Previsão de Preço MAP Protocol - Projeção MAPO
Previsão de Preço MAP Protocol até $0.004768 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001597 | $0.004768 |
| 2027 | $0.001537 | $0.004039 |
| 2028 | $0.002775 | $0.006797 |
| 2029 | $0.006096 | $0.020055 |
| 2030 | $0.005185 | $0.014991 |
| 2031 | $0.00613 | $0.013685 |
| 2032 | $0.009357 | $0.025385 |
| 2033 | $0.021744 | $0.067618 |
| 2034 | $0.017481 | $0.039161 |
| 2035 | $0.020668 | $0.046141 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em MAP Protocol hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.08, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Marcopolo para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'MAP Protocol'
'name_with_ticker' => 'MAP Protocol <small>MAPO</small>'
'name_lang' => 'Marcopolo'
'name_lang_with_ticker' => 'Marcopolo <small>MAPO</small>'
'name_with_lang' => 'Marcopolo/MAP Protocol'
'name_with_lang_with_ticker' => 'Marcopolo/MAP Protocol <small>MAPO</small>'
'image' => '/uploads/coins/marcopolo.png?1723560444'
'price_for_sd' => 0.004623
'ticker' => 'MAPO'
'marketcap' => '$28.54M'
'low24h' => '$0.004548'
'high24h' => '$0.004724'
'volume24h' => '$993.62K'
'current_supply' => '6.17B'
'max_supply' => '9.7B'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004623'
'change_24h_pct' => '-2.1273%'
'ath_price' => '$0.2726'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2021'
'ath_pct' => '-98.31%'
'fdv' => '$44.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.227981'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004663'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0040865'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001597'
'current_year_max_price_prediction' => '$0.004768'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005185'
'grand_prediction_max_price' => '$0.014991'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0047113370619233
107 => 0.0047289274842971
108 => 0.0047685596040947
109 => 0.0044299074796667
110 => 0.0045819523412309
111 => 0.0046712644527229
112 => 0.0042677490837995
113 => 0.0046632882512801
114 => 0.0044240122996134
115 => 0.0043427984478135
116 => 0.0044521422001506
117 => 0.0044095308335246
118 => 0.0043728960827229
119 => 0.0043524532623106
120 => 0.0044327432461974
121 => 0.0044289976224818
122 => 0.0042976276252286
123 => 0.0041262608191379
124 => 0.0041837771441856
125 => 0.0041628809240774
126 => 0.004087150326739
127 => 0.0041381836055979
128 => 0.0039134588728549
129 => 0.0035268316503457
130 => 0.0037822494362473
131 => 0.0037724161293312
201 => 0.0037674577300791
202 => 0.0039593971369551
203 => 0.0039409465917796
204 => 0.0039074586716176
205 => 0.0040865352948237
206 => 0.004021169918433
207 => 0.0042226106064495
208 => 0.0043552924719441
209 => 0.0043216400590459
210 => 0.0044464279948507
211 => 0.0041851022041481
212 => 0.0042719041492485
213 => 0.0042897939098314
214 => 0.0040843255170907
215 => 0.003943965329152
216 => 0.0039346049048398
217 => 0.0036912396817796
218 => 0.0038212434195629
219 => 0.003935641328892
220 => 0.0038808536079598
221 => 0.0038635094522492
222 => 0.003952116982286
223 => 0.003959002546242
224 => 0.0038020109583451
225 => 0.0038346544807459
226 => 0.0039707833956913
227 => 0.0038312243813601
228 => 0.0035600840133503
301 => 0.0034928374532749
302 => 0.0034838655225609
303 => 0.0033014875182447
304 => 0.0034973311899711
305 => 0.0034118401789784
306 => 0.0036819052583647
307 => 0.0035276455334074
308 => 0.0035209957049794
309 => 0.0035109435139929
310 => 0.0033539632317375
311 => 0.003388331936934
312 => 0.003502578747509
313 => 0.0035433432966046
314 => 0.0035390912201598
315 => 0.00350201887581
316 => 0.0035189904052122
317 => 0.0034643191957349
318 => 0.0034450136537857
319 => 0.0033840800529862
320 => 0.0032945244931477
321 => 0.0033069777430194
322 => 0.0031295447454925
323 => 0.003032869831358
324 => 0.0030061114892804
325 => 0.0029703291159462
326 => 0.0030101532035618
327 => 0.0031290421001038
328 => 0.0029856368671877
329 => 0.0027397786540604
330 => 0.0027545551515914
331 => 0.0027877535543619
401 => 0.0027258885504284
402 => 0.0026673385161415
403 => 0.0027182430206395
404 => 0.0026140696546459
405 => 0.0028003424079481
406 => 0.0027953042519947
407 => 0.0028647352153959
408 => 0.0029081518216775
409 => 0.0028080906004916
410 => 0.0027829254739577
411 => 0.0027972606737226
412 => 0.0025603317536598
413 => 0.0028453730679004
414 => 0.0028478381170225
415 => 0.002826730869864
416 => 0.0029785065700338
417 => 0.0032988006374202
418 => 0.0031782931254704
419 => 0.0031316289744846
420 => 0.0030429203893494
421 => 0.0031611193120475
422 => 0.0031520434789747
423 => 0.0031109991199121
424 => 0.0030861753634849
425 => 0.00313191389584
426 => 0.0030805078531601
427 => 0.0030712739153512
428 => 0.0030153262988528
429 => 0.0029953555452172
430 => 0.002980569994284
501 => 0.0029642925555048
502 => 0.0030001965293667
503 => 0.0029188334010345
504 => 0.0028207174443917
505 => 0.0028125601642262
506 => 0.0028350831319585
507 => 0.0028251183953747
508 => 0.0028125124569011
509 => 0.002788444287332
510 => 0.0027813037755559
511 => 0.0028045069747443
512 => 0.0027783119156912
513 => 0.0028169641522428
514 => 0.0028064528826266
515 => 0.0027477377850073
516 => 0.0026745570342603
517 => 0.0026739055720768
518 => 0.0026581388993688
519 => 0.0026380576711401
520 => 0.0026324715328432
521 => 0.0027139559852549
522 => 0.0028826263631227
523 => 0.0028495123320072
524 => 0.0028734406131506
525 => 0.0029911440736857
526 => 0.0030285584643232
527 => 0.0030020026160571
528 => 0.002965651333057
529 => 0.0029672506050231
530 => 0.0030914739433161
531 => 0.0030992216005499
601 => 0.003118797430891
602 => 0.0031439579050083
603 => 0.0030062875535962
604 => 0.0029607663438521
605 => 0.0029391958692548
606 => 0.0028727671563193
607 => 0.0029444048280528
608 => 0.0029026646245647
609 => 0.0029082968040636
610 => 0.0029046288397762
611 => 0.0029066317963038
612 => 0.0028002903409173
613 => 0.0028390355781178
614 => 0.0027746141065097
615 => 0.0026883609876759
616 => 0.0026880718369773
617 => 0.0027091821656172
618 => 0.002696624916095
619 => 0.0026628336805071
620 => 0.0026676335660322
621 => 0.0026255815181552
622 => 0.0026727394460214
623 => 0.0026740917666534
624 => 0.0026559333957152
625 => 0.0027285866901331
626 => 0.0027583528041355
627 => 0.002746400575394
628 => 0.0027575142039048
629 => 0.0028508883695009
630 => 0.0028661124326936
701 => 0.0028728739559186
702 => 0.0028638144105272
703 => 0.0027592209122426
704 => 0.0027638600786574
705 => 0.0027298209536407
706 => 0.0027010614799562
707 => 0.00270221170808
708 => 0.0027169978160237
709 => 0.0027815696166076
710 => 0.0029174571642209
711 => 0.0029226139973204
712 => 0.0029288642294723
713 => 0.0029034413941954
714 => 0.0028957736238121
715 => 0.0029058893921671
716 => 0.0029569216104228
717 => 0.0030881903308887
718 => 0.003041791197933
719 => 0.0030040679805945
720 => 0.0030371614123067
721 => 0.0030320669378895
722 => 0.0029890644469105
723 => 0.0029878575102129
724 => 0.0029053219812961
725 => 0.0028748104754986
726 => 0.0028493127775076
727 => 0.0028214699569356
728 => 0.0028049637996008
729 => 0.0028303247591814
730 => 0.0028361251106996
731 => 0.0027806729293428
801 => 0.0027731150019267
802 => 0.0028183984502411
803 => 0.0027984708929751
804 => 0.0028189668798029
805 => 0.0028237221245582
806 => 0.00282295642063
807 => 0.0028021497621789
808 => 0.0028154113058122
809 => 0.002784043801663
810 => 0.0027499363521476
811 => 0.002728177924326
812 => 0.002709190810215
813 => 0.0027197259646613
814 => 0.0026821700627033
815 => 0.002670155173816
816 => 0.0028109185932234
817 => 0.0029149020446014
818 => 0.0029133900840364
819 => 0.0029041864129416
820 => 0.0028905116245913
821 => 0.00295592121448
822 => 0.0029331338212688
823 => 0.0029497135537804
824 => 0.0029539337915538
825 => 0.0029667071802395
826 => 0.0029712725687847
827 => 0.0029574727937347
828 => 0.0029111590631661
829 => 0.0027957496499666
830 => 0.0027420262565804
831 => 0.0027242966419291
901 => 0.0027249410797483
902 => 0.0027071646077965
903 => 0.0027124005754719
904 => 0.0027053437519174
905 => 0.0026919798353341
906 => 0.0027189007804708
907 => 0.0027220031686119
908 => 0.0027157194983356
909 => 0.0027171995301579
910 => 0.0026651734240612
911 => 0.0026691288559129
912 => 0.0026471045087303
913 => 0.002642975209141
914 => 0.0025872995773426
915 => 0.0024886621252999
916 => 0.0025433168487007
917 => 0.0024773016284496
918 => 0.0024523006642467
919 => 0.0025706513403356
920 => 0.0025587722149931
921 => 0.0025384403161383
922 => 0.002508365200193
923 => 0.002497210047137
924 => 0.002429434868461
925 => 0.0024254303493383
926 => 0.0024590215579739
927 => 0.0024435203709915
928 => 0.0024217508337096
929 => 0.0023429037764171
930 => 0.0022542535786569
1001 => 0.002256929370892
1002 => 0.002285127349404
1003 => 0.002367116774943
1004 => 0.0023350820879534
1005 => 0.0023118405549868
1006 => 0.0023074881145001
1007 => 0.0023619680196429
1008 => 0.0024390684993129
1009 => 0.0024752423193481
1010 => 0.0024393951623085
1011 => 0.0023982158784494
1012 => 0.0024007222706514
1013 => 0.0024173961750884
1014 => 0.0024191483666884
1015 => 0.0023923448861949
1016 => 0.0023998899089515
1017 => 0.0023884283294528
1018 => 0.0023180886372259
1019 => 0.0023168164152431
1020 => 0.0022995539203899
1021 => 0.0022990312189063
1022 => 0.0022696634088298
1023 => 0.00226555464919
1024 => 0.0022072430797844
1025 => 0.0022456239313509
1026 => 0.0022198800712052
1027 => 0.0021810780016031
1028 => 0.0021743885101783
1029 => 0.0021741874159883
1030 => 0.0022140284654857
1031 => 0.0022451583654909
1101 => 0.0022203278966744
1102 => 0.0022146744802433
1103 => 0.002275038177184
1104 => 0.002267356346521
1105 => 0.0022607039307093
1106 => 0.0024321649970039
1107 => 0.0022964401837579
1108 => 0.0022372564182811
1109 => 0.0021640052698113
1110 => 0.0021878562131174
1111 => 0.0021928819573153
1112 => 0.0020167261497575
1113 => 0.0019452597605701
1114 => 0.001920735188955
1115 => 0.001906620951264
1116 => 0.0019130529866153
1117 => 0.0018487248541752
1118 => 0.001891954423064
1119 => 0.0018362516978926
1120 => 0.0018269129547453
1121 => 0.0019265163275953
1122 => 0.0019403755550529
1123 => 0.0018812477849943
1124 => 0.0019192173852884
1125 => 0.0019054490804048
1126 => 0.0018372065612392
1127 => 0.0018346001989651
1128 => 0.0018003585016883
1129 => 0.0017467768759493
1130 => 0.0017222886351996
1201 => 0.0017095349468005
1202 => 0.0017147973671984
1203 => 0.0017121365264125
1204 => 0.0016947727404225
1205 => 0.0017131317983001
1206 => 0.0016662319919091
1207 => 0.0016475561111068
1208 => 0.0016391206490256
1209 => 0.0015974943714014
1210 => 0.0016637402903911
1211 => 0.0016767915709762
1212 => 0.0016898685666157
1213 => 0.001803694885614
1214 => 0.0017980084443867
1215 => 0.0018494111036724
1216 => 0.001847413690856
1217 => 0.0018327528197599
1218 => 0.0017709010162014
1219 => 0.0017955540426974
1220 => 0.0017196758590736
1221 => 0.0017765289534595
1222 => 0.0017505835754238
1223 => 0.0017677567950469
1224 => 0.0017368777977177
1225 => 0.0017539675098022
1226 => 0.0016798865137735
1227 => 0.0016107107220296
1228 => 0.0016385490799946
1229 => 0.0016688125588049
1230 => 0.0017344314918567
1231 => 0.0016953493966755
]
'min_raw' => 0.0015974943714014
'max_raw' => 0.0047685596040947
'avg_raw' => 0.0031830269877481
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001597'
'max' => '$0.004768'
'avg' => '$0.003183'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0030262256285986
'max_diff' => 0.00014483960409471
'year' => 2026
]
1 => [
'items' => [
101 => 0.0017094047959603
102 => 0.0016623215612017
103 => 0.0015651753992334
104 => 0.0015657252359601
105 => 0.0015507814153855
106 => 0.0015378677725755
107 => 0.0016998384454414
108 => 0.0016796948318931
109 => 0.0016475986200349
110 => 0.0016905606750599
111 => 0.001701920524308
112 => 0.0017022439232461
113 => 0.0017335879295812
114 => 0.001750316231381
115 => 0.0017532646670778
116 => 0.0018025851382782
117 => 0.0018191167096718
118 => 0.0018872079126066
119 => 0.0017488969518474
120 => 0.0017460485286286
121 => 0.0016911652392783
122 => 0.0016563573895019
123 => 0.0016935485625319
124 => 0.0017264948647351
125 => 0.0016921889727252
126 => 0.0016966685979848
127 => 0.0016506157408558
128 => 0.0016670774702911
129 => 0.0016812565293152
130 => 0.0016734276863287
131 => 0.0016617075294575
201 => 0.0017237936436692
202 => 0.0017202905017879
203 => 0.0017781065186954
204 => 0.0018231782383378
205 => 0.0019039548174705
206 => 0.0018196602461672
207 => 0.0018165882169483
208 => 0.0018466177953317
209 => 0.0018191121122998
210 => 0.0018364947545121
211 => 0.0019011542050755
212 => 0.0019025203573769
213 => 0.001879635546141
214 => 0.0018782430032975
215 => 0.0018826382816278
216 => 0.0019083815640921
217 => 0.0018993860701879
218 => 0.0019097958834719
219 => 0.0019228135143843
220 => 0.0019766599551989
221 => 0.001989642149783
222 => 0.0019581021474397
223 => 0.0019609498565129
224 => 0.0019491530298441
225 => 0.0019377574430958
226 => 0.0019633730579141
227 => 0.0020101860974708
228 => 0.0020098948759813
301 => 0.002020754591243
302 => 0.0020275201038843
303 => 0.0019984775709699
304 => 0.0019795719499662
305 => 0.0019868215680549
306 => 0.001998413865255
307 => 0.00198306234231
308 => 0.0018883056311767
309 => 0.0019170487642524
310 => 0.0019122645014412
311 => 0.0019054511294118
312 => 0.0019343525719835
313 => 0.001931564957342
314 => 0.0018480650761987
315 => 0.0018534104676748
316 => 0.0018483901471588
317 => 0.0018646118298068
318 => 0.0018182360882018
319 => 0.0018325009539741
320 => 0.0018414477440617
321 => 0.0018467174721558
322 => 0.0018657553435179
323 => 0.0018635214690478
324 => 0.0018656164827443
325 => 0.0018938446201627
326 => 0.0020366128524976
327 => 0.0020443834123833
328 => 0.0020061183335576
329 => 0.0020214044778032
330 => 0.001992058423564
331 => 0.0020117586263762
401 => 0.0020252370048095
402 => 0.0019643308044128
403 => 0.0019607243345033
404 => 0.0019312571586593
405 => 0.0019470911498517
406 => 0.0019218981313603
407 => 0.0019280796168837
408 => 0.001910795644468
409 => 0.0019419033536116
410 => 0.0019766866060835
411 => 0.0019854742292902
412 => 0.0019623577759431
413 => 0.0019456199402713
414 => 0.0019162338146175
415 => 0.0019651035964923
416 => 0.0019793946099922
417 => 0.0019650285318823
418 => 0.0019616995976792
419 => 0.0019553912733797
420 => 0.0019630379385008
421 => 0.0019793167780635
422 => 0.0019716399779487
423 => 0.0019767106396723
424 => 0.0019573865060254
425 => 0.0019984871852568
426 => 0.0020637649552932
427 => 0.0020639748339979
428 => 0.0020562979925022
429 => 0.0020531567943621
430 => 0.0020610336996063
501 => 0.0020653065975737
502 => 0.0020907790647561
503 => 0.0021181120369107
504 => 0.0022456630916461
505 => 0.0022098472658802
506 => 0.0023230181496876
507 => 0.0024125216253792
508 => 0.0024393598042265
509 => 0.0024146699425209
510 => 0.0023302072593462
511 => 0.0023260631171591
512 => 0.0024522860250472
513 => 0.0024166222721934
514 => 0.0024123801822725
515 => 0.0023672515126388
516 => 0.0023939281456868
517 => 0.0023880935747166
518 => 0.0023788834190032
519 => 0.0024297805765484
520 => 0.0025250555118523
521 => 0.0025102060197025
522 => 0.0024991215626608
523 => 0.002450552698541
524 => 0.0024798020029897
525 => 0.002469386885909
526 => 0.0025141368384841
527 => 0.0024876279579114
528 => 0.0024163520841892
529 => 0.0024277030020078
530 => 0.0024259873336144
531 => 0.0024612956675772
601 => 0.0024506969821283
602 => 0.0024239177701777
603 => 0.0025247298724812
604 => 0.002518183695304
605 => 0.0025274646778768
606 => 0.0025315504534293
607 => 0.0025929130035929
608 => 0.0026180512770124
609 => 0.002623758105186
610 => 0.0026476375206706
611 => 0.0026231639635751
612 => 0.0027210756413077
613 => 0.0027861811936951
614 => 0.0028618046430942
615 => 0.0029723108283332
616 => 0.0030138621762224
617 => 0.0030063562971379
618 => 0.0030901408255965
619 => 0.003240699760811
620 => 0.0030367885625895
621 => 0.0032515075494518
622 => 0.0031835299972611
623 => 0.0030223564438809
624 => 0.0030119787671546
625 => 0.0031211273687671
626 => 0.0033632084619801
627 => 0.0033025698937913
628 => 0.0033633076449545
629 => 0.003292453831947
630 => 0.0032889353429283
701 => 0.0033598664334054
702 => 0.0035256007925574
703 => 0.0034468666109838
704 => 0.0033339818552847
705 => 0.0034173342022116
706 => 0.003345126685408
707 => 0.0031824229404381
708 => 0.003302523524621
709 => 0.0032222156842456
710 => 0.0032456537814667
711 => 0.0034144489170461
712 => 0.0033941390397567
713 => 0.0034204219016132
714 => 0.0033740333383787
