Previsão de Preço Telos - Projeção TLOS
Previsão de Preço Telos até $0.018648 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006247 | $0.018648 |
| 2027 | $0.006014 | $0.015799 |
| 2028 | $0.010853 | $0.026584 |
| 2029 | $0.023842 | $0.078432 |
| 2030 | $0.020277 | $0.058627 |
| 2031 | $0.023974 | $0.05352 |
| 2032 | $0.036594 | $0.099277 |
| 2033 | $0.085038 | $0.26444 |
| 2034 | $0.068366 | $0.153149 |
| 2035 | $0.08083 | $0.180448 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Telos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.84, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Telos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Telos'
'name_with_ticker' => 'Telos <small>TLOS</small>'
'name_lang' => 'Telos'
'name_lang_with_ticker' => 'Telos <small>TLOS</small>'
'name_with_lang' => 'Telos'
'name_with_lang_with_ticker' => 'Telos <small>TLOS</small>'
'image' => '/uploads/coins/telos.png?1722392004'
'price_for_sd' => 0.01808
'ticker' => 'TLOS'
'marketcap' => '$7.59M'
'low24h' => '$0.01801'
'high24h' => '$0.01812'
'volume24h' => '$1.72M'
'current_supply' => '420M'
'max_supply' => '420M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01808'
'change_24h_pct' => '0.0539%'
'ath_price' => '$1.43'
'ath_days' => 1429
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de fev. de 2022'
'ath_pct' => '-98.73%'
'fdv' => '$7.59M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.891577'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018236'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015981'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006247'
'current_year_max_price_prediction' => '$0.018648'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020277'
'grand_prediction_max_price' => '$0.058627'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018424868557752
107 => 0.01849366032872
108 => 0.018648651701304
109 => 0.017324267392268
110 => 0.017918877065145
111 => 0.018268154540568
112 => 0.016690106199783
113 => 0.018236961598683
114 => 0.017301212807937
115 => 0.016983605613883
116 => 0.017411221859111
117 => 0.017244579392475
118 => 0.017101309985235
119 => 0.017021363194315
120 => 0.017335357370528
121 => 0.017320709166903
122 => 0.016806953750976
123 => 0.016136780754248
124 => 0.016361712809629
125 => 0.01627999288516
126 => 0.015983829336804
127 => 0.016183407809472
128 => 0.015304565220194
129 => 0.013792562223602
130 => 0.014791437717055
131 => 0.014752982097124
201 => 0.014733591029732
202 => 0.015484218356171
203 => 0.015412062858652
204 => 0.015281099924108
205 => 0.015981424099809
206 => 0.015725796354988
207 => 0.016513580831052
208 => 0.017032466637694
209 => 0.016900860412932
210 => 0.017388875022071
211 => 0.016366894789886
212 => 0.016706355628287
213 => 0.01677631803661
214 => 0.015972782208189
215 => 0.015423868390408
216 => 0.015387262096838
217 => 0.01443552118179
218 => 0.014943933496425
219 => 0.015391315293772
220 => 0.015177054131072
221 => 0.015109225447832
222 => 0.015455747480261
223 => 0.015482675209941
224 => 0.014868720119559
225 => 0.014996380824279
226 => 0.015528747184785
227 => 0.014982966557905
228 => 0.013922603952636
301 => 0.013659619365869
302 => 0.013624532374227
303 => 0.012911297317345
304 => 0.013677193253467
305 => 0.013342859152615
306 => 0.014399016571269
307 => 0.013795745118019
308 => 0.013769739291413
309 => 0.013730427670273
310 => 0.013116516793445
311 => 0.013250924259399
312 => 0.013697715147064
313 => 0.013857135169242
314 => 0.013840506354839
315 => 0.013695525627968
316 => 0.013761897062308
317 => 0.013548091546958
318 => 0.013472592369511
319 => 0.013234296197803
320 => 0.01288406665639
321 => 0.012932768222206
322 => 0.012238871858123
323 => 0.011860800291103
324 => 0.011756155064255
325 => 0.011616219093489
326 => 0.011771961204508
327 => 0.012236906136907
328 => 0.011676083904864
329 => 0.010714593525132
330 => 0.010772380735254
331 => 0.010902211439221
401 => 0.010660272781295
402 => 0.01043129814594
403 => 0.010630373014081
404 => 0.010222976865085
405 => 0.010951443317469
406 => 0.010931740341436
407 => 0.011203267586821
408 => 0.011373059145661
409 => 0.010981744573205
410 => 0.01088333001646
411 => 0.010939391420674
412 => 0.010012821287332
413 => 0.011127547039148
414 => 0.01113718723374
415 => 0.011054642034914
416 => 0.011648199084459
417 => 0.012900789594087
418 => 0.012429514659029
419 => 0.012247022759814
420 => 0.011900105526005
421 => 0.012362352142148
422 => 0.012326858814199
423 => 0.012166344524767
424 => 0.012069264981684
425 => 0.012248137016436
426 => 0.012047100757089
427 => 0.012010989120804
428 => 0.01179219189476
429 => 0.011714091239702
430 => 0.011656268623974
501 => 0.01159261160559
502 => 0.011733023125805
503 => 0.011414832148325
504 => 0.011031125022131
505 => 0.010999223926357
506 => 0.011087305656563
507 => 0.01104833604786
508 => 0.010999037354863
509 => 0.010904912724231
510 => 0.010876987956977
511 => 0.010967729903381
512 => 0.010865287536475
513 => 0.01101644682917
514 => 0.010975339865582
515 => 0.010745719708549
516 => 0.010459527976617
517 => 0.010456980269895
518 => 0.010395320730698
519 => 0.010316788036958
520 => 0.010294942038144
521 => 0.010613607483951
522 => 0.011273235419918
523 => 0.011143734672529
524 => 0.011237312234288
525 => 0.011697621221026
526 => 0.011843939605935
527 => 0.011740086282067
528 => 0.011597925446963
529 => 0.011604179802229
530 => 0.012089986410792
531 => 0.012120285573066
601 => 0.012196841781251
602 => 0.012295238143551
603 => 0.011756843608045
604 => 0.011578821468024
605 => 0.011494464701789
606 => 0.011234678511964
607 => 0.011514835645306
608 => 0.011351600081232
609 => 0.011373626135747
610 => 0.011359281638849
611 => 0.011367114704126
612 => 0.010951239696249
613 => 0.011102762691373
614 => 0.010850826323612
615 => 0.010513511808365
616 => 0.010512381011832
617 => 0.010594938261566
618 => 0.010545829978959
619 => 0.010413680853153
620 => 0.010432452012747
621 => 0.010267996902757
622 => 0.010452419840656
623 => 0.010457708430618
624 => 0.010386695553941
625 => 0.010670824535235
626 => 0.010787232410699
627 => 0.010740490214027
628 => 0.010783952853575
629 => 0.011149116013244
630 => 0.011208653541456
701 => 0.011235096178659
702 => 0.011199666547785
703 => 0.010790627365794
704 => 0.010808769992885
705 => 0.010675651433119
706 => 0.010563180277805
707 => 0.010567678534184
708 => 0.010625503328242
709 => 0.010878027595273
710 => 0.01140945002812
711 => 0.011429617120982
712 => 0.011454060225846
713 => 0.011354637834243
714 => 0.011324651089592
715 => 0.011364211346023
716 => 0.011563785670936
717 => 0.012077145018514
718 => 0.011895689538962
719 => 0.011748163409563
720 => 0.011877583597805
721 => 0.011857660374254
722 => 0.011689488317462
723 => 0.011684768287942
724 => 0.011361992343098
725 => 0.011242669425543
726 => 0.011142954264467
727 => 0.011034067911703
728 => 0.010969516431881
729 => 0.011068696843011
730 => 0.011091380576504
731 => 0.010874520874192
801 => 0.010844963698091
802 => 0.011022056012241
803 => 0.010944124287451
804 => 0.011024278999011
805 => 0.011042875579648
806 => 0.01103988110185
807 => 0.010958511430767
808 => 0.011010374032637
809 => 0.010887703518229
810 => 0.010754317758327
811 => 0.010669225953736
812 => 0.01059497206844
813 => 0.010636172439663
814 => 0.010489300639142
815 => 0.010442313394211
816 => 0.010992804150069
817 => 0.011399457590194
818 => 0.011393544688122
819 => 0.011357551417435
820 => 0.011304072718162
821 => 0.011559873370986
822 => 0.011470757538437
823 => 0.011535596752493
824 => 0.011552101053764
825 => 0.011602054602932
826 => 0.011619908703107
827 => 0.011565941211908
828 => 0.011384819719871
829 => 0.010933482182229
830 => 0.010723383340095
831 => 0.010654047222717
901 => 0.010656567458896
902 => 0.01058704809426
903 => 0.010607524662784
904 => 0.01057992717937
905 => 0.010527664222331
906 => 0.010632945349339
907 => 0.010645078018465
908 => 0.010620504145406
909 => 0.010626292182098
910 => 0.010422831008804
911 => 0.010438299719915
912 => 0.01035216797078
913 => 0.01033601930615
914 => 0.010118285744685
915 => 0.0097325391795653
916 => 0.0099462802219669
917 => 0.0096881110992844
918 => 0.009590338540624
919 => 0.01005317862657
920 => 0.010006722319127
921 => 0.009927209314855
922 => 0.0098095930095754
923 => 0.0097659679778494
924 => 0.0095009160950884
925 => 0.0094852554158581
926 => 0.0096166222859573
927 => 0.0095560009954645
928 => 0.0094708657445346
929 => 0.0091625144956886
930 => 0.0088158256003957
1001 => 0.0088262899589358
1002 => 0.0089365652461523
1003 => 0.0092572055163828
1004 => 0.0091319258156708
1005 => 0.0090410339553852
1006 => 0.0090240126421531
1007 => 0.0092370700137869
1008 => 0.0095385908315481
1009 => 0.0096800576530936
1010 => 0.0095398683293533
1011 => 0.0093788263825696
1012 => 0.0093886282596738
1013 => 0.0094538357567297
1014 => 0.0094606881426859
1015 => 0.0093558663907093
1016 => 0.0093853730998938
1017 => 0.0093405497104925
1018 => 0.0090654686524745
1019 => 0.0090604933084264
1020 => 0.0089929839805076
1021 => 0.0089909398248881
1022 => 0.008876089617107
1023 => 0.0088600212791164
1024 => 0.0086319792206577
1025 => 0.0087820771941102
1026 => 0.0086813993540156
1027 => 0.0085296541014913
1028 => 0.0085034931627599
1029 => 0.0085027067333514
1030 => 0.0086585151780762
1031 => 0.0087802564817174
1101 => 0.0086831506881479
1102 => 0.0086610415812689
1103 => 0.0088971090005969
1104 => 0.0088670672696851
1105 => 0.0088410513244638
1106 => 0.0095115929494269
1107 => 0.0089808069302531
1108 => 0.0087493539296866
1109 => 0.0084628868897528
1110 => 0.0085561620024474
1111 => 0.0085758164391887
1112 => 0.007886914847713
1113 => 0.0076074275578486
1114 => 0.0075115180522234
1115 => 0.0074563207757748
1116 => 0.0074814748677762
1117 => 0.0072299035263087
1118 => 0.0073989636283808
1119 => 0.0071811241114661
1120 => 0.0071446026075443
1121 => 0.0075341266489255
1122 => 0.0075883266437173
1123 => 0.0073570926273171
1124 => 0.0075055822992328
1125 => 0.0074517378800353
1126 => 0.0071848583447463
1127 => 0.0071746655095312
1128 => 0.0070407547399925
1129 => 0.0068312103158988
1130 => 0.0067354428912604
1201 => 0.0066855663850179
1202 => 0.0067061464035673
1203 => 0.0066957405164298
1204 => 0.006627835064044
1205 => 0.0066996327774732
1206 => 0.0065162192885251
1207 => 0.0064431825593631
1208 => 0.0064101935632398
1209 => 0.0062474035349119
1210 => 0.0065064748630358
1211 => 0.0065575151783709
1212 => 0.0066086560588943
1213 => 0.0070538025084883
1214 => 0.0070315642498374
1215 => 0.0072325872775704
1216 => 0.0072247758923703
1217 => 0.0071674408685037
1218 => 0.0069255538339642
1219 => 0.0070219656947098
1220 => 0.0067252249730645
1221 => 0.0069475632981289
1222 => 0.0068460973716399
1223 => 0.0069132575663174
1224 => 0.0067924974806967
1225 => 0.0068593310981409
1226 => 0.0065696187306077
1227 => 0.0062990893981681
1228 => 0.0064079582987853
1229 => 0.0065263112444252
1230 => 0.0067829305863421
1231 => 0.00663009022336
]
'min_raw' => 0.0062474035349119
'max_raw' => 0.018648651701304
'avg_raw' => 0.012448027618108
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006247'
'max' => '$0.018648'
'avg' => '$0.012448'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011834816465088
'max_diff' => 0.00056643170130401
'year' => 2026
]
1 => [
'items' => [
101 => 0.0066850573974224
102 => 0.0065009265657073
103 => 0.0061210120655072
104 => 0.0061231623403197
105 => 0.0060647207713513
106 => 0.0060142187231537
107 => 0.0066476457776271
108 => 0.0065688691104035
109 => 0.0064433488012179
110 => 0.0066113627230416
111 => 0.0066557882707113
112 => 0.0066570530035985
113 => 0.0067796316238941
114 => 0.0068450518555193
115 => 0.0068565824548907
116 => 0.0070494625624123
117 => 0.0071141134303033
118 => 0.0073804012054134
119 => 0.0068395014059316
120 => 0.0068283619305103
121 => 0.0066137270234752
122 => 0.00647760217219
123 => 0.0066230476085026
124 => 0.0067518924097937
125 => 0.0066177305906048
126 => 0.0066352492918803
127 => 0.0064551480110427
128 => 0.0065195257443892
129 => 0.0065749765209645
130 => 0.0065443598613856
131 => 0.006498525240133
201 => 0.0067413286054145
202 => 0.0067276286879913
203 => 0.0069537327637667
204 => 0.0071299970596913
205 => 0.0074458941889998
206 => 0.0071162390664766
207 => 0.0071042251235514
208 => 0.0072216633427421
209 => 0.0071140954511239
210 => 0.0071820746455092
211 => 0.0074349416898301
212 => 0.0074402843720139
213 => 0.0073507875617776
214 => 0.0073453416727412
215 => 0.0073625305141349
216 => 0.0074632060950616
217 => 0.0074280269536377
218 => 0.0074687371467203
219 => 0.0075196458665468
220 => 0.0077302259165989
221 => 0.007780996053751
222 => 0.0076576509417694
223 => 0.0076687876243446
224 => 0.0076226531665645
225 => 0.0075780878584119
226 => 0.0076782641628983
227 => 0.0078613383283175
228 => 0.007860199433436
301 => 0.0079026690813599
302 => 0.007929127320179
303 => 0.007815549190553
304 => 0.00774161400455
305 => 0.0077699654594816
306 => 0.0078153000533317
307 => 0.0077552640617004
308 => 0.0073846941099754
309 => 0.0074971013612286
310 => 0.0074783912981863
311 => 0.0074517458931927
312 => 0.0075647722535473
313 => 0.0075538705853615
314 => 0.0072273232985867
315 => 0.0072482277964059
316 => 0.007228594570337
317 => 0.007292033540346
318 => 0.0071106695385544
319 => 0.0071664558840003
320 => 0.0072014445568995
321 => 0.0072220531540327
322 => 0.0072965055383254
323 => 0.0072877694103549
324 => 0.0072959624883447
325 => 0.00740635571955
326 => 0.0079646868006042
327 => 0.0079950755294579
328 => 0.0078454303144269
329 => 0.0079052106262104
330 => 0.0077904455001031
331 => 0.0078674880981185
401 => 0.0079201986870108
402 => 0.0076820096714699
403 => 0.0076679056638035
404 => 0.0075526668611965
405 => 0.0076145896662581
406 => 0.0075160660309978
407 => 0.0075402402848802
408 => 0.0074726469635515
409 => 0.0075943014842472
410 => 0.0077303301415864
411 => 0.0077646963523647
412 => 0.0076742936473909
413 => 0.0076088361311613
414 => 0.0074939142957084
415 => 0.0076850318692667
416 => 0.0077409204719777
417 => 0.0076847383102292
418 => 0.0076717196757476
419 => 0.0076470493869291
420 => 0.0076769535941444
421 => 0.0077406160906446
422 => 0.0077105940329568
423 => 0.0077304241309802
424 => 0.0076548522460234
425 => 0.0078155867896398
426 => 0.0080708719277772
427 => 0.0080716927112397
428 => 0.0080416704917218
429 => 0.0080293860463328
430 => 0.0080601906654588
501 => 0.008076900907663
502 => 0.0081765173973152
503 => 0.0082834098596082
504 => 0.0087822303402941
505 => 0.0086421635453799
506 => 0.0090847467508076
507 => 0.0094347726040643
508 => 0.0095397300526805
509 => 0.0094431741385832
510 => 0.0091128615723043
511 => 0.0090966548619633
512 => 0.0095902812903524
513 => 0.0094508092148098
514 => 0.0094342194552204
515 => 0.0092577324420311
516 => 0.0093620581251678
517 => 0.0093392405679004
518 => 0.0093032219374806
519 => 0.0095022680735154
520 => 0.0098748646712013
521 => 0.0098167919972632
522 => 0.0097734434400822
523 => 0.0095835026810904
524 => 0.0096978894428079
525 => 0.0096571585078944
526 => 0.0098321644527727
527 => 0.0097284948078831
528 => 0.0094497525766629
529 => 0.0094941431957312
530 => 0.0094874336429605
531 => 0.0096255157635361
601 => 0.0095840669383482
602 => 0.0094793400946127
603 => 0.0098735911765368
604 => 0.0098479907042164
605 => 0.009884286320884
606 => 0.0099002647738203
607 => 0.010140238459904
608 => 0.010238548000791
609 => 0.010260865987723
610 => 0.010354252448033
611 => 0.010258542447518
612 => 0.010641450689654
613 => 0.010896062327359
614 => 0.011191806846749
615 => 0.01162396907821
616 => 0.011786466074964
617 => 0.011757112446955
618 => 0.012084772918649
619 => 0.012673571502801
620 => 0.011876125475208
621 => 0.012715838078614
622 => 0.012449994763324
623 => 0.011819685045088
624 => 0.011779100530097
625 => 0.012205953589332
626 => 0.013152672591633
627 => 0.012915530219155
628 => 0.0131530604716
629 => 0.01287596881496
630 => 0.012862208878696
701 => 0.013139602748318
702 => 0.013787748644641
703 => 0.013479838824683
704 => 0.013038374595189
705 => 0.013364344912303
706 => 0.01308195925649
