Predicción del precio de Decimated - Pronóstico de DIO
Predicción de precio de Decimated hasta $0.000839 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000281 | $0.000839 |
| 2027 | $0.00027 | $0.000711 |
| 2028 | $0.000488 | $0.001196 |
| 2029 | $0.001073 | $0.00353 |
| 2030 | $0.000912 | $0.002638 |
| 2031 | $0.001079 | $0.0024089 |
| 2032 | $0.001647 | $0.004468 |
| 2033 | $0.003827 | $0.0119025 |
| 2034 | $0.003077 | $0.006893 |
| 2035 | $0.003638 | $0.008122 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Decimated hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.96, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Decimated para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Decimated'
'name_with_ticker' => 'Decimated <small>DIO</small>'
'name_lang' => 'Decimated'
'name_lang_with_ticker' => 'Decimated <small>DIO</small>'
'name_with_lang' => 'Decimated'
'name_with_lang_with_ticker' => 'Decimated <small>DIO</small>'
'image' => '/uploads/coins/decimated.png?1717262762'
'price_for_sd' => 0.0008138
'ticker' => 'DIO'
'marketcap' => '$440.59K'
'low24h' => '$0.0007707'
'high24h' => '$0.0008221'
'volume24h' => '$36.14K'
'current_supply' => '543.26M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0008138'
'change_24h_pct' => '4.1135%'
'ath_price' => '$0.5879'
'ath_days' => 1464
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 ene. 2022'
'ath_pct' => '-99.86%'
'fdv' => '$811.02K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.04013'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00082'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000719'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000281'
'current_year_max_price_prediction' => '$0.000839'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000912'
'grand_prediction_max_price' => '$0.002638'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00082931278739386
107 => 0.00083240914030145
108 => 0.00083938538150594
109 => 0.00077977416422835
110 => 0.0008065378506926
111 => 0.00082225900907205
112 => 0.00075123024357304
113 => 0.00082085499875303
114 => 0.00077873646555854
115 => 0.00076444080279319
116 => 0.00078368802939638
117 => 0.00077618736647057
118 => 0.00076973873694067
119 => 0.00076614029086146
120 => 0.00078027332983996
121 => 0.00077961400667898
122 => 0.0007564896118055
123 => 0.00072632478136396
124 => 0.00073644908858694
125 => 0.00073277083285695
126 => 0.000719440359587
127 => 0.00072842348904346
128 => 0.00068886633317498
129 => 0.00062081030250531
130 => 0.00066577020097829
131 => 0.00066403929379404
201 => 0.00066316649190135
202 => 0.00069695261300347
203 => 0.00069370485703794
204 => 0.00068781014815838
205 => 0.00071933209863574
206 => 0.00070782616268144
207 => 0.00074328474615314
208 => 0.000766640062545
209 => 0.00076071639884269
210 => 0.00078268218679527
211 => 0.00073668233217713
212 => 0.00075196163868744
213 => 0.00075511068258301
214 => 0.00071894312265988
215 => 0.00069423623007958
216 => 0.00069258856202367
217 => 0.00064975021510895
218 => 0.00067263411425174
219 => 0.0006927709984973
220 => 0.00068312699362902
221 => 0.00068007398979417
222 => 0.00069567112427067
223 => 0.00069688315519991
224 => 0.00066924872156781
225 => 0.00067499479538862
226 => 0.00069895687842671
227 => 0.00067439101237644
228 => 0.00062666354745219
301 => 0.00061482647626715
302 => 0.00061324719277056
303 => 0.00058114411690677
304 => 0.00061561748596489
305 => 0.00060056893654217
306 => 0.00064810712385924
307 => 0.00062095356621614
308 => 0.00061978303061728
309 => 0.00061801359437935
310 => 0.00059038115082203
311 => 0.00059643089982768
312 => 0.00061654118692527
313 => 0.00062371676392028
314 => 0.00062296829245193
315 => 0.00061644263554736
316 => 0.0006194300478615
317 => 0.0006098065519142
318 => 0.00060640829519946
319 => 0.00059568246224358
320 => 0.00057991845088543
321 => 0.00058211053335108
322 => 0.00055087790197264
323 => 0.00053386070675645
324 => 0.00052915057140364
325 => 0.00052285198155975
326 => 0.00052986201388641
327 => 0.00055078942385212
328 => 0.00052554652743578
329 => 0.00048226935211328
330 => 0.00048487038409088
331 => 0.00049071413069123
401 => 0.00047982434756174
402 => 0.0004695180817399
403 => 0.00047847854369821
404 => 0.00046014143400115
405 => 0.00049293008279154
406 => 0.00049204324173089
407 => 0.00050426482236351
408 => 0.00051190722754516
409 => 0.0004942939578595
410 => 0.0004898642681649
411 => 0.00049238762073312
412 => 0.00045068222361783
413 => 0.00050085660166131
414 => 0.00050129051176617
415 => 0.00049757511001392
416 => 0.00052429141736195
417 => 0.00058067115889152
418 => 0.00055945883225825
419 => 0.00055124477823988
420 => 0.00053562985554652
421 => 0.00055643581291306
422 => 0.0005548382400108
423 => 0.00054761340948528
424 => 0.0005432438094406
425 => 0.00055129493150217
426 => 0.00054224618631935
427 => 0.00054062078304162
428 => 0.00053077260763482
429 => 0.00052725725707803
430 => 0.00052465463147591
501 => 0.00052178939641669
502 => 0.00052810939098524
503 => 0.00051378745182839
504 => 0.00049651659720224
505 => 0.00049508071251331
506 => 0.00049904531638371
507 => 0.0004972912743011
508 => 0.00049507231483465
509 => 0.00049083571691553
510 => 0.00048957880881351
511 => 0.00049366315037993
512 => 0.00048905216688335
513 => 0.00049585592420582
514 => 0.00049400567868317
515 => 0.00048367035759942
516 => 0.0004707887209031
517 => 0.00047067404731636
518 => 0.00046789871982025
519 => 0.00046436392298069
520 => 0.00046338062336511
521 => 0.00047772391858484
522 => 0.00050741411043098
523 => 0.00050158521534551
524 => 0.00050579718941396
525 => 0.00052651593308678
526 => 0.00053310179866602
527 => 0.00052842730727265
528 => 0.00052202857514334
529 => 0.00052231008688292
530 => 0.0005441764915967
531 => 0.00054554027243683
601 => 0.00054898610664744
602 => 0.0005534149774007
603 => 0.00052918156311291
604 => 0.00052116869524924
605 => 0.00051737175391845
606 => 0.00050567864422083
607 => 0.00051828866053825
608 => 0.00051094134404482
609 => 0.00051193274805986
610 => 0.00051128709489448
611 => 0.00051163966518165
612 => 0.00049292091769597
613 => 0.00049974104545135
614 => 0.0004884012602725
615 => 0.00047321856086864
616 => 0.0004731676631365
617 => 0.00047688360730628
618 => 0.00047467321830918
619 => 0.0004687251183523
620 => 0.00046957001787694
621 => 0.00046216780899607
622 => 0.00047046878005639
623 => 0.0004707068222041
624 => 0.00046751049618893
625 => 0.00048029928742061
626 => 0.00048553886562289
627 => 0.00048343497536777
628 => 0.00048539125107405
629 => 0.00050182743225219
630 => 0.00050450724694509
701 => 0.00050569744361306
702 => 0.00050410273774883
703 => 0.00048569167429366
704 => 0.00048650828324779
705 => 0.00048051654857098
706 => 0.00047545416416253
707 => 0.00047565663299016
708 => 0.00047825935664001
709 => 0.00048962560346664
710 => 0.00051354519983645
711 => 0.00051445293103368
712 => 0.00051555312772512
713 => 0.00051107807486649
714 => 0.00050972835610384
715 => 0.00051150898354375
716 => 0.00052049192630762
717 => 0.00054359849394146
718 => 0.0005354310897039
719 => 0.00052879086292554
720 => 0.00053461613200244
721 => 0.00053371937748802
722 => 0.00052614986692446
723 => 0.00052593741597398
724 => 0.00051140910508358
725 => 0.00050603831934104
726 => 0.00050155008877822
727 => 0.00049664905817185
728 => 0.00049374356294436
729 => 0.00049820772413775
730 => 0.00049922873062108
731 => 0.00048946776415155
801 => 0.00048813738048976
802 => 0.00049610839641388
803 => 0.0004926006494951
804 => 0.000496208454189
805 => 0.00049704549582516
806 => 0.00049691071284303
807 => 0.00049324822219766
808 => 0.00049558258451798
809 => 0.00049006112172353
810 => 0.00048405736023147
811 => 0.00048022733444709
812 => 0.00047688512897102
813 => 0.00047873957881926
814 => 0.00047212880371943
815 => 0.00047001388371638
816 => 0.00049479175508867
817 => 0.00051309543507839
818 => 0.00051282929232229
819 => 0.00051120921674087
820 => 0.00050880211304721
821 => 0.0005203158316795
822 => 0.00051630468233208
823 => 0.00051922312862507
824 => 0.00051996599569344
825 => 0.00052221443057216
826 => 0.00052301805278179
827 => 0.00052058894831277
828 => 0.00051243657702462
829 => 0.00049212164287874
830 => 0.00048266498619471
831 => 0.00047954413197591
901 => 0.00047965756909942
902 => 0.00047652846682746
903 => 0.00047745012768308
904 => 0.00047620795079461
905 => 0.0004738555682827
906 => 0.00047859432582799
907 => 0.00047914042349051
908 => 0.0004780343408555
909 => 0.00047829486335682
910 => 0.00046913697155302
911 => 0.00046983322617697
912 => 0.00046595639195507
913 => 0.0004652295322744
914 => 0.00045542923295601
915 => 0.00043806658213739
916 => 0.0004476871761242
917 => 0.00043606685144836
918 => 0.00043166605841697
919 => 0.00045249872816385
920 => 0.00045040770592958
921 => 0.00044682878481002
922 => 0.00044153481456167
923 => 0.00043957122950013
924 => 0.00042764110826168
925 => 0.00042693621305419
926 => 0.00043284910328034
927 => 0.0004301205078911
928 => 0.00042628852656473
929 => 0.00041240947864233
930 => 0.00039680483358271
1001 => 0.00039727583972976
1002 => 0.00040223938698849
1003 => 0.00041667157006877
1004 => 0.00041103266646
1005 => 0.00040694157719287
1006 => 0.00040617543915083
1007 => 0.0004157652607656
1008 => 0.00042933686748025
1009 => 0.00043570436170317
1010 => 0.00042939436831193
1011 => 0.00042214578765824
1012 => 0.00042258697517594
1013 => 0.00042552199807572
1014 => 0.0004258304274835
1015 => 0.00042111234664408
1016 => 0.00042244045876406
1017 => 0.00042042293500869
1018 => 0.00040804139544605
1019 => 0.00040781745265765
1020 => 0.00040477882316968
1021 => 0.00040468681467642
1022 => 0.00039951734789573
1023 => 0.00039879410375828
1024 => 0.00038852981370103
1025 => 0.00039528580049985
1026 => 0.00039075423926043
1027 => 0.0003839241075854
1028 => 0.00038274659031019
1029 => 0.000382711192719
1030 => 0.00038972421075976
1031 => 0.00039520384930086
1101 => 0.00039083306770832
1102 => 0.00038983792546374
1103 => 0.00040046344113144
1104 => 0.000399111247409
1105 => 0.00039794025636608
1106 => 0.00042812167895364
1107 => 0.00040423072788981
1108 => 0.00039381290957817
1109 => 0.00038091888112748
1110 => 0.00038511724180836
1111 => 0.00038600189809057
1112 => 0.00035499408398997
1113 => 0.00034241421767114
1114 => 0.00033809728161277
1115 => 0.00033561282387867
1116 => 0.00033674502246596
1117 => 0.00032542166730785
1118 => 0.00033303114924511
1119 => 0.00032322608081758
1120 => 0.00032158222918725
1121 => 0.00033911490615057
1122 => 0.00034155447572561
1123 => 0.00033114651400365
1124 => 0.00033783011032509
1125 => 0.00033540654539
1126 => 0.00032339416057351
1127 => 0.00032293537583064
1128 => 0.00031690798338547
1129 => 0.00030747628134194
1130 => 0.00030316574042169
1201 => 0.0003009207732846
1202 => 0.0003018470904789
1203 => 0.00030137871615969
1204 => 0.00029832225690622
1205 => 0.00030155390882633
1206 => 0.00029329837358122
1207 => 0.00029001095292724
1208 => 0.00028852610128542
1209 => 0.0002811988385845
1210 => 0.00029285977199018
1211 => 0.00029515712277167
1212 => 0.00029745900004388
1213 => 0.00031749527014015
1214 => 0.00031649431470805
1215 => 0.00032554246432915
1216 => 0.00032519086987335
1217 => 0.00032261019103111
1218 => 0.00031172273149675
1219 => 0.00031606227881684
1220 => 0.00030270582668099
1221 => 0.00031271338877163
1222 => 0.00030814635535925
1223 => 0.00031116927018088
1224 => 0.00030573379676634
1225 => 0.00030874201217914
1226 => 0.00029570190986805
1227 => 0.00028352524580915
1228 => 0.00028842549088543
1229 => 0.00029375261769436
1230 => 0.00030530318594277
1231 => 0.00029842376278413
]
'min_raw' => 0.0002811988385845
'max_raw' => 0.00083938538150594
'avg_raw' => 0.00056029211004522
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000281'
'max' => '$0.000839'
'avg' => '$0.00056'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0005326911614155
'max_diff' => 2.5495381505939E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00030089786349177
102 => 0.00029261004028065
103 => 0.00027550989369644
104 => 0.00027560667866904
105 => 0.000272976193664
106 => 0.00027070307056255
107 => 0.00029921394728927
108 => 0.00029566816907804
109 => 0.00029001843555842
110 => 0.00029758082838592
111 => 0.00029958044508082
112 => 0.00029963737135699
113 => 0.00030515469795032
114 => 0.00030809929614221
115 => 0.00030861829433615
116 => 0.00031729992694048
117 => 0.00032020989567595
118 => 0.00033219564506316
119 => 0.00030784946755839
120 => 0.00030734807405413
121 => 0.00029768724676153
122 => 0.00029156019736093
123 => 0.00029810677107591
124 => 0.00030390614169095
125 => 0.00029786744937222
126 => 0.0002986559751053
127 => 0.00029054952404669
128 => 0.00029344719885617
129 => 0.00029594306676104
130 => 0.0002945649952043
131 => 0.00029250195538445
201 => 0.00030343065943567
202 => 0.00030281401912316
203 => 0.00031299107958548
204 => 0.00032092482598443
205 => 0.00033514351785815
206 => 0.00032030557165075
207 => 0.00031976481791546
208 => 0.00032505077241757
209 => 0.00032020908642386
210 => 0.00032326886484256
211 => 0.00033465054025091
212 => 0.00033489101711728
213 => 0.00033086271976865
214 => 0.0003306175975089
215 => 0.00033139127607945
216 => 0.00033592273563256
217 => 0.00033433930442701
218 => 0.00033617169110564
219 => 0.00033846311870577
220 => 0.00034794143480506
221 => 0.00035022662472791
222 => 0.00034467479795051
223 => 0.00034517606574734
224 => 0.00034309953013154
225 => 0.00034109362274559
226 => 0.00034560260960996
227 => 0.00035384287172893
228 => 0.00035379160948596
301 => 0.00035570319012976
302 => 0.00035689408903445
303 => 0.00035178187914422
304 => 0.00034845401848684
305 => 0.00034973013202016
306 => 0.00035177066535006
307 => 0.00034906841456289
308 => 0.00033238887090014
309 => 0.00033744837895404
310 => 0.00033660622941657
311 => 0.00033540690606633
312 => 0.00034049428053854
313 => 0.00034000359085997
314 => 0.0003253055299342
315 => 0.00032624645210692
316 => 0.00032536275052795
317 => 0.00032821817111794
318 => 0.00032005488434131
319 => 0.00032256585637322
320 => 0.00032414071449274
321 => 0.00032506831802377
322 => 0.00032841945804153
323 => 0.00032802624043916
324 => 0.00032839501508326
325 => 0.00033336387106144
326 => 0.00035849463949359
327 => 0.00035986245177144
328 => 0.00035312684386148
329 => 0.00035581758636752
330 => 0.00035065194915663
331 => 0.00035411967602306
401 => 0.00035649220667436
402 => 0.00034577119687254
403 => 0.00034513636825086
404 => 0.00033994941061768
405 => 0.00034273658784545
406 => 0.00033830198847093
407 => 0.00033939008404174
408 => 0.0003363476739673
409 => 0.00034182340636349
410 => 0.00034794612602522
411 => 0.0003494929668053
412 => 0.00034542389466974
413 => 0.00034247761827867
414 => 0.00033730492749973
415 => 0.00034590722754604
416 => 0.00034842280222992
417 => 0.00034589401430313
418 => 0.00034530803888539
419 => 0.0003441976165276
420 => 0.0003455436202379
421 => 0.00034840910186995
422 => 0.00034705779364941
423 => 0.00034795035653606
424 => 0.000344548827219
425 => 0.00035178357149841
426 => 0.00036327408655014
427 => 0.00036331103043492
428 => 0.00036195971493033
429 => 0.00036140678574035
430 => 0.00036279331745274
501 => 0.0003635454540282
502 => 0.00036802924333964
503 => 0.00037284052791286
504 => 0.00039529269368816
505 => 0.00038898821538225
506 => 0.00040890911254342
507 => 0.00042466395579315
508 => 0.00042938814440794
509 => 0.00042504211317258
510 => 0.00041017457508441
511 => 0.00040944510273647
512 => 0.00043166348155287
513 => 0.00042538577187102
514 => 0.00042463905827987
515 => 0.00041669528726256
516 => 0.00042139103978897
517 => 0.00042036400982891
518 => 0.00041874279279293
519 => 0.00042770196150437
520 => 0.00044447272554167
521 => 0.00044185884469122
522 => 0.00043990770389081
523 => 0.00043135837287195
524 => 0.00043650697970752
525 => 0.00043467365942844
526 => 0.00044255076680116
527 => 0.00043788454289285
528 => 0.00042533821204588
529 => 0.00042733625658651
530 => 0.0004270342561737
531 => 0.00043324940326931
601 => 0.00043138377038064
602 => 0.00042666996140985
603 => 0.0004444154048934
604 => 0.00044326311449892
605 => 0.00044489679882804
606 => 0.00044561599719308
607 => 0.00045641733593173
608 => 0.00046084229880867
609 => 0.00046184684285161
610 => 0.00046605021534579
611 => 0.00046174225911477
612 => 0.00047897715555958
613 => 0.00049043735601129
614 => 0.00050374896857248
615 => 0.00052320081234852
616 => 0.00053051488554793
617 => 0.00052919366369019
618 => 0.00054394182964036
619 => 0.0005704439560195
620 => 0.0005345505011562
621 => 0.00057234639628337
622 => 0.00056038065226071
623 => 0.0005320100884375
624 => 0.00053018335859426
625 => 0.00054939623380435
626 => 0.00059200854184963
627 => 0.00058133464198909
628 => 0.00059202600052598
629 => 0.00057955396288775
630 => 0.00057893462109642
701 => 0.000591420261496
702 => 0.00062059364084645
703 => 0.00060673446186483
704 => 0.00058686393038456
705 => 0.00060153602160988
706 => 0.00058882569835257
707 => 0.00056018578265837
708 => 0.00058132647985903
709 => 0.00056719029769334
710 => 0.00057131598717006
711 => 0.00060102813948393