715 => 0.0033306991055126
716 => 0.0032498125418258
717 => 0.0032258660179775
718 => 0.0032324839756635
719 => 0.0032258627384463
720 => 0.0031806074494494
721 => 0.0031708345740993
722 => 0.0031545460203563
723 => 0.0031595945242619
724 => 0.0031289672778406
725 => 0.0031867672197495
726 => 0.0031974953982992
727 => 0.0032395573759053
728 => 0.0032439243899557
729 => 0.0033610663988741
730 => 0.0032965465488533
731 => 0.0033398320346231
801 => 0.003335960173357
802 => 0.0030258495635036
803 => 0.0030685800694123
804 => 0.0031350553270349
805 => 0.003105108313581
806 => 0.0030627702430792
807 => 0.0030285799811252
808 => 0.0029767782381312
809 => 0.0030496881966309
810 => 0.0031455570389484
811 => 0.0032463557820045
812 => 0.0033674588671912
813 => 0.0033404300683728
814 => 0.0032440918440645
815 => 0.0032484135064319
816 => 0.0032751283226754
817 => 0.003240530208343
818 => 0.003230326548991
819 => 0.0032737264965683
820 => 0.003274025368155
821 => 0.0032342160562939
822 => 0.0031899752911873
823 => 0.0031897899207661
824 => 0.0031819177039305
825 => 0.0032938542818338
826 => 0.0033554080816161
827 => 0.0033624651255622
828 => 0.0033549330863309
829 => 0.0033578318692951
830 => 0.0033220150694472
831 => 0.0034038816527575
901 => 0.0034790105253689
902 => 0.0034588743826147
903 => 0.003428687442105
904 => 0.0034046420899889
905 => 0.0034532100618285
906 => 0.0034510474064955
907 => 0.0034783543402076
908 => 0.0034771155399619
909 => 0.0034679332452203
910 => 0.0034588747105434
911 => 0.0034947907766069
912 => 0.003484447526375
913 => 0.0034740882102186
914 => 0.003453311015735
915 => 0.0034561349815379
916 => 0.003425953253229
917 => 0.0034119898046914
918 => 0.0032020130416834
919 => 0.003145900389419
920 => 0.0031635545720998
921 => 0.0031693667874289
922 => 0.0031449464892531
923 => 0.0031799589237773
924 => 0.0031745022729441
925 => 0.0031957309093023
926 => 0.0031824681789459
927 => 0.003183012486026
928 => 0.0032220153480918
929 => 0.0032333380448795
930 => 0.0032275792299079
1001 => 0.0032316125065134
1002 => 0.0033245576635473
1003 => 0.0033113438344359
1004 => 0.0033043242510818
1005 => 0.0033062687236436
1006 => 0.0033300182040324
1007 => 0.0033366667618677
1008 => 0.0033084963551336
1009 => 0.0033217816818006
1010 => 0.0033783489165896
1011 => 0.0033981442473375
1012 => 0.0034613214407872
1013 => 0.0034344826461247
1014 => 0.0034837464152835
1015 => 0.0036351664464211
1016 => 0.0037561312447629
1017 => 0.003644887017126
1018 => 0.0038670234645067
1019 => 0.0040399885523734
1020 => 0.0040333498642127
1021 => 0.0040031894003885
1022 => 0.0038062732463671
1023 => 0.0036250680655821
1024 => 0.0037766538936871
1025 => 0.0037770403171369
1026 => 0.0037640189600678
1027 => 0.0036831444296413
1028 => 0.0037612047017147
1029 => 0.0037674008426386
1030 => 0.0037639326514081
1031 => 0.0037019263385504
1101 => 0.0036072541594989
1102 => 0.0036257528766724
1103 => 0.0036560541527662
1104 => 0.0035986875156123
1105 => 0.0035803553990745
1106 => 0.0036144382915461
1107 => 0.0037242604725424
1108 => 0.0037034992253816
1109 => 0.0037029570653155
1110 => 0.0037917824848082
1111 => 0.0037282026541767
1112 => 0.0036259862047371
1113 => 0.0036001752031842
1114 => 0.0035085635360457
1115 => 0.0035718400408479
1116 => 0.0035741172496067
1117 => 0.0035394613545968
1118 => 0.0036287983396176
1119 => 0.0036279750835731
1120 => 0.003712787254795
1121 => 0.0038749162721743
1122 => 0.0038269667438508
1123 => 0.0037712066593045
1124 => 0.0037772693265541
1125 => 0.0038437618223447
1126 => 0.0038035589415137
1127 => 0.003818016177765
1128 => 0.0038437399395861
1129 => 0.0038592597237779
1130 => 0.0037750362684448
1201 => 0.0037553997521331
1202 => 0.0037152303312401
1203 => 0.0037047508791268
1204 => 0.0037374680342817
1205 => 0.0037288482198126
1206 => 0.0035739258590283
1207 => 0.0035577356103465
1208 => 0.0035582321421592
1209 => 0.0035175209920444
1210 => 0.0034554267163237
1211 => 0.0036186067654611
1212 => 0.003605501123812
1213 => 0.0035910335097276
1214 => 0.0035928057099018
1215 => 0.0036636366385474
1216 => 0.0036225511228853
1217 => 0.0037317837000565
1218 => 0.0037093287660219
1219 => 0.0036862979476596
1220 => 0.0036831143870261
1221 => 0.0036742494868537
1222 => 0.0036438484456784
1223 => 0.0036071373616399
1224 => 0.0035828975240981
1225 => 0.0033050335747339
1226 => 0.0033566035074757
1227 => 0.0034159300143478
1228 => 0.003436409286784
1229 => 0.0034013780741594
1230 => 0.0036452316914706
1231 => 0.0036897860971853
]
'min_raw' => 0.0015378677725755
'max_raw' => 0.0040399885523734
'avg_raw' => 0.0027889281624745
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001537'
'max' => '$0.004039'
'avg' => '$0.002788'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.9626598825939E-5
'max_diff' => -0.00072857105172129
'year' => 2027
]
2 => [
'items' => [
101 => 0.0035548278960635
102 => 0.0035295827269407
103 => 0.0036468867605554
104 => 0.0035761380884508
105 => 0.0036079962111675
106 => 0.0035391363753155
107 => 0.0036790542455539
108 => 0.0036779883058092
109 => 0.003623557094098
110 => 0.0036695619815075
111 => 0.0036615675001954
112 => 0.0036001147962317
113 => 0.0036810024058807
114 => 0.003681042525126
115 => 0.0036286536672906
116 => 0.0035674749507345
117 => 0.003556537641191
118 => 0.0035482978476708
119 => 0.0036059697270701
120 => 0.0036576781538042
121 => 0.0037538947163502
122 => 0.0037780858462234
123 => 0.0038725054366132
124 => 0.0038162831677425
125 => 0.0038412057713326
126 => 0.0038682627830472
127 => 0.0038812349094519
128 => 0.0038600975255982
129 => 0.0040067700141275
130 => 0.0040191536660883
131 => 0.0040233057974726
201 => 0.003973848659584
202 => 0.0040177781736163
203 => 0.0039972250087932
204 => 0.0040506986338294
205 => 0.0040590839810206
206 => 0.004051981890267
207 => 0.0040546435318192
208 => 0.0039294844376594
209 => 0.0039229942783604
210 => 0.0038345004957979
211 => 0.0038705623663051
212 => 0.0038031464278822
213 => 0.0038245247164172
214 => 0.0038339480623037
215 => 0.0038290258411828
216 => 0.0038726012503568
217 => 0.0038355532506909
218 => 0.0037377774883175
219 => 0.0036399750870031
220 => 0.0036387472575227
221 => 0.0036129976116124
222 => 0.0035943853339021
223 => 0.0035979707188951
224 => 0.0036106060832596
225 => 0.0035936509435554
226 => 0.0035972691822587
227 => 0.0036573560529319
228 => 0.0036694060463255
229 => 0.0036284554605378
301 => 0.003464032949459
302 => 0.0034236832528176
303 => 0.0034526858145941
304 => 0.0034388244580691
305 => 0.0027753997269065
306 => 0.002931261526775
307 => 0.0028386537378598
308 => 0.0028813316676714
309 => 0.0027868030958596
310 => 0.0028319170849951
311 => 0.0028235861785009
312 => 0.0030742073404036
313 => 0.0030702942356786
314 => 0.0030721672318335
315 => 0.0029827642452922
316 => 0.0031251856304081
317 => 0.0031953475260236
318 => 0.0031823624264436
319 => 0.0031856304962549
320 => 0.0031294742292633
321 => 0.0030727109472495
322 => 0.0030097517316898
323 => 0.0031267221722056
324 => 0.0031137170559722
325 => 0.0031435461135184
326 => 0.0032194098054127
327 => 0.0032305810222223
328 => 0.0032455952509016
329 => 0.0032402137187056
330 => 0.0033684236486435
331 => 0.0033528965801716
401 => 0.0033903123477463
402 => 0.0033133452751042
403 => 0.003226249726628
404 => 0.0032428037430253
405 => 0.0032412094581273
406 => 0.00322091238154
407 => 0.0032025890883406
408 => 0.0031720859677195
409 => 0.0032686023549771
410 => 0.0032646839659141
411 => 0.0033281181302156
412 => 0.0033169055255087
413 => 0.0032420250070863
414 => 0.0032446993794508
415 => 0.0032626858188619
416 => 0.0033249370910293
417 => 0.0033434175069983
418 => 0.0033348566420042
419 => 0.0033551195744513
420 => 0.0033711345700711
421 => 0.0033571308113299
422 => 0.0035553945037917
423 => 0.0034730615957851
424 => 0.0035131900822788
425 => 0.0035227604898568
426 => 0.0034982460920898
427 => 0.0035035623871707
428 => 0.0035116151256146
429 => 0.0035605097765578
430 => 0.003688823488414
501 => 0.0037456527579342
502 => 0.0039166264191924
503 => 0.0037409338782022
504 => 0.0037305090099078
505 => 0.0037613065292103
506 => 0.003861686167769
507 => 0.0039430344366407
508 => 0.0039700223505196
509 => 0.0039735892488607
510 => 0.0040242203694202
511 => 0.0040532411835104
512 => 0.0040180724196536
513 => 0.003988270574608
514 => 0.0038815240647958
515 => 0.0038938802639677
516 => 0.0039790022232086
517 => 0.0040992420042948
518 => 0.0042024202452838
519 => 0.0041662908214142
520 => 0.0044419328221409
521 => 0.0044692616006163
522 => 0.0044654856470762
523 => 0.0045277446715108
524 => 0.004404173186838
525 => 0.0043513439830556
526 => 0.0039947140717722
527 => 0.0040949125300978
528 => 0.0042405568737232
529 => 0.0042212802987061
530 => 0.0041155094832808
531 => 0.0042023400086356
601 => 0.0041736311215117
602 => 0.0041509872311043
603 => 0.0042547232827948
604 => 0.004140661232719
605 => 0.0042394190175207
606 => 0.004112761136994
607 => 0.0041664558575791
608 => 0.0041359761372536
609 => 0.0041557002517582
610 => 0.0040403934813941
611 => 0.004102610215769
612 => 0.0040378050606945
613 => 0.0040377743346131
614 => 0.004036343757223
615 => 0.0041125867347781
616 => 0.0041150730155389
617 => 0.004058729339929
618 => 0.0040506093360199
619 => 0.004080633246338
620 => 0.0040454831106301
621 => 0.0040619296378955
622 => 0.0040459812591867
623 => 0.0040423909432151
624 => 0.0040137826947114
625 => 0.0040014574746558
626 => 0.0040062905110214
627 => 0.0039897928663046
628 => 0.0039798524386169
629 => 0.004034366355959
630 => 0.0040052417690082
701 => 0.0040299025953034
702 => 0.0040017984712957
703 => 0.0039043773331009
704 => 0.0038483494063153
705 => 0.0036643299072098
706 => 0.0037165176088806
707 => 0.0037511181090805
708 => 0.0037396826439708
709 => 0.0037642504479639
710 => 0.0037657587115976
711 => 0.0037577714680804
712 => 0.0037485232633166
713 => 0.0037440217486955
714 => 0.00377757235066
715 => 0.0037970496043617
716 => 0.0037545907321705
717 => 0.0037446432124789
718 => 0.0037875714764828
719 => 0.0038137576927263
720 => 0.0040071020007046
721 => 0.0039927784298757
722 => 0.0040287277817975
723 => 0.0040246804364589
724 => 0.0040623610844538
725 => 0.0041239530188954
726 => 0.0039987193947998
727 => 0.0040204556216899
728 => 0.0040151264008192
729 => 0.0040733094368884
730 => 0.0040734910779762
731 => 0.0040386074413945
801 => 0.0040575184267078
802 => 0.0040469628335016
803 => 0.0040660382170991
804 => 0.0039925871298546
805 => 0.0040820426255635
806 => 0.0041327581272456
807 => 0.0041334623120357
808 => 0.0041575010573299
809 => 0.0041819258147791
810 => 0.0042288070097547
811 => 0.004180618323696
812 => 0.0040939315685505
813 => 0.0041001900722755
814 => 0.0040493656594511
815 => 0.0040502200270129
816 => 0.0040456593460102
817 => 0.0040593462930112
818 => 0.0039955906450375
819 => 0.004010553968184
820 => 0.0039896052281539
821 => 0.0040204100832203
822 => 0.0039872691513938
823 => 0.0040151238309076
824 => 0.0040271449871885
825 => 0.004071503312662
826 => 0.0039807173906547
827 => 0.0037955987500152
828 => 0.0038345129326242
829 => 0.0037769557999024
830 => 0.0037822829316712
831 => 0.0037930445856511
901 => 0.0037581625441084
902 => 0.0037648169383753
903 => 0.0037645791965858
904 => 0.0037625304662827
905 => 0.0037534563000691
906 => 0.0037402969637903
907 => 0.003792719709295
908 => 0.0038016273552804
909 => 0.0038214279488823
910 => 0.0038803410845705
911 => 0.0038744542730479
912 => 0.0038840559068828
913 => 0.003863095594132
914 => 0.0037832552204641
915 => 0.0037875909368779
916 => 0.0037335244837228
917 => 0.0038200453481172
918 => 0.003799556065409
919 => 0.0037863464915563
920 => 0.0037827421369448
921 => 0.0038418013069013
922 => 0.0038594727361913
923 => 0.0038484610873433
924 => 0.0038258758742948
925 => 0.0038692461600667
926 => 0.0038808502188938
927 => 0.003883447939724
928 => 0.0039602917706844
929 => 0.0038877426562462
930 => 0.0039052059491677
1001 => 0.004041449575424
1002 => 0.0039178954067448
1003 => 0.0039833448054809
1004 => 0.003980141397995
1005 => 0.0040136230957015
1006 => 0.0039773949215255
1007 => 0.0039778440131635
1008 => 0.0040075734924803
1009 => 0.0039658238005198
1010 => 0.0039554859896631
1011 => 0.0039412043780054
1012 => 0.0039723877545776
1013 => 0.0039910807785299
1014 => 0.0041417328230716
1015 => 0.0042390609144134
1016 => 0.0042348356452837
1017 => 0.004273446695757
1018 => 0.0042560520638821
1019 => 0.0041998802090859
1020 => 0.0042957587157951
1021 => 0.0042654187445452
1022 => 0.004267919934912
1023 => 0.0042678268404816
1024 => 0.0042880002689964
1025 => 0.0042737055460261
1026 => 0.0042455291797283
1027 => 0.0042642339666127
1028 => 0.0043197804965758
1029 => 0.0044921986299567
1030 => 0.004588686101633
1031 => 0.0044863899630085
1101 => 0.0045569524696318
1102 => 0.0045146401096497
1103 => 0.0045069506951573
1104 => 0.004551269163845
1105 => 0.0045956652061454
1106 => 0.0045928373701802
1107 => 0.0045606081232322
1108 => 0.0045424026394181
1109 => 0.0046802606621429
1110 => 0.0047818321049365
1111 => 0.0047749056134815
1112 => 0.0048054768941479
1113 => 0.0048952351197184
1114 => 0.0049034414869779
1115 => 0.0049024076733244
1116 => 0.004882067335826
1117 => 0.0049704459654786
1118 => 0.0050441729732089
1119 => 0.0048773591353839
1120 => 0.0049408796610742
1121 => 0.0049693960715601
1122 => 0.0050112666225911
1123 => 0.0050819092604996
1124 => 0.0051586459023025
1125 => 0.0051694973048279
1126 => 0.0051617977154487
1127 => 0.005111187837388
1128 => 0.0051951539865073
1129 => 0.0052443393874128
1130 => 0.0052736281680642
1201 => 0.0053478996426077
1202 => 0.0049695721792031
1203 => 0.0047017731965103
1204 => 0.0046599525182986
1205 => 0.004744996511959
1206 => 0.0047674219348741
1207 => 0.0047583822750161
1208 => 0.0044569501727771
1209 => 0.0046583655406632
1210 => 0.0048750715410234
1211 => 0.0048833961010602
1212 => 0.0049918836559494
1213 => 0.0050272116508764
1214 => 0.005114558352351
1215 => 0.0051090947923918
1216 => 0.0051303623242113
1217 => 0.0051254732869483
1218 => 0.0052872646584121
1219 => 0.0054657445673878
1220 => 0.0054595643756713
1221 => 0.0054339057770776
1222 => 0.0054720131714304
1223 => 0.0056562235645628
1224 => 0.0056392644234745
1225 => 0.0056557387844656
1226 => 0.0058729332196114
1227 => 0.0061553168808491
1228 => 0.0060241213193481
1229 => 0.0063087779372994
1230 => 0.0064879541893008
1231 => 0.0067978209899669
]
'min_raw' => 0.0027753997269065
'max_raw' => 0.0067978209899669
'avg_raw' => 0.0047866103584367
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002775'
'max' => '$0.006797'
'avg' => '$0.004786'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001237531954331
'max_diff' => 0.0027578324375935
'year' => 2028
]
3 => [
'items' => [
101 => 0.0067590241403973
102 => 0.006879653011989
103 => 0.0066895696825209
104 => 0.0062530999358832
105 => 0.0061840269277387
106 => 0.0063223128392511
107 => 0.0066622752589625
108 => 0.0063116062128309
109 => 0.006382546104151
110 => 0.0063621154106784
111 => 0.0063610267458481
112 => 0.0064025766545006
113 => 0.0063423063449026
114 => 0.0060967542611787
115 => 0.0062092893341019
116 => 0.0061658341380682
117 => 0.006214050917867
118 => 0.0064742569923288
119 => 0.0063592136842712
120 => 0.0062380249045919
121 => 0.0063900225282528
122 => 0.0065835677352234
123 => 0.0065714560240053
124 => 0.0065479542419398
125 => 0.00668043255693
126 => 0.0068992479207895
127 => 0.0069583928343694
128 => 0.0070020524004095
129 => 0.007008072316932
130 => 0.0070700811984713
131 => 0.0067366438141845
201 => 0.007265817506327
202 => 0.0073571911848318
203 => 0.0073400167203238
204 => 0.0074415747183897
205 => 0.007411693779081
206 => 0.0073684009861984
207 => 0.0075293920151385
208 => 0.0073448287917648
209 => 0.0070828645320495
210 => 0.0069391457581042
211 => 0.0071284062330982
212 => 0.0072439810008967
213 => 0.0073203685704757
214 => 0.0073434834028757
215 => 0.0067625276091522
216 => 0.0064494246576207
217 => 0.0066501200598197
218 => 0.0068949823017593
219 => 0.0067352835920671
220 => 0.0067415434791374
221 => 0.0065138550871989
222 => 0.0069151276722212
223 => 0.0068566656318171
224 => 0.0071599668008511
225 => 0.0070875815427172
226 => 0.0073349118719808
227 => 0.0072697815073437
228 => 0.0075401340095626
301 => 0.0076479849421995
302 => 0.0078290834437541
303 => 0.0079623002387013
304 => 0.0080405276887255
305 => 0.0080358312060498
306 => 0.0083458073358064
307 => 0.00816302524183
308 => 0.0079334078533638
309 => 0.00792925479924
310 => 0.0080481768984302
311 => 0.0082974049936483
312 => 0.0083620262126171
313 => 0.0083981406582318
314 => 0.00834283012762
315 => 0.0081444332647193
316 => 0.0080587665052137
