Previsão de Preço Telos - Projeção TLOS
Previsão de Preço Telos até $0.018655 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006249 | $0.018655 |
| 2027 | $0.006016 | $0.0158055 |
| 2028 | $0.010858 | $0.026594 |
| 2029 | $0.023852 | $0.078462 |
| 2030 | $0.020285 | $0.05865 |
| 2031 | $0.023983 | $0.053541 |
| 2032 | $0.0366088 | $0.099316 |
| 2033 | $0.085071 | $0.264542 |
| 2034 | $0.068393 | $0.1532088 |
| 2035 | $0.080861 | $0.180518 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Telos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.97, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Telos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Telos'
'name_with_ticker' => 'Telos <small>TLOS</small>'
'name_lang' => 'Telos'
'name_lang_with_ticker' => 'Telos <small>TLOS</small>'
'name_with_lang' => 'Telos'
'name_with_lang_with_ticker' => 'Telos <small>TLOS</small>'
'image' => '/uploads/coins/telos.png?1722392004'
'price_for_sd' => 0.01808
'ticker' => 'TLOS'
'marketcap' => '$7.6M'
'low24h' => '$0.01801'
'high24h' => '$0.01812'
'volume24h' => '$1.69M'
'current_supply' => '420M'
'max_supply' => '420M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01808'
'change_24h_pct' => '0.1417%'
'ath_price' => '$1.43'
'ath_days' => 1429
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de fev. de 2022'
'ath_pct' => '-98.73%'
'fdv' => '$7.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.891923'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018244'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015987'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006249'
'current_year_max_price_prediction' => '$0.018655'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020285'
'grand_prediction_max_price' => '$0.05865'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018432011393565
107 => 0.018500829833288
108 => 0.018655881291942
109 => 0.017330983554024
110 => 0.017925823741395
111 => 0.018275236622488
112 => 0.016696576513962
113 => 0.018244031587921
114 => 0.017307920032038
115 => 0.016990189710048
116 => 0.017417971730821
117 => 0.017251264661294
118 => 0.017107939712282
119 => 0.017027961928098
120 => 0.017342077831576
121 => 0.017327423949229
122 => 0.01681346936387
123 => 0.016143036558739
124 => 0.016368055814348
125 => 0.016286304209219
126 => 0.015990025846063
127 => 0.016189681690044
128 => 0.015310498396662
129 => 0.013797909236369
130 => 0.014797171967517
131 => 0.014758701439357
201 => 0.014739302854559
202 => 0.015490221179423
203 => 0.015418037709121
204 => 0.015287024003699
205 => 0.01598761967662
206 => 0.015731892831663
207 => 0.016519982711
208 => 0.017039069675989
209 => 0.016907412430964
210 => 0.017395616230501
211 => 0.016373239803522
212 => 0.016712832241942
213 => 0.016782821772845
214 => 0.015978974434767
215 => 0.01542984781757
216 => 0.015393227332705
217 => 0.014441117452795
218 => 0.014949726865481
219 => 0.015397282100956
220 => 0.015182937874853
221 => 0.01511508289622
222 => 0.015461739266106
223 => 0.015488677434957
224 => 0.014874484330372
225 => 0.015002194525781
226 => 0.015534767270691
227 => 0.01498877505905
228 => 0.013928001379153
301 => 0.013664914840195
302 => 0.013629814246251
303 => 0.01291630268694
304 => 0.013682495540725
305 => 0.013348031827356
306 => 0.014404598690398
307 => 0.01380109336471
308 => 0.013775077456331
309 => 0.013735750595111
310 => 0.013121601721221
311 => 0.013256061293406
312 => 0.013703025390119
313 => 0.013862507215238
314 => 0.013845871954282
315 => 0.013700835022205
316 => 0.013767232187
317 => 0.013553343784888
318 => 0.013477815338401
319 => 0.013239426785549
320 => 0.012889061469376
321 => 0.012937781915505
322 => 0.012243616546094
323 => 0.011865398410694
324 => 0.011760712615651
325 => 0.011620722395398
326 => 0.011776524883528
327 => 0.01224165006282
328 => 0.011680610414782
329 => 0.010718747290578
330 => 0.010776556903277
331 => 0.010906437939185
401 => 0.01066440548802
402 => 0.010435342085235
403 => 0.010634494129455
404 => 0.010226940043712
405 => 0.010955688903335
406 => 0.010935978288977
407 => 0.011207610798317
408 => 0.011377468180868
409 => 0.010986001906069
410 => 0.010887549196595
411 => 0.010943632334338
412 => 0.010016702994181
413 => 0.011131860895784
414 => 0.011141504827625
415 => 0.011058927628202
416 => 0.011652714784168
417 => 0.012905790890115
418 => 0.012434333254188
419 => 0.012251770607675
420 => 0.0119047188832
421 => 0.01236714470017
422 => 0.012331637612393
423 => 0.012171061095803
424 => 0.012073943917541
425 => 0.012252885296265
426 => 0.01205177110046
427 => 0.012015645464645
428 => 0.011796763416685
429 => 0.011718632484062
430 => 0.01166078745203
501 => 0.011597105755499
502 => 0.011737571709558
503 => 0.011419257377825
504 => 0.011035401498493
505 => 0.011003488035505
506 => 0.011091603912676
507 => 0.011052619196483
508 => 0.011003301391682
509 => 0.010909140271412
510 => 0.010881204678462
511 => 0.010971981803127
512 => 0.010869499722016
513 => 0.011020717615183
514 => 0.010979594715509
515 => 0.010749885540796
516 => 0.010463582859873
517 => 0.010461034165473
518 => 0.010399350722498
519 => 0.010320787583703
520 => 0.010298933115771
521 => 0.010617722099771
522 => 0.011277605756099
523 => 0.011148054804684
524 => 0.011241668643997
525 => 0.011702156080393
526 => 0.011848531189084
527 => 0.01174463760402
528 => 0.011602421656907
529 => 0.011608678436822
530 => 0.012094673379801
531 => 0.012124984288261
601 => 0.012201570175269
602 => 0.012300004683245
603 => 0.011761401426371
604 => 0.011583310271859
605 => 0.01149892080273
606 => 0.011239033900648
607 => 0.011519299643525
608 => 0.011356000797326
609 => 0.011378035390761
610 => 0.01136368533288
611 => 0.01137152143483
612 => 0.010955485203177
613 => 0.011107066939771
614 => 0.010855032902922
615 => 0.01051758761973
616 => 0.010516456384817
617 => 0.01059904563982
618 => 0.010549918319226
619 => 0.010417717962688
620 => 0.010436496399366
621 => 0.010271977534465
622 => 0.010456471968275
623 => 0.010461762608484
624 => 0.010390722201988
625 => 0.010674961332597
626 => 0.010791414336325
627 => 0.010744654018936
628 => 0.010788133507804
629 => 0.011153438231603
630 => 0.011212998840945
701 => 0.011239451729261
702 => 0.011204008363253
703 => 0.010794810607555
704 => 0.010812960268064
705 => 0.010679790101742
706 => 0.010567275344326
707 => 0.010571775344561
708 => 0.010629622555767
709 => 0.010882244719799
710 => 0.011413873171113
711 => 0.011434048082225
712 => 0.011458500663037
713 => 0.011359039727994
714 => 0.011329041358272
715 => 0.011368616951172
716 => 0.011568268645789
717 => 0.012081827009253
718 => 0.011900301184195
719 => 0.011752717862805
720 => 0.011882188223842
721 => 0.011862257276582
722 => 0.011694020023917
723 => 0.011689298164566
724 => 0.011366397087998
725 => 0.011247027912093
726 => 0.011147274094079
727 => 0.011038345528946
728 => 0.010973769024217
729 => 0.011072987884977
730 => 0.011095680412356
731 => 0.010878736639255
801 => 0.010849168004616
802 => 0.011026328972787
803 => 0.010948367035922
804 => 0.011028552821351
805 => 0.011047156611391
806 => 0.011044160972713
807 => 0.010962759756754
808 => 0.011014642464387
809 => 0.010891924393855
810 => 0.01075848692381
811 => 0.010673362131369
812 => 0.0105990794598
813 => 0.010640295803321
814 => 0.010493367064475
815 => 0.010446361603827
816 => 0.010997065770439
817 => 0.011403876859383
818 => 0.011397961665035
819 => 0.011361954440705
820 => 0.01130845500915
821 => 0.011564354829144
822 => 0.011475204448736
823 => 0.011540068799246
824 => 0.011556579498799
825 => 0.011606552413642
826 => 0.011624413435381
827 => 0.011570425022408
828 => 0.011389233314343
829 => 0.010937720805037
830 => 0.01072754051312
831 => 0.010658177515957
901 => 0.010660698729165
902 => 0.010591152413704
903 => 0.010611636920454
904 => 0.010584028738223
905 => 0.010531745520213
906 => 0.010637067461939
907 => 0.010649204834581
908 => 0.010624621434879
909 => 0.010630411715441
910 => 0.010426871665613
911 => 0.010442346373536
912 => 0.010356181233392
913 => 0.010340026308351
914 => 0.010122208337324
915 => 0.0097363122284304
916 => 0.0099501361325993
917 => 0.009691866924554
918 => 0.0095940564620501
919 => 0.010057075978896
920 => 0.010010601661567
921 => 0.0099310578321996
922 => 0.0098133959301791
923 => 0.0097697539861782
924 => 0.0095045993497898
925 => 0.009488932599327
926 => 0.0096203503968986
927 => 0.0095597056051296
928 => 0.0094745373495073
929 => 0.009166066561011
930 => 0.008819243263573
1001 => 0.0088297116788692
1002 => 0.0089400297169073
1003 => 0.0092607942909177
1004 => 0.0091354660225684
1005 => 0.0090445389259048
1006 => 0.0090275110139582
1007 => 0.0092406509823182
1008 => 0.0095422886917516
1009 => 0.0096838103562544
1010 => 0.009543566684809
1011 => 0.009382462306308
1012 => 0.0093922679833416
1013 => 0.0094575007596251
1014 => 0.0094643558020707
1015 => 0.0093594934134642
1016 => 0.009389011561622
1017 => 0.0093441707953743
1018 => 0.009068983095682
1019 => 0.0090640058228241
1020 => 0.0089964703233185
1021 => 0.0089944253752338
1022 => 0.0088795306430549
1023 => 0.0088634560757933
1024 => 0.0086353256114403
1025 => 0.0087854817739201
1026 => 0.008684764903681
1027 => 0.0085329608235228
1028 => 0.0085067897428851
1029 => 0.0085060030085986
1030 => 0.0086618718561499
1031 => 0.0087836603556852
1101 => 0.0086865169167595
1102 => 0.0086643992387625
1103 => 0.0089005581752056
1104 => 0.0088705047979068
1105 => 0.0088444787669894
1106 => 0.0095152803432632
1107 => 0.0089842885523428
1108 => 0.0087527458235496
1109 => 0.0084661677278964
1110 => 0.0085594790008933
1111 => 0.0085791410571416
1112 => 0.0078899723966801
1113 => 0.0076103767569613
1114 => 0.0075144300697493
1115 => 0.0074592113947717
1116 => 0.0074843752383514
1117 => 0.007232706369307
1118 => 0.0074018320115238
1119 => 0.0071839080439712
1120 => 0.0071473723816251
1121 => 0.0075370474312083
1122 => 0.0075912684379092
1123 => 0.0073599447781768
1124 => 0.0075084920156237
1125 => 0.0074546267223644
1126 => 0.0071876437249152
1127 => 0.0071774469382066
1128 => 0.0070434842549927
1129 => 0.0068338585960499
1130 => 0.0067380540449057
1201 => 0.0066881582028566
1202 => 0.0067087461997366
1203 => 0.006698336278511
1204 => 0.0066304045009715
1205 => 0.0067022300484815
1206 => 0.0065187454549589
1207 => 0.0064456804113824
1208 => 0.0064126786262951
1209 => 0.0062498254885647
1210 => 0.0065089972518128
1211 => 0.0065600573541325
1212 => 0.0066112180606271
1213 => 0.0070565370817644
1214 => 0.0070342902019269
1215 => 0.0072353911609883
1216 => 0.0072275767475201
1217 => 0.0071702194963762
1218 => 0.0069282386886102
1219 => 0.0070246879256925
1220 => 0.0067278321654923
1221 => 0.0069502566852639
1222 => 0.0068487514231102
1223 => 0.0069159376540246
1224 => 0.0067951307529022
1225 => 0.006861990279978
1226 => 0.0065721655985974
1227 => 0.0063015313890675
1228 => 0.0064104424952874
1229 => 0.0065288413232443
1230 => 0.0067855601497149
1231 => 0.0066326605345533
]
'min_raw' => 0.0062498254885647
'max_raw' => 0.018655881291942
'avg_raw' => 0.012452853390253
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006249'
'max' => '$0.018655'
'avg' => '$0.012452'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011839404511435
'max_diff' => 0.00056665129194201
'year' => 2026
]
1 => [
'items' => [
101 => 0.00668764901794
102 => 0.0065034468035556
103 => 0.0061233850205193
104 => 0.0061255361289367
105 => 0.0060670719037126
106 => 0.0060165502772024
107 => 0.006650222894646
108 => 0.0065714156877853
109 => 0.0064458467176848
110 => 0.0066139257740768
111 => 0.0066583685443601
112 => 0.0066596337675509
113 => 0.0067822599083461
114 => 0.0068477055016705
115 => 0.0068592405711513
116 => 0.0070521954532057
117 => 0.0071168713845339
118 => 0.0073832623923943
119 => 0.0068421529003198
120 => 0.0068310091064175
121 => 0.0066162909910873
122 => 0.0064801133677858
123 => 0.0066256151894598
124 => 0.0067545099404836
125 => 0.0066202961102944
126 => 0.0066378216031085
127 => 0.0064576505017522
128 => 0.0065220531926488
129 => 0.0065775254660283
130 => 0.0065468969371777
131 => 0.0065010445470507
201 => 0.0067439420407961
202 => 0.006730236812276
203 => 0.0069564285426409
204 => 0.0071327611715862
205 => 0.0074487807658839
206 => 0.0071189978447602
207 => 0.0071069792443461
208 => 0.0072244629912384
209 => 0.0071168533983844
210 => 0.0071848589465112
211 => 0.007437824020719
212 => 0.0074431687741199
213 => 0.0073536372683296
214 => 0.0073481892680656
215 => 0.00736538477312
216 => 0.0074660993833153
217 => 0.0074309066038657
218 => 0.007471632579217
219 => 0.007522561035012
220 => 0.007733222721398
221 => 0.0077840125407939
222 => 0.0076606196111641
223 => 0.0076717606111376
224 => 0.0076256082682443
225 => 0.0075810256832966
226 => 0.0076812408234954
227 => 0.0078643859619422
228 => 0.0078632466255412
301 => 0.007905732737828
302 => 0.0079322012338088
303 => 0.0078185790729361
304 => 0.0077446152242106
305 => 0.0077729776702539
306 => 0.0078183298391309
307 => 0.0077582705731284
308 => 0.0073875569612023
309 => 0.0075000077897835
310 => 0.007481290473343
311 => 0.0074546347386282
312 => 0.0075677049163231
313 => 0.0075567990218479
314 => 0.0072301251412987
315 => 0.0072510377432406
316 => 0.0072313969058875
317 => 0.0072948604695128
318 => 0.0071134261576789
319 => 0.0071692341300203
320 => 0.0072042363671055
321 => 0.0072248529536486
322 => 0.0072993342011679
323 => 0.0072905946864309
324 => 0.007298790940661
325 => 0.0074092269684118
326 => 0.0079677744997071
327 => 0.0079981750094698
328 => 0.0078484717809341
329 => 0.0079082752679685
330 => 0.0077934656504473
331 => 0.0078705381158469
401 => 0.0079232691392449
402 => 0.0076849877841019
403 => 0.0076708783086835
404 => 0.0075555948310308
405 => 0.0076175416419315
406 => 0.0075189798116552
407 => 0.0075431634372585
408 => 0.007475543911781
409 => 0.0075972455947273
410 => 0.0077333269867908
411 => 0.0077677065204431
412 => 0.0076772687687238
413 => 0.0076117858763408
414 => 0.007496819488722
415 => 0.0076880111535252
416 => 0.007743921422774
417 => 0.0076877174806825
418 => 0.0076746937992195
419 => 0.0076500139463804
420 => 0.0076799297466685
421 => 0.0077436169234403
422 => 0.0077135832269922
423 => 0.0077334210126218
424 => 0.0076578198304375
425 => 0.0078186166865992
426 => 0.0080740007920546
427 => 0.0080748218937132
428 => 0.0080447880353723
429 => 0.0080324988276277
430 => 0.0080633153888924
501 => 0.0080800321092169
502 => 0.0081796872175561
503 => 0.0082866211192387
504 => 0.0087856349794748
505 => 0.0086455138843567
506 => 0.0090882686676255
507 => 0.009438430216678
508 => 0.0095434283545301
509 => 0.0094468350082503
510 => 0.0091163943884973
511 => 0.009100181395242
512 => 0.0095939991895841
513 => 0.0094544730443946
514 => 0.0094378768533929
515 => 0.0092613214208412
516 => 0.0093656875482949
517 => 0.0093428611452621
518 => 0.0093068285513689
519 => 0.0095059518523432
520 => 0.0098786928959074
521 => 0.0098205977087245
522 => 0.0097772323464507
523 => 0.009587217952434
524 => 0.0097016490588834
525 => 0.0096609023336603
526 => 0.0098359761237298
527 => 0.0097322662888519
528 => 0.0094534159966171
529 => 0.009497823824758
530 => 0.0094911116708707
531 => 0.0096292473222442
601 => 0.0095877824284395
602 => 0.0094830149848676
603 => 0.0098774189075426
604 => 0.009851808510594
605 => 0.0098881181981153
606 => 0.0099041028454766
607 => 0.010144169563032
608 => 0.010242517215937
609 => 0.010264843854964
610 => 0.010358266518743
611 => 0.010262519413983
612 => 0.01064557609955
613 => 0.010900286443475
614 => 0.011196145615219
615 => 0.011628475384584
616 => 0.01179103537714
617 => 0.011761670369503
618 => 0.012089457866524
619 => 0.012678484712365
620 => 0.011880729535969
621 => 0.012720767673815
622 => 0.012454821298079
623 => 0.011824267225382
624 => 0.011783666976845
625 => 0.012210685515759
626 => 0.013157771536058
627 => 0.012920537229734
628 => 0.013158159566397
629 => 0.012880960488626
630 => 0.012867195217998
701 => 0.013144696625909
702 => 0.013793093791309
703 => 0.013485064602832
704 => 0.013043429229294
705 => 0.013369525916507
706 => 0.01308703078722
707 => 0.012450490195527
