Previsão de Preço Telos - Projeção TLOS
Previsão de Preço Telos até $0.01866 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006251 | $0.01866 |
| 2027 | $0.006018 | $0.0158094 |
| 2028 | $0.01086 | $0.0266015 |
| 2029 | $0.023858 | $0.078482 |
| 2030 | $0.02029 | $0.058665 |
| 2031 | $0.023989 | $0.053554 |
| 2032 | $0.036618 | $0.099341 |
| 2033 | $0.085092 | $0.264609 |
| 2034 | $0.06841 | $0.153247 |
| 2035 | $0.080882 | $0.180563 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Telos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.83, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Telos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Telos'
'name_with_ticker' => 'Telos <small>TLOS</small>'
'name_lang' => 'Telos'
'name_lang_with_ticker' => 'Telos <small>TLOS</small>'
'name_with_lang' => 'Telos'
'name_with_lang_with_ticker' => 'Telos <small>TLOS</small>'
'image' => '/uploads/coins/telos.png?1722392004'
'price_for_sd' => 0.01809
'ticker' => 'TLOS'
'marketcap' => '$7.6M'
'low24h' => '$0.01801'
'high24h' => '$0.01812'
'volume24h' => '$1.77M'
'current_supply' => '420M'
'max_supply' => '420M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01809'
'change_24h_pct' => '0.4008%'
'ath_price' => '$1.43'
'ath_days' => 1429
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de fev. de 2022'
'ath_pct' => '-98.73%'
'fdv' => '$7.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.892147'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018248'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015991'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006251'
'current_year_max_price_prediction' => '$0.01866'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02029'
'grand_prediction_max_price' => '$0.058665'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018436647613672
107 => 0.018505483363358
108 => 0.018660573822242
109 => 0.017335342831625
110 => 0.017930332639675
111 => 0.018279833408898
112 => 0.016700776218601
113 => 0.018248620525301
114 => 0.017312273508452
115 => 0.016994463267473
116 => 0.017422352888636
117 => 0.017255603887132
118 => 0.017112242887469
119 => 0.017032244986403
120 => 0.017346439899731
121 => 0.01733178233148
122 => 0.016817698470671
123 => 0.016147097030984
124 => 0.016372172885885
125 => 0.016290400717702
126 => 0.015994047831388
127 => 0.016193753894979
128 => 0.015314349459847
129 => 0.013801379836667
130 => 0.014800893913252
131 => 0.014762413708566
201 => 0.014743010244425
202 => 0.015494117448439
203 => 0.015421915821765
204 => 0.01529086916235
205 => 0.015991641056719
206 => 0.015735849888563
207 => 0.016524137996843
208 => 0.017043355528235
209 => 0.016911665167347
210 => 0.017399991765217
211 => 0.016377358178992
212 => 0.016717036035398
213 => 0.01678704317083
214 => 0.015982993640321
215 => 0.015433728900821
216 => 0.015397099204773
217 => 0.014444749839824
218 => 0.014953487183484
219 => 0.015401154992923
220 => 0.015186756852627
221 => 0.015118884806372
222 => 0.01546562837104
223 => 0.015492573315673
224 => 0.014878225722554
225 => 0.015005968041021
226 => 0.015538674744425
227 => 0.01499254519888
228 => 0.013931504701642
301 => 0.013668351988295
302 => 0.013633242565467
303 => 0.012919551535964
304 => 0.013685937110914
305 => 0.013351389269592
306 => 0.014408221891831
307 => 0.013804564765915
308 => 0.013778542313731
309 => 0.013739205560591
310 => 0.013124902209292
311 => 0.013259395602212
312 => 0.013706472124199
313 => 0.013865994063922
314 => 0.013849354618684
315 => 0.01370428120534
316 => 0.013770695071073
317 => 0.013556752869422
318 => 0.013481205425198
319 => 0.013242756910263
320 => 0.012892303466392
321 => 0.012941036167218
322 => 0.012246696193779
323 => 0.011868382924837
324 => 0.011763670798083
325 => 0.011623645365966
326 => 0.011779487043234
327 => 0.012244729215873
328 => 0.011683548449037
329 => 0.010721443386551
330 => 0.010779267540154
331 => 0.010909181245154
401 => 0.010667087915352
402 => 0.010437966896047
403 => 0.010637169033157
404 => 0.010229512434974
405 => 0.010958444597442
406 => 0.010938729025256
407 => 0.011210429858561
408 => 0.011380329965489
409 => 0.010988765224833
410 => 0.010890287751461
411 => 0.010946384995845
412 => 0.010019222504333
413 => 0.011134660902588
414 => 0.011144307260176
415 => 0.011061709290036
416 => 0.01165564580181
417 => 0.012909037095097
418 => 0.012437460873014
419 => 0.012254852306357
420 => 0.011907713287656
421 => 0.012370255419
422 => 0.012334739400094
423 => 0.012174122493551
424 => 0.012076980887319
425 => 0.012255967275326
426 => 0.01205480249309
427 => 0.012018667770562
428 => 0.011799730667008
429 => 0.011721580082042
430 => 0.011663720500198
501 => 0.011600022785753
502 => 0.011740524071337
503 => 0.011422129673719
504 => 0.01103817724278
505 => 0.01100625575257
506 => 0.011094393793605
507 => 0.011055399271552
508 => 0.011006069061801
509 => 0.010911884257101
510 => 0.010883941637486
511 => 0.010974741595402
512 => 0.010872233736882
513 => 0.01102348966602
514 => 0.010982356422666
515 => 0.010752589469001
516 => 0.010466214774112
517 => 0.010463665438636
518 => 0.010401966480371
519 => 0.01032338358052
520 => 0.010301523615515
521 => 0.010620392784789
522 => 0.011280442422236
523 => 0.011150858884756
524 => 0.011244496270841
525 => 0.011705099534049
526 => 0.011851511460599
527 => 0.01174759174309
528 => 0.011605340024275
529 => 0.011611598377963
530 => 0.012097715563679
531 => 0.012128034096269
601 => 0.012204639246993
602 => 0.012303098514287
603 => 0.01176435978206
604 => 0.011586223832123
605 => 0.011501813136437
606 => 0.011241860864773
607 => 0.011522197103139
608 => 0.011358857182238
609 => 0.011380897318053
610 => 0.01136654365069
611 => 0.011374381723661
612 => 0.010958240846047
613 => 0.011109860710129
614 => 0.010857763278936
615 => 0.010520233117834
616 => 0.010519101598381
617 => 0.010601711627132
618 => 0.0105525719495
619 => 0.010420338340489
620 => 0.010439121500524
621 => 0.010274561254048
622 => 0.010459102093905
623 => 0.010464394064874
624 => 0.010393335789521
625 => 0.01067764641505
626 => 0.010794128710305
627 => 0.010747356631252
628 => 0.010790847056554
629 => 0.011156243665773
630 => 0.011215819256448
701 => 0.011242278798483
702 => 0.011206826517373
703 => 0.010797525835802
704 => 0.010815680061511
705 => 0.01068247639878
706 => 0.010569933340428
707 => 0.010574434472551
708 => 0.010632296234117
709 => 0.010884981940425
710 => 0.011416744112714
711 => 0.011436924098439
712 => 0.01146138282983
713 => 0.01136189687729
714 => 0.011331890962052
715 => 0.011371476509435
716 => 0.01157117842262
717 => 0.012084865961872
718 => 0.011903294477463
719 => 0.01175567403431
720 => 0.011885176961141
721 => 0.011865241000633
722 => 0.011696961431103
723 => 0.011692238384059
724 => 0.011369256087898
725 => 0.011249856886958
726 => 0.011150077977778
727 => 0.011041122013747
728 => 0.010976529266033
729 => 0.011075773083401
730 => 0.011098471318651
731 => 0.010881472977491
801 => 0.010851896905427
802 => 0.011029102435053
803 => 0.010951120888353
804 => 0.011031326842983
805 => 0.011049935312452
806 => 0.011046938920278
807 => 0.010965517229399
808 => 0.011017412987136
809 => 0.010894664049219
810 => 0.010761193015529
811 => 0.010676046811574
812 => 0.010601745455618
813 => 0.010642972166323
814 => 0.010496006470362
815 => 0.010448989186389
816 => 0.010999831872106
817 => 0.011406745286602
818 => 0.0114008286044
819 => 0.011364812323141
820 => 0.011311299434827
821 => 0.011567263621529
822 => 0.011478090817047
823 => 0.011542971482945
824 => 0.011559486335448
825 => 0.011609471820022
826 => 0.01162733733436
827 => 0.011573335341634
828 => 0.011392098058259
829 => 0.010940471979612
830 => 0.010730238820861
831 => 0.010660858376762
901 => 0.010663380224133
902 => 0.010593816415625
903 => 0.010614306074862
904 => 0.01058669094832
905 => 0.010534394579467
906 => 0.010639743012913
907 => 0.01065188343848
908 => 0.010627293855293
909 => 0.010633085592289
910 => 0.010429494345853
911 => 0.010444972946143
912 => 0.010358786132805
913 => 0.010342627144302
914 => 0.010124754385328
915 => 0.0097387612116452
916 => 0.0099526388991296
917 => 0.0096943047284023
918 => 0.0095964696635464
919 => 0.0100596056441
920 => 0.010013119637045
921 => 0.0099335557999481
922 => 0.0098158643023255
923 => 0.0097722113810279
924 => 0.0095069900500596
925 => 0.0094913193589253
926 => 0.0096227702121315
927 => 0.0095621101663245
928 => 0.0094769204882556
929 => 0.0091683721098295
930 => 0.0088214615756211
1001 => 0.008831932624047
1002 => 0.0089422784104787
1003 => 0.0092631236666857
1004 => 0.0091377638744063
1005 => 0.0090468139067698
1006 => 0.0090297817117774
1007 => 0.009242975291422
1008 => 0.0095446888720549
1009 => 0.009686246133627
1010 => 0.009545967186567
1011 => 0.0093848222853394
1012 => 0.0093946304288036
1013 => 0.0094598796131449
1014 => 0.0094667363798453
1015 => 0.0093618476151097
1016 => 0.0093913731879933
1017 => 0.0093465211429081
1018 => 0.0090712642250106
1019 => 0.0090662857002149
1020 => 0.0089987332134455
1021 => 0.0089966877509932
1022 => 0.0088817641192408
1023 => 0.0088656855087291
1024 => 0.0086374976625189
1025 => 0.0087876915939109
1026 => 0.0086869493902684
1027 => 0.0085351071266958
1028 => 0.0085089294632231
1029 => 0.0085081425310487
1030 => 0.0086640505844289
1031 => 0.008785869717533
1101 => 0.0086887018440323
1102 => 0.0086665786027562
1103 => 0.0089027969404653
1104 => 0.0088727360038138
1105 => 0.0088467034265459
1106 => 0.0095176737301328
1107 => 0.0089865483783781
1108 => 0.0087549474094378
1109 => 0.0084682972305431
1110 => 0.0085616319742069
1111 => 0.0085812989760696
1112 => 0.0078919569684062
1113 => 0.0076122910017492
1114 => 0.0075163201809821
1115 => 0.0074610876168025
1116 => 0.007486257789866
1117 => 0.0072345256183286
1118 => 0.0074036938008676
1119 => 0.007185715018707
1120 => 0.0071491701665134
1121 => 0.0075389432314061
1122 => 0.0075931778763647
1123 => 0.0073617960315878
1124 => 0.0075103806332526
1125 => 0.0074565017912085
1126 => 0.0071894516392901
1127 => 0.0071792522877747
1128 => 0.0070452559088088
1129 => 0.0068355775225389
1130 => 0.0067397488735913
1201 => 0.0066898404811969
1202 => 0.006710433656594
1203 => 0.0067000211169517
1204 => 0.0066320722524723
1205 => 0.0067039158663256
1206 => 0.0065203851207612
1207 => 0.0064473016990697
1208 => 0.0064142916130142
1209 => 0.0062513975126902
1210 => 0.0065106344656409
1211 => 0.0065617074111532
1212 => 0.0066128809861455
1213 => 0.0070583120187696
1214 => 0.0070360595431547
1215 => 0.0072372110853179
1216 => 0.0072293947062834
1217 => 0.0071720230280195
1218 => 0.0069299813546072
1219 => 0.0070264548516513
1220 => 0.0067295244230595
1221 => 0.006952004889467
1222 => 0.0068504740956051
1223 => 0.0069176772259315
1224 => 0.0067968399381426
1225 => 0.0068637162824543
1226 => 0.0065738187012156
1227 => 0.0063031164188239
1228 => 0.0064120549195506
1229 => 0.0065304835284692
1230 => 0.006787266927653
1231 => 0.0066343288535161
]
'min_raw' => 0.0062513975126902
'max_raw' => 0.018660573822242
'avg_raw' => 0.012455985667466
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006251'
'max' => '$0.01866'
'avg' => '$0.012455'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01184238248731
'max_diff' => 0.00056679382224199
'year' => 2026
]
1 => [
'items' => [
101 => 0.0066893311682046
102 => 0.0065050826212745
103 => 0.0061249252409623
104 => 0.0061270768904499
105 => 0.0060685979596676
106 => 0.006018063625408
107 => 0.0066518956310848
108 => 0.0065730686017777
109 => 0.0064474680472033
110 => 0.0066155893806688
111 => 0.0066600433296814
112 => 0.0066613088711149
113 => 0.0067839658561716
114 => 0.0068494279110838
115 => 0.0068609658819909
116 => 0.0070539692981572
117 => 0.0071186614974795
118 => 0.0073851195109054
119 => 0.0068438739130824
120 => 0.0068327273161718
121 => 0.0066179551926044
122 => 0.006481743316425
123 => 0.0066272817363008
124 => 0.0067562089083352
125 => 0.0066219613192226
126 => 0.0066394912202394
127 => 0.0064592748002869
128 => 0.0065236936904492
129 => 0.0065791799168187
130 => 0.0065485436839471
131 => 0.0065026797605279
201 => 0.0067456383504944
202 => 0.0067319296746861
203 => 0.0069581782992568
204 => 0.007134555281304
205 => 0.0074506543642894
206 => 0.0071207884925763
207 => 0.007108766869113
208 => 0.0072262801667959
209 => 0.0071186435068059
210 => 0.0071866661604284
211 => 0.0074396948631647
212 => 0.0074450409609361
213 => 0.0073554869352071
214 => 0.0073500375646028
215 => 0.0073672373948577
216 => 0.0074679773378879
217 => 0.0074327757063674
218 => 0.0074735119255592
219 => 0.0075244531914337
220 => 0.0077351678657398
221 => 0.0077859704603439
222 => 0.0076625464935814
223 => 0.0076736902958605
224 => 0.0076275263442277
225 => 0.007582932545383
226 => 0.0076831728927845
227 => 0.0078663640978898
228 => 0.0078652244749104
301 => 0.0079077212737667
302 => 0.0079341964273916
303 => 0.0078205456870364
304 => 0.0077465632341187
305 => 0.0077749328141931
306 => 0.0078202963905412
307 => 0.0077602220177785
308 => 0.0073894151599301
309 => 0.0075018942733675
310 => 0.0074831722489439
311 => 0.0074565098094887
312 => 0.0075696084278252
313 => 0.0075586997901808
314 => 0.0072319437410618
315 => 0.007252861603169
316 => 0.0072332158255386
317 => 0.0072966953522102
318 => 0.0071152154040436
319 => 0.0071710374138135
320 => 0.0072060484550424
321 => 0.0072266702272937
322 => 0.007301170209147
323 => 0.0072924284961521
324 => 0.0073006268119933
325 => 0.0074110906178157
326 => 0.0079697786410649
327 => 0.0080001867974947
328 => 0.0078504459139736
329 => 0.007910264443432
330 => 0.0077954259477463
331 => 0.0078725177992511
401 => 0.00792526208613
402 => 0.0076869207958673
403 => 0.0076728077714802
404 => 0.0075574952964724
405 => 0.0076194576889092
406 => 0.0075208710672887
407 => 0.0075450607758207
408 => 0.0074774242419442
409 => 0.0075991565366223
410 => 0.0077352721573586
411 => 0.0077696603385253
412 => 0.0076791998389185
413 => 0.0076137004755657
414 => 0.0074987051703498
415 => 0.0076899449257614
416 => 0.0077458692581696
417 => 0.0076896511790509
418 => 0.0076766242217298
419 => 0.0076519381611456
420 => 0.0076818614861813
421 => 0.007745564682245
422 => 0.0077155234313947
423 => 0.00773536620684
424 => 0.0076597460086236
425 => 0.0078205833101605
426 => 0.0080760316526056
427 => 0.0080768529607965
428 => 0.0080468115480127
429 => 0.0080345192491528
430 => 0.0080653435617344
501 => 0.0080820644868304
502 => 0.008181744661507
503 => 0.0082887054603683
504 => 0.0087878448380014
505 => 0.0086476884981005
506 => 0.0090905546478711
507 => 0.0094408042733673
508 => 0.0095458288214937
509 => 0.0094492111790042
510 => 0.0091186874432303
511 => 0.0091024703719065
512 => 0.0095964123766746
513 => 0.0094568511363505
514 => 0.0094402507708942
515 => 0.0092636509291986
516 => 0.0093680433079566
517 => 0.0093452111633784
518 => 0.0093091695061751
519 => 0.0095083428928091
520 => 0.0098811776922573
521 => 0.0098230678923407
522 => 0.009779691622339
523 => 0.0095896294338339
524 => 0.0097040893232406
525 => 0.0096633323489577
526 => 0.0098384501754922
527 => 0.009734714254388
528 => 0.0094557938226928
529 => 0.009500212820774
530 => 0.0094934989785727
531 => 0.0096316693753286
601 => 0.0095901940518226
602 => 0.009485400256003
603 => 0.0098799033834451
604 => 0.0098542865446907
605 => 0.0098906053652198
606 => 0.0099065940332135
607 => 0.010146721134963
608 => 0.010245093525339
609 => 0.010267425780206
610 => 0.01036087194267
611 => 0.010265100754556
612 => 0.01064825379071
613 => 0.010903028202153
614 => 0.011198961791615
615 => 0.011631400305269
616 => 0.011794001186683
617 => 0.01176462879284
618 => 0.01209249873854
619 => 0.012681673742823
620 => 0.011883717906363
621 => 0.012723967339744
622 => 0.012457954070282
623 => 0.011827241393762
624 => 0.011786630933008
625 => 0.012213756880272
626 => 0.013161081121955
627 => 0.012923787143876
628 => 0.013161469249895
629 => 0.012884200447996
630 => 0.012870431714976
701 => 0.013148002923062
702 => 0.013796563180374
703 => 0.013488456513043
704 => 0.013046710054569
705 => 0.01337288876517
706 => 0.013090322579633
707 => 0.012453621878323