317 => 0.0081317570663174
318 => 0.008042495882238
319 => 0.0081965857282239
320 => 0.0084081839985777
321 => 0.0083644897924999
322 => 0.0085105529724165
323 => 0.0086617129973356
324 => 0.0088778786219914
325 => 0.0089343923208663
326 => 0.0090278073160831
327 => 0.0091239620313885
328 => 0.0091548443345023
329 => 0.0092138082333626
330 => 0.0092134974645102
331 => 0.0093911891424537
401 => 0.0095871885658786
402 => 0.0096611738108244
403 => 0.009831298802007
404 => 0.0095399657164975
405 => 0.0097609452084498
406 => 0.0099602742416662
407 => 0.0097226259508941
408 => 0.010050168754773
409 => 0.01006288649962
410 => 0.010254909347603
411 => 0.010060257404046
412 => 0.0099446737013127
413 => 0.010278359520238
414 => 0.010439819577011
415 => 0.010391186493906
416 => 0.010021086330161
417 => 0.0098056721605181
418 => 0.0092418917282736
419 => 0.0099097140037694
420 => 0.010234990753521
421 => 0.01002024394196
422 => 0.010128549742635
423 => 0.010719431072845
424 => 0.010944400426656
425 => 0.010897608373718
426 => 0.010905515460402
427 => 0.011026904840236
428 => 0.011565212200771
429 => 0.011242645952471
430 => 0.01148923576297
501 => 0.011620026109313
502 => 0.011741511472021
503 => 0.011443181817053
504 => 0.011055059319272
505 => 0.01093212463195
506 => 0.0099988916037471
507 => 0.0099503127718035
508 => 0.0099230440013443
509 => 0.0097511182608432
510 => 0.009616031723233
511 => 0.0095086058930839
512 => 0.009226688434704
513 => 0.0093218273011334
514 => 0.0088725097132223
515 => 0.0091599671831302
516 => 0.0084428454636716
517 => 0.0090400857410237
518 => 0.0087150350112442
519 => 0.0089332978340798
520 => 0.0089325363356525
521 => 0.0085306452785211
522 => 0.0082988429040202
523 => 0.0084465563989356
524 => 0.0086049169909967
525 => 0.0086306104642696
526 => 0.0088359291055113
527 => 0.0088932291249724
528 => 0.0087196073909231
529 => 0.0084279847099911
530 => 0.0084957220075664
531 => 0.0082974702098468
601 => 0.0079500415599885
602 => 0.008199570881839
603 => 0.0082847711633486
604 => 0.0083224004614162
605 => 0.0079807442867305
606 => 0.0078733884989279
607 => 0.0078162331783041
608 => 0.0083838811881737
609 => 0.0084149782275473
610 => 0.0082558813774337
611 => 0.0089750142261293
612 => 0.0088122523144184
613 => 0.008994097247436
614 => 0.0084895755578002
615 => 0.0085088489657728
616 => 0.0082700003125805
617 => 0.0084037395984954
618 => 0.0083092169818292
619 => 0.0083929347858309
620 => 0.0084431148923681
621 => 0.0086819243528467
622 => 0.0090428125614574
623 => 0.0086462541830449
624 => 0.0084734680187499
625 => 0.0085806635832922
626 => 0.0088661394977347
627 => 0.0092986501213582
628 => 0.0090425951270856
629 => 0.009156227985448
630 => 0.0091810517098262
701 => 0.0089922462367207
702 => 0.0093056116484609
703 => 0.0094735467183886
704 => 0.0096458133508681
705 => 0.0097953876410486
706 => 0.0095770062696313
707 => 0.0098107056407877
708 => 0.009622385201128
709 => 0.0094534422985441
710 => 0.0094536985151907
711 => 0.0093477181645379
712 => 0.0091423678807644
713 => 0.0091044981377979
714 => 0.0093015013231306
715 => 0.0094594792214963
716 => 0.0094724910378688
717 => 0.0095599557196016
718 => 0.0096117164172932
719 => 0.010119041619927
720 => 0.01032309201324
721 => 0.010572600971708
722 => 0.010669798772585
723 => 0.010962329305886
724 => 0.010726087142077
725 => 0.010674974663905
726 => 0.0099653912761246
727 => 0.010081585516122
728 => 0.010267623705434
729 => 0.0099684589773443
730 => 0.010158210139089
731 => 0.010195671037897
801 => 0.0099582934743605
802 => 0.010085087087524
803 => 0.0097483608426478
804 => 0.0090501522734291
805 => 0.009306388954192
806 => 0.0094950653995676
807 => 0.0092258008483786
808 => 0.0097084471344076
809 => 0.0094264951379512
810 => 0.0093371298911571
811 => 0.0089884842024026
812 => 0.0091530315468915
813 => 0.0093755841864037
814 => 0.0092380725297065
815 => 0.0095234298648324
816 => 0.009927571953392
817 => 0.010215587672777
818 => 0.010237697943406
819 => 0.010052523131396
820 => 0.010349266949412
821 => 0.010351428404164
822 => 0.010016700165208
823 => 0.0098116809826216
824 => 0.009765100192974
825 => 0.0098814681382154
826 => 0.010022760306446
827 => 0.010245538675399
828 => 0.01038015897799
829 => 0.010731177330054
830 => 0.010826152831637
831 => 0.010930502113105
901 => 0.011069944933272
902 => 0.011237381791289
903 => 0.010871039478135
904 => 0.010885594941184
905 => 0.01054446205153
906 => 0.010179912635529
907 => 0.010456560200548
908 => 0.010818240090925
909 => 0.010735270324452
910 => 0.010725934530805
911 => 0.010741634746186
912 => 0.010679078251804
913 => 0.010396137546167
914 => 0.010254046495099
915 => 0.01043738020227
916 => 0.010534813908387
917 => 0.010685925089463
918 => 0.010667297446825
919 => 0.011056543621119
920 => 0.011207792914256
921 => 0.011169096872749
922 => 0.011176217875659
923 => 0.011450047496276
924 => 0.011754602351759
925 => 0.012039858163471
926 => 0.012330032627167
927 => 0.01198021598548
928 => 0.011802600668522
929 => 0.011985854337931
930 => 0.01188861736146
1001 => 0.012447369870624
1002 => 0.01248605668205
1003 => 0.013044768787047
1004 => 0.013575053104889
1005 => 0.013241991025883
1006 => 0.01355605356494
1007 => 0.013895737806825
1008 => 0.014551043821203
1009 => 0.014330359809504
1010 => 0.014161319315102
1011 => 0.01400157686469
1012 => 0.014333975545598
1013 => 0.014761601138388
1014 => 0.014853707595328
1015 => 0.015002955242945
1016 => 0.014846039590609
1017 => 0.015035027210155
1018 => 0.01570223655252
1019 => 0.015521950698594
1020 => 0.01526591580362
1021 => 0.015792613499951
1022 => 0.015983223348768
1023 => 0.017321023090916
1024 => 0.019010050527128
1025 => 0.018310782077784
1026 => 0.017876723586024
1027 => 0.017978737627593
1028 => 0.018595513270111
1029 => 0.018793602031007
1030 => 0.0182551284936
1031 => 0.01844532645025
1101 => 0.019493335891237
1102 => 0.020055559332158
1103 => 0.019291984382705
1104 => 0.017185311380985
1105 => 0.015242862662666
1106 => 0.01575808753237
1107 => 0.015699677021435
1108 => 0.016825632423936
1109 => 0.015517650940602
1110 => 0.015539673994276
1111 => 0.016688912962092
1112 => 0.016382315708423
1113 => 0.015885667423487
1114 => 0.01524648874477
1115 => 0.01406490784029
1116 => 0.013018348682371
1117 => 0.01507089219923
1118 => 0.014982382790475
1119 => 0.014854208050238
1120 => 0.01513944706468
1121 => 0.016524486752303
1122 => 0.016492557104567
1123 => 0.016289436976322
1124 => 0.016443501803377
1125 => 0.015858659114412
1126 => 0.016009386391979
1127 => 0.015242554968865
1128 => 0.015589194797822
1129 => 0.015884601839324
1130 => 0.015943909176481
1201 => 0.016077531635405
1202 => 0.01493574235396
1203 => 0.015448372220157
1204 => 0.015749494239624
1205 => 0.014389014000756
1206 => 0.01572260191958
1207 => 0.014915866342822
1208 => 0.014642048171308
1209 => 0.01501070826645
1210 => 0.01486704106884
1211 => 0.014743524448755
1212 => 0.014674600052463
1213 => 0.014945303338805
1214 => 0.014932674706937
1215 => 0.014489751589237
1216 => 0.013911976438054
1217 => 0.014105896743614
1218 => 0.014035443678592
1219 => 0.013780112682324
1220 => 0.013952174945026
1221 => 0.013194499818803
1222 => 0.011890959144663
1223 => 0.012752118042531
1224 => 0.012718964361724
1225 => 0.012702246772461
1226 => 0.013349383883525
1227 => 0.013287176582289
1228 => 0.013174269721411
1229 => 0.013778039059281
1230 => 0.013557655129115
1231 => 0.014236826472903
]
'min_raw' => 0.0060967542611787
'max_raw' => 0.020055559332158
'avg_raw' => 0.013076156796668
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006096'
'max' => '$0.020055'
'avg' => '$0.013076'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0033213545342722
'max_diff' => 0.013257738342191
'year' => 2029
]
4 => [
'items' => [
101 => 0.014684172645969
102 => 0.014570711186347
103 => 0.014991442424328
104 => 0.01411036427579
105 => 0.014403023094015
106 => 0.014463339670843
107 => 0.013770588639373
108 => 0.013297354466102
109 => 0.013265795142009
110 => 0.012445272301245
111 => 0.012883588979752
112 => 0.013269289518062
113 => 0.013084568891783
114 => 0.013026091859874
115 => 0.013324838333774
116 => 0.013348053493386
117 => 0.012818745393989
118 => 0.012928805308861
119 => 0.013387773449817
120 => 0.0129172404893
121 => 0.012003071808139
122 => 0.01177634533584
123 => 0.011746095845037
124 => 0.01113119567026
125 => 0.011791496282854
126 => 0.0115032573705
127 => 0.012413800640993
128 => 0.011893703208229
129 => 0.011871282847408
130 => 0.011837391183675
131 => 0.011308121202038
201 => 0.011423997691155
202 => 0.011809188789466
203 => 0.011946629312831
204 => 0.011932293140227
205 => 0.011807301142944
206 => 0.011864521839237
207 => 0.011680194039463
208 => 0.011615104056911
209 => 0.011409662167567
210 => 0.011107719345002
211 => 0.011149706346403
212 => 0.010551478607265
213 => 0.010225532384633
214 => 0.010135314766111
215 => 0.010014671996169
216 => 0.010148941687994
217 => 0.010549783903243
218 => 0.010066283148233
219 => 0.0092373550174018
220 => 0.0092871750104896
221 => 0.009399105743269
222 => 0.0091905235632304
223 => 0.0089931180347993
224 => 0.0091647461257534
225 => 0.0088135183491539
226 => 0.0094415499420605
227 => 0.0094245634475106
228 => 0.009658654788133
301 => 0.0098050369074621
302 => 0.0094676735141825
303 => 0.0093828275331002
304 => 0.0094311596599595
305 => 0.0086323372641188
306 => 0.0095933739560299
307 => 0.0096016850412494
308 => 0.0095305204837934
309 => 0.010042242853557
310 => 0.011122136663968
311 => 0.010715837173863
312 => 0.010558505730828
313 => 0.010259418542609
314 => 0.010657934462871
315 => 0.010627334658011
316 => 0.010488950735806
317 => 0.010405255707872
318 => 0.01055946636307
319 => 0.01038614730112
320 => 0.010355014435104
321 => 0.010166383139941
322 => 0.010099050349746
323 => 0.01004919983248
324 => 0.0099943193111816
325 => 0.010115372065792
326 => 0.0098410505980281
327 => 0.0095102457999695
328 => 0.0094827429603684
329 => 0.0095586807185814
330 => 0.0095250839134734
331 => 0.0094825821117912
401 => 0.0094014345977031
402 => 0.0093773598637154
403 => 0.0094555910697748
404 => 0.0093672725992964
405 => 0.0094975913134433
406 => 0.0094621518340587
407 => 0.009264189783078
408 => 0.0090174557726176
409 => 0.0090152593223824
410 => 0.0089621008845536
411 => 0.0088943956215539
412 => 0.008875561566274
413 => 0.0091502920866429
414 => 0.009718976041814
415 => 0.0096073297739602
416 => 0.0096880056444543
417 => 0.010084851079442
418 => 0.010210996309665
419 => 0.010121461413166
420 => 0.0099989005245658
421 => 0.010004292581657
422 => 0.010423120239708
423 => 0.010449242006996
424 => 0.010515243285732
425 => 0.010600073580867
426 => 0.010135908379244
427 => 0.0099824304424024
428 => 0.0099097040812951
429 => 0.0096857350377284
430 => 0.0099272664495605
501 => 0.0097865364392922
502 => 0.0098055257256991
503 => 0.0097931589280152
504 => 0.0097999120357898
505 => 0.009441374394431
506 => 0.0095720066667585
507 => 0.0093548051774681
508 => 0.0090639967653197
509 => 0.0090630218735516
510 => 0.0091341968204369
511 => 0.0090918591769536
512 => 0.0089779296669402
513 => 0.0089941128161055
514 => 0.008852331400708
515 => 0.0090113276469702
516 => 0.0090158870903971
517 => 0.008954664875002
518 => 0.0091996205296229
519 => 0.0092999790611859
520 => 0.0092596812875059
521 => 0.0092971516619588
522 => 0.0096119691804422
523 => 0.0096632981724063
524 => 0.0096860951200339
525 => 0.0096555502302297
526 => 0.0093029059482781
527 => 0.0093185472217419
528 => 0.0092037819352123
529 => 0.0091068173617627
530 => 0.0091106954361885
531 => 0.0091605478314538
601 => 0.0093782561653816
602 => 0.0098364105195255
603 => 0.0098537971423588
604 => 0.0098748702364363
605 => 0.0097891553723345
606 => 0.0097633029491407
607 => 0.00979740896841
608 => 0.0099694676552149
609 => 0.010412049311155
610 => 0.010255611394911
611 => 0.010128424933903
612 => 0.01024000174943
613 => 0.010222825373248
614 => 0.010077839472574
615 => 0.010073770201233
616 => 0.0097954959030429
617 => 0.0096926242310013
618 => 0.0096066569620322
619 => 0.0095127829485503
620 => 0.0094571312866728
621 => 0.0095426375325446
622 => 0.0095621938226557
623 => 0.0093752329216635
624 => 0.0093497508417025
625 => 0.0095024271492841
626 => 0.0094352399986639
627 => 0.0095043436492379
628 => 0.0095203762889312
629 => 0.0095177946646776
630 => 0.009447643563035
701 => 0.009492355783286
702 => 0.009386598053038
703 => 0.0092716024056907
704 => 0.0091982423471652
705 => 0.0091342259663019
706 => 0.0091697459750588
707 => 0.009043123629538
708 => 0.0090026145928016
709 => 0.0094772082891218
710 => 0.0098277957553355
711 => 0.0098226980747289
712 => 0.0097916672550531
713 => 0.0097455617513868
714 => 0.0099660947504482
715 => 0.0098892654632717
716 => 0.0099451651889944
717 => 0.0099593940152949
718 => 0.010002460387058
719 => 0.010017852913284
720 => 0.0099713260082331
721 => 0.0098151760320997
722 => 0.0094260651378695
723 => 0.0092449329662206
724 => 0.0091851563325815
725 => 0.0091873290996823
726 => 0.009127394483383
727 => 0.0091450479139642
728 => 0.0091212553406585
729 => 0.0090761979628591
730 => 0.009166963808948
731 => 0.0091774237271674
801 => 0.0091562378941192
802 => 0.0091612279247404
803 => 0.0089858182756886
804 => 0.0089991542903362
805 => 0.0089248976661192
806 => 0.0089109754442554
807 => 0.0087232611644986
808 => 0.0083906981082895
809 => 0.0085749703241063
810 => 0.0083523953999942
811 => 0.0082681029036725
812 => 0.0086671304710867
813 => 0.0086270791706202
814 => 0.0085585287541035
815 => 0.0084571284009165
816 => 0.0084195180235602
817 => 0.0081910092767421
818 => 0.0081775077609334
819 => 0.0082907628661116
820 => 0.0082384995319421
821 => 0.0081651020170956
822 => 0.0078992636585084
823 => 0.0076003733274006
824 => 0.0076093949477392
825 => 0.0077044664010122
826 => 0.0079808994735359
827 => 0.0078728922897602
828 => 0.0077945318386913
829 => 0.0077798572817126
830 => 0.007963540085567
831 => 0.008223489735758
901 => 0.0083454522955821
902 => 0.0082245911028545
903 => 0.0080857522722777
904 => 0.0080942027485778
905 => 0.0081504199815216
906 => 0.0081563276178352
907 => 0.0080659578119921
908 => 0.0080913963829928
909 => 0.0080527528674911
910 => 0.0078155976841876
911 => 0.0078113082989489
912 => 0.0077531065923223
913 => 0.0077513442677764
914 => 0.0076523286457085
915 => 0.0076384756757185
916 => 0.0074418741482839
917 => 0.0075712778690056
918 => 0.0074844806471457
919 => 0.0073536567604081
920 => 0.007331102673024
921 => 0.0073304246699224
922 => 0.0074647515499161
923 => 0.0075697081812039
924 => 0.0074859905219811
925 => 0.0074669296337747
926 => 0.007670450052469
927 => 0.0076445502240604
928 => 0.0076221211396944
929 => 0.0082002140957362
930 => 0.0077426084118732
1001 => 0.0075430662144897
1002 => 0.0072960948531921
1003 => 0.0073765099737683
1004 => 0.0073934546212176
1005 => 0.0067995330172307
1006 => 0.0065585790964615
1007 => 0.0064758927910104
1008 => 0.0064283056532106
1009 => 0.0064499917094676
1010 => 0.0062331049196993
1011 => 0.0063788564294
1012 => 0.0061910508024446
1013 => 0.0061595645779131
1014 => 0.0064953843035622
1015 => 0.0065421116565559
1016 => 0.0063427582516342
1017 => 0.0064707754099785
1018 => 0.0064243546087913
1019 => 0.0061942701908839
1020 => 0.0061854826585062
1021 => 0.0060700343854587
1022 => 0.00588938019333
1023 => 0.005806816379928
1024 => 0.0057638164290564
1025 => 0.0057815590468384
1026 => 0.0057725878363547
1027 => 0.0057140446195885
1028 => 0.0057759434650115
1029 => 0.0056178174933244
1030 => 0.0055548504572911
1031 => 0.005526409707939
1101 => 0.0053860638066753
1102 => 0.0056094165476914
1103 => 0.0056534198513952
1104 => 0.0056975098552007
1105 => 0.0060812832368032
1106 => 0.0060621110031906
1107 => 0.0062354186577915
1108 => 0.0062286842410261
1109 => 0.006179254090536
1110 => 0.0059707164164836
1111 => 0.0060538358165343
1112 => 0.005798007222801
1113 => 0.0059896913998794
1114 => 0.0059022147463835
1115 => 0.0059601154553388
1116 => 0.0058560047599406
1117 => 0.0059136239173992
1118 => 0.0056638546671183
1119 => 0.0054306236555542
1120 => 0.0055244826230453
1121 => 0.005626518054783
1122 => 0.0058477568689348
1123 => 0.0057159888564065
1124 => 0.0057633776164119
1125 => 0.0056046332031766
1126 => 0.0052770981355723
1127 => 0.0052789519484847
1128 => 0.0052285678140731
1129 => 0.0051850285657375
1130 => 0.0057311239977362
1201 => 0.0056632083982759
1202 => 0.0055549937791099
1203 => 0.0056998433471417
1204 => 0.0057381438720011
1205 => 0.0057392342340996
1206 => 0.0058449127398271
1207 => 0.0059013133772778
1208 => 0.0059112542340829
1209 => 0.0060775416461804
1210 => 0.0061332789933314
1211 => 0.0063628532380021
1212 => 0.0058965281772395
