Previsão de Preço Telos - Projeção TLOS
Previsão de Preço Telos até $0.018683 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006259 | $0.018683 |
| 2027 | $0.006025 | $0.015829 |
| 2028 | $0.010874 | $0.026634 |
| 2029 | $0.023888 | $0.07858 |
| 2030 | $0.020315 | $0.058738 |
| 2031 | $0.024019 | $0.053621 |
| 2032 | $0.036663 | $0.099465 |
| 2033 | $0.085199 | $0.26494 |
| 2034 | $0.068496 | $0.153439 |
| 2035 | $0.080983 | $0.180789 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Telos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.67, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Telos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Telos'
'name_with_ticker' => 'Telos <small>TLOS</small>'
'name_lang' => 'Telos'
'name_lang_with_ticker' => 'Telos <small>TLOS</small>'
'name_with_lang' => 'Telos'
'name_with_lang_with_ticker' => 'Telos <small>TLOS</small>'
'image' => '/uploads/coins/telos.png?1722392004'
'price_for_sd' => 0.01811
'ticker' => 'TLOS'
'marketcap' => '$7.61M'
'low24h' => '$0.01801'
'high24h' => '$0.01812'
'volume24h' => '$1.66M'
'current_supply' => '420M'
'max_supply' => '420M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01811'
'change_24h_pct' => '0.2128%'
'ath_price' => '$1.43'
'ath_days' => 1429
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de fev. de 2022'
'ath_pct' => '-98.73%'
'fdv' => '$7.61M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.893266'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018271'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0160116'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006259'
'current_year_max_price_prediction' => '$0.018683'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020315'
'grand_prediction_max_price' => '$0.058738'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018459767577237
107 => 0.018528689648475
108 => 0.018683974594221
109 => 0.017357081734655
110 => 0.017952817673072
111 => 0.018302756723984
112 => 0.016721719361073
113 => 0.018271504698742
114 => 0.01733398348204
115 => 0.017015774699995
116 => 0.017444200904199
117 => 0.017277242795762
118 => 0.017133702018238
119 => 0.017053603798035
120 => 0.017368192718728
121 => 0.017353516769563
122 => 0.016838788236231
123 => 0.016167345847518
124 => 0.016392703952515
125 => 0.016310829240226
126 => 0.016014104720843
127 => 0.016214061220252
128 => 0.015333553992523
129 => 0.013818687071998
130 => 0.014819454561325
131 => 0.014780926101612
201 => 0.014761498305098
202 => 0.015513547414146
203 => 0.015441255245036
204 => 0.015310044250214
205 => 0.016011694928026
206 => 0.015755582992092
207 => 0.016544859631082
208 => 0.017064728272733
209 => 0.016932872769221
210 => 0.017421811739438
211 => 0.016397895748095
212 => 0.01673799956804
213 => 0.016808094493967
214 => 0.016003036667577
215 => 0.015453083137954
216 => 0.015416407507458
217 => 0.014462863875358
218 => 0.01497223918689
219 => 0.015420468381656
220 => 0.015205801381354
221 => 0.015137844222053
222 => 0.015485022610814
223 => 0.015512001345003
224 => 0.014896883346425
225 => 0.015024785856583
226 => 0.015558160585965
227 => 0.015011346181901
228 => 0.01394897511643
301 => 0.013685492403764
302 => 0.013650338952945
303 => 0.012935752939117
304 => 0.013703099578516
305 => 0.013368132206807
306 => 0.014426290120511
307 => 0.013821875995218
308 => 0.013795820910304
309 => 0.013756434828006
310 => 0.013141361126728
311 => 0.013276023177335
312 => 0.013723660343162
313 => 0.013883382326922
314 => 0.013866722015453
315 => 0.013721466676842
316 => 0.01378796382703
317 => 0.01357375333713
318 => 0.013498111154741
319 => 0.013259363620099
320 => 0.012908470699864
321 => 0.012957264512574
322 => 0.012262053821463
323 => 0.011883266139321
324 => 0.011778422701246
325 => 0.011638221674142
326 => 0.011794258780318
327 => 0.012260084376923
328 => 0.011698199877004
329 => 0.010734888313506
330 => 0.010792784979876
331 => 0.010922861599533
401 => 0.010680464679345
402 => 0.010451056337218
403 => 0.01065050827821
404 => 0.010242340469644
405 => 0.010972186729153
406 => 0.010952446433204
407 => 0.011224487985359
408 => 0.011394601150776
409 => 0.011002545379281
410 => 0.010903944412981
411 => 0.01096011200455
412 => 0.010031786830783
413 => 0.011148624013441
414 => 0.011158282467774
415 => 0.011075580917954
416 => 0.01167026223924
417 => 0.012925225312909
418 => 0.012453057723822
419 => 0.012270220161987
420 => 0.011922645823284
421 => 0.012385767992683
422 => 0.012350207435905
423 => 0.012189389112211
424 => 0.012092125688258
425 => 0.012271336529152
426 => 0.012069919481833
427 => 0.012033739445564
428 => 0.011814527790043
429 => 0.011736279202517
430 => 0.011678347063478
501 => 0.011614569470691
502 => 0.011755246947993
503 => 0.011436453276764
504 => 0.01105201936099
505 => 0.011020057840526
506 => 0.011108306408613
507 => 0.011069262986568
508 => 0.011019870915643
509 => 0.010925568001116
510 => 0.010897590340839
511 => 0.010988504163908
512 => 0.010885867758269
513 => 0.011037313365684
514 => 0.010996128540335
515 => 0.010766073453832
516 => 0.010479339638747
517 => 0.010476787106348
518 => 0.010415010776225
519 => 0.010336329331681
520 => 0.010314441953796
521 => 0.010633710992056
522 => 0.011294588346336
523 => 0.011164842308236
524 => 0.011258597117672
525 => 0.011719777987552
526 => 0.011866373517894
527 => 0.011762323482763
528 => 0.011619893377148
529 => 0.01162615957895
530 => 0.01211288636636
531 => 0.01214324291906
601 => 0.012219944134336
602 => 0.012318526871728
603 => 0.011779112549224
604 => 0.011600753212869
605 => 0.011516236664305
606 => 0.011255958406747
607 => 0.011536646192952
608 => 0.01137310144018
609 => 0.011395169214813
610 => 0.011380797547633
611 => 0.011388645449721
612 => 0.010971982722249
613 => 0.011123792720992
614 => 0.010871379154049
615 => 0.010533425722665
616 => 0.010532292784261
617 => 0.010615006407814
618 => 0.010565805107941
619 => 0.010433405675062
620 => 0.010452212389594
621 => 0.010287445780932
622 => 0.010472218039082
623 => 0.010477516646298
624 => 0.010406369262298
625 => 0.010691036419635
626 => 0.010807664786262
627 => 0.010760834053989
628 => 0.010804379017245
629 => 0.011170233841888
630 => 0.011229884141669
701 => 0.011256376864555
702 => 0.011220880125502
703 => 0.01081106617183
704 => 0.010829243163339
705 => 0.010695872460271
706 => 0.010583188270436
707 => 0.010587695047079
708 => 0.010645629368573
709 => 0.010898631948341
710 => 0.011431060962146
711 => 0.011451266254019
712 => 0.0114757556572
713 => 0.011376144947077
714 => 0.011346101403758
715 => 0.011385736592292
716 => 0.01158568893609
717 => 0.012100020650869
718 => 0.011918221471806
719 => 0.011770415909355
720 => 0.011900081235718
721 => 0.011880120275075
722 => 0.011711629679245
723 => 0.011706900709396
724 => 0.011383513386297
725 => 0.011263964456121
726 => 0.011164060421983
727 => 0.011054967824766
728 => 0.010990294076318
729 => 0.011089662347627
730 => 0.011112389046966
731 => 0.01089511858509
801 => 0.010865505423978
802 => 0.011042933173254
803 => 0.010964853835971
804 => 0.011045160370641
805 => 0.011063792175542
806 => 0.011060792025826
807 => 0.010979268230347
808 => 0.011031229066511
809 => 0.010908326198713
810 => 0.010774687789397
811 => 0.010689434810221
812 => 0.010615040278723
813 => 0.010656318688633
814 => 0.010509168694441
815 => 0.010462092449755
816 => 0.011013625904374
817 => 0.011421049597285
818 => 0.011415125495433
819 => 0.011379064048962
820 => 0.011325484054303
821 => 0.011581769225751
822 => 0.011492484596602
823 => 0.011557446624289
824 => 0.011573982186782
825 => 0.011624030354259
826 => 0.011641918272346
827 => 0.011587848559928
828 => 0.011406384000994
829 => 0.010954191573263
830 => 0.010743694777485
831 => 0.010674227328776
901 => 0.010676752338599
902 => 0.010607101295538
903 => 0.010627616649261
904 => 0.01059996689274
905 => 0.010547604943084
906 => 0.010653085485794
907 => 0.010665241135722
908 => 0.010640620716655
909 => 0.010646419716618
910 => 0.010442573162259
911 => 0.010458071173056
912 => 0.010371776279549
913 => 0.010355597027317
914 => 0.010137451051089
915 => 0.0097509738334352
916 => 0.0099651197282665
917 => 0.0097064616007798
918 => 0.0096085038485904
919 => 0.010072220611899
920 => 0.010025676310364
921 => 0.0099460126984569
922 => 0.0098281736130952
923 => 0.0097844659500697
924 => 0.0095189120256908
925 => 0.0095032216831634
926 => 0.0096348373786447
927 => 0.0095741012637996
928 => 0.0094888047559918
929 => 0.00917986945108
930 => 0.0088325238833948
1001 => 0.0088430080627469
1002 => 0.0089534922252335
1003 => 0.0092747398284826
1004 => 0.0091492228322532
1005 => 0.0090581588113472
1006 => 0.0090411052576059
1007 => 0.009254566186711
1008 => 0.009556658122842
1009 => 0.0096983929003486
1010 => 0.0095579380403888
1011 => 0.0093965910598937
1012 => 0.0094064115029865
1013 => 0.009471742511247
1014 => 0.0094786078764844
1015 => 0.0093735875789197
1016 => 0.0094031501775243
1017 => 0.0093582418869833
1018 => 0.0090826397908274
1019 => 0.0090776550228516
1020 => 0.0090100178237709
1021 => 0.0090079697962634
1022 => 0.0088929020477369
1023 => 0.0088768032742923
1024 => 0.0086483292754799
1025 => 0.0087987115533812
1026 => 0.008697843016789
1027 => 0.0085458103396621
1028 => 0.0085195998488209
1029 => 0.0085188119298161
1030 => 0.0086749154953408
1031 => 0.0087968873923301
1101 => 0.0086995976681686
1102 => 0.0086774466838591
1103 => 0.0089139612445841
1104 => 0.0088838626108537
1105 => 0.0088577973881586
1106 => 0.0095296091033349
1107 => 0.008997817708651
1108 => 0.0087659263069772
1109 => 0.0084789166624231
1110 => 0.0085723684499182
1111 => 0.0085920601146358
1112 => 0.00790185365686
1113 => 0.0076218369829002
1114 => 0.0075257458126029
1115 => 0.0074704439855671
1116 => 0.0074956457225839
1117 => 0.00724359787334
1118 => 0.0074129781965186
1119 => 0.0071947260641477
1120 => 0.0071581353839019
1121 => 0.007548397232832
1122 => 0.007602699889234
1123 => 0.0073710278865102
1124 => 0.0075197988165492
1125 => 0.0074658524092464
1126 => 0.0071984673705356
1127 => 0.0071882552288081
1128 => 0.0070540908154215
1129 => 0.0068441494878212
1130 => 0.00674820066763
1201 => 0.0066982296890086
1202 => 0.0067188486887028
1203 => 0.0067084230915056
1204 => 0.0066403890176484
1205 => 0.0067123227249813
1206 => 0.0065285618278058
1207 => 0.0064553867578884
1208 => 0.0064223352764554
1209 => 0.0062592369033296
1210 => 0.0065187989451485
1211 => 0.0065699359372633
1212 => 0.0066211736850495
1213 => 0.0070671632980327
1214 => 0.0070448829173216
1215 => 0.0072462867079643
1216 => 0.0072384605270177
1217 => 0.0071810169034013
1218 => 0.0069386717043813
1219 => 0.0070352661813229
1220 => 0.0067379633954113
1221 => 0.0069607228572406
1222 => 0.0068590647415192
1223 => 0.0069263521460564
1224 => 0.006805363325638
1225 => 0.0068723235343635
1226 => 0.006582062415151
1227 => 0.0063110206661146
1228 => 0.0064200957781288
1229 => 0.0065386728991402
1230 => 0.0067957783103817
1231 => 0.0066426484485199
]
'min_raw' => 0.0062592369033296
'max_raw' => 0.018683974594221
'avg_raw' => 0.012471605748776
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006259'
'max' => '$0.018683'
'avg' => '$0.012471'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01185723309667
'max_diff' => 0.00056750459422146
'year' => 2026
]
1 => [
'items' => [
101 => 0.0066977197373265
102 => 0.0065132401386466
103 => 0.0061326060325778
104 => 0.0061347603802814
105 => 0.0060762081156275
106 => 0.0060256104101959
107 => 0.0066602372552158
108 => 0.0065813113750718
109 => 0.0064555533146262
110 => 0.0066238854759594
111 => 0.0066683951712065
112 => 0.0066696622996569
113 => 0.0067924730992837
114 => 0.0068580172450595
115 => 0.0068695696848371
116 => 0.0070628151315527
117 => 0.0071275884563227
118 => 0.0073943806139863
119 => 0.0068524562822219
120 => 0.0068412957072324
121 => 0.0066262542546755
122 => 0.006489871565793
123 => 0.0066355924940638
124 => 0.0067646813436212
125 => 0.006630265405065
126 => 0.0066478172889651
127 => 0.0064673748736391
128 => 0.0065318745465134
129 => 0.0065874303538369
130 => 0.0065567557024523
131 => 0.0065108342646595
201 => 0.0067540975300674
202 => 0.0067403716632766
203 => 0.0069669040086227
204 => 0.0071435021713034
205 => 0.0074599976495248
206 => 0.0071297181187183
207 => 0.0071176814198735
208 => 0.0072353420818288
209 => 0.0071275704430884
210 => 0.0071956783986218
211 => 0.0074490244049434
212 => 0.0074543772068396
213 => 0.0073647108783831
214 => 0.0073592546741476
215 => 0.0073764760733699
216 => 0.007477342346515
217 => 0.0074420965713706
218 => 0.0074828838746816
219 => 0.0075338890220293
220 => 0.0077448679371939
221 => 0.0077957342393743
222 => 0.0076721554962298
223 => 0.0076833132730832
224 => 0.0076370914308348
225 => 0.0075924417103809
226 => 0.0076928077613934
227 => 0.0078762286923184
228 => 0.0078750876402267
301 => 0.0079176377310079
302 => 0.0079441460850606
303 => 0.0078303528241652
304 => 0.0077562775956165
305 => 0.0077846827517714
306 => 0.0078301032150468
307 => 0.0077699535076929
308 => 0.0073986816498498
309 => 0.0075113018145813
310 => 0.0074925563123253
311 => 0.0074658604375817
312 => 0.0075791008840852
313 => 0.007568178566768
314 => 0.007241012758342
315 => 0.0072619568519106
316 => 0.0072422864380409
317 => 0.0073058455694418
318 => 0.0071241380414095
319 => 0.0071800300532133
320 => 0.0072150849990617
321 => 0.0072357326314711
322 => 0.0073103260379481
323 => 0.0073015733626519
324 => 0.0073097819593624
325 => 0.0074203842892386
326 => 0.0079797729196162
327 => 0.0080102192085462
328 => 0.0078602905466478
329 => 0.0079201840898641
330 => 0.0078052015841669
331 => 0.0078823901105573
401 => 0.0079352005399376
402 => 0.0076965603644295
403 => 0.0076824296419978
404 => 0.007566972562598
405 => 0.0076290126572442
406 => 0.0075303024058214
407 => 0.0075545224487825
408 => 0.0074868010971978
409 => 0.0076086860468637
410 => 0.0077449723595966
411 => 0.0077794036643025
412 => 0.00768882972523
413 => 0.007623248224228
414 => 0.0075081087123579
415 => 0.0076995882866492
416 => 0.0077555827494063
417 => 0.0076992941715739
418 => 0.0076862508781604
419 => 0.0076615338607106
420 => 0.0076914947102573
421 => 0.0077552777915367
422 => 0.0077251988682939
423 => 0.0077450665270182
424 => 0.0076693514994019
425 => 0.0078303904944695
426 => 0.0080861591747815
427 => 0.0080869815129111
428 => 0.0080569024275318
429 => 0.0080445947138574
430 => 0.0080754576808082
501 => 0.0080921995743138
502 => 0.0081920047501324
503 => 0.0082990996801994
504 => 0.0087988649896433
505 => 0.0086585328905946
506 => 0.0091019544043045
507 => 0.0094526432505718
508 => 0.0095577995018026
509 => 0.0094610606986542
510 => 0.0091301224788109
511 => 0.0091138850709212
512 => 0.0096084464898796
513 => 0.0094687102366758
514 => 0.0094520890539943
515 => 0.0092752677521944
516 => 0.0093797910413024
517 => 0.0093569302647103
518 => 0.0093208434104723
519 => 0.009520266564935
520 => 0.0098935689074614
521 => 0.0098353862365715
522 => 0.0097919555717686
523 => 0.0096016550410787
524 => 0.0097162584657163
525 => 0.0096754503812869
526 => 0.0098507878094461
527 => 0.0097469218012042
528 => 0.0094676515971234
529 => 0.0095121262976099
530 => 0.009505404036102
531 => 0.0096437477015891
601 => 0.0096022203671108
602 => 0.0094972951575553
603 => 0.0098922930006379
604 => 0.0098666440378015
605 => 0.0099030084029342
606 => 0.009919017121071
607 => 0.010159445347513
608 => 0.010257941099041
609 => 0.010280301359048
610 => 0.010373864705065
611 => 0.010277973417765
612 => 0.010661606936294
613 => 0.01091670084048
614 => 0.011213005537203
615 => 0.011645986338311
616 => 0.011808791124823
617 => 0.011779381897349
618 => 0.012107662999207
619 => 0.012697576841967
620 => 0.011898620351253
621 => 0.012739923475993
622 => 0.012473576620012
623 => 0.011842073015856
624 => 0.011801411628687
625 => 0.012229073201329
626 => 0.013177585408547
627 => 0.012939993858575
628 => 0.013177974023208
629 => 0.012900357520103
630 => 0.012886571520789
701 => 0.013164490809304
702 => 0.013813864375512
703 => 0.013505371335611
704 => 0.013063070917316
705 => 0.013389658663228
706 => 0.01310673813345
707 => 0.012469238995389