708 => 0.012923605689643
709 => 0.012609340899382
710 => 0.012701060072415
711 => 0.013361597918185
712 => 0.013282120257016
713 => 0.013384971710002
714 => 0.013203441587572
715 => 0.01303386382855
716 => 0.012717334348325
717 => 0.012623625573945
718 => 0.012649523307895
719 => 0.012623612740314
720 => 0.012446517405184
721 => 0.012408273684424
722 => 0.012344532474329
723 => 0.012364288540655
724 => 0.012244436417527
725 => 0.012470622136583
726 => 0.012512604199181
727 => 0.012677203303186
728 => 0.012694292528201
729 => 0.013152698689934
730 => 0.012900216279254
731 => 0.01306960327862
801 => 0.013054451711065
802 => 0.01184091084995
803 => 0.01200812607345
804 => 0.012268260486188
805 => 0.012151070285853
806 => 0.011985390760864
807 => 0.011851595661261
808 => 0.01164888240411
809 => 0.011934197420786
810 => 0.012309356327845
811 => 0.01270380717719
812 => 0.013177714027235
813 => 0.013071943535189
814 => 0.012694947818271
815 => 0.012711859570737
816 => 0.012816401369948
817 => 0.012681010241345
818 => 0.012641080754371
819 => 0.012810915671597
820 => 0.012812085231332
821 => 0.01265630137531
822 => 0.012483176127486
823 => 0.012482450726376
824 => 0.012451644760717
825 => 0.01288968076085
826 => 0.013130556270489
827 => 0.013158172259478
828 => 0.013128697494397
829 => 0.013140041161665
830 => 0.012999881009936
831 => 0.013320245553587
901 => 0.01361424373961
902 => 0.0135354459454
903 => 0.013417316850114
904 => 0.013323221335851
905 => 0.013513280032638
906 => 0.013504817018051
907 => 0.013611675921933
908 => 0.013606828184806
909 => 0.013570895554597
910 => 0.013535447228668
911 => 0.01367599583408
912 => 0.013635520092863
913 => 0.01359498148164
914 => 0.013513675090681
915 => 0.013524725979569
916 => 0.013406617280936
917 => 0.013351974792663
918 => 0.012530282874688
919 => 0.012310699944647
920 => 0.01237978520446
921 => 0.012402529865789
922 => 0.012306967093232
923 => 0.012443979561017
924 => 0.012422626313044
925 => 0.012505699309672
926 => 0.012453798907989
927 => 0.012455928918578
928 => 0.012608556933594
929 => 0.012652865495679
930 => 0.012630329803388
1001 => 0.01264611302979
1002 => 0.013009830820538
1003 => 0.012958121781734
1004 => 0.012930652385469
1005 => 0.012938261595963
1006 => 0.013031199289697
1007 => 0.013057216769732
1008 => 0.012946978878606
1009 => 0.012998967705339
1010 => 0.013220329531202
1011 => 0.01329779364226
1012 => 0.013545021899874
1013 => 0.013439994941908
1014 => 0.013632776468715
1015 => 0.014225321158056
1016 => 0.014698686856874
1017 => 0.014263360197576
1018 => 0.015132636020698
1019 => 0.01580949193921
1020 => 0.015783513081695
1021 => 0.015665487596343
1022 => 0.014894905128263
1023 => 0.014185803652398
1024 => 0.014778997146998
1025 => 0.014780509319207
1026 => 0.014729553471944
1027 => 0.014413071080895
1028 => 0.014718540570751
1029 => 0.014742787629553
1030 => 0.014729215724437
1031 => 0.014486569417252
1101 => 0.014116093354714
1102 => 0.01418848349054
1103 => 0.014307060009741
1104 => 0.01408256992124
1105 => 0.01401083173563
1106 => 0.014144206671427
1107 => 0.014573968504338
1108 => 0.014492724519267
1109 => 0.014490602910484
1110 => 0.014838199131429
1111 => 0.014589395253192
1112 => 0.014189396561978
1113 => 0.014088391617112
1114 => 0.01372989210792
1115 => 0.01397750899585
1116 => 0.013986420286823
1117 => 0.013850803047887
1118 => 0.014200401153488
1119 => 0.014197179545399
1120 => 0.014529070915857
1121 => 0.015163522563465
1122 => 0.014975883991797
1123 => 0.014757680747967
1124 => 0.014781405490691
1125 => 0.015041607360719
1126 => 0.014884283370269
1127 => 0.014940858174137
1128 => 0.015041521727978
1129 => 0.015102254549345
1130 => 0.014772666972321
1201 => 0.014695824342121
1202 => 0.014538631288829
1203 => 0.014497622555373
1204 => 0.014625653017338
1205 => 0.014591921513993
1206 => 0.013985671327323
1207 => 0.013922314809672
1208 => 0.013924257863616
1209 => 0.013764944887543
1210 => 0.013521954359538
1211 => 0.014160518958926
1212 => 0.014109233284889
1213 => 0.014052617869949
1214 => 0.014059552935236
1215 => 0.014336732184868
1216 => 0.014175954222193
1217 => 0.014603408786953
1218 => 0.014515536978899
1219 => 0.014425411590539
1220 => 0.014412953516581
1221 => 0.014378262931199
1222 => 0.014259296006126
1223 => 0.014115636295298
1224 => 0.014020779710617
1225 => 0.012933428147433
1226 => 0.013135234272727
1227 => 0.013367393824671
1228 => 0.01344753437168
1229 => 0.013310448420463
1230 => 0.014264708995029
1231 => 0.014439061597486
]
'min_raw' => 0.006018063625408
'max_raw' => 0.01580949193921
'avg_raw' => 0.010913777782309
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006018'
'max' => '$0.0158094'
'avg' => '$0.010913'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023333388728228
'max_diff' => -0.0028510818830322
'year' => 2027
]
2 => [
'items' => [
101 => 0.013910936191905
102 => 0.013812145491739
103 => 0.014271185696885
104 => 0.013994328337799
105 => 0.014118997189644
106 => 0.013849531322173
107 => 0.014397065161194
108 => 0.014392893870711
109 => 0.014179890840719
110 => 0.014359919543087
111 => 0.014328635125761
112 => 0.014088155229504
113 => 0.014404688802842
114 => 0.014404845799545
115 => 0.014199835014263
116 => 0.013960427299685
117 => 0.013917626854876
118 => 0.013885382469144
119 => 0.01411106704737
120 => 0.01431341513451
121 => 0.014689934758334
122 => 0.014784600737648
123 => 0.015154088357185
124 => 0.014934076469777
125 => 0.015031604889834
126 => 0.015137485786043
127 => 0.015188248981327
128 => 0.015105533078715
129 => 0.015679499439028
130 => 0.015727959785713
131 => 0.015744208120776
201 => 0.015550669893464
202 => 0.015722577137503
203 => 0.015642147430987
204 => 0.015851403183326
205 => 0.015884217157205
206 => 0.015856424888721
207 => 0.015866840561963
208 => 0.015377061528041
209 => 0.015351663901342
210 => 0.015005365459166
211 => 0.015146484634062
212 => 0.014882669100613
213 => 0.014966327723871
214 => 0.015003203647874
215 => 0.014983941757865
216 => 0.015154463300477
217 => 0.015009485154007
218 => 0.01462686398886
219 => 0.014244138578831
220 => 0.01423933377307
221 => 0.014138568928274
222 => 0.014065734401489
223 => 0.014079764915291
224 => 0.01412921027596
225 => 0.01406286054724
226 => 0.014077019625879
227 => 0.014312154672735
228 => 0.014359309329476
229 => 0.014199059381357
301 => 0.013555632715705
302 => 0.013397734198041
303 => 0.013511228521275
304 => 0.013456985544739
305 => 0.010860837609264
306 => 0.011470764057497
307 => 0.011108366473102
308 => 0.011275375953103
309 => 0.010905461861835
310 => 0.011082004255046
311 => 0.011049403321316
312 => 0.01203014700104
313 => 0.01201483403745
314 => 0.012022163542776
315 => 0.011672307156615
316 => 0.012229637879406
317 => 0.012504199034417
318 => 0.012453385071833
319 => 0.012466173851472
320 => 0.012246420246027
321 => 0.012024291238034
322 => 0.011777915982761
323 => 0.012235650754157
324 => 0.012184758461371
325 => 0.012301487070553
326 => 0.01259836078936
327 => 0.012642076572168
328 => 0.012700831027584
329 => 0.012679771737744
330 => 0.013181489459862
331 => 0.013120728133273
401 => 0.013267145448125
402 => 0.012965953922767
403 => 0.012625127122461
404 => 0.012689907154732
405 => 0.012683668316696
406 => 0.012604240747896
407 => 0.01253253709023
408 => 0.012413170702595
409 => 0.012790863615971
410 => 0.012775529973436
411 => 0.013023763822665
412 => 0.012979886078599
413 => 0.01268685976502
414 => 0.012697325257135
415 => 0.012767710721153
416 => 0.013011315615765
417 => 0.013083634134372
418 => 0.013050133315158
419 => 0.013129427269345
420 => 0.013192097977659
421 => 0.013137297745414
422 => 0.013913153470542
423 => 0.013590964080997
424 => 0.013747996947682
425 => 0.013785448361095
426 => 0.013689517353156
427 => 0.013710321353746
428 => 0.013741833745889
429 => 0.013933170820224
430 => 0.014435294667107
501 => 0.014657681900819
502 => 0.015326744865834
503 => 0.014639215736839
504 => 0.014598420603603
505 => 0.014718939047368
506 => 0.015111749835339
507 => 0.015430086084149
508 => 0.015535696583138
509 => 0.015549654754018
510 => 0.015747787070975
511 => 0.015861352820105
512 => 0.015723728596299
513 => 0.01560710647648
514 => 0.015189380518959
515 => 0.015237733435972
516 => 0.015570837084912
517 => 0.016041365608746
518 => 0.016445128032344
519 => 0.016303744504141
520 => 0.017382401023115
521 => 0.017489345411054
522 => 0.017474569154567
523 => 0.017718204385752
524 => 0.017234638067302
525 => 0.017027904097508
526 => 0.015632321502502
527 => 0.016024423286625
528 => 0.016594366257177
529 => 0.016518932167848
530 => 0.016105024348014
531 => 0.016444814046147
601 => 0.016332468945738
602 => 0.016243857703843
603 => 0.016649802981099
604 => 0.016203449473443
605 => 0.016589913539495
606 => 0.016094269377324
607 => 0.016304390332189
608 => 0.0161851155158
609 => 0.016262300939775
610 => 0.015811076528375
611 => 0.016054546267913
612 => 0.015800947386756
613 => 0.015800827147867
614 => 0.01579522893851
615 => 0.016093586897561
616 => 0.016103316339895
617 => 0.015882829357362
618 => 0.015851053738525
619 => 0.015968544855641
620 => 0.01583099352847
621 => 0.015895352928716
622 => 0.015832942909139
623 => 0.015818893099177
624 => 0.015706941823016
625 => 0.015658710135081
626 => 0.015677623022698
627 => 0.015613063587
628 => 0.015574164191776
629 => 0.015787490869716
630 => 0.015673519031266
701 => 0.015770023050887
702 => 0.015660044540751
703 => 0.015278811109262
704 => 0.015059559731342
705 => 0.014339445119617
706 => 0.014543668730203
707 => 0.014679069195306
708 => 0.014634319342397
709 => 0.014730459342339
710 => 0.014736361557519
711 => 0.014705105463506
712 => 0.014668914910793
713 => 0.014651299351196
714 => 0.014782591300279
715 => 0.014858810695805
716 => 0.014692658443403
717 => 0.014653731295382
718 => 0.014821720396078
719 => 0.014924193650458
720 => 0.015680798586054
721 => 0.015624746848623
722 => 0.015765425709976
723 => 0.015749587429081
724 => 0.015897041287679
725 => 0.016138066027837
726 => 0.015647995339519
727 => 0.015733054665642
728 => 0.015712200083183
729 => 0.0159398849461
730 => 0.01594059575339
731 => 0.015804087304368
801 => 0.01587809074918
802 => 0.015836784056464
803 => 0.015911430833135
804 => 0.015623998243497
805 => 0.015974060111246
806 => 0.016172522632771
807 => 0.016175278285075
808 => 0.016269347945182
809 => 0.016364928167998
810 => 0.01654838608241
811 => 0.016359811626336
812 => 0.016020584537214
813 => 0.016045075637352
814 => 0.015846186919118
815 => 0.015849530274403
816 => 0.015831683181865
817 => 0.015885243650039
818 => 0.015635751754295
819 => 0.015694307003549
820 => 0.015612329311694
821 => 0.015732876462149
822 => 0.015603187655417
823 => 0.015712190026472
824 => 0.015759231836333
825 => 0.01593281712746
826 => 0.01557754896678
827 => 0.014853133137614
828 => 0.015005414127598
829 => 0.014780178581998
830 => 0.014801024989276
831 => 0.014843138049657
901 => 0.014706635842425
902 => 0.014732676161886
903 => 0.014731745818432
904 => 0.014723728621157
905 => 0.014688219125091
906 => 0.014636723330454
907 => 0.014841866726715
908 => 0.014876724587221
909 => 0.014954209293151
910 => 0.01518475121962
911 => 0.015161714644613
912 => 0.015199288254228
913 => 0.015117265275405
914 => 0.014804829800016
915 => 0.014821796549502
916 => 0.014610220911537
917 => 0.014948798828401
918 => 0.014868619108678
919 => 0.014816926721772
920 => 0.014802821975078
921 => 0.015033935370391
922 => 0.015103088120527
923 => 0.015059996767311
924 => 0.014971615144688
925 => 0.015141333987805
926 => 0.015186743590359
927 => 0.01519690912573
928 => 0.015497618375372
929 => 0.015213715432322
930 => 0.015282053692466
1001 => 0.015815209290099
1002 => 0.015331710733489
1003 => 0.01558783070223
1004 => 0.015575294962544
1005 => 0.015706317271924
1006 => 0.01556454730892
1007 => 0.015566304717521
1008 => 0.015682643652031
1009 => 0.01551926660035
1010 => 0.015478812144777
1011 => 0.015422924604143
1012 => 0.015544953004512
1013 => 0.015618103511663
1014 => 0.016207642876177
1015 => 0.016588512191914
1016 => 0.016571977650446
1017 => 0.016723072408094
1018 => 0.016655002835905
1019 => 0.016435188231457
1020 => 0.016810384957713
1021 => 0.016691657014628
1022 => 0.016701444802002
1023 => 0.016701080500067
1024 => 0.016780024202842
1025 => 0.016724085354342
1026 => 0.016613824141943
1027 => 0.016687020680408
1028 => 0.016904388231409
1029 => 0.017579103779367
1030 => 0.017956683538797
1031 => 0.017556373003747
1101 => 0.017832501850453
1102 => 0.017666922937197
1103 => 0.017636832323113
1104 => 0.017810261644606
1105 => 0.017983994531167
1106 => 0.017972928497361
1107 => 0.017846807343
1108 => 0.017775564703107
1109 => 0.018315037840412
1110 => 0.018712512458293
1111 => 0.018685407354057
1112 => 0.018805040469102
1113 => 0.019156286994987
1114 => 0.019188400575349
1115 => 0.019184355002345
1116 => 0.019104758142712
1117 => 0.019450605962571
1118 => 0.01973911829851
1119 => 0.019086333769481
1120 => 0.019334905572559
1121 => 0.019446497463443
1122 => 0.019610347467084
1123 => 0.019886789887675
1124 => 0.020187079679168
1125 => 0.020229543948195
1126 => 0.020199413517218
1127 => 0.020001364327506
1128 => 0.020329945000559
1129 => 0.020522419852669
1130 => 0.020637034222392
1201 => 0.020927677193996
1202 => 0.019447186616971
1203 => 0.018399221801397
1204 => 0.018235566962649
1205 => 0.018568365512651
1206 => 0.018656121836267
1207 => 0.018620747372255
1208 => 0.017441167695533
1209 => 0.018229356719771
1210 => 0.019077381837036
1211 => 0.019109957935481
1212 => 0.019534497040552
1213 => 0.01967274437561
1214 => 0.020014554000805
1215 => 0.019993173715684
1216 => 0.02007639892004
1217 => 0.020057266886818
1218 => 0.020690397240984
1219 => 0.021388834042396
1220 => 0.021364649396857
1221 => 0.021264240843124
1222 => 0.021413364667619
1223 => 0.022134226295713
1224 => 0.02206786090857
1225 => 0.022132329229189
1226 => 0.022982265714693
1227 => 0.024087304047903
1228 => 0.023573902798092
1229 => 0.024687835782952
1230 => 0.02538899754987
1231 => 0.026601584324276
]
'min_raw' => 0.010860837609264
'max_raw' => 0.026601584324276
'avg_raw' => 0.01873121096677
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.01086'
'max' => '$0.0266015'
'avg' => '$0.018731'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048427739838561
'max_diff' => 0.010792092385067
'year' => 2028
]
3 => [
'items' => [
101 => 0.026449762488005
102 => 0.026921813620908
103 => 0.026177969714906
104 => 0.024469953751067
105 => 0.024199653686767
106 => 0.024740801260583
107 => 0.026071159766403
108 => 0.024698903536891
109 => 0.024976509184891
110 => 0.024896558739592
111 => 0.024892298520129
112 => 0.025054893769448
113 => 0.024819040879913
114 => 0.023858133778825
115 => 0.024298511840593
116 => 0.024128460722253
117 => 0.024317145116202
118 => 0.02533539697098
119 => 0.02488520355389
120 => 0.024410961359729
121 => 0.025005766313975
122 => 0.025763157417886
123 => 0.025715761243766
124 => 0.025623792855909
125 => 0.026142213842951
126 => 0.026998493430446
127 => 0.027229942362136
128 => 0.027400793231744
129 => 0.027424350680114
130 => 0.027667007039197
131 => 0.026362182639134
201 => 0.028432972472301
202 => 0.028790540672075
203 => 0.028723332670201
204 => 0.029120754675479
205 => 0.029003823039903
206 => 0.028834407445965
207 => 0.029464405858415
208 => 0.028742163516791
209 => 0.027717031440638
210 => 0.027154623708847
211 => 0.027895247578207
212 => 0.028347520731014
213 => 0.028646444515045
214 => 0.028736898671478
215 => 0.026463472442952
216 => 0.025238221795776
217 => 0.026023593413088
218 => 0.026981800989664
219 => 0.026356859747665
220 => 0.026381356261181
221 => 0.02549035428176
222 => 0.027060634894216
223 => 0.02683185821712
224 => 0.028018752022593
225 => 0.027735490290499
226 => 0.02870335611391
227 => 0.02844848460589
228 => 0.029506441986008
301 => 0.029928489827989
302 => 0.030637173841178
303 => 0.031158484686142
304 => 0.031464608385392
305 => 0.031446229866731
306 => 0.032659244473382
307 => 0.031943972139342
308 => 0.031045421511042
309 => 0.031029169565067
310 => 0.031494541668025
311 => 0.032469833927222
312 => 0.032722713020106
