Predicción del precio de AI Rig Complex - Pronóstico de ARC
Predicción de precio de AI Rig Complex hasta $0.0371055 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.01243 | $0.0371055 |
| 2027 | $0.011966 | $0.031436 |
| 2028 | $0.021596 | $0.052895 |
| 2029 | $0.04744 | $0.156058 |
| 2030 | $0.040346 | $0.116652 |
| 2031 | $0.0477017 | $0.10649 |
| 2032 | $0.072813 | $0.197535 |
| 2033 | $0.1692019 | $0.526161 |
| 2034 | $0.13603 | $0.304724 |
| 2035 | $0.160829 | $0.359041 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en AI Rig Complex hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.45, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de AI Rig Complex para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'AI Rig Complex'
'name_with_ticker' => 'AI Rig Complex <small>ARC</small>'
'name_lang' => 'AI Rig Complex'
'name_lang_with_ticker' => 'AI Rig Complex <small>ARC</small>'
'name_with_lang' => 'AI Rig Complex'
'name_with_lang_with_ticker' => 'AI Rig Complex <small>ARC</small>'
'image' => '/uploads/coins/ai-rig-complex.jpg?1734049503'
'price_for_sd' => 0.03597
'ticker' => 'ARC'
'marketcap' => '$36.01M'
'low24h' => '$0.03483'
'high24h' => '$0.03745'
'volume24h' => '$5.65M'
'current_supply' => '999.98M'
'max_supply' => '999.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03597'
'change_24h_pct' => '3.2777%'
'ath_price' => '$0.6231'
'ath_days' => 349
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 ene. 2025'
'ath_pct' => '-94.22%'
'fdv' => '$36.01M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.77'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.036286'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031798'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01243'
'current_year_max_price_prediction' => '$0.0371055'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.040346'
'grand_prediction_max_price' => '$0.116652'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.036660324597783
107 => 0.036797200942133
108 => 0.037105590335034
109 => 0.03447043673764
110 => 0.035653543338825
111 => 0.036348507624924
112 => 0.033208633697312
113 => 0.036286442412839
114 => 0.034424564576197
115 => 0.033792615273974
116 => 0.034643451756428
117 => 0.03431187995175
118 => 0.034026813984638
119 => 0.033867742276934
120 => 0.034492502686252
121 => 0.034463356866407
122 => 0.033441127575993
123 => 0.032107671138043
124 => 0.032555222887835
125 => 0.032392623141315
126 => 0.031803340684145
127 => 0.032200445910043
128 => 0.030451795465545
129 => 0.027443333262729
130 => 0.029430815545599
131 => 0.029354299639673
201 => 0.029315716850185
202 => 0.030809254855787
203 => 0.030665685638332
204 => 0.030405106102819
205 => 0.031798554936627
206 => 0.031289927367755
207 => 0.03285739768729
208 => 0.033889835017359
209 => 0.033627975514605
210 => 0.034598987813737
211 => 0.032565533576222
212 => 0.033240965505901
213 => 0.0333801710905
214 => 0.031781359994317
215 => 0.030689175337858
216 => 0.030616339073089
217 => 0.028722641391107
218 => 0.029734239407428
219 => 0.030624403799021
220 => 0.030198084134995
221 => 0.030063124065303
222 => 0.030752605792095
223 => 0.030806184427279
224 => 0.029584585867087
225 => 0.029838594890746
226 => 0.030897854744891
227 => 0.029811904260203
228 => 0.027702079857457
301 => 0.027178814234972
302 => 0.027109000955234
303 => 0.025689863086334
304 => 0.027213781345959
305 => 0.026548550187162
306 => 0.028650007447107
307 => 0.027449666330568
308 => 0.027397922024125
309 => 0.027319702915698
310 => 0.026098192328088
311 => 0.026365625515727
312 => 0.027254614162663
313 => 0.027571815327064
314 => 0.027538728646864
315 => 0.027250257633307
316 => 0.027382318186103
317 => 0.026956905132601
318 => 0.026806682929202
319 => 0.026332540333404
320 => 0.025635681702815
321 => 0.025732584169481
322 => 0.024351924879305
323 => 0.023599668420883
324 => 0.023391453747772
325 => 0.023113020384999
326 => 0.02342290353698
327 => 0.024348013645007
328 => 0.023232134581669
329 => 0.021319038197392
330 => 0.021434018549845
331 => 0.021692345263833
401 => 0.021210955141318
402 => 0.020755359790369
403 => 0.0211514629844
404 => 0.020340858826478
405 => 0.021790302903611
406 => 0.021751099503344
407 => 0.022291362622279
408 => 0.022629200237864
409 => 0.021850593910167
410 => 0.021654776524327
411 => 0.021766323006705
412 => 0.019922708125846
413 => 0.022140699954173
414 => 0.022159881239608
415 => 0.021995639428414
416 => 0.023176651604182
417 => 0.02566895566199
418 => 0.024731250622744
419 => 0.024368142889263
420 => 0.023677874822486
421 => 0.024597616037404
422 => 0.024526994262297
423 => 0.024207615812747
424 => 0.024014454729938
425 => 0.024370359947656
426 => 0.023970354134834
427 => 0.023898502099426
428 => 0.023463156940643
429 => 0.0233077585259
430 => 0.023192707726213
501 => 0.023066048100416
502 => 0.023345427673312
503 => 0.022712316805687
504 => 0.021948847163954
505 => 0.0218853729241
506 => 0.022060630881049
507 => 0.02198309228152
508 => 0.021885001699117
509 => 0.021697720063929
510 => 0.021642157603408
511 => 0.021822708645028
512 => 0.021618877045818
513 => 0.021919641673734
514 => 0.021837850337007
515 => 0.021380970578836
516 => 0.020811529241603
517 => 0.020806460019258
518 => 0.020683774817222
519 => 0.020527516766586
520 => 0.020484049351599
521 => 0.02111810427822
522 => 0.022430579000659
523 => 0.022172908807786
524 => 0.022359101929241
525 => 0.02327498780469
526 => 0.023566120382847
527 => 0.023359481374724
528 => 0.023076621155468
529 => 0.023089065569575
530 => 0.024055684566387
531 => 0.024115971407539
601 => 0.024268296805858
602 => 0.024464077989851
603 => 0.02339282375694
604 => 0.023038609591541
605 => 0.022870763268921
606 => 0.022353861559954
607 => 0.022911295737272
608 => 0.02258650271386
609 => 0.022630328389228
610 => 0.022601786860651
611 => 0.022617372465224
612 => 0.021789897754451
613 => 0.022091386048266
614 => 0.021590103285182
615 => 0.020918941937044
616 => 0.020916691968865
617 => 0.021080957757988
618 => 0.020983246038897
619 => 0.02072030631522
620 => 0.020757655661928
621 => 0.020430436083937
622 => 0.020797386043197
623 => 0.020807908855019
624 => 0.020666613132804
625 => 0.021231950174381
626 => 0.021463569221586
627 => 0.021370565350376
628 => 0.021457043822052
629 => 0.022183616167611
630 => 0.022302079162511
701 => 0.02235469259962
702 => 0.022284197563839
703 => 0.021470324230742
704 => 0.021506422973921
705 => 0.021241554348362
706 => 0.021017768270933
707 => 0.021026718540427
708 => 0.021141773674379
709 => 0.021644226192243
710 => 0.022701607894894
711 => 0.022741734757574
712 => 0.022790369685725
713 => 0.022592546990979
714 => 0.022532881773335
715 => 0.022611595596306
716 => 0.023008692569334
717 => 0.024030133794736
718 => 0.023669088245913
719 => 0.023375552594711
720 => 0.023633062497458
721 => 0.02359342086636
722 => 0.02325880560596
723 => 0.023249414070072
724 => 0.022607180402395
725 => 0.022369761238407
726 => 0.022171356014463
727 => 0.021954702689416
728 => 0.021826263336043
729 => 0.022023604557466
730 => 0.022068738829678
731 => 0.021637248800102
801 => 0.021578438303481
802 => 0.021930802375992
803 => 0.021775740085137
804 => 0.021935225496642
805 => 0.021972227480151
806 => 0.021966269308578
807 => 0.021804366468134
808 => 0.021907558510621
809 => 0.021663478567111
810 => 0.021398078288167
811 => 0.021228769445221
812 => 0.021081025024193
813 => 0.021163002215936
814 => 0.020870768495816
815 => 0.020777277047247
816 => 0.021872599368521
817 => 0.022681725743945
818 => 0.022669960725997
819 => 0.022598344204957
820 => 0.022491936581571
821 => 0.023000908188911
822 => 0.022823592658122
823 => 0.022952604521979
824 => 0.022985443455942
825 => 0.023084837018592
826 => 0.023120361674074
827 => 0.023012981491748
828 => 0.022652600484475
829 => 0.021754565278348
830 => 0.021336527465697
831 => 0.021198568024551
901 => 0.021203582588215
902 => 0.021065258536381
903 => 0.021106001168895
904 => 0.021051089911488
905 => 0.02094710127442
906 => 0.021156581210629
907 => 0.021180721821836
908 => 0.021131826701626
909 => 0.021143343272465
910 => 0.020738512560504
911 => 0.020769290960289
912 => 0.02059791291916
913 => 0.020565781602441
914 => 0.020132552838061
915 => 0.019365025284448
916 => 0.019790310054852
917 => 0.019276625856292
918 => 0.019082085866712
919 => 0.02000300792021
920 => 0.01991057288844
921 => 0.019752364294593
922 => 0.019518340810733
923 => 0.019431539224136
924 => 0.018904160262011
925 => 0.018872999899472
926 => 0.01913438315353
927 => 0.019013763775431
928 => 0.018844368486448
929 => 0.018230835921079
930 => 0.017541022183953
1001 => 0.017561843324662
1002 => 0.017781260240001
1003 => 0.018419244513752
1004 => 0.018169973020758
1005 => 0.017989123692529
1006 => 0.017955256049663
1007 => 0.018379180506848
1008 => 0.018979122428684
1009 => 0.019260601755465
1010 => 0.018981664291279
1011 => 0.018661235951482
1012 => 0.018680738939803
1013 => 0.018810483583613
1014 => 0.018824117911187
1015 => 0.018615552002545
1016 => 0.018674262084146
1017 => 0.018585076101631
1018 => 0.018037741891565
1019 => 0.01802784235132
1020 => 0.017893517709213
1021 => 0.017889450412434
1022 => 0.017660930687358
1023 => 0.017628959198138
1024 => 0.017175219413844
1025 => 0.017473872313917
1026 => 0.017273551628529
1027 => 0.016971621104776
1028 => 0.016919568168677
1029 => 0.016918003394562
1030 => 0.017228018532026
1031 => 0.017470249606536
1101 => 0.017277036292616
1102 => 0.017233045366319
1103 => 0.017702753369521
1104 => 0.01764297874463
1105 => 0.01759121430498
1106 => 0.018925404209804
1107 => 0.017869288791999
1108 => 0.017408762188875
1109 => 0.01683877306588
1110 => 0.017024364398462
1111 => 0.017063471219141
1112 => 0.015692750126599
1113 => 0.015136648750067
1114 => 0.014945815713879
1115 => 0.01483598860357
1116 => 0.01488603819686
1117 => 0.014385481733796
1118 => 0.014721863955415
1119 => 0.014288424369386
1120 => 0.014215756812253
1121 => 0.014990800484935
1122 => 0.015098643284249
1123 => 0.014638552398243
1124 => 0.014934005229007
1125 => 0.014826869925471
1126 => 0.014295854447041
1127 => 0.01427557356165
1128 => 0.014009128660671
1129 => 0.013592193984537
1130 => 0.013401643649693
1201 => 0.013302403380873
1202 => 0.013343351849942
1203 => 0.013322647050937
1204 => 0.013187534232161
1205 => 0.013330391559552
1206 => 0.012965450120791
1207 => 0.012820127499343
1208 => 0.012754488642694
1209 => 0.012430582110549
1210 => 0.012946061445081
1211 => 0.013047617367822
1212 => 0.013149373387102
1213 => 0.014035090063154
1214 => 0.013990842161028
1215 => 0.014390821646647
1216 => 0.014375279179351
1217 => 0.014261198550814
1218 => 0.013779911144371
1219 => 0.013971743726456
1220 => 0.013381312856201
1221 => 0.013823703809593
1222 => 0.013621815053153
1223 => 0.013755445017959
1224 => 0.013515166292309
1225 => 0.013648146459949
1226 => 0.01307170004458
1227 => 0.012533422492728
1228 => 0.012750041092895
1229 => 0.012985530284617
1230 => 0.013496130853802
1231 => 0.013192021367159
]
'min_raw' => 0.012430582110549
'max_raw' => 0.037105590335034
'avg_raw' => 0.024768086222791
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01243'
'max' => '$0.0371055'
'avg' => '$0.024768'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023547967889451
'max_diff' => 0.0011270403350336
'year' => 2026
]
1 => [
'items' => [
101 => 0.013301390638209
102 => 0.012935021888387
103 => 0.012179098509445
104 => 0.012183376953677
105 => 0.012067094610512
106 => 0.011966609688518
107 => 0.013226951999956
108 => 0.013070208510465
109 => 0.012820458274043
110 => 0.013154758890174
111 => 0.013243153279144
112 => 0.01324566974313
113 => 0.013489566843112
114 => 0.013619734769093
115 => 0.013642677430228
116 => 0.014026454786795
117 => 0.01415509189457
118 => 0.014684929936093
119 => 0.013608690930006
120 => 0.013586526495915
121 => 0.013159463185408
122 => 0.012888612882281
123 => 0.013178008537386
124 => 0.013434373581362
125 => 0.013167429161939
126 => 0.013202286467612
127 => 0.012843935394697
128 => 0.012972029041279
129 => 0.013082360545793
130 => 0.013021441973986
131 => 0.0129302439235
201 => 0.013413354571305
202 => 0.01338609557523
203 => 0.013835979317131
204 => 0.014186695865439
205 => 0.014815242618088
206 => 0.014159321314815
207 => 0.014135416935473
208 => 0.014369086077927
209 => 0.014155056121042
210 => 0.01429031566573
211 => 0.014793450214334
212 => 0.014804080654517
213 => 0.014626007084904
214 => 0.01461517129201
215 => 0.014649372268965
216 => 0.014849688459242
217 => 0.014779691827265
218 => 0.014860693701887
219 => 0.014961987786447
220 => 0.015380983067989
221 => 0.015482001411867
222 => 0.01523657920825
223 => 0.01525873808536
224 => 0.015166943444217
225 => 0.015078270971057
226 => 0.015277593741147
227 => 0.015641860021186
228 => 0.015639593939563
301 => 0.015724096636207
302 => 0.015776741116159
303 => 0.015550752470093
304 => 0.015403642171337
305 => 0.015460053620752
306 => 0.015550256756847
307 => 0.015430801959444
308 => 0.014693471613024
309 => 0.014917130539283
310 => 0.014879902757591
311 => 0.014826885869408
312 => 0.015051776649265
313 => 0.015030085384923
314 => 0.014380347803774
315 => 0.014421941895651
316 => 0.014382877278265
317 => 0.014509103048907
318 => 0.01414823951519
319 => 0.014259238707708
320 => 0.014328856360703
321 => 0.014369861693145
322 => 0.014518001071545
323 => 0.014500618625308
324 => 0.014516920554281
325 => 0.014736572145103
326 => 0.015847494516153
327 => 0.015907959569698
328 => 0.015610207531991
329 => 0.015729153598156
330 => 0.015500803161765
331 => 0.015654096339529
401 => 0.015758975638531
402 => 0.015285046253472
403 => 0.015256983231065
404 => 0.015027690311195
405 => 0.015150899338519
406 => 0.014954864917005
407 => 0.015002964907051
408 => 0.014868473141599
409 => 0.015110531542369
410 => 0.015381190446503
411 => 0.015449569574332
412 => 0.015269693528081
413 => 0.015139451416186
414 => 0.014910789172118
415 => 0.015291059580074
416 => 0.015402262235891
417 => 0.015290475479863
418 => 0.015264572045903
419 => 0.015215485085354
420 => 0.015274986076632
421 => 0.015401656602345
422 => 0.015341921121656
423 => 0.015381377459055
424 => 0.01523101058809
425 => 0.015550827281738
426 => 0.016058773159332
427 => 0.016060406288386
428 => 0.0160006704857
429 => 0.015976227882267
430 => 0.016037520440894
501 => 0.016070769139597
502 => 0.016268978035063
503 => 0.016481664076889
504 => 0.017474177031901
505 => 0.017195483365739
506 => 0.018076099904285
507 => 0.01877255325253
508 => 0.018981389159454
509 => 0.018789269951572
510 => 0.018132040519484
511 => 0.018099793708067
512 => 0.019081971954716
513 => 0.018804461613424
514 => 0.018771452641358
515 => 0.018420292948114
516 => 0.018627871818795
517 => 0.018582471274779
518 => 0.018510804294978
519 => 0.01890685032017
520 => 0.019648213124055
521 => 0.019532664778613
522 => 0.019446413298874
523 => 0.019068484422087
524 => 0.019296082019383
525 => 0.019215038874331
526 => 0.019563251656727
527 => 0.019356978118293
528 => 0.01880235919965
529 => 0.018890684090492
530 => 0.018877333960926
531 => 0.019152078681388
601 => 0.019069607135889
602 => 0.018861230068046
603 => 0.019645679226588
604 => 0.019594741461568
605 => 0.019666959566372
606 => 0.019698752209526
607 => 0.020176232588785
608 => 0.0203718410225
609 => 0.020416247561561
610 => 0.020602060444691
611 => 0.020411624367757
612 => 0.021173504454113
613 => 0.021680110254605
614 => 0.022268558961571
615 => 0.023128440682552
616 => 0.023451764163991
617 => 0.023393358671025
618 => 0.024045311178178
619 => 0.025216855341441
620 => 0.02363016124215
621 => 0.025300953981498
622 => 0.02477200029045
623 => 0.023517860604447
624 => 0.023437108794004
625 => 0.024286426750226
626 => 0.026170132233304
627 => 0.025698285374604
628 => 0.026170904005731
629 => 0.025619569267905
630 => 0.025592190851158
701 => 0.026144126908117
702 => 0.027433755589669
703 => 0.026821101344072
704 => 0.025942711254024
705 => 0.026591300827252
706 => 0.02602943251479
707 => 0.024763385949776
708 => 0.025697924562204
709 => 0.025073025206201
710 => 0.025255404059759
711 => 0.026568849559313
712 => 0.026410812321861
713 => 0.026615327140979
714 => 0.026254363838321
