Previsão de Preço Telos - Projeção TLOS
Previsão de Preço Telos até $0.018693 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006262 | $0.018693 |
| 2027 | $0.006028 | $0.015837 |
| 2028 | $0.010879 | $0.026647 |
| 2029 | $0.023899 | $0.078619 |
| 2030 | $0.020325 | $0.058767 |
| 2031 | $0.024031 | $0.053648 |
| 2032 | $0.036681 | $0.099514 |
| 2033 | $0.08524 | $0.26507 |
| 2034 | $0.068529 | $0.153514 |
| 2035 | $0.081023 | $0.180878 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Telos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.87, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Telos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Telos'
'name_with_ticker' => 'Telos <small>TLOS</small>'
'name_lang' => 'Telos'
'name_lang_with_ticker' => 'Telos <small>TLOS</small>'
'name_with_lang' => 'Telos'
'name_with_lang_with_ticker' => 'Telos <small>TLOS</small>'
'image' => '/uploads/coins/telos.png?1722392004'
'price_for_sd' => 0.01812
'ticker' => 'TLOS'
'marketcap' => '$7.61M'
'low24h' => '$0.01801'
'high24h' => '$0.01812'
'volume24h' => '$1.66M'
'current_supply' => '420M'
'max_supply' => '420M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01812'
'change_24h_pct' => '0.1746%'
'ath_price' => '$1.43'
'ath_days' => 1429
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de fev. de 2022'
'ath_pct' => '-98.73%'
'fdv' => '$7.61M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.893703'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01828'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0160195'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006262'
'current_year_max_price_prediction' => '$0.018693'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020325'
'grand_prediction_max_price' => '$0.058767'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018468785280082
107 => 0.018537741020148
108 => 0.018693101823486
109 => 0.017365560769111
110 => 0.017961587727968
111 => 0.018311697726123
112 => 0.016729888017348
113 => 0.018280430434086
114 => 0.017342451232866
115 => 0.017024087003997
116 => 0.017452722496871
117 => 0.017285682828437
118 => 0.017142071930415
119 => 0.01706193458177
120 => 0.017376677180964
121 => 0.017361994062513
122 => 0.016847014081326
123 => 0.016175243689137
124 => 0.016400711882867
125 => 0.016318797174309
126 => 0.016021927703289
127 => 0.0162219818826
128 => 0.015341044522016
129 => 0.01382543758027
130 => 0.014826693950283
131 => 0.014788146669195
201 => 0.01476870938209
202 => 0.015521125871462
203 => 0.015448798387211
204 => 0.015317523295062
205 => 0.016019516733274
206 => 0.015763279685182
207 => 0.016552941890359
208 => 0.017073064490838
209 => 0.016941144575153
210 => 0.017430322394874
211 => 0.016405906214669
212 => 0.01674617617729
213 => 0.016816305344992
214 => 0.016010854243214
215 => 0.015460632058123
216 => 0.01542393851137
217 => 0.01446992906771
218 => 0.014979553212018
219 => 0.015428001369329
220 => 0.01521322950296
221 => 0.015145239146194
222 => 0.0154925871336
223 => 0.015519579047056
224 => 0.01490416055979
225 => 0.015032125551061
226 => 0.015565760837073
227 => 0.015018679311021
228 => 0.013955789271162
301 => 0.013692177845673
302 => 0.01365700722219
303 => 0.012942072128976
304 => 0.013709793621631
305 => 0.01337466261643
306 => 0.014433337446373
307 => 0.013828628061297
308 => 0.013802560248323
309 => 0.013763154925698
310 => 0.013147780757372
311 => 0.013282508591167
312 => 0.013730364430329
313 => 0.013890164439199
314 => 0.013873495989071
315 => 0.01372816969239
316 => 0.013794699326819
317 => 0.013580384193861
318 => 0.013504705059829
319 => 0.013265840895641
320 => 0.012914776562192
321 => 0.012963594210961
322 => 0.01226804390542
323 => 0.011889071183313
324 => 0.011784176528614
325 => 0.011643907012501
326 => 0.011800020343702
327 => 0.012266073498796
328 => 0.01170391451506
329 => 0.010740132368313
330 => 0.010798057317537
331 => 0.010928197480372
401 => 0.010685682147892
402 => 0.010456161738468
403 => 0.010655711112883
404 => 0.01024734391199
405 => 0.010977546705603
406 => 0.010957796766405
407 => 0.011229971212426
408 => 0.011400167479105
409 => 0.011007920186106
410 => 0.010909271052666
411 => 0.010965466082427
412 => 0.010036687416462
413 => 0.011154070180521
414 => 0.011163733353064
415 => 0.011080991403061
416 => 0.0116759632296
417 => 0.012931539359962
418 => 0.012459141114287
419 => 0.012276214235249
420 => 0.011928470104479
421 => 0.012391818511727
422 => 0.012356240583411
423 => 0.01219534369904
424 => 0.012098032761344
425 => 0.012277331147766
426 => 0.012075815707058
427 => 0.012039617996633
428 => 0.011820299254955
429 => 0.011742012442543
430 => 0.011684052003321
501 => 0.011620243254813
502 => 0.011760989453873
503 => 0.011442040050098
504 => 0.011057418336141
505 => 0.01102544120229
506 => 0.011113732880311
507 => 0.011074670385329
508 => 0.011025254186092
509 => 0.010930905204049
510 => 0.010902913876524
511 => 0.010993872111519
512 => 0.010891185567404
513 => 0.011042705156872
514 => 0.011001500212498
515 => 0.010771332742759
516 => 0.010484458856552
517 => 0.010481905077227
518 => 0.010420098569011
519 => 0.010341378688128
520 => 0.010319480618133
521 => 0.010638905621158
522 => 0.011300105817834
523 => 0.011170296398047
524 => 0.011264097007247
525 => 0.01172550316664
526 => 0.011872170309743
527 => 0.01176806944557
528 => 0.011625569762028
529 => 0.011631839024906
530 => 0.012118803581157
531 => 0.012149174963207
601 => 0.012225913647469
602 => 0.012324544543096
603 => 0.011784866713588
604 => 0.011606420247669
605 => 0.011521862412283
606 => 0.011261457007297
607 => 0.011542281911102
608 => 0.011378657265776
609 => 0.011400735820644
610 => 0.011386357132822
611 => 0.011394208868656
612 => 0.010977342599041
613 => 0.011129226757842
614 => 0.010876689885417
615 => 0.010538571361835
616 => 0.010537437869984
617 => 0.010620191899619
618 => 0.010570966564626
619 => 0.010438502453861
620 => 0.010457318355583
621 => 0.010292471257483
622 => 0.010477333777945
623 => 0.010482634973562
624 => 0.010411452833655
625 => 0.010696259052538
626 => 0.010812944392795
627 => 0.010766090783439
628 => 0.01080965701866
629 => 0.011175690565493
630 => 0.01123537000479
701 => 0.011261875669524
702 => 0.011226361590109
703 => 0.010816347439959
704 => 0.010834533311033
705 => 0.010701097455608
706 => 0.010588358218897
707 => 0.010592867197126
708 => 0.01065082981987
709 => 0.010903955992857
710 => 0.011436645101303
711 => 0.011456860263578
712 => 0.011481361629973
713 => 0.011381702259444
714 => 0.011351644039681
715 => 0.011391298590233
716 => 0.011591348611903
717 => 0.012105931580689
718 => 0.011924043591679
719 => 0.011776165825359
720 => 0.011905894493981
721 => 0.011885923782294
722 => 0.011717350877838
723 => 0.011712619597859
724 => 0.01138907429819
725 => 0.011269466967672
726 => 0.011169514129838
727 => 0.011060368240258
728 => 0.010995662898311
729 => 0.011095079711593
730 => 0.011117817513056
731 => 0.010900440913307
801 => 0.010870813285995
802 => 0.01104832770975
803 => 0.01097021023026
804 => 0.011050555995136
805 => 0.01106919690178
806 => 0.011066195286474
807 => 0.010984631666151
808 => 0.011036617885483
809 => 0.010913654978926
810 => 0.010779951286477
811 => 0.010694656660729
812 => 0.010620225787073
813 => 0.010661524361725
814 => 0.010514302483913
815 => 0.01046720324221
816 => 0.0110190061241
817 => 0.011426628845833
818 => 0.011420701850023
819 => 0.011384622787327
820 => 0.011331016618532
821 => 0.011587426986764
822 => 0.011498098741559
823 => 0.01156309250357
824 => 0.011579636143781
825 => 0.011629708760076
826 => 0.011647605416514
827 => 0.01159350929073
828 => 0.011411956085314
829 => 0.010959542758976
830 => 0.010748943134299
831 => 0.010679441750342
901 => 0.010681967993647
902 => 0.01061228292565
903 => 0.010632808301241
904 => 0.010605145037654
905 => 0.010552757508884
906 => 0.010658289579448
907 => 0.010670451167481
908 => 0.010645818721197
909 => 0.010651620554004
910 => 0.010447674419429
911 => 0.010463180001093
912 => 0.010376842952034
913 => 0.010360655796144
914 => 0.010142403254349
915 => 0.0097557372403476
916 => 0.0099699877466827
917 => 0.0097112032632101
918 => 0.0096131976580942
919 => 0.010077140949714
920 => 0.010030573911019
921 => 0.0099508713829789
922 => 0.0098329747325449
923 => 0.009789245718074
924 => 0.0095235620690727
925 => 0.0095078640617226
926 => 0.0096395440522296
927 => 0.0095787782674424
928 => 0.0094934400917989
929 => 0.0091843538702103
930 => 0.0088368386222136
1001 => 0.0088473279231477
1002 => 0.0089578660577844
1003 => 0.009279270592339
1004 => 0.0091536922803336
1005 => 0.0090625837741286
1006 => 0.009045521889628
1007 => 0.0092590870956272
1008 => 0.0095613266054099
1009 => 0.0097031306211721
1010 => 0.0095626071482038
1011 => 0.0094011813487789
1012 => 0.0094110065892147
1013 => 0.0094763695120493
1014 => 0.0094832382310572
1015 => 0.0093781666304719
1016 => 0.0094077436705763
1017 => 0.0093628134420765
1018 => 0.0090870767127084
1019 => 0.0090820895096447
1020 => 0.0090144192694024
1021 => 0.0090123702414217
1022 => 0.008897246281637
1023 => 0.0088811396438487
1024 => 0.0086525540341712
1025 => 0.0088030097746819
1026 => 0.0087020919632283
1027 => 0.0085499850172624
1028 => 0.0085237617224454
1029 => 0.0085229734185376
1030 => 0.0086791532415537
1031 => 0.0088011847225176
1101 => 0.0087038474717652
1102 => 0.0086816856665721
1103 => 0.0089183157660231
1104 => 0.0088882024289367
1105 => 0.0088621244732301
1106 => 0.0095342643723009
1107 => 0.009002213194456
1108 => 0.0087702085124961
1109 => 0.0084830586620766
1110 => 0.0085765561013084
1111 => 0.0085962573855177
1112 => 0.0079057137579097
1113 => 0.0076255602941909
1114 => 0.0075294221828031
1115 => 0.0074740933405061
1116 => 0.0074993073887167
1117 => 0.0072471364126459
1118 => 0.0074165994790885
1119 => 0.0071982407292932
1120 => 0.0071616321742891
1121 => 0.0075520846683816
1122 => 0.0076064138519441
1123 => 0.0073746286761119
1124 => 0.0075234722816076
1125 => 0.007469499521174
1126 => 0.0072019838633308
1127 => 0.0071917667329132
1128 => 0.0070575367794375
1129 => 0.0068474928942888
1130 => 0.006751497202546
1201 => 0.0067015018128135
1202 => 0.0067221308850078
1203 => 0.0067117001948464
1204 => 0.006643632885952
1205 => 0.0067156017333154
1206 => 0.0065317510678827
1207 => 0.0064585402515219
1208 => 0.0064254726242498
1209 => 0.0062622945766288
1210 => 0.006521983416001
1211 => 0.0065731453888311
1212 => 0.0066244081665524
1213 => 0.0070706156480318
1214 => 0.0070483243832263
1215 => 0.0072498265607814
1216 => 0.0072419965567003
1217 => 0.0071845248715428
1218 => 0.0069420612854964
1219 => 0.0070387029493966
1220 => 0.0067412549293608
1221 => 0.0069641232104709
1222 => 0.0068624154341742
1223 => 0.0069297357089962
1224 => 0.0068086877848418
1225 => 0.0068756807040151
1226 => 0.0065852777905732
1227 => 0.0063141036360803
1228 => 0.0064232320319153
1229 => 0.0065418670785338
1230 => 0.0067990980872503
1231 => 0.0066458934205685
]
'min_raw' => 0.0062622945766288
'max_raw' => 0.018693101823486
'avg_raw' => 0.012477698200058
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006262'
'max' => '$0.018693'
'avg' => '$0.012477'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011863025423371
'max_diff' => 0.00056778182348626
'year' => 2026
]
1 => [
'items' => [
101 => 0.0067009916120171
102 => 0.0065164218939901
103 => 0.0061356018459669
104 => 0.0061377572460818
105 => 0.0060791763783091
106 => 0.0060285539556068
107 => 0.0066634908194979
108 => 0.0065845263836066
109 => 0.0064587068896237
110 => 0.0066271212821878
111 => 0.0066716527206775
112 => 0.0066729204681275
113 => 0.0067957912615376
114 => 0.0068613674260064
115 => 0.0068729255092174
116 => 0.0070662653574474
117 => 0.0071310703243598
118 => 0.00739799281153
119 => 0.0068558037466064
120 => 0.0068446377196117
121 => 0.0066294912180659
122 => 0.006493041905454
123 => 0.0066388340192379
124 => 0.0067679859294424
125 => 0.0066335043279255
126 => 0.0066510647860221
127 => 0.0064705342235363
128 => 0.0065350654048725
129 => 0.0065906483515281
130 => 0.0065599587153994
131 => 0.0065140148447197
201 => 0.0067573969456346
202 => 0.0067436643736788
203 => 0.0069703073813811
204 => 0.007146991813282
205 => 0.0074636419013684
206 => 0.0071332010271078
207 => 0.0071211584482662
208 => 0.007238876588133
209 => 0.0071310523023259
210 => 0.0071991935289882
211 => 0.0074526632962939
212 => 0.0074580187130646
213 => 0.0073683085820899
214 => 0.0073628497124673
215 => 0.0073800795244423
216 => 0.0074809950713431
217 => 0.0074457320784344
218 => 0.0074865393065781
219 => 0.0075375693702343
220 => 0.0077486513498148
221 => 0.007799542500477
222 => 0.0076759033884042
223 => 0.007687066615896
224 => 0.0076408221940113
225 => 0.0075961506619115
226 => 0.0076965657423184
227 => 0.0078800762754252
228 => 0.007878934665923
301 => 0.0079215055426687
302 => 0.0079480268462051
303 => 0.0078341779966461
304 => 0.0077600665819213
305 => 0.0077884856141586
306 => 0.0078339282655921
307 => 0.0077737491747595
308 => 0.0074022959484743
309 => 0.0075149711288052
310 => 0.0074962164692633
311 => 0.0074695075534311
312 => 0.0075828033185453
313 => 0.0075718756656132
314 => 0.0072445500348043
315 => 0.0072655043596833
316 => 0.0072458243367031
317 => 0.007309414517106
318 => 0.007127618223899
319 => 0.0071835375392728
320 => 0.0072186096096642
321 => 0.007239267328561
322 => 0.007313897174347
323 => 0.0073051402233185
324 => 0.0073133528299757
325 => 0.0074240091897275
326 => 0.0079836710846748
327 => 0.0080141322467924
328 => 0.0078641303438786
329 => 0.007924053145436
330 => 0.007809014470122
331 => 0.0078862407035524
401 => 0.0079390769311318
402 => 0.0077003201785227
403 => 0.0076861825531517
404 => 0.0075706690723032
405 => 0.0076327394738932
406 => 0.0075339810019437
407 => 0.0075582128765354
408 => 0.0074904584426801
409 => 0.0076124029338464
410 => 0.0077487558232285
411 => 0.0077832039478252
412 => 0.0076925857628614
413 => 0.0076269722249182
414 => 0.0075117764667331
415 => 0.0077033495798999
416 => 0.0077593713962747
417 => 0.0077030553211477
418 => 0.0076900056560102
419 => 0.0076652765641549
420 => 0.0076952520497493
421 => 0.0077590662894314
422 => 0.0077289726724613
423 => 0.0077488500366514
424 => 0.0076730980218078
425 => 0.0078342156853525
426 => 0.0080901093101389
427 => 0.0080909320499854
428 => 0.0080608382707994
429 => 0.0080485245447361
430 => 0.0080794025884241
501 => 0.0080961526604411
502 => 0.0081960065916633
503 => 0.0083031538382208
504 => 0.0088031632858985
505 => 0.0086627626338107
506 => 0.0091064007614855
507 => 0.0094572609212751
508 => 0.0095624685419407
509 => 0.0094656824813294
510 => 0.0091345825962586
511 => 0.0091183372563016
512 => 0.0096131402713632
513 => 0.0094733357561945
514 => 0.0094567064539695
515 => 0.0092797987739446
516 => 0.0093843731232817
517 => 0.0093615011790685
518 => 0.0093253966961942
519 => 0.0095249172700172
520 => 0.0098984019728893
521 => 0.0098401908794293
522 => 0.0097967389984963
523 => 0.0096063455049005
524 => 0.0097210049139715
525 => 0.0096801768945576
526 => 0.009855599976061
527 => 0.0097516832286755
528 => 0.0094722765994906
529 => 0.0095167730261246
530 => 0.0095100474807532
531 => 0.0096484587279182
601 => 0.0096069111070976
602 => 0.0095019346409725
603 => 0.0098971254427778
604 => 0.0098714639502753
605 => 0.00990784607961
606 => 0.0099238626180978
607 => 0.010164408295114
608 => 0.010262952162384
609 => 0.010285323345508
610 => 0.010378932397758
611 => 0.010282994267012
612 => 0.010666815192725
613 => 0.010922033711753
614 => 0.011218483155028
615 => 0.011651675469753
616 => 0.011814559787342
617 => 0.01178513619329
618 => 0.012113577662358
619 => 0.01270377968143
620 => 0.011904432895866
621 => 0.012746147002031
622 => 0.012479670034076
623 => 0.01184785793677
624 => 0.011807176686279
625 => 0.012235047174064
626 => 0.013184022734962
627 => 0.012946315120148
628 => 0.013184411539463
629 => 0.012906659419097
630 => 0.012892866685242
701 => 0.013170921738931
702 => 0.013820612527869
703 => 0.01351196878734
704 => 0.013069452302741
705 => 0.013396199588649
706 => 0.013113140850562
707 => 0.012475330290498
