Previsão de Preço Telos - Projeção TLOS
Previsão de Preço Telos até $0.018666 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006253 | $0.018666 |
| 2027 | $0.00602 | $0.015814 |
| 2028 | $0.010864 | $0.02661 |
| 2029 | $0.023865 | $0.0785079 |
| 2030 | $0.020296 | $0.058684 |
| 2031 | $0.023997 | $0.053572 |
| 2032 | $0.036629 | $0.099373 |
| 2033 | $0.08512 | $0.264695 |
| 2034 | $0.068432 | $0.153297 |
| 2035 | $0.0809083 | $0.180622 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Telos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.58, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Telos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Telos'
'name_with_ticker' => 'Telos <small>TLOS</small>'
'name_lang' => 'Telos'
'name_lang_with_ticker' => 'Telos <small>TLOS</small>'
'name_with_lang' => 'Telos'
'name_with_lang_with_ticker' => 'Telos <small>TLOS</small>'
'image' => '/uploads/coins/telos.png?1722392004'
'price_for_sd' => 0.01809
'ticker' => 'TLOS'
'marketcap' => '$7.6M'
'low24h' => '$0.01801'
'high24h' => '$0.01812'
'volume24h' => '$1.66M'
'current_supply' => '420M'
'max_supply' => '420M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01809'
'change_24h_pct' => '0.0733%'
'ath_price' => '$1.43'
'ath_days' => 1429
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de fev. de 2022'
'ath_pct' => '-98.73%'
'fdv' => '$7.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.892437'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018254'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015996'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006253'
'current_year_max_price_prediction' => '$0.018666'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020296'
'grand_prediction_max_price' => '$0.058684'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018442639036579
107 => 0.018511497156063
108 => 0.018666638015245
109 => 0.017340976359603
110 => 0.017936159523605
111 => 0.018285773871335
112 => 0.016706203529211
113 => 0.018254550844377
114 => 0.017317899539509
115 => 0.016999986018607
116 => 0.017428014692581
117 => 0.017261211502061
118 => 0.017117803913865
119 => 0.017037780015596
120 => 0.017352077033962
121 => 0.017337414702389
122 => 0.01682316377792
123 => 0.0161523444105
124 => 0.016377493409101
125 => 0.016295694667126
126 => 0.015999245473961
127 => 0.016199016436743
128 => 0.015319326218425
129 => 0.013805864920128
130 => 0.014805703812356
131 => 0.014767211102621
201 => 0.014747801332867
202 => 0.015499152626859
203 => 0.015426927536566
204 => 0.015295838290452
205 => 0.015996837917155
206 => 0.015740963623633
207 => 0.016529507904702
208 => 0.017048894168061
209 => 0.016917161011288
210 => 0.017405646302388
211 => 0.016382680387292
212 => 0.016722468630018
213 => 0.016792498515918
214 => 0.015988187690575
215 => 0.01543874445456
216 => 0.01540210285483
217 => 0.014449444001522
218 => 0.014958346671365
219 => 0.015406159961004
220 => 0.015191692146982
221 => 0.015123798044107
222 => 0.015470654291264
223 => 0.015497607992291
224 => 0.014883060752451
225 => 0.015010844583793
226 => 0.015543724402788
227 => 0.014997417379584
228 => 0.013936032072244
301 => 0.013672793841224
302 => 0.013637673008762
303 => 0.012923750048548
304 => 0.013690384678543
305 => 0.013355728118019
306 => 0.014412904182912
307 => 0.013809050884394
308 => 0.013783019975602
309 => 0.013743670439057
310 => 0.013129167455415
311 => 0.01326370455513
312 => 0.013710926365165
313 => 0.013870500145299
314 => 0.013853855292682
315 => 0.013708734734314
316 => 0.013775170182797
317 => 0.013561158455589
318 => 0.013485586460443
319 => 0.013247060456047
320 => 0.012896493124075
321 => 0.01294524166174
322 => 0.012250676046171
323 => 0.011872239835422
324 => 0.011767493679996
325 => 0.011627422743316
326 => 0.011783315065008
327 => 0.01224870842905
328 => 0.011687345293305
329 => 0.010724927572117
330 => 0.010782770517041
331 => 0.010912726440559
401 => 0.010670554436827
402 => 0.01044135895925
403 => 0.010640625831787
404 => 0.010232836755991
405 => 0.010962005802134
406 => 0.010942283822908
407 => 0.011214072951799
408 => 0.011384028271769
409 => 0.010992336282927
410 => 0.010893826806981
411 => 0.010949942281486
412 => 0.010022478486683
413 => 0.011138279372919
414 => 0.011147928865318
415 => 0.011065304053023
416 => 0.011659433578456
417 => 0.012913232190766
418 => 0.012441502718883
419 => 0.012258834809271
420 => 0.011911582979569
421 => 0.012374275424873
422 => 0.0123387478642
423 => 0.01217807876141
424 => 0.012080905586725
425 => 0.012259950140575
426 => 0.012058719985105
427 => 0.012022573519747
428 => 0.011803565267424
429 => 0.011725389285585
430 => 0.011667510900907
501 => 0.011603792486389
502 => 0.011744339431176
503 => 0.011425841563799
504 => 0.011041764358473
505 => 0.011009832494623
506 => 0.011097999178191
507 => 0.01105899198395
508 => 0.011009645743184
509 => 0.010915430330914
510 => 0.010887478630687
511 => 0.010978308096187
512 => 0.010875766925324
513 => 0.011027072008639
514 => 0.010985925398069
515 => 0.01075608377622
516 => 0.010469616017129
517 => 0.010467065853187
518 => 0.010405346844392
519 => 0.010326738407176
520 => 0.01030487133826
521 => 0.010623844131582
522 => 0.011284108267706
523 => 0.011154482619003
524 => 0.011248150434762
525 => 0.01170890338185
526 => 0.011855362888404
527 => 0.011751409399735
528 => 0.011609111452873
529 => 0.011615371840361
530 => 0.012101647001306
531 => 0.012131975386617
601 => 0.01220860543199
602 => 0.012307096695942
603 => 0.011768182887875
604 => 0.011589989048465
605 => 0.011505550921534
606 => 0.011245514172257
607 => 0.011525941512487
608 => 0.011362548510431
609 => 0.011384595808708
610 => 0.011370237476782
611 => 0.011378078096919
612 => 0.010961801984525
613 => 0.011113471121053
614 => 0.010861291764862
615 => 0.010523651915384
616 => 0.010522520028217
617 => 0.010605156903042
618 => 0.010556001256315
619 => 0.010423724674878
620 => 0.010442513938943
621 => 0.010277900214739
622 => 0.010462501025489
623 => 0.010467794716208
624 => 0.010396713348795
625 => 0.010681116367759
626 => 0.010797636516679
627 => 0.010750849237937
628 => 0.010794353796477
629 => 0.011159869149932
630 => 0.011219464101097
701 => 0.011245932241784
702 => 0.011210468439621
703 => 0.010801034746152
704 => 0.010819194871504
705 => 0.010685947921105
706 => 0.010573368289236
707 => 0.010577870884108
708 => 0.010635751449217
709 => 0.010888519271697
710 => 0.011420454252628
711 => 0.011440640796315
712 => 0.011465107476147
713 => 0.011365589193304
714 => 0.011335573526937
715 => 0.011375171938576
716 => 0.011574938749601
717 => 0.012088793223719
718 => 0.011907162733379
719 => 0.011759494317486
720 => 0.011889039329343
721 => 0.011869096890175
722 => 0.011700762634235
723 => 0.011696038052326
724 => 0.01137295079546
725 => 0.011253512792938
726 => 0.011153701458251
727 => 0.011044710086413
728 => 0.010980096347764
729 => 0.011079372416748
730 => 0.011102078028325
731 => 0.010885009168442
801 => 0.010855423484937
802 => 0.011032686601674
803 => 0.010954679713033
804 => 0.011034911732478
805 => 0.011053526249207
806 => 0.011050528883285
807 => 0.01096908073251
808 => 0.011020993354995
809 => 0.01089820452692
810 => 0.010764690118673
811 => 0.010679516244454
812 => 0.010605190742522
813 => 0.010646430850818
814 => 0.010499417394892
815 => 0.010452384831545
816 => 0.011003406526568
817 => 0.011410452177163
818 => 0.011404533572195
819 => 0.011368505586598
820 => 0.01131497530801
821 => 0.011571022676303
822 => 0.011481820893018
823 => 0.011546722643416
824 => 0.01156324286281
825 => 0.011613244591345
826 => 0.011631115911502
827 => 0.011577096369557
828 => 0.011395800188858
829 => 0.010944027343679
830 => 0.01073372586471
831 => 0.010664322873803
901 => 0.010666845540707
902 => 0.010597259125801
903 => 0.010617755443635
904 => 0.010590131342908
905 => 0.010537817979117
906 => 0.010643200648019
907 => 0.010655345018902
908 => 0.010630747444751
909 => 0.010636541063909
910 => 0.010432883655702
911 => 0.010448367286127
912 => 0.010362152464355
913 => 0.010345988224607
914 => 0.010128044662749
915 => 0.0097419260514921
916 => 0.0099558732435688
917 => 0.0096974551210678
918 => 0.0095995882624031
919 => 0.010062874749902
920 => 0.010016373636124
921 => 0.0099367839428847
922 => 0.0098190541986378
923 => 0.0097753870912953
924 => 0.0095100795704083
925 => 0.0094944037867137
926 => 0.009625897357971
927 => 0.0095652175992533
928 => 0.0094800002367919
929 => 0.0091713515883025
930 => 0.0088243283173447
1001 => 0.0088348027685844
1002 => 0.0089451844144786
1003 => 0.0092661339369089
1004 => 0.0091407334060123
1005 => 0.0090497538820415
1006 => 0.0090327161520362
1007 => 0.0092459790139562
1008 => 0.0095477906435238
1009 => 0.0096893939074623
1010 => 0.0095490693734543
1011 => 0.0093878721043953
1012 => 0.0093976834352467
1013 => 0.0094629538238474
1014 => 0.0094698128188157
1015 => 0.0093648899680054
1016 => 0.0093944251359194
1017 => 0.0093495585151056
1018 => 0.0090742121459891
1019 => 0.0090692320033046
1020 => 0.0090016575637634
1021 => 0.0089996114365899
1022 => 0.0088846504576964
1023 => 0.0088685666220615
1024 => 0.0086403046208358
1025 => 0.0087905473612835
1026 => 0.0086897724190891
1027 => 0.0085378808107964
1028 => 0.0085116946402753
1029 => 0.0085109074523687
1030 => 0.0086668661717432
1031 => 0.008788724892844
1101 => 0.0086915254423541
1102 => 0.0086693950116097
1103 => 0.0089056901140315
1104 => 0.0088756194083707
1105 => 0.0088495783712036
1106 => 0.0095207667223949
1107 => 0.0089894687689468
1108 => 0.0087577925358165
1109 => 0.0084710492031943
1110 => 0.0085644142781815
1111 => 0.0085840876712996
1112 => 0.0078945216457137
1113 => 0.0076147647950135
1114 => 0.0075187627862677
1115 => 0.0074635122729654
1116 => 0.0074886906256695
1117 => 0.0072368766478336
1118 => 0.0074060998055581
1119 => 0.0071880501860579
1120 => 0.0071514934577538
1121 => 0.0075413931885848
1122 => 0.0075956454583687
1123 => 0.0073641884206114
1124 => 0.0075128213083422
1125 => 0.0074589249570993
1126 => 0.0071917880209438
1127 => 0.007181585354909
1128 => 0.0070475454306635
1129 => 0.0068377989044631
1130 => 0.0067419391137389
1201 => 0.0066920145024368
1202 => 0.0067126143700713
1203 => 0.006702198446629
1204 => 0.0066342275005655
1205 => 0.0067060944616934
1206 => 0.0065225040734902
1207 => 0.0064493969016195
1208 => 0.006416376088159
1209 => 0.0062534290515602
1210 => 0.0065127502496649
1211 => 0.0065638397925339
1212 => 0.0066150299975847
1213 => 0.0070606057835147
1214 => 0.0070383460764337
1215 => 0.0072395629875286
1216 => 0.0072317440683776
1217 => 0.0071743537458355
1218 => 0.0069322334152802
1219 => 0.0070287382636597
1220 => 0.006731711340531
1221 => 0.0069542641072065
1222 => 0.0068527003185216
1223 => 0.0069199252880882
1224 => 0.0067990487313763
1225 => 0.0068659468087313
1226 => 0.0065759550184452
1227 => 0.0063051647649706
1228 => 0.0064141386678291
1229 => 0.0065326057629137
1230 => 0.0067894726099115
1231 => 0.0066364848349451
]
'min_raw' => 0.0062534290515602
'max_raw' => 0.018666638015245
'avg_raw' => 0.012460033533403
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006253'
'max' => '$0.018666'
'avg' => '$0.01246'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01184623094844
'max_diff' => 0.00056697801524504
'year' => 2026
]
1 => [
'items' => [
101 => 0.0066915050239312
102 => 0.006507196601096
103 => 0.0061269156796886
104 => 0.0061290680284054
105 => 0.006070570093517
106 => 0.0060200193369352
107 => 0.0066540573212519
108 => 0.0065752046752448
109 => 0.0064495633038118
110 => 0.0066177392722646
111 => 0.006662207667635
112 => 0.006663473620336
113 => 0.0067861704656691
114 => 0.006851653794018
115 => 0.0068631955144605
116 => 0.007056261651633
117 => 0.0071209748742093
118 => 0.0073875194794429
119 => 0.0068460979911142
120 => 0.0068349477718543
121 => 0.0066201058530266
122 => 0.0064838497115896
123 => 0.006629435427603
124 => 0.0067584044975587
125 => 0.00662411328153
126 => 0.006641648879301
127 => 0.0064613738937779
128 => 0.0065258137183759
129 => 0.0065813179763016
130 => 0.0065506717874645
131 => 0.0065047929594831
201 => 0.0067478305045662
202 => 0.0067341173738008
203 => 0.0069604395231912
204 => 0.0071368738230932
205 => 0.0074530756299211
206 => 0.0071231025605232
207 => 0.0071110770303502
208 => 0.0072286285167472
209 => 0.0071209568776892
210 => 0.0071890016368752
211 => 0.0074421125672484
212 => 0.0074474604023602
213 => 0.0073578772739411
214 => 0.0073524261324355
215 => 0.0073696315521804
216 => 0.007470404233028
217 => 0.0074351911619081
218 => 0.0074759406192939
219 => 0.0075268984397326
220 => 0.0077376815907354
221 => 0.0077885006948392
222 => 0.0076650366185516
223 => 0.0076761840422717
224 => 0.0076300050885754
225 => 0.0075853967979254
226 => 0.0076856697207889
227 => 0.0078689204581912
228 => 0.0078677804648646
301 => 0.0079102910740566
302 => 0.0079367748314063
303 => 0.007823087157566
304 => 0.0077490806623077
305 => 0.0077774594617454
306 => 0.0078228377800561
307 => 0.0077627438847109
308 => 0.0073918165244399
309 => 0.0075043321906146
310 => 0.0074856040820282
311 => 0.0074589329779852
312 => 0.0075720683503818
313 => 0.0075611561677186
314 => 0.0072342939315249
315 => 0.0072552185913841
316 => 0.0072355664293956
317 => 0.0072990665852345
318 => 0.0071175276608841
319 => 0.007173367811331
320 => 0.0072083902302224
321 => 0.0072290187040043
322 => 0.0073035428963815
323 => 0.007294798342561
324 => 0.0073029993226381
325 => 0.0074134990262761
326 => 0.007972368608358
327 => 0.0080027866466345
328 => 0.0078529971012863
329 => 0.0079128350701848
330 => 0.0077979592550249
331 => 0.0078750761593428
401 => 0.0079278375867201
402 => 0.0076894188418411
403 => 0.0076753012310943
404 => 0.0075599512825817
405 => 0.0076219338111573
406 => 0.0075233151514919
407 => 0.0075475127210396
408 => 0.0074798542070783
409 => 0.0076016260615328
410 => 0.0077377859162462
411 => 0.0077721852726624
412 => 0.0076816953757855
413 => 0.0076161747268718
414 => 0.0075011420512228
415 => 0.0076924439544974
416 => 0.0077483864608348
417 => 0.0076921501123271
418 => 0.0076791189215893
419 => 0.0076544248386882
420 => 0.0076843578880133
421 => 0.007748081785931
422 => 0.0077180307724686
423 => 0.0077378799962912
424 => 0.0076622352235102
425 => 0.0078231247929166
426 => 0.0080786561493175
427 => 0.008079477724412
428 => 0.0080494265489634
429 => 0.0080371302554315
430 => 0.0080679645850995
501 => 0.008084690944054
502 => 0.0081844035121512
503 => 0.0082913990704435
504 => 0.0087907006551744
505 => 0.0086504987681695
506 => 0.0090935088377269
507 => 0.0094438722850889
508 => 0.009548930963416
509 => 0.0094522819227478
510 => 0.0091216507755006
511 => 0.0091054284340575
512 => 0.0095995309569146
513 => 0.0094599243628782
514 => 0.0094433186027421
515 => 0.0092666613707683
516 => 0.0093710876742886
517 => 0.0093482481098673
518 => 0.0093121947400784
519 => 0.0095114328527959
520 => 0.0098843888136941
521 => 0.0098262601296292
522 => 0.0097828697634869
523 => 0.0095927458097969
524 => 0.0097072428956407
525 => 0.0096664726764189
526 => 0.009841647411616
527 => 0.0097378777790808
528 => 0.0094588667056215
529 => 0.0095033001387024
530 => 0.0094965841146799
531 => 0.0096347994131608
601 => 0.0095933106112714
602 => 0.0094884827602395
603 => 0.0098831140907652
604 => 0.0098574889272157
605 => 0.009893819550401
606 => 0.009909813414289
607 => 0.010150018550996
608 => 0.010248422909798
609 => 0.010270762422056
610 => 0.010364238952052
611 => 0.010268436640835
612 => 0.010651714191593
613 => 0.010906571397982
614 => 0.011202601158034
615 => 0.011635180202769
616 => 0.01179783392517
617 => 0.011768451986075
618 => 0.012096428480837
619 => 0.012685794951416
620 => 0.011887579800411
621 => 0.012728102292637
622 => 0.012462002575897
623 => 0.011831084934437
624 => 0.011790461276357
625 => 0.012217726028258
626 => 0.013165358125268
627 => 0.012927987032921
628 => 0.013165746379339
629 => 0.012888387472411
630 => 0.012874614264918
701 => 0.013152275676306
702 => 0.01380104669855
703 => 0.0134928399047
704 => 0.01305094989031
705 => 0.013377234600365
706 => 0.013094576588291
707 => 0.012457668976091
