Predicción del precio de Decimated - Pronóstico de DIO
Predicción de precio de Decimated hasta $0.000834 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000279 | $0.000834 |
| 2027 | $0.000269 | $0.0007068 |
| 2028 | $0.000485 | $0.001189 |
| 2029 | $0.001066 | $0.0035091 |
| 2030 | $0.0009072 | $0.002623 |
| 2031 | $0.001072 | $0.002394 |
| 2032 | $0.001637 | $0.004441 |
| 2033 | $0.0038047 | $0.011831 |
| 2034 | $0.003058 | $0.006852 |
| 2035 | $0.003616 | $0.008073 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Decimated hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.72, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Decimated para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Decimated'
'name_with_ticker' => 'Decimated <small>DIO</small>'
'name_lang' => 'Decimated'
'name_lang_with_ticker' => 'Decimated <small>DIO</small>'
'name_with_lang' => 'Decimated'
'name_with_lang_with_ticker' => 'Decimated <small>DIO</small>'
'image' => '/uploads/coins/decimated.png?1717262762'
'price_for_sd' => 0.000809
'ticker' => 'DIO'
'marketcap' => '$438.69K'
'low24h' => '$0.0007736'
'high24h' => '$0.0008221'
'volume24h' => '$35.73K'
'current_supply' => '543.26M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.000809'
'change_24h_pct' => '4.5754%'
'ath_price' => '$0.5879'
'ath_days' => 1464
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 ene. 2022'
'ath_pct' => '-99.86%'
'fdv' => '$807.52K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.03989'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000815'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000715'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000279'
'current_year_max_price_prediction' => '$0.000834'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0009072'
'grand_prediction_max_price' => '$0.002623'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00082436069295022
107 => 0.00082743855653476
108 => 0.00083437314035035
109 => 0.00077511788089995
110 => 0.00080172175275017
111 => 0.00081734903501648
112 => 0.00074674440521188
113 => 0.00081595340849644
114 => 0.00077408637866398
115 => 0.00075987607991715
116 => 0.00077900837511525
117 => 0.00077155250106978
118 => 0.00076514237838911
119 => 0.0007615654197934
120 => 0.00077561406583252
121 => 0.00077495867970303
122 => 0.00075197236805834
123 => 0.00072198766155977
124 => 0.00073205151327513
125 => 0.00072839522159783
126 => 0.00071514434888827
127 => 0.00072407383717804
128 => 0.00068475288986049
129 => 0.00061710324372565
130 => 0.00066179467212703
131 => 0.0006600741007485
201 => 0.00065920651063774
202 => 0.00069279088390102
203 => 0.00068956252133508
204 => 0.00068370301166567
205 => 0.00071503673439811
206 => 0.00070359950410272
207 => 0.00073884635292273
208 => 0.00076206220717883
209 => 0.00075617391558527
210 => 0.0007780085387251
211 => 0.00073228336409253
212 => 0.00074747143292988
213 => 0.0007506016728675
214 => 0.00071465008112339
215 => 0.0006900907213767
216 => 0.00068845289207879
217 => 0.00064587034676626
218 => 0.00066861759875792
219 => 0.00068863423916533
220 => 0.00067904782176423
221 => 0.00067601304840111
222 => 0.00069151704735123
223 => 0.00069272184085243
224 => 0.00066525242134687
225 => 0.00067096418350546
226 => 0.00069478318120822
227 => 0.0006703640058766
228 => 0.00062292153705691
301 => 0.00061115514884617
302 => 0.0006095852957613
303 => 0.00057767391772977
304 => 0.00061194143516959
305 => 0.00059698274549474
306 => 0.00064423706694497
307 => 0.00061724565196261
308 => 0.00061608210600978
309 => 0.00061432323564699
310 => 0.00058685579433283
311 => 0.00059286941833367
312 => 0.00061285962041326
313 => 0.000619992349721
314 => 0.00061924834761748
315 => 0.00061276165751745
316 => 0.00061573123102802
317 => 0.0006061652000825
318 => 0.00060278723545592
319 => 0.00059212544991206
320 => 0.00057645557055602
321 => 0.00057863456338944
322 => 0.00054758843213815
323 => 0.00053067285208956
324 => 0.00052599084247587
325 => 0.00051972986354579
326 => 0.00052669803670585
327 => 0.00054750048234906
328 => 0.00052240831941831
329 => 0.00047938956608413
330 => 0.0004819750664599
331 => 0.00048778391816231
401 => 0.00047695916144427
402 => 0.0004667144376636
403 => 0.00047562139381018
404 => 0.00045739378091628
405 => 0.00048998663809709
406 => 0.00048910509265077
407 => 0.00050125369427901
408 => 0.00050885046419155
409 => 0.00049134236902661
410 => 0.00048693913043956
411 => 0.00048944741525478
412 => 0.00044799105453259
413 => 0.00049786582516317
414 => 0.00049829714425068
415 => 0.00049460392836202
416 => 0.00052116070401202
417 => 0.00057720378389956
418 => 0.0005561181229182
419 => 0.00054795311766874
420 => 0.00053243143672094
421 => 0.00055311315499766
422 => 0.00055152512171908
423 => 0.00054434343298956
424 => 0.00053999992523772
425 => 0.00054800297144971
426 => 0.00053900825924626
427 => 0.00053739256177636
428 => 0.00052760319300495
429 => 0.00052410883374146
430 => 0.00052152174925722
501 => 0.00051867362344174
502 => 0.00052495587928195
503 => 0.00051071946104845
504 => 0.00049355173627213
505 => 0.00049212442571434
506 => 0.00049606535565484
507 => 0.00049432178752389
508 => 0.00049211607818093
509 => 0.000487904778356
510 => 0.00048665537565813
511 => 0.00049071532830219
512 => 0.00048613187847699
513 => 0.00049289500836751
514 => 0.00049105581125833
515 => 0.00048078220571411
516 => 0.00046797748943007
517 => 0.00046786350059634
518 => 0.00046510474547688
519 => 0.00046159105605065
520 => 0.0004606136280346
521 => 0.00047487127480703
522 => 0.00050438417693052
523 => 0.00049859008805978
524 => 0.000502776911071
525 => 0.00052337193643515
526 => 0.00052991847568439
527 => 0.00052527189718856
528 => 0.00051891137395498
529 => 0.00051919120469706
530 => 0.0005409270380475
531 => 0.00054228267531185
601 => 0.00054570793333371
602 => 0.0005501103578696
603 => 0.00052602164912364
604 => 0.00051805662868138
605 => 0.00051428236011333
606 => 0.00050265907374949
607 => 0.00051519379158763
608 => 0.00050789034829348
609 => 0.00050887583231501
610 => 0.00050823403455317
611 => 0.00050858449952931
612 => 0.00048997752772926
613 => 0.00049675693029955
614 => 0.00048548485863969
615 => 0.00047039282003656
616 => 0.00047034222623121
617 => 0.00047403598129845
618 => 0.00047183879124781
619 => 0.00046592620931645
620 => 0.0004667660636732
621 => 0.00045940805577178
622 => 0.00046765945905346
623 => 0.00046789607977464
624 => 0.00046471884005422
625 => 0.00047743126528388
626 => 0.00048263955627282
627 => 0.00048054822902577
628 => 0.00048249282317812
629 => 0.00049883085861111
630 => 0.00050149467126515
701 => 0.00050267776088448
702 => 0.00050109257752391
703 => 0.00048279145247368
704 => 0.00048360318519205
705 => 0.00047764722909777
706 => 0.00047261507382129
707 => 0.00047281633364217
708 => 0.00047540351558868
709 => 0.00048670189088528
710 => 0.00051047865562137
711 => 0.00051138096646252
712 => 0.00051247459352425
713 => 0.00050802626265126
714 => 0.00050668460349517
715 => 0.00050845459823366
716 => 0.00051738390094564
717 => 0.00054035249180289
718 => 0.00053223385777334
719 => 0.00052563328193324
720 => 0.00053142376644747
721 => 0.00053053236674383
722 => 0.00052300805617208
723 => 0.00052279687383483
724 => 0.00050835531618004
725 => 0.00050301660113342
726 => 0.00049855517124457
727 => 0.00049368340627452
728 => 0.00049079526069724
729 => 0.00049523276494264
730 => 0.00049624767466657
731 => 0.0004865449940797
801 => 0.00048522255456835
802 => 0.00049314597298249
803 => 0.00048965917195324
804 => 0.00049324543328033
805 => 0.00049407747667059
806 => 0.00049394349852118
807 => 0.00049030287779009
808 => 0.00049262330087921
809 => 0.00048713480852202
810 => 0.00048116689742848
811 => 0.0004773597419648
812 => 0.00047403749387684
813 => 0.00047588087020623
814 => 0.00046930957017918
815 => 0.00046720727904639
816 => 0.00049183719374779
817 => 0.00051003157655392
818 => 0.00050976702302215
819 => 0.00050815662143516
820 => 0.00050576389133493
821 => 0.00051720885783542
822 => 0.00051322166035597
823 => 0.00051612267966377
824 => 0.000516861110833
825 => 0.00051909611958102
826 => 0.00051989494310294
827 => 0.00051748034360108
828 => 0.00050937665275433
829 => 0.00048918302564006
830 => 0.0004797828377067
831 => 0.00047668061911619
901 => 0.00047679337887
902 => 0.00047368296147812
903 => 0.00047459911879915
904 => 0.00047336435934999
905 => 0.00047102602367365
906 => 0.00047573648456747
907 => 0.00047627932130451
908 => 0.00047517984344607
909 => 0.00047543881028341
910 => 0.00046633560320872
911 => 0.00046702770027148
912 => 0.00046317401587857
913 => 0.00046245149651176
914 => 0.00045270971794518
915 => 0.0004354507451211
916 => 0.00044501389143467
917 => 0.00043346295546974
918 => 0.00042908844099458
919 => 0.00044979671214341
920 => 0.0004477181760781
921 => 0.0004441606258522
922 => 0.00043889826760966
923 => 0.00043694640774858
924 => 0.00042508752511635
925 => 0.00042438683906576
926 => 0.00043026442151506
927 => 0.00042755211944997
928 => 0.00042374302012147
929 => 0.00040994684847585
930 => 0.00039443538379071
1001 => 0.00039490357740797
1002 => 0.00039983748572325
1003 => 0.00041418348957812
1004 => 0.00040857825768363
1005 => 0.00040451159763156
1006 => 0.00040375003444716
1007 => 0.00041328259214046
1008 => 0.00042677315840905
1009 => 0.00043310263026787
1010 => 0.0004268303158847
1011 => 0.00041962501884671
1012 => 0.00042006357189128
1013 => 0.00042298106882158
1014 => 0.00042328765649777
1015 => 0.00041859774884254
1016 => 0.0004199179303762
1017 => 0.00041791245390664
1018 => 0.00040560484851481
1019 => 0.00040538224296111
1020 => 0.00040236175811101
1021 => 0.00040227029903016
1022 => 0.00039713170080488
1023 => 0.00039641277539171
1024 => 0.0003862097767248
1025 => 0.00039292542134489
1026 => 0.0003884209195209
1027 => 0.00038163157276759
1028 => 0.00038046108682826
1029 => 0.00038042590060752
1030 => 0.00038739704165301
1031 => 0.00039284395950297
1101 => 0.00038849927725867
1102 => 0.00038751007732977
1103 => 0.00039807214461238
1104 => 0.00039672802527529
1105 => 0.00039556402659801
1106 => 0.00042556522616553
1107 => 0.00040181693568504
1108 => 0.00039146132553051
1109 => 0.00037864429148726
1110 => 0.00038281758240084
1111 => 0.00038369695611473
1112 => 0.00035287429968473
1113 => 0.0003403695518098
1114 => 0.00033607839357061
1115 => 0.00033360877133588
1116 => 0.00033473420919981
1117 => 0.00032347846945174
1118 => 0.00033104251271519
1119 => 0.00032129599351736
1120 => 0.00031966195785592
1121 => 0.00033708994154369
1122 => 0.00033951494366104
1123 => 0.00032916913123933
1124 => 0.00033581281764896
1125 => 0.00033340372460268
1126 => 0.0003214630696148
1127 => 0.00032100702442377
1128 => 0.00031501562348518
1129 => 0.0003056402411801
1130 => 0.00030135543989159
1201 => 0.00029912387817818
1202 => 0.0003000446640334
1203 => 0.00029957908652849
1204 => 0.00029654087838017
1205 => 0.00029975323306315
1206 => 0.00029154699428474
1207 => 0.00028827920388102
1208 => 0.00028680321876782
1209 => 0.00027951970951851
1210 => 0.00029111101172543
1211 => 0.00029339464428358
1212 => 0.00029568277630331
1213 => 0.000315599403361
1214 => 0.000314604424957
1215 => 0.00032359854515501
1216 => 0.00032324905018324
1217 => 0.00032068378140768
1218 => 0.00030986133440983
1219 => 0.0003141749688916
1220 => 0.00030089827244433
1221 => 0.00031084607615023
1222 => 0.00030630631396907
1223 => 0.00030931117799019
1224 => 0.00030390816154256
1225 => 0.00030689841392976
1226 => 0.0002939361782803
1227 => 0.0002818322250144
1228 => 0.00028670320914502
1229 => 0.00029199852595961
1230 => 0.00030348012203526
1231 => 0.00029664177813371
]
'min_raw' => 0.00027951970951851
'max_raw' => 0.00083437314035035
'avg_raw' => 0.00055694642493443
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000279'
'max' => '$0.000834'
'avg' => '$0.000556'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00052951029048149
'max_diff' => 2.5343140350354E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00029910110518712
102 => 0.00029086277124458
103 => 0.00027386473515737
104 => 0.00027396094219564
105 => 0.00027134616466597
106 => 0.00026908661511656
107 => 0.00029742724419201
108 => 0.00029390263896744
109 => 0.000288286641831
110 => 0.00029580387716897
111 => 0.0002977915535069
112 => 0.0002978481398579
113 => 0.00030333252071256
114 => 0.00030625953575782
115 => 0.00030677543484596
116 => 0.00031540522661866
117 => 0.00031829781899116
118 => 0.0003302119975985
119 => 0.00030601119898115
120 => 0.0003055127994594
121 => 0.0002959096600861
122 => 0.00028981919727593
123 => 0.00029632667928534
124 => 0.00030209141998579
125 => 0.00029608878664882
126 => 0.00029687260384012
127 => 0.00028881455901841
128 => 0.00029169493087592
129 => 0.0002941758951476
130 => 0.00029280605250112
131 => 0.0002907553317582
201 => 0.00030161877698859
202 => 0.0003010058188345
203 => 0.00031112210878256
204 => 0.00031900848021991
205 => 0.00033314226769316
206 => 0.00031839292365382
207 => 0.00031785539893369
208 => 0.0003231097892946
209 => 0.00031829701457137
210 => 0.00032133852206512
211 => 0.00033265223381439
212 => 0.00033289127471574
213 => 0.00032888703163134
214 => 0.00032864337307575
215 => 0.00032941243176173
216 => 0.00033391683250661
217 => 0.0003323428564801
218 => 0.00033416430138618
219 => 0.00033644204613219
220 => 0.00034586376414544
221 => 0.00034813530846136
222 => 0.00034261663343437
223 => 0.00034311490799932
224 => 0.00034105077204821
225 => 0.00033905684258299
226 => 0.0003435389048308
227 => 0.00035172996168384
228 => 0.00035167900554427
301 => 0.00035357917152278
302 => 0.00035476295918557
303 => 0.00034968127595135
304 => 0.00034637328702455
305 => 0.00034764178047189
306 => 0.00034967012911838
307 => 0.00034698401434323
308 => 0.00033040406962162
309 => 0.00033543336571919
310 => 0.00033459624492854
311 => 0.00033340408312528
312 => 0.00033846107924179
313 => 0.00033797331962973
314 => 0.00032336302557184
315 => 0.00032429832919444
316 => 0.00032341990448295
317 => 0.00032625827443456
318 => 0.00031814373327925
319 => 0.00032063971148635
320 => 0.00032220516561951
321 => 0.00032312723013032
322 => 0.00032645835940893
323 => 0.00032606748983584
324 => 0.00032643406240746
325 => 0.00033137324774212
326 => 0.00035635395224109
327 => 0.00035771359687015
328 => 0.00035101820944999
329 => 0.00035369288466367
330 => 0.00034855809314058
331 => 0.00035200511309014
401 => 0.00035436347659482
402 => 0.00034370648540441
403 => 0.00034307544754941
404 => 0.00033791946291516
405 => 0.00034068999700771
406 => 0.00033628187805801
407 => 0.00033736347625881
408 => 0.00033433923339734
409 => 0.00033978226842725
410 => 0.00034586842735282
411 => 0.00034740603144711
412 => 0.0003433612570552
413 => 0.00034043257383183
414 => 0.00033529077085983
415 => 0.00034384170379482
416 => 0.00034634225716998
417 => 0.00034382856945246
418 => 0.00034324609308315
419 => 0.00034214230141582
420 => 0.00034348026770334
421 => 0.00034632863861927
422 => 0.00034498539949647
423 => 0.00034587263260191
424 => 0.00034249141491478
425 => 0.00034968295819995
426 => 0.00036110485967595
427 => 0.00036114158295686
428 => 0.0003597983365935
429 => 0.00035924870912226
430 => 0.00036062696140607
501 => 0.00036137460673117
502 => 0.00036583162188879
503 => 0.00037061417672823
504 => 0.00039293227337175
505 => 0.00038666544114156
506 => 0.0004064673841932
507 => 0.00042212815018655
508 => 0.00042682412914565
509 => 0.00042250404946616
510 => 0.00040772529024873
511 => 0.00040700017381573
512 => 0.00042908587951777
513 => 0.00042284565606754
514 => 0.00042210340134436
515 => 0.00041420706514888
516 => 0.00041887477782067
517 => 0.00041785388058814
518 => 0.00041624234436258
519 => 0.00042514801498467
520 => 0.00044181863537453
521 => 0.00043922036285068
522 => 0.00043728087294202
523 => 0.00042878259273931
524 => 0.00043390045558094
525 => 0.00043207808264924
526 => 0.00043990815327027
527 => 0.00043526979289167
528 => 0.00042279838023747
529 => 0.00042478449380897
530 => 0.00042448429673814
531 => 0.00043066233118354
601 => 0.00042880783859127
602 => 0.00042412217729596
603 => 0.00044176165700636
604 => 0.00044061624730991
605 => 0.00044224017638237
606 => 0.00044295508018174
607 => 0.00045369192063896
608 => 0.00045809046063371
609 => 0.0004590890062198
610 => 0.00046326727901953
611 => 0.00045898504698623
612 => 0.00047611702829912
613 => 0.00048750879619336
614 => 0.00050074092081755
615 => 0.00052007661135328
616 => 0.00052734700985986
617 => 0.00052603367744446
618 => 0.00054069377733347
619 => 0.00056703765095831
620 => 0.00053135852750421
621 => 0.00056892873113705
622 => 0.00055703443843576
623 => 0.00052883328441017
624 => 0.00052701746256068
625 => 0.00054611561148894
626 => 0.00058847346768311
627 => 0.0005778633051253
628 => 0.00058849082210807
629 => 0.00057609325903387
630 => 0.00057547761553237
701 => 0.00058788870014143
702 => 0.00061688787582352
703 => 0.00060311145447481
704 => 0.00058335957635432
705 => 0.00059794405578523
706 => 0.00058530962997233
707 => 0.00055684073246274
708 => 0.00057785519173395
709 => 0.00056380342127664
710 => 0.00056790447492929
711 => 0.00059743920638745
