Predicción del precio de CoinCreate - Pronóstico de CREA
Predicción de precio de CoinCreate hasta $0.004051 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001357 | $0.004051 |
| 2027 | $0.0013067 | $0.003432 |
| 2028 | $0.002358 | $0.005776 |
| 2029 | $0.00518 | $0.017041 |
| 2030 | $0.0044057 | $0.012738 |
| 2031 | $0.005209 | $0.011628 |
| 2032 | $0.007951 | $0.02157 |
| 2033 | $0.018476 | $0.057456 |
| 2034 | $0.014854 | $0.033275 |
| 2035 | $0.017562 | $0.0392071 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en CoinCreate hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.96, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de CoinCreate para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'CoinCreate'
'name_with_ticker' => 'CoinCreate <small>CREA</small>'
'name_lang' => 'CoinCreate'
'name_lang_with_ticker' => 'CoinCreate <small>CREA</small>'
'name_with_lang' => 'CoinCreate'
'name_with_lang_with_ticker' => 'CoinCreate <small>CREA</small>'
'image' => '/uploads/coins/coincreate.png?1729408224'
'price_for_sd' => 0.003928
'ticker' => 'CREA'
'marketcap' => '$392.88K'
'low24h' => '$0.003614'
'high24h' => '$0.003964'
'volume24h' => '$2.26K'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003928'
'change_24h_pct' => '7.7838%'
'ath_price' => '$0.05477'
'ath_days' => 168
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 jul. 2025'
'ath_pct' => '-92.83%'
'fdv' => '$392.88K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.193718'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003962'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003472'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001357'
'current_year_max_price_prediction' => '$0.004051'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0044057'
'grand_prediction_max_price' => '$0.012738'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0040032894514302
107 => 0.0040182362810477
108 => 0.0040519122513802
109 => 0.0037641547720047
110 => 0.0038933494321286
111 => 0.0039692391910487
112 => 0.0036263664993543
113 => 0.0039624617003537
114 => 0.0037591455544914
115 => 0.0036901370008797
116 => 0.0037830479271322
117 => 0.0037468404488128
118 => 0.0037157113851282
119 => 0.003698340832727
120 => 0.0037665643627621
121 => 0.0037633816535412
122 => 0.0036517547167872
123 => 0.0035061419282876
124 => 0.0035550143596849
125 => 0.0035372585471767
126 => 0.0034729091921019
127 => 0.0035162728878516
128 => 0.0033253211176341
129 => 0.0029967985217842
130 => 0.0032138306115219
131 => 0.0032054751121525
201 => 0.0032012618904787
202 => 0.0033643555075902
203 => 0.0033486778195149
204 => 0.0033202226621418
205 => 0.0034723865908219
206 => 0.00341684470996
207 => 0.0035880116994635
208 => 0.0037007533491372
209 => 0.0036721584199697
210 => 0.0037781924864155
211 => 0.0035561402817958
212 => 0.0036298971169823
213 => 0.0036450982984917
214 => 0.0034705089115618
215 => 0.0033512428831732
216 => 0.003343289198812
217 => 0.0031364983414573
218 => 0.0032469643482987
219 => 0.0033441698629251
220 => 0.0032976159648717
221 => 0.0032828783915061
222 => 0.0033581694576412
223 => 0.0033640202183042
224 => 0.0032306222551505
225 => 0.0032583599158543
226 => 0.0033740305719913
227 => 0.0032554453121
228 => 0.0030250535229233
301 => 0.0029679131737918
302 => 0.0029602895979121
303 => 0.0028053204392092
304 => 0.002971731565148
305 => 0.0028990886491348
306 => 0.0031285667504247
307 => 0.0029974900896837
308 => 0.0029918396368187
309 => 0.0029832981485721
310 => 0.0028499097919813
311 => 0.0028791133648024
312 => 0.0029761904886895
313 => 0.0030108287001445
314 => 0.0030072156509072
315 => 0.0029757147578222
316 => 0.0029901357053658
317 => 0.0029436808087365
318 => 0.0029272766178617
319 => 0.0028755004791324
320 => 0.0027994038587238
321 => 0.0028099855605193
322 => 0.002659218243726
323 => 0.0025770722077099
324 => 0.002554335267608
325 => 0.0025239304810616
326 => 0.0025577695691525
327 => 0.0026587911388605
328 => 0.002536937692871
329 => 0.0023280285067475
330 => 0.0023405843047975
331 => 0.0023687934551658
401 => 0.0023162258900766
402 => 0.002266475101381
403 => 0.0023097293757428
404 => 0.0022212117995811
405 => 0.0023794903813473
406 => 0.0023752093892811
407 => 0.0024342058566817
408 => 0.0024710975584766
409 => 0.0023860741296695
410 => 0.0023646909672523
411 => 0.0023768717883757
412 => 0.0021755499483206
413 => 0.002417753567277
414 => 0.0024198481542314
415 => 0.0024019130290667
416 => 0.0025308789789632
417 => 0.0028030373587332
418 => 0.0027006404287183
419 => 0.0026609892424529
420 => 0.0025856123083776
421 => 0.0026860475975934
422 => 0.0026783357344163
423 => 0.0026434597644917
424 => 0.0026223666690617
425 => 0.0026612313441411
426 => 0.002617550905723
427 => 0.002609704698725
428 => 0.0025621652210741
429 => 0.0025451957904612
430 => 0.0025326322996078
501 => 0.0025188011306414
502 => 0.0025493092428687
503 => 0.0024801738468853
504 => 0.0023968033367556
505 => 0.0023898719809198
506 => 0.0024090100637936
507 => 0.0024005428867846
508 => 0.0023898314433338
509 => 0.0023693803806981
510 => 0.0023633129872819
511 => 0.0023830290724037
512 => 0.0023607707618204
513 => 0.002393614111559
514 => 0.0023846825377356
515 => 0.0023347914924018
516 => 0.0022726087778851
517 => 0.0022720552212933
518 => 0.0022586580574508
519 => 0.0022415947550203
520 => 0.0022368481346396
521 => 0.002306086621402
522 => 0.0024494082168667
523 => 0.0024212707582819
524 => 0.0024416029557522
525 => 0.0025416172437905
526 => 0.0025734087784234
527 => 0.0025508439001648
528 => 0.0025199557030633
529 => 0.0025213146269755
530 => 0.0026268689469643
531 => 0.0026334522404265
601 => 0.0026500860991543
602 => 0.0026714653083475
603 => 0.0025544848719367
604 => 0.0025158048589404
605 => 0.0024974761228974
606 => 0.0024410307099983
607 => 0.002501902248546
608 => 0.0024664350098134
609 => 0.0024712207520519
610 => 0.0024681040311408
611 => 0.00246980597151
612 => 0.0023794461392579
613 => 0.0024123685129576
614 => 0.0023576286812825
615 => 0.002284338191504
616 => 0.0022840924960833
617 => 0.002302030239626
618 => 0.0022913601678628
619 => 0.0022626472791007
620 => 0.0022667258094283
621 => 0.0022309935921269
622 => 0.0022710643475614
623 => 0.0022722134334472
624 => 0.0022567840099361
625 => 0.0023185185373817
626 => 0.0023438112236467
627 => 0.0023336552465614
628 => 0.0023430986532207
629 => 0.0024224399967191
630 => 0.0024353760976149
701 => 0.0024411214591219
702 => 0.002433423435817
703 => 0.0023445488673309
704 => 0.0023484908323671
705 => 0.0023195673084663
706 => 0.002295129978656
707 => 0.0022961073436915
708 => 0.0023086713078445
709 => 0.0023635388761674
710 => 0.0024790044390832
711 => 0.0024833862727916
712 => 0.0024886971830734
713 => 0.0024670950419079
714 => 0.0024605796294278
715 => 0.0024691751402598
716 => 0.0025125379348001
717 => 0.0026240788152416
718 => 0.0025846528185286
719 => 0.0025525988694988
720 => 0.0025807188244806
721 => 0.0025763899778226
722 => 0.0025398501556322
723 => 0.002538824604523
724 => 0.0024686930032518
725 => 0.0024427669470811
726 => 0.0024211011940132
727 => 0.0023974427572619
728 => 0.0023834172429177
729 => 0.0024049668074326
730 => 0.0024098954478042
731 => 0.0023627769483704
801 => 0.0023563548710064
802 => 0.0023948328547675
803 => 0.002377900128718
804 => 0.0023953158573713
805 => 0.0023993564558082
806 => 0.002398705826397
807 => 0.0023810261156902
808 => 0.0023922946360781
809 => 0.002365641226053
810 => 0.0023366596458634
811 => 0.0023181712033188
812 => 0.0023020375850625
813 => 0.0023109894541625
814 => 0.0022790776753677
815 => 0.0022688684550741
816 => 0.0023884771149204
817 => 0.0024768333179587
818 => 0.0024755485837736
819 => 0.0024677280948288
820 => 0.002456108434585
821 => 0.0025116878842788
822 => 0.0024923251153517
823 => 0.0025064131475597
824 => 0.0025099991430294
825 => 0.0025208528712837
826 => 0.0025247321462252
827 => 0.0025130062830225
828 => 0.0024736528539205
829 => 0.0023755878502104
830 => 0.0023299383262618
831 => 0.0023148732230059
901 => 0.0023154208108965
902 => 0.0023003158923324
903 => 0.0023047649678045
904 => 0.0022987686854487
905 => 0.0022874131773235
906 => 0.0023102882835347
907 => 0.0023129244264292
908 => 0.0023075851033023
909 => 0.002308842707185
910 => 0.0022646353921493
911 => 0.0022679963782982
912 => 0.0022492819803275
913 => 0.0022457732563135
914 => 0.0021984648878926
915 => 0.0021146512557774
916 => 0.0021610921439554
917 => 0.0021049980816135
918 => 0.0020837544102409
919 => 0.0021843186464501
920 => 0.0021742247863524
921 => 0.0021569484855607
922 => 0.0021313932359932
923 => 0.0021219145453431
924 => 0.002064325021542
925 => 0.0020609223252477
926 => 0.0020894652482914
927 => 0.0020762936714088
928 => 0.0020577957889992
929 => 0.0019907983340122
930 => 0.0019154710125117
1001 => 0.0019177446708571
1002 => 0.0019417048903118
1003 => 0.002011372459852
1004 => 0.0019841521351715
1005 => 0.0019644034772985
1006 => 0.0019607051473213
1007 => 0.0020069974899634
1008 => 0.0020725108533476
1009 => 0.0021032482576686
1010 => 0.0020727884234954
1011 => 0.0020377978060711
1012 => 0.0020399275228228
1013 => 0.002054095574242
1014 => 0.0020555844361207
1015 => 0.0020328091412711
1016 => 0.0020392202533642
1017 => 0.0020294811878504
1018 => 0.001969712560769
1019 => 0.0019686315358334
1020 => 0.0019539633508484
1021 => 0.0019535192040365
1022 => 0.0019285649622267
1023 => 0.001925073691297
1024 => 0.0018755255295693
1025 => 0.0019081382796641
1026 => 0.0018862633591467
1027 => 0.001853292694155
1028 => 0.001847608539083
1029 => 0.0018474376665177
1030 => 0.0018812911673585
1031 => 0.0019077426817963
1101 => 0.0018866438827546
1102 => 0.0018818400951959
1103 => 0.0019331319785903
1104 => 0.0019266046188925
1105 => 0.0019209519674911
1106 => 0.0020666448502134
1107 => 0.0019513175649813
1108 => 0.0019010282859688
1109 => 0.0018387857535157
1110 => 0.0018590522359365
1111 => 0.0018633226815591
1112 => 0.0017136406110693
1113 => 0.0016529146137132
1114 => 0.0016320757398316
1115 => 0.0016200826732943
1116 => 0.0016255480643148
1117 => 0.0015708875442453
1118 => 0.0016076203177335
1119 => 0.0015602889276921
1120 => 0.001552353666122
1121 => 0.0016369880547502
1122 => 0.0016487644355009
1123 => 0.0015985227365837
1124 => 0.0016307860406807
1125 => 0.0016190869181217
1126 => 0.001561100288525
1127 => 0.0015588856257952
1128 => 0.0015297899733922
1129 => 0.00148426091141
1130 => 0.0014634529083763
1201 => 0.001452615919733
1202 => 0.0014570874724559
1203 => 0.0014548265185674
1204 => 0.0014400722650769
1205 => 0.0014556722151068
1206 => 0.0014158207891248
1207 => 0.0013999516301941
1208 => 0.0013927838992668
1209 => 0.0013574134649453
1210 => 0.0014137035552543
1211 => 0.001424793412169
1212 => 0.0014359051195277
1213 => 0.0015326249458003
1214 => 0.0015277930966071
1215 => 0.0015714706601075
1216 => 0.0015697734303078
1217 => 0.0015573158816679
1218 => 0.0015047595331233
1219 => 0.0015257075569263
1220 => 0.0014612327957062
1221 => 0.0015095416706699
1222 => 0.0014874955175633
1223 => 0.0015020878441281
1224 => 0.0014758495252276
1225 => 0.0014903708942608
1226 => 0.0014274232286501
1227 => 0.0013686435842003
1228 => 0.0013922982290117
1229 => 0.0014180135331584
1230 => 0.0014737708646861
1231 => 0.0014405622580162
]
'min_raw' => 0.0013574134649453
'max_raw' => 0.0040519122513802
'avg_raw' => 0.0027046628581627
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001357'
'max' => '$0.004051'
'avg' => '$0.0027046'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0025714265350547
'max_diff' => 0.00012307225138016
'year' => 2026
]
1 => [
'items' => [
101 => 0.0014525053287311
102 => 0.001412498041082
103 => 0.001329951579145
104 => 0.0013304187831551
105 => 0.0013177208083585
106 => 0.0013067479041996
107 => 0.001444376665972
108 => 0.0014272603538569
109 => 0.0013999877506289
110 => 0.0014364932138197
111 => 0.001446145837707
112 => 0.001446420634339
113 => 0.0014730540779407
114 => 0.0014872683515652
115 => 0.0014897736788997
116 => 0.0015316819778605
117 => 0.0015457290868883
118 => 0.0016035871409526
119 => 0.0014860623697577
120 => 0.0014836420244343
121 => 0.0014370069205502
122 => 0.001407430200395
123 => 0.0014390320638832
124 => 0.0014670270008491
125 => 0.0014378768012773
126 => 0.0014416832019471
127 => 0.0014025514406807
128 => 0.0014165392040129
129 => 0.0014285873501498
130 => 0.0014219350720103
131 => 0.0014119762896616
201 => 0.001464731735268
202 => 0.0014617550662766
203 => 0.0015108821500677
204 => 0.0015491802249944
205 => 0.0016178172218627
206 => 0.001546190937503
207 => 0.0015435805910123
208 => 0.0015690971466722
209 => 0.0015457251804366
210 => 0.0015604954563246
211 => 0.0016154375020696
212 => 0.0016165983409196
213 => 0.0015971527945249
214 => 0.0015959695312596
215 => 0.0015997042611557
216 => 0.0016215786908091
217 => 0.0016139350929548
218 => 0.001622780457904
219 => 0.0016338417222179
220 => 0.0016795958012993
221 => 0.0016906269548661
222 => 0.0016638269706961
223 => 0.0016662467092
224 => 0.0016562227794444
225 => 0.0016465397889
226 => 0.0016683057375566
227 => 0.0017080834365375
228 => 0.0017078359815366
301 => 0.0017170636345322
302 => 0.0017228123859024
303 => 0.0016981345366781
304 => 0.0016820701642628
305 => 0.0016882302668494
306 => 0.001698080405035
307 => 0.0016850359997927
308 => 0.0016045198878808
309 => 0.0016289433328457
310 => 0.0016248780773581
311 => 0.0016190886591918
312 => 0.0016436466219649
313 => 0.0016412779465459
314 => 0.0015703269216069
315 => 0.0015748689760235
316 => 0.0015706031389798
317 => 0.0015843869311762
318 => 0.0015449808104234
319 => 0.0015571018677627
320 => 0.001564704081298
321 => 0.0015691818434733
322 => 0.0015853585908807
323 => 0.0015834604362837
324 => 0.0015852405989258
325 => 0.001609226444828
326 => 0.0017305386224527
327 => 0.0017371413766205
328 => 0.001704627000254
329 => 0.0017176158522947
330 => 0.0016926800967262
331 => 0.0017094196364944
401 => 0.0017208724044656
402 => 0.0016691195482445
403 => 0.0016660550799724
404 => 0.0016410164056705
405 => 0.0016544707709773
406 => 0.0016330639083711
407 => 0.0016383164036744
408 => 0.001623629968902
409 => 0.0016500626274523
410 => 0.0016796184469313
411 => 0.0016870854141264
412 => 0.0016674430381676
413 => 0.0016532206634778
414 => 0.001628250858664
415 => 0.0016697762005578
416 => 0.0016819194759894
417 => 0.0016697124171015
418 => 0.0016668837748277
419 => 0.00166152350283
420 => 0.0016680209818716
421 => 0.0016818533411035
422 => 0.0016753302559333
423 => 0.0016796388686102
424 => 0.001663218880108
425 => 0.0016981427060731
426 => 0.001753610146582
427 => 0.0017537884834731
428 => 0.0017472653631411
429 => 0.0017445962428438
430 => 0.0017512893601605
501 => 0.0017549201017388
502 => 0.0017765644158332
503 => 0.0017997896272041
504 => 0.0019081715547185
505 => 0.0018777383431697
506 => 0.0019739012369301
507 => 0.0020499536007057
508 => 0.0020727583792352
509 => 0.0020517790560358
510 => 0.0019800099246515
511 => 0.0019764885886731
512 => 0.0020837419711069
513 => 0.0020534379780532
514 => 0.002049833414506
515 => 0.0020114869483697
516 => 0.0020341544591585
517 => 0.0020291967420366
518 => 0.00202137074302
519 => 0.0020646187745725
520 => 0.0021455752288603
521 => 0.0021329574062547
522 => 0.0021235387870036
523 => 0.0020822691391641
524 => 0.002107122685073
525 => 0.0020982728134132
526 => 0.0021362974783313
527 => 0.0021137725091833
528 => 0.002053208395501
529 => 0.0020628534302268
530 => 0.0020613956026312
531 => 0.0020913975912477
601 => 0.0020823917389602
602 => 0.0020596370654332
603 => 0.0021452985285006
604 => 0.0021397361495631
605 => 0.0021476223311597
606 => 0.0021510940721867
607 => 0.0022032346952316
608 => 0.0022245950401792
609 => 0.0022294442124478
610 => 0.0022497348880797
611 => 0.0022289393619537
612 => 0.0023121362934164
613 => 0.0023674573981637
614 => 0.0024317157081256
615 => 0.0025256143699853
616 => 0.0025609211354558
617 => 0.0025545432842922
618 => 0.0026257361780636
619 => 0.0027536682256419
620 => 0.002580402008825
621 => 0.0027628517558564
622 => 0.0027050902724299
623 => 0.0025681388343103
624 => 0.0025593207762468
625 => 0.0026520658801802
626 => 0.0028577655943193
627 => 0.0028062401489543
628 => 0.0028578498714894
629 => 0.0027976443887404
630 => 0.0027946546790702
701 => 0.0028549258255734
702 => 0.0029957526445873
703 => 0.0029288511016882
704 => 0.002832931335011
705 => 0.0029037569980486
706 => 0.0028424012541197
707 => 0.0027041495906566
708 => 0.0028062007484173
709 => 0.0027379620454724
710 => 0.0027578777267607
711 => 0.0029013053306099
712 => 0.0028840477418523
713 => 0.0029063806597143