712 => 0.00059745309470892
713 => 0.00060207953368802
714 => 0.00059391398998491
715 => 0.00058628608457815
716 => 0.00057204803268074
717 => 0.00056783284744139
718 => 0.00056899777299507
719 => 0.00056783227016214
720 => 0.00055986621097999
721 => 0.00055814594125806
722 => 0.00055527874968809
723 => 0.00055616741224631
724 => 0.0005507762532683
725 => 0.00056095048413008
726 => 0.00056283891103305
727 => 0.00057024286779381
728 => 0.0005710115711464
729 => 0.0005916314853364
730 => 0.00058027438310413
731 => 0.00058789370780657
801 => 0.00058721216368932
802 => 0.00053262496458262
803 => 0.00054014659899259
804 => 0.00055184790171559
805 => 0.00054657648069962
806 => 0.00053912392470559
807 => 0.00053310558615963
808 => 0.0005239871878558
809 => 0.00053682115836511
810 => 0.00055369646484426
811 => 0.00057143955676721
812 => 0.00059275671913919
813 => 0.00058799897665689
814 => 0.00057104104724457
815 => 0.00057180176757023
816 => 0.00057650424129106
817 => 0.0005704141105578
818 => 0.00056861801211109
819 => 0.00057625748494544
820 => 0.00057631009379628
821 => 0.00056930266237078
822 => 0.00056151518468775
823 => 0.00056148255487191
824 => 0.00056009684843633
825 => 0.00057980047698428
826 => 0.0005906354804241
827 => 0.000591877696107
828 => 0.00059055186941119
829 => 0.00059106212748623
830 => 0.0005847574777176
831 => 0.00059916803750287
901 => 0.00061239259221849
902 => 0.0006088481290533
903 => 0.00060353447489355
904 => 0.00059930189341505
905 => 0.00060785106737034
906 => 0.00060747038611176
907 => 0.0006122770872699
908 => 0.00061205902754051
909 => 0.0006104427147302
910 => 0.00060884818677692
911 => 0.00061517030987443
912 => 0.00061334963995254
913 => 0.00061152614202737
914 => 0.00060786883777489
915 => 0.0006083659261642
916 => 0.00060305318948176
917 => 0.00060059527439817
918 => 0.00056363412890394
919 => 0.00055375690308761
920 => 0.0005568644793989
921 => 0.00055788757420876
922 => 0.00055358899287548
923 => 0.00055975205429246
924 => 0.00055879154769892
925 => 0.00056252831697681
926 => 0.00056019374576365
927 => 0.00056028955738057
928 => 0.00056715503353542
929 => 0.000569148110471
930 => 0.00056813441545546
1001 => 0.00056884437269692
1002 => 0.00058520503767195
1003 => 0.00058287907429711
1004 => 0.0005816434526124
1005 => 0.00058198572826345
1006 => 0.00058616622894119
1007 => 0.00058733654088408
1008 => 0.00058237784694569
1009 => 0.0005847163956729
1010 => 0.00059467363934735
1011 => 0.00059815811110222
1012 => 0.00060927887230245
1013 => 0.00060455457528882
1014 => 0.00061322622692012
1015 => 0.00063987992765082
1016 => 0.00066117274809031
1017 => 0.00064159099045113
1018 => 0.00068069254356392
1019 => 0.00071113871144689
1020 => 0.00070997013681279
1021 => 0.00070466114320985
1022 => 0.00066999899052835
1023 => 0.00063810236084724
1024 => 0.00066478524597792
1025 => 0.0006648532661395
1026 => 0.0006625611826429
1027 => 0.00064832524889932
1028 => 0.0006620658030068
1029 => 0.00066315647829349
1030 => 0.00066254599016691
1031 => 0.00065163133314362
1101 => 0.00063496666923486
1102 => 0.00063822290467306
1103 => 0.00064355668474624
1104 => 0.00063345872632462
1105 => 0.00063023181675204
1106 => 0.00063623125559214
1107 => 0.00065556269756766
1108 => 0.0006519082004416
1109 => 0.00065181276675266
1110 => 0.00066744825520588
1111 => 0.00065625661982297
1112 => 0.00063826397622985
1113 => 0.00063372059642877
1114 => 0.00061759465892231
1115 => 0.00062873290139664
1116 => 0.00062913374691426
1117 => 0.00062303344534115
1118 => 0.00063875898208182
1119 => 0.00063861406849233
1120 => 0.00065354312519034
1121 => 0.00068208187449931
1122 => 0.00067364156202209
1123 => 0.00066382639691446
1124 => 0.00066489357750667
1125 => 0.00067659791457704
1126 => 0.00066952120520027
1127 => 0.00067206603923272
1128 => 0.00067659406266594
1129 => 0.0006793259316277
1130 => 0.00066450050360415
1201 => 0.00066104398714966
1202 => 0.00065397316755621
1203 => 0.00065212852270737
1204 => 0.00065788755772875
1205 => 0.00065637025547033
1206 => 0.00062910005740065
1207 => 0.00062625016997242
1208 => 0.00062633757195114
1209 => 0.0006191713945081
1210 => 0.0006082412538278
1211 => 0.00063696501093084
1212 => 0.00063465809124674
1213 => 0.0006321114304569
1214 => 0.00063242338187261
1215 => 0.00064489139129259
1216 => 0.00063765931617943
1217 => 0.00065688697318155
1218 => 0.00065293434493819
1219 => 0.00064888034669502
1220 => 0.00064831996065001
1221 => 0.00064675951719726
1222 => 0.00064140817598237
1223 => 0.00063494610989963
1224 => 0.00063067929413723
1225 => 0.00058176831126024
1226 => 0.00059084590518011
1227 => 0.0006012888495362
1228 => 0.00060489371208045
1229 => 0.00059872734524962
1230 => 0.0006416516617293
1231 => 0.00064949434797914
]
'min_raw' => 0.00027070307056255
'max_raw' => 0.00071113871144689
'avg_raw' => 0.00049092089100472
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00027'
'max' => '$0.000711'
'avg' => '$0.00049'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0495768021949E-5
'max_diff' => -0.00012824667005905
'year' => 2027
]
2 => [
'items' => [
101 => 0.0006257383397626
102 => 0.00062129456057671
103 => 0.00064194299515292
104 => 0.000629489464935
105 => 0.00063509728882959
106 => 0.00062297624088516
107 => 0.00064760527452222
108 => 0.00064741764255082
109 => 0.00063783639219405
110 => 0.00064593439938602
111 => 0.00064452717135424
112 => 0.00063370996329903
113 => 0.00064794819931187
114 => 0.00064795526129929
115 => 0.00063873351614525
116 => 0.00062796453670492
117 => 0.00062603929753293
118 => 0.00062458888843633
119 => 0.00063474057710352
120 => 0.00064384254941901
121 => 0.00066077906332785
122 => 0.00066503730532618
123 => 0.00068165750733287
124 => 0.00067176098626084
125 => 0.00067614798587067
126 => 0.00068091069452612
127 => 0.00068319411219836
128 => 0.0006794734056364
129 => 0.00070529142050086
130 => 0.00070747125199896
131 => 0.0007082021306448
201 => 0.00069949644129593
202 => 0.00070722913102969
203 => 0.00070361126158303
204 => 0.00071302395281016
205 => 0.00071449998298185
206 => 0.00071324983793773
207 => 0.00071371835321177
208 => 0.00069168723213487
209 => 0.00069054480228361
210 => 0.00067496769019857
211 => 0.00068131547851342
212 => 0.00066944859251621
213 => 0.0006732117043084
214 => 0.00067487044813015
215 => 0.00067400401449055
216 => 0.0006816743729406
217 => 0.00067515300130735
218 => 0.00065794202935445
219 => 0.00064072636828375
220 => 0.00064051023968258
221 => 0.00063597766000432
222 => 0.00063270143508032
223 => 0.00063333255223101
224 => 0.00063555669138793
225 => 0.00063257216406926
226 => 0.00063320906429207
227 => 0.00064378585163478
228 => 0.00064590695090617
229 => 0.00063869862681502
301 => 0.00060975616543285
302 => 0.000602653612813
303 => 0.00060775878678641
304 => 0.00060531884244243
305 => 0.00048853954904967
306 => 0.00051597511182056
307 => 0.00049967383204578
308 => 0.00050718621175181
309 => 0.0004905468262977
310 => 0.00049848801318131
311 => 0.00049702156592962
312 => 0.00054113713898788
313 => 0.00054044833499356
314 => 0.00054077802901495
315 => 0.0005250408743611
316 => 0.00055011058903499
317 => 0.00056246083196114
318 => 0.00056017513068658
319 => 0.00056075039245389
320 => 0.00055086548935816
321 => 0.00054087373648424
322 => 0.00052979134482732
323 => 0.00055038105870087
324 => 0.00054809183399627
325 => 0.00055334249183158
326 => 0.00056669639306172
327 => 0.0005686628057444
328 => 0.0005713056843313
329 => 0.0005703584004908
330 => 0.00059292654472902
331 => 0.00059019339355236
401 => 0.00059677950150684
402 => 0.00058323137775525
403 => 0.00056790038973062
404 => 0.00057081430934634
405 => 0.00057053367545509
406 => 0.00056696088392282
407 => 0.00056373552747778
408 => 0.00055836621773534
409 => 0.00057535550826874
410 => 0.00057466577409917
411 => 0.00058583176857621
412 => 0.00058385807059171
413 => 0.00057067723240539
414 => 0.00057114798861982
415 => 0.00057431405039958
416 => 0.00058527182636877
417 => 0.00058852484033871
418 => 0.00058701791465764
419 => 0.00059058469596994
420 => 0.0005934037344898
421 => 0.00059093872380536
422 => 0.0006258380768496
423 => 0.00061134543229122
424 => 0.0006184090464098
425 => 0.00062009367675585
426 => 0.00061577853154841
427 => 0.00061671433203013
428 => 0.00061813181476959
429 => 0.00062673849239197
430 => 0.00064932490483535
501 => 0.00065932827315561
502 => 0.00068942390030462
503 => 0.00065849763267022
504 => 0.00065666259593442
505 => 0.00066208372718482
506 => 0.00067975304626696
507 => 0.00069407236978828
508 => 0.0006988229155019
509 => 0.00069945077854092
510 => 0.00070836311810996
511 => 0.00071347150494565
512 => 0.00070728092566848
513 => 0.00070203505791175
514 => 0.0006832450107482
515 => 0.00068542000987098
516 => 0.00070040359698409
517 => 0.00072156879631022
518 => 0.00073973073919572
519 => 0.00073337105980483
520 => 0.00078189092432333
521 => 0.00078670147070446
522 => 0.00078603680873818
523 => 0.00079699594929969
524 => 0.00077524428707525
525 => 0.0007659450300557
526 => 0.00070316927406388
527 => 0.00072080670090777
528 => 0.00074644373663512
529 => 0.00074305057882266
530 => 0.00072443227819752
531 => 0.00073971661554515
601 => 0.0007346631356326
602 => 0.00073067724635651
603 => 0.00074893737783297
604 => 0.00072885961318974
605 => 0.00074624344557412
606 => 0.00072394850072844
607 => 0.00073340011028459
608 => 0.0007280349195776
609 => 0.00073150685549806
610 => 0.00071120998905034
611 => 0.00072216168550695
612 => 0.00071075436247191
613 => 0.00071074895391551
614 => 0.00071049713662727
615 => 0.00072391780159018
616 => 0.0007243554489928
617 => 0.00071443755730771
618 => 0.0007130082341693
619 => 0.00071829319095058
620 => 0.00071210589069208
621 => 0.00071500088954063
622 => 0.00071219357725802
623 => 0.00071156159213216
624 => 0.00070652582712591
625 => 0.00070435628109998
626 => 0.00070520701599906
627 => 0.00070230301920459
628 => 0.00070055325609377
629 => 0.00071014906470363
630 => 0.00070502241125719
701 => 0.0007093633315364
702 => 0.00070441630501043
703 => 0.00068726775575457
704 => 0.00067740544373491
705 => 0.00064501342386195
706 => 0.00065419976051574
707 => 0.00066029031122116
708 => 0.00065827738424936
709 => 0.00066260193028413
710 => 0.00066286742228816
711 => 0.00066146146828872
712 => 0.00065983355367124
713 => 0.00065904117486478
714 => 0.00066494691730439
715 => 0.00066837539956874
716 => 0.00066090157946551
717 => 0.00065915056798518
718 => 0.00066670701275046
719 => 0.00067131643969207
720 => 0.00070534985841563
721 => 0.00070282855283009
722 => 0.00070915653506855
723 => 0.0007084441013793
724 => 0.00071507683489184
725 => 0.0007259185509825
726 => 0.00070387431077868
727 => 0.00070770042864559
728 => 0.00070676235290259
729 => 0.00071700401788801
730 => 0.00071703599124818
731 => 0.00071089560148031
801 => 0.00071422440638992
802 => 0.00071236635881036
803 => 0.00071572410191681
804 => 0.00070279487925683
805 => 0.00071854127683335
806 => 0.00072746846958379
807 => 0.00072759242366379
808 => 0.00073182384217692
809 => 0.00073612320845349
810 => 0.00074437546762548
811 => 0.0007358930574241
812 => 0.00072063402721782
813 => 0.00072173567991234
814 => 0.00071278931608546
815 => 0.00071293970607768
816 => 0.00071213691251292
817 => 0.00071454615643225
818 => 0.00070332357281358
819 => 0.0007059574907575
820 => 0.00070226999021181
821 => 0.00070769241273956
822 => 0.00070185878245826
823 => 0.00070676190053407
824 => 0.00070887792375465
825 => 0.00071668609499331
826 => 0.00070070550921767
827 => 0.0006681200130306
828 => 0.00067496987939008
829 => 0.00066483838899902
830 => 0.00066577609700802
831 => 0.00066767041642131
901 => 0.00066153030742008
902 => 0.00066270164672044
903 => 0.00066265979823805
904 => 0.00066229917062513
905 => 0.00066070189113165
906 => 0.00065838551985398
907 => 0.00066761323008272
908 => 0.00066918119786432
909 => 0.0006726665960127
910 => 0.00068303677673413
911 => 0.00068200055113435
912 => 0.00068369067808017
913 => 0.00068000114044711
914 => 0.00066594724407697
915 => 0.0006667104382652
916 => 0.00065719339450856
917 => 0.00067242322380661
918 => 0.00066881659920491
919 => 0.00066649138486171
920 => 0.00066585692858521
921 => 0.00067625281497883
922 => 0.00067936342712335
923 => 0.0006774251023803
924 => 0.00067344954178233
925 => 0.00068108379339941
926 => 0.00068312639706892
927 => 0.0006835836607022
928 => 0.0006971100908451
929 => 0.00068433963788729
930 => 0.00068741361284162
1001 => 0.00071139588793046
1002 => 0.00068964727375263
1003 => 0.0007011679997346
1004 => 0.00070060412014875
1005 => 0.00070649773372101
1006 => 0.00070012067181413
1007 => 0.00070019972313931
1008 => 0.00070543285272351
1009 => 0.00069808386602239
1010 => 0.00069626415356616
1011 => 0.0006937502338409
1012 => 0.00069923928559108
1013 => 0.00070252972386686
1014 => 0.00072904823980901
1015 => 0.00074618041049889
1016 => 0.00074543665778636
1017 => 0.00075223316533218
1018 => 0.00074917127643391
1019 => 0.00073928362949594
1020 => 0.00075616063714898
1021 => 0.00075082004576356
1022 => 0.00075126031762856
1023 => 0.00075124393068775
1024 => 0.00075479495707645
1025 => 0.00075227872943327
1026 => 0.00074731898646309
1027 => 0.00075061149530821
1028 => 0.00076038906948476
1029 => 0.00079073895974138
1030 => 0.00080772316041156
1031 => 0.00078971648953505
1101 => 0.00080213724998673
1102 => 0.00079468921968519
1103 => 0.00079333569101969
1104 => 0.00080113684647034
1105 => 0.0008089516568109
1106 => 0.00080845388717656
1107 => 0.00080278073616426
1108 => 0.0007995761171083
1109 => 0.00082384256622622
1110 => 0.00084172167256814
1111 => 0.00084050243737867
1112 => 0.00084588374498846
1113 => 0.00086168343056839
1114 => 0.00086312795580971
1115 => 0.00086294597883133
1116 => 0.00085936557230009
1117 => 0.00087492241460197
1118 => 0.00088790020614678
1119 => 0.000858536811636
1120 => 0.00086971800787065
1121 => 0.00087473760709603
1122 => 0.00088210786800686
1123 => 0.00089454273356258
1124 => 0.0009080502957413
1125 => 0.00090996041313625
1126 => 0.000908605093437
1127 => 0.00089969649307738
1128 => 0.00091447662879206
1129 => 0.00092313448565688
1130 => 0.00092829004128836
1201 => 0.00094136367256711
1202 => 0.00087476860643196
1203 => 0.00082762930863196
1204 => 0.00082026782658078
1205 => 0.00083523768980784
1206 => 0.0008391851233584
1207 => 0.00083759391784383
1208 => 0.00078453435245247
1209 => 0.00081998847894992
1210 => 0.00085813413799355
1211 => 0.00085959946811051
1212 => 0.00087869598261587
1213 => 0.00088491459053139
1214 => 0.00090028978774558
1215 => 0.00089932806497361
1216 => 0.00090307168082245
1217 => 0.00090221108836919
1218 => 0.00093069040357872
1219 => 0.00096210731747408
1220 => 0.00096101944964555
1221 => 0.00095650289656504
1222 => 0.00096321074807634
1223 => 0.00099563637005744
1224 => 0.00099265113839543
1225 => 0.00099555103667365
1226 => 0.0010337826724173
1227 => 0.0010834892372709
1228 => 0.0010603955474389
1229 => 0.0011105022093441
1230 => 0.0011420416969734
1231 => 0.0011965859795844
]
'min_raw' => 0.00048853954904967
'max_raw' => 0.0011965859795844
'avg_raw' => 0.00084256276431706
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000488'
'max' => '$0.001196'
'avg' => '$0.000842'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00021783647848712
'max_diff' => 0.00048544726813755
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011897567667653
102 => 0.0012109904557213
103 => 0.0011775310505193
104 => 0.0011007014929139
105 => 0.0010885429213311
106 => 0.0011128846895439
107 => 0.0011727265514601
108 => 0.0011110000563531
109 => 0.0011234872459205
110 => 0.001119890934485
111 => 0.001119699302332
112 => 0.0011270131221898
113 => 0.0011164040450228
114 => 0.0010731807561078
115 => 0.0010929897347011
116 => 0.0010853405367609
117 => 0.001093827892161
118 => 0.0011396306488037
119 => 0.0011193801582906
120 => 0.0010980479115514
121 => 0.0011248032829669
122 => 0.001158872064922
123 => 0.0011567401017747
124 => 0.0011526032021776
125 => 0.0011759226886057
126 => 0.0012144396482165
127 => 0.0012248506276256
128 => 0.0012325357997823
129 => 0.0012335954551806
130 => 0.0012445105643559
131 => 0.0011858172713587
201 => 0.001278965034696
202 => 0.0012950490802693
203 => 0.0012920259463169
204 => 0.0013099026860515
205 => 0.0013046428957325
206 => 0.001297022284796
207 => 0.001325360719767
208 => 0.0012928729908665
209 => 0.0012467607497837
210 => 0.0012214626623289
211 => 0.0012547772246279
212 => 0.0012751212653058
213 => 0.00128856738207
214 => 0.0012926361688784
215 => 0.0011903734646157
216 => 0.0011352595387677
217 => 0.0011705869333538
218 => 0.0012136887929154
219 => 0.0011855778383526
220 => 0.0011866797345504
221 => 0.0011466009007726
222 => 0.0012172348803873
223 => 0.0012069441036827
224 => 0.0012603326714301
225 => 0.0012475910612671
226 => 0.0012911273657329
227 => 0.0012796627977066
228 => 0.0013272515786083
301 => 0.0013462360317248
302 => 0.0013781138832016
303 => 0.0014015633605142
304 => 0.0014153333421091
305 => 0.0014145066440641
306 => 0.0014690701713208
307 => 0.001436895965602
308 => 0.001396477580341
309 => 0.00139574653927
310 => 0.0014166797937296
311 => 0.001460550152319