313 => 0.032864037934629
314 => 0.032647593908482
315 => 0.031871217053912
316 => 0.031535981464428
317 => 0.031821611899378
318 => 0.031472310421937
319 => 0.032075302768685
320 => 0.032903340052984
321 => 0.032732353628191
322 => 0.033303935610558
323 => 0.03389546283013
324 => 0.034741373321268
325 => 0.034962525647627
326 => 0.035328082033427
327 => 0.035704359633433
328 => 0.035825209857589
329 => 0.036055950433125
330 => 0.036054734316396
331 => 0.036750086571407
401 => 0.037517081641951
402 => 0.037806604525105
403 => 0.038472346430532
404 => 0.037332286747867
405 => 0.03819703511323
406 => 0.038977059784843
407 => 0.038047082214703
408 => 0.039328839638157
409 => 0.039378607374385
410 => 0.040130041104449
411 => 0.039368319061746
412 => 0.038916010944291
413 => 0.040221807531618
414 => 0.040853641368019
415 => 0.040663327874461
416 => 0.039215032791547
417 => 0.038372062932993
418 => 0.036165848216415
419 => 0.038779204849585
420 => 0.040052094632944
421 => 0.039211736314516
422 => 0.039635564169607
423 => 0.041947831520339
424 => 0.042828193219274
425 => 0.042645084140089
426 => 0.042676026560239
427 => 0.043151053753289
428 => 0.045257585929527
429 => 0.043995303020492
430 => 0.044960271007611
501 => 0.045472086548529
502 => 0.045947489346722
503 => 0.044780050326956
504 => 0.043261229315324
505 => 0.042780154945172
506 => 0.0391281792414
507 => 0.038938078046292
508 => 0.038831368484823
509 => 0.038158579794122
510 => 0.037629952175564
511 => 0.037209567866601
512 => 0.036106353902502
513 => 0.0364786562302
514 => 0.034720363430075
515 => 0.035845256853524
516 => 0.033038979089061
517 => 0.0353761306003
518 => 0.034104125289972
519 => 0.034958242645384
520 => 0.034955262710394
521 => 0.033382561860926
522 => 0.032475460832382
523 => 0.03305350091267
524 => 0.033673205763618
525 => 0.033773750790747
526 => 0.034577214305952
527 => 0.034801443702655
528 => 0.034122018162375
529 => 0.03298082521994
530 => 0.033245898312628
531 => 0.032470089134619
601 => 0.031110513391228
602 => 0.032086984426047
603 => 0.032420394569734
604 => 0.032567647483144
605 => 0.031230660887848
606 => 0.030810550672214
607 => 0.030586887518477
608 => 0.032808237039646
609 => 0.032929927580829
610 => 0.03230734156683
611 => 0.035121489386133
612 => 0.034484561063727
613 => 0.035196166051083
614 => 0.033221845707831
615 => 0.033297267403718
616 => 0.032362592513336
617 => 0.032885947996951
618 => 0.032516057209667
619 => 0.032843666045775
620 => 0.033040033431356
621 => 0.033974554950786
622 => 0.035386801334909
623 => 0.03383496859933
624 => 0.033158812853784
625 => 0.033578296075476
626 => 0.034695435173696
627 => 0.036387958092797
628 => 0.035385950459491
629 => 0.035830624431959
630 => 0.035927765912776
701 => 0.035188922580315
702 => 0.03641520030034
703 => 0.037072372492764
704 => 0.037746495179567
705 => 0.03833181702003
706 => 0.037477235754183
707 => 0.038391760208051
708 => 0.037654814933531
709 => 0.036993698838284
710 => 0.036994701478504
711 => 0.03657997369459
712 => 0.035776386354195
713 => 0.035628192519384
714 => 0.036399115562887
715 => 0.037017322837093
716 => 0.03706824134921
717 => 0.037410512660847
718 => 0.037613065297399
719 => 0.039598356492565
720 => 0.04039685703445
721 => 0.041373248382226
722 => 0.041753607838586
723 => 0.042898353435818
724 => 0.041973878394362
725 => 0.041773862403922
726 => 0.03899708402847
727 => 0.039451781331892
728 => 0.040179795586435
729 => 0.039009088715383
730 => 0.039751632765489
731 => 0.039898226690214
801 => 0.038969308543881
802 => 0.039465483862021
803 => 0.038147789322771
804 => 0.035415523475021
805 => 0.036418242093288
806 => 0.03715658050777
807 => 0.036102880553835
808 => 0.037991596937445
809 => 0.03688824781716
810 => 0.036538539116127
811 => 0.035174200793246
812 => 0.035818115963448
813 => 0.036689020451123
814 => 0.036150902731254
815 => 0.037267577798765
816 => 0.038849087500724
817 => 0.03997616549487
818 => 0.040062688548278
819 => 0.039338052906402
820 => 0.04049928614707
821 => 0.040507744463481
822 => 0.039197868624231
823 => 0.038395576966109
824 => 0.038213294613348
825 => 0.038668671669106
826 => 0.039221583482038
827 => 0.040093371305825
828 => 0.040620174429414
829 => 0.041993797580948
830 => 0.042365460620891
831 => 0.042773805620595
901 => 0.043319480469134
902 => 0.043974703032965
903 => 0.042541113365145
904 => 0.042598072555193
905 => 0.041263133705919
906 => 0.039836560095873
907 => 0.040919151640987
908 => 0.042334496075105
909 => 0.042009814498101
910 => 0.041973281188046
911 => 0.042034720082064
912 => 0.041789920776113
913 => 0.04068270258798
914 => 0.040126664545452
915 => 0.040844095480746
916 => 0.041225378093678
917 => 0.041816714174997
918 => 0.041743819521384
919 => 0.043267037762003
920 => 0.043858914310578
921 => 0.043707486961627
922 => 0.043735353238137
923 => 0.044806917457624
924 => 0.045998717253685
925 => 0.047114995034529
926 => 0.048250520738451
927 => 0.046881600182051
928 => 0.046186546746793
929 => 0.046903664474185
930 => 0.046523151713868
1001 => 0.048709690902064
1002 => 0.048861082131388
1003 => 0.051047463207914
1004 => 0.053122599198952
1005 => 0.051819243462904
1006 => 0.053048249217566
1007 => 0.054377519143542
1008 => 0.056941896497023
1009 => 0.056078304420254
1010 => 0.055416806423661
1011 => 0.054791694013217
1012 => 0.056092453705551
1013 => 0.057765860269596
1014 => 0.058126296015803
1015 => 0.058710339621709
1016 => 0.058096289183553
1017 => 0.058835845300875
1018 => 0.061446803372449
1019 => 0.060741299453945
1020 => 0.059739370474256
1021 => 0.061800471112685
1022 => 0.062546375421406
1023 => 0.067781522493132
1024 => 0.074391111924326
1025 => 0.071654698498908
1026 => 0.069956118382241
1027 => 0.070355325000517
1028 => 0.072768923312067
1029 => 0.073544094485955
1030 => 0.071436912017799
1031 => 0.072181204488809
1101 => 0.076282329181296
1102 => 0.078482450998982
1103 => 0.075494390054782
1104 => 0.06725044841795
1105 => 0.059649157731977
1106 => 0.061665362312478
1107 => 0.061436787283162
1108 => 0.065842934139515
1109 => 0.060724473418815
1110 => 0.060810655170327
1111 => 0.065307916477479
1112 => 0.064108124263309
1113 => 0.062164614534129
1114 => 0.059663347503817
1115 => 0.055039524059088
1116 => 0.050944074689235
1117 => 0.058976194029177
1118 => 0.058629834437778
1119 => 0.058128254421816
1120 => 0.059244466470713
1121 => 0.064664475337841
1122 => 0.064539526590597
1123 => 0.063744666410042
1124 => 0.064347560851417
1125 => 0.062058924223604
1126 => 0.062648757993879
1127 => 0.059647953648697
1128 => 0.061004442537379
1129 => 0.062160444635125
1130 => 0.062392529171151
1201 => 0.062915427481348
1202 => 0.058447318671812
1203 => 0.060453368350511
1204 => 0.061631734595311
1205 => 0.056307833031973
1206 => 0.061526498179053
1207 => 0.058369538838083
1208 => 0.057298019421819
1209 => 0.058740679153869
1210 => 0.058178473253257
1211 => 0.057695121633748
1212 => 0.057425403125028
1213 => 0.058484733211701
1214 => 0.058435314196984
1215 => 0.056702044568077
1216 => 0.054441064994276
1217 => 0.055199923953368
1218 => 0.05492422337919
1219 => 0.053925048932283
1220 => 0.054598371868715
1221 => 0.051633398417609
1222 => 0.046532315700891
1223 => 0.049902247193944
1224 => 0.049772508497242
1225 => 0.049707088363183
1226 => 0.052239498742147
1227 => 0.051996065916858
1228 => 0.051554232955256
1229 => 0.053916934323454
1230 => 0.053054516541244
1231 => 0.055712284934831
]
'min_raw' => 0.023858133778825
'max_raw' => 0.078482450998982
'avg_raw' => 0.051170292388904
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023858'
'max' => '$0.078482'
'avg' => '$0.05117'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.012997296169561
'max_diff' => 0.051880866674706
'year' => 2029
]
4 => [
'items' => [
101 => 0.057462863092529
102 => 0.057018859846466
103 => 0.05866528706506
104 => 0.055217406531106
105 => 0.056362654139528
106 => 0.05659868808438
107 => 0.053887778955323
108 => 0.05203589453766
109 => 0.05191239496003
110 => 0.048701482585194
111 => 0.050416726058252
112 => 0.051926069332945
113 => 0.051203211034137
114 => 0.050974375691512
115 => 0.052143445828654
116 => 0.052234292590719
117 => 0.050162976788138
118 => 0.050593668933535
119 => 0.052389726776454
120 => 0.050548412884103
121 => 0.046971040768184
122 => 0.046083803022396
123 => 0.045965429152072
124 => 0.043559170017785
125 => 0.046143092491062
126 => 0.04501514108666
127 => 0.048578326058235
128 => 0.046543053912216
129 => 0.046455317397847
130 => 0.046322690788232
131 => 0.044251524150037
201 => 0.044704978014295
202 => 0.046212327722063
203 => 0.046750167079304
204 => 0.046694066027956
205 => 0.046204940886163
206 => 0.04642885987135
207 => 0.045707538801517
208 => 0.045452825318759
209 => 0.044648879502713
210 => 0.043467301248825
211 => 0.043631606952068
212 => 0.041290591254348
213 => 0.040015081655123
214 => 0.039662037409004
215 => 0.039189931888359
216 => 0.039715362983786
217 => 0.04128395945101
218 => 0.039391899315233
219 => 0.036148094925031
220 => 0.036343053096056
221 => 0.036781066222748
222 => 0.035964831658904
223 => 0.035192334145599
224 => 0.035863958058713
225 => 0.034489515376267
226 => 0.036947161054444
227 => 0.036880688626322
228 => 0.037796746955357
301 => 0.038369577027912
302 => 0.037049389166611
303 => 0.036717365489662
304 => 0.036906501265687
305 => 0.033780508193136
306 => 0.037541286630275
307 => 0.037573809998369
308 => 0.037295325175238
309 => 0.039297823592006
310 => 0.043523719846307
311 => 0.041933767689156
312 => 0.041318090157349
313 => 0.040147686719326
314 => 0.041707179808812
315 => 0.041587435071421
316 => 0.041045903957098
317 => 0.040718384249476
318 => 0.041321849353073
319 => 0.040643608244887
320 => 0.040521777505038
321 => 0.039783615774703
322 => 0.039520125621192
323 => 0.039325048001378
324 => 0.039110286709894
325 => 0.039583996603729
326 => 0.038510507662572
327 => 0.037215985234956
328 => 0.037108359702027
329 => 0.037405523260979
330 => 0.037274050507368
331 => 0.037107730261064
401 => 0.036790179616246
402 => 0.036695969123324
403 => 0.037002107520886
404 => 0.036656495119016
405 => 0.037166465044456
406 => 0.03702778144266
407 => 0.03625310611656
408 => 0.0352875738387
409 => 0.035278978576154
410 => 0.035070956230679
411 => 0.034806008497348
412 => 0.034732306099119
413 => 0.035807395766062
414 => 0.038032799201909
415 => 0.037595899258062
416 => 0.037911604242799
417 => 0.039464560302998
418 => 0.039958198335517
419 => 0.039607825752493
420 => 0.039128214150809
421 => 0.039149314627213
422 => 0.040788292658472
423 => 0.04089051370787
424 => 0.041148793321939
425 => 0.041480755615828
426 => 0.039664360366587
427 => 0.039063762574319
428 => 0.038779166020446
429 => 0.037902718787243
430 => 0.038847891987345
501 => 0.038297180039997
502 => 0.038371489896693
503 => 0.038323095505035
504 => 0.038349522115295
505 => 0.03694647409239
506 => 0.037457671049904
507 => 0.036607706959757
508 => 0.035469700455998
509 => 0.035465885459161
510 => 0.035744410938743
511 => 0.035578733084784
512 => 0.035132898239748
513 => 0.035196226975205
514 => 0.034641400614981
515 => 0.035263592940791
516 => 0.035281435190384
517 => 0.035041857253902
518 => 0.036000430377808
519 => 0.036393158568794
520 => 0.036235463238745
521 => 0.036382094244054
522 => 0.037614054423213
523 => 0.037814917686608
524 => 0.037904127879925
525 => 0.037784598038965
526 => 0.036404612214588
527 => 0.036465820454052
528 => 0.03601671500517
529 => 0.035637268226431
530 => 0.035652444107645
531 => 0.035847529076545
601 => 0.036699476577314
602 => 0.038492349867635
603 => 0.038560388098429
604 => 0.038642852418967
605 => 0.038307428584092
606 => 0.03820626154592
607 => 0.038339726982697
608 => 0.039013035925742
609 => 0.040744969328849
610 => 0.040132788392249
611 => 0.039635075761628
612 => 0.040071703921044
613 => 0.040004488438307
614 => 0.039437122120732
615 => 0.03942119803787
616 => 0.038332240676459
617 => 0.037929677934305
618 => 0.037593266375663
619 => 0.037225913735871
620 => 0.03700813477723
621 => 0.037342742236469
622 => 0.037419270921356
623 => 0.036687645863793
624 => 0.036587928071894
625 => 0.037185388887124
626 => 0.036922468657926
627 => 0.037192888633764
628 => 0.037255628387778
629 => 0.037245525842363
630 => 0.036971006926884
701 => 0.037145977097338
702 => 0.036732120483095
703 => 0.03628211357436
704 => 0.035995037203008
705 => 0.035744524993848
706 => 0.035883523727345
707 => 0.035388018622594
708 => 0.035229496567037
709 => 0.037086701140542
710 => 0.038458638127303
711 => 0.038438689620169
712 => 0.038317258213329
713 => 0.038136835774226
714 => 0.03899983690054
715 => 0.038699184564385
716 => 0.038917934259281
717 => 0.038973615237528
718 => 0.039142144788643
719 => 0.039202379617563
720 => 0.03902030812879
721 => 0.038409253974308
722 => 0.036886565118623
723 => 0.036177749345882
724 => 0.035943828334617
725 => 0.035952330919097
726 => 0.035717791681924
727 => 0.035786873998583
728 => 0.03569376767142
729 => 0.035517446812614
730 => 0.035872636411173
731 => 0.035913568703586
801 => 0.035830663207083
802 => 0.035850190452732
803 => 0.035163768351087
804 => 0.035215955532645
805 => 0.034925370674105
806 => 0.034870889516182
807 => 0.034136316297912
808 => 0.032834913363657
809 => 0.033556016919473
810 => 0.032685025226551
811 => 0.032355167474763
812 => 0.033916662768321
813 => 0.033759931949985
814 => 0.033491676918244
815 => 0.033094871817051
816 => 0.032947692945147
817 => 0.032053480710625
818 => 0.032000645881373
819 => 0.032443841610563
820 => 0.032239322030976
821 => 0.031952099083613
822 => 0.030911806683589
823 => 0.029742173596986
824 => 0.029777477467819
825 => 0.03014951599087
826 => 0.031231268172873
827 => 0.030808608880862
828 => 0.030501964715051
829 => 0.030444539480484
830 => 0.031163336518956
831 => 0.03218058492103
901 => 0.032657855111632
902 => 0.032184894847656
903 => 0.03164158356239
904 => 0.031674652402862
905 => 0.031894644583421
906 => 0.031917762651076
907 => 0.03156412285767
908 => 0.031663670388057
909 => 0.031512448586582
910 => 0.030584400670066
911 => 0.030567615226128
912 => 0.030339857300621
913 => 0.030332960881154
914 => 0.029945487832989
915 => 0.029891277675076
916 => 0.029121926420011
917 => 0.029628315745905
918 => 0.029288656372728
919 => 0.028776709579805
920 => 0.028688449759741
921 => 0.028685796562973
922 => 0.029211451450097
923 => 0.029622173162498
924 => 0.029294564892946
925 => 0.029219974840388
926 => 0.030016401458212
927 => 0.029915048911504
928 => 0.029827278259709
929 => 0.032089501483902
930 => 0.030298775278474
1001 => 0.029517916441828
1002 => 0.028551455350408
1003 => 0.028866139955094
1004 => 0.028932448624981
1005 => 0.026608283917821
1006 => 0.025665370585583
1007 => 0.025341798262898
1008 => 0.025155577816552
1009 => 0.025240440812361
1010 => 0.024391708220644
1011 => 0.024962070559019
1012 => 0.024227139876172
1013 => 0.024103926355522
1014 => 0.025418073456893
1015 => 0.025600929348913
1016 => 0.024820809304684
1017 => 0.025321772663042
1018 => 0.02514011638539
1019 => 0.024239738153351
1020 => 0.024205350327621
1021 => 0.023753572180609
1022 => 0.023046626862022
1023 => 0.022723533881553
1024 => 0.022555264252103
1025 => 0.022624695580723
1026 => 0.022589588976339
1027 => 0.022360494635708
1028 => 0.022602720395776
1029 => 0.021983933673398
1030 => 0.021737527814644
1031 => 0.021626232004817
1101 => 0.021077023172672
1102 => 0.021951058658891
1103 => 0.022123254660485
1104 => 0.022295789941396
1105 => 0.02379759176689
1106 => 0.023722565991736
1107 => 0.024400762460092
1108 => 0.024374408992455
1109 => 0.024180976373625
1110 => 0.023364915972905
1111 => 0.023690183103754
1112 => 0.022689061432737
1113 => 0.02343916985832
1114 => 0.02309685169816
1115 => 0.023323431744029
1116 => 0.022916020391658
1117 => 0.023141498655662
1118 => 0.022164088720513
1119 => 0.0212513970756
1120 => 0.021618690836643
1121 => 0.022017981160034
1122 => 0.022883744318426
1123 => 0.022368102923679
1124 => 0.02255354706779
1125 => 0.021932340227992
1126 => 0.020650613078529
1127 => 0.020657867515
1128 => 0.020460701716998
1129 => 0.020290321680848
1130 => 0.022427330540725
