Previsão de Preço ChainGPT - Projeção CGPT
Previsão de Preço ChainGPT até $0.036615 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.012266 | $0.036615 |
| 2027 | $0.0118085 | $0.031021 |
| 2028 | $0.02131 | $0.052197 |
| 2029 | $0.046814 | $0.153996 |
| 2030 | $0.039813 | $0.115112 |
| 2031 | $0.047071 | $0.105084 |
| 2032 | $0.071851 | $0.194925 |
| 2033 | $0.166966 | $0.519211 |
| 2034 | $0.134233 | $0.300699 |
| 2035 | $0.1587055 | $0.354298 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em ChainGPT hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.65, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de ChainGPT para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'ChainGPT'
'name_with_ticker' => 'ChainGPT <small>CGPT</small>'
'name_lang' => 'ChainGPT'
'name_lang_with_ticker' => 'ChainGPT <small>CGPT</small>'
'name_with_lang' => 'ChainGPT'
'name_with_lang_with_ticker' => 'ChainGPT <small>CGPT</small>'
'image' => '/uploads/coins/chaingpt.png?1717140632'
'price_for_sd' => 0.0355
'ticker' => 'CGPT'
'marketcap' => '$31.07M'
'low24h' => '$0.03385'
'high24h' => '$0.03641'
'volume24h' => '$14.08M'
'current_supply' => '875.29M'
'max_supply' => '997.77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0355'
'change_24h_pct' => '4.8841%'
'ath_price' => '$0.5557'
'ath_days' => 665
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 de mar. de 2024'
'ath_pct' => '-93.62%'
'fdv' => '$35.41M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.75'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.035807'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031378'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012266'
'current_year_max_price_prediction' => '$0.036615'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.039813'
'grand_prediction_max_price' => '$0.115112'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.036176089239254
107 => 0.036311157624553
108 => 0.036615473593394
109 => 0.034015126958596
110 => 0.035182606255454
111 => 0.035868390964342
112 => 0.032769990700527
113 => 0.035807145553242
114 => 0.033969860708933
115 => 0.033346258637682
116 => 0.034185856673296
117 => 0.033858664502282
118 => 0.033577363887012
119 => 0.033420393310334
120 => 0.034036901444635
121 => 0.034008140603283
122 => 0.032999413636494
123 => 0.03168357042929
124 => 0.032125210600708
125 => 0.031964758586033
126 => 0.031383259786129
127 => 0.031775119766832
128 => 0.030049566727614
129 => 0.027080842410083
130 => 0.029042072628729
131 => 0.02896656739872
201 => 0.028928494237859
202 => 0.03040230454275
203 => 0.030260631688523
204 => 0.030003494070838
205 => 0.03137853725213
206 => 0.030876627994018
207 => 0.032423394062826
208 => 0.033442194234301
209 => 0.033183793556082
210 => 0.034141980041642
211 => 0.03213538509827
212 => 0.032801895447842
213 => 0.032939262307146
214 => 0.031361569432716
215 => 0.030283811119573
216 => 0.03021193692743
217 => 0.028343252536684
218 => 0.029341488654727
219 => 0.030219895128788
220 => 0.029799206594809
221 => 0.029666029172664
222 => 0.030346403739745
223 => 0.030399274670622
224 => 0.029193811843631
225 => 0.029444465737405
226 => 0.030489734142187
227 => 0.029418127655487
228 => 0.027336171297756
301 => 0.02681981733574
302 => 0.026750926198915
303 => 0.025350533301378
304 => 0.026854322576524
305 => 0.026197878258876
306 => 0.028271577992916
307 => 0.027087091826307
308 => 0.027036030995067
309 => 0.026958845059652
310 => 0.02575346904324
311 => 0.026017369785192
312 => 0.026894616044659
313 => 0.027207627392923
314 => 0.027174977744873
315 => 0.026890317059408
316 => 0.027020633263515
317 => 0.02660083936491
318 => 0.026452601402058
319 => 0.025984721615233
320 => 0.02529706758369
321 => 0.025392690094404
322 => 0.024030267523453
323 => 0.02328794739756
324 => 0.023082482970335
325 => 0.022807727351301
326 => 0.023113517348602
327 => 0.024026407951489
328 => 0.022925268203862
329 => 0.021037441342529
330 => 0.021150902953595
331 => 0.021405817506607
401 => 0.020930785923498
402 => 0.020481208396464
403 => 0.020872079580842
404 => 0.020072182452913
405 => 0.021502481252964
406 => 0.021463795678788
407 => 0.021996922622363
408 => 0.022330297841046
409 => 0.02156197589349
410 => 0.021368745001443
411 => 0.021478818099407
412 => 0.019659554980913
413 => 0.021848250012771
414 => 0.021867177938294
415 => 0.021705105548489
416 => 0.022870518084575
417 => 0.025329902037003
418 => 0.02440458286561
419 => 0.024046271314526
420 => 0.023365120793992
421 => 0.024272713419888
422 => 0.024203024466869
423 => 0.02388786459257
424 => 0.023697254917235
425 => 0.024048459088451
426 => 0.023653736833817
427 => 0.023582833870643
428 => 0.02315323905699
429 => 0.022999893253835
430 => 0.022886362126051
501 => 0.022761375509699
502 => 0.023037064840647
503 => 0.022412316546767
504 => 0.021658931349178
505 => 0.021596295521739
506 => 0.021769238548295
507 => 0.021692724133138
508 => 0.021595929200156
509 => 0.021411121312562
510 => 0.021356292760109
511 => 0.02153445895655
512 => 0.021333319708503
513 => 0.021630111625619
514 => 0.021549400646409
515 => 0.021098555677507
516 => 0.02053663592207
517 => 0.02053163365758
518 => 0.020410568968004
519 => 0.020256374883631
520 => 0.020213481616841
521 => 0.020839161499922
522 => 0.022134300132876
523 => 0.021880033429186
524 => 0.022063767180902
525 => 0.022967555391366
526 => 0.023254842485612
527 => 0.023050932910884
528 => 0.022771808908401
529 => 0.022784088947932
530 => 0.023737940160999
531 => 0.02379743069114
601 => 0.023947744068434
602 => 0.024140939236813
603 => 0.023083834883458
604 => 0.022734299427952
605 => 0.022568670137645
606 => 0.0220585960301
607 => 0.022608667224638
608 => 0.022288164295978
609 => 0.022331411090993
610 => 0.022303246559005
611 => 0.022318626297948
612 => 0.021502081455299
613 => 0.021799587479627
614 => 0.02130492601194
615 => 0.020642629835062
616 => 0.020640409586046
617 => 0.020802505637063
618 => 0.020706084563099
619 => 0.020446617932275
620 => 0.020483473942536
621 => 0.020160576510937
622 => 0.020522679536979
623 => 0.020533063356099
624 => 0.020393633967188
625 => 0.020951503639393
626 => 0.021180063299274
627 => 0.021088287888626
628 => 0.021173624091809
629 => 0.02189059935867
630 => 0.022007497610992
701 => 0.022059416092809
702 => 0.021989852205056
703 => 0.021186729083517
704 => 0.0212223510091
705 => 0.020960980954688
706 => 0.020740150801207
707 => 0.020748982849245
708 => 0.020862518254045
709 => 0.021358334025568
710 => 0.022401749086802
711 => 0.022441345925649
712 => 0.022489338449454
713 => 0.022294128736032
714 => 0.022235251618558
715 => 0.022312925733979
716 => 0.022704777570821
717 => 0.023712726881915
718 => 0.023356450276703
719 => 0.023066791850891
720 => 0.023320900381679
721 => 0.023281782365133
722 => 0.022951586938501
723 => 0.022942319452625
724 => 0.022308568859055
725 => 0.022074285694414
726 => 0.02187850114625
727 => 0.02166470953074
728 => 0.021537966694705
729 => 0.021732701294443
730 => 0.021777239401435
731 => 0.02135144879573
801 => 0.021293415109523
802 => 0.02164112490947
803 => 0.021488110790441
804 => 0.02164548960643
805 => 0.02168200284171
806 => 0.021676123369859
807 => 0.021516359056033
808 => 0.021618188065425
809 => 0.021377332101524
810 => 0.021115437416178
811 => 0.020948364923542
812 => 0.020802572014768
813 => 0.02088346639409
814 => 0.020595092702537
815 => 0.020502836154794
816 => 0.021583690688268
817 => 0.02238212955329
818 => 0.022370519935976
819 => 0.022299849376329
820 => 0.022194847259693
821 => 0.022697096011971
822 => 0.022522122589458
823 => 0.022649430373855
824 => 0.022681835548075
825 => 0.022779916250625
826 => 0.022814971671465
827 => 0.022709009842131
828 => 0.022353389000737
829 => 0.021467215675398
830 => 0.021054699600273
831 => 0.020918562424484
901 => 0.020923510752262
902 => 0.020787013781819
903 => 0.02082721825698
904 => 0.020773032306092
905 => 0.0206704172241
906 => 0.020877130201938
907 => 0.02090095194697
908 => 0.020852702667906
909 => 0.020864067119775
910 => 0.020464583696664
911 => 0.020494955553691
912 => 0.020325841194297
913 => 0.020294134290615
914 => 0.019866627916539
915 => 0.019109238406824
916 => 0.019528905716785
917 => 0.019022006620506
918 => 0.018830036251971
919 => 0.0197387941191
920 => 0.01964758003426
921 => 0.019491461170823
922 => 0.019260528833778
923 => 0.019174873783603
924 => 0.018654460813831
925 => 0.018623712039282
926 => 0.018881642759433
927 => 0.018762616606937
928 => 0.018595458810105
929 => 0.017990030214491
930 => 0.017309328022502
1001 => 0.017329874142936
1002 => 0.017546392845294
1003 => 0.018175950173922
1004 => 0.017929971234175
1005 => 0.017751510691105
1006 => 0.017718090395892
1007 => 0.018136415360607
1008 => 0.018728432827469
1009 => 0.019006194177276
1010 => 0.018730941115355
1011 => 0.018414745218497
1012 => 0.018433990597628
1013 => 0.018562021482905
1014 => 0.018575475718688
1015 => 0.018369664695297
1016 => 0.018427599292837
1017 => 0.018339591341524
1018 => 0.017799486706763
1019 => 0.017789717926611
1020 => 0.017657167538877
1021 => 0.017653153965815
1022 => 0.017427652690036
1023 => 0.017396103502738
1024 => 0.016948357032729
1025 => 0.01724306511519
1026 => 0.017045390406344
1027 => 0.016747447993364
1028 => 0.016696082609064
1029 => 0.016694538503587
1030 => 0.017000458743014
1031 => 0.017239490259077
1101 => 0.017048829042537
1102 => 0.017005419179343
1103 => 0.01746892294879
1104 => 0.017409937869197
1105 => 0.017358857170683
1106 => 0.018675424156616
1107 => 0.017633258654247
1108 => 0.017178815010487
1109 => 0.016616354704826
1110 => 0.01679949461652
1111 => 0.016838084886799
1112 => 0.015485469242776
1113 => 0.014936713244453
1114 => 0.014748400865262
1115 => 0.014640024428692
1116 => 0.014689412931743
1117 => 0.014195468170593
1118 => 0.014527407219178
1119 => 0.014099692808134
1120 => 0.014027985095219
1121 => 0.014792791445814
1122 => 0.014899209781566
1123 => 0.014445196099665
1124 => 0.014736746381584
1125 => 0.014631026196508
1126 => 0.014107024744097
1127 => 0.014087011742908
1128 => 0.01382408623363
1129 => 0.01341265872402
1130 => 0.013224625312055
1201 => 0.013126695878522
1202 => 0.013167103471404
1203 => 0.01314667215595
1204 => 0.013013344002339
1205 => 0.013154314369647
1206 => 0.012794193334153
1207 => 0.012650790236126
1208 => 0.012586018383674
1209 => 0.012266390236879
1210 => 0.012775060757712
1211 => 0.012875275258379
1212 => 0.012975687212569
1213 => 0.013849704719645
1214 => 0.01380604127494
1215 => 0.014200737550119
1216 => 0.014185400378665
1217 => 0.014072826607328
1218 => 0.013597896383545
1219 => 0.013787195105928
1220 => 0.013204563061986
1221 => 0.013641110604435
1222 => 0.013441888536722
1223 => 0.013573753422942
1224 => 0.013336648467742
1225 => 0.013467872139773
1226 => 0.012899039834199
1227 => 0.012367872230941
1228 => 0.012581629580241
1229 => 0.012814008265049
1230 => 0.013317864462698
1231 => 0.013017771868101
]
'min_raw' => 0.012266390236879
'max_raw' => 0.036615473593394
'avg_raw' => 0.024440931915137
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012266'
'max' => '$0.036615'
'avg' => '$0.02444'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023236929763121
'max_diff' => 0.001112153593394
'year' => 2026
]
1 => [
'items' => [
101 => 0.013125696512876
102 => 0.012764167019249
103 => 0.012018228408103
104 => 0.012022450339633
105 => 0.011907703935464
106 => 0.011808546289013
107 => 0.013052241112526
108 => 0.012897568001317
109 => 0.012651116641721
110 => 0.012981001580128
111 => 0.013068228393821
112 => 0.01307071161858
113 => 0.013311387154079
114 => 0.013439835730518
115 => 0.013462475348844
116 => 0.013841183504091
117 => 0.013968121482448
118 => 0.014490961050368
119 => 0.013428937766228
120 => 0.013407066095575
121 => 0.012985643737721
122 => 0.012718371015946
123 => 0.013003944129642
124 => 0.01325692292376
125 => 0.01299350449403
126 => 0.013027901379886
127 => 0.012674283660049
128 => 0.01280068535563
129 => 0.012909559524012
130 => 0.01284944560756
131 => 0.012759452165084
201 => 0.013236181547575
202 => 0.013209282607497
203 => 0.013653223968434
204 => 0.013999308005835
205 => 0.014619552470781
206 => 0.013972295037535
207 => 0.013948706404052
208 => 0.014179289080082
209 => 0.013968086181442
210 => 0.014101559122906
211 => 0.014598047916427
212 => 0.014608537942278
213 => 0.01443281649365
214 => 0.014422123827531
215 => 0.014455873053922
216 => 0.014653543327032
217 => 0.014584471259813
218 => 0.014664403204689
219 => 0.014764359325718
220 => 0.01517782022281
221 => 0.015277504245334
222 => 0.015035323750841
223 => 0.015057189937914
224 => 0.014966607784971
225 => 0.014879106560218
226 => 0.015075796534934
227 => 0.015435251329677
228 => 0.015433015180055
301 => 0.015516401705633
302 => 0.015568350820257
303 => 0.015345347191216
304 => 0.015200180028781
305 => 0.015255846356085
306 => 0.015344858025699
307 => 0.015226981071298
308 => 0.01449938990282
309 => 0.014720094584633
310 => 0.014683358533671
311 => 0.014631041929846
312 => 0.014852962194068
313 => 0.014831557443205
314 => 0.014190402053132
315 => 0.014231446740981
316 => 0.014192898116544
317 => 0.014317456608405
318 => 0.013961359614115
319 => 0.014070892651209
320 => 0.014139590745266
321 => 0.014180054450429
322 => 0.0143262370997
323 => 0.014309084253042
324 => 0.014325170854668
325 => 0.014541921132749
326 => 0.015638169659568
327 => 0.015697836048146
328 => 0.015404016928828
329 => 0.01552139187167
330 => 0.015296057648492
331 => 0.01544732602212
401 => 0.015550820001555
402 => 0.015083150609233
403 => 0.015055458262969
404 => 0.014829194005297
405 => 0.014950775601107
406 => 0.014757330540146
407 => 0.014804795191685
408 => 0.014672079888089
409 => 0.014910941011209
410 => 0.015178024862123
411 => 0.015245500790325
412 => 0.01506800067344
413 => 0.014939478890987
414 => 0.014713836978707
415 => 0.015089084507587
416 => 0.015198818320492
417 => 0.015088508122583
418 => 0.015062946839401
419 => 0.015014508253961
420 => 0.015073223314287
421 => 0.015198220686581
422 => 0.015139274234146
423 => 0.015178209404482
424 => 0.015029828684934
425 => 0.015345421014696
426 => 0.015846657585788
427 => 0.015848269143325
428 => 0.015789322373146
429 => 0.015765202624815
430 => 0.015825685588207
501 => 0.015858495114707
502 => 0.016054085927638
503 => 0.016263962662595
504 => 0.017243365808245
505 => 0.016968353324092
506 => 0.017837338059867
507 => 0.018524592162319
508 => 0.018730669617665
509 => 0.01854108805544
510 => 0.017892539772065
511 => 0.017860718899219
512 => 0.018829923844605
513 => 0.018556079055135
514 => 0.018523506088794
515 => 0.018176984759826
516 => 0.018381821782748
517 => 0.018337020921057
518 => 0.018266300569145
519 => 0.018657115339809
520 => 0.019388685702218
521 => 0.019274663600613
522 => 0.019189551391098
523 => 0.018816614464795
524 => 0.019041205792908
525 => 0.01896123312273
526 => 0.019304846465722
527 => 0.019101297533301
528 => 0.018554004411521
529 => 0.018641162645066
530 => 0.018627988853404
531 => 0.01889910455231
601 => 0.018817722349004
602 => 0.018612097672071
603 => 0.019386185274251
604 => 0.019335920331067
605 => 0.019407184528336
606 => 0.019438557231892
607 => 0.019909730714386
608 => 0.020102755414294
609 => 0.020146575400546
610 => 0.020329933936392
611 => 0.020142013273138
612 => 0.020893829911317
613 => 0.021393744105988
614 => 0.021974420168449
615 => 0.022822943966715
616 => 0.023141996764147
617 => 0.023084362732022
618 => 0.023727703791799
619 => 0.02488377337555
620 => 0.023318037448192
621 => 0.024966761181604
622 => 0.024444794283036
623 => 0.023207220156317
624 => 0.023127534972597
625 => 0.023965634539742
626 => 0.025824458715577
627 => 0.02535884434214
628 => 0.02582522029389
629 => 0.025281167973156
630 => 0.025254151189798
701 => 0.02579879688702
702 => 0.027071391245668
703 => 0.02646682936836
704 => 0.025600041672586
705 => 0.026240064218435
706 => 0.02568561745793
707 => 0.024436293726635
708 => 0.025358488295603
709 => 0.024741843049923
710 => 0.024921812915277
711 => 0.026217909502639
712 => 0.026061959732201
713 => 0.026263773175707
714 => 0.025907577730296