714 => 0.0028669636442422
715 => 0.0028301419362985
716 => 0.0027614114840057
717 => 0.0027410637854521
718 => 0.0027466871572988
719 => 0.0027410609987883
720 => 0.0027026069423959
721 => 0.0026943027925792
722 => 0.0026804621790716
723 => 0.0026847519639383
724 => 0.0026587275613297
725 => 0.0027078409859682
726 => 0.0027169568703671
727 => 0.0027526975250993
728 => 0.0027564082384386
729 => 0.0028559454531314
730 => 0.0028011220279335
731 => 0.002837902314783
801 => 0.0028346123397377
802 => 0.0025711069872474
803 => 0.0026074156998932
804 => 0.0026639006624683
805 => 0.0026384542633917
806 => 0.0026024790086379
807 => 0.002573427061553
808 => 0.0025294103910054
809 => 0.0025913630095359
810 => 0.0026728241149771
811 => 0.0027584742265039
812 => 0.0028613772234857
813 => 0.0028384104724823
814 => 0.0027565505265532
815 => 0.0027602227039288
816 => 0.0027829226595166
817 => 0.002753524154522
818 => 0.0027448539614721
819 => 0.0027817315081314
820 => 0.0027819854635277
821 => 0.0027481589306034
822 => 0.0027105669294482
823 => 0.0027104094175908
824 => 0.0027037202840809
825 => 0.0027988343707318
826 => 0.002851137501271
827 => 0.0028571339708966
828 => 0.0028507338910878
829 => 0.0028531970277961
830 => 0.0028227629885562
831 => 0.0028923261773247
901 => 0.0029561642384249
902 => 0.0029390542743488
903 => 0.002913404005874
904 => 0.0028929723315495
905 => 0.0029342412212059
906 => 0.0029324035825128
907 => 0.0029556066686523
908 => 0.0029545540426375
909 => 0.002946751717481
910 => 0.0029390545529944
911 => 0.0029695729401357
912 => 0.0029607841347493
913 => 0.0029519816779206
914 => 0.002934327003162
915 => 0.0029367265666748
916 => 0.0029110807270805
917 => 0.0028992157882103
918 => 0.0027207955755728
919 => 0.0026731158647074
920 => 0.0026881168723557
921 => 0.0026930555935745
922 => 0.0026723053223027
923 => 0.0027020558809991
924 => 0.0026974192879399
925 => 0.0027154575592171
926 => 0.0027041880304538
927 => 0.0027046505358452
928 => 0.0027377918170211
929 => 0.0027474128719396
930 => 0.0027425195257566
1001 => 0.0027459466576891
1002 => 0.0028249234665705
1003 => 0.0028136954898837
1004 => 0.0028077308510507
1005 => 0.0028093830967706
1006 => 0.0028295633647216
1007 => 0.0028352127379462
1008 => 0.0028112759466194
1009 => 0.0028225646757861
1010 => 0.0028706306518245
1011 => 0.0028874510231393
1012 => 0.0029411335741399
1013 => 0.0029183282723436
1014 => 0.0029601883907811
1015 => 0.003088852123692
1016 => 0.0031916376163943
1017 => 0.0030971118295151
1018 => 0.0032858642972093
1019 => 0.0034328351682426
1020 => 0.0034271941814196
1021 => 0.0034015664105574
1022 => 0.0032342439813088
1023 => 0.0030802713872773
1024 => 0.0032090760002063
1025 => 0.0032094043496535
1026 => 0.0031983399191718
1027 => 0.0031296196917097
1028 => 0.0031959486042158
1029 => 0.0032012135524193
1030 => 0.0031982665814881
1031 => 0.003145578944216
1101 => 0.0030651346604046
1102 => 0.0030808532809049
1103 => 0.0031066007019357
1104 => 0.0030578554624498
1105 => 0.0030422784048558
1106 => 0.0030712391185794
1107 => 0.0031645565724013
1108 => 0.0031469154483075
1109 => 0.003146454767264
1110 => 0.0032219309771383
1111 => 0.0031679062996539
1112 => 0.0030810515430474
1113 => 0.0030591195715308
1114 => 0.0029812758477931
1115 => 0.0030350427850486
1116 => 0.0030369777614009
1117 => 0.0030075301593509
1118 => 0.0030834410536588
1119 => 0.0030827415214039
1120 => 0.0031548076177037
1121 => 0.0032925709270391
1122 => 0.0032518275375479
1123 => 0.0032044474084378
1124 => 0.0032095989421805
1125 => 0.0032660985522698
1126 => 0.0032319375982492
1127 => 0.0032442221154936
1128 => 0.0032660799581816
1129 => 0.003279267337375
1130 => 0.0032077014812568
1201 => 0.0031910160568051
1202 => 0.003156883534165
1203 => 0.0031479789961219
1204 => 0.0031757792236138
1205 => 0.0031684548458662
1206 => 0.0030368151341311
1207 => 0.0030230580518184
1208 => 0.0030234799618923
1209 => 0.0029888871243033
1210 => 0.0029361247437477
1211 => 0.0030747811295697
1212 => 0.0030636450812933
1213 => 0.0030513517458579
1214 => 0.0030528576093039
1215 => 0.0031130436468883
1216 => 0.0030781327056216
1217 => 0.0031709491647699
1218 => 0.0031518688910872
1219 => 0.003132299280381
1220 => 0.0031295941640764
1221 => 0.0031220615335553
1222 => 0.0030962293407298
1223 => 0.0030650354156189
1224 => 0.0030444384842892
1225 => 0.0028083335733474
1226 => 0.0028521532714591
1227 => 0.0029025638398455
1228 => 0.0029199653660448
1229 => 0.0028901988513319
1230 => 0.0030974047041597
1231 => 0.0031352632101566
]
'min_raw' => 0.0013067479041996
'max_raw' => 0.0034328351682426
'avg_raw' => 0.0023697915362211
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0013067'
'max' => '$0.003432'
'avg' => '$0.002369'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.0665560745742E-5
'max_diff' => -0.00061907708313753
'year' => 2027
]
2 => [
'items' => [
101 => 0.0030205873260427
102 => 0.0029991361503105
103 => 0.0030988110396695
104 => 0.0030386948966263
105 => 0.0030657651921577
106 => 0.0030072540198789
107 => 0.0031261442046884
108 => 0.0031252384606757
109 => 0.0030789874935282
110 => 0.0031180784942483
111 => 0.0031112854708909
112 => 0.0030590682428925
113 => 0.0031277995839542
114 => 0.0031278336738418
115 => 0.0030833181235451
116 => 0.0030313337065055
117 => 0.0030220401205559
118 => 0.0030150386519606
119 => 0.0030640432600811
120 => 0.0031079806384885
121 => 0.0031897372067048
122 => 0.0032102927504426
123 => 0.003290522406111
124 => 0.0032427495524715
125 => 0.0032639266397279
126 => 0.0032869173636265
127 => 0.0032979399621195
128 => 0.0032799792293805
129 => 0.0034046089084773
130 => 0.0034151314719478
131 => 0.0034186595964596
201 => 0.0033766351698892
202 => 0.0034139626966232
203 => 0.0033964983830221
204 => 0.0034419356752862
205 => 0.0034490608228857
206 => 0.0034430260763534
207 => 0.0034452877106643
208 => 0.0033389382657371
209 => 0.0033334234859796
210 => 0.0032582290726753
211 => 0.0032888713519059
212 => 0.0032315870796071
213 => 0.0032497525124464
214 => 0.0032577596621554
215 => 0.0032535771815492
216 => 0.0032906038203983
217 => 0.003259123613334
218 => 0.003176042171066
219 => 0.0030929380933147
220 => 0.0030918947893137
221 => 0.0030700149525506
222 => 0.0030541998380628
223 => 0.0030572463901845
224 => 0.0030679828372293
225 => 0.0030535758162428
226 => 0.0030566502846248
227 => 0.0031077069448412
228 => 0.0031179459939282
229 => 0.0030831497044759
301 => 0.0029434375812446
302 => 0.0029091518757623
303 => 0.0029337957609479
304 => 0.0029220175710987
305 => 0.0023582962339976
306 => 0.0024907342003527
307 => 0.0024120440579129
308 => 0.0024483080959085
309 => 0.0023679858371911
310 => 0.0024063198291013
311 => 0.0023992409405287
312 => 0.0026121972713034
313 => 0.0026088722511102
314 => 0.0026104637623206
315 => 0.0025344967855912
316 => 0.0026555142422493
317 => 0.002715131793046
318 => 0.0027040981710632
319 => 0.0027068750960063
320 => 0.002659158325093
321 => 0.0026109257649667
322 => 0.0025574284328489
323 => 0.0026568198634537
324 => 0.0026457692330387
325 => 0.0026711154033193
326 => 0.0027355778507128
327 => 0.0027450701909605
328 => 0.0027578279925152
329 => 0.00275325522882
330 => 0.0028621970118728
331 => 0.0028490034431241
401 => 0.0028807961477597
402 => 0.0028153961422059
403 => 0.0027413898280962
404 => 0.0027554560089598
405 => 0.0027541013226295
406 => 0.002736854610809
407 => 0.0027212850505299
408 => 0.0026953661193617
409 => 0.0027773774528579
410 => 0.0027740479424883
411 => 0.0028279488452407
412 => 0.0028184213371138
413 => 0.0027547943060654
414 => 0.0027570667579269
415 => 0.0027723500887981
416 => 0.0028252458714454
417 => 0.0028409489411546
418 => 0.0028336746536062
419 => 0.00285089235267
420 => 0.0028645005199878
421 => 0.0028526013289701
422 => 0.0030210687806089
423 => 0.0029511093491787
424 => 0.0029852070892832
425 => 0.0029933391993825
426 => 0.0029725089703629
427 => 0.0029770263011627
428 => 0.0029838688264254
429 => 0.0030254152999168
430 => 0.0031344452679273
501 => 0.003182733898567
502 => 0.0033280126263657
503 => 0.0031787242000026
504 => 0.0031698660425991
505 => 0.0031960351284729
506 => 0.0032813291210059
507 => 0.0033504518906965
508 => 0.0033733839011912
509 => 0.0033764147449443
510 => 0.0034194367211234
511 => 0.003444096115557
512 => 0.003414212721625
513 => 0.0033888896741894
514 => 0.0032981856614874
515 => 0.0033086848979365
516 => 0.0033810142254788
517 => 0.0034831836608085
518 => 0.0035708556652394
519 => 0.0035401559849655
520 => 0.0037743728748584
521 => 0.003797594522801
522 => 0.0037943860419011
523 => 0.0038472884117591
524 => 0.0037422879809713
525 => 0.003697398262522
526 => 0.0033943648044737
527 => 0.0034795048456112
528 => 0.0036032608955037
529 => 0.0035868813182391
530 => 0.0034970063667984
531 => 0.0035707874870294
601 => 0.0035463931413321
602 => 0.0035271523087583
603 => 0.0036152982927979
604 => 0.0035183781625089
605 => 0.0036022940430641
606 => 0.0034946710582535
607 => 0.0035402962185191
608 => 0.0035143971709116
609 => 0.0035311570287815
610 => 0.0034331792421341
611 => 0.0034860456775327
612 => 0.0034309798246128
613 => 0.0034309537162288
614 => 0.0034297381344735
615 => 0.0034945228662344
616 => 0.0034966354940113
617 => 0.0034487594793557
618 => 0.0034418597976799
619 => 0.0034673715371048
620 => 0.0034375039717734
621 => 0.0034514788176078
622 => 0.0034379272556173
623 => 0.0034348765135737
624 => 0.0034105676819292
625 => 0.0034000947688715
626 => 0.0034042014679352
627 => 0.0033901831868825
628 => 0.0033817366654848
629 => 0.0034280579087717
630 => 0.0034033103370771
701 => 0.0034242649884793
702 => 0.0034003845185187
703 => 0.0033176044054096
704 => 0.0032699966869767
705 => 0.0031136327270341
706 => 0.0031579773521049
707 => 0.0031873778844047
708 => 0.003177661008655
709 => 0.0031985366176971
710 => 0.0031998182105476
711 => 0.0031930313372464
712 => 0.0031851730074159
713 => 0.0031813480070473
714 => 0.0032098564260308
715 => 0.0032264065227999
716 => 0.0031903286211494
717 => 0.0031818760735761
718 => 0.0032183528240604
719 => 0.0032406036207839
720 => 0.0034048910021473
721 => 0.0033927200622946
722 => 0.0034232667328985
723 => 0.0034198276465653
724 => 0.0034518454238244
725 => 0.0035041809579207
726 => 0.0033977681838574
727 => 0.0034162377619579
728 => 0.0034117094479325
729 => 0.0034611483930741
730 => 0.0034613027360644
731 => 0.0034316616187936
801 => 0.0034477305493383
802 => 0.0034387613131363
803 => 0.0034549699352183
804 => 0.0033925575119726
805 => 0.0034685691064811
806 => 0.0035116627824885
807 => 0.0035122611382217
808 => 0.0035326871986366
809 => 0.0035534412590158
810 => 0.003593276870616
811 => 0.0035523302654291
812 => 0.0034786713087695
813 => 0.0034839892475234
814 => 0.0034408030281846
815 => 0.0034415289963339
816 => 0.0034376537214578
817 => 0.0034492837130783
818 => 0.0033951096411221
819 => 0.0034078241875286
820 => 0.0033900237481033
821 => 0.003416199067279
822 => 0.0033880387507812
823 => 0.0034117072642424
824 => 0.0034219218100286
825 => 0.0034596137038832
826 => 0.0033824716274125
827 => 0.0032251737114292
828 => 0.0032582396404218
829 => 0.0032093325341691
830 => 0.0032138590730553
831 => 0.0032230034019987
901 => 0.0031933636400549
902 => 0.0031990179725776
903 => 0.0031988159600309
904 => 0.00319707512504
905 => 0.0031893646782165
906 => 0.0031781830048571
907 => 0.0032227273499837
908 => 0.0032302963022242
909 => 0.0032471211454601
910 => 0.00329718046653
911 => 0.003292178359875
912 => 0.0033003370033647
913 => 0.0032825267304356
914 => 0.0032146852405354
915 => 0.0032183693598322
916 => 0.0031724283331667
917 => 0.0032459463301188
918 => 0.0032285362980504
919 => 0.0032173119371169
920 => 0.0032142492662432
921 => 0.0032644326746875
922 => 0.0032794483370226
923 => 0.003270091583919
924 => 0.0032509006103234
925 => 0.0032877529529289
926 => 0.0032976130851347
927 => 0.0032998204051078
928 => 0.0033651156904691
929 => 0.0033034696862194
930 => 0.0033183084921509
1001 => 0.0034340766201043
1002 => 0.0033290909029602
1003 => 0.0033847041787923
1004 => 0.0033819821983379
1005 => 0.0034104320684029
1006 => 0.003379648478603
1007 => 0.0033800300780924
1008 => 0.0034052916353491
1009 => 0.0033698163341279
1010 => 0.0033610321506553
1011 => 0.0033488968641014
1012 => 0.0033753938183313
1013 => 0.003391277544038
1014 => 0.0035192887079227
1015 => 0.0036019897578106
1016 => 0.0035983994871265
1017 => 0.0036312078404743
1018 => 0.0036164273768011
1019 => 0.0035686973607107
1020 => 0.0036501666781216
1021 => 0.0036243863772717
1022 => 0.0036265116739507
1023 => 0.0036264325703022
1024 => 0.0036435742166143
1025 => 0.0036314277891934
1026 => 0.0036074859339415
1027 => 0.0036233796547773
1028 => 0.0036705783235505
1029 => 0.0038170844396544
1030 => 0.0038990712031741
1031 => 0.0038121487335449
1101 => 0.0038721066891568
1102 => 0.0038361532809937
1103 => 0.0038296194772092
1104 => 0.0038672775041916
1105 => 0.0039050014465652
1106 => 0.0039025985945211
1107 => 0.0038752129495037
1108 => 0.0038597434935185
1109 => 0.0039768833968868
1110 => 0.0040631900822625
1111 => 0.0040573045449272
1112 => 0.0040832813926458
1113 => 0.0041595502209811
1114 => 0.004166523286812
1115 => 0.0041656448407914
1116 => 0.0041483613695653
1117 => 0.0042234579358203
1118 => 0.0042861048125886
1119 => 0.004144360745344
1120 => 0.0041983350305846
1121 => 0.004222565826172
1122 => 0.0042581438230474
1123 => 0.0043181698673408
1124 => 0.0043833740725654
1125 => 0.0043925946621119
1126 => 0.0043860522125828
1127 => 0.0043430482864541
1128 => 0.0044143955058588
1129 => 0.0044561890336878
1130 => 0.0044810761230822
1201 => 0.0045441856409694
1202 => 0.0042227154673164
1203 => 0.0039951629003005
1204 => 0.0039596272810621
1205 => 0.0040318903601527
1206 => 0.0040509455578216
1207 => 0.0040432644315344
1208 => 0.0037871333291838
1209 => 0.0039582788038158
1210 => 0.0041424169441996
1211 => 0.0041494904400979
1212 => 0.004241673843321
1213 => 0.0042716925381358
1214 => 0.0043459122604852
1215 => 0.0043412697966444
1216 => 0.0043593411179428
1217 => 0.0043551868341279
1218 => 0.0044926632409739
1219 => 0.0046443201331689
1220 => 0.0046390687372316
1221 => 0.0046172662646556
1222 => 0.0046496466543049
1223 => 0.0048061728195905
1224 => 0.0047917623985717
1225 => 0.0048057608951147
1226 => 0.0049903140654144
1227 => 0.0052302594391865
1228 => 0.0051187807229477
1229 => 0.0053606574600493
1230 => 0.0055129060447199
1231 => 0.0057762042291102
]
'min_raw' => 0.0023582962339976
'max_raw' => 0.0057762042291102
'avg_raw' => 0.0040672502315539
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002358'
'max' => '$0.005776'
'avg' => '$0.004067'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010515483297981
'max_diff' => 0.0023433690608676
'year' => 2028
]
3 => [
'items' => [
101 => 0.0057432379996537
102 => 0.0058457380506655
103 => 0.0056842215686667
104 => 0.0053133470781309
105 => 0.0052546547703531
106 => 0.0053721582568502
107 => 0.0056610291125809
108 => 0.0053630606855991
109 => 0.0054233393103026
110 => 0.0054059790623329
111 => 0.0054050540084949
112 => 0.0054403595510256
113 => 0.0053891470201715
114 => 0.0051804979565132
115 => 0.0052761205928112
116 => 0.0052391961007604
117 => 0.005280166577594
118 => 0.0055012673435548
119 => 0.0054035134245396
120 => 0.0053005376117405
121 => 0.0054296921331527
122 => 0.0055941502212191
123 => 0.0055838587296275
124 => 0.00556388893443
125 => 0.0056764576243736
126 => 0.005862388120629
127 => 0.0059126443866376
128 => 0.005949742534761
129 => 0.0059548577426088
130 => 0.0060075475625258
131 => 0.0057242211212878
201 => 0.0061738674598717
202 => 0.0062515089613157
203 => 0.0062369155769547
204 => 0.0063232108381559
205 => 0.006297820583211
206 => 0.0062610340874049
207 => 0.0063978304319372
208 => 0.0062410044618267
209 => 0.0060184097410954
210 => 0.0058962898748778
211 => 0.0060571071658417
212 => 0.0061553126736833
213 => 0.0062202202673232
214 => 0.0062398612659404
215 => 0.0057462149463941
216 => 0.0054801669590387
217 => 0.0056507006686872
218 => 0.0058587635640662
219 => 0.0057230653213986
220 => 0.0057283844356004
221 => 0.0055349144024272
222 => 0.0058758813690556
223 => 0.0058262053500014
224 => 0.0060839246247298
225 => 0.0060224178514895
226 => 0.0062325779154259
227 => 0.0061772357273607
228 => 0.0064069580558792
301 => 0.006498600512209
302 => 0.0066524824593961
303 => 0.0067656786461592
304 => 0.0068321496121245
305 => 0.0068281589446542
306 => 0.0070915500275124
307 => 0.0069362375081345
308 => 0.0067411283794455
309 => 0.0067375994708689
310 => 0.0068386492533347
311 => 0.0070504218757289
