 => 0.011368288896998
206 => 0.011220256633316
207 => 0.011130726258353
208 => 0.011295688719374
209 => 0.011110285583873
210 => 0.0110769820862
211 => 0.010875199124862
212 => 0.010803171788204
213 => 0.010749845615634
214 => 0.010691138739355
215 => 0.010820631479584
216 => 0.010527183894037
217 => 0.010173314872889
218 => 0.010143894492696
219 => 0.010225126749074
220 => 0.010189187522657
221 => 0.010143722429507
222 => 0.010056917185002
223 => 0.010031163923258
224 => 0.01011484953022
225 => 0.010020373359134
226 => 0.010159778095954
227 => 0.010121867721155
228 => 0.0099101034492457
301 => 0.0096461667612715
302 => 0.0096438171711226
303 => 0.0095869524446415
304 => 0.009514526665799
305 => 0.0094943794710023
306 => 0.0097882646289353
307 => 0.010396598110614
308 => 0.010277167691974
309 => 0.010363468409163
310 => 0.010787982522774
311 => 0.010922922793906
312 => 0.010827145385692
313 => 0.010696039362035
314 => 0.010701807361702
315 => 0.011149836333029
316 => 0.011177779350407
317 => 0.011248382340562
318 => 0.011339127135315
319 => 0.01084259961663
320 => 0.010678420960223
321 => 0.010600624004533
322 => 0.010361039492218
323 => 0.010619410848326
324 => 0.010468868923686
325 => 0.010489182172565
326 => 0.010475953142584
327 => 0.010483177087497
328 => 0.010099641646243
329 => 0.010239381803006
330 => 0.010007036689338
331 => 0.0096959526640983
401 => 0.0096949098013655
402 => 0.0097710471758304
403 => 0.009725757686243
404 => 0.0096038848342623
405 => 0.0096211962976625
406 => 0.0094695296622988
407 => 0.0096396113732087
408 => 0.009644488708096
409 => 0.0095789979849823
410 => 0.0098410323273923
411 => 0.0099483880112773
412 => 0.0099052806143766
413 => 0.0099453634813953
414 => 0.010282130565064
415 => 0.01033703829388
416 => 0.01036142468002
417 => 0.01032875015317
418 => 0.0099515189654727
419 => 0.0099682507727579
420 => 0.0098454838726273
421 => 0.0097417587788741
422 => 0.0097459072386578
423 => 0.0097992354201653
424 => 0.010032122716465
425 => 0.010522220302071
426 => 0.010540819147189
427 => 0.010563361490037
428 => 0.010471670452798
429 => 0.010444015558602
430 => 0.010480499502381
501 => 0.010664554387428
502 => 0.011137993522183
503 => 0.010970648512024
504 => 0.010834594413884
505 => 0.010953950537874
506 => 0.01093557659813
507 => 0.010780482055811
508 => 0.010776129068567
509 => 0.010478453055132
510 => 0.01036840901072
511 => 0.010276447970556
512 => 0.0101760289154
513 => 0.010116497133426
514 => 0.010207965007249
515 => 0.010228884792208
516 => 0.01002888868751
517 => 0.010001629957451
518 => 0.010164951093763
519 => 0.010093079550898
520 => 0.010167001215063
521 => 0.010184151675238
522 => 0.010181390056141
523 => 0.010106347910996
524 => 0.010154177536522
525 => 0.010041046213454
526 => 0.0099180328913926
527 => 0.0098395580559182
528 => 0.0097710783537903
529 => 0.0098090748725945
530 => 0.0096736242209478
531 => 0.009630290831403
601 => 0.010137973935595
602 => 0.010513004903174
603 => 0.010507551804377
604 => 0.010474357467872
605 => 0.010425037417052
606 => 0.010660946318515
607 => 0.010578760374392
608 => 0.010638557515607
609 => 0.010653778397724
610 => 0.010699847423656
611 => 0.010716313140661
612 => 0.010666542307698
613 => 0.01049950531328
614 => 0.010083265004593
615 => 0.0098895040172794
616 => 0.0098255596641215
617 => 0.0098278839199111
618 => 0.0097637705692972
619 => 0.0097826548244118
620 => 0.0097572033960295
621 => 0.0097090045480354
622 => 0.0098060987295517
623 => 0.0098172879294765
624 => 0.0097946249873216
625 => 0.0097999629306095
626 => 0.0096123234490356
627 => 0.0096265892712881
628 => 0.009547155360173
629 => 0.009532262459429
630 => 0.0093314604492317
701 => 0.0089757105814506
702 => 0.0091728305416766
703 => 0.0089347373489844
704 => 0.0088445678492113
705 => 0.0092714162369029
706 => 0.00922857249771
707 => 0.0091552426399375
708 => 0.0090467724970106
709 => 0.0090065398658693
710 => 0.0087620991351579
711 => 0.0087476562727469
712 => 0.0088688076993424
713 => 0.0088129004845346
714 => 0.0087343855812265
715 => 0.0084500125603727
716 => 0.0081302831322615
717 => 0.0081399337539487
718 => 0.0082416337362533
719 => 0.0085373401509154
720 => 0.008421802538934
721 => 0.0083379786758002
722 => 0.0083222809859713
723 => 0.0085187704395195
724 => 0.0087968441821035
725 => 0.0089273101605746
726 => 0.0087980223382204
727 => 0.0086495034492507
728 => 0.008658543105852
729 => 0.0087186798913831
730 => 0.0087249994172541
731 => 0.0086283288885232
801 => 0.0086555410761101
802 => 0.008614203274831
803 => 0.0083605132646852
804 => 0.0083559248168614
805 => 0.0082936651970675
806 => 0.0082917800005237
807 => 0.0081858608558644
808 => 0.0081710420353421
809 => 0.0079607331447886
810 => 0.0080991590934249
811 => 0.0080063102347681
812 => 0.0078663651039408
813 => 0.0078422385106376
814 => 0.0078415132361092
815 => 0.0079852055943103
816 => 0.0080974799645575
817 => 0.0080079253804165
818 => 0.0079875355375503
819 => 0.0082052457151827
820 => 0.0081775401106067
821 => 0.0081535472357258
822 => 0.0087719457283946
823 => 0.0082824350672111
824 => 0.0080689804786434
825 => 0.0078047898913638
826 => 0.0078908116787466
827 => 0.0079089377332712
828 => 0.0072736069947965
829 => 0.0070158533933228
830 => 0.0069274020705365
831 => 0.0068764970837549
901 => 0.0068996951254559
902 => 0.0066676866526475
903 => 0.0068236001834407
904 => 0.0066227004571766
905 => 0.0065890189642842
906 => 0.0069482525615448
907 => 0.0069982378179913
908 => 0.0067849851847883
909 => 0.0069219278977699
910 => 0.0068722705663967
911 => 0.0066261443063662
912 => 0.0066167440936153
913 => 0.0064932465880883
914 => 0.006299996905768
915 => 0.0062116766153663
916 => 0.0061656786412932
917 => 0.0061846583018784
918 => 0.0061750616046993
919 => 0.0061124366641498
920 => 0.0061786511929855
921 => 0.0060095004335425
922 => 0.005942143238192
923 => 0.0059117195557273
924 => 0.0057615885207671
925 => 0.006000513760963
926 => 0.0060475850431824
927 => 0.0060947490703689
928 => 0.0065052797267782
929 => 0.0064847707753316
930 => 0.0066701617081446
1001 => 0.0066629577574075
1002 => 0.0066100812602353
1003 => 0.0063870040164271
1004 => 0.0064759186298395
1005 => 0.006202253270155
1006 => 0.0064073019650663
1007 => 0.006313726303747
1008 => 0.0063756639398456
1009 => 0.0062642944854488
1010 => 0.0063259309398441
1011 => 0.0060587473904261
1012 => 0.0058092551513536
1013 => 0.0059096581114889
1014 => 0.0060188076116271
1015 => 0.0062554715387023
1016 => 0.0061145164561713
1017 => 0.0061652092339512