715 => 0.025574835017416
716 => 0.024953746034027
717 => 0.024769872205363
718 => 0.024820688316518
719 => 0.024769847023422
720 => 0.024422353445318
721 => 0.024347312240212
722 => 0.024222240277404
723 => 0.024261005308521
724 => 0.024025833427349
725 => 0.024469651356111
726 => 0.024552027874599
727 => 0.024875001551808
728 => 0.0249085337504
729 => 0.025808010844185
730 => 0.025312593976027
731 => 0.025644962383422
801 => 0.025615232224692
802 => 0.023234042140296
803 => 0.023562149124508
804 => 0.024072580626297
805 => 0.023842631926615
806 => 0.023517538264972
807 => 0.023255007702777
808 => 0.022857247055922
809 => 0.023417087528053
810 => 0.024153218216509
811 => 0.02492720323946
812 => 0.025857095531028
813 => 0.02564955439669
814 => 0.024909819549889
815 => 0.02494300351474
816 => 0.025148133728039
817 => 0.024882471463771
818 => 0.024804122475695
819 => 0.025137369780208
820 => 0.025139664671244
821 => 0.024833988129848
822 => 0.024494284592302
823 => 0.024492861222076
824 => 0.024432414258716
825 => 0.025291921353654
826 => 0.025764563349901
827 => 0.02581875099307
828 => 0.025760916089771
829 => 0.025783174448665
830 => 0.025508154485005
831 => 0.026136768567296
901 => 0.026713647012695
902 => 0.026559031266118
903 => 0.026327240282075
904 => 0.026142607598718
905 => 0.02651553767363
906 => 0.02649893168444
907 => 0.026708608482732
908 => 0.02669909633201
909 => 0.026628589911088
910 => 0.026559033784124
911 => 0.026834815965267
912 => 0.026755395126024
913 => 0.026675850924281
914 => 0.026516312850078
915 => 0.026537996724009
916 => 0.026306245761948
917 => 0.026199027162695
918 => 0.024586716683333
919 => 0.024155854639482
920 => 0.024291412609483
921 => 0.024336041812969
922 => 0.02414853009932
923 => 0.024417373728885
924 => 0.024375474733993
925 => 0.024538479213025
926 => 0.024436641091358
927 => 0.024440820563394
928 => 0.024740304765041
929 => 0.024827246302875
930 => 0.024783027135028
1001 => 0.024813996724444
1002 => 0.025527677841083
1003 => 0.025426215208534
1004 => 0.025372315207218
1005 => 0.025387245875942
1006 => 0.025569606702739
1007 => 0.02562065777771
1008 => 0.025404350785762
1009 => 0.02550636241362
1010 => 0.025940714977839
1011 => 0.02609271379309
1012 => 0.026577821047799
1013 => 0.026371738863904
1014 => 0.02675001163147
1015 => 0.027912693156279
1016 => 0.028841523609738
1017 => 0.027987332739195
1018 => 0.029693011581128
1019 => 0.03102112722467
1020 => 0.030970151934178
1021 => 0.030738564251858
1022 => 0.029226539901467
1023 => 0.027835152551223
1024 => 0.028999107151129
1025 => 0.029002074310774
1026 => 0.028902089578382
1027 => 0.028281092992606
1028 => 0.028880480243285
1029 => 0.028928057426589
1030 => 0.028901426855733
1031 => 0.028425310229422
1101 => 0.027698368142107
1102 => 0.027840410885915
1103 => 0.028073079797866
1104 => 0.027632589007723
1105 => 0.027491825509994
1106 => 0.027753531633623
1107 => 0.028596803292592
1108 => 0.028437387670204
1109 => 0.028433224684054
1110 => 0.029115272319375
1111 => 0.028627073407577
1112 => 0.027842202499798
1113 => 0.027644012244408
1114 => 0.026940570354728
1115 => 0.027426440173504
1116 => 0.027443925763305
1117 => 0.02717781982903
1118 => 0.027863795529771
1119 => 0.027857474142925
1120 => 0.028508705976769
1121 => 0.029753616651573
1122 => 0.0293854353067
1123 => 0.028957280460629
1124 => 0.029003832763843
1125 => 0.029514396629227
1126 => 0.029205698061176
1127 => 0.02931670821857
1128 => 0.029514228602058
1129 => 0.029633397553571
1130 => 0.028986686185626
1201 => 0.028835906829977
1202 => 0.028527465184683
1203 => 0.028446998516762
1204 => 0.028698217801008
1205 => 0.028632030395317
1206 => 0.027442456167189
1207 => 0.027318139041621
1208 => 0.027321951670379
1209 => 0.027009350347181
1210 => 0.026532558296391
1211 => 0.027785539338094
1212 => 0.027684907424986
1213 => 0.027573817581208
1214 => 0.027587425453201
1215 => 0.028131302055936
1216 => 0.027815826159923
1217 => 0.028654570534957
1218 => 0.028482149906414
1219 => 0.028305307339351
1220 => 0.028280862309826
1221 => 0.028212793009006
1222 => 0.027979358049022
1223 => 0.027697471307574
1224 => 0.02751134526426
1225 => 0.025377761762071
1226 => 0.025773742449593
1227 => 0.026229282135812
1228 => 0.026386532610033
1229 => 0.026117544792475
1230 => 0.027989979327559
1231 => 0.028332091160347
]
'min_raw' => 0.011808546289013
'max_raw' => 0.03102112722467
'avg_raw' => 0.021414836756841
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0118085'
'max' => '$0.031021'
'avg' => '$0.021414'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00045784394786643
'max_diff' => -0.0055943463687242
'year' => 2027
]
2 => [
'items' => [
101 => 0.02729581210343
102 => 0.027101966602875
103 => 0.028002687806304
104 => 0.027459442811948
105 => 0.027704065999643
106 => 0.027175324469575
107 => 0.028249686438032
108 => 0.028241501599881
109 => 0.027823550528586
110 => 0.028176799912039
111 => 0.028115414138624
112 => 0.0276435484085
113 => 0.028264645423329
114 => 0.028264953479699
115 => 0.027862684660617
116 => 0.027392922747898
117 => 0.027308940413185
118 => 0.027245671005417
119 => 0.027688505603817
120 => 0.028085549720035
121 => 0.028824350384731
122 => 0.029010102425307
123 => 0.029735105005887
124 => 0.029303401268887
125 => 0.029494769944
126 => 0.029702527711586
127 => 0.029802134425407
128 => 0.029639830630428
129 => 0.030766058061036
130 => 0.030861146162896
131 => 0.030893028380941
201 => 0.030513270827987
202 => 0.030850584418372
203 => 0.030692766560083
204 => 0.031103364784288
205 => 0.031167751828624
206 => 0.031113218292707
207 => 0.03113365575686
208 => 0.030172619324969
209 => 0.030122784516104
210 => 0.029443283361118
211 => 0.029720185104394
212 => 0.029202530567586
213 => 0.02936668415364
214 => 0.02943904149026
215 => 0.029401246123853
216 => 0.029735840713499
217 => 0.029451366959141
218 => 0.028700593949576
219 => 0.027949616392407
220 => 0.027940188480909
221 => 0.027742469345962
222 => 0.02759955462546
223 => 0.027627085070801
224 => 0.027724105951034
225 => 0.027593915595527
226 => 0.027621698308693
227 => 0.028083076462498
228 => 0.028175602560845
229 => 0.027861162726381
301 => 0.026598641417557
302 => 0.026288815521576
303 => 0.026511512231493
304 => 0.026405077547658
305 => 0.021310958412766
306 => 0.022507746141372
307 => 0.021796655512105
308 => 0.022124358789778
309 => 0.021398519393323
310 => 0.021744927997813
311 => 0.021680958977381
312 => 0.023605358229455
313 => 0.023575311382059
314 => 0.023589693217864
315 => 0.02290321072322
316 => 0.023996795977218
317 => 0.024535535397391
318 => 0.024435829068802
319 => 0.02446092300362
320 => 0.024029726063276
321 => 0.023593868146796
322 => 0.023110434639367
323 => 0.024008594341982
324 => 0.023908734315149
325 => 0.024137777288201
326 => 0.024720298057128
327 => 0.024806076453134
328 => 0.024921363487244
329 => 0.024880041292206
330 => 0.02586450362335
331 => 0.025745278739357
401 => 0.026032576406441
402 => 0.025441583307923
403 => 0.024772818519371
404 => 0.024899928842107
405 => 0.024887687095871
406 => 0.024731835615863
407 => 0.024591139868302
408 => 0.024356921089395
409 => 0.025098023963715
410 => 0.02506793654043
411 => 0.025555016950604
412 => 0.025468920756859
413 => 0.024893949303718
414 => 0.02491448452165
415 => 0.025052593731134
416 => 0.025530591282059
417 => 0.025672493499728
418 => 0.025606758738678
419 => 0.025762348042271
420 => 0.025885319483943
421 => 0.025777791362043
422 => 0.027300162811407
423 => 0.026667968046264
424 => 0.026976095376012
425 => 0.027049581928565
426 => 0.026861347669455
427 => 0.026902168940093
428 => 0.026964002041978
429 => 0.027339440528462
430 => 0.028324699750997
501 => 0.028761064353771
502 => 0.030073888791069
503 => 0.028724830348
504 => 0.028644782802947
505 => 0.028881262127604
506 => 0.029652029048877
507 => 0.030276663244114
508 => 0.030483890442685
509 => 0.030511278937924
510 => 0.030900050938647
511 => 0.031122887799293
512 => 0.030852843792041
513 => 0.030624009770681
514 => 0.029804354710092
515 => 0.029899232015202
516 => 0.030552842562112
517 => 0.031476105957091
518 => 0.032268361999167
519 => 0.031990941546143
520 => 0.034107463774401
521 => 0.034317308308114
522 => 0.034288314578641
523 => 0.034766371655495
524 => 0.033817525712571
525 => 0.033411875688947
526 => 0.030673486283475
527 => 0.03144286200896
528 => 0.032561194809805
529 => 0.032413179270081
530 => 0.031601016096986
531 => 0.032267745900572
601 => 0.032047304176938
602 => 0.031873432643372
603 => 0.032669971845292
604 => 0.031794144272754
605 => 0.032552457759796
606 => 0.031579912868916
607 => 0.031992208779404
608 => 0.031758169680101
609 => 0.031909621660103
610 => 0.031024236479685
611 => 0.031501968831528
612 => 0.03100436124321
613 => 0.031004125312423
614 => 0.030993140597331
615 => 0.031578573718257
616 => 0.031597664671313
617 => 0.031165028710408
618 => 0.031102679109398
619 => 0.031333218263081
620 => 0.031063317292418
621 => 0.031189602257855
622 => 0.031067142335372
623 => 0.031039574027421
624 => 0.030819905059303
625 => 0.030725265627913
626 => 0.030762376187519
627 => 0.030635698715781
628 => 0.030559370956934
629 => 0.030977957084954
630 => 0.030754323402469
701 => 0.030943682015755
702 => 0.030727883976954
703 => 0.029979833955739
704 => 0.029549622478053
705 => 0.028136625332252
706 => 0.028537349569983
707 => 0.028803030154179
708 => 0.028715222722687
709 => 0.028903867062496
710 => 0.028915448292855
711 => 0.028854118094981
712 => 0.028783105582729
713 => 0.028748540619003
714 => 0.029006159540075
715 => 0.029155715994811
716 => 0.02882969475515
717 => 0.02875331254022
718 => 0.029082938013643
719 => 0.029284009362012
720 => 0.030768607226142
721 => 0.030658623421179
722 => 0.030934661188404
723 => 0.030903583571959
724 => 0.031192915128275
725 => 0.031665849942213
726 => 0.030704241230824
727 => 0.030871143253193
728 => 0.030830222731639
729 => 0.031276982256034
730 => 0.031278376990504
731 => 0.031010522338336
801 => 0.031155730690721
802 => 0.031074679372002
803 => 0.03122115005967
804 => 0.03065715452041
805 => 0.031344040207673
806 => 0.031733460130415
807 => 0.03173886722642
808 => 0.031923449179172
809 => 0.032110995133434
810 => 0.03247097326083
811 => 0.03210095553884
812 => 0.031435329677478
813 => 0.03148338571471
814 => 0.031093129515737
815 => 0.031099689792947
816 => 0.031064670519061
817 => 0.031169765996122
818 => 0.030680217067594
819 => 0.030795113222623
820 => 0.030634257932751
821 => 0.030870793585208
822 => 0.030616320323908
823 => 0.030830202998524
824 => 0.030922507670566
825 => 0.031263113897576
826 => 0.03056601250724
827 => 0.029144575582732
828 => 0.02944337885752
829 => 0.029001425343617
830 => 0.029042329823965
831 => 0.029124963384166
901 => 0.028857120979535
902 => 0.028908216869654
903 => 0.028906391364903
904 => 0.028890660151173
905 => 0.028820983997164
906 => 0.028719939788844
907 => 0.029122468815025
908 => 0.029190866340366
909 => 0.029342905566538
910 => 0.029795271174434
911 => 0.02975006918269
912 => 0.029823795506637
913 => 0.029662851355415
914 => 0.029049795561541
915 => 0.029083087440649
916 => 0.028667937174709
917 => 0.029332289240853
918 => 0.029174961902571
919 => 0.029073531944106
920 => 0.029045855840197
921 => 0.029499342774938
922 => 0.029635033173349
923 => 0.029550480022903
924 => 0.029377059044529
925 => 0.029710078590317
926 => 0.029799180571803
927 => 0.029819127219503
928 => 0.030409174004476
929 => 0.029852104280181
930 => 0.029986196499616
1001 => 0.031032345717332
1002 => 0.030083632735587
1003 => 0.030586187160842
1004 => 0.030561589736892
1005 => 0.030818679575338
1006 => 0.03054050086625
1007 => 0.030543949224743
1008 => 0.030772227584509
1009 => 0.030451651798437
1010 => 0.030372272725538
1011 => 0.030262611104852
1012 => 0.03050205324173
1013 => 0.030645587973752
1014 => 0.031802372499203
1015 => 0.032549708058427
1016 => 0.032517264250844
1017 => 0.032813739919892
1018 => 0.03268017491558
1019 => 0.032248858283989
1020 => 0.032985063180656
1021 => 0.032752097147229
1022 => 0.032771302583971
1023 => 0.032770587756656
1024 => 0.032925489802641
1025 => 0.032815727506497
1026 => 0.032599374753928
1027 => 0.032742999807843
1028 => 0.033169514871075
1029 => 0.034493430714427
1030 => 0.035234311559919
1031 => 0.034448828757251
1101 => 0.034990644276498
1102 => 0.034665748033559
1103 => 0.034606704721391
1104 => 0.03494700490733
1105 => 0.035287900743697
1106 => 0.035266187152653
1107 => 0.035018714280646
1108 => 0.034878923134641
1109 => 0.035937468525662
1110 => 0.036717386737915
1111 => 0.036664201544477
1112 => 0.03689894369156
1113 => 0.037588153895695
1114 => 0.037651166639297
1115 => 0.037643228481935
1116 => 0.037487044822216
1117 => 0.038165661773441
1118 => 0.038731775973283
1119 => 0.037450892817571
1120 => 0.037938636355274
1121 => 0.038157600143465
1122 => 0.038479103948157
1123 => 0.039021534756966
1124 => 0.039610758487999
1125 => 0.039694081184077
1126 => 0.039634959743852
1127 => 0.039246350854051
1128 => 0.039891086491449
1129 => 0.040268757506926
1130 => 0.040493651953794
1201 => 0.041063946852186
1202 => 0.038158952389276
1203 => 0.036102652920836
1204 => 0.035781532065515
1205 => 0.036434543952264
1206 => 0.036606737979128
1207 => 0.036537326782812
1208 => 0.034222774780514
1209 => 0.03576934642823
1210 => 0.037433327481735
1211 => 0.037497247770776
1212 => 0.038330271478364
1213 => 0.03860153814435
1214 => 0.039272231415871
1215 => 0.039230279369127
1216 => 0.039393582507682
1217 => 0.039356041944144
1218 => 0.040598359998507
1219 => 0.041968821298485
1220 => 0.041921366581466
1221 => 0.041724346555032
1222 => 0.042016954891194
1223 => 0.043431417820329
1224 => 0.043301196740121
1225 => 0.043427695427338
1226 => 0.045095426936426
1227 => 0.047263715130282
1228 => 0.046256327571661
1229 => 0.048442068705908
1230 => 0.049817876888757
1231 => 0.052197194879774
]
'min_raw' => 0.021310958412766
'max_raw' => 0.052197194879774
'avg_raw' => 0.03675407664627
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.02131'
'max' => '$0.052197'
'avg' => '$0.036754'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.009502412123753
'max_diff' => 0.021176067655105
'year' => 2028
]
3 => [
'items' => [
101 => 0.051899292548911
102 => 0.052825543582572
103 => 0.051365985202573
104 => 0.048014544136678
105 => 0.047484165759199
106 => 0.048545996702231
107 => 0.051156404463728
108 => 0.048463785672169
109 => 0.049008498946827
110 => 0.048851621487081
111 => 0.048843262153937
112 => 0.049162303900164
113 => 0.048699517207164
114 => 0.046814040966147
115 => 0.047678143616224
116 => 0.047344472085411
117 => 0.047714705525708
118 => 0.049712702707103
119 => 0.048829340526905
120 => 0.047898790228581
121 => 0.049065906808321
122 => 0.050552047279098
123 => 0.050459047279288
124 => 0.050278588408672
125 => 0.051295825613814
126 => 0.052976003454172
127 => 0.053430148772919
128 => 0.053765389562626
129 => 0.053811613603587
130 => 0.054287749953568
131 => 0.051727444797914
201 => 0.055790714833236
202 => 0.056492329322766
203 => 0.056360454877676
204 => 0.057140269854338
205 => 0.056910828506207
206 => 0.056578403991011
207 => 0.057814576600423
208 => 0.056397404457718
209 => 0.05438590701816
210 => 0.05328235973991
211 => 0.054735599816529
212 => 0.05562304282023
213 => 0.056209586193702
214 => 0.056387073864115
215 => 0.051926193998894
216 => 0.049522027163279
217 => 0.051063070541079
218 => 0.052943249819128
219 => 0.051717000307092
220 => 0.051765066966367
221 => 0.050016757414907
222 => 0.053097936420831
223 => 0.052649034556462
224 => 0.054977938222901
225 => 0.054422126672286
226 => 0.056321257204747
227 => 0.055821152488755
228 => 0.05789705920436
301 => 0.058725194596145
302 => 0.060115762807935
303 => 0.061138670445158
304 => 0.061739341374841
305 => 0.061703279345283
306 => 0.064083436821754
307 => 0.062679941114248
308 => 0.060916819727078
309 => 0.060884930423761
310 => 0.061798075973799
311 => 0.063711778537432
312 => 0.064207973768942
313 => 0.064485279211158
314 => 0.064060576273332
315 => 0.062537182272277
316 => 0.061879388466404
317 => 0.062439847847129
