Predicción del precio de Crypterium - Pronóstico de CRPT
Predicción de precio de Crypterium hasta $0.000784 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000262 | $0.000784 |
| 2027 | $0.000253 | $0.000664 |
| 2028 | $0.000456 | $0.001118 |
| 2029 | $0.001003 | $0.003299 |
| 2030 | $0.000853 | $0.002466 |
| 2031 | $0.0010086 | $0.002251 |
| 2032 | $0.001539 | $0.004176 |
| 2033 | $0.003577 | $0.011125 |
| 2034 | $0.002876 | $0.006443 |
| 2035 | $0.00340062 | $0.007591 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Crypterium hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,966.40, equivalente a un ROI del 39.66% en los próximos 90 días.
Predicción del precio a largo plazo de Crypterium para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Crypterium'
'name_with_ticker' => 'Crypterium <small>CRPT</small>'
'name_lang' => 'Crypterium'
'name_lang_with_ticker' => 'Crypterium <small>CRPT</small>'
'name_with_lang' => 'Crypterium'
'name_with_lang_with_ticker' => 'Crypterium <small>CRPT</small>'
'image' => '/uploads/coins/crypterium.png?1717232726'
'price_for_sd' => 0.0007607
'ticker' => 'CRPT'
'marketcap' => '$64.64K'
'low24h' => '$0.07167'
'high24h' => '$0.07594'
'volume24h' => '$3.13'
'current_supply' => '84.97M'
'max_supply' => '94.66M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '1.5 USD'
'price' => '$0.0007607'
'change_24h_pct' => '2.4103%'
'ath_price' => '$1.58'
'ath_days' => 2900
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 ene. 2018'
'ath_pct' => '-99.95%'
'fdv' => '$72.01K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.0375097'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000767'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000672'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000262'
'current_year_max_price_prediction' => '$0.000784'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000853'
'grand_prediction_max_price' => '$0.002466'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00077515562285076
107 => 0.00077804977256499
108 => 0.00078457043965011
109 => 0.00072885205334268
110 => 0.00075386797298884
111 => 0.00076856248210627
112 => 0.0007021721553229
113 => 0.00076725015880694
114 => 0.00072788212019929
115 => 0.00071452001660776
116 => 0.00073251032877047
117 => 0.00072549948662451
118 => 0.00071947197623788
119 => 0.00071610852187636
120 => 0.00072931862161036
121 => 0.00072870235466828
122 => 0.00070708806753359
123 => 0.00067889311107744
124 => 0.00068835626393202
125 => 0.00068491821178242
126 => 0.00067245826727471
127 => 0.00068085476545347
128 => 0.00064388083684471
129 => 0.0005802691144109
130 => 0.00062229296673043
131 => 0.00062067509412928
201 => 0.0006198592893991
202 => 0.00065143905296325
203 => 0.00064840338736567
204 => 0.00064289362458072
205 => 0.00067235707616036
206 => 0.00066160251999444
207 => 0.00069474552800568
208 => 0.00071657565663724
209 => 0.00071103882988559
210 => 0.00073157017137774
211 => 0.00068857427586091
212 => 0.00070285578765568
213 => 0.00070579918744326
214 => 0.00067199350174136
215 => 0.00064890005980014
216 => 0.00064735999050718
217 => 0.00060731914465343
218 => 0.00062870864131009
219 => 0.00064753051321043
220 => 0.00063851629720643
221 => 0.00063566266571161
222 => 0.0006502412501415
223 => 0.00065137413100884
224 => 0.00062554432717627
225 => 0.00063091516131657
226 => 0.00065331243250849
227 => 0.00063035080754801
228 => 0.00058574012100994
301 => 0.0005746760539575
302 => 0.00057319990346149
303 => 0.00054319327611306
304 => 0.00057541540782284
305 => 0.00056134958383208
306 => 0.00060578335328445
307 => 0.00058040302247634
308 => 0.00057930892714223
309 => 0.00057765504157583
310 => 0.00055182709785886
311 => 0.00055748177608143
312 => 0.00057627878772503
313 => 0.00058298577324296
314 => 0.00058228617970473
315 => 0.00057618667211331
316 => 0.00057897899545413
317 => 0.00056998394906339
318 => 0.00056680761096713
319 => 0.00055678221421468
320 => 0.00054204765057512
321 => 0.00054409658202153
322 => 0.00051490355594327
323 => 0.00049899764594466
324 => 0.00049459509969358
325 => 0.00048870783085155
326 => 0.00049526008237471
327 => 0.0005148208557683
328 => 0.00049122641300605
329 => 0.00045077539584791
330 => 0.0004532065709043
331 => 0.00045866869943364
401 => 0.00044849005905481
402 => 0.00043885683016478
403 => 0.00044723214111609
404 => 0.00043009251188985
405 => 0.00046073994174008
406 => 0.00045991101465106
407 => 0.00047133448127488
408 => 0.00047847780938789
409 => 0.00046201475076735
410 => 0.00045787433604513
411 => 0.00046023290444226
412 => 0.00042125102261365
413 => 0.00046814882987606
414 => 0.00046855440406074
415 => 0.00046508163166029
416 => 0.00049005326622017
417 => 0.00054275120398965
418 => 0.00052292412003114
419 => 0.00051524647384562
420 => 0.00050065126283461
421 => 0.00052009851492889
422 => 0.00051860526939245
423 => 0.00051185224678007
424 => 0.00050776799763339
425 => 0.00051529335191606
426 => 0.00050683552295836
427 => 0.00050531626447196
428 => 0.00049611121101391
429 => 0.00049282542573264
430 => 0.00049039276112126
501 => 0.00048771463641282
502 => 0.00049362191217254
503 => 0.00048023524813418
504 => 0.00046409224361478
505 => 0.00046275012745872
506 => 0.00046645582816565
507 => 0.00046481633145981
508 => 0.00046274227817925
509 => 0.00045878234563186
510 => 0.00045760751823563
511 => 0.00046142513732817
512 => 0.00045711526795371
513 => 0.00046347471498646
514 => 0.00046174529727781
515 => 0.00045208491054096
516 => 0.00044004449193359
517 => 0.00043993730695235
518 => 0.00043734321851363
519 => 0.00043403925686312
520 => 0.00043312017031635
521 => 0.00044652679578842
522 => 0.00047427810928905
523 => 0.00046882986241623
524 => 0.00047276677914064
525 => 0.00049213251291506
526 => 0.00049828829733402
527 => 0.00049391906736119
528 => 0.00048793819589201
529 => 0.00048820132388322
530 => 0.00050863977222632
531 => 0.00050991449317916
601 => 0.00051313530178645
602 => 0.00051727495104721
603 => 0.00049462406753065
604 => 0.00048713446930655
605 => 0.00048358548216088
606 => 0.0004726559753831
607 => 0.00048444251141784
608 => 0.00047757500162019
609 => 0.00047850166331944
610 => 0.00047789817367215
611 => 0.00047822771982736
612 => 0.00046073137515884
613 => 0.00046710612357525
614 => 0.00045650686793019
615 => 0.00044231565444373
616 => 0.00044226808052005
617 => 0.00044574135991618
618 => 0.00044367531742192
619 => 0.00043811565019269
620 => 0.00043890537468171
621 => 0.00043198655717071
622 => 0.00043974544439678
623 => 0.00043996794151979
624 => 0.00043698034730831
625 => 0.00044893398360018
626 => 0.0004538313981422
627 => 0.00045186489963174
628 => 0.00045369342336443
629 => 0.00046905626167115
630 => 0.00047156107464278
701 => 0.00047267354710612
702 => 0.0004711829813796
703 => 0.00045397422784671
704 => 0.00045473750924317
705 => 0.00044913705680115
706 => 0.00044440526464879
707 => 0.0004445945115199
708 => 0.00044702726777614
709 => 0.0004576512570264
710 => 0.00048000881608519
711 => 0.00048085726910831
712 => 0.00048188561892345
713 => 0.00047770280341807
714 => 0.00047644122623749
715 => 0.00047810557217937
716 => 0.00048650189585725
717 => 0.00050809951993638
718 => 0.00050046547713001
719 => 0.00049425888149747
720 => 0.00049970373915337
721 => 0.00049886554599545
722 => 0.00049179035221481
723 => 0.00049159177509005
724 => 0.00047801221614872
725 => 0.00047299216239971
726 => 0.00046879702974252
727 => 0.00046421605439759
728 => 0.00046150029865743
729 => 0.00046567293376322
730 => 0.00046662726478109
731 => 0.00045750372519708
801 => 0.00045626022046441
802 => 0.000463710699834
803 => 0.00046043202164531
804 => 0.00046380422346968
805 => 0.00046458660321915
806 => 0.00046446062205975
807 => 0.00046103730547697
808 => 0.00046321922538206
809 => 0.00045805833434489
810 => 0.00045244664048273
811 => 0.00044886672941955
812 => 0.00044574278221063
813 => 0.00044747612968702
814 => 0.00044129706243045
815 => 0.00043932025445502
816 => 0.00046248004001297
817 => 0.00047958842261428
818 => 0.00047933965995559
819 => 0.0004778253812474
820 => 0.00047557547024725
821 => 0.00048633730085376
822 => 0.00048258809426004
823 => 0.00048531595531366
824 => 0.00048601031043978
825 => 0.00048811191428014
826 => 0.00048886305701412
827 => 0.00048659258196987
828 => 0.00047897259040621
829 => 0.00045998429591661
830 => 0.00045114519357378
831 => 0.00044822814257376
901 => 0.00044833417183734
902 => 0.00044540941141226
903 => 0.00044627088443601
904 => 0.00044510982625108
905 => 0.00044291106293894
906 => 0.00044734036224845
907 => 0.00044785079773209
908 => 0.00044681694634707
909 => 0.0004470604557742
910 => 0.00043850060786992
911 => 0.00043915139451507
912 => 0.0004355277317769
913 => 0.0004348483386974
914 => 0.00042568803484372
915 => 0.00040945922875966
916 => 0.00041845156269856
917 => 0.00040759008781387
918 => 0.00040347668269683
919 => 0.00042294890275512
920 => 0.00042099443193658
921 => 0.00041764922748329
922 => 0.00041270097289517
923 => 0.00041086561713491
924 => 0.00039971457653859
925 => 0.00039905571357167
926 => 0.00040458247039463
927 => 0.00040203206228492
928 => 0.00039845032338381
929 => 0.00038547762815905
930 => 0.00037089202361463
1001 => 0.00037133227133399
1002 => 0.00037597168076475
1003 => 0.00038946138939428
1004 => 0.00038419072685839
1005 => 0.00038036680071472
1006 => 0.00037965069429481
1007 => 0.00038861426541035
1008 => 0.00040129959646503
1009 => 0.00040725126997761
1010 => 0.00040135334228166
1011 => 0.00039457812051153
1012 => 0.00039499049686732
1013 => 0.00039773385201455
1014 => 0.00039802213985157
1015 => 0.00039361216698327
1016 => 0.00039485354851413
1017 => 0.00039296777645445
1018 => 0.00038139479680501
1019 => 0.00038118547830147
1020 => 0.00037834528245599
1021 => 0.00037825928245455
1022 => 0.00037342740080134
1023 => 0.00037275138715683
1024 => 0.00036315739286012
1025 => 0.00036947218895951
1026 => 0.00036523655527771
1027 => 0.00035885245623428
1028 => 0.00035775183515287
1029 => 0.00035771874915413
1030 => 0.00036427379141332
1031 => 0.00036939558947418
1101 => 0.00036531023593904
1102 => 0.00036438008013034
1103 => 0.00037431171068121
1104 => 0.00037304782016479
1105 => 0.00037195329912879
1106 => 0.00040016376420301
1107 => 0.00037783297980673
1108 => 0.00036809548321333
1109 => 0.00035604348207856
1110 => 0.00035996767441951
1111 => 0.00036079455940412
1112 => 0.00033181166921148
1113 => 0.00032005331426991
1114 => 0.00031601828995823
1115 => 0.00031369607641998
1116 => 0.00031475433828988
1117 => 0.000304170439725
1118 => 0.00031128299460212
1119 => 0.00030211823307961
1120 => 0.00030058173098564
1121 => 0.000316969459884
1122 => 0.00031924971662448
1123 => 0.00030952143294934
1124 => 0.00031576856593485
1125 => 0.00031350326867266
1126 => 0.00030227533661145
1127 => 0.00030184651219379
1128 => 0.00029621273056637
1129 => 0.00028739695323455
1130 => 0.00028336790643502
1201 => 0.00028126954388004
1202 => 0.0002821353691665
1203 => 0.00028169758140697
1204 => 0.00027884072014503
1205 => 0.00028186133335038
1206 => 0.00027414491481425
1207 => 0.00027107217477776
1208 => 0.0002696842893903
1209 => 0.00026283552379901
1210 => 0.00027373495551464
1211 => 0.00027588228087004
1212 => 0.00027803383711974
1213 => 0.00029676166534349
1214 => 0.00029582607596973
1215 => 0.00030428334825806
1216 => 0.00030395471420886
1217 => 0.0003015425631535
1218 => 0.00029136609463052
1219 => 0.00029542225360567
1220 => 0.00028293802674722
1221 => 0.00029229205835448
1222 => 0.00028802326896263
1223 => 0.00029084877636708
1224 => 0.00028576825928814
1225 => 0.00028858002720903
1226 => 0.00027639149137233
1227 => 0.00026501000810533
1228 => 0.00026959024921818
1229 => 0.00027456949512195
1230 => 0.00028536576892958
1231 => 0.00027893559731708
]
'min_raw' => 0.00026283552379901
'max_raw' => 0.00078457043965011
'avg_raw' => 0.00052370298172456
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000262'
'max' => '$0.000784'
'avg' => '$0.000523'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00049790447620099
'max_diff' => 2.383043965011E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00028124813018065
102 => 0.00027350153220103
103 => 0.00025751808786277
104 => 0.00025760855242193
105 => 0.00025514984772875
106 => 0.00025302516789708
107 => 0.00027967417987792
108 => 0.00027635995397956
109 => 0.0002710791687657
110 => 0.00027814770962452
111 => 0.00028001674402042
112 => 0.00028006995280212
113 => 0.00028522697774727
114 => 0.00028797928288494
115 => 0.00028846438859463
116 => 0.00029657907877072
117 => 0.0002992990158824
118 => 0.00031050205190547
119 => 0.0002877457690233
120 => 0.00028727711835253
121 => 0.00027824717849017
122 => 0.00027252024787177
123 => 0.00027863930632922
124 => 0.00028405995678774
125 => 0.00027841561320992
126 => 0.00027915264532259
127 => 0.00027157557522918
128 => 0.00027428402125329
129 => 0.00027661689983633
130 => 0.00027532882140304
131 => 0.0002734005056447
201 => 0.00028361552526643
202 => 0.00028303915382638
203 => 0.00029255161494042
204 => 0.00029996725862143
205 => 0.00031325741780267
206 => 0.00029938844386538
207 => 0.00029888300333092
208 => 0.00030382376563042
209 => 0.00029929825947743
210 => 0.00030215822315095
211 => 0.00031279663344
212 => 0.00031302140628562
213 => 0.00030925617151803
214 => 0.00030902705664023
215 => 0.0003097502111645
216 => 0.00031398574980048
217 => 0.00031250572245611
218 => 0.00031421844756872
219 => 0.00031636023654821
220 => 0.0003252195838671
221 => 0.00032735554251251
222 => 0.00032216627037176
223 => 0.00032263480354425
224 => 0.00032069387331491
225 => 0.00031881895903314
226 => 0.00032303349252931
227 => 0.00033073563533041
228 => 0.00033068772069979
301 => 0.00033247446812138
302 => 0.00033358759696282
303 => 0.00032880923311525
304 => 0.00032569869395579
305 => 0.00032689147259828
306 => 0.00032879875162295
307 => 0.00032627296771624
308 => 0.00031068265938711
309 => 0.00031541176302141
310 => 0.00031462460893531
311 => 0.0003135036057955
312 => 0.00031825875606887
313 => 0.00031780011022474
314 => 0.0003040618865475
315 => 0.00030494136305376
316 => 0.00030411537042676
317 => 0.00030678432158678
318 => 0.00029915412735604
319 => 0.00030150112371127
320 => 0.00030297313782355
321 => 0.00030384016544423
322 => 0.00030697246373652
323 => 0.00030660492468477
324 => 0.00030694961699301
325 => 0.00031159398846438
326 => 0.00033508362561077
327 => 0.00033636211473369
328 => 0.00033006636670703
329 => 0.00033258139386554
330 => 0.00032775309169717
331 => 0.00033099436328961
401 => 0.00033321195899378
402 => 0.00032319107042576
403 => 0.00032259769843979
404 => 0.00031774946815085
405 => 0.00032035463249032
406 => 0.00031620962870827
407 => 0.00031722666765031
408 => 0.00031438293810451
409 => 0.00031950108510605
410 => 0.0003252239687334
411 => 0.00032666979514119
412 => 0.00032286644832969
413 => 0.0003201125745854
414 => 0.00031527767947283
415 => 0.0003233182177977
416 => 0.00032566951623486
417 => 0.00032330586742799
418 => 0.00032275815835269
419 => 0.00032172025064469
420 => 0.00032297835537945
421 => 0.0003256567105586
422 => 0.00032439364771757
423 => 0.00032522792297638
424 => 0.00032204852599072
425 => 0.00032881081495251
426 => 0.00033955095725731
427 => 0.00033958548857101
428 => 0.0003383224189216
429 => 0.00033780559803427
430 => 0.00033910158414404
501 => 0.00033980460344446
502 => 0.00034399558488026
503 => 0.00034849267493694
504 => 0.00036947863199736
505 => 0.00036358585923146
506 => 0.00038220584879563
507 => 0.00039693184303785
508 => 0.00040134752482141
509 => 0.00039728530535442
510 => 0.00038338867199463
511 => 0.00038270683686461
512 => 0.0004034742741114
513 => 0.0003976065218803
514 => 0.00039690857142344
515 => 0.00038948355776839
516 => 0.00039387266044436
517 => 0.00039291269930487
518 => 0.00039139735368329
519 => 0.00039977145584149
520 => 0.00041544702752039
521 => 0.00041300384266965
522 => 0.00041118011851466
523 => 0.00040318909014561
524 => 0.00040800147408458
525 => 0.00040628787633905
526 => 0.00041365057972983
527 => 0.00040928907734498
528 => 0.00039756206788605
529 => 0.00039942963279512
530 => 0.00039914735411613
531 => 0.00040495662932718
601 => 0.0004032128291039
602 => 0.00039880684913554
603 => 0.00041539345012054
604 => 0.0004143164085121
605 => 0.00041584340726688
606 => 0.00041651563934274
607 => 0.00042661161107361
608 => 0.00043074760765669
609 => 0.00043168655129186
610 => 0.00043561542815633
611 => 0.00043158879725635
612 => 0.00044769819179545
613 => 0.00045840999915472
614 => 0.00047085231462707
615 => 0.00048903388171131
616 => 0.00049587031912388
617 => 0.00049463537789587
618 => 0.00050842043455578
619 => 0.00053319187494904
620 => 0.00049964239424194
621 => 0.00053497007889102
622 => 0.00052378574180885
623 => 0.00049726787978467
624 => 0.00049556044209537
625 => 0.00051351864613685
626 => 0.00055334821428779
627 => 0.0005433713592092
628 => 0.00055336453284859
629 => 0.00054170696497957
630 => 0.00054112806847718
701 => 0.00055279835079737
702 => 0.00058006660155246
703 => 0.00056711247775381
704 => 0.00054853956480698
705 => 0.00056225351470039
706 => 0.00055037322213657
707 => 0.00052360359790577
708 => 0.00054336373009615
