Previsão de Preço PunkCity - Projeção PUNK
Previsão de Preço PunkCity até $0.019883 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006661 | $0.019883 |
| 2027 | $0.006412 | $0.016845 |
| 2028 | $0.011572 | $0.028344 |
| 2029 | $0.025421 | $0.083624 |
| 2030 | $0.021619 | $0.0625092 |
| 2031 | $0.025561 | $0.057063 |
| 2032 | $0.039017 | $0.10585 |
| 2033 | $0.090667 | $0.281947 |
| 2034 | $0.072892 | $0.163288 |
| 2035 | $0.086181 | $0.192394 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em PunkCity hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.67, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de PunkCity para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'PunkCity'
'name_with_ticker' => 'PunkCity <small>PUNK</small>'
'name_lang' => 'PunkCity'
'name_lang_with_ticker' => 'PunkCity <small>PUNK</small>'
'name_with_lang' => 'PunkCity'
'name_with_lang_with_ticker' => 'PunkCity <small>PUNK</small>'
'image' => '/uploads/coins/punk-2.png?1717093485'
'price_for_sd' => 0.01927
'ticker' => 'PUNK'
'marketcap' => '$861.77K'
'low24h' => '$0.0182'
'high24h' => '$0.01923'
'volume24h' => '$265.81'
'current_supply' => '44.7M'
'max_supply' => '49.78M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01927'
'change_24h_pct' => '5.9096%'
'ath_price' => '$4.48'
'ath_days' => 631
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 de abr. de 2024'
'ath_pct' => '-99.57%'
'fdv' => '$959.79K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.9506042'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019444'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0170394'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006661'
'current_year_max_price_prediction' => '$0.019883'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021619'
'grand_prediction_max_price' => '$0.0625092'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019644673352067
107 => 0.019718019431347
108 => 0.019883271893109
109 => 0.018471207700518
110 => 0.019105183066965
111 => 0.019477584199294
112 => 0.017795062335362
113 => 0.019444326151764
114 => 0.018446626804484
115 => 0.018107992661076
116 => 0.018563918923519
117 => 0.018386244015642
118 => 0.01823348956327
119 => 0.018148249954192
120 => 0.018483031882585
121 => 0.018467413905474
122 => 0.017919645692251
123 => 0.01720510438799
124 => 0.017444927903719
125 => 0.017357797772097
126 => 0.01704202693509
127 => 0.017254818352916
128 => 0.016317792640079
129 => 0.0147056886035
130 => 0.015770693910146
131 => 0.015729692364343
201 => 0.015709017525677
202 => 0.016509339579037
203 => 0.016432407080178
204 => 0.016292773841423
205 => 0.017039462461158
206 => 0.016766911070576
207 => 0.017606850235167
208 => 0.018160088492826
209 => 0.018019769375301
210 => 0.018540092630662
211 => 0.017450452953146
212 => 0.017812387545261
213 => 0.017886981763076
214 => 0.017030248439496
215 => 0.016444994188431
216 => 0.016405964402272
217 => 0.01539121418393
218 => 0.015933285559791
219 => 0.016410285938111
220 => 0.01618183977362
221 => 0.016109520542577
222 => 0.016478983809847
223 => 0.016507694269953
224 => 0.015853092736944
225 => 0.015989205124191
226 => 0.016556816405813
227 => 0.015974902776235
228 => 0.014844339649015
301 => 0.014563944362207
302 => 0.014526534462236
303 => 0.01376608020598
304 => 0.014582681716033
305 => 0.014226213273335
306 => 0.015352292812671
307 => 0.014709082219088
308 => 0.014681354695967
309 => 0.014639440478027
310 => 0.013984886085699
311 => 0.014128191898517
312 => 0.014604562246416
313 => 0.014774536553243
314 => 0.014756806840482
315 => 0.014602227771829
316 => 0.014672993277885
317 => 0.01444503292654
318 => 0.014364535381895
319 => 0.014110462988403
320 => 0.013737046759259
321 => 0.013788972576217
322 => 0.013049137316612
323 => 0.01264603580115
324 => 0.012534462614463
325 => 0.01238526228626
326 => 0.01255131518854
327 => 0.013047041456277
328 => 0.012449090403192
329 => 0.011423945264067
330 => 0.011485558233691
331 => 0.011623984283381
401 => 0.011366028255564
402 => 0.011121894523844
403 => 0.011334148996379
404 => 0.010899781486682
405 => 0.011676475521712
406 => 0.011655468124724
407 => 0.011944971630547
408 => 0.012126004113947
409 => 0.011708782849671
410 => 0.011603852829992
411 => 0.011663625738005
412 => 0.010675712714352
413 => 0.011864238060024
414 => 0.011874516476568
415 => 0.011786506433911
416 => 0.012419359488878
417 => 0.013754876826676
418 => 0.013252401483136
419 => 0.01305782784272
420 => 0.012687943210056
421 => 0.013180792521504
422 => 0.013142949384032
423 => 0.012971808364799
424 => 0.012868301742374
425 => 0.013059015867878
426 => 0.012844670151684
427 => 0.012806167771229
428 => 0.012572885236676
429 => 0.01248961398552
430 => 0.012427963266288
501 => 0.012360091882087
502 => 0.012509799243138
503 => 0.012170542667354
504 => 0.011761432494692
505 => 0.011727419410469
506 => 0.011821332526471
507 => 0.011779782963649
508 => 0.011727220487147
509 => 0.011626864404966
510 => 0.011597090899152
511 => 0.011693840348998
512 => 0.011584615860965
513 => 0.011745782542823
514 => 0.011701954123117
515 => 0.011457132133434
516 => 0.01115199328958
517 => 0.011149276913819
518 => 0.011083535250439
519 => 0.010999803357798
520 => 0.010976511060792
521 => 0.011316273516728
522 => 0.01201957163228
523 => 0.0118814973837
524 => 0.011981270178717
525 => 0.012472053581439
526 => 0.012628058866792
527 => 0.012517330010436
528 => 0.012365757522397
529 => 0.012372425942628
530 => 0.012890395018369
531 => 0.012922700114269
601 => 0.013004324669589
602 => 0.013109235290273
603 => 0.012535196742785
604 => 0.012345388778664
605 => 0.012255447235118
606 => 0.011978462092755
607 => 0.012277166821882
608 => 0.012103124368031
609 => 0.012126608641193
610 => 0.012111314477488
611 => 0.012119666125058
612 => 0.0116762584199
613 => 0.011837812882837
614 => 0.011569197254201
615 => 0.011209551080978
616 => 0.011208345420897
617 => 0.011296368312283
618 => 0.011244008852151
619 => 0.011103110891219
620 => 0.01112312478155
621 => 0.010947782042647
622 => 0.011144414564735
623 => 0.011150053281884
624 => 0.011074339050234
625 => 0.011377278580569
626 => 0.011501393153323
627 => 0.011451556424095
628 => 0.011497896475546
629 => 0.011887234992096
630 => 0.011950714158324
701 => 0.011978907410764
702 => 0.011941132187385
703 => 0.01150501286891
704 => 0.011524356615206
705 => 0.011382425039657
706 => 0.011262507814699
707 => 0.011267303874814
708 => 0.011328956916591
709 => 0.011598199365932
710 => 0.012164804227862
711 => 0.01218630646819
712 => 0.012212367810731
713 => 0.012106363233234
714 => 0.012074391238333
715 => 0.012116570552279
716 => 0.012329357547751
717 => 0.012876703471213
718 => 0.012683234865856
719 => 0.012525941878184
720 => 0.012663930234258
721 => 0.012642688008429
722 => 0.01246338224501
723 => 0.012458349729427
724 => 0.012114204641908
725 => 0.011986982038856
726 => 0.011880665309299
727 => 0.011764570216092
728 => 0.011695745153296
729 => 0.011801491730182
730 => 0.011825677223473
731 => 0.011594460484977
801 => 0.011562946497895
802 => 0.011751763077711
803 => 0.011668671940725
804 => 0.011754133235676
805 => 0.011773960989178
806 => 0.011770768264192
807 => 0.011684011574223
808 => 0.011739307701287
809 => 0.011608515876211
810 => 0.011466299410737
811 => 0.011375574166164
812 => 0.011296404357316
813 => 0.011340332368641
814 => 0.011183737029206
815 => 0.011133639028479
816 => 0.01172057461764
817 => 0.012154150247975
818 => 0.012147845886595
819 => 0.012109469708045
820 => 0.012052450491044
821 => 0.012325186236877
822 => 0.012230170556552
823 => 0.012299302402814
824 => 0.012316899359142
825 => 0.012370160046084
826 => 0.012389196163754
827 => 0.01233165579472
828 => 0.012138543288275
829 => 0.0116573252828
830 => 0.011433317002228
831 => 0.011359390538486
901 => 0.011362077625037
902 => 0.011287955782287
903 => 0.011309787986885
904 => 0.011280363432494
905 => 0.011224640445042
906 => 0.011336891631189
907 => 0.011349827534701
908 => 0.011323626766552
909 => 0.011329797995933
910 => 0.011112866826157
911 => 0.011129359631845
912 => 0.011037525593969
913 => 0.011020307818943
914 => 0.010788159368094
915 => 0.01037687473696
916 => 0.010604766346974
917 => 0.010329505328487
918 => 0.010225259809901
919 => 0.010718741881383
920 => 0.010669209968468
921 => 0.010584432864563
922 => 0.010459029858791
923 => 0.010412516664108
924 => 0.010129917217503
925 => 0.010113219734588
926 => 0.010253283651153
927 => 0.010188648972963
928 => 0.010097877405719
929 => 0.0097691119905249
930 => 0.0093994708133588
1001 => 0.0094106279570158
1002 => 0.0095282039380538
1003 => 0.0098700719602029
1004 => 0.0097364982095724
1005 => 0.0096395889209078
1006 => 0.0096214407242234
1007 => 0.0098486034015515
1008 => 0.010170086182023
1009 => 0.010320918709848
1010 => 0.010171448255625
1011 => 0.0099997446458747
1012 => 0.010010195449002
1013 => 0.010079719960168
1014 => 0.010087026003268
1015 => 0.0099752646047365
1016 => 0.010006724783777
1017 => 0.0099589338950354
1018 => 0.0096656412990439
1019 => 0.0096603365660233
1020 => 0.009588357832985
1021 => 0.0095861783455548
1022 => 0.0094637245647202
1023 => 0.0094465924342984
1024 => 0.0092034530200382
1025 => 0.0093634881187983
1026 => 0.0092561449767698
1027 => 0.0090943535420455
1028 => 0.0090664606377162
1029 => 0.0090656221433304
1030 => 0.0092317457708894
1031 => 0.0093615468674883
1101 => 0.009258012256683
1102 => 0.0092344394327367
1103 => 0.0094861355209464
1104 => 0.0094541048994609
1105 => 0.0094263665878299
1106 => 0.010141300925086
1107 => 0.0095753746101257
1108 => 0.0093285984348584
1109 => 0.0090231660564404
1110 => 0.009122616378977
1111 => 0.0091435720231647
1112 => 0.0084090622113937
1113 => 0.0081110716722356
1114 => 0.0080088125487331
1115 => 0.0079499609774257
1116 => 0.007976780377482
1117 => 0.0077085539414356
1118 => 0.0078888065425145
1119 => 0.0076565451215146
1120 => 0.0076176057384399
1121 => 0.0080329179308567
1122 => 0.0080907061962129
1123 => 0.0078441635027967
1124 => 0.0080024838236063
1125 => 0.0079450746744637
1126 => 0.0076605265769469
1127 => 0.0076496589326159
1128 => 0.0075068826996313
1129 => 0.0072834655419368
1130 => 0.0071813579057877
1201 => 0.0071281793623422
1202 => 0.007150121865797
1203 => 0.0071390270645985
1204 => 0.0070666259819661
1205 => 0.0071431770099054
1206 => 0.0069476207665892
1207 => 0.0068697486947969
1208 => 0.0068345756865867
1209 => 0.0066610082648462
1210 => 0.0069372312186182
1211 => 0.0069916506202763
1212 => 0.0070461772449667
1213 => 0.0075207942859892
1214 => 0.0074970837598735
1215 => 0.0077114153684644
1216 => 0.0077030868362851
1217 => 0.0076419559895731
1218 => 0.0073840550028315
1219 => 0.0074868497395036
1220 => 0.0071704635178757
1221 => 0.0074075215872912
1222 => 0.0072993381841916
1223 => 0.0073709446698805
1224 => 0.0072421897521154
1225 => 0.0073134480397668
1226 => 0.0070045554792362
1227 => 0.0067161159524482
1228 => 0.0068321924381024
1229 => 0.0069583808529648
1230 => 0.0072319894885965
1231 => 0.0070690304424365
]
'min_raw' => 0.0066610082648462
'max_raw' => 0.019883271893109
'avg_raw' => 0.013272140078978
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006661'
'max' => '$0.019883'
'avg' => '$0.013272'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012618331735154
'max_diff' => 0.00060393189310928
'year' => 2026
]
1 => [
'items' => [
101 => 0.0071276366775994
102 => 0.0069313156003689
103 => 0.0065262491416992
104 => 0.0065285417738652
105 => 0.0064662311240513
106 => 0.0064123856251083
107 => 0.0070877482491883
108 => 0.0070037562309808
109 => 0.0068699259425708
110 => 0.0070490631018119
111 => 0.0070964298100043
112 => 0.0070977782735968
113 => 0.0072284721207798
114 => 0.0072982234504495
115 => 0.0073105174246234
116 => 0.0075161670169933
117 => 0.007585098047772
118 => 0.0078690152080648
119 => 0.0072923055374525
120 => 0.0072804285813005
121 => 0.0070515839290069
122 => 0.0069064470326314
123 => 0.0070615215764717
124 => 0.007198896452528
125 => 0.0070558525493369
126 => 0.0070745310632721
127 => 0.0068825063103543
128 => 0.006951146123918
129 => 0.0070102679781405
130 => 0.0069776243652608
131 => 0.0069287552968112
201 => 0.0071876332792939
202 => 0.0071730263689712
203 => 0.0074140994978381
204 => 0.0076020332410948
205 => 0.0079388441061856
206 => 0.0075873644101158
207 => 0.0075745550929858
208 => 0.007699768222611
209 => 0.0075850788782943
210 => 0.0076575585849609
211 => 0.0079271665049097
212 => 0.0079328628954157
213 => 0.0078374410150568
214 => 0.007831634584965
215 => 0.0078499614008889
216 => 0.0079573021341829
217 => 0.0079197939837224
218 => 0.0079631993650255
219 => 0.0080174784589918
220 => 0.0082419998054952
221 => 0.0082961311420237
222 => 0.0081646200581395
223 => 0.0081764940365471
224 => 0.0081273052811144
225 => 0.0080797895596998
226 => 0.0081865979623261
227 => 0.0083817924174501
228 => 0.0083805781228754
301 => 0.0084258594424261
302 => 0.0084540693293755
303 => 0.0083329718436893
304 => 0.0082541418333855
305 => 0.0082843702754199
306 => 0.0083327062125226
307 => 0.0082686955824729
308 => 0.0078735923211981
309 => 0.0079934414113748
310 => 0.0079734926624483
311 => 0.0079450832181262
312 => 0.0080655924050645
313 => 0.0080539690000002
314 => 0.0077058028916458
315 => 0.0077280913562804
316 => 0.0077071583270019
317 => 0.0077747972270957
318 => 0.0075814261557173
319 => 0.0076409057948992
320 => 0.0076782108670072
321 => 0.0077001838410698
322 => 0.0077795652903935
323 => 0.0077702507935326
324 => 0.0077789862881905
325 => 0.0078966880216118
326 => 0.0084919829988995
327 => 0.0085243835910689
328 => 0.0083648312252668
329 => 0.0084285692483735
330 => 0.008306206181982
331 => 0.0083883493282119
401 => 0.0084445495826527
402 => 0.0081905914395221
403 => 0.0081755536864607
404 => 0.0080526855841672
405 => 0.0081187079427347
406 => 0.0080136616230783
407 => 0.0080394363155577
408 => 0.0079673680283879
409 => 0.0080970765966406
410 => 0.0082421109306209
411 => 0.0082787523309637
412 => 0.0081823645817764
413 => 0.0081125734991026
414 => 0.0079900433485392
415 => 0.0081938137196886
416 => 0.0082534023860023
417 => 0.0081935007257922
418 => 0.0081796202022444
419 => 0.0081533166352028
420 => 0.0081852006283372
421 => 0.0082530778533282
422 => 0.008221068207518
423 => 0.008242211142513
424 => 0.0081616360768119
425 => 0.0083330119319959
426 => 0.0086051980338738
427 => 0.0086060731566982
428 => 0.0085740633383441
429 => 0.0085609656103347
430 => 0.0085938096264843
501 => 0.0086116261579133
502 => 0.0087178376835784
503 => 0.008831806882271
504 => 0.009363651403912
505 => 0.0092143115904454
506 => 0.0096861956896175
507 => 0.010059394745581
508 => 0.010171300824448
509 => 0.010068352497478
510 => 0.0097161718320753
511 => 0.0096988921684641
512 => 0.010225198769418
513 => 0.010076493048279
514 => 0.010058804975927
515 => 0.009870633770574
516 => 0.0099818662583949
517 => 0.0099575380816263
518 => 0.009919134864422
519 => 0.010131358702662
520 => 0.010528622782494
521 => 0.010466705450134
522 => 0.010420487033789
523 => 0.010217971387344
524 => 0.010339931040011
525 => 0.010296503543679
526 => 0.010483095627689
527 => 0.010372562610643
528 => 0.010075366456185
529 => 0.010122695923354
530 => 0.010115542169605
531 => 0.010262765914836
601 => 0.010218573000836
602 => 0.010106912793875
603 => 0.010527264977058
604 => 0.010499969644404
605 => 0.010538668185525
606 => 0.010555704480119
607 => 0.010811565446586
608 => 0.01091638349791
609 => 0.010940179030659
610 => 0.011039748072497
611 => 0.010937701662192
612 => 0.011345960061269
613 => 0.011617428074117
614 => 0.011932752140656
615 => 0.012393525352988
616 => 0.012566780343215
617 => 0.012535483379976
618 => 0.012884836370835
619 => 0.013512615929726
620 => 0.012662375577733
621 => 0.013557680732927
622 => 0.013274237457587
623 => 0.012602198550684
624 => 0.012558927167898
625 => 0.013014039718185
626 => 0.014023435551762
627 => 0.013770593343923
628 => 0.014023849111035
629 => 0.013728412806227
630 => 0.013713741903561
701 => 0.014009500429137
702 => 0.014700556345104
703 => 0.014372261583272
704 => 0.013901570541007
705 => 0.014249121481852
706 => 0.013948040692571
707 => 0.013269621407115
708 => 0.013770400000252
709 => 0.013435543616375
710 => 0.013533272511135
711 => 0.014237090823917