318 => 0.061754454185326
319 => 0.062937635933094
320 => 0.064562397186764
321 => 0.064226890412883
322 => 0.065348439255979
323 => 0.066509124318204
324 => 0.068168956086813
325 => 0.06860289757452
326 => 0.069320186352382
327 => 0.070058512121892
328 => 0.070295642460621
329 => 0.070748397854478
330 => 0.070746011610066
331 => 0.072110420463406
401 => 0.073615405680865
402 => 0.074183502759968
403 => 0.075489810668309
404 => 0.073252804153763
405 => 0.074949599291925
406 => 0.076480150980083
407 => 0.074655364160221
408 => 0.077170407670602
409 => 0.077268061110899
410 => 0.078742512119879
411 => 0.077247873551643
412 => 0.076360361940881
413 => 0.078922574706526
414 => 0.080162348754877
415 => 0.079788918721898
416 => 0.076947097732413
417 => 0.075293036025097
418 => 0.070964037492376
419 => 0.076091923253204
420 => 0.078589566824825
421 => 0.076940629438949
422 => 0.077772257543425
423 => 0.082309350825128
424 => 0.084036782191766
425 => 0.083677488543162
426 => 0.083738203255299
427 => 0.084670293865639
428 => 0.088803696943564
429 => 0.086326866007738
430 => 0.088220310453092
501 => 0.089224586559586
502 => 0.090157414176213
503 => 0.087866684372973
504 => 0.084886478556462
505 => 0.083942522273843
506 => 0.076776675112928
507 => 0.076403661648505
508 => 0.07619427788746
509 => 0.074874142891992
510 => 0.073836878400961
511 => 0.073012007166533
512 => 0.07084729871999
513 => 0.071577824275015
514 => 0.068127730820992
515 => 0.070334978349072
516 => 0.064828545891031
517 => 0.069414466466611
518 => 0.066918558393546
519 => 0.068594493537377
520 => 0.068588646357543
521 => 0.065502718402028
522 => 0.06372281955896
523 => 0.064857040376462
524 => 0.066073015127385
525 => 0.066270302939692
526 => 0.067846845944452
527 => 0.068286825209401
528 => 0.066953667495935
529 => 0.064714437317554
530 => 0.065234559416589
531 => 0.063712279301224
601 => 0.061044541952707
602 => 0.062960557490638
603 => 0.063614769436544
604 => 0.063903706701488
605 => 0.061280293410926
606 => 0.060455959997958
607 => 0.060017091805721
608 => 0.064375787605155
609 => 0.064614566800248
610 => 0.063392938678179
611 => 0.068914813629463
612 => 0.067665043263765
613 => 0.069061342963423
614 => 0.065187363787764
615 => 0.065335355009279
616 => 0.063501351184251
617 => 0.064528270778087
618 => 0.063802477108327
619 => 0.064445305823122
620 => 0.064830614704288
621 => 0.066664317587334
622 => 0.069435404408018
623 => 0.066390423525209
624 => 0.06506368174964
625 => 0.065886784885324
626 => 0.068078817002914
627 => 0.071399857869122
628 => 0.069433734834151
629 => 0.070306266850137
630 => 0.070496876279382
701 => 0.069047129943225
702 => 0.071453312084433
703 => 0.072742804641695
704 => 0.074065557182559
705 => 0.075214066151106
706 => 0.073537220729786
707 => 0.075331685696948
708 => 0.073885663699124
709 => 0.07258843248007
710 => 0.072590399844355
711 => 0.071776627751118
712 => 0.070199841778589
713 => 0.069909058253018
714 => 0.071421750874951
715 => 0.072634787105217
716 => 0.072734698579194
717 => 0.073406297764321
718 => 0.073803743244057
719 => 0.077699249246404
720 => 0.079266053985864
721 => 0.081181913163179
722 => 0.08192824828465
723 => 0.084174449424329
724 => 0.082360459576501
725 => 0.081967991462393
726 => 0.076519442224326
727 => 0.077411641856826
728 => 0.078840139552918
729 => 0.076542997625186
730 => 0.078000005449146
731 => 0.078287649657241
801 => 0.076464941621494
802 => 0.077438528737952
803 => 0.074852970005102
804 => 0.069491762522878
805 => 0.071459280640943
806 => 0.072908036235277
807 => 0.070840483371886
808 => 0.074546491854169
809 => 0.072381518206363
810 => 0.071695325497071
811 => 0.069018243092758
812 => 0.070281722937242
813 => 0.071990597518196
814 => 0.070934711705159
815 => 0.073125833309262
816 => 0.076229045851458
817 => 0.078440579908528
818 => 0.078610354032703
819 => 0.077188485795281
820 => 0.079467038719991
821 => 0.079483635490495
822 => 0.076913418483259
823 => 0.075339174877356
824 => 0.074981503417858
825 => 0.075875036849304
826 => 0.076959951390451
827 => 0.078670559239115
828 => 0.079704243735875
829 => 0.082399544679532
830 => 0.083128815834551
831 => 0.083930063732719
901 => 0.085000778020371
902 => 0.086286445048206
903 => 0.083473478784367
904 => 0.083585243178055
905 => 0.080965847941337
906 => 0.07816664847163
907 => 0.080290891943998
908 => 0.083068057707852
909 => 0.082430972813129
910 => 0.082359287748009
911 => 0.082479842143762
912 => 0.081999500938387
913 => 0.079826935468756
914 => 0.078735886690886
915 => 0.080143617970567
916 => 0.080891764494806
917 => 0.082052074508668
918 => 0.081909041808287
919 => 0.084897875795796
920 => 0.086059246305694
921 => 0.085762118031416
922 => 0.085816796784675
923 => 0.087919402618559
924 => 0.090257932739709
925 => 0.092448274794394
926 => 0.094676384809799
927 => 0.091990311221614
928 => 0.09062648870752
929 => 0.092033605415762
930 => 0.091286969483767
1001 => 0.095577361015613
1002 => 0.095874418416547
1003 => 0.10016449970425
1004 => 0.10423629769966
1005 => 0.10167887433258
1006 => 0.10409040937886
1007 => 0.10669868114674
1008 => 0.11173046056383
1009 => 0.11003593427629
1010 => 0.10873795369665
1011 => 0.10751136832068
1012 => 0.11006369777312
1013 => 0.11334722883923
1014 => 0.11405446998161
1015 => 0.11520047081916
1016 => 0.11399559106479
1017 => 0.11544673601577
1018 => 0.12056991535816
1019 => 0.11918558707629
1020 => 0.11721961837416
1021 => 0.1212638764296
1022 => 0.12272747769821
1023 => 0.13299979789524
1024 => 0.14596902647237
1025 => 0.14059968068089
1026 => 0.13726675448041
1027 => 0.13805007119559
1028 => 0.14278599443586
1029 => 0.14430702266995
1030 => 0.14017234359983
1031 => 0.14163278214677
1101 => 0.14967994212757
1102 => 0.15399698527346
1103 => 0.14813386082509
1104 => 0.13195773300692
1105 => 0.11704260440267
1106 => 0.12099876814551
1107 => 0.12055026195112
1108 => 0.12919593144683
1109 => 0.1191525713046
1110 => 0.11932167573176
1111 => 0.12814612851672
1112 => 0.12579191580311
1113 => 0.12197839271185
1114 => 0.11707044734153
1115 => 0.10799765639449
1116 => 0.099961632439204
1117 => 0.11572212600131
1118 => 0.11504250486031
1119 => 0.11405831273394
1120 => 0.11624852581047
1121 => 0.12688357880727
1122 => 0.12663840641339
1123 => 0.12507874473156
1124 => 0.126261734371
1125 => 0.12177100890839
1126 => 0.12292837111202
1127 => 0.11704024177009
1128 => 0.11970192214265
1129 => 0.12197021060404
1130 => 0.12242560309525
1201 => 0.12345162563086
1202 => 0.11468437540123
1203 => 0.11862061336139
1204 => 0.12093278438736
1205 => 0.11048631157451
1206 => 0.12072629120783
1207 => 0.11453175708011
1208 => 0.11242923915838
1209 => 0.11526000255431
1210 => 0.11415685130591
1211 => 0.11320842664175
1212 => 0.11267918938314
1213 => 0.11475778960116
1214 => 0.11466082041652
1215 => 0.11125982702093
1216 => 0.1068233697786
1217 => 0.10831239045087
1218 => 0.10777141528099
1219 => 0.10581085147816
1220 => 0.10713203476189
1221 => 0.1013142122159
1222 => 0.091304950909635
1223 => 0.097917375520521
1224 => 0.097662804365936
1225 => 0.097534438045912
1226 => 0.102503492387
1227 => 0.10202583246769
1228 => 0.10115887503689
1229 => 0.10579492912507
1230 => 0.10410270701916
1231 => 0.1093177368119
]
'min_raw' => 0.046814040966147
'max_raw' => 0.15399698527346
'avg_raw' => 0.1004055131198
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.046814'
'max' => '$0.153996'
'avg' => '$0.1004055'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.02550308255338
'max_diff' => 0.10179979039368
'year' => 2029
]
4 => [
'items' => [
101 => 0.11275269272039
102 => 0.11188147679281
103 => 0.11511206942732
104 => 0.10834669447976
105 => 0.11059388065761
106 => 0.1110570226144
107 => 0.10573772093726
108 => 0.10210398353781
109 => 0.10186165468091
110 => 0.09556125479013
111 => 0.098926877556733
112 => 0.10188848631241
113 => 0.10047010554856
114 => 0.10002108857165
115 => 0.1023150189268
116 => 0.10249327696158
117 => 0.098428974877656
118 => 0.099274071980612
119 => 0.10279826738564
120 => 0.099185271298559
121 => 0.092165810080916
122 => 0.090424886647296
123 => 0.090192615369666
124 => 0.085471092943311
125 => 0.09054122347568
126 => 0.08832797562725
127 => 0.095319599061659
128 => 0.091326021252753
129 => 0.091153866095274
130 => 0.090893628325073
131 => 0.086829618929074
201 => 0.087719378705527
202 => 0.090677075716697
203 => 0.091732415331124
204 => 0.091622334763197
205 => 0.090662581387777
206 => 0.091101951568312
207 => 0.089686587130089
208 => 0.08918679248869
209 => 0.087609303121086
210 => 0.08529082954327
211 => 0.08561322751429
212 => 0.081019724695024
213 => 0.078516940563441
214 => 0.077824202901983
215 => 0.076897845149582
216 => 0.077928837475061
217 => 0.08100671187868
218 => 0.077294142340434
219 => 0.070929202273585
220 => 0.071311746016933
221 => 0.072171208229979
222 => 0.07056960608188
223 => 0.069053824060983
224 => 0.07037167354887
225 => 0.067674764535024
226 => 0.072497116799667
227 => 0.072366685685394
228 => 0.07416416039739
301 => 0.075288158222695
302 => 0.072697707133984
303 => 0.072046215690498
304 => 0.072417334825343
305 => 0.066283562204445
306 => 0.073662900314161
307 => 0.073726717136568
308 => 0.073180278758807
309 => 0.077109548490727
310 => 0.085401533195043
311 => 0.082281755004967
312 => 0.081073682593975
313 => 0.078777136057583
314 => 0.081837147961885
315 => 0.081602186791256
316 => 0.080539603271297
317 => 0.079896949442963
318 => 0.08108105882651
319 => 0.079750225186383
320 => 0.079511170895753
321 => 0.078062761988171
322 => 0.077545745906571
323 => 0.077162967782757
324 => 0.07674156667944
325 => 0.077671072506745
326 => 0.075564690015395
327 => 0.073024599222049
328 => 0.072813418156746
329 => 0.073396507645278
330 => 0.073138533952509
331 => 0.072812183077954
401 => 0.072189090382057
402 => 0.072004232089453
403 => 0.072604931859921
404 => 0.071926776842035
405 => 0.072927431511942
406 => 0.072655308810476
407 => 0.071135253520833
408 => 0.069240701833391
409 => 0.069223836349417
410 => 0.068815658296045
411 => 0.068295782175095
412 => 0.068151164531401
413 => 0.070260687940782
414 => 0.074627338265478
415 => 0.073770060321653
416 => 0.074389531493444
417 => 0.0774367165455
418 => 0.078405325041497
419 => 0.077717829673788
420 => 0.0767767436116
421 => 0.076818146622244
422 => 0.080034122582864
423 => 0.080234699058731
424 => 0.080741491104825
425 => 0.08139286210347
426 => 0.077828760971465
427 => 0.07665027777944
428 => 0.076091847063301
429 => 0.074372096597476
430 => 0.076226700034606
501 => 0.075146102033828
502 => 0.075291911622617
503 => 0.075196952936635
504 => 0.07524880680026
505 => 0.072495768853929
506 => 0.073498831186157
507 => 0.071831045511689
508 => 0.069598067711304
509 => 0.069590581986734
510 => 0.070137100139921
511 => 0.069812009757148
512 => 0.068937199895944
513 => 0.069061462507742
514 => 0.067972791273127
515 => 0.069193646906653
516 => 0.069228656677791
517 => 0.068758560758428
518 => 0.070639457307486
519 => 0.071410062158301
520 => 0.071100634953746
521 => 0.07138835192076
522 => 0.073805684090597
523 => 0.074199814709877
524 => 0.074374861496155
525 => 0.074140321991798
526 => 0.071432536315265
527 => 0.071552638124413
528 => 0.070671410737688
529 => 0.069926866457358
530 => 0.069956644323951
531 => 0.070339436868022
601 => 0.072011114358464
602 => 0.075529061086328
603 => 0.075662564593065
604 => 0.075824374737802
605 => 0.075166211559894
606 => 0.074967703247663
607 => 0.075229586950838
608 => 0.076550742776972
609 => 0.079949114252098
610 => 0.078747902803189
611 => 0.077771299197256
612 => 0.078628043850101
613 => 0.078496154726182
614 => 0.077382877791784
615 => 0.077351631816119
616 => 0.075214897442842
617 => 0.07442499539613
618 => 0.073764894122753
619 => 0.073044080764606
620 => 0.072616758444014
621 => 0.073273319742965
622 => 0.07342348308024
623 => 0.071987900325356
624 => 0.071792235700525
625 => 0.07296456356737
626 => 0.07244866578196
627 => 0.072979279447904
628 => 0.073102386369922
629 => 0.073082563320084
630 => 0.072543906781633
701 => 0.072887230396273
702 => 0.072075167697954
703 => 0.071192171481406
704 => 0.070628874907857
705 => 0.070137323936987
706 => 0.070410064984736
707 => 0.069437792950059
708 => 0.069126743558197
709 => 0.072770920080659
710 => 0.075462912459301
711 => 0.075423769823969
712 => 0.075185499098058
713 => 0.074831477130805
714 => 0.076524843865001
715 => 0.075934908754744
716 => 0.076364135838184
717 => 0.076473392145523
718 => 0.076804078081945
719 => 0.0769222698808
720 => 0.07656501217518
721 => 0.075366011679766
722 => 0.07237821644274
723 => 0.070987389694505
724 => 0.070528393701536
725 => 0.070545077334123
726 => 0.07008486826836
727 => 0.070220420463351
728 => 0.07003772874679
729 => 0.069691754833496
730 => 0.070388702070519
731 => 0.070469018747073
801 => 0.070306342934053
802 => 0.070344658976969
803 => 0.068997772724909
804 => 0.06910017356137
805 => 0.068529992691487
806 => 0.068423090652017
807 => 0.066981723064279
808 => 0.064428131453028
809 => 0.065843069088796
810 => 0.064134023395128
811 => 0.063486781894667
812 => 0.066550722491142
813 => 0.066243187835739
814 => 0.065716822187792
815 => 0.064938217690264
816 => 0.064649425708353
817 => 0.062894817046695
818 => 0.062791145406491
819 => 0.063660776837628
820 => 0.063259471854349
821 => 0.062695887671743
822 => 0.060654642891956
823 => 0.058359607926555
824 => 0.058428880606085
825 => 0.059158888527935
826 => 0.061281485015697
827 => 0.060452149846636
828 => 0.059850457665958
829 => 0.059737778807318
830 => 0.061148190632372
831 => 0.063144218855236
901 => 0.06408071063879
902 => 0.063152675722966
903 => 0.062086599180617
904 => 0.062151486320027
905 => 0.062583151388569
906 => 0.062628513283858
907 => 0.061934607049228
908 => 0.062129937589697
909 => 0.061833212637325
910 => 0.06001221215233
911 => 0.059979276028011
912 => 0.059532373141394
913 => 0.059518841099598
914 => 0.058758547804312
915 => 0.058652177516642
916 => 0.057142569032348
917 => 0.058136197908226
918 => 0.057469723826144
919 => 0.056465190179105
920 => 0.056292008199724
921 => 0.0562868021403
922 => 0.057318233586196
923 => 0.058124145031252
924 => 0.057481317428145
925 => 0.057334958043607
926 => 0.058897693363098
927 => 0.058698821049044
928 => 0.058526598907662
929 => 0.062965496420508
930 => 0.059451762667598
1001 => 0.057919574194419
1002 => 0.056023200004159
1003 => 0.056640669002856
1004 => 0.056770778793389
1005 => 0.052210340712956
1006 => 0.05036017155169
1007 => 0.049725263217698
1008 => 0.049359864495199
1009 => 0.04952638128143
1010 => 0.047861012033094
1011 => 0.048980167710641
1012 => 0.04753809871174
1013 => 0.047296331151176
1014 => 0.04987492915928
1015 => 0.050233726008157
1016 => 0.048702987181405
1017 => 0.049685969312285
1018 => 0.049329526327154
1019 => 0.047562818845737
1020 => 0.047495343614967
1021 => 0.046608871903563
1022 => 0.045221715329963
1023 => 0.044587747553447
1024 => 0.044257571631077
1025 => 0.044393808651648
1026 => 0.044324923045126
1027 => 0.043875397866551
1028 => 0.044350689302166
1029 => 0.043136516088149
1030 => 0.042653022531068
1031 => 0.0424346397083
1101 => 0.041356991095657
1102 => 0.043072009270886
1103 => 0.043409889456636
1104 => 0.043748435370728
1105 => 0.046695246417789
1106 => 0.046548032065479
1107 => 0.04787877811406
1108 => 0.047827067769697
1109 => 0.047447517439985
1110 => 0.045846257031929
1111 => 0.046484490890858
1112 => 0.044520106276638
1113 => 0.045991956794781
1114 => 0.045320265684248
1115 => 0.045764857354649
1116 => 0.044965441444053
1117 => 0.045407871216051
1118 => 0.043490013383206
1119 => 0.041699144723883
1120 => 0.042419842551109
1121 => 0.043203323511099
1122 => 0.044902109859591
1123 => 0.043890326725112
1124 => 0.044254202200027
1125 => 0.043035280271081
1126 => 0.040520296163831
1127 => 0.040534530700751
1128 => 0.040147655187758
1129 => 0.039813338259782
1130 => 0.044006542189256
1201 => 0.043485050995882
1202 => 0.042654123030319
1203 => 0.043766353131989
1204 => 0.044060444424336
1205 => 0.044068816789986
1206 => 0.04488027116135
1207 => 0.045313344504809
1208 => 0.045389675558641
