XRP Classic Geleceği Fiyat Tahmini - XRPC
2026 yılına kadar XRP Classic fiyat tahmini $0.010061 olacak
| Yıl | Min. fiyat | Max. fiyat |
|---|---|---|
| 2026 | $0.00337 | $0.010061 |
| 2027 | $0.003244 | $0.008524 |
| 2028 | $0.005856 | $0.014343 |
| 2029 | $0.012864 | $0.042318 |
| 2030 | $0.01094 | $0.031632 |
| 2031 | $0.012935 | $0.028876 |
| 2032 | $0.019744 | $0.053565 |
| 2033 | $0.045882 | $0.142678 |
| 2034 | $0.036887 | $0.082631 |
| 2035 | $0.043611 | $0.09736 |
Yatırım Kârı Hesaplayıcı
Bugün XRP Classic’de $10,000.00 tutarında short açıp Apr 06, 2026 tarihinde kapatırsanız, tahminimize göre yaklaşık $3,954.64 kazanç elde edebilir ve önümüzdeki 90 gün içinde 39.55% getiri sağlayabilirsiniz.
XRP Classic için uzun vadeli fiyat tahmini: 2027, 2028, 2029, 2030, 2031, 2032 ve 2037
[
'name' => 'XRP Classic'
'name_with_ticker' => 'XRP Classic <small>XRPC</small>'
'name_lang' => 'XRP Classic'
'name_lang_with_ticker' => 'XRP Classic <small>XRPC</small>'
'name_with_lang' => 'XRP Classic'
'name_with_lang_with_ticker' => 'XRP Classic <small>XRPC</small>'
'image' => '/uploads/coins/xrp-classic.png?1666244123'
'price_for_sd' => 0.009756
'ticker' => 'XRPC'
'marketcap' => '$0'
'low24h' => '$0.009743'
'high24h' => '$0.012'
'volume24h' => '$5.15K'
'current_supply' => '0'
'max_supply' => '645.35B'
'algo' => 'Ethash'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009756'
'change_24h_pct' => '-18.7004%'
'ath_price' => '$0.0005842'
'ath_days' => 1703
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 May 2021'
'ath_pct' => '6,622.81%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.48105'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009839'
'next_week_prediction_price_date' => '13 Ocak 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008622'
'next_month_prediction_price_date' => '5 Şubat 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00337'
'current_year_max_price_prediction' => '$0.010061'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01094'
'grand_prediction_max_price' => '$0.031632'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0099411258057125
107 => 0.0099782423608424
108 => 0.010061867854768
109 => 0.009347297165161
110 => 0.0096681184261014
111 => 0.009856570860017
112 => 0.0090051359076282
113 => 0.0098397407285803
114 => 0.0093348580792312
115 => 0.0091634933249592
116 => 0.0093942133909968
117 => 0.0093043015568793
118 => 0.0092270006417052
119 => 0.0091838654028396
120 => 0.0093532807556932
121 => 0.0093453773269875
122 => 0.009068180927616
123 => 0.0087065895246066
124 => 0.0088279514682898
125 => 0.0087838595363754
126 => 0.0086240646871453
127 => 0.0087317471218227
128 => 0.0082575681763364
129 => 0.0074417679463041
130 => 0.0079807105669003
131 => 0.0079599618622641
201 => 0.0079494994245077
202 => 0.0083544999086058
203 => 0.0083155684570107
204 => 0.0082449074911477
205 => 0.0086227669430942
206 => 0.0084848431602069
207 => 0.0089098917601354
208 => 0.0091898562584681
209 => 0.0091188482057882
210 => 0.009382156169656
211 => 0.0088307474023556
212 => 0.0090139032761729
213 => 0.0090516514479235
214 => 0.0086181042161108
215 => 0.008321938123965
216 => 0.0083021872221595
217 => 0.0077886760325802
218 => 0.008062989565136
219 => 0.0083043741219198
220 => 0.0081887696514186
221 => 0.0081521727296433
222 => 0.0083391384660896
223 => 0.0083536673050647
224 => 0.0080224082367346
225 => 0.0080912874866509
226 => 0.0083785254090241
227 => 0.0080840498279836
228 => 0.0075119318763352
301 => 0.0073700387141768
302 => 0.0073511075507351
303 => 0.006966282041273
304 => 0.0073795206937608
305 => 0.0071991309478425
306 => 0.0077689799937974
307 => 0.0074434852749097
308 => 0.0074294538481365
309 => 0.007408243288606
310 => 0.0070770080756704
311 => 0.0071495275362074
312 => 0.0073905932680579
313 => 0.007476608236982
314 => 0.0074676361710233
315 => 0.0073894119144589
316 => 0.0074252225785411
317 => 0.0073098639522698
318 => 0.0072691284203513
319 => 0.0071405558764255
320 => 0.0069515897559265
321 => 0.0069778666539784
322 => 0.0066034753235948
323 => 0.0063994870563499
324 => 0.0063430257924987
325 => 0.0062675234307982
326 => 0.0063515539851569
327 => 0.0066024147199956
328 => 0.0062998234507063
329 => 0.0057810519438195
330 => 0.005812230995327
331 => 0.0058822810669209
401 => 0.0057517432219332
402 => 0.0056282001068632
403 => 0.0057356108220468
404 => 0.0055158004957349
405 => 0.0059088440946995
406 => 0.0058982133668394
407 => 0.0060447157148803
408 => 0.0061363266396411
409 => 0.0059251931174566
410 => 0.0058720936075929
411 => 0.0059023415016494
412 => 0.0054024111909121
413 => 0.0060038607428009
414 => 0.0060090621035013
415 => 0.0059645248953462
416 => 0.0062847782140554
417 => 0.0069606126060468
418 => 0.0067063365224042
419 => 0.0066078731372825
420 => 0.0064206941701898
421 => 0.0066700990302535
422 => 0.0066509486283225
423 => 0.0065643432482163
424 => 0.0065119640441028
425 => 0.006608474333716
426 => 0.0065000053511877
427 => 0.0064805213413973
428 => 0.0063624694408793
429 => 0.0063203302834136
430 => 0.0062891321288342
501 => 0.0062547860261096
502 => 0.0063305449702045
503 => 0.0061588652359664
504 => 0.0059518363064472
505 => 0.0059346240910417
506 => 0.0059821485310897
507 => 0.0059611225041469
508 => 0.005934523426514
509 => 0.0058837385434851
510 => 0.0058686717535378
511 => 0.0059176315114993
512 => 0.005862358799292
513 => 0.0059439166970143
514 => 0.0059217374616382
515 => 0.0057978460557684
516 => 0.0056434314935813
517 => 0.0056420568800823
518 => 0.0056087885159498
519 => 0.0055664162522949
520 => 0.0055546292578922
521 => 0.0057265649912069
522 => 0.0060824668135648
523 => 0.0060125947698272
524 => 0.0060630844822027
525 => 0.0063114438955853
526 => 0.0063903898846715
527 => 0.0063343558915564
528 => 0.0062576531057542
529 => 0.0062610276390562
530 => 0.0065231442776547
531 => 0.0065394921708852
601 => 0.0065807980230486
602 => 0.0066338877161111
603 => 0.0063433972958512
604 => 0.0062473455663854
605 => 0.0062018309282174
606 => 0.0060616634590417
607 => 0.0062128220574971
608 => 0.0061247484154337
609 => 0.0061366325587721
610 => 0.0061288929948325
611 => 0.0061331193200905
612 => 0.0059087342310033
613 => 0.0059904883641336
614 => 0.0058545562613296
615 => 0.0056725584347697
616 => 0.0056719483142384
617 => 0.0057164920244528
618 => 0.0056899956826217
619 => 0.0056186947080375
620 => 0.0056288226749461
621 => 0.0055400910276793
622 => 0.0056395963034626
623 => 0.005642449758725
624 => 0.0056041348074595
625 => 0.0057574364138856
626 => 0.0058202442071205
627 => 0.0057950244854117
628 => 0.0058184747242148
629 => 0.0060154982686978
630 => 0.0060476217031885
701 => 0.0060618888108343
702 => 0.0060427727766185
703 => 0.0058220759529267
704 => 0.0058318647955328
705 => 0.0057600407634885
706 => 0.005699357025041
707 => 0.0057017840563347
708 => 0.0057329833862304
709 => 0.0058692326897019
710 => 0.0061559613165223
711 => 0.0061668424583142
712 => 0.0061800307195914
713 => 0.0061263874330882
714 => 0.0061102081045818
715 => 0.0061315528151208
716 => 0.0062392330118796
717 => 0.0065162157128314
718 => 0.0064183115272624
719 => 0.0063387139004254
720 => 0.0064085424785276
721 => 0.0063977929162632
722 => 0.0063070557927751
723 => 0.0063045091039282
724 => 0.0061303555535413
725 => 0.0060659749512477
726 => 0.0060121737011666
727 => 0.0059534241405953
728 => 0.0059185954317855
729 => 0.0059721081578824
730 => 0.0059843471514847
731 => 0.0058673406406315
801 => 0.0058513930855561
802 => 0.0059469431280798
803 => 0.0059048951168298
804 => 0.0059481425391409
805 => 0.0059581763120867
806 => 0.005956560643545
807 => 0.0059126576906166
808 => 0.0059406401236083
809 => 0.0058744533276182
810 => 0.0058024851279144
811 => 0.0057565739002806
812 => 0.0057165102649295
813 => 0.0057387398983345
814 => 0.0056594953142165
815 => 0.0056341433768789
816 => 0.0059311603049354
817 => 0.0061505699031608
818 => 0.0061473796007069
819 => 0.0061279594549977
820 => 0.0060991050577066
821 => 0.0062371221329948
822 => 0.0061890397437029
823 => 0.0062240236993308
824 => 0.0062329285843101
825 => 0.0062598809891627
826 => 0.00626951415726
827 => 0.0062403960326045
828 => 0.0061426720497812
829 => 0.005899153175903
830 => 0.0057857944827461
831 => 0.0057483842258659
901 => 0.0057497440176513
902 => 0.0057122348898321
903 => 0.005723283009016
904 => 0.0057083928048506
905 => 0.0056801943604886
906 => 0.0057369987238563
907 => 0.0057435448975651
908 => 0.0057302860803935
909 => 0.0057334090118136
910 => 0.0056236316685476
911 => 0.0056319778015322
912 => 0.0055855054724983
913 => 0.0055767924710368
914 => 0.0054593144700477
915 => 0.005251185162587
916 => 0.0053665090025209
917 => 0.0052272140208666
918 => 0.0051744609006507
919 => 0.0054241859669594
920 => 0.0053991204965971
921 => 0.005356219307035
922 => 0.0052927595062813
923 => 0.0052692216488845
924 => 0.0051262130785217
925 => 0.0051177633692636
926 => 0.0051886422782916
927 => 0.0051559341005695
928 => 0.0051099994314922
929 => 0.0049436287164166
930 => 0.0047565729492208
1001 => 0.0047622189870419
1002 => 0.0048217179462905
1003 => 0.0049947191948339
1004 => 0.004927124614076
1005 => 0.0048780839701777
1006 => 0.0048689001317319
1007 => 0.0049838550975493
1008 => 0.0051465404579909
1009 => 0.0052228687892302
1010 => 0.0051472297310979
1011 => 0.0050603396538116
1012 => 0.0050656282502061
1013 => 0.0051008109126863
1014 => 0.0051045081130569
1015 => 0.0050479516051877
1016 => 0.0050638719308713
1017 => 0.0050396875003729
1018 => 0.0048912676950454
1019 => 0.0048885832514114
1020 => 0.0048521586375913
1021 => 0.0048510557147609
1022 => 0.0047890883601073
1023 => 0.0047804186988312
1024 => 0.0046573787550169
1025 => 0.0047383640186347
1026 => 0.0046840433557171
1027 => 0.0046021693037511
1028 => 0.004588054186332
1029 => 0.0045876298688579
1030 => 0.0046716962135239
1031 => 0.0047373816544515
1101 => 0.0046849882869052
1102 => 0.0046730593327177
1103 => 0.0048004293547514
1104 => 0.0047842203584441
1105 => 0.0047701834721788
1106 => 0.005131973768312
1107 => 0.0048455885180737
1108 => 0.0047207082026712
1109 => 0.0045661450982319
1110 => 0.0046164716244122
1111 => 0.0046270761629288
1112 => 0.004255379758846
1113 => 0.0041045825740014
1114 => 0.0040528346628348
1115 => 0.0040230530083503
1116 => 0.0040366248822734
1117 => 0.0039008897291676
1118 => 0.0039921059969069
1119 => 0.0038745708277242
1120 => 0.0038548656741182
1121 => 0.0040650331164304
1122 => 0.0040942766882477
1123 => 0.0039695145256093
1124 => 0.0040496320311826
1125 => 0.0040205803099451
1126 => 0.0038765856308535
1127 => 0.0038710860932653
1128 => 0.0037988346249549
1129 => 0.0036857750676901
1130 => 0.0036341038162272
1201 => 0.0036071929798349
1202 => 0.0036182969154121
1203 => 0.0036126824257983
1204 => 0.0035760440832807
1205 => 0.0036147824927041
1206 => 0.0035158218644433
1207 => 0.0034764149448899
1208 => 0.0034586157535612
1209 => 0.0033707825000185
1210 => 0.00351056426603
1211 => 0.0035381030348586
1212 => 0.0035656960635689
1213 => 0.0038058745399314
1214 => 0.0037938759019897
1215 => 0.0039023377454094
1216 => 0.0038981231176226
1217 => 0.003867188042914
1218 => 0.0037366780512909
1219 => 0.0037886970078349
1220 => 0.0036285907451331
1221 => 0.0037485532433169
1222 => 0.0036938073688995
1223 => 0.003730043608107
1224 => 0.003664887582722
1225 => 0.0037009476173964
1226 => 0.0035446334985688
1227 => 0.0033986695738066
1228 => 0.0034574097180835
1229 => 0.0035212669726628
1230 => 0.0036597257711166
1231 => 0.0035772608530178
]
'min_raw' => 0.0033707825000185
'max_raw' => 0.010061867854768
'avg_raw' => 0.0067163251773933
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00337'
'max' => '$0.010061'
'avg' => '$0.006716'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0063854674999815
'max_diff' => 0.00030561785476823
'year' => 2026
]
1 => [
'items' => [
101 => 0.0036069183559099
102 => 0.0035075706858274
103 => 0.0033025880651881
104 => 0.0033037482445598
105 => 0.0032722161341636
106 => 0.0032449677870178
107 => 0.0035867329408654
108 => 0.0035442290414769
109 => 0.0034765046405741
110 => 0.0035671564424432
111 => 0.0035911262176949
112 => 0.0035918086034988
113 => 0.0036579458180808
114 => 0.003693243261359
115 => 0.0036994645887246
116 => 0.0038035329248585
117 => 0.003838415258436
118 => 0.0039820906537092
119 => 0.0036902485199063
120 => 0.0036842382232127
121 => 0.0035684320991991
122 => 0.0034949860245273
123 => 0.0035734610147678
124 => 0.0036429791432163
125 => 0.003570592221231
126 => 0.003580044425071
127 => 0.0034828708965345
128 => 0.0035176058605468
129 => 0.0035475242908592
130 => 0.0035310050921648
131 => 0.0035062750521809
201 => 0.0036372794494579
202 => 0.0036298876679531
203 => 0.0037518819744754
204 => 0.0038469852603061
205 => 0.0040174273502606
206 => 0.003839562144046
207 => 0.0038330800289814
208 => 0.0038964437435021
209 => 0.0038384055577815
210 => 0.0038750836877468
211 => 0.0040115179364815
212 => 0.004014400577167
213 => 0.0039661126316123
214 => 0.0039631743057369
215 => 0.0039724485338929
216 => 0.004026767977878
217 => 0.0040077870950817
218 => 0.0040297522531907
219 => 0.0040572200197485
220 => 0.0041708383483233
221 => 0.0041982313426896
222 => 0.0041316805680186
223 => 0.004137689357834
224 => 0.0041127975412474
225 => 0.0040887523583183
226 => 0.0041428024180259
227 => 0.0042415799644981
228 => 0.0042409654745081
301 => 0.0042638799453285
302 => 0.0042781554708159
303 => 0.0042168744651007
304 => 0.0041769827837451
305 => 0.0041922797927504
306 => 0.0042167400432755
307 => 0.0041843476631722
308 => 0.003984406887564
309 => 0.0040450561466173
310 => 0.0040349611443136
311 => 0.0040205846334389
312 => 0.0040815679324038
313 => 0.0040756859444489
314 => 0.0038994975689842
315 => 0.0039107765771396
316 => 0.0039001834828273
317 => 0.0039344119376935
318 => 0.0038365571088905
319 => 0.003866656595168
320 => 0.0038855347107961
321 => 0.0038966540659295
322 => 0.0039368248012848
323 => 0.0039321112291397
324 => 0.0039365317990221
325 => 0.003996094394873
326 => 0.0042973415652721
327 => 0.0043137377840925
328 => 0.0042329968059855
329 => 0.0042652512341939
330 => 0.0042033297853019
331 => 0.0042448980687808
401 => 0.0042733380326171
402 => 0.0041448233047313
403 => 0.0041372134965996
404 => 0.0040750364758613
405 => 0.0041084468849196
406 => 0.0040552885218144
407 => 0.0040683317247198
408 => 0.0040318617923103
409 => 0.0040975004095563
410 => 0.0041708945828472
411 => 0.0041894368494443
412 => 0.0041406601289752
413 => 0.004105342568813
414 => 0.0040433365674959
415 => 0.0041464539295802
416 => 0.0041766085886983
417 => 0.0041462955399931
418 => 0.0041392713442549
419 => 0.0041259605060234
420 => 0.0041420953015101
421 => 0.0041764443599487
422 => 0.0041602459783165
423 => 0.0041709452947633
424 => 0.0041301705335554
425 => 0.0042168947516634
426 => 0.0043546336813387
427 => 0.0043550765345202
428 => 0.0043388780655728
429 => 0.0043322500010803
430 => 0.0043488706132257
501 => 0.0043578866135014
502 => 0.0044116346254806
503 => 0.0044693083837495
504 => 0.0047384466485583
505 => 0.0046628737007742
506 => 0.0049016691804196
507 => 0.0050905254011069
508 => 0.0051471551240094
509 => 0.0050950584435734
510 => 0.0049168385140096
511 => 0.0049080941940221
512 => 0.0051744300113039
513 => 0.0050991779439686
514 => 0.0050902269500091
515 => 0.0049950034972236
516 => 0.0050512923514739
517 => 0.0050389811533417
518 => 0.0050195473248056
519 => 0.0051269425375996
520 => 0.0053279767887133
521 => 0.00529664371539
522 => 0.0052732550296535
523 => 0.0051707726171006
524 => 0.005232489919733
525 => 0.0052105135703826
526 => 0.0053049379137276
527 => 0.0052490030244854
528 => 0.0050986078355461
529 => 0.0051225587650937
530 => 0.0051189386302751
531 => 0.0051934407483151
601 => 0.0051710770617358
602 => 0.0051145717615462
603 => 0.0053272896754982
604 => 0.0053134769573654
605 => 0.0053330602336508
606 => 0.0053416813975045
607 => 0.005471159043217
608 => 0.0055242018918429
609 => 0.0055362435471268
610 => 0.0055866301508402
611 => 0.0055349898825252
612 => 0.0057415877746725
613 => 0.0058789633176291
614 => 0.0060385320800541
615 => 0.006271704929997
616 => 0.006359380078545
617 => 0.0063435423477096
618 => 0.0065203313413713
619 => 0.0068380172331829
620 => 0.006407755749432
621 => 0.0068608221365782
622 => 0.0067173865493107
623 => 0.0063773033521954
624 => 0.0063554060036187
625 => 0.0065857142931523
626 => 0.0070965159129863
627 => 0.0069685659006819
628 => 0.0070967251933696
629 => 0.0069472205708678
630 => 0.0069397964062367
701 => 0.0070894640875553
702 => 0.0074391707829168
703 => 0.00727303824051
704 => 0.0070348465035992
705 => 0.0072107235754603
706 => 0.0070583625791596
707 => 0.0067150506113366
708 => 0.0069684680597189
709 => 0.006799015028899
710 => 0.0068484704319109
711 => 0.0072046354984581
712 => 0.0071617807753553
713 => 0.0072172387552909
714 => 0.0071193568722926