1018 => 0.0059953969142571
1019 => 0.0056450255942369
1020 => 0.005647008657858
1021 => 0.005593111663527
1022 => 0.0055465367913351
1023 => 0.0061307068430058
1024 => 0.0060580560627186
1025 => 0.0059422965526301
1026 => 0.0060972452569837
1027 => 0.0061382161537814
1028 => 0.0061393825376149
1029 => 0.0062524291125064
1030 => 0.0063127620897907
1031 => 0.0063233960385351
1101 => 0.0065012772666598
1102 => 0.006560900708017
1103 => 0.0068064812247422
1104 => 0.0063076432581912
1105 => 0.0062973700185395
1106 => 0.0060994257030141
1107 => 0.005973886288732
1108 => 0.0061080214941136
1109 => 0.0062268469748002
1110 => 0.0061031179419237
1111 => 0.006119274341555
1112 => 0.0059531782239517
1113 => 0.0060125497704462
1114 => 0.0060636885444982
1115 => 0.0060354527192648
1116 => 0.0059931823222612
1117 => 0.0062171046404518
1118 => 0.0062044700657009
1119 => 0.0064129916763518
1120 => 0.0065755491833777
1121 => 0.0068668812965983
1122 => 0.0065628610489661
1123 => 0.0065517813427713
1124 => 0.0066600872480658
1125 => 0.0065608841269472
1126 => 0.0066235770751188
1127 => 0.0068567804934186
1128 => 0.0068617077141702
1129 => 0.0067791704182165
1130 => 0.0067741480162567
1201 => 0.0067900002068037
1202 => 0.0068828469819715
1203 => 0.0068504034658347
1204 => 0.0068879479240776
1205 => 0.0069348978440115
1206 => 0.0071291026192117
1207 => 0.0071759247330353
1208 => 0.0070621712709266
1209 => 0.0070724419349115
1210 => 0.0070298950174805
1211 => 0.0069887952283535
1212 => 0.0070811815521689
1213 => 0.0072500193747993
1214 => 0.0072489690434674
1215 => 0.0072881361365794
1216 => 0.0073125369111104
1217 => 0.0072077909243646
1218 => 0.0071396051386097
1219 => 0.0071657519076424
1220 => 0.0072075611607282
1221 => 0.0071521937303577
1222 => 0.0068104403014222
1223 => 0.0069141064604677
1224 => 0.0068968513425863
1225 => 0.0068722779564292
1226 => 0.0069765150809761
1227 => 0.0069664611560254
1228 => 0.0066653070704192
1229 => 0.0066845859778877
1230 => 0.0066664794846361
1231 => 0.006724985268572
]
'min_raw' => 0.0055465367913351
'max_raw' => 0.012424927108898
'avg_raw' => 0.0089857319501165
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005546'
'max' => '$0.012424'
'avg' => '$0.008985'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0013525517465405
'max_diff' => -0.0090289368951853
'year' => 2034
]
9 => [
'items' => [
101 => 0.0065577246226151
102 => 0.0066091728707938
103 => 0.0066414407297541
104 => 0.0066604467465751
105 => 0.0067291095118802
106 => 0.0067210527288743
107 => 0.0067286086909364
108 => 0.006830417445586
109 => 0.007345331190058
110 => 0.0073733568090765
111 => 0.0072353484111409
112 => 0.0072904800440209
113 => 0.0071846393648541
114 => 0.0072556909218497
115 => 0.0073043025926322
116 => 0.0070846357998527
117 => 0.00707162855801
118 => 0.0069653510367107
119 => 0.0070224585567904
120 => 0.0069315963861675
121 => 0.0069538907846146
122 => 0.0068915537029659
123 => 0.0070037480387444
124 => 0.007129198739382
125 => 0.0071608925405614
126 => 0.0070775197946978
127 => 0.0070171524321609
128 => 0.0069111672297915
129 => 0.0070874229833661
130 => 0.007138965537008
131 => 0.0070871522522741
201 => 0.0070751459820586
202 => 0.0070523941216952
203 => 0.0070799728967897
204 => 0.0071386848251916
205 => 0.0071109973639963
206 => 0.0071292854199061
207 => 0.0070595902093395
208 => 0.0072078255996447
209 => 0.0074432590742386
210 => 0.0074440160313567
211 => 0.0074163284209157
212 => 0.0074049992472612
213 => 0.0074334084157983
214 => 0.0074488192243246
215 => 0.0075406892660231
216 => 0.0076392694810295
217 => 0.0080993003305469
218 => 0.0079701255088456
219 => 0.0083782922458951
220 => 0.0087010991410838
221 => 0.0087978948143162
222 => 0.0087088473495307
223 => 0.0084042207827494
224 => 0.0083892743500854
225 => 0.0088445150508757
226 => 0.0087158887015574
227 => 0.0087005890065917
228 => 0.0085378261013986
301 => 0.0086340391369457
302 => 0.0086129959347114
303 => 0.008579778210516
304 => 0.0087633459800818
305 => 0.009106968457501
306 => 0.009053411671924
307 => 0.0090134340159186
308 => 0.0088382635646235
309 => 0.0089437553020399
310 => 0.0089061917149071
311 => 0.0090675887236711
312 => 0.0089719807110608
313 => 0.0087149142304538
314 => 0.0087558529147927
315 => 0.0087496651150121
316 => 0.008877009596025
317 => 0.0088387839437092
318 => 0.0087422009428976
319 => 0.0091057939932297
320 => 0.0090821842829519
321 => 0.0091156574541946
322 => 0.0091303933793678
323 => 0.0093517060618767
324 => 0.0094423707866847
325 => 0.0094629532665255
326 => 0.0095490777428316
327 => 0.0094608104110974
328 => 0.0098139426715751
329 => 0.010048755018954
330 => 0.010321501643768
331 => 0.010720057770002
401 => 0.010869918560316
402 => 0.010842847549898
403 => 0.01114502825615
404 => 0.011688040268187
405 => 0.010952605802838
406 => 0.011727020080625
407 => 0.01148184946132
408 => 0.01090055433338
409 => 0.01086312578016
410 => 0.011256785589776
411 => 0.012129885159152
412 => 0.011911183619637
413 => 0.012130242876523
414 => 0.011874698617348
415 => 0.011862008690984
416 => 0.01211783166224
417 => 0.012715575978766
418 => 0.012431610060095
419 => 0.012024475284381
420 => 0.01232509726705
421 => 0.012064670684411
422 => 0.011477856704915
423 => 0.011911016382691
424 => 0.01162137484184
425 => 0.011705907641651
426 => 0.012314691079594
427 => 0.012241440645699
428 => 0.012336233489966
429 => 0.012168926600996
430 => 0.012012635584823
501 => 0.011720906796812
502 => 0.011634540284738
503 => 0.011658408881533
504 => 0.011634528456646
505 => 0.011471308880881
506 => 0.011436061629034
507 => 0.011377314665073
508 => 0.01139552280569
509 => 0.011285061326411
510 => 0.011493524960315
511 => 0.011532217647743
512 => 0.011683920096074
513 => 0.011699670347513
514 => 0.012122159506766
515 => 0.011889459577492
516 => 0.012045574780394
517 => 0.012031610367233
518 => 0.010913152761444
519 => 0.011067266351287
520 => 0.011307018733573
521 => 0.01119901061033
522 => 0.011046312394072
523 => 0.010923000397284
524 => 0.01073617011285
525 => 0.010999130150432
526 => 0.011344894637171
527 => 0.011708439505495
528 => 0.012145214844384
529 => 0.012047731673369
530 => 0.01170027429435
531 => 0.011715860978555
601 => 0.011812211727176
602 => 0.011687428753323
603 => 0.01165062781828
604 => 0.011807155843818
605 => 0.011808233766304
606 => 0.011664655874359
607 => 0.01150509532194
608 => 0.011504426757399
609 => 0.011476034498268
610 => 0.011879749537173
611 => 0.012101751988377
612 => 0.012127204211633
613 => 0.012100038850959