712 => 0.014152405542451
713 => 0.014261996138314
714 => 0.014068571605101
715 => 0.01388788259083
716 => 0.013550613127552
717 => 0.013450764266658
718 => 0.013478358899624
719 => 0.013450750592129
720 => 0.013262051427091
721 => 0.013221301860367
722 => 0.013153384130548
723 => 0.013174434674977
724 => 0.013046729472884
725 => 0.013287735574474
726 => 0.013332468430667
727 => 0.013507852573163
728 => 0.013526061536652
729 => 0.014014503877066
730 => 0.013745478043906
731 => 0.013925963799363
801 => 0.013909819454597
802 => 0.012616763671597
803 => 0.012794935349767
804 => 0.013072114567646
805 => 0.012947245705699
806 => 0.01277071034972
807 => 0.012628148584539
808 => 0.012412152932602
809 => 0.012716162664875
810 => 0.013115903134982
811 => 0.013536199614646
812 => 0.014041158296046
813 => 0.013928457396725
814 => 0.013526759763339
815 => 0.013544779625733
816 => 0.013656171324494
817 => 0.013511908953595
818 => 0.013469363164081
819 => 0.01365032618635
820 => 0.013651572379228
821 => 0.013485581086819
822 => 0.013301112141392
823 => 0.013300339209776
824 => 0.013267514742695
825 => 0.013734252206001
826 => 0.013990910618339
827 => 0.014020336091687
828 => 0.013988930049532
829 => 0.014001016988697
830 => 0.013851673113639
831 => 0.01419302892547
901 => 0.014506290774996
902 => 0.01442232990746
903 => 0.014296460631282
904 => 0.014196199690121
905 => 0.014398711616061
906 => 0.014389694078782
907 => 0.014503554706024
908 => 0.014498389330282
909 => 0.014460102283855
910 => 0.014422331274811
911 => 0.014572089056229
912 => 0.014528961220217
913 => 0.014485766394763
914 => 0.014399132559519
915 => 0.014410907536564
916 => 0.014285059993492
917 => 0.014226837161675
918 => 0.013351305467253
919 => 0.01311733478968
920 => 0.013190946727757
921 => 0.013215181689105
922 => 0.013113357350384
923 => 0.013259347295584
924 => 0.013236594917266
925 => 0.013325111111604
926 => 0.013269810036308
927 => 0.013272079611728
928 => 0.013434708282742
929 => 0.013481920077809
930 => 0.013457907777792
1001 => 0.01347472516963
1002 => 0.01386227486637
1003 => 0.013807177692636
1004 => 0.013777908417216
1005 => 0.013786016206537
1006 => 0.013885043463214
1007 => 0.013912765688395
1008 => 0.013795304672295
1009 => 0.013850699966522
1010 => 0.014086566098631
1011 => 0.014169105896002
1012 => 0.014432533307862
1013 => 0.014320624661255
1014 => 0.014526037825394
1015 => 0.01515740786145
1016 => 0.015661789933735
1017 => 0.015197939335591
1018 => 0.016124172778672
1019 => 0.016845378374407
1020 => 0.016817697302412
1021 => 0.01669193842501
1022 => 0.015870865028508
1023 => 0.015115301047533
1024 => 0.01574736240056
1025 => 0.015748973654934
1026 => 0.015694679024161
1027 => 0.015357459735486
1028 => 0.01568294452388
1029 => 0.015708780324396
1030 => 0.015694319146401
1031 => 0.015435773908426
1101 => 0.015041023117186
1102 => 0.015118156476894
1103 => 0.015244502493575
1104 => 0.015005303125458
1105 => 0.014928864433744
1106 => 0.015070978504697
1107 => 0.015528899651948
1108 => 0.015442332311617
1109 => 0.015440071688515
1110 => 0.015810443480717
1111 => 0.015545337208735
1112 => 0.015119129375575
1113 => 0.015011506276712
1114 => 0.014629516779352
1115 => 0.014893358285778
1116 => 0.014902853471887
1117 => 0.014758350175212
1118 => 0.015130855021697
1119 => 0.015127422323959
1120 => 0.015481060235667
1121 => 0.016157083102519
1122 => 0.015957149875726
1123 => 0.015724649285639
1124 => 0.015749928546324
1125 => 0.016027179641501
1126 => 0.01585954730033
1127 => 0.015919829058989
1128 => 0.01602708839784
1129 => 0.016091800620068
1130 => 0.01574061745341
1201 => 0.015658739858229
1202 => 0.01549124703362
1203 => 0.015447551282081
1204 => 0.015583970692873
1205 => 0.015548028997898
1206 => 0.014902055438262
1207 => 0.014834547607117
1208 => 0.014836617975919
1209 => 0.014666866324682
1210 => 0.014407954311482
1211 => 0.015088359623339
1212 => 0.015033713554531
1213 => 0.014973388523836
1214 => 0.014980777995886
1215 => 0.015276118880687
1216 => 0.015104806252431
1217 => 0.015560268952239
1218 => 0.015466639513621
1219 => 0.015370608833198
1220 => 0.015357334467997
1221 => 0.015320370848987
1222 => 0.015193608845844
1223 => 0.015040536109833
1224 => 0.014939464230586
1225 => 0.013780866055624
1226 => 0.013995895137642
1227 => 0.014243266495985
1228 => 0.014328658097607
1229 => 0.014182589854114
1230 => 0.015199376510393
1231 => 0.015385153230496
]
'min_raw' => 0.0064123856251083
'max_raw' => 0.016845378374407
'avg_raw' => 0.011628881999758
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006412'
'max' => '$0.016845'
'avg' => '$0.011628'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00024862263973789
'max_diff' => -0.0030378935187019
'year' => 2027
]
2 => [
'items' => [
101 => 0.01482242342739
102 => 0.014717159657336
103 => 0.015206277585634
104 => 0.014911279682635
105 => 0.015044117220292
106 => 0.014756995122126
107 => 0.0153404050588
108 => 0.015335960452562
109 => 0.015109000810284
110 => 0.015300825545785
111 => 0.015267491277417
112 => 0.015011254400262
113 => 0.015348528224848
114 => 0.015348695508457
115 => 0.015130251787293
116 => 0.014875157344453
117 => 0.014829552483135
118 => 0.014795195346283
119 => 0.015035667470758
120 => 0.015251274025625
121 => 0.015652464370835
122 => 0.015753333155669
123 => 0.016147030738089
124 => 0.015912602996545
125 => 0.016016521778024
126 => 0.016129340315528
127 => 0.016183429671172
128 => 0.016095293968745
129 => 0.016706868366633
130 => 0.01675850398397
131 => 0.016775816959817
201 => 0.016569597513834
202 => 0.016752768648129
203 => 0.016667068940383
204 => 0.016890035771875
205 => 0.016924999818036
206 => 0.016895386514819
207 => 0.016906484654941
208 => 0.01638461379546
209 => 0.016357552038308
210 => 0.015988563059323
211 => 0.016138928795689
212 => 0.015857827258771
213 => 0.015946967451795
214 => 0.01598625959952
215 => 0.015965735611358
216 => 0.016147430248816
217 => 0.015992952689215
218 => 0.015585261010965
219 => 0.015177458257391
220 => 0.015172338626008
221 => 0.015064971359309
222 => 0.014987364490781
223 => 0.015002314326911
224 => 0.015054999499371
225 => 0.014984302332781
226 => 0.01499938915771
227 => 0.015249930974525
228 => 0.015300175349105
229 => 0.015129425332539
301 => 0.014443839376913
302 => 0.014275594863741
303 => 0.014396525683376
304 => 0.014338728540532
305 => 0.011572473024088
306 => 0.012222363725229
307 => 0.011836220738814
308 => 0.012014173192539
309 => 0.011620021194651
310 => 0.011808131187319
311 => 0.01177339414035
312 => 0.01281839915612
313 => 0.012802082840156
314 => 0.012809892597168
315 => 0.012437112546787
316 => 0.013030961289125
317 => 0.01332351253371
318 => 0.013269369084337
319 => 0.013282995824069
320 => 0.013048843287917
321 => 0.01281215970555
322 => 0.012549641187363
323 => 0.013037368145885
324 => 0.012983141233874
325 => 0.013107518259799
326 => 0.013423844055844
327 => 0.013470424230916
328 => 0.013533028458583
329 => 0.013510589299436
330 => 0.014045181106606
331 => 0.013980438511408
401 => 0.01413644953812
402 => 0.013815523019587
403 => 0.013452364201242
404 => 0.013521388820053
405 => 0.013514741194201
406 => 0.01343010928731
407 => 0.013353707385916
408 => 0.013226519746199
409 => 0.013628960258494
410 => 0.013612621908638
411 => 0.013877120801561
412 => 0.013830368053031
413 => 0.013518141756014
414 => 0.013529292979294
415 => 0.013604290314945
416 => 0.013863856949937
417 => 0.013940913999847
418 => 0.013905218104136
419 => 0.013989707641575
420 => 0.01405648472705
421 => 0.013998093815392
422 => 0.014824785988929
423 => 0.014481485761699
424 => 0.014648807903783
425 => 0.014688713248751
426 => 0.014586496546735
427 => 0.014608663689297
428 => 0.014642240870093
429 => 0.0148461149368
430 => 0.015381139479276
501 => 0.015618098207104
502 => 0.016331000231111
503 => 0.015598422083383
504 => 0.015554953927806
505 => 0.015683369109908
506 => 0.016101918066344
507 => 0.01644111268323
508 => 0.016553643106258
509 => 0.016568515859336
510 => 0.016779630413818
511 => 0.016900637339393
512 => 0.01675399555404
513 => 0.016629731994987
514 => 0.016184635350623
515 => 0.016236156499166
516 => 0.016591086121563
517 => 0.01709244511845
518 => 0.017522663295292
519 => 0.017372015884379
520 => 0.018521349289147
521 => 0.018635301001623
522 => 0.018619556559459
523 => 0.01887915551877
524 => 0.018363904450947
525 => 0.018143624636934
526 => 0.016656599186906
527 => 0.017074392683384
528 => 0.017681680066666
529 => 0.017601303304278
530 => 0.0171602749737
531 => 0.017522328735756
601 => 0.017402622439552
602 => 0.017308205117118
603 => 0.017740749174889
604 => 0.017265149215439
605 => 0.017676935593256
606 => 0.017148815304321
607 => 0.017372704029063
608 => 0.01724561396062
609 => 0.017327856810476
610 => 0.016847066790718
611 => 0.017106489414861
612 => 0.016836273956652
613 => 0.016836145839341
614 => 0.016830180818125
615 => 0.01714808810639
616 => 0.017158455051647
617 => 0.016923521085288
618 => 0.016889663430377
619 => 0.017014852926097
620 => 0.01686828881379
621 => 0.016936865239475
622 => 0.016870365923864
623 => 0.01685539552723
624 => 0.016736108859848
625 => 0.016684716883685
626 => 0.016704869001746
627 => 0.016636079433673
628 => 0.016594631230681
629 => 0.016821935727313
630 => 0.0167004961042
701 => 0.016803323363382
702 => 0.016686138723709
703 => 0.016279925707687
704 => 0.016046308306548
705 => 0.015279009575248
706 => 0.015496614543613
707 => 0.015640886862768
708 => 0.015593204862148
709 => 0.015695644249965
710 => 0.015701933196399
711 => 0.015668629107174
712 => 0.015630067238369
713 => 0.01561129745324
714 => 0.015751192053795
715 => 0.015832405578053
716 => 0.01565536652011
717 => 0.015613888745874
718 => 0.015792885008048
719 => 0.015902072624572
720 => 0.01670825263776
721 => 0.016648528218456
722 => 0.016798424790584
723 => 0.016781548736913
724 => 0.0169386642249
725 => 0.017195481645798
726 => 0.016673300021831
727 => 0.01676393269607
728 => 0.01674171165736
729 => 0.016984315131319
730 => 0.016985072512883
731 => 0.016839619611303
801 => 0.016918471988953
802 => 0.016874458754951
803 => 0.016953996617539
804 => 0.016647730562424
805 => 0.017020729558176
806 => 0.017232195953244
807 => 0.017235132164344
808 => 0.017335365557305
809 => 0.01743720848968
810 => 0.017632687129723
811 => 0.017431756696505
812 => 0.01707030240733
813 => 0.017096398239518
814 => 0.016884477722025
815 => 0.016888040144211
816 => 0.016869023655392
817 => 0.016926093569832
818 => 0.016660254199324
819 => 0.01672264616823
820 => 0.016635297046395
821 => 0.016763742816138
822 => 0.01662555640074
823 => 0.016741700941703
824 => 0.016791825075329
825 => 0.016976784207508
826 => 0.016598237786532
827 => 0.015826356008823
828 => 0.01598861491666
829 => 0.015748621246808
830 => 0.015770833574673
831 => 0.015815706012026
901 => 0.015670259761216
902 => 0.015698006322333
903 => 0.01569701501992
904 => 0.015688472511273
905 => 0.015650636324036
906 => 0.015595766366882
907 => 0.015814351388103
908 => 0.015851493242617
909 => 0.015934054984299
910 => 0.016179702725382
911 => 0.016155156723275
912 => 0.016195192271115
913 => 0.016107794894971
914 => 0.015774887688291
915 => 0.015792966151278
916 => 0.015567527428135
917 => 0.015928290009293
918 => 0.015842856668242
919 => 0.015787777237489
920 => 0.0157727483045
921 => 0.01601900495882
922 => 0.016092688809392
923 => 0.016046773978455
924 => 0.015952601320652
925 => 0.01613344066328
926 => 0.016181825642368
927 => 0.016192657254816
928 => 0.016513069897448
929 => 0.016210564762199
930 => 0.016283380754896
1001 => 0.016851470343675
1002 => 0.016336291477657
1003 => 0.016609193212846
1004 => 0.016595836093021
1005 => 0.016735443386252
1006 => 0.016584384220144
1007 => 0.016586256779551
1008 => 0.016710218598123
1009 => 0.01653613658057
1010 => 0.016493031424903
1011 => 0.016433481961074
1012 => 0.016563506036771
1013 => 0.016641449589668
1014 => 0.017269617382791
1015 => 0.017675442425079
1016 => 0.017657824489706
1017 => 0.017818819439624
1018 => 0.017746289740141
1019 => 0.017512072208144
1020 => 0.017911852975478
1021 => 0.017785345613156
1022 => 0.017795774726399
1023 => 0.017795386554283
1024 => 0.017879502890762
1025 => 0.017819898757218
1026 => 0.017702412891763
1027 => 0.017780405492088
1028 => 0.018012015632186
1029 => 0.01873094061372
1030 => 0.019133260557875
1031 => 0.018706720447914
1101 => 0.019000942104165
1102 => 0.01882451395231
1103 => 0.018792451708835
1104 => 0.01897724465177
1105 => 0.01916236105029
1106 => 0.019150569935984
1107 => 0.019016184936491
1108 => 0.018940274260171
1109 => 0.019515095333212
1110 => 0.019938613708007
1111 => 0.019909732594149
1112 => 0.020037204438076
1113 => 0.020411465714401
1114 => 0.020445683475114
1115 => 0.02044137282375
1116 => 0.020356560533571
1117 => 0.020725069364081
1118 => 0.021032485913789
1119 => 0.020336928938857
1120 => 0.020601787929402
1121 => 0.020720691663481
1122 => 0.020895277622258
1123 => 0.021189833398718
1124 => 0.021509799099015
1125 => 0.021555045757282
1126 => 0.021522941087989
1127 => 0.021311915107504
1128 => 0.021662025394753
1129 => 0.021867111789928
1130 => 0.021989236044935
1201 => 0.022298922836096
1202 => 0.020721425972463
1203 => 0.019604795285703
1204 => 0.019430417279622
1205 => 0.019785021812063
1206 => 0.019878528199349
1207 => 0.019840835891881
1208 => 0.018583966534312
1209 => 0.01942380012257
1210 => 0.020327390448322
1211 => 0.020362101032721
1212 => 0.020814457242975
1213 => 0.020961762967742
1214 => 0.02132596900868
1215 => 0.021303187821657
1216 => 0.021391866196842
1217 => 0.021371480574082
1218 => 0.02204609557229
1219 => 0.022790296096611
1220 => 0.022764526798866
1221 => 0.022657539168514
1222 => 0.022816434043689
1223 => 0.023584528738163
1224 => 0.023513814887162
1225 => 0.023582507370018
1226 => 0.024488134302722
1227 => 0.025665578139167
1228 => 0.02511853726371
1229 => 0.02630545855668
1230 => 0.027052562594611
1231 => 0.028344601776212
]
'min_raw' => 0.011572473024088
'max_raw' => 0.028344601776212
'avg_raw' => 0.01995853740015
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011572'
'max' => '$0.028344'
'avg' => '$0.019958'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00516008739898
'max_diff' => 0.011499223401805
'year' => 2028
]
3 => [
'items' => [
101 => 0.028182832107249
102 => 0.028685813479225
103 => 0.027893230637455
104 => 0.026073300225332
105 => 0.025785289271199
106 => 0.026361894494971
107 => 0.027779422173299
108 => 0.026317251503828
109 => 0.026613046725927
110 => 0.026527857682063
111 => 0.026523318319946
112 => 0.026696567309046
113 => 0.026445260614297
114 => 0.025421391930678
115 => 0.025890624914684
116 => 0.025709431525141
117 => 0.025910479099701
118 => 0.026995449941278
119 => 0.026515758469742
120 => 0.026010442471451
121 => 0.026644220871905
122 => 0.027451238565571
123 => 0.027400736848652
124 => 0.027302742409748
125 => 0.027855131931026
126 => 0.028767517585233
127 => 0.029014131761303
128 => 0.029196177304273
129 => 0.029221278308963
130 => 0.029479834257467
131 => 0.028089513757875
201 => 0.030295988096691
202 => 0.030676985262381
203 => 0.030605373585946
204 => 0.031028835900798
205 => 0.030904242545567
206 => 0.030723726321934
207 => 0.031395004163993
208 => 0.030625438287401
209 => 0.029533136411228
210 => 0.028933877998678
211 => 0.029723029817121
212 => 0.030204937295041
213 => 0.030523447482874
214 => 0.030619828473263
215 => 0.028197440380523
216 => 0.026891907550339
217 => 0.027728739126523
218 => 0.028749731404497
219 => 0.028083842094219
220 => 0.028109943694487
221 => 0.027160560530663
222 => 0.028833730748437
223 => 0.028589963921283
224 => 0.02985462665177
225 => 0.029552804741587
226 => 0.030584088104374
227 => 0.030312516632883
228 => 0.031439794627685
301 => 0.031889496339645
302 => 0.032644615504509
303 => 0.03320008423607
304 => 0.033526266099667
305 => 0.033506683364054
306 => 0.034799178410783
307 => 0.034037039238064
308 => 0.033079612814718
309 => 0.033062295991362
310 => 0.03355816070285
311 => 0.034597357104289
312 => 0.03486680561149
313 => 0.035017390568173
314 => 0.034786764465112
315 => 0.033959517016133
316 => 0.033602315761903
317 => 0.033906661579623
318 => 0.033534472797286
319 => 0.034176975053329
320 => 0.035059267881952
321 => 0.034877077901805
322 => 0.035486111689987