709 => 0.00053015069243661
710 => 0.00053400695926938
711 => 0.00056177879913871
712 => 0.00055843721789046
713 => 0.00056276153344779
714 => 0.00055512922967614
715 => 0.00054799945444959
716 => 0.00053469119952517
717 => 0.00053075128133109
718 => 0.00053184013297653
719 => 0.00053075074175029
720 => 0.00052330489542925
721 => 0.00052169696562515
722 => 0.00051901701217329
723 => 0.0005198476418094
724 => 0.00051480854527187
725 => 0.00052431836156866
726 => 0.00052608346727356
727 => 0.0005330039185215
728 => 0.00053372242272778
729 => 0.00055299578094683
730 => 0.0005423803391154
731 => 0.00054950209398908
801 => 0.00054886505720062
802 => 0.00049784260226392
803 => 0.00050487304637927
804 => 0.00051581021114784
805 => 0.00051088303324458
806 => 0.00050391715647142
807 => 0.00049829183749042
808 => 0.0004897689040158
809 => 0.00050176476921289
810 => 0.00051753805632902
811 => 0.00053412245931893
812 => 0.00055404753285818
813 => 0.00054960048839765
814 => 0.0005337499739287
815 => 0.00053446101642897
816 => 0.00053885640138072
817 => 0.00053316397850537
818 => 0.00053148517187014
819 => 0.00053862575912887
820 => 0.00053867493242892
821 => 0.00053212511195855
822 => 0.00052484618511022
823 => 0.00052481568614095
824 => 0.00052352047141438
825 => 0.00054193738080209
826 => 0.00055206481880577
827 => 0.00055322591325171
828 => 0.00055198666789845
829 => 0.00055246360425103
830 => 0.00054657067121956
831 => 0.0005600401686345
901 => 0.00057240111145768
902 => 0.00056908811472804
903 => 0.00056412146166008
904 => 0.00056016528326502
905 => 0.00056815616482732
906 => 0.00056780034345017
907 => 0.00057229314940557
908 => 0.00057208932977573
909 => 0.00057057856811591
910 => 0.0005690881686821
911 => 0.00057499743397003
912 => 0.00057329566046701
913 => 0.00057159124363968
914 => 0.00056817277475933
915 => 0.00056863740145493
916 => 0.00056367160594964
917 => 0.00056137420172955
918 => 0.00052682675450292
919 => 0.00051759454773356
920 => 0.0005204991879221
921 => 0.00052145547089112
922 => 0.00051743760267369
923 => 0.00052319819359181
924 => 0.0005223004115992
925 => 0.00052579315614756
926 => 0.00052361104099109
927 => 0.00052370059575826
928 => 0.00053011773115745
929 => 0.00053198065286428
930 => 0.00053103315584856
1001 => 0.00053169675028007
1002 => 0.00054698900386853
1003 => 0.00054481493442699
1004 => 0.00054366000336698
1005 => 0.00054397992716355
1006 => 0.00054788742582501
1007 => 0.0005489813121087
1008 => 0.00054434643905867
1009 => 0.00054653227198295
1010 => 0.00055583927115102
1011 => 0.00055909619412931
1012 => 0.0005694907288643
1013 => 0.00056507494576075
1014 => 0.00057318030675793
1015 => 0.00059809342314205
1016 => 0.00061799574436622
1017 => 0.00059969274727026
1018 => 0.00063624082565312
1019 => 0.00066469874718464
1020 => 0.00066360648475711
1021 => 0.00065864418789451
1022 => 0.00062624560082386
1023 => 0.00059643193796573
1024 => 0.00062137233290155
1025 => 0.00062143591109728
1026 => 0.00061929350905375
1027 => 0.00060598723395995
1028 => 0.00061883047952351
1029 => 0.00061984992971653
1030 => 0.00061927930870213
1031 => 0.00060907741878592
1101 => 0.0005935010185083
1102 => 0.00059654460983792
1103 => 0.0006015300745234
1104 => 0.00059209154979689
1105 => 0.00058907536924639
1106 => 0.0005946830227416
1107 => 0.00061275205070417
1108 => 0.0006093362056346
1109 => 0.00060924700411532
1110 => 0.00062386143786669
1111 => 0.00061340065729291
1112 => 0.00059658299927151
1113 => 0.00059233631882345
1114 => 0.00057726346413957
1115 => 0.00058767433855739
1116 => 0.00058804900739357
1117 => 0.00058234707787148
1118 => 0.0005970456794271
1119 => 0.00059691022922613
1120 => 0.00061086436380506
1121 => 0.00063753942818637
1122 => 0.00062965029904862
1123 => 0.00062047610019622
1124 => 0.00062147358998442
1125 => 0.00063241359094636
1126 => 0.00062579901662884
1127 => 0.00062817766367187
1128 => 0.00063240999057918
1129 => 0.00063496345848512
1130 => 0.0006211061852484
1201 => 0.00061787539198692
1202 => 0.00061126632282828
1203 => 0.00060954214004891
1204 => 0.00061492508897587
1205 => 0.000613506872116
1206 => 0.00058801751792868
1207 => 0.00058535373859467
1208 => 0.00058543543290385
1209 => 0.00057873723311269
1210 => 0.00056852087067903
1211 => 0.00059536886116739
1212 => 0.00059321259179379
1213 => 0.00059083223728732
1214 => 0.00059112381713225
1215 => 0.00060277761984042
1216 => 0.00059601782573854
1217 => 0.00061398984626686
1218 => 0.00061029533913462
1219 => 0.0006065060818351
1220 => 0.0006059822910527
1221 => 0.00060452375027663
1222 => 0.00059952187125634
1223 => 0.00059348180177302
1224 => 0.00058949362471827
1225 => 0.0005437767082875
1226 => 0.00055226150205399
1227 => 0.00056202248386904
1228 => 0.00056539193567691
1229 => 0.00055962825520057
1230 => 0.0005997494564916
1231 => 0.00060707998658498
]
'min_raw' => 0.00025302516789708
'max_raw' => 0.00066469874718464
'avg_raw' => 0.00045886195754086
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000253'
'max' => '$0.000664'
'avg' => '$0.000458'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.8103559019243E-6
'max_diff' => -0.00011987169246547
'year' => 2027
]
2 => [
'items' => [
101 => 0.00058487533277347
102 => 0.00058072174865538
103 => 0.00060002176477488
104 => 0.00058838149572381
105 => 0.00059362310816476
106 => 0.00058229360907613
107 => 0.00060531427654846
108 => 0.00060513889763249
109 => 0.0005961833380404
110 => 0.00060375251568261
111 => 0.00060243718479896
112 => 0.00059232638007606
113 => 0.0006056348070925
114 => 0.00060564140790626
115 => 0.00059702187650952
116 => 0.00058695615089619
117 => 0.00058515663689835
118 => 0.00058380094483167
119 => 0.00059328969102179
120 => 0.00060179727118532
121 => 0.00061762776866165
122 => 0.00062160793185054
123 => 0.00063714277375126
124 => 0.0006278925317771
125 => 0.00063199304423356
126 => 0.00063644473055794
127 => 0.00063857903268719
128 => 0.00063510130190054
129 => 0.00065923330576838
130 => 0.00066127078628032
131 => 0.00066195393587183
201 => 0.00065381675994479
202 => 0.00066104447669774
203 => 0.00065766286738585
204 => 0.00066646087537726
205 => 0.00066784051536892
206 => 0.0006666720093781
207 => 0.00066710992888759
208 => 0.00064651752076359
209 => 0.00064544969576876
210 => 0.00063088982619476
211 => 0.00063682308066729
212 => 0.00062573114581919
213 => 0.00062924851261911
214 => 0.00063079893438982
215 => 0.00062998908204246
216 => 0.00063715853797298
217 => 0.00063106303580896
218 => 0.00061497600340476
219 => 0.00059888458809935
220 => 0.00059868257348797
221 => 0.00059444598787513
222 => 0.0005913837124464
223 => 0.00059197361533403
224 => 0.00059405251005228
225 => 0.00059126288330615
226 => 0.00059185819161011
227 => 0.0006017442759742
228 => 0.0006037268596891
229 => 0.00059698926558043
301 => 0.00056993685300395
302 => 0.00056329812310184
303 => 0.00056806991050374
304 => 0.0005657893034681
305 => 0.00045663612594337
306 => 0.00048228004591083
307 => 0.0004670432994514
308 => 0.00047406509322891
309 => 0.00045851232063019
310 => 0.00046593491890495
311 => 0.00046456423603349
312 => 0.00050579890048242
313 => 0.00050515507791348
314 => 0.0005054632417069
315 => 0.00049075378093042
316 => 0.00051418635135274
317 => 0.00052573007815075
318 => 0.00052359364154678
319 => 0.00052413133661228
320 => 0.00051489195391801
321 => 0.00050555269912767
322 => 0.00049519402826418
323 => 0.00051443915835813
324 => 0.00051229942841701
325 => 0.00051720719905141
326 => 0.00052968904158765
327 => 0.00053152704031502
328 => 0.00053399732924375
329 => 0.00053311190650994
330 => 0.00055420626821456
331 => 0.00055165160182705
401 => 0.00055780761279327
402 => 0.00054514423117808
403 => 0.00053081441286128
404 => 0.00053353804284625
405 => 0.00053327573537665
406 => 0.00052993626022613
407 => 0.00052692153137825
408 => 0.00052190285724113
409 => 0.000537782684835
410 => 0.00053713799283466
411 => 0.00054757480694771
412 => 0.00054572999867542
413 => 0.00053340991753195
414 => 0.0005338499316402
415 => 0.00053680923798176
416 => 0.00054705143101866
417 => 0.00055009201125369
418 => 0.00054868349334265
419 => 0.0005520173507626
420 => 0.00055465229573501
421 => 0.00055234825928281
422 => 0.00058496855666314
423 => 0.00057142233491163
424 => 0.00057802466913931
425 => 0.0005795992869494
426 => 0.0005755659365395
427 => 0.00057644062581996
428 => 0.00057776554174129
429 => 0.00058581017177047
430 => 0.00060692160869951
501 => 0.00061627172040497
502 => 0.00064440199279723
503 => 0.00061549532378767
504 => 0.00061378012167633
505 => 0.00061884723318702
506 => 0.00063536268097301
507 => 0.00064874690018644
508 => 0.00065318721785366
509 => 0.00065377407913504
510 => 0.00066210441026548
511 => 0.00066687920071797
512 => 0.00066109288895679
513 => 0.00065618959559127
514 => 0.00063862660737518
515 => 0.00064065957108362
516 => 0.00065466467504168
517 => 0.00067444770927894
518 => 0.00069142361072841
519 => 0.0006854792417107
520 => 0.00073083058124529
521 => 0.00073532698131653
522 => 0.00073470572421271
523 => 0.00074494919272905
524 => 0.0007246179937702
525 => 0.00071592601231686
526 => 0.00065724974327164
527 => 0.00067373538149943
528 => 0.00069769822483112
529 => 0.00069452665266012
530 => 0.00067712419530401
531 => 0.00069141040940399
601 => 0.00068668694025132
602 => 0.00068296134415369
603 => 0.00070002902211926
604 => 0.00068126240909455
605 => 0.00069751101351049
606 => 0.00067667201027676
607 => 0.00068550639508766
608 => 0.00068049157099788
609 => 0.00068373677677769
610 => 0.00066476537009934
611 => 0.00067500188063812
612 => 0.00066433949760641
613 => 0.00066433444224857
614 => 0.00066409906955218
615 => 0.00067664331590474
616 => 0.00067705238332794
617 => 0.0006677821663201
618 => 0.00066644618322126
619 => 0.00067138601295475
620 => 0.00066560276608029
621 => 0.00066830871089353
622 => 0.00066568472639209
623 => 0.00066509401221125
624 => 0.00066038710111657
625 => 0.00065835923439777
626 => 0.0006591544131899
627 => 0.00065644005802959
628 => 0.00065480456086298
629 => 0.00066377372800088
630 => 0.00065898186381427
701 => 0.00066303930608927
702 => 0.00065841533852687
703 => 0.00064238665238881
704 => 0.00063316838549054
705 => 0.00060289168323574
706 => 0.00061147811843707
707 => 0.00061717093385886
708 => 0.00061528945839592
709 => 0.00061933159572466
710 => 0.00061957975012777
711 => 0.00061826561007748
712 => 0.00061674400425101
713 => 0.00061600337068477
714 => 0.00062152344649786
715 => 0.00062472803630456
716 => 0.00061774228404648
717 => 0.00061610562003347
718 => 0.00062316860126035
719 => 0.00062747701572859
720 => 0.00065928792747312
721 => 0.0006569312723832
722 => 0.00066284601418871
723 => 0.00066218010503052
724 => 0.00066837969673496
725 => 0.00067851340902877
726 => 0.00065790873850493
727 => 0.00066148499685197
728 => 0.00066060818089314
729 => 0.00067018102761813
730 => 0.0006702109130007
731 => 0.0006644715131899
801 => 0.00066758293493846
802 => 0.00066584622467581
803 => 0.00066898469485089
804 => 0.00065689979781769
805 => 0.00067161789792011
806 => 0.00067996211226477
807 => 0.00068007797168904
808 => 0.00068403306306462
809 => 0.00068805166496566
810 => 0.00069576502136825
811 => 0.00068783654364203
812 => 0.0006735739840343
813 => 0.0006746036947702
814 => 0.00066624156129065
815 => 0.00066638213026519
816 => 0.00066563176206254
817 => 0.00066788367352377
818 => 0.00065739396574746
819 => 0.00065985587919603
820 => 0.00065640918595109
821 => 0.00066147750441398
822 => 0.00065602483157096
823 => 0.00066060775806593
824 => 0.00066258559721474
825 => 0.00066988386625368
826 => 0.00065494687129987
827 => 0.00062448932744339
828 => 0.00063089187242404
829 => 0.0006214220054886
830 => 0.0006222984777278
831 => 0.00062406909114051
901 => 0.00061832995376126
902 => 0.00061942480031222
903 => 0.0006193856846891
904 => 0.00061904860738105
905 => 0.0006175556360927
906 => 0.00061539053234923
907 => 0.00062401563927942
908 => 0.0006254812130181
909 => 0.000628739001893
910 => 0.00063843197180542
911 => 0.0006374634155352
912 => 0.00063904317099695
913 => 0.00063559457369391
914 => 0.00062245844826587
915 => 0.00062317180307642
916 => 0.00061427625715815
917 => 0.00062851152278396
918 => 0.00062514042398744
919 => 0.00062296705466303
920 => 0.00062237403070674
921 => 0.00063209102761674
922 => 0.00063499850538748
923 => 0.00063318676035433
924 => 0.0006294708184343
925 => 0.00063660652544037
926 => 0.00063851573960389
927 => 0.00063894314224599
928 => 0.00065158624692465
929 => 0.00063964975135015
930 => 0.0006425229844735
1001 => 0.00066493912910125
1002 => 0.00064461077914039
1003 => 0.00065537915949096
1004 => 0.00065485210330875
1005 => 0.00066036084231397
1006 => 0.00065440022592227
1007 => 0.00065447411490618
1008 => 0.00065936550194852
1009 => 0.00065249643101386
1010 => 0.00065079555245047
1011 => 0.00064844580089708
1012 => 0.00065357639744997
1013 => 0.00065665195804651
1014 => 0.00068143871770424
1015 => 0.00069745209485671
1016 => 0.00069675691192224
1017 => 0.00070310958261534
1018 => 0.00070024764628431
1019 => 0.00069100569893073
1020 => 0.00070678057612787
1021 => 0.0007017887449338
1022 => 0.00070220026543236
1023 => 0.00070218494861885
1024 => 0.00070550407996945
1025 => 0.00070315217121363
1026 => 0.00069851631763743
1027 => 0.00070159381358754
1028 => 0.00071073287633443
1029 => 0.00073910080752148
1030 => 0.00075497587763885
1031 => 0.00073814510836709
1101 => 0.00074975474763777
1102 => 0.0007427931010128
1103 => 0.00074152796273
1104 => 0.00074881967413759
1105 => 0.00075612414872074
1106 => 0.0007556588852679
1107 => 0.00075035621180946
1108 => 0.00074736086612314
1109 => 0.00077004262717435
1110 => 0.00078675416234317
1111 => 0.00078561454768021
1112 => 0.00079064443617997
1113 => 0.00080541234438387
1114 => 0.00080676253683259
1115 => 0.00080659244361787
1116 => 0.00080324585075572
1117 => 0.00081778677423767
1118 => 0.00082991706842952
1119 => 0.0008024712112005
1120 => 0.00081292223434065
1121 => 0.00081761403533921
1122 => 0.00082450299119971
1123 => 0.00083612581445945
1124 => 0.00084875128332113
1125 => 0.00085053666304939
1126 => 0.0008492698506939
1127 => 0.0008409430145888
1128 => 0.00085475795327043
1129 => 0.00086285042034994
1130 => 0.00086766929930298
1201 => 0.00087988917454288
1202 => 0.00081764301030489
1203 => 0.00077358208142215
1204 => 0.00076670133112959
1205 => 0.00078069360742166
1206 => 0.00078438325909357
1207 => 0.00078289596513105
1208 => 0.00073330138382913
1209 => 0.00076644022592287
1210 => 0.00080209483362274
1211 => 0.00080346447231246
1212 => 0.0008213139144297
1213 => 0.00082712642445643
1214 => 0.00084149756494068
1215 => 0.00084059864619055
1216 => 0.00084409779020367
1217 => 0.00084329339759178
1218 => 0.00086991290913818
1219 => 0.00089927818340959
1220 => 0.00089826135733742
1221 => 0.00089403975172675
1222 => 0.00090030955594932
1223 => 0.00093061766597144
1224 => 0.00092782738087817
1225 => 0.00093053790517037
1226 => 0.00096627287497668
1227 => 0.0010127334189651
1228 => 0.00099114783172011
1229 => 0.0010379823449563
1230 => 0.0010674621884475
1231 => 0.001118444529493
]
'min_raw' => 0.00045663612594337
'max_raw' => 0.001118444529493
'avg_raw' => 0.00078754032771819
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000456'
'max' => '$0.001118'
'avg' => '$0.000787'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020361095804629
'max_diff' => 0.00045374578230837
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011120612893008
102 => 0.0011319083405441
103 => 0.0011006339571343
104 => 0.0010288216512297
105 => 0.0010174570789338
106 => 0.001040209240467
107 => 0.0010961432094727
108 => 0.0010384476807309
109 => 0.0010501194110525
110 => 0.0010467579519347
111 => 0.0010465788340636
112 => 0.0010534150346787
113 => 0.0010434987691342
114 => 0.0010030981194037
115 => 0.0010216134990926
116 => 0.0010144638218132
117 => 0.0010223969217985
118 => 0.00106520859056
119 => 0.0010462805312978
120 => 0.0010263413584558
121 => 0.0010513495060564
122 => 0.0010831934716838
123 => 0.0010812007335439
124 => 0.0010773339886527
125 => 0.0010991306271485
126 => 0.0011351322881276
127 => 0.0011448633924239
128 => 0.0011520466946717
129 => 0.0011530371506888
130 => 0.0011632394632298
131 => 0.001108379057383
201 => 0.0011954439303771
202 => 0.0012104776288246
203 => 0.0012076519165994
204 => 0.0012243612397091
205 => 0.0012194449329756
206 => 0.0012123219758637
207 => 0.0012388098071675
208 => 0.0012084436460355
209 => 0.001165342703302
210 => 0.0011416966736784
211 => 0.0011728356729575
212 => 0.001191851173216
213 => 0.0012044192092739
214 => 0.0012082222893912
215 => 0.0011126377145213
216 => 0.00106112293003
217 => 0.0010941433162707
218 => 0.0011344304664297
219 => 0.0011081552602297
220 => 0.0011091851985672
221 => 0.0010717236595286
222 => 0.0011377449813928
223 => 0.0011281262301239
224 => 0.0011780283287222
225 => 0.0011661187924024
226 => 0.001206812016621
227 => 0.0011960961269057
228 => 0.0012405771859963
301 => 0.0012583218847441
302 => 0.0012881179956835
303 => 0.0013100361361825
304 => 0.0013229068875107
305 => 0.0013221341758779
306 => 0.0013731345048233
307 => 0.00134306139266
308 => 0.0013052824760946
309 => 0.0013045991746848