1213 => 0.0058869245194868
1214 => 0.0057018816776133
1215 => 0.0055845245818855
1216 => 0.0057099172183611
1217 => 0.0058209979764767
1218 => 0.0057053332664043
1219 => 0.0057204366357245
1220 => 0.0055651662126063
1221 => 0.0056206680827186
1222 => 0.0056684737701686
1223 => 0.0056420782794472
1224 => 0.0056025629522809
1225 => 0.0058118906210595
1226 => 0.0058000795336253
1227 => 0.0059950102712142
1228 => 0.0061469727207955
1229 => 0.0064193165969824
1230 => 0.006135111564574
1231 => 0.0061247540035804
]
'min_raw' => 0.0051850285657375
'max_raw' => 0.014991442424328
'avg_raw' => 0.010088235495033
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005185'
'max' => '$0.014991'
'avg' => '$0.010088'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00091172569544126
'max_diff' => -0.00506411690783
'year' => 2030
]
5 => [
'items' => [
101 => 0.0062260008236983
102 => 0.0061332634929708
103 => 0.0061918702848067
104 => 0.0064098741367601
105 => 0.0064144802146259
106 => 0.0063373224757776
107 => 0.0063326274203565
108 => 0.0063474464081155
109 => 0.0064342416822827
110 => 0.0064039127465393
111 => 0.0064390101588162
112 => 0.0064829000102992
113 => 0.0066644470449441
114 => 0.0067082174203724
115 => 0.0066018781004193
116 => 0.0066114793503802
117 => 0.0065717055256382
118 => 0.0065332845093019
119 => 0.006619649343087
120 => 0.0067774827743343
121 => 0.00677650090075
122 => 0.0068131151889559
123 => 0.006835925587179
124 => 0.0067380066597734
125 => 0.006674265038611
126 => 0.0066987076321494
127 => 0.0067377918715077
128 => 0.0066860331400897
129 => 0.0063665542728013
130 => 0.0064634637527475
131 => 0.006447333276653
201 => 0.0064243615171615
202 => 0.0065218047486263
203 => 0.0065124061112372
204 => 0.0062308804321871
205 => 0.0062489027927521
206 => 0.006231976431625
207 => 0.0062866689672343
208 => 0.0061303099165623
209 => 0.0061784049074547
210 => 0.0062085696348799
211 => 0.0062263368910697
212 => 0.0062905244035489
213 => 0.0062829927398089
214 => 0.0062900562247558
215 => 0.0063852293608874
216 => 0.0068665824239644
217 => 0.006892781409142
218 => 0.0067637680242988
219 => 0.0068153063268672
220 => 0.0067163640561237
221 => 0.0067827846653294
222 => 0.0068282279592474
223 => 0.0066228784522749
224 => 0.0066107189871792
225 => 0.0065113683464887
226 => 0.0065647537532878
227 => 0.0064798137325237
228 => 0.0065006550425435
301 => 0.0064423809228156
302 => 0.0065472627360643
303 => 0.0066645369002624
304 => 0.0066941649854359
305 => 0.006616226249037
306 => 0.0065597934674712
307 => 0.0064607160931555
308 => 0.0066254839747258
309 => 0.0066736671245071
310 => 0.0066252308891522
311 => 0.0066140071550678
312 => 0.0065927381992587
313 => 0.0066185194645875
314 => 0.0066734047087255
315 => 0.0066475218411614
316 => 0.0066646179311849
317 => 0.0065994652654265
318 => 0.0067380390750127
319 => 0.006958127634239
320 => 0.006958835254945
321 => 0.0069329522478626
322 => 0.0069223614790216
323 => 0.0069489190150004
324 => 0.0069633253888218
325 => 0.0070492075903581
326 => 0.0071413626143044
327 => 0.007571409900675
328 => 0.0074506543435242
329 => 0.0078322178796197
330 => 0.0081339850968471
331 => 0.0082244718906124
401 => 0.0081412282980809
402 => 0.0078564564647612
403 => 0.0078424842000428
404 => 0.0082680535465893
405 => 0.008147810713879
406 => 0.0081335082115376
407 => 0.0079813537510846
408 => 0.0080712958819088
409 => 0.0080516242185261
410 => 0.0080205715355058
411 => 0.0081921748556954
412 => 0.0085134009519563
413 => 0.0084633348524148
414 => 0.0084259628316066
415 => 0.0082622095152566
416 => 0.0083608255873266
417 => 0.008325710292929
418 => 0.0084765878823779
419 => 0.0083872113407361
420 => 0.0081468997561591
421 => 0.0081851701680804
422 => 0.0081793856723078
423 => 0.0082984301854124
424 => 0.0082626959774448
425 => 0.0081724079946886
426 => 0.008512303036081
427 => 0.0084902321426886
428 => 0.0085215236234104
429 => 0.0085352991009454
430 => 0.0087421872230185
501 => 0.0088269426669503
502 => 0.0088461836365757
503 => 0.0089266947530897
504 => 0.0088441804466529
505 => 0.0091742965041035
506 => 0.0093938044195022
507 => 0.0096487741590118
508 => 0.01002135347784
509 => 0.010161446748271
510 => 0.010136140152894
511 => 0.010418625540241
512 => 0.010926245502006
513 => 0.010238744660577
514 => 0.010962684715985
515 => 0.010733493652732
516 => 0.010190085764733
517 => 0.010155096703104
518 => 0.010523098833953
519 => 0.011339292141282
520 => 0.011134844974984
521 => 0.011339626543605
522 => 0.011100737966195
523 => 0.011088875134816
524 => 0.01132802425861
525 => 0.011886809221694
526 => 0.011621351431474
527 => 0.011240752596272
528 => 0.011521780853411
529 => 0.01127832816914
530 => 0.010729761133361
531 => 0.011134688638089
601 => 0.010863925147349
602 => 0.010942948328526
603 => 0.011512052913032
604 => 0.01144357674376
605 => 0.01153219124752
606 => 0.011375788967829
607 => 0.011229684576221
608 => 0.010956969879432
609 => 0.010876232502384
610 => 0.010898545408774
611 => 0.010876221445216
612 => 0.010723640078739
613 => 0.010690690147176
614 => 0.010635772151001
615 => 0.010652793534394
616 => 0.010549531634759
617 => 0.010744408174368
618 => 0.010780578977365
619 => 0.010922393871538
620 => 0.010937117564304
621 => 0.011332070025966
622 => 0.011114536846989
623 => 0.011260476884358
624 => 0.011247422633775
625 => 0.010201863061423
626 => 0.010345931945443
627 => 0.010570057917671
628 => 0.010469089470978
629 => 0.010326343710331
630 => 0.010211068855066
701 => 0.010036415661879
702 => 0.010282236677372
703 => 0.010605465172594
704 => 0.010945315172351
705 => 0.011353622679205
706 => 0.011262493196899
707 => 0.010937682147523
708 => 0.010952252933924
709 => 0.011042323802058
710 => 0.010925673844023
711 => 0.010891271494121
712 => 0.011037597447465
713 => 0.011038605113886
714 => 0.010904385239549
715 => 0.010755224411201
716 => 0.010754599421884
717 => 0.010728057693202
718 => 0.011105459680765
719 => 0.01131299261428
720 => 0.011336785930651
721 => 0.011311391134513
722 => 0.011321164583663
723 => 0.011200405742327
724 => 0.0114764246437
725 => 0.011729726883039
726 => 0.011661836471883
727 => 0.01156005909437
728 => 0.011478988510917
729 => 0.011642738818882
730 => 0.011635447275435
731 => 0.011727514508955
801 => 0.011723337807436
802 => 0.011692379059627
803 => 0.011661837577518
804 => 0.01178293110183
805 => 0.011748058111531
806 => 0.011713130953845
807 => 0.011643079192026
808 => 0.011652600389894
809 => 0.01155084058568
810 => 0.011503761844038
811 => 0.010795810527447
812 => 0.010606622802677
813 => 0.010666145112161
814 => 0.010685741401939
815 => 0.010603406661669
816 => 0.010721453529157
817 => 0.010703056049902
818 => 0.01077462987952
819 => 0.010729913658149
820 => 0.010731748827472
821 => 0.010863249700019
822 => 0.010901424962765
823 => 0.01088200871602
824 => 0.01089560718969
825 => 0.011208978275854
826 => 0.011164426928444
827 => 0.011140759913074
828 => 0.011147315838075
829 => 0.011227388869342
830 => 0.011249804946271
831 => 0.011154826453172
901 => 0.011199618859582
902 => 0.011390339241071
903 => 0.011457080580754
904 => 0.01167008689936
905 => 0.01157959802933
906 => 0.011745694266536
907 => 0.012256217473325
908 => 0.012664058736427
909 => 0.012288991056126
910 => 0.013037939597541
911 => 0.01362110346732
912 => 0.013598720666688
913 => 0.013497032557169
914 => 0.012833115995638
915 => 0.01222217007728
916 => 0.012733252280121
917 => 0.012734555133761
918 => 0.01269065271928
919 => 0.012417978593468
920 => 0.012681164250758
921 => 0.012702054972483
922 => 0.012690361723608
923 => 0.012481303110666
924 => 0.012162109249193
925 => 0.012224478965683
926 => 0.012326641833601
927 => 0.012133226211226
928 => 0.012071418200411
929 => 0.012186331051971
930 => 0.012556604202739
1001 => 0.012486606208433
1002 => 0.012484778277917
1003 => 0.01278425938133
1004 => 0.012569895543354
1005 => 0.012225265647544
1006 => 0.012138242053742
1007 => 0.011829366921862
1008 => 0.012042708075627
1009 => 0.012050385843947
1010 => 0.011933541074323
1011 => 0.01223474695663
1012 => 0.012231971291398
1013 => 0.01251792144807
1014 => 0.013064550749651
1015 => 0.012902885567179
1016 => 0.012714886549086
1017 => 0.012735327255
1018 => 0.012959511346916
1019 => 0.012823964527318
1020 => 0.012872708108712
1021 => 0.012959437567667
1022 => 0.013011763603627
1023 => 0.012727798343677
1024 => 0.012661592457955
1025 => 0.012526158450874
1026 => 0.012490826246422
1027 => 0.012601134419266
1028 => 0.012572072112967
1029 => 0.012049740557249
1030 => 0.011995154003451
1031 => 0.011996828095125
1101 => 0.011859567610151
1102 => 0.011650212424275
1103 => 0.012200385352809
1104 => 0.012156198766982
1105 => 0.012107420196
1106 => 0.012113395292618
1107 => 0.012352206713804
1108 => 0.012213684029251
1109 => 0.012581969289558
1110 => 0.012506260911707
1111 => 0.012428610899638
1112 => 0.012417877302693
1113 => 0.012387988672834
1114 => 0.012285489439979
1115 => 0.012161715457057
1116 => 0.012079989152414
1117 => 0.011143151447291
1118 => 0.011317023076027
1119 => 0.011517046535991
1120 => 0.011586093832827
1121 => 0.011467983653662
1122 => 0.012290153149743
1123 => 0.012440371439299
1124 => 0.011985350441736
1125 => 0.011900234591477
1126 => 0.012295733330715
1127 => 0.0120571992432
1128 => 0.012164611128203
1129 => 0.011932445383987
1130 => 0.01240418825225
1201 => 0.012400594361979
1202 => 0.012217075731429
1203 => 0.012372184421289
1204 => 0.012345230469388
1205 => 0.012138038387483
1206 => 0.012410756610808
1207 => 0.012410891875644
1208 => 0.012234259183779
1209 => 0.012027990869548
1210 => 0.011991114966804
1211 => 0.011963333927667
1212 => 0.012157778695583
1213 => 0.012332117266484
1214 => 0.012656518124734
1215 => 0.012738080208073
1216 => 0.013056422449237
1217 => 0.012866865144426
1218 => 0.012950893442471
1219 => 0.013042118046527
1220 => 0.013085854476385
1221 => 0.013014588310957
1222 => 0.01350910484638
1223 => 0.013550857193565
1224 => 0.01356485639442
1225 => 0.013398108201041
1226 => 0.013546219624662
1227 => 0.013476923194484
1228 => 0.013657213254703
1229 => 0.013685485038205
1230 => 0.013661539843377
1231 => 0.0136705137537
]
'min_raw' => 0.0061303099165623
'max_raw' => 0.013685485038205
'avg_raw' => 0.0099078974773834
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00613'
'max' => '$0.013685'
'avg' => '$0.0099078'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00094528135082485
'max_diff' => -0.0013059573861236
'year' => 2031
]
6 => [
'items' => [
101 => 0.013248531129411
102 => 0.013226649104206
103 => 0.012928286137858
104 => 0.013049871252033
105 => 0.012822573708809
106 => 0.012894652101189
107 => 0.012926423569763
108 => 0.012909827957595
109 => 0.013056745491963
110 => 0.012931835574481
111 => 0.012602177765153
112 => 0.012272430140776
113 => 0.012268290427958
114 => 0.012181473698989
115 => 0.012118721105221
116 => 0.012130809481049
117 => 0.012173410494177
118 => 0.012116245056894
119 => 0.012128444201299
120 => 0.012331031280905
121 => 0.012371658674935
122 => 0.012233590915874
123 => 0.011679228940158
124 => 0.011543187120806
125 => 0.01164097128273
126 => 0.011594236751437
127 => 0.0093574539514864
128 => 0.0098829528916665
129 => 0.0095707192656693
130 => 0.0097146108857072
131 => 0.0093959012060695
201 => 0.0095480061701981
202 => 0.0095199179373075
203 => 0.010364904682473
204 => 0.010351711376688
205 => 0.010358026313993
206 => 0.010056597902952
207 => 0.010536781546414
208 => 0.010773337276029
209 => 0.010729557106204
210 => 0.010740575631742
211 => 0.010551240856875
212 => 0.010359859488479
213 => 0.010147588097548
214 => 0.010541962104362
215 => 0.010498114446993
216 => 0.010598685197108
217 => 0.010854464930964
218 => 0.010892129468387
219 => 0.010942750988639
220 => 0.010924606777114
221 => 0.011356875507231
222 => 0.011304524911812
223 => 0.011430674784476
224 => 0.011171174925393
225 => 0.010877526202889
226 => 0.010933339224937
227 => 0.010927963982094
228 => 0.010859530971283
229 => 0.01079775270897
301 => 0.010694909308136
302 => 0.011020321046334
303 => 0.011007109924035
304 => 0.01122098263781
305 => 0.011183178558201
306 => 0.010930713662349
307 => 0.010939730495495
308 => 0.011000373031743
309 => 0.0112102575421
310 => 0.011272565554801
311 => 0.011243702000773
312 => 0.011312019892231
313 => 0.011366015568094
314 => 0.011318800917787
315 => 0.011987260799251
316 => 0.011709669651607
317 => 0.011844965645502
318 => 0.011877232942836
319 => 0.011794580939223
320 => 0.011812505199261
321 => 0.011839655569148
322 => 0.012004507298519
323 => 0.012437125936619
324 => 0.0126287297865
325 => 0.013205179422431
326 => 0.012612819754021
327 => 0.012577671582726
328 => 0.012681507569269
329 => 0.013019944528951
330 => 0.013294215897007
331 => 0.013385207532886
401 => 0.013397233579676
402 => 0.013567939937594
403 => 0.013665785638468
404 => 0.01354721169572
405 => 0.01344673269445
406 => 0.013086829383815
407 => 0.013128489172005
408 => 0.013415483800612
409 => 0.013820880617417
410 => 0.014168753260586
411 => 0.014046940385534
412 => 0.014976286635694
413 => 0.015068427520359
414 => 0.015055696629369
415 => 0.015265607277037
416 => 0.014848977388977
417 => 0.014670860040007
418 => 0.01346845739501
419 => 0.013806283492888
420 => 0.014297333565984
421 => 0.014232341247466
422 => 0.013875727558578
423 => 0.014168482737125
424 => 0.014071688719796
425 => 0.013995343262342
426 => 0.014345096603236
427 => 0.013960528437848
428 => 0.014293497204355
429 => 0.013866461317188
430 => 0.014047496816487
501 => 0.013944732311383
502 => 0.014011233540529
503 => 0.013622468713785
504 => 0.013832236777563
505 => 0.013613741672678
506 => 0.01361363807755
507 => 0.013608814785999
508 => 0.013865873307941
509 => 0.013874255977113
510 => 0.013684289341004
511 => 0.013656912180904
512 => 0.013758139890744
513 => 0.013639628754101
514 => 0.013695079369036
515 => 0.013641308296739
516 => 0.013629203295773
517 => 0.013532748588578
518 => 0.013491193248641
519 => 0.01350748816818
520 => 0.013451865207188
521 => 0.013418350361221
522 => 0.01360214783958
523 => 0.013503952261262
524 => 0.01358709795888
525 => 0.01349234294262
526 => 0.01316388077347
527 => 0.012974978706568
528 => 0.012354544117502
529 => 0.012530498597314
530 => 0.012647156599468
531 => 0.012608601130452
601 => 0.012691433196884
602 => 0.012696518413029
603 => 0.012669588863859
604 => 0.012638407895809
605 => 0.012623230724978
606 => 0.012736348921929
607 => 0.012802017842643
608 => 0.012658864790667
609 => 0.012625326033513
610 => 0.012770061672758
611 => 0.012858350329086
612 => 0.013510224162303
613 => 0.013461931243214
614 => 0.013583136993122
615 => 0.013569491085736
616 => 0.01369653402123
617 => 0.013904195528411
618 => 0.01348196162124
619 => 0.013555246827775
620 => 0.013537278987535
621 => 0.013733447155853
622 => 0.013734059571462
623 => 0.013616446955229
624 => 0.013680206662535
625 => 0.013644617743073
626 => 0.013708931730673
627 => 0.013461286261837
628 => 0.013762891711202
629 => 0.013933882565967
630 => 0.013936256774151
701 => 0.014017305082242
702 => 0.014099654857264
703 => 0.014257718079265
704 => 0.014095246559792
705 => 0.013802976112542
706 => 0.013824077094806
707 => 0.013652719038521
708 => 0.013655599598406
709 => 0.013640222943989
710 => 0.013686369441395
711 => 0.013471412822975
712 => 0.013521862711669
713 => 0.013451232572063
714 => 0.013555093291646
715 => 0.013443356326166
716 => 0.013537270322899
717 => 0.01357780049059
718 => 0.013727357681924
719 => 0.013421266607405
720 => 0.012797126185918
721 => 0.012928328069486
722 => 0.012734270178004
723 => 0.012752230974691
724 => 0.012788514642439
725 => 0.012670907403991
726 => 0.012693343158857
727 => 0.012692541595815
728 => 0.012685634158561
729 => 0.012655039973633
730 => 0.012610672352614
731 => 0.012787419299122
801 => 0.012817452049474
802 => 0.012884211133236
803 => 0.013082840883393
804 => 0.01306299308734
805 => 0.013095365666179
806 => 0.013024696508338
807 => 0.012755509114239
808 => 0.012770127284839
809 => 0.012587838463227
810 => 0.012879549598226
811 => 0.01281046855106
812 => 0.012765931550552
813 => 0.012753779217332
814 => 0.012952901332219
815 => 0.013012481789851
816 => 0.012975355246951
817 => 0.012899207624309
818 => 0.013045433570805
819 => 0.01308455746531
820 => 0.013093315862456
821 => 0.013352400203604
822 => 0.013107795799058
823 => 0.013166674510391
824 => 0.013626029408541
825 => 0.013209457902562
826 => 0.013430125119932
827 => 0.013419324607939
828 => 0.013532210489374
829 => 0.013410064670769
830 => 0.013411578814581
831 => 0.013511813829743
901 => 0.013371051828428
902 => 0.013336197177362
903 => 0.013288045726548
904 => 0.013393182657815
905 => 0.013456207493175