707 => 0.012445665339175
708 => 0.012915348880852
709 => 0.012601284872349
710 => 0.012692945446591
711 => 0.013353061278968
712 => 0.013273634395566
713 => 0.013376420137419
714 => 0.01319500599342
715 => 0.013025536576541
716 => 0.01270920932497
717 => 0.012615560420526
718 => 0.01264144160858
719 => 0.012615547595094
720 => 0.012438565405038
721 => 0.012400346117946
722 => 0.012336645631701
723 => 0.012356389076003
724 => 0.012236613525628
725 => 0.012462654736078
726 => 0.012504609976606
727 => 0.012669103919299
728 => 0.012686182226118
729 => 0.013144295515094
730 => 0.012891974413807
731 => 0.013061253192906
801 => 0.013046111305589
802 => 0.011833345767948
803 => 0.012000454158714
804 => 0.012260422373244
805 => 0.012143307044977
806 => 0.011977733371573
807 => 0.011844023752801
808 => 0.011641440007851
809 => 0.011926572738592
810 => 0.012301491959032
811 => 0.012695690796259
812 => 0.013169294870256
813 => 0.013063591954299
814 => 0.012686837097528
815 => 0.012703738045183
816 => 0.012808213053309
817 => 0.01267290842523
818 => 0.012633004448949
819 => 0.012802730859736
820 => 0.012803899672247
821 => 0.012648215345531
822 => 0.012475200706317
823 => 0.012474475768662
824 => 0.012443689484737
825 => 0.012881445626478
826 => 0.013122167242298
827 => 0.01314976558761
828 => 0.013120309653767
829 => 0.013131646073639
830 => 0.012991575469332
831 => 0.01331173533413
901 => 0.013605545686598
902 => 0.013526798235794
903 => 0.013408744612429
904 => 0.013314709215186
905 => 0.013504646484691
906 => 0.013496188877069
907 => 0.013602979509483
908 => 0.013598134869544
909 => 0.013562225196462
910 => 0.013526799518241
911 => 0.013667258328051
912 => 0.013626808446525
913 => 0.013586295735161
914 => 0.013505041290334
915 => 0.013516085118879
916 => 0.013398051879137
917 => 0.013343444301599
918 => 0.01252227735732
919 => 0.012302834717405
920 => 0.012371875839089
921 => 0.012394605969
922 => 0.012299104250885
923 => 0.012436029182283
924 => 0.012414689576764
925 => 0.012497709498586
926 => 0.012445842255738
927 => 0.012447970905476
928 => 0.012600501407432
929 => 0.012644781661061
930 => 0.01262226036668
1001 => 0.01263803350928
1002 => 0.013001518923064
1003 => 0.012949842920833
1004 => 0.012922391074589
1005 => 0.012929995423608
1006 => 0.013022873740045
1007 => 0.013048874597679
1008 => 0.012938707136835
1009 => 0.012990662748239
1010 => 0.013211883147452
1011 => 0.013289297767186
1012 => 0.013536368072251
1013 => 0.013431408215335
1014 => 0.013624066575261
1015 => 0.0142162326916
1016 => 0.014689295960109
1017 => 0.014254247428222
1018 => 0.015122967876596
1019 => 0.015799391356202
1020 => 0.015773429096412
1021 => 0.015655479016786
1022 => 0.014885388868903
1023 => 0.014176740433424
1024 => 0.014769554940504
1025 => 0.014771066146596
1026 => 0.014720142854697
1027 => 0.014403862662218
1028 => 0.014709136989575
1029 => 0.014733368557088
1030 => 0.014719805322975
1031 => 0.014477314040959
1101 => 0.014107074673201
1102 => 0.014179418559433
1103 => 0.014297919320857
1104 => 0.014073572657634
1105 => 0.01400188030509
1106 => 0.014135170028497
1107 => 0.014564657289329
1108 => 0.014483465210519
1109 => 0.014481344957218
1110 => 0.014828719101167
1111 => 0.014580074182132
1112 => 0.014180331047516
1113 => 0.014079390634061
1114 => 0.013721120167907
1115 => 0.013968578854995
1116 => 0.013977484452602
1117 => 0.01384195385865
1118 => 0.014191328608263
1119 => 0.01418810905844
1120 => 0.014519788385629
1121 => 0.015153834686148
1122 => 0.014966315995561
1123 => 0.014748252160384
1124 => 0.014771961745522
1125 => 0.015031997374244
1126 => 0.014874773897082
1127 => 0.014931312555671
1128 => 0.015031911796212
1129 => 0.01509260581577
1130 => 0.014763228810135
1201 => 0.014686435274198
1202 => 0.01452934265054
1203 => 0.0144883601173
1204 => 0.014616308781425
1205 => 0.014582598828921
1206 => 0.013976735971607
1207 => 0.013913419932029
1208 => 0.013915361744568
1209 => 0.013756150552534
1210 => 0.013513315269619
1211 => 0.01415147189418
1212 => 0.014100218986231
1213 => 0.014043639742516
1214 => 0.014050570377034
1215 => 0.014327572538621
1216 => 0.014166897295956
1217 => 0.014594078762736
1218 => 0.014506263095416
1219 => 0.014416195287589
1220 => 0.014403745173014
1221 => 0.014369076751225
1222 => 0.014250185833358
1223 => 0.014106617905797
1224 => 0.014011821924381
1225 => 0.012925165063136
1226 => 0.013126842255791
1227 => 0.013358853482486
1228 => 0.013438942828214
1229 => 0.013301944460332
1230 => 0.014255595363937
1231 => 0.014429836573634
]
'min_raw' => 0.0060142187231537
'max_raw' => 0.015799391356202
'avg_raw' => 0.010906805039678
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006014'
'max' => '$0.015799'
'avg' => '$0.0109068'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023318481175815
'max_diff' => -0.0028492603451022
'year' => 2027
]
2 => [
'items' => [
101 => 0.013902048583988
102 => 0.013803321000567
103 => 0.01426206792787
104 => 0.013985387451175
105 => 0.014109976652889
106 => 0.013840682945433
107 => 0.014387866968597
108 => 0.014383698343124
109 => 0.014170831399402
110 => 0.014350745082586
111 => 0.014319480652674
112 => 0.01407915439748
113 => 0.014395485739548
114 => 0.014395642635947
115 => 0.014190762830741
116 => 0.013951508072217
117 => 0.013908734972338
118 => 0.013876511187336
119 => 0.014102051577133
120 => 0.014304270385378
121 => 0.014680549453228
122 => 0.014775154951056
123 => 0.015144406507322
124 => 0.014924535184098
125 => 0.015022001293873
126 => 0.015127814543457
127 => 0.015178545306461
128 => 0.015095882250509
129 => 0.015669481907394
130 => 0.015717911293075
131 => 0.015734149247181
201 => 0.015540734670201
202 => 0.015712532083805
203 => 0.015632153763312
204 => 0.015841275823493
205 => 0.015874068832734
206 => 0.015846294320552
207 => 0.015856703339288
208 => 0.015367237222049
209 => 0.015341855821731
210 => 0.014995778627409
211 => 0.015136807642169
212 => 0.014873160658773
213 => 0.014956765833072
214 => 0.014993618197284
215 => 0.014974368613573
216 => 0.015144781211065
217 => 0.014999895690204
218 => 0.014617518979265
219 => 0.014235038090046
220 => 0.014230236354044
221 => 0.014129535887262
222 => 0.014056747893988
223 => 0.014070769443785
224 => 0.01412018321413
225 => 0.014053875875826
226 => 0.014068025908321
227 => 0.014303010728904
228 => 0.014350135258837
229 => 0.014189987693382
301 => 0.013546972108901
302 => 0.013389174471586
303 => 0.013502596284025
304 => 0.013448387962979
305 => 0.01085389868977
306 => 0.011463435459907
307 => 0.011101269409005
308 => 0.011268172187719
309 => 0.010898494432192
310 => 0.011074924033601
311 => 0.011042343928398
312 => 0.012022461017274
313 => 0.012007157837039
314 => 0.012014482659591
315 => 0.011664849794431
316 => 0.012221824442198
317 => 0.012496210181848
318 => 0.012445428683979
319 => 0.012458209292948
320 => 0.012238596086673
321 => 0.012016608995479
322 => 0.011770391147776
323 => 0.012227833475362
324 => 0.012176973697335
325 => 0.012293627729357
326 => 0.01259031177745
327 => 0.012633999630524
328 => 0.012692716548095
329 => 0.012671670712901
330 => 0.013173067890784
331 => 0.013112345384217
401 => 0.013258669153985
402 => 0.012957670057961
403 => 0.012617061009712
404 => 0.012681799654436
405 => 0.012675564802353
406 => 0.012596187979318
407 => 0.012524530132658
408 => 0.012405240007444
409 => 0.012782691615239
410 => 0.01276736776927
411 => 0.013015443023485
412 => 0.012971593312628
413 => 0.012678754211681
414 => 0.012689213017461
415 => 0.012759553512657
416 => 0.013003002769664
417 => 0.013075275084433
418 => 0.013041795668678
419 => 0.013121038962466
420 => 0.013183669630867
421 => 0.013128904410139
422 => 0.01390426444602
423 => 0.013582280901209
424 => 0.013739213440603
425 => 0.013776640926548
426 => 0.013680771208315
427 => 0.013701561917362
428 => 0.01373305417644
429 => 0.013924269006745
430 => 0.014426072049923
501 => 0.014648317201858
502 => 0.015316952706835
503 => 0.014629862835791
504 => 0.014589093766304
505 => 0.014709535211608
506 => 0.015102095035287
507 => 0.015420227901108
508 => 0.015525770926227
509 => 0.015539720179322
510 => 0.015737725910811
511 => 0.015851219103513
512 => 0.015713682806941
513 => 0.015597135196246
514 => 0.01517967612116
515 => 0.015227998145805
516 => 0.015560888976959
517 => 0.016031116883137
518 => 0.016434621345513
519 => 0.016293328146339
520 => 0.017371295518581
521 => 0.017478171580437
522 => 0.017463404764405
523 => 0.017706884338603
524 => 0.017223626967573
525 => 0.017017025078787
526 => 0.01562233411255
527 => 0.016014185385357
528 => 0.016583764223001
529 => 0.016508378328028
530 => 0.016094734951245
531 => 0.016434307559919
601 => 0.016322034236074
602 => 0.016233479607333
603 => 0.016639165528755
604 => 0.016193097193493
605 => 0.016579314350132
606 => 0.016083986851837
607 => 0.016293973561771
608 => 0.016174774949298
609 => 0.016251911060001
610 => 0.015800974932983
611 => 0.016044289121266
612 => 0.015790852262808
613 => 0.015790732100739
614 => 0.015785137468041
615 => 0.016083304808107
616 => 0.016093028034362
617 => 0.015872681919548
618 => 0.01584092660195
619 => 0.015958342654745
620 => 0.015820879208235
621 => 0.015885197489672
622 => 0.015822827343457
623 => 0.015808786509828
624 => 0.015696906758619
625 => 0.015648705885601
626 => 0.015667606689895
627 => 0.015603088500807
628 => 0.015564213958156
629 => 0.01577740434305
630 => 0.015663505320477
701 => 0.015759947684299
702 => 0.015650039438727
703 => 0.015269049574832
704 => 0.015049938275212
705 => 0.014330283740094
706 => 0.014534376873525
707 => 0.014669690832139
708 => 0.014624969569624
709 => 0.014721048146337
710 => 0.014726946590629
711 => 0.014695710465935
712 => 0.014659543035134
713 => 0.014641938730004
714 => 0.014773146797503
715 => 0.014849317496947
716 => 0.014683271398153
717 => 0.014644369120438
718 => 0.014812250893974
719 => 0.014914658678849
720 => 0.015670780224404
721 => 0.015614764298069
722 => 0.0157553532806
723 => 0.01573952511868
724 => 0.015886884769954
725 => 0.016127755520951
726 => 0.015637997935653
727 => 0.015723002917917
728 => 0.015702161659318
729 => 0.015929701055837
730 => 0.015930411408996
731 => 0.015793990174347
801 => 0.015867946338832
802 => 0.015826666036698
803 => 0.015901265122022
804 => 0.015614016171221
805 => 0.015963854386688
806 => 0.016162190111781
807 => 0.016164944003516
808 => 0.016258953563121
809 => 0.016354472720345
810 => 0.016537813424672
811 => 0.01634935944761
812 => 0.016010349088499
813 => 0.01603482454143
814 => 0.015836062891922
815 => 0.01583940411116
816 => 0.015821568421014
817 => 0.015875094669749
818 => 0.015625762172777
819 => 0.015684280011457
820 => 0.015602354694624
821 => 0.015722824828278
822 => 0.015593218878893
823 => 0.015702151609032
824 => 0.015749163364183
825 => 0.01592263775278
826 => 0.01556759657065
827 => 0.014843643566111
828 => 0.014995827264747
829 => 0.014770735620693
830 => 0.014791568709335
831 => 0.014833654863952
901 => 0.014697239867104
902 => 0.014723263549572
903 => 0.014722333800509
904 => 0.01471432172537
905 => 0.014678834916092
906 => 0.014627372021789
907 => 0.01483238435325
908 => 0.014867219943292
909 => 0.01494465514474
910 => 0.015175049779451
911 => 0.015152027922364
912 => 0.015189577526441
913 => 0.015107606951573
914 => 0.014795371089205
915 => 0.014812326998744
916 => 0.014600886535098
917 => 0.014939248136702
918 => 0.014859119643287
919 => 0.014807460282316
920 => 0.014793364547054
921 => 0.015024330285501
922 => 0.015093438854389
923 => 0.015050375031961
924 => 0.014962049875791
925 => 0.015131660286627
926 => 0.015177040877278
927 => 0.015187199917953
928 => 0.015487717046384
929 => 0.015203995487103
930 => 0.015272290086372
1001 => 0.015805105054312
1002 => 0.01532191540183
1003 => 0.015577871737165
1004 => 0.015565344006482
1005 => 0.01569628260655
1006 => 0.015554603219466
1007 => 0.01555635950527
1008 => 0.01567262411158
1009 => 0.015509351440449
1010 => 0.015468922830969
1011 => 0.015413070996526
1012 => 0.015535021433733
1013 => 0.015608125205494
1014 => 0.016197287917089
1015 => 0.016577913897862
1016 => 0.016561389920207
1017 => 0.016712388144384
1018 => 0.016644362061407
1019 => 0.016424687895101
1020 => 0.016799644910575
1021 => 0.016680992822011
1022 => 0.01669077435603
1023 => 0.016690410286845
1024 => 0.016769303552995
1025 => 0.016713400443466
1026 => 0.016603209676249
1027 => 0.016676359449916
1028 => 0.016893588126182
1029 => 0.017567872602704
1030 => 0.017945211128847
1031 => 0.01754515634963
1101 => 0.017821108779387
1102 => 0.017655635653437
1103 => 0.017625564264053
1104 => 0.017798882782665
1105 => 0.017972504672399
1106 => 0.017961445708611
1107 => 0.017835405132246
1108 => 0.017764208008819
1109 => 0.018303336480196
1110 => 0.018700557154093
1111 => 0.018673469367135
1112 => 0.01879302604935
1113 => 0.019144048166082
1114 => 0.019176141229283
1115 => 0.01917209824097
1116 => 0.01909255223526
1117 => 0.019438179095165
1118 => 0.019726507102423
1119 => 0.019074139633244
1120 => 0.01932255262539
1121 => 0.019434073220931
1122 => 0.019597818541856
1123 => 0.019874084345157
1124 => 0.020174182283428
1125 => 0.020216619422306
1126 => 0.020186508241468
1127 => 0.019988585584113
1128 => 0.020316956329082
1129 => 0.020509308210243
1130 => 0.02062384935358
1201 => 0.020914306635253
1202 => 0.019434761934163
1203 => 0.018387466656589
1204 => 0.018223916375868
1205 => 0.01855650230301
1206 => 0.018644202559675
1207 => 0.01860885069618
1208 => 0.017430024645349
1209 => 0.018217710100674
1210 => 0.01906519342013
1211 => 0.019097748705915
1212 => 0.019522016575675
1213 => 0.019660175585397
1214 => 0.020001766830614
1215 => 0.019980400205221
1216 => 0.020063572237527
1217 => 0.020044452427639
1218 => 0.020677178278882
1219 => 0.021375168853501
1220 => 0.021350999659376
1221 => 0.021250655256025
1222 => 0.021399683806265
1223 => 0.022120084880488
1224 => 0.022053761893765
1225 => 0.022118189025987
1226 => 0.022967582492521
1227 => 0.024071914823827
1228 => 0.023558841582783
1229 => 0.024672062883002
1230 => 0.025372776682165
1231 => 0.026584588742657
]
'min_raw' => 0.01085389868977
'max_raw' => 0.026584588742657
'avg_raw' => 0.018719243716214
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010853'
'max' => '$0.026584'
'avg' => '$0.018719'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048396799666163
'max_diff' => 0.010785197386455
'year' => 2028
]
3 => [
'items' => [
101 => 0.026432863904383
102 => 0.026904613446845
103 => 0.026161244777944
104 => 0.02445432005455
105 => 0.024184192683228
106 => 0.02472499452133
107 => 0.026054503069632
108 => 0.024683123565825
109 => 0.024960551853356
110 => 0.024880652487884
111 => 0.024876394990248
112 => 0.025038886358504
113 => 0.024803184153869
114 => 0.023842890970165
115 => 0.024282987677213
116 => 0.024113045203442
117 => 0.024301609048142
118 => 0.02531921034834
119 => 0.024869304556937
120 => 0.024395365353073
121 => 0.024989790290248
122 => 0.025746697501841
123 => 0.025699331608832
124 => 0.025607421978988
125 => 0.026125511750186
126 => 0.026981244266145
127 => 0.027212545326596
128 => 0.02738328704068
129 => 0.027406829438347
130 => 0.027649330765838
131 => 0.026345340009716
201 => 0.02841480682854
202 => 0.028772146580284
203 => 0.028704981517171
204 => 0.029102149612079
205 => 0.028985292683375
206 => 0.028815985327973
207 => 0.029445581238478
208 => 0.028723800332854
209 => 0.02769932320701
210 => 0.027137274793912
211 => 0.027877425483432
212 => 0.028329409681822
213 => 0.028628142485364
214 => 0.028718538851216
215 => 0.026446565100128
216 => 0.025222097257732
217 => 0.026006967106156
218 => 0.026964562490055
219 => 0.026340020519008
220 => 0.026364501381859
221 => 0.025474068657888
222 => 0.027043346028131
223 => 0.026814715514987
224 => 0.02800085102162
225 => 0.02771777026363
226 => 0.028685017723774
227 => 0.028430309051526
228 => 0.029487590509458
301 => 0.02990936870778
302 => 0.030617599947298
303 => 0.031138577730107
304 => 0.031444505848889
305 => 0.031426139072145
306 => 0.032638378691544
307 => 0.031923563340411
308 => 0.031025586790344
309 => 0.031009345227633
310 => 0.031474420007339
311 => 0.032449089158567