312 => 0.0014719250980135
313 => 0.0014782821408581
314 => 0.0014685461084513
315 => 0.0014336233140896
316 => 0.0014185438285468
317 => 0.001431391987124
318 => 0.0014156797932389
319 => 0.0014428034479476
320 => 0.0014800500191626
321 => 0.0014723587494956
322 => 0.0014980695108528
323 => 0.0015246774440064
324 => 0.0015627279834533
325 => 0.0015726758034721
326 => 0.0015891191716814
327 => 0.0016060447989339
328 => 0.001611480854249
329 => 0.0016218599705543
330 => 0.0016218052674881
331 => 0.0016530834330694
401 => 0.0016875842183097
402 => 0.0017006074660429
403 => 0.0017305537060993
404 => 0.0016792718194441
405 => 0.0017181697195559
406 => 0.0017532565991344
407 => 0.0017114245748387
408 => 0.0017690802747187
409 => 0.0017713189148944
410 => 0.0018051197237117
411 => 0.001770856128524
412 => 0.0017505105150747
413 => 0.0018092475387624
414 => 0.001837668534326
415 => 0.0018291078991645
416 => 0.001763961042895
417 => 0.001726042778266
418 => 0.0016268033658449
419 => 0.0017443567366813
420 => 0.0018016135545368
421 => 0.001763812761569
422 => 0.0017828772828011
423 => 0.001886887128952
424 => 0.0019264873442274
425 => 0.0019182507762765
426 => 0.0019196426206748
427 => 0.0019410101780427
428 => 0.0020357656947406
429 => 0.0019789859927195
430 => 0.0020223919474198
501 => 0.002045414309281
502 => 0.0020667987620278
503 => 0.0020142853047073
504 => 0.0019459660683091
505 => 0.0019243264982953
506 => 0.0017600542176805
507 => 0.0017515031320762
508 => 0.001746703148602
509 => 0.0017164399317687
510 => 0.0016926613331305
511 => 0.0016737517086506
512 => 0.0016241272071235
513 => 0.0016408740196464
514 => 0.0015617829216506
515 => 0.0016123826033319
516 => 0.0014861513012093
517 => 0.0015912804806004
518 => 0.0015340634478951
519 => 0.0015724831465096
520 => 0.0015723491038005
521 => 0.0015016062576747
522 => 0.0014608032603949
523 => 0.001486804518338
524 => 0.0015146799308354
525 => 0.001519202622729
526 => 0.0015553438226546
527 => 0.0015654300547014
528 => 0.0015348683007186
529 => 0.0014835354380487
530 => 0.001495458891269
531 => 0.0014605616319959
601 => 0.0013994055274236
602 => 0.0014433289094106
603 => 0.0014583262831957
604 => 0.0014649499778408
605 => 0.00140480997282
606 => 0.0013859126775394
607 => 0.0013758519160957
608 => 0.0014757721186064
609 => 0.001481245972857
610 => 0.0014532409605857
611 => 0.0015798262715961
612 => 0.0015511761171053
613 => 0.0015831853591298
614 => 0.001494376962865
615 => 0.0014977695631987
616 => 0.0014557262451892
617 => 0.001479267693939
618 => 0.0014626293567389
619 => 0.0014773657775211
620 => 0.0014861987273774
621 => 0.0015282351464921
622 => 0.0015917604689827
623 => 0.0015219563072674
624 => 0.001491541634394
625 => 0.0015104107263861
626 => 0.0015606616049007
627 => 0.0016367942581454
628 => 0.0015917221951121
629 => 0.001611724411313
630 => 0.0016160940057163
701 => 0.001582859535094
702 => 0.0016380196604824
703 => 0.0016675804197982
704 => 0.0016979036421189
705 => 0.0017242324464226
706 => 0.0016857918803021
707 => 0.0017269287962897
708 => 0.0016937797036469
709 => 0.001664041540656
710 => 0.0016640866411739
711 => 0.0016454314571245
712 => 0.0016092846873243
713 => 0.0016026186683823
714 => 0.0016372961407444
715 => 0.00166510418961
716 => 0.0016673945937062
717 => 0.0016827905583873
718 => 0.0016919017316946
719 => 0.0017812036161451
720 => 0.001817121572815
721 => 0.0018610413703389
722 => 0.0018781506066586
723 => 0.0019296432739802
724 => 0.001888058763088
725 => 0.0018790616925777
726 => 0.0017541573247786
727 => 0.0017746104080084
728 => 0.0018073577676883
729 => 0.0017546973166781
730 => 0.0017880982520791
731 => 0.0017946923042558
801 => 0.0017529079347035
802 => 0.0017752267718774
803 => 0.0017159545574175
804 => 0.0015930524412856
805 => 0.0016381564856711
806 => 0.001671368244196
807 => 0.0016239709698007
808 => 0.0017089287496265
809 => 0.0016592981685368
810 => 0.0016435676570194
811 => 0.0015821973232578
812 => 0.0016111617584325
813 => 0.0016503365717371
814 => 0.0016261310916757
815 => 0.0016763610972741
816 => 0.0017475001810547
817 => 0.0017981981285624
818 => 0.0018020900874531
819 => 0.0017694947037044
820 => 0.0018217290141827
821 => 0.0018221094841091
822 => 0.001763188968506
823 => 0.00172710048077
824 => 0.0017189011004255
825 => 0.0017393847601092
826 => 0.0017642557044574
827 => 0.0018034702517715
828 => 0.0018271667814219
829 => 0.001888954763082
830 => 0.001905672819319
831 => 0.0019240408945254
901 => 0.0019485863075059
902 => 0.0019780593691036
903 => 0.0019135739882301
904 => 0.001916136112628
905 => 0.0018560882188194
906 => 0.0017919184325459
907 => 0.0018406153014507
908 => 0.0019042799796708
909 => 0.0018896752321439
910 => 0.0018880318996992
911 => 0.0018907955290487
912 => 0.0018797840263599
913 => 0.0018299794078037
914 => 0.0018049678401582
915 => 0.0018372391435523
916 => 0.0018543899050759
917 => 0.0018809892404953
918 => 0.001877710310961
919 => 0.0019462273424412
920 => 0.001972850989027
921 => 0.0019660395209403
922 => 0.0019672929949954
923 => 0.0020154938354278
924 => 0.0020691030832475
925 => 0.0021193152181939
926 => 0.0021703931585229
927 => 0.0021088167078504
928 => 0.0020775519837064
929 => 0.002109809198459
930 => 0.0020926930662581
1001 => 0.0021910474388592
1002 => 0.0021978572822216
1003 => 0.002296204542682
1004 => 0.0023895478038329
1005 => 0.0023309205739222
1006 => 0.0023862034110995
1007 => 0.0024459963067826
1008 => 0.002561346503603
1009 => 0.0025225006153828
1010 => 0.0024927452737987
1011 => 0.0024646266197786
1012 => 0.0025231370750839
1013 => 0.0025984098411068
1014 => 0.0026146228739546
1015 => 0.0026408941810232
1016 => 0.0026132731139431
1017 => 0.0026465396468803
1018 => 0.0027639851262037
1019 => 0.0027322503209706
1020 => 0.0026871817959151
1021 => 0.0027798937222572
1022 => 0.0028134458079919
1023 => 0.003048931917042
1024 => 0.0033462428571636
1025 => 0.0032231541757044
1026 => 0.0031467490590757
1027 => 0.003164706073837
1028 => 0.003273273964559
1029 => 0.0033081425252863
1030 => 0.0032133577573158
1031 => 0.0032468373397597
1101 => 0.0034313131306651
1102 => 0.0035302784737939
1103 => 0.0033958702450061
1104 => 0.0030250432724884
1105 => 0.0026831238683392
1106 => 0.002773816291151
1107 => 0.0027635345849177
1108 => 0.002961730808422
1109 => 0.0027314934563612
1110 => 0.0027353700628933
1111 => 0.0029376647744062
1112 => 0.0028836960135839
1113 => 0.0027962735328485
1114 => 0.0026837621491961
1115 => 0.0024757744504714
1116 => 0.0022915539455449
1117 => 0.0026528527791543
1118 => 0.0026372729164698
1119 => 0.0026147109664963
1120 => 0.0026649201447044
1121 => 0.0029087216619587
1122 => 0.0029031012478775
1123 => 0.0028673470410533
1124 => 0.0028944662918064
1125 => 0.0027915193970718
1126 => 0.0028180511559021
1127 => 0.0026830697065587
1128 => 0.0027440869589852
1129 => 0.0027960859634682
1130 => 0.0028065255334766
1201 => 0.0028300464177632
1202 => 0.0026290630367895
1203 => 0.0027192986742846
1204 => 0.0027723036573772
1205 => 0.0025328252154272
1206 => 0.0027675699385617
1207 => 0.0026255643632744
1208 => 0.0025773655381697
1209 => 0.0026422589064608
1210 => 0.0026169698977269
1211 => 0.0025952278930379
1212 => 0.0025830954808464
1213 => 0.0026307460084997
1214 => 0.00262852305443
1215 => 0.0025505575426203
1216 => 0.0024488547107454
1217 => 0.0024829895194043
1218 => 0.002470588023403
1219 => 0.0024256434020695
1220 => 0.002455930650214
1221 => 0.002322560937411
1222 => 0.0020931052784878
1223 => 0.0022446907151894
1224 => 0.0022388548407696
1225 => 0.0022359121282513
1226 => 0.0023498243944188
1227 => 0.0023388743584299
1228 => 0.002318999935887
1229 => 0.0024252783927137
1230 => 0.002386485326325
1231 => 0.0025060364161391
]
'min_raw' => 0.0010731807561078
'max_raw' => 0.0035302784737939
'avg_raw' => 0.0023017296149508
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001073'
'max' => '$0.00353'
'avg' => '$0.0023017'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00058464120705813
'max_diff' => 0.0023336924942094
'year' => 2029
]
4 => [
'items' => [
101 => 0.0025847804959704
102 => 0.002564808450221
103 => 0.0026388676379055
104 => 0.0024837759164532
105 => 0.0025352911651198
106 => 0.0025459083864729
107 => 0.0024239669330537
108 => 0.002340665919739
109 => 0.002335110691852
110 => 0.0021906782143512
111 => 0.0022678328780139
112 => 0.0023357257891602
113 => 0.0023032103534239
114 => 0.0022929169378408
115 => 0.0023455037656854
116 => 0.0023495902125847
117 => 0.0022564187902195
118 => 0.0022757920792844
119 => 0.0023565819152266
120 => 0.0022737563827041
121 => 0.0021128399024868
122 => 0.0020729303905485
123 => 0.0020676057259777
124 => 0.0019593679643377
125 => 0.002075597334971
126 => 0.0020248600999361
127 => 0.0021851384174858
128 => 0.0020935883020913
129 => 0.0020896417595955
130 => 0.0020836759817813
131 => 0.0019905112690921
201 => 0.0020109084202447
202 => 0.0020787116572496
203 => 0.0021029046160711
204 => 0.0021003810922589
205 => 0.0020783793843983
206 => 0.00208845165359
207 => 0.0020560053651126
208 => 0.0020445479053401
209 => 0.0020083850106757
210 => 0.0019552355457735
211 => 0.0019626263048528
212 => 0.0018573233075677
213 => 0.0017999486457937
214 => 0.0017840680956005
215 => 0.0017628319601883
216 => 0.0017864667736025
217 => 0.001857024997407
218 => 0.0017719168097366
219 => 0.0016260047916209
220 => 0.0016347743525316
221 => 0.001654476952192
222 => 0.0016177612880706
223 => 0.0015830129932917
224 => 0.0016132238163837
225 => 0.0015513989707839
226 => 0.001661948189411
227 => 0.0016589581428578
228 => 0.0017001640552442
301 => 0.0017259309578898
302 => 0.0016665465894254
303 => 0.001651611581349
304 => 0.0016601192407076
305 => 0.0015195065825555
306 => 0.0016886730011924
307 => 0.0016901359594055
308 => 0.0016776092229968
309 => 0.0017676851184937
310 => 0.0019577733533685
311 => 0.001886254513127
312 => 0.0018585602565172
313 => 0.0018059134544574
314 => 0.0018760621923442
315 => 0.0018706758637653
316 => 0.0018463168432269
317 => 0.0018315844316006
318 => 0.0018587293517426
319 => 0.0018282208755954
320 => 0.0018227407149626
321 => 0.0017895369040009
322 => 0.0017776846541647
323 => 0.0017689097202377
324 => 0.0017592493801912
325 => 0.001780557683127
326 => 0.0017322702653338
327 => 0.0016740403731491
328 => 0.0016691991876702
329 => 0.001682566126419
330 => 0.0016766522510742
331 => 0.0016691708743102
401 => 0.0016548868886361
402 => 0.0016506491352157
403 => 0.0016644197779664
404 => 0.0016488735251792
405 => 0.001671812868015
406 => 0.0016655746360554
407 => 0.0016307283794324
408 => 0.0015872970419437
409 => 0.0015869104119397
410 => 0.0015775532015194
411 => 0.0015656353871832
412 => 0.0015623201238775
413 => 0.0016106795451277
414 => 0.0017107820998399
415 => 0.0016911295730988
416 => 0.0017053305377412
417 => 0.0017751852285706
418 => 0.0017973899341815
419 => 0.0017816295600862
420 => 0.001760055787967
421 => 0.0017610049244515
422 => 0.0018347290346077
423 => 0.0018393271169263
424 => 0.0018509449875478
425 => 0.0018658772345063
426 => 0.0017841725863121
427 => 0.0017571566428691
428 => 0.0017443549900784
429 => 0.001704930854346
430 => 0.0017474464047634
501 => 0.0017226744142326
502 => 0.0017260170020869
503 => 0.0017238401373617
504 => 0.0017250288527006
505 => 0.0016619172886514
506 => 0.0016849118255448
507 => 0.0016466789480958
508 => 0.0015954894170335
509 => 0.001595317811776
510 => 0.0016078463769833
511 => 0.0016003938961552
512 => 0.0015803394618675
513 => 0.0015831880996038
514 => 0.0015582310355563
515 => 0.0015862183390414
516 => 0.001587020914762
517 => 0.0015762442784415
518 => 0.001619362580964
519 => 0.0016370281846886
520 => 0.0016299347718046
521 => 0.0016365304919311
522 => 0.0016919462243107
523 => 0.0017009814066465
524 => 0.0017049942378095
525 => 0.0016996175756494
526 => 0.0016375433897909
527 => 0.0016402966438936
528 => 0.0016200950921011
529 => 0.0016030269096237
530 => 0.0016037095474119
531 => 0.0016124848119138
601 => 0.0016508069066558
602 => 0.0017314534958295
603 => 0.0017345139749367
604 => 0.0017382233648952
605 => 0.0017231354117441
606 => 0.0017185847407014
607 => 0.0017245882504345
608 => 0.001754874869132
609 => 0.0018327802751585
610 => 0.0018052433015416
611 => 0.0017828553133525
612 => 0.0018024956147526
613 => 0.0017994721442978
614 => 0.0017739510109464
615 => 0.001773234717734
616 => 0.0017242515032328
617 => 0.0017061435241255
618 => 0.0016910111414247
619 => 0.0016744869745563
620 => 0.0016646908945416
621 => 0.0016797421256829
622 => 0.0016831845203259
623 => 0.0016502747403849
624 => 0.0016457892589848
625 => 0.0016726640956915
626 => 0.0016608374820518
627 => 0.0016730014474662
628 => 0.0016758235917829
629 => 0.0016753691615484
630 => 0.0016630208186306
701 => 0.0016708912841735
702 => 0.0016522752868658
703 => 0.0016320331858261
704 => 0.0016191199864902
705 => 0.0016078515073823
706 => 0.0016141039145192
707 => 0.0015918152247205
708 => 0.0015846846242712
709 => 0.0016682249475386
710 => 0.0017299370825461
711 => 0.0017290397636624
712 => 0.0017235775657296
713 => 0.0017154618475678
714 => 0.0017542811537987
715 => 0.0017407572837244
716 => 0.0017505970291606
717 => 0.001753101657347
718 => 0.0017606824125213
719 => 0.0017633918809082
720 => 0.0017552019855962
721 => 0.0017277156966178
722 => 0.0016592224778016
723 => 0.0016273386995487
724 => 0.0016168165216589
725 => 0.0016171989828407
726 => 0.0016066489960639
727 => 0.0016097564399869
728 => 0.0016055683538814
729 => 0.0015976371320044
730 => 0.0016136141839179
731 => 0.0016154553903143
801 => 0.0016117261554862
802 => 0.0016126045252885
803 => 0.0015817280536884
804 => 0.001584075524764
805 => 0.0015710045075129
806 => 0.0015685538493518
807 => 0.0015355114559648
808 => 0.0014769720665083
809 => 0.0015094085708233
810 => 0.0014702298348735
811 => 0.0014553922539146
812 => 0.0015256310544568
813 => 0.0015185810270034
814 => 0.0015065144445765
815 => 0.001488665454271
816 => 0.0014820450901429
817 => 0.001441821853453
818 => 0.0014394452500467
819 => 0.001459380972269
820 => 0.0014501813224097
821 => 0.0014372615298275
822 => 0.0013904673507529
823 => 0.0013378552004529
824 => 0.0013394432305623
825 => 0.0013561781766889
826 => 0.0014048372895669
827 => 0.0013858253323542
828 => 0.0013720319392594
829 => 0.0013694488513606
830 => 0.0014017816044748
831 => 0.0014475392240525
901 => 0.0014690076753894
902 => 0.0014477330921211
903 => 0.0014232939963675
904 => 0.0014247814908861
905 => 0.0014346771255095
906 => 0.0014357170167916
907 => 0.0014198096778357
908 => 0.001424287500574
909 => 0.0014174852783738
910 => 0.0013757400532868
911 => 0.0013749850145406
912 => 0.0013647400630715
913 => 0.0013644298500127
914 => 0.001347000631841
915 => 0.0013445621637362
916 => 0.0013099553931784
917 => 0.0013327336743585
918 => 0.0013174551992563
919 => 0.0012944269334494
920 => 0.0012904568517444
921 => 0.0012903375062943
922 => 0.001313982386252
923 => 0.0013324573701695
924 => 0.001317720974872
925 => 0.0013143657833158
926 => 0.0013501904512393
927 => 0.0013456314356969
928 => 0.0013416833576397
929 => 0.0014434421310933
930 => 0.0013628921215687
1001 => 0.0013277677197821
1002 => 0.0012842946026283
1003 => 0.0012984496687841
1004 => 0.0013014323492043
1005 => 0.0011968873390677
1006 => 0.0011544734414755
1007 => 0.0011399185901559
1008 => 0.001131542067446
1009 => 0.0011353593540307
1010 => 0.0010971818715437
1011 => 0.0011228377711722
1012 => 0.0010897792984008
1013 => 0.0010842369378591
1014 => 0.0011433495823333
1015 => 0.0011515747614809
1016 => 0.0011164835918746
1017 => 0.0011390178035061
1018 => 0.0011308465851196
1019 => 0.0010903459910329
1020 => 0.001088799166241
1021 => 0.001068477391793
1022 => 0.0010366777498528
1023 => 0.0010221444601878
1024 => 0.0010145753967465
1025 => 0.0010176985398405
1026 => 0.0010161193831224
1027 => 0.0010058143173542
1028 => 0.0010167100574296
1029 => 0.00098887594396759
1030 => 0.00097779217571233
1031 => 0.00097278589473291
1101 => 0.0009480815169636
1102 => 0.00098739716808122
1103 => 0.00099514284663692
1104 => 0.0010029037865721
1105 => 0.0010704574700894
1106 => 0.0010670826789656
1107 => 0.0010975891471348
1108 => 0.0010964037218795
1109 => 0.0010877027829856
1110 => 0.0010509949530274
1111 => 0.0010656260397946
1112 => 0.0010205938289009
1113 => 0.0010543350231951
1114 => 0.0010389369511852
1115 => 0.0010491289195595
1116 => 0.0010308028414498
1117 => 0.0010409452497409
1118 => 0.0009969796343682
1119 => 0.00095592516134606
1120 => 0.00097244667974495
1121 => 0.00099040745970935
1122 => 0.0010293510069938
1123 => 0.0010061565515085
1124 => 0.0010144981547805
1125 => 0.00098655518018682
1126 => 0.00092890084208407
1127 => 0.00092922715937649
1128 => 0.00092035829552741
1129 => 0.00091269430228648
1130 => 0.0010088207137365
1201 => 0.00099686587493897
1202 => 0.00097781740392578
1203 => 0.0010033145393331
1204 => 0.0010100563866287
1205 => 0.0010102483175433
1206 => 0.0010288503693601
1207 => 0.0010387782877494
1208 => 0.0010405281263956
1209 => 0.0010697988568533
1210 => 0.0010796100196125
1211 => 0.0011200208104897
1212 => 0.0010379359732366
1213 => 0.0010362454900308