310 => 0.0013241654109055
311 => 0.0013651708742891
312 => 0.0013758029943393
313 => 0.0013817448989868
314 => 0.0013726446651799
315 => 0.001340002457286
316 => 0.0013259077174172
317 => 0.0013379168441494
318 => 0.001323230714112
319 => 0.0013485830947568
320 => 0.0013833973283585
321 => 0.0013762083267902
322 => 0.0014002400811979
323 => 0.0014251104187955
324 => 0.0014606761185569
325 => 0.0014699743094685
326 => 0.001485343865467
327 => 0.0015011641872255
328 => 0.0015062452482048
329 => 0.0015159465701747
330 => 0.0015158954394192
331 => 0.00154513102615
401 => 0.0015773787836648
402 => 0.0015895515655893
403 => 0.0016175422064136
404 => 0.001569609214911
405 => 0.0016059669395803
406 => 0.0016387625173248
407 => 0.0015996622775348
408 => 0.0016535528488979
409 => 0.0016556452976653
410 => 0.0016872387897829
411 => 0.001655212732941
412 => 0.001636195762619
413 => 0.0016910970433819
414 => 0.001717662043769
415 => 0.0017096604494593
416 => 0.0016487679216748
417 => 0.0016133258587009
418 => 0.0015205671436347
419 => 0.0016304438485089
420 => 0.0016839615863057
421 => 0.0016486293236629
422 => 0.0016664488617849
423 => 0.0017636664837741
424 => 0.0018006806598528
425 => 0.001792981969977
426 => 0.0017942829218348
427 => 0.001814255099392
428 => 0.0019028227335597
429 => 0.0018497509541848
430 => 0.0018903223409553
501 => 0.0019118412582074
502 => 0.0019318292278134
503 => 0.0018827450917237
504 => 0.0018188873518601
505 => 0.0017986609250798
506 => 0.0016451162264658
507 => 0.0016371235580921
508 => 0.0016326370311314
509 => 0.0016043501132754
510 => 0.0015821243442796
511 => 0.0015644495875842
512 => 0.0015180657478863
513 => 0.0015337189321724
514 => 0.0014597927727537
515 => 0.0015070881097676
516 => 0.0013891001743258
517 => 0.0014873640329921
518 => 0.0014338834822294
519 => 0.0014697942337118
520 => 0.0014696689444829
521 => 0.0014035458654897
522 => 0.0013654074534799
523 => 0.0013897107339818
524 => 0.0014157657798766
525 => 0.0014199931234133
526 => 0.0014537741705221
527 => 0.001463201734649
528 => 0.0014346357752136
529 => 0.001386655136617
530 => 0.0013977999446411
531 => 0.001365181604301
601 => 0.0013080192175014
602 => 0.0013490742416604
603 => 0.0013630922319703
604 => 0.0013692833750784
605 => 0.0013130707328055
606 => 0.0012954075001675
607 => 0.0012860037433199
608 => 0.0013793987903877
609 => 0.0013845151818934
610 => 0.001358338999565
611 => 0.0014766578258168
612 => 0.0014498786314203
613 => 0.0014797975526231
614 => 0.0013967886701273
615 => 0.0013999597212249
616 => 0.001360661985975
617 => 0.0013826660918393
618 => 0.0013671142990399
619 => 0.0013808883775343
620 => 0.0013891445033912
621 => 0.0014284357902694
622 => 0.0014878126763738
623 => 0.0014225669822588
624 => 0.0013941384989973
625 => 0.0014117753701249
626 => 0.0014587446820972
627 => 0.0015299055940503
628 => 0.0014877769019273
629 => 0.0015064729000999
630 => 0.0015105571439735
701 => 0.001479493006091
702 => 0.0015310509731234
703 => 0.0015586813065123
704 => 0.0015870243112774
705 => 0.0016116337481619
706 => 0.0015757034918982
707 => 0.0016141540165003
708 => 0.0015831696811023
709 => 0.0015553735291485
710 => 0.0015554156844372
711 => 0.0015379787522797
712 => 0.0015041924990295
713 => 0.001497961795556
714 => 0.0015303747018761
715 => 0.0015563667832311
716 => 0.0015585076155451
717 => 0.0015728981673046
718 => 0.0015814143476014
719 => 0.0016648844916957
720 => 0.0016984568741517
721 => 0.0017395085479261
722 => 0.0017555004884069
723 => 0.0018036304958259
724 => 0.0017647616059069
725 => 0.0017563520770762
726 => 0.0016396044222831
727 => 0.0016587218442152
728 => 0.0016893306812852
729 => 0.0016401091507325
730 => 0.0016713288826336
731 => 0.0016774923190352
801 => 0.0016384366219592
802 => 0.0016592979572645
803 => 0.0016038964356483
804 => 0.0014890202781502
805 => 0.0015311788631258
806 => 0.0015622217720941
807 => 0.0015179197134332
808 => 0.0015973294388564
809 => 0.0015509399166137
810 => 0.0015362366651525
811 => 0.0014788740391148
812 => 0.0015059469905146
813 => 0.0015425635449302
814 => 0.0015199387714327
815 => 0.0015668885735669
816 => 0.0016333820144437
817 => 0.0016807692001653
818 => 0.001684406999876
819 => 0.0016539402141519
820 => 0.0017027634327113
821 => 0.0017031190565569
822 => 0.0016480462665732
823 => 0.0016143144893548
824 => 0.0016066505585985
825 => 0.0016257965602298
826 => 0.0016490433407572
827 => 0.0016856970344059
828 => 0.0017078460938197
829 => 0.0017655990938173
830 => 0.0017812253997084
831 => 0.0017983939722828
901 => 0.0018213364798339
902 => 0.0018488848424872
903 => 0.001788610593331
904 => 0.0017910054016152
905 => 0.0017348788553547
906 => 0.0016748995913145
907 => 0.0017204163762002
908 => 0.0017799235175942
909 => 0.0017662725136089
910 => 0.0017647364967958
911 => 0.0017673196510198
912 => 0.001757027239815
913 => 0.0017104750453902
914 => 0.0016870968247822
915 => 0.0017172606937866
916 => 0.0017332914477232
917 => 0.0017581537490501
918 => 0.001755088945632
919 => 0.0018191315638339
920 => 0.0018440165887188
921 => 0.001837649934463
922 => 0.0018388215520682
923 => 0.0018838747009587
924 => 0.0019339830684118
925 => 0.001980916166913
926 => 0.002028658530532
927 => 0.0019711032477732
928 => 0.0019418802247046
929 => 0.0019720309251075
930 => 0.0019560325390719
1001 => 0.002047964010662
1002 => 0.002054329146294
1003 => 0.0021462539701924
1004 => 0.0022335015742764
1005 => 0.0021787029173544
1006 => 0.0022303755826461
1007 => 0.0022862637830933
1008 => 0.0023940811892896
1009 => 0.0023577720799448
1010 => 0.0023299598712229
1011 => 0.0023036774683684
1012 => 0.0023583669764947
1013 => 0.0024287241550131
1014 => 0.0024438784173933
1015 => 0.0024684341118229
1016 => 0.0024426168016576
1017 => 0.0024737109080683
1018 => 0.0025834867671408
1019 => 0.0025538243610011
1020 => 0.002511698975813
1021 => 0.0025983564735651
1022 => 0.0026297174851292
1023 => 0.0028498254881747
1024 => 0.0031277209342278
1025 => 0.0030126703948019
1026 => 0.0029412548123226
1027 => 0.0029580391682055
1028 => 0.0030595171777496
1029 => 0.0030921086936641
1030 => 0.0030035137184392
1031 => 0.0030348069614429
1101 => 0.0032072358070773
1102 => 0.0032997383505805
1103 => 0.0031741074717541
1104 => 0.0028274968596651
1105 => 0.0025079060457806
1106 => 0.0025926759209847
1107 => 0.002583065647852
1108 => 0.0027683189315496
1109 => 0.0025531169224247
1110 => 0.002556740372342
1111 => 0.0027458244977599
1112 => 0.0026953800948209
1113 => 0.0026136666224909
1114 => 0.0025085026445582
1115 => 0.0023140973048589
1116 => 0.0021419070740933
1117 => 0.0024796117696665
1118 => 0.0024650493291172
1119 => 0.0024439607571691
1120 => 0.0024908910920178
1121 => 0.002718771476635
1122 => 0.0027135180961928
1123 => 0.0026800987701174
1124 => 0.0027054470344012
1125 => 0.0026092229492049
1126 => 0.0026340220869417
1127 => 0.0025078554209629
1128 => 0.0025648880231707
1129 => 0.0026134913020787
1130 => 0.0026232491299033
1201 => 0.0026452340142392
1202 => 0.0024573755846702
1203 => 0.002541718504313
1204 => 0.0025912620677402
1205 => 0.0023674224457655
1206 => 0.0025868374781131
1207 => 0.0024541053873587
1208 => 0.0024090541221876
1209 => 0.0024697097156876
1210 => 0.0024460721719111
1211 => 0.0024257499998153
1212 => 0.0024144098786065
1213 => 0.0024589486521594
1214 => 0.0024568708651378
1215 => 0.0023839967870019
1216 => 0.002288935522801
1217 => 0.0023208412033464
1218 => 0.0023092495704869
1219 => 0.0022672399976536
1220 => 0.0022955493774881
1221 => 0.0021708891957464
1222 => 0.0019564178323322
1223 => 0.0020981041844391
1224 => 0.0020926494140081
1225 => 0.0020898988714026
1226 => 0.0021963722490879
1227 => 0.0021861372905822
1228 => 0.0021675607406734
1229 => 0.0022668988247466
1230 => 0.0022306390877741
1231 => 0.0023423830532549
]
'min_raw' => 0.0010030981194037
'max_raw' => 0.0032997383505805
'avg_raw' => 0.0021514182349921
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001003'
'max' => '$0.003299'
'avg' => '$0.002151'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00054646199346029
'max_diff' => 0.0021812938210875
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024159848560671
102 => 0.0023973170581051
103 => 0.0024665399093983
104 => 0.0023215762457858
105 => 0.0023697273599052
106 => 0.0023796512377906
107 => 0.002265673008209
108 => 0.0021878118563716
109 => 0.0021826194052262
110 => 0.0020476188978677
111 => 0.0021197350792126
112 => 0.0021831943344257
113 => 0.0021528022758157
114 => 0.0021431810579968
115 => 0.0021923337732464
116 => 0.0021961533601858
117 => 0.002109066373185
118 => 0.0021271745154687
119 => 0.0022026884790198
120 => 0.0021252717573361
121 => 0.0019748637130543
122 => 0.0019375604385185
123 => 0.0019325834940597
124 => 0.0018314140549586
125 => 0.0019400532216956
126 => 0.0018926293140662
127 => 0.0020424408700416
128 => 0.001956869312724
129 => 0.0019531804939177
130 => 0.00194760430326
131 => 0.0018605235877688
201 => 0.0018795887301932
202 => 0.0019429641673151
203 => 0.0019655772372555
204 => 0.0019632185087973
205 => 0.0019426535930988
206 => 0.0019520681061962
207 => 0.0019217406792757
208 => 0.0019110314336193
209 => 0.0018772301085176
210 => 0.0018275514984724
211 => 0.0018344596138959
212 => 0.001736033288281
213 => 0.0016824054022055
214 => 0.001667561910144
215 => 0.0016477125722071
216 => 0.0016698039456811
217 => 0.0017357544588671
218 => 0.0016562041477828
219 => 0.0015198207192343
220 => 0.0015280175956762
221 => 0.0015464335433665
222 => 0.0015121155466793
223 => 0.001479636442906
224 => 0.0015078743885239
225 => 0.0014500869319369
226 => 0.0015534168814122
227 => 0.0015506220958577
228 => 0.0015891371111409
301 => 0.0016132213406051
302 => 0.0015577149890519
303 => 0.0015437552917414
304 => 0.0015517073697624
305 => 0.0014202772335491
306 => 0.0015783964650347
307 => 0.0015797638867146
308 => 0.0015680551921053
309 => 0.0016522488014877
310 => 0.0018299235779301
311 => 0.0017630751800811
312 => 0.0017371894599305
313 => 0.0016879806870018
314 => 0.0017535484552015
315 => 0.0017485138736203
316 => 0.0017257455864017
317 => 0.0017119752552505
318 => 0.001737347512618
319 => 0.0017088313517803
320 => 0.0017037090657222
321 => 0.0016726735853121
322 => 0.00166159533083
323 => 0.0016533934322496
324 => 0.0016443639478144
325 => 0.0016642807404711
326 => 0.0016191466680387
327 => 0.0015647194012329
328 => 0.0015601943629092
329 => 0.0015726883915664
330 => 0.0015671607139567
331 => 0.0015601678985155
401 => 0.0015468167094583
402 => 0.0015428556968681
403 => 0.0015557270661762
404 => 0.0015411960406748
405 => 0.0015626373603481
406 => 0.0015568065077993
407 => 0.0015242358394493
408 => 0.0014836407274794
409 => 0.0014832793458317
410 => 0.0014745331955471
411 => 0.0014633936581672
412 => 0.0014602948937062
413 => 0.001505496267506
414 => 0.0015990617585082
415 => 0.001580692613792
416 => 0.0015939662033951
417 => 0.0016592591268879
418 => 0.0016800137838396
419 => 0.0016652826199363
420 => 0.0016451176942069
421 => 0.0016460048486002
422 => 0.0017149145041559
423 => 0.0017192123148466
424 => 0.0017300714959357
425 => 0.0017440286124394
426 => 0.0016676595772292
427 => 0.0016424078739096
428 => 0.0016304422159656
429 => 0.0015935926207905
430 => 0.0016333317499413
501 => 0.0016101774611843
502 => 0.0016133017658008
503 => 0.0016112670583206
504 => 0.0016123781461911
505 => 0.0015533879985854
506 => 0.0015748809079421
507 => 0.0015391447775183
508 => 0.0014912981104499
509 => 0.0014911377116447
510 => 0.0015028481156253
511 => 0.0014958823091095
512 => 0.0014771375028825
513 => 0.0014798001141341
514 => 0.0014564728378393
515 => 0.0014826324678302
516 => 0.0014833826324147
517 => 0.0014733097499436
518 => 0.0015136122692778
519 => 0.0015301242443328
520 => 0.0015234940573082
521 => 0.0015296590527364
522 => 0.0015814559346867
523 => 0.001589901086501
524 => 0.0015936518650815
525 => 0.0015886263186666
526 => 0.0015306058046536
527 => 0.0015331792611724
528 => 0.001514296944753
529 => 0.0014983433771481
530 => 0.0014989814361869
531 => 0.0015071836437544
601 => 0.0015430031652549
602 => 0.0016183832365766
603 => 0.0016212438551811
604 => 0.0016247110083799
605 => 0.0016106083538687
606 => 0.0016063548583239
607 => 0.0016119663168678
608 => 0.0016402751083604
609 => 0.0017130930058412
610 => 0.0016873542975276
611 => 0.0016664283270218
612 => 0.0016847860447565
613 => 0.0016819600180038
614 => 0.0016581055081981
615 => 0.0016574359915578
616 => 0.0016116515604926
617 => 0.0015947260987888
618 => 0.0015805819161403
619 => 0.0015651368379314
620 => 0.0015559804778454
621 => 0.0015700488084287
622 => 0.0015732664020847
623 => 0.001542505751392
624 => 0.0015383131883671
625 => 0.0015634329997375
626 => 0.0015523787073144
627 => 0.0015637483212048
628 => 0.0015663861691542
629 => 0.0015659614148795
630 => 0.0015544194640124
701 => 0.0015617759593092
702 => 0.0015443756548554
703 => 0.0015254554372032
704 => 0.0015133855171123
705 => 0.0015028529109904
706 => 0.0015086970130255
707 => 0.0014878638563613
708 => 0.0014811989102558
709 => 0.001559283744229
710 => 0.0016169658506384
711 => 0.0016161271299666
712 => 0.0016110216335784
713 => 0.0016034359015576
714 => 0.0016397201648145
715 => 0.0016270794530225
716 => 0.001636276627018
717 => 0.001638617693804
718 => 0.0016457033978811
719 => 0.0016482359280518
720 => 0.0016405808629206
721 => 0.0016148895293529
722 => 0.0015508691687608
723 => 0.0015210675180856
724 => 0.001511232476977
725 => 0.0015115899620419
726 => 0.0015017289280685
727 => 0.0015046334445142
728 => 0.0015007188557812
729 => 0.0014933055717616
730 => 0.0015082392636274
731 => 0.0015099602324979
801 => 0.0015064745303721
802 => 0.001507295539407
803 => 0.0014784354145682
804 => 0.0014806295871788
805 => 0.001468412155261
806 => 0.0014661215340598
807 => 0.0014352369300651
808 => 0.0013805203772936
809 => 0.0014108386589933
810 => 0.0013742184380956
811 => 0.0013603498055548
812 => 0.0014260017549883
813 => 0.0014194121201668
814 => 0.0014081335297978
815 => 0.0013914501439778
816 => 0.0013852621138917
817 => 0.0013476656019804
818 => 0.0013454441994871
819 => 0.0013640780459815
820 => 0.0013554791669759
821 => 0.0013434030842017
822 => 0.0012996647365268
823 => 0.0012504883524709
824 => 0.0012519726783938
825 => 0.0012676147712028
826 => 0.0013130962656687
827 => 0.001295325858943
828 => 0.0012824332249717
829 => 0.00128001882218
830 => 0.0013102401280125
831 => 0.001353009607325
901 => 0.0013730760901052
902 => 0.0013531908150981
903 => 0.0013303476818693
904 => 0.001331738037544
905 => 0.0013409874509578
906 => 0.001341959433528
907 => 0.001327090902108
908 => 0.0013312763066098
909 => 0.0013249182944502
910 => 0.0012858991855625
911 => 0.0012851934536136
912 => 0.0012756175350244
913 => 0.0012753275800153
914 => 0.0012590365536703
915 => 0.00125675732647
916 => 0.0012244105048674
917 => 0.0012457012808015
918 => 0.0012314205461208
919 => 0.0012098961104723
920 => 0.0012061852896534
921 => 0.0012060737378987
922 => 0.0012281745205339
923 => 0.0012454430202887
924 => 0.0012316689656147
925 => 0.0012285328803642
926 => 0.0012620180661708
927 => 0.0012577567710527
928 => 0.0012540665169628
929 => 0.0013491800695523
930 => 0.0012738902708746
1001 => 0.0012410596212597
1002 => 0.00120042545799
1003 => 0.0012136561464458
1004 => 0.0012164440469027
1005 => 0.0011187262090975
1006 => 0.0010790820944698
1007 => 0.0010654777282866
1008 => 0.0010576482232106
1009 => 0.0010612162269905
1010 => 0.0010255318740348
1011 => 0.0010495123493857
1012 => 0.0010186127160493
1013 => 0.0010134322919644
1014 => 0.0010686846640999
1015 => 0.0010763727089029
1016 => 0.0010435731212851
1017 => 0.0010646357663066
1018 => 0.0010569981584291
1019 => 0.0010191424015756
1020 => 0.0010176965901119
1021 => 0.00099870190201695
1022 => 0.00096897889324479
1023 => 0.00095539468066112
1024 => 0.000948319904804
1025 => 0.00095123909520728
1026 => 0.00094976306321068
1027 => 0.00094013095600636
1028 => 0.00095031516432069
1029 => 0.00092429872048299
1030 => 0.00091393876291808
1031 => 0.00090925941043521
1101 => 0.00088616831907861
1102 => 0.00092291651408189
1103 => 0.00093015637143909
1104 => 0.0009374104935518
1105 => 0.0010005526739434
1106 => 0.00099739826904899
1107 => 0.001025912553037
1108 => 0.0010248045403956
1109 => 0.0010166718047015
1110 => 0.00098236113057791
1111 => 0.00099603675375461
1112 => 0.00095394531128045
1113 => 0.00098548308192197
1114 => 0.00097109056044997
1115 => 0.00098061695593471
1116 => 0.00096348763789269
1117 => 0.00097296770974935
1118 => 0.00093187321019949
1119 => 0.00089349974473504
1120 => 0.00090894234742922
1121 => 0.00092573022263363
1122 => 0.00096213061354784
1123 => 0.00094045084101604
1124 => 0.00094824770702144
1125 => 0.00092212951108297
1126 => 0.00086824021256807
1127 => 0.00086854522014531
1128 => 0.00086025552561098
1129 => 0.0008530920192181
1130 => 0.00094294102368609
1201 => 0.00093176687967793
1202 => 0.00091396234363673
1203 => 0.00093779442265201
1204 => 0.0009440960026096
1205 => 0.00094427539973202
1206 => 0.00096166266938657
1207 => 0.00097094225831804
1208 => 0.00097257782608726
1209 => 0.00099993707056552
1210 => 0.0010091075284375
1211 => 0.0010468793465603
1212 => 0.00097015495003009