708 => 0.012939812176795
709 => 0.012625153291541
710 => 0.012716987482445
711 => 0.013378353657271
712 => 0.013298776329358
713 => 0.01340175676034
714 => 0.013219998995124
715 => 0.013050208581845
716 => 0.012733282166656
717 => 0.012639455879402
718 => 0.012665386089683
719 => 0.012639443029677
720 => 0.012462125613084
721 => 0.012423833933853
722 => 0.012360012790871
723 => 0.012379793631741
724 => 0.012259791211401
725 => 0.012486260572348
726 => 0.012528295281381
727 => 0.0126931007963
728 => 0.01271021145158
729 => 0.013169192464771
730 => 0.012916393435568
731 => 0.013085992849975
801 => 0.013070822282019
802 => 0.011855759613845
803 => 0.012023184528931
804 => 0.012283645155971
805 => 0.012166307996535
806 => 0.01200042070576
807 => 0.011866457824145
808 => 0.01166349036009
809 => 0.011949163168102
810 => 0.012324792532722
811 => 0.01271973803215
812 => 0.013194239171858
813 => 0.013088336041277
814 => 0.012710867563399
815 => 0.012727800523576
816 => 0.012832473420514
817 => 0.012696912508443
818 => 0.01265693294901
819 => 0.012826980842976
820 => 0.012828151869365
821 => 0.012672172656944
822 => 0.012498830306233
823 => 0.012498103995454
824 => 0.012467259398434
825 => 0.012905844705392
826 => 0.013147022278243
827 => 0.013174672898293
828 => 0.013145161171205
829 => 0.013156519063682
830 => 0.013016183148026
831 => 0.013336949435894
901 => 0.01363131630214
902 => 0.013552419693755
903 => 0.013434142461972
904 => 0.013339928949854
905 => 0.013530225984448
906 => 0.013521752357053
907 => 0.013628745264363
908 => 0.013623891448066
909 => 0.013587913757545
910 => 0.013552420978632
911 => 0.013693145835101
912 => 0.01365261933641
913 => 0.013612029888873
914 => 0.013530621537903
915 => 0.013541686284849
916 => 0.013423429475298
917 => 0.013368718464137
918 => 0.012545996126337
919 => 0.012326137834449
920 => 0.012395309728705
921 => 0.012418082912342
922 => 0.012322400301956
923 => 0.012459584586403
924 => 0.012438204560986
925 => 0.012521381732987
926 => 0.012469416247054
927 => 0.012471548928723
928 => 0.012624368342643
929 => 0.012668732468644
930 => 0.012646168516097
1001 => 0.012661971535014
1002 => 0.01302614543591
1003 => 0.012974371552828
1004 => 0.012946867709333
1005 => 0.012954486461946
1006 => 0.013047540701601
1007 => 0.013073590808131
1008 => 0.012963214676254
1009 => 0.013015268698124
1010 => 0.013236908116609
1011 => 0.013314469369374
1012 => 0.013562007656687
1013 => 0.013456848992594
1014 => 0.013649872271697
1015 => 0.014243160025173
1016 => 0.01471711933504
1017 => 0.01428124676649
1018 => 0.015151612680706
1019 => 0.015829317391498
1020 => 0.015803305955921
1021 => 0.015685132464002
1022 => 0.014913583668477
1023 => 0.014203592963691
1024 => 0.014797530336042
1025 => 0.014799044404549
1026 => 0.014748024657527
1027 => 0.014431145390565
1028 => 0.014736997945912
1029 => 0.014761275411062
1030 => 0.014747686486477
1031 => 0.01450473589546
1101 => 0.014133795247752
1102 => 0.014206276162408
1103 => 0.014325001379185
1104 => 0.014100229775152
1105 => 0.014028401628271
1106 => 0.014161943819186
1107 => 0.014592244582933
1108 => 0.014510898716109
1109 => 0.014508774446782
1110 => 0.01485680656107
1111 => 0.014607690677271
1112 => 0.014207190378858
1113 => 0.014106058771559
1114 => 0.01374710969606
1115 => 0.01399503710104
1116 => 0.014003959566968
1117 => 0.013868172261017
1118 => 0.014218208770369
1119 => 0.014214983122313
1120 => 0.014547290691884
1121 => 0.015182537955879
1122 => 0.014994664081296
1123 => 0.014776187205776
1124 => 0.014799941699852
1125 => 0.015060469868775
1126 => 0.014902948590564
1127 => 0.014959594340486
1128 => 0.015060384128648
1129 => 0.015121193110316
1130 => 0.014791192223187
1201 => 0.01471425323063
1202 => 0.014556863053775
1203 => 0.01451580289446
1204 => 0.014643993909455
1205 => 0.014610220106059
1206 => 0.014003209668256
1207 => 0.013939773700132
1208 => 0.013941719190708
1209 => 0.013782206432643
1210 => 0.013538911189146
1211 => 0.014178276562654
1212 => 0.014126926575248
1213 => 0.014070240163326
1214 => 0.014077183925338
1215 => 0.014354710763875
1216 => 0.014193731182083
1217 => 0.014621721784313
1218 => 0.014533739783069
1219 => 0.014443501375481
1220 => 0.014431027678823
1221 => 0.01439629359068
1222 => 0.014277177478454
1223 => 0.014133337615173
1224 => 0.014038362078239
1225 => 0.012949646952164
1226 => 0.013151706146799
1227 => 0.013384156831952
1228 => 0.013464397876979
1229 => 0.013327140016949
1230 => 0.014282597255365
1231 => 0.014457168499839
]
'min_raw' => 0.0060256104101959
'max_raw' => 0.015829317391498
'avg_raw' => 0.010927463900847
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006025'
'max' => '$0.015829'
'avg' => '$0.010927'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023362649313371
'max_diff' => -0.0028546572027236
'year' => 2027
]
2 => [
'items' => [
101 => 0.013928380813327
102 => 0.01382946622744
103 => 0.014289082079148
104 => 0.014011877534815
105 => 0.014136702724155
106 => 0.013866898940531
107 => 0.014415119399088
108 => 0.014410942877714
109 => 0.014197672737215
110 => 0.014377927199554
111 => 0.014346603550878
112 => 0.014105822087515
113 => 0.01442275260095
114 => 0.014422909794531
115 => 0.014217641921193
116 => 0.01397793398405
117 => 0.013935079866538
118 => 0.013902795045633
119 => 0.014128762637308
120 => 0.014331364473421
121 => 0.014708356261174
122 => 0.014803140953719
123 => 0.015173091918897
124 => 0.014952804131719
125 => 0.01505045485457
126 => 0.015156468527764
127 => 0.015207295381216
128 => 0.015124475751035
129 => 0.015699161877847
130 => 0.015747682994878
131 => 0.015763951705713
201 => 0.015570170777187
202 => 0.015742293596709
203 => 0.015661763029563
204 => 0.015871281193241
205 => 0.015904136316568
206 => 0.015876309195965
207 => 0.015886737930691
208 => 0.015396344703037
209 => 0.015370915227152
210 => 0.015024182519077
211 => 0.015165478660536
212 => 0.014901332296578
213 => 0.014985095829599
214 => 0.015022017996826
215 => 0.015002731951981
216 => 0.015173467332376
217 => 0.015028307380106
218 => 0.014645206399561
219 => 0.014262001043411
220 => 0.014257190212316
221 => 0.014156299006178
222 => 0.014083373143287
223 => 0.014097421251664
224 => 0.014146928617907
225 => 0.014080495685161
226 => 0.014094672519598
227 => 0.014330102430999
228 => 0.014377316220722
229 => 0.014216865315627
301 => 0.013572631778716
302 => 0.013414535252821
303 => 0.013528171900444
304 => 0.013473860902017
305 => 0.010874457339655
306 => 0.011485148649134
307 => 0.011122296610159
308 => 0.011289515523738
309 => 0.010919137552025
310 => 0.011095901333299
311 => 0.011063259517278
312 => 0.01204523307125
313 => 0.012029900904865
314 => 0.012037239601554
315 => 0.011686944487752
316 => 0.012244974115587
317 => 0.012519879576354
318 => 0.012469001891938
319 => 0.012481806708989
320 => 0.012261777527666
321 => 0.012039369964989
322 => 0.011792685749701
323 => 0.012250994530615
324 => 0.012200038417769
325 => 0.012316913407207
326 => 0.012614159412219
327 => 0.012657930015585
328 => 0.012716758150386
329 => 0.012695672451731
330 => 0.013198019338961
331 => 0.013137181816326
401 => 0.013283782741726
402 => 0.012982213515539
403 => 0.012640959310893
404 => 0.012705820578756
405 => 0.012699573917079
406 => 0.012620046744353
407 => 0.012548253168715
408 => 0.012428737092993
409 => 0.012806903641629
410 => 0.012791550770367
411 => 0.013040095910329
412 => 0.012996163142602
413 => 0.01270276936755
414 => 0.012713247983623
415 => 0.012783721712569
416 => 0.013027632093102
417 => 0.01310004130073
418 => 0.013066498470749
419 => 0.013145891861306
420 => 0.013208641160074
421 => 0.013153772207126
422 => 0.013930600872481
423 => 0.01360800745032
424 => 0.013765237239691
425 => 0.013802735618004
426 => 0.01370668431046
427 => 0.013727514399727
428 => 0.013759066309107
429 => 0.013950643324361
430 => 0.014453396845646
501 => 0.014676062957863
502 => 0.015345964942623
503 => 0.014657573636906
504 => 0.014616727345671
505 => 0.014737396922228
506 => 0.015130700303609
507 => 0.01544943575311
508 => 0.015555178689998
509 => 0.015569154364734
510 => 0.015767535143994
511 => 0.015881243307084
512 => 0.01574344649946
513 => 0.015626678132925
514 => 0.015208428337821
515 => 0.015256841890461
516 => 0.015590363258738
517 => 0.01606148183574
518 => 0.016465750586341
519 => 0.016324189760069
520 => 0.017404198938156
521 => 0.017511277436721
522 => 0.017496482650482
523 => 0.017740423405631
524 => 0.017256250684331
525 => 0.01704925746557
526 => 0.015651924779147
527 => 0.016044518267572
528 => 0.016615175959206
529 => 0.016539647273862
530 => 0.016125220404474
531 => 0.016465436206398
601 => 0.01635295022275
602 => 0.016264227860399
603 => 0.016670682202005
604 => 0.016223768957185
605 => 0.016610717657718
606 => 0.016114451946813
607 => 0.016324836397999
608 => 0.016205412008355
609 => 0.016282694224557
610 => 0.015830903967773
611 => 0.016074679023745
612 => 0.015820762123987
613 => 0.015820641734315
614 => 0.01581503650468
615 => 0.016113768611206
616 => 0.016123510254475
617 => 0.015902746776393
618 => 0.015870931310228
619 => 0.015988569763801
620 => 0.015850845944226
621 => 0.015915286052582
622 => 0.015852797769462
623 => 0.015838730340727
624 => 0.015726638675192
625 => 0.015678346503654
626 => 0.01569728310845
627 => 0.015632642713793
628 => 0.015593694537868
629 => 0.015807288732177
630 => 0.015693173970523
701 => 0.015789799008317
702 => 0.015679682582698
703 => 0.015297971076061
704 => 0.015078444752067
705 => 0.014357427100704
706 => 0.014561906812211
707 => 0.01469747707249
708 => 0.014652671102277
709 => 0.014748931663904
710 => 0.014754841280592
711 => 0.014723545990746
712 => 0.014687310054281
713 => 0.014669672404382
714 => 0.014801128996471
715 => 0.014877443972803
716 => 0.014711083361805
717 => 0.01467210739828
718 => 0.014840307161021
719 => 0.014942908919127
720 => 0.015700462654033
721 => 0.015644340626485
722 => 0.015785195902239
723 => 0.015769337759789
724 => 0.015916976528785
725 => 0.016158303519294
726 => 0.015667618271502
727 => 0.015752784263899
728 => 0.015731903529333
729 => 0.015959873914101
730 => 0.015960585612758
731 => 0.015823905979125
801 => 0.015898002225891
802 => 0.015856643733671
803 => 0.015931384119049
804 => 0.015643591082591
805 => 0.015994091935658
806 => 0.016192803333572
807 => 0.016195562441524
808 => 0.016289750067064
809 => 0.016385450149592
810 => 0.016569138124283
811 => 0.016380327191675
812 => 0.016040674704285
813 => 0.016065196516804
814 => 0.015866058387722
815 => 0.015869405935649
816 => 0.015851536462462
817 => 0.015905164096647
818 => 0.015655359332551
819 => 0.015713988011382
820 => 0.01563190751769
821 => 0.015752605836936
822 => 0.015622754397574
823 => 0.015731893460011
824 => 0.015778994261342
825 => 0.015952797232259
826 => 0.015597083557455
827 => 0.014871759294829
828 => 0.01502423124854
829 => 0.014798713252588
830 => 0.014819585801721
831 => 0.014861751672811
901 => 0.014725078288794
902 => 0.014751151263391
903 => 0.014750219753266
904 => 0.014742192502248
905 => 0.014706638476489
906 => 0.014655078104988
907 => 0.014860478755602
908 => 0.014895380328635
909 => 0.014972962202099
910 => 0.015203793233238
911 => 0.015180727769857
912 => 0.015218348497609
913 => 0.015136222660158
914 => 0.014823395383778
915 => 0.014840383409943
916 => 0.014628542451452
917 => 0.014967544952507
918 => 0.014887264685643
919 => 0.014835507475341
920 => 0.014821385040983
921 => 0.015052788257602
922 => 0.015122027726815
923 => 0.015078882336089
924 => 0.014990389880959
925 => 0.015160321555255
926 => 0.015205788102455
927 => 0.015215966385631
928 => 0.015517052731318
929 => 0.015232793767703
930 => 0.015301217725536
1001 => 0.015835041912071
1002 => 0.015350937037586
1003 => 0.015607378186428
1004 => 0.015594826726647
1005 => 0.015726013340899
1006 => 0.015584065595228
1007 => 0.015585825207659
1008 => 0.015702310033764
1009 => 0.015538728103649
1010 => 0.015498222917294
1011 => 0.015442265292449
1012 => 0.015564446719129
1013 => 0.015637688958634
1014 => 0.016227967618539
1015 => 0.016609314552815
1016 => 0.016592759276667
1017 => 0.016744043510481
1018 => 0.016675888577543
1019 => 0.016455798320724
1020 => 0.016831465551967
1021 => 0.016712588721417
1022 => 0.016722388782892
1023 => 0.016722024024115
1024 => 0.016801066724037
1025 => 0.016745057726985
1026 => 0.016634658244589
1027 => 0.016707946573132
1028 => 0.016925586707846
1029 => 0.017601148364012
1030 => 0.017979201616805
1031 => 0.017578389083496
1101 => 0.017854864201879
1102 => 0.017689077649007
1103 => 0.017658949300627
1104 => 0.017832596106322
1105 => 0.018006546857763
1106 => 0.017995466946906
1107 => 0.01786918763383
1108 => 0.017797855654092
1109 => 0.018338005302633
1110 => 0.01873597836247
1111 => 0.018708839267834
1112 => 0.018828622405449
1113 => 0.01918030940224
1114 => 0.019212463253742
1115 => 0.0192084126075
1116 => 0.019128715931646
1117 => 0.019474997452314
1118 => 0.019763871589099
1119 => 0.019110268453844
1120 => 0.019359151971456
1121 => 0.019470883801038
1122 => 0.019634939276205
1123 => 0.019911728361701
1124 => 0.020212394723228
1125 => 0.020254912243387
1126 => 0.020224744028184
1127 => 0.020026446480411
1128 => 0.02035543920089
1129 => 0.020548155420718
1130 => 0.020662913519394
1201 => 0.020953920963707
1202 => 0.019471573818779
1203 => 0.018422294832166
1204 => 0.018258434766634
1205 => 0.018591650653372
1206 => 0.018679517025358
1207 => 0.018644098200986
1208 => 0.01746303930528
1209 => 0.018252216735974
1210 => 0.019101305295477
1211 => 0.01913392224507
1212 => 0.019558993731562
1213 => 0.019697414431832
1214 => 0.020039652693852
1215 => 0.020018245597381
1216 => 0.020101575167983
1217 => 0.020082419142768
1218 => 0.020716343456391
1219 => 0.021415656112988
1220 => 0.021391441139368
1221 => 0.02129090667109
1222 => 0.021440217500157
1223 => 0.022161983104663
1224 => 0.022095534493859
1225 => 0.022160083659176
1226 => 0.023011085983817
1227 => 0.024117510059518
1228 => 0.023603464993194
1229 => 0.024718794874635
1230 => 0.025420835913905
1231 => 0.026634943298925
]
'min_raw' => 0.010874457339655
'max_raw' => 0.026634943298925
'avg_raw' => 0.01875470031929
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010874'
'max' => '$0.026634'
'avg' => '$0.018754'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048488469294592
'max_diff' => 0.010805625907427
'year' => 2028
]
3 => [
'items' => [
101 => 0.026482931074716
102 => 0.026955574170172
103 => 0.026210797467472
104 => 0.024500639613867
105 => 0.024230000587313
106 => 0.024771826772146
107 => 0.026103853576933
108 => 0.024729876507782
109 => 0.0250078302794
110 => 0.024927779574475
111 => 0.024923514012603
112 => 0.025086313159958
113 => 0.024850164505688
114 => 0.023888052405859
115 => 0.024328982711448
116 => 0.024158718345248
117 => 0.024347639353596
118 => 0.025367168118704
119 => 0.02491641014912
120 => 0.024441573244767
121 => 0.02503712409757
122 => 0.025795464986665
123 => 0.025748009376695
124 => 0.025655925658447
125 => 0.026174996756864
126 => 0.027032350137886
127 => 0.027264089311651
128 => 0.027435154432026
129 => 0.027458741421957
130 => 0.027701702077476
131 => 0.026395241398778
201 => 0.028468628048162
202 => 0.02882664464636
203 => 0.028759352364167
204 => 0.029157272745423
205 => 0.029040194474991
206 => 0.028870566430154
207 => 0.029501354874537
208 => 0.028778206825055
209 => 0.027751789210622
210 => 0.027188676207106
211 => 0.027930228835167
212 => 0.028383069148503
213 => 0.028682367789565
214 => 0.028772935377509
215 => 0.026496658222249
216 => 0.025269871083683
217 => 0.026056227574361
218 => 0.027015636764414
219 => 0.026389911832286
220 => 0.026414439064971
221 => 0.025522319749376
222 => 0.027094569528424
223 => 0.026865505960319
224 => 0.028053888156855
225 => 0.027770271208289
226 => 0.028739350756833
227 => 0.028484159634309
228 => 0.029543443716363
301 => 0.029966020815665
302 => 0.030675593534269
303 => 0.031197558114554
304 => 0.031504065699689
305 => 0.031485664133958
306 => 0.032700199887735
307 => 0.03198403058638
308 => 0.031084353155734
309 => 0.031068080829459
310 => 0.031534036519319
311 => 0.032510551816563
