Previsão de Preço AscendEx - Projeção ASD
Previsão de Preço AscendEx até $0.019546 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006548 | $0.019546 |
| 2027 | $0.0063036 | $0.016559 |
| 2028 | $0.011376 | $0.027863 |
| 2029 | $0.02499 | $0.0822068 |
| 2030 | $0.021253 | $0.061449 |
| 2031 | $0.025127 | $0.056096 |
| 2032 | $0.038355 | $0.104055 |
| 2033 | $0.08913 | $0.277166 |
| 2034 | $0.071656 | $0.160519 |
| 2035 | $0.08472 | $0.189132 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em AscendEx hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.86, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de ASD para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'AscendEx'
'name_with_ticker' => 'AscendEx <small>ASD</small>'
'name_lang' => 'ASD'
'name_lang_with_ticker' => 'ASD <small>ASD</small>'
'name_with_lang' => 'ASD/AscendEx'
'name_with_lang_with_ticker' => 'ASD/AscendEx <small>ASD</small>'
'image' => '/uploads/coins/asd.png?1717093314'
'price_for_sd' => 0.01895
'ticker' => 'ASD'
'marketcap' => '$14.08M'
'low24h' => '$0.01886'
'high24h' => '$0.02048'
'volume24h' => '$1.14M'
'current_supply' => '742.98M'
'max_supply' => '742.98M'
'algo' => 'Ethash'
'proof' => null
'ico_price_and_roi' => '0.0182 USD 1.04x'
'price' => '$0.01895'
'change_24h_pct' => '-7.4034%'
'ath_price' => '$3.26'
'ath_days' => 1746
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de mar. de 2021'
'ath_pct' => '-99.42%'
'fdv' => '$14.08M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.934484'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019114'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01675'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006548'
'current_year_max_price_prediction' => '$0.019546'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021253'
'grand_prediction_max_price' => '$0.061449'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019311558390027
107 => 0.01938366073896
108 => 0.019546111012742
109 => 0.018157991209629
110 => 0.01878121624817
111 => 0.019147302570025
112 => 0.017493311249553
113 => 0.019114608479606
114 => 0.018133827132144
115 => 0.017800935211974
116 => 0.018249130327308
117 => 0.018074468254978
118 => 0.01792430406169
119 => 0.017840509861687
120 => 0.018169614888898
121 => 0.018154261746013
122 => 0.017615782044963
123 => 0.016913357226183
124 => 0.017149114051674
125 => 0.017063461386741
126 => 0.01675304507961
127 => 0.016962228190809
128 => 0.016041091634241
129 => 0.014456324065178
130 => 0.015503270064044
131 => 0.015462963781946
201 => 0.015442639526768
202 => 0.016229390509454
203 => 0.016153762555902
204 => 0.016016497079654
205 => 0.016750524091494
206 => 0.016482594358116
207 => 0.017308290664202
208 => 0.01785214765408
209 => 0.017714207929516
210 => 0.018225708057185
211 => 0.017154545412771
212 => 0.01751034267566
213 => 0.017583671998427
214 => 0.016741466312108
215 => 0.01616613622441
216 => 0.016127768266803
217 => 0.015130225180104
218 => 0.015663104645133
219 => 0.016132016522307
220 => 0.015907444122172
221 => 0.015836351209199
222 => 0.016199549483407
223 => 0.016227773099895
224 => 0.015584271652946
225 => 0.015718075980807
226 => 0.016276062271108
227 => 0.015704016157937
228 => 0.014592624003248
301 => 0.014316983382687
302 => 0.014280207842839
303 => 0.013532648618543
304 => 0.01433540300698
305 => 0.013984979203947
306 => 0.015091963799005
307 => 0.014459660135186
308 => 0.014432402788008
309 => 0.014391199309965
310 => 0.01374774420433
311 => 0.013888619978759
312 => 0.014356912508946
313 => 0.01452400455941
314 => 0.014506575489602
315 => 0.014354617620072
316 => 0.014424183154593
317 => 0.014200088329663
318 => 0.01412095578285
319 => 0.013871191697987
320 => 0.013504107492327
321 => 0.013555152802582
322 => 0.012827862938363
323 => 0.012431596820142
324 => 0.012321915581322
325 => 0.012175245244877
326 => 0.012338482386098
327 => 0.012825802617557
328 => 0.012237991027663
329 => 0.011230229286978
330 => 0.011290797484736
331 => 0.011426876242238
401 => 0.011173294377884
402 => 0.010933300424786
403 => 0.01114195569568
404 => 0.010714953761064
405 => 0.01147847738601
406 => 0.011457826211706
407 => 0.011742420603102
408 => 0.011920383316507
409 => 0.011510236878221
410 => 0.011407086158146
411 => 0.01146584549624
412 => 0.010494684525598
413 => 0.011663056032705
414 => 0.011673160158016
415 => 0.011586642502709
416 => 0.01220876426082
417 => 0.013521635215077
418 => 0.013027680351974
419 => 0.012836406099115
420 => 0.012472793604611
421 => 0.012957285664365
422 => 0.012920084233429
423 => 0.012751845254515
424 => 0.01265009379513
425 => 0.012837573978917
426 => 0.012626862925607
427 => 0.01258901343048
428 => 0.012359686670668
429 => 0.012277827451118
430 => 0.012217222143873
501 => 0.01215050165555
502 => 0.01229767042708
503 => 0.011964166629128
504 => 0.011561993742579
505 => 0.011528557418633
506 => 0.011620878048799
507 => 0.011580033042413
508 => 0.011528361868457
509 => 0.011429707525568
510 => 0.011400438889449
511 => 0.011495547757711
512 => 0.011388175390634
513 => 0.011546609167132
514 => 0.011503523946465
515 => 0.011262853406203
516 => 0.010962888805389
517 => 0.010960218491245
518 => 0.01089559161004
519 => 0.01081327956011
520 => 0.010790382230863
521 => 0.011124383330752
522 => 0.01181575561171
523 => 0.011680022689821
524 => 0.011778103636355
525 => 0.012260564819021
526 => 0.012413924720876
527 => 0.012305073495067
528 => 0.012156071223529
529 => 0.012162626567278
530 => 0.012671812435178
531 => 0.012703569733179
601 => 0.012783810179935
602 => 0.012886941829963
603 => 0.012322637261021
604 => 0.012136047872828
605 => 0.012047631469116
606 => 0.01177534316714
607 => 0.012068982756587
608 => 0.011897891542717
609 => 0.011920977592776
610 => 0.011905942772389
611 => 0.011914152800971
612 => 0.011478263965597
613 => 0.011637078947564
614 => 0.011373018237371
615 => 0.011019470588628
616 => 0.011018285372939
617 => 0.011104815659098
618 => 0.01105334405896
619 => 0.010914835306445
620 => 0.010934509820997
621 => 0.010762140371025
622 => 0.010955438593073
623 => 0.010960981694427
624 => 0.010886551349913
625 => 0.011184353930993
626 => 0.011306363891446
627 => 0.011257372244234
628 => 0.011302926506875
629 => 0.011685663005523
630 => 0.011748065754767
701 => 0.011775780933887
702 => 0.011738646265424
703 => 0.011309922227471
704 => 0.01132893796163
705 => 0.011189413121512
706 => 0.011071529334378
707 => 0.011076244067645
708 => 0.011136851658051
709 => 0.011401528559945
710 => 0.011958525496424
711 => 0.011979663123004
712 => 0.012005282543047
713 => 0.011901075486443
714 => 0.011869645641044
715 => 0.011911109719857
716 => 0.012120288483691
717 => 0.012658353055752
718 => 0.012468165099861
719 => 0.01231353933127
720 => 0.012449187817132
721 => 0.012428305795982
722 => 0.012252040522548
723 => 0.012247093343392
724 => 0.011908783928256
725 => 0.011783718640413
726 => 0.011679204724916
727 => 0.011565078257599
728 => 0.01149742026222
729 => 0.011601373693131
730 => 0.011625149072722
731 => 0.011397853079238
801 => 0.011366873475214
802 => 0.011552488290017
803 => 0.01147080613044
804 => 0.011554818257185
805 => 0.011574309791233
806 => 0.011571171205323
807 => 0.011485885649588
808 => 0.011540244119562
809 => 0.011411670133035
810 => 0.011271865233874
811 => 0.011182678418363
812 => 0.011104851092915
813 => 0.011148034216425
814 => 0.010994094266041
815 => 0.010944845777714
816 => 0.011521828693039
817 => 0.011948052176201
818 => 0.011941854717953
819 => 0.011904129284724
820 => 0.01184807694327
821 => 0.012116187905785
822 => 0.012022783407493
823 => 0.012090742984207
824 => 0.012108041548736
825 => 0.012160399093568
826 => 0.012179112415563
827 => 0.012122547759257
828 => 0.011932709863904
829 => 0.011459651877929
830 => 0.011239442108462
831 => 0.011166769216654
901 => 0.011169410738246
902 => 0.011096545780474
903 => 0.011118007776116
904 => 0.011089082174248
905 => 0.011034304082164
906 => 0.011144651823599
907 => 0.011157368372839
908 => 0.011131611891431
909 => 0.011137678475201
910 => 0.010924425809877
911 => 0.010940638946861
912 => 0.010850362139868
913 => 0.01083343632686
914 => 0.010605224420082
915 => 0.010200913947379
916 => 0.010424941196623
917 => 0.010154347782534
918 => 0.01005186995646
919 => 0.010536984046526
920 => 0.010488292046854
921 => 0.010404952509318
922 => 0.010281675963822
923 => 0.01023595149394
924 => 0.0099581440895463
925 => 0.0099417297460499
926 => 0.010079418597098
927 => 0.010015879929924
928 => 0.0099266475772352
929 => 0.0096034570411365
930 => 0.0092400838738524
1001 => 0.0092510518256904
1002 => 0.0093666340694053
1003 => 0.0097027050313957
1004 => 0.0095713962924594
1005 => 0.0094761302957669
1006 => 0.0094582898382718
1007 => 0.0096816005153513
1008 => 0.009997631908452
1009 => 0.010145906767291
1010 => 0.009998970885356
1011 => 0.0098301788557788
1012 => 0.0098404524445122