708 => 0.012920355821131
709 => 0.012606170058292
710 => 0.012697866166922
711 => 0.013358237908805
712 => 0.013278780233694
713 => 0.01338160582287
714 => 0.01320012134939
715 => 0.013030586233685
716 => 0.012714136350378
717 => 0.012620451140722
718 => 0.01264634236223
719 => 0.012620438310318
720 => 0.012443387508933
721 => 0.012405153405231
722 => 0.012341428223986
723 => 0.012361179322302
724 => 0.012241357338103
725 => 0.012467486178772
726 => 0.01250945768424
727 => 0.012674015396899
728 => 0.012691100324526
729 => 0.013149391211947
730 => 0.012896972292421
731 => 0.01306631669644
801 => 0.013051168939014
802 => 0.011837933244145
803 => 0.012005106418428
804 => 0.012265175415782
805 => 0.012148014684989
806 => 0.011982376823038
807 => 0.011848615368571
808 => 0.011645953087244
809 => 0.011931196356428
810 => 0.012306260923165
811 => 0.012700612580889
812 => 0.013174400258701
813 => 0.01306865636451
814 => 0.012691755449812
815 => 0.01270866294952
816 => 0.012813178459853
817 => 0.012677821377736
818 => 0.012637901931736
819 => 0.012807694140977
820 => 0.012808863406606
821 => 0.012653118725181
822 => 0.012480037012753
823 => 0.012479311794058
824 => 0.012448513575102
825 => 0.01288643942336
826 => 0.013127254360604
827 => 0.013154863405067
828 => 0.013125396051934
829 => 0.013136736866638
830 => 0.01299661196065
831 => 0.013316895942987
901 => 0.013610820197983
902 => 0.013532042218868
903 => 0.013413942829226
904 => 0.013319870976938
905 => 0.013509881880116
906 => 0.013501420993702
907 => 0.01360825302603
908 => 0.013603406507951
909 => 0.013567482913636
910 => 0.013532043501813
911 => 0.013672556763801
912 => 0.013632091200922
913 => 0.013591562783848
914 => 0.013510276838814
915 => 0.013521324948761
916 => 0.013403245950643
917 => 0.013348617203187
918 => 0.012527131914132
919 => 0.012307604202091
920 => 0.012376672089197
921 => 0.01239941103098
922 => 0.012303872289367
923 => 0.012440850302951
924 => 0.012419502424629
925 => 0.012502554531087
926 => 0.012450667180676
927 => 0.012452796655636
928 => 0.012605386289646
929 => 0.012649683709562
930 => 0.012627153684269
1001 => 0.0126429329417
1002 => 0.013006559269197
1003 => 0.012954863233542
1004 => 0.012927400744941
1005 => 0.012935008041965
1006 => 0.013027922364877
1007 => 0.013053933302358
1008 => 0.012943723132494
1009 => 0.012995698885719
1010 => 0.013217005046249
1011 => 0.01329444967759
1012 => 0.013541615765299
1013 => 0.013436615218214
1014 => 0.013629348266707
1015 => 0.014221743950238
1016 => 0.014694990612905
1017 => 0.014259773424171
1018 => 0.015128830652561
1019 => 0.015805516363718
1020 => 0.015779544039045
1021 => 0.015661548233282
1022 => 0.01489115954175
1023 => 0.014182236381954
1024 => 0.014775280707591
1025 => 0.014776792499538
1026 => 0.01472584946602
1027 => 0.014409446660049
1028 => 0.014714839334215
1029 => 0.014739080295668
1030 => 0.014725511803446
1031 => 0.014482926513953
1101 => 0.014112543614153
1102 => 0.014184915546203
1103 => 0.014303462247247
1104 => 0.014079028610737
1105 => 0.014007308464959
1106 => 0.014140649861277
1107 => 0.014570303622998
1108 => 0.014489080068159
1109 => 0.014486958992892
1110 => 0.014834467804639
1111 => 0.014585726492524
1112 => 0.014185828388033
1113 => 0.014084848842641
1114 => 0.013726439484472
1115 => 0.01397399410477
1116 => 0.013982903154841
1117 => 0.013847320019251
1118 => 0.014196830212245
1119 => 0.014193609414286
1120 => 0.014525417324807
1121 => 0.015159709428362
1122 => 0.014972118041722
1123 => 0.014753969668944
1124 => 0.014777688445663
1125 => 0.015037824883343
1126 => 0.014880540454785
1127 => 0.01493710103192
1128 => 0.015037739272136
1129 => 0.015098456821165
1130 => 0.014768952124748
1201 => 0.014692128817982
1202 => 0.014534975293655
1203 => 0.014493976872567
1204 => 0.014621975139016
1205 => 0.014588252118052
1206 => 0.01398215438368
1207 => 0.013918813798143
1208 => 0.013920756363471
1209 => 0.013761483449456
1210 => 0.013518554025703
1211 => 0.014156958046764
1212 => 0.014105685269414
1213 => 0.014049084091418
1214 => 0.01405601741276
1215 => 0.014333126960783
1216 => 0.014172389428562
1217 => 0.014599736502334
1218 => 0.014511886791196
1219 => 0.014421784066454
1220 => 0.014409329125298
1221 => 0.014374647263476
1222 => 0.014255710254734
1223 => 0.014112086669672
1224 => 0.014017253938353
1225 => 0.012930175808891
1226 => 0.013131931186476
1227 => 0.013364032357807
1228 => 0.013444152752064
1229 => 0.013307101273526
1230 => 0.014261121882445
1231 => 0.014435430640866
]
'min_raw' => 0.0060165502772024
'max_raw' => 0.015805516363718
'avg_raw' => 0.01091103332046
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006016'
'max' => '$0.0158055'
'avg' => '$0.010911'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023327521136231
'max_diff' => -0.0028503649282241
'year' => 2027
]
2 => [
'items' => [
101 => 0.01390743804173
102 => 0.013808672184228
103 => 0.014267596955621
104 => 0.013990809217199
105 => 0.014115446718862
106 => 0.013846048613335
107 => 0.014393444765319
108 => 0.01438927452378
109 => 0.014176325057156
110 => 0.014356308488132
111 => 0.014325031937825
112 => 0.014084612514477
113 => 0.014401066489867
114 => 0.014401223447091
115 => 0.014196264215386
116 => 0.013956916704099
117 => 0.013914127022216
118 => 0.013881890744903
119 => 0.014107518570763
120 => 0.014309815773909
121 => 0.014686240715234
122 => 0.01478088288912
123 => 0.01515027759448
124 => 0.014930321032939
125 => 0.015027824927756
126 => 0.015133679198347
127 => 0.01518442962833
128 => 0.015101734526091
129 => 0.015675556552442
130 => 0.015724004712918
131 => 0.015740248962051
201 => 0.015546759403339
202 => 0.015718623418271
203 => 0.015638213937222
204 => 0.015847417068513
205 => 0.015880222790739
206 => 0.015852437511111
207 => 0.015862850565149
208 => 0.0153731946948
209 => 0.015347803454782
210 => 0.015001592095456
211 => 0.015142675783447
212 => 0.014878926591065
213 => 0.014962564176887
214 => 0.014999430827789
215 => 0.014980173781522
216 => 0.015150652443485
217 => 0.015005710754327
218 => 0.014623185806017
219 => 0.014240556639041
220 => 0.014235753041533
221 => 0.014135013535834
222 => 0.014062197324575
223 => 0.014076224310157
224 => 0.014125657236918
225 => 0.014059324193007
226 => 0.014073479711096
227 => 0.014308555629099
228 => 0.01435569842797
229 => 0.014195488777526
301 => 0.013552223912854
302 => 0.013394365101556
303 => 0.013507830884641
304 => 0.013453601548458
305 => 0.010858106460155
306 => 0.011467879531629
307 => 0.011105573078496
308 => 0.011272540561018
309 => 0.010902719491171
310 => 0.011079217489685
311 => 0.011046624754034
312 => 0.012027121808468
313 => 0.012011812695592
314 => 0.012019140357786
315 => 0.011669371949181
316 => 0.012226562521335
317 => 0.012501054633103
318 => 0.012450253448586
319 => 0.01246303901226
320 => 0.012243340667734
321 => 0.012021267517997
322 => 0.011774954218126
323 => 0.012232573884043
324 => 0.012181694389021
325 => 0.012298393644736
326 => 0.012595192709413
327 => 0.012638897499116
328 => 0.012697637179688
329 => 0.012676583185578
330 => 0.013178174741929
331 => 0.013117428694847
401 => 0.013263809190483
402 => 0.012962693405044
403 => 0.012621952311648
404 => 0.012686716053837
405 => 0.012680478784667
406 => 0.012601071189329
407 => 0.012529385562812
408 => 0.01241004919196
409 => 0.012787647127794
410 => 0.012772317341174
411 => 0.013020488767624
412 => 0.012976622057391
413 => 0.012683669430445
414 => 0.012694132290827
415 => 0.012764500055179
416 => 0.013008043691045
417 => 0.013080344023885
418 => 0.013046851629044
419 => 0.013126125643367
420 => 0.013188780592027
421 => 0.013133994140267
422 => 0.013909654762794
423 => 0.01358754639345
424 => 0.013744539771453
425 => 0.013781981767047
426 => 0.013686074882652
427 => 0.013706873651709
428 => 0.013738378119506
429 => 0.01392966707876
430 => 0.014431664657748
501 => 0.014653995968269
502 => 0.015322890685605
503 => 0.014635534447932
504 => 0.014594749573351
505 => 0.014715237710629
506 => 0.015107949719402
507 => 0.015426205916949
508 => 0.015531789858315
509 => 0.015545744519168
510 => 0.01574382701226
511 => 0.015857364203281
512 => 0.015719774587512
513 => 0.015603181794381
514 => 0.015185560881417
515 => 0.015233901639237
516 => 0.015566921523391
517 => 0.016037331724531
518 => 0.01644099261495
519 => 0.016299644640127
520 => 0.017378029911901
521 => 0.017484947406789
522 => 0.017470174866052
523 => 0.017713748830862
524 => 0.017230304113689
525 => 0.017023622130797
526 => 0.01562839047964
527 => 0.016020393662856
528 => 0.016590193311199
529 => 0.016514778191102
530 => 0.016100974455687
531 => 0.01644067870771
601 => 0.016328361858457
602 => 0.016239772899421
603 => 0.01664561609458
604 => 0.016199374830383
605 => 0.016585741713232
606 => 0.016090222189524
607 => 0.01630029030577
608 => 0.016181045483137
609 => 0.016258211497477
610 => 0.01580710055441
611 => 0.01605050906919
612 => 0.015796973959943
613 => 0.01579685375129
614 => 0.015791256949701
615 => 0.016089539881383
616 => 0.016099266877077
617 => 0.015878835339883
618 => 0.015847067711585
619 => 0.015964529283489
620 => 0.015827012546024
621 => 0.015891355761964
622 => 0.015828961436488
623 => 0.015814915159597
624 => 0.015702992035559
625 => 0.015654772476332
626 => 0.01567368060797
627 => 0.015609137406881
628 => 0.015570247793595
629 => 0.015783520826781
630 => 0.015669577648559
701 => 0.015766057400543
702 => 0.015656106546442
703 => 0.015274968982821
704 => 0.015055772739526
705 => 0.014335839213317
706 => 0.014540011468275
707 => 0.014675377884544
708 => 0.014630639284774
709 => 0.014726755108619
710 => 0.014732655839582
711 => 0.014701407605466
712 => 0.014665226153505
713 => 0.014647615023651
714 => 0.014778873957058
715 => 0.014855074185874
716 => 0.014688963715385
717 => 0.014650046356282
718 => 0.014817993213157
719 => 0.01492044069883
720 => 0.015676855372775
721 => 0.015620817730542
722 => 0.015761461215715
723 => 0.015745626917634
724 => 0.01589304369636
725 => 0.016134007826597
726 => 0.015644060375195
727 => 0.01572909831165
728 => 0.015708248973444
729 => 0.015935876580988
730 => 0.015936587209532
731 => 0.015800113087967
801 => 0.015874097923307
802 => 0.015832801617888
803 => 0.015907429623311
804 => 0.015620069313665
805 => 0.015970043152185
806 => 0.01616845576681
807 => 0.016171210726157
808 => 0.016265256730789
809 => 0.016360812918273
810 => 0.016544224698958
811 => 0.016355697663256
812 => 0.016016555878767
813 => 0.016041040820185
814 => 0.015842202116026
815 => 0.015845544630566
816 => 0.015827702025994
817 => 0.015881249025444
818 => 0.015631819868836
819 => 0.01569036039334
820 => 0.015608403316221
821 => 0.01572892015297
822 => 0.015599263958775
823 => 0.015708238919262
824 => 0.01575526889963
825 => 0.015928810539675
826 => 0.015573631717438
827 => 0.014849398055405
828 => 0.015001640751649
829 => 0.014776461845498
830 => 0.014797303010579
831 => 0.014839405480889
901 => 0.014702937599544
902 => 0.014728971370707
903 => 0.014728041261204
904 => 0.014720026079995
905 => 0.014684525513417
906 => 0.014633042668307
907 => 0.014838134477643
908 => 0.014872983572526
909 => 0.01495044879356
910 => 0.015180932746197
911 => 0.015157901964143
912 => 0.015195466125211
913 => 0.015113463772512
914 => 0.014801106864532
915 => 0.01481806934743
916 => 0.01460654691389
917 => 0.014945039689367
918 => 0.014864880132248
919 => 0.014813200744304
920 => 0.014799099544498
921 => 0.015030154822273
922 => 0.01509929018273
923 => 0.015056209665595
924 => 0.014967850268089
925 => 0.01513752643241
926 => 0.01518292461592
927 => 0.015193087594987
928 => 0.015493721225986
929 => 0.015209889675337
930 => 0.015278210750621
1001 => 0.015811232276878
1002 => 0.015327855304506
1003 => 0.015583910867364
1004 => 0.015571378280011
1005 => 0.015702367641522
1006 => 0.015560633329074
1007 => 0.015562390295744
1008 => 0.015678699974778
1009 => 0.015515364007136
1010 => 0.015474919724549
1011 => 0.015419046237823
1012 => 0.015541043951999
1013 => 0.015614176064166
1014 => 0.016203567178612
1015 => 0.016584340718044
1016 => 0.016567810334479
1017 => 0.016718867096686
1018 => 0.01665081464179
1019 => 0.016431055313601
1020 => 0.016806157690025
1021 => 0.016687459603174
1022 => 0.016697244929236
1023 => 0.016696880718911
1024 => 0.0167758045699
1025 => 0.01671987978821
1026 => 0.016609646302937
1027 => 0.016682824434843
1028 => 0.01690013732494
1029 => 0.017574683203778
1030 => 0.017952168014119
1031 => 0.017551958144211
1101 => 0.01782801755345
1102 => 0.017662480277932
1103 => 0.017632397230663
1104 => 0.017805782940295
1105 => 0.017979472138659
1106 => 0.017968408887602
1107 => 0.017842319448629
1108 => 0.017771094723954
1109 => 0.018310432201227
1110 => 0.018707806867107
1111 => 0.018680708578928
1112 => 0.018800311610116
1113 => 0.019151469808869
1114 => 0.019183575313705
1115 => 0.019179530758032
1116 => 0.019099953914433
1117 => 0.01944571476476
1118 => 0.019734154549185
1119 => 0.019081534174336
1120 => 0.019330043469651
1121 => 0.019441607298787
1122 => 0.019605416099455
1123 => 0.019881789003726
1124 => 0.020182003282056
1125 => 0.020224456872694
1126 => 0.020194334018545
1127 => 0.019996334631793
1128 => 0.020324832677443
1129 => 0.020517259128358
1130 => 0.020631844676276
1201 => 0.020922414560581
1202 => 0.019442296279015
1203 => 0.01839459499267
1204 => 0.018230981307818
1205 => 0.018563696169756
1206 => 0.018651430425498
1207 => 0.018616064857018
1208 => 0.017436781806404
1209 => 0.018224772626615
1210 => 0.019072584493011
1211 => 0.019105152399622
1212 => 0.019529584746851
1213 => 0.019667797317178
1214 => 0.020009520988316
1215 => 0.019988146079645
1216 => 0.020071350355556
1217 => 0.020052223133422
1218 => 0.020685194275797
1219 => 0.021383455442961
1220 => 0.021359276879077
1221 => 0.021258893574846
1222 => 0.021407979899526
1223 => 0.022128660254253
1224 => 0.022062311555857
1225 => 0.02212676366478
1226 => 0.022976486418769
1227 => 0.024081246870607
1228 => 0.023567974724592
1229 => 0.024681627591362
1230 => 0.025382613038792
1231 => 0.026594894886874
]
'min_raw' => 0.010858106460155
'max_raw' => 0.026594894886874
'avg_raw' => 0.018726500673515
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010858'
'max' => '$0.026594'
'avg' => '$0.018726'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048415561829529
'max_diff' => 0.010789378523156
'year' => 2028
]
3 => [
'items' => [
101 => 0.02644311122888
102 => 0.026915043656204
103 => 0.026171386802866
104 => 0.024463800349757
105 => 0.024193568257174
106 => 0.024734579749891
107 => 0.026064603713608
108 => 0.02469269256212
109 => 0.024970228401285
110 => 0.024890298060935
111 => 0.02488603891278
112 => 0.025048593274656
113 => 0.024812799694489
114 => 0.023852134230434
115 => 0.024292401551373
116 => 0.024122393195385
117 => 0.024311030141316
118 => 0.025329025938713
119 => 0.024878945730695
120 => 0.024404822793096
121 => 0.024999478173148
122 => 0.025756678817713
123 => 0.025709294562196
124 => 0.025617349301412
125 => 0.026135639922356
126 => 0.026991704183251
127 => 0.027223094913027
128 => 0.027393902819172
129 => 0.027417454343606
130 => 0.027660049682468
131 => 0.026355553403506
201 => 0.02842582250006
202 => 0.028783300783005
203 => 0.028716109681768
204 => 0.029113431748276
205 => 0.028996529517221
206 => 0.028827156525821
207 => 0.029456996514063
208 => 0.02873493579301
209 => 0.027710061504392
210 => 0.027147795199941
211 => 0.027888232826371
212 => 0.028340392247119
213 => 0.028639240861494
214 => 0.028729672271634
215 => 0.026456817736218
216 => 0.025231875199919
217 => 0.026017049321692
218 => 0.026975015940077
219 => 0.026350231850572
220 => 0.026374722204008
221 => 0.025483944282745
222 => 0.027053830020454
223 => 0.026825110873287
224 => 0.028011706213386
225 => 0.027728515712449
226 => 0.028696138148934
227 => 0.028441330732849
228 => 0.02949902207093
301 => 0.02992096378154
302 => 0.030629469583638
303 => 0.031150649335799
304 => 0.031456696054848
305 => 0.031438322157789
306 => 0.032651031730531
307 => 0.03193593926433
308 => 0.031037614592429
309 => 0.031021366733292
310 => 0.031486621810229
311 => 0.032461668814992
312 => 0.03271448431697
313 => 0.03285577369285