708 => 0.01292780551972
709 => 0.012613438601713
710 => 0.012705187581052
711 => 0.013365940084154
712 => 0.013286436594846
713 => 0.013389321471835
714 => 0.013207732356916
715 => 0.013038099489606
716 => 0.012721467145671
717 => 0.012627727918418
718 => 0.012653634068446
719 => 0.012627715080616
720 => 0.012450562194186
721 => 0.012412306045228
722 => 0.012348544120925
723 => 0.012368306607451
724 => 0.012248415535552
725 => 0.012474674758984
726 => 0.012516670464643
727 => 0.012681323059004
728 => 0.012698417837565
729 => 0.013156972969177
730 => 0.012904408508391
731 => 0.013073850554053
801 => 0.013058694062639
802 => 0.011844758832837
803 => 0.012012028396862
804 => 0.012272247346405
805 => 0.012155019062354
806 => 0.011989285695901
807 => 0.011855447116429
808 => 0.011652667982831
809 => 0.011938075719341
810 => 0.012313356543124
811 => 0.012707935578564
812 => 0.013181996435802
813 => 0.013076191571143
814 => 0.012699073340587
815 => 0.012715990588925
816 => 0.012820566361457
817 => 0.012685131234317
818 => 0.012645188771316
819 => 0.012815078880399
820 => 0.01281624882021
821 => 0.012660414338554
822 => 0.012487232829603
823 => 0.012486507192757
824 => 0.012455691215974
825 => 0.012893869566223
826 => 0.013134823354032
827 => 0.013162448317488
828 => 0.013132963973887
829 => 0.013144311327547
830 => 0.013004105627476
831 => 0.01332457428113
901 => 0.013618668008789
902 => 0.01353984460738
903 => 0.013421677123262
904 => 0.013327551030445
905 => 0.013517671491283
906 => 0.013509205726439
907 => 0.01361609935664
908 => 0.013611250044126
909 => 0.013575305736763
910 => 0.013539845891065
911 => 0.013680440171057
912 => 0.013639951276294
913 => 0.013599399491095
914 => 0.013518066677709
915 => 0.013529121157843
916 => 0.013410974077007
917 => 0.01335631383137
918 => 0.012534354885252
919 => 0.012314700596565
920 => 0.012383808307261
921 => 0.012406560360004
922 => 0.012310966532073
923 => 0.012448023525286
924 => 0.012426663338073
925 => 0.012509763331227
926 => 0.012457846063287
927 => 0.012459976766072
928 => 0.012612654381157
929 => 0.012656977342353
930 => 0.012634434326558
1001 => 0.012650222682091
1002 => 0.013014058671503
1003 => 0.012962332828628
1004 => 0.012934854505536
1005 => 0.012942466188823
1006 => 0.013035434084849
1007 => 0.013061460019877
1008 => 0.012951186304352
1009 => 0.013003192026078
1010 => 0.013224625788681
1011 => 0.013302115073526
1012 => 0.013549423673786
1013 => 0.013444362584836
1014 => 0.013637206760541
1015 => 0.014229944011235
1016 => 0.014703463541388
1017 => 0.014267995412437
1018 => 0.015137553727214
1019 => 0.015814629605999
1020 => 0.015788642306043
1021 => 0.015670578465529
1022 => 0.014899745578526
1023 => 0.014190413663434
1024 => 0.014783799930232
1025 => 0.014785312593857
1026 => 0.014734340187291
1027 => 0.014417754947835
1028 => 0.014723323707196
1029 => 0.014747578645652
1030 => 0.014734002330025
1031 => 0.014491277169207
1101 => 0.014120680711746
1102 => 0.014193094372452
1103 => 0.014311709425886
1104 => 0.014087146384043
1105 => 0.01401538488542
1106 => 0.014148803164544
1107 => 0.014578704658685
1108 => 0.014497434271468
1109 => 0.014495311973218
1110 => 0.014843021153743
1111 => 0.014594136420825
1112 => 0.014194007740614
1113 => 0.014092969971812
1114 => 0.013734353959761
1115 => 0.013982051316631
1116 => 0.013990965503537
1117 => 0.013855304192585
1118 => 0.014205015908325
1119 => 0.014201793253299
1120 => 0.014533792479675
1121 => 0.01516845030729
1122 => 0.014980750758049
1123 => 0.014762476603935
1124 => 0.014786209056573
1125 => 0.015046495485328
1126 => 0.014889120368741
1127 => 0.014945713557924
1128 => 0.015046409824758
1129 => 0.015107162382686
1130 => 0.014777467698416
1201 => 0.014700600096393
1202 => 0.014543355959516
1203 => 0.014502333899305
1204 => 0.014630405967785
1205 => 0.014596663502594
1206 => 0.013990216300645
1207 => 0.013926839193801
1208 => 0.013928782879187
1209 => 0.01376941813061
1210 => 0.013526348637109
1211 => 0.014165120753105
1212 => 0.01411381841258
1213 => 0.014057184599127
1214 => 0.014064121918127
1215 => 0.014341391243685
1216 => 0.014180561032425
1217 => 0.014608154508613
1218 => 0.014520254144545
1219 => 0.014430099467817
1220 => 0.014417637345315
1221 => 0.01438293548641
1222 => 0.014263929900233
1223 => 0.014120223503798
1224 => 0.014025336093236
1225 => 0.012937631169549
1226 => 0.013139502876497
1227 => 0.013371737874155
1228 => 0.013451904464724
1229 => 0.013314773964197
1230 => 0.014269344648214
1231 => 0.014443753910656
]
'min_raw' => 0.0060200193369352
'max_raw' => 0.015814629605999
'avg_raw' => 0.010917324471467
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00602'
'max' => '$0.015814'
'avg' => '$0.010917'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.000233409714625
'max_diff' => -0.0028520084092458
'year' => 2027
]
2 => [
'items' => [
101 => 0.013915456878285
102 => 0.013816634073754
103 => 0.014275823454827
104 => 0.013998876124421
105 => 0.014123585490345
106 => 0.013854032053594
107 => 0.014401743826633
108 => 0.014397571180591
109 => 0.014184498930247
110 => 0.014364586137182
111 => 0.014333291553249
112 => 0.014092733507384
113 => 0.014409369945763
114 => 0.014409526993486
115 => 0.01420444958512
116 => 0.013964964069366
117 => 0.013922149715545
118 => 0.01388989485124
119 => 0.014115652770986
120 => 0.014318066615903
121 => 0.014694708598647
122 => 0.014789405341901
123 => 0.015159013035143
124 => 0.014938929649689
125 => 0.015036489763904
126 => 0.015142405068605
127 => 0.015193184760584
128 => 0.015110441977492
129 => 0.015684594861692
130 => 0.015733070956708
131 => 0.015749324572051
201 => 0.015555723449933
202 => 0.015727686559281
203 => 0.015647230715237
204 => 0.015856554470162
205 => 0.015889379107714
206 => 0.015861577807478
207 => 0.015871996865538
208 => 0.015382058666383
209 => 0.015356652786127
210 => 0.015010241806116
211 => 0.015151406841011
212 => 0.01488750557449
213 => 0.014971191384588
214 => 0.015008079292292
215 => 0.014988811142678
216 => 0.015159388100281
217 => 0.015014362839748
218 => 0.01463161733284
219 => 0.014248767547175
220 => 0.014243961179979
221 => 0.014143163589274
222 => 0.014070305393193
223 => 0.014084340466541
224 => 0.014133801895645
225 => 0.014067430605018
226 => 0.014081594284983
227 => 0.014316805744511
228 => 0.014363975725268
229 => 0.014203673700154
301 => 0.013560037937852
302 => 0.013402088107345
303 => 0.013515619313232
304 => 0.013461358709164
305 => 0.010864367094266
306 => 0.011474491752465
307 => 0.011111976398439
308 => 0.011279040152104
309 => 0.010909005848539
310 => 0.01108560561336
311 => 0.011052994085188
312 => 0.012034056480671
313 => 0.012018738540773
314 => 0.012026070427995
315 => 0.01167610034776
316 => 0.012233612188297
317 => 0.012508262568423
318 => 0.012457432092645
319 => 0.012470225028299
320 => 0.012250400008744
321 => 0.012028198814698
322 => 0.011781743493982
323 => 0.012239627017073
324 => 0.012188718185638
325 => 0.012305484728531
326 => 0.012602454923446
327 => 0.012646184912727
328 => 0.012704958461787
329 => 0.012683892328235
330 => 0.013185773095345
331 => 0.013124992022932
401 => 0.013271456919539
402 => 0.0129701675149
403 => 0.012629229954898
404 => 0.012694031038965
405 => 0.012687790173472
406 => 0.012608336792813
407 => 0.012536609833354
408 => 0.012417204654801
409 => 0.012795020308385
410 => 0.012779681682822
411 => 0.013027996201487
412 => 0.012984104198314
413 => 0.012690982658932
414 => 0.012701451552056
415 => 0.012771859889488
416 => 0.013015543949248
417 => 0.013087885969461
418 => 0.013054374263368
419 => 0.013133693985992
420 => 0.013196385060629
421 => 0.013141567019758
422 => 0.013917674877479
423 => 0.013595380784902
424 => 0.013752464683116
425 => 0.013789928267248
426 => 0.013693966084269
427 => 0.013714776845609
428 => 0.013746299478446
429 => 0.01393769873227
430 => 0.014439985756124
501 => 0.014662445259806
502 => 0.015331725652591
503 => 0.014643973094811
504 => 0.014603164704236
505 => 0.014723722313308
506 => 0.015116660754397
507 => 0.015435100454069
508 => 0.015540745273677
509 => 0.015554707980594
510 => 0.015752904685314
511 => 0.01586650734031
512 => 0.01572883839227
513 => 0.015612178373346
514 => 0.015194316665936
515 => 0.015242685296369
516 => 0.015575897195185
517 => 0.016046578628346
518 => 0.016450472264054
519 => 0.016309042789943
520 => 0.01738804984376
521 => 0.017495028985797
522 => 0.017480247927418
523 => 0.01772396233361
524 => 0.017240238868894
525 => 0.017033437716028
526 => 0.015637401593585
527 => 0.016029630800418
528 => 0.016599758987363
529 => 0.01652430038395
530 => 0.01611025805502
531 => 0.01645015817582
601 => 0.016337776566224
602 => 0.016249136528019
603 => 0.016655213726754
604 => 0.016208715166012
605 => 0.016595304822666
606 => 0.01609949958925
607 => 0.016309688827868
608 => 0.016190375250319
609 => 0.016267585757515
610 => 0.015816214710114
611 => 0.016059763570879
612 => 0.015806082276792
613 => 0.015805961998828
614 => 0.015800361970201
615 => 0.016098816887699
616 => 0.016108549491844
617 => 0.015887990856873
618 => 0.0158562049118
619 => 0.015973734210422
620 => 0.015836138182707
621 => 0.015900518498056
622 => 0.015838088196874
623 => 0.015824033821095
624 => 0.015712046163729
625 => 0.015663798801772
626 => 0.015682717835577
627 => 0.01561813741977
628 => 0.015579225383271
629 => 0.01579262138674
630 => 0.015678612510456
701 => 0.015775147891332
702 => 0.015665133641088
703 => 0.015283776318816
704 => 0.015064453689996
705 => 0.014344105060066
706 => 0.014548395037924
707 => 0.014683839504598
708 => 0.01463907510917
709 => 0.01473524635207
710 => 0.014741150485314
711 => 0.014709884233897
712 => 0.014673681920212
713 => 0.014656060636023
714 => 0.014787395251517
715 => 0.014863639416332
716 => 0.014697433168842
717 => 0.014658493370527
718 => 0.014826537063238
719 => 0.014929043618716
720 => 0.015685894430907
721 => 0.015629824478144
722 => 0.015770549056407
723 => 0.015754705628489
724 => 0.015902207405692
725 => 0.016143310472516
726 => 0.015653080524184
727 => 0.015738167492339
728 => 0.015717306132692
729 => 0.015945064987169
730 => 0.015945776025452
731 => 0.015809223214795
801 => 0.015883250708768
802 => 0.01584193059247
803 => 0.015916601627369
804 => 0.015629075629741
805 => 0.015979251258339
806 => 0.016177778274935
807 => 0.016180534822753
808 => 0.016274635053012
809 => 0.016370246336873
810 => 0.016553763870255
811 => 0.016365128132471
812 => 0.016025790803515
813 => 0.016050289862613
814 => 0.015851336510805
815 => 0.015854680952593
816 => 0.015836828060221
817 => 0.015890405934132
818 => 0.015640832960119
819 => 0.01569940723828
820 => 0.015617402905844
821 => 0.015737989230935
822 => 0.01560825827877
823 => 0.015717296072713
824 => 0.015764353169918
825 => 0.015937994871674
826 => 0.015582611258237
827 => 0.014857960013085
828 => 0.015010290490363
829 => 0.014784981749168
830 => 0.014805834930976
831 => 0.014847961676988
901 => 0.014711415110149
902 => 0.014737463892025
903 => 0.014736533246234
904 => 0.014728513443582
905 => 0.014692992407868
906 => 0.014641479878461
907 => 0.0148466899409
908 => 0.014881559129289
909 => 0.014959069015699
910 => 0.015189685862197
911 => 0.015166641800912
912 => 0.015204227620957
913 => 0.015122177986835
914 => 0.014809640978179
915 => 0.01482661324141
916 => 0.014614968846958
917 => 0.014953656792691
918 => 0.014873451016679
919 => 0.014821741831115
920 => 0.014807632500751
921 => 0.015038821001806
922 => 0.015107996224757
923 => 0.01506489086799
924 => 0.014976480523678
925 => 0.01514625452093
926 => 0.015191678880404
927 => 0.015201847719305
928 => 0.015502654691501
929 => 0.015218659487502
930 => 0.015287019955774
1001 => 0.015820348814876
1002 => 0.015336693134022
1003 => 0.015592896334979
1004 => 0.01558035652151
1005 => 0.015711421409676
1006 => 0.015569605375183
1007 => 0.015571363354895
1008 => 0.015687740096482
1009 => 0.015524309951579
1010 => 0.015483842349378
1011 => 0.015427936646771
1012 => 0.015550004703144
1013 => 0.015623178982275
1014 => 0.016212909931491
1015 => 0.016593903019684
1016 => 0.016577363104927
1017 => 0.016728506964376
1018 => 0.016660415271375
1019 => 0.016440529232995
1020 => 0.016815847888265
1021 => 0.016697081361738
1022 => 0.016706872329883
1023 => 0.01670650790956
1024 => 0.01678547726695
1025 => 0.016729520239804
1026 => 0.016619223195427
1027 => 0.016692443520832
1028 => 0.016909881710539
1029 => 0.017584816523207
1030 => 0.017962518986073
1031 => 0.017562078360685
1101 => 0.017838296941964
1102 => 0.01767266421994
1103 => 0.017642563827202
1104 => 0.017816049508638
1105 => 0.017989838853793
1106 => 0.017978769223819
1107 => 0.017852607083418
1108 => 0.017781341291551
1109 => 0.018320989743359
1110 => 0.018718593529979
1111 => 0.018691479617301
1112 => 0.018811151609945
1113 => 0.019162512281661
1114 => 0.019194636298088
1115 => 0.01919058941038
1116 => 0.019110966683873
1117 => 0.019456926895127
1118 => 0.019745532989945
1119 => 0.019092536323208
1120 => 0.019341188905547
1121 => 0.019452817060846
1122 => 0.019616720311404
1123 => 0.019893252568472
1124 => 0.020193639946205
1125 => 0.020236118014997
1126 => 0.020205977792426
1127 => 0.020007864241965
1128 => 0.020336551695048
1129 => 0.020529089096394
1130 => 0.020643740712756
1201 => 0.02093447813564
1202 => 0.01945350643833
1203 => 0.018405201061905
1204 => 0.018241493039663
1205 => 0.018574399740392
1206 => 0.018662184582493
1207 => 0.018626798622715
1208 => 0.017446835613793
1209 => 0.01823528077862
1210 => 0.019083581481621
1211 => 0.019116168166436
1212 => 0.01954084523549
1213 => 0.019679137497275
1214 => 0.020021058201559
1215 => 0.019999670968411
1216 => 0.020082923218758
1217 => 0.020063784968131
1218 => 0.020697121072919
1219 => 0.021395784847821
1220 => 0.021371592342911
1221 => 0.021271151159054
1222 => 0.021420323444848
1223 => 0.022141419333907
1224 => 0.022075032379769
1225 => 0.022139521650887
1226 => 0.022989734343271
1227 => 0.024095131784716
1228 => 0.023581563693077
1229 => 0.024695858676698
1230 => 0.025397248302648
1231 => 0.026610229135688
]
'min_raw' => 0.010864367094266
'max_raw' => 0.026610229135688
'avg_raw' => 0.018737298114977
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010864'
'max' => '$0.02661'
'avg' => '$0.018737'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048443477573311
'max_diff' => 0.010795599529689
'year' => 2028
]
3 => [
'items' => [
101 => 0.026458357961335
102 => 0.026930562498373
103 => 0.026186476862772
104 => 0.024477905838915
105 => 0.024207517934242
106 => 0.024748841366709
107 => 0.02607963220386
108 => 0.024706930027365
109 => 0.024984625889859
110 => 0.024904649462779
111 => 0.024900387858858
112 => 0.025063035947332
113 => 0.024827106411846
114 => 0.023865887041362
115 => 0.024306408214353
116 => 0.024136301833897
117 => 0.024325047545284
118 => 0.025343630304987
119 => 0.024893290586942
120 => 0.02441889427661
121 => 0.025013892526735
122 => 0.025771529762726
123 => 0.025724118186103
124 => 0.025632119910952
125 => 0.026150709371105
126 => 0.027007267226821
127 => 0.027238791373293
128 => 0.027409697764916
129 => 0.027433262868833
130 => 0.027675998084815
131 => 0.026370749651329
201 => 0.028442212436429
202 => 0.028799896836411
203 => 0.028732666993714
204 => 0.029130218150634
205 => 0.029013248515369
206 => 0.028843777865843
207 => 0.029473981011117
208 => 0.028751503959832
209 => 0.027726038742864
210 => 0.027163448243433
211 => 0.027904312795965
212 => 0.028356732925586
213 => 0.028655753851941
214 => 0.028746237403583
215 => 0.026472072371655
216 => 0.02524642355042
217 => 0.026032050392739
218 => 0.026990569361437
219 => 0.026365425030061
220 => 0.026389929504296
221 => 0.025498637972795
222 => 0.027069428884923
223 => 0.026840577861457
224 => 0.028027857376029
225 => 0.027744503591363
226 => 0.028712683945571
227 => 0.028457729611051
228 => 0.029516030799339
301 => 0.029938215795708
302 => 0.030647130112459
303 => 0.031168610369662
304 => 0.031474833551019
305 => 0.031456449059824
306 => 0.032669857864144
307 => 0.031954353085511
308 => 0.03105551045202
309 => 0.031039253224592
310 => 0.031504776561176
311 => 0.032480385764565