312 => 0.032701806688621
313 => 0.032843041311561
314 => 0.032626735570115
315 => 0.031850854737738
316 => 0.031515833328122
317 => 0.031801281275619
318 => 0.031452202964652
319 => 0.032054810063456
320 => 0.032882318320046
321 => 0.032711441137382
322 => 0.033282657939687
323 => 0.033873807236312
324 => 0.034719177280662
325 => 0.034940188314218
326 => 0.035305511148388
327 => 0.035681548347048
328 => 0.035802321360771
329 => 0.036032914517634
330 => 0.036031699177873
331 => 0.036726607176788
401 => 0.037493112219101
402 => 0.037782450127941
403 => 0.038447766695134
404 => 0.037308435389289
405 => 0.038172631272468
406 => 0.038952157591321
407 => 0.038022774177886
408 => 0.039303712694743
409 => 0.039353448634683
410 => 0.040104402278556
411 => 0.03934316689518
412 => 0.038891147754481
413 => 0.040196110076743
414 => 0.040827540238558
415 => 0.04063734833507
416 => 0.039189978558597
417 => 0.038347547268079
418 => 0.036142742087934
419 => 0.038754429064311
420 => 0.040026505606551
421 => 0.039186684187663
422 => 0.039610241261856
423 => 0.041921031319808
424 => 0.042800830561299
425 => 0.04261783846933
426 => 0.042648761120567
427 => 0.04312348482179
428 => 0.04522867114813
429 => 0.04396719470355
430 => 0.044931546178811
501 => 0.045443034724062
502 => 0.045918133790457
503 => 0.044751440639992
504 => 0.043233589993365
505 => 0.042752822978542
506 => 0.039103180498626
507 => 0.038913200757953
508 => 0.038806559372537
509 => 0.038134200522217
510 => 0.037605910640454
511 => 0.03718579491233
512 => 0.036083285784557
513 => 0.036455350250686
514 => 0.034698180812554
515 => 0.035822355548809
516 => 0.033017870697212
517 => 0.035353529017339
518 => 0.034082336383046
519 => 0.034935908048358
520 => 0.034932930017229
521 => 0.033361233956247
522 => 0.032454712468733
523 => 0.033032383242921
524 => 0.033651692168414
525 => 0.03375217295797
526 => 0.034555123145488
527 => 0.034779209283468
528 => 0.034100217823808
529 => 0.032959753982225
530 => 0.033224657721414
531 => 0.032449344202914
601 => 0.031090637083745
602 => 0.032066484257482
603 => 0.032399681387568
604 => 0.032546840222035
605 => 0.0312107078189
606 => 0.030790866008989
607 => 0.030567345752207
608 => 0.032787276067413
609 => 0.032908888861289
610 => 0.032286700613501
611 => 0.035099050491812
612 => 0.034462529098826
613 => 0.035173679446318
614 => 0.033200620483672
615 => 0.033275993993122
616 => 0.032341916260532
617 => 0.032864937375686
618 => 0.032495282909253
619 => 0.032822682438177
620 => 0.033018924365895
621 => 0.033952848825519
622 => 0.035364192934485
623 => 0.033813351654888
624 => 0.033137627900911
625 => 0.033556843117463
626 => 0.034673268482678
627 => 0.036364710059741
628 => 0.035363342602686
629 => 0.035807732475805
630 => 0.035904811893552
701 => 0.035166440603357
702 => 0.036391934862412
703 => 0.037048687191737
704 => 0.037722379185879
705 => 0.038307327067971
706 => 0.037453291788614
707 => 0.038367231958675
708 => 0.037630757513764
709 => 0.03697006380135
710 => 0.03697106580099
711 => 0.036556602983998
712 => 0.0357535290504
713 => 0.03560542989568
714 => 0.036375860401395
715 => 0.036993672706938
716 => 0.037044558687544
717 => 0.037386611324235
718 => 0.037589034551207
719 => 0.03957305735656
720 => 0.040371047741571
721 => 0.041346815279177
722 => 0.041726931726319
723 => 0.04287094595293
724 => 0.041947061552649
725 => 0.041747173351143
726 => 0.038972169041587
727 => 0.039426575841818
728 => 0.040154124972723
729 => 0.038984166058782
730 => 0.039726235702257
731 => 0.039872735969063
801 => 0.038944411302577
802 => 0.039440269617488
803 => 0.038123416944828
804 => 0.035392896724206
805 => 0.036394974711978
806 => 0.037132841406783
807 => 0.03607981465499
808 => 0.037967324349815
809 => 0.036864680152207
810 => 0.036515194877821
811 => 0.035151728221944
812 => 0.035795231998874
813 => 0.036665580071257
814 => 0.036127806151348
815 => 0.03724376778232
816 => 0.038824267067873
817 => 0.039950624979117
818 => 0.040037092753501
819 => 0.03931292007669
820 => 0.040473411412888
821 => 0.040481864325334
822 => 0.039172825357357
823 => 0.03837104627823
824 => 0.038188880384495
825 => 0.038643966502773
826 => 0.039196525063894
827 => 0.040067755908031
828 => 0.040594222460483
829 => 0.041966968012995
830 => 0.042338393599805
831 => 0.042746477710508
901 => 0.043291803930886
902 => 0.043946607877223
903 => 0.042513934120647
904 => 0.042570856919834
905 => 0.041236770954429
906 => 0.039811108773114
907 => 0.040893008657433
908 => 0.042307448837069
909 => 0.041982974697043
910 => 0.041946464727885
911 => 0.042007864368988
912 => 0.041763221463743
913 => 0.040656710670209
914 => 0.04010102787682
915 => 0.040818000450092
916 => 0.041199039464007
917 => 0.041789997744496
918 => 0.04171714966281
919 => 0.043239394729064
920 => 0.043830893131508
921 => 0.043679562528519
922 => 0.043707411001444
923 => 0.044778290605424
924 => 0.045969328968238
925 => 0.047084893566367
926 => 0.048219693790199
927 => 0.046851647828363
928 => 0.046157038458288
929 => 0.046873698023762
930 => 0.046493428370608
1001 => 0.04867857059294
1002 => 0.048829865099378
1003 => 0.051014849311056
1004 => 0.053088659511018
1005 => 0.051786136480591
1006 => 0.053014357031358
1007 => 0.054342777695304
1008 => 0.05690551668454
1009 => 0.05604247635121
1010 => 0.055381400981445
1011 => 0.054756687951311
1012 => 0.05605661659662
1013 => 0.057728954031943
1014 => 0.058089159498063
1015 => 0.058672829962256
1016 => 0.058059171836986
1017 => 0.058798255456648
1018 => 0.061407545403855
1019 => 0.06070249222728
1020 => 0.05970120337359
1021 => 0.06176098718804
1022 => 0.062506414943282
1023 => 0.067738217313119
1024 => 0.074343583920015
1025 => 0.071608918771584
1026 => 0.069911423866861
1027 => 0.070310375434588
1028 => 0.072722431713656
1029 => 0.073497107635653
1030 => 0.071391271432861
1031 => 0.072135088380185
1101 => 0.076233592890408
1102 => 0.078432309064376
1103 => 0.075446157173149
1104 => 0.067207482537757
1105 => 0.059611048267654
1106 => 0.061625964707979
1107 => 0.061397535713783
1108 => 0.065800867511167
1109 => 0.060685676942196
1110 => 0.06077180363274
1111 => 0.065266191668485
1112 => 0.064067165993865
1113 => 0.062124897960588
1114 => 0.05962522897374
1115 => 0.055004359660155
1116 => 0.050911526846639
1117 => 0.058938514517048
1118 => 0.05859237621257
1119 => 0.058091116652863
1120 => 0.059206615561041
1121 => 0.064623161619265
1122 => 0.064498292700974
1123 => 0.063703940351491
1124 => 0.064306449607473
1125 => 0.062019275174924
1126 => 0.062608732104186
1127 => 0.059609844953654
1128 => 0.060965467190285
1129 => 0.062120730725705
1130 => 0.06235266698441
1201 => 0.06287523121823
1202 => 0.058409977054756
1203 => 0.060414745081181
1204 => 0.061592358475345
1205 => 0.056271858318571
1206 => 0.061487189293958
1207 => 0.058332246914064
1208 => 0.057261412084684
1209 => 0.058703150110683
1210 => 0.058141303399815
1211 => 0.057658260590556
1212 => 0.057388714403261
1213 => 0.058447367690736
1214 => 0.058397980249511
1215 => 0.056665817995453
1216 => 0.054406282947002
1217 => 0.055164657075972
1218 => 0.054889132645122
1219 => 0.053890596564362
1220 => 0.054563489319088
1221 => 0.051600410170504
1222 => 0.046502586502818
1223 => 0.049870364968253
1224 => 0.049740709160772
1225 => 0.049675330823217
1226 => 0.052206123261432
1227 => 0.051962845963813
1228 => 0.051521295286457
1229 => 0.053882487139904
1230 => 0.053020620350884
1231 => 0.055676690713289
]
'min_raw' => 0.023842890970165
'max_raw' => 0.078432309064376
'avg_raw' => 0.05113760001727
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023842'
'max' => '$0.078432'
'avg' => '$0.051137'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.012988992280395
'max_diff' => 0.051847720321718
'year' => 2029
]
4 => [
'items' => [
101 => 0.05742615043783
102 => 0.056982430862593
103 => 0.058627806189396
104 => 0.055182128484203
105 => 0.056326644401273
106 => 0.056562527545551
107 => 0.05385335039895
108 => 0.052002649138365
109 => 0.051879228463823
110 => 0.04867036752031
111 => 0.050384515135314
112 => 0.051892894100269
113 => 0.051170497630992
114 => 0.050941808489799
115 => 0.052110131715529
116 => 0.05220092043618
117 => 0.050130927983981
118 => 0.050561344962929
119 => 0.05235625531601
120 => 0.050516117827297
121 => 0.046941031271479
122 => 0.046054360376198
123 => 0.04593606213418
124 => 0.043531340343421
125 => 0.046113611965202
126 => 0.044986381201718
127 => 0.048547289677267
128 => 0.046513317853568
129 => 0.046425637393497
130 => 0.046293095518171
131 => 0.044223252135059
201 => 0.044676416290551
202 => 0.046182802962257
203 => 0.046720298697383
204 => 0.046664233488636
205 => 0.04617542084576
206 => 0.046399196770543
207 => 0.045678336548116
208 => 0.045423785800168
209 => 0.044620353619948
210 => 0.043439530268828
211 => 0.043603730998212
212 => 0.041264210960407
213 => 0.039989516276085
214 => 0.03963669758767
215 => 0.039164893692215
216 => 0.039689989093084
217 => 0.041257583394085
218 => 0.039366732083395
219 => 0.036125000139014
220 => 0.036319833752514
221 => 0.036757567035429
222 => 0.035941853958612
223 => 0.035169849989015
224 => 0.035841044805918
225 => 0.034467480246087
226 => 0.036923555750202
227 => 0.036857125790888
228 => 0.037772598856132
301 => 0.038345062951227
302 => 0.037025718549484
303 => 0.036693907000332
304 => 0.036882921938723
305 => 0.033758926043098
306 => 0.037517301743013
307 => 0.037549804332135
308 => 0.037271497431172
309 => 0.039272716464545
310 => 0.043495912820831
311 => 0.041906976473916
312 => 0.041291692294535
313 => 0.040122036619763
314 => 0.041680533359115
315 => 0.04156086512587
316 => 0.041019679992302
317 => 0.04069236953492
318 => 0.041295449088533
319 => 0.040617641304242
320 => 0.040495888401271
321 => 0.039758198277731
322 => 0.03949487646639
323 => 0.039299923480416
324 => 0.039085299398543
325 => 0.039558706642165
326 => 0.038485903546209
327 => 0.037192208180669
328 => 0.037084651409002
329 => 0.037381625112063
330 => 0.03725023635555
331 => 0.037084022370185
401 => 0.036766674606438
402 => 0.036672524303996
403 => 0.036978467111698
404 => 0.036633075519376
405 => 0.037142719628301
406 => 0.037004124630568
407 => 0.036229944239566
408 => 0.035265028834086
409 => 0.035256439062999
410 => 0.035048549621666
411 => 0.034783771161743
412 => 0.034710115851503
413 => 0.035784518650553
414 => 0.038008500290417
415 => 0.037571879479142
416 => 0.037887382761989
417 => 0.039439346648521
418 => 0.039932669298867
419 => 0.039582520566639
420 => 0.039103215385731
421 => 0.039124302381176
422 => 0.040762233279882
423 => 0.040864389020908
424 => 0.041122503621788
425 => 0.041454253827096
426 => 0.039639019061131
427 => 0.039038804986941
428 => 0.03875439025998
429 => 0.037878502983293
430 => 0.0388230723183
501 => 0.038272712217283
502 => 0.038346974597889
503 => 0.038298611125097
504 => 0.038325020851565
505 => 0.036922869227044
506 => 0.0374337395841
507 => 0.036584318530559
508 => 0.035447039091856
509 => 0.035443226532396
510 => 0.035721574063836
511 => 0.035556002060396
512 => 0.035110452056383
513 => 0.035173740331516
514 => 0.034619268446296
515 => 0.03524106325742
516 => 0.035258894107714
517 => 0.035019469236039
518 => 0.035977429933724
519 => 0.036369907213187
520 => 0.036212312633673
521 => 0.036358849957373
522 => 0.037590023045075
523 => 0.037790757978218
524 => 0.037879911175715
525 => 0.037760457701605
526 => 0.03638135354132
527 => 0.036442522675232
528 => 0.035993704156942
529 => 0.035614499804316
530 => 0.035629665989756
531 => 0.035824626320121
601 => 0.036676029517096
602 => 0.03846775735217
603 => 0.038535752113775
604 => 0.038618163748387
605 => 0.038282954213649
606 => 0.038181851810449
607 => 0.038315231977014
608 => 0.038988110747294
609 => 0.040718937629257
610 => 0.040107147811131
611 => 0.039609753165918
612 => 0.040046102366403
613 => 0.039978929827207
614 => 0.039411925996333
615 => 0.039396012087266
616 => 0.03830775045373
617 => 0.03790544490633
618 => 0.037569248278874
619 => 0.037202130338328
620 => 0.036984490517267
621 => 0.037318884197946
622 => 0.037395363989147
623 => 0.036664206362142
624 => 0.036564552279301
625 => 0.037161631380647
626 => 0.036898879129497
627 => 0.037169126335747
628 => 0.037231826005735
629 => 0.037221729914771
630 => 0.036947386387667
701 => 0.037122244770801
702 => 0.036708652566895
703 => 0.036258933164687
704 => 0.035972040204588
705 => 0.035721688046072
706 => 0.035860597974169
707 => 0.035365409444453
708 => 0.03520698866762
709 => 0.037063006685034
710 => 0.038434067150053
711 => 0.038414131387892
712 => 0.038292777562799
713 => 0.038112470394436
714 => 0.038974920154864
715 => 0.038674459903558
716 => 0.038893069840677
717 => 0.038948715244705
718 => 0.039117137123371
719 => 0.039177333468644
720 => 0.038995378304178
721 => 0.038384714548276
722 => 0.036862998528736
723 => 0.036154635613846
724 => 0.035920864053215
725 => 0.035929361205449
726 => 0.03569497181389
727 => 0.035764009994299
728 => 0.035670963152172
729 => 0.035494754943632
730 => 0.035849717613834
731 => 0.035890623754868
801 => 0.035807771226155
802 => 0.035827285995972
803 => 0.035141302445005
804 => 0.035193456284508
805 => 0.034903057078771
806 => 0.034848610728509
807 => 0.034114506824358
808 => 0.032813935348091
809 => 0.033534578195471
810 => 0.032664142973554
811 => 0.032334495965769
812 => 0.033894993629998
813 => 0.033738362945977
814 => 0.033470279300655
815 => 0.033073727715696
816 => 0.03292664287543
817 => 0.03203300194737
818 => 0.031980200873951
819 => 0.032423113448232
820 => 0.032218724534892
821 => 0.031931685092429
822 => 0.030892057328548
823 => 0.029723171513022
824 => 0.029758452828438
825 => 0.030130253658463
826 => 0.031211314715934
827 => 0.030788925458234
828 => 0.030482477205415
829 => 0.030425088659462
830 => 0.031143426463116
831 => 0.032160024951709
901 => 0.032636990217448
902 => 0.032164332124752
903 => 0.031621367957581
904 => 0.031654415670583
905 => 0.031874267299549
906 => 0.031897370597218
907 => 0.031543956742008
908 => 0.031643440672117
909 => 0.031492315485281
910 => 0.030564860492627
911 => 0.030548085772802
912 => 0.030320473360372
913 => 0.030313581346983
914 => 0.029926355852863
915 => 0.029872180329473
916 => 0.029103320607991
917 => 0.029609386404992
918 => 0.029269944038011
919 => 0.02875832432461
920 => 0.028670120893179
921 => 0.028667469391521
922 => 0.029192788441109
923 => 0.029603247746042
924 => 0.029275848783312
925 => 0.029201306385861
926 => 0.029997224171826
927 => 0.02989593637861
928 => 0.029808221802922
929 => 0.032068999707206
930 => 0.030279417585265
1001 => 0.029499057634323
1002 => 0.028533214008696
1003 => 0.028847697563406
1004 => 0.028913963869108
1005 => 0.026591284055875
1006 => 0.025648973144917
1007 => 0.025325607550514
1008 => 0.025139506079217
1009 => 0.025224314856602
1010 => 0.024376124514695
1011 => 0.02494612245223
1012 => 0.024211661311883
1013 => 0.02408852651156
1014 => 0.025401834012777
1015 => 0.02558457307934
1016 => 0.024804951448804
1017 => 0.025305594744885
1018 => 0.025124054526264
1019 => 0.024224251540103
1020 => 0.024189885684534
1021 => 0.023738396175683
1022 => 0.023031902519926
1023 => 0.02270901596149
1024 => 0.022540853838427
1025 => 0.022610240807817
1026 => 0.022575156632817
1027 => 0.022346208659091
1028 => 0.022588279662674
1029 => 0.021969888279165
1030 => 0.021723639847533
1031 => 0.021612415143886
1101 => 0.021063557197741
1102 => 0.021937034268294
1103 => 0.022109120254967
1104 => 0.022281545304194
1105 => 0.023782387638133
1106 => 0.023707409796465
1107 => 0.024385172969447
1108 => 0.024358836338871
1109 => 0.024165527302902
1110 => 0.023349988277938
1111 => 0.023675047597703
1112 => 0.0226745655369
1113 => 0.023424194723021
1114 => 0.023082095267739
1115 => 0.023308530553069
1116 => 0.022901379493199
1117 => 0.023126713700586
1118 => 0.022149928226376
1119 => 0.021237819694301
1120 => 0.021604878793716
1121 => 0.02200391401308
1122 => 0.022869124040943
1123 => 0.022353812086175
1124 => 0.022539137751212
1125 => 0.021918327796481
1126 => 0.020637419534273
1127 => 0.020644669335931
1128 => 0.020447629505893
1129 => 0.020277358324455