1013 => 0.0099087980277067
1014 => 0.009915980182146
1015 => 0.0098061139229922
1016 => 0.0098370406313987
1017 => 0.0097900601333317
1018 => 0.0095017409034141
1019 => 0.009496526122815
1020 => 0.0094257679340176
1021 => 0.0094236254041819
1022 => 0.0093032480735801
1023 => 0.0092864064528997
1024 => 0.0090473899566081
1025 => 0.0092047113382758
1026 => 0.0090991884151964
1027 => 0.0089401404797744
1028 => 0.0089127205557589
1029 => 0.0089118962797325
1030 => 0.0090752029469432
1031 => 0.0092028030047877
1101 => 0.0091010240316216
1102 => 0.0090778509323342
1103 => 0.0093252790069523
1104 => 0.0092937915291001
1105 => 0.0092665235763527
1106 => 0.0099693347634625
1107 => 0.0094130048678242
1108 => 0.0091704132791257
1109 => 0.0088701601212179
1110 => 0.0089679240634405
1111 => 0.008988524362518
1112 => 0.0082664696424495
1113 => 0.0079735321324439
1114 => 0.0078730070181272
1115 => 0.0078151533936214
1116 => 0.0078415180167888
1117 => 0.0075778398996409
1118 => 0.0077550359551978
1119 => 0.0075267129939041
1120 => 0.0074884339064161
1121 => 0.0078967036449965
1122 => 0.0079535119940428
1123 => 0.0077111499280408
1124 => 0.0078667856092684
1125 => 0.0078103499477575
1126 => 0.0075306269357489
1127 => 0.0075199435741933
1128 => 0.0073795883995067
1129 => 0.0071599597292394
1130 => 0.0070595835335032
1201 => 0.0070073067392577
1202 => 0.0070288771634178
1203 => 0.0070179704968966
1204 => 0.0069467971202922
1205 => 0.007022050071531
1206 => 0.0068298098777821
1207 => 0.0067532582836468
1208 => 0.0067186817045594
1209 => 0.0065480574676746
1210 => 0.0068195965055009
1211 => 0.0068730931167113
1212 => 0.0069266951327718
1213 => 0.0073932640869276
1214 => 0.0073699556204882
1215 => 0.0075806528054172
1216 => 0.0075724655002581
1217 => 0.0075123712500483
1218 => 0.0072588434934372
1219 => 0.0073598951385246
1220 => 0.0070488738818579
1221 => 0.0072819121547423
1222 => 0.0071755632189088
1223 => 0.0072459554725596
1224 => 0.0071193838534818
1225 => 0.0071894338134935
1226 => 0.0068857791478228
1227 => 0.0066022306935558
1228 => 0.0067163388688482
1229 => 0.0068403875052438
1230 => 0.007109356555954
1231 => 0.0069491608082975
]
'min_raw' => 0.0065480574676746
'max_raw' => 0.019546111012742
'avg_raw' => 0.013047084240208
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006548'
'max' => '$0.019546'
'avg' => '$0.013047'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012404362532325
'max_diff' => 0.00059369101274226
'year' => 2026
]
1 => [
'items' => [
101 => 0.0070067732568266
102 => 0.0068137811984614
103 => 0.0064155834565977
104 => 0.0064178372125725
105 => 0.0063565831651962
106 => 0.0063036507250256
107 => 0.0069675612169754
108 => 0.0068849934524297
109 => 0.006753432525828
110 => 0.0069295320541078
111 => 0.0069760955644603
112 => 0.0069774211621394
113 => 0.0071058988321856
114 => 0.0071744673877202
115 => 0.0071865528928263
116 => 0.0073887152825877
117 => 0.0074564774490494
118 => 0.0077355802226442
119 => 0.0071686498248449
120 => 0.0071569742663811
121 => 0.0069320101356057
122 => 0.0067893343273258
123 => 0.0069417792702631
124 => 0.0070768246788957
125 => 0.0069362063728896
126 => 0.0069545681550395
127 => 0.0067657995681639
128 => 0.0068332754555844
129 => 0.0068913947798145
130 => 0.0068593047050706
131 => 0.0068112643100018
201 => 0.0070657524954254
202 => 0.0070513932746566
203 => 0.0072883785235811
204 => 0.0074731254720955
205 => 0.0078042250313006
206 => 0.0074587053806597
207 => 0.0074461132712741
208 => 0.007569203160356
209 => 0.0074564586046287
210 => 0.0075277092720386
211 => 0.0077927454472498
212 => 0.0077983452439935
213 => 0.0077045414336063
214 => 0.0076988334632194
215 => 0.0077168495111055
216 => 0.0078223700662954
217 => 0.0077854979419929
218 => 0.0078281672977237
219 => 0.0078815259804415
220 => 0.0081022401157749
221 => 0.0081554535465796
222 => 0.0080261724977248
223 => 0.0080378451289378
224 => 0.007989490467822
225 => 0.0079427804710662
226 => 0.008047777722326
227 => 0.0082396622627294
228 => 0.0082384685589624
301 => 0.0082829820426335
302 => 0.008310713574191
303 => 0.0081916695400244
304 => 0.0081141762511524
305 => 0.008143892109132
306 => 0.0081914084131686
307 => 0.0081284832121417
308 => 0.007740079721615
309 => 0.0078578965293298
310 => 0.0078382860515785
311 => 0.007810358346545
312 => 0.0079288240577527
313 => 0.0079173977509077
314 => 0.0075751354994354
315 => 0.0075970460183075
316 => 0.0075764679506579
317 => 0.0076429598971103
318 => 0.0074528678213123
319 => 0.0075113388635381
320 => 0.0075480113530901
321 => 0.0075696117311676
322 => 0.0076476471083014
323 => 0.0076384905574757
324 => 0.0076470779242457
325 => 0.0077627837879593
326 => 0.0083479843411654
327 => 0.0083798355161041
328 => 0.0082229886816857
329 => 0.0082856458983689
330 => 0.0081653577439642
331 => 0.0082461079878767
401 => 0.0083013552539277
402 => 0.0080517034820813
403 => 0.0080369207243791
404 => 0.0079161360979724
405 => 0.0079810389146124
406 => 0.0078777738666604
407 => 0.0079031114973698
408 => 0.0078322652730114
409 => 0.007959774371514
410 => 0.0081023493565505
411 => 0.0081383694282275
412 => 0.0080436161272612
413 => 0.0079750084928147
414 => 0.0078545560874865
415 => 0.0080548711220043
416 => 0.0081134493425873
417 => 0.0080545634355491
418 => 0.0080409182842058
419 => 0.0080150607470666
420 => 0.0080464040829464
421 => 0.0081131303130177
422 => 0.0080816634551561
423 => 0.0081024478691484
424 => 0.0080232391158043
425 => 0.0081917089485531
426 => 0.0084592795874314
427 => 0.0084601398707876
428 => 0.0084286728433079
429 => 0.0084157972136297
430 => 0.0084480842934028
501 => 0.0084655987096944
502 => 0.0085700092052428
503 => 0.0086820458268639
504 => 0.0092048718545619
505 => 0.0090580643981065
506 => 0.0095219467529397
507 => 0.0098888174680278
508 => 0.0099988259541707
509 => 0.0098976233232185
510 => 0.0095514145895898
511 => 0.009534427937442
512 => 0.01005180995104
513 => 0.0099056258346014
514 => 0.0098882376991049
515 => 0.0097032573151416
516 => 0.0098126036323302
517 => 0.0097886879887474
518 => 0.0097509359753585
519 => 0.0099595611314238
520 => 0.010350088799482
521 => 0.01028922140007
522 => 0.010243786709966
523 => 0.010044705123771
524 => 0.010164596705142
525 => 0.010121905609388
526 => 0.010305333649188
527 => 0.010196674941839
528 => 0.0099045183461433
529 => 0.0099510452469686
530 => 0.0099440127995079
531 => 0.010088740069923
601 => 0.010045296535696
602 => 0.0099355297522064
603 => 0.010348754018368
604 => 0.010321921532998
605 => 0.010359963862493
606 => 0.010376711272435
607 => 0.010628233601419
608 => 0.010731274251788
609 => 0.010754666283402
610 => 0.010852546931801
611 => 0.010752230923702
612 => 0.011153566480201
613 => 0.011420431206693
614 => 0.011730408319248
615 => 0.012183368194683
616 => 0.01235368529796
617 => 0.012322919037702
618 => 0.012666348045697
619 => 0.013283482339067
620 => 0.012447659522937
621 => 0.013327782977858
622 => 0.013049146053544
623 => 0.012388502918459
624 => 0.012345965289031
625 => 0.012793360490334
626 => 0.013785639986634
627 => 0.013537085227152
628 => 0.013786046533179
629 => 0.01349561994534
630 => 0.013481197817347
701 => 0.013771941162052
702 => 0.014451278834549
703 => 0.014128550970937
704 => 0.013665841442331
705 => 0.014007498957696
706 => 0.013711523598977
707 => 0.013044608277495
708 => 0.013536895162012
709 => 0.013207716941859
710 => 0.013303788646576
711 => 0.013995672303773
712 => 0.013912423031642
713 => 0.014020155298455
714 => 0.013830010667375
715 => 0.01365238559889
716 => 0.013320835217952
717 => 0.013222679495393
718 => 0.013249806205835
719 => 0.013222666052742
720 => 0.013037166661713
721 => 0.012997108085881
722 => 0.012930342037823
723 => 0.012951035627917
724 => 0.01282549592447
725 => 0.0130624152827
726 => 0.013106389603314
727 => 0.013278799754798
728 => 0.013296699948674
729 => 0.013776859766454
730 => 0.013512395807579
731 => 0.013689821063912
801 => 0.013673950478994
802 => 0.012402821058442
803 => 0.012577971477324
804 => 0.012850450563876
805 => 0.012727699104721
806 => 0.012554157260894
807 => 0.012414012917278
808 => 0.012201679906206
809 => 0.012500534541796
810 => 0.012893496607949
811 => 0.013306666115158
812 => 0.013803062206131
813 => 0.013692272377313
814 => 0.013297386335523
815 => 0.013315100634893
816 => 0.013424603463281
817 => 0.013282787351138
818 => 0.013240963011088
819 => 0.013418857441214
820 => 0.013420082502385
821 => 0.013256905926316
822 => 0.013075565023013
823 => 0.013074805198007
824 => 0.013042537335809
825 => 0.013501360326342
826 => 0.013753666578898
827 => 0.013782593084142
828 => 0.013751719594621
829 => 0.013763601575413
830 => 0.013616790126239
831 => 0.013952357563467
901 => 0.014260307428047
902 => 0.014177770285951
903 => 0.014054035376601
904 => 0.013955474561424
905 => 0.014154552490203
906 => 0.014145687863412
907 => 0.01425761775463