312 => 0.032763748025419
313 => 0.032905250164507
314 => 0.032688534712769
315 => 0.031911184264464
316 => 0.031575528282143
317 => 0.031861516903971
318 => 0.031511777394757
319 => 0.032115525907234
320 => 0.032944601568588
321 => 0.032773400723039
322 => 0.033345699481845
323 => 0.033937968489623
324 => 0.034784939771212
325 => 0.035006369427475
326 => 0.035372384229062
327 => 0.035749133689494
328 => 0.035870135462502
329 => 0.03610116539182
330 => 0.036099947750053
331 => 0.03679617199216
401 => 0.037564128891473
402 => 0.037854014842721
403 => 0.03852059160321
404 => 0.037379102260508
405 => 0.038244935039432
406 => 0.039025937879222
407 => 0.038094794096657
408 => 0.039378158872247
409 => 0.039427989018316
410 => 0.040180365062885
411 => 0.039417687803905
412 => 0.038964812482075
413 => 0.040272246567181
414 => 0.040904872737177
415 => 0.040714320586292
416 => 0.039264209309336
417 => 0.038420182347949
418 => 0.036211200989358
419 => 0.038827834829503
420 => 0.040102320844781
421 => 0.03926090869845
422 => 0.039685268043038
423 => 0.04200043502813
424 => 0.042881900720092
425 => 0.042698562018074
426 => 0.042729543240703
427 => 0.043205166128352
428 => 0.045314339942494
429 => 0.044050474102794
430 => 0.045016652181095
501 => 0.045529109550012
502 => 0.046005108513822
503 => 0.044836205499723
504 => 0.043315479852977
505 => 0.042833802204932
506 => 0.039177246842918
507 => 0.03898690725671
508 => 0.038880063879092
509 => 0.038206431496505
510 => 0.03767714096723
511 => 0.037256229487053
512 => 0.036151632068261
513 => 0.036524401271306
514 => 0.034763903533151
515 => 0.035890207597814
516 => 0.033080410699013
517 => 0.0354204930499
518 => 0.034146892616801
519 => 0.035002081054253
520 => 0.034999097382358
521 => 0.033424424331268
522 => 0.032516185777987
523 => 0.033094950733311
524 => 0.033715432707837
525 => 0.033816103820652
526 => 0.034620574896863
527 => 0.034845085482185
528 => 0.034164807927261
529 => 0.033022183903656
530 => 0.03328758940386
531 => 0.032510807343996
601 => 0.031149526662576
602 => 0.032127222213653
603 => 0.032461050461029
604 => 0.032608488032846
605 => 0.031269824826812
606 => 0.030849187783683
607 => 0.030625244151408
608 => 0.032849379293969
609 => 0.03297122243778
610 => 0.03234785568716
611 => 0.035165532510023
612 => 0.034527805465424
613 => 0.03524030282116
614 => 0.033263506636565
615 => 0.033339022912926
616 => 0.032403175919575
617 => 0.032927187702533
618 => 0.032556833064026
619 => 0.032884852728855
620 => 0.033081466363478
621 => 0.034017159793546
622 => 0.035431177165846
623 => 0.03387739839772
624 => 0.033200394737926
625 => 0.033620404000849
626 => 0.034738944016187
627 => 0.036433589396435
628 => 0.035430325223411
629 => 0.035875556826869
630 => 0.035972820125249
701 => 0.03523305026692
702 => 0.036460865766308
703 => 0.037118862067185
704 => 0.037793830118736
705 => 0.038379885965722
706 => 0.037524233036081
707 => 0.038439904323826
708 => 0.037702034903645
709 => 0.037040089754203
710 => 0.037041093651756
711 => 0.036625845790036
712 => 0.035821250733356
713 => 0.035672871060201
714 => 0.036444760858239
715 => 0.037063743378029
716 => 0.037114725743085
717 => 0.037457426270512
718 => 0.037660232912546
719 => 0.039648013706746
720 => 0.040447515585959
721 => 0.041425131350064
722 => 0.041805967785588
723 => 0.042952148919098
724 => 0.042026514565508
725 => 0.041826247750596
726 => 0.039045987233693
727 => 0.039501254737583
728 => 0.040230181938091
729 => 0.039058006974749
730 => 0.039801482191505
731 => 0.03994825994825
801 => 0.039018176918033
802 => 0.039514974450988
803 => 0.038195627493664
804 => 0.035459935324157
805 => 0.036463911373732
806 => 0.037203175680903
807 => 0.036148154363938
808 => 0.038039239239634
809 => 0.036934506495168
810 => 0.036584359251696
811 => 0.035218310018405
812 => 0.035863032672461
813 => 0.036735029293612
814 => 0.036196236762229
815 => 0.037314312164954
816 => 0.03889780511503
817 => 0.04002629648989
818 => 0.040112928045119
819 => 0.039387383694134
820 => 0.04055007314695
821 => 0.040558542070276
822 => 0.039247023617775
823 => 0.038443725868183
824 => 0.038261214929322
825 => 0.038717163037973
826 => 0.039270768214538
827 => 0.040143649279522
828 => 0.040671113025871
829 => 0.042046458731195
830 => 0.042418587844804
831 => 0.042827444918162
901 => 0.043373804055021
902 => 0.044029848282427
903 => 0.042594460861481
904 => 0.042651491479612
905 => 0.041314878587518
906 => 0.039886516022638
907 => 0.040970465161475
908 => 0.042387584468793
909 => 0.042062495733916
910 => 0.042025916610282
911 => 0.042087432550032
912 => 0.04184232626034
913 => 0.040733719596129
914 => 0.040176984269608
915 => 0.04089531487915
916 => 0.041277075628905
917 => 0.041869153258739
918 => 0.041796167193619
919 => 0.043321295583576
920 => 0.043913914358424
921 => 0.043762297116231
922 => 0.043790198337667
923 => 0.044863106322368
924 => 0.046056400661711
925 => 0.047174078279563
926 => 0.048311027957813
927 => 0.046940390744782
928 => 0.046244465697155
929 => 0.046962482706026
930 => 0.046581492774298
1001 => 0.04877077393096
1002 => 0.048922355008231
1003 => 0.051111477854946
1004 => 0.053189216112379
1005 => 0.051884225939433
1006 => 0.053114772894473
1007 => 0.054445709754313
1008 => 0.05701330289367
1009 => 0.05614862785335
1010 => 0.055486300323651
1011 => 0.054860404008428
1012 => 0.056162794882164
1013 => 0.057838299935024
1014 => 0.058199187675622
1015 => 0.058783963685118
1016 => 0.058169143214141
1017 => 0.058909626751179
1018 => 0.061523859021878
1019 => 0.060817470385869
1020 => 0.059814284965095
1021 => 0.061877970269276
1022 => 0.062624809958485
1023 => 0.067866522020338
1024 => 0.074484400022753
1025 => 0.071744555074424
1026 => 0.070043844900752
1027 => 0.070443552132949
1028 => 0.072860177150123
1029 => 0.073636320405795
1030 => 0.071526495484254
1031 => 0.072271721314472
1101 => 0.07637798890796
1102 => 0.07858086972703
1103 => 0.075589061688368
1104 => 0.067334781966529
1105 => 0.059723959094044
1106 => 0.061742692039648
1107 => 0.061513830372193
1108 => 0.065925502634081
1109 => 0.060800623250518
1110 => 0.060886913075851
1111 => 0.065389814048074
1112 => 0.064188517267951
1113 => 0.062242570334619
1114 => 0.059738166660171
1115 => 0.055108544838654
1116 => 0.05100795968478
1117 => 0.059050151479888
1118 => 0.058703357545906
1119 => 0.058201148537519
1120 => 0.059318760340994
1121 => 0.064745566019027
1122 => 0.064620460583292
1123 => 0.063824603630504
1124 => 0.064428254114832
1125 => 0.062136747486109
1126 => 0.062727320920967
1127 => 0.059722753500816
1128 => 0.061080943456544
1129 => 0.062238395206469
1130 => 0.062470770781632
1201 => 0.062994324817867
1202 => 0.058520612901136
1203 => 0.060529178210467
1204 => 0.06170902215258
1205 => 0.056378444299021
1206 => 0.06160365376753
1207 => 0.058442735529776
1208 => 0.057369872404484
1209 => 0.058814341263721
1210 => 0.058251430344485
1211 => 0.057767472591363
1212 => 0.057497415849671
1213 => 0.058558074359685
1214 => 0.058508593372432
1215 => 0.056773150185104
1216 => 0.054509335292949
1217 => 0.055269145877947
1218 => 0.054993099569155
1219 => 0.05399267213541
1220 => 0.054666839433685
1221 => 0.051698147840344
1222 => 0.046590668253163
1223 => 0.049964825714786
1224 => 0.04983492432289
1225 => 0.049769422150537
1226 => 0.052305008228084
1227 => 0.052061270132652
1228 => 0.051618883102752
1229 => 0.053984547350682
1230 => 0.053121048077513
1231 => 0.055782149371403
]
'min_raw' => 0.023888052405859
'max_raw' => 0.07858086972703
'avg_raw' => 0.051234461066444
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023888'
'max' => '$0.07858'
'avg' => '$0.051234'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013013595066203
'max_diff' => 0.051945926428105
'year' => 2029
]
4 => [
'items' => [
101 => 0.0575349227928
102 => 0.057090362756854
103 => 0.058738854631566
104 => 0.055286650379224
105 => 0.056433334153457
106 => 0.056669664090092
107 => 0.053955355421075
108 => 0.052101148699425
109 => 0.051977494250595
110 => 0.048762555320678
111 => 0.050479949746959
112 => 0.051991185771476
113 => 0.051267420992386
114 => 0.051038298685183
115 => 0.052208834862115
116 => 0.052299795548027
117 => 0.050225882269653
118 => 0.050657114512519
119 => 0.052455424651666
120 => 0.050611801711001
121 => 0.047029943491386
122 => 0.046141593129858
123 => 0.046023070816084
124 => 0.043613794179663
125 => 0.046200956948828
126 => 0.045071591068435
127 => 0.048639244352713
128 => 0.046601419930442
129 => 0.046513573392546
130 => 0.046380780466231
131 => 0.044307016539298
201 => 0.044761039044724
202 => 0.046270279002338
203 => 0.046808792822019
204 => 0.046752621418713
205 => 0.046262882903182
206 => 0.046487082687725
207 => 0.045764857065329
208 => 0.045509824166235
209 => 0.044704870184368
210 => 0.043521810205236
211 => 0.043686321951463
212 => 0.04134237056832
213 => 0.040065261451869
214 => 0.039711774480462
215 => 0.039239076929061
216 => 0.039765166926693
217 => 0.041335730448554
218 => 0.039441297627552
219 => 0.036193425434955
220 => 0.036388628087835
221 => 0.036827190492668
222 => 0.036009932352642
223 => 0.035236466110383
224 => 0.035908932254727
225 => 0.034532765990781
226 => 0.036993493610954
227 => 0.036926937824938
228 => 0.037844144911363
301 => 0.038417693325489
302 => 0.037095849919433
303 => 0.036763409877455
304 => 0.036952782833923
305 => 0.033822869696974
306 => 0.037588364233387
307 => 0.037620928386504
308 => 0.03734209433725
309 => 0.039347103931289
310 => 0.043578299552887
311 => 0.041986353560592
312 => 0.041369903955553
313 => 0.040198032805752
314 => 0.041759481534038
315 => 0.0416395866341
316 => 0.041097376427792
317 => 0.040769446003217
318 => 0.041373667865391
319 => 0.040694576227867
320 => 0.040572592709577
321 => 0.039833505308119
322 => 0.039569684732132
323 => 0.039374362480672
324 => 0.039159331873782
325 => 0.039633635810293
326 => 0.038558800690279
327 => 0.03726265490293
328 => 0.037154894405203
329 => 0.037452430613826
330 => 0.037320792990476
331 => 0.037154264174907
401 => 0.036836315314563
402 => 0.036741986679601
403 => 0.037048508981479
404 => 0.036702463174019
405 => 0.037213072613016
406 => 0.037074215098918
407 => 0.036298568312839
408 => 0.035331825236163
409 => 0.035323219194969
410 => 0.035114935984875
411 => 0.034849656001231
412 => 0.034775861178565
413 => 0.035852299031711
414 => 0.038080493172649
415 => 0.037643045346616
416 => 0.037959146232381
417 => 0.039514049733801
418 => 0.040008306799323
419 => 0.039657494841335
420 => 0.039177281796104
421 => 0.039198408732971
422 => 0.040839442078903
423 => 0.040941791315757
424 => 0.04120039481817
425 => 0.041532773400112
426 => 0.039714100351086
427 => 0.039112749395913
428 => 0.038827795951671
429 => 0.037950249634268
430 => 0.038896608102452
501 => 0.038345205550151
502 => 0.03841960859305
503 => 0.038371153513755
504 => 0.038397613263568
505 => 0.036992805787435
506 => 0.03750464379723
507 => 0.03665361383333
508 => 0.035514180244265
509 => 0.035510360463337
510 => 0.035789235220026
511 => 0.035623349602377
512 => 0.035176955670593
513 => 0.035240363821683
514 => 0.034684841696942
515 => 0.035307814265679
516 => 0.035325678889847
517 => 0.035085800517338
518 => 0.036045575713126
519 => 0.036438796393943
520 => 0.036280903310465
521 => 0.036427718194295
522 => 0.037661223278746
523 => 0.037862338429112
524 => 0.037951660493983
525 => 0.037831980759961
526 => 0.036450264402862
527 => 0.036511549398811
528 => 0.036061880761771
529 => 0.035681958148386
530 => 0.035697153060489
531 => 0.035892482670252
601 => 0.036745498532016
602 => 0.038540620125065
603 => 0.038608743677305
604 => 0.038691311409923
605 => 0.038355466946147
606 => 0.038254173042273
607 => 0.038387805847657
608 => 0.039061959134997
609 => 0.040796064420868
610 => 0.040183115795844
611 => 0.039684779022585
612 => 0.040121954723362
613 => 0.040054654950924
614 => 0.039486577143448
615 => 0.039470633091434
616 => 0.038380310153426
617 => 0.037977242588697
618 => 0.037640409162524
619 => 0.037272595854403
620 => 0.037054543796136
621 => 0.037389570860523
622 => 0.037466195514072
623 => 0.036733652982518
624 => 0.036633810142305
625 => 0.037232020186601
626 => 0.036968770249625
627 => 0.037239529338089
628 => 0.037302347769141
629 => 0.037292232554911
630 => 0.037017369386645
701 => 0.03719255897356
702 => 0.036778183373976
703 => 0.036327612146632
704 => 0.036040175775165
705 => 0.035789349418159
706 => 0.035928522459139
707 => 0.035432395980037
708 => 0.035273675134319
709 => 0.037133208683403
710 => 0.038506866109467
711 => 0.038486892586464
712 => 0.038365308901956
713 => 0.038184660209127
714 => 0.039048743557926
715 => 0.038747714197096
716 => 0.038966738208944
717 => 0.039022489012369
718 => 0.039191229903266
719 => 0.039251540267992
720 => 0.039069240457548
721 => 0.038457420027652
722 => 0.03693282168649
723 => 0.036223117043105
724 => 0.035988902689722
725 => 0.035997415936631
726 => 0.035762582582071
727 => 0.035831751529482
728 => 0.035738528444927
729 => 0.035561986475867
730 => 0.035917621490032
731 => 0.035958605112445
801 => 0.035875595650617
802 => 0.035895147383864
803 => 0.035207864493733
804 => 0.03526011711917
805 => 0.034969167860796
806 => 0.034914618382296
807 => 0.034179123992976
808 => 0.03287608907068
809 => 0.033598096906292
810 => 0.032726012970537
811 => 0.032395741569839
812 => 0.033959195013004
813 => 0.033802267650759
814 => 0.033533676221279
815 => 0.03313637351772
816 => 0.032989010080257
817 => 0.032093676483831
818 => 0.032040775398535
819 => 0.032484526904965
820 => 0.032279750853305
821 => 0.031992167722018
822 => 0.030950570772334
823 => 0.029779470939991
824 => 0.029814819082658
825 => 0.03018732415024
826 => 0.031270432873385
827 => 0.030847243557281
828 => 0.03054021485291
829 => 0.03048271760583
830 => 0.031202416031674
831 => 0.032220940085725
901 => 0.032698808783694
902 => 0.032225255417095
903 => 0.031681262807469
904 => 0.031714373116998
905 => 0.031934641172614
906 => 0.031957788230836
907 => 0.031603704965314
908 => 0.031703377330504
909 => 0.031551965893548
910 => 0.030622754184435
911 => 0.030605947691179
912 => 0.0303779041522
913 => 0.03037099908447
914 => 0.029983040136539
915 => 0.02992876199789
916 => 0.029158445959349
917 => 0.029665470308648
918 => 0.029325384995111
919 => 0.028812796209595
920 => 0.028724425709766
921 => 0.028721769185831
922 => 0.0292480832558
923 => 0.029659320022306
924 => 0.029331300924743
925 => 0.029256617334611
926 => 0.030054042689015
927 => 0.029952563043974
928 => 0.029864682325842
929 => 0.032129742427954
930 => 0.030336770612288
1001 => 0.029554932561404
1002 => 0.028587259506417
1003 => 0.028902338732552
1004 => 0.028968730554975
1005 => 0.026641651293908
1006 => 0.025697555527513
1007 => 0.025373577437984
1008 => 0.025187123467083
1009 => 0.025272092882964
1010 => 0.024422295961819
1011 => 0.024993373547172
1012 => 0.024257521245007
1013 => 0.024134153211878
1014 => 0.025449948282758
1015 => 0.025633033480108
1016 => 0.024851935148102
1017 => 0.025353526725583
1018 => 0.025171642646944
1019 => 0.024270135320703
1020 => 0.02423570437188
1021 => 0.023783359685087
1022 => 0.023075527841447
1023 => 0.02275202969524
1024 => 0.022583549051955
1025 => 0.022653067448997
1026 => 0.022617916820155
1027 => 0.022388535190158
1028 => 0.022631064706681
1029 => 0.022011502012078
1030 => 0.021764787154932
1031 => 0.021653351777699
1101 => 0.021103454225541
1102 => 0.021978585771576
1103 => 0.022150997710762
1104 => 0.022323749354729
1105 => 0.023827434472902
1106 => 0.023752314613768
1107 => 0.024431361555484
1108 => 0.024404975040016
1109 => 0.024211299852407
1110 => 0.02339421609391
1111 => 0.023719891116929
1112 => 0.022717514017211
1113 => 0.023468563095337
1114 => 0.02312581566064
1115 => 0.023352679842893
1116 => 0.022944757587683
1117 => 0.023170518606413
1118 => 0.022191882977604
1119 => 0.021278046797197
1120 => 0.021645801152734
1121 => 0.022045592195015
1122 => 0.022912441039542
1123 => 0.022396153019089
1124 => 0.022581829714255
1125 => 0.021959843867352
1126 => 0.020676509403716
1127 => 0.020683772937411
1128 => 0.020486359889142
1129 => 0.02031576619266
1130 => 0.022455454908876