314 => 0.032639384095371
315 => 0.031863202474449
316 => 0.031528051185865
317 => 0.031813609794006
318 => 0.03146439615458
319 => 0.032067236868271
320 => 0.032895065927996
321 => 0.032724122500753
322 => 0.033295560748753
323 => 0.033886939218377
324 => 0.034732636990407
325 => 0.034953733704114
326 => 0.035319198164316
327 => 0.035695381142685
328 => 0.035816200976921
329 => 0.036046883528672
330 => 0.036045667717756
331 => 0.036740845114183
401 => 0.037507647310293
402 => 0.037797097387813
403 => 0.0384626718807
404 => 0.037322898886143
405 => 0.038187429795283
406 => 0.038967258315939
407 => 0.038037514605057
408 => 0.039318949708007
409 => 0.03936870492926
410 => 0.040119949698064
411 => 0.039358419203798
412 => 0.038906224827195
413 => 0.040211693048947
414 => 0.040843367999589
415 => 0.040653102363715
416 => 0.039205171480135
417 => 0.038362413601215
418 => 0.036156753676226
419 => 0.038769453134793
420 => 0.040042022827573
421 => 0.039201875832061
422 => 0.039625597108165
423 => 0.041937282998504
424 => 0.042817423314968
425 => 0.042634360281788
426 => 0.042665294920922
427 => 0.043140202660009
428 => 0.04524620511159
429 => 0.043984239625848
430 => 0.044948964954753
501 => 0.045460651790629
502 => 0.045935935040407
503 => 0.044768789593765
504 => 0.043250350516456
505 => 0.042769397120936
506 => 0.039118339770845
507 => 0.038928286380034
508 => 0.038821603652565
509 => 0.038148984146443
510 => 0.03762048946062
511 => 0.037200210864704
512 => 0.036097274323207
513 => 0.036469483028921
514 => 0.034711632382521
515 => 0.035836242931686
516 => 0.033030670855245
517 => 0.035367234648529
518 => 0.034095549206364
519 => 0.034949451778908
520 => 0.034946472593274
521 => 0.033374167227164
522 => 0.032467294305167
523 => 0.033045189027086
524 => 0.033664738042323
525 => 0.033765257785632
526 => 0.03456851925577
527 => 0.034792692266038
528 => 0.034113437579288
529 => 0.03297253160994
530 => 0.033237538045325
531 => 0.032461923958213
601 => 0.031102690104113
602 => 0.032078915588074
603 => 0.032412241889902
604 => 0.032559457773971
605 => 0.031222807387527
606 => 0.030802802816014
607 => 0.030579195906321
608 => 0.032799986829987
609 => 0.032921646769937
610 => 0.032299217316169
611 => 0.035112657468386
612 => 0.034475889312836
613 => 0.035187315354571
614 => 0.03321349148898
615 => 0.033288894218752
616 => 0.03235445436885
617 => 0.032877678245502
618 => 0.032507880473777
619 => 0.032835406926867
620 => 0.033031724932408
621 => 0.033966011449924
622 => 0.035377902699794
623 => 0.033826460199917
624 => 0.033150474485655
625 => 0.033569852220895
626 => 0.034686710394792
627 => 0.036378807699164
628 => 0.035377052038344
629 => 0.035821614189701
630 => 0.035918731242579
701 => 0.035180073705301
702 => 0.036406043056173
703 => 0.037063049991063
704 => 0.03773700315783
705 => 0.038322177808796
706 => 0.037467811442476
707 => 0.038382105923046
708 => 0.037645345966408
709 => 0.03698439612046
710 => 0.036985398508548
711 => 0.036570775015248
712 => 0.035767389751057
713 => 0.035619233182199
714 => 0.036389962363511
715 => 0.037008014178598
716 => 0.037058919886357
717 => 0.037401105127838
718 => 0.037603606828958
719 => 0.039588398787649
720 => 0.040386698532495
721 => 0.041362844349452
722 => 0.04174310815772
723 => 0.042887565888488
724 => 0.041963323322581
725 => 0.041763357629688
726 => 0.038987277524117
727 => 0.039441860485886
728 => 0.040169691668408
729 => 0.03899927919224
730 => 0.039741636516553
731 => 0.03988819357765
801 => 0.038959509024164
802 => 0.039455559570272
803 => 0.038138196388546
804 => 0.035406617617218
805 => 0.036409084084209
806 => 0.037147236830478
807 => 0.036093801847974
808 => 0.037982043280549
809 => 0.036878971616854
810 => 0.03652935085624
811 => 0.035165355620286
812 => 0.035809108866665
813 => 0.036679794350051
814 => 0.03614181194937
815 => 0.037258206209247
816 => 0.038839318212707
817 => 0.03996611278322
818 => 0.04005261407888
819 => 0.039328160659413
820 => 0.040489101887509
821 => 0.040497558076927
822 => 0.039188011629051
823 => 0.038385921721313
824 => 0.038203685206663
825 => 0.038658947749831
826 => 0.03921172052334
827 => 0.040083289120707
828 => 0.040609959770363
829 => 0.041983237500136
830 => 0.042354807078855
831 => 0.042763049393009
901 => 0.043308587021987
902 => 0.043963644818551
903 => 0.042530415652129
904 => 0.042587360518784
905 => 0.041252757363421
906 => 0.039826542490462
907 => 0.040908861798844
908 => 0.042323850319649
909 => 0.041999250389553
910 => 0.041962726266443
911 => 0.042024149710568
912 => 0.041779411963718
913 => 0.04067247220512
914 => 0.040116573988162
915 => 0.040833824512798
916 => 0.041215011245494
917 => 0.04180619862493
918 => 0.041733322301963
919 => 0.043256157502498
920 => 0.04384788521328
921 => 0.043696495943406
922 => 0.043724355212449
923 => 0.04479564996822
924 => 0.045987150065209
925 => 0.047103147138324
926 => 0.048238387294286
927 => 0.046869810977096
928 => 0.04617493232528
929 => 0.046891869720775
930 => 0.0465114526471
1001 => 0.048697441991466
1002 => 0.048848795150796
1003 => 0.051034626423251
1004 => 0.053109240584757
1005 => 0.051806212600488
1006 => 0.053034909299984
1007 => 0.054363844957601
1008 => 0.056927577453182
1009 => 0.056064202541867
1010 => 0.055402870890609
1011 => 0.054777915675702
1012 => 0.056078348269078
1013 => 0.057751334025537
1014 => 0.058111679133821
1015 => 0.058695575871665
1016 => 0.058081679847318
1017 => 0.058821049990215
1018 => 0.061431351490347
1019 => 0.060726024983243
1020 => 0.059724347956261
1021 => 0.061784930294593
1022 => 0.062530647032525
1023 => 0.067764477634217
1024 => 0.074372404967612
1025 => 0.071636679661596
1026 => 0.069938526682849
1027 => 0.070337632913581
1028 => 0.072750624283281
1029 => 0.07352560052671
1030 => 0.071418947946738
1031 => 0.072163053252283
1101 => 0.076263146644658
1102 => 0.078462715202922
1103 => 0.07547540565933
1104 => 0.067233537106975
1105 => 0.059634157899567
1106 => 0.061649855469877
1107 => 0.061421337919782
1108 => 0.065826376772821
1109 => 0.060709203179315
1110 => 0.060795363258907
1111 => 0.06529149365041
1112 => 0.064092003145146
1113 => 0.062148982145755
1114 => 0.059648344103138
1115 => 0.055025683400338
1116 => 0.050931263903438
1117 => 0.058961363425355
1118 => 0.058615090932181
1119 => 0.058113637047358
1120 => 0.059229568405055
1121 => 0.064648214315391
1122 => 0.064523296988713
1123 => 0.063728636689765
1124 => 0.064331379522702
1125 => 0.062043318412922
1126 => 0.062633003859095
1127 => 0.059632954119074
1128 => 0.060989101894708
1129 => 0.062144813295345
1130 => 0.062376839469622
1201 => 0.06289960628782
1202 => 0.058432621063023
1203 => 0.060438166285161
1204 => 0.061616236208992
1205 => 0.05629367343457
1206 => 0.061511026256286
1207 => 0.058354860788404
1208 => 0.05728361082459
1209 => 0.058725907774415
1210 => 0.058163843250388
1211 => 0.057680613178167
1212 => 0.057410962494921
1213 => 0.058470026194366
1214 => 0.058420619606932
1215 => 0.056687785839233
1216 => 0.05442737482861
1217 => 0.055186042959237
1218 => 0.054910411714829
1219 => 0.053911488527954
1220 => 0.054584642145462
1221 => 0.051620414289207
1222 => 0.046520614329677
1223 => 0.04988969839404
1224 => 0.04975999232242
1225 => 0.049694588639407
1226 => 0.052226362199132
1227 => 0.051982990589319
1228 => 0.051541268734405
1229 => 0.053903375959686
1230 => 0.053041175047633
1231 => 0.055698275098497
]
'min_raw' => 0.023852134230434
'max_raw' => 0.078462715202922
'avg_raw' => 0.051157424716678
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023852'
'max' => '$0.078462'
'avg' => '$0.051157'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.012994027770279
'max_diff' => 0.051867820316048
'year' => 2029
]
4 => [
'items' => [
101 => 0.057448413042453
102 => 0.057004521448834
103 => 0.058650534644275
104 => 0.055203521140673
105 => 0.056348480756392
106 => 0.056584455346346
107 => 0.053874227923187
108 => 0.052022809194512
109 => 0.051899340673028
110 => 0.048689235738722
111 => 0.050404047883566
112 => 0.051913011607281
113 => 0.051190335083937
114 => 0.050961557285993
115 => 0.052130333439838
116 => 0.052221157356882
117 => 0.05015036242318
118 => 0.050580946263444
119 => 0.05237655245595
120 => 0.050535701594444
121 => 0.046959229071816
122 => 0.046072214437604
123 => 0.045953870334476
124 => 0.043548216296474
125 => 0.046131488996887
126 => 0.045003821235753
127 => 0.048566110181643
128 => 0.046531349840689
129 => 0.046443635389215
130 => 0.046311042130898
131 => 0.044240396324073
201 => 0.044693736159362
202 => 0.046200706817468
203 => 0.04673841092552
204 => 0.04668232398177
205 => 0.046193321839118
206 => 0.046417184515928
207 => 0.045696044834997
208 => 0.045441395404435
209 => 0.044637651754739
210 => 0.043456370629536
211 => 0.043620635015213
212 => 0.041280208007166
213 => 0.040005019157318
214 => 0.0396520636904
215 => 0.039180076889012
216 => 0.039705375855525
217 => 0.041273577871511
218 => 0.039381993527615
219 => 0.03613900484922
220 => 0.036333913994575
221 => 0.036771816975144
222 => 0.035955787667872
223 => 0.035183484412688
224 => 0.035854939434127
225 => 0.034480842379527
226 => 0.036937870039366
227 => 0.036871414326908
228 => 0.037787242296925
301 => 0.038359928321259
302 => 0.037040072444472
303 => 0.03670813226073
304 => 0.03689722047523
305 => 0.033772013488753
306 => 0.037531846211845
307 => 0.037564361401365
308 => 0.037285946608153
309 => 0.039287941461388
310 => 0.043512775039567
311 => 0.041923222703919
312 => 0.041307699995083
313 => 0.04013759087564
314 => 0.041696691803092
315 => 0.041576977177627
316 => 0.041035582240851
317 => 0.040708144893833
318 => 0.04131145824549
319 => 0.04063338769299
320 => 0.040511587589628
321 => 0.039773611483075
322 => 0.039510187588809
323 => 0.039315159024702
324 => 0.039100451738731
325 => 0.039574042509861
326 => 0.038500823516426
327 => 0.037206626619298
328 => 0.037099028150707
329 => 0.037396116982642
330 => 0.037264677290173
331 => 0.037098398868028
401 => 0.036780928076918
402 => 0.036686741274886
403 => 0.03699280268855
404 => 0.036647277197013
405 => 0.037157118881523
406 => 0.037018470154164
407 => 0.036243989633833
408 => 0.035278700156088
409 => 0.035270107054973
410 => 0.035062137020385
411 => 0.034797255912833
412 => 0.03472357204837
413 => 0.035798391365062
414 => 0.038023235183978
415 => 0.037586445106324
416 => 0.037902070701477
417 => 0.039454636243494
418 => 0.039948150142026
419 => 0.039597865666365
420 => 0.039118374671475
421 => 0.039139469841792
422 => 0.040778035723127
423 => 0.04088023106724
424 => 0.041138445732346
425 => 0.041470324548463
426 => 0.039654386063834
427 => 0.03905393930247
428 => 0.038769414315418
429 => 0.037893187480325
430 => 0.038838122999962
501 => 0.038287549538843
502 => 0.038361840709015
503 => 0.03831345848698
504 => 0.038339878451803
505 => 0.036937183250061
506 => 0.037448251658086
507 => 0.036598501306396
508 => 0.035460780974437
509 => 0.035456966936948
510 => 0.035735422376388
511 => 0.035569786185047
512 => 0.035124063453043
513 => 0.035187376263372
514 => 0.03463268942402
515 => 0.035254725288599
516 => 0.035272563051444
517 => 0.035033045361058
518 => 0.035991377434851
519 => 0.036384006867409
520 => 0.036226351192631
521 => 0.036372945324988
522 => 0.03760459570604
523 => 0.037805408458825
524 => 0.037894596218666
525 => 0.037775096435593
526 => 0.036395457632982
527 => 0.036456650480555
528 => 0.036007657967156
529 => 0.035628306607
530 => 0.035643478671971
531 => 0.035838514583316
601 => 0.036690247846865
602 => 0.038482670287586
603 => 0.038550691408967
604 => 0.038633134992398
605 => 0.03829779550576
606 => 0.038196653907824
607 => 0.038330085782364
608 => 0.039003225410004
609 => 0.04073472328792
610 => 0.040122696295009
611 => 0.039625108823006
612 => 0.040061627184572
613 => 0.039994428604353
614 => 0.039427204961042
615 => 0.039411284882572
616 => 0.03832260135869
617 => 0.037920139848035
618 => 0.03758381288601
619 => 0.037216552623516
620 => 0.036998828429234
621 => 0.037333351745528
622 => 0.037409861185928
623 => 0.036678420108385
624 => 0.036578727392284
625 => 0.037176037965457
626 => 0.036913183852186
627 => 0.037183535826154
628 => 0.037246259803151
629 => 0.037236159798198
630 => 0.036961709915341
701 => 0.037136636086461
702 => 0.036722883543761
703 => 0.036272989797196
704 => 0.035985985616259
705 => 0.035735536402812
706 => 0.035874500182626
707 => 0.035379119681371
708 => 0.03522063748898
709 => 0.037077375035649
710 => 0.038448967024666
711 => 0.038429023533935
712 => 0.038307622663164
713 => 0.038127245594465
714 => 0.038990029703929
715 => 0.038689452972104
716 => 0.038908147658533
717 => 0.038963814634816
718 => 0.039132301806205
719 => 0.039192521488015
720 => 0.039010495784327
721 => 0.038399595290186
722 => 0.036877289341462
723 => 0.036168651812944
724 => 0.035934789625242
725 => 0.035943290071597
726 => 0.03570880981345
727 => 0.035777874758143
728 => 0.035684791844208
729 => 0.03550851532439
730 => 0.035863615604262
731 => 0.035904537603529
801 => 0.035821652955074
802 => 0.035841175290254
803 => 0.035154925801548
804 => 0.035207099859719
805 => 0.034916588073865
806 => 0.03486212061619
807 => 0.034127732119307
808 => 0.032826656445765
809 => 0.033547578667379
810 => 0.032676806000674
811 => 0.032347031197434
812 => 0.033908133825469
813 => 0.033751442419861
814 => 0.033483254845577
815 => 0.033086549528023
816 => 0.032939407666841
817 => 0.032045420297752
818 => 0.031992598754749
819 => 0.032435683034559
820 => 0.032231214885026
821 => 0.031944064164938
822 => 0.03090403336478
823 => 0.029734694403038
824 => 0.02976998939609
825 => 0.030141934363496
826 => 0.031223414519839
827 => 0.030800861512959
828 => 0.030494294458231
829 => 0.030436883664252
830 => 0.031155499948535
831 => 0.032172492545562
901 => 0.03264964271816
902 => 0.032176801388382
903 => 0.031633626728317
904 => 0.031666687253046
905 => 0.031886624112693
906 => 0.031909736366902
907 => 0.031556185502457
908 => 0.031655707999863
909 => 0.031504524225776
910 => 0.030576709683272
911 => 0.03055992846033
912 => 0.030332227808568
913 => 0.030325333123327
914 => 0.029937957512092
915 => 0.029883760986279
916 => 0.029114603198152
917 => 0.029620865183521
918 => 0.029281291223683
919 => 0.028769473168807
920 => 0.028681235543231
921 => 0.028678583013656
922 => 0.02920410571559
923 => 0.029614724144775
924 => 0.029287198258099
925 => 0.029212626962525
926 => 0.030008853304833
927 => 0.02990752624501
928 => 0.029819777664693
929 => 0.032081432012971
930 => 0.030291156117219
1001 => 0.029510493641296
1002 => 0.028544275583558
1003 => 0.028858881055252
1004 => 0.028925173050654
1005 => 0.026601592795689
1006 => 0.025658916575633
1007 => 0.025335425620913
1008 => 0.025149252002982
1009 => 0.025234093658494
1010 => 0.024385574495552
1011 => 0.024955793406261
1012 => 0.024221047534692
1013 => 0.024097864998253
1014 => 0.025411681634166
1015 => 0.025594491543848
1016 => 0.024814567674558
1017 => 0.025315405056847
1018 => 0.025133794459869
1019 => 0.024233642643811
1020 => 0.024199263465506
1021 => 0.023747598926075
1022 => 0.023040831381353
1023 => 0.02271781964831
1024 => 0.022549592333225
1025 => 0.022619006202114
1026 => 0.022583908425904
1027 => 0.022354871695085
1028 => 0.022597036543214
1029 => 0.021978405425668
1030 => 0.021732061530011
1031 => 0.021620793707478
1101 => 0.021071722983577
1102 => 0.021945538678163
1103 => 0.022117691378036
1104 => 0.022290183271909
1105 => 0.023791607442855
1106 => 0.023716600534255
1107 => 0.024394626458151
1108 => 0.024368279617558
1109 => 0.024174895640771
1110 => 0.023359040452828
1111 => 0.023684225789522
1112 => 0.022683355868199
1113 => 0.023433275665793
1114 => 0.023091043587571
1115 => 0.023317566655892
1116 => 0.022910257754289
1117 => 0.023135679317808
1118 => 0.02215851516962
1119 => 0.021246053037113
1120 => 0.021613254435664
1121 => 0.022012444350463
1122 => 0.022877989797445
1123 => 0.022362478069817
1124 => 0.022547875580729
1125 => 0.021926824954344
1126 => 0.020645420117771
1127 => 0.020652672729986
1128 => 0.020455556512801
1129 => 0.020285219321714
1130 => 0.022421690793035
1201 => 0.02215598679296
1202 => 0.021732622243321