715 => 0.025917167194951
716 => 0.02528776461955
717 => 0.025101429546145
718 => 0.025152925856801
719 => 0.025101404027131
720 => 0.024749259070702
721 => 0.02467321340089
722 => 0.024546467286231
723 => 0.024585751207011
724 => 0.024347431430569
725 => 0.024797190088093
726 => 0.02488066925819
727 => 0.025207966102376
728 => 0.025241947146505
729 => 0.026153464198786
730 => 0.025651415923812
731 => 0.025988233251427
801 => 0.025958105139398
802 => 0.023545041614326
803 => 0.023877540477441
804 => 0.024394804364557
805 => 0.024161777684546
806 => 0.023832332478856
807 => 0.023566287811527
808 => 0.023163202936059
809 => 0.02373053715772
810 => 0.024476521329937
811 => 0.025260866536174
812 => 0.026203205909134
813 => 0.025992886731129
814 => 0.025243250157074
815 => 0.025276878306176
816 => 0.025484754291738
817 => 0.025215536002911
818 => 0.025136138273771
819 => 0.025473846262989
820 => 0.025476171872309
821 => 0.025166403694897
822 => 0.024822153052682
823 => 0.024820710629922
824 => 0.024759454553206
825 => 0.025630466587871
826 => 0.026109435137688
827 => 0.026164348110028
828 => 0.026105739057126
829 => 0.026128295355477
830 => 0.025849594109691
831 => 0.026486622511272
901 => 0.027071222768141
902 => 0.026914537411137
903 => 0.026679643786852
904 => 0.0264925397011
905 => 0.026870461634787
906 => 0.026853633365985
907 => 0.027066116794892
908 => 0.027056477319193
909 => 0.026985027133957
910 => 0.026914539962848
911 => 0.027194013628786
912 => 0.027113529701206
913 => 0.027032920759856
914 => 0.026871247187367
915 => 0.026893221310982
916 => 0.026658368244393
917 => 0.026549714469644
918 => 0.024915822394275
919 => 0.024479193042773
920 => 0.024616565525166
921 => 0.024661792113244
922 => 0.024471770459915
923 => 0.024744212698232
924 => 0.024701752863978
925 => 0.024866939240888
926 => 0.024763737964153
927 => 0.024767973380548
928 => 0.025071466330592
929 => 0.025159571625142
930 => 0.025114760561237
1001 => 0.025146144694362
1002 => 0.025869378795822
1003 => 0.025766558034319
1004 => 0.025711936554065
1005 => 0.025727067077385
1006 => 0.025911868896622
1007 => 0.025963603316203
1008 => 0.025744400945125
1009 => 0.025847778050519
1010 => 0.026287944644781
1011 => 0.0264419780415
1012 => 0.026933578703605
1013 => 0.026724738004838
1014 => 0.027108074145839
1015 => 0.028286318754354
1016 => 0.029227582075962
1017 => 0.02836195742606
1018 => 0.030090467647031
1019 => 0.031436360794121
1020 => 0.031384703173434
1021 => 0.031150015572169
1022 => 0.029617752006627
1023 => 0.028207740228852
1024 => 0.029387274953223
1025 => 0.029390281829809
1026 => 0.029288958750908
1027 => 0.028659649809909
1028 => 0.029267060163868
1029 => 0.029315274191974
1030 => 0.029288287157379
1031 => 0.028805797467808
1101 => 0.028069124890832
1102 => 0.028213068949029
1103 => 0.028448852252733
1104 => 0.028002465269271
1105 => 0.027859817580513
1106 => 0.028125026773746
1107 => 0.028979586052873
1108 => 0.028818036571279
1109 => 0.028813817861442
1110 => 0.029504995051343
1111 => 0.029010261348747
1112 => 0.028214884544575
1113 => 0.028014041411791
1114 => 0.027301183594551
1115 => 0.027793557028031
1116 => 0.027811276671346
1117 => 0.027541608773764
1118 => 0.028236766608239
1119 => 0.028230360606414
1120 => 0.02889030950966
1121 => 0.030151883947176
1122 => 0.029778774307695
1123 => 0.029344888391191
1124 => 0.029392063820667
1125 => 0.029909461843131
1126 => 0.029596631187701
1127 => 0.029709127272526
1128 => 0.029909291566833
1129 => 0.030030055655388
1130 => 0.029374687726778
1201 => 0.029221890112747
1202 => 0.028909319819115
1203 => 0.028827776063907
1204 => 0.029082358046077
1205 => 0.029015284688289
1206 => 0.027809787403939
1207 => 0.027683806230401
1208 => 0.027687669893134
1209 => 0.027370884242194
1210 => 0.026887710087243
1211 => 0.028157462917625
1212 => 0.028055483995166
1213 => 0.027942907157312
1214 => 0.027956697177595
1215 => 0.028507853845347
1216 => 0.028188155143972
1217 => 0.029038126539165
1218 => 0.028863397972792
1219 => 0.028684188278003
1220 => 0.028659416039323
1221 => 0.028590435596281
1222 => 0.028353875990601
1223 => 0.028068216051714
1224 => 0.02787959861662
1225 => 0.025717456013825
1226 => 0.026118737104299
1227 => 0.026580374420967
1228 => 0.026739729772785
1229 => 0.026467141416445
1230 => 0.028364639440355
1231 => 0.028711330614069
]
'min_raw' => 0.011966609688518
'max_raw' => 0.031436360794121
'avg_raw' => 0.02170148524132
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011966'
'max' => '$0.031436'
'avg' => '$0.0217014'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0004639724220301
'max_diff' => -0.0056692295409123
'year' => 2027
]
2 => [
'items' => [
101 => 0.027661180434783
102 => 0.027464740213588
103 => 0.028377518028553
104 => 0.027827001423579
105 => 0.02807489901709
106 => 0.027539080012654
107 => 0.028627822862624
108 => 0.028619528466251
109 => 0.028195982907239
110 => 0.028553960713401
111 => 0.028491753260179
112 => 0.028013571367202
113 => 0.028642982081549
114 => 0.028643294261411
115 => 0.028235640869537
116 => 0.027759590954631
117 => 0.027674484473643
118 => 0.027610368172666
119 => 0.028059130337451
120 => 0.028461489091154
121 => 0.029210178978602
122 => 0.029398417404739
123 => 0.030133124513695
124 => 0.029695642202552
125 => 0.029889572444737
126 => 0.030100111155737
127 => 0.030201051156095
128 => 0.030036574842251
129 => 0.03117787739997
130 => 0.031274238304448
131 => 0.031306547282201
201 => 0.030921706481204
202 => 0.0312635351856
203 => 0.03110360485499
204 => 0.031519699145312
205 => 0.031584948042993
206 => 0.031529684547954
207 => 0.031550395577962
208 => 0.030576495184516
209 => 0.030525993311382
210 => 0.029837396687751
211 => 0.03011800490173
212 => 0.029593421295598
213 => 0.029759772160912
214 => 0.029833098037294
215 => 0.029794796760679
216 => 0.030133870069127
217 => 0.029845588488846
218 => 0.029084766000603
219 => 0.028323736226782
220 => 0.028314182117893
221 => 0.028113816411737
222 => 0.027968988704996
223 => 0.027996887659353
224 => 0.028095207213426
225 => 0.027963274193778
226 => 0.027991428792694
227 => 0.028458982727807
228 => 0.028552747335052
229 => 0.028234098563437
301 => 0.026954677764604
302 => 0.026640704691387
303 => 0.026866382310059
304 => 0.026758522943834
305 => 0.021596216432762
306 => 0.022809023773964
307 => 0.022088414834868
308 => 0.022420504587626
309 => 0.021684949461589
310 => 0.022035994921481
311 => 0.021971169643167
312 => 0.023921327958241
313 => 0.023890878918506
314 => 0.023905453262499
315 => 0.023209781850427
316 => 0.024318005299395
317 => 0.024863956020783
318 => 0.024762915072262
319 => 0.024788344902163
320 => 0.024351376171408
321 => 0.02390968407498
322 => 0.023419779564114
323 => 0.024329961591274
324 => 0.024228764887179
325 => 0.024460873716948
326 => 0.025051191822716
327 => 0.025138118406191
328 => 0.025254948615904
329 => 0.025213073302262
330 => 0.02621071316254
331 => 0.026089892392821
401 => 0.026381035685337
402 => 0.025782131843537
403 => 0.025104415298066
404 => 0.025233227057136
405 => 0.025220821448899
406 => 0.025062883817544
407 => 0.024920304785826
408 => 0.024682950869407
409 => 0.025433973782725
410 => 0.025403483623973
411 => 0.025897083853233
412 => 0.025809835218134
413 => 0.025227167479584
414 => 0.025247977571856
415 => 0.025387935443369
416 => 0.025872331234688
417 => 0.026016132885732
418 => 0.025949518231463
419 => 0.026107190177038
420 => 0.026231807654017
421 => 0.026122840213502
422 => 0.0276655893792
423 => 0.027024932365506
424 => 0.027337184136317
425 => 0.027411654343762
426 => 0.027220900473333
427 => 0.027262268157445
428 => 0.027324928926855
429 => 0.02770539284848
430 => 0.028703840266945
501 => 0.029146045831922
502 => 0.030476443092193
503 => 0.029109326815549
504 => 0.029028207793383
505 => 0.029267852514106
506 => 0.030048936542737
507 => 0.03068193178445
508 => 0.030891932824498
509 => 0.03091968792868
510 => 0.031313663840415
511 => 0.031539483485806
512 => 0.031265824802135
513 => 0.031033927720983
514 => 0.030203301160421
515 => 0.030299448446527
516 => 0.030961807903122
517 => 0.03189742964834
518 => 0.032700290440588
519 => 0.032419156573666
520 => 0.034564009528699
521 => 0.034776662938252
522 => 0.03474728111296
523 => 0.035231737226992
524 => 0.03427019049841
525 => 0.033859110642851
526 => 0.031084066502072
527 => 0.031863740713051
528 => 0.032997042967371
529 => 0.032847046164346
530 => 0.032024011774003
531 => 0.032699666095199
601 => 0.032476273646948
602 => 0.032300074754451
603 => 0.033107276038816
604 => 0.032219725068655
605 => 0.032988188967502
606 => 0.03200262606849
607 => 0.032420440769489
608 => 0.032183268937779
609 => 0.032336748179582
610 => 0.031439511668097
611 => 0.031923638710509
612 => 0.03141937039147
613 => 0.031419131302629
614 => 0.031407999551537
615 => 0.032001268992618
616 => 0.032020615487793
617 => 0.031582188474454
618 => 0.031519004292314
619 => 0.031752629329854
620 => 0.031479115597389
621 => 0.031607090951335
622 => 0.03148299184049
623 => 0.031455054516712
624 => 0.031232445167702
625 => 0.031136538939377
626 => 0.031174146242702
627 => 0.03104577312856
628 => 0.03096842368383
629 => 0.031392612800124
630 => 0.031165985667028
701 => 0.031357878941686
702 => 0.031139192336351
703 => 0.030381129285043
704 => 0.029945159207864
705 => 0.028513248376425
706 => 0.028919336511941
707 => 0.029188573365917
708 => 0.029099590587284
709 => 0.029290760027552
710 => 0.02930249627857
711 => 0.029240345144797
712 => 0.029168382093942
713 => 0.029133354460592
714 => 0.029394421741982
715 => 0.02954598008595
716 => 0.029215594886138
717 => 0.029138190256402
718 => 0.029472227934479
719 => 0.029675990725138
720 => 0.031180460686947
721 => 0.031069004692802
722 => 0.031348737365971
723 => 0.03131724375982
724 => 0.031610448166211
725 => 0.032089713453232
726 => 0.031115233120036
727 => 0.031284369210885
728 => 0.031242900947331
729 => 0.031695640575243
730 => 0.031697053978943
731 => 0.031425613955988
801 => 0.031572765996044
802 => 0.03149062976419
803 => 0.031639061036527
804 => 0.031067516130049
805 => 0.031763596131679
806 => 0.032158228638199
807 => 0.032163708110935
808 => 0.032350760787028
809 => 0.032540817139299
810 => 0.032905613757064
811 => 0.032530643159623
812 => 0.03185610755748
813 => 0.031904806849218
814 => 0.031509326872485
815 => 0.031515974962343
816 => 0.03148048693766
817 => 0.031586989171148
818 => 0.03109088738116
819 => 0.031207321479676
820 => 0.031044313059916
821 => 0.031284014862415
822 => 0.031026135347053
823 => 0.031242880950079
824 => 0.031336421167114
825 => 0.031681586581751
826 => 0.030975154134666
827 => 0.029534690553787
828 => 0.029837493462421
829 => 0.029389624175897
830 => 0.029431076183523
831 => 0.029514815835967
901 => 0.029243388224488
902 => 0.029295168059091
903 => 0.02929331811903
904 => 0.029277376335002
905 => 0.029206767530225
906 => 0.029104370793771
907 => 0.029512287875748
908 => 0.029581600936762
909 => 0.029735675285324
910 => 0.030194096037017
911 => 0.030148288993617
912 => 0.030223002181918
913 => 0.030059903711353
914 => 0.029438641853795
915 => 0.029472379361641
916 => 0.02905167209819
917 => 0.029724916854719
918 => 0.029565483609976
919 => 0.029462695959916
920 => 0.029434649397276
921 => 0.029894206485344
922 => 0.030031713168768
923 => 0.029946028231388
924 => 0.029770285924993
925 => 0.030107763106821
926 => 0.030198057763658
927 => 0.030218271407386
928 => 0.030816216268753
929 => 0.030251689882797
930 => 0.030387576994806
1001 => 0.031447729452015
1002 => 0.030486317464366
1003 => 0.030995598836269
1004 => 0.030970672163287
1005 => 0.031231203280011
1006 => 0.030949301007382
1007 => 0.030952795523908
1008 => 0.031184129505652
1009 => 0.030859262649596
1010 => 0.030778821047424
1011 => 0.030667691550156
1012 => 0.030910338741848
1013 => 0.031055794759279
1014 => 0.032228063434101
1015 => 0.032985402459982
1016 => 0.032952524375529
1017 => 0.033252968522235
1018 => 0.033117615682391
1019 => 0.03268052565826
1020 => 0.033426585032002
1021 => 0.0331905006297
1022 => 0.033209963140983
1023 => 0.033209238745341
1024 => 0.033366214234015
1025 => 0.033254982713697
1026 => 0.033035733969469
1027 => 0.033181281517798
1028 => 0.033613505702135
1029 => 0.034955142832573
1030 => 0.035705940745095
1031 => 0.03490994385551
1101 => 0.035459011851122
1102 => 0.035129766706686
1103 => 0.035069933069747
1104 => 0.035414788346798
1105 => 0.03576024724736
1106 => 0.035738243008854
1107 => 0.035487457586557
1108 => 0.035345795264946
1109 => 0.036418509824544
1110 => 0.037208867638841
1111 => 0.037154970534532
1112 => 0.037392854824675
1113 => 0.038091290458018
1114 => 0.03815514665925
1115 => 0.038147102245613
1116 => 0.037988827988153
1117 => 0.038676528572507
1118 => 0.039250220498915
1119 => 0.037952192070533
1120 => 0.038446464303621
1121 => 0.038668359033511
1122 => 0.03899416633019
1123 => 0.039543857851329
1124 => 0.040140968641761
1125 => 0.040225406654515
1126 => 0.040165493843735
1127 => 0.039771683226245
1128 => 0.04042504897815
1129 => 0.040807775312303
1130 => 0.041035680085755
1201 => 0.04161360867149
1202 => 0.038669729379821
1203 => 0.036585905296883
1204 => 0.036260486075548
1205 => 0.036922238858612
1206 => 0.037096737790127
1207 => 0.037026397489636
1208 => 0.034680864031293
1209 => 0.036248137327309
1210 => 0.037934391613741
1211 => 0.03799916750837
1212 => 0.038843341662072
1213 => 0.039118239370385
1214 => 0.039797910212551
1215 => 0.039755396616319
1216 => 0.039920885650462
1217 => 0.039882842587383
1218 => 0.041141789700914
1219 => 0.042530595322595
1220 => 0.042482505400048
1221 => 0.042282848160329
1222 => 0.04257937320793
1223 => 0.044012769442959
1224 => 0.043880805287344
1225 => 0.044008997223844
1226 => 0.045699052167616
1227 => 0.047896364002032
1228 => 0.046875492048444
1229 => 0.049090490439737
1230 => 0.050484714515037
1231 => 0.052895880887807
]
'min_raw' => 0.021596216432762
'max_raw' => 0.052895880887807
'avg_raw' => 0.037246048660285
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021596'
'max' => '$0.052895'
'avg' => '$0.037246'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.009629606744244
'max_diff' => 0.021459520093686
'year' => 2028
]
3 => [
'items' => [
101 => 0.052593990982692
102 => 0.053532640357655
103 => 0.05205354504621
104 => 0.048657243236651
105 => 0.048119765474768
106 => 0.049195809565164
107 => 0.051841158962555
108 => 0.04911249809864
109 => 0.049664502637595
110 => 0.049505525293241
111 => 0.04949705406617
112 => 0.049820366348478
113 => 0.049351385020156
114 => 0.047440670720444
115 => 0.048316339824092
116 => 0.047978201930089
117 => 0.048353391133335
118 => 0.050378132523456
119 => 0.049482946091077
120 => 0.048539939903607
121 => 0.04972267893252
122 => 0.051228712149551
123 => 0.051134467297431
124 => 0.050951592893026
125 => 0.051982446335663
126 => 0.053685114211181
127 => 0.054145338496059
128 => 0.054485066654286
129 => 0.054531909427551
130 => 0.055014419104803
131 => 0.052419842962123
201 => 0.056537501933997
202 => 0.057248507890406
203 => 0.057114868238779
204 => 0.057905121435623
205 => 0.057672608898323
206 => 0.057335734711874
207 => 0.058588454120548
208 => 0.057152312407747
209 => 0.05511389005164
210 => 0.053995571231657
211 => 0.055468263666017
212 => 0.056367585545797
213 => 0.056961980100717
214 => 0.057141843533893
215 => 0.052621252522268
216 => 0.050184904690474
217 => 0.051746575717869
218 => 0.053651922152069
219 => 0.052409258666478
220 => 0.05245796872244
221 => 0.050686257158206
222 => 0.05380867931263
223 => 0.053353768668434
224 => 0.055713845895245
225 => 0.055150594524263
226 => 0.057075145885057
227 => 0.05656834701302
228 => 0.058672040796101
301 => 0.059511261201407
302 => 0.060920442876143
303 => 0.06195704265248
304 => 0.062565753868139
305 => 0.062529209129969
306 => 0.064941226225134
307 => 0.063518944013574
308 => 0.061732222349675
309 => 0.06169990619181
310 => 0.062625274659585
311 => 0.0645645931056
312 => 0.065067430162716
313 => 0.065348447479351
314 => 0.064918059676642
315 => 0.063374274271878
316 => 0.06270767556127
317 => 0.063275636975932
318 => 0.062581068971281
319 => 0.06378008820867
320 => 0.065426597718293