1201 => 0.022189350793542
1202 => 0.021765348712602
1203 => 0.022332892347113
1204 => 0.022482959892206
1205 => 0.022487232104245
1206 => 0.022901297289562
1207 => 0.023122283953192
1208 => 0.023161233810468
1209 => 0.023812774326035
1210 => 0.024031162112827
1211 => 0.024930670499223
1212 => 0.023103534778731
1213 => 0.023065906120947
1214 => 0.022340878849937
1215 => 0.021881055092434
1216 => 0.022372363376009
1217 => 0.022807595444988
1218 => 0.022354402723525
1219 => 0.022413580125527
1220 => 0.021805205924168
1221 => 0.022022671074487
1222 => 0.022209981357661
1223 => 0.022106559628882
1224 => 0.021951732295232
1225 => 0.022771911378653
1226 => 0.022725633660459
1227 => 0.023489403278776
1228 => 0.024084816313944
1229 => 0.025151902915776
1230 => 0.024038342418282
1231 => 0.023997759847751
]
'min_raw' => 0.02031576619266
'max_raw' => 0.058738854631566
'avg_raw' => 0.039527310412113
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020315'
'max' => '$0.058738'
'avg' => '$0.039527'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035722862131987
'max_diff' => -0.019842015095463
'year' => 2030
]
5 => [
'items' => [
101 => 0.024394460984339
102 => 0.02403110137995
103 => 0.024260732107176
104 => 0.025114905855543
105 => 0.025132953200856
106 => 0.024830636914162
107 => 0.024812240940642
108 => 0.02487030409048
109 => 0.025210381772647
110 => 0.025091548180966
111 => 0.025229065421758
112 => 0.025401032837106
113 => 0.026112362979661
114 => 0.026283862268834
115 => 0.02586720790833
116 => 0.025904827132002
117 => 0.025748986963756
118 => 0.025598447313901
119 => 0.025936838462224
120 => 0.026555254936878
121 => 0.026551407800085
122 => 0.026694868401907
123 => 0.026784243168349
124 => 0.026400581244449
125 => 0.02615083143963
126 => 0.026246601406791
127 => 0.026399739669879
128 => 0.026196940732017
129 => 0.024945171741926
130 => 0.025324878490207
131 => 0.025261676720581
201 => 0.025171669715037
202 => 0.025553467786619
203 => 0.025516642431212
204 => 0.024413580066117
205 => 0.024484194539853
206 => 0.024417874366147
207 => 0.024632168415222
208 => 0.024019528798046
209 => 0.024207972618099
210 => 0.024326162815485
211 => 0.024395777749725
212 => 0.024647274627607
213 => 0.024617764371754
214 => 0.024645440228669
215 => 0.025018343705855
216 => 0.02690436152844
217 => 0.027007013317259
218 => 0.026501518365984
219 => 0.026703453628572
220 => 0.026315782082791
221 => 0.026576028588647
222 => 0.026754082638409
223 => 0.025949490625359
224 => 0.025901847908105
225 => 0.025512576303952
226 => 0.025721748814553
227 => 0.025388940310152
228 => 0.025470599875984
301 => 0.025242272610963
302 => 0.025653216228497
303 => 0.026112715047082
304 => 0.026228802594815
305 => 0.025923426235562
306 => 0.025702313626179
307 => 0.025314112723125
308 => 0.025959699476525
309 => 0.026148488717119
310 => 0.025958707847015
311 => 0.025914731472617
312 => 0.025831396322598
313 => 0.025932411418645
314 => 0.026147460530371
315 => 0.026046047340614
316 => 0.026113032539119
317 => 0.025857754037256
318 => 0.02640070825251
319 => 0.027263050215381
320 => 0.027265822785799
321 => 0.027164409049388
322 => 0.027122912733437
323 => 0.027226969381296
324 => 0.027283415844131
325 => 0.027619915962579
326 => 0.027980993996429
327 => 0.029665987629718
328 => 0.029192848160102
329 => 0.030687874752276
330 => 0.031870246681779
331 => 0.032224788324579
401 => 0.031898626695677
402 => 0.030782845382106
403 => 0.030728099827747
404 => 0.03239554818094
405 => 0.03192441764719
406 => 0.031868378169326
407 => 0.031272212805038
408 => 0.031624620371849
409 => 0.03154754366748
410 => 0.031425874318913
411 => 0.032098243407464
412 => 0.033356858318429
413 => 0.033160691381339
414 => 0.033014261862724
415 => 0.032372650337144
416 => 0.032759043784666
417 => 0.032621456478882
418 => 0.03321261885959
419 => 0.032862427361109
420 => 0.031920848370027
421 => 0.032070797927842
422 => 0.032048133353835
423 => 0.032514568680871
424 => 0.032374556373331
425 => 0.032020793703671
426 => 0.033352556509492
427 => 0.033266079240536
428 => 0.03338868423646
429 => 0.033442658747351
430 => 0.034253279298962
501 => 0.034585364601993
502 => 0.034660753779752
503 => 0.034976209133232
504 => 0.034652904963184
505 => 0.035946352155342
506 => 0.03680641906339
507 => 0.037805431035727
508 => 0.039265256036415
509 => 0.03981416374081
510 => 0.039715008477093
511 => 0.040821831131862
512 => 0.042810766839197
513 => 0.040117029249394
514 => 0.042953541472363
515 => 0.042055534451679
516 => 0.039926375960095
517 => 0.039789283254367
518 => 0.041231174104906
519 => 0.04442914923455
520 => 0.043628092735708
521 => 0.044430459476012
522 => 0.043494456053229
523 => 0.043447975594031
524 => 0.044384999878966
525 => 0.046574408195251
526 => 0.045534302372927
527 => 0.044043055632216
528 => 0.045144169019188
529 => 0.04419028270016
530 => 0.042040909847419
531 => 0.0436274801829
601 => 0.042566585782485
602 => 0.042876211168775
603 => 0.045106053402314
604 => 0.044837752885344
605 => 0.045184958598263
606 => 0.044572149602917
607 => 0.043999689370156
608 => 0.042931149834252
609 => 0.042614807956033
610 => 0.042702233470384
611 => 0.04261476463229
612 => 0.042016926582337
613 => 0.04188782351237
614 => 0.041672646072957
615 => 0.041739338559005
616 => 0.041334742020528
617 => 0.042098299282545
618 => 0.042240022238819
619 => 0.042795675538723
620 => 0.042853365307628
621 => 0.044400851838631
622 => 0.043548522261809
623 => 0.044120338528537
624 => 0.044069189899497
625 => 0.039972521280781
626 => 0.040537006071227
627 => 0.041415167260075
628 => 0.041019556834818
629 => 0.040460256252088
630 => 0.040008591043733
701 => 0.039324272067937
702 => 0.040287437885188
703 => 0.041553898513608
704 => 0.042885484839143
705 => 0.044485298560281
706 => 0.044128238761608
707 => 0.042855577434433
708 => 0.042912668091891
709 => 0.043265580071946
710 => 0.04280852699234
711 => 0.042673733116428
712 => 0.043247061463297
713 => 0.043251009660526
714 => 0.042725114855729
715 => 0.04214067901793
716 => 0.04213823021043
717 => 0.042034235498074
718 => 0.043512956481531
719 => 0.044326103506878
720 => 0.044419329502882
721 => 0.044319828654561
722 => 0.044358122582033
723 => 0.043884970244455
724 => 0.04496645617919
725 => 0.045958934620776
726 => 0.045692929197222
727 => 0.045294149252415
728 => 0.044976501818531
729 => 0.04561810155678
730 => 0.045589532130407
731 => 0.045950266187408
801 => 0.045933901206882
802 => 0.045812599911406
803 => 0.045692933529273
804 => 0.046167397207957
805 => 0.04603075928815
806 => 0.045893909131912
807 => 0.045619435192868
808 => 0.045656740759713
809 => 0.045258029669886
810 => 0.045073567675954
811 => 0.042299701873422
812 => 0.041558434292306
813 => 0.041791652163218
814 => 0.041868433541822
815 => 0.04154583294056
816 => 0.042008359333475
817 => 0.041936275085075
818 => 0.042216712727721
819 => 0.042041507463783
820 => 0.042048697948929
821 => 0.042563939272471
822 => 0.042713516020688
823 => 0.042637440079312
824 => 0.042690721060921
825 => 0.043918558793602
826 => 0.043743999532055
827 => 0.043651268403453
828 => 0.043676955559812
829 => 0.04399069442565
830 => 0.044078524178577
831 => 0.043706383343736
901 => 0.043881887112768
902 => 0.04462915988656
903 => 0.044890663065411
904 => 0.045725255683658
905 => 0.045370705905726
906 => 0.046021497367675
907 => 0.048021808450548
908 => 0.049619795354546
909 => 0.048150220558028
910 => 0.051084720004815
911 => 0.053369648753083
912 => 0.053281949381976
913 => 0.052883519203362
914 => 0.050282188571432
915 => 0.047888405340276
916 => 0.049890906658543
917 => 0.049896011446222
918 => 0.049723994807052
919 => 0.048655614234686
920 => 0.049686817478983
921 => 0.049768670647735
922 => 0.049722854639748
923 => 0.048903729759866
924 => 0.047653077467869
925 => 0.047897451932087
926 => 0.048297742289579
927 => 0.04753990913353
928 => 0.047297735521442
929 => 0.047747982341728
930 => 0.049198771409342
1001 => 0.048924508139958
1002 => 0.04891734601761
1003 => 0.050090760589759
1004 => 0.049250848994814
1005 => 0.047900534276676
1006 => 0.047559562001883
1007 => 0.046349340132815
1008 => 0.047185244688443
1009 => 0.047215327405268
1010 => 0.046757511022888
1011 => 0.047937683552936
1012 => 0.047926808055306
1013 => 0.049047206227087
1014 => 0.051188986729197
1015 => 0.050555556844105
1016 => 0.04981894680472
1017 => 0.049899036739982
1018 => 0.050777425651004
1019 => 0.050246331663731
1020 => 0.050437316764473
1021 => 0.05077713657218
1022 => 0.05098215829942
1023 => 0.049869537268537
1024 => 0.049610132083422
1025 => 0.049079480113526
1026 => 0.048941042919668
1027 => 0.049373247876732
1028 => 0.049259377140572
1029 => 0.047212799069405
1030 => 0.046998920273915
1031 => 0.047005479631224
1101 => 0.046467671230582
1102 => 0.045647384330798
1103 => 0.047803049326645
1104 => 0.047629919258966
1105 => 0.047438797063452
1106 => 0.047462208441874
1107 => 0.048397909554306
1108 => 0.047855155655057
1109 => 0.049298155851826
1110 => 0.049001518391926
1111 => 0.048697273300496
1112 => 0.048655217361329
1113 => 0.048538108958099
1114 => 0.048136500669309
1115 => 0.047651534527678
1116 => 0.047331317873925
1117 => 0.0436606388147
1118 => 0.044341895496734
1119 => 0.045125619210914
1120 => 0.045396157496474
1121 => 0.044933383038345
1122 => 0.048154773825559
1123 => 0.048743352964477
1124 => 0.046960508360627
1125 => 0.046627010928312
1126 => 0.048176637861701
1127 => 0.047242023386679
1128 => 0.047662880227554
1129 => 0.046753217933967
1130 => 0.048601581485521
1201 => 0.048587500052114
1202 => 0.047868444883375
1203 => 0.048476185388116
1204 => 0.048370575519658
1205 => 0.047558764005107
1206 => 0.048627317358534
1207 => 0.048627847347666
1208 => 0.047935772381363
1209 => 0.047127580335411
1210 => 0.046983094686239
1211 => 0.046874244158504
1212 => 0.04763610967039
1213 => 0.048319195906056
1214 => 0.04959025003919
1215 => 0.049909823247761
1216 => 0.051157138756009
1217 => 0.050414423101537
1218 => 0.050743659331386
1219 => 0.051101091832196
1220 => 0.051272458117229
1221 => 0.050993225951789
1222 => 0.052930820351643
1223 => 0.053094412685349
1224 => 0.053149263779772
1225 => 0.052495917849894
1226 => 0.053076241953145
1227 => 0.052804727523548
1228 => 0.053511132640478
1229 => 0.053621905982646
1230 => 0.053528084902706
1231 => 0.053563246109948
]
'min_raw' => 0.024019528798046
'max_raw' => 0.053621905982646
'avg_raw' => 0.038820717390346
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.024019'
'max' => '$0.053621'
'avg' => '$0.03882'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0037037626053865
'max_diff' => -0.0051169486489203
'year' => 2031
]
6 => [
'items' => [
101 => 0.051909851104748
102 => 0.051824113851375
103 => 0.050655080317995
104 => 0.051131470123907
105 => 0.050240882215712
106 => 0.050523296815472
107 => 0.050647782480102
108 => 0.050582758233398
109 => 0.051158404488763
110 => 0.050668987574943
111 => 0.04937733587178
112 => 0.048085332258974
113 => 0.048069112206059
114 => 0.047728950460565
115 => 0.047483075822304
116 => 0.047530440000505
117 => 0.04769735754229
118 => 0.047473374271336
119 => 0.047521172458434
120 => 0.048314940841916
121 => 0.048474125430326
122 => 0.047933154001475
123 => 0.045761075652831
124 => 0.045228042177828
125 => 0.045611176069147
126 => 0.045428062746079
127 => 0.036663992151013
128 => 0.038722980538028
129 => 0.037499599555103
130 => 0.038063389797087
131 => 0.03681463460649
201 => 0.03741060603631
202 => 0.037300551874614
203 => 0.040611344271037
204 => 0.040559650801613
205 => 0.040584393729869
206 => 0.039403349296864
207 => 0.041284785147492
208 => 0.042211648101757
209 => 0.042040110436581
210 => 0.042083282771272
211 => 0.041341439024496
212 => 0.040591576398928
213 => 0.039759863344142
214 => 0.041305083397094
215 => 0.041133281304991
216 => 0.041527333491832
217 => 0.042529519150782
218 => 0.042677094795996
219 => 0.042875437959727
220 => 0.042804346054557
221 => 0.044498043657591
222 => 0.044292925702487
223 => 0.044787200957824
224 => 0.043770439256841
225 => 0.042619876880273
226 => 0.04283856117334
227 => 0.04281750011737
228 => 0.042549368702111
229 => 0.042307311649382
301 => 0.041904354855738
302 => 0.04317936977721
303 => 0.043127606499849
304 => 0.043965593792098
305 => 0.043817471398419
306 => 0.042828273801731
307 => 0.042863603187416
308 => 0.043101210284873
309 => 0.043923571162121
310 => 0.044167703861087
311 => 0.04405461186792
312 => 0.044322292227254
313 => 0.044533855869065
314 => 0.044348861363375
315 => 0.046967993445063
316 => 0.045880347199494
317 => 0.046410458411791
318 => 0.046536886812327
319 => 0.046213043122856
320 => 0.046283273223129
321 => 0.046389652688486
322 => 0.047035567970897
323 => 0.048730636569037
324 => 0.049481370912431
325 => 0.051739992225112
326 => 0.049419032875939
327 => 0.049281316753243
328 => 0.049688162655486
329 => 0.051014212465377
330 => 0.052088851286768
331 => 0.052445370981224
401 => 0.052492490944345
402 => 0.053161345592126
403 => 0.053544720602834
404 => 0.053080129045262
405 => 0.052686436344984
406 => 0.051276277959523
407 => 0.051439507632374
408 => 0.052563998211238
409 => 0.054152407386048
410 => 0.055515427703843
411 => 0.055038145494605
412 => 0.058679471842359
413 => 0.059040494476255
414 => 0.05899061282151
415 => 0.059813076108895
416 => 0.058180653975171
417 => 0.057482761886314
418 => 0.052771557175386
419 => 0.054095213531614
420 => 0.056019225781003
421 => 0.055764575545121
422 => 0.054367306420619
423 => 0.055514367749916
424 => 0.055135113402526
425 => 0.054835979763463
426 => 0.056206368953922
427 => 0.054699569746527
428 => 0.056004194306268
429 => 0.054330999813787
430 => 0.055040325679534
501 => 0.054637678011904
502 => 0.054898240399503
503 => 0.053374998005766
504 => 0.054196902626807
505 => 0.053340804071359
506 => 0.053340398169176
507 => 0.053321499746116
508 => 0.054328695900079
509 => 0.0543615405305
510 => 0.053617221050932
511 => 0.053509952985471
512 => 0.05390657924495
513 => 0.053442233771682
514 => 0.053659498096069
515 => 0.053448814486737
516 => 0.053401385168601
517 => 0.053023460292258
518 => 0.052860639864268
519 => 0.052924485949448
520 => 0.052706546345815
521 => 0.052575229851406
522 => 0.05329537759019
523 => 0.052910631704035
524 => 0.053236409765104
525 => 0.052865144548046
526 => 0.051578177553171
527 => 0.05083802922499
528 => 0.048407067873574
529 => 0.049096485497237
530 => 0.04955357009498
531 => 0.049402503638153
601 => 0.049727052842376
602 => 0.049746977527636
603 => 0.049641463272956
604 => 0.049519291283249
605 => 0.049459824715194
606 => 0.049903039793427
607 => 0.050160341064275
608 => 0.049599444649367
609 => 0.049468034467129
610 => 0.050035131710541
611 => 0.050381060701421
612 => 0.05293520600937
613 => 0.052745986675176
614 => 0.053220890071583
615 => 0.053167423237134
616 => 0.053665197654612
617 => 0.054478848452024
618 => 0.052824468880545
619 => 0.053111611970012
620 => 0.053041211115577
621 => 0.053809829184204
622 => 0.053812228725917
623 => 0.053351403798455
624 => 0.053601224467663
625 => 0.053461781423582
626 => 0.053713773851093
627 => 0.052743459535606
628 => 0.053925197632912
629 => 0.054595166984563
630 => 0.05460446950966
701 => 0.054922029665137
702 => 0.055244689174946
703 => 0.055864006006303
704 => 0.055227416764654
705 => 0.054082254689642
706 => 0.054164931692607
707 => 0.053493523587026
708 => 0.05350481007858
709 => 0.053444561902124
710 => 0.053625371214941
711 => 0.05278313701198
712 => 0.052980807695981
713 => 0.052704067580822
714 => 0.053111010391048
715 => 0.052673207197301
716 => 0.053041177166153
717 => 0.053199980806312
718 => 0.053785969657297
719 => 0.052586656167557
720 => 0.050141174775593
721 => 0.05065524461278
722 => 0.049894894944266
723 => 0.049965268200942
724 => 0.050107433379249
725 => 0.049646629522805
726 => 0.049734536377016
727 => 0.049731395725593
728 => 0.049704331288343
729 => 0.049584458408192
730 => 0.049410619015848
731 => 0.050103141650006
801 => 0.050220814740238
802 => 0.050482387443214
803 => 0.051260650380809
804 => 0.05118288356064
805 => 0.051309724470851
806 => 0.051032831476041
807 => 0.049978112472823