908 => 0.014252539968226
909 => 0.014214902155705
910 => 0.014177771630115
911 => 0.014324989967035
912 => 0.014282593450256
913 => 0.014240131079977
914 => 0.014154966295718
915 => 0.014166541604336
916 => 0.014042828059563
917 => 0.013985592513005
918 => 0.013124907220044
919 => 0.012894903986062
920 => 0.01296726768562
921 => 0.012991091694437
922 => 0.012890993992251
923 => 0.013034508384196
924 => 0.013012141818231
925 => 0.013099157042398
926 => 0.0130447937081
927 => 0.013047024798303
928 => 0.013206895772988
929 => 0.013253306997079
930 => 0.013229701873922
1001 => 0.013246234093045
1002 => 0.013627212104921
1003 => 0.013573049214624
1004 => 0.013544276258659
1005 => 0.013552246564099
1006 => 0.013649594614394
1007 => 0.013676846753471
1008 => 0.013561377525231
1009 => 0.013615833480789
1010 => 0.013847700028062
1011 => 0.013928840197098
1012 => 0.014187800667169
1013 => 0.014077789656828
1014 => 0.014279719627475
1015 => 0.014900383514244
1016 => 0.015396212773669
1017 => 0.014940227695691
1018 => 0.01585075498715
1019 => 0.016559731090934
1020 => 0.016532519407209
1021 => 0.016408893024602
1022 => 0.015601742579549
1023 => 0.014858990706076
1024 => 0.015480334187147
1025 => 0.01548191811946
1026 => 0.015428544163394
1027 => 0.015097043106248
1028 => 0.015417008645176
1029 => 0.015442406347712
1030 => 0.015428190388086
1031 => 0.015174029304817
1101 => 0.014785972307486
1102 => 0.014861797715888
1103 => 0.014986001281645
1104 => 0.014750858020088
1105 => 0.014675715500188
1106 => 0.014815419741132
1107 => 0.015265575913987
1108 => 0.015180476497086
1109 => 0.015178254207397
1110 => 0.01554234560067
1111 => 0.015281734738927
1112 => 0.014862754117114
1113 => 0.014756955984431
1114 => 0.014381443887567
1115 => 0.014640811430399
1116 => 0.014650145606523
1117 => 0.014508092653986
1118 => 0.014874280931314
1119 => 0.014870906441872
1120 => 0.015218547711263
1121 => 0.015883107250241
1122 => 0.015686564293576
1123 => 0.015458006218788
1124 => 0.015482856818746
1125 => 0.015755406563772
1126 => 0.015590616766223
1127 => 0.015649876326377
1128 => 0.01575531686733
1129 => 0.015818931763628
1130 => 0.015473703614146
1201 => 0.01539321441833
1202 => 0.015228561771561
1203 => 0.015185606969406
1204 => 0.015319713114609
1205 => 0.015284380883388
1206 => 0.014649361105163
1207 => 0.014582998005122
1208 => 0.014585033266656
1209 => 0.014418160096209
1210 => 0.014163638457127
1211 => 0.014832506127936
1212 => 0.014778786693173
1213 => 0.014719484594749
1214 => 0.014726748763432
1215 => 0.015017081549302
1216 => 0.014848673871341
1217 => 0.015296413284677
1218 => 0.015204371521574
1219 => 0.015109969234552
1220 => 0.015096919962922
1221 => 0.015060583136443
1222 => 0.01493597063811
1223 => 0.014785493558324
1224 => 0.014686135556147
1225 => 0.013547183744357
1226 => 0.013758566575647
1227 => 0.014001743254896
1228 => 0.014085686870103
1229 => 0.01394209550757
1230 => 0.014941640500303
1231 => 0.015124267002331
]
'min_raw' => 0.0063036507250256
'max_raw' => 0.016559731090934
'avg_raw' => 0.01143169090798
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0063036'
'max' => '$0.016559'
'avg' => '$0.011431'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00024440674264893
'max_diff' => -0.0029863799218083
'year' => 2027
]
2 => [
'items' => [
101 => 0.014571079415257
102 => 0.014467600604216
103 => 0.014948424553927
104 => 0.014658428933914
105 => 0.014789013943849
106 => 0.014506760578551
107 => 0.01508027762592
108 => 0.015075908386923
109 => 0.014852797302026
110 => 0.015041369263182
111 => 0.015008600244404
112 => 0.014756708379053
113 => 0.015088263047343
114 => 0.015088427494322
115 => 0.014873687925962
116 => 0.014622919122654
117 => 0.014578087583517
118 => 0.014544313041048
119 => 0.014780707476819
120 => 0.014992657988745
121 => 0.015387045344452
122 => 0.015486203696089
123 => 0.015873225343874
124 => 0.01564277279636
125 => 0.015744929425813
126 => 0.015855834898022
127 => 0.015909007059812
128 => 0.01582236587555
129 => 0.016423569799026
130 => 0.016474329830579
131 => 0.016491349230087
201 => 0.016288626649726
202 => 0.016468691748897
203 => 0.016384445252124
204 => 0.016603631232376
205 => 0.016638002392786
206 => 0.016608891242708
207 => 0.016619801191534
208 => 0.016106779702488
209 => 0.016080176831877
210 => 0.015717444803442
211 => 0.015865260786209
212 => 0.01558892589143
213 => 0.015676554533129
214 => 0.015715180403434
215 => 0.015695004440786
216 => 0.015873618080093
217 => 0.015721759998326
218 => 0.015320981552762
219 => 0.01492009391538
220 => 0.014915061097648
221 => 0.01480951445898
222 => 0.014733223571054
223 => 0.014747919902633
224 => 0.014799711691991
225 => 0.014730213338104
226 => 0.014745044335562
227 => 0.014991337711779
228 => 0.015040730091896
229 => 0.014872875485411
301 => 0.014198915019072
302 => 0.014033523430131
303 => 0.014152403624404
304 => 0.014095586548407
305 => 0.011376238459988
306 => 0.012015108956702
307 => 0.011635513801547
308 => 0.011810448713376
309 => 0.011422980355651
310 => 0.011607900564914
311 => 0.011573752554468
312 => 0.012601037407631
313 => 0.012584997767633
314 => 0.012592675094501
315 => 0.012226216279913
316 => 0.012809995121993
317 => 0.013097585571609
318 => 0.013044360233357
319 => 0.0130577559043
320 => 0.012827573895516
321 => 0.012594903759499
322 => 0.012336836770979
323 => 0.012816293337605
324 => 0.012762985951993
325 => 0.012885253915196
326 => 0.013196215770916
327 => 0.0132420060854
328 => 0.013303548732426
329 => 0.013281490074371
330 => 0.013807016801844
331 => 0.01374337204761
401 => 0.013896737593469
402 => 0.013581253029766
403 => 0.013224252299867
404 => 0.013292106467387
405 => 0.013285571565406
406 => 0.013202374762777
407 => 0.013127268409343
408 => 0.01300223749196
409 => 0.013397853815654
410 => 0.013381792515392
411 => 0.01364180629741
412 => 0.013595846335799
413 => 0.013288914463852
414 => 0.013299876595705
415 => 0.013373602200634
416 => 0.013628767361078
417 => 0.013704517753667
418 => 0.013669427153689
419 => 0.013752484001026
420 => 0.01381812874666
421 => 0.013760727970393
422 => 0.014573401914811
423 => 0.014235923033659
424 => 0.01440040789217
425 => 0.014439636561724
426 => 0.014339153149552
427 => 0.01436094440361
428 => 0.014393952215748
429 => 0.014594369187457
430 => 0.015120321312339
501 => 0.015353261928172
502 => 0.016054075263993
503 => 0.015333919452717
504 => 0.015291188387177
505 => 0.015417426031493
506 => 0.015828877648246
507 => 0.016162320537939
508 => 0.016272942781231
509 => 0.016287563336857
510 => 0.016495098019302
511 => 0.016614053028987
512 => 0.016469897850149
513 => 0.01634774142976
514 => 0.015910192294542
515 => 0.01596083979835
516 => 0.016309750874876
517 => 0.01680260832123
518 => 0.017225531283279
519 => 0.017077438402322
520 => 0.018207282546737
521 => 0.018319301978656
522 => 0.018303824515187
523 => 0.018559021451826
524 => 0.01805250750255
525 => 0.01783596297599
526 => 0.016374153034383
527 => 0.016784862001522
528 => 0.01738185160535
529 => 0.017302837792687
530 => 0.016869287984809
531 => 0.017225202396872
601 => 0.017107525961771
602 => 0.017014709675008
603 => 0.017439919077995
604 => 0.016972383872771
605 => 0.017377187584032
606 => 0.016858022637181
607 => 0.017078114878128
608 => 0.016953179877503
609 => 0.017034028134365
610 => 0.016561390876749
611 => 0.016816414468338
612 => 0.016550781056899
613 => 0.016550655112076
614 => 0.016544791239796
615 => 0.016857307770354
616 => 0.016867498923196
617 => 0.016636548734927
618 => 0.016603265204677
619 => 0.016726331860614
620 => 0.01658225303772
621 => 0.016649666612131
622 => 0.016584294926214
623 => 0.016569578382776
624 => 0.016452314460846
625 => 0.01640179393904
626 => 0.016421604337393
627 => 0.016353981234852
628 => 0.016313235869536
629 => 0.016536685961088
630 => 0.016417305591123
701 => 0.016518389207236
702 => 0.016403191668906
703 => 0.016003866811876
704 => 0.015774210863815
705 => 0.01501992322632
706 => 0.015233838264623
707 => 0.015375664156328
708 => 0.015328790699966
709 => 0.015429493021852
710 => 0.015435675326546
711 => 0.015402935975162
712 => 0.01536502800043
713 => 0.015346576494773
714 => 0.015484098900906
715 => 0.015563935286457
716 => 0.015389898281947
717 => 0.015349123846827
718 => 0.015525084867233
719 => 0.015632420988031
720 => 0.016424930597051
721 => 0.016366218925442
722 => 0.016513573699596
723 => 0.016496983813369
724 => 0.016651435092139
725 => 0.016903897656946
726 => 0.016390570673049
727 => 0.016479666487942
728 => 0.016457822251653
729 => 0.016696311895589
730 => 0.016697056434225
731 => 0.016554069979245
801 => 0.01663158525618
802 => 0.016588318355115
803 => 0.016666507493212
804 => 0.016365434795273
805 => 0.016732108842573
806 => 0.016939989399439
807 => 0.016942875821172
808 => 0.017041409555285
809 => 0.017141525535832
810 => 0.017333689442227
811 => 0.017136166188779
812 => 0.016780841084328