323 => 0.036116397588533
324 => 0.037017734731364
325 => 0.037253377636918
326 => 0.037642886399101
327 => 0.038043818862351
328 => 0.038172587564114
329 => 0.038418446970361
330 => 0.03841715116993
331 => 0.039158065038902
401 => 0.039975315980571
402 => 0.040283809291648
403 => 0.040993172650049
404 => 0.039778412757844
405 => 0.040699822090238
406 => 0.041530956372428
407 => 0.040540043817556
408 => 0.041905785921433
409 => 0.041958814592489
410 => 0.042759484566887
411 => 0.041947852158027
412 => 0.041465907424469
413 => 0.042857263812019
414 => 0.043530497340639
415 => 0.043327713922862
416 => 0.041784522100931
417 => 0.040886318269956
418 => 0.038535545593715
419 => 0.041320137374545
420 => 0.042676430803331
421 => 0.041781009628607
422 => 0.042232607985599
423 => 0.044696382190086
424 => 0.045634427889589
425 => 0.045439320941527
426 => 0.045472290804015
427 => 0.045978443236733
428 => 0.04822300186664
429 => 0.046878010307138
430 => 0.047906205958505
501 => 0.048451557224555
502 => 0.048958109873218
503 => 0.04771417666571
504 => 0.046095837839749
505 => 0.045583242000325
506 => 0.041691977639603
507 => 0.041489420430723
508 => 0.041375718931267
509 => 0.040658847060593
510 => 0.040095582137974
511 => 0.039647652958823
512 => 0.038472153029752
513 => 0.038868849748651
514 => 0.036995348207615
515 => 0.038193948100752
516 => 0.035203794403982
517 => 0.037694083255549
518 => 0.036338732253181
519 => 0.037248813999223
520 => 0.037245638809746
521 => 0.035569889773603
522 => 0.034603352701546
523 => 0.035219267742046
524 => 0.035879577556859
525 => 0.035986710602764
526 => 0.036842819513519
527 => 0.037081741108511
528 => 0.036357797521502
529 => 0.035141830114868
530 => 0.035424271610166
531 => 0.034597629033658
601 => 0.033148969714677
602 => 0.034189422128735
603 => 0.034544678328357
604 => 0.03470157970461
605 => 0.033276989644039
606 => 0.032829352517653
607 => 0.032591034267604
608 => 0.034957933427284
609 => 0.035087597506225
610 => 0.034424217745714
611 => 0.037422757167472
612 => 0.036744095346487
613 => 0.03750232687671
614 => 0.035398643004879
615 => 0.035479006561769
616 => 0.034483088903815
617 => 0.035040736245027
618 => 0.034646609078071
619 => 0.034995683850635
620 => 0.035204917830022
621 => 0.036200672067688
622 => 0.037705453169441
623 => 0.036051939590058
624 => 0.03533148004477
625 => 0.035778449094649
626 => 0.036968786575367
627 => 0.03877220879091
628 => 0.037704546542054
629 => 0.038178356918016
630 => 0.038281863406807
701 => 0.037494608791505
702 => 0.038801235991504
703 => 0.039501468123004
704 => 0.0402197613973
705 => 0.040843435321251
706 => 0.039932859267939
707 => 0.040907306170932
708 => 0.040122073980154
709 => 0.039417639529213
710 => 0.039418707865497
711 => 0.038976805844277
712 => 0.038120564994925
713 => 0.037962661045213
714 => 0.038784097332685
715 => 0.039442811444932
716 => 0.039497066294245
717 => 0.039861764272738
718 => 0.040077588779722
719 => 0.042192962347357
720 => 0.043043783095548
721 => 0.044084150601223
722 => 0.044489432376583
723 => 0.04570918521886
724 => 0.044724135735239
725 => 0.044511014083206
726 => 0.041552292665957
727 => 0.042036783132281
728 => 0.042812499115242
729 => 0.041565083936802
730 => 0.042356281752127
731 => 0.042512480960734
801 => 0.041522697246368
802 => 0.042051383494241
803 => 0.04064734956444
804 => 0.037736057272329
805 => 0.038804477092063
806 => 0.039591193705609
807 => 0.038468452096619
808 => 0.040480922974633
809 => 0.039305279033529
810 => 0.03893265634506
811 => 0.037478922387763
812 => 0.038165028856256
813 => 0.03909299767899
814 => 0.038519620834495
815 => 0.039709463879789
816 => 0.041394598951474
817 => 0.042595526555085
818 => 0.042687718864513
819 => 0.041915602871292
820 => 0.043152923678007
821 => 0.04316193620927
822 => 0.041766233284691
823 => 0.040911373014693
824 => 0.040717146962708
825 => 0.041202361720827
826 => 0.041791502012769
827 => 0.042720412050508
828 => 0.043281732931647
829 => 0.044745360088067
830 => 0.045141375631115
831 => 0.045576476648515
901 => 0.046157905787945
902 => 0.046856060545202
903 => 0.045328537682296
904 => 0.045389229013298
905 => 0.043966820873353
906 => 0.042446773781861
907 => 0.043600300047759
908 => 0.045108382193251
909 => 0.044762426482793
910 => 0.044723499398132
911 => 0.044788963957058
912 => 0.04452812464923
913 => 0.043348358127077
914 => 0.042755886765381
915 => 0.043520325977533
916 => 0.043926591397517
917 => 0.044556673633845
918 => 0.044479002698795
919 => 0.046102026873682
920 => 0.04673268499034
921 => 0.046571335656716
922 => 0.046601027817191
923 => 0.047742804213242
924 => 0.049012694389876
925 => 0.050202114117061
926 => 0.05141204295032
927 => 0.0499534265175
928 => 0.04921283104787
929 => 0.049976936529776
930 => 0.049571491405513
1001 => 0.051901299352363
1002 => 0.052062610199691
1003 => 0.054392249674908
1004 => 0.056603354945198
1005 => 0.055214599340995
1006 => 0.056524133324832
1007 => 0.057940501096225
1008 => 0.060672904324631
1009 => 0.059752727044408
1010 => 0.059047885668774
1011 => 0.058381813974569
1012 => 0.059767803434306
1013 => 0.061550856732537
1014 => 0.061934909335103
1015 => 0.062557221270647
1016 => 0.061902936363106
1017 => 0.062690950467121
1018 => 0.065472986525236
1019 => 0.064721255824622
1020 => 0.063653677383009
1021 => 0.065849827661308
1022 => 0.066644605909707
1023 => 0.072222775885567
1024 => 0.079265445902798
1025 => 0.076349734271
1026 => 0.074539857971716
1027 => 0.074965221832888
1028 => 0.077536966513755
1029 => 0.078362929282154
1030 => 0.076117677751206
1031 => 0.07691073854934
1101 => 0.081280581519071
1102 => 0.083624862070984
1103 => 0.080441014202603
1104 => 0.071656904206977
1105 => 0.063557553624971
1106 => 0.065705866117829
1107 => 0.065462314151037
1108 => 0.070157165273
1109 => 0.064703327296026
1110 => 0.064795155940411
1111 => 0.069587091611643
1112 => 0.068308685329134
1113 => 0.066237830877374
1114 => 0.063572673154213
1115 => 0.058645882605698
1116 => 0.05428208682316
1117 => 0.062840495274867
1118 => 0.062471441139973
1119 => 0.061936996061889
1120 => 0.063126345750168
1121 => 0.068901490233653
1122 => 0.06876835446099
1123 => 0.067921412601777
1124 => 0.068563810537387
1125 => 0.066125215413314
1126 => 0.066753696902566
1127 => 0.063556270646458
1128 => 0.065001640850534
1129 => 0.066233387753789
1130 => 0.066480679180942
1201 => 0.067037839393331
1202 => 0.062276966380834
1203 => 0.064414458591557
1204 => 0.065670035009421
1205 => 0.059997295075249
1206 => 0.065557903180172
1207 => 0.062194090173673
1208 => 0.061052361516491
1209 => 0.062589548742074
1210 => 0.0619905053853
1211 => 0.061475483084153
1212 => 0.061188091790907
1213 => 0.062316832436211
1214 => 0.062264175335971
1215 => 0.060417336561134
1216 => 0.058008210666138
1217 => 0.05881679239336
1218 => 0.058523027071366
1219 => 0.057458383647979
1220 => 0.058175824769805
1221 => 0.055016577157927
1222 => 0.049581255845092
1223 => 0.053171995592745
1224 => 0.053033756018433
1225 => 0.0529640493564
1226 => 0.055662391036004
1227 => 0.055403007744844
1228 => 0.054932224531501
1229 => 0.057449737345073
1230 => 0.056530811302794
1231 => 0.059362724838894
]
'min_raw' => 0.025421391930678
'max_raw' => 0.083624862070984
'avg_raw' => 0.054523127000831
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025421'
'max' => '$0.083624'
'avg' => '$0.054523'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013848918906589
'max_diff' => 0.055280260294771
'year' => 2029
]
4 => [
'items' => [
101 => 0.061228006250453
102 => 0.060754910548949
103 => 0.062509216732208
104 => 0.05883542048325
105 => 0.060055708230031
106 => 0.060307207843397
107 => 0.057418671627737
108 => 0.055445446059126
109 => 0.055313854410117
110 => 0.051892553201378
111 => 0.053720184691308
112 => 0.055328424769917
113 => 0.054558202576735
114 => 0.054314373240107
115 => 0.055560044440808
116 => 0.055656843761555
117 => 0.053449808990195
118 => 0.053908721406863
119 => 0.055822462472206
120 => 0.05386050004217
121 => 0.050048727525353
122 => 0.049103355239304
123 => 0.048977225149677
124 => 0.046413300531491
125 => 0.049166529535931
126 => 0.047964671293543
127 => 0.051761327080774
128 => 0.049592697656981
129 => 0.049499212376906
130 => 0.049357895664764
131 => 0.047151019831499
201 => 0.047634185384708
202 => 0.049240301271767
203 => 0.04981338151446
204 => 0.049753604550039
205 => 0.049232430427707
206 => 0.049471021272067
207 => 0.048702437031822
208 => 0.048431033939893
209 => 0.047574411126466
210 => 0.04631541223882
211 => 0.046490483756036
212 => 0.04399607752463
213 => 0.042636992621602
214 => 0.042260815832894
215 => 0.041757776509525
216 => 0.042317635463006
217 => 0.043989011185182
218 => 0.041972977462097
219 => 0.038516629052191
220 => 0.038724361480957
221 => 0.039191074572084
222 => 0.038321357814385
223 => 0.037498243893018
224 => 0.038213874666304
225 => 0.03674937428079
226 => 0.03936805244694
227 => 0.039297224541306
228 => 0.040273305823675
301 => 0.040883669480745
302 => 0.03947697885878
303 => 0.039123199971452
304 => 0.039324728504028
305 => 0.035993910770898
306 => 0.040001106954021
307 => 0.040035761353015
308 => 0.039739029349532
309 => 0.041872737608742
310 => 0.046375527555973
311 => 0.044681396853519
312 => 0.044025378240157
313 => 0.04277828637661
314 => 0.044439962239799
315 => 0.044312371459687
316 => 0.043735357564657
317 => 0.04338637776055
318 => 0.044029383749922
319 => 0.043306702202635
320 => 0.043176888738781
321 => 0.042390360386269
322 => 0.042109605549182
323 => 0.041901745844975
324 => 0.041672912734516
325 => 0.04217766155453
326 => 0.04103383432314
327 => 0.039654490812848
328 => 0.039539813324671
329 => 0.039856447952076
330 => 0.039716360700125
331 => 0.039539142640804
401 => 0.039200785103094
402 => 0.039100401649521
403 => 0.039426599174507
404 => 0.039058341187295
405 => 0.039601725907477
406 => 0.039453955330435
407 => 0.038628520899295
408 => 0.037599723983125
409 => 0.037590565532597
410 => 0.037368912924573
411 => 0.037086605002563
412 => 0.03700807339699
413 => 0.038153606238634
414 => 0.040524824937926
415 => 0.0400592979688
416 => 0.040395688913116
417 => 0.042050399420795
418 => 0.042576382132306
419 => 0.042203052062259
420 => 0.041692014836383
421 => 0.041714497880764
422 => 0.04346086678307
423 => 0.043569785669367
424 => 0.043844988556476
425 => 0.044198702038736
426 => 0.042263290997788
427 => 0.041623340194784
428 => 0.041320096001202
429 => 0.04038622125524
430 => 0.04139332510439
501 => 0.040806528819977
502 => 0.04088570768656
503 => 0.040834142345825
504 => 0.040862300508699
505 => 0.039367320473024
506 => 0.039912012624186
507 => 0.039006356278098
508 => 0.037793784095382
509 => 0.037789719128243
510 => 0.038086494452113
511 => 0.037909960876655
512 => 0.037434913564192
513 => 0.037502391792768
514 => 0.03691121150652
515 => 0.037574171783183
516 => 0.037593183111732
517 => 0.037337907293526
518 => 0.038359289070614
519 => 0.038777750018055
520 => 0.038609722005974
521 => 0.038765960724799
522 => 0.040078642716096
523 => 0.040292667157008
524 => 0.040387722676
525 => 0.040260360872993
526 => 0.038789954141876
527 => 0.038855172933053
528 => 0.038376640716742
529 => 0.037972331420442
530 => 0.037988501671971
531 => 0.038196369206799
601 => 0.039104138922661
602 => 0.041014486773747
603 => 0.041086983078249
604 => 0.041174850714173
605 => 0.040817448880136
606 => 0.040709653067116
607 => 0.04085186356895
608 => 0.041569289780499
609 => 0.043414704775921
610 => 0.042762411865415
611 => 0.04223208757563
612 => 0.042697324952174
613 => 0.042625705304706
614 => 0.042021163404613
615 => 0.042004195926966
616 => 0.04084388673695
617 => 0.040414946848363
618 => 0.040056492571865
619 => 0.039665069859616
620 => 0.039433021355186
621 => 0.039789553322149
622 => 0.039871096401356
623 => 0.039091533024479
624 => 0.038985281416796
625 => 0.039621889698398
626 => 0.039341742128814
627 => 0.039629880851457
628 => 0.039696731506718
629 => 0.03968596701152
630 => 0.039393460774131
701 => 0.039579895527181
702 => 0.039138921757342
703 => 0.038659429014761
704 => 0.038353542518447
705 => 0.038086615980458
706 => 0.038234722337596
707 => 0.037706750217551
708 => 0.03753784131037
709 => 0.039516735627762
710 => 0.040978566136719
711 => 0.04095731054217
712 => 0.04082792257685
713 => 0.040635678305776
714 => 0.041555225914654
715 => 0.041234873914656
716 => 0.04146795676096
717 => 0.041527286127801
718 => 0.041706858252366
719 => 0.041771039852152
720 => 0.041577038480611
721 => 0.040925946182446
722 => 0.039303486079419
723 => 0.038548226521713
724 => 0.038298978287827
725 => 0.038308037987739
726 => 0.038058131019886
727 => 0.038131739821963
728 => 0.038032532882478
729 => 0.037844658939829
730 => 0.038223121651052
731 => 0.038266735952897
801 => 0.038178398233805
802 => 0.038199204964523
803 => 0.037467806379974
804 => 0.037523413025843
805 => 0.037213788155493
806 => 0.037155737224886
807 => 0.036373032514764
808 => 0.03498635766592
809 => 0.035754710139964
810 => 0.034826648398027
811 => 0.034475177353925
812 => 0.036138986611741
813 => 0.035971986309142
814 => 0.035686154384378
815 => 0.03526334939506
816 => 0.035106526911739
817 => 0.034153723147047
818 => 0.034097426417619
819 => 0.034569661691266
820 => 0.034351741361101
821 => 0.034045698684668
822 => 0.032937243133673
823 => 0.031690972097335
824 => 0.031728589186141
825 => 0.032125004815104
826 => 0.033277636720242
827 => 0.03282728349417
828 => 0.032500547061447
829 => 0.032439359149259
830 => 0.033205253975862
831 => 0.034289155615433
901 => 0.034797698013787
902 => 0.03429374794168
903 => 0.033714837233443
904 => 0.033750072845839
905 => 0.033984479589281
906 => 0.034009112423684
907 => 0.033632301065603
908 => 0.033738371255718
909 => 0.033577240937672
910 => 0.032588384473252
911 => 0.032570499195508
912 => 0.032327817871675
913 => 0.032320469577637
914 => 0.031907608106103
915 => 0.031849845932259
916 => 0.031030084421629
917 => 0.031569653930392
918 => 0.031207739032585
919 => 0.030662247914494
920 => 0.030568205040128
921 => 0.030565377997764
922 => 0.031125475406461
923 => 0.031563108866067
924 => 0.031214034697181
925 => 0.031134557275444
926 => 0.031983168209703
927 => 0.031875174733058
928 => 0.031781653078767
929 => 0.034192104111947
930 => 0.032284044029345
1001 => 0.031452020925069
1002 => 0.030422234336625
1003 => 0.030757538042457
1004 => 0.030828191459912
1005 => 0.028351740347689
1006 => 0.027347044439882
1007 => 0.02700227066549
1008 => 0.026803848483941
1009 => 0.026894271963702
1010 => 0.0259899278076
1011 => 0.026597662036972
1012 => 0.025814576440096
1013 => 0.025683289591399
1014 => 0.027083543644303
1015 => 0.0272783808156
1016 => 0.026447144911686
1017 => 0.026980932926867
1018 => 0.026787373972354
1019 => 0.025828000195063
1020 => 0.025791359173446
1021 => 0.02530997913562
1022 => 0.024556712589965
1023 => 0.024212449565761
1024 => 0.024033154393727
1025 => 0.024107135076102
1026 => 0.024069728179247
1027 => 0.023825622874269
1028 => 0.024083720009589
1029 => 0.023424388481947
1030 => 0.023161837355045
1031 => 0.023043249102164
1101 => 0.022458054421675
1102 => 0.023389359395588
1103 => 0.02357283820772
1104 => 0.023756678529791
1105 => 0.025356883020301
1106 => 0.025276941326087
1107 => 0.025999575308606
1108 => 0.025971495080884
1109 => 0.025765388163175
1110 => 0.024895856980303
1111 => 0.025242436611893
1112 => 0.024175718376294
1113 => 0.024974976208194
1114 => 0.02461022831152
1115 => 0.024851654577425
1116 => 0.024417548382799
1117 => 0.02465780067471
1118 => 0.023616347840691
1119 => 0.022643853837921
1120 => 0.023035213813506
1121 => 0.023460666864408
1122 => 0.024383157482185
1123 => 0.023833729680619
1124 => 0.024031324694228
1125 => 0.023369414475645
1126 => 0.022003704629403
1127 => 0.022011434398817
1128 => 0.021801349692579
1129 => 0.02161980583352
1130 => 0.023896838072919
1201 => 0.023613653119397
1202 => 0.02316243495829
1203 => 0.023766408397628
1204 => 0.023926108561337
1205 => 0.023930655000486
1206 => 0.024371298431016
1207 => 0.02460646990888
1208 => 0.024647919901145
1209 => 0.025341281859816
1210 => 0.025573687642698
1211 => 0.026530934171088
1212 => 0.024586517252035
1213 => 0.024546473265146
1214 => 0.023774907542515
1215 => 0.02328556836325
1216 => 0.023808413014767
