Predicción del precio de AI Rig Complex - Pronóstico de ARC
Predicción de precio de AI Rig Complex hasta $0.036985 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.01239 | $0.036985 |
| 2027 | $0.011927 | $0.031334 |
| 2028 | $0.021526 | $0.052724 |
| 2029 | $0.047286 | $0.155552 |
| 2030 | $0.040215 | $0.116274 |
| 2031 | $0.047547 | $0.106145 |
| 2032 | $0.072577 | $0.196894 |
| 2033 | $0.168653 | $0.524455 |
| 2034 | $0.135589 | $0.303736 |
| 2035 | $0.1603084 | $0.357877 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en AI Rig Complex hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.59, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de AI Rig Complex para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'AI Rig Complex'
'name_with_ticker' => 'AI Rig Complex <small>ARC</small>'
'name_lang' => 'AI Rig Complex'
'name_lang_with_ticker' => 'AI Rig Complex <small>ARC</small>'
'name_with_lang' => 'AI Rig Complex'
'name_with_lang_with_ticker' => 'AI Rig Complex <small>ARC</small>'
'image' => '/uploads/coins/ai-rig-complex.jpg?1734049503'
'price_for_sd' => 0.03586
'ticker' => 'ARC'
'marketcap' => '$35.84M'
'low24h' => '$0.03519'
'high24h' => '$0.03745'
'volume24h' => '$5.64M'
'current_supply' => '999.98M'
'max_supply' => '999.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03586'
'change_24h_pct' => '1.5375%'
'ath_price' => '$0.6231'
'ath_days' => 349
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 ene. 2025'
'ath_pct' => '-94.25%'
'fdv' => '$35.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.76'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.036168'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031695'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01239'
'current_year_max_price_prediction' => '$0.036985'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.040215'
'grand_prediction_max_price' => '$0.116274'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.036541474331135
107 => 0.036677906931733
108 => 0.0369852965473
109 => 0.034358685937759
110 => 0.035537956988207
111 => 0.03623066824759
112 => 0.033100973576644
113 => 0.036168804246681
114 => 0.034312962490728
115 => 0.033683061924949
116 => 0.034531140053681
117 => 0.034200643182131
118 => 0.0339165013794
119 => 0.0337579453713
120 => 0.034380680350073
121 => 0.034351629018984
122 => 0.033332713726061
123 => 0.032003580262743
124 => 0.032449681080351
125 => 0.032287608471097
126 => 0.031700236427376
127 => 0.032096054265273
128 => 0.030353072825998
129 => 0.027354363852017
130 => 0.029335402853169
131 => 0.02925913500658
201 => 0.029220677299859
202 => 0.030709373357328
203 => 0.030566269581464
204 => 0.030306534826994
205 => 0.031695466194923
206 => 0.031188487561866
207 => 0.03275087624976
208 => 0.033779966488571
209 => 0.033518955916427
210 => 0.034486820260054
211 => 0.032459958342192
212 => 0.03313320056772
213 => 0.033271954857328
214 => 0.031678326997441
215 => 0.030589683128989
216 => 0.030517082994412
217 => 0.028629524550883
218 => 0.029637843035577
219 => 0.030525121575054
220 => 0.03010018401024
221 => 0.029965661471869
222 => 0.030652907946029
223 => 0.030706312882939
224 => 0.029488674661785
225 => 0.02974186020555
226 => 0.030797686011647
227 => 0.029715256104207
228 => 0.027612271607971
301 => 0.027090702376869
302 => 0.027021115427012
303 => 0.025606578306086
304 => 0.027125556126871
305 => 0.026462481602024
306 => 0.028557126081165
307 => 0.027360676388483
308 => 0.027309099833545
309 => 0.027231134306121
310 => 0.026013583772348
311 => 0.026280149959871
312 => 0.027166256566375
313 => 0.027482429386281
314 => 0.027449449970837
315 => 0.02716191416059
316 => 0.027293546582099
317 => 0.02686951268864
318 => 0.026719777495357
319 => 0.026247172037447
320 => 0.025552572574909
321 => 0.025649160890401
322 => 0.024272977603278
323 => 0.023523159908877
324 => 0.023315620253506
325 => 0.023038089552664
326 => 0.023346968084647
327 => 0.024269079048933
328 => 0.02315681758925
329 => 0.021249923332692
330 => 0.021364530926701
331 => 0.021622020163139
401 => 0.021142190674499
402 => 0.020688072332537
403 => 0.021082891387087
404 => 0.020274915152441
405 => 0.021719660230944
406 => 0.021680583925421
407 => 0.022219095548251
408 => 0.022555837917377
409 => 0.021779755778178
410 => 0.021584573218918
411 => 0.021695758075225
412 => 0.019858120067801
413 => 0.022068921318217
414 => 0.022088040419236
415 => 0.021924331068768
416 => 0.023101514483784
417 => 0.025585738662182
418 => 0.024651073598583
419 => 0.024289143035556
420 => 0.023601112770672
421 => 0.024517872247435
422 => 0.024447479423295
423 => 0.02412913637685
424 => 0.023936601509069
425 => 0.024291352906397
426 => 0.02389264388508
427 => 0.02382102478906
428 => 0.023387090989526
429 => 0.023232196365822
430 => 0.023117518552964
501 => 0.022991269549017
502 => 0.023269743392433
503 => 0.022638685026968
504 => 0.021877690501631
505 => 0.021814422040925
506 => 0.021989111823556
507 => 0.021911824598867
508 => 0.021814052019427
509 => 0.0216273775385
510 => 0.021571995207679
511 => 0.021751960915162
512 => 0.021548790124066
513 => 0.021848579693614
514 => 0.021767053518811
515 => 0.021311654933588
516 => 0.02074405968625
517 => 0.020739006897978
518 => 0.020616719432981
519 => 0.020460967960265
520 => 0.020417641463667
521 => 0.021049640827553
522 => 0.022357860596648
523 => 0.022101025752929
524 => 0.02228661524901
525 => 0.023199531885051
526 => 0.023489720631288
527 => 0.023283751532706
528 => 0.023001808326947
529 => 0.023014212397114
530 => 0.023977697681206
531 => 0.02403778907654
601 => 0.024189620646329
602 => 0.024384767121105
603 => 0.023316985821198
604 => 0.022963919993913
605 => 0.022796617817599
606 => 0.022281391868642
607 => 0.022837018882457
608 => 0.022513278815828
609 => 0.022556962411352
610 => 0.02252851341246
611 => 0.022544048489568
612 => 0.02171925639525
613 => 0.022019767284623
614 => 0.021520109645995
615 => 0.020851124157074
616 => 0.020848881483138
617 => 0.021012614733801
618 => 0.020915219789424
619 => 0.020653132498359
620 => 0.020690360761038
621 => 0.020364202006554
622 => 0.020729962339127
623 => 0.020740451036712
624 => 0.020599613385571
625 => 0.021163117643099
626 => 0.021393985797184
627 => 0.021301283438169
628 => 0.02138748155255
629 => 0.022111698400225
630 => 0.022229777346193
701 => 0.022282220214134
702 => 0.022211953718441
703 => 0.021400718907062
704 => 0.021436700620583
705 => 0.021172690681005
706 => 0.020949630102743
707 => 0.020958551356075
708 => 0.021073233489147
709 => 0.02157405709029
710 => 0.022628010833733
711 => 0.022668007607866
712 => 0.022716484864904
713 => 0.022519303497813
714 => 0.022459831710727
715 => 0.022538290348864
716 => 0.022934099960646
717 => 0.02395222974341
718 => 0.02359235467958
719 => 0.023299770650896
720 => 0.023556445724139
721 => 0.023516932608499
722 => 0.023183402147903
723 => 0.023174041058732
724 => 0.022533889468709
725 => 0.022297240001425
726 => 0.022099477993656
727 => 0.02188352704388
728 => 0.021755504082112
729 => 0.021952205536784
730 => 0.02199719348677
731 => 0.021567102318377
801 => 0.021508482481367
802 => 0.021859704213639
803 => 0.021705144624132
804 => 0.021864112994833
805 => 0.021900995020442
806 => 0.021895056164854
807 => 0.021733678202352
808 => 0.021836535703291
809 => 0.021593247050275
810 => 0.021328707180895
811 => 0.021159947225646
812 => 0.021012681781932
813 => 0.021094393209223
814 => 0.02080310689085
815 => 0.020709918535167
816 => 0.02180168989634
817 => 0.022608193139358
818 => 0.022596466262794
819 => 0.02252508191762
820 => 0.022419019260476
821 => 0.022926340816653
822 => 0.022749600130695
823 => 0.022878193746908
824 => 0.022910926219291
825 => 0.023009997554805
826 => 0.023045407041782
827 => 0.022938374978667
828 => 0.022579162301988
829 => 0.02168403846462
830 => 0.021267355901984
831 => 0.021129843715918
901 => 0.021134842022708
902 => 0.020996966407997
903 => 0.021037576955681
904 => 0.020982843716817
905 => 0.020879192203803
906 => 0.021087993020376
907 => 0.021112055369372
908 => 0.0210633187638
909 => 0.021074797998703
910 => 0.020671279720241
911 => 0.020701958338557
912 => 0.020531135893324
913 => 0.020499108744138
914 => 0.020067284477801
915 => 0.019302245196057
916 => 0.019726151222303
917 => 0.019214132352805
918 => 0.019020223048574
919 => 0.019938159535719
920 => 0.019846024172005
921 => 0.019688328479606
922 => 0.019455063683885
923 => 0.019368543502098
924 => 0.018842874266523
925 => 0.018811814923749
926 => 0.019072350791164
927 => 0.018952122452844
928 => 0.01878327633181
929 => 0.018171732797084
930 => 0.017484155388945
1001 => 0.017504909028939
1002 => 0.017723614609635
1003 => 0.018359530581976
1004 => 0.018111067210125
1005 => 0.017930804183058
1006 => 0.017897046336775
1007 => 0.018319596459844
1008 => 0.018917593410975
1009 => 0.019198160201018
1010 => 0.018920127033026
1011 => 0.018600737500005
1012 => 0.018620177260971
1013 => 0.018749501281514
1014 => 0.01876309140753
1015 => 0.018555201655308
1016 => 0.018613721402837
1017 => 0.018524824555182
1018 => 0.017979264765215
1019 => 0.017969397318603
1020 => 0.017835508147805
1021 => 0.017831454036924
1022 => 0.017603675157178
1023 => 0.01757180731734
1024 => 0.017119538526414
1025 => 0.017417223214198
1026 => 0.01721755195478
1027 => 0.016916600269149
1028 => 0.016864716085111
1029 => 0.016863156383887
1030 => 0.017172166473464
1031 => 0.017413612251387
1101 => 0.017221025321824
1102 => 0.017177177011104
1103 => 0.017645362253064
1104 => 0.017585781413421
1105 => 0.017534184790546
1106 => 0.018864049342889
1107 => 0.017811357779084
1108 => 0.017352324171732
1109 => 0.016784182914515
1110 => 0.016969172572681
1111 => 0.017008152611721
1112 => 0.015641875303273
1113 => 0.015087576769395
1114 => 0.014897362400867
1115 => 0.014787891342543
1116 => 0.014837778678473
1117 => 0.014338844985249
1118 => 0.014674136678697
1119 => 0.01424210227418
1120 => 0.014169670300302
1121 => 0.01494220133437
1122 => 0.0150496945147
1123 => 0.014591095211899
1124 => 0.01488559020478
1125 => 0.014778802226575
1126 => 0.014249508264032
1127 => 0.014229293127885
1128 => 0.013963712023064
1129 => 0.013548129020653
1130 => 0.013358196436971
1201 => 0.013259277898319
1202 => 0.01330009361525
1203 => 0.013279455939788
1204 => 0.013144781147536
1205 => 0.013287175341235
1206 => 0.012923417017675
1207 => 0.012778565522234
1208 => 0.012713139462272
1209 => 0.012390283012965
1210 => 0.012904091198727
1211 => 0.013005317884108
1212 => 0.013106744017329
1213 => 0.013989589260455
1214 => 0.013945484807003
1215 => 0.014344167586468
1216 => 0.014328675506788
1217 => 0.014214964719852
1218 => 0.013735237614285
1219 => 0.013926448288251
1220 => 0.013337931554521
1221 => 0.013778888306679
1222 => 0.013577654059788
1223 => 0.013710850805382
1224 => 0.013471351046938
1225 => 0.013603900101964
1226 => 0.013029322486474
1227 => 0.012492789993654
1228 => 0.012708706331125
1229 => 0.012943432082983
1230 => 0.013452377320022
1231 => 0.013149253735549
]
'min_raw' => 0.012390283012965
'max_raw' => 0.0369852965473
'avg_raw' => 0.024687789780132
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01239'
'max' => '$0.036985'
'avg' => '$0.024687'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023471626987035
'max_diff' => 0.0011233865472996
'year' => 2026
]
1 => [
'items' => [
101 => 0.013258268438897
102 => 0.012893087431521
103 => 0.012139614704507
104 => 0.012143879278315
105 => 0.01202797391456
106 => 0.011927814757815
107 => 0.013184071125622
108 => 0.013027835787811
109 => 0.012778895224584
110 => 0.013112112060968
111 => 0.01320021988137
112 => 0.013202728187152
113 => 0.013445834589406
114 => 0.013575580519868
115 => 0.013598448802463
116 => 0.013980981979071
117 => 0.014109202054135
118 => 0.014637322396942
119 => 0.013564572484153
120 => 0.013542479905641
121 => 0.013116801105198
122 => 0.012846828880242
123 => 0.013135286334412
124 => 0.013390820260438
125 => 0.013124741256578
126 => 0.013159485557248
127 => 0.012802296234018
128 => 0.012929974609753
129 => 0.01303994842707
130 => 0.01297922734911
131 => 0.01288832495647
201 => 0.013369869392575
202 => 0.013342698768302
203 => 0.013791124017861
204 => 0.01414070356709
205 => 0.014767212614128
206 => 0.014113417762889
207 => 0.014089590879911
208 => 0.014322502482976
209 => 0.014109166396583
210 => 0.014243987439072
211 => 0.014745490859858
212 => 0.01475608683688
213 => 0.014578590569609
214 => 0.014567789905614
215 => 0.01460188000534
216 => 0.01480154678422
217 => 0.014731777076539
218 => 0.01481251634862
219 => 0.014913482044681
220 => 0.015331118972158
221 => 0.01543180982147
222 => 0.015187183259862
223 => 0.015209270299408
224 => 0.015117773250218
225 => 0.015029388247154
226 => 0.015228064826447
227 => 0.015591150180104
228 => 0.015588891444963
301 => 0.01567312018964
302 => 0.015725593999786
303 => 0.015500337993464
304 => 0.015353704616242
305 => 0.015409933183594
306 => 0.015499843887287
307 => 0.015380776354172
308 => 0.01464583638234
309 => 0.014868770221646
310 => 0.014831663129878
311 => 0.014778818118823
312 => 0.015002979818142
313 => 0.014981358875397
314 => 0.014333727699078
315 => 0.014375186945752
316 => 0.014336248973185
317 => 0.014462065528506
318 => 0.014102371889701
319 => 0.014213011230424
320 => 0.014282403187746
321 => 0.014323275583703
322 => 0.014470934704363
323 => 0.014453608610829
324 => 0.014469857690062
325 => 0.014688797185439
326 => 0.015796118022093
327 => 0.015856387052067
328 => 0.015559600306116
329 => 0.015678160757263
330 => 0.01545055061738
331 => 0.015603346829139
401 => 0.015707886116622
402 => 0.015235493178237
403 => 0.015207521134231
404 => 0.014978971566335
405 => 0.015101781158413
406 => 0.014906382267095
407 => 0.014954326320261
408 => 0.01482027056792
409 => 0.0150615442319
410 => 0.015331325678366
411 => 0.015399483125735
412 => 0.015220190225332
413 => 0.015090370349462
414 => 0.014862449412761
415 => 0.015241487010045
416 => 0.015352329154452
417 => 0.015240904803447
418 => 0.015215085346649
419 => 0.015166157522672
420 => 0.015225465615803
421 => 0.015351725484329
422 => 0.015292183661986
423 => 0.015331512084636
424 => 0.015181632692788
425 => 0.015500412562575
426 => 0.016006711714351
427 => 0.016008339548912
428 => 0.015948797405616
429 => 0.015924434043433
430 => 0.015985527895774
501 => 0.016018668804468
502 => 0.016216235120243
503 => 0.016428231648458
504 => 0.017417526944307
505 => 0.017139736783962
506 => 0.01801749842388
507 => 0.018711693917971
508 => 0.018919852793159
509 => 0.018728356422618
510 => 0.018073257683428
511 => 0.01804111541397
512 => 0.019020109505874
513 => 0.018743498834141
514 => 0.018710596874906
515 => 0.018360575617386
516 => 0.018567481531556
517 => 0.018522228173
518 => 0.01845079353265
519 => 0.018845555603697
520 => 0.019584514960044
521 => 0.01946934121444
522 => 0.019383369356103
523 => 0.019006665698903
524 => 0.019233525440346
525 => 0.01915274503163
526 => 0.019499828931986
527 => 0.019294224118265
528 => 0.018741403236248
529 => 0.018829441783831
530 => 0.018816134934473
531 => 0.01908998895133
601 => 0.019007784772944
602 => 0.018800083249313
603 => 0.019581989277299
604 => 0.019531216649031
605 => 0.019603200627676
606 => 0.019634890201254
607 => 0.020110822621759
608 => 0.020305796906301
609 => 0.020350059482398
610 => 0.02053526997286
611 => 0.020345451276672
612 => 0.021104861399862
613 => 0.021609824818974
614 => 0.022196365815453
615 => 0.023053459858666
616 => 0.023375735147477
617 => 0.023317519001128
618 => 0.023967357922812
619 => 0.025135104019972
620 => 0.023553553874502
621 => 0.025218930017986
622 => 0.024691691158651
623 => 0.02344161730779
624 => 0.023361127289198
625 => 0.024207691814656
626 => 0.026085290453308
627 => 0.025614973289873
628 => 0.026086059723701
629 => 0.025536512375412
630 => 0.02550922271762
701 => 0.026059369435607
702 => 0.027344817229119
703 => 0.026734149166711
704 => 0.025858606757298
705 => 0.02650509364746
706 => 0.025945046873665
707 => 0.024683104745081
708 => 0.025614613647202
709 => 0.0249917401722
710 => 0.025173527765981
711 => 0.026482715164998
712 => 0.026325190273468
713 => 0.02652904206952
714 => 0.026169248985219