1209 => 0.046666516544615
1210 => 0.047094496801174
1211 => 0.048857286907906
1212 => 0.045276601257332
1213 => 0.045202859392694
1214 => 0.043782004490419
1215 => 0.042880875848569
1216 => 0.043843705539476
1217 => 0.044696641206259
1218 => 0.043808507579135
1219 => 0.043924479081313
1220 => 0.042732232250082
1221 => 0.04315840439182
1222 => 0.043525481251871
1223 => 0.043322802985531
1224 => 0.043019383811082
1225 => 0.044626710208333
1226 => 0.044536018553837
1227 => 0.046032797847232
1228 => 0.047199644342147
1229 => 0.049290841859796
1230 => 0.047108568233537
1231 => 0.047029037508844
]
'min_raw' => 0.039813338259782
'max_raw' => 0.11511206942732
'avg_raw' => 0.077462703843552
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.039813'
'max' => '$0.115112'
'avg' => '$0.077462'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.007000702706365
'max_diff' => -0.038884915846137
'year' => 2030
]
5 => [
'items' => [
101 => 0.047806463099847
102 => 0.047094377781366
103 => 0.047544391122296
104 => 0.049218337753393
105 => 0.049253705607937
106 => 0.04866124847541
107 => 0.048625197405053
108 => 0.048738985278126
109 => 0.049405444404812
110 => 0.049172563107728
111 => 0.049442059240547
112 => 0.049779068281309
113 => 0.051173080562773
114 => 0.051509172204427
115 => 0.050692643758744
116 => 0.050766367135108
117 => 0.050460963082215
118 => 0.050165946593822
119 => 0.050829100576031
120 => 0.052041027512842
121 => 0.052033488178267
122 => 0.052314631671114
123 => 0.052489781738039
124 => 0.051737909433111
125 => 0.051248468209714
126 => 0.051436151118719
127 => 0.051736260177419
128 => 0.051338829795751
129 => 0.048885705372434
130 => 0.049629826616274
131 => 0.049505968455629
201 => 0.049329579373204
202 => 0.050077799038004
203 => 0.05000563142604
204 => 0.047843931264367
205 => 0.047982316295098
206 => 0.047852346916431
207 => 0.048272304568137
208 => 0.047071698689991
209 => 0.047440996971905
210 => 0.047672617392365
211 => 0.047809043599407
212 => 0.048301908607572
213 => 0.048244076587491
214 => 0.048298313688004
215 => 0.049029102383574
216 => 0.052725180829372
217 => 0.052926350224239
218 => 0.051935718549663
219 => 0.05233145636431
220 => 0.051571726298534
221 => 0.052081738181439
222 => 0.052430675358825
223 => 0.050853895350977
224 => 0.05076052867213
225 => 0.049997662930121
226 => 0.050407583768952
227 => 0.04975537024002
228 => 0.049915400626559
301 => 0.049467941714597
302 => 0.050273278667948
303 => 0.051173770518505
304 => 0.051401270321456
305 => 0.050802816284714
306 => 0.05036949612207
307 => 0.049608728661002
308 => 0.050873901903567
309 => 0.051243877115149
310 => 0.050871958581284
311 => 0.050785776930407
312 => 0.050622462857722
313 => 0.050820424782962
314 => 0.05124186215069
315 => 0.051043120070796
316 => 0.051174392715951
317 => 0.050674116760384
318 => 0.051738158334129
319 => 0.053428112428787
320 => 0.053433545907536
321 => 0.053234802756348
322 => 0.053153481340863
323 => 0.053357403874725
324 => 0.053468023484005
325 => 0.054127471565517
326 => 0.05483508563055
327 => 0.058137211715855
328 => 0.057209987924772
329 => 0.060139830632015
330 => 0.062456955820982
331 => 0.063151760349549
401 => 0.062512572876347
402 => 0.06032594705875
403 => 0.06021866076429
404 => 0.063486402905386
405 => 0.062563116078455
406 => 0.062453294048266
407 => 0.061284973194301
408 => 0.061975595518347
409 => 0.06182454628526
410 => 0.061586107681251
411 => 0.062903766966362
412 => 0.065370307519834
413 => 0.064985874043505
414 => 0.064698912286781
415 => 0.063441529402127
416 => 0.064198754745323
417 => 0.063929121304307
418 => 0.065087637680522
419 => 0.064401358243532
420 => 0.062556121272663
421 => 0.062849981342255
422 => 0.0628055649839
423 => 0.063719650491456
424 => 0.063445264711085
425 => 0.062751986756548
426 => 0.06536187715237
427 => 0.065192405387038
428 => 0.065432677603639
429 => 0.065538452864052
430 => 0.067127047156561
501 => 0.067777843408855
502 => 0.067925585551917
503 => 0.068543791657208
504 => 0.067910204020845
505 => 0.070445006306625
506 => 0.072130501916855
507 => 0.074088291802948
508 => 0.076949149030842
509 => 0.078024857812939
510 => 0.077830540649749
511 => 0.079999609949426
512 => 0.083897379265244
513 => 0.078618391269965
514 => 0.084177178447378
515 => 0.082417330606293
516 => 0.078244763033392
517 => 0.077976098873038
518 => 0.080801810077912
519 => 0.087068965565698
520 => 0.085499114197497
521 => 0.087071533280152
522 => 0.085237222896277
523 => 0.085146133924936
524 => 0.086982444919065
525 => 0.091273085648949
526 => 0.089234763070444
527 => 0.086312327836955
528 => 0.088470208535235
529 => 0.086600852571954
530 => 0.082388670386894
531 => 0.085497913761741
601 => 0.083418851263134
602 => 0.084025632229269
603 => 0.088395512364134
604 => 0.087869716825038
605 => 0.088550144939984
606 => 0.087349207127009
607 => 0.08622734183918
608 => 0.084133296968636
609 => 0.083513353517632
610 => 0.083684683584261
611 => 0.08351326861496
612 => 0.082341669755156
613 => 0.082088663092931
614 => 0.081666974238079
615 => 0.081797673246979
616 => 0.081004774830431
617 => 0.08250113796363
618 => 0.082778876147058
619 => 0.08386780444907
620 => 0.083980860597766
621 => 0.087013510418946
622 => 0.08534317785905
623 => 0.086463781149803
624 => 0.086363543843951
625 => 0.078335195225029
626 => 0.079441430829996
627 => 0.08116238627547
628 => 0.080387098179984
629 => 0.079291022202442
630 => 0.078405882082701
701 => 0.077064804291069
702 => 0.078952345529673
703 => 0.081434261540805
704 => 0.084043806083593
705 => 0.087179002867622
706 => 0.086479263443141
707 => 0.083985195760513
708 => 0.084097077814839
709 => 0.084788688650711
710 => 0.083892989778786
711 => 0.083628830695336
712 => 0.084752397249083
713 => 0.084760134634438
714 => 0.083729524833464
715 => 0.082584190639283
716 => 0.08257939164719
717 => 0.082375590489952
718 => 0.085273478669403
719 => 0.08686702415856
720 => 0.087049721580765
721 => 0.086854727166388
722 => 0.08692977277743
723 => 0.086002523768669
724 => 0.088121940035546
725 => 0.090066925990576
726 => 0.089545628206064
727 => 0.088764128720233
728 => 0.088141626737654
729 => 0.089398986522366
730 => 0.08934299827042
731 => 0.090049938235028
801 => 0.09001786735475
802 => 0.08978015003401
803 => 0.089545636695698
804 => 0.090475455573918
805 => 0.090207682669425
806 => 0.08993949383965
807 => 0.089401600083882
808 => 0.08947470877876
809 => 0.088693344229834
810 => 0.088331849236691
811 => 0.082895831887598
812 => 0.081443150424929
813 => 0.081900193585143
814 => 0.082050664060605
815 => 0.08141845522639
816 => 0.08232488029353
817 => 0.082183614906958
818 => 0.082733195888623
819 => 0.082389841551311
820 => 0.082403932933082
821 => 0.083413664828253
822 => 0.083706794293128
823 => 0.083557706281447
824 => 0.08366212241439
825 => 0.086068348126763
826 => 0.08572625977723
827 => 0.085544532159615
828 => 0.085594871951643
829 => 0.086209714211215
830 => 0.086381836474753
831 => 0.085652542349328
901 => 0.085996481674877
902 => 0.087460931670668
903 => 0.087973406288503
904 => 0.089608979266862
905 => 0.088914158795664
906 => 0.090189531841674
907 => 0.094109593778398
908 => 0.097241210501106
909 => 0.094361246343369
910 => 0.10011206164564
911 => 0.10458989626391
912 => 0.10441802951304
913 => 0.10363721547316
914 => 0.098539319809649
915 => 0.09384816021474
916 => 0.097772514413039
917 => 0.097782518398941
918 => 0.09744541289297
919 => 0.09535167954743
920 => 0.097372555510975
921 => 0.097532965306218
922 => 0.09744317847729
923 => 0.095837918030281
924 => 0.093386982029421
925 => 0.093865889057277
926 => 0.094650348538345
927 => 0.093165203085293
928 => 0.092690609124907
929 => 0.09357296959246
930 => 0.096416118866022
1001 => 0.095878637965097
1002 => 0.095864602166643
1003 => 0.098164173388171
1004 => 0.096518176672087
1005 => 0.093871929608571
1006 => 0.093203717325323
1007 => 0.090832013881522
1008 => 0.092470157897873
1009 => 0.09252911178469
1010 => 0.09163191704836
1011 => 0.093944732016702
1012 => 0.093923419019606
1013 => 0.096119092614967
1014 => 0.10031639587196
1015 => 0.099075046762115
1016 => 0.097631492805769
1017 => 0.097788447146234
1018 => 0.099509848864806
1019 => 0.098469050089978
1020 => 0.098843328586113
1021 => 0.099509282349475
1022 => 0.099911068789614
1023 => 0.09773063626064
1024 => 0.097222273135992
1025 => 0.096182340594174
1026 => 0.095911041605274
1027 => 0.09675804496168
1028 => 0.096534889502337
1029 => 0.092524156938784
1030 => 0.092105013070387
1031 => 0.092117867614431
1101 => 0.091063910428143
1102 => 0.089456372740346
1103 => 0.09368088580279
1104 => 0.093341598281853
1105 => 0.092967051117507
1106 => 0.093012931008003
1107 => 0.094846648946378
1108 => 0.093782999937145
1109 => 0.096610885156835
1110 => 0.096029556969677
1111 => 0.095433319908071
1112 => 0.095350901784332
1113 => 0.09512140138417
1114 => 0.094334359118674
1115 => 0.093383958289181
1116 => 0.092756421339239
1117 => 0.085562895599568
1118 => 0.086897972134036
1119 => 0.088433855990888
1120 => 0.088964036943604
1121 => 0.088057125736577
1122 => 0.094370169500817
1123 => 0.095523623430546
1124 => 0.092029736239456
1125 => 0.091376172600477
1126 => 0.094413017024182
1127 => 0.092581428597556
1128 => 0.093406192753916
1129 => 0.091623503769739
1130 => 0.095245790155948
1201 => 0.095218194402675
1202 => 0.093809043185391
1203 => 0.095000048144788
1204 => 0.0947930817239
1205 => 0.093202153470173
1206 => 0.095296225419279
1207 => 0.09529726405284
1208 => 0.093940986643793
1209 => 0.092357151557329
1210 => 0.092073999252385
1211 => 0.091860682026769
1212 => 0.093353729792998
1213 => 0.09469239175156
1214 => 0.097183309774
1215 => 0.097809585747594
1216 => 0.10025398256608
1217 => 0.098798463276194
1218 => 0.099443676125271
1219 => 0.10014414594388
1220 => 0.10047997693384
1221 => 0.099932758357378
1222 => 0.10372991277036
1223 => 0.10405050894462
1224 => 0.10415800206871
1225 => 0.1028776229651
1226 => 0.10401489928556
1227 => 0.10348280535785
1228 => 0.10486716593781
1229 => 0.10508425135315
1230 => 0.10490038772939
1231 => 0.10496929406668
]
'min_raw' => 0.047071698689991
'max_raw' => 0.10508425135315
'avg_raw' => 0.07607797502157
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.047071'
'max' => '$0.105084'
'avg' => '$0.076077'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0072583604302092
'max_diff' => -0.010027818074172
'year' => 2031
]
6 => [
'items' => [
101 => 0.10172909263914
102 => 0.1015610711017
103 => 0.099270085516409
104 => 0.10020367907653
105 => 0.098458370664192
106 => 0.099011825940412
107 => 0.099255783752654
108 => 0.099128354036022
109 => 0.10025646305566
110 => 0.099297339931522
111 => 0.096766056312475
112 => 0.0942340830469
113 => 0.094202296185051
114 => 0.093535672317266
115 => 0.093053825359108
116 => 0.093146646177689
117 => 0.093473758849175
118 => 0.093034812975983
119 => 0.093128484333149
120 => 0.094684052991097
121 => 0.09499601119164
122 => 0.093935855336257
123 => 0.089679176597133
124 => 0.088634576957482
125 => 0.089385414463152
126 => 0.08902656249557
127 => 0.071851384172243
128 => 0.075886437556288
129 => 0.073488945852954
130 => 0.07459382033314
131 => 0.072146602131503
201 => 0.073314542927019
202 => 0.073098866908456
203 => 0.07958711334409
204 => 0.079485808300289
205 => 0.079534297663813
206 => 0.077219774004446
207 => 0.080906873039983
208 => 0.082723270608682
209 => 0.082387103760571
210 => 0.08247170971381
211 => 0.081017899124232
212 => 0.079548373728192
213 => 0.077918443905647
214 => 0.080946652050521
215 => 0.080609966998048
216 => 0.081382201372963
217 => 0.083346210815703
218 => 0.083635418666692
219 => 0.084024116951279
220 => 0.083884796285682
221 => 0.087203979768102
222 => 0.086802004747703
223 => 0.087770648890758
224 => 0.085778074397286
225 => 0.083523287221016
226 => 0.083951848548678
227 => 0.083910574646552
228 => 0.083385110500503
229 => 0.082910744964539
301 => 0.08212105999882
302 => 0.084619740081739
303 => 0.084518298233498
304 => 0.086160523843269
305 => 0.085870244515014
306 => 0.083931688117523
307 => 0.084000924038504
308 => 0.084466568880755
309 => 0.086078170996423
310 => 0.086556604230592
311 => 0.086334974894257
312 => 0.086859555094217
313 => 0.087274161895408
314 => 0.086911623325048
315 => 0.092044404955158
316 => 0.089912916166049
317 => 0.090951788971057
318 => 0.091199554013658
319 => 0.090564909066974
320 => 0.090702540830978
321 => 0.090911015451033
322 => 0.092176832520492
323 => 0.095498702777871
324 => 0.096969936502129
325 => 0.10139621575095
326 => 0.096847771021892
327 => 0.096577885135005
328 => 0.097375191688546
329 => 0.099973886176847
330 => 0.10207988397665
331 => 0.10277856494478
401 => 0.10287090716868
402 => 0.10418167911231
403 => 0.10493298914595
404 => 0.10402251692163
405 => 0.10325098704193
406 => 0.10048746277867
407 => 0.10080734823697
408 => 0.10301104182951
409 => 0.10612388882587
410 => 0.10879503538528
411 => 0.10785969295903
412 => 0.11499569542247
413 => 0.11570320091876
414 => 0.11560544653556
415 => 0.11721724934706
416 => 0.11401814900418
417 => 0.11265047162795
418 => 0.10341780055916
419 => 0.10601180453373
420 => 0.10978234165128
421 => 0.10928329692499
422 => 0.10654503208347
423 => 0.10879295816585
424 => 0.10804972350387
425 => 0.10746350348913
426 => 0.110149091021
427 => 0.10719617721186
428 => 0.10975288407718
429 => 0.10647388107666
430 => 0.10786396552445
501 => 0.10707488636106
502 => 0.10758551728568
503 => 0.10460037933428
504 => 0.10621108731273
505 => 0.10453336858686
506 => 0.10453257312974
507 => 0.10449553739588
508 => 0.10646936603672
509 => 0.10653373251783
510 => 0.10507507016996
511 => 0.10486485413704
512 => 0.10564213298942
513 => 0.10473214302294
514 => 0.10515792160085
515 => 0.10474503942232
516 => 0.1046520909473
517 => 0.1039114616845
518 => 0.10359237823405
519 => 0.10371749907674
520 => 0.10329039713643
521 => 0.10303305276845
522 => 0.10444434512382
523 => 0.10369034854972
524 => 0.10432878433501
525 => 0.10360120618065
526 => 0.10107910330694
527 => 0.099628615273514
528 => 0.094864596744135
529 => 0.09621566648932
530 => 0.097111427128161
531 => 0.096815378242368
601 => 0.097451405804762
602 => 0.097490452731491
603 => 0.097283673687423
604 => 0.097044250044429
605 => 0.096927711855977
606 => 0.09779629203475
607 => 0.098300532063592
608 => 0.097201328692
609 => 0.096943800721525
610 => 0.098055156018886
611 => 0.098733082108267
612 => 0.10373850745849
613 => 0.10336768938124
614 => 0.10429836998578
615 => 0.10419358963216
616 => 0.10516909117477
617 => 0.10676362391921
618 => 0.10352149301139
619 => 0.10408421483253
620 => 0.10394624843713
621 => 0.10545252936539
622 => 0.10545723181003
623 => 0.10455414114923
624 => 0.10504372124742
625 => 0.10477045106754
626 => 0.10526428721727
627 => 0.10336273687974
628 => 0.10567861993117
629 => 0.10699157638913
630 => 0.10700980679082
701 => 0.10763213773163
702 => 0.10826446201046
703 => 0.10947815339985
704 => 0.10823061281634
705 => 0.10598640875225
706 => 0.10614843303694
707 => 0.10483265701529
708 => 0.10485477544792
709 => 0.10473670552105
710 => 0.10509104225949
711 => 0.10344049386774
712 => 0.10382787427622
713 => 0.10328553943586
714 => 0.10408303590251
715 => 0.10322506153528
716 => 0.10394618190556
717 => 0.10425739355185
718 => 0.10540577122659
719 => 0.10305544521901
720 => 0.098262971386468
721 => 0.099270407489196
722 => 0.097780330360863
723 => 0.097918242672214
724 => 0.098196847489724
725 => 0.097293798122349
726 => 0.097466071483288
727 => 0.097459916666566
728 => 0.097406877781159
729 => 0.097171959763284
730 => 0.096831282160251
731 => 0.098188436875698
801 => 0.098419043907748
802 => 0.098931654773827
803 => 0.10045683700401
804 => 0.10030443533294
805 => 0.10055300878154
806 => 0.10001037433893
807 => 0.097943413927693
808 => 0.09805565982247
809 => 0.096655951715987
810 => 0.098895861090572
811 => 0.098365420985311
812 => 0.098023442798732
813 => 0.097930130882119
814 => 0.099459093744044
815 => 0.099916583395889
816 => 0.099631506545848
817 => 0.099046805609393
818 => 0.1001696042587
819 => 0.10047001781018