1214 => 0.0010036733363164
1215 => 0.00098301556148529
1216 => 0.0010050877918325
1217 => 0.0010246407747603
1218 => 0.0010042809019996
1219 => 0.0010069394715618
1220 => 0.00097960800584338
1221 => 0.00098937771877273
1222 => 0.00099779271166994
1223 => 0.00099314644720252
1224 => 0.00098619076441305
1225 => 0.0010230376531395
1226 => 0.0010209586072734
1227 => 0.0010552712771618
1228 => 0.0010820204570623
1229 => 0.001129959769432
1230 => 0.0010799325978414
1231 => 0.0010781094088686
]
'min_raw' => 0.00091269430228648
'max_raw' => 0.0026388676379055
'avg_raw' => 0.001775780970096
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000912'
'max' => '$0.002638'
'avg' => '$0.001775'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00016048645382132
'max_diff' => -0.00089141083588837
'year' => 2030
]
5 => [
'items' => [
101 => 0.001095931373526
102 => 0.0010796072911625
103 => 0.0010899235477281
104 => 0.0011282976610105
105 => 0.0011291084455551
106 => 0.0011155267597974
107 => 0.0011147003129848
108 => 0.0011173088243019
109 => 0.0011325869565616
110 => 0.0011272483077005
111 => 0.0011334263273206
112 => 0.0011411520354568
113 => 0.0011731088399405
114 => 0.0011808135173122
115 => 0.0011620951457161
116 => 0.0011637852050905
117 => 0.0011567840202827
118 => 0.001150020963483
119 => 0.0011652233275036
120 => 0.0011930059465545
121 => 0.0011928331123233
122 => 0.0011992781399261
123 => 0.0012032933387292
124 => 0.0011860571661612
125 => 0.0011748370516111
126 => 0.001179139557484
127 => 0.0011860193580713
128 => 0.0011769085308772
129 => 0.0011206722848897
130 => 0.001137730769537
131 => 0.0011348914035744
201 => 0.001130847801165
202 => 0.0011480002393872
203 => 0.001146345844877
204 => 0.00109679030628
205 => 0.0010999626910784
206 => 0.0010969832295068
207 => 0.0011066104793851
208 => 0.0010790873880752
209 => 0.0010875533055912
210 => 0.0010928630496943
211 => 0.0010959905297623
212 => 0.0011072891323013
213 => 0.0011059633717014
214 => 0.001107206721161
215 => 0.0011239595660059
216 => 0.0012086897063491
217 => 0.0012133013809414
218 => 0.0011905918086079
219 => 0.0011996638348286
220 => 0.0011822475283189
221 => 0.001193939211558
222 => 0.0012019383642937
223 => 0.0011657917312298
224 => 0.0011636513622095
225 => 0.0011461631724074
226 => 0.0011555603350254
227 => 0.0011406087736203
228 => 0.0011442773638057
301 => 0.0011340196658254
302 => 0.0011524814799026
303 => 0.0011731246567168
304 => 0.0011783399384038
305 => 0.0011646207776052
306 => 0.0011546872010503
307 => 0.0011372471129433
308 => 0.0011662503681429
309 => 0.0011747318038214
310 => 0.0011662058187719
311 => 0.0011642301617395
312 => 0.001160486295233
313 => 0.0011650244407172
314 => 0.0011746856121012
315 => 0.0011701295820904
316 => 0.0011731389201794
317 => 0.0011616704265998
318 => 0.0011860628720515
319 => 0.0012248039457906
320 => 0.0012249285046774
321 => 0.0012203724501079
322 => 0.0012185082107396
323 => 0.0012231829992125
324 => 0.0012257188801891
325 => 0.0012408362889008
326 => 0.0012570578707526
327 => 0.0013327569152242
328 => 0.0013115009264512
329 => 0.0013786656220627
330 => 0.0014317841760472
331 => 0.0014477121077943
401 => 0.001433059160054
402 => 0.0013829322173714
403 => 0.0013804727504202
404 => 0.0014553835658374
405 => 0.0014342178293493
406 => 0.0014317002323429
407 => 0.0014049172537416
408 => 0.0014207493112314
409 => 0.0014172866080161
410 => 0.0014118205615895
411 => 0.0014420270244093
412 => 0.0014985708262584
413 => 0.0014897579444758
414 => 0.001483179537043
415 => 0.0014543548706176
416 => 0.001471713758028
417 => 0.0014655325907088
418 => 0.0014920908081779
419 => 0.0014763583084858
420 => 0.0014340574780783
421 => 0.0014407940247461
422 => 0.0014397758092693
423 => 0.0014607306116299
424 => 0.0014544405000914
425 => 0.0014385475640387
426 => 0.0014983775656908
427 => 0.0014944925381755
428 => 0.0015000006189513
429 => 0.0015024254464519
430 => 0.0015388429141346
501 => 0.0015537619854152
502 => 0.0015571488757911
503 => 0.0015713208396253
504 => 0.0015567962644205
505 => 0.0016149049210862
506 => 0.0016535437870348
507 => 0.001698424818172
508 => 0.0017640080675473
509 => 0.0017886679759913
510 => 0.0017842133842532
511 => 0.0018339378554383
512 => 0.0019232916248449
513 => 0.0018022743357723
514 => 0.0019297058350187
515 => 0.0018893624936247
516 => 0.0017937091569253
517 => 0.0017875502097206
518 => 0.0018523277598915
519 => 0.0019959981315625
520 => 0.0019600103329548
521 => 0.0019960569947088
522 => 0.0019540066490416
523 => 0.0019519184949511
524 => 0.0019940147032778
525 => 0.0020923747885782
526 => 0.0020456475990246
527 => 0.0019786527148227
528 => 0.0020281206947616
529 => 0.0019852669524931
530 => 0.0018887054771551
531 => 0.0019599828137634
601 => 0.0019123216886351
602 => 0.0019262317387523
603 => 0.0020264083347148
604 => 0.0020143548216542
605 => 0.0020299531836798
606 => 0.0020024224829847
607 => 0.0019767044673425
608 => 0.0019286998813013
609 => 0.001914488089972
610 => 0.0019184157178088
611 => 0.0019144861436347
612 => 0.0018876280189296
613 => 0.0018818280094567
614 => 0.0018721610728977
615 => 0.0018751572607571
616 => 0.0018569805918641
617 => 0.0018912837215567
618 => 0.0018976506847058
619 => 0.0019226136418525
620 => 0.0019252053788749
621 => 0.0019947268592029
622 => 0.0019564355960992
623 => 0.0019821246812978
624 => 0.0019798268077226
625 => 0.0017957822547778
626 => 0.0018211419703348
627 => 0.0018605937294242
628 => 0.00184282076543
629 => 0.0018176939525753
630 => 0.0017974027039806
701 => 0.001766659387473
702 => 0.0018099300150844
703 => 0.0018668262890751
704 => 0.0019266483622764
705 => 0.0019985206635303
706 => 0.0019824796025763
707 => 0.0019253047595978
708 => 0.0019278695812876
709 => 0.0019437242997536
710 => 0.001923190998787
711 => 0.0019171353274744
712 => 0.0019428923435064
713 => 0.00194306971792
714 => 0.0019194436736257
715 => 0.001893187648913
716 => 0.0018930776352108
717 => 0.0018884056292163
718 => 0.0019548377885291
719 => 0.0019913687591023
720 => 0.0019955569760059
721 => 0.0019910868587347
722 => 0.0019928072294597
723 => 0.0019715506625882
724 => 0.0020201368710174
725 => 0.0020647243805501
726 => 0.0020527739755221
727 => 0.002034858619535
728 => 0.0020205881755709
729 => 0.0020494123124454
730 => 0.0020481288190038
731 => 0.0020643349475516
801 => 0.0020635997439495
802 => 0.0020581502324622
803 => 0.0020527741701413
804 => 0.0020740896495611
805 => 0.0020679511338043
806 => 0.0020618030832371
807 => 0.002049472226605
808 => 0.0020511481948152
809 => 0.0020332359321669
810 => 0.0020249488998564
811 => 0.0019003318172779
812 => 0.0018670300608322
813 => 0.0018775074713298
814 => 0.0018809569069114
815 => 0.0018664639398289
816 => 0.0018872431316874
817 => 0.0018840047166469
818 => 0.0018966034951602
819 => 0.0018887323253205
820 => 0.0018890553608763
821 => 0.0019122027930646
822 => 0.0019189225911051
823 => 0.0019155048475863
824 => 0.0019178985179935
825 => 0.0019730596422219
826 => 0.0019652174943101
827 => 0.0019610515095318
828 => 0.0019622055157862
829 => 0.0019763003656944
830 => 0.0019802461541184
831 => 0.0019635275713002
901 => 0.0019714121516063
902 => 0.0020049836938472
903 => 0.0020167318336468
904 => 0.0020542262564601
905 => 0.0020382979592388
906 => 0.0020675350381491
907 => 0.0021573998510646
908 => 0.0022291900817936
909 => 0.0021631688187585
910 => 0.0022950024350615
911 => 0.0023976538157625
912 => 0.0023937138847964
913 => 0.0023758142422019
914 => 0.002258948374402
915 => 0.0021514066604806
916 => 0.0022413698706383
917 => 0.002241599205362
918 => 0.0022338712858251
919 => 0.0021858738412875
920 => 0.0022322010787957
921 => 0.0022358783666733
922 => 0.0022338200633316
923 => 0.0021970205351405
924 => 0.0021408344572825
925 => 0.0021518130824055
926 => 0.0021697962943148
927 => 0.0021357503224794
928 => 0.0021248705715598
929 => 0.0021450980984766
930 => 0.0022102754047753
1001 => 0.0021979540125659
1002 => 0.0021976322512207
1003 => 0.0022503483921757
1004 => 0.0022126150121072
1005 => 0.0021519515580267
1006 => 0.0021366332358187
1007 => 0.0020822635116387
1008 => 0.0021198168737881
1009 => 0.0021211683524369
1010 => 0.0021006007597737
1011 => 0.0021536205048168
1012 => 0.0021531319185323
1013 => 0.0022034662755031
1014 => 0.0022996866613102
1015 => 0.0022712295585094
1016 => 0.0022381370440761
1017 => 0.0022417351179509
1018 => 0.0022811971075544
1019 => 0.0022573374878105
1020 => 0.0022659175734256
1021 => 0.0022811841205672
1022 => 0.0022903948075047
1023 => 0.002240409841845
1024 => 0.0022287559552924
1025 => 0.0022049161933642
1026 => 0.0021986968444674
1027 => 0.002218113833125
1028 => 0.002212998142626
1029 => 0.0021210547658897
1030 => 0.0021114461714526
1031 => 0.0021117408533261
1101 => 0.0020875795857503
1102 => 0.0020507278533287
1103 => 0.0021475720058302
1104 => 0.0021397940650513
1105 => 0.0021312078203962
1106 => 0.002132259586374
1107 => 0.0021742963506221
1108 => 0.0021499129044507
1109 => 0.0022147402924655
1110 => 0.0022014137303793
1111 => 0.0021877453922613
1112 => 0.0021858560115857
1113 => 0.0021805948675381
1114 => 0.0021625524470133
1115 => 0.0021407651400484
1116 => 0.0021263792728059
1117 => 0.0019614724791803
1118 => 0.0019920782208585
1119 => 0.0020272873368582
1120 => 0.0020394413826096
1121 => 0.0020186510463174
1122 => 0.0021633733762088
1123 => 0.002189815540459
1124 => 0.0021097205001654
1125 => 0.0020947379883854
1126 => 0.0021643556271867
1127 => 0.0021223676805793
1128 => 0.0021412748503657
1129 => 0.0021004078909565
1130 => 0.002183446397408
1201 => 0.0021828137831164
1202 => 0.002150509928597
1203 => 0.0021778129252296
1204 => 0.0021730683576709
1205 => 0.0021365973854794
1206 => 0.0021846025922786
1207 => 0.0021846264022623
1208 => 0.0021535346446337
1209 => 0.0021172262785845
1210 => 0.0021107352003002
1211 => 0.0021058450447667
1212 => 0.0021400721718764
1213 => 0.0021707601070175
1214 => 0.0022278627461308
1215 => 0.0022422197063291
1216 => 0.0022982558777802
1217 => 0.0022648890660327
1218 => 0.0022796801415078
1219 => 0.0022957379462614
1220 => 0.0023034366483665
1221 => 0.0022908920264214
1222 => 0.0023779392660932
1223 => 0.00238528872018
1224 => 0.0023877529285627
1225 => 0.0023584010891112
1226 => 0.0023844723924277
1227 => 0.0023722744929967
1228 => 0.0024040100386421
1229 => 0.0024089865774191
1230 => 0.0024047716261205
1231 => 0.0024063512580776
]
'min_raw' => 0.0010790873880752
'max_raw' => 0.0024089865774191
'avg_raw' => 0.0017440369827471
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001079'
'max' => '$0.0024089'
'avg' => '$0.001744'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00016639308578868
'max_diff' => -0.00022988106048639
'year' => 2031
]
6 => [
'items' => [
101 => 0.0023320717952031
102 => 0.0023282200131977
103 => 0.0022757006922437
104 => 0.0022971027037357
105 => 0.0022570926690766
106 => 0.002269780263216
107 => 0.0022753728338208
108 => 0.0022724515923124
109 => 0.0022983127413541
110 => 0.002276325481585
111 => 0.0022182974880141
112 => 0.0021602536847552
113 => 0.0021595249920867
114 => 0.0021442430832469
115 => 0.0021331970621769
116 => 0.0021353249177136
117 => 0.0021428237581656
118 => 0.0021327612159376
119 => 0.0021349085695058
120 => 0.0021705689464795
121 => 0.0021777203807634
122 => 0.0021534170128209
123 => 0.0020558354835728
124 => 0.0020318887315306
125 => 0.0020491011820138
126 => 0.0020408747393066
127 => 0.0016471451983631
128 => 0.0017396461137349
129 => 0.0016846852108552
130 => 0.0017100137235317
131 => 0.0016539128737484
201 => 0.0016806871397625
202 => 0.0016757429104693
203 => 0.0018244816450862
204 => 0.0018221592943286
205 => 0.0018232708807402
206 => 0.0017702119650917
207 => 0.0018547362584263
208 => 0.0018963759647182
209 => 0.0018886695632885
210 => 0.0018906090985005
211 => 0.0018572814575713
212 => 0.001823593565155
213 => 0.0017862285079358
214 => 0.0018556481657884
215 => 0.0018479298848683
216 => 0.0018656328443492
217 => 0.0019106564546863
218 => 0.0019172863523365
219 => 0.0019261970020121
220 => 0.0019230031684066
221 => 0.0019990932423633
222 => 0.0019898782323486
223 => 0.0020120837551446
224 => 0.0019664053100163
225 => 0.0019147158135158
226 => 0.0019245402969436
227 => 0.001923594120186
228 => 0.0019115482040906
229 => 0.001900673689649
301 => 0.0018825706869791
302 => 0.0019398512661669
303 => 0.0019375257792585
304 => 0.0019751727092226
305 => 0.0019685182486687
306 => 0.0019240781324668
307 => 0.0019256653199109
308 => 0.0019363399182487
309 => 0.0019732848249763
310 => 0.0019842525886942
311 => 0.0019791718835502
312 => 0.0019911975357694
313 => 0.0020007021209581
314 => 0.0019923911653339
315 => 0.0021100567707176
316 => 0.0020611938077449
317 => 0.0020850092759115
318 => 0.0020906891247403
319 => 0.0020761403113996
320 => 0.0020792954280593
321 => 0.0020840745700808
322 => 0.0021130925845837
323 => 0.0021892442510695
324 => 0.0022229713057742
325 => 0.0023244408139166
326 => 0.0022201707433842
327 => 0.0022139837889113
328 => 0.0022322615114133
329 => 0.0022918348543312
330 => 0.0023401134533266
331 => 0.0023561302498725
401 => 0.0023582471339446
402 => 0.0023882957090413
403 => 0.002405518991914
404 => 0.0023846470216686
405 => 0.002366960212272
406 => 0.0023036082563809
407 => 0.0023109414177769
408 => 0.0023614596278494
409 => 0.0024328195750845
410 => 0.0024940538335493
411 => 0.0024726117304643
412 => 0.0026361998412372
413 => 0.0026524189342228
414 => 0.0026501779799982
415 => 0.0026871274875441
416 => 0.0026137902397019
417 => 0.0025824371454071
418 => 0.0023707843012173
419 => 0.0024302501172273
420 => 0.0025166871731028
421 => 0.0025052469046353
422 => 0.0024424740041894
423 => 0.0024940062146753
424 => 0.0024769680543275
425 => 0.0024635293503472
426 => 0.0025250946585018
427 => 0.0024574010732224
428 => 0.0025160118778067
429 => 0.0024408429146762
430 => 0.002472709676185
501 => 0.0024546205611308
502 => 0.0024663264354894
503 => 0.002397894133179
504 => 0.0024348185424055
505 => 0.002396357956359
506 => 0.0023963397210335
507 => 0.0023954907014648
508 => 0.0024407394103882
509 => 0.0024422149691617
510 => 0.0024087761049003
511 => 0.002403957042147
512 => 0.002421775642919
513 => 0.0024009147281139
514 => 0.0024106754188542
515 => 0.0024012103694931
516 => 0.0023990795875175
517 => 0.002382101154213
518 => 0.0023747863783137
519 => 0.0023776546904224
520 => 0.0023678636624793
521 => 0.0023619642139866
522 => 0.0023943171526726
523 => 0.0023770322826465
524 => 0.0023916679984412
525 => 0.0023749887531185
526 => 0.0023171712220289
527 => 0.00228391974849
528 => 0.0021747077919497
529 => 0.0022056801673475
530 => 0.0022262148842795
531 => 0.002219428160456
601 => 0.0022340086693424
602 => 0.00223490379417
603 => 0.0022301635221004
604 => 0.0022246748943102
605 => 0.002222003333842
606 => 0.002241914956803
607 => 0.0022534743241262
608 => 0.0022282758178427
609 => 0.0022223721603851
610 => 0.0022478492414853
611 => 0.0022633902462389
612 => 0.0023781362936028
613 => 0.0023696355357892
614 => 0.0023909707697118
615 => 0.002388568749788
616 => 0.0024109314739081
617 => 0.0024474850766522
618 => 0.0023731613817254
619 => 0.0023860614052447
620 => 0.0023828986173828
621 => 0.0024174291059313
622 => 0.0024175369063475
623 => 0.0023968341535368
624 => 0.0024080574516993
625 => 0.00240179291456
626 => 0.0024131137798736
627 => 0.0023695220029859
628 => 0.0024226120817936
629 => 0.0024527107354284
630 => 0.0024531286552633
701 => 0.0024673951782085
702 => 0.0024818907917821
703 => 0.0025097138597348
704 => 0.0024811148215179
705 => 0.002429667935826
706 => 0.0024333822348005
707 => 0.002403218944543
708 => 0.0024037259949016
709 => 0.0024010193203488
710 => 0.0024091422544308
711 => 0.0023713045302247
712 => 0.0023801849684669
713 => 0.0023677523029241
714 => 0.0023860343790578
715 => 0.0023663658872734
716 => 0.0023828970921907
717 => 0.0023900314122149
718 => 0.0024163572066952
719 => 0.0023624775460238
720 => 0.0022526132705824
721 => 0.0022757080732557
722 => 0.0022415490460442
723 => 0.0022447105940652
724 => 0.0022510974242243
725 => 0.0022303956180379
726 => 0.0022343448702694
727 => 0.0022342037751892
728 => 0.0022329878940141
729 => 0.0022276025546833
730 => 0.0022197927471968
731 => 0.0022509046164911
801 => 0.0022561911293388
802 => 0.0022679423925388
803 => 0.002302906180864
804 => 0.0022994124739074
805 => 0.0023051108549061
806 => 0.002292671321181
807 => 0.0022452876283573
808 => 0.0022478607908475
809 => 0.0022157734133632
810 => 0.0022671218461543
811 => 0.0022549618595031
812 => 0.0022471222370038
813 => 0.0022449831233712
814 => 0.0022800335801649
815 => 0.0022905212261862
816 => 0.0022839860289855
817 => 0.0022705821488646
818 => 0.002296321561198
819 => 0.0023032083420798
820 => 0.0023047500383446
821 => 0.0023503553419566
822 => 0.0023072988682047
823 => 0.0023176629893814
824 => 0.0023985209042324
825 => 0.002325193933092
826 => 0.0023640368650916
827 => 0.0023621357056991
828 => 0.002382006435337
829 => 0.0023605057258857
830 => 0.0023607722529477
831 => 0.0023784161147063
901 => 0.0023536384929536
902 => 0.0023475032053591
903 => 0.0023390273494892
904 => 0.0023575340706983
905 => 0.0023686280130761