715 => 0.025833145510319
716 => 0.025205783415048
717 => 0.025020052427216
718 => 0.025071381790352
719 => 0.025020026990933
720 => 0.024669023664384
721 => 0.024593224529435
722 => 0.024466889317017
723 => 0.024506045882011
724 => 0.024268498721995
725 => 0.024716799292692
726 => 0.024800007829025
727 => 0.025126243599213
728 => 0.02516011447912
729 => 0.026068676455418
730 => 0.025568255786637
731 => 0.025903981175497
801 => 0.025873950736748
802 => 0.023468710198694
803 => 0.023800131123221
804 => 0.024315718076169
805 => 0.024083446852728
806 => 0.023755069685877
807 => 0.023489887517175
808 => 0.023088109415323
809 => 0.023653604378215
810 => 0.024397170120732
811 => 0.02517897253342
812 => 0.026118256906541
813 => 0.025908619568936
814 => 0.025161413265417
815 => 0.025194932394359
816 => 0.025402134460183
817 => 0.025133788958648
818 => 0.025054648631519
819 => 0.025391261794517
820 => 0.025393579864372
821 => 0.025084815934219
822 => 0.024741681329056
823 => 0.024740243582532
824 => 0.02467918609383
825 => 0.025547374367012
826 => 0.026024790133527
827 => 0.026079525081764
828 => 0.026021106035405
829 => 0.026043589207779
830 => 0.025765791492383
831 => 0.026400754691426
901 => 0.026983459714219
902 => 0.026827282320434
903 => 0.026593150205224
904 => 0.026406652698129
905 => 0.026783349434738
906 => 0.026766575722033
907 => 0.026978370294186
908 => 0.026968762069008
909 => 0.02689754352039
910 => 0.026827284863872
911 => 0.027105852495287
912 => 0.027025629491099
913 => 0.026945281878427
914 => 0.02678413244061
915 => 0.026806035325618
916 => 0.026571943636619
917 => 0.026463642109981
918 => 0.024835047001046
919 => 0.024399833172058
920 => 0.024536760302252
921 => 0.024581840268823
922 => 0.024392434652706
923 => 0.024663993651908
924 => 0.024621671469534
925 => 0.0247863223235
926 => 0.024683455618251
927 => 0.024687677303716
928 => 0.02499018635036
929 => 0.025078006013566
930 => 0.025033340224068
1001 => 0.025064622611978
1002 => 0.025785512037914
1003 => 0.025683024614292
1004 => 0.025628580213143
1005 => 0.025643661684341
1006 => 0.025827864388711
1007 => 0.02587943108884
1008 => 0.025660939356866
1009 => 0.025763981320751
1010 => 0.026202720924998
1011 => 0.026356254955974
1012 => 0.026846261882333
1013 => 0.026638098230837
1014 => 0.027020191622269
1015 => 0.028194616442296
1016 => 0.029132828252549
1017 => 0.028270009898597
1018 => 0.029992916407574
1019 => 0.031334446261072
1020 => 0.03128295611086
1021 => 0.031049029350758
1022 => 0.029521733278967
1023 => 0.028116292663003
1024 => 0.029292003416417
1025 => 0.029295000544915
1026 => 0.02919400594851
1027 => 0.028566737184085
1028 => 0.029172178355192
1029 => 0.029220236076715
1030 => 0.029193336532242
1031 => 0.028712411041266
1101 => 0.027978126706435
1102 => 0.028121604107832
1103 => 0.028356623018182
1104 => 0.02791168319081
1105 => 0.02776949795611
1106 => 0.028033847359265
1107 => 0.028885636215617
1108 => 0.0287246104664
1109 => 0.028720405433332
1110 => 0.029409341874025
1111 => 0.028916212064278
1112 => 0.028123413817342
1113 => 0.027923221804267
1114 => 0.027212675023348
1115 => 0.027703452215809
1116 => 0.027721114413252
1117 => 0.027452320760562
1118 => 0.028145224940852
1119 => 0.028138839706847
1120 => 0.028796649100855
1121 => 0.030054133600272
1122 => 0.02968223355674
1123 => 0.029249754268723
1124 => 0.02929677675868
1125 => 0.029812497412119
1126 => 0.029500680932292
1127 => 0.0296128123125
1128 => 0.029812327687845
1129 => 0.029932700267479
1130 => 0.0292794569969
1201 => 0.02912715474229
1202 => 0.028815597780186
1203 => 0.028734318384259
1204 => 0.028988075029043
1205 => 0.028921219118497
1206 => 0.027719629973949
1207 => 0.027594057222764
1208 => 0.027597908359767
1209 => 0.027282149706255
1210 => 0.02680054196889
1211 => 0.028066178347382
1212 => 0.027964530033619
1213 => 0.02785231816218
1214 => 0.027866063476159
1215 => 0.028415433331666
1216 => 0.028096771071629
1217 => 0.028943986917654
1218 => 0.028769824809351
1219 => 0.028591196100143
1220 => 0.028566504171367
1221 => 0.028497747358208
1222 => 0.0282619546626
1223 => 0.02797722081371
1224 => 0.027789214863449
1225 => 0.025634081779192
1226 => 0.026034061943798
1227 => 0.026494202663838
1228 => 0.026653041396497
1229 => 0.026381336752977
1230 => 0.028272683217986
1231 => 0.028618250442611
]
'min_raw' => 0.011927814757815
'max_raw' => 0.031334446261072
'avg_raw' => 0.021631130509444
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011927'
'max' => '$0.031334'
'avg' => '$0.021631'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00046246825514996
'max_diff' => -0.0056508502862272
'year' => 2027
]
2 => [
'items' => [
101 => 0.027571504778429
102 => 0.027375701403005
103 => 0.028285520054681
104 => 0.027736788186913
105 => 0.02798388211337
106 => 0.027449800197523
107 => 0.028535013417588
108 => 0.028526745911081
109 => 0.028104573457823
110 => 0.028461390724404
111 => 0.028399384943494
112 => 0.027922753283531
113 => 0.028550123491362
114 => 0.028550434659158
115 => 0.028144102851718
116 => 0.027669596258098
117 => 0.027584765686504
118 => 0.027520857246192
119 => 0.027968164554712
120 => 0.028369218888836
121 => 0.029115481574841
122 => 0.029303109744867
123 => 0.030035434983592
124 => 0.0295993709602
125 => 0.029792672493795
126 => 0.030002528652684
127 => 0.03010314141246
128 => 0.029939198319584
129 => 0.031076800852417
130 => 0.03117284936143
131 => 0.031205053595685
201 => 0.030821460422262
202 => 0.031162180941362
203 => 0.031002769093953
204 => 0.031417514435025
205 => 0.031482551800239
206 => 0.031427467465674
207 => 0.031448111351938
208 => 0.030477368277003
209 => 0.03042703012749
210 => 0.029740665887047
211 => 0.030020364388376
212 => 0.02949748144644
213 => 0.029663293013619
214 => 0.029736381172521
215 => 0.029698204066027
216 => 0.030036178121985
217 => 0.029748831130883
218 => 0.028990475177145
219 => 0.028231912609835
220 => 0.028222389474714
221 => 0.028022673340483
222 => 0.027878315155268
223 => 0.027906123663122
224 => 0.028004124471921
225 => 0.027872619170105
226 => 0.027900682493736
227 => 0.028366720650948
228 => 0.028460181279745
229 => 0.028142565545668
301 => 0.026867292541618
302 => 0.026554337347645
303 => 0.026779283334902
304 => 0.02667177364137
305 => 0.021526202975168
306 => 0.022735078477864
307 => 0.022016805703695
308 => 0.022347818844174
309 => 0.021614648337581
310 => 0.021964555732085
311 => 0.021899940612893
312 => 0.023843776648
313 => 0.023813426321971
314 => 0.023827953416938
315 => 0.023134537324035
316 => 0.024239167988328
317 => 0.024783348774792
318 => 0.02468263539412
319 => 0.024707982782251
320 => 0.024272430674254
321 => 0.023832170513413
322 => 0.023343854239487
323 => 0.024251085518725
324 => 0.024150216887428
325 => 0.024381573236236
326 => 0.024969977571053
327 => 0.025056622344485
328 => 0.025173073798643
329 => 0.025131334241906
330 => 0.026125739821945
331 => 0.026005310744903
401 => 0.026295510170764
402 => 0.025698547934285
403 => 0.025023028499532
404 => 0.025151422659685
405 => 0.025139057269581
406 => 0.024981631661232
407 => 0.024839514860989
408 => 0.024602930429745
409 => 0.02535151857811
410 => 0.025321127266369
411 => 0.025813127277422
412 => 0.025726161496435
413 => 0.025145382726869
414 => 0.025166125354243
415 => 0.025305629491903
416 => 0.025788454905174
417 => 0.025931790361094
418 => 0.025865391666982
419 => 0.026022552450886
420 => 0.026146765926522
421 => 0.026038151751001
422 => 0.027575899429349
423 => 0.026937319381905
424 => 0.027248558853818
425 => 0.02732278763394
426 => 0.027132652174521
427 => 0.027173885747429
428 => 0.027236343374908
429 => 0.027615573858502
430 => 0.02861078437868
501 => 0.029051556343439
502 => 0.030377640546724
503 => 0.029014956367608
504 => 0.028934100327767
505 => 0.029172968136685
506 => 0.029951519944282
507 => 0.030582463058686
508 => 0.030791783289716
509 => 0.030819448413747
510 => 0.031212147082504
511 => 0.031437234636038
512 => 0.031164463135116
513 => 0.030933317848451
514 => 0.030105384122426
515 => 0.030201219705602
516 => 0.03086143183811
517 => 0.031794020361579
518 => 0.032594278334013
519 => 0.032314055883873
520 => 0.034451955372225
521 => 0.034663919373958
522 => 0.034634632802535
523 => 0.035117518342958
524 => 0.03415908888315
525 => 0.033749341720385
526 => 0.030983294083038
527 => 0.031760440643516
528 => 0.032890068809387
529 => 0.032740558285746
530 => 0.031920192116643
531 => 0.03259365601271
601 => 0.032370987787507
602 => 0.032195360119776
603 => 0.032999944512749
604 => 0.03211527092217
605 => 0.032881243513581
606 => 0.031898875742125
607 => 0.032315335916421
608 => 0.032078932979578
609 => 0.03223191465217
610 => 0.03133758692013
611 => 0.03182014445576
612 => 0.031317510940145
613 => 0.031317272626414
614 => 0.031306176963699
615 => 0.031897523065801
616 => 0.03191680684096
617 => 0.031479801178032
618 => 0.031416821834693
619 => 0.031649689475829
620 => 0.031377062456191
621 => 0.031504622922785
622 => 0.031380926132776
623 => 0.031353079379892
624 => 0.031131191715176
625 => 0.031035596408289
626 => 0.031073081791307
627 => 0.030945124854026
628 => 0.03086802617091
629 => 0.031290840095081
630 => 0.031064947671661
701 => 0.031256218841438
702 => 0.031038241203131
703 => 0.030282635740422
704 => 0.029848079048436
705 => 0.028420810374042
706 => 0.028825581999579
707 => 0.029093946006076
708 => 0.02900525170353
709 => 0.029195801385538
710 => 0.029207499588433
711 => 0.029145549944388
712 => 0.029073820192825
713 => 0.029038906116668
714 => 0.029299127035776
715 => 0.029450194037951
716 => 0.029120879924375
717 => 0.029043726235159
718 => 0.029376680985914
719 => 0.029579783191534
720 => 0.031079375764555
721 => 0.030968281103126
722 => 0.031247106902088
723 => 0.031215715396055
724 => 0.031507969253801
725 => 0.031985680795519
726 => 0.031014359660958
727 => 0.03118294742416
728 => 0.031141613597883
729 => 0.031592885474865
730 => 0.031594294296407
731 => 0.031323734263454
801 => 0.031470409246653
802 => 0.031388539294849
803 => 0.031536489363147
804 => 0.030966797366191
805 => 0.031660620724032
806 => 0.032053973858939
807 => 0.032059435567598
808 => 0.0322458818317
809 => 0.032435322034268
810 => 0.032798936006331
811 => 0.032425181037939
812 => 0.031752832234114
813 => 0.031801373646076
814 => 0.031407175788397
815 => 0.031413802325602
816 => 0.031378429350669
817 => 0.031484586311196
818 => 0.030990092849303
819 => 0.031106149476429
820 => 0.030943669518825
821 => 0.031182594224464
822 => 0.030925550736865
823 => 0.03114159366546
824 => 0.031234830631505
825 => 0.03157887704346
826 => 0.030874734802084
827 => 0.02943894110568
828 => 0.02974076234798
829 => 0.029294345023072
830 => 0.029335662646123
831 => 0.029419130820336
901 => 0.029148583158622
902 => 0.029200195126541
903 => 0.029198351183859
904 => 0.029182461082005
905 => 0.029112081186147
906 => 0.029010016412914
907 => 0.029416611055592
908 => 0.0294856994084
909 => 0.029639274258455
910 => 0.030096208841403
911 => 0.030050550301307
912 => 0.030125021274558
913 => 0.029962451558087
914 => 0.029343203789008
915 => 0.02937683192216
916 => 0.028957488562902
917 => 0.029628550705946
918 => 0.029469634332886
919 => 0.029367179913362
920 => 0.029339224275761
921 => 0.029797291511159
922 => 0.029934352407314
923 => 0.029848945254645
924 => 0.029673772692795
925 => 0.030010155796666
926 => 0.030100157724397
927 => 0.030120305836873
928 => 0.030716312201869
929 => 0.030153615971872
930 => 0.030289062547151
1001 => 0.031345778062554
1002 => 0.030387482906857
1003 => 0.030895113223362
1004 => 0.03087026736095
1005 => 0.0311299538536
1006 => 0.030848965488872
1007 => 0.030852448676414
1008 => 0.031083032689201
1009 => 0.030759219029288
1010 => 0.030679038213291
1011 => 0.030568268990258
1012 => 0.03081012953634
1013 => 0.030955113995304
1014 => 0.032123582255205
1015 => 0.032878466039728
1016 => 0.032845694543778
1017 => 0.033145164671095
1018 => 0.033010250635907
1019 => 0.032574577627759
1020 => 0.033318218328004
1021 => 0.033082899295198
1022 => 0.03310229871035
1023 => 0.033101576663149
1024 => 0.033258043248018
1025 => 0.033147172332686
1026 => 0.032928634377902
1027 => 0.033073710071027
1028 => 0.0335045330141
1029 => 0.034841820648661
1030 => 0.035590184525666
1031 => 0.034796768203592
1101 => 0.035344056158291
1102 => 0.035015878404109
1103 => 0.034956238743732
1104 => 0.035299976023545
1105 => 0.035644314969963
1106 => 0.035622382067694
1107 => 0.035372409674595
1108 => 0.035231206612548
1109 => 0.036300443504864
1110 => 0.037088239033147
1111 => 0.037034516659566
1112 => 0.037271629745099
1113 => 0.037967801097857
1114 => 0.038031450281649
1115 => 0.038023431947451
1116 => 0.037865670804316
1117 => 0.038551141910379
1118 => 0.039122973966773
1119 => 0.037829153657837
1120 => 0.038321823494129
1121 => 0.038542998856471
1122 => 0.038867749908162
1123 => 0.03941565936696
1124 => 0.040010834365022
1125 => 0.04009499863551
1126 => 0.040035280057967
1127 => 0.039642746147583
1128 => 0.040293993732377
1129 => 0.040675479293914
1130 => 0.040902645215667
1201 => 0.041478700196428
1202 => 0.038544364760211
1203 => 0.036467296292523
1204 => 0.036142932058061
1205 => 0.036802539483833
1206 => 0.036976472701738
1207 => 0.036906360439694
1208 => 0.034568431040508
1209 => 0.03613062334362
1210 => 0.037811410908909
1211 => 0.037875976804515
1212 => 0.03871741420331
1213 => 0.038991420712041
1214 => 0.039668888107792
1215 => 0.039626512337733
1216 => 0.039791464867738
1217 => 0.039753545137669
1218 => 0.041008410830707
1219 => 0.042392714039485
1220 => 0.04234478002118
1221 => 0.042145770056586
1222 => 0.042441333790249
1223 => 0.043870083052656
1224 => 0.043738546715814
1225 => 0.043866323062818
1226 => 0.045550898963976
1227 => 0.047741087263608
1228 => 0.046723524907119
1229 => 0.048931342425021
1230 => 0.050321046521162
1231 => 0.052724396057353
]
'min_raw' => 0.021526202975168
'max_raw' => 0.052724396057353
'avg_raw' => 0.037125299516261
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021526'
'max' => '$0.052724'
'avg' => '$0.037125'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0095983882173537
'max_diff' => 0.02138994979628
'year' => 2028
]
3 => [
'items' => [
101 => 0.052423484858676
102 => 0.053359091196521
103 => 0.051884791010981
104 => 0.048499499779755
105 => 0.047963764484039
106 => 0.049036320113041
107 => 0.051673093468493
108 => 0.048953278736598
109 => 0.049503493714566
110 => 0.049345031763896
111 => 0.049336587999965
112 => 0.049658852125951
113 => 0.049191391203041
114 => 0.047286871308493
115 => 0.048159701552759
116 => 0.047822659878697
117 => 0.04819663274419
118 => 0.050214810061112
119 => 0.049322525761963
120 => 0.048382576736099
121 => 0.049561481405919
122 => 0.051062632166196
123 => 0.050968692849445
124 => 0.05078641131136
125 => 0.051813922797594
126 => 0.053511070740235
127 => 0.053969803009438
128 => 0.054308429792195
129 => 0.054355120704391
130 => 0.054836066118249
131 => 0.052249901414087
201 => 0.056354211217012
202 => 0.057062912140707
203 => 0.056929705739696
204 => 0.057717396989689
205 => 0.057485638242143
206 => 0.057149856178782
207 => 0.058398514356755
208 => 0.056967028517228
209 => 0.054935214587075
210 => 0.053820521280271
211 => 0.055288439346415
212 => 0.056184845686129
213 => 0.056777313254528
214 => 0.056956593582748
215 => 0.052450658018204
216 => 0.050022208659558
217 => 0.051578816856222
218 => 0.05347798628751
219 => 0.052239351432004
220 => 0.052287903573294
221 => 0.050521935776857
222 => 0.053634235252071
223 => 0.053180799397091
224 => 0.055533225414841
225 => 0.054971800066307
226 => 0.05689011216313
227 => 0.056384956298397
228 => 0.058481830050019
301 => 0.059318329760131
302 => 0.060722942964193
303 => 0.061756182154906
304 => 0.062362919970409
305 => 0.062326493707783
306 => 0.064730691208384
307 => 0.063313019938542
308 => 0.061532090704157
309 => 0.061499879313067
310 => 0.062422247799517
311 => 0.064355279107681
312 => 0.064856486001426
313 => 0.065136592279128
314 => 0.064707599764258
315 => 0.06316881920626
316 => 0.062504381563111
317 => 0.063070501685686
318 => 0.062378185423034
319 => 0.063573317522006
320 => 0.065214489160337
321 => 0.064875593706918