1201 => 0.022161559707888
1202 => 0.02173808866899
1203 => 0.022304921482625
1204 => 0.022454801075397
1205 => 0.022459067936697
1206 => 0.022872614525453
1207 => 0.023093324414005
1208 => 0.023132225488473
1209 => 0.023782949981146
1210 => 0.024001064247826
1211 => 0.024899446043596
1212 => 0.023074598721975
1213 => 0.023037017192261
1214 => 0.022312897982742
1215 => 0.021853650132194
1216 => 0.022344343075973
1217 => 0.022779030037895
1218 => 0.022326404918334
1219 => 0.022385508203511
1220 => 0.021777895961332
1221 => 0.021995088747098
1222 => 0.022182164433227
1223 => 0.022078872235147
1224 => 0.021924238815223
1225 => 0.022743390664122
1226 => 0.022697170906525
1227 => 0.02345998394044
1228 => 0.024054651249659
1229 => 0.025120401377278
1230 => 0.024008235560297
1231 => 0.023967703817468
]
'min_raw' => 0.020290321680848
'max_raw' => 0.05866528706506
'avg_raw' => 0.039477804372954
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02029'
'max' => '$0.058665'
'avg' => '$0.039477'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035678120979776
'max_diff' => -0.019817163933923
'year' => 2030
]
5 => [
'items' => [
101 => 0.024363908105122
102 => 0.024001003591014
103 => 0.024230346716893
104 => 0.025083450654068
105 => 0.025101475395957
106 => 0.024799537745749
107 => 0.024781164812294
108 => 0.024839155240852
109 => 0.025178806992217
110 => 0.025060122233846
111 => 0.025197467240963
112 => 0.025369219275464
113 => 0.026079658511516
114 => 0.026250943006148
115 => 0.025834810485022
116 => 0.025872382592441
117 => 0.025716737606447
118 => 0.025566386500203
119 => 0.025904353830024
120 => 0.026521995768038
121 => 0.026518153449597
122 => 0.026661434373973
123 => 0.026750697202856
124 => 0.026367515796907
125 => 0.026118078791605
126 => 0.026213728811527
127 => 0.026366675276368
128 => 0.02616413033434
129 => 0.024913929124196
130 => 0.025293160308191
131 => 0.025230037695717
201 => 0.025140143419581
202 => 0.025521463307596
203 => 0.025484684074161
204 => 0.024383003241178
205 => 0.024453529273711
206 => 0.024387292162806
207 => 0.024601317818978
208 => 0.023989445503209
209 => 0.024177653306516
210 => 0.024295695476412
211 => 0.024365223221324
212 => 0.024616405111565
213 => 0.024586931815875
214 => 0.024614573010122
215 => 0.024987009443789
216 => 0.026870665120526
217 => 0.026973188342959
218 => 0.026468326499593
219 => 0.026670008848058
220 => 0.026282822842086
221 => 0.026542743401816
222 => 0.026720574447516
223 => 0.025916990146938
224 => 0.025869407099877
225 => 0.025480623039529
226 => 0.025689533571705
227 => 0.025357141893813
228 => 0.025438699185001
301 => 0.025210657888804
302 => 0.025621086819389
303 => 0.02608001013799
304 => 0.0261959522917
305 => 0.025890958401525
306 => 0.025670122724962
307 => 0.025282408024711
308 => 0.025927186212014
309 => 0.026115739003241
310 => 0.025926195824471
311 => 0.02588227452835
312 => 0.025799043751564
313 => 0.025899932331102
314 => 0.026114712104246
315 => 0.026013425929591
316 => 0.026080327232383
317 => 0.025825368454463
318 => 0.026367642645896
319 => 0.027228904567284
320 => 0.027231673665191
321 => 0.027130386944566
322 => 0.027088942600739
323 => 0.027192868922693
324 => 0.027249244689072
325 => 0.027585323357441
326 => 0.027945949158567
327 => 0.029628832419055
328 => 0.029156285533676
329 => 0.030649439677555
330 => 0.031830330743563
331 => 0.032184428340151
401 => 0.03185867521287
402 => 0.030744291361278
403 => 0.03068961437307
404 => 0.032354974328075
405 => 0.031884433862468
406 => 0.031828464571331
407 => 0.031233045875247
408 => 0.031585012068673
409 => 0.031508031899138
410 => 0.031386514935529
411 => 0.032058041914407
412 => 0.033315080471241
413 => 0.033119159223726
414 => 0.032972913100981
415 => 0.032332105162717
416 => 0.032718014671187
417 => 0.03258059968683
418 => 0.033171021665328
419 => 0.032821268764714
420 => 0.031880869055651
421 => 0.032030630808918
422 => 0.03200799462119
423 => 0.032473845760602
424 => 0.032334008811687
425 => 0.031980689212612
426 => 0.033310784050112
427 => 0.033224415089741
428 => 0.033346866528853
429 => 0.033400773439288
430 => 0.034210378727974
501 => 0.034542048110269
502 => 0.03461734286674
503 => 0.034932403127689
504 => 0.034609503880434
505 => 0.035901331092717
506 => 0.036760320808678
507 => 0.037758081566973
508 => 0.039216078207651
509 => 0.039764298431769
510 => 0.039665267355211
511 => 0.040770703768288
512 => 0.042757148430115
513 => 0.040066784615993
514 => 0.042899744244977
515 => 0.042002861934533
516 => 0.039876370110692
517 => 0.039739449106928
518 => 0.041179534059111
519 => 0.044373503880012
520 => 0.043573450665582
521 => 0.04437481248046
522 => 0.043439981356566
523 => 0.043393559111889
524 => 0.044329409819354
525 => 0.046516076007912
526 => 0.045477272867685
527 => 0.043987893841189
528 => 0.045087628137049
529 => 0.04413493651437
530 => 0.04198825564688
531 => 0.043572838879967
601 => 0.042513273198334
602 => 0.042822510793844
603 => 0.045049560258137
604 => 0.044781595774551
605 => 0.045128366629154
606 => 0.044516325147353
607 => 0.043944581893268
608 => 0.042877380651307
609 => 0.042561434975948
610 => 0.042648750994082
611 => 0.042561391706465
612 => 0.041964302419674
613 => 0.041835361045041
614 => 0.041620453104934
615 => 0.041687062061878
616 => 0.041282972260942
617 => 0.042045573204522
618 => 0.042187118659667
619 => 0.042742076030763
620 => 0.04279969354603
621 => 0.044345241925209
622 => 0.043493979849843
623 => 0.04406507994443
624 => 0.044013995376568
625 => 0.039922457636602
626 => 0.040486235437226
627 => 0.041363296771777
628 => 0.04096818182939
629 => 0.040409581743513
630 => 0.039958482223925
701 => 0.039275020324456
702 => 0.040236979823236
703 => 0.041501854271144
704 => 0.04283177284939
705 => 0.044429582881436
706 => 0.044072970282842
707 => 0.042801902902254
708 => 0.042858922056432
709 => 0.04321139203135
710 => 0.042754911388557
711 => 0.042620286335437
712 => 0.043192896616359
713 => 0.043196839868663
714 => 0.042671603721602
715 => 0.042087899861344
716 => 0.042085454120857
717 => 0.041981589656834
718 => 0.04345845861398
719 => 0.044270587212116
720 => 0.044363696447082
721 => 0.044264320218747
722 => 0.044302566184932
723 => 0.043830006447709
724 => 0.044910137873764
725 => 0.045901373284239
726 => 0.045635701019575
727 => 0.045237420527308
728 => 0.044920170931429
729 => 0.045560967097124
730 => 0.045532433452572
731 => 0.045892715707663
801 => 0.045876371223481
802 => 0.045755221851995
803 => 0.045635705346201
804 => 0.04610957478214
805 => 0.0459731079947
806 => 0.045836429236646
807 => 0.045562299062897
808 => 0.04559955790633
809 => 0.045201346182804
810 => 0.045017115218573
811 => 0.042246723548423
812 => 0.041506384368999
813 => 0.041739310145839
814 => 0.04181599535949
815 => 0.041493798799835
816 => 0.041955745900876
817 => 0.041883751934501
818 => 0.042163838342602
819 => 0.041988852514759
820 => 0.041996033994171
821 => 0.042510630002945
822 => 0.04266001941354
823 => 0.042584038753591
824 => 0.042637253003354
825 => 0.043863552928826
826 => 0.043689212294288
827 => 0.043596597306928
828 => 0.043622252291369
829 => 0.043935598214494
830 => 0.044023317964916
831 => 0.043651643218421
901 => 0.043826927177494
902 => 0.044573264028381
903 => 0.044834439687184
904 => 0.045667987018655
905 => 0.045313881297124
906 => 0.045963857674331
907 => 0.047961663464591
908 => 0.049557648967497
909 => 0.048089914742135
910 => 0.051020738870692
911 => 0.053302805856525
912 => 0.053215216324627
913 => 0.052817285160487
914 => 0.050219212569006
915 => 0.047828427435245
916 => 0.049828420717735
917 => 0.049833519111914
918 => 0.049661717915242
919 => 0.048594675437725
920 => 0.049624587149973
921 => 0.049706337801601
922 => 0.049660579175942
923 => 0.048842480210244
924 => 0.047593394299584
925 => 0.047837462696638
926 => 0.048237251709872
927 => 0.047480367703094
928 => 0.047238497401709
929 => 0.047688180309691
930 => 0.049137152334363
1001 => 0.048863232566422
1002 => 0.048856079414285
1003 => 0.050028024341595
1004 => 0.049189164695185
1005 => 0.04784054118074
1006 => 0.047499995957183
1007 => 0.046291289832309
1008 => 0.047126147458023
1009 => 0.047156192497704
1010 => 0.046698949508139
1011 => 0.047877643929333
1012 => 0.047866782052737
1013 => 0.048985776980148
1014 => 0.051124875006058
1015 => 0.050492238461176
1016 => 0.049756550990138
1017 => 0.04983654061664
1018 => 0.050713829388154
1019 => 0.050183400570342
1020 => 0.050374146471509
1021 => 0.050713540671388
1022 => 0.050918305618859
1023 => 0.049807078091853
1024 => 0.049547997799151
1025 => 0.049018010445109
1026 => 0.048879746637122
1027 => 0.04931141027844
1028 => 0.049197682159854
1029 => 0.047153667328459
1030 => 0.046940056405787
1031 => 0.046946607547819
1101 => 0.046409472726115
1102 => 0.045590213195888
1103 => 0.04774317832588
1104 => 0.047570265095214
1105 => 0.04737938227098
1106 => 0.047402764327786
1107 => 0.048337293519958
1108 => 0.047795219393643
1109 => 0.049236412302653
1110 => 0.048940146366785
1111 => 0.048636282327576
1112 => 0.048594279061432
1113 => 0.048477317330798
1114 => 0.04807621203691
1115 => 0.04759185329185
1116 => 0.047272037693926
1117 => 0.043605955982188
1118 => 0.04428635942327
1119 => 0.04506910156151
1120 => 0.045339301010989
1121 => 0.044877106155423
1122 => 0.048094462306919
1123 => 0.048682304279013
1124 => 0.046901692601558
1125 => 0.046568612858602
1126 => 0.048116298959416
1127 => 0.047182855043694
1128 => 0.047603184781788
1129 => 0.046694661796103
1130 => 0.048540710361958
1201 => 0.048526646564863
1202 => 0.047808491977848
1203 => 0.048415471317083
1204 => 0.048309993719863
1205 => 0.047499198959859
1206 => 0.048566414002038
1207 => 0.048566943327384
1208 => 0.047875735151409
1209 => 0.047068555326797
1210 => 0.046924250638893
1211 => 0.046815536441164
1212 => 0.047576447753448
1213 => 0.048258678456734
1214 => 0.049528140656215
1215 => 0.049847313614842
1216 => 0.051093066920912
1217 => 0.050351281481775
1218 => 0.050680105359215
1219 => 0.051037090193153
1220 => 0.051208241850225
1221 => 0.05092935940953
1222 => 0.052864527066374
1223 => 0.053027914508616
1224 => 0.053082696904704
1225 => 0.052430169258915
1226 => 0.053009766534373
1227 => 0.05273859216343
1228 => 0.053444112542213
1229 => 0.053554747146143
1230 => 0.053461043572555
1231 => 0.05349616074209
]
'min_raw' => 0.023989445503209
'max_raw' => 0.053554747146143
'avg_raw' => 0.038772096324676
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023989'
'max' => '$0.053554'
'avg' => '$0.038772'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036991238223611
'max_diff' => -0.005110539918917
'year' => 2031
]
6 => [
'items' => [
101 => 0.051844836533942
102 => 0.05175920666232
103 => 0.050591637286741
104 => 0.051067430437527
105 => 0.050177957947492
106 => 0.050460018836664
107 => 0.050584348589036
108 => 0.050519405782048
109 => 0.051094331068398
110 => 0.050605527125524
111 => 0.049315493153472
112 => 0.048025107712528
113 => 0.048008907974442
114 => 0.047669172265036
115 => 0.047423605572834
116 => 0.047470910429699
117 => 0.047637618915359
118 => 0.047413916172588
119 => 0.047461654494775
120 => 0.048254428721856
121 => 0.04841341393929
122 => 0.047873120050915
123 => 0.045703762125054
124 => 0.045171396248626
125 => 0.045554050283328
126 => 0.045371166300816
127 => 0.036618072279101
128 => 0.038674481883024
129 => 0.037452633125445
130 => 0.038015717247496
131 => 0.036768526062209
201 => 0.037363751066718
202 => 0.037253834742522
203 => 0.040560480532047
204 => 0.040508851806186
205 => 0.040533563745124
206 => 0.039353998512989
207 => 0.041233077956467
208 => 0.042158780059835
209 => 0.041987457237265
210 => 0.042030575500701
211 => 0.041289660877238
212 => 0.040540737418238
213 => 0.039710066043714
214 => 0.041253350783495
215 => 0.041081763865181
216 => 0.04147532252077
217 => 0.042476252990789
218 => 0.042623643804664
219 => 0.042821738553203
220 => 0.042750735687196
221 => 0.044442312016129
222 => 0.044237450961316
223 => 0.044731107160869
224 => 0.043715618904602
225 => 0.042566497551606
226 => 0.042784907953203
227 => 0.042763873275184
228 => 0.042496077681518
229 => 0.042254323793506
301 => 0.041851871683703
302 => 0.043125289710826
303 => 0.043073591264459
304 => 0.043910529018268
305 => 0.043762592140703
306 => 0.042774633466027
307 => 0.04280991860337
308 => 0.043047228109462
309 => 0.043868559019597
310 => 0.044112385954198
311 => 0.043999435603268
312 => 0.044266780705935
313 => 0.044478079374546
314 => 0.044293316565501
315 => 0.046909168311288
316 => 0.04582288428989
317 => 0.046352331563604
318 => 0.0464786016187
319 => 0.046155163527744
320 => 0.046225305668223
321 => 0.046331551898459
322 => 0.046976658203307
323 => 0.048669603810241
324 => 0.049419397895281
325 => 0.051675190394314
326 => 0.049357137934156
327 => 0.049219594294225
328 => 0.049625930641708
329 => 0.050950319638527
330 => 0.052023612526916
331 => 0.052379685697746
401 => 0.052426746645399
402 => 0.053094763585174
403 => 0.053477658437275
404 => 0.053013648758096
405 => 0.05262044913883
406 => 0.051212056908353
407 => 0.051375082143955
408 => 0.052498164352909
409 => 0.054084584122267
410 => 0.055445897323222
411 => 0.054969212886803
412 => 0.058605978649916
413 => 0.058966549120473
414 => 0.058916729940081
415 => 0.059738163132089
416 => 0.058107785527913
417 => 0.057410767515049
418 => 0.05270546335952
419 => 0.054027461900362
420 => 0.055949064417726
421 => 0.055694733118913
422 => 0.054299214006221
423 => 0.055444838696836
424 => 0.055066059347122
425 => 0.054767300358433
426 => 0.056135973202897
427 => 0.054631061188428
428 => 0.055934051769184
429 => 0.054262952871652
430 => 0.054971390341156
501 => 0.054569246970201
502 => 0.054829483016046
503 => 0.053308148409528
504 => 0.054129023634896
505 => 0.053273997301366
506 => 0.053273591907556
507 => 0.053254717153854
508 => 0.054260651843484
509 => 0.054293455337599
510 => 0.053550068082079
511 => 0.053442934364667
512 => 0.053839063868993
513 => 0.053375299965909
514 => 0.053592292177267
515 => 0.053381872438937
516 => 0.053334502523722
517 => 0.052957050979956
518 => 0.052794434476656
519 => 0.052858200597711
520 => 0.052640533952861
521 => 0.052509381925992
522 => 0.053228627714661
523 => 0.052844363704067
524 => 0.053169733743916
525 => 0.052798933518536
526 => 0.051513578387402
527 => 0.050774357059103
528 => 0.048346440368875
529 => 0.049034994530403
530 => 0.049491506651856
531 => 0.049340629398439
601 => 0.049664772120525
602 => 0.049684671851083
603 => 0.049579289747889
604 => 0.049457270772674
605 => 0.049397878683611
606 => 0.049840538656456
607 => 0.050097517669941
608 => 0.049537323750588
609 => 0.04940607815323
610 => 0.049972465134849
611 => 0.050317960866446
612 => 0.052868907231277
613 => 0.052679924885122
614 => 0.053154233488058
615 => 0.053100833618226
616 => 0.05359798459739
617 => 0.054410616336641
618 => 0.052758308795335
619 => 0.05304509225201
620 => 0.05297477957123
621 => 0.053742434983006
622 => 0.053744831519409
623 => 0.053284583752818
624 => 0.053534091533754
625 => 0.053394823135323
626 => 0.05364649995454
627 => 0.052677400910672
628 => 0.053857658938326
629 => 0.054526789185859
630 => 0.054536080059995
701 => 0.05485324248678
702 => 0.055175497881202
703 => 0.055794039048265
704 => 0.055158247103766
705 => 0.054014519288711
706 => 0.054097092742739
707 => 0.053426525543246
708 => 0.053437797899017
709 => 0.05337762518048
710 => 0.053558208038403
711 => 0.052717028692931
712 => 0.052914451803988
713 => 0.0526380582924
714 => 0.053044491426494
715 => 0.052607236560013
716 => 0.052974745664326
717 => 0.053133350410628
718 => 0.053718605338999
719 => 0.052520793931236
720 => 0.050078375386106
721 => 0.050591801375755
722 => 0.049832404008323
723 => 0.049902689125908
724 => 0.050044676249225
725 => 0.049584449527261
726 => 0.049672246282401
727 => 0.049669109564491
728 => 0.049642079024136
729 => 0.049522356278954
730 => 0.049348734612017
731 => 0.050040389895164
801 => 0.050157915605558
802 => 0.05041916070141
803 => 0.051196448902423
804 => 0.051118779481424
805 => 0.051245461529547
806 => 0.050968915329784
807 => 0.049915517310962