906 => 0.0024580370410387
907 => 0.0025157993506496
908 => 0.0025132917364522
909 => 0.0025362066361599
910 => 0.0025258832639651
911 => 0.0024925463719803
912 => 0.0025494483815975
913 => 0.0025314422048734
914 => 0.0025329266122051
915 => 0.0025328713624901
916 => 0.0025448438958843
917 => 0.0025363602587079
918 => 0.0025196381390057
919 => 0.0025307390624527
920 => 0.0025637048364374
921 => 0.0026660316103992
922 => 0.0027232950287578
923 => 0.002662584280712
924 => 0.0027044617417646
925 => 0.0026793501875981
926 => 0.0026747866712021
927 => 0.0027010888114632
928 => 0.002727436990139
929 => 0.0027257587250637
930 => 0.002706631300339
1001 => 0.0026958267034524
1002 => 0.0027776427308829
1003 => 0.002837923386194
1004 => 0.0028338126496284
1005 => 0.0028519561039457
1006 => 0.0029052258469773
1007 => 0.0029100961646819
1008 => 0.0029094826165941
1009 => 0.002897411025998
1010 => 0.0029498620059628
1011 => 0.0029936175362366
1012 => 0.0028946168015568
1013 => 0.0029323149853081
1014 => 0.0029492389145537
1015 => 0.0029740882637897
1016 => 0.0030160132811855
1017 => 0.0030615549701389
1018 => 0.0030679950642961
1019 => 0.0030634255093047
1020 => 0.0030333895412136
1021 => 0.0030832218006918
1022 => 0.0031124123695838
1023 => 0.0031297946853447
1024 => 0.0031738733459728
1025 => 0.0029493434309791
1026 => 0.0027904099972857
1027 => 0.0027655902465879
1028 => 0.0028160621856204
1029 => 0.0028293712334371
1030 => 0.0028240063729504
1031 => 0.0026451123437328
1101 => 0.0027646484065471
1102 => 0.0028932591592575
1103 => 0.0028981996220529
1104 => 0.0029625848539838
1105 => 0.0029835513247403
1106 => 0.0030353898756099
1107 => 0.0030321473601389
1108 => 0.0030447692223442
1109 => 0.0030418676748034
1110 => 0.0031378876743946
1111 => 0.0032438119930517
1112 => 0.0032401441707153
1113 => 0.0032249162966687
1114 => 0.0032475322863663
1115 => 0.0033568575347602
1116 => 0.0033467926177895
1117 => 0.0033565698272989
1118 => 0.0034854704564564
1119 => 0.0036530596102618
1120 => 0.0035751976226432
1121 => 0.003744135731592
1122 => 0.003850473316151
1123 => 0.0040343731731342
1124 => 0.004011348005314
1125 => 0.0040829388701181
1126 => 0.0039701281494183
1127 => 0.0037110919318835
1128 => 0.0036700984589078
1129 => 0.0037521684299252
1130 => 0.0039539294454008
1201 => 0.0037458142575414
1202 => 0.0037879156889955
1203 => 0.0037757904739044
1204 => 0.003775144372721
1205 => 0.0037998034270064
1206 => 0.0037640341826357
1207 => 0.0036183038463051
1208 => 0.0036850912006512
1209 => 0.003659301395746
1210 => 0.0036879171070456
1211 => 0.0038423442989126
1212 => 0.0037740683563038
1213 => 0.0037021451970525
1214 => 0.0037923527997803
1215 => 0.0039072180767482
1216 => 0.0039000300141483
1217 => 0.0038860821683274
1218 => 0.0039647054449343
1219 => 0.0040945680634303
1220 => 0.0041296694073796
1221 => 0.0041555805018675
1222 => 0.0041591532040258
1223 => 0.0041959542566789
1224 => 0.0039980657215039
1225 => 0.0043121199089647
1226 => 0.0043663483915673
1227 => 0.0043561556843784
1228 => 0.0044164283605078
1229 => 0.0043986946102203
1230 => 0.0043730011883939
1231 => 0.0044685462004249
]
'min_raw' => 0.0016471451983631
'max_raw' => 0.0044685462004249
'avg_raw' => 0.003057845699394
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001647'
'max' => '$0.004468'
'avg' => '$0.003057'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00056805781028789
'max_diff' => 0.0020595596230058
'year' => 2032
]
7 => [
'items' => [
101 => 0.0043590115542162
102 => 0.0042035409139515
103 => 0.0041182466458417
104 => 0.004230569018581
105 => 0.0042991603721024
106 => 0.0043444948935505
107 => 0.0043582130923489
108 => 0.0040134272451731
109 => 0.0038276067962451
110 => 0.0039467155735722
111 => 0.0040920365023599
112 => 0.003997258456407
113 => 0.0040009735763698
114 => 0.0038658449900733
115 => 0.0041039923838511
116 => 0.0040692963117125
117 => 0.0042492995953436
118 => 0.0042063403670885
119 => 0.0043531260572025
120 => 0.0043144724656713
121 => 0.004474921363024
122 => 0.0045389287721585
123 => 0.0046464071740531
124 => 0.0047254687240025
125 => 0.0047718951783393
126 => 0.0047691079081621
127 => 0.0049530726498121
128 => 0.0048445950688997
129 => 0.0047083216610708
130 => 0.0047058569050603
131 => 0.0047764348339839
201 => 0.0049243468108988
202 => 0.0049626982344811
203 => 0.0049841314482661
204 => 0.0049513057352588
205 => 0.0048335610958366
206 => 0.0047827195575129
207 => 0.0048260380211858
208 => 0.0047730632625119
209 => 0.0048645125580752
210 => 0.0049900919733991
211 => 0.0049641603207296
212 => 0.0050508459477133
213 => 0.0051405564520475
214 => 0.0052688465023963
215 => 0.0053023862721243
216 => 0.0053578262360815
217 => 0.0054148921700728
218 => 0.0054332202101008
219 => 0.005468214125371
220 => 0.0054680296901641
221 => 0.0055734862091931
222 => 0.0056898080153987
223 => 0.0057337168043853
224 => 0.0058346826435152
225 => 0.0056617821822702
226 => 0.0057929291682619
227 => 0.0059112270324484
228 => 0.0057701874419168
301 => 0.0059645776594547
302 => 0.005972125391104
303 => 0.0060860871779285
304 => 0.0059705650745452
305 => 0.0059019684183158
306 => 0.0061000043945669
307 => 0.0061958277654
308 => 0.0061669649862686
309 => 0.0059473178119476
310 => 0.0058194737353823
311 => 0.0054848811277302
312 => 0.0058812205248191
313 => 0.0060742658837624
314 => 0.0059468178711042
315 => 0.0060110952354808
316 => 0.0063617716935141
317 => 0.0064952865841139
318 => 0.0064675164202087
319 => 0.0064722091207729
320 => 0.0065442513322739
321 => 0.0068637261724398
322 => 0.0066722894428436
323 => 0.0068186356496225
324 => 0.0068962571500075
325 => 0.0069683563254584
326 => 0.0067913035377295
327 => 0.0065609604623163
328 => 0.0064880011411884
329 => 0.0059341456779712
330 => 0.0059053150958384
331 => 0.0058891316164312
401 => 0.0057870970679674
402 => 0.0057069258624899
403 => 0.0056431707433281
404 => 0.0054758582717575
405 => 0.0055323213194035
406 => 0.0052656601605466
407 => 0.005436260520092
408 => 0.0050106628717977
409 => 0.0053651132399996
410 => 0.005172202019468
411 => 0.0053017367157243
412 => 0.005301284781372
413 => 0.0050627703365512
414 => 0.004925200182448
415 => 0.005012865238953
416 => 0.0051068491383873
417 => 0.0051220977098707
418 => 0.005243950288718
419 => 0.0052779567242618
420 => 0.0051749156369553
421 => 0.0050018433065179
422 => 0.0050420440615189
423 => 0.004924385515431
424 => 0.0047181934390825
425 => 0.0048662841880843
426 => 0.0049168488808841
427 => 0.0049391811298315
428 => 0.0047364149040627
429 => 0.0046727013536572
430 => 0.0046387807940298
501 => 0.0049756687330004
502 => 0.0049941242147787
503 => 0.0048997033606586
504 => 0.0053264945746342
505 => 0.0052298985784785
506 => 0.0053378199727781
507 => 0.005038396264367
508 => 0.0050498346532558
509 => 0.0049080826712162
510 => 0.0049874543092875
511 => 0.004931356993766
512 => 0.0049810418652971
513 => 0.0050108227724345
514 => 0.0051525514943687
515 => 0.0053667315543421
516 => 0.0051313819495481
517 => 0.0050288367564709
518 => 0.00509245521752
519 => 0.0052618795628363
520 => 0.0055185661186631
521 => 0.0053666025113153
522 => 0.0054340413797468
523 => 0.0054487737723527
524 => 0.0053367214342929
525 => 0.0055226976481972
526 => 0.0056223638120965
527 => 0.0057246006732506
528 => 0.0058133700751789
529 => 0.0056837650226689
530 => 0.0058224610070091
531 => 0.0057106965267679
601 => 0.0056104322339921
602 => 0.0056105842935369
603 => 0.005547687038051
604 => 0.0054258156799829
605 => 0.005403340731713
606 => 0.0055202582508859
607 => 0.0056140150291323
608 => 0.0056217372864533
609 => 0.0056736458562877
610 => 0.0057043648132149
611 => 0.0060054523514983
612 => 0.0061265522501227
613 => 0.0062746309138567
614 => 0.0063323158986374
615 => 0.0065059270216154
616 => 0.0063657219398046
617 => 0.0063353876884236
618 => 0.0059142638918443
619 => 0.0059832228899423
620 => 0.006093632899451
621 => 0.0059160845122346
622 => 0.006028698097918
623 => 0.0060509304052138
624 => 0.0059100514859767
625 => 0.00598530100376
626 => 0.0057854605944546
627 => 0.0053710875291642
628 => 0.0055231589638737
629 => 0.0056351347265113
630 => 0.0054753315067154
701 => 0.0057617725929609
702 => 0.0055944396237205
703 => 0.0055414031058704
704 => 0.0053344887408531
705 => 0.005432144356277
706 => 0.0055642249744315
707 => 0.0054826145084319
708 => 0.005651968479254
709 => 0.0058918188669924
710 => 0.0060627505366323
711 => 0.0060758725477603
712 => 0.0059659749357143
713 => 0.0061420865603752
714 => 0.0061433693412954
715 => 0.0059447147092408
716 => 0.005823039853221
717 => 0.0057953950699272
718 => 0.0058644571586741
719 => 0.0059483112839777
720 => 0.0060805258681196
721 => 0.0061604203722748
722 => 0.006368742866341
723 => 0.0064251089601613
724 => 0.006487038208138
725 => 0.0065697947817076
726 => 0.0066691652666278
727 => 0.0064517483027872
728 => 0.0064603866840765
729 => 0.0062579310176908
730 => 0.0060415781030782
731 => 0.0062057629964976
801 => 0.0064204129040424
802 => 0.0063711719780846
803 => 0.0063656313680135
804 => 0.006374949137316
805 => 0.006337823087202
806 => 0.0061699033384924
807 => 0.0060855750919237
808 => 0.0061943800444275
809 => 0.006252205034332
810 => 0.0063418865508047
811 => 0.0063308314109523
812 => 0.0065618413662944
813 => 0.0066516048495619
814 => 0.0066286395093461
815 => 0.0066328656846376
816 => 0.0067953781834306
817 => 0.0069761255053329
818 => 0.0071454192240043
819 => 0.0073176320659711
820 => 0.0071100227633984
821 => 0.0070046115631137
822 => 0.0071133690147789
823 => 0.0070556607800534
824 => 0.0073872694141608
825 => 0.0074102292765053
826 => 0.0077418139315341
827 => 0.0080565272535226
828 => 0.0078588614546564
829 => 0.0080452513999241
830 => 0.0082468473223263
831 => 0.0086357585643998
901 => 0.0085047869401319
902 => 0.0084044647285297
903 => 0.008309660723319
904 => 0.0085069328084504
905 => 0.0087607201944734
906 => 0.0088153835666774
907 => 0.0089039591126633
908 => 0.0088108327565616
909 => 0.0089229931949544
910 => 0.0093189688282749
911 => 0.0092119727167781
912 => 0.0090600210379694
913 => 0.0093726057705719
914 => 0.0094857289701584
915 => 0.010279686827936
916 => 0.011282091420143
917 => 0.010867089336826
918 => 0.010609484151677
919 => 0.010670027480664
920 => 0.011036071704201
921 => 0.011153633491138
922 => 0.010834060028265
923 => 0.010946938777944
924 => 0.01156891178667
925 => 0.011902580350568
926 => 0.011449413623127
927 => 0.010199144594971
928 => 0.009046339451832
929 => 0.0093521152872848
930 => 0.0093174497968733
1001 => 0.0099856822020364
1002 => 0.0092094208949049
1003 => 0.0092224911444839
1004 => 0.0099045418881154
1005 => 0.0097225824430244
1006 => 0.0094278314455821
1007 => 0.0090484914603044
1008 => 0.0083472464128167
1009 => 0.007726134118592
1010 => 0.0089442783611852
1011 => 0.008891749766393
1012 => 0.0088156805768323
1013 => 0.0089849643266536
1014 => 0.0098069581637552
1015 => 0.0097880085452756
1016 => 0.0096674607406887
1017 => 0.0097588951880082
1018 => 0.009411802544888
1019 => 0.0095012562221726
1020 => 0.0090461568416075
1021 => 0.0092518807682519
1022 => 0.009427199042321
1023 => 0.0094623967814718
1024 => 0.0095416990850196
1025 => 0.0088640695838553
1026 => 0.0091683053357212
1027 => 0.0093470153369075
1028 => 0.0085395970500223
1029 => 0.0093310552734235
1030 => 0.0088522735618296
1031 => 0.0086897678578547
1101 => 0.0089085603797584
1102 => 0.0088232967211898
1103 => 0.0087499920344026
1104 => 0.0087090867596409
1105 => 0.0088697438404776
1106 => 0.0088622489956298
1107 => 0.0085993828291854
1108 => 0.0082564846308543
1109 => 0.0083715725214639
1110 => 0.0083297600118507
1111 => 0.0081782260830914
1112 => 0.0082803416547988
1113 => 0.0078306763565075
1114 => 0.0070570505823656
1115 => 0.0075681314655621
1116 => 0.007548455407508
1117 => 0.007538533846799
1118 => 0.007922597005283
1119 => 0.0078856781944394
1120 => 0.0078186701912482
1121 => 0.0081769954285645
1122 => 0.0080462018967895
1123 => 0.0084492767428882
1124 => 0.0087147679057754
1125 => 0.0086474307591278
1126 => 0.0088971264810533
1127 => 0.0083742239140186
1128 => 0.0085479111715779
1129 => 0.0085837078746407
1130 => 0.0081725737507574
1201 => 0.0078917185684761
1202 => 0.0078729887298014
1203 => 0.0073860245479537
1204 => 0.0076461568832592
1205 => 0.0078750625733206
1206 => 0.0077654345115803
1207 => 0.0077307295422785
1208 => 0.0079080297038518
1209 => 0.0079218074448793
1210 => 0.0076076734893541
1211 => 0.0076729918860364
1212 => 0.0079453804584815
1213 => 0.0076661283928879
1214 => 0.0071235872450054
1215 => 0.0069890295391124
1216 => 0.0069710770607557
1217 => 0.0066061458904674
1218 => 0.0069980213284328
1219 => 0.0068269571981521
1220 => 0.0073673467360459
1221 => 0.0070586791301682
1222 => 0.007045373086605
1223 => 0.0070252590501869
1224 => 0.006711147716803
1225 => 0.0067799181359974
1226 => 0.0070085214834303
1227 => 0.0070900897331954
1228 => 0.0070815814964759
1229 => 0.0070074012023138
1230 => 0.0070413605611166
1231 => 0.0069319656341877
]
'min_raw' => 0.0038276067962451
'max_raw' => 0.011902580350568
'avg_raw' => 0.0078650935734066
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003827'
'max' => '$0.0119025'
'avg' => '$0.007865'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.002180461597882
'max_diff' => 0.0074340341501432
'year' => 2033
]
8 => [
'items' => [
101 => 0.0068933360086305
102 => 0.0067714102844566
103 => 0.0065922131527619
104 => 0.0066171316130039
105 => 0.0062620952056367
106 => 0.0060686525276947
107 => 0.0060151101439738
108 => 0.0059435110307721
109 => 0.0060231974543279
110 => 0.0062610894321026
111 => 0.0059741412353079
112 => 0.005482188678979
113 => 0.0055117558658607
114 => 0.0055781845562074
115 => 0.0054543951312161
116 => 0.0053372388293208
117 => 0.0054390967286276
118 => 0.0052306499452151
119 => 0.0056033743541165
120 => 0.0055932932034038
121 => 0.0057322218139194
122 => 0.005819096725177
123 => 0.0056188781808149
124 => 0.0055685237583564
125 => 0.0055972079258697
126 => 0.0051231225316478
127 => 0.005693478922904
128 => 0.0056984113886602
129 => 0.0056561766222692
130 => 0.0059598737928352
131 => 0.0066007695482523
201 => 0.0063596387850923
202 => 0.0062662656653809
203 => 0.0060887632965541
204 => 0.006325274663968
205 => 0.0063071142811027
206 => 0.0062249861426651
207 => 0.0061753147882827
208 => 0.0062668357817392
209 => 0.0061639743243755
210 => 0.0061454975801891
211 => 0.0060335486133157
212 => 0.0059935879254954
213 => 0.005964002623114
214 => 0.0059314321121839
215 => 0.0060032745432301
216 => 0.0058404701428206
217 => 0.0056441439958388
218 => 0.0056278216009957
219 => 0.0056728891682373
220 => 0.0056529501246187
221 => 0.0056277261405259
222 => 0.0055795666855495
223 => 0.005565278804022
224 => 0.0056117074874918
225 => 0.0055592922108148
226 => 0.0056366338067596
227 => 0.0056156011721683
228 => 0.0054981145850761
301 => 0.0053516827984535
302 => 0.0053503792484015
303 => 0.00531883076017
304 => 0.0052786490170601
305 => 0.0052674713753607
306 => 0.0054305185404527
307 => 0.0057680212926023
308 => 0.005701761426599
309 => 0.0057496409703706
310 => 0.0059851609376007
311 => 0.0060600256528507
312 => 0.0060068884512342
313 => 0.0059341509723018
314 => 0.0059373510522258
315 => 0.0061859170368703
316 => 0.0062014197924353
317 => 0.0062405902543697
318 => 0.0062909353675265
319 => 0.0060154624417033
320 => 0.0059243763021924
321 => 0.0058812146360256
322 => 0.0057482934098986
323 => 0.0058916375564719
324 => 0.005808117060872
325 => 0.0058193868291948
326 => 0.0058120473777901
327 => 0.0058160552145486
328 => 0.0056032701700481
329 => 0.0056807978566114
330 => 0.0055518930409578
331 => 0.0053793039630422
401 => 0.0053787253839355
402 => 0.0054209663162486
403 => 0.0053958397568209
404 => 0.005328224831464
405 => 0.0053378292124775
406 => 0.0052536847285947
407 => 0.005348045876306
408 => 0.0053507518163819
409 => 0.0053144176346266
410 => 0.005459794002005
411 => 0.0055193548183358
412 => 0.0054954388815508
413 => 0.0055176768124559
414 => 0.0057045148231768
415 => 0.0057349775712382
416 => 0.0057485071116709
417 => 0.0057303793198117
418 => 0.0055210918683085
419 => 0.0055303746567417
420 => 0.0054622637144463
421 => 0.0054047171455609
422 => 0.0054070187065243
423 => 0.0054366051234617
424 => 0.0055658107414476
425 => 0.0058377163474117
426 => 0.0058480349663977
427 => 0.005860541433624
428 => 0.0058096713461678
429 => 0.0057943284410298
430 => 0.0058145696932466
501 => 0.0059166831427292
502 => 0.0061793466583294
503 => 0.0060865038292099
504 => 0.0060110211639511
505 => 0.0060772398113635
506 => 0.0060670459696333
507 => 0.0059809996867104
508 => 0.0059785846541348
509 => 0.005813434326545
510 => 0.0057523820107261
511 => 0.0057013621259412
512 => 0.0056456497436639
513 => 0.0056126215759539
514 => 0.0056633678525902
515 => 0.0056749741264692
516 => 0.0055640165057109
517 => 0.005548893392004
518 => 0.0056395037803018
519 => 0.0055996295267077
520 => 0.0056406411853632
521 => 0.0056501562419627
522 => 0.0056486240986999
523 => 0.0056069907984187
524 => 0.005633526622495
525 => 0.0055707614878447
526 => 0.0055025138309309
527 => 0.0054589760777991