906 => 0.013964141379537
907 => 0.014292289834727
908 => 0.014278044044857
909 => 0.014408223897265
910 => 0.014349576681445
911 => 0.014160189351206
912 => 0.014483450430599
913 => 0.014381157099261
914 => 0.01438959003721
915 => 0.014389276162838
916 => 0.01445729228554
917 => 0.01440909662902
918 => 0.014314098042836
919 => 0.014377162537743
920 => 0.014564441541648
921 => 0.015145761316192
922 => 0.015471075563489
923 => 0.015126176990028
924 => 0.015364083407625
925 => 0.015221424331791
926 => 0.015195498933972
927 => 0.015344921745369
928 => 0.015494606101618
929 => 0.015485071855228
930 => 0.015376408698968
1001 => 0.015315027639223
1002 => 0.015779825587779
1003 => 0.01612228079865
1004 => 0.016098927649117
1005 => 0.016202000856302
1006 => 0.016504626980533
1007 => 0.016532295320698
1008 => 0.016528809745787
1009 => 0.016460230877794
1010 => 0.016758205598067
1011 => 0.017006781352085
1012 => 0.016444356851287
1013 => 0.016658520738514
1014 => 0.016754665807419
1015 => 0.016895835293529
1016 => 0.017134011879348
1017 => 0.017392734824768
1018 => 0.017429321086003
1019 => 0.017403361382843
1020 => 0.017232726645493
1021 => 0.017515824379578
1022 => 0.017681656392746
1023 => 0.017780405561589
1024 => 0.018030817023482
1025 => 0.016755259566633
1026 => 0.015852356599356
1027 => 0.015711355262939
1028 => 0.015998087025147
1029 => 0.016073695904198
1030 => 0.016043218059858
1031 => 0.015026918681842
1101 => 0.015706004657042
1102 => 0.016436644067186
1103 => 0.016464710902553
1104 => 0.01683048426822
1105 => 0.016949595069639
1106 => 0.017244090572012
1107 => 0.017225669798156
1108 => 0.017297374766538
1109 => 0.017280891036064
1110 => 0.017826381940867
1111 => 0.018428139415047
1112 => 0.018407302467188
1113 => 0.018320792710603
1114 => 0.018449274451237
1115 => 0.019070352652842
1116 => 0.019013173724613
1117 => 0.019068718182898
1118 => 0.019801004385023
1119 => 0.020753080614284
1120 => 0.020310745618902
1121 => 0.021270485280415
1122 => 0.021874590523724
1123 => 0.022919328076379
1124 => 0.022788521789345
1125 => 0.023195230451956
1126 => 0.02255435123546
1127 => 0.021082763011326
1128 => 0.020849878541843
1129 => 0.021316119147322
1130 => 0.022462326180797
1201 => 0.021280021008833
1202 => 0.021519199805284
1203 => 0.021450316295816
1204 => 0.021446645786332
1205 => 0.021586734204276
1206 => 0.021383528647528
1207 => 0.020555632653354
1208 => 0.020935052508662
1209 => 0.020788540281289
1210 => 0.020951106520769
1211 => 0.021828409467825
1212 => 0.021440532922642
1213 => 0.021031936490823
1214 => 0.021544407091131
1215 => 0.022196958269327
1216 => 0.022156122789342
1217 => 0.022076884890266
1218 => 0.022523544778596
1219 => 0.023261296055049
1220 => 0.02346070726055
1221 => 0.023607908535668
1222 => 0.023628205104521
1223 => 0.023837272377952
1224 => 0.022713064956974
1225 => 0.02449721100576
1226 => 0.024805283742346
1227 => 0.024747378836174
1228 => 0.025089788717206
1229 => 0.024989043044106
1230 => 0.024843078370297
1231 => 0.025385870864403
]
'min_raw' => 0.0093574539514864
'max_raw' => 0.025385870864403
'avg_raw' => 0.017371662407945
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009357'
'max' => '$0.025385'
'avg' => '$0.017371'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0032271440349241
'max_diff' => 0.011700385826198
'year' => 2032
]
7 => [
'items' => [
101 => 0.024763603071006
102 => 0.023880372279615
103 => 0.023395814399134
104 => 0.024033919304321
105 => 0.024423587703126
106 => 0.024681133727171
107 => 0.024759066998434
108 => 0.022800333978857
109 => 0.021744685517618
110 => 0.022421344078238
111 => 0.023246914222673
112 => 0.022708478873138
113 => 0.022729584519447
114 => 0.02196191720933
115 => 0.02331483574569
116 => 0.023117726894779
117 => 0.024140327961988
118 => 0.023896276010412
119 => 0.024730167483577
120 => 0.024510575911946
121 => 0.025422088248586
122 => 0.025785715197883
123 => 0.026396301439768
124 => 0.026845451164832
125 => 0.027109200474254
126 => 0.027093365955015
127 => 0.028138472118332
128 => 0.027522209527052
129 => 0.026748038470464
130 => 0.026734036158529
131 => 0.027134990318825
201 => 0.027975280242403
202 => 0.028193155193865
203 => 0.028314917568685
204 => 0.02812843425307
205 => 0.027459525378173
206 => 0.027170693917438
207 => 0.027416786690237
208 => 0.027115836376097
209 => 0.027635361050048
210 => 0.028348779391865
211 => 0.028201461325442
212 => 0.028693923534336
213 => 0.029203570112007
214 => 0.029932387607736
215 => 0.030122927489153
216 => 0.030437882667553
217 => 0.030762075003513
218 => 0.030866196844595
219 => 0.03106499774633
220 => 0.031063949967447
221 => 0.03166304986567
222 => 0.03232387560599
223 => 0.03257332202481
224 => 0.03314691031033
225 => 0.032164660472308
226 => 0.03290970825772
227 => 0.033581760009918
228 => 0.032780512205506
301 => 0.033884845637093
302 => 0.033927724401768
303 => 0.034575142840349
304 => 0.033918860222482
305 => 0.033529161698921
306 => 0.034654206734628
307 => 0.035198580588821
308 => 0.035034610753677
309 => 0.033786792212041
310 => 0.033060508299355
311 => 0.03115968321015
312 => 0.033411292637846
313 => 0.034507985909729
314 => 0.033783952041409
315 => 0.034149112610055
316 => 0.036141310268875
317 => 0.036899810152108
318 => 0.03674204747871
319 => 0.03676870677352
320 => 0.037177979542765
321 => 0.038992920392232
322 => 0.037905365765232
323 => 0.038736760527679
324 => 0.039177729311864
325 => 0.039587325694072
326 => 0.038581486433634
327 => 0.037272904334518
328 => 0.036858421453189
329 => 0.033711961142352
330 => 0.033548174218789
331 => 0.033456235655341
401 => 0.032876576017769
402 => 0.032421122324776
403 => 0.032058928638196
404 => 0.03110842424442
405 => 0.03142919157497
406 => 0.029914285956975
407 => 0.03088346888641
408 => 0.028465642941415
409 => 0.030479280234493
410 => 0.029383349004724
411 => 0.030119237350537
412 => 0.030116669905424
413 => 0.028761666147168
414 => 0.027980128257613
415 => 0.028478154618747
416 => 0.029012078411265
417 => 0.029098705750265
418 => 0.029790951884101
419 => 0.029984142900274
420 => 0.029398765102044
421 => 0.028415538872837
422 => 0.028643919900879
423 => 0.027975500123369
424 => 0.026804120173678
425 => 0.027645425703878
426 => 0.027932684401481
427 => 0.02805955420711
428 => 0.026907636560485
429 => 0.026545679026566
430 => 0.026352975872626
501 => 0.02826684076982
502 => 0.028371686609194
503 => 0.027835280471249
504 => 0.030259887078878
505 => 0.029711123929871
506 => 0.030324226817547
507 => 0.028623196716361
508 => 0.028688178356967
509 => 0.027882883446849
510 => 0.02833379478669
511 => 0.028015105185241
512 => 0.028297365606423
513 => 0.028466551339076
514 => 0.029271714108224
515 => 0.030488473899965
516 => 0.029151449640326
517 => 0.02856888902386
518 => 0.02893030635387
519 => 0.029892808330705
520 => 0.031351048095179
521 => 0.0304877408048
522 => 0.030870861920362
523 => 0.03095455684024
524 => 0.030317986005687
525 => 0.031374519369844
526 => 0.031940724182957
527 => 0.032521533161634
528 => 0.033025833323921
529 => 0.032289545283287
530 => 0.03307747902951
531 => 0.032442543519084
601 => 0.031872940727806
602 => 0.031873804580118
603 => 0.03151648442858
604 => 0.030824131609739
605 => 0.030696451127347
606 => 0.031360661121019
607 => 0.031893294635024
608 => 0.03193716488238
609 => 0.032232058163431
610 => 0.032406572969514
611 => 0.034117055310509
612 => 0.034805025457909
613 => 0.035646262331541
614 => 0.035973971503333
615 => 0.036960258620187
616 => 0.036163751671004
617 => 0.035991422382285
618 => 0.033599012448855
619 => 0.033990769441429
620 => 0.034618010185467
621 => 0.033609355417697
622 => 0.034249114707523
623 => 0.034375416743289
624 => 0.033575081714654
625 => 0.034002575233883
626 => 0.032867279189807
627 => 0.03051322025132
628 => 0.031377140110386
629 => 0.032013275918939
630 => 0.031105431685154
701 => 0.032732707335789
702 => 0.031782086494476
703 => 0.031480785325628
704 => 0.030305302044327
705 => 0.0308600849046
706 => 0.031610436666845
707 => 0.031146806515533
708 => 0.032108908693923
709 => 0.033471501961801
710 => 0.034442567068323
711 => 0.034517113389439
712 => 0.033892783582254
713 => 0.034893276082687
714 => 0.03490056357829
715 => 0.03377200395067
716 => 0.033080767462599
717 => 0.032923717078135
718 => 0.033316059730067
719 => 0.033792436139962
720 => 0.034543548964777
721 => 0.034997430713849
722 => 0.036180913595152
723 => 0.036501130129719
724 => 0.036852951017621
725 => 0.037323092221402
726 => 0.037887617278272
727 => 0.036652468592271
728 => 0.036701543352171
729 => 0.035551389997564
730 => 0.034322286189491
731 => 0.035255022769866
801 => 0.036474451771958
802 => 0.036194713411529
803 => 0.036163237131444
804 => 0.036216171503754
805 => 0.036005257915391
806 => 0.035051303572048
807 => 0.034572233672891
808 => 0.03519035606657
809 => 0.035518860609347
810 => 0.036028342506588
811 => 0.035965538108895
812 => 0.037277908761827
813 => 0.037787856313527
814 => 0.037657389907916
815 => 0.037681398866398
816 => 0.038604634550482
817 => 0.039631462509084
818 => 0.040593222394197
819 => 0.041571565857883
820 => 0.040392134627014
821 => 0.039793292185185
822 => 0.040411144725963
823 => 0.040083303470922
824 => 0.04196717656642
825 => 0.042097611852171
826 => 0.043981348722202
827 => 0.045769239323075
828 => 0.044646297270054
829 => 0.045705181047632
830 => 0.046850450185144
831 => 0.049059860164625
901 => 0.048315808611516
902 => 0.047745876782609
903 => 0.047207293958182
904 => 0.048327999318198
905 => 0.049769768860154
906 => 0.050080312210394
907 => 0.050583511074474
908 => 0.050054458997124
909 => 0.050691643951117
910 => 0.052941186831969
911 => 0.052333340488299
912 => 0.051470100964111
913 => 0.053245899020149
914 => 0.053888553433389
915 => 0.058399038666236
916 => 0.064093712591557
917 => 0.061736080193229
918 => 0.060272621683265
919 => 0.060616569146807
920 => 0.062696071287456
921 => 0.063363941374934
922 => 0.061548440248544
923 => 0.062189705938584
924 => 0.065723142938556
925 => 0.067618718522809
926 => 0.065044272269627
927 => 0.057941477161117
928 => 0.051392375689866
929 => 0.053129492309925
930 => 0.052932557194215
1001 => 0.056728794445441
1002 => 0.052318843554031
1003 => 0.052393095817092
1004 => 0.056267835234389
1005 => 0.055234121187705
1006 => 0.053559636820169
1007 => 0.051404601278844
1008 => 0.047420818764045
1009 => 0.043892271494694
1010 => 0.050812565265797
1011 => 0.050514149614649
1012 => 0.050081999529066
1013 => 0.051043702781009
1014 => 0.055713460788212
1015 => 0.055605807751615
1016 => 0.054920974057842
1017 => 0.055440414378722
1018 => 0.053468576420462
1019 => 0.053976763960221
1020 => 0.051391338278733
1021 => 0.052560058663679
1022 => 0.053556044128765
1023 => 0.053756002956698
1024 => 0.054206520406182
1025 => 0.050356898126606
1026 => 0.052085265511164
1027 => 0.053100519423468
1028 => 0.048513565312425
1029 => 0.053009850088874
1030 => 0.050289884767356
1031 => 0.049366687684724
1101 => 0.05060965093452
1102 => 0.050125266947253
1103 => 0.049708822038983
1104 => 0.049476438624737
1105 => 0.050389133654539
1106 => 0.050346555340493
1107 => 0.048853209125264
1108 => 0.046905199864077
1109 => 0.047559015713356
1110 => 0.047321478285756
1111 => 0.046460612005199
1112 => 0.047040731936904
1113 => 0.044486177349655
1114 => 0.040091198956488
1115 => 0.042994656304843
1116 => 0.042882876355285
1117 => 0.042826511835901
1118 => 0.045008379787523
1119 => 0.044798643528233
1120 => 0.044417970163878
1121 => 0.046453620640335
1122 => 0.045710580833065
1123 => 0.048000454436874
1124 => 0.049508713292081
1125 => 0.049126170059338
1126 => 0.050544694802708
1127 => 0.047574078310001
1128 => 0.048560797948431
1129 => 0.048764159498377
1130 => 0.046428501029441
1201 => 0.044832958974105
1202 => 0.044726554509525
1203 => 0.041960104464811
1204 => 0.043437919748693
1205 => 0.044738336042357
1206 => 0.044115537554073
1207 => 0.043918378158258
1208 => 0.044925622752822
1209 => 0.045003894284286
1210 => 0.043219295072057
1211 => 0.043590369759187
1212 => 0.045137812890551
1213 => 0.043551378162606
1214 => 0.040469194628852
1215 => 0.03970477049796
1216 => 0.039602782227767
1217 => 0.037529603357545
1218 => 0.039755852973623
1219 => 0.038784035356424
1220 => 0.041853995564991
1221 => 0.040100450758384
1222 => 0.040024858946537
1223 => 0.039910590836022
1224 => 0.038126120140481
1225 => 0.038516805813776
1226 => 0.039815504494915
1227 => 0.040278894815234
1228 => 0.040230559408379
1229 => 0.039809140162875
1230 => 0.040002063735451
1231 => 0.039380589689155
]
'min_raw' => 0.021744685517618
'max_raw' => 0.067618718522809
'avg_raw' => 0.044681702020214
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.021744'
'max' => '$0.067618'
'avg' => '$0.044681'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.012387231566132
'max_diff' => 0.042232847658406
'year' => 2033
]
8 => [
'items' => [
101 => 0.039161134268544
102 => 0.038468472595127
103 => 0.037450451287875
104 => 0.037592013394536
105 => 0.035575046805104
106 => 0.034476096358663
107 => 0.034171921359022
108 => 0.033765165837154
109 => 0.034217865477553
110 => 0.035569332992175
111 => 0.033939176439713
112 => 0.031144387372702
113 => 0.031312358957719
114 => 0.031689741238039
115 => 0.030986491855296
116 => 0.030320925333776
117 => 0.030899581425119
118 => 0.029715392454373
119 => 0.031832844817624
120 => 0.031775573665289
121 => 0.032564828963933
122 => 0.033058366499325
123 => 0.031920922264922
124 => 0.031634858115946
125 => 0.031797813256094
126 => 0.029104527776518
127 => 0.032344730080735
128 => 0.032372751484815
129 => 0.032132815210801
130 => 0.033858122907774
131 => 0.037499060285352
201 => 0.03612919318754
202 => 0.035598739242816
203 => 0.034590345906134
204 => 0.03593397015479
205 => 0.035830800776297
206 => 0.035364229720925
207 => 0.035082046090846
208 => 0.035601978081489
209 => 0.035017620763373
210 => 0.034912654131974
211 => 0.034276670550517
212 => 0.034049653347346
213 => 0.033881578847934
214 => 0.03369654533874
215 => 0.034104683152544
216 => 0.033179789171463
217 => 0.032064457698755
218 => 0.031971729954853
219 => 0.032227759408473
220 => 0.032114485434398
221 => 0.031971187642645
222 => 0.031697593133359
223 => 0.031616423486875
224 => 0.031880185460032
225 => 0.031582413570616
226 => 0.032021792213924
227 => 0.031902305534874
228 => 0.031234862658723
301 => 0.030402981716037
302 => 0.030395576230718
303 => 0.030216348846175
304 => 0.029988075824941
305 => 0.029924575492613
306 => 0.030850848623109
307 => 0.032768206282214
308 => 0.032391783095251
309 => 0.032663787425232
310 => 0.034001779516155
311 => 0.034427086967033
312 => 0.034125213812359
313 => 0.033711991219515
314 => 0.03373017091646
315 => 0.035142277607193
316 => 0.035230348969368
317 => 0.035452876888688
318 => 0.035738888151396
319 => 0.034173922767146
320 => 0.033656461187597
321 => 0.033411259183531
322 => 0.032656131916127
323 => 0.033470471934303
324 => 0.032995990879228
325 => 0.033060014584139
326 => 0.033018319062325
327 => 0.033041087636674
328 => 0.031832252946534
329 => 0.03227268877314
330 => 0.031540378787474
331 => 0.030559897922321
401 => 0.03055661100666
402 => 0.03079658230936
403 => 0.030653837988436
404 => 0.030269716691122
405 => 0.030324279308404
406 => 0.029846253367529
407 => 0.030382320312565
408 => 0.030397692794409
409 => 0.030191277820806
410 => 0.031017162912618
411 => 0.031355528708591
412 => 0.031219661951129
413 => 0.031345995934695
414 => 0.032407425178119
415 => 0.032580484458201
416 => 0.03265734595876
417 => 0.032554361730209
418 => 0.031365396912771
419 => 0.031418132558294
420 => 0.031031193382103
421 => 0.030704270552867
422 => 0.030717345751552
423 => 0.030885426582772
424 => 0.03161944543052
425 => 0.033164144822832
426 => 0.03322276503561
427 => 0.033293814443568
428 => 0.033004820794829
429 => 0.032917657545072
430 => 0.033032648370245
501 => 0.033612756245561
502 => 0.035104951198627
503 => 0.034577509841864
504 => 0.034148691808701
505 => 0.034524880832296
506 => 0.034466969480781
507 => 0.033978139394066
508 => 0.033964419561631
509 => 0.033026198336793
510 => 0.032679359312235
511 => 0.032389514662862
512 => 0.032073011872334
513 => 0.031885378408839
514 => 0.032173668686651
515 => 0.032239604084137
516 => 0.031609252353249
517 => 0.031523337741558
518 => 0.032038096572089
519 => 0.031811570402916
520 => 0.032044558185489
521 => 0.032098613349578
522 => 0.032089909223164
523 => 0.031853389886182
524 => 0.032004140258466
525 => 0.031647570687166
526 => 0.031259854833395
527 => 0.03101251627424
528 => 0.030796680576679
529 => 0.03091643876613
530 => 0.030489522687717
531 => 0.03035294364211
601 => 0.031953069424327
602 => 0.033135099543902