1213 => 0.00096857486157344
1214 => 0.00093812978887724
1215 => 0.00091882104245576
1216 => 0.00093945187526408
1217 => 0.00095772797674272
1218 => 0.00093869767829462
1219 => 0.00094118263352042
1220 => 0.00091563601268635
1221 => 0.0009247677275543
1222 => 0.0009326331905734
1223 => 0.0009282903442048
1224 => 0.00092178889299486
1225 => 0.00095622954483939
1226 => 0.00095428626828832
1227 => 0.00098635819507311
1228 => 0.0010113605554873
1229 => 0.0010561692550562
1230 => 0.0010094090411258
1231 => 0.0010077049130751
]
'min_raw' => 0.0008530920192181
'max_raw' => 0.0024665399093983
'avg_raw' => 0.0016598159643082
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000853'
'max' => '$0.002466'
'avg' => '$0.001659'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015000610018556
'max_diff' => -0.00083319844118212
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010243630381209
102 => 0.0010091049781653
103 => 0.0010187475453669
104 => 0.0010546156884065
105 => 0.0010553735257486
106 => 0.0010426787738494
107 => 0.0010419062970426
108 => 0.0010443444630103
109 => 0.0010586248772373
110 => 0.0010536348617136
111 => 0.0010594094340094
112 => 0.0010666306250887
113 => 0.0010965005331142
114 => 0.001103702066815
115 => 0.0010862060734891
116 => 0.0010877857657921
117 => 0.0010812417840124
118 => 0.0010749203796091
119 => 0.0010891299735408
120 => 0.0011150982857411
121 => 0.0011149367382187
122 => 0.0011209608818973
123 => 0.0011247138735024
124 => 0.0011086032861756
125 => 0.0010981158862286
126 => 0.0011021374226989
127 => 0.0011085679470925
128 => 0.0011000520903065
129 => 0.0010474882772942
130 => 0.0010634327803728
131 => 0.0010607788354141
201 => 0.0010569992950623
202 => 0.001073031616203
203 => 0.0010714852597178
204 => 0.0010251658794179
205 => 0.0010281310958618
206 => 0.0010253462040509
207 => 0.0010343447592272
208 => 0.0010086190266551
209 => 0.0010165320887288
210 => 0.0010214950870811
211 => 0.0010244183312381
212 => 0.0010349790936207
213 => 0.0010337399100469
214 => 0.0010349020642298
215 => 0.0010505608869052
216 => 0.0011297578385384
217 => 0.0011340683538775
218 => 0.0011128417998506
219 => 0.0011213213895091
220 => 0.0011050424316471
221 => 0.0011159706051194
222 => 0.0011234473838636
223 => 0.0010896612584204
224 => 0.0010876606633418
225 => 0.00107131451643
226 => 0.0010800980098873
227 => 0.0010661228402412
228 => 0.0010695518580417
301 => 0.0010599640253352
302 => 0.0010772202152884
303 => 0.001096515316997
304 => 0.0011013900216753
305 => 0.0010885667723591
306 => 0.0010792818947609
307 => 0.0010629807083273
308 => 0.0010900899446621
309 => 0.0010980175115053
310 => 0.0010900483045283
311 => 0.0010882016651411
312 => 0.0010847022868392
313 => 0.0010889440747905
314 => 0.0010979743362738
315 => 0.001093715831721
316 => 0.0010965286490033
317 => 0.0010858090900878
318 => 0.0011086086194504
319 => 0.0011448197590838
320 => 0.0011449361838188
321 => 0.0011406776563111
322 => 0.0011389351586062
323 => 0.0011433046662582
324 => 0.0011456749449128
325 => 0.0011598051314286
326 => 0.0011749673845315
327 => 0.0012457230039534
328 => 0.0012258551091529
329 => 0.0012886337039747
330 => 0.0013382834216984
331 => 0.0013531712011247
401 => 0.0013394751445767
402 => 0.0012926216749722
403 => 0.0012903228202271
404 => 0.0013603416848408
405 => 0.0013405581485203
406 => 0.0013382049598257
407 => 0.0013131710078898
408 => 0.0013279691739991
409 => 0.001324732597995
410 => 0.0013196235044338
411 => 0.0013478573745213
412 => 0.0014007086588702
413 => 0.0013924712905682
414 => 0.0013863224772513
415 => 0.0013593801671893
416 => 0.0013756054556294
417 => 0.0013698279411908
418 => 0.0013946518097203
419 => 0.0013799466999195
420 => 0.001340408268775
421 => 0.0013467048942551
422 => 0.0013457531719809
423 => 0.0013653395489456
424 => 0.0013594602047445
425 => 0.0013446051356655
426 => 0.0014005280189259
427 => 0.0013968966979464
428 => 0.0014020450808598
429 => 0.0014043115582373
430 => 0.0014383508318062
501 => 0.0014522956330521
502 => 0.001455461347073
503 => 0.001468707829727
504 => 0.0014551317625173
505 => 0.0015094457109279
506 => 0.0015455613173142
507 => 0.001587511452624
508 => 0.001648811875445
509 => 0.0016718614014862
510 => 0.0016676977109152
511 => 0.001714174991886
512 => 0.0017976936326586
513 => 0.0016845792161047
514 => 0.0018036889713992
515 => 0.0017659801980612
516 => 0.0016765733748287
517 => 0.0016708166294497
518 => 0.0017313639681774
519 => 0.0018656521380099
520 => 0.0018320144745506
521 => 0.0018657071571769
522 => 0.0018264028532012
523 => 0.0018244510632261
524 => 0.0018637982348617
525 => 0.0019557350460909
526 => 0.0019120593132757
527 => 0.0018494394405561
528 => 0.0018956769800992
529 => 0.0018556217442647
530 => 0.0017653660871751
531 => 0.0018319887524633
601 => 0.0017874400734894
602 => 0.001800441746352
603 => 0.0018940764434394
604 => 0.0018828100689592
605 => 0.0018973898007748
606 => 0.0018716569557382
607 => 0.0018476184207769
608 => 0.0018027487101465
609 => 0.0017894650008789
610 => 0.0017931361402227
611 => 0.0017894631816445
612 => 0.0017643589909208
613 => 0.0017589377433242
614 => 0.0017499020931529
615 => 0.0017527026189637
616 => 0.0017357129531689
617 => 0.0017677759627677
618 => 0.0017737271398876
619 => 0.0017970599244405
620 => 0.0017994824115363
621 => 0.0018644638843947
622 => 0.0018286731811136
623 => 0.0018526846748952
624 => 0.0018505368608864
625 => 0.0016785110917933
626 => 0.0017022147249781
627 => 0.0017390901396039
628 => 0.0017224778152984
629 => 0.0016989918754157
630 => 0.0016800257197241
701 => 0.0016512900544622
702 => 0.0016917349514987
703 => 0.0017449156902665
704 => 0.001800831162833
705 => 0.0018680099393948
706 => 0.0018530164185134
707 => 0.0017995753023338
708 => 0.0018019726317668
709 => 0.0018167919790076
710 => 0.0017975995778511
711 => 0.0017919393640699
712 => 0.0018160143525526
713 => 0.0018161801437669
714 => 0.0017940969667572
715 => 0.0017695555566896
716 => 0.0017694527272853
717 => 0.0017650858204057
718 => 0.0018271797162339
719 => 0.0018613250805385
720 => 0.001865239791528
721 => 0.0018610615892981
722 => 0.0018626696135094
723 => 0.0018428011783624
724 => 0.0018882145293071
725 => 0.001929890311049
726 => 0.0019187203112689
727 => 0.0019019748936897
728 => 0.0018886363620192
729 => 0.001915578177112
730 => 0.0019143785004963
731 => 0.0019295263094526
801 => 0.0019288391173404
802 => 0.0019237454789263
803 => 0.0019187204931788
804 => 0.0019386439936688
805 => 0.0019329063454893
806 => 0.0019271597851574
807 => 0.0019156341786574
808 => 0.0019172007000008
809 => 0.001900458173754
810 => 0.0018927123150263
811 => 0.001776233184676
812 => 0.001745106154981
813 => 0.0017548993521722
814 => 0.0017581235269678
815 => 0.0017445770037541
816 => 0.0017639992382262
817 => 0.0017609723035569
818 => 0.0017727483356574
819 => 0.0017653911820569
820 => 0.0017656931222069
821 => 0.0017873289422354
822 => 0.001793609912835
823 => 0.0017904153604944
824 => 0.0017926527154509
825 => 0.0018442116160954
826 => 0.0018368815891846
827 => 0.0018329876584811
828 => 0.0018340663038976
829 => 0.0018472407084475
830 => 0.0018509288224257
831 => 0.001835302024341
901 => 0.0018426717126552
902 => 0.0018740509101443
903 => 0.0018850318533567
904 => 0.0019200777529389
905 => 0.0019051896319052
906 => 0.0019325174224054
907 => 0.0020165137336727
908 => 0.0020836157992157
909 => 0.0020219059666322
910 => 0.0021451303646054
911 => 0.0022410782339175
912 => 0.0022373955948838
913 => 0.002220664864555
914 => 0.0021114307662492
915 => 0.0020109119203996
916 => 0.0020950002032085
917 => 0.0020952145615343
918 => 0.0020879913034668
919 => 0.0020431282679736
920 => 0.0020864301670779
921 => 0.0020898673145794
922 => 0.0020879434259898
923 => 0.0020535470418641
924 => 0.0020010301208186
925 => 0.0020112918014832
926 => 0.0020281006437443
927 => 0.0019962779986521
928 => 0.0019861087353431
929 => 0.0020050153306161
930 => 0.0020659363199311
1001 => 0.0020544195597924
1002 => 0.0020541188106423
1003 => 0.0021033923943822
1004 => 0.0020681231423293
1005 => 0.0020114212341388
1006 => 0.0019971032545144
1007 => 0.0019462840725946
1008 => 0.0019813850625583
1009 => 0.001982648284698
1010 => 0.0019634238312183
1011 => 0.0020129811925867
1012 => 0.0020125245127772
1013 => 0.0020595718517567
1014 => 0.0021495086937118
1015 => 0.0021229099440225
1016 => 0.0020919784920695
1017 => 0.0020953415985329
1018 => 0.0021322265755826
1019 => 0.0021099250764562
1020 => 0.0021179448510336
1021 => 0.0021322144366932
1022 => 0.0021408236320156
1023 => 0.002094102867814
1024 => 0.0020832100227662
1025 => 0.0020609270846673
1026 => 0.0020551138820481
1027 => 0.0020732628701808
1028 => 0.0020684812530211
1029 => 0.0019825421157686
1030 => 0.0019735609977649
1031 => 0.001973836435832
1101 => 0.0019512529875827
1102 => 0.001916807808354
1103 => 0.0020073276827523
1104 => 0.0020000576700133
1105 => 0.0019920321386037
1106 => 0.0019930152204083
1107 => 0.0020323068298815
1108 => 0.0020095157121132
1109 => 0.0020701096340908
1110 => 0.0020576533453523
1111 => 0.0020448775998094
1112 => 0.0020431116026167
1113 => 0.0020381940305581
1114 => 0.0020213298462211
1115 => 0.0020009653302539
1116 => 0.0019875189128682
1117 => 0.0018333811372687
1118 => 0.0018619882118418
1119 => 0.0018948980435212
1120 => 0.0019062583855391
1121 => 0.0018868257344058
1122 => 0.0020220971657313
1123 => 0.0020468125597424
1124 => 0.0019719480191375
1125 => 0.0019579439202893
1126 => 0.0020230152721203
1127 => 0.001983769292317
1128 => 0.0020014417546194
1129 => 0.0019632435574417
1130 => 0.0020408593450763
1201 => 0.0020402680428166
1202 => 0.0020100737483946
1203 => 0.0020355937592785
1204 => 0.0020311590293708
1205 => 0.0019970697453337
1206 => 0.0020419400361843
1207 => 0.0020419622912887
1208 => 0.0020129009393882
1209 => 0.0019789636427163
1210 => 0.0019728964556345
1211 => 0.0019683256451803
1212 => 0.0020003176154434
1213 => 0.002029001515945
1214 => 0.0020823751434365
1215 => 0.002095794541514
1216 => 0.0021481713455903
1217 => 0.0021169835089431
1218 => 0.0021308086729787
1219 => 0.0021458178442282
1220 => 0.0021530137928692
1221 => 0.0021412883807146
1222 => 0.0022226511165977
1223 => 0.002229520624396
1224 => 0.0022318239109398
1225 => 0.0022043888541823
1226 => 0.002228757605838
1227 => 0.0022173562739465
1228 => 0.0022470193721468
1229 => 0.0022516709247021
1230 => 0.0022477312251716
1231 => 0.0022492077013724
]
'min_raw' => 0.0010086190266551
'max_raw' => 0.0022516709247021
'avg_raw' => 0.0016301449756786
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0010086'
'max' => '$0.002251'
'avg' => '$0.00163'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015552700743698
'max_diff' => -0.00021486898469623
'year' => 2031
]
6 => [
'items' => [
101 => 0.0021797789596663
102 => 0.0021761787131431
103 => 0.0021270890963367
104 => 0.0021470934780374
105 => 0.0021096962452829
106 => 0.0021215552930235
107 => 0.0021267826482705
108 => 0.0021240521745393
109 => 0.0021482244957644
110 => 0.0021276730846441
111 => 0.0020734345317326
112 => 0.0020191812015636
113 => 0.0020185000951972
114 => 0.0020042161510145
115 => 0.0019938914756053
116 => 0.0019958803743767
117 => 0.002002889513063
118 => 0.0019934840917229
119 => 0.0019954912152328
120 => 0.0020288228388907
121 => 0.0020355072583051
122 => 0.0020127909893639
123 => 0.0019215818916232
124 => 0.0018991989502569
125 => 0.001915287364638
126 => 0.0019075981387904
127 => 0.0015395805799343
128 => 0.0016260408465059
129 => 0.0015746690920223
130 => 0.0015983435599891
131 => 0.0015459063013126
201 => 0.0015709321096253
202 => 0.0015663107566261
203 => 0.001705336306728
204 => 0.0017031656139866
205 => 0.0017042046097314
206 => 0.0016546106357417
207 => 0.0017336151829304
208 => 0.0017725356637872
209 => 0.0017653325186156
210 => 0.0017671453950696
211 => 0.0017359941712428
212 => 0.0017045062216712
213 => 0.0016695812396357
214 => 0.0017344675393995
215 => 0.0017272532905118
216 => 0.0017438001818553
217 => 0.0017858835854207
218 => 0.001792080526455
219 => 0.0018004092780482
220 => 0.001797424013483
221 => 0.0018685451267314
222 => 0.0018599318906448
223 => 0.0018806873114164
224 => 0.0018379918361717
225 => 0.0017896778532406
226 => 0.0017988607618927
227 => 0.0017979763739452
228 => 0.0017867171003205
229 => 0.0017765527315283
301 => 0.0017596319212824
302 => 0.0018131718687092
303 => 0.0018109982446191
304 => 0.0018461866920764
305 => 0.0018399667921859
306 => 0.0017984287784501
307 => 0.0017999123167369
308 => 0.0018098898246796
309 => 0.0018444220935906
310 => 0.0018546736221396
311 => 0.0018499247056629
312 => 0.0018611650387168
313 => 0.0018700489396573
314 => 0.001862280719896
315 => 0.0019722623299902
316 => 0.0019265902975879
317 => 0.0019488505283968
318 => 0.0019541594622799
319 => 0.0019405607397733
320 => 0.0019435098157513
321 => 0.0019479768622827
322 => 0.0019750998940842
323 => 0.0020462785776439
324 => 0.0020778031320628
325 => 0.0021726463094263
326 => 0.0020751854566613
327 => 0.0020694025329914
328 => 0.0020864866532241
329 => 0.0021421696385063
330 => 0.0021872954680407
331 => 0.0022022663090688
401 => 0.0022042449528523
402 => 0.0022323312458638
403 => 0.0022484297852396
404 => 0.0022289208311494
405 => 0.0022123890352305
406 => 0.0021531741942513
407 => 0.0021600284733313
408 => 0.002207247659131
409 => 0.0022739475402693
410 => 0.0023311829772258
411 => 0.00231114112206
412 => 0.0024640463296302
413 => 0.0024792062563991
414 => 0.0024771116446987
415 => 0.0025116482139777
416 => 0.002443100157209
417 => 0.0024137945348843
418 => 0.002215963397152
419 => 0.0022715458774275
420 => 0.0023523382767526
421 => 0.002341645099746
422 => 0.0022829714997691
423 => 0.0023311384680388
424 => 0.0023152129620085
425 => 0.0023026518546525
426 => 0.0023601967225407
427 => 0.0022969237764848
428 => 0.0023517070807144
429 => 0.0022814469263792
430 => 0.0023112326715662
501 => 0.0022943248420236
502 => 0.0023052662798833
503 => 0.0022413028577259
504 => 0.0022758159676978
505 => 0.0022398669988825
506 => 0.0022398499543906
507 => 0.0022390563789116
508 => 0.0022813501813005
509 => 0.002282729380678
510 => 0.0022514741968102
511 => 0.0022469698365171
512 => 0.0022636248173515
513 => 0.0022441261967408
514 => 0.0022532494786017
515 => 0.0022444025316544
516 => 0.0022424108975513
517 => 0.0022265412181695
518 => 0.002219704123946
519 => 0.0022223851247612
520 => 0.002213233486828
521 => 0.0022077192939441
522 => 0.0022379594671567
523 => 0.0022218033624943
524 => 0.002235483312406
525 => 0.0022198932829343
526 => 0.0021658514485327
527 => 0.0021347714180863
528 => 0.0020326914025824
529 => 0.0020616411683495
530 => 0.0020808348930037
531 => 0.00207449136712
601 => 0.0020881197153369
602 => 0.0020889563852325
603 => 0.0020845256703027
604 => 0.0020793954700236
605 => 0.0020768983722456
606 => 0.0020955096932488
607 => 0.0021063141915195
608 => 0.0020827612400517
609 => 0.0020772431130636
610 => 0.0021010564473916
611 => 0.0021155825675752
612 => 0.0022228352774888
613 => 0.0022148896503167
614 => 0.0022348316152681
615 => 0.002232586456049
616 => 0.0022534888123221
617 => 0.0022876553308339
618 => 0.0022181852455906
619 => 0.0022302428502941
620 => 0.0022272866040715
621 => 0.0022595621251597
622 => 0.0022596628858135
623 => 0.0022403120986393
624 => 0.0022508024742971
625 => 0.0022449470343933
626 => 0.0022555286057096
627 => 0.0022147835316216
628 => 0.0022644066337019
629 => 0.0022925397349393
630 => 0.0022929303630773
701 => 0.0023062652297857
702 => 0.0023198142266649
703 => 0.0023458203463056
704 => 0.002319088930103
705 => 0.0022710017146054
706 => 0.0022744734562436
707 => 0.0022462799393918
708 => 0.0022467538775037
709 => 0.0022442239587194
710 => 0.0022518164354344
711 => 0.0022164496532985
712 => 0.0022247501663757
713 => 0.0022131293994599
714 => 0.0022302175890163
715 => 0.0022118335218326
716 => 0.0022272851784801
717 => 0.0022339536012586
718 => 0.0022585602248723
719 => 0.0022081991035178
720 => 0.0021055093679279
721 => 0.0021270959953416
722 => 0.0020951676778037
723 => 0.0020981227651515
724 => 0.0021040925118928
725 => 0.0020847426095248
726 => 0.0020884339611111
727 => 0.0020883020800568
728 => 0.0020871656003788
729 => 0.0020821319434442
730 => 0.0020748321450104
731 => 0.0021039122952112
801 => 0.0021088535793943
802 => 0.0021198374420376
803 => 0.0021525179668388
804 => 0.0021492524117513
805 => 0.0021545786675856
806 => 0.002142951481005
807 => 0.0020986621169894
808 => 0.002101067242538
809 => 0.0020710752884074
810 => 0.0021190704803393
811 => 0.0021077045853843
812 => 0.0021003769189672
813 => 0.002098377497295
814 => 0.0021311390307961
815 => 0.0021409417950938
816 => 0.0021348333702225
817 => 0.0021223048126003
818 => 0.0021463633469705
819 => 0.0021528003958198
820 => 0.002154241413668
821 => 0.0021968685238055
822 => 0.0021566237955965
823 => 0.0021663111016746
824 => 0.0022418886983323
825 => 0.0021733502471592
826 => 0.0022096565933355
827 => 0.0022078795866193
828 => 0.0022264526847833
829 => 0.0022063560504617
830 => 0.0022066051723297
831 => 0.0022230968252487
901 => 0.0021999372730093
902 => 0.0021942026421813
903 => 0.0021862802907646
904 => 0.0022035784552495