321 => 0.06508660001556
322 => 0.066223161360492
323 => 0.067399382782757
324 => 0.069081432244004
325 => 0.069521182259285
326 => 0.07024807231235
327 => 0.070996280947897
328 => 0.071236585396847
329 => 0.071695401151983
330 => 0.071692982966476
331 => 0.073075655126441
401 => 0.074600785336675
402 => 0.075176486684193
403 => 0.076500280188452
404 => 0.074233330203665
405 => 0.075952837807971
406 => 0.077503876709121
407 => 0.075654664189341
408 => 0.078203372836601
409 => 0.078302333417876
410 => 0.079796520703716
411 => 0.078281875637869
412 => 0.077382484232688
413 => 0.07997899351969
414 => 0.081235362574395
415 => 0.080856933990448
416 => 0.077977073781284
417 => 0.076300871616535
418 => 0.071913927236138
419 => 0.077110452356613
420 => 0.07964152815808
421 => 0.077970518906421
422 => 0.078813278776154
423 => 0.083411103359613
424 => 0.085161657273899
425 => 0.084797554297023
426 => 0.08485908170647
427 => 0.085803648823817
428 => 0.089992379604748
429 => 0.087482395026795
430 => 0.089401184189312
501 => 0.090418903042402
502 => 0.091364217031241
503 => 0.089042824644209
504 => 0.086022727256707
505 => 0.085066135639021
506 => 0.077804369968336
507 => 0.077426363528927
508 => 0.07721417705972
509 => 0.075876371385737
510 => 0.074825222581801
511 => 0.073989310026258
512 => 0.071795625855895
513 => 0.072535929867118
514 => 0.069039655157028
515 => 0.071276447816176
516 => 0.065696308958367
517 => 0.070343614413872
518 => 0.067814297341491
519 => 0.06951266572983
520 => 0.069506740282519
521 => 0.066379505611399
522 => 0.064575781916819
523 => 0.065725184856982
524 => 0.066957436048555
525 => 0.067157364658597
526 => 0.068755010493519
527 => 0.069200879104763
528 => 0.067849876397077
529 => 0.065580672983582
530 => 0.066107757181518
531 => 0.064565100572371
601 => 0.061861654202271
602 => 0.063803316582922
603 => 0.064466285488545
604 => 0.064759090325773
605 => 0.062100561313693
606 => 0.061265193778625
607 => 0.060820451112367
608 => 0.0652374902725
609 => 0.065479465648595
610 => 0.064241485412626
611 => 0.069837273469307
612 => 0.068570774291462
613 => 0.069985764172947
614 => 0.06605992981519
615 => 0.066209901974494
616 => 0.064351349075245
617 => 0.065392014510275
618 => 0.064656505723009
619 => 0.065307939027181
620 => 0.065698405463741
621 => 0.067556653392747
622 => 0.070364832620276
623 => 0.067279093119261
624 => 0.065934592230065
625 => 0.066768713019962
626 => 0.068990086602611
627 => 0.072355581290345
628 => 0.070363140698313
629 => 0.071247351999221
630 => 0.071440512832647
701 => 0.069971360904243
702 => 0.072409751017521
703 => 0.073716504088673
704 => 0.075056962345227
705 => 0.076220844690606
706 => 0.074521553840251
707 => 0.076340038633906
708 => 0.074874660895998
709 => 0.073560065577129
710 => 0.073562059275587
711 => 0.072737394428887
712 => 0.071139502373949
713 => 0.070844826562956
714 => 0.072377767345194
715 => 0.073607040682517
716 => 0.073708289522401
717 => 0.074388878404287
718 => 0.074791643893965
719 => 0.078739293225935
720 => 0.080327070443922
721 => 0.082268574370991
722 => 0.083024899567751
723 => 0.085301167252406
724 => 0.083462896227624
725 => 0.083065174728146
726 => 0.077543693886657
727 => 0.078447836065131
728 => 0.079895454929614
729 => 0.077567564588541
730 => 0.079044075203456
731 => 0.079335569675612
801 => 0.077488463765529
802 => 0.078475082840839
803 => 0.075854915088985
804 => 0.070421945117175
805 => 0.072415799466197
806 => 0.073883947391194
807 => 0.071788719280889
808 => 0.075544334572085
809 => 0.073350381650604
810 => 0.072655003902808
811 => 0.069942087388586
812 => 0.071222479553566
813 => 0.072954228290151
814 => 0.071884208908341
815 => 0.074104659789815
816 => 0.077249410410603
817 => 0.079490546976113
818 => 0.07966259361331
819 => 0.078221692946175
820 => 0.080530745460964
821 => 0.080547564387684
822 => 0.077942943718246
823 => 0.076347628060804
824 => 0.07598516898686
825 => 0.076890662817859
826 => 0.077990099492074
827 => 0.079723604697038
828 => 0.08077112558666
829 => 0.083502504504643
830 => 0.084241537325078
831 => 0.085053510333986
901 => 0.086138556677089
902 => 0.087441433012156
903 => 0.08459081376382
904 => 0.084704074180775
905 => 0.082049617006235
906 => 0.079212948827573
907 => 0.081365626379497
908 => 0.084179965919944
909 => 0.083534353319796
910 => 0.083461708713611
911 => 0.083583876791281
912 => 0.083097105974506
913 => 0.080895459610803
914 => 0.079789806589986
915 => 0.081216381069008
916 => 0.081974541915083
917 => 0.083150383268771
918 => 0.08300543600293
919 => 0.086034277053888
920 => 0.087211193098891
921 => 0.086910087611502
922 => 0.08696549826769
923 => 0.089096248550331
924 => 0.091466081086846
925 => 0.093685741984238
926 => 0.095943676385719
927 => 0.093221648336054
928 => 0.091839570363785
929 => 0.093265522045016
930 => 0.092508892011232
1001 => 0.096856712616405
1002 => 0.097157746281775
1003 => 0.10150525249003
1004 => 0.10563155357308
1005 => 0.10303989779318
1006 => 0.10548371246288
1007 => 0.1081268972753
1008 => 0.11322602961973
1009 => 0.11150882123577
1010 => 0.11019346652574
1011 => 0.1089504626805
1012 => 0.11153695636113
1013 => 0.11486443916101
1014 => 0.11558114708587
1015 => 0.11674248772764
1016 => 0.1155214800448
1017 => 0.1169920493092
1018 => 0.12218380501343
1019 => 0.12078094679325
1020 => 0.11878866259988
1021 => 0.12288705510685
1022 => 0.12437024742303
1023 => 0.13478006785179
1024 => 0.14792289615133
1025 => 0.14248167893485
1026 => 0.13910413982161
1027 => 0.13989794162952
1028 => 0.1446972576117
1029 => 0.1462386455825
1030 => 0.14204862172956
1031 => 0.14352860898943
1101 => 0.15168348430045
1102 => 0.15605831326508
1103 => 0.15011670791319
1104 => 0.1337240543948
1105 => 0.11860927920633
1106 => 0.12261839821351
1107 => 0.12216388853554
1108 => 0.13092528471581
1109 => 0.12074748908865
1110 => 0.1209188570646
1111 => 0.1298614296394
1112 => 0.12747570459095
1113 => 0.12361113555304
1114 => 0.11863749483709
1115 => 0.10944325996757
1116 => 0.10129966974344
1117 => 0.11727112552979
1118 => 0.11658240731408
1119 => 0.1155850412754
1120 => 0.1178045714682
1121 => 0.12858198005979
1122 => 0.12833352590869
1123 => 0.12675298736179
1124 => 0.12795181191939
1125 => 0.12340097581186
1126 => 0.12457382989738
1127 => 0.11860688494871
1128 => 0.12130419326714
1129 => 0.12360284392355
1130 => 0.12406433207493
1201 => 0.12510408844415
1202 => 0.11621948410999
1203 => 0.12020841061775
1204 => 0.12255153122919
1205 => 0.11196522706325
1206 => 0.12234227403339
1207 => 0.116064822915
1208 => 0.11393416172126
1209 => 0.11680281632536
1210 => 0.11568489883628
1211 => 0.11472377902549
1212 => 0.11418745765694
1213 => 0.11629388099633
1214 => 0.11619561382983
1215 => 0.11274909640743
1216 => 0.10825325492793
1217 => 0.10976220689941
1218 => 0.10921399050167
1219 => 0.10722718355493
1220 => 0.10856605154905
1221 => 0.10267035448855
1222 => 0.092527114127632
1223 => 0.099228049405911
1224 => 0.098970070686912
1225 => 0.098839986118389
1226 => 0.10387555377977
1227 => 0.10339150013944
1228 => 0.10251293804237
1229 => 0.10721104807305
1230 => 0.10549617471335
1231 => 0.11078101033295
]
'min_raw' => 0.047440670720444
'max_raw' => 0.15605831326508
'avg_raw' => 0.10174949199276
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.04744'
'max' => '$0.156058'
'avg' => '$0.101749'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.025844454287681
'max_diff' => 0.10316243237727
'year' => 2029
]
4 => [
'items' => [
101 => 0.11426194487375
102 => 0.11337906727776
103 => 0.1166529030382
104 => 0.10979697010518
105 => 0.11207423601325
106 => 0.11254357736074
107 => 0.10715307412454
108 => 0.10347069730139
109 => 0.10322512474945
110 => 0.096840390800901
111 => 0.10025106414045
112 => 0.10325231553599
113 => 0.10181494902404
114 => 0.10135992172646
115 => 0.10368455750642
116 => 0.10386520161568
117 => 0.099746496780709
118 => 0.10060290593832
119 => 0.10417427449173
120 => 0.10051291661396
121 => 0.09339949633687
122 => 0.091635269757422
123 => 0.091399889410576
124 => 0.086615167004538
125 => 0.091753163813438
126 => 0.089510290516599
127 => 0.096595500387565
128 => 0.092548466508012
129 => 0.092374006966169
130 => 0.092110285781022
131 => 0.087991877551751
201 => 0.088893547215464
202 => 0.091890834505815
203 => 0.09296030037787
204 => 0.092848746325539
205 => 0.091876146162927
206 => 0.092321397536852
207 => 0.090887087725578
208 => 0.09038060307864
209 => 0.088781998213327
210 => 0.086432490687181
211 => 0.086759204119059
212 => 0.082104214927678
213 => 0.079567929757239
214 => 0.078865919449762
215 => 0.077927161927575
216 => 0.078971954609832
217 => 0.082091027928168
218 => 0.078328763757937
219 => 0.071878625730222
220 => 0.072266290016188
221 => 0.073137256568194
222 => 0.071514216160551
223 => 0.069978144626173
224 => 0.071313634199892
225 => 0.068580625686882
226 => 0.073467527589889
227 => 0.073335350588797
228 => 0.075156885414251
301 => 0.076295928522266
302 => 0.073670802927878
303 => 0.073010590939984
304 => 0.07338667769325
305 => 0.067170801405354
306 => 0.0746489157098
307 => 0.074713586752841
308 => 0.074159834019401
309 => 0.078141699025642
310 => 0.086544676163652
311 => 0.08338313815536
312 => 0.082158895080558
313 => 0.079831608100442
314 => 0.082932579820819
315 => 0.082694473575388
316 => 0.08161766683444
317 => 0.080966410757673
318 => 0.082166370047718
319 => 0.080817722522275
320 => 0.08057546836835
321 => 0.079107671770683
322 => 0.078583735165806
323 => 0.078195833362072
324 => 0.077768791590605
325 => 0.078710739326282
326 => 0.076576161833693
327 => 0.074002070632844
328 => 0.073788062801546
329 => 0.07437895723952
330 => 0.074117530437634
331 => 0.073786811190597
401 => 0.073155378081975
402 => 0.072968045367081
403 => 0.073576785809574
404 => 0.072889553341771
405 => 0.073903602283504
406 => 0.07362783708124
407 => 0.07208743507824
408 => 0.070167523852636
409 => 0.070150432615578
410 => 0.069736790891307
411 => 0.069209955963998
412 => 0.069063402539572
413 => 0.071201162992977
414 => 0.075626263153739
415 => 0.074757510108509
416 => 0.075385273217081
417 => 0.07847324639127
418 => 0.079454820204751
419 => 0.078758122361792
420 => 0.077804439383898
421 => 0.077846396594902
422 => 0.081105420029836
423 => 0.081308681323874
424 => 0.081822257039327
425 => 0.082482346970165
426 => 0.078870538531323
427 => 0.077676280742237
428 => 0.077110375146869
429 => 0.075367604946161
430 => 0.077247033193799
501 => 0.076151970839042
502 => 0.076299732163356
503 => 0.076203502407053
504 => 0.076256050361022
505 => 0.073466161601212
506 => 0.07448265043305
507 => 0.072792540598867
508 => 0.070529673254629
509 => 0.070522087329827
510 => 0.071075920906528
511 => 0.070746479023596
512 => 0.069859959387353
513 => 0.069985885317427
514 => 0.068882641664491
515 => 0.070119839071764
516 => 0.0701553174665
517 => 0.069678929074101
518 => 0.071585002380348
519 => 0.072365922169125
520 => 0.07205235312402
521 => 0.07234392132901
522 => 0.074793610719723
523 => 0.075193016977851
524 => 0.075370406854414
525 => 0.075132727919474
526 => 0.072388697154114
527 => 0.072510406587077
528 => 0.071617383523468
529 => 0.070862873139171
530 => 0.070893049597657
531 => 0.07128096601467
601 => 0.072975019758764
602 => 0.076540055993285
603 => 0.076675346512378
604 => 0.076839322568221
605 => 0.076172349541344
606 => 0.075971184094366
607 => 0.076236573244138
608 => 0.077575413413124
609 => 0.081019273819316
610 => 0.079801983544065
611 => 0.078812307602034
612 => 0.079680520217913
613 => 0.079546865690974
614 => 0.078418686978445
615 => 0.078387022759501
616 => 0.076221687109605
617 => 0.075421211822146
618 => 0.074752274757408
619 => 0.074021812945759
620 => 0.073588770698511
621 => 0.074254120404465
622 => 0.074406293754403
623 => 0.072951494994013
624 => 0.072753211298637
625 => 0.073941231370384
626 => 0.073418428030661
627 => 0.073956144230465
628 => 0.074080899001264
629 => 0.07406081060982
630 => 0.073514943879567
701 => 0.07386286305545
702 => 0.073039930484789
703 => 0.072145114914671
704 => 0.071574278329916
705 => 0.071076147699232
706 => 0.071352539524658
707 => 0.070367253134168
708 => 0.070052040187953
709 => 0.07374499586709
710 => 0.076473021933233
711 => 0.076433355353814
712 => 0.076191895253019
713 => 0.075833134521631
714 => 0.07754916783104
715 => 0.076951336139211
716 => 0.077386308645526
717 => 0.077497027404122
718 => 0.077832139740035
719 => 0.077951913596245
720 => 0.077589873814486
721 => 0.076374824087467
722 => 0.073347035691196
723 => 0.071937592019373
724 => 0.07147245213153
725 => 0.071489359083027
726 => 0.071022989884794
727 => 0.071160356514875
728 => 0.070975219376746
729 => 0.070624614426614
730 => 0.071330890656966
731 => 0.071412282413095
801 => 0.071247429101559
802 => 0.071286258024203
803 => 0.06992134301445
804 => 0.070025114538202
805 => 0.069447301507304
806 => 0.06933896852965
807 => 0.067878307503476
808 => 0.065290534769406
809 => 0.066724412065258
810 => 0.064992489925527
811 => 0.064336584768309
812 => 0.067441537768402
813 => 0.067129886605183
814 => 0.066596475285257
815 => 0.065807448770426
816 => 0.065514791160919
817 => 0.063736696169692
818 => 0.063631636831843
819 => 0.064512908722098
820 => 0.064106232067459
821 => 0.063535104023854
822 => 0.061466536144236
823 => 0.059140780968257
824 => 0.059210980897844
825 => 0.05995076034711
826 => 0.0621017688687
827 => 0.061261332626489
828 => 0.060651586489871
829 => 0.060537399367384
830 => 0.061966690272243
831 => 0.063989436348321
901 => 0.064938463550824
902 => 0.063998006415528
903 => 0.062917659896308
904 => 0.062983415583089
905 => 0.063420858708178
906 => 0.063466827795512
907 => 0.062763633272916
908 => 0.062961578412041
909 => 0.062660881645227
910 => 0.060815506142333
911 => 0.060782129151234
912 => 0.060329244242124
913 => 0.060315531067064
914 => 0.059545060859233
915 => 0.059437266751148
916 => 0.057907451389301
917 => 0.058914380493177
918 => 0.058238985316447
919 => 0.0572210054755
920 => 0.057045505367221
921 => 0.057040229622044
922 => 0.058085467302569
923 => 0.058902166282312
924 => 0.058250734104708
925 => 0.05810241562535
926 => 0.059686068952112
927 => 0.059484534630961
928 => 0.059310007208601
929 => 0.063808321622881
930 => 0.060247554756127
1001 => 0.058694857160756
1002 => 0.056773099037207
1003 => 0.05739883317258
1004 => 0.05753068454885
1005 => 0.052909202684654
1006 => 0.051034268067918
1007 => 0.050390861162875
1008 => 0.050020571392584
1009 => 0.050189317090712
1010 => 0.048501656027754
1011 => 0.049635792173399
1012 => 0.048174420347316
1013 => 0.047929416604958
1014 => 0.050542530459225
1015 => 0.050906129986457
1016 => 0.049354901441768
1017 => 0.050351041288547
1018 => 0.049989827132726
1019 => 0.048199471372883
1020 => 0.048131092951822
1021 => 0.047232755365581
1022 => 0.045827030995547
1023 => 0.045184577237821
1024 => 0.044849981742758
1025 => 0.044988042365157
1026 => 0.044918234689748
1027 => 0.044462692387968
1028 => 0.044944345841247
1029 => 0.043713920301066
1030 => 0.043223954936754
1031 => 0.043002648948805
1101 => 0.041910575461243
1102 => 0.043648550027238
1103 => 0.043990952911166
1104 => 0.044334030434548
1105 => 0.047320286046621
1106 => 0.047171101155313
1107 => 0.048519659916752
1108 => 0.048467257403123
1109 => 0.048082626599157
1110 => 0.046459932505921
1111 => 0.047106709449744
1112 => 0.04511603054811
1113 => 0.046607582534221
1114 => 0.04592690049646
1115 => 0.04637744325255
1116 => 0.045567326753298
1117 => 0.046015678672875
1118 => 0.044072149337254
1119 => 0.042257308989848
1120 => 0.042987653724137
1121 => 0.04378162197536
1122 => 0.04550314744336
1123 => 0.044477821076896
1124 => 0.044846567210159
1125 => 0.043611329391085
1126 => 0.041062680942097
1127 => 0.041077106015536
1128 => 0.040685051976984
1129 => 0.040346260046848
1130 => 0.044595592144151
1201 => 0.044067120525852
1202 => 0.043225070166747
1203 => 0.044352188034159
1204 => 0.044650215888069
1205 => 0.044658700322092
1206 => 0.045481016423033
1207 => 0.045919886673514
1208 => 0.045997239457333
1209 => 0.047291171609479
1210 => 0.047724880599501
1211 => 0.049511266548606
1212 => 0.045882651598976
1213 => 0.045807922661965
1214 => 0.044368048893984