322 => 0.066008470397652
323 => 0.067180878590459
324 => 0.06885747496232
325 => 0.069295799338108
326 => 0.070020332863303
327 => 0.070766115857593
328 => 0.071005641255944
329 => 0.071462969561761
330 => 0.071460559215846
331 => 0.072838748847173
401 => 0.074358934689507
402 => 0.074932769652604
403 => 0.076252271508803
404 => 0.073992670820923
405 => 0.075706603899102
406 => 0.077252614438147
407 => 0.075409396938964
408 => 0.077949842846991
409 => 0.078048482604826
410 => 0.079537825837611
411 => 0.078028091147544
412 => 0.077131615507825
413 => 0.079719707089188
414 => 0.080972003081289
415 => 0.080594801336946
416 => 0.077724277437744
417 => 0.076053509405847
418 => 0.071680787199288
419 => 0.076860465540499
420 => 0.079383335767214
421 => 0.077717743813338
422 => 0.078557771513175
423 => 0.083140690263592
424 => 0.084885569001736
425 => 0.084522646421825
426 => 0.084583974363616
427 => 0.085525479258929
428 => 0.089700630460964
429 => 0.087198783081457
430 => 0.089111351660657
501 => 0.090125771138786
502 => 0.091068020484283
503 => 0.088754153892705
504 => 0.085743847454513
505 => 0.08479035704147
506 => 0.077552133518754
507 => 0.077175352550385
508 => 0.076963853975208
509 => 0.075630385375783
510 => 0.074582644324424
511 => 0.073749441740253
512 => 0.071562869344033
513 => 0.072300773340251
514 => 0.068815833313804
515 => 0.071045374444034
516 => 0.065483326015005
517 => 0.070115565223862
518 => 0.067594448024553
519 => 0.069287310418659
520 => 0.069281404181243
521 => 0.066164307791183
522 => 0.064366431645538
523 => 0.06551210829993
524 => 0.066740364617363
525 => 0.066939645072516
526 => 0.068532111448839
527 => 0.06897653458452
528 => 0.067629911735273
529 => 0.065368064924147
530 => 0.065893440351138
531 => 0.064355784929279
601 => 0.061661102947533
602 => 0.063596470591457
603 => 0.064257290197201
604 => 0.06454914578116
605 => 0.061899235538429
606 => 0.061066576207812
607 => 0.060623275366881
608 => 0.065025994787958
609 => 0.065267185696421
610 => 0.064033218907763
611 => 0.069610865802031
612 => 0.068348472527956
613 => 0.069758875108959
614 => 0.065845768037863
615 => 0.065995253997677
616 => 0.064142726399897
617 => 0.065180018068715
618 => 0.064446893750666
619 => 0.06509621515259
620 => 0.065485415723652
621 => 0.067337639339881
622 => 0.070136714642291
623 => 0.067060978897831
624 => 0.065720836788622
625 => 0.06655225341593
626 => 0.068766425457252
627 => 0.072121009441237
628 => 0.070135028205424
629 => 0.071016372953729
630 => 0.071208907572935
701 => 0.069744518534668
702 => 0.072175003553861
703 => 0.073477520220871
704 => 0.074813632803376
705 => 0.075973741921741
706 => 0.074279960056178
707 => 0.076092549446424
708 => 0.074631922362986
709 => 0.073321588872289
710 => 0.073323576107312
711 => 0.072501584767681
712 => 0.07090887296957
713 => 0.070615152477416
714 => 0.072143123570413
715 => 0.073368411687596
716 => 0.073469332285661
717 => 0.07414771474491
718 => 0.074549174496399
719 => 0.078484025819053
720 => 0.080066655571822
721 => 0.08200186527586
722 => 0.082755738518025
723 => 0.085024626698428
724 => 0.083192315222664
725 => 0.082795883109103
726 => 0.077292302531115
727 => 0.078193513542444
728 => 0.079636439325511
729 => 0.077316095845815
730 => 0.078787819714235
731 => 0.079078369181234
801 => 0.077237251462265
802 => 0.078220671985967
803 => 0.075608998638879
804 => 0.070193641984378
805 => 0.072181032393879
806 => 0.07364442068365
807 => 0.071555985159672
808 => 0.075299425002786
809 => 0.073112584726722
810 => 0.072419461346056
811 => 0.069715339921748
812 => 0.070991581142842
813 => 0.072717715668387
814 => 0.071651165216278
815 => 0.07386441754776
816 => 0.076998973101976
817 => 0.079232844055921
818 => 0.079404332929679
819 => 0.077968103564022
820 => 0.08026967028838
821 => 0.080286434689289
822 => 0.077690258022038
823 => 0.076100114268919
824 => 0.075738830262519
825 => 0.076641388544407
826 => 0.07773726092007
827 => 0.079465146219644
828 => 0.080509271118138
829 => 0.083231795092356
830 => 0.0839684320189
831 => 0.08477777266681
901 => 0.08585930136383
902 => 0.08715795386287
903 => 0.0843165761273
904 => 0.084429469361725
905 => 0.081783617755915
906 => 0.078956145861605
907 => 0.081101844580039
908 => 0.083907060224052
909 => 0.083263540655828
910 => 0.083191131558491
911 => 0.083312903575603
912 => 0.082827710836546
913 => 0.080633202059873
914 => 0.079531133490579
915 => 0.080953083112645
916 => 0.081708786053077
917 => 0.082880815409464
918 => 0.082736338052751
919 => 0.085755359808041
920 => 0.086928460371667
921 => 0.086628331047688
922 => 0.086683562066316
923 => 0.088807404602176
924 => 0.091169554303583
925 => 0.093382019212057
926 => 0.095632633544536
927 => 0.09291943012376
928 => 0.091541832753813
929 => 0.092963161597157
930 => 0.092208984506227
1001 => 0.096542709774168
1002 => 0.09684276750897
1003 => 0.10117617939925
1004 => 0.10528910329621
1005 => 0.10270584948721
1006 => 0.10514174147679
1007 => 0.1077763572647
1008 => 0.1128589585706
1009 => 0.11114731725884
1010 => 0.10983622683888
1011 => 0.10859725272715
1012 => 0.11117536117205
1013 => 0.11449205650012
1014 => 0.11520644090688
1015 => 0.11636401656167
1016 => 0.11514696730227
1017 => 0.11661276908164
1018 => 0.12178769346872
1019 => 0.12038938321901
1020 => 0.11840355787483
1021 => 0.12248866367341
1022 => 0.12396704758147
1023 => 0.1343431200839
1024 => 0.14744334023239
1025 => 0.14201976307024
1026 => 0.13865317370794
1027 => 0.13944440206465
1028 => 0.14422815899244
1029 => 0.14576454988879
1030 => 0.14158810980681
1031 => 0.14306329904913
1101 => 0.15119173681177
1102 => 0.15555238287991
1103 => 0.14963003980647
1104 => 0.13329053015037
1105 => 0.11822475602997
1106 => 0.12222087774735
1107 => 0.12176784155869
1108 => 0.13050083389138
1109 => 0.12035603398201
1110 => 0.12052684639469
1111 => 0.12944042776042
1112 => 0.12706243706951
1113 => 0.12321039670028
1114 => 0.11825288018759
1115 => 0.1090884523991
1116 => 0.10097126313786
1117 => 0.1168909405562
1118 => 0.11620445511786
1119 => 0.11521032247171
1120 => 0.11742265709933
1121 => 0.1281651260689
1122 => 0.12791747738917
1123 => 0.12634206284021
1124 => 0.12753700089053
1125 => 0.12300091828262
1126 => 0.12416997005536
1127 => 0.11822236953438
1128 => 0.1209109333636
1129 => 0.12320213195169
1130 => 0.12366212399002
1201 => 0.12469850954016
1202 => 0.115842708486
1203 => 0.11981870316666
1204 => 0.12215422754123
1205 => 0.11160224344983
1206 => 0.12194564874296
1207 => 0.11568854869203
1208 => 0.11356479495625
1209 => 0.11642414957819
1210 => 0.11530985630121
1211 => 0.11435185237515
1212 => 0.11381726972382
1213 => 0.11591686418272
1214 => 0.11581891559165
1215 => 0.11238357154317
1216 => 0.10790230527446
1217 => 0.10940636532679
1218 => 0.10885992620914
1219 => 0.10687956035473
1220 => 0.10821408783032
1221 => 0.10233750421672
1222 => 0.092227147547772
1223 => 0.09890635885188
1224 => 0.098649216482256
1225 => 0.098519553639013
1226 => 0.10353879633421
1227 => 0.1030563119627
1228 => 0.1021805981039
1229 => 0.10686347718297
1230 => 0.1051541633255
1231 => 0.11042186586922
]
'min_raw' => 0.047286871308493
'max_raw' => 0.15555238287991
'avg_raw' => 0.1014196270942
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.047286'
'max' => '$0.155552'
'avg' => '$0.101419'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.025760668333325
'max_diff' => 0.10282798682256
'year' => 2029
]
4 => [
'items' => [
101 => 0.11389151545816
102 => 0.113011500091
103 => 0.11627472229967
104 => 0.10944101583262
105 => 0.11171089900026
106 => 0.11217871877519
107 => 0.10680569118204
108 => 0.10313525237286
109 => 0.10289047595036
110 => 0.096526440872874
111 => 0.099926057042568
112 => 0.10291757858622
113 => 0.10148487191826
114 => 0.10103131978808
115 => 0.10334841925773
116 => 0.10352847773113
117 => 0.099423125455725
118 => 0.10027675819338
119 => 0.10383654861404
120 => 0.10018706060826
121 => 0.093096701553513
122 => 0.091338194476052
123 => 0.091103577216203
124 => 0.086334366553174
125 => 0.091455706327597
126 => 0.089220104272689
127 => 0.09628234437752
128 => 0.092248430705194
129 => 0.092074536749261
130 => 0.091811670530171
131 => 0.08770661389889
201 => 0.088605360411182
202 => 0.091592930700998
203 => 0.092658929437793
204 => 0.092547737036075
205 => 0.091578289976715
206 => 0.092022097876118
207 => 0.090592437999219
208 => 0.090087595340888
209 => 0.088494173043285
210 => 0.086152282459952
211 => 0.086477936709214
212 => 0.081838038674628
213 => 0.079309975967359
214 => 0.078610241529317
215 => 0.077674527394854
216 => 0.078715932930645
217 => 0.081824894426469
218 => 0.07807482725953
219 => 0.071645600138441
220 => 0.072032007643288
221 => 0.072900150581263
222 => 0.071282371959688
223 => 0.069751280264235
224 => 0.071082440272035
225 => 0.068358291985826
226 => 0.073229350886879
227 => 0.07309760239459
228 => 0.074913231928641
301 => 0.076048582336751
302 => 0.073431967220116
303 => 0.072773895594362
304 => 0.073148763100079
305 => 0.066953038258258
306 => 0.074406909027252
307 => 0.074471370411191
308 => 0.073919412906264
309 => 0.077888368978312
310 => 0.086264104238776
311 => 0.083112815720619
312 => 0.081892541558189
313 => 0.079572799483395
314 => 0.082663718065403
315 => 0.082426383744146
316 => 0.081353067937053
317 => 0.080703923187974
318 => 0.081899992292017
319 => 0.080555716989673
320 => 0.080314248207157
321 => 0.078851210105737
322 => 0.078328972067522
323 => 0.077942327814923
324 => 0.077516670483691
325 => 0.07845556448919
326 => 0.076327907150937
327 => 0.073762160977824
328 => 0.073548846945288
329 => 0.074137825743881
330 => 0.073877246469818
331 => 0.073547599391975
401 => 0.072918213346334
402 => 0.072731487951297
403 => 0.073338254898883
404 => 0.07265325039177
405 => 0.073664011856142
406 => 0.073389140665816
407 => 0.071853732540824
408 => 0.06994004553619
409 => 0.069923009707754
410 => 0.069510708981681
411 => 0.068985582017198
412 => 0.068839503708957
413 => 0.070970333689086
414 => 0.075381087977578
415 => 0.074515151370342
416 => 0.075140879313823
417 => 0.078218841490041
418 => 0.079197233108309
419 => 0.078502793912138
420 => 0.077552202709275
421 => 0.077594023897869
422 => 0.080842481801578
423 => 0.081045084136393
424 => 0.08155699487448
425 => 0.082214944838878
426 => 0.078614845636131
427 => 0.077424459549171
428 => 0.076860388581064
429 => 0.07512326832223
430 => 0.076996603591947
501 => 0.075905091354497
502 => 0.076052373646697
503 => 0.075956455860687
504 => 0.076008833457781
505 => 0.073227989326643
506 => 0.074241182771165
507 => 0.072556552157547
508 => 0.070301020874574
509 => 0.070293459542822
510 => 0.070845497628921
511 => 0.070517123774057
512 => 0.069633478173882
513 => 0.069758995860697
514 => 0.068659328848278
515 => 0.069892515346118
516 => 0.069927878722323
517 => 0.069453034748532
518 => 0.071352928695398
519 => 0.072131316795595
520 => 0.071818764319903
521 => 0.0721093872807
522 => 0.074551134945842
523 => 0.07494924635618
524 => 0.075126061146889
525 => 0.07488915275081
526 => 0.072154017945639
527 => 0.07227533280494
528 => 0.071385204861066
529 => 0.070633140547864
530 => 0.070663219176335
531 => 0.071049877994837
601 => 0.072738439732479
602 => 0.076291918363195
603 => 0.076426770279672
604 => 0.07659021473635
605 => 0.07592540399044
606 => 0.075724890708091
607 => 0.075989419484378
608 => 0.077323919225045
609 => 0.080756614871185
610 => 0.079543270967806
611 => 0.078556803487535
612 => 0.079422201417455
613 => 0.079288980189357
614 => 0.078164458955104
615 => 0.078132897389393
616 => 0.075974581609676
617 => 0.075176701408387
618 => 0.074509932991892
619 => 0.073781839287509
620 => 0.07335020093363
621 => 0.074013393621312
622 => 0.074165073635651
623 => 0.072714991233408
624 => 0.07251735036022
625 => 0.073701518952095
626 => 0.073180410505066
627 => 0.073716383465703
628 => 0.073840733790062
629 => 0.073820710523809
630 => 0.073276613456187
701 => 0.073623404701881
702 => 0.072803140022368
703 => 0.071911225383168
704 => 0.071342239411605
705 => 0.070845723686378
706 => 0.071121219468397
707 => 0.070139127309042
708 => 0.069824936261654
709 => 0.07350591963089
710 => 0.076225101622984
711 => 0.076185563639905
712 => 0.075944886336253
713 => 0.075587288682635
714 => 0.077297758729344
715 => 0.076701865166999
716 => 0.077135427522179
717 => 0.077245787338127
718 => 0.077579813262751
719 => 0.077699198820306
720 => 0.077338332746774
721 => 0.076127222127922
722 => 0.073109249614685
723 => 0.071704375262913
724 => 0.071240743326795
725 => 0.07125759546711
726 => 0.070792738205942
727 => 0.070929659502797
728 => 0.070745122566616
729 => 0.070395654253768
730 => 0.071099640784855
731 => 0.071180768674474
801 => 0.071016449806106
802 => 0.071055152848037
803 => 0.069694662799455
804 => 0.06979809790302
805 => 0.069222158102475
806 => 0.06911417633293
807 => 0.067658250669968
808 => 0.06507886731823
809 => 0.066508096081893
810 => 0.064781788715364
811 => 0.064128009957835
812 => 0.067222896912522
813 => 0.066912256101074
814 => 0.066380574064188
815 => 0.065594105519389
816 => 0.065302396685849
817 => 0.063530066157053
818 => 0.063425347414396
819 => 0.064303762281417
820 => 0.063898404044697
821 => 0.063329127559173
822 => 0.061267265835236
823 => 0.058949050598575
824 => 0.059019022944788
825 => 0.059756404079642
826 => 0.061900439178625
827 => 0.061062727573268
828 => 0.060454958191949
829 => 0.060341141256309
830 => 0.061765798497745
831 => 0.063781986969297
901 => 0.064727937490474
902 => 0.063790529252932
903 => 0.062713685143287
904 => 0.062779227654626
905 => 0.063215252619001
906 => 0.063261072677696
907 => 0.06256015786368
908 => 0.062757461278194
909 => 0.062457739349745
910 => 0.060618346428102
911 => 0.060585077642927
912 => 0.060133660955738
913 => 0.060119992237855
914 => 0.059352019841776
915 => 0.059244575194822
916 => 0.057719719389816
917 => 0.05872338409836
918 => 0.058050178506631
919 => 0.05703549888675
920 => 0.056860567737827
921 => 0.056855309096255
922 => 0.057897158187661
923 => 0.058711209485133
924 => 0.058061889206123
925 => 0.057914051565138
926 => 0.059492570796056
927 => 0.059291689835399
928 => 0.059117728219014
929 => 0.063601459405418
930 => 0.060052236301471
1001 => 0.058504572445578
1002 => 0.056589044530516
1003 => 0.05721275007859
1004 => 0.057344174001711
1005 => 0.052737674665844
1006 => 0.050868818458986
1007 => 0.050227497435152
1008 => 0.049858408118988
1009 => 0.050026606755096
1010 => 0.048344416973954
1011 => 0.049474876327732
1012 => 0.048018242169226
1013 => 0.047774032712255
1014 => 0.05037867503001
1015 => 0.050741095792426
1016 => 0.049194896224655
1017 => 0.050187806654136
1018 => 0.049827763529919
1019 => 0.04804321198108
1020 => 0.047975055238187
1021 => 0.047079630001
1022 => 0.045678462893294
1023 => 0.045038091926739
1024 => 0.044704581167402
1025 => 0.0448421942067
1026 => 0.044772612843002
1027 => 0.044318547378229
1028 => 0.044798639343933
1029 => 0.043572202759256
1030 => 0.043083825829166
1031 => 0.042863237300103
1101 => 0.041774704240146
1102 => 0.043507044411387
1103 => 0.043848337248568
1104 => 0.044190302538069
1105 => 0.047166876913555
1106 => 0.047018175669467
1107 => 0.048362362495575
1108 => 0.048310129867313
1109 => 0.047926746010125
1110 => 0.046309312580229
1111 => 0.046953992717407
1112 => 0.044969767460711
1113 => 0.04645648393723
1114 => 0.045778008624111
1115 => 0.04622709075138
1116 => 0.045419600594448
1117 => 0.045866498987745
1118 => 0.043929270441393
1119 => 0.04212031368235
1120 => 0.042848290688929
1121 => 0.043639684949348
1122 => 0.045355629349446
1123 => 0.044333627020982
1124 => 0.044701177704484
1125 => 0.043469944441993
1126 => 0.040929558537079
1127 => 0.040943936845415
1128 => 0.04055315381926
1129 => 0.040215460229405
1130 => 0.044451016282486
1201 => 0.043924257933053
1202 => 0.043084937443659
1203 => 0.044208401271983
1204 => 0.04450546293996
1205 => 0.044513919868028
1206 => 0.045333570076374
1207 => 0.045771017539499
1208 => 0.045848119550881
1209 => 0.047137856863428
1210 => 0.047570159798548
1211 => 0.049350754406504
1212 => 0.045733903178528
1213 => 0.045659416507623
1214 => 0.044224210711984
1215 => 0.043313980506684