905 => 0.0022139479225295
906 => 0.0022975182132718
907 => 0.0023515084323596
908 => 0.00234916457456
909 => 0.002370583047331
910 => 0.0023609338291769
911 => 0.0023297739584222
912 => 0.0023829600582591
913 => 0.0023661297508698
914 => 0.0023675172209621
915 => 0.002367465579256
916 => 0.0023786562623389
917 => 0.0023707266377636
918 => 0.0023550965337665
919 => 0.0023654725262262
920 => 0.0023962855143463
921 => 0.0024919299749292
922 => 0.0025454538821919
923 => 0.0024887077685054
924 => 0.0025278504778656
925 => 0.0025043788002229
926 => 0.0025001132981733
927 => 0.002524697812275
928 => 0.0025493253583142
929 => 0.0025477566900993
930 => 0.0025298783563133
1001 => 0.0025197793392035
1002 => 0.0025962524801777
1003 => 0.0026525965877615
1004 => 0.00264875429736
1005 => 0.0026657129176125
1006 => 0.0027155039511844
1007 => 0.0027200562192927
1008 => 0.0027194827381437
1009 => 0.0027081994666573
1010 => 0.0027572252053916
1011 => 0.0027981233391695
1012 => 0.0027055877153133
1013 => 0.0027408240694975
1014 => 0.0027566428041352
1015 => 0.0027798693997904
1016 => 0.0028190565598902
1017 => 0.0028616242096394
1018 => 0.0028676437420445
1019 => 0.002863372595742
1020 => 0.0028352980864525
1021 => 0.0028818761167458
1022 => 0.0029091604345024
1023 => 0.0029254076213359
1024 => 0.0029666077838717
1025 => 0.0027567404952549
1026 => 0.002608185997291
1027 => 0.0025849870672809
1028 => 0.0026321630037092
1029 => 0.0026446029219243
1030 => 0.0026395884064901
1031 => 0.0024723768130476
1101 => 0.0025841067328467
1102 => 0.002704318732032
1103 => 0.0027089365644995
1104 => 0.0027691172048061
1105 => 0.0027887144881777
1106 => 0.0028371677916813
1107 => 0.0028341370243547
1108 => 0.0028459346326974
1109 => 0.0028432225668455
1110 => 0.0029329721085392
1111 => 0.0030319791809632
1112 => 0.0030285508808683
1113 => 0.0030143174428089
1114 => 0.003035456525489
1115 => 0.0031376424344733
1116 => 0.0031282347934698
1117 => 0.0031373735153637
1118 => 0.0032578564610016
1119 => 0.0034145014288301
1120 => 0.0033417241143761
1121 => 0.0034996299456331
1122 => 0.0035990232961809
1123 => 0.0037709138184891
1124 => 0.0037493922785174
1125 => 0.0038163079974611
1126 => 0.0037108642302872
1127 => 0.0034687440271548
1128 => 0.0034304275782102
1129 => 0.0035071380793243
1130 => 0.0036957233610122
1201 => 0.0035011988576859
1202 => 0.0035405509113596
1203 => 0.0035292175172542
1204 => 0.0035286136088462
1205 => 0.0035516623365085
1206 => 0.0035182289548935
1207 => 0.0033820153436437
1208 => 0.0034444412389676
1209 => 0.0034203356028453
1210 => 0.0034470826033172
1211 => 0.003591425133562
1212 => 0.0035276078602446
1213 => 0.0034603815468991
1214 => 0.0035446982625476
1215 => 0.0036520624159351
1216 => 0.003645343760168
1217 => 0.0036323067597997
1218 => 0.0037057956482809
1219 => 0.0038271777618277
1220 => 0.0038599868593666
1221 => 0.0038842058644174
1222 => 0.0038875452560304
1223 => 0.0039219430650652
1224 => 0.0037369773765212
1225 => 0.0040305226744963
1226 => 0.0040812098384314
1227 => 0.0040716827523793
1228 => 0.0041280194018512
1229 => 0.0041114437304537
1230 => 0.0040874281832419
1231 => 0.0041767337558039
]
'min_raw' => 0.0015395805799343
'max_raw' => 0.0041767337558039
'avg_raw' => 0.0028581571678691
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001539'
'max' => '$0.004176'
'avg' => '$0.002858'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0005309615532792
'max_diff' => 0.0019250628311018
'year' => 2032
]
7 => [
'items' => [
101 => 0.0040743521234497
102 => 0.0039290342858119
103 => 0.0038493100460229
104 => 0.003954297356148
105 => 0.0040184094428893
106 => 0.0040607834539306
107 => 0.0040736058040687
108 => 0.0037513357363931
109 => 0.0035776500438333
110 => 0.0036889805814536
111 => 0.0038248115209737
112 => 0.0037362228287939
113 => 0.0037396953378068
114 => 0.0036133911434572
115 => 0.0038359866395838
116 => 0.0038035563481209
117 => 0.0039718047575983
118 => 0.0039316509243987
119 => 0.0040688509709619
120 => 0.0040327216006275
121 => 0.0041826925969196
122 => 0.0042425200876431
123 => 0.0043429797559733
124 => 0.0044168782969414
125 => 0.0044602729336517
126 => 0.0044576676824328
127 => 0.0046296188522012
128 => 0.0045282252549051
129 => 0.0044008510000651
130 => 0.0043985472016557
131 => 0.0044645161331444
201 => 0.0046027689158524
202 => 0.0046386158509124
203 => 0.0046586493972821
204 => 0.0046279673236442
205 => 0.0045179118407238
206 => 0.0044703904411927
207 => 0.0045108800504207
208 => 0.0044613647376467
209 => 0.0045468420590376
210 => 0.0046642206782779
211 => 0.0046399824575702
212 => 0.0047210071953991
213 => 0.004804859275001
214 => 0.0049247715148644
215 => 0.004956121014702
216 => 0.005007940545819
217 => 0.0050612798651675
218 => 0.0050784110170073
219 => 0.0051111197013537
220 => 0.0051109473104417
221 => 0.005209517132268
222 => 0.0053182426981956
223 => 0.0053592840823306
224 => 0.005453656482114
225 => 0.0052920470546883
226 => 0.005414629661826
227 => 0.0055252022419059
228 => 0.0053933730535622
301 => 0.0055750688774325
302 => 0.0055821237145418
303 => 0.0056886433790037
304 => 0.005580665292373
305 => 0.00551654824921
306 => 0.0057016517503874
307 => 0.0057912175039014
308 => 0.0057642395700327
309 => 0.0055589361612269
310 => 0.0054394407714245
311 => 0.0051266982873723
312 => 0.005497155269202
313 => 0.005677594058673
314 => 0.005558468868353
315 => 0.0056185486852519
316 => 0.0059463246853062
317 => 0.0060711205642025
318 => 0.0060451638937811
319 => 0.0060495501437992
320 => 0.0061168877348462
321 => 0.0064154996970375
322 => 0.0062365644875214
323 => 0.006373353750622
324 => 0.0064459062825403
325 => 0.0065132971175824
326 => 0.006347806525811
327 => 0.006132505697456
328 => 0.006064310887402
329 => 0.0055466242158766
330 => 0.0055196763764244
331 => 0.0055045497375368
401 => 0.005409178419056
402 => 0.0053342426871328
403 => 0.0052746510109221
404 => 0.0051182646569644
405 => 0.0051710404606556
406 => 0.0049217932528158
407 => 0.005081252783613
408 => 0.0046834482216164
409 => 0.0050147516816736
410 => 0.0048344382708843
411 => 0.0049555138767157
412 => 0.0049550914553329
413 => 0.0047321528779416
414 => 0.0046035665591118
415 => 0.0046855067661246
416 => 0.004773353172464
417 => 0.0047876059563418
418 => 0.0049015011151867
419 => 0.0049332868058521
420 => 0.004836974679204
421 => 0.0046752046062741
422 => 0.0047127801046332
423 => 0.0046028050928368
424 => 0.0044100781147915
425 => 0.0045484979951139
426 => 0.0045957606281484
427 => 0.0046166344993893
428 => 0.0044271096513247
429 => 0.0043675568292781
430 => 0.0043358514065171
501 => 0.0046507393283401
502 => 0.0046679895995168
503 => 0.004579734773234
504 => 0.0049786549566984
505 => 0.0048883670331269
506 => 0.0049892407648346
507 => 0.0047093705220048
508 => 0.0047200619421762
509 => 0.004587566884101
510 => 0.0046617552633001
511 => 0.0046093213080853
512 => 0.0046557615754047
513 => 0.0046835976801556
514 => 0.0048160709970955
515 => 0.0050162643141582
516 => 0.0047962839011405
517 => 0.0047004352850111
518 => 0.0047598992273847
519 => 0.0049182595419922
520 => 0.005158183524938
521 => 0.0050161436981139
522 => 0.0050791785612658
523 => 0.0050929488746386
524 => 0.0049882139649387
525 => 0.0051620452504509
526 => 0.0052552028485598
527 => 0.0053507632679707
528 => 0.005433735702603
529 => 0.0053125943350393
530 => 0.0054422329632654
531 => 0.0053377671132136
601 => 0.0052440504462361
602 => 0.0052441925757354
603 => 0.0051854027415583
604 => 0.0050714900298445
605 => 0.00505048277807
606 => 0.0051597651547247
607 => 0.0052473992717223
608 => 0.0052546172373373
609 => 0.0053031359873107
610 => 0.005331848883762
611 => 0.0056132743022753
612 => 0.0057264659336744
613 => 0.0058648745179414
614 => 0.0059187924617938
615 => 0.0060810661421368
616 => 0.0059500169660359
617 => 0.0059216636524485
618 => 0.0055280407832528
619 => 0.0055924965060324
620 => 0.0056956963372548
621 => 0.0055297425104588
622 => 0.0056350020162554
623 => 0.0056557824724009
624 => 0.0055241034629273
625 => 0.0055944389114013
626 => 0.0054076488132614
627 => 0.0050203358278592
628 => 0.005162476440523
629 => 0.0052671397754564
630 => 0.0051177722916103
701 => 0.0053855077250845
702 => 0.00522910221203
703 => 0.0051795291731804
704 => 0.0049861270745636
705 => 0.0050774054203813
706 => 0.0052008606900797
707 => 0.0051245796866217
708 => 0.0052828742224474
709 => 0.0055070615007873
710 => 0.0056668307059156
711 => 0.0056790958016232
712 => 0.0055763749064311
713 => 0.0057409857965324
714 => 0.005742184807157
715 => 0.0055565030506675
716 => 0.0054427740086981
717 => 0.0054169345310747
718 => 0.005481486612306
719 => 0.0055598647558923
720 => 0.0056834452431081
721 => 0.0057581223433195
722 => 0.0059528406149974
723 => 0.006005525796303
724 => 0.006063410837409
725 => 0.0061407631034123
726 => 0.006233644331463
727 => 0.0060304254922192
728 => 0.0060384997555497
729 => 0.0058492651862021
730 => 0.005647040909872
731 => 0.0058005039279947
801 => 0.0060011364098603
802 => 0.0059551110968411
803 => 0.0059499323089146
804 => 0.005958641593731
805 => 0.0059239400107607
806 => 0.005766986037087
807 => 0.0056881647340919
808 => 0.0057898643244145
809 => 0.0058439131305431
810 => 0.0059277381152971
811 => 0.0059174049165954
812 => 0.0061333290751758
813 => 0.0062172306739925
814 => 0.0061957650546633
815 => 0.0061997152452189
816 => 0.0063516150822138
817 => 0.0065205589415363
818 => 0.0066787971598975
819 => 0.0068397638721041
820 => 0.0066457122179013
821 => 0.0065471847553393
822 => 0.0066488399468023
823 => 0.0065949002713116
824 => 0.0069048536462281
825 => 0.0069263141454111
826 => 0.0072362451071707
827 => 0.007530406495773
828 => 0.0073456489980406
829 => 0.0075198669967418
830 => 0.007708297966539
831 => 0.0080718118791009
901 => 0.0079493931819237
902 => 0.0078556223784315
903 => 0.0077670094222286
904 => 0.0079513989171762
905 => 0.0081886130567321
906 => 0.0082397067103837
907 => 0.0083224979485771
908 => 0.0082354530848477
909 => 0.0083402890355326
910 => 0.0087104060087012
911 => 0.0086103971354382
912 => 0.008468368458176
913 => 0.0087605402620807
914 => 0.0088662761021247
915 => 0.0096083856018427
916 => 0.010545329500251
917 => 0.010157428574005
918 => 0.0099166459515989
919 => 0.0099732355793044
920 => 0.010315375773451
921 => 0.010425260344823
922 => 0.010126556200349
923 => 0.01023206355396
924 => 0.010813419445614
925 => 0.011125298229357
926 => 0.010701724950126
927 => 0.0095331030718875
928 => 0.0084555803297579
929 => 0.0087413878824522
930 => 0.0087089861756176
1001 => 0.0093335805555753
1002 => 0.008608011956886
1003 => 0.0086202286712635
1004 => 0.0092577390015418
1005 => 0.0090876621751175
1006 => 0.0088121594981043
1007 => 0.0084575918041896
1008 => 0.0078021406284462
1009 => 0.0072215892434821
1010 => 0.0083601842023959
1011 => 0.0083110859173669
1012 => 0.0082399843246869
1013 => 0.0083982132252005
1014 => 0.0091665278520378
1015 => 0.0091488157130975
1016 => 0.0090361401219716
1017 => 0.0091216035647635
1018 => 0.0087971773433732
1019 => 0.0088807893676732
1020 => 0.0084554096446503
1021 => 0.0086476990448832
1022 => 0.008811568393094
1023 => 0.0088444675908745
1024 => 0.0089185911633486
1025 => 0.0082852133522
1026 => 0.0085695813944102
1027 => 0.0087366209775264
1028 => 0.0079819300640553
1029 => 0.0087217031646834
1030 => 0.0082741876536464
1031 => 0.008122294167743
1101 => 0.0083267987360668
1102 => 0.0082471031069038
1103 => 0.0081785854848338
1104 => 0.0081403514744366
1105 => 0.008290517059068
1106 => 0.0082835116550583
1107 => 0.0080378116127172
1108 => 0.0077173059234983
1109 => 0.0078248781530408
1110 => 0.007785796153553
1111 => 0.0076441579457309
1112 => 0.0077396049963406
1113 => 0.0073193044901024
1114 => 0.006596199314439
1115 => 0.0070739047427928
1116 => 0.0070555136034447
1117 => 0.0070462399570136
1118 => 0.0074052223836132
1119 => 0.0073707145064294
1120 => 0.0073080823714386
1121 => 0.0076430076574551
1122 => 0.0075207554226782
1123 => 0.0078975080040113
1124 => 0.0081456616209064
1125 => 0.0080827218367333
1126 => 0.0083161115128537
1127 => 0.0078273563999441
1128 => 0.0079897012430011
1129 => 0.0080231602901549
1130 => 0.0076388747314147
1201 => 0.0073763604219028
1202 => 0.0073588537103406
1203 => 0.006903690074347
1204 => 0.0071468348147423
1205 => 0.0073607921242771
1206 => 0.0072583231767678
1207 => 0.0072258845691592
1208 => 0.0073916063803563
1209 => 0.0074044843843977
1210 => 0.0071108645275052
1211 => 0.0071719173934848
1212 => 0.0074265179938139
1213 => 0.0071655021115943
1214 => 0.006658390889144
1215 => 0.0065326202946151
1216 => 0.006515840178893
1217 => 0.0061747403515391
1218 => 0.0065410248871371
1219 => 0.0063811318715333
1220 => 0.0068862319920131
1221 => 0.0065977215121013
1222 => 0.0065852844019509
1223 => 0.0065664838858312
1224 => 0.0062728851737712
1225 => 0.0063371646325408
1226 => 0.0065508393435289
1227 => 0.0066270808876274
1228 => 0.0066191282699494
1229 => 0.0065497922208753
1230 => 0.0065815339090834
1231 => 0.0064792828718278
]
'min_raw' => 0.0035776500438333
'max_raw' => 0.011125298229357
'avg_raw' => 0.007351474136595
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003577'
'max' => '$0.011125'
'avg' => '$0.007351'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.002038069463899
'max_diff' => 0.0069485644735528
'year' => 2033
]
8 => [
'items' => [
101 => 0.0064431759024015
102 => 0.0063292123748879
103 => 0.0061617174726708
104 => 0.0061850086661301
105 => 0.0058531574374129
106 => 0.0056723472753301
107 => 0.0056223014055052
108 => 0.0055553779768145
109 => 0.0056298605848523
110 => 0.0058522173445769
111 => 0.0055840079167309
112 => 0.0051241816653927
113 => 0.0051518180066039
114 => 0.0052139086600022
115 => 0.0050982031381653
116 => 0.004988697572175
117 => 0.0050839037773361
118 => 0.0048890693328618
119 => 0.0052374534717844
120 => 0.0052280306571618
121 => 0.0053578867202215
122 => 0.0054390883813674
123 => 0.0052519448417761
124 => 0.0052048787476588
125 => 0.0052316897339027
126 => 0.0047885638535007
127 => 0.0053216738819865
128 => 0.0053262842396507
129 => 0.0052868075583003
130 => 0.0055706721905434
131 => 0.0061697151041755
201 => 0.0059443310636218
202 => 0.0058570555508507
203 => 0.0056911447372748
204 => 0.0059122110455553
205 => 0.005895236602251
206 => 0.0058184717322624
207 => 0.0057720440993723
208 => 0.0058575884365212
209 => 0.0057614442093223
210 => 0.0057441740642507
211 => 0.00563953577522
212 => 0.0056021846667748
213 => 0.0055745313930725
214 => 0.0055440878558808
215 => 0.0056112387128689
216 => 0.0054590660365028
217 => 0.0052755607064768
218 => 0.0052603042238403
219 => 0.0053024287137633
220 => 0.0052837917627719
221 => 0.0052602149972891
222 => 0.0052152005312326
223 => 0.0052018457007356
224 => 0.0052452424210084
225 => 0.0051962500540063
226 => 0.0052685409602702
227 => 0.0052488818338047
228 => 0.0051390675514514
301 => 0.0050021982971845
302 => 0.0050009798737286
303 => 0.0049714916174074
304 => 0.0049339338893933
305 => 0.0049234861886641
306 => 0.0050758857762892
307 => 0.0053913483617372
308 => 0.0053294155078338
309 => 0.0053741683419132
310 => 0.0055943079920755
311 => 0.0056642837670319
312 => 0.0056146166194349
313 => 0.0055466291644679
314 => 0.0055496202674443
315 => 0.0057819539822687
316 => 0.005796444351076
317 => 0.0058330568382818
318 => 0.0058801142310289
319 => 0.0056226306969017
320 => 0.005537492816142
321 => 0.0054971497649683
322 => 0.005372908782079
323 => 0.0055068920305083
324 => 0.0054288257293833
325 => 0.0054393595405296
326 => 0.0054324993822016
327 => 0.0054362454925306
328 => 0.0052373560913174
329 => 0.0053098209358003
330 => 0.0051893340770598
331 => 0.0050280156984909
401 => 0.0050274749027204
402 => 0.0050669573473356
403 => 0.0050434716443302
404 => 0.0049802722214156
405 => 0.0049892494011478
406 => 0.0049105998604616
407 => 0.004998798879383
408 => 0.0050013281116544
409 => 0.0049673666851366
410 => 0.0051032494429042
411 => 0.0051589207196313
412 => 0.0051365665811731
413 => 0.0051573522936855
414 => 0.0053319890975236
415 => 0.0053604625164871
416 => 0.0053731085283423
417 => 0.0053561645477319
418 => 0.0051605443338744
419 => 0.0051692209222003
420 => 0.0051055578740712
421 => 0.0050517693070489
422 => 0.0050539205676459
423 => 0.0050815748831196
424 => 0.0052023429006977
425 => 0.0054564920740272
426 => 0.0054661368493744
427 => 0.0054778265984532
428 => 0.0054302785141526
429 => 0.0054159375569537
430 => 0.0054348569812142
501 => 0.005530302048188
502 => 0.0057758126735277
503 => 0.0056890328214293
504 => 0.0056184794508645
505 => 0.005680373777902
506 => 0.0056708456313983
507 => 0.0055904184861198
508 => 0.0055881611640227
509 => 0.0054337957581195
510 => 0.0053767303822872
511 => 0.0053290422829725
512 => 0.0052769681234501
513 => 0.0052460968161436
514 => 0.0052935291749246
515 => 0.005304377516581
516 => 0.0052006658351306
517 => 0.0051865303161767
518 => 0.0052712235140213
519 => 0.0052339531953306
520 => 0.0052722866423634
521 => 0.0052811803308933
522 => 0.0052797482422009
523 => 0.005240833749019
524 => 0.0052656366865263
525 => 0.00520697034521
526 => 0.0051431795104281
527 => 0.0051024849321467
528 => 0.0050669735152437
529 => 0.0050866773132771