715 => 0.007027919759016
716 => 0.006857245596876
717 => 0.0068067173916008
718 => 0.0068206815697245
719 => 0.0068067104716477
720 => 0.0067112198465069
721 => 0.0066905986550995
722 => 0.0066562290993186
723 => 0.0066668816618069
724 => 0.0066022568417708
725 => 0.0067242172293481
726 => 0.0067468541519937
727 => 0.0068356067514202
728 => 0.0068448213407181
729 => 0.0070919960668067
730 => 0.0069558563812796
731 => 0.0070471906360661
801 => 0.0070390208406466
802 => 0.0063846739862994
803 => 0.0064748372094773
804 => 0.0066151028899639
805 => 0.0065519133910303
806 => 0.0064625782236038
807 => 0.0063904352860582
808 => 0.0062811313586825
809 => 0.0064349745374678
810 => 0.0066372619581722
811 => 0.0068499516835322
812 => 0.0071054844525694
813 => 0.0070484525132496
814 => 0.00684517467616
815 => 0.0068542935714372
816 => 0.0069106629938884
817 => 0.0068376594701121
818 => 0.0068161293057523
819 => 0.0069077050799235
820 => 0.0069083357119511
821 => 0.0068243363350758
822 => 0.0067309863994027
823 => 0.0067305952597637
824 => 0.0067139845403641
825 => 0.0069501755809481
826 => 0.0070800567716616
827 => 0.0070949474408629
828 => 0.0070790545109817
829 => 0.0070851710689251
830 => 0.0070095960657857
831 => 0.0071823381118915
901 => 0.0073408632958159
902 => 0.0072983751601276
903 => 0.0072346794046864
904 => 0.0071839426674742
905 => 0.0072864231972771
906 => 0.0072818599006043
907 => 0.0073394787166287
908 => 0.0073368647943114
909 => 0.0073174897536357
910 => 0.0072983758520713
911 => 0.0073741603112366
912 => 0.0073523356040582
913 => 0.0073304769970813
914 => 0.007286636214404
915 => 0.0072925949048882
916 => 0.0072289101474172
917 => 0.0071994466645949
918 => 0.0067563865757277
919 => 0.0066379864425764
920 => 0.0066752375347227
921 => 0.0066875015614815
922 => 0.0066359736718001
923 => 0.0067098514291744
924 => 0.0066983376589435
925 => 0.0067431310035816
926 => 0.0067151460665527
927 => 0.0067162945781299
928 => 0.0067985923109142
929 => 0.0068224836928611
930 => 0.0068103323431758
1001 => 0.0068188427319715
1002 => 0.0070149610497572
1003 => 0.0069870792964788
1004 => 0.0069722676707537
1005 => 0.006976370592304
1006 => 0.0070264830273224
1007 => 0.00704051177309
1008 => 0.0069810709914901
1009 => 0.0070091036077157
1010 => 0.0071284629297356
1011 => 0.0071702319372901
1012 => 0.0073035385591428
1013 => 0.0072469075368435
1014 => 0.0073508562292071
1015 => 0.0076703590708121
1016 => 0.0079256000486012
1017 => 0.0076908698971469
1018 => 0.008159587448114
1019 => 0.0085245512950813
1020 => 0.0085105433747556
1021 => 0.008446903486271
1022 => 0.0080314018495646
1023 => 0.0076490510486871
1024 => 0.0079689037290937
1025 => 0.0079697190993544
1026 => 0.0079422434704441
1027 => 0.007771594699006
1028 => 0.0079363052631007
1029 => 0.0079493793895377
1030 => 0.0079420613554238
1031 => 0.0078112253424694
1101 => 0.0076114629332251
1102 => 0.0076504960298278
1103 => 0.0077144330383166
1104 => 0.00759338694259
1105 => 0.0075547053805638
1106 => 0.0076266217638388
1107 => 0.0078583513351244
1108 => 0.0078145442019909
1109 => 0.0078134002207063
1110 => 0.0080008257133671
1111 => 0.0078666695095748
1112 => 0.0076509883621772
1113 => 0.0075965260279745
1114 => 0.0074032214317792
1115 => 0.0075367376048986
1116 => 0.0075415426142749
1117 => 0.0074684171707596
1118 => 0.0076569220889011
1119 => 0.0076551849828948
1120 => 0.0078341423474158
1121 => 0.0081762416150634
1122 => 0.0080750660279374
1123 => 0.0079574098279825
1124 => 0.0079702023191702
1125 => 0.0081105043729401
1126 => 0.0080256745484464
1127 => 0.0080561799447889
1128 => 0.0081104581993692
1129 => 0.0081432056180107
1130 => 0.0079654904695818
1201 => 0.0079240565673849
1202 => 0.0078392973448134
1203 => 0.0078171852457504
1204 => 0.0078862198639756
1205 => 0.0078680316811023
1206 => 0.0075411387718428
1207 => 0.0075069766440102
1208 => 0.0075080243476985
1209 => 0.0074221220529428
1210 => 0.0072911004345273
1211 => 0.0076354174248289
1212 => 0.0076077639517945
1213 => 0.0075772366577733
1214 => 0.0075809760771046
1215 => 0.0077304324126089
1216 => 0.0076437401902905
1217 => 0.0078742256718998
1218 => 0.0078268447859087
1219 => 0.0077782487589764
1220 => 0.0077715313077831
1221 => 0.0077528259834324
1222 => 0.007688678466289
1223 => 0.0076112164846702
1224 => 0.0075600693747636
1225 => 0.0069737643744643
1226 => 0.0070825791721405
1227 => 0.0072077606780862
1228 => 0.0072509728323052
1229 => 0.0071770554523235
1230 => 0.0076915971749824
1231 => 0.0077856089059596
]
'min_raw' => 0.0032449677870178
'max_raw' => 0.0085245512950813
'avg_raw' => 0.0058847595410495
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003244'
'max' => '$0.008524'
'avg' => '$0.005884'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001258147130007
'max_diff' => -0.001537316559687
'year' => 2027
]
2 => [
'items' => [
101 => 0.0075008412405962
102 => 0.0074475728373939
103 => 0.0076950894426282
104 => 0.0075458066719975
105 => 0.0076130286944718
106 => 0.0074677314503628
107 => 0.007762964232952
108 => 0.0077607150537989
109 => 0.0076458628332369
110 => 0.0077429351435818
111 => 0.0077260664408272
112 => 0.0075963985666812
113 => 0.0077670749358469
114 => 0.0077671595891966
115 => 0.0076566168240083
116 => 0.0075275270751912
117 => 0.0075044488770665
118 => 0.0074870625548992
119 => 0.0076087527250196
120 => 0.0077178597510342
121 => 0.0079208808765218
122 => 0.0079719252111324
123 => 0.0081711546473311
124 => 0.00805252321838
125 => 0.0081051109942998
126 => 0.0081622024640559
127 => 0.0081895742141263
128 => 0.0081449734162357
129 => 0.0084544587367599
130 => 0.0084805887801974
131 => 0.0084893499577379
201 => 0.0083849932489567
202 => 0.0084776864313463
203 => 0.0084343183609817
204 => 0.0085471500320733
205 => 0.0085648434788075
206 => 0.0085498577588862
207 => 0.0085554739381518
208 => 0.0082913828140361
209 => 0.008277688296059
210 => 0.0080909625717231
211 => 0.0081670546845969
212 => 0.0080248041267693
213 => 0.0080699132439995
214 => 0.0080897969130592
215 => 0.0080794108127307
216 => 0.0081713568184911
217 => 0.0080931839302668
218 => 0.0078868728254301
219 => 0.007680505511271
220 => 0.0076779147377449
221 => 0.0076235818666124
222 => 0.0075843091523453
223 => 0.0075918744703876
224 => 0.0076185356379283
225 => 0.0075827595568205
226 => 0.0075903941976182
227 => 0.0077171801042055
228 => 0.0077426061135759
229 => 0.0076561985991522
301 => 0.0073092599601963
302 => 0.0072241203479669
303 => 0.0072853170128455
304 => 0.0072560689486035
305 => 0.0058562139544851
306 => 0.0061850891210106
307 => 0.0059896826646065
308 => 0.0060797349499363
309 => 0.0058802755582043
310 => 0.0059754680345012
311 => 0.0059578894600018
312 => 0.0064867109956511
313 => 0.0064784541747422
314 => 0.0064824062779701
315 => 0.006293762093754
316 => 0.006594277401458
317 => 0.0067423220482139
318 => 0.0067149229241801
319 => 0.0067218186934085
320 => 0.0066033265312887
321 => 0.0064835535411104
322 => 0.0063507068620717
323 => 0.0065975195713799
324 => 0.0065700782113383
325 => 0.006633018818184
326 => 0.0067930945027072
327 => 0.0068166662553217
328 => 0.0068483469298766
329 => 0.0068369916632326
330 => 0.0071075201833324
331 => 0.0070747573945437
401 => 0.0071537062890269
402 => 0.0069913024232079
403 => 0.0068075270335172
404 => 0.0068424567270273
405 => 0.0068390927166554
406 => 0.0067962650035901
407 => 0.0067576020591911
408 => 0.0066932391499839
409 => 0.0068968929186338
410 => 0.0068886249475421
411 => 0.0070224737890522
412 => 0.006998814706177
413 => 0.0068408135603768
414 => 0.0068464566022093
415 => 0.006884408770486
416 => 0.007015761658222
417 => 0.0070547561384886
418 => 0.0070366923415677
419 => 0.0070794480090144
420 => 0.0071132403452753
421 => 0.0070836918061728
422 => 0.0075020368075094
423 => 0.0073283107960427
424 => 0.0074129836452538
425 => 0.0074331776208692
426 => 0.0073814511769638
427 => 0.0073926687904618
428 => 0.0074096604182946
429 => 0.0075128302551932
430 => 0.0077835777596479
501 => 0.0079034899863304
502 => 0.0082642518366695
503 => 0.0078935329451632
504 => 0.0078715360203285
505 => 0.0079365201235387
506 => 0.0081483255202079
507 => 0.008319973900339
508 => 0.0083769195706611
509 => 0.0083844458810647
510 => 0.0084912797442656
511 => 0.0085525149223187
512 => 0.0084783073032634
513 => 0.0084154241159757
514 => 0.0081901843444595
515 => 0.00821625646132
516 => 0.0083958674920149
517 => 0.0086495786519082
518 => 0.0088672892212439
519 => 0.0087910545678419
520 => 0.0093726711600209
521 => 0.0094303360694448
522 => 0.0094223686434921
523 => 0.0095537378888487
524 => 0.0092929966896975
525 => 0.0091815247754375
526 => 0.0084290201748218
527 => 0.008640443273331
528 => 0.0089477591634574
529 => 0.0089070847530238
530 => 0.0086839037390367
531 => 0.0088671199184316
601 => 0.008806542919824
602 => 0.0087587633276802
603 => 0.0089776509018207
604 => 0.0087369750226473
605 => 0.0089453582374552
606 => 0.0086781046090157
607 => 0.0087914028013171
608 => 0.0087270892677499
609 => 0.0087687080059381
610 => 0.0085254057129002
611 => 0.0086566857243942
612 => 0.0085199440328135
613 => 0.0085198791994474
614 => 0.0085168606190268
615 => 0.008677736612766
616 => 0.0086829827731462
617 => 0.0085640951707028
618 => 0.0085469616098173
619 => 0.0086103133644738
620 => 0.0085361450516219
621 => 0.0085708479383955
622 => 0.0085371961667099
623 => 0.0085296204440887
624 => 0.0084692557973401
625 => 0.0084432490477603
626 => 0.008453446964382
627 => 0.008418636217566
628 => 0.0083976614834496
629 => 0.0085126882164847
630 => 0.0084512340731892
701 => 0.0085032694876482
702 => 0.0084439685654794
703 => 0.0082384057330604
704 => 0.0081201843743487
705 => 0.0077318952395939
706 => 0.0078420135565392
707 => 0.0079150221145996
708 => 0.0078908927865962
709 => 0.0079427319199579
710 => 0.0079459144217263
711 => 0.007929060991033
712 => 0.0079095468773483
713 => 0.0079000484860048
714 => 0.0079708417131934
715 => 0.0080119395643668
716 => 0.0079223495001294
717 => 0.0079013598015768
718 => 0.0079919403029238
719 => 0.0080471943564188
720 => 0.0084551592428552
721 => 0.0084249358863588
722 => 0.0085007905801306
723 => 0.0084922505056971
724 => 0.0085717583093704
725 => 0.0087017199658713
726 => 0.0084374715803542
727 => 0.0084833359630583
728 => 0.0084720910755825
729 => 0.0085948598084752
730 => 0.0085952430790586
731 => 0.0085216370909364
801 => 0.0085615400912182
802 => 0.0085392673311425
803 => 0.0085795172189434
804 => 0.0084245322350064
805 => 0.0086132872158465
806 => 0.0087202991268806
807 => 0.0087217849873691
808 => 0.0087725077839002
809 => 0.008824045082842
810 => 0.0089229664402082
811 => 0.0088212862198748
812 => 0.0086383734018649
813 => 0.0086515791165204
814 => 0.0085443373982464
815 => 0.0085461401509054
816 => 0.0085365169159274
817 => 0.0085653969684995
818 => 0.0084308697824798
819 => 0.0084624430441495
820 => 0.0084182402929191
821 => 0.0084832398749098
822 => 0.0084133110695036
823 => 0.0084720856529573
824 => 0.0084974508147676
825 => 0.0085910488079206
826 => 0.0083994865698128
827 => 0.0080088781986875
828 => 0.0080909888139668
829 => 0.0079695407643191
830 => 0.0079807812436993
831 => 0.0080034888009564
901 => 0.0079298861784358
902 => 0.0079439272393276
903 => 0.0079434255938271
904 => 0.0079391026839148
905 => 0.007919955799129
906 => 0.007892189028094
907 => 0.0080028032977362
908 => 0.0080215988176089
909 => 0.0080633789300137
910 => 0.0081876882048094
911 => 0.0081752667768427
912 => 0.0081955266412164
913 => 0.0081512994710429
914 => 0.0079828328152771
915 => 0.0079919813652027
916 => 0.0078778988010347
917 => 0.0080604615823554
918 => 0.0080172283060277
919 => 0.0079893555315301
920 => 0.007981750186769
921 => 0.0081063676002127
922 => 0.0081436550834537
923 => 0.0081204200261679
924 => 0.0080727642457996
925 => 0.0081642774322734
926 => 0.0081887625003423
927 => 0.0081942438041084
928 => 0.0083563876246268
929 => 0.0082033058424822
930 => 0.0082401541489465
1001 => 0.0085276341171676
1002 => 0.0082669294555149
1003 => 0.0084050305292001
1004 => 0.0083982712002865
1005 => 0.0084689190364983
1006 => 0.0083924760156613
1007 => 0.0083934236185207
1008 => 0.0084561541109778
1009 => 0.0083680604478257
1010 => 0.0083462472179653
1011 => 0.0083161123971424
1012 => 0.0083819106759488
1013 => 0.0084213537682931
1014 => 0.0087392361248285
1015 => 0.008944602624347
1016 => 0.0089356871229873
1017 => 0.0090171581162959
1018 => 0.0089804546876216
1019 => 0.0088619296345571
1020 => 0.0090642374475478
1021 => 0.0090002187905991
1022 => 0.0090054964108953
1023 => 0.0090052999776043
1024 => 0.009047866787867
1025 => 0.009017704301605
1026 => 0.0089582509450669
1027 => 0.0089977188577088
1028 => 0.0091149244482186
1029 => 0.0094787341974675
1030 => 0.0096823269529853
1031 => 0.0094664776579467
1101 => 0.0096153676113271
1102 => 0.0095260866942137
1103 => 0.009509861695697
1104 => 0.009603375589301
1105 => 0.0096970531665966
1106 => 0.0096910863099021
1107 => 0.0096230811991824
1108 => 0.0095846668377026
1109 => 0.0098755532525827
1110 => 0.010089873407946
1111 => 0.01007525821017
1112 => 0.010139764940033
1113 => 0.010329158694028
1114 => 0.010346474485334
1115 => 0.010344293093628
1116 => 0.010301374098162
1117 => 0.010487856844857
1118 => 0.010643424033001
1119 => 0.01029143959076
1120 => 0.010425470658551
1121 => 0.010485641523093
1122 => 0.010573990204133
1123 => 0.010723049238005
1124 => 0.010884966884746
1125 => 0.010907863815332
1126 => 0.010891617347362
1127 => 0.010784828306757
1128 => 0.0109620005279
1129 => 0.011065783859846
1130 => 0.01112758445898
1201 => 0.011284300495746
1202 => 0.010486013117868
1203 => 0.0099209456343493
1204 => 0.0098327021871244
1205 => 0.010012148707058
1206 => 0.010059467323306
1207 => 0.010040393248429
1208 => 0.0094043584220403
1209 => 0.0098293535953939
1210 => 0.010286612667313
1211 => 0.010304177850512
1212 => 0.010533091302751
1213 => 0.010607634906279
1214 => 0.010791940239704
1215 => 0.010780411890917
1216 => 0.010825287306668
1217 => 0.010814971225721
1218 => 0.011156358045823
1219 => 0.011532958404829
1220 => 0.011519917931913
1221 => 0.011465777174572
1222 => 0.011546185431594
1223 => 0.011934877361035
1224 => 0.011899092836833
1225 => 0.011933854453977
1226 => 0.012392144144506
1227 => 0.012987985933141
1228 => 0.012711157600783
1229 => 0.013311795426794
1230 => 0.013689865099826
1231 => 0.014343697506199
]
'min_raw' => 0.0058562139544851
'max_raw' => 0.014343697506199
'avg_raw' => 0.010099955730342
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005856'
'max' => '$0.014343'
'avg' => '$0.010099'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0026112461674673
'max_diff' => 0.0058191462111181
'year' => 2028
]
3 => [
'items' => [
101 => 0.014261834468729
102 => 0.014516366626486
103 => 0.014115282546325
104 => 0.013194312425809
105 => 0.013048565378905
106 => 0.013340354657709
107 => 0.014057690127268
108 => 0.013317763210993
109 => 0.013467449462472
110 => 0.013424339811976
111 => 0.013422042681906
112 => 0.013509714793602
113 => 0.013382541822917
114 => 0.012864416262366
115 => 0.013101870153433
116 => 0.013010177802619
117 => 0.013111917301965
118 => 0.01366096341937
119 => 0.01341821704324
120 => 0.013162503455102
121 => 0.013483225042015
122 => 0.01389161383405
123 => 0.01386605759739
124 => 0.01381646781659
125 => 0.014096002814519
126 => 0.014557712735028
127 => 0.01468251107124
128 => 0.014774634651643
129 => 0.01478733693694
130 => 0.014918178369924
131 => 0.014214611008482
201 => 0.015331190479982
202 => 0.015523992909825
203 => 0.015487754043856
204 => 0.01570204583026
205 => 0.015638995750642
206 => 0.01554764607753
207 => 0.01588734414015
208 => 0.015497907723576
209 => 0.014945151758932
210 => 0.014641898904454
211 => 0.01504124672594
212 => 0.015285114505203
213 => 0.015446295594392
214 => 0.015495068894593
215 => 0.014269226939951
216 => 0.013608566114711
217 => 0.014032042129198
218 => 0.014548712093626
219 => 0.014211740880742
220 => 0.014224949514316
221 => 0.013744517119221
222 => 0.014591219700178
223 => 0.014467862256022
224 => 0.015107840894519
225 => 0.014955104856292
226 => 0.015476982592158
227 => 0.015339554694277
228 => 0.015910010214891
301 => 0.01613758036653
302 => 0.016519706069599
303 => 0.016800799292308
304 => 0.016965862609139
305 => 0.016955952826733
306 => 0.017610015922236
307 => 0.017224337766042
308 => 0.0167398351045
309 => 0.016731071979939
310 => 0.016982002773808
311 => 0.017507884878254
312 => 0.017644238456664
313 => 0.017720441505297
314 => 0.017603733883668
315 => 0.017185107886922
316 => 0.017004347304009
317 => 0.017158360557789
318 => 0.016970015582926
319 => 0.017295151849806
320 => 0.017741633389592
321 => 0.017649436717205
322 => 0.017957636370096
323 => 0.018276590587288
324 => 0.018732709443003
325 => 0.01885195580192
326 => 0.019049065498675
327 => 0.019251956123799
328 => 0.019317119124534
329 => 0.019441535511827