1216 => 0.044286534952877
1217 => 0.045148085425283
1218 => 0.044250981486724
1219 => 0.044368124322202
1220 => 0.043163835580772
1221 => 0.043594312138782
1222 => 0.043965096541994
1223 => 0.04376037118824
1224 => 0.043453887424851
1225 => 0.045077448111538
1226 => 0.044985840454809
1227 => 0.04649773749175
1228 => 0.047676369348841
1229 => 0.049788688342392
1230 => 0.047584373354942
1231 => 0.04750403935544
]
'min_raw' => 0.040215460229405
'max_raw' => 0.11627472229967
'avg_raw' => 0.078245091264538
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.040215'
'max' => '$0.116274'
'avg' => '$0.078245'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0070714110790884
'max_diff' => -0.039277660580242
'year' => 2030
]
5 => [
'items' => [
101 => 0.048289317086544
102 => 0.047570039576619
103 => 0.048024598134276
104 => 0.049715451931306
105 => 0.049751177007625
106 => 0.049152735950125
107 => 0.04911632075739
108 => 0.04923125790871
109 => 0.049904448393992
110 => 0.04966921495338
111 => 0.049941433046238
112 => 0.050281845939708
113 => 0.051689937999176
114 => 0.05202942422764
115 => 0.0512046486959
116 => 0.051279116691796
117 => 0.050970628002331
118 => 0.050672631793659
119 => 0.051342483751902
120 => 0.052566651371563
121 => 0.052559035888336
122 => 0.052843018981679
123 => 0.053019938096189
124 => 0.052260471744005
125 => 0.051766087075085
126 => 0.051955665615663
127 => 0.05225880583053
128 => 0.051857361329603
129 => 0.0493794599027
130 => 0.050131096906667
131 => 0.050005987756035
201 => 0.049827817111743
202 => 0.050583593931468
203 => 0.050510697413476
204 => 0.048327163686351
205 => 0.048466946431104
206 => 0.048335664338034
207 => 0.048759863638531
208 => 0.047547131422288
209 => 0.047920159684128
210 => 0.048154119513032
211 => 0.04829192364962
212 => 0.048789766684157
213 => 0.048731350550137
214 => 0.048786135455247
215 => 0.049524305249777
216 => 0.053257714761229
217 => 0.053460916003634
218 => 0.052460278768671
219 => 0.052860013607342
220 => 0.052092610129493
221 => 0.05260777322533
222 => 0.052960234731777
223 => 0.051367528958592
224 => 0.051273219259278
225 => 0.050502648434296
226 => 0.050916709548279
227 => 0.050257908543884
228 => 0.050419555266482
301 => 0.049967576937991
302 => 0.050781047941287
303 => 0.051690634923587
304 => 0.051920432515994
305 => 0.051315933984454
306 => 0.050878237209225
307 => 0.050109785858204
308 => 0.051387737581008
309 => 0.051761449609629
310 => 0.051385774630815
311 => 0.051298722529564
312 => 0.051133758954992
313 => 0.051333720331742
314 => 0.051759414293662
315 => 0.051558664882554
316 => 0.05169126340534
317 => 0.051185934571482
318 => 0.052260723158969
319 => 0.053967746097859
320 => 0.053973234455734
321 => 0.053772483962511
322 => 0.053690341185914
323 => 0.053896323374519
324 => 0.054008060262005
325 => 0.054674168889279
326 => 0.055388929985282
327 => 0.05872440814563
328 => 0.057787819225336
329 => 0.060747253877681
330 => 0.063087782453191
331 => 0.063789604634076
401 => 0.063143961250947
402 => 0.060935250114233
403 => 0.060826880208653
404 => 0.064127627140693
405 => 0.063195014948605
406 => 0.063084083695903
407 => 0.061903962588469
408 => 0.062601560323805
409 => 0.062448985465946
410 => 0.062208138588597
411 => 0.063539106472539
412 => 0.066030559534957
413 => 0.06564224321048
414 => 0.065352383087734
415 => 0.064082300406875
416 => 0.064847173863989
417 => 0.064574817076097
418 => 0.06574503467877
419 => 0.06505182369444
420 => 0.063187949494
421 => 0.06348477760383
422 => 0.063439912632164
423 => 0.064363230569874
424 => 0.064086073443134
425 => 0.063385793254955
426 => 0.066022044019245
427 => 0.065850860558209
428 => 0.06609355956797
429 => 0.066200403177784
430 => 0.067805042562057
501 => 0.068462411975061
502 => 0.068611646340685
503 => 0.069236096440263
504 => 0.068596109453346
505 => 0.071156513704003
506 => 0.07285903312696
507 => 0.074836597047573
508 => 0.07772634945466
509 => 0.078812923091429
510 => 0.07861664328949
511 => 0.080807620584255
512 => 0.084744758080259
513 => 0.079412451344502
514 => 0.085027383285107
515 => 0.083249760660218
516 => 0.079035049394672
517 => 0.078763671677352
518 => 0.081617923080184
519 => 0.087948377980148
520 => 0.086362670827132
521 => 0.087950971628986
522 => 0.086098134376059
523 => 0.086006125389513
524 => 0.087860983459222
525 => 0.092194960442147
526 => 0.090136050434257
527 => 0.087184098072501
528 => 0.089363773758956
529 => 0.087475536959887
530 => 0.083220810967382
531 => 0.086361458266757
601 => 0.08426139685815
602 => 0.084874306422586
603 => 0.089288323142919
604 => 0.088757216973089
605 => 0.089444517535956
606 => 0.088231450032283
607 => 0.087098253700665
608 => 0.084983058595435
609 => 0.084356853602635
610 => 0.084529914134149
611 => 0.08435676784243
612 => 0.083173335620701
613 => 0.082917773545094
614 => 0.082491825555984
615 => 0.082623844648686
616 => 0.08182293781368
617 => 0.083334414487131
618 => 0.083614957876811
619 => 0.084714884553054
620 => 0.084829082589449
621 => 0.087892362726311
622 => 0.086205159503259
623 => 0.0873370810914
624 => 0.087235831370498
625 => 0.079126394967918
626 => 0.080243803754031
627 => 0.081982141163027
628 => 0.081199022516535
629 => 0.080091875971936
630 => 0.079197795775731
701 => 0.077843172854086
702 => 0.079749778603072
703 => 0.082256762418073
704 => 0.08489266383615
705 => 0.088059526678869
706 => 0.087352719758721
707 => 0.08483346153813
708 => 0.084946473621586
709 => 0.085645069852898
710 => 0.084740324259188
711 => 0.084473497120871
712 => 0.085608411901503
713 => 0.085616227435859
714 => 0.084575208288138
715 => 0.08341830600994
716 => 0.083413458547152
717 => 0.083207598961097
718 => 0.086134756339099
719 => 0.087744396928008
720 => 0.087928939627461
721 => 0.087731975733976
722 => 0.087807779319361
723 => 0.086871164926684
724 => 0.089011987683972
725 => 0.090976618351487
726 => 0.09045005536438
727 => 0.089660662591369
728 => 0.089031873225358
729 => 0.090301932572962
730 => 0.090245378829472
731 => 0.090959459016512
801 => 0.090927064214501
802 => 0.090686945905514
803 => 0.090450063939762
804 => 0.091389274158046
805 => 0.091118796698434
806 => 0.090847899112621
807 => 0.090304572531925
808 => 0.090378419637941
809 => 0.089589163164721
810 => 0.089224017006291
811 => 0.083733094891637
812 => 0.082265741081546
813 => 0.082727400460942
814 => 0.082879390715619
815 => 0.082240796457002
816 => 0.083156376582454
817 => 0.083013684389741
818 => 0.083568816239444
819 => 0.083221993960773
820 => 0.083236227668066
821 => 0.084256158039332
822 => 0.084552248165204
823 => 0.084401654337445
824 => 0.084507125092353
825 => 0.086937654122787
826 => 0.086592110618603
827 => 0.086408547518942
828 => 0.086459395752041
829 => 0.087080448030447
830 => 0.087254308760203
831 => 0.086517648631248
901 => 0.086865061806645
902 => 0.088344303014187
903 => 0.088861953719025
904 => 0.090514046282434
905 => 0.089812207997894
906 => 0.091100462544017
907 => 0.095060117820459
908 => 0.098223364442585
909 => 0.095314312122182
910 => 0.10112321170669
911 => 0.10564627327038
912 => 0.10547267063401
913 => 0.10468397023008
914 => 0.099534584891634
915 => 0.094796043730181
916 => 0.098760034620822
917 => 0.098770139648804
918 => 0.098429629315808
919 => 0.096314748882042
920 => 0.098356036060982
921 => 0.098518066024381
922 => 0.098427372332122
923 => 0.096805898462153
924 => 0.094330207561172
925 => 0.094813951637257
926 => 0.095606334301996
927 => 0.094106188609305
928 => 0.093626801163457
929 => 0.094518073632481
930 => 0.097389939231671
1001 => 0.096847029675729
1002 => 0.096832852113153
1003 => 0.099155649422955
1004 => 0.09749302784017
1005 => 0.09482005319922
1006 => 0.094145091850175
1007 => 0.091749433769514
1008 => 0.093404123338868
1009 => 0.093463672670682
1010 => 0.092557416104065
1011 => 0.094893590924936
1012 => 0.094872062662686
1013 => 0.097089912961369
1014 => 0.10132960974592
1015 => 0.10007572278392
1016 => 0.098617588669627
1017 => 0.098776128277524
1018 => 0.10051491646706
1019 => 0.099463605434993
1020 => 0.099841664212125
1021 => 0.10051434422982
1022 => 0.1009201887862
1023 => 0.098717733491454
1024 => 0.098204235806633
1025 => 0.097153799756688
1026 => 0.096879760598574
1027 => 0.097735318843188
1028 => 0.097509909473051
1029 => 0.09345866777993
1030 => 0.093035290482103
1031 => 0.093048274859383
1101 => 0.091983672513504
1102 => 0.090359898402198
1103 => 0.094627079816195
1104 => 0.094284365429485
1105 => 0.093906035270545
1106 => 0.093952378556293
1107 => 0.095804617379912
1108 => 0.09473022532191
1109 => 0.097586672697504
1110 => 0.096999472989749
1111 => 0.096397213825199
1112 => 0.096313963263395
1113 => 0.09608214486738
1114 => 0.09528715333162
1115 => 0.094327153280604
1116 => 0.093693278093144
1117 => 0.086427096432984
1118 => 0.087775657483675
1119 => 0.089327054047288
1120 => 0.089862589924216
1121 => 0.088946518748776
1122 => 0.095323325405146
1123 => 0.096488429429702
1124 => 0.092959253341466
1125 => 0.092299088590666
1126 => 0.095366605696303
1127 => 0.093516517892889
1128 => 0.094349612317484
1129 => 0.092548917849797
1130 => 0.096207789988415
1201 => 0.096179915513006
1202 => 0.094756531611708
1203 => 0.095959565938173
1204 => 0.095750509118729
1205 => 0.094143512199804
1206 => 0.096258734657094
1207 => 0.096259783781043
1208 => 0.094889807723078
1209 => 0.093289975613698
1210 => 0.093003963418888
1211 => 0.092788491650431
1212 => 0.094296619471103
1213 => 0.095648802159324
1214 => 0.098164878907587
1215 => 0.098797480382609
1216 => 0.10126656605429
1217 => 0.099796345754402
1218 => 0.1004480753708
1219 => 0.10115562006218
1220 => 0.10149484300633
1221 => 0.10094209742255
1222 => 0.10477760378687
1223 => 0.1051014380409
1224 => 0.10521001686512
1225 => 0.1039167056993
1226 => 0.1050654687178
1227 => 0.10452800054448
1228 => 0.1059263434185
1229 => 0.10614562143608
1230 => 0.10595990075623
1231 => 0.10602950306008
]
'min_raw' => 0.047547131422288
'max_raw' => 0.10614562143608
'avg_raw' => 0.076846376429185
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.047547'
'max' => '$0.106145'
'avg' => '$0.076846'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0073316711928834
'max_diff' => -0.01012910086359
'year' => 2031
]
6 => [
'items' => [
101 => 0.10275657500782
102 => 0.10258685642224
103 => 0.10027273146516
104 => 0.10121575449032
105 => 0.09945281814506
106 => 0.1000118634204
107 => 0.10025828525099
108 => 0.100129568471
109 => 0.10126907159726
110 => 0.10030026115483
111 => 0.097743411110085
112 => 0.095185864453253
113 => 0.095153756538308
114 => 0.094480399648012
115 => 0.093993685947794
116 => 0.094087444273553
117 => 0.094417860842615
118 => 0.093974481536136
119 => 0.094069098991075
120 => 0.095640379175861
121 => 0.095955488211062
122 => 0.094884624588401
123 => 0.09058495261853
124 => 0.089529802332213
125 => 0.090288223433478
126 => 0.089925746995648
127 => 0.072577096242278
128 => 0.076652904400608
129 => 0.074231197594296
130 => 0.075347231508017
131 => 0.072875295956709
201 => 0.074055033167036
202 => 0.073837178781393
203 => 0.080390957688057
204 => 0.080288629444858
205 => 0.080337608559787
206 => 0.0779997077898
207 => 0.081724047197312
208 => 0.083558790712366
209 => 0.083219228517847
210 => 0.083304689006628
211 => 0.081836194665239
212 => 0.080351826794981
213 => 0.078705434384288
214 => 0.081764227983104
215 => 0.081424142350264
216 => 0.082204176433051
217 => 0.084188022728966
218 => 0.084480151631938
219 => 0.084872775840012
220 => 0.084732048010312
221 => 0.088084755850593
222 => 0.087678720809256
223 => 0.088657148434624
224 => 0.086644448575761
225 => 0.084366887638233
226 => 0.08479977751338
227 => 0.084758086737323
228 => 0.084227315307669
229 => 0.083748158593372
301 => 0.082950497665634
302 => 0.085474414872601
303 => 0.085371948443212
304 => 0.087030760830823
305 => 0.086737549628469
306 => 0.084779413458197
307 => 0.084849348674594
308 => 0.085319696614582
309 => 0.08694757620522
310 => 0.087430841702216
311 => 0.087206973869207
312 => 0.087736852424755
313 => 0.088155646830171
314 => 0.087789446554203
315 => 0.092974070213868
316 => 0.090821052999674
317 => 0.091870418609275
318 => 0.092120686123943
319 => 0.091479631147679
320 => 0.091618653017573
321 => 0.09182923326927
322 => 0.093107835321737
323 => 0.096463257073895
324 => 0.097949350526798
325 => 0.10242033600241
326 => 0.097825951152954
327 => 0.097553339369441
328 => 0.098358698864426
329 => 0.10098364064049
330 => 0.10311090940175
331 => 0.10381664717493
401 => 0.10390992207212
402 => 0.10523393305118
403 => 0.10599283145303
404 => 0.10507316329338
405 => 0.10429384082134
406 => 0.10150240445956
407 => 0.10182552081926
408 => 0.10405147211855
409 => 0.10719575943668
410 => 0.10989388506297
411 => 0.10894909550781
412 => 0.11615717289617
413 => 0.11687182432687
414 => 0.11677308260659
415 => 0.11840116492012
416 => 0.11516975308097
417 => 0.11378826191407
418 => 0.10446233918548
419 => 0.10708254307277
420 => 0.11089116330212
421 => 0.11038707813318
422 => 0.10762115631791
423 => 0.10989178686325
424 => 0.10914104539577
425 => 0.10854890445209
426 => 0.11126161690729
427 => 0.10827887813071
428 => 0.11086140820115
429 => 0.10754928667296
430 => 0.10895341122692
501 => 0.10815636222023
502 => 0.10867215061021
503 => 0.10565686222167
504 => 0.10728383864414
505 => 0.10558917465349
506 => 0.10558837116211
507 => 0.10555096136059
508 => 0.10754472603029
509 => 0.10760974262459
510 => 0.10613634752127
511 => 0.10592400826812
512 => 0.10670913777851
513 => 0.10578995674759
514 => 0.1062200357667
515 => 0.10580298340295
516 => 0.1057090961314
517 => 0.10496098637811
518 => 0.10463868012669
519 => 0.10476506471268
520 => 0.10433364896497
521 => 0.10407370537199
522 => 0.10549925203726
523 => 0.10473763996039
524 => 0.10538252406342
525 => 0.10464759723716
526 => 0.10210002066494
527 => 0.10063488243813
528 => 0.095822746453697
529 => 0.097187462249446
530 => 0.098092270233929
531 => 0.097793231200455
601 => 0.098435682757101
602 => 0.098475124064904
603 => 0.09826625651482
604 => 0.098024414649413
605 => 0.097906699404027
606 => 0.098784052400843
607 => 0.099293385345839
608 => 0.098183079819941
609 => 0.097922950770048
610 => 0.099045530958379
611 => 0.099730304224768
612 => 0.10478628528292
613 => 0.10441172187553
614 => 0.10535180252373
615 => 0.10524596386945
616 => 0.10623131815535
617 => 0.10784195597101
618 => 0.10456707895036
619 => 0.10513548436442
620 => 0.10499612448329
621 => 0.10651761912333
622 => 0.10652236906352
623 => 0.10561015702252
624 => 0.1061046819689
625 => 0.10582865171041
626 => 0.10632747569522
627 => 0.10440671935286
628 => 0.10674599324502
629 => 0.1080722108024
630 => 0.10809062533447
701 => 0.10871924193115
702 => 0.1093579528004
703 => 0.11058390269393
704 => 0.10932376172326
705 => 0.10705689078927
706 => 0.10722055154875
707 => 0.10589148594957
708 => 0.10591382778241
709 => 0.10579456532776
710 => 0.10615248093182
711 => 0.10448526170061
712 => 0.10487655472179
713 => 0.10432874220073
714 => 0.10513429352699
715 => 0.10426765346234
716 => 0.10499605727974
717 => 0.10531041222035
718 => 0.10647038871881
719 => 0.10409632399037
720 => 0.099255445299033
721 => 0.10027305668993
722 => 0.098767929511142
723 => 0.098907234761963
724 => 0.099188653538886
725 => 0.098276483208383
726 => 0.098450496561652
727 => 0.09844427958016
728 => 0.098390704992348
729 => 0.098153414259695
730 => 0.097809295750806
731 => 0.099180157976126
801 => 0.099413094181212
802 => 0.099930882510426
803 => 0.10147146935899
804 => 0.10131752840328
805 => 0.10156861248899
806 => 0.10102049733966
807 => 0.098932660251708
808 => 0.099046039850471
809 => 0.097632194437114
810 => 0.099894727304448
811 => 0.099358929657489
812 => 0.099013497428924
813 => 0.098919243044953
814 => 0.10046364871033
815 => 0.100925759091
816 => 0.10063780291284
817 => 0.10004719639041
818 => 0.10118133551063
819 => 0.10148478329371
820 => 0.10155271406162
821 => 0.10356219113303
822 => 0.1016650215074
823 => 0.10212168909254
824 => 0.10568447923024
825 => 0.10245352020677
826 => 0.10416503126049
827 => 0.10408126170068
828 => 0.10495681284139
829 => 0.10400944095172
830 => 0.10402118476171