614 => 0.012110493720128
615 => 0.011981315385263
616 => 0.012276578752119
617 => 0.012547541616068
618 => 0.012474917780252
619 => 0.012366044326278
620 => 0.012279321376132
621 => 0.012454488609293
622 => 0.012446688688139
623 => 0.012545174991834
624 => 0.012540707084214
625 => 0.012507589844538
626 => 0.012474918962973
627 => 0.01260445531543
628 => 0.012567150926213
629 => 0.012529788592975
630 => 0.01245485271378
701 => 0.012465037744316
702 => 0.012356183088879
703 => 0.012305821944423
704 => 0.011548511165097
705 => 0.011346132979018
706 => 0.011409805276146
707 => 0.011430767849612
708 => 0.011342692603675
709 => 0.011468969881674
710 => 0.011449289701658
711 => 0.011525853769578
712 => 0.011478019863967
713 => 0.011479982984138
714 => 0.011620652301276
715 => 0.011661489202491
716 => 0.011640719224938
717 => 0.011655265805263
718 => 0.01199048560911
719 => 0.011942828072728
720 => 0.011917510956376
721 => 0.011924523970626
722 => 0.012010179817702
723 => 0.012034158778248
724 => 0.011932558237445
725 => 0.011980473639833
726 => 0.012184491341834
727 => 0.012255885991132
728 => 0.012483743440316
729 => 0.012386945546059
730 => 0.012564622270282
731 => 0.013110739946084
801 => 0.013547016533984
802 => 0.013145798553859
803 => 0.013946964948048
804 => 0.014570787906417
805 => 0.014546844542243
806 => 0.014438066580167
807 => 0.013727860727254
808 => 0.013074318712832
809 => 0.013621034358756
810 => 0.013622428049371
811 => 0.013575464690528
812 => 0.013283779302166
813 => 0.013565314671277
814 => 0.013587661926491
815 => 0.013575153406186
816 => 0.013351518902822
817 => 0.013010070350749
818 => 0.013076788580512
819 => 0.013186074401878
820 => 0.012979173542621
821 => 0.012913056181523
822 => 0.013035980935147
823 => 0.01343207010371
824 => 0.013357191740782
825 => 0.013355236364118
826 => 0.013675597754095
827 => 0.013446288137187
828 => 0.01307763011105
829 => 0.012984539097449
830 => 0.012654128712785
831 => 0.012882344342354
901 => 0.012890557416578
902 => 0.01276556604857
903 => 0.013087772471697
904 => 0.013084803282785
905 => 0.013390690327448
906 => 0.013975431470915
907 => 0.013802494741428
908 => 0.013601388140496
909 => 0.013623254004099
910 => 0.013863068558267
911 => 0.013718071204383
912 => 0.013770213263797
913 => 0.013862989635015
914 => 0.013918963923279
915 => 0.013615200165413
916 => 0.013544378302754
917 => 0.013399501626851
918 => 0.013361706006359
919 => 0.013479705035931
920 => 0.013448616460606
921 => 0.012889867139492
922 => 0.012831474726583
923 => 0.012833265538522
924 => 0.012686435039856
925 => 0.012462483286033
926 => 0.013051015123616
927 => 0.01300374778056
928 => 0.012951568292028
929 => 0.012957959981641
930 => 0.013213421705141
1001 => 0.013065241004385
1002 => 0.013459203683684
1003 => 0.013378216800423
1004 => 0.013295152909197
1005 => 0.013283670949241
1006 => 0.013251698437797
1007 => 0.013142052799609
1008 => 0.013009649102815
1009 => 0.01292222471358
1010 => 0.011920069232064
1011 => 0.012106063460163
1012 => 0.012320032865683
1013 => 0.012393894247041
1014 => 0.012267549243177
1015 => 0.013147041670443
1016 => 0.013307733411905
1017 => 0.012820987645355
1018 => 0.012729937386132
1019 => 0.01315301091028
1020 => 0.012897845856584
1021 => 0.013012746664639
1022 => 0.012764393965006
1023 => 0.01326902747699
1024 => 0.013265183015121
1025 => 0.013068869181294
1026 => 0.013234792289346
1027 => 0.013205959066155
1028 => 0.012984321231264
1029 => 0.013276053791684
1030 => 0.013276198487395
1031 => 0.013087250690567
1101 => 0.012866601029864
1102 => 0.012827154082043
1103 => 0.012797436105811
1104 => 0.013005437864231
1105 => 0.013191931590426
1106 => 0.013538950179159
1107 => 0.013626198897325
1108 => 0.013966736452802
1109 => 0.013763962918988
1110 => 0.013853849800171
1111 => 0.013951434724971
1112 => 0.013998220526487
1113 => 0.013921985573581
1114 => 0.014450980568087
1115 => 0.014495643953611
1116 => 0.014510619200441
1117 => 0.01433224506465
1118 => 0.014490683046219
1119 => 0.014416555161557
1120 => 0.014609415324127
1121 => 0.01463965826018
1122 => 0.014614043569267
1123 => 0.014623643154522
1124 => 0.014172239247823
1125 => 0.014148831573915
1126 => 0.013829666279252
1127 => 0.013959728495978
1128 => 0.013716583415852
1129 => 0.013793687225432
1130 => 0.013827673850023
1201 => 0.013809921166061
1202 => 0.013967082018568
1203 => 0.013833463188096
1204 => 0.01348082112551
1205 => 0.013128082985831
1206 => 0.013123654645821
1207 => 0.013030784919989
1208 => 0.012963657118151
1209 => 0.012976588314271
1210 => 0.013022159536043
1211 => 0.012961008435897
1212 => 0.012974058123553
1213 => 0.01319076988825
1214 => 0.013234229887142
1215 => 0.013086535829988
1216 => 0.012493522878364
1217 => 0.012347996012575
1218 => 0.012452597837781
1219 => 0.012402604902553
1220 => 0.010009870139985
1221 => 0.010572007680514
1222 => 0.010238004642318
1223 => 0.01039192860906
1224 => 0.01005099799673
1225 => 0.010213707954638
1226 => 0.010183661366629
1227 => 0.01108756189694
1228 => 0.011073448733434
1229 => 0.011080203957952
1230 => 0.010757759491042
1231 => 0.011271422282152
]
'min_raw' => 0.0065577246226151
'max_raw' => 0.01463965826018
'avg_raw' => 0.010598691441397
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006557'
'max' => '$0.014639'
'avg' => '$0.010598'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00101118783128
'max_diff' => 0.0022147311512819
'year' => 2035
]
10 => [
'items' => [
101 => 0.011524471043769
102 => 0.011477638452668
103 => 0.011489425206879
104 => 0.011286889718142
105 => 0.011082164944204
106 => 0.01085509366299
107 => 0.011276964036627
108 => 0.011230059252646
109 => 0.011337641951289
110 => 0.01161125504451
111 => 0.011651545611841
112 => 0.011705696542922
113 => 0.011686287288855
114 => 0.012148694464619
115 => 0.012092693904573
116 => 0.012227639141823
117 => 0.011950046550481
118 => 0.011635924184046
119 => 0.011695628576472
120 => 0.011689878563369
121 => 0.01161667429701
122 => 0.011550588758526
123 => 0.011440574956434
124 => 0.011788674905231
125 => 0.011774542683015
126 => 0.012003326933782
127 => 0.011962887095167
128 => 0.011692819955592
129 => 0.011702465456316
130 => 0.011767336084154
131 => 0.011991854067781
201 => 0.012058506291671
202 => 0.012027630325933
203 => 0.012100711446639
204 => 0.012158471784688
205 => 0.012107965255805
206 => 0.012823031195956
207 => 0.012526085963382
208 => 0.012670815003607
209 => 0.012705332026907
210 => 0.012616917397538
211 => 0.012636091364757
212 => 0.012665134700502
213 => 0.012841480147875