312 => 0.0071053314355494
313 => 0.0071360183885891
314 => 0.0070890202517883
315 => 0.0069204396433521
316 => 0.0068476473913524
317 => 0.0069096684990507
318 => 0.0068338220138702
319 => 0.0069647543260568
320 => 0.0071445523563217
321 => 0.0071074247740705
322 => 0.0072315367150582
323 => 0.0073599795170235
324 => 0.0075436584925611
325 => 0.0075916789783794
326 => 0.0076710550153815
327 => 0.0077527590311265
328 => 0.0077790001589989
329 => 0.0078291026142509
330 => 0.0078288385495805
331 => 0.0079798256707668
401 => 0.0081463691411172
402 => 0.0082092354456843
403 => 0.008353793046568
404 => 0.0081062432209571
405 => 0.0082940126073304
406 => 0.0084633852940117
407 => 0.008261452194534
408 => 0.0085397699277862
409 => 0.0085505763746868
410 => 0.0087137408928817
411 => 0.0085483423951518
412 => 0.0084501292951704
413 => 0.0087336668348197
414 => 0.0088708617189071
415 => 0.008829537503291
416 => 0.008515058182024
417 => 0.008332017728394
418 => 0.0078529655553776
419 => 0.0084204235478293
420 => 0.008696815782976
421 => 0.0085143423929064
422 => 0.0086063713570143
423 => 0.0091084515446949
424 => 0.009299611172879
425 => 0.0092598513065234
426 => 0.0092665700694343
427 => 0.0093697163350098
428 => 0.0098271236802572
429 => 0.0095530345963657
430 => 0.0097625654310787
501 => 0.0098736998302909
502 => 0.0099769276538665
503 => 0.0097234327446535
504 => 0.0093936395923471
505 => 0.009289180257237
506 => 0.0084961990104214
507 => 0.0084549208927817
508 => 0.0084317502344955
509 => 0.0082856625115559
510 => 0.0081708775781204
511 => 0.0080795963373612
512 => 0.007840047102723
513 => 0.0079208879373718
514 => 0.0075390964551695
515 => 0.0077833531156232
516 => 0.0071740046913506
517 => 0.007681488165971
518 => 0.0074052879831773
519 => 0.0075907489775432
520 => 0.0075901019216053
521 => 0.0072486094305159
522 => 0.007051643688422
523 => 0.0071771579253056
524 => 0.0073117191505774
525 => 0.0073335512566594
526 => 0.0075080133976315
527 => 0.0075567020311257
528 => 0.0074091731985834
529 => 0.0071613772996638
530 => 0.0072189346353601
531 => 0.0070504772908512
601 => 0.0067552622742176
602 => 0.0069672908531235
603 => 0.0070396867322006
604 => 0.0070716608767032
605 => 0.0067813508135178
606 => 0.0066901290887268
607 => 0.0066415634078725
608 => 0.0071239019160642
609 => 0.0071503255083605
610 => 0.0070151386742529
611 => 0.007626195983361
612 => 0.0074878948947989
613 => 0.0076424110953121
614 => 0.0072137119104331
615 => 0.0072300887966155
616 => 0.0070271357322846
617 => 0.0071407758869812
618 => 0.0070604586884348
619 => 0.0071315948854956
620 => 0.0071742336287084
621 => 0.0073771533904385
622 => 0.0076838051836955
623 => 0.0073468439448137
624 => 0.0072000251076591
625 => 0.0072911106884893
626 => 0.0075336835933577
627 => 0.0079011939613119
628 => 0.0076836204266476
629 => 0.0077801758666934
630 => 0.0078012689348909
701 => 0.0076408382654395
702 => 0.0079071092689305
703 => 0.0080498060628831
704 => 0.0081961834465375
705 => 0.0083232788273635
706 => 0.0081377171005983
707 => 0.0083362947474658
708 => 0.008176276217764
709 => 0.0080327230542101
710 => 0.008032940765103
711 => 0.0079428877686285
712 => 0.0077683987405514
713 => 0.007736220286632
714 => 0.0079036166676115
715 => 0.0080378527126607
716 => 0.0080489090362783
717 => 0.0081232290081146
718 => 0.0081672108018907
719 => 0.008598292171246
720 => 0.0087716766640929
721 => 0.0089836879399455
722 => 0.0090662782801909
723 => 0.0093148455940538
724 => 0.0091141073004593
725 => 0.0090706763079371
726 => 0.0084677333102544
727 => 0.0085664651923474
728 => 0.008724544461788
729 => 0.0084703399791833
730 => 0.0086315742135897
731 => 0.0086634052668696
801 => 0.0084617022081369
802 => 0.0085694405268807
803 => 0.0082833194944824
804 => 0.0076900418403232
805 => 0.007907769756557
806 => 0.0080680907893292
807 => 0.0078392929081225
808 => 0.0082494042544847
809 => 0.0080098256723565
810 => 0.0079338907636219
811 => 0.0076376416118986
812 => 0.0077774598078364
813 => 0.007966565919846
814 => 0.0078497203285693
815 => 0.0080921924749224
816 => 0.0084355976991178
817 => 0.0086803287120141
818 => 0.0086991161203472
819 => 0.0085417704747593
820 => 0.0087939178759804
821 => 0.0087957544945227
822 => 0.0085113311958929
823 => 0.0083371235091578
824 => 0.0082975431561954
825 => 0.0083964226380806
826 => 0.0085164805832486
827 => 0.0087057785007432
828 => 0.0088201672677163
829 => 0.009118432504868
830 => 0.0091991345261068
831 => 0.0092878015801242
901 => 0.0094062881081982
902 => 0.0095485615644732
903 => 0.0092372753417758
904 => 0.0092496433237137
905 => 0.0089597779031889
906 => 0.008650015130452
907 => 0.0088850864624846
908 => 0.0091924109588883
909 => 0.0091219103798499
910 => 0.009113977624512
911 => 0.0091273183186276
912 => 0.0090741631843663
913 => 0.0088337444821236
914 => 0.008713007714958
915 => 0.0088687889478359
916 => 0.0089515797400856
917 => 0.0090799810387489
918 => 0.0090641528684661
919 => 0.0093949008245301
920 => 0.0095234194789576
921 => 0.0094905389075317
922 => 0.0094965897239892
923 => 0.0097292666089791
924 => 0.0099880511587389
925 => 0.010230437039218
926 => 0.010477002367557
927 => 0.010179758240636
928 => 0.010028836004454
929 => 0.010184549228119
930 => 0.01010192559982
1001 => 0.010576705475786
1002 => 0.010609578204283
1003 => 0.011084323748259
1004 => 0.011534913801141
1005 => 0.011251906262085
1006 => 0.011518769624475
1007 => 0.011807404108589
1008 => 0.012364226857703
1009 => 0.012176708545062
1010 => 0.012033072456366
1011 => 0.011897337046592
1012 => 0.012179780886941
1013 => 0.0125431403754
1014 => 0.012621404529
1015 => 0.01274822235704
1016 => 0.012614888917402
1017 => 0.012775474359249
1018 => 0.013342411533787
1019 => 0.013189220104734
1020 => 0.012971663648728
1021 => 0.013419206098801
1022 => 0.013581169971705
1023 => 0.014717917252886
1024 => 0.016153107652064
1025 => 0.015558929402836
1026 => 0.015190103789528
1027 => 0.015276786557316
1028 => 0.015800869506835
1029 => 0.015969188316659
1030 => 0.015511639768584
1031 => 0.015673253650913
1101 => 0.016563762032071
1102 => 0.017041491207633
1103 => 0.016392670819631
1104 => 0.014602601101725
1105 => 0.012952075070201
1106 => 0.013389868897917
1107 => 0.013340236664178
1108 => 0.01429697682655
1109 => 0.013185566539815
1110 => 0.013204279838673
1111 => 0.014180804374397
1112 => 0.013920284370135
1113 => 0.013498275328111
1114 => 0.012955156203231
1115 => 0.011951150268452
1116 => 0.011061874213241
1117 => 0.012805949345554
1118 => 0.012730741654454
1119 => 0.012621829772585
1120 => 0.012864201380187
1121 => 0.014041089108319
1122 => 0.014013958036972
1123 => 0.013841364003455
1124 => 0.013972275056704
1125 => 0.013475325987531
1126 => 0.013603401077977
1127 => 0.012951813618445
1128 => 0.013246358362849
1129 => 0.013497369886241
1130 => 0.013547764165851
1201 => 0.013661305051008
1202 => 0.012691110618708
1203 => 0.013126699435398
1204 => 0.013382567056051
1205 => 0.012226547837397
1206 => 0.013359716272984
1207 => 0.012674221692129
1208 => 0.012441554535604
1209 => 0.012754810210298
1210 => 0.012632734169219
1211 => 0.012527780357644
1212 => 0.01246921432745
1213 => 0.012699234722178
1214 => 0.012688503995831
1215 => 0.012312145985021
1216 => 0.011821202302234
1217 => 0.011985979116854
1218 => 0.011926114155312
1219 => 0.011709155811948
1220 => 0.011855359539725
1221 => 0.01121155231461
1222 => 0.010103915445987
1223 => 0.010835654289234
1224 => 0.010807483139748
1225 => 0.010793277968717
1226 => 0.011343159485641
1227 => 0.011290301065714
1228 => 0.011194362515955
1229 => 0.011707393825246
1230 => 0.01152013049611
1231 => 0.012097231951718
]
'min_raw' => 0.0051804979565132
'max_raw' => 0.017041491207633
'avg_raw' => 0.011110994582073
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00518'
'max' => '$0.017041'
'avg' => '$0.01111'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0028222017225156
'max_diff' => 0.011265286978523
'year' => 2029
]
4 => [
'items' => [
101 => 0.012477348294964
102 => 0.012380938494841
103 => 0.012738439752926
104 => 0.011989775241861
105 => 0.01223845156123
106 => 0.012289703406001
107 => 0.011701063098525
108 => 0.011298949356925
109 => 0.011272132954792
110 => 0.010574923141544
111 => 0.0109473669961
112 => 0.011275102175336
113 => 0.011118142457759
114 => 0.011068453700213
115 => 0.011322302786341
116 => 0.011342029034404
117 => 0.010892268488083
118 => 0.010985787947727
119 => 0.011375779640761
120 => 0.010975961157679
121 => 0.010199179155028
122 => 0.01000652647852
123 => 0.0099808230601803
124 => 0.0094583337220124
125 => 0.010019400451569
126 => 0.0097744797884639
127 => 0.010548181228612
128 => 0.010106247115443
129 => 0.010087196219107
130 => 0.010058397995136
131 => 0.0096086698380124
201 => 0.0097071317227072
202 => 0.010034434023601
203 => 0.010151219171884
204 => 0.010139037524126
205 => 0.010032830063767
206 => 0.010081451295249
207 => 0.0099248253678862
208 => 0.0098695174930476
209 => 0.0096949506264273
210 => 0.0094383855578233
211 => 0.0094740625042177
212 => 0.0089657399694112
213 => 0.0086887788737298
214 => 0.0086121196927337
215 => 0.0085096078320981
216 => 0.0086236986801662
217 => 0.0089642999555375
218 => 0.0085534625548482
219 => 0.0078491106482592
220 => 0.0078914433980024
221 => 0.0079865525179693
222 => 0.0078093173021208
223 => 0.0076415790445444
224 => 0.0077874138504721
225 => 0.0074889706623433
226 => 0.0080226179514255
227 => 0.0080081842877851
228 => 0.0082070949966279
301 => 0.008331477944926
302 => 0.0080448155185566
303 => 0.0079727206935423
304 => 0.0080137891823976
305 => 0.0073350185428098
306 => 0.0081516249542378
307 => 0.0081586870003942
308 => 0.0080982174737109
309 => 0.0085330351779019
310 => 0.0094506361567879
311 => 0.0091053977581172
312 => 0.008971711015266
313 => 0.0087175724193815
314 => 0.0090561970091409
315 => 0.0090301959240139
316 => 0.0089126091564508
317 => 0.0088414923125356
318 => 0.0089725272780108
319 => 0.0088252556302134
320 => 0.0087988015955148
321 => 0.0086385189275146
322 => 0.0085813053074352
323 => 0.0085389466208683
324 => 0.0084923138690367
325 => 0.0085951740994195
326 => 0.008362079284982
327 => 0.0080809897893368
328 => 0.0080576202392044
329 => 0.0081221456217918
330 => 0.0080935979433466
331 => 0.008057483563903
401 => 0.0079885313783792
402 => 0.0079680747378647
403 => 0.0080345488953859
404 => 0.0079595034472286
405 => 0.0080702370939219
406 => 0.0080401236691934
407 => 0.0078719125265691
408 => 0.0076622591631178
409 => 0.0076603928084202
410 => 0.0076152233351651
411 => 0.0075576932196988
412 => 0.0075416896576869
413 => 0.0077751320498832
414 => 0.0082583508153868
415 => 0.0081634834092734
416 => 0.0082320348325932
417 => 0.0085692399874891
418 => 0.0086764273661177
419 => 0.0086003483036393
420 => 0.0084962065905667
421 => 0.0085007882974138
422 => 0.0088566720568234
423 => 0.0088788680903618
424 => 0.0089349503064018
425 => 0.0090070318028454
426 => 0.0086126240941729
427 => 0.0084822117298038
428 => 0.0084204151165632
429 => 0.0082301054660812
430 => 0.0084353381082097
501 => 0.0083157578365794
502 => 0.0083318933006661
503 => 0.008321385058512
504 => 0.0083271232692923
505 => 0.0080224687861324
506 => 0.0081334688676277
507 => 0.007948909703322
508 => 0.0077018057000551
509 => 0.0077009773207903
510 => 0.0077614556755179
511 => 0.0077254807836076
512 => 0.0076286732744763
513 => 0.0076424243242298
514 => 0.0075219506588542
515 => 0.0076570520084526
516 => 0.0076609262317432
517 => 0.0076089048531276
518 => 0.0078170471225774
519 => 0.0079023231801989
520 => 0.0078680815943882
521 => 0.0078999206992574
522 => 0.0081674255782981
523 => 0.0082110405456379
524 => 0.0082304114330872
525 => 0.0082044570100559
526 => 0.0079048101973806
527 => 0.0079181008077194
528 => 0.0078205831275119
529 => 0.0077381909638966
530 => 0.0077414862183512
531 => 0.007783846500681
601 => 0.0079688363380131
602 => 0.0083581365449319
603 => 0.0083729102032097
604 => 0.0083908163080204
605 => 0.0083179831808679
606 => 0.0082960160127996
607 => 0.0083249963776889
608 => 0.0084711970669751
609 => 0.0088472649329193
610 => 0.0087143374323664
611 => 0.0086062653052771
612 => 0.0087010736967706
613 => 0.0086864786880329
614 => 0.0085632821263891
615 => 0.0085598244092226
616 => 0.0083233708191047
617 => 0.0082359593106259
618 => 0.008162911711503
619 => 0.0080831456402166
620 => 0.0080358576393751
621 => 0.0081085135006796
622 => 0.0081251307557989
623 => 0.0079662674452494
624 => 0.0079446149630416
625 => 0.008074346171739
626 => 0.0080172563036582
627 => 0.0080759746487399
628 => 0.0080895978084755
629 => 0.0080874041659901
630 => 0.0080277957869842
701 => 0.0080657883902151
702 => 0.0079759245574338
703 => 0.0078782111363954
704 => 0.0078158760615341
705 => 0.0077614804411698
706 => 0.0077916622928399
707 => 0.0076840695026243
708 => 0.0076496484036193
709 => 0.0080529173511011
710 => 0.0083508164584777
711 => 0.0083464848874754
712 => 0.0083201175629889
713 => 0.0082809410672183
714 => 0.0084683310622942
715 => 0.008403048134991
716 => 0.0084505469191752
717 => 0.0084626373532678
718 => 0.0084992314558602
719 => 0.0085123107021676
720 => 0.008472776135706
721 => 0.0083400933019202
722 => 0.0080094602952314
723 => 0.007855549738091
724 => 0.0078047566906516
725 => 0.0078066029214563
726 => 0.0077556756339256
727 => 0.0077706760025043
728 => 0.0077504591178948
729 => 0.0077121732294342
730 => 0.0077892982471143
731 => 0.0077981861869327
801 => 0.0077801842862308
802 => 0.0077844243855244
803 => 0.0076353763364253
804 => 0.0076467081358829
805 => 0.0075836112365272
806 => 0.0075717813285425
807 => 0.0074122778614468
808 => 0.0071296943490895
809 => 0.0072862730459807
810 => 0.0070971479984327
811 => 0.0070255234772141
812 => 0.0073645828207643
813 => 0.0073305506667142
814 => 0.0072723024124021
815 => 0.0071861411042747
816 => 0.0071541830369669
817 => 0.0069600159366994
818 => 0.0069485435085744
819 => 0.0070447779664197
820 => 0.0070003690753496
821 => 0.0069380021733249
822 => 0.0067121155762231
823 => 0.0064581442525985
824 => 0.0064658100504519
825 => 0.0065465936031924
826 => 0.0067814826779318
827 => 0.0066897074528089
828 => 0.0066231234739828
829 => 0.0066106542962557
830 => 0.0067667321615018
831 => 0.0069876150401485
901 => 0.0070912483448338
902 => 0.006988550887281
903 => 0.0068705775776681
904 => 0.0068777580663886
905 => 0.0069255266409301
906 => 0.0069305464427032
907 => 0.0068537579459974
908 => 0.0068753734580289
909 => 0.0068425375186892
910 => 0.006641023419572
911 => 0.0066373786685271
912 => 0.00658792385875
913 => 0.0065864263867645
914 => 0.0065022914182531
915 => 0.0064905203545608
916 => 0.0063234652679538
917 => 0.0064334214318479
918 => 0.0063596686100655
919 => 0.0062485057111075
920 => 0.0062293411854273
921 => 0.0062287650766435
922 => 0.006342904518304
923 => 0.0064320876460169
924 => 0.0063609515719767
925 => 0.0063447552668326
926 => 0.0065176894327819
927 => 0.0064956819838349
928 => 0.0064766236749797
929 => 0.0069678374010303
930 => 0.0065790034069762
1001 => 0.0064094495917002
1002 => 0.0061995945478998
1003 => 0.0062679244083422
1004 => 0.0062823225139119
1005 => 0.0057776589627868
1006 => 0.0055729170229473
1007 => 0.0055026573047315
1008 => 0.0054622218435718
1009 => 0.0054806487909789
1010 => 0.0052963570312889
1011 => 0.0054202041417049
1012 => 0.0052606230556081
1013 => 0.0052338687672022
1014 => 0.0055192195174464
1015 => 0.005558924407348
1016 => 0.0053895310116855
1017 => 0.0054983089940005
1018 => 0.005458864585486
1019 => 0.0052633586153037
1020 => 0.0052558917252873
1021 => 0.005157793701817
1022 => 0.0050042892906064
1023 => 0.0049341336556098
1024 => 0.0048975959917845
1025 => 0.0049126721439837
1026 => 0.0049050491800939
1027 => 0.0048553041843416
1028 => 0.004907900505021
1029 => 0.0047735386399853
1030 => 0.0047200346627009
1031 => 0.0046958681574444
1101 => 0.0045766142686448
1102 => 0.0047664002381701
1103 => 0.0048037904650272
1104 => 0.0048412543621817
1105 => 0.0051673520092224
1106 => 0.0051510610923186
1107 => 0.0052983230471304
1108 => 0.0052926007183637
1109 => 0.0052505992233659
1110 => 0.0050734018248807
1111 => 0.005144029549677
1112 => 0.0049266483907394
1113 => 0.0050895251354974
1114 => 0.0050151949910853
1115 => 0.0050643940389023
1116 => 0.0049759297148281
1117 => 0.0050248895243732
1118 => 0.004812657074901
1119 => 0.004614477399775
1120 => 0.0046942306862711
1121 => 0.0047809316295869
1122 => 0.0049689213656851
1123 => 0.0048569562297467
1124 => 0.0048972231265007
1125 => 0.0047623357629719
1126 => 0.0044840246033414
1127 => 0.0044855998142804
1128 => 0.0044427877057095
1129 => 0.004405791793234