712 => 0.0005938855093592
713 => 0.00059848432237724
714 => 0.00059036753777229
715 => 0.00058278518105181
716 => 0.00056863214915983
717 => 0.00056444213415265
718 => 0.00056560010355969
719 => 0.00056444156032052
720 => 0.00055652306905004
721 => 0.00055481307161411
722 => 0.00055196300097084
723 => 0.00055284635703796
724 => 0.00054748739041105
725 => 0.00055760086765504
726 => 0.00055947801815118
727 => 0.00056683776349535
728 => 0.00056760187667199
729 => 0.00058809866269608
730 => 0.00057680937738851
731 => 0.00058438320464282
801 => 0.00058370573024557
802 => 0.00052944448893128
803 => 0.0005369212092334
804 => 0.00054855263969943
805 => 0.00054331269604051
806 => 0.00053590464166479
807 => 0.00052992224056165
808 => 0.00052085829115848
809 => 0.00053361562588572
810 => 0.00055039016446074
811 => 0.00056802730665246
812 => 0.00058921717736448
813 => 0.00058448784489884
814 => 0.00056763117675887
815 => 0.00056838735457782
816 => 0.0005730617483096
817 => 0.00056700798371349
818 => 0.00056522261035058
819 => 0.00057281646542581
820 => 0.0005728687601322
821 => 0.00056590317234249
822 => 0.00055816219620333
823 => 0.00055812976123066
824 => 0.00055675232929566
825 => 0.00057633830111512
826 => 0.00058710860525072
827 => 0.00058834340326266
828 => 0.00058702549350617
829 => 0.00058753270466547
830 => 0.00058126570199642
831 => 0.00059559021167596
901 => 0.00060873579830508
902 => 0.00060521250027398
903 => 0.00059993057565903
904 => 0.00059572326829127
905 => 0.00060422139236829
906 => 0.00060384298428042
907 => 0.00060862098307383
908 => 0.00060840422544951
909 => 0.00060679756416491
910 => 0.00060521255765291
911 => 0.00061149692931195
912 => 0.00060968713119807
913 => 0.00060787452196784
914 => 0.00060423905666002
915 => 0.00060473317677403
916 => 0.00059945216415784
917 => 0.00059700892607889
918 => 0.00056026848751939
919 => 0.00055045024180782
920 => 0.0005535392617775
921 => 0.00055455624735789
922 => 0.00055028333424179
923 => 0.00055640959402895
924 => 0.00055545482293044
925 => 0.00055916927875235
926 => 0.00055684864801774
927 => 0.00055694388751256
928 => 0.00056376836769239
929 => 0.00056574954332201
930 => 0.00056474190140674
1001 => 0.00056544761926425
1002 => 0.00058171058942576
1003 => 0.00057939851512931
1004 => 0.00057817027174066
1005 => 0.00057851050355328
1006 => 0.00058266604111156
1007 => 0.00058382936474394
1008 => 0.00057890028076825
1009 => 0.00058122486526588
1010 => 0.00059112265102309
1011 => 0.00059458631587196
1012 => 0.0006056406714161
1013 => 0.00060094458470545
1014 => 0.00060956445510472
1015 => 0.00063605899798172
1016 => 0.00065722467211478
1017 => 0.00063775984347354
1018 => 0.00067662790858657
1019 => 0.00070689227256985
1020 => 0.00070573067587224
1021 => 0.0007004533839844
1022 => 0.00066599821020918
1023 => 0.00063429204560351
1024 => 0.00066081559861101
1025 => 0.00066088321260225
1026 => 0.00065860481587633
1027 => 0.00064445388949
1028 => 0.00065811239431199
1029 => 0.00065919655682436
1030 => 0.00065858971411952
1031 => 0.00064774023203772
1101 => 0.00063117507821828
1102 => 0.00063441186962322
1103 => 0.00063971379997328
1104 => 0.00062967613972208
1105 => 0.00062646849906855
1106 => 0.00063243211332208
1107 => 0.00065164812101532
1108 => 0.00064801544607167
1109 => 0.0006479205822481
1110 => 0.00066346270615097
1111 => 0.00065233789963678
1112 => 0.00063445269592848
1113 => 0.00062993644611528
1114 => 0.00061390680178883
1115 => 0.00062497853422074
1116 => 0.00062537698616034
1117 => 0.00061931311145775
1118 => 0.00063494474594067
1119 => 0.00063480069767702
1120 => 0.00064964060815681
1121 => 0.00067800894337832
1122 => 0.00066961903073232
1123 => 0.00065986247514493
1124 => 0.00066092328325722
1125 => 0.00067255772995154
1126 => 0.00066552327789157
1127 => 0.00066805291589828
1128 => 0.00067255390104145
1129 => 0.0006752694571315
1130 => 0.0006605325565259
1201 => 0.00065709668004729
1202 => 0.00065006808260084
1203 => 0.00064823445272204
1204 => 0.00065395909868568
1205 => 0.00065245085672899
1206 => 0.0006253434978177
1207 => 0.00062251062798755
1208 => 0.00062259750806084
1209 => 0.0006154741221773
1210 => 0.00060460924889641
1211 => 0.00063316148717072
1212 => 0.00063086834284897
1213 => 0.00062833688899304
1214 => 0.00062864697764611
1215 => 0.00064104053655585
1216 => 0.00063385164649848
1217 => 0.00065296448895191
1218 => 0.00064903546312812
1219 => 0.00064500567261752
1220 => 0.00064444863281853
1221 => 0.00064289750727752
1222 => 0.000637578120649
1223 => 0.00063115464164948
1224 => 0.00062691330442178
1225 => 0.0005782943848172
1226 => 0.00058731777349257
1227 => 0.00059769835965582
1228 => 0.00060128169640178
1229 => 0.00059515215093845
1230 => 0.00063782015246391
1231 => 0.00064561600750171
]
'min_raw' => 0.00026908661511656
'max_raw' => 0.00070689227256985
'avg_raw' => 0.00048798944384321
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000269'
'max' => '$0.0007068'
'avg' => '$0.000487'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0433094401943E-5
'max_diff' => -0.0001274808677805
'year' => 2027
]
2 => [
'items' => [
101 => 0.00062200185408119
102 => 0.00061758461013574
103 => 0.00063810974624159
104 => 0.00062573058007392
105 => 0.00063130491784123
106 => 0.00061925624858804
107 => 0.00064373821431238
108 => 0.00064355170275208
109 => 0.00063402766513503
110 => 0.00064207731651116
111 => 0.00064067849149237
112 => 0.00062992587647939
113 => 0.00064407909138739
114 => 0.0006440861112054
115 => 0.00063491943206943
116 => 0.00062421475768271
117 => 0.00062230101473549
118 => 0.00062085926649995
119 => 0.00063095033615606
120 => 0.00063999795765578
121 => 0.00065683333817117
122 => 0.00066106615283151
123 => 0.00067758711024526
124 => 0.00066774968449619
125 => 0.00067211048791476
126 => 0.00067684475689893
127 => 0.00067911453954691
128 => 0.00067541605052527
129 => 0.00070107989768619
130 => 0.00070324671270653
131 => 0.00070397322703997
201 => 0.00069531952217332
202 => 0.00070300603751975
203 => 0.00069940977153979
204 => 0.00070876625654819
205 => 0.0007102334728671
206 => 0.00070899079284272
207 => 0.00070945651046077
208 => 0.00068755694432181
209 => 0.00068642133628809
210 => 0.00067093724016924
211 => 0.00067724712379033
212 => 0.0006654510988013
213 => 0.00066919173983784
214 => 0.00067084057876461
215 => 0.00066997931888005
216 => 0.000677603875143
217 => 0.00067112144472556
218 => 0.00065401324504372
219 => 0.00063690038424431
220 => 0.00063668554621681
221 => 0.00063218003203541
222 => 0.00062892337050834
223 => 0.00062955071905473
224 => 0.00063176157715855
225 => 0.00062879487141622
226 => 0.00062942796850215
227 => 0.00063994159843233
228 => 0.00064205003193505
229 => 0.00063488475107466
301 => 0.0006061151144751
302 => 0.00059905497349039
303 => 0.00060412966282152
304 => 0.00060170428817309
305 => 0.00048562232164992
306 => 0.00051289405781639
307 => 0.00049669011824693
308 => 0.00050415763910795
309 => 0.00048761761279734
310 => 0.00049551138028981
311 => 0.00049405368966819
312 => 0.00053790583439453
313 => 0.00053722114347128
314 => 0.0005375488687832
315 => 0.00052190568576141
316 => 0.00054682570107383
317 => 0.00055910219671149
318 => 0.00055683014409731
319 => 0.00055740197079085
320 => 0.00054757609364341
321 => 0.00053764400475229
322 => 0.00052662778963453
323 => 0.000547094555678
324 => 0.00054481900067331
325 => 0.00055003830513522
326 => 0.00056331246590906
327 => 0.00056526713650664
328 => 0.0005678942336121
329 => 0.0005669526063093
330 => 0.00058938598887087
331 => 0.00058666915822244
401 => 0.00059321593839964
402 => 0.00057974871486974
403 => 0.00056450927312507
404 => 0.00056740579278584
405 => 0.00056712683465017
406 => 0.00056357537740981
407 => 0.0005603692806096
408 => 0.00055503203274942
409 => 0.00057191987474309
410 => 0.00057123425919897
411 => 0.00058233357791743
412 => 0.00058037166552091
413 => 0.00056726953437557
414 => 0.00056773747955263
415 => 0.00057088463575516
416 => 0.00058177697930571
417 => 0.00058501056847881
418 => 0.00058351264113758
419 => 0.00058705812404694
420 => 0.00058986032917751
421 => 0.00058741003786783
422 => 0.00062210099560583
423 => 0.00060769489130788
424 => 0.00061471632630567
425 => 0.00061639089717995
426 => 0.00061210151909792
427 => 0.0006130317316128
428 => 0.0006144407501051
429 => 0.00062299603447625
430 => 0.00064544757615764
501 => 0.00065539121113551
502 => 0.00068530712757676
503 => 0.00065456553067268
504 => 0.00065274145153377
505 => 0.00065813021145896
506 => 0.00067569402133133
507 => 0.00068992783954811
508 => 0.00069465001821929
509 => 0.00069527413208536
510 => 0.000704133253197
511 => 0.00070921113620536
512 => 0.00070305752287603
513 => 0.00069784297988959
514 => 0.00067916513416508
515 => 0.00068132714566578
516 => 0.00069622126094194
517 => 0.00071726007602853
518 => 0.00073531356808845
519 => 0.00072899186439679
520 => 0.00077722200113689
521 => 0.00078200382219223
522 => 0.00078134312913716
523 => 0.00079223682913161
524 => 0.00077061505310606
525 => 0.00076137132495295
526 => 0.00069897042327084
527 => 0.00071650253134381
528 => 0.00074198648005248
529 => 0.00073861358388098
530 => 0.00072010645914084
531 => 0.00073529952877476
601 => 0.00073027622482257
602 => 0.00072631413657841
603 => 0.00074446523091352
604 => 0.00072450735708621
605 => 0.00074178738499407
606 => 0.00071962557046324
607 => 0.00072902074140675
608 => 0.00072368758798593
609 => 0.0007271387918559
610 => 0.00070696312455172
611 => 0.00071784942489242
612 => 0.00070651021866671
613 => 0.00070650484240655
614 => 0.00070625452880064
615 => 0.00071959505463945
616 => 0.00072003008870811
617 => 0.00071017141995682
618 => 0.00070875063176841
619 => 0.0007140040303662
620 => 0.00070785367647546
621 => 0.00071073138835107
622 => 0.0007079408394366
623 => 0.000707312628098
624 => 0.00070230693327068
625 => 0.00070015034230463
626 => 0.00070099599719092
627 => 0.00069810934109903
628 => 0.00069637002638875
629 => 0.00070590853532685
630 => 0.00070081249478358
701 => 0.00070512749402609
702 => 0.00070021000779293
703 => 0.00068316385806205
704 => 0.00067336043709205
705 => 0.00064116184042933
706 => 0.00065029332250065
707 => 0.00065634750456113
708 => 0.00065434659742625
709 => 0.00065864532020023
710 => 0.00065890922686578
711 => 0.00065751166827166
712 => 0.00065589347445803
713 => 0.00065510582720128
714 => 0.00066097630454579
715 => 0.00066438431423546
716 => 0.0006569551227254
717 => 0.00065521456710003
718 => 0.0006627258898936
719 => 0.00066730779245853
720 => 0.00070113798664929
721 => 0.00069863173659355
722 => 0.00070492193240672
723 => 0.00070421375288908
724 => 0.00071080688020806
725 => 0.00072158385691109
726 => 0.00069967124998375
727 => 0.0007034745208654
728 => 0.00070254204667557
729 => 0.00071272255537227
730 => 0.00071275433780918
731 => 0.00070665061429138
801 => 0.00070995954183199
802 => 0.0007081125892545
803 => 0.00071145028219263
804 => 0.00069859826409607
805 => 0.00071425063484805
806 => 0.00072312452044794
807 => 0.0007232477343581
808 => 0.00072745388570493
809 => 0.00073172757907718
810 => 0.00073993056134495
811 => 0.0007314988023539
812 => 0.00071633088874421
813 => 0.00071742596311477
814 => 0.00070853302091513
815 => 0.00070868251288015
816 => 0.00070788451305499
817 => 0.00071027937060091
818 => 0.00069912380065288
819 => 0.00070174199062224
820 => 0.00069807650933303
821 => 0.00070346655282493
822 => 0.00069766775703375
823 => 0.00070254159700828
824 => 0.00070464498477094
825 => 0.00071240653089783
826 => 0.00069652137036009
827 => 0.0006641304526928
828 => 0.00067093941628838
829 => 0.00066086842429797
830 => 0.00066180053294966
831 => 0.00066368354077005
901 => 0.00065758009634234
902 => 0.00065874444119751
903 => 0.00065870284260591
904 => 0.00065834436841692
905 => 0.00065675662679507
906 => 0.00065445408731827
907 => 0.00066362669590955
908 => 0.00066518530084922
909 => 0.00066864988655979
910 => 0.00067895814358354
911 => 0.00067792810562143
912 => 0.0006796081402735
913 => 0.00067594063406102
914 => 0.00066197065804419
915 => 0.00066272929495349
916 => 0.00065326908053823
917 => 0.00066840796760773
918 => 0.00066482287932613
919 => 0.0006625115495886
920 => 0.0006618808818554
921 => 0.00067221469105446
922 => 0.00067530672872944
923 => 0.00067337997834932
924 => 0.00066942815710742
925 => 0.00067701682214294
926 => 0.00067904722876638
927 => 0.00067950176193085
928 => 0.0006929474213916
929 => 0.00068025322493206
930 => 0.00068330884418933
1001 => 0.0007071479133696
1002 => 0.00068552916718977
1003 => 0.0006969810991968
1004 => 0.00069642058671803
1005 => 0.00070227900762057
1006 => 0.00069594002520953
1007 => 0.00069601860449372
1008 => 0.00070122048537137
1009 => 0.00069391538184287
1010 => 0.00069210653547731
1011 => 0.00068960762717849
1012 => 0.00069506390202823
1013 => 0.00069833469203456
1014 => 0.00072469485735503
1015 => 0.00074172472632164
1016 => 0.00074098541479671
1017 => 0.00074774133820134
1018 => 0.00074469773283039
1019 => 0.00073486912822506
1020 => 0.00075164535781572
1021 => 0.00074633665682597
1022 => 0.0007467742996855
1023 => 0.00074675801059641
1024 => 0.00075028783265989
1025 => 0.00074778663022447
1026 => 0.0007428565034811
1027 => 0.00074612935169273
1028 => 0.00075584854081663
1029 => 0.00078601720207837
1030 => 0.00080289998460204
1031 => 0.0007850008373718
1101 => 0.00079734742945209
1102 => 0.0007899438737445
1103 => 0.00078859842743572
1104 => 0.00079635299966813
1105 => 0.0008041211452527
1106 => 0.00080362634796158
1107 => 0.00079798707316587
1108 => 0.00079480158992508
1109 => 0.00081892313623954
1110 => 0.00083669548066422
1111 => 0.00083548352592176
1112 => 0.00084083270000616
1113 => 0.00085653804056167
1114 => 0.00085797394007633
1115 => 0.00085779304974125
1116 => 0.00085423402297355
1117 => 0.00086969797034664
1118 => 0.00088259826730753
1119 => 0.000853410211107
1120 => 0.00086452464080845
1121 => 0.00086951426638599
1122 => 0.00087684051708902
1123 => 0.00088920113004722
1124 => 0.00090262803421049
1125 => 0.00090452674567769
1126 => 0.00090317951903001
1127 => 0.00089432411479977
1128 => 0.00090901599355151
1129 => 0.00091762215155732
1130 => 0.00092274692170136
1201 => 0.00093574248610619
1202 => 0.00086954508061489
1203 => 0.00082268726678361
1204 => 0.00081536974251882
1205 => 0.0008302502158587
1206 => 0.00083417407800887
1207 => 0.00083259237409624
1208 => 0.00077984964450309
1209 => 0.00081509206296287
1210 => 0.00085300994195889
1211 => 0.00085446652211655
1212 => 0.00087344900516742
1213 => 0.00087963047976705
1214 => 0.00089491386671393
1215 => 0.00089395788669918
1216 => 0.00089767914820895
1217 => 0.00089682369463112
1218 => 0.0009251329506534
1219 => 0.00095636226401117
1220 => 0.00095528089219272
1221 => 0.00095079130890908
1222 => 0.000957459105673
1223 => 0.00098969110379482
1224 => 0.00098672369791501
1225 => 0.00098960627996422
1226 => 0.0010276096222657
1227 => 0.0010770193731699
1228 => 0.001054063583217
1229 => 0.0011038710420643
1230 => 0.0011352221972286
1231 => 0.0011894407783155
]
'min_raw' => 0.00048562232164992
'max_raw' => 0.0011894407783155
'avg_raw' => 0.00083753154998271
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000485'
'max' => '$0.001189'
'avg' => '$0.000837'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00021653570653336
'max_diff' => 0.00048254850574564
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011826523449313
102 => 0.0012037592406741
103 => 0.0011704996323847
104 => 0.0010941288488766
105 => 0.0010820428800508
106 => 0.0011062392957055
107 => 0.0011657238225408
108 => 0.001104365916268
109 => 0.0011167785407943
110 => 0.0011132037040956
111 => 0.0011130132162401
112 => 0.0011202833629179
113 => 0.0011097376359764
114 => 0.0010667724472765
115 => 0.0010864631400622
116 => 0.0010788596179529
117 => 0.0010872962926133
118 => 0.001132825546206
119 => 0.0011126959779108
120 => 0.0010914911129052
121 => 0.0011180867193585
122 => 0.0011519520656155
123 => 0.0011498328331086
124 => 0.0011457206362748
125 => 0.0011689008745194
126 => 0.001207187836927
127 => 0.0012175366490163
128 => 0.0012251759305285
129 => 0.0012262292583823
130 => 0.0012370791899162
131 => 0.0011787363735238
201 => 0.0012713279214883
202 => 0.0012873159240318
203 => 0.0012843108421885
204 => 0.0013020808341376
205 => 0.001296852451725
206 => 0.0012892773459172
207 => 0.0013174465629423
208 => 0.0012851528287616
209 => 0.0012393159387601
210 => 0.0012141689143545
211 => 0.0012472845446445
212 => 0.0012675071044863
213 => 0.0012808729301454
214 => 0.001284917420914
215 => 0.0011832653602797
216 => 0.0011284805374795
217 => 0.0011635969807852
218 => 0.0012064414652255
219 => 0.0011784983702495
220 => 0.0011795936866693
221 => 0.0011397541765497
222 => 0.001209966377864
223 => 0.00119973705071
224 => 0.0012528068180799
225 => 0.0012401412921856
226 => 0.0012834176273193
227 => 0.0012720215179306
228 => 0.0013193261308549
301 => 0.0013381972216716
302 => 0.0013698847202037
303 => 0.0013931941731153
304 => 0.0014068819297037
305 => 0.0014060601681396
306 => 0.0014602978789562
307 => 0.0014283157958089
308 => 0.0013881387617777
309 => 0.001387412085989
310 => 0.0014082203412268
311 => 0.001451828735739