214 => 0.01330426162775
215 => 0.013509224394926
216 => 0.014125864992661
217 => 0.013492205090332
218 => 0.013454606334073
219 => 0.013565681926487
220 => 0.013927715235393
221 => 0.014221109228202
222 => 0.014318444941923
223 => 0.014331309463328
224 => 0.014513917733024
225 => 0.01461858538777
226 => 0.014491744286008
227 => 0.014384259733082
228 => 0.013999263405974
229 => 0.014043827779147
301 => 0.014350832117946
302 => 0.014784493828965
303 => 0.015156620691831
304 => 0.015026314834386
305 => 0.016020456545092
306 => 0.016119021635004
307 => 0.016105403126569
308 => 0.01632994906984
309 => 0.015884271100433
310 => 0.015693735133907
311 => 0.014407499113426
312 => 0.014768878970296
313 => 0.015294165815351
314 => 0.015224642131683
315 => 0.014843164783847
316 => 0.015156331307055
317 => 0.015052788660859
318 => 0.014971120279817
319 => 0.015345258965567
320 => 0.014933878111815
321 => 0.015290061976645
322 => 0.01483325248575
323 => 0.015026910060567
324 => 0.014916980654938
325 => 0.014988118452821
326 => 0.01457224833998
327 => 0.014796641758193
328 => 0.014562912836046
329 => 0.014562802018104
330 => 0.014557642439193
331 => 0.014832623479587
401 => 0.014841590601442
402 => 0.014638379197118
403 => 0.014609093258996
404 => 0.014717378721614
405 => 0.014590604804896
406 => 0.014649921522623
407 => 0.014592401447849
408 => 0.014579452467459
409 => 0.014476272788627
410 => 0.014431820146001
411 => 0.014449251172578
412 => 0.014389750092561
413 => 0.014353898539602
414 => 0.014550510662939
415 => 0.014445468736751
416 => 0.014534411481238
417 => 0.014433049998426
418 => 0.014081686937903
419 => 0.0138796143262
420 => 0.013215922076246
421 => 0.013404144375025
422 => 0.013528935953846
423 => 0.01348769233779
424 => 0.013576299584239
425 => 0.013581739349533
426 => 0.013552932230468
427 => 0.013519577277012
428 => 0.013503341930314
429 => 0.01362434690323
430 => 0.013694594362847
501 => 0.013541460458277
502 => 0.013505583327007
503 => 0.013660410159282
504 => 0.013754854437529
505 => 0.014452177924451
506 => 0.014400517948215
507 => 0.01453017435081
508 => 0.014515577029617
509 => 0.014651477595421
510 => 0.014873617584647
511 => 0.014421944875234
512 => 0.01450033963992
513 => 0.014481119054019
514 => 0.014690964370986
515 => 0.01469161948516
516 => 0.014565806735087
517 => 0.01463401186798
518 => 0.014595941633909
519 => 0.014664739692376
520 => 0.014399827997736
521 => 0.014722461846358
522 => 0.01490537444846
523 => 0.014907914190118
524 => 0.01499461331183
525 => 0.015082704640764
526 => 0.015251788275515
527 => 0.015077988989961
528 => 0.014765340994268
529 => 0.01478791316971
530 => 0.014604607764229
531 => 0.014607689161212
601 => 0.014591240422624
602 => 0.014640604325331
603 => 0.014410660598408
604 => 0.014464627931512
605 => 0.014389073349134
606 => 0.014500175399014
607 => 0.01438064795917
608 => 0.01448110978527
609 => 0.014524465779053
610 => 0.014684450329499
611 => 0.014357018110989
612 => 0.013689361652236
613 => 0.013829711134418
614 => 0.013622123226057
615 => 0.013641336277318
616 => 0.013680149698602
617 => 0.013554342701262
618 => 0.01357834271172
619 => 0.013577485262461
620 => 0.013570096227978
621 => 0.013537368969073
622 => 0.01348990796877
623 => 0.013678977986252
624 => 0.013711104666493
625 => 0.013782518297015
626 => 0.013994996821121
627 => 0.013973765205975
628 => 0.01400839485117
629 => 0.013932798530145
630 => 0.013644842973835
701 => 0.013660480345939
702 => 0.013465482065235
703 => 0.013777531752562
704 => 0.013703634267748
705 => 0.013655992078557
706 => 0.013642992465835
707 => 0.013855997683104
708 => 0.013919732182559
709 => 0.013880017119562
710 => 0.013798560366682
711 => 0.013954981412739
712 => 0.01399683308579
713 => 0.014006202131956
714 => 0.01428335023481
715 => 0.014021691632174
716 => 0.014084675458491
717 => 0.014576057291892
718 => 0.014130441775055
719 => 0.014366494252736
720 => 0.014354940712311
721 => 0.014475697172312
722 => 0.014345035157974
723 => 0.014346654870239
724 => 0.014453878425968
725 => 0.014303302279816
726 => 0.014266017508472
727 => 0.014214508863898
728 => 0.014326976104919
729 => 0.014394395129455
730 => 0.014937742953397
731 => 0.015288770427335
801 => 0.015273531398923
802 => 0.015412787592349
803 => 0.01535005140177
804 => 0.015147459693419
805 => 0.015493259036148
806 => 0.015383833655249
807 => 0.015392854550699
808 => 0.015392518792519
809 => 0.015465277104684
810 => 0.015413721172314
811 => 0.015312099137505
812 => 0.015379560586713
813 => 0.015579896972952
814 => 0.016201747262908
815 => 0.016549742923588
816 => 0.016180797487179
817 => 0.016435291108838
818 => 0.016282685621192
819 => 0.016254952664466
820 => 0.016414793465799
821 => 0.016574914047295
822 => 0.016564715058474
823 => 0.016448475738591
824 => 0.016382815096252
825 => 0.016880019477968
826 => 0.017246351196761
827 => 0.017221369829458
828 => 0.017331629460356
829 => 0.017655355146875
830 => 0.017684952566588
831 => 0.017681223971993
901 => 0.017607863679063
902 => 0.017926613658533
903 => 0.018192520499279
904 => 0.017590882890832
905 => 0.017819978616114
906 => 0.017922827068197
907 => 0.018073839109614
908 => 0.018328621736043
909 => 0.018605383246098
910 => 0.018644520358155
911 => 0.018616750704267
912 => 0.018434219048637
913 => 0.018737054795391
914 => 0.018914448873468
915 => 0.019020082987371
916 => 0.019287953524389
917 => 0.017923462225223
918 => 0.016957607464056
919 => 0.016806775295988
920 => 0.017113498440936
921 => 0.017194378888188
922 => 0.017161776081316
923 => 0.01607461873595
924 => 0.016801051637557
925 => 0.017582632359473
926 => 0.01761265605809
927 => 0.018003931709563
928 => 0.018131347100614
929 => 0.018446375285722
930 => 0.01842667018697
1001 => 0.018503374536851
1002 => 0.018485741535148
1003 => 0.01906926491105
1004 => 0.01971297784873
1005 => 0.019690688116579
1006 => 0.019598146765722
1007 => 0.01973558645239
1008 => 0.020399967188547
1009 => 0.020338801656846
1010 => 0.020398218760826
1011 => 0.021181561091611
1012 => 0.02220001755078
1013 => 0.02172684227414
1014 => 0.022753496471932
1015 => 0.023399720868841
1016 => 0.024517299142446
1017 => 0.024377372838402
1018 => 0.024812437859148
1019 => 0.024126875550661
1020 => 0.022552685915374
1021 => 0.022303564379834
1022 => 0.022802312002747
1023 => 0.024028434366598
1024 => 0.02276369704611
1025 => 0.023019551758848
1026 => 0.022945865584367
1027 => 0.022941939161275
1028 => 0.023091794760779
1029 => 0.022874421397756
1030 => 0.021988803212076
1031 => 0.022394676807592