1130 => 0.022413001863077
1201 => 0.022147400829521
1202 => 0.021724200343554
1203 => 0.02229067101134
1204 => 0.022440454847001
1205 => 0.022444718982231
1206 => 0.022858001358723
1207 => 0.023078570237142
1208 => 0.023117446457964
1209 => 0.023767755206932
1210 => 0.023985730121806
1211 => 0.024883537947208
1212 => 0.023059856508838
1213 => 0.023022298989721
1214 => 0.022298642415322
1215 => 0.02183968797528
1216 => 0.022330067418484
1217 => 0.022764476661694
1218 => 0.022312140721419
1219 => 0.022371206245886
1220 => 0.021763982203272
1221 => 0.02198103622596
1222 => 0.022167992390633
1223 => 0.022064766185276
1224 => 0.021910231559652
1225 => 0.022728860057688
1226 => 0.022682669829598
1227 => 0.023444995507157
1228 => 0.024039282887247
1229 => 0.025104352113944
1230 => 0.023992896852571
1231 => 0.023952391005212
]
'min_raw' => 0.020277358324455
'max_raw' => 0.058627806189396
'avg_raw' => 0.039452582256925
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020277'
'max' => '$0.058627'
'avg' => '$0.039452'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035655326457099
'max_diff' => -0.01980450287498
'year' => 2030
]
5 => [
'items' => [
101 => 0.024348342160488
102 => 0.023985669503747
103 => 0.024214866103773
104 => 0.025067424998314
105 => 0.025085438224311
106 => 0.024783693480132
107 => 0.024765332285026
108 => 0.024823285663871
109 => 0.02516272041391
110 => 0.02504411148247
111 => 0.025181368740743
112 => 0.025353011043971
113 => 0.026062996384952
114 => 0.026234171447018
115 => 0.025818304790291
116 => 0.025855852893132
117 => 0.025700307347721
118 => 0.025550052299834
119 => 0.025887803704496
120 => 0.026505051035037
121 => 0.026501211171429
122 => 0.026644400554541
123 => 0.026733606353975
124 => 0.026350669760169
125 => 0.02610139211857
126 => 0.026196981028307
127 => 0.026349829776633
128 => 0.026147414239269
129 => 0.02489801177466
130 => 0.025277000670284
131 => 0.025213918386442
201 => 0.025124081543183
202 => 0.025505157808368
203 => 0.025468402072949
204 => 0.024367425096784
205 => 0.024437906070687
206 => 0.024371711278247
207 => 0.0245856001948
208 => 0.02397411880033
209 => 0.024162206358879
210 => 0.02428017311239
211 => 0.024349656436471
212 => 0.024600677848213
213 => 0.024571223382823
214 => 0.024598846917288
215 => 0.024971045403706
216 => 0.026853497624912
217 => 0.026955955345915
218 => 0.026451416055543
219 => 0.026652969550449
220 => 0.026266030915133
221 => 0.026525785413285
222 => 0.026703502843871
223 => 0.025900431948148
224 => 0.025852879301591
225 => 0.025464343632885
226 => 0.025673120693462
227 => 0.025340941378482
228 => 0.025422446563239
301 => 0.025194550961164
302 => 0.025604717671337
303 => 0.026063347786774
304 => 0.026179215865785
305 => 0.025874416834251
306 => 0.025653722248185
307 => 0.025266255256369
308 => 0.025910621499024
309 => 0.026099053825081
310 => 0.025909631744233
311 => 0.025865738509146
312 => 0.02578256090797
313 => 0.025883385030442
314 => 0.026098027582166
315 => 0.025996806118598
316 => 0.026063664678577
317 => 0.025808868792185
318 => 0.026350796528115
319 => 0.027211508194784
320 => 0.027214275523533
321 => 0.027113053514344
322 => 0.027071635649043
323 => 0.027175495573136
324 => 0.027231835321399
325 => 0.027567699271263
326 => 0.027928094670877
327 => 0.029609902748043
328 => 0.029137657769839
329 => 0.030629857947111
330 => 0.031809994549391
331 => 0.032163865915295
401 => 0.031838320909598
402 => 0.030724649030701
403 => 0.03067000697527
404 => 0.032334302942481
405 => 0.031864063102159
406 => 0.031808129569444
407 => 0.031213091282546
408 => 0.031564832607028
409 => 0.03148790161963
410 => 0.03136646229243
411 => 0.032037560237028
412 => 0.03329379567999
413 => 0.033097999605303
414 => 0.032951846918268
415 => 0.032311448388087
416 => 0.032697111341446
417 => 0.032559784150642
418 => 0.033149828912324
419 => 0.032800299466595
420 => 0.031860500572875
421 => 0.032010166644318
422 => 0.031987544918706
423 => 0.032453098428812
424 => 0.032313350820827
425 => 0.031960256955378
426 => 0.033289502003816
427 => 0.03320318822402
428 => 0.033325561429694
429 => 0.033379433899348
430 => 0.034188521936408
501 => 0.034519979417262
502 => 0.034595226068396
503 => 0.034910085039365
504 => 0.034587392090368
505 => 0.03587839396253
506 => 0.03673683487547
507 => 0.037733958170816
508 => 0.039191023306791
509 => 0.039738893276524
510 => 0.039639925470286
511 => 0.040744655627127
512 => 0.0427298311622
513 => 0.040041186204265
514 => 0.042872335873511
515 => 0.041976026575422
516 => 0.03985089335357
517 => 0.039714059827757
518 => 0.0411532247189
519 => 0.044345153932967
520 => 0.043545611867404
521 => 0.044346461697358
522 => 0.043412227831074
523 => 0.043365835245272
524 => 0.044301088043721
525 => 0.046486357185275
526 => 0.045448217729712
527 => 0.043959790257924
528 => 0.045058821940596
529 => 0.044106738986485
530 => 0.041961429619633
531 => 0.043545000472655
601 => 0.042486111740741
602 => 0.042795151766334
603 => 0.045020778383007
604 => 0.044752985100211
605 => 0.045099534405139
606 => 0.044487883952716
607 => 0.043916505981729
608 => 0.042849986567797
609 => 0.042534242748103
610 => 0.042621502980594
611 => 0.042534199506266
612 => 0.04193749169599
613 => 0.041808632701174
614 => 0.041593862064372
615 => 0.041660428465281
616 => 0.041256596834728
617 => 0.042018710557455
618 => 0.042160165580116
619 => 0.042714768392507
620 => 0.042772349096314
621 => 0.044316910034545
622 => 0.043466191825059
623 => 0.044036927047459
624 => 0.043985875117199
625 => 0.039896951434455
626 => 0.040460369041058
627 => 0.041336870026748
628 => 0.040942007520763
629 => 0.040383764320898
630 => 0.039932953005901
701 => 0.039249927765856
702 => 0.040211272674881
703 => 0.041475339002616
704 => 0.042804407904412
705 => 0.044401197105876
706 => 0.044044812344784
707 => 0.042774557040994
708 => 0.042831539766
709 => 0.043183784550111
710 => 0.042727595549874
711 => 0.042593056507837
712 => 0.043165300951723
713 => 0.043169241684708
714 => 0.042644341107653
715 => 0.042061010172048
716 => 0.042058565994128
717 => 0.041954767888446
718 => 0.043430693283486
719 => 0.04424230301787
720 => 0.044335352765942
721 => 0.044236040028443
722 => 0.044274261559525
723 => 0.043802003737687
724 => 0.044881445074701
725 => 0.045872047191229
726 => 0.045606544662872
727 => 0.045208518629457
728 => 0.04489147172231
729 => 0.045531858487444
730 => 0.045503343072855
731 => 0.045863395145924
801 => 0.045847061104128
802 => 0.045725989134198
803 => 0.045606548986734
804 => 0.046080115670529
805 => 0.045943736070844
806 => 0.045807144635972
807 => 0.045533189602234
808 => 0.04557042464123
809 => 0.045172467332621
810 => 0.044988354072371
811 => 0.042219732387691
812 => 0.041479866206221
813 => 0.041712643168277
814 => 0.041789279388236
815 => 0.041467288677896
816 => 0.041928940643897
817 => 0.041856992674006
818 => 0.042136900136697
819 => 0.041962026106177
820 => 0.041969202997388
821 => 0.042483470234072
822 => 0.04263276420073
823 => 0.042556832084338
824 => 0.042610012335859
825 => 0.043835528786173
826 => 0.043661299536748
827 => 0.043568743720509
828 => 0.043594382314145
829 => 0.04390752804257
830 => 0.043995191749405
831 => 0.043623754463522
901 => 0.043798926434798
902 => 0.044544786455858
903 => 0.044805795251207
904 => 0.045638810034634
905 => 0.045284930548978
906 => 0.045934491660446
907 => 0.047931021065399
908 => 0.049525986903402
909 => 0.048059190404024
910 => 0.050988142047842
911 => 0.053268751035713
912 => 0.053181217464206
913 => 0.052783540535734
914 => 0.050187127836169
915 => 0.047797870159697
916 => 0.049796585659306
917 => 0.049801680796154
918 => 0.049629989362164
919 => 0.048563628611243
920 => 0.049592882319503
921 => 0.049674580741165
922 => 0.049628851350398
923 => 0.048811275062882
924 => 0.0475629871852
925 => 0.04780689964852
926 => 0.048206433239118
927 => 0.047450032800677
928 => 0.047208317028677
929 => 0.047657712637133
930 => 0.049105758922871
1001 => 0.048832014160513
1002 => 0.048824865578479
1003 => 0.049996061757691
1004 => 0.04915773805333
1005 => 0.047809976165798
1006 => 0.047469648514401
1007 => 0.046261714624118
1008 => 0.047096038864649
1009 => 0.047126064708747
1010 => 0.046669113848795
1011 => 0.047847055209683
1012 => 0.04783620027267
1013 => 0.048954480281399
1014 => 0.051092211651299
1015 => 0.050459979293848
1016 => 0.049724761848817
1017 => 0.04980470037046
1018 => 0.050681428647804
1019 => 0.050151338717562
1020 => 0.050341962752396
1021 => 0.050681140115497
1022 => 0.050885774239956
1023 => 0.049775256669091
1024 => 0.049516341901126
1025 => 0.048986693152606
1026 => 0.048848517680479
1027 => 0.049279905534665
1028 => 0.049166250076245
1029 => 0.047123541152817
1030 => 0.046910066704793
1031 => 0.046916613661343
1101 => 0.046379822011631
1102 => 0.045561085901063
1103 => 0.047712675515442
1104 => 0.04753987275793
1105 => 0.047349111887508
1106 => 0.047372479005669
1107 => 0.048306411133133
1108 => 0.047764683334501
1109 => 0.049204955474604
1110 => 0.048908878821142
1111 => 0.048605208918719
1112 => 0.048563232488192
1113 => 0.048446345483658
1114 => 0.04804549645337
1115 => 0.047561447162006
1116 => 0.047241835892216
1117 => 0.043578096416572
1118 => 0.044258065152259
1119 => 0.045040307201567
1120 => 0.04531033402235
1121 => 0.044848434460114
1122 => 0.048063735063398
1123 => 0.048651201467026
1124 => 0.046871727410953
1125 => 0.046538860470508
1126 => 0.048085557764598
1127 => 0.047152710220207
1128 => 0.047572771412327
1129 => 0.046664828876152
1130 => 0.048509698013417
1201 => 0.048495643201592
1202 => 0.047777947438936
1203 => 0.048384538982964
1204 => 0.048279128774705
1205 => 0.047468852026273
1206 => 0.048535385231606
1207 => 0.04853591421877
1208 => 0.047845147651266
1209 => 0.047038483528666
1210 => 0.046894271036102
1211 => 0.046785626295177
1212 => 0.047546051466103
1213 => 0.048227846296569
1214 => 0.049496497444792
1215 => 0.049815466485863
1216 => 0.051060423888134
1217 => 0.050319112370957
1218 => 0.050647726164931
1219 => 0.051004482923548
1220 => 0.051175525232924
1221 => 0.050896820968432
1222 => 0.05283075225907
1223 => 0.052994035314124
1224 => 0.053048782710091
1225 => 0.052396671960029
1226 => 0.052975898934505
1227 => 0.052704897815129
1228 => 0.053409967441467
1229 => 0.053520531361657
1230 => 0.053426887654681
1231 => 0.053461982388083
]
'min_raw' => 0.02397411880033
'max_raw' => 0.053520531361657
'avg_raw' => 0.038747325080993
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023974'
'max' => '$0.05352'
'avg' => '$0.038747'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036967604758748
'max_diff' => -0.0051072748277385
'year' => 2031
]
6 => [
'items' => [
101 => 0.05181171320038
102 => 0.051726138037134
103 => 0.050559314614141
104 => 0.051034803783734
105 => 0.050145899571969
106 => 0.050427780254247
107 => 0.050552030573138
108 => 0.050487129257693
109 => 0.051061687227965
110 => 0.050573195578795
111 => 0.049283985801175
112 => 0.047994424779213
113 => 0.047978235391036
114 => 0.047638716736596
115 => 0.047393306935379
116 => 0.047440581569474
117 => 0.047607183546151
118 => 0.047383623725628
119 => 0.047431331548108
120 => 0.048223599276819
121 => 0.048382482919617
122 => 0.047842534221542
123 => 0.045674562284547
124 => 0.045142536533263
125 => 0.045524946092757
126 => 0.045342178953649
127 => 0.036594677227567
128 => 0.038649773004583
129 => 0.037428704878338
130 => 0.037991429249555
131 => 0.036745034886718
201 => 0.037339879605789
202 => 0.037230033506428
203 => 0.040534566701164
204 => 0.040482970960565
205 => 0.040507667111204
206 => 0.03932885549573
207 => 0.041206734407403
208 => 0.042131845085635
209 => 0.041960631720117
210 => 0.042003722435571
211 => 0.041263281177709
212 => 0.040514836201104
213 => 0.039684695537194
214 => 0.041226994282252
215 => 0.041055516989719
216 => 0.041448824203207
217 => 0.042449115185169
218 => 0.042596411831999
219 => 0.042794380019073
220 => 0.042723422516342
221 => 0.044413918108007
222 => 0.044209187937607
223 => 0.044702528743381
224 => 0.043687689276048
225 => 0.042539302089314
226 => 0.042757572949907
227 => 0.042736551710808
228 => 0.04246892721003
229 => 0.042227327777027
301 => 0.041825132791296
302 => 0.043097737239808
303 => 0.043046071823247
304 => 0.043882474862893
305 => 0.04373463250125
306 => 0.042747305027035
307 => 0.04278256762093
308 => 0.0430197255115
309 => 0.043840531678585
310 => 0.044084202833721
311 => 0.043971324646045
312 => 0.044238498943641
313 => 0.044449662614887
314 => 0.044265017849617
315 => 0.0468791983445
316 => 0.045793608342996
317 => 0.046322717356242
318 => 0.04644890673821
319 => 0.046125675289776
320 => 0.046195772616891
321 => 0.046301950967092
322 => 0.046946645117659
323 => 0.048638509112502
324 => 0.04938782415891
325 => 0.051642175446583
326 => 0.049325603975275
327 => 0.049188148211094
328 => 0.04959422495289
329 => 0.050917767806073
330 => 0.051990374974519
331 => 0.052346220652484
401 => 0.052393251533199
402 => 0.053060841681236
403 => 0.053443491904271
404 => 0.0529797786779
405 => 0.052586830271349
406 => 0.051179337853635
407 => 0.05134225893346
408 => 0.052464623612393
409 => 0.054050029828336
410 => 0.055410473295017
411 => 0.054934093409227
412 => 0.058568535666018
413 => 0.058928875770413
414 => 0.058879088419176
415 => 0.059699996802787
416 => 0.058070660836405
417 => 0.05737408814388
418 => 0.052671790176999
419 => 0.053992944101451
420 => 0.055913318919291
421 => 0.055659150111114
422 => 0.054264522586633
423 => 0.055409415344981
424 => 0.055030877994964
425 => 0.054732309881477
426 => 0.056100108289638
427 => 0.054596157753803
428 => 0.055898315862234
429 => 0.054228284619071
430 => 0.054936269472418
501 => 0.054534383028284
502 => 0.054794452810989
503 => 0.053274090175394
504 => 0.054094440948844
505 => 0.053239960886156
506 => 0.053239555751349
507 => 0.053220693056606
508 => 0.054225985061015
509 => 0.054258767597187
510 => 0.053515855287017
511 => 0.05340879001665
512 => 0.053804666436376
513 => 0.053341198829076
514 => 0.053558052405501
515 => 0.053347767102993
516 => 0.053300427452113
517 => 0.052923217059718
518 => 0.052760704451058
519 => 0.052824429832348
520 => 0.052606902253321
521 => 0.052475834018641
522 => 0.053194620285788
523 => 0.052810601779007
524 => 0.053135763942023
525 => 0.05276520061853
526 => 0.051480666692546
527 => 0.050741917648013
528 => 0.048315552138187
529 => 0.049003666386876
530 => 0.049459886845663
531 => 0.049309105986756
601 => 0.049633041616136
602 => 0.049652928632883
603 => 0.049547613857639
604 => 0.049425672839564
605 => 0.049366318695727
606 => 0.049808695855953
607 => 0.050065510687195
608 => 0.049505674672145
609 => 0.049374512926757
610 => 0.049940538047366
611 => 0.050285813043956
612 => 0.052835129625514
613 => 0.052646268018968
614 => 0.05312027358918
615 => 0.053066907836183
616 => 0.053563741188774
617 => 0.054375853742819
618 => 0.052724601850204
619 => 0.053011202082767
620 => 0.052940934324309
621 => 0.053708099285965
622 => 0.053710494291236
623 => 0.053250540573991
624 => 0.053499888946007
625 => 0.053360709525262
626 => 0.053612225549774
627 => 0.05264374565707
628 => 0.053823249625439
629 => 0.054491952369948
630 => 0.054501237308205
701 => 0.054818197101949
702 => 0.055140246609466
703 => 0.055758392594545
704 => 0.055123006853441
705 => 0.053980009758752
706 => 0.05406253045713
707 => 0.05339239167872
708 => 0.053403656832656
709 => 0.053343522558082
710 => 0.053523990042775
711 => 0.052683348121393
712 => 0.05288064510009
713 => 0.052604428174544
714 => 0.053010601641115
715 => 0.052573626133964
716 => 0.052940900439068
717 => 0.053099403853814
718 => 0.053684284866564
719 => 0.052487238732829
720 => 0.050046380633243
721 => 0.050559478598319
722 => 0.049800566404995
723 => 0.04987080661787
724 => 0.050012703026524
725 => 0.049552770340461
726 => 0.049640511002817
727 => 0.049637376288936
728 => 0.04961036301822
729 => 0.049490716763132
730 => 0.049317206021964
731 => 0.050008419410987
801 => 0.050125870034959
802 => 0.050386948222994
803 => 0.051163739819561
804 => 0.051086120021056
805 => 0.051212721132831
806 => 0.050936351616661
807 => 0.049883626607078