820 => 0.10053726932553
821 => 0.10252665325682
822 => 0.10064845378799
823 => 0.10110055506784
824 => 0.10462772019517
825 => 0.1014290681402
826 => 0.10312346547217
827 => 0.10304053353999
828 => 0.10390732987975
829 => 0.10296943094024
830 => 0.10298105732166
831 => 0.10375071374949
901 => 0.10266987010487
902 => 0.10240223801852
903 => 0.10203250620804
904 => 0.10283980208984
905 => 0.10332373946013
906 => 0.1072239192518
907 => 0.10974361326703
908 => 0.10963422670461
909 => 0.11063381512208
910 => 0.11018349138483
911 => 0.10872927724785
912 => 0.11121144345715
913 => 0.11042598221028
914 => 0.11049073468114
915 => 0.11048832459094
916 => 0.11101058765389
917 => 0.11064051640908
918 => 0.10991106799853
919 => 0.11039530989539
920 => 0.11183333520941
921 => 0.11629700990812
922 => 0.11879494140534
923 => 0.11614663129549
924 => 0.11797340014698
925 => 0.11687798978038
926 => 0.11667892113114
927 => 0.11782626696703
928 => 0.11897562107993
929 => 0.11890241219173
930 => 0.11806804012575
1001 => 0.11759672451709
1002 => 0.1211656842082
1003 => 0.12379523291296
1004 => 0.12361591532001
1005 => 0.12440736485807
1006 => 0.12673108518044
1007 => 0.1269435370449
1008 => 0.12691677299313
1009 => 0.12639018887999
1010 => 0.12867819331057
1011 => 0.13058688686017
1012 => 0.12626829987228
1013 => 0.12791276126281
1014 => 0.12865101296226
1015 => 0.12973498548646
1016 => 0.13156382882967
1017 => 0.13355043777713
1018 => 0.13383136606436
1019 => 0.13363203400092
1020 => 0.13232181199715
1021 => 0.13449558321264
1022 => 0.13576892740947
1023 => 0.13652717473871
1024 => 0.13844996380536
1025 => 0.12865557215342
1026 => 0.12172261492933
1027 => 0.12063993354567
1028 => 0.12284160871369
1029 => 0.12342217289746
1030 => 0.12318814820295
1031 => 0.11538447453034
1101 => 0.1205988488188
1102 => 0.12620907711613
1103 => 0.12642458883341
1104 => 0.1292331864234
1105 => 0.130147780927
1106 => 0.13240907011825
1107 => 0.13226762586365
1108 => 0.13281821379675
1109 => 0.13269164316578
1110 => 0.13688020522194
1111 => 0.14150081117737
1112 => 0.14134081428576
1113 => 0.14067654751114
1114 => 0.14166309694577
1115 => 0.146432057466
1116 => 0.14599300800233
1117 => 0.14641950715814
1118 => 0.15204238037833
1119 => 0.15935291540896
1120 => 0.15595643792151
1121 => 0.1633258167592
1122 => 0.16796445010354
1123 => 0.17598648682893
1124 => 0.17498208832155
1125 => 0.17810500835032
1126 => 0.17318400536904
1127 => 0.16188438782523
1128 => 0.16009618009572
1129 => 0.16367621725483
1130 => 0.17247738927556
1201 => 0.16339903702718
1202 => 0.16523557586336
1203 => 0.16470665255499
1204 => 0.16467846847966
1205 => 0.16575414000185
1206 => 0.16419382235567
1207 => 0.15783680756933
1208 => 0.16075018998378
1209 => 0.15962519312145
1210 => 0.16087346101428
1211 => 0.16760984800706
1212 => 0.16463153074215
1213 => 0.1614941154424
1214 => 0.16542913047647
1215 => 0.17043975683271
1216 => 0.1701262008403
1217 => 0.16951777115878
1218 => 0.17294745741715
1219 => 0.17861229431219
1220 => 0.18014347696176
1221 => 0.18127376469002
1222 => 0.18142961227138
1223 => 0.18303493921812
1224 => 0.17440269163103
1225 => 0.18810229024358
1226 => 0.19046783248019
1227 => 0.19002320858139
1228 => 0.19265240922014
1229 => 0.19187883169584
1230 => 0.19075803923372
1231 => 0.19492588149316
]
'min_raw' => 0.071851384172243
'max_raw' => 0.19492588149316
'avg_raw' => 0.1333886328327
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.071851'
'max' => '$0.194925'
'avg' => '$0.133388'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.024779685482252
'max_diff' => 0.089841630140013
'year' => 2032
]
7 => [
'items' => [
101 => 0.19014778667023
102 => 0.1833658826145
103 => 0.17964519591867
104 => 0.18454489629897
105 => 0.18753697234524
106 => 0.18951454428005
107 => 0.19011295635264
108 => 0.17507278843836
109 => 0.16696697209852
110 => 0.17216270743899
111 => 0.17850186314485
112 => 0.17436747730102
113 => 0.17452953739867
114 => 0.16863498968284
115 => 0.17902339982237
116 => 0.17750989584532
117 => 0.18536195715558
118 => 0.18348799970716
119 => 0.18989105089041
120 => 0.18820491292425
121 => 0.19520397735109
122 => 0.19799609364306
123 => 0.20268449145548
124 => 0.20613329597151
125 => 0.20815849994844
126 => 0.20803691429801
127 => 0.21606178140723
128 => 0.21132979764043
129 => 0.20538531078638
130 => 0.20527779377381
131 => 0.20835652774955
201 => 0.21480870955328
202 => 0.21648166641956
203 => 0.21741662107884
204 => 0.21598470547215
205 => 0.21084847623762
206 => 0.20863067849542
207 => 0.21052030642756
208 => 0.20820945384413
209 => 0.21219863371385
210 => 0.2176766297178
211 => 0.21654544520533
212 => 0.22032682543386
213 => 0.2242401561576
214 => 0.22983639485122
215 => 0.23129945887385
216 => 0.23371784806792
217 => 0.23620716494808
218 => 0.23700666644101
219 => 0.23853316286177
220 => 0.23852511747214
221 => 0.24312531718116
222 => 0.24819947991653
223 => 0.250114858882
224 => 0.25451916719847
225 => 0.24697694355188
226 => 0.25269780682664
227 => 0.25785816870298
228 => 0.25170577253726
301 => 0.26018541732724
302 => 0.26051466271915
303 => 0.26548587723881
304 => 0.26044659895367
305 => 0.2574542915939
306 => 0.26609297082126
307 => 0.27027295558353
308 => 0.26901391015529
309 => 0.25943251227964
310 => 0.25385572775052
311 => 0.23926020695643
312 => 0.25654923181661
313 => 0.26497021149823
314 => 0.25941070397662
315 => 0.26221459619328
316 => 0.27751172296228
317 => 0.28333587842031
318 => 0.28212449479896
319 => 0.28232919868989
320 => 0.28547180725914
321 => 0.29940786432135
322 => 0.2910570558944
323 => 0.29744093603798
324 => 0.30082692304735
325 => 0.30397201648475
326 => 0.29624866101948
327 => 0.28620068903778
328 => 0.28301807452601
329 => 0.25885792051951
330 => 0.25760027958125
331 => 0.25689432761217
401 => 0.25244340030607
402 => 0.24894619065507
403 => 0.24616507969752
404 => 0.23886661403489
405 => 0.24132963194732
406 => 0.22969740098925
407 => 0.23713929013527
408 => 0.21857396865615
409 => 0.23403572005547
410 => 0.22562059172839
411 => 0.23127112407587
412 => 0.23125140990082
413 => 0.22084698834619
414 => 0.21484593512822
415 => 0.2186700398032
416 => 0.22276978357258
417 => 0.22343495320597
418 => 0.22875037801723
419 => 0.23023379882738
420 => 0.22573896451833
421 => 0.21818924363386
422 => 0.21994287160452
423 => 0.21481039791337
424 => 0.20581593518737
425 => 0.21227591534544
426 => 0.21448163659668
427 => 0.21545580875839
428 => 0.20661078768839
429 => 0.20383149003345
430 => 0.20235181528253
501 => 0.21704746248474
502 => 0.21785252321203
503 => 0.21373371870712
504 => 0.23235110563037
505 => 0.22813741758624
506 => 0.23284513951017
507 => 0.21978374824685
508 => 0.2202827109826
509 => 0.21409923904046
510 => 0.21756157014832
511 => 0.21511450611743
512 => 0.21728184801022
513 => 0.21858094380448
514 => 0.22476340109972
515 => 0.23410631378676
516 => 0.22383994814659
517 => 0.21936674562011
518 => 0.22214189530929
519 => 0.22953248463654
520 => 0.24072960578463
521 => 0.2341006847019
522 => 0.23704248731204
523 => 0.23768514031066
524 => 0.23279721932025
525 => 0.24090983040361
526 => 0.24525744458991
527 => 0.24971719713307
528 => 0.25358947530686
529 => 0.24793587389527
530 => 0.2539860378176
531 => 0.2491106736939
601 => 0.24473696806907
602 => 0.24474360117512
603 => 0.24199991174701
604 => 0.23668366775295
605 => 0.23570327079463
606 => 0.24080341958231
607 => 0.24489325592413
608 => 0.24523011443424
609 => 0.24749445797645
610 => 0.24883447316014
611 => 0.2619684436226
612 => 0.2672510351925
613 => 0.27371048816984
614 => 0.27622680913933
615 => 0.28380003310651
616 => 0.27768403968584
617 => 0.27636080603787
618 => 0.25799064187617
619 => 0.26099875522853
620 => 0.26581503494543
621 => 0.25807006055475
622 => 0.26298246415827
623 => 0.26395227668854
624 => 0.25780688928861
625 => 0.26108940622543
626 => 0.25237201443968
627 => 0.23429632910581
628 => 0.24092995380859
629 => 0.24581453444377
630 => 0.23884363561292
701 => 0.25133870195619
702 => 0.24403934214897
703 => 0.24172579552115
704 => 0.23269982528708
705 => 0.23695973579611
706 => 0.24272132575561
707 => 0.23916133301736
708 => 0.24654885248482
709 => 0.25701155023021
710 => 0.264467891708
711 => 0.26504029702091
712 => 0.26024636898677
713 => 0.26792866925592
714 => 0.26798462642642
715 => 0.2593189603397
716 => 0.25401128811222
717 => 0.2528053738147
718 => 0.25581798416333
719 => 0.25947584928513
720 => 0.26524328307772
721 => 0.2687284225281
722 => 0.27781581783954
723 => 0.28027460645477
724 => 0.28297606968478
725 => 0.28658605766049
726 => 0.29092077380724
727 => 0.28143666165367
728 => 0.28181348311013
729 => 0.2729820091892
730 => 0.26354431274322
731 => 0.27070634792025
801 => 0.28006975618861
802 => 0.2779217799862
803 => 0.27768008878426
804 => 0.27808654634638
805 => 0.27646704243611
806 => 0.26914208627157
807 => 0.26546353914239
808 => 0.27020980343649
809 => 0.27273223167688
810 => 0.27664429789888
811 => 0.27616205316332
812 => 0.28623911562593
813 => 0.29015475738435
814 => 0.28915296866279
815 => 0.28933732189695
816 => 0.29642640426514
817 => 0.30431092183956
818 => 0.31169581300173
819 => 0.31920804148034
820 => 0.3101517568421
821 => 0.30555353401679
822 => 0.31029772624038
823 => 0.3077803910672
824 => 0.32224574566239
825 => 0.32324729542953
826 => 0.33771160401493
827 => 0.35143995524031
828 => 0.34281742380461
829 => 0.35094808258113
830 => 0.35974205295027
831 => 0.37670704856261
901 => 0.37099383487612
902 => 0.36661760272973
903 => 0.3624820844972
904 => 0.37108744144407
905 => 0.38215809568228
906 => 0.38454260857178
907 => 0.38840643040681
908 => 0.38434409419294
909 => 0.38923673071089
910 => 0.4065098875527
911 => 0.40184252809967
912 => 0.3952141273609
913 => 0.40884962575589
914 => 0.41378425961838
915 => 0.44841810435315
916 => 0.49214476398356
917 => 0.47404163977184
918 => 0.46280444638946
919 => 0.46544545338411
920 => 0.4814129492403
921 => 0.48654120212632
922 => 0.47260084296734
923 => 0.47752481349291
924 => 0.50465637520292
925 => 0.51921158757563
926 => 0.49944365414767
927 => 0.44490470982755
928 => 0.39461731239727
929 => 0.4079557946668
930 => 0.40644362471873
1001 => 0.43559310304489
1002 => 0.40173121312032
1003 => 0.40230136050299
1004 => 0.4320536191711
1005 => 0.42411622664129
1006 => 0.41125866728743
1007 => 0.39471118680958
1008 => 0.3641216386896
1009 => 0.33702762286708
1010 => 0.39016522727424
1011 => 0.38787383714774
1012 => 0.38455556467958
1013 => 0.39194002098289
1014 => 0.4277968446773
1015 => 0.42697022883394
1016 => 0.42171172058154
1017 => 0.42570025274462
1018 => 0.41055945831497
1019 => 0.41446158578897
1020 => 0.39460934661659
1021 => 0.40358338782525
1022 => 0.41123108073968
1023 => 0.41276646831828
1024 => 0.4162257749317
1025 => 0.38666637867265
1026 => 0.39993767977468
1027 => 0.40773332581938
1028 => 0.37251231338141
1029 => 0.40703711964767
1030 => 0.3861518153475
1031 => 0.37906302938128
1101 => 0.38860714580826
1102 => 0.38488779435471
1103 => 0.38169011438259
1104 => 0.37990575401503
1105 => 0.38691389977331
1106 => 0.38658696139715
1107 => 0.37512027471412
1108 => 0.36016244937805
1109 => 0.36518278653471
1110 => 0.36335885097979
1111 => 0.35674867323636
1112 => 0.36120313491952
1113 => 0.34158794001833
1114 => 0.30784101669994
1115 => 0.33013526794028
1116 => 0.32927696351901
1117 => 0.3288441675088
1118 => 0.34559768114807
1119 => 0.34398721738098
1120 => 0.341064209874
1121 => 0.35669498991124
1122 => 0.35098954493399
1123 => 0.36857238198199
1124 => 0.3801535756484
1125 => 0.37721621032223
1126 => 0.38810837894225
1127 => 0.36529844496315
1128 => 0.3728749900553
1129 => 0.37443650549815
1130 => 0.35650210851189
1201 => 0.34425070917022
1202 => 0.3434336805103
1203 => 0.32219144239867
1204 => 0.33353887453655
1205 => 0.34352414522924
1206 => 0.33874197545575
1207 => 0.33722808336872
1208 => 0.34496222971821
1209 => 0.34556323912805
1210 => 0.33186016089159
1211 => 0.334709464777
1212 => 0.34659153563653
1213 => 0.3344100670776
1214 => 0.31074346349918
1215 => 0.30487381859534
1216 => 0.30409069976614
1217 => 0.28817175725952
1218 => 0.30526605633461
1219 => 0.2978039366896
1220 => 0.32137668323827
1221 => 0.30791205683284
1222 => 0.30733162369991
1223 => 0.30645421388846
1224 => 0.29275212246978
1225 => 0.29575200967713
1226 => 0.3057240916501
1227 => 0.3092822428416
1228 => 0.30891109852125
1229 => 0.30567522300818
1230 => 0.3071565902477
1231 => 0.30238459022665
]
'min_raw' => 0.16696697209852
'max_raw' => 0.51921158757563
'avg_raw' => 0.34308927983708
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.166966'
'max' => '$0.519211'
'avg' => '$0.343089'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.095115587926277
'max_diff' => 0.32428570608247
'year' => 2033
]
8 => [
'items' => [
101 => 0.30069949769862
102 => 0.29538088215896
103 => 0.28756398662069
104 => 0.28865097388909
105 => 0.27316365842581
106 => 0.26472534698737
107 => 0.26238973359637
108 => 0.25926645375792
109 => 0.26274251636485
110 => 0.27311978480698
111 => 0.26060259740546
112 => 0.23914275758415
113 => 0.2404325305232
114 => 0.24333026738022
115 => 0.23793035391761
116 => 0.23281978900564
117 => 0.23726301056337
118 => 0.22817019353101
119 => 0.24442909087714
120 => 0.24398933326896
121 => 0.25004964475612
122 => 0.25383928189916
123 => 0.24510539519405
124 => 0.24290884630666
125 => 0.2441601003805
126 => 0.22347965774282
127 => 0.24835961138866
128 => 0.24857477426095
129 => 0.24673241911922
130 => 0.25998022635324
131 => 0.28793723171173
201 => 0.27741868172793
202 => 0.27334558124935
203 => 0.26560261426214
204 => 0.2759196580407
205 => 0.27512747004947
206 => 0.27154489552471
207 => 0.26937814327382
208 => 0.27337045073233
209 => 0.2688834521988
210 => 0.26807746396771
211 => 0.26319405221112
212 => 0.26145089639509
213 => 0.26016033322594
214 => 0.25873954998482
215 => 0.2618734437776
216 => 0.25477162814509
217 => 0.24620753469184
218 => 0.24549552298598
219 => 0.24746144990658
220 => 0.24659167359026
221 => 0.24549135883161
222 => 0.24339055830444
223 => 0.24276729566454
224 => 0.24479259688019
225 => 0.24250614989011
226 => 0.24587992697318
227 => 0.24496244628619
228 => 0.23983747375029
301 => 0.2334498604627
302 => 0.23339299730597
303 => 0.23201679650095
304 => 0.23026399786257
305 => 0.22977640937998
306 => 0.23688881483693
307 => 0.25161128127643
308 => 0.24872090883559
309 => 0.25080949914138
310 => 0.26108329629205
311 => 0.26434902746239
312 => 0.26203108883077
313 => 0.25885815146757
314 => 0.25899774460862
315 => 0.26984063209212
316 => 0.27051688968431
317 => 0.27222557445081
318 => 0.27442171725001
319 => 0.26240510144586
320 => 0.25843176308488
321 => 0.25654897493703
322 => 0.25075071617236
323 => 0.25700364114492
324 => 0.25336032954035
325 => 0.25385193674906
326 => 0.25353177690946
327 => 0.25370660583099
328 => 0.24442454618397
329 => 0.24780644086865
330 => 0.24218338502611
331 => 0.23465474447058
401 => 0.23462950582755
402 => 0.2364721299377
403 => 0.2353760650151
404 => 0.23242658249077
405 => 0.23284554256219
406 => 0.22917501148608
407 => 0.23329121149194
408 => 0.23340924937963
409 => 0.23182428816645
410 => 0.2381658622016
411 => 0.24076401025804
412 => 0.23972075483436
413 => 0.24069081267641
414 => 0.24884101685976
415 => 0.25016985575998
416 => 0.25076003822129
417 => 0.24996927190733
418 => 0.24083978344734
419 => 0.24124471508212
420 => 0.23827359542245
421 => 0.23576331239889
422 => 0.23586371055514
423 => 0.23715432234319
424 => 0.24279049971501
425 => 0.2546515027232
426 => 0.25510161911709
427 => 0.25564717331729
428 => 0.25342813021148
429 => 0.25275884557739
430 => 0.25364180476678
501 => 0.25809617387475
502 => 0.26955402056985
503 => 0.26550405230395
504 => 0.26221136506226
505 => 0.26509993947533
506 => 0.26465526608583
507 => 0.260901775175
508 => 0.26079642718652
509 => 0.25359227806499
510 => 0.25092906816529
511 => 0.24870349063531
512 => 0.24627321807273
513 => 0.24483247103416
514 => 0.24704611329322
515 => 0.24755239946892
516 => 0.24271223198164
517 => 0.24205253503815
518 => 0.24600512029054
519 => 0.24426573488819