1101 => 0.022237949520713
1102 => 0.022411850130299
1103 => 0.023350319998169
1104 => 0.022935400099256
1105 => 0.022498315691107
1106 => 0.023046516535721
1107 => 0.023744564593163
1108 => 0.023700882000241
1109 => 0.023616119512066
1110 => 0.024093921219892
1111 => 0.024883109658455
1112 => 0.025096424122183
1113 => 0.025253888498285
1114 => 0.025275600175367
1115 => 0.025499243943043
1116 => 0.02429665503876
1117 => 0.026205194514531
1118 => 0.026534746559657
1119 => 0.026472804433706
1120 => 0.026839087662194
1121 => 0.026731317844664
1122 => 0.02657517628763
1123 => 0.027155813115461
1124 => 0.026490159847329
1125 => 0.025545348836632
1126 => 0.02502700682992
1127 => 0.025709601397815
1128 => 0.02612643808116
1129 => 0.026401940613059
1130 => 0.026485307512749
1201 => 0.024390008592068
1202 => 0.023260758684427
1203 => 0.023984594928349
1204 => 0.024867725102442
1205 => 0.024291749206053
1206 => 0.024314326370725
1207 => 0.023493136106277
1208 => 0.024940382219285
1209 => 0.024729530633876
1210 => 0.02582342903197
1211 => 0.025562361400182
1212 => 0.026454393078937
1213 => 0.026219491242684
1214 => 0.027194555631786
1215 => 0.027583535215413
1216 => 0.028236692476162
1217 => 0.028717157615997
1218 => 0.028999295935941
1219 => 0.028982357409486
1220 => 0.030100329993859
1221 => 0.029441100619841
1222 => 0.028612953157641
1223 => 0.028597974582822
1224 => 0.029026883888435
1225 => 0.029925760127481
1226 => 0.030158825658148
1227 => 0.030289077494406
1228 => 0.030089592273077
1229 => 0.029374046034976
1230 => 0.029065076797265
1231 => 0.029328327539495
]
'min_raw' => 0.01085509366299
'max_raw' => 0.030289077494406
'avg_raw' => 0.020572085578698
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.010855'
'max' => '$0.030289'
'avg' => '$0.020572'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0042973690403754
'max_diff' => 0.015649419234226
'year' => 2036
]
11 => [
'items' => [
101 => 0.029006394503142
102 => 0.029562141242344
103 => 0.030325300216366
104 => 0.030167710906088
105 => 0.030694508343237
106 => 0.03123968826998
107 => 0.032019320050784
108 => 0.032223144667968
109 => 0.032560059009417
110 => 0.032906854537363
111 => 0.033018235914538
112 => 0.033230897523176
113 => 0.033229776691526
114 => 0.033870646762934
115 => 0.034577546297792
116 => 0.034844384507439
117 => 0.035457964256978
118 => 0.034407230438292
119 => 0.035204224109725
120 => 0.035923132351404
121 => 0.035066020308567
122 => 0.036247349578124
123 => 0.036293217916712
124 => 0.036985775371979
125 => 0.036283735713111
126 => 0.035866866804665
127 => 0.037070351723474
128 => 0.037652680166266
129 => 0.037477278100151
130 => 0.036142459716348
131 => 0.035365538163921
201 => 0.033332184604244
202 => 0.035740779730018
203 => 0.0369139361561
204 => 0.036139421524618
205 => 0.036530041653912
206 => 0.038661138420336
207 => 0.039472522090693
208 => 0.039303759959259
209 => 0.03933227798141
210 => 0.039770085882279
211 => 0.041711567219949
212 => 0.040548186599232
213 => 0.04143754749273
214 => 0.041909261303812
215 => 0.042347415380441
216 => 0.041271447448258
217 => 0.039871628977595
218 => 0.039428247707555
219 => 0.036062411308532
220 => 0.035887204906877
221 => 0.03578885624433
222 => 0.035168781838668
223 => 0.034681573208491
224 => 0.034294126816878
225 => 0.033277351784
226 => 0.033620483509852
227 => 0.031999956324885
228 => 0.03303671218987
301 => 0.030450311673666
302 => 0.032604342878867
303 => 0.031432001625657
304 => 0.032219197247171
305 => 0.032216450795805
306 => 0.030766974076
307 => 0.029930946153823
308 => 0.030463695684528
309 => 0.031034845471153
310 => 0.031127512602455
311 => 0.031868023209349
312 => 0.032074683802511
313 => 0.03144849255717
314 => 0.030396714271792
315 => 0.030641018378977
316 => 0.029925995338889
317 => 0.028672944964099
318 => 0.029572907619434
319 => 0.02988019443853
320 => 0.030015909803586
321 => 0.028783678673788
322 => 0.028396484899766
323 => 0.028190346183348
324 => 0.030237648706631
325 => 0.03034980456038
326 => 0.029775999355358
327 => 0.032369653292502
328 => 0.03178262952646
329 => 0.032438478897443
330 => 0.030618850341924
331 => 0.0306883626032
401 => 0.029826921284176
402 => 0.030309270861299
403 => 0.029968361727041
404 => 0.030270301782139
405 => 0.03045128340622
406 => 0.0313125833712
407 => 0.032614177540942
408 => 0.031183933878254
409 => 0.030560756232955
410 => 0.030947372139215
411 => 0.031976981245232
412 => 0.03353689174557
413 => 0.032613393333246
414 => 0.033023226246615
415 => 0.033112756505989
416 => 0.032431802966511
417 => 0.033561999473872
418 => 0.034167680963868
419 => 0.034788984844478
420 => 0.035328445595473
421 => 0.034540822411797
422 => 0.035383692119678
423 => 0.034704487921659
424 => 0.034095171541195
425 => 0.03409609562263
426 => 0.033713862556473
427 => 0.032973237826329
428 => 0.032836655262869
429 => 0.033547175006467
430 => 0.034116944554362
501 => 0.034163873503339
502 => 0.03447932720087
503 => 0.034666009449638
504 => 0.03649574926977
505 => 0.037231685761829
506 => 0.038131574973754
507 => 0.038482132536775
508 => 0.039537185119629
509 => 0.038685144471793
510 => 0.038500800118047
511 => 0.035941587657115
512 => 0.036360658554223
513 => 0.03703163149482
514 => 0.035952651753771
515 => 0.036637016052565
516 => 0.036772124061964
517 => 0.035915988435046
518 => 0.03637328746482
519 => 0.035158836821454
520 => 0.032640649246257
521 => 0.033564802936506
522 => 0.034245291119298
523 => 0.033274150578866
524 => 0.035014882409261
525 => 0.033997982809943
526 => 0.033675674456748
527 => 0.032418234659711
528 => 0.033011697840616
529 => 0.033814365290365
530 => 0.033318410126527
531 => 0.034347591559533
601 => 0.035805186941331
602 => 0.036843956211707
603 => 0.036923700017837
604 => 0.036255840969122
605 => 0.037326089356907
606 => 0.037333884947996
607 => 0.03612664039448
608 => 0.035387209827418
609 => 0.035219209646806
610 => 0.03563890703635
611 => 0.036148497147668
612 => 0.036951978722448
613 => 0.037437505810338
614 => 0.038703502951884
615 => 0.039046045479404
616 => 0.039422395864743
617 => 0.039925316041717
618 => 0.040529200660261
619 => 0.039207935494058
620 => 0.039260431822257
621 => 0.038030087993651
622 => 0.036715289163632
623 => 0.037713057583629
624 => 0.039017507065203
625 => 0.038718264912841
626 => 0.038684594057738
627 => 0.038741219096505
628 => 0.03851560028596
629 => 0.037495134767684
630 => 0.036982663372859
701 => 0.03764388221758
702 => 0.037995290606085
703 => 0.038540294370623
704 => 0.03847311115301