708 => 0.012946133349615
709 => 0.012631320751683
710 => 0.012723199804118
711 => 0.013384889060132
712 => 0.013305272858236
713 => 0.013408303595751
714 => 0.01322645704082
715 => 0.013056583683945
716 => 0.012739502448376
717 => 0.01264563032644
718 => 0.012671573203778
719 => 0.012645617470438
720 => 0.012468213433265
721 => 0.012429903048328
722 => 0.01236605072835
723 => 0.012385841232275
724 => 0.012265780190061
725 => 0.012492360182596
726 => 0.012534415425826
727 => 0.012699301449189
728 => 0.012716420463123
729 => 0.013175625691184
730 => 0.012922703168198
731 => 0.013092385432897
801 => 0.013077207454031
802 => 0.011861551220741
803 => 0.012029057923862
804 => 0.01228964578742
805 => 0.012172251308106
806 => 0.012006282980433
807 => 0.011872254657178
808 => 0.011669188042348
809 => 0.011955000403173
810 => 0.012330813264902
811 => 0.012725951697482
812 => 0.013200684633732
813 => 0.013094729768861
814 => 0.012717076895456
815 => 0.012734018127482
816 => 0.012838742157733
817 => 0.012703115023376
818 => 0.012663115933698
819 => 0.012833246897039
820 => 0.012834418495482
821 => 0.012678363086317
822 => 0.012504936056868
823 => 0.012504209391283
824 => 0.012473349726499
825 => 0.012912149284907
826 => 0.013153444674392
827 => 0.013181108801929
828 => 0.013151582658192
829 => 0.013162946099066
830 => 0.013022541628505
831 => 0.013343464612554
901 => 0.01363797527871
902 => 0.013559040128878
903 => 0.013440705117986
904 => 0.013346445582024
905 => 0.013536835577816
906 => 0.013528357811005
907 => 0.013635402984967
908 => 0.013630546797553
909 => 0.013594551531723
910 => 0.013559041414382
911 => 0.013699835015755
912 => 0.013659288719636
913 => 0.013618679443919
914 => 0.013537231324501
915 => 0.01354830147664
916 => 0.013429986897956
917 => 0.01337524916015
918 => 0.012552124917747
919 => 0.012332159223816
920 => 0.012401364908942
921 => 0.01242414921741
922 => 0.012328419865517
923 => 0.012465671165278
924 => 0.012444280695595
925 => 0.012527498500124
926 => 0.012475507628752
927 => 0.012477641352248
928 => 0.012630535419332
929 => 0.012674921217465
930 => 0.012652346242297
1001 => 0.01266815698108
1002 => 0.013032508783025
1003 => 0.012980709608103
1004 => 0.012953192328821
1005 => 0.012960814803239
1006 => 0.013053914500427
1007 => 0.013079977332584
1008 => 0.01296954728133
1009 => 0.01302162673189
1010 => 0.013243374422508
1011 => 0.013320973564392
1012 => 0.013568632775585
1013 => 0.013463422740879
1014 => 0.013656540312966
1015 => 0.014250117890929
1016 => 0.01472430873265
1017 => 0.014288223237838
1018 => 0.015159014330819
1019 => 0.015837050104268
1020 => 0.015811025961955
1021 => 0.015692794741604
1022 => 0.014920869040046
1023 => 0.014210531500709
1024 => 0.01480475901489
1025 => 0.014806273823027
1026 => 0.014755229152565
1027 => 0.014438195088255
1028 => 0.014744197054338
1029 => 0.01476848637917
1030 => 0.014754890816317
1031 => 0.014511821542536
1101 => 0.014140699688184
1102 => 0.014213216010184
1103 => 0.014331999224913
1104 => 0.014107117818656
1105 => 0.014035254583312
1106 => 0.014168862010357
1107 => 0.014599372978507
1108 => 0.014517987373758
1109 => 0.014515862066713
1110 => 0.014864064196695
1111 => 0.014614826618351
1112 => 0.014214130673234
1113 => 0.014112949662562
1114 => 0.013753825238371
1115 => 0.014001873757317
1116 => 0.014010800581921
1117 => 0.013874946943089
1118 => 0.014225154447293
1119 => 0.014221927223489
1120 => 0.014554397127222
1121 => 0.015189954713167
1122 => 0.015001989061114
1123 => 0.014783405458381
1124 => 0.014807171556664
1125 => 0.015067826995099
1126 => 0.014910228766836
1127 => 0.014966902188534
1128 => 0.015067741213088
1129 => 0.015128579900294
1130 => 0.014798417805829
1201 => 0.014721441228131
1202 => 0.014563974165268
1203 => 0.014522893947829
1204 => 0.014651147584873
1205 => 0.014617357282779
1206 => 0.01401005031688
1207 => 0.013946583359919
1208 => 0.013948529800879
1209 => 0.013788939119912
1210 => 0.013545525025286
1211 => 0.014185202732464
1212 => 0.014133827660294
1213 => 0.014077113556733
1214 => 0.014084060710813
1215 => 0.014361723122809
1216 => 0.014200664901563
1217 => 0.014628864579669
1218 => 0.014540839598711
1219 => 0.01445055710914
1220 => 0.01443807731901
1221 => 0.014403326263065
1222 => 0.014284151961932
1223 => 0.014140241832049
1224 => 0.014045219899018
1225 => 0.012955972929329
1226 => 0.013158130831045
1227 => 0.013390695069697
1228 => 0.013470975312937
1229 => 0.013333650401651
1230 => 0.014289574386435
1231 => 0.014464230909967
]
'min_raw' => 0.0060285539556068
'max_raw' => 0.015837050104268
'avg_raw' => 0.010932802029937
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006028'
'max' => '$0.015837'
'avg' => '$0.010932'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023374062102199
'max_diff' => -0.0028560517192185
'year' => 2027
]
2 => [
'items' => [
101 => 0.013935184907624
102 => 0.013836222001391
103 => 0.014296062378092
104 => 0.014018722417741
105 => 0.014143608584905
106 => 0.013873673000578
107 => 0.014422161267988
108 => 0.01441798270636
109 => 0.014204608382168
110 => 0.014384950899851
111 => 0.014353611949392
112 => 0.014112712862897
113 => 0.014429798198714
114 => 0.014429955469085
115 => 0.014224587321208
116 => 0.013984762285356
117 => 0.01394188723336
118 => 0.013909586641134
119 => 0.01413566461928
120 => 0.014338365427558
121 => 0.014715541377972
122 => 0.014810372373385
123 => 0.015180504061741
124 => 0.01496010866271
125 => 0.015057807088502
126 => 0.015163872549986
127 => 0.01521472423265
128 => 0.015131864144601
129 => 0.015706831008899
130 => 0.015755375828775
131 => 0.015771652486969
201 => 0.015577776895342
202 => 0.015749983797854
203 => 0.015669413891062
204 => 0.01587903440557
205 => 0.015911905578814
206 => 0.015884064864502
207 => 0.015894498693726
208 => 0.015403865906153
209 => 0.015378424007823
210 => 0.015031521918822
211 => 0.015172887084261
212 => 0.014908611683281
213 => 0.01499241613527
214 => 0.015029356339189
215 => 0.015010060873
216 => 0.015180879658612
217 => 0.015035648794869
218 => 0.014652360667288
219 => 0.014268968113112
220 => 0.014264154931899
221 => 0.014163214439825
222 => 0.014090252952229
223 => 0.014104307923188
224 => 0.014153839474066
225 => 0.014087374088449
226 => 0.014101557848351
227 => 0.014337102768621
228 => 0.014384339622552
229 => 0.014223810336265
301 => 0.013579262087559
302 => 0.013421088330599
303 => 0.01353478049038
304 => 0.013480442960718
305 => 0.010879769574735
306 => 0.011490759210438
307 => 0.011127729916151
308 => 0.011295030517133
309 => 0.010924471613646
310 => 0.011101321745046
311 => 0.011068663983309
312 => 0.012051117237022
313 => 0.012035777580786
314 => 0.012043119862469
315 => 0.011692653627486
316 => 0.01225095585601
317 => 0.012525995609679
318 => 0.012475093071221
319 => 0.012487904143499
320 => 0.012267767476653
321 => 0.012045251266599
322 => 0.01179844654465
323 => 0.012256979212046
324 => 0.012205998206845
325 => 0.012322930290389
326 => 0.012620321501787
327 => 0.012664113487345
328 => 0.012722970360029
329 => 0.012701874360889
330 => 0.013204466647468
331 => 0.013143599405353
401 => 0.01329027194615
402 => 0.012988555401657
403 => 0.012647134492366
404 => 0.012712027445332
405 => 0.012705777732125
406 => 0.012626211709916
407 => 0.012554383062703
408 => 0.012434808602689
409 => 0.012813159887864
410 => 0.012797799516636
411 => 0.013046466072331
412 => 0.013002511843194
413 => 0.012708974743592
414 => 0.01271945847853
415 => 0.012789966634298
416 => 0.013033996166458
417 => 0.013106440746401
418 => 0.013072881530554
419 => 0.01315231370524
420 => 0.013215093657402
421 => 0.013160197900655
422 => 0.013937406051289
423 => 0.013614655040382
424 => 0.013771961637411
425 => 0.013809478333898
426 => 0.013713380104738
427 => 0.013734220369623
428 => 0.013765787692292
429 => 0.013957458294023
430 => 0.014460457413299
501 => 0.014683232299196
502 => 0.015353461534936
503 => 0.014664733946099
504 => 0.014623867701215
505 => 0.014744596225556
506 => 0.015138091737905
507 => 0.01545698289151
508 => 0.015562777484433
509 => 0.015576759986366
510 => 0.01577523767578
511 => 0.015889001385963
512 => 0.015751137263804
513 => 0.015634311855249
514 => 0.01521585774271
515 => 0.01526429494565
516 => 0.015597979241037
517 => 0.016069327962179
518 => 0.016473794200394
519 => 0.016332164220843
520 => 0.017412700989638
521 => 0.017519831796667
522 => 0.017505029783089
523 => 0.017749089704703
524 => 0.017264680462238
525 => 0.017057586126097
526 => 0.015659570834604
527 => 0.016052356107211
528 => 0.016623292568415
529 => 0.016547726986873
530 => 0.016133097667571
531 => 0.016473479666875
601 => 0.016360938733176
602 => 0.016272173029439
603 => 0.016678825926333
604 => 0.016231694361818
605 => 0.016618832089021
606 => 0.016122323949456
607 => 0.016332811174659
608 => 0.016213328445513
609 => 0.016290648414523
610 => 0.015838637455595
611 => 0.016082531597087
612 => 0.015828490657459
613 => 0.015828370208977
614 => 0.015822762241154
615 => 0.016121640280036
616 => 0.016131386682154
617 => 0.01591051535984
618 => 0.015878684351637
619 => 0.015996380272273
620 => 0.015858589173818
621 => 0.015923060761538
622 => 0.015860541952532
623 => 0.015846467651777
624 => 0.015734321228817
625 => 0.015686005466276
626 => 0.015704951321712
627 => 0.01564027934985
628 => 0.015601312147516
629 => 0.01581501068382
630 => 0.015700840176447
701 => 0.015797512416129
702 => 0.015687342198002
703 => 0.015305444223093
704 => 0.015085810659226
705 => 0.014364440786585
706 => 0.014569020387609
707 => 0.014704656874741
708 => 0.014659829016553
709 => 0.014756136602019
710 => 0.014762049105589
711 => 0.014730738527815
712 => 0.014694484889885
713 => 0.014676838623893
714 => 0.014808359433284
715 => 0.014884711689923
716 => 0.014718269810807
717 => 0.0146792748073
718 => 0.014847556736594
719 => 0.01495020861625
720 => 0.015708132420521
721 => 0.015651982977039
722 => 0.015792907061407
723 => 0.015777041172164
724 => 0.015924752063549
725 => 0.016166196943683
726 => 0.01567527199332
727 => 0.015760479589795
728 => 0.01573958865487
729 => 0.015967670404484
730 => 0.015968382450811
731 => 0.015831636048389
801 => 0.015905768491599
802 => 0.015864389795516
803 => 0.015939166692004
804 => 0.015651233066989
805 => 0.016001905141743
806 => 0.016200713611319
807 => 0.016203474067112
808 => 0.01629770770385
809 => 0.016393454536419
810 => 0.016577232243745
811 => 0.016388329075907
812 => 0.016048510666321
813 => 0.016073044457886
814 => 0.01587380904868
815 => 0.015877158231903
816 => 0.015859280029376
817 => 0.01591293386097
818 => 0.015663007065807
819 => 0.015721664385085
820 => 0.015639543794599
821 => 0.015760301075669
822 => 0.015630386203131
823 => 0.015739578580629
824 => 0.015786702390972
825 => 0.015960590265643
826 => 0.015604702822658
827 => 0.01487902423495
828 => 0.015031570672089
829 => 0.014805942509297
830 => 0.01482682525479
831 => 0.014869011724151
901 => 0.014732271574399
902 => 0.014758357285794
903 => 0.014757425320621
904 => 0.014749394148245
905 => 0.014713822754139
906 => 0.0146622371951
907 => 0.014867738185115
908 => 0.014902656807768
909 => 0.014980276580423
910 => 0.015211220373852
911 => 0.015188143642859
912 => 0.015225782748553
913 => 0.015143616792157
914 => 0.01483063669785
915 => 0.014847633022763
916 => 0.014635688578744
917 => 0.014974856684474
918 => 0.014894537200237
919 => 0.01484275470624
920 => 0.014828625372991
921 => 0.015060141631415
922 => 0.015129414924507
923 => 0.01508624845701
924 => 0.014997712772805
925 => 0.015167727459704
926 => 0.015213216217574
927 => 0.0152233994729
928 => 0.015524632901002
929 => 0.015240235075245
930 => 0.015308692458576
1001 => 0.015842777421302
1002 => 0.015358436058797
1003 => 0.015615002480617
1004 => 0.015602444889376
1005 => 0.015733695589045
1006 => 0.015591678501083
1007 => 0.015593438973094
1008 => 0.015709980702707
1009 => 0.015546318861877
1010 => 0.015505793888505
1011 => 0.015449808928038
1012 => 0.015572050041049
1013 => 0.01564532805981
1014 => 0.016235895074242
1015 => 0.016617428298694
1016 => 0.016600864935198
1017 => 0.016752223072232
1018 => 0.016684034845216
1019 => 0.016463837073038
1020 => 0.016839687819888
1021 => 0.016720752917322
1022 => 0.016730557766184
1023 => 0.016730192829219
1024 => 0.016809274141956
1025 => 0.016753237784186
1026 => 0.016642784371007
1027 => 0.01671610850132
1028 => 0.016933854954494
1029 => 0.017609746626423
1030 => 0.017987984560408
1031 => 0.017586976227868
1101 => 0.017863586405939
1102 => 0.01769771886538
1103 => 0.017667575799129
1104 => 0.017841307432289
1105 => 0.018015343159675
1106 => 0.018004257836217
1107 => 0.017877916834969
1108 => 0.017806550009148
1109 => 0.018346963523905
1110 => 0.018745130995875
1111 => 0.018717978643635
1112 => 0.018837820296003
1113 => 0.019189679093919
1114 => 0.019221848652762
1115 => 0.019217796027757
1116 => 0.019138060419617
1117 => 0.019484511100804
1118 => 0.019773526354269
1119 => 0.019119603930116
1120 => 0.019368609028761
1121 => 0.019480395439985
1122 => 0.019644531057197
1123 => 0.019921455355756
1124 => 0.020222268594534
1125 => 0.020264806884747
1126 => 0.020234623932197
1127 => 0.020036229514929
1128 => 0.020365382950248
1129 => 0.02055819331306
1130 => 0.020673007471728
1201 => 0.020964157074855
1202 => 0.019481085794804
1203 => 0.018431294229359
1204 => 0.018267354117241
1205 => 0.01860073278186
1206 => 0.018688642077075
1207 => 0.018653205950402
1208 => 0.01747157010062
1209 => 0.018261133049037
1210 => 0.019110636393195
1211 => 0.019143269276355
1212 => 0.019568548412718
1213 => 0.019707036732298
1214 => 0.020049442179681
1215 => 0.02002802462572
1216 => 0.020111394903297
1217 => 0.020092229520254
1218 => 0.020726463509557
1219 => 0.021426117784417
1220 => 0.021401890981643
1221 => 0.021301307401698
1222 => 0.021450691169965
1223 => 0.022172809361129
1224 => 0.022106328289795
1225 => 0.022170908987752
1226 => 0.023022327031932
1227 => 0.024129291602171
1228 => 0.02361499542187
1229 => 0.024730870148385
1230 => 0.025433254138749
1231 => 0.026647954622223
]
'min_raw' => 0.010879769574735
'max_raw' => 0.026647954622223
'avg_raw' => 0.018763862098479
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010879'
'max' => '$0.026647'
'avg' => '$0.018763'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048512156191281
'max_diff' => 0.010810904517956
'year' => 2028
]
3 => [
'items' => [
101 => 0.026495868139166
102 => 0.026968742123499
103 => 0.026223601593087
104 => 0.024512608317515
105 => 0.024241837082237
106 => 0.024783927952284
107 => 0.026116605459842
108 => 0.024741957194974
109 => 0.025020046748611
110 => 0.024939956938456
111 => 0.024935689292832
112 => 0.025098567968509
113 => 0.02486230395426
114 => 0.023899721857125
115 => 0.02434086755971
116 => 0.024170520018386
117 => 0.024359533315736
118 => 0.025379560126521
119 => 0.024928581959071
120 => 0.024453513094153
121 => 0.02504935487698
122 => 0.02580806621997
123 => 0.025760587427661
124 => 0.025668458725986
125 => 0.026187783393626
126 => 0.027045555596715
127 => 0.027277407976402
128 => 0.027448556663074
129 => 0.027472155175386
130 => 0.027715234518586
131 => 0.026408135626317
201 => 0.028482535137028
202 => 0.028840726628398
203 => 0.028773401473536
204 => 0.029171516241192
205 => 0.029054380777351
206 => 0.028884669868236
207 => 0.029515766456409
208 => 0.028792265144937
209 => 0.027765346119585
210 => 0.027201958032121
211 => 0.027943872912914
212 => 0.028396934441353
213 => 0.028696379291526
214 => 0.028786991122259
215 => 0.02650960199249
216 => 0.025282215561337
217 => 0.026068956191692
218 => 0.027028834058664
219 => 0.026402803456301
220 => 0.02642734267068
221 => 0.025534787549659
222 => 0.027107805381784
223 => 0.026878629914806
224 => 0.028067592642894
225 => 0.027783837145814
226 => 0.028753390095302
227 => 0.028498074310444
228 => 0.029557875858877
301 => 0.029980659389528
302 => 0.030690578738493
303 => 0.031212798301484
304 => 0.03151945561734
305 => 0.031501045062339
306 => 0.032716174123831
307 => 0.031999654969645
308 => 0.031099538041389
309 => 0.031083257765989
310 => 0.031549441077889
311 => 0.032526433408484
312 => 0.032779753305147