312 => 0.032733347036468
313 => 0.03287471787785
314 => 0.032658203513119
315 => 0.031881574356602
316 => 0.031546229824418
317 => 0.031831953081705
318 => 0.031482538090522
319 => 0.032085726393835
320 => 0.032914032768355
321 => 0.032742990777495
322 => 0.033314758508891
323 => 0.033906477959166
324 => 0.034752663348843
325 => 0.034973887543859
326 => 0.035339562725817
327 => 0.035715962606092
328 => 0.035836852103375
329 => 0.036067667663497
330 => 0.036066451151561
331 => 0.036762029377666
401 => 0.037529273701325
402 => 0.037818890671759
403 => 0.038484848925699
404 => 0.037344418753787
405 => 0.0382094481395
406 => 0.038989726298503
407 => 0.038059446510247
408 => 0.039341620470967
409 => 0.039391404380393
410 => 0.040143082306547
411 => 0.039381112724324
412 => 0.038928657618693
413 => 0.040234878555378
414 => 0.040866917721066
415 => 0.040676542380656
416 => 0.039227776640141
417 => 0.038384532838676
418 => 0.036177601160659
419 => 0.038791807065623
420 => 0.0400651105045
421 => 0.039224479091842
422 => 0.039648444679777
423 => 0.04196146345625
424 => 0.042842111249455
425 => 0.042658942664661
426 => 0.04268989514028
427 => 0.043165076704606
428 => 0.045272293448093
429 => 0.044009600330494
430 => 0.04497488190669
501 => 0.045486863774122
502 => 0.045962421065653
503 => 0.044794602659079
504 => 0.043275288070785
505 => 0.042794057364184
506 => 0.039140894864887
507 => 0.038950731891918
508 => 0.038843987652663
509 => 0.038170980323431
510 => 0.037642180914876
511 => 0.037221659992131
512 => 0.036118087512668
513 => 0.036490510828777
514 => 0.034731646629991
515 => 0.035856905614054
516 => 0.03304971588353
517 => 0.035387626907204
518 => 0.034115208228789
519 => 0.034969603149754
520 => 0.034966622246363
521 => 0.03339341031071
522 => 0.032486014498321
523 => 0.033064242426349
524 => 0.033684148664985
525 => 0.033784726366588
526 => 0.034588450986188
527 => 0.034812753251515
528 => 0.034133106915902
529 => 0.032991543115941
530 => 0.033256702350373
531 => 0.032480641054899
601 => 0.031120623485345
602 => 0.032097411847427
603 => 0.032430930340594
604 => 0.032578231107307
605 => 0.031240810026724
606 => 0.030820563286381
607 => 0.030596827448034
608 => 0.032818898849052
609 => 0.032940628936442
610 => 0.032317840598454
611 => 0.035132902941377
612 => 0.03449576763411
613 => 0.035207603874267
614 => 0.033232641929116
615 => 0.03330808813506
616 => 0.032373109500056
617 => 0.032896635060363
618 => 0.032526624068355
619 => 0.032854339368671
620 => 0.03305077056846
621 => 0.03398559578267
622 => 0.03539830110952
623 => 0.03384596406934
624 => 0.033169588591058
625 => 0.033589208133704
626 => 0.034706710272588
627 => 0.036399783216878
628 => 0.03539744995759
629 => 0.035842268437339
630 => 0.035939441486568
701 => 0.035200358049563
702 => 0.036427034277418
703 => 0.037084420033425
704 => 0.037758761792274
705 => 0.038344273846855
706 => 0.037489414864697
707 => 0.038404236514828
708 => 0.037667051752582
709 => 0.037005720812088
710 => 0.037006723778139
711 => 0.036591861218664
712 => 0.035788012733633
713 => 0.035639770739745
714 => 0.036410944312851
715 => 0.037029352488072
716 => 0.037080287547359
717 => 0.03742267008812
718 => 0.037625288548922
719 => 0.039611224911224
720 => 0.040409984944669
721 => 0.041386693593812
722 => 0.041767176656937
723 => 0.042912294266214
724 => 0.041987518794817
725 => 0.04178743780447
726 => 0.03900975704948
727 => 0.039464602117501
728 => 0.040192852957424
729 => 0.039021765637599
730 => 0.039764550994884
731 => 0.039911192558757
801 => 0.038981972538593
802 => 0.03947830910059
803 => 0.038160186345462
804 => 0.035427032583568
805 => 0.036430077058868
806 => 0.037168655413809
807 => 0.036114613035254
808 => 0.038003943201741
809 => 0.03690023552217
810 => 0.036550413175058
811 => 0.035185631478303
812 => 0.035829755903906
813 => 0.036700943412509
814 => 0.036162650818611
815 => 0.037279688775988
816 => 0.038861712426776
817 => 0.039989156691464
818 => 0.040075707862576
819 => 0.03935083673328
820 => 0.040512447344042
821 => 0.040520908409182
822 => 0.039210606894924
823 => 0.038408054513231
824 => 0.038225712923525
825 => 0.038681237964784
826 => 0.039234329459434
827 => 0.040106400591208
828 => 0.040633374911881
829 => 0.042007444454612
830 => 0.042379228275215
831 => 0.042787705976245
901 => 0.043333558154679
902 => 0.043988993648515
903 => 0.042554938101965
904 => 0.042611915802244
905 => 0.041276543133147
906 => 0.039849505924404
907 => 0.04093244928314
908 => 0.04234825366677
909 => 0.04202346657684
910 => 0.041986921394425
911 => 0.042048380254459
912 => 0.041803501395207
913 => 0.040695923390444
914 => 0.040139704650257
915 => 0.040857368731633
916 => 0.04123877525133
917 => 0.041830303501238
918 => 0.04175738515879
919 => 0.043281098405055
920 => 0.043873167297856
921 => 0.043721690739021
922 => 0.043749566071334
923 => 0.044821478520854
924 => 0.046013665620331
925 => 0.047130306161933
926 => 0.048266200881679
927 => 0.0468968354623
928 => 0.046201556153057
929 => 0.046918906924745
930 => 0.046538270507845
1001 => 0.048725520263453
1002 => 0.048876960690923
1003 => 0.051064052283478
1004 => 0.053139862638835
1005 => 0.051836083346641
1006 => 0.053065488495671
1007 => 0.05439519039922
1008 => 0.056960401107525
1009 => 0.056096528386168
1010 => 0.055434815420221
1011 => 0.054809499864774
1012 => 0.05611068226961
1013 => 0.057784632646534
1014 => 0.058145185524826
1015 => 0.058729418929459
1016 => 0.058115168941149
1017 => 0.058854965394652
1018 => 0.06146677195855
1019 => 0.060761038769931
1020 => 0.059758784189819
1021 => 0.061820554631449
1022 => 0.062566701339344
1023 => 0.067803549695423
1024 => 0.074415287068387
1025 => 0.071677984380972
1026 => 0.069978852270687
1027 => 0.070378188620557
1028 => 0.072792571287729
1029 => 0.073567994371749
1030 => 0.071460127125016
1031 => 0.072204661471396
1101 => 0.076307118920952
1102 => 0.078507955720045
1103 => 0.075518923735059
1104 => 0.06727230303521
1105 => 0.059668542130785
1106 => 0.061685401924455
1107 => 0.061456752614299
1108 => 0.065864331351857
1109 => 0.060744207266784
1110 => 0.060830417025086
1111 => 0.06532913982323
1112 => 0.064128957708319
1113 => 0.062184816389875
1114 => 0.059682736513926
1115 => 0.055057410448856
1116 => 0.050960630166265
1117 => 0.058995359732579
1118 => 0.058648887583472
1119 => 0.058147144567269
1120 => 0.059263719355563
1121 => 0.064685489582238
1122 => 0.064560500229956
1123 => 0.063765381740863
1124 => 0.064368472106987
1125 => 0.062079091732795
1126 => 0.062669117183446
1127 => 0.059667337656209
1128 => 0.061024267367907
1129 => 0.062180645135764
1130 => 0.062412805093127
1201 => 0.062935873331447
1202 => 0.058466312504708
1203 => 0.060473014096502
1204 => 0.061651763279169
1205 => 0.056326131588617
1206 => 0.061546492663859
1207 => 0.05838850739459
1208 => 0.057316639762854
1209 => 0.058759768321165
1210 => 0.058197379718502
1211 => 0.0577138710225
1212 => 0.057444064862397
1213 => 0.058503739203333
1214 => 0.058454304128744
1215 => 0.056720471233045
1216 => 0.054458756900675
1217 => 0.055217862468861
1218 => 0.054942072299286
1219 => 0.053942573147109
1220 => 0.054616114895689
1221 => 0.051650177906621
1222 => 0.04654743747292
1223 => 0.04991846410459
1224 => 0.049788683246242
1225 => 0.049723241852369
1226 => 0.052256475197736
1227 => 0.052012963263216
1228 => 0.051570986717587
1229 => 0.053934455901246
1230 => 0.053071757856064
1231 => 0.055730389954092
]
'min_raw' => 0.023865887041362
'max_raw' => 0.078507955720045
'avg_raw' => 0.051186921380704
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023865'
'max' => '$0.0785079'
'avg' => '$0.051186'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013001519947096
'max_diff' => 0.051897726584357
'year' => 2029
]
4 => [
'items' => [
101 => 0.057481537003397
102 => 0.057037389468021
103 => 0.05868435173192
104 => 0.055235350727974
105 => 0.056380970511582
106 => 0.056617081161224
107 => 0.053905291058391
108 => 0.052052804827266
109 => 0.05192926511554
110 => 0.048717309279096
111 => 0.050433110160923
112 => 0.051942943932265
113 => 0.051219850723626
114 => 0.050990941015566
115 => 0.052160391069586
116 => 0.052251267354446
117 => 0.050179278429006
118 => 0.050610110537961
119 => 0.052406752052181
120 => 0.05056483978151
121 => 0.046986305114258
122 => 0.046098779039667
123 => 0.045980366700966
124 => 0.043573325596094
125 => 0.046158087775842
126 => 0.045029769817063
127 => 0.048594112729523
128 => 0.04655817917388
129 => 0.046470414147465
130 => 0.046337744437709
131 => 0.04426590472513
201 => 0.044719505949902
202 => 0.046227345506462
203 => 0.046765359647271
204 => 0.046709240364564
205 => 0.046219956270036
206 => 0.046443948022971
207 => 0.045722392542866
208 => 0.045467596284963
209 => 0.044663389207787
210 => 0.043481426972214
211 => 0.043645786070466
212 => 0.041304009604553
213 => 0.04002808549844
214 => 0.039674926522277
215 => 0.039202667579823
216 => 0.039728269426461
217 => 0.041297375646054
218 => 0.03940470064077
219 => 0.036159842099925
220 => 0.0363548636272
221 => 0.036793019096575
222 => 0.035976519278083
223 => 0.035203770723516
224 => 0.03587561289664
225 => 0.03450072355667
226 => 0.036959167904699
227 => 0.036892673874795
228 => 0.037809029898562
301 => 0.038382046125742
302 => 0.037061429238299
303 => 0.036729297662435
304 => 0.036918494902585
305 => 0.033791485964955
306 => 0.03755348655563
307 => 0.037586020492958
308 => 0.037307445169624
309 => 0.039310594345421
310 => 0.043537863904248
311 => 0.041947395054694
312 => 0.04133151744397
313 => 0.040160733655782
314 => 0.04172073353928
315 => 0.041600949888017
316 => 0.041059242790403
317 => 0.040731616647536
318 => 0.041335277861333
319 => 0.040656816342724
320 => 0.040534946011106
321 => 0.03979654439773
322 => 0.039532968616888
323 => 0.039337827602006
324 => 0.039122996518781
325 => 0.039596860355804
326 => 0.038523022559131
327 => 0.03722807944596
328 => 0.037120418937579
329 => 0.037417679066829
330 => 0.03728616358805
331 => 0.037119789292064
401 => 0.036802135451684
402 => 0.036707894342844
403 => 0.037014132227289
404 => 0.036668407510529
405 => 0.037178543162708
406 => 0.037039814492408
407 => 0.036264887417314
408 => 0.035299041366998
409 => 0.035290443311219
410 => 0.035082353363984
411 => 0.034817319529646
412 => 0.034743593180086
413 => 0.03581903222274
414 => 0.038045158855852
415 => 0.037608116931076
416 => 0.037923924511584
417 => 0.039477385241434
418 => 0.03997118369326
419 => 0.039620697248411
420 => 0.039140929785641
421 => 0.039162037119141
422 => 0.040801547774917
423 => 0.040903802043453
424 => 0.041162165591566
425 => 0.041494235764421
426 => 0.039677250234761
427 => 0.039076457264093
428 => 0.038791768223866
429 => 0.03791503616849
430 => 0.038860516524887
501 => 0.03830962561072
502 => 0.038383959616155
503 => 0.038335549497599
504 => 0.038361984695808
505 => 0.0369584807194
506 => 0.037469843802406
507 => 0.036619603496408
508 => 0.03548122717063
509 => 0.03547741093402
510 => 0.035756026927017
511 => 0.035590295232138
512 => 0.035144315502567
513 => 0.035207664818188
514 => 0.03465265815407
515 => 0.035275052675932
516 => 0.035292900723784
517 => 0.035053244930809
518 => 0.03601212956563
519 => 0.036404985382891
520 => 0.03624723880603
521 => 0.036393917462539
522 => 0.037626277996177
523 => 0.037827206534819
524 => 0.03791644571909
525 => 0.037796877034094
526 => 0.036416442750818
527 => 0.036477670881341
528 => 0.036028419485065
529 => 0.035648849396158
530 => 0.035664030209131
531 => 0.035859178575487
601 => 0.036711402936664
602 => 0.03850485886339
603 => 0.03857291920481
604 => 0.038655410324071
605 => 0.038319877485321
606 => 0.038218677570537
607 => 0.038352186380051
608 => 0.039025714130697
609 => 0.040758210366358
610 => 0.040145830487142
611 => 0.039647956113079
612 => 0.0400847261651
613 => 0.040017488839108
614 => 0.039449938142485
615 => 0.039434008884717
616 => 0.038344697640962
617 => 0.037942004076563
618 => 0.03760548319306
619 => 0.037238011173375
620 => 0.037020161442332
621 => 0.037354877640146
622 => 0.037431431194832
623 => 0.036699568378474
624 => 0.03659981818093
625 => 0.037197473155124
626 => 0.036934467483805
627 => 0.037204975338984
628 => 0.037267735481759
629 => 0.037257629653283
630 => 0.036983021526416
701 => 0.037158048557549
702 => 0.036744057450851
703 => 0.036293904301771
704 => 0.03600673463819
705 => 0.035756141019187
706 => 0.035895184923597
707 => 0.035399518792791
708 => 0.035240945221758
709 => 0.037098753337634
710 => 0.038471136167635
711 => 0.038451181177763
712 => 0.038329710308927
713 => 0.038149229237303
714 => 0.03901251081616
715 => 0.038711760775947
716 => 0.038930581558709
717 => 0.038986280631801
718 => 0.039154864950564
719 => 0.03921511935421
720 => 0.039032988697018
721 => 0.038421735966095
722 => 0.036898552276801
723 => 0.036189506157679
724 => 0.035955509128272
725 => 0.035964014475867
726 => 0.035729399019644
727 => 0.035798503786229
728 => 0.035705367201972
729 => 0.03552898904355
730 => 0.035884294069335
731 => 0.035925239663661
801 => 0.035842307225064
802 => 0.035861840816552
803 => 0.035175195645876
804 => 0.035227399786887
805 => 0.034936720495953
806 => 0.034882221633095
807 => 0.034147409697955
808 => 0.032845583842162
809 => 0.033566921737565
810 => 0.032695646995376
811 => 0.032365682048542
812 => 0.033927684786775
813 => 0.033770903035069
814 => 0.033502560827536
815 => 0.033105626775179
816 => 0.032958400074034
817 => 0.032063897244184
818 => 0.032011045245009
819 => 0.032454385001091
820 => 0.032249798958049
821 => 0.031962482670824
822 => 0.030921852203282
823 => 0.029751839016857
824 => 0.029787154360514
825 => 0.030159313786247
826 => 0.031241417509101
827 => 0.030818620863997
828 => 0.030511877046942
829 => 0.030454433150693
830 => 0.031173463779194
831 => 0.032191042760096
901 => 0.032668468050889
902 => 0.032195354087335
903 => 0.031651866240268
904 => 0.031684945827239
905 => 0.031905009499439
906 => 0.031928135079855
907 => 0.031574380362868
908 => 0.03167396024357
909 => 0.031522689299009
910 => 0.030594339791463
911 => 0.030577548892699
912 => 0.03034971695189
913 => 0.030342818291268
914 => 0.029955219324609
915 => 0.029900991549829
916 => 0.029131390275952
917 => 0.029637944164985
918 => 0.029298174411495
919 => 0.028786061249403
920 => 0.028697772747231
921 => 0.028695118688244
922 => 0.029220944399305
923 => 0.029631799585401
924 => 0.029304084851825
925 => 0.029229470559473
926 => 0.030026155994885
927 => 0.02992477051128
928 => 0.029836971336344
929 => 0.03209992972326
930 => 0.030308621579171
1001 => 0.029527508984054
1002 => 0.028560733818338
1003 => 0.028875520687199
1004 => 0.028941850905649
1005 => 0.026616930906424
1006 => 0.025673711152289
1007 => 0.025350033677156
1008 => 0.025163752714089
1009 => 0.025248643288128
1010 => 0.024399634880763
1011 => 0.024970182571815
1012 => 0.024235013055932
1013 => 0.024111759494146
1014 => 0.025426333658572
1015 => 0.025609248973921
1016 => 0.024828875411308
1017 => 0.025330001569509
1018 => 0.025148286258371
1019 => 0.024247615427217
1020 => 0.024213216426353
1021 => 0.023761291463391
1022 => 0.023054116406272
1023 => 0.022730918429128
1024 => 0.022562594116498
1025 => 0.022632048008465
1026 => 0.022596929995362
1027 => 0.022367761205129
1028 => 0.022610065682163
1029 => 0.021991077870464
1030 => 0.021744591936322
1031 => 0.021633259958301
1101 => 0.021083872647809
1102 => 0.021958192172447
1103 => 0.022130444133188
1104 => 0.022303035483503
1105 => 0.023805325354874
1106 => 0.023730275198327
1107 => 0.0244086920626
1108 => 0.024382330030782
1109 => 0.024188834551467
1110 => 0.023372508952699
1111 => 0.023697881786763
1112 => 0.022696434777677
1113 => 0.023446786968662
1114 => 0.023104357564153
1115 => 0.023331011242544
1116 => 0.022923467492259
1117 => 0.023149019030736
1118 => 0.022171291463206
1119 => 0.021258303217645
1120 => 0.021625716339447
1121 => 0.022025136421633
1122 => 0.022891180930157
1123 => 0.022375371965592
1124 => 0.022560876374146
1125 => 0.021939467658554
1126 => 0.020657323981662
1127 => 0.020664580775633
1128 => 0.020467350903962
1129 => 0.020296915498805
1130 => 0.022434618830047