705 => 0.03987698232133
706 => 0.040422484206478
707 => 0.040282921480916
708 => 0.040308604381184
709 => 0.041296209487679
710 => 0.042394629482583
711 => 0.043423444757095
712 => 0.044469999842973
713 => 0.043208336839207
714 => 0.042567742174451
715 => 0.043228672351709
716 => 0.04287797349639
717 => 0.044893193143092
718 => 0.04503272257907
719 => 0.047047796502454
720 => 0.048960341606285
721 => 0.047759106293374
722 => 0.048891817088623
723 => 0.050116936164951
724 => 0.052480389631594
725 => 0.051684461651324
726 => 0.051074793292219
727 => 0.05049865963876
728 => 0.051697502312965
729 => 0.05323979426135
730 => 0.053571989175144
731 => 0.054110271843713
801 => 0.053544333435786
802 => 0.054225943912064
803 => 0.056632328408146
804 => 0.055982102075561
805 => 0.055058676154192
806 => 0.056958285602224
807 => 0.057645746876923
808 => 0.062470710129021
809 => 0.068562425544085
810 => 0.066040415361888
811 => 0.064474922257039
812 => 0.064842850270671
813 => 0.067067338522672
814 => 0.067781773547487
815 => 0.065839692869519
816 => 0.066525668597084
817 => 0.070305462299613
818 => 0.072333200350719
819 => 0.069579259715764
820 => 0.061981246726791
821 => 0.054975531753394
822 => 0.056833762835796
823 => 0.056623097098675
824 => 0.060684013893175
825 => 0.055966594392573
826 => 0.056046023638466
827 => 0.060190915891691
828 => 0.059085129699973
829 => 0.057293897687786
830 => 0.054988609729379
831 => 0.050727071724936
901 => 0.046952508672623
902 => 0.054355296048166
903 => 0.054036074395437
904 => 0.053573794136287
905 => 0.054602548829076
906 => 0.059597889600146
907 => 0.059482730827032
908 => 0.058750149467008
909 => 0.059305805971911
910 => 0.057196488415917
911 => 0.057740107578364
912 => 0.054974422012349
913 => 0.05622462739342
914 => 0.057290054508371
915 => 0.057503954775616
916 => 0.057985882999736
917 => 0.053867859089993
918 => 0.055716730926638
919 => 0.056802769914803
920 => 0.051896006255836
921 => 0.056705778973713
922 => 0.053796173455501
923 => 0.052808609641811
924 => 0.054138234215305
925 => 0.053620078225912
926 => 0.053174598133373
927 => 0.052926012587416
928 => 0.053902342128881
929 => 0.053856795188806
930 => 0.052259330561571
1001 => 0.050175503076332
1002 => 0.050874903979683
1003 => 0.050620805074577
1004 => 0.049699917863062
1005 => 0.050320484655277
1006 => 0.047587822564026
1007 => 0.042886419467443
1008 => 0.045992310360917
1009 => 0.045872736940077
1010 => 0.045812442599067
1011 => 0.048146433764994
1012 => 0.047922074368728
1013 => 0.047514859867571
1014 => 0.049692439049406
1015 => 0.048897593355463
1016 => 0.051347120494997
1017 => 0.052960537494576
1018 => 0.052551322754911
1019 => 0.054068749241336
1020 => 0.050891016763905
1021 => 0.051946532024409
1022 => 0.052164072256718
1023 => 0.049665568060319
1024 => 0.047958782340656
1025 => 0.047844959191936
1026 => 0.044885627963601
1027 => 0.046466478818891
1028 => 0.047857562151492
1029 => 0.047191341187604
1030 => 0.046980435533222
1031 => 0.048057906781604
1101 => 0.04814163552552
1102 => 0.04623261129105
1103 => 0.046629557880332
1104 => 0.048284891144515
1105 => 0.046587847729222
1106 => 0.043290769583774
1107 => 0.042473048618032
1108 => 0.042363949567614
1109 => 0.040146225454252
1110 => 0.042527692643048
1111 => 0.041488118395786
1112 => 0.044772120986874
1113 => 0.042896316319304
1114 => 0.042815454129208
1115 => 0.042693219068974
1116 => 0.040784332311574
1117 => 0.041202257195362
1118 => 0.042591503160832
1119 => 0.043087201772288
1120 => 0.043035496345974
1121 => 0.042584695097701
1122 => 0.042791069600685
1123 => 0.042126265420931
1124 => 0.041891509228358
1125 => 0.041150554109819
1126 => 0.040061554779642
1127 => 0.040212986815724
1128 => 0.038055394190468
1129 => 0.036879823216122
1130 => 0.036554440664199
1201 => 0.036119325517095
1202 => 0.036603588077861
1203 => 0.038049282001648
1204 => 0.036305468408486
1205 => 0.03331582231731
1206 => 0.033495505141499
1207 => 0.033899199099141
1208 => 0.033146918079777
1209 => 0.032434947229108
1210 => 0.033053948119744
1211 => 0.031787195659104
1212 => 0.034052280082028
1213 => 0.033991015896214
1214 => 0.034835299297199
1215 => 0.035363247034274
1216 => 0.034146498425425
1217 => 0.033840489440738
1218 => 0.034014806065748
1219 => 0.031133740549399
1220 => 0.03459985477883
1221 => 0.03462982987862
1222 => 0.03437316487581
1223 => 0.036218763698711
1224 => 0.040113552871741
1225 => 0.038648176517316
1226 => 0.038080738501647
1227 => 0.037002038419067
1228 => 0.038439342232232
1229 => 0.038328979724813
1230 => 0.037829878612528
1231 => 0.037528020702527
]
'min_raw' => 0.028190346183348
'max_raw' => 0.072333200350719
'avg_raw' => 0.050261773267033
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.02819'
'max' => '$0.072333'
'avg' => '$0.050261'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.017335252520357
'max_diff' => 0.042044122856313
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00088486275430823
]
1 => [
'year' => 2028
'avg' => 0.0015186813638859
]
2 => [
'year' => 2029
'avg' => 0.0041487637704516
]
3 => [
'year' => 2030
'avg' => 0.0032007650703791
]
4 => [
'year' => 2031
'avg' => 0.0031435479655605
]
5 => [
'year' => 2032
'avg' => 0.0055116288945815
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00088486275430823
'min' => '$0.000884'
'max_raw' => 0.0055116288945815
'max' => '$0.005511'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0055116288945815
]
1 => [
'year' => 2033
'avg' => 0.014176476270979
]
2 => [
'year' => 2034
'avg' => 0.0089857319501165
]
3 => [
'year' => 2035
'avg' => 0.010598691441397
]
4 => [
'year' => 2036
'avg' => 0.020572085578698
]
5 => [
'year' => 2037
'avg' => 0.050261773267033
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0055116288945815
'min' => '$0.005511'
'max_raw' => 0.050261773267033
'max' => '$0.050261'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.050261773267033
]
]
]
]
'prediction_2025_max_price' => '$0.001512'
'last_price' => 0.001467
'sma_50day_nextmonth' => '$0.001362'