1215 => 0.043454858186827
1216 => 0.044430575842972
1217 => 0.045294928487574
1218 => 0.044394906740026
1219 => 0.044512430579759
1220 => 0.043304224918154
1221 => 0.043736101590818
1222 => 0.044108091961386
1223 => 0.043902700743342
1224 => 0.043595220148882
1225 => 0.045224061427664
1226 => 0.045132155819235
1227 => 0.046648970264936
1228 => 0.047831435593802
1229 => 0.049950624854091
1230 => 0.047739140385145
1231 => 0.047658545101242
]
'min_raw' => 0.040346260046848
'max_raw' => 0.1166529030382
'avg_raw' => 0.078499581542526
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.040346'
'max' => '$0.116652'
'avg' => '$0.078499'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0070944106735958
'max_diff' => -0.039405410226875
'year' => 2030
]
5 => [
'items' => [
101 => 0.048446376929284
102 => 0.047724759986553
103 => 0.048180796984989
104 => 0.049877150243339
105 => 0.049912991514609
106 => 0.049312604041959
107 => 0.049276070409685
108 => 0.049391381391327
109 => 0.050066761412475
110 => 0.049830762880754
111 => 0.050103866356414
112 => 0.050445386434635
113 => 0.051858058279669
114 => 0.052198648678929
115 => 0.051371190584603
116 => 0.051445900785865
117 => 0.051136408744355
118 => 0.05083744331018
119 => 0.05150947394581
120 => 0.05273762314122
121 => 0.052729982888817
122 => 0.053014889630343
123 => 0.053192384170019
124 => 0.052430447671786
125 => 0.051934455028617
126 => 0.05212465016884
127 => 0.052428776339967
128 => 0.052026026150453
129 => 0.049540065408739
130 => 0.050294147093988
131 => 0.050168631028852
201 => 0.049989880888823
202 => 0.050748115854483
203 => 0.050674982242318
204 => 0.048484346624248
205 => 0.048624584009017
206 => 0.048492874924096
207 => 0.048918453922618
208 => 0.047701777324001
209 => 0.048076018851294
210 => 0.048310739628915
211 => 0.048448991970144
212 => 0.048948454227181
213 => 0.04888984809609
214 => 0.048944811187786
215 => 0.049685381861824
216 => 0.053430934197945
217 => 0.053634796347505
218 => 0.052630904563995
219 => 0.053031939530617
220 => 0.052262040091409
221 => 0.052778878742827
222 => 0.05313248662185
223 => 0.051534600611433
224 => 0.05143998417209
225 => 0.050666907084027
226 => 0.051082314921828
227 => 0.050421371183007
228 => 0.050583543657683
301 => 0.050130095280546
302 => 0.050946212078721
303 => 0.05185875747081
304 => 0.052089302474361
305 => 0.051482837825883
306 => 0.051043717452416
307 => 0.050272766731852
308 => 0.051554874961907
309 => 0.051929802479915
310 => 0.051552905627267
311 => 0.051465570391149
312 => 0.051300070276517
313 => 0.051500682022837
314 => 0.051927760544133
315 => 0.051726358200392
316 => 0.051859387996685
317 => 0.051352415592945
318 => 0.052430699904471
319 => 0.054143274894425
320 => 0.054148781103052
321 => 0.053947377673677
322 => 0.053864967729674
323 => 0.054071619870395
324 => 0.054183720179421
325 => 0.054851995308989
326 => 0.055569081148271
327 => 0.058915407871136
328 => 0.057975772717898
329 => 0.060944832860292
330 => 0.063292973948718
331 => 0.063997078789372
401 => 0.063349335466663
402 => 0.061133440550084
403 => 0.061024718173992
404 => 0.064336200706063
405 => 0.063400555215244
406 => 0.063289263161311
407 => 0.06210530373835
408 => 0.062805170393547
409 => 0.062652099289631
410 => 0.062410469063605
411 => 0.063745765888587
412 => 0.066245322342185
413 => 0.0658557430282
414 => 0.065564940142374
415 => 0.064290726548134
416 => 0.065058087737776
417 => 0.06478484511598
418 => 0.065958868823269
419 => 0.06526340318688
420 => 0.063393466780419
421 => 0.063691260316539
422 => 0.063646249422632
423 => 0.064572570429733
424 => 0.064294511856102
425 => 0.063591954023449
426 => 0.066236779129963
427 => 0.066065038898836
428 => 0.066308527281291
429 => 0.066415718397376
430 => 0.068025576832665
501 => 0.068685084323879
502 => 0.068834804070688
503 => 0.069461285179201
504 => 0.068819216649997
505 => 0.071387948553916
506 => 0.07309600538036
507 => 0.075080001280076
508 => 0.077979152537385
509 => 0.079069260228782
510 => 0.078872342031506
511 => 0.081070445427242
512 => 0.085020388368286
513 => 0.079670738433082
514 => 0.085303932804817
515 => 0.083520528505082
516 => 0.079292108992484
517 => 0.079019848625665
518 => 0.081883383412556
519 => 0.08823442796487
520 => 0.086643563337466
521 => 0.088237030049489
522 => 0.086378166487947
523 => 0.086285858244384
524 => 0.088146749195366
525 => 0.092494822334221
526 => 0.090429215771035
527 => 0.0874676622552
528 => 0.089654427284417
529 => 0.08776004904056
530 => 0.083491484654066
531 => 0.086642346833268
601 => 0.084535455025424
602 => 0.085150358063482
603 => 0.089578731267065
604 => 0.089045897687187
605 => 0.08973543367861
606 => 0.088518420702048
607 => 0.087381538676609
608 => 0.085259463950158
609 => 0.084631222240675
610 => 0.084804845647407
611 => 0.084631136201537
612 => 0.083443854894962
613 => 0.083187461609849
614 => 0.082760128235146
615 => 0.082892576716772
616 => 0.082089064951543
617 => 0.083605457666532
618 => 0.083886913516841
619 => 0.084990417678152
620 => 0.085104987140914
621 => 0.088178230522767
622 => 0.086485539711799
623 => 0.08762114284769
624 => 0.087519563814505
625 => 0.079383751665012
626 => 0.080504794796334
627 => 0.082248786105956
628 => 0.081463120384896
629 => 0.080352372872781
630 => 0.079455384702235
701 => 0.078096355902109
702 => 0.08000916284045
703 => 0.08252430056003
704 => 0.085168775184092
705 => 0.088345938172061
706 => 0.087636832379401
707 => 0.08510938033202
708 => 0.085222759984561
709 => 0.085923628383318
710 => 0.085015940126319
711 => 0.08474824513915
712 => 0.085886851202817
713 => 0.085894692157011
714 => 0.084850287119543
715 => 0.083689622044501
716 => 0.083684758815458
717 => 0.083478229676049
718 => 0.086414907563041
719 => 0.088029783469263
720 => 0.088214926389409
721 => 0.088017321875595
722 => 0.08809337201032
723 => 0.087153711301851
724 => 0.089301497033683
725 => 0.091272517615205
726 => 0.090744241994644
727 => 0.089952281740619
728 => 0.089321447252314
729 => 0.090595637437408
730 => 0.090538899754227
731 => 0.091255302469906
801 => 0.09122280230458
802 => 0.090981903016566
803 => 0.090744250597916
804 => 0.091686515574853
805 => 0.091415158393807
806 => 0.091143379720109
807 => 0.090598285982774
808 => 0.090672373274726
809 => 0.089880549763805
810 => 0.089514215976274
811 => 0.084005434769468
812 => 0.08253330842639
813 => 0.082996469341818
814 => 0.083148953941144
815 => 0.082508282670055
816 => 0.08342684069785
817 => 0.083283684402212
818 => 0.083840621804908
819 => 0.083492671495115
820 => 0.083506951497199
821 => 0.084530199167473
822 => 0.084827252319361
823 => 0.084676168688798
824 => 0.0847819824848
825 => 0.087220416752466
826 => 0.086873749376342
827 => 0.086689589242113
828 => 0.086740602857868
829 => 0.087363675093876
830 => 0.087538101301476
831 => 0.086799045203164
901 => 0.08714758833156
902 => 0.088631640735562
903 => 0.089150975086872
904 => 0.09080844104162
905 => 0.090104320044935
906 => 0.091396764607993
907 => 0.095369298568015
908 => 0.098542833573721
909 => 0.095624319630593
910 => 0.10145211252133
911 => 0.105989885234
912 => 0.10581571795923
913 => 0.1050244523262
914 => 0.099858318735753
915 => 0.095104365583107
916 => 0.099081249258809
917 => 0.099091387153152
918 => 0.098749769318485
919 => 0.096628010286959
920 => 0.098675936703368
921 => 0.098838493665326
922 => 0.098747504994014
923 => 0.09712075731927
924 => 0.09463701429316
925 => 0.095122331735221
926 => 0.095917291605525
927 => 0.094412266725038
928 => 0.093931320083049
929 => 0.094825491394349
930 => 0.097706697667348
1001 => 0.097162022311129
1002 => 0.097147798636372
1003 => 0.099478150788574
1004 => 0.097810121569068
1005 => 0.095128453142367
1006 => 0.094451296497764
1007 => 0.092047846596798
1008 => 0.09370791800419
1009 => 0.093767661018774
1010 => 0.092858456874464
1011 => 0.095202230047768
1012 => 0.095180631765363
1013 => 0.097405695568816
1014 => 0.10165918186522
1015 => 0.10040121666602
1016 => 0.098938340005583
1017 => 0.099097395259743
1018 => 0.10084183881606
1019 => 0.099787108420136
1020 => 0.10016639682435
1021 => 0.10084126471763
1022 => 0.10124842927367
1023 => 0.099038810546035
1024 => 0.098523642722341
1025 => 0.0974697901544
1026 => 0.097194859690514
1027 => 0.098053200617747
1028 => 0.097827058109054
1029 => 0.093762639849735
1030 => 0.093337885527426
1031 => 0.093350912136082
1101 => 0.09228284719667
1102 => 0.09065379179911
1103 => 0.094934852118054
1104 => 0.094591023061042
1105 => 0.094211462392356
1106 => 0.094257956408527
1107 => 0.096116219594384
1108 => 0.095038333102047
1109 => 0.097904071004048
1110 => 0.097314961443363
1111 => 0.096710743445361
1112 => 0.096627222113106
1113 => 0.096394649733332
1114 => 0.095597072506717
1115 => 0.094633950078618
1116 => 0.093998013227351
1117 => 0.086708198486052
1118 => 0.088061145699136
1119 => 0.08961758814277
1120 => 0.09015486583726
1121 => 0.089235815162349
1122 => 0.095633362229042
1123 => 0.096802255726425
1124 => 0.093261601077818
1125 => 0.09259928915704
1126 => 0.095676783288306
1127 => 0.093820678118795
1128 => 0.094656482162975
1129 => 0.092849930979828
1130 => 0.096520703512102
1201 => 0.096492738375633
1202 => 0.09506472495242
1203 => 0.096271672119105
1204 => 0.096061935347383
1205 => 0.094449711709618
1206 => 0.096571813877091
1207 => 0.09657286641329
1208 => 0.095198434541137
1209 => 0.093593399016288
1210 => 0.093306456573692
1211 => 0.093090283988489
1212 => 0.094603316958636
1213 => 0.095959897588538
1214 => 0.098484157815927
1215 => 0.099118816812036
1216 => 0.10159593312549
1217 => 0.10012093096943
1218 => 0.10077478032074
1219 => 0.10148462628422
1220 => 0.10182495254283
1221 => 0.10127040916734
1222 => 0.10511839042389
1223 => 0.10544327794104
1224 => 0.10555220991527
1225 => 0.10425469228599
1226 => 0.10540719162857
1227 => 0.10486797535294
1228 => 0.10627086630354
1229 => 0.1064908575176
1230 => 0.10630453278571
1231 => 0.10637436146937
]
'min_raw' => 0.047701777324001
'max_raw' => 0.1064908575176
'avg_raw' => 0.077096317420802
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0477017'
'max' => '$0.10649'
'avg' => '$0.077096'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0073555172771533
'max_diff' => -0.010162045520602
'year' => 2031
]
6 => [
'items' => [
101 => 0.10309078829732
102 => 0.10292051770612
103 => 0.10059886611327
104 => 0.10154495629814
105 => 0.099776286044803
106 => 0.10033714960146
107 => 0.10058437291313
108 => 0.10045523748491
109 => 0.10159844681769
110 => 0.10062648534259
111 => 0.098061319204548
112 => 0.095495454188708
113 => 0.095463241843543
114 => 0.094787694876152
115 => 0.094299398151326
116 => 0.094393461423785
117 => 0.094724952664793
118 => 0.094280131277781
119 => 0.094375056473717
120 => 0.095951447209524
121 => 0.096267581129285
122 => 0.095193234548439
123 => 0.090879577998869
124 => 0.089820995861616
125 => 0.090581883709277
126 => 0.090218228325548
127 => 0.07281315150274
128 => 0.076902216129105
129 => 0.074472632779633
130 => 0.075592296566825
131 => 0.073112321104572
201 => 0.07429589538181
202 => 0.074077332430016
203 => 0.080652427344992
204 => 0.080549766281642
205 => 0.080598904699965
206 => 0.078253399963937
207 => 0.081989852695823
208 => 0.083830563670045
209 => 0.083489897057653
210 => 0.083575635504618
211 => 0.082102364920693
212 => 0.080613169179628
213 => 0.078961421917205
214 => 0.082030164168655
215 => 0.081688972415471
216 => 0.082471543540357
217 => 0.084461842248649
218 => 0.084754921293854
219 => 0.085148822502725
220 => 0.085007636959142
221 => 0.08837124940106
222 => 0.087963893740514
223 => 0.088945503678208
224 => 0.086926257561447
225 => 0.084641288911732
226 => 0.08507558675079
227 => 0.085033760376486
228 => 0.08450126262552
229 => 0.08402054746553
301 => 0.083220292164805
302 => 0.085752418351801
303 => 0.085649618652814
304 => 0.08731382628783
305 => 0.087019661423091
306 => 0.085055156462007
307 => 0.085125319141014
308 => 0.085597196876368
309 => 0.087230371106233
310 => 0.087715208412638
311 => 0.087490612454885
312 => 0.088022214427694
313 => 0.088442370951844
314 => 0.088074979618284
315 => 0.093276466141741
316 => 0.091116446290826
317 => 0.092169224936841
318 => 0.092420306440583
319 => 0.091777166448422
320 => 0.091916640483605
321 => 0.092127905642508
322 => 0.093410666317408
323 => 0.096777001498136
324 => 0.098267928434262
325 => 0.10275345568264
326 => 0.098144127706921
327 => 0.097870629260138
328 => 0.098678608167516
329 => 0.10131208750359
330 => 0.10344627515534
331 => 0.10415430832367
401 => 0.10424788659522
402 => 0.10557620388815
403 => 0.10633757058881
404 => 0.10541491123058
405 => 0.10463305403093
406 => 0.10183253858951
407 => 0.1021567058774
408 => 0.10438989702977
409 => 0.1075444110668
410 => 0.11025131228181
411 => 0.10930344982135
412 => 0.11653497130809
413 => 0.11725194712539
414 => 0.11715288425004
415 => 0.11878626186214
416 => 0.11554433993368
417 => 0.11415835549999
418 => 0.10480210043195
419 => 0.10743082646939
420 => 0.11125183414446
421 => 0.11074610945062
422 => 0.10797119154115
423 => 0.11024920725775
424 => 0.1094960240217
425 => 0.10890195715384
426 => 0.11162349264107
427 => 0.10863105257834
428 => 0.11122198226574
429 => 0.10789908814191
430 => 0.10930777957722
501 => 0.1085081381878
502 => 0.10902560416712
503 => 0.1060005086256
504 => 0.10763277674976
505 => 0.10593260090523
506 => 0.10593179480051
507 => 0.10589426332451
508 => 0.10789451266587
509 => 0.10795974072508
510 => 0.10648155343961
511 => 0.10626852355814
512 => 0.10705620668339
513 => 0.10613403603827
514 => 0.10656551387905
515 => 0.10614710506251
516 => 0.10605291242487
517 => 0.10530236946259
518 => 0.10497901491784
519 => 0.10510581056666
520 => 0.1046729916496
521 => 0.10441220259633
522 => 0.10584238581785
523 => 0.10507829661602
524 => 0.10572527818909
525 => 0.10498796103099
526 => 0.10243209852723
527 => 0.10096219497357
528 => 0.096134407632545
529 => 0.097503562133607
530 => 0.098411312984304
531 => 0.098111301333564
601 => 0.09875584244845
602 => 0.098795412038158
603 => 0.09858586515139
604 => 0.098343236701131
605 => 0.098225138589739
606 => 0.099105345156083
607 => 0.099616334694236
608 => 0.098502417926311
609 => 0.098241442812938
610 => 0.09936767416634
611 => 0.10005467464131
612 => 0.10512710015629
613 => 0.10475131849042
614 => 0.10569445672832
615 => 0.10558827383637
616 => 0.10657683296339
617 => 0.10819270933982
618 => 0.10490718086041
619 => 0.10547743499941
620 => 0.10533762185361
621 => 0.10686406511839
622 => 0.10686883050765
623 => 0.10595365151892
624 => 0.10644978489579
625 => 0.10617285685553
626 => 0.10667330325335
627 => 0.10474629969717
628 => 0.10709318202142
629 => 0.10842371306951
630 => 0.10844218749441
701 => 0.10907284865146
702 => 0.10971363691245
703 => 0.11094357417853
704 => 0.10967933462965
705 => 0.10740509075245
706 => 0.10756928381462
707 => 0.10623589546153
708 => 0.10625830996064
709 => 0.10613865960773
710 => 0.10649773932368
711 => 0.10482509750202
712 => 0.10521766319433
713 => 0.10466806892623
714 => 0.1054762402888
715 => 0.10460678149819
716 => 0.10533755443148
717 => 0.10565293180399
718 => 0.10681668109811
719 => 0.10443489478123
720 => 0.09957827124834
721 => 0.10059919239582
722 => 0.099089169827071
723 => 0.09922892816487
724 => 0.099511262249599
725 => 0.098596125107028
726 => 0.098770704434545
727 => 0.09876446723247
728 => 0.098710718394599
729 => 0.098472655879543
730 => 0.098127418133479
731 => 0.099502739055225
801 => 0.099736432879717
802 => 0.10025590530302
803 => 0.10180150287327
804 => 0.1016470612283
805 => 0.10189896195896
806 => 0.10134906407828
807 => 0.099254436350409
808 => 0.099368184713591
809 => 0.097949740802022
810 => 0.10021963250311
811 => 0.099682092187183
812 => 0.099335536448601
813 => 0.099240975504512
814 => 0.10079040431218
815 => 0.10125401769576
816 => 0.10096512494705
817 => 0.1003725974911
818 => 0.10151042537154
819 => 0.10181486011124
820 => 0.10188301182234
821 => 0.10389902466961
822 => 0.10199568454539
823 => 0.10245383743086
824 => 0.10602821545782
825 => 0.10278674781782
826 => 0.10450382552009
827 => 0.1044197835018
828 => 0.10529818235154
829 => 0.10434772915758
830 => 0.10435951116403