313 => 0.032921324568845
314 => 0.03270450325036
315 => 0.031926773061881
316 => 0.031590953109678
317 => 0.031877081438596
318 => 0.031527171079617
319 => 0.032131214526721
320 => 0.032960695196314
321 => 0.032789410718165
322 => 0.033361989048212
323 => 0.033954547382814
324 => 0.034801932414755
325 => 0.035023470240681
326 => 0.035389663842609
327 => 0.035766597347323
328 => 0.035887658230395
329 => 0.036118801019164
330 => 0.036117582782572
331 => 0.036814147134234
401 => 0.037582479184918
402 => 0.037872506747124
403 => 0.038539409134202
404 => 0.037397362167377
405 => 0.038263617910604
406 => 0.039045002274782
407 => 0.038113403623113
408 => 0.039397395329792
409 => 0.039447249818175
410 => 0.040199993402777
411 => 0.039436943571561
412 => 0.038983847017526
413 => 0.040291919791718
414 => 0.040924855003243
415 => 0.040734209766534
416 => 0.039283390101863
417 => 0.038438950828441
418 => 0.036228890369726
419 => 0.038846802450581
420 => 0.040121911059623
421 => 0.039280087878609
422 => 0.039704654525182
423 => 0.042020952482689
424 => 0.042902848775722
425 => 0.042719420511691
426 => 0.042750416868826
427 => 0.043226272100996
428 => 0.045336476258702
429 => 0.044071993013256
430 => 0.045038643075116
501 => 0.045551350782411
502 => 0.046027582274457
503 => 0.0448581082445
504 => 0.043336639714511
505 => 0.04285472676416
506 => 0.039196385153779
507 => 0.039005952585586
508 => 0.038899057014362
509 => 0.038225095558474
510 => 0.037695546467725
511 => 0.037274429369865
512 => 0.036169292348868
513 => 0.036542243651817
514 => 0.034780885900371
515 => 0.03590774017106
516 => 0.033096570670282
517 => 0.035437796164883
518 => 0.034163573570632
519 => 0.035019179772565
520 => 0.035016194643129
521 => 0.033440752355178
522 => 0.03253207012213
523 => 0.03311111780747
524 => 0.033731902891017
525 => 0.03383262318225
526 => 0.034637487247218
527 => 0.034862107507255
528 => 0.034181497632825
529 => 0.033038315430799
530 => 0.03330385058312
531 => 0.032526689060743
601 => 0.031164743385865
602 => 0.032142916546853
603 => 0.032476907871252
604 => 0.032624417467173
605 => 0.031285100316447
606 => 0.030864257789699
607 => 0.030640204759669
608 => 0.032865426405065
609 => 0.032987329069954
610 => 0.032363657801084
611 => 0.035182711075313
612 => 0.034544672497377
613 => 0.035257517912178
614 => 0.033279756051255
615 => 0.033355309217751
616 => 0.03241900505775
617 => 0.032943272823484
618 => 0.032572737264602
619 => 0.032900917168928
620 => 0.033097626850444
621 => 0.034033777372146
622 => 0.035448485500081
623 => 0.033893947702072
624 => 0.033216613322089
625 => 0.033636827761958
626 => 0.034755914190539
627 => 0.036451387414821
628 => 0.035447633141468
629 => 0.035893082243129
630 => 0.035990393055191
701 => 0.035250261815023
702 => 0.036478677109358
703 => 0.03713699484522
704 => 0.037812292622554
705 => 0.038398634761199
706 => 0.037542563840171
707 => 0.038458682438617
708 => 0.037720452564971
709 => 0.03705818405151
710 => 0.037059188439472
711 => 0.036643737726779
712 => 0.035838749620776
713 => 0.035690297463296
714 => 0.036462564333949
715 => 0.037081849230267
716 => 0.037132856500503
717 => 0.037475724439111
718 => 0.03767863015336
719 => 0.039667381989933
720 => 0.040467274430421
721 => 0.041445367765461
722 => 0.041826390241778
723 => 0.042973131291377
724 => 0.042047044760072
725 => 0.041846680113666
726 => 0.039065061423479
727 => 0.039520551328168
728 => 0.040249834613814
729 => 0.039077087036247
730 => 0.039820925444931
731 => 0.039967774903456
801 => 0.039037237522319
802 => 0.039534277743731
803 => 0.038214286277815
804 => 0.035477257706918
805 => 0.036481724204579
806 => 0.037221349646624
807 => 0.036165812945666
808 => 0.038057821627222
809 => 0.036952549214444
810 => 0.036602230922025
811 => 0.035235514365812
812 => 0.0358805519706
813 => 0.036752974567125
814 => 0.036213918832486
815 => 0.037332540421488
816 => 0.038916806916997
817 => 0.040045849566397
818 => 0.040132523441639
819 => 0.039406624658058
820 => 0.040569882091371
821 => 0.040578355151816
822 => 0.039266196014992
823 => 0.03846250584982
824 => 0.038279905753314
825 => 0.038736076595243
826 => 0.039289952211128
827 => 0.040163259683543
828 => 0.040690981098971
829 => 0.042066998668598
830 => 0.042439309569423
831 => 0.042848366371819
901 => 0.043394992408265
902 => 0.044051357117057
903 => 0.042615268501083
904 => 0.042672326979
905 => 0.041335061143805
906 => 0.03990600081558
907 => 0.040990479469818
908 => 0.042408291048085
909 => 0.042083043505488
910 => 0.042046446512741
911 => 0.042107992503382
912 => 0.041862766477855
913 => 0.0407536182529
914 => 0.040196610957963
915 => 0.040915292476148
916 => 0.041297239718229
917 => 0.041889606581397
918 => 0.041816584862164
919 => 0.043342458286128
920 => 0.043935366558663
921 => 0.043783675250573
922 => 0.043811590101917
923 => 0.044885022208352
924 => 0.046078899478857
925 => 0.047197123088667
926 => 0.048334628173386
927 => 0.046963321396177
928 => 0.046267056385155
929 => 0.046985424149472
930 => 0.046604248101967
1001 => 0.04879459873509
1002 => 0.048946253860591
1003 => 0.051136446106433
1004 => 0.053215199350979
1005 => 0.051909571682812
1006 => 0.053140719767131
1007 => 0.054472306797298
1008 => 0.0570411542207
1009 => 0.05617605678164
1010 => 0.055513405701126
1011 => 0.054887203631946
1012 => 0.05619023073113
1013 => 0.057866554277863
1014 => 0.058227618314202
1015 => 0.058812679990149
1016 => 0.058197559175829
1017 => 0.058938404443343
1018 => 0.061553913781571
1019 => 0.060847180070642
1020 => 0.05984350458801
1021 => 0.061908198014354
1022 => 0.062655402539056
1023 => 0.067899675207459
1024 => 0.074520786081417
1025 => 0.07177960270304
1026 => 0.070078061722647
1027 => 0.070477964214131
1028 => 0.072895769766553
1029 => 0.073672292172679
1030 => 0.071561436589504
1031 => 0.072307026466835
1101 => 0.076415299995707
1102 => 0.078619256934752
1103 => 0.075625987380622
1104 => 0.067367675395569
1105 => 0.05975313459225
1106 => 0.061772853700531
1107 => 0.061543880232833
1108 => 0.065957707622046
1109 => 0.060830324705369
1110 => 0.060916656683779
1111 => 0.065421757349077
1112 => 0.064219873728554
1113 => 0.06227297618893
1114 => 0.059767349098855
1115 => 0.055135465680397
1116 => 0.051032877367045
1117 => 0.059078997819191
1118 => 0.058732034474374
1119 => 0.058229580133992
1120 => 0.059347737897274
1121 => 0.064777194601155
1122 => 0.064652028050694
1123 => 0.063855782317198
1124 => 0.064459727688267
1125 => 0.062167101645349
1126 => 0.062757963578733
1127 => 0.059751928410083
1128 => 0.061110781849431
1129 => 0.062268799021206
1130 => 0.062501288113178
1201 => 0.063025097908576
1202 => 0.058549200557792
1203 => 0.060558747062852
1204 => 0.06173916736553
1205 => 0.05640598549397
1206 => 0.061633747507417
1207 => 0.058471285142887
1208 => 0.057397897917775
1209 => 0.058843072408375
1210 => 0.05827988650391
1211 => 0.057795692334637
1212 => 0.057525503668671
1213 => 0.058586680316479
1214 => 0.058537175157478
1215 => 0.056800884196152
1216 => 0.054535963417376
1217 => 0.055296145174224
1218 => 0.055019964015219
1219 => 0.054019047866908
1220 => 0.054693544499793
1221 => 0.0517234026835
1222 => 0.046613428063106
1223 => 0.049989233820094
1224 => 0.04985926897062
1225 => 0.049793734800078
1226 => 0.052330559526037
1227 => 0.05208670236314
1228 => 0.051644099224627
1229 => 0.054010919113175
1230 => 0.053146998015635
1231 => 0.055809399272843
]
'min_raw' => 0.023899721857125
'max_raw' => 0.078619256934752
'avg_raw' => 0.051259489395939
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023899'
'max' => '$0.078619'
'avg' => '$0.051259'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.01301995228239
'max_diff' => 0.051971302312529
'year' => 2029
]
4 => [
'items' => [
101 => 0.057563028934157
102 => 0.057118251728071
103 => 0.058767548900565
104 => 0.05531365822655
105 => 0.056460902162416
106 => 0.056697347547586
107 => 0.053981712923142
108 => 0.052126600410823
109 => 0.052002885556082
110 => 0.048786376109971
111 => 0.050504609493326
112 => 0.05201658376535
113 => 0.051292465422994
114 => 0.051063231188224
115 => 0.052234339178824
116 => 0.052325344299555
117 => 0.050250417902592
118 => 0.050681860804894
119 => 0.052481049428908
120 => 0.050636525867812
121 => 0.047052917889815
122 => 0.046164133564015
123 => 0.046045553351408
124 => 0.043635099769465
125 => 0.046223526382553
126 => 0.045093608800419
127 => 0.048663004903887
128 => 0.046624184992641
129 => 0.046536295541205
130 => 0.04640343774478
131 => 0.044328660772219
201 => 0.044782905070254
202 => 0.046292882300285
203 => 0.046831659187071
204 => 0.046775460343711
205 => 0.046285482588093
206 => 0.046509791895523
207 => 0.045787213461748
208 => 0.045532055977613
209 => 0.044726708771086
210 => 0.043543070860337
211 => 0.0437076629715
212 => 0.041362566554598
213 => 0.040084833562983
214 => 0.039731173911154
215 => 0.039258245444275
216 => 0.039784592439903
217 => 0.041355923191095
218 => 0.039460564928742
219 => 0.036211106131862
220 => 0.036406404142363
221 => 0.036845180787459
222 => 0.036027523412121
223 => 0.035253679327145
224 => 0.035926473975076
225 => 0.03454963544598
226 => 0.037011565145776
227 => 0.036944976846875
228 => 0.037862631994248
301 => 0.038436460590079
302 => 0.037113971455902
303 => 0.036781369015047
304 => 0.036970834481296
305 => 0.033839392363741
306 => 0.037606726365936
307 => 0.037639306426829
308 => 0.037360336165535
309 => 0.039366325218316
310 => 0.043599587803359
311 => 0.042006864136273
312 => 0.04139011339205
313 => 0.040217669776439
314 => 0.041779881281427
315 => 0.04165992781214
316 => 0.04111745273302
317 => 0.040789362112544
318 => 0.04139387914058
319 => 0.040714455762876
320 => 0.040592412654935
321 => 0.039852964205022
322 => 0.039589014751164
323 => 0.039393597083657
324 => 0.039178461433077
325 => 0.039652997069794
326 => 0.03857763688663
327 => 0.037280857924594
328 => 0.037173044785243
329 => 0.037470726342018
330 => 0.037339024412931
331 => 0.037172414247076
401 => 0.036854310066881
402 => 0.036759935351837
403 => 0.037066607391626
404 => 0.036720392538795
405 => 0.037231251413446
406 => 0.037092326066652
407 => 0.036316300372648
408 => 0.035349085036408
409 => 0.035340474791113
410 => 0.035132089833471
411 => 0.034866680259026
412 => 0.034792849387164
413 => 0.035869813086404
414 => 0.038099095713021
415 => 0.037661434191204
416 => 0.037977689494074
417 => 0.039533352574815
418 => 0.040027851087761
419 => 0.039676867756111
420 => 0.039196420124039
421 => 0.039217557381537
422 => 0.040859392381716
423 => 0.040961791616761
424 => 0.041220521448476
425 => 0.04155306239927
426 => 0.039733500917979
427 => 0.039131856199399
428 => 0.038846763553757
429 => 0.037968788549921
430 => 0.038915609319671
501 => 0.038363937404045
502 => 0.038438376793259
503 => 0.038389898043379
504 => 0.038416370718932
505 => 0.037010876986251
506 => 0.037522965031864
507 => 0.036671519334922
508 => 0.035531529125982
509 => 0.035527707479069
510 => 0.035806718467684
511 => 0.035640751813955
512 => 0.035194139816162
513 => 0.035257578942499
514 => 0.034701785441999
515 => 0.035325062336426
516 => 0.035342935687567
517 => 0.03510294013309
518 => 0.036063184184592
519 => 0.036456596955978
520 => 0.036298626740818
521 => 0.036445513344566
522 => 0.037679621003359
523 => 0.037880834399635
524 => 0.037970200098849
525 => 0.037850461900588
526 => 0.036468070567085
527 => 0.036529385501108
528 => 0.036079497198347
529 => 0.035699388990576
530 => 0.035714591325482
531 => 0.035910016354884
601 => 0.036763448919812
602 => 0.038559447440106
603 => 0.038627604271093
604 => 0.038710212338525
605 => 0.038374203812792
606 => 0.038272860426262
607 => 0.038406558512042
608 => 0.039081041127148
609 => 0.040815993533445
610 => 0.040202745479485
611 => 0.03970416526584
612 => 0.040141554529467
613 => 0.040074221880702
614 => 0.039505866563943
615 => 0.039489914723168
616 => 0.038399059156121
617 => 0.037995794690563
618 => 0.037658796719321
619 => 0.03729080373228
620 => 0.037072645154325
621 => 0.037407835881364
622 => 0.037484497966498
623 => 0.036751597583696
624 => 0.03665170596968
625 => 0.03725020824303
626 => 0.036986829706942
627 => 0.037257721062782
628 => 0.037320570180999
629 => 0.037310450025428
630 => 0.037035452584921
701 => 0.037210727752959
702 => 0.036796149728507
703 => 0.036345358394521
704 => 0.036057781608731
705 => 0.035806832721603
706 => 0.035946073749416
707 => 0.03544970490967
708 => 0.035290906527904
709 => 0.037151348469843
710 => 0.038525676935476
711 => 0.038505693655292
712 => 0.038384050576453
713 => 0.038203313635697
714 => 0.039067819094191
715 => 0.038766642678784
716 => 0.038985773685124
717 => 0.039041551723137
718 => 0.039210375044932
719 => 0.039270714871619
720 => 0.039088326006667
721 => 0.038476206698965
722 => 0.036950863582728
723 => 0.036240812244534
724 => 0.03600648347609
725 => 0.036015000881769
726 => 0.035780052809762
727 => 0.035849255546602
728 => 0.035755986922033
729 => 0.035579358711204
730 => 0.035935167455123
731 => 0.035976171098272
801 => 0.035893121085843
802 => 0.035912682370225
803 => 0.035225063738441
804 => 0.035277341889586
805 => 0.034986250500822
806 => 0.034931674374588
807 => 0.034195820692021
808 => 0.032892149229655
809 => 0.033614509770256
810 => 0.032741999816473
811 => 0.032411567076292
812 => 0.033975784275475
813 => 0.033818780253308
814 => 0.033550057615367
815 => 0.033152560827148
816 => 0.033005125401797
817 => 0.032109354429749
818 => 0.032056427501968
819 => 0.032500395783566
820 => 0.032295519697624
821 => 0.032007796080321
822 => 0.030965690304524
823 => 0.029794018383164
824 => 0.029829383793602
825 => 0.030202070832056
826 => 0.031285708660055
827 => 0.030862312613531
828 => 0.030555133923868
829 => 0.030497608589052
830 => 0.031217658591724
831 => 0.032236680200646
901 => 0.032714782340228
902 => 0.03224099764008
903 => 0.031696739286929
904 => 0.031729865771035
905 => 0.031950241428865
906 => 0.031973399794559
907 => 0.031619143557321
908 => 0.031718864613036
909 => 0.031567379210721
910 => 0.030637713576332
911 => 0.030620898873008
912 => 0.030392743933445
913 => 0.03038583549255
914 => 0.029997687024437
915 => 0.029943382370605
916 => 0.02917269002824
917 => 0.029679962061856
918 => 0.029339710614683
919 => 0.028826871426592
920 => 0.028738457757264
921 => 0.028735799935601
922 => 0.029262371113027
923 => 0.029673808771063
924 => 0.029345629434281
925 => 0.029270909360785
926 => 0.03006872426207
927 => 0.029967195043637
928 => 0.029879271395267
929 => 0.032145437992294
930 => 0.030351590299563
1001 => 0.029569370316285
1002 => 0.028601224547434
1003 => 0.028916457691586
1004 => 0.028982881946798
1005 => 0.026654665894101
1006 => 0.025710108931483
1007 => 0.02538597257679
1008 => 0.025199427522049
1009 => 0.02528443844598
1010 => 0.024434226394142
1011 => 0.025005582954187
1012 => 0.024269371183931
1013 => 0.024145942884807
1014 => 0.025462380729162
1015 => 0.025645555364686
1016 => 0.024864075461643
1017 => 0.025365912069501
1018 => 0.025183939139441
1019 => 0.024281991421676
1020 => 0.024247543653136
1021 => 0.023794977993356
1022 => 0.023086800369782
1023 => 0.022763144192866
1024 => 0.022594581245816
1025 => 0.022664133602995
1026 => 0.022628965802868
1027 => 0.022399472118623
1028 => 0.022642120112213
1029 => 0.022022254757663
1030 => 0.021775419378887
1031 => 0.021663929564831
1101 => 0.021113763384549
1102 => 0.021989322437388
1103 => 0.0221618186008
1104 => 0.02233465463494
1105 => 0.023839074311959
1106 => 0.023763917756341
1107 => 0.024443296416401
1108 => 0.024416897010968
1109 => 0.024223127211915
1110 => 0.023405644303292
1111 => 0.023731478420437
1112 => 0.022728611653729
1113 => 0.023480027623658
1114 => 0.023137112754864
1115 => 0.023364087761578
1116 => 0.022955966233995
1117 => 0.023181837538284
1118 => 0.022202723840331
1119 => 0.021288441245683
1120 => 0.021656375251342
1121 => 0.022056361593851
1122 => 0.022923633899034
1123 => 0.022407093668908
1124 => 0.02259286106821
1125 => 0.021970571377635
1126 => 0.020686609997719
1127 => 0.020693877079691
1128 => 0.02049636759401
1129 => 0.020325690561525
1130 => 0.02246642452801
1201 => 0.022200190419281