1203 => 0.022299312516851
1204 => 0.022449154419757
1205 => 0.02245342020808
1206 => 0.022866862803254
1207 => 0.023087517190413
1208 => 0.02312640848252
1209 => 0.023776969339046
1210 => 0.023995028757049
1211 => 0.024893184638876
1212 => 0.023068796207289
1213 => 0.023031224128112
1214 => 0.022307287011137
1215 => 0.021848154646557
1216 => 0.022338724196944
1217 => 0.022773301849165
1218 => 0.022320790550172
1219 => 0.022379878972785
1220 => 0.021772419525418
1221 => 0.021989557694228
1222 => 0.022176586336878
1223 => 0.022073320113442
1224 => 0.021918725578817
1225 => 0.022737671437541
1226 => 0.022691463302717
1227 => 0.023454084513845
1228 => 0.024048602283485
1229 => 0.025114084409443
1230 => 0.024002198266166
1231 => 0.023961676715758
]
'min_raw' => 0.020285219321714
'max_raw' => 0.058650534644275
'avg_raw' => 0.039467876982995
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020285'
'max' => '$0.05865'
'avg' => '$0.039467'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00356691490872
'max_diff' => -0.019812180558647
'year' => 2030
]
5 => [
'items' => [
101 => 0.024357781370859
102 => 0.02399496811549
103 => 0.024224253568995
104 => 0.025077142978144
105 => 0.025095163187394
106 => 0.024793301464732
107 => 0.024774933151475
108 => 0.024832908997317
109 => 0.02517247533726
110 => 0.025053820424265
111 => 0.025191130893558
112 => 0.025362839737982
113 => 0.026073100321562
114 => 0.026244341743688
115 => 0.025828313866421
116 => 0.025865876525672
117 => 0.025710270679353
118 => 0.025559957381546
119 => 0.025897839723523
120 => 0.026515326344582
121 => 0.02651148499236
122 => 0.026654729886221
123 => 0.026743970268391
124 => 0.026360885220163
125 => 0.026111510940194
126 => 0.026207136907232
127 => 0.026360044910988
128 => 0.026157550902456
129 => 0.02490766407745
130 => 0.025286799897077
131 => 0.025223693157897
201 => 0.025133821487262
202 => 0.025515045485668
203 => 0.02547827550102
204 => 0.024376871705106
205 => 0.024447380002625
206 => 0.024381159548209
207 => 0.024595131383856
208 => 0.023983412934169
209 => 0.024171573409306
210 => 0.024289585895417
211 => 0.024359096156351
212 => 0.024610214882477
213 => 0.024580748998368
214 => 0.024608383241749
215 => 0.024980726019708
216 => 0.026863908018014
217 => 0.026966405459174
218 => 0.02646167057222
219 => 0.026663302204103
220 => 0.026276213562879
221 => 0.026536068761001
222 => 0.02671385508795
223 => 0.025910472862813
224 => 0.025862901781347
225 => 0.025474215487606
226 => 0.025683073485546
227 => 0.025350765393402
228 => 0.02543230217557
301 => 0.025204318224379
302 => 0.025614643945372
303 => 0.026073451859614
304 => 0.026189364857625
305 => 0.025884447663541
306 => 0.025663667520002
307 => 0.025276050317448
308 => 0.025920666363908
309 => 0.026109171740211
310 => 0.025919676225415
311 => 0.025875765974079
312 => 0.025792556127139
313 => 0.025893419336465
314 => 0.026108145099448
315 => 0.026006884394987
316 => 0.026073768874268
317 => 0.025818874210227
318 => 0.026361012037254
319 => 0.027222057379146
320 => 0.027224825780715
321 => 0.027123564530422
322 => 0.027082130608506
323 => 0.027186030796354
324 => 0.027242392386052
325 => 0.027578386541515
326 => 0.027938921656924
327 => 0.029621381726745
328 => 0.029148953671612
329 => 0.030641732335555
330 => 0.031822326445684
331 => 0.032176334998188
401 => 0.031850663787274
402 => 0.03073656016715
403 => 0.030681896928434
404 => 0.032346838099316
405 => 0.031876415959405
406 => 0.031820460742734
407 => 0.031225191775179
408 => 0.0315770694605
409 => 0.031500108648986
410 => 0.03137862224296
411 => 0.032049980354539
412 => 0.033306702806865
413 => 0.033110830827201
414 => 0.032964621480622
415 => 0.032323974684814
416 => 0.032709787149533
417 => 0.032572406720597
418 => 0.033162680227078
419 => 0.032813015277998
420 => 0.031872852049022
421 => 0.032022576142055
422 => 0.031999945646596
423 => 0.032465679639525
424 => 0.032325877855077
425 => 0.031972647104444
426 => 0.033302407466146
427 => 0.033216060224773
428 => 0.033338480871312
429 => 0.033392374225903
430 => 0.034201775925065
501 => 0.034533361903246
502 => 0.034608637725523
503 => 0.034923618759015
504 => 0.034600800710469
505 => 0.035892303070023
506 => 0.036751076777874
507 => 0.037748586631634
508 => 0.039206216633351
509 => 0.039754298997828
510 => 0.03965529282438
511 => 0.04076045125598
512 => 0.042746396391273
513 => 0.040056709116567
514 => 0.042888956347904
515 => 0.041992299574329
516 => 0.039866342494351
517 => 0.039729455921788
518 => 0.041169178739218
519 => 0.044362345380094
520 => 0.043562493353151
521 => 0.044363653651471
522 => 0.043429057607346
523 => 0.043382647036361
524 => 0.044318262407665
525 => 0.046504378720456
526 => 0.045465836805594
527 => 0.043976832309713
528 => 0.045076290057995
529 => 0.044123838006422
530 => 0.041977696959685
531 => 0.04356188172138
601 => 0.042502582486219
602 => 0.042811742318484
603 => 0.045038231751922
604 => 0.044770334652731
605 => 0.045117018305688
606 => 0.044505130732509
607 => 0.043933531253346
608 => 0.042866598377953
609 => 0.042550732152705
610 => 0.042638026213687
611 => 0.042550688894103
612 => 0.04195374975594
613 => 0.041824840805889
614 => 0.041609986908173
615 => 0.041676579115121
616 => 0.04127259092969
617 => 0.042035000103817
618 => 0.042176509964861
619 => 0.042731327782141
620 => 0.042788930808469
621 => 0.044334090532258
622 => 0.043483042521749
623 => 0.044053999003148
624 => 0.044002927281401
625 => 0.03991241843074
626 => 0.040476054459496
627 => 0.04135289524151
628 => 0.040957879657742
629 => 0.040399420041705
630 => 0.039948433959046
701 => 0.039265143928121
702 => 0.040226861525224
703 => 0.041491417898151
704 => 0.042821002044922
705 => 0.044418410279464
706 => 0.044061887357396
707 => 0.042791139609111
708 => 0.042848144424818
709 => 0.043200525764945
710 => 0.042744159912259
711 => 0.042609568712982
712 => 0.043182035000953
713 => 0.043185977261656
714 => 0.042660873194485
715 => 0.042077316116855
716 => 0.042074870991392
717 => 0.04197103264592
718 => 0.043447530218327
719 => 0.044259454592408
720 => 0.044352540413415
721 => 0.044253189174986
722 => 0.044291425523548
723 => 0.043818984619802
724 => 0.044898844427766
725 => 0.04588983057462
726 => 0.045624225117932
727 => 0.045226044780316
728 => 0.044908874962442
729 => 0.045549509988643
730 => 0.045520983519379
731 => 0.045881175175145
801 => 0.045864834801071
802 => 0.045743715894731
803 => 0.04562422944347
804 => 0.046097979716584
805 => 0.045961547246123
806 => 0.045824902858353
807 => 0.04555084161947
808 => 0.045588091093509
809 => 0.045189979507343
810 => 0.045005794871236
811 => 0.042236099864917
812 => 0.041495946856833
813 => 0.04172881406038
814 => 0.041805479990182
815 => 0.041483364452532
816 => 0.04194519538883
817 => 0.041873219526608
818 => 0.042153235502042
819 => 0.041978293677471
820 => 0.041985473350974
821 => 0.042499939955508
822 => 0.042649291799502
823 => 0.042573330246229
824 => 0.042626531114331
825 => 0.043852522665066
826 => 0.043678225871554
827 => 0.043585634173865
828 => 0.043611282706908
829 => 0.043924549833676
830 => 0.04401224752542
831 => 0.043640666243093
901 => 0.043815906123924
902 => 0.044562055295251
903 => 0.04482316527683
904 => 0.045656502998128
905 => 0.045302486322724
906 => 0.045952299251911
907 => 0.047949602658681
908 => 0.049545186822892
909 => 0.048077821685179
910 => 0.051007908806335
911 => 0.053289401926188
912 => 0.053201834420223
913 => 0.05280400332289
914 => 0.050206584062569
915 => 0.047816400133883
916 => 0.049815890482799
917 => 0.049820987594898
918 => 0.049649229600666
919 => 0.048582455449793
920 => 0.049612108172582
921 => 0.049693838266568
922 => 0.049648091147722
923 => 0.048830197907433
924 => 0.047581426101448
925 => 0.0478254331232
926 => 0.048225121602439
927 => 0.047468427927489
928 => 0.047226618448656
929 => 0.047676188275942
930 => 0.049124795931051
1001 => 0.048850945045066
1002 => 0.048843793691714
1003 => 0.050015443912809
1004 => 0.049176795212448
1005 => 0.047828510833163
1006 => 0.047488051245708
1007 => 0.046279649071299
1008 => 0.047114296757344
1009 => 0.04714433424167
1010 => 0.046687206233916
1011 => 0.047865604251616
1012 => 0.04785474510643
1013 => 0.048973458642838
1014 => 0.051112018754834
1015 => 0.050479541297565
1016 => 0.049744038828113
1017 => 0.049824008339814
1018 => 0.050701076501598
1019 => 0.050170781069465
1020 => 0.050361479004211
1021 => 0.050700787857434
1022 => 0.050905501313149
1023 => 0.049794553223897
1024 => 0.049535538081503
1025 => 0.049005684002126
1026 => 0.048867454963011
1027 => 0.049299010054896
1028 => 0.049185310535251
1029 => 0.047141809707423
1030 => 0.046928252500984
1031 => 0.046934801995616
1101 => 0.046397802245933
1102 => 0.045578748732959
1103 => 0.047731172461911
1104 => 0.047558302713325
1105 => 0.047367467889942
1106 => 0.047390844066918
1107 => 0.048325138255247
1108 => 0.047783200443029
1109 => 0.049224030938672
1110 => 0.048927839504097
1111 => 0.048624051876858
1112 => 0.048582059173176
1113 => 0.048465126854631
1114 => 0.048064122425742
1115 => 0.047579885481228
1116 => 0.047260150306574
1117 => 0.043594990495722
1118 => 0.044275222837362
1119 => 0.045057768141291
1120 => 0.045327899644353
1121 => 0.044865821015834
1122 => 0.048082368106399
1123 => 0.048670062255264
1124 => 0.04688989834401
1125 => 0.046556902359828
1126 => 0.048104199267684
1127 => 0.047170990082893
1128 => 0.047591214121663
1129 => 0.046682919600102
1130 => 0.048528503944496
1201 => 0.048514443683991
1202 => 0.047796469689609
1203 => 0.048403296393187
1204 => 0.048297845320168
1205 => 0.047487254448803
1206 => 0.048554201120943
1207 => 0.048554730313181
1208 => 0.047863695953689
1209 => 0.047056719108675
1210 => 0.046912450708729
1211 => 0.046803763849102
1212 => 0.04756448381682
1213 => 0.048246542961167
1214 => 0.049515685931996
1215 => 0.049834778628955
1216 => 0.051080218668391
1217 => 0.050338619764282
1218 => 0.05066736095316
1219 => 0.051024256016968
1220 => 0.051195364634938
1221 => 0.05091655232415
1222 => 0.052851233348966
1223 => 0.053014579704556
1224 => 0.053069348324645
1225 => 0.052416984768436
1226 => 0.052996436293941
1227 => 0.052725330114575
1228 => 0.053430673077819
1229 => 0.053541279860727
1230 => 0.053447599850554
1231 => 0.053482708189259
]
'min_raw' => 0.023983412934169
'max_raw' => 0.053541279860727
'avg_raw' => 0.038762346397448
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023983'
'max' => '$0.053541'
'avg' => '$0.038762'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036981936124552
'max_diff' => -0.0051092547835483
'year' => 2031
]
6 => [
'items' => [
101 => 0.051831799235698
102 => 0.051746190897217
103 => 0.050578915127543
104 => 0.051054588631752
105 => 0.050165339815257
106 => 0.050447329775246
107 => 0.05057162826271
108 => 0.050506701786735
109 => 0.051081482497985
110 => 0.050592801473481
111 => 0.049303091903217
112 => 0.048013030952443
113 => 0.047996835288067
114 => 0.047657185011195
115 => 0.047411680071068
116 => 0.047458973032292
117 => 0.047625639596164
118 => 0.047401993107392
119 => 0.047449719424937
120 => 0.04824229429496
121 => 0.048401239532758
122 => 0.047861081510807
123 => 0.045692269108246
124 => 0.045160037104603
125 => 0.045542594914202
126 => 0.045359756921092
127 => 0.036608864019198
128 => 0.038664756502669
129 => 0.037443215000502
130 => 0.038006157525123
131 => 0.036759279968049
201 => 0.037354355292737
202 => 0.037244466608938
203 => 0.040550280884078
204 => 0.040498665141171
205 => 0.040523370865856
206 => 0.039344102256196
207 => 0.041222709172017
208 => 0.04214817849127
209 => 0.041976898750845
210 => 0.042020006171433
211 => 0.041279277864015
212 => 0.040530542735024
213 => 0.039700080247463
214 => 0.041242976901086
215 => 0.041071433131327
216 => 0.041464892819653
217 => 0.042465571588058
218 => 0.042612925337915
219 => 0.042810970272036
220 => 0.042739985260952
221 => 0.044431136213192
222 => 0.044226326674302
223 => 0.0447198587353
224 => 0.04370462584146
225 => 0.042555793455289
226 => 0.04277414893374
227 => 0.042753119545261
228 => 0.042485391293519
229 => 0.042243698198785
301 => 0.04184134729266
302 => 0.043114445096369
303 => 0.043062759650488
304 => 0.043899486941542
305 => 0.043751587265313
306 => 0.042763877030265
307 => 0.042799153294538
308 => 0.04303640312497
309 => 0.043857527496967
310 => 0.044101293116986
311 => 0.043988371169413
312 => 0.044255649043441
313 => 0.044466894577275
314 => 0.044282178230097
315 => 0.046897372173842
316 => 0.045811361317713
317 => 0.046340675452575
318 => 0.04646691375484
319 => 0.046143556998094
320 => 0.046213681500095
321 => 0.046319901012843
322 => 0.046964845094336
323 => 0.048657364980249
324 => 0.049406970516347
325 => 0.051662195756583
326 => 0.049344726211586
327 => 0.049207217159429
328 => 0.049613451326473
329 => 0.050937507282328
330 => 0.052010530272296
331 => 0.05236651390225
401 => 0.052413563015597
402 => 0.053081411970735
403 => 0.053464210537174
404 => 0.05300031754141
405 => 0.052607216799121
406 => 0.051199178733702
407 => 0.051362162973735
408 => 0.052484962763865
409 => 0.054070983600002
410 => 0.055431954474751
411 => 0.054955389909037
412 => 0.058591241143278
413 => 0.058951720942033
414 => 0.058901914289552
415 => 0.059723140917701
416 => 0.058093173300719
417 => 0.057396330565324
418 => 0.052692209641487
419 => 0.054013875742486
420 => 0.055934995039017
421 => 0.055680727696294
422 => 0.054285559511487
423 => 0.055430896114575
424 => 0.055052212015607
425 => 0.054753528155133
426 => 0.056121856822679
427 => 0.054617323244869
428 => 0.05591998616567
429 => 0.05424930749542
430 => 0.054957566815831
501 => 0.054555524570917
502 => 0.054815695175821
503 => 0.053294743135713
504 => 0.054115411937531
505 => 0.053260600615448
506 => 0.053260195323582
507 => 0.053241325316269
508 => 0.054247007045886
509 => 0.054279802290983
510 => 0.053536601973296
511 => 0.053429495196546
512 => 0.053825525087124
513 => 0.05336187780565
514 => 0.053578815450491
515 => 0.053368448625914
516 => 0.053321090622699
517 => 0.052943733995779
518 => 0.052781158385266
519 => 0.052844908471206
520 => 0.052627296562471
521 => 0.052496177516092
522 => 0.053215242437726
523 => 0.052831075057093
524 => 0.053156363276908
525 => 0.052785656295783
526 => 0.051500624389859
527 => 0.050761588951797
528 => 0.048334282804028
529 => 0.049022663816472
530 => 0.049479061139903
531 => 0.049328221827232
601 => 0.049652283037915
602 => 0.049672177764335
603 => 0.049566822161329
604 => 0.049444833869936
605 => 0.049385456716062
606 => 0.049828005374251
607 => 0.050084919765833
608 => 0.049524866717118
609 => 0.049393654123779
610 => 0.049959898677406
611 => 0.05030530752801
612 => 0.0528556124124
613 => 0.052666677589188
614 => 0.053140866918863
615 => 0.05308748047737
616 => 0.053584506439154
617 => 0.054396933827827
618 => 0.052745041788385
619 => 0.053031753128303
620 => 0.052961458128887
621 => 0.053728920500174
622 => 0.053731316433926
623 => 0.05327118440475
624 => 0.053520629442556
625 => 0.053381396065619
626 => 0.053633009596263
627 => 0.052664154249436
628 => 0.0538441154804
629 => 0.054513077463334
630 => 0.054522366001116
701 => 0.054839448671816
702 => 0.055161623029437
703 => 0.055780008653419
704 => 0.055144376590014
705 => 0.054000936385483
706 => 0.054083489074961
707 => 0.053413090501413
708 => 0.053424360022552
709 => 0.053364202435505
710 => 0.053544739882684
711 => 0.05270377206659
712 => 0.052901145532125
713 => 0.052624821524559
714 => 0.053031152453875
715 => 0.05259400754284
716 => 0.052961424230509
717 => 0.053119989092851
718 => 0.053705096848551
719 => 0.052507586651586
720 => 0.050065782295663
721 => 0.050579079175294
722 => 0.049819872771719
723 => 0.049890140214873
724 => 0.050032091633023
725 => 0.049571980643183
726 => 0.049659755320281
727 => 0.049656619391154
728 => 0.049629595648105
729 => 0.049509903009318
730 => 0.04933632500261
731 => 0.050027806356842
801 => 0.050145302513324
802 => 0.05040648191449
803 => 0.051183574652681
804 => 0.051105924763027
805 => 0.051232574954715
806 => 0.05095609829737
807 => 0.049902965174053
808 => 0.049960155369425
809 => 0.04924699271672
810 => 0.050388244742052