831 => 0.1051394698347
901 => 0.10404415854803
902 => 0.10377294407005
903 => 0.1033982632112
904 => 0.10421636515908
905 => 0.10470678027726
906 => 0.10865916595961
907 => 0.11121258736109
908 => 0.11110173660388
909 => 0.11211470502084
910 => 0.11165835347127
911 => 0.11018467393826
912 => 0.11270006520504
913 => 0.11190409015979
914 => 0.11196970937541
915 => 0.11196726702493
916 => 0.11249652084467
917 => 0.11212149600798
918 => 0.11138228355936
919 => 0.11187300728035
920 => 0.11333028129477
921 => 0.11785370455016
922 => 0.12038507213126
923 => 0.1177013130433
924 => 0.11955253412521
925 => 0.11844246113358
926 => 0.11824072784919
927 => 0.11940343149279
928 => 0.12056817029521
929 => 0.1204939814688
930 => 0.11964844090824
1001 => 0.11917081650038
1002 => 0.12278754853261
1003 => 0.12545229508453
1004 => 0.12527057723438
1005 => 0.12607262072715
1006 => 0.12842744522818
1007 => 0.12864274086893
1008 => 0.12861561856671
1009 => 0.12808198585733
1010 => 0.1304006163912
1011 => 0.13233485877498
1012 => 0.12795846530324
1013 => 0.12962493864608
1014 => 0.1303730722201
1015 => 0.13147155426799
1016 => 0.13332487760975
1017 => 0.13533807832863
1018 => 0.13562276698391
1019 => 0.13542076675938
1020 => 0.13409300676754
1021 => 0.13629587501662
1022 => 0.13758626357332
1023 => 0.13835466042882
1024 => 0.14030318700531
1025 => 0.13037769243836
1026 => 0.12335193405478
1027 => 0.12225476043
1028 => 0.12448590614021
1029 => 0.12507424147094
1030 => 0.12483708423683
1031 => 0.11692895442211
1101 => 0.12221312576315
1102 => 0.12789844982037
1103 => 0.12811684627162
1104 => 0.13096303836919
1105 => 0.13188987518551
1106 => 0.13418143288298
1107 => 0.13403809532508
1108 => 0.13459605315776
1109 => 0.13446778831451
1110 => 0.13871241640466
1111 => 0.14339487152147
1112 => 0.14323273299007
1113 => 0.14255957466674
1114 => 0.14355932956744
1115 => 0.14839212505037
1116 => 0.14794719868627
1117 => 0.14837940675026
1118 => 0.15407754498905
1119 => 0.1614859352502
1120 => 0.15804399418367
1121 => 0.16551201590617
1122 => 0.17021273971766
1123 => 0.17834215548571
1124 => 0.17732431259333
1125 => 0.18048903449543
1126 => 0.17550216138576
1127 => 0.16405129271261
1128 => 0.16223914891292
1129 => 0.16586710669069
1130 => 0.17478608687639
1201 => 0.16558621626468
1202 => 0.1674473381075
1203 => 0.16691133489156
1204 => 0.16688277355805
1205 => 0.16797284349079
1206 => 0.16639164019913
1207 => 0.15994953353584
1208 => 0.16290191305605
1209 => 0.16176185753839
1210 => 0.163026834132
1211 => 0.16985339109172
1212 => 0.16683520753504
1213 => 0.16365579633539
1214 => 0.16764348354757
1215 => 0.17272117968668
1216 => 0.17240342658779
1217 => 0.17178685276545
1218 => 0.17526244711919
1219 => 0.18100311073798
1220 => 0.18255478904628
1221 => 0.1837002062508
1222 => 0.18385813993132
1223 => 0.18548495499593
1224 => 0.17673716038336
1225 => 0.1906201350928
1226 => 0.19301734131569
1227 => 0.1925667658998
1228 => 0.19523115972668
1229 => 0.19444722747367
1230 => 0.19331143263425
1231 => 0.19753506358267
]
'min_raw' => 0.07281315150274
'max_raw' => 0.19753506358267
'avg_raw' => 0.1351741075427
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.072813'
'max' => '$0.197535'
'avg' => '$0.135174'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.025111374178739
'max_diff' => 0.091044206065066
'year' => 2032
]
7 => [
'items' => [
101 => 0.19269301152975
102 => 0.18582032823803
103 => 0.18204983825793
104 => 0.18701512362048
105 => 0.1900472501268
106 => 0.19205129286802
107 => 0.19265771499064
108 => 0.17741622677736
109 => 0.16920190996209
110 => 0.17446719286334
111 => 0.18089120139328
112 => 0.17670147469162
113 => 0.17686570404612
114 => 0.17089225481036
115 => 0.18141971910455
116 => 0.1798859561068
117 => 0.18784312125232
118 => 0.1859440799301
119 => 0.1924328392109
120 => 0.19072413143026
121 => 0.19781688189513
122 => 0.20064637208412
123 => 0.20539752648641
124 => 0.20889249500542
125 => 0.21094480736787
126 => 0.21082159423166
127 => 0.21895387826967
128 => 0.21415855449282
129 => 0.20813449765806
130 => 0.20802554147557
131 => 0.21114548587184
201 => 0.21768403341147
202 => 0.2193793836565
203 => 0.22032685315954
204 => 0.21887577063399
205 => 0.21367079035817
206 => 0.21142330626492
207 => 0.21333822782825
208 => 0.21099644330738
209 => 0.21503902037909
210 => 0.22059034214641
211 => 0.21944401615376
212 => 0.22327601208038
213 => 0.2272417247267
214 => 0.23291287192224
215 => 0.23439551980113
216 => 0.23684628036488
217 => 0.23936891801788
218 => 0.24017912124504
219 => 0.24172605059697
220 => 0.2417178975157
221 => 0.24637967323811
222 => 0.25152175622311
223 => 0.25346277351045
224 => 0.25792603573437
225 => 0.25028285558726
226 => 0.25608029552737
227 => 0.26130973147268
228 => 0.25507498235434
301 => 0.26366813150373
302 => 0.26400178401271
303 => 0.26903954076774
304 => 0.2639328091791
305 => 0.26090044826303
306 => 0.26965476060665
307 => 0.27389069659147
308 => 0.27261479819965
309 => 0.26290514843904
310 => 0.25725371581189
311 => 0.2424628265467
312 => 0.25998327380018
313 => 0.2685169725789
314 => 0.26288304822079
315 => 0.26572447196121
316 => 0.2812263585542
317 => 0.28712847329599
318 => 0.28590087468859
319 => 0.28610831864525
320 => 0.28929299262896
321 => 0.30341559090471
322 => 0.29495300265861
323 => 0.30142233428562
324 => 0.30485364445368
325 => 0.30804083656676
326 => 0.30021410005944
327 => 0.29003163086101
328 => 0.28680641543489
329 => 0.26232286547589
330 => 0.26104839037385
331 => 0.26033298887853
401 => 0.25582248364609
402 => 0.25227846206476
403 => 0.24946012452219
404 => 0.24206396518367
405 => 0.24455995184389
406 => 0.23277201755672
407 => 0.24031352017491
408 => 0.22149969242295
409 => 0.23716840723069
410 => 0.22864063812988
411 => 0.23436680572746
412 => 0.23434682766815
413 => 0.22380313763792
414 => 0.21772175726967
415 => 0.22159704953118
416 => 0.2257516704566
417 => 0.22642574372393
418 => 0.23181231820044
419 => 0.2333155953528
420 => 0.22876059539984
421 => 0.22110981766052
422 => 0.2228869188337
423 => 0.21768574437112
424 => 0.20857088618573
425 => 0.21511733646463
426 => 0.21735258241695
427 => 0.21833979436865
428 => 0.20937637819185
429 => 0.20655987822387
430 => 0.20506039727364
501 => 0.21995275318986
502 => 0.22076859006454
503 => 0.21659465326595
504 => 0.2354612433845
505 => 0.23119115298224
506 => 0.23596189015911
507 => 0.22272566552893
508 => 0.22323130713474
509 => 0.21696506627491
510 => 0.22047374244605
511 => 0.2179939232182
512 => 0.22019027608483
513 => 0.22150676093719
514 => 0.22777197356856
515 => 0.23723994589499
516 => 0.22683615972787
517 => 0.22230308110989
518 => 0.22511537758948
519 => 0.23260489371473
520 => 0.24395189402576
521 => 0.23723424146197
522 => 0.24021542159664
523 => 0.2408666768326
524 => 0.23591332853307
525 => 0.24413453104295
526 => 0.24854034025692
527 => 0.2530597888567
528 => 0.25698389944382
529 => 0.25125462170114
530 => 0.25738577014551
531 => 0.25244514679274
601 => 0.24801289689306
602 => 0.24801961878661
603 => 0.2452392036797
604 => 0.23985179905522
605 => 0.23885827898484
606 => 0.24402669585867
607 => 0.24817127674058
608 => 0.24851264427321
609 => 0.25080729720569
610 => 0.25216524917433
611 => 0.26547502451314
612 => 0.27082832625865
613 => 0.27737424230024
614 => 0.27992424550605
615 => 0.2875988409288
616 => 0.28140098182477
617 => 0.28006003602125
618 => 0.26144397786668
619 => 0.2644923563466
620 => 0.26937310441772
621 => 0.26152445960468
622 => 0.26650261822955
623 => 0.26748541219392
624 => 0.26125776565726
625 => 0.26458422075321
626 => 0.25575014224356
627 => 0.23743250466575
628 => 0.24415492380995
629 => 0.24910488704189
630 => 0.24204067918384
701 => 0.25470299834679
702 => 0.24730593289512
703 => 0.2449614182687
704 => 0.23581463083122
705 => 0.24013156240958
706 => 0.24597027418181
707 => 0.24236262912967
708 => 0.24984903430349
709 => 0.26045178058095
710 => 0.26800792898273
711 => 0.26858799623195
712 => 0.26372989903223
713 => 0.27151503079874
714 => 0.27157173698444
715 => 0.26279007654862
716 => 0.25741135842817
717 => 0.25618930235428
718 => 0.25924223802506
719 => 0.26294906553239
720 => 0.2687936993604
721 => 0.27232548917533
722 => 0.28153452389609
723 => 0.28402622464782
724 => 0.28676384833749
725 => 0.29042215783878
726 => 0.29481489636638
727 => 0.28520383454674
728 => 0.28558569995009
729 => 0.27663601225785
730 => 0.26707198744364
731 => 0.2743298901051
801 => 0.28381863235663
802 => 0.2816419044
803 => 0.28139697803836
804 => 0.28180887624173
805 => 0.28016769444772
806 => 0.27274469001845
807 => 0.26901690366454
808 => 0.27382669912081
809 => 0.27638289134645
810 => 0.28034732256503
811 => 0.27985862273835
812 => 0.29007057180859
813 => 0.29403862642397
814 => 0.29302342825073
815 => 0.29321024914671
816 => 0.30039422248887
817 => 0.30838427834215
818 => 0.31586802002949
819 => 0.32348080350802
820 => 0.31430329589265
821 => 0.30964352351554
822 => 0.31445121916558
823 => 0.31190018818045
824 => 0.32655916890594
825 => 0.32757412492623
826 => 0.34223204564056
827 => 0.35614415783119
828 => 0.34740620942563
829 => 0.35564570120623
830 => 0.36455738334257
831 => 0.38174946405188
901 => 0.37595977609368
902 => 0.37152496585367
903 => 0.36733409160571
904 => 0.37605463563316
905 => 0.38727347621039
906 => 0.389689907018
907 => 0.39360544807396
908 => 0.3894887354232
909 => 0.39444686237001
910 => 0.41195122920362
911 => 0.40722139476986
912 => 0.40050426951509
913 => 0.41432228599296
914 => 0.41932297244012
915 => 0.45442040880614
916 => 0.49873237202101
917 => 0.48038692828201
918 => 0.46899931934945
919 => 0.4716756775663
920 => 0.48785690647775
921 => 0.49305380363758
922 => 0.47892684567929
923 => 0.48391672605535
924 => 0.51141145752164
925 => 0.52616149881671
926 => 0.50612896154317
927 => 0.45085998570742
928 => 0.39989946587956
929 => 0.41341649052002
930 => 0.4118840794079
1001 => 0.44142373833083
1002 => 0.40710858978287
1003 => 0.40768636887831
1004 => 0.43783687666473
1005 => 0.42979323809787
1006 => 0.41676357377096
1007 => 0.39999459684863
1008 => 0.36899559206508
1009 => 0.34153890905708
1010 => 0.39538778733222
1011 => 0.39306572578316
1012 => 0.38970303654989
1013 => 0.39718633755756
1014 => 0.43352312307876
1015 => 0.4326854425618
1016 => 0.42735654650125
1017 => 0.43139846719644
1018 => 0.4160550055307
1019 => 0.42000936496609
1020 => 0.39989139347285
1021 => 0.4089855567885
1022 => 0.41673561796324
1023 => 0.41829155748568
1024 => 0.42179716867799
1025 => 0.39184210486211
1026 => 0.40529104908097
1027 => 0.4131910438139
1028 => 0.37749858020627
1029 => 0.41248551856839
1030 => 0.39132065384507
1031 => 0.38413698087238
1101 => 0.39380885015316
1102 => 0.39003971328824
1103 => 0.38679923074292
1104 => 0.38499098580408
1105 => 0.39209293915863
1106 => 0.39176162454597
1107 => 0.38014145042817
1108 => 0.36498340699041
1109 => 0.37007094391394
1110 => 0.36822259405371
1111 => 0.36152393571835
1112 => 0.36603802263729
1113 => 0.34616026837339
1114 => 0.31196162531813
1115 => 0.3345542964532
1116 => 0.3336845031906
1117 => 0.33324591398561
1118 => 0.35022368192806
1119 => 0.34859166128414
1120 => 0.34562952783464
1121 => 0.36146953381462
1122 => 0.35568771855378
1123 => 0.37350591082068
1124 => 0.38524212465608
1125 => 0.38226544120068
1126 => 0.39330340703891
1127 => 0.37018815048927
1128 => 0.37786611149194
1129 => 0.37944852861339
1130 => 0.3612740705996
1201 => 0.34885868004502
1202 => 0.34803071504085
1203 => 0.32650413876541
1204 => 0.3380034620553
1205 => 0.34812239067607
1206 => 0.3432762091273
1207 => 0.34174205282452
1208 => 0.34957972465753
1209 => 0.35018877888408
1210 => 0.33630227797418
1211 => 0.33918972124164
1212 => 0.35123083966445
1213 => 0.33888631595171
1214 => 0.31490292284435
1215 => 0.30895470975738
1216 => 0.30816110848426
1217 => 0.29202908283365
1218 => 0.30935219779834
1219 => 0.30179019388563
1220 => 0.32567847363915
1221 => 0.31203361635935
1222 => 0.31144541383365
1223 => 0.3105562594455
1224 => 0.29667075856244
1225 => 0.29971080078621
1226 => 0.30981636414954
1227 => 0.3134221430049
1228 => 0.31304603072901
1229 => 0.30976684137599
1230 => 0.31126803746964
1231 => 0.30643216180061
]
'min_raw' => 0.16920190996209
'max_raw' => 0.52616149881671
'avg_raw' => 0.3476817043894
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1692019'
'max' => '$0.526161'
'avg' => '$0.347681'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.096388758459348
'max_diff' => 0.32862643523404
'year' => 2033
]
8 => [
'items' => [
101 => 0.30472451345184
102 => 0.2993347055374
103 => 0.29141317687563
104 => 0.2925147140216
105 => 0.2768200929619
106 => 0.26826883043199
107 => 0.26590195366753
108 => 0.26273686713952
109 => 0.26625945861285
110 => 0.27677563207236
111 => 0.26409089574953
112 => 0.24234380505483
113 => 0.24365084226083
114 => 0.24658736679986
115 => 0.24111517274843
116 => 0.23593620032518
117 => 0.24043889666388
118 => 0.2312243676497
119 => 0.24770089860829
120 => 0.2472552546208
121 => 0.25339668646032
122 => 0.25723704982444
123 => 0.24838625560255
124 => 0.24616030479084
125 => 0.24742830753701
126 => 0.22647104665374
127 => 0.25168403113645
128 => 0.25190207407325
129 => 0.25003505807068
130 => 0.26346019394416
131 => 0.29179141804209
201 => 0.2811320719156
202 => 0.27700445091498
203 => 0.26915784037553
204 => 0.27961298303371
205 => 0.2788101912032
206 => 0.27517966209584
207 => 0.27298390676377
208 => 0.27702965328864
209 => 0.27248259399705
210 => 0.27166581720345
211 => 0.26671703849613
212 => 0.2649505496527
213 => 0.26364271163897
214 => 0.26220291049136
215 => 0.26537875304689
216 => 0.25818187599919
217 => 0.24950314779821
218 => 0.24878160545344
219 => 0.25077384730601
220 => 0.24989242859121
221 => 0.24877738555974
222 => 0.24664846474877
223 => 0.24601685942135
224 => 0.24806927032412
225 => 0.24575221807789
226 => 0.24917115488357
227 => 0.24824139325083
228 => 0.24304782035028
301 => 0.23657470560924
302 => 0.23651708131022
303 => 0.2351224593573
304 => 0.23334619861744
305 => 0.23285208351495
306 => 0.24005969213727
307 => 0.25497922627991
308 => 0.25205016473352
309 => 0.25416671188309
310 => 0.26457802903527
311 => 0.26788747367872
312 => 0.26553850825929
313 => 0.2623230995153
314 => 0.26246456118156
315 => 0.27345258623019
316 => 0.27413789587429
317 => 0.27586945225565
318 => 0.27809499154348
319 => 0.26591752722351
320 => 0.26189100370719
321 => 0.25998301348214
322 => 0.25410714207412
323 => 0.26044376562853
324 => 0.25675168644465
325 => 0.25724987406594
326 => 0.25692542872402
327 => 0.25710259781961
328 => 0.24769629308209
329 => 0.25112345614762
330 => 0.24542513284197
331 => 0.23779571760252
401 => 0.23777014112742
402 => 0.23963742969869
403 => 0.23852669338949
404 => 0.23553773054107
405 => 0.23596229860618
406 => 0.2322426356043
407 => 0.23641393304128
408 => 0.23653355092615
409 => 0.23492737420081
410 => 0.24135383343061
411 => 0.24398675902055
412 => 0.24292953909229
413 => 0.24391258165205
414 => 0.25217188046469
415 => 0.25351850654962
416 => 0.25411658890342
417 => 0.25331523778006
418 => 0.24406354647254
419 => 0.24447389832325
420 => 0.24146300871542
421 => 0.23891912427653
422 => 0.23902086631316
423 => 0.24032875359658
424 => 0.24604037406985
425 => 0.25806014263742
426 => 0.25851628406822
427 => 0.25906914078894
428 => 0.25682039466226
429 => 0.25614215131285
430 => 0.25703692936018
501 => 0.26155092246475
502 => 0.27316213826689
503 => 0.26905795911538
504 => 0.26572119757986
505 => 0.26864843703097
506 => 0.26819781146193
507 => 0.26439407816572
508 => 0.26428732004082
509 => 0.25698673971829
510 => 0.25428788139922
511 => 0.25203251338176
512 => 0.24956971038457
513 => 0.24810967821393
514 => 0.25035295120079
515 => 0.25086601427451
516 => 0.24596105868304
517 => 0.24529253136036
518 => 0.24929802397717
519 => 0.24753535601633
520 => 0.24934830372612
521 => 0.24976892314596
522 => 0.24970119373168
523 => 0.24786076593944
524 => 0.24903379973187
525 => 0.24625922511457
526 => 0.24324229194589
527 => 0.24131767654585
528 => 0.23963819434612
529 => 0.24057006868261
530 => 0.23724810682657
531 => 0.23618534437094
601 => 0.24863640227709
602 => 0.25783413262378
603 => 0.25770039398184