1130 => 0.0048698167724832
1201 => 0.0048121079311642
1202 => 0.0047201564452687
1203 => 0.0048432371631466
1204 => 0.0048757816585071
1205 => 0.0048767081545379
1206 => 0.0049665046691284
1207 => 0.0050144290850623
1208 => 0.0050228759710869
1209 => 0.0051641727269772
1210 => 0.0052115335358024
1211 => 0.0054066060046007
1212 => 0.0050103630331996
1213 => 0.0050022026699585
1214 => 0.0048449691612542
1215 => 0.0047452491842705
1216 => 0.0048517970733924
1217 => 0.0049461839579172
1218 => 0.0048479020248588
1219 => 0.0048607355704713
1220 => 0.0047288001052694
1221 => 0.0047759608259385
1222 => 0.0048165819918138
1223 => 0.0047941533716192
1224 => 0.0047605766416304
1225 => 0.00493844530976
1226 => 0.0049284092624312
1227 => 0.0050940446553764
1228 => 0.0052231692888778
1229 => 0.0054545837159015
1230 => 0.0052130906973954
1231 => 0.0052042897319532
]
'min_raw' => 0.004405791793234
'max_raw' => 0.012738439752926
'avg_raw' => 0.0085721157730798
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0044057'
'max' => '$0.012738'
'avg' => '$0.008572'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00077470616327924
'max_diff' => -0.0043030514547072
'year' => 2030
]
5 => [
'items' => [
101 => 0.0052903205808697
102 => 0.0052115203649277
103 => 0.005261319381312
104 => 0.0054465603244722
105 => 0.0054504741737023
106 => 0.0053849121563879
107 => 0.0053809227016761
108 => 0.0053935146042712
109 => 0.0054672657710716
110 => 0.0054414948472471
111 => 0.0054713176127368
112 => 0.0055086114376441
113 => 0.0056628745097147
114 => 0.0057000668141358
115 => 0.0056097087963915
116 => 0.005617867113698
117 => 0.0055840707346786
118 => 0.0055514238560133
119 => 0.0056248092715592
120 => 0.0057589225608634
121 => 0.0057580882490511
122 => 0.0057891999253799
123 => 0.0058085822419897
124 => 0.0057253791503776
125 => 0.0056712169972006
126 => 0.005691986213156
127 => 0.0057251966417634
128 => 0.0056812165187576
129 => 0.0054097508259913
130 => 0.005492096175881
131 => 0.0054783898831775
201 => 0.0054588704556255
202 => 0.0055416693416974
203 => 0.0055336831871465
204 => 0.0052944668529223
205 => 0.0053097807065039
206 => 0.0052953981390797
207 => 0.0053418711568237
208 => 0.0052090106694581
209 => 0.0052498776605427
210 => 0.0052755090542467
211 => 0.005290606142048
212 => 0.0053451471753564
213 => 0.0053387474146079
214 => 0.0053447493572426
215 => 0.00542561931134
216 => 0.0058346317879474
217 => 0.005856893434614
218 => 0.005747268944613
219 => 0.005791061766121
220 => 0.005706989125263
221 => 0.0057634276523087
222 => 0.0058020414591302
223 => 0.0056275530911118
224 => 0.0056172210223779
225 => 0.0055328013838248
226 => 0.0055781637158105
227 => 0.0055059889839542
228 => 0.0055236981385868
301 => 0.0054741817983777
302 => 0.0055633013521491
303 => 0.0056629508610441
304 => 0.0056881262622693
305 => 0.0056219006203374
306 => 0.0055739488910962
307 => 0.0054897614508303
308 => 0.005629767040232
309 => 0.0056707089411661
310 => 0.0056295519898559
311 => 0.0056200150249402
312 => 0.0056019424936578
313 => 0.0056238491978861
314 => 0.0056704859627809
315 => 0.0056484929257023
316 => 0.0056630197141602
317 => 0.0056076585765181
318 => 0.005725406694063
319 => 0.005912419042352
320 => 0.0059130203176313
321 => 0.0058910271620021
322 => 0.0058820280365677
323 => 0.0059045943488996
324 => 0.0059168356476211
325 => 0.0059898109637483
326 => 0.0060681163854178
327 => 0.0064335336210168
328 => 0.0063309259235013
329 => 0.0066551458336934
330 => 0.0069115616879691
331 => 0.00698844959096
401 => 0.0069177163380638
402 => 0.006675741700841
403 => 0.0066638692707379
404 => 0.0070254815378054
405 => 0.0069233095094678
406 => 0.0069111564718057
407 => 0.0067818686839625
408 => 0.0068582937791819
409 => 0.0068415784897689
410 => 0.0068151925876905
411 => 0.0069610063455508
412 => 0.0072339566833813
413 => 0.0071914148135184
414 => 0.0071596592811263
415 => 0.0070205157820804
416 => 0.0071043112473317
417 => 0.0070744732871521
418 => 0.0072026760997209
419 => 0.0071267315935951
420 => 0.0069225354558641
421 => 0.0069550543638371
422 => 0.0069501391963159
423 => 0.0070512929956086
424 => 0.0070209291358526
425 => 0.006944210165376
426 => 0.0072330237688001
427 => 0.0072142698198594
428 => 0.0072408586317077
429 => 0.0072525638489697
430 => 0.0074283595999074
501 => 0.00750037749423
502 => 0.0075167268170919
503 => 0.0075851382466345
504 => 0.0075150246784035
505 => 0.0077955289414545
506 => 0.0079820479085059
507 => 0.0081986992869144
508 => 0.0085152851811699
509 => 0.0086343244059932
510 => 0.0086128210355076
511 => 0.0088528528473873
512 => 0.0092841846777276
513 => 0.0087000055306684
514 => 0.0093151475910195
515 => 0.009120400716869
516 => 0.0086586593816047
517 => 0.0086289286831864
518 => 0.0089416252763545
519 => 0.0096351562240697
520 => 0.0094614345876299
521 => 0.0096354403704328
522 => 0.0094324533819319
523 => 0.0094223733670442
524 => 0.0096255817454768
525 => 0.010100389197997
526 => 0.0098748259751956
527 => 0.0095514257849391
528 => 0.0097902194527603
529 => 0.0095833542783829
530 => 0.0091172291425942
531 => 0.0094613017459685
601 => 0.0092312301947157
602 => 0.0092983773046476
603 => 0.0097819534848207
604 => 0.0097237683194384
605 => 0.0097990653112443
606 => 0.0096661680915722
607 => 0.0095420211324305
608 => 0.0093102916139182
609 => 0.0092416879276139
610 => 0.0092606475184064
611 => 0.0092416785321823
612 => 0.0091120279962789
613 => 0.0090840299753947
614 => 0.0090373653806329
615 => 0.0090518286898144
616 => 0.0089640855994536
617 => 0.0091296749396121
618 => 0.0091604097803137
619 => 0.0092809118930761
620 => 0.0092934228221735
621 => 0.0096290194909764
622 => 0.0094441784852727
623 => 0.0095681857903033
624 => 0.0095570934097394
625 => 0.008668666716462
626 => 0.0087910840761406
627 => 0.0089815270711167
628 => 0.0088957327600193
629 => 0.0087744396769047
630 => 0.0086764890089659
701 => 0.0085280837310687
702 => 0.0087369613098381
703 => 0.0090116131142658
704 => 0.0093003884451782
705 => 0.0096473330839603
706 => 0.009569899079465
707 => 0.0092939025564859
708 => 0.0093062835588911
709 => 0.0093828180440155
710 => 0.0092836989318882
711 => 0.0092544667706869
712 => 0.0093788019939568
713 => 0.0093796582223061
714 => 0.0092656097048587
715 => 0.0091388656483744
716 => 0.0091383345861499
717 => 0.0091157817055008
718 => 0.0094364654892978
719 => 0.0096128091455987
720 => 0.0096330266616015
721 => 0.0096114483456869
722 => 0.0096197529830697
723 => 0.0095171424949356
724 => 0.0097516796426152
725 => 0.0099669141226459
726 => 0.0099092266841837
727 => 0.0098227450131762
728 => 0.0097538581966972
729 => 0.0098929991394757
730 => 0.009886803412322
731 => 0.0099650342372293
801 => 0.0099614852351283
802 => 0.0099351791511222
803 => 0.0099092276236568
804 => 0.010012122496629
805 => 0.0099824904256544
806 => 0.0099528123278885
807 => 0.0098932883593297
808 => 0.0099013786552453
809 => 0.0098149119165177
810 => 0.0097749084467335
811 => 0.0091733522429246
812 => 0.0090125967688509
813 => 0.0090631737134739
814 => 0.0090798249568736
815 => 0.0090098639685429
816 => 0.0091101700543057
817 => 0.00909453745709
818 => 0.0091553547480928
819 => 0.0091173587450541
820 => 0.0091189181142724
821 => 0.0092306562576073
822 => 0.0092630943159854
823 => 0.0092465960576871
824 => 0.009258150872272
825 => 0.0095244266974005
826 => 0.0094865707900887
827 => 0.0094664605938256
828 => 0.009472031255626
829 => 0.0095400704379644
830 => 0.0095591176942175
831 => 0.0094784131310461
901 => 0.0095164738695853
902 => 0.0096785316636581
903 => 0.0097352427199068
904 => 0.0099162371886015
905 => 0.0098393475213798
906 => 0.009980481833272
907 => 0.010414280591796
908 => 0.010760829056696
909 => 0.010442128766653
910 => 0.01107852088976
911 => 0.011574043442628
912 => 0.011555024461713
913 => 0.011468618642977
914 => 0.010904479390686
915 => 0.010385350039886
916 => 0.010819623785227
917 => 0.010820730838313
918 => 0.01078342633845
919 => 0.010551731293668
920 => 0.01077536385312
921 => 0.010793114993575
922 => 0.010783179075329
923 => 0.010605539027733
924 => 0.010334315508422
925 => 0.010387311934878
926 => 0.010474121162511
927 => 0.0103097731843
928 => 0.010257254047067
929 => 0.010354897115358
930 => 0.010669523426135
1001 => 0.010610045144589
1002 => 0.010608491926287
1003 => 0.010862965237459
1004 => 0.010680817265438
1005 => 0.010387980389534
1006 => 0.010314035216324
1007 => 0.010051579666867
1008 => 0.010232858649712
1009 => 0.010239382557579
1010 => 0.010140097911302
1011 => 0.01039603679139
1012 => 0.010393678269553
1013 => 0.010636654144722
1014 => 0.011101132760474
1015 => 0.010963763578191
1016 => 0.010804018164921
1017 => 0.010821386920604
1018 => 0.011011879300696
1019 => 0.010896703259174
1020 => 0.010938121366742
1021 => 0.01101181660943
1022 => 0.011056278779094
1023 => 0.010814989498623
1024 => 0.010758733425145
1025 => 0.010643653242007
1026 => 0.0106136309703
1027 => 0.010707361378239
1028 => 0.010682666727291
1029 => 0.010238834248385
1030 => 0.010192451284879
1031 => 0.01019387378415
1101 => 0.010077241617024
1102 => 0.0098993495672287
1103 => 0.010366839252707
1104 => 0.01032929328845
1105 => 0.010287845449736
1106 => 0.01029292257348
1107 => 0.010495844001251
1108 => 0.010378139325366
1109 => 0.010691076497623
1110 => 0.010626746022759
1111 => 0.010560765713957
1112 => 0.010551645225471
1113 => 0.010526248435757
1114 => 0.0104391533941
1115 => 0.010333980897698
1116 => 0.010264536905688
1117 => 0.0094684927141294
1118 => 0.0096162338857067
1119 => 0.0097861966365748
1120 => 0.0098448670970915
1121 => 0.0097445072145054
1122 => 0.010443116213965
1123 => 0.01057075881013
1124 => 0.010184121060426
1125 => 0.010111796923771
1126 => 0.010447857772323
1127 => 0.010245171998878
1128 => 0.01033644139025
1129 => 0.010139166887793
1130 => 0.010540013446525
1201 => 0.01053695966735
1202 => 0.010381021302472
1203 => 0.010512819340647
1204 => 0.010489916188123
1205 => 0.010313862158236
1206 => 0.010545594673295
1207 => 0.010545709609731
1208 => 0.010395622323929
1209 => 0.010220353232444
1210 => 0.010189019258558
1211 => 0.010165413318362
1212 => 0.010330635776032
1213 => 0.010478773714943
1214 => 0.010754421692745
1215 => 0.010823726143599
1216 => 0.011094226029141
1217 => 0.010933156517701
1218 => 0.011004556545923
1219 => 0.011082071376709
1220 => 0.011119234837101
1221 => 0.011058678972693
1222 => 0.011478876637135
1223 => 0.011514354194537
1224 => 0.011526249512655
1225 => 0.01138456122442
1226 => 0.011510413586929
1227 => 0.011451531434303
1228 => 0.011604726437502
1229 => 0.011628749370096
1230 => 0.01160840280083
1231 => 0.011616028058811
]
'min_raw' => 0.0052090106694581
'max_raw' => 0.011628749370096
'avg_raw' => 0.0084188800197769
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005209'
'max' => '$0.011628'
'avg' => '$0.008418'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00080321887622406
'max_diff' => -0.0011096903828298
'year' => 2031
]
6 => [
'items' => [
101 => 0.011257463480158
102 => 0.011238870015176
103 => 0.010985346800814
104 => 0.011088659384616
105 => 0.0108955214611
106 => 0.010956767486188
107 => 0.010983764150473
108 => 0.010969662625098
109 => 0.011094500523095
110 => 0.0109883628071
111 => 0.010708247923932
112 => 0.010428056723652
113 => 0.010424539151372
114 => 0.010350769754123
115 => 0.010297447991452
116 => 0.010307719654634
117 => 0.01034391833544
118 => 0.010295344058318
119 => 0.01030570984312
120 => 0.010477850937702
121 => 0.010512372606566
122 => 0.010395054487279
123 => 0.0099240053094156
124 => 0.0098084086596306
125 => 0.0098914972391149
126 => 0.0098517862497112
127 => 0.007951160403908
128 => 0.0083976842539978
129 => 0.0081323749447916
130 => 0.0082546416807682
131 => 0.0079838295775813
201 => 0.0081130753077005
202 => 0.0080892083406458
203 => 0.0088072054779889
204 => 0.0087959949402621
205 => 0.0088013608314235
206 => 0.0085452328655356
207 => 0.0089532516698271
208 => 0.0091542564047028
209 => 0.0091170557778451
210 => 0.0091264183741691
211 => 0.0089655379495565
212 => 0.0088029185056009
213 => 0.0086225485153012
214 => 0.0089576536628735
215 => 0.0089203956908991
216 => 0.0090058520736132
217 => 0.0092231917156245
218 => 0.0092551958035036
219 => 0.0092982096221667
220 => 0.0092827922301081
221 => 0.009650097057743
222 => 0.0096056140195612
223 => 0.009712805342936
224 => 0.0094923046581287
225 => 0.0092427872031522
226 => 0.009290212314003
227 => 0.0092856448944594
228 => 0.0092274964014294
229 => 0.0091750025419166
301 => 0.0090876150558811
302 => 0.009364121992612
303 => 0.0093528963159417
304 => 0.0095346269728124
305 => 0.0095025043139731
306 => 0.0092879813364961
307 => 0.0092956430666044
308 => 0.0093471718836848
309 => 0.0095255137079458
310 => 0.0095784577038238
311 => 0.0095539319354796
312 => 0.0096119826099746
313 => 0.0096578634961788
314 => 0.0096177445428873
315 => 0.010185744318109
316 => 0.0099498712106311
317 => 0.010064834122022
318 => 0.010092252098987
319 => 0.010022021527527
320 => 0.010037252023709
321 => 0.010060322075362
322 => 0.01020039891142
323 => 0.010568001060797
324 => 0.010730809550403
325 => 0.011220626924214
326 => 0.010717290571745
327 => 0.010687424675603
328 => 0.010775655575693
329 => 0.011063230226555
330 => 0.011296282470564
331 => 0.011373599345009
401 => 0.011383818046329
402 => 0.011528869642716
403 => 0.011612010512712
404 => 0.011511256563679
405 => 0.011425878141251
406 => 0.011120063229674
407 => 0.011155462138395
408 => 0.011399325516077
409 => 0.011743796900533
410 => 0.012039389184536
411 => 0.011935883069109
412 => 0.012725561665884
413 => 0.012803855073206
414 => 0.012793037455843
415 => 0.012971401489345
416 => 0.012617385206048
417 => 0.012466036386196
418 => 0.011444337925266
419 => 0.011731393518249
420 => 0.012148645680833
421 => 0.0120934207925
422 => 0.011790401118849
423 => 0.012039159316941
424 => 0.011956912077263
425 => 0.011892040266889
426 => 0.012189230606234
427 => 0.011862457620218
428 => 0.012145385870329
429 => 0.011782527463043
430 => 0.011936355876326
501 => 0.011849035429103
502 => 0.011905542460048
503 => 0.011575203511775
504 => 0.011753446389739
505 => 0.011567788022044
506 => 0.011567699995804
507 => 0.011563601577047
508 => 0.011782027823305
509 => 0.011789150695353
510 => 0.011627733369345
511 => 0.011604470610855
512 => 0.011690485221499
513 => 0.011589784639697
514 => 0.01163690180812
515 => 0.01159121177073
516 => 0.011580925980934
517 => 0.011498967057856
518 => 0.011463656900286
519 => 0.0114775029229
520 => 0.011430239309606
521 => 0.011401761272996
522 => 0.011557936578784
523 => 0.011474498412995
524 => 0.011545148483205
525 => 0.011464633811452
526 => 0.011185534880581
527 => 0.01102502213402
528 => 0.01049783012609
529 => 0.01064734112556
530 => 0.010746467072888
531 => 0.010713705947887
601 => 0.010784089521261
602 => 0.010788410501035
603 => 0.010765528083855
604 => 0.010739033176181
605 => 0.010726136920385
606 => 0.010822255045382
607 => 0.01087805485213
608 => 0.010756415687836
609 => 0.010727917333555
610 => 0.010850901244538
611 => 0.010925921359192
612 => 0.011479827735638
613 => 0.011438792562177
614 => 0.011541782794818
615 => 0.011530187675137
616 => 0.011638137846575
617 => 0.011814590753731
618 => 0.011455812656474
619 => 0.011518084128545
620 => 0.011502816601652
621 => 0.011669503456913
622 => 0.011670023835081
623 => 0.011570086738726
624 => 0.011624264259954
625 => 0.011594023853887
626 => 0.011648672354886
627 => 0.011438244512417
628 => 0.011694522910263
629 => 0.011839816247626
630 => 0.011841833645756
701 => 0.011910701534547
702 => 0.011980675298118
703 => 0.012114983843862
704 => 0.011976929505673
705 => 0.011728583190591
706 => 0.011746512992387
707 => 0.01160090763872
708 => 0.011603355291021
709 => 0.011590289531213
710 => 0.011629500859942
711 => 0.011446849194029
712 => 0.01148971717494
713 => 0.01142970175063
714 => 0.011517953666733
715 => 0.01142300919357
716 => 0.011502809239188
717 => 0.011537248293463
718 => 0.011664329145158
719 => 0.011404239248449
720 => 0.010873898342522
721 => 0.010985382430709
722 => 0.010820488707393
723 => 0.010835750249281
724 => 0.01086658099275
725 => 0.010766648465975
726 => 0.010785712442848
727 => 0.010785031343443
728 => 0.01077916199673
729 => 0.010753165686938
730 => 0.010715465894527
731 => 0.010865650264108
801 => 0.010891169515035
802 => 0.010947895648677
803 => 0.011116674144695
804 => 0.011099809192872
805 => 0.011127316629015
806 => 0.011067268050361
807 => 0.010838535730621
808 => 0.010850956996048
809 => 0.010696063617145
810 => 0.010943934676731
811 => 0.010885235538083
812 => 0.010847391821536