811 => 0.050117981198663
812 => 0.049943740534072
813 => 0.049896197354409
814 => 0.050675216355191
815 => 0.050908311049852
816 => 0.050763062078542
817 => 0.050465152200797
818 => 0.051037227235217
819 => 0.051190290380519
820 => 0.051224555574001
821 => 0.052238162850485
822 => 0.051281204960984
823 => 0.05151155423633
824 => 0.05330867352648
825 => 0.051678934315824
826 => 0.05254224352323
827 => 0.052499989029972
828 => 0.05294162880769
829 => 0.0524637616777
830 => 0.052469685413495
831 => 0.052861831616838
901 => 0.052311132998183
902 => 0.052174772275711
903 => 0.051986390914251
904 => 0.052397714725205
905 => 0.052644284747296
906 => 0.054631458039624
907 => 0.055915262612579
908 => 0.055859529270273
909 => 0.056368827690502
910 => 0.05613938408755
911 => 0.055398450169454
912 => 0.056663134020379
913 => 0.056262935133326
914 => 0.056295927043333
915 => 0.056294699082795
916 => 0.056560796356691
917 => 0.056372242050679
918 => 0.056000582158826
919 => 0.056247307339679
920 => 0.056979992920945
921 => 0.059254271446734
922 => 0.060526987839948
923 => 0.059177652321793
924 => 0.060108405893894
925 => 0.059550285412041
926 => 0.059448858317842
927 => 0.06003344034327
928 => 0.060619045602148
929 => 0.060581745078799
930 => 0.060156625732016
1001 => 0.059916486600023
1002 => 0.061734900559988
1003 => 0.063074676989817
1004 => 0.062983313219278
1005 => 0.063386563189348
1006 => 0.064570517573525
1007 => 0.064678763524615
1008 => 0.064665127022782
1009 => 0.064396828138709
1010 => 0.065562584985837
1011 => 0.066535079857251
1012 => 0.064334724698947
1013 => 0.065172591138465
1014 => 0.065548736377535
1015 => 0.066101029185754
1016 => 0.067032839728242
1017 => 0.068045033127923
1018 => 0.068188168372774
1019 => 0.0680866070669
1020 => 0.067419038310591
1021 => 0.068526592406502
1022 => 0.069175371620546
1023 => 0.069561704795461
1024 => 0.070541381447336
1025 => 0.065551059322477
1026 => 0.062018661287399
1027 => 0.061467026325776
1028 => 0.06258879771221
1029 => 0.062884599880854
1030 => 0.062765362397578
1031 => 0.058789327257519
1101 => 0.061446093323623
1102 => 0.064304550223514
1103 => 0.064414355194471
1104 => 0.065845358486072
1105 => 0.066311351816624
1106 => 0.067463497032252
1107 => 0.067391430035319
1108 => 0.06767195906069
1109 => 0.067607470295843
1110 => 0.069741576694995
1111 => 0.072095812971127
1112 => 0.072014293254897
1113 => 0.071675843936144
1114 => 0.072178498888677
1115 => 0.074608323020937
1116 => 0.074384623751977
1117 => 0.074601928537113
1118 => 0.077466828127934
1119 => 0.081191605123217
1120 => 0.079461072247412
1121 => 0.083215830640488
1122 => 0.085579252017739
1123 => 0.089666544907363
1124 => 0.08915479570724
1125 => 0.09074594883523
1126 => 0.08823865783374
1127 => 0.082481410887201
1128 => 0.081570304520056
1129 => 0.083394362539969
1130 => 0.087878631192948
1201 => 0.08325313696193
1202 => 0.084188868420608
1203 => 0.083919377697559
1204 => 0.083905017682189
1205 => 0.084453081062438
1206 => 0.083658086544323
1207 => 0.08041913586074
1208 => 0.08190352787177
1209 => 0.081330332829953
1210 => 0.08196633546337
1211 => 0.085398579368489
1212 => 0.08388110252356
1213 => 0.082282563937237
1214 => 0.084287486068596
1215 => 0.086840440907808
1216 => 0.086680681582071
1217 => 0.086370681715924
1218 => 0.088118134730331
1219 => 0.091004415154439
1220 => 0.091784565155061
1221 => 0.092360455936056
1222 => 0.092439861545
1223 => 0.093257788667442
1224 => 0.0888595883859
1225 => 0.095839645186501
1226 => 0.097044908175787
1227 => 0.096818368686834
1228 => 0.098157967774206
1229 => 0.097763823740353
1230 => 0.097192770874603
1231 => 0.099316320368984
]
'min_raw' => 0.036608864019198
'max_raw' => 0.099316320368984
'avg_raw' => 0.067962592194091
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0366088'
'max' => '$0.099316'
'avg' => '$0.067962'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012625451085029
'max_diff' => 0.045775040508258
'year' => 2032
]
7 => [
'items' => [
101 => 0.096881842235284
102 => 0.09342640701677
103 => 0.091530686915135
104 => 0.094027124068347
105 => 0.095551611124164
106 => 0.096559200092471
107 => 0.096864095905479
108 => 0.089201008153685
109 => 0.085071028869799
110 => 0.087718298240461
111 => 0.090948149577441
112 => 0.088841646398643
113 => 0.088924217335114
114 => 0.085920897381445
115 => 0.091213876752055
116 => 0.090442734178721
117 => 0.094443423213307
118 => 0.093488626667667
119 => 0.096751033269519
120 => 0.0958919322761
121 => 0.099458012468091
122 => 0.10088061840444
123 => 0.10326939518251
124 => 0.10502658910453
125 => 0.10605844698531
126 => 0.10599649810855
127 => 0.11008523310172
128 => 0.10767424892577
129 => 0.10464548457542
130 => 0.10459070378396
131 => 0.10615934375892
201 => 0.10944678281109
202 => 0.11029916792702
203 => 0.11077553492231
204 => 0.11004596228657
205 => 0.10742901176036
206 => 0.10629902579138
207 => 0.1072618065758
208 => 0.10608440840916
209 => 0.10811692796436
210 => 0.1109080114364
211 => 0.11033166373656
212 => 0.11225830768624
213 => 0.1142521814853
214 => 0.11710351056843
215 => 0.11784895357518
216 => 0.11908114251866
217 => 0.12034946969449
218 => 0.12075682220099
219 => 0.12153458452996
220 => 0.12153048533857
221 => 0.12387432446636
222 => 0.12645965160696
223 => 0.12743555275208
224 => 0.12967958362378
225 => 0.12583675939622
226 => 0.128751585716
227 => 0.13138083201929
228 => 0.12824613618541
301 => 0.13256658410195
302 => 0.13273433730421
303 => 0.13526721149246
304 => 0.13269965826268
305 => 0.13117505335076
306 => 0.13557653060528
307 => 0.13770626680351
308 => 0.13706477292823
309 => 0.13218297286294
310 => 0.12934155583468
311 => 0.12190501940332
312 => 0.13071391804073
313 => 0.13500447560792
314 => 0.13217186135536
315 => 0.13360046722102
316 => 0.14139447759705
317 => 0.14436193212345
318 => 0.14374472232603
319 => 0.14384902062165
320 => 0.14545020522099
321 => 0.15255073952289
322 => 0.14829593478009
323 => 0.15154857358147
324 => 0.15327376147346
325 => 0.1548762121333
326 => 0.15094109977245
327 => 0.14582157640928
328 => 0.14420000845719
329 => 0.13189021369267
330 => 0.13124943541645
331 => 0.13088974715244
401 => 0.12862196352675
402 => 0.12684010679518
403 => 0.12542310816613
404 => 0.12170448061191
405 => 0.12295940825
406 => 0.11703269206645
407 => 0.12082439505076
408 => 0.11136521291625
409 => 0.11924310087899
410 => 0.11495552462448
411 => 0.11783451676539
412 => 0.11782447223303
413 => 0.11252333491633
414 => 0.10946574954397
415 => 0.11141416194624
416 => 0.11350301470664
417 => 0.11384192403927
418 => 0.11655017616777
419 => 0.11730599112315
420 => 0.11501583652273
421 => 0.11116919239156
422 => 0.11206268009061
423 => 0.10944764304427
424 => 0.1048648912065
425 => 0.10815630358356
426 => 0.10928013648227
427 => 0.10977648511369
428 => 0.10526987501385
429 => 0.10385380027721
430 => 0.10309989396944
501 => 0.11058744561925
502 => 0.11099763060082
503 => 0.1088990662408
504 => 0.11838477614212
505 => 0.11623786784795
506 => 0.11863649041784
507 => 0.11198160544702
508 => 0.1122358310149
509 => 0.10908530182045
510 => 0.1108493876509
511 => 0.10960258864508
512 => 0.11070686694884
513 => 0.111368766811
514 => 0.11451877903461
515 => 0.11927906895865
516 => 0.11404827225205
517 => 0.1117691392206
518 => 0.11318310053498
519 => 0.11694866584483
520 => 0.12265369004498
521 => 0.11927620089417
522 => 0.12077507322581
523 => 0.12110251015009
524 => 0.11861207469173
525 => 0.12274551595265
526 => 0.12496066070438
527 => 0.12723294086005
528 => 0.12920589805137
529 => 0.12632534219737
530 => 0.12940794987261
531 => 0.12692391223987
601 => 0.12469547368821
602 => 0.12469885330963
603 => 0.12330092125388
604 => 0.1205922517451
605 => 0.12009273152923
606 => 0.12269129877462
607 => 0.12477510362018
608 => 0.12494673576802
609 => 0.12610043720028
610 => 0.12678318582382
611 => 0.1334750504863
612 => 0.13616657381156
613 => 0.13945771758575
614 => 0.1407398035645
615 => 0.14459842270727
616 => 0.14148227436776
617 => 0.14080807607301
618 => 0.13144832817735
619 => 0.13298098637093
620 => 0.13543492001835
621 => 0.13148879263936
622 => 0.13399170218801
623 => 0.13448582955179
624 => 0.13135470474103
625 => 0.13302717379037
626 => 0.12858559184782
627 => 0.11937588330755
628 => 0.12275576899099
629 => 0.12524450251121
630 => 0.12169277291922
701 => 0.12805911074195
702 => 0.1243400276138
703 => 0.12316125680965
704 => 0.11856245164052
705 => 0.1207329106561
706 => 0.12366848755266
707 => 0.12185464232803
708 => 0.12561864351937
709 => 0.13094947302875
710 => 0.13474853959351
711 => 0.13504018475116
712 => 0.13259763946771
713 => 0.13651183387256
714 => 0.13654034450557
715 => 0.13212511722695
716 => 0.12942081510288
717 => 0.12880639197039
718 => 0.1303413414201
719 => 0.13220505341934
720 => 0.13514360779634
721 => 0.13691931466263
722 => 0.14154941640775
723 => 0.14280218918456
724 => 0.1441786066493
725 => 0.14601792485361
726 => 0.14822649794941
727 => 0.14339426574995
728 => 0.14358625934364
729 => 0.13908655162632
730 => 0.13427796860699
731 => 0.13792708372032
801 => 0.14269781630956
802 => 0.1416034049824
803 => 0.1414802613513
804 => 0.14168735478162
805 => 0.14086220438107
806 => 0.13713007970089
807 => 0.13525583005084
808 => 0.13767409027149
809 => 0.13895928795438
810 => 0.14095251747953
811 => 0.14070680986858
812 => 0.14584115506815
813 => 0.14783620635816
814 => 0.14732578686512
815 => 0.14741971633577
816 => 0.15103166140026
817 => 0.15504888716514
818 => 0.15881154921357
819 => 0.16263909065934
820 => 0.15802484005498
821 => 0.15568200816551
822 => 0.15809921264939
823 => 0.15681660992562
824 => 0.16418682562105
825 => 0.16469712336488
826 => 0.17206680610982
827 => 0.17906151260028
828 => 0.17466826277681
829 => 0.17881089948402
830 => 0.183291498837
831 => 0.19193530193994
901 => 0.18902437314753
902 => 0.18679464731261
903 => 0.18468756717257
904 => 0.18907206645444
905 => 0.19471265473648
906 => 0.19592758342755
907 => 0.19789623204556
908 => 0.19582643873862
909 => 0.19831927679658
910 => 0.2071200905497
911 => 0.20474203298668
912 => 0.20136480895535
913 => 0.2083122061743
914 => 0.21082644222052
915 => 0.22847266750851
916 => 0.2507517558638
917 => 0.24152806699233
918 => 0.23580262566323
919 => 0.23714824018485
920 => 0.24528380905747
921 => 0.2478966955693
922 => 0.24079396931414
923 => 0.24330277230356
924 => 0.25712652343533
925 => 0.26454252239849
926 => 0.25447059970498
927 => 0.22668256445182
928 => 0.20106072688234
929 => 0.20785679197215
930 => 0.20708632909742
1001 => 0.22193822514043
1002 => 0.20468531710027
1003 => 0.20497581182412
1004 => 0.22013482934887
1005 => 0.21609066336462
1006 => 0.20953963240778
1007 => 0.20110855665813
1008 => 0.18552293335477
1009 => 0.17171831215773
1010 => 0.19879235333952
1011 => 0.19762487145281
1012 => 0.19593418466974
1013 => 0.19969662515405
1014 => 0.21796596815853
1015 => 0.21754480067018
1016 => 0.21486554799087
1017 => 0.21689773753428
1018 => 0.20918337975533
1019 => 0.21117154540763
1020 => 0.20105666825236
1021 => 0.20562901516112
1022 => 0.20952557683756
1023 => 0.21030786928369
1024 => 0.21207041410966
1025 => 0.19700966154931
1026 => 0.20377149728844
1027 => 0.20774344228685
1028 => 0.18979805028342
1029 => 0.20738871958578
1030 => 0.19674748735438
1031 => 0.1931356933091
1101 => 0.19799849817339
1102 => 0.19610345838854
1103 => 0.194474214462
1104 => 0.19356506835703
1105 => 0.19713577556117
1106 => 0.19696919780218
1107 => 0.19112682777179
1108 => 0.18350569423262
1109 => 0.18606359680355
1110 => 0.18513428681907
1111 => 0.18176634755193
1112 => 0.18403593197144
1113 => 0.1740418307983
1114 => 0.15684749917808
1115 => 0.16820660132302
1116 => 0.16776928824676
1117 => 0.16754877516314
1118 => 0.17608482648254
1119 => 0.17526428210839
1120 => 0.17377498603452
1121 => 0.18173899546161
1122 => 0.17883202488968
1123 => 0.18779062322397
1124 => 0.19369133549274
1125 => 0.19219472399334
1126 => 0.19774437240274
1127 => 0.18612252571255
1128 => 0.18998283699547
1129 => 0.19077844180072
1130 => 0.1816407208215
1201 => 0.17539853331585
1202 => 0.17498225057537
1203 => 0.16415915766698
1204 => 0.16994076653769
1205 => 0.17502834308468
1206 => 0.17259178873056
1207 => 0.17182044841204
1208 => 0.17576105881607
1209 => 0.17606727799351
1210 => 0.16908544829624
1211 => 0.1705371917761
1212 => 0.17659120341935
1213 => 0.17038464621568
1214 => 0.15832631940431
1215 => 0.15533568763567
1216 => 0.15493668222946
1217 => 0.14682585168293
1218 => 0.15553553595072
1219 => 0.1517335253628
1220 => 0.16374403125494
1221 => 0.15688369470299
1222 => 0.15658795930581
1223 => 0.15614091187803
1224 => 0.14915958497245
1225 => 0.1506880518783
1226 => 0.15576890866544
1227 => 0.15758181560704
1228 => 0.15739271456032
1229 => 0.15574400969533
1230 => 0.15649877833979
1231 => 0.15406740555716
]
'min_raw' => 0.085071028869799
'max_raw' => 0.26454252239849
'avg_raw' => 0.17480677563414
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.085071'
'max' => '$0.264542'
'avg' => '$0.1748067'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.048462164850601
'max_diff' => 0.16522620202951
'year' => 2033
]
8 => [
'items' => [
101 => 0.15320883722297
102 => 0.15049895939243
103 => 0.14651618760439
104 => 0.14707001644927
105 => 0.13917910338825
106 => 0.13487971515014
107 => 0.13368970115086
108 => 0.13209836469692
109 => 0.13386944683772
110 => 0.13915674942298
111 => 0.13277914074134
112 => 0.12184517799389
113 => 0.12250232778558
114 => 0.12397874825798
115 => 0.12122744847516
116 => 0.11862357412982
117 => 0.12088743161409
118 => 0.11625456745811
119 => 0.12453860775746
120 => 0.12431454768311
121 => 0.12740232562509
122 => 0.12933317653979
123 => 0.12488319030181
124 => 0.123764030797
125 => 0.12440155491391
126 => 0.11386470136402
127 => 0.12654123989306
128 => 0.12665086712466
129 => 0.12571217221105
130 => 0.13246203763355
131 => 0.14670635901084
201 => 0.1413470723322
202 => 0.13927179454494
203 => 0.13532668995433
204 => 0.14058330758418
205 => 0.14017968136622
206 => 0.13835433053789
207 => 0.13725035266147
208 => 0.13928446574858
209 => 0.13699830353945
210 => 0.13658764598715
211 => 0.13409950802006
212 => 0.13321135596888
213 => 0.13255380354853
214 => 0.1318299029435
215 => 0.13342664729341
216 => 0.12980821452729
217 => 0.12544473933068
218 => 0.12508196358154
219 => 0.12608361932049
220 => 0.1256404612205
221 => 0.12507984191105
222 => 0.12400946697372
223 => 0.12369190959476
224 => 0.12472381701945
225 => 0.12355885370091
226 => 0.12527782053625
227 => 0.12481035667181
228 => 0.12219914152502
301 => 0.11894460065644
302 => 0.11891562841608
303 => 0.11821444292446
304 => 0.11732137777694
305 => 0.11707294748346
306 => 0.12069677585118
307 => 0.12819799212029
308 => 0.12672532387777
309 => 0.1277894776081
310 => 0.13302406072968
311 => 0.13468797729462
312 => 0.13350696872885
313 => 0.13189033136258
314 => 0.13196145520212
315 => 0.13748599447206
316 => 0.13783055320979
317 => 0.13870114198117
318 => 0.13982009458074
319 => 0.13369753119504
320 => 0.13167308301725
321 => 0.1307137871585
322 => 0.12775952720778
323 => 0.13094544328553
324 => 0.12908914642155
325 => 0.12933962428863
326 => 0.1291765002491
327 => 0.12926557700509
328 => 0.12453629219936
329 => 0.12625939501868
330 => 0.12339440238028
331 => 0.11955849884798
401 => 0.1195456395543
402 => 0.12048447150951
403 => 0.11992601752605
404 => 0.11842323221574
405 => 0.11863669577612
406 => 0.11676653037024
407 => 0.11886376771683
408 => 0.11892390897965
409 => 0.11811635836393
410 => 0.12134744185933
411 => 0.12267121940371
412 => 0.12213967228903
413 => 0.12263392464115
414 => 0.12678651989194
415 => 0.12746357410826
416 => 0.12776427686745
417 => 0.12736137500561
418 => 0.1227098264593
419 => 0.12291614241724
420 => 0.12140233281067
421 => 0.12012332321443
422 => 0.12017447689076
423 => 0.12083205408283
424 => 0.12370373224701
425 => 0.12974700964884
426 => 0.12997634760866
427 => 0.13025431190622
428 => 0.12912369141437
429 => 0.12878268545544
430 => 0.12923256033637
501 => 0.13150209758807
502 => 0.13733996357278
503 => 0.13527647183582
504 => 0.13359882093352
505 => 0.13507057306628