312 => 0.0014631357579597
313 => 0.0014694548408488
314 => 0.0014597769454354
315 => 0.0014250626863555
316 => 0.0014100732452902
317 => 0.0014228446833638
318 => 0.0014072263120619
319 => 0.0014341880026699
320 => 0.0014712121625811
321 => 0.0014635668199688
322 => 0.0014891240540677
323 => 0.0015155731026607
324 => 0.0015533964300498
325 => 0.001563284848423
326 => 0.0015796300279711
327 => 0.0015964545868379
328 => 0.0016018581817114
329 => 0.0016121753209618
330 => 0.0016121209445452
331 => 0.0016432123380999
401 => 0.001677507108011
402 => 0.0016904525897267
403 => 0.0017202200111139
404 => 0.0016692443451632
405 => 0.0017079099733531
406 => 0.0017427873378438
407 => 0.001701205106073
408 => 0.0017585165251517
409 => 0.001760741797684
410 => 0.0017943407709573
411 => 0.0017602817747604
412 => 0.0017400576515388
413 => 0.0017984439374915
414 => 0.0018266952221133
415 => 0.0018181857052686
416 => 0.0017534278619142
417 => 0.0017157360194873
418 => 0.0016170891976428
419 => 0.0017339406193432
420 => 0.0017908555382507
421 => 0.0017532804660238
422 => 0.0017722311468437
423 => 0.0018756199166178
424 => 0.0019149836662206
425 => 0.0019067962814766
426 => 0.0019081798147225
427 => 0.0019294197795056
428 => 0.0020236094804162
429 => 0.0019671688283304
430 => 0.0020103155920591
501 => 0.0020332004799636
502 => 0.0020544572392379
503 => 0.0020022573567279
504 => 0.001934346076551
505 => 0.0019128357233973
506 => 0.0017495443656146
507 => 0.0017410443413036
508 => 0.0017362730200807
509 => 0.0017061905146873
510 => 0.0016825539057398
511 => 0.0016637571967337
512 => 0.0016144290191293
513 => 0.001631075831027
514 => 0.0015524570115163
515 => 0.0016027545461593
516 => 0.0014772770119026
517 => 0.0015817784310167
518 => 0.0015249030596894
519 => 0.0015630933418774
520 => 0.0015629600995806
521 => 0.0014926396818324
522 => 0.0014520803324248
523 => 0.0014779263284608
524 => 0.0015056352878691
525 => 0.0015101309733089
526 => 0.0015460563624596
527 => 0.0015560823663579
528 => 0.0015257031064767
529 => 0.0014746767689056
530 => 0.0014865290233365
531 => 0.0014518401468671
601 => 0.0013910492251428
602 => 0.0014347103264329
603 => 0.0014496181460564
604 => 0.0014562022884819
605 => 0.0013964213988506
606 => 0.0013776369454222
607 => 0.0013676362600338
608 => 0.0014669598067504
609 => 0.0014724009748498
610 => 0.0014445631895498
611 => 0.001570392618793
612 => 0.0015419135436259
613 => 0.0015737316481303
614 => 0.0014854535554763
615 => 0.0014888258974979
616 => 0.0014470336337164
617 => 0.001470434508874
618 => 0.001453895524558
619 => 0.0014685439494132
620 => 0.0014773241548737
621 => 0.001519109560956
622 => 0.0015822555532333
623 => 0.0015128682147078
624 => 0.0014826351576673
625 => 0.001501391576218
626 => 0.0015513423905107
627 => 0.0016270204310993
628 => 0.0015822175079084
629 => 0.0016021002844175
630 => 0.0016064437865616
701 => 0.001573407769695
702 => 0.0016282385161632
703 => 0.0016576227586398
704 => 0.0016877649112085
705 => 0.0017139364977199
706 => 0.0016757254726324
707 => 0.0017166167468113
708 => 0.0016836655981047
709 => 0.0016541050112877
710 => 0.0016541498424958
711 => 0.0016356060545743
712 => 0.0015996751288086
713 => 0.0015930489148181
714 => 0.0016275193167952
715 => 0.0016551613148216
716 => 0.0016574380421753
717 => 0.0016727420725799
718 => 0.0016817988401293
719 => 0.0017705674741917
720 => 0.0018062709531442
721 => 0.0018499284913751
722 => 0.0018669355629201
723 => 0.0019181207508978
724 => 0.0018767845545481
725 => 0.0018678412084509
726 => 0.0017436826849643
727 => 0.0017640136362297
728 => 0.0017965654508507
729 => 0.0017442194523978
730 => 0.0017774209400282
731 => 0.0017839756169901
801 => 0.0017424407554008
802 => 0.0017646263195911
803 => 0.0017057080386631
804 => 0.0015835398107525
805 => 0.0016283745243246
806 => 0.001661387964715
807 => 0.00161427371475
808 => 0.0016987241842391
809 => 0.0016493899633751
810 => 0.0016337533838214
811 => 0.0015727495121395
812 => 0.001601540991319
813 => 0.0016404818791636
814 => 0.0016164209378398
815 => 0.0016663510038552
816 => 0.0017370652931953
817 => 0.0017874605068877
818 => 0.0017913292256352
819 => 0.001758928479448
820 => 0.0018108508819917
821 => 0.0018112290800093
822 => 0.0017526603978307
823 => 0.0017167874061081
824 => 0.0017086369869113
825 => 0.0017289983320487
826 => 0.0017537207639572
827 => 0.0017927011485467
828 => 0.0018162561785668
829 => 0.0018776752042367
830 => 0.0018942934315615
831 => 0.0019125518250598
901 => 0.0019369506694535
902 => 0.0019662477378834
903 => 0.0019021474200417
904 => 0.0019046942451675
905 => 0.0018450049167227
906 => 0.0017812183089639
907 => 0.0018296243931399
908 => 0.0018929089090086
909 => 0.0018783913711452
910 => 0.0018767578515691
911 => 0.0018795049783955
912 => 0.0018685592289449
913 => 0.0018190520098483
914 => 0.0017941897943496
915 => 0.0018262683953706
916 => 0.0018433167441589
917 => 0.0018697572463575
918 => 0.0018664978963702
919 => 0.0019346057905309
920 => 0.001961070458726
921 => 0.0019542996641147
922 => 0.0019555456532714
923 => 0.0020034586709213
924 => 0.0020567478006115
925 => 0.0021066601026864
926 => 0.0021574330401402
927 => 0.0020962242823382
928 => 0.0020651462499576
929 => 0.0020972108464649
930 => 0.0020801969202163
1001 => 0.0021779639870993
1002 => 0.002184733166688
1003 => 0.0022824931638993
1004 => 0.0023752790422968
1005 => 0.002317001894507
1006 => 0.0023719546200124
1007 => 0.0024313904730078
1008 => 0.0025460518765557
1009 => 0.0025074379496776
1010 => 0.0024778602868463
1011 => 0.002449909538389
1012 => 0.0025080706088723
1013 => 0.0025828938969033
1014 => 0.0025990101164967
1015 => 0.0026251245491076
1016 => 0.0025976684163381
1017 => 0.0026307363040651
1018 => 0.0027474804785077
1019 => 0.002715935172044
1020 => 0.0026711357657044
1021 => 0.0027632940791971
1022 => 0.0027966458145937
1023 => 0.0030307257600468
1024 => 0.0033262613605414
1025 => 0.0032039076813453
1026 => 0.0031279588043396
1027 => 0.0031458085919674
1028 => 0.0032537281887566
1029 => 0.0032883885380486
1030 => 0.0031941697605343
1031 => 0.0032274494255806
1101 => 0.0034108236519701
1102 => 0.0035091980410786
1103 => 0.0033755924072262
1104 => 0.0030069797623036
1105 => 0.0026671020693245
1106 => 0.0027572529383945
1107 => 0.0027470326275491
1108 => 0.0029440453574041
1109 => 0.0027151828269175
1110 => 0.0027190362849802
1111 => 0.0029201230294485
1112 => 0.0028664765335239
1113 => 0.0027795760806502
1114 => 0.0026677365388002
1115 => 0.0024609908017851
1116 => 0.0022778703369794
1117 => 0.0026370117385878
1118 => 0.0026215249082942
1119 => 0.0025990976830094
1120 => 0.0026490070460015
1121 => 0.0028913527456714
1122 => 0.0028857658928975
1123 => 0.0028502251859875
1124 => 0.0028771824989373
1125 => 0.0027748503333534
1126 => 0.0028012236624845
1127 => 0.0026670482309614
1128 => 0.0027277011296708
1129 => 0.0027793896313073
1130 => 0.0027897668632722
1201 => 0.0028131472967636
1202 => 0.0026133640524565
1203 => 0.0027030608638225
1204 => 0.0027557493370454
1205 => 0.0025177008982013
1206 => 0.0027510438847935
1207 => 0.0026098862706507
1208 => 0.0025619752562944
1209 => 0.002626481125329
1210 => 0.0026013431254322
1211 => 0.0025797309492738
1212 => 0.0025676709836331
1213 => 0.0026150369745991
1214 => 0.002612827294506
1215 => 0.0025353273399429
1216 => 0.0024342318085176
1217 => 0.0024681627872116
1218 => 0.0024558353445474
1219 => 0.0024111591020608
1220 => 0.0024412654952667
1221 => 0.0023086921760847
1222 => 0.0020806066709936
1223 => 0.0022312869421048
1224 => 0.0022254859155756
1225 => 0.002222560774944
1226 => 0.0023357928341872
1227 => 0.002324908184399
1228 => 0.0023051524384507
1229 => 0.0024107962722938
1230 => 0.002372234851831
1231 => 0.002491072063484
]
'min_raw' => 0.0010667724472765
'max_raw' => 0.0035091980410786
'avg_raw' => 0.0022879852441775
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001066'
'max' => '$0.0035091'
'avg' => '$0.002287'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0005811501256266
'max_diff' => 0.0023197572627631
'year' => 2029
]
4 => [
'items' => [
101 => 0.0025693459369877
102 => 0.0025494931507726
103 => 0.0026231101071332
104 => 0.0024689444884298
105 => 0.002520152122912
106 => 0.0025307059454081
107 => 0.0024094926437828
108 => 0.0023266890477171
109 => 0.0023211669918896
110 => 0.0021775969673501
111 => 0.0022542909156024
112 => 0.0023217784162531
113 => 0.002289457140683
114 => 0.0022792251904082
115 => 0.0023314980053232
116 => 0.0023355600507284
117 => 0.0022429449850118
118 => 0.002262202589912
119 => 0.0023425100036562
120 => 0.0022601790491332
121 => 0.0021002234531802
122 => 0.0020605522538248
123 => 0.0020552593845455
124 => 0.0019476679455309
125 => 0.0020632032730609
126 => 0.0020127690064398
127 => 0.0021720902504006
128 => 0.0020810868103072
129 => 0.002077163833891
130 => 0.0020712336796625
131 => 0.0019786252835563
201 => 0.0019989006367329
202 => 0.0020662989987156
203 => 0.0020903474935679
204 => 0.0020878390385313
205 => 0.0020659687099728
206 => 0.0020759808343927
207 => 0.0020437282931809
208 => 0.0020323392496005
209 => 0.0019963922952572
210 => 0.0019435602029723
211 => 0.0019509068294426
212 => 0.0018462326303572
213 => 0.0017892005712153
214 => 0.0017734148489153
215 => 0.0017523055213249
216 => 0.0017757992036364
217 => 0.0018459361015029
218 => 0.001761336122303
219 => 0.0016162953919633
220 => 0.0016250125869941
221 => 0.0016445975360699
222 => 0.0016081011130346
223 => 0.0015735603115443
224 => 0.0016035907360563
225 => 0.0015421350665732
226 => 0.001652024160119
227 => 0.0016490519680992
228 => 0.0016900118266771
301 => 0.0017156248668267
302 => 0.001656595101602
303 => 0.0016417492752814
304 => 0.0016502061326588
305 => 0.0015104331180932
306 => 0.0016785893894195
307 => 0.0016800436118368
308 => 0.0016675916766161
309 => 0.0017571296998549
310 => 0.0019460828564986
311 => 0.0018749910783462
312 => 0.0018474621930851
313 => 0.0017951297620805
314 => 0.0018648596192019
315 => 0.0018595054541302
316 => 0.0018352918891692
317 => 0.0018206474495298
318 => 0.0018476302785884
319 => 0.0018173039784037
320 => 0.0018118565415795
321 => 0.0017788510012948
322 => 0.0017670695250696
323 => 0.0017583469891065
324 => 0.0017487443340698
325 => 0.0017699253982482
326 => 0.0017219263202189
327 => 0.0016640441375233
328 => 0.0016592318603261
329 => 0.0016725189807674
330 => 0.0016666404190819
331 => 0.0016592037160344
401 => 0.0016450050246511
402 => 0.0016407925762247
403 => 0.001654480990021
404 => 0.0016390275689291
405 => 0.0016618299335416
406 => 0.0016556289520794
407 => 0.0016209907737068
408 => 0.0015778187787584
409 => 0.001577434457447
410 => 0.0015681331219517
411 => 0.0015562864727332
412 => 0.0015529910059352
413 => 0.0016010616574656
414 => 0.0017005664674999
415 => 0.0016810312923419
416 => 0.0016951474584388
417 => 0.0017645850243528
418 => 0.0017866571384964
419 => 0.001770990874684
420 => 0.0017495459265244
421 => 0.0017504893954085
422 => 0.0018237732750969
423 => 0.0018283439007813
424 => 0.0018398923973458
425 => 0.0018547354790361
426 => 0.0017735187156791
427 => 0.0017466640931581
428 => 0.0017339388831699
429 => 0.0016947501616822
430 => 0.0017370118380196
501 => 0.0017123877690432
502 => 0.0017157103972261
503 => 0.0017135465312632
504 => 0.0017147281483989
505 => 0.0016519934438778
506 => 0.0016748506729663
507 => 0.0016368460963741
508 => 0.0015859622345312
509 => 0.0015857916539841
510 => 0.0015982454070831
511 => 0.0015908374274244
512 => 0.0015709027446395
513 => 0.0015737343722401
514 => 0.0015489263348807
515 => 0.0015767465171395
516 => 0.0015775443004213
517 => 0.0015668320148761
518 => 0.0016096928440911
519 => 0.0016272529607916
520 => 0.0016202019049663
521 => 0.0016267582399182
522 => 0.0016818430670657
523 => 0.0016908242974103
524 => 0.0016948131666625
525 => 0.0016894686102884
526 => 0.0016277650894378
527 => 0.0016305019029712
528 => 0.0016104209811677
529 => 0.0015934547183192
530 => 0.0015941332798568
531 => 0.0016028561444207
601 => 0.0016409494055606
602 => 0.0017211144279091
603 => 0.0017241566319073
604 => 0.0017278438719006
605 => 0.0017128460137897
606 => 0.0017083225162733
607 => 0.0017142901771112
608 => 0.0017443959446287
609 => 0.0018218361523197
610 => 0.0017944636108641
611 => 0.0017722093085817
612 => 0.0017917323314002
613 => 0.0017887269150638
614 => 0.0017633581766406
615 => 0.0017626461606462
616 => 0.0017139554407358
617 => 0.0016959555902189
618 => 0.0016809135678616
619 => 0.0016644880721293
620 => 0.0016547504876716
621 => 0.0016697118430516
622 => 0.0016731336820446
623 => 0.0016404204170264
624 => 0.0016359617198841
625 => 0.0016626760782628
626 => 0.001650920085152
627 => 0.0016630114156011
628 => 0.0016658167079827
629 => 0.0016653649912979
630 => 0.0016530903843231
701 => 0.0016609138527748
702 => 0.0016424090175982
703 => 0.0016222877886801
704 => 0.0016094516982272
705 => 0.0015982505068467
706 => 0.0016044655788417
707 => 0.0015823099820069
708 => 0.0015752219606754
709 => 0.001658263437697
710 => 0.0017196070696191
711 => 0.0017187151089162
712 => 0.001713285527531
713 => 0.001705218270943
714 => 0.0017438057745614
715 => 0.0017303626598822
716 => 0.0017401436490212
717 => 0.0017426333212638
718 => 0.0017501688093011
719 => 0.0017528620985774
720 => 0.0017447211077749
721 => 0.0017173989483034
722 => 0.0016493147246136
723 => 0.0016176213346962
724 => 0.0016071619881283
725 => 0.0016075421655109
726 => 0.0015970551761117
727 => 0.0016001440644837
728 => 0.0015959809867927
729 => 0.0015880971248025
730 => 0.0016039787725799
731 => 0.0016058089845385
801 => 0.0016021020181757
802 => 0.0016029751429482
803 => 0.0015722830447303
804 => 0.0015746164982981
805 => 0.0015616235323117
806 => 0.0015591875078218
807 => 0.0015263424212353
808 => 0.001468152589376
809 => 0.0015003954048497
810 => 0.0014614506177834
811 => 0.0014467016368115
812 => 0.0015165210187951
813 => 0.0015095130893322
814 => 0.0014975185603653
815 => 0.0014797761521445
816 => 0.0014731953203483
817 => 0.001433212269593
818 => 0.0014308498576531
819 => 0.0014506665372406
820 => 0.0014415218214613
821 => 0.0014286791771324
822 => 0.0013821644212113
823 => 0.0013298664350495
824 => 0.0013314449825183
825 => 0.0013480799988777
826 => 0.0013964485524804
827 => 0.0013775501218034
828 => 0.0013638390935127
829 => 0.0013612714300658
830 => 0.0013934111138707
831 => 0.0014388954999265
901 => 0.0014602357562082
902 => 0.0014390882103463
903 => 0.0014147950483249
904 => 0.0014162736605335
905 => 0.0014261102051271
906 => 0.0014271438868827
907 => 0.0014113315357842
908 => 0.001415782619997
909 => 0.001409021016062
910 => 0.0013675250651939
911 => 0.0013667745350278
912 => 0.0013565907594721
913 => 0.0013562823987956
914 => 0.0013389572561136
915 => 0.0013365333488893
916 => 0.0013021332265332
917 => 0.0013247754912412
918 => 0.0013095882488473
919 => 0.0012866974922515
920 => 0.0012827511171863
921 => 0.0012826324843864
922 => 0.0013061361731309
923 => 0.0013245008369537
924 => 0.001309852437431
925 => 0.001306517280807
926 => 0.0013421280280703
927 => 0.0013375962358818
928 => 0.0013336717330736
929 => 0.0014348228720323
930 => 0.0013547538526247
1001 => 0.0013198391899831
1002 => 0.0012766256648495
1003 => 0.0012906962065345
1004 => 0.0012936610764068
1005 => 0.0011897403382839
1006 => 0.00114757970777
1007 => 0.0011331117681674
1008 => 0.0011247852643795
1009 => 0.0011285797567133
1010 => 0.001090630244302
1011 => 0.0011161329442694
1012 => 0.0010832718743137
1013 => 0.0010777626089964
1014 => 0.0011365222727827
1015 => 0.0011446983367296
1016 => 0.0011098167078282
1017 => 0.0011322163604057
1018 => 0.0011240939350026
1019 => 0.0010838351830411
1020 => 0.0010822975948395
1021 => 0.0010620971682688
1022 => 0.0010304874122589
1023 => 0.0010160409055594
1024 => 0.00100851703944
1025 => 0.0010116215332381
1026 => 0.0010100518061747
1027 => 0.00099980827528173
1028 => 0.0010106389533748
1029 => 0.00098297104639213
1030 => 0.00097195346289615
1031 => 0.00096697707603701
1101 => 0.00094242021608456
1102 => 0.00098150110075409
1103 => 0.00098920052736201
1104 => 0.00099691512421881
1105 => 0.0010640654228783
1106 => 0.001060710783722
1107 => 0.001091035087919
1108 => 0.0010898567412208
1109 => 0.0010812077584426
1110 => 0.0010447191227902
1111 => 0.0010592628426139
1112 => 0.0010144995335926
1113 => 0.0010480392483205
1114 => 0.0010327331231706
1115 => 0.0010428642320108
1116 => 0.001024647584831
1117 => 0.0010347294295272
1118 => 0.00099102634704064
1119 => 0.00095021702353365
1120 => 0.00096663988661128
1121 => 0.00098449341695887
1122 => 0.0010232044197474
1123 => 0.0010001484658454
1124 => 0.0010084402587107
1125 => 0.00098066414064129
1126 => 0.00092335407520828
1127 => 0.00092367844395478
1128 => 0.00091486253895556
1129 => 0.00090724430989302
1130 => 0.0010027967195004
1201 => 0.00099091326690569
1202 => 0.00097197854046379
1203 => 0.00099732342424239
1204 => 0.0010040250137908
1205 => 0.001004215798624
1206 => 0.0010227067715827
1207 => 0.0010325754071655
1208 => 0.00103431479696
1209 => 0.0010634107424345
1210 => 0.0010731633195727
1211 => 0.0011133328045688
1212 => 0.0010317381223846
1213 => 0.0010300577335999