813 => 0.010837065812856
814 => 0.01100626267812
815 => 0.011056889032043
816 => 0.011025342085686
817 => 0.010960638378338
818 => 0.011084888624381
819 => 0.011118132748525
820 => 0.011125574881925
821 => 0.011345722495291
822 => 0.011137878687977
823 => 0.011187908758187
824 => 0.011578229084255
825 => 0.011224262409035
826 => 0.011411766451298
827 => 0.011402589104153
828 => 0.011498509827384
829 => 0.011394720805132
830 => 0.011396007394453
831 => 0.011481178498449
901 => 0.011361571043576
902 => 0.011331954555706
903 => 0.01129103958983
904 => 0.011380375920975
905 => 0.011433929011161
906 => 0.011865527587653
907 => 0.012144359951352
908 => 0.012132255103076
909 => 0.012242870756995
910 => 0.012193037391781
911 => 0.012032112310129
912 => 0.012306791801786
913 => 0.012219871717548
914 => 0.012227037303684
915 => 0.012226770600211
916 => 0.012284564857543
917 => 0.012243612329457
918 => 0.012162890692908
919 => 0.012216477482371
920 => 0.012375611089445
921 => 0.01286956668862
922 => 0.01314599078596
923 => 0.012852925610872
924 => 0.013055078044348
925 => 0.012933858618539
926 => 0.012911829442904
927 => 0.013038796110075
928 => 0.013165985015589
929 => 0.013157883632161
930 => 0.01306555101798
1001 => 0.013013394667083
1002 => 0.013408340029736
1003 => 0.01369932904522
1004 => 0.013679485545179
1005 => 0.013767068300908
1006 => 0.01402421398056
1007 => 0.014047724158853
1008 => 0.014044762416763
1009 => 0.013986489986831
1010 => 0.014239683303035
1011 => 0.014450901621924
1012 => 0.013973001602954
1013 => 0.014154979674007
1014 => 0.01423667549307
1015 => 0.014356629193512
1016 => 0.014559011192732
1017 => 0.014778851723059
1018 => 0.014809939584476
1019 => 0.014787881259109
1020 => 0.014642890519728
1021 => 0.014883442651255
1022 => 0.015024352448262
1023 => 0.015108261007716
1024 => 0.015321039153438
1025 => 0.014237180018636
1026 => 0.013469970651729
1027 => 0.013350159830449
1028 => 0.01359379984685
1029 => 0.013658045776182
1030 => 0.013632148322626
1031 => 0.012768584428548
1101 => 0.013345613345266
1102 => 0.013966447941684
1103 => 0.013990296726961
1104 => 0.014301099506967
1105 => 0.014402309632374
1106 => 0.014652546608131
1107 => 0.014636894217165
1108 => 0.014697822938622
1109 => 0.014683816480697
1110 => 0.015147327784674
1111 => 0.015658649585056
1112 => 0.015640944137012
1113 => 0.015567435578523
1114 => 0.015676608322952
1115 => 0.01620434721752
1116 => 0.016155761476951
1117 => 0.01620295838539
1118 => 0.016825192284147
1119 => 0.01763418486427
1120 => 0.017258326589276
1121 => 0.018073830895708
1122 => 0.018587147628582
1123 => 0.019474875840146
1124 => 0.019363727895905
1125 => 0.019709313974216
1126 => 0.019164749878436
1127 => 0.017914320639965
1128 => 0.017716435426526
1129 => 0.018112606635082
1130 => 0.019086554893497
1201 => 0.018081933538437
1202 => 0.018285167130144
1203 => 0.01822663584206
1204 => 0.01822351695846
1205 => 0.018342552060057
1206 => 0.018169885436738
1207 => 0.017466410551201
1208 => 0.017788808945639
1209 => 0.017664315442704
1210 => 0.017802450265816
1211 => 0.018547906935016
1212 => 0.018218322772095
1213 => 0.017871132629701
1214 => 0.018306586115923
1215 => 0.018861068041936
1216 => 0.018826369559506
1217 => 0.018759040000751
1218 => 0.019138573198191
1219 => 0.019765450847569
1220 => 0.019934893357197
1221 => 0.020059972353705
1222 => 0.020077218634097
1223 => 0.020254866040633
1224 => 0.019299611162778
1225 => 0.020815625186618
1226 => 0.021077398929493
1227 => 0.021028196315243
1228 => 0.021319146813325
1229 => 0.021233541796088
1230 => 0.021109513557126
1231 => 0.021570731983533
]
'min_raw' => 0.007951160403908
'max_raw' => 0.021570731983533
'avg_raw' => 0.01476094619372
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007951'
'max' => '$0.02157'
'avg' => '$0.01476'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00274214973445
'max_diff' => 0.009941982613437
'year' => 2032
]
7 => [
'items' => [
101 => 0.021041982276065
102 => 0.020291488634053
103 => 0.019879752978964
104 => 0.020421959703353
105 => 0.020753066429531
106 => 0.020971906913191
107 => 0.02103812791132
108 => 0.019373764879684
109 => 0.018476765515438
110 => 0.019051731823801
111 => 0.019753230402059
112 => 0.019295714302756
113 => 0.019313648067656
114 => 0.018661350343166
115 => 0.019810944276707
116 => 0.019643458110197
117 => 0.020512376638329
118 => 0.020305002258084
119 => 0.021013571586553
120 => 0.020826981535623
121 => 0.021601506404924
122 => 0.021910485344711
123 => 0.022429309073347
124 => 0.022810957920124
125 => 0.023035069422731
126 => 0.023021614608735
127 => 0.02390965603397
128 => 0.023386009031313
129 => 0.022728184981854
130 => 0.022716287020208
131 => 0.023056983416862
201 => 0.023770989598756
202 => 0.023956121013354
203 => 0.024059584218022
204 => 0.023901126718493
205 => 0.023332745427228
206 => 0.023087321267418
207 => 0.023296429762198
208 => 0.02304070804198
209 => 0.023482155473919
210 => 0.024088357086055
211 => 0.02396317885033
212 => 0.024381630924589
213 => 0.024814684799005
214 => 0.025433971289087
215 => 0.025595875709706
216 => 0.025863497560317
217 => 0.026138968353793
218 => 0.026227442148512
219 => 0.026396366074436
220 => 0.026395475761963
221 => 0.026904539382627
222 => 0.027466052320607
223 => 0.02767801045564
224 => 0.028165396499709
225 => 0.027330764979285
226 => 0.027963842575083
227 => 0.028534894413452
228 => 0.027854062870044
301 => 0.028792430539227
302 => 0.028828865229435
303 => 0.029378985794312
304 => 0.028821333211461
305 => 0.028490200887854
306 => 0.029446167498741
307 => 0.029908729629083
308 => 0.029769402150968
309 => 0.028709113163071
310 => 0.028091979494181
311 => 0.026476821646502
312 => 0.028390045886705
313 => 0.029321921604591
314 => 0.028706699830087
315 => 0.029016981907833
316 => 0.030709780314718
317 => 0.03135428834748
318 => 0.031220235182116
319 => 0.03124288796036
320 => 0.03159065279619
321 => 0.033132833595853
322 => 0.032208723113223
323 => 0.032915170951434
324 => 0.033289868337534
325 => 0.033637908151856
326 => 0.032783232366995
327 => 0.031671311728571
328 => 0.031319119787129
329 => 0.028645528149308
330 => 0.028506356093739
331 => 0.028428234601604
401 => 0.027935689644194
402 => 0.027548684227088
403 => 0.027240923150816
404 => 0.026433266181439
405 => 0.026705826699585
406 => 0.02541859006151
407 => 0.026242118445685
408 => 0.024187657689901
409 => 0.025898673655949
410 => 0.024967445455979
411 => 0.025592740146956
412 => 0.025590558552686
413 => 0.024439192776734
414 => 0.023775109025555
415 => 0.024198289038332
416 => 0.024651971604101
417 => 0.024725580074025
418 => 0.025313791362871
419 => 0.025477948490028
420 => 0.024980544730978
421 => 0.024145083557213
422 => 0.024339142133038
423 => 0.02377117643471
424 => 0.022775838394875
425 => 0.023490707552019
426 => 0.023734795312846
427 => 0.023842598373401
428 => 0.02286379772657
429 => 0.022556237312539
430 => 0.022392494728792
501 => 0.024018732684959
502 => 0.024107821671222
503 => 0.023652029821585
504 => 0.025712252201902
505 => 0.025245960425941
506 => 0.025766922583948
507 => 0.024321533351307
508 => 0.024376749166469
509 => 0.023692478740347
510 => 0.024075624456009
511 => 0.023804829413542
512 => 0.024044670068503
513 => 0.024188429568187
514 => 0.024872587712265
515 => 0.025906485642976
516 => 0.024770397300203
517 => 0.024275387340173
518 => 0.024582488735334
519 => 0.025400340219997
520 => 0.026639427084309
521 => 0.025905862721689
522 => 0.026231406129089
523 => 0.026302522881188
524 => 0.025761619678221
525 => 0.026659370956939
526 => 0.027140483160522
527 => 0.027634004729256
528 => 0.028062515679227
529 => 0.027436881361932
530 => 0.028106399762594
531 => 0.027566886117568
601 => 0.027082886604083
602 => 0.027083620631559
603 => 0.026780000666646
604 => 0.026191698726049
605 => 0.026083206822032
606 => 0.026647595407746
607 => 0.027100181605691
608 => 0.027137458772696
609 => 0.027388033746596
610 => 0.027536321435023
611 => 0.028989742368945
612 => 0.029574320291897
613 => 0.030289131110589
614 => 0.030567590208999
615 => 0.031405652262104
616 => 0.03072884909015
617 => 0.030582418466606
618 => 0.028549554053783
619 => 0.0288824354875
620 => 0.029415410781161
621 => 0.028558342620069
622 => 0.029101955098385
623 => 0.029209275716891
624 => 0.028529219771916
625 => 0.02889246703561
626 => 0.027927789998546
627 => 0.025927512966226
628 => 0.026661597837085
629 => 0.027202131392334
630 => 0.026430723361688
701 => 0.027813442399008
702 => 0.02700568648252
703 => 0.026749666636115
704 => 0.025750841937625
705 => 0.026222248747024
706 => 0.026859833206631
707 => 0.026465880137743
708 => 0.027283391908037
709 => 0.028441206597199
710 => 0.029266334293753
711 => 0.029329677352643
712 => 0.028799175523021
713 => 0.029649308090607
714 => 0.029655500378251
715 => 0.028696547369121
716 => 0.028109193990501
717 => 0.027975746067076
718 => 0.028309125143797
719 => 0.028713908888109
720 => 0.029352140033301
721 => 0.029737809747519
722 => 0.03074343181879
723 => 0.031015524317832
724 => 0.031314471480987
725 => 0.031713957082854
726 => 0.032193641973901
727 => 0.031144118740766
728 => 0.031185818255375
729 => 0.030208516752318
730 => 0.02916412993709
731 => 0.029956689345194
801 => 0.03099285534153
802 => 0.030755157717109
803 => 0.03072841187864
804 => 0.030773390960268
805 => 0.030594174713933
806 => 0.029783586273824
807 => 0.029376513833753
808 => 0.0299017411367
809 => 0.030180876073038
810 => 0.030613790016174
811 => 0.030560424234978
812 => 0.031675564060932
813 => 0.03210887367722
814 => 0.03199801453501
815 => 0.032018415285151
816 => 0.032802901647876
817 => 0.033675411825151
818 => 0.034492632744028
819 => 0.035323944963165
820 => 0.034321765636327
821 => 0.033812920779987
822 => 0.034337918785123
823 => 0.034059347453716
824 => 0.035660100953607
825 => 0.035770933652834
826 => 0.037371571400027
827 => 0.038890767222511
828 => 0.037936587545629
829 => 0.038836336003732
830 => 0.039809487318739
831 => 0.041686854093497
901 => 0.041054623010318
902 => 0.040570343908927
903 => 0.040112702498132
904 => 0.041064981625468
905 => 0.042290073509756
906 => 0.042553946567847
907 => 0.042981521729221
908 => 0.042531978728439
909 => 0.043073403757344
910 => 0.04498487202359
911 => 0.044468376425053
912 => 0.04373486964432
913 => 0.045243790261158
914 => 0.045789862766611
915 => 0.049622485590272
916 => 0.054461330222897
917 => 0.052458016771424
918 => 0.051214495465573
919 => 0.051506752469168
920 => 0.053273734723774
921 => 0.05384123334274
922 => 0.052298576467885
923 => 0.052843468955678
924 => 0.055845880136062
925 => 0.057456577405455
926 => 0.055269034168116
927 => 0.049233689135519
928 => 0.043668825384187
929 => 0.045144877840121
930 => 0.044977539298858
1001 => 0.048203255553759
1002 => 0.044456058175845
1003 => 0.044519151369465
1004 => 0.047811572020424
1005 => 0.046933210637128
1006 => 0.045510377688215
1007 => 0.043679213639315
1008 => 0.040294137532751
1009 => 0.037295881225336
1010 => 0.043176152301366
1011 => 0.042922584319989
1012 => 0.042555380306285
1013 => 0.043372553103159
1014 => 0.047340512246235
1015 => 0.047249037944956
1016 => 0.046667125110823
1017 => 0.047108500866769
1018 => 0.045433002384177
1019 => 0.045864816493532
1020 => 0.043667943881337
1021 => 0.044661022051554
1022 => 0.045507324927733
1023 => 0.045677232759854
1024 => 0.046060043781332
1025 => 0.042788965516021
1026 => 0.044257583623333
1027 => 0.045120259170472
1028 => 0.041222659664094
1029 => 0.045043216159969
1030 => 0.042732023320914
1031 => 0.041947569758387
1101 => 0.043003733136431
1102 => 0.042592145240855
1103 => 0.042238286137491
1104 => 0.042040826677742
1105 => 0.042816356498079
1106 => 0.042780177105002
1107 => 0.041511259795079
1108 => 0.03985600889197
1109 => 0.040411565426812
1110 => 0.040209726529334
1111 => 0.039478236327136
1112 => 0.039971172402953
1113 => 0.037800531394293
1114 => 0.034066056358994
1115 => 0.036533164957376
1116 => 0.036438183960036
1117 => 0.036390290234132
1118 => 0.038244254159943
1119 => 0.038066038306702
1120 => 0.037742574787973
1121 => 0.039472295665951
1122 => 0.038840924277461
1123 => 0.040786662126982
1124 => 0.04206825091711
1125 => 0.041743198544879
1126 => 0.042948538996451
1127 => 0.040424364327308
1128 => 0.041262793900087
1129 => 0.041435593073024
1130 => 0.039450951178815
1201 => 0.038095196624325
1202 => 0.038004783252273
1203 => 0.035654091689273
1204 => 0.036909812148109
1205 => 0.03801479418664
1206 => 0.037485593540254
1207 => 0.037318064425028
1208 => 0.038173934342087
1209 => 0.038240442764673
1210 => 0.036724043681473
1211 => 0.037039351068984
1212 => 0.038354235290396
1213 => 0.03700621936025
1214 => 0.034387244605127
1215 => 0.033737702655698
1216 => 0.033651041786211
1217 => 0.031889432503537
1218 => 0.033781108154665
1219 => 0.032955341039192
1220 => 0.035563929462761
1221 => 0.034073917745359
1222 => 0.03400968631827
1223 => 0.033912591095524
1224 => 0.032396301214764
1225 => 0.032728272333401
1226 => 0.033831794892382
1227 => 0.034225544173497
1228 => 0.034184472897584
1229 => 0.033826387029818
1230 => 0.033990316906385
1231 => 0.033462241657008
]
'min_raw' => 0.018476765515438
'max_raw' => 0.057456577405455
'avg_raw' => 0.037966671460446
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.018476'
'max' => '$0.057456'
'avg' => '$0.037966'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01052560511153
'max_diff' => 0.035885845421922
'year' => 2033
]
8 => [
'items' => [
101 => 0.033275767295517
102 => 0.032687202916837
103 => 0.031822175875238
104 => 0.031942463190891
105 => 0.030228618274845
106 => 0.029294824603949
107 => 0.029036362823048
108 => 0.028690736927765
109 => 0.029075402187595
110 => 0.030223763167531
111 => 0.028838596187356
112 => 0.026463824558011
113 => 0.026606552379349
114 => 0.026927219417624
115 => 0.026329658513223
116 => 0.025764117266693
117 => 0.026255809496739
118 => 0.025249587451325
119 => 0.02704881654453
120 => 0.02700015243984
121 => 0.027670793782206
122 => 0.028090159576533
123 => 0.027123657191897
124 => 0.026880584455861
125 => 0.027019049733347
126 => 0.024730527131724
127 => 0.027483772661493
128 => 0.027507582843165
129 => 0.027303705612105
130 => 0.028769723859788
131 => 0.031863479624956
201 => 0.030699484260062
202 => 0.030248750072829
203 => 0.029391904053415
204 => 0.030533600499802
205 => 0.030445936025959
206 => 0.030049484029474
207 => 0.029809708624994
208 => 0.030251502159663
209 => 0.029754965516936
210 => 0.029665773891988
211 => 0.029125369686247
212 => 0.028932469971622
213 => 0.028789654702473
214 => 0.028632429123878
215 => 0.028979229572085
216 => 0.028193334131049
217 => 0.027245621271439
218 => 0.027166829201558
219 => 0.02738438103397
220 => 0.027288130542956
221 => 0.027166368391237
222 => 0.026933891283656
223 => 0.026864920291924
224 => 0.027089042555084
225 => 0.026836021587116
226 => 0.027209367808118
227 => 0.027107838294194
228 => 0.026540702682709
301 => 0.025833841730303
302 => 0.025827549185135
303 => 0.025675257152424
304 => 0.025481290351505
305 => 0.025427333224849
306 => 0.026214400548566
307 => 0.027843606353718
308 => 0.027523754270576
309 => 0.027754880180406
310 => 0.02889179090305
311 => 0.02925318063368
312 => 0.028996674762864
313 => 0.028645553706297
314 => 0.028661001250816
315 => 0.029860888192677
316 => 0.029935723669429
317 => 0.030124808776343
318 => 0.030367836574172
319 => 0.029038063447716
320 => 0.028598369056145
321 => 0.028390017460102
322 => 0.027748375186507
323 => 0.028440331368329
324 => 0.028037158133699
325 => 0.028091559977409
326 => 0.028056130705325
327 => 0.0280754774836
328 => 0.02704831362333
329 => 0.027422558147869
330 => 0.026800304039903
331 => 0.025967175640638
401 => 0.025964382702111
402 => 0.026168289697539
403 => 0.026046997837777
404 => 0.025720604561856
405 => 0.025766967186168
406 => 0.025360781812151
407 => 0.025816285444797
408 => 0.025829347659111
409 => 0.025653953949092
410 => 0.026355720142571
411 => 0.026643234324627
412 => 0.026527786427395
413 => 0.026635134192396
414 => 0.027537045568676
415 => 0.027684096476162
416 => 0.027749406775629
417 => 0.0276618996263
418 => 0.026651619476693
419 => 0.026696429697371
420 => 0.026367642030084
421 => 0.026089851098018
422 => 0.026100961278479
423 => 0.026243781927854
424 => 0.026867488079997
425 => 0.028180040907696
426 => 0.028229851328044
427 => 0.028290223010578
428 => 0.028044661037337
429 => 0.027970597196495
430 => 0.028068306520064
501 => 0.028561232351399
502 => 0.02982917141765
503 => 0.029380997068834
504 => 0.029016624346997
505 => 0.029336277458228
506 => 0.029287069367278