1202 => 0.021775981210881
1203 => 0.022343802093728
1204 => 0.022493942947682
1205 => 0.022498217246721
1206 => 0.022912484705268
1207 => 0.023133579322156
1208 => 0.023172548206662
1209 => 0.023824407003526
1210 => 0.02404290147401
1211 => 0.024942849275437
1212 => 0.023114820988616
1213 => 0.023077173949016
1214 => 0.022351792498005
1215 => 0.021891744113947
1216 => 0.02238329240445
1217 => 0.022818737086803
1218 => 0.022365322978083
1219 => 0.022424529288588
1220 => 0.021815857892926
1221 => 0.022033429276224
1222 => 0.022220831061551
1223 => 0.022117358810661
1224 => 0.021962455842965
1225 => 0.022783035588596
1226 => 0.022736735263469
1227 => 0.023500877987647
1228 => 0.024096581885514
1229 => 0.025164189765301
1230 => 0.024050085287086
1231 => 0.024009482891735
]
'min_raw' => 0.020325690561525
'max_raw' => 0.058767548900565
'avg_raw' => 0.039546619731045
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020325'
'max' => '$0.058767'
'avg' => '$0.039546'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035740312956008
'max_diff' => -0.019851708034187
'year' => 2030
]
5 => [
'items' => [
101 => 0.024406377819114
102 => 0.024042840711465
103 => 0.024272583614625
104 => 0.02512717463179
105 => 0.025145230793336
106 => 0.024842766823393
107 => 0.024824361863334
108 => 0.024882453377355
109 => 0.02522269718943
110 => 0.025103805546855
111 => 0.025241389965611
112 => 0.025413441388033
113 => 0.026125119019462
114 => 0.026296702087026
115 => 0.025879844188466
116 => 0.025917481789346
117 => 0.025761565492279
118 => 0.025610952302938
119 => 0.025949508757287
120 => 0.026568227331953
121 => 0.026564378315811
122 => 0.026707908998963
123 => 0.026797327425494
124 => 0.026413478080533
125 => 0.026163606271495
126 => 0.026259423022837
127 => 0.026412636094849
128 => 0.026209738088537
129 => 0.02495735760208
130 => 0.025337249839296
131 => 0.025274017195242
201 => 0.025183966220757
202 => 0.025565950802897
203 => 0.025529107458092
204 => 0.024425506240674
205 => 0.024496155209988
206 => 0.024429802638495
207 => 0.024644201371448
208 => 0.024031262476289
209 => 0.024219798352233
210 => 0.024338046286211
211 => 0.024407695227748
212 => 0.024659314963305
213 => 0.024629790291521
214 => 0.024657479668252
215 => 0.025030565310936
216 => 0.026917504464096
217 => 0.027020206398906
218 => 0.026514464510434
219 => 0.026716498419561
220 => 0.026328637493996
221 => 0.02658901113177
222 => 0.026767152161962
223 => 0.025962167101076
224 => 0.02591450111008
225 => 0.025525039344506
226 => 0.025734314037083
227 => 0.025401342953809
228 => 0.025483042410811
301 => 0.025254603606604
302 => 0.025665747972464
303 => 0.02612547125887
304 => 0.026241615516039
305 => 0.025936089978674
306 => 0.025714869354508
307 => 0.025326478813075
308 => 0.025972380939325
309 => 0.026161262404551
310 => 0.025971388825398
311 => 0.025927390968288
312 => 0.025844015108568
313 => 0.025945079551071
314 => 0.026160233715527
315 => 0.026058770984843
316 => 0.026125788906003
317 => 0.025870385699121
318 => 0.026413605150638
319 => 0.027276368372528
320 => 0.027279142297362
321 => 0.027177679019756
322 => 0.027136162432617
323 => 0.027240269912747
324 => 0.027296743950005
325 => 0.0276334084507
326 => 0.02799466287325
327 => 0.02968047963564
328 => 0.029207109034666
329 => 0.030702865955946
330 => 0.031885815480951
331 => 0.032240530319387
401 => 0.031914209358649
402 => 0.030797882979477
403 => 0.030743110681598
404 => 0.032411373592922
405 => 0.031940012909191
406 => 0.031883946055718
407 => 0.031287489461215
408 => 0.031640069181153
409 => 0.03156295482437
410 => 0.031441226039625
411 => 0.03211392358435
412 => 0.033373153335953
413 => 0.033176890570184
414 => 0.033030389519905
415 => 0.032388464563397
416 => 0.032775046766345
417 => 0.032637392248369
418 => 0.033228843415306
419 => 0.03287848084626
420 => 0.031936441888416
421 => 0.032086464697453
422 => 0.032063789051671
423 => 0.032530452235053
424 => 0.032390371530694
425 => 0.03203643604593
426 => 0.033368849425558
427 => 0.033282329911957
428 => 0.033404994801128
429 => 0.033458995678879
430 => 0.034270012223301
501 => 0.034602259751916
502 => 0.034677685757723
503 => 0.034993295212961
504 => 0.034669833106963
505 => 0.035963912155528
506 => 0.036824399211218
507 => 0.03782389920666
508 => 0.039284437340274
509 => 0.039833613189246
510 => 0.039734409487611
511 => 0.040841772831626
512 => 0.042831680145516
513 => 0.040136626649376
514 => 0.042974524524913
515 => 0.042076078822624
516 => 0.039945880224847
517 => 0.039808720548542
518 => 0.041251315771071
519 => 0.044450853129996
520 => 0.043649405310438
521 => 0.044452164011518
522 => 0.043515703345669
523 => 0.043469200180499
524 => 0.044406682207197
525 => 0.046597160062062
526 => 0.04555654614205
527 => 0.044064570918712
528 => 0.045166222205919
529 => 0.044211869907927
530 => 0.04206144707416
531 => 0.043648792458394
601 => 0.042587379804951
602 => 0.042897156445026
603 => 0.045128087969347
604 => 0.044859656386028
605 => 0.045207031710938
606 => 0.044593923354867
607 => 0.044021183471983
608 => 0.042952121948357
609 => 0.042635625535308
610 => 0.042723093757527
611 => 0.042635582190401
612 => 0.042037452093115
613 => 0.041908285955555
614 => 0.041693003400722
615 => 0.041759728466435
616 => 0.041354934280217
617 => 0.042118864544356
618 => 0.042260656733111
619 => 0.042816581472854
620 => 0.042874299423544
621 => 0.044422541910636
622 => 0.043569795965904
623 => 0.044141891568173
624 => 0.044090717952733
625 => 0.039992048087788
626 => 0.040556808632307
627 => 0.041435398807956
628 => 0.041039595124727
629 => 0.040480021320439
630 => 0.040028135471027
701 => 0.039343482201467
702 => 0.040307118530771
703 => 0.041574197832506
704 => 0.042906434645635
705 => 0.044507029884996
706 => 0.044149795660553
707 => 0.042876512630986
708 => 0.042933631177559
709 => 0.043286715557151
710 => 0.042829439204481
711 => 0.042694579480983
712 => 0.043268187902054
713 => 0.043272138028
714 => 0.04274598632056
715 => 0.042161264982486
716 => 0.04215881497873
717 => 0.042054769464358
718 => 0.043534212811537
719 => 0.044347757063892
720 => 0.044441028601333
721 => 0.044341479146274
722 => 0.044379791780549
723 => 0.043906408305328
724 => 0.044988422552175
725 => 0.045981385825199
726 => 0.045715250456462
727 => 0.045316275705354
728 => 0.044998473098869
729 => 0.045640386262287
730 => 0.045611802879585
731 => 0.045972713157252
801 => 0.045956340182338
802 => 0.045834979630481
803 => 0.04571525479063
804 => 0.046189950247555
805 => 0.046053245579337
806 => 0.045916328571009
807 => 0.045641720549864
808 => 0.045679044340694
809 => 0.045280138478201
810 => 0.045095586373522
811 => 0.04232036552156
812 => 0.041578735826959
813 => 0.041812067626145
814 => 0.041888886512894
815 => 0.041566128319379
816 => 0.042028880659103
817 => 0.041956761197133
818 => 0.042237335835183
819 => 0.042062044982464
820 => 0.042069238980204
821 => 0.042584732002101
822 => 0.042734381819422
823 => 0.04265826871451
824 => 0.042711575724186
825 => 0.043940013262675
826 => 0.043765368727923
827 => 0.04367259229963
828 => 0.043698292004313
829 => 0.044012184133394
830 => 0.044100056791662
831 => 0.043727734163879
901 => 0.043903323667513
902 => 0.044650961488362
903 => 0.044912592413023
904 => 0.045747592734573
905 => 0.045392869757032
906 => 0.046043979134361
907 => 0.048045267380726
908 => 0.049644034910535
909 => 0.04817374221826
910 => 0.051109675184938
911 => 0.053395720134067
912 => 0.053307977921313
913 => 0.05290935310726
914 => 0.050306751710325
915 => 0.047911799102265
916 => 0.049915278653967
917 => 0.049920385935363
918 => 0.049748285265074
919 => 0.048679382782642
920 => 0.049711089775666
921 => 0.049792982930163
922 => 0.049747144540792
923 => 0.048927619513685
924 => 0.047676356270836
925 => 0.047920850113388
926 => 0.048321336015027
927 => 0.047563132653113
928 => 0.04732084073782
929 => 0.047771307506273
930 => 0.049222805292707
1001 => 0.048948408044136
1002 => 0.048941242423049
1003 => 0.05011523021498
1004 => 0.04927490831838
1005 => 0.04792393396372
1006 => 0.047582795122006
1007 => 0.04637198205258
1008 => 0.047208294952401
1009 => 0.047238392364806
1010 => 0.046780352336485
1011 => 0.047961101387616
1012 => 0.047950220577243
1013 => 0.049071166069988
1014 => 0.051213992844215
1015 => 0.050580253524975
1016 => 0.04984328364734
1017 => 0.049923412706997
1018 => 0.050802230716064
1019 => 0.050270877286318
1020 => 0.050461955684382
1021 => 0.050801941496023
1022 => 0.051007063377559
1023 => 0.04989389882489
1024 => 0.049634366918848
1025 => 0.049103455722405
1026 => 0.04896495090118
1027 => 0.049397366992857
1028 => 0.049283440630186
1029 => 0.047235862793837
1030 => 0.047021879517323
1031 => 0.047028442078916
1101 => 0.046490370955771
1102 => 0.045669683341109
1103 => 0.047826401391729
1104 => 0.047653186749015
1105 => 0.047461971189206
1106 => 0.047485394004222
1107 => 0.04842155221204
1108 => 0.047878533174383
1109 => 0.049322238285064
1110 => 0.049025455916056
1111 => 0.048721062199145
1112 => 0.048678985715409
1113 => 0.04856182010405
1114 => 0.048160015627296
1115 => 0.04767481257691
1116 => 0.047354439495476
1117 => 0.043681967288376
1118 => 0.044363556768226
1119 => 0.045147663335957
1120 => 0.045418333781028
1121 => 0.04495533325491
1122 => 0.048178297710088
1123 => 0.048767164373308
1124 => 0.046983448839594
1125 => 0.046649788491862
1126 => 0.048200172426937
1127 => 0.047265101387359
1128 => 0.047686163819226
1129 => 0.046776057150366
1130 => 0.048625323638167
1201 => 0.048611235325899
1202 => 0.047891828894566
1203 => 0.048499866284046
1204 => 0.048394204824558
1205 => 0.047581996735404
1206 => 0.048651072083303
1207 => 0.048651602331337
1208 => 0.047959189282424
1209 => 0.047150602430001
1210 => 0.047006046198756
1211 => 0.046897142496911
1212 => 0.04765938018449
1213 => 0.048342800111719
1214 => 0.049614475162122
1215 => 0.049934204484048
1216 => 0.051182129313109
1217 => 0.05043905083776
1218 => 0.050768447901405
1219 => 0.051126055010051
1220 => 0.051297505008502
1221 => 0.05101813643654
1222 => 0.052956677362424
1223 => 0.053120349611928
1224 => 0.053175227501427
1225 => 0.052521562408297
1226 => 0.053102170003217
1227 => 0.052830522937256
1228 => 0.053537273137157
1229 => 0.053648100592741
1230 => 0.053554233680662
1231 => 0.053589412064357
]
'min_raw' => 0.024031262476289
'max_raw' => 0.053648100592741
'avg_raw' => 0.038839681534515
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.024031'
'max' => '$0.053648'
'avg' => '$0.038839'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.003705571914764
'max_diff' => -0.0051194483078243
'year' => 2031
]
6 => [
'items' => [
101 => 0.051935209366168
102 => 0.051849430229653
103 => 0.050679825616654
104 => 0.051156448141732
105 => 0.050265425176211
106 => 0.050547977737132
107 => 0.050672524213726
108 => 0.050607468202303
109 => 0.051183395664181
110 => 0.050693739667378
111 => 0.049401456984914
112 => 0.048108822220898
113 => 0.048092594244393
114 => 0.047752266327926
115 => 0.047506271578488
116 => 0.047553658894362
117 => 0.047720657976328
118 => 0.047496565288256
119 => 0.047544386825044
120 => 0.048338542968956
121 => 0.048497805319955
122 => 0.047956569623443
123 => 0.045783430202008
124 => 0.04525013633708
125 => 0.045633457391513
126 => 0.045450254616532
127 => 0.036681902722473
128 => 0.03874189693718
129 => 0.037517918325595
130 => 0.038081983982362
131 => 0.036832618767658
201 => 0.037428881332956
202 => 0.037318773409168
203 => 0.040631183146756
204 => 0.040579464424775
205 => 0.040604219440093
206 => 0.039422598060076
207 => 0.04130495300296
208 => 0.04223226873512
209 => 0.042060647272806
210 => 0.042103840697431
211 => 0.04136163455571
212 => 0.040611405617928
213 => 0.039779286266521
214 => 0.041325261168374
215 => 0.041153375149959
216 => 0.041547619833565
217 => 0.042550295065984
218 => 0.042697942802751
219 => 0.042896382858261
220 => 0.042825256224286
221 => 0.044519781208359
222 => 0.044314563051952
223 => 0.0448090797636
224 => 0.043791821368667
225 => 0.042640696935746
226 => 0.042859488057352
227 => 0.042838416712934
228 => 0.042570154313934
229 => 0.042327979014939
301 => 0.041924825374579
302 => 0.043200463148189
303 => 0.043148674584168
304 => 0.043987071238039
305 => 0.043838876485716
306 => 0.042849195660301
307 => 0.042884542304595
308 => 0.043122265474489
309 => 0.043945028079765
310 => 0.044189280038961
311 => 0.044076132799704
312 => 0.044343943922436
313 => 0.044555610914305
314 => 0.044370526037733
315 => 0.046990937580537
316 => 0.045902760013509
317 => 0.046433130188187
318 => 0.046559620349726
319 => 0.046235618460747
320 => 0.046305882868829
321 => 0.046412314301167
322 => 0.047058545116916
323 => 0.048754441765835
324 => 0.049505542847282
325 => 0.051765267509491
326 => 0.0494431743583
327 => 0.049305390960485
328 => 0.049712435609296
329 => 0.05103913320216
330 => 0.052114296990809
331 => 0.05247099084719
401 => 0.052518133828685
402 => 0.053187315215816
403 => 0.053570877507426
404 => 0.053106058994201
405 => 0.052712173972769
406 => 0.051301326716811
407 => 0.051464636128298
408 => 0.05258967602729
409 => 0.054178861149136
410 => 0.055542547310211
411 => 0.055065031945863
412 => 0.058708137102523
413 => 0.059069336098056
414 => 0.059019430075835
415 => 0.059842295141276
416 => 0.058209075559932
417 => 0.057510842546768
418 => 0.052797336385188
419 => 0.054121639355174
420 => 0.056046591495636
421 => 0.055791816861645
422 => 0.054393865163124
423 => 0.05554148683849
424 => 0.055162047223166
425 => 0.054862767455596
426 => 0.056233826089072
427 => 0.054726290801581
428 => 0.056031552677938
429 => 0.054357540820305
430 => 0.055067213195825
501 => 0.054664368832489
502 => 0.054925058506316
503 => 0.053401071999891
504 => 0.054223378126077
505 => 0.05336686136155
506 => 0.053366455261082
507 => 0.053347547606033
508 => 0.054355235781121
509 => 0.054388096456334
510 => 0.053643413372411
511 => 0.053536092905882
512 => 0.053932912919574
513 => 0.053468340610866
514 => 0.053685711070128
515 => 0.053474924540639
516 => 0.053427472053007
517 => 0.053049362558184
518 => 0.052886462591477
519 => 0.052950339865838
520 => 0.052732293797452
521 => 0.052600913154179
522 => 0.053321412689283
523 => 0.052936478852545
524 => 0.053262416058074
525 => 0.052890969475819
526 => 0.05160337379015
527 => 0.050862863895245
528 => 0.0484307150052
529 => 0.049120469413345
530 => 0.049577777299548
531 => 0.049426637045886
601 => 0.049751344794266
602 => 0.04977127921285
603 => 0.049665713413848
604 => 0.04954348174242
605 => 0.049483986124604
606 => 0.049927417715957
607 => 0.050184844679958
608 => 0.049623674263919
609 => 0.049492199887049
610 => 0.050059574160733
611 => 0.050405672139919
612 => 0.05296106516257
613 => 0.052771753393641
614 => 0.053246888783094
615 => 0.053193395829788
616 => 0.053691413412938
617 => 0.054505461683454
618 => 0.052850273938019
619 => 0.053137557298541
620 => 0.053067122052883
621 => 0.053836115595866
622 => 0.053838516309769
623 => 0.053377466266674
624 => 0.053627408974718
625 => 0.053487897811907
626 => 0.053740013339171
627 => 0.052769225019549
628 => 0.053951540402725
629 => 0.054621837038266
630 => 0.054631144107701
701 => 0.054948859393144
702 => 0.055271676523982
703 => 0.055891295895181
704 => 0.055254395676019
705 => 0.054108674182733
706 => 0.054191391573891
707 => 0.05351965548158
708 => 0.053530947486651
709 => 0.053470669878613
710 => 0.053651567517822
711 => 0.052808921878599
712 => 0.053006689125868
713 => 0.052729813821568
714 => 0.053136955425702
715 => 0.052698938362572
716 => 0.053067088086875
717 => 0.053225969303527
718 => 0.053812244413442
719 => 0.052612345052151
720 => 0.050165669028434
721 => 0.050679989991699
722 => 0.04991926888799
723 => 0.049989676522408
724 => 0.050131911149223
725 => 0.04967088218744
726 => 0.049758831984656
727 => 0.049755689799006
728 => 0.049728612140622
729 => 0.049608680701879
730 => 0.049434756387989
731 => 0.050127617323445
801 => 0.050245347897661
802 => 0.050507048380409
803 => 0.051285691503935
804 => 0.051207886694225
805 => 0.051334789566952
806 => 0.051057761308319
807 => 0.050002527068789
808 => 0.050059831364881