813 => 0.016806494409176
814 => 0.016598167430444
815 => 0.016601669444594
816 => 0.016582975418605
817 => 0.01663907759782
818 => 0.016377746068711
819 => 0.016439080056251
820 => 0.016353212114524
821 => 0.016479479827807
822 => 0.016343636641115
823 => 0.016457811717701
824 => 0.016507085895792
825 => 0.016688908673744
826 => 0.016316781268976
827 => 0.015557988299846
828 => 0.015717495781432
829 => 0.015481571687123
830 => 0.015503407360278
831 => 0.015547518895172
901 => 0.015404538978184
902 => 0.015431815040531
903 => 0.015430840547645
904 => 0.015422442894419
905 => 0.015385248295865
906 => 0.015331308769233
907 => 0.015546187241623
908 => 0.015582699281264
909 => 0.015663861022501
910 => 0.015905343311887
911 => 0.015881213536632
912 => 0.015920570201207
913 => 0.015834654823419
914 => 0.015507392728242
915 => 0.015525164634516
916 => 0.015303548678509
917 => 0.015658193804245
918 => 0.015574209157384
919 => 0.0155200637092
920 => 0.015505289622009
921 => 0.015747370499282
922 => 0.015819804891915
923 => 0.015774668639318
924 => 0.015682092868405
925 => 0.015859865716127
926 => 0.015907430230543
927 => 0.015918078171209
928 => 0.01623305757281
929 => 0.015935682020774
930 => 0.016007263271808
1001 => 0.016565719758605
1002 => 0.016059276786807
1003 => 0.016327550923995
1004 => 0.016314420301011
1005 => 0.016451660271694
1006 => 0.01630316261768
1007 => 0.016305003424074
1008 => 0.0164268632206
1009 => 0.01625573311391
1010 => 0.016213358892885
1011 => 0.01615481921003
1012 => 0.016282638465913
1013 => 0.016359260329048
1014 => 0.016976776273355
1015 => 0.017375719735526
1016 => 0.017358400547695
1017 => 0.017516665504312
1018 => 0.017445365691815
1019 => 0.017215119789322
1020 => 0.017608121469382
1021 => 0.017483759293922
1022 => 0.017494011560567
1023 => 0.01749362997069
1024 => 0.017576319945441
1025 => 0.017517726519905
1026 => 0.017402232863683
1027 => 0.017478902942546
1028 => 0.017706585666717
1029 => 0.018413319828701
1030 => 0.01880881762873
1031 => 0.018389510364538
1101 => 0.01867874290063
1102 => 0.018505306443065
1103 => 0.018473787879438
1104 => 0.01865544728622
1105 => 0.018837424663746
1106 => 0.018825833491507
1107 => 0.018693727260065
1108 => 0.018619103801995
1109 => 0.019184177627194
1110 => 0.01960051439582
1111 => 0.019572123019357
1112 => 0.019697433321695
1113 => 0.020065348245061
1114 => 0.020098985774794
1115 => 0.020094748219197
1116 => 0.020011374092042
1117 => 0.020373634113886
1118 => 0.020675837797467
1119 => 0.019992075390515
1120 => 0.020252443163975
1121 => 0.020369330646007
1122 => 0.020540956148583
1123 => 0.020830517139203
1124 => 0.021145057177276
1125 => 0.021189536587416
1126 => 0.021157976317386
1127 => 0.020950528706987
1128 => 0.021294702169889
1129 => 0.021496310912597
1130 => 0.021616364305145
1201 => 0.021920799733667
1202 => 0.020370052503303
1203 => 0.019272356536513
1204 => 0.019100935460377
1205 => 0.019449526959501
1206 => 0.019541447757854
1207 => 0.019504394599297
1208 => 0.018268837990524
1209 => 0.019094430510536
1210 => 0.019982698644278
1211 => 0.020016820640881
1212 => 0.020461506241444
1213 => 0.020606314101265
1214 => 0.020964344295992
1215 => 0.020941949409831
1216 => 0.021029124064742
1217 => 0.021009084121233
1218 => 0.021672259664812
1219 => 0.0224038407719
1220 => 0.022378508444447
1221 => 0.022273335004629
1222 => 0.022429535497496
1223 => 0.023184605601008
1224 => 0.023115090845628
1225 => 0.023182618509226
1226 => 0.024072888715153
1227 => 0.025230366622318
1228 => 0.024692601925558
1229 => 0.025859396579904
1230 => 0.026593831965687
1231 => 0.027863962023364
]
'min_raw' => 0.011376238459988
'max_raw' => 0.027863962023364
'avg_raw' => 0.019620100241676
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011376'
'max' => '$0.027863'
'avg' => '$0.01962'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0050725877349628
'max_diff' => 0.01130423093243
'year' => 2028
]
3 => [
'items' => [
101 => 0.02770493548462
102 => 0.028199387795429
103 => 0.027420244790429
104 => 0.025631174960169
105 => 0.025348047811246
106 => 0.025914875533311
107 => 0.027308366177767
108 => 0.025870989553905
109 => 0.026161768972869
110 => 0.026078024480645
111 => 0.026073562092546
112 => 0.026243873296456
113 => 0.025996828012349
114 => 0.024990321082299
115 => 0.025451597276959
116 => 0.025273476385898
117 => 0.025471114794322
118 => 0.026537687772303
119 => 0.026066130434813
120 => 0.025569383085975
121 => 0.02619241449848
122 => 0.026985747583418
123 => 0.026936102224719
124 => 0.026839769478693
125 => 0.027382792124223
126 => 0.02827970644393
127 => 0.028522138780454
128 => 0.028701097374964
129 => 0.028725772741617
130 => 0.028979944353796
131 => 0.027613199535618
201 => 0.029782258662562
202 => 0.030156795254736
203 => 0.030086397898359
204 => 0.030502679557651
205 => 0.030380198933441
206 => 0.030202743725582
207 => 0.030862638701208
208 => 0.030106122362431
209 => 0.029032342662295
210 => 0.028443245881846
211 => 0.029219016043423
212 => 0.02969275181045
213 => 0.030005861017202
214 => 0.030100607673979
215 => 0.027719296045229
216 => 0.026435901150931
217 => 0.027258542564024
218 => 0.028262221863675
219 => 0.027607624046431
220 => 0.02763328304155
221 => 0.026699998579441
222 => 0.02834479682973
223 => 0.028105163559593
224 => 0.029348381388965
225 => 0.029051677476539
226 => 0.030065473354954
227 => 0.029798506924167
228 => 0.030906669652469
301 => 0.031348745767097
302 => 0.03209106036721
303 => 0.032637110008817
304 => 0.032957760802634
305 => 0.032938510131704
306 => 0.034209088324398
307 => 0.033459872754787
308 => 0.032518681422804
309 => 0.032501658241029
310 => 0.032989114568648
311 => 0.034010689304223
312 => 0.034275568769849
313 => 0.034423600255614
314 => 0.034196884882153
315 => 0.033383665078104
316 => 0.033032520889834
317 => 0.033331705911867
318 => 0.032965828339183
319 => 0.033597435676751
320 => 0.034464767455279
321 => 0.034285666872815
322 => 0.034884373267734
323 => 0.035503971400726
324 => 0.036390024558797
325 => 0.03662167166477
326 => 0.037004575522194
327 => 0.037398709368848
328 => 0.037525294538188
329 => 0.037766984903529
330 => 0.037765711076002
331 => 0.038494061259597
401 => 0.039297454067229
402 => 0.039600716253524
403 => 0.040298050928935
404 => 0.039103889734815
405 => 0.04000967471809
406 => 0.040826715446272
407 => 0.039852605807498
408 => 0.041195189006112
409 => 0.041247318469355
410 => 0.042034411473379
411 => 0.041236541925027
412 => 0.040762769534105
413 => 0.042130532674676
414 => 0.042792350174263
415 => 0.042593005357338
416 => 0.041075981457671
417 => 0.040193008479849
418 => 0.037882097884121
419 => 0.040619471308669
420 => 0.041952766053489
421 => 0.041072528546382
422 => 0.041516469144609
423 => 0.043938465100311
424 => 0.044860604347618
425 => 0.044668805830418
426 => 0.044701216622552
427 => 0.045198786222388
428 => 0.047405283844641
429 => 0.046083099323173
430 => 0.047093859848527
501 => 0.047629963586606
502 => 0.04812792661592
503 => 0.046905086798756
504 => 0.04531419016371
505 => 0.044810286418094
506 => 0.040985006273885
507 => 0.04078588383003
508 => 0.040674110368266
509 => 0.039969394502515
510 => 0.039415680869957
511 => 0.038975347231277
512 => 0.037819780268626
513 => 0.038209750196497
514 => 0.0363680176436
515 => 0.03754629286395
516 => 0.034606843239339
517 => 0.037054904232932
518 => 0.035722535933794
519 => 0.036617185412735
520 => 0.036614064064984
521 => 0.034966730725379
522 => 0.034016583234065
523 => 0.034622054195824
524 => 0.035271167129174
525 => 0.035376483518732
526 => 0.036218075380402
527 => 0.036452945579038
528 => 0.035741277912131
529 => 0.03454592967942
530 => 0.034823581810888
531 => 0.034010956622482
601 => 0.032586862236977
602 => 0.03360967168695
603 => 0.033958903802927
604 => 0.034113144600658
605 => 0.032712711330859
606 => 0.032272664792602
607 => 0.032038387707983
608 => 0.034365151330177
609 => 0.034492616693773
610 => 0.033840485871831
611 => 0.03678817902459
612 => 0.036121025280257
613 => 0.036866399469313
614 => 0.03479838779017
615 => 0.03487738862126
616 => 0.033898358750996
617 => 0.034446550059544
618 => 0.034059106111693
619 => 0.034402261619146
620 => 0.03460794761543
621 => 0.035586816836525
622 => 0.037066081347058
623 => 0.035440606417305
624 => 0.034732363713183
625 => 0.035171753503512
626 => 0.036341906417269
627 => 0.038114747980637
628 => 0.037065190093362
629 => 0.037530966061086
630 => 0.037632717389103
701 => 0.036858812259771
702 => 0.038143282966642
703 => 0.038831641253476
704 => 0.03953775442009
705 => 0.040150852697819
706 => 0.039255717293583
707 => 0.040213640488736
708 => 0.03944172348965
709 => 0.038749234142157
710 => 0.03875028436265
711 => 0.038315875679312
712 => 0.03747415411633
713 => 0.03731892774579
714 => 0.038126434928267
715 => 0.038773979217399
716 => 0.03882731406658
717 => 0.03918582785707
718 => 0.039397992625296