'sma_200day_nextmonth' => '$0.003621'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001428'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001418'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001357'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001397'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002276'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0035039'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004744'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001436'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001416'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001395'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001511'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002168'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003313'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008082'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003054'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.007146'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001433'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001499'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001879'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003228'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015365'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.030692'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015346'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '38.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 95.8
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001436'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001466'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 78.85
'cci_20_action' => 'NEUTRAL'
'adx_14' => 50.43
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000169'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.33
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000819'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 16
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767703147
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de dicki para 2026
La previsión del precio de dicki para 2026 sugiere que el precio medio podría oscilar entre $0.0005068 en el extremo inferior y $0.001512 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, dicki podría potencialmente ganar 3.13% para 2026 si $DICKI alcanza el objetivo de precio previsto.
Predicción de precio de dicki 2027-2032
La predicción del precio de $DICKI para 2027-2032 está actualmente dentro de un rango de precios de $0.000884 en el extremo inferior y $0.005511 en el extremo superior. Considerando la volatilidad de precios en el mercado, si dicki alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de dicki | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000487 | $0.000884 | $0.001281 |
| 2028 | $0.00088 | $0.001518 | $0.002156 |
| 2029 | $0.001934 | $0.004148 | $0.006363 |
| 2030 | $0.001645 | $0.00320076 | $0.004756 |
| 2031 | $0.001945 | $0.003143 | $0.004342 |
| 2032 | $0.002968 | $0.005511 | $0.008054 |
Predicción de precio de dicki 2032-2037
La predicción de precio de dicki para 2032-2037 se estima actualmente entre $0.005511 en el extremo inferior y $0.050261 en el extremo superior. Comparado con el precio actual, dicki podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de dicki | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002968 | $0.005511 | $0.008054 |
| 2033 | $0.006899 | $0.014176 | $0.021453 |
| 2034 | $0.005546 | $0.008985 | $0.012424 |
| 2035 | $0.006557 | $0.010598 | $0.014639 |
| 2036 | $0.010855 | $0.020572 | $0.030289 |
| 2037 | $0.02819 | $0.050261 | $0.072333 |
dicki Histograma de precios potenciales
Pronóstico de precio de dicki basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para dicki es Neutral, con 16 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de $DICKI se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de dicki
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de dicki aumentar durante el próximo mes, alcanzando $0.003621 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para dicki alcance $0.001362 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 38.09, lo que sugiere que el mercado de $DICKI está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de $DICKI para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001428 | BUY |
| SMA 5 | $0.001418 | BUY |
| SMA 10 | $0.001357 | BUY |
| SMA 21 | $0.001397 | BUY |
| SMA 50 | $0.002276 | SELL |
| SMA 100 | $0.0035039 | SELL |
| SMA 200 | $0.004744 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001436 | BUY |
| EMA 5 | $0.001416 | BUY |
| EMA 10 | $0.001395 | BUY |
| EMA 21 | $0.001511 | SELL |
| EMA 50 | $0.002168 | SELL |
| EMA 100 | $0.003313 | SELL |
| EMA 200 | $0.008082 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.003054 | SELL |
| SMA 50 | $0.007146 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003228 | SELL |
| EMA 50 | $0.015365 | SELL |
| EMA 100 | $0.030692 | SELL |
| EMA 200 | $0.015346 | SELL |
Osciladores de dicki
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 38.09 | NEUTRAL |
| Stoch RSI (14) | 95.8 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 78.85 | NEUTRAL |
| Índice Direccional Medio (14) | 50.43 | SELL |
| Oscilador Asombroso (5, 34) | -0.000169 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 68.33 | NEUTRAL |
| VWMA (10) | 0.001436 | BUY |
| Promedio Móvil de Hull (9) | 0.001466 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000819 | SELL |
Predicción de precios de dicki basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de dicki
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de dicki por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.002061 | $0.002896 | $0.00407 | $0.005719 | $0.008036 | $0.011292 |
| Amazon.com acción | $0.00306 | $0.006386 | $0.013326 | $0.0278069 | $0.05802 | $0.121063 |
| Apple acción | $0.00208 | $0.002951 | $0.004186 | $0.005938 | $0.008422 | $0.011947 |
| Netflix acción | $0.002314 | $0.003652 | $0.005762 | $0.009092 | $0.014346 | $0.022636 |
| Google acción | $0.001899 | $0.00246 | $0.003185 | $0.004125 | $0.005342 | $0.006918 |
| Tesla acción | $0.003325 | $0.007538 | $0.017089 | $0.038741 | $0.087824 | $0.199091 |
| Kodak acción | $0.001100094 | $0.000824 | $0.000618 | $0.000463 | $0.000347 | $0.00026 |
| Nokia acción | $0.000971 | $0.000643 | $0.000426 | $0.000282 | $0.000187 | $0.000123 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de dicki
Podría preguntarse cosas como: "¿Debo invertir en dicki ahora?", "¿Debería comprar $DICKI hoy?", "¿Será dicki una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de dicki regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como dicki, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de dicki a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de dicki es de $0.001466 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de dicki basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si dicki ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0015051 | $0.001544 | $0.001584 | $0.001625 |