808 => 0.049972721891435
809 => 0.049259379856298
810 => 0.05040091894176
811 => 0.050130587418743
812 => 0.049956302927243
813 => 0.049908747789003
814 => 0.050687962737122
815 => 0.050921116062297
816 => 0.050775830556385
817 => 0.050477845745106
818 => 0.051050064674064
819 => 0.051203166319475
820 => 0.051237440131711
821 => 0.052251302361728
822 => 0.051294103767764
823 => 0.051524510983067
824 => 0.053322082304219
825 => 0.05169193316382
826 => 0.052555459520154
827 => 0.052513194398585
828 => 0.052954945262347
829 => 0.052476957934015
830 => 0.052482883159813
831 => 0.052875128000037
901 => 0.052324290863672
902 => 0.052187895842267
903 => 0.051999467097077
904 => 0.052410894368672
905 => 0.052657526410739
906 => 0.05464519953852
907 => 0.055929327027973
908 => 0.055873579667011
909 => 0.056383006191521
910 => 0.056153504876417
911 => 0.055412384590558
912 => 0.056677386548529
913 => 0.056277086999097
914 => 0.056310087207588
915 => 0.05630885893818
916 => 0.056575023143758
917 => 0.056386421410515
918 => 0.056014668034721
919 => 0.056261455274576
920 => 0.056994325148894
921 => 0.05926917572597
922 => 0.060542212246663
923 => 0.059192537328952
924 => 0.060123525014322
925 => 0.059565264147931
926 => 0.059463811541685
927 => 0.060048540607547
928 => 0.060634293164233
929 => 0.06059698325865
930 => 0.060171756981222
1001 => 0.059931557446821
1002 => 0.061750428794056
1003 => 0.063090542219033
1004 => 0.062999155467684
1005 => 0.063402506867575
1006 => 0.064586759052845
1007 => 0.064695032231134
1008 => 0.064681392299301
1009 => 0.064413025929772
1010 => 0.065579076000749
1011 => 0.066551815484657
1012 => 0.064350906869076
1013 => 0.06518898405788
1014 => 0.065565223909095
1015 => 0.066117655636012
1016 => 0.067049700557628
1017 => 0.068062148555209
1018 => 0.068205319802995
1019 => 0.068103732951316
1020 => 0.067435996280848
1021 => 0.068543828960818
1022 => 0.069192771362872
1023 => 0.069579201712512
1024 => 0.070559124783319
1025 => 0.065567547438329
1026 => 0.062034260896053
1027 => 0.061482487181201
1028 => 0.062604540727783
1029 => 0.062900417299807
1030 => 0.062781149824622
1031 => 0.058804114588932
1101 => 0.061461548913751
1102 => 0.064320724803832
1103 => 0.06443055739413
1104 => 0.065861920627253
1105 => 0.066328031169519
1106 => 0.06748046618525
1107 => 0.067408381061242
1108 => 0.067688980648326
1109 => 0.067624475662563
1110 => 0.069759118855383
1111 => 0.072113947294645
1112 => 0.072032407073689
1113 => 0.07169387262448
1114 => 0.072196654010257
1115 => 0.074627089318327
1116 => 0.074403333782092
1117 => 0.074620693226093
1118 => 0.077486313427639
1119 => 0.08121202731937
1120 => 0.079481059161102
1121 => 0.083236761991873
1122 => 0.08560077784259
1123 => 0.089689098812605
1124 => 0.089177220891754
1125 => 0.090768774243896
1126 => 0.088260852581285
1127 => 0.082502157509337
1128 => 0.081590821970802
1129 => 0.08341533879764
1130 => 0.087900735382674
1201 => 0.083274077697006
1202 => 0.084210044521045
1203 => 0.083940486012756
1204 => 0.083926122385399
1205 => 0.084474323620514
1206 => 0.083679129136726
1207 => 0.080439363757017
1208 => 0.08192412913848
1209 => 0.081350789920407
1210 => 0.08198695252813
1211 => 0.085420059748589
1212 => 0.083902201211369
1213 => 0.082303260543224
1214 => 0.084308686974418
1215 => 0.086862283960615
1216 => 0.086702484450474
1217 => 0.086392406609786
1218 => 0.088140299162594
1219 => 0.091027305575366
1220 => 0.091807651807807
1221 => 0.092383687443118
1222 => 0.092463113025026
1223 => 0.093281245881399
1224 => 0.088881939316655
1225 => 0.095863751817109
1226 => 0.09706931796726
1227 => 0.096842721496629
1228 => 0.098182657534542
1229 => 0.097788414361292
1230 => 0.09721721785811
1231 => 0.099341301490772
]
'min_raw' => 0.036618072279101
'max_raw' => 0.099341301490772
'avg_raw' => 0.067979686884936
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036618'
'max' => '$0.099341'
'avg' => '$0.067979'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012628626775892
'max_diff' => 0.045786554344629
'year' => 2032
]
7 => [
'items' => [
101 => 0.096906211010636
102 => 0.09344990664345
103 => 0.091553709709662
104 => 0.094050774793917
105 => 0.095575645305309
106 => 0.09658348771336
107 => 0.096888460217081
108 => 0.089223444962056
109 => 0.085092426860833
110 => 0.087740362101498
111 => 0.090971025845838
112 => 0.088863992816435
113 => 0.088946584522046
114 => 0.085942509140657
115 => 0.091236819859043
116 => 0.090465483319536
117 => 0.094467178650969
118 => 0.093512141944511
119 => 0.096775369142376
120 => 0.095916052058526
121 => 0.099483029229818
122 => 0.1009059929955
123 => 0.1032953706247
124 => 0.10505300653526
125 => 0.10608512396016
126 => 0.10602315950134
127 => 0.11011292293764
128 => 0.10770133232471
129 => 0.10467180614659
130 => 0.10461701157606
131 => 0.10618604611243
201 => 0.10947431205704
202 => 0.11032691157415
203 => 0.11080339839046
204 => 0.11007364224466
205 => 0.10745603347458
206 => 0.10632576327923
207 => 0.10728878623275
208 => 0.10611109191411
209 => 0.10814412271075
210 => 0.11093590822648
211 => 0.1103594155574
212 => 0.11228654411753
213 => 0.11428091943743
214 => 0.11713296571788
215 => 0.11787859622656
216 => 0.11911109510362
217 => 0.1203797413029
218 => 0.12078719627114
219 => 0.12156515423135
220 => 0.12156105400889
221 => 0.12390548268461
222 => 0.12649146011483
223 => 0.12746760672923
224 => 0.12971220204399
225 => 0.12586841122746
226 => 0.12878397071608
227 => 0.13141387835601
228 => 0.12827839404932
301 => 0.13259992869195
302 => 0.13276772408931
303 => 0.13530123537365
304 => 0.13273303632494
305 => 0.1312080479278
306 => 0.13561063228978
307 => 0.13774090418243
308 => 0.13709924895164
309 => 0.13221622096286
310 => 0.12937408923047
311 => 0.12193568228053
312 => 0.130746796628
313 => 0.13503843340292
314 => 0.13220510666039
315 => 0.13363407186455
316 => 0.1414300426749
317 => 0.14439824360775
318 => 0.143780878563
319 => 0.14388520309287
320 => 0.14548679043958
321 => 0.15258911074515
322 => 0.14833323578756
323 => 0.15158669272804
324 => 0.15331231455806
325 => 0.15491516828374
326 => 0.1509790661206
327 => 0.14585825503919
328 => 0.14423627921268
329 => 0.13192338815462
330 => 0.13128244870287
331 => 0.13092266996615
401 => 0.12865431592285
402 => 0.12687201099928
403 => 0.12545465595131
404 => 0.12173509304741
405 => 0.12299033633857
406 => 0.11706212940286
407 => 0.12085478611757
408 => 0.11139322470663
409 => 0.11927309420148
410 => 0.11498443948913
411 => 0.11786415578547
412 => 0.1178541087266
413 => 0.11255163801015
414 => 0.10949328356065
415 => 0.11144218604881
416 => 0.11353156422019
417 => 0.11387055879898
418 => 0.11657949213653
419 => 0.11733549720271
420 => 0.11504476655768
421 => 0.11119715487671
422 => 0.11209086731552
423 => 0.1094751725066
424 => 0.10489126796521
425 => 0.10818350823413
426 => 0.10930762381153
427 => 0.10980409728996
428 => 0.10529635363849
429 => 0.10387992271533
430 => 0.10312582677684
501 => 0.11061526177713
502 => 0.11102554993289
503 => 0.10892645771912
504 => 0.11841455356943
505 => 0.11626710526152
506 => 0.11866633115907
507 => 0.11200977227915
508 => 0.11226406179261
509 => 0.10911274014277
510 => 0.11087726969529
511 => 0.10963015708101
512 => 0.11073471314487
513 => 0.11139677949529
514 => 0.11454758404425
515 => 0.11930907132822
516 => 0.11407695891471
517 => 0.11179725261092
518 => 0.11321156958024
519 => 0.11697808204604
520 => 0.12268454123597
521 => 0.11930620254234
522 => 0.12080545188666
523 => 0.12113297117144
524 => 0.11864190929165
525 => 0.12277639024069
526 => 0.12499209216975
527 => 0.12726494387405
528 => 0.12923839732503
529 => 0.12635711692227
530 => 0.12944049996855
531 => 0.12695583752363
601 => 0.12472683845085
602 => 0.12473021892235
603 => 0.12333193524352
604 => 0.1206225844207
605 => 0.12012293856007
606 => 0.12272215942537
607 => 0.12480648841221
608 => 0.12497816373083
609 => 0.12613215535463
610 => 0.12681507571054
611 => 0.13350862358365
612 => 0.13620082391014
613 => 0.13949279550863
614 => 0.1407752039716
615 => 0.14463479367625
616 => 0.1415178615292
617 => 0.14084349365276
618 => 0.13148139149145
619 => 0.13301443519589
620 => 0.13546898608341
621 => 0.13152186613152
622 => 0.13402540523922
623 => 0.13451965689129
624 => 0.13138774450593
625 => 0.1330606342329
626 => 0.12861793509532
627 => 0.11940591002892
628 => 0.12278664585799
629 => 0.12527600537156
630 => 0.12172338240988
701 => 0.12809132156319
702 => 0.12437130297077
703 => 0.12319223566936
704 => 0.11859227375871
705 => 0.12076327871176
706 => 0.12369959399657
707 => 0.12188529253385
708 => 0.12565024048773
709 => 0.13098241086536
710 => 0.1347824330127
711 => 0.13507415152811
712 => 0.13263099186908
713 => 0.13654617081471
714 => 0.13657468861903
715 => 0.13215835077439
716 => 0.12945336843482
717 => 0.12883879075593
718 => 0.13037412629283
719 => 0.1322383070732
720 => 0.13517760058738
721 => 0.13695375409878
722 => 0.14158502045749
723 => 0.14283810834534
724 => 0.14421487202158
725 => 0.14605465287123
726 => 0.14826378149136
727 => 0.14343033383627
728 => 0.14362237572228
729 => 0.1391215361895
730 => 0.13431174366304
731 => 0.13796177664152
801 => 0.14273370921734
802 => 0.14163902261193
803 => 0.14151584800641
804 => 0.14172299352712
805 => 0.14089763557576
806 => 0.13716457215096
807 => 0.13528985106924
808 => 0.13770871955702
809 => 0.13899424050682
810 => 0.14098797139075
811 => 0.14074220197675
812 => 0.1458778386227
813 => 0.14787339172973
814 => 0.14736284385042
815 => 0.14745679694723
816 => 0.15106965052746
817 => 0.15508788674868
818 => 0.15885149522282
819 => 0.16267999941347
820 => 0.15806458818258
821 => 0.15572116699853
822 => 0.15813897948399
823 => 0.15685605414603
824 => 0.16422812367833
825 => 0.16473854977779
826 => 0.17211008622555
827 => 0.1791065521007
828 => 0.17471219723922
829 => 0.17885587594751
830 => 0.1833376023096
831 => 0.19198357959597
901 => 0.18907191861507
902 => 0.18684163193524
903 => 0.18473402179948
904 => 0.18911962391832
905 => 0.19476163098252
906 => 0.19597686526567
907 => 0.19794600905961
908 => 0.19587569513573
909 => 0.19836916021944
910 => 0.20717218764902
911 => 0.20479353193108
912 => 0.20141545842361
913 => 0.20836460312752
914 => 0.21087947158175
915 => 0.22853013544037
916 => 0.25081482767444
917 => 0.24158881876036
918 => 0.23586193730594
919 => 0.23720789029117
920 => 0.24534550551062
921 => 0.2479590492441
922 => 0.24085453643393
923 => 0.24336397046478
924 => 0.25719119869689
925 => 0.26460906301282
926 => 0.25453460691969
927 => 0.22673958211749
928 => 0.20111129986456
929 => 0.20790907437463
930 => 0.20713841770469
1001 => 0.22199404945823
1002 => 0.20473680177888
1003 => 0.20502736957112
1004 => 0.22019020005694
1005 => 0.21614501684005
1006 => 0.2095923380966
1007 => 0.20115914167102
1008 => 0.18556959810207
1009 => 0.17176150461647
1010 => 0.19884235575575
1011 => 0.19767458021129
1012 => 0.19598346816827
1013 => 0.19974685502257
1014 => 0.21802079333103
1015 => 0.21759951990605
1016 => 0.21491959331194
1017 => 0.21695229401379
1018 => 0.20923599583561
1019 => 0.21122466157297
1020 => 0.20110724021372
1021 => 0.20568073720894
1022 => 0.20957827899098
1023 => 0.21036076820782
1024 => 0.21212375636824
1025 => 0.19705921556349
1026 => 0.20382275211314
1027 => 0.20779569617839
1028 => 0.18984579035466
1029 => 0.2074408842536
1030 => 0.19679697542366
1031 => 0.19318427290063
1101 => 0.19804830091052
1102 => 0.19615278446465
1103 => 0.19452313073294
1104 => 0.19361375594964
1105 => 0.19718536129693
1106 => 0.19701874163848
1107 => 0.1911749020716
1108 => 0.18355185158198
1109 => 0.1861103975444
1110 => 0.18518085380976
1111 => 0.18181206740188
1112 => 0.18408222269197
1113 => 0.17408560769373
1114 => 0.15688695116809
1115 => 0.16824891047802
1116 => 0.16781148740402
1117 => 0.16759091885456
1118 => 0.17612911725448
1119 => 0.17530836648808
1120 => 0.17381869581025
1121 => 0.18178470843167
1122 => 0.17887700666686
1123 => 0.1878378583653
1124 => 0.19374005484545
1125 => 0.19224306690203
1126 => 0.19779411121939
1127 => 0.18616934127584
1128 => 0.19003062354627
1129 => 0.1908264284707
1130 => 0.18168640907245
1201 => 0.17544265146386
1202 => 0.17502626401541
1203 => 0.16420044876491
1204 => 0.1699835118888
1205 => 0.17507236811841
1206 => 0.17263520089563
1207 => 0.17186366656119
1208 => 0.17580526815044
1209 => 0.17611156435146
1210 => 0.16912797850841
1211 => 0.17058008714658
1212 => 0.17663562156073
1213 => 0.17042750321624
1214 => 0.15836614336327
1215 => 0.15537475935839
1216 => 0.15497565358999
1217 => 0.14686278291909
1218 => 0.15557465794146
1219 => 0.15177169103046
1220 => 0.16378521793576
1221 => 0.15692315579729
1222 => 0.15662734601353
1223 => 0.15618018613952
1224 => 0.14919710321461
1225 => 0.15072595457709
1226 => 0.15580808935662
1227 => 0.15762145230031
1228 => 0.15743230368884
1229 => 0.15578318412365
1230 => 0.15653814261574
1231 => 0.15410615826777
]
'min_raw' => 0.085092426860833
'max_raw' => 0.26460906301282
'avg_raw' => 0.17485074493683
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.085092'
'max' => '$0.264609'
'avg' => '$0.17485'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.048474354581732
'max_diff' => 0.16526776152205
'year' => 2033
]
8 => [
'items' => [
101 => 0.15324737397712
102 => 0.15053681452862
103 => 0.14655304095047
104 => 0.14710700910042
105 => 0.13921411123106
106 => 0.13491364156403
107 => 0.13372332823948
108 => 0.13213159151527
109 => 0.13390311913793
110 => 0.13919175164308
111 => 0.13281253879589
112 => 0.12187582581914
113 => 0.12253314090429
114 => 0.12400993274203
115 => 0.12125794092236
116 => 0.1186534116222
117 => 0.12091783853654
118 => 0.11628380907215
119 => 0.12456993306347
120 => 0.1243458166311
121 => 0.12743437124459
122 => 0.12936570782793
123 => 0.12491460228098
124 => 0.12379516127299
125 => 0.1244328457469
126 => 0.11389334185293
127 => 0.1265730689229
128 => 0.12668272372914
129 => 0.12574379270477
130 => 0.13249535592688
131 => 0.14674326019091
201 => 0.14138262548616
202 => 0.13930682570244
203 => 0.13536072879618
204 => 0.14061866862772
205 => 0.14021494088529
206 => 0.13838913092486
207 => 0.13728487536391
208 => 0.13931950009328
209 => 0.13703276284375
210 => 0.1366220019984
211 => 0.13413323818776
212 => 0.13324486273891
213 => 0.13258714492382
214 => 0.13186306223543
215 => 0.13346020821586
216 => 0.12984086530215
217 => 0.12547629255677
218 => 0.12511342555832
219 => 0.12611533324463
220 => 0.12567206367669
221 => 0.12511130335417
222 => 0.12404065918449
223 => 0.12372302193004
224 => 0.12475518891131
225 => 0.12358993256852
226 => 0.12530933177711
227 => 0.12484175033107
228 => 0.12222987838302
301 => 0.11897451889691
302 => 0.11894553936913
303 => 0.11824417750771
304 => 0.11735088772672
305 => 0.11710239494535
306 => 0.12072713481782
307 => 0.12823023787448
308 => 0.12675719921042
309 => 0.12782162060828
310 => 0.13305752038917
311 => 0.13472185548051
312 => 0.13354054985461
313 => 0.13192350585413
314 => 0.13199464758351
315 => 0.13752057644569
316 => 0.13786522185058
317 => 0.13873602960192
318 => 0.13985526365264
319 => 0.13373116025316
320 => 0.13170620286413
321 => 0.13074666571284
322 => 0.12779166267451
323 => 0.13097838010854
324 => 0.12912161632858
325 => 0.12937215719858
326 => 0.12920899212831
327 => 0.12929809128985
328 => 0.12456761692294
329 => 0.12629115315583
330 => 0.1234254398833
331 => 0.1195885715028
401 => 0.11957570897461
402 => 0.12051477707505
403 => 0.11995618262317
404 => 0.11845301931594
405 => 0.118666536569
406 => 0.11679590075877
407 => 0.11889366562531
408 => 0.11895382201552
409 => 0.11814606827588
410 => 0.12137796448856
411 => 0.12270207500388
412 => 0.12217039418868
413 => 0.12266477086053
414 => 0.12681841061728
415 => 0.12749563513364
416 => 0.12779641352887
417 => 0.12739341032476
418 => 0.12274069177034
419 => 0.12294705962312
420 => 0.12143286924667
421 => 0.12015353794003
422 => 0.12020470448308
423 => 0.12086244707613
424 => 0.12373484755605
425 => 0.12977964502878
426 => 0.13000904067418
427 => 0.13028707488835
428 => 0.12915617001052
429 => 0.12881507827807
430 => 0.12926506631642
501 => 0.13153517442683