1217 => 0.024271582000598
1218 => 0.023789299493983
1219 => 0.023852275407808
1220 => 0.023204850546605
1221 => 0.023436274470314
1222 => 0.023635607929581
1223 => 0.023525547709653
1224 => 0.023360782233446
1225 => 0.02423360742567
1226 => 0.024184359207695
1227 => 0.024997154092858
1228 => 0.025630785829363
1229 => 0.0267663671764
1230 => 0.025581328841572
1231 => 0.02553814133455
]
'min_raw' => 0.02161980583352
'max_raw' => 0.062509216732208
'avg_raw' => 0.042064511282864
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021619'
'max' => '$0.0625092'
'avg' => '$0.042064'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038015860971574
'max_diff' => -0.021115645338776
'year' => 2030
]
5 => [
'items' => [
101 => 0.025960306143183
102 => 0.025573623011465
103 => 0.025817993402863
104 => 0.026726995328395
105 => 0.026746201106695
106 => 0.026424479574922
107 => 0.026404902790475
108 => 0.0264666929299
109 => 0.026828599706492
110 => 0.026702138358479
111 => 0.026848482632009
112 => 0.027031488386961
113 => 0.027788477782278
114 => 0.027970985362713
115 => 0.027527586561586
116 => 0.027567620508802
117 => 0.027401777185612
118 => 0.027241574613421
119 => 0.0276016866
120 => 0.028259798333492
121 => 0.028255704254554
122 => 0.02840837338486
123 => 0.028503484988261
124 => 0.028095196360514
125 => 0.027829415477039
126 => 0.02793133277984
127 => 0.02809430076649
128 => 0.027878484458198
129 => 0.026546366227581
130 => 0.026950445802708
131 => 0.026883187202925
201 => 0.026787402777909
202 => 0.027193707915354
203 => 0.02715451879366
204 => 0.025980652451161
205 => 0.026055799565808
206 => 0.025985222396098
207 => 0.026213271670161
208 => 0.025561307602272
209 => 0.02576184735851
210 => 0.025887624013678
211 => 0.025961707429835
212 => 0.026229347528465
213 => 0.026197943051981
214 => 0.026227395382113
215 => 0.026624234994016
216 => 0.028631313572109
217 => 0.028740554430746
218 => 0.028202612489853
219 => 0.028417509684804
220 => 0.028004954063349
221 => 0.028281905415914
222 => 0.028471388497538
223 => 0.027615150887182
224 => 0.027564450052833
225 => 0.027150191667573
226 => 0.027372790659017
227 => 0.027018619658196
228 => 0.027105520833422
301 => 0.026862537571582
302 => 0.027299859065409
303 => 0.027788852448397
304 => 0.027912391487874
305 => 0.027587413461911
306 => 0.027352107954019
307 => 0.026938988996612
308 => 0.027626015029736
309 => 0.02782692237856
310 => 0.027624959748961
311 => 0.027578160594712
312 => 0.027489476281976
313 => 0.027596975390897
314 => 0.027825828193991
315 => 0.0277179054383
316 => 0.027789190319788
317 => 0.027517525860205
318 => 0.028095331521038
319 => 0.029013025966946
320 => 0.029015976504648
321 => 0.028908053167213
322 => 0.028863893262775
323 => 0.028974629156319
324 => 0.029034698835943
325 => 0.029392798410175
326 => 0.029777053520642
327 => 0.031570204457554
328 => 0.031066694849878
329 => 0.032657685036133
330 => 0.03391595170924
331 => 0.034293250867172
401 => 0.033946153395172
402 => 0.032758751693297
403 => 0.032700492101004
404 => 0.034474971551673
405 => 0.033973599830551
406 => 0.033913963259675
407 => 0.033279530903133
408 => 0.033654559001825
409 => 0.033572534855311
410 => 0.03344305572728
411 => 0.034158583214901
412 => 0.035497986796149
413 => 0.035289228187164
414 => 0.03513339956959
415 => 0.03445060392841
416 => 0.034861799412328
417 => 0.034715380576436
418 => 0.035344488815119
419 => 0.034971819030977
420 => 0.033969801446651
421 => 0.034129376049648
422 => 0.034105256669424
423 => 0.034601631805306
424 => 0.034452632310302
425 => 0.034076162126669
426 => 0.03549340886032
427 => 0.035401380740577
428 => 0.035531855573815
429 => 0.035589294630475
430 => 0.03645194774256
501 => 0.03680534912076
502 => 0.036885577420774
503 => 0.037221281397021
504 => 0.036877224800025
505 => 0.038253696496203
506 => 0.039168969854811
507 => 0.04023210696037
508 => 0.041785636015907
509 => 0.042369777311736
510 => 0.04226425741509
511 => 0.043442125414817
512 => 0.04555872802779
513 => 0.042692083319157
514 => 0.045710667158104
515 => 0.04475501836592
516 => 0.042489192271038
517 => 0.042343299782863
518 => 0.043877743521099
519 => 0.047280992047769
520 => 0.046428516891163
521 => 0.047282386391734
522 => 0.046286302263369
523 => 0.046236838290739
524 => 0.047234008808921
525 => 0.049563952077586
526 => 0.048457083367261
527 => 0.046870115655666
528 => 0.048041907917955
529 => 0.047026793016106
530 => 0.04473945502947
531 => 0.046427865019477
601 => 0.045298873342307
602 => 0.045628373134204
603 => 0.048001345714777
604 => 0.047715823375775
605 => 0.0480853157211
606 => 0.047433171402901
607 => 0.046823965775983
608 => 0.045686838233137
609 => 0.045350190827411
610 => 0.045443228059049
611 => 0.045350144722779
612 => 0.044713932313299
613 => 0.044576542304046
614 => 0.044347552936096
615 => 0.044418526316339
616 => 0.043987959311392
617 => 0.04480052820941
618 => 0.044951348157215
619 => 0.04554266803857
620 => 0.045604060830281
621 => 0.047250878282944
622 => 0.04634383890366
623 => 0.046952359229296
624 => 0.046897927443756
625 => 0.0425382995931
626 => 0.043139017845598
627 => 0.044073546930713
628 => 0.043652542844593
629 => 0.043057341566604
630 => 0.042576684621954
701 => 0.041848440201113
702 => 0.042873430238751
703 => 0.044221183142706
704 => 0.045638242068056
705 => 0.047340745517486
706 => 0.046960766566898
707 => 0.045606414950306
708 => 0.045667170174472
709 => 0.046042735063966
710 => 0.045556344408403
711 => 0.045412898308604
712 => 0.046023027772618
713 => 0.046027229398915
714 => 0.045467578167416
715 => 0.044845628238699
716 => 0.044843022245788
717 => 0.044732352263297
718 => 0.046305990207399
719 => 0.047171331963915
720 => 0.047270542001731
721 => 0.047164654337905
722 => 0.047205406297181
723 => 0.046701882995569
724 => 0.047852787947857
725 => 0.048908972144779
726 => 0.048625892217919
727 => 0.048201515165374
728 => 0.047863478402254
729 => 0.048546261499491
730 => 0.048515858242971
731 => 0.048899747297213
801 => 0.048882331872262
802 => 0.048753244422118
803 => 0.048625896828039
804 => 0.049130815643846
805 => 0.048985407133641
806 => 0.048839772763858
807 => 0.04854768073975
808 => 0.048587380896961
809 => 0.048163077119098
810 => 0.047966774776638
811 => 0.045014858541225
812 => 0.044226010066477
813 => 0.044474197855124
814 => 0.04455590771934
815 => 0.044212599852193
816 => 0.044704815145127
817 => 0.044628103913108
818 => 0.044926542442323
819 => 0.044740091005964
820 => 0.044747743037949
821 => 0.045296056956643
822 => 0.045455234819934
823 => 0.045374275673942
824 => 0.045430976684678
825 => 0.046737627545092
826 => 0.046551863577084
827 => 0.046453180171492
828 => 0.046480516149256
829 => 0.046814393459002
830 => 0.046907860876706
831 => 0.046511832860056
901 => 0.046698601962119
902 => 0.047493841094173
903 => 0.047772129783755
904 => 0.048660293694753
905 => 0.048282985879506
906 => 0.048975550703891
907 => 0.051104258861301
908 => 0.052804818232841
909 => 0.051240913556185
910 => 0.054363774277088
911 => 0.056795369296075
912 => 0.056702040629213
913 => 0.056278035793846
914 => 0.053509729512027
915 => 0.050962292798376
916 => 0.053093331779222
917 => 0.053098764235836
918 => 0.052915706097457
919 => 0.051778747721789
920 => 0.052876142410484
921 => 0.05296324961572
922 => 0.052914492744463
923 => 0.052042789423579
924 => 0.050711859570291
925 => 0.050971920077827
926 => 0.051397904494263
927 => 0.050591427124292
928 => 0.050333708738399
929 => 0.050812856250703
930 => 0.052356769369694
1001 => 0.052064901537828
1002 => 0.052057279689208
1003 => 0.053306014045152
1004 => 0.052412189740037
1005 => 0.050975200273657
1006 => 0.050612341481833
1007 => 0.049324437221831
1008 => 0.050213997281572
1009 => 0.050246010964469
1010 => 0.049758808010832
1011 => 0.051014734108215
1012 => 0.051003160528127
1013 => 0.052195475437662
1014 => 0.054474733731664
1015 => 0.053800644898638
1016 => 0.053016752926486
1017 => 0.053101983718826
1018 => 0.054036755143271
1019 => 0.053471571001296
1020 => 0.053674815159354
1021 => 0.054036447508896
1022 => 0.054254629284201
1023 => 0.053070590718987
1024 => 0.052794534690324
1025 => 0.052229820938179
1026 => 0.052082497661126
1027 => 0.052542445229109
1028 => 0.052421265295133
1029 => 0.050243320338385
1030 => 0.050015712972433
1031 => 0.050022693365398
1101 => 0.049450363821573
1102 => 0.04857742389241
1103 => 0.050871457905716
1104 => 0.050687214869462
1105 => 0.050483824816716
1106 => 0.05050873893765
1107 => 0.051504501350799
1108 => 0.050926908863965
1109 => 0.05246253315576
1110 => 0.052146854966459
1111 => 0.051823080822765
1112 => 0.051778325373704
1113 => 0.051653699951494
1114 => 0.051226313007657
1115 => 0.050710217591001
1116 => 0.050369446693505
1117 => 0.04646315205588
1118 => 0.047188137618753
1119 => 0.048022167424324
1120 => 0.048310071171043
1121 => 0.047817591889948
1122 => 0.051245759091372
1123 => 0.051872118273713
1124 => 0.049974835454003
1125 => 0.049619931303982
1126 => 0.051269026548362
1127 => 0.050274420522306
1128 => 0.050722291554938
1129 => 0.049754239354744
1130 => 0.051721246688625
1201 => 0.051706261388379
1202 => 0.050941051108624
1203 => 0.051587801597139
1204 => 0.051475412784012
1205 => 0.050611492262798
1206 => 0.051748634510094
1207 => 0.051749198518462
1208 => 0.051012700261304
1209 => 0.050152631537143
1210 => 0.04999887156318
1211 => 0.049883034077544
1212 => 0.050693802634439
1213 => 0.051420735187344
1214 => 0.052773376446436
1215 => 0.053113462596935
1216 => 0.054440841483151
1217 => 0.053650451985315
1218 => 0.054000821412448
1219 => 0.054381196988383
1220 => 0.054563563027335
1221 => 0.054266407353164
1222 => 0.056328373134404
1223 => 0.05650246622334
1224 => 0.056560838130161
1225 => 0.055865554870246
1226 => 0.056483129138124
1227 => 0.056194186590094
1228 => 0.056945934829516
1229 => 0.05706381855226
1230 => 0.056963975232931
1231 => 0.057001393387198
]
'min_raw' => 0.025561307602272
'max_raw' => 0.05706381855226
'avg_raw' => 0.041312563077266
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025561'
'max' => '$0.057063'
'avg' => '$0.041312'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039415017687515
'max_diff' => -0.0054453981799476
'year' => 2031
]
6 => [
'items' => [
101 => 0.055241869348599
102 => 0.055150628744969
103 => 0.053906556640335
104 => 0.05441352521869
105 => 0.053465771761091
106 => 0.053766314145438
107 => 0.053898790364785
108 => 0.053829592305758
109 => 0.054442188461461
110 => 0.053921356583987
111 => 0.052546795626645
112 => 0.051171860171089
113 => 0.051154598976443
114 => 0.050792602740621
115 => 0.05053094576504
116 => 0.050581350181317
117 => 0.050758981918628
118 => 0.050520621485551
119 => 0.050571487769129
120 => 0.051416206996793
121 => 0.051585609413639
122 => 0.051009913811399
123 => 0.048698412895926
124 => 0.048131164773308
125 => 0.048538891474826
126 => 0.048344024372463
127 => 0.039017400764979
128 => 0.041208552637794
129 => 0.039906644599454
130 => 0.04050662372143
131 => 0.039177712741737
201 => 0.039811938715438
202 => 0.03969482033632
203 => 0.043218127706909
204 => 0.043163116108468
205 => 0.043189447249493
206 => 0.041932593282963
207 => 0.043934795778949
208 => 0.044921152725345
209 => 0.044738604305607
210 => 0.044784547810004
211 => 0.043995086186356
212 => 0.043197090963687
213 => 0.042311991451163
214 => 0.043956396943827
215 => 0.04377356712398
216 => 0.044192912950615
217 => 0.045259427457139
218 => 0.04541647576952
219 => 0.045627550293986
220 => 0.045551895102272
221 => 0.047354308704154
222 => 0.047136024524258
223 => 0.047662026593162
224 => 0.046580000429554
225 => 0.045355585118564
226 => 0.045588306440031
227 => 0.045565893505347
228 => 0.045280551122452
229 => 0.045022956777694
301 => 0.044594134770429
302 => 0.045950991055132
303 => 0.045895905167883
304 => 0.046787681652096
305 => 0.046630051496257
306 => 0.04557735873692
307 => 0.045614955864761
308 => 0.045867814618055
309 => 0.046742961650296
310 => 0.047002764874018
311 => 0.046882413669422
312 => 0.047167276043766
313 => 0.047392419649673
314 => 0.047195550614296
315 => 0.049982800995179
316 => 0.048825340310618
317 => 0.049389478594714
318 => 0.049524022251375
319 => 0.049179391503986
320 => 0.049254129572792
321 => 0.04936733738213
322 => 0.050054713032066
323 => 0.051858585631246
324 => 0.052657508526047
325 => 0.055061107473216
326 => 0.052591169101177
327 => 0.052444613179801
328 => 0.052877573931921
329 => 0.054288740960697
330 => 0.055432359293341
331 => 0.055811763471203
401 => 0.055861907996588
402 => 0.056573695456571
403 => 0.056981678754583
404 => 0.05648726573706
405 => 0.056068302471911
406 => 0.05456762805978
407 => 0.054741335209185
408 => 0.055938005211493
409 => 0.057628372073265
410 => 0.059078882693362
411 => 0.058570964429603
412 => 0.062446022247671
413 => 0.062830218402141
414 => 0.062777134916142
415 => 0.063652390932078
416 => 0.061915185983234
417 => 0.061172497210842
418 => 0.056158887085271
419 => 0.057567507028057
420 => 0.059615018840245
421 => 0.059344022974127
422 => 0.057857065165968
423 => 0.059077754702526
424 => 0.058674156567249
425 => 0.058355821972654
426 => 0.059814174462691
427 => 0.058210655994077
428 => 0.059599022516893
429 => 0.057818428090568
430 => 0.058573284557448
501 => 0.058144791518548
502 => 0.058422079028848
503 => 0.056801061909549
504 => 0.057675723399156
505 => 0.056764673115961
506 => 0.056764241159505
507 => 0.056744129674008
508 => 0.057815976291972
509 => 0.057850929171703
510 => 0.057058832901558
511 => 0.05694467945416
512 => 0.057366764579432
513 => 0.056872613442008
514 => 0.057103823649059
515 => 0.056879616563642
516 => 0.056829142826191
517 => 0.056426959498784
518 => 0.056253687863076
519 => 0.056321632136097
520 => 0.056089703304602
521 => 0.055949957794395
522 => 0.056716330774684
523 => 0.056306888606713
524 => 0.056653577890215
525 => 0.056258481695989
526 => 0.054888906151582
527 => 0.054101248772996
528 => 0.051514247529332
529 => 0.05224791787287
530 => 0.052734342069672
531 => 0.052573578875531
601 => 0.052918960423644
602 => 0.052940164045626
603 => 0.052827876983586
604 => 0.052697862950607
605 => 0.05263457930958
606 => 0.053106243722481
607 => 0.053380060789664
608 => 0.052783161245338
609 => 0.052643316033614
610 => 0.053246814428655
611 => 0.053614948101
612 => 0.056333040301156
613 => 0.056131675251646
614 => 0.05663706201002
615 => 0.056580163216819
616 => 0.05710988905402
617 => 0.057975766919
618 => 0.056215195116236
619 => 0.056520769505203
620 => 0.056445849721772
621 => 0.057263804272256
622 => 0.05726635783708
623 => 0.056775953224204
624 => 0.05704180952075
625 => 0.056893415829404
626 => 0.057161583286277
627 => 0.056128985898643
628 => 0.057386578054781
629 => 0.058099551769862
630 => 0.058109451410588
701 => 0.058447395293027
702 => 0.058790765849976
703 => 0.059449835732765
704 => 0.058772384748655
705 => 0.057553716376767
706 => 0.057641700296942
707 => 0.056927195476397
708 => 0.056939206431517
709 => 0.056875091011775
710 => 0.057067506212803
711 => 0.056171210214824
712 => 0.056381569094059
713 => 0.05608706543127
714 => 0.056520129311756
715 => 0.056054224164377
716 => 0.056445813593184
717 => 0.056614810609262
718 => 0.057238413236834
719 => 0.055962117549249
720 => 0.053359664244639
721 => 0.053906731480965
722 => 0.053097576067236
723 => 0.053172466481448
724 => 0.053323757036878
725 => 0.052833374847539
726 => 0.052926924315546
727 => 0.052923582070252
728 => 0.052894780405929
729 => 0.052767213059023
730 => 0.052582215167579
731 => 0.053319189827744
801 => 0.053444416183399
802 => 0.053722778859758
803 => 0.054550997369397
804 => 0.054468238809546
805 => 0.054603221454282
806 => 0.05430855509872
807 => 0.053186135208559
808 => 0.05324708800872
809 => 0.052487005614013
810 => 0.053703341844028
811 => 0.053415297369906
812 => 0.0532295932236
813 => 0.053178922126744
814 => 0.054009193629872
815 => 0.054257623876519
816 => 0.054102818818342
817 => 0.053785309127637
818 => 0.054395021597105
819 => 0.054558154932231
820 => 0.05459467446984
821 => 0.055674968064968
822 => 0.054655050881243
823 => 0.05490055508447
824 => 0.056815908795787
825 => 0.055078947280368
826 => 0.055999054533949
827 => 0.055954020071893
828 => 0.056424715808094
829 => 0.055915409282946
830 => 0.055921722747724