808 => 0.049940794639911
809 => 0.049227908354426
810 => 0.050368718117887
811 => 0.050098559307947
812 => 0.049924386165691
813 => 0.049876861410123
814 => 0.050655578522809
815 => 0.05088858288782
816 => 0.050743390203887
817 => 0.050445595773192
818 => 0.051017449115146
819 => 0.051170452944898
820 => 0.051204704859815
821 => 0.052217919339755
822 => 0.051261332293835
823 => 0.051491592303445
824 => 0.053288015167809
825 => 0.051658907519241
826 => 0.052521882174123
827 => 0.05247964405547
828 => 0.052921112687438
829 => 0.052443430742145
830 => 0.052449352182354
831 => 0.052841346419866
901 => 0.052290861209813
902 => 0.052154553330314
903 => 0.05196624497104
904 => 0.05237740938439
905 => 0.052623883854827
906 => 0.054610287070994
907 => 0.05589359413963
908 => 0.055837882395299
909 => 0.05634698345047
910 => 0.056117628762284
911 => 0.055376981973423
912 => 0.056641175729756
913 => 0.056241131929138
914 => 0.056274111054008
915 => 0.056272883569333
916 => 0.056538877724308
917 => 0.056350396487502
918 => 0.055978880622556
919 => 0.056225510191627
920 => 0.056957911840082
921 => 0.059231309029713
922 => 0.060503532215538
923 => 0.059154719596476
924 => 0.060085112479784
925 => 0.05952720828268
926 => 0.059425820493854
927 => 0.060010175980066
928 => 0.0605955543032
929 => 0.060558268234676
930 => 0.06013331363159
1001 => 0.059893267559131
1002 => 0.061710976841127
1003 => 0.063050234076232
1004 => 0.062958905711292
1005 => 0.063361999412561
1006 => 0.064545494986705
1007 => 0.064653698989955
1008 => 0.064640067772586
1009 => 0.06437187286061
1010 => 0.065537177949675
1011 => 0.066509295956565
1012 => 0.064309793487383
1013 => 0.065147335234046
1014 => 0.065523334708033
1015 => 0.066075413489862
1016 => 0.067006862933956
1017 => 0.068018664085005
1018 => 0.068161743861598
1019 => 0.068060221913107
1020 => 0.067392911855316
1021 => 0.068500036748092
1022 => 0.069148564545006
1023 => 0.069534748006774
1024 => 0.070514045011017
1025 => 0.065525656752779
1026 => 0.061994627604615
1027 => 0.06144320641445
1028 => 0.062564543088218
1029 => 0.062860230626598
1030 => 0.062741039350637
1031 => 0.058766545017254
1101 => 0.061422281524325
1102 => 0.064279630705267
1103 => 0.064389393124227
1104 => 0.06581984186856
1105 => 0.06628565461579
1106 => 0.067437353348181
1107 => 0.067365314278897
1108 => 0.067645734592704
1109 => 0.067581270818763
1110 => 0.069714550201737
1111 => 0.072067874156211
1112 => 0.07198638603078
1113 => 0.071648067869059
1114 => 0.072150528031033
1115 => 0.074579410549572
1116 => 0.074355797969314
1117 => 0.074573018543761
1118 => 0.077436807918938
1119 => 0.081160141475957
1120 => 0.079430279222145
1121 => 0.083183582558464
1122 => 0.085546088054616
1123 => 0.089631797022583
1124 => 0.089120246137252
1125 => 0.090710782656165
1126 => 0.08820446328862
1127 => 0.08244944741002
1128 => 0.081538694117916
1129 => 0.083362045272655
1130 => 0.087844576166577
1201 => 0.083220874422833
1202 => 0.08415624326367
1203 => 0.083886856974583
1204 => 0.083872502524056
1205 => 0.084420353516918
1206 => 0.083625667077785
1207 => 0.080387971563399
1208 => 0.081871788337783
1209 => 0.08129881542246
1210 => 0.081934571589971
1211 => 0.085365485420245
1212 => 0.083848596633111
1213 => 0.082250677517903
1214 => 0.084254822695012
1215 => 0.086806788204472
1216 => 0.086647090789213
1217 => 0.086337211055269
1218 => 0.088083986890735
1219 => 0.090969148813625
1220 => 0.091748996487863
1221 => 0.092324664097701
1222 => 0.092404038935114
1223 => 0.093221649091652
1224 => 0.088825153215658
1225 => 0.095802505080882
1226 => 0.097007301002551
1227 => 0.096780849302952
1228 => 0.098119929264325
1229 => 0.097725937970509
1230 => 0.09715510640111
1231 => 0.099277832970361
]
'min_raw' => 0.036594677227567
'max_raw' => 0.099277832970361
'avg_raw' => 0.067936255098964
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036594'
'max' => '$0.099277'
'avg' => '$0.067936'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012620558427237
'max_diff' => 0.045757301608704
'year' => 2032
]
7 => [
'items' => [
101 => 0.096844298253916
102 => 0.093390202097423
103 => 0.091495216631696
104 => 0.093990686357083
105 => 0.095514582638485
106 => 0.096521781142485
107 => 0.096826558801229
108 => 0.089166440675292
109 => 0.08503806185504
110 => 0.087684305346863
111 => 0.090912905040856
112 => 0.088807218181342
113 => 0.088889757119642
114 => 0.085887601022747
115 => 0.09117852923997
116 => 0.090407685502431
117 => 0.094406824176381
118 => 0.09345239763675
119 => 0.096713539979687
120 => 0.09585477190801
121 => 0.099419470160464
122 => 0.10084152480372
123 => 0.10322937587488
124 => 0.10498588884313
125 => 0.10601734685482
126 => 0.1059554219847
127 => 0.11004257249737
128 => 0.10763252263421
129 => 0.10460493200094
130 => 0.10455017243831
131 => 0.10611820452857
201 => 0.10940436962117
202 => 0.11025642441792
203 => 0.11073260680985
204 => 0.11000331690058
205 => 0.10738738050395
206 => 0.10625783243098
207 => 0.10722024011531
208 => 0.10604329821801
209 => 0.10807503012431
210 => 0.11086503198619
211 => 0.11028890763457
212 => 0.11221480496463
213 => 0.11420790609092
214 => 0.1170581302173
215 => 0.11780328434743
216 => 0.11903499578886
217 => 0.12030283145822
218 => 0.12071002610609
219 => 0.12148748703396
220 => 0.1214833894311
221 => 0.12382632026637
222 => 0.1264106455322
223 => 0.12738616849278
224 => 0.12962932975
225 => 0.12578799470677
226 => 0.12870169146313
227 => 0.13132991887193
228 => 0.12819643780606
301 => 0.13251521144792
302 => 0.13268289964188
303 => 0.1352147922821
304 => 0.1326482340393
305 => 0.13112421994746
306 => 0.13552399152653
307 => 0.13765290240213
308 => 0.13701165712075
309 => 0.13213174886724
310 => 0.12929143295458
311 => 0.12185777835514
312 => 0.13066326333816
313 => 0.13495215821387
314 => 0.13212064166563
315 => 0.13354869391308
316 => 0.14133968392767
317 => 0.14430598849598
318 => 0.14368901788181
319 => 0.1437932757594
320 => 0.14539383986223
321 => 0.1524916225409
322 => 0.14823846663453
323 => 0.15148984496224
324 => 0.15321436430354
325 => 0.15481619397625
326 => 0.15088260656354
327 => 0.14576506713549
328 => 0.14414412757894
329 => 0.131839103148
330 => 0.13119857318835
331 => 0.13083902431196
401 => 0.12857211950551
402 => 0.12679095328513
403 => 0.12537450377621
404 => 0.1216573172772
405 => 0.12291175860146
406 => 0.11698733915915
407 => 0.12077757276981
408 => 0.11132205628977
409 => 0.11919689138653
410 => 0.11491097666818
411 => 0.11778885313225
412 => 0.11777881249238
413 => 0.11247972949046
414 => 0.109423329004
415 => 0.11137098635086
416 => 0.11345902963193
417 => 0.11379780762926
418 => 0.11650501024667
419 => 0.11726053230606
420 => 0.11497126519415
421 => 0.11112611172761
422 => 0.11201925317927
423 => 0.10940522952099
424 => 0.10482425360681
425 => 0.10811439048454
426 => 0.1092377878717
427 => 0.10973394415641
428 => 0.10522908047346
429 => 0.10381355449892
430 => 0.10305994034749
501 => 0.1105445903958
502 => 0.11095461642108
503 => 0.10885686530387
504 => 0.11833889927059
505 => 0.11619282295364
506 => 0.11859051600114
507 => 0.111938209954
508 => 0.11219233700352
509 => 0.10904302871287
510 => 0.11080643091878
511 => 0.10956011507675
512 => 0.11066396544682
513 => 0.1113256088073
514 => 0.11447440032744
515 => 0.11923284552772
516 => 0.11400407587728
517 => 0.11172582606322
518 => 0.1131392394345
519 => 0.11690334549965
520 => 0.1226061588694
521 => 0.11922997857469
522 => 0.12072827005822
523 => 0.12105558009302
524 => 0.1185661097367
525 => 0.12269794919238
526 => 0.12491223552368
527 => 0.1271836351176
528 => 0.12915582774183
529 => 0.12627638817064
530 => 0.12935780126327
531 => 0.12687472625325
601 => 0.12464715127368
602 => 0.12465052958542
603 => 0.12325313926106
604 => 0.12054551942511
605 => 0.12004619278502
606 => 0.12264375302477
607 => 0.12472675034719
608 => 0.12489831598355
609 => 0.12605157032951
610 => 0.12673405437198
611 => 0.13342332578028
612 => 0.13611380607725
613 => 0.1394036744562
614 => 0.14068526359663
615 => 0.14454238743417
616 => 0.14142744667507
617 => 0.14075350964794
618 => 0.13139738887366
619 => 0.13292945312631
620 => 0.13538243581701
621 => 0.13143783765474
622 => 0.13393977726736
623 => 0.13443371314522
624 => 0.13130380171861
625 => 0.13297562264705
626 => 0.12853576192146
627 => 0.1193296223588
628 => 0.12270819825742
629 => 0.12519596733516
630 => 0.12164561412151
701 => 0.12800948483934
702 => 0.12429184294294
703 => 0.12311352894007
704 => 0.11851650591558
705 => 0.12068612382749
706 => 0.1236205631193
707 => 0.12180742080215
708 => 0.12556996335492
709 => 0.1308987270431
710 => 0.13469632138066
711 => 0.13498785351898
712 => 0.13254625477899
713 => 0.1364589323419
714 => 0.13648743192638
715 => 0.13207391565166
716 => 0.12937066150795
717 => 0.12875647647881
718 => 0.13029083109968
719 => 0.13215382086691
720 => 0.13509123648531
721 => 0.13686625522362
722 => 0.14149456269595
723 => 0.14274684999399
724 => 0.14412273406475
725 => 0.14596133949021
726 => 0.14816905671224
727 => 0.14333869711586
728 => 0.14353061630754
729 => 0.13903265233227
730 => 0.13422593275141
731 => 0.13787363374722
801 => 0.14264251756593
802 => 0.14154853034877
803 => 0.14142543443871
804 => 0.14163244761547
805 => 0.14080761698002
806 => 0.1370769385855
807 => 0.13520341525106
808 => 0.13762073833927
809 => 0.13890543797798
810 => 0.14089789508004
811 => 0.14065228268654
812 => 0.14578463820717
813 => 0.14777891636812
814 => 0.14726869467457
815 => 0.14736258774536
816 => 0.1509731330966
817 => 0.15498880209247
818 => 0.1587500060213
819 => 0.16257606420517
820 => 0.15796360173092
821 => 0.15562167774363
822 => 0.1580379455042
823 => 0.15675583981901
824 => 0.16412319938336
825 => 0.16463329937487
826 => 0.17200012619526
827 => 0.17899212207324
828 => 0.1746005747369
829 => 0.17874160607543
830 => 0.1832204690913
831 => 0.19186092251823
901 => 0.18895112177885
902 => 0.18672226001488
903 => 0.18461599641771
904 => 0.18899879660349
905 => 0.19463719902556
906 => 0.19585165690332
907 => 0.19781954262392
908 => 0.19575055141033
909 => 0.19824242343519
910 => 0.20703982666701
911 => 0.20466269065694
912 => 0.20128677537897
913 => 0.2082314803189
914 => 0.2107447420398
915 => 0.22838412900249
916 => 0.25065458368961
917 => 0.24143446921345
918 => 0.23571124662686
919 => 0.23705633969137
920 => 0.24518875584063
921 => 0.24780062979779
922 => 0.24070065601529
923 => 0.24320848678484
924 => 0.2570268808895
925 => 0.26444000597949
926 => 0.25437198639175
927 => 0.22659471965264
928 => 0.20098281114488
929 => 0.20777624260041
930 => 0.20700607829807
1001 => 0.22185221888376
1002 => 0.20460599674927
1003 => 0.20489637889962
1004 => 0.22004952195028
1005 => 0.21600692317501
1006 => 0.20945843089599
1007 => 0.20103062238551
1008 => 0.18545103887597
1009 => 0.17165176729274
1010 => 0.1987153166499
1011 => 0.19754828718975
1012 => 0.19585825558737
1013 => 0.19961923803794
1014 => 0.21788150124441
1015 => 0.21746049696833
1016 => 0.21478228256213
1017 => 0.21681368458453
1018 => 0.20910231629977
1019 => 0.21108971149135
1020 => 0.20097875408772
1021 => 0.20554932910504
1022 => 0.20944438077263
1023 => 0.21022637006213
1024 => 0.21198823186072
1025 => 0.19693331569448
1026 => 0.20369253106401
1027 => 0.20766293684077
1028 => 0.18972449909675
1029 => 0.20730835160305
1030 => 0.19667124309819
1031 => 0.19306084870763
1101 => 0.19792176912123
1102 => 0.19602746370865
1103 => 0.19439885115226
1104 => 0.19349005736268
1105 => 0.19705938083422
1106 => 0.196892867628
1107 => 0.19105276165274
1108 => 0.18343458148119
1109 => 0.185991492805
1110 => 0.18506254294989
1111 => 0.18169590883804
1112 => 0.18396461374048
1113 => 0.17397438551545
1114 => 0.15678671710116
1115 => 0.16814141732816
1116 => 0.16770427372096
1117 => 0.16748384609132
1118 => 0.17601658949105
1119 => 0.17519636309705
1120 => 0.17370764416026
1121 => 0.1816685673473
1122 => 0.1787627232945
1123 => 0.18771784996227
1124 => 0.19361627556693
1125 => 0.19212024403951
1126 => 0.19766774183026
1127 => 0.18605039887767
1128 => 0.18990921419962
1129 => 0.19070451068939
1130 => 0.18157033079092
1201 => 0.17533056227902
1202 => 0.17491444085784
1203 => 0.16409554215127
1204 => 0.16987491051322
1205 => 0.17496051550523
1206 => 0.17252490537295
1207 => 0.17175386396685
1208 => 0.17569294729212
1209 => 0.17599904780246
1210 => 0.16901992372762
1211 => 0.17047110462289
1212 => 0.17652277019494
1213 => 0.17031861817745
1214 => 0.15826496424994
1215 => 0.15527549142111
1216 => 0.15487664063883
1217 => 0.14676895322897
1218 => 0.15547526229025
1219 => 0.15167472507043
1220 => 0.16368057661043
1221 => 0.15682289859945
1222 => 0.15652727780667
1223 => 0.15608040362023
1224 => 0.14910178214222
1225 => 0.15062965673137
1226 => 0.15570854456759
1227 => 0.15752074896532
1228 => 0.15733172119968
1229 => 0.15568365524641
1230 => 0.15643813140035
1231 => 0.15400770083159
]
'min_raw' => 0.08503806185504
'max_raw' => 0.26444000597949
'avg_raw' => 0.17473903391727
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.085038'
'max' => '$0.26444'
'avg' => '$0.174739'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.048443384627474
'max_diff' => 0.16516217300913
'year' => 2033
]
8 => [
'items' => [
101 => 0.15314946521272
102 => 0.15044063752326
103 => 0.14645940915251
104 => 0.14701302337575
105 => 0.13912516822822
106 => 0.13482744610369
107 => 0.13363789326268
108 => 0.13204717348886
109 => 0.13381756929388
110 => 0.13910282292565
111 => 0.13272768571663
112 => 0.12179796013565
113 => 0.12245485526642
114 => 0.12393070359133
115 => 0.12118047000157
116 => 0.11857760471848
117 => 0.12084058490499
118 => 0.11620951609231
119 => 0.12449034613215
120 => 0.12426637288633
121 => 0.12735295424208
122 => 0.12928305690687
123 => 0.1248347951427
124 => 0.1237160693384
125 => 0.12435334639978
126 => 0.11382057612725
127 => 0.12649220220093
128 => 0.12660178694941
129 => 0.12566345580205
130 => 0.13241070549372
131 => 0.14664950686309
201 => 0.14129229703347
202 => 0.13921782346492
203 => 0.13527424769467
204 => 0.14052882826217
205 => 0.14012535845881
206 => 0.13830071499665
207 => 0.1371971649375
208 => 0.13923048975817
209 => 0.13694521349041
210 => 0.13653471507752
211 => 0.13404754132213
212 => 0.13315973345065
213 => 0.13250243584726
214 => 0.13177881577065
215 => 0.13337494134476
216 => 0.12975791080602
217 => 0.12539612655818
218 => 0.12503349139313
219 => 0.12603475896704
220 => 0.12559177260119
221 => 0.12503137054484
222 => 0.12396141040285
223 => 0.12364397608481
224 => 0.12467548362122
225 => 0.12351097175323
226 => 0.12522927244869
227 => 0.12476198973744
228 => 0.12215178649763
301 => 0.11889850683981
302 => 0.11886954582687
303 => 0.11816863206104
304 => 0.11727591299717
305 => 0.11702757897624
306 => 0.12065000302565
307 => 0.12814831239789
308 => 0.12667621484878
309 => 0.12773995619464
310 => 0.13297251079274
311 => 0.13463578255107
312 => 0.13345523165376
313 => 0.13183922077231
314 => 0.1319103170497
315 => 0.13743271543137
316 => 0.13777714064452
317 => 0.13864739204237
318 => 0.13976591102163
319 => 0.13364572027254
320 => 0.1316220566158
321 => 0.13066313250665
322 => 0.1277100174008
323 => 0.1308946988615
324 => 0.12903912135601
325 => 0.12928950215705
326 => 0.1291264413319
327 => 0.12921548356856
328 => 0.12448803147139
329 => 0.12621046654803
330 => 0.12334658416133
331 => 0.11951216713143
401 => 0.11949931282103
402 => 0.12043778095688
403 => 0.11987954338741
404 => 0.11837734044158
405 => 0.11859072127984
406 => 0.11672128060683
407 => 0.11881770522486
408 => 0.11887782318153
409 => 0.11807058551057
410 => 0.12130041688549
411 => 0.12262368143509
412 => 0.12209234030736
413 => 0.12258640112512
414 => 0.12673738714807
415 => 0.12741417899003
416 => 0.12771476521987
417 => 0.12731201949193
418 => 0.12266227352955
419 => 0.12286850953523
420 => 0.1213552865653
421 => 0.12007677261522
422 => 0.1201279064683
423 => 0.12078522883382
424 => 0.1236557941555
425 => 0.12969672964589
426 => 0.12992597873189
427 => 0.13020383531178
428 => 0.12907365296183
429 => 0.12873277915069
430 => 0.12918247969458
501 => 0.13145113744747
502 => 0.13728674112248