809 => 0.049345245874381
810 => 0.05048877482281
811 => 0.050217972073977
812 => 0.050043383780129
813 => 0.049995745746603
814 => 0.050776318975825
815 => 0.051009878719995
816 => 0.05086433996104
817 => 0.050565835720379
818 => 0.051139052107304
819 => 0.051292420630388
820 => 0.051326754186693
821 => 0.052342383720984
822 => 0.051383516595423
823 => 0.051614325442865
824 => 0.053415030183318
825 => 0.051782039463996
826 => 0.052647071068059
827 => 0.052604732272448
828 => 0.053047253170013
829 => 0.05256843264263
830 => 0.052574368196928
831 => 0.052967296775004
901 => 0.052415499452139
902 => 0.052278866675054
903 => 0.052090109472094
904 => 0.052502253919213
905 => 0.052749315875571
906 => 0.054740453796803
907 => 0.05602681970084
908 => 0.055970975164397
909 => 0.056481289690894
910 => 0.056251388322762
911 => 0.055508976160146
912 => 0.056776183194212
913 => 0.05637518586644
914 => 0.056408243598929
915 => 0.056407013188475
916 => 0.056673641355649
917 => 0.056484710863094
918 => 0.05611230946895
919 => 0.056359526893628
920 => 0.057093674263076
921 => 0.059372490224234
922 => 0.060647745826393
923 => 0.059295718235725
924 => 0.060228328763397
925 => 0.059669094769903
926 => 0.059567465317514
927 => 0.060153213648269
928 => 0.060739987253936
929 => 0.060702612311947
930 => 0.060276644805391
1001 => 0.060036026569463
1002 => 0.061858068464935
1003 => 0.063200517895845
1004 => 0.063108971844552
1005 => 0.063513026342588
1006 => 0.064699342845758
1007 => 0.064807804759405
1008 => 0.064794141051254
1009 => 0.064525306881449
1010 => 0.065693389541483
1011 => 0.066667824646943
1012 => 0.064463079538505
1013 => 0.065302617613565
1014 => 0.065679513303687
1015 => 0.066232907996699
1016 => 0.067166577603529
1017 => 0.068180790440179
1018 => 0.068324211255559
1019 => 0.068222447323729
1020 => 0.067553546694454
1021 => 0.068663310482392
1022 => 0.069313384082203
1023 => 0.069700488034221
1024 => 0.070682119248581
1025 => 0.065681840883159
1026 => 0.062142395326153
1027 => 0.061589659792214
1028 => 0.062713669235732
1029 => 0.06301006156218
1030 => 0.062890586187033
1031 => 0.058906618420312
1101 => 0.061568685026423
1102 => 0.064432844861681
1103 => 0.064542868905611
1104 => 0.065976727205899
1105 => 0.066443650244311
1106 => 0.067598094116146
1107 => 0.067525883337642
1108 => 0.067806972049219
1109 => 0.067742354622206
1110 => 0.069880718797943
1111 => 0.072239652033935
1112 => 0.072157969676921
1113 => 0.071818845114616
1114 => 0.072322502918969
1115 => 0.074757174817161
1116 => 0.074533029243598
1117 => 0.07475076757564
1118 => 0.077621382955704
1119 => 0.081353591290063
1120 => 0.079619605811163
1121 => 0.083381855359495
1122 => 0.085749992021891
1123 => 0.089845439509604
1124 => 0.089332669313639
1125 => 0.090926996966823
1126 => 0.088414703644491
1127 => 0.082645970358163
1128 => 0.081733046233778
1129 => 0.083560743449718
1130 => 0.08805395871102
1201 => 0.083419236111144
1202 => 0.084356834456824
1203 => 0.084086806070192
1204 => 0.084072417405015
1205 => 0.084621574231884
1206 => 0.083824993612417
1207 => 0.080579580866592
1208 => 0.082066934402667
1209 => 0.081492595773805
1210 => 0.082129867302308
1211 => 0.085568958910868
1212 => 0.08404845453302
1213 => 0.082446726686701
1214 => 0.084455648857848
1215 => 0.087013697122271
1216 => 0.086853619059138
1217 => 0.086543000709221
1218 => 0.088293940084258
1219 => 0.091185978954717
1220 => 0.091967685440249
1221 => 0.092544725186584
1222 => 0.092624289218437
1223 => 0.093443848195293
1224 => 0.089036873021279
1225 => 0.09603085580159
1226 => 0.097238523422874
1227 => 0.097011531962767
1228 => 0.098353803697403
1229 => 0.097958873302925
1230 => 0.097386681124009
1231 => 0.099514467332791
]
'min_raw' => 0.036681902722473
'max_raw' => 0.099514467332791
'avg_raw' => 0.068098185027632
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036681'
'max' => '$0.099514'
'avg' => '$0.068098'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012650640246185
'max_diff' => 0.045866366740051
'year' => 2032
]
7 => [
'items' => [
101 => 0.097075132147915
102 => 0.093612802956743
103 => 0.091713300685359
104 => 0.094214718504794
105 => 0.095742247079672
106 => 0.096751846298602
107 => 0.097057350412234
108 => 0.089378973958988
109 => 0.08524075491297
110 => 0.08789330587669
111 => 0.091129601121716
112 => 0.089018895237788
113 => 0.089101630912343
114 => 0.08609231900561
115 => 0.09139585845122
116 => 0.090623177363782
117 => 0.094631848212257
118 => 0.093675146742675
119 => 0.0969440622039
120 => 0.096083247209673
121 => 0.099656442123194
122 => 0.10108188631459
123 => 0.10347542896461
124 => 0.10523612868144
125 => 0.10627004523198
126 => 0.10620797276041
127 => 0.11030486522883
128 => 0.10788907087472
129 => 0.10485426380695
130 => 0.10479937372179
131 => 0.10637114330574
201 => 0.10966514115976
202 => 0.11051922687759
203 => 0.11099654427734
204 => 0.11026551606409
205 => 0.10764334443425
206 => 0.10651110401919
207 => 0.10747580565698
208 => 0.10629605845172
209 => 0.1083326331066
210 => 0.11112928509662
211 => 0.11055178751984
212 => 0.11248227533574
213 => 0.11448012713195
214 => 0.11733714492968
215 => 0.11808407517706
216 => 0.11931872247278
217 => 0.12058958010058
218 => 0.12099774532006
219 => 0.12177705937027
220 => 0.12177295200055
221 => 0.12412146734474
222 => 0.12671195249686
223 => 0.12768980067191
224 => 0.12993830863158
225 => 0.12608781754776
226 => 0.12900845926609
227 => 0.13164295120443
228 => 0.12850200130819
301 => 0.1328310689927
302 => 0.13299915688101
303 => 0.13553708443137
304 => 0.13296440865099
305 => 0.13143676198487
306 => 0.13584702066978
307 => 0.13798100592557
308 => 0.13733823219958
309 => 0.13244669240714
310 => 0.12959960643993
311 => 0.12214823330188
312 => 0.13097470665927
313 => 0.1352738243599
314 => 0.13243555873089
315 => 0.13386701482211
316 => 0.1416765751046
317 => 0.14464995002859
318 => 0.14403150882986
319 => 0.14413601521204
320 => 0.14574039435045
321 => 0.15285509499791
322 => 0.14859180145248
323 => 0.1518509296254
324 => 0.15357955945665
325 => 0.15518520718151
326 => 0.15124224383944
327 => 0.14611250646504
328 => 0.14448770330684
329 => 0.13215334915019
330 => 0.13151129245095
331 => 0.13115088656935
401 => 0.12887857846634
402 => 0.12709316673495
403 => 0.12567334103805
404 => 0.12194729441356
405 => 0.12320472577008
406 => 0.11726618513701
407 => 0.12106545298509
408 => 0.11158739874363
409 => 0.11948100395782
410 => 0.11518487351792
411 => 0.11806960956426
412 => 0.11805954499195
413 => 0.11274783132425
414 => 0.10968414573336
415 => 0.11163644543231
416 => 0.11372946568332
417 => 0.11406905117728
418 => 0.11678270656613
419 => 0.11754002945533
420 => 0.11524530574502
421 => 0.11139098713646
422 => 0.11228625744158
423 => 0.10966600310921
424 => 0.10507410817834
425 => 0.10837208728448
426 => 0.10949816235322
427 => 0.10999550125466
428 => 0.10547989997285
429 => 0.10406100001164
430 => 0.10330558957801
501 => 0.11080807971547
502 => 0.11121908306112
503 => 0.10911633183478
504 => 0.11862096676886
505 => 0.11646977515692
506 => 0.1188731832422
507 => 0.11220502104517
508 => 0.11245975382097
509 => 0.10930293897486
510 => 0.11107054435024
511 => 0.1098212578435
512 => 0.11092773930372
513 => 0.11159095972879
514 => 0.11474725657265
515 => 0.11951704379775
516 => 0.1142758110774
517 => 0.11199213092531
518 => 0.11340891324776
519 => 0.11718199127384
520 => 0.12289839762367
521 => 0.11951417001117
522 => 0.12101603275769
523 => 0.12134412295458
524 => 0.11884871880404
525 => 0.12299040673411
526 => 0.12520997094284
527 => 0.12748678454691
528 => 0.12946367800445
529 => 0.12657737512524
530 => 0.12966613294126
531 => 0.1271771393807
601 => 0.12494425484945
602 => 0.12494764121359
603 => 0.1235469201299
604 => 0.12083284652804
605 => 0.1203323297145
606 => 0.12293608138685
607 => 0.12502404365188
608 => 0.1251960182247
609 => 0.12635202141799
610 => 0.1270361322
611 => 0.13374134786723
612 => 0.13643824107704
613 => 0.13973595104442
614 => 0.14102059492547
615 => 0.14488691243709
616 => 0.1417645470395
617 => 0.14108900364513
618 => 0.13171058202475
619 => 0.1332462980397
620 => 0.13570512755419
621 => 0.1317511272178
622 => 0.13425903034582
623 => 0.13475414354794
624 => 0.13161677179939
625 => 0.13329257760812
626 => 0.12884213422192
627 => 0.11961405130191
628 => 0.12300068022838
629 => 0.12549437904524
630 => 0.12193556336274
701 => 0.12831460272843
702 => 0.1245880996211
703 => 0.12340697703976
704 => 0.11879899674939
705 => 0.12097378606902
706 => 0.1239152197638
707 => 0.1220977557188
708 => 0.12586926650578
709 => 0.13121073160535
710 => 0.13501737772504
711 => 0.1353096047468
712 => 0.13286218631732
713 => 0.13678418996977
714 => 0.13681275748463
715 => 0.13238872134281
716 => 0.12967902383907
717 => 0.12906337486497
718 => 0.13060138670737
719 => 0.13246881701668
720 => 0.13541323413231
721 => 0.13719248372876
722 => 0.14183182303523
723 => 0.14308709523128
724 => 0.14446625879999
725 => 0.14630924664608
726 => 0.1485222260877
727 => 0.14368035305443
728 => 0.14387272969643
729 => 0.13936404456815
730 => 0.13454586789773
731 => 0.13820226339638
801 => 0.14298251412095
802 => 0.14188591932302
803 => 0.14176253000686
804 => 0.14197003661131
805 => 0.14114323994511
806 => 0.13740366926642
807 => 0.13552568028253
808 => 0.13794876519783
809 => 0.13923652699121
810 => 0.14123373322812
811 => 0.14098753540351
812 => 0.14613212418548
813 => 0.14813115582187
814 => 0.1476197179859
815 => 0.14771383485615
816 => 0.15133298614763
817 => 0.15535822671899
818 => 0.15912839569134
819 => 0.16296357350255
820 => 0.1583401169616
821 => 0.15599261086527
822 => 0.1584146379375
823 => 0.15712947628048
824 => 0.16451439636545
825 => 0.1650257122093
826 => 0.1724100982805
827 => 0.1794187599784
828 => 0.17501674513916
829 => 0.17916764686146
830 => 0.1836571855021
831 => 0.1923182339413
901 => 0.18940149752634
902 => 0.18716732314356
903 => 0.18505603914729
904 => 0.18944928598663
905 => 0.19510112786162
906 => 0.19631848046882
907 => 0.19829105675698
908 => 0.19621713398513
909 => 0.19871494552872
910 => 0.20753331787159
911 => 0.20515051582262
912 => 0.20176655385854
913 => 0.20872781189775
914 => 0.21124706412094
915 => 0.22892849556589
916 => 0.25125203314863
917 => 0.24200994200512
918 => 0.23627307779193
919 => 0.23762137696227
920 => 0.24577317718805
921 => 0.24839127669537
922 => 0.24127437972147
923 => 0.24378818804831
924 => 0.2576395190814
925 => 0.26507031377675
926 => 0.25497829649159
927 => 0.22713482105706
928 => 0.20146186510841
929 => 0.20827148909426
930 => 0.2074994890615
1001 => 0.22238101626782
1002 => 0.2050936867818
1003 => 0.20538476107451
1004 => 0.22057402250365
1005 => 0.21652178796422
1006 => 0.20995768698133
1007 => 0.20150979030985
1008 => 0.18589307197675
1009 => 0.17206090904471
1010 => 0.19918896591131
1011 => 0.19801915477005
1012 => 0.19632509488121
1013 => 0.2000950418474
1014 => 0.2184008341971
1015 => 0.21797882643337
1016 => 0.21529422835078
1017 => 0.21733047233546
1018 => 0.20960072356573
1019 => 0.21159285582679
1020 => 0.20145779838102
1021 => 0.20603926762389
1022 => 0.20994360336871
1023 => 0.21072745657416
1024 => 0.21249351787058
1025 => 0.19740271745524
1026 => 0.2041780437991
1027 => 0.2081579132639
1028 => 0.19017671823307
1029 => 0.20780248285209
1030 => 0.19714002019401
1031 => 0.19352102022304
1101 => 0.19839352691696
1102 => 0.19649470631967
1103 => 0.19486221187261
1104 => 0.19395125192133
1105 => 0.19752908307841
1106 => 0.1973621729785
1107 => 0.19150814677842
1108 => 0.18387180824106
1109 => 0.18643481410847
1110 => 0.18550365004853
1111 => 0.18212899137276
1112 => 0.18440310386239
1113 => 0.17438906336008
1114 => 0.15716042716038
1115 => 0.1685421919613
1116 => 0.16810400639744
1117 => 0.16788305336601
1118 => 0.17643613504503
1119 => 0.17561395359476
1120 => 0.17412168621169
1121 => 0.18210158471202
1122 => 0.17918881441462
1123 => 0.18816528613622
1124 => 0.19407777097385
1125 => 0.19257817357018
1126 => 0.19813889413749
1127 => 0.18649386058711
1128 => 0.19036187361489
1129 => 0.19115906573908
1130 => 0.18200311400322
1201 => 0.17574847264811
1202 => 0.17533135937786
1203 => 0.16448667321077
1204 => 0.17027981702598
1205 => 0.17537754384678
1206 => 0.1729361282992
1207 => 0.17216324907205
1208 => 0.17611172142651
1209 => 0.17641855154483
1210 => 0.16942279233073
1211 => 0.17087743219822
1212 => 0.17694352225942
1213 => 0.17072458229267
1214 => 0.15864219779533
1215 => 0.15564559938796
1216 => 0.15524579792215
1217 => 0.14711878537813
1218 => 0.15584584642233
1219 => 0.15203625040584
1220 => 0.16407071857596
1221 => 0.15719669489934
1222 => 0.15690036947757
1223 => 0.15645243014109
1224 => 0.1494571747218
1225 => 0.15098869108695
1226 => 0.15607968474124
1227 => 0.15789620863124
1228 => 0.15770673030717
1229 => 0.15605473609495
1230 => 0.15681101058573
1231 => 0.15437478694744
]
'min_raw' => 0.08524075491297
'max_raw' => 0.26507031377675
'avg_raw' => 0.17515553434486
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.08524'
'max' => '$0.26507'
'avg' => '$0.175155'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.048558852190496
'max_diff' => 0.16555584644396
'year' => 2033
]
8 => [
'items' => [
101 => 0.15351450567515
102 => 0.1507992213408
103 => 0.14680850348575
104 => 0.14736343727999
105 => 0.139456780981
106 => 0.13514881499131
107 => 0.13395642678344
108 => 0.13236191543854
109 => 0.13413653108268
110 => 0.13943438241713
111 => 0.13304404970592
112 => 0.12208827250227
113 => 0.12274673337994
114 => 0.12422609947329
115 => 0.12146931054532
116 => 0.11886024118476
117 => 0.12112861531328
118 => 0.11648650808464
119 => 0.12478707595394
120 => 0.12456256885515
121 => 0.12765650725315
122 => 0.12959121042743
123 => 0.12513234597831
124 => 0.12401095362741
125 => 0.12464974967492
126 => 0.11409187394528
127 => 0.12679370356054
128 => 0.12690354951051
129 => 0.12596298179748
130 => 0.13272631394261
131 => 0.14699905430504
201 => 0.14162907526104
202 => 0.13954965706673
203 => 0.1355966815593
204 => 0.14086378671849
205 => 0.14045935522191
206 => 0.13863036261825
207 => 0.13752418218476
208 => 0.13956235355082
209 => 0.13727163019706
210 => 0.13686015333786
211 => 0.13436705126234
212 => 0.13347712725029
213 => 0.13281826294067
214 => 0.13209291807444
215 => 0.13369284810466
216 => 0.13006719616787
217 => 0.12569501535915
218 => 0.12533151583255
219 => 0.12633516998468
220 => 0.12589112773563
221 => 0.1253293899291
222 => 0.12425687947625
223 => 0.12393868853545
224 => 0.12497265472875
225 => 0.12380536718049
226 => 0.1255277635434
227 => 0.12505936703722
228 => 0.1224429422295
301 => 0.11918190819455
302 => 0.11915287815139
303 => 0.11845029371773
304 => 0.11755544680718
305 => 0.11730652086799
306 => 0.12093757917119
307 => 0.12845376119037
308 => 0.12697815481301
309 => 0.12804443164688
310 => 0.13328945833652
311 => 0.13495669459771
312 => 0.13377332979017
313 => 0.13215346705486
314 => 0.13222473279427
315 => 0.13776029412663
316 => 0.13810554029687
317 => 0.13897786598844
318 => 0.14009905102131
319 => 0.13396427244941
320 => 0.13193578527523
321 => 0.13097457551591
322 => 0.12801442149222
323 => 0.13120669382235
324 => 0.12934669344231
325 => 0.12959767104024
326 => 0.12943422155034
327 => 0.12952347602423
328 => 0.12478475577606
329 => 0.12651129637469
330 => 0.12364058776141
331 => 0.11979703118039
401 => 0.11978414623101
402 => 0.12072485125905
403 => 0.12016528309858
404 => 0.11865949956656
405 => 0.11887338901019
406 => 0.11699949241899
407 => 0.11910091398435
408 => 0.1191611752356
409 => 0.11835201346773
410 => 0.12158954332947
411 => 0.1229159619554
412 => 0.12238335434586
413 => 0.12287859278569
414 => 0.12703947291995
415 => 0.12771787793377
416 => 0.12801918062798
417 => 0.12761547493269
418 => 0.12295464603631
419 => 0.12316137361724
420 => 0.12164454379428
421 => 0.12036298243347
422 => 0.120414238167
423 => 0.12107312729777
424 => 0.12395053477518
425 => 0.13000586917897
426 => 0.1302356646932
427 => 0.13051418356005
428 => 0.12938130735618
429 => 0.12903962105293
430 => 0.12949039348364
501 => 0.13176445871134
502 => 0.13761397187968
503 => 0.13554636325014