1214 => 0.00099768007873302
1215 => 0.000977145658146
1216 => 0.00099908608807858
1217 => 0.0010185223138315
1218 => 0.00099828401644543
1219 => 0.0010009267108303
1220 => 0.00097375845011914
1221 => 0.00098346982493789
1222 => 0.00099183456919526
1223 => 0.00098721604907328
1224 => 0.00098030190091178
1225 => 0.0010169287649675
1226 => 0.0010148621337557
1227 => 0.0010489699116124
1228 => 0.0010755593635223
1229 => 0.0011232124147778
1230 => 0.0010734839715829
1231 => 0.0010716716694602
]
'min_raw' => 0.00090724430989302
'max_raw' => 0.0026231101071332
'avg_raw' => 0.0017651772085131
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0009072'
'max' => '$0.002623'
'avg' => '$0.001765'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0001595281373835
'max_diff' => -0.00088608793394533
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010893872134118
102 => 0.0010731606074153
103 => 0.0010834152622817
104 => 0.0011215602313425
105 => 0.0011223661744307
106 => 0.0011088655893044
107 => 0.0011080440774725
108 => 0.0011106370125262
109 => 0.0011258239141248
110 => 0.0011205171440599
111 => 0.00112665827273
112 => 0.0011343378481682
113 => 0.0011661038282532
114 => 0.0011737624985085
115 => 0.0011551559003534
116 => 0.0011568358678376
117 => 0.0011498764893651
118 => 0.0011431538169613
119 => 0.0011582654027574
120 => 0.0011858821228188
121 => 0.0011857103206366
122 => 0.0011921168628985
123 => 0.001196108085653
124 => 0.001178974835837
125 => 0.0011678217202139
126 => 0.001172098534435
127 => 0.0011789372535114
128 => 0.0011698808300085
129 => 0.0011139803888048
130 => 0.001130937011732
131 => 0.0011281146005404
201 => 0.0011240951437866
202 => 0.0011411451592616
203 => 0.0011395006436753
204 => 0.0010902410172009
205 => 0.0010933944586654
206 => 0.0010904327884209
207 => 0.0011000025508814
208 => 0.0010726438088371
209 => 0.001081059173626
210 => 0.0010863372115325
211 => 0.0010894460164072
212 => 0.001100677151342
213 => 0.0010993593072867
214 => 0.0011005952323052
215 => 0.0011172480405039
216 => 0.0012014722298193
217 => 0.0012060563666135
218 => 0.0011834824004694
219 => 0.0011925002546922
220 => 0.0011751879465724
221 => 0.0011868098149956
222 => 0.0011947612022073
223 => 0.0011588304123615
224 => 0.0011567028241757
225 => 0.001139319062002
226 => 0.0011486601111275
227 => 0.0011337978303236
228 => 0.0011374445141723
301 => 0.001127248068219
302 => 0.0011455996408429
303 => 0.0011661195505825
304 => 0.0011713036901385
305 => 0.001157666450879
306 => 0.0011477921909173
307 => 0.001130456243208
308 => 0.0011592863106054
309 => 0.0011677171008928
310 => 0.0011592420272531
311 => 0.0011572781675068
312 => 0.0011535566568361
313 => 0.0011580677035883
314 => 0.0011676711849983
315 => 0.0011631423605138
316 => 0.0011661337288734
317 => 0.0011547337173722
318 => 0.0011789805076556
319 => 0.0012174902459337
320 => 0.0012176140610392
321 => 0.0012130852121427
322 => 0.0012112321047496
323 => 0.001215878978551
324 => 0.0012183997169635
325 => 0.0012334268547463
326 => 0.0012495515722948
327 => 0.0013247985933281
328 => 0.0013036695309278
329 => 0.0013704331644539
330 => 0.0014232345304002
331 => 0.0014390673513236
401 => 0.0014245019010659
402 => 0.0013746742825443
403 => 0.0013722295018644
404 => 0.0014466930006136
405 => 0.0014256536515727
406 => 0.0014231510879509
407 => 0.0013965280391633
408 => 0.0014122655583255
409 => 0.0014088235320292
410 => 0.0014033901251309
411 => 0.0014334162154073
412 => 0.0014896223759573
413 => 0.0014808621187375
414 => 0.0014743229930996
415 => 0.0014456704480652
416 => 0.0014629256799536
417 => 0.0014567814223803
418 => 0.0014831810521572
419 => 0.0014675424963008
420 => 0.0014254942578109
421 => 0.0014321905783832
422 => 0.0014311784429998
423 => 0.0014520081174691
424 => 0.0014457555662177
425 => 0.0014299575320181
426 => 0.0014894302694109
427 => 0.0014855684406494
428 => 0.0014910436308963
429 => 0.0014934539789688
430 => 0.0015296539861926
501 => 0.0015444839708812
502 => 0.0015478506370409
503 => 0.0015619379755029
504 => 0.0015475001312267
505 => 0.0016052618023399
506 => 0.0016436699431431
507 => 0.001688282975151
508 => 0.0017534746057671
509 => 0.001777987261935
510 => 0.0017735592700025
511 => 0.0018229868203138
512 => 0.0019118070295105
513 => 0.0017915123737481
514 => 0.0019181829383641
515 => 0.0018780805000887
516 => 0.0017829983403497
517 => 0.0017768761702076
518 => 0.0018412669127094
519 => 0.0019840793821991
520 => 0.0019483064783575
521 => 0.0019841378938545
522 => 0.0019423386443796
523 => 0.0019402629593314
524 => 0.0019821077976052
525 => 0.0020798805430751
526 => 0.0020334323766589
527 => 0.0019668375405436
528 => 0.0020160101312007
529 => 0.0019734122824651
530 => 0.0018774274068766
531 => 0.0019482791234921
601 => 0.001900902598332
602 => 0.0019147295870484
603 => 0.0020143079962087
604 => 0.0020023264585667
605 => 0.0020178316777359
606 => 0.0019904653717445
607 => 0.0019649009266782
608 => 0.0019171829915212
609 => 0.001903056063387
610 => 0.0019069602380897
611 => 0.0019030541286719
612 => 0.0018763563825021
613 => 0.0018705910067586
614 => 0.0018609817945993
615 => 0.0018639600912535
616 => 0.0018458919611198
617 => 0.0018799902557483
618 => 0.0018863191997045
619 => 0.0019111330949734
620 => 0.0019137093558972
621 => 0.0019828157010172
622 => 0.0019447530874101
623 => 0.0019702887747857
624 => 0.0019680046225556
625 => 0.0017850590590656
626 => 0.0018102673435721
627 => 0.0018494835234689
628 => 0.0018318166875817
629 => 0.0018068399150401
630 => 0.001786669832043
701 => 0.0017561100938054
702 => 0.001799122338527
703 => 0.0018556788664935
704 => 0.0019151437227789
705 => 0.001986586851314
706 => 0.0019706415767146
707 => 0.0019138081431857
708 => 0.001916357649497
709 => 0.0019321176943194
710 => 0.0019117070043233
711 => 0.0019056874933794
712 => 0.0019312907059516
713 => 0.0019314670212053
714 => 0.0019079820556505
715 => 0.0018818828141396
716 => 0.0018817734573647
717 => 0.0018771293494266
718 => 0.0019431648208648
719 => 0.0019794776532166
720 => 0.0019836408609247
721 => 0.0019791974361672
722 => 0.0019809075340031
723 => 0.0019597778969563
724 => 0.0020080739814462
725 => 0.0020523952445618
726 => 0.0020405161992611
727 => 0.0020227078216496
728 => 0.0020085225911144
729 => 0.0020371746097601
730 => 0.0020358987804723
731 => 0.0020520081369935
801 => 0.0020512773235296
802 => 0.002045860352835
803 => 0.0020405163927182
804 => 0.0020617045905275
805 => 0.0020556027298305
806 => 0.0020494913912584
807 => 0.002037234166153
808 => 0.0020389001266158
809 => 0.0020210948238717
810 => 0.0020128572761071
811 => 0.0018889843223683
812 => 0.0018558814214637
813 => 0.0018662962679599
814 => 0.0018697251058479
815 => 0.0018553186809517
816 => 0.0018759737935459
817 => 0.0018727547161273
818 => 0.0018852782632659
819 => 0.0018774540947229
820 => 0.0018777752013291
821 => 0.0019007844127254
822 => 0.0019074640846819
823 => 0.0019040667496133
824 => 0.0019064461266415
825 => 0.0019612778659853
826 => 0.001953482546071
827 => 0.0019493414377329
828 => 0.0019504885530434
829 => 0.0019644992380515
830 => 0.0019684214648988
831 => 0.0019518027141371
901 => 0.0019596402130681
902 => 0.0019930112887899
903 => 0.0020046892766532
904 => 0.0020419598081607
905 => 0.0020261266239455
906 => 0.0020551891188168
907 => 0.0021445173199165
908 => 0.0022158788679963
909 => 0.0021502518392414
910 => 0.0022812982344516
911 => 0.0023833366506117
912 => 0.0023794202462456
913 => 0.002361627488197
914 => 0.0022454594642304
915 => 0.0021385599166087
916 => 0.0022279859273888
917 => 0.0022282138926809
918 => 0.0022205321190469
919 => 0.0021728212827492
920 => 0.002218871885363
921 => 0.0022225272149672
922 => 0.0022204812024194
923 => 0.002183901416094
924 => 0.0021280508434496
925 => 0.002138963911657
926 => 0.0021568397400011
927 => 0.0021229970676572
928 => 0.0021121822832435
929 => 0.0021322890250655
930 => 0.0021970771366221
1001 => 0.0021848293194243
1002 => 0.0021845094794199
1003 => 0.0022369108352749
1004 => 0.0021994027734031
1005 => 0.0021391015603955
1006 => 0.0021238747088359
1007 => 0.0020698296438352
1008 => 0.0021071587627331
1009 => 0.0021085021712665
1010 => 0.0020880573943404
1011 => 0.0021407605413655
1012 => 0.0021402748725875
1013 => 0.0021903086668595
1014 => 0.0022859544896728
1015 => 0.0022576673134218
1016 => 0.0022247724050779
1017 => 0.0022283489936918
1018 => 0.0022675753430128
1019 => 0.0022438581967629
1020 => 0.0022523870479162
1021 => 0.0022675624335751
1022 => 0.0022767181205268
1023 => 0.0022270316312375
1024 => 0.0022154473338046
1025 => 0.0021917499267929
1026 => 0.0021855677156366
1027 => 0.002204868759185
1028 => 0.0021997836161259
1029 => 0.0021083892629812
1030 => 0.0020988380445641
1031 => 0.002099130966797
1101 => 0.0020751139739518
1102 => 0.002038482295124
1103 => 0.0021347481599194
1104 => 0.0021270166637364
1105 => 0.0021184816903207
1106 => 0.0021195271758642
1107 => 0.0021613129250191
1108 => 0.0021370750802784
1109 => 0.0022015153630262
1110 => 0.0021882683781454
1111 => 0.0021746816580879
1112 => 0.0021728035595144
1113 => 0.0021675738314567
1114 => 0.002149639148051
1115 => 0.0021279819401311
1116 => 0.0021136819755472
1117 => 0.0019497598936358
1118 => 0.0019801828785477
1119 => 0.0020151817495465
1120 => 0.0020272632195661
1121 => 0.0020065970290853
1122 => 0.0021504551752131
1123 => 0.0021767394447622
1124 => 0.0020971226778174
1125 => 0.0020822296314532
1126 => 0.0021514315608533
1127 => 0.0021096943378332
1128 => 0.0021284886068035
1129 => 0.0020878656772052
1130 => 0.0021704083339211
1201 => 0.0021697794971737
1202 => 0.0021376685394007
1203 => 0.0021648085010241
1204 => 0.0021600922648104
1205 => 0.0021238390725705
1206 => 0.0021715576247787
1207 => 0.0021715812925853
1208 => 0.0021406751938812
1209 => 0.0021045836368099
1210 => 0.0020981313188501
1211 => 0.0020932703640143
1212 => 0.0021272931098959
1213 => 0.002157797797467
1214 => 0.0022145594582833
1215 => 0.0022288306884363
1216 => 0.0022845322498132
1217 => 0.0022513646820731
1218 => 0.0022660674352604
1219 => 0.0022820293536766
1220 => 0.0022896820843454
1221 => 0.0022772123703887
1222 => 0.0023637398228843
1223 => 0.0023710453910076
1224 => 0.0023734948848064
1225 => 0.0023443183146661
1226 => 0.002370233937812
1227 => 0.0023581088759773
1228 => 0.002389654918432
1229 => 0.002394601740689
1230 => 0.0023904119582256
1231 => 0.0023919821576903
]
'min_raw' => 0.0010726438088371
'max_raw' => 0.002394601740689
'avg_raw' => 0.0017336227747631
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001072'
'max' => '$0.002394'
'avg' => '$0.001733'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0001653994989441
'max_diff' => -0.00022850836644424
'year' => 2031
]
6 => [
'items' => [
101 => 0.0023181462414739
102 => 0.0023143174597026
103 => 0.0022621117485728
104 => 0.0022833859617433
105 => 0.0022436148399206
106 => 0.0022562266723386
107 => 0.0022617858478984
108 => 0.0022588820500664
109 => 0.0022845887738364
110 => 0.0022627328070952
111 => 0.0022050513174115
112 => 0.0021473541124445
113 => 0.0021466297710353
114 => 0.0021314391154077
115 => 0.0021204590536964
116 => 0.0021225742031206
117 => 0.0021300282655748
118 => 0.0021200258100358
119 => 0.0021221603410624
120 => 0.0021576077784102
121 => 0.0021647165091708
122 => 0.002140558264486
123 => 0.0020435594260587
124 => 0.0020197556678055
125 => 0.0020368653371889
126 => 0.0020286880172274
127 => 0.0016373095625105
128 => 0.0017292581250476
129 => 0.0016746254114662
130 => 0.0016998026794148
131 => 0.0016440368259208
201 => 0.0016706512141469
202 => 0.0016657365084434
203 => 0.0018135870760472
204 => 0.0018112785927959
205 => 0.0018123835415661
206 => 0.001759641457836
207 => 0.0018436610293217
208 => 0.0018850520914816
209 => 0.0018773917074633
210 => 0.0018793196610842
211 => 0.0018461910302608
212 => 0.0018127042991281
213 => 0.0017755623607309
214 => 0.0018445674913905
215 => 0.001836895298818
216 => 0.0018544925482115
217 => 0.0018992473080328
218 => 0.0019058376164233
219 => 0.0019146950577324
220 => 0.0019115202955387
221 => 0.0019871560110938
222 => 0.0019779960268796
223 => 0.0020000689533286
224 => 0.001954663268946
225 => 0.00190328242712
226 => 0.0019130482453849
227 => 0.0019121077185542
228 => 0.0019001337325135
229 => 0.0018893241533091
301 => 0.0018713292495137
302 => 0.0019282677878669
303 => 0.0019259561871917
304 => 0.0019633783151807
305 => 0.0019567635905595
306 => 0.0019125888406414
307 => 0.0019141665504767
308 => 0.001924777407341
309 => 0.0019615017041008
310 => 0.0019724039757599
311 => 0.001967353609147
312 => 0.0019793074523136
313 => 0.001988755282555
314 => 0.0019804939543306
315 => 0.0020974569403896
316 => 0.0020488857539469
317 => 0.0020725590122629
318 => 0.0020782049448804
319 => 0.002063743007202
320 => 0.0020668792836413
321 => 0.0020716298878626
322 => 0.0021004746264308
323 => 0.0021761715667262
324 => 0.0022096972262965
325 => 0.0023105608272407
326 => 0.0022069133869689
327 => 0.0022007633767989
328 => 0.0022189319571179
329 => 0.0022781495683687
330 => 0.00232613988026
331 => 0.0023420610353419
401 => 0.0023441652788155
402 => 0.0023740344241675
403 => 0.0023911548612567
404 => 0.0023704075242853
405 => 0.0023528263285387
406 => 0.002289852667633
407 => 0.0022971420403544
408 => 0.0023473585898819
409 => 0.0024182924238295
410 => 0.0024791610327641
411 => 0.0024578469674004
412 => 0.0026204582407403
413 => 0.0026365804842844
414 => 0.0026343529115212
415 => 0.0026710817816263
416 => 0.0025981824541719
417 => 0.0025670165793273
418 => 0.0023566275826142
419 => 0.0024157383090349
420 => 0.0025016592213387
421 => 0.0024902872664084
422 => 0.0024278892032208
423 => 0.0024791136982378
424 => 0.0024621772782471
425 => 0.0024488188211078
426 => 0.0025100165029275
427 => 0.0024427271379045
428 => 0.0025009879584489
429 => 0.0024262678534697
430 => 0.0024579443282556
501 => 0.0024399632291484
502 => 0.0024515992039514
503 => 0.0023835755330153
504 => 0.0024202794546711
505 => 0.0023820485292031
506 => 0.0023820304027666
507 => 0.0023811864529679
508 => 0.0024261649672392
509 => 0.0024276317149748
510 => 0.0023943925249696
511 => 0.0023896022383961
512 => 0.0024073144385491
513 => 0.0023865780910025
514 => 0.0023962804975065
515 => 0.0023868719670115
516 => 0.0023847539086231
517 => 0.0023678768590264
518 => 0.0023606057620159
519 => 0.0023634569465068
520 => 0.0023537243839531
521 => 0.0023478601629723
522 => 0.0023800199118146
523 => 0.0023628382553287
524 => 0.0023773865765385
525 => 0.0023608069283755
526 => 0.0023033346444336
527 => 0.0022702817261803
528 => 0.0021617219094977
529 => 0.0021925093388408
530 => 0.0022129214363472
531 => 0.0022061752382431
601 => 0.0022206686822029
602 => 0.0022215584619511
603 => 0.0022168464955766
604 => 0.0022113906421553
605 => 0.0022087350344374
606 => 0.002228527758668
607 => 0.0022400181012764
608 => 0.0022149700634106
609 => 0.002209101658598
610 => 0.0022344266078203
611 => 0.0022498748122162
612 => 0.0023639356738791
613 => 0.0023554856768354
614 => 0.0023766935111869
615 => 0.0023743058344997
616 => 0.0023965350235731
617 => 0.0024328703529518
618 => 0.0023589904688069
619 => 0.0023718134621203
620 => 0.002368669560286
621 => 0.0024029938561374
622 => 0.0024031010128424
623 => 0.0023825218828538
624 => 0.0023936781630789
625 => 0.0023874510335138
626 => 0.0023987042982849
627 => 0.0023553728219731
628 => 0.0024081458827771
629 => 0.002438064807632
630 => 0.0024384802319326
701 => 0.0024526615648626
702 => 0.0024670706204468
703 => 0.0024947275478766
704 => 0.0024662992837517
705 => 0.0024151596040267
706 => 0.0024188517237227
707 => 0.0023888685482112
708 => 0.0023893725708084
709 => 0.0023866820586833
710 => 0.002394756488103
711 => 0.0023571447051662
712 => 0.0023659721154441
713 => 0.0023536136893618
714 => 0.0023717865973156
715 => 0.0023522355524466
716 => 0.0023686680442014
717 => 0.002375759762897
718 => 0.0024019283575577
719 => 0.0023483704297382
720 => 0.0022391621893613
721 => 0.0022621190855104
722 => 0.0022281640328806
723 => 0.0022313067022775
724 => 0.0022376553946113
725 => 0.0022170772055944
726 => 0.0022210028755656
727 => 0.0022208626230097
728 => 0.0022196540022536
729 => 0.002214300820523
730 => 0.0022065376479188
731 => 0.0022374637381954
801 => 0.0022427186835678
802 => 0.0022543997761806
803 => 0.0022891547844357
804 => 0.0022856819395315
805 => 0.0022913462936572
806 => 0.0022789810404048
807 => 0.0022318802909114
808 => 0.0022344380882175
809 => 0.0022025423148254
810 => 0.0022535841295435
811 => 0.0022414967540992
812 => 0.0022337039445173
813 => 0.0022315776042229
814 => 0.0022664187634211
815 => 0.0022768437843215
816 => 0.0022703476108935
817 => 0.0022570237696691
818 => 0.00228260948366
819 => 0.0022894551413494
820 => 0.0022909876316479
821 => 0.0023363206112658
822 => 0.0022935212416219
823 => 0.0023038234752844
824 => 0.0023841985614163
825 => 0.0023113094492984
826 => 0.0023499204376084
827 => 0.0023480306306525
828 => 0.0023677827057473
829 => 0.0023464103839749
830 => 0.0023466753195177
831 => 0.0023642138240804
901 => 0.0023395841575081
902 => 0.002333485505697
903 => 0.0023250602618993
904 => 0.0023434564735001