503 => 0.13522404903687
504 => 0.13354704826355
505 => 0.13501823005791
506 => 0.13479175315217
507 => 0.13288006014944
508 => 0.13282640529394
509 => 0.12915725521648
510 => 0.12780085397534
511 => 0.12666734357338
512 => 0.12542957980547
513 => 0.12469579195364
514 => 0.12582322359467
515 => 0.12608108055035
516 => 0.1236159315631
517 => 0.12327994086518
518 => 0.1252930347421
519 => 0.12440714718257
520 => 0.1253183045065
521 => 0.12552970082142
522 => 0.12549566114585
523 => 0.12457069279016
524 => 0.12516024003712
525 => 0.12376578504557
526 => 0.12224952468262
527 => 0.12128224503741
528 => 0.12043816525595
529 => 0.12090650977691
530 => 0.11923694707601
531 => 0.11870282036633
601 => 0.12496051469508
602 => 0.12958314077728
603 => 0.12951592596328
604 => 0.12910677306933
605 => 0.12849885486255
606 => 0.13140666444415
607 => 0.13039364172941
608 => 0.13113070039527
609 => 0.13131831275998
610 => 0.13188615888274
611 => 0.13208911506361
612 => 0.13147564052291
613 => 0.1294167450347
614 => 0.124286173232
615 => 0.12189787820813
616 => 0.12110970107006
617 => 0.12113834981206
618 => 0.12034808961388
619 => 0.12058085665922
620 => 0.12026714273467
621 => 0.11967304445711
622 => 0.1208698258824
623 => 0.12100774379287
624 => 0.12072840070773
625 => 0.12079419611665
626 => 0.11848135468072
627 => 0.11865719499187
628 => 0.1176780937947
629 => 0.11749452412347
630 => 0.11501944155713
701 => 0.11063447402189
702 => 0.11306417169551
703 => 0.11012943857297
704 => 0.10901801067101
705 => 0.11427933749642
706 => 0.11375124620964
707 => 0.11284738348243
708 => 0.1115103821274
709 => 0.1110144753193
710 => 0.10800150253833
711 => 0.10782348003285
712 => 0.10931679070021
713 => 0.1086276792089
714 => 0.10765990568818
715 => 0.10415472809777
716 => 0.10021374796172
717 => 0.10033270137991
718 => 0.10158625383664
719 => 0.10523112666918
720 => 0.10380701179657
721 => 0.10277380011665
722 => 0.10258031062723
723 => 0.105002236685
724 => 0.10842976946593
725 => 0.11003789116002
726 => 0.10844429140056
727 => 0.10661364980239
728 => 0.1067250724741
729 => 0.10746631759071
730 => 0.10754421197182
731 => 0.10635265248441
801 => 0.10668806950052
802 => 0.10617854038188
803 => 0.10305156112131
804 => 0.10299500398224
805 => 0.10222759284234
806 => 0.10220435593802
807 => 0.10089879814937
808 => 0.10071614158985
809 => 0.0981238773588
810 => 0.099830113525774
811 => 0.098685659886387
812 => 0.096960698302509
813 => 0.096663314275271
814 => 0.096654374552311
815 => 0.098425524404601
816 => 0.099809416608536
817 => 0.098705568147427
818 => 0.098454243250036
819 => 0.10113773563462
820 => 0.10079623676811
821 => 0.10050050095214
822 => 0.1081228714989
823 => 0.10208917043015
824 => 0.099458132372553
825 => 0.096201723155704
826 => 0.09726202641695
827 => 0.097485447893191
828 => 0.089654370738548
829 => 0.086477303712208
830 => 0.085387054034013
831 => 0.084759599930344
901 => 0.085045538644459
902 => 0.082185805687959
903 => 0.084107593530344
904 => 0.081631306517224
905 => 0.08121614894094
906 => 0.085644056873494
907 => 0.086260174394846
908 => 0.083631625636049
909 => 0.085319579462586
910 => 0.08470750394077
911 => 0.08167375535069
912 => 0.081557888469293
913 => 0.08003566006821
914 => 0.077653667382015
915 => 0.076565032807028
916 => 0.075998062468415
917 => 0.076232005480158
918 => 0.076113716734647
919 => 0.075341802656594
920 => 0.076157961946031
921 => 0.074073012221821
922 => 0.073242768442059
923 => 0.07286776658825
924 => 0.071017253702786
925 => 0.073962242630375
926 => 0.074542442549103
927 => 0.075123785640904
928 => 0.080183980355245
929 => 0.079931187327278
930 => 0.082216313184899
1001 => 0.082127517396148
1002 => 0.08147576248497
1003 => 0.07872611572319
1004 => 0.079822075914695
1005 => 0.076448880795271
1006 => 0.078976307933716
1007 => 0.07782289573561
1008 => 0.078586338109308
1009 => 0.077213599884576
1010 => 0.077973329897115
1011 => 0.074680029473832
1012 => 0.071604791876557
1013 => 0.072842357257482
1014 => 0.074187732359316
1015 => 0.077104848375292
1016 => 0.075367438141861
1017 => 0.075992276560558
1018 => 0.073899172454613
1019 => 0.069580500818421
1020 => 0.069604944030875
1021 => 0.068940610487023
1022 => 0.068366529310849
1023 => 0.075567000607183
1024 => 0.074671508178877
1025 => 0.073244658193524
1026 => 0.075154553599684
1027 => 0.075659560259188
1028 => 0.075673937088829
1029 => 0.077067347475628
1030 => 0.077811010848845
1031 => 0.077942084741596
1101 => 0.080134646091848
1102 => 0.080869563735869
1103 => 0.083896585502153
1104 => 0.077747916207314
1105 => 0.077621288409431
1106 => 0.075181429744755
1107 => 0.073634032806978
1108 => 0.07528738133694
1109 => 0.076752022429906
1110 => 0.075226940226185
1111 => 0.075426083765748
1112 => 0.073378785511046
1113 => 0.074110598302766
1114 => 0.074740934064824
1115 => 0.074392899706439
1116 => 0.073871875426883
1117 => 0.07663193856283
1118 => 0.076476204983925
1119 => 0.079046439229696
1120 => 0.081050120623488
1121 => 0.084641075882056
1122 => 0.080893726869009
1123 => 0.08075715857661
1124 => 0.082092135541051
1125 => 0.080869359357851
1126 => 0.081642111696834
1127 => 0.084516573533541
1128 => 0.084577306382633
1129 => 0.083559952910486
1130 => 0.083498046859249
1201 => 0.083693440722202
1202 => 0.084837868680536
1203 => 0.084437970387175
1204 => 0.084900742816438
1205 => 0.085479446825455
1206 => 0.087873211972163
1207 => 0.088450340644981
1208 => 0.087048217176943
1209 => 0.087174813227196
1210 => 0.086650380561
1211 => 0.086143785176577
1212 => 0.087282537618446
1213 => 0.089363630088196
1214 => 0.089350683719951
1215 => 0.089833456722276
1216 => 0.090134220303217
1217 => 0.088843122841421
1218 => 0.088002665868761
1219 => 0.088324950551745
1220 => 0.088840290778285
1221 => 0.088157832661861
1222 => 0.083945385021938
1223 => 0.085223172543693
1224 => 0.085010486219456
1225 => 0.084707595030201
1226 => 0.085992420264164
1227 => 0.085868495735997
1228 => 0.082156474993099
1229 => 0.082394106517438
1230 => 0.082170926153154
1231 => 0.08289206756856
]
'min_raw' => 0.068366529310849
'max_raw' => 0.15314946521272
'avg_raw' => 0.11075799726178
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.068366'
'max' => '$0.153149'
'avg' => '$0.110757'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016671532544192
'max_diff' => -0.11129054076677
'year' => 2034
]
9 => [
'items' => [
101 => 0.080830415354835
102 => 0.081464565690337
103 => 0.081862298835974
104 => 0.082096566714284
105 => 0.082942902929728
106 => 0.082843595143222
107 => 0.082936729818285
108 => 0.084191623001311
109 => 0.090538442093723
110 => 0.090883885453456
111 => 0.089182796010158
112 => 0.08986234769025
113 => 0.088557757066089
114 => 0.089433537492086
115 => 0.090032724217142
116 => 0.087325114623595
117 => 0.087164787555706
118 => 0.08585481242197
119 => 0.086558718858056
120 => 0.08543875310558
121 => 0.085713553526499
122 => 0.08494518759294
123 => 0.086328093293214
124 => 0.08787439674794
125 => 0.088265054065978
126 => 0.087237402850771
127 => 0.086493315645446
128 => 0.085186943630457
129 => 0.087359469405782
130 => 0.08799478214901
131 => 0.087356132378403
201 => 0.08720814327178
202 => 0.08692770418214
203 => 0.087267639750368
204 => 0.08799132209937
205 => 0.087650046867895
206 => 0.08787546517078
207 => 0.087016403050528
208 => 0.088843550248403
209 => 0.091745499725548
210 => 0.091754829967634
211 => 0.091413552896559
212 => 0.091273909671991
213 => 0.091624080657339
214 => 0.091814034052125
215 => 0.092946422808363
216 => 0.094161521060164
217 => 0.099831854412421
218 => 0.098239647497313
219 => 0.10327070457708
220 => 0.10724961752617
221 => 0.10844271954283
222 => 0.10734512182729
223 => 0.1035902993335
224 => 0.10340606982863
225 => 0.10901735987951
226 => 0.10743191342677
227 => 0.10724332961607
228 => 0.10523711648755
301 => 0.10642303692083
302 => 0.10616365872567
303 => 0.10575421755539
304 => 0.10801687113017
305 => 0.11225235663367
306 => 0.11159221649782
307 => 0.11109945250942
308 => 0.10894030415372
309 => 0.1102405937271
310 => 0.10977758551542
311 => 0.11176696262505
312 => 0.1105884996954
313 => 0.10741990211056
314 => 0.10792451171978
315 => 0.10784824099248
316 => 0.10941788715572
317 => 0.10894671833853
318 => 0.10775623771894
319 => 0.11223788020467
320 => 0.11194686726986
321 => 0.11235945707661
322 => 0.11254109186931
323 => 0.11526898867498
324 => 0.1163865207133
325 => 0.11664022005115
326 => 0.11770178905452
327 => 0.11661380724728
328 => 0.12096651019414
329 => 0.12386080366655
330 => 0.12722267447374
331 => 0.13213527130871
401 => 0.13398245316273
402 => 0.13364877629428
403 => 0.13737345114787
404 => 0.1440666090649
405 => 0.13500165487402
406 => 0.14454707364845
407 => 0.14152510427162
408 => 0.13436006924208
409 => 0.1338987254564
410 => 0.13875097036617
411 => 0.14951278256477
412 => 0.14681707066849
413 => 0.14951719178372
414 => 0.14636735707742
415 => 0.14621094123536
416 => 0.1493642113426
417 => 0.15673199882397
418 => 0.15323183916896
419 => 0.14821350202914
420 => 0.15191896407921
421 => 0.14870894992711
422 => 0.14147588961605
423 => 0.1468150093084
424 => 0.1432448920195
425 => 0.14428684204228
426 => 0.15179069756868
427 => 0.150887813819
428 => 0.15205622899587
429 => 0.14999400679145
430 => 0.14806756606993
501 => 0.14447172140385
502 => 0.14340716907123
503 => 0.14370137303738
504 => 0.14340702327835
505 => 0.1413951812352
506 => 0.14096072413753
507 => 0.14023660994074
508 => 0.14046104320893
509 => 0.13909949667189
510 => 0.14166901629715
511 => 0.14214594178212
512 => 0.14401582388523
513 => 0.14420996124827
514 => 0.14941755628932
515 => 0.14654930045079
516 => 0.14847357410057
517 => 0.14830144895337
518 => 0.13451535727746
519 => 0.13641495907468
520 => 0.13937014334328
521 => 0.13803883683594
522 => 0.1361566809123
523 => 0.13463673908914
524 => 0.13233387180503
525 => 0.13557511328477
526 => 0.13983700116302
527 => 0.14431804975805
528 => 0.14970173603505
529 => 0.14850015993104
530 => 0.14421740548792
531 => 0.14440952672368
601 => 0.14559714460626
602 => 0.14405907154186
603 => 0.14360546376841
604 => 0.14553482586381
605 => 0.1455481123202
606 => 0.14377837337727
607 => 0.14181163240101
608 => 0.14180339168451
609 => 0.14145342912425
610 => 0.14642961463945
611 => 0.1491660135237
612 => 0.14947973724586
613 => 0.14914489741758
614 => 0.14927376397817
615 => 0.14768151375985
616 => 0.15132092559178
617 => 0.15466080978929
618 => 0.15376564947814
619 => 0.15242367691719
620 => 0.15135473113424
621 => 0.15351383982326
622 => 0.15341769811209
623 => 0.15463163881448
624 => 0.15457656745216
625 => 0.15416836485256
626 => 0.15376566405634
627 => 0.15536232719413
628 => 0.15490251385207
629 => 0.15444198629289
630 => 0.15351832776971
701 => 0.15364386830335
702 => 0.15230212745289
703 => 0.15168137674158
704 => 0.14234677543268
705 => 0.13985226494605
706 => 0.14063708872559
707 => 0.14089547309175
708 => 0.13980985893117
709 => 0.14136635076605
710 => 0.14112377316232
711 => 0.14206750071529
712 => 0.14147790071208
713 => 0.14150209810187
714 => 0.14323598599535
715 => 0.14373934102731
716 => 0.14348333059548
717 => 0.14366263152641
718 => 0.14779454580147
719 => 0.14720711972274
720 => 0.14689506132624
721 => 0.14698150363472
722 => 0.14803729632124
723 => 0.14833286062932
724 => 0.14708053388704
725 => 0.14767113841831
726 => 0.1501858575536
727 => 0.15106586693017
728 => 0.15387443443173
729 => 0.15268130503876
730 => 0.15487134567699
731 => 0.16160278395902
801 => 0.16698032263881
802 => 0.16203491583269
803 => 0.1719100807927
804 => 0.17959931322234
805 => 0.1793041876746
806 => 0.17796339214534
807 => 0.16920940545302
808 => 0.16115385638415
809 => 0.16789266523694
810 => 0.16790984384655
811 => 0.16733097418974
812 => 0.16373566446708
813 => 0.16720586520468
814 => 0.16748131713731
815 => 0.16732713730362
816 => 0.1645706217689
817 => 0.16036193203662
818 => 0.16118429993613
819 => 0.16253135533137
820 => 0.15998109844298
821 => 0.15916613684163
822 => 0.16068130551133
823 => 0.16556349466306
824 => 0.16464054508453
825 => 0.1646164431411
826 => 0.16856521282962
827 => 0.16573874593047
828 => 0.16119467262893
829 => 0.16004723419133
830 => 0.15597460074498
831 => 0.1587875831726
901 => 0.15888881740231
902 => 0.15734817567469
903 => 0.16131968721416
904 => 0.16128308903616
905 => 0.1650534481614
906 => 0.17226095872666
907 => 0.17012934319246
908 => 0.16765050624529
909 => 0.16792002455214
910 => 0.17087597515042
911 => 0.16908873994092
912 => 0.1697314421833
913 => 0.17087500234361
914 => 0.17156494058132
915 => 0.16782075305728
916 => 0.16694780384024
917 => 0.16516205610571
918 => 0.16469618785433
919 => 0.16615064212326
920 => 0.16576744481002
921 => 0.1588803090573
922 => 0.15816056505148
923 => 0.15818263857258
924 => 0.15637280804798
925 => 0.15361238208887
926 => 0.16086661669294
927 => 0.16028400013129
928 => 0.15964083653816
929 => 0.15971962040848
930 => 0.16286843778128
1001 => 0.16104196468597
1002 => 0.16589794276291
1003 => 0.16489969965436
1004 => 0.16387585537678
1005 => 0.16373432891056
1006 => 0.16334023621398
1007 => 0.16198874572198
1008 => 0.1603567397409
1009 => 0.15927914803026
1010 => 0.146926594594
1011 => 0.14921915666028
1012 => 0.15185654034391
1013 => 0.15276695462285
1014 => 0.15120962799998
1015 => 0.16205023846907
1016 => 0.16403092246449
1017 => 0.15803130144553
1018 => 0.1569090173158
1019 => 0.16212381522978
1020 => 0.15897865460453
1021 => 0.1603949202415
1022 => 0.15733372859026
1023 => 0.16355383369119
1024 => 0.16350644691185
1025 => 0.16108668554014
1026 => 0.1631318512817
1027 => 0.16277645340505
1028 => 0.16004454877599
1029 => 0.16364043994075
1030 => 0.1636422234579
1031 => 0.16131325574778
1101 => 0.15859353133894
1102 => 0.15810730885167
1103 => 0.15774100552231
1104 => 0.16030483207727
1105 => 0.16260355094958
1106 => 0.16688089687021
1107 => 0.16795632326189
1108 => 0.1721537840638
1109 => 0.16965440052692
1110 => 0.17076234487638
1111 => 0.17196517519602
1112 => 0.17254185628388
1113 => 0.17160218539763
1114 => 0.17812256976679
1115 => 0.17867308998696
1116 => 0.1788576746548
1117 => 0.17665903773205
1118 => 0.17861194191684
1119 => 0.17769824272216
1120 => 0.18007543419375
1121 => 0.18044820817
1122 => 0.18013248187394
1123 => 0.18025080621783
1124 => 0.17468680843338
1125 => 0.17439828579583
1126 => 0.1704642591602
1127 => 0.17206740409307
1128 => 0.1690704014818
1129 => 0.17002078188238
1130 => 0.1704397005074
1201 => 0.17022088119111
1202 => 0.17215804350224
1203 => 0.17051105980167
1204 => 0.16616439902667
1205 => 0.16181655400685
1206 => 0.1617619703543
1207 => 0.16061725950642
1208 => 0.15978984322765
1209 => 0.15994923295711
1210 => 0.16051094315326
1211 => 0.15975719560992
1212 => 0.15991804586426
1213 => 0.16258923182598
1214 => 0.16312491912057
1215 => 0.161304444387
1216 => 0.15399497563846
1217 => 0.15220121367315
1218 => 0.15349053420197
1219 => 0.15287432203207
1220 => 0.12338150923152
1221 => 0.13031040812593
1222 => 0.12619349168604
1223 => 0.12809075619176
1224 => 0.12388845057698
1225 => 0.12589401107806
1226 => 0.12552365728485
1227 => 0.13666512166605
1228 => 0.13649116302432
1229 => 0.13657442782043
1230 => 0.13259998215686
1231 => 0.13893138201688
]
'min_raw' => 0.080830415354835
'max_raw' => 0.18044820817
'avg_raw' => 0.13063931176242
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.08083'
'max' => '$0.180448'
'avg' => '$0.130639'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012463886043986
'max_diff' => 0.027298742957282
'year' => 2035
]
10 => [
'items' => [
101 => 0.14205045725771
102 => 0.14147319944213
103 => 0.14161848279778
104 => 0.13912203340094
105 => 0.13659859890756
106 => 0.13379972170061
107 => 0.13899968959944
108 => 0.1384215419355
109 => 0.13974760466561
110 => 0.14312015554938
111 => 0.14361677647809
112 => 0.14428424004251
113 => 0.14404500186795
114 => 0.14974462578188
115 => 0.14905436371858
116 => 0.1507176966892
117 => 0.14729609457126
118 => 0.14342422699335
119 => 0.14416014243902
120 => 0.14408926786375
121 => 0.14318695317443
122 => 0.14237238381812
123 => 0.14101635534337
124 => 0.14530703009194
125 => 0.14513283653284