507 => 0.028871703558387
508 => 0.02886004562355
509 => 0.028062825835805
510 => 0.027768111832092
511 => 0.027521826751628
512 => 0.027252889873197
513 => 0.027093455076817
514 => 0.027338419385876
515 => 0.02739444562169
516 => 0.02685882687869
517 => 0.026785824023198
518 => 0.027223221850866
519 => 0.027030739374744
520 => 0.027228712374771
521 => 0.027274643808958
522 => 0.027267247790163
523 => 0.027066273978621
524 => 0.027194368692973
525 => 0.026891386506658
526 => 0.026561938885494
527 => 0.026351771828503
528 => 0.026168373196664
529 => 0.026270133416799
530 => 0.025907376812699
531 => 0.025791323674199
601 => 0.027150973085972
602 => 0.028155360725144
603 => 0.028140756531089
604 => 0.028051857255675
605 => 0.027919770964969
606 => 0.028551569416519
607 => 0.028331463469208
608 => 0.028491608936344
609 => 0.028532372679014
610 => 0.028655752250823
611 => 0.028699849842913
612 => 0.028566556291872
613 => 0.028119206854144
614 => 0.027004454588033
615 => 0.026485534398942
616 => 0.026314282093243
617 => 0.026320506789301
618 => 0.026148801883761
619 => 0.026199376673717
620 => 0.026131214035758
621 => 0.026002130489777
622 => 0.026262162871583
623 => 0.026292129181217
624 => 0.026231434516148
625 => 0.02624573030695
626 => 0.02574320440321
627 => 0.025781410356243
628 => 0.02556867475478
629 => 0.025528789394072
630 => 0.024991012318582
701 => 0.024038262277319
702 => 0.024566178285863
703 => 0.023928529983765
704 => 0.023687042909813
705 => 0.02483020515896
706 => 0.02471546337553
707 => 0.024519075319354
708 => 0.024228576453412
709 => 0.024120827598243
710 => 0.023466179663377
711 => 0.023427499570974
712 => 0.023751960764475
713 => 0.023602233087702
714 => 0.023391958723208
715 => 0.022630366290181
716 => 0.021774084240869
717 => 0.02179993001354
718 => 0.022072297401733
719 => 0.022864242316648
720 => 0.022554815737604
721 => 0.022330323204247
722 => 0.02228828250097
723 => 0.022814509920656
724 => 0.023559231967564
725 => 0.023908638889756
726 => 0.023562387241509
727 => 0.023164631991516
728 => 0.023188841510563
729 => 0.023349896594725
730 => 0.023366821206874
731 => 0.023107923429029
801 => 0.02318080163699
802 => 0.023070092974974
803 => 0.022390674120536
804 => 0.022378385587919
805 => 0.022211645243931
806 => 0.022206596412582
807 => 0.02192292949213
808 => 0.021883242529062
809 => 0.021320004641153
810 => 0.021690729524616
811 => 0.021442066736719
812 => 0.021067273261736
813 => 0.021002658725381
814 => 0.021000716334394
815 => 0.021385545430914
816 => 0.021686232572565
817 => 0.021446392332376
818 => 0.021391785358793
819 => 0.021974844973169
820 => 0.021900645322533
821 => 0.021836388903619
822 => 0.023492550276446
823 => 0.02218156931797
824 => 0.021609906791897
825 => 0.020902365860113
826 => 0.021132744755233
827 => 0.021181288973405
828 => 0.019479780576303
829 => 0.018789478831508
830 => 0.018552593286167
831 => 0.018416262305753
901 => 0.018478390045464
902 => 0.01785703751083
903 => 0.018274596690327
904 => 0.017736557916956
905 => 0.01764635396567
906 => 0.018608433942672
907 => 0.018742301751082
908 => 0.018171180090937
909 => 0.018537932652948
910 => 0.018404943075721
911 => 0.01774578104746
912 => 0.017720605906448
913 => 0.017389861571333
914 => 0.0168723107316
915 => 0.0166357761101
916 => 0.016512586825534
917 => 0.016563417125257
918 => 0.016537715770284
919 => 0.016369997044021
920 => 0.016547329211349
921 => 0.016094318802535
922 => 0.015913926407593
923 => 0.015832447347869
924 => 0.01543037453574
925 => 0.016070251182428
926 => 0.016196314942779
927 => 0.016322627087681
928 => 0.01742208807209
929 => 0.017367162108353
930 => 0.017863666070502
1001 => 0.017844372839545
1002 => 0.01770276186671
1003 => 0.017105328466189
1004 => 0.01734345477141
1005 => 0.016610539016984
1006 => 0.017159689333627
1007 => 0.016909080062177
1008 => 0.01707495808686
1009 => 0.016776694441862
1010 => 0.016941765858008
1011 => 0.016226209337016
1012 => 0.015558032725865
1013 => 0.015826926499483
1014 => 0.016119244783139
1015 => 0.016753065303419
1016 => 0.016375567030446
1017 => 0.016511329684197
1018 => 0.016056547520525
1019 => 0.015118202014766
1020 => 0.015123512948425
1021 => 0.014979168935332
1022 => 0.014854434633449
1023 => 0.016418927248177
1024 => 0.016224357860567
1025 => 0.015914337006023
1026 => 0.016329312239569
1027 => 0.016439038277861
1028 => 0.016442162023915
1029 => 0.016744917242249
1030 => 0.016906497756546
1031 => 0.016934977022521
1101 => 0.01741136890003
1102 => 0.01757104917361
1103 => 0.018228749621688
1104 => 0.016892788778808
1105 => 0.016865275544403
1106 => 0.016335151792113
1107 => 0.015998938927486
1108 => 0.016358172574597
1109 => 0.016676404545654
1110 => 0.016345040146522
1111 => 0.016388309341564
1112 => 0.015943479709196
1113 => 0.016102485371588
1114 => 0.016239442468416
1115 => 0.016163822809514
1116 => 0.016050616520104
1117 => 0.016650313153097
1118 => 0.016616475918833
1119 => 0.017174927210442
1120 => 0.017610279927486
1121 => 0.018390509825036
1122 => 0.017576299252638
1123 => 0.017546626183186
1124 => 0.01783668519679
1125 => 0.017571004767086
1126 => 0.017738905627682
1127 => 0.018363458400656
1128 => 0.018376654216592
1129 => 0.018155607297823
1130 => 0.018142156572727
1201 => 0.018184611051465
1202 => 0.018433268259475
1203 => 0.018346379790532
1204 => 0.018446929326539
1205 => 0.018572668060986
1206 => 0.019092776778776
1207 => 0.019218173229815
1208 => 0.018913524864395
1209 => 0.018941031200789
1210 => 0.018827084349338
1211 => 0.018717013118585
1212 => 0.018964437170704
1213 => 0.019416609489084
1214 => 0.01941379654856
1215 => 0.01951869173745
1216 => 0.01958404057113
1217 => 0.019303515538705
1218 => 0.019120904057788
1219 => 0.019190928919442
1220 => 0.01930290019817
1221 => 0.019154618142862
1222 => 0.018239352606571
1223 => 0.018516985702893
1224 => 0.0184707739801
1225 => 0.018404962867306
1226 => 0.018684125092531
1227 => 0.018657199214887
1228 => 0.017850664642499
1229 => 0.017902296369028
1230 => 0.017853804538799
1231 => 0.018010491562765
]
'min_raw' => 0.014854434633449
'max_raw' => 0.033275767295517
'avg_raw' => 0.024065100964483
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014854'
'max' => '$0.033275'
'avg' => '$0.024065'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0036223308819892
'max_diff' => -0.024180810109939
'year' => 2034
]
9 => [
'items' => [
101 => 0.017562543153589
102 => 0.017700329067273
103 => 0.017786747100673
104 => 0.01783764798624
105 => 0.018021536887973
106 => 0.017999959647792
107 => 0.018020195616427
108 => 0.018292854312826
109 => 0.019671868434048
110 => 0.019746925130042
111 => 0.019377318508267
112 => 0.019524969063498
113 => 0.019241512285081
114 => 0.019431798719428
115 => 0.019561987865056
116 => 0.018973688149893
117 => 0.018938852858795
118 => 0.018654226153422
119 => 0.018807168422809
120 => 0.018563826275276
121 => 0.018623533926534
122 => 0.018456586128398
123 => 0.018757058926067
124 => 0.019093034202613
125 => 0.019177914825535
126 => 0.018954630450035
127 => 0.018792957847015
128 => 0.018509114014379
129 => 0.018981152633925
130 => 0.019119191111397
131 => 0.018980427576568
201 => 0.018948273033505
202 => 0.018887340232502
203 => 0.018961200215285
204 => 0.019118439324203
205 => 0.019044288264188
206 => 0.019093266345701
207 => 0.01890661240495
208 => 0.019303608404164
209 => 0.019934133593205
210 => 0.019936160834789
211 => 0.019862009375072
212 => 0.019831668195371
213 => 0.019907752092928
214 => 0.019949024486227
215 => 0.020195065859524
216 => 0.020459078055793
217 => 0.021691107778232
218 => 0.021345158762217
219 => 0.022438288825742
220 => 0.023302812780815
221 => 0.023562045713891
222 => 0.023323563613313
223 => 0.022507729229787
224 => 0.022467700502788
225 => 0.023686901508168
226 => 0.023342421381205
227 => 0.023301446566229
228 => 0.02286554376293
301 => 0.023123216307292
302 => 0.023066859542012
303 => 0.02297789763095
304 => 0.023469518895968
305 => 0.024389790016747
306 => 0.024246357132326
307 => 0.024139291137765
308 => 0.023670159116043
309 => 0.023952681377551
310 => 0.023852080611585
311 => 0.024284325344995
312 => 0.024028273140316
313 => 0.023339811605437
314 => 0.023449451374066
315 => 0.023432879543602
316 => 0.02377392664025
317 => 0.023671552767146
318 => 0.023412889401837
319 => 0.024386644630103
320 => 0.02432341438189
321 => 0.024413060417408
322 => 0.024452525374639
323 => 0.025045233022593
324 => 0.025288046381431
325 => 0.025343169264933
326 => 0.025573823175969
327 => 0.025337430385505
328 => 0.026283170092564
329 => 0.026912031812316
330 => 0.027642487060737
331 => 0.02870987850654
401 => 0.029111227564085
402 => 0.029038727449176
403 => 0.029848011461414
404 => 0.031302276842033
405 => 0.029332676061638
406 => 0.031406670465959
407 => 0.030750067782967
408 => 0.029193274633373
409 => 0.029093035507925
410 => 0.03014731390357
411 => 0.032485601914576
412 => 0.031899887288462
413 => 0.032486559933878
414 => 0.031802175130048
415 => 0.03176818965609
416 => 0.032453320891532
417 => 0.0340541673677
418 => 0.033293665213705
419 => 0.032203298893175
420 => 0.033008408416276
421 => 0.032310948037997
422 => 0.030739374598868
423 => 0.031899439403526
424 => 0.031123737105395
425 => 0.031350128274592
426 => 0.032980539128256
427 => 0.032784363780811
428 => 0.033038232845753
429 => 0.032590160591041
430 => 0.03217159045063
501 => 0.031390298200128
502 => 0.031158996081997
503 => 0.03122291966607
504 => 0.031158964404643
505 => 0.030721838570933
506 => 0.030627441288763
507 => 0.030470108349506
508 => 0.030518872406207
509 => 0.030223040451028
510 => 0.030781336472451
511 => 0.030884961133715
512 => 0.031291242420082
513 => 0.031333423891019
514 => 0.032464911490499
515 => 0.031841707134582
516 => 0.032259806421407
517 => 0.03222240768589
518 => 0.029227015061535
519 => 0.029639753736598
520 => 0.030281845590465
521 => 0.029992584080633
522 => 0.029583635982499
523 => 0.029253388466846
524 => 0.02875302971109
525 => 0.029457275051278
526 => 0.030383282785483
527 => 0.031356908975304
528 => 0.032526657047859
529 => 0.032265582895433
530 => 0.031335041348747
531 => 0.031376784762771
601 => 0.031634826122835
602 => 0.031300639116022
603 => 0.031202080843608
604 => 0.03162128572967
605 => 0.03162417256333
606 => 0.031239650024143
607 => 0.030812323588718
608 => 0.030810533075351
609 => 0.030734494463651
610 => 0.031815702230149
611 => 0.032410257179288
612 => 0.032478421946034
613 => 0.032405669147378
614 => 0.032433668812125
615 => 0.032087710387345
616 => 0.032878468755608
617 => 0.033604146832223
618 => 0.033409649605839
619 => 0.03311807061408
620 => 0.032885813902797
621 => 0.033354937305885
622 => 0.033334047979215
623 => 0.033597808667291
624 => 0.033585842958925
625 => 0.033497150160066
626 => 0.033409652773338
627 => 0.033756570021456
628 => 0.033656663425319
629 => 0.033556601646643
630 => 0.033355912430816
701 => 0.033383189428342
702 => 0.033091660781807
703 => 0.032956786290476
704 => 0.030928597550022
705 => 0.030386599245593
706 => 0.030557122945559
707 => 0.030613263775234
708 => 0.030377385418557
709 => 0.030715574389853
710 => 0.030662867996908
711 => 0.030867917739651
712 => 0.03073981156261
713 => 0.030745069084801
714 => 0.031121802036363
715 => 0.031231169214938
716 => 0.031175544185213
717 => 0.031214502049318
718 => 0.032112269584522
719 => 0.031984635750006
720 => 0.031916832819256
721 => 0.031935614694447
722 => 0.032165013548045
723 => 0.032229232702339
724 => 0.031957131632994
725 => 0.032085456070295
726 => 0.032631845237525
727 => 0.032823050523107
728 => 0.033433286010942
729 => 0.033174047129639
730 => 0.033649891315866
731 => 0.035112474117092
801 => 0.036280886461742
802 => 0.035206366182919
803 => 0.037352006657456
804 => 0.039022695540728
805 => 0.03895857171871
806 => 0.038667248468181
807 => 0.036765213592138
808 => 0.03501493274146
809 => 0.036479116993903
810 => 0.036482849500674
811 => 0.036357074774869
812 => 0.035575898754956
813 => 0.036329891542673
814 => 0.036389740752062
815 => 0.036356241109994
816 => 0.035757315287091
817 => 0.034842866255513
818 => 0.035021547407402
819 => 0.035314230779192
820 => 0.034760120096245
821 => 0.034583048158293
822 => 0.03491225858026
823 => 0.035973043153553
824 => 0.035772507974678
825 => 0.035767271190732
826 => 0.036625245726106
827 => 0.036011121121271
828 => 0.035023801148943
829 => 0.03477448983478
830 => 0.033889602625724
831 => 0.034500797372879
901 => 0.03452279318374
902 => 0.034188048066982
903 => 0.035050963870282
904 => 0.035043011949242
905 => 0.035862222076407
906 => 0.037428244158276
907 => 0.036965094369401
908 => 0.036426501555493
909 => 0.036485061527924
910 => 0.037127319887159
911 => 0.036738995821833
912 => 0.036878639863216
913 => 0.037127108519178
914 => 0.03727701582845
915 => 0.036463492173062
916 => 0.036273820893656
917 => 0.035885820021566
918 => 0.035784597836416
919 => 0.036100616450831
920 => 0.036017356711035
921 => 0.034520944521009
922 => 0.034364561121193
923 => 0.034369357176801
924 => 0.033976123682337
925 => 0.033376348216427
926 => 0.034952522330106
927 => 0.034825933490235
928 => 0.034686189208216
929 => 0.034703307085393
930 => 0.035387470846644
1001 => 0.034990621314021
1002 => 0.03604571083886
1003 => 0.035828816151447
1004 => 0.035606358933721
1005 => 0.035575608570018
1006 => 0.035489981520352
1007 => 0.035196334506623
1008 => 0.034841738092096
1009 => 0.034607602824609
1010 => 0.031923684254738
1011 => 0.03242180392967
1012 => 0.032994845210642
1013 => 0.033192656764515
1014 => 0.032854286413473
1015 => 0.035209695430474
1016 => 0.035640051355166
1017 => 0.034336475187851
1018 => 0.034092629311611
1019 => 0.035225681925524
1020 => 0.034542312689286
1021 => 0.03485003381452
1022 => 0.034184909056219
1023 => 0.0355363912152
1024 => 0.0355260951855
1025 => 0.035000338101048
1026 => 0.035444704388598
1027 => 0.035367484810819
1028 => 0.034773906357354
1029 => 0.035555208710921
1030 => 0.035555596227141
1031 => 0.0350495664643
1101 => 0.034458634485461
1102 => 0.034352989804835
1103 => 0.034273400729349
1104 => 0.03483045978085
1105 => 0.035329917184547
1106 => 0.036259283586836
1107 => 0.036492948381573
1108 => 0.037404957631376
1109 => 0.036861900528043
1110 => 0.037102630708183
1111 => 0.037363977372089
1112 => 0.037489276573471
1113 => 0.037285108248745
1114 => 0.038701834011673
1115 => 0.03882144907342
1116 => 0.038861554968957
1117 => 0.038383843012816
1118 => 0.038808163039745
1119 => 0.038609637751147
1120 => 0.039126145400165
1121 => 0.039207140394632
1122 => 0.039138540515799
1123 => 0.039164249605462
1124 => 0.037955324094354
1125 => 0.037892634929013
1126 => 0.037037863711367
1127 => 0.037386189300707
1128 => 0.036735011307115
1129 => 0.03694150655676
1130 => 0.037032527695244
1201 => 0.036984983417904
1202 => 0.037405883106905
1203 => 0.037048032387129
1204 => 0.036103605501533
1205 => 0.035158921307465
1206 => 0.035147061566931
1207 => 0.034898342893694
1208 => 0.034718564848041
1209 => 0.034753196477602
1210 => 0.034875242857252
1211 => 0.034711471290587
1212 => 0.034746420257764
1213 => 0.035326805976654
1214 => 0.035443198193456
1215 => 0.035047651963389
1216 => 0.033459476772619
1217 => 0.033069734597169
1218 => 0.033349873543959
1219 => 0.033215985170652
1220 => 0.026807892434068
1221 => 0.028313378769945
1222 => 0.027418869910652
1223 => 0.027831100747388
1224 => 0.026918038833996
1225 => 0.027353799836742
1226 => 0.027273330690979
1227 => 0.02969410816849
1228 => 0.029656311057849
1229 => 0.029674402534534
1230 => 0.02881084921526
1231 => 0.030186513100892
]
'min_raw' => 0.017562543153589
'max_raw' => 0.039207140394632
'avg_raw' => 0.028384841774111
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.017562'
'max' => '$0.0392071'
'avg' => '$0.028384'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0027081085201405
'max_diff' => 0.0059313730991156
'year' => 2035
]
10 => [
'items' => [
101 => 0.030864214598228
102 => 0.030738790087512
103 => 0.030770356734694
104 => 0.0302279371508
105 => 0.029679654341777
106 => 0.029071524326451
107 => 0.030201354727785
108 => 0.030075736874005
109 => 0.0303638590347
110 => 0.03109663481191
111 => 0.031204538828649
112 => 0.0313495629214
113 => 0.031297582107666
114 => 0.032535975978442
115 => 0.032385998309505
116 => 0.032747401340122
117 => 0.032003967886429
118 => 0.031162702366223
119 => 0.031322599438572
120 => 0.031307200064694
121 => 0.031111148360645
122 => 0.030934161648293
123 => 0.030639528637925
124 => 0.031571791080211
125 => 0.031533942927565
126 => 0.032146660525234
127 => 0.032038356738225
128 => 0.031315077542145
129 => 0.031340909600131
130 => 0.031514642604544