831 => 0.056339668673779
901 => 0.055752738997579
902 => 0.055607406955742
903 => 0.055406631780831
904 => 0.055845017030036
905 => 0.056107809160475
906 => 0.058225720732261
907 => 0.059593988196136
908 => 0.059534588096981
909 => 0.060077393810936
910 => 0.059832854865269
911 => 0.059043174103594
912 => 0.060391062872463
913 => 0.059964534467931
914 => 0.059999696951369
915 => 0.059998388201979
916 => 0.060281992303232
917 => 0.06008103280556
918 => 0.05968492100758
919 => 0.059947878504843
920 => 0.060728768262689
921 => 0.063152674031668
922 => 0.064509123812469
923 => 0.063071014051655
924 => 0.064063002907608
925 => 0.063468163075806
926 => 0.063360062983416
927 => 0.063983105292355
928 => 0.064607238154378
929 => 0.064567483589268
930 => 0.064114395181016
1001 => 0.063858457035887
1002 => 0.06579650641637
1003 => 0.0672244281861
1004 => 0.067127053494314
1005 => 0.067556833715913
1006 => 0.068818681739132
1007 => 0.068934049308381
1008 => 0.068919515646349
1009 => 0.068633565088605
1010 => 0.069876018339136
1011 => 0.070912494699614
1012 => 0.068567375796393
1013 => 0.069460366374879
1014 => 0.069861258615921
1015 => 0.070449887365138
1016 => 0.071443002730701
1017 => 0.072521789428544
1018 => 0.072674341695913
1019 => 0.072566098561916
1020 => 0.071854609735346
1021 => 0.073035031012727
1022 => 0.073726494112732
1023 => 0.074138244564933
1024 => 0.075182375202973
1025 => 0.069863734389921
1026 => 0.066098936068843
1027 => 0.06551100844666
1028 => 0.066706582385481
1029 => 0.067021845698625
1030 => 0.066894763452403
1031 => 0.062657140661542
1101 => 0.065488698239662
1102 => 0.068535216109597
1103 => 0.068652245268316
1104 => 0.07017739581369
1105 => 0.070674047349296
1106 => 0.071901993444374
1107 => 0.071825185081793
1108 => 0.072124170415055
1109 => 0.072055438864642
1110 => 0.074329950431217
1111 => 0.076839074457385
1112 => 0.076752191470884
1113 => 0.076391475205515
1114 => 0.076927200370852
1115 => 0.079516885259929
1116 => 0.079278468574197
1117 => 0.079510070076101
1118 => 0.082563454508567
1119 => 0.086533288609645
1120 => 0.084688902104867
1121 => 0.088690690112314
1122 => 0.091209603537335
1123 => 0.0955658038454
1124 => 0.095020386112091
1125 => 0.096716222924746
1126 => 0.094043974537353
1127 => 0.087907952089395
1128 => 0.086936903049256
1129 => 0.088880967818493
1130 => 0.093660261354598
1201 => 0.08873045085698
1202 => 0.089727745100049
1203 => 0.089440524290954
1204 => 0.089425219514647
1205 => 0.090009340577255
1206 => 0.089162042510236
1207 => 0.085709997759186
1208 => 0.087292049525565
1209 => 0.0866811433622
1210 => 0.087358989296525
1211 => 0.091017044239145
1212 => 0.089399730951874
1213 => 0.087696022783597
1214 => 0.089832850909725
1215 => 0.092553767408095
1216 => 0.092383497343584
1217 => 0.092053102251067
1218 => 0.09391552208866
1219 => 0.096991694022552
1220 => 0.097823170935223
1221 => 0.09843695019336
1222 => 0.098521579983171
1223 => 0.099393319415351
1224 => 0.094705756781898
1225 => 0.10214503906633
1226 => 0.10342959761083
1227 => 0.10318815384396
1228 => 0.10461588660368
1229 => 0.10419581140769
1230 => 0.10358718835647
1231 => 0.1058504484681
]
'min_raw' => 0.039017400764979
'max_raw' => 0.1058504484681
'avg_raw' => 0.072433924616538
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039017'
'max' => '$0.10585'
'avg' => '$0.072433'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013456093162707
'max_diff' => 0.048786629915838
'year' => 2032
]
7 => [
'items' => [
101 => 0.10325580338579
102 => 0.099573031348194
103 => 0.097552589771396
104 => 0.1002132702241
105 => 0.10183805493161
106 => 0.10291193426756
107 => 0.10323688950576
108 => 0.095069638925353
109 => 0.090667943838995
110 => 0.093489379923814
111 => 0.096931726672409
112 => 0.094686634371901
113 => 0.094774637739559
114 => 0.091573726118911
115 => 0.097214936325148
116 => 0.096393059448145
117 => 0.10065695813991
118 => 0.099639344497197
119 => 0.10311638835674
120 => 0.10220076618009
121 => 0.1060014626436
122 => 0.10751766336265
123 => 0.11006360034772
124 => 0.11193640195777
125 => 0.11303614688418
126 => 0.11297012232384
127 => 0.11732785961301
128 => 0.11475825418133
129 => 0.11153022414964
130 => 0.11147183927067
131 => 0.11314368176562
201 => 0.11664740498745
202 => 0.11755586944177
203 => 0.11806357713673
204 => 0.11728600512846
205 => 0.11449688259765
206 => 0.11329255363002
207 => 0.11431867680321
208 => 0.11306381633817
209 => 0.1152300575525
210 => 0.11820476942392
211 => 0.11759050318575
212 => 0.11964390312399
213 => 0.1217689560361
214 => 0.1248078771425
215 => 0.12560236365064
216 => 0.12691561963697
217 => 0.12826739142903
218 => 0.12870154409737
219 => 0.12953047625088
220 => 0.12952610736926
221 => 0.13202415020746
222 => 0.13477956881593
223 => 0.13581967555254
224 => 0.13821134364156
225 => 0.13411569585316
226 => 0.13722229174807
227 => 0.14002451900842
228 => 0.13668358814636
301 => 0.14128828300265
302 => 0.14146707286946
303 => 0.14416658758914
304 => 0.1414301122563
305 => 0.1398052019388
306 => 0.14449625714083
307 => 0.14676611098623
308 => 0.14608241253531
309 => 0.14087943356546
310 => 0.13785107663874
311 => 0.12992528243509
312 => 0.13931372803814
313 => 0.14388656602668
314 => 0.14086759101979
315 => 0.14239018640998
316 => 0.15069697315563
317 => 0.15385965972376
318 => 0.15320184302644
319 => 0.1533130032197
320 => 0.15501953148504
321 => 0.16258721761585
322 => 0.15805248466868
323 => 0.16151911809359
324 => 0.16335780796229
325 => 0.16506568558363
326 => 0.16087167792587
327 => 0.15541533558534
328 => 0.15368708292442
329 => 0.14056741345285
330 => 0.13988447768101
331 => 0.13950112513721
401 => 0.13708414157484
402 => 0.13518505456233
403 => 0.1336748300614
404 => 0.12971154997976
405 => 0.13104904066401
406 => 0.1247323994147
407 => 0.12877356263799
408 => 0.11869205068346
409 => 0.12708823341294
410 => 0.12251857288087
411 => 0.12558697702753
412 => 0.12557627165452
413 => 0.1199263667821
414 => 0.1166676195622
415 => 0.11874422012306
416 => 0.12097050076506
417 => 0.12133170730912
418 => 0.12421813827334
419 => 0.12502367911183
420 => 0.1225828527641
421 => 0.11848313375651
422 => 0.11943540497734
423 => 0.1166483218163
424 => 0.11176406578019
425 => 0.11527202373626
426 => 0.11646979481648
427 => 0.11699879876102
428 => 0.1121956939101
429 => 0.11068645408546
430 => 0.10988294746658
501 => 0.11786311323506
502 => 0.11830028473006
503 => 0.11606365355181
504 => 0.1261734385636
505 => 0.12388528285149
506 => 0.12644171339368
507 => 0.11934899634528
508 => 0.11961994768814
509 => 0.1162621417716
510 => 0.11814228871619
511 => 0.11681346145572
512 => 0.11799039142304
513 => 0.11869583839279
514 => 0.12205309332642
515 => 0.12712656787144
516 => 0.12155163139392
517 => 0.11912255173611
518 => 0.12062953909415
519 => 0.12464284501711
520 => 0.13072320892773
521 => 0.12712351111391
522 => 0.12872099587685
523 => 0.1290699752304
524 => 0.12641569133055
525 => 0.13082107616114
526 => 0.13318195768114
527 => 0.13560373360507
528 => 0.13770649378319
529 => 0.13463642304506
530 => 0.13792183881221
531 => 0.13527437365784
601 => 0.13289932372445
602 => 0.13290292569482
603 => 0.13141302217766
604 => 0.12852614637325
605 => 0.12799376218229
606 => 0.13076329197635
607 => 0.13298419259574
608 => 0.13316711660815
609 => 0.13439672130504
610 => 0.13512438869873
611 => 0.14225651837267
612 => 0.14512511992761
613 => 0.14863279160913
614 => 0.14999922741063
615 => 0.15411170927879
616 => 0.1507905461708
617 => 0.15007199164129
618 => 0.14009645581171
619 => 0.14172994924496
620 => 0.14434532984027
621 => 0.14013958247442
622 => 0.14280716114845
623 => 0.14333379768575
624 => 0.13999667278828
625 => 0.14177917538467
626 => 0.13704537696383
627 => 0.12722975174104
628 => 0.13083200375796
629 => 0.13348447374734
630 => 0.12969907202531
701 => 0.13648425809676
702 => 0.13252049246849
703 => 0.13126416905863
704 => 0.12636280352514
705 => 0.12867605938609
706 => 0.13180477106065
707 => 0.12987159099755
708 => 0.13388322989694
709 => 0.1395647804435
710 => 0.14361379170516
711 => 0.14392462451306
712 => 0.1413213815345
713 => 0.14549309502132
714 => 0.14552348139971
715 => 0.14081777154462
716 => 0.13793555045989
717 => 0.13728070376519
718 => 0.1389166391988
719 => 0.14090296682555
720 => 0.14403485187221
721 => 0.14592738441314
722 => 0.1508621055582
723 => 0.15219729961051
724 => 0.15366427306845
725 => 0.15562460200613
726 => 0.15797847951383
727 => 0.1528283295333
728 => 0.15303295459311
729 => 0.14823720623992
730 => 0.14311226134465
731 => 0.14700145568676
801 => 0.15208605993122
802 => 0.15091964609955
803 => 0.15078840071582
804 => 0.15100911904683
805 => 0.15012968110926
806 => 0.14615201591116
807 => 0.14415445735017
808 => 0.14673181752538
809 => 0.1481015697534
810 => 0.15022593600412
811 => 0.14996406302379
812 => 0.15543620234535
813 => 0.1575625102168
814 => 0.15701850967344
815 => 0.15711861886552
816 => 0.16096819770109
817 => 0.16524972109251
818 => 0.16925993274535
819 => 0.17333929228122
820 => 0.16842146514062
821 => 0.16592449580803
822 => 0.16850073078842
823 => 0.16713374424469
824 => 0.1749888543995
825 => 0.17553272518362
826 => 0.18338726732455
827 => 0.19084216311778
828 => 0.18615987663839
829 => 0.19057506189364
830 => 0.19535044472253
831 => 0.2045629329774
901 => 0.2014604910324
902 => 0.199084069124
903 => 0.19683836190334
904 => 0.20151132213354
905 => 0.20752301081733
906 => 0.20881787098058
907 => 0.2109160391197
908 => 0.20871007187321
909 => 0.21136691644229
910 => 0.22074674524778
911 => 0.2182122327065
912 => 0.21461281745465
913 => 0.22201729144825
914 => 0.22469694180237
915 => 0.24350413133138
916 => 0.26724898499799
917 => 0.2574184596629
918 => 0.25131633535833
919 => 0.25275047931423
920 => 0.26142129605926
921 => 0.26420608719979
922 => 0.25663606490474
923 => 0.25930992475539
924 => 0.27404315542053
925 => 0.28194706097374
926 => 0.27121249559634
927 => 0.24159625545911
928 => 0.21428872949328
929 => 0.22153191505334
930 => 0.22071076259304
1001 => 0.23653978093478
1002 => 0.2181517854206
1003 => 0.21846139210642
1004 => 0.23461773778424
1005 => 0.23030750174729
1006 => 0.22332547138074
1007 => 0.21433970604173
1008 => 0.19772868772988
1009 => 0.18301584557856
1010 => 0.21187111720249
1011 => 0.21062682542016
1012 => 0.20882490652563
1013 => 0.21283488203741
1014 => 0.23230618487119
1015 => 0.23185730831841
1016 => 0.22900178470849
1017 => 0.23116767419919
1018 => 0.2229457804811
1019 => 0.22506474970129
1020 => 0.21428440384165
1021 => 0.21915757039722
1022 => 0.22331049107936
1023 => 0.22414425139134
1024 => 0.2260227559471
1025 => 0.20997114019192
1026 => 0.21717784441532
1027 => 0.22141110796969
1028 => 0.20228506922358
1029 => 0.22103304767859
1030 => 0.20969171727325
1031 => 0.20584229939261
1101 => 0.21102503344665
1102 => 0.20900531694542
1103 => 0.20726888329939
1104 => 0.20629992348919
1105 => 0.21010555138099
1106 => 0.20992801429113
1107 => 0.2037012684196
1108 => 0.19557873226482
1109 => 0.19830492201152
1110 => 0.19731447171838
1111 => 0.1937249520854
1112 => 0.19614385491778
1113 => 0.1854922310227
1114 => 0.16716666573447
1115 => 0.17927309549112
1116 => 0.17880701111475
1117 => 0.17857199023694
1118 => 0.18766963760193
1119 => 0.18679510872622
1120 => 0.1852078302534
1121 => 0.19369580047149
1122 => 0.19059757716258
1123 => 0.20014557136743
1124 => 0.20643449787629
1125 => 0.20483942268818
1126 => 0.21075418846678
1127 => 0.19836772791716
1128 => 0.2024820132532
1129 => 0.20332996175881
1130 => 0.19359106023655
1201 => 0.18693819246577
1202 => 0.1864945220337
1203 => 0.17495936614081
1204 => 0.18112135331027
1205 => 0.18654364701903
1206 => 0.18394678911953
1207 => 0.18312470148746
1208 => 0.18732456891061
1209 => 0.18765093457882
1210 => 0.18020976275694
1211 => 0.18175701800997
1212 => 0.18820932962491
1213 => 0.1815944363122
1214 => 0.1687427791423
1215 => 0.1655553904761
1216 => 0.1651301340728
1217 => 0.15648568321508
1218 => 0.16576838702786
1219 => 0.16171623805259
1220 => 0.17451692811328
1221 => 0.16720524260209
1222 => 0.16689005045339
1223 => 0.16641359129198
1224 => 0.15897295534098
1225 => 0.16060198173716
1226 => 0.16601711358581
1227 => 0.16794929363524
1228 => 0.1677477514262
1229 => 0.16599057648554
1230 => 0.16679500217518
1231 => 0.16420366674836
]
'min_raw' => 0.090667943838995
'max_raw' => 0.28194706097374
'avg_raw' => 0.18630750240637
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.090667'
'max' => '$0.281947'
'avg' => '$0.1863075'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.051650543074016
'max_diff' => 0.17609661250565
'year' => 2033
]
8 => [
'items' => [
101 => 0.16328861227516
102 => 0.1604004486522
103 => 0.156155646002
104 => 0.1567459118454
105 => 0.14833584708233
106 => 0.14375359744349
107 => 0.14248529113654
108 => 0.14078925893672
109 => 0.14267686248648
110 => 0.14831202242553
111 => 0.14151482397317
112 => 0.12986150399463
113 => 0.13056188838163
114 => 0.13213544415323
115 => 0.12920313338296
116 => 0.1264279473291
117 => 0.12884074644497
118 => 0.12390308114706
119 => 0.13273213741451
120 => 0.13249333618562
121 => 0.13578426237694
122 => 0.13784214606098
123 => 0.13309939041702
124 => 0.13190660019834
125 => 0.1325860677162
126 => 0.12135598317868
127 => 0.13486652488358
128 => 0.13498336460929
129 => 0.13398291194237
130 => 0.14117685830906
131 => 0.1563583289909
201 => 0.15064644904715
202 => 0.14843463649044
203 => 0.14422997920332
204 => 0.14983243539056
205 => 0.14940225416731
206 => 0.1474568115344
207 => 0.14628020175986
208 => 0.14844814134627
209 => 0.14601157005358
210 => 0.14557389489691
211 => 0.14292205964276
212 => 0.14197547510784
213 => 0.14127466160281
214 => 0.14050313479427
215 => 0.14220493068139
216 => 0.13834843731129
217 => 0.13369788436366
218 => 0.13331124120574
219 => 0.13437879695876
220 => 0.13390648300823
221 => 0.13330897994826
222 => 0.1321681838865
223 => 0.13182973406423
224 => 0.1329295317941
225 => 0.13168792427926
226 => 0.13351998380127
227 => 0.13302176498376
228 => 0.13023875516918
301 => 0.12677009453801
302 => 0.12673921618263
303 => 0.12599189893938
304 => 0.12504007807021
305 => 0.12477530327912
306 => 0.12863754723328
307 => 0.13663227663114
308 => 0.13506271995268
309 => 0.13619688550751
310 => 0.14177585751235
311 => 0.14354924494714
312 => 0.14229053655091
313 => 0.14056753886439
314 => 0.14064334201823
315 => 0.14653134669994
316 => 0.14689857432957
317 => 0.1478264400775
318 => 0.14901900977843
319 => 0.14249363632779
320 => 0.14033599751552
321 => 0.13931358854503
322 => 0.13616496463797
323 => 0.13956048557912
324 => 0.13758206093741
325 => 0.13784901801419
326 => 0.13767516186773
327 => 0.1377700990798
328 => 0.13272966951334
329 => 0.13456613713018
330 => 0.13151265352844
331 => 0.12742438175532
401 => 0.12741067643481
402 => 0.12841127515942
403 => 0.12781607988459
404 => 0.12621442470388
405 => 0.1264419322627
406 => 0.12444872665272
407 => 0.1266839435119
408 => 0.12674804153343
409 => 0.12588736128956
410 => 0.12933102126161
411 => 0.13074189156192
412 => 0.13017537338785
413 => 0.13070214313661
414 => 0.13512794211879
415 => 0.13584954046404
416 => 0.13617002678288
417 => 0.13574061757193
418 => 0.13078303861745
419 => 0.13100292832533
420 => 0.12938952354799
421 => 0.12802636652754
422 => 0.12808088565954
423 => 0.12878172556606
424 => 0.13184233454155
425 => 0.13828320569771
426 => 0.13852763204987
427 => 0.13882388391911
428 => 0.13761887868266
429 => 0.13725543757299
430 => 0.13773491020875
501 => 0.14015376277008
502 => 0.14637570826991
503 => 0.1441764571805
504 => 0.14238843181143
505 => 0.14395701210829
506 => 0.14371554146652
507 => 0.14167728624259
508 => 0.14162007920708
509 => 0.13770801576273
510 => 0.13626181498074
511 => 0.13505326136105
512 => 0.13373355235844
513 => 0.13295118462464
514 => 0.13415325704353
515 => 0.13442818522823
516 => 0.13179983287571
517 => 0.13144159816216
518 => 0.13358796743015
519 => 0.13264343034002
520 => 0.13361491016061
521 => 0.13384030181219
522 => 0.13380400856507
523 => 0.13281780336358
524 => 0.13344638114995
525 => 0.13195960729713
526 => 0.13034296403841
527 => 0.12931164635977
528 => 0.12841168490073
529 => 0.12891103582427
530 => 0.12713094095971
531 => 0.1265614527863
601 => 0.13323343313938
602 => 0.13816209676207