502 => 0.13737450881513
503 => 0.13531049804627
504 => 0.13363242516295
505 => 0.13510454748683
506 => 0.13487792579394
507 => 0.13296501064199
508 => 0.13291132148483
509 => 0.12923982571226
510 => 0.12788255732106
511 => 0.12674832226359
512 => 0.12550976719079
513 => 0.12477551022689
514 => 0.12590366263726
515 => 0.12616168444142
516 => 0.12369495947941
517 => 0.12335875398196
518 => 0.12537313483388
519 => 0.12448668092464
520 => 0.1253984207533
521 => 0.1256099522143
522 => 0.1255758907771
523 => 0.12465033108726
524 => 0.12524025523298
525 => 0.12384490876351
526 => 0.12232767905223
527 => 0.12135978102318
528 => 0.1205151616198
529 => 0.12098380555437
530 => 0.11931317549864
531 => 0.11877870732067
601 => 0.12504040220612
602 => 0.12966598354257
603 => 0.12959872575801
604 => 0.12918931129178
605 => 0.12858100444165
606 => 0.13149067299183
607 => 0.13047700264961
608 => 0.13121453251857
609 => 0.13140226482425
610 => 0.13197047397219
611 => 0.13217355990335
612 => 0.13155969316713
613 => 0.12949948142285
614 => 0.12436562963517
615 => 0.12197580776944
616 => 0.12118712674812
617 => 0.12121579380532
618 => 0.12042502839219
619 => 0.12065794424598
620 => 0.12034402976347
621 => 0.11974955167768
622 => 0.12094709820776
623 => 0.12108510428944
624 => 0.1208055826197
625 => 0.12087142009175
626 => 0.1185571000516
627 => 0.11873305277781
628 => 0.11775332563926
629 => 0.11756963861157
630 => 0.11509297371991
701 => 0.11070520286601
702 => 0.11313645385029
703 => 0.1101998445469
704 => 0.10908770610682
705 => 0.11435239650917
706 => 0.11382396761255
707 => 0.11291952704407
708 => 0.11158167094135
709 => 0.11108544709902
710 => 0.10807054811843
711 => 0.1078924118028
712 => 0.1093866771467
713 => 0.10869712510502
714 => 0.10772873288472
715 => 0.10422131442714
716 => 0.10027781481449
717 => 0.10039684427984
718 => 0.10165119813521
719 => 0.10529840114235
720 => 0.10387337583021
721 => 0.10283950361596
722 => 0.10264589042832
723 => 0.10506936482834
724 => 0.10849908883794
725 => 0.1101082386075
726 => 0.10851362005647
727 => 0.10668180812541
728 => 0.10679330202986
729 => 0.10753502102598
730 => 0.10761296520513
731 => 0.10642064395132
801 => 0.1067562754002
802 => 0.10624642053856
803 => 0.10311744219379
804 => 0.10306084889763
805 => 0.10229294715024
806 => 0.10226969539051
807 => 0.10096330295612
808 => 0.10078052962388
809 => 0.098186608153042
810 => 0.099893935120266
811 => 0.098748749829341
812 => 0.097022685474017
813 => 0.096725111328566
814 => 0.096716165890422
815 => 0.098488448042413
816 => 0.099873224971447
817 => 0.098768670817773
818 => 0.098517185247864
819 => 0.10120239319459
820 => 0.10086067600715
821 => 0.10056475112667
822 => 0.10819199467042
823 => 0.10215443624431
824 => 0.099521716158738
825 => 0.096263225112857
826 => 0.097324206228134
827 => 0.097547770538178
828 => 0.089711686959993
829 => 0.086532588828245
830 => 0.085441642151215
831 => 0.084813786914863
901 => 0.085099908430178
902 => 0.082238347240586
903 => 0.084161363685846
904 => 0.081683493577405
905 => 0.081268070590038
906 => 0.085698809293134
907 => 0.08631532069967
908 => 0.083685091504308
909 => 0.085374124443158
910 => 0.084761657620217
911 => 0.081725969548496
912 => 0.081610028593166
913 => 0.080086827028372
914 => 0.077703311529412
915 => 0.076613980988128
916 => 0.076046648184226
917 => 0.076280740756212
918 => 0.076162376388465
919 => 0.075389968824172
920 => 0.076206649885902
921 => 0.074120367249096
922 => 0.073289592692798
923 => 0.072914351099542
924 => 0.071062655177428
925 => 0.074009526842425
926 => 0.07459009768414
927 => 0.075171812429761
928 => 0.080235242136868
929 => 0.079982287497805
930 => 0.082268874241031
1001 => 0.082180021684953
1002 => 0.081527850105535
1003 => 0.078776445488991
1004 => 0.079873106330074
1005 => 0.076497754720154
1006 => 0.079026797647905
1007 => 0.077872648071037
1008 => 0.078636578514996
1009 => 0.077262962695927
1010 => 0.078023178405407
1011 => 0.074727772568469
1012 => 0.071650568965548
1013 => 0.072888925524537
1014 => 0.074235160727408
1015 => 0.077154141661582
1016 => 0.075415620698258
1017 => 0.076040858577425
1018 => 0.073946416345771
1019 => 0.069624983774023
1020 => 0.069649442613073
1021 => 0.068984684359436
1022 => 0.068410236171999
1023 => 0.075615310744269
1024 => 0.074719245825834
1025 => 0.073291483652384
1026 => 0.07520260005856
1027 => 0.075707929569848
1028 => 0.075722315590625
1029 => 0.077116616787516
1030 => 0.07786075558624
1031 => 0.077991913274797
1101 => 0.080185876333977
1102 => 0.080921263812341
1103 => 0.083950220759793
1104 => 0.077797620608176
1105 => 0.077670911856885
1106 => 0.075229493385605
1107 => 0.07368110719382
1108 => 0.075335512712859
1109 => 0.076801090153852
1110 => 0.075275032961978
1111 => 0.075474303814411
1112 => 0.073425696717773
1113 => 0.074157977358898
1114 => 0.07478871609589
1115 => 0.074440459238433
1116 => 0.073919101866996
1117 => 0.076680929516916
1118 => 0.076525096377217
1119 => 0.079096973778965
1120 => 0.081101936130346
1121 => 0.084695187093909
1122 => 0.080945442393021
1123 => 0.080808786792236
1124 => 0.082144617210163
1125 => 0.080921059303664
1126 => 0.081694305664788
1127 => 0.08457060515079
1128 => 0.084631376826516
1129 => 0.083613372958226
1130 => 0.083551427330324
1201 => 0.083746946108972
1202 => 0.084892105702425
1203 => 0.084491951753272
1204 => 0.08495502003389
1205 => 0.085534094009556
1206 => 0.087929389495189
1207 => 0.08850688712754
1208 => 0.087103867279119
1209 => 0.087230544262484
1210 => 0.086705776325419
1211 => 0.086198857073537
1212 => 0.087338337522156
1213 => 0.089420760438553
1214 => 0.089407805793668
1215 => 0.089890887433755
1216 => 0.090191843293464
1217 => 0.088899920430436
1218 => 0.088058926151925
1219 => 0.088381416872163
1220 => 0.088897086556757
1221 => 0.088214192143471
1222 => 0.083999051477211
1223 => 0.085277655891126
1224 => 0.085064833596089
1225 => 0.084761748767881
1226 => 0.086047395393228
1227 => 0.085923391639857
1228 => 0.082208997794554
1229 => 0.082446781237209
1230 => 0.082223458193265
1231 => 0.082945060635844
]
'min_raw' => 0.068410236171999
'max_raw' => 0.15324737397712
'avg_raw' => 0.11082880507456
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.06841'
'max' => '$0.153247'
'avg' => '$0.110828'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016682190688834
'max_diff' => -0.1113616890357
'year' => 2034
]
9 => [
'items' => [
101 => 0.080882090403668
102 => 0.081516646152768
103 => 0.081914633570014
104 => 0.082149051216255
105 => 0.082995928496162
106 => 0.082896557221985
107 => 0.082989751438235
108 => 0.084245446877025
109 => 0.090596323503782
110 => 0.090941987706157
111 => 0.089239810752921
112 => 0.089919796871783
113 => 0.088614372220184
114 => 0.089490712534387
115 => 0.090090282320735
116 => 0.087380941746871
117 => 0.087220512181562
118 => 0.085909699578061
119 => 0.086614056022961
120 => 0.085493374274104
121 => 0.08576835037549
122 => 0.084999493224029
123 => 0.086383283018728
124 => 0.087930575028395
125 => 0.088321482094451
126 => 0.087293173899733
127 => 0.086548610997945
128 => 0.085241403816672
129 => 0.08741531849214
130 => 0.088051037392097
131 => 0.087411979331393
201 => 0.087263895615033
202 => 0.086983277240113
203 => 0.087323430129841
204 => 0.08804757513044
205 => 0.087706081721016
206 => 0.08793164413428
207 => 0.087072032813868
208 => 0.088900348110661
209 => 0.091804152810005
210 => 0.091813489016934
211 => 0.091471993766733
212 => 0.091332261267969
213 => 0.091682656118339
214 => 0.091872730950716
215 => 0.093005843645388
216 => 0.094221718711972
217 => 0.099895677119866
218 => 0.09830245230364
219 => 0.10333672574842
220 => 0.10731818242465
221 => 0.10851204719385
222 => 0.10741374778186
223 => 0.10365652482242
224 => 0.10347217753926
225 => 0.10908705489927
226 => 0.10750059486739
227 => 0.10731189049468
228 => 0.10530439479002
301 => 0.10649107338465
302 => 0.10623152936848
303 => 0.10582182644163
304 => 0.10808592653544
305 => 0.11232411979343
306 => 0.11166355762865
307 => 0.11117047861523
308 => 0.1090099499116
309 => 0.11031107076274
310 => 0.10984776654898
311 => 0.11183841547143
312 => 0.11065919914804
313 => 0.10748857587233
314 => 0.10799350807949
315 => 0.10791718859216
316 => 0.10948783823338
317 => 0.10901636819701
318 => 0.10782512650074
319 => 0.11230963410963
320 => 0.11201843512965
321 => 0.1124312887059
322 => 0.11261303961809
323 => 0.11534268037373
324 => 0.11646092685256
325 => 0.11671478838091
326 => 0.11777703604751
327 => 0.11668835869128
328 => 0.12104384432999
329 => 0.1239399881301
330 => 0.12730400818812
331 => 0.13221974565624
401 => 0.13406810841737
402 => 0.13373421822862
403 => 0.13746127427442
404 => 0.14415871114091
405 => 0.13508796170639
406 => 0.14463948288644
407 => 0.14161558155845
408 => 0.13444596590745
409 => 0.13398432718374
410 => 0.13883967414355
411 => 0.14960836639057
412 => 0.14691093112019
413 => 0.14961277842834
414 => 0.14646093002631
415 => 0.14630441418728
416 => 0.14945970018651
417 => 0.15683219790939
418 => 0.1533298005952
419 => 0.14830825522224
420 => 0.15201608618173
421 => 0.14880401986107
422 => 0.14156633543985
423 => 0.14690886844227
424 => 0.14333646877013
425 => 0.14437908491367
426 => 0.15188773767017
427 => 0.15098427670507
428 => 0.15215343885214
429 => 0.15008989826487
430 => 0.14816222596588
501 => 0.144564082469
502 => 0.1434988495659
503 => 0.14379324161726
504 => 0.14349870367982
505 => 0.14148557546196
506 => 0.14105084061499
507 => 0.14032626349053
508 => 0.14055084023935
509 => 0.13918842326285
510 => 0.14175958558722
511 => 0.14223681597163
512 => 0.14410789349417
513 => 0.14430215496962
514 => 0.14951307923676
515 => 0.14664298971645
516 => 0.14856849355828
517 => 0.14839625837112
518 => 0.13460135321879
519 => 0.1365021694353
520 => 0.13945924295921
521 => 0.1381270853449
522 => 0.13624372615516
523 => 0.1347228126301
524 => 0.13241847311826
525 => 0.13566178673026
526 => 0.1399263992421
527 => 0.1444103125806
528 => 0.14979744065918
529 => 0.14859509638512
530 => 0.14430960396838
531 => 0.14450184802764
601 => 0.14569022515674
602 => 0.14415116879911
603 => 0.14369727103329
604 => 0.1456278665738
605 => 0.14564116152425
606 => 0.14387029118361
607 => 0.14190229286585
608 => 0.14189404688104
609 => 0.14154386058901
610 => 0.14652322738972
611 => 0.14926137565934
612 => 0.14957529994571
613 => 0.14924024605365
614 => 0.14936919499889
615 => 0.14777592685178
616 => 0.15141766536709
617 => 0.15475968475935
618 => 0.1538639521704
619 => 0.15252112168366
620 => 0.1514514925215
621 => 0.15361198153309
622 => 0.15351577835833
623 => 0.15473049513548
624 => 0.15467538856592
625 => 0.15426692500158
626 => 0.15386396675792
627 => 0.15546165064569
628 => 0.15500154334403
629 => 0.15454072136865
630 => 0.1536164723487
701 => 0.15374209314066
702 => 0.15239949451254
703 => 0.15177834695403
704 => 0.14243777801555
705 => 0.1399416727833
706 => 0.14072699830227
707 => 0.14098554785409
708 => 0.13989923965816
709 => 0.14145672656144
710 => 0.14121399387735
711 => 0.14215832475727
712 => 0.14156834782158
713 => 0.14159256068081
714 => 0.14332755705234
715 => 0.14383123388019
716 => 0.14357505978037
717 => 0.14375447533875
718 => 0.14788903115501
719 => 0.14730122953359
720 => 0.14698897163753
721 => 0.14707546920875
722 => 0.14813193686568
723 => 0.14842769012862
724 => 0.14717456277131
725 => 0.14776554487726
726 => 0.1502818716776
727 => 0.15116244364596
728 => 0.15397280667043
729 => 0.15277891450742
730 => 0.15497035524307
731 => 0.16170609694728
801 => 0.16708707349847
802 => 0.16213850508373
803 => 0.17201998325677
804 => 0.17971413142834
805 => 0.17941881720624
806 => 0.17807716450367
807 => 0.16931758136986
808 => 0.16125688237209
809 => 0.16799999935908
810 => 0.16801718895102
811 => 0.16743794922166
812 => 0.16384034101019
813 => 0.16731276025417
814 => 0.16758838828378
815 => 0.16743410988261
816 => 0.16467583210191
817 => 0.16046445174573
818 => 0.1612873453867
819 => 0.1626352619572
820 => 0.1600833746844
821 => 0.15926789207643
822 => 0.16078402939655
823 => 0.16566933974173
824 => 0.16474580011965
825 => 0.1647216827678
826 => 0.16867297691281
827 => 0.16584470304763
828 => 0.16129772471079
829 => 0.16014955271346
830 => 0.15607431562428
831 => 0.15888909639727
901 => 0.15899039534623
902 => 0.15744876868323
903 => 0.1614228192181
904 => 0.1613861976428
905 => 0.1651589671663
906 => 0.17237108550771
907 => 0.17023810722737
908 => 0.1677576855547
909 => 0.16802737616516
910 => 0.17098521650866
911 => 0.16919683871605
912 => 0.16983995183929
913 => 0.17098424307992
914 => 0.17167462239656
915 => 0.16792804120583
916 => 0.16705453391057
917 => 0.16526764454389
918 => 0.16480147846199
919 => 0.16625686256648
920 => 0.16587342027443
921 => 0.15898188156182
922 => 0.15826167742219
923 => 0.15828376505494
924 => 0.15647277750201
925 => 0.15371058679697
926 => 0.16096945904797
927 => 0.16038647001836
928 => 0.15974289524944
929 => 0.15982172948645
930 => 0.1629725599046
1001 => 0.16114491914132
1002 => 0.16600400165493
1003 => 0.16500512036752
1004 => 0.16398062154422
1005 => 0.16383900459984
1006 => 0.163444659959
1007 => 0.16209230545638
1008 => 0.16045925613056
1009 => 0.15938097551335
1010 => 0.14702052506457
1011 => 0.14931455277043
1012 => 0.15195362253882
1013 => 0.15286461884746
1014 => 0.15130629662251
1015 => 0.16215383751591
1016 => 0.16413578776664
1017 => 0.15813233117776
1018 => 0.1570093295695
1019 => 0.16222746131439
1020 => 0.15908028998156
1021 => 0.16049746104003
1022 => 0.15743431236274
1023 => 0.16365839398951
1024 => 0.16361097691571
1025 => 0.16118966858563
1026 => 0.16323614180581
1027 => 0.16288051672257
1028 => 0.16014686558133
1029 => 0.16374505560662
1030 => 0.16374684026398
1031 => 0.16141638364006
1101 => 0.15869492050589
1102 => 0.15820838717559
1103 => 0.15784184966776
1104 => 0.16040731528226
1105 => 0.16270750373021
1106 => 0.16698758416678
1107 => 0.16806369808074
1108 => 0.17226384232787
1109 => 0.16976286093002
1110 => 0.17087151359055
1111 => 0.17207511288206
1112 => 0.17265216264331
1113 => 0.17171189102355
1114 => 0.17823644388769
1115 => 0.17878731605656
1116 => 0.17897201872976
1117 => 0.17677197621395
1118 => 0.17872612889435
1119 => 0.17781184556993
1120 => 0.18019055678485
1121 => 0.18056356907626
1122 => 0.18024764093574
1123 => 0.18036604092463
1124 => 0.17479848606508
1125 => 0.17450977897442
1126 => 0.17057323730757
1127 => 0.17217740713426
1128 => 0.16917848853312
1129 => 0.17012947651382
1130 => 0.17054866295437
1201 => 0.17032970374645
1202 => 0.17226810448938
1203 => 0.17062006786878
1204 => 0.16627062826471
1205 => 0.16192000365873
1206 => 0.16186538511075
1207 => 0.1607199424469
1208 => 0.15989199719922
1209 => 0.16005148882686
1210 => 0.16061355812547
1211 => 0.1598593287098
1212 => 0.16002028179603
1213 => 0.16269317545237
1214 => 0.16322920521294
1215 => 0.16140756664617
1216 => 0.15409342493939
1217 => 0.15229851621842
1218 => 0.15358866101247
1219 => 0.15297205489688
1220 => 0.12346038728115
1221 => 0.13039371583471
1222 => 0.12627416744178
1223 => 0.12817264487255
1224 => 0.12396765271525
1225 => 0.12597449537524
1226 => 0.1256039048141
1227 => 0.13675249195611
1228 => 0.13657842210227
1229 => 0.13666174012973
1230 => 0.13268475359498
1231 => 0.1390202011318
]
'min_raw' => 0.080882090403668
'max_raw' => 0.18056356907626
'avg_raw' => 0.13072282973997
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.080882'
'max' => '$0.180563'
'avg' => '$0.130722'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012471854231668
'max_diff' => 0.027316195099142
'year' => 2035
]
10 => [
'items' => [
101 => 0.14214127040376
102 => 0.14156364354609
103 => 0.14170901978169
104 => 0.13921097439967
105 => 0.13668592666949
106 => 0.13388526013466
107 => 0.13908855238353
108 => 0.13851003510862
109 => 0.13983694559332
110 => 0.14321165255573
111 => 0.1437085909752
112 => 0.14437648125044
113 => 0.14413709013043
114 => 0.14984035782552
115 => 0.14914965447627
116 => 0.15081405081904
117 => 0.14739026126391
118 => 0.14351591839319
119 => 0.14425230431111
120 => 0.14418138442557
121 => 0.14327849288463
122 => 0.14246340277249