330 => 0.019440879776052
331 => 0.019815816933349
401 => 0.020229384228684
402 => 0.020385496308569
403 => 0.020744467428192
404 => 0.020129741965685
405 => 0.020596018290454
406 => 0.021016611207049
407 => 0.020515162992874
408 => 0.021206292533665
409 => 0.0212331275276
410 => 0.021638304076057
411 => 0.021227580021762
412 => 0.020983693389399
413 => 0.021687784958718
414 => 0.022028472690435
415 => 0.021925854773033
416 => 0.021144927354734
417 => 0.020690394101731
418 => 0.019500792905706
419 => 0.020909926909345
420 => 0.021596274977515
421 => 0.021143149879046
422 => 0.021371679822001
423 => 0.022618465089678
424 => 0.023093160196241
425 => 0.022994426932445
426 => 0.023011111228739
427 => 0.023267248091915
428 => 0.024403100000384
429 => 0.023722471207988
430 => 0.024242786417101
501 => 0.024518759727878
502 => 0.024775099119087
503 => 0.024145610591173
504 => 0.02332665526538
505 => 0.023067257736296
506 => 0.021098095518123
507 => 0.020995592073029
508 => 0.020938053783126
509 => 0.020575283004237
510 => 0.02029024454331
511 => 0.020063571376381
512 => 0.019468713296021
513 => 0.019669460435901
514 => 0.018721380812338
515 => 0.019327928557615
516 => 0.017814770586226
517 => 0.01907497350853
518 => 0.018389102352316
519 => 0.018849646387268
520 => 0.018848039592516
521 => 0.01800003200855
522 => 0.017510918931585
523 => 0.017822600820793
524 => 0.018156748547363
525 => 0.018210962891791
526 => 0.018644194141437
527 => 0.018765099670938
528 => 0.018398750272009
529 => 0.017783413750584
530 => 0.017926342390179
531 => 0.017508022487265
601 => 0.016774932947851
602 => 0.017301450653574
603 => 0.017481226947657
604 => 0.017560626400753
605 => 0.016839717034642
606 => 0.016613191660106
607 => 0.016492591451435
608 => 0.017690353404211
609 => 0.017755969507779
610 => 0.017420268244744
611 => 0.018937669786162
612 => 0.01859423508399
613 => 0.018977935789861
614 => 0.017913373114243
615 => 0.017954040842075
616 => 0.017450059811064
617 => 0.017732255512406
618 => 0.01753280868629
619 => 0.01770945688845
620 => 0.017815339092477
621 => 0.01831923742516
622 => 0.019080727218067
623 => 0.018243971817786
624 => 0.017879385507325
625 => 0.018105572803824
626 => 0.018707939381012
627 => 0.019620555580031
628 => 0.019080268422099
629 => 0.019320038688118
630 => 0.019372417824607
701 => 0.018974030076866
702 => 0.019635244704545
703 => 0.019989594995216
704 => 0.020353085070983
705 => 0.020668693319012
706 => 0.020207899141404
707 => 0.020701014963695
708 => 0.020303650657589
709 => 0.019947173796244
710 => 0.019947714424496
711 => 0.019724091282079
712 => 0.019290793265316
713 => 0.019210886463041
714 => 0.019626571739593
715 => 0.019959911965846
716 => 0.019987367463473
717 => 0.020171921740366
718 => 0.02028113906037
719 => 0.021351617270166
720 => 0.021782172461606
721 => 0.022308647199706
722 => 0.022513738780686
723 => 0.023130990910036
724 => 0.022632509684819
725 => 0.02252466013615
726 => 0.02102740837198
727 => 0.021272583264485
728 => 0.021665131923244
729 => 0.021033881354778
730 => 0.021434264546618
731 => 0.021513308669963
801 => 0.021012431702013
802 => 0.021279971732211
803 => 0.020569464732095
804 => 0.019096214329078
805 => 0.019636884853394
806 => 0.020035000347022
807 => 0.019466840450329
808 => 0.020485245074326
809 => 0.019890314117126
810 => 0.019701749565415
811 => 0.018966092021076
812 => 0.019313294063949
813 => 0.019782889798388
814 => 0.019492734230868
815 => 0.020094850600549
816 => 0.020947607958588
817 => 0.021555333634505
818 => 0.021601987265742
819 => 0.021211260370585
820 => 0.021837402713659
821 => 0.021841963477053
822 => 0.021135672356199
823 => 0.020703072977322
824 => 0.020604785488244
825 => 0.020850326906358
826 => 0.021148459517394
827 => 0.021618531550757
828 => 0.021902586235545
829 => 0.022643250202507
830 => 0.022843652635467
831 => 0.023063834151069
901 => 0.023358064557378
902 => 0.023711363599279
903 => 0.022938365408925
904 => 0.022969078068076
905 => 0.022249272856107
906 => 0.021480057756608
907 => 0.022063796133112
908 => 0.022826956408928
909 => 0.022651886598439
910 => 0.022632187668407
911 => 0.022665315804693
912 => 0.022533318884829
913 => 0.021936301708321
914 => 0.021636483419803
915 => 0.022023325503794
916 => 0.022228914855074
917 => 0.022547766009635
918 => 0.022508460874704
919 => 0.023329787206738
920 => 0.023648929783748
921 => 0.023567279455668
922 => 0.02358230508106
923 => 0.024160097472499
924 => 0.024802721443848
925 => 0.025404623594717
926 => 0.026016904314881
927 => 0.025278776009001
928 => 0.024903999976699
929 => 0.025290673177537
930 => 0.025085498934353
1001 => 0.026264490994323
1002 => 0.026346121846533
1003 => 0.027525028651957
1004 => 0.028643951591916
1005 => 0.027941176140914
1006 => 0.028603861737507
1007 => 0.029320610239772
1008 => 0.030703334388894
1009 => 0.030237681540292
1010 => 0.029880998755973
1011 => 0.02954393524827
1012 => 0.030245310900474
1013 => 0.031147619472285
1014 => 0.031341968096449
1015 => 0.031656887114484
1016 => 0.031325788273486
1017 => 0.031724560358127
1018 => 0.033132401046241
1019 => 0.032751990064959
1020 => 0.032211745317422
1021 => 0.033323100330231
1022 => 0.033725295389084
1023 => 0.036548110943298
1024 => 0.040112032185188
1025 => 0.038636545389077
1026 => 0.037720663121069
1027 => 0.037935917179069
1028 => 0.03923734057026
1029 => 0.039655316458396
1030 => 0.038519113909512
1031 => 0.038920439858003
1101 => 0.041131785291687
1102 => 0.042318101168403
1103 => 0.040706924864344
1104 => 0.036261753341625
1105 => 0.032163102188852
1106 => 0.033250249039234
1107 => 0.033127000324495
1108 => 0.035502815122027
1109 => 0.032742917388866
1110 => 0.03278938698854
1111 => 0.035214331120054
1112 => 0.034567397599833
1113 => 0.03351944815006
1114 => 0.032170753379566
1115 => 0.029677566357139
1116 => 0.027469281083712
1117 => 0.031800237042628
1118 => 0.031613478346347
1119 => 0.031343024078044
1120 => 0.031944890785944
1121 => 0.034867384676658
1122 => 0.034800011733287
1123 => 0.034371419441542
1124 => 0.034696502917391
1125 => 0.033462459444988
1126 => 0.033780500546474
1127 => 0.032162452941569
1128 => 0.032893878034623
1129 => 0.033517199721199
1130 => 0.033642340778215
1201 => 0.033924289969531
1202 => 0.031515064999788
1203 => 0.032596736280074
1204 => 0.033232116818349
1205 => 0.03036144443108
1206 => 0.033175372855168
1207 => 0.031473125753106
1208 => 0.030895357519773
1209 => 0.03167324633078
1210 => 0.031370102304609
1211 => 0.031109476872122
1212 => 0.03096404340268
1213 => 0.031535239093028
1214 => 0.031508592131347
1215 => 0.030574005117632
1216 => 0.02935487445688
1217 => 0.029764054723228
1218 => 0.029615395696378
1219 => 0.029076636205679
1220 => 0.029439695052341
1221 => 0.027840967631518
1222 => 0.02509044019861
1223 => 0.026907522871723
1224 => 0.026837567165413
1225 => 0.026802292326054
1226 => 0.028167779734421
1227 => 0.028036519627261
1228 => 0.027798281247463
1229 => 0.029072260771005
1230 => 0.02860724110747
1231 => 0.030040322138074
]
'min_raw' => 0.012864416262366
'max_raw' => 0.042318101168403
'avg_raw' => 0.027591258715384
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012864'
'max' => '$0.042318'
'avg' => '$0.027591'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0070082023078805
'max_diff' => 0.027974403662203
'year' => 2029
]
4 => [
'items' => [
101 => 0.0309842419907
102 => 0.030744833383466
103 => 0.031632594567221
104 => 0.029773481410137
105 => 0.030391004226246
106 => 0.030518274822797
107 => 0.029056540061439
108 => 0.028057995404114
109 => 0.027991403859712
110 => 0.026260065031839
111 => 0.02718493225881
112 => 0.027998777144939
113 => 0.027609008601398
114 => 0.027485619524517
115 => 0.028115987558476
116 => 0.028164972553452
117 => 0.027048109476807
118 => 0.027280340676896
119 => 0.028248783386488
120 => 0.027255938405382
121 => 0.025327002787399
122 => 0.024848600084518
123 => 0.024784772345243
124 => 0.023487306272432
125 => 0.024880569240696
126 => 0.024272372617923
127 => 0.02619365846195
128 => 0.025096230291904
129 => 0.025048922356896
130 => 0.024977409474565
131 => 0.023860626828048
201 => 0.024105131252396
202 => 0.024917901198001
203 => 0.025207906671102
204 => 0.025177656724313
205 => 0.024913918181863
206 => 0.025034656336037
207 => 0.024645716673481
208 => 0.024508373983554
209 => 0.02407488267506
210 => 0.023437770206604
211 => 0.023526364602981
212 => 0.022264078093424
213 => 0.021576317408402
214 => 0.021385954315328
215 => 0.021131392831448
216 => 0.021414707712294
217 => 0.02226050219434
218 => 0.021240294603684
219 => 0.019491220248745
220 => 0.019596342597754
221 => 0.019832521304873
222 => 0.019392403846636
223 => 0.018975869608672
224 => 0.019338012334091
225 => 0.018596906472263
226 => 0.0199220804076
227 => 0.019886238166406
228 => 0.020380181061293
301 => 0.020689053690195
302 => 0.019977202279278
303 => 0.019798173574483
304 => 0.019900156461135
305 => 0.018214606514464
306 => 0.020242435670524
307 => 0.020259972421273
308 => 0.02010981211449
309 => 0.02118956853789
310 => 0.02346819137574
311 => 0.02261088180675
312 => 0.022278905629318
313 => 0.021647818673347
314 => 0.022488704571943
315 => 0.022424137654794
316 => 0.022132141569171
317 => 0.021955541425503
318 => 0.022280932605067
319 => 0.021915221857411
320 => 0.021849530158072
321 => 0.021451509933355
322 => 0.021309434821898
323 => 0.021204248065548
324 => 0.021088447782243
325 => 0.02134387435158
326 => 0.0207650441413
327 => 0.020067031651128
328 => 0.02000899946517
329 => 0.020169231432842
330 => 0.020098340715014
331 => 0.020008660067686
401 => 0.019837435288867
402 => 0.01978663655463
403 => 0.019951707796858
404 => 0.019765351988634
405 => 0.020040330134995
406 => 0.01996555129442
407 => 0.019547842769708
408 => 0.019027223292414
409 => 0.01902258868703
410 => 0.018910422074634
411 => 0.018767561029384
412 => 0.018727820354814
413 => 0.019307513683854
414 => 0.020507461526206
415 => 0.020271883052434
416 => 0.020442112642787
417 => 0.021279473744907
418 => 0.021545645658944
419 => 0.021356723138988
420 => 0.021098114341438
421 => 0.021109491816069
422 => 0.021993236363502
423 => 0.022048354426903
424 => 0.022187619991354
425 => 0.022366615598118
426 => 0.021387206864819
427 => 0.021063361752807
428 => 0.020909905972493
429 => 0.020437321563987
430 => 0.020946963332236
501 => 0.020650016898913
502 => 0.020690085117903
503 => 0.020663990637722
504 => 0.020678239988402
505 => 0.019921709994478
506 => 0.020197349762218
507 => 0.019739045187138
508 => 0.019125426808209
509 => 0.01912336974424
510 => 0.01927355197317
511 => 0.019184217706771
512 => 0.018943821492886
513 => 0.01897796864043
514 => 0.018678803696625
515 => 0.019014292681164
516 => 0.019023913304803
517 => 0.018894731771547
518 => 0.019411598840789
519 => 0.019623359700781
520 => 0.019538329648255
521 => 0.019617393765623
522 => 0.020281672401592
523 => 0.020389978803764
524 => 0.020438081353289
525 => 0.020373630309292
526 => 0.019629535559655
527 => 0.019662539325936
528 => 0.019420379587305
529 => 0.019215780126326
530 => 0.019223963031783
531 => 0.019329153750794
601 => 0.01978852779007
602 => 0.020755253374149
603 => 0.020791939903398
604 => 0.020836405047068
605 => 0.020655542961368
606 => 0.020600993225704
607 => 0.020672958407527
608 => 0.02103600970889
609 => 0.021969876223464
610 => 0.021639785426366
611 => 0.021371416470156
612 => 0.021606848396503
613 => 0.021570605496819
614 => 0.021264678949915
615 => 0.021256092610663
616 => 0.020668921756521
617 => 0.020451858060978
618 => 0.020270463390047
619 => 0.020072385144817
620 => 0.019954957721402
621 => 0.020135379613577
622 => 0.020176644235006
623 => 0.019782148614531
624 => 0.019728380319172
625 => 0.020050533958631
626 => 0.019908766153003
627 => 0.020054577856764
628 => 0.020088407422786
629 => 0.020082960083496
630 => 0.019934938212491
701 => 0.020029282938994
702 => 0.019806129535299
703 => 0.019563483725338
704 => 0.019408690815951
705 => 0.019273613472211
706 => 0.01934856223326
707 => 0.019081383585226
708 => 0.018995907758476
709 => 0.019997321068478
710 => 0.020737075847584
711 => 0.020726319520121
712 => 0.020660843142991
713 => 0.020563558527975
714 => 0.021028892733353
715 => 0.02086677960085
716 => 0.020984730449752
717 => 0.021014753891179
718 => 0.021105625805896
719 => 0.021138104704702
720 => 0.021039930914464
721 => 0.020710447683504
722 => 0.019889406798279
723 => 0.019507210049849
724 => 0.019381078756877
725 => 0.019385663389819
726 => 0.019259198746573
727 => 0.019296448251757
728 => 0.019246244888812
729 => 0.019151171864893
730 => 0.019342691741941
731 => 0.01936476262364
801 => 0.019320059595845
802 => 0.019330588777164
803 => 0.018960466799933
804 => 0.018988606369999
805 => 0.018831921668067
806 => 0.018802545175317
807 => 0.01840645989293
808 => 0.017704737401702
809 => 0.018093559779693
810 => 0.01762391702378
811 => 0.017446056195867
812 => 0.018288021692174
813 => 0.018203511708833
814 => 0.018058867352959
815 => 0.017844908204096
816 => 0.017765548674522
817 => 0.017283385295004
818 => 0.0172548965103
819 => 0.017493869700696
820 => 0.017383591795894
821 => 0.017228719852043
822 => 0.016667789370533
823 => 0.016037117791616
824 => 0.016056153802324
825 => 0.016256758697515
826 => 0.016840044485541
827 => 0.016612144637213
828 => 0.016446800682401
829 => 0.016415836729886
830 => 0.016803415423039
831 => 0.017351920474096
901 => 0.017609266771944
902 => 0.0173542444065
903 => 0.017061288444458
904 => 0.01707911931644
905 => 0.017197740119367
906 => 0.017210205488547
907 => 0.017019521273617
908 => 0.01707319776318
909 => 0.016991658267252
910 => 0.016491250531251
911 => 0.016482199742117
912 => 0.016359391613537
913 => 0.016355673032211
914 => 0.016146745769574
915 => 0.016117515401285
916 => 0.01570267764034
917 => 0.015975725110838
918 => 0.015792579203264
919 => 0.015516535120797
920 => 0.015468945016932
921 => 0.015467514400943
922 => 0.01575094995131
923 => 0.015972413001408
924 => 0.015795765104738
925 => 0.015755545802841
926 => 0.016184982724819
927 => 0.016130332962093
928 => 0.016083006620025
929 => 0.01730280786283
930 => 0.016337239996872
1001 => 0.015916197294628
1002 => 0.015395076996759
1003 => 0.015564756393462
1004 => 0.015600510335456
1005 => 0.014347309958076
1006 => 0.01383888672105
1007 => 0.013664415025628
1008 => 0.013564004098245
1009 => 0.013609762618734
1010 => 0.013152122073312
1011 => 0.013459664088512
1012 => 0.013063386059569
1013 => 0.012996948758416
1014 => 0.013705542963594
1015 => 0.013804139707697
1016 => 0.013383495365746
1017 => 0.013653617129412
1018 => 0.013555667222933
1019 => 0.013070179108988
1020 => 0.013051637034044
1021 => 0.012808036164199
1022 => 0.012426847973315
1023 => 0.012252634741436
1024 => 0.012161902977685
1025 => 0.012199340671735
1026 => 0.012180411028011
1027 => 0.012056882298206
1028 => 0.012187491550206
1029 => 0.011853838882814
1030 => 0.011720975702237
1031 => 0.011660964485972
1101 => 0.011364828539331
1102 => 0.01183611252269
1103 => 0.011928961404491
1104 => 0.012021993227272
1105 => 0.012831771729054
1106 => 0.012791317483515
1107 => 0.013157004161169
1108 => 0.01314279424933
1109 => 0.013038494485131
1110 => 0.012598470936458
1111 => 0.012773856480293
1112 => 0.012234047037332
1113 => 0.012638508975473
1114 => 0.01245392943764
1115 => 0.012576102448061
1116 => 0.012356424359427
1117 => 0.012478003283963
1118 => 0.011950979318833
1119 => 0.011458851755621
1120 => 0.011656898253157
1121 => 0.011872197445342
1122 => 0.012339020951213
1123 => 0.012060984722327
1124 => 0.012160977063948
1125 => 0.011826019458032
1126 => 0.011134906241117
1127 => 0.01113881786687
1128 => 0.011032505155167
1129 => 0.010940635450346
1130 => 0.012092920527825
1201 => 0.011949615663509
1202 => 0.011721278117499
1203 => 0.012026916996607
1204 => 0.012107732767384
1205 => 0.012110033478765
1206 => 0.012333019715281
1207 => 0.012452027509682
1208 => 0.012473003149254
1209 => 0.012823876810349
1210 => 0.012941485033412
1211 => 0.013425896659672
1212 => 0.012441930529788
1213 => 0.01242166639486
1214 => 0.012031217962423
1215 => 0.011783589393826
1216 => 0.01204817330237
1217 => 0.012282558526035
1218 => 0.012038500964669
1219 => 0.012070369729847
1220 => 0.011742742393947
1221 => 0.011859853750232
1222 => 0.011960725826868
1223 => 0.011905030195136
1224 => 0.011821651138735
1225 => 0.012263341610589
1226 => 0.012238419703168
1227 => 0.012649732024978
1228 => 0.012970379393056
1229 => 0.013545036799224
1230 => 0.01294535183832
1231 => 0.012923496934812
]
'min_raw' => 0.010940635450346
'max_raw' => 0.031632594567221
'avg_raw' => 0.021286615008784
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01094'
'max' => '$0.031632'
'avg' => '$0.021286'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0019237808120191
'max_diff' => -0.010685506601182
'year' => 2030
]
5 => [
'items' => [
101 => 0.013137132122232
102 => 0.012941452326978
103 => 0.013065115202942