808 => 0.050035388789104
809 => 0.04932115220729
810 => 0.050464122807994
811 => 0.050193452283273
812 => 0.050018949235169
813 => 0.049971334461734
814 => 0.050751526562619
815 => 0.050984972267217
816 => 0.05083950457007
817 => 0.050541146079251
818 => 0.051114082583393
819 => 0.05126737622165
820 => 0.051301693014004
821 => 0.052316826649665
822 => 0.05135842770751
823 => 0.051589123858553
824 => 0.053388949373869
825 => 0.051756755990421
826 => 0.052621365227889
827 => 0.052579047104924
828 => 0.053021351934032
829 => 0.052542765199027
830 => 0.052548697855188
831 => 0.052941434579112
901 => 0.052389906680803
902 => 0.052253340617028
903 => 0.052064675578026
904 => 0.052476618788513
905 => 0.052723560112611
906 => 0.054713725826422
907 => 0.055999463640128
908 => 0.055943646370742
909 => 0.056453711727373
910 => 0.056223922612548
911 => 0.055481872945471
912 => 0.056748461243854
913 => 0.05634765970994
914 => 0.056380701301422
915 => 0.056379471491737
916 => 0.056645969473112
917 => 0.056457131229127
918 => 0.056084911666384
919 => 0.056332008382892
920 => 0.057065797292229
921 => 0.059343500582203
922 => 0.060618133518828
923 => 0.059266766078942
924 => 0.060198921243444
925 => 0.059639960305589
926 => 0.059538380475533
927 => 0.060123842804566
928 => 0.060710329907904
929 => 0.060672973214874
930 => 0.060247213694297
1001 => 0.060006712944371
1002 => 0.061827865196473
1003 => 0.063169659153303
1004 => 0.063078157800948
1005 => 0.063482015012409
1006 => 0.064667752276091
1007 => 0.064776161231339
1008 => 0.064762504194729
1009 => 0.064493801287843
1010 => 0.065661313611379
1011 => 0.066635272932098
1012 => 0.064431604328472
1013 => 0.065270732484592
1014 => 0.065647444148895
1015 => 0.066200568637407
1016 => 0.067133782363954
1017 => 0.068147499993699
1018 => 0.068290850781394
1019 => 0.068189136537558
1020 => 0.067520562510548
1021 => 0.068629784437182
1022 => 0.06927954062735
1023 => 0.069666455569188
1024 => 0.070647607485184
1025 => 0.065649770591886
1026 => 0.0621120532302
1027 => 0.061559587578914
1028 => 0.062683048205442
1029 => 0.062979295813226
1030 => 0.062859878773991
1031 => 0.058877856248222
1101 => 0.061538623054415
1102 => 0.06440138441425
1103 => 0.064511354737044
1104 => 0.065944512931295
1105 => 0.066411207986482
1106 => 0.067565088181193
1107 => 0.067492912660846
1108 => 0.067773864126014
1109 => 0.067709278249573
1110 => 0.069846598332133
1111 => 0.0722043797783
1112 => 0.072122737304106
1113 => 0.071783778325215
1114 => 0.072287190209962
1115 => 0.074720673337622
1116 => 0.074496637206999
1117 => 0.074714269224547
1118 => 0.077583482977157
1119 => 0.081313868996447
1120 => 0.079580730165854
1121 => 0.083341142730977
1122 => 0.085708123109818
1123 => 0.089801570924682
1124 => 0.089289051097606
1125 => 0.090882600292825
1126 => 0.088371533641023
1127 => 0.082605617038185
1128 => 0.081693138664744
1129 => 0.083519943476006
1130 => 0.088010964847487
1201 => 0.08337850523083
1202 => 0.084315645777951
1203 => 0.084045749237336
1204 => 0.084031367597672
1205 => 0.084580256289252
1206 => 0.083784064614007
1207 => 0.080540236496911
1208 => 0.082026863806977
1209 => 0.081452805608854
1210 => 0.082089765978545
1211 => 0.085527178391332
1212 => 0.084007416425962
1213 => 0.082406470650881
1214 => 0.08441441193114
1215 => 0.086971211184394
1216 => 0.086811211282135
1217 => 0.086500744596983
1218 => 0.088250829045681
1219 => 0.091141455828298
1220 => 0.091922780632161
1221 => 0.09249953862889
1222 => 0.092579063812232
1223 => 0.093398222625288
1224 => 0.088993399232886
1225 => 0.095983967080517
1226 => 0.097191045037263
1227 => 0.09696416440965
1228 => 0.098305780756968
1229 => 0.097911043194065
1230 => 0.097339130397845
1231 => 0.099465877678325
]
'min_raw' => 0.036663992151013
'max_raw' => 0.099465877678325
'avg_raw' => 0.068064934914669
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036663'
'max' => '$0.099465'
'avg' => '$0.068064'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012644463352967
'max_diff' => 0.045843971695679
'year' => 2032
]
7 => [
'items' => [
101 => 0.097027733540911
102 => 0.093567094891662
103 => 0.091668520085013
104 => 0.09416871654407
105 => 0.095695499276783
106 => 0.096704605541488
107 => 0.097009960487468
108 => 0.089335333133914
109 => 0.085199134644694
110 => 0.087850390454672
111 => 0.091085105522746
112 => 0.088975430227358
113 => 0.089058125504793
114 => 0.086050282946484
115 => 0.091351232847518
116 => 0.090578929034943
117 => 0.094585642580761
118 => 0.093629408237166
119 => 0.096896727594056
120 => 0.096036332907591
121 => 0.099607783147088
122 => 0.10103253134078
123 => 0.10342490530233
124 => 0.10518474532717
125 => 0.10621815705013
126 => 0.10615611488651
127 => 0.11025100697655
128 => 0.10783639217569
129 => 0.10480306690479
130 => 0.10474820362066
131 => 0.10631920576101
201 => 0.10961159526379
202 => 0.11046526395954
203 => 0.11094234830084
204 => 0.11021167702471
205 => 0.10759078571538
206 => 0.10645909813623
207 => 0.10742332874181
208 => 0.10624415756847
209 => 0.10827973783066
210 => 0.11107502430712
211 => 0.11049780870349
212 => 0.11242735392543
213 => 0.11442423023606
214 => 0.11727985304558
215 => 0.1180264185914
216 => 0.11926046304929
217 => 0.12053070015894
218 => 0.12093866608471
219 => 0.1217175996214
220 => 0.12171349425717
221 => 0.12406086289826
222 => 0.12665008320133
223 => 0.12762745392515
224 => 0.12987486401205
225 => 0.12602625299688
226 => 0.12894546866154
227 => 0.13157867426377
228 => 0.12843925799047
301 => 0.13276621193304
302 => 0.13293421774954
303 => 0.13547090611302
304 => 0.13289948648594
305 => 0.13137258571965
306 => 0.13578069101972
307 => 0.13791363432041
308 => 0.13727117443977
309 => 0.13238202302598
310 => 0.12953632719758
311 => 0.12208859232094
312 => 0.13091075600053
313 => 0.13520777458281
314 => 0.13237089478593
315 => 0.13380165194404
316 => 0.14160739907407
317 => 0.14457932219649
318 => 0.14396118296234
319 => 0.14406563831747
320 => 0.14566923409011
321 => 0.1527804608623
322 => 0.14851924894346
323 => 0.15177678579085
324 => 0.15350457158879
325 => 0.15510943532846
326 => 0.15116839720622
327 => 0.14604116451454
328 => 0.1444171546945
329 => 0.13208882299892
330 => 0.13144707979494
331 => 0.13108684988773
401 => 0.12881565127833
402 => 0.12703111130499
403 => 0.12561197886248
404 => 0.12188775154449
405 => 0.12314456893847
406 => 0.11720892790025
407 => 0.1210063406903
408 => 0.11153291427224
409 => 0.11942266529759
410 => 0.11512863251745
411 => 0.11801196004167
412 => 0.11800190038357
413 => 0.11269278025165
414 => 0.10963059055808
415 => 0.11158193701303
416 => 0.11367393531082
417 => 0.1140133549963
418 => 0.11672568539612
419 => 0.11748263850937
420 => 0.11518903523748
421 => 0.11133659856643
422 => 0.11223143174039
423 => 0.10961245679237
424 => 0.10502280393338
425 => 0.10831917274436
426 => 0.10944469798753
427 => 0.10994179405467
428 => 0.10542839759305
429 => 0.1040101904342
430 => 0.10325514884274
501 => 0.11075397576004
502 => 0.11116477842622
503 => 0.10906305390442
504 => 0.11856304803662
505 => 0.11641290678107
506 => 0.11881514136092
507 => 0.11215023500905
508 => 0.11240484340718
509 => 0.10924956993034
510 => 0.11101631224192
511 => 0.10976763572086
512 => 0.11087357692243
513 => 0.11153647351869
514 => 0.1146912292462
515 => 0.11945868754044
516 => 0.11422001394234
517 => 0.11193744883646
518 => 0.11335353939051
519 => 0.11712477514619
520 => 0.12283839036206
521 => 0.11945581515705
522 => 0.12095694459318
523 => 0.12128487459437
524 => 0.11879068886794
525 => 0.12293035454746
526 => 0.12514883501571
527 => 0.12742453692627
528 => 0.1294004651315
529 => 0.12651557153943
530 => 0.1296028212162
531 => 0.12711504294966
601 => 0.12488324866278
602 => 0.12488663337347
603 => 0.123486596216
604 => 0.12077384780737
605 => 0.12027357537979
606 => 0.1228760557255
607 => 0.12496299850695
608 => 0.12513488911021
609 => 0.12629032786502
610 => 0.12697410461815
611 => 0.13367604634821
612 => 0.13637162275342
613 => 0.13966772255705
614 => 0.14095173918857
615 => 0.14481616890401
616 => 0.14169532805516
617 => 0.1410201145065
618 => 0.13164627206217
619 => 0.1331812382373
620 => 0.13563886718588
621 => 0.13168679745833
622 => 0.1341934760594
623 => 0.13468834751397
624 => 0.13155250764127
625 => 0.13322749520892
626 => 0.12877922482844
627 => 0.11955564767902
628 => 0.12294062302553
629 => 0.12543310425094
630 => 0.12187602622156
701 => 0.1282519509113
702 => 0.12452726733335
703 => 0.12334672145549
704 => 0.11874099109094
705 => 0.12091471853219
706 => 0.12385471602125
707 => 0.1220381393844
708 => 0.12580780866622
709 => 0.13114666570335
710 => 0.13495145316245
711 => 0.13524353749932
712 => 0.13279731406409
713 => 0.13671740273064
714 => 0.13674595629692
715 => 0.13232408026701
716 => 0.12961570581981
717 => 0.12900035744693
718 => 0.13053761832853
719 => 0.1324041368328
720 => 0.135347116286
721 => 0.13712549713316
722 => 0.14176257120223
723 => 0.14301723048998
724 => 0.1443957206583
725 => 0.1462378086338
726 => 0.14844970755004
727 => 0.14361019864477
728 => 0.14380248135555
729 => 0.13929599767053
730 => 0.13448017355794
731 => 0.13813478375844
801 => 0.14291270044318
802 => 0.14181664107657
803 => 0.14169331200737
804 => 0.14190071729314
805 => 0.14107432432467
806 => 0.13733657955583
807 => 0.13545950753245
808 => 0.13788140933476
809 => 0.13916854235624
810 => 0.14116477342277
811 => 0.14091869580849
812 => 0.1460607726563
813 => 0.14805882823102
814 => 0.14754764011339
815 => 0.14764171102946
816 => 0.15125909520792
817 => 0.15528237038617
818 => 0.15905069850852
819 => 0.16288400372803
820 => 0.15826280466946
821 => 0.15591644478345
822 => 0.1583372892592
823 => 0.15705275510452
824 => 0.16443406937493
825 => 0.16494513556
826 => 0.17232591607738
827 => 0.17933115567537
828 => 0.17493129019577
829 => 0.17908016516874
830 => 0.18356751171473
831 => 0.1922243312477
901 => 0.18930901897958
902 => 0.18707593547097
903 => 0.18496568234551
904 => 0.18935678410634
905 => 0.19500586637208
906 => 0.19622262458588
907 => 0.19819423772966
908 => 0.19612132758636
909 => 0.1986179195304
910 => 0.20743198615093
911 => 0.20505034754614
912 => 0.20166803785984
913 => 0.20862589694479
914 => 0.21114391909964
915 => 0.22881671728083
916 => 0.25112935501146
917 => 0.2418917764783
918 => 0.23615771338797
919 => 0.23750535422799
920 => 0.24565317419676
921 => 0.24826999537185
922 => 0.24115657334561
923 => 0.24366915426219
924 => 0.25751372214409
925 => 0.2649408886258
926 => 0.25485379894209
927 => 0.2270239185645
928 => 0.20136349787924
929 => 0.20816979694877
930 => 0.20739817385834
1001 => 0.22227243490242
1002 => 0.20499354625308
1003 => 0.20528447842375
1004 => 0.22046632343411
1005 => 0.21641606746806
1006 => 0.20985517152065
1007 => 0.20141139968037
1008 => 0.18580230647925
1009 => 0.17197689733926
1010 => 0.19909170846436
1011 => 0.19792246850356
1012 => 0.19622923576867
1013 => 0.19999734199326
1014 => 0.21829419622421
1015 => 0.21787239451305
1016 => 0.21518910723177
1017 => 0.21722435698521
1018 => 0.20949838239859
1019 => 0.21148954196673
1020 => 0.2013594331375
1021 => 0.20593866539903
1022 => 0.2098410947846
1023 => 0.21062456526021
1024 => 0.21238976424675
1025 => 0.1973063321749
1026 => 0.20407835034886
1027 => 0.20805627657377
1028 => 0.19008386117143
1029 => 0.20770101970699
1030 => 0.19704376318013
1031 => 0.1934265302483
1101 => 0.19829665785681
1102 => 0.19639876439142
1103 => 0.19476706703792
1104 => 0.19385655187855
1105 => 0.19743263609787
1106 => 0.19726580749469
1107 => 0.19141463962385
1108 => 0.18378202966044
1109 => 0.18634378409604
1110 => 0.18541307469301
1111 => 0.18204006375253
1112 => 0.18431306586752
1113 => 0.17430391489314
1114 => 0.15708369087212
1115 => 0.16845989833013
1116 => 0.16802192671793
1117 => 0.16780108157063
1118 => 0.17634998706004
1119 => 0.17552820705404
1120 => 0.17403666829626
1121 => 0.18201267047356
1122 => 0.17910132238648
1123 => 0.18807341119099
1124 => 0.19398300915596
1125 => 0.19248414395657
1126 => 0.1980421494062
1127 => 0.18640280174422
1128 => 0.19026892614795
1129 => 0.19106572902934
1130 => 0.18191424784477
1201 => 0.17566266042615
1202 => 0.17524575081864
1203 => 0.16440635975656
1204 => 0.17019667496942
1205 => 0.17529191273721
1206 => 0.17285168925286
1207 => 0.17207918739732
1208 => 0.17602573184207
1209 => 0.17633241214529
1210 => 0.16934006873125
1211 => 0.17079399834575
1212 => 0.17685712653389
1213 => 0.17064122307179
1214 => 0.15856473800701
1215 => 0.15556960274047
1216 => 0.15516999648462
1217 => 0.1470469520946
1218 => 0.15576975200078
1219 => 0.15196201608523
1220 => 0.16399060821877
1221 => 0.15711994090272
1222 => 0.15682376016696
1223 => 0.15637603954458
1224 => 0.14938419967935
1225 => 0.15091496825524
1226 => 0.1560034761441
1227 => 0.15781911308499
1228 => 0.15762972727698
1229 => 0.15597853967942
1230 => 0.15673444490613
1231 => 0.15429941079604
]
'min_raw' => 0.085199134644694
'max_raw' => 0.2649408886258
'avg_raw' => 0.17507001163525
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.085199'
'max' => '$0.26494'
'avg' => '$0.17507'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.048535142493681
'max_diff' => 0.16547501094748
'year' => 2033
]
8 => [
'items' => [
101 => 0.15343954957092
102 => 0.15072559102096
103 => 0.14673682170271
104 => 0.14729148454095
105 => 0.13938868880323
106 => 0.1350828262522
107 => 0.13389102024843
108 => 0.13229728745119
109 => 0.13407103660864
110 => 0.13936630117584
111 => 0.13297908865475
112 => 0.12202866079822
113 => 0.12268680017102
114 => 0.12416544393836
115 => 0.12141000106012
116 => 0.11880220562266
117 => 0.1210694721784
118 => 0.11642963153865
119 => 0.12472614651258
120 => 0.12450174903325
121 => 0.12759417676248
122 => 0.12952793528458
123 => 0.1250712479529
124 => 0.12395040314115
125 => 0.12458888728548
126 => 0.1140361666207
127 => 0.12673179434865
128 => 0.12684158666444
129 => 0.12590147819981
130 => 0.13266150803141
131 => 0.14692727948227
201 => 0.14155992242313
202 => 0.13948151954061
203 => 0.13553047414162
204 => 0.14079500754591
205 => 0.14039077351997
206 => 0.13856267395349
207 => 0.13745703363167
208 => 0.13949420982541
209 => 0.13720460495683
210 => 0.1367933290083
211 => 0.13430144423285
212 => 0.13341195474155
213 => 0.13275341213379
214 => 0.1320284214297
215 => 0.13362757026649
216 => 0.13000368861677
217 => 0.12563364260071
218 => 0.12527032055903
219 => 0.12627348465972
220 => 0.12582965922195
221 => 0.12526819569359
222 => 0.12419620891245
223 => 0.12387817333387
224 => 0.12491163467535
225 => 0.12374491707535
226 => 0.12546647244855
227 => 0.12499830464504
228 => 0.12238315735185
301 => 0.11912371557299
302 => 0.11909469970425
303 => 0.11839245831955
304 => 0.11749804833343
305 => 0.11724924393663
306 => 0.120878529313
307 => 0.12839104142672
308 => 0.12691615553962
309 => 0.12798191174543
310 => 0.13322437746036
311 => 0.1348907996647
312 => 0.13370801265543
313 => 0.13208894084603
314 => 0.13216017178872
315 => 0.13769303028781
316 => 0.13803810788566
317 => 0.13891000764917
318 => 0.14003064524412
319 => 0.13389886208363
320 => 0.13187136535328
321 => 0.1309106249212
322 => 0.12795191624375
323 => 0.13114262989187
324 => 0.12928353768909
325 => 0.12953439274288
326 => 0.12937102306001
327 => 0.12946023395387
328 => 0.12472382746756
329 => 0.12644952505297
330 => 0.12358021811267
331 => 0.11973853821442
401 => 0.11972565955634
402 => 0.12066590526893
403 => 0.12010661032726
404 => 0.11860156202002
405 => 0.11881534702844
406 => 0.11694236539955
407 => 0.11904276090961
408 => 0.11910299273726
409 => 0.11829422605657
410 => 0.12153017513854
411 => 0.1228559461177
412 => 0.12232359856301
413 => 0.12281859519413
414 => 0.12697744370693
415 => 0.1276555174778
416 => 0.12795667305578
417 => 0.12755316447676
418 => 0.12289461131044
419 => 0.12310123795307
420 => 0.12158514874842
421 => 0.12030421313205
422 => 0.12035544383908
423 => 0.12101401125587
424 => 0.12389001378947
425 => 0.12994239157183
426 => 0.13017207488444
427 => 0.13045045775965
428 => 0.12931813470212
429 => 0.1289766152331
430 => 0.12942716756639
501 => 0.13170012244254
502 => 0.13754677948522