1201 => 0.022168761628719
1202 => 0.021745152972932
1203 => 0.022312169992241
1204 => 0.022462098291917
1205 => 0.022466366539834
1206 => 0.022880047520295
1207 => 0.023100829133724
1208 => 0.023139742850013
1209 => 0.023790678810937
1210 => 0.024008863958986
1211 => 0.024907537705081
1212 => 0.023082097356339
1213 => 0.023044503613621
1214 => 0.02232014908451
1215 => 0.021860751990555
1216 => 0.022351604396564
1217 => 0.022786432620253
1218 => 0.022333660409499
1219 => 0.02239278290168
1220 => 0.021784973201591
1221 => 0.022002236569269
1222 => 0.022189373050048
1223 => 0.022086047284736
1224 => 0.021931363613039
1225 => 0.022750781664626
1226 => 0.02270454688683
1227 => 0.023467607814808
1228 => 0.024062468375177
1229 => 0.025128564843403
1230 => 0.024016037601943
1231 => 0.023975492687369
]
'min_raw' => 0.020296915498805
'max_raw' => 0.05868435173192
'avg_raw' => 0.039490633615363
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020296'
'max' => '$0.058684'
'avg' => '$0.03949'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035689715425567
'max_diff' => -0.019823603988125
'year' => 2030
]
5 => [
'items' => [
101 => 0.024371825730939
102 => 0.024008803282462
103 => 0.024238220938791
104 => 0.025091602112185
105 => 0.025109632711638
106 => 0.024807596939679
107 => 0.024789218035506
108 => 0.02484722730942
109 => 0.025186989438622
110 => 0.025068266110843
111 => 0.025205655751455
112 => 0.025377463600826
113 => 0.026088133710842
114 => 0.026259473868404
115 => 0.025843206115214
116 => 0.025880790432574
117 => 0.025725094866076
118 => 0.025574694899698
119 => 0.025912772059964
120 => 0.026530614715274
121 => 0.026526771148181
122 => 0.026670098635068
123 => 0.02675939047201
124 => 0.026376084542237
125 => 0.026126566476505
126 => 0.026222247580154
127 => 0.026375243748552
128 => 0.026172632984773
129 => 0.024922025492298
130 => 0.025301379916399
131 => 0.025238236790745
201 => 0.025148313301348
202 => 0.025529757108242
203 => 0.025492965922529
204 => 0.024390927072409
205 => 0.024461476024038
206 => 0.024395217387823
207 => 0.024609312596673
208 => 0.023997241438583
209 => 0.02418551040445
210 => 0.024303590934929
211 => 0.024373141274519
212 => 0.024624404792232
213 => 0.024594921918501
214 => 0.024622572095405
215 => 0.024995129561063
216 => 0.026879397376081
217 => 0.026981953915849
218 => 0.026476928005736
219 => 0.02667867589563
220 => 0.026291364064446
221 => 0.026551369091484
222 => 0.026729257927572
223 => 0.025925412483347
224 => 0.025877813973054
225 => 0.025488903568167
226 => 0.025697881990742
227 => 0.025365382294345
228 => 0.025446966089495
301 => 0.025218850685908
302 => 0.025629412995041
303 => 0.026088485451585
304 => 0.026204465283428
305 => 0.025899372278305
306 => 0.025678464835987
307 => 0.025290624138711
308 => 0.025935611861874
309 => 0.026124225927772
310 => 0.025934621152481
311 => 0.025890685583101
312 => 0.025807427758514
313 => 0.025908349124172
314 => 0.026123198695062
315 => 0.026021879605079
316 => 0.026088802649025
317 => 0.025833761016244
318 => 0.026376211432449
319 => 0.027237753241185
320 => 0.027240523238976
321 => 0.027139203602845
322 => 0.027097745790702
323 => 0.027201705885962
324 => 0.027258099972974
325 => 0.027594287858023
326 => 0.027955030852997
327 => 0.029638461006041
328 => 0.029165760555421
329 => 0.030659399934909
330 => 0.031840674759284
331 => 0.032194887428227
401 => 0.031869028439794
402 => 0.03075428244292
403 => 0.030699587686137
404 => 0.032365488839086
405 => 0.031894795460271
406 => 0.031838807980595
407 => 0.031243195789182
408 => 0.031595276362312
409 => 0.031518271176258
410 => 0.031396714722849
411 => 0.032068459930237
412 => 0.033325906991359
413 => 0.033129922074619
414 => 0.032983628425751
415 => 0.032342612241855
416 => 0.032728647160709
417 => 0.032591187520117
418 => 0.033181801370143
419 => 0.032831934809086
420 => 0.031891229494987
421 => 0.032041039916863
422 => 0.032018396372973
423 => 0.032484398901685
424 => 0.03234451650946
425 => 0.031991082090859
426 => 0.033321609174006
427 => 0.033235212146007
428 => 0.033357703378599
429 => 0.033411627807353
430 => 0.034221496196348
501 => 0.034553273362421
502 => 0.034628592587696
503 => 0.034943755234899
504 => 0.034620751053927
505 => 0.035912998075892
506 => 0.036772266940794
507 => 0.037770351944949
508 => 0.039228822395978
509 => 0.03977722077717
510 => 0.039678157518132
511 => 0.040783953168809
512 => 0.042771043372619
513 => 0.040079805261405
514 => 0.04291368552735
515 => 0.042016511753873
516 => 0.039889328876425
517 => 0.039752363376956
518 => 0.041192916318665
519 => 0.044387924095291
520 => 0.043587610884725
521 => 0.044389233120999
522 => 0.043454098201713
523 => 0.043407660871034
524 => 0.04434381570523
525 => 0.046531192502472
526 => 0.045492051778695
527 => 0.044002188743403
528 => 0.045102280423826
529 => 0.044149279201565
530 => 0.042001900719562
531 => 0.043586998900295
601 => 0.042527088887836
602 => 0.042836426977387
603 => 0.04506420017386
604 => 0.044796148608904
605 => 0.045143032154864
606 => 0.044530791775767
607 => 0.043958862720245
608 => 0.042891314666103
609 => 0.042575266316754
610 => 0.042662610710286
611 => 0.04257522303321
612 => 0.041977939708191
613 => 0.041848956431021
614 => 0.041633978651517
615 => 0.041700609254611
616 => 0.041296388135176
617 => 0.042059236903895
618 => 0.042200828357569
619 => 0.042755966075135
620 => 0.042813602314571
621 => 0.0443596529561
622 => 0.043508114243072
623 => 0.044079399930087
624 => 0.044028298761091
625 => 0.039935431379562
626 => 0.040499392393062
627 => 0.041376738749353
628 => 0.040981495405059
629 => 0.040422713788926
630 => 0.039971467673924
701 => 0.039287783667412
702 => 0.040250055777589
703 => 0.041515341276242
704 => 0.042845692042856
705 => 0.044444021320907
706 => 0.04408729283265
707 => 0.042815812388778
708 => 0.042872850072673
709 => 0.043225434591011
710 => 0.042768805604081
711 => 0.042634136801379
712 => 0.043206933165499
713 => 0.043210877699256
714 => 0.042685470864337
715 => 0.042101577315761
716 => 0.042099130780473
717 => 0.041995232563246
718 => 0.043472581463746
719 => 0.0442849739822
720 => 0.044378113475205
721 => 0.044278704952224
722 => 0.044316963347336
723 => 0.043844250040695
724 => 0.044924732480899
725 => 0.045916290016669
726 => 0.045650531415545
727 => 0.045252121492651
728 => 0.044934768799043
729 => 0.045575773206545
730 => 0.045547230289314
731 => 0.04590762962661
801 => 0.045891279830902
802 => 0.045770091089074
803 => 0.045650535743577
804 => 0.046124559174551
805 => 0.045988048039014
806 => 0.045851324863978
807 => 0.045577105605172
808 => 0.045614376556744
809 => 0.045216035424939
810 => 0.045031744590516
811 => 0.042260452616338
812 => 0.04151987284626
813 => 0.041752874317818
814 => 0.041829584452135
815 => 0.041507283187118
816 => 0.04196938040875
817 => 0.041897363046241
818 => 0.042177540475017
819 => 0.042002497781408
820 => 0.042009681594611
821 => 0.042524444833478
822 => 0.042673882791681
823 => 0.042597877440027
824 => 0.042651108983015
825 => 0.043877807423532
826 => 0.043703410132899
827 => 0.043610765048116
828 => 0.043636428369749
829 => 0.043949876122012
830 => 0.044037624379033
831 => 0.043665828848075
901 => 0.043841169769799
902 => 0.044587749160425
903 => 0.044849009694411
904 => 0.045682827906721
905 => 0.045328607110195
906 => 0.045978794712536
907 => 0.047977249736845
908 => 0.049573753892832
909 => 0.048105542692661
910 => 0.051037319261553
911 => 0.053320127858806
912 => 0.053232509862627
913 => 0.052834449381382
914 => 0.050235532485016
915 => 0.047843970409312
916 => 0.049844613636728
917 => 0.04984971368775
918 => 0.049677856660233
919 => 0.048610467422129
920 => 0.049640713828447
921 => 0.049722491046875
922 => 0.049676717550873
923 => 0.048858352724645
924 => 0.047608860894098
925 => 0.047853008606926
926 => 0.048252927541017
927 => 0.047495797566953
928 => 0.047253848664117
929 => 0.047703677707152
930 => 0.049153120609413
1001 => 0.048879111824791
1002 => 0.048871956348068
1003 => 0.050044282126487
1004 => 0.049205149872877
1005 => 0.047856088091454
1006 => 0.047515432199706
1007 => 0.046306333277305
1008 => 0.04714146220967
1009 => 0.047171517013194
1010 => 0.046714125431749
1011 => 0.047893202897459
1012 => 0.04788233749104
1013 => 0.049001696062211
1014 => 0.05114148923841
1015 => 0.05050864710338
1016 => 0.04977272055337
1017 => 0.049852736174386
1018 => 0.05073031004155
1019 => 0.0501997088484
1020 => 0.05039051673694
1021 => 0.050730021230958
1022 => 0.050934852721622
1023 => 0.049823264075057
1024 => 0.049564099588112
1025 => 0.049033940002195
1026 => 0.048895631262127
1027 => 0.049327435182713
1028 => 0.049213670105496
1029 => 0.047168991023336
1030 => 0.046955310682763
1031 => 0.046961863953743
1101 => 0.046424554577427
1102 => 0.045605028809518
1103 => 0.047758693596242
1104 => 0.047585724173348
1105 => 0.047394779317244
1106 => 0.047418168972601
1107 => 0.048353001862045
1108 => 0.047810751575975
1109 => 0.049252412834567
1110 => 0.048956050620105
1111 => 0.048652087833119
1112 => 0.048610070917024
1113 => 0.048493071176921
1114 => 0.04809183553442
1115 => 0.047607319385577
1116 => 0.047287399856041
1117 => 0.043620126764699
1118 => 0.044300751318906
1119 => 0.045083747827641
1120 => 0.045354035084794
1121 => 0.044891690028124
1122 => 0.048110091735284
1123 => 0.048698124740473
1124 => 0.046916934411312
1125 => 0.046583746426248
1126 => 0.048131935484115
1127 => 0.047198188223807
1128 => 0.047618654557949
1129 => 0.046709836326321
1130 => 0.048556484809139
1201 => 0.048542416441683
1202 => 0.047824028473419
1203 => 0.048431205064887
1204 => 0.048325693190237
1205 => 0.047514634943379
1206 => 0.048582196802223
1207 => 0.048582726299586
1208 => 0.047891293499233
1209 => 0.047083851362524
1210 => 0.046939499779413
1211 => 0.046830750252445
1212 => 0.047591908840782
1213 => 0.048274361251005
1214 => 0.049544235992129
1215 => 0.049863512673527
1216 => 0.051109670816477
1217 => 0.050367644316689
1218 => 0.050696575053193
1219 => 0.051053675897762
1220 => 0.051224883174596
1221 => 0.050945910104483
1222 => 0.052881706639639
1223 => 0.053045147178479
1224 => 0.053099947377397
1225 => 0.052447207677379
1226 => 0.053026993306624
1227 => 0.052755730811182
1228 => 0.05346148046543
1229 => 0.05357215102268
1230 => 0.053478416997909
1231 => 0.053513545579596
]
'min_raw' => 0.023997241438583
'max_raw' => 0.05357215102268
'avg_raw' => 0.038784696230632
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023997'
'max' => '$0.053572'
'avg' => '$0.038784'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.003700325939778
'max_diff' => -0.0051122007092397
'year' => 2031
]
6 => [
'items' => [
101 => 0.05186168473475
102 => 0.051776027035685
103 => 0.050608078230935
104 => 0.051084026001912
105 => 0.050194264456841
106 => 0.050476417008343
107 => 0.050600787164596
108 => 0.050535823252914
109 => 0.051110935374777
110 => 0.050621972583549
111 => 0.049331519384572
112 => 0.048040714602484
113 => 0.048024509599911
114 => 0.047684663485385
115 => 0.047439016990502
116 => 0.047486337220194
117 => 0.047653099881703
118 => 0.047429324441457
119 => 0.047477078277337
120 => 0.048270110135076
121 => 0.048429147018501
122 => 0.047888677548901
123 => 0.045718614639084
124 => 0.045186075757824
125 => 0.045568854144968
126 => 0.045385910729999
127 => 0.036629972184206
128 => 0.038687050066868
129 => 0.037464804240755
130 => 0.038028071350254
131 => 0.036780474860815
201 => 0.03737589329771
202 => 0.037265941253615
203 => 0.040573661615575
204 => 0.040522016111744
205 => 0.040546736081409
206 => 0.039366787521767
207 => 0.041246477616371
208 => 0.042172480548442
209 => 0.042001102050486
210 => 0.042044234326217
211 => 0.041303078925095
212 => 0.040553912085777
213 => 0.039722970765024
214 => 0.041266757031532
215 => 0.041095114352007
216 => 0.041488800903751
217 => 0.042490056649703
218 => 0.042637495361695
219 => 0.042835654485788
220 => 0.042764628545728
221 => 0.044456754592233
222 => 0.044251826962994
223 => 0.044745643587757
224 => 0.043729825324662
225 => 0.042580330537615
226 => 0.042798811916817
227 => 0.042777770403084
228 => 0.042509887782932
229 => 0.0422680553313
301 => 0.041865472435204
302 => 0.04313930428951
303 => 0.043087589042515
304 => 0.043924798778961
305 => 0.043776813825823
306 => 0.042788534090705
307 => 0.042823830694784
308 => 0.04306121732019
309 => 0.04388281514115
310 => 0.044126721313057
311 => 0.044013734256249
312 => 0.044281166239005
313 => 0.044492533574095
314 => 0.044307710722024
315 => 0.046924412550451
316 => 0.045837775515473
317 => 0.046367394845549
318 => 0.046493705935074
319 => 0.046170162735292
320 => 0.046240327670111
321 => 0.046346608427562
322 => 0.046991924374899
323 => 0.048685420144384
324 => 0.049435457892674
325 => 0.051691983464613
326 => 0.049373177698708
327 => 0.049235589360731
328 => 0.049642057756782
329 => 0.050966877145
330 => 0.052040518825194
331 => 0.052396707710388
401 => 0.052443783951604
402 => 0.053112017979219
403 => 0.053495037262021
404 => 0.053030876791967
405 => 0.052637549393223
406 => 0.051228699472517
407 => 0.051391777687009
408 => 0.05251522486798
409 => 0.05410216018181
410 => 0.055463915773555
411 => 0.0549870764273
412 => 0.05862502404311
413 => 0.058985711689534
414 => 0.058935876319226
415 => 0.059757576455299
416 => 0.058126669021517
417 => 0.057429424496232
418 => 0.052722591241287
419 => 0.054045019396693
420 => 0.055967246384058
421 => 0.055712832434299
422 => 0.0543168598148
423 => 0.055462856803143
424 => 0.055083954360158
425 => 0.054785098282698
426 => 0.056154215909641
427 => 0.054648814838565
428 => 0.055952228856802
429 => 0.054280586896322
430 => 0.054989254589268
501 => 0.054586980532352
502 => 0.054847301148031
503 => 0.053325472147998
504 => 0.054146614136105
505 => 0.053291309941628
506 => 0.053290904416076
507 => 0.053272023528578
508 => 0.05427828512038
509 => 0.054311099274763
510 => 0.053567470438044
511 => 0.053460301905007
512 => 0.053856560140947
513 => 0.053392645526858
514 => 0.053609708254946
515 => 0.053399220135767
516 => 0.053351834826581
517 => 0.052974260621046
518 => 0.052811591271683
519 => 0.052875378115041
520 => 0.052657640734287
521 => 0.052526446086478
522 => 0.053245925611008
523 => 0.052861536724773
524 => 0.053187012501279
525 => 0.052816091775632
526 => 0.051530318938073
527 => 0.050790857382391
528 => 0.048362151683447
529 => 0.049050929606867
530 => 0.049507590082688
531 => 0.049356663798153
601 => 0.049680911858052
602 => 0.049700818055496
603 => 0.049595401705905
604 => 0.04947334307775
605 => 0.049413931687829
606 => 0.049856735513458
607 => 0.050113798038327
608 => 0.049553422070765
609 => 0.049422133822058
610 => 0.049988704864469
611 => 0.050334312873042
612 => 0.05288608822798
613 => 0.05269704446756
614 => 0.053171507208249
615 => 0.053118089984871
616 => 0.053615402524955
617 => 0.054428298348032
618 => 0.052775453850471
619 => 0.053062330504185
620 => 0.052991994973643
621 => 0.053759899853127
622 => 0.053762297168341
623 => 0.053301899833397
624 => 0.053551488697764
625 => 0.053412175040786
626 => 0.053663933648314
627 => 0.052694519672885
628 => 0.053875161253186
629 => 0.054544508950353
630 => 0.054553802843778
701 => 0.054871068339964
702 => 0.055193428458867
703 => 0.055812170635452
704 => 0.055176172075385
705 => 0.054032072579036
706 => 0.054114672867253
707 => 0.053443887751154
708 => 0.053455163770143
709 => 0.053394971497062
710 => 0.053575613039639
711 => 0.052734160333125
712 => 0.052931647601472
713 => 0.052655164269303
714 => 0.053061729483417
715 => 0.052624332520667
716 => 0.052991961055721
717 => 0.053150617344371
718 => 0.053736062465115
719 => 0.052537861800323
720 => 0.050094649533756
721 => 0.050608242373274
722 => 0.04984859822178
723 => 0.04991890618017
724 => 0.050060939445547
725 => 0.049600563162069
726 => 0.049688388448833
727 => 0.049685250711572
728 => 0.049658211387007
729 => 0.049538449735099
730 => 0.049364771645711
731 => 0.050056651698534
801 => 0.050174215601676
802 => 0.050435545595275
803 => 0.051213086394398
804 => 0.051135391732891
805 => 0.051262114949329
806 => 0.050985478879365
807 => 0.049931738534044