604 => 0.25688629439381
605 => 0.25567670754006
606 => 0.26146243365235
607 => 0.25944680236407
608 => 0.26091334253792
609 => 0.26128663856267
610 => 0.26241649319999
611 => 0.26282031911855
612 => 0.26159967671754
613 => 0.25750305173083
614 => 0.24729465175937
615 => 0.2425426140156
616 => 0.24097436240871
617 => 0.24103136537609
618 => 0.23945896906339
619 => 0.23992211024734
620 => 0.23929790746027
621 => 0.23811581839245
622 => 0.24049707801371
623 => 0.24077149600209
624 => 0.24021568155256
625 => 0.2403465959762
626 => 0.23574468972549
627 => 0.23609456266292
628 => 0.23414642568763
629 => 0.2337811734899
630 => 0.22885645286006
701 => 0.22013159641462
702 => 0.2249660138277
703 => 0.21912671741466
704 => 0.21691528738326
705 => 0.22738385320397
706 => 0.22633309954839
707 => 0.22453466604167
708 => 0.22187440805884
709 => 0.22088769249569
710 => 0.21489272109014
711 => 0.21453850619757
712 => 0.21750977590401
713 => 0.21613863716963
714 => 0.21421303909573
715 => 0.2072387180668
716 => 0.19939727211195
717 => 0.19963395607575
718 => 0.2021281741387
719 => 0.20938044954786
720 => 0.20654686007987
721 => 0.20449105840914
722 => 0.20410606855339
723 => 0.20892502262902
724 => 0.21574485224814
725 => 0.21894456372034
726 => 0.21577374682807
727 => 0.21213128311114
728 => 0.21235298300004
729 => 0.21382785303758
730 => 0.21398284102498
731 => 0.21161197159658
801 => 0.21227935745323
802 => 0.21126553730993
803 => 0.20504372496192
804 => 0.20493119210613
805 => 0.20340425901565
806 => 0.20335802408851
807 => 0.2007603299903
808 => 0.20039689462894
809 => 0.19523901532818
810 => 0.19863394710344
811 => 0.19635680511051
812 => 0.19292461500367
813 => 0.19233290413559
814 => 0.19231511659238
815 => 0.19583920840843
816 => 0.19859276603874
817 => 0.19639641697041
818 => 0.19589635086198
819 => 0.20123574862031
820 => 0.20055626158587
821 => 0.19996783019627
822 => 0.2151342113063
823 => 0.20312883721023
824 => 0.19789380886155
825 => 0.19141446717514
826 => 0.19352417349991
827 => 0.19396871962058
828 => 0.17838707085388
829 => 0.1720655978898
830 => 0.16989630658821
831 => 0.16864784877487
901 => 0.16921678667755
902 => 0.16352671957506
903 => 0.16735053877296
904 => 0.1624234216316
905 => 0.16159737440862
906 => 0.17040767021007
907 => 0.17163357140184
908 => 0.1664034960601
909 => 0.16976205110178
910 => 0.16854419235626
911 => 0.1625078829133
912 => 0.16227734029267
913 => 0.15924853240073
914 => 0.15450903454262
915 => 0.15234295684376
916 => 0.15121484477144
917 => 0.15168032579894
918 => 0.15144496434748
919 => 0.14990907167208
920 => 0.15153299991779
921 => 0.1473845343035
922 => 0.14573258186943
923 => 0.14498643327997
924 => 0.14130443127052
925 => 0.14716413386128
926 => 0.14831856909025
927 => 0.14947527891324
928 => 0.15954364820305
929 => 0.15904066092625
930 => 0.16358742094381
1001 => 0.16341074221048
1002 => 0.16211393260084
1003 => 0.15664290617261
1004 => 0.15882355979524
1005 => 0.15211184689362
1006 => 0.15714071855163
1007 => 0.15484575153761
1008 => 0.15636478789566
1009 => 0.1536334235579
1010 => 0.15514507335769
1011 => 0.14859232850976
1012 => 0.14247346757037
1013 => 0.14493587583307
1014 => 0.14761279522516
1015 => 0.15341703853359
1016 => 0.14996007910306
1017 => 0.15120333243639
1018 => 0.14703864188783
1019 => 0.13844569570111
1020 => 0.13849433084334
1021 => 0.13717249328002
1022 => 0.13603023263387
1023 => 0.15035715247882
1024 => 0.14857537352101
1025 => 0.14573634194522
1026 => 0.14953649852805
1027 => 0.15054132024515
1028 => 0.15056992610682
1029 => 0.15334242225342
1030 => 0.15482210394386
1031 => 0.15508290425511
1101 => 0.15944548684552
1102 => 0.16090776698598
1103 => 0.16693069193487
1104 => 0.15469656329039
1105 => 0.15444460946184
1106 => 0.14958997452432
1107 => 0.1465110882982
1108 => 0.14980078849833
1109 => 0.15271501378678
1110 => 0.1496805276274
1111 => 0.15007676745832
1112 => 0.14600321771599
1113 => 0.14745932007054
1114 => 0.14871351157645
1115 => 0.14802102074486
1116 => 0.14698432845303
1117 => 0.15247608054651
1118 => 0.15216621437105
1119 => 0.15728026017533
1120 => 0.1612670245887
1121 => 0.16841201913683
1122 => 0.16095584484886
1123 => 0.1606841122222
1124 => 0.16334034223511
1125 => 0.160907360331
1126 => 0.16244492091071
1127 => 0.16816429435684
1128 => 0.16828513570529
1129 => 0.16626088742353
1130 => 0.16613771173163
1201 => 0.16652649075699
1202 => 0.16880358165182
1203 => 0.16800789612523
1204 => 0.16892868356089
1205 => 0.17008014234878
1206 => 0.17484306410391
1207 => 0.17599138841428
1208 => 0.17320155567798
1209 => 0.17345344633764
1210 => 0.17240997231164
1211 => 0.17140198947722
1212 => 0.17366778768493
1213 => 0.17780857844389
1214 => 0.17778281879949
1215 => 0.1787434017701
1216 => 0.17934183700289
1217 => 0.17677291490239
1218 => 0.17510064107684
1219 => 0.1757418972711
1220 => 0.17676727989047
1221 => 0.17540937950741
1222 => 0.16702778930248
1223 => 0.1695702283526
1224 => 0.16914704217574
1225 => 0.1685443735987
1226 => 0.17110081572369
1227 => 0.17085424064425
1228 => 0.16346835971263
1229 => 0.16394117984644
1230 => 0.163497113471
1231 => 0.16493198277749
]
'min_raw' => 0.13603023263387
'max_raw' => 0.30472451345184
'avg_raw' => 0.22037737304285
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.13603'
'max' => '$0.304724'
'avg' => '$0.220377'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.033171677328217
'max_diff' => -0.22143698536487
'year' => 2034
]
9 => [
'items' => [
101 => 0.16082987267961
102 => 0.16209165411759
103 => 0.16288303160702
104 => 0.16334915902794
105 => 0.16503313089888
106 => 0.16483553623616
107 => 0.16502084813721
108 => 0.16751773386973
109 => 0.18014612507707
110 => 0.18083346054751
111 => 0.17744876930992
112 => 0.17880088669926
113 => 0.1762051169873
114 => 0.17794767458508
115 => 0.17913988823732
116 => 0.17375250399236
117 => 0.17343349806121
118 => 0.17082701468429
119 => 0.17222759121228
120 => 0.16999917325123
121 => 0.17054594907212
122 => 0.16901711620985
123 => 0.17176871097435
124 => 0.17484542147566
125 => 0.17562272005127
126 => 0.17357798214692
127 => 0.17209745714937
128 => 0.16949814296893
129 => 0.1738208603805
130 => 0.17508495468406
131 => 0.17381422063126
201 => 0.17351976378514
202 => 0.17296176859381
203 => 0.17363814510279
204 => 0.17507807015501
205 => 0.17439902809162
206 => 0.17484754733767
207 => 0.17313825448278
208 => 0.17677376532249
209 => 0.18254783146929
210 => 0.18256639603611
211 => 0.18188735031243
212 => 0.18160949943255
213 => 0.18230624155298
214 => 0.18268419557146
215 => 0.18493733182827
216 => 0.18735503680075
217 => 0.19863741097996
218 => 0.19546936545759
219 => 0.20547975902083
220 => 0.21339668064243
221 => 0.21577061927172
222 => 0.21358670743522
223 => 0.20611566301513
224 => 0.20574909793338
225 => 0.21691399249058
226 => 0.21375939839361
227 => 0.21338416946361
228 => 0.20939236760769
301 => 0.21175201689881
302 => 0.21123592698488
303 => 0.21042125380775
304 => 0.21492330028062
305 => 0.22335072937738
306 => 0.22203723552072
307 => 0.22105677328795
308 => 0.21676067319222
309 => 0.21934788501855
310 => 0.21842662844197
311 => 0.22238493133881
312 => 0.22004012038987
313 => 0.21373549924069
314 => 0.214739530939
315 => 0.21458777356763
316 => 0.21771092951675
317 => 0.21677343562232
318 => 0.21440471283851
319 => 0.22332192534091
320 => 0.22274289116115
321 => 0.22356382924241
322 => 0.22392523157414
323 => 0.22935298168544
324 => 0.23157655723741
325 => 0.23208134781687
326 => 0.23419357261374
327 => 0.23202879373974
328 => 0.24068945269693
329 => 0.24644828554001
330 => 0.25313746623407
331 => 0.26291215711037
401 => 0.2665875313008
402 => 0.26592360785029
403 => 0.2733346669157
404 => 0.28665217531763
405 => 0.26861545706046
406 => 0.28760816518184
407 => 0.28159529307197
408 => 0.26733888146643
409 => 0.26642093663108
410 => 0.2760755440907
411 => 0.2974885342146
412 => 0.29212482305268
413 => 0.29749730732456
414 => 0.29123001904511
415 => 0.29091879535718
416 => 0.29719291912168
417 => 0.3118527512821
418 => 0.30488841453827
419 => 0.29490333009057
420 => 0.30227616106163
421 => 0.29588913255121
422 => 0.28149736970049
423 => 0.29212072152384
424 => 0.28501718869521
425 => 0.28709037721918
426 => 0.30202094665421
427 => 0.3002244610384
428 => 0.30254927977534
429 => 0.29844603555573
430 => 0.29461295843239
501 => 0.28745823533364
502 => 0.28534007454768
503 => 0.28592545798548
504 => 0.28533978446072
505 => 0.28133678264227
506 => 0.2804723347807
507 => 0.27903155047243
508 => 0.27947810977549
509 => 0.27676901375962
510 => 0.28188163766937
511 => 0.2828305857193
512 => 0.28655112704336
513 => 0.28693740598605
514 => 0.29729906061497
515 => 0.29159203536589
516 => 0.29542080062382
517 => 0.29507831982142
518 => 0.26764786113514
519 => 0.27142753632112
520 => 0.2773075247831
521 => 0.27465859795111
522 => 0.27091363516411
523 => 0.2678893769214
524 => 0.26330731643741
525 => 0.26975647857794
526 => 0.27823644100081
527 => 0.28715247182716
528 => 0.29786449866353
529 => 0.29547369897539
530 => 0.28695221793659
531 => 0.28733448535104
601 => 0.28969751209052
602 => 0.28663717775928
603 => 0.28573462542017
604 => 0.28957351525876
605 => 0.28959995158326
606 => 0.28607866708141
607 => 0.28216540374586
608 => 0.2821490070296
609 => 0.28145267961667
610 => 0.29135389414497
611 => 0.29679856100983
612 => 0.29742278329137
613 => 0.29675654587674
614 => 0.29701295421562
615 => 0.293844822532
616 => 0.30108623208048
617 => 0.30773166558335
618 => 0.3059505474456
619 => 0.30328039815625
620 => 0.30115349563548
621 => 0.30544951680564
622 => 0.3052582217455
623 => 0.30767362351905
624 => 0.30756404694256
625 => 0.30675183817397
626 => 0.30595057645213
627 => 0.30912748860871
628 => 0.30821258892727
629 => 0.30729626815391
630 => 0.30545844656126
701 => 0.30570823703868
702 => 0.30303854878826
703 => 0.30180342884699
704 => 0.28323018839742
705 => 0.27826681165116
706 => 0.27982839101438
707 => 0.28034250348715
708 => 0.27818243556643
709 => 0.28127941808882
710 => 0.28079675664322
711 => 0.28267450998054
712 => 0.28150137121795
713 => 0.28154951724198
714 => 0.28499946820318
715 => 0.28600100364436
716 => 0.28549161463559
717 => 0.2858483732365
718 => 0.29406972461597
719 => 0.29290091135383
720 => 0.29228000260363
721 => 0.2924519985708
722 => 0.29455273011602
723 => 0.29514082025299
724 => 0.29264904101828
725 => 0.29382417851017
726 => 0.2988277648035
727 => 0.3005787368277
728 => 0.30616699901471
729 => 0.30379300591423
730 => 0.30815057299418
731 => 0.32154424859386
801 => 0.33224404343473
802 => 0.32240406991134
803 => 0.34205288052596
804 => 0.35735229804391
805 => 0.35676508091706
806 => 0.3540972735909
807 => 0.33667929350277
808 => 0.32065100853821
809 => 0.33405934950799
810 => 0.33409353012657
811 => 0.332941741746
812 => 0.32578808303472
813 => 0.3326928099293
814 => 0.33324088207591
815 => 0.33293410741796
816 => 0.32744941405666
817 => 0.31907530103473
818 => 0.32071158267442
819 => 0.32339184537947
820 => 0.31831754891743
821 => 0.31669600373534
822 => 0.31971076474044
823 => 0.32942495284925
824 => 0.32758854185774
825 => 0.32754058574523
826 => 0.33539753072637
827 => 0.32977365375473
828 => 0.320732221426
829 => 0.31844914052115
830 => 0.31034574137653
831 => 0.31594278802904
901 => 0.31614421577383
902 => 0.31307877052268
903 => 0.32098096541349
904 => 0.32090814529642
905 => 0.32841010325875
906 => 0.342751029276
907 => 0.33850971177859
908 => 0.33357752098313
909 => 0.33411378687742
910 => 0.33999530012069
911 => 0.33643920295192
912 => 0.3377180002878
913 => 0.33999336450776
914 => 0.34136614823578
915 => 0.3339162644249
916 => 0.33217934013945
917 => 0.32862620262899
918 => 0.32769925537497
919 => 0.33059321173859
920 => 0.32983075648176
921 => 0.31612728655185
922 => 0.31469519769878
923 => 0.31473911781935
924 => 0.31113806230621
925 => 0.30564558829633
926 => 0.32007948205573
927 => 0.31892023838464
928 => 0.31764052309008
929 => 0.31779728091171
930 => 0.32406254498262
1001 => 0.32042837541808
1002 => 0.3300904108341
1003 => 0.32810418681994
1004 => 0.32606702365452
1005 => 0.32578542565155
1006 => 0.32500129163546
1007 => 0.32231220433086
1008 => 0.31906496982146
1009 => 0.31692086432773
1010 => 0.29234274496882
1011 => 0.29690430095749
1012 => 0.30215195532354
1013 => 0.30396342458205
1014 => 0.30086478106552
1015 => 0.32243455766335
1016 => 0.32637556369931
1017 => 0.31443799935092
1018 => 0.31220496846887
1019 => 0.32258095479622
1020 => 0.31632296662809
1021 => 0.31914093831701
1022 => 0.31305002487366
1023 => 0.32542629075137
1024 => 0.3253320043413
1025 => 0.32051735738423
1026 => 0.32458666402307
1027 => 0.32387952185385
1028 => 0.31844379729727
1029 => 0.32559861291534
1030 => 0.32560216161463
1031 => 0.32096816859789
1101 => 0.31555667926586
1102 => 0.31458923278697
1103 => 0.31386039182327
1104 => 0.31896168811871
1105 => 0.32353549442586
1106 => 0.33204621402072
1107 => 0.33418601113658
1108 => 0.34253778173414
1109 => 0.33756470898362
1110 => 0.33976920772185
1111 => 0.34216250294758
1112 => 0.34330993668932
1113 => 0.34144025498185
1114 => 0.35441399244578
1115 => 0.35550937339278
1116 => 0.3558766451493
1117 => 0.35150197387238
1118 => 0.35538770587085
1119 => 0.35356970055068
1120 => 0.35829964533733
1121 => 0.35904136107484
1122 => 0.35841315423247
1123 => 0.35864858651475
1124 => 0.3475777903134
1125 => 0.34700371112726
1126 => 0.33917610068941
1127 => 0.34236590980161
1128 => 0.33640271455789
1129 => 0.33829370519739
1130 => 0.33912723585326
1201 => 0.33869184674108
1202 => 0.34254625682287
1203 => 0.33926922084939
1204 => 0.33062058412081
1205 => 0.32196959107693
1206 => 0.32186098490621
1207 => 0.31958333114047
1208 => 0.31793700464093
1209 => 0.31825414553131
1210 => 0.31937179139435
1211 => 0.3178720450316
1212 => 0.31819209195716
1213 => 0.32350700338302
1214 => 0.32457287096527
1215 => 0.32095063645946
1216 => 0.3064068422327
1217 => 0.30283775864911
1218 => 0.30540314515099
1219 => 0.30417705563514
1220 => 0.24549462394339
1221 => 0.25928119082055
1222 => 0.25108968092971
1223 => 0.25486470556066
1224 => 0.24650329514332
1225 => 0.25049379845354
1226 => 0.24975689820199
1227 => 0.2719252897663
1228 => 0.27157916082365
1229 => 0.27174483443176
1230 => 0.26383680145633
1231 => 0.27643451271268
]
'min_raw' => 0.16082987267961
'max_raw' => 0.35904136107484
'avg_raw' => 0.25993561687723
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.160829'
'max' => '$0.359041'
'avg' => '$0.259935'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024799640045739
'max_diff' => 0.054316847623009
'year' => 2035
]
10 => [
'items' => [
101 => 0.28264059827661
102 => 0.28149201700834
103 => 0.28178109016835
104 => 0.27681385553418
105 => 0.27179292812086
106 => 0.26622394690429
107 => 0.27657042565779
108 => 0.27542007384068
109 => 0.27805856702561
110 => 0.28476899807883
111 => 0.28575713454187
112 => 0.28708519996888
113 => 0.28660918305143
114 => 0.29794983723928
115 => 0.29657640918908
116 => 0.29988597562783
117 => 0.29307794636592
118 => 0.28537401503199
119 => 0.28683828051808
120 => 0.28669725997689
121 => 0.2849019066317
122 => 0.28328114190733
123 => 0.28058302528889
124 => 0.28912026551576
125 => 0.28877366915338
126 => 0.2943846613861
127 => 0.2933928640067
128 => 0.28676939837305
129 => 0.28700595674392
130 => 0.28859692547412
131 => 0.29410328641469
201 => 0.29573794924349
202 => 0.29498070829114
203 => 0.29677304145773
204 => 0.2981896285133
205 => 0.29695094298175
206 => 0.31448811795178
207 => 0.30720546021665
208 => 0.31075497692435
209 => 0.31160151574417
210 => 0.30943312435799
211 => 0.30990337080538
212 => 0.31061566603868
213 => 0.3149405832136
214 => 0.32629041730544
215 => 0.33131718156378
216 => 0.34644044985119
217 => 0.33089977876806
218 => 0.32997765965968
219 => 0.33270181695719
220 => 0.34158077640243
221 => 0.34877633907454
222 => 0.35116352233484
223 => 0.35147902801079
224 => 0.35595754250407
225 => 0.35852454349227
226 => 0.35541373304796
227 => 0.35277764691184
228 => 0.34333551357532
229 => 0.3444284662191
301 => 0.35195782610574
302 => 0.36259349042271
303 => 0.37171999685895
304 => 0.36852421239584
305 => 0.39290579197711