104 => 0.013525112798086
105 => 0.013534831822417
106 => 0.013372025642622
107 => 0.013362118871786
108 => 0.01339338757952
109 => 0.013576529377378
110 => 0.013512534005827
111 => 0.01358659106995
112 => 0.013679200562638
113 => 0.014062272690006
114 => 0.01415463008303
115 => 0.0139302494998
116 => 0.013950508554183
117 => 0.01386658405667
118 => 0.013785514043644
119 => 0.013967747593603
120 => 0.014300782987962
121 => 0.014298711192058
122 => 0.014375968930266
123 => 0.014424099861132
124 => 0.01421748667186
125 => 0.014082989083022
126 => 0.014134564016886
127 => 0.014217033459292
128 => 0.01410782028821
129 => 0.013433706003828
130 => 0.013638189215122
131 => 0.013604153210044
201 => 0.013555681799894
202 => 0.013761291250072
203 => 0.013741459717015
204 => 0.013147428308056
205 => 0.013185456271528
206 => 0.013149740914467
207 => 0.013265144539803
208 => 0.012935220152488
209 => 0.013036702671951
210 => 0.013100351556819
211 => 0.01313784123898
212 => 0.013273279677862
213 => 0.013257387540284
214 => 0.013272291800276
215 => 0.013473111250715
216 => 0.014488787118122
217 => 0.014544068114622
218 => 0.01427184426978
219 => 0.014380592326416
220 => 0.014171819838259
221 => 0.014311970208213
222 => 0.014407857531902
223 => 0.013974561154224
224 => 0.013948904154808
225 => 0.013739269988328
226 => 0.013851915515108
227 => 0.0136726883825
228 => 0.013716664451743
301 => 0.013593703528375
302 => 0.013815008709162
303 => 0.01406246228863
304 => 0.014124978835042
305 => 0.013960524716498
306 => 0.013841449096618
307 => 0.013632391534057
308 => 0.013980058919748
309 => 0.014081727458296
310 => 0.013979524898197
311 => 0.013955842331852
312 => 0.013910963911421
313 => 0.0139653635009
314 => 0.014081173749601
315 => 0.014026559774993
316 => 0.014062633267396
317 => 0.01392515831318
318 => 0.014217555069423
319 => 0.014681951487448
320 => 0.014683444597869
321 => 0.014628830328871
322 => 0.014606483346678
323 => 0.014662520900941
324 => 0.014692918975347
325 => 0.014874134150301
326 => 0.015068585252958
327 => 0.015976003703395
328 => 0.015721204233606
329 => 0.016526319865398
330 => 0.017163061798966
331 => 0.017353992863492
401 => 0.017178345268129
402 => 0.016577464332686
403 => 0.016547982247339
404 => 0.017445952050278
405 => 0.017192234451325
406 => 0.017162055550253
407 => 0.016841003030897
408 => 0.017030784832964
409 => 0.016989276768921
410 => 0.016923754259185
411 => 0.017285844717214
412 => 0.017963645730607
413 => 0.017858004086292
414 => 0.017779147499386
415 => 0.01743362089037
416 => 0.01764170508516
417 => 0.017567610288985
418 => 0.01788596855507
419 => 0.017697380170741
420 => 0.017190312290975
421 => 0.017271064522145
422 => 0.017258858984855
423 => 0.017510048077398
424 => 0.017434647346713
425 => 0.01724413578205
426 => 0.01796132908043
427 => 0.017914758536872
428 => 0.017980784920129
429 => 0.018009851775972
430 => 0.018446394698332
501 => 0.018625232365808
502 => 0.018665831647319
503 => 0.018835713599619
504 => 0.018661604829587
505 => 0.019358164047165
506 => 0.019821335281498
507 => 0.020359332504749
508 => 0.02114549104794
509 => 0.021441093932553
510 => 0.021387695917286
511 => 0.02198375235243
512 => 0.023054852516794
513 => 0.02160419588443
514 => 0.023131740840778
515 => 0.022648137743953
516 => 0.021501523501028
517 => 0.021427695061478
518 => 0.022204195539252
519 => 0.023926398863552
520 => 0.023495006463883
521 => 0.023927104466976
522 => 0.023423039194132
523 => 0.023398008104739
524 => 0.023902623141769
525 => 0.025081683680922
526 => 0.024521556215194
527 => 0.023718476144183
528 => 0.024311457971308
529 => 0.023797762234775
530 => 0.022640261965983
531 => 0.023494676586246
601 => 0.022923353862004
602 => 0.023090096206124
603 => 0.024290931594639
604 => 0.024146443903677
605 => 0.024333424354982
606 => 0.024003408752558
607 => 0.023695122141211
608 => 0.023119682287466
609 => 0.022949322915615
610 => 0.022996404117106
611 => 0.022949299584509
612 => 0.022627346274905
613 => 0.022557820488349
614 => 0.022441941131428
615 => 0.022477856989595
616 => 0.022259969896883
617 => 0.022671167858602
618 => 0.022747489823761
619 => 0.023046725409236
620 => 0.023077793040396
621 => 0.023911159886592
622 => 0.023452155431868
623 => 0.023760095248635
624 => 0.023732550212981
625 => 0.021526374108511
626 => 0.02183036571045
627 => 0.022303281245248
628 => 0.022090233437844
629 => 0.021789033683683
630 => 0.021545798732889
701 => 0.021177272910385
702 => 0.021695965928648
703 => 0.022377992090809
704 => 0.023095090349383
705 => 0.02395663692092
706 => 0.023764349755661
707 => 0.023078984335507
708 => 0.023109729327596
709 => 0.023299782770977
710 => 0.023053646293622
711 => 0.022981055841295
712 => 0.02328980995753
713 => 0.02329193617744
714 => 0.023008726413656
715 => 0.022693990588049
716 => 0.022692671833448
717 => 0.022636667633269
718 => 0.02343300221693
719 => 0.023870905719435
720 => 0.023921110650281
721 => 0.023867526527578
722 => 0.023888148929728
723 => 0.023633342530165
724 => 0.024215754399076
725 => 0.024750233124552
726 => 0.024606981408652
727 => 0.024392226722086
728 => 0.024221164270249
729 => 0.024566684531442
730 => 0.02455129905811
731 => 0.024745564919154
801 => 0.024736751897563
802 => 0.024671427595202
803 => 0.024606983741588
804 => 0.024862496336766
805 => 0.024788912812762
806 => 0.02471521499322
807 => 0.024567402733558
808 => 0.024587492874547
809 => 0.024372775268406
810 => 0.024273437078996
811 => 0.022779629055913
812 => 0.02238043474056
813 => 0.02250602939852
814 => 0.022547378420984
815 => 0.022373648543361
816 => 0.022622732560328
817 => 0.022583913080129
818 => 0.022734936968948
819 => 0.022640583799909
820 => 0.022644456086878
821 => 0.022921928638805
822 => 0.023002480101081
823 => 0.022961510977237
824 => 0.022990204347238
825 => 0.023651430948197
826 => 0.023557425670377
827 => 0.02350748724013
828 => 0.023521320526593
829 => 0.023690278099996
830 => 0.023737576995808
831 => 0.023537168250621
901 => 0.0236316821734
902 => 0.024034110460992
903 => 0.024174937586181
904 => 0.024624390168928
905 => 0.024433454723395
906 => 0.024783924997164
907 => 0.025861151134612
908 => 0.026721713911584
909 => 0.02593030481762
910 => 0.02751061876552
911 => 0.028741119856532
912 => 0.028693891175152
913 => 0.028479324847931
914 => 0.027078432070378
915 => 0.025789309650339
916 => 0.026867715293731
917 => 0.026870464371492
918 => 0.026777828370334
919 => 0.026202474123113
920 => 0.026757807289683
921 => 0.026801887619772
922 => 0.026777214356828
923 => 0.026336091604473
924 => 0.02566257869474
925 => 0.02579418150514
926 => 0.026009749593199
927 => 0.025601634230289
928 => 0.025471216643257
929 => 0.02571368775051
930 => 0.026494980178942
1001 => 0.026347281371066
1002 => 0.026343424358294
1003 => 0.02697534249243
1004 => 0.026523025484857
1005 => 0.02579584143803
1006 => 0.025612217875826
1007 => 0.024960477933658
1008 => 0.025410637033132
1009 => 0.025426837457719
1010 => 0.025180289919452
1011 => 0.025815847411959
1012 => 0.025809990637778
1013 => 0.026413357886665
1014 => 0.027566769452146
1015 => 0.027225648896297
1016 => 0.026828962803656
1017 => 0.026872093580838
1018 => 0.0273451317507
1019 => 0.02705912207479
1020 => 0.027161973148378
1021 => 0.027344976073282
1022 => 0.027455386281583
1023 => 0.02685620725098
1024 => 0.0267165099569
1025 => 0.026430738320301
1026 => 0.026356185834492
1027 => 0.026588940869682
1028 => 0.026527618141266
1029 => 0.025425475874764
1030 => 0.025310295875652
1031 => 0.025313828281786
1101 => 0.02502420269751
1102 => 0.024582454163385
1103 => 0.025743342935632
1104 => 0.025650107320592
1105 => 0.025547182417452
1106 => 0.025559790130806
1107 => 0.026063692600667
1108 => 0.025771403720462
1109 => 0.02654850161369
1110 => 0.026388753648544
1111 => 0.026224908750875
1112 => 0.02620226039518
1113 => 0.026139194088167
1114 => 0.025922916255482
1115 => 0.025661747776231
1116 => 0.025489301724204
1117 => 0.023512533481187
1118 => 0.023879410168759
1119 => 0.024301468355948
1120 => 0.024447161150874
1121 => 0.024197943543519
1122 => 0.025932756885619
1123 => 0.026249724000298
1124 => 0.025289609934682
1125 => 0.025110011794204
1126 => 0.025944531309809
1127 => 0.025441214026038
1128 => 0.025667857768101
1129 => 0.025177977965258
1130 => 0.026173375904253
1201 => 0.026165792639705
1202 => 0.025778560359354
1203 => 0.026105846431055
1204 => 0.026048972421982
1205 => 0.025611788131177
1206 => 0.026187235426063
1207 => 0.026187520840742
1208 => 0.02581481819006
1209 => 0.025379583089164
1210 => 0.025301773332919
1211 => 0.025243154133857
1212 => 0.025653441038555
1213 => 0.026021302994372
1214 => 0.026705802893436
1215 => 0.026877902431377
1216 => 0.027549618385276
1217 => 0.027149644239986
1218 => 0.027326947598061
1219 => 0.027519435474342
1220 => 0.027611721240739
1221 => 0.027461346536723
1222 => 0.028504797902445
1223 => 0.028592897168236
1224 => 0.02862243609
1225 => 0.028270590160391
1226 => 0.028583111696449
1227 => 0.028436893219353
1228 => 0.028817313076094
1229 => 0.028876967767075
1230 => 0.028826442366091
1231 => 0.028845377706594
]
'min_raw' => 0.012935220152488
'max_raw' => 0.028876967767075
'avg_raw' => 0.020906093959782
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012935'
'max' => '$0.028876'
'avg' => '$0.020906'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019945847021413
'max_diff' => -0.0027556268001454
'year' => 2031
]
6 => [
'items' => [
101 => 0.027954976043385
102 => 0.027908804019904
103 => 0.027279245203532
104 => 0.027535795074668
105 => 0.027056187387335
106 => 0.027208275925495
107 => 0.027275315103963
108 => 0.027240297641571
109 => 0.027550300019457
110 => 0.027286734668952
111 => 0.026591142374814
112 => 0.025895360567021
113 => 0.025886625593195
114 => 0.025703438524772
115 => 0.025571027826688
116 => 0.025596534824661
117 => 0.025686424812448
118 => 0.025565803257186
119 => 0.02559154398167
120 => 0.026019011517638
121 => 0.026104737083417
122 => 0.025813408115758
123 => 0.024643680272036
124 => 0.024356626125146
125 => 0.0245629549534
126 => 0.024464343062773
127 => 0.019744634215348
128 => 0.02085345980062
129 => 0.02019463329001
130 => 0.020498250857249
131 => 0.019825759592215
201 => 0.020146707672176
202 => 0.020087440280955
203 => 0.021870399009537
204 => 0.02184256056137
205 => 0.02185588535333
206 => 0.021219858315529
207 => 0.022233066656761
208 => 0.022732209519446
209 => 0.02263983145982
210 => 0.022663081027221
211 => 0.022263576429776
212 => 0.021859753431107
213 => 0.021411851577669
214 => 0.022243997859014
215 => 0.022151477397739
216 => 0.022363686048093
217 => 0.02290339239459
218 => 0.022982866204257
219 => 0.023089679810393
220 => 0.023051394736103
221 => 0.023963500529318
222 => 0.023853038499492
223 => 0.024119220209278
224 => 0.023571664236993
225 => 0.022952052679863
226 => 0.023069820580246
227 => 0.023058478584409
228 => 0.022914081959674
229 => 0.022783727143272
301 => 0.022566723101205
302 => 0.02325335600086
303 => 0.023225479959073
304 => 0.023676760673252
305 => 0.023596992423514
306 => 0.023064280529161
307 => 0.023083306438684
308 => 0.023211264823765
309 => 0.023654130255532
310 => 0.023785602868259
311 => 0.023724699515766
312 => 0.023868853233668
313 => 0.023982786454677
314 => 0.02388316149208
315 => 0.025293640872002
316 => 0.024707911495179
317 => 0.024993391917964
318 => 0.025061477316649
319 => 0.024887077999597
320 => 0.024924898966695
321 => 0.02498218742625
322 => 0.025330031734442
323 => 0.026242875848698
324 => 0.026647168292962
325 => 0.027863502058969
326 => 0.026613597433489
327 => 0.026539433265632
328 => 0.026758531706651
329 => 0.027472648389302
330 => 0.028051372887021
331 => 0.028243369190332
401 => 0.028268744671328
402 => 0.028628942500011
403 => 0.028835401178121
404 => 0.028585205009466
405 => 0.028373189953161
406 => 0.027613778337756
407 => 0.027701682300048
408 => 0.028307253430077
409 => 0.029162658319205
410 => 0.029896684703787
411 => 0.029639654247309
412 => 0.031600615195014
413 => 0.031795036463172
414 => 0.031768173730305
415 => 0.032211094312932
416 => 0.031331987155625
417 => 0.030956151813977
418 => 0.028419030014807
419 => 0.029131857752521
420 => 0.030167994732192
421 => 0.030030858117618
422 => 0.02927838774696
423 => 0.029896113887535
424 => 0.029691874307379
425 => 0.029530782076601
426 => 0.030268776815058
427 => 0.029457321284972
428 => 0.030159899842548
429 => 0.029258835575212
430 => 0.029640828340783
501 => 0.029423990772134
502 => 0.029564311253663
503 => 0.028744000585862
504 => 0.029186620310292
505 => 0.028725586150127
506 => 0.028725367559907
507 => 0.028715190205269
508 => 0.029257594850163
509 => 0.029275282646161
510 => 0.028874444794055
511 => 0.028816677797303
512 => 0.029030272661205
513 => 0.028780209016159
514 => 0.028897212221794
515 => 0.028783752924065
516 => 0.028758210846327
517 => 0.028554687225289
518 => 0.028467003653348
519 => 0.028501386641233
520 => 0.028384019777935
521 => 0.028313301997452
522 => 0.02870112265879
523 => 0.028493925724078
524 => 0.028669366756923
525 => 0.028469429557573
526 => 0.027776360116133
527 => 0.027377768551285
528 => 0.026068624623978
529 => 0.026439896217774
530 => 0.02668604966857
531 => 0.02660469595455
601 => 0.026779475211972
602 => 0.026790205238879
603 => 0.026733382720628
604 => 0.026667589523908
605 => 0.026635565034337
606 => 0.026874249342428
607 => 0.02701281361702
608 => 0.026710754460465
609 => 0.026639986226341
610 => 0.026945384710761
611 => 0.027131677609834
612 => 0.028507159707653
613 => 0.028405259551098
614 => 0.028661008947156
615 => 0.028632215489954
616 => 0.028900281601096
617 => 0.029338456399622
618 => 0.028447524518618
619 => 0.028602159487054
620 => 0.028564246563836
621 => 0.028978169918223
622 => 0.028979462141754
623 => 0.028731294413794
624 => 0.028865830165183
625 => 0.028790735999553
626 => 0.028926441306432
627 => 0.028403898612382
628 => 0.029040299208736
629 => 0.02940109733812
630 => 0.029406107020497
701 => 0.029577122470354
702 => 0.029750884071956
703 => 0.030084404334784
704 => 0.029741582372844
705 => 0.029124879036359
706 => 0.029169403025313
707 => 0.028807830084775
708 => 0.028813908191229
709 => 0.028781462782628
710 => 0.028878833896215
711 => 0.028425266096162
712 => 0.028531717552256
713 => 0.028382684890345
714 => 0.028601835519153
715 => 0.028366065669452
716 => 0.028564228281077
717 => 0.028649748695059
718 => 0.028965320863778
719 => 0.028319455403549
720 => 0.027002492008895
721 => 0.027279333681089
722 => 0.02686986310247
723 => 0.026907761163485
724 => 0.026984321278168
725 => 0.026736164897569
726 => 0.026783505314681
727 => 0.026781813981853
728 => 0.026767238989267
729 => 0.026702683930419
730 => 0.026609066323261
731 => 0.026982010056201
801 => 0.027045380463713
802 => 0.02718624502968
803 => 0.02760536242865
804 => 0.027563482717024
805 => 0.027631790264259
806 => 0.027482675272176
807 => 0.026914678180296
808 => 0.026945523155101
809 => 0.026560885825019
810 => 0.027176408988368
811 => 0.027030644978778
812 => 0.026936669973544
813 => 0.026911028022694
814 => 0.027331184332629
815 => 0.027456901685705
816 => 0.027378563067846
817 => 0.027217888277114
818 => 0.027526431374557
819 => 0.027608984491045
820 => 0.027627465089384
821 => 0.028174144300782
822 => 0.027658018384453
823 => 0.027782255022364
824 => 0.028751513806432
825 => 0.027872529837852
826 => 0.02833814724969
827 => 0.028315357700337
828 => 0.028553551812599
829 => 0.028295818830766
830 => 0.028299013739966
831 => 0.028510513974988
901 => 0.028213500039168
902 => 0.028139955211742
903 => 0.028038353559392
904 => 0.028260197050277
905 => 0.028393182189944
906 => 0.029464944748841
907 => 0.030157352240199
908 => 0.030127293004904
909 => 0.030401978146967
910 => 0.03027822997464
911 => 0.029878614483078
912 => 0.030560709399257
913 => 0.030344866027714
914 => 0.030362659893015
915 => 0.030361997604459
916 => 0.03050551457718
917 => 0.03040381964887
918 => 0.030203368506401
919 => 0.030336437329435
920 => 0.030731604160872
921 => 0.03195821413085
922 => 0.032644641320471
923 => 0.031916890352132
924 => 0.032418883225118
925 => 0.032117866379676
926 => 0.032063162664383
927 => 0.032378451285601
928 => 0.032694291777812
929 => 0.032674174103874
930 => 0.032444890125118
1001 => 0.032315373423383
1002 => 0.033296117280193
1003 => 0.034018712647354
1004 => 0.033969436487655
1005 => 0.034186925431103
1006 => 0.034825479695747
1007 => 0.034883861095084
1008 => 0.034876506380649
1009 => 0.034731801990924
1010 => 0.035360541591216
1011 => 0.0358850472274
1012 => 0.034698307105615
1013 => 0.035150202208422
1014 => 0.035353072479223
1015 => 0.035650946225655
1016 => 0.036153509165324
1017 => 0.036699425816041
1018 => 0.036776624416124
1019 => 0.036721848315072
1020 => 0.036361801608897
1021 => 0.036959150122251
1022 => 0.037309062871828
1023 => 0.03751742790659
1024 => 0.03804580696611
1025 => 0.03535432533695