603 => 0.13809043204103
604 => 0.13765419148238
605 => 0.13700602650038
606 => 0.14010634546448
607 => 0.13902625633022
608 => 0.13981211141986
609 => 0.14001214452241
610 => 0.14061758447771
611 => 0.1408339772224
612 => 0.14017988805351
613 => 0.13798468491243
614 => 0.13251444739853
615 => 0.12996803706919
616 => 0.12912767924668
617 => 0.12915822465746
618 => 0.1283156458674
619 => 0.12856382308281
620 => 0.12822933995992
621 => 0.12759590984534
622 => 0.12887192329966
623 => 0.12901897196338
624 => 0.12872113517592
625 => 0.12879128652121
626 => 0.12632532512879
627 => 0.12651280681767
628 => 0.12546888494996
629 => 0.12527316218444
630 => 0.12263421860756
701 => 0.11795894754014
702 => 0.12054950155103
703 => 0.11742047659289
704 => 0.11623546742878
705 => 0.12184511650496
706 => 0.12128206332515
707 => 0.12031836103467
708 => 0.11889284449388
709 => 0.11836410654236
710 => 0.11515166212707
711 => 0.11496185377329
712 => 0.11655402796881
713 => 0.11581929436095
714 => 0.11478745011013
715 => 0.11105021483006
716 => 0.10684832501918
717 => 0.10697515366043
718 => 0.10831169663033
719 => 0.1121978755727
720 => 0.11067947822834
721 => 0.1095778635334
722 => 0.10937156421546
723 => 0.11195383209642
724 => 0.11560828214983
725 => 0.11732286835117
726 => 0.1156237654984
727 => 0.11367192762732
728 => 0.11379072695459
729 => 0.11458104565585
730 => 0.11466409697685
731 => 0.11339365117496
801 => 0.11375127422651
802 => 0.11320801210946
803 => 0.10987401349992
804 => 0.10981371203729
805 => 0.10899549501052
806 => 0.10897071972413
807 => 0.10757872844779
808 => 0.10738397924584
809 => 0.10462009607883
810 => 0.10643929234917
811 => 0.10521907100312
812 => 0.1033799096135
813 => 0.10306283749671
814 => 0.10305330592601
815 => 0.10494171344418
816 => 0.10641722520783
817 => 0.10524029727586
818 => 0.10497233359953
819 => 0.10783348461251
820 => 0.10746937706614
821 => 0.10715406227922
822 => 0.1152810662299
823 => 0.10884790844491
824 => 0.10604268445885
825 => 0.1025706870785
826 => 0.10370118693287
827 => 0.10393939986269
828 => 0.095589872037533
829 => 0.092202469638735
830 => 0.091040040787033
831 => 0.090371046548548
901 => 0.090675915623727
902 => 0.087626856162135
903 => 0.089675874547114
904 => 0.087035646783956
905 => 0.086593004007418
906 => 0.091314058309402
907 => 0.091970965435524
908 => 0.089168395550441
909 => 0.090968099111515
910 => 0.090315501582519
911 => 0.087080905911042
912 => 0.086957368148467
913 => 0.085334361742056
914 => 0.08279467099199
915 => 0.081633964170209
916 => 0.081029457979707
917 => 0.081278889015499
918 => 0.081152769051087
919 => 0.080329750972467
920 => 0.081199943483963
921 => 0.078976961205463
922 => 0.078091751750379
923 => 0.07769192317622
924 => 0.075718898453965
925 => 0.078858858195149
926 => 0.079477469820333
927 => 0.080097300301518
928 => 0.085492501463984
929 => 0.085222972460588
930 => 0.087659383385344
1001 => 0.087564708937081
1002 => 0.0868698050741
1003 => 0.083938119982321
1004 => 0.085106637407642
1005 => 0.08151012240043
1006 => 0.084204875983082
1007 => 0.082975102983559
1008 => 0.083789088494903
1009 => 0.082325469151393
1010 => 0.083135496527453
1011 => 0.079624165585643
1012 => 0.07634533415794
1013 => 0.077664831639504
1014 => 0.079099276304804
1015 => 0.082209517828879
1016 => 0.080357083636075
1017 => 0.081023289020099
1018 => 0.078791612505053
1019 => 0.074187026407632
1020 => 0.074213087864887
1021 => 0.073504772610159
1022 => 0.072892684814354
1023 => 0.0805698579868
1024 => 0.079615080144659
1025 => 0.078093766611441
1026 => 0.08013010523025
1027 => 0.080668545482102
1028 => 0.080683874119115
1029 => 0.082169534209891
1030 => 0.082962431266657
1031 => 0.083102182809524
1101 => 0.085439901062171
1102 => 0.086223473385208
1103 => 0.089450896888495
1104 => 0.082895159491054
1105 => 0.082760148393476
1106 => 0.080158760690626
1107 => 0.078508919483165
1108 => 0.080271726729601
1109 => 0.081833333302757
1110 => 0.080207284159815
1111 => 0.080419611850112
1112 => 0.078236773728808
1113 => 0.079017035645095
1114 => 0.079689102320031
1115 => 0.079318026604384
1116 => 0.078762508297794
1117 => 0.081705299372085
1118 => 0.081539255566782
1119 => 0.084279650269637
1120 => 0.086415983908018
1121 => 0.090244675703312
1122 => 0.086249236220705
1123 => 0.086103626525525
1124 => 0.087526984652437
1125 => 0.086223255476495
1126 => 0.087047167312489
1127 => 0.090111930768906
1128 => 0.09017668439135
1129 => 0.089091977785098
1130 => 0.089025973289529
1201 => 0.08923430305865
1202 => 0.090454497023452
1203 => 0.090028123759377
1204 => 0.090521533695015
1205 => 0.091138550374891
1206 => 0.093690792972511
1207 => 0.094306130022221
1208 => 0.092811180007108
1209 => 0.092946157255227
1210 => 0.092387004912279
1211 => 0.09184687075515
1212 => 0.093061013460118
1213 => 0.09527988311748
1214 => 0.095266079644502
1215 => 0.095780814276347
1216 => 0.096101489687695
1217 => 0.094724916073442
1218 => 0.093828817268578
1219 => 0.094172438570612
1220 => 0.094721896515661
1221 => 0.093994256764441
1222 => 0.089502927144391
1223 => 0.090865309643867
1224 => 0.090638542578854
1225 => 0.090315598702457
1226 => 0.091685484840673
1227 => 0.091553355980783
1228 => 0.087595583650318
1229 => 0.087848947393954
1230 => 0.087610991538736
1231 => 0.088379875588133
]
'min_raw' => 0.072892684814354
'max_raw' => 0.16328861227516
'avg_raw' => 0.11809064854476
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.072892'
'max' => '$0.163288'
'avg' => '$0.11809'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017775259024641
'max_diff' => -0.11865844869858
'year' => 2034
]
9 => [
'items' => [
101 => 0.086181733214566
102 => 0.08685786700396
103 => 0.087281931778307
104 => 0.087531709188217
105 => 0.088434076466785
106 => 0.088328194081729
107 => 0.088427494669064
108 => 0.089765467127051
109 => 0.096532472682845
110 => 0.096900785864691
111 => 0.095087077053065
112 => 0.095811617949485
113 => 0.094420657868034
114 => 0.095354418689335
115 => 0.095993274128315
116 => 0.093106409244399
117 => 0.092935467841571
118 => 0.091538766773073
119 => 0.092289274814092
120 => 0.091095162557393
121 => 0.091388155936913
122 => 0.09056892090507
123 => 0.09204338085432
124 => 0.093692056185493
125 => 0.094108576682309
126 => 0.093012890578534
127 => 0.092219541630169
128 => 0.090826682222228
129 => 0.093143038459529
130 => 0.093820411612993
131 => 0.093139480506721
201 => 0.092981693890759
202 => 0.092682688538625
203 => 0.093045129289703
204 => 0.093816722493326
205 => 0.093452853387587
206 => 0.093693195342476
207 => 0.092777259649985
208 => 0.094725371776588
209 => 0.097819442672346
210 => 0.097829390616208
211 => 0.097465519549078
212 => 0.09731663134812
213 => 0.097689985144538
214 => 0.09789251426332
215 => 0.099099871979557
216 => 0.10039541491233
217 => 0.10644114848993
218 => 0.10474353069373
219 => 0.11010766518608
220 => 0.11434999912383
221 => 0.11562208957699
222 => 0.11445182621657
223 => 0.11044841847695
224 => 0.11025199219398
225 => 0.11623477355211
226 => 0.1145443637897
227 => 0.1143432949273
228 => 0.11220426194256
301 => 0.11346869536093
302 => 0.11319214522421
303 => 0.11275559730411
304 => 0.11516804818516
305 => 0.11968394087351
306 => 0.11898009664826
307 => 0.1184547095845
308 => 0.11615261640899
309 => 0.11753899069177
310 => 0.11704532936392
311 => 0.11916641171358
312 => 0.11790992951737
313 => 0.11453155727318
314 => 0.11506957418833
315 => 0.11498825401395
316 => 0.11666181744037
317 => 0.11615945524016
318 => 0.11489015973173
319 => 0.11966850604324
320 => 0.11935822681233
321 => 0.11979813182205
322 => 0.11999179161185
323 => 0.12290028680776
324 => 0.12409180422806
325 => 0.12436229954292
326 => 0.12549414893694
327 => 0.1243341380989
328 => 0.12897500852475
329 => 0.13206091655564
330 => 0.1356453575329
331 => 0.14088318920757
401 => 0.1428526623699
402 => 0.1424968946712
403 => 0.14646815886839
404 => 0.15360443235451
405 => 0.14393933957661
406 => 0.15411670574041
407 => 0.1508946691163
408 => 0.14325527824248
409 => 0.14276339153271
410 => 0.14793687572761
411 => 0.1594111657425
412 => 0.15653698623409
413 => 0.15941586687053
414 => 0.15605749968737
415 => 0.15589072845019
416 => 0.15925275847246
417 => 0.16710832487421
418 => 0.16337643973824
419 => 0.15802586730005
420 => 0.16197664672428
421 => 0.15855411595964
422 => 0.15084219624086
423 => 0.15653478840319
424 => 0.15272831413993
425 => 0.15383924569325
426 => 0.1618398884243
427 => 0.16087722992383
428 => 0.16212299916322
429 => 0.15992424906315
430 => 0.15787026975862
501 => 0.15403636485621
502 => 0.15290133462383
503 => 0.15321501614595
504 => 0.15290117917884
505 => 0.15075614462135
506 => 0.15029292461289
507 => 0.14952087097132
508 => 0.14976016267801
509 => 0.1483084759596
510 => 0.15104810873102
511 => 0.15155660871496
512 => 0.15355028497958
513 => 0.15375727506314
514 => 0.15930963508192
515 => 0.1562514884872
516 => 0.15830315725061
517 => 0.15811963668535
518 => 0.14342084700737
519 => 0.14544621053648
520 => 0.14859704059368
521 => 0.14717759592376
522 => 0.14517083325939
523 => 0.14355026481211
524 => 0.14109493790284
525 => 0.14455076337726
526 => 0.14909480639005
527 => 0.15387251949276
528 => 0.15961262873751
529 => 0.15833150317632
530 => 0.15376521214317
531 => 0.15397005262324
601 => 0.15523629586927
602 => 0.15359639581533
603 => 0.15311275727477
604 => 0.15516985136057
605 => 0.15518401743698
606 => 0.15329711423638
607 => 0.15120016662855
608 => 0.15119138034151
609 => 0.15081824876881
610 => 0.15612387896524
611 => 0.15904143911356
612 => 0.15937593268269
613 => 0.15901892503126
614 => 0.15915632310717
615 => 0.15745865914091
616 => 0.16133901554116
617 => 0.16490001430151
618 => 0.16394559056409
619 => 0.16251477370238
620 => 0.16137505915455
621 => 0.16367711003727
622 => 0.16357460333523
623 => 0.16486891208389
624 => 0.16481019476276
625 => 0.164374967412
626 => 0.16394560610743
627 => 0.16564797514723
628 => 0.16515772020298
629 => 0.16466670375739
630 => 0.1636818951049
701 => 0.16381574695671
702 => 0.1623851771457
703 => 0.16172333009271
704 => 0.1517707384088
705 => 0.14911108070055
706 => 0.14994786315789
707 => 0.15022335366989
708 => 0.14906586722681
709 => 0.15072540545232
710 => 0.15046676817776
711 => 0.15147297451532
712 => 0.15084434048001
713 => 0.1508701398401
714 => 0.15271881849903
715 => 0.15325549777856
716 => 0.15298253836546
717 => 0.15317370978189
718 => 0.15757917438523
719 => 0.15695285819746
720 => 0.15662014020566
721 => 0.15671230536322
722 => 0.1578379960236
723 => 0.15815312794808
724 => 0.15681789184015
725 => 0.15744759690755
726 => 0.1601288011631
727 => 0.16106707090952
728 => 0.16406157754507
729 => 0.16278945790318
730 => 0.16512448856192
731 => 0.17230157673629
801 => 0.1780351313867
802 => 0.17276231758102
803 => 0.18329126053271
804 => 0.19148955290777
805 => 0.19117488879145
806 => 0.18974532688594
807 => 0.18041178897981
808 => 0.17182292824339
809 => 0.1790078749517
810 => 0.17902619085845
811 => 0.1784089975642
812 => 0.17457566302073
813 => 0.17827560583132
814 => 0.1785692938554
815 => 0.17840490665986
816 => 0.17546589805312
817 => 0.17097857513021
818 => 0.17185538728821
819 => 0.1732916234895
820 => 0.1705725287302
821 => 0.16970361319884
822 => 0.17131909248958
823 => 0.17652450336283
824 => 0.17554045059013
825 => 0.17551475299537
826 => 0.17972494806028
827 => 0.17671135701076
828 => 0.17186644669746
829 => 0.17064304294684
830 => 0.16630078381564
831 => 0.16929999766416
901 => 0.16940793403117
902 => 0.16776529525756
903 => 0.17199973778084
904 => 0.17196071664753
905 => 0.1759806896098
906 => 0.18366536808076
907 => 0.18139263051683
908 => 0.17874968400313
909 => 0.17903704557013
910 => 0.1821886926913
911 => 0.18028313489674
912 => 0.18096838676568
913 => 0.18218765548053
914 => 0.18292327056894
915 => 0.17893120187938
916 => 0.17800045970513
917 => 0.17609648786272
918 => 0.17559977714835
919 => 0.17715052248632
920 => 0.17674195587841
921 => 0.16939886239747
922 => 0.16863146827212
923 => 0.16865500315436
924 => 0.16672535413858
925 => 0.16378217622069
926 => 0.17151667206089
927 => 0.17089548380072
928 => 0.17020974003765
929 => 0.17029373973583
930 => 0.17365102223367
1001 => 0.17170362883809
1002 => 0.17688109335174
1003 => 0.17581676229656
1004 => 0.17472513516591
1005 => 0.17457423904468
1006 => 0.17415405573263
1007 => 0.17271309081228
1008 => 0.17097303908239
1009 => 0.16982410620962
1010 => 0.15665376111008
1011 => 0.15909810055218
1012 => 0.16191009027177
1013 => 0.16288077785463
1014 => 0.16122034957461
1015 => 0.1727786546412
1016 => 0.17489046835547
1017 => 0.16849364686476
1018 => 0.16729706274435
1019 => 0.17285710249693
1020 => 0.16950371883891
1021 => 0.17101374729478
1022 => 0.16774989171458
1023 => 0.17438179427283
1024 => 0.17433127028681
1025 => 0.17175131040334
1026 => 0.17393187483004
1027 => 0.17355294809985
1028 => 0.17064017974557
1029 => 0.17447413422507
1030 => 0.17447603581866
1031 => 0.17199288052398
1101 => 0.16909309877239
1102 => 0.168574686285
1103 => 0.16818413211466
1104 => 0.17091769491029
1105 => 0.17336859876521
1106 => 0.17792912320864
1107 => 0.17907574740911
1108 => 0.18355109799862
1109 => 0.18088624462343
1110 => 0.18206753960902
1111 => 0.18335000242026
1112 => 0.18396486225298
1113 => 0.18296298115076
1114 => 0.18991504274407
1115 => 0.19050200974821
1116 => 0.19069881470745
1117 => 0.18835461865352
1118 => 0.19043681341533
1119 => 0.18946262344132
1120 => 0.19199719511592
1121 => 0.19239464831753
1122 => 0.19205801959557
1123 => 0.19218417751514
1124 => 0.18625181937295
1125 => 0.1859441953076
1126 => 0.18174971934848
1127 => 0.18345899930582
1128 => 0.1802635823535
1129 => 0.18127688198552
1130 => 0.18172353480825
1201 => 0.18149022872098
1202 => 0.18355563943003
1203 => 0.18179961839181
1204 => 0.17716519015535
1205 => 0.17252949927201
1206 => 0.17247130194912
1207 => 0.17125080636628
1208 => 0.1703686116048
1209 => 0.17053855361341
1210 => 0.1711374514176
1211 => 0.17033380257569
1212 => 0.17050530180214
1213 => 0.17335333165462
1214 => 0.17392448373032
1215 => 0.17198348581358
1216 => 0.16419009909323
1217 => 0.16227758244382
1218 => 0.16365226148456
1219 => 0.16299525344375
1220 => 0.13154989078706
1221 => 0.13893751230759
1222 => 0.13454803846001
1223 => 0.13657090995896
1224 => 0.13209039380932
1225 => 0.1342287309599
1226 => 0.13383385816776
1227 => 0.14571293495716
1228 => 0.14552745951223
1229 => 0.14561623679258
1230 => 0.14137866589368
1231 => 0.14812923139821
]
'min_raw' => 0.086181733214566
'max_raw' => 0.19239464831753
'avg_raw' => 0.13928819076605
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.086181'
'max' => '$0.192394'
'avg' => '$0.139288'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013289048400211
'max_diff' => 0.029106036042369
'year' => 2035
]
10 => [
'items' => [
101 => 0.15145480270823
102 => 0.15083932796596
103 => 0.1509942296987
104 => 0.14833250471613
105 => 0.14564200810865
106 => 0.1426578333065
107 => 0.14820206123374
108 => 0.14758563773136
109 => 0.14899949146365
110 => 0.15259531958406
111 => 0.15312481893402
112 => 0.15383647143001
113 => 0.15358139466907
114 => 0.15965835796831
115 => 0.15892239761568
116 => 0.16069585031528
117 => 0.15704772356002
118 => 0.15291952185307
119 => 0.15370415803648
120 => 0.15362859126237
121 => 0.15266653949647
122 => 0.15179804217846
123 => 0.15035223884156
124 => 0.15492697453812
125 => 0.15474124862329
126 => 0.15774793530166
127 => 0.15721647422586
128 => 0.1536672470911
129 => 0.15379400843256
130 => 0.15464653937332
131 => 0.15759715869334
201 => 0.158473103401
202 => 0.15806733091205
203 => 0.15902776429561
204 => 0.15978685168195
205 => 0.15912309398422
206 => 0.16852050324297
207 => 0.16461804373365
208 => 0.16652007534536
209 => 0.16697369867733
210 => 0.16581175205115
211 => 0.16606373666818
212 => 0.16644542470128
213 => 0.16876295969608
214 => 0.17484484210657
215 => 0.17753846642541
216 => 0.18564236808971
217 => 0.17731479842279
218 => 0.17682067490166
219 => 0.17828043230579
220 => 0.18303828046784
221 => 0.18689406952124
222 => 0.18817325719605
223 => 0.18834232296437
224 => 0.19074216408111
225 => 0.19211770825484
226 => 0.19045076024745
227 => 0.18903819634792
228 => 0.18397856779368
229 => 0.18456423357574
301 => 0.18859889003735
302 => 0.19429807992946