123 => 0.14110650738597
124 => 0.14539992517163
125 => 0.14522562025023
126 => 0.14804741432033
127 => 0.14754863480899
128 => 0.14421766316025
129 => 0.14433662946433
130 => 0.14513673503254
131 => 0.14790590953956
201 => 0.14872798907302
202 => 0.14834716907891
203 => 0.14924854175799
204 => 0.14996094997162
205 => 0.1493380092612
206 => 0.15815753605505
207 => 0.15449505363498
208 => 0.15628012208314
209 => 0.15670585038979
210 => 0.1556153562844
211 => 0.15585184540819
212 => 0.15621006199131
213 => 0.15838508293799
214 => 0.16409296724945
215 => 0.16662095035612
216 => 0.17422651226101
217 => 0.16641103655033
218 => 0.16594729856532
219 => 0.16731728993035
220 => 0.17178255989901
221 => 0.17540124180713
222 => 0.17660176736282
223 => 0.17676043663353
224 => 0.17901270238543
225 => 0.18030365911215
226 => 0.17873921808268
227 => 0.177413518114
228 => 0.17266502537814
229 => 0.17321467634204
301 => 0.17700122642062
302 => 0.1823499514333
303 => 0.18693971393418
304 => 0.18533253907574
305 => 0.19759414875696
306 => 0.19880983727266
307 => 0.19864186842771
308 => 0.2014113877852
309 => 0.19591445586339
310 => 0.19356441096878
311 => 0.17770014949457
312 => 0.182157359874
313 => 0.1886361769233
314 => 0.18777868119251
315 => 0.18307359107203
316 => 0.1869361447014
317 => 0.18565906367831
318 => 0.18465177688926
319 => 0.18926635294206
320 => 0.18419243701567
321 => 0.18858556073059
322 => 0.18295133412516
323 => 0.18533988051512
324 => 0.18398402606319
325 => 0.18486143006086
326 => 0.17973214421879
327 => 0.1824997823528
328 => 0.17961700137327
329 => 0.17961563455974
330 => 0.17955199700983
331 => 0.18294357604804
401 => 0.18305417531872
402 => 0.18054779328509
403 => 0.180186584477
404 => 0.18152216275771
405 => 0.1799585503795
406 => 0.18069015477001
407 => 0.17998070993119
408 => 0.17982099895478
409 => 0.17854839472215
410 => 0.17800012182775
411 => 0.1782151137569
412 => 0.17748123546679
413 => 0.17703904725146
414 => 0.17946403464409
415 => 0.17816846170392
416 => 0.17926546950988
417 => 0.17801529066156
418 => 0.17368162609632
419 => 0.17118928977717
420 => 0.16300339914434
421 => 0.16532490757324
422 => 0.16686407006338
423 => 0.16635537686957
424 => 0.16744824668801
425 => 0.16751534001894
426 => 0.16716003690048
427 => 0.16674864140645
428 => 0.16654839683155
429 => 0.16804085583553
430 => 0.1689072785212
501 => 0.16701854561061
502 => 0.16657604191584
503 => 0.16848565516824
504 => 0.16965051814907
505 => 0.17825121191948
506 => 0.17761404474509
507 => 0.17921320931506
508 => 0.17903316792566
509 => 0.18070934716188
510 => 0.18344919180691
511 => 0.17787832157096
512 => 0.17884523201772
513 => 0.1786081679054
514 => 0.18119637172219
515 => 0.181204451812
516 => 0.17965269433346
517 => 0.18049392723697
518 => 0.18002437410825
519 => 0.18087292007575
520 => 0.17760553498902
521 => 0.18158485733224
522 => 0.18384087667897
523 => 0.18387220150979
524 => 0.18494153677527
525 => 0.18602804333672
526 => 0.18811349806664
527 => 0.18596988113618
528 => 0.1821137229552
529 => 0.18239212512055
530 => 0.18013126098995
531 => 0.18016926652444
601 => 0.17996639000277
602 => 0.18057523771615
603 => 0.17773914282363
604 => 0.17840476862619
605 => 0.1774728886047
606 => 0.17884320629255
607 => 0.17736897098205
608 => 0.17860805358591
609 => 0.1791428005615
610 => 0.18111602841369
611 => 0.1770775236239
612 => 0.16884273897477
613 => 0.17057379054513
614 => 0.16801342930141
615 => 0.16825040048249
616 => 0.16872911998198
617 => 0.16717743345688
618 => 0.1674734463466
619 => 0.16746287068317
620 => 0.16737173532915
621 => 0.166968081735
622 => 0.16638270416304
623 => 0.16871466824
624 => 0.16911091437798
625 => 0.16999172045819
626 => 0.17261240189644
627 => 0.17235053402083
628 => 0.17277765139074
629 => 0.1718452565704
630 => 0.16829365160404
701 => 0.168486520841
702 => 0.16608143836558
703 => 0.16993021709193
704 => 0.16901877548814
705 => 0.16843116315689
706 => 0.16827082768812
707 => 0.17089800528875
708 => 0.17168409800283
709 => 0.17119425777614
710 => 0.17018958118027
711 => 0.1721188572503
712 => 0.17263505013702
713 => 0.1727506066879
714 => 0.176168913982
715 => 0.17294165209298
716 => 0.17371848610589
717 => 0.17977912331758
718 => 0.17428296167734
719 => 0.17719440107721
720 => 0.17705190126898
721 => 0.17854129514821
722 => 0.17692972749874
723 => 0.1769497048112
724 => 0.17827218567568
725 => 0.1764149998122
726 => 0.17595513447474
727 => 0.17531983380465
728 => 0.17670698957577
729 => 0.1775385267249
730 => 0.18424010545012
731 => 0.18856963093573
801 => 0.18838167481609
802 => 0.1900992419105
803 => 0.18932546220335
804 => 0.18682672341621
805 => 0.19109176583713
806 => 0.1897421279582
807 => 0.18985339046513
808 => 0.18984924926906
809 => 0.19074664047116
810 => 0.19011075655978
811 => 0.1888573640983
812 => 0.1896894245076
813 => 0.19216034645621
814 => 0.19983016400181
815 => 0.2041222955119
816 => 0.19957177229555
817 => 0.20271066227625
818 => 0.20082844678869
819 => 0.20048639224354
820 => 0.20245784711357
821 => 0.20443275275437
822 => 0.2043069598028
823 => 0.20287327972011
824 => 0.20206343021968
825 => 0.20819588195642
826 => 0.21271416793246
827 => 0.21240605111987
828 => 0.2137659785257
829 => 0.21775876745018
830 => 0.21812381803018
831 => 0.21807783004769
901 => 0.21717301409609
902 => 0.2211044333214
903 => 0.2243840924059
904 => 0.21696357534594
905 => 0.21978921110067
906 => 0.22105773002727
907 => 0.22292029216412
908 => 0.22606274669065
909 => 0.22947628580135
910 => 0.22995899765916
911 => 0.22961649049616
912 => 0.22736516969179
913 => 0.23110030491872
914 => 0.23328825953495
915 => 0.23459113643847
916 => 0.23789501548774
917 => 0.2210655639683
918 => 0.20915284170483
919 => 0.20729249810159
920 => 0.21107557997317
921 => 0.2120731484932
922 => 0.21167102987362
923 => 0.19826217790876
924 => 0.20722190327103
925 => 0.21686181440572
926 => 0.21723212265218
927 => 0.22205806372724
928 => 0.22362958796329
929 => 0.22751510307927
930 => 0.22727206305085
1001 => 0.22821812414955
1002 => 0.22800064108645
1003 => 0.23519773964707
1004 => 0.24313720813891
1005 => 0.242862289591
1006 => 0.24172089705978
1007 => 0.243416059605
1008 => 0.25161044193373
1009 => 0.2508560345212
1010 => 0.2515888770622
1011 => 0.26125051564293
1012 => 0.27381202014994
1013 => 0.267975940152
1014 => 0.28063855446074
1015 => 0.28860899895175
1016 => 0.30239305853961
1017 => 0.30066722639129
1018 => 0.30603325963674
1019 => 0.29757762665375
1020 => 0.27816178415942
1021 => 0.27508915276384
1022 => 0.28124063862922
1023 => 0.29636346637605
1024 => 0.2807643669659
1025 => 0.28392004446026
1026 => 0.28301120912959
1027 => 0.28296278115712
1028 => 0.2848110798955
1029 => 0.2821300261747
1030 => 0.27120693100382
1031 => 0.27621292115043
1101 => 0.27427986794743
1102 => 0.27642473459482
1103 => 0.28799969528049
1104 => 0.28288212924876
1105 => 0.27749118915163
1106 => 0.2842526243788
1107 => 0.29286225490421
1108 => 0.29232347969893
1109 => 0.29127803061011
1110 => 0.29717117238586
1111 => 0.30690491607087
1112 => 0.30953590787558
1113 => 0.31147805223756
1114 => 0.31174584113228
1115 => 0.31450423317775
1116 => 0.29967166394494
1117 => 0.3232113322448
1118 => 0.32727598268998
1119 => 0.32651199686878
1120 => 0.33102968477196
1121 => 0.32970046638816
1122 => 0.32777463749802
1123 => 0.33493613376432
1124 => 0.32672605619795
1125 => 0.31507288471252
1126 => 0.30867972436201
1127 => 0.3170987536331
1128 => 0.32223996102531
1129 => 0.32563797206937
1130 => 0.32666620815816
1201 => 0.30082307407157
1202 => 0.28689505812482
1203 => 0.29582275666166
1204 => 0.30671516503344
1205 => 0.29961115606646
1206 => 0.2998896197683
1207 => 0.2897611698821
1208 => 0.30761130810611
1209 => 0.30501069311016
1210 => 0.31850268830953
1211 => 0.31528271537518
1212 => 0.32628491370403
1213 => 0.32338766616022
1214 => 0.33541397873163
1215 => 0.34021160041578
1216 => 0.34826755391365
1217 => 0.35419354610032
1218 => 0.3576734020585
1219 => 0.35746448455938
1220 => 0.37125340752304
1221 => 0.36312256139964
1222 => 0.35290830237537
1223 => 0.35272355865519
1224 => 0.35801366814103
1225 => 0.3691002863527
1226 => 0.37197488515125
1227 => 0.37358139371966
1228 => 0.37112096992417
1229 => 0.36229551920022
1230 => 0.35848473432367
1231 => 0.36173163344756
]
'min_raw' => 0.13388526013466
'max_raw' => 0.37358139371966
'avg_raw' => 0.25373332692716
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.133885'
'max' => '$0.373581'
'avg' => '$0.253733'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.053003169730991
'max_diff' => 0.1930178246434
'year' => 2036
]
11 => [
'items' => [
101 => 0.35776095482827
102 => 0.36461546010082
103 => 0.37402815988335
104 => 0.37208447460011
105 => 0.37858192308841
106 => 0.38530609872229
107 => 0.39492197188036
108 => 0.39743591719863
109 => 0.40159137321295
110 => 0.40586870244788
111 => 0.40724246532089
112 => 0.40986540489904
113 => 0.40985158071274
114 => 0.4177559856757
115 => 0.42647478912888
116 => 0.42976593559169
117 => 0.43733374540806
118 => 0.42437413630522
119 => 0.43420414867898
120 => 0.44307106590128
121 => 0.43249956164877
122 => 0.44706991741628
123 => 0.44763565131359
124 => 0.45617756149285
125 => 0.44751869909419
126 => 0.44237709424194
127 => 0.45722071479698
128 => 0.46440307521389
129 => 0.46223968980433
130 => 0.44577622001804
131 => 0.43619377445098
201 => 0.41111466608629
202 => 0.44082195328113
203 => 0.45529150630028
204 => 0.44573874737131
205 => 0.45055660332428
206 => 0.47684126320866
207 => 0.48684875988694
208 => 0.48476727053554
209 => 0.4851190079717
210 => 0.49051887153038
211 => 0.51446484030877
212 => 0.50011586075355
213 => 0.51108511797751
214 => 0.5169031724565
215 => 0.52230730570028
216 => 0.5090364624474
217 => 0.49177129036281
218 => 0.486302685621
219 => 0.44478891376012
220 => 0.44262794164959
221 => 0.44141492251979
222 => 0.43376700849138
223 => 0.427757843005
224 => 0.42297913150423
225 => 0.41043836548214
226 => 0.41467050587655
227 => 0.39468314229863
228 => 0.40747034920711
301 => 0.37557003432498
302 => 0.40213756448179
303 => 0.38767806569481
304 => 0.39738723024329
305 => 0.39735335588284
306 => 0.37947570565565
307 => 0.36916425010165
308 => 0.37573511090852
309 => 0.38277959528905
310 => 0.38392253917931
311 => 0.39305589705853
312 => 0.39560482092175
313 => 0.38788146261831
314 => 0.37490897120427
315 => 0.37792218508873
316 => 0.36910318741846
317 => 0.35364823321917
318 => 0.36474825114271
319 => 0.36853828529515
320 => 0.37021218029034
321 => 0.35501400784882
322 => 0.35023841209932
323 => 0.34769592499341
324 => 0.37294707799255
325 => 0.37433039315509
326 => 0.36725315720245
327 => 0.39924293479946
328 => 0.3920026628993
329 => 0.40009182052146
330 => 0.37764876751173
331 => 0.37850612236028
401 => 0.36788122139959
402 => 0.37383045598143
403 => 0.36962572873177
404 => 0.3733498166187
405 => 0.37558201954314
406 => 0.38620517706213
407 => 0.40225886387645
408 => 0.38461843157988
409 => 0.37693224261262
410 => 0.38170071101914
411 => 0.39439977076712
412 => 0.41363949633821
413 => 0.40224919156456
414 => 0.40730401540319
415 => 0.40840826953847
416 => 0.40000948049038
417 => 0.41394917167032
418 => 0.4214195654195
419 => 0.42908264362599
420 => 0.4357362797181
421 => 0.42602184167562
422 => 0.43641768289107
423 => 0.42804046998442
424 => 0.42052524398681
425 => 0.4205366414825
426 => 0.41582223043426
427 => 0.40668746497429
428 => 0.40500287407102
429 => 0.41376632869019
430 => 0.42079378939252
501 => 0.42137260471523
502 => 0.42526336804401
503 => 0.42756588170393
504 => 0.45013364568669
505 => 0.4592105870509
506 => 0.47030969913334
507 => 0.47463342880113
508 => 0.48764630495831
509 => 0.47713735060726
510 => 0.47486367222899
511 => 0.44329869115103
512 => 0.44846745503424
513 => 0.4567431447228
514 => 0.44343515422586
515 => 0.451876011119
516 => 0.4535424150715
517 => 0.44298295380114
518 => 0.44862321831303
519 => 0.43364434799134
520 => 0.40258536231693
521 => 0.41398374920006
522 => 0.42237679860159
523 => 0.41039888225008
524 => 0.43186883370078
525 => 0.41932653129304
526 => 0.41535122356648
527 => 0.39984213082562
528 => 0.40716182559958
529 => 0.41706181758929
530 => 0.41094477353725
531 => 0.42363855842402
601 => 0.44161634313246
602 => 0.45442838311129
603 => 0.45541193245313
604 => 0.44717464908676
605 => 0.46037494825101
606 => 0.46047109801932
607 => 0.44558110663725
608 => 0.43646106982354
609 => 0.43438897827075
610 => 0.43956546922711
611 => 0.44585068488108
612 => 0.45576071817905
613 => 0.46174914374981
614 => 0.47736378162287
615 => 0.48158865492457
616 => 0.48623050978158
617 => 0.49243345936558
618 => 0.49988169074479
619 => 0.48358538451512
620 => 0.48423286714174
621 => 0.46905797241838
622 => 0.45284142110644
623 => 0.46514776213054
624 => 0.48123666597562
625 => 0.4775458536569
626 => 0.47713056187459
627 => 0.4778289674601
628 => 0.47504621550245
629 => 0.46245993153159
630 => 0.45613917851572
701 => 0.46429456250226
702 => 0.46862878613672
703 => 0.47535078900975
704 => 0.47452216027138
705 => 0.49183731778189
706 => 0.49856546440729
707 => 0.49684411658689
708 => 0.49716088601239
709 => 0.50934187409951
710 => 0.52288963806365
711 => 0.53557890680098
712 => 0.54848697597736
713 => 0.53292579477472
714 => 0.52502478664024
715 => 0.53317661024125
716 => 0.52885113789333
717 => 0.55370658502292
718 => 0.55542752225408
719 => 0.58028117205193
720 => 0.60387024522766
721 => 0.58905437100813
722 => 0.60302507307552
723 => 0.61813552640945
724 => 0.64728604247331
725 => 0.63746917419052
726 => 0.62994960693584
727 => 0.62284365221446
728 => 0.63763001595112
729 => 0.65665243668039
730 => 0.660749683911
731 => 0.66738878969349
801 => 0.66040858175443
802 => 0.66881547337234
803 => 0.69849549495893
804 => 0.69047569113343
805 => 0.67908628045344
806 => 0.70251580699647
807 => 0.71099486157241
808 => 0.77050530710176
809 => 0.84563970283644
810 => 0.81453356964324
811 => 0.79522498898157
812 => 0.79976296344272
813 => 0.82719950130523
814 => 0.83601124647448
815 => 0.81205788551374
816 => 0.82051861755184
817 => 0.86713808292263
818 => 0.89214793036253
819 => 0.8581811982685
820 => 0.76446833156121
821 => 0.67806078863594
822 => 0.70097996000209
823 => 0.69838163723386
824 => 0.74846843687802
825 => 0.69028442146452
826 => 0.69126409106286
827 => 0.74238663268082
828 => 0.72874801503939
829 => 0.70665520116245
830 => 0.67822209062662
831 => 0.62566085605673
901 => 0.57910590481972
902 => 0.67041088516045
903 => 0.66647364838083
904 => 0.66077194605813
905 => 0.67346046758866
906 => 0.73507232644126
907 => 0.73365197367658
908 => 0.72461641405805
909 => 0.73146980639294
910 => 0.70545376835048
911 => 0.7121586937282
912 => 0.67804710123968
913 => 0.69346696567043
914 => 0.70660779990626
915 => 0.70924601693248
916 => 0.71519005460325
917 => 0.66439890350739
918 => 0.68720263919958
919 => 0.70059769749766
920 => 0.64007833679054
921 => 0.69940142432106
922 => 0.66351474256692
923 => 0.65133426377969
924 => 0.66773367381064
925 => 0.66134280777263
926 => 0.6558483164374
927 => 0.65278229586499
928 => 0.66482421265488
929 => 0.66426244284343
930 => 0.64455952973984
1001 => 0.61885788278969
1002 => 0.62748419913396
1003 => 0.62435017753394
1004 => 0.61299207895863
1005 => 0.62064606601634
1006 => 0.5869417806084
1007 => 0.52895530936035
1008 => 0.56726294844046
1009 => 0.56578814600657
1010 => 0.56504448374244
1011 => 0.59383161576576
1012 => 0.59106439725385
1013 => 0.58604186855806
1014 => 0.61289983628042
1015 => 0.60309631677111
1016 => 0.63330845389909
1017 => 0.6532081214101
1018 => 0.6481609220425
1019 => 0.66687665552004
1020 => 0.62768293203982
1021 => 0.6407015148007
1022 => 0.64338462666474
1023 => 0.61256841312778
1024 => 0.59151714842517
1025 => 0.59011326907149
1026 => 0.55361327712014
1027 => 0.57311127820291
1028 => 0.59026871227364
1029 => 0.58205163282443
1030 => 0.57945035094908
1031 => 0.59273973590106
1101 => 0.59377243492771
1102 => 0.57022678767947
1103 => 0.57512267333605
1104 => 0.59553933039728
1105 => 0.57460822596186
1106 => 0.53394250912032
1107 => 0.5238568490961
1108 => 0.52251123613327
1109 => 0.49515812624379