503 => 0.13548018040124
504 => 0.13380000317744
505 => 0.13527397157524
506 => 0.13504706569374
507 => 0.13313175170391
508 => 0.13307799521937
509 => 0.12940189530996
510 => 0.1280429248742
511 => 0.1269072674609
512 => 0.12566715921266
513 => 0.1249319814743
514 => 0.12606154861273
515 => 0.12631989398193
516 => 0.12385007569231
517 => 0.12351344858573
518 => 0.12553035551576
519 => 0.12464278997372
520 => 0.12555567314428
521 => 0.12576746987041
522 => 0.12573336571941
523 => 0.12480664535727
524 => 0.1253973092809
525 => 0.12400021301612
526 => 0.12248108066525
527 => 0.12151196887069
528 => 0.1206662902959
529 => 0.12113552192032
530 => 0.11946279685758
531 => 0.11892765844471
601 => 0.12519720563393
602 => 0.12982858755161
603 => 0.12976124542429
604 => 0.12935131754327
605 => 0.12874224786291
606 => 0.13165556520176
607 => 0.13064062369453
608 => 0.13137907844224
609 => 0.13156704616838
610 => 0.13213596786315
611 => 0.13233930846856
612 => 0.13172467192989
613 => 0.12966187663455
614 => 0.12452158688327
615 => 0.1221287681281
616 => 0.12133909808335
617 => 0.12136780108968
618 => 0.12057604403923
619 => 0.12080925197465
620 => 0.12049494383645
621 => 0.119899720262
622 => 0.1210987685419
623 => 0.12123694768625
624 => 0.12095707549016
625 => 0.12102299552386
626 => 0.11870577327522
627 => 0.11888194665004
628 => 0.11790099091201
629 => 0.11771707353672
630 => 0.11523730285255
701 => 0.11084402963704
702 => 0.11327832946378
703 => 0.11033803758743
704 => 0.10922450450116
705 => 0.11449579694163
706 => 0.1139667053835
707 => 0.11306113062655
708 => 0.11172159682271
709 => 0.11122475070472
710 => 0.10820607097417
711 => 0.10802771127166
712 => 0.10952385045733
713 => 0.10883343370215
714 => 0.10786382709661
715 => 0.10435201025877
716 => 0.10040356541044
717 => 0.10052274414138
718 => 0.1017786709842
719 => 0.10543044766452
720 => 0.10400363533914
721 => 0.10296846662629
722 => 0.10277461064344
723 => 0.10520112413391
724 => 0.10863514909322
725 => 0.11024631677215
726 => 0.10864969853422
727 => 0.10681558947052
728 => 0.10692722319078
729 => 0.10766987231891
730 => 0.10774791424179
731 => 0.10655409779077
801 => 0.10689015012891
802 => 0.10637965589801
803 => 0.10324675374524
804 => 0.10319008947984
805 => 0.10242122476668
806 => 0.10239794384873
807 => 0.10108991316935
808 => 0.10090691063532
809 => 0.098309736329631
810 => 0.1000192043226
811 => 0.098872582944015
812 => 0.097144354065842
813 => 0.096846406755837
814 => 0.096837450099916
815 => 0.098611954732893
816 => 0.0999984682028
817 => 0.098892528913807
818 => 0.098640727975436
819 => 0.10132930323227
820 => 0.10098715752393
821 => 0.10069086154711
822 => 0.10832766982283
823 => 0.10228254016502
824 => 0.099646518590272
825 => 0.096383941324606
826 => 0.097446252933649
827 => 0.097670097598279
828 => 0.089824187398106
829 => 0.086641102607042
830 => 0.085548787858769
831 => 0.084920145278074
901 => 0.085206625596093
902 => 0.082341475945527
903 => 0.084266903895909
904 => 0.08178592648359
905 => 0.081369982546616
906 => 0.085806277493967
907 => 0.086423562019432
908 => 0.083790034458529
909 => 0.085481185482013
910 => 0.08486795061214
911 => 0.081828455720487
912 => 0.081712369372637
913 => 0.080187257679418
914 => 0.077800753199345
915 => 0.076710056613487
916 => 0.076142012361711
917 => 0.076376398490956
918 => 0.076257885691676
919 => 0.075484509511227
920 => 0.076302214709057
921 => 0.074213315827717
922 => 0.073381499461765
923 => 0.073005787307258
924 => 0.071151769317534
925 => 0.074102336424726
926 => 0.074683635315108
927 => 0.075266079543876
928 => 0.08033585890374
929 => 0.080082587053969
930 => 0.082372041227505
1001 => 0.082283077248358
1002 => 0.081630087831367
1003 => 0.078875232892626
1004 => 0.07997326897064
1005 => 0.076593684595205
1006 => 0.079125898998681
1007 => 0.077970302092736
1008 => 0.078735190522355
1009 => 0.077359852158691
1010 => 0.078121021195472
1011 => 0.074821482846785
1012 => 0.071740420362538
1013 => 0.07298032984802
1014 => 0.074328253259588
1015 => 0.077250894660364
1016 => 0.07551019355333
1017 => 0.076136215494616
1018 => 0.074039146786115
1019 => 0.069712295042417
1020 => 0.069736784553392
1021 => 0.069071192678213
1022 => 0.068496024120053
1023 => 0.075710134015072
1024 => 0.074812945411425
1025 => 0.073383392792657
1026 => 0.075296905781042
1027 => 0.075802868986705
1028 => 0.07581727304787
1029 => 0.077213322729277
1030 => 0.0779583946945
1031 => 0.078089716857697
1101 => 0.08028643119504
1102 => 0.081022740865555
1103 => 0.084055496191961
1104 => 0.077895180543779
1105 => 0.077768312896913
1106 => 0.075323832832913
1107 => 0.073773504930624
1108 => 0.075429985110747
1109 => 0.076897400418241
1110 => 0.075369429516922
1111 => 0.075568950259408
1112 => 0.073517774164196
1113 => 0.074250973101428
1114 => 0.074882502798736
1115 => 0.074533809219482
1116 => 0.07401179805438
1117 => 0.07677708909721
1118 => 0.07662106053931
1119 => 0.07919616313216
1120 => 0.081203639750639
1121 => 0.084801396730323
1122 => 0.08104694976671
1123 => 0.080910122796781
1124 => 0.082247628375575
1125 => 0.08102253610042
1126 => 0.08179675212957
1127 => 0.084676658558694
1128 => 0.084737506443445
1129 => 0.083718225975806
1130 => 0.083656202666718
1201 => 0.083851966630234
1202 => 0.084998562279127
1203 => 0.084597906528078
1204 => 0.085061555506554
1205 => 0.085641355653783
1206 => 0.088039654892891
1207 => 0.088617876720037
1208 => 0.087213097453719
1209 => 0.087339933292821
1210 => 0.086814507285165
1211 => 0.086306952345337
1212 => 0.087447861727623
1213 => 0.089532896048379
1214 => 0.089519925158083
1215 => 0.090003612593222
1216 => 0.090304945858231
1217 => 0.089011402895381
1218 => 0.088169353991459
1219 => 0.088492249122186
1220 => 0.089008565467961
1221 => 0.088324814689989
1222 => 0.084104388144177
1223 => 0.085384595956285
1224 => 0.085171506777386
1225 => 0.084868041874105
1226 => 0.086155300728734
1227 => 0.086031141471916
1228 => 0.082312089694641
1229 => 0.082550171322988
1230 => 0.082326568227012
1231 => 0.083049075575001
]
'min_raw' => 0.068496024120053
'max_raw' => 0.15343954957092
'avg_raw' => 0.11096778684549
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.068496'
'max' => '$0.153439'
'avg' => '$0.110967'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016703110524641
'max_diff' => -0.11150133905489
'year' => 2034
]
9 => [
'items' => [
101 => 0.080983518332561
102 => 0.081618869828596
103 => 0.082017356330858
104 => 0.082252067942008
105 => 0.08310000722474
106 => 0.08300051133679
107 => 0.083093822420647
108 => 0.084351092529268
109 => 0.090709933295672
110 => 0.091056030968596
111 => 0.089351719447841
112 => 0.090032558284325
113 => 0.088725496601363
114 => 0.089602935865687
115 => 0.090203257525797
116 => 0.087490519378977
117 => 0.087329888631447
118 => 0.086017432239972
119 => 0.086722671963421
120 => 0.085600584854883
121 => 0.085875905782377
122 => 0.085106084467056
123 => 0.086491609564739
124 => 0.088040841912783
125 => 0.088432239184938
126 => 0.087402641469018
127 => 0.086657144868896
128 => 0.085348298420928
129 => 0.087524939233444
130 => 0.088161455338951
131 => 0.087521595885315
201 => 0.087373326468703
202 => 0.087092356192139
203 => 0.087432935641108
204 => 0.088157988735541
205 => 0.087816067085835
206 => 0.08804191235935
207 => 0.087181223067345
208 => 0.089011831111926
209 => 0.091919277246539
210 => 0.091928625161277
211 => 0.091586701668485
212 => 0.091446793942079
213 => 0.091797628195336
214 => 0.091987941385754
215 => 0.093122475028787
216 => 0.094339874829575
217 => 0.10002094850671
218 => 0.098425725751354
219 => 0.10346631228629
220 => 0.10745276179719
221 => 0.10864812369919
222 => 0.10754844699547
223 => 0.1037865123954
224 => 0.10360193393667
225 => 0.10922385247699
226 => 0.10763540298917
227 => 0.10744646197699
228 => 0.10543644882836
301 => 0.10662461554417
302 => 0.10636474605407
303 => 0.10595452935069
304 => 0.10822146867606
305 => 0.11246497672206
306 => 0.11180358619772
307 => 0.11130988885233
308 => 0.10914665079795
309 => 0.1104494032834
310 => 0.10998551807591
311 => 0.11197866331611
312 => 0.11079796822939
313 => 0.10762336892201
314 => 0.10812893432533
315 => 0.10805251913167
316 => 0.10962513840225
317 => 0.10915307713203
318 => 0.10796034159235
319 => 0.11245047287289
320 => 0.11215890872295
321 => 0.11257228002672
322 => 0.11275425885857
323 => 0.11548732264404
324 => 0.11660697142866
325 => 0.11686115130498
326 => 0.11792473105363
327 => 0.11683468847194
328 => 0.1211956359859
329 => 0.12409541161434
330 => 0.12746365022786
331 => 0.13238555213941
401 => 0.13423623278829
402 => 0.13390192389387
403 => 0.13763365375031
404 => 0.14433948935065
405 => 0.13525736499587
406 => 0.14482086399457
407 => 0.14179317062749
408 => 0.13461456412001
409 => 0.13415234649114
410 => 0.13901378216334
411 => 0.14979597858843
412 => 0.1470951606746
413 => 0.14980039615899
414 => 0.14664459526941
415 => 0.14648788315606
416 => 0.14964712595367
417 => 0.15702886895163
418 => 0.1535220795538
419 => 0.14849423705196
420 => 0.15220671771342
421 => 0.1489906233906
422 => 0.14174386275317
423 => 0.14709309541005
424 => 0.14351621586976
425 => 0.14456013947699
426 => 0.15207820824999
427 => 0.15117361432488
428 => 0.15234424262711
429 => 0.15027811431434
430 => 0.14834802467169
501 => 0.14474536902334
502 => 0.14367880029464
503 => 0.14397356152013
504 => 0.14367865422562
505 => 0.14166300150048
506 => 0.1412277214864
507 => 0.14050223572621
508 => 0.14072709409924
509 => 0.13936296862174
510 => 0.1419373552405
511 => 0.14241518408235
512 => 0.14428860797746
513 => 0.14448311306109
514 => 0.14970057194243
515 => 0.14682688326642
516 => 0.14875480173263
517 => 0.14858235055874
518 => 0.13477014629047
519 => 0.13667334617253
520 => 0.13963412793198
521 => 0.13830029976259
522 => 0.1364145787988
523 => 0.13489175801457
524 => 0.13258452881005
525 => 0.135831909609
526 => 0.14010187003918
527 => 0.14459140630411
528 => 0.14998528996035
529 => 0.14878143792
530 => 0.14449057140106
531 => 0.14468305653862
601 => 0.14587292391891
602 => 0.14433193755058
603 => 0.14387747058694
604 => 0.14581048713692
605 => 0.14582379875953
606 => 0.14405070770835
607 => 0.14208024147721
608 => 0.14207198515175
609 => 0.14172135971836
610 => 0.14670697075509
611 => 0.14944855272316
612 => 0.14976287067752
613 => 0.14942739662048
614 => 0.14955650727054
615 => 0.14796124112996
616 => 0.15160754646585
617 => 0.15495375682429
618 => 0.15405690096688
619 => 0.15271238654103
620 => 0.15164141604026
621 => 0.15380461435283
622 => 0.15370829053716
623 => 0.15492453059598
624 => 0.15486935492157
625 => 0.15446037913489
626 => 0.15405691557269
627 => 0.15565660299137
628 => 0.15519591870498
629 => 0.15473451884866
630 => 0.15380911080001
701 => 0.15393488912322
702 => 0.15259060684675
703 => 0.15196868035548
704 => 0.14261639813712
705 => 0.14011716273374
706 => 0.14090347306827
707 => 0.14116234684693
708 => 0.14007467639652
709 => 0.1416341164228
710 => 0.14139107934656
711 => 0.14233659443827
712 => 0.14174587765846
713 => 0.14177012088116
714 => 0.14350729297648
715 => 0.14401160142621
716 => 0.14375510607841
717 => 0.14393474662786
718 => 0.14807448726848
719 => 0.14748594853084
720 => 0.14717329905648
721 => 0.14725990509756
722 => 0.14831769758828
723 => 0.14861382173236
724 => 0.14735912292565
725 => 0.14795084613622
726 => 0.15047032846598
727 => 0.15135200469104
728 => 0.15416589197286
729 => 0.15297050264269
730 => 0.15516469149346
731 => 0.16190887996662
801 => 0.16729660438133
802 => 0.16234183035244
803 => 0.17223570011749
804 => 0.1799394969209
805 => 0.17964381236824
806 => 0.17830047720354
807 => 0.16952990935888
808 => 0.16145910206643
809 => 0.16821067507115
810 => 0.16822788621921
811 => 0.16764792011043
812 => 0.16404580041875
813 => 0.16752257415321
814 => 0.16779854782646
815 => 0.16764407595676
816 => 0.16488233923477
817 => 0.16066567771454
818 => 0.16148960328233
819 => 0.16283921017
820 => 0.16028412277416
821 => 0.15946761753298
822 => 0.16098565612281
823 => 0.16587709275512
824 => 0.16495239499395
825 => 0.16492824739841
826 => 0.1688844965536
827 => 0.16605267597049
828 => 0.16149999562232
829 => 0.16035038379193
830 => 0.15627003626538
831 => 0.15908834683567
901 => 0.15918977281575
902 => 0.15764621291884
903 => 0.16162524700091
904 => 0.16158857950135
905 => 0.16536608016121
906 => 0.17258724265841
907 => 0.17045158957616
908 => 0.1679680573999
909 => 0.16823808620834
910 => 0.17119963574901
911 => 0.16940901529112
912 => 0.17005293489243
913 => 0.17119866109957
914 => 0.17188990616712
915 => 0.16813862668078
916 => 0.16726402398807
917 => 0.16547489382263
918 => 0.16500814315816
919 => 0.16646535234649
920 => 0.16608142920932
921 => 0.15918124835487
922 => 0.15846014106333
923 => 0.15848225639446
924 => 0.15666899782311
925 => 0.15390334326989
926 => 0.16117131830711
927 => 0.16058759819637
928 => 0.15994321637047
929 => 0.16002214946735
930 => 0.16317693109648
1001 => 0.1613469984313
1002 => 0.16621217434176
1003 => 0.16521204043514
1004 => 0.16418625686767
1005 => 0.16404446233252
1006 => 0.16364962317478
1007 => 0.16229557278973
1008 => 0.16066047558397
1009 => 0.15958084277903
1010 => 0.14720489205222
1011 => 0.14950179651952
1012 => 0.15214417573972
1013 => 0.15305631445786
1014 => 0.1514960380624
1015 => 0.16235718201182
1016 => 0.16434161767196
1017 => 0.15833063261585
1018 => 0.15720622273875
1019 => 0.16243089813617
1020 => 0.15927978018093
1021 => 0.16069872840323
1022 => 0.15763173846981
1023 => 0.16386362523249
1024 => 0.16381614869663
1025 => 0.1613918039924
1026 => 0.16344084353522
1027 => 0.16308477249027
1028 => 0.16034769329009
1029 => 0.16395039552518
1030 => 0.16395218242054
1031 => 0.16161880335252
1101 => 0.15889392744342
1102 => 0.15840678398958
1103 => 0.15803978683561
1104 => 0.16060846960069
1105 => 0.16291154253579
1106 => 0.16719699028782
1107 => 0.16827445367241
1108 => 0.17247986499325
1109 => 0.16997574730945
1110 => 0.17108579024493
1111 => 0.17229089887655
1112 => 0.17286867227095
1113 => 0.1719272215298
1114 => 0.17845995632743
1115 => 0.17901151930217
1116 => 0.1791964535966
1117 => 0.17699365217886
1118 => 0.1789502554099
1119 => 0.17803482555399
1120 => 0.18041651972535
1121 => 0.18078999978241
1122 => 0.18047367546102
1123 => 0.18059222392611
1124 => 0.17501768722973
1125 => 0.17472861809399
1126 => 0.17078713991689
1127 => 0.17239332140799
1128 => 0.16939064209665
1129 => 0.1703428226373
1130 => 0.17076253474691
1201 => 0.17054330095931
1202 => 0.17248413249961
1203 => 0.17083402920466
1204 => 0.16647913530721
1205 => 0.16212305492182
1206 => 0.16206836788097
1207 => 0.1609214888067
1208 => 0.16009250529739
1209 => 0.16025219693105
1210 => 0.16081497107699
1211 => 0.16005979584096
1212 => 0.16022095076592
1213 => 0.16289719628997
1214 => 0.16343389824371
1215 => 0.16160997530191
1216 => 0.1542866614998
1217 => 0.15248950192361
1218 => 0.15378126458775
1219 => 0.15316388523446
1220 => 0.12361520933533
1221 => 0.13055723243613
1222 => 0.12643251803846
1223 => 0.12833337620189
1224 => 0.12412311089149
1225 => 0.12613247017652
1226 => 0.12576141488663
1227 => 0.13692398260331
1228 => 0.13674969446203
1229 => 0.13683311697214
1230 => 0.13285114320837
1231 => 0.13919453553642
]
'min_raw' => 0.080983518332561
'max_raw' => 0.18078999978241
'avg_raw' => 0.13088675905749
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.080983'
'max' => '$0.180789'
'avg' => '$0.130886'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012487494212508
'max_diff' => 0.027350450211496
'year' => 2035
]
10 => [
'items' => [
101 => 0.14231951869823
102 => 0.14174116748371
103 => 0.14188672602432
104 => 0.13938554803819
105 => 0.13685733384235
106 => 0.13405315520979
107 => 0.13926297250213
108 => 0.13868372975377
109 => 0.14001230421355
110 => 0.14339124313307
111 => 0.14388880472431
112 => 0.14455753254871
113 => 0.14431784122695
114 => 0.15002826094577
115 => 0.14933669143925
116 => 0.15100317497182
117 => 0.14757509190892
118 => 0.14369589052662
119 => 0.14443319988875
120 => 0.14436219106811
121 => 0.14345816728123
122 => 0.14264205502806
123 => 0.14128345806475
124 => 0.14558225989119