905 => 0.0023544841703657
906 => 0.0024433593081517
907 => 0.0025007767003601
908 => 0.0024982840599367
909 => 0.0025210621273789
910 => 0.002510800399373
911 => 0.0024776625727349
912 => 0.0025342248020787
913 => 0.0025163261460501
914 => 0.0025178016895063
915 => 0.0025177467697051
916 => 0.0025296478112365
917 => 0.0025212148325971
918 => 0.0025045925660713
919 => 0.0025156272023198
920 => 0.0025483961270232
921 => 0.0026501118747758
922 => 0.0027070333547726
923 => 0.0026466851302073
924 => 0.0026883125274175
925 => 0.0026633509224496
926 => 0.0026588146562835
927 => 0.002684959737972
928 => 0.002711150583165
929 => 0.0027094823395523
930 => 0.002690469130857
1001 => 0.0026797290517074
1002 => 0.0027610565292191
1003 => 0.0028209772292724
1004 => 0.0028168910392422
1005 => 0.0028349261531352
1006 => 0.00288787780533
1007 => 0.0028927190407949
1008 => 0.0028921091564009
1009 => 0.0028801096491702
1010 => 0.0029322474273969
1011 => 0.0029757416792706
1012 => 0.0028773321099455
1013 => 0.0029148051856686
1014 => 0.0029316280566678
1015 => 0.0029563290224156
1016 => 0.0029980036919946
1017 => 0.0030432734368176
1018 => 0.003049675075093
1019 => 0.00304513280639
1020 => 0.0030152761927632
1021 => 0.0030648108877289
1022 => 0.0030938271503082
1023 => 0.0031111056706489
1024 => 0.0031549211233611
1025 => 0.0029317319489919
1026 => 0.0027737475581517
1027 => 0.0027490760141997
1028 => 0.0027992465689866
1029 => 0.0028124761441812
1030 => 0.0028071433190087
1031 => 0.0026293175238056
1101 => 0.0027481397981899
1102 => 0.0028759825745667
1103 => 0.0028808935362635
1104 => 0.0029448943031841
1105 => 0.0029657355763735
1106 => 0.0030172645825169
1107 => 0.0030140414291528
1108 => 0.0030265879221432
1109 => 0.0030237037006797
1110 => 0.0031191503338479
1111 => 0.0032244421441947
1112 => 0.0032207962236098
1113 => 0.0032056592801163
1114 => 0.0032281402224366
1115 => 0.0033368126544705
1116 => 0.0033268078383691
1117 => 0.0033365266650034
1118 => 0.0034646575868814
1119 => 0.0036312460117338
1120 => 0.0035538489631855
1121 => 0.0037217782881346
1122 => 0.0038274808966391
1123 => 0.0040102826281939
1124 => 0.0039873949510857
1125 => 0.0040585583237189
1126 => 0.0039464212322597
1127 => 0.0036889318036242
1128 => 0.0036481831159126
1129 => 0.0037297630206322
1130 => 0.0039303192559346
1201 => 0.0037234467910635
1202 => 0.0037652968212757
1203 => 0.0037532440097592
1204 => 0.0037526017666546
1205 => 0.0037771135737643
1206 => 0.0037415579191018
1207 => 0.0035966977856666
1208 => 0.0036630863311538
1209 => 0.0036374505255014
1210 => 0.0036658953631487
1211 => 0.0038194004203876
1212 => 0.0037515321754788
1213 => 0.0036800384926358
1214 => 0.0037697074366392
1215 => 0.0038838868159476
1216 => 0.0038767416755905
1217 => 0.0038628771168609
1218 => 0.0039410309084952
1219 => 0.0040701180753628
1220 => 0.0041050098178529
1221 => 0.0041307661888288
1222 => 0.0041343175572289
1223 => 0.0041708988589133
1224 => 0.0039741919800812
1225 => 0.0042863708485787
1226 => 0.004340275515401
1227 => 0.0043301436721579
1228 => 0.0043900564406758
1229 => 0.0043724285843376
1230 => 0.0043468885862295
1231 => 0.0044418630681416
]
'min_raw' => 0.0016373095625105
'max_raw' => 0.0044418630681416
'avg_raw' => 0.003039586315326
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001637'
'max' => '$0.004441'
'avg' => '$0.003039'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00056466575367336
'max_diff' => 0.0020472613274526
'year' => 2032
]
7 => [
'items' => [
101 => 0.0043329824886748
102 => 0.0041784402138055
103 => 0.0040936552653126
104 => 0.0042053069248948
105 => 0.0042734886972957
106 => 0.0043185525116775
107 => 0.0043321887946811
108 => 0.0039894617751323
109 => 0.0038047509201073
110 => 0.0039231484604641
111 => 0.004067601631061
112 => 0.0039733895354249
113 => 0.0039770824712067
114 => 0.0038427607813329
115 => 0.0040794861201231
116 => 0.0040449972294349
117 => 0.0042239256553353
118 => 0.0041812229505038
119 => 0.0043271321358642
120 => 0.0042887093574095
121 => 0.0044482001625862
122 => 0.0045118253628124
123 => 0.0046186619764638
124 => 0.0046972514243691
125 => 0.0047434006513556
126 => 0.0047406300248687
127 => 0.004923496253643
128 => 0.0048156664273942
129 => 0.004680206752087
130 => 0.0046777567139305
131 => 0.0047479131992505
201 => 0.0048949419459896
202 => 0.0049330643608377
203 => 0.0049543695899824
204 => 0.004921739889907
205 => 0.0048046983417472
206 => 0.0047541603946659
207 => 0.0047972201898045
208 => 0.0047445617605204
209 => 0.0048354649828104
210 => 0.0049602945228951
211 => 0.0049345177164971
212 => 0.0050206857156108
213 => 0.0051098605295556
214 => 0.0052373845185881
215 => 0.0052707240115209
216 => 0.0053258329255513
217 => 0.0053825581004239
218 => 0.0054007766978066
219 => 0.0054355616531091
220 => 0.0054353783192243
221 => 0.0055402051233257
222 => 0.0056558323344654
223 => 0.0056994789298945
224 => 0.0057998418693965
225 => 0.0056279738526362
226 => 0.0057583377176264
227 => 0.0058759291870667
228 => 0.0057357317894727
301 => 0.0059289612402519
302 => 0.0059364639019583
303 => 0.0060497451861547
304 => 0.0059349129025535
305 => 0.0058667258591088
306 => 0.0060635792985986
307 => 0.0061588304771425
308 => 0.0061301400469853
309 => 0.0059118044568676
310 => 0.005784723778565
311 => 0.0054521291314152
312 => 0.0058461018579837
313 => 0.0060379944807532
314 => 0.0059113075013324
315 => 0.0059752010448108
316 => 0.0063237835004776
317 => 0.0064565011305529
318 => 0.0064288967912635
319 => 0.0064335614701973
320 => 0.0065051734943905
321 => 0.0068227406471255
322 => 0.0066324470480577
323 => 0.0067779193743799
324 => 0.0068550773717217
325 => 0.0069267460197147
326 => 0.0067507504713528
327 => 0.006521782848822
328 => 0.0064492591913596
329 => 0.0058987109779565
330 => 0.0058700525525392
331 => 0.0058539657099133
401 => 0.0057525404426859
402 => 0.0056728479653641
403 => 0.0056094735486058
404 => 0.0054431601538291
405 => 0.0054992860423853
406 => 0.0052342172034145
407 => 0.0054037988531252
408 => 0.0049807425858168
409 => 0.0053330764164161
410 => 0.0051413171310744
411 => 0.0052700783338319
412 => 0.0052696290981255
413 => 0.0050325389000725
414 => 0.0048957902217817
415 => 0.0049829318019268
416 => 0.0050763544931495
417 => 0.0050915120104887
418 => 0.0052126369682408
419 => 0.0052464403403771
420 => 0.0051440145446755
421 => 0.0049719756850093
422 => 0.0050119363883211
423 => 0.0048949804194045
424 => 0.0046900195825246
425 => 0.0048372260338446
426 => 0.0048874887885361
427 => 0.0049096876844138
428 => 0.0047081322412535
429 => 0.004644799145031
430 => 0.0046110811360183
501 => 0.0049459574083221
502 => 0.0049643026864594
503 => 0.0048704456497483
504 => 0.0052946883555718
505 => 0.0051986691653005
506 => 0.0053059461261063
507 => 0.0050083103733438
508 => 0.0050196804599191
509 => 0.0048787749247368
510 => 0.0049576726091276
511 => 0.0049019102687912
512 => 0.0049512984559109
513 => 0.0049809015316353
514 => 0.0051217839456058
515 => 0.0053346850672811
516 => 0.0051007408109731
517 => 0.0049988079483562
518 => 0.0050620465230316
519 => 0.0052304591808738
520 => 0.0054856129783902
521 => 0.0053345567948118
522 => 0.0054015929639836
523 => 0.005416237384716
524 => 0.0053048541473492
525 => 0.0054897198372273
526 => 0.0055887908622792
527 => 0.0056904172341225
528 => 0.0057786565652876
529 => 0.0056498254263965
530 => 0.0057876932122284
531 => 0.0056765961137882
601 => 0.0055769305314804
602 => 0.0055770816830286
603 => 0.0055145600073651
604 => 0.005393416382529
605 => 0.0053710756394326
606 => 0.0054872950063451
607 => 0.0055804919325939
608 => 0.0055881680778229
609 => 0.0056397666848253
610 => 0.0056703022089413
611 => 0.0059695918563107
612 => 0.0060899686283364
613 => 0.0062371630665538
614 => 0.0062945035956635
615 => 0.0064670780305662
616 => 0.006327710158572
617 => 0.006297557042801
618 => 0.0058789479123945
619 => 0.0059474951340477
620 => 0.0060572458497374
621 => 0.0058807576612725
622 => 0.0059926987948723
623 => 0.0060147983458823
624 => 0.0058747606601625
625 => 0.0059495608387767
626 => 0.0057509137410849
627 => 0.0053390150311709
628 => 0.005490178398239
629 => 0.0056014855174402
630 => 0.0054426365342712
701 => 0.0057273671882971
702 => 0.0055610334182489
703 => 0.0055083135985727
704 => 0.0053026347860428
705 => 0.0053997072682534
706 => 0.0055309991903872
707 => 0.0054498760468327
708 => 0.0056182187504096
709 => 0.0058566369140337
710 => 0.0060265478954793
711 => 0.0060395915508416
712 => 0.0059303501729237
713 => 0.0061054101782063
714 => 0.0061066852992274
715 => 0.0059092168981276
716 => 0.0057882686019626
717 => 0.0057607888945965
718 => 0.005829438591311
719 => 0.0059127919965554
720 => 0.0060442170847225
721 => 0.006123634512995
722 => 0.0063307130461805
723 => 0.0063867425598536
724 => 0.0064483020082933
725 => 0.0065305644156396
726 => 0.006629341527307
727 => 0.0064132228303627
728 => 0.0064218096290879
729 => 0.0062205628908604
730 => 0.0060055018893627
731 => 0.0061687063817671
801 => 0.0063820745454022
802 => 0.0063331276529135
803 => 0.0063276201276142
804 => 0.0063368822575074
805 => 0.006299977899027
806 => 0.0061330608533592
807 => 0.0060492361579808
808 => 0.0061573914009795
809 => 0.0062148710991972
810 => 0.0063040170983764
811 => 0.0062930279723338
812 => 0.0065226584926381
813 => 0.0066118859691618
814 => 0.006589057762408
815 => 0.0065932587018422
816 => 0.0067548007860286
817 => 0.0069344688073075
818 => 0.0071027516185187
819 => 0.0072739361219976
820 => 0.0070675665216089
821 => 0.0069627847656389
822 => 0.0070708927914418
823 => 0.0070135291512202
824 => 0.0073431576430949
825 => 0.0073659804046875
826 => 0.0076955850606703
827 => 0.0080084191277904
828 => 0.0078119336552368
829 => 0.0079972106059548
830 => 0.0081976027340078
831 => 0.0085841916614731
901 => 0.0084540021110652
902 => 0.0083542789557832
903 => 0.0082600410559004
904 => 0.0084561351657111
905 => 0.0087084071053027
906 => 0.0087627440648602
907 => 0.0088507906976593
908 => 0.008758220429101
909 => 0.0088697111212989
910 => 0.0092633222562499
911 => 0.0091569650530846
912 => 0.0090059207268162
913 => 0.0093166389150448
914 => 0.0094290866194783
915 => 0.010218303498513
916 => 0.011214722409218
917 => 0.010802198437347
918 => 0.010546131495941
919 => 0.01060631330116
920 => 0.010970171756441
921 => 0.011087031543987
922 => 0.010769366357452
923 => 0.010881571071668
924 => 0.01149983007872
925 => 0.01183150619988
926 => 0.011381045477299
927 => 0.010138242209229
928 => 0.0089923208378475
929 => 0.0092962707870498
930 => 0.0092618122954753
1001 => 0.0099260544691709
1002 => 0.0091544284689638
1003 => 0.0091674206718621
1004 => 0.009845398670265
1005 => 0.0096645257637765
1006 => 0.0093715348197168
1007 => 0.0089944599959823
1008 => 0.0082974023091094
1009 => 0.0076799988769545
1010 => 0.008890869186929
1011 => 0.0088386542573381
1012 => 0.0087630393014715
1013 => 0.0089313122033599
1014 => 0.0097483976498333
1015 => 0.0097295611856446
1016 => 0.0096097332109245
1017 => 0.0097006216736344
1018 => 0.0093556016327645
1019 => 0.009444521153257
1020 => 0.0089921393180476
1021 => 0.0091966348006965
1022 => 0.0093709061927398
1023 => 0.0094058937548245
1024 => 0.0094847225187107
1025 => 0.0088111393621085
1026 => 0.0091135584240604
1027 => 0.0092912012901231
1028 => 0.0084886043585491
1029 => 0.0092753365293317
1030 => 0.0087994137779393
1031 => 0.0086378784479969
1101 => 0.0088553644891029
1102 => 0.0087706099673718
1103 => 0.0086977430065399
1104 => 0.0086570819903823
1105 => 0.0088167797359122
1106 => 0.0088093296452031
1107 => 0.0085480331375196
1108 => 0.0082071824950546
1109 => 0.0083215831587068
1110 => 0.0082800203250901
1111 => 0.0081293912543506
1112 => 0.0082308970610056
1113 => 0.00778391685941
1114 => 0.007014910654574
1115 => 0.0075229397087858
1116 => 0.0075033811428279
1117 => 0.0074935188269616
1118 => 0.00787528862031
1119 => 0.0078385902636072
1120 => 0.0077719823868404
1121 => 0.0081281679484593
1122 => 0.0079981554270965
1123 => 0.0083988233831339
1124 => 0.0086627292125588
1125 => 0.0085957941577574
1126 => 0.008843998865899
1127 => 0.0083242187189405
1128 => 0.0084968688338002
1129 => 0.0085324517831901
1130 => 0.0081237726739181
1201 => 0.0078445945686201
1202 => 0.0078259765718601
1203 => 0.0073419202103859
1204 => 0.007600499211519
1205 => 0.00782803803179
1206 => 0.0077190645946059
1207 => 0.0076845668598823
1208 => 0.0078608083049396
1209 => 0.0078745037746264
1210 => 0.0075622456143854
1211 => 0.0076271739738294
1212 => 0.0078979360261525
1213 => 0.0076203514648148
1214 => 0.0070810500053161
1215 => 0.0069472957869344
1216 => 0.006929450508623
1217 => 0.006566698460191
1218 => 0.0069562338833774
1219 => 0.0067861912322562
1220 => 0.0073233539297242
1221 => 0.0070165294777918
1222 => 0.0070033028889113
1223 => 0.0069833089598996
1224 => 0.0066710732867158
1225 => 0.0067394330555308
1226 => 0.0069666713385588
1227 => 0.0070477525179657
1228 => 0.007039295086675
1229 => 0.0069655577470026
1230 => 0.0069993143235083
1231 => 0.0068905726290123
]
'min_raw' => 0.0038047509201073
'max_raw' => 0.01183150619988
'avg_raw' => 0.0078181285599935
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0038047'
'max' => '$0.011831'
'avg' => '$0.007818'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0021674413575969
'max_diff' => 0.0073896431317381
'year' => 2033
]
8 => [
'items' => [
101 => 0.0068521736734231
102 => 0.0067309760071188
103 => 0.0065528489193613
104 => 0.0065776185834309
105 => 0.0062247022130954
106 => 0.0060324146438472
107 => 0.0059791919789887
108 => 0.0059080204072117
109 => 0.0059872309974013
110 => 0.0062237024453599
111 => 0.0059384677089055
112 => 0.0054494527601449
113 => 0.0054788433918064
114 => 0.0055448754149928
115 => 0.0054218251766305
116 => 0.0053053684528443
117 => 0.0054066181257437
118 => 0.0051994160453837
119 => 0.0055699147964846
120 => 0.0055598938435781
121 => 0.0056979928664995
122 => 0.0057843490196094
123 => 0.0055853260448275
124 => 0.0055352723048852
125 => 0.005563785189972
126 => 0.0050925307127241
127 => 0.0056594813217966
128 => 0.005664384334207
129 => 0.005622401765244
130 => 0.0059242854619389
131 => 0.0065613542218513
201 => 0.0063216633283408
202 => 0.0062288477696779
203 => 0.0060524053248119
204 => 0.0062875044064801
205 => 0.0062694524651249
206 => 0.0061878147403216
207 => 0.0061384399896354
208 => 0.0062294144816873
209 => 0.0061271672433
210 => 0.0061088008297195
211 => 0.0059975203462763
212 => 0.0059577982766265
213 => 0.0059283896376389
214 => 0.0058960136157468
215 => 0.0059674270524389
216 => 0.0058055948096747
217 => 0.0056104409895115
218 => 0.0055942160609585
219 => 0.0056390145152036
220 => 0.0056191945340528
221 => 0.005594121170514
222 => 0.0055462492911943
223 => 0.005532046727221
224 => 0.0055781981700297
225 => 0.005526095881895
226 => 0.0056029756461963
227 => 0.0055820686042578
228 => 0.0054652835675142
301 => 0.0053197261723732
302 => 0.0053184304062395
303 => 0.0052870703042184
304 => 0.0052471284992715
305 => 0.00523601760288
306 => 0.0053980911607004
307 => 0.0057335785749352
308 => 0.0056677143679875
309 => 0.0057153080075427
310 => 0.0059494216089977
311 => 0.0060238392828586
312 => 0.0059710193806313
313 => 0.0058987162406729
314 => 0.0059018972118864
315 => 0.0061489789287731
316 => 0.0061643891123788
317 => 0.0062033256748365
318 => 0.006253370161066
319 => 0.0059795421730347
320 => 0.0058889999382751
321 => 0.0058460960043541
322 => 0.0057139684937894
323 => 0.0058564566861768
324 => 0.0057734349184254
325 => 0.0057846373913225
326 => 0.0057773417661521
327 => 0.0057813256708232
328 => 0.0055698112345329
329 => 0.0056468759782456
330 => 0.0055187408948704
331 => 0.0053471824020691
401 => 0.0053466072778451
402 => 0.0053885959759115
403 => 0.0053636194552837
404 => 0.0052964082804794
405 => 0.0053059553106325
406 => 0.0052223132806337
407 => 0.0053161109674622
408 => 0.0053188007494962
409 => 0.0052826835308727
410 => 0.0054271918090185
411 => 0.0054863969684824
412 => 0.0054626238414786
413 => 0.0054847289825175
414 => 0.0056704513231453
415 => 0.0057007321683014
416 => 0.0057141809194794
417 => 0.005696161374519
418 => 0.0054881236459689
419 => 0.0054973510038748
420 => 0.0054296467740093
421 => 0.0053724438342689
422 => 0.0053747316518687
423 => 0.0054041413987569
424 => 0.0055325754882765
425 => 0.0058028574580674
426 => 0.0058131144612474
427 => 0.0058255462483195
428 => 0.0057749799225818
429 => 0.0057597286348848
430 => 0.0057798490200485
501 => 0.0058813527171512
502 => 0.0061424477840841
503 => 0.0060501593494768
504 => 0.005975127415586
505 => 0.0060409506500724
506 => 0.0060308176790628
507 => 0.0059452852062801
508 => 0.0059428845946438
509 => 0.0057787204329881
510 => 0.0057180326802611
511 => 0.0056673174516829
512 => 0.00561193774603
513 => 0.0055791068001744
514 => 0.0056295500544066
515 => 0.0056410870234766
516 => 0.0055307919665007
517 => 0.0055157591577891
518 => 0.0056058284821998
519 => 0.0055661923306495
520 => 0.0056069590954482
521 => 0.0056164173345724
522 => 0.0056148943402317
523 => 0.0055735096458302
524 => 0.0055998870159323
525 => 0.0055374966721682
526 => 0.0054696565440514