303 => 0.19918857775654
304 => 0.19747609586855
305 => 0.21054112385007
306 => 0.21183646800858
307 => 0.21165749332937
308 => 0.21460848009552
309 => 0.20875137232271
310 => 0.20624734527372
311 => 0.18934360869628
312 => 0.19409286918008
313 => 0.20099619820759
314 => 0.20008251672464
315 => 0.19506913465836
316 => 0.19918477465668
317 => 0.19782401536527
318 => 0.19675072805418
319 => 0.20166766529326
320 => 0.19626129082225
321 => 0.20094226548658
322 => 0.19493886706109
323 => 0.19748391834157
324 => 0.19603922414449
325 => 0.19697411834506
326 => 0.19150874595155
327 => 0.19445772823067
328 => 0.19138605859338
329 => 0.19138460222203
330 => 0.19131679494454
331 => 0.19493060065094
401 => 0.19504844672529
402 => 0.1923778388481
403 => 0.19199296253026
404 => 0.19341605199915
405 => 0.1917499869388
406 => 0.19252952829445
407 => 0.19177359845233
408 => 0.19160342272255
409 => 0.19024743355466
410 => 0.18966323613743
411 => 0.18989231499763
412 => 0.1891103507495
413 => 0.18863918900511
414 => 0.19122306901461
415 => 0.18984260615896
416 => 0.19101149328336
417 => 0.18967939887979
418 => 0.18506177931111
419 => 0.18240613746672
420 => 0.17368388215505
421 => 0.17615750294152
422 => 0.17779751608209
423 => 0.17725549174891
424 => 0.17841996975215
425 => 0.17849145924405
426 => 0.17811287557475
427 => 0.17767452418527
428 => 0.17746115897123
429 => 0.17905140846988
430 => 0.17997460182918
501 => 0.17796211334129
502 => 0.17749061544628
503 => 0.17952535242008
504 => 0.18076654079866
505 => 0.18993077842262
506 => 0.18925186209934
507 => 0.19095580884018
508 => 0.19076397058635
509 => 0.19254997823075
510 => 0.19546934590619
511 => 0.18953345515398
512 => 0.1905637205409
513 => 0.19031112326033
514 => 0.19306891413505
515 => 0.19307752365714
516 => 0.19142409026587
517 => 0.19232044333117
518 => 0.19182012364028
519 => 0.19272426894398
520 => 0.18924279475793
521 => 0.19348285451463
522 => 0.19588669517326
523 => 0.19592007250314
524 => 0.19705947389727
525 => 0.19821717170339
526 => 0.200439271828
527 => 0.19815519853696
528 => 0.19404637303643
529 => 0.19434301696614
530 => 0.19193401407854
531 => 0.1919745098523
601 => 0.19175834023825
602 => 0.19240708152251
603 => 0.18938515698794
604 => 0.19009439663607
605 => 0.18910145697539
606 => 0.190561562084
607 => 0.18899073035115
608 => 0.19031100145027
609 => 0.19088078668898
610 => 0.19298330648638
611 => 0.18868018646757
612 => 0.17990583345359
613 => 0.18175030883588
614 => 0.17902218486506
615 => 0.17927468312526
616 => 0.17978476979566
617 => 0.17813141200691
618 => 0.17844682056972
619 => 0.17843555195636
620 => 0.17833844513422
621 => 0.17790834291766
622 => 0.17728460961052
623 => 0.17976937113119
624 => 0.18019158053231
625 => 0.18113009973032
626 => 0.18392249625993
627 => 0.18364346999738
628 => 0.18409857340829
629 => 0.18310508521757
630 => 0.17932076819304
701 => 0.17952627481437
702 => 0.17696360395335
703 => 0.18106456647473
704 => 0.18009340441961
705 => 0.17946728992489
706 => 0.17929644878409
707 => 0.1820957671246
708 => 0.18293336704601
709 => 0.18241143098423
710 => 0.18134092489419
711 => 0.18339661305377
712 => 0.18394662848275
713 => 0.18406975665351
714 => 0.18771204193318
715 => 0.1842733199399
716 => 0.18510105450164
717 => 0.19155880326507
718 => 0.18570251624506
719 => 0.18880472209034
720 => 0.18865288525732
721 => 0.19023986879484
722 => 0.18852270628666
723 => 0.18854399257395
724 => 0.1899531264437
725 => 0.18797425206227
726 => 0.18748425493646
727 => 0.18680732741657
728 => 0.18828537389134
729 => 0.18917139590668
730 => 0.19631208263882
731 => 0.20092529192266
801 => 0.20072502034118
802 => 0.20255512770326
803 => 0.20173064757478
804 => 0.19906818375304
805 => 0.20361268484387
806 => 0.20217461454873
807 => 0.20229316731661
808 => 0.20228875477667
809 => 0.20324494580465
810 => 0.2025673968277
811 => 0.20123187824517
812 => 0.2021184578063
813 => 0.20475128214486
814 => 0.21292364967667
815 => 0.21749701481694
816 => 0.21264832735274
817 => 0.21599288703903
818 => 0.21398734301572
819 => 0.21362287600692
820 => 0.21572350665093
821 => 0.21782781417081
822 => 0.21769377887896
823 => 0.21616615967692
824 => 0.21530324635159
825 => 0.22183751514817
826 => 0.22665185308913
827 => 0.22632354751729
828 => 0.22777258154071
829 => 0.23202699025041
830 => 0.23241596006484
831 => 0.23236695880859
901 => 0.23140285653872
902 => 0.2355918744182
903 => 0.23908642683202
904 => 0.23117969471884
905 => 0.23419047480082
906 => 0.23554211098089
907 => 0.23752671390563
908 => 0.24087507169772
909 => 0.24451227636798
910 => 0.24502661698828
911 => 0.24466166770471
912 => 0.24226283345137
913 => 0.24624270620244
914 => 0.24857402232052
915 => 0.24996226771761
916 => 0.25348262706264
917 => 0.23555045822579
918 => 0.22285717783645
919 => 0.22087493881046
920 => 0.22490589981751
921 => 0.22596883208875
922 => 0.22554036542302
923 => 0.21125292432225
924 => 0.22079971838992
925 => 0.23107126608949
926 => 0.23146583806883
927 => 0.23660798961517
928 => 0.23828248494257
929 => 0.24242259093458
930 => 0.24216362617755
1001 => 0.24317167610313
1002 => 0.24293994288223
1003 => 0.25060861743026
1004 => 0.25906830426593
1005 => 0.25877537221097
1006 => 0.25755919213787
1007 => 0.25936542693594
1008 => 0.26809673034549
1009 => 0.26729289184383
1010 => 0.26807375247739
1011 => 0.27836845127195
1012 => 0.2917530241087
1013 => 0.28553454623688
1014 => 0.29902685389991
1015 => 0.30751954637729
1016 => 0.32220677985612
1017 => 0.32036786588842
1018 => 0.32608549810183
1019 => 0.31707582609331
1020 => 0.29638779800661
1021 => 0.2931138383713
1022 => 0.29966838847106
1023 => 0.31578211030765
1024 => 0.29916091002656
1025 => 0.30252335719592
1026 => 0.30155497218494
1027 => 0.30150337106308
1028 => 0.30347277600769
1029 => 0.30061605141828
1030 => 0.28897724152604
1031 => 0.29431123951172
1101 => 0.29225152672983
1102 => 0.29453693162309
1103 => 0.30687031925938
1104 => 0.30141743459414
1105 => 0.29567326355569
1106 => 0.3028777287715
1107 => 0.31205148871408
1108 => 0.3114774113037
1109 => 0.31036346118183
1110 => 0.31664273969428
1111 => 0.32701426814086
1112 => 0.3298176506038
1113 => 0.3318870502253
1114 => 0.33217238547032
1115 => 0.33511151582881
1116 => 0.31930707113495
1117 => 0.34438913075104
1118 => 0.34872010956882
1119 => 0.34790606505176
1120 => 0.35271976573228
1121 => 0.35130345288027
1122 => 0.34925143777039
1123 => 0.3568821772525
1124 => 0.34813415020518
1125 => 0.33571742715748
1126 => 0.32890536731858
1127 => 0.33787603722764
1128 => 0.34335411230786
1129 => 0.34697477146488
1130 => 0.34807038073813
1201 => 0.32053392518705
1202 => 0.30569330288686
1203 => 0.3152059716332
1204 => 0.32681208403307
1205 => 0.31924259859457
1206 => 0.31953930809282
1207 => 0.3087472110833
1208 => 0.32776694515035
1209 => 0.32499592987792
1210 => 0.33937196201311
1211 => 0.33594100656918
1212 => 0.34766410270107
1213 => 0.34457701860581
1214 => 0.3573913320887
1215 => 0.36250330867071
1216 => 0.37108711296753
1217 => 0.37740139435064
1218 => 0.38110926115176
1219 => 0.38088665473688
1220 => 0.39557907025482
1221 => 0.38691546613779
1222 => 0.37603193751209
1223 => 0.37583508881634
1224 => 0.38147182251239
1225 => 0.39328486997692
1226 => 0.39634782131163
1227 => 0.39805959325222
1228 => 0.39543795493799
1229 => 0.38603423359506
1230 => 0.38197375439713
1231 => 0.38543340031717
]
'min_raw' => 0.1426578333065
'max_raw' => 0.39805959325222
'avg_raw' => 0.27035871327936
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.142657'
'max' => '$0.398059'
'avg' => '$0.270358'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.056476100091936
'max_diff' => 0.20566494493469
'year' => 2036
]
11 => [
'items' => [
101 => 0.38120255064772
102 => 0.38850618414395
103 => 0.3985356329062
104 => 0.39646459139753
105 => 0.4033877726531
106 => 0.41055253691271
107 => 0.42079847159365
108 => 0.42347713832511
109 => 0.42790487257165
110 => 0.43246246554626
111 => 0.43392624157913
112 => 0.43672104420891
113 => 0.4367063142195
114 => 0.44512864005625
115 => 0.4544187262719
116 => 0.45792551875232
117 => 0.46598919469538
118 => 0.4521804322278
119 => 0.46265453718309
120 => 0.47210244203661
121 => 0.46083826037885
122 => 0.47636331057636
123 => 0.47696611309501
124 => 0.4860677154465
125 => 0.47684149780723
126 => 0.47136299922417
127 => 0.48717921935681
128 => 0.49483219007273
129 => 0.49252705301116
130 => 0.4749848461539
131 => 0.46477452934234
201 => 0.43805216082344
202 => 0.46970596065449
203 => 0.48512360319819
204 => 0.47494491818435
205 => 0.48007845484658
206 => 0.50808536632088
207 => 0.51874858489706
208 => 0.51653070997474
209 => 0.51690549432728
210 => 0.52265917351988
211 => 0.54817415566888
212 => 0.53288498693254
213 => 0.54457298355725
214 => 0.55077225482279
215 => 0.55653048346336
216 => 0.54239009382897
217 => 0.5239936546782
218 => 0.51816673016917
219 => 0.47393284855967
220 => 0.47163028292389
221 => 0.47033778305764
222 => 0.4621887542287
223 => 0.455785849776
224 => 0.45069402243062
225 => 0.43733154692797
226 => 0.44184099015054
227 => 0.4205439931647
228 => 0.43416905711701
301 => 0.40017853569364
302 => 0.42848685196882
303 => 0.41307992244144
304 => 0.42342526125103
305 => 0.42338916733852
306 => 0.4043401185974
307 => 0.39335302482703
308 => 0.4003544286016
309 => 0.40786048922006
310 => 0.40907832230198
311 => 0.41881012582204
312 => 0.42152606300007
313 => 0.41329664655565
314 => 0.3994741576883
315 => 0.40268480659478
316 => 0.39328796112942
317 => 0.37682035089581
318 => 0.38864767606248
319 => 0.39268604488516
320 => 0.39446961861805
321 => 0.37827561527111
322 => 0.37318710783058
323 => 0.37047802916596
324 => 0.39738371521179
325 => 0.39885766942953
326 => 0.39131671125544
327 => 0.42540255726535
328 => 0.41768788052805
329 => 0.4263070645853
330 => 0.40239347385894
331 => 0.40330700522861
401 => 0.39198592814646
402 => 0.39832497483782
403 => 0.39384474095338
404 => 0.39781284250884
405 => 0.40019130622009
406 => 0.41151052562489
407 => 0.42861609927211
408 => 0.40981981170851
409 => 0.40163000004926
410 => 0.40671091314141
411 => 0.42024205426071
412 => 0.44074242570282
413 => 0.42860579320067
414 => 0.43399182461174
415 => 0.4351684328672
416 => 0.42621932938267
417 => 0.44107239191316
418 => 0.44903226878932
419 => 0.45719745539982
420 => 0.46428705815039
421 => 0.45393610031129
422 => 0.46501310895065
423 => 0.45608699534257
424 => 0.44807934867146
425 => 0.44809149296605
426 => 0.44306817923621
427 => 0.43333487590638
428 => 0.4315399054367
429 => 0.44087756849978
430 => 0.44836548999638
501 => 0.44898223107557
502 => 0.45312792915939
503 => 0.45558131058131
504 => 0.47962778372641
505 => 0.48929947414823
506 => 0.50112583412031
507 => 0.50573286782656
508 => 0.51959838756937
509 => 0.50840085427459
510 => 0.50597819751048
511 => 0.47234498199136
512 => 0.47785241914845
513 => 0.48667035742559
514 => 0.4724903865457
515 => 0.48148431428961
516 => 0.48325990614369
517 => 0.47200855656123
518 => 0.47801838851534
519 => 0.46205805663622
520 => 0.42896399089252
521 => 0.44110923506878
522 => 0.45005222282749
523 => 0.43728947663337
524 => 0.46016620519984
525 => 0.44680209264284
526 => 0.4425663105528
527 => 0.42604101445423
528 => 0.43384031809578
529 => 0.44438898794624
530 => 0.43787113639315
531 => 0.45139665702615
601 => 0.47055240136707
602 => 0.48420392552871
603 => 0.48525192004219
604 => 0.47647490458734
605 => 0.49054012786789
606 => 0.49064257766414
607 => 0.47477694834555
608 => 0.4650593387281
609 => 0.462851477377
610 => 0.46836714790878
611 => 0.47506419018332
612 => 0.48562355927938
613 => 0.49200436487354
614 => 0.50864212174532
615 => 0.51314382171295
616 => 0.51808982514723
617 => 0.52469921102639
618 => 0.53263547338609
619 => 0.51527138315475
620 => 0.51596129083035
621 => 0.49979209042912
622 => 0.48251298090251
623 => 0.4956256711618
624 => 0.51276876936773
625 => 0.50883612369785
626 => 0.50839362072333
627 => 0.50913778798638
628 => 0.50617270157949
629 => 0.49276172565236
630 => 0.4860268174989
701 => 0.49471656727518
702 => 0.499334782545
703 => 0.5064972316778
704 => 0.50561430864122
705 => 0.52406400841643
706 => 0.53123300385912
707 => 0.52939886804627
708 => 0.52973639317678
709 => 0.5427155169899
710 => 0.5571509720305
711 => 0.57067168060208
712 => 0.58442552608904
713 => 0.56784472853279
714 => 0.55942602209514
715 => 0.5681119781985
716 => 0.56350308762638
717 => 0.58998713993957
718 => 0.5918208382601
719 => 0.61830297547487
720 => 0.64343767712592
721 => 0.62765102135385
722 => 0.64253712670032
723 => 0.65863766331451
724 => 0.68969821066119
725 => 0.67923811103806
726 => 0.6712258386574
727 => 0.66365427997269
728 => 0.67940949164448
729 => 0.69967831976457
730 => 0.70404403120922
731 => 0.71111815157967
801 => 0.70368057899242
802 => 0.71263831595202
803 => 0.74426306364847
804 => 0.73571777766152
805 => 0.72358209783678
806 => 0.74854679887007
807 => 0.7575814271262
808 => 0.82099117969928
809 => 0.90104861164901
810 => 0.86790430913638
811 => 0.84733057100683
812 => 0.85216588748287
813 => 0.88140015151582
814 => 0.89078926927404
815 => 0.86526641058421
816 => 0.87428151575359
817 => 0.92395563158243
818 => 0.95060420098816
819 => 0.91441186435482
820 => 0.8145586429923
821 => 0.72248941264791
822 => 0.74691031846672
823 => 0.7441417456158
824 => 0.79751038610174
825 => 0.73551397541685
826 => 0.73655783597412
827 => 0.79103008342694
828 => 0.77649782169727
829 => 0.75295741884666
830 => 0.72266128364009
831 => 0.66665607565742
901 => 0.61705070112641
902 => 0.71433826401721
903 => 0.71014304739941
904 => 0.70406775204055
905 => 0.71758766444606
906 => 0.7832365213931
907 => 0.78172310275586
908 => 0.7720955055387
909 => 0.77939795317416
910 => 0.75167726446934
911 => 0.75882151713692
912 => 0.72247482841143
913 => 0.73890504968716
914 => 0.75290691171467
915 => 0.75571799281781
916 => 0.76205150208053
917 => 0.70793235887394
918 => 0.73223026531913
919 => 0.74650300894973
920 => 0.68201823397982
921 => 0.74522835228294
922 => 0.70699026499494
923 => 0.6940116838526
924 => 0.71148563356272
925 => 0.70467601836671
926 => 0.6988215110952
927 => 0.6955545954445
928 => 0.70838553558216
929 => 0.70778695688845
930 => 0.68679304844507
1001 => 0.65940735070187
1002 => 0.66859888976937
1003 => 0.66525951745501
1004 => 0.65315720140016
1005 => 0.66131270118192
1006 => 0.62540000754705
1007 => 0.56361408472765
1008 => 0.60443175789615
1009 => 0.60286032188024
1010 => 0.60206793258208
1011 => 0.63274128585058
1012 => 0.62979275068847
1013 => 0.62444113049711
1014 => 0.65305891469856
1015 => 0.64261303850152
1016 => 0.67480476758284
1017 => 0.69600832238629
1018 => 0.69063041502499
1019 => 0.71057246080331
1020 => 0.66881064426519
1021 => 0.68268224452589
1022 => 0.68554116211441
1023 => 0.65270577568374
1024 => 0.63027516750614
1025 => 0.62877930166835
1026 => 0.58988771821662
1027 => 0.61066328817464
1028 => 0.6289449299862
1029 => 0.62018944227118
1030 => 0.61741771642336
1031 => 0.63157786266588
1101 => 0.63267822730238
1102 => 0.60758979697887
1103 => 0.61280647609039
1104 => 0.63456089518617
1105 => 0.61225832054526
1106 => 0.56892806112287
1107 => 0.55818155769841
1108 => 0.55674777604423
1109 => 0.52760240644116
1110 => 0.55889969044364
1111 => 0.54523758726149
1112 => 0.58839600751676
1113 => 0.5637441493302
1114 => 0.56268145699482
1115 => 0.56107504166683
1116 => 0.53598841806941
1117 => 0.54148079429914
1118 => 0.5597382893993
1119 => 0.56625276933643
1120 => 0.56557325570743
1121 => 0.55964881771296
1122 => 0.5623609950888
1123 => 0.55362412677599
1124 => 0.55053895673255
1125 => 0.54080131143258
1126 => 0.52648966293479
1127 => 0.52847978543685
1128 => 0.5001246649162
1129 => 0.4846752903364
1130 => 0.4803991070722
1201 => 0.47468081609731
1202 => 0.48104500325361
1203 => 0.5000443384224
1204 => 0.47712710927502
1205 => 0.43783712735856
1206 => 0.44019852221861
1207 => 0.44550387536472
1208 => 0.43561738487537
1209 => 0.42626065133745
1210 => 0.43439557201288
1211 => 0.4177478887242
1212 => 0.44751566835491
1213 => 0.44671053333914
1214 => 0.45780612075832
1215 => 0.46474441927591
1216 => 0.44875388749369
1217 => 0.44473231199345
1218 => 0.4470231841688
1219 => 0.4091601700911
1220 => 0.45471190472508
1221 => 0.45510583801777
1222 => 0.45173274200191