504 => 0.13386536525008
505 => 0.13534005368994
506 => 0.13511303696361
507 => 0.13319678733186
508 => 0.13314300458696
509 => 0.12946510888156
510 => 0.12810547458091
511 => 0.12696926239242
512 => 0.12572854834416
513 => 0.12499301146724
514 => 0.12612313040572
515 => 0.12638160197812
516 => 0.12391057716803
517 => 0.12357378561717
518 => 0.12559167781786
519 => 0.12470367869494
520 => 0.12561700781418
521 => 0.12582890800424
522 => 0.12579478719317
523 => 0.12486761412279
524 => 0.12545856658915
525 => 0.12406078783479
526 => 0.12254091337902
527 => 0.12157132816775
528 => 0.12072523647411
529 => 0.12119469732088
530 => 0.11952115512231
531 => 0.11898575529124
601 => 0.1252583651904
602 => 0.12989200956482
603 => 0.1298246345405
604 => 0.12941450640734
605 => 0.12880513919293
606 => 0.13171987970409
607 => 0.13070444239208
608 => 0.13144325787919
609 => 0.13163131742865
610 => 0.13220051704495
611 => 0.13240395698342
612 => 0.13178902019125
613 => 0.12972521720853
614 => 0.12458241639608
615 => 0.12218842873516
616 => 0.12139837293203
617 => 0.12142708995995
618 => 0.12063494613162
619 => 0.12086826799046
620 => 0.12055380631092
621 => 0.11995829196632
622 => 0.12115792598822
623 => 0.12129617263388
624 => 0.12101616371861
625 => 0.12108211595463
626 => 0.11876376172957
627 => 0.1189400211661
628 => 0.11795858622553
629 => 0.11777457900555
630 => 0.11529359693911
701 => 0.11089817758431
702 => 0.11333366658055
703 => 0.11039193835467
704 => 0.10927786130107
705 => 0.11455172879827
706 => 0.11402237877586
707 => 0.11311636164043
708 => 0.11177617346661
709 => 0.11127908463643
710 => 0.10825893026344
711 => 0.10808048343118
712 => 0.10957735348946
713 => 0.10888659946172
714 => 0.10791651919776
715 => 0.10440298681716
716 => 0.10045261313077
717 => 0.1005718500812
718 => 0.10182839045153
719 => 0.1054819510458
720 => 0.10405444171438
721 => 0.10301876731565
722 => 0.10282481663302
723 => 0.10525251548932
724 => 0.10868821798961
725 => 0.11030017273324
726 => 0.1087027745381
727 => 0.10686776950155
728 => 0.10697945775553
729 => 0.10772246967204
730 => 0.10780054971884
731 => 0.10660615008161
801 => 0.10694236658326
802 => 0.10643162297298
803 => 0.10329719037946
804 => 0.10324049843323
805 => 0.10247125812523
806 => 0.10244796583442
807 => 0.10113929617452
808 => 0.10095620424269
809 => 0.098357761202385
810 => 0.10006806428032
811 => 0.098920882770585
812 => 0.097191809642645
813 => 0.096893716783661
814 => 0.096884755752362
815 => 0.09866012724108
816 => 0.10004731803081
817 => 0.098940838484097
818 => 0.098688914539517
819 => 0.10137880318086
820 => 0.10103649033237
821 => 0.10074004961326
822 => 0.10838058851383
823 => 0.10233250577534
824 => 0.099695196488865
825 => 0.096431025435402
826 => 0.097493855989788
827 => 0.097717810003827
828 => 0.089868067031306
829 => 0.086683427284977
830 => 0.085590578934654
831 => 0.084961629258435
901 => 0.085248249523741
902 => 0.082381700231059
903 => 0.084308068764091
904 => 0.081825879380008
905 => 0.081409732252024
906 => 0.085848194355023
907 => 0.086465780427536
908 => 0.083830966373243
909 => 0.085522943533747
910 => 0.084909409095107
911 => 0.081868429392683
912 => 0.081752286335983
913 => 0.080226429616912
914 => 0.077838759315647
915 => 0.076747529918222
916 => 0.076179208173555
917 => 0.076413708801774
918 => 0.076295138108309
919 => 0.075521384129139
920 => 0.076339488780671
921 => 0.074249569460189
922 => 0.073417346747148
923 => 0.073041451055088
924 => 0.071186527366893
925 => 0.07413853584312
926 => 0.07472011870136
927 => 0.075302847457491
928 => 0.080375103433789
929 => 0.080121707859259
930 => 0.082412280444354
1001 => 0.08232327300579
1002 => 0.081669964599705
1003 => 0.07891376389845
1004 => 0.080012336373417
1005 => 0.076631101051538
1006 => 0.079164552456343
1007 => 0.07800839103465
1008 => 0.078773653116675
1009 => 0.077397642892294
1010 => 0.078159183764536
1011 => 0.074858033572351
1012 => 0.071775465971324
1013 => 0.073015981159735
1014 => 0.074364563039658
1015 => 0.077288632167602
1016 => 0.075547080718045
1017 => 0.076173408474657
1018 => 0.074075315336007
1019 => 0.069746349900296
1020 => 0.069770851374538
1021 => 0.069104934353892
1022 => 0.068529484822577
1023 => 0.075747118851854
1024 => 0.074849491966405
1025 => 0.073419241002943
1026 => 0.07533368875345
1027 => 0.075839899125056
1028 => 0.075854310222688
1029 => 0.077251041882409
1030 => 0.077996477819581
1031 => 0.078127864134411
1101 => 0.080325651579368
1102 => 0.081062320941401
1103 => 0.084096557786261
1104 => 0.077933232788383
1105 => 0.07780630316594
1106 => 0.075360628959342
1107 => 0.073809543712938
1108 => 0.075466833093175
1109 => 0.076934965241504
1110 => 0.075406247917593
1111 => 0.075605866127112
1112 => 0.073553688020557
1113 => 0.074287245129695
1114 => 0.0749190833329
1115 => 0.074570219414823
1116 => 0.074047953244258
1117 => 0.076814595147699
1118 => 0.07665849036895
1119 => 0.079234850914256
1120 => 0.081243308196633
1121 => 0.084842822701335
1122 => 0.081086541668743
1123 => 0.080949647858051
1124 => 0.082287806816028
1125 => 0.081062116076236
1126 => 0.081836710314378
1127 => 0.08471802359439
1128 => 0.084778901203683
1129 => 0.083759122811662
1130 => 0.08369706920383
1201 => 0.083892928799171
1202 => 0.085040084566645
1203 => 0.084639233092953
1204 => 0.085103108566627
1205 => 0.08568319194957
1206 => 0.088082662771677
1207 => 0.088661167063518
1208 => 0.087255701554432
1209 => 0.087382599353573
1210 => 0.086856916672284
1211 => 0.086349113788943
1212 => 0.087490580512037
1213 => 0.089576633384075
1214 => 0.089563656157424
1215 => 0.090047579876663
1216 => 0.090349060344709
1217 => 0.089054885478667
1218 => 0.088212425229002
1219 => 0.088535478095862
1220 => 0.089052046665147
1221 => 0.08836796187098
1222 => 0.084145473622477
1223 => 0.085426306823479
1224 => 0.085213113549289
1225 => 0.084909500401654
1226 => 0.086197388089651
1227 => 0.086073168180321
1228 => 0.08235229962482
1229 => 0.082590497557415
1230 => 0.082366785230037
1231 => 0.08308964552703
]
'min_raw' => 0.068529484822577
'max_raw' => 0.15351450567515
'avg_raw' => 0.11102199524887
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.068529'
'max' => '$0.153514'
'avg' => '$0.111021'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016711270090392
'max_diff' => -0.1115558081016
'year' => 2034
]
9 => [
'items' => [
101 => 0.081023079247973
102 => 0.081658741116875
103 => 0.08205742228209
104 => 0.082292248551215
105 => 0.083140602057173
106 => 0.083041057564908
107 => 0.083134414231767
108 => 0.084392298524082
109 => 0.090754245620847
110 => 0.091100512364479
111 => 0.089395368277724
112 => 0.090076539707903
113 => 0.088768839517776
114 => 0.089646707416238
115 => 0.090247322336938
116 => 0.0875332590019
117 => 0.087372549785324
118 => 0.086059452251338
119 => 0.086765036488456
120 => 0.085642401233899
121 => 0.085917856657253
122 => 0.085147659279783
123 => 0.086533861214461
124 => 0.088083850371435
125 => 0.088475438843414
126 => 0.087445338163076
127 => 0.086699477383568
128 => 0.085389991556568
129 => 0.087567695670664
130 => 0.088204522717957
131 => 0.087564350689291
201 => 0.087416008842213
202 => 0.08713490131005
203 => 0.087475647134043
204 => 0.088201054421091
205 => 0.087858965740689
206 => 0.088084921340922
207 => 0.087223811597237
208 => 0.089055313904398
209 => 0.091964180343203
210 => 0.091973532824451
211 => 0.091631442300063
212 => 0.091491466227926
213 => 0.091842471865738
214 => 0.092032878025245
215 => 0.093167965894501
216 => 0.094385960402108
217 => 0.10006980931647
218 => 0.098473807285609
219 => 0.10351685617612
220 => 0.10750525309057
221 => 0.10870119893376
222 => 0.10760098503163
223 => 0.10383721270483
224 => 0.10365254407845
225 => 0.10927720895838
226 => 0.10768798350383
227 => 0.10749895019288
228 => 0.10548795514124
301 => 0.10667670228334
302 => 0.1064167058455
303 => 0.1060062887489
304 => 0.10827433548718
305 => 0.11251991651132
306 => 0.1118582028939
307 => 0.11136426437451
308 => 0.10919996956588
309 => 0.11050335845342
310 => 0.11003924663534
311 => 0.11203336553847
312 => 0.11085209367539
313 => 0.10767594355796
314 => 0.10818175593289
315 => 0.10810530340997
316 => 0.10967869091413
317 => 0.10920639903926
318 => 0.10801308084139
319 => 0.11250540557694
320 => 0.11221369899623
321 => 0.11262727223426
322 => 0.11280933996382
323 => 0.1155437388667
324 => 0.11666393460621
325 => 0.11691823865087
326 => 0.11798233796435
327 => 0.11689176289057
328 => 0.12125484075252
329 => 0.12415603293807
330 => 0.12752591695557
331 => 0.13245022324456
401 => 0.1343018079616
402 => 0.13396733575536
403 => 0.13770088858335
404 => 0.14441000002302
405 => 0.13532343899816
406 => 0.14489160982123
407 => 0.14186243740849
408 => 0.13468032411037
409 => 0.13421788068552
410 => 0.13908169119706
411 => 0.14986915478724
412 => 0.1471670175083
413 => 0.14987357451581
414 => 0.14671623199931
415 => 0.14655944333119
416 => 0.14972022943711
417 => 0.15710557845907
418 => 0.1535970759744
419 => 0.14856677734253
420 => 0.15228107157219
421 => 0.14906340616876
422 => 0.14181310544699
423 => 0.14716495123485
424 => 0.1435863243683
425 => 0.14463075793823
426 => 0.15215249933114
427 => 0.15124746350668
428 => 0.15241866366759
429 => 0.15035152603924
430 => 0.14842049353667
501 => 0.14481607797028
502 => 0.14374898821661
503 => 0.14404389343465
504 => 0.14374884207623
505 => 0.14173220469312
506 => 0.14129671204224
507 => 0.14057087187807
508 => 0.14079584009572
509 => 0.13943104823506
510 => 0.14200669245651
511 => 0.14248475472051
512 => 0.14435909379398
513 => 0.14455369389447
514 => 0.14977370153454
515 => 0.14689860904506
516 => 0.14882746931055
517 => 0.14865493389326
518 => 0.13483598228361
519 => 0.13674011188978
520 => 0.13970234000819
521 => 0.13836786025605
522 => 0.1364812181067
523 => 0.13495765341574
524 => 0.13264929711646
525 => 0.13589826427964
526 => 0.1401703106101
527 => 0.14466204003936
528 => 0.15005855863886
529 => 0.14885411850985
530 => 0.14456115587789
531 => 0.14475373504554
601 => 0.1459441836829
602 => 0.14440244453386
603 => 0.14394775556048
604 => 0.14588171640018
605 => 0.1458950345256
606 => 0.14412107730923
607 => 0.14214964849397
608 => 0.14214138813525
609 => 0.14179059141932
610 => 0.14677863795577
611 => 0.14952155920243
612 => 0.14983603070293
613 => 0.14950039276487
614 => 0.14962956648624
615 => 0.14803352104895
616 => 0.15168160762601
617 => 0.1550294526275
618 => 0.15413215865082
619 => 0.15278698742194
620 => 0.1517154937459
621 => 0.15387974879331
622 => 0.1537833779229
623 => 0.15500021212201
624 => 0.15494500949396
625 => 0.15453583392025
626 => 0.15413217326377
627 => 0.15573264213898
628 => 0.15527173280566
629 => 0.15481010755285
630 => 0.15388424743703
701 => 0.15401008720368
702 => 0.15266514823757
703 => 0.15204291793163
704 => 0.1426860670695
705 => 0.14018561077522
706 => 0.14097230522689
707 => 0.14123130546689
708 => 0.14014310368319
709 => 0.14170330550491
710 => 0.14146014970365
711 => 0.14240612668494
712 => 0.14181512133658
713 => 0.14183937640223
714 => 0.14357739711613
715 => 0.14408195192344
716 => 0.14382533127618
717 => 0.14400505958108
718 => 0.14814682250887
719 => 0.14755799626666
720 => 0.14724519406123
721 => 0.14733184240986
722 => 0.14839015163831
723 => 0.14868642044073
724 => 0.14743110870642
725 => 0.14802312097719
726 => 0.15054383408859
727 => 0.15142594101757
728 => 0.15424120289954
729 => 0.15304522961479
730 => 0.15524049033946
731 => 0.16198797338756
801 => 0.1673783297367
802 => 0.16242113527214
803 => 0.17231983824959
804 => 0.18002739840214
805 => 0.17973156940587
806 => 0.17838757801419
807 => 0.1696127256966
808 => 0.16153797576828
809 => 0.16829284695531
810 => 0.16831006651112
811 => 0.16772981708556
812 => 0.16412593773765
813 => 0.16760440989611
814 => 0.16788051838409
815 => 0.167725971054
816 => 0.1649628852077
817 => 0.16074416382402
818 => 0.1615684918842
819 => 0.16291875806261
820 => 0.16036242249185
821 => 0.15954551838316
822 => 0.16106429854358
823 => 0.16595812467088
824 => 0.16503297518952
825 => 0.16500881579774
826 => 0.16896699760344
827 => 0.16613379365966
828 => 0.1615788893009
829 => 0.16042871587851
830 => 0.15634637507867
831 => 0.15916606240992
901 => 0.15926753793718
902 => 0.15772322400236
903 => 0.16170420186551
904 => 0.16166751645367
905 => 0.16544686244437
906 => 0.17267155252107
907 => 0.17053485615998
908 => 0.16805011076394
909 => 0.16832027148301
910 => 0.17128326775769
911 => 0.16949177257139
912 => 0.17013600673113
913 => 0.17128229263213
914 => 0.17197387537688
915 => 0.16822076336889
916 => 0.16734573342773
917 => 0.16555572926189
918 => 0.16508875058703
919 => 0.16654667163045
920 => 0.16616256094462
921 => 0.15925900931204
922 => 0.15853754975544
923 => 0.15855967589004
924 => 0.15674553153143
925 => 0.15397852594001
926 => 0.16125005142493
927 => 0.16066604616356
928 => 0.16002134955342
929 => 0.16010032120957
930 => 0.16325664396771
1001 => 0.16142581736987
1002 => 0.1662933699468
1003 => 0.16529274746901
1004 => 0.16426646280035
1005 => 0.16412459899775
1006 => 0.16372956695881
1007 => 0.16237485511234
1008 => 0.16073895915217
1009 => 0.15965879894038
1010 => 0.14727680249032
1011 => 0.1495748290087
1012 => 0.15221849904637
1013 => 0.15313108334954
1014 => 0.15157004475006
1015 => 0.16243649443089
1016 => 0.16442189949929
1017 => 0.15840797804234
1018 => 0.15728301888454
1019 => 0.16251024656599
1020 => 0.15935758927148
1021 => 0.16077723065816
1022 => 0.15770874248248
1023 => 0.16394367355776
1024 => 0.16389617382934
1025 => 0.16147064481875
1026 => 0.16352068532919
1027 => 0.16316444034148
1028 => 0.16042602406234
1029 => 0.16403048623824
1030 => 0.16403227400651
1031 => 0.16169775506936
1101 => 0.15897154804268
1102 => 0.15848416661645
1103 => 0.15811699018226
1104 => 0.16068692776367
1105 => 0.16299112576318
1106 => 0.16727866698113
1107 => 0.16835665671279
1108 => 0.1725641224013
1109 => 0.17005878144158
1110 => 0.17116936663943
1111 => 0.17237506397356
1112 => 0.17295311961359
1113 => 0.17201120896833
1114 => 0.17854713504456
1115 => 0.17909896746099
1116 => 0.17928399209689
1117 => 0.17708011459796
1118 => 0.17903767364096
1119 => 0.17812179659228
1120 => 0.18050465423497
1121 => 0.1808783167392
1122 => 0.18056183789155
1123 => 0.18068044426825
1124 => 0.17510318437856
1125 => 0.17481397403089
1126 => 0.17087057041898
1127 => 0.172477536539
1128 => 0.16947339040151
1129 => 0.17042603608784
1130 => 0.17084595322924
1201 => 0.17062661234466
1202 => 0.17256839199236
1203 => 0.17091748261244
1204 => 0.16656046132422
1205 => 0.16220225296846
1206 => 0.16214753921267
1207 => 0.16100009988137
1208 => 0.16017071140883
1209 => 0.16033048105278
1210 => 0.16089353011713
1211 => 0.16013798597365
1212 => 0.16029921962372
1213 => 0.16297677250913
1214 => 0.16351373664487
1215 => 0.16168892270621
1216 => 0.15436203142309
1217 => 0.1525639939241
1218 => 0.15385638762174
1219 => 0.15323870667508
1220 => 0.12367559607748
1221 => 0.13062101039657
1222 => 0.12649428105215
1223 => 0.12839606779575
1224 => 0.12418374574648
1225 => 0.1261940866151
1226 => 0.12582285006256
1227 => 0.13699087075791
1228 => 0.13681649747586
1229 => 0.13689996073835
1230 => 0.13291604175745
1231 => 0.13926253286921
]
'min_raw' => 0.081023079247973
'max_raw' => 0.1808783167392
'avg_raw' => 0.13095069799359
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.081023'
'max' => '$0.180878'
'avg' => '$0.13095'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012493594425396
'max_diff' => 0.027363811064044
'year' => 2035
]
10 => [
'items' => [
101 => 0.1423890426033
102 => 0.14181040886088
103 => 0.14195603850767
104 => 0.13945363868168
105 => 0.13692418943864
106 => 0.13411864094865
107 => 0.13933100326677
108 => 0.13875147755499
109 => 0.14008070103105
110 => 0.1434612905817
111 => 0.14395909523464
112 => 0.14462814973644
113 => 0.14438834132409
114 => 0.15010155061585
115 => 0.14940964327365
116 => 0.15107694089302
117 => 0.14764718319179
118 => 0.14376608679726
119 => 0.14450375633926
120 => 0.1444327128304
121 => 0.14352824742269
122 => 0.14271173649399
123 => 0.14135247584823
124 => 0.14565337766414
125 => 0.14547876890478