125 => 0.14540773638757
126 => 0.14823306904979
127 => 0.14773366405793
128 => 0.14439851529712
129 => 0.14451763078758
130 => 0.14531873970585
131 => 0.1480913868189
201 => 0.14891449725826
202 => 0.14853319970747
203 => 0.14943570272781
204 => 0.15014900431708
205 => 0.14952528242524
206 => 0.15835586910061
207 => 0.15468879384664
208 => 0.15647610081008
209 => 0.15690236298944
210 => 0.15581050138035
211 => 0.15604728706673
212 => 0.15640595286135
213 => 0.15858370133237
214 => 0.16429874345691
215 => 0.16682989671026
216 => 0.17444499615786
217 => 0.16661971966792
218 => 0.16615540014522
219 => 0.16752710950971
220 => 0.17199797902559
221 => 0.1756211988408
222 => 0.17682322988207
223 => 0.17698209812754
224 => 0.17923718827048
225 => 0.18052976388547
226 => 0.17896336101237
227 => 0.17763599858663
228 => 0.17288155113594
229 => 0.17343189137429
301 => 0.17722318987035
302 => 0.18257862230241
303 => 0.18717414046689
304 => 0.18556495017567
305 => 0.19784193618641
306 => 0.19905914920238
307 => 0.19889096972078
308 => 0.20166396211676
309 => 0.19616013692083
310 => 0.19380714501798
311 => 0.17792298940928
312 => 0.18238578922904
313 => 0.1888727308581
314 => 0.18801415980871
315 => 0.18330316940124
316 => 0.18717056675823
317 => 0.18589188424731
318 => 0.18488333429836
319 => 0.18950369713151
320 => 0.18442341840242
321 => 0.18882205119157
322 => 0.18318075914146
323 => 0.18557230082137
324 => 0.184214746098
325 => 0.18509325037967
326 => 0.1799575322998
327 => 0.18272864111319
328 => 0.1798422450626
329 => 0.17984087653505
330 => 0.17977715918226
331 => 0.18317299133553
401 => 0.18328372930014
402 => 0.18077420420805
403 => 0.18041254243613
404 => 0.18174979556152
405 => 0.18018422237884
406 => 0.18091674421742
407 => 0.18020640971909
408 => 0.18004649846159
409 => 0.17877229835513
410 => 0.1782233379144
411 => 0.17843859944818
412 => 0.17770380085847
413 => 0.17726105812935
414 => 0.17968908650976
415 => 0.17839188889249
416 => 0.17949027237048
417 => 0.17823852577027
418 => 0.17389942669388
419 => 0.17140396492991
420 => 0.16320780900931
421 => 0.16553222866109
422 => 0.16707332129501
423 => 0.16656399018869
424 => 0.16765823049003
425 => 0.16772540795748
426 => 0.16736965928106
427 => 0.16695774788798
428 => 0.16675725220197
429 => 0.16825158278252
430 => 0.16911909198138
501 => 0.16722799055798
502 => 0.1667849319538
503 => 0.16869693990343
504 => 0.16986326364817
505 => 0.17847474287865
506 => 0.17783677668255
507 => 0.17943794664023
508 => 0.17925767947495
509 => 0.18093596067698
510 => 0.18367924114774
511 => 0.1781013849174
512 => 0.17906950789123
513 => 0.17883214649527
514 => 0.18142359597685
515 => 0.18143168619926
516 => 0.17987798278255
517 => 0.18072027061071
518 => 0.18025012865199
519 => 0.18109973871489
520 => 0.17782825625505
521 => 0.18181256875643
522 => 0.18407141720129
523 => 0.18410278131414
524 => 0.18517345754967
525 => 0.18626132661436
526 => 0.1883493965506
527 => 0.18620309147714
528 => 0.18234209758857
529 => 0.18262084887639
530 => 0.18035714957221
531 => 0.18039520276648
601 => 0.18019207183316
602 => 0.18080168305503
603 => 0.17796203163683
604 => 0.17862849214887
605 => 0.17769544352923
606 => 0.17906747962575
607 => 0.17759139559159
608 => 0.17883203203242
609 => 0.17936744959253
610 => 0.18134315191606
611 => 0.17729958275201
612 => 0.16905447150094
613 => 0.17078769384823
614 => 0.16822412185492
615 => 0.1684613902031
616 => 0.16894071002742
617 => 0.16738707765312
618 => 0.16768346174955
619 => 0.16767287282401
620 => 0.16758162318424
621 => 0.16717746339956
622 => 0.16659135175119
623 => 0.16892624016264
624 => 0.16932298320203
625 => 0.17020489383253
626 => 0.17282886166322
627 => 0.17256666539951
628 => 0.17299431838404
629 => 0.17206075431999
630 => 0.16850469556251
701 => 0.16869780666175
702 => 0.16628970815976
703 => 0.17014331333969
704 => 0.16923072876798
705 => 0.16864237955789
706 => 0.1684818430249
707 => 0.1711123151643
708 => 0.17189939365601
709 => 0.17140893915885
710 => 0.17040300267633
711 => 0.17233469810119
712 => 0.1728515383052
713 => 0.17296723976654
714 => 0.17638983369354
715 => 0.17315852474679
716 => 0.17393633292672
717 => 0.18000457031141
718 => 0.17450151636301
719 => 0.17741660677223
720 => 0.17727392826609
721 => 0.17876518987817
722 => 0.17715160128724
723 => 0.17717160365169
724 => 0.1784957429364
725 => 0.17663622812081
726 => 0.17617578610205
727 => 0.17553968875088
728 => 0.176928584046
729 => 0.17776116396108
730 => 0.18447114661413
731 => 0.18880610142039
801 => 0.18861790959962
802 => 0.19033763056112
803 => 0.18956288051713
804 => 0.18706100825633
805 => 0.19133139913469
806 => 0.18998006878004
807 => 0.19009147081261
808 => 0.19008732442339
809 => 0.19098584097389
810 => 0.19034915965003
811 => 0.1890941954067
812 => 0.18992729923815
813 => 0.19240131977749
814 => 0.2000807554438
815 => 0.20437826938166
816 => 0.19982203970862
817 => 0.20296486592674
818 => 0.20108029009935
819 => 0.20073780661024
820 => 0.20271173372825
821 => 0.20468911594437
822 => 0.20456316524567
823 => 0.20312768729646
824 => 0.20231682222686
825 => 0.20845696419361
826 => 0.21298091620012
827 => 0.21267241300224
828 => 0.21403404578709
829 => 0.21803184175713
830 => 0.21839735011862
831 => 0.21835130446618
901 => 0.21744535385538
902 => 0.22138170316729
903 => 0.22466547501676
904 => 0.2172356524644
905 => 0.22006483162882
906 => 0.22133494130619
907 => 0.22319983913712
908 => 0.22634623437108
909 => 0.22976405413527
910 => 0.23024737132441
911 => 0.22990443464986
912 => 0.22765029063945
913 => 0.2313901098085
914 => 0.23358080816817
915 => 0.23488531890812
916 => 0.23819334109474
917 => 0.22134278507116
918 => 0.20941512399069
919 => 0.20755244747546
920 => 0.21134027341532
921 => 0.21233909290831
922 => 0.2119364700231
923 => 0.19851080306153
924 => 0.20748176411742
925 => 0.21713376391372
926 => 0.2175045365349
927 => 0.22233652944673
928 => 0.2239100244089
929 => 0.22780041204671
930 => 0.22755706724073
1001 => 0.22850431472094
1002 => 0.22828655892928
1003 => 0.23549268281056
1004 => 0.24344210757135
1005 => 0.24316684426951
1006 => 0.24202402040682
1007 => 0.24372130872334
1008 => 0.25192596698861
1009 => 0.25117061353251
1010 => 0.25190437507426
1011 => 0.26157812956329
1012 => 0.27415538647456
1013 => 0.26831198790333
1014 => 0.28099048141026
1015 => 0.28897092101481
1016 => 0.30277226611803
1017 => 0.30104426973805
1018 => 0.30641703210778
1019 => 0.29795079557416
1020 => 0.27851060518425
1021 => 0.27543412064099
1022 => 0.2815933206056
1023 => 0.29673511271264
1024 => 0.28111645168708
1025 => 0.28427608647076
1026 => 0.2833661114405
1027 => 0.28331762273829
1028 => 0.28516823928413
1029 => 0.28248382346271
1030 => 0.27154703048908
1031 => 0.27655929825797
1101 => 0.27462382096353
1102 => 0.2767713773211
1103 => 0.28836085326328
1104 => 0.28323686969065
1105 => 0.2778391692355
1106 => 0.28460908345187
1107 => 0.29322951064424
1108 => 0.29269005980294
1109 => 0.29164329969786
1110 => 0.29754383160364
1111 => 0.30728978161835
1112 => 0.30992407274493
1113 => 0.31186865259886
1114 => 0.31213677730677
1115 => 0.31489862843683
1116 => 0.30004745883439
1117 => 0.32361664639854
1118 => 0.3276863940052
1119 => 0.32692145012891
1120 => 0.33144480331255
1121 => 0.33011391805953
1122 => 0.3281856741374
1123 => 0.33535615107829
1124 => 0.32713577789321
1125 => 0.31546799307319
1126 => 0.30906681555831
1127 => 0.31749640247817
1128 => 0.32264405705808
1129 => 0.32604632928308
1130 => 0.32707585480265
1201 => 0.30120031285477
1202 => 0.28725483086821
1203 => 0.29619372493632
1204 => 0.30709979262893
1205 => 0.2999868750777
1206 => 0.30026568797917
1207 => 0.29012453679297
1208 => 0.30799705948481
1209 => 0.30539318326019
1210 => 0.31890209771972
1211 => 0.31567808686814
1212 => 0.32669408219684
1213 => 0.32379320144059
1214 => 0.33583459527375
1215 => 0.34063823328152
1216 => 0.34870428912312
1217 => 0.35463771263495
1218 => 0.35812193240941
1219 => 0.35791275292313
1220 => 0.37171896750092
1221 => 0.3635779251168
1222 => 0.35335085718596
1223 => 0.35316588179308
1224 => 0.35846262519313
1225 => 0.36956314626905
1226 => 0.37244134987803
1227 => 0.37404987304369
1228 => 0.37158636382239
1229 => 0.36274984578818
1230 => 0.35893428210317
1231 => 0.36218525291032
]
'min_raw' => 0.13405315520979
'max_raw' => 0.37404987304369
'avg_raw' => 0.25405151412674
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.134053'
'max' => '$0.374049'
'avg' => '$0.254051'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.053069636877225
'max_diff' => 0.19325987326127
'year' => 2036
]
11 => [
'items' => [
101 => 0.35820959497229
102 => 0.36507269594593
103 => 0.37449719946202
104 => 0.37255107675448
105 => 0.37905667318678
106 => 0.38578928108551
107 => 0.39541721276103
108 => 0.39793431062229
109 => 0.4020949776703
110 => 0.40637767077062
111 => 0.40775315637263
112 => 0.41037938517498
113 => 0.41036554365285
114 => 0.41827986091432
115 => 0.42700959793972
116 => 0.43030487157293
117 => 0.43788217159006
118 => 0.42490631085099
119 => 0.43474865027752
120 => 0.44362668680998
121 => 0.43304192565749
122 => 0.44763055297315
123 => 0.44819699631327
124 => 0.45674961823667
125 => 0.4480798974332
126 => 0.44293184489483
127 => 0.4577940796781
128 => 0.46498544693371
129 => 0.46281934859103
130 => 0.44633523324978
131 => 0.43674077108421
201 => 0.41163021296336
202 => 0.44137475375289
203 => 0.45586245191132
204 => 0.44629771361152
205 => 0.45112161126234
206 => 0.47743923269112
207 => 0.4874592789914
208 => 0.48537517940635
209 => 0.48572735792902
210 => 0.49113399303595
211 => 0.5151099905884
212 => 0.5007430170957
213 => 0.51172603001064
214 => 0.51755138045853
215 => 0.52296229060484
216 => 0.50967480542123
217 => 0.49238798242927
218 => 0.48691251993626
219 => 0.445346688888
220 => 0.44318300687068
221 => 0.44196846658808
222 => 0.43431096190646
223 => 0.42829426079376
224 => 0.42350955668315
225 => 0.41095306426331
226 => 0.41519051185531
227 => 0.39517808368173
228 => 0.40798132603028
301 => 0.37604100744828
302 => 0.40264185387506
303 => 0.38816422255703
304 => 0.39788556261244
305 => 0.39785164577279
306 => 0.37995157657712
307 => 0.36962719022996
308 => 0.3762062910415
309 => 0.38325960936113
310 => 0.38440398652828
311 => 0.39354879784014
312 => 0.39610091811021
313 => 0.38836787454478
314 => 0.3753791153398
315 => 0.37839610786106
316 => 0.36956605097281
317 => 0.35409171591939
318 => 0.36520565351073
319 => 0.36900044044975
320 => 0.37067643454627
321 => 0.35545920326062
322 => 0.3506776188085
323 => 0.34813194336758
324 => 0.37341476187063
325 => 0.37479981174097
326 => 0.36771370077802
327 => 0.39974359426313
328 => 0.39249424290199
329 => 0.40059354450659
330 => 0.37812234741238
331 => 0.37898077740286
401 => 0.36834255258155
402 => 0.37429924763504
403 => 0.37008924756448
404 => 0.37381800553993
405 => 0.37605300769617
406 => 0.38668948688946
407 => 0.40276330538183
408 => 0.38510075159331
409 => 0.37740492397522
410 => 0.3821793721465
411 => 0.39489435679606
412 => 0.41415820940823
413 => 0.40275362094066
414 => 0.40781478364009
415 => 0.40892042253446
416 => 0.40051110121929
417 => 0.41446827308005
418 => 0.42194803486809
419 => 0.429620722744
420 => 0.43628270264282
421 => 0.42655608248034
422 => 0.43696496031042
423 => 0.42857724219365
424 => 0.42105259193655
425 => 0.42106400372495
426 => 0.41634368070107
427 => 0.40719746004333
428 => 0.40551075662584
429 => 0.41428520081077
430 => 0.42132147410413
501 => 0.42190101527405
502 => 0.42579665770603
503 => 0.42810205876897
504 => 0.45069812322652
505 => 0.4597864472758
506 => 0.47089947789009
507 => 0.47522862961044
508 => 0.48825782420191
509 => 0.47773569138985
510 => 0.47545916176864
511 => 0.44385459750681
512 => 0.44902984313417
513 => 0.45731591072049
514 => 0.44399123170936
515 => 0.45244267362359
516 => 0.45411116728348
517 => 0.44353846421532
518 => 0.44918580174355
519 => 0.43418814758744
520 => 0.40309021325858
521 => 0.41450289397077
522 => 0.42290646844173
523 => 0.41091353151841
524 => 0.43241040676272
525 => 0.41985237603057
526 => 0.41587208318026
527 => 0.40034354169436
528 => 0.40767241552733
529 => 0.41758482232579
530 => 0.41146010736532
531 => 0.42416981053887
601 => 0.44217013978666
602 => 0.45499824634676
603 => 0.45598302908122
604 => 0.44773541597946
605 => 0.46095226861059
606 => 0.46104853895284
607 => 0.4461398751925
608 => 0.43700840165107
609 => 0.43493371164967
610 => 0.4401166940401
611 => 0.4464097914934
612 => 0.45633225219214
613 => 0.46232818738092
614 => 0.47796240635496
615 => 0.48219257774115
616 => 0.48684025358674
617 => 0.4930509818066
618 => 0.50050855343258
619 => 0.48419181127474
620 => 0.48484010585888
621 => 0.46964618148217
622 => 0.45340929425649
623 => 0.46573106770421
624 => 0.48184014739028
625 => 0.47814470671135
626 => 0.47772889414396
627 => 0.47842817554551
628 => 0.47564193395541
629 => 0.46303986650628
630 => 0.45671118712645
701 => 0.46487679814474
702 => 0.46921645699142
703 => 0.47594688940461
704 => 0.47511722154749
705 => 0.4924540926482
706 => 0.49919067651816
707 => 0.49746717008955
708 => 0.49778433675091
709 => 0.50998060006629
710 => 0.52354535322586
711 => 0.53625053458662
712 => 0.54917479076702
713 => 0.53359409549924
714 => 0.52568317932595
715 => 0.53384522549392
716 => 0.52951432890808
717 => 0.55440094531768
718 => 0.55612404064216
719 => 0.58100885746614
720 => 0.60462751186096
721 => 0.58979305820772
722 => 0.60378127984426
723 => 0.61891068202062
724 => 0.64809775347586
725 => 0.63826857462329
726 => 0.63073957766509
727 => 0.62362471191944
728 => 0.638429618083
729 => 0.65747589334828
730 => 0.66157827861747
731 => 0.66822570998533
801 => 0.66123674871126
802 => 0.66965418275705
803 => 0.69937142374664
804 => 0.69134156290991
805 => 0.67993786965721
806 => 0.70339677734433
807 => 0.71188646484211
808 => 0.77147153778535
809 => 0.84670015371278
810 => 0.8155550127411
811 => 0.79622221869256
812 => 0.80076588387397
813 => 0.82823682776131
814 => 0.83705962305375
815 => 0.81307622404899
816 => 0.82154756603205
817 => 0.86822549324272
818 => 0.89326670358404
819 => 0.85925737645729
820 => 0.76542699174405
821 => 0.67891109185032
822 => 0.70185900436388
823 => 0.69925742324148
824 => 0.74940703283933
825 => 0.69115005338461
826 => 0.69213095151027
827 => 0.74331760192525
828 => 0.72966188115588
829 => 0.70754136240208
830 => 0.67907259611725
831 => 0.62644544859759
901 => 0.57983211642285
902 => 0.6712515952268
903 => 0.66730942106524
904 => 0.66160056868182
905 => 0.67430500189877
906 => 0.73599412338402
907 => 0.73457198946558
908 => 0.7255250990556
909 => 0.73238708569594
910 => 0.70633842296681
911 => 0.71305175646913
912 => 0.67889738728975
913 => 0.69433658857128
914 => 0.70749390170366
915 => 0.71013542711234
916 => 0.71608691873771
917 => 0.66523207441588
918 => 0.6880644064966
919 => 0.70147626249382
920 => 0.64088100917087
921 => 0.70027848916422
922 => 0.66434680471805
923 => 0.65215105134123
924 => 0.66857102659479
925 => 0.66217214626953
926 => 0.65667076472073
927 => 0.65360089929076
928 => 0.66565791691044
929 => 0.66509544262723
930 => 0.64536782163516
1001 => 0.61963394425172
1002 => 0.62827107818733
1003 => 0.62513312645496
1004 => 0.61376078457302
1005 => 0.62142436989965
1006 => 0.58767781857294
1007 => 0.52961863100842
1008 => 0.56797430871455
1009 => 0.56649765684581
1010 => 0.56575306201277
1011 => 0.59457629373585
1012 => 0.59180560507077
1013 => 0.58677677801299
1014 => 0.61366842622045
1015 => 0.60385261288102
1016 => 0.63410263669666
1017 => 0.65402725883052
1018 => 0.64897373016337
1019 => 0.66771293358431
1020 => 0.62847006030865
1021 => 0.64150496866003
1022 => 0.64419144520564
1023 => 0.61333658745585
1024 => 0.59225892400207
1025 => 0.59085328415265
1026 => 0.55430752040473
1027 => 0.57382997241177
1028 => 0.59100892228402
1029 => 0.58278153843558
1030 => 0.58017699449526
1031 => 0.59348304462967
1101 => 0.59451703868373
1102 => 0.57094186467346
1103 => 0.57584388987886
1104 => 0.59628614987927
1105 => 0.57532879737629
1106 => 0.53461208482711
1107 => 0.52451377716231
1108 => 0.52316647677109
1109 => 0.4957790654773
1110 => 0.52518859436741