603 => 0.033117912357828
604 => 0.033013289782788
605 => 0.032857841858194
606 => 0.033601384261652
607 => 0.033342348955887
608 => 0.033530818783955
609 => 0.033578792265252
610 => 0.03372399354445
611 => 0.033775890521292
612 => 0.033619021812508
613 => 0.033092551265931
614 => 0.031780636719179
615 => 0.03116993695622
616 => 0.030968395862435
617 => 0.030975721498413
618 => 0.030773647755059
619 => 0.030833167528786
620 => 0.030752949206742
621 => 0.030601035111685
622 => 0.030907058498843
623 => 0.030942324843408
624 => 0.030870895328138
625 => 0.03088771956477
626 => 0.030296313686282
627 => 0.030341276990757
628 => 0.030090915597777
629 => 0.030043975854745
630 => 0.029411084054753
701 => 0.028289824491932
702 => 0.028911111133034
703 => 0.028160684236705
704 => 0.027876486200242
705 => 0.029221835502995
706 => 0.029086799747179
707 => 0.028855677231856
708 => 0.028513798861539
709 => 0.02838699284841
710 => 0.027616559654542
711 => 0.027571038351347
712 => 0.027952885845674
713 => 0.027776676365612
714 => 0.027529211519856
715 => 0.026632918933638
716 => 0.025625189314452
717 => 0.025655606337292
718 => 0.025976146379679
719 => 0.026908159783634
720 => 0.026544006022713
721 => 0.026279808290982
722 => 0.026230331997584
723 => 0.026849631395103
724 => 0.027726069789827
725 => 0.028137275075428
726 => 0.027729783125888
727 => 0.02726167831518
728 => 0.027290169686019
729 => 0.027479710011852
730 => 0.027499628020141
731 => 0.027194939910322
801 => 0.027280707828515
802 => 0.027150418517997
803 => 0.026350833259844
804 => 0.026336371298036
805 => 0.026140140180631
806 => 0.026134198380383
807 => 0.025800360297531
808 => 0.025753654042026
809 => 0.025090798266
810 => 0.025527091945093
811 => 0.025234449051604
812 => 0.024793367183636
813 => 0.024717324503344
814 => 0.02471503856855
815 => 0.025167931022852
816 => 0.025521799633077
817 => 0.025239539700027
818 => 0.02517527458465
819 => 0.02586145788562
820 => 0.025774134805872
821 => 0.025698513581984
822 => 0.02764759434444
823 => 0.026104744832287
824 => 0.025431974382218
825 => 0.024599293194613
826 => 0.02487041838804
827 => 0.024927548449953
828 => 0.022925100295829
829 => 0.02211270732909
830 => 0.021833924677288
831 => 0.021673481319768
901 => 0.021746597372511
902 => 0.021015348418255
903 => 0.021506759809256
904 => 0.020873560025806
905 => 0.0207674020215
906 => 0.02189964167271
907 => 0.022057186205728
908 => 0.021385052282624
909 => 0.021816671069855
910 => 0.021660160097655
911 => 0.020884414418699
912 => 0.020854786639762
913 => 0.020465544726841
914 => 0.019856456505206
915 => 0.0195780868439
916 => 0.019433109507376
917 => 0.019492929981978
918 => 0.019462682919482
919 => 0.019265300376798
920 => 0.019473996655781
921 => 0.018940863902235
922 => 0.018728566144031
923 => 0.018632676171921
924 => 0.018159490167172
925 => 0.018912539527498
926 => 0.019060899738148
927 => 0.019209552264244
928 => 0.020503471014519
929 => 0.020438830490332
930 => 0.021023149347773
1001 => 0.021000443791466
1002 => 0.020833786587986
1003 => 0.020130687260283
1004 => 0.020410930120765
1005 => 0.019548386155611
1006 => 0.020194662741593
1007 => 0.019899729096906
1008 => 0.020094945379648
1009 => 0.019743928901336
1010 => 0.019938195913549
1011 => 0.019096081447895
1012 => 0.018309726808737
1013 => 0.018626178870657
1014 => 0.018970198452647
1015 => 0.01971612056096
1016 => 0.019271855506973
1017 => 0.019431630019908
1018 => 0.018896412147504
1019 => 0.017792104799308
1020 => 0.017798355058972
1021 => 0.017628481432095
1022 => 0.017481685816518
1023 => 0.019322884692667
1024 => 0.019093902507371
1025 => 0.018729049363549
1026 => 0.019217419795243
1027 => 0.019346552688863
1028 => 0.019350228920805
1029 => 0.019706531381103
1030 => 0.019896690068035
1031 => 0.019930206360802
1101 => 0.020490855980505
1102 => 0.020678778337882
1103 => 0.021452803932151
1104 => 0.019880556432014
1105 => 0.019848177029394
1106 => 0.019224292168739
1107 => 0.018828614526882
1108 => 0.019251384555394
1109 => 0.019625901086792
1110 => 0.019235929441331
1111 => 0.019286851505477
1112 => 0.018763346433299
1113 => 0.0189504748634
1114 => 0.019111655076324
1115 => 0.019022660836482
1116 => 0.018889432152069
1117 => 0.019595195002147
1118 => 0.019555373096239
1119 => 0.02021259568765
1120 => 0.020724947696092
1121 => 0.021643174089099
1122 => 0.020684956979772
1123 => 0.02065003573974
1124 => 0.020991396462595
1125 => 0.020678726077334
1126 => 0.020876322967804
1127 => 0.021611338175208
1128 => 0.021626867888318
1129 => 0.02136672518481
1130 => 0.02135089547766
1201 => 0.021400858729518
1202 => 0.021693495056225
1203 => 0.021591238931867
1204 => 0.021709572307782
1205 => 0.021857550006348
1206 => 0.022469648508863
1207 => 0.02261722338557
1208 => 0.022258692943974
1209 => 0.022291064228555
1210 => 0.022156964001517
1211 => 0.02202742486247
1212 => 0.022318609929376
1213 => 0.022850756362405
1214 => 0.022847445907063
1215 => 0.022970893536077
1216 => 0.023047800386258
1217 => 0.022717659886028
1218 => 0.022502750559981
1219 => 0.022585160470624
1220 => 0.022716935712394
1221 => 0.02254242753574
1222 => 0.021465282229374
1223 => 0.021792019307017
1224 => 0.02173763428067
1225 => 0.021660183389708
1226 => 0.02198872004786
1227 => 0.021957031885711
1228 => 0.021007848403299
1229 => 0.021068612050224
1230 => 0.021011543641924
1231 => 0.021195943344241
]
'min_raw' => 0.017481685816518
'max_raw' => 0.039161134268544
'avg_raw' => 0.028321410042531
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.017481'
'max' => '$0.039161'
'avg' => '$0.028321'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0042629997011003
'max_diff' => -0.028457584254265
'year' => 2034
]
9 => [
'items' => [
101 => 0.02066876788826
102 => 0.020830923507939
103 => 0.020932625992487
104 => 0.020992529537201
105 => 0.021208942216954
106 => 0.021183548686811
107 => 0.021207363719466
108 => 0.02152824659271
109 => 0.023151162051871
110 => 0.023239493759552
111 => 0.022804516125127
112 => 0.022978281110525
113 => 0.022644690336785
114 => 0.022868632058061
115 => 0.023021847296255
116 => 0.022329497096452
117 => 0.022288500610936
118 => 0.021953532989407
119 => 0.022133525615681
120 => 0.021847144405352
121 => 0.021917412337177
122 => 0.021720937073945
123 => 0.022074553429927
124 => 0.022469951462342
125 => 0.022569844620071
126 => 0.022307068728794
127 => 0.022116801665734
128 => 0.021782755380867
129 => 0.022338281797307
130 => 0.022500734650835
131 => 0.022337428501626
201 => 0.022299586898544
202 => 0.022227877129083
203 => 0.022314800465129
204 => 0.022499849897706
205 => 0.02241258400263
206 => 0.022470224663755
207 => 0.022250557902337
208 => 0.022717769176271
209 => 0.023459813119795
210 => 0.02346219891241
211 => 0.023374932546937
212 => 0.023339225030366
213 => 0.023428765617107
214 => 0.023477337712266
215 => 0.02376689555085
216 => 0.024077602648143
217 => 0.025527537099084
218 => 0.025120401307266
219 => 0.026406869409128
220 => 0.027424298650724
221 => 0.02772938119349
222 => 0.027448719609388
223 => 0.026488591491216
224 => 0.026441483025206
225 => 0.02787631978939
226 => 0.027470912683821
227 => 0.027422690798608
228 => 0.026909691412106
301 => 0.027212937585739
302 => 0.027146613199212
303 => 0.02704191691038
304 => 0.027620489485361
305 => 0.028703525696194
306 => 0.028534724346086
307 => 0.0284087219687
308 => 0.027856616229735
309 => 0.028189107201873
310 => 0.02807071353514
311 => 0.028579407861904
312 => 0.028278068611688
313 => 0.027467841326267
314 => 0.027596872692015
315 => 0.027577369860657
316 => 0.027978736748012
317 => 0.027858256370966
318 => 0.027553844133398
319 => 0.028699823996167
320 => 0.028625410438153
321 => 0.028730911850108
322 => 0.028777356834391
323 => 0.029474894582428
324 => 0.02976065347908
325 => 0.029825525751534
326 => 0.030096974601967
327 => 0.029818771856851
328 => 0.030931781192512
329 => 0.031671867454832
330 => 0.032531515733008
331 => 0.033787692919096
401 => 0.034260027161354
402 => 0.03417470420819
403 => 0.03512712341413
404 => 0.036838599556115
405 => 0.034520642469461
406 => 0.036961456910147
407 => 0.036188723238784
408 => 0.034356585604866
409 => 0.034238617540725
410 => 0.03547936241797
411 => 0.038231215138429
412 => 0.037541907243209
413 => 0.038232342599208
414 => 0.037426913081802
415 => 0.03738691671757
416 => 0.0381932246853
417 => 0.040077207201459
418 => 0.039182197728061
419 => 0.037898982182617
420 => 0.038846488572327
421 => 0.038025670849983
422 => 0.036176138789128
423 => 0.037541380142452
424 => 0.036628482129319
425 => 0.036894914301879
426 => 0.038813690142154
427 => 0.038582817956601
428 => 0.038881587942895
429 => 0.038354266737258
430 => 0.03786166558027
501 => 0.036942188939711
502 => 0.036669977236093
503 => 0.036745206757822
504 => 0.036669939956078
505 => 0.036155501226112
506 => 0.036044408231356
507 => 0.035859248373
508 => 0.035916637155503
509 => 0.035568482451367
510 => 0.036225522310504
511 => 0.036347474698176
512 => 0.036825613515079
513 => 0.036875255473214
514 => 0.038206865272409
515 => 0.037473436971806
516 => 0.037965483997004
517 => 0.037921470679744
518 => 0.03439629358292
519 => 0.034882031883961
520 => 0.035637688247306
521 => 0.035297266079887
522 => 0.034815988781676
523 => 0.034427331558915
524 => 0.03383847612419
525 => 0.034667278840598
526 => 0.035757066279333
527 => 0.036902894281084
528 => 0.038279531547563
529 => 0.037972282135509
530 => 0.036877159004956
531 => 0.036926285428604
601 => 0.037229965649065
602 => 0.036836672171311
603 => 0.036720682246721
604 => 0.037214030414573
605 => 0.037217427832266
606 => 0.036764896155005
607 => 0.036261990008152
608 => 0.036259882813034
609 => 0.036170395521699
610 => 0.037442832672134
611 => 0.038142544446966
612 => 0.038222765274309
613 => 0.03813714494612
614 => 0.038170096812291
615 => 0.037762949947612
616 => 0.038693566944615
617 => 0.039547593129546
618 => 0.039318695868376
619 => 0.03897554633422
620 => 0.038702211201943
621 => 0.039254306797927
622 => 0.039229722850117
623 => 0.039540133955857
624 => 0.039526051915079
625 => 0.039421672335371
626 => 0.0393186995961
627 => 0.0397269748678
628 => 0.039609398146251
629 => 0.039491638795577
630 => 0.039255454389747
701 => 0.039287555773107
702 => 0.038944465488555
703 => 0.038785736224178
704 => 0.036398828932709
705 => 0.035760969309983
706 => 0.035961652932123
707 => 0.036027723191279
708 => 0.035750125866029
709 => 0.036148129121535
710 => 0.036086100735755
711 => 0.036327416899436
712 => 0.036176653037098
713 => 0.036182840438597
714 => 0.036626204811489
715 => 0.036754915375147
716 => 0.036689452143649
717 => 0.036735300347042
718 => 0.037791852842913
719 => 0.037641644864647
720 => 0.037561849869949
721 => 0.037583953628809
722 => 0.037853925444245
723 => 0.037929502812652
724 => 0.037609276191982
725 => 0.037760296917498
726 => 0.038403323999361
727 => 0.038628347085833
728 => 0.03934651276064
729 => 0.039041423217605
730 => 0.039601428277811
731 => 0.041322692913094
801 => 0.04269775820621
802 => 0.041433191335684
803 => 0.043958323632983
804 => 0.045924501335146
805 => 0.045849036160096
806 => 0.045506187599215
807 => 0.043267746558842
808 => 0.041207899740215
809 => 0.042931049069712
810 => 0.042935441731722
811 => 0.042787421676132
812 => 0.041868081823456
813 => 0.042755430642044
814 => 0.042825865168886
815 => 0.042786440563907
816 => 0.042081584854366
817 => 0.041005400465008
818 => 0.041215684318667
819 => 0.041560133560635
820 => 0.04090801928595
821 => 0.040699629262191
822 => 0.041087065964183
823 => 0.042335467743646
824 => 0.042099464618737
825 => 0.042093301623383
826 => 0.043103023072641
827 => 0.042380280426499
828 => 0.041218336671484
829 => 0.040924930549187
830 => 0.039883536477081
831 => 0.040602831072003
901 => 0.040628717203939
902 => 0.040234766905313
903 => 0.041250303567033
904 => 0.041240945217914
905 => 0.042205046135533
906 => 0.044048044990252
907 => 0.043502979540446
908 => 0.042869127725274
909 => 0.042938044992387
910 => 0.043693897310315
911 => 0.043236891744466
912 => 0.043401234132301
913 => 0.043693648558428
914 => 0.043870069441952
915 => 0.042912660742211
916 => 0.04268944297615
917 => 0.042232817765578
918 => 0.042113692771453
919 => 0.042485604477666
920 => 0.042387618882914
921 => 0.040626541574786
922 => 0.040442499197545
923 => 0.040448143514503
924 => 0.039985360206192
925 => 0.039279504580298
926 => 0.041134451020698
927 => 0.040985472861575
928 => 0.040821012503897
929 => 0.040841157959315
930 => 0.041646327339124
1001 => 0.041179288436807
1002 => 0.042420987904789
1003 => 0.042165731823075
1004 => 0.041903929386033
1005 => 0.041867740314537
1006 => 0.041766968712211
1007 => 0.041421385392371
1008 => 0.041004072767327
1009 => 0.040728526825272
1010 => 0.037569913094531
1011 => 0.038156133430146
1012 => 0.038830526490606
1013 => 0.039063324272616
1014 => 0.038665107557371
1015 => 0.041437109415448
1016 => 0.041943580866593
1017 => 0.040409445804759
1018 => 0.040122471773012
1019 => 0.041455923385194
1020 => 0.040651689055218
1021 => 0.041013835724762
1022 => 0.040231072708845
1023 => 0.041821586725228
1024 => 0.041809469673263
1025 => 0.041190723797502
1026 => 0.041713683574706
1027 => 0.041622806444009
1028 => 0.040924243874178
1029 => 0.041843732404695
1030 => 0.041844188459535
1031 => 0.04124865900681
1101 => 0.040553210984188
1102 => 0.040428881303492
1103 => 0.040335215590431
1104 => 0.040990799701162
1105 => 0.041578594364885
1106 => 0.042672334507419
1107 => 0.042947326765876
1108 => 0.044020639857909
1109 => 0.043381534170269
1110 => 0.043664841443796
1111 => 0.043972411565469
1112 => 0.044119871992316
1113 => 0.043879593139932
1114 => 0.045546890165151
1115 => 0.045687661118741
1116 => 0.045734860401815
1117 => 0.045172657225852
1118 => 0.045672025231399
1119 => 0.045438387478934
1120 => 0.046046248004412
1121 => 0.046141568296359
1122 => 0.046060835400197
1123 => 0.04609109156539
1124 => 0.044668347685715
1125 => 0.044594570909982
1126 => 0.043588619337902
1127 => 0.043998552039143
1128 => 0.043232202502758
1129 => 0.043475219835021
1130 => 0.043582339559528
1201 => 0.043526386294436
1202 => 0.044021729019013
1203 => 0.04360058651129
1204 => 0.042489122191169
1205 => 0.041377355053337
1206 => 0.041363397722547
1207 => 0.041070689059476
1208 => 0.040859114308341
1209 => 0.040899871111427
1210 => 0.041043503401496
1211 => 0.040850766138533
1212 => 0.040891896405613
1213 => 0.041574932888684
1214 => 0.04171191098417
1215 => 0.041246405894911
1216 => 0.039377335789469
1217 => 0.038918661297386
1218 => 0.039248347426384
1219 => 0.039090778691229
1220 => 0.031549309314008
1221 => 0.03332106567999
1222 => 0.032268348210485
1223 => 0.032753488853635
1224 => 0.031678936917137
1225 => 0.032191769423326
1226 => 0.032097067985077
1227 => 0.034945999791494
1228 => 0.034901517639914
1229 => 0.034922808891932
1230 => 0.033906521959047
1231 => 0.03552549463833
]
'min_raw' => 0.02066876788826
'max_raw' => 0.046141568296359
'avg_raw' => 0.03340516809231
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.020668'
'max' => '$0.046141'
'avg' => '$0.0334051'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0031870820717424
'max_diff' => 0.0069804340278154
'year' => 2035
]
10 => [
'items' => [
101 => 0.03632305879652
102 => 0.036175450897321
103 => 0.036212600625462
104 => 0.035574245213065
105 => 0.0349289895677
106 => 0.034213301752858
107 => 0.035542961251147
108 => 0.035395125812982
109 => 0.035734207118621
110 => 0.036596586349285
111 => 0.03672357496686
112 => 0.036894248956673
113 => 0.036833074480727
114 => 0.038290498684355
115 => 0.038113994996901
116 => 0.038539318100088
117 => 0.037664396207491
118 => 0.036674339037668
119 => 0.036862516538244
120 => 0.036844393531711
121 => 0.036613666857923
122 => 0.036405377133313
123 => 0.036058633427105
124 => 0.037155781821961
125 => 0.037111239600758
126 => 0.037832326387365
127 => 0.037704867293569
128 => 0.036853664270667
129 => 0.036884065153154
130 => 0.037088525698039
131 => 0.037796165978377
201 => 0.038006241793406
202 => 0.037908926305811
203 => 0.038139264846664
204 => 0.038321315037696
205 => 0.038162127547764
206 => 0.040415886708497
207 => 0.03947996877342
208 => 0.039936128662902
209 => 0.040044920108693
210 => 0.039766253107936
211 => 0.039826686002083
212 => 0.039918225369738
213 => 0.040474034484891
214 => 0.041932638427716
215 => 0.042578644184941
216 => 0.044522184378913
217 => 0.042525002399637
218 => 0.042406497886148
219 => 0.042756588164373
220 => 0.043897652002858
221 => 0.044822377069274
222 => 0.045129161722473
223 => 0.045169708378855
224 => 0.045745256782915
225 => 0.046075150394779
226 => 0.045675370068236
227 => 0.045336598100236
228 => 0.044123158960783