506 => 0.13484400836141
507 => 0.1329315742457
508 => 0.13287789858963
509 => 0.12920732607941
510 => 0.12785039899727
511 => 0.1267164491632
512 => 0.12547820554691
513 => 0.12474413322487
514 => 0.12587200194143
515 => 0.12612995886146
516 => 0.12366385420094
517 => 0.12332773324828
518 => 0.12534160754862
519 => 0.12445537655384
520 => 0.12536688710945
521 => 0.12557836537714
522 => 0.12554431250528
523 => 0.12461898556375
524 => 0.12520876136264
525 => 0.12381376577764
526 => 0.12229691760052
527 => 0.1213292629665
528 => 0.12048485595756
529 => 0.12095338204334
530 => 0.119283172097
531 => 0.11874883832048
601 => 0.12500895859235
602 => 0.12963337674481
603 => 0.12956613587341
604 => 0.12915682436166
605 => 0.12854867048102
606 => 0.13145760734374
607 => 0.1304441919068
608 => 0.13118153631087
609 => 0.13136922140795
610 => 0.13193728766968
611 => 0.13214032253131
612 => 0.1315266101627
613 => 0.12946691649499
614 => 0.12433435570486
615 => 0.12194513480197
616 => 0.1211566521084
617 => 0.12118531195677
618 => 0.12039474539553
619 => 0.12062760267853
620 => 0.12031376713535
621 => 0.11971943854155
622 => 0.12091668392745
623 => 0.12105465530506
624 => 0.12077520392598
625 => 0.12084102484204
626 => 0.11852728677846
627 => 0.11870319525826
628 => 0.11772371448937
629 => 0.11754007365302
630 => 0.11506403156241
701 => 0.11067736409086
702 => 0.11310800369421
703 => 0.11017213285301
704 => 0.10906027407975
705 => 0.11432364058287
706 => 0.11379534456902
707 => 0.11289113143806
708 => 0.11155361176285
709 => 0.11105751270476
710 => 0.10804337187367
711 => 0.10786528035355
712 => 0.10935916993809
713 => 0.10866979129643
714 => 0.10770164259543
715 => 0.10419510614006
716 => 0.10025259818991
717 => 0.10037159772321
718 => 0.10162563614918
719 => 0.10527192200282
720 => 0.10384725503842
721 => 0.10281364280957
722 => 0.10262007830938
723 => 0.10504294328403
724 => 0.10847180482906
725 => 0.11008054994954
726 => 0.10848633239346
727 => 0.10665498110381
728 => 0.10676644697115
729 => 0.10750797944895
730 => 0.10758590402766
731 => 0.10639388260405
801 => 0.10672942965249
802 => 0.10621970300284
803 => 0.10309151149485
804 => 0.10303493243007
805 => 0.10226722378511
806 => 0.10224397787244
807 => 0.10093791395346
808 => 0.1007551865828
809 => 0.098161917399253
810 => 0.099868815029009
811 => 0.098723917715117
812 => 0.096998287409107
813 => 0.096700788093922
814 => 0.096691844905266
815 => 0.098463681385662
816 => 0.099848110088121
817 => 0.098743833694065
818 => 0.098492411364637
819 => 0.10117694406848
820 => 0.10083531281185
821 => 0.1005394623469
822 => 0.10816478788579
823 => 0.10212874771019
824 => 0.099496689668501
825 => 0.096239018027646
826 => 0.097299732340515
827 => 0.097523240431371
828 => 0.089689127374563
829 => 0.086510828683093
830 => 0.085420156343839
831 => 0.084792458992756
901 => 0.085078508557772
902 => 0.082217666958194
903 => 0.084140199827063
904 => 0.08166295282275
905 => 0.081247634300817
906 => 0.085677258816546
907 => 0.086293615190419
908 => 0.083664047412563
909 => 0.0853526556143
910 => 0.08474034280694
911 => 0.081705418112509
912 => 0.081589506312576
913 => 0.080066687783672
914 => 0.077683771661708
915 => 0.076594715051795
916 => 0.07602752491373
917 => 0.076261558619011
918 => 0.076143224016071
919 => 0.075371010687279
920 => 0.076187486380157
921 => 0.074101728375904
922 => 0.073271162732516
923 => 0.072896015500375
924 => 0.071044785219848
925 => 0.073990915842008
926 => 0.074571340688949
927 => 0.075152909152141
928 => 0.080215065570572
929 => 0.079962174541413
930 => 0.082248186282087
1001 => 0.08215935606955
1002 => 0.081507348490175
1003 => 0.078756635762832
1004 => 0.079853020829211
1005 => 0.076478518010966
1006 => 0.079006924966283
1007 => 0.077853065620675
1008 => 0.078616803960855
1009 => 0.077243533561702
1010 => 0.078003558101538
1011 => 0.074708980952501
1012 => 0.071632551166681
1013 => 0.072870596319079
1014 => 0.074216492987372
1015 => 0.077134739892325
1016 => 0.075396656110749
1017 => 0.076021736762828
1018 => 0.073927821215601
1019 => 0.069607475344267
1020 => 0.06963192803271
1021 => 0.068967336944256
1022 => 0.068393033211945
1023 => 0.075596295941177
1024 => 0.074700456354065
1025 => 0.073273053216587
1026 => 0.075183689038847
1027 => 0.07568889147612
1028 => 0.075703273879278
1029 => 0.07709722445455
1030 => 0.077841176126452
1031 => 0.077972300833096
1101 => 0.080165712181582
1102 => 0.080900914733799
1103 => 0.083929109996622
1104 => 0.077778057024792
1105 => 0.07765138013665
1106 => 0.075210575603091
1107 => 0.073662578780314
1108 => 0.075316568269915
1109 => 0.076781777165621
1110 => 0.075256103727734
1111 => 0.075455324469998
1112 => 0.073407232531735
1113 => 0.074139329027981
1114 => 0.074769909154597
1115 => 0.074421739872466
1116 => 0.073900513605533
1117 => 0.076661646745195
1118 => 0.076505852792487
1119 => 0.079077083450317
1120 => 0.081081541618564
1121 => 0.084673888995818
1122 => 0.080925087234349
1123 => 0.080788465998024
1124 => 0.08212396049784
1125 => 0.08090071027655
1126 => 0.081673762191243
1127 => 0.084549338381025
1128 => 0.084610094774642
1129 => 0.083592346901374
1130 => 0.083530416850792
1201 => 0.083725886462795
1202 => 0.084870758085678
1203 => 0.084470704762292
1204 => 0.084933656596226
1205 => 0.085512584953531
1206 => 0.08790727809988
1207 => 0.08848463051027
1208 => 0.087081963475927
1209 => 0.087208608604132
1210 => 0.086683972629217
1211 => 0.086177180851118
1212 => 0.087316374757288
1213 => 0.089398274011726
1214 => 0.089385322624515
1215 => 0.089868282785206
1216 => 0.090169162964259
1217 => 0.088877564978013
1218 => 0.088036782182341
1219 => 0.088359191806601
1220 => 0.088874731816961
1221 => 0.088192009129516
1222 => 0.083977928434695
1223 => 0.085256211320986
1224 => 0.085043442543868
1225 => 0.084740433931683
1226 => 0.086025757258519
1227 => 0.085901784688079
1228 => 0.082188324892598
1229 => 0.082426048540414
1230 => 0.082202781654987
1231 => 0.082924202637908
]
'min_raw' => 0.068393033211945
'max_raw' => 0.15320883722297
'avg_raw' => 0.11080093521746
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.068393'
'max' => '$0.1532088'
'avg' => '$0.11080093'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016677995657855
'max_diff' => -0.11133368517552
'year' => 2034
]
9 => [
'items' => [
101 => 0.08086175117597
102 => 0.08149614735484
103 => 0.081894034691132
104 => 0.082128393388922
105 => 0.082975057706606
106 => 0.082875711421089
107 => 0.082968882202009
108 => 0.084224261874041
109 => 0.090573541460896
110 => 0.090919118739913
111 => 0.089217369829083
112 => 0.089897184953446
113 => 0.088592088573893
114 => 0.089468208516873
115 => 0.090067627530826
116 => 0.087358968268419
117 => 0.087198579045953
118 => 0.085888096069392
119 => 0.086592275391446
120 => 0.085471875457774
121 => 0.085746782411571
122 => 0.084978118602796
123 => 0.086361560419153
124 => 0.087908463334964
125 => 0.088299272100545
126 => 0.087271222492054
127 => 0.086526846823735
128 => 0.085219968362756
129 => 0.08739333636905
130 => 0.08802889540628
131 => 0.087389998047993
201 => 0.087241951569895
202 => 0.086961403761413
203 => 0.087301471113699
204 => 0.08802543401527
205 => 0.087684026480385
206 => 0.087909532172003
207 => 0.087050137016014
208 => 0.08887799255069
209 => 0.091781067037144
210 => 0.091790400896319
211 => 0.09144899152112
212 => 0.091309294160556
213 => 0.091659600897963
214 => 0.091849627932672
215 => 0.092982455686178
216 => 0.094198024999539
217 => 0.099870556590552
218 => 0.098277732418797
219 => 0.10331073990676
220 => 0.10729119537551
221 => 0.10848475992636
222 => 0.10738673670113
223 => 0.10363045856165
224 => 0.10344615763585
225 => 0.10905962303596
226 => 0.10747356194743
227 => 0.10728490502775
228 => 0.10527791414329
301 => 0.10646429432666
302 => 0.10620481557741
303 => 0.10579521567758
304 => 0.1080587464235
305 => 0.11229587391308
306 => 0.1116354778583
307 => 0.11114252283829
308 => 0.10898253743769
309 => 0.11028333109906
310 => 0.10982014339131
311 => 0.11181029172999
312 => 0.11063137194134
313 => 0.10746154597475
314 => 0.10796635120781
315 => 0.10789005091236
316 => 0.10946030558603
317 => 0.10898895410911
318 => 0.10779801197157
319 => 0.11228139187195
320 => 0.11199026611909
321 => 0.11240301587603
322 => 0.11258472108375
323 => 0.1153136754231
324 => 0.11643164069913
325 => 0.11668543838952
326 => 0.11774741893522
327 => 0.11665901534611
328 => 0.12101340572116
329 => 0.12390882123484
330 => 0.12727199535071
331 => 0.13218649666998
401 => 0.1340343946277
402 => 0.13370058840153
403 => 0.13742670721337
404 => 0.14412245989127
405 => 0.13505399145663
406 => 0.14460311073827
407 => 0.14157996982358
408 => 0.13441215709885
409 => 0.13395063446234
410 => 0.13880476045955
411 => 0.14957074472903
412 => 0.14687398777631
413 => 0.14957515565732
414 => 0.14642409984314
415 => 0.14626762336278
416 => 0.14942211590971
417 => 0.15679275968806
418 => 0.15329124311342
419 => 0.14827096049658
420 => 0.1519778590566
421 => 0.14876660046665
422 => 0.14153073608879
423 => 0.14687192561709
424 => 0.14330042428783
425 => 0.14434277824717
426 => 0.15184954282053
427 => 0.15094630904663
428 => 0.15211517718726
429 => 0.15005215551366
430 => 0.14812496796186
501 => 0.1445277292816
502 => 0.14346276425009
503 => 0.14375708227137
504 => 0.1434626184007
505 => 0.14144999641942
506 => 0.14101537089419
507 => 0.14029097597742
508 => 0.14051549625246
509 => 0.13915342187973
510 => 0.14172393764001
511 => 0.14220104801642
512 => 0.14407165502352
513 => 0.1442658676485
514 => 0.14947548153686
515 => 0.14660611375116
516 => 0.1485311333911
517 => 0.14835894151552
518 => 0.13456750533531
519 => 0.13646784355807
520 => 0.1394241734737
521 => 0.13809235085392
522 => 0.13620946526805
523 => 0.13468893420351
524 => 0.13238517415847
525 => 0.13562767218208
526 => 0.13989121228191
527 => 0.14437399806135
528 => 0.14975977145158
529 => 0.1485577295282
530 => 0.14427331477408
531 => 0.14446551049018
601 => 0.1456535887809
602 => 0.14411491944613
603 => 0.14366113582091
604 => 0.14559124587912
605 => 0.14560453748632
606 => 0.14383411246226
607 => 0.14186660903237
608 => 0.14185836512116
609 => 0.14150826688964
610 => 0.14648638154078
611 => 0.14922384125475
612 => 0.14953768659932
613 => 0.14920271696247
614 => 0.14933163348122
615 => 0.14773876598947
616 => 0.15137958872543
617 => 0.15472076770799
618 => 0.15382526036678
619 => 0.15248276755845
620 => 0.1514134073734
621 => 0.15357335309194
622 => 0.15347717410916
623 => 0.15469158542436
624 => 0.15463649271232
625 => 0.15422813186334
626 => 0.15382527495064
627 => 0.15542255707263
628 => 0.15496256547306
629 => 0.15450185937949
630 => 0.15357784277825
701 => 0.15370343198065
702 => 0.15236117097262
703 => 0.15174017961263
704 => 0.14240195952489
705 => 0.13990648198231
706 => 0.14069161001733
707 => 0.1409500945523
708 => 0.13986405952773
709 => 0.14142115477346
710 => 0.14117848312879
711 => 0.14212257654006
712 => 0.14153274796447
713 => 0.14155695473495
714 => 0.14329151481105
715 => 0.14379506498048
716 => 0.14353895530016
717 => 0.14371832574133
718 => 0.14785184185063
719 => 0.14726418804229
720 => 0.14695200866899
721 => 0.14703848448887
722 => 0.14809468647838
723 => 0.14839036536895
724 => 0.14713755313261
725 => 0.14772838662569
726 => 0.15024408065129
727 => 0.1511244311843
728 => 0.15393408749344
729 => 0.15274049555565
730 => 0.1549313852149
731 => 0.1616654330981
801 => 0.16704505650786
802 => 0.1620977324979
803 => 0.17197672579903
804 => 0.17966893914138
805 => 0.17937369918124
806 => 0.17803238386091
807 => 0.16927500347871
808 => 0.16121633148584
809 => 0.16795775279717
810 => 0.16797493806647
811 => 0.16739584399716
812 => 0.1637991404677
813 => 0.16727068651064
814 => 0.16754624522873
815 => 0.16739200562358
816 => 0.16463442146046
817 => 0.16042410013012
818 => 0.16124678683998
819 => 0.16259436445309
820 => 0.16004311889733
821 => 0.15922784135685
822 => 0.16074359741751
823 => 0.16562767926526
824 => 0.16470437188351
825 => 0.16468026059639
826 => 0.16863056111882
827 => 0.16580299847297
828 => 0.161257163554
829 => 0.16010928028476
830 => 0.1560350679858
831 => 0.15884914093254
901 => 0.1589504144081
902 => 0.1574091754143
903 => 0.16138222660409
904 => 0.16134561423794
905 => 0.16511743503202
906 => 0.17232773975912
907 => 0.17019529785377
908 => 0.16771549992687
909 => 0.16798512271886
910 => 0.17094221926126
911 => 0.16915429118778
912 => 0.16979724258888
913 => 0.17094124607731
914 => 0.17163145178589
915 => 0.16788581273906
916 => 0.16701252510261
917 => 0.16522608508076
918 => 0.16476003622454
919 => 0.16621505434705
920 => 0.16583170847832
921 => 0.15894190276463
922 => 0.15822187973303
923 => 0.15824396181145
924 => 0.15643342966327
925 => 0.15367193355979
926 => 0.16092898043937
927 => 0.16034613801264
928 => 0.15970272508194
929 => 0.15978153949469
930 => 0.16293157758098
1001 => 0.16110439641019
1002 => 0.16596225702183
1003 => 0.16496362692073
1004 => 0.16393938572572
1005 => 0.16379780439342
1006 => 0.16340355891749
1007 => 0.16205154448826
1008 => 0.16041890582148
1009 => 0.15934089635694
1010 => 0.14698355416137
1011 => 0.14927700499351
1012 => 0.15191541112127
1013 => 0.15282617834383
1014 => 0.15126824798648
1015 => 0.16211306107446
1016 => 0.16409451292886
1017 => 0.15809256601499
1018 => 0.15696984680528
1019 => 0.16218666635894
1020 => 0.15904028643783
1021 => 0.16045710112365
1022 => 0.15739472272911
1023 => 0.16361723920082
1024 => 0.16356983405087
1025 => 0.16114913460146
1026 => 0.16319509319987
1027 => 0.16283955754482
1028 => 0.16010659382837
1029 => 0.16370387902533
1030 => 0.1637056632339
1031 => 0.1613757926444
1101 => 0.15865501387011
1102 => 0.15816860288719
1103 => 0.15780215755169
1104 => 0.16036697803462
1105 => 0.16266658805964
1106 => 0.16694559219452
1107 => 0.16802143550066
1108 => 0.17222052354746
1109 => 0.16972017106548
1110 => 0.17082854493576
1111 => 0.172031841561
1112 => 0.17260874621291
1113 => 0.17166871104103
1114 => 0.17819162319132
1115 => 0.17874235683367
1116 => 0.17892701306012
1117 => 0.17672752378379
1118 => 0.17868118505805
1119 => 0.17776713164628
1120 => 0.18014524469234
1121 => 0.18051816318323
1122 => 0.1802023144884
1123 => 0.18032068470353
1124 => 0.17475452990382
1125 => 0.17446589541365
1126 => 0.1705303436596
1127 => 0.1721341100895
1128 => 0.16913594561932
1129 => 0.17008669445733
1130 => 0.17050577548606
1201 => 0.17028687133929
1202 => 0.17222478463718
1203 => 0.17057716244444
1204 => 0.16622881658365
1205 => 0.16187928601893
1206 => 0.16182468120575
1207 => 0.16067952658365
1208 => 0.1598517895374
1209 => 0.16001124105806
1210 => 0.16057316901444
1211 => 0.15981912926305
1212 => 0.15998004187479
1213 => 0.16265226338489
1214 => 0.16318815835132
1215 => 0.16136697786769
1216 => 0.15405467543081
1217 => 0.15226021807127
1218 => 0.15355003843567
1219 => 0.15293358737656
1220 => 0.12342934098999
1221 => 0.13036092603584
1222 => 0.12624241357598
1223 => 0.12814041360113
1224 => 0.12393647886325
1225 => 0.12594281686727
1226 => 0.12557231949766
1227 => 0.13671810313087
1228 => 0.13654407704996
1229 => 0.13662737412564
1230 => 0.13265138767426
1231 => 0.1389852420511
]
'min_raw' => 0.08086175117597
'max_raw' => 0.18051816318323
'avg_raw' => 0.1306899571796
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.080861'
'max' => '$0.180518'
'avg' => '$0.130689'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012468717964025
'max_diff' => 0.027309325960262
'year' => 2035
]
10 => [
'items' => [
101 => 0.14210552647517
102 => 0.14152804487195
103 => 0.14167338455013
104 => 0.13917596734567
105 => 0.13665155458326
106 => 0.13385159232541
107 => 0.1390535761147
108 => 0.13847520431816
109 => 0.13980178112783
110 => 0.14317563946067
111 => 0.14367245291622
112 => 0.14434017523867
113 => 0.14410084431778
114 => 0.14980267782565
115 => 0.14911214816593
116 => 0.1507761259669
117 => 0.14735319738402
118 => 0.14347982878512
119 => 0.14421602952581
120 => 0.14414512747433
121 => 0.1432424629814
122 => 0.14242757783803
123 => 0.14107102366679
124 => 0.14536336179684
125 => 0.14518910070749
126 => 0.14801018518771
127 => 0.14751153110328