131 => 0.032115934516469
201 => 0.032294438895003
202 => 0.032211748554696
203 => 0.032407470456725
204 => 0.032562161067863
205 => 0.032426897215825
206 => 0.034341948114465
207 => 0.033546685464467
208 => 0.033934290946674
209 => 0.034026732570276
210 => 0.033789945295257
211 => 0.033841295976492
212 => 0.03391907826634
213 => 0.034391357098963
214 => 0.035630753410749
215 => 0.036179673600383
216 => 0.037831127074141
217 => 0.036134093419972
218 => 0.036033398465957
219 => 0.036330875105698
220 => 0.037300453118898
221 => 0.038086205030764
222 => 0.038346884271046
223 => 0.038381337335994
224 => 0.03887038892039
225 => 0.039150704168294
226 => 0.038811005194711
227 => 0.038523145882564
228 => 0.037492069556868
229 => 0.037611419449095
301 => 0.038433621852945
302 => 0.039595031175864
303 => 0.040591641198973
304 => 0.040242663104246
305 => 0.042905119626871
306 => 0.043169091315929
307 => 0.043132618963728
308 => 0.043733985755658
309 => 0.042540395139894
310 => 0.042030112026927
311 => 0.038585384333192
312 => 0.039553212306515
313 => 0.040960007104283
314 => 0.040773812537589
315 => 0.039752160551717
316 => 0.040590866184328
317 => 0.040313563873437
318 => 0.040094844035553
319 => 0.041096842013823
320 => 0.039995104076907
321 => 0.040949016425577
322 => 0.039725613971448
323 => 0.040244257206787
324 => 0.039949850222458
325 => 0.040140367622482
326 => 0.039026606794853
327 => 0.039627565102426
328 => 0.03900160495349
329 => 0.039001308166877
330 => 0.038987490061895
331 => 0.039723929401186
401 => 0.039747944661601
402 => 0.039203714877167
403 => 0.039125282862763
404 => 0.039415287127898
405 => 0.039075768085663
406 => 0.039234626908617
407 => 0.039080579757578
408 => 0.03904590049915
409 => 0.038769570267803
410 => 0.038650519606282
411 => 0.038697202438222
412 => 0.03853784986616
413 => 0.038441834177458
414 => 0.038968390124733
415 => 0.03868707252331
416 => 0.038925274167652
417 => 0.038653813330481
418 => 0.037712811798986
419 => 0.037171631867313
420 => 0.035394167205208
421 => 0.035898253978443
422 => 0.036232464030613
423 => 0.036122007610364
424 => 0.036359310742019
425 => 0.036373879227006
426 => 0.036296729559886
427 => 0.036207400128846
428 => 0.036163919502043
429 => 0.036487988471223
430 => 0.036676121415493
501 => 0.036266006480502
502 => 0.036169922289351
503 => 0.036584571131693
504 => 0.036837506685987
505 => 0.038705040706681
506 => 0.038566687754372
507 => 0.038913926514271
508 => 0.038874832758719
509 => 0.039238794298565
510 => 0.039833717594591
511 => 0.038624072190602
512 => 0.038834024806343
513 => 0.038782549273477
514 => 0.039344545643697
515 => 0.039346300135021
516 => 0.039009355237274
517 => 0.039192018532649
518 => 0.039090060892276
519 => 0.039274312128832
520 => 0.038564839966344
521 => 0.039428900477467
522 => 0.039918767108444
523 => 0.039925568907091
524 => 0.040157761802352
525 => 0.040393683231643
526 => 0.04084651387074
527 => 0.040381054030892
528 => 0.039543737090608
529 => 0.039604188669179
530 => 0.039113270053453
531 => 0.039121522484075
601 => 0.039077470362659
602 => 0.039209674095115
603 => 0.038593851251158
604 => 0.038738383641745
605 => 0.038536037448542
606 => 0.038833584945237
607 => 0.038513473025157
608 => 0.038782524450417
609 => 0.038898638126363
610 => 0.039327100090354
611 => 0.038450188844703
612 => 0.03666210745315
613 => 0.037037983840046
614 => 0.036482033139374
615 => 0.036533488493374
616 => 0.036637436497515
617 => 0.036300507006425
618 => 0.036364782535456
619 => 0.036362486161259
620 => 0.036342697249032
621 => 0.036255048875565
622 => 0.036127941393336
623 => 0.036634298480917
624 => 0.036720338417112
625 => 0.036911594537181
626 => 0.037480643020242
627 => 0.037423781657697
628 => 0.037516524899163
629 => 0.037314066923774
630 => 0.036542879938189
701 => 0.036584759101799
702 => 0.036062525260517
703 => 0.036898239843718
704 => 0.036700331599523
705 => 0.03657273886702
706 => 0.036537924007819
707 => 0.037108383052003
708 => 0.037279073338872
709 => 0.037172710606694
710 => 0.0369545575399
711 => 0.037373475919309
712 => 0.037485560804892
713 => 0.037510652477242
714 => 0.038252895525923
715 => 0.037552135618372
716 => 0.037720815493074
717 => 0.039036807723706
718 => 0.037843384365037
719 => 0.038475567334641
720 => 0.038444625268
721 => 0.038768028683344
722 => 0.038418096748503
723 => 0.038422434574225
724 => 0.038709594897806
725 => 0.038306330012974
726 => 0.038206475956363
727 => 0.038068528292323
728 => 0.03836973197004
729 => 0.038550289952561
730 => 0.040005454686452
731 => 0.04094555746812
801 => 0.040904745127023
802 => 0.041277693527148
803 => 0.041109676857076
804 => 0.040567106708856
805 => 0.041493207792487
806 => 0.041200150659911
807 => 0.041224309933856
808 => 0.041223410724473
809 => 0.041418268098137
810 => 0.04128019379048
811 => 0.041008035157051
812 => 0.041188706759033
813 => 0.041725236825639
814 => 0.043390642615135
815 => 0.04432262575863
816 => 0.043334536059664
817 => 0.044016107102962
818 => 0.043607407345578
819 => 0.043533134441896
820 => 0.043961211424792
821 => 0.044390037699778
822 => 0.044362723319928
823 => 0.044051417464761
824 => 0.043875568686271
825 => 0.045207154550661
826 => 0.046188244332571
827 => 0.046121340586754
828 => 0.046416631962526
829 => 0.047283616574811
830 => 0.047362882782353
831 => 0.047352897062116
901 => 0.047156427496149
902 => 0.048010086439122
903 => 0.04872222374805
904 => 0.047110950468179
905 => 0.047724502240038
906 => 0.047999945397829
907 => 0.048404377673768
908 => 0.049086722713998
909 => 0.04982793041077
910 => 0.049932745306023
911 => 0.049858374121987
912 => 0.049369527721233
913 => 0.050180566027488
914 => 0.050655653246104
915 => 0.050938556812612
916 => 0.051655953186612
917 => 0.048001646440999
918 => 0.045414946495625
919 => 0.045010995946755
920 => 0.045832445272453
921 => 0.046049054908704
922 => 0.045961739835937
923 => 0.043050173874948
924 => 0.044995667154532
925 => 0.047088854341645
926 => 0.047169262186275
927 => 0.048217155458623
928 => 0.048558392462696
929 => 0.049402083897448
930 => 0.049349310768491
1001 => 0.049554736206791
1002 => 0.049507512455998
1003 => 0.051070273178683
1004 => 0.052794230328018
1005 => 0.052734535173785
1006 => 0.052486695936633
1007 => 0.052854779466673
1008 => 0.054634087995263
1009 => 0.054470277778788
1010 => 0.054629405450772
1011 => 0.056727310483413
1012 => 0.059454885449357
1013 => 0.058187653033627
1014 => 0.060937182739457
1015 => 0.06266786594297
1016 => 0.065660903587463
1017 => 0.065286160533351
1018 => 0.066451328124428
1019 => 0.064615292255256
1020 => 0.060399382775568
1021 => 0.059732198962554
1022 => 0.061067917851993
1023 => 0.064351652404135
1024 => 0.060964501365126
1025 => 0.061649717608883
1026 => 0.061452375284584
1027 => 0.061441859750773
1028 => 0.061843194906572
1029 => 0.061261037330852
1030 => 0.058889222639218
1031 => 0.059976211335202
1101 => 0.059556472798198
1102 => 0.060022203998585
1103 => 0.062535563204914
1104 => 0.061424347188796
1105 => 0.060253771383674
1106 => 0.061721933214863
1107 => 0.063591407741106
1108 => 0.063474419385023
1109 => 0.063247413076881
1110 => 0.064527035750211
1111 => 0.066640597512288
1112 => 0.067211884763598
1113 => 0.067633597333062
1114 => 0.067691744371498
1115 => 0.06829069500558
1116 => 0.065069986491128
1117 => 0.070181333617225
1118 => 0.071063922067787
1119 => 0.070898032018625
1120 => 0.071878991936425
1121 => 0.071590368644057
1122 => 0.071172198777023
1123 => 0.072727228902895
1124 => 0.070944512348043
1125 => 0.068414170636204
1126 => 0.067025975128606
1127 => 0.068854062955549
1128 => 0.06997041239999
1129 => 0.070708248369606
1130 => 0.0709315170882
1201 => 0.065320000924923
1202 => 0.062295704941872
1203 => 0.064234243993384
1204 => 0.066599395427047
1205 => 0.065056847955494
1206 => 0.06511731289595
1207 => 0.06291804557586
1208 => 0.066793981784879
1209 => 0.066229290480979
1210 => 0.069158909964531
1211 => 0.068459732763116
1212 => 0.070848723724779
1213 => 0.070219622340768
1214 => 0.072830987013215
1215 => 0.073872731080931
1216 => 0.075621981505142
1217 => 0.076908737237923
1218 => 0.077664344815926
1219 => 0.077618980971156
1220 => 0.080613074637406
1221 => 0.078847562208083
1222 => 0.076629662497523
1223 => 0.076589547689143
1224 => 0.077738229377124
1225 => 0.080145551069701
1226 => 0.080769734559481
1227 => 0.081118567977589
1228 => 0.080584317454777
1229 => 0.078667980248163
1230 => 0.077840515558397
1231 => 0.078545539448037
]
'min_raw' => 0.029071524326451
'max_raw' => 0.081118567977589
'avg_raw' => 0.05509504615202
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.029071'
'max' => '$0.081118'
'avg' => '$0.055095'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011508981172862
'max_diff' => 0.041911427582957
'year' => 2036
]
11 => [
'items' => [
101 => 0.077683355814401
102 => 0.079171726652059
103 => 0.08121557771102
104 => 0.080793530549608
105 => 0.082204370933363
106 => 0.083664442305813
107 => 0.085752409944325
108 => 0.086298282002249
109 => 0.087200587756344
110 => 0.088129356769307
111 => 0.088427652345244
112 => 0.088997191155388
113 => 0.088994189404727
114 => 0.090710532943482
115 => 0.092603713017463
116 => 0.093318344668172
117 => 0.094961600743957
118 => 0.092147582300736
119 => 0.094282047615033
120 => 0.096207388757662
121 => 0.093911917674922
122 => 0.097075689786311
123 => 0.097198531888135
124 => 0.099053301780809
125 => 0.097173137163667
126 => 0.096056701415707
127 => 0.099279809587767
128 => 0.10083937010527
129 => 0.10036961778527
130 => 0.096794779435567
131 => 0.094714070184008
201 => 0.089268452733837
202 => 0.095719021836732
203 => 0.098860905881071
204 => 0.096786642714916
205 => 0.097832780403242
206 => 0.10354016841946
207 => 0.10571317225003
208 => 0.10526120264372
209 => 0.10533757806713
210 => 0.1065100914913
211 => 0.11170966172899
212 => 0.10859395871747
213 => 0.11097579692661
214 => 0.11223911532438
215 => 0.11341255585773
216 => 0.11053095677751
217 => 0.10678203871325
218 => 0.10559459899342
219 => 0.096580398122301
220 => 0.096111169820269
221 => 0.095847777755265
222 => 0.094187128042967
223 => 0.092882312259339
224 => 0.091844674303494
225 => 0.089121602442434
226 => 0.090040559258929
227 => 0.085700551061665
228 => 0.088477134505828
301 => 0.081550376629834
302 => 0.087319186418683
303 => 0.084179485526208
304 => 0.08628771023352
305 => 0.086280354836123
306 => 0.082398444736709
307 => 0.080159440004763
308 => 0.081586220963327
309 => 0.08311584340892
310 => 0.08336401950445
311 => 0.085347214932393
312 => 0.085900682147688
313 => 0.084223650646429
314 => 0.081406834969044
315 => 0.082061117006175
316 => 0.080146181000164
317 => 0.076790329306579
318 => 0.079200560580461
319 => 0.080023519507753
320 => 0.08038698505298
321 => 0.077086890334511
322 => 0.076049928925425
323 => 0.075497859372177
324 => 0.080980834181704
325 => 0.081281203918886
326 => 0.079744469875463
327 => 0.086690653470834
328 => 0.085118518192731
329 => 0.086874978480867
330 => 0.082001747769165
331 => 0.082187911745028
401 => 0.079880846229121
402 => 0.081172648759855
403 => 0.080259644367872
404 => 0.081068283881213
405 => 0.081552979071365
406 => 0.083859666020522
407 => 0.08734552507836
408 => 0.083515123911548
409 => 0.081846163270813
410 => 0.082881577065735
411 => 0.085639020446844
412 => 0.089816688320154
413 => 0.087343424855753
414 => 0.088441017182517
415 => 0.088680792277431
416 => 0.086857099363972
417 => 0.089883930479161
418 => 0.091506033863723
419 => 0.093169976289284
420 => 0.09461473087479
421 => 0.092505361093637
422 => 0.094762689125752
423 => 0.092943681203906
424 => 0.091311843052427
425 => 0.09131431787731
426 => 0.090290641967536
427 => 0.088307140900884
428 => 0.087941352871827
429 => 0.089844228392916
430 => 0.091370154357846
501 => 0.09149583692901
502 => 0.092340667948103
503 => 0.09284063024275
504 => 0.097740940396076
505 => 0.099711885677235
506 => 0.10212192025895
507 => 0.10306076455064
508 => 0.1058863492743
509 => 0.10360446012717
510 => 0.10311075905643
511 => 0.096256814758541
512 => 0.097379147753356
513 => 0.099176111167081
514 => 0.096286446023371
515 => 0.098119273447825
516 => 0.098481112406005
517 => 0.096188256307531
518 => 0.09741296981819
519 => 0.09416049383613
520 => 0.087416420166778
521 => 0.089891438561051
522 => 0.091713885181419
523 => 0.089113029148106
524 => 0.093774962920791
525 => 0.091051557452636
526 => 0.090188368665747
527 => 0.086820761459073
528 => 0.088410142429535
529 => 0.090559802949827
530 => 0.089231562673145
531 => 0.091987860683541
601 => 0.095891513744091
602 => 0.098673489381597
603 => 0.098887054927116
604 => 0.097098430970091
605 => 0.099964712276069
606 => 0.099985590006192
607 => 0.096752412983947
608 => 0.094772110060227
609 => 0.094322181069364
610 => 0.095446191902313
611 => 0.096810948557359
612 => 0.098962789423248
613 => 0.10026310179133
614 => 0.10365362681492
615 => 0.10457100567233
616 => 0.10557892690473
617 => 0.10692582050262
618 => 0.10854311160331
619 => 0.10500457074743
620 => 0.1051451635723
621 => 0.10185012332173
622 => 0.098328900257427
623 => 0.10100106963658
624 => 0.10449457563603
625 => 0.10369316149977
626 => 0.10360298603804
627 => 0.10375463615209
628 => 0.10315039606509
629 => 0.10041744054579
630 => 0.099044967393199
701 => 0.10081580791528
702 => 0.10175693084172
703 => 0.10321653042609
704 => 0.10303660396891
705 => 0.10679637574869
706 => 0.10825730937272
707 => 0.10788354003482
708 => 0.10795232258826
709 => 0.11059727313127
710 => 0.11353900211067
711 => 0.11629431949521
712 => 0.11909714668239
713 => 0.11571822911203
714 => 0.11400262315247
715 => 0.11577269058098
716 => 0.11483346788791
717 => 0.12023052007383
718 => 0.12060420025736
719 => 0.12600086217499
720 => 0.13112293695735
721 => 0.12790585355805
722 => 0.13093941830298
723 => 0.13422046590478
724 => 0.14055013905944
725 => 0.13841852782153
726 => 0.13678574701991
727 => 0.13524277705191
728 => 0.13845345261573
729 => 0.14258393543679
730 => 0.14347360187517
731 => 0.14491520138409
801 => 0.14339953577086
802 => 0.1452249880569
803 => 0.151669636771
804 => 0.14992823579996
805 => 0.14745516647692
806 => 0.15254259768606
807 => 0.15438371926376
808 => 0.16730567469891
809 => 0.18362017721515
810 => 0.17686586604663
811 => 0.17267324714407
812 => 0.17365861203642
813 => 0.17961611607459
814 => 0.18152947728992
815 => 0.17632830193148
816 => 0.17816544499725
817 => 0.18828828391357
818 => 0.19371886221262
819 => 0.18634340745854
820 => 0.16599482030681
821 => 0.14723249364281
822 => 0.15220910755269
823 => 0.15164491397762
824 => 0.16252064154333
825 => 0.14988670396273
826 => 0.15009942707004
827 => 0.16120005316422
828 => 0.1582385964352
829 => 0.15344141580892
830 => 0.14726751837026
831 => 0.13585449793851
901 => 0.1257456674665
902 => 0.14557141194675
903 => 0.14471648979398
904 => 0.14347843582441
905 => 0.14623359096226
906 => 0.1596118422472
907 => 0.15930343025391
908 => 0.15734147050577
909 => 0.15882959968281
910 => 0.15318053956918
911 => 0.15463643098717
912 => 0.14722952159441
913 => 0.1505777539798
914 => 0.15343112321382
915 => 0.1540039793324
916 => 0.15529465341833
917 => 0.14426598466744
918 => 0.14921753315188
919 => 0.15212610398914
920 => 0.13898507513168
921 => 0.15186634810026
922 => 0.14407400008106
923 => 0.1414291601262
924 => 0.14499008869425
925 => 0.14360239136816
926 => 0.14240933069552
927 => 0.14174358234079
928 => 0.14435833527582
929 => 0.1442363539261
930 => 0.13995811062272
1001 => 0.13437731663696
1002 => 0.1362504142819
1003 => 0.13556990034711
1004 => 0.13310363005938
1005 => 0.1347655984547
1006 => 0.12744713074468
1007 => 0.11485608743045
1008 => 0.12317411631792
1009 => 0.12285388125403
1010 => 0.12269240421331
1011 => 0.12894317302881
1012 => 0.12834230583697
1013 => 0.12725172600007
1014 => 0.13308360070543
1015 => 0.13095488798819
1016 => 0.13751507899493
1017 => 0.14183604507852
1018 => 0.14074010831111
1019 => 0.14480399779777
1020 => 0.13629356666851
1021 => 0.13912039051042
1022 => 0.13970299498643
1023 => 0.13301163627683
1024 => 0.1284406151406
1025 => 0.12813578014427
1026 => 0.12021025941957
1027 => 0.12444400861814
1028 => 0.12816953270843
1029 => 0.12638529578153
1030 => 0.12582045967304
1031 => 0.12870608485333
1101 => 0.12893032264355
1102 => 0.12381767726294
1103 => 0.12488075813399
1104 => 0.12931398208877
1105 => 0.12476905226481
1106 => 0.11593899602694
1107 => 0.11374901999487
1108 => 0.11345683682292
1109 => 0.10751744813475
1110 => 0.11389536466511
1111 => 0.11111123318207
1112 => 0.11990627117796
1113 => 0.11488259264344
1114 => 0.11466603190252