808 => 0.049988961704493
809 => 0.04927538785206
810 => 0.050417297907536
811 => 0.050146878533923
812 => 0.049972537404572
813 => 0.04992496681217
814 => 0.05070443498454
815 => 0.05093766407838
816 => 0.050792331358521
817 => 0.050494249710058
818 => 0.051066654595036
819 => 0.051219805994432
820 => 0.051254090944751
821 => 0.052268282653181
822 => 0.051310772994988
823 => 0.051541255086542
824 => 0.053339410570836
825 => 0.051708731675077
826 => 0.05257253865464
827 => 0.052530259798024
828 => 0.052972154219134
829 => 0.052494011557562
830 => 0.052499938708901
831 => 0.052892311018325
901 => 0.052341294874457
902 => 0.052204855528278
903 => 0.052016365548729
904 => 0.052427926523307
905 => 0.052674638714265
906 => 0.054662957783247
907 => 0.055947502580175
908 => 0.055891737102795
909 => 0.056401329177453
910 => 0.056171753280491
911 => 0.055430392150139
912 => 0.056695805200292
913 => 0.056295375564093
914 => 0.056328386496779
915 => 0.056327157828216
916 => 0.056593408530122
917 => 0.056404745506303
918 => 0.056032871320494
919 => 0.056279738759675
920 => 0.057012846797321
921 => 0.059288436640675
922 => 0.060561886864571
923 => 0.059211773338205
924 => 0.060143063569951
925 => 0.059584621283542
926 => 0.059483135707883
927 => 0.060068054795227
928 => 0.060653997706004
929 => 0.060616675675688
930 => 0.060191311210966
1001 => 0.059951033618068
1002 => 0.061770496050389
1003 => 0.06311104497679
1004 => 0.063019628527164
1005 => 0.063423111005593
1006 => 0.064607748041505
1007 => 0.064716056405714
1008 => 0.064702412041263
1009 => 0.064433958459761
1010 => 0.065600387466175
1011 => 0.06657344306469
1012 => 0.064371819212014
1013 => 0.06521016875374
1014 => 0.065586530872957
1015 => 0.066139142125575
1016 => 0.067071489937143
1017 => 0.068084266953549
1018 => 0.068227484728203
1019 => 0.068125864863484
1020 => 0.067457911196257
1021 => 0.068566103892551
1022 => 0.069215257183724
1023 => 0.069601813113008
1024 => 0.070582054632899
1025 => 0.065588855157276
1026 => 0.062054420390314
1027 => 0.061502467363596
1028 => 0.062624885547908
1029 => 0.062920858271993
1030 => 0.062801552038033
1031 => 0.058823224371066
1101 => 0.061481522291763
1102 => 0.064341627338396
1103 => 0.064451495621381
1104 => 0.065883324009702
1105 => 0.066349586025567
1106 => 0.067502395552202
1107 => 0.067430287002435
1108 => 0.067710977776965
1109 => 0.067646451828787
1110 => 0.069781788724193
1111 => 0.072137382420422
1112 => 0.072055815701051
1113 => 0.071717171237099
1114 => 0.07222011601353
1115 => 0.074651341148801
1116 => 0.074427512897934
1117 => 0.074644942978006
1118 => 0.077511494430335
1119 => 0.081238419080551
1120 => 0.079506888403409
1121 => 0.083263811738278
1122 => 0.085628595831629
1123 => 0.089718245397842
1124 => 0.089206201130203
1125 => 0.090798271695095
1126 => 0.088289535024267
1127 => 0.082528968528712
1128 => 0.081617336830228
1129 => 0.083442446576785
1130 => 0.08792930079709
1201 => 0.083301139570029
1202 => 0.084237410558533
1203 => 0.083967764450858
1204 => 0.083953396155702
1205 => 0.084501775541721
1206 => 0.083706322640755
1207 => 0.080465504422974
1208 => 0.081950752313922
1209 => 0.081377226775765
1210 => 0.082013596119511
1211 => 0.085447819009026
1212 => 0.083929467207923
1213 => 0.082330006926345
1214 => 0.084336085068094
1215 => 0.086890511905781
1216 => 0.086730660465025
1217 => 0.086420481857239
1218 => 0.088168942428903
1219 => 0.09105688704241
1220 => 0.09183748686674
1221 => 0.0924137096984
1222 => 0.092493161091521
1223 => 0.093311559819436
1224 => 0.088910823596401
1225 => 0.09589490500128
1226 => 0.097100862928547
1227 => 0.096874192820056
1228 => 0.098214564301746
1229 => 0.09782019300989
1230 => 0.097248810882951
1231 => 0.099373584786621
]
'min_raw' => 0.036629972184206
'max_raw' => 0.099373584786621
'avg_raw' => 0.068001778485414
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036629'
'max' => '$0.099373'
'avg' => '$0.0680017'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012632730745623
'max_diff' => 0.04580143376394
'year' => 2032
]
7 => [
'items' => [
101 => 0.096937702966476
102 => 0.093480275391774
103 => 0.091583462244129
104 => 0.0940813388085
105 => 0.095606704862483
106 => 0.096614874792663
107 => 0.096919946404383
108 => 0.089252440222106
109 => 0.085120079649247
110 => 0.087768875398839
111 => 0.091000589023459
112 => 0.088892871264043
113 => 0.088975489809774
114 => 0.08597043818333
115 => 0.091266469412689
116 => 0.090494882209205
117 => 0.094497877985793
118 => 0.093542530917662
119 => 0.096806818578069
120 => 0.095947222238892
121 => 0.099515358583434
122 => 0.10093878477471
123 => 0.10332893888845
124 => 0.1050871459842
125 => 0.10611959881996
126 => 0.10605761422434
127 => 0.1101487067256
128 => 0.10773633240949
129 => 0.10470582171549
130 => 0.10465100933817
131 => 0.10622055376926
201 => 0.10950988831335
202 => 0.11036276490276
203 => 0.11083940656468
204 => 0.11010941326744
205 => 0.10749095384372
206 => 0.10636031634046
207 => 0.10732365225096
208 => 0.10614557521281
209 => 0.1081792666907
210 => 0.11097195946289
211 => 0.11039527944894
212 => 0.11232303427489
213 => 0.11431805771402
214 => 0.1171710308341
215 => 0.11791690365297
216 => 0.11914980305957
217 => 0.12041886153532
218 => 0.12082644891564
219 => 0.12160465969162
220 => 0.1216005581367
221 => 0.12394574868973
222 => 0.12653256649423
223 => 0.12750903033046
224 => 0.12975435507934
225 => 0.12590931513245
226 => 0.1288258221008
227 => 0.13145658439116
228 => 0.128320081135
301 => 0.13264302016209
302 => 0.13281087008852
303 => 0.13534520469703
304 => 0.13277617105155
305 => 0.1312506870735
306 => 0.13565470215897
307 => 0.13778566633366
308 => 0.13714380258188
309 => 0.13225918773814
310 => 0.1294161323881
311 => 0.12197530815262
312 => 0.13078928587923
313 => 0.13508231732261
314 => 0.13224806982382
315 => 0.13367749940388
316 => 0.14147600369857
317 => 0.14444516921823
318 => 0.14382760354617
319 => 0.14393196197875
320 => 0.14553406979899
321 => 0.15263869817084
322 => 0.14838144016643
323 => 0.15163595439438
324 => 0.15336213700587
325 => 0.15496551161661
326 => 0.15102813032437
327 => 0.14590565511478
328 => 0.14428315218902
329 => 0.13196625976698
330 => 0.13132511202686
331 => 0.13096521637157
401 => 0.12869612517319
402 => 0.12691324104765
403 => 0.12549542539678
404 => 0.1217746537333
405 => 0.12303030494533
406 => 0.11710017149915
407 => 0.12089406072699
408 => 0.1114294245588
409 => 0.11931185480285
410 => 0.11502180639114
411 => 0.11790245851912
412 => 0.11789240819522
413 => 0.11258821431602
414 => 0.10952886598219
415 => 0.11147840181212
416 => 0.11356845897615
417 => 0.11390756371922
418 => 0.11661737738846
419 => 0.1173736281363
420 => 0.11508215306439
421 => 0.11123329101138
422 => 0.11212729388309
423 => 0.10951074904253
424 => 0.10492535485339
425 => 0.10821866501333
426 => 0.10934314589856
427 => 0.10983978071774
428 => 0.1053305721688
429 => 0.10391368094305
430 => 0.10315933994332
501 => 0.11065120881192
502 => 0.11106163030048
503 => 0.10896185593726
504 => 0.1184530351678
505 => 0.11630488899599
506 => 0.1187048945785
507 => 0.11204617249298
508 => 0.11230054464381
509 => 0.10914819889777
510 => 0.11091330187573
511 => 0.10966578398283
512 => 0.1107706989982
513 => 0.11143298050267
514 => 0.11458480897979
515 => 0.11934784362121
516 => 0.11411403090953
517 => 0.11183358376147
518 => 0.11324836034641
519 => 0.11701609682916
520 => 0.12272441046741
521 => 0.11934497390305
522 => 0.12084471046376
523 => 0.12117233618364
524 => 0.11868046477462
525 => 0.12281628932063
526 => 0.12503271129422
527 => 0.12730630161521
528 => 0.12928039638638
529 => 0.12639817964369
530 => 0.12948256470791
531 => 0.1269970948134
601 => 0.12476737137487
602 => 0.12477075294494
603 => 0.12337201486089
604 => 0.1206617835707
605 => 0.12016197533838
606 => 0.12276204088173
607 => 0.12484704722037
608 => 0.12501877832892
609 => 0.12617314496949
610 => 0.12685628725645
611 => 0.1335520103556
612 => 0.13624508557601
613 => 0.13953812697821
614 => 0.14082095219001
615 => 0.14468179615925
616 => 0.14156385109168
617 => 0.14088926406351
618 => 0.13152411946658
619 => 0.13305766136969
620 => 0.13551300992134
621 => 0.13156460725984
622 => 0.13406895995154
623 => 0.13456337222233
624 => 0.13143044204828
625 => 0.13310387542016
626 => 0.12865973252285
627 => 0.11944471379193
628 => 0.12282654827073
629 => 0.12531671676031
630 => 0.12176293929012
701 => 0.12813294785525
702 => 0.12441172035517
703 => 0.12323226988807
704 => 0.11863081311144
705 => 0.12080252358369
706 => 0.12373979309331
707 => 0.1219249020306
708 => 0.125691073493
709 => 0.13102497668499
710 => 0.13482623373903
711 => 0.13511804705525
712 => 0.13267409343394
713 => 0.13659054470919
714 => 0.13661907178104
715 => 0.13220129874339
716 => 0.12949543735609
717 => 0.12888065995572
718 => 0.13041649443606
719 => 0.13228128102589
720 => 0.13522152973273
721 => 0.13699826044705
722 => 0.14163103184484
723 => 0.14288452695312
724 => 0.14426173804114
725 => 0.14610211677092
726 => 0.14831196329943
727 => 0.14347694490167
728 => 0.14366904919622
729 => 0.13916674700962
730 => 0.13435539142779
731 => 0.13800661057046
801 => 0.14278009389817
802 => 0.14168505154856
803 => 0.14156183691454
804 => 0.14176904975207
805 => 0.14094342358121
806 => 0.13720914700952
807 => 0.13533381669303
808 => 0.13775347124909
809 => 0.1390394099592
810 => 0.14103378875295
811 => 0.14078793947039
812 => 0.14592524506243
813 => 0.14792144667144
814 => 0.14741073287758
815 => 0.14750471650666
816 => 0.15111874416876
817 => 0.15513828621049
818 => 0.15890311775785
819 => 0.16273286611111
820 => 0.15811595499364
821 => 0.15577177225967
822 => 0.15819037047025
823 => 0.15690702821548
824 => 0.16428149347542
825 => 0.16479208544987
826 => 0.17216601745203
827 => 0.17916475699356
828 => 0.17476897408297
829 => 0.17891399937725
830 => 0.18339718218189
831 => 0.19204596918223
901 => 0.18913336198851
902 => 0.18690235052449
903 => 0.18479405547117
904 => 0.18918108279472
905 => 0.19482492336201
906 => 0.19604055256417
907 => 0.19801033627776
908 => 0.19593934955661
909 => 0.19843362495053
910 => 0.20723951313123
911 => 0.20486008441308
912 => 0.20148091312105
913 => 0.20843231611322
914 => 0.21094800183319
915 => 0.22860440169079
916 => 0.2508963358605
917 => 0.24166732873751
918 => 0.23593858619807
919 => 0.23728497658242
920 => 0.24542523631161
921 => 0.24803962937769
922 => 0.24093280778874
923 => 0.24344305731929
924 => 0.2572747790349
925 => 0.26469505396056
926 => 0.25461732393563
927 => 0.22681326648542
928 => 0.20117665571852
929 => 0.20797663932553
930 => 0.20720573221255
1001 => 0.22206619165355
1002 => 0.20480333582508
1003 => 0.20509399804417
1004 => 0.22026175604891
1005 => 0.21621525825445
1006 => 0.2096604500637
1007 => 0.2012245130723
1008 => 0.18562990331396
1009 => 0.17181732256314
1010 => 0.19890697426287
1011 => 0.19773881922224
1012 => 0.19604715761254
1013 => 0.19981176746804
1014 => 0.21809164432318
1015 => 0.21767023399548
1016 => 0.2149894364961
1017 => 0.21702279777192
1018 => 0.20930399200089
1019 => 0.21129330400203
1020 => 0.20117259474839
1021 => 0.20574757800919
1022 => 0.20964638638924
1023 => 0.21042912989438
1024 => 0.21219269097933
1025 => 0.19712325459721
1026 => 0.20388898911737
1027 => 0.20786322428438
1028 => 0.18990748521595
1029 => 0.2075082970551
1030 => 0.19686092923627
1031 => 0.19324705268046
1101 => 0.19811266137082
1102 => 0.19621652893223
1103 => 0.19458634560616
1104 => 0.1936766753001
1105 => 0.19724944132467
1106 => 0.19708276751925
1107 => 0.19123702885905
1108 => 0.18361150107961
1109 => 0.18617087850181
1110 => 0.18524103269004
1111 => 0.18187115151567
1112 => 0.18414204454619
1113 => 0.17414218091244
1114 => 0.15693793527826
1115 => 0.16830358692449
1116 => 0.16786602169956
1117 => 0.16764538147115
1118 => 0.17618635455976
1119 => 0.17536533707106
1120 => 0.17387518228965
1121 => 0.18184378365451
1122 => 0.17893513696353
1123 => 0.18789890070179
1124 => 0.19380301523971
1125 => 0.1923055408148
1126 => 0.19785838907477
1127 => 0.1862298413884
1128 => 0.19009237847346
1129 => 0.19088844201344
1130 => 0.1817454523506
1201 => 0.17549966568591
1202 => 0.17508314292255
1203 => 0.16425380956839
1204 => 0.17003875203486
1205 => 0.17512926200817
1206 => 0.17269130277048
1207 => 0.17191951770779
1208 => 0.17586240021332
1209 => 0.1761687959525
1210 => 0.16918294062874
1211 => 0.17063552116381
1212 => 0.17669302346651
1213 => 0.17048288764774
1214 => 0.15841760817179
1215 => 0.15542525204621
1216 => 0.15502601657899
1217 => 0.14691050943967
1218 => 0.15562521559103
1219 => 0.15182101281636
1220 => 0.1638384438002
1221 => 0.156974151673
1222 => 0.15667824575889
1223 => 0.15623094056974
1224 => 0.14924558832755
1225 => 0.1507749365263
1226 => 0.15585872286523
1227 => 0.15767267510392
1228 => 0.15748346502415
1229 => 0.15583380953872
1230 => 0.15658901337235
1231 => 0.15415623869378
]
'min_raw' => 0.085120079649247
'max_raw' => 0.26469505396056
'avg_raw' => 0.1749075668049
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.08512'
'max' => '$0.264695'
'avg' => '$0.1749075'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.04849010746504
'max_diff' => 0.16532146917394
'year' => 2033
]
8 => [
'items' => [
101 => 0.15329717532095
102 => 0.15058573501231
103 => 0.14660066681311
104 => 0.14715481498805
105 => 0.13925935213561
106 => 0.13495748492968
107 => 0.13376678478477
108 => 0.13217453078822
109 => 0.13394663411051
110 => 0.13923698528136
111 => 0.1328556993587
112 => 0.12191543223945
113 => 0.12257296093463
114 => 0.12405023269066
115 => 0.12129734654642
116 => 0.11869197084312
117 => 0.12095713363633
118 => 0.11632159823491
119 => 0.12461041499739
120 => 0.12438622573311
121 => 0.12747578404517
122 => 0.12940774826182
123 => 0.12495519622328
124 => 0.12383539142657
125 => 0.12447328313107
126 => 0.11393035417705
127 => 0.12661420182301
128 => 0.12672389226416
129 => 0.12578465611203
130 => 0.13253841341364
131 => 0.14679094786976
201 => 0.1414285711005
202 => 0.13935209673674
203 => 0.13540471745335
204 => 0.14066436597628
205 => 0.14026050703302
206 => 0.13843410373263
207 => 0.13732948931783
208 => 0.13936477524643
209 => 0.13707729486776
210 => 0.136666400536
211 => 0.13417682794295
212 => 0.13328816379556
213 => 0.13263023223958
214 => 0.13190591424346
215 => 0.1335035792541
216 => 0.12988306014966
217 => 0.12551706903356
218 => 0.12515408411293
219 => 0.12615631739274
220 => 0.12571290377392
221 => 0.12515196121912
222 => 0.1240809691184
223 => 0.12376322864024
224 => 0.12479573104849
225 => 0.1236300960282
226 => 0.12535005399606
227 => 0.12488232059842
228 => 0.12226959986106
301 => 0.1190131824692
302 => 0.11898419352385
303 => 0.11828260373836
304 => 0.11738902366182
305 => 0.11714045012687
306 => 0.12076636794394
307 => 0.12827190931067
308 => 0.126798391948
309 => 0.12786315925466
310 => 0.13310076056452
311 => 0.13476563652075
312 => 0.13358394700176
313 => 0.13196637750474
314 => 0.1320375423533
315 => 0.13756526699623
316 => 0.13791002440176
317 => 0.13878111514259
318 => 0.13990071291477
319 => 0.13377461934364
320 => 0.13174900389701
321 => 0.13078915492153
322 => 0.12783319158536
323 => 0.13102094461828
324 => 0.12916357743919
325 => 0.12941419972835
326 => 0.12925098163375
327 => 0.12934010975016
328 => 0.12460809810418
329 => 0.12633219444077
330 => 0.12346554988721
331 => 0.11962743462595
401 => 0.11961456791778
402 => 0.12055394119052
403 => 0.11999516521021
404 => 0.11849151341466
405 => 0.11870510005518
406 => 0.11683385633778
407 => 0.11893230292243
408 => 0.11899247886188
409 => 0.11818446262363
410 => 0.12141740911712
411 => 0.12274194993333
412 => 0.12221009633593
413 => 0.12270463366712
414 => 0.12685962324695
415 => 0.12753706784337
416 => 0.12783794398362
417 => 0.12743480981413
418 => 0.12278057924922
419 => 0.12298701416609
420 => 0.12147233171782
421 => 0.12019258466233
422 => 0.12024376783316
423 => 0.12090172417515
424 => 0.12377505810926
425 => 0.12982181998132
426 => 0.13005129017424
427 => 0.13032941474217
428 => 0.12919814235017
429 => 0.12885693977192
430 => 0.12930707404449
501 => 0.13157791987999
502 => 0.13741915189755