229 => 0.04426361784526
301 => 0.045231240272931
302 => 0.046598063944692
303 => 0.047770940848829
304 => 0.047360240235888
305 => 0.050493596003185
306 => 0.050804255428902
307 => 0.05076133234109
308 => 0.051469060745195
309 => 0.05006436398943
310 => 0.049463828911623
311 => 0.045409844444943
312 => 0.046548848720202
313 => 0.048204458325668
314 => 0.047985332186167
315 => 0.046782984236106
316 => 0.047770028760092
317 => 0.047443680972726
318 => 0.047186276932649
319 => 0.048365494740472
320 => 0.047068896321173
321 => 0.048191523764589
322 => 0.046751742456314
323 => 0.047362116281693
324 => 0.047015638577948
325 => 0.047239852114981
326 => 0.045929104358919
327 => 0.046636352031487
328 => 0.045899680530526
329 => 0.045899331252317
330 => 0.045883069188103
331 => 0.046749759942082
401 => 0.046778022696454
402 => 0.046137536919767
403 => 0.046045232913078
404 => 0.046386529204295
405 => 0.04598696063292
406 => 0.046173916252612
407 => 0.045992623328186
408 => 0.045951810472284
409 => 0.045626606692726
410 => 0.045486499962828
411 => 0.045541439421726
412 => 0.045353902725273
413 => 0.045240905082161
414 => 0.045860591112779
415 => 0.045529517864683
416 => 0.045809849389249
417 => 0.045490376236347
418 => 0.044382943100561
419 => 0.043746046593277
420 => 0.041654208058883
421 => 0.04224745087232
422 => 0.042640771471382
423 => 0.042510779015739
424 => 0.042790053110864
425 => 0.042807198272134
426 => 0.042716403416947
427 => 0.042611274606181
428 => 0.042560103715088
429 => 0.04294148961377
430 => 0.043162896964815
501 => 0.042680246455449
502 => 0.042567168194103
503 => 0.043055154506936
504 => 0.043352825875864
505 => 0.045550664016935
506 => 0.045387841068521
507 => 0.04579649471665
508 => 0.045750486587172
509 => 0.046178820714044
510 => 0.04687896598397
511 => 0.045455374886513
512 => 0.045702461076955
513 => 0.045641881249112
514 => 0.046303275924618
515 => 0.046305340726601
516 => 0.045908801579521
517 => 0.046123771884266
518 => 0.04600378135756
519 => 0.046220620457011
520 => 0.045385666468776
521 => 0.046402550298733
522 => 0.046979057903772
523 => 0.046987062712427
524 => 0.047260322741768
525 => 0.047537970757733
526 => 0.04807089194633
527 => 0.047523107875026
528 => 0.046537697656455
529 => 0.04660884109138
530 => 0.046031095440779
531 => 0.046040807449544
601 => 0.045988963985613
602 => 0.046144550123463
603 => 0.045419808876667
604 => 0.045589904198698
605 => 0.045351769751777
606 => 0.045701943419175
607 => 0.045325214438836
608 => 0.045641852035685
609 => 0.045778502325783
610 => 0.046282744838113
611 => 0.045250737409778
612 => 0.043146404402642
613 => 0.043588760713314
614 => 0.042934480983492
615 => 0.042995037063506
616 => 0.043117369982562
617 => 0.042720848967061
618 => 0.042796492681005
619 => 0.042793790155246
620 => 0.04277050124828
621 => 0.04266735081778
622 => 0.042517762285865
623 => 0.043113676956095
624 => 0.043214934470727
625 => 0.043440017382601
626 => 0.04410971145314
627 => 0.044042793223019
628 => 0.044151939632757
629 => 0.043913673633131
630 => 0.043006089539865
701 => 0.043055375722648
702 => 0.042440776233585
703 => 0.043424300691857
704 => 0.04319138911825
705 => 0.043041229511566
706 => 0.043000257071663
707 => 0.04367161118427
708 => 0.043872490856948
709 => 0.043747316125468
710 => 0.043490579099273
711 => 0.043983590087056
712 => 0.044115499028923
713 => 0.044145028576393
714 => 0.045018549521264
715 => 0.044193848693604
716 => 0.044392362379643
717 => 0.045941109489888
718 => 0.044536609573388
719 => 0.045280604503244
720 => 0.04524418982299
721 => 0.045624792453689
722 => 0.045212969298314
723 => 0.045218074339891
724 => 0.045556023691696
725 => 0.045081434776573
726 => 0.044963919887029
727 => 0.044801573908782
728 => 0.045156050412975
729 => 0.045368543045646
730 => 0.047081077606327
731 => 0.048187453033592
801 => 0.048139422358437
802 => 0.048578332819698
803 => 0.048380599636941
804 => 0.047742067030439
805 => 0.048831964328982
806 => 0.048487075220483
807 => 0.048515507459548
808 => 0.04851444921019
809 => 0.048743770316612
810 => 0.048581275295741
811 => 0.048260980929832
812 => 0.048473607277435
813 => 0.049105031514504
814 => 0.051064991720827
815 => 0.052161811418304
816 => 0.050998961797831
817 => 0.051801079894857
818 => 0.051320094860543
819 => 0.051232685571743
820 => 0.051736475012736
821 => 0.052241146270456
822 => 0.052209000893093
823 => 0.051842635475144
824 => 0.051635684946724
825 => 0.053202783681439
826 => 0.054357395334347
827 => 0.054278658560233
828 => 0.0546261770746
829 => 0.055646502181124
830 => 0.055739787921734
831 => 0.055728036062565
901 => 0.055496817621103
902 => 0.056501460194433
903 => 0.05733955070411
904 => 0.055443297232447
905 => 0.056165365730676
906 => 0.056489525543124
907 => 0.056965488321682
908 => 0.057768517309732
909 => 0.058640819783673
910 => 0.058764172917799
911 => 0.058676647966146
912 => 0.058101341035832
913 => 0.059055824811552
914 => 0.05961493902197
915 => 0.059947878739173
916 => 0.060792158466112
917 => 0.056491527443769
918 => 0.053447327050924
919 => 0.052971931200794
920 => 0.053938667356051
921 => 0.054193587970616
922 => 0.054090829790528
923 => 0.050664305481789
924 => 0.052953891259444
925 => 0.055417293042361
926 => 0.055511922337362
927 => 0.056745152777192
928 => 0.057146743160225
929 => 0.058139655307497
930 => 0.058077548382344
1001 => 0.058319306689522
1002 => 0.058263730641372
1003 => 0.060102891311874
1004 => 0.06213175864944
1005 => 0.062061505424943
1006 => 0.061769831740699
1007 => 0.062203016899555
1008 => 0.06429702541856
1009 => 0.064104242669933
1010 => 0.064291514689029
1011 => 0.066760468746084
1012 => 0.069970460224876
1013 => 0.068479096905102
1014 => 0.071714926180777
1015 => 0.073751709185875
1016 => 0.077274114785897
1017 => 0.076833092256561
1018 => 0.078204338908044
1019 => 0.07604356988487
1020 => 0.071082007444194
1021 => 0.070296821195859
1022 => 0.071868783949108
1023 => 0.07573330098809
1024 => 0.071747076554902
1025 => 0.072553484566066
1026 => 0.072321239004601
1027 => 0.072308863625611
1028 => 0.07278118150737
1029 => 0.072096059785434
1030 => 0.069304750639223
1031 => 0.070583991171644
1101 => 0.0700900149679
1102 => 0.070638118394319
1103 => 0.073596006531654
1104 => 0.072288253678892
1105 => 0.070910642281722
1106 => 0.072638472690215
1107 => 0.074838594547171
1108 => 0.074700914875362
1109 => 0.074433758766414
1110 => 0.075939703764716
1111 => 0.078427083701427
1112 => 0.079099412503218
1113 => 0.079595711879543
1114 => 0.079664143178492
1115 => 0.080369028087477
1116 => 0.076578684277995
1117 => 0.082594057246575
1118 => 0.083632745986925
1119 => 0.083437515552976
1120 => 0.084591974373171
1121 => 0.084252303302476
1122 => 0.083760173213798
1123 => 0.085590236004239
1124 => 0.08349221669345
1125 => 0.080514342415072
1126 => 0.078880621690279
1127 => 0.081032036929178
1128 => 0.082345831141529
1129 => 0.083214165542887
1130 => 0.083476923008076
1201 => 0.0768729178782
1202 => 0.073313725388112
1203 => 0.075595126968033
1204 => 0.078378594349464
1205 => 0.07656322197615
1206 => 0.07663438113623
1207 => 0.074046137203352
1208 => 0.078607596506445
1209 => 0.077943030253895
1210 => 0.081390801147718
1211 => 0.080567962953817
1212 => 0.083379486276035
1213 => 0.082639117960888
1214 => 0.085712345443628
1215 => 0.086938339090806
1216 => 0.088996973235092
1217 => 0.090511312891777
1218 => 0.091400562102884
1219 => 0.091347174915739
1220 => 0.094870823312344
1221 => 0.092793050959764
1222 => 0.09018287919158
1223 => 0.09013566941928
1224 => 0.091487514364443
1225 => 0.094320610508954
1226 => 0.095055191119354
1227 => 0.095465721467237
1228 => 0.09483697994879
1229 => 0.09258170697535
1230 => 0.091607891539913
1231 => 0.092437610505055
]
'min_raw' => 0.034213301752858
'max_raw' => 0.095465721467237
'avg_raw' => 0.064839511610047
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.034213'
'max' => '$0.095465'
'avg' => '$0.064839'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013544533864597
'max_diff' => 0.049324153170878
'year' => 2036
]
11 => [
'items' => [
101 => 0.09142293550925
102 => 0.09317454921953
103 => 0.095579888968245
104 => 0.09508319582188
105 => 0.096743566541781
106 => 0.098461875560785
107 => 0.10091913463205
108 => 0.10156155314532
109 => 0.10262344651876
110 => 0.10371648361384
111 => 0.1040675376706
112 => 0.10473780879063
113 => 0.10473427613098
114 => 0.10675418326566
115 => 0.10898220338652
116 => 0.10982322940337
117 => 0.11175712235465
118 => 0.10844539844727
119 => 0.11095737907336
120 => 0.11322324847705
121 => 0.11052178556314
122 => 0.11424512282983
123 => 0.11438969157864
124 => 0.11657250804562
125 => 0.1143598053793
126 => 0.11304590959923
127 => 0.11683907748525
128 => 0.11867447194163
129 => 0.11812163619443
130 => 0.1139145288614
131 => 0.11146581194225
201 => 0.10505704744263
202 => 0.11264850583046
203 => 0.11634608376529
204 => 0.11390495302782
205 => 0.1151361173797
206 => 0.12185295087722
207 => 0.12441028619031
208 => 0.12387837832231
209 => 0.12396826199605
210 => 0.12534815371207
211 => 0.13146735350117
212 => 0.12780058714561
213 => 0.13060369263332
214 => 0.13209044967666
215 => 0.13347143247638
216 => 0.13008017518436
217 => 0.12566819927491
218 => 0.12427074130223
219 => 0.1136622306854
220 => 0.11311001163737
221 => 0.11280003435176
222 => 0.11084567141315
223 => 0.10931007748846
224 => 0.1080889161866
225 => 0.10488422426088
226 => 0.10596571371109
227 => 0.10085810365269
228 => 0.10412577156547
301 => 0.095973902584706
302 => 0.10276302130598
303 => 0.099068012649341
304 => 0.10154911158534
305 => 0.10154045526488
306 => 0.096971965490581
307 => 0.094336955930713
308 => 0.096016086578367
309 => 0.097816247922209
310 => 0.098108318043778
311 => 0.10044227421509
312 => 0.10109363121428
313 => 0.099119989097776
314 => 0.095804973219339
315 => 0.096574975800438
316 => 0.094321351852984
317 => 0.090371962569464
318 => 0.09320848290261
319 => 0.094176995657341
320 => 0.094604746064784
321 => 0.090720975294867
322 => 0.089500610198193
323 => 0.088850898060579
324 => 0.095303627183248
325 => 0.0956571222508
326 => 0.093848591506037
327 => 0.10202332196429
328 => 0.10017312869399
329 => 0.10224024788527
330 => 0.096505106136988
331 => 0.096724196275165
401 => 0.094009088261806
402 => 0.095529367325704
403 => 0.094454883084222
404 => 0.095406543801032
405 => 0.095976965310843
406 => 0.098691627801694
407 => 0.10279401839101
408 => 0.098286147751577
409 => 0.096322003960081
410 => 0.097540547721561
411 => 0.1007856903362
412 => 0.10570224751317
413 => 0.10279154670947
414 => 0.10408326629925
415 => 0.10436544956501
416 => 0.10221920655236
417 => 0.10578138255442
418 => 0.10769038161299
419 => 0.10964861963539
420 => 0.11134890284165
421 => 0.10886645630666
422 => 0.11152302994383
423 => 0.10938230054065
424 => 0.10746184496146
425 => 0.10746475749984
426 => 0.10626002766163
427 => 0.10392571179438
428 => 0.10349522813363
429 => 0.10573465850095
430 => 0.10753046958071
501 => 0.10767838118259
502 => 0.10867263446844
503 => 0.10926102332139
504 => 0.11502803395612
505 => 0.11734757334062
506 => 0.12018386219335
507 => 0.12128875654597
508 => 0.12461409242081
509 => 0.1219286136313
510 => 0.12134759340274
511 => 0.11328141627945
512 => 0.11460225233151
513 => 0.11671703829259
514 => 0.11331628832103
515 => 0.11547328143324
516 => 0.11589911756495
517 => 0.11320073213831
518 => 0.11464205638503
519 => 0.11081432650859
520 => 0.10287745244233
521 => 0.10579021856413
522 => 0.10793499485625
523 => 0.10487413463839
524 => 0.11036060810726
525 => 0.10715552357055
526 => 0.1061396656436
527 => 0.10217644169107
528 => 0.10404693083818
529 => 0.10657679419248
530 => 0.10501363276771
531 => 0.10825742743398
601 => 0.11285150576985
602 => 0.11612551957409
603 => 0.11637685770039
604 => 0.11427188616615
605 => 0.11764511648352
606 => 0.11766968678374
607 => 0.1138646692057
608 => 0.11153411712558
609 => 0.11100461078945
610 => 0.11232742143293
611 => 0.11393355775843
612 => 0.11646598708832
613 => 0.11799628109433
614 => 0.12198647625677
615 => 0.12306610865987
616 => 0.12425229734678
617 => 0.12583741123954
618 => 0.12774074688266
619 => 0.12357635685248
620 => 0.12374181583177
621 => 0.11986399349557
622 => 0.11571998419337
623 => 0.11886477069569
624 => 0.12297616071406
625 => 0.12203300330116
626 => 0.12192687882525
627 => 0.12210535075726
628 => 0.12139424086857
629 => 0.11817791719703
630 => 0.11656269958443
701 => 0.11864674239064
702 => 0.11975431839207
703 => 0.12147207217951
704 => 0.12126032276782
705 => 0.12568507205097
706 => 0.12740439582493
707 => 0.12696451922954
708 => 0.12704546710932
709 => 0.13015822067646
710 => 0.13362024282973
711 => 0.13686288343032
712 => 0.14016143672389
713 => 0.13618490198376
714 => 0.13416586288129
715 => 0.13624899585961
716 => 0.13514365617909
717 => 0.14149526584838
718 => 0.14193503752099
719 => 0.14828618789661
720 => 0.15431418588399
721 => 0.15052810835092
722 => 0.15409820893593
723 => 0.15795956379319
724 => 0.16540874379509
725 => 0.16290012203576
726 => 0.16097855708323
727 => 0.15916268748802
728 => 0.16294122385447
729 => 0.16780225052631
730 => 0.16884926911309
731 => 0.17054583921555
801 => 0.16876210319953
802 => 0.17091041675875
803 => 0.17849490763961
804 => 0.17644551125345
805 => 0.17353503892819
806 => 0.17952226605639
807 => 0.18168902027932
808 => 0.19689643615389
809 => 0.21609642688255
810 => 0.20814750464695
811 => 0.20321335210519
812 => 0.20437299499217
813 => 0.21138418164557
814 => 0.2136359522747
815 => 0.20751486347284
816 => 0.20967693551855
817 => 0.22159016506065
818 => 0.22798123048782
819 => 0.21930130520312
820 => 0.19535373559346
821 => 0.17327298273947
822 => 0.17912979270561
823 => 0.17846581221342
824 => 0.19126509115075
825 => 0.17639663382742
826 => 0.17664698051646
827 => 0.18971093498755
828 => 0.18622569590754
829 => 0.18058005495363
830 => 0.17331420216628
831 => 0.15988260127882
901 => 0.1479858578049
902 => 0.17131811141365
903 => 0.17031198221109
904 => 0.16885495802579
905 => 0.17209740768369
906 => 0.18784182283707
907 => 0.18747886310809
908 => 0.18516989849597
909 => 0.18692122780398
910 => 0.18027303845838
911 => 0.1819864282292
912 => 0.17326948503541
913 => 0.17720990741071
914 => 0.18056794194373
915 => 0.18124211709278
916 => 0.18276106812784
917 => 0.16978179784021
918 => 0.175609109148
919 => 0.1790321085961
920 => 0.16356687255981
921 => 0.17872641060418
922 => 0.16955585762077
923 => 0.16644323420112
924 => 0.17063397157873
925 => 0.16900083714705
926 => 0.16759676406356
927 => 0.16681326715793
928 => 0.16989048217325
929 => 0.16974692641471
930 => 0.16471200538797
1001 => 0.15814415615821
1002 => 0.16034854194202
1003 => 0.15954766792054
1004 => 0.15664519715187
1005 => 0.15860111200429
1006 => 0.14998825286008
1007 => 0.13517027635992
1008 => 0.14495948552282
1009 => 0.14458261161866
1010 => 0.14439257470631
1011 => 0.15174889483836
1012 => 0.15104175439685
1013 => 0.14975828757116
1014 => 0.15662162527711
1015 => 0.15411641468952
1016 => 0.16183688341863
1017 => 0.16692208345223
1018 => 0.16563231223472
1019 => 0.17041496744523
1020 => 0.16039932653825
1021 => 0.16372612068978
1022 => 0.16441176835367
1023 => 0.15653693275519
1024 => 0.15115745131843
1025 => 0.15079870123718
1026 => 0.14147142176405
1027 => 0.14645397917143
1028 => 0.15083842349768
1029 => 0.14873861491203
1030 => 0.14807387824381
1031 => 0.15146987371795
1101 => 0.15173377165103
1102 => 0.14571687081026
1103 => 0.14696797502553
1104 => 0.15218528758195
1105 => 0.14683651213535
1106 => 0.13644471516012
1107 => 0.13386740583242
1108 => 0.13352354525887
1109 => 0.12653367795319
1110 => 0.13403963396559
1111 => 0.13076308301906
1112 => 0.14111366820002
1113 => 0.13520146945596
1114 => 0.13494660638466
1115 => 0.13456134347212
1116 => 0.12854487593434
1117 => 0.12986209995865
1118 => 0.13424075323436
1119 => 0.13580310605219
1120 => 0.13564013985331
1121 => 0.13421929544454
1122 => 0.13486975073898
1123 => 0.13277440760196
1124 => 0.13203449832948
1125 => 0.12969914113746
1126 => 0.12626681122408
1127 => 0.12674409775024
1128 => 0.11994375407386
1129 => 0.11623856591741
1130 => 0.11521301866931
1201 => 0.11384161402856
1202 => 0.11536792247265
1203 => 0.11992448955464
1204 => 0.11442830292412
1205 => 0.10500547645875
1206 => 0.10557180438504
1207 => 0.10684417509113
1208 => 0.10447312069791
1209 => 0.10222911670223
1210 => 0.10418009611467
1211 => 0.10018752032237
1212 => 0.10732665880087
1213 => 0.10713356511223
1214 => 0.10979459445565
1215 => 0.11145859071392
1216 => 0.10762361806381
1217 => 0.10665913281318
1218 => 0.10720854744535
1219 => 0.09812794741177
1220 => 0.10905251570414
1221 => 0.10914699182438
1222 => 0.10833802992473