128 => 0.14418139708609
129 => 0.144300333474
130 => 0.14510023784155
131 => 0.14786871599081
201 => 0.14869058879788
202 => 0.14830986456768
203 => 0.14921101058071
204 => 0.14992323964672
205 => 0.14930045558573
206 => 0.15811776455407
207 => 0.15445620312978
208 => 0.156240822691
209 => 0.15666644394076
210 => 0.15557622405935
211 => 0.15581265371378
212 => 0.15617078021702
213 => 0.15834525421633
214 => 0.16405170317965
215 => 0.16657905058039
216 => 0.17418269993264
217 => 0.16636918956113
218 => 0.16590556819121
219 => 0.16727521504776
220 => 0.17173936214556
221 => 0.17535713407231
222 => 0.17655735773468
223 => 0.1767159871052
224 => 0.17896768648517
225 => 0.18025831857806
226 => 0.17869427095487
227 => 0.17736890435682
228 => 0.17262160571318
229 => 0.17317111845765
301 => 0.17695671634145
302 => 0.18230409632293
303 => 0.1868927046471
304 => 0.18528593394112
305 => 0.19754446022439
306 => 0.19875984303378
307 => 0.19859191642756
308 => 0.20136073934057
309 => 0.19586518971921
310 => 0.19351573578482
311 => 0.17765546365887
312 => 0.18211155319417
313 => 0.18858874103069
314 => 0.18773146093232
315 => 0.18302755398971
316 => 0.18688913631187
317 => 0.18561237643332
318 => 0.18460534294429
319 => 0.18921875858058
320 => 0.18414611857981
321 => 0.18853813756632
322 => 0.18290532778651
323 => 0.18529327353436
324 => 0.18393776003594
325 => 0.1848149433949
326 => 0.1796869474022
327 => 0.1824538895648
328 => 0.17957183351137
329 => 0.17957046704155
330 => 0.17950684549443
331 => 0.18289757166029
401 => 0.18300814311883
402 => 0.18050239135915
403 => 0.18014127338339
404 => 0.18147651580939
405 => 0.17991329662909
406 => 0.18064471704477
407 => 0.17993545060837
408 => 0.1797757797941
409 => 0.17850349558024
410 => 0.17795536055872
411 => 0.17817029842436
412 => 0.17743660468088
413 => 0.17699452766158
414 => 0.17941890524837
415 => 0.17812365810286
416 => 0.17922039004686
417 => 0.17797052557807
418 => 0.17363795078918
419 => 0.17114624121195
420 => 0.16296240906564
421 => 0.16528333371032
422 => 0.16682210915092
423 => 0.16631354387698
424 => 0.16740613887403
425 => 0.16747321533316
426 => 0.16711800156193
427 => 0.16670670952055
428 => 0.16650651530068
429 => 0.16799859899953
430 => 0.16886480380794
501 => 0.16697654585254
502 => 0.16653415343313
503 => 0.16844328647961
504 => 0.1696078565351
505 => 0.17820638750942
506 => 0.17756938056195
507 => 0.1791681429938
508 => 0.17898814687898
509 => 0.18066390461038
510 => 0.18340306027316
511 => 0.17783359093076
512 => 0.17880025823084
513 => 0.17856325373247
514 => 0.18115080669977
515 => 0.1811588847577
516 => 0.17960751749594
517 => 0.1804485388566
518 => 0.17997910380529
519 => 0.18082743639095
520 => 0.17756087294581
521 => 0.18153919461826
522 => 0.18379464664916
523 => 0.1838259636028
524 => 0.18489502996507
525 => 0.18598126330528
526 => 0.18806619361084
527 => 0.18592311573066
528 => 0.18206792724864
529 => 0.18234625940486
530 => 0.18008596380841
531 => 0.18012395978574
601 => 0.17992113428094
602 => 0.18052982888883
603 => 0.17769444718237
604 => 0.1783599056016
605 => 0.17742825991776
606 => 0.17879823301507
607 => 0.17732436842703
608 => 0.17856313944172
609 => 0.17909775194575
610 => 0.18107048359501
611 => 0.17703299435846
612 => 0.16880028049112
613 => 0.17053089675804
614 => 0.16797117936229
615 => 0.1682080909528
616 => 0.16868669006983
617 => 0.16713539374366
618 => 0.16743133219573
619 => 0.16742075919173
620 => 0.1673296467553
621 => 0.16692609466696
622 => 0.16634086429852
623 => 0.16867224196199
624 => 0.16906838845689
625 => 0.16994897304289
626 => 0.17256899546458
627 => 0.17230719344027
628 => 0.17273420340398
629 => 0.17180204305076
630 => 0.16825133119809
701 => 0.16844415193468
702 => 0.16603967425966
703 => 0.16988748514273
704 => 0.168976272737
705 => 0.16838880817123
706 => 0.16822851302164
707 => 0.17085502997215
708 => 0.17164092500935
709 => 0.17115120796162
710 => 0.1701467840094
711 => 0.17207557492895
712 => 0.17259163800986
713 => 0.17270716550201
714 => 0.17612461320247
715 => 0.17289816286535
716 => 0.17367480152966
717 => 0.17973391468726
718 => 0.17423913515378
719 => 0.17714984242087
720 => 0.17700737844673
721 => 0.17849639779161
722 => 0.17688523539923
723 => 0.17690520768805
724 => 0.1782273559914
725 => 0.17637063715005
726 => 0.17591088745383
727 => 0.17527574654131
728 => 0.17666255348765
729 => 0.1774938815321
730 => 0.18419377502719
731 => 0.18852221177728
801 => 0.18833430292252
802 => 0.1900514381044
803 => 0.18927785297781
804 => 0.18677974254259
805 => 0.19104371244339
806 => 0.1896944139547
807 => 0.18980564848271
808 => 0.18980150832802
809 => 0.19069867386528
810 => 0.19006294985812
811 => 0.18880987258427
812 => 0.18964172375732
813 => 0.19211202434903
814 => 0.19977991318379
815 => 0.20407096536173
816 => 0.19952158645467
817 => 0.20265968710615
818 => 0.20077794493485
819 => 0.20043597640535
820 => 0.20240693551829
821 => 0.20438134453425
822 => 0.20425558321554
823 => 0.20282226365698
824 => 0.20201261780748
825 => 0.20814352743112
826 => 0.21266067720449
827 => 0.2123526378733
828 => 0.2137122233014
829 => 0.21770400816871
830 => 0.2180689669503
831 => 0.21802299053231
901 => 0.21711840211262
902 => 0.22104883271326
903 => 0.22432766706965
904 => 0.21690901602954
905 => 0.21973394122834
906 => 0.22100214116349
907 => 0.22286423492625
908 => 0.22600589922718
909 => 0.2294185799433
910 => 0.22990117041469
911 => 0.22955874938116
912 => 0.2273079947111
913 => 0.23104219067242
914 => 0.23322959508889
915 => 0.23453214436104
916 => 0.23783519259167
917 => 0.22100997313454
918 => 0.20910024653512
919 => 0.20724037074809
920 => 0.21102250129703
921 => 0.21201981896086
922 => 0.2116178014611
923 => 0.19821232138848
924 => 0.20716979366983
925 => 0.2168072806789
926 => 0.21717749580482
927 => 0.22200222331192
928 => 0.22357335236049
929 => 0.22745789039519
930 => 0.22721491148347
1001 => 0.22816073467842
1002 => 0.22794330630528
1003 => 0.23513859502857
1004 => 0.24307606700107
1005 => 0.24280121758628
1006 => 0.24166011207833
1007 => 0.24335484834504
1008 => 0.25154717005186
1009 => 0.25079295234838
1010 => 0.2515256106032
1011 => 0.26118481959455
1012 => 0.27374316528978
1013 => 0.26790855287705
1014 => 0.28056798294817
1015 => 0.28853642313038
1016 => 0.30231701647342
1017 => 0.30059161831602
1018 => 0.3059563021778
1019 => 0.29750279551281
1020 => 0.27809183547441
1021 => 0.27501997674616
1022 => 0.28116991571197
1023 => 0.29628894055712
1024 => 0.28069376381555
1025 => 0.28384864775917
1026 => 0.28294004097117
1027 => 0.28289162517676
1028 => 0.28473945912784
1029 => 0.28205907960527
1030 => 0.27113873123925
1031 => 0.27614346254138
1101 => 0.27421089543869
1102 => 0.27635522272155
1103 => 0.28792727267927
1104 => 0.28281099354975
1105 => 0.27742140909956
1106 => 0.28418114404463
1107 => 0.29278860952664
1108 => 0.29224996980588
1109 => 0.29120478361367
1110 => 0.29709644345501
1111 => 0.30682773941856
1112 => 0.30945806961399
1113 => 0.31139972558952
1114 => 0.311667447144
1115 => 0.31442514554316
1116 => 0.2995963062214
1117 => 0.32313005505664
1118 => 0.32719368337379
1119 => 0.3264298896703
1120 => 0.3309464415212
1121 => 0.3296175573928
1122 => 0.32769221278629
1123 => 0.33485190816809
1124 => 0.32664389517048
1125 => 0.31499365408048
1126 => 0.30860210140286
1127 => 0.3170190135606
1128 => 0.32215892810557
1129 => 0.32555608465983
1130 => 0.32658406218054
1201 => 0.30074742680566
1202 => 0.28682291330409
1203 => 0.29574836681373
1204 => 0.30663803609737
1205 => 0.2995358135587
1206 => 0.29981420723593
1207 => 0.28968830432703
1208 => 0.30753395381906
1209 => 0.30493399279361
1210 => 0.31842259519291
1211 => 0.31520343197752
1212 => 0.32620286360961
1213 => 0.32330634462979
1214 => 0.33532963297285
1215 => 0.34012604821044
1216 => 0.34817997589677
1217 => 0.35410447788822
1218 => 0.35758345877526
1219 => 0.35737459381213
1220 => 0.37116004930799
1221 => 0.36303124782922
1222 => 0.35281955736046
1223 => 0.35263486009735
1224 => 0.35792363929189
1225 => 0.36900746957794
1226 => 0.37188134550794
1227 => 0.37348745009144
1228 => 0.3710276450129
1229 => 0.36220441360414
1230 => 0.35839458701663
1231 => 0.36164066965049
]
'min_raw' => 0.13385159232541
'max_raw' => 0.37348745009144
'avg_raw' => 0.25366952120843
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.133851'
'max' => '$0.373487'
'avg' => '$0.253669'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.052989841149441
'max_diff' => 0.19296928690821
'year' => 2036
]
11 => [
'items' => [
101 => 0.35767098952834
102 => 0.36452377111469
103 => 0.3739341039079
104 => 0.37199090739859
105 => 0.37848672198891
106 => 0.38520920671027
107 => 0.39482266178749
108 => 0.39733597492989
109 => 0.40149038598153
110 => 0.40576663960661
111 => 0.40714005702272
112 => 0.40976233701647
113 => 0.40974851630651
114 => 0.41765093356747
115 => 0.4263675445238
116 => 0.42965786336981
117 => 0.43722377012696
118 => 0.42426741994633
119 => 0.43409496039016
120 => 0.44295964786979
121 => 0.43239080200841
122 => 0.44695749380307
123 => 0.44752308543662
124 => 0.45606284760196
125 => 0.44740616262692
126 => 0.44226585072185
127 => 0.45710573858679
128 => 0.46428629287255
129 => 0.46212345148439
130 => 0.44566412172785
131 => 0.43608408583568
201 => 0.41101128405497
202 => 0.44071110082866
203 => 0.45517701522359
204 => 0.44562665850428
205 => 0.45044330292243
206 => 0.47672135306565
207 => 0.48672633318244
208 => 0.48464536725823
209 => 0.48499701624381
210 => 0.4903955219116
211 => 0.51433546905393
212 => 0.49999009780261
213 => 0.51095659661344
214 => 0.51677318804005
215 => 0.52217596231925
216 => 0.50890845625389
217 => 0.49164762580122
218 => 0.48618039623649
219 => 0.4446770637455
220 => 0.44251663504951
221 => 0.44130392095476
222 => 0.43365793012917
223 => 0.4276502757534
224 => 0.42287276594389
225 => 0.41033515351853
226 => 0.41456622966662
227 => 0.39458389226367
228 => 0.40736788360352
301 => 0.37547559061802
302 => 0.40203643990095
303 => 0.38758057720988
304 => 0.39728730021775
305 => 0.3972534343756
306 => 0.37938027979877
307 => 0.36907141724208
308 => 0.37564062569014
309 => 0.38268333861087
310 => 0.38382599508773
311 => 0.39295705622308
312 => 0.39550533911445
313 => 0.38778392298564
314 => 0.37481469373329
315 => 0.37782714989198
316 => 0.36901036991417
317 => 0.3535593021356
318 => 0.36465652876393
319 => 0.36844560984546
320 => 0.37011908391025
321 => 0.35492473331715
322 => 0.3501503384754
323 => 0.3476084907227
324 => 0.3728532938742
325 => 0.37423626117776
326 => 0.36716080492088
327 => 0.39914253812429
328 => 0.39190408691815
329 => 0.39999121037901
330 => 0.37755380107065
331 => 0.37841094032221
401 => 0.3677887111802
402 => 0.37373644972212
403 => 0.36953277982525
404 => 0.37325593122463
405 => 0.37548757282229
406 => 0.38610805896102
407 => 0.40215770879273
408 => 0.38452171249389
409 => 0.37683745635437
410 => 0.38160472564543
411 => 0.39430059199093
412 => 0.41353547939381
413 => 0.40214803891312
414 => 0.40720159162717
415 => 0.40830556807828
416 => 0.39990889105378
417 => 0.4138450768526
418 => 0.42131359203956
419 => 0.42897474322991
420 => 0.43562670614792
421 => 0.42591471097216
422 => 0.43630793797004
423 => 0.42793283166129
424 => 0.42041949549976
425 => 0.42043089012934
426 => 0.41571766460289
427 => 0.40658519624075
428 => 0.40490102895757
429 => 0.41366227985156
430 => 0.42068797337499
501 => 0.42126664314438
502 => 0.42515642807212
503 => 0.42745836272438
504 => 0.45002045164499
505 => 0.45909511045225
506 => 0.47019143146727
507 => 0.474514073857
508 => 0.48752367769703
509 => 0.47701736600784
510 => 0.47474425938609
511 => 0.44318721587915
512 => 0.44835467998555
513 => 0.45662828860603
514 => 0.44332364463794
515 => 0.45176237892879
516 => 0.45342836383464
517 => 0.44287155792699
518 => 0.44851040409492
519 => 0.43353530047428
520 => 0.40248412512943
521 => 0.41387964568721
522 => 0.42227058450848
523 => 0.41029568021523
524 => 0.43176023266808
525 => 0.41922108424343
526 => 0.41524677617808
527 => 0.39974158347205
528 => 0.4070594375797
529 => 0.41695694004187
530 => 0.41084143422841
531 => 0.42353202703916
601 => 0.44150529091666
602 => 0.45431410908214
603 => 0.45529741109316
604 => 0.44706219913692
605 => 0.46025917885321
606 => 0.46035530444297
607 => 0.44546905741176
608 => 0.43635131399211
609 => 0.43427974350327
610 => 0.43945493273971
611 => 0.44573856786538
612 => 0.45564610911076
613 => 0.46163302878633
614 => 0.47724374008338
615 => 0.4814675509662
616 => 0.48610823854697
617 => 0.49230962828992
618 => 0.49975598668003
619 => 0.48346377844389
620 => 0.48411109824958
621 => 0.46894001952106
622 => 0.45272754614687
623 => 0.46503079252454
624 => 0.48111565053108
625 => 0.47742576633219
626 => 0.47701057898232
627 => 0.47770880894143
628 => 0.47492675675583
629 => 0.46234363782798
630 => 0.45602447427691
701 => 0.46417780744835
702 => 0.46851094116586
703 => 0.47523125367274
704 => 0.47440283330768
705 => 0.49171363661655
706 => 0.49844009133085
707 => 0.49671917637371
708 => 0.49703586614195
709 => 0.50921379110485
710 => 0.52275814824487
711 => 0.53544422604185
712 => 0.54834904925665
713 => 0.53279178118738
714 => 0.52489275990071
715 => 0.53304253358195
716 => 0.52871814895031
717 => 0.55356734573949
718 => 0.55528785021063
719 => 0.58013525012004
720 => 0.60371839140741
721 => 0.58890624290068
722 => 0.60287343178871
723 => 0.61798008533273
724 => 0.64712327098536
725 => 0.63730887132719
726 => 0.62979119500028
727 => 0.6226870271965
728 => 0.63746967264129
729 => 0.65648730984748
730 => 0.66058352675303
731 => 0.66722096301531
801 => 0.66024251037261
802 => 0.6686472879294
803 => 0.69831984595126
804 => 0.69030205884684
805 => 0.67891551223497
806 => 0.70233914701045
807 => 0.71081606937863
808 => 0.77031154995719
809 => 0.84542705182334
810 => 0.81432874081577
811 => 0.79502501563715
812 => 0.79956184894461
813 => 0.82699148740593
814 => 0.83580101670649
815 => 0.8118536792407
816 => 0.82031228367856
817 => 0.86692002576281
818 => 0.89192358403561
819 => 0.85796539347525
820 => 0.76427609252058
821 => 0.67789027829547
822 => 0.70080368623188
823 => 0.69820601685772
824 => 0.74828022129301
825 => 0.69011083727605
826 => 0.6910902605192
827 => 0.74219994647271
828 => 0.72856475850215
829 => 0.70647750025279
830 => 0.67805153972391
831 => 0.62550352260319
901 => 0.5789602784295
902 => 0.67024229852309
903 => 0.66630605183107
904 => 0.66060578330195
905 => 0.67329111408003
906 => 0.73488747954441
907 => 0.73346748395248
908 => 0.72443419648472
909 => 0.73128586541327
910 => 0.70527636956228
911 => 0.71197960886829
912 => 0.67787659434114
913 => 0.69329258117511
914 => 0.70643011091648
915 => 0.70906766451651
916 => 0.71501020745421
917 => 0.66423182868881
918 => 0.6870298299796
919 => 0.70042151985409
920 => 0.63991737780727
921 => 0.69922554750148
922 => 0.6633478900862
923 => 0.65117047429512
924 => 0.66756576040527
925 => 0.66117650146321
926 => 0.6556833918147
927 => 0.65261814224722
928 => 0.66465703088482
929 => 0.66409540234029
930 => 0.64439744388159
1001 => 0.61870226006372
1002 => 0.62732640716865
1003 => 0.62419317367362
1004 => 0.61283793129246
1005 => 0.62048999362017
1006 => 0.58679418374905
1007 => 0.52882229422158
1008 => 0.56712030017043
1009 => 0.56564586860161
1010 => 0.56490239334447
1011 => 0.59368228633588
1012 => 0.59091576368986
1013 => 0.58589449799746
1014 => 0.61274571181029
1015 => 0.60294465756882
1016 => 0.63314919732224
1017 => 0.65304386071099
1018 => 0.64799793055066
1019 => 0.66670895762703
1020 => 0.62752509009962
1021 => 0.64054039910833
1022 => 0.64322283625658
1023 => 0.61241437199985
1024 => 0.59136840100891
1025 => 0.58996487468545
1026 => 0.55347406130062
1027 => 0.57296715926725
1028 => 0.59012027879867
1029 => 0.58190526567897
1030 => 0.5793046379418
1031 => 0.59259068104363
1101 => 0.5936231203799
1102 => 0.5700833940998
1103 => 0.57497804859962
1104 => 0.59538957153245
1105 => 0.57446373059228
1106 => 0.53380823986224
1107 => 0.52372511605505
1108 => 0.52237984147033
1109 => 0.49503361000261
1110 => 0.52439891860218
1111 => 0.51158017445713
1112 => 0.55207443361922
1113 => 0.5289443299609