306 => 0.39532312600277
307 => 0.39498912860219
308 => 0.40049617526018
309 => 0.38956580913462
310 => 0.38489286585007
311 => 0.35334759865532
312 => 0.36221053202232
313 => 0.37509332617307
314 => 0.37338824005922
315 => 0.36403241058887
316 => 0.37171289962334
317 => 0.36917348975744
318 => 0.367170551836
319 => 0.37634639874275
320 => 0.36625717814576
321 => 0.37499267847977
322 => 0.36378930894423
323 => 0.36853881047007
324 => 0.36584276369646
325 => 0.36758743637405
326 => 0.35738811555038
327 => 0.36289142149232
328 => 0.35715915993
329 => 0.35715644209166
330 => 0.35702990209996
331 => 0.36377388240728
401 => 0.36399380336299
402 => 0.35900999172629
403 => 0.35829174660767
404 => 0.36094747525871
405 => 0.35783831254478
406 => 0.35929307020979
407 => 0.35788237567246
408 => 0.35756479861834
409 => 0.3550342906198
410 => 0.35394407819626
411 => 0.35437157857884
412 => 0.35291229938153
413 => 0.35203303088072
414 => 0.35685499346428
415 => 0.3542788133733
416 => 0.35646015691771
417 => 0.35397424064135
418 => 0.34535697176531
419 => 0.34040108930873
420 => 0.32412386722313
421 => 0.32874006721478
422 => 0.33180061258504
423 => 0.33078910235843
424 => 0.33296221772769
425 => 0.33309562936205
426 => 0.33238912740321
427 => 0.33157108864339
428 => 0.33117291261548
429 => 0.33414059050797
430 => 0.335863427412
501 => 0.33210777925776
502 => 0.33122788344232
503 => 0.33502505108128
504 => 0.33734132114749
505 => 0.35444335791668
506 => 0.35317638379396
507 => 0.35635624021086
508 => 0.35599823717719
509 => 0.35933123329294
510 => 0.36477927331295
511 => 0.35370188465633
512 => 0.35562453629984
513 => 0.35515314651736
514 => 0.36029965655742
515 => 0.3603157234
516 => 0.35723013354375
517 => 0.3589028818628
518 => 0.35796919964055
519 => 0.35965648961088
520 => 0.35315946258212
521 => 0.36107214019242
522 => 0.36555811851577
523 => 0.36562040632915
524 => 0.36774672445149
525 => 0.36990718681184
526 => 0.3740540061759
527 => 0.36979153427046
528 => 0.36212376225585
529 => 0.36267735062856
530 => 0.35818173870192
531 => 0.3582573107506
601 => 0.35785390123203
602 => 0.35906456356452
603 => 0.35342513488265
604 => 0.35474869752235
605 => 0.35289570207599
606 => 0.35562050824962
607 => 0.35268906723339
608 => 0.35515291919894
609 => 0.35621623602928
610 => 0.36013989802481
611 => 0.35210953916642
612 => 0.33573509384666
613 => 0.33917720077383
614 => 0.33408605425688
615 => 0.33455725925039
616 => 0.33550916832899
617 => 0.33242371955997
618 => 0.33301232595144
619 => 0.33299129678917
620 => 0.33281007882967
621 => 0.33200743443916
622 => 0.33084344127458
623 => 0.33548043178409
624 => 0.33626834682934
625 => 0.33801978437292
626 => 0.34323087449118
627 => 0.3427101637024
628 => 0.34355946460299
629 => 0.34170544550563
630 => 0.33464326187886
701 => 0.33502677242698
702 => 0.33024438974654
703 => 0.33789748809552
704 => 0.33608513339052
705 => 0.33491669652214
706 => 0.33459787769711
707 => 0.33982188509983
708 => 0.34138498999101
709 => 0.3404109679189
710 => 0.33841322023223
711 => 0.34224948637172
712 => 0.34327590935157
713 => 0.34350568760374
714 => 0.35030281567185
715 => 0.34388557155607
716 => 0.34543026599666
717 => 0.35748153106966
718 => 0.34655269660935
719 => 0.35234194396507
720 => 0.3520585904328
721 => 0.35502017348253
722 => 0.35181565418059
723 => 0.35185537803792
724 => 0.35448506315107
725 => 0.35079214467586
726 => 0.34987772612776
727 => 0.34861446345277
728 => 0.35137275128809
729 => 0.35302622009873
730 => 0.36635196437352
731 => 0.3749610029028
801 => 0.37458726183552
802 => 0.3780025555765
803 => 0.37646393446568
804 => 0.37149532103112
805 => 0.37997613830606
806 => 0.3772924528678
807 => 0.37751369263465
808 => 0.37750545807948
809 => 0.37928987428407
810 => 0.37802545186378
811 => 0.37553314548308
812 => 0.37718765476965
813 => 0.38210095585289
814 => 0.39735199317375
815 => 0.40588667570788
816 => 0.39683819456874
817 => 0.40307971569453
818 => 0.39933702710042
819 => 0.39865686924754
820 => 0.40257700575932
821 => 0.40650400395113
822 => 0.40625387114319
823 => 0.40340307210952
824 => 0.40179272807176
825 => 0.41398679263057
826 => 0.42297117167704
827 => 0.42235849725811
828 => 0.42506264289086
829 => 0.4330020981047
830 => 0.43372798238896
831 => 0.4336365376534
901 => 0.43183735771667
902 => 0.43965478244323
903 => 0.44617621568463
904 => 0.43142089954462
905 => 0.43703953076947
906 => 0.43956191534729
907 => 0.44326552426532
908 => 0.44951413330696
909 => 0.45630178008787
910 => 0.45726162776545
911 => 0.45658056990527
912 => 0.45210393439151
913 => 0.45953105849266
914 => 0.46388169360361
915 => 0.46647239724967
916 => 0.4730419906441
917 => 0.43957749273572
918 => 0.41588965782271
919 => 0.41219046034456
920 => 0.41971292388013
921 => 0.42169653752394
922 => 0.42089694535136
923 => 0.39423413355303
924 => 0.41205008615843
925 => 0.431218553154
926 => 0.43195489203734
927 => 0.44155102740907
928 => 0.44467592244498
929 => 0.45240206921344
930 => 0.45191879662947
1001 => 0.45379999041774
1002 => 0.45336753654355
1003 => 0.46767859649997
1004 => 0.48346582084486
1005 => 0.4829191594661
1006 => 0.48064955918056
1007 => 0.48402030262894
1008 => 0.50031441001465
1009 => 0.49881430971432
1010 => 0.50027152937785
1011 => 0.51948320028125
1012 => 0.544461105284
1013 => 0.53285636066956
1014 => 0.55803531730758
1015 => 0.57388413583207
1016 => 0.60129302867175
1017 => 0.59786130029658
1018 => 0.60853138114332
1019 => 0.5917177902817
1020 => 0.55311038707606
1021 => 0.54700061773556
1022 => 0.55923253067924
1023 => 0.58930349507864
1024 => 0.55828548899682
1025 => 0.56456039122924
1026 => 0.56275321896417
1027 => 0.56265692243415
1028 => 0.56633216931864
1029 => 0.5610010320247
1030 => 0.53928101963588
1031 => 0.54923517331684
1101 => 0.5453913965429
1102 => 0.54965635344613
1103 => 0.57267256685081
1104 => 0.5624965502666
1105 => 0.5517769434276
1106 => 0.5652217092749
1107 => 0.5823415163213
1108 => 0.58127018956359
1109 => 0.57919136787378
1110 => 0.59090957689567
1111 => 0.61026462508672
1112 => 0.61549621683788
1113 => 0.61935807091341
1114 => 0.61989055534386
1115 => 0.62537547591478
1116 => 0.59588167562699
1117 => 0.64268909413822
1118 => 0.65077144228627
1119 => 0.64925229581344
1120 => 0.6582354856228
1121 => 0.65559240329936
1122 => 0.6517629916996
1123 => 0.66600325832669
1124 => 0.64967794176899
1125 => 0.62650621021554
1126 => 0.61379374000043
1127 => 0.63053454626541
1128 => 0.6407575724778
1129 => 0.64751434249761
1130 => 0.64955893702305
1201 => 0.59817119538525
1202 => 0.57047605273729
1203 => 0.58822832164918
1204 => 0.60988731491783
1205 => 0.5957613588258
1206 => 0.59631506956063
1207 => 0.57617516840934
1208 => 0.6116692492813
1209 => 0.60649806025047
1210 => 0.63332619809012
1211 => 0.62692344768543
1212 => 0.64880075263135
1213 => 0.64303972505076
1214 => 0.66695342844308
1215 => 0.67649325216395
1216 => 0.6925121009463
1217 => 0.70429563131903
1218 => 0.71121514573692
1219 => 0.71079972404572
1220 => 0.73821828745779
1221 => 0.72205051854533
1222 => 0.70173999034073
1223 => 0.7013726369644
1224 => 0.71189174732398
1225 => 0.73393691686065
1226 => 0.73965290857734
1227 => 0.74284736815704
1228 => 0.73795494211079
1229 => 0.72040598771076
1230 => 0.71282843817604
1231 => 0.71928472992237
]
'min_raw' => 0.26622394690429
'max_raw' => 0.74284736815704
'avg_raw' => 0.50453565753066
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.266223'
'max' => '$0.742847'
'avg' => '$0.504535'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10539407422467
'max_diff' => 0.38380600708219
'year' => 2036
]
11 => [
'items' => [
101 => 0.71138923991209
102 => 0.72501907075306
103 => 0.74373573967248
104 => 0.73987082155435
105 => 0.75279066336235
106 => 0.76616134042664
107 => 0.78528200914325
108 => 0.79028085998209
109 => 0.79854377032941
110 => 0.80704901930146
111 => 0.80978067604839
112 => 0.8149962563616
113 => 0.81496876767887
114 => 0.83068627000176
115 => 0.84802316179444
116 => 0.85456743709621
117 => 0.86961563729918
118 => 0.84384612180342
119 => 0.86339259532581
120 => 0.88102400372297
121 => 0.86000311177423
122 => 0.88897551408591
123 => 0.8901004468148
124 => 0.90708559543935
125 => 0.88986789334762
126 => 0.87964407680641
127 => 0.90915985207949
128 => 0.92344160599592
129 => 0.91913982548752
130 => 0.88640306341351
131 => 0.86734886374066
201 => 0.81748034791618
202 => 0.87655175906984
203 => 0.9053237203061
204 => 0.8863285509847
205 => 0.8959086095074
206 => 0.94817430246284
207 => 0.96807369438726
208 => 0.96393475997423
209 => 0.96463417175737
210 => 0.97537152244028
211 => 1.0229868485353
212 => 0.99445464142455
213 => 1.0162664446793
214 => 1.0278353464773
215 => 1.0385811872092
216 => 1.0121927986295
217 => 0.97786189280973
218 => 0.96698785382321
219 => 0.88443985574956
220 => 0.88014287396204
221 => 0.87773084787283
222 => 0.86252336456824
223 => 0.85057444837108
224 => 0.84107222657628
225 => 0.81613555898311
226 => 0.82455095227225
227 => 0.78480710881575
228 => 0.81023381142389
301 => 0.74680167761866
302 => 0.79962984354769
303 => 0.77087787463448
304 => 0.79018404847798
305 => 0.79011669105619
306 => 0.75456790398232
307 => 0.73406410548237
308 => 0.74712992390632
309 => 0.76113751842274
310 => 0.76341020350583
311 => 0.78157141543199
312 => 0.78663981930664
313 => 0.7712823189453
314 => 0.74548718763694
315 => 0.75147880831556
316 => 0.73394268548056
317 => 0.70321130472944
318 => 0.72528311890332
319 => 0.73281940669145
320 => 0.73614786071154
321 => 0.70592707726573
322 => 0.69643105098193
323 => 0.69137544626782
324 => 0.74158606399043
325 => 0.74433671497333
326 => 0.73026399564193
327 => 0.79387402144987
328 => 0.77947711353048
329 => 0.79556198700451
330 => 0.75093513154018
331 => 0.75263993751694
401 => 0.73151286896304
402 => 0.743342615642
403 => 0.73498173197984
404 => 0.74238688901417
405 => 0.74682550960794
406 => 0.76794911141778
407 => 0.79987104114905
408 => 0.76479394971743
409 => 0.74951035866748
410 => 0.75899221259669
411 => 0.78424363911429
412 => 0.82250084288519
413 => 0.79985180825484
414 => 0.80990306521824
415 => 0.81209881771545
416 => 0.79539825809186
417 => 0.82311661633995
418 => 0.83797110970863
419 => 0.85320874620062
420 => 0.86643915901772
421 => 0.84712249910291
422 => 0.86779409414619
423 => 0.85113643756905
424 => 0.83619279758247
425 => 0.83621546091586
426 => 0.82684109726054
427 => 0.80867708643251
428 => 0.80532736414989
429 => 0.82275304248733
430 => 0.83672678629608
501 => 0.83787773076589
502 => 0.84561431333529
503 => 0.85019274320672
504 => 0.89506758002037
505 => 0.91311661061094
506 => 0.93518662356643
507 => 0.94378413741036
508 => 0.96965957170131
509 => 0.94876305701135
510 => 0.94424196461293
511 => 0.88147662481315
512 => 0.89175444568919
513 => 0.90821022857393
514 => 0.88174797461188
515 => 0.89853218397955
516 => 0.9018457424469
517 => 0.88084879734816
518 => 0.89206417294983
519 => 0.8622794604789
520 => 0.80052026648869
521 => 0.82318537197766
522 => 0.83987451860955
523 => 0.8160570486089
524 => 0.85874894172169
525 => 0.83380921910475
526 => 0.82590452435299
527 => 0.79506549189922
528 => 0.80962032811419
529 => 0.8293059525001
530 => 0.81714252532908
531 => 0.84238346305673
601 => 0.8781313623913
602 => 0.90360744428133
603 => 0.90556318151108
604 => 0.88918376762072
605 => 0.91543188291204
606 => 0.91562307177622
607 => 0.88601509050091
608 => 0.86788036682771
609 => 0.86376011945337
610 => 0.87405330521654
611 => 0.88655113295995
612 => 0.90625672397038
613 => 0.91816439991311
614 => 0.94921330342844
615 => 0.95761424647786
616 => 0.96684433588239
617 => 0.979178581781
618 => 0.99398900641801
619 => 0.96158464047017
620 => 0.96287212633857
621 => 0.93269762943693
622 => 0.90045185203695
623 => 0.92492237759064
624 => 0.95691433457449
625 => 0.94957534429442
626 => 0.94874955796595
627 => 0.95013830151642
628 => 0.94460494251426
629 => 0.91957776482337
630 => 0.90700927286542
701 => 0.92322583405544
702 => 0.93184421461183
703 => 0.94521057125303
704 => 0.94356288566744
705 => 0.97799318493326
706 => 0.99137175810975
707 => 0.98794894658978
708 => 0.98857882628401
709 => 1.0128000939761
710 => 1.0397391251333
711 => 1.0649710827303
712 => 1.0906381137358
713 => 1.0596955060574
714 => 1.0439847581531
715 => 1.0601942396998
716 => 1.0515932606261
717 => 1.1010170375995
718 => 1.1044390326838
719 => 1.1538592357555
720 => 1.2007648933189
721 => 1.1713042902055
722 => 1.1990843120067
723 => 1.2291306705232
724 => 1.2870949709474
725 => 1.2675746337732
726 => 1.2526223614204
727 => 1.2384925362959
728 => 1.2678944593334
729 => 1.305719563614
730 => 1.3138667287917
731 => 1.3270682488362
801 => 1.3131884647144
802 => 1.329905135881
803 => 1.3889223307763
804 => 1.3729753637564
805 => 1.3503281069853
806 => 1.3969165142835
807 => 1.4137766777769
808 => 1.5321101349097
809 => 1.6815110126511
810 => 1.6196580682471
811 => 1.5812639496735
812 => 1.5902874782589
813 => 1.6448436212712
814 => 1.6623653228814
815 => 1.6147352978123
816 => 1.6315590278825
817 => 1.724259434642
818 => 1.7739902286833
819 => 1.7064491306384
820 => 1.5201059198515
821 => 1.348288969302
822 => 1.3938625616059
823 => 1.3886959305518
824 => 1.4882909530036
825 => 1.372595033867
826 => 1.3745430564266
827 => 1.4761975984697
828 => 1.4490779094526
829 => 1.4051474864723
830 => 1.3486097100061
831 => 1.2440944010969
901 => 1.1515222773711
902 => 1.3330775300844
903 => 1.3252485374506
904 => 1.3139109959251
905 => 1.3391414677399
906 => 1.4616534770779
907 => 1.45882917873
908 => 1.4408624336102
909 => 1.454490051432
910 => 1.4027584991796
911 => 1.4160908981006
912 => 1.3482617526192
913 => 1.3789233591721
914 => 1.4050532315148
915 => 1.4102991902469
916 => 1.4221186031358
917 => 1.3211230140847
918 => 1.3664670684939
919 => 1.393102452296
920 => 1.2727628192747
921 => 1.3907237246726
922 => 1.3193649055742
923 => 1.2951446505988
924 => 1.3277540331473
925 => 1.3150461250545
926 => 1.3041206119097
927 => 1.2980239878507
928 => 1.3219687194281
929 => 1.3208516690799
930 => 1.2816734407471
1001 => 1.2305670389959
1002 => 1.247720024934
1003 => 1.2414881843326
1004 => 1.2189031900696
1005 => 1.2341227492803
1006 => 1.1671035129591
1007 => 1.0518004002252
1008 => 1.127973168327
1009 => 1.1250405996152
1010 => 1.1235618654892
1011 => 1.1808035954571
1012 => 1.1753011239121
1013 => 1.1653140841775
1014 => 1.2187197702529
1015 => 1.1992259764275
1016 => 1.2593012556819
1017 => 1.2988707200242
1018 => 1.2888346239289
1019 => 1.3260498963987
1020 => 1.2481151950859
1021 => 1.2740019766645
1022 => 1.2793372064703
1023 => 1.2180607523767
1024 => 1.176201396307
1025 => 1.1734098544888
1026 => 1.1008314996386
1027 => 1.1396022709676
1028 => 1.1737189452935
1029 => 1.1573797058523
1030 => 1.1522071907661
1031 => 1.1786324485598
1101 => 1.1806859174074
1102 => 1.1338666100652
1103 => 1.1436018266363
1104 => 1.1841992980828
1105 => 1.1425788745182
1106 => 1.0617171901897
1107 => 1.041662374476
1108 => 1.0389866923762
1109 => 0.98459644159311
1110 => 1.0430025331578
1111 => 1.0175067090039
1112 => 1.0980477120193
1113 => 1.052043123047
1114 => 1.0500599571646
1115 => 1.0470621110661
1116 => 1.0002461753842
1117 => 1.0104958899906
1118 => 1.044567502418
1119 => 1.0567246375763
1120 => 1.0554565487788
1121 => 1.0444005329294
1122 => 1.0494619203693
1123 => 1.0331574279211
1124 => 1.027399972289
1125 => 1.0092278586011
1126 => 0.98251987165446
1127 => 0.98623378104899
1128 => 0.93331827038274
1129 => 0.90448709173306
1130 => 0.89650700147166
1201 => 0.88583569126317
1202 => 0.89771235435498
1203 => 0.93316836738951
1204 => 0.89040089325708
1205 => 0.81707905864653
1206 => 0.82148582584095
1207 => 0.83138652334589
1208 => 0.8129366390451
1209 => 0.79547537193582
1210 => 0.81065652700996
1211 => 0.7795890991008
1212 => 0.83514087358232
1213 => 0.83363835376464
1214 => 0.85434461999266
1215 => 0.8672926732004
1216 => 0.83745160253857
1217 => 0.82994665396595
1218 => 0.83422181375381
1219 => 0.76356294549664
1220 => 0.84857028299446
1221 => 0.84930542997915
1222 => 0.84301065517558
1223 => 0.88827443808607
1224 => 0.98379513815514
1225 => 0.94785640847789
1226 => 0.93393984609301
1227 => 0.9074844508264