527 => 0.0054263787689022
528 => 0.0053886131701207
529 => 0.0054095677192741
530 => 0.0053348685776915
531 => 0.0053109708189025
601 => 0.0055909509564513
602 => 0.0057977752943523
603 => 0.0057947679865678
604 => 0.0057764617738464
605 => 0.005749262455022
606 => 0.0058793629175651
607 => 0.0058340385178559
608 => 0.0058670158056247
609 => 0.0058754099094142
610 => 0.0059008163334429
611 => 0.0059098969462772
612 => 0.0058824490274008
613 => 0.0057903304591706
614 => 0.0055607797455117
615 => 0.0054539232686432
616 => 0.0054186588514412
617 => 0.0054199406460298
618 => 0.0053845830290924
619 => 0.0053949974318977
620 => 0.0053809613248056
621 => 0.0053543803336722
622 => 0.0054079264179749
623 => 0.0054140971053745
624 => 0.0054015988094702
625 => 0.0054045426106006
626 => 0.0053010620586048
627 => 0.0053089294602251
628 => 0.0052651227682623
629 => 0.0052569095416168
630 => 0.0051461700390198
701 => 0.0049499789582215
702 => 0.0050586878617128
703 => 0.0049273827930803
704 => 0.0048776555739928
705 => 0.005113056494984
706 => 0.0050894287715217
707 => 0.0050489883796787
708 => 0.0049891686116268
709 => 0.0049669808777671
710 => 0.0048321752306181
711 => 0.0048242101938244
712 => 0.0048910235126101
713 => 0.0048601914648964
714 => 0.0048168915928969
715 => 0.0046600638457521
716 => 0.0044837375340788
717 => 0.0044890597170805
718 => 0.0045451458361561
719 => 0.0047082237916122
720 => 0.0046445064131382
721 => 0.0045982787239827
722 => 0.0045896216674031
723 => 0.0046979828552723
724 => 0.004851336638478
725 => 0.0049232868024606
726 => 0.0048519863751128
727 => 0.0047700802832633
728 => 0.0047750655275579
729 => 0.0048082301244211
730 => 0.0048117152546292
731 => 0.0047584028089175
801 => 0.0047734099501059
802 => 0.004750612730359
803 => 0.0046107062348523
804 => 0.0046081757699968
805 => 0.0045738404597025
806 => 0.0045728008001525
807 => 0.0045143878719973
808 => 0.0045062154995589
809 => 0.0043902330852954
810 => 0.0044665730615907
811 => 0.0044153682135204
812 => 0.004338190429476
813 => 0.0043248849504166
814 => 0.0043244849716493
815 => 0.0044037292992262
816 => 0.0044656470454847
817 => 0.0044162589437753
818 => 0.0044050142303642
819 => 0.0045250783510254
820 => 0.0045097990972625
821 => 0.0044965673620445
822 => 0.004837605489191
823 => 0.0045676472000176
824 => 0.0044499299772576
825 => 0.0043042325601977
826 => 0.0043516723738626
827 => 0.0043616686396376
828 => 0.0040112926155421
829 => 0.0038691451062031
830 => 0.0038203654377138
831 => 0.003792292048855
901 => 0.0038050854446814
902 => 0.0036771360140364
903 => 0.0037631201475181
904 => 0.0036523267558757
905 => 0.0036337518832139
906 => 0.0038318641921381
907 => 0.0038594303625696
908 => 0.003741824515371
909 => 0.0038173465079297
910 => 0.0037899611835937
911 => 0.0036542259905791
912 => 0.0036490419046064
913 => 0.0035809347560744
914 => 0.0034743602567645
915 => 0.0034256528508043
916 => 0.0034002856108831
917 => 0.0034107526284722
918 => 0.0034054601840831
919 => 0.003370923404497
920 => 0.0034074397918617
921 => 0.003314155511758
922 => 0.0032770089597781
923 => 0.0032602307240423
924 => 0.0031774355562074
925 => 0.003309199487411
926 => 0.0033351586417763
927 => 0.003361168943695
928 => 0.0035875708639096
929 => 0.0035762604637809
930 => 0.0036785009725564
1001 => 0.0036745280943936
1002 => 0.0036453674451044
1003 => 0.0035223434624472
1004 => 0.0035713786292427
1005 => 0.003420456007603
1006 => 0.0035335374974762
1007 => 0.003481931827894
1008 => 0.0035160895686798
1009 => 0.0034546708708675
1010 => 0.0034886625141527
1011 => 0.0033413145202975
1012 => 0.0032037230368777
1013 => 0.0032590938663516
1014 => 0.0033192882904122
1015 => 0.0034498051390295
1016 => 0.0033720703807337
1017 => 0.0034000267392935
1018 => 0.003306377617956
1019 => 0.0031131527310876
1020 => 0.0031142463629631
1021 => 0.0030845229237514
1022 => 0.0030588375325793
1023 => 0.0033809991528269
1024 => 0.0033409332627275
1025 => 0.0032770935105483
1026 => 0.0033625455557311
1027 => 0.0033851404327838
1028 => 0.0033857836771688
1029 => 0.0034481272834977
1030 => 0.0034814000773711
1031 => 0.0034872645515038
1101 => 0.003585363563085
1102 => 0.0036182450578098
1103 => 0.0037536792810179
1104 => 0.003478577113275
1105 => 0.0034729115651663
1106 => 0.0033637480412471
1107 => 0.0032945148085705
1108 => 0.0033684884999201
1109 => 0.00343401909204
1110 => 0.0033657842594101
1111 => 0.0033746942880356
1112 => 0.0032830946002206
1113 => 0.0033158371784486
1114 => 0.0033440394977201
1115 => 0.0033284678346741
1116 => 0.0033051563014172
1117 => 0.0034286463307872
1118 => 0.0034216785393688
1119 => 0.0035366752937416
1120 => 0.0036263234872721
1121 => 0.00378698907661
1122 => 0.0036193261584493
1123 => 0.0036132158553117
1124 => 0.0036729450486044
1125 => 0.0036182359135815
1126 => 0.0036528101984209
1127 => 0.0037814186248061
1128 => 0.0037841359181971
1129 => 0.0037386177528628
1130 => 0.0037358479683655
1201 => 0.0037445902299321
1202 => 0.0037957939289874
1203 => 0.0037779017832067
1204 => 0.0037986070272778
1205 => 0.0038244992520386
1206 => 0.0039316004717252
1207 => 0.0039574222132022
1208 => 0.0038946887684511
1209 => 0.0039003528961155
1210 => 0.0038768888657071
1211 => 0.003854222906336
1212 => 0.0039051726729047
1213 => 0.0039982843727293
1214 => 0.0039977051296772
1215 => 0.0040193052342037
1216 => 0.0040327619203788
1217 => 0.003974995972419
1218 => 0.00393739246441
1219 => 0.003951812042154
1220 => 0.0039748692609843
1221 => 0.0039443348968448
1222 => 0.0037558626564824
1223 => 0.003813033094555
1224 => 0.0038035171381681
1225 => 0.0037899652590934
1226 => 0.0038474505766613
1227 => 0.0038419059775455
1228 => 0.00367582370769
1229 => 0.0036864557557536
1230 => 0.0036764702777472
1231 => 0.0037087354000224
]
'min_raw' => 0.0030588375325793
'max_raw' => 0.0068521736734231
'avg_raw' => 0.0049555056030012
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003058'
'max' => '$0.006852'
'avg' => '$0.004955'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00074591338752805
'max_diff' => -0.0049793325264566
'year' => 2034
]
9 => [
'items' => [
101 => 0.0036164934910936
102 => 0.0036448664810213
103 => 0.0036626617543238
104 => 0.0036731433070086
105 => 0.0037110098625743
106 => 0.0037065666593328
107 => 0.0037107336668223
108 => 0.0037668797723261
109 => 0.004050847506948
110 => 0.0040663032442039
111 => 0.0039901935412852
112 => 0.0040205978664037
113 => 0.0039622282108711
114 => 0.0040014121516729
115 => 0.0040282208088052
116 => 0.0039070776422324
117 => 0.0038999043301206
118 => 0.0038412937622563
119 => 0.0038727877615543
120 => 0.0038226785441725
121 => 0.003834973593372
122 => 0.0038005955639472
123 => 0.0038624691723145
124 => 0.0039316534806559
125 => 0.0039491321691141
126 => 0.0039031532648292
127 => 0.0038698615079694
128 => 0.0038114121499102
129 => 0.0039086147349916
130 => 0.0039370397330645
131 => 0.0039084654305776
201 => 0.0039018441403306
202 => 0.0038892968072768
203 => 0.003904506116353
204 => 0.0039368849244204
205 => 0.0039216156764785
206 => 0.0039317012837537
207 => 0.0038932653490538
208 => 0.0039750150953514
209 => 0.0041048533666198
210 => 0.0041052708178927
211 => 0.0040900014876438
212 => 0.0040837536066883
213 => 0.0040994208661441
214 => 0.0041079197116942
215 => 0.00415858475589
216 => 0.0042129503668966
217 => 0.0044666509518898
218 => 0.004395412842823
219 => 0.0046205110945443
220 => 0.0047985345863061
221 => 0.0048519160474616
222 => 0.0048028076149904
223 => 0.0046348103202916
224 => 0.0046265675715403
225 => 0.0048776264564486
226 => 0.0048066908222366
227 => 0.0047982532542624
228 => 0.004708491786513
301 => 0.0047615519311269
302 => 0.0047499468991545
303 => 0.0047316277884484
304 => 0.0048328628481701
305 => 0.005022365842653
306 => 0.0049928300238151
307 => 0.0049707829051797
308 => 0.0048741788491393
309 => 0.0049323560681727
310 => 0.0049116402747861
311 => 0.0050006484697421
312 => 0.0049479219868231
313 => 0.0048061534150403
314 => 0.004828730527372
315 => 0.0048253180422619
316 => 0.0048955467440164
317 => 0.0048744658309333
318 => 0.0048212016556459
319 => 0.0050217181420195
320 => 0.0050086977167257
321 => 0.0050271577029087
322 => 0.0050352843597205
323 => 0.0051573352114793
324 => 0.0052073355402533
325 => 0.0052186864902639
326 => 0.005266182935435
327 => 0.0052175047354398
328 => 0.0054122522423888
329 => 0.0055417479706779
330 => 0.0056921639228749
331 => 0.0059119620570311
401 => 0.0059946081887203
402 => 0.0059796789047675
403 => 0.0061463273415634
404 => 0.0064457908780989
405 => 0.0060402090474915
406 => 0.0064672876999507
407 => 0.0063320795294423
408 => 0.0060115033894579
409 => 0.0059908620653874
410 => 0.0062079599493503
411 => 0.0066894621610831
412 => 0.0065688513181969
413 => 0.0066896594372144
414 => 0.0065487303492794
415 => 0.0065417320322198
416 => 0.006682814825973
417 => 0.0070124624636
418 => 0.0068558592276203
419 => 0.0066313300881546
420 => 0.0067971189106758
421 => 0.0066534972895767
422 => 0.0063298775800801
423 => 0.0065687590893584
424 => 0.0064090258270577
425 => 0.0064556444848843
426 => 0.0067913800437108
427 => 0.0067509834530267
428 => 0.0068032603819955
429 => 0.006710992970691
430 => 0.0066248006592973
501 => 0.0064639163093558
502 => 0.0064162863848407
503 => 0.0064294495824315
504 => 0.0064162798618137
505 => 0.006326266546625
506 => 0.0063068281797802
507 => 0.0062744300500912
508 => 0.0062844715851991
509 => 0.0062235536229766
510 => 0.0063385184039837
511 => 0.0063598568804047
512 => 0.0064435186607546
513 => 0.0064522047043278
514 => 0.0066852015717511
515 => 0.0065568708125276
516 => 0.0066429661653594
517 => 0.0066352649866413
518 => 0.0060184512464833
519 => 0.0061034427376833
520 => 0.0062356628261914
521 => 0.0061760978555386
522 => 0.0060918869230921
523 => 0.006023882080037
524 => 0.0059208477889564
525 => 0.0060658665750541
526 => 0.0062565508577441
527 => 0.0064570407724138
528 => 0.0066979162682698
529 => 0.0066441556616946
530 => 0.0064525377725682
531 => 0.0064611336110975
601 => 0.0065142697025476
602 => 0.0064454536361967
603 => 0.0064251584347807
604 => 0.006511481453527
605 => 0.0065120759127148
606 => 0.0064328947116788
607 => 0.006344899296734
608 => 0.0063445305927324
609 => 0.0063288726585779
610 => 0.0065515158609812
611 => 0.0066739471105363
612 => 0.00668798365599
613 => 0.0066730023391899
614 => 0.0066787680534391
615 => 0.0066075280069115
616 => 0.006770361627694
617 => 0.0069197938607002
618 => 0.0068797428301005
619 => 0.0068197006416421
620 => 0.0067718741465114
621 => 0.0068684764277956
622 => 0.0068641748802761
623 => 0.0069184887005067
624 => 0.0069160247118892
625 => 0.0068977610169918
626 => 0.0068797434823546
627 => 0.0069511809705813
628 => 0.0069306081212229
629 => 0.0069100033165472
630 => 0.0068686772263322
701 => 0.0068742941283461
702 => 0.0068142623070181
703 => 0.0067864888396025
704 => 0.0063688425275384
705 => 0.0062572337859679
706 => 0.0062923481680714
707 => 0.0063039087344044
708 => 0.0062553364670424
709 => 0.0063249766212478
710 => 0.006314123276982
711 => 0.0063563472905259
712 => 0.0063299675600173
713 => 0.006331050193359
714 => 0.0064086273560334
715 => 0.0064311483363947
716 => 0.0064196939840163
717 => 0.0064277162197899
718 => 0.0066125852572174
719 => 0.0065863027918743
720 => 0.0065723407559897
721 => 0.006576208335348
722 => 0.0066234463380476
723 => 0.0066366703997041
724 => 0.0065806391212269
725 => 0.0066070637960697
726 => 0.0067195767077598
727 => 0.0067589498591721
728 => 0.0068846100582951
729 => 0.0068312273722757
730 => 0.0069292136028128
731 => 0.0072303898695164
801 => 0.0074709903111716
802 => 0.0072497242017917
803 => 0.00769155627261
804 => 0.0080355859167884
805 => 0.0080223814860335
806 => 0.0079623919600219
807 => 0.0075707233566262
808 => 0.0072103040683315
809 => 0.0075118101072013
810 => 0.0075125787080997
811 => 0.0074866790719683
812 => 0.0073258186563266
813 => 0.0074810814781891
814 => 0.0074934056771569
815 => 0.007486507403004
816 => 0.0073631760994887
817 => 0.0071748719944558
818 => 0.0072116661658429
819 => 0.0072719357691557
820 => 0.0071578328365281
821 => 0.0071213700358131
822 => 0.007189161319674
823 => 0.0074075989611485
824 => 0.0073663045903509
825 => 0.0073652262274457
826 => 0.0075419010572565
827 => 0.0074154400079266
828 => 0.0072121302581753
829 => 0.007160791865037
830 => 0.0069785751550813
831 => 0.0071044328856813
901 => 0.0071089622813454
902 => 0.0070400312885307
903 => 0.0072177236283418
904 => 0.0072160861621484
905 => 0.0073847785927846
906 => 0.0077072551621775
907 => 0.0076118829724998
908 => 0.0075009754923693
909 => 0.0075130342105904
910 => 0.0076452885860225
911 => 0.0075653245715625
912 => 0.0075940801886912
913 => 0.007645245060952
914 => 0.0076761140987392
915 => 0.0075085926311003
916 => 0.0074695353635156
917 => 0.0073896379012755
918 => 0.0073687941447338
919 => 0.0074338689606131
920 => 0.0074167240457561
921 => 0.0071085816031786
922 => 0.0070763790034408
923 => 0.0070773666112001
924 => 0.0069963916430094
925 => 0.0068728853802995
926 => 0.0071974524645254
927 => 0.0071713851853486
928 => 0.0071426089265846
929 => 0.0071461338540881
930 => 0.0072870174247514
1001 => 0.0072052978389759
1002 => 0.0074225627513369
1003 => 0.0073778996169366
1004 => 0.0073320910416683
1005 => 0.0073257589012029
1006 => 0.0073081265079286
1007 => 0.0072476584706664
1008 => 0.0071746396821067
1009 => 0.0071264263531204
1010 => 0.0065737516092818
1011 => 0.0066763248269772
1012 => 0.0067943259640927
1013 => 0.0068350594837651
1014 => 0.0067653819796917
1015 => 0.0072504097632166
1016 => 0.0073390290131107
1017 => 0.007070595524691
1018 => 0.0070203825790748
1019 => 0.0072537017155717
1020 => 0.0071129817541597
1021 => 0.0071763479441671
1022 => 0.0070393849008238
1023 => 0.0073176832308857
1024 => 0.0073155630638879
1025 => 0.0072072987278409
1026 => 0.0072988030033056
1027 => 0.007282901883634
1028 => 0.0071606717148803
1029 => 0.0073215581452532
1030 => 0.0073216379429155
1031 => 0.0072174358733399
1101 => 0.0070957506688419
1102 => 0.0070739962283539
1103 => 0.007057607179744
1104 => 0.007172317242876
1105 => 0.0072751659267911
1106 => 0.0074665418292061
1107 => 0.0075146582780525
1108 => 0.0077024599811934
1109 => 0.007590633210872
1110 => 0.0076402045697564
1111 => 0.0076940212921222
1112 => 0.0077198230078688
1113 => 0.0076777804966561
1114 => 0.0079695138438989
1115 => 0.007994145076885
1116 => 0.0080024037162459
1117 => 0.0079040328729748
1118 => 0.0079914092057821
1119 => 0.0079505287132616
1120 => 0.0080568883978721
1121 => 0.0080735669544876
1122 => 0.0080594408103911
1123 => 0.008064734847514
1124 => 0.0078157919009313
1125 => 0.0078028828958723
1126 => 0.0076268676959121
1127 => 0.0076985951909345
1128 => 0.0075645040769783
1129 => 0.0076070257505054
1130 => 0.0076257688990347
1201 => 0.0076159785419073
1202 => 0.0077026505558841
1203 => 0.0076289616380811
1204 => 0.0074344844684196
1205 => 0.0072399543135832
1206 => 0.00723751214595
1207 => 0.007186295789924
1208 => 0.0071492757452608
1209 => 0.0071564071192196
1210 => 0.00718153901121
1211 => 0.007147815034011
1212 => 0.0071550117543955
1213 => 0.0072745252642746
1214 => 0.0072984928463495
1215 => 0.0072170416377202
1216 => 0.0068900032817198
1217 => 0.0068097472488438
1218 => 0.0068674336937288
1219 => 0.0068398632885566
1220 => 0.0055203035033073
1221 => 0.0058303145015447
1222 => 0.0056461164933708
1223 => 0.0057310034100802
1224 => 0.0055429849415776
1225 => 0.0056327172096393
1226 => 0.005616146936226
1227 => 0.0061146354474994
1228 => 0.0061068522350444
1229 => 0.0061105776469682
1230 => 0.0059327540293373
1231 => 0.0062160318806606
]
'min_raw' => 0.0036164934910936
'max_raw' => 0.0080735669544876
'avg_raw' => 0.0058450302227906
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003616'
'max' => '$0.008073'
'avg' => '$0.005845'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00055765595851429
'max_diff' => 0.0012213932810645
'year' => 2035
]
10 => [
'items' => [
101 => 0.0063555847365645
102 => 0.0063297572170157
103 => 0.0063362574472541
104 => 0.0062245619554657
105 => 0.0061116591034829
106 => 0.0059864324650097
107 => 0.0062190880808127
108 => 0.0061932207478992
109 => 0.0062525511028301
110 => 0.0064034449002452
111 => 0.0064256645851044
112 => 0.0064555280668849
113 => 0.006444824134494
114 => 0.006699835230205
115 => 0.006668951703897
116 => 0.0067433721165024
117 => 0.0065902836814829
118 => 0.0064170495859707
119 => 0.0064499757240783
120 => 0.0064468046722033
121 => 0.0064064335422701
122 => 0.0063699882912816
123 => 0.0063093172167715
124 => 0.0065012894741509
125 => 0.0064934957510838
126 => 0.0066196670683281
127 => 0.0065973650624424
128 => 0.006448426808911
129 => 0.0064537461677731
130 => 0.0064895214125173
131 => 0.0066133399430515
201 => 0.0066500977131225
202 => 0.0066330700494818
203 => 0.0066733732663086
204 => 0.0067052272855941
205 => 0.0066773736406978
206 => 0.0070717225142906
207 => 0.0069079613680673
208 => 0.0069877774112938
209 => 0.0070068130672999
210 => 0.006958053634717
211 => 0.0069686278096999
212 => 0.0069846448035087
213 => 0.0070818968534668
214 => 0.0073371143726643
215 => 0.0074501484745924