1026 => 0.033449160864514
1027 => 0.033151641921234
1028 => 0.033756658391747
1029 => 0.033916196410106
1030 => 0.033851886834949
1031 => 0.031707451011247
1101 => 0.033140351910424
1102 => 0.034682032796209
1103 => 0.034741255037725
1104 => 0.035513052724176
1105 => 0.03576438168794
1106 => 0.036385779987369
1107 => 0.036346911354551
1108 => 0.036498211951855
1109 => 0.036463430564696
1110 => 0.037614440063537
1111 => 0.038884174467324
1112 => 0.038840207602429
1113 => 0.038657668259069
1114 => 0.038928770311542
1115 => 0.040239272289258
1116 => 0.040118622267516
1117 => 0.040235823486694
1118 => 0.041780979175076
1119 => 0.043789901365806
1120 => 0.042856555315722
1121 => 0.044881647681314
1122 => 0.046156335979921
1123 => 0.048360777587131
1124 => 0.048084770640805
1125 => 0.048942943581552
1126 => 0.047590660602492
1127 => 0.04448554554109
1128 => 0.04399414919672
1129 => 0.044977937122286
1130 => 0.047396483740667
1201 => 0.044901768482397
1202 => 0.045406446130021
1203 => 0.045261098933554
1204 => 0.04525335399914
1205 => 0.045548946644794
1206 => 0.045120174095197
1207 => 0.043373277593427
1208 => 0.044173869965662
1209 => 0.043864722803139
1210 => 0.044207744628406
1211 => 0.046058891946413
1212 => 0.045240455591282
1213 => 0.044378299375522
1214 => 0.045459634597865
1215 => 0.046836545923005
1216 => 0.046750381286825
1217 => 0.046583185878613
1218 => 0.04752565764064
1219 => 0.049082344873192
1220 => 0.049503111176875
1221 => 0.049813712260065
1222 => 0.049856538901789
1223 => 0.050297679928152
1224 => 0.047925553447545
1225 => 0.051690179092797
1226 => 0.052340225946048
1227 => 0.052218044079318
1228 => 0.052940543798553
1229 => 0.052727966053105
1230 => 0.052419974252378
1231 => 0.053565289987462
]
'min_raw' => 0.019744634215348
'max_raw' => 0.053565289987462
'avg_raw' => 0.036654962101405
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019744'
'max' => '$0.053565'
'avg' => '$0.036654'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0068094140628602
'max_diff' => 0.024688322220387
'year' => 2032
]
7 => [
'items' => [
101 => 0.052252277919402
102 => 0.050388622592413
103 => 0.049366184421105
104 => 0.050712613482819
105 => 0.051534830726909
106 => 0.052078264022414
107 => 0.052242706609282
108 => 0.048109694873656
109 => 0.045882230775493
110 => 0.047310009724488
111 => 0.049051998582301
112 => 0.047915876611484
113 => 0.047960410441777
114 => 0.046340599078995
115 => 0.049195315945579
116 => 0.048779407710065
117 => 0.050937140371637
118 => 0.050422180155066
119 => 0.052181727377878
120 => 0.051718379625263
121 => 0.053641710240945
122 => 0.054408978895639
123 => 0.055697342382699
124 => 0.056645067808364
125 => 0.057201590305413
126 => 0.057168178782153
127 => 0.059373398173868
128 => 0.058073057343071
129 => 0.056439522792787
130 => 0.056409977306508
131 => 0.057256007997464
201 => 0.059029056228521
202 => 0.059488781838032
203 => 0.059745705736827
204 => 0.059352217842237
205 => 0.057940791066674
206 => 0.057331344141082
207 => 0.057850610579064
208 => 0.057215592346486
209 => 0.058311811970562
210 => 0.059817155654296
211 => 0.059506308136379
212 => 0.060545424783911
213 => 0.061620801195848
214 => 0.063158637763093
215 => 0.063560685187695
216 => 0.064225254292066
217 => 0.064909314200043
218 => 0.065129015806554
219 => 0.065548494342787
220 => 0.065546283483841
221 => 0.066810410286944
222 => 0.068204781297514
223 => 0.068731124074241
224 => 0.069941420266615
225 => 0.067868830451011
226 => 0.069440913634343
227 => 0.070858972017502
228 => 0.069168304353415
301 => 0.071498495853315
302 => 0.071588971908929
303 => 0.072955052930574
304 => 0.071570268105679
305 => 0.070747987297047
306 => 0.073121881181109
307 => 0.07427053365465
308 => 0.073924550181576
309 => 0.071291598868168
310 => 0.069759108271171
311 => 0.065748284783469
312 => 0.070499278459332
313 => 0.07281334889046
314 => 0.07128560598479
315 => 0.072056110642912
316 => 0.076259734220652
317 => 0.077860201914585
318 => 0.07752731582236
319 => 0.077583568092175
320 => 0.078447151409277
321 => 0.082276755421329
322 => 0.079981967927782
323 => 0.081736246982552
324 => 0.082666710267678
325 => 0.083530976422186
326 => 0.081408611900838
327 => 0.078647446842292
328 => 0.077772869962426
329 => 0.071133702061343
330 => 0.070788104539647
331 => 0.070594110178042
401 => 0.069371003169171
402 => 0.068409976097405
403 => 0.067645731689288
404 => 0.065640126139692
405 => 0.066316959137513
406 => 0.063120442493866
407 => 0.065165460564877
408 => 0.060063742819025
409 => 0.064312604956132
410 => 0.06200014246696
411 => 0.06355289883496
412 => 0.06354748141427
413 => 0.060688364638928
414 => 0.059039285751156
415 => 0.060090143001555
416 => 0.061216745391135
417 => 0.061399532838499
418 => 0.062860202243921
419 => 0.06326784367799
420 => 0.062032671101801
421 => 0.059958021058393
422 => 0.060439914945747
423 => 0.059029520186909
424 => 0.056557857622097
425 => 0.058333048827234
426 => 0.058939177154315
427 => 0.059206877953923
428 => 0.056776281693794
429 => 0.056012535578049
430 => 0.055605923554477
501 => 0.059644261603331
502 => 0.05986549087768
503 => 0.058733650631444
504 => 0.063849675869928
505 => 0.062691761793707
506 => 0.063985435512682
507 => 0.060396188126443
508 => 0.060533302210159
509 => 0.058834094977273
510 => 0.059785537486621
511 => 0.059113088587437
512 => 0.059708670334204
513 => 0.06006565957754
514 => 0.06176458798724
515 => 0.064332003989544
516 => 0.0615108247371
517 => 0.060281596536779
518 => 0.061044202798817
519 => 0.0630751237697
520 => 0.06615207300152
521 => 0.064330457126908
522 => 0.065138859319017
523 => 0.065315459234683
524 => 0.06397226712863
525 => 0.066201598410379
526 => 0.067396315155324
527 => 0.068621847323841
528 => 0.069685942567133
529 => 0.068132342825706
530 => 0.069794917248808
531 => 0.068455175747681
601 => 0.067253289121239
602 => 0.067255111887134
603 => 0.066501150849605
604 => 0.065040256334189
605 => 0.064770844971403
606 => 0.06617235690352
607 => 0.067296236749403
608 => 0.067388804876531
609 => 0.068011042506244
610 => 0.06837927632595
611 => 0.071988468348678
612 => 0.073440115237021
613 => 0.075215161573818
614 => 0.07590664215813
615 => 0.077987750807401
616 => 0.076307086553734
617 => 0.07594346427058
618 => 0.070895375412901
619 => 0.071721999680547
620 => 0.073045504890426
621 => 0.070917199526334
622 => 0.072267119411484
623 => 0.072533622192025
624 => 0.070844880524469
625 => 0.071746910415331
626 => 0.069351386458425
627 => 0.064384219865593
628 => 0.066207128286737
629 => 0.067549402469039
630 => 0.065633811709681
701 => 0.069067434002229
702 => 0.067061582743274
703 => 0.066425824192026
704 => 0.063945503419317
705 => 0.065116119347734
706 => 0.066699394152523
707 => 0.065721114398615
708 => 0.067751191777417
709 => 0.070626322747662
710 => 0.072675312294068
711 => 0.072832608269036
712 => 0.071515245262336
713 => 0.073626327887872
714 => 0.073641704820078
715 => 0.071260394994447
716 => 0.069801855985436
717 => 0.069470472853797
718 => 0.070298332888122
719 => 0.071303507801186
720 => 0.07288838848105
721 => 0.073846098682876
722 => 0.076343298958998
723 => 0.077018969753374
724 => 0.077761327105808
725 => 0.078753345463189
726 => 0.07994451784951
727 => 0.07733830048172
728 => 0.077441850356339
729 => 0.075014976828989
730 => 0.072421514416146
731 => 0.07438962910784
801 => 0.076962677259905
802 => 0.076372417170855
803 => 0.076306000852918
804 => 0.076417694677338
805 => 0.075972657846288
806 => 0.07395977275328
807 => 0.072948914460898
808 => 0.074253179555524
809 => 0.074946338407157
810 => 0.076021367336236
811 => 0.075888847329619
812 => 0.078658006401246
813 => 0.079734017881457
814 => 0.079458728099691
815 => 0.079509388044755
816 => 0.081457455432669
817 => 0.083624107018644
818 => 0.085653462143768
819 => 0.087717809339875
820 => 0.085229158222126
821 => 0.083965574663195
822 => 0.085269270356482
823 => 0.084577511070778
824 => 0.088552565115563
825 => 0.088827789233072
826 => 0.092802555836205
827 => 0.096575082648981
828 => 0.094205626149715
829 => 0.096439916905858
830 => 0.098856484523026
831 => 0.10351843553051
901 => 0.1019484544406
902 => 0.10074587353047
903 => 0.099609440381232
904 => 0.10197417736112
905 => 0.10501637370816
906 => 0.10567163366351
907 => 0.10673340511976
908 => 0.10561708226075
909 => 0.1069615701855
910 => 0.11170820335777
911 => 0.11042562117493
912 => 0.10860414828993
913 => 0.11235115930794
914 => 0.11370718802923
915 => 0.12322450775295
916 => 0.13524051704502
917 => 0.13026581029673
918 => 0.12717784928528
919 => 0.12790359337039
920 => 0.13229143319627
921 => 0.13370066808526
922 => 0.12986988186457
923 => 0.13122298031959
924 => 0.13867868584047
925 => 0.14267843264474
926 => 0.13724623924687
927 => 0.12225903310606
928 => 0.1084401445858
929 => 0.11210553609403
930 => 0.11168999444734
1001 => 0.11970021991131
1002 => 0.11039503201405
1003 => 0.11055170751376
1004 => 0.11872757595735
1005 => 0.11654639442647
1006 => 0.11301315969106
1007 => 0.10846594110948
1008 => 0.10005998699461
1009 => 0.092614599017696
1010 => 0.10721671941087
1011 => 0.10658704942728
1012 => 0.10567519397919
1013 => 0.10770442960586
1014 => 0.11755782180041
1015 => 0.11733066921801
1016 => 0.11588564038303
1017 => 0.11698168201846
1018 => 0.11282101829309
1019 => 0.11389331607167
1020 => 0.10843795560325
1021 => 0.11090400637096
1022 => 0.11300557895618
1023 => 0.11342750076698
1024 => 0.11437811215056
1025 => 0.10625524195836
1026 => 0.10990217219972
1027 => 0.11204440204537
1028 => 0.10236572966774
1029 => 0.11185308581177
1030 => 0.10611384086007
1031 => 0.10416585492289
1101 => 0.10678856135967
1102 => 0.10576649011059
1103 => 0.10488777326867
1104 => 0.10439743417261
1105 => 0.10632326032223
1106 => 0.10623341823049
1107 => 0.10308239286297
1108 => 0.098972008723257
1109 => 0.1003515885593
1110 => 0.099850374271238
1111 => 0.098033909033359
1112 => 0.09925798728284
1113 => 0.093867766163948
1114 => 0.084594170888209
1115 => 0.090720591985268
1116 => 0.090484731437295
1117 => 0.090365799853583
1118 => 0.09496963598618
1119 => 0.094527083370602
1120 => 0.09372384603984
1121 => 0.098019156949873
1122 => 0.096451310687626
1123 => 0.10128304343683
1124 => 0.10446553512234
1125 => 0.10365835228807
1126 => 0.10665150110061
1127 => 0.10038337129237
1128 => 0.10246539258095
1129 => 0.10289449428297
1130 => 0.097966153479987
1201 => 0.094599490451651
1202 => 0.09437497241043
1203 => 0.088537642674039
1204 => 0.09165589710194
1205 => 0.094399831956356
1206 => 0.093085700099037
1207 => 0.092669685211583
1208 => 0.094795015048968
1209 => 0.094960171379552
1210 => 0.091194589539755
1211 => 0.091977573244717
1212 => 0.095242745454619
1213 => 0.091895299282596
1214 => 0.085391758172584
1215 => 0.08377879005881
1216 => 0.083563590379532
1217 => 0.079189092928863
1218 => 0.08388657630088
1219 => 0.081835998924267
1220 => 0.088313748287297
1221 => 0.084613692592001
1222 => 0.084454190586184
1223 => 0.084213079910535
1224 => 0.080447769246531
1225 => 0.081272132983972
1226 => 0.084012443601367
1227 => 0.084990217301463
1228 => 0.084888227493879
1229 => 0.083999014584371
1230 => 0.084406091700837
1231 => 0.083094754473631
]
'min_raw' => 0.045882230775493
'max_raw' => 0.14267843264474
'avg_raw' => 0.094280331710118
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.045882'
'max' => '$0.142678'
'avg' => '$0.09428'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.026137596560145
'max_diff' => 0.089113142657281
'year' => 2033
]
8 => [
'items' => [
101 => 0.08263169400558
102 => 0.081170147793596
103 => 0.079022078624425
104 => 0.079320780817272
105 => 0.075064893720273
106 => 0.072746060552803
107 => 0.072104238093778
108 => 0.071245966277962
109 => 0.072201182179148
110 => 0.075052837326851
111 => 0.071613136206333
112 => 0.065716009902184
113 => 0.066070437241278
114 => 0.0668667302418
115 => 0.065382843503332
116 => 0.063978469238547
117 => 0.065199458721292
118 => 0.062700768565782
119 => 0.06716868500946
120 => 0.067047840390849
121 => 0.068713203346953
122 => 0.069754588980093
123 => 0.067354532248308
124 => 0.066750924470708
125 => 0.067094766893273
126 => 0.061411817566733
127 => 0.068248785144899
128 => 0.068307911524427
129 => 0.067801635566248
130 => 0.07144210973393
131 => 0.079124645720105
201 => 0.076234166652812
202 => 0.075114885792764
203 => 0.072987132059623
204 => 0.075822237575518
205 => 0.075604545706433
206 => 0.07462006051724
207 => 0.074024640803036
208 => 0.075121719883022
209 => 0.073888700564189
210 => 0.073667216413422
211 => 0.072325263436904
212 => 0.071846247279257
213 => 0.071491602786318
214 => 0.07110117404624
215 => 0.071962362558071
216 => 0.070010796091478
217 => 0.067657398247186
218 => 0.067461738680551
219 => 0.068001971946596
220 => 0.067762958942008
221 => 0.06746059437824
222 => 0.066883298081918
223 => 0.066712026602783
224 => 0.067268575820863
225 => 0.066640264202486
226 => 0.067567372221306
227 => 0.067315250139414
228 => 0.06590691668487
301 => 0.064151611768681
302 => 0.064135985873051
303 => 0.063757808308135
304 => 0.063276142319837
305 => 0.063142153860918
306 => 0.065096630392672
307 => 0.069142338320843
308 => 0.068348069048958
309 => 0.068922009997884
310 => 0.071745231416367
311 => 0.072642648608073
312 => 0.072005683141891
313 => 0.071133765525463
314 => 0.071172125475529
315 => 0.074151731918276
316 => 0.074337566317251
317 => 0.07480710989101
318 => 0.075410606076289
319 => 0.072108461151835
320 => 0.071016594746544
321 => 0.070499207869275
322 => 0.068905856541207
323 => 0.07062414934491
324 => 0.069622973712826
325 => 0.069758066510624
326 => 0.069670087148834
327 => 0.06971812982951
328 => 0.067167436135757
329 => 0.068096774857247
330 => 0.066551568984561
331 => 0.064482711778534
401 => 0.064475776243744
402 => 0.064982126113971
403 => 0.064680929397688
404 => 0.063870416778645
405 => 0.063985546270668
406 => 0.062976890775598
407 => 0.064108015310067
408 => 0.064140451914357
409 => 0.063704907355817
410 => 0.065447560766272
411 => 0.066161527290405
412 => 0.065874842531706
413 => 0.066141412723492
414 => 0.068381074523115
415 => 0.068746237119749
416 => 0.068908418223887
417 => 0.068691117029221
418 => 0.066182349629784
419 => 0.066293624132052
420 => 0.065477165666203
421 => 0.064787344298835
422 => 0.064814933535893
423 => 0.065169591389221
424 => 0.066718403035113
425 => 0.069977785836459
426 => 0.070101477031192
427 => 0.070251394367536
428 => 0.069641605218211
429 => 0.069457686975878
430 => 0.069700322610841
501 => 0.07092437542082
502 => 0.074072971575183
503 => 0.072960047406565
504 => 0.072055222733781
505 => 0.072848997910793
506 => 0.072726802444107
507 => 0.071695349732111
508 => 0.071666400289846
509 => 0.069686712760146
510 => 0.068954867355719
511 => 0.068343282558102
512 => 0.067675447924929
513 => 0.067279533168364
514 => 0.067887838174486
515 => 0.06802696472664
516 => 0.066696895199402
517 => 0.066515611637615
518 => 0.067601775125102
519 => 0.067123795070516
520 => 0.067615409409993
521 => 0.067729468153742
522 => 0.067711102069003
523 => 0.067212035996354
524 => 0.067530125828696
525 => 0.066777748548065
526 => 0.065959651258793
527 => 0.0654377561575
528 => 0.064982333462282
529 => 0.065235028442911
530 => 0.064334216977248
531 => 0.064046029259629
601 => 0.067422364150746
602 => 0.069916499036531
603 => 0.069880233327506
604 => 0.069659475150599
605 => 0.069331473278875
606 => 0.070900380040906
607 => 0.070353804296296
608 => 0.070751483818431
609 => 0.070852709947372
610 => 0.071159090952316
611 => 0.071268595827246
612 => 0.070937596039181
613 => 0.069826720322217
614 => 0.067058523654436
615 => 0.06576992063298
616 => 0.065344660172519
617 => 0.065360117582572
618 => 0.064933733208388
619 => 0.065059322515793
620 => 0.064890058372538
621 => 0.064569513034608
622 => 0.065215235671567
623 => 0.065289649190154
624 => 0.065138929810877
625 => 0.065174429680818
626 => 0.063926537593493
627 => 0.064021412118613
628 => 0.063493138706672
629 => 0.063394093810364
630 => 0.062058664627006
701 => 0.059692758255131
702 => 0.061003700049238
703 => 0.059420266708268
704 => 0.058820596509112
705 => 0.061659341964066
706 => 0.061374410654931
707 => 0.060886732110355
708 => 0.060165353901813
709 => 0.059897787707149
710 => 0.058272140209533
711 => 0.058176088282881
712 => 0.058981803078875
713 => 0.058609993423477
714 => 0.058087831851971
715 => 0.056196615570645
716 => 0.054070262310243
717 => 0.054134443549395
718 => 0.05481079695932
719 => 0.056777385717361
720 => 0.056009005467263
721 => 0.05545153677967
722 => 0.055347139651931
723 => 0.056653888275776
724 => 0.058503211350817
725 => 0.059370872361354
726 => 0.058511046651168
727 => 0.05752332517161
728 => 0.05758344320141
729 => 0.057983381520318
730 => 0.058025409382812
731 => 0.057382504239029
801 => 0.057563478271165
802 => 0.057288562167737
803 => 0.055601402548456
804 => 0.055570887180984