719 => 0.041477495777931
720 => 0.042313889148473
721 => 0.043336615129856
722 => 0.043735024537282
723 => 0.044934094015958
724 => 0.043965748028265
725 => 0.043756240282646
726 => 0.040847689940016
727 => 0.041323964895681
728 => 0.0420865270534
729 => 0.040860264309127
730 => 0.041638045773593
731 => 0.041791596310342
801 => 0.040818596370312
802 => 0.041338317679128
803 => 0.039958091969543
804 => 0.037096166495805
805 => 0.038146469107819
806 => 0.038919845358299
807 => 0.037816142092261
808 => 0.039794487477419
809 => 0.038638778944748
810 => 0.038272474823684
811 => 0.036843391850566
812 => 0.03751786400343
813 => 0.038430097247688
814 => 0.037866443161234
815 => 0.039036110023714
816 => 0.040692670239743
817 => 0.041873233699552
818 => 0.041963862702882
819 => 0.041204839489833
820 => 0.042421179032765
821 => 0.042430038738427
822 => 0.041058002765107
823 => 0.040217638370978
824 => 0.040026705812489
825 => 0.040503692778126
826 => 0.04108284301106
827 => 0.041996001510129
828 => 0.042547804066343
829 => 0.043986612479488
830 => 0.044375912782215
831 => 0.044803635786435
901 => 0.045375205624962
902 => 0.046061521763613
903 => 0.044559901124245
904 => 0.044619563311618
905 => 0.043221274963591
906 => 0.041727003328891
907 => 0.04286096923604
908 => 0.044343478814473
909 => 0.044003389479153
910 => 0.043965122481535
911 => 0.044029476957148
912 => 0.043773060704596
913 => 0.042613299497533
914 => 0.042030874679835
915 => 0.042782351287083
916 => 0.04318172765946
917 => 0.043801125583736
918 => 0.043724771715665
919 => 0.04532027425012
920 => 0.045940238289517
921 => 0.045781624958482
922 => 0.045810813628635
923 => 0.046933228908621
924 => 0.048181585542273
925 => 0.049350836264855
926 => 0.050540248320353
927 => 0.049106365663908
928 => 0.048378328480553
929 => 0.049129477016623
930 => 0.048730907030203
1001 => 0.051021208395708
1002 => 0.05117978389306
1003 => 0.053469919643708
1004 => 0.055643531175365
1005 => 0.054278324716627
1006 => 0.055565652916968
1007 => 0.056958003323045
1008 => 0.05964407315708
1009 => 0.058739499334053
1010 => 0.058046609962093
1011 => 0.057391832853609
1012 => 0.058754320073427
1013 => 0.060507138115457
1014 => 0.060884678333428
1015 => 0.061496437718005
1016 => 0.060853247527501
1017 => 0.061627899266887
1018 => 0.064362760306142
1019 => 0.063623776712049
1020 => 0.062574301210897
1021 => 0.064733211342542
1022 => 0.065514512526634
1023 => 0.070998093407198
1024 => 0.077921340784338
1025 => 0.075055070909709
1026 => 0.073275884704576
1027 => 0.073694035665643
1028 => 0.076222171241061
1029 => 0.077034128148873
1030 => 0.074826949375109
1031 => 0.075606562231761
1101 => 0.079902305721755
1102 => 0.082206834280185
1103 => 0.079076974958359
1104 => 0.070441817221461
1105 => 0.062479807424578
1106 => 0.064591690956685
1107 => 0.06435226890352
1108 => 0.068967509378605
1109 => 0.063606152197728
1110 => 0.063696423702687
1111 => 0.068407102463173
1112 => 0.067150374131354
1113 => 0.065114635183412
1114 => 0.062494670571782
1115 => 0.057651423669788
1116 => 0.05336162482476
1117 => 0.061774908241532
1118 => 0.061412112162037
1119 => 0.060886729675563
1120 => 0.062055911546889
1121 => 0.067733126835985
1122 => 0.067602248648219
1123 => 0.066769668392288
1124 => 0.067401173178386
1125 => 0.065003929341129
1126 => 0.065621753662217
1127 => 0.062478546201547
1128 => 0.063899407245709
1129 => 0.065110267401927
1130 => 0.065353365505379
1201 => 0.065901077945352
1202 => 0.061220935113725
1203 => 0.063322181843351
1204 => 0.064556467436814
1205 => 0.058979920221857
1206 => 0.06444623702834
1207 => 0.061139464239404
1208 => 0.060017095888779
1209 => 0.06152821701211
1210 => 0.060939331640734
1211 => 0.060433042578935
1212 => 0.060150524583301
1213 => 0.061260125159922
1214 => 0.061208360966764
1215 => 0.059392839059219
1216 => 0.057024564740967
1217 => 0.057819435338127
1218 => 0.057530651398227
1219 => 0.056484061146161
1220 => 0.057189336610265
1221 => 0.054083660398096
1222 => 0.048740505894063
1223 => 0.052270357424676
1224 => 0.052134461980487
1225 => 0.052065937335159
1226 => 0.054718523202484
1227 => 0.054463538276909
1228 => 0.054000738140171
1229 => 0.056475561458718
1230 => 0.055572217656377
1231 => 0.058356110400623
]
'min_raw' => 0.024990321082299
'max_raw' => 0.082206834280185
'avg_raw' => 0.053598577681242
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02499'
'max' => '$0.0822068'
'avg' => '$0.053598'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013614082622311
'max_diff' => 0.054342872256822
'year' => 2029
]
4 => [
'items' => [
101 => 0.060189762212877
102 => 0.059724688800867
103 => 0.061449247193101
104 => 0.057837747551273
105 => 0.059037342864072
106 => 0.059284577795472
107 => 0.056445022523124
108 => 0.054505256964185
109 => 0.05437589671635
110 => 0.051012610553311
111 => 0.052809250874109
112 => 0.054390220006383
113 => 0.053633058480185
114 => 0.053393363760547
115 => 0.054617912099733
116 => 0.054713069993235
117 => 0.052543459937008
118 => 0.052994590570313
119 => 0.05487588030542
120 => 0.05294718689588
121 => 0.049200050651425
122 => 0.048270709054588
123 => 0.048146717754406
124 => 0.045626269636774
125 => 0.048332812103909
126 => 0.047151333786176
127 => 0.050883609635611
128 => 0.04875175368701
129 => 0.048659853637953
130 => 0.048520933234996
131 => 0.046351479421749
201 => 0.046826451930867
202 => 0.048405332891534
203 => 0.048968695405666
204 => 0.048909932079949
205 => 0.048397595513471
206 => 0.048632140570017
207 => 0.047876589221967
208 => 0.047609788315529
209 => 0.046767691265441
210 => 0.045530041237058
211 => 0.045702144064453
212 => 0.043250035509481
213 => 0.041913996625481
214 => 0.041544198671099
215 => 0.041049689391579
216 => 0.04160005481006
217 => 0.043243088994036
218 => 0.041261241179013
219 => 0.037863502110618
220 => 0.038067712018094
221 => 0.038526511049728
222 => 0.037671542089538
223 => 0.036862385720825
224 => 0.03756588153449
225 => 0.036126214699608
226 => 0.038700487908633
227 => 0.038630861032647
228 => 0.039590390892984
301 => 0.040190404606188
302 => 0.038807567253999
303 => 0.038459787399514
304 => 0.038657898610342
305 => 0.035383561593529
306 => 0.039322807702832
307 => 0.039356874466766
308 => 0.039065174151431
309 => 0.041162701094056
310 => 0.045589137178055
311 => 0.043923733870276
312 => 0.043278839372422
313 => 0.042052894460588
314 => 0.043686393266201
315 => 0.043560966044481
316 => 0.042993736581001
317 => 0.042650674431625
318 => 0.04328277696071
319 => 0.042572349933102
320 => 0.042444737717715
321 => 0.041671546535925
322 => 0.041395552461984
323 => 0.041191217437278
324 => 0.040966264652622
325 => 0.041462454440832
326 => 0.040338023101546
327 => 0.03898206913573
328 => 0.038869336235098
329 => 0.039180601685322
330 => 0.039042889894585
331 => 0.038868676924025
401 => 0.038536056919147
402 => 0.038437375669002
403 => 0.038758041858638
404 => 0.038396028426539
405 => 0.038930198965493
406 => 0.038784934135901
407 => 0.037973496606326
408 => 0.036962145011824
409 => 0.036953141861252
410 => 0.036735247819165
411 => 0.03645772699598
412 => 0.036380527051786
413 => 0.037506635079272
414 => 0.039837644994592
415 => 0.039380011971875
416 => 0.039710698730907
417 => 0.041337350292628
418 => 0.04185441390898
419 => 0.041487414401416
420 => 0.040985042839919
421 => 0.041007144639046
422 => 0.042723900342895
423 => 0.042830972290329
424 => 0.043101508558774
425 => 0.043449224117267
426 => 0.041546631864592
427 => 0.040917532715042
428 => 0.040619430636894
429 => 0.039701391616219
430 => 0.0406914179933
501 => 0.040114572020531
502 => 0.040192408250122
503 => 0.04014171730349
504 => 0.040169397988058
505 => 0.038699768346808
506 => 0.039235224146619
507 => 0.038344925026072
508 => 0.037152914444426
509 => 0.037148918406983
510 => 0.037440661308121
511 => 0.037267121214623
512 => 0.036800129285145
513 => 0.036866463284588
514 => 0.036285307649556
515 => 0.036937026100843
516 => 0.036955715054065
517 => 0.036704767950976
518 => 0.037708830144999
519 => 0.038120195245127
520 => 0.037955016486066
521 => 0.038108605863059
522 => 0.039399028690058
523 => 0.039609423915954
524 => 0.039702867577369
525 => 0.039577665449986
526 => 0.038132192423474
527 => 0.038196305298825
528 => 0.037725887559055
529 => 0.03732843414035
530 => 0.03734433019273
531 => 0.037548672915272
601 => 0.038441049569157
602 => 0.04031900362878
603 => 0.040390270612577
604 => 0.040476648275942
605 => 0.040125306909099
606 => 0.040019338990975
607 => 0.040159138027621
608 => 0.040864398834282
609 => 0.042678521105456
610 => 0.04203728913367
611 => 0.041515957559239
612 => 0.041973305899998
613 => 0.041902900707753
614 => 0.041308610031923
615 => 0.041291930271999
616 => 0.040151296458857
617 => 0.039729630109114
618 => 0.03937725414609
619 => 0.038992468793474
620 => 0.038764355138322
621 => 0.039114841388438
622 => 0.039195001740671