831 => 0.10479861485968
901 => 0.10370685449734
902 => 0.10343651927816
903 => 0.10306305310904
904 => 0.10387850282632
905 => 0.10436732805221
906 => 0.10830690037032
907 => 0.11085204375414
908 => 0.11074155236751
909 => 0.1117512368101
910 => 0.11129636472106
911 => 0.10982746275637
912 => 0.11233469929658
913 => 0.11154130474803
914 => 0.11160671123064
915 => 0.11160427679809
916 => 0.11213181481312
917 => 0.11175800578132
918 => 0.11102118980893
919 => 0.11151032263716
920 => 0.11296287226883
921 => 0.1174716308952
922 => 0.11999479195562
923 => 0.11731973343119
924 => 0.11916495298088
925 => 0.11805847877001
926 => 0.11785739949114
927 => 0.119016333729
928 => 0.12017729652783
929 => 0.12010334821652
930 => 0.11926054884068
1001 => 0.1187844728585
1002 => 0.12238947969268
1003 => 0.12504558731841
1004 => 0.12486445858511
1005 => 0.12566390190769
1006 => 0.12801109222864
1007 => 0.12822568989565
1008 => 0.12819865552207
1009 => 0.12766675281346
1010 => 0.12997786650562
1011 => 0.13190583820779
1012 => 0.12754363270456
1013 => 0.12920470345473
1014 => 0.12995041163084
1015 => 0.13104533247501
1016 => 0.13289264746916
1017 => 0.13489932152892
1018 => 0.13518308724303
1019 => 0.13498174188943
1020 => 0.13365828640473
1021 => 0.13585401310551
1022 => 0.13714021831071
1023 => 0.13790612407612
1024 => 0.13984833366263
1025 => 0.12995501687066
1026 => 0.12295203551556
1027 => 0.12185841885269
1028 => 0.124082331341
1029 => 0.12466875932879
1030 => 0.12443237094223
1031 => 0.11654987874385
1101 => 0.12181691916258
1102 => 0.1274838117878
1103 => 0.12770150021268
1104 => 0.13053846515
1105 => 0.13146229722471
1106 => 0.13374642584874
1107 => 0.13360355298141
1108 => 0.13415970195294
1109 => 0.13403185293554
1110 => 0.13826272023154
1111 => 0.1429299951489
1112 => 0.14276838225954
1113 => 0.14209740626948
1114 => 0.14309392003313
1115 => 0.14791104792342
1116 => 0.14746756398018
1117 => 0.14789837085516
1118 => 0.15357803611925
1119 => 0.16096240888553
1120 => 0.15753162635669
1121 => 0.16497543726319
1122 => 0.16966092164937
1123 => 0.17776398240715
1124 => 0.17674943929186
1125 => 0.17990390138185
1126 => 0.17493319537395
1127 => 0.16351944963439
1128 => 0.16171318068104
1129 => 0.16532937686766
1130 => 0.1742194423292
1201 => 0.16504939706922
1202 => 0.16690448528222
1203 => 0.16637021975208
1204 => 0.16634175101246
1205 => 0.16742828701298
1206 => 0.16585220987431
1207 => 0.15943098808051
1208 => 0.16237379618811
1209 => 0.16123743665252
1210 => 0.16249831227848
1211 => 0.16930273800712
1212 => 0.16629433919524
1213 => 0.16312523542939
1214 => 0.16709999483219
1215 => 0.17216122942746
1216 => 0.1718445064624
1217 => 0.17122993153026
1218 => 0.17469425824466
1219 => 0.18041631102436
1220 => 0.18196295889764
1221 => 0.18310466273787
1222 => 0.18326208440819
1223 => 0.18488362544955
1224 => 0.17616419058922
1225 => 0.19000215764354
1226 => 0.19239159228769
1227 => 0.19194247760651
1228 => 0.19459823365071
1229 => 0.19381684285248
1230 => 0.1926847301823
1231 => 0.19689466840787
]
'min_raw' => 0.072577096242278
'max_raw' => 0.19689466840787
'avg_raw' => 0.13473588232507
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.072577'
'max' => '$0.196894'
'avg' => '$0.134735'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02502996481999
'max_diff' => 0.090749046971788
'year' => 2032
]
7 => [
'items' => [
101 => 0.19206831395675
102 => 0.18521791143453
103 => 0.18145964512523
104 => 0.18640883337201
105 => 0.18943112993144
106 => 0.19142867570307
107 => 0.19203313184661
108 => 0.17684105549638
109 => 0.16865336893478
110 => 0.17390158214875
111 => 0.18030476448211
112 => 0.17612862058805
113 => 0.17629231752221
114 => 0.17033823380059
115 => 0.18083156877508
116 => 0.17930277813214
117 => 0.18723414669212
118 => 0.18534126193207
119 => 0.19180898509878
120 => 0.19010581683198
121 => 0.19717557308462
122 => 0.19999589025981
123 => 0.20473164174427
124 => 0.20821527981422
125 => 0.21026093872026
126 => 0.21013812503262
127 => 0.21824404476161
128 => 0.21346426709669
129 => 0.20745973984245
130 => 0.20735113688846
131 => 0.21046096663824
201 => 0.21697831665365
202 => 0.21866817068906
203 => 0.21961256856073
204 => 0.21816619034554
205 => 0.21297808426002
206 => 0.21073788635659
207 => 0.2126465998751
208 => 0.21031240725959
209 => 0.21434187857273
210 => 0.21987520333431
211 => 0.21873259365218
212 => 0.22255216650992
213 => 0.22650502258689
214 => 0.23215778431084
215 => 0.23363562554664
216 => 0.23607844091215
217 => 0.23859290034631
218 => 0.23940047694998
219 => 0.24094239126268
220 => 0.24093426461314
221 => 0.24558092717729
222 => 0.2507063398807
223 => 0.25264106452267
224 => 0.25708985715552
225 => 0.24947145567605
226 => 0.25525010071211
227 => 0.26046258318351
228 => 0.25424804669568
301 => 0.26281333744286
302 => 0.26314590827321
303 => 0.26816733296517
304 => 0.2630771570513
305 => 0.26005462684206
306 => 0.26878055830341
307 => 0.27300276167329
308 => 0.27173099965685
309 => 0.26205282791711
310 => 0.25641971684827
311 => 0.24167677863514
312 => 0.25914042579613
313 => 0.26764645890668
314 => 0.26203079934626
315 => 0.26486301138513
316 => 0.28031464192133
317 => 0.28619762241052
318 => 0.28497400359391
319 => 0.28518077503144
320 => 0.28835512451976
321 => 0.30243193829717
322 => 0.29399678518375
323 => 0.3004451436798
324 => 0.30386532977482
325 => 0.30704218922891
326 => 0.2992408264664
327 => 0.28909136813715
328 => 0.285876608639
329 => 0.26147243267553
330 => 0.26020208933467
331 => 0.2594890071221
401 => 0.25499312463934
402 => 0.25146059253374
403 => 0.24865139184886
404 => 0.24127921035339
405 => 0.24376710519545
406 => 0.23201738658554
407 => 0.2395344401677
408 => 0.22078160555941
409 => 0.23639952346469
410 => 0.22789940080844
411 => 0.23360700456204
412 => 0.23358709127024
413 => 0.22307758316243
414 => 0.21701591821368
415 => 0.22087864704255
416 => 0.2250197989709
417 => 0.22569168693876
418 => 0.23106079850898
419 => 0.23255920213957
420 => 0.22801896918513
421 => 0.22039299474431
422 => 0.22216433467695
423 => 0.21698002206648
424 => 0.20789471362834
425 => 0.21441994076288
426 => 0.2166479402006
427 => 0.21763195167862
428 => 0.20869759428443
429 => 0.20589022521684
430 => 0.20439560548136
501 => 0.21923968139758
502 => 0.22005287338487
503 => 0.2158924682041
504 => 0.234697894127
505 => 0.23044164706597
506 => 0.23519691783898
507 => 0.22200360414437
508 => 0.22250760649466
509 => 0.2162616803594
510 => 0.21975898164221
511 => 0.2172872018188
512 => 0.21947643425957
513 => 0.22078865115801
514 => 0.22703355239825
515 => 0.23647083020553
516 => 0.22610077240207
517 => 0.22158238971514
518 => 0.22438556892176
519 => 0.23185080454763
520 => 0.24316101865921
521 => 0.23646514426589
522 => 0.23943665961832
523 => 0.24008580352931
524 => 0.23514851364642
525 => 0.24334306357967
526 => 0.24773458946131
527 => 0.25223938631763
528 => 0.25615077520642
529 => 0.25044007139061
530 => 0.25655134307077
531 => 0.25162673688123
601 => 0.24720885603278
602 => 0.24721555613441
603 => 0.24444415494324
604 => 0.23907421591632
605 => 0.23808391677011
606 => 0.24323557798969
607 => 0.24736672242365
608 => 0.24770698326608
609 => 0.24999419709059
610 => 0.25134774667176
611 => 0.26461437262864
612 => 0.26995031933578
613 => 0.27647501396497
614 => 0.27901675023468
615 => 0.28666646514362
616 => 0.28048869907518
617 => 0.2791521005263
618 => 0.26059639435989
619 => 0.26363489020513
620 => 0.2684998152246
621 => 0.2606766151816
622 => 0.26563863495645
623 => 0.26661824276996
624 => 0.26041078583772
625 => 0.26372645679361
626 => 0.25492101776269
627 => 0.23666276471391
628 => 0.24336339023471
629 => 0.24829730602418
630 => 0.24125599984518
701 => 0.25387726863486
702 => 0.2465041839638
703 => 0.24416727009355
704 => 0.23505013591577
705 => 0.23935307229701
706 => 0.24517285536475
707 => 0.24157690605129
708 => 0.24903904081122
709 => 0.25960741370994
710 => 0.26713906559505
711 => 0.2677172523059
712 => 0.26287490472526
713 => 0.27063479762669
714 => 0.2706913199748
715 => 0.2619381290819
716 => 0.25657684839797
717 => 0.25535875414635
718 => 0.25840179240834
719 => 0.26209660263425
720 => 0.26792228855887
721 => 0.27144262855261
722 => 0.28062180821224
723 => 0.28310543104043
724 => 0.28583417954122
725 => 0.28948062905315
726 => 0.29385912662268
727 => 0.28427922320855
728 => 0.28465985063037
729 => 0.27573917721392
730 => 0.26620615831447
731 => 0.27344053135157
801 => 0.28289851174926
802 => 0.28072884059589
803 => 0.28048470826878
804 => 0.28089527112632
805 => 0.27925940993152
806 => 0.27186047037525
807 => 0.26814476924991
808 => 0.27293897167806
809 => 0.27548687690322
810 => 0.27943845570675
811 => 0.27895134021151
812 => 0.28913018284084
813 => 0.29308537329437
814 => 0.29207346632421
815 => 0.29225968155962
816 => 0.29942036495122
817 => 0.30738451758954
818 => 0.31484399749783
819 => 0.32243210085266
820 => 0.3132843460897
821 => 0.30863968037615
822 => 0.31343178980549
823 => 0.31088902908846
824 => 0.32550048640036
825 => 0.3265121520026
826 => 0.34112255273983
827 => 0.35498956281361
828 => 0.34627994223956
829 => 0.35449272215097
830 => 0.36337551322292
831 => 0.38051185838164
901 => 0.37474094019608
902 => 0.37032050730775
903 => 0.36614321958766
904 => 0.37483549220742
905 => 0.38601796207029
906 => 0.38842655897439
907 => 0.39232940611386
908 => 0.38822603956415
909 => 0.39316809260228
910 => 0.41061571147502
911 => 0.40590121084121
912 => 0.39920586204741
913 => 0.41297908146031
914 => 0.4179635560238
915 => 0.45294720889999
916 => 0.4971155157588
917 => 0.47882954669451
918 => 0.46747885561178
919 => 0.47014653725821
920 => 0.48627530773151
921 => 0.49145535690594
922 => 0.4773741975798
923 => 0.48234790110473
924 => 0.50975349653085
925 => 0.52445571920019
926 => 0.50448812604328
927 => 0.44939832844961
928 => 0.39860301914393
929 => 0.41207622251438
930 => 0.41054877937435
1001 => 0.43999267274206
1002 => 0.40578877156028
1003 => 0.40636467753539
1004 => 0.43641743943632
1005 => 0.42839987779592
1006 => 0.4154124547502
1007 => 0.3986978417049
1008 => 0.3677993335761
1009 => 0.34043166325778
1010 => 0.39410596715007
1011 => 0.39179143356585
1012 => 0.38843964594123
1013 => 0.39589868659851
1014 => 0.43211767074464
1015 => 0.43128270593066
1016 => 0.42597108578691
1017 => 0.42999990285147
1018 => 0.41470618363973
1019 => 0.41864772331211
1020 => 0.39859497290741
1021 => 0.40765965356717
1022 => 0.41538458957329
1023 => 0.41693548484615
1024 => 0.42042973108658
1025 => 0.39057177954018
1026 => 0.40397712320111
1027 => 0.41185150669107
1028 => 0.37627475561091
1029 => 0.41114826871019
1030 => 0.3900520190317
1031 => 0.38289163503579
1101 => 0.39253214877743
1102 => 0.38877523119661
1103 => 0.38554525407421
1104 => 0.38374287134187
1105 => 0.39082180064906
1106 => 0.39049156013573
1107 => 0.3789090578282
1108 => 0.36380015573122
1109 => 0.36887119920777
1110 => 0.36702884157145
1111 => 0.36035189982857
1112 => 0.36485135238625
1113 => 0.34503804044306
1114 => 0.31095026705113
1115 => 0.33346969429057
1116 => 0.33260272083828
1117 => 0.33216555350951
1118 => 0.3490882806887
1119 => 0.34746155094417
1120 => 0.34450902052885
1121 => 0.36029767429209
1122 => 0.35453460328115
1123 => 0.37229503018657
1124 => 0.38399319601888
1125 => 0.38102616276778
1126 => 0.39202834427521
1127 => 0.3689880258074
1128 => 0.37664109538527
1129 => 0.37821838241858
1130 => 0.36010284475546
1201 => 0.34772770404848
1202 => 0.34690242325026
1203 => 0.32544563466378
1204 => 0.33690767793353
1205 => 0.34699380167933
1206 => 0.34216333111991
1207 => 0.34063414844701
1208 => 0.34844641108364
1209 => 0.34905349079801
1210 => 0.33521200897493
1211 => 0.33809009134867
1212 => 0.35009217328855
1213 => 0.33778766967795
1214 => 0.31388202909181
1215 => 0.30795309970511
1216 => 0.30716207123307
1217 => 0.29108234450701
1218 => 0.308349299117
1219 => 0.30081181070413
1220 => 0.32462264628743
1221 => 0.31102202470232
1222 => 0.310435729089
1223 => 0.30954945727861
1224 => 0.29570897224034
1225 => 0.29873915885501
1226 => 0.30881196067263
1227 => 0.31240604983939
1228 => 0.31203115689379
1229 => 0.30876259844852
1230 => 0.31025892776704
1231 => 0.30543872967641
]
'min_raw' => 0.16865336893478
'max_raw' => 0.52445571920019
'avg_raw' => 0.34655454406748
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.168653'
'max' => '$0.524455'
'avg' => '$0.346554'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.096076272692504
'max_diff' => 0.32756105079232
'year' => 2033
]
8 => [
'items' => [
101 => 0.30373661740686
102 => 0.29836428288129
103 => 0.29046843527401
104 => 0.29156640131185
105 => 0.27592266114091
106 => 0.26739912121965
107 => 0.26503991770789
108 => 0.26188509217407
109 => 0.26539626364661
110 => 0.27587834439054
111 => 0.26323473111587
112 => 0.24155814300282
113 => 0.24286094288352
114 => 0.24578794741071
115 => 0.24033349383837
116 => 0.23517131128974
117 => 0.23965941019467
118 => 0.23047475405375
119 => 0.24689786922512
120 => 0.24645366998498
121 => 0.25257519172224
122 => 0.25640310489082
123 => 0.24758100433885
124 => 0.24536226990753
125 => 0.24662616187547
126 => 0.22573684299957
127 => 0.25086808870987
128 => 0.25108542476638
129 => 0.24922446150207
130 => 0.26260607400265
131 => 0.29084545020846
201 => 0.28022066095356
202 => 0.2761064214181
203 => 0.26828524905371
204 => 0.278706496854
205 => 0.27790630761973
206 => 0.2742875484396
207 => 0.27209891159624
208 => 0.2761315420874
209 => 0.27159922405124
210 => 0.27078509519217
211 => 0.26585236008718
212 => 0.26409159807984
213 => 0.26278799998756
214 => 0.26135286657687
215 => 0.2645184132679
216 => 0.25734486800368
217 => 0.24869427564636
218 => 0.24797507249255
219 => 0.2499608556332
220 => 0.24908229441763
221 => 0.24797086627946
222 => 0.24584884728425
223 => 0.24521928957813
224 => 0.24726504670503
225 => 0.24495550618381
226 => 0.24836335903005
227 => 0.24743661162097
228 => 0.24225987592879
301 => 0.23580774658331
302 => 0.23575030909833
303 => 0.23436020841446
304 => 0.23258970619051
305 => 0.23209719297541
306 => 0.23928143502322
307 => 0.2541526010559
308 => 0.25123303532684
309 => 0.25334272077522
310 => 0.26372028514879
311 => 0.26701900079891
312 => 0.26467765056482
313 => 0.26147266595621
314 => 0.26161366901341
315 => 0.27256607163586
316 => 0.27324915955293
317 => 0.27497510234686
318 => 0.27719342658842
319 => 0.26505544077546
320 => 0.26104197097317
321 => 0.25914016632202
322 => 0.2532833440875
323 => 0.25959942474144
324 => 0.25591931502593
325 => 0.256415887557
326 => 0.25609249404471
327 => 0.25626908877019
328 => 0.24689327862973
329 => 0.25030933106684
330 => 0.24462948133587
331 => 0.23702480013916
401 => 0.23699930658125
402 => 0.2388605415306
403 => 0.23775340615259
404 => 0.23477413331744
405 => 0.2351973249619
406 => 0.23148972085323
407 => 0.23564749522903
408 => 0.2357667253209
409 => 0.23416575571071
410 => 0.24057138079893
411 => 0.24319577062407
412 => 0.24214197813055
413 => 0.24312183373353
414 => 0.25135435646393
415 => 0.25269661687914
416 => 0.25329276029083
417 => 0.25249400709303
418 => 0.24327230913638
419 => 0.24368133065445
420 => 0.24068020214493
421 => 0.23814456480552
422 => 0.23824597700143
423 => 0.23954962420367
424 => 0.24524272799374
425 => 0.25722352929316
426 => 0.25767819194462
427 => 0.25822925634163
428 => 0.25598780049619
429 => 0.25531175596537
430 => 0.25620363320343
501 => 0.26070299225088
502 => 0.272276565285
503 => 0.26818569160179
504 => 0.2648597476191
505 => 0.26777749715998
506 => 0.26732833248824
507 => 0.26353693063539
508 => 0.26343051861303
509 => 0.25615360627292
510 => 0.25346349746806
511 => 0.25121544119956
512 => 0.24876062244136
513 => 0.24730532359522
514 => 0.24954132404438
515 => 0.25005272380268
516 => 0.245163669742
517 => 0.2444973097392
518 => 0.24848981682272
519 => 0.24673286331093
520 => 0.24853993356816
521 => 0.24895918936859
522 => 0.24889167952844
523 => 0.24705721827731
524 => 0.24822644917436
525 => 0.24546086953833
526 => 0.24245371706078
527 => 0.24053534113232
528 => 0.2388613036991
529 => 0.23979015696268
530 => 0.23647896467993
531 => 0.23541964762754
601 => 0.24783034005497
602 => 0.25699825198854