1223 => 0.11415502528221
1224 => 0.12643069985285
1225 => 0.12181209729151
1226 => 0.12002363478176
1227 => 0.11662376624336
1228 => 0.12115388920656
1229 => 0.12080604644391
1230 => 0.11923296955577
1231 => 0.11828156774553
]
'min_raw' => 0.088850898060579
'max_raw' => 0.22798123048782
'avg_raw' => 0.1584160642742
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.08885'
'max' => '$0.227981'
'avg' => '$0.158416'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.054637596307721
'max_diff' => 0.13251550902058
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0027889281624745
]
1 => [
'year' => 2028
'avg' => 0.0047866103584367
]
2 => [
'year' => 2029
'avg' => 0.013076156796668
]
3 => [
'year' => 2030
'avg' => 0.010088235495033
]
4 => [
'year' => 2031
'avg' => 0.0099078974773834
]
5 => [
'year' => 2032
'avg' => 0.017371662407945
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0027889281624745
'min' => '$0.002788'
'max_raw' => 0.017371662407945
'max' => '$0.017371'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.017371662407945
]
1 => [
'year' => 2033
'avg' => 0.044681702020214
]
2 => [
'year' => 2034
'avg' => 0.028321410042531
]
3 => [
'year' => 2035
'avg' => 0.03340516809231
]
4 => [
'year' => 2036
'avg' => 0.064839511610047
]
5 => [
'year' => 2037
'avg' => 0.1584160642742
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.017371662407945
'min' => '$0.017371'
'max_raw' => 0.1584160642742
'max' => '$0.158416'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1584160642742
]
]
]
]
'prediction_2025_max_price' => '$0.004768'
'last_price' => 0.00462372
'sma_50day_nextmonth' => '$0.004237'
'sma_200day_nextmonth' => '$0.004279'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004627'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.004495'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004352'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0042056'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004038'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004055'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.004353'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.004602'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004529'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0044069'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004276'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004142'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.004159'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.004524'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.004192'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.004868'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.009898'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.011581'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004465'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004347'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004221'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.004314'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.005537'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.008256'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.014588'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '64.82'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 109.51
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.004471'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004692'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 78.68
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 166.87
'cci_20_action' => 'SELL'
'adx_14' => 16.52
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000311'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -21.32
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 69.18
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000098'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 10
'buy_signals' => 24
'sell_pct' => 29.41
'buy_pct' => 70.59
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767711854
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Marcopolo para 2026
A previsão de preço para Marcopolo em 2026 sugere que o preço médio poderia variar entre $0.001597 na extremidade inferior e $0.004768 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Marcopolo poderia potencialmente ganhar 3.13% até 2026 se MAPO atingir a meta de preço prevista.
Previsão de preço de Marcopolo 2027-2032
A previsão de preço de MAPO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002788 na extremidade inferior e $0.017371 na extremidade superior. Considerando a volatilidade de preços no mercado, se Marcopolo atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Marcopolo | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001537 | $0.002788 | $0.004039 |
| 2028 | $0.002775 | $0.004786 | $0.006797 |
| 2029 | $0.006096 | $0.013076 | $0.020055 |
| 2030 | $0.005185 | $0.010088 | $0.014991 |
| 2031 | $0.00613 | $0.0099078 | $0.013685 |
| 2032 | $0.009357 | $0.017371 | $0.025385 |
Previsão de preço de Marcopolo 2032-2037
A previsão de preço de Marcopolo para 2032-2037 é atualmente estimada entre $0.017371 na extremidade inferior e $0.158416 na extremidade superior. Comparado ao preço atual, Marcopolo poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Marcopolo | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.009357 | $0.017371 | $0.025385 |
| 2033 | $0.021744 | $0.044681 | $0.067618 |
| 2034 | $0.017481 | $0.028321 | $0.039161 |
| 2035 | $0.020668 | $0.0334051 | $0.046141 |
| 2036 | $0.034213 | $0.064839 | $0.095465 |
| 2037 | $0.08885 | $0.158416 | $0.227981 |
Marcopolo Histograma de preços potenciais
Previsão de preço de Marcopolo baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Marcopolo é Altista, com 24 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de MAPO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Marcopolo
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Marcopolo está projetado para aumentar no próximo mês, alcançando $0.004279 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Marcopolo é esperado para alcançar $0.004237 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 64.82, sugerindo que o mercado de MAPO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de MAPO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004627 | SELL |
| SMA 5 | $0.004495 | BUY |
| SMA 10 | $0.004352 | BUY |
| SMA 21 | $0.0042056 | BUY |
| SMA 50 | $0.004038 | BUY |
| SMA 100 | $0.004055 | BUY |
| SMA 200 | $0.004353 | BUY |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004602 | BUY |
| EMA 5 | $0.004529 | BUY |
| EMA 10 | $0.0044069 | BUY |
| EMA 21 | $0.004276 | BUY |
| EMA 50 | $0.004142 | BUY |
| EMA 100 | $0.004159 | BUY |
| EMA 200 | $0.004524 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.004192 | BUY |
| SMA 50 | $0.004868 | SELL |
| SMA 100 | $0.009898 | SELL |
| SMA 200 | $0.011581 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.004314 | BUY |
| EMA 50 | $0.005537 | SELL |
| EMA 100 | $0.008256 | SELL |
| EMA 200 | $0.014588 | SELL |
Osciladores de Marcopolo
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 64.82 | NEUTRAL |
| Stoch RSI (14) | 109.51 | SELL |
| Estocástico Rápido (14) | 78.68 | NEUTRAL |
| Índice de Canal de Commodities (20) | 166.87 | SELL |
| Índice Direcional Médio (14) | 16.52 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000311 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -21.32 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 69.18 | NEUTRAL |
| VWMA (10) | 0.004471 | BUY |
| Média Móvel de Hull (9) | 0.004692 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000098 | BUY |
Previsão do preço de Marcopolo com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Marcopolo
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Marcopolo por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.006497 | $0.009129 | $0.012828 | $0.018026 | $0.025329 | $0.035592 |
| Amazon.com stock | $0.009647 | $0.02013 | $0.0420033 | $0.087642 | $0.182871 | $0.381571 |
| Apple stock | $0.006558 | $0.0093025 | $0.013195 | $0.018716 | $0.026547 | $0.037655 |
| Netflix stock | $0.007295 | $0.011511 | $0.018162 | $0.028658 | $0.045217 | $0.071346 |
| Google stock | $0.005987 | $0.007754 | $0.010041 | $0.0130036 | $0.016839 | $0.0218072 |
| Tesla stock | $0.010481 | $0.023761 | $0.053864 | $0.1221067 | $0.2768067 | $0.627500037 |
| Kodak stock | $0.003467 | $0.0026001 | $0.001949 | $0.001462 | $0.001096 | $0.000822 |
| Nokia stock | $0.003063 | $0.002029 | $0.001344 | $0.00089 | $0.000589 | $0.00039 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Marcopolo
Você pode fazer perguntas como: 'Devo investir em Marcopolo agora?', 'Devo comprar MAPO hoje?', 'Marcopolo será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Marcopolo/MAP Protocol regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Marcopolo, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Marcopolo para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Marcopolo é de $0.004623 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Marcopolo
com base no histórico de preços de 4 horas
Previsão de longo prazo para Marcopolo
com base no histórico de preços de 1 mês
Previsão do preço de Marcopolo com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Marcopolo tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004743 | $0.004867 | $0.004993 | $0.005123 |
| Se Marcopolo tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004864 | $0.005116 | $0.005382 | $0.005662 |
| Se Marcopolo tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005224 | $0.0059036 | $0.00667 | $0.007537 |
| Se Marcopolo tiver 10% da média anterior do crescimento anual do Bitcoin | $0.005825 | $0.007339 | $0.009247 | $0.011651 |
| Se Marcopolo tiver 20% da média anterior do crescimento anual do Bitcoin | $0.007027 | $0.01068 | $0.016233 | $0.024672 |
| Se Marcopolo tiver 50% da média anterior do crescimento anual do Bitcoin | $0.010632 | $0.024452 | $0.056231 | $0.129314 |
| Se Marcopolo tiver 100% da média anterior do crescimento anual do Bitcoin | $0.016642 | $0.05990081 | $0.2156022 | $0.776021 |
Perguntas Frequentes sobre Marcopolo
MAPO é um bom investimento?
A decisão de adquirir Marcopolo depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Marcopolo experimentou uma queda de -2.1273% nas últimas 24 horas, e Marcopolo registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Marcopolo dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Marcopolo pode subir?
Parece que o valor médio de Marcopolo pode potencialmente subir para $0.004768 até o final deste ano. Observando as perspectivas de Marcopolo em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.014991. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Marcopolo na próxima semana?
Com base na nossa nova previsão experimental de Marcopolo, o preço de Marcopolo aumentará 0.86% na próxima semana e atingirá $0.004663 até 13 de janeiro de 2026.
Qual será o preço de Marcopolo no próximo mês?
Com base na nossa nova previsão experimental de Marcopolo, o preço de Marcopolo diminuirá -11.62% no próximo mês e atingirá $0.0040865 até 5 de fevereiro de 2026.
Até onde o preço de Marcopolo pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Marcopolo em 2026, espera-se que MAPO fluctue dentro do intervalo de $0.001597 e $0.004768. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Marcopolo não considera flutuações repentinas e extremas de preço.
Onde estará Marcopolo em 5 anos?
O futuro de Marcopolo parece seguir uma tendência de alta, com um preço máximo de $0.014991 projetada após um período de cinco anos. Com base na previsão de Marcopolo para 2030, o valor de Marcopolo pode potencialmente atingir seu pico mais alto de aproximadamente $0.014991, enquanto seu pico mais baixo está previsto para cerca de $0.005185.
Quanto será Marcopolo em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Marcopolo, espera-se que o valor de MAPO em 2026 aumente 3.13% para $0.004768 se o melhor cenário ocorrer. O preço ficará entre $0.004768 e $0.001597 durante 2026.
Quanto será Marcopolo em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Marcopolo, o valor de MAPO pode diminuir -12.62% para $0.004039 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.004039 e $0.001537 ao longo do ano.
Quanto será Marcopolo em 2028?
Nosso novo modelo experimental de previsão de preços de Marcopolo sugere que o valor de MAPO em 2028 pode aumentar 47.02%, alcançando $0.006797 no melhor cenário. O preço é esperado para variar entre $0.006797 e $0.002775 durante o ano.
Quanto será Marcopolo em 2029?
Com base no nosso modelo de previsão experimental, o valor de Marcopolo pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.020055 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.020055 e $0.006096.
Quanto será Marcopolo em 2030?
Usando nossa nova simulação experimental para previsões de preços de Marcopolo, espera-se que o valor de MAPO em 2030 aumente 224.23%, alcançando $0.014991 no melhor cenário. O preço está previsto para variar entre $0.014991 e $0.005185 ao longo de 2030.
Quanto será Marcopolo em 2031?
Nossa simulação experimental indica que o preço de Marcopolo poderia aumentar 195.98% em 2031, potencialmente atingindo $0.013685 sob condições ideais. O preço provavelmente oscilará entre $0.013685 e $0.00613 durante o ano.
Quanto será Marcopolo em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Marcopolo, MAPO poderia ver um 449.04% aumento em valor, atingindo $0.025385 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.025385 e $0.009357 ao longo do ano.
Quanto será Marcopolo em 2033?
De acordo com nossa previsão experimental de preços de Marcopolo, espera-se que o valor de MAPO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.067618. Ao longo do ano, o preço de MAPO poderia variar entre $0.067618 e $0.021744.
Quanto será Marcopolo em 2034?
Os resultados da nossa nova simulação de previsão de preços de Marcopolo sugerem que MAPO pode aumentar 746.96% em 2034, atingindo potencialmente $0.039161 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.039161 e $0.017481.
Quanto será Marcopolo em 2035?
Com base em nossa previsão experimental para o preço de Marcopolo, MAPO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.046141 em 2035. A faixa de preço esperada para o ano está entre $0.046141 e $0.020668.
Quanto será Marcopolo em 2036?
Nossa recente simulação de previsão de preços de Marcopolo sugere que o valor de MAPO pode aumentar 1964.7% em 2036, possivelmente atingindo $0.095465 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.095465 e $0.034213.
Quanto será Marcopolo em 2037?
De acordo com a simulação experimental, o valor de Marcopolo poderia aumentar 4830.69% em 2037, com um pico de $0.227981 sob condições favoráveis. O preço é esperado para cair entre $0.227981 e $0.08885 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Stargaze
Previsão de Preço do Beta Finance
Previsão de Preço do Iagon
Previsão de Preço do Hermez Network Token
Previsão de Preço do Quanta
Previsão de Preço do Orion Protocol
Previsão de Preço do Verasity
Previsão de Preço do Aergo
Previsão de Preço do higher
Previsão de Preço do SportX
Previsão de Preço do Reef
Previsão de Preço do ankrETH
Previsão de Preço do Wanchain
Previsão de Preço do VitaDAO
Previsão de Preço do PlayDapp
Previsão de Preço do Zero1 Labs
Previsão de Preço do SingularityDAO
Previsão de Preço do PunkCity
Previsão de Preço do Compound USD Coin
Previsão de Preço do Compound Dai
Previsão de Preço do Dola USD Stablecoin
Previsão de Preço do Litentry
Previsão de Preço do ResearchCoin
Previsão de Preço do Kwenta
Previsão de Preço do Harvest Finance
Como ler e prever os movimentos de preço de Marcopolo?
Traders de Marcopolo utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Marcopolo
Médias móveis são ferramentas populares para a previsão de preço de Marcopolo. Uma média móvel simples (SMA) calcula o preço médio de fechamento de MAPO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de MAPO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de MAPO.
Como ler gráficos de Marcopolo e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Marcopolo em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de MAPO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Marcopolo?
A ação de preço de Marcopolo é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de MAPO. A capitalização de mercado de Marcopolo pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de MAPO, grandes detentores de Marcopolo, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Marcopolo.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