216 => 0.0077902171472476
217 => 0.0074407625659379
218 => 0.0074200273772698
219 => 0.0074812840143051
220 => 0.0076809403250786
221 => 0.0078427430121967
222 => 0.0078964222981348
223 => 0.0079035169019199
224 => 0.0080042228108712
225 => 0.008061945559828
226 => 0.0079919944646962
227 => 0.0079327182357568
228 => 0.0077203981413326
229 => 0.0077449747703906
301 => 0.0079142833731301
302 => 0.0081534417467265
303 => 0.0083586645114601
304 => 0.0082868026519858
305 => 0.0088350579132078
306 => 0.008889415182936
307 => 0.0088819047658405
308 => 0.0090057387157277
309 => 0.0087599535435469
310 => 0.0086548756205761
311 => 0.0079455344292673
312 => 0.0081448303703739
313 => 0.0084345187250126
314 => 0.0083961773850005
315 => 0.00818579795847
316 => 0.0083585049197999
317 => 0.0083014025973382
318 => 0.0082563636264352
319 => 0.0084626958833761
320 => 0.0082358250912076
321 => 0.0084322555153136
322 => 0.0081803314645851
323 => 0.0082871309109067
324 => 0.0082265063798666
325 => 0.0082657378813126
326 => 0.0080363913254903
327 => 0.0081601411599391
328 => 0.0080312429255256
329 => 0.0080311818109794
330 => 0.0080283363753106
331 => 0.0081799845764758
401 => 0.0081849298188715
402 => 0.0080728615690826
403 => 0.008056710783453
404 => 0.0081164287028952
405 => 0.0080465146593762
406 => 0.008079227000305
407 => 0.0080475054828584
408 => 0.0080403643011237
409 => 0.0079834621500904
410 => 0.0079589471388679
411 => 0.0079685601064423
412 => 0.0079357460922866
413 => 0.0079159744618231
414 => 0.0080244033003666
415 => 0.0079664741459397
416 => 0.0080155248266297
417 => 0.007959625385294
418 => 0.0077658535673974
419 => 0.0076544133458252
420 => 0.0072883963444755
421 => 0.0073921983120156
422 => 0.0074610191238856
423 => 0.0074382738459731
424 => 0.0074871395041832
425 => 0.0074901394587269
426 => 0.0074742527351164
427 => 0.0074558579443907
428 => 0.0074469043775612
429 => 0.0075136369291887
430 => 0.0075523774215229
501 => 0.0074679262130604
502 => 0.0074481404765157
503 => 0.0075335253109502
504 => 0.0075856100106301
505 => 0.0079701741692016
506 => 0.0079416844142087
507 => 0.0080131881084087
508 => 0.0080051378897554
509 => 0.0080800851527088
510 => 0.0082025922525609
511 => 0.0079535010650376
512 => 0.0079967346822665
513 => 0.007986134797732
514 => 0.0081018615576405
515 => 0.008102222843953
516 => 0.0080328388704074
517 => 0.0080704530480929
518 => 0.0080494578459998
519 => 0.0080873990138537
520 => 0.0079413039161614
521 => 0.0081192319751594
522 => 0.0082201057191803
523 => 0.0082215063512139
524 => 0.0082693197052963
525 => 0.0083179008422068
526 => 0.0084111481039811
527 => 0.0083153002266859
528 => 0.0081428792260347
529 => 0.0081553274653653
530 => 0.0080542370957699
531 => 0.0080559364431463
601 => 0.008046865193671
602 => 0.0080740886961981
603 => 0.0079472779440558
604 => 0.0079770401741179
605 => 0.0079353728777435
606 => 0.0079966441057016
607 => 0.0079307263929155
608 => 0.0079861296861467
609 => 0.008010039910857
610 => 0.0080982691547884
611 => 0.0079176948618499
612 => 0.0075494916547433
613 => 0.0076268924329095
614 => 0.0075124106023018
615 => 0.0075230063315876
616 => 0.0075444113910427
617 => 0.0074750305900489
618 => 0.0074882662604382
619 => 0.007487793389154
620 => 0.0074837184398917
621 => 0.0074656698139396
622 => 0.0074394957354971
623 => 0.0075437652080553
624 => 0.007561482623267
625 => 0.0076008662425591
626 => 0.0077180451794083
627 => 0.0077063362403474
628 => 0.0077254340057549
629 => 0.0076837436910998
630 => 0.0075249402257137
701 => 0.0075335640179107
702 => 0.0074260251910274
703 => 0.0075981162329754
704 => 0.0075573628027514
705 => 0.0075310888011692
706 => 0.0075239196964106
707 => 0.0076413890971792
708 => 0.0076765377829965
709 => 0.0076546354807357
710 => 0.0076097132198067
711 => 0.0076959772408647
712 => 0.0077190578537129
713 => 0.0077242247517494
714 => 0.0078770680575787
715 => 0.0077327669946679
716 => 0.0077675016947398
717 => 0.0080384919092428
718 => 0.007792741178782
719 => 0.0079229208216024
720 => 0.0079165492055085
721 => 0.0079831447057364
722 => 0.0079110864307128
723 => 0.0079119796793927
724 => 0.0079711119720253
725 => 0.0078880713315881
726 => 0.0078675093012127
727 => 0.0078391030035171
728 => 0.0079011271153118
729 => 0.0079383077652234
730 => 0.0082379564973327
731 => 0.0084315432439176
801 => 0.0084231391326996
802 => 0.0084999369773949
803 => 0.0084653388449721
804 => 0.0083536123488524
805 => 0.0085443158541339
806 => 0.0084839692856893
807 => 0.0084889441834708
808 => 0.0084887590175269
809 => 0.008528884209954
810 => 0.0085004518336995
811 => 0.0084444087015784
812 => 0.0084816127481039
813 => 0.0085920954655945
814 => 0.0089350372107092
815 => 0.0091269519546492
816 => 0.0089234837021488
817 => 0.0090638333781751
818 => 0.0089796735842622
819 => 0.0089643792461712
820 => 0.0090525292144753
821 => 0.0091408334776298
822 => 0.0091352088778167
823 => 0.0090711045172406
824 => 0.0090348935905391
825 => 0.0093090948590733
826 => 0.0095111216828325
827 => 0.0094973448078572
828 => 0.0095581514535187
829 => 0.0097366816458597
830 => 0.0097530042092341
831 => 0.0097509479414187
901 => 0.0097104907650118
902 => 0.0098862769244466
903 => 0.01003292083131
904 => 0.0097011260975938
905 => 0.009827469188681
906 => 0.0098841886727902
907 => 0.0099674697033752
908 => 0.010107978761493
909 => 0.010260608866797
910 => 0.010282192437191
911 => 0.010266877861127
912 => 0.010166214203762
913 => 0.010333223886241
914 => 0.010431054241378
915 => 0.010489309979054
916 => 0.010637036836971
917 => 0.0098845389530145
918 => 0.0093518835491787
919 => 0.0092687017162325
920 => 0.0094378552444927
921 => 0.0094824596809208
922 => 0.0094644796885258
923 => 0.008864927604598
924 => 0.0092655451985908
925 => 0.0096965760448429
926 => 0.0097131336950758
927 => 0.0099289167491396
928 => 0.009999184556789
929 => 0.010172918198642
930 => 0.010162051112041
1001 => 0.010204352489126
1002 => 0.010194628135092
1003 => 0.01051643312269
1004 => 0.010871431812514
1005 => 0.010859139336712
1006 => 0.010808104074896
1007 => 0.010883900141498
1008 => 0.011250296833367
1009 => 0.011216564897367
1010 => 0.011249332599912
1011 => 0.011681334948839
1012 => 0.012242999454061
1013 => 0.011982049901191
1014 => 0.012548235344708
1015 => 0.012904619069201
1016 => 0.013520947869948
1017 => 0.013443780468611
1018 => 0.013683712747912
1019 => 0.013305634714895
1020 => 0.012437491128913
1021 => 0.012300104083311
1022 => 0.0125751564278
1023 => 0.013251345777511
1024 => 0.012553860818824
1025 => 0.01269496111756
1026 => 0.012654324222032
1027 => 0.012652158854565
1028 => 0.012734802123595
1029 => 0.012614923751484
1030 => 0.012126517697795
1031 => 0.012350351314006
1101 => 0.012263918405414
1102 => 0.012359822161497
1103 => 0.012877375179359
1104 => 0.012648552653239
1105 => 0.012407506710004
1106 => 0.012709831815197
1107 => 0.013094795564285
1108 => 0.013070705224714
1109 => 0.013023959896964
1110 => 0.013287460861983
1111 => 0.013722687257655
1112 => 0.013840327203524
1113 => 0.013927166606522
1114 => 0.013939140293031
1115 => 0.014062476705685
1116 => 0.013399265730067
1117 => 0.014451798580839
1118 => 0.014633541928534
1119 => 0.014599381711657
1120 => 0.014801381793691
1121 => 0.014741948245309
1122 => 0.014655838358542
1123 => 0.014976051455215
1124 => 0.014608952979744
1125 => 0.014087902910225
1126 => 0.013802044536885
1127 => 0.014178485902436
1128 => 0.014408365508385
1129 => 0.014560301304829
1130 => 0.01460627698503
1201 => 0.013450748910185
1202 => 0.012827983366368
1203 => 0.013227168939933
1204 => 0.013714202889999
1205 => 0.013396560231884
1206 => 0.013409011222705
1207 => 0.012956136267254
1208 => 0.013754272274621
1209 => 0.013637990571728
1210 => 0.014241260252035
1211 => 0.014097285101288
1212 => 0.014589228106784
1213 => 0.014459683026632
1214 => 0.014997417411577
1215 => 0.015211934216309
1216 => 0.015572141318329
1217 => 0.015837111128882
1218 => 0.015992706469703
1219 => 0.015983365109064
1220 => 0.016599911366689
1221 => 0.016236355579053
1222 => 0.015779643826262
1223 => 0.015771383351561
1224 => 0.016007920839987
1225 => 0.016503638524837
1226 => 0.01663217090812
1227 => 0.016704002975664
1228 => 0.016593989663727
1229 => 0.016199375912527
1230 => 0.016028983695495
1231 => 0.016174162801144
]
'min_raw' => 0.0059864324650097
'max_raw' => 0.016704002975664
'avg_raw' => 0.011345217720337
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005986'
'max' => '$0.016704'
'avg' => '$0.011345'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0023699389739161
'max_diff' => 0.0086304360211767
'year' => 2036
]
11 => [
'items' => [
101 => 0.015996621230318
102 => 0.016303107790929
103 => 0.016723979300645
104 => 0.016637070998195
105 => 0.016927592423265
106 => 0.017228251534466
107 => 0.01765820756693
108 => 0.017770613995042
109 => 0.017956417546277
110 => 0.018147670433785
111 => 0.018209095706843
112 => 0.018326375612253
113 => 0.01832575748926
114 => 0.018679188378062
115 => 0.019069033593254
116 => 0.019216191137051
117 => 0.019554571794699
118 => 0.018975106776749
119 => 0.019414637649278
120 => 0.01981110549847
121 => 0.019338420184213
122 => 0.019989906768364
123 => 0.020015202516126
124 => 0.020397138274841
125 => 0.020009973213346
126 => 0.019780075835704
127 => 0.020443780950813
128 => 0.020764926949498
129 => 0.020668195161122
130 => 0.019932061475335
131 => 0.019503600095949
201 => 0.018382234022067
202 => 0.01971054057599
203 => 0.020357519951172
204 => 0.019930385955052
205 => 0.020145807497794
206 => 0.021321077584325
207 => 0.021768544340173
208 => 0.021675474382985
209 => 0.021691201673688
210 => 0.021932646613047
211 => 0.023003346440324
212 => 0.022361758285192
213 => 0.022852228389941
214 => 0.023112371964978
215 => 0.023354007815432
216 => 0.022760626536513
217 => 0.021988646211141
218 => 0.021744127636567
219 => 0.019887915897029
220 => 0.019791292014867
221 => 0.019737054101807
222 => 0.019395091732064
223 => 0.019126402980822
224 => 0.018912731710061
225 => 0.018351994487941
226 => 0.018541226839793
227 => 0.017647528742687
228 => 0.018219285114499
301 => 0.016792921372424
302 => 0.017980839481452
303 => 0.017334309662717
304 => 0.017768437047634
305 => 0.017766922418085
306 => 0.01696755626224
307 => 0.016506498545895
308 => 0.016800302467385
309 => 0.017115283593406
310 => 0.01716638822138
311 => 0.017574769473115
312 => 0.017688739902349
313 => 0.017343404181
314 => 0.016763363154266
315 => 0.016898093455449
316 => 0.016503768240642
317 => 0.015812728469192
318 => 0.016309045297444
319 => 0.01647850968412
320 => 0.016553354811449
321 => 0.015873796562682
322 => 0.015660264606993
323 => 0.01554658198549
324 => 0.016675640717877
325 => 0.016737493103943
326 => 0.016421047551783
327 => 0.017851411454147
328 => 0.017527676050301
329 => 0.017889367813496
330 => 0.016885868092793
331 => 0.016924203133515
401 => 0.016449130283938
402 => 0.016715139335322
403 => 0.016527132711675
404 => 0.016693648432723
405 => 0.016793457269348
406 => 0.017268452164146
407 => 0.017986263160156
408 => 0.017197503766547
409 => 0.016853830003509
410 => 0.017067043273203
411 => 0.017634858307315
412 => 0.01849512714991
413 => 0.01798583068057
414 => 0.018211847805248
415 => 0.018261222492188
416 => 0.017885686130877
417 => 0.018508973711211
418 => 0.018842998589092
419 => 0.019185638997088
420 => 0.019483144062785
421 => 0.01904878088331
422 => 0.019513611748864
423 => 0.019139040124921
424 => 0.018803010655742
425 => 0.01880352027374
426 => 0.018592724079116
427 => 0.018184279890004
428 => 0.018108956514873
429 => 0.018500798224596
430 => 0.018815018168245
501 => 0.018840898827816
502 => 0.019014867133824
503 => 0.019117819785304
504 => 0.020126895727145
505 => 0.020532754418468
506 => 0.021029030743705
507 => 0.021222358340987
508 => 0.021804205097023
509 => 0.021334316586241
510 => 0.021232653251196
511 => 0.019821283341674
512 => 0.020052395085292
513 => 0.02042242728579
514 => 0.019827385036369
515 => 0.020204802383781
516 => 0.020279312562952
517 => 0.019807165728429
518 => 0.020059359753008
519 => 0.019389607194043
520 => 0.018000861935718
521 => 0.018510519781678
522 => 0.01888579950528
523 => 0.018350229068043
524 => 0.019310218347351
525 => 0.018749412428581
526 => 0.018571663875762
527 => 0.017878203399282
528 => 0.018205490050439
529 => 0.018648149932422
530 => 0.018374637590091
531 => 0.018942216768513
601 => 0.019746060252996
602 => 0.020318926989746
603 => 0.020362904584479
604 => 0.019994589651839
605 => 0.020584816681949
606 => 0.020589115841498
607 => 0.019923337340386
608 => 0.019515551715525
609 => 0.019422901963569
610 => 0.01965435920901
611 => 0.019935391034341
612 => 0.020378499894903
613 => 0.020646261299071
614 => 0.021344441031468
615 => 0.021533348448672
616 => 0.02174090042703
617 => 0.022018253876776
618 => 0.022351287805161
619 => 0.021622628529487
620 => 0.0216515795209
621 => 0.020973062092368
622 => 0.020247968910738
623 => 0.020798224251454
624 => 0.021517609912039
625 => 0.02135258204665
626 => 0.021334013040581
627 => 0.021365240958177
628 => 0.02124081533698
629 => 0.020678042863735
630 => 0.020395422050814
701 => 0.020760075003742
702 => 0.020953871819387
703 => 0.021254433779595
704 => 0.021217383173906
705 => 0.021991598505402
706 => 0.022292435172166
707 => 0.022215468279281
708 => 0.022229632039883
709 => 0.022774282455226
710 => 0.023380045732988
711 => 0.023947422980118
712 => 0.024524583485317
713 => 0.023828793969341
714 => 0.02347551496346
715 => 0.023840008720316
716 => 0.023646603202307
717 => 0.024757968676589
718 => 0.024834917210733
719 => 0.025946202320641
720 => 0.027000944219314
721 => 0.026338479730421
722 => 0.026963153905391
723 => 0.027638789956053
724 => 0.028942201515779
725 => 0.028503258357035
726 => 0.028167034776553
727 => 0.027849305117618
728 => 0.028510450099699
729 => 0.029361002557096
730 => 0.02954420340993
731 => 0.029841058779632
801 => 0.029528951656138
802 => 0.029904850308914
803 => 0.031231937731453
804 => 0.030873346995359
805 => 0.030364090503767
806 => 0.03141169856903
807 => 0.031790823855376
808 => 0.034451723664405
809 => 0.037811219589592
810 => 0.036420366216925
811 => 0.035557018645952
812 => 0.035759925804009
813 => 0.036986699989774
814 => 0.037380700922375
815 => 0.036309670567299
816 => 0.03668797659516
817 => 0.038772480002901
818 => 0.039890749202278
819 => 0.038371989425933
820 => 0.034181791437884
821 => 0.030318237528595
822 => 0.031343026003438
823 => 0.03122684679328
824 => 0.033466385657802
825 => 0.030864794724897
826 => 0.030908598844055
827 => 0.033194449000583
828 => 0.032584623368214
829 => 0.031596783944342
830 => 0.030325449849598
831 => 0.027975271191292
901 => 0.025893652414051
902 => 0.029976186204395
903 => 0.029800139923749
904 => 0.029545198820778
905 => 0.030112542657933
906 => 0.032867403287802
907 => 0.03280389483367
908 => 0.032399886450779
909 => 0.032706323248436
910 => 0.031543064092113
911 => 0.031842862463616
912 => 0.030317625521916
913 => 0.031007096319086
914 => 0.0315946644846
915 => 0.031712627492922
916 => 0.031978404174013
917 => 0.029707371533454
918 => 0.03072699851505
919 => 0.031325933840609
920 => 0.028619922250279
921 => 0.031272444691958
922 => 0.029667837907774
923 => 0.029123210264836
924 => 0.029856479636816
925 => 0.029570723849427
926 => 0.029325047803574
927 => 0.029187956348737
928 => 0.029726388447531
929 => 0.029701269946557
930 => 0.028820290527763
1001 => 0.02767108878926
1002 => 0.028056798613963
1003 => 0.027916666618599
1004 => 0.027408810190016
1005 => 0.027751044104062
1006 => 0.026244019147221
1007 => 0.023651261037318
1008 => 0.025364116463049
1009 => 0.025298173392386
1010 => 0.025264921905878
1011 => 0.026552085418468
1012 => 0.026428354346647
1013 => 0.026203781239715
1014 => 0.027404685728794
1015 => 0.026966339435835
1016 => 0.028317219423359
1017 => 0.029206996352581
1018 => 0.028981320142062
1019 => 0.029818159644661
1020 => 0.0280656845893
1021 => 0.028647786505595
1022 => 0.028767756903785
1023 => 0.027389866753811
1024 => 0.026448598280205
1025 => 0.026385826404262
1026 => 0.024753796585816
1027 => 0.025625613741545
1028 => 0.026392776760342
1029 => 0.026025365208594
1030 => 0.025909053687418
1031 => 0.026503264024213
1101 => 0.02654943925645
1102 => 0.025496639068029
1103 => 0.025715549565048
1104 => 0.026628442728458
1105 => 0.025692546999572
1106 => 0.023874254476047
1107 => 0.023423292790352
1108 => 0.023363126188607
1109 => 0.02214008233078
1110 => 0.023453428206547
1111 => 0.022880117536293
1112 => 0.024691199074309
1113 => 0.02365671901282
1114 => 0.023612124644958
1115 => 0.023544713717363
1116 => 0.022491989345626
1117 => 0.022722469078912
1118 => 0.023488618815411
1119 => 0.023761989672689
1120 => 0.023733474852613
1121 => 0.023484864263731
1122 => 0.023598676918229
1123 => 0.023232046703133
1124 => 0.023102581943435
1125 => 0.022693955549739
1126 => 0.022093387636928
1127 => 0.022176900288702
1128 => 0.020987018106281
1129 => 0.020338707141472
1130 => 0.020159263211014
1201 => 0.019919303287727
1202 => 0.020186367322858
1203 => 0.020983647319559
1204 => 0.02002195849115
1205 => 0.01837321044947
1206 => 0.018472303016105