528 => 0.0054209836137467
529 => 0.005442064040938
530 => 0.0053669161671351
531 => 0.0053428748498777
601 => 0.0056245368823729
602 => 0.0058326036541543
603 => 0.0058295782808891
604 => 0.0058111620992001
605 => 0.0057837993887963
606 => 0.0059146813900313
607 => 0.0058690847178693
608 => 0.0059022601065966
609 => 0.0059107046353944
610 => 0.005936263680736
611 => 0.0059453988425714
612 => 0.0059177860387269
613 => 0.0058251140964048
614 => 0.005594184427122
615 => 0.0054866860426882
616 => 0.0054512097852978
617 => 0.0054524992798749
618 => 0.0054169292628802
619 => 0.0054274062270215
620 => 0.0054132858023139
621 => 0.0053865451340154
622 => 0.0054404128800237
623 => 0.0054466206359384
624 => 0.0054340472603484
625 => 0.0054370087454627
626 => 0.0053329065657366
627 => 0.0053408212283631
628 => 0.0052967513811119
629 => 0.0052884888160223
630 => 0.0051770840797718
701 => 0.0049797144411294
702 => 0.0050890763800717
703 => 0.0049569825364451
704 => 0.0049069565963153
705 => 0.0051437716162597
706 => 0.0051200019564835
707 => 0.0050793186313693
708 => 0.0050191395143776
709 => 0.0049968184945006
710 => 0.0048612030437039
711 => 0.0048531901593906
712 => 0.0049204048387306
713 => 0.0048893875769311
714 => 0.0048458275942089
715 => 0.0046880577523938
716 => 0.0045106722143942
717 => 0.0045160263687807
718 => 0.0045724494080431
719 => 0.0047365070043821
720 => 0.0046724068632672
721 => 0.004625901475424
722 => 0.0046171924142278
723 => 0.004726204548753
724 => 0.0048804795578543
725 => 0.0049528619404159
726 => 0.004881133197583
727 => 0.0047987350799664
728 => 0.0048037502715896
729 => 0.0048371140946134
730 => 0.0048406201606741
731 => 0.0047869874567691
801 => 0.004802084748763
802 => 0.0047791505816989
803 => 0.0046384036407598
804 => 0.0046358579749116
805 => 0.0046013164057542
806 => 0.0046002705007678
807 => 0.0045415066748327
808 => 0.0045332852093692
809 => 0.0044166060662658
810 => 0.0044934046315935
811 => 0.0044418921860773
812 => 0.0043642507801271
813 => 0.0043508653724764
814 => 0.0043504629909591
815 => 0.0044301833545693
816 => 0.0044924730527292
817 => 0.0044427882671215
818 => 0.0044314760045377
819 => 0.0045522613736402
820 => 0.0045368903344388
821 => 0.004523579113623
822 => 0.0048666659228924
823 => 0.0045950859419581
824 => 0.0044766615690273
825 => 0.0043300889193471
826 => 0.0043778137131664
827 => 0.0043878700284472
828 => 0.0040353892276721
829 => 0.0038923878106963
830 => 0.0038433151132849
831 => 0.0038150730821386
901 => 0.0038279433303731
902 => 0.0036992252827016
903 => 0.0037857259395369
904 => 0.0036742669905191
905 => 0.0036555805349975
906 => 0.0038548829429555
907 => 0.0038826147087151
908 => 0.0037643023804004
909 => 0.0038402780482045
910 => 0.003812728214918
911 => 0.0036761776342934
912 => 0.0036709624065116
913 => 0.0036024461251392
914 => 0.0034952314121578
915 => 0.0034462314113705
916 => 0.0034207117855229
917 => 0.0034312416805152
918 => 0.003425917443387
919 => 0.0033911731946727
920 => 0.0034279089430532
921 => 0.0033340642862004
922 => 0.0032966945876838
923 => 0.0032798155618343
924 => 0.0031965230273805
925 => 0.0033290784900547
926 => 0.0033551935860912
927 => 0.0033813601369343
928 => 0.0036091220973603
929 => 0.003597743753466
930 => 0.003700598440792
1001 => 0.0036966016967801
1002 => 0.0036672658738193
1003 => 0.0035435028622562
1004 => 0.0035928325928017
1005 => 0.0034410033497249
1006 => 0.003554764142023
1007 => 0.0035028484671825
1008 => 0.003537211400137
1009 => 0.003475423748304
1010 => 0.003509619585978
1011 => 0.0033613864441676
1012 => 0.0032229684220417
1013 => 0.0032786718748192
1014 => 0.0033392278984507
1015 => 0.0034705287870719
1016 => 0.0033923270610179
1017 => 0.0034204513588416
1018 => 0.003326239669083
1019 => 0.0031318540428722
1020 => 0.0031329542444063
1021 => 0.0031030522507349
1022 => 0.0030772125624402
1023 => 0.0034013094699755
1024 => 0.0033610028963095
1025 => 0.0032967796463668
1026 => 0.0033827450185457
1027 => 0.0034054756274037
1028 => 0.0034061227358824
1029 => 0.0034688408523366
1030 => 0.0035023135223311
1031 => 0.0035082132254965
1101 => 0.0036069015368519
1102 => 0.0036399805570879
1103 => 0.0037762283599219
1104 => 0.0034994736001426
1105 => 0.0034937740179885
1106 => 0.0033839547276252
1107 => 0.0033143055975025
1108 => 0.0033887236631521
1109 => 0.0034546479102387
1110 => 0.0033860031777453
1111 => 0.0033949667306395
1112 => 0.0033028167857478
1113 => 0.0033357560549887
1114 => 0.0033641277910577
1115 => 0.003348462586014
1116 => 0.003325011015859
1117 => 0.0034492428737678
1118 => 0.003442233225476
1119 => 0.0035579207876387
1120 => 0.0036481075152415
1121 => 0.0038097382539117
1122 => 0.0036410681521084
1123 => 0.0036349211431958
1124 => 0.0036950091413281
1125 => 0.0036399713579285
1126 => 0.0036747533371973
1127 => 0.0038041343393241
1128 => 0.0038068679560232
1129 => 0.0037610763542483
1130 => 0.0037582899311187
1201 => 0.0037670847091448
1202 => 0.0038185959987436
1203 => 0.0038005963713757
1204 => 0.0038214259958606
1205 => 0.0038474737602335
1206 => 0.003955218357703
1207 => 0.0039811952153853
1208 => 0.0039180849186738
1209 => 0.0039237830718508
1210 => 0.0039001780884644
1211 => 0.0038773759702827
1212 => 0.0039286318019733
1213 => 0.0040223028418238
1214 => 0.0040217201191464
1215 => 0.0040434499796869
1216 => 0.0040569875027837
1217 => 0.0039988745435795
1218 => 0.0039610451440103
1219 => 0.0039755513429524
1220 => 0.0039987470709646
1221 => 0.0039680292809822
1222 => 0.003778424851346
1223 => 0.0038359387233197
1224 => 0.0038263656027387
1225 => 0.0038127323148999
1226 => 0.0038705629579112
1227 => 0.003864985051314
1228 => 0.0036979050930767
1229 => 0.0037086010099135
1230 => 0.0036985555472055
1231 => 0.0037310144923232
]
'min_raw' => 0.0030772125624402
'max_raw' => 0.0068933360086305
'avg_raw' => 0.0049852742855353
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003077'
'max' => '$0.006893'
'avg' => '$0.004985'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00075039423380494
'max_diff' => -0.0050092443419376
'year' => 2034
]
9 => [
'items' => [
101 => 0.003638218468371
102 => 0.0036667619003479
103 => 0.0036846640733058
104 => 0.0036952085907089
105 => 0.0037333026180124
106 => 0.003728832723588
107 => 0.003733024763099
108 => 0.0037895081491397
109 => 0.0040751817329764
110 => 0.0040907303158414
111 => 0.0040141634071871
112 => 0.004044750376979
113 => 0.0039860300836136
114 => 0.0040254494099416
115 => 0.0040524191118729
116 => 0.0039305482148208
117 => 0.003923331811233
118 => 0.0038643691583289
119 => 0.0038960523481842
120 => 0.0038456421150224
121 => 0.0038580110229652
122 => 0.0038234264780552
123 => 0.0038856717731791
124 => 0.0039552716850686
125 => 0.0039728553713957
126 => 0.003926600262922
127 => 0.0038931085160269
128 => 0.0038343080413463
129 => 0.0039320945411942
130 => 0.0039606902937393
131 => 0.0039319443398796
201 => 0.0039252832742589
202 => 0.0039126605669438
203 => 0.0039279612412871
204 => 0.0039605345551297
205 => 0.0039451735818562
206 => 0.0039553197753288
207 => 0.0039166529485204
208 => 0.0039988937813871
209 => 0.0041295120163136
210 => 0.0041299319752972
211 => 0.0041145709192223
212 => 0.0041082855060351
213 => 0.0041240468817547
214 => 0.0041325967815171
215 => 0.0041835661804523
216 => 0.0042382583762203
217 => 0.0044934829897947
218 => 0.0044218169396008
219 => 0.0046482674001443
220 => 0.004827360313522
221 => 0.00488106244746
222 => 0.0048316590111177
223 => 0.0046626525241118
224 => 0.0046543602595712
225 => 0.0049069273038564
226 => 0.0048355655455424
227 => 0.0048270772914621
228 => 0.0047367766091802
301 => 0.0047901554963659
302 => 0.0047784807507173
303 => 0.004760051593563
304 => 0.0048618947919078
305 => 0.0050525361676043
306 => 0.0050228229213785
307 => 0.0050006433614288
308 => 0.0049034589861019
309 => 0.0049619856869648
310 => 0.0049411454497926
311 => 0.0050306883342255
312 => 0.0049776451131052
313 => 0.0048350249100369
314 => 0.0048577376474579
315 => 0.0048543046628884
316 => 0.0049249552420646
317 => 0.0049037476918511
318 => 0.0048501635483402
319 => 0.0050518845761075
320 => 0.0050387859345956
321 => 0.0050573568134932
322 => 0.0050655322887074
323 => 0.0051883163235862
324 => 0.0052386170140251
325 => 0.0052500361513923
326 => 0.0052978179169143
327 => 0.0052488472975379
328 => 0.0054447646905033
329 => 0.0055750383247284
330 => 0.0057263578547009
331 => 0.0059474763588459
401 => 0.006030618961865
402 => 0.0060155999948101
403 => 0.0061832495210623
404 => 0.0064845119930978
405 => 0.0060764937538322
406 => 0.0065061379505246
407 => 0.0063701175583326
408 => 0.0060476156553477
409 => 0.0060268503348431
410 => 0.0062452523678686
411 => 0.0067296470567024
412 => 0.0066083116811086
413 => 0.0067298455179096
414 => 0.0065880698416314
415 => 0.0065810294843249
416 => 0.006722959789762
417 => 0.007054587684634
418 => 0.0068970437026661
419 => 0.0066711657731458
420 => 0.0068379505212537
421 => 0.0066934661372429
422 => 0.0063679023814338
423 => 0.0066082188982336
424 => 0.0064475260872699
425 => 0.0064944247924088
426 => 0.0068321771798027
427 => 0.0067915379189695
428 => 0.0068441288855819
429 => 0.0067513072060563
430 => 0.0066645971207439
501 => 0.006502746307333
502 => 0.0064548302606307
503 => 0.0064680725321004
504 => 0.0064548236984186
505 => 0.0063642696558009
506 => 0.0063447145189194
507 => 0.0063121217673866
508 => 0.0063222236239419
509 => 0.0062609397157144
510 => 0.0063765951124412
511 => 0.0063980617732255
512 => 0.0064822261261035
513 => 0.0064909643484238
514 => 0.0067253608731846
515 => 0.00659625920622
516 => 0.0066828717505215
517 => 0.0066751243093303
518 => 0.0060546052494967
519 => 0.0061401073010557
520 => 0.0062731216612597
521 => 0.0062131988722845
522 => 0.0061284820684467
523 => 0.0060600687071201
524 => 0.0059564154690848
525 => 0.0061023054111353
526 => 0.006294135171266
527 => 0.0064958294677081
528 => 0.0067381519493494
529 => 0.0066840683923917
530 => 0.0064912994174698
531 => 0.006499946892867
601 => 0.0065534021831161
602 => 0.0064841727253182
603 => 0.006463755606694
604 => 0.0065505971845434
605 => 0.0065511952147627
606 => 0.0064715383569067
607 => 0.0063830143364509
608 => 0.0063826434175729
609 => 0.0063668914231734
610 => 0.0065908720864418
611 => 0.0067140388042401
612 => 0.0067281596699426
613 => 0.0067130883574692
614 => 0.0067188887074812
615 => 0.0066472207081878
616 => 0.0068110325020876
617 => 0.0069613624034773
618 => 0.006921070778575
619 => 0.0068606679050544
620 => 0.0068125541068986
621 => 0.006909736696808
622 => 0.0069054093090589
623 => 0.0069600494029336
624 => 0.006957570612659
625 => 0.0069391972042068
626 => 0.0069210714347473
627 => 0.0069929380618103
628 => 0.0069722416273589
629 => 0.0069515130456282
630 => 0.0069099387015803
701 => 0.0069155893454131
702 => 0.0068551969013003
703 => 0.0068272565932834
704 => 0.0064071013988829
705 => 0.006294822201972
706 => 0.006330147522974
707 => 0.0063417775358694
708 => 0.0062929134854841
709 => 0.006362971981592
710 => 0.0063520534391839
711 => 0.0063945311005601
712 => 0.0063679929018979
713 => 0.0063690820388279
714 => 0.006447125222553
715 => 0.0064697814908078
716 => 0.0064582583299149
717 => 0.0064663287568135
718 => 0.0066523083383765
719 => 0.0066258679891704
720 => 0.0066118220806304
721 => 0.0066157128932875
722 => 0.006663234663824
723 => 0.0066765381649818
724 => 0.0066201702957559
725 => 0.0066467537087416
726 => 0.0067599425072972
727 => 0.0067995521808605
728 => 0.0069259672451526
729 => 0.0068722638789927
730 => 0.0069708387318064
731 => 0.007273824222712
801 => 0.0075158699978486
802 => 0.0072932747000683
803 => 0.0077377609417631
804 => 0.008083857238687
805 => 0.0080705734863575
806 => 0.0080102235916372
807 => 0.0076162021590355
808 => 0.0072536177622268
809 => 0.007556935006304
810 => 0.0075577082243369
811 => 0.0075316530040719
812 => 0.0073698262687387
813 => 0.0075260217844621
814 => 0.0075384200172814
815 => 0.0075314803038588
816 => 0.0074074081253017
817 => 0.0072179728410165
818 => 0.0072549880421219
819 => 0.007315619696622
820 => 0.007200831325565
821 => 0.0071641494857397
822 => 0.0072323480049806
823 => 0.0074520978437007
824 => 0.0074105554096148
825 => 0.0074094705687747
826 => 0.0075872067185278
827 => 0.0074599859931663
828 => 0.0072554549223469
829 => 0.0072038081295316
830 => 0.0070204968084857
831 => 0.0071471105908646
901 => 0.0071516671954863
902 => 0.0070823221208388
903 => 0.007261081892972
904 => 0.0072594345902018
905 => 0.0074291403889614
906 => 0.0077535541376027
907 => 0.0076576090286984
908 => 0.0075460353058409
909 => 0.0075581664631193
910 => 0.0076912153162155
911 => 0.0076107709424237
912 => 0.0076396993001173
913 => 0.0076911715296815
914 => 0.0077222260037611
915 => 0.0075536982022005
916 => 0.0075144063100401
917 => 0.0074340288882601
918 => 0.0074130599192334
919 => 0.0074785256521432
920 => 0.00746127774446
921 => 0.0071512842305119
922 => 0.0071188881835166
923 => 0.0071198817240271
924 => 0.0070384203235096
925 => 0.0069141721347441
926 => 0.0072406889563459
927 => 0.0072144650859713
928 => 0.0071855159626441
929 => 0.0071890620650703
930 => 0.0073307919506458
1001 => 0.0072485814594812
1002 => 0.0074671515242768
1003 => 0.0074222200897724
1004 => 0.0073761363335147
1005 => 0.0073697661546544
1006 => 0.0073520278401765
1007 => 0.0072911965596958
1008 => 0.0072177391331221
1009 => 0.0071692361773249
1010 => 0.0066132414091917
1011 => 0.0067164308040845
1012 => 0.0068351407968992
1013 => 0.0068761190107185
1014 => 0.0068060229403746
1015 => 0.0072939643797936
1016 => 0.0073831159826961
1017 => 0.0071130699622891
1018 => 0.0070625553777773
1019 => 0.0072972761075444
1020 => 0.0071557108140526
1021 => 0.0072194576570438
1022 => 0.0070816718501558
1023 => 0.0073616419722206
1024 => 0.0073595090689687
1025 => 0.0072505943680735
1026 => 0.0073426483274544
1027 => 0.0073266516866753
1028 => 0.0072036872576097
1029 => 0.0073655401639496
1030 => 0.0073656204409719
1031 => 0.00726079240937
1101 => 0.007138376218266
1102 => 0.0071164910946379
1103 => 0.0071000035938369
1104 => 0.0072154027425489
1105 => 0.0073188692584404
1106 => 0.0075113947929898
1107 => 0.0075598002866694
1108 => 0.0077487301510371
1109 => 0.0076362316156343
1110 => 0.0076861007592784
1111 => 0.0077402407691252
1112 => 0.0077661974807787
1113 => 0.0077239024120533
1114 => 0.0080173882580509
1115 => 0.008042167455627
1116 => 0.0080504757062351
1117 => 0.0079515139302442
1118 => 0.0080394151496162
1119 => 0.0079982890800544
1120 => 0.0081052876879029
1121 => 0.0081220664358404
1122 => 0.0081078554332586
1123 => 0.0081131812726885
1124 => 0.0078627428775806
1125 => 0.0078497563256264
1126 => 0.0076726837682482
1127 => 0.0077448421442341
1128 => 0.0076099455189695
1129 => 0.0076527226284301
1130 => 0.0076715783706851
1201 => 0.007661729200985
1202 => 0.0077489218705468
1203 => 0.0076747902891337
1204 => 0.0074791448574243
1205 => 0.0072834461222479
1206 => 0.0072809892840405
1207 => 0.0072294652614381
1208 => 0.0071922228301921
1209 => 0.0071993970436963
1210 => 0.0072246799078325
1211 => 0.0071907533441667
1212 => 0.0071979932966453
1213 => 0.00731822474734
1214 => 0.0073423363073254
1215 => 0.0072603958055005
1216 => 0.0069313928667157
1217 => 0.0068506547202965
1218 => 0.0069086876988356
1219 => 0.0068809516728964
1220 => 0.0055534650362864
1221 => 0.0058653383306703
1222 => 0.0056800338093637
1223 => 0.0057654306582329
1224 => 0.0055762827263521
1225 => 0.0056665540335381
1226 => 0.0056498842192811
1227 => 0.0061513672476488
1228 => 0.0061435372799282
1229 => 0.0061472850711233
1230 => 0.0059683932325592
1231 => 0.0062533727888346
]
'min_raw' => 0.003638218468371
'max_raw' => 0.0081220664358404
'avg_raw' => 0.0058801424521057
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003638'
'max' => '$0.008122'
'avg' => '$0.00588'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0005610059059308
'max_diff' => 0.0012287304272098
'year' => 2035
]
10 => [
'items' => [
101 => 0.0063937639657893
102 => 0.0063677812953252
103 => 0.0063743205737063
104 => 0.0062619541054522
105 => 0.006148373024157
106 => 0.0060223941249975
107 => 0.0062564473481733
108 => 0.0062304246251779
109 => 0.0062901113890491
110 => 0.0064419116347485
111 => 0.0064642647975608
112 => 0.0064943076750639
113 => 0.0064835394420767
114 => 0.0067400824388608
115 => 0.0067090133892251
116 => 0.0067838808596716
117 => 0.0066298727927544
118 => 0.0064555980464577
119 => 0.006488721978258
120 => 0.0064855318772598
121 => 0.0064449182301252
122 => 0.0064082540454509
123 => 0.0063472185080382
124 => 0.0065403439799719
125 => 0.0065325034385
126 => 0.0066594326912989
127 => 0.0066369967129417
128 => 0.0064871637584571
129 => 0.0064925150717388
130 => 0.0065285052253114
131 => 0.0066530675577546
201 => 0.0066900461388741
202 => 0.0066729161867579
203 => 0.006713461512819
204 => 0.0067455068853716
205 => 0.0067174859182324
206 => 0.0071142037219336
207 => 0.0069494588307681
208 => 0.0070297543444346
209 => 0.0070489043513154
210 => 0.0069998520113714
211 => 0.0070104897074727
212 => 0.0070266029184674
213 => 0.007124439180337
214 => 0.0073811898406335
215 => 0.0074949029603179