1110 => 0.52453082112537
1111 => 0.51170885267028
1112 => 0.55221329738915
1113 => 0.52907737579543
1114 => 0.5280800324567
1115 => 0.52657240172176
1116 => 0.50302845009715
1117 => 0.50818307920675
1118 => 0.52531785143927
1119 => 0.53143173120886
1120 => 0.53079400345935
1121 => 0.52523388170749
1122 => 0.52777927697306
1123 => 0.51957967194815
1124 => 0.51668422075384
1125 => 0.50754538032799
1126 => 0.49411380957109
1127 => 0.49598155186545
1128 => 0.46937009563437
1129 => 0.45487076190279
1130 => 0.45085753742404
1201 => 0.44549088592686
1202 => 0.45146371499076
1203 => 0.46929470872242
1204 => 0.4477867472257
1205 => 0.41091285584765
1206 => 0.41312903954952
1207 => 0.41810814633679
1208 => 0.4088296137788
1209 => 0.40004826140089
1210 => 0.40768293483985
1211 => 0.39205898096305
1212 => 0.41999622651847
1213 => 0.41924060231943
1214 => 0.42965387983481
1215 => 0.43616551596715
1216 => 0.42115830284934
1217 => 0.41738402933404
1218 => 0.41953402705952
1219 => 0.38399935383633
1220 => 0.42674993892304
1221 => 0.42711964775813
1222 => 0.42395397625537
1223 => 0.44671734303781
1224 => 0.49475514702089
1225 => 0.47668139284627
1226 => 0.46968268894774
1227 => 0.45637814772062
1228 => 0.47410565896027
1229 => 0.47274446268932
1230 => 0.46658861693373
1231 => 0.46286554221334
]
'min_raw' => 0.34769592499341
'max_raw' => 0.89214793036253
'avg_raw' => 0.61992192767797
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.347695'
'max' => '$0.892147'
'avg' => '$0.619921'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21381066485875
'max_diff' => 0.51856653664287
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010913777782309
]
1 => [
'year' => 2028
'avg' => 0.01873121096677
]
2 => [
'year' => 2029
'avg' => 0.051170292388904
]
3 => [
'year' => 2030
'avg' => 0.039477804372954
]
4 => [
'year' => 2031
'avg' => 0.038772096324676
]
5 => [
'year' => 2032
'avg' => 0.067979686884936
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010913777782309
'min' => '$0.010913'
'max_raw' => 0.067979686884936
'max' => '$0.067979'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.067979686884936
]
1 => [
'year' => 2033
'avg' => 0.17485074493683
]
2 => [
'year' => 2034
'avg' => 0.11082880507456
]
3 => [
'year' => 2035
'avg' => 0.13072282973997
]
4 => [
'year' => 2036
'avg' => 0.25373332692716
]
5 => [
'year' => 2037
'avg' => 0.61992192767797
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.067979686884936
'min' => '$0.067979'
'max_raw' => 0.61992192767797
'max' => '$0.619921'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.61992192767797
]
]
]
]
'prediction_2025_max_price' => '$0.01866'
'last_price' => 0.01809378
'sma_50day_nextmonth' => '$0.017663'
'sma_200day_nextmonth' => '$0.034229'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018017'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.018082'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0179073'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019369'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.023147'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028915'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036923'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018033'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018022'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018232'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.019448'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0231098'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02911'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.043825'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035668'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.056811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.160951'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.187689'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.018862'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.020317'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.024272'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033439'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.067778'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116282'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.1506061'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '34.98'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0179043'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018133'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 71.49
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -41.49
'cci_20_action' => 'NEUTRAL'
'adx_14' => 35.9
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003185'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -28.51
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.42
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003259'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767677781
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Telos para 2026
A previsão de preço para Telos em 2026 sugere que o preço médio poderia variar entre $0.006251 na extremidade inferior e $0.01866 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Telos poderia potencialmente ganhar 3.13% até 2026 se TLOS atingir a meta de preço prevista.
Previsão de preço de Telos 2027-2032
A previsão de preço de TLOS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.010913 na extremidade inferior e $0.067979 na extremidade superior. Considerando a volatilidade de preços no mercado, se Telos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006018 | $0.010913 | $0.0158094 |
| 2028 | $0.01086 | $0.018731 | $0.0266015 |
| 2029 | $0.023858 | $0.05117 | $0.078482 |
| 2030 | $0.02029 | $0.039477 | $0.058665 |
| 2031 | $0.023989 | $0.038772 | $0.053554 |
| 2032 | $0.036618 | $0.067979 | $0.099341 |
Previsão de preço de Telos 2032-2037
A previsão de preço de Telos para 2032-2037 é atualmente estimada entre $0.067979 na extremidade inferior e $0.619921 na extremidade superior. Comparado ao preço atual, Telos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036618 | $0.067979 | $0.099341 |
| 2033 | $0.085092 | $0.17485 | $0.264609 |
| 2034 | $0.06841 | $0.110828 | $0.153247 |
| 2035 | $0.080882 | $0.130722 | $0.180563 |
| 2036 | $0.133885 | $0.253733 | $0.373581 |
| 2037 | $0.347695 | $0.619921 | $0.892147 |
Telos Histograma de preços potenciais
Previsão de preço de Telos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Telos é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de TLOS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Telos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Telos está projetado para aumentar no próximo mês, alcançando $0.034229 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Telos é esperado para alcançar $0.017663 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 34.98, sugerindo que o mercado de TLOS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de TLOS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018017 | BUY |
| SMA 5 | $0.018082 | BUY |
| SMA 10 | $0.0179073 | BUY |
| SMA 21 | $0.019369 | SELL |
| SMA 50 | $0.023147 | SELL |
| SMA 100 | $0.028915 | SELL |
| SMA 200 | $0.036923 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018033 | BUY |
| EMA 5 | $0.018022 | BUY |
| EMA 10 | $0.018232 | SELL |
| EMA 21 | $0.019448 | SELL |
| EMA 50 | $0.0231098 | SELL |
| EMA 100 | $0.02911 | SELL |
| EMA 200 | $0.043825 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035668 | SELL |
| SMA 50 | $0.056811 | SELL |
| SMA 100 | $0.160951 | SELL |
| SMA 200 | $0.187689 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.033439 | SELL |
| EMA 50 | $0.067778 | SELL |
| EMA 100 | $0.116282 | SELL |
| EMA 200 | $0.1506061 | SELL |
Osciladores de Telos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 34.98 | NEUTRAL |
| Stoch RSI (14) | 93.19 | SELL |
| Estocástico Rápido (14) | 71.49 | NEUTRAL |
| Índice de Canal de Commodities (20) | -41.49 | NEUTRAL |
| Índice Direcional Médio (14) | 35.9 | SELL |
| Oscilador Impressionante (5, 34) | -0.003185 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -28.51 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 60.42 | NEUTRAL |
| VWMA (10) | 0.0179043 | BUY |
| Média Móvel de Hull (9) | 0.018133 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003259 | SELL |
Previsão do preço de Telos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Telos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Telos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025424 | $0.035726 | $0.050201 | $0.07054 | $0.099121 | $0.139282 |
| Amazon.com stock | $0.037753 | $0.078775 | $0.164369 | $0.342967 | $0.715621 | $1.49 |
| Apple stock | $0.025664 | $0.0364033 | $0.051635 | $0.07324 | $0.103886 | $0.147355 |
| Netflix stock | $0.028549 | $0.045046 | $0.071075 | $0.112146 | $0.176949 | $0.279198 |
| Google stock | $0.023431 | $0.030343 | $0.039294 | $0.050886 | $0.065897 | $0.085337 |
| Tesla stock | $0.041017 | $0.092982 | $0.210785 | $0.477834 | $1.08 | $2.45 |
| Kodak stock | $0.013568 | $0.010174 | $0.00763 | $0.005721 | $0.00429 | $0.003217 |
| Nokia stock | $0.011986 | $0.00794 | $0.00526 | $0.003484 | $0.0023084 | $0.001529 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Telos
Você pode fazer perguntas como: 'Devo investir em Telos agora?', 'Devo comprar TLOS hoje?', 'Telos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Telos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Telos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Telos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Telos é de $0.01809 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Telos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Telos
com base no histórico de preços de 1 mês
Previsão do preço de Telos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Telos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.018564 | $0.019046 | $0.019541 | $0.020049 |
| Se Telos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019034 | $0.020023 | $0.021064 | $0.02216 |
| Se Telos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.020445 | $0.0231025 | $0.0261051 | $0.029497 |
| Se Telos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.022796 | $0.028722 | $0.036188 | $0.045595 |
| Se Telos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027500089 | $0.041796 | $0.063524 | $0.096549 |
| Se Telos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0416095 | $0.095687 | $0.220049 | $0.506039 |
| Se Telos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.065125 | $0.2344069 | $0.843706 | $3.03 |
Perguntas Frequentes sobre Telos
TLOS é um bom investimento?
A decisão de adquirir Telos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Telos experimentou uma escalada de 0.4008% nas últimas 24 horas, e Telos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Telos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Telos pode subir?
Parece que o valor médio de Telos pode potencialmente subir para $0.01866 até o final deste ano. Observando as perspectivas de Telos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.058665. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Telos na próxima semana?
Com base na nossa nova previsão experimental de Telos, o preço de Telos aumentará 0.86% na próxima semana e atingirá $0.018248 até 13 de janeiro de 2026.
Qual será o preço de Telos no próximo mês?
Com base na nossa nova previsão experimental de Telos, o preço de Telos diminuirá -11.62% no próximo mês e atingirá $0.015991 até 5 de fevereiro de 2026.
Até onde o preço de Telos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Telos em 2026, espera-se que TLOS fluctue dentro do intervalo de $0.006251 e $0.01866. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Telos não considera flutuações repentinas e extremas de preço.
Onde estará Telos em 5 anos?
O futuro de Telos parece seguir uma tendência de alta, com um preço máximo de $0.058665 projetada após um período de cinco anos. Com base na previsão de Telos para 2030, o valor de Telos pode potencialmente atingir seu pico mais alto de aproximadamente $0.058665, enquanto seu pico mais baixo está previsto para cerca de $0.02029.
Quanto será Telos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Telos, espera-se que o valor de TLOS em 2026 aumente 3.13% para $0.01866 se o melhor cenário ocorrer. O preço ficará entre $0.01866 e $0.006251 durante 2026.
Quanto será Telos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Telos, o valor de TLOS pode diminuir -12.62% para $0.0158094 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0158094 e $0.006018 ao longo do ano.
Quanto será Telos em 2028?
Nosso novo modelo experimental de previsão de preços de Telos sugere que o valor de TLOS em 2028 pode aumentar 47.02%, alcançando $0.0266015 no melhor cenário. O preço é esperado para variar entre $0.0266015 e $0.01086 durante o ano.
Quanto será Telos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Telos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.078482 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.078482 e $0.023858.
Quanto será Telos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Telos, espera-se que o valor de TLOS em 2030 aumente 224.23%, alcançando $0.058665 no melhor cenário. O preço está previsto para variar entre $0.058665 e $0.02029 ao longo de 2030.
Quanto será Telos em 2031?
Nossa simulação experimental indica que o preço de Telos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.053554 sob condições ideais. O preço provavelmente oscilará entre $0.053554 e $0.023989 durante o ano.
Quanto será Telos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Telos, TLOS poderia ver um 449.04% aumento em valor, atingindo $0.099341 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.099341 e $0.036618 ao longo do ano.
Quanto será Telos em 2033?
De acordo com nossa previsão experimental de preços de Telos, espera-se que o valor de TLOS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.264609. Ao longo do ano, o preço de TLOS poderia variar entre $0.264609 e $0.085092.
Quanto será Telos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Telos sugerem que TLOS pode aumentar 746.96% em 2034, atingindo potencialmente $0.153247 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.153247 e $0.06841.
Quanto será Telos em 2035?
Com base em nossa previsão experimental para o preço de Telos, TLOS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.180563 em 2035. A faixa de preço esperada para o ano está entre $0.180563 e $0.080882.
Quanto será Telos em 2036?
Nossa recente simulação de previsão de preços de Telos sugere que o valor de TLOS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.373581 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.373581 e $0.133885.
Quanto será Telos em 2037?
De acordo com a simulação experimental, o valor de Telos poderia aumentar 4830.69% em 2037, com um pico de $0.892147 sob condições favoráveis. O preço é esperado para cair entre $0.892147 e $0.347695 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Previsão de Preço do Keep Network
Previsão de Preço do Energy Web Token
Previsão de Preço do Nakamoto Games
Previsão de Preço do Gelato
Como ler e prever os movimentos de preço de Telos?
Traders de Telos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Telos
Médias móveis são ferramentas populares para a previsão de preço de Telos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de TLOS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de TLOS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de TLOS.
Como ler gráficos de Telos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Telos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de TLOS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Telos?
A ação de preço de Telos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de TLOS. A capitalização de mercado de Telos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de TLOS, grandes detentores de Telos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Telos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