530 => 0.0050164368710592
531 => 0.0049939655399329
601 => 0.0052572340093826
602 => 0.005451713258378
603 => 0.0054488854530754
604 => 0.0054316719155481
605 => 0.0054060960904212
606 => 0.005528431017278
607 => 0.0054858119749252
608 => 0.005516820889177
609 => 0.0055247139592942
610 => 0.0055486039052981
611 => 0.0055571425075842
612 => 0.0055313329210349
613 => 0.0054447127961997
614 => 0.0052288636807048
615 => 0.0051283853347683
616 => 0.0050952258070101
617 => 0.0050964310928652
618 => 0.0050631839283484
619 => 0.005072976708332
620 => 0.0050597783991108
621 => 0.0050347839944597
622 => 0.0050851339792223
623 => 0.0050909363459236
624 => 0.0050791840578425
625 => 0.0050819521471247
626 => 0.0049846482212811
627 => 0.0049920460274299
628 => 0.0049508541027253
629 => 0.0049431311134192
630 => 0.004839001514757
701 => 0.0046545208369003
702 => 0.0047567410404056
703 => 0.0046332734089069
704 => 0.0045865143460184
705 => 0.0048078644772062
706 => 0.0047856470633319
707 => 0.0047476205084568
708 => 0.004691371308368
709 => 0.004670507932898
710 => 0.0045437486680845
711 => 0.004536259054485
712 => 0.0045990843689146
713 => 0.0045700926479924
714 => 0.0045293772917943
715 => 0.0043819103988943
716 => 0.0042161087866644
717 => 0.0042211132951458
718 => 0.0042738517031475
719 => 0.0044271957371557
720 => 0.00436728157019
721 => 0.0043238131546205
722 => 0.0043156728270401
723 => 0.0044175660696388
724 => 0.0045617663552103
725 => 0.0046294219029008
726 => 0.004562377309869
727 => 0.0044853600913313
728 => 0.0044900477725602
729 => 0.0045212328156583
730 => 0.0045245099227552
731 => 0.0044743796309851
801 => 0.0044884910144785
802 => 0.0044670545325801
803 => 0.004335498882738
804 => 0.0043331194581998
805 => 0.0043008335801071
806 => 0.0042998559765497
807 => 0.0042449296438243
808 => 0.0042372450701883
809 => 0.004128185502772
810 => 0.0041999688403082
811 => 0.0041518203462832
812 => 0.0040792492087062
813 => 0.0040667379172341
814 => 0.0040663618127047
815 => 0.0041408761443869
816 => 0.0041990980969581
817 => 0.004152657909951
818 => 0.0041420843795746
819 => 0.0042549820213825
820 => 0.0042406147673776
821 => 0.0042281728180682
822 => 0.0045488548012399
823 => 0.0042950099884323
824 => 0.0041843191610928
825 => 0.0040473182426422
826 => 0.0040919264325083
827 => 0.0041013260335438
828 => 0.0037718635209417
829 => 0.003638200620611
830 => 0.0035923325501977
831 => 0.0035659348271954
901 => 0.0035779646010493
902 => 0.0034576523136571
903 => 0.0035385041605662
904 => 0.0034343238894291
905 => 0.0034168577279411
906 => 0.0036031449581933
907 => 0.0036290657380087
908 => 0.0035184796383612
909 => 0.0035894938165982
910 => 0.0035637430883985
911 => 0.0034361097611623
912 => 0.003431235106869
913 => 0.0033671931897903
914 => 0.0032669799905207
915 => 0.0032211798693754
916 => 0.0031973267686281
917 => 0.0032071690228841
918 => 0.0032021924779543
919 => 0.0031697171560227
920 => 0.0032040539253932
921 => 0.0031163376685843
922 => 0.0030814083483451
923 => 0.0030656315847471
924 => 0.0029877783580698
925 => 0.0031116774632004
926 => 0.0031360871477509
927 => 0.0031605449269205
928 => 0.0033734331965571
929 => 0.0033627979002221
930 => 0.0034589357994914
1001 => 0.0034552000575121
1002 => 0.0034277799713097
1003 => 0.0033120991380073
1004 => 0.0033582074563491
1005 => 0.0032162932193168
1006 => 0.0033226250149315
1007 => 0.0032740996239349
1008 => 0.0033062185314234
1009 => 0.0032484658397139
1010 => 0.0032804285638562
1011 => 0.0031418755894975
1012 => 0.0030124967715343
1013 => 0.0030645625846858
1014 => 0.0031211640780295
1015 => 0.0032438905373909
1016 => 0.0031707956706665
1017 => 0.0031970833487635
1018 => 0.0031090240276428
1019 => 0.0029273324952691
1020 => 0.0029283608496107
1021 => 0.0029004115657202
1022 => 0.0028762593037766
1023 => 0.0031791914953976
1024 => 0.0031415170887202
1025 => 0.0030814878523843
1026 => 0.003161839370687
1027 => 0.0031830855874763
1028 => 0.0031836904373996
1029 => 0.0032423128309803
1030 => 0.003273599612943
1031 => 0.0032791140438686
1101 => 0.0033713576467885
1102 => 0.0034022764857647
1103 => 0.0035296268077099
1104 => 0.003270945148082
1105 => 0.0032656177695322
1106 => 0.0031629700813299
1107 => 0.0030978692946762
1108 => 0.0031674275878882
1109 => 0.0032290467400201
1110 => 0.0031648847601493
1111 => 0.0031732629601871
1112 => 0.003087130744437
1113 => 0.0031179189586702
1114 => 0.0031444379163882
1115 => 0.0031297957066486
1116 => 0.0031078756099775
1117 => 0.0032239946722409
1118 => 0.0032174427796737
1119 => 0.003325575520019
1120 => 0.0034098727237647
1121 => 0.0035609483828045
1122 => 0.0034032930568442
1123 => 0.0033975474701431
1124 => 0.003453711501768
1125 => 0.0034022678873441
1126 => 0.0034347784758868
1127 => 0.0035557104243785
1128 => 0.0035582655258881
1129 => 0.0035154642835406
1130 => 0.0035128598240539
1201 => 0.0035210802708411
1202 => 0.0035692276844342
1203 => 0.0035524034987042
1204 => 0.0035718728723673
1205 => 0.0035962196222586
1206 => 0.003696928102617
1207 => 0.0037212085762845
1208 => 0.0036622196132548
1209 => 0.0036675456561449
1210 => 0.0036454821646886
1211 => 0.0036241691083965
1212 => 0.0036720777464192
1213 => 0.0037596317240524
1214 => 0.0037590870553016
1215 => 0.0037793978763064
1216 => 0.0037920513495284
1217 => 0.0037377333795509
1218 => 0.0037023743784226
1219 => 0.0037159332694069
1220 => 0.003737614231365
1221 => 0.0037089024256526
1222 => 0.0035316798601936
1223 => 0.0035854378655325
1224 => 0.0035764899048119
1225 => 0.0035637469206367
1226 => 0.0036178010107033
1227 => 0.0036125873618506
1228 => 0.0034564183372534
1229 => 0.003466415771519
1230 => 0.0034570263143436
1231 => 0.0034873655713793
]
'min_raw' => 0.0028762593037766
'max_raw' => 0.0064431759024015
'avg_raw' => 0.004659717603089
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002876'
'max' => '$0.006443'
'avg' => '$0.004659'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00070139074005672
'max_diff' => -0.0046821223269552
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034006294678992
102 => 0.0034273089091531
103 => 0.0034440420046034
104 => 0.0034538979263732
105 => 0.0034895042740748
106 => 0.003485326280139
107 => 0.0034892445641056
108 => 0.0035420393780198
109 => 0.0038090574298056
110 => 0.0038235906332221
111 => 0.0037520238243295
112 => 0.0037806133528892
113 => 0.0037257277098972
114 => 0.0037625728097396
115 => 0.0037877812912877
116 => 0.003673869010484
117 => 0.0036671238644994
118 => 0.0036120116889348
119 => 0.00364162585037
120 => 0.003594507590193
121 => 0.0036060687631136
122 => 0.0035737427157425
123 => 0.0036319231649587
124 => 0.0036969779475102
125 => 0.0037134133546739
126 => 0.0036701788743139
127 => 0.0036388742612421
128 => 0.0035839136730686
129 => 0.0036753143560777
130 => 0.0037020427011749
131 => 0.0036751739634595
201 => 0.0036689478898373
202 => 0.0036571494915736
203 => 0.0036714509758036
204 => 0.0037018971328672
205 => 0.0036875392874483
206 => 0.0036970228973002
207 => 0.0036608811560007
208 => 0.0037377513610591
209 => 0.0038598397465142
210 => 0.0038602322806369
211 => 0.0038458743578238
212 => 0.0038399994051544
213 => 0.0038547315052723
214 => 0.0038627230652438
215 => 0.0039103639756199
216 => 0.003961484570551
217 => 0.0042000420814317
218 => 0.0041330560869797
219 => 0.0043447185024828
220 => 0.0045121159922209
221 => 0.0045623111799883
222 => 0.0045161339691084
223 => 0.0043581642251321
224 => 0.0043504134758582
225 => 0.0045864869664644
226 => 0.0045197853925173
227 => 0.0045118514525389
228 => 0.0044274477357723
301 => 0.004477340785985
302 => 0.0044664284440166
303 => 0.0044492027783695
304 => 0.0045443952425954
305 => 0.0047225870377364
306 => 0.0046948141753916
307 => 0.0046740830219972
308 => 0.004583245142571
309 => 0.0046379498353605
310 => 0.0046184705420575
311 => 0.004702165947952
312 => 0.0046525866435804
313 => 0.0045192800624918
314 => 0.0045405095749144
315 => 0.0045373007768196
316 => 0.0046033376142332
317 => 0.0045835149947767
318 => 0.004533430092229
319 => 0.0047219779975525
320 => 0.0047097347453394
321 => 0.0047270928777805
322 => 0.0047347344644992
323 => 0.0048495002518828
324 => 0.0048965161228784
325 => 0.004907189548723
326 => 0.0049518509898308
327 => 0.0049060783313826
328 => 0.0050892016005277
329 => 0.0052109678889701
330 => 0.005352405699032
331 => 0.0055590843544317
401 => 0.0056367974407464
402 => 0.0056227592672865
403 => 0.0057794606650197
404 => 0.0060610495934699
405 => 0.0056796764406619
406 => 0.0060812632966151
407 => 0.0059541255345635
408 => 0.0056526841878499
409 => 0.0056332749188816
410 => 0.005837414498682
411 => 0.006290176438973
412 => 0.0061767647081135
413 => 0.006290361939936
414 => 0.0061578447349428
415 => 0.0061512641387722
416 => 0.0062839258750735
417 => 0.0065938972529561
418 => 0.0064466414704274
419 => 0.0062355141975733
420 => 0.0063914072903446
421 => 0.0062563582661615
422 => 0.0059520550168351
423 => 0.0061766779843003
424 => 0.0060264790028501
425 => 0.0060703150506543
426 => 0.0063860109692503
427 => 0.006348025601097
428 => 0.0063971821848377
429 => 0.0063104221011872
430 => 0.0062293745022481
501 => 0.0060780931401547
502 => 0.0060333061869198
503 => 0.0060456836895282
504 => 0.0060333000532442
505 => 0.0059486595215004
506 => 0.005930381406729
507 => 0.0058999170813275
508 => 0.0059093592496253
509 => 0.0058520774052176
510 => 0.0059601800806478
511 => 0.0059802448898052
512 => 0.0060589130019683
513 => 0.0060670805863445
514 => 0.0062861701589483
515 => 0.0061654993040088
516 => 0.0062464557317226
517 => 0.0062392142268364
518 => 0.0056592173358833
519 => 0.0057391357901008
520 => 0.0058634638250706
521 => 0.0058074542138394
522 => 0.005728269727789
523 => 0.0056643240096997
524 => 0.0055674397080092
525 => 0.0057038025021404
526 => 0.0058831050758566
527 => 0.0060716279955083
528 => 0.0062981259309588
529 => 0.0062475742284928
530 => 0.0060673937741537
531 => 0.0060754765377134
601 => 0.0061254410015896
602 => 0.0060607324811197
603 => 0.0060416486751728
604 => 0.0061228191797042
605 => 0.0061233781563584
606 => 0.006048923183272
607 => 0.0059661801058026
608 => 0.0059658334092868
609 => 0.0059511100778544
610 => 0.0061604639828966
611 => 0.0062755874626026
612 => 0.0062887861840201
613 => 0.0062746990834893
614 => 0.0062801206493866
615 => 0.0062131328331184
616 => 0.0063662471164876
617 => 0.0065067599243403
618 => 0.0064690994902175
619 => 0.0064126411457212
620 => 0.0063676693549276
621 => 0.0064585055655306
622 => 0.0064544607720619
623 => 0.0065055326675444
624 => 0.0065032157513598
625 => 0.0064860421938201
626 => 0.0064691001035393
627 => 0.0065362735764557
628 => 0.0065169286950288
629 => 0.0064975537656577
630 => 0.0064586943786509
701 => 0.0064639760147312
702 => 0.0064075274185641
703 => 0.0063814117150652
704 => 0.0059886941947759
705 => 0.0058837472409394
706 => 0.0059167656890086
707 => 0.0059276362194366
708 => 0.0058819631706338
709 => 0.0059474465901734
710 => 0.0059372410686023
711 => 0.0059769447830052
712 => 0.0059521396259811
713 => 0.0059531576382778
714 => 0.0060261043160685
715 => 0.0060472810469684
716 => 0.0060365103907155
717 => 0.0060440537891586
718 => 0.006217888222409
719 => 0.0061931745249131
720 => 0.0061800458656806
721 => 0.0061836825940108
722 => 0.0062281010187586
723 => 0.0062405357525319
724 => 0.0061878489117612
725 => 0.0062126963304477
726 => 0.0063184934856077
727 => 0.0063555165023133
728 => 0.0064736761995815
729 => 0.0064234798600608
730 => 0.0065156174136977
731 => 0.0067988168415706
801 => 0.0070250561404653
802 => 0.0068169971314673
803 => 0.0072324567924865
804 => 0.0075559517327387
805 => 0.0075435354581228
806 => 0.007487126632717
807 => 0.0071188362437979
808 => 0.0067799299370141
809 => 0.0070634394533606
810 => 0.007064162177422
811 => 0.0070398084585357
812 => 0.0068885496021333
813 => 0.0070345449782055
814 => 0.0070461335609808
815 => 0.0070396470362795
816 => 0.0069236772257209
817 => 0.0067466127598016
818 => 0.0067812107326098
819 => 0.0068378829178491
820 => 0.0067305906481347
821 => 0.006696304266893
822 => 0.0067600491728722
823 => 0.0069654485417155
824 => 0.0069266189808332
825 => 0.006925604984076
826 => 0.0070917343118269
827 => 0.0069728215661101
828 => 0.0067816471238449
829 => 0.0067333730558919
830 => 0.0065620326359672
831 => 0.0066803780743028
901 => 0.0066846371159422
902 => 0.0066198205288269
903 => 0.0067869066326647
904 => 0.0067853669048029
905 => 0.0069439902929124
906 => 0.0072472186347539
907 => 0.0071575390931109
908 => 0.0070532515432864
909 => 0.0070645904915325
910 => 0.0071889507668822
911 => 0.0071137597055368
912 => 0.0071407989354473
913 => 0.0071889098397693
914 => 0.0072179363428734
915 => 0.0070604140244283
916 => 0.0070236880368353
917 => 0.00694855955529
918 => 0.0069289599367944
919 => 0.0069901505174058
920 => 0.0069740289613098
921 => 0.0066842791599842
922 => 0.006653998693593
923 => 0.0066549273522667
924 => 0.0065787856797683
925 => 0.0064626513531131
926 => 0.0067678454295428
927 => 0.0067433340740171
928 => 0.006716275434545
929 => 0.0067195899634859
930 => 0.0068520643680771
1001 => 0.0067752225232964
1002 => 0.0069795191617765
1003 => 0.0069375219146241
1004 => 0.0068944475965523
1005 => 0.006888493413719
1006 => 0.0068719134761895
1007 => 0.0068150547012778
1008 => 0.0067463943138892
1009 => 0.0067010587788744
1010 => 0.0061813725068848
1011 => 0.0062778232560901
1012 => 0.0063887810512884
1013 => 0.0064270832375554
1014 => 0.0063615646975151
1015 => 0.0068176417725788
1016 => 0.006900971449061
1017 => 0.0066485604235361
1018 => 0.0066013446265347
1019 => 0.0068207372323696
1020 => 0.0066884166713959
1021 => 0.0067480006119003
1022 => 0.0066192127232027
1023 => 0.0068808997701742
1024 => 0.006878906153322
1025 => 0.0067771039815801
1026 => 0.0068631464800251
1027 => 0.0068481944785184
1028 => 0.0067332600773495
1029 => 0.006884543395696
1030 => 0.0068846184303345
1031 => 0.006786636053403
1101 => 0.0066722140882473
1102 => 0.0066517581434037
1103 => 0.0066363473368336
1104 => 0.0067442104981836
1105 => 0.0068409202713707
1106 => 0.007020873182886
1107 => 0.0070661176204166
1108 => 0.0072427096721915
1109 => 0.0071375577034705
1110 => 0.0071841702092585
1111 => 0.007234774678033
1112 => 0.0072590363212812
1113 => 0.0072195032755598
1114 => 0.0074938234201546
1115 => 0.0075169844453104
1116 => 0.0075247501367031
1117 => 0.0074322509273906
1118 => 0.0075144118749696
1119 => 0.007475971488482
1120 => 0.0075759826950758
1121 => 0.0075916657292769
1122 => 0.0075783827572487
1123 => 0.007583360799844
1124 => 0.007349276949822
1125 => 0.0073371384673077
1126 => 0.0071716293969174
1127 => 0.0072390755664827
1128 => 0.0071129881852595
1129 => 0.0071529717926893
1130 => 0.0071705961858666
1201 => 0.0071613902030463
1202 => 0.0072428888717145
1203 => 0.0071735983542685
1204 => 0.0069907292863126
1205 => 0.0068078103958014
1206 => 0.0068055139981336
1207 => 0.0067573546830486
1208 => 0.0067225443190607
1209 => 0.0067292500301288
1210 => 0.0067528818305723
1211 => 0.0067211707958586
1212 => 0.0067279379529051
1213 => 0.0068403178492074
1214 => 0.0068628548359541
1215 => 0.0067862653492197
1216 => 0.0064787475081709
1217 => 0.0064032818586275
1218 => 0.0064575250709705
1219 => 0.0064316003091808
1220 => 0.0051908034153319
1221 => 0.0054823102405412
1222 => 0.0053091067836383
1223 => 0.005388926905287
1224 => 0.0052121310266069
1225 => 0.005296507286579
1226 => 0.0052809260722898
1227 => 0.0057496604209123
1228 => 0.0057423417787816
1229 => 0.0057458448254756
1230 => 0.0055786352796288
1231 => 0.0058450046263967
]
'min_raw' => 0.0034006294678992
'max_raw' => 0.0075916657292769
'avg_raw' => 0.0054961475985881
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00340062'
'max' => '$0.007591'
'avg' => '$0.005496'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00052437016412267
'max_diff' => 0.0011484898268754
'year' => 2035
]
10 => [
'items' => [
101 => 0.0059762277449465
102 => 0.0059519418380932
103 => 0.0059580540776288
104 => 0.0058530255515877
105 => 0.0057468617311887
106 => 0.0056291097158714
107 => 0.005847878405742
108 => 0.0058235550619344
109 => 0.005879344061366
110 => 0.006021231194656
111 => 0.0060421246140097
112 => 0.0060702055815013
113 => 0.006060140553595
114 => 0.0062999303524297
115 => 0.0062708902256067
116 => 0.0063408685758353
117 => 0.006196917800145
118 => 0.0060340238335183
119 => 0.0060649846511691
120 => 0.0060620028754581
121 => 0.0060240414483351
122 => 0.0059897715692984
123 => 0.005932721876181
124 => 0.0061132355469705
125 => 0.0061059070215931
126 => 0.0062245473289741
127 => 0.0062035765022341
128 => 0.0060635281888322
129 => 0.0060685300417434
130 => 0.0061021699063797
131 => 0.0062185978619792
201 => 0.0062531616062208
202 => 0.006237150302761
203 => 0.0062750478704271
204 => 0.006305000562702
205 => 0.0062788094674171
206 => 0.0066496201445205
207 => 0.0064956336985569
208 => 0.0065706856208888
209 => 0.0065885850621333
210 => 0.0065427360197701
211 => 0.0065526790353276
212 => 0.0065677399945876
213 => 0.006659187189976
214 => 0.0068991710911345
215 => 0.007005458327332
216 => 0.0073252287215519
217 => 0.0069966326519556
218 => 0.0069771351210514