1228 => 0.94273469425322
1229 => 0.9400280255475
1230 => 0.92778744318661
1231 => 0.9203843007818
]
'min_raw' => 0.69137544626782
'max_raw' => 1.7739902286833
'avg_raw' => 1.2326828374755
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.691375'
'max' => '$1.77'
'avg' => '$1.23'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.42515149936353
'max_diff' => 1.0311428605262
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.02170148524132
]
1 => [
'year' => 2028
'avg' => 0.037246048660285
]
2 => [
'year' => 2029
'avg' => 0.10174949199276
]
3 => [
'year' => 2030
'avg' => 0.078499581542526
]
4 => [
'year' => 2031
'avg' => 0.077096317420802
]
5 => [
'year' => 2032
'avg' => 0.1351741075427
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.02170148524132
'min' => '$0.0217014'
'max_raw' => 0.1351741075427
'max' => '$0.135174'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1351741075427
]
1 => [
'year' => 2033
'avg' => 0.3476817043894
]
2 => [
'year' => 2034
'avg' => 0.22037737304285
]
3 => [
'year' => 2035
'avg' => 0.25993561687723
]
4 => [
'year' => 2036
'avg' => 0.50453565753066
]
5 => [
'year' => 2037
'avg' => 1.2326828374755
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1351741075427
'min' => '$0.135174'
'max_raw' => 1.2326828374755
'max' => '$1.23'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2326828374755
]
]
]
]
'prediction_2025_max_price' => '$0.0371055'
'last_price' => 0.03597855
'sma_50day_nextmonth' => '$0.035687'
'sma_200day_nextmonth' => '$0.026736'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.035829'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.03523'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.03688'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0400017'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.038177'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028848'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.026037'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.035743'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.035828'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036828'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.037971'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.036237'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.033052'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.046054'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.027258'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.052395'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.037531'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.037688'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.03534'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.03579'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.074311'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.046956'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.023478'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '46.74'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.03
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.037158'
'vwma_10_action' => 'SELL'
'hma_9' => '0.035137'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 19.17
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -65.2
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.81
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003638'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -80.83
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 41.02
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.007819'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 17
'sell_pct' => 45.16
'buy_pct' => 54.84
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767697985
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de AI Rig Complex para 2026
La previsión del precio de AI Rig Complex para 2026 sugiere que el precio medio podría oscilar entre $0.01243 en el extremo inferior y $0.0371055 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, AI Rig Complex podría potencialmente ganar 3.13% para 2026 si ARC alcanza el objetivo de precio previsto.
Predicción de precio de AI Rig Complex 2027-2032
La predicción del precio de ARC para 2027-2032 está actualmente dentro de un rango de precios de $0.0217014 en el extremo inferior y $0.135174 en el extremo superior. Considerando la volatilidad de precios en el mercado, si AI Rig Complex alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de AI Rig Complex | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011966 | $0.0217014 | $0.031436 |
| 2028 | $0.021596 | $0.037246 | $0.052895 |
| 2029 | $0.04744 | $0.101749 | $0.156058 |
| 2030 | $0.040346 | $0.078499 | $0.116652 |
| 2031 | $0.0477017 | $0.077096 | $0.10649 |
| 2032 | $0.072813 | $0.135174 | $0.197535 |
Predicción de precio de AI Rig Complex 2032-2037
La predicción de precio de AI Rig Complex para 2032-2037 se estima actualmente entre $0.135174 en el extremo inferior y $1.23 en el extremo superior. Comparado con el precio actual, AI Rig Complex podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de AI Rig Complex | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.072813 | $0.135174 | $0.197535 |
| 2033 | $0.1692019 | $0.347681 | $0.526161 |
| 2034 | $0.13603 | $0.220377 | $0.304724 |
| 2035 | $0.160829 | $0.259935 | $0.359041 |
| 2036 | $0.266223 | $0.504535 | $0.742847 |
| 2037 | $0.691375 | $1.23 | $1.77 |
AI Rig Complex Histograma de precios potenciales
Pronóstico de precio de AI Rig Complex basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para AI Rig Complex es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de ARC se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de AI Rig Complex
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de AI Rig Complex aumentar durante el próximo mes, alcanzando $0.026736 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para AI Rig Complex alcance $0.035687 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.74, lo que sugiere que el mercado de ARC está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ARC para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.035829 | BUY |
| SMA 5 | $0.03523 | BUY |
| SMA 10 | $0.03688 | SELL |
| SMA 21 | $0.0400017 | SELL |
| SMA 50 | $0.038177 | SELL |
| SMA 100 | $0.028848 | BUY |
| SMA 200 | $0.026037 | BUY |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.035743 | BUY |
| EMA 5 | $0.035828 | BUY |
| EMA 10 | $0.036828 | SELL |
| EMA 21 | $0.037971 | SELL |
| EMA 50 | $0.036237 | SELL |
| EMA 100 | $0.033052 | BUY |
| EMA 200 | $0.046054 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.027258 | BUY |
| SMA 50 | $0.052395 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.03579 | BUY |
| EMA 50 | $0.074311 | SELL |
| EMA 100 | $0.046956 | SELL |
| EMA 200 | $0.023478 | BUY |
Osciladores de AI Rig Complex
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.74 | NEUTRAL |
| Stoch RSI (14) | 23.03 | NEUTRAL |
| Estocástico Rápido (14) | 19.17 | BUY |
| Índice de Canal de Materias Primas (20) | -65.2 | NEUTRAL |
| Índice Direccional Medio (14) | 10.81 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.003638 | SELL |
| Momentum (10) | -0.01 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -80.83 | BUY |
| Oscilador Ultimate (7, 14, 28) | 41.02 | NEUTRAL |
| VWMA (10) | 0.037158 | SELL |
| Promedio Móvil de Hull (9) | 0.035137 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.007819 | NEUTRAL |
Predicción de precios de AI Rig Complex basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de AI Rig Complex
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de AI Rig Complex por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.050555 | $0.071039 | $0.099822 | $0.140266 | $0.197098 | $0.276956 |
| Amazon.com acción | $0.075071 | $0.15664 | $0.32684 | $0.681972 | $1.42 | $2.96 |
| Apple acción | $0.051032 | $0.072386 | $0.102674 | $0.145635 | $0.206572 | $0.293008 |
| Netflix acción | $0.056768 | $0.089571 | $0.14133 | $0.222997 | $0.351854 | $0.555171 |
| Google acción | $0.046592 | $0.060336 | $0.078135 | $0.101185 | $0.131034 | $0.169688 |
| Tesla acción | $0.08156 | $0.184891 | $0.419135 | $0.950149 | $2.15 | $4.88 |
| Kodak acción | $0.02698 | $0.020232 | $0.015171 | $0.011377 | $0.008531 | $0.006397 |
| Nokia acción | $0.023834 | $0.015789 | $0.010459 | $0.006929 | $0.00459 | $0.00304 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de AI Rig Complex
Podría preguntarse cosas como: "¿Debo invertir en AI Rig Complex ahora?", "¿Debería comprar ARC hoy?", "¿Será AI Rig Complex una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de AI Rig Complex regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como AI Rig Complex, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de AI Rig Complex a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de AI Rig Complex es de $0.03597 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de AI Rig Complex
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de AI Rig Complex
basado en el historial de precios del último mes
Predicción de precios de AI Rig Complex basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si AI Rig Complex ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.036913 | $0.037873 | $0.038857 | $0.039867 |
| Si AI Rig Complex ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.037848 | $0.039816 | $0.041886 | $0.044064 |
| Si AI Rig Complex ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.040654 | $0.045938 | $0.0519086 | $0.058655 |
| Si AI Rig Complex ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.04533 | $0.057113 | $0.071958 | $0.090663 |
| Si AI Rig Complex ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.054682 | $0.0831099 | $0.126315 | $0.191983 |
| Si AI Rig Complex ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.082738 | $0.19027 | $0.437557 | $1.00 |
| Si AI Rig Complex ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.129498 | $0.4661062 | $1.67 | $6.03 |
Cuadro de preguntas
¿Es ARC una buena inversión?
La decisión de adquirir AI Rig Complex depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de AI Rig Complex ha experimentado un aumento de 3.2777% durante las últimas 24 horas, y AI Rig Complex ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en AI Rig Complex dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede AI Rig Complex subir?
Parece que el valor medio de AI Rig Complex podría potencialmente aumentar hasta $0.0371055 para el final de este año. Mirando las perspectivas de AI Rig Complex en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.116652. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de AI Rig Complex la próxima semana?
Basado en nuestro nuevo pronóstico experimental de AI Rig Complex, el precio de AI Rig Complex aumentará en un 0.86% durante la próxima semana y alcanzará $0.036286 para el 13 de enero de 2026.
¿Cuál será el precio de AI Rig Complex el próximo mes?
Basado en nuestro nuevo pronóstico experimental de AI Rig Complex, el precio de AI Rig Complex disminuirá en un -11.62% durante el próximo mes y alcanzará $0.031798 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de AI Rig Complex este año en 2026?
Según nuestra predicción más reciente sobre el valor de AI Rig Complex en 2026, se anticipa que ARC fluctúe dentro del rango de $0.01243 y $0.0371055. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de AI Rig Complex no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará AI Rig Complex en 5 años?
El futuro de AI Rig Complex parece estar en una tendencia alcista, con un precio máximo de $0.116652 proyectada después de un período de cinco años. Basado en el pronóstico de AI Rig Complex para 2030, el valor de AI Rig Complex podría potencialmente alcanzar su punto más alto de aproximadamente $0.116652, mientras que su punto más bajo se anticipa que esté alrededor de $0.040346.
¿Cuánto será AI Rig Complex en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de AI Rig Complex, se espera que el valor de ARC en 2026 crezca en un 3.13% hasta $0.0371055 si ocurre lo mejor. El precio estará entre $0.0371055 y $0.01243 durante 2026.
¿Cuánto será AI Rig Complex en 2027?
Según nuestra última simulación experimental para la predicción de precios de AI Rig Complex, el valor de ARC podría disminuir en un -12.62% hasta $0.031436 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.031436 y $0.011966 a lo largo del año.
¿Cuánto será AI Rig Complex en 2028?
Nuestro nuevo modelo experimental de predicción de precios de AI Rig Complex sugiere que el valor de ARC en 2028 podría aumentar en un 47.02% , alcanzando $0.052895 en el mejor escenario. Se espera que el precio oscile entre $0.052895 y $0.021596 durante el año.
¿Cuánto será AI Rig Complex en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de AI Rig Complex podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.156058 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.156058 y $0.04744.
¿Cuánto será AI Rig Complex en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de AI Rig Complex, se espera que el valor de ARC en 2030 aumente en un 224.23% , alcanzando $0.116652 en el mejor escenario. Se pronostica que el precio oscile entre $0.116652 y $0.040346 durante el transcurso de 2030.
¿Cuánto será AI Rig Complex en 2031?
Nuestra simulación experimental indica que el precio de AI Rig Complex podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.10649 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.10649 y $0.0477017 durante el año.
¿Cuánto será AI Rig Complex en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de AI Rig Complex, ARC podría experimentar un 449.04% aumento en valor, alcanzando $0.197535 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.197535 y $0.072813 a lo largo del año.
¿Cuánto será AI Rig Complex en 2033?
Según nuestra predicción experimental de precios de AI Rig Complex, se anticipa que el valor de ARC aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.526161. A lo largo del año, el precio de ARC podría oscilar entre $0.526161 y $0.1692019.
¿Cuánto será AI Rig Complex en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de AI Rig Complex sugieren que ARC podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.304724 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.304724 y $0.13603.
¿Cuánto será AI Rig Complex en 2035?
Basado en nuestra predicción experimental para el precio de AI Rig Complex, ARC podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.359041 en 2035. El rango de precios esperado para el año está entre $0.359041 y $0.160829.
¿Cuánto será AI Rig Complex en 2036?
Nuestra reciente simulación de predicción de precios de AI Rig Complex sugiere que el valor de ARC podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.742847 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.742847 y $0.266223.
¿Cuánto será AI Rig Complex en 2037?
Según la simulación experimental, el valor de AI Rig Complex podría aumentar en un 4830.69% en 2037, con un máximo de $1.77 bajo condiciones favorables. Se espera que el precio caiga entre $1.77 y $0.691375 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de AI Rig Complex?
Los traders de AI Rig Complex utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de AI Rig Complex
Las medias móviles son herramientas populares para la predicción de precios de AI Rig Complex. Una media móvil simple (SMA) calcula el precio de cierre promedio de ARC durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ARC por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ARC.
¿Cómo leer gráficos de AI Rig Complex y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de AI Rig Complex en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ARC dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de AI Rig Complex?
La acción del precio de AI Rig Complex está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ARC. La capitalización de mercado de AI Rig Complex puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ARC, grandes poseedores de AI Rig Complex, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de AI Rig Complex.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