805 => 0.055156831001289
806 => 0.055144293544724
807 => 0.054439880691907
808 => 0.054341328464422
809 => 0.05294267399035
810 => 0.0538632726007
811 => 0.053245783386474
812 => 0.052315081489654
813 => 0.05215462813184
814 => 0.052149804710151
815 => 0.053105427457048
816 => 0.053852105592512
817 => 0.053256524875725
818 => 0.05312092269136
819 => 0.054568799256136
820 => 0.054384543765581
821 => 0.05422497969908
822 => 0.058337624753
823 => 0.055082145279127
824 => 0.053662570412246
825 => 0.051905576944525
826 => 0.052477662877145
827 => 0.052598209788839
828 => 0.048372957220848
829 => 0.046658772780235
830 => 0.046070529277895
831 => 0.045731986825756
901 => 0.045886264872344
902 => 0.044343297822012
903 => 0.045380197198155
904 => 0.044044118156325
905 => 0.043820120156985
906 => 0.046209194992209
907 => 0.046541620798758
908 => 0.045123389031419
909 => 0.046034123416918
910 => 0.045703878468581
911 => 0.044067021396718
912 => 0.044004505496479
913 => 0.043183188156126
914 => 0.04189798555685
915 => 0.041310613482391
916 => 0.041004705006215
917 => 0.041130928805523
918 => 0.041067106190081
919 => 0.040650620453041
920 => 0.041090978665007
921 => 0.039966045402011
922 => 0.039518087912482
923 => 0.039315755906997
924 => 0.038317312887345
925 => 0.039906279741237
926 => 0.040219326228731
927 => 0.04053298951451
928 => 0.043263214270198
929 => 0.043126819956939
930 => 0.044359758122076
1001 => 0.044311848412207
1002 => 0.043960194475236
1003 => 0.042476624359419
1004 => 0.043067948965489
1005 => 0.041247943740252
1006 => 0.042611615403325
1007 => 0.041989292604589
1008 => 0.042401207439072
1009 => 0.041660547425808
1010 => 0.042070459258251
1011 => 0.040293561164175
1012 => 0.038634318725558
1013 => 0.039302046319164
1014 => 0.040027942577326
1015 => 0.041601870619949
1016 => 0.040664452062387
1017 => 0.041001583223406
1018 => 0.039872250269067
1019 => 0.037542113806254
1020 => 0.037555302125581
1021 => 0.03719686139556
1022 => 0.036887116271617
1023 => 0.040772125860311
1024 => 0.040288963505044
1025 => 0.039519107526651
1026 => 0.04054959034659
1027 => 0.040822066360143
1028 => 0.040829823369193
1029 => 0.041581637034009
1030 => 0.041982880121691
1031 => 0.042053600954982
1101 => 0.043236596000579
1102 => 0.043633120335781
1103 => 0.045266347954255
1104 => 0.041948837449031
1105 => 0.041880515503324
1106 => 0.040564091353123
1107 => 0.039729194345223
1108 => 0.040621257465539
1109 => 0.04141150361138
1110 => 0.040588646503677
1111 => 0.040696094270481
1112 => 0.039591475833285
1113 => 0.039986324947454
1114 => 0.040326422196497
1115 => 0.040138640485568
1116 => 0.03985752217557
1117 => 0.04134671243927
1118 => 0.041262686488408
1119 => 0.042649454698301
1120 => 0.043730539686659
1121 => 0.045668037252854
1122 => 0.043646157538497
1123 => 0.043572472205462
1124 => 0.04429275815538
1125 => 0.043633010063755
1126 => 0.044049948083932
1127 => 0.045600862091967
1128 => 0.045633630461059
1129 => 0.045084718059117
1130 => 0.045051316689574
1201 => 0.04515674132081
1202 => 0.045774216678841
1203 => 0.045558451815644
1204 => 0.045808140377834
1205 => 0.046120379748219
1206 => 0.047411934170883
1207 => 0.04772332356965
1208 => 0.046966808767538
1209 => 0.047035113583832
1210 => 0.046752156281046
1211 => 0.046478823072
1212 => 0.047093236208826
1213 => 0.048216088292697
1214 => 0.048209103088159
1215 => 0.048469582946491
1216 => 0.048631859740301
1217 => 0.047935248947398
1218 => 0.047481780936306
1219 => 0.047655669426678
1220 => 0.047933720909581
1221 => 0.047565501078257
1222 => 0.045292677703307
1223 => 0.045982107126747
1224 => 0.04586735235931
1225 => 0.045703927615823
1226 => 0.046397154232293
1227 => 0.046330290833997
1228 => 0.044327472464743
1229 => 0.044455686398614
1230 => 0.04433526957872
1231 => 0.044724360958763
]
'min_raw' => 0.036887116271617
'max_raw' => 0.08263169400558
'avg_raw' => 0.059759405138599
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036887'
'max' => '$0.082631'
'avg' => '$0.059759'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0089951145038757
'max_diff' => -0.060046738639163
'year' => 2034
]
9 => [
'items' => [
101 => 0.043611997852344
102 => 0.043954153251999
103 => 0.044168749911154
104 => 0.044295148992006
105 => 0.044751789144705
106 => 0.044698207693307
107 => 0.044748458446454
108 => 0.045425535244375
109 => 0.048849957343561
110 => 0.049036341082858
111 => 0.048118519383909
112 => 0.048485171049407
113 => 0.047781280029556
114 => 0.048253806786842
115 => 0.048577097593298
116 => 0.047116208604167
117 => 0.047029704239322
118 => 0.046322908010844
119 => 0.046702700269044
120 => 0.046098423478219
121 => 0.046246691865982
122 => 0.04583212052799
123 => 0.046578266396047
124 => 0.04741257341588
125 => 0.047623352316873
126 => 0.047068883774384
127 => 0.046667412008364
128 => 0.045962559840255
129 => 0.047134744704476
130 => 0.04747752728046
131 => 0.047132944213531
201 => 0.047053096787635
202 => 0.046901786059842
203 => 0.047085198073828
204 => 0.047475660412935
205 => 0.047291525584519
206 => 0.047413149882726
207 => 0.046949643476394
208 => 0.047935479554556
209 => 0.04950122450105
210 => 0.049506258627078
211 => 0.049322122806107
212 => 0.049246778395428
213 => 0.04943571292204
214 => 0.049538202152227
215 => 0.050149181766624
216 => 0.050804787235374
217 => 0.053864211894955
218 => 0.05300513769303
219 => 0.055719641256997
220 => 0.057866461141922
221 => 0.058510198556355
222 => 0.057917990425262
223 => 0.05589207839925
224 => 0.05579267749013
225 => 0.058820245374988
226 => 0.057964818776122
227 => 0.057863068504131
228 => 0.056780617519952
301 => 0.057420480115765
302 => 0.057280532779843
303 => 0.057059619063632
304 => 0.058280432323226
305 => 0.060565685762436
306 => 0.060209507582965
307 => 0.059943637094619
308 => 0.058778670008424
309 => 0.059480240399132
310 => 0.059230424620697
311 => 0.060303791741866
312 => 0.059667952837278
313 => 0.0579583380783
314 => 0.058230599863631
315 => 0.058189448042493
316 => 0.059036349605466
317 => 0.058782130777651
318 => 0.058139807736296
319 => 0.06055787501462
320 => 0.060400859175563
321 => 0.060623471736528
322 => 0.060721472670387
323 => 0.062193307611578
324 => 0.06279627129352
325 => 0.062933154605685
326 => 0.063505923468644
327 => 0.062918903594594
328 => 0.065267401628872
329 => 0.066829015783007
330 => 0.068642910982965
331 => 0.07129349939917
401 => 0.072290145162976
402 => 0.072110110026375
403 => 0.074119755912794
404 => 0.077731044898771
405 => 0.072840054781144
406 => 0.077990279251257
407 => 0.07635977764622
408 => 0.072493887672149
409 => 0.072244969933668
410 => 0.074862995508014
411 => 0.080669524256291
412 => 0.079215054661951
413 => 0.080671903247497
414 => 0.078972411987389
415 => 0.078888017921888
416 => 0.08058936275033
417 => 0.084564647677463
418 => 0.082676138819909
419 => 0.079968498291236
420 => 0.081967777922055
421 => 0.080235816881244
422 => 0.076333223910926
423 => 0.079213942456464
424 => 0.077287688003203
425 => 0.077849871457984
426 => 0.081898571810011
427 => 0.081411421472123
428 => 0.082041839118257
429 => 0.080929168473733
430 => 0.079889758639691
501 => 0.077949622996864
502 => 0.077375244480554
503 => 0.077533982038488
504 => 0.077375165818104
505 => 0.076289677756709
506 => 0.076055266713201
507 => 0.075664571370904
508 => 0.07578566419428
509 => 0.075051042648809
510 => 0.07643742528567
511 => 0.076694750119833
512 => 0.077703643788224
513 => 0.077808390475752
514 => 0.080618144981517
515 => 0.079070579415748
516 => 0.080108820007649
517 => 0.08001594999681
518 => 0.072577673230291
519 => 0.073602602140246
520 => 0.075197069883725
521 => 0.074478764326538
522 => 0.073463248326289
523 => 0.072643164707565
524 => 0.071400654167343
525 => 0.073149463892404
526 => 0.075448962715679
527 => 0.077866709560661
528 => 0.080771473977859
529 => 0.080123164375126
530 => 0.077812407010394
531 => 0.077916065897767
601 => 0.078556844351235
602 => 0.077726978033132
603 => 0.077482234255008
604 => 0.078523220314417
605 => 0.078530389013292
606 => 0.07757552752162
607 => 0.076514373711434
608 => 0.076509927438223
609 => 0.076321105367231
610 => 0.079006003014348
611 => 0.080482425246493
612 => 0.080651694676035
613 => 0.080471032065216
614 => 0.080540561933878
615 => 0.079681464367737
616 => 0.081645106646465
617 => 0.083447138985521
618 => 0.082964155823848
619 => 0.082240095404399
620 => 0.081663346404833
621 => 0.082828292088898
622 => 0.082776418891381
623 => 0.083431399805098
624 => 0.083401686087499
625 => 0.083181440641294
626 => 0.082964163689507
627 => 0.083825642243469
628 => 0.08357755025485
629 => 0.083329072910848
630 => 0.082830713557474
701 => 0.08289844887047
702 => 0.082174513470261
703 => 0.081839587829094
704 => 0.076803109784923
705 => 0.075457198279853
706 => 0.075880649437903
707 => 0.076020060554038
708 => 0.075434318142198
709 => 0.076274122295896
710 => 0.076143239708115
711 => 0.076652427293418
712 => 0.076334308996475
713 => 0.076347364682346
714 => 0.077282882763681
715 => 0.077554467642672
716 => 0.077416337381258
717 => 0.077513079081524
718 => 0.079742450732022
719 => 0.079425505374613
720 => 0.079257134470445
721 => 0.079303774361567
722 => 0.079873426616536
723 => 0.080032898146068
724 => 0.079357206069578
725 => 0.07967586635898
726 => 0.081032681427242
727 => 0.081507489912052
728 => 0.083022850674563
729 => 0.082379098489258
730 => 0.083560733486326
731 => 0.087192676618258
801 => 0.090094124103393
802 => 0.087425833088674
803 => 0.092753971898016
804 => 0.096902692237206
805 => 0.096743457440532
806 => 0.096020032087764
807 => 0.091296824281033
808 => 0.086950458038218
809 => 0.090586377956792
810 => 0.090595646664398
811 => 0.090283317918854
812 => 0.0883434709044
813 => 0.090215815447614
814 => 0.090364435358097
815 => 0.090281247729451
816 => 0.08879397157168
817 => 0.086523175773345
818 => 0.086966883836822
819 => 0.087693686696198
820 => 0.08631769725644
821 => 0.085877985256297
822 => 0.086695493523194
823 => 0.089329675493746
824 => 0.08883169865099
825 => 0.088818694463143
826 => 0.090949250571498
827 => 0.089424232200702
828 => 0.086972480416453
829 => 0.086353380756297
830 => 0.084155994038246
831 => 0.085673736871227
901 => 0.0857283577338
902 => 0.084897105495133
903 => 0.087039931954328
904 => 0.087020185431269
905 => 0.089054480236647
906 => 0.092943287858293
907 => 0.091793176087971
908 => 0.090455721230892
909 => 0.090601139657457
910 => 0.092196020873616
911 => 0.09123171928273
912 => 0.091578488858162
913 => 0.092195495996332
914 => 0.092567751722216
915 => 0.090547577787193
916 => 0.090076578606849
917 => 0.089113079582115
918 => 0.088861720671124
919 => 0.089646470522702
920 => 0.089439716662433
921 => 0.085723767061803
922 => 0.085335429653189
923 => 0.085347339407093
924 => 0.084370846528696
925 => 0.082881460503995
926 => 0.086795478050289
927 => 0.086481127664681
928 => 0.086134109167758
929 => 0.086176616953571
930 => 0.087875559312054
1001 => 0.086890086945488
1002 => 0.089510126747749
1003 => 0.08897152533001
1004 => 0.088419110818235
1005 => 0.08834275030575
1006 => 0.088130117848508
1007 => 0.087400922035573
1008 => 0.086520374273579
1009 => 0.085938960369369
1010 => 0.079274148224486
1011 => 0.080511098591147
1012 => 0.081934097236418
1013 => 0.082425310666456
1014 => 0.081585056103441
1015 => 0.087434100407132
1016 => 0.08850277716421
1017 => 0.085265685558962
1018 => 0.084660157889199
1019 => 0.087473798700353
1020 => 0.085776829337627
1021 => 0.086540974537755
1022 => 0.084889310580155
1023 => 0.088245364227938
1024 => 0.08821979672207
1025 => 0.086914216053173
1026 => 0.088017683894294
1027 => 0.087825929201889
1028 => 0.086351931842207
1029 => 0.088292092573362
1030 => 0.088293054868879
1031 => 0.087036461860837
1101 => 0.085569036331024
1102 => 0.085306695305338
1103 => 0.085109056583041
1104 => 0.086492367527544
1105 => 0.087732639794885
1106 => 0.090040478994836
1107 => 0.09062072460261
1108 => 0.092885461838892
1109 => 0.091536921082741
1110 => 0.092134711733416
1111 => 0.092783698047374
1112 => 0.093094845951967
1113 => 0.09258784713855
1114 => 0.096105916269531
1115 => 0.096402949095039
1116 => 0.096502541632108
1117 => 0.095316268515334
1118 => 0.096369956693709
1119 => 0.095876970889532
1120 => 0.0971595829966
1121 => 0.097360712952202
1122 => 0.097190363035213
1123 => 0.097254204857741
1124 => 0.094252153484372
1125 => 0.09409648128358
1126 => 0.091973879779788
1127 => 0.092838855582061
1128 => 0.091221824779081
1129 => 0.091734601903969
1130 => 0.0919606291747
1201 => 0.091842565355404
1202 => 0.092887760016123
1203 => 0.09199913103535
1204 => 0.08965389305096
1205 => 0.08730801610805
1206 => 0.087278565533942
1207 => 0.086660937543041
1208 => 0.086214505629829
1209 => 0.086300504254336
1210 => 0.086603574624078
1211 => 0.086196890628987
1212 => 0.086283677278742
1213 => 0.08772491392109
1214 => 0.088013943651283
1215 => 0.087031707696881
1216 => 0.083087888603982
1217 => 0.082120065506263
1218 => 0.082815717556137
1219 => 0.082483240682027
1220 => 0.066570412783385
1221 => 0.070308895659858
1222 => 0.06808761608154
1223 => 0.069111283907389
1224 => 0.066843932655484
1225 => 0.067926031514954
1226 => 0.067726207367533
1227 => 0.073737577203152
1228 => 0.073643717931538
1229 => 0.073688643397937
1230 => 0.071544233834002
1231 => 0.074960336496416
]
'min_raw' => 0.043611997852344
'max_raw' => 0.097360712952202
'avg_raw' => 0.070486355402273
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.043611'
'max' => '$0.09736'
'avg' => '$0.070486'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0067248815807264
'max_diff' => 0.014729018946622
'year' => 2035
]
10 => [
'items' => [
101 => 0.076643231506999
102 => 0.076331772429341
103 => 0.076410159969065
104 => 0.075063202326258
105 => 0.073701684892223
106 => 0.072191552521848
107 => 0.074997191808003
108 => 0.074685252613242
109 => 0.075400728893844
110 => 0.077220386522153
111 => 0.077488338020129
112 => 0.077848467550704
113 => 0.077719386749758
114 => 0.080794615112774
115 => 0.080422184667003
116 => 0.08131963488576
117 => 0.079473511696065
118 => 0.077384448071304
119 => 0.077781510769735
120 => 0.0777432704389
121 => 0.077256427137155
122 => 0.076816926772574
123 => 0.076085282494007
124 => 0.078400313254372
125 => 0.078306327233244
126 => 0.079827851668512
127 => 0.079558907445279
128 => 0.077762832100711
129 => 0.077826979283013
130 => 0.078258399912082
131 => 0.079751551635164
201 => 0.080194820728096
202 => 0.079989480823031
203 => 0.080475505147428
204 => 0.080859638956624
205 => 0.080523746439635
206 => 0.085279276145566
207 => 0.083304448657289
208 => 0.084266965834314
209 => 0.084496520509554
210 => 0.083908521035942
211 => 0.084036037067086
212 => 0.08422918910823
213 => 0.085401970479012
214 => 0.088479688142968
215 => 0.089842788345602
216 => 0.093943742559404
217 => 0.089729601849044
218 => 0.089479552179139
219 => 0.090218257869998
220 => 0.092625952123589
221 => 0.094577162172904
222 => 0.09522449111427
223 => 0.095310046320107
224 => 0.096524478447724
225 => 0.097220568295455
226 => 0.096377014444695
227 => 0.095662190879946
228 => 0.09310178159818
229 => 0.093398155944308
301 => 0.095439881288828
302 => 0.098323938594985
303 => 0.10079875979869
304 => 0.099932163669378
305 => 0.10654368041449
306 => 0.10719918529414
307 => 0.10710861571478
308 => 0.10860195338284
309 => 0.10563798222468
310 => 0.10437082713032
311 => 0.095816743848237
312 => 0.09822009233398
313 => 0.10171350050172
314 => 0.10125113483111
315 => 0.09871412844063
316 => 0.10079683525184
317 => 0.10010822724779
318 => 0.099565093544625
319 => 0.10205329433048
320 => 0.099317415356778
321 => 0.10168620801612
322 => 0.098648206928493
323 => 0.0999361222075
324 => 0.099205039205683
325 => 0.099678139506021
326 => 0.096912404817269
327 => 0.098404728120905
328 => 0.096850319261534
329 => 0.096849582269345
330 => 0.096815268607621
331 => 0.098644023737367
401 => 0.098703659376494
402 => 0.097352206572516
403 => 0.097157441109802
404 => 0.097877591106166
405 => 0.097034484068006
406 => 0.097428968544709
407 => 0.097046432600938
408 => 0.096960315702555
409 => 0.096274121604661
410 => 0.095978490319989
411 => 0.096094414964188
412 => 0.095698704390284
413 => 0.09546027445603
414 => 0.096767838892503
415 => 0.096069259961094
416 => 0.096660771652233
417 => 0.095986669425454
418 => 0.093649937415078
419 => 0.092306058125419
420 => 0.087892187972991
421 => 0.089143956072831
422 => 0.089973879618072
423 => 0.089699589891321
424 => 0.090288870360416
425 => 0.090325047395281
426 => 0.090133466307775
427 => 0.0899116399515
428 => 0.089803667149032
429 => 0.090608407958169
430 => 0.091075587084203
501 => 0.090057173548782
502 => 0.089818573506552
503 => 0.090848245819015
504 => 0.091476345334796
505 => 0.096113879260686
506 => 0.095770315768419
507 => 0.096632592713079
508 => 0.096535513561829
509 => 0.097439317171322
510 => 0.09891665409694
511 => 0.095912815057258