216 => 0.0078370144913951
217 => 0.0074854606686912
218 => 0.0074646009197263
219 => 0.0075262255372518
220 => 0.0077270812221774
221 => 0.0078898558893945
222 => 0.0079438576372062
223 => 0.0079509948596512
224 => 0.0080523057285144
225 => 0.0081103752292109
226 => 0.008040003924294
227 => 0.0079803716115597
228 => 0.0077667760691806
229 => 0.0077915003348123
301 => 0.0079618260071405
302 => 0.008202421051436
303 => 0.0084088766290895
304 => 0.0083365830814985
305 => 0.0088881318183265
306 => 0.0089428156227084
307 => 0.0089352600890819
308 => 0.0090598379335051
309 => 0.0088125762821618
310 => 0.0087068671357437
311 => 0.0079932647944284
312 => 0.0081937579448767
313 => 0.0084851865136033
314 => 0.0084466148497313
315 => 0.0082349716332141
316 => 0.0084087160787312
317 => 0.0083512707315521
318 => 0.0083059612028223
319 => 0.0085135329376179
320 => 0.0082852992886332
321 => 0.008482909708365
322 => 0.008229472301041
323 => 0.0083369133123344
324 => 0.0082759245979873
325 => 0.0083153917706655
326 => 0.0080846674856351
327 => 0.0082091607093221
328 => 0.008079488158234
329 => 0.0080794266765609
330 => 0.0080765641478085
331 => 0.0082291233291076
401 => 0.0082340982785327
402 => 0.0081213568130485
403 => 0.0081051090065196
404 => 0.0081651856630773
405 => 0.0080948516323495
406 => 0.0081277604826499
407 => 0.0080958484079003
408 => 0.0080886643277031
409 => 0.0080314203544208
410 => 0.0080067580767749
411 => 0.0080164287913085
412 => 0.0079834176570105
413 => 0.007963527254531
414 => 0.0080726074461212
415 => 0.0080143303000369
416 => 0.0080636756376718
417 => 0.0080074403975588
418 => 0.007812504554799
419 => 0.0077003948902188
420 => 0.0073321791538079
421 => 0.0074366046798838
422 => 0.0075058389117082
423 => 0.0074829569985032
424 => 0.0075321162021924
425 => 0.0075351341780444
426 => 0.0075191520198063
427 => 0.0075006467280078
428 => 0.0074916393753672
429 => 0.0075587728023651
430 => 0.0075977460163446
501 => 0.0075127874931063
502 => 0.0074928828998076
503 => 0.0075787806574902
504 => 0.007631178240055
505 => 0.0080180525500556
506 => 0.0079893916515832
507 => 0.0080613248823316
508 => 0.0080532263044548
509 => 0.0081286237901415
510 => 0.0082518668138843
511 => 0.0080012792873237
512 => 0.0080447726172699
513 => 0.0080341090571748
514 => 0.0081505310101579
515 => 0.0081508944667873
516 => 0.008081093690266
517 => 0.0081189338236064
518 => 0.0080978124992656
519 => 0.0081359815870677
520 => 0.0079890088678104
521 => 0.0081680057751412
522 => 0.0082694854872918
523 => 0.0082708945331935
524 => 0.0083189951113601
525 => 0.008367868084575
526 => 0.0084616755007221
527 => 0.0083652518466527
528 => 0.0081917950796354
529 => 0.0082043180979521
530 => 0.0081026204589152
531 => 0.0081043300146006
601 => 0.0080952042723717
602 => 0.0081225913117544
603 => 0.007995018782848
604 => 0.008024959800394
605 => 0.0079830422004953
606 => 0.0080446814965941
607 => 0.0079783678033324
608 => 0.0080341039148832
609 => 0.0080581577729471
610 => 0.0081469170270457
611 => 0.0079652579893341
612 => 0.0075948429142047
613 => 0.0076727086538456
614 => 0.0075575391086948
615 => 0.0075681984885799
616 => 0.0075897321323755
617 => 0.0075199345474642
618 => 0.0075332497270906
619 => 0.0075327740151768
620 => 0.0075286745869047
621 => 0.0075105175393586
622 => 0.0074841862281544
623 => 0.0075890820676417
624 => 0.0076069059148001
625 => 0.0076465261191259
626 => 0.007764408972558
627 => 0.007752629695631
628 => 0.0077718421850164
629 => 0.0077299014285616
630 => 0.0075701439999829
701 => 0.0075788195969709
702 => 0.0074706347635135
703 => 0.0076437595897017
704 => 0.0076027613457243
705 => 0.0075763295111227
706 => 0.0075691173401624
707 => 0.0076872924023871
708 => 0.0077226522331718
709 => 0.0077006183595368
710 => 0.0076554262418804
711 => 0.0077422084676308
712 => 0.0077654277301935
713 => 0.0077706256667878
714 => 0.0079243871319763
715 => 0.007779219224615
716 => 0.0078141625827618
717 => 0.0080867806880013
718 => 0.007839553685276
719 => 0.0079705153424397
720 => 0.0079641054508131
721 => 0.0080311010031171
722 => 0.0079586098600705
723 => 0.0079595084746684
724 => 0.0080189959864426
725 => 0.007935456504785
726 => 0.0079147709543082
727 => 0.0078861940144773
728 => 0.0079485907171318
729 => 0.007985994718413
730 => 0.008287443498528
731 => 0.0084821931582168
801 => 0.008473738561874
802 => 0.0085509977461058
803 => 0.0085161917759963
804 => 0.0084037941171619
805 => 0.008595643215358
806 => 0.0085349341333815
807 => 0.0085399389163382
808 => 0.0085397526380665
809 => 0.0085801188703008
810 => 0.008551515695252
811 => 0.008495135901175
812 => 0.0085325634396181
813 => 0.0086437098482043
814 => 0.008988711710844
815 => 0.0091817793238439
816 => 0.0089770887981186
817 => 0.0091182815818486
818 => 0.0090336162237434
819 => 0.0090182300095995
820 => 0.0091069095118467
821 => 0.0091957442358233
822 => 0.0091900858479491
823 => 0.0091255964000556
824 => 0.0090891679472997
825 => 0.0093650163959942
826 => 0.0095682568340365
827 => 0.0095543971987032
828 => 0.0096155691216696
829 => 0.0097951717794751
830 => 0.009811592395651
831 => 0.0098095237754364
901 => 0.0097688235649302
902 => 0.009945665705892
903 => 0.010093190531124
904 => 0.0097594026421402
905 => 0.0098865047006608
906 => 0.0099435649097033
907 => 0.010027346225579
908 => 0.01016869934884
909 => 0.010322246332765
910 => 0.010343959559849
911 => 0.01032855298616
912 => 0.010227284622696
913 => 0.010395297564704
914 => 0.010493715605744
915 => 0.010552321296927
916 => 0.010700935578708
917 => 0.0099439172941287
918 => 0.0094080621260535
919 => 0.0093243806037161
920 => 0.0094945502700025
921 => 0.0095394226539246
922 => 0.0095213346522308
923 => 0.0089181809427417
924 => 0.0093212051242612
925 => 0.0097548252563405
926 => 0.0097714823715873
927 => 0.0099885616762756
928 => 0.010059251596263
929 => 0.010234028889772
930 => 0.010223096522477
1001 => 0.010265652012132
1002 => 0.010255869242019
1003 => 0.010579607374543
1004 => 0.010936738610295
1005 => 0.010924372291209
1006 => 0.010873030450684
1007 => 0.010949281838948
1008 => 0.011317879546753
1009 => 0.011283944976476
1010 => 0.01131690952096
1011 => 0.011751506991719
1012 => 0.012316545524475
1013 => 0.012054028397068
1014 => 0.012623615026272
1015 => 0.012982139616865
1016 => 0.013602170824162
1017 => 0.01352453986329
1018 => 0.013765913462292
1019 => 0.01338556424126
1020 => 0.01251220554851
1021 => 0.012373993192299
1022 => 0.012650697829527
1023 => 0.013330949179707
1024 => 0.012629274293701
1025 => 0.012771222209276
1026 => 0.012730341200041
1027 => 0.012728162824792
1028 => 0.012811302547956
1029 => 0.012690704043231
1030 => 0.012199364039725
1031 => 0.012424542267847
1101 => 0.012337590140022
1102 => 0.012434070008554
1103 => 0.012954732067696
1104 => 0.012724534960316
1105 => 0.012482041007386
1106 => 0.012786182238077
1107 => 0.013173458539011
1108 => 0.013149223484101
1109 => 0.013102197348109
1110 => 0.013367281214491
1111 => 0.013805122099468
1112 => 0.013923468731291
1113 => 0.014010829795412
1114 => 0.014022875410177
1115 => 0.014146952728564
1116 => 0.013479757716085
1117 => 0.014538613335672
1118 => 0.014721448450879
1119 => 0.014687083026959
1120 => 0.014890296562633
1121 => 0.014830505985408
1122 => 0.014743878819863
1123 => 0.015066015498665
1124 => 0.014696711791508
1125 => 0.014172531673242
1126 => 0.013884956093254
1127 => 0.014263658815043
1128 => 0.014494919352335
1129 => 0.014647767856553
1130 => 0.014694019721575
1201 => 0.013531550165643
1202 => 0.012905043548513
1203 => 0.013306627107181
1204 => 0.013796586764572
1205 => 0.01347703596545
1206 => 0.013489561751786
1207 => 0.01303396628871
1208 => 0.013836896853752
1209 => 0.013719916624134
1210 => 0.014326810262325
1211 => 0.014181970224945
1212 => 0.014676868427414
1213 => 0.014546545144859
1214 => 0.015087509804468
1215 => 0.015303315253219
1216 => 0.015665686189109
1217 => 0.015932247724665
1218 => 0.016088777756853
1219 => 0.01607938028085
1220 => 0.016699630251331
1221 => 0.016333890513622
1222 => 0.015874435204821
1223 => 0.015866125107848
1224 => 0.016104083522808
1225 => 0.016602779079861
1226 => 0.016732083582079
1227 => 0.016804347158775
1228 => 0.016693672975552
1229 => 0.016296688703072
1230 => 0.016125272906971
1231 => 0.016271324131643
]
'min_raw' => 0.0060223941249975
'max_raw' => 0.016804347158775
'avg_raw' => 0.011413370641886
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.006022'
'max' => '$0.0168043'
'avg' => '$0.011413'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0023841756566265
'max_diff' => 0.0086822807229342
'year' => 2036
]
11 => [
'items' => [
101 => 0.016092716034194
102 => 0.016401043718972
103 => 0.016824443485411
104 => 0.016737013107945
105 => 0.017029279751518
106 => 0.017331744980268
107 => 0.017764283841945
108 => 0.017877365517255
109 => 0.018064285226431
110 => 0.018256687007099
111 => 0.018318481273676
112 => 0.018436465702207
113 => 0.01843584386603
114 => 0.018791397882675
115 => 0.019183584973627
116 => 0.019331626521309
117 => 0.019672039897145
118 => 0.019089093920533
119 => 0.019531265140194
120 => 0.019930114648592
121 => 0.019454589822045
122 => 0.020109990012365
123 => 0.020135437716587
124 => 0.020519667837423
125 => 0.020130177000371
126 => 0.019898898584628
127 => 0.020566590704989
128 => 0.020889665889927
129 => 0.02079235301495
130 => 0.020051797231451
131 => 0.019620762001523
201 => 0.018492659664314
202 => 0.019828945613132
203 => 0.020479811518806
204 => 0.020050111645993
205 => 0.020266827267691
206 => 0.021449157429398
207 => 0.021899312204768
208 => 0.02180568315831
209 => 0.021821504925896
210 => 0.022064400271799
211 => 0.023141532000439
212 => 0.02249608970092
213 => 0.022989506154641
214 => 0.023251212462549
215 => 0.023494299866385
216 => 0.022897354031126
217 => 0.022120736270331
218 => 0.021874748825291
219 => 0.020007386462101
220 => 0.019910182141553
221 => 0.019855618410837
222 => 0.019511601806867
223 => 0.019241298990224
224 => 0.01902634415473
225 => 0.018462238475446
226 => 0.018652607582709
227 => 0.017753540867935
228 => 0.018328731891079
301 => 0.016893799705576
302 => 0.018088853868903
303 => 0.01743844022025
304 => 0.017875175492502
305 => 0.01787365176428
306 => 0.017069483661019
307 => 0.016605656281619
308 => 0.016901225140205
309 => 0.017218098418894
310 => 0.017269510042271
311 => 0.01768034451933
312 => 0.01779499959102
313 => 0.017447589371067
314 => 0.016864063925473
315 => 0.016999603577686
316 => 0.016602909574893
317 => 0.015907718593613
318 => 0.016407016893239
319 => 0.016577499285327
320 => 0.016652794021841
321 => 0.015969153534976
322 => 0.015754338851446
323 => 0.015639973316404
324 => 0.016775814523408
325 => 0.016838038468744
326 => 0.016519691966825
327 => 0.017958648342355
328 => 0.017632968197199
329 => 0.017996832712911
330 => 0.016987304774907
331 => 0.017025870101648
401 => 0.016547943397395
402 => 0.016815550416703
403 => 0.016626414400833
404 => 0.016793930414087
405 => 0.016894338821737
406 => 0.017372187102922
407 => 0.018094310128696
408 => 0.017300812504548
409 => 0.016955074226612
410 => 0.017169568309738
411 => 0.017740794318802
412 => 0.018606230963055
413 => 0.018093875051122
414 => 0.01832124990447
415 => 0.018370921194724
416 => 0.017993128913711
417 => 0.018620160703333
418 => 0.018956192133389
419 => 0.01930089084872
420 => 0.019600183085003
421 => 0.01916321060173
422 => 0.019630833796377
423 => 0.019254012048097
424 => 0.018915963984774
425 => 0.018916476664146
426 => 0.018704414175929
427 => 0.018293516383416
428 => 0.018217740526173
429 => 0.018611936104985
430 => 0.018928043628732
501 => 0.018954079758441
502 => 0.019129093125778
503 => 0.019232664233787
504 => 0.02024780189037
505 => 0.020656098653507
506 => 0.021155356206809
507 => 0.021349845160434
508 => 0.021935187182696
509 => 0.021462475960564
510 => 0.021360201914163
511 => 0.019940353632072
512 => 0.020172853708723
513 => 0.020545108764362
514 => 0.019946491980829
515 => 0.020326176547391
516 => 0.020401134323648
517 => 0.019926151211588
518 => 0.020179860214548
519 => 0.019506084322163
520 => 0.018108996601933
521 => 0.018621716061345
522 => 0.018999250162976
523 => 0.018460462450329
524 => 0.019426218571284
525 => 0.018862043782675
526 => 0.018683227459852
527 => 0.017985601231897
528 => 0.018314853957396
529 => 0.018760172983078
530 => 0.018485017599099
531 => 0.019056006335643
601 => 0.019864678663722
602 => 0.020440986721981
603 => 0.020485228498649
604 => 0.020114701026829
605 => 0.020708473665094
606 => 0.020712798650528
607 => 0.020043020688932
608 => 0.019632785416794
609 => 0.019539579099822
610 => 0.019772426753793
611 => 0.020055146791763
612 => 0.020500917493124
613 => 0.02077028739194
614 => 0.021472661225296
615 => 0.021662703445966
616 => 0.021871502229282
617 => 0.022150521794951
618 => 0.022485556322685
619 => 0.021752519849529
620 => 0.021781644755158
621 => 0.021099051340936
622 => 0.020369602384041
623 => 0.020923163215228
624 => 0.021646870364893
625 => 0.021480851145135
626 => 0.021462170591447
627 => 0.021493586101196
628 => 0.021368413031179
629 => 0.020802259874622
630 => 0.020517941303706
701 => 0.020884784797591
702 => 0.021079745788266
703 => 0.021382113282418
704 => 0.02134484010656
705 => 0.022123706299596
706 => 0.022426350150519
707 => 0.022348920902592
708 => 0.022363169747649
709 => 0.02291109198359
710 => 0.023520494198759
711 => 0.024091279790969
712 => 0.024671907411177
713 => 0.023971938152735
714 => 0.0236165369314
715 => 0.023983220272892
716 => 0.023788652930455
717 => 0.024906694592523
718 => 0.024984105371424
719 => 0.026102066186355
720 => 0.027163144124022
721 => 0.026496700082559
722 => 0.027125126796359
723 => 0.027804821523716
724 => 0.029116062929283
725 => 0.028674482953917
726 => 0.028336239613227
727 => 0.028016601290655
728 => 0.028681717898773
729 => 0.029537379789619
730 => 0.029721681165479
731 => 0.030020319802918
801 => 0.029706337791446
802 => 0.030084494540279
803 => 0.031419554034155
804 => 0.031058809174014
805 => 0.030546493479983
806 => 0.031600394729921
807 => 0.031981797495337
808 => 0.0346586818452
809 => 0.03803835891348
810 => 0.036639150415056
811 => 0.035770616547908
812 => 0.035974742608587
813 => 0.037208886264634
814 => 0.037605254037195
815 => 0.03652778979521
816 => 0.036908368380696
817 => 0.039005393804385
818 => 0.040130380663563
819 => 0.038602497402906
820 => 0.034387128083482
821 => 0.030500365057103
822 => 0.031531309634919
823 => 0.031414432513729
824 => 0.033667424722233
825 => 0.031050205528406
826 => 0.031094272787397
827 => 0.033393854488813
828 => 0.032780365515686
829 => 0.031786591948952
830 => 0.030507620703916
831 => 0.028143324066945
901 => 0.026049200602291
902 => 0.030156258964309
903 => 0.029979155139538
904 => 0.029722682555953
905 => 0.030293434537489
906 => 0.033064844149054
907 => 0.03300095418733
908 => 0.032594518847787
909 => 0.032902796470674
910 => 0.031732549391159
911 => 0.032034148709581
912 => 0.030499749373981
913 => 0.031193361955849
914 => 0.031784459757204
915 => 0.031903131392179
916 => 0.0321705046453
917 => 0.029885829471544
918 => 0.030911581550021
919 => 0.031514114796155
920 => 0.028791847669777
921 => 0.031460304327822
922 => 0.029846058359712
923 => 0.029298159032975
924 => 0.030035833296179
925 => 0.029748360918397
926 => 0.029501209048924
927 => 0.029363294059149
928 => 0.029904960623909
929 => 0.029879691231232
930 => 0.028993419598335
1001 => 0.027837314382274
1002 => 0.028225341240644
1003 => 0.028084367445227
1004 => 0.027573460224654
1005 => 0.027917750004147
1006 => 0.026401672056329
1007 => 0.023793338745983
1008 => 0.025516483626208
1009 => 0.02545014442274
1010 => 0.025416693188108
1011 => 0.026711588941371
1012 => 0.026587114593022
1013 => 0.026361192431914
1014 => 0.027569310986995
1015 => 0.027128331462903
1016 => 0.028487326448312
1017 => 0.029382448439987
1018 => 0.029155416548735
1019 => 0.029997283108406
1020 => 0.028234280595757
1021 => 0.028819879311075
1022 => 0.028940570394697
1023 => 0.027554402991557
1024 => 0.026607480135812
1025 => 0.026544331177045
1026 => 0.024902497439192
1027 => 0.025779551769534
1028 => 0.026551323285261
1029 => 0.026181704621117
1030 => 0.026064694394093
1031 => 0.026662474267539
1101 => 0.026708926883344
1102 => 0.025649802320159
1103 => 0.025870027854958
1104 => 0.026788404944519
1105 => 0.025846887108614
1106 => 0.024017671749515
1107 => 0.023564001049577
1108 => 0.023503473015396
1109 => 0.022273082096088
1110 => 0.023594317495058
1111 => 0.0230175628365
1112 => 0.024839523892302
1113 => 0.023798829508601
1114 => 0.023753967253729
1115 => 0.023686151375629
1116 => 0.022627103084572
1117 => 0.022858967354283
1118 => 0.023629719500729
1119 => 0.023904732549726
1120 => 0.0238760464356
1121 => 0.023625942394729
1122 => 0.0237404387439
1123 => 0.023371606110049
1124 => 0.023241363630449
1125 => 0.022830282538814
1126 => 0.022226106898161
1127 => 0.022310121226619
1128 => 0.02111309119133
1129 => 0.020460885696912
1130 => 0.020280363811987
1201 => 0.020038962402937
1202 => 0.020307630743484
1203 => 0.021109700155638
1204 => 0.020142234276062
1205 => 0.018483581885368
1206 => 0.018583269720255