503 => 0.13535447037978
504 => 0.13367585216715
505 => 0.13514845289184
506 => 0.1349217575529
507 => 0.13300822075411
508 => 0.1329545141494
509 => 0.1292818252378
510 => 0.12792411577026
511 => 0.12678951211639
512 => 0.12555055454595
513 => 0.12481605896796
514 => 0.12594457799802
515 => 0.12620268365245
516 => 0.12373515707006
517 => 0.12339884231471
518 => 0.12541387778714
519 => 0.12452713580382
520 => 0.12543917192381
521 => 0.12565077212695
522 => 0.12561669962068
523 => 0.12469083914842
524 => 0.12528095500388
525 => 0.12388515508371
526 => 0.1223674323129
527 => 0.12139921974259
528 => 0.12055432586023
529 => 0.12102312209169
530 => 0.11935194912537
531 => 0.11881730725938
601 => 0.12508103703008
602 => 0.12970812155813
603 => 0.12964084191657
604 => 0.12923129440146
605 => 0.1286227898677
606 => 0.13153340398321
607 => 0.13051940422493
608 => 0.13125717377159
609 => 0.13144496708531
610 => 0.1320133608862
611 => 0.13221651281492
612 => 0.13160244658824
613 => 0.12954156532963
614 => 0.12440604517589
615 => 0.12201544668125
616 => 0.12122650935945
617 => 0.12125518573269
618 => 0.12046416334171
619 => 0.12069715488699
620 => 0.12038313839058
621 => 0.11978846711513
622 => 0.12098640281617
623 => 0.12112445374617
624 => 0.12084484123928
625 => 0.12091070010677
626 => 0.1185956279738
627 => 0.11877163788
628 => 0.11779159235604
629 => 0.11760784563492
630 => 0.11513037589267
701 => 0.11074117912928
702 => 0.11317322020584
703 => 0.11023565658209
704 => 0.10912315672642
705 => 0.11438955801392
706 => 0.11386095739189
707 => 0.11295622290414
708 => 0.11161793203357
709 => 0.11112154693162
710 => 0.10810566818858
711 => 0.10792747398336
712 => 0.10942222492398
713 => 0.10873244879612
714 => 0.10776374187396
715 => 0.10425518359814
716 => 0.1003104024524
717 => 0.10042947059918
718 => 0.10168423208638
719 => 0.10533262033805
720 => 0.10390713193036
721 => 0.10287292373499
722 => 0.10267924762818
723 => 0.10510350959329
724 => 0.1085343481725
725 => 0.11014402087317
726 => 0.10854888411329
727 => 0.1067164768918
728 => 0.10682800702881
729 => 0.10756996706399
730 => 0.10764793657294
731 => 0.10645522784625
801 => 0.10679096836648
802 => 0.10628094781549
803 => 0.10315095263551
804 => 0.10309434094803
805 => 0.10232618965287
806 => 0.10230293033693
807 => 0.10099611335955
808 => 0.10081328063081
809 => 0.098218516204093
810 => 0.09992639800743
811 => 0.09878084056157
812 => 0.097054215280977
813 => 0.096756544431798
814 => 0.096747596086624
815 => 0.098520454183445
816 => 0.09990568112836
817 => 0.098800768023797
818 => 0.098549200727728
819 => 0.10123528129602
820 => 0.10089345305954
821 => 0.1005974320113
822 => 0.1082271542075
823 => 0.10218763373456
824 => 0.099554058084583
825 => 0.096294508115285
826 => 0.097355834021365
827 => 0.097579470983898
828 => 0.08974084088578
829 => 0.086560709631212
830 => 0.085469408425363
831 => 0.084841349152662
901 => 0.085127563649904
902 => 0.082265072528601
903 => 0.08418871390335
904 => 0.081710038552653
905 => 0.081294480563801
906 => 0.085726659139802
907 => 0.086343370896241
908 => 0.083712286945948
909 => 0.085401868775836
910 => 0.084789202917374
911 => 0.081752528327311
912 => 0.081636549694236
913 => 0.080112853129216
914 => 0.077728563050752
915 => 0.07663887850585
916 => 0.07607136133379
917 => 0.076305529979671
918 => 0.076187127146635
919 => 0.07541446857031
920 => 0.076231415031788
921 => 0.074144454408297
922 => 0.073313409872239
923 => 0.072938046335389
924 => 0.071085748661069
925 => 0.074033577981426
926 => 0.074614337493311
927 => 0.075196241280841
928 => 0.080261316468697
929 => 0.080008279626066
930 => 0.082295609449513
1001 => 0.082206728018704
1002 => 0.08155434450077
1003 => 0.078802045750488
1004 => 0.079899062977342
1005 => 0.076522614467413
1006 => 0.079052479267233
1007 => 0.077897954622275
1008 => 0.078662133323426
1009 => 0.077288071115541
1010 => 0.078048533875023
1011 => 0.074752057118337
1012 => 0.071673853505623
1013 => 0.072912612497744
1014 => 0.074259285191454
1015 => 0.077179214717238
1016 => 0.075440128780577
1017 => 0.07606556984552
1018 => 0.07397044697553
1019 => 0.069647610052479
1020 => 0.069672076840004
1021 => 0.069007102557515
1022 => 0.068432467689608
1023 => 0.075639883720572
1024 => 0.074743527604735
1025 => 0.073315301446337
1026 => 0.075227038914804
1027 => 0.07573253264482
1028 => 0.075746923340673
1029 => 0.077141677648581
1030 => 0.077886058272734
1031 => 0.078017258584072
1101 => 0.080211934623225
1102 => 0.080947561083072
1103 => 0.08397750236143
1104 => 0.077822902777473
1105 => 0.077696152849188
1106 => 0.07525394098147
1107 => 0.073705051605121
1108 => 0.075359994762201
1109 => 0.076826048477105
1110 => 0.075299495357001
1111 => 0.075498830967191
1112 => 0.073449558127423
1113 => 0.074182076740391
1114 => 0.074813020450792
1115 => 0.074464650419066
1116 => 0.073943123620271
1117 => 0.076705848791139
1118 => 0.076549965009791
1119 => 0.07912267820368
1120 => 0.081128292114802
1121 => 0.084722710789903
1122 => 0.080971747521152
1123 => 0.08083504751091
1124 => 0.082171312038396
1125 => 0.080947356507935
1126 => 0.081720854153678
1127 => 0.084598088360947
1128 => 0.084658879785861
1129 => 0.083640545093236
1130 => 0.083578579334643
1201 => 0.083774161651723
1202 => 0.08491969339176
1203 => 0.084519409403156
1204 => 0.084982628168719
1205 => 0.085561890328113
1206 => 0.087957964221433
1207 => 0.088535649525243
1208 => 0.087132173732475
1209 => 0.08725889188251
1210 => 0.086733953409742
1211 => 0.086226869422509
1212 => 0.08736672017214
1213 => 0.089449819820914
1214 => 0.089436860966112
1215 => 0.089920099594956
1216 => 0.090221153257362
1217 => 0.088928810553569
1218 => 0.088087542974158
1219 => 0.088410138495351
1220 => 0.088925975758955
1221 => 0.088242859423045
1222 => 0.084026348947539
1223 => 0.085305368874075
1224 => 0.085092477417421
1225 => 0.084789294094659
1226 => 0.08607535852116
1227 => 0.085951314469849
1228 => 0.082235713544775
1229 => 0.08247357426076
1230 => 0.082250178642733
1231 => 0.082972015587022
]
'min_raw' => 0.068432467689608
'max_raw' => 0.15329717532095
'avg_raw' => 0.11086482150528
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.068432'
'max' => '$0.153297'
'avg' => '$0.110864'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016687611959638
'max_diff' => -0.11139787863961
'year' => 2034
]
9 => [
'items' => [
101 => 0.080908374944077
102 => 0.081543136907015
103 => 0.081941253659646
104 => 0.082175747485423
105 => 0.08302289997805
106 => 0.082923496410837
107 => 0.083016720912743
108 => 0.084272824419342
109 => 0.090625764913051
110 => 0.090971541447151
111 => 0.089268811331419
112 => 0.089949018427787
113 => 0.0886431695477
114 => 0.08951979464933
115 => 0.090119559280001
116 => 0.087409338242102
117 => 0.087248856541426
118 => 0.085937617958494
119 => 0.086642203300612
120 => 0.085521157359823
121 => 0.085796222821171
122 => 0.085027115811468
123 => 0.086411355301255
124 => 0.087959150139907
125 => 0.088350184240421
126 => 0.087321541872734
127 => 0.086576737007693
128 => 0.085269105018656
129 => 0.087443726158904
130 => 0.088079651650691
131 => 0.087440385913017
201 => 0.087292254073366
202 => 0.087011544504895
203 => 0.087351807935317
204 => 0.08807618826389
205 => 0.087734583878139
206 => 0.087960219593223
207 => 0.087100328921864
208 => 0.088929238372778
209 => 0.091833986731857
210 => 0.091843325972806
211 => 0.09150171974568
212 => 0.091361941837549
213 => 0.091712450556979
214 => 0.09190258715865
215 => 0.093036068084981
216 => 0.094252338278807
217 => 0.099928140573133
218 => 0.098334398000976
219 => 0.10337030745149
220 => 0.10735305799585
221 => 0.10854731073953
222 => 0.10744865440928
223 => 0.10369021045174
224 => 0.10350580326058
225 => 0.10912250530725
226 => 0.10753552971781
227 => 0.10734676402116
228 => 0.1053386159335
301 => 0.10652568016729
302 => 0.10626605180618
303 => 0.10585621573671
304 => 0.10812105160317
305 => 0.11236062216189
306 => 0.11169984533187
307 => 0.11120660608082
308 => 0.10904537526249
309 => 0.1103469189435
310 => 0.10988346416812
311 => 0.11187475999883
312 => 0.11069516046132
313 => 0.10752350681689
314 => 0.10802860311367
315 => 0.10795225882453
316 => 0.10952341888534
317 => 0.10905179563367
318 => 0.10786016681536
319 => 0.11234613177062
320 => 0.11205483815867
321 => 0.11246782590142
322 => 0.11264963587785
323 => 0.11538016369455
324 => 0.11649877357391
325 => 0.11675271760055
326 => 0.11781531046954
327 => 0.11672627932197
328 => 0.12108318037832
329 => 0.12398026534858
330 => 0.12734537862416
331 => 0.13226271357696
401 => 0.1341116770071
402 => 0.13377767831287
403 => 0.13750594555332
404 => 0.14420555890967
405 => 0.13513186172147
406 => 0.1446864868933
407 => 0.14166160287735
408 => 0.13448965729087
409 => 0.13402786854679
410 => 0.13888479336595
411 => 0.14965698515317
412 => 0.14695867328766
413 => 0.14966139862474
414 => 0.14650852595533
415 => 0.14635195925279
416 => 0.14950827063653
417 => 0.1568831642262
418 => 0.1533796287255
419 => 0.1483564514831
420 => 0.15206548738959
421 => 0.14885237723232
422 => 0.14161234075507
423 => 0.14695660993943
424 => 0.14338304933187
425 => 0.14442600429809
426 => 0.15193709716815
427 => 0.15103334260214
428 => 0.15220288469598
429 => 0.1501386735126
430 => 0.14821037477109
501 => 0.14461106197273
502 => 0.14354548289711
503 => 0.14383997061809
504 => 0.14354533696362
505 => 0.14153155453232
506 => 0.14109667840802
507 => 0.14037186581515
508 => 0.14059651554549
509 => 0.13923365581949
510 => 0.14180565370363
511 => 0.14228303917529
512 => 0.14415472474854
513 => 0.14434904935384
514 => 0.14956166703356
515 => 0.14669064481005
516 => 0.14861677438971
517 => 0.14844448323067
518 => 0.13464509509897
519 => 0.13654652903049
520 => 0.13950456352509
521 => 0.13817197299479
522 => 0.13628800176312
523 => 0.13476659398139
524 => 0.13246150562014
525 => 0.1357058732233
526 => 0.13997187162142
527 => 0.14445724211318
528 => 0.14984612086592
529 => 0.14864338586177
530 => 0.14435650077332
531 => 0.14454880730682
601 => 0.14573757062706
602 => 0.14419801411681
603 => 0.14374396884623
604 => 0.14567519177922
605 => 0.14568849105018
606 => 0.14391704522352
607 => 0.14194840735835
608 => 0.14194015869381
609 => 0.14158985860049
610 => 0.14657084356373
611 => 0.14930988165913
612 => 0.14962390796259
613 => 0.14928874518688
614 => 0.14941773603712
615 => 0.14782395011999
616 => 0.15146687210401
617 => 0.15480997756419
618 => 0.15391395388583
619 => 0.1525706870147
620 => 0.15150071025135
621 => 0.15366190136474
622 => 0.15356566692649
623 => 0.15478077845446
624 => 0.15472565397673
625 => 0.15431705767253
626 => 0.1539139684781
627 => 0.15551217157088
628 => 0.15505191474652
629 => 0.15459094301618
630 => 0.15366639363974
701 => 0.15379205525513
702 => 0.15244902031796
703 => 0.15182767090293
704 => 0.14248406652656
705 => 0.13998715012612
706 => 0.14077273085512
707 => 0.1410313644287
708 => 0.13994470321134
709 => 0.14150269625667
710 => 0.14125988469088
711 => 0.14220452245336
712 => 0.14161435379076
713 => 0.14163857451854
714 => 0.143374134718
715 => 0.14387797522751
716 => 0.14362171787788
717 => 0.14380119174157
718 => 0.14793709117913
719 => 0.14734909853772
720 => 0.14703673916611
721 => 0.14712326484675
722 => 0.14818007582773
723 => 0.14847592520266
724 => 0.1472223906121
725 => 0.1478135647716
726 => 0.15033070931161
727 => 0.15121156744257
728 => 0.1540228437607
729 => 0.15282856361431
730 => 0.15502071651025
731 => 0.16175864715238
801 => 0.16714137237865
802 => 0.16219119581004
803 => 0.17207588520217
804 => 0.17977253376841
805 => 0.179477123577
806 => 0.17813503487279
807 => 0.16937260510611
808 => 0.16130928659434
809 => 0.16805459491602
810 => 0.16807179009412
811 => 0.16749236212717
812 => 0.16389358478816
813 => 0.16736713247657
814 => 0.16764285007801
815 => 0.16748852154043
816 => 0.1647293473924
817 => 0.16051659844897
818 => 0.16133975950862
819 => 0.16268811411636
820 => 0.16013539754767
821 => 0.15931964992943
822 => 0.16083627995408
823 => 0.16572317789593
824 => 0.16479933814789
825 => 0.16477521295854
826 => 0.16872779116965
827 => 0.16589859819026
828 => 0.16135014220571
829 => 0.16020159708285
830 => 0.15612503564938
831 => 0.15894073115169
901 => 0.15904206302013
902 => 0.15749993536923
903 => 0.16147527736543
904 => 0.16143864388909
905 => 0.16521263946291
906 => 0.17242710155205
907 => 0.17029343011018
908 => 0.16781220236606
909 => 0.16808198061883
910 => 0.17104078218223
911 => 0.16925182321413
912 => 0.16989514533212
913 => 0.17103980843715
914 => 0.1717304121088
915 => 0.16798261337827
916 => 0.16710882221625
917 => 0.16532135215777
918 => 0.16485503458422
919 => 0.16631089165006
920 => 0.1659273247494
921 => 0.15903354646896
922 => 0.15831310828204
923 => 0.15833520309268
924 => 0.15652362701669
925 => 0.15376053867272
926 => 0.16102176986523
927 => 0.16043859137961
928 => 0.15979480746591
929 => 0.15987366732196
930 => 0.16302552167667
1001 => 0.16119728697848
1002 => 0.1660579485654
1003 => 0.16505874266799
1004 => 0.16403391090966
1005 => 0.16389224794352
1006 => 0.1634977751511
1007 => 0.16214498116903
1008 => 0.16051140114537
1009 => 0.15943277011547
1010 => 0.14706830284718
1011 => 0.14936307605138
1012 => 0.15200300344765
1013 => 0.15291429580599
1014 => 0.15135546716753
1015 => 0.16220653322485
1016 => 0.164189127557
1017 => 0.1581837200035
1018 => 0.15706035344941
1019 => 0.16228018094912
1020 => 0.15913198686883
1021 => 0.16054961847042
1022 => 0.15748547435082
1023 => 0.16371157863952
1024 => 0.16366414615642
1025 => 0.16124205096517
1026 => 0.16328918923502
1027 => 0.16293344858304
1028 => 0.16019890907748
1029 => 0.16379826841936
1030 => 0.16380005365669
1031 => 0.161468839696
1101 => 0.15874649215828
1102 => 0.15825980071751
1103 => 0.15789314409469
1104 => 0.16045944341766
1105 => 0.16276037936604
1106 => 0.16704185071556
1107 => 0.16811831433808
1108 => 0.17231982352102
1109 => 0.16981802937035
1110 => 0.17092704231368
1111 => 0.17213103274313
1112 => 0.17270827003029
1113 => 0.17176769284712
1114 => 0.1782943660184
1115 => 0.17884541720615
1116 => 0.17903017990283
1117 => 0.17682942243139
1118 => 0.17878421015973
1119 => 0.1778696297174
1120 => 0.18024911395057
1121 => 0.18062224746111
1122 => 0.18030621665229
1123 => 0.18042465511805
1124 => 0.17485529095041
1125 => 0.17456649003758
1126 => 0.17062866909879
1127 => 0.17223336023825
1128 => 0.16923346706787
1129 => 0.17018476409452
1130 => 0.17060408675958
1201 => 0.17038505639571
1202 => 0.17232408706761
1203 => 0.1706755148787
1204 => 0.16632466182178
1205 => 0.16197262337786
1206 => 0.16191798708029
1207 => 0.16077217217786
1208 => 0.15994395786988
1209 => 0.16010350132808
1210 => 0.16066575328435
1211 => 0.15991127876406
1212 => 0.16007228415579
1213 => 0.16274604643188
1214 => 0.16328225038794
1215 => 0.16146001983681
1216 => 0.15414350122741
1217 => 0.15234800920857
1218 => 0.15363857326556
1219 => 0.15302176676929
1220 => 0.12350050864204
1221 => 0.13043609034403
1222 => 0.12631520320681
1223 => 0.12821429759254
1224 => 0.12400793892399
1225 => 0.12601543375477
1226 => 0.1256447227615
1227 => 0.13679693289951
1228 => 0.13662280647756
1229 => 0.13670615158118
1230 => 0.13272787263097
1231 => 0.1390653790207
]
'min_raw' => 0.080908374944077
'max_raw' => 0.18062224746111
'avg_raw' => 0.13076531120259
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0809083'
'max' => '$0.180622'
'avg' => '$0.130765'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012475907254469
'max_diff' => 0.027325072140158
'year' => 2035
]
10 => [
'items' => [
101 => 0.14218746255764
102 => 0.14160964798651
103 => 0.14175507146554
104 => 0.13925621428484
105 => 0.13673034598092
106 => 0.13392876930353
107 => 0.13913375248478
108 => 0.13855504720705
109 => 0.13988238890257
110 => 0.1432581925555
111 => 0.14375529246682
112 => 0.14442339978873
113 => 0.14418393087294
114 => 0.1498890519792
115 => 0.14919812416963
116 => 0.1508630613972
117 => 0.147438159201
118 => 0.14356255727131
119 => 0.14429918249517
120 => 0.14422823956255
121 => 0.14332505460574
122 => 0.14250969961086
123 => 0.14115236326924
124 => 0.14544717630213