512 => 0.096434177649608
513 => 0.096306351581984
514 => 0.097701923070505
515 => 0.09770627989236
516 => 0.096869565071026
517 => 0.097323161749819
518 => 0.097069976527491
519 => 0.097527516444273
520 => 0.095765727268519
521 => 0.097911396311198
522 => 0.099127852394538
523 => 0.099144742888435
524 => 0.099721333417546
525 => 0.10030718278899
526 => 0.10143166964076
527 => 0.10027582146101
528 => 0.098196563105202
529 => 0.098346678842528
530 => 0.097127610429286
531 => 0.097148103189555
601 => 0.097038711229191
602 => 0.097367004736886
603 => 0.095837769231912
604 => 0.096196677748337
605 => 0.095694203723577
606 => 0.09643308536921
607 => 0.09563817086002
608 => 0.096306289940384
609 => 0.096594627986971
610 => 0.09765860158635
611 => 0.095481021094302
612 => 0.091040787061777
613 => 0.091974178088047
614 => 0.09059361944391
615 => 0.090721395402582
616 => 0.090979523174493
617 => 0.090142846611578
618 => 0.090302458133074
619 => 0.090296755686357
620 => 0.090247615081262
621 => 0.090029963193266
622 => 0.089714324894558
623 => 0.090971730728267
624 => 0.091185388481574
625 => 0.091660323200582
626 => 0.093073406773052
627 => 0.092932206401357
628 => 0.093162510065938
629 => 0.092659758459256
630 => 0.09074471660769
701 => 0.090848712593774
702 => 0.08955188098088
703 => 0.091627160300565
704 => 0.091135706765315
705 => 0.090818863474045
706 => 0.09073240984649
707 => 0.092148996179814
708 => 0.092572861013015
709 => 0.092308736893475
710 => 0.091767010618567
711 => 0.092807285213387
712 => 0.093085618809298
713 => 0.093147927436875
714 => 0.094991094566026
715 => 0.093250940004362
716 => 0.093669812503004
717 => 0.096937736164976
718 => 0.093974180346207
719 => 0.09554404195859
720 => 0.095467205401829
721 => 0.096270293481504
722 => 0.095401328738911
723 => 0.095412100598341
724 => 0.096125188407193
725 => 0.095123785185724
726 => 0.094875823665323
727 => 0.094533266600823
728 => 0.095281227418959
729 => 0.095729596102074
730 => 0.099343118397466
731 => 0.10167761859693
801 => 0.10157627178646
802 => 0.10250239192083
803 => 0.10208516631801
804 => 0.10073783478795
805 => 0.10303756542019
806 => 0.10230983442333
807 => 0.10236982768252
808 => 0.10236759473041
809 => 0.10285147222398
810 => 0.10250860067307
811 => 0.10183276565118
812 => 0.10228141647861
813 => 0.10361374904046
814 => 0.10774935019342
815 => 0.11006368738804
816 => 0.10761002418834
817 => 0.10930252820763
818 => 0.1082876288969
819 => 0.1081031915015
820 => 0.10916620910068
821 => 0.11023108737145
822 => 0.1101632592292
823 => 0.10939021228672
824 => 0.10895353768426
825 => 0.11226018407084
826 => 0.11469646480122
827 => 0.11453032678845
828 => 0.11526360594588
829 => 0.11741653623156
830 => 0.11761337319548
831 => 0.11758857626227
901 => 0.11710069530938
902 => 0.11922053476896
903 => 0.12098894214117
904 => 0.11698776496502
905 => 0.11851136085444
906 => 0.1191953521364
907 => 0.12019965426938
908 => 0.12189408030829
909 => 0.12373467641087
910 => 0.12399495688088
911 => 0.12381027543184
912 => 0.12259635282431
913 => 0.12461035504263
914 => 0.12579011030795
915 => 0.12649262757024
916 => 0.12827409445966
917 => 0.1191995762337
918 => 0.11277618120054
919 => 0.11177307531117
920 => 0.1138129305824
921 => 0.11435082414989
922 => 0.1141339999273
923 => 0.10690388482795
924 => 0.11173501025148
925 => 0.11693289499462
926 => 0.11713256691666
927 => 0.11973473670172
928 => 0.12058210985028
929 => 0.12267719760145
930 => 0.12254614929218
1001 => 0.12305626981946
1002 => 0.1229390019443
1003 => 0.12681971083056
1004 => 0.13110070902295
1005 => 0.13095247166829
1006 => 0.13033702752766
1007 => 0.13125106702531
1008 => 0.13566951593951
1009 => 0.13526273596769
1010 => 0.13565788806088
1011 => 0.14086748834358
1012 => 0.1476407097681
1013 => 0.1444938683961
1014 => 0.15132160869413
1015 => 0.15561930928877
1016 => 0.16305173807668
1017 => 0.16212116138695
1018 => 0.1650145513724
1019 => 0.16045523489512
1020 => 0.14998612267339
1021 => 0.14832934559015
1022 => 0.15164625526708
1023 => 0.15980055404848
1024 => 0.15138944737976
1025 => 0.1530910033042
1026 => 0.15260095508349
1027 => 0.15257484249638
1028 => 0.15357145373882
1029 => 0.15212581715191
1030 => 0.14623603363178
1031 => 0.14893528671034
1101 => 0.14789297546793
1102 => 0.14904949750084
1103 => 0.15529076992648
1104 => 0.15253135461375
1105 => 0.14962453473849
1106 => 0.15327033193704
1107 => 0.15791268460262
1108 => 0.15762217451592
1109 => 0.15705846352392
1110 => 0.16023607287087
1111 => 0.16548455255985
1112 => 0.16690319552969
1113 => 0.16795040876714
1114 => 0.16809480177977
1115 => 0.16958213954964
1116 => 0.16158434950369
1117 => 0.17427704770442
1118 => 0.17646872605498
1119 => 0.17605678136084
1120 => 0.17849273960756
1121 => 0.17777601889707
1122 => 0.17673760303762
1123 => 0.18059911500185
1124 => 0.17617220314281
1125 => 0.16988875909161
1126 => 0.16644153741269
1127 => 0.17098111699893
1128 => 0.17375327984275
1129 => 0.17558550313985
1130 => 0.17613993280249
1201 => 0.16220519517816
1202 => 0.15469514445463
1203 => 0.15950900086551
1204 => 0.1653822379214
1205 => 0.16155172337529
1206 => 0.16170187229338
1207 => 0.15624056519214
1208 => 0.16586544241779
1209 => 0.16446317876397
1210 => 0.17173812508055
1211 => 0.17000190075701
1212 => 0.17593433706638
1213 => 0.17437212776853
1214 => 0.18085677122196
1215 => 0.18344367106024
1216 => 0.18778747850754
1217 => 0.19098280094824
1218 => 0.1928591554022
1219 => 0.19274650611881
1220 => 0.20018155726148
1221 => 0.19579736736355
1222 => 0.19028979157753
1223 => 0.19019017690774
1224 => 0.19304262845027
1225 => 0.19902058435156
1226 => 0.20057058134104
1227 => 0.20143681820368
1228 => 0.20011014629462
1229 => 0.19535142237814
1230 => 0.19329662951828
1231 => 0.19504737256796
]
'min_raw' => 0.072191552521848
'max_raw' => 0.20143681820368
'avg_raw' => 0.13681418536277
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.072191'
'max' => '$0.201436'
'avg' => '$0.136814'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.028579554669504
'max_diff' => 0.10407610525148
'year' => 2036
]
11 => [
'items' => [
101 => 0.19290636426127
102 => 0.19660234525945
103 => 0.2016777165889
104 => 0.20062967247956
105 => 0.20413312680553
106 => 0.20775883345875
107 => 0.21294375681354
108 => 0.21429928777564
109 => 0.21653992890976
110 => 0.21884628464904
111 => 0.21958702395447
112 => 0.22100132512644
113 => 0.22099387106114
114 => 0.22525596283632
115 => 0.22995718205033
116 => 0.23173178347015
117 => 0.23581238158292
118 => 0.22882450031601
119 => 0.23412488852795
120 => 0.23890597137245
121 => 0.23320576730433
122 => 0.24106217063502
123 => 0.24136721697336
124 => 0.24597305451457
125 => 0.24130415579485
126 => 0.23853177863873
127 => 0.24653552760882
128 => 0.25040828961972
129 => 0.24924178218446
130 => 0.24036460300451
131 => 0.23519770396166
201 => 0.22167493254612
202 => 0.23769323942808
203 => 0.24549528944986
204 => 0.24034439757979
205 => 0.24294220782957
206 => 0.25711501820955
207 => 0.26251110678073
208 => 0.26138875807943
209 => 0.26157841653452
210 => 0.26449004798159
211 => 0.27740182528264
212 => 0.26966478903119
213 => 0.2755794633442
214 => 0.27871658527288
215 => 0.28163051895394
216 => 0.27447481879146
217 => 0.26516535801818
218 => 0.2622166610067
219 => 0.2398322428963
220 => 0.23866703672305
221 => 0.23801297118865
222 => 0.23388918051364
223 => 0.23064901064441
224 => 0.2280723072646
225 => 0.22131026812723
226 => 0.22359225783435
227 => 0.21281497879664
228 => 0.21970990000165
301 => 0.20250910243095
302 => 0.21683443777229
303 => 0.20903780903907
304 => 0.21427303554377
305 => 0.21425477033168
306 => 0.20461505850646
307 => 0.19905507390132
308 => 0.20259811248955
309 => 0.20639653110289
310 => 0.20701281174349
311 => 0.21193756062455
312 => 0.21331195218013
313 => 0.20914748160251
314 => 0.20215265413372
315 => 0.20377739301969
316 => 0.19902214861966
317 => 0.19068876571642
318 => 0.19667394680443
319 => 0.19871755077771
320 => 0.19962012271386
321 => 0.19142519772403
322 => 0.18885017437174
323 => 0.18747925354553
324 => 0.201094792225
325 => 0.2018406821692
326 => 0.19802460375645
327 => 0.21527364003747
328 => 0.21136965188652
329 => 0.21573136315145
330 => 0.2036299649955
331 => 0.20409225470175
401 => 0.19836325888121
402 => 0.20157111372908
403 => 0.19930390531659
404 => 0.20131195075801
405 => 0.20251556491611
406 => 0.20824362066481
407 => 0.21689984296784
408 => 0.20738804014978
409 => 0.20324361145042
410 => 0.20581479170635
411 => 0.21266218355406
412 => 0.22303633271487
413 => 0.21689462761246
414 => 0.21962021204399
415 => 0.22021563098947
416 => 0.21568696502524
417 => 0.2232033110886
418 => 0.22723138200664
419 => 0.23136334927671
420 => 0.23495102068223
421 => 0.22971295068514
422 => 0.23531843642987
423 => 0.23080140442105
424 => 0.22674915974696
425 => 0.22675530532944
426 => 0.22421327305153
427 => 0.21928776519641
428 => 0.21837942597707
429 => 0.22310472130664
430 => 0.22689396067382
501 => 0.22720606057734
502 => 0.22930397818915
503 => 0.23054550422156
504 => 0.24271414711193
505 => 0.24760847594672
506 => 0.25359316860101
507 => 0.25592454366865
508 => 0.26294114677804
509 => 0.25727466990657
510 => 0.25604869199162
511 => 0.23902870796164
512 => 0.24181572939307
513 => 0.24627801961236
514 => 0.23910228948379
515 => 0.24365363862497
516 => 0.2445521713562
517 => 0.23885846091985
518 => 0.24189971767461
519 => 0.23382304140376
520 => 0.21707589243953
521 => 0.22322195545282
522 => 0.22774752657304
523 => 0.22128897858559
524 => 0.23286567587277
525 => 0.22610280830914
526 => 0.22395930396636
527 => 0.21559672931071
528 => 0.21954354264316
529 => 0.22488166418822
530 => 0.22158332569661
531 => 0.22842787331472
601 => 0.23812157811613
602 => 0.24502988942772
603 => 0.24556022378938
604 => 0.24111864243694
605 => 0.24823630490002
606 => 0.24828814930053
607 => 0.24025939696568
608 => 0.23534183086486
609 => 0.2342245495001
610 => 0.23701573740517
611 => 0.24040475480364
612 => 0.24574829066863
613 => 0.24897727747928
614 => 0.25739676255918
615 => 0.25967483381625
616 => 0.26217774345972
617 => 0.26552240261214
618 => 0.26953852347762
619 => 0.26075147966183
620 => 0.26110060529373
621 => 0.25291823175737
622 => 0.2441741921627
623 => 0.25080982825513
624 => 0.2594850397443
625 => 0.25749493664343
626 => 0.25727100939046
627 => 0.25764759291771
628 => 0.25614712017034
629 => 0.24936053754412
630 => 0.24595235823548
701 => 0.2503497790629
702 => 0.25268681252598
703 => 0.25631134761649
704 => 0.25586454716193
705 => 0.26520096030844
706 => 0.26882880813869
707 => 0.26790064941935
708 => 0.26807145296109
709 => 0.27463949816917
710 => 0.28194451526207
711 => 0.28878662775147
712 => 0.29574671845127
713 => 0.2873560574557
714 => 0.28309579726618
715 => 0.28749129831722
716 => 0.28515898358838
717 => 0.29856115582979
718 => 0.2994890931575
719 => 0.31289029626931
720 => 0.32560963380799
721 => 0.31762084579055
722 => 0.32515391306808
723 => 0.33330153950873
724 => 0.34901963281748
725 => 0.34372633196028
726 => 0.33967174646027
727 => 0.33584018275437
728 => 0.34381305858273
729 => 0.35407003596612
730 => 0.3562792906544
731 => 0.35985912724965
801 => 0.35609536679133
802 => 0.36062840169876
803 => 0.37663200683843
804 => 0.37230769146196
805 => 0.36616646845899
806 => 0.37879977771418
807 => 0.38337172322289
808 => 0.41546003114946
809 => 0.45597284540864
810 => 0.43920027428386
811 => 0.42878899813922
812 => 0.43123589499198
813 => 0.44602980331413
814 => 0.45078113713202
815 => 0.437865373932
816 => 0.44242743984343
817 => 0.46756487154779
818 => 0.48105029715181
819 => 0.46273527784725
820 => 0.41220486597019
821 => 0.36561351852015
822 => 0.37797164189962
823 => 0.3765706142256
824 => 0.40357764863347
825 => 0.37220455797038
826 => 0.37273280035637
827 => 0.40029831163484
828 => 0.39294430581825
829 => 0.38103175822527
830 => 0.36570049330079
831 => 0.33735923211753
901 => 0.31225658673298
902 => 0.36148865512605
903 => 0.35936567881424
904 => 0.35629129450726
905 => 0.3631330040993
906 => 0.3963544038251
907 => 0.39558854303425
908 => 0.39071652742842
909 => 0.39441190832546
910 => 0.38038394008711
911 => 0.38399926691303
912 => 0.36560613821267
913 => 0.37392060055014
914 => 0.38100619924833
915 => 0.38242873809107
916 => 0.38563379074041
917 => 0.3582469667667
918 => 0.37054284669599
919 => 0.3777655241863
920 => 0.34513320452181
921 => 0.37712048814744
922 => 0.3577702230915
923 => 0.35120245250029
924 => 0.36004509036338
925 => 0.35659910578838
926 => 0.35363645060581
927 => 0.35198323810905
928 => 0.35847629542938
929 => 0.3581733865445
930 => 0.34754948452033
1001 => 0.33369103741545
1002 => 0.33834238715187
1003 => 0.33665250818599
1004 => 0.33052816881493
1005 => 0.33465523409547
1006 => 0.3164817272599
1007 => 0.285215153326
1008 => 0.3058708097878
1009 => 0.30507558948305
1010 => 0.30467460334502
1011 => 0.32019675829565
1012 => 0.31870466125419
1013 => 0.31599649051329
1014 => 0.3304784311355
1015 => 0.3251923279988
1016 => 0.34148285230356
1017 => 0.35221284521572
1018 => 0.34949137193429
1019 => 0.35958298213073
1020 => 0.33844954485539
1021 => 0.34546922499192
1022 => 0.3469159713392
1023 => 0.33029972623619
1024 => 0.31894878678325
1025 => 0.31819180853192
1026 => 0.29851084377634
1027 => 0.30902425628957
1028 => 0.31827562422665
1029 => 0.31384493691995
1030 => 0.31244231368166
1031 => 0.3196080116142
1101 => 0.32016484771361
1102 => 0.3074689256362
1103 => 0.31010880986366
1104 => 0.32111756593639
1105 => 0.30983141745618
1106 => 0.28790427454104
1107 => 0.28246603993161
1108 => 0.28174047918816
1109 => 0.26699155561558
1110 => 0.28282944877214
1111 => 0.27591578398015
1112 => 0.29775596821963
1113 => 0.2852809721133
1114 => 0.28474319996461
1115 => 0.28393027848785
1116 => 0.27123527069857
1117 => 0.27401467059459
1118 => 0.28325381916351
1119 => 0.28655045145936
1120 => 0.28620658570239
1121 => 0.28320854229513
1122 => 0.28458103121451
1123 => 0.28015976619834
1124 => 0.27859852550046
1125 => 0.27367082040485
1126 => 0.2664284552276
1127 => 0.2674355505255
1128 => 0.25308653004142
1129 => 0.24526842212153
1130 => 0.24310447289031
1201 => 0.24021074954067
1202 => 0.24343132664256
1203 => 0.25304588106925
1204 => 0.24144868858916
1205 => 0.22156611553051
1206 => 0.22276109204959
1207 => 0.22544584949625
1208 => 0.22044282175584
1209 => 0.21570787587184
1210 => 0.21982452715968
1211 => 0.2114000188474
1212 => 0.22646391107723
1213 => 0.22605647500848
1214 => 0.23167136248691
1215 => 0.23518246685626
1216 => 0.22709050801844
1217 => 0.22505540225371
1218 => 0.2262146909877
1219 => 0.20705423056242
1220 => 0.23010554409404
1221 => 0.23030489281069
1222 => 0.22859794807063
1223 => 0.24087206089676
1224 => 0.26677426735169
1225 => 0.2570288153695
1226 => 0.25325508180416
1227 => 0.24608121153785
1228 => 0.25563996772544
1229 => 0.25490600439005
1230 => 0.25158674384013
1231 => 0.24957924470282
]
'min_raw' => 0.18747925354553
'max_raw' => 0.48105029715181
'avg_raw' => 0.33426477534867
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.187479'
'max' => '$0.48105'
'avg' => '$0.334264'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11528770102368
'max_diff' => 0.27961347894813
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0058847595410495
]
1 => [
'year' => 2028
'avg' => 0.010099955730342
]
2 => [
'year' => 2029
'avg' => 0.027591258715384
]
3 => [
'year' => 2030
'avg' => 0.021286615008784
]
4 => [
'year' => 2031
'avg' => 0.020906093959782
]
5 => [
'year' => 2032
'avg' => 0.036654962101405
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0058847595410495
'min' => '$0.005884'
'max_raw' => 0.036654962101405
'max' => '$0.036654'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.036654962101405
]
1 => [
'year' => 2033
'avg' => 0.094280331710118
]
2 => [
'year' => 2034
'avg' => 0.059759405138599
]
3 => [
'year' => 2035
'avg' => 0.070486355402273
]
4 => [
'year' => 2036
'avg' => 0.13681418536277
]
5 => [
'year' => 2037
'avg' => 0.33426477534867
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.036654962101405
'min' => '$0.036654'
'max_raw' => 0.33426477534867
'max' => '$0.334264'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.33426477534867
]
]
]
]
'prediction_2025_max_price' => '$0.010061'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'azalmak'
'sma_200day_date_nextmonth' => '4 Şub 2026'
'sma_50day_date_nextmonth' => '4 Şub 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Nötr'
'overall_action_dir' => 0
'last_updated' => 1767713182
'last_updated_date' => '6 Ocak 2026'
]
XRP Classic için 2026 fiyat tahmini
XRP Classic için 2026 fiyat tahmini, ortalama fiyatın alt sınırda $0.00337 ile üst sınırda $0.010061 arasında olabileceğini gösteriyor. Kripto piyasasında, bugünün ortalama fiyatına kıyasla, XRP Classic 3.13% artabilir ve eğer XRPC tahmin edilen fiyat hedefine ulaşırsa 2026 yılına kadar bu gerçekleşebilir.