126 => 0.1479528277768
127 => 0.1474543669325
128 => 0.14412552342018
129 => 0.14424441371745
130 => 0.14504400810334
131 => 0.14781141340253
201 => 0.14863296771464
202 => 0.14825239102399
203 => 0.14915318782185
204 => 0.14986514088243
205 => 0.14924259816484
206 => 0.15805649021959
207 => 0.15439634773605
208 => 0.15618027571542
209 => 0.15660573202698
210 => 0.15551593463129
211 => 0.1557522726637
212 => 0.15611026038454
213 => 0.15828389172428
214 => 0.16398812930507
215 => 0.16651449729954
216 => 0.17411520005971
217 => 0.16630471760634
218 => 0.16584127590054
219 => 0.16721039198688
220 => 0.1716728091232
221 => 0.17528917907865
222 => 0.17648893762627
223 => 0.17664750552419
224 => 0.17889833231795
225 => 0.1801884642607
226 => 0.17862502274257
227 => 0.1773001697551
228 => 0.17255471080079
229 => 0.17310401059621
301 => 0.17688814147223
302 => 0.18223344921881
303 => 0.18682027934986
304 => 0.18521413130513
305 => 0.19746790712256
306 => 0.19868281894267
307 => 0.19851495741193
308 => 0.20128270734127
309 => 0.19578928737401
310 => 0.19344074390801
311 => 0.17758661800871
312 => 0.18204098070502
313 => 0.18851565847966
314 => 0.18765871059739
315 => 0.18295662652881
316 => 0.18681671239744
317 => 0.18554044729323
318 => 0.18453380405325
319 => 0.189145431883
320 => 0.18407475764896
321 => 0.18846507462531
322 => 0.18283444769112
323 => 0.18522146805411
324 => 0.18386647984889
325 => 0.18474332327878
326 => 0.17961731450454
327 => 0.18238318441229
328 => 0.17950224522304
329 => 0.17950087928276
330 => 0.17943728239048
331 => 0.18282669457059
401 => 0.1829372231801
402 => 0.18043244245788
403 => 0.18007146442378
404 => 0.18140618941209
405 => 0.1798435760158
406 => 0.18057471298896
407 => 0.1798657214099
408 => 0.17970611247181
409 => 0.17843432129786
410 => 0.1778863986915
411 => 0.17810125326368
412 => 0.1773678438437
413 => 0.17692593813958
414 => 0.17934937622332
415 => 0.17805463101639
416 => 0.1791509379511
417 => 0.17790155783404
418 => 0.17357066201929
419 => 0.17107991803783
420 => 0.16289925731803
421 => 0.16521928255008
422 => 0.16675746167918
423 => 0.16624909348619
424 => 0.16734126507711
425 => 0.16740831554254
426 => 0.16705323942496
427 => 0.16664210676887
428 => 0.16644199012895
429 => 0.16793349561044
430 => 0.16879936474421
501 => 0.16691183853297
502 => 0.16646961755097
503 => 0.16837801076372
504 => 0.16954212952105
505 => 0.17813732836337
506 => 0.17750056827101
507 => 0.17909871114499
508 => 0.17891878478288
509 => 0.18059389311894
510 => 0.18333198729479
511 => 0.17776467625211
512 => 0.17873096894599
513 => 0.17849405629241
514 => 0.18108060652238
515 => 0.18108868144986
516 => 0.17953791537923
517 => 0.18037861082443
518 => 0.17990935769019
519 => 0.18075736152712
520 => 0.17749206395176
521 => 0.18146884393146
522 => 0.1837234219219
523 => 0.18375472673949
524 => 0.18482337881352
525 => 0.1859091912129
526 => 0.18799331355916
527 => 0.18585106617182
528 => 0.18199737166556
529 => 0.18227559596156
530 => 0.18001617628255
531 => 0.18005415753555
601 => 0.17985141063039
602 => 0.18045986935487
603 => 0.17762558642518
604 => 0.17829078696369
605 => 0.17735950231437
606 => 0.17872894451504
607 => 0.17725565108402
608 => 0.17849394204595
609 => 0.17902834737512
610 => 0.1810003145447
611 => 0.17696438992972
612 => 0.16873486643169
613 => 0.17046481204431
614 => 0.16790608659896
615 => 0.16814290638068
616 => 0.16862132002934
617 => 0.16707062486681
618 => 0.1673664486358
619 => 0.16735587972909
620 => 0.16726480260087
621 => 0.1668614068984
622 => 0.16627640332042
623 => 0.16860687752049
624 => 0.16900287049935
625 => 0.16988311383821
626 => 0.17250212093989
627 => 0.17224042036999
628 => 0.17266726485735
629 => 0.17173546573808
630 => 0.16818612986936
701 => 0.1683788758834
702 => 0.16597532999975
703 => 0.16982164976606
704 => 0.16891079047646
705 => 0.16832355356696
706 => 0.16816332053549
707 => 0.17078881964921
708 => 0.17157441013368
709 => 0.17108488286277
710 => 0.17008084814834
711 => 0.17200889161627
712 => 0.17252475471066
713 => 0.1726402374332
714 => 0.17605636079269
715 => 0.17283116078059
716 => 0.17360749847924
717 => 0.17966426358868
718 => 0.17417161341087
719 => 0.17708119271077
720 => 0.17693878394476
721 => 0.17842722625979
722 => 0.17681668823055
723 => 0.17683665277964
724 => 0.17815828871957
725 => 0.17630228940023
726 => 0.17584271786778
727 => 0.17520782308722
728 => 0.17659409261342
729 => 0.17742509849879
730 => 0.18412239562834
731 => 0.18844915500789
801 => 0.18826131897221
802 => 0.18997778872402
803 => 0.18920450337976
804 => 0.18670736102081
805 => 0.19096967853348
806 => 0.18962090292953
807 => 0.18973209435156
808 => 0.18972795580127
809 => 0.19062477366589
810 => 0.18998929601666
811 => 0.18873670433959
812 => 0.18956823315083
813 => 0.19203757644325
814 => 0.19970249379162
815 => 0.20399188308641
816 => 0.19944426717015
817 => 0.20258115173418
818 => 0.20070013878202
819 => 0.20035830277332
820 => 0.20232849809348
821 => 0.20430214197974
822 => 0.20417642939648
823 => 0.20274366528279
824 => 0.20193433319002
825 => 0.20806286694268
826 => 0.21257826621479
827 => 0.21227034625605
828 => 0.21362940481298
829 => 0.21761964277023
830 => 0.21798446012175
831 => 0.21793850152069
901 => 0.21703426365019
902 => 0.22096317111697
903 => 0.22424073484832
904 => 0.21682495870911
905 => 0.21964878918328
906 => 0.22091649766127
907 => 0.22277786981912
908 => 0.22591831665161
909 => 0.22932967487407
910 => 0.22981207833036
911 => 0.22946978999299
912 => 0.22721990754305
913 => 0.23095265641603
914 => 0.2331392131621
915 => 0.23444125766591
916 => 0.23774302588805
917 => 0.22092432659726
918 => 0.20901921529564
919 => 0.207160060254
920 => 0.21094072513883
921 => 0.21193765631873
922 => 0.21153579461016
923 => 0.19813550947482
924 => 0.20708951052601
925 => 0.21672326278331
926 => 0.2170933344422
927 => 0.22191619225446
928 => 0.22348671245376
929 => 0.22736974513905
930 => 0.22712686038735
1001 => 0.22807231705367
1002 => 0.22785497293911
1003 => 0.23504747331962
1004 => 0.24298186933596
1005 => 0.24270712643175
1006 => 0.24156646312889
1007 => 0.24326054264563
1008 => 0.25144968963605
1009 => 0.25069576420958
1010 => 0.25142813854218
1011 => 0.26108360436398
1012 => 0.27363708340632
1013 => 0.26780473204246
1014 => 0.28045925628813
1015 => 0.28842460851328
1016 => 0.30219986155387
1017 => 0.30047513202863
1018 => 0.30583773694986
1019 => 0.29738750621655
1020 => 0.27798406837948
1021 => 0.27491340006838
1022 => 0.2810609557889
1023 => 0.29617412165807
1024 => 0.28058498841249
1025 => 0.28373864976474
1026 => 0.28283039508313
1027 => 0.28278199805098
1028 => 0.28462911592315
1029 => 0.28194977511038
1030 => 0.27103365863495
1031 => 0.27603645048656
1101 => 0.27410463229886
1102 => 0.2762481286047
1103 => 0.28781569412222
1104 => 0.28270139767061
1105 => 0.27731390181053
1106 => 0.2840710172001
1107 => 0.29267514708779
1108 => 0.29213671610253
1109 => 0.29109193494442
1110 => 0.29698131162969
1111 => 0.30670883648829
1112 => 0.3093381473692
1113 => 0.3112790509076
1114 => 0.31154666871372
1115 => 0.3143032984402
1116 => 0.29948020564075
1117 => 0.3230048345975
1118 => 0.32706688816357
1119 => 0.32630339044802
1120 => 0.33081819202937
1121 => 0.32948982287468
1122 => 0.32756522438426
1123 => 0.33472214521653
1124 => 0.32651731301606
1125 => 0.31487158666716
1126 => 0.3084825108658
1127 => 0.31689616127307
1128 => 0.32203408398086
1129 => 0.32542992405745
1130 => 0.3264575032128
1201 => 0.30063088013884
1202 => 0.28671176271215
1203 => 0.29563375739965
1204 => 0.30651920668158
1205 => 0.29941973642037
1206 => 0.29969802221353
1207 => 0.28957604332901
1208 => 0.30741477721418
1209 => 0.30481582373448
1210 => 0.31829919898465
1211 => 0.31508128327035
1212 => 0.32607645236525
1213 => 0.32318105585432
1214 => 0.33519968489175
1215 => 0.33999424140617
1216 => 0.34804504800702
1217 => 0.35396725411529
1218 => 0.35744488681581
1219 => 0.35723610279275
1220 => 0.37101621610195
1221 => 0.362890564724
1222 => 0.35268283152431
1223 => 0.35249820583571
1224 => 0.35778493550453
1225 => 0.36886447054692
1226 => 0.37173723278274
1227 => 0.37334271496312
1228 => 0.37088386311662
1229 => 0.36206405091654
1230 => 0.358255700726
1231 => 0.36150052542687
]
'min_raw' => 0.13379972170061
'max_raw' => 0.37334271496312
'avg_raw' => 0.25357121833187
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.133799'
'max' => '$0.373342'
'avg' => '$0.253571'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.052969306345778
'max_diff' => 0.19289450679312
'year' => 2036
]
11 => [
'items' => [
101 => 0.35753238364868
102 => 0.36438250962177
103 => 0.37378919569078
104 => 0.3718467522156
105 => 0.37834004952573
106 => 0.38505992912692
107 => 0.3946696587653
108 => 0.39718199794003
109 => 0.40133479906016
110 => 0.40560939553687
111 => 0.40698228072159
112 => 0.40960354452047
113 => 0.40958972916635
114 => 0.41748908405567
115 => 0.42620231712125
116 => 0.42949136089169
117 => 0.4370543356829
118 => 0.4241030063912
119 => 0.4339267384331
120 => 0.44278799063886
121 => 0.43222324045261
122 => 0.44678428731326
123 => 0.44734965976682
124 => 0.45588611257444
125 => 0.44723278226744
126 => 0.44209446235355
127 => 0.45692859941461
128 => 0.46410637106753
129 => 0.46194436783103
130 => 0.44549141645
131 => 0.43591509304596
201 => 0.41085200756275
202 => 0.44054031496233
203 => 0.45500062347686
204 => 0.4454539677443
205 => 0.4502687456
206 => 0.47653661238376
207 => 0.48653771533659
208 => 0.48445755583539
209 => 0.48480906854875
210 => 0.49020548216924
211 => 0.51413615202175
212 => 0.49979633993754
213 => 0.51075858897341
214 => 0.5165729263347
215 => 0.52197360691242
216 => 0.50871124231618
217 => 0.4914571008393
218 => 0.48599198995399
219 => 0.44450474097571
220 => 0.4423451494964
221 => 0.44113290535675
222 => 0.43348987753156
223 => 0.42748455126247
224 => 0.42270889284983
225 => 0.41017613904272
226 => 0.41440557554978
227 => 0.39443098177026
228 => 0.40721001901426
301 => 0.37533008503872
302 => 0.4018806413709
303 => 0.38743038066496
304 => 0.39713334209048
305 => 0.39709948937214
306 => 0.37923326106103
307 => 0.36892839342985
308 => 0.37549505615588
309 => 0.38253503986053
310 => 0.38367725353126
311 => 0.39280477616671
312 => 0.39535207153882
313 => 0.38763364763947
314 => 0.374669444267
315 => 0.37768073302843
316 => 0.36886736975921
317 => 0.35342228963104
318 => 0.36451521582432
319 => 0.36830282854824
320 => 0.36997565410266
321 => 0.35478719167604
322 => 0.35001464702403
323 => 0.34747378429683
324 => 0.37270880449626
325 => 0.37409123586762
326 => 0.36701852151564
327 => 0.39898786104891
328 => 0.39175221491202
329 => 0.39983620442327
330 => 0.37740749013616
331 => 0.3782642972262
401 => 0.36764618444659
402 => 0.37359161810062
403 => 0.36938957722422
404 => 0.37311128581529
405 => 0.3753420625996
406 => 0.38595843305138
407 => 0.40200186326815
408 => 0.38437270133064
409 => 0.37669142302022
410 => 0.38145684488286
411 => 0.39414779128301
412 => 0.41337522471682
413 => 0.40199219713584
414 => 0.40704379147994
415 => 0.40814734011433
416 => 0.39975391699871
417 => 0.41368470219935
418 => 0.42115032316187
419 => 0.42880850547684
420 => 0.43545789060352
421 => 0.4257496590532
422 => 0.43613885843237
423 => 0.42776699767333
424 => 0.42025657310541
425 => 0.42026796331931
426 => 0.41555656427806
427 => 0.40642763496115
428 => 0.40474412033221
429 => 0.41350197603642
430 => 0.42052494693918
501 => 0.42110339246049
502 => 0.42499167000553
503 => 0.42729271260425
504 => 0.44984605818734
505 => 0.45891720035192
506 => 0.47000922128283
507 => 0.47433018854747
508 => 0.48733475086152
509 => 0.47683251061401
510 => 0.47456028487427
511 => 0.44301547046028
512 => 0.4481809320534
513 => 0.45645133445689
514 => 0.44315184634974
515 => 0.45158731043354
516 => 0.45325264973124
517 => 0.44269993483297
518 => 0.44833659581603
519 => 0.43336729539853
520 => 0.40232815311087
521 => 0.41371925763773
522 => 0.42210694477382
523 => 0.41013668103625
524 => 0.43159291547266
525 => 0.41905862626149
526 => 0.41508585833354
527 => 0.39958667425257
528 => 0.40690169252048
529 => 0.41679535946881
530 => 0.41068222355698
531 => 0.42336789846599
601 => 0.44133419728308
602 => 0.45413805173173
603 => 0.45512097269021
604 => 0.44688895207135
605 => 0.46008081764912
606 => 0.46017690598797
607 => 0.44529642772589
608 => 0.43618221764522
609 => 0.43411144993842
610 => 0.43928463366791
611 => 0.44556583373791
612 => 0.45546953557916
613 => 0.46145413518324
614 => 0.4770587969643
615 => 0.48128097102154
616 => 0.48591986022725
617 => 0.49211884678654
618 => 0.4995623195385
619 => 0.48327642491436
620 => 0.48392349386848
621 => 0.46875829428804
622 => 0.45255210362673
623 => 0.46485058220848
624 => 0.48092920695608
625 => 0.47724075267368
626 => 0.47682572621862
627 => 0.47752368559728
628 => 0.47474271152201
629 => 0.46216446884725
630 => 0.45584775411996
701 => 0.46399792768396
702 => 0.46832938221074
703 => 0.47504709043924
704 => 0.47421899110646
705 => 0.49152308607389
706 => 0.49824693412956
707 => 0.49652668606724
708 => 0.49684325311079
709 => 0.50901645884274
710 => 0.52255556722737
711 => 0.53523672887228
712 => 0.54813655116606
713 => 0.53258531190228
714 => 0.52468935167123
715 => 0.53283596712442
716 => 0.52851325829304
717 => 0.55335282543687
718 => 0.55507266317227
719 => 0.57991043413266
720 => 0.60348443640083
721 => 0.58867802794831
722 => 0.60263980422375
723 => 0.61774060358595
724 => 0.64687249557205
725 => 0.63706189922345
726 => 0.62954713617207
727 => 0.62244572139958
728 => 0.63722263822328
729 => 0.65623290564995
730 => 0.66032753517558
731 => 0.66696239927596
801 => 0.65998665094699
802 => 0.66838817145576
803 => 0.6980492306669
804 => 0.69003455064264
805 => 0.67865241658408
806 => 0.70206697415287
807 => 0.71054061151522
808 => 0.77001303620258
809 => 0.84509942905369
810 => 0.81401316936949
811 => 0.79471692483618
812 => 0.79925200001455
813 => 0.82667100884897
814 => 0.83547712425075
815 => 0.81153906693871
816 => 0.81999439346938
817 => 0.86658407396272
818 => 0.89157794277149
819 => 0.85763291180476
820 => 0.76397991764699
821 => 0.67762757994673
822 => 0.70053210840129
823 => 0.69793544568481
824 => 0.7479902451939
825 => 0.68984340317469
826 => 0.69082244686841
827 => 0.7419123266224
828 => 0.72828242260631
829 => 0.70620372368646
830 => 0.6777887788826
831 => 0.62526112534839
901 => 0.57873591777115
902 => 0.66998256394551
903 => 0.66604784264121
904 => 0.66034978309956
905 => 0.67303019801507
906 => 0.73460269344618
907 => 0.73318324813578
908 => 0.72415346127834
909 => 0.73100247502482
910 => 0.70500305846221
911 => 0.71170370010611
912 => 0.67761390129526
913 => 0.69302391407352
914 => 0.70615635271463
915 => 0.70879288420091
916 => 0.71473312426414
917 => 0.66397442330897
918 => 0.68676358984067
919 => 0.70015009012191
920 => 0.63966939484622
921 => 0.69895458123657
922 => 0.66309082725326
923 => 0.65091813049581
924 => 0.66730706304886
925 => 0.66092028009418
926 => 0.65542929915422
927 => 0.65236523744269
928 => 0.66439946072917
929 => 0.66383804982885
930 => 0.64414772479008
1001 => 0.61846249845733
1002 => 0.62708330350342
1003 => 0.6239512842097
1004 => 0.61260044225072
1005 => 0.62024953922519
1006 => 0.58656678726904
1007 => 0.52861736320559
1008 => 0.56690052778077
1009 => 0.56542666758869
1010 => 0.56468348044561
1011 => 0.59345222055491
1012 => 0.59068677000116
1013 => 0.58566745016673
1014 => 0.61250825850577
1015 => 0.6027110024022
1016 => 0.63290383718954
1017 => 0.65279079093059
1018 => 0.6477468161863
1019 => 0.66645059230175
1020 => 0.6272819094401
1021 => 0.64029217471194
1022 => 0.64297357235302
1023 => 0.61217704709725
1024 => 0.59113923191266
1025 => 0.58973624948849
1026 => 0.55325957714791
1027 => 0.57274512108284
1028 => 0.58989159337898
1029 => 0.58167976376913
1030 => 0.57908014383608
1031 => 0.59236103828525
1101 => 0.59339307752712
1102 => 0.56986247344189
1103 => 0.57475523114853
1104 => 0.5951588441385
1105 => 0.57424111245146
1106 => 0.53360137667561
1107 => 0.52352216031489
1108 => 0.52217740705556
1109 => 0.49484177289256
1110 => 0.52419570174776