1114 => 0.52794723742174
1115 => 0.52643998580713
1116 => 0.50290195472427
1117 => 0.5080552876115
1118 => 0.52518575100343
1119 => 0.53129809333015
1120 => 0.53066052594853
1121 => 0.52510180238732
1122 => 0.52764655756837
1123 => 0.51944901447872
1124 => 0.51655429139666
1125 => 0.50741774909336
1126 => 0.49398955594175
1127 => 0.49585682855938
1128 => 0.46925206424816
1129 => 0.4547563766297
1130 => 0.450744161347
1201 => 0.44537885938896
1202 => 0.45135018647969
1203 => 0.46917669629358
1204 => 0.44767414335299
1205 => 0.41080952456507
1206 => 0.41302515096848
1207 => 0.41800300567155
1208 => 0.40872680636418
1209 => 0.39994766221214
1210 => 0.40758041577786
1211 => 0.39196039081973
1212 => 0.41989061106219
1213 => 0.41913517687817
1214 => 0.42954583579132
1215 => 0.43605583445795
1216 => 0.42105239516848
1217 => 0.41727907076079
1218 => 0.41942852783144
1219 => 0.38390279042836
1220 => 0.42664262512669
1221 => 0.42701224099197
1222 => 0.42384736555313
1223 => 0.44660500808564
1224 => 0.49463073211594
1225 => 0.47656152290547
1226 => 0.46956457895444
1227 => 0.45626338338878
1228 => 0.47398643673317
1229 => 0.47262558275902
1230 => 0.46647128499938
1231 => 0.46274914651178
]
'min_raw' => 0.3476084907227
'max_raw' => 0.89192358403561
'avg_raw' => 0.61976603737916
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.3476084'
'max' => '$0.891923'
'avg' => '$0.619766'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21375689839729
'max_diff' => 0.51843613394417
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01091103332046
]
1 => [
'year' => 2028
'avg' => 0.018726500673515
]
2 => [
'year' => 2029
'avg' => 0.051157424716678
]
3 => [
'year' => 2030
'avg' => 0.039467876982995
]
4 => [
'year' => 2031
'avg' => 0.038762346397448
]
5 => [
'year' => 2032
'avg' => 0.067962592194091
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01091103332046
'min' => '$0.010911'
'max_raw' => 0.067962592194091
'max' => '$0.067962'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.067962592194091
]
1 => [
'year' => 2033
'avg' => 0.17480677563414
]
2 => [
'year' => 2034
'avg' => 0.11080093521746
]
3 => [
'year' => 2035
'avg' => 0.1306899571796
]
4 => [
'year' => 2036
'avg' => 0.25366952120843
]
5 => [
'year' => 2037
'avg' => 0.61976603737916
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.067962592194091
'min' => '$0.067962'
'max_raw' => 0.61976603737916
'max' => '$0.619766'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.61976603737916
]
]
]
]
'prediction_2025_max_price' => '$0.018655'
'last_price' => 0.01808923
'sma_50day_nextmonth' => '$0.01766'
'sma_200day_nextmonth' => '$0.034229'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018016'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.018081'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0179068'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019369'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.023147'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.028915'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036923'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01803'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01802'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018231'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.019447'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0231097'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0291099'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.043825'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035668'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.056811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.160951'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.187689'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.01886'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.020315'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.024271'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033439'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.067778'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.116282'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.150606'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '34.94'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.1
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0179029'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018132'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 71.17
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -41.65
'cci_20_action' => 'NEUTRAL'
'adx_14' => 35.9
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003186'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -28.83
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.37
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003259'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767695346
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Telos para 2026
A previsão de preço para Telos em 2026 sugere que o preço médio poderia variar entre $0.006249 na extremidade inferior e $0.018655 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Telos poderia potencialmente ganhar 3.13% até 2026 se TLOS atingir a meta de preço prevista.
Previsão de preço de Telos 2027-2032
A previsão de preço de TLOS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.010911 na extremidade inferior e $0.067962 na extremidade superior. Considerando a volatilidade de preços no mercado, se Telos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006016 | $0.010911 | $0.0158055 |
| 2028 | $0.010858 | $0.018726 | $0.026594 |
| 2029 | $0.023852 | $0.051157 | $0.078462 |
| 2030 | $0.020285 | $0.039467 | $0.05865 |
| 2031 | $0.023983 | $0.038762 | $0.053541 |
| 2032 | $0.0366088 | $0.067962 | $0.099316 |
Previsão de preço de Telos 2032-2037
A previsão de preço de Telos para 2032-2037 é atualmente estimada entre $0.067962 na extremidade inferior e $0.619766 na extremidade superior. Comparado ao preço atual, Telos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Telos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0366088 | $0.067962 | $0.099316 |
| 2033 | $0.085071 | $0.1748067 | $0.264542 |
| 2034 | $0.068393 | $0.11080093 | $0.1532088 |
| 2035 | $0.080861 | $0.130689 | $0.180518 |
| 2036 | $0.133851 | $0.253669 | $0.373487 |
| 2037 | $0.3476084 | $0.619766 | $0.891923 |
Telos Histograma de preços potenciais
Previsão de preço de Telos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Telos é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de TLOS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Telos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Telos está projetado para aumentar no próximo mês, alcançando $0.034229 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Telos é esperado para alcançar $0.01766 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 34.94, sugerindo que o mercado de TLOS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de TLOS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018016 | BUY |
| SMA 5 | $0.018081 | BUY |
| SMA 10 | $0.0179068 | BUY |
| SMA 21 | $0.019369 | SELL |
| SMA 50 | $0.023147 | SELL |
| SMA 100 | $0.028915 | SELL |
| SMA 200 | $0.036923 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.01803 | BUY |
| EMA 5 | $0.01802 | BUY |
| EMA 10 | $0.018231 | SELL |
| EMA 21 | $0.019447 | SELL |
| EMA 50 | $0.0231097 | SELL |
| EMA 100 | $0.0291099 | SELL |
| EMA 200 | $0.043825 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035668 | SELL |
| SMA 50 | $0.056811 | SELL |
| SMA 100 | $0.160951 | SELL |
| SMA 200 | $0.187689 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.033439 | SELL |
| EMA 50 | $0.067778 | SELL |
| EMA 100 | $0.116282 | SELL |
| EMA 200 | $0.150606 | SELL |
Osciladores de Telos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 34.94 | NEUTRAL |
| Stoch RSI (14) | 93.1 | SELL |
| Estocástico Rápido (14) | 71.17 | NEUTRAL |
| Índice de Canal de Commodities (20) | -41.65 | NEUTRAL |
| Índice Direcional Médio (14) | 35.9 | SELL |
| Oscilador Impressionante (5, 34) | -0.003186 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -28.83 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 60.37 | NEUTRAL |
| VWMA (10) | 0.0179029 | BUY |
| Média Móvel de Hull (9) | 0.018132 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003259 | SELL |
Previsão do preço de Telos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Telos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Telos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025418 | $0.035717 | $0.050188 | $0.070523 | $0.099096 | $0.139247 |
| Amazon.com stock | $0.037744 | $0.078755 | $0.164328 | $0.34288 | $0.715441 | $1.49 |
| Apple stock | $0.025658 | $0.036394 | $0.051622 | $0.073222 | $0.10386 | $0.147318 |
| Netflix stock | $0.028541 | $0.045034 | $0.071057 | $0.112118 | $0.1769047 | $0.279127 |
| Google stock | $0.023425 | $0.030335 | $0.039284 | $0.050873 | $0.065881 | $0.085315 |
| Tesla stock | $0.0410069 | $0.092959 | $0.210732 | $0.477714 | $1.08 | $2.45 |
| Kodak stock | $0.013564 | $0.010172 | $0.007628 | $0.00572 | $0.004289 | $0.003216 |
| Nokia stock | $0.011983 | $0.007938 | $0.005258 | $0.003483 | $0.0023078 | $0.001528 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Telos
Você pode fazer perguntas como: 'Devo investir em Telos agora?', 'Devo comprar TLOS hoje?', 'Telos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Telos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Telos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Telos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Telos é de $0.01808 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Telos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Telos
com base no histórico de preços de 1 mês
Previsão do preço de Telos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Telos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.018559 | $0.019041 | $0.019536 | $0.020044 |
| Se Telos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019029 | $0.020018 | $0.021059 | $0.022154 |
| Se Telos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02044 | $0.023096 | $0.026098 | $0.02949 |
| Se Telos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.022791 | $0.028715 | $0.036179 | $0.045583 |
| Se Telos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027493 | $0.041785 | $0.0635088 | $0.096524 |
| Se Telos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.041599 | $0.095663 | $0.219994 | $0.505912 |
| Se Telos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0651089 | $0.234348 | $0.843493 | $3.03 |
Perguntas Frequentes sobre Telos
TLOS é um bom investimento?
A decisão de adquirir Telos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Telos experimentou uma escalada de 0.1417% nas últimas 24 horas, e Telos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Telos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Telos pode subir?
Parece que o valor médio de Telos pode potencialmente subir para $0.018655 até o final deste ano. Observando as perspectivas de Telos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.05865. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Telos na próxima semana?
Com base na nossa nova previsão experimental de Telos, o preço de Telos aumentará 0.86% na próxima semana e atingirá $0.018244 até 13 de janeiro de 2026.
Qual será o preço de Telos no próximo mês?
Com base na nossa nova previsão experimental de Telos, o preço de Telos diminuirá -11.62% no próximo mês e atingirá $0.015987 até 5 de fevereiro de 2026.
Até onde o preço de Telos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Telos em 2026, espera-se que TLOS fluctue dentro do intervalo de $0.006249 e $0.018655. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Telos não considera flutuações repentinas e extremas de preço.
Onde estará Telos em 5 anos?
O futuro de Telos parece seguir uma tendência de alta, com um preço máximo de $0.05865 projetada após um período de cinco anos. Com base na previsão de Telos para 2030, o valor de Telos pode potencialmente atingir seu pico mais alto de aproximadamente $0.05865, enquanto seu pico mais baixo está previsto para cerca de $0.020285.
Quanto será Telos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Telos, espera-se que o valor de TLOS em 2026 aumente 3.13% para $0.018655 se o melhor cenário ocorrer. O preço ficará entre $0.018655 e $0.006249 durante 2026.
Quanto será Telos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Telos, o valor de TLOS pode diminuir -12.62% para $0.0158055 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0158055 e $0.006016 ao longo do ano.
Quanto será Telos em 2028?
Nosso novo modelo experimental de previsão de preços de Telos sugere que o valor de TLOS em 2028 pode aumentar 47.02%, alcançando $0.026594 no melhor cenário. O preço é esperado para variar entre $0.026594 e $0.010858 durante o ano.
Quanto será Telos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Telos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.078462 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.078462 e $0.023852.
Quanto será Telos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Telos, espera-se que o valor de TLOS em 2030 aumente 224.23%, alcançando $0.05865 no melhor cenário. O preço está previsto para variar entre $0.05865 e $0.020285 ao longo de 2030.
Quanto será Telos em 2031?
Nossa simulação experimental indica que o preço de Telos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.053541 sob condições ideais. O preço provavelmente oscilará entre $0.053541 e $0.023983 durante o ano.
Quanto será Telos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Telos, TLOS poderia ver um 449.04% aumento em valor, atingindo $0.099316 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.099316 e $0.0366088 ao longo do ano.
Quanto será Telos em 2033?
De acordo com nossa previsão experimental de preços de Telos, espera-se que o valor de TLOS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.264542. Ao longo do ano, o preço de TLOS poderia variar entre $0.264542 e $0.085071.
Quanto será Telos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Telos sugerem que TLOS pode aumentar 746.96% em 2034, atingindo potencialmente $0.1532088 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.1532088 e $0.068393.
Quanto será Telos em 2035?
Com base em nossa previsão experimental para o preço de Telos, TLOS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.180518 em 2035. A faixa de preço esperada para o ano está entre $0.180518 e $0.080861.
Quanto será Telos em 2036?
Nossa recente simulação de previsão de preços de Telos sugere que o valor de TLOS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.373487 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.373487 e $0.133851.
Quanto será Telos em 2037?
De acordo com a simulação experimental, o valor de Telos poderia aumentar 4830.69% em 2037, com um pico de $0.891923 sob condições favoráveis. O preço é esperado para cair entre $0.891923 e $0.3476084 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Previsão de Preço do Keep Network
Previsão de Preço do Energy Web Token
Previsão de Preço do Nakamoto Games
Previsão de Preço do Gelato
Como ler e prever os movimentos de preço de Telos?
Traders de Telos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Telos
Médias móveis são ferramentas populares para a previsão de preço de Telos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de TLOS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de TLOS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de TLOS.
Como ler gráficos de Telos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Telos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de TLOS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Telos?
A ação de preço de Telos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de TLOS. A capitalização de mercado de Telos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de TLOS, grandes detentores de Telos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Telos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