623 => 0.038428657429341
624 => 0.038324207531446
625 => 0.038950020838769
626 => 0.038674623734888
627 => 0.038957876485749
628 => 0.039023593553646
629 => 0.039013011592122
630 => 0.038725465386515
701 => 0.038908738763218
702 => 0.038475242590892
703 => 0.038003880612507
704 => 0.037703181037187
705 => 0.037440780775709
706 => 0.037586375691569
707 => 0.037067356401108
708 => 0.036901311684294
709 => 0.038846649866972
710 => 0.040283692098426
711 => 0.04026279693525
712 => 0.040135603003212
713 => 0.039946618620552
714 => 0.040850573449579
715 => 0.040535653662294
716 => 0.040764784119973
717 => 0.040823107438027
718 => 0.040999634555918
719 => 0.041062727827546
720 => 0.040872016139593
721 => 0.040231964421351
722 => 0.038637016393783
723 => 0.03789456378147
724 => 0.03764954205288
725 => 0.037658448127352
726 => 0.037412778834955
727 => 0.037485139451691
728 => 0.037387614765471
729 => 0.037202926603525
730 => 0.037574971718007
731 => 0.037617846451611
801 => 0.037531006676283
802 => 0.037551460587018
803 => 0.036832464337054
804 => 0.036887128060361
805 => 0.036582753502658
806 => 0.036525686942379
807 => 0.035756254565429
808 => 0.034393093578657
809 => 0.035148417090567
810 => 0.034236092502737
811 => 0.033890581357353
812 => 0.035526177381596
813 => 0.035362008905134
814 => 0.035081023835752
815 => 0.034665388355717
816 => 0.03451122511313
817 => 0.033574578053324
818 => 0.033519235948212
819 => 0.033983463522651
820 => 0.033769238470143
821 => 0.03346838536305
822 => 0.032378725906151
823 => 0.031153587902748
824 => 0.031190567118128
825 => 0.031580260722507
826 => 0.032713347434583
827 => 0.032270630853576
828 => 0.031949434894468
829 => 0.031889284546442
830 => 0.032642192085269
831 => 0.033707713991716
901 => 0.034207633030511
902 => 0.033712228445832
903 => 0.033143134333429
904 => 0.033177772455123
905 => 0.033408204360599
906 => 0.033432419495733
907 => 0.033061997732379
908 => 0.033166269289005
909 => 0.033007871259699
910 => 0.032035782846226
911 => 0.032018200849352
912 => 0.031779634675642
913 => 0.031772410986714
914 => 0.031366550412114
915 => 0.031309767712145
916 => 0.030503906907299
917 => 0.03103432692942
918 => 0.030678549026883
919 => 0.030142307808235
920 => 0.030049859620019
921 => 0.030047080515847
922 => 0.030597680346055
923 => 0.031027892849829
924 => 0.030684737935819
925 => 0.030606608213677
926 => 0.031440829242129
927 => 0.031334667012165
928 => 0.031242731205689
929 => 0.03361230819174
930 => 0.031736603106882
1001 => 0.030918688628381
1002 => 0.029906364143489
1003 => 0.030235982100353
1004 => 0.03030543744696
1005 => 0.027870979545998
1006 => 0.026883320278771
1007 => 0.026544392837413
1008 => 0.02634933530318
1009 => 0.026438225470908
1010 => 0.025549216289526
1011 => 0.02614664516227
1012 => 0.025376838357268
1013 => 0.025247777741241
1014 => 0.026624287669348
1015 => 0.02681582098439
1016 => 0.025998680357685
1017 => 0.02652341692308
1018 => 0.026333140150084
1019 => 0.02539003448546
1020 => 0.025354014786087
1021 => 0.024880797515346
1022 => 0.024140304119555
1023 => 0.023801878767589
1024 => 0.023625623905941
1025 => 0.023698350096995
1026 => 0.02366157750934
1027 => 0.023421611500952
1028 => 0.023675332080047
1029 => 0.023027180845041
1030 => 0.022769081800752
1031 => 0.022652504450299
1101 => 0.022077232923038
1102 => 0.02299274574732
1103 => 0.02317311330703
1104 => 0.023353836246551
1105 => 0.024926906050291
1106 => 0.024848319928346
1107 => 0.025558700197741
1108 => 0.025531096126778
1109 => 0.025328484166549
1110 => 0.024473697634392
1111 => 0.024814400311005
1112 => 0.023765770429342
1113 => 0.024551475236585
1114 => 0.024192912374377
1115 => 0.02443024477219
1116 => 0.024003499721522
1117 => 0.024239678052433
1118 => 0.023215885146632
1119 => 0.022259881736351
1120 => 0.022644605416127
1121 => 0.023062844054534
1122 => 0.023969691987823
1123 => 0.023429580840089
1124 => 0.023623825232678
1125 => 0.022973139033624
1126 => 0.021630587545652
1127 => 0.021638186241274
1128 => 0.021431663943923
1129 => 0.021253198526263
1130 => 0.023491619102622
1201 => 0.023213236119759
1202 => 0.022769669270431
1203 => 0.023363401124903
1204 => 0.023520393251017
1205 => 0.023524862596142
1206 => 0.023958034030727
1207 => 0.024189217703016
1208 => 0.024229964827264
1209 => 0.024911569438872
1210 => 0.025140034314101
1211 => 0.026081048801609
1212 => 0.024169603383612
1213 => 0.02413023842309
1214 => 0.023371756149687
1215 => 0.022890714700764
1216 => 0.023404693469244
1217 => 0.023860008493018
1218 => 0.023385904056661
1219 => 0.023447812087159
1220 => 0.022811365617106
1221 => 0.02303886528256
1222 => 0.023234818641963
1223 => 0.023126624714507
1224 => 0.022964653168459
1225 => 0.023822677853412
1226 => 0.023774264738062
1227 => 0.024573277050592
1228 => 0.025196164286129
1229 => 0.026312489566622
1230 => 0.025147545941074
1231 => 0.025105090765128
]
'min_raw' => 0.021253198526263
'max_raw' => 0.061449247193101
'avg_raw' => 0.041351222859682
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021253'
'max' => '$0.061449'
'avg' => '$0.041351'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.003737122556036
'max_diff' => -0.020757587087085
'year' => 2030
]
5 => [
'items' => [
101 => 0.025520096920029
102 => 0.025139970778821
103 => 0.025380197378556
104 => 0.026273785347516
105 => 0.026292665453202
106 => 0.025976399357309
107 => 0.025957154536631
108 => 0.02601789689992
109 => 0.026373666818953
110 => 0.026249349877537
111 => 0.026393212589463
112 => 0.02657311511363
113 => 0.027317268230676
114 => 0.027496681027877
115 => 0.027060800945548
116 => 0.02710015603664
117 => 0.026937124920673
118 => 0.026779638905423
119 => 0.02713364446872
120 => 0.027780596593641
121 => 0.027776571938048
122 => 0.027926652256078
123 => 0.028020151050878
124 => 0.027618785778296
125 => 0.027357511744455
126 => 0.027457700834328
127 => 0.02761790537087
128 => 0.027405748662311
129 => 0.026096219176534
130 => 0.026493446769451
131 => 0.026427328674553
201 => 0.026333168467183
202 => 0.026732583883531
203 => 0.026694059292244
204 => 0.025540098215418
205 => 0.025613971059539
206 => 0.025544590667743
207 => 0.025768772907527
208 => 0.025127864202169
209 => 0.025325003403351
210 => 0.025448647262267
211 => 0.025521474445046
212 => 0.025784576167308
213 => 0.02575370421691
214 => 0.025782657123525
215 => 0.026172767521361
216 => 0.028145812043893
217 => 0.028253200503978
218 => 0.02772438045104
219 => 0.027935633631674
220 => 0.027530073720848
221 => 0.027802328806001
222 => 0.027988598820733
223 => 0.027146880441822
224 => 0.02709703934213
225 => 0.026689805541287
226 => 0.026908629918959
227 => 0.026560464600053
228 => 0.026645892191007
301 => 0.026407029199257
302 => 0.026836935027259
303 => 0.027317636543577
304 => 0.027439080730078
305 => 0.027119613360405
306 => 0.026888297930837
307 => 0.026482184236555
308 => 0.02715756036098
309 => 0.027355060921477
310 => 0.027156522974615
311 => 0.027110517394187
312 => 0.027023336902406
313 => 0.027129013147647
314 => 0.027353985291009
315 => 0.027247892582783
316 => 0.027317968685679
317 => 0.027050910843601
318 => 0.027618918646902
319 => 0.028521051737065
320 => 0.028523952242464
321 => 0.028417858962358
322 => 0.028374447877951
323 => 0.028483306021618
324 => 0.028542357098962
325 => 0.028894384374412
326 => 0.029272123666354
327 => 0.031034868121286
328 => 0.030539896532077
329 => 0.032103908278629
330 => 0.033340838508644
331 => 0.033711739800222
401 => 0.033370528064224
402 => 0.032203261147273
403 => 0.032145989463587
404 => 0.033890379044892
405 => 0.033397509090069
406 => 0.033338883777242
407 => 0.032715209497792
408 => 0.033083878240509
409 => 0.033003244978433
410 => 0.032875961429531
411 => 0.033579355708948
412 => 0.034896047007577
413 => 0.034690828320833
414 => 0.034537642091
415 => 0.03386642462371
416 => 0.034270647460867
417 => 0.034126711450934
418 => 0.034745151893656
419 => 0.034378801475521
420 => 0.03339377511541
421 => 0.033550643809947
422 => 0.033526933422344
423 => 0.034014891519083
424 => 0.033868418610306
425 => 0.033498332236099
426 => 0.034891546699861
427 => 0.034801079102051
428 => 0.034929341471974
429 => 0.03498580653386
430 => 0.035833831626759
501 => 0.036181240373544
502 => 0.03626010824131
503 => 0.036590119681199
504 => 0.036251897256052
505 => 0.037605028105141
506 => 0.038504781162411
507 => 0.039549890639299
508 => 0.041077076483977
509 => 0.041651312488835
510 => 0.041547581894344
511 => 0.042705476772248
512 => 0.044786188129285
513 => 0.041968153149416
514 => 0.044935550825941
515 => 0.043996106981807
516 => 0.041768702527238
517 => 0.041625283939737
518 => 0.043133708097069
519 => 0.046479247697586
520 => 0.045641227972452
521 => 0.046480618397644
522 => 0.04550142487981
523 => 0.045452799668359
524 => 0.046433061154083
525 => 0.04872349554675
526 => 0.047635396022444
527 => 0.0460753385414
528 => 0.04722726070822