1223 => 0.47598763444247
1224 => 0.52717302278274
1225 => 0.50791502076165
1226 => 0.5004577403029
1227 => 0.48628144469956
1228 => 0.50517051688586
1229 => 0.50372013085738
1230 => 0.49716093519404
1231 => 0.49319391319091
]
'min_raw' => 0.37047802916596
'max_raw' => 0.95060420098816
'avg_raw' => 0.66054111507706
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.370478'
'max' => '$0.9506042'
'avg' => '$0.660541'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.22782019585946
'max_diff' => 0.55254460773594
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011628881999758
]
1 => [
'year' => 2028
'avg' => 0.01995853740015
]
2 => [
'year' => 2029
'avg' => 0.054523127000831
]
3 => [
'year' => 2030
'avg' => 0.042064511282864
]
4 => [
'year' => 2031
'avg' => 0.041312563077266
]
5 => [
'year' => 2032
'avg' => 0.072433924616538
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011628881999758
'min' => '$0.011628'
'max_raw' => 0.072433924616538
'max' => '$0.072433'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.072433924616538
]
1 => [
'year' => 2033
'avg' => 0.18630750240637
]
2 => [
'year' => 2034
'avg' => 0.11809064854476
]
3 => [
'year' => 2035
'avg' => 0.13928819076605
]
4 => [
'year' => 2036
'avg' => 0.27035871327936
]
5 => [
'year' => 2037
'avg' => 0.66054111507706
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.072433924616538
'min' => '$0.072433'
'max_raw' => 0.66054111507706
'max' => '$0.660541'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.66054111507706
]
]
]
]
'prediction_2025_max_price' => '$0.019883'
'last_price' => 0.01927934
'sma_50day_nextmonth' => '$0.016488'
'sma_200day_nextmonth' => '$0.02606'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018667'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0179036'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.017033'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.014421'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0129091'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016593'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.035332'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01863'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018093'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.016998'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015353'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014869'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.021212'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.06765'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.022234'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.091014'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.732736'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0177025'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.016555'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.017195'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.03476'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.178517'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.520542'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.432525'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '78.34'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 96.57
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.016750'
'vwma_10_action' => 'BUY'
'hma_9' => '0.019119'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 120.54
'cci_20_action' => 'SELL'
'adx_14' => 39.35
'adx_14_action' => 'BUY'
'ao_5_34' => '0.004833'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 91.2
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002644'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 23
'sell_pct' => 34.29
'buy_pct' => 65.71
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767699187
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de PunkCity para 2026
A previsão de preço para PunkCity em 2026 sugere que o preço médio poderia variar entre $0.006661 na extremidade inferior e $0.019883 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, PunkCity poderia potencialmente ganhar 3.13% até 2026 se PUNK atingir a meta de preço prevista.
Previsão de preço de PunkCity 2027-2032
A previsão de preço de PUNK para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011628 na extremidade inferior e $0.072433 na extremidade superior. Considerando a volatilidade de preços no mercado, se PunkCity atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de PunkCity | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006412 | $0.011628 | $0.016845 |
| 2028 | $0.011572 | $0.019958 | $0.028344 |
| 2029 | $0.025421 | $0.054523 | $0.083624 |
| 2030 | $0.021619 | $0.042064 | $0.0625092 |
| 2031 | $0.025561 | $0.041312 | $0.057063 |
| 2032 | $0.039017 | $0.072433 | $0.10585 |
Previsão de preço de PunkCity 2032-2037
A previsão de preço de PunkCity para 2032-2037 é atualmente estimada entre $0.072433 na extremidade inferior e $0.660541 na extremidade superior. Comparado ao preço atual, PunkCity poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de PunkCity | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.039017 | $0.072433 | $0.10585 |
| 2033 | $0.090667 | $0.1863075 | $0.281947 |
| 2034 | $0.072892 | $0.11809 | $0.163288 |
| 2035 | $0.086181 | $0.139288 | $0.192394 |
| 2036 | $0.142657 | $0.270358 | $0.398059 |
| 2037 | $0.370478 | $0.660541 | $0.9506042 |
PunkCity Histograma de preços potenciais
Previsão de preço de PunkCity baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para PunkCity é Altista, com 23 indicadores técnicos mostrando sinais de alta e 12 indicando sinais de baixa. A previsão de preço de PUNK foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de PunkCity
De acordo com nossos indicadores técnicos, o SMA de 200 dias de PunkCity está projetado para aumentar no próximo mês, alcançando $0.02606 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para PunkCity é esperado para alcançar $0.016488 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 78.34, sugerindo que o mercado de PUNK está em um estado SELL.
Médias Móveis e Osciladores Populares de PUNK para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018667 | BUY |
| SMA 5 | $0.0179036 | BUY |
| SMA 10 | $0.017033 | BUY |
| SMA 21 | $0.014421 | BUY |
| SMA 50 | $0.0129091 | BUY |
| SMA 100 | $0.016593 | BUY |
| SMA 200 | $0.035332 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.01863 | BUY |
| EMA 5 | $0.018093 | BUY |
| EMA 10 | $0.016998 | BUY |
| EMA 21 | $0.015353 | BUY |
| EMA 50 | $0.014869 | BUY |
| EMA 100 | $0.021212 | SELL |
| EMA 200 | $0.06765 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.022234 | SELL |
| SMA 50 | $0.091014 | SELL |
| SMA 100 | $0.732736 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.03476 | SELL |
| EMA 50 | $0.178517 | SELL |
| EMA 100 | $0.520542 | SELL |
| EMA 200 | $0.432525 | SELL |
Osciladores de PunkCity
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 78.34 | SELL |
| Stoch RSI (14) | 96.57 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 120.54 | SELL |
| Índice Direcional Médio (14) | 39.35 | BUY |
| Oscilador Impressionante (5, 34) | 0.004833 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 91.2 | SELL |
| VWMA (10) | 0.016750 | BUY |
| Média Móvel de Hull (9) | 0.019119 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002644 | NEUTRAL |
Previsão do preço de PunkCity com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do PunkCity
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de PunkCity por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.02709 | $0.038066 | $0.05349 | $0.075162 | $0.105616 | $0.1484088 |
| Amazon.com stock | $0.040227 | $0.083937 | $0.175139 | $0.365439 | $0.76251 | $1.59 |
| Apple stock | $0.027346 | $0.038788 | $0.055018 | $0.078039 | $0.110693 | $0.15701 |
| Netflix stock | $0.030419 | $0.047997 | $0.075732 | $0.119494 | $0.188543 | $0.297492 |
| Google stock | $0.024966 | $0.032331 | $0.041869 | $0.05422 | $0.070215 | $0.090928 |
| Tesla stock | $0.0437048 | $0.099075 | $0.224596 | $0.509143 | $1.15 | $2.61 |
| Kodak stock | $0.014457 | $0.010841 | $0.00813 | $0.006096 | $0.004571 | $0.003428 |
| Nokia stock | $0.012771 | $0.00846 | $0.0056048 | $0.003713 | $0.002459 | $0.001629 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para PunkCity
Você pode fazer perguntas como: 'Devo investir em PunkCity agora?', 'Devo comprar PUNK hoje?', 'PunkCity será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para PunkCity regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como PunkCity, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre PunkCity para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de PunkCity é de $0.01927 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de PunkCity com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se PunkCity tiver 1% da média anterior do crescimento anual do Bitcoin | $0.01978 | $0.020294 | $0.020822 | $0.021363 |
| Se PunkCity tiver 2% da média anterior do crescimento anual do Bitcoin | $0.020281 | $0.021335 | $0.022445 | $0.023611 |
| Se PunkCity tiver 5% da média anterior do crescimento anual do Bitcoin | $0.021784 | $0.024616 | $0.027815 | $0.03143 |
| Se PunkCity tiver 10% da média anterior do crescimento anual do Bitcoin | $0.02429 | $0.0306045 | $0.038559 | $0.048582 |
| Se PunkCity tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0293019 | $0.044535 | $0.067687 | $0.102875 |
| Se PunkCity tiver 50% da média anterior do crescimento anual do Bitcoin | $0.044335 | $0.101957 | $0.234467 | $0.539196 |
| Se PunkCity tiver 100% da média anterior do crescimento anual do Bitcoin | $0.069392 | $0.249766 | $0.898988 | $3.23 |
Perguntas Frequentes sobre PunkCity
PUNK é um bom investimento?
A decisão de adquirir PunkCity depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de PunkCity experimentou uma escalada de 5.9096% nas últimas 24 horas, e PunkCity registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em PunkCity dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
PunkCity pode subir?
Parece que o valor médio de PunkCity pode potencialmente subir para $0.019883 até o final deste ano. Observando as perspectivas de PunkCity em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0625092. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de PunkCity na próxima semana?
Com base na nossa nova previsão experimental de PunkCity, o preço de PunkCity aumentará 0.86% na próxima semana e atingirá $0.019444 até 13 de janeiro de 2026.
Qual será o preço de PunkCity no próximo mês?
Com base na nossa nova previsão experimental de PunkCity, o preço de PunkCity diminuirá -11.62% no próximo mês e atingirá $0.0170394 até 5 de fevereiro de 2026.
Até onde o preço de PunkCity pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de PunkCity em 2026, espera-se que PUNK fluctue dentro do intervalo de $0.006661 e $0.019883. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de PunkCity não considera flutuações repentinas e extremas de preço.
Onde estará PunkCity em 5 anos?
O futuro de PunkCity parece seguir uma tendência de alta, com um preço máximo de $0.0625092 projetada após um período de cinco anos. Com base na previsão de PunkCity para 2030, o valor de PunkCity pode potencialmente atingir seu pico mais alto de aproximadamente $0.0625092, enquanto seu pico mais baixo está previsto para cerca de $0.021619.
Quanto será PunkCity em 2026?
Com base na nossa nova simulação experimental de previsão de preços de PunkCity, espera-se que o valor de PUNK em 2026 aumente 3.13% para $0.019883 se o melhor cenário ocorrer. O preço ficará entre $0.019883 e $0.006661 durante 2026.
Quanto será PunkCity em 2027?
De acordo com nossa última simulação experimental para previsão de preços de PunkCity, o valor de PUNK pode diminuir -12.62% para $0.016845 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.016845 e $0.006412 ao longo do ano.
Quanto será PunkCity em 2028?
Nosso novo modelo experimental de previsão de preços de PunkCity sugere que o valor de PUNK em 2028 pode aumentar 47.02%, alcançando $0.028344 no melhor cenário. O preço é esperado para variar entre $0.028344 e $0.011572 durante o ano.
Quanto será PunkCity em 2029?
Com base no nosso modelo de previsão experimental, o valor de PunkCity pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.083624 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.083624 e $0.025421.
Quanto será PunkCity em 2030?
Usando nossa nova simulação experimental para previsões de preços de PunkCity, espera-se que o valor de PUNK em 2030 aumente 224.23%, alcançando $0.0625092 no melhor cenário. O preço está previsto para variar entre $0.0625092 e $0.021619 ao longo de 2030.
Quanto será PunkCity em 2031?
Nossa simulação experimental indica que o preço de PunkCity poderia aumentar 195.98% em 2031, potencialmente atingindo $0.057063 sob condições ideais. O preço provavelmente oscilará entre $0.057063 e $0.025561 durante o ano.
Quanto será PunkCity em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de PunkCity, PUNK poderia ver um 449.04% aumento em valor, atingindo $0.10585 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.10585 e $0.039017 ao longo do ano.
Quanto será PunkCity em 2033?
De acordo com nossa previsão experimental de preços de PunkCity, espera-se que o valor de PUNK seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.281947. Ao longo do ano, o preço de PUNK poderia variar entre $0.281947 e $0.090667.
Quanto será PunkCity em 2034?
Os resultados da nossa nova simulação de previsão de preços de PunkCity sugerem que PUNK pode aumentar 746.96% em 2034, atingindo potencialmente $0.163288 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.163288 e $0.072892.
Quanto será PunkCity em 2035?
Com base em nossa previsão experimental para o preço de PunkCity, PUNK poderia aumentar 897.93%, com o valor potencialmente atingindo $0.192394 em 2035. A faixa de preço esperada para o ano está entre $0.192394 e $0.086181.
Quanto será PunkCity em 2036?
Nossa recente simulação de previsão de preços de PunkCity sugere que o valor de PUNK pode aumentar 1964.7% em 2036, possivelmente atingindo $0.398059 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.398059 e $0.142657.
Quanto será PunkCity em 2037?
De acordo com a simulação experimental, o valor de PunkCity poderia aumentar 4830.69% em 2037, com um pico de $0.9506042 sob condições favoráveis. O preço é esperado para cair entre $0.9506042 e $0.370478 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Compound USD Coin
Previsão de Preço do Compound Dai
Previsão de Preço do Dola USD Stablecoin
Previsão de Preço do Litentry
Previsão de Preço do ResearchCoin
Previsão de Preço do Kwenta
Previsão de Preço do Harvest Finance
Previsão de Preço do IDEX
Previsão de Preço do Propchain
Previsão de Preço do Propbase
Previsão de Preço do SaitaChain Coin
Previsão de Preço do Forta
Previsão de Preço do COCOS BCX
Previsão de Preço do A Hunters Dream
Previsão de Preço do AxonDAO Governance Token
Previsão de Preço do ARC
Previsão de Preço do Meter
Previsão de Preço do Clash of Lilliput
Previsão de Preço do Veno Finance
Previsão de Preço do Contentos
Previsão de Preço do Onyxcoin
Previsão de Preço do DIAdata
Previsão de Preço do PaLM AI
Previsão de Preço do Astroport
Previsão de Preço do DeFiChain
Como ler e prever os movimentos de preço de PunkCity?
Traders de PunkCity utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de PunkCity
Médias móveis são ferramentas populares para a previsão de preço de PunkCity. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PUNK em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PUNK acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PUNK.
Como ler gráficos de PunkCity e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de PunkCity em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PUNK dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de PunkCity?
A ação de preço de PunkCity é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PUNK. A capitalização de mercado de PunkCity pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PUNK, grandes detentores de PunkCity, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de PunkCity.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