219 => 0.0070347354251912
220 => 0.0072224744977321
221 => 0.0073746193825922
222 => 0.0074250946183492
223 => 0.0074317657540098
224 => 0.0075264606518203
225 => 0.0075807380012899
226 => 0.007514962200503
227 => 0.0074592240963495
228 => 0.0072595771257398
229 => 0.0072826868062086
301 => 0.0074418895878706
302 => 0.0076667728939653
303 => 0.0078597461657147
304 => 0.0077921736517455
305 => 0.0083077042345694
306 => 0.0083588169861027
307 => 0.0083517548565139
308 => 0.0084681973111043
309 => 0.0082370827518359
310 => 0.008138276800115
311 => 0.0074712753071218
312 => 0.0076586755200156
313 => 0.0079310727350853
314 => 0.0078950199422337
315 => 0.0076971978034516
316 => 0.0078595960998832
317 => 0.0078059021444187
318 => 0.0077635514939795
319 => 0.0079575680337188
320 => 0.0077442388785153
321 => 0.0079289446135738
322 => 0.0076920575978251
323 => 0.0077924823172975
324 => 0.0077354763895278
325 => 0.0077723662111785
326 => 0.0075567090675914
327 => 0.0076730724274898
328 => 0.0075518679692524
329 => 0.007551810502558
330 => 0.0075491349074246
331 => 0.007691731415038
401 => 0.0076963814820319
402 => 0.0075910024474542
403 => 0.0075758156822417
404 => 0.0076319691129383
405 => 0.0075662281521994
406 => 0.0075969879339604
407 => 0.0075671598346534
408 => 0.0075604449012235
409 => 0.0075069391692023
410 => 0.0074838874286768
411 => 0.007492926610107
412 => 0.0074620712238682
413 => 0.0074434797375713
414 => 0.0075454365928592
415 => 0.0074909651580067
416 => 0.0075370880642377
417 => 0.0074845251914126
418 => 0.0073023193736473
419 => 0.0071975308810589
420 => 0.0068533609817884
421 => 0.0069509671382801
422 => 0.0070156801210149
423 => 0.0069942924806071
424 => 0.0070402414081212
425 => 0.0070430622990889
426 => 0.0070281238343602
427 => 0.0070108270059402
428 => 0.0070024078664399
429 => 0.0070651572346032
430 => 0.0071015853548686
501 => 0.0070221749345804
502 => 0.0070035701841767
503 => 0.0070838585034575
504 => 0.0071328343318378
505 => 0.0074944443314567
506 => 0.0074676550947
507 => 0.007534890821837
508 => 0.0075273211107777
509 => 0.0075977948643087
510 => 0.0077129896669013
511 => 0.0074787664242571
512 => 0.0075194194803498
513 => 0.007509452289812
514 => 0.0076182714625656
515 => 0.0076186111841449
516 => 0.0075533686541583
517 => 0.0075887376881032
518 => 0.0075689956636539
519 => 0.0076046721701285
520 => 0.0074672973081105
521 => 0.0076346050613484
522 => 0.0077294577763609
523 => 0.0077307748064008
524 => 0.007775734240519
525 => 0.007821415629458
526 => 0.0079090970775157
527 => 0.0078189702414608
528 => 0.0076568408370687
529 => 0.007668546056391
530 => 0.0075734896459167
531 => 0.0075750875613501
601 => 0.0075665577635356
602 => 0.0075921563288701
603 => 0.0074729147536692
604 => 0.0075009005130322
605 => 0.0074617202860396
606 => 0.0075193343101881
607 => 0.0074573511441437
608 => 0.007509447483331
609 => 0.0075319305363032
610 => 0.0076148934857962
611 => 0.0074450974490484
612 => 0.0070988718359386
613 => 0.0071716526573941
614 => 0.0070640041056513
615 => 0.007073967388962
616 => 0.0070940948068945
617 => 0.007028855260094
618 => 0.0070413009096891
619 => 0.0070408562635069
620 => 0.0070370245429257
621 => 0.0070200532171321
622 => 0.0069954414370568
623 => 0.0070934871937703
624 => 0.0071101470783829
625 => 0.0071471799381536
626 => 0.0072573646092024
627 => 0.0072463545622312
628 => 0.0072643124056437
629 => 0.0072251105343031
630 => 0.0070757858513398
701 => 0.0070838949000474
702 => 0.0069827749327246
703 => 0.0071445940732404
704 => 0.007106273164858
705 => 0.0070815674259316
706 => 0.0070748262361684
707 => 0.0071852840337047
708 => 0.0072183347379414
709 => 0.0071977397570114
710 => 0.0071554988502722
711 => 0.0072366138786144
712 => 0.0072583168382304
713 => 0.0072631753305141
714 => 0.0074068956084724
715 => 0.0072712076975188
716 => 0.0073038691263072
717 => 0.007558684270098
718 => 0.007327602096766
719 => 0.0074500114777274
720 => 0.007444020175517
721 => 0.0075066406727092
722 => 0.0074388834669919
723 => 0.007439723398763
724 => 0.0074953261579898
725 => 0.0074172421106662
726 => 0.0073979074024505
727 => 0.0073711966415282
728 => 0.0074295186108083
729 => 0.007464479993716
730 => 0.0077462430636451
731 => 0.0079282748567765
801 => 0.0079203723765619
802 => 0.0079925862528997
803 => 0.0079600532402062
804 => 0.007854995560444
805 => 0.0080343162093789
806 => 0.0079775716529613
807 => 0.0079822496052477
808 => 0.00798207549163
809 => 0.0080198056609525
810 => 0.0079930703780683
811 => 0.0079403723911829
812 => 0.0079753557741895
813 => 0.0080792439149307
814 => 0.0084017158914687
815 => 0.0085821754817248
816 => 0.0083908519975435
817 => 0.0085228243750082
818 => 0.0084436879750956
819 => 0.0084293065371275
820 => 0.0085121949428574
821 => 0.008595228433769
822 => 0.0085899395593615
823 => 0.0085296615087767
824 => 0.0084956119675003
825 => 0.0087534465014788
826 => 0.0089434145940175
827 => 0.0089304600436686
828 => 0.0089876372158632
829 => 0.0091555111618497
830 => 0.0091708594516059
831 => 0.009168925919873
901 => 0.0091308835822838
902 => 0.0092961772832941
903 => 0.0094340681967429
904 => 0.0091220778802807
905 => 0.0092408797085364
906 => 0.0092942136767962
907 => 0.0093725237656769
908 => 0.0095046460119136
909 => 0.0096481658150215
910 => 0.0096684610887956
911 => 0.0096540606208346
912 => 0.0095594054526655
913 => 0.0097164465337736
914 => 0.0098084375160203
915 => 0.0098632160407719
916 => 0.010002125265265
917 => 0.0092945430492271
918 => 0.0087936811875977
919 => 0.0087154643753713
920 => 0.0088745213387579
921 => 0.0089164633915475
922 => 0.0088995566026589
923 => 0.0083357910410268
924 => 0.0087124962663633
925 => 0.0091177994145505
926 => 0.0091333687591214
927 => 0.009336271989593
928 => 0.009402345598719
929 => 0.0095657092943831
930 => 0.0095554908507402
1001 => 0.0095952673109502
1002 => 0.0095861233915802
1003 => 0.0098887202375132
1004 => 0.010222529494644
1005 => 0.010210970741518
1006 => 0.010162981711353
1007 => 0.010234253604493
1008 => 0.010578780531026
1009 => 0.010547062012562
1010 => 0.010577873851473
1011 => 0.010984090514542
1012 => 0.011512229960178
1013 => 0.011266856163346
1014 => 0.011799246698062
1015 => 0.012134358318856
1016 => 0.012713899215831
1017 => 0.012641337841231
1018 => 0.012866948859556
1019 => 0.01251143783668
1020 => 0.011695112667527
1021 => 0.011565926084741
1022 => 0.011824560895003
1023 => 0.012460389338818
1024 => 0.011804536394586
1025 => 0.01193721459102
1026 => 0.011899003261521
1027 => 0.01189696714216
1028 => 0.011974677536684
1029 => 0.011861954556325
1030 => 0.011402700855866
1031 => 0.011613174120387
1101 => 0.011531900285199
1102 => 0.011622079664706
1103 => 0.0121087405831
1104 => 0.011893576190531
1105 => 0.011666917981495
1106 => 0.011951197675109
1107 => 0.012313183414181
1108 => 0.01229053099718
1109 => 0.012246575840224
1110 => 0.012494348758569
1111 => 0.012903597029021
1112 => 0.013014215192031
1113 => 0.013095871258477
1114 => 0.013107130250449
1115 => 0.013223104865188
1116 => 0.01259948013237
1117 => 0.013589188599171
1118 => 0.013760083911243
1119 => 0.013727962675458
1120 => 0.013917905622452
1121 => 0.013862019589059
1122 => 0.013781049494923
1123 => 0.014082149467931
1124 => 0.013736962646392
1125 => 0.013247013411029
1126 => 0.012978217570411
1127 => 0.013332189616478
1128 => 0.013548347993089
1129 => 0.013691214929774
1130 => 0.013734446378493
1201 => 0.012647890345147
1202 => 0.012062296906333
1203 => 0.01243765558677
1204 => 0.012895619082775
1205 => 0.012596936122026
1206 => 0.012608643928606
1207 => 0.012182800519079
1208 => 0.012933296775391
1209 => 0.012823955783514
1210 => 0.013391217042796
1211 => 0.013255835590712
1212 => 0.013718415126701
1213 => 0.013596602432147
1214 => 0.014102240116786
1215 => 0.014303952678782
1216 => 0.014642659464428
1217 => 0.014891813554733
1218 => 0.015038121602119
1219 => 0.015029337815741
1220 => 0.015609083189863
1221 => 0.015267227597504
1222 => 0.014837776404324
1223 => 0.014830008987141
1224 => 0.015052427845459
1225 => 0.01551855675486
1226 => 0.015639417199168
1227 => 0.015706961699451
1228 => 0.015603514946027
1229 => 0.015232455201532
1230 => 0.015072233485175
1231 => 0.015208747029581
]
'min_raw' => 0.0056291097158714
'max_raw' => 0.015706961699451
'avg_raw' => 0.010668035707661
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005629'
'max' => '$0.0157069'
'avg' => '$0.010668'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022284802479722
'max_diff' => 0.0081152959701741
'year' => 2036
]
11 => [
'items' => [
101 => 0.015041802695515
102 => 0.01532999545242
103 => 0.015725745662303
104 => 0.015644024808928
105 => 0.015917205369485
106 => 0.016199918510228
107 => 0.016604210998932
108 => 0.016709908026387
109 => 0.016884621193472
110 => 0.017064458432688
111 => 0.017122217307175
112 => 0.017232496920096
113 => 0.0172319156921
114 => 0.017564250728313
115 => 0.017930826564814
116 => 0.018069200456843
117 => 0.018387383591584
118 => 0.017842506123808
119 => 0.018255801942217
120 => 0.018628605115887
121 => 0.018184133803367
122 => 0.018796733959143
123 => 0.01882051983501
124 => 0.019179658320708
125 => 0.018815602662844
126 => 0.018599427575311
127 => 0.019223516953044
128 => 0.019525494144298
129 => 0.01943453615672
130 => 0.018742341380105
131 => 0.018339454330485
201 => 0.01728502121052
202 => 0.018534042789239
203 => 0.019142404765775
204 => 0.018740765869556
205 => 0.018943329166869
206 => 0.020048448835642
207 => 0.020469206854311
208 => 0.020381692127748
209 => 0.020396480675922
210 => 0.020623514065498
211 => 0.021630305144447
212 => 0.021027012592706
213 => 0.021488207143571
214 => 0.02173282307039
215 => 0.021960035975812
216 => 0.021402072891471
217 => 0.020676171116848
218 => 0.020446247553541
219 => 0.018700830796764
220 => 0.018609974274613
221 => 0.018558973755495
222 => 0.018237422696624
223 => 0.0179847716446
224 => 0.017783854147697
225 => 0.017256586636782
226 => 0.017434523943616
227 => 0.0165941695805
228 => 0.017131798521692
301 => 0.015790572667092
302 => 0.016907585413544
303 => 0.016299646159988
304 => 0.016707861018277
305 => 0.016706436795093
306 => 0.015954783816344
307 => 0.015521246064799
308 => 0.015797513193625
309 => 0.016093693485838
310 => 0.01614174774178
311 => 0.016525753221732
312 => 0.016632920897016
313 => 0.016308197837724
314 => 0.015762778742415
315 => 0.01588946715857
316 => 0.015518678728089
317 => 0.014868886265841
318 => 0.015335578556515
319 => 0.015494927823563
320 => 0.015565305537819
321 => 0.014926309280367
322 => 0.014725522782991
323 => 0.014618625736551
324 => 0.015680292349749
325 => 0.015738452843397
326 => 0.01544089553483
327 => 0.016785882785097
328 => 0.016481470747075
329 => 0.016821573576306
330 => 0.015877971512689
331 => 0.015914018382248
401 => 0.015467302043438
402 => 0.015717433343575
403 => 0.015540648602746
404 => 0.01569722520637
405 => 0.015791076576992
406 => 0.016237719614047
407 => 0.016912685359575
408 => 0.016171006038543
409 => 0.015847845737327
410 => 0.016048332570679
411 => 0.016582255427742
412 => 0.017391175887202
413 => 0.01691227869416
414 => 0.01712480513623
415 => 0.017171232709179
416 => 0.016818111648768
417 => 0.017404195964386
418 => 0.017718283310465
419 => 0.018040471936325
420 => 0.018320219292638
421 => 0.017911782714077
422 => 0.018348868400221
423 => 0.017996654493199
424 => 0.017680682207395
425 => 0.017681161406925
426 => 0.017482947376422
427 => 0.017098882715748
428 => 0.01702805529971
429 => 0.017396508462454
430 => 0.017691973006329
501 => 0.017716308881343
502 => 0.017879893234349
503 => 0.017976700769405
504 => 0.018925546216418
505 => 0.019307179704467
506 => 0.019773833909702
507 => 0.019955622021831
508 => 0.020502739064694
509 => 0.020060897617909
510 => 0.019965302441584
511 => 0.018638175456219
512 => 0.018855492425726
513 => 0.019203437861874
514 => 0.018643912948305
515 => 0.018998802721082
516 => 0.019068865479822
517 => 0.018624900505847
518 => 0.018862041381041
519 => 0.018232265523894
520 => 0.016926412752282
521 => 0.017405649751818
522 => 0.017758529492907
523 => 0.017254926592615
524 => 0.018157615299265
525 => 0.017630283192117
526 => 0.017463144230557
527 => 0.016811075552167
528 => 0.017118826867942
529 => 0.017535064929101
530 => 0.017277878200173
531 => 0.017811579279481
601 => 0.01856744234066
602 => 0.01910611537048
603 => 0.01914746799698
604 => 0.018801137327096
605 => 0.019356134435838
606 => 0.019360176983871
607 => 0.01873413797798
608 => 0.018350692572672
609 => 0.01826357296981
610 => 0.018481214818564
611 => 0.018745472201852
612 => 0.019162132442614
613 => 0.019413911499766
614 => 0.020070417747523
615 => 0.020248049514657
616 => 0.020443212972151
617 => 0.020704011537543
618 => 0.021017167082677
619 => 0.02033200057788
620 => 0.020359223520425
621 => 0.019721205957935
622 => 0.019039392691439
623 => 0.019556803971486
624 => 0.020233250391808
625 => 0.020078072835579
626 => 0.020060612190514
627 => 0.020089976152335
628 => 0.019972977342564
629 => 0.019443796062146
630 => 0.01917804453597
701 => 0.019520931805182
702 => 0.019703161128611
703 => 0.019985782917183
704 => 0.01995094381632
705 => 0.020678947192317
706 => 0.02096182729055
707 => 0.0208894544563
708 => 0.020902772799551
709 => 0.021414913705288
710 => 0.021984519722277
711 => 0.022518030923321
712 => 0.023060741431863
713 => 0.022406482731464
714 => 0.022074290512469
715 => 0.022417028087825
716 => 0.02223516670596
717 => 0.023280196149745
718 => 0.023352551721065
719 => 0.024397505597326
720 => 0.025389291256691
721 => 0.024766368453729
722 => 0.025353756599863
723 => 0.025989064770364
724 => 0.027214677306298
725 => 0.026801934121764
726 => 0.026485779310922
727 => 0.026187014542325
728 => 0.026808696598204
729 => 0.027608480631479
730 => 0.02778074645201
731 => 0.028059882891879
801 => 0.027766405056537
802 => 0.028119866783683
803 => 0.029367741999463
804 => 0.02903055510086
805 => 0.028551695499345
806 => 0.029536773134994
807 => 0.029893268901943
808 => 0.032395342892673
809 => 0.035554314661491
810 => 0.034246479606273
811 => 0.033434664183926
812 => 0.033625460064697
813 => 0.034779009616727
814 => 0.035149493121006
815 => 0.034142391243053
816 => 0.034498116652042
817 => 0.036458198629726
818 => 0.037509719723794
819 => 0.036081612839925
820 => 0.032141522586871
821 => 0.028508579431545
822 => 0.0294721995499
823 => 0.029362954933092
824 => 0.031468818492907
825 => 0.029022513304844
826 => 0.029063702810311
827 => 0.031213113398395
828 => 0.03063968750372
829 => 0.029710810993188
830 => 0.028515361258028
831 => 0.02630546185687
901 => 0.02434809232966
902 => 0.028186944727799
903 => 0.028021406431891
904 => 0.027781682448016
905 => 0.028315162233287
906 => 0.030905588639683
907 => 0.030845870926623
908 => 0.030465977304384
909 => 0.030754123268624
910 => 0.029660297612491
911 => 0.029942201390024
912 => 0.028508003954788
913 => 0.02915632109289
914 => 0.029708818041376
915 => 0.029819739983641
916 => 0.03006965278338
917 => 0.027934175272066
918 => 0.028892941980321
919 => 0.029456127597128
920 => 0.026911634491523
921 => 0.029405831149599
922 => 0.027897001359603
923 => 0.027384881867015
924 => 0.028074383297172
925 => 0.027805683919278
926 => 0.027574671972721
927 => 0.027445763337254
928 => 0.027952057090065
929 => 0.027928437881344
930 => 0.027100043034362
1001 => 0.026019435726168
1002 => 0.026382123008524
1003 => 0.026250355318633
1004 => 0.025772812212096
1005 => 0.026094618607127
1006 => 0.024677546105901
1007 => 0.022239546520561
1008 => 0.023850163724583
1009 => 0.023788156714243
1010 => 0.023756889967835
1011 => 0.024967224282468
1012 => 0.02485087856528
1013 => 0.024639709949323
1014 => 0.025768933934864
1015 => 0.025356751989935
1016 => 0.026626999621925
1017 => 0.027463666866819
1018 => 0.027251460990164
1019 => 0.028038350577951
1020 => 0.026390478590984
1021 => 0.026937835563905
1022 => 0.027050645077421
1023 => 0.025754999486167
1024 => 0.024869914163484
1025 => 0.024810889063172
1026 => 0.02327627308591
1027 => 0.024096052553976
1028 => 0.024817424561095
1029 => 0.024471943350414
1030 => 0.02436257432007
1031 => 0.024921316976849
1101 => 0.024964736066588
1102 => 0.023974776219191
1103 => 0.024180620219416
1104 => 0.025039023919072
1105 => 0.024158990648622
1106 => 0.022449229756756
1107 => 0.022025185416279
1108 => 0.021968610084572
1109 => 0.020818568201818
1110 => 0.022053522086757
1111 => 0.021514431621275
1112 => 0.023217411942437
1113 => 0.022244678716256
1114 => 0.022202746131052
1115 => 0.022139358878344
1116 => 0.021149470322227
1117 => 0.021366193005317
1118 => 0.022086612211705
1119 => 0.022343665900648
1120 => 0.022316853094912
1121 => 0.022083081764571
1122 => 0.022190101082498
1123 => 0.021845354571451
1124 => 0.021723617403123
1125 => 0.021339381413431
1126 => 0.020774660656486
1127 => 0.020853188541373
1128 => 0.01973432895464
1129 => 0.019124714869415
1130 => 0.01895598172521
1201 => 0.018730344712934
1202 => 0.018981468026143
1203 => 0.019731159366008
1204 => 0.018826872554241
1205 => 0.017276536243811
1206 => 0.017369714097712
1207 => 0.017579057070675
1208 => 0.017188947825501
1209 => 0.01681974216433
1210 => 0.017140736532116
1211 => 0.016483838599664