520 => 0.24605473590919
521 => 0.24646979949182
522 => 0.24640296469529
523 => 0.24458684656811
524 => 0.24574438610495
525 => 0.24300646002117
526 => 0.24002937662825
527 => 0.23813018290241
528 => 0.23647288448513
529 => 0.23739244996979
530 => 0.23411436692301
531 => 0.23306564218157
601 => 0.24535223775533
602 => 0.25442847800883
603 => 0.25429650588096
604 => 0.25349315949302
605 => 0.2522995497134
606 => 0.25800885388483
607 => 0.25601984647265
608 => 0.25746701555214
609 => 0.25783538082037
610 => 0.25895031154277
611 => 0.2593488034445
612 => 0.25814428414706
613 => 0.25410177026523
614 => 0.2440282100224
615 => 0.2393389405363
616 => 0.23779140349993
617 => 0.23784765353201
618 => 0.23629602653602
619 => 0.23675305022538
620 => 0.23613709234787
621 => 0.23497061714407
622 => 0.237320423413
623 => 0.23759121669553
624 => 0.23704274383427
625 => 0.2371719290481
626 => 0.23263080801269
627 => 0.23297605958222
628 => 0.23105365497065
629 => 0.23069322728091
630 => 0.22583355582578
701 => 0.21722394342238
702 => 0.22199450444916
703 => 0.2162323375712
704 => 0.21405011766344
705 => 0.22438040730195
706 => 0.22334353273988
707 => 0.22156885420814
708 => 0.2189437347843
709 => 0.21797005245448
710 => 0.21205426684883
711 => 0.21170473067576
712 => 0.21463675376157
713 => 0.21328372599222
714 => 0.21138356257237
715 => 0.20450136328216
716 => 0.19676349266209
717 => 0.19699705033759
718 => 0.19945832301363
719 => 0.20661480526707
720 => 0.20381864384225
721 => 0.20178999664629
722 => 0.2014100920074
723 => 0.20616539394738
724 => 0.21289514245901
725 => 0.21605258989102
726 => 0.212923655379
727 => 0.20932930388538
728 => 0.20954807540618
729 => 0.21100346432266
730 => 0.21115640511969
731 => 0.20881685180265
801 => 0.20947542235738
802 => 0.20847499346379
803 => 0.20233536319043
804 => 0.20222431674777
805 => 0.20071755246377
806 => 0.20067192824008
807 => 0.19810854631304
808 => 0.19774991146162
809 => 0.19266016105933
810 => 0.1960102501873
811 => 0.19376318628783
812 => 0.19037633096254
813 => 0.18979243582788
814 => 0.18977488323505
815 => 0.19325242636714
816 => 0.19596961307108
817 => 0.19380227492641
818 => 0.19330881404296
819 => 0.19857768527932
820 => 0.19790717338767
821 => 0.19732651441383
822 => 0.21229256729232
823 => 0.20044576862333
824 => 0.19527988821202
825 => 0.18888613022894
826 => 0.19096797006836
827 => 0.19140664431111
828 => 0.17603080892331
829 => 0.16979283442142
830 => 0.16765219664548
831 => 0.16642022934125
901 => 0.16698165231186
902 => 0.16136674361873
903 => 0.16514005512253
904 => 0.16027801881069
905 => 0.15946288260058
906 => 0.16815680581687
907 => 0.16936651444325
908 => 0.16420552161609
909 => 0.16751971449997
910 => 0.16631794208955
911 => 0.16036136446837
912 => 0.16013386701686
913 => 0.15714506575038
914 => 0.15246817051431
915 => 0.15033070389357
916 => 0.14921749271915
917 => 0.14967682534577
918 => 0.14944457271394
919 => 0.14792896718953
920 => 0.1495314454485
921 => 0.14543777568657
922 => 0.14380764340243
923 => 0.14307135046847
924 => 0.13943798293192
925 => 0.14522028644845
926 => 0.14635947308474
927 => 0.14750090427063
928 => 0.15743628345557
929 => 0.15693993998858
930 => 0.16142664320109
1001 => 0.16125229816477
1002 => 0.15997261772879
1003 => 0.1545738564666
1004 => 0.15672570648204
1005 => 0.15010264660624
1006 => 0.15506509338949
1007 => 0.15280043991435
1008 => 0.15429941177151
1009 => 0.15160412521549
1010 => 0.15309580808124
1011 => 0.14662961649725
1012 => 0.14059157777788
1013 => 0.14302146081989
1014 => 0.14566302157739
1015 => 0.15139059835681
1016 => 0.14797930087847
1017 => 0.14920613244712
1018 => 0.14509645206127
1019 => 0.13661700755309
1020 => 0.13666500028814
1021 => 0.1353606224853
1022 => 0.13423344962136
1023 => 0.14837112942974
1024 => 0.14661288546192
1025 => 0.14381135381249
1026 => 0.1475613152537
1027 => 0.14855286457864
1028 => 0.14858109259397
1029 => 0.15131696766096
1030 => 0.15277710467465
1031 => 0.15303446015191
1101 => 0.15733941868231
1102 => 0.15878238399792
1103 => 0.16472575391685
1104 => 0.15265322225045
1105 => 0.15240459640533
1106 => 0.14761408490139
1107 => 0.1445758667706
1108 => 0.14782211429611
1109 => 0.15069784644674
1110 => 0.14770344191538
1111 => 0.14809444793184
1112 => 0.14407470450033
1113 => 0.14551157363059
1114 => 0.14674919889274
1115 => 0.14606585496723
1116 => 0.14504285603653
1117 => 0.1504620692048
1118 => 0.15015629595978
1119 => 0.15520279184925
1120 => 0.15913689627348
1121 => 0.16618751470698
1122 => 0.15882982681457
1123 => 0.15856168342361
1124 => 0.1611828280818
1125 => 0.15878198271433
1126 => 0.16029923411221
1127 => 0.16594306205017
1128 => 0.16606230724107
1129 => 0.16406479665472
1130 => 0.16394324795401
1201 => 0.16432689171249
1202 => 0.1665739051888
1203 => 0.16578872963643
1204 => 0.16669735466385
1205 => 0.167833604174
1206 => 0.17253361390778
1207 => 0.17366677034279
1208 => 0.17091378767997
1209 => 0.17116235119058
1210 => 0.17013266010363
1211 => 0.16913799141562
1212 => 0.17137386136656
1213 => 0.17545995764806
1214 => 0.17543453825516
1215 => 0.1763824331701
1216 => 0.17697296384933
1217 => 0.17443797387922
1218 => 0.17278778862284
1219 => 0.17342057465415
1220 => 0.17443241329851
1221 => 0.17309244901901
1222 => 0.16482156875412
1223 => 0.16733042548061
1224 => 0.16691282904449
1225 => 0.16631812093801
1226 => 0.16884079577691
1227 => 0.16859747763459
1228 => 0.16130915461442
1229 => 0.16177572940727
1230 => 0.16133752857292
1231 => 0.16275344511615
]
'min_raw' => 0.13423344962136
'max_raw' => 0.30069949769862
'avg_raw' => 0.21746647365999
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.134233'
'max' => '$0.300699'
'avg' => '$0.217466'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.032733522477155
'max_diff' => -0.21851208987701
'year' => 2034
]
9 => [
'items' => [
101 => 0.15870551857436
102 => 0.15995063351541
103 => 0.16073155793421
104 => 0.16119152841623
105 => 0.162853257202
106 => 0.16265827250859
107 => 0.16284113667968
108 => 0.16530504178884
109 => 0.1777666283208
110 => 0.17844488498079
111 => 0.17510490112626
112 => 0.17643915879788
113 => 0.17387767583845
114 => 0.17559721650956
115 => 0.17677368256513
116 => 0.17145745868141
117 => 0.17114266640502
118 => 0.16857061129425
119 => 0.16995268802213
120 => 0.16775370457324
121 => 0.16829325819443
122 => 0.16678461923216
123 => 0.16949986899722
124 => 0.1725359401417
125 => 0.17330297161088
126 => 0.17128524204328
127 => 0.16982427286148
128 => 0.1672592922514
129 => 0.17152491217028
130 => 0.17277230942697
131 => 0.17151836012352
201 => 0.17122779267058
202 => 0.1706771678723
203 => 0.17134461032451
204 => 0.17276551583362
205 => 0.17209544303553
206 => 0.17253803792383
207 => 0.17085132261149
208 => 0.17443881306638
209 => 0.18013661128534
210 => 0.1801549306383
211 => 0.17948485422827
212 => 0.17921067339828
213 => 0.17989821245861
214 => 0.18027117419451
215 => 0.18249454944252
216 => 0.18488031966682
217 => 0.19601366831051
218 => 0.19288746856217
219 => 0.20276563780473
220 => 0.21057798715585
221 => 0.21292056913361
222 => 0.21076550394107
223 => 0.2033931423317
224 => 0.20303141909944
225 => 0.21404883987461
226 => 0.21093591387579
227 => 0.21056564123347
228 => 0.20662656590478
301 => 0.20895504728801
302 => 0.20844577425273
303 => 0.20764186185207
304 => 0.21208444212785
305 => 0.22040055581225
306 => 0.21910441150651
307 => 0.21813689990869
308 => 0.21389754572541
309 => 0.21645058383778
310 => 0.21554149586619
311 => 0.21944751471363
312 => 0.21713367567731
313 => 0.2109123303997
314 => 0.21190310014098
315 => 0.21175334728774
316 => 0.21483525039587
317 => 0.21391013958035
318 => 0.21157270455351
319 => 0.22037213223975
320 => 0.21980074635079
321 => 0.22061084090433
322 => 0.22096746957981
323 => 0.22632352614911
324 => 0.22851773115087
325 => 0.22901585410123
326 => 0.23110017914699
327 => 0.22896399419531
328 => 0.23751025707606
329 => 0.2431930232035
330 => 0.24979384849299
331 => 0.25943942837551
401 => 0.26306625563793
402 => 0.26241110175545
403 => 0.26972427033889
404 => 0.28286587172074
405 => 0.26506739512748
406 => 0.28380923419825
407 => 0.27787578433339
408 => 0.26380768144199
409 => 0.26290186146782
410 => 0.27242894407991
411 => 0.2935590963658
412 => 0.28826623287439
413 => 0.29356775359436
414 => 0.28738324806766
415 => 0.28707613524115
416 => 0.293267385965
417 => 0.30773358074877
418 => 0.3008612338642
419 => 0.29100803943659
420 => 0.29828348486925
421 => 0.29198082072479
422 => 0.27777915440269
423 => 0.28826218552143
424 => 0.28125248115186
425 => 0.28329828554328
426 => 0.29803164151327
427 => 0.29625888514333
428 => 0.29855299603885
429 => 0.2945039503556
430 => 0.29072150321155
501 => 0.28366128472897
502 => 0.28157110210084
503 => 0.28214875338236
504 => 0.28157081584555
505 => 0.27762068849131
506 => 0.27676765886525
507 => 0.27534590544974
508 => 0.27578656628336
509 => 0.27311325391357
510 => 0.27815834668989
511 => 0.27909476036638
512 => 0.28276615816316
513 => 0.28314733486182
514 => 0.29337212546677
515 => 0.28774048262219
516 => 0.29151867485498
517 => 0.29118071777996
518 => 0.26411257988986
519 => 0.26784233046691
520 => 0.2736446519046
521 => 0.27103071396178
522 => 0.26733521727792
523 => 0.2643509055657
524 => 0.25982936816015
525 => 0.26619334523003
526 => 0.2745612983434
527 => 0.283359559962
528 => 0.2939300948118
529 => 0.29157087448791
530 => 0.28316195116569
531 => 0.2835391693232
601 => 0.28587098354307
602 => 0.28285107226068
603 => 0.28196044146783
604 => 0.2857486245487
605 => 0.28577471168363
606 => 0.28229993878477
607 => 0.27843836458441
608 => 0.27842218444751
609 => 0.27773505461694
610 => 0.28750548693805
611 => 0.29287823681254
612 => 0.29349421392703
613 => 0.29283677664488
614 => 0.29308979816203
615 => 0.28996351339053
616 => 0.29710927330722
617 => 0.30366692924919
618 => 0.30190933737286
619 => 0.29927445729383
620 => 0.29717564839786
621 => 0.30141492469807
622 => 0.30122615639767
623 => 0.30360965384531
624 => 0.30350152463334
625 => 0.30270004408957
626 => 0.30190936599625
627 => 0.30504431526205
628 => 0.30414150021925
629 => 0.30323728285532
630 => 0.3014237365032
701 => 0.30167022757227
702 => 0.29903580244243
703 => 0.29781699683428
704 => 0.2794890848112
705 => 0.27459126783683
706 => 0.27613222076122
707 => 0.27663954247476
708 => 0.27450800625079
709 => 0.27756408164923
710 => 0.27708779553557
711 => 0.27894074618577
712 => 0.27778310306529
713 => 0.27783061314276
714 => 0.28123499472456
715 => 0.28222330118103
716 => 0.28172064054066
717 => 0.28207268682297
718 => 0.29018544480955
719 => 0.28903207005526
720 => 0.28841936270465
721 => 0.28858908682809
722 => 0.29066207043315
723 => 0.29124239266186
724 => 0.2887835266003
725 => 0.28994314204946
726 => 0.29488063745491
727 => 0.29660848140877
728 => 0.30212292989737
729 => 0.29978029416791
730 => 0.30408030343623
731 => 0.31729706594588
801 => 0.32785553036899
802 => 0.3181455301385
803 => 0.33753480543921
804 => 0.35263213748715
805 => 0.35205267673723
806 => 0.34942010768709
807 => 0.33223219653384
808 => 0.3164156244333
809 => 0.32964685860253
810 => 0.32968058773945
811 => 0.32854401299012
812 => 0.32148484483583
813 => 0.32829836923998
814 => 0.3288392020641
815 => 0.32853647950165
816 => 0.32312423182885
817 => 0.31486072998307
818 => 0.31647539846371
819 => 0.31912025837334
820 => 0.31411298678883
821 => 0.31251286011629
822 => 0.31548780003709
823 => 0.32507367631525
824 => 0.32326152193206
825 => 0.32321419925762
826 => 0.33096736418194
827 => 0.32541777133384
828 => 0.31649576460413
829 => 0.31424284023807
830 => 0.30624647649024
831 => 0.31176959341294
901 => 0.31196836055837
902 => 0.3089434058647
903 => 0.31674122300605
904 => 0.31666936474831
905 => 0.32407223157211
906 => 0.3382237325494
907 => 0.33403843735734
908 => 0.3291713944078
909 => 0.32970057692488
910 => 0.33550440300348
911 => 0.3319952772679
912 => 0.3332571833489
913 => 0.33550249295749
914 => 0.33685714399225
915 => 0.32950566348788
916 => 0.32779168172035
917 => 0.32428547654983
918 => 0.32337077306727
919 => 0.32622650401928
920 => 0.32547411980789
921 => 0.31195165494946
922 => 0.31053848213347
923 => 0.31058182212619
924 => 0.30702833188768
925 => 0.30160840633857
926 => 0.31585164707468
927 => 0.31470771550955
928 => 0.31344490359491
929 => 0.31359959084895
930 => 0.31978209890428
1001 => 0.31619593200804
1002 => 0.32573034446287
1003 => 0.32377035589283
1004 => 0.32176010101168
1005 => 0.32148222255325
1006 => 0.32070844593089
1007 => 0.31805487798324
1008 => 0.31485053523174
1009 => 0.31273475059178
1010 => 0.28848127632455
1011 => 0.29298258007257
1012 => 0.29816091972793
1013 => 0.29994846182607
1014 => 0.29689074737306
1015 => 0.31817561518683
1016 => 0.3220645656425
1017 => 0.31028468104233
1018 => 0.30808114560315
1019 => 0.31832007860338
1020 => 0.31214475034559
1021 => 0.31492550028195
1022 => 0.30891503990843
1023 => 0.32112783135949
1024 => 0.32103479035066
1025 => 0.31628373863779
1026 => 0.32029929501171
1027 => 0.31960149327375
1028 => 0.31423756759124
1029 => 0.32129787737109
1030 => 0.32130137919665
1031 => 0.31672859521979
1101 => 0.31138858464594
1102 => 0.31043391688076
1103 => 0.30971470296126
1104 => 0.31474861774637
1105 => 0.31926201000205
1106 => 0.32766031402505
1107 => 0.32977184719522
1108 => 0.33801330173109
1109 => 0.33310591682412
1110 => 0.3352812969921
1111 => 0.33764297989077
1112 => 0.3387752575204
1113 => 0.33693027188428
1114 => 0.34973264309651
1115 => 0.35081355548134
1116 => 0.35117597605412
1117 => 0.34685908851309
1118 => 0.35069349502964
1119 => 0.34889950320274
1120 => 0.35356697155104
1121 => 0.35429889018528
1122 => 0.35367898114084
1123 => 0.3539113036679
1124 => 0.3429867383313
1125 => 0.34242024198692
1126 => 0.33469602413462
1127 => 0.33784370000397
1128 => 0.33195927083824
1129 => 0.33382528394303
1130 => 0.3346478047396
1201 => 0.33421816655312
1202 => 0.33802166487489
1203 => 0.33478791429801
1204 => 0.32625351484782
1205 => 0.3177167902062
1206 => 0.31760961858219
1207 => 0.31536204966976
1208 => 0.31373746900885
1209 => 0.31405042087924
1210 => 0.31515330408943
1211 => 0.31367336743174
1212 => 0.31398918695235
1213 => 0.31923389528896
1214 => 0.32028568414232
1215 => 0.31671129465817
1216 => 0.3023596050974
1217 => 0.2988376644807
1218 => 0.30136916555287
1219 => 0.30015927108992
1220 => 0.24225195824016
1221 => 0.2558564224429
1222 => 0.24777311177759
1223 => 0.2514982732274
1224 => 0.24324730620127
1225 => 0.24718510013637
1226 => 0.24645793338177
1227 => 0.26833350923441
1228 => 0.26799195220634
1229 => 0.26815543748088
1230 => 0.26035185936844
1231 => 0.27278317119179
]
'min_raw' => 0.15870551857436
'max_raw' => 0.35429889018528
'avg_raw' => 0.25650220437982
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1587055'
'max' => '$0.354298'
'avg' => '$0.2565022'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024472068952993
'max_diff' => 0.05359939248666
'year' => 2035
]
10 => [
'items' => [
101 => 0.27890728241149
102 => 0.27777387241266
103 => 0.27805912729101
104 => 0.27315750338643
105 => 0.2682028959147
106 => 0.26270747371992
107 => 0.2729172889031
108 => 0.27178213174209
109 => 0.2743857738528
110 => 0.28100756881175
111 => 0.28198265327321
112 => 0.28329317667775
113 => 0.28282344732663
114 => 0.2940143061756
115 => 0.29265901932932
116 => 0.29592487068621
117 => 0.28920676666436
118 => 0.28160459427535
119 => 0.28304951871276
120 => 0.28291036087009
121 => 0.28113872181495
122 => 0.2795393652913
123 => 0.27687688729534
124 => 0.28530136164717
125 => 0.28495934337338
126 => 0.29049622167326
127 => 0.28951752465139
128 => 0.28298154641156
129 => 0.28321498015305
130 => 0.28478493424898
131 => 0.29021856330042
201 => 0.29183163435257
202 => 0.29108439557145
203 => 0.29285305434063
204 => 0.29425093011777
205 => 0.29302860601616
206 => 0.31033413764145
207 => 0.30314767437318
208 => 0.30665030656704
209 => 0.30748566370657
210 => 0.30534591395933
211 => 0.30580994906082
212 => 0.30651283579757
213 => 0.31078062642377
214 => 0.3219805439221
215 => 0.32694091114169
216 => 0.34186442066205
217 => 0.32652902169575