603 => 0.25686494691813
604 => 0.25605348658532
605 => 0.25484782112947
606 => 0.26061479031316
607 => 0.25860569356375
608 => 0.2600674793146
609 => 0.26043956513914
610 => 0.26156575686496
611 => 0.26196827360749
612 => 0.26075158844571
613 => 0.25666824443721
614 => 0.24649293940072
615 => 0.24175630743852
616 => 0.24019313999615
617 => 0.2402499581638
618 => 0.23868265945248
619 => 0.23914429916436
620 => 0.23852212000007
621 => 0.23734386318421
622 => 0.23971740292454
623 => 0.23999093126856
624 => 0.23943691873148
625 => 0.23956740873951
626 => 0.23498042155433
627 => 0.23532916022761
628 => 0.23338733897924
629 => 0.23302327090417
630 => 0.22811451588201
701 => 0.21941794482483
702 => 0.22423668938709
703 => 0.2184163235739
704 => 0.21621206284752
705 => 0.22664669029335
706 => 0.22559934310931
707 => 0.22380674000109
708 => 0.22115510639282
709 => 0.22017158969408
710 => 0.21419605357608
711 => 0.21384298702398
712 => 0.21680462407711
713 => 0.2154379304808
714 => 0.21351857506424
715 => 0.2065668643074
716 => 0.19875083978438
717 => 0.19898675643495
718 => 0.20147288841342
719 => 0.20870165244139
720 => 0.20587724927677
721 => 0.20382811237455
722 => 0.20344437062959
723 => 0.20824770198549
724 => 0.21504542218311
725 => 0.21823476040942
726 => 0.21507422308879
727 => 0.21144356799026
728 => 0.21166454914328
729 => 0.21313463775296
730 => 0.2132891232799
731 => 0.21092594004814
801 => 0.21159116228546
802 => 0.21058062887778
803 => 0.20437898722014
804 => 0.20426681918817
805 => 0.20274483631041
806 => 0.20269875127374
807 => 0.20010947872225
808 => 0.19974722159349
809 => 0.19460606378488
810 => 0.19798998942337
811 => 0.19572022976914
812 => 0.19229916658805
813 => 0.19170937400615
814 => 0.19169164412894
815 => 0.1952043110802
816 => 0.19794894186487
817 => 0.1957597132101
818 => 0.19526126828182
819 => 0.20058335607755
820 => 0.19990607189364
821 => 0.19931954815838
822 => 0.21443676089746
823 => 0.20247030740366
824 => 0.19725225065908
825 => 0.19079391455556
826 => 0.19289678135662
827 => 0.19333988628914
828 => 0.17780875216276
829 => 0.17150777298196
830 => 0.1693455143745
831 => 0.16810110397606
901 => 0.16866819742095
902 => 0.16299657712709
903 => 0.16680799976451
904 => 0.16189685600015
905 => 0.16107348676582
906 => 0.16985522019045
907 => 0.17107714709434
908 => 0.1658640272994
909 => 0.16921169413518
910 => 0.16799778360448
911 => 0.16198104346416
912 => 0.16175124824694
913 => 0.15873225954317
914 => 0.15400812681318
915 => 0.15184907139017
916 => 0.15072461658008
917 => 0.15118858854991
918 => 0.15095399012419
919 => 0.14942307670787
920 => 0.15104174028919
921 => 0.14690672371688
922 => 0.14526012679969
923 => 0.14451639717296
924 => 0.14084633196236
925 => 0.14668703779783
926 => 0.14783773042669
927 => 0.1489906902755
928 => 0.15902641860024
929 => 0.15852506197381
930 => 0.16305708170615
1001 => 0.1628809757532
1002 => 0.16158837031169
1003 => 0.1561350805772
1004 => 0.15830866466982
1005 => 0.15161871068269
1006 => 0.1566312790825
1007 => 0.15434375219469
1008 => 0.15585786394069
1009 => 0.15313535449943
1010 => 0.15464210363388
1011 => 0.14811060233688
1012 => 0.14201157832643
1013 => 0.14446600362985
1014 => 0.14713424463223
1015 => 0.15291967098058
1016 => 0.14947391877623
1017 => 0.15071314156723
1018 => 0.14656195266078
1019 => 0.13799686421828
1020 => 0.1380453416887
1021 => 0.13672778943242
1022 => 0.13558923191721
1023 => 0.14986970486725
1024 => 0.14809370231505
1025 => 0.14526387468557
1026 => 0.1490517114205
1027 => 0.15005327557427
1028 => 0.1500817886977
1029 => 0.15284529660128
1030 => 0.15432018126482
1031 => 0.15458013607928
1101 => 0.15892857547512
1102 => 0.1603861150033
1103 => 0.16638951404117
1104 => 0.15419504760556
1105 => 0.15394391059411
1106 => 0.14910501405125
1107 => 0.14603610936383
1108 => 0.14931514458076
1109 => 0.15221992215001
1110 => 0.14919527358736
1111 => 0.14959022883582
1112 => 0.14552988526334
1113 => 0.14698126703358
1114 => 0.14823139253635
1115 => 0.1475411467127
1116 => 0.14650781530642
1117 => 0.15198176351497
1118 => 0.15167290190447
1119 => 0.1567703683218
1120 => 0.16074420791743
1121 => 0.16786603888159
1122 => 0.16043403700104
1123 => 0.16016318531298
1124 => 0.16281080400974
1125 => 0.16038570966667
1126 => 0.16191828558008
1127 => 0.16761911720841
1128 => 0.16773956679746
1129 => 0.16572188099028
1130 => 0.16559910462555
1201 => 0.16598662325588
1202 => 0.16825633197767
1203 => 0.16746322600917
1204 => 0.1683810283149
1205 => 0.1695287541521
1206 => 0.17427623484045
1207 => 0.17542083636189
1208 => 0.17264004807264
1209 => 0.17289112211999
1210 => 0.17185103096546
1211 => 0.1708463159425
1212 => 0.17310476858728
1213 => 0.17723213518562
1214 => 0.17720645905223
1215 => 0.1781639278785
1216 => 0.17876042302517
1217 => 0.17619982919453
1218 => 0.17453297676644
1219 => 0.17517215405194
1220 => 0.17619421245094
1221 => 0.17484071428811
1222 => 0.16648629662575
1223 => 0.16902049326224
1224 => 0.16859867902605
1225 => 0.16799796425934
1226 => 0.17054611857369
1227 => 0.17030034287381
1228 => 0.16293840646335
1229 => 0.16340969374661
1230 => 0.162967067004
1231 => 0.16439728456227
]
'min_raw' => 0.13558923191721
'max_raw' => 0.30373661740686
'avg_raw' => 0.21966292466203
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.135589'
'max' => '$0.303736'
'avg' => '$0.219662'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.033064137017572
'max_diff' => -0.22071910179333
'year' => 2034
]
9 => [
'items' => [
101 => 0.16030847322495
102 => 0.16156616405375
103 => 0.16235497595145
104 => 0.16281959221913
105 => 0.16449810476837
106 => 0.16430115069403
107 => 0.16448586182657
108 => 0.1669746528262
109 => 0.17956210365239
110 => 0.18024721082821
111 => 0.17687349252828
112 => 0.17822122644545
113 => 0.17563387204148
114 => 0.17737078038663
115 => 0.1785591289637
116 => 0.17318921025024
117 => 0.17287123851451
118 => 0.17027320517855
119 => 0.17166924113316
120 => 0.16944804755083
121 => 0.16999305076188
122 => 0.16846917427125
123 => 0.1712118485536
124 => 0.17427858456976
125 => 0.17505336319651
126 => 0.17301525419269
127 => 0.17153952895599
128 => 0.16894864157446
129 => 0.17325734503163
130 => 0.17451734122787
131 => 0.17325072680801
201 => 0.17295722457086
202 => 0.1724010383618
203 => 0.17307522210437
204 => 0.17451047901799
205 => 0.17383363836256
206 => 0.17428070353987
207 => 0.17257695209558
208 => 0.17620067685764
209 => 0.18195602387664
210 => 0.1819745282584
211 => 0.18129768395455
212 => 0.18102073384823
213 => 0.18171521717832
214 => 0.18209194589571
215 => 0.18433777763878
216 => 0.18674764457698
217 => 0.19799344207024
218 => 0.19483566713492
219 => 0.20481360768643
220 => 0.21270486318925
221 => 0.21507110567176
222 => 0.21289427392816
223 => 0.20544745012344
224 => 0.20508207342063
225 => 0.2162107721528
226 => 0.21306640503427
227 => 0.21269239257081
228 => 0.20871353186367
301 => 0.21106553133308
302 => 0.21055111454737
303 => 0.209739082485
304 => 0.21422653363092
305 => 0.22262664157855
306 => 0.2213174059792
307 => 0.22034012233798
308 => 0.21605794990512
309 => 0.21863677416754
310 => 0.21771850424182
311 => 0.22166397459121
312 => 0.2193267653591
313 => 0.21304258336077
314 => 0.21404336005694
315 => 0.2138920946726
316 => 0.21700512556359
317 => 0.21607067096029
318 => 0.21370962741385
319 => 0.2225979309228
320 => 0.22202077393227
321 => 0.22283905058838
322 => 0.22319928127845
323 => 0.22860943499487
324 => 0.23082580186688
325 => 0.23132895594979
326 => 0.23343433305824
327 => 0.23127657224938
328 => 0.23990915394219
329 => 0.2456493170428
330 => 0.25231681187025
331 => 0.26205981386681
401 => 0.26572327274533
402 => 0.26506150168927
403 => 0.27244853460772
404 => 0.28572286855766
405 => 0.26774462410829
406 => 0.28667575916807
407 => 0.2806823803786
408 => 0.26647218708507
409 => 0.26555721816414
410 => 0.27518052604626
411 => 0.29652409671973
412 => 0.2911777743428
413 => 0.29653284138787
414 => 0.29028587122867
415 => 0.28997565650666
416 => 0.29622943999074
417 => 0.31084174597728
418 => 0.30389998713718
419 => 0.29394727365078
420 => 0.30129620240776
421 => 0.29492988020722
422 => 0.280584774468
423 => 0.29117368611084
424 => 0.28409318245012
425 => 0.28615964983859
426 => 0.301041815388
427 => 0.29925115385577
428 => 0.30156843568927
429 => 0.29747849390697
430 => 0.29365784335767
501 => 0.28652631538219
502 => 0.28441502152872
503 => 0.28499850719343
504 => 0.28441473238221
505 => 0.28042470802205
506 => 0.27956306264136
507 => 0.27812694925734
508 => 0.27857206084566
509 => 0.27587174753391
510 => 0.28096779666639
511 => 0.2819136682916
512 => 0.28562214787499
513 => 0.28600717452774
514 => 0.29633523738056
515 => 0.29064671391727
516 => 0.29446306657993
517 => 0.29412169607688
518 => 0.26678016506282
519 => 0.27054758680018
520 => 0.27640851274146
521 => 0.27376817354921
522 => 0.2700353516756
523 => 0.2670208978714
524 => 0.26245369211432
525 => 0.26888194651199
526 => 0.27733441747629
527 => 0.2862215431401
528 => 0.29689884231763
529 => 0.29451579343866
530 => 0.28602193845895
531 => 0.28640296658857
601 => 0.28875833255687
602 => 0.28570791962036
603 => 0.28480829329425
604 => 0.28863473771437
605 => 0.28866108833411
606 => 0.28515121959594
607 => 0.28125064279265
608 => 0.28123429923342
609 => 0.28054022926638
610 => 0.29040934473392
611 => 0.29583636036094
612 => 0.29645855895651
613 => 0.29579448143804
614 => 0.29605005851861
615 => 0.29289219770137
616 => 0.30011013109504
617 => 0.30673402055669
618 => 0.30495867668221
619 => 0.30229718383436
620 => 0.30017717658618
621 => 0.30445927034934
622 => 0.30426859545471
623 => 0.3066761666608
624 => 0.30656694532409
625 => 0.30575736968081
626 => 0.30495870559471
627 => 0.30812531841922
628 => 0.30721338478
629 => 0.30630003465597
630 => 0.3044681711553
701 => 0.30471715182907
702 => 0.30205611852549
703 => 0.30082500275865
704 => 0.28231197548515
705 => 0.27736468966706
706 => 0.27892120649672
707 => 0.27943365225199
708 => 0.27728058712383
709 => 0.28036752944055
710 => 0.27988643275037
711 => 0.28175809853971
712 => 0.28058876301282
713 => 0.28063675295072
714 => 0.28407551940671
715 => 0.28507380793844
716 => 0.28456607033402
717 => 0.28492167234793
718 => 0.29311637066816
719 => 0.29195134661872
720 => 0.29133245081225
721 => 0.29150388918025
722 => 0.29359781029738
723 => 0.29418399388632
724 => 0.29170029282959
725 => 0.29287162060605
726 => 0.2978589856146
727 => 0.29960428110718
728 => 0.30517442653013
729 => 0.30280812975302
730 => 0.30715156989833
731 => 0.32050182411716
801 => 0.33116693095449
802 => 0.3213588579527
803 => 0.34094396846628
804 => 0.35619378631835
805 => 0.35560847290928
806 => 0.35294931443214
807 => 0.33558780224494
808 => 0.31961147988472
809 => 0.33297635192953
810 => 0.33301042173688
811 => 0.33186236737551
812 => 0.32473190033683
813 => 0.33161424257875
814 => 0.33216053791292
815 => 0.33185475779744
816 => 0.32638784543715
817 => 0.31804088071727
818 => 0.31967185764372
819 => 0.32234343112028
820 => 0.31728558518055
821 => 0.31566929693711
822 => 0.31867428429308
823 => 0.328356979668
824 => 0.32652652219541
825 => 0.32647872155334
826 => 0.33431019485586
827 => 0.32870455010897
828 => 0.31969242948588
829 => 0.31741675017328
830 => 0.30933962169482
831 => 0.31491852310464
901 => 0.31511929783445
902 => 0.31206379054729
903 => 0.31994036706237
904 => 0.31986778302314
905 => 0.32734542015051
906 => 0.3416398538658
907 => 0.33741228642982
908 => 0.33249608545982
909 => 0.33303061281672
910 => 0.33889305859605
911 => 0.33534849005125
912 => 0.33662314161357
913 => 0.33889112925825
914 => 0.34025946251525
915 => 0.33283373071849
916 => 0.33110243742286
917 => 0.32756081894136
918 => 0.32663687678698
919 => 0.32952145114186
920 => 0.32876146771287
921 => 0.31510242349585
922 => 0.31367497737696
923 => 0.31371875511151
924 => 0.31012937397421
925 => 0.30465470618966
926 => 0.31904180625204
927 => 0.31788632076969
928 => 0.31661075422466
929 => 0.31676700384814
930 => 0.32301195636116
1001 => 0.31938956852595
1002 => 0.32902028028355
1003 => 0.32704049547188
1004 => 0.3250099366502
1005 => 0.32472925156871
1006 => 0.32394765966151
1007 => 0.32126729019415
1008 => 0.31803058299709
1009 => 0.31589342854682
1010 => 0.29139498977098
1011 => 0.29594175750692
1012 => 0.30117239933619
1013 => 0.30297799593517
1014 => 0.29988939800913
1015 => 0.3213892468655
1016 => 0.32531747642926
1017 => 0.31341861284856
1018 => 0.31119282130001
1019 => 0.32153516938887
1020 => 0.31529746919066
1021 => 0.31810630520797
1022 => 0.31203513808969
1023 => 0.32437128095934
1024 => 0.32427730021936
1025 => 0.31947826201865
1026 => 0.3235343762435
1027 => 0.32282952658086
1028 => 0.31741142427176
1029 => 0.32454304446663
1030 => 0.32454658166127
1031 => 0.31992761173317
1101 => 0.31453366607968
1102 => 0.31356935599615
1103 => 0.31284287788504
1104 => 0.31792763612656
1105 => 0.32248661446627
1106 => 0.33096974288991
1107 => 0.33310260292977
1108 => 0.34142729765789
1109 => 0.33647034726933
1110 => 0.33866769917332
1111 => 0.34105323549951
1112 => 0.34219694933948
1113 => 0.34033332901232
1114 => 0.35326500650613
1115 => 0.35435683630297
1116 => 0.35472291738956
1117 => 0.35036242849791
1118 => 0.35423556321883
1119 => 0.35242345174765
1120 => 0.35713806237659
1121 => 0.35787737352238
1122 => 0.35725120328365
1123 => 0.35748587231056
1124 => 0.34645096687382
1125 => 0.34587874881316
1126 => 0.33807651495335
1127 => 0.34125598292242
1128 => 0.3353121199501
1129 => 0.3371969801272
1130 => 0.33802780853365
1201 => 0.33759383092322
1202 => 0.34143574527096
1203 => 0.33816933322413
1204 => 0.32954873478469
1205 => 0.32092578766898
1206 => 0.32081753359204
1207 => 0.31854726382413
1208 => 0.31690627460258
1209 => 0.31722238734387
1210 => 0.31833640987541
1211 => 0.31684152558786
1212 => 0.31716053494317
1213 => 0.32245821578946
1214 => 0.32352062790185
1215 => 0.31991013643273
1216 => 0.3054134921928
1217 => 0.30185597933424
1218 => 0.30441304902843
1219 => 0.30319093441099
1220 => 0.24469874715189
1221 => 0.25844061892154
1222 => 0.25027566534588
1223 => 0.25403845160499
1224 => 0.24570414830873
1225 => 0.24968171467997
1226 => 0.24894720340867
1227 => 0.27104372656271
1228 => 0.27069871974644
1229 => 0.27086385625204
1230 => 0.26298146057901
1231 => 0.27553833091651
]
'min_raw' => 0.16030847322495
'max_raw' => 0.35787737352238
'avg_raw' => 0.25909292337367
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1603084'
'max' => '$0.357877'
'avg' => '$0.259092'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024719241307743
'max_diff' => 0.054140756115521
'year' => 2035
]
10 => [
'items' => [
101 => 0.28172429677521
102 => 0.28057943912892
103 => 0.2808675751335
104 => 0.27591644393451
105 => 0.27091179402468
106 => 0.26536086706458
107 => 0.27567380324114
108 => 0.27452718078599
109 => 0.27715712015635
110 => 0.28384579645075
111 => 0.28483072944291
112 => 0.28615448937258
113 => 0.28568001566945
114 => 0.29698390423154
115 => 0.29561492874121
116 => 0.29891376579177
117 => 0.2921278076954
118 => 0.2844488519803
119 => 0.28590837041776
120 => 0.28576780705553
121 => 0.28397827412317
122 => 0.28236276380727
123 => 0.27967339429849
124 => 0.28818295737605
125 => 0.28783748465539
126 => 0.2934302864348
127 => 0.29244170439471
128 => 0.28583971158394
129 => 0.28607550304874
130 => 0.28766131396706
131 => 0.29314982366182
201 => 0.29477918702546
202 => 0.29402440099652
203 => 0.29581092354148
204 => 0.29722291811864
205 => 0.29598824832092
206 => 0.31346856896835
207 => 0.30620952111183
208 => 0.30974753052897
209 => 0.31059132492779
210 => 0.30842996331829
211 => 0.30889868525883
212 => 0.30960867127968
213 => 0.31391956736871
214 => 0.32523260607418
215 => 0.33024307390637
216 => 0.34531731359165
217 => 0.32982702430199
218 => 0.32890789464073
219 => 0.33162322040647
220 => 0.34047339487205
221 => 0.34764563002179
222 => 0.35002507419713
223 => 0.35033955702524
224 => 0.35480355248064
225 => 0.35736223142708
226 => 0.35426150601762
227 => 0.35163396589258
228 => 0.34222244330697
229 => 0.34331185267298
301 => 0.35081680288949
302 => 0.36141798710969
303 => 0.37051490603584
304 => 0.36732948208753