| Si dicki ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001543 | $0.001623 | $0.0017078 | $0.001796 |
| Si dicki ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001657 | $0.001873 | $0.002116 | $0.002391 |
| Si dicki ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001848 | $0.002328 | $0.002934 | $0.003696 |
| Si dicki ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.002229 | $0.003388 | $0.00515 | $0.007827 |
| Si dicki ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.003373 | $0.007758 | $0.017841 | $0.041028 |
| Si dicki ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.00528 | $0.0190051 | $0.0684056 | $0.246213 |
Cuadro de preguntas
¿Es $DICKI una buena inversión?
La decisión de adquirir dicki depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de dicki ha experimentado un aumento de 3.2408% durante las últimas 24 horas, y dicki ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en dicki dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede dicki subir?
Parece que el valor medio de dicki podría potencialmente aumentar hasta $0.001512 para el final de este año. Mirando las perspectivas de dicki en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.004756. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de dicki la próxima semana?
Basado en nuestro nuevo pronóstico experimental de dicki, el precio de dicki aumentará en un 0.86% durante la próxima semana y alcanzará $0.001479 para el 13 de enero de 2026.
¿Cuál será el precio de dicki el próximo mes?
Basado en nuestro nuevo pronóstico experimental de dicki, el precio de dicki disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001296 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de dicki este año en 2026?
Según nuestra predicción más reciente sobre el valor de dicki en 2026, se anticipa que $DICKI fluctúe dentro del rango de $0.0005068 y $0.001512. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de dicki no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará dicki en 5 años?
El futuro de dicki parece estar en una tendencia alcista, con un precio máximo de $0.004756 proyectada después de un período de cinco años. Basado en el pronóstico de dicki para 2030, el valor de dicki podría potencialmente alcanzar su punto más alto de aproximadamente $0.004756, mientras que su punto más bajo se anticipa que esté alrededor de $0.001645.
¿Cuánto será dicki en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de dicki, se espera que el valor de $DICKI en 2026 crezca en un 3.13% hasta $0.001512 si ocurre lo mejor. El precio estará entre $0.001512 y $0.0005068 durante 2026.
¿Cuánto será dicki en 2027?
Según nuestra última simulación experimental para la predicción de precios de dicki, el valor de $DICKI podría disminuir en un -12.62% hasta $0.001281 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001281 y $0.000487 a lo largo del año.
¿Cuánto será dicki en 2028?
Nuestro nuevo modelo experimental de predicción de precios de dicki sugiere que el valor de $DICKI en 2028 podría aumentar en un 47.02% , alcanzando $0.002156 en el mejor escenario. Se espera que el precio oscile entre $0.002156 y $0.00088 durante el año.
¿Cuánto será dicki en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de dicki podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.006363 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.006363 y $0.001934.
¿Cuánto será dicki en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de dicki, se espera que el valor de $DICKI en 2030 aumente en un 224.23% , alcanzando $0.004756 en el mejor escenario. Se pronostica que el precio oscile entre $0.004756 y $0.001645 durante el transcurso de 2030.
¿Cuánto será dicki en 2031?
Nuestra simulación experimental indica que el precio de dicki podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.004342 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.004342 y $0.001945 durante el año.
¿Cuánto será dicki en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de dicki, $DICKI podría experimentar un 449.04% aumento en valor, alcanzando $0.008054 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.008054 y $0.002968 a lo largo del año.
¿Cuánto será dicki en 2033?
Según nuestra predicción experimental de precios de dicki, se anticipa que el valor de $DICKI aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.021453. A lo largo del año, el precio de $DICKI podría oscilar entre $0.021453 y $0.006899.
¿Cuánto será dicki en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de dicki sugieren que $DICKI podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.012424 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.012424 y $0.005546.
¿Cuánto será dicki en 2035?
Basado en nuestra predicción experimental para el precio de dicki, $DICKI podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.014639 en 2035. El rango de precios esperado para el año está entre $0.014639 y $0.006557.
¿Cuánto será dicki en 2036?
Nuestra reciente simulación de predicción de precios de dicki sugiere que el valor de $DICKI podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.030289 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.030289 y $0.010855.
¿Cuánto será dicki en 2037?
Según la simulación experimental, el valor de dicki podría aumentar en un 4830.69% en 2037, con un máximo de $0.072333 bajo condiciones favorables. Se espera que el precio caiga entre $0.072333 y $0.02819 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de dicki?
Los traders de dicki utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de dicki
Las medias móviles son herramientas populares para la predicción de precios de dicki. Una media móvil simple (SMA) calcula el precio de cierre promedio de $DICKI durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de $DICKI por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de $DICKI.
¿Cómo leer gráficos de dicki y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de dicki en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de $DICKI dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de dicki?
La acción del precio de dicki está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de $DICKI. La capitalización de mercado de dicki puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de $DICKI, grandes poseedores de dicki, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de dicki.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