125 => 0.14527281473624
126 => 0.14809552581478
127 => 0.1475965842133
128 => 0.14426453008686
129 => 0.14438353505185
130 => 0.14518390063321
131 => 0.1479539750487
201 => 0.14877632173627
202 => 0.14839537798574
203 => 0.1492970435871
204 => 0.15000968331456
205 => 0.14938654016488
206 => 0.15820893307171
207 => 0.15454526044171
208 => 0.1563309089899
209 => 0.15675677564699
210 => 0.15566592715986
211 => 0.15590249313636
212 => 0.15626082613039
213 => 0.15843655390136
214 => 0.16414629312428
215 => 0.1666750977586
216 => 0.17428313126998
217 => 0.16646511573638
218 => 0.16600122704878
219 => 0.16737166362478
220 => 0.1718383846881
221 => 0.17545824257214
222 => 0.17665915826689
223 => 0.1768178791009
224 => 0.17907087677962
225 => 0.18036225303313
226 => 0.1787973036017
227 => 0.17747117281559
228 => 0.17272113694517
229 => 0.17327096653109
301 => 0.17705874713831
302 => 0.18240921034517
303 => 0.18700046439748
304 => 0.18539276724972
305 => 0.19765836162982
306 => 0.19887444521214
307 => 0.19870642178175
308 => 0.20147684115979
309 => 0.19597812288048
310 => 0.19362731428342
311 => 0.17775789734377
312 => 0.18221655619871
313 => 0.18869747869221
314 => 0.18783970429798
315 => 0.18313308514765
316 => 0.1869968940048
317 => 0.18571939796415
318 => 0.18471178383353
319 => 0.18932785950151
320 => 0.18425229468663
321 => 0.18864684605058
322 => 0.1830107884705
323 => 0.18540011107487
324 => 0.1840438160061
325 => 0.18492150513687
326 => 0.17979055241255
327 => 0.18255908995575
328 => 0.17967537214864
329 => 0.17967400489093
330 => 0.17961034666051
331 => 0.18300302787221
401 => 0.18311366308472
402 => 0.18060646654322
403 => 0.18024514035182
404 => 0.18158115266015
405 => 0.18001703214927
406 => 0.18074887429186
407 => 0.18003919890223
408 => 0.17987943602398
409 => 0.17860641822862
410 => 0.17805796716003
411 => 0.17827302895587
412 => 0.17753891217472
413 => 0.17709658025992
414 => 0.17952235570932
415 => 0.17822636174221
416 => 0.17932372604669
417 => 0.17807314092332
418 => 0.17373806803169
419 => 0.17124492176915
420 => 0.16305637093835
421 => 0.1653786337961
422 => 0.16691829647334
423 => 0.1664094379677
424 => 0.16750266293992
425 => 0.16756977807441
426 => 0.16721435949183
427 => 0.16680283030514
428 => 0.16660252065606
429 => 0.16809546466974
430 => 0.16896216891987
501 => 0.16707282222103
502 => 0.16663017472426
503 => 0.16854040855048
504 => 0.16970565008096
505 => 0.1783091388494
506 => 0.17767176461253
507 => 0.1792714488687
508 => 0.17909134897061
509 => 0.18076807292075
510 => 0.18350880794283
511 => 0.17793612732138
512 => 0.17890335198847
513 => 0.17866621083658
514 => 0.18125525575116
515 => 0.18126333846678
516 => 0.1797110767081
517 => 0.18055258299006
518 => 0.18008287726899
519 => 0.18093169899149
520 => 0.17766325209101
521 => 0.18164386760876
522 => 0.18390062010212
523 => 0.18393195511268
524 => 0.18500163788384
525 => 0.18608849753119
526 => 0.18817462997874
527 => 0.18603031642948
528 => 0.18217290509906
529 => 0.18245139773775
530 => 0.1801897988861
531 => 0.18022781677139
601 => 0.18002487432021
602 => 0.18063391989299
603 => 0.17779690334463
604 => 0.17846274545799
605 => 0.17753056260013
606 => 0.17890132560499
607 => 0.177426611207
608 => 0.17866609647994
609 => 0.17920101723415
610 => 0.18117488633321
611 => 0.17713506913616
612 => 0.1688976083998
613 => 0.17062922251614
614 => 0.16806802922272
615 => 0.16830507741318
616 => 0.16878395248384
617 => 0.16723176170165
618 => 0.16752787078774
619 => 0.1675172916875
620 => 0.1674261267169
621 => 0.167022341946
622 => 0.16643677414181
623 => 0.16876949604542
624 => 0.16916587095292
625 => 0.17004696327182
626 => 0.17266849636222
627 => 0.17240654338648
628 => 0.17283379955824
629 => 0.17190110173424
630 => 0.16834834259019
701 => 0.16854127450455
702 => 0.16613541044094
703 => 0.16998543991859
704 => 0.16907370212037
705 => 0.16848589883066
706 => 0.1683255112571
707 => 0.17095354262098
708 => 0.1717398907944
709 => 0.17124989138259
710 => 0.1702448882934
711 => 0.17217479132713
712 => 0.17269115196289
713 => 0.17280674606658
714 => 0.17622616422016
715 => 0.17299785355637
716 => 0.17377494001979
717 => 0.1798375467783
718 => 0.17433959903088
719 => 0.17725198457155
720 => 0.17710943845466
721 => 0.17859931634751
722 => 0.17698722498117
723 => 0.17700720878573
724 => 0.17833011942151
725 => 0.17647233002174
726 => 0.17601231524021
727 => 0.17537680811421
728 => 0.17676441467427
729 => 0.17759622205098
730 => 0.18429997861206
731 => 0.18863091107895
801 => 0.18844289387854
802 => 0.19016101913684
803 => 0.18938698797175
804 => 0.18688743716059
805 => 0.1911538656075
806 => 0.18980378913195
807 => 0.18991508779625
808 => 0.1899109452544
809 => 0.19080862808491
810 => 0.19017253752807
811 => 0.18891873774719
812 => 0.18975106855413
813 => 0.19222279348702
814 => 0.19989510352049
815 => 0.20418862985981
816 => 0.19963662784376
817 => 0.2027765378807
818 => 0.20089371072287
819 => 0.20055154501904
820 => 0.20252364055977
821 => 0.20449918799268
822 => 0.20437335416173
823 => 0.20293920817092
824 => 0.20212909549082
825 => 0.2082635401122
826 => 0.2127832944117
827 => 0.21247507746929
828 => 0.21383544681556
829 => 0.21782953329085
830 => 0.21819470250263
831 => 0.21814869957527
901 => 0.21724358958241
902 => 0.221176286415
903 => 0.22445701130197
904 => 0.2170340827702
905 => 0.21986063678183
906 => 0.22112956794353
907 => 0.22299273536382
908 => 0.22613621110497
909 => 0.22955085952561
910 => 0.230033728252
911 => 0.22969110978323
912 => 0.22743905735914
913 => 0.23117540640624
914 => 0.23336407204986
915 => 0.23466737235392
916 => 0.23797232507651
917 => 0.22113740443039
918 => 0.20922081084722
919 => 0.20735986268151
920 => 0.21114417395465
921 => 0.21214206665806
922 => 0.21173981736057
923 => 0.19832660787343
924 => 0.20728924490949
925 => 0.21693228876037
926 => 0.21730271734721
927 => 0.2221302267255
928 => 0.22370226166537
929 => 0.22758903947101
930 => 0.22734592046101
1001 => 0.22829228900454
1002 => 0.2280747352652
1003 => 0.23527417269252
1004 => 0.24321622130166
1005 => 0.24294121341249
1006 => 0.24179944995888
1007 => 0.2434951633871
1008 => 0.25169220867338
1009 => 0.25093755609839
1010 => 0.25167063679384
1011 => 0.2613354151516
1012 => 0.27390100181537
1013 => 0.26806302524578
1014 => 0.2807297545693
1015 => 0.28870278924399
1016 => 0.30249132828669
1017 => 0.30076493528855
1018 => 0.3061327123529
1019 => 0.2976743315128
1020 => 0.27825217938313
1021 => 0.2751785494636
1022 => 0.28133203439921
1023 => 0.29645977666513
1024 => 0.28085560796019
1025 => 0.28401231096629
1026 => 0.28310318028817
1027 => 0.28305473657789
1028 => 0.28490363596448
1029 => 0.28222171097212
1030 => 0.27129506608418
1031 => 0.2763026830452
1101 => 0.27436900165103
1102 => 0.27651456532336
1103 => 0.28809328756515
1104 => 0.28297405845979
1105 => 0.2775813664497
1106 => 0.28434499896451
1107 => 0.29295742739215
1108 => 0.29241847709917
1109 => 0.29137268826705
1110 => 0.29726774515803
1111 => 0.30700465205232
1112 => 0.30963649885979
1113 => 0.31157927436732
1114 => 0.31184715028635
1115 => 0.31460643873629
1116 => 0.29976904931074
1117 => 0.32331636738028
1118 => 0.32738233872936
1119 => 0.32661810463298
1120 => 0.33113726066524
1121 => 0.32980761032063
1122 => 0.32788115558703
1123 => 0.33504497915022
1124 => 0.32683223352577
1125 => 0.31517527506778
1126 => 0.30878003710923
1127 => 0.31720180234218
1128 => 0.32234468049083
1129 => 0.32574379579861
1130 => 0.32677236603695
1201 => 0.30092083361521
1202 => 0.28698829143162
1203 => 0.29591889123438
1204 => 0.30681483935083
1205 => 0.2997085217688
1206 => 0.29998707596398
1207 => 0.28985533459942
1208 => 0.30771127364629
1209 => 0.30510981351925
1210 => 0.31860619326026
1211 => 0.31538517391985
1212 => 0.3263909476722
1213 => 0.32349275859956
1214 => 0.33552297940451
1215 => 0.34032216018883
1216 => 0.34838073165855
1217 => 0.35430864963596
1218 => 0.3577896364553
1219 => 0.35758065106352
1220 => 0.37137405506248
1221 => 0.36324056662912
1222 => 0.35302298824078
1223 => 0.35283818448379
1224 => 0.35813001311531
1225 => 0.3692202341847
1226 => 0.37209576715184
1227 => 0.37370279779305
1228 => 0.3712415744249
1229 => 0.36241325566286
1230 => 0.358601232382
1231 => 0.36184918666224
]
'min_raw' => 0.13392876930353
'max_raw' => 0.37370279779305
'avg_raw' => 0.25381578354829
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.133928'
'max' => '$0.3737027'
'avg' => '$0.253815'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.053020394359455
'max_diff' => 0.19308055033194
'year' => 2036
]
11 => [
'items' => [
101 => 0.3578772176774
102 => 0.36473395048289
103 => 0.37414970914393
104 => 0.37220539221437
105 => 0.3787049522016
106 => 0.38543131301474
107 => 0.39505031107729
108 => 0.39756507336131
109 => 0.40172187978894
110 => 0.40600059904276
111 => 0.40737480835237
112 => 0.40999860031651
113 => 0.40998477163772
114 => 0.41789174532326
115 => 0.42661338215699
116 => 0.42990559815536
117 => 0.43747586730978
118 => 0.42451204667671
119 => 0.43434525354453
120 => 0.44321505228044
121 => 0.43264011256861
122 => 0.44721520331643
123 => 0.4477811210623
124 => 0.45632580713647
125 => 0.44766413083652
126 => 0.44252085509866
127 => 0.45736929943783
128 => 0.46455399393194
129 => 0.46238990547933
130 => 0.44592108550075
131 => 0.43633552589229
201 => 0.41124826748061
202 => 0.44096520875816
203 => 0.4554394639994
204 => 0.4458836006764
205 => 0.45070302230514
206 => 0.47699622400888
207 => 0.48700697285892
208 => 0.48492480707853
209 => 0.48527665882005
210 => 0.49067827719159
211 => 0.51463202777656
212 => 0.50027838518245
213 => 0.51125120712492
214 => 0.51707115231776
215 => 0.52247704176193
216 => 0.50920188583595
217 => 0.49193110302701
218 => 0.48646072113328
219 => 0.44493345839441
220 => 0.44277178402509
221 => 0.44155837069615
222 => 0.43390797129793
223 => 0.42789685299169
224 => 0.42311658853605
225 => 0.41057174709665
226 => 0.41480526282477
227 => 0.39481140388226
228 => 0.40760276629482
301 => 0.37569208465398
302 => 0.4022682485555
303 => 0.3878040508138
304 => 0.397516370584
305 => 0.39748248521528
306 => 0.37959902522455
307 => 0.36928421872018
308 => 0.37585721488304
309 => 0.38290398853471
310 => 0.3840473038515
311 => 0.39318362983049
312 => 0.39573338202656
313 => 0.38800751383593
314 => 0.37503080670524
315 => 0.37804499980452
316 => 0.36922313619323
317 => 0.35376315954254
318 => 0.36486678467836
319 => 0.36865805049167
320 => 0.37033248945847
321 => 0.35512937801283
322 => 0.350352230321
323 => 0.34780891697402
324 => 0.3730682759301
325 => 0.3744520406335
326 => 0.36737250476632
327 => 0.39937267819507
328 => 0.39213005339801
329 => 0.40022183978248
330 => 0.37777149337404
331 => 0.37862912684024
401 => 0.36800077306772
402 => 0.37395194099347
403 => 0.36974584731865
404 => 0.37347114543566
405 => 0.37570407376702
406 => 0.38633068353127
407 => 0.40238958736925
408 => 0.3847434223987
409 => 0.37705473562329
410 => 0.38182475365594
411 => 0.3945279402625
412 => 0.4137739182356
413 => 0.40237991191412
414 => 0.40743637843682
415 => 0.40854099142549
416 => 0.40013947299307
417 => 0.414083694204
418 => 0.42155651563359
419 => 0.42922208413784
420 => 0.43587788248572
421 => 0.42616028750778
422 => 0.4365595070967
423 => 0.4281795718174
424 => 0.42066190357009
425 => 0.42067330476966
426 => 0.41595736166251
427 => 0.40681962764533
428 => 0.40513448929457
429 => 0.41390079180473
430 => 0.42093053624595
501 => 0.42150953966833
502 => 0.4254015673923
503 => 0.42770482930827
504 => 0.45027992721751
505 => 0.45935981834761
506 => 0.47046253734796
507 => 0.47478767211355
508 => 0.48780477711134
509 => 0.47729240762804
510 => 0.47501799036443
511 => 0.44344275150237
512 => 0.44861319509715
513 => 0.45689157416601
514 => 0.4435792589241
515 => 0.4520228588725
516 => 0.45368980436222
517 => 0.4431269115462
518 => 0.44876900899489
519 => 0.43378527093647
520 => 0.40271619191309
521 => 0.41411828297052
522 => 0.42251405989114
523 => 0.41053225103359
524 => 0.43200917965072
525 => 0.41946280132639
526 => 0.41548620172994
527 => 0.3999720689441
528 => 0.40729414242528
529 => 0.41719735165058
530 => 0.41107831972099
531 => 0.42377622975216
601 => 0.44175985676519
602 => 0.45457606031819
603 => 0.45555992928756
604 => 0.44731996902193
605 => 0.46052455793432
606 => 0.46062073894877
607 => 0.44572590871326
608 => 0.43660290812878
609 => 0.43453014320103
610 => 0.43970831638005
611 => 0.44599557456289
612 => 0.45590882835961
613 => 0.46189920001032
614 => 0.47751891222775
615 => 0.48174515850154
616 => 0.48638852183863
617 => 0.4925934872172
618 => 0.50004413907464
619 => 0.4837425369764
620 => 0.48439023001775
621 => 0.46921040385492
622 => 0.45298858259266
623 => 0.46529892285215
624 => 0.48139305516549
625 => 0.47770104343038
626 => 0.47728561668922
627 => 0.47798424923808
628 => 0.47520059295963
629 => 0.46261021877932
630 => 0.45628741168589
701 => 0.46444544595654
702 => 0.46878107809907
703 => 0.47550526544526
704 => 0.47467636742447
705 => 0.49199715190326
706 => 0.49872748499838
707 => 0.49700557778546
708 => 0.49732245015265
709 => 0.50950739673876
710 => 0.52305956336791
711 => 0.53575295578201
712 => 0.54866521973951
713 => 0.5330989815645
714 => 0.52519540581133
715 => 0.53334987853943
716 => 0.52902300052738
717 => 0.55388652501998
718 => 0.55560802151022
719 => 0.58046974808699
720 => 0.60406648708768
721 => 0.58924579810084
722 => 0.60322104027693
723 => 0.6183364041086
724 => 0.64749639331927
725 => 0.63767633481391
726 => 0.63015432389873
727 => 0.62304605992998
728 => 0.63783722884382
729 => 0.65686583135678
730 => 0.66096441008438
731 => 0.66760567340067
801 => 0.66062319707863
802 => 0.66903282071399
803 => 0.69872248752269
804 => 0.69070007747304
805 => 0.67930696553577
806 => 0.70274410605532
807 => 0.71122591609977
808 => 0.77075570095013
809 => 0.84591451337645
810 => 0.81479827151258
811 => 0.79548341607283
812 => 0.80002286525567
813 => 0.8274683192674
814 => 0.8362829280208
815 => 0.81232178285121
816 => 0.82078526440348
817 => 0.86741987986763
818 => 0.89243785484655
819 => 0.85846008446286
820 => 0.76471676355218
821 => 0.67828114046056
822 => 0.70120775995129
823 => 0.69860859279688
824 => 0.74871166932635
825 => 0.69050874564654
826 => 0.69148873361159
827 => 0.74262788870362
828 => 0.72898483887214
829 => 0.70688484541494
830 => 0.67844249487011
831 => 0.625864179289
901 => 0.57929409892401
902 => 0.67062875096874
903 => 0.66669023469129
904 => 0.66098667946612
905 => 0.6736793244306
906 => 0.73531120550796
907 => 0.7338903911662
908 => 0.72485189522974
909 => 0.73170751473589
910 => 0.70568302216908
911 => 0.71239012647023
912 => 0.67826744861625
913 => 0.69369232409515
914 => 0.70683742875459
915 => 0.70947650313158
916 => 0.7154224724574
917 => 0.66461481558063
918 => 0.68742596188386
919 => 0.70082537322165
920 => 0.64028634532277
921 => 0.6996287112879
922 => 0.66373036731124
923 => 0.65154593019053
924 => 0.66795066959604
925 => 0.66155772669558
926 => 0.65606144979597
927 => 0.65299443284796
928 => 0.66504026294235
929 => 0.66447831057057
930 => 0.64476899454127
1001 => 0.61905899523556
1002 => 0.62768811490451
1003 => 0.62455307483035
1004 => 0.61319128517338
1005 => 0.62084775957446
1006 => 0.5871325211651
1007 => 0.52912720584738
1008 => 0.56744729389712
1009 => 0.56597201219144
1010 => 0.56522810825674
1011 => 0.59402459533668
1012 => 0.59125647755193
1013 => 0.58623231666714
1014 => 0.61309901251873
1015 => 0.60329230712485
1016 => 0.63351426239842
1017 => 0.65342039677511
1018 => 0.64837155720119
1019 => 0.66709337279716
1020 => 0.62788691239331
1021 => 0.6409097258493
1022 => 0.64359370965374
1023 => 0.61276748166233
1024 => 0.59170937585541
1025 => 0.59030504027807
1026 => 0.5537931867946
1027 => 0.57329752421208
1028 => 0.59046053399515
1029 => 0.58224078421242
1030 => 0.57963865698925
1031 => 0.5929323606399
1101 => 0.59396539526642
1102 => 0.5704120963055
1103 => 0.57530957299545
1104 => 0.5957328649303
1105 => 0.57479495843946
1106 => 0.53411602631538
1107 => 0.52402708871837
1108 => 0.52268103846691
1109 => 0.49531903954009
1110 => 0.52470127977073
1111 => 0.51187514451497