XRP Classic fiyat tahmini 2027-2032
XRPC için 2027-2032 fiyat tahmini, şu anda alt sınırda $0.005884 ve üst sınırda $0.036654 fiyat aralığında bulunuyor. Piyasadaki fiyat dalgalanmaları göz önüne alındığında, XRP Classic üst fiyat hedefine ulaşırsa, bugünün fiyatına kıyasla 2032 yılına kadar 275.71% artış gösterebilir.
| XRP Classic Fiyat Tahmini | Potansiyel Düşük ($) | Ortalama Fiyat ($) | Potansiyel Yüksek ($) |
|---|---|---|---|
| 2027 | $0.003244 | $0.005884 | $0.008524 |
| 2028 | $0.005856 | $0.010099 | $0.014343 |
| 2029 | $0.012864 | $0.027591 | $0.042318 |
| 2030 | $0.01094 | $0.021286 | $0.031632 |
| 2031 | $0.012935 | $0.020906 | $0.028876 |
| 2032 | $0.019744 | $0.036654 | $0.053565 |
XRP Classic fiyat tahmini 2032-2037
XRP Classic için 2032-2037 fiyat tahmini, şu anda alt sınırda $0.036654 ve üst sınırda $0.334264 olarak tahmin edilmektedir. Mevcut fiyata kıyasla, XRP Classic üst fiyat hedefine ulaşırsa, 2037 yılına kadar potansiyel olarak 3326.16% artış gösterebilir. Lütfen bu bilgilerin sadece genel amaçlar için olduğunu ve uzun vadeli yatırım tavsiyesi olarak değerlendirilmemesi gerektiğini unutmayın.
| XRP Classic Fiyat Tahmini | Potansiyel Düşük ($) | Ortalama Fiyat ($) | Potansiyel Yüksek ($) |
|---|---|---|---|
| 2032 | $0.019744 | $0.036654 | $0.053565 |
| 2033 | $0.045882 | $0.09428 | $0.142678 |
| 2034 | $0.036887 | $0.059759 | $0.082631 |
| 2035 | $0.043611 | $0.070486 | $0.09736 |
| 2036 | $0.072191 | $0.136814 | $0.201436 |
| 2037 | $0.187479 | $0.334264 | $0.48105 |
XRP Classic Potansiyel fiyat histogramı
Teknik Analize Dayalı XRP Classic Fiyat Tahmini
6 Ocak 2026 itibariyle, XRP Classic için genel fiyat tahmini duyarlılığı Nötr, 0 teknik gösterge yükseliş sinyalleri gösterirken 0 düşüş sinyalleri gösteriyor. XRPC fiyat tahmini en son 6 Ocak 2026 tarihinde güncellendi.
XRP Classic'ın 50 Günlük, 200 Günlük Basit Hareketli Ortalamaları ve 14 Günlük Göreceli Güç Endeksi - RSI (14)
Teknik göstergelerimize göre, XRP Classic'ın 200 günlük SMA'sının önümüzdeki ay içinde azalmak ve 4 Şub 2026 tarihinde — seviyesine ulaşması bekleniyor. XRP Classic için kısa vadeli 50 günlük SMA'nın 4 Şub 2026 tarihinde — seviyesine ulaşması öngörülüyor.
Göreceli Güç Endeksi (RSI) momentum osilatörü, bir kripto paranın aşırı satılmış (30'un altında) veya aşırı satın alınmış (70'in üzerinde) olup olmadığını belirlemek için yaygın olarak kullanılan bir araçtır. Şu anda, RSI — seviyesinde olup, XRPC piyasasının — durumda olduğunu gösteriyor.
19 Ekim 2024 Cumartesi için Popüler XRPC Hareketli Ortalamaları ve Osilatörleri
Hareketli ortalamalar (MA), belirli bir dönem boyunca fiyat hareketlerini düzleştirmek için tasarlanmış, finansal piyasalar genelinde yaygın olarak kullanılan göstergelerdir. Gecikmeli göstergeler olarak, geçmiş fiyat verilerine dayanırlar. Aşağıdaki tablo iki türü vurgulamaktadır: basit hareketli ortalama (SMA) ve üstel hareketli ortalama (EMA).
Günlük Basit Hareketli Ortalama (SMA)
| Dönem | Değer | İşlem |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Günlük Üstel Hareketli Ortalama (EMA)
| Dönem | Değer | İşlem |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Haftalık Basit Hareketli Ortalama (SMA)
| Dönem | Değer | İşlem |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Haftalık Üstel Hareketli Ortalama (EMA)
| Dönem | Değer | İşlem |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
XRP Classic Osilatörleri
Osilatör, iki uç değer arasında yüksek ve düşük sınırlar belirleyerek, bu sınırlar içinde dalgalanan bir trend göstergesi oluşturan bir teknik analiz aracıdır. Tüccarlar, kısa vadeli aşırı alım veya aşırı satım koşullarını belirlemek için bu göstergeden faydalanırlar.
| Dönem | Değer | İşlem |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Hızlı Stokastik (14) | — | — |
| Emtia Kanal Endeksi (20) | — | — |
| Ortalama Yön Endeksi (14) | — | — |
| Harika Osilatör (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Williams Yüzde Aralığı (14) | — | — |
| Ultimate Osilatör (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Hull Hareketli Ortalaması (9) | — | — |
| Ichimoku Bulutu B/L (9, 26, 52, 26) | — | — |
Dünya genelinde para akışlarına göre XRP Classic fiyat tahmini
XRP Classic fiyat tahmini için kullanılan dünya genelinde para akışlarıyla ilgili tanımlamalar
M0: Tüm fiziksel para ve fiziksel parayla alım-satım yapılabilen merkez bankalarındaki hesapların toplamı.
M1: M0 ve "mevduat" veya "mevcut" hesaplar dahil olmak üzere vadesiz hesaplarının tümü.
M2: M1 ve çoğu tasarruf hesabı, para piyasası hesapları ve 100.000 $ altındaki para yatırma (CD) hesaplarının tümü.
İnternet şirketleri veya teknoloji nişlerine göre XRP Classic fiyat tahminleri
| Karşılaştırma | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook hisseleri | $0.0137091 | $0.019263 | $0.027068 | $0.038035 | $0.053446 | $0.0751018 |
| Amazon.com hisseleri | $0.020356 | $0.042476 | $0.088628 | $0.184929 | $0.385866 | $0.805132 |
| Apple hisseleri | $0.013838 | $0.019628 | $0.027842 | $0.039491 | $0.056016 | $0.079454 |
| Netflix hisseleri | $0.015393 | $0.024289 | $0.038324 | $0.060469 | $0.095411 | $0.150544 |
| Google hisseleri | $0.012634 | $0.016361 | $0.021187 | $0.027438 | $0.035532 | $0.046014 |
| Tesla hisseleri | $0.022116 | $0.050136 | $0.113656 | $0.25765 | $0.584074 | $1.32 |
| Kodak hisseleri | $0.007316 | $0.005486 | $0.004114 | $0.003085 | $0.002313 | $0.001734 |
| Nokia hisseleri | $0.006463 | $0.004281 | $0.002836 | $0.001878 | $0.001244 | $0.000824 |
Bu hesaplama, piyasa değeri belirli internet şirketlerinin veya teknoloji nişlerinin piyasa değerine benzer şekilde davrandığını varsayarsak kripto para biriminin ne kadar olabileceğini gösterir. Verilerden çıkarım yaparak 2024, 2025, 2026, 2027, 2028, 2029 ve 2030 için gelecek fiyatların olası tahminlerine erişebilirsiniz.
XRP Classic öngörü ve tahminlerine genel bakış
Şöyle sorularınız olabilir: "XRP Classic için şimdi mi yatırım yapmalıyım?", "Bugün mü XRPC satın almalıyım?", "XRP Classic kısa ve uzun vade için iyi veya kötü bir yatırım mı?".
XRP Classic öngörülerini gerçek zamanlı verilerle düzenli olarak güncelliyoruz. Benzer tahminlerimizi inceleyin. Teknik analiz yöntemleriyle XRP Classic gibi büyük miktarlardaki dijital paralar için gelecek fiyatlara dair tahminlerde bulunuyoruz.
İyi yatırım getirisi sağlayacak kripto para birimleri bulmaya çalışıyorsanız yatırım hakkında sağduyulu karar vermek için XRP Classic hakkında olabildiğince çok bilgi kaynağını kendiniz keşfetmelisiniz.
XRP Classic fiyatı bugün $0.009756 USD'ye tekabül ediyor, ancak kripto para birimleri yüksek riskli varlıklar olduğu için fiyat düşebilir ya da yükselebilir ve yatırımınızı kaybedebilirsiniz
Bitcoin'in büyüme paternine göre XRP Classic fiyat tahmini
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %1 oranında büyüme gösterirse | $0.0100098 | $0.01027 | $0.010536 | $0.01081 |
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %2 oranında büyüme gösterirse | $0.010263 | $0.010797 | $0.011358 | $0.011948 |
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %5 oranında büyüme gösterirse | $0.011024 | $0.012457 | $0.014075 | $0.0159053 |
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %10 oranında büyüme gösterirse | $0.012292 | $0.015487 | $0.019513 | $0.024585 |
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %20 oranında büyüme gösterirse | $0.014828 | $0.022536 | $0.034252 | $0.052059 |
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %50 oranında büyüme gösterirse | $0.022436 | $0.051595 | $0.118651 | $0.272858 |
| XRP Classic, Bitcoin'in geçmiş yıllık ortama büyümesine göre %100 oranında büyüme gösterirse | $0.035115 | $0.126393 | $0.45493 | $1.63 |
Soru Kutusu
XRPC iyi bir yatırım mı?
XRP Classic satın alma kararı tamamen bireysel risk toleransınıza bağlıdır. Gördüğünüz gibi, XRP Classic değeri son 24 saat içinde -18.7004% oranında düşmüştür, ve XRP Classic son 30 günlük sürede oranında azalmıştır. Bu nedenle, XRP Classic'a yatırım yapma kararı, bu yatırımın ticaret hedeflerinize uyup uymadığına bağlı olacaktır.
XRP Classic yükselebilir mi?
XRP Classic ortalama değeri yıl sonuna kadar $0.010061 seviyesine kadar yükselebilir gibi görünmektedir. XRP Classic'ın uzun vadeli beş yıllık görünümüne bakıldığında, dijital para birimi $0.031632 seviyesine kadar büyüyebilir. Ancak piyasanın öngörülemezliği göz önüne alındığında, herhangi bir projeye, ağa veya varlığa yatırım yapmadan önce detaylı bir araştırma yapmanız önemlidir.
Önümüzdeki hafta XRP Classic fiyatı ne olacak?
Yeni deneysel XRP Classic tahminimize göre, XRP Classic fiyatı önümüzdeki hafta 0.86% oranında artacak ve $0.009839 seviyesine ulaşacaktır 13 Ocak 2026 itibariyle.
Önümüzdeki ay XRP Classic fiyatı ne olacak?
Yeni deneysel XRP Classic tahminimize göre, XRP Classic fiyatı önümüzdeki ay -11.62% oranında düşecek ve $0.008622 seviyesine ulaşacaktır 5 Şubat 2026 itibariyle.
2026 yılında XRP Classic fiyatı ne kadar yükselebilir?
Son XRP Classic değer tahminimize göre, XRPC fiyatı $0.00337 ve $0.010061 aralığında dalgalanması beklenmektedir. Ancak, kripto para piyasasının son derece dalgalı olduğunu ve bu XRP Classic fiyat tahmininin ani ve aşırı fiyat dalgalanmalarını dikkate almadığını unutmamak önemlidir.
5 yıl içinde XRP Classic nerede olacak?
XRP Classic'ın geleceği $0.031632 seviyesine kadar artış gösteren bir eğilimde görünmektedir. XRP Classic'ın 2030 tahminine dayanarak, XRP Classic değeri yaklaşık olarak $0.031632 seviyesine ulaşabilirken, en düşük zirve yaklaşık $0.01094 seviyesinde beklenmektedir.
2026 yılında XRP Classic ne kadar olacak?
Yeni deneysel XRP Classic fiyat tahmin simülasyonumuza göre, 2026 yılında XRPC'ın değeri 3.13% oranında artacaktır ve en iyi durumda $0.010061 seviyesine ulaşacaktır. Fiyat, 2026 yılı boyunca $0.010061 ve $0.00337 arasında olacaktır.
2027 yılında XRP Classic ne kadar olacak?
Son deneysel simülasyonumuza göre, 2027 yılında XRPC'ın değeri -12.62% oranında düşecektir ve en iyi durumda $0.008524 seviyesine ulaşacaktır. Fiyat, 2027 yılı boyunca $0.008524 ve $0.003244 arasında olacaktır.
2028 yılında XRP Classic ne kadar olacak?
Yeni deneysel XRP Classic fiyat tahmin modelimize göre, XRPC'ın değeri 2028 yılında 47.02% oranında artacaktır, en iyi durumda $0.014343 seviyesine ulaşacaktır. Fiyat, yıl boyunca $0.014343 ve $0.005856 arasında olacaktır.
2029 yılında XRP Classic ne kadar olacak?
Deneysel tahmin modelimize göre, XRP Classic değeri 333.75% oranında artacaktır ve 2029 yılında en iyi durumda $0.042318 seviyesine ulaşacaktır. Fiyat aralığı $0.042318 ve $0.012864 arasında olacaktır.
2030 yılında XRP Classic ne kadar olacak?
Yeni deneysel simülasyona göre, XRPC'ın değeri 224.23% oranında artacaktır, $0.031632 seviyesine ulaşacaktır. Fiyat 2030 yılı boyunca $0.031632 ve $0.01094 arasında olacaktır.
2031 yılında XRP Classic ne kadar olacak?
XRP Classic'ın değeri 2031 yılında 195.98% oranında artacaktır, ve en iyi durumda $0.028876 seviyesine ulaşacaktır. Yıl boyunca fiyat $0.028876 ve $0.012935 arasında olacaktır.
2032 yılında XRP Classic ne kadar olacak?
XRP Classic fiyatı 449.04% oranında artacaktır, 2032 yılında $0.053565 seviyesine ulaşabilir. Fiyat $0.053565 ve $0.019744 arasında olacaktır.
2033 yılında XRP Classic ne kadar olacak?
XRPC'ın değeri 1362.43% oranında artacaktır, ve 2033 yılı için $0.142678 seviyesine ulaşacaktır. Fiyat aralığı $0.142678 ve $0.045882 arasında olacaktır.
2034 yılında XRP Classic ne kadar olacak?
Yeni simülasyon sonuçlarına göre, XRPC'ın değeri 746.96% oranında artacaktır, ve $0.082631 seviyesine ulaşacaktır. Yıl boyunca fiyat aralığı $0.082631 ve $0.036887 arasında olacaktır.
2035 yılında XRP Classic ne kadar olacak?
Deneysel tahminimize göre, 2035 yılında XRPC'ın değeri 897.93% oranında artacaktır, ve en iyi durumda $0.09736 seviyesine ulaşacaktır. Yıl boyunca fiyat $0.09736 ve $0.043611 arasında olacaktır.
2036 yılında XRP Classic ne kadar olacak?
XRPC'ın değeri 2036 yılında 1964.7% oranında artacaktır, ve $0.201436 seviyesine ulaşacaktır. Fiyat $0.201436 ve $0.072191 arasında olacaktır.
2037 yılında XRP Classic ne kadar olacak?
Deneysel simülasyonumuza göre, 2037 yılında XRP Classic'ın değeri 4830.69% oranında artacaktır, ve en iyi durumda $0.48105 seviyesine ulaşacaktır. Fiyat 2037 yılı boyunca $0.48105 ve $0.187479 arasında olacaktır.
İlgili Tahminler
SolPod Fiyat Tahmini
zuzalu Fiyat Tahmini
SOFT COQ INU Fiyat Tahmini
All Street Bets Fiyat Tahmini
MagicRing Fiyat Tahmini
AI INU Fiyat Tahmini
Wall Street Baby On Solana Fiyat Tahmini
Meta Masters Guild Games Fiyat Tahmini
Morfey Fiyat Tahmini
PANTIES Fiyat TahminiCeler Bridged BUSD (zkSync) Fiyat Tahmini
Bridged BUSD Fiyat Tahmini
Multichain Bridged BUSD (Moonriver) Fiyat Tahmini
tooker kurlson Fiyat Tahmini
dogwifsaudihat Fiyat TahminiHarmony Horizen Bridged BUSD (Harmony) Fiyat Tahmini
IoTeX Bridged BUSD (IoTeX) Fiyat Tahmini
MIMANY Fiyat Tahmini
The Open League MEME Fiyat Tahmini
Sandwich Cat Fiyat Tahmini
Hege Fiyat Tahmini
DexNet Fiyat Tahmini
SolDocs Fiyat Tahmini
Secret Society Fiyat Tahmini
duk Fiyat Tahmini
XRP Classic fiyat hareketlerini nasıl okumalı ve tahmin etmeli?
XRP Classic tüccarları, piyasa yönünü tahmin etmek için göstergeler ve grafik desenleri kullanır. Ayrıca, bir düşüş trendinin ne zaman yavaşlayabileceğini veya bir yükseliş trendinin ne zaman durabileceğini ölçmek için önemli destek ve direnç seviyelerini belirlerler.
XRP Classic Fiyat Tahmin Göstergeleri
Hareketli ortalamalar, XRP Classic fiyat tahmini için popüler araçlardır. Basit bir hareketli ortalama (SMA), XRPC'ın belirli bir dönem boyunca ortalama kapanış fiyatını hesaplar, örneğin 12 günlük SMA. Üssel hareketli ortalama (EMA), yakın fiyatlara daha fazla ağırlık verir ve fiyat değişikliklerine daha hızlı tepki verir.
Kripto piyasasında yaygın olarak kullanılan hareketli ortalamalar arasında 50 günlük, 100 günlük ve 200 günlük ortalamalar bulunur ve bunlar önemli direnç ve destek seviyelerini belirlemeye yardımcı olur. XRPC'ın bu ortalamaların üzerinde bir fiyat hareketi yükseliş olarak görülürken, aşağı düşüş zayıflık belirtir.
Tüccarlar ayrıca XRPC'ın gelecekteki yönünü ölçmek için RSI ve Fibonacci geri çekilme seviyelerini kullanır.
XRP Classic grafiklerini nasıl okumalı ve fiyat hareketlerini tahmin etmeli?
Çoğu tüccar, daha ayrıntılı bilgi sağladığı için basit çizgi grafiklere kıyasla mum grafiklerini tercih eder. Mumlar, XRP Classic'ın fiyat hareketini 5 dakikalık kısa vadeli trendler ve haftalık uzun vadeli trendler gibi farklı zaman dilimlerinde temsil edebilir. Popüler seçenekler arasında 1 saatlik, 4 saatlik ve 1 günlük grafikler bulunur.
Örneğin, 1 saatlik bir mum grafiği, her saat içinde XRPC'ın açılış, kapanış, en yüksek ve en düşük fiyatlarını gösterir. Mumun rengi önemlidir: yeşil, fiyatın açılıştan daha yüksek kapandığını gösterirken, kırmızı bunun tersini ifade eder. Bazı grafikler aynı bilgiyi iletmek için boş ve dolu mumlar kullanır.
XRP Classic fiyatını ne etkiler?
XRP Classic'ın fiyat hareketi, blok ödülü yarılanmaları, hard fork'lar ve protokol güncellemeleri gibi faktörlerden etkilenen arz ve talep tarafından yönlendirilir. Düzenlemeler, şirketler ve hükümetler tarafından benimsenme ve kripto para borsası hackleri gibi gerçek dünya olayları da XRPC'ın fiyatını etkiler. XRP Classic'ın piyasa değeri hızla değişebilir.
Tüccarlar genellikle XRP Classic'ın büyük sahipleri olan XRPC "balinalarının" aktivitelerini izlerler, çünkü onların eylemleri nispeten küçük olan XRP Classic pazarında fiyat hareketlerini önemli ölçüde etkileyebilir.
Yükseliş ve düşüş fiyat tahmin desenleri
Tüccarlar genellikle kripto para fiyat tahminlerinde avantaj elde etmek için mum desenlerini tanımlarlar. Belirli oluşumlar yükseliş trendlerini gösterirken, diğerleri düşüş hareketlerini önerir.
Genellikle takip edilen yükseliş mum desenleri:
- Çekiç
- Yutan Boğa
- Delici Çizgi
- Sabah Yıldızı
- Üç Beyaz Asker
Yaygın düşüş mum desenleri:
- Ayı Harami
- Karanlık Bulut Örtüsü
- Akşam Yıldızı
- Kayan Yıldız
- Asılan Adam