1207 => 0.018694934592487
1208 => 0.018280062122755
1209 => 0.017887420147761
1210 => 0.018228790488968
1211 => 0.017530194208647
1212 => 0.018779356615381
1213 => 0.018745570273016
1214 => 0.019211180770561
1215 => 0.019502336569965
1216 => 0.018831316715148
1217 => 0.018662557036292
1218 => 0.018758690219068
1219 => 0.017169822847089
1220 => 0.019081336408805
1221 => 0.019097867257464
1222 => 0.018956320095076
1223 => 0.019974142055329
1224 => 0.022122063858094
1225 => 0.02131392927594
1226 => 0.021000995139733
1227 => 0.020406107118049
1228 => 0.021198760085987
1229 => 0.021137896705362
1230 => 0.020862649416423
1231 => 0.02069617899725
]
'min_raw' => 0.01554658198549
'max_raw' => 0.039890749202278
'avg_raw' => 0.027718665593884
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.015546'
'max' => '$0.03989'
'avg' => '$0.027718'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0095601495204803
'max_diff' => 0.023186746226614
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00048798944384321
]
1 => [
'year' => 2028
'avg' => 0.00083753154998271
]
2 => [
'year' => 2029
'avg' => 0.0022879852441775
]
3 => [
'year' => 2030
'avg' => 0.0017651772085131
]
4 => [
'year' => 2031
'avg' => 0.0017336227747631
]
5 => [
'year' => 2032
'avg' => 0.003039586315326
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00048798944384321
'min' => '$0.000487'
'max_raw' => 0.003039586315326
'max' => '$0.003039'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.003039586315326
]
1 => [
'year' => 2033
'avg' => 0.0078181285599935
]
2 => [
'year' => 2034
'avg' => 0.0049555056030012
]
3 => [
'year' => 2035
'avg' => 0.0058450302227906
]
4 => [
'year' => 2036
'avg' => 0.011345217720337
]
5 => [
'year' => 2037
'avg' => 0.027718665593884
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.003039586315326
'min' => '$0.003039'
'max_raw' => 0.027718665593884
'max' => '$0.027718'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.027718665593884
]
]
]
]
'prediction_2025_max_price' => '$0.000834'
'last_price' => 0.00080903
'sma_50day_nextmonth' => '$0.000773'
'sma_200day_nextmonth' => '$0.00165'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000788'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000772'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000755'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000824'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000895'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001156'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001978'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000791'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000781'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000782'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000816'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000943'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001264'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002194'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001511'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002988'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01163'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.018914'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0008061'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000842'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0010039'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001546'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004194'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01279'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.03183'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.53'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 72.62
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000754'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000796'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 57.28
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -9.68
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.23
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000097'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -42.72
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 63.47
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0002063'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767698129
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Decimated para 2026
La previsión del precio de Decimated para 2026 sugiere que el precio medio podría oscilar entre $0.000279 en el extremo inferior y $0.000834 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Decimated podría potencialmente ganar 3.13% para 2026 si DIO alcanza el objetivo de precio previsto.
Predicción de precio de Decimated 2027-2032
La predicción del precio de DIO para 2027-2032 está actualmente dentro de un rango de precios de $0.000487 en el extremo inferior y $0.003039 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Decimated alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Decimated | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000269 | $0.000487 | $0.0007068 |
| 2028 | $0.000485 | $0.000837 | $0.001189 |
| 2029 | $0.001066 | $0.002287 | $0.0035091 |
| 2030 | $0.0009072 | $0.001765 | $0.002623 |
| 2031 | $0.001072 | $0.001733 | $0.002394 |
| 2032 | $0.001637 | $0.003039 | $0.004441 |
Predicción de precio de Decimated 2032-2037
La predicción de precio de Decimated para 2032-2037 se estima actualmente entre $0.003039 en el extremo inferior y $0.027718 en el extremo superior. Comparado con el precio actual, Decimated podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Decimated | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001637 | $0.003039 | $0.004441 |
| 2033 | $0.0038047 | $0.007818 | $0.011831 |
| 2034 | $0.003058 | $0.004955 | $0.006852 |
| 2035 | $0.003616 | $0.005845 | $0.008073 |
| 2036 | $0.005986 | $0.011345 | $0.016704 |
| 2037 | $0.015546 | $0.027718 | $0.03989 |
Decimated Histograma de precios potenciales
Pronóstico de precio de Decimated basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Decimated es Bajista, con 15 indicadores técnicos mostrando señales alcistas y 18 indicando señales bajistas. La predicción de precio de DIO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Decimated
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Decimated aumentar durante el próximo mes, alcanzando $0.00165 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Decimated alcance $0.000773 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 44.53, lo que sugiere que el mercado de DIO está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DIO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000788 | BUY |
| SMA 5 | $0.000772 | BUY |
| SMA 10 | $0.000755 | BUY |
| SMA 21 | $0.000824 | SELL |
| SMA 50 | $0.000895 | SELL |
| SMA 100 | $0.001156 | SELL |
| SMA 200 | $0.001978 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000791 | BUY |
| EMA 5 | $0.000781 | BUY |
| EMA 10 | $0.000782 | BUY |
| EMA 21 | $0.000816 | SELL |
| EMA 50 | $0.000943 | SELL |
| EMA 100 | $0.001264 | SELL |
| EMA 200 | $0.002194 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001511 | SELL |
| SMA 50 | $0.002988 | SELL |
| SMA 100 | $0.01163 | SELL |
| SMA 200 | $0.018914 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001546 | SELL |
| EMA 50 | $0.004194 | SELL |
| EMA 100 | $0.01279 | SELL |
| EMA 200 | $0.03183 | SELL |
Osciladores de Decimated
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 44.53 | NEUTRAL |
| Stoch RSI (14) | 72.62 | NEUTRAL |
| Estocástico Rápido (14) | 57.28 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -9.68 | NEUTRAL |
| Índice Direccional Medio (14) | 28.23 | SELL |
| Oscilador Asombroso (5, 34) | -0.000097 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -42.72 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 63.47 | NEUTRAL |
| VWMA (10) | 0.000754 | BUY |
| Promedio Móvil de Hull (9) | 0.000796 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0002063 | SELL |
Predicción de precios de Decimated basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Decimated
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Decimated por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001136 | $0.001597 | $0.002244 | $0.003154 | $0.004432 | $0.006227 |
| Amazon.com acción | $0.001688 | $0.003522 | $0.007349 | $0.015335 | $0.031997 | $0.066765 |
| Apple acción | $0.001147 | $0.001627 | $0.0023087 | $0.003274 | $0.004645 | $0.006588 |
| Netflix acción | $0.001276 | $0.002014 | $0.003178 | $0.005014 | $0.007911 | $0.012483 |
| Google acción | $0.001047 | $0.001356 | $0.001756 | $0.002275 | $0.002946 | $0.003815 |
| Tesla acción | $0.001834 | $0.004157 | $0.009424 | $0.021365 | $0.048433 | $0.109796 |
| Kodak acción | $0.0006066 | $0.000454 | $0.000341 | $0.000255 | $0.000191 | $0.000143 |
| Nokia acción | $0.000535 | $0.000355 | $0.000235 | $0.000155 | $0.0001032 | $0.000068 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Decimated
Podría preguntarse cosas como: "¿Debo invertir en Decimated ahora?", "¿Debería comprar DIO hoy?", "¿Será Decimated una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Decimated regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Decimated, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Decimated a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Decimated es de $0.000809 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Decimated
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Decimated
basado en el historial de precios del último mes
Predicción de precios de Decimated basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Decimated ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00083 | $0.000851 | $0.000873 | $0.000896 |
| Si Decimated ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000851 | $0.000895 | $0.000941 | $0.00099 |
| Si Decimated ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000914 | $0.001032 | $0.001167 | $0.001318 |
| Si Decimated ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.001019 | $0.001284 | $0.001618 | $0.002038 |
| Si Decimated ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001229 | $0.001868 | $0.00284 | $0.004317 |
| Si Decimated ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00186 | $0.004278 | $0.009839 | $0.022626 |
| Si Decimated ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002911 | $0.010481 | $0.037724 | $0.135783 |
Cuadro de preguntas
¿Es DIO una buena inversión?
La decisión de adquirir Decimated depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Decimated ha experimentado un aumento de 4.5754% durante las últimas 24 horas, y Decimated ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Decimated dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Decimated subir?
Parece que el valor medio de Decimated podría potencialmente aumentar hasta $0.000834 para el final de este año. Mirando las perspectivas de Decimated en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002623. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Decimated la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Decimated, el precio de Decimated aumentará en un 0.86% durante la próxima semana y alcanzará $0.000815 para el 13 de enero de 2026.
¿Cuál será el precio de Decimated el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Decimated, el precio de Decimated disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000715 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Decimated este año en 2026?
Según nuestra predicción más reciente sobre el valor de Decimated en 2026, se anticipa que DIO fluctúe dentro del rango de $0.000279 y $0.000834. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Decimated no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Decimated en 5 años?
El futuro de Decimated parece estar en una tendencia alcista, con un precio máximo de $0.002623 proyectada después de un período de cinco años. Basado en el pronóstico de Decimated para 2030, el valor de Decimated podría potencialmente alcanzar su punto más alto de aproximadamente $0.002623, mientras que su punto más bajo se anticipa que esté alrededor de $0.0009072.
¿Cuánto será Decimated en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Decimated, se espera que el valor de DIO en 2026 crezca en un 3.13% hasta $0.000834 si ocurre lo mejor. El precio estará entre $0.000834 y $0.000279 durante 2026.
¿Cuánto será Decimated en 2027?
Según nuestra última simulación experimental para la predicción de precios de Decimated, el valor de DIO podría disminuir en un -12.62% hasta $0.0007068 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0007068 y $0.000269 a lo largo del año.
¿Cuánto será Decimated en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Decimated sugiere que el valor de DIO en 2028 podría aumentar en un 47.02% , alcanzando $0.001189 en el mejor escenario. Se espera que el precio oscile entre $0.001189 y $0.000485 durante el año.
¿Cuánto será Decimated en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Decimated podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0035091 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0035091 y $0.001066.
¿Cuánto será Decimated en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Decimated, se espera que el valor de DIO en 2030 aumente en un 224.23% , alcanzando $0.002623 en el mejor escenario. Se pronostica que el precio oscile entre $0.002623 y $0.0009072 durante el transcurso de 2030.
¿Cuánto será Decimated en 2031?
Nuestra simulación experimental indica que el precio de Decimated podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.002394 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.002394 y $0.001072 durante el año.
¿Cuánto será Decimated en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Decimated, DIO podría experimentar un 449.04% aumento en valor, alcanzando $0.004441 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004441 y $0.001637 a lo largo del año.
¿Cuánto será Decimated en 2033?
Según nuestra predicción experimental de precios de Decimated, se anticipa que el valor de DIO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.011831. A lo largo del año, el precio de DIO podría oscilar entre $0.011831 y $0.0038047.
¿Cuánto será Decimated en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Decimated sugieren que DIO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006852 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006852 y $0.003058.
¿Cuánto será Decimated en 2035?
Basado en nuestra predicción experimental para el precio de Decimated, DIO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.008073 en 2035. El rango de precios esperado para el año está entre $0.008073 y $0.003616.
¿Cuánto será Decimated en 2036?
Nuestra reciente simulación de predicción de precios de Decimated sugiere que el valor de DIO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.016704 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.016704 y $0.005986.
¿Cuánto será Decimated en 2037?
Según la simulación experimental, el valor de Decimated podría aumentar en un 4830.69% en 2037, con un máximo de $0.03989 bajo condiciones favorables. Se espera que el precio caiga entre $0.03989 y $0.015546 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Epik Prime
Predicción de precios de LEO
Predicción de precios de BRN Metaverse
Predicción de precios de EthicHub
Predicción de precios de neversol
Predicción de precios de Switcheo
Predicción de precios de Fei USD
Predicción de precios de Sakai Vault
Predicción de precios de GYEN
Predicción de precios de Kizuna
Predicción de precios de Nostra Staked STRK
Predicción de precios de LandX Governance Token
Predicción de precios de AIPad
Predicción de precios de Ref Finance
Predicción de precios de HUSD
Predicción de precios de SwissCheese
Predicción de precios de Diverge Loop
Predicción de precios de Force Protocol
Predicción de precios de Energi
Predicción de precios de Gains
Predicción de precios de LayerAI
Predicción de precios de Solama
Predicción de precios de Gari Network
Predicción de precios de Chirpley
Predicción de precios de Mars Protocol
¿Cómo leer y predecir los movimientos de precio de Decimated?
Los traders de Decimated utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Decimated
Las medias móviles son herramientas populares para la predicción de precios de Decimated. Una media móvil simple (SMA) calcula el precio de cierre promedio de DIO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DIO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DIO.
¿Cómo leer gráficos de Decimated y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Decimated en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DIO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Decimated?
La acción del precio de Decimated está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DIO. La capitalización de mercado de Decimated puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DIO, grandes poseedores de Decimated, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Decimated.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