1112 => 0.55239275210722
1113 => 0.52924931195082
1114 => 0.52825164450188
1115 => 0.52674352382682
1116 => 0.50319192104056
1117 => 0.50834822526831
1118 => 0.52548856584867
1119 => 0.53160443246749
1120 => 0.53096649747333
1121 => 0.52540456882894
1122 => 0.52795079128066
1123 => 0.51974852160097
1124 => 0.51685212946159
1125 => 0.50771031915428
1126 => 0.49427438349209
1127 => 0.4961427327533
1128 => 0.4695226285027
1129 => 0.4550185828711
1130 => 0.45100405420053
1201 => 0.44563565868353
1202 => 0.45161042875893
1203 => 0.469447217092
1204 => 0.44793226607658
1205 => 0.41104639165898
1206 => 0.41326329556195
1207 => 0.41824402042724
1208 => 0.40896247259156
1209 => 0.40017826650634
1210 => 0.40781542101227
1211 => 0.39218638976364
1212 => 0.42013271418506
1213 => 0.41937684442813
1214 => 0.42979350598333
1215 => 0.4363072582252
1216 => 0.42129516816001
1217 => 0.41751966810562
1218 => 0.41967036452351
1219 => 0.38412414347126
1220 => 0.42688862136755
1221 => 0.42725845034823
1222 => 0.42409175008596
1223 => 0.44686251436061
1224 => 0.4949159293596
1225 => 0.47683630169284
1226 => 0.46983532340063
1227 => 0.45652645854946
1228 => 0.47425973076145
1229 => 0.47289809213771
1230 => 0.46674024589504
1231 => 0.46301596127382
]
'min_raw' => 0.34780891697402
'max_raw' => 0.89243785484655
'avg_raw' => 0.62012338591029
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.3478089'
'max' => '$0.892437'
'avg' => '$0.620123'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21388014767049
'max_diff' => 0.5187350570535
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010917324471467
]
1 => [
'year' => 2028
'avg' => 0.018737298114977
]
2 => [
'year' => 2029
'avg' => 0.051186921380704
]
3 => [
'year' => 2030
'avg' => 0.039490633615363
]
4 => [
'year' => 2031
'avg' => 0.038784696230632
]
5 => [
'year' => 2032
'avg' => 0.068001778485414
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010917324471467
'min' => '$0.010917'
'max_raw' => 0.068001778485414
'max' => '$0.0680017'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.068001778485414
]
1 => [
'year' => 2033
'avg' => 0.1749075668049
]
2 => [
'year' => 2034
'avg' => 0.11086482150528
]
3 => [
'year' => 2035
'avg' => 0.13076531120259
]
4 => [
'year' => 2036
'avg' => 0.25381578354829
]
5 => [
'year' => 2037
'avg' => 0.62012338591029
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.068001778485414
'min' => '$0.0680017'
'max_raw' => 0.62012338591029
'max' => '$0.620123'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.62012338591029
]
]
]
]
'prediction_2025_max_price' => '$0.018666'
'last_price' => 0.01809966
'sma_50day_nextmonth' => '$0.017666'
'sma_200day_nextmonth' => '$0.03423'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018019'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.018083'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0179078'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019369'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.023147'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028915'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036923'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018036'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018024'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018233'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.019448'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02311'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02911'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.043825'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035668'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.056811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.160951'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.187689'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.018865'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.020318'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.024273'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03344'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.067779'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116283'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.1506061'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '35.03'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.3
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0179037'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018135'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 71.9
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -41.28
'cci_20_action' => 'NEUTRAL'
'adx_14' => 35.89
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003184'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -28.1
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.48
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003259'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767700695
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Telos para 2026
A previsão de preço para Telos em 2026 sugere que o preço médio poderia variar entre $0.006253 na extremidade inferior e $0.018666 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Telos poderia potencialmente ganhar 3.13% até 2026 se TLOS atingir a meta de preço prevista.
Previsão de preço de Telos 2027-2032
A previsão de preço de TLOS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.010917 na extremidade inferior e $0.0680017 na extremidade superior. Considerando a volatilidade de preços no mercado, se Telos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00602 | $0.010917 | $0.015814 |
| 2028 | $0.010864 | $0.018737 | $0.02661 |
| 2029 | $0.023865 | $0.051186 | $0.0785079 |
| 2030 | $0.020296 | $0.03949 | $0.058684 |
| 2031 | $0.023997 | $0.038784 | $0.053572 |
| 2032 | $0.036629 | $0.0680017 | $0.099373 |
Previsão de preço de Telos 2032-2037
A previsão de preço de Telos para 2032-2037 é atualmente estimada entre $0.0680017 na extremidade inferior e $0.620123 na extremidade superior. Comparado ao preço atual, Telos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036629 | $0.0680017 | $0.099373 |
| 2033 | $0.08512 | $0.1749075 | $0.264695 |
| 2034 | $0.068432 | $0.110864 | $0.153297 |
| 2035 | $0.0809083 | $0.130765 | $0.180622 |
| 2036 | $0.133928 | $0.253815 | $0.3737027 |
| 2037 | $0.3478089 | $0.620123 | $0.892437 |
Telos Histograma de preços potenciais
Previsão de preço de Telos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Telos é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de TLOS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Telos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Telos está projetado para aumentar no próximo mês, alcançando $0.03423 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Telos é esperado para alcançar $0.017666 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 35.03, sugerindo que o mercado de TLOS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de TLOS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018019 | BUY |
| SMA 5 | $0.018083 | BUY |
| SMA 10 | $0.0179078 | BUY |
| SMA 21 | $0.019369 | SELL |
| SMA 50 | $0.023147 | SELL |
| SMA 100 | $0.028915 | SELL |
| SMA 200 | $0.036923 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018036 | BUY |
| EMA 5 | $0.018024 | BUY |
| EMA 10 | $0.018233 | SELL |
| EMA 21 | $0.019448 | SELL |
| EMA 50 | $0.02311 | SELL |
| EMA 100 | $0.02911 | SELL |
| EMA 200 | $0.043825 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035668 | SELL |
| SMA 50 | $0.056811 | SELL |
| SMA 100 | $0.160951 | SELL |
| SMA 200 | $0.187689 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.03344 | SELL |
| EMA 50 | $0.067779 | SELL |
| EMA 100 | $0.116283 | SELL |
| EMA 200 | $0.1506061 | SELL |
Osciladores de Telos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 35.03 | NEUTRAL |
| Stoch RSI (14) | 93.3 | SELL |
| Estocástico Rápido (14) | 71.9 | NEUTRAL |
| Índice de Canal de Commodities (20) | -41.28 | NEUTRAL |
| Índice Direcional Médio (14) | 35.89 | SELL |
| Oscilador Impressionante (5, 34) | -0.003184 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -28.1 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 60.48 | NEUTRAL |
| VWMA (10) | 0.0179037 | BUY |
| Média Móvel de Hull (9) | 0.018135 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003259 | SELL |
Previsão do preço de Telos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Telos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Telos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025433 | $0.035737 | $0.050217 | $0.070563 | $0.099153 | $0.139327 |
| Amazon.com stock | $0.037766 | $0.078801 | $0.164423 | $0.343078 | $0.715853 | $1.49 |
| Apple stock | $0.025672 | $0.036415 | $0.051652 | $0.073264 | $0.10392 | $0.1474029 |
| Netflix stock | $0.028558 | $0.04506 | $0.071098 | $0.112182 | $0.1770067 | $0.279288 |
| Google stock | $0.023438 | $0.030353 | $0.0393074 | $0.050903 | $0.065919 | $0.085365 |
| Tesla stock | $0.04103 | $0.093013 | $0.210853 | $0.477989 | $1.08 | $2.45 |
| Kodak stock | $0.013572 | $0.010178 | $0.007632 | $0.005723 | $0.004292 | $0.003218 |
| Nokia stock | $0.01199 | $0.007943 | $0.005261 | $0.003485 | $0.0023092 | $0.001529 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Telos
Você pode fazer perguntas como: 'Devo investir em Telos agora?', 'Devo comprar TLOS hoje?', 'Telos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Telos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Telos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Telos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Telos é de $0.01809 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Telos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Telos
com base no histórico de preços de 1 mês
Previsão do preço de Telos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Telos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.01857 | $0.019052 | $0.019548 | $0.020056 |
| Se Telos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.01904 | $0.02003 | $0.021071 | $0.022167 |
| Se Telos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.020452 | $0.02311 | $0.026113 | $0.0295074 |
| Se Telos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0228043 | $0.028731 | $0.03620027 | $0.0456098 |
| Se Telos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027509 | $0.0418099 | $0.063545 | $0.09658 |
| Se Telos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.041623 | $0.095718 | $0.220121 | $0.5062038 |
| Se Telos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.065146 | $0.234483 | $0.84398 | $3.03 |
Perguntas Frequentes sobre Telos
TLOS é um bom investimento?
A decisão de adquirir Telos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Telos experimentou uma escalada de 0.0733% nas últimas 24 horas, e Telos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Telos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Telos pode subir?
Parece que o valor médio de Telos pode potencialmente subir para $0.018666 até o final deste ano. Observando as perspectivas de Telos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.058684. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Telos na próxima semana?
Com base na nossa nova previsão experimental de Telos, o preço de Telos aumentará 0.86% na próxima semana e atingirá $0.018254 até 13 de janeiro de 2026.
Qual será o preço de Telos no próximo mês?
Com base na nossa nova previsão experimental de Telos, o preço de Telos diminuirá -11.62% no próximo mês e atingirá $0.015996 até 5 de fevereiro de 2026.
Até onde o preço de Telos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Telos em 2026, espera-se que TLOS fluctue dentro do intervalo de $0.006253 e $0.018666. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Telos não considera flutuações repentinas e extremas de preço.
Onde estará Telos em 5 anos?
O futuro de Telos parece seguir uma tendência de alta, com um preço máximo de $0.058684 projetada após um período de cinco anos. Com base na previsão de Telos para 2030, o valor de Telos pode potencialmente atingir seu pico mais alto de aproximadamente $0.058684, enquanto seu pico mais baixo está previsto para cerca de $0.020296.
Quanto será Telos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Telos, espera-se que o valor de TLOS em 2026 aumente 3.13% para $0.018666 se o melhor cenário ocorrer. O preço ficará entre $0.018666 e $0.006253 durante 2026.
Quanto será Telos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Telos, o valor de TLOS pode diminuir -12.62% para $0.015814 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.015814 e $0.00602 ao longo do ano.
Quanto será Telos em 2028?
Nosso novo modelo experimental de previsão de preços de Telos sugere que o valor de TLOS em 2028 pode aumentar 47.02%, alcançando $0.02661 no melhor cenário. O preço é esperado para variar entre $0.02661 e $0.010864 durante o ano.
Quanto será Telos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Telos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0785079 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0785079 e $0.023865.
Quanto será Telos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Telos, espera-se que o valor de TLOS em 2030 aumente 224.23%, alcançando $0.058684 no melhor cenário. O preço está previsto para variar entre $0.058684 e $0.020296 ao longo de 2030.
Quanto será Telos em 2031?
Nossa simulação experimental indica que o preço de Telos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.053572 sob condições ideais. O preço provavelmente oscilará entre $0.053572 e $0.023997 durante o ano.
Quanto será Telos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Telos, TLOS poderia ver um 449.04% aumento em valor, atingindo $0.099373 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.099373 e $0.036629 ao longo do ano.
Quanto será Telos em 2033?
De acordo com nossa previsão experimental de preços de Telos, espera-se que o valor de TLOS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.264695. Ao longo do ano, o preço de TLOS poderia variar entre $0.264695 e $0.08512.
Quanto será Telos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Telos sugerem que TLOS pode aumentar 746.96% em 2034, atingindo potencialmente $0.153297 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.153297 e $0.068432.
Quanto será Telos em 2035?
Com base em nossa previsão experimental para o preço de Telos, TLOS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.180622 em 2035. A faixa de preço esperada para o ano está entre $0.180622 e $0.0809083.
Quanto será Telos em 2036?
Nossa recente simulação de previsão de preços de Telos sugere que o valor de TLOS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.3737027 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.3737027 e $0.133928.
Quanto será Telos em 2037?
De acordo com a simulação experimental, o valor de Telos poderia aumentar 4830.69% em 2037, com um pico de $0.892437 sob condições favoráveis. O preço é esperado para cair entre $0.892437 e $0.3478089 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Previsão de Preço do Keep Network
Previsão de Preço do Energy Web Token
Previsão de Preço do Nakamoto Games
Previsão de Preço do Gelato
Como ler e prever os movimentos de preço de Telos?
Traders de Telos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Telos
Médias móveis são ferramentas populares para a previsão de preço de Telos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de TLOS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de TLOS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de TLOS.
Como ler gráficos de Telos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Telos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de TLOS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Telos?
A ação de preço de Telos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de TLOS. A capitalização de mercado de Telos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de TLOS, grandes detentores de Telos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Telos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