529 => 0.046229359121957
530 => 0.04398080755304
531 => 0.045640587154562
601 => 0.044530739802826
602 => 0.044854652262793
603 => 0.047187386318808
604 => 0.046906705585539
605 => 0.047269932444725
606 => 0.046628846545564
607 => 0.046029971225781
608 => 0.044912125968341
609 => 0.044581187096718
610 => 0.044672646694901
611 => 0.044581141773883
612 => 0.043955717625873
613 => 0.043820657340658
614 => 0.043595550948172
615 => 0.043665320831954
616 => 0.043242054956882
617 => 0.044040845114335
618 => 0.044189107606473
619 => 0.044770400469496
620 => 0.0448307522229
621 => 0.046449644572233
622 => 0.045557985870601
623 => 0.046156187509764
624 => 0.046102678724665
625 => 0.041816977135849
626 => 0.042407509001723
627 => 0.043326191265914
628 => 0.04291232615114
629 => 0.042327217708372
630 => 0.041854711269307
701 => 0.04113881569786
702 => 0.042146424967115
703 => 0.043471324008887
704 => 0.044864353849015
705 => 0.046537987926999
706 => 0.046164452284041
707 => 0.044833066424083
708 => 0.044892791421183
709 => 0.045261987852333
710 => 0.04478384492896
711 => 0.044642831246399
712 => 0.045242614737762
713 => 0.045246745117032
714 => 0.044696583898189
715 => 0.044085180381885
716 => 0.044082618578827
717 => 0.043973825228558
718 => 0.045520778975137
719 => 0.046371447121091
720 => 0.046468974853104
721 => 0.046364882727666
722 => 0.046404943655479
723 => 0.045909958604542
724 => 0.047041347647726
725 => 0.048079622116532
726 => 0.047801342379394
727 => 0.047384161493627
728 => 0.04705185682396
729 => 0.047723061960014
730 => 0.047693174251881
731 => 0.048070553694818
801 => 0.048053433583437
802 => 0.047926535070736
803 => 0.047801346911339
804 => 0.04829770381272
805 => 0.048154760996371
806 => 0.048011596150345
807 => 0.0477244571342
808 => 0.047763484095368
809 => 0.047346375241763
810 => 0.047153401600483
811 => 0.044251541044138
812 => 0.043476069082453
813 => 0.043720048347786
814 => 0.043800372656853
815 => 0.043462886265334
816 => 0.043946755057632
817 => 0.043871344618896
818 => 0.044164722522386
819 => 0.043981432745273
820 => 0.04398895502166
821 => 0.044527971174647
822 => 0.044684449856998
823 => 0.044604863536217
824 => 0.044660603067233
825 => 0.045945097033309
826 => 0.045762483067138
827 => 0.045665473037241
828 => 0.045692345478501
829 => 0.046020561226694
830 => 0.046112443716273
831 => 0.04572313115146
901 => 0.045906733207615
902 => 0.046688487460153
903 => 0.046962057205083
904 => 0.047835160509971
905 => 0.047464250707881
906 => 0.048145071702218
907 => 0.050237683329829
908 => 0.051909406295675
909 => 0.05037202076941
910 => 0.05344192710355
911 => 0.055832289536588
912 => 0.055740543445051
913 => 0.055323728464772
914 => 0.052602364385832
915 => 0.050098124587139
916 => 0.052193027514384
917 => 0.052198367852766
918 => 0.052018413833438
919 => 0.050900734874606
920 => 0.051979521028381
921 => 0.052065151155691
922 => 0.052017221055286
923 => 0.051160299218086
924 => 0.049851937958311
925 => 0.050107588616696
926 => 0.050526349610265
927 => 0.049733547686745
928 => 0.049480199434618
929 => 0.049951222036799
930 => 0.051468955002483
1001 => 0.051182036376949
1002 => 0.051174543772107
1003 => 0.052402103324575
1004 => 0.05152343560894
1005 => 0.050110813190205
1006 => 0.049754107399274
1007 => 0.048488042147282
1008 => 0.049362517926403
1009 => 0.049393988752894
1010 => 0.048915047305595
1011 => 0.050149676649057
1012 => 0.050138299322305
1013 => 0.051310396133594
1014 => 0.053551005017322
1015 => 0.052888346716737
1016 => 0.052117747210174
1017 => 0.052201532742944
1018 => 0.053120453237115
1019 => 0.052564852929425
1020 => 0.052764650673853
1021 => 0.053120150819299
1022 => 0.053334632883619
1023 => 0.05217067207458
1024 => 0.051899297131312
1025 => 0.051344159237047
1026 => 0.051199334122573
1027 => 0.051651482354119
1028 => 0.05153235726974
1029 => 0.049391343751789
1030 => 0.049167595926676
1031 => 0.049174457953034
1101 => 0.048611833408159
1102 => 0.047753695931862
1103 => 0.050008829982844
1104 => 0.049827711157969
1105 => 0.049627769992791
1106 => 0.049652261644677
1107 => 0.050631138902624
1108 => 0.050063340658528
1109 => 0.051572925350759
1110 => 0.051262600120306
1111 => 0.050944316218656
1112 => 0.050900319688283
1113 => 0.050777807540854
1114 => 0.050357667802559
1115 => 0.049850323822083
1116 => 0.04951533138079
1117 => 0.045675275828265
1118 => 0.046387967802238
1119 => 0.047207854954377
1120 => 0.047490876713803
1121 => 0.047006748409794
1122 => 0.050376784138798
1123 => 0.050992522140959
1124 => 0.049127411568817
1125 => 0.048778525532732
1126 => 0.050399657049241
1127 => 0.049421916569518
1128 => 0.049862193047669
1129 => 0.048910556120264
1130 => 0.050844208887152
1201 => 0.050829477692823
1202 => 0.050077243092975
1203 => 0.050713026625686
1204 => 0.050602543591013
1205 => 0.049753272580457
1206 => 0.050871132293004
1207 => 0.050871686737475
1208 => 0.050147677290112
1209 => 0.049302192761639
1210 => 0.049151040097402
1211 => 0.049037166869402
1212 => 0.049834187214137
1213 => 0.050548793163008
1214 => 0.05187849766802
1215 => 0.052212816973579
1216 => 0.053517687480075
1217 => 0.052740700626449
1218 => 0.053085128834997
1219 => 0.053459054377721
1220 => 0.053638328033559
1221 => 0.053346211231725
1222 => 0.055373212234441
1223 => 0.055544353224776
1224 => 0.055601735318472
1225 => 0.054918241985149
1226 => 0.055525344038746
1227 => 0.055241301092975
1228 => 0.055980301928469
1229 => 0.056096186695511
1230 => 0.055998036420547
1231 => 0.056034820074722
]
'min_raw' => 0.025127864202169
'max_raw' => 0.056096186695511
'avg_raw' => 0.04061202544884
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025127'
'max' => '$0.056096'
'avg' => '$0.040612'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.003874665675906
'max_diff' => -0.0053530604975898
'year' => 2031
]
6 => [
'items' => [
101 => 0.054305132306385
102 => 0.054215438870766
103 => 0.052992462511757
104 => 0.053490834417838
105 => 0.052559152027006
106 => 0.052854598110531
107 => 0.052984827929035
108 => 0.052916803262326
109 => 0.053519011617657
110 => 0.053007011492586
111 => 0.051655758981912
112 => 0.050304138323394
113 => 0.050287169827033
114 => 0.049931311965732
115 => 0.049674091910629
116 => 0.049723641618613
117 => 0.049898261252421
118 => 0.049663942700071
119 => 0.049713946443467
120 => 0.050544341757039
121 => 0.050710871615068
122 => 0.050144938090071
123 => 0.047872633323392
124 => 0.047315004034004
125 => 0.047715816908946
126 => 0.047524254170379
127 => 0.038355782231456
128 => 0.04050977871564
129 => 0.039229947147547
130 => 0.039819752416343
131 => 0.038513375796098
201 => 0.039136847192344
202 => 0.039021714790988
203 => 0.042485277396165
204 => 0.042431198630059
205 => 0.042457083273609
206 => 0.04122154179489
207 => 0.043189792919097
208 => 0.044159424198903
209 => 0.043979971254912
210 => 0.044025135694752
211 => 0.043249060981341
212 => 0.04246459737325
213 => 0.041594506503794
214 => 0.043211027792763
215 => 0.043031298220368
216 => 0.043443533194782
217 => 0.044491962802007
218 => 0.044646348044267
219 => 0.044853843375486
220 => 0.044779471069767
221 => 0.046551321122548
222 => 0.046336738390113
223 => 0.046853821035615
224 => 0.045790142802662
225 => 0.044586489916811
226 => 0.044815264980034
227 => 0.044793232101753
228 => 0.044512728273073
229 => 0.044259501958713
301 => 0.043837951491377
302 => 0.045171799547759
303 => 0.045117647752563
304 => 0.045994302372219
305 => 0.045839345152826
306 => 0.044804502917257
307 => 0.044841462510149
308 => 0.045090033534526
309 => 0.045950340688026
310 => 0.046205738425363
311 => 0.046087428017589
312 => 0.046367459977229
313 => 0.046588785820305
314 => 0.046395255095526
315 => 0.049135242038216
316 => 0.047997408428388
317 => 0.048551980612823
318 => 0.048684242811082
319 => 0.048345455971416
320 => 0.048418926705893
321 => 0.048530214849047
322 => 0.049205934661829
323 => 0.050979218971673
324 => 0.051764594521349
325 => 0.054127435612294
326 => 0.051699380014904
327 => 0.051555309244047
328 => 0.051980928275492
329 => 0.053368166128007
330 => 0.054492392110845
331 => 0.054865362727505
401 => 0.054914656951571
402 => 0.055614374623043
403 => 0.056015439743369
404 => 0.055529410493325
405 => 0.055117551593296
406 => 0.0536423241352
407 => 0.053813085730386
408 => 0.054989463785088
409 => 0.056651167075677
410 => 0.058077081369763
411 => 0.057577775882104
412 => 0.061387124298198
413 => 0.06176480563386
414 => 0.061712622285171
415 => 0.06257303657433
416 => 0.060865289430673
417 => 0.060135194440717
418 => 0.055206600162279
419 => 0.056591334119772
420 => 0.058604126249562
421 => 0.058337725663601
422 => 0.05687598221686
423 => 0.058075972506281
424 => 0.057679218189433
425 => 0.057366281598383
426 => 0.058799904787726
427 => 0.057223577201048
428 => 0.058588401176057
429 => 0.056838000310812
430 => 0.057580056667514
501 => 0.057158829590222