126 => 0.14830548175829
127 => 0.14780583280421
128 => 0.14446905480401
129 => 0.14458822848307
130 => 0.14538972874767
131 => 0.14816373031481
201 => 0.14898724284837
202 => 0.14860575903152
203 => 0.14950870292979
204 => 0.15022235297099
205 => 0.14959832638742
206 => 0.15843322685527
207 => 0.15476436021391
208 => 0.1565525402871
209 => 0.15697901069799
210 => 0.1558866157082
211 => 0.15612351706576
212 => 0.15648235807069
213 => 0.15866117038438
214 => 0.16437900433994
215 => 0.16691139407624
216 => 0.17453021354381
217 => 0.1667011143612
218 => 0.16623656801574
219 => 0.16760894746816
220 => 0.17208200102957
221 => 0.17570699080853
222 => 0.1769096090489
223 => 0.17706855490242
224 => 0.17932474666989
225 => 0.18061795371551
226 => 0.17905078564558
227 => 0.17772277479565
228 => 0.17296600476998
229 => 0.17351661385271
301 => 0.17730976441994
302 => 0.1826678130116
303 => 0.18726557611319
304 => 0.18565559972324
305 => 0.1979385831124
306 => 0.19915639074394
307 => 0.1989881291057
308 => 0.20176247612444
309 => 0.19625596227819
310 => 0.19390182092523
311 => 0.17800990581497
312 => 0.18247488573816
313 => 0.18896499627559
314 => 0.1881060058093
315 => 0.18339271405586
316 => 0.18726200065875
317 => 0.18598269350405
318 => 0.18497365087265
319 => 0.18959627077967
320 => 0.18451351030514
321 => 0.18891429185175
322 => 0.18327024399796
323 => 0.18566295395977
324 => 0.18430473606309
325 => 0.18518366949917
326 => 0.18004544259142
327 => 0.18281790510743
328 => 0.17993009903574
329 => 0.17992872983966
330 => 0.17986498136057
331 => 0.18326247239742
401 => 0.18337326445816
402 => 0.1808625134486
403 => 0.18050067500282
404 => 0.18183858138408
405 => 0.18027224340987
406 => 0.18100512308959
407 => 0.18029444158877
408 => 0.18013445221369
409 => 0.17885962965313
410 => 0.17831040104207
411 => 0.17852576773235
412 => 0.17779061018929
413 => 0.17734765117779
414 => 0.17977686566407
415 => 0.17847903435828
416 => 0.17957795440293
417 => 0.17832559631729
418 => 0.173984377566
419 => 0.17148769675457
420 => 0.16328753696457
421 => 0.16561309210875
422 => 0.1671549375753
423 => 0.1666453576578
424 => 0.16774013250184
425 => 0.16780734278587
426 => 0.16745142032416
427 => 0.16703930771
428 => 0.16683871408069
429 => 0.16833377465034
430 => 0.16920170763244
501 => 0.1673096823951
502 => 0.16686640735424
503 => 0.16877934933077
504 => 0.16994624283138
505 => 0.17856192881909
506 => 0.17792365097283
507 => 0.17952560311126
508 => 0.17934524788443
509 => 0.1810243489365
510 => 0.18376896951558
511 => 0.17818838847033
512 => 0.17915698437781
513 => 0.17891950702944
514 => 0.18151222244902
515 => 0.18152031662356
516 => 0.17996585421378
517 => 0.18080855350439
518 => 0.18033818187862
519 => 0.18118820698093
520 => 0.17791512638305
521 => 0.18190138524405
522 => 0.18416133714939
523 => 0.18419271658379
524 => 0.18526391585083
525 => 0.18635231634583
526 => 0.18844140631627
527 => 0.18629405276041
528 => 0.18243117275408
529 => 0.18271006021351
530 => 0.18044525507917
531 => 0.18048332686265
601 => 0.1802800966987
602 => 0.18089000571916
603 => 0.17804896711488
604 => 0.17871575319672
605 => 0.17778224877745
606 => 0.17915495512151
607 => 0.17767815001179
608 => 0.17891939251067
609 => 0.17945507162535
610 => 0.18143173909085
611 => 0.17738619461996
612 => 0.16913705558453
613 => 0.17087112462092
614 => 0.16830630030791
615 => 0.16854368456306
616 => 0.16902323853787
617 => 0.1674688472052
618 => 0.16776537608698
619 => 0.16775478198868
620 => 0.16766348777293
621 => 0.16725913055387
622 => 0.16667273258658
623 => 0.16900876160447
624 => 0.16940569845513
625 => 0.17028803990406
626 => 0.17291328955815
627 => 0.17265096521006
628 => 0.17307882710553
629 => 0.17214480699005
630 => 0.16858701107738
701 => 0.16878021651251
702 => 0.16637094164052
703 => 0.17022642932879
704 => 0.16931339895426
705 => 0.16872476233218
706 => 0.16856414737617
707 => 0.17119590451638
708 => 0.17198336750047
709 => 0.17149267341346
710 => 0.17048624552517
711 => 0.17241888459438
712 => 0.1729359772778
713 => 0.17305173525998
714 => 0.17647600114383
715 => 0.17324311368403
716 => 0.17402130182774
717 => 0.18009250358137
718 => 0.17458676135941
719 => 0.17750327580708
720 => 0.17736052760168
721 => 0.17885251770364
722 => 0.17723814086539
723 => 0.17725815300111
724 => 0.17858293913549
725 => 0.17672251593619
726 => 0.17626184898886
727 => 0.17562544090047
728 => 0.17701501467894
729 => 0.17784800131411
730 => 0.18456126183236
731 => 0.18889833428902
801 => 0.18871005053546
802 => 0.19043061159057
803 => 0.18965548307671
804 => 0.18715238863689
805 => 0.19142486562581
806 => 0.19007287513849
807 => 0.19018433159159
808 => 0.19018018317684
809 => 0.19107913865785
810 => 0.1904421463115
811 => 0.1891865690109
812 => 0.19002007981838
813 => 0.192495308931
814 => 0.2001784960459
815 => 0.20447810934408
816 => 0.19991965392659
817 => 0.20306401543343
818 => 0.20117851897989
819 => 0.20083586818562
820 => 0.2028107595784
821 => 0.20478910775713
822 => 0.20466309553078
823 => 0.20322691634232
824 => 0.20241565516046
825 => 0.20855879662195
826 => 0.21308495860509
827 => 0.21277630470162
828 => 0.21413860265193
829 => 0.21813835156834
830 => 0.21850403848277
831 => 0.21845797033677
901 => 0.21755157716387
902 => 0.2214898494051
903 => 0.22477522539605
904 => 0.21734177333256
905 => 0.2201723345673
906 => 0.22144306470056
907 => 0.22330887354484
908 => 0.226456805811
909 => 0.22987629519984
910 => 0.23035984849222
911 => 0.23001674429112
912 => 0.22776149911837
913 => 0.23150314521063
914 => 0.23369491373909
915 => 0.23500006174005
916 => 0.23830969991457
917 => 0.22145091229726
918 => 0.20951742448562
919 => 0.20765383804218
920 => 0.21144351435683
921 => 0.2124428217789
922 => 0.21204000221009
923 => 0.19860777673284
924 => 0.2075831201549
925 => 0.21723983500873
926 => 0.21761078875447
927 => 0.22244514212268
928 => 0.22401940574621
929 => 0.2279116938608
930 => 0.22766823017948
1001 => 0.22861594039555
1002 => 0.22839807822893
1003 => 0.23560772234325
1004 => 0.24356103044385
1005 => 0.2432856326743
1006 => 0.24214225053557
1007 => 0.24384036798721
1008 => 0.25204903427533
1009 => 0.25129331182472
1010 => 0.2520274318132
1011 => 0.26170591198705
1012 => 0.27428931296081
1013 => 0.2684430598557
1014 => 0.28112774687977
1015 => 0.28911208497506
1016 => 0.3029201721149
1017 => 0.30119133159873
1018 => 0.30656671859385
1019 => 0.29809634625488
1020 => 0.27864665921993
1021 => 0.27556867179624
1022 => 0.28173088056553
1023 => 0.29688006952528
1024 => 0.2812537786938
1025 => 0.28441495697728
1026 => 0.28350453741898
1027 => 0.28345602502975
1028 => 0.28530754561244
1029 => 0.28262181843843
1030 => 0.27167968277839
1031 => 0.27669439906898
1101 => 0.27475797628273
1102 => 0.27690658173395
1103 => 0.28850171920192
1104 => 0.28337523253378
1105 => 0.27797489527085
1106 => 0.28474811662934
1107 => 0.29337275495007
1108 => 0.29283304058392
1109 => 0.29178576913049
1110 => 0.29768918348011
1111 => 0.30743989444757
1112 => 0.31007547244055
1113 => 0.31202100223294
1114 => 0.31228925792132
1115 => 0.31505245823157
1116 => 0.3001940337472
1117 => 0.3237747349953
1118 => 0.32784647069713
1119 => 0.32708115314134
1120 => 0.33160671600908
1121 => 0.33027518061094
1122 => 0.32834599473054
1123 => 0.33551997449074
1124 => 0.32729558560599
1125 => 0.31562210100584
1126 => 0.30921779647886
1127 => 0.3176515013005
1128 => 0.32280167053934
1129 => 0.32620560479393
1130 => 0.32723563324266
1201 => 0.30134745094341
1202 => 0.28739515650854
1203 => 0.29633841727791
1204 => 0.30724981264744
1205 => 0.30013342039499
1206 => 0.30041236949818
1207 => 0.29026626430118
1208 => 0.30814751782335
1209 => 0.30554236959018
1210 => 0.31905788323228
1211 => 0.31583229743282
1212 => 0.32685367413873
1213 => 0.32395137628551
1214 => 0.33599865240895
1215 => 0.34080463702156
1216 => 0.34887463317793
1217 => 0.35481095520135
1218 => 0.35829687703724
1219 => 0.35808759536558
1220 => 0.37190055435876
1221 => 0.36375553502851
1222 => 0.35352347111605
1223 => 0.35333840536163
1224 => 0.35863773625135
1225 => 0.36974367999579
1226 => 0.37262328962382
1227 => 0.37423259856231
1228 => 0.37176788590256
1229 => 0.36292705117837
1230 => 0.35910962356851
1231 => 0.36236218249363
]
'min_raw' => 0.13411864094865
'max_raw' => 0.37423259856231
'avg_raw' => 0.25417561975548
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.134118'
'max' => '$0.374232'
'avg' => '$0.254175'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.053095561700679
'max_diff' => 0.19335428182311
'year' => 2036
]
11 => [
'items' => [
101 => 0.35838458242378
102 => 0.36525103606181
103 => 0.37468014350218
104 => 0.37273307010247
105 => 0.37924184455613
106 => 0.38597774137262
107 => 0.39561037634825
108 => 0.39812870382632
109 => 0.40229140338415
110 => 0.40657618860474
111 => 0.40795234613939
112 => 0.41057985786964
113 => 0.41056600958585
114 => 0.41848419303691
115 => 0.42721819458916
116 => 0.43051507798253
117 => 0.43809607955438
118 => 0.42511388003257
119 => 0.43496102749863
120 => 0.4438434010031
121 => 0.43325346913379
122 => 0.44784922307796
123 => 0.44841594312892
124 => 0.45697274305742
125 => 0.44829878704538
126 => 0.44314821965367
127 => 0.45801771472428
128 => 0.46521259500424
129 => 0.46304543851004
130 => 0.44655327058345
131 => 0.43695412146781
201 => 0.41183129669461
202 => 0.44159036786373
203 => 0.4560851433462
204 => 0.44651573261663
205 => 0.45134198676924
206 => 0.47767246450776
207 => 0.4876974056584
208 => 0.4856122879787
209 => 0.48596463854261
210 => 0.49137391482195
211 => 0.51536162478737
212 => 0.50098763294533
213 => 0.51197601112537
214 => 0.51780420729053
215 => 0.52321776069762
216 => 0.50992378450092
217 => 0.49262851679631
218 => 0.48715037950831
219 => 0.44556424331204
220 => 0.44339950432359
221 => 0.44218437073107
222 => 0.43452312531427
223 => 0.42850348500841
224 => 0.42371644354226
225 => 0.41115381720352
226 => 0.41539333481308
227 => 0.39537113045301
228 => 0.40818062725923
301 => 0.37622470564753
302 => 0.40283854674109
303 => 0.38835384301674
304 => 0.39807993200278
305 => 0.39804599859456
306 => 0.38013718511193
307 => 0.36980775524255
308 => 0.37639006998274
309 => 0.38344683388903
310 => 0.38459177009102
311 => 0.3937410486959
312 => 0.39629441569143
313 => 0.38855759448965
314 => 0.37556249020095
315 => 0.37858095654044
316 => 0.36974658611852
317 => 0.35426469176324
318 => 0.36538405857714
319 => 0.36918069929146
320 => 0.37085751212075
321 => 0.35563284712992
322 => 0.35084892684624
323 => 0.34830200782819
324 => 0.37359717713379
325 => 0.37498290360897
326 => 0.36789333103998
327 => 0.39993887131265
328 => 0.39268597860159
329 => 0.4007892367617
330 => 0.3783070623582
331 => 0.37916591169668
401 => 0.36852249004124
402 => 0.37448209497459
403 => 0.37027003829473
404 => 0.37400061778994
405 => 0.37623671175761
406 => 0.38687838693229
407 => 0.40296005757763
408 => 0.38528887552979
409 => 0.37758928845556
410 => 0.38236606897229
411 => 0.39508726496512
412 => 0.41436052808031
413 => 0.40295036840555
414 => 0.40801400351213
415 => 0.40912018251747
416 => 0.40070675320038
417 => 0.41467074322002
418 => 0.4221541589148
419 => 0.42983059494295
420 => 0.43649582925735
421 => 0.42676445758486
422 => 0.43717842021176
423 => 0.42878660464635
424 => 0.42125827855423
425 => 0.42126969591736
426 => 0.41654706698848
427 => 0.40739637834923
428 => 0.4057088509674
429 => 0.41448758151889
430 => 0.4215272920723
501 => 0.42210711635142
502 => 0.42600466182718
503 => 0.42831118909182
504 => 0.45091829185709
505 => 0.46001105560504
506 => 0.47112951499882
507 => 0.47546078153474
508 => 0.48849634096285
509 => 0.47796906802828
510 => 0.47569142630923
511 => 0.44407142303562
512 => 0.44924919680029
513 => 0.45753931217838
514 => 0.44420812398477
515 => 0.45266369447707
516 => 0.45433300320573
517 => 0.44375513531119
518 => 0.44940523159635
519 => 0.43440025099976
520 => 0.40328712515076
521 => 0.41470538102325
522 => 0.42311306068877
523 => 0.41111426514664
524 => 0.43262164173839
525 => 0.42005747633586
526 => 0.41607523908956
527 => 0.40053911182165
528 => 0.40787156585172
529 => 0.41778881491803
530 => 0.411661107999
531 => 0.42437701993581
601 => 0.44238614244816
602 => 0.45522051561225
603 => 0.45620577941874
604 => 0.44795413731045
605 => 0.46117744645027
606 => 0.46127376382113
607 => 0.44635781709262
608 => 0.43722188277375
609 => 0.43514617927433
610 => 0.44033169358152
611 => 0.4466278652492
612 => 0.45655517312717
613 => 0.46255403736485
614 => 0.47819589374495
615 => 0.48242813159424
616 => 0.48707807785627
617 => 0.49329184005266
618 => 0.50075305474535
619 => 0.48442834176493
620 => 0.48507695304472
621 => 0.46987560634838
622 => 0.45363078730972
623 => 0.46595858001479
624 => 0.48207552907912
625 => 0.47837828315612
626 => 0.4779622674619
627 => 0.47866189046644
628 => 0.47587428778126
629 => 0.46326606414956
630 => 0.45693429317338
701 => 0.46510389313971
702 => 0.46944567193475
703 => 0.47617939220296
704 => 0.47534931904831
705 => 0.49269465931046
706 => 0.49943453404047
707 => 0.49771018566903
708 => 0.49802750726814
709 => 0.51022972852844
710 => 0.52380110814809
711 => 0.53651249606317
712 => 0.5494430658172
713 => 0.53385475928999
714 => 0.52593997858856
715 => 0.53410601196311
716 => 0.52977299970933
717 => 0.55467177337447
718 => 0.55639571044095
719 => 0.58129268364135
720 => 0.60492287588496
721 => 0.59008117551562
722 => 0.60407623047904
723 => 0.61921302345556
724 => 0.6484143529634
725 => 0.63858037250032
726 => 0.63104769758372
727 => 0.62392935618515
728 => 0.6387414946307
729 => 0.6577970741112
730 => 0.66190146341923
731 => 0.66855214209563
801 => 0.6615597666737
802 => 0.66998131268453
803 => 0.69971307071761
804 => 0.69167928724758
805 => 0.68027002322501
806 => 0.70374039072373
807 => 0.71223422548277
808 => 0.77184840607753
809 => 0.84711377161739
810 => 0.81595341606485
811 => 0.796611177835
812 => 0.80115706262304
813 => 0.82864142622479
814 => 0.83746853150357
815 => 0.81347341647018
816 => 0.82194889675262
817 => 0.86864962639974
818 => 0.89370306951662
819 => 0.85967712863757
820 => 0.76580090724066
821 => 0.67924274383124
822 => 0.70220186653231
823 => 0.69959901452254
824 => 0.74977312249369
825 => 0.69148768416877
826 => 0.69246906146882
827 => 0.74368071685752
828 => 0.73001832518986
829 => 0.70788700043516
830 => 0.67940432699394
831 => 0.62675147080942
901 => 0.58011536775328
902 => 0.67157950549948
903 => 0.66763540556312
904 => 0.66192376437241
905 => 0.67463440377821
906 => 0.73635366075481
907 => 0.73493083211576
908 => 0.72587952224768
909 => 0.73274486100804
910 => 0.70668347335704
911 => 0.71340008636147
912 => 0.67922903257591
913 => 0.69467577599625
914 => 0.70783951655192
915 => 0.71048233236098
916 => 0.71643673132431
917 => 0.66555704411795
918 => 0.68840052992447
919 => 0.70181893769064
920 => 0.64119408323724
921 => 0.70062057924187
922 => 0.66467134196077
923 => 0.65246963088815
924 => 0.66889762739424
925 => 0.66249562117907
926 => 0.65699155217368
927 => 0.65392018709676
928 => 0.66598309463902
929 => 0.66542034558388
930 => 0.64568308753528
1001 => 0.61993663900443
1002 => 0.62857799222974
1003 => 0.62543850758987
1004 => 0.61406061025338
1005 => 0.62172793928561
1006 => 0.58796490257409
1007 => 0.52987735276185
1008 => 0.56825176743758
1009 => 0.5667743942159
1010 => 0.56602943564398
1011 => 0.59486674768188
1012 => 0.59209470551942
1013 => 0.58706342185064
1014 => 0.61396820678322
1015 => 0.6041475983624
1016 => 0.63441239948901
1017 => 0.6543467549156
1018 => 0.64929075757057
1019 => 0.66803911520039
1020 => 0.62877707155497
1021 => 0.6418183475342
1022 => 0.64450613643909
1023 => 0.61363620591347
1024 => 0.59254824589962
1025 => 0.59114191938704
1026 => 0.55457830282291
1027 => 0.57411029166027
1028 => 0.59129763354852
1029 => 0.58306623057566
1030 => 0.58046041430062
1031 => 0.5937729645172
1101 => 0.59480746368332
1102 => 0.57122077306469
1103 => 0.57612519293765
1104 => 0.59657743909987
1105 => 0.57560984880942
1106 => 0.5348732459115
1107 => 0.52477000516522
1108 => 0.52342204661
1109 => 0.49602125640795
1110 => 0.52544515202241
1111 => 0.51260083307532