305 => 0.39163201825426
306 => 0.39404151544823
307 => 0.3937086008444
308 => 0.39919779403353
309 => 0.38830286340786
310 => 0.38364506948605
311 => 0.35220206989146
312 => 0.36103627023425
313 => 0.37387729924689
314 => 0.37217774090568
315 => 0.36285224239501
316 => 0.37050783180898
317 => 0.36797665453631
318 => 0.36598021000271
319 => 0.37512630944094
320 => 0.36506979740755
321 => 0.37377697784653
322 => 0.36260992886929
323 => 0.36734403283581
324 => 0.36465672646157
325 => 0.36639574302958
326 => 0.3562294877069
327 => 0.36171495230712
328 => 0.356001274345
329 => 0.3559985653177
330 => 0.35587243556001
331 => 0.36259455234412
401 => 0.36281376033112
402 => 0.3578461058711
403 => 0.35713018925407
404 => 0.35977730821434
405 => 0.35667822519342
406 => 0.35812826663351
407 => 0.35672214547146
408 => 0.35640559798044
409 => 0.35388329371587
410 => 0.35279661568649
411 => 0.35322273014205
412 => 0.35176818182816
413 => 0.35089176385573
414 => 0.35569809396617
415 => 0.35313026567496
416 => 0.3553045374527
417 => 0.352826680347
418 => 0.34423734806767
419 => 0.33929753224328
420 => 0.32307307979915
421 => 0.32767431438594
422 => 0.3307249376773
423 => 0.3297167066977
424 => 0.33188277697547
425 => 0.33201575609843
426 => 0.33131154457066
427 => 0.33049615783658
428 => 0.33009927266814
429 => 0.33305732955174
430 => 0.33477458113628
501 => 0.33103110853666
502 => 0.33015406528332
503 => 0.33393892276432
504 => 0.33624768364129
505 => 0.35329427677618
506 => 0.35203141009698
507 => 0.35520095763671
508 => 0.3548441152244
509 => 0.35816630599456
510 => 0.36359668384119
511 => 0.35255520732146
512 => 0.35447162585976
513 => 0.35400176429074
514 => 0.359131589697
515 => 0.35914760445198
516 => 0.35607201786714
517 => 0.35773934325048
518 => 0.35680868796218
519 => 0.35849050785374
520 => 0.35201454374254
521 => 0.35990156899285
522 => 0.3643730040811
523 => 0.36443508996164
524 => 0.36655451470596
525 => 0.368707972995
526 => 0.37284134865412
527 => 0.36859269539126
528 => 0.36094978176944
529 => 0.36150157544647
530 => 0.35702053798643
531 => 0.3570958650357
601 => 0.35669376334322
602 => 0.35790050079116
603 => 0.35227935475163
604 => 0.35359862649172
605 => 0.35175163832995
606 => 0.3544676108682
607 => 0.35154567338339
608 => 0.35400153770926
609 => 0.35506140733911
610 => 0.35897234909064
611 => 0.3509680241068
612 => 0.33464666361959
613 => 0.33807761147137
614 => 0.33300297010345
615 => 0.33347264748257
616 => 0.334421470537
617 => 0.33134602458201
618 => 0.33193272275178
619 => 0.33191176176463
620 => 0.33173113130136
621 => 0.33093108902911
622 => 0.3297708694508
623 => 0.33439282715401
624 => 0.33517818783255
625 => 0.33692394733532
626 => 0.34211814345559
627 => 0.34159912077559
628 => 0.34244566830071
629 => 0.34059765980654
630 => 0.3335583712964
701 => 0.33394063852954
702 => 0.32917376000687
703 => 0.33680204753409
704 => 0.33499556835917
705 => 0.33383091948325
706 => 0.33351313424707
707 => 0.33872020577485
708 => 0.3402782431868
709 => 0.33930737882767
710 => 0.33731610770246
711 => 0.34113993692933
712 => 0.34216303231604
713 => 0.34239206564282
714 => 0.34916715788631
715 => 0.34277071803734
716 => 0.34431040468414
717 => 0.35632260037946
718 => 0.3454291964535
719 => 0.35119967546498
720 => 0.35091724054549
721 => 0.3538692223454
722 => 0.350675091876
723 => 0.3507146869513
724 => 0.35333584680505
725 => 0.34965490051913
726 => 0.34874344645347
727 => 0.34748427918972
728 => 0.35023362484441
729 => 0.35188173322218
730 => 0.36516427634483
731 => 0.37374540495962
801 => 0.37337287553534
802 => 0.37677709712744
803 => 0.3752434641211
804 => 0.37029095859169
805 => 0.37874428163668
806 => 0.37606929652319
807 => 0.37628981904584
808 => 0.37628161118653
809 => 0.37806024243575
810 => 0.37679991918652
811 => 0.37431569269276
812 => 0.37596483817331
813 => 0.38086221067026
814 => 0.39606380517052
815 => 0.40457081884721
816 => 0.39555167226546
817 => 0.40177295880636
818 => 0.39804240375287
819 => 0.39736445092526
820 => 0.40127187862241
821 => 0.40518614575448
822 => 0.40493682386001
823 => 0.40209526692197
824 => 0.4004901435095
825 => 0.41264467574447
826 => 0.42159992804814
827 => 0.42098923987781
828 => 0.42368461885524
829 => 0.43159833489793
830 => 0.43232186591495
831 => 0.43223071763698
901 => 0.43043737051863
902 => 0.43822945168854
903 => 0.4447297428891
904 => 0.43002226247551
905 => 0.43562267848195
906 => 0.43813688566138
907 => 0.44182848773243
908 => 0.44805683921064
909 => 0.45482248090462
910 => 0.45577921682163
911 => 0.45510036690448
912 => 0.4506382443371
913 => 0.45804129020954
914 => 0.46237782085883
915 => 0.46496012562074
916 => 0.47150842084241
917 => 0.43815241254898
918 => 0.41454137197771
919 => 0.41085416704495
920 => 0.41835224326789
921 => 0.42032942617185
922 => 0.41953242622244
923 => 0.39295605343759
924 => 0.41071424794234
925 => 0.42982057207806
926 => 0.43055452380107
927 => 0.4401195491578
928 => 0.44323431349759
929 => 0.4509354126263
930 => 0.45045370677902
1001 => 0.4523288018656
1002 => 0.45189774997732
1003 => 0.4661624144555
1004 => 0.48189845769812
1005 => 0.48135356855818
1006 => 0.47909132616164
1007 => 0.48245114189015
1008 => 0.4986924248934
1009 => 0.49719718781572
1010 => 0.49864968327269
1011 => 0.51779907125213
1012 => 0.54269599959407
1013 => 0.5311288767685
1014 => 0.55622620495005
1015 => 0.57202364268814
1016 => 0.59934367777061
1017 => 0.59592307482427
1018 => 0.6065585639982
1019 => 0.58979948164896
1020 => 0.55131724100573
1021 => 0.54522727911984
1022 => 0.55741953703779
1023 => 0.58739301342594
1024 => 0.55647556559978
1025 => 0.56273012502804
1026 => 0.56092881149194
1027 => 0.56083282714869
1028 => 0.56449615913398
1029 => 0.55918230502277
1030 => 0.53753270742957
1031 => 0.54745459042465
1101 => 0.5436232749123
1102 => 0.54787440511675
1103 => 0.57081600153071
1104 => 0.56067297489675
1105 => 0.54998812029044
1106 => 0.5633892991258
1107 => 0.58045360492788
1108 => 0.57938575133829
1109 => 0.57731366904632
1110 => 0.58899388843548
1111 => 0.6082861888832
1112 => 0.61350082017148
1113 => 0.61735015438005
1114 => 0.61788091253237
1115 => 0.62334805136569
1116 => 0.59394986796256
1117 => 0.64060554002222
1118 => 0.64866168574999
1119 => 0.6471474642462
1120 => 0.65610153116818
1121 => 0.65346701753698
1122 => 0.6496500206279
1123 => 0.66384412128389
1124 => 0.64757173028665
1125 => 0.62447511990313
1126 => 0.61180386264757
1127 => 0.62849039636285
1128 => 0.638680280223
1129 => 0.64541514525623
1130 => 0.64745311134596
1201 => 0.59623196525425
1202 => 0.56862660836582
1203 => 0.58632132563524
1204 => 0.60791010192809
1205 => 0.59382994122021
1206 => 0.59438185686269
1207 => 0.57430724789439
1208 => 0.60968625938215
1209 => 0.60453183499271
1210 => 0.63127299784316
1211 => 0.62489100471766
1212 => 0.64669738493624
1213 => 0.6409550342133
1214 => 0.66479121101371
1215 => 0.67430010727811
1216 => 0.69026702404758
1217 => 0.70201235302024
1218 => 0.70890943484533
1219 => 0.70849535992285
1220 => 0.73582503422637
1221 => 0.71970968011568
1222 => 0.69946499725531
1223 => 0.69909883481352
1224 => 0.70958384293628
1225 => 0.73155754354009
1226 => 0.73725500440231
1227 => 0.74043910776239
1228 => 0.73556254262699
1229 => 0.71807048073767
1230 => 0.71051749710063
1231 => 0.71695285799039
]
'min_raw' => 0.26536086706458
'max_raw' => 0.74043910776239
'avg_raw' => 0.50289998741348
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.26536'
'max' => '$0.740439'
'avg' => '$0.502899'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10505239383962
'max_diff' => 0.38256173424001
'year' => 2036
]
11 => [
'items' => [
101 => 0.70908296461908
102 => 0.72266860848004
103 => 0.7413245992381
104 => 0.73747221092034
105 => 0.75035016748426
106 => 0.76367749772738
107 => 0.7827361785429
108 => 0.78771882344898
109 => 0.79595494600572
110 => 0.80443262154192
111 => 0.80715542244439
112 => 0.8123540942027
113 => 0.8123266946364
114 => 0.82799324189104
115 => 0.84527392866548
116 => 0.85179698787402
117 => 0.86679640284046
118 => 0.84111043035262
119 => 0.86059353554383
120 => 0.87816778412006
121 => 0.85721504046626
122 => 0.88609351622988
123 => 0.88721480200375
124 => 0.90414488593738
125 => 0.88698300245902
126 => 0.87679233083224
127 => 0.90621241797926
128 => 0.92044787142564
129 => 0.91616003699563
130 => 0.88352940526674
131 => 0.86453697800689
201 => 0.81483013250224
202 => 0.87371003817842
203 => 0.90238872268289
204 => 0.88345513440213
205 => 0.89300413502989
206 => 0.94510038618108
207 => 0.96493526563698
208 => 0.96080974936643
209 => 0.96150689370437
210 => 0.97220943463025
211 => 1.0196703950925
212 => 0.99123068744709
213 => 1.0129717783265
214 => 1.0245031745356
215 => 1.0352141779864
216 => 1.0089113387588
217 => 0.97469173138918
218 => 0.96385294529383
219 => 0.88157256218785
220 => 0.87728951092159
221 => 0.87488530445611
222 => 0.85972712277297
223 => 0.84781694414542
224 => 0.83834552790422
225 => 0.81348970328299
226 => 0.82187781444227
227 => 0.7822628178098
228 => 0.80760708878597
301 => 0.74438059762301
302 => 0.79703749824886
303 => 0.76837874125369
304 => 0.78762232580115
305 => 0.78755518674752
306 => 0.75212164641162
307 => 0.73168431982499
308 => 0.74470777975864
309 => 0.75866996261105
310 => 0.76093527980443
311 => 0.77903761432283
312 => 0.78408958677854
313 => 0.7687818743837
314 => 0.74307036912796
315 => 0.74904256538187
316 => 0.73156329345852
317 => 0.70093154174333
318 => 0.72293180060426
319 => 0.73044365626248
320 => 0.73376131966212
321 => 0.70363850993069
322 => 0.69417326911506
323 => 0.68913405432588
324 => 0.73918189265768
325 => 0.7419236262181
326 => 0.72789652968092
327 => 0.79130033613287
328 => 0.77695010200494
329 => 0.79298282941856
330 => 0.74850065116943
331 => 0.75019993028174
401 => 0.72914135424008
402 => 0.74093274968885
403 => 0.73259897144007
404 => 0.73998012146143
405 => 0.74440435235061
406 => 0.76545947288716
407 => 0.79727791390408
408 => 0.7623145400054
409 => 0.747080497313
410 => 0.75653161171985
411 => 0.7817011748386
412 => 0.81983435136972
413 => 0.79725874336159
414 => 0.80727741483691
415 => 0.8094660488546
416 => 0.79281963130385
417 => 0.82044812852902
418 => 0.83525446464549
419 => 0.85044270176145
420 => 0.86363022248449
421 => 0.84437618586084
422 => 0.86498076500588
423 => 0.84837711141282
424 => 0.8334819176857
425 => 0.83350450754611
426 => 0.82416053493703
427 => 0.80605541059061
428 => 0.80271654787868
429 => 0.82008573335798
430 => 0.83401417524439
501 => 0.8351613884309
502 => 0.8428728895284
503 => 0.84743647644312
504 => 0.89216583210297
505 => 0.91015634897
506 => 0.93215481245195
507 => 0.94072445374364
508 => 0.96651600164517
509 => 0.94568723202758
510 => 0.94118079670171
511 => 0.87861893784361
512 => 0.88886343872684
513 => 0.9052658730882
514 => 0.87888940794483
515 => 0.89561920405292
516 => 0.89892202019019
517 => 0.87799314575234
518 => 0.88917216187288
519 => 0.85948400940401
520 => 0.79792503449954
521 => 0.82051666126565
522 => 0.83715170282485
523 => 0.81341144743404
524 => 0.85596493634731
525 => 0.83110606660649
526 => 0.82322699833484
527 => 0.79248794391646
528 => 0.80699559434723
529 => 0.82661739928438
530 => 0.81449340511288
531 => 0.83965251344562
601 => 0.87528452053388
602 => 0.90067801070769
603 => 0.90262740757101
604 => 0.88630109462096
605 => 0.91246411531655
606 => 0.9126546843595
607 => 0.8831426901358
608 => 0.86506675799726
609 => 0.86095986818329
610 => 0.87121968414175
611 => 0.88367699478183
612 => 0.90331870161306
613 => 0.91518777368427
614 => 0.94613601877656
615 => 0.95450972654281
616 => 0.96370989262836
617 => 0.9760041517448
618 => 0.99076656199742
619 => 0.95846724878917
620 => 0.95975056071639
621 => 0.9296738874713
622 => 0.89753264867768
623 => 0.92192384246006
624 => 0.95381208370599
625 => 0.9464968859308
626 => 0.94567377674516
627 => 0.94705801808396
628 => 0.94154259785349
629 => 0.91659655656208
630 => 0.90406881079602
701 => 0.92023279900304
702 => 0.92882323935873
703 => 0.94214626318528
704 => 0.94050391928374
705 => 0.97482259787261
706 => 0.98815779862928
707 => 0.98474608363031
708 => 0.98537392129763
709 => 1.0095166652954
710 => 1.0363683619548
711 => 1.0615185192699
712 => 1.0871023395151
713 => 1.056260045656
714 => 1.0406002309225
715 => 1.056757162438
716 => 1.0481840671506
717 => 1.097447615617
718 => 1.1008585168273
719 => 1.1501185029784
720 => 1.1968720956059
721 => 1.1675070017542
722 => 1.1951969626235
723 => 1.2251459128993
724 => 1.2829222970233
725 => 1.263465243448
726 => 1.2485614453403
727 => 1.2344774281431
728 => 1.2637840321557
729 => 1.3014865100334
730 => 1.3096072626585
731 => 1.3227659842773
801 => 1.308931197467
802 => 1.3255936743282
803 => 1.3844195395115
804 => 1.3685242714687
805 => 1.3459504355561
806 => 1.3923878064221
807 => 1.4091933104179
808 => 1.5271431385706
809 => 1.6760596688778
810 => 1.6144072474919
811 => 1.5761376000265
812 => 1.5851318749491
813 => 1.6395111506746
814 => 1.6569760481257
815 => 1.6095004363424
816 => 1.6262696250296
817 => 1.7186695034064
818 => 1.7682390736124
819 => 1.7009169391911
820 => 1.5151778403572
821 => 1.3439179086178
822 => 1.3893437544503
823 => 1.3841938732611
824 => 1.4834660154573
825 => 1.3681451745828
826 => 1.3700868817863
827 => 1.4714118667521
828 => 1.4443800979133
829 => 1.4005920943617
830 => 1.3442376095025
831 => 1.2400611320813
901 => 1.1477891208533
902 => 1.3287557838464
903 => 1.3209521722716
904 => 1.3096513862809
905 => 1.3348000626305
906 => 1.4569148964079
907 => 1.4540997542422
908 => 1.4361912560821
909 => 1.4497746940982
910 => 1.3982108520025
911 => 1.4115000281974
912 => 1.3438907801697
913 => 1.3744529838898
914 => 1.4004981449723
915 => 1.4057270966648
916 => 1.4175081918249
917 => 1.3168400235706
918 => 1.3620370756546
919 => 1.3885861093629
920 => 1.2686366092067
921 => 1.3862150934119
922 => 1.3150876147277
923 => 1.2909458801634
924 => 1.3234495453226
925 => 1.3107828353992
926 => 1.2998927420213
927 => 1.2938158828008
928 => 1.3176829871951
929 => 1.3165695582477
930 => 1.2775183430534
1001 => 1.2265776247636
1002 => 1.2436750018937
1003 => 1.2374633644936
1004 => 1.2149515892382
1005 => 1.2301218076782
1006 => 1.1633198431405
1007 => 1.0483905352172
1008 => 1.1243163564112
1009 => 1.1213932948867
1010 => 1.1199193547157
1011 => 1.1769755109074
1012 => 1.1714908779991
1013 => 1.1615362155647
1014 => 1.2147687640561
1015 => 1.1953381677779
1016 => 1.255218687083
1017 => 1.2946598699265
1018 => 1.2846563101688
1019 => 1.3217509332688
1020 => 1.2440688909309
1021 => 1.269871749333
1022 => 1.2751896826884
1023 => 1.2141118826708
1024 => 1.1723882317725
1025 => 1.169605739942
1026 => 1.0972626791576
1027 => 1.1359077582958
1028 => 1.1699138286955
1029 => 1.1536275599517
1030 => 1.1484718138059
1031 => 1.17481140272
1101 => 1.176858214362
1102 => 1.1301906920141
1103 => 1.1398943476784
1104 => 1.1803602048974
1105 => 1.1388747119012
1106 => 1.0582751756265
1107 => 1.0382853762546
1108 => 1.0356183685333
1109 => 0.9814044472257
1110 => 1.0396211902336
1111 => 1.0142080217989
1112 => 1.0944879163875
1113 => 1.0486324711482
1114 => 1.046655734554
1115 => 1.0436676072678
1116 => 0.99700344564946
1117 => 1.0072199313817
1118 => 1.0411810859703
1119 => 1.0532988085274
1120 => 1.0520348307871
1121 => 1.0410146577854
1122 => 1.0460596365532
1123 => 1.0298080021551
1124 => 1.0240692118006
1125 => 1.0059560108633
1126 => 0.97933460938486
1127 => 0.98303647853898
1128 => 0.93029251634159
1129 => 0.9015548064025
1130 => 0.89360058704829
1201 => 0.88296387249813
1202 => 0.89480203225995
1203 => 0.93014309932361
1204 => 0.8875142744192
1205 => 0.81443014418498
1206 => 0.81882262494135
1207 => 0.82869122506169
1208 => 0.81030115402477
1209 => 0.79289649514999
1210 => 0.808028433957
1211 => 0.77706172452569
1212 => 0.83243340395126
1213 => 0.83093575520013
1214 => 0.8515748931283
1215 => 0.86448096963252
1216 => 0.83473664168217
1217 => 0.82725602363987
1218 => 0.83151732365189
1219 => 0.76108752661615
1220 => 0.84581927613597
1221 => 0.84655203982438
1222 => 0.84027767225048
1223 => 0.88539471307051
1224 => 0.98060574155871
1225 => 0.9447835227867
1226 => 0.93091207694589