1111 => 0.51235054688051
1112 => 0.55290578506822
1113 => 0.5297408505175
1114 => 0.52874225648819
1115 => 0.52723273515099
1116 => 0.5036592588907
1117 => 0.50882035201914
1118 => 0.52597661163472
1119 => 0.53209815834465
1120 => 0.53145963087045
1121 => 0.52589253660304
1122 => 0.52844112385052
1123 => 0.5202312363397
1124 => 0.5173321541856
1125 => 0.50818185345188
1126 => 0.49473343920841
1127 => 0.49660352369288
1128 => 0.46995869610757
1129 => 0.45544117989105
1130 => 0.45142292274011
1201 => 0.44604954134334
1202 => 0.4520298604669
1203 => 0.46988321465876
1204 => 0.44834828170299
1205 => 0.41142814965022
1206 => 0.41364711249544
1207 => 0.41863246319265
1208 => 0.40934229514979
1209 => 0.40054993076191
1210 => 0.4081941782501
1211 => 0.39255063158984
1212 => 0.42052291106862
1213 => 0.41976633930012
1214 => 0.43019267529565
1215 => 0.43671247716361
1216 => 0.42168644466889
1217 => 0.41790743813118
1218 => 0.42006013200133
1219 => 0.38448089751259
1220 => 0.4272850927778
1221 => 0.42765526523594
1222 => 0.42448562391115
1223 => 0.44727753645861
1224 => 0.49537558090955
1225 => 0.47727916184775
1226 => 0.47027168141986
1227 => 0.45695045600401
1228 => 0.47470019793454
1229 => 0.47333729469338
1230 => 0.46717372937117
1231 => 0.4634459858328
]
'min_raw' => 0.34813194336758
'max_raw' => 0.89326670358404
'avg_raw' => 0.62069932347581
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.348131'
'max' => '$0.893266'
'avg' => '$0.620699'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21407878815779
'max_diff' => 0.51921683054036
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010927463900847
]
1 => [
'year' => 2028
'avg' => 0.01875470031929
]
2 => [
'year' => 2029
'avg' => 0.051234461066444
]
3 => [
'year' => 2030
'avg' => 0.039527310412113
]
4 => [
'year' => 2031
'avg' => 0.038820717390346
]
5 => [
'year' => 2032
'avg' => 0.068064934914669
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010927463900847
'min' => '$0.010927'
'max_raw' => 0.068064934914669
'max' => '$0.068064'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.068064934914669
]
1 => [
'year' => 2033
'avg' => 0.17507001163525
]
2 => [
'year' => 2034
'avg' => 0.11096778684549
]
3 => [
'year' => 2035
'avg' => 0.13088675905749
]
4 => [
'year' => 2036
'avg' => 0.25405151412674
]
5 => [
'year' => 2037
'avg' => 0.62069932347581
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.068064934914669
'min' => '$0.068064'
'max_raw' => 0.62069932347581
'max' => '$0.620699'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.62069932347581
]
]
]
]
'prediction_2025_max_price' => '$0.018683'
'last_price' => 0.01811647
'sma_50day_nextmonth' => '$0.017676'
'sma_200day_nextmonth' => '$0.034233'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018025'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.018087'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0179095'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01937'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.023147'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028916'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036923'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018044'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018029'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018236'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.01945'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02311'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02911'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.043825'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035669'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.056811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.160951'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.187689'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.018874'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.020324'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.024276'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033441'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.067779'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116283'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.1506063'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '35.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.63
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0179054'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018140'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 73.09
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -40.69
'cci_20_action' => 'NEUTRAL'
'adx_14' => 35.87
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003181'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -26.91
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.64
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003259'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767705080
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Telos para 2026
A previsão de preço para Telos em 2026 sugere que o preço médio poderia variar entre $0.006259 na extremidade inferior e $0.018683 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Telos poderia potencialmente ganhar 3.13% até 2026 se TLOS atingir a meta de preço prevista.
Previsão de preço de Telos 2027-2032
A previsão de preço de TLOS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.010927 na extremidade inferior e $0.068064 na extremidade superior. Considerando a volatilidade de preços no mercado, se Telos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006025 | $0.010927 | $0.015829 |
| 2028 | $0.010874 | $0.018754 | $0.026634 |
| 2029 | $0.023888 | $0.051234 | $0.07858 |
| 2030 | $0.020315 | $0.039527 | $0.058738 |
| 2031 | $0.024019 | $0.03882 | $0.053621 |
| 2032 | $0.036663 | $0.068064 | $0.099465 |
Previsão de preço de Telos 2032-2037
A previsão de preço de Telos para 2032-2037 é atualmente estimada entre $0.068064 na extremidade inferior e $0.620699 na extremidade superior. Comparado ao preço atual, Telos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036663 | $0.068064 | $0.099465 |
| 2033 | $0.085199 | $0.17507 | $0.26494 |
| 2034 | $0.068496 | $0.110967 | $0.153439 |
| 2035 | $0.080983 | $0.130886 | $0.180789 |
| 2036 | $0.134053 | $0.254051 | $0.374049 |
| 2037 | $0.348131 | $0.620699 | $0.893266 |
Telos Histograma de preços potenciais
Previsão de preço de Telos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Telos é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de TLOS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Telos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Telos está projetado para aumentar no próximo mês, alcançando $0.034233 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Telos é esperado para alcançar $0.017676 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 35.18, sugerindo que o mercado de TLOS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de TLOS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018025 | BUY |
| SMA 5 | $0.018087 | BUY |
| SMA 10 | $0.0179095 | BUY |
| SMA 21 | $0.01937 | SELL |
| SMA 50 | $0.023147 | SELL |
| SMA 100 | $0.028916 | SELL |
| SMA 200 | $0.036923 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018044 | BUY |
| EMA 5 | $0.018029 | BUY |
| EMA 10 | $0.018236 | SELL |
| EMA 21 | $0.01945 | SELL |
| EMA 50 | $0.02311 | SELL |
| EMA 100 | $0.02911 | SELL |
| EMA 200 | $0.043825 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035669 | SELL |
| SMA 50 | $0.056811 | SELL |
| SMA 100 | $0.160951 | SELL |
| SMA 200 | $0.187689 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.033441 | SELL |
| EMA 50 | $0.067779 | SELL |
| EMA 100 | $0.116283 | SELL |
| EMA 200 | $0.1506063 | SELL |
Osciladores de Telos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 35.18 | NEUTRAL |
| Stoch RSI (14) | 93.63 | SELL |
| Estocástico Rápido (14) | 73.09 | NEUTRAL |
| Índice de Canal de Commodities (20) | -40.69 | NEUTRAL |
| Índice Direcional Médio (14) | 35.87 | SELL |
| Oscilador Impressionante (5, 34) | -0.003181 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -26.91 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 60.64 | NEUTRAL |
| VWMA (10) | 0.0179054 | BUY |
| Média Móvel de Hull (9) | 0.018140 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003259 | SELL |
Previsão do preço de Telos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Telos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Telos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025456 | $0.03577 | $0.050264 | $0.070629 | $0.099246 | $0.139457 |
| Amazon.com stock | $0.037801 | $0.078874 | $0.164575 | $0.343397 | $0.716518 | $1.49 |
| Apple stock | $0.025696 | $0.036448 | $0.05170011 | $0.073332 | $0.104016 | $0.147539 |
| Netflix stock | $0.028584 | $0.0451025 | $0.071164 | $0.112286 | $0.177171 | $0.279548 |
| Google stock | $0.02346 | $0.030381 | $0.039343 | $0.05095 | $0.06598 | $0.085444 |
| Tesla stock | $0.041068 | $0.093099 | $0.211049 | $0.478433 | $1.08 | $2.45 |
| Kodak stock | $0.013585 | $0.010187 | $0.007639 | $0.005728 | $0.004296 | $0.003221 |
| Nokia stock | $0.0120014 | $0.00795 | $0.005266 | $0.003489 | $0.002311 | $0.001531 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Telos
Você pode fazer perguntas como: 'Devo investir em Telos agora?', 'Devo comprar TLOS hoje?', 'Telos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Telos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Telos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Telos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Telos é de $0.01811 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Telos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Telos
com base no histórico de preços de 1 mês
Previsão do preço de Telos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Telos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.018587 | $0.01907 | $0.019566 | $0.020074 |
| Se Telos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019058 | $0.020049 | $0.021091 | $0.022187 |
| Se Telos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02047 | $0.023131 | $0.026137 | $0.029534 |
| Se Telos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.022825 | $0.028758 | $0.036233 | $0.045652 |
| Se Telos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027534 | $0.041848 | $0.0636045 | $0.09667 |
| Se Telos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.041661 | $0.0958078 | $0.220325 | $0.506673 |
| Se Telos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0652069 | $0.23470092 | $0.844764 | $3.04 |
Perguntas Frequentes sobre Telos
TLOS é um bom investimento?
A decisão de adquirir Telos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Telos experimentou uma escalada de 0.2128% nas últimas 24 horas, e Telos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Telos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Telos pode subir?
Parece que o valor médio de Telos pode potencialmente subir para $0.018683 até o final deste ano. Observando as perspectivas de Telos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.058738. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Telos na próxima semana?
Com base na nossa nova previsão experimental de Telos, o preço de Telos aumentará 0.86% na próxima semana e atingirá $0.018271 até 13 de janeiro de 2026.
Qual será o preço de Telos no próximo mês?
Com base na nossa nova previsão experimental de Telos, o preço de Telos diminuirá -11.62% no próximo mês e atingirá $0.0160116 até 5 de fevereiro de 2026.
Até onde o preço de Telos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Telos em 2026, espera-se que TLOS fluctue dentro do intervalo de $0.006259 e $0.018683. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Telos não considera flutuações repentinas e extremas de preço.
Onde estará Telos em 5 anos?
O futuro de Telos parece seguir uma tendência de alta, com um preço máximo de $0.058738 projetada após um período de cinco anos. Com base na previsão de Telos para 2030, o valor de Telos pode potencialmente atingir seu pico mais alto de aproximadamente $0.058738, enquanto seu pico mais baixo está previsto para cerca de $0.020315.
Quanto será Telos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Telos, espera-se que o valor de TLOS em 2026 aumente 3.13% para $0.018683 se o melhor cenário ocorrer. O preço ficará entre $0.018683 e $0.006259 durante 2026.
Quanto será Telos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Telos, o valor de TLOS pode diminuir -12.62% para $0.015829 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.015829 e $0.006025 ao longo do ano.
Quanto será Telos em 2028?
Nosso novo modelo experimental de previsão de preços de Telos sugere que o valor de TLOS em 2028 pode aumentar 47.02%, alcançando $0.026634 no melhor cenário. O preço é esperado para variar entre $0.026634 e $0.010874 durante o ano.
Quanto será Telos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Telos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.07858 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.07858 e $0.023888.
Quanto será Telos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Telos, espera-se que o valor de TLOS em 2030 aumente 224.23%, alcançando $0.058738 no melhor cenário. O preço está previsto para variar entre $0.058738 e $0.020315 ao longo de 2030.
Quanto será Telos em 2031?
Nossa simulação experimental indica que o preço de Telos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.053621 sob condições ideais. O preço provavelmente oscilará entre $0.053621 e $0.024019 durante o ano.
Quanto será Telos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Telos, TLOS poderia ver um 449.04% aumento em valor, atingindo $0.099465 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.099465 e $0.036663 ao longo do ano.
Quanto será Telos em 2033?
De acordo com nossa previsão experimental de preços de Telos, espera-se que o valor de TLOS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.26494. Ao longo do ano, o preço de TLOS poderia variar entre $0.26494 e $0.085199.
Quanto será Telos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Telos sugerem que TLOS pode aumentar 746.96% em 2034, atingindo potencialmente $0.153439 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.153439 e $0.068496.
Quanto será Telos em 2035?
Com base em nossa previsão experimental para o preço de Telos, TLOS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.180789 em 2035. A faixa de preço esperada para o ano está entre $0.180789 e $0.080983.
Quanto será Telos em 2036?
Nossa recente simulação de previsão de preços de Telos sugere que o valor de TLOS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.374049 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.374049 e $0.134053.
Quanto será Telos em 2037?
De acordo com a simulação experimental, o valor de Telos poderia aumentar 4830.69% em 2037, com um pico de $0.893266 sob condições favoráveis. O preço é esperado para cair entre $0.893266 e $0.348131 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Previsão de Preço do Keep Network
Previsão de Preço do Energy Web Token
Previsão de Preço do Nakamoto Games
Previsão de Preço do Gelato
Como ler e prever os movimentos de preço de Telos?
Traders de Telos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Telos
Médias móveis são ferramentas populares para a previsão de preço de Telos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de TLOS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de TLOS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de TLOS.
Como ler gráficos de Telos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Telos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de TLOS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Telos?
A ação de preço de Telos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de TLOS. A capitalização de mercado de Telos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de TLOS, grandes detentores de Telos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Telos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