1212 => 0.017658440047445
1213 => 0.017626670370065
1214 => 0.018064489152932
1215 => 0.018338266222804
1216 => 0.017707298713127
1217 => 0.017548612090761
1218 => 0.017639007202766
1219 => 0.01614497735893
1220 => 0.017942395040523
1221 => 0.017957939183273
1222 => 0.017824840795926
1223 => 0.018781910222329
1224 => 0.020801625229481
1225 => 0.020041727200942
1226 => 0.019747471716253
1227 => 0.019188091824759
1228 => 0.019933432317483
1229 => 0.019876201796765
1230 => 0.019617383678046
1231 => 0.019460849672284
]
'min_raw' => 0.014618625736551
'max_raw' => 0.037509719723794
'avg_raw' => 0.026064172730172
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014618'
'max' => '$0.0375097'
'avg' => '$0.026064'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0089895160206793
'max_diff' => 0.021802758024343
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00045886195754086
]
1 => [
'year' => 2028
'avg' => 0.00078754032771819
]
2 => [
'year' => 2029
'avg' => 0.0021514182349921
]
3 => [
'year' => 2030
'avg' => 0.0016598159643082
]
4 => [
'year' => 2031
'avg' => 0.0016301449756786
]
5 => [
'year' => 2032
'avg' => 0.0028581571678691
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00045886195754086
'min' => '$0.000458'
'max_raw' => 0.0028581571678691
'max' => '$0.002858'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0028581571678691
]
1 => [
'year' => 2033
'avg' => 0.007351474136595
]
2 => [
'year' => 2034
'avg' => 0.004659717603089
]
3 => [
'year' => 2035
'avg' => 0.0054961475985881
]
4 => [
'year' => 2036
'avg' => 0.010668035707661
]
5 => [
'year' => 2037
'avg' => 0.026064172730172
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0028581571678691
'min' => '$0.002858'
'max_raw' => 0.026064172730172
'max' => '$0.026064'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026064172730172
]
]
]
]
'prediction_2025_max_price' => '$0.000784'
'last_price' => 0.00076073766718419
'sma_50day_nextmonth' => '$0.000777'
'sma_200day_nextmonth' => '$0.002079'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000753'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000787'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000906'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00089'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0008049'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001286'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.00264'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000771'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0008012'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.00085'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000868'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000954'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001459'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003421'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001265'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003987'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01883'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.071439'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00082'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000835'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.00092'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00156'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006399'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.02365'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.07595'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.07'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -7.12
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.000975'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000696'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 3.31
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -93.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000061'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -96.69
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 17.63
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.001571'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 31
'buy_signals' => 3
'sell_pct' => 91.18
'buy_pct' => 8.82
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767703060
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Crypterium para 2026
La previsión del precio de Crypterium para 2026 sugiere que el precio medio podría oscilar entre $0.000262 en el extremo inferior y $0.000784 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Crypterium podría potencialmente ganar 3.13% para 2026 si CRPT alcanza el objetivo de precio previsto.
Predicción de precio de Crypterium 2027-2032
La predicción del precio de CRPT para 2027-2032 está actualmente dentro de un rango de precios de $0.000458 en el extremo inferior y $0.002858 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Crypterium alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Crypterium | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000253 | $0.000458 | $0.000664 |
| 2028 | $0.000456 | $0.000787 | $0.001118 |
| 2029 | $0.001003 | $0.002151 | $0.003299 |
| 2030 | $0.000853 | $0.001659 | $0.002466 |
| 2031 | $0.0010086 | $0.00163 | $0.002251 |
| 2032 | $0.001539 | $0.002858 | $0.004176 |
Predicción de precio de Crypterium 2032-2037
La predicción de precio de Crypterium para 2032-2037 se estima actualmente entre $0.002858 en el extremo inferior y $0.026064 en el extremo superior. Comparado con el precio actual, Crypterium podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Crypterium | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001539 | $0.002858 | $0.004176 |
| 2033 | $0.003577 | $0.007351 | $0.011125 |
| 2034 | $0.002876 | $0.004659 | $0.006443 |
| 2035 | $0.00340062 | $0.005496 | $0.007591 |
| 2036 | $0.005629 | $0.010668 | $0.0157069 |
| 2037 | $0.014618 | $0.026064 | $0.0375097 |
Crypterium Histograma de precios potenciales
Pronóstico de precio de Crypterium basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Crypterium es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 31 indicando señales bajistas. La predicción de precio de CRPT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Crypterium
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Crypterium aumentar durante el próximo mes, alcanzando $0.002079 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Crypterium alcance $0.000777 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 39.07, lo que sugiere que el mercado de CRPT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CRPT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000753 | BUY |
| SMA 5 | $0.000787 | SELL |
| SMA 10 | $0.000906 | SELL |
| SMA 21 | $0.00089 | SELL |
| SMA 50 | $0.0008049 | SELL |
| SMA 100 | $0.001286 | SELL |
| SMA 200 | $0.00264 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000771 | SELL |
| EMA 5 | $0.0008012 | SELL |
| EMA 10 | $0.00085 | SELL |
| EMA 21 | $0.000868 | SELL |
| EMA 50 | $0.000954 | SELL |
| EMA 100 | $0.001459 | SELL |
| EMA 200 | $0.003421 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001265 | SELL |
| SMA 50 | $0.003987 | SELL |
| SMA 100 | $0.01883 | SELL |
| SMA 200 | $0.071439 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.00156 | SELL |
| EMA 50 | $0.006399 | SELL |
| EMA 100 | $0.02365 | SELL |
| EMA 200 | $0.07595 | SELL |
Osciladores de Crypterium
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 39.07 | NEUTRAL |
| Stoch RSI (14) | -7.12 | BUY |
| Estocástico Rápido (14) | 3.31 | BUY |
| Índice de Canal de Materias Primas (20) | -93.82 | NEUTRAL |
| Índice Direccional Medio (14) | 17.54 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000061 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -96.69 | BUY |
| Oscilador Ultimate (7, 14, 28) | 17.63 | BUY |
| VWMA (10) | 0.000975 | SELL |
| Promedio Móvil de Hull (9) | 0.000696 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001571 | NEUTRAL |
Predicción de precios de Crypterium basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Crypterium
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Crypterium por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001068 | $0.001502 | $0.00211 | $0.002965 | $0.004167 | $0.005856 |
| Amazon.com acción | $0.001587 | $0.003312 | $0.00691 | $0.014419 | $0.030087 | $0.062779 |
| Apple acción | $0.001079 | $0.00153 | $0.00217 | $0.003079 | $0.004367 | $0.006195 |
| Netflix acción | $0.00120032 | $0.001893 | $0.002988 | $0.004715 | $0.007439 | $0.011738 |
| Google acción | $0.000985 | $0.001275 | $0.001652 | $0.002139 | $0.00277 | $0.003587 |
| Tesla acción | $0.001724 | $0.0039094 | $0.008862 | $0.02009 | $0.045542 | $0.103242 |
| Kodak acción | $0.00057 | $0.000427 | $0.00032 | $0.00024 | $0.00018 | $0.000135 |
| Nokia acción | $0.0005039 | $0.000333 | $0.000221 | $0.000146 | $0.000097 | $0.000064 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Crypterium
Podría preguntarse cosas como: "¿Debo invertir en Crypterium ahora?", "¿Debería comprar CRPT hoy?", "¿Será Crypterium una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Crypterium regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Crypterium, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Crypterium a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Crypterium es de $0.0007607 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Crypterium
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Crypterium
basado en el historial de precios del último mes
Predicción de precios de Crypterium basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Crypterium ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00078 | $0.0008008 | $0.000821 | $0.000842 |
| Si Crypterium ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00080028 | $0.000841 | $0.000885 | $0.000931 |
| Si Crypterium ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000859 | $0.000971 | $0.001097 | $0.00124 |
| Si Crypterium ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000958 | $0.0012076 | $0.001521 | $0.001917 |
| Si Crypterium ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001156 | $0.001757 | $0.00267 | $0.004059 |
| Si Crypterium ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001749 | $0.004023 | $0.009251 | $0.021276 |
| Si Crypterium ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002738 | $0.009855 | $0.035473 | $0.127678 |
Cuadro de preguntas
¿Es CRPT una buena inversión?
La decisión de adquirir Crypterium depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Crypterium ha experimentado un aumento de 2.4103% durante las últimas 24 horas, y Crypterium ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Crypterium dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Crypterium subir?
Parece que el valor medio de Crypterium podría potencialmente aumentar hasta $0.000784 para el final de este año. Mirando las perspectivas de Crypterium en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002466. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Crypterium la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Crypterium, el precio de Crypterium aumentará en un 0.86% durante la próxima semana y alcanzará $0.000767 para el 13 de enero de 2026.
¿Cuál será el precio de Crypterium el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Crypterium, el precio de Crypterium disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000672 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Crypterium este año en 2026?
Según nuestra predicción más reciente sobre el valor de Crypterium en 2026, se anticipa que CRPT fluctúe dentro del rango de $0.000262 y $0.000784. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Crypterium no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Crypterium en 5 años?
El futuro de Crypterium parece estar en una tendencia alcista, con un precio máximo de $0.002466 proyectada después de un período de cinco años. Basado en el pronóstico de Crypterium para 2030, el valor de Crypterium podría potencialmente alcanzar su punto más alto de aproximadamente $0.002466, mientras que su punto más bajo se anticipa que esté alrededor de $0.000853.
¿Cuánto será Crypterium en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Crypterium, se espera que el valor de CRPT en 2026 crezca en un 3.13% hasta $0.000784 si ocurre lo mejor. El precio estará entre $0.000784 y $0.000262 durante 2026.
¿Cuánto será Crypterium en 2027?
Según nuestra última simulación experimental para la predicción de precios de Crypterium, el valor de CRPT podría disminuir en un -12.62% hasta $0.000664 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000664 y $0.000253 a lo largo del año.
¿Cuánto será Crypterium en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Crypterium sugiere que el valor de CRPT en 2028 podría aumentar en un 47.02% , alcanzando $0.001118 en el mejor escenario. Se espera que el precio oscile entre $0.001118 y $0.000456 durante el año.
¿Cuánto será Crypterium en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Crypterium podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003299 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003299 y $0.001003.
¿Cuánto será Crypterium en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Crypterium, se espera que el valor de CRPT en 2030 aumente en un 224.23% , alcanzando $0.002466 en el mejor escenario. Se pronostica que el precio oscile entre $0.002466 y $0.000853 durante el transcurso de 2030.
¿Cuánto será Crypterium en 2031?
Nuestra simulación experimental indica que el precio de Crypterium podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.002251 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.002251 y $0.0010086 durante el año.
¿Cuánto será Crypterium en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Crypterium, CRPT podría experimentar un 449.04% aumento en valor, alcanzando $0.004176 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004176 y $0.001539 a lo largo del año.
¿Cuánto será Crypterium en 2033?
Según nuestra predicción experimental de precios de Crypterium, se anticipa que el valor de CRPT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.011125. A lo largo del año, el precio de CRPT podría oscilar entre $0.011125 y $0.003577.
¿Cuánto será Crypterium en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Crypterium sugieren que CRPT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006443 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006443 y $0.002876.
¿Cuánto será Crypterium en 2035?
Basado en nuestra predicción experimental para el precio de Crypterium, CRPT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.007591 en 2035. El rango de precios esperado para el año está entre $0.007591 y $0.00340062.
¿Cuánto será Crypterium en 2036?
Nuestra reciente simulación de predicción de precios de Crypterium sugiere que el valor de CRPT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0157069 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0157069 y $0.005629.
¿Cuánto será Crypterium en 2037?
Según la simulación experimental, el valor de Crypterium podría aumentar en un 4830.69% en 2037, con un máximo de $0.0375097 bajo condiciones favorables. Se espera que el precio caiga entre $0.0375097 y $0.014618 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de HeadStarter
Predicción de precios de Quint
Predicción de precios de Garden
Predicción de precios de Bware
Predicción de precios de MintMe.com Coin
Predicción de precios de Kommunitas
Predicción de precios de Verasity (Old)
Predicción de precios de Ignis
Predicción de precios de Verse
Predicción de precios de Level
Predicción de precios de Levana
Predicción de precios de SoonVerse
Predicción de precios de Timeless
Predicción de precios de Revomon
Predicción de precios de DFX Finance
Predicción de precios de DeFrogs
Predicción de precios de Sentient Coin
Predicción de precios de Rebase GG IRL
Predicción de precios de Interport Token
Predicción de precios de MetaBeat
Predicción de precios de Solidly
Predicción de precios de XAYA
Predicción de precios de LiquidLayer
Predicción de precios de Coconut Chicken
Predicción de precios de Per Community
¿Cómo leer y predecir los movimientos de precio de Crypterium?
Los traders de Crypterium utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Crypterium
Las medias móviles son herramientas populares para la predicción de precios de Crypterium. Una media móvil simple (SMA) calcula el precio de cierre promedio de CRPT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CRPT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CRPT.
¿Cómo leer gráficos de Crypterium y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Crypterium en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CRPT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Crypterium?
La acción del precio de Crypterium está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CRPT. La capitalización de mercado de Crypterium puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CRPT, grandes poseedores de Crypterium, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Crypterium.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