1207 => 0.018807238687662
1208 => 0.018389873998602
1209 => 0.017994873347171
1210 => 0.018338294366175
1211 => 0.01763550148261
1212 => 0.018892167850008
1213 => 0.018858178546537
1214 => 0.019326586056576
1215 => 0.019619490885293
1216 => 0.018944440084164
1217 => 0.018774666633212
1218 => 0.018871377306648
1219 => 0.017272965300443
1220 => 0.019195961694575
1221 => 0.019212591847246
1222 => 0.019070194383622
1223 => 0.020094130597644
1224 => 0.022254955382946
1225 => 0.02144196617974
1226 => 0.02112715218753
1227 => 0.02052869055821
1228 => 0.021326105146143
1229 => 0.021264876147395
1230 => 0.020987975394649
1231 => 0.020820504955405
]
'min_raw' => 0.015639973316404
'max_raw' => 0.040130380663563
'avg_raw' => 0.027885176989984
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.015639'
'max' => '$0.04013'
'avg' => '$0.027885'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0096175791914067
'max_diff' => 0.023326033504788
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00049092089100472
]
1 => [
'year' => 2028
'avg' => 0.00084256276431706
]
2 => [
'year' => 2029
'avg' => 0.0023017296149508
]
3 => [
'year' => 2030
'avg' => 0.001775780970096
]
4 => [
'year' => 2031
'avg' => 0.0017440369827471
]
5 => [
'year' => 2032
'avg' => 0.003057845699394
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00049092089100472
'min' => '$0.00049'
'max_raw' => 0.003057845699394
'max' => '$0.003057'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.003057845699394
]
1 => [
'year' => 2033
'avg' => 0.0078650935734066
]
2 => [
'year' => 2034
'avg' => 0.0049852742855353
]
3 => [
'year' => 2035
'avg' => 0.0058801424521057
]
4 => [
'year' => 2036
'avg' => 0.011413370641886
]
5 => [
'year' => 2037
'avg' => 0.027885176989984
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.003057845699394
'min' => '$0.003057'
'max_raw' => 0.027885176989984
'max' => '$0.027885'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.027885176989984
]
]
]
]
'prediction_2025_max_price' => '$0.000839'
'last_price' => 0.00081389
'sma_50day_nextmonth' => '$0.000776'
'sma_200day_nextmonth' => '$0.001651'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00079'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000773'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000755'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000824'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000895'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001156'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001978'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000794'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000783'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000782'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000817'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000943'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001264'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002195'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001511'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002988'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01163'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.018914'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0008085'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000844'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0010047'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001547'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004194'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01279'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.03183'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '45.43'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.35
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000754'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000797'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 60.9
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -5.23
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.1
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000096'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -39.1
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 64.26
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0002063'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767681428
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Decimated para 2026
La previsión del precio de Decimated para 2026 sugiere que el precio medio podría oscilar entre $0.000281 en el extremo inferior y $0.000839 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Decimated podría potencialmente ganar 3.13% para 2026 si DIO alcanza el objetivo de precio previsto.
Predicción de precio de Decimated 2027-2032
La predicción del precio de DIO para 2027-2032 está actualmente dentro de un rango de precios de $0.00049 en el extremo inferior y $0.003057 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Decimated alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Decimated | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00027 | $0.00049 | $0.000711 |
| 2028 | $0.000488 | $0.000842 | $0.001196 |
| 2029 | $0.001073 | $0.0023017 | $0.00353 |
| 2030 | $0.000912 | $0.001775 | $0.002638 |
| 2031 | $0.001079 | $0.001744 | $0.0024089 |
| 2032 | $0.001647 | $0.003057 | $0.004468 |
Predicción de precio de Decimated 2032-2037
La predicción de precio de Decimated para 2032-2037 se estima actualmente entre $0.003057 en el extremo inferior y $0.027885 en el extremo superior. Comparado con el precio actual, Decimated podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Decimated | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001647 | $0.003057 | $0.004468 |
| 2033 | $0.003827 | $0.007865 | $0.0119025 |
| 2034 | $0.003077 | $0.004985 | $0.006893 |
| 2035 | $0.003638 | $0.00588 | $0.008122 |
| 2036 | $0.006022 | $0.011413 | $0.0168043 |
| 2037 | $0.015639 | $0.027885 | $0.04013 |
Decimated Histograma de precios potenciales
Pronóstico de precio de Decimated basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Decimated es Bajista, con 15 indicadores técnicos mostrando señales alcistas y 18 indicando señales bajistas. La predicción de precio de DIO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Decimated
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Decimated aumentar durante el próximo mes, alcanzando $0.001651 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Decimated alcance $0.000776 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 45.43, lo que sugiere que el mercado de DIO está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DIO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00079 | BUY |
| SMA 5 | $0.000773 | BUY |
| SMA 10 | $0.000755 | BUY |
| SMA 21 | $0.000824 | SELL |
| SMA 50 | $0.000895 | SELL |
| SMA 100 | $0.001156 | SELL |
| SMA 200 | $0.001978 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000794 | BUY |
| EMA 5 | $0.000783 | BUY |
| EMA 10 | $0.000782 | BUY |
| EMA 21 | $0.000817 | SELL |
| EMA 50 | $0.000943 | SELL |
| EMA 100 | $0.001264 | SELL |
| EMA 200 | $0.002195 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001511 | SELL |
| SMA 50 | $0.002988 | SELL |
| SMA 100 | $0.01163 | SELL |
| SMA 200 | $0.018914 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001547 | SELL |
| EMA 50 | $0.004194 | SELL |
| EMA 100 | $0.01279 | SELL |
| EMA 200 | $0.03183 | SELL |
Osciladores de Decimated
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 45.43 | NEUTRAL |
| Stoch RSI (14) | 74.35 | NEUTRAL |
| Estocástico Rápido (14) | 60.9 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -5.23 | NEUTRAL |
| Índice Direccional Medio (14) | 28.1 | SELL |
| Oscilador Asombroso (5, 34) | -0.000096 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -39.1 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 64.26 | NEUTRAL |
| VWMA (10) | 0.000754 | BUY |
| Promedio Móvil de Hull (9) | 0.000797 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0002063 | SELL |
Predicción de precios de Decimated basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Decimated
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Decimated por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001143 | $0.001607 | $0.002258 | $0.003173 | $0.004458 | $0.006265 |
| Amazon.com acción | $0.001698 | $0.003543 | $0.007393 | $0.015427 | $0.032189 | $0.067166 |
| Apple acción | $0.001154 | $0.001637 | $0.002322 | $0.003294 | $0.004672 | $0.006628 |
| Netflix acción | $0.001284 | $0.002026 | $0.003197 | $0.005044 | $0.007959 | $0.012558 |
| Google acción | $0.001053 | $0.001364 | $0.001767 | $0.002288 | $0.002964 | $0.003838 |
| Tesla acción | $0.001845 | $0.004182 | $0.009481 | $0.021493 | $0.048724 | $0.110455 |
| Kodak acción | $0.00061 | $0.000457 | $0.000343 | $0.000257 | $0.000193 | $0.000144 |
| Nokia acción | $0.000539 | $0.000357 | $0.000236 | $0.000156 | $0.0001038 | $0.000068 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Decimated
Podría preguntarse cosas como: "¿Debo invertir en Decimated ahora?", "¿Debería comprar DIO hoy?", "¿Será Decimated una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Decimated regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Decimated, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Decimated a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Decimated es de $0.0008138 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Decimated
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Decimated
basado en el historial de precios del último mes
Predicción de precios de Decimated basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Decimated ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000835 | $0.000856 | $0.000879 | $0.0009018 |
| Si Decimated ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000856 | $0.00090071 | $0.000947 | $0.000996 |
| Si Decimated ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000919 | $0.001039 | $0.001174 | $0.001326 |
| Si Decimated ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001025 | $0.001291 | $0.001627 | $0.00205 |
| Si Decimated ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001237 | $0.00188 | $0.002857 | $0.004342 |
| Si Decimated ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001871 | $0.0043042 | $0.009898 | $0.022762 |
| Si Decimated ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002929 | $0.010544 | $0.037951 | $0.136599 |
Cuadro de preguntas
¿Es DIO una buena inversión?
La decisión de adquirir Decimated depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Decimated ha experimentado un aumento de 4.1135% durante las últimas 24 horas, y Decimated ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Decimated dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Decimated subir?
Parece que el valor medio de Decimated podría potencialmente aumentar hasta $0.000839 para el final de este año. Mirando las perspectivas de Decimated en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002638. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Decimated la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Decimated, el precio de Decimated aumentará en un 0.86% durante la próxima semana y alcanzará $0.00082 para el 13 de enero de 2026.
¿Cuál será el precio de Decimated el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Decimated, el precio de Decimated disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000719 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Decimated este año en 2026?
Según nuestra predicción más reciente sobre el valor de Decimated en 2026, se anticipa que DIO fluctúe dentro del rango de $0.000281 y $0.000839. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Decimated no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Decimated en 5 años?
El futuro de Decimated parece estar en una tendencia alcista, con un precio máximo de $0.002638 proyectada después de un período de cinco años. Basado en el pronóstico de Decimated para 2030, el valor de Decimated podría potencialmente alcanzar su punto más alto de aproximadamente $0.002638, mientras que su punto más bajo se anticipa que esté alrededor de $0.000912.
¿Cuánto será Decimated en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Decimated, se espera que el valor de DIO en 2026 crezca en un 3.13% hasta $0.000839 si ocurre lo mejor. El precio estará entre $0.000839 y $0.000281 durante 2026.
¿Cuánto será Decimated en 2027?
Según nuestra última simulación experimental para la predicción de precios de Decimated, el valor de DIO podría disminuir en un -12.62% hasta $0.000711 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000711 y $0.00027 a lo largo del año.
¿Cuánto será Decimated en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Decimated sugiere que el valor de DIO en 2028 podría aumentar en un 47.02% , alcanzando $0.001196 en el mejor escenario. Se espera que el precio oscile entre $0.001196 y $0.000488 durante el año.
¿Cuánto será Decimated en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Decimated podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.00353 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.00353 y $0.001073.
¿Cuánto será Decimated en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Decimated, se espera que el valor de DIO en 2030 aumente en un 224.23% , alcanzando $0.002638 en el mejor escenario. Se pronostica que el precio oscile entre $0.002638 y $0.000912 durante el transcurso de 2030.
¿Cuánto será Decimated en 2031?
Nuestra simulación experimental indica que el precio de Decimated podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0024089 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0024089 y $0.001079 durante el año.
¿Cuánto será Decimated en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Decimated, DIO podría experimentar un 449.04% aumento en valor, alcanzando $0.004468 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004468 y $0.001647 a lo largo del año.
¿Cuánto será Decimated en 2033?
Según nuestra predicción experimental de precios de Decimated, se anticipa que el valor de DIO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0119025. A lo largo del año, el precio de DIO podría oscilar entre $0.0119025 y $0.003827.
¿Cuánto será Decimated en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Decimated sugieren que DIO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006893 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006893 y $0.003077.
¿Cuánto será Decimated en 2035?
Basado en nuestra predicción experimental para el precio de Decimated, DIO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.008122 en 2035. El rango de precios esperado para el año está entre $0.008122 y $0.003638.
¿Cuánto será Decimated en 2036?
Nuestra reciente simulación de predicción de precios de Decimated sugiere que el valor de DIO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0168043 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0168043 y $0.006022.
¿Cuánto será Decimated en 2037?
Según la simulación experimental, el valor de Decimated podría aumentar en un 4830.69% en 2037, con un máximo de $0.04013 bajo condiciones favorables. Se espera que el precio caiga entre $0.04013 y $0.015639 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Epik Prime
Predicción de precios de LEO
Predicción de precios de BRN Metaverse
Predicción de precios de EthicHub
Predicción de precios de neversol
Predicción de precios de Switcheo
Predicción de precios de Fei USD
Predicción de precios de Sakai Vault
Predicción de precios de GYEN
Predicción de precios de Kizuna
Predicción de precios de Nostra Staked STRK
Predicción de precios de LandX Governance Token
Predicción de precios de AIPad
Predicción de precios de Ref Finance
Predicción de precios de HUSD
Predicción de precios de SwissCheese
Predicción de precios de Diverge Loop
Predicción de precios de Force Protocol
Predicción de precios de Energi
Predicción de precios de Gains
Predicción de precios de LayerAI
Predicción de precios de Solama
Predicción de precios de Gari Network
Predicción de precios de Chirpley
Predicción de precios de Mars Protocol
¿Cómo leer y predecir los movimientos de precio de Decimated?
Los traders de Decimated utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Decimated
Las medias móviles son herramientas populares para la predicción de precios de Decimated. Una media móvil simple (SMA) calcula el precio de cierre promedio de DIO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DIO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DIO.
¿Cómo leer gráficos de Decimated y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Decimated en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DIO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Decimated?
La acción del precio de Decimated está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DIO. La capitalización de mercado de Decimated puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DIO, grandes poseedores de Decimated, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Decimated.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