1227 => 0.90454244826253
1228 => 0.93967841280948
1229 => 0.9369805189387
1230 => 0.9247796197092
1231 => 0.91740047778607
]
'min_raw' => 0.68913405432588
'max_raw' => 1.7682390736124
'avg_raw' => 1.2286865639692
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.689134'
'max' => '$1.76'
'avg' => '$1.22'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4237731872613
'max_diff' => 1.0277999658501
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021631130509444
]
1 => [
'year' => 2028
'avg' => 0.037125299516261
]
2 => [
'year' => 2029
'avg' => 0.1014196270942
]
3 => [
'year' => 2030
'avg' => 0.078245091264538
]
4 => [
'year' => 2031
'avg' => 0.076846376429185
]
5 => [
'year' => 2032
'avg' => 0.13473588232507
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021631130509444
'min' => '$0.021631'
'max_raw' => 0.13473588232507
'max' => '$0.134735'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13473588232507
]
1 => [
'year' => 2033
'avg' => 0.34655454406748
]
2 => [
'year' => 2034
'avg' => 0.21966292466203
]
3 => [
'year' => 2035
'avg' => 0.25909292337367
]
4 => [
'year' => 2036
'avg' => 0.50289998741348
]
5 => [
'year' => 2037
'avg' => 1.2286865639692
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13473588232507
'min' => '$0.134735'
'max_raw' => 1.2286865639692
'max' => '$1.22'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2286865639692
]
]
]
]
'prediction_2025_max_price' => '$0.036985'
'last_price' => 0.03586191
'sma_50day_nextmonth' => '$0.03562'
'sma_200day_nextmonth' => '$0.026719'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.03579'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0352067'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.036869'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.039996'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.038175'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028847'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.026036'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.035685'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.035789'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0368076'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.037961'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.036232'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.03305'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.046053'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.027252'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.052393'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.037472'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.037649'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.035319'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.03578'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.0743064'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.046955'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.023477'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '46.56'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 22.6
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.037147'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0351023'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 18.21
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -67.09
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003658'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -81.79
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 40.39
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.007819'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 17
'sell_pct' => 45.16
'buy_pct' => 54.84
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767699169
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de AI Rig Complex para 2026
La previsión del precio de AI Rig Complex para 2026 sugiere que el precio medio podría oscilar entre $0.01239 en el extremo inferior y $0.036985 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, AI Rig Complex podría potencialmente ganar 3.13% para 2026 si ARC alcanza el objetivo de precio previsto.
Predicción de precio de AI Rig Complex 2027-2032
La predicción del precio de ARC para 2027-2032 está actualmente dentro de un rango de precios de $0.021631 en el extremo inferior y $0.134735 en el extremo superior. Considerando la volatilidad de precios en el mercado, si AI Rig Complex alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de AI Rig Complex | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011927 | $0.021631 | $0.031334 |
| 2028 | $0.021526 | $0.037125 | $0.052724 |
| 2029 | $0.047286 | $0.101419 | $0.155552 |
| 2030 | $0.040215 | $0.078245 | $0.116274 |
| 2031 | $0.047547 | $0.076846 | $0.106145 |
| 2032 | $0.072577 | $0.134735 | $0.196894 |
Predicción de precio de AI Rig Complex 2032-2037
La predicción de precio de AI Rig Complex para 2032-2037 se estima actualmente entre $0.134735 en el extremo inferior y $1.22 en el extremo superior. Comparado con el precio actual, AI Rig Complex podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de AI Rig Complex | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.072577 | $0.134735 | $0.196894 |
| 2033 | $0.168653 | $0.346554 | $0.524455 |
| 2034 | $0.135589 | $0.219662 | $0.303736 |
| 2035 | $0.1603084 | $0.259092 | $0.357877 |
| 2036 | $0.26536 | $0.502899 | $0.740439 |
| 2037 | $0.689134 | $1.22 | $1.76 |
AI Rig Complex Histograma de precios potenciales
Pronóstico de precio de AI Rig Complex basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para AI Rig Complex es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de ARC se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de AI Rig Complex
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de AI Rig Complex aumentar durante el próximo mes, alcanzando $0.026719 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para AI Rig Complex alcance $0.03562 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.56, lo que sugiere que el mercado de ARC está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ARC para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.03579 | BUY |
| SMA 5 | $0.0352067 | BUY |
| SMA 10 | $0.036869 | SELL |
| SMA 21 | $0.039996 | SELL |
| SMA 50 | $0.038175 | SELL |
| SMA 100 | $0.028847 | BUY |
| SMA 200 | $0.026036 | BUY |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.035685 | BUY |
| EMA 5 | $0.035789 | BUY |
| EMA 10 | $0.0368076 | SELL |
| EMA 21 | $0.037961 | SELL |
| EMA 50 | $0.036232 | SELL |
| EMA 100 | $0.03305 | BUY |
| EMA 200 | $0.046053 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.027252 | BUY |
| SMA 50 | $0.052393 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.03578 | BUY |
| EMA 50 | $0.0743064 | SELL |
| EMA 100 | $0.046955 | SELL |
| EMA 200 | $0.023477 | BUY |
Osciladores de AI Rig Complex
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.56 | NEUTRAL |
| Stoch RSI (14) | 22.6 | NEUTRAL |
| Estocástico Rápido (14) | 18.21 | BUY |
| Índice de Canal de Materias Primas (20) | -67.09 | NEUTRAL |
| Índice Direccional Medio (14) | 10.84 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.003658 | SELL |
| Momentum (10) | -0.01 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -81.79 | BUY |
| Oscilador Ultimate (7, 14, 28) | 40.39 | NEUTRAL |
| VWMA (10) | 0.037147 | SELL |
| Promedio Móvil de Hull (9) | 0.0351023 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.007819 | NEUTRAL |
Predicción de precios de AI Rig Complex basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de AI Rig Complex
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de AI Rig Complex por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.050391 | $0.0708091 | $0.099498 | $0.139812 | $0.196459 | $0.276058 |
| Amazon.com acción | $0.074828 | $0.156133 | $0.32578 | $0.679761 | $1.41 | $2.95 |
| Apple acción | $0.050867 | $0.072151 | $0.102341 | $0.145163 | $0.2059032 | $0.292058 |
| Netflix acción | $0.056584 | $0.089281 | $0.140872 | $0.222274 | $0.350713 | $0.553371 |
| Google acción | $0.046441 | $0.06014 | $0.077882 | $0.100857 | $0.1306095 | $0.169138 |
| Tesla acción | $0.081296 | $0.184292 | $0.417777 | $0.947068 | $2.14 | $4.86 |
| Kodak acción | $0.026892 | $0.020166 | $0.015122 | $0.01134 | $0.0085041 | $0.006377 |
| Nokia acción | $0.023757 | $0.015738 | $0.010425 | $0.0069066 | $0.004575 | $0.00303 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de AI Rig Complex
Podría preguntarse cosas como: "¿Debo invertir en AI Rig Complex ahora?", "¿Debería comprar ARC hoy?", "¿Será AI Rig Complex una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de AI Rig Complex regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como AI Rig Complex, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de AI Rig Complex a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de AI Rig Complex es de $0.03586 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de AI Rig Complex
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de AI Rig Complex
basado en el historial de precios del último mes
Predicción de precios de AI Rig Complex basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si AI Rig Complex ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.036794 | $0.03775 | $0.038731 | $0.039738 |
| Si AI Rig Complex ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.037726 | $0.039687 | $0.04175 | $0.043921 |
| Si AI Rig Complex ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.040522 | $0.045789 | $0.05174 | $0.058464 |
| Si AI Rig Complex ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.045183 | $0.056928 | $0.071725 | $0.090369 |
| Si AI Rig Complex ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0545052 | $0.08284 | $0.1259064 | $0.19136 |
| Si AI Rig Complex ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.08247 | $0.189653 | $0.436138 | $1.00 |
| Si AI Rig Complex ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.129078 | $0.464595 | $1.67 | $6.01 |
Cuadro de preguntas
¿Es ARC una buena inversión?
La decisión de adquirir AI Rig Complex depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de AI Rig Complex ha experimentado un aumento de 1.5375% durante las últimas 24 horas, y AI Rig Complex ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en AI Rig Complex dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede AI Rig Complex subir?
Parece que el valor medio de AI Rig Complex podría potencialmente aumentar hasta $0.036985 para el final de este año. Mirando las perspectivas de AI Rig Complex en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.116274. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de AI Rig Complex la próxima semana?
Basado en nuestro nuevo pronóstico experimental de AI Rig Complex, el precio de AI Rig Complex aumentará en un 0.86% durante la próxima semana y alcanzará $0.036168 para el 13 de enero de 2026.
¿Cuál será el precio de AI Rig Complex el próximo mes?
Basado en nuestro nuevo pronóstico experimental de AI Rig Complex, el precio de AI Rig Complex disminuirá en un -11.62% durante el próximo mes y alcanzará $0.031695 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de AI Rig Complex este año en 2026?
Según nuestra predicción más reciente sobre el valor de AI Rig Complex en 2026, se anticipa que ARC fluctúe dentro del rango de $0.01239 y $0.036985. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de AI Rig Complex no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará AI Rig Complex en 5 años?
El futuro de AI Rig Complex parece estar en una tendencia alcista, con un precio máximo de $0.116274 proyectada después de un período de cinco años. Basado en el pronóstico de AI Rig Complex para 2030, el valor de AI Rig Complex podría potencialmente alcanzar su punto más alto de aproximadamente $0.116274, mientras que su punto más bajo se anticipa que esté alrededor de $0.040215.
¿Cuánto será AI Rig Complex en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de AI Rig Complex, se espera que el valor de ARC en 2026 crezca en un 3.13% hasta $0.036985 si ocurre lo mejor. El precio estará entre $0.036985 y $0.01239 durante 2026.
¿Cuánto será AI Rig Complex en 2027?
Según nuestra última simulación experimental para la predicción de precios de AI Rig Complex, el valor de ARC podría disminuir en un -12.62% hasta $0.031334 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.031334 y $0.011927 a lo largo del año.
¿Cuánto será AI Rig Complex en 2028?
Nuestro nuevo modelo experimental de predicción de precios de AI Rig Complex sugiere que el valor de ARC en 2028 podría aumentar en un 47.02% , alcanzando $0.052724 en el mejor escenario. Se espera que el precio oscile entre $0.052724 y $0.021526 durante el año.
¿Cuánto será AI Rig Complex en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de AI Rig Complex podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.155552 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.155552 y $0.047286.
¿Cuánto será AI Rig Complex en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de AI Rig Complex, se espera que el valor de ARC en 2030 aumente en un 224.23% , alcanzando $0.116274 en el mejor escenario. Se pronostica que el precio oscile entre $0.116274 y $0.040215 durante el transcurso de 2030.
¿Cuánto será AI Rig Complex en 2031?
Nuestra simulación experimental indica que el precio de AI Rig Complex podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.106145 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.106145 y $0.047547 durante el año.
¿Cuánto será AI Rig Complex en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de AI Rig Complex, ARC podría experimentar un 449.04% aumento en valor, alcanzando $0.196894 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.196894 y $0.072577 a lo largo del año.
¿Cuánto será AI Rig Complex en 2033?
Según nuestra predicción experimental de precios de AI Rig Complex, se anticipa que el valor de ARC aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.524455. A lo largo del año, el precio de ARC podría oscilar entre $0.524455 y $0.168653.
¿Cuánto será AI Rig Complex en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de AI Rig Complex sugieren que ARC podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.303736 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.303736 y $0.135589.
¿Cuánto será AI Rig Complex en 2035?
Basado en nuestra predicción experimental para el precio de AI Rig Complex, ARC podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.357877 en 2035. El rango de precios esperado para el año está entre $0.357877 y $0.1603084.
¿Cuánto será AI Rig Complex en 2036?
Nuestra reciente simulación de predicción de precios de AI Rig Complex sugiere que el valor de ARC podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.740439 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.740439 y $0.26536.
¿Cuánto será AI Rig Complex en 2037?
Según la simulación experimental, el valor de AI Rig Complex podría aumentar en un 4830.69% en 2037, con un máximo de $1.76 bajo condiciones favorables. Se espera que el precio caiga entre $1.76 y $0.689134 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de AI Rig Complex?
Los traders de AI Rig Complex utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de AI Rig Complex
Las medias móviles son herramientas populares para la predicción de precios de AI Rig Complex. Una media móvil simple (SMA) calcula el precio de cierre promedio de ARC durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ARC por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ARC.
¿Cómo leer gráficos de AI Rig Complex y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de AI Rig Complex en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ARC dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de AI Rig Complex?
La acción del precio de AI Rig Complex está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ARC. La capitalización de mercado de AI Rig Complex puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ARC, grandes poseedores de AI Rig Complex, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de AI Rig Complex.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