1111 => 0.51138192516608
1112 => 0.551860491855
1113 => 0.5287393516532
1114 => 0.52774264551073
1115 => 0.5262359779914
1116 => 0.50270706844648
1117 => 0.50785840429661
1118 => 0.52498222923304
1119 => 0.53109220288405
1120 => 0.53045488257471
1121 => 0.52489831314898
1122 => 0.52744208217784
1123 => 0.519247715828
1124 => 0.51635411451888
1125 => 0.50722111283957
1126 => 0.49379812342709
1127 => 0.49566467243287
1128 => 0.46907021809051
1129 => 0.45458014789027
1130 => 0.4505694874349
1201 => 0.44520626465694
1202 => 0.45117527771866
1203 => 0.46899487934277
1204 => 0.44750065914471
1205 => 0.41065032625938
1206 => 0.4128650940557
1207 => 0.41784101972357
1208 => 0.40856841516053
1209 => 0.39979267313233
1210 => 0.4074224688274
1211 => 0.39180849699453
1212 => 0.41972789362294
1213 => 0.41897275218735
1214 => 0.42937937672651
1215 => 0.43588685261629
1216 => 0.4208892275107
1217 => 0.41711736535453
1218 => 0.41926598946026
1219 => 0.3837540191119
1220 => 0.42647729112396
1221 => 0.42684676375445
1222 => 0.42368311477891
1223 => 0.4464319381923
1224 => 0.49443905113051
1225 => 0.47637684416151
1226 => 0.46938261169002
1227 => 0.45608657064896
1228 => 0.47380275589537
1229 => 0.47244242928399
1230 => 0.46629051645877
1231 => 0.46256982038695
]
'min_raw' => 0.34747378429683
'max_raw' => 0.89157794277149
'avg_raw' => 0.61952586353416
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.347473'
'max' => '$0.891577'
'avg' => '$0.619525'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21367406259622
'max_diff' => 0.51823522780837
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010906805039678
]
1 => [
'year' => 2028
'avg' => 0.018719243716214
]
2 => [
'year' => 2029
'avg' => 0.05113760001727
]
3 => [
'year' => 2030
'avg' => 0.039452582256925
]
4 => [
'year' => 2031
'avg' => 0.038747325080993
]
5 => [
'year' => 2032
'avg' => 0.067936255098964
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010906805039678
'min' => '$0.0109068'
'max_raw' => 0.067936255098964
'max' => '$0.067936'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.067936255098964
]
1 => [
'year' => 2033
'avg' => 0.17473903391727
]
2 => [
'year' => 2034
'avg' => 0.11075799726178
]
3 => [
'year' => 2035
'avg' => 0.13063931176242
]
4 => [
'year' => 2036
'avg' => 0.25357121833187
]
5 => [
'year' => 2037
'avg' => 0.61952586353416
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.067936255098964
'min' => '$0.067936'
'max_raw' => 0.61952586353416
'max' => '$0.619525'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.61952586353416
]
]
]
]
'prediction_2025_max_price' => '$0.018648'
'last_price' => 0.01808222
'sma_50day_nextmonth' => '$0.017656'
'sma_200day_nextmonth' => '$0.034228'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018013'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01808'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0179061'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019368'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.023147'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028915'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036923'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018027'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018018'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01823'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.019447'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0231094'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0291098'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.043825'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035667'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.056811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.16095'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.187689'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.018857'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.020313'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02427'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033438'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.067778'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116282'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.150606'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '34.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 92.96
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0179026'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018130'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 70.67
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -41.9
'cci_20_action' => 'NEUTRAL'
'adx_14' => 35.91
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003187'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -29.33
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.3
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003259'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767690354
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Telos para 2026
A previsão de preço para Telos em 2026 sugere que o preço médio poderia variar entre $0.006247 na extremidade inferior e $0.018648 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Telos poderia potencialmente ganhar 3.13% até 2026 se TLOS atingir a meta de preço prevista.
Previsão de preço de Telos 2027-2032
A previsão de preço de TLOS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0109068 na extremidade inferior e $0.067936 na extremidade superior. Considerando a volatilidade de preços no mercado, se Telos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006014 | $0.0109068 | $0.015799 |
| 2028 | $0.010853 | $0.018719 | $0.026584 |
| 2029 | $0.023842 | $0.051137 | $0.078432 |
| 2030 | $0.020277 | $0.039452 | $0.058627 |
| 2031 | $0.023974 | $0.038747 | $0.05352 |
| 2032 | $0.036594 | $0.067936 | $0.099277 |
Previsão de preço de Telos 2032-2037
A previsão de preço de Telos para 2032-2037 é atualmente estimada entre $0.067936 na extremidade inferior e $0.619525 na extremidade superior. Comparado ao preço atual, Telos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036594 | $0.067936 | $0.099277 |
| 2033 | $0.085038 | $0.174739 | $0.26444 |
| 2034 | $0.068366 | $0.110757 | $0.153149 |
| 2035 | $0.08083 | $0.130639 | $0.180448 |
| 2036 | $0.133799 | $0.253571 | $0.373342 |
| 2037 | $0.347473 | $0.619525 | $0.891577 |
Telos Histograma de preços potenciais
Previsão de preço de Telos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Telos é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de TLOS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Telos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Telos está projetado para aumentar no próximo mês, alcançando $0.034228 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Telos é esperado para alcançar $0.017656 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 34.88, sugerindo que o mercado de TLOS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de TLOS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018013 | BUY |
| SMA 5 | $0.01808 | BUY |
| SMA 10 | $0.0179061 | BUY |
| SMA 21 | $0.019368 | SELL |
| SMA 50 | $0.023147 | SELL |
| SMA 100 | $0.028915 | SELL |
| SMA 200 | $0.036923 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018027 | BUY |
| EMA 5 | $0.018018 | BUY |
| EMA 10 | $0.01823 | SELL |
| EMA 21 | $0.019447 | SELL |
| EMA 50 | $0.0231094 | SELL |
| EMA 100 | $0.0291098 | SELL |
| EMA 200 | $0.043825 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035667 | SELL |
| SMA 50 | $0.056811 | SELL |
| SMA 100 | $0.16095 | SELL |
| SMA 200 | $0.187689 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.033438 | SELL |
| EMA 50 | $0.067778 | SELL |
| EMA 100 | $0.116282 | SELL |
| EMA 200 | $0.150606 | SELL |
Osciladores de Telos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 34.88 | NEUTRAL |
| Stoch RSI (14) | 92.96 | SELL |
| Estocástico Rápido (14) | 70.67 | NEUTRAL |
| Índice de Canal de Commodities (20) | -41.9 | NEUTRAL |
| Índice Direcional Médio (14) | 35.91 | SELL |
| Oscilador Impressionante (5, 34) | -0.003187 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -29.33 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 60.3 | NEUTRAL |
| VWMA (10) | 0.0179026 | BUY |
| Média Móvel de Hull (9) | 0.018130 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003259 | SELL |
Previsão do preço de Telos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Telos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Telos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0254085 | $0.0357032 | $0.050169 | $0.070495 | $0.099058 | $0.139193 |
| Amazon.com stock | $0.037729 | $0.078725 | $0.164264 | $0.342747 | $0.715163 | $1.49 |
| Apple stock | $0.025648 | $0.03638 | $0.0516023 | $0.073194 | $0.10382 | $0.14726 |
| Netflix stock | $0.02853 | $0.045017 | $0.07103 | $0.112074 | $0.176836 | $0.279019 |
| Google stock | $0.023416 | $0.030324 | $0.039269 | $0.050853 | $0.065855 | $0.085282 |
| Tesla stock | $0.040991 | $0.092923 | $0.21065 | $0.477529 | $1.08 | $2.45 |
| Kodak stock | $0.013559 | $0.010168 | $0.007625 | $0.005718 | $0.004287 | $0.003215 |
| Nokia stock | $0.011978 | $0.007935 | $0.005256 | $0.003482 | $0.0023069 | $0.001528 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Telos
Você pode fazer perguntas como: 'Devo investir em Telos agora?', 'Devo comprar TLOS hoje?', 'Telos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Telos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Telos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Telos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Telos é de $0.01808 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Telos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Telos
com base no histórico de preços de 1 mês
Previsão do preço de Telos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Telos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.018552 | $0.019034 | $0.019529 | $0.020036 |
| Se Telos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019022 | $0.020011 | $0.021051 | $0.022145 |
| Se Telos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.020432 | $0.023087 | $0.026088 | $0.029479 |
| Se Telos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.022782 | $0.0287042 | $0.036165 | $0.045565 |
| Se Telos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027482 | $0.041769 | $0.063484 | $0.096487 |
| Se Telos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.041582 | $0.095626 | $0.2199089 | $0.505716 |
| Se Telos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.065083 | $0.234257 | $0.843166 | $3.03 |
Perguntas Frequentes sobre Telos
TLOS é um bom investimento?
A decisão de adquirir Telos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Telos experimentou uma escalada de 0.0539% nas últimas 24 horas, e Telos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Telos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Telos pode subir?
Parece que o valor médio de Telos pode potencialmente subir para $0.018648 até o final deste ano. Observando as perspectivas de Telos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.058627. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Telos na próxima semana?
Com base na nossa nova previsão experimental de Telos, o preço de Telos aumentará 0.86% na próxima semana e atingirá $0.018236 até 13 de janeiro de 2026.
Qual será o preço de Telos no próximo mês?
Com base na nossa nova previsão experimental de Telos, o preço de Telos diminuirá -11.62% no próximo mês e atingirá $0.015981 até 5 de fevereiro de 2026.
Até onde o preço de Telos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Telos em 2026, espera-se que TLOS fluctue dentro do intervalo de $0.006247 e $0.018648. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Telos não considera flutuações repentinas e extremas de preço.
Onde estará Telos em 5 anos?
O futuro de Telos parece seguir uma tendência de alta, com um preço máximo de $0.058627 projetada após um período de cinco anos. Com base na previsão de Telos para 2030, o valor de Telos pode potencialmente atingir seu pico mais alto de aproximadamente $0.058627, enquanto seu pico mais baixo está previsto para cerca de $0.020277.
Quanto será Telos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Telos, espera-se que o valor de TLOS em 2026 aumente 3.13% para $0.018648 se o melhor cenário ocorrer. O preço ficará entre $0.018648 e $0.006247 durante 2026.
Quanto será Telos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Telos, o valor de TLOS pode diminuir -12.62% para $0.015799 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.015799 e $0.006014 ao longo do ano.
Quanto será Telos em 2028?
Nosso novo modelo experimental de previsão de preços de Telos sugere que o valor de TLOS em 2028 pode aumentar 47.02%, alcançando $0.026584 no melhor cenário. O preço é esperado para variar entre $0.026584 e $0.010853 durante o ano.
Quanto será Telos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Telos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.078432 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.078432 e $0.023842.
Quanto será Telos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Telos, espera-se que o valor de TLOS em 2030 aumente 224.23%, alcançando $0.058627 no melhor cenário. O preço está previsto para variar entre $0.058627 e $0.020277 ao longo de 2030.
Quanto será Telos em 2031?
Nossa simulação experimental indica que o preço de Telos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.05352 sob condições ideais. O preço provavelmente oscilará entre $0.05352 e $0.023974 durante o ano.
Quanto será Telos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Telos, TLOS poderia ver um 449.04% aumento em valor, atingindo $0.099277 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.099277 e $0.036594 ao longo do ano.
Quanto será Telos em 2033?
De acordo com nossa previsão experimental de preços de Telos, espera-se que o valor de TLOS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.26444. Ao longo do ano, o preço de TLOS poderia variar entre $0.26444 e $0.085038.
Quanto será Telos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Telos sugerem que TLOS pode aumentar 746.96% em 2034, atingindo potencialmente $0.153149 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.153149 e $0.068366.
Quanto será Telos em 2035?
Com base em nossa previsão experimental para o preço de Telos, TLOS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.180448 em 2035. A faixa de preço esperada para o ano está entre $0.180448 e $0.08083.
Quanto será Telos em 2036?
Nossa recente simulação de previsão de preços de Telos sugere que o valor de TLOS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.373342 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.373342 e $0.133799.
Quanto será Telos em 2037?
De acordo com a simulação experimental, o valor de Telos poderia aumentar 4830.69% em 2037, com um pico de $0.891577 sob condições favoráveis. O preço é esperado para cair entre $0.891577 e $0.347473 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Previsão de Preço do Keep Network
Previsão de Preço do Energy Web Token
Previsão de Preço do Nakamoto Games
Previsão de Preço do Gelato
Como ler e prever os movimentos de preço de Telos?
Traders de Telos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Telos
Médias móveis são ferramentas populares para a previsão de preço de Telos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de TLOS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de TLOS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de TLOS.
Como ler gráficos de Telos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Telos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de TLOS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Telos?
A ação de preço de Telos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de TLOS. A capitalização de mercado de Telos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de TLOS, grandes detentores de Telos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Telos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