1115 => 0.11433866858006
1116 => 0.1092263913831
1117 => 0.11034565518707
1118 => 0.11406625854015
1119 => 0.11539381173213
1120 => 0.11525533705789
1121 => 0.11404802555396
1122 => 0.11460072657802
1123 => 0.11282028400571
1124 => 0.11219157267672
1125 => 0.11020718678175
1126 => 0.10729068771673
1127 => 0.10769624479965
1128 => 0.10191789700837
1129 => 0.098769546451553
1130 => 0.097898124512019
1201 => 0.096732822675244
1202 => 0.098029748455232
1203 => 0.10190152767509
1204 => 0.097231340492158
1205 => 0.089224632142563
1206 => 0.089705848957141
1207 => 0.090787000264943
1208 => 0.088772281955386
1209 => 0.086865520157881
1210 => 0.088523294840337
1211 => 0.085130746962042
1212 => 0.091196973467946
1213 => 0.091032899041364
1214 => 0.093294013149834
1215 => 0.094707934204593
1216 => 0.091449303935751
1217 => 0.090629767235411
1218 => 0.091096612585791
1219 => 0.083380698854874
1220 => 0.092663458383953
1221 => 0.092743736073835
1222 => 0.092056349755063
1223 => 0.09699913263125
1224 => 0.10742994619265
1225 => 0.10350545455235
1226 => 0.10198577277083
1227 => 0.099096856593298
1228 => 0.10294616587299
1229 => 0.10265059897889
1230 => 0.10131393339335
1231 => 0.10050551387656
]
'min_raw' => 0.075497859372177
'max_raw' => 0.19371886221262
'avg_raw' => 0.1346083607924
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.075497'
'max' => '$0.193718'
'avg' => '$0.1346083'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.046426335045726
'max_diff' => 0.11260029423503
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0023697915362211
]
1 => [
'year' => 2028
'avg' => 0.0040672502315539
]
2 => [
'year' => 2029
'avg' => 0.011110994582073
]
3 => [
'year' => 2030
'avg' => 0.0085721157730798
]
4 => [
'year' => 2031
'avg' => 0.0084188800197769
]
5 => [
'year' => 2032
'avg' => 0.01476094619372
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0023697915362211
'min' => '$0.002369'
'max_raw' => 0.01476094619372
'max' => '$0.01476'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01476094619372
]
1 => [
'year' => 2033
'avg' => 0.037966671460446
]
2 => [
'year' => 2034
'avg' => 0.024065100964483
]
3 => [
'year' => 2035
'avg' => 0.028384841774111
]
4 => [
'year' => 2036
'avg' => 0.05509504615202
]
5 => [
'year' => 2037
'avg' => 0.1346083607924
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01476094619372
'min' => '$0.01476'
'max_raw' => 0.1346083607924
'max' => '$0.1346083'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1346083607924
]
]
]
]
'prediction_2025_max_price' => '$0.004051'
'last_price' => 0.00392884
'sma_50day_nextmonth' => '$0.0034035'
'sma_200day_nextmonth' => '$0.010821'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.003627'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003461'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003253'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003098'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003917'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00583'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0120073'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003681'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003534'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003361'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003385'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004162'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006141'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0085086'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007629'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00949'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003652'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003738'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004673'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007068'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.008358'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006476'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003238'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '60.70'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 124.24
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003451'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003711'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 246.44
'cci_20_action' => 'SELL'
'adx_14' => 24.95
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000126'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 87.04
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001152'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 20
'sell_pct' => 37.5
'buy_pct' => 62.5
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767675626
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de CoinCreate para 2026
La previsión del precio de CoinCreate para 2026 sugiere que el precio medio podría oscilar entre $0.001357 en el extremo inferior y $0.004051 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, CoinCreate podría potencialmente ganar 3.13% para 2026 si CREA alcanza el objetivo de precio previsto.
Predicción de precio de CoinCreate 2027-2032
La predicción del precio de CREA para 2027-2032 está actualmente dentro de un rango de precios de $0.002369 en el extremo inferior y $0.01476 en el extremo superior. Considerando la volatilidad de precios en el mercado, si CoinCreate alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de CoinCreate | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0013067 | $0.002369 | $0.003432 |
| 2028 | $0.002358 | $0.004067 | $0.005776 |
| 2029 | $0.00518 | $0.01111 | $0.017041 |
| 2030 | $0.0044057 | $0.008572 | $0.012738 |
| 2031 | $0.005209 | $0.008418 | $0.011628 |
| 2032 | $0.007951 | $0.01476 | $0.02157 |
Predicción de precio de CoinCreate 2032-2037
La predicción de precio de CoinCreate para 2032-2037 se estima actualmente entre $0.01476 en el extremo inferior y $0.1346083 en el extremo superior. Comparado con el precio actual, CoinCreate podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de CoinCreate | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007951 | $0.01476 | $0.02157 |
| 2033 | $0.018476 | $0.037966 | $0.057456 |
| 2034 | $0.014854 | $0.024065 | $0.033275 |
| 2035 | $0.017562 | $0.028384 | $0.0392071 |
| 2036 | $0.029071 | $0.055095 | $0.081118 |
| 2037 | $0.075497 | $0.1346083 | $0.193718 |
CoinCreate Histograma de precios potenciales
Pronóstico de precio de CoinCreate basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para CoinCreate es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 12 indicando señales bajistas. La predicción de precio de CREA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de CoinCreate
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de CoinCreate aumentar durante el próximo mes, alcanzando $0.010821 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para CoinCreate alcance $0.0034035 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.70, lo que sugiere que el mercado de CREA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CREA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.003627 | BUY |
| SMA 5 | $0.003461 | BUY |
| SMA 10 | $0.003253 | BUY |
| SMA 21 | $0.003098 | BUY |
| SMA 50 | $0.003917 | BUY |
| SMA 100 | $0.00583 | SELL |
| SMA 200 | $0.0120073 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.003681 | BUY |
| EMA 5 | $0.003534 | BUY |
| EMA 10 | $0.003361 | BUY |
| EMA 21 | $0.003385 | BUY |
| EMA 50 | $0.004162 | SELL |
| EMA 100 | $0.006141 | SELL |
| EMA 200 | $0.0085086 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.007629 | SELL |
| SMA 50 | $0.00949 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.007068 | SELL |
| EMA 50 | $0.008358 | SELL |
| EMA 100 | $0.006476 | SELL |
| EMA 200 | $0.003238 | BUY |
Osciladores de CoinCreate
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.70 | NEUTRAL |
| Stoch RSI (14) | 124.24 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 246.44 | SELL |
| Índice Direccional Medio (14) | 24.95 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000126 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 87.04 | SELL |
| VWMA (10) | 0.003451 | BUY |
| Promedio Móvil de Hull (9) | 0.003711 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001152 | SELL |
Predicción de precios de CoinCreate basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de CoinCreate
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de CoinCreate por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.00552 | $0.007757 | $0.01090054 | $0.015317 | $0.021523 | $0.030243 |
| Amazon.com acción | $0.008197 | $0.0171051 | $0.03569 | $0.074471 | $0.155388 | $0.324226 |
| Apple acción | $0.005572 | $0.0079045 | $0.011211 | $0.0159033 | $0.022557 | $0.031996 |
| Netflix acción | $0.006199 | $0.009781 | $0.015433 | $0.024351 | $0.038422 | $0.060624 |
| Google acción | $0.005087 | $0.006588 | $0.008532 | $0.011049 | $0.0143088 | $0.018529 |
| Tesla acción | $0.0089063 | $0.02019 | $0.045769 | $0.103755 | $0.2352066 | $0.533195 |
| Kodak acción | $0.002946 | $0.0022093 | $0.001656 | $0.001242 | $0.000931 | $0.000698 |
| Nokia acción | $0.0026026 | $0.001724 | $0.001142 | $0.000756 | $0.0005012 | $0.000332 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de CoinCreate
Podría preguntarse cosas como: "¿Debo invertir en CoinCreate ahora?", "¿Debería comprar CREA hoy?", "¿Será CoinCreate una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de CoinCreate regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como CoinCreate, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de CoinCreate a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de CoinCreate es de $0.003928 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de CoinCreate basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si CoinCreate ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00403 | $0.004135 | $0.004243 | $0.004353 |
| Si CoinCreate ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.004133 | $0.004347 | $0.004573 | $0.004811 |
| Si CoinCreate ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.004439 | $0.005016 | $0.005668 | $0.0064051 |
| Si CoinCreate ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.00495 | $0.006236 | $0.007857 | $0.0099004 |
| Si CoinCreate ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.005971 | $0.009075 | $0.013793 | $0.020964 |
| Si CoinCreate ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.009034 | $0.020777 | $0.047781 | $0.10988 |
| Si CoinCreate ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.014141 | $0.050898 | $0.18320029 | $0.659396 |
Cuadro de preguntas
¿Es CREA una buena inversión?
La decisión de adquirir CoinCreate depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de CoinCreate ha experimentado un aumento de 7.7838% durante las últimas 24 horas, y CoinCreate ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en CoinCreate dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede CoinCreate subir?
Parece que el valor medio de CoinCreate podría potencialmente aumentar hasta $0.004051 para el final de este año. Mirando las perspectivas de CoinCreate en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.012738. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de CoinCreate la próxima semana?
Basado en nuestro nuevo pronóstico experimental de CoinCreate, el precio de CoinCreate aumentará en un 0.86% durante la próxima semana y alcanzará $0.003962 para el 13 de enero de 2026.
¿Cuál será el precio de CoinCreate el próximo mes?
Basado en nuestro nuevo pronóstico experimental de CoinCreate, el precio de CoinCreate disminuirá en un -11.62% durante el próximo mes y alcanzará $0.003472 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de CoinCreate este año en 2026?
Según nuestra predicción más reciente sobre el valor de CoinCreate en 2026, se anticipa que CREA fluctúe dentro del rango de $0.001357 y $0.004051. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de CoinCreate no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará CoinCreate en 5 años?
El futuro de CoinCreate parece estar en una tendencia alcista, con un precio máximo de $0.012738 proyectada después de un período de cinco años. Basado en el pronóstico de CoinCreate para 2030, el valor de CoinCreate podría potencialmente alcanzar su punto más alto de aproximadamente $0.012738, mientras que su punto más bajo se anticipa que esté alrededor de $0.0044057.
¿Cuánto será CoinCreate en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de CoinCreate, se espera que el valor de CREA en 2026 crezca en un 3.13% hasta $0.004051 si ocurre lo mejor. El precio estará entre $0.004051 y $0.001357 durante 2026.
¿Cuánto será CoinCreate en 2027?
Según nuestra última simulación experimental para la predicción de precios de CoinCreate, el valor de CREA podría disminuir en un -12.62% hasta $0.003432 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003432 y $0.0013067 a lo largo del año.
¿Cuánto será CoinCreate en 2028?
Nuestro nuevo modelo experimental de predicción de precios de CoinCreate sugiere que el valor de CREA en 2028 podría aumentar en un 47.02% , alcanzando $0.005776 en el mejor escenario. Se espera que el precio oscile entre $0.005776 y $0.002358 durante el año.
¿Cuánto será CoinCreate en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de CoinCreate podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.017041 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.017041 y $0.00518.
¿Cuánto será CoinCreate en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de CoinCreate, se espera que el valor de CREA en 2030 aumente en un 224.23% , alcanzando $0.012738 en el mejor escenario. Se pronostica que el precio oscile entre $0.012738 y $0.0044057 durante el transcurso de 2030.
¿Cuánto será CoinCreate en 2031?
Nuestra simulación experimental indica que el precio de CoinCreate podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.011628 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.011628 y $0.005209 durante el año.
¿Cuánto será CoinCreate en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de CoinCreate, CREA podría experimentar un 449.04% aumento en valor, alcanzando $0.02157 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.02157 y $0.007951 a lo largo del año.
¿Cuánto será CoinCreate en 2033?
Según nuestra predicción experimental de precios de CoinCreate, se anticipa que el valor de CREA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.057456. A lo largo del año, el precio de CREA podría oscilar entre $0.057456 y $0.018476.
¿Cuánto será CoinCreate en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de CoinCreate sugieren que CREA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.033275 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.033275 y $0.014854.
¿Cuánto será CoinCreate en 2035?
Basado en nuestra predicción experimental para el precio de CoinCreate, CREA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0392071 en 2035. El rango de precios esperado para el año está entre $0.0392071 y $0.017562.
¿Cuánto será CoinCreate en 2036?
Nuestra reciente simulación de predicción de precios de CoinCreate sugiere que el valor de CREA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.081118 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.081118 y $0.029071.
¿Cuánto será CoinCreate en 2037?
Según la simulación experimental, el valor de CoinCreate podría aumentar en un 4830.69% en 2037, con un máximo de $0.193718 bajo condiciones favorables. Se espera que el precio caiga entre $0.193718 y $0.075497 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de CoinCreate?
Los traders de CoinCreate utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de CoinCreate
Las medias móviles son herramientas populares para la predicción de precios de CoinCreate. Una media móvil simple (SMA) calcula el precio de cierre promedio de CREA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CREA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CREA.
¿Cómo leer gráficos de CoinCreate y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de CoinCreate en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CREA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de CoinCreate?
La acción del precio de CoinCreate está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CREA. La capitalización de mercado de CoinCreate puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CREA, grandes poseedores de CoinCreate, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de CoinCreate.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