218 => 0.32561908258528
219 => 0.32830725729671
220 => 0.33706893719907
221 => 0.34416945581719
222 => 0.34652510748157
223 => 0.34683644573659
224 => 0.35125580485972
225 => 0.35378889909293
226 => 0.35071917842149
227 => 0.34811791156559
228 => 0.3388004965689
229 => 0.33987901272524
301 => 0.34730891952946
302 => 0.35780410050973
303 => 0.36681005762828
304 => 0.36365648533466
305 => 0.38771601585991
306 => 0.39010142003712
307 => 0.38977183430918
308 => 0.39520614002061
309 => 0.38442014986055
310 => 0.3798089300984
311 => 0.34868033498547
312 => 0.35742620049331
313 => 0.37013882963563
314 => 0.36845626549873
315 => 0.35922401440603
316 => 0.36680305413795
317 => 0.36429718658409
318 => 0.36232070487582
319 => 0.37137535074124
320 => 0.36141939566786
321 => 0.37003951136786
322 => 0.35898412381893
323 => 0.36367089058726
324 => 0.36101045509616
325 => 0.36273208290961
326 => 0.35266748189079
327 => 0.35809809629617
328 => 0.35244155047732
329 => 0.3524388685381
330 => 0.35231399997564
331 => 0.35896890104654
401 => 0.35918591713155
402 => 0.35426793518515
403 => 0.35355917715336
404 => 0.35617982707202
405 => 0.35311173236657
406 => 0.35454727456889
407 => 0.35315521347747
408 => 0.35284183120449
409 => 0.35034474793586
410 => 0.34926893580499
411 => 0.34969078946177
412 => 0.34825078545073
413 => 0.34738313094685
414 => 0.35214140165627
415 => 0.34959924956432
416 => 0.35175178038859
417 => 0.34929869984329
418 => 0.34079525391697
419 => 0.33590483224244
420 => 0.31984261115749
421 => 0.32439783713206
422 => 0.32741795666592
423 => 0.326419807178
424 => 0.32856421851063
425 => 0.32869586795027
426 => 0.32799869796634
427 => 0.32719146443796
428 => 0.32679854779916
429 => 0.32972702651423
430 => 0.33142710697638
501 => 0.32772106606513
502 => 0.32685279253265
503 => 0.33059980451005
504 => 0.33288547965169
505 => 0.34976162068761
506 => 0.34851138165045
507 => 0.3516492362867
508 => 0.35129596200896
509 => 0.35458493356719
510 => 0.35996101204182
511 => 0.34902994132773
512 => 0.35092719723571
513 => 0.35046203390111
514 => 0.35554056521589
515 => 0.35555641983631
516 => 0.35251158662165
517 => 0.35416224010409
518 => 0.3532408906135
519 => 0.35490589367085
520 => 0.34849468394588
521 => 0.35630284534358
522 => 0.36072956970927
523 => 0.36079103478138
524 => 0.36288926699806
525 => 0.36502119245162
526 => 0.36911323770816
527 => 0.36490706753038
528 => 0.35734057684296
529 => 0.35788685303098
530 => 0.35345062230942
531 => 0.35352519614932
601 => 0.35312711514748
602 => 0.35432178620015
603 => 0.34875684705975
604 => 0.35006292715296
605 => 0.34823440737408
606 => 0.35092322239081
607 => 0.34803050190985
608 => 0.35046180958526
609 => 0.35151108137885
610 => 0.35538291688637
611 => 0.3474586286573
612 => 0.33130046853106
613 => 0.33469710968835
614 => 0.32967321061631
615 => 0.33013819160276
616 => 0.33107752719656
617 => 0.32803283320556
618 => 0.32861366486971
619 => 0.32859291347542
620 => 0.32841408917021
621 => 0.32762204667149
622 => 0.32647342834751
623 => 0.33104917022416
624 => 0.33182667793319
625 => 0.33355498125752
626 => 0.3386972396314
627 => 0.33818340675704
628 => 0.33902148949383
629 => 0.33719195958505
630 => 0.33022305824801
701 => 0.33060150311901
702 => 0.3258822895135
703 => 0.33343430035539
704 => 0.33164588450636
705 => 0.33049288117415
706 => 0.33017827353246
707 => 0.33533327857022
708 => 0.33687573687232
709 => 0.33591458036898
710 => 0.33394322033921
711 => 0.33772881437664
712 => 0.33874167963967
713 => 0.33896842281903
714 => 0.34567576963771
715 => 0.33934328899686
716 => 0.34086758002656
717 => 0.35275966351218
718 => 0.34197518478607
719 => 0.34768796368986
720 => 0.34740835289039
721 => 0.35033081726767
722 => 0.34716862551111
723 => 0.34720782466778
724 => 0.34980277504993
725 => 0.34615863523998
726 => 0.34525629497538
727 => 0.34400971836252
728 => 0.3467315727916
729 => 0.34836320142295
730 => 0.36151292989244
731 => 0.3700082541842
801 => 0.36963944975187
802 => 0.37300963189039
803 => 0.37149133396966
804 => 0.36658834947685
805 => 0.37495714615081
806 => 0.37230890871785
807 => 0.37252722619421
808 => 0.37251910040684
809 => 0.37427994678682
810 => 0.3730322257474
811 => 0.37057283950276
812 => 0.3722054948667
813 => 0.37705389761264
814 => 0.39210348850317
815 => 0.40052543894607
816 => 0.39159647651159
817 => 0.39775555523532
818 => 0.39406230270522
819 => 0.39339112885576
820 => 0.3972594854466
821 => 0.40113461308358
822 => 0.40088778420574
823 => 0.3980746405313
824 => 0.39648556705049
825 => 0.40851856382586
826 => 0.4173842708732
827 => 0.41677968908902
828 => 0.41944811646384
829 => 0.42728270176765
830 => 0.42799899806161
831 => 0.42790876119245
901 => 0.42613334609008
902 => 0.43384751277115
903 => 0.44028280633434
904 => 0.42572238879056
905 => 0.43126680518137
906 => 0.43375587232914
907 => 0.43741056137502
908 => 0.44357663439242
909 => 0.45027462515941
910 => 0.4512217944936
911 => 0.45054973252477
912 => 0.44613222756228
913 => 0.45346124898317
914 => 0.45775441784483
915 => 0.46031090165452
916 => 0.46679371923756
917 => 0.43377124396047
918 => 0.41039629463583
919 => 0.40674595876043
920 => 0.41416906030543
921 => 0.41612647298472
922 => 0.41533744238808
923 => 0.38902681176579
924 => 0.40660743873531
925 => 0.42552271513342
926 => 0.42624932793476
927 => 0.43571871079943
928 => 0.43880233002329
929 => 0.44642642440973
930 => 0.44594953523004
1001 => 0.4478058808873
1002 => 0.44737913916812
1003 => 0.46150116857653
1004 => 0.47707986415566
1005 => 0.47654042346498
1006 => 0.47430080165671
1007 => 0.47762702195425
1008 => 0.49370590530639
1009 => 0.49222561938618
1010 => 0.49366359106721
1011 => 0.51262150070554
1012 => 0.53726947996657
1013 => 0.52581801898317
1014 => 0.55066439424803
1015 => 0.5663038704275
1016 => 0.59335072732787
1017 => 0.58996432763537
1018 => 0.60049347054768
1019 => 0.58390196542284
1020 => 0.54580451595979
1021 => 0.53977544875108
1022 => 0.55184579398321
1023 => 0.58151955992933
1024 => 0.5509112614936
1025 => 0.55710328040282
1026 => 0.5553199785404
1027 => 0.5552249539627
1028 => 0.55885165560074
1029 => 0.55359093571873
1030 => 0.53215781653399
1031 => 0.54198048875019
1101 => 0.53818748328405
1102 => 0.54239610563602
1103 => 0.56510830470171
1104 => 0.55506670010357
1105 => 0.54448868537314
1106 => 0.55775586329448
1107 => 0.5746495398853
1108 => 0.57359236396511
1109 => 0.57154100081467
1110 => 0.58310442748781
1111 => 0.60220382058571
1112 => 0.60736630979249
1113 => 0.6111771537825
1114 => 0.61170260478398
1115 => 0.61711507666525
1116 => 0.58801085124112
1117 => 0.63420000443874
1118 => 0.64217559524636
1119 => 0.6406765147289
1120 => 0.6495410482474
1121 => 0.64693287761475
1122 => 0.64315404757746
1123 => 0.65720621874464
1124 => 0.64109653845321
1125 => 0.61823087543187
1126 => 0.60568632046683
1127 => 0.62220600238518
1128 => 0.63229399567527
1129 => 0.63896151752314
1130 => 0.64097910560568
1201 => 0.59027012941169
1202 => 0.56294080369189
1203 => 0.58045858814693
1204 => 0.60183149419497
1205 => 0.58789212366888
1206 => 0.58843852060279
1207 => 0.56856464143471
1208 => 0.60358989151575
1209 => 0.59848700718766
1210 => 0.62496078010861
1211 => 0.61864260173573
1212 => 0.64023093584682
1213 => 0.63454600397151
1214 => 0.65814383834567
1215 => 0.66755765336339
1216 => 0.68336491392145
1217 => 0.69499279913508
1218 => 0.70182091573853
1219 => 0.70141098122928
1220 => 0.72846738096632
1221 => 0.71251316731999
1222 => 0.69247091486076
1223 => 0.69210841374627
1224 => 0.70248858029582
1225 => 0.72424256172406
1226 => 0.72988305260084
1227 => 0.73303531751105
1228 => 0.72820751406994
1229 => 0.71089035860564
1230 => 0.70341289867613
1231 => 0.70978391117895
]
'min_raw' => 0.26270747371992
'max_raw' => 0.73303531751105
'avg_raw' => 0.49787139561548
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2627074'
'max' => '$0.733035'
'avg' => '$0.497871'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10400195514556
'max_diff' => 0.37873642732576
'year' => 2036
]
11 => [
'items' => [
101 => 0.70199271035535
102 => 0.71544250880173
103 => 0.73391195479053
104 => 0.73009808722994
105 => 0.74284727467799
106 => 0.75604134243309
107 => 0.77490945190553
108 => 0.7798422744057
109 => 0.78799604242004
110 => 0.79638894808006
111 => 0.79908452318291
112 => 0.80423121244207
113 => 0.8042040868492
114 => 0.81971398134385
115 => 0.8368218752729
116 => 0.84327970918245
117 => 0.85812914217045
118 => 0.8327000085647
119 => 0.85198829851349
120 => 0.86938681886451
121 => 0.84864358564523
122 => 0.87723330008454
123 => 0.87834337391053
124 => 0.89510417074267
125 => 0.87811389217315
126 => 0.86802511899346
127 => 0.89715102914182
128 => 0.91124413960504
129 => 0.90699918003998
130 => 0.87469482815038
131 => 0.85589230975181
201 => 0.80668249236779
202 => 0.86497364676507
203 => 0.89336556769569
204 => 0.87462129993416
205 => 0.88407481830414
206 => 0.9356501492171
207 => 0.95528669597338
208 => 0.9512024315179
209 => 0.95189260497816
210 => 0.96248812917931
211 => 1.009474518549
212 => 0.9813191849027
213 => 1.0028428825151
214 => 1.0142589741192
215 => 1.0248628762268
216 => 0.99882304404818
217 => 0.9649456049849
218 => 0.95421519795541
219 => 0.87275755191441
220 => 0.86851732768536
221 => 0.86613716133364
222 => 0.85113054916729
223 => 0.83933946266155
224 => 0.82996275289722
225 => 0.80535546635304
226 => 0.81365970320723
227 => 0.77444082439566
228 => 0.79953167322758
301 => 0.73693739567137
302 => 0.78906777001918
303 => 0.76069557733894
304 => 0.77974674165605
305 => 0.77968027393847
306 => 0.74460104025353
307 => 0.72436807034898
308 => 0.73726130625113
309 => 0.75108387860457
310 => 0.7533265444642
311 => 0.77124787032649
312 => 0.77624932715704
313 => 0.76109467946477
314 => 0.73564026839809
315 => 0.74155274753557
316 => 0.72424825414797
317 => 0.69392279509393
318 => 0.71570306921826
319 => 0.72313981241536
320 => 0.72642430187312
321 => 0.69660269579597
322 => 0.68723209970796
323 => 0.68224327297762
324 => 0.73179067353722
325 => 0.73450499198681
326 => 0.72061815503277
327 => 0.78338797486895
328 => 0.76918123143786
329 => 0.78505364458704
330 => 0.74101625202552
331 => 0.74269853972559
401 => 0.72185053235644
402 => 0.73352402341881
403 => 0.72527357619011
404 => 0.73258092070065
405 => 0.73696091287097
406 => 0.75780549928724
407 => 0.78930578171293
408 => 0.75469201318235
409 => 0.73961029855528
410 => 0.74896690948713
411 => 0.77388479739842
412 => 0.81163667310724
413 => 0.78928680286032
414 => 0.7992052957505
415 => 0.80137204520396
416 => 0.78489207832105
417 => 0.812244312993
418 => 0.82690259776285
419 => 0.84193896483208
420 => 0.85499462104885
421 => 0.83593310916783
422 => 0.85633165924091
423 => 0.83989402871083
424 => 0.82514777483433
425 => 0.82517013881447
426 => 0.81591959834934
427 => 0.79799551055506
428 => 0.79469003376095
429 => 0.81188554147961
430 => 0.82567471024934
501 => 0.82681045223487
502 => 0.83444484457887
503 => 0.83896279932755
504 => 0.88324489772625
505 => 0.90105552402294
506 => 0.92283402072063
507 => 0.9313179725532
508 => 0.95685162590417
509 => 0.93623112708133
510 => 0.93176975245199
511 => 0.86983346141691
512 => 0.87997552560417
513 => 0.8962139489316
514 => 0.87010122703659
515 => 0.88666373875892
516 => 0.88993352941488
517 => 0.86921392673876
518 => 0.88028116176926
519 => 0.85088986673475
520 => 0.78994643162755
521 => 0.81231216045788
522 => 0.82878086509992
523 => 0.80527799299908
524 => 0.84740598155307
525 => 0.82279568033804
526 => 0.81499539635566
527 => 0.78456370753839
528 => 0.79892629323702
529 => 0.81835189604683
530 => 0.80634913197909
531 => 0.83125666964375
601 => 0.86653238557458
602 => 0.89167196145209
603 => 0.89360186592861
604 => 0.87743880286015
605 => 0.90334021457865
606 => 0.90352887808581
607 => 0.87431197985696
608 => 0.85641679237216
609 => 0.85235096812382
610 => 0.86250819424797
611 => 0.87484094189008
612 => 0.89428624759119
613 => 0.90603663857279
614 => 0.93667542632699
615 => 0.94496540381039
616 => 0.95407357570052
617 => 0.96624490220192
618 => 0.98085970033091
619 => 0.9488833540456
620 => 0.95015383389488
621 => 0.92037790297665
622 => 0.88855805049009
623 => 0.91270535212679
624 => 0.94427473683584
625 => 0.93703268510251
626 => 0.93621780634082
627 => 0.93758820638947
628 => 0.93212793588583
629 => 0.90743133476498
630 => 0.89502885629099
701 => 0.91103121773215
702 => 0.91953576065496
703 => 0.93272556505415
704 => 0.93109964325895
705 => 0.96507516290969
706 => 0.97827702247958
707 => 0.97489942186218
708 => 0.97552098166228
709 => 0.99942231781057
710 => 1.0260055192921
711 => 1.050904195442
712 => 1.0762321982447
713 => 1.0456983022973
714 => 1.0301950730041
715 => 1.0461904483149
716 => 1.0377030770238
717 => 1.0864740299802
718 => 1.0898508249461
719 => 1.1386182512076
720 => 1.1849043458468
721 => 1.1558328791054
722 => 1.1832459628349
723 => 1.2128954479099
724 => 1.2700941150751
725 => 1.2508316162472
726 => 1.2360768440269
727 => 1.2221336555733
728 => 1.2511472173265
729 => 1.288472701019
730 => 1.2965122527073
731 => 1.3095393977876
801 => 1.2958429476192
802 => 1.3123388132325
803 => 1.370576467498
804 => 1.3548401392374
805 => 1.3324920233665
806 => 1.3784650582053
807 => 1.3951025207978
808 => 1.5118729463789
809 => 1.6593004322207
810 => 1.5982644850212
811 => 1.5603775029767
812 => 1.5692818424484
813 => 1.6231173695425
814 => 1.6404076321909
815 => 1.5934067380015
816 => 1.6100082484092
817 => 1.7014842029796
818 => 1.7505581177067
819 => 1.6839091500013
820 => 1.5000272914385
821 => 1.3304798200483
822 => 1.3754514442831
823 => 1.3703530577269
824 => 1.4686325590551
825 => 1.3544648330128
826 => 1.3563871247199
827 => 1.4566989420558
828 => 1.4299374689705
829 => 1.3865873099228
830 => 1.3307963241835
831 => 1.227661527003
901 => 1.1363121610136
902 => 1.3154693042214
903 => 1.3077437224301
904 => 1.2965559351293
905 => 1.3214531451222
906 => 1.4423469296514
907 => 1.439559936623
908 => 1.4218305089128
909 => 1.435278123571
910 => 1.3842298780549
911 => 1.3973861732714
912 => 1.3304529628626
913 => 1.3607095693452
914 => 1.386494299951
915 => 1.3916709663696
916 => 1.4033342601378
917 => 1.3036726918793
918 => 1.3484178101175
919 => 1.3747013750318
920 => 1.2559512725446
921 => 1.3723540673163
922 => 1.3019378057029
923 => 1.2780374688946
924 => 1.310216123777
925 => 1.2976760706746
926 => 1.2868948693937
927 => 1.2808787738344
928 => 1.3045072265516
929 => 1.3034049309902
930 => 1.2647441962599
1001 => 1.2143128438173
1002 => 1.2312392610497
1003 => 1.2250897349832
1004 => 1.2028030592134
1005 => 1.2178215877787
1006 => 1.1516875886802
1007 => 1.0379074805773
1008 => 1.113074105169
1009 => 1.1101802718878
1010 => 1.1087210699225
1011 => 1.1652067108503
1012 => 1.1597769198205
1013 => 1.1499217959329
1014 => 1.2026220621347
1015 => 1.1833857560524
1016 => 1.2426675187542
1017 => 1.2817143217736
1018 => 1.2718107894962
1019 => 1.3085344964655
1020 => 1.2316292115162
1021 => 1.2571740622719
1022 => 1.262438820609
1023 => 1.2019717490302
1024 => 1.1606653007844
1025 => 1.1579106316144
1026 => 1.0862909427353
1027 => 1.1245496024406
1028 => 1.1582156397303
1029 => 1.1420922204585
1030 => 1.1369880275906
1031 => 1.1630642419887
1101 => 1.1650905871751
1102 => 1.1188897021825
1103 => 1.1284963291642
1104 => 1.1685575606468
1105 => 1.1274868889174
1106 => 1.0476932826033
1107 => 1.0279033650045
1108 => 1.0252630251962
1109 => 0.97159119911006
1110 => 1.0292258219276
1111 => 1.0040667645559
1112 => 1.0835439253413
1113 => 1.0381469973452
1114 => 1.036190026513
1115 => 1.0332317780749
1116 => 0.98703422020733
1117 => 0.99714854937237
1118 => 1.0307701199728
1119 => 1.0427666751371
1120 => 1.0415153361486
1121 => 1.0306053559346
1122 => 1.0355998890084
1123 => 1.0195107577671
1124 => 1.0138293506594
1125 => 0.99589726703355
1126 => 0.96954205796807
1127 => 0.97320691143451
1128 => 0.92099034606022
1129 => 0.89253998990143
1130 => 0.88466530628634
1201 => 0.87413495025057
1202 => 0.88585473802079
1203 => 0.92084242309118
1204 => 0.87863985184483
1205 => 0.80628650360913
1206 => 0.8106350631222