1112 => 0.55317588273061
1113 => 0.52999963197587
1114 => 0.52900055012762
1115 => 0.52749029138054
1116 => 0.50390529934125
1117 => 0.50906891369342
1118 => 0.52623355424069
1119 => 0.53235809136148
1120 => 0.53171925196293
1121 => 0.52614943813788
1122 => 0.52869927038492
1123 => 0.52048537229674
1124 => 0.5175848739243
1125 => 0.50843010321594
1126 => 0.49497511934461
1127 => 0.49684611737613
1128 => 0.47018827363898
1129 => 0.45566366553213
1130 => 0.45164344543941
1201 => 0.44626743911486
1202 => 0.45225067965877
1203 => 0.47011275531705
1204 => 0.44856730242242
1205 => 0.41162913467238
1206 => 0.41384918149373
1207 => 0.4188369675635
1208 => 0.40954226122
1209 => 0.40074560171145
1210 => 0.40839358345859
1211 => 0.39274239483563
1212 => 0.42072833893414
1213 => 0.41997139757598
1214 => 0.43040282689673
1215 => 0.43692581372547
1216 => 0.42189244092728
1217 => 0.4181115883231
1218 => 0.42026533379661
1219 => 0.38466871864678
1220 => 0.42749382400806
1221 => 0.42786417729757
1222 => 0.42469298758474
1223 => 0.44749603411283
1224 => 0.49561757473567
1225 => 0.47751231546887
1226 => 0.4705014118464
1227 => 0.45717367893516
1228 => 0.47493209171692
1229 => 0.47356852268967
1230 => 0.46740194643028
1231 => 0.46367238186771
]
'min_raw' => 0.34830200782819
'max_raw' => 0.89370306951662
'avg_raw' => 0.62100253867241
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.348302'
'max' => '$0.893703'
'avg' => '$0.6210025'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21418336687954
'max_diff' => 0.51947047095431
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010932802029937
]
1 => [
'year' => 2028
'avg' => 0.018763862098479
]
2 => [
'year' => 2029
'avg' => 0.051259489395939
]
3 => [
'year' => 2030
'avg' => 0.039546619731045
]
4 => [
'year' => 2031
'avg' => 0.038839681534515
]
5 => [
'year' => 2032
'avg' => 0.068098185027632
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010932802029937
'min' => '$0.010932'
'max_raw' => 0.068098185027632
'max' => '$0.068098'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.068098185027632
]
1 => [
'year' => 2033
'avg' => 0.17515553434486
]
2 => [
'year' => 2034
'avg' => 0.11102199524887
]
3 => [
'year' => 2035
'avg' => 0.13095069799359
]
4 => [
'year' => 2036
'avg' => 0.25417561975548
]
5 => [
'year' => 2037
'avg' => 0.62100253867241
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.068098185027632
'min' => '$0.068098'
'max_raw' => 0.62100253867241
'max' => '$0.6210025'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.62100253867241
]
]
]
]
'prediction_2025_max_price' => '$0.018693'
'last_price' => 0.01812532
'sma_50day_nextmonth' => '$0.017681'
'sma_200day_nextmonth' => '$0.034234'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018028'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.018088'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01791'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019371'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.023148'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028916'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036923'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018048'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018032'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018237'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.019451'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023111'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02911'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.043825'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035669'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.056811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.160951'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.187689'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.018878'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.020327'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.024278'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033442'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.06778'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116283'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.1506064'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '35.25'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.8
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0179062'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018143'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 73.71
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -40.38
'cci_20_action' => 'NEUTRAL'
'adx_14' => 35.86
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003179'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -26.29
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.73
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003259'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767705798
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Telos para 2026
A previsão de preço para Telos em 2026 sugere que o preço médio poderia variar entre $0.006262 na extremidade inferior e $0.018693 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Telos poderia potencialmente ganhar 3.13% até 2026 se TLOS atingir a meta de preço prevista.
Previsão de preço de Telos 2027-2032
A previsão de preço de TLOS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.010932 na extremidade inferior e $0.068098 na extremidade superior. Considerando a volatilidade de preços no mercado, se Telos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006028 | $0.010932 | $0.015837 |
| 2028 | $0.010879 | $0.018763 | $0.026647 |
| 2029 | $0.023899 | $0.051259 | $0.078619 |
| 2030 | $0.020325 | $0.039546 | $0.058767 |
| 2031 | $0.024031 | $0.038839 | $0.053648 |
| 2032 | $0.036681 | $0.068098 | $0.099514 |
Previsão de preço de Telos 2032-2037
A previsão de preço de Telos para 2032-2037 é atualmente estimada entre $0.068098 na extremidade inferior e $0.6210025 na extremidade superior. Comparado ao preço atual, Telos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036681 | $0.068098 | $0.099514 |
| 2033 | $0.08524 | $0.175155 | $0.26507 |
| 2034 | $0.068529 | $0.111021 | $0.153514 |
| 2035 | $0.081023 | $0.13095 | $0.180878 |
| 2036 | $0.134118 | $0.254175 | $0.374232 |
| 2037 | $0.348302 | $0.6210025 | $0.893703 |
Telos Histograma de preços potenciais
Previsão de preço de Telos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Telos é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de TLOS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Telos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Telos está projetado para aumentar no próximo mês, alcançando $0.034234 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Telos é esperado para alcançar $0.017681 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 35.25, sugerindo que o mercado de TLOS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de TLOS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018028 | BUY |
| SMA 5 | $0.018088 | BUY |
| SMA 10 | $0.01791 | BUY |
| SMA 21 | $0.019371 | SELL |
| SMA 50 | $0.023148 | SELL |
| SMA 100 | $0.028916 | SELL |
| SMA 200 | $0.036923 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018048 | BUY |
| EMA 5 | $0.018032 | BUY |
| EMA 10 | $0.018237 | SELL |
| EMA 21 | $0.019451 | SELL |
| EMA 50 | $0.023111 | SELL |
| EMA 100 | $0.02911 | SELL |
| EMA 200 | $0.043825 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035669 | SELL |
| SMA 50 | $0.056811 | SELL |
| SMA 100 | $0.160951 | SELL |
| SMA 200 | $0.187689 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.033442 | SELL |
| EMA 50 | $0.06778 | SELL |
| EMA 100 | $0.116283 | SELL |
| EMA 200 | $0.1506064 | SELL |
Osciladores de Telos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 35.25 | NEUTRAL |
| Stoch RSI (14) | 93.8 | SELL |
| Estocástico Rápido (14) | 73.71 | NEUTRAL |
| Índice de Canal de Commodities (20) | -40.38 | NEUTRAL |
| Índice Direcional Médio (14) | 35.86 | SELL |
| Oscilador Impressionante (5, 34) | -0.003179 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -26.29 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 60.73 | NEUTRAL |
| VWMA (10) | 0.0179062 | BUY |
| Média Móvel de Hull (9) | 0.018143 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003259 | SELL |
Previsão do preço de Telos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Telos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Telos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025469 | $0.035788 | $0.050288 | $0.070663 | $0.099294 | $0.139525 |
| Amazon.com stock | $0.037819 | $0.078912 | $0.164656 | $0.343564 | $0.716868 | $1.49 |
| Apple stock | $0.0257093 | $0.036466 | $0.051725 | $0.073368 | $0.104067 | $0.147611 |
| Netflix stock | $0.028598 | $0.045124 | $0.071199 | $0.112341 | $0.177257 | $0.279684 |
| Google stock | $0.023472 | $0.030396 | $0.039363 | $0.050975 | $0.066012 | $0.085486 |
| Tesla stock | $0.041088 | $0.093145 | $0.211152 | $0.478667 | $1.08 | $2.45 |
| Kodak stock | $0.013592 | $0.010192 | $0.007643 | $0.005731 | $0.004298 | $0.003223 |
| Nokia stock | $0.0120072 | $0.007954 | $0.005269 | $0.00349 | $0.002312 | $0.001531 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Telos
Você pode fazer perguntas como: 'Devo investir em Telos agora?', 'Devo comprar TLOS hoje?', 'Telos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Telos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Telos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Telos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Telos é de $0.01812 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Telos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Telos
com base no histórico de preços de 1 mês
Previsão do preço de Telos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Telos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.018596 | $0.019079 | $0.019575 | $0.020084 |
| Se Telos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019067 | $0.020058 | $0.0211016 | $0.022198 |
| Se Telos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02048 | $0.023142 | $0.02615 | $0.029549 |
| Se Telos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.022836 | $0.028772 | $0.036251 | $0.045674 |
| Se Telos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027548 | $0.041869 | $0.063635 | $0.096717 |
| Se Telos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.041682 | $0.095854 | $0.220433 | $0.506921 |
| Se Telos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.065238 | $0.234815 | $0.845176 | $3.04 |
Perguntas Frequentes sobre Telos
TLOS é um bom investimento?
A decisão de adquirir Telos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Telos experimentou uma escalada de 0.1746% nas últimas 24 horas, e Telos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Telos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Telos pode subir?
Parece que o valor médio de Telos pode potencialmente subir para $0.018693 até o final deste ano. Observando as perspectivas de Telos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.058767. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Telos na próxima semana?
Com base na nossa nova previsão experimental de Telos, o preço de Telos aumentará 0.86% na próxima semana e atingirá $0.01828 até 13 de janeiro de 2026.
Qual será o preço de Telos no próximo mês?
Com base na nossa nova previsão experimental de Telos, o preço de Telos diminuirá -11.62% no próximo mês e atingirá $0.0160195 até 5 de fevereiro de 2026.
Até onde o preço de Telos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Telos em 2026, espera-se que TLOS fluctue dentro do intervalo de $0.006262 e $0.018693. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Telos não considera flutuações repentinas e extremas de preço.
Onde estará Telos em 5 anos?
O futuro de Telos parece seguir uma tendência de alta, com um preço máximo de $0.058767 projetada após um período de cinco anos. Com base na previsão de Telos para 2030, o valor de Telos pode potencialmente atingir seu pico mais alto de aproximadamente $0.058767, enquanto seu pico mais baixo está previsto para cerca de $0.020325.
Quanto será Telos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Telos, espera-se que o valor de TLOS em 2026 aumente 3.13% para $0.018693 se o melhor cenário ocorrer. O preço ficará entre $0.018693 e $0.006262 durante 2026.
Quanto será Telos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Telos, o valor de TLOS pode diminuir -12.62% para $0.015837 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.015837 e $0.006028 ao longo do ano.
Quanto será Telos em 2028?
Nosso novo modelo experimental de previsão de preços de Telos sugere que o valor de TLOS em 2028 pode aumentar 47.02%, alcançando $0.026647 no melhor cenário. O preço é esperado para variar entre $0.026647 e $0.010879 durante o ano.
Quanto será Telos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Telos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.078619 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.078619 e $0.023899.
Quanto será Telos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Telos, espera-se que o valor de TLOS em 2030 aumente 224.23%, alcançando $0.058767 no melhor cenário. O preço está previsto para variar entre $0.058767 e $0.020325 ao longo de 2030.
Quanto será Telos em 2031?
Nossa simulação experimental indica que o preço de Telos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.053648 sob condições ideais. O preço provavelmente oscilará entre $0.053648 e $0.024031 durante o ano.
Quanto será Telos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Telos, TLOS poderia ver um 449.04% aumento em valor, atingindo $0.099514 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.099514 e $0.036681 ao longo do ano.
Quanto será Telos em 2033?
De acordo com nossa previsão experimental de preços de Telos, espera-se que o valor de TLOS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.26507. Ao longo do ano, o preço de TLOS poderia variar entre $0.26507 e $0.08524.
Quanto será Telos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Telos sugerem que TLOS pode aumentar 746.96% em 2034, atingindo potencialmente $0.153514 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.153514 e $0.068529.
Quanto será Telos em 2035?
Com base em nossa previsão experimental para o preço de Telos, TLOS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.180878 em 2035. A faixa de preço esperada para o ano está entre $0.180878 e $0.081023.
Quanto será Telos em 2036?
Nossa recente simulação de previsão de preços de Telos sugere que o valor de TLOS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.374232 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.374232 e $0.134118.
Quanto será Telos em 2037?
De acordo com a simulação experimental, o valor de Telos poderia aumentar 4830.69% em 2037, com um pico de $0.893703 sob condições favoráveis. O preço é esperado para cair entre $0.893703 e $0.348302 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Previsão de Preço do Keep Network
Previsão de Preço do Energy Web Token
Previsão de Preço do Nakamoto Games
Previsão de Preço do Gelato
Como ler e prever os movimentos de preço de Telos?
Traders de Telos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Telos
Médias móveis são ferramentas populares para a previsão de preço de Telos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de TLOS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de TLOS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de TLOS.
Como ler gráficos de Telos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Telos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de TLOS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Telos?
A ação de preço de Telos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de TLOS. A capitalização de mercado de Telos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de TLOS, grandes detentores de Telos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Telos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