1207 => 0.82040498524917
1208 => 0.80219880000007
1209 => 0.78496817359111
1210 => 0.79994880528879
1211 => 0.76929173782399
1212 => 0.82410974538642
1213 => 0.82262707190755
1214 => 0.84305983520397
1215 => 0.85583686141574
1216 => 0.82638995260897
1217 => 0.81898413467698
1218 => 0.8232028251467
1219 => 0.75347726893135
1220 => 0.8373617697112
1221 => 0.83808720635732
1222 => 0.83187557736785
1223 => 0.87654148438972
1224 => 0.97080047985163
1225 => 0.93533645419955
1226 => 0.92160371156122
1227 => 0.89549775776717
1228 => 0.93028239117958
1229 => 0.92761147405832
1230 => 0.91553257392074
1231 => 0.90822721742907
]
'min_raw' => 0.68224327297762
'max_raw' => 1.7505581177067
'avg_raw' => 1.2164006953421
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.682243'
'max' => '$1.75'
'avg' => '$1.21'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4195357992577
'max_diff' => 1.0175228001956
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021414836756841
]
1 => [
'year' => 2028
'avg' => 0.03675407664627
]
2 => [
'year' => 2029
'avg' => 0.1004055131198
]
3 => [
'year' => 2030
'avg' => 0.077462703843552
]
4 => [
'year' => 2031
'avg' => 0.07607797502157
]
5 => [
'year' => 2032
'avg' => 0.1333886328327
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021414836756841
'min' => '$0.021414'
'max_raw' => 0.1333886328327
'max' => '$0.133388'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1333886328327
]
1 => [
'year' => 2033
'avg' => 0.34308927983708
]
2 => [
'year' => 2034
'avg' => 0.21746647365999
]
3 => [
'year' => 2035
'avg' => 0.25650220437982
]
4 => [
'year' => 2036
'avg' => 0.49787139561548
]
5 => [
'year' => 2037
'avg' => 1.2164006953421
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1333886328327
'min' => '$0.133388'
'max_raw' => 1.2164006953421
'max' => '$1.21'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2164006953421
]
]
]
]
'prediction_2025_max_price' => '$0.036615'
'last_price' => 0.03550332
'sma_50day_nextmonth' => '$0.031762'
'sma_200day_nextmonth' => '$0.062141'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.034139'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.033537'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.03186'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.030465'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.034637'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.046948'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.071598'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.034361'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0336076'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.032439'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.03214'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.036355'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.047377'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.067023'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.057653'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.086718'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.1473041'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.034027'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.03455'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.039857'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.054631'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.084379'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.108519'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.096516'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 111.57
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.032660'
'vwma_10_action' => 'BUY'
'hma_9' => '0.034847'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 202.65
'cci_20_action' => 'SELL'
'adx_14' => 23.85
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000973'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 86.1
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.009762'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767686693
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de ChainGPT para 2026
A previsão de preço para ChainGPT em 2026 sugere que o preço médio poderia variar entre $0.012266 na extremidade inferior e $0.036615 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, ChainGPT poderia potencialmente ganhar 3.13% até 2026 se CGPT atingir a meta de preço prevista.
Previsão de preço de ChainGPT 2027-2032
A previsão de preço de CGPT para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.021414 na extremidade inferior e $0.133388 na extremidade superior. Considerando a volatilidade de preços no mercado, se ChainGPT atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de ChainGPT | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0118085 | $0.021414 | $0.031021 |
| 2028 | $0.02131 | $0.036754 | $0.052197 |
| 2029 | $0.046814 | $0.1004055 | $0.153996 |
| 2030 | $0.039813 | $0.077462 | $0.115112 |
| 2031 | $0.047071 | $0.076077 | $0.105084 |
| 2032 | $0.071851 | $0.133388 | $0.194925 |
Previsão de preço de ChainGPT 2032-2037
A previsão de preço de ChainGPT para 2032-2037 é atualmente estimada entre $0.133388 na extremidade inferior e $1.21 na extremidade superior. Comparado ao preço atual, ChainGPT poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de ChainGPT | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.071851 | $0.133388 | $0.194925 |
| 2033 | $0.166966 | $0.343089 | $0.519211 |
| 2034 | $0.134233 | $0.217466 | $0.300699 |
| 2035 | $0.1587055 | $0.2565022 | $0.354298 |
| 2036 | $0.2627074 | $0.497871 | $0.733035 |
| 2037 | $0.682243 | $1.21 | $1.75 |
ChainGPT Histograma de preços potenciais
Previsão de preço de ChainGPT baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para ChainGPT é Altista, com 20 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de CGPT foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de ChainGPT
De acordo com nossos indicadores técnicos, o SMA de 200 dias de ChainGPT está projetado para aumentar no próximo mês, alcançando $0.062141 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para ChainGPT é esperado para alcançar $0.031762 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 61.81, sugerindo que o mercado de CGPT está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de CGPT para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.034139 | BUY |
| SMA 5 | $0.033537 | BUY |
| SMA 10 | $0.03186 | BUY |
| SMA 21 | $0.030465 | BUY |
| SMA 50 | $0.034637 | BUY |
| SMA 100 | $0.046948 | SELL |
| SMA 200 | $0.071598 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.034361 | BUY |
| EMA 5 | $0.0336076 | BUY |
| EMA 10 | $0.032439 | BUY |
| EMA 21 | $0.03214 | BUY |
| EMA 50 | $0.036355 | SELL |
| EMA 100 | $0.047377 | SELL |
| EMA 200 | $0.067023 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.057653 | SELL |
| SMA 50 | $0.086718 | SELL |
| SMA 100 | $0.1473041 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.054631 | SELL |
| EMA 50 | $0.084379 | SELL |
| EMA 100 | $0.108519 | SELL |
| EMA 200 | $0.096516 | SELL |
Osciladores de ChainGPT
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 61.81 | NEUTRAL |
| Stoch RSI (14) | 111.57 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 202.65 | SELL |
| Índice Direcional Médio (14) | 23.85 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000973 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 86.1 | SELL |
| VWMA (10) | 0.032660 | BUY |
| Média Móvel de Hull (9) | 0.034847 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.009762 | SELL |
Previsão do preço de ChainGPT com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do ChainGPT
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de ChainGPT por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.049888 | $0.0701011 | $0.0985037 | $0.138414 | $0.194495 | $0.273298 |
| Amazon.com stock | $0.074079 | $0.154571 | $0.322523 | $0.672964 | $1.40 | $2.92 |
| Apple stock | $0.050358 | $0.07143 | $0.101318 | $0.143711 | $0.203844 | $0.289137 |
| Netflix stock | $0.056018 | $0.088388 | $0.139463 | $0.220051 | $0.3472068 | $0.547837 |
| Google stock | $0.045976 | $0.059539 | $0.0771034 | $0.099848 | $0.1293035 | $0.167447 |
| Tesla stock | $0.080483 | $0.182449 | $0.413599 | $0.937598 | $2.12 | $4.81 |
| Kodak stock | $0.026623 | $0.019964 | $0.014971 | $0.011227 | $0.008419 | $0.006313 |
| Nokia stock | $0.023519 | $0.01558 | $0.010321 | $0.006837 | $0.004529 | $0.00300068 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para ChainGPT
Você pode fazer perguntas como: 'Devo investir em ChainGPT agora?', 'Devo comprar CGPT hoje?', 'ChainGPT será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para ChainGPT regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como ChainGPT, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre ChainGPT para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de ChainGPT é de $0.0355 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para ChainGPT
com base no histórico de preços de 4 horas
Previsão de longo prazo para ChainGPT
com base no histórico de preços de 1 mês
Previsão do preço de ChainGPT com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se ChainGPT tiver 1% da média anterior do crescimento anual do Bitcoin | $0.036426 | $0.037372 | $0.038344 | $0.039341 |
| Se ChainGPT tiver 2% da média anterior do crescimento anual do Bitcoin | $0.037349 | $0.03929 | $0.041333 | $0.043481 |
| Se ChainGPT tiver 5% da média anterior do crescimento anual do Bitcoin | $0.040117 | $0.045331 | $0.051223 | $0.05788 |
| Se ChainGPT tiver 10% da média anterior do crescimento anual do Bitcoin | $0.044731 | $0.056358 | $0.0710085 | $0.089465 |
| Se ChainGPT tiver 20% da média anterior do crescimento anual do Bitcoin | $0.05396 | $0.082012 | $0.124647 | $0.189447 |
| Se ChainGPT tiver 50% da média anterior do crescimento anual do Bitcoin | $0.081645 | $0.187757 | $0.431777 | $0.992942 |
| Se ChainGPT tiver 100% da média anterior do crescimento anual do Bitcoin | $0.127787 | $0.459949 | $1.65 | $5.95 |
Perguntas Frequentes sobre ChainGPT
CGPT é um bom investimento?
A decisão de adquirir ChainGPT depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de ChainGPT experimentou uma escalada de 4.8841% nas últimas 24 horas, e ChainGPT registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em ChainGPT dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
ChainGPT pode subir?
Parece que o valor médio de ChainGPT pode potencialmente subir para $0.036615 até o final deste ano. Observando as perspectivas de ChainGPT em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.115112. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de ChainGPT na próxima semana?
Com base na nossa nova previsão experimental de ChainGPT, o preço de ChainGPT aumentará 0.86% na próxima semana e atingirá $0.035807 até 13 de janeiro de 2026.
Qual será o preço de ChainGPT no próximo mês?
Com base na nossa nova previsão experimental de ChainGPT, o preço de ChainGPT diminuirá -11.62% no próximo mês e atingirá $0.031378 até 5 de fevereiro de 2026.
Até onde o preço de ChainGPT pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de ChainGPT em 2026, espera-se que CGPT fluctue dentro do intervalo de $0.012266 e $0.036615. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de ChainGPT não considera flutuações repentinas e extremas de preço.
Onde estará ChainGPT em 5 anos?
O futuro de ChainGPT parece seguir uma tendência de alta, com um preço máximo de $0.115112 projetada após um período de cinco anos. Com base na previsão de ChainGPT para 2030, o valor de ChainGPT pode potencialmente atingir seu pico mais alto de aproximadamente $0.115112, enquanto seu pico mais baixo está previsto para cerca de $0.039813.
Quanto será ChainGPT em 2026?
Com base na nossa nova simulação experimental de previsão de preços de ChainGPT, espera-se que o valor de CGPT em 2026 aumente 3.13% para $0.036615 se o melhor cenário ocorrer. O preço ficará entre $0.036615 e $0.012266 durante 2026.
Quanto será ChainGPT em 2027?
De acordo com nossa última simulação experimental para previsão de preços de ChainGPT, o valor de CGPT pode diminuir -12.62% para $0.031021 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.031021 e $0.0118085 ao longo do ano.
Quanto será ChainGPT em 2028?
Nosso novo modelo experimental de previsão de preços de ChainGPT sugere que o valor de CGPT em 2028 pode aumentar 47.02%, alcançando $0.052197 no melhor cenário. O preço é esperado para variar entre $0.052197 e $0.02131 durante o ano.
Quanto será ChainGPT em 2029?
Com base no nosso modelo de previsão experimental, o valor de ChainGPT pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.153996 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.153996 e $0.046814.
Quanto será ChainGPT em 2030?
Usando nossa nova simulação experimental para previsões de preços de ChainGPT, espera-se que o valor de CGPT em 2030 aumente 224.23%, alcançando $0.115112 no melhor cenário. O preço está previsto para variar entre $0.115112 e $0.039813 ao longo de 2030.
Quanto será ChainGPT em 2031?
Nossa simulação experimental indica que o preço de ChainGPT poderia aumentar 195.98% em 2031, potencialmente atingindo $0.105084 sob condições ideais. O preço provavelmente oscilará entre $0.105084 e $0.047071 durante o ano.
Quanto será ChainGPT em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de ChainGPT, CGPT poderia ver um 449.04% aumento em valor, atingindo $0.194925 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.194925 e $0.071851 ao longo do ano.
Quanto será ChainGPT em 2033?
De acordo com nossa previsão experimental de preços de ChainGPT, espera-se que o valor de CGPT seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.519211. Ao longo do ano, o preço de CGPT poderia variar entre $0.519211 e $0.166966.
Quanto será ChainGPT em 2034?
Os resultados da nossa nova simulação de previsão de preços de ChainGPT sugerem que CGPT pode aumentar 746.96% em 2034, atingindo potencialmente $0.300699 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.300699 e $0.134233.
Quanto será ChainGPT em 2035?
Com base em nossa previsão experimental para o preço de ChainGPT, CGPT poderia aumentar 897.93%, com o valor potencialmente atingindo $0.354298 em 2035. A faixa de preço esperada para o ano está entre $0.354298 e $0.1587055.
Quanto será ChainGPT em 2036?
Nossa recente simulação de previsão de preços de ChainGPT sugere que o valor de CGPT pode aumentar 1964.7% em 2036, possivelmente atingindo $0.733035 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.733035 e $0.2627074.
Quanto será ChainGPT em 2037?
De acordo com a simulação experimental, o valor de ChainGPT poderia aumentar 4830.69% em 2037, com um pico de $1.75 sob condições favoráveis. O preço é esperado para cair entre $1.75 e $0.682243 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Hifi Finance
Previsão de Preço do The Truth
Previsão de Preço do Metal
Previsão de Preço do Telos
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Previsão de Preço do MARBLEX
Previsão de Preço do Loom Network (NEW)
Previsão de Preço do Ardor
Previsão de Preço do BTSE Token
Como ler e prever os movimentos de preço de ChainGPT?
Traders de ChainGPT utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de ChainGPT
Médias móveis são ferramentas populares para a previsão de preço de ChainGPT. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CGPT em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CGPT acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CGPT.
Como ler gráficos de ChainGPT e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de ChainGPT em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CGPT dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de ChainGPT?
A ação de preço de ChainGPT é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CGPT. A capitalização de mercado de ChainGPT pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CGPT, grandes detentores de ChainGPT, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de ChainGPT.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