502 => 0.057431415132879
503 => 0.055837885620347
504 => 0.056697715464567
505 => 0.055802113871969
506 => 0.055801689240203
507 => 0.055781918785408
508 => 0.056835590087394
509 => 0.056869950270724
510 => 0.056091285586547
511 => 0.055979067840529
512 => 0.05639399566326
513 => 0.055908223852611
514 => 0.056135513425402
515 => 0.055915108222227
516 => 0.055865490368548
517 => 0.055470126868656
518 => 0.055299793402156
519 => 0.055366585543323
520 => 0.05513858953181
521 => 0.055001213687898
522 => 0.055754591272354
523 => 0.055352092020144
524 => 0.055692902489301
525 => 0.055304505945987
526 => 0.05395815431054
527 => 0.053183853247585
528 => 0.05064071981509
529 => 0.051361949301798
530 => 0.051840125197652
531 => 0.051682088066925
601 => 0.052021612975978
602 => 0.052042457047886
603 => 0.051932074038907
604 => 0.051804264655447
605 => 0.051742054115881
606 => 0.052205720509666
607 => 0.052474894457551
608 => 0.051888116545969
609 => 0.051750642691181
610 => 0.052343907556687
611 => 0.052705798781927
612 => 0.05537780025999
613 => 0.055179849760044
614 => 0.055676666669084
615 => 0.055620732709403
616 => 0.056141475979218
617 => 0.05699267114284
618 => 0.055261953377287
619 => 0.055562346137669
620 => 0.055488696769905
621 => 0.05629278125525
622 => 0.056295291519244
623 => 0.055813202703281
624 => 0.056074550871413
625 => 0.055928673493674
626 => 0.056192293631758
627 => 0.055177206010432
628 => 0.05641347316127
629 => 0.057114356972499
630 => 0.057124088744898
701 => 0.057456302108863
702 => 0.057793850127151
703 => 0.05844174415402
704 => 0.057775780714387
705 => 0.056577777316722
706 => 0.056664269292506
707 => 0.055961880338787
708 => 0.055973687623996
709 => 0.055910659410197
710 => 0.05609981182435
711 => 0.055218714328376
712 => 0.055425506149568
713 => 0.055135996388928
714 => 0.05556171679999
715 => 0.055103712011792
716 => 0.05548866125395
717 => 0.055654792585596
718 => 0.056267820775921
719 => 0.055013167249643
720 => 0.052454843776985
721 => 0.052992634387612
722 => 0.052197199831955
723 => 0.052270820328514
724 => 0.052419545448178
725 => 0.051937478675515
726 => 0.052029441824069
727 => 0.052026156253268
728 => 0.051997842979113
729 => 0.051872438793241
730 => 0.051690577913265
731 => 0.052415055685263
801 => 0.052538158576102
802 => 0.052811801053214
803 => 0.053625975451634
804 => 0.053544620229677
805 => 0.053677313972084
806 => 0.053387644277453
807 => 0.052284257274855
808 => 0.052344176497651
809 => 0.051596982829243
810 => 0.052792693631192
811 => 0.052509533530679
812 => 0.052326978371813
813 => 0.052277166505355
814 => 0.053093359084629
815 => 0.0533375766966
816 => 0.053185396669654
817 => 0.052873270994588
818 => 0.053472644562387
819 => 0.053633011643589
820 => 0.05366891191896
821 => 0.054730886962617
822 => 0.053728264526829
823 => 0.053969605712333
824 => 0.055852480747756
825 => 0.054144972909622
826 => 0.05504947789345
827 => 0.055005207081309
828 => 0.055467921224255
829 => 0.054967251015973
830 => 0.054973457423253
831 => 0.055384316235218
901 => 0.05480733913259
902 => 0.054664471487931
903 => 0.054467100860074
904 => 0.054898052405341
905 => 0.055156388366467
906 => 0.057238386486286
907 => 0.058583452222338
908 => 0.058525059371378
909 => 0.059058660722321
910 => 0.058818268426493
911 => 0.058041978290981
912 => 0.059367010893803
913 => 0.058947715136551
914 => 0.058982281369335
915 => 0.058980994812424
916 => 0.059259789835525
917 => 0.059062238010469
918 => 0.058672843085006
919 => 0.058931341608829
920 => 0.05969898980967
921 => 0.062081793379404
922 => 0.063415241824975
923 => 0.062001518108653
924 => 0.062976685797657
925 => 0.06239193267203
926 => 0.062285665634205
927 => 0.062898143007226
928 => 0.063511692440809
929 => 0.063472611994337
930 => 0.063027206611668
1001 => 0.062775608412741
1002 => 0.064680794266595
1003 => 0.066084502749721
1004 => 0.065988779241753
1005 => 0.066411271674972
1006 => 0.067651722526101
1007 => 0.067765133806092
1008 => 0.067750846591542
1009 => 0.067469744900841
1010 => 0.068691129856676
1011 => 0.069710030675057
1012 => 0.067404677981252
1013 => 0.06828252610777
1014 => 0.068676620414265
1015 => 0.06925526777871
1016 => 0.070231542875088
1017 => 0.071292036573935
1018 => 0.071442002010673
1019 => 0.0713355943568
1020 => 0.07063617025481
1021 => 0.071796575114409
1022 => 0.07247631306632
1023 => 0.072881081461156
1024 => 0.073907506763423
1025 => 0.068679054206536
1026 => 0.064978095615818
1027 => 0.064400137489388
1028 => 0.065575438066565
1029 => 0.06588535545592
1030 => 0.065760428144874
1031 => 0.061594662774588
1101 => 0.064378205596838
1102 => 0.067373063626652
1103 => 0.06748810832052
1104 => 0.068987396869773
1105 => 0.069475626679324
1106 => 0.070682750477715
1107 => 0.070607244555461
1108 => 0.070901159990834
1109 => 0.070833593922148
1110 => 0.073069536568762
1111 => 0.075536113348674
1112 => 0.07545070363802
1113 => 0.075096104042696
1114 => 0.075622744909968
1115 => 0.078168516481269
1116 => 0.077934142630142
1117 => 0.078161816862595
1118 => 0.081163425018557
1119 => 0.085065942595089
1120 => 0.083252831374431
1121 => 0.087186761014559
1122 => 0.08966296119437
1123 => 0.093945293361476
1124 => 0.093409124283224
1125 => 0.095076204770673
1126 => 0.092449269731289
1127 => 0.086417295889698
1128 => 0.085462712939798
1129 => 0.087373812179388
1130 => 0.092072063177584
1201 => 0.0872258475358
1202 => 0.088206230648408
1203 => 0.087923880246023
1204 => 0.087908834992992
1205 => 0.088483051107724
1206 => 0.087650120684206
1207 => 0.084256612297473
1208 => 0.085811837193042
1209 => 0.085211290172829
1210 => 0.085877641865502
1211 => 0.089473667126513
1212 => 0.087883778640085
1213 => 0.086208960271685
1214 => 0.088309554177607
1215 => 0.090984332062225
1216 => 0.090816949269243
1217 => 0.09049215669028
1218 => 0.092322995452312
1219 => 0.095347004701764
1220 => 0.096164382250437
1221 => 0.09676775364632
1222 => 0.096850948367769
1223 => 0.097707905703924
1224 => 0.093099830126362
1225 => 0.10041296441173
1226 => 0.10167574068155
1227 => 0.10143839107954
1228 => 0.1028419137577
1229 => 0.10242896178185
1230 => 0.10183065915903
1231 => 0.10405554114175
]
'min_raw' => 0.038355782231456
'max_raw' => 0.10405554114175
'avg_raw' => 0.071205661686602
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.038355'
'max' => '$0.104055'
'avg' => '$0.0712056'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013227918029287
'max_diff' => 0.047959354446237
'year' => 2032
]
7 => [
'items' => [
101 => 0.10150489348728
102 => 0.097884570259363
103 => 0.095898389334656
104 => 0.098513952596955
105 => 0.10011118581066
106 => 0.10116685536181
107 => 0.10148630033014
108 => 0.093457541915939
109 => 0.089130486426042
110 => 0.091904079385274
111 => 0.095288054218698
112 => 0.093081031975301
113 => 0.093167543068796
114 => 0.090020909344956
115 => 0.095566461481953
116 => 0.094758521181027
117 => 0.098950116891451
118 => 0.097949758935501
119 => 0.10136784252054
120 => 0.10046774656015
121 => 0.10420399456807
122 => 0.1056944850533
123 => 0.10819725055433
124 => 0.11003829504498
125 => 0.11111939158346
126 => 0.11105448660238
127 => 0.11533832968798
128 => 0.11281229708648
129 => 0.10963900479882
130 => 0.10958160995294
131 => 0.11122510299462
201 => 0.11466941353969
202 => 0.11556247315134
203 => 0.11606157164082
204 => 0.11529718493044
205 => 0.11255535758389
206 => 0.11137145043704
207 => 0.11238017362725
208 => 0.11114659184619
209 => 0.11327610008222
210 => 0.1162003697287
211 => 0.11559651961051
212 => 0.11761510002133
213 => 0.11970411838567
214 => 0.12269150847037
215 => 0.12347252286124
216 => 0.12476350995004
217 => 0.12609235973158
218 => 0.1265191504679
219 => 0.12733402640893
220 => 0.12732973161049
221 => 0.12978541510626
222 => 0.13249411004829
223 => 0.13351657968247
224 => 0.13586769222697
225 => 0.13184149438733
226 => 0.13489541169833
227 => 0.13765012155735
228 => 0.13436584290006
301 => 0.13889245589036
302 => 0.13906821401524
303 => 0.14172195303139
304 => 0.13903188014365
305 => 0.13743452344992
306 => 0.14204603237253
307 => 0.14427739627901
308 => 0.14360529131093
309 => 0.13849053931798
310 => 0.13551353427605
311 => 0.12772213785993
312 => 0.1369513834781
313 => 0.14144667979793
314 => 0.1384788975865
315 => 0.13997567430836
316 => 0.14814160277137
317 => 0.15125065962537
318 => 0.15060399753369
319 => 0.15071327278222
320 => 0.15239086342726
321 => 0.15983022421343
322 => 0.15537238678733
323 => 0.1587802364676
324 => 0.16058774765011
325 => 0.16226666477011
326 => 0.15814377495059
327 => 0.15277995587268
328 => 0.15108100921289
329 => 0.13818381013416
330 => 0.13751245491242
331 => 0.13713560288231
401 => 0.13475960413924
402 => 0.13289271996802
403 => 0.1314081043621
404 => 0.12751202966841
405 => 0.12882684050706
406 => 0.12261731061931
407 => 0.12658994778926
408 => 0.11667938815407
409 => 0.12493319671213
410 => 0.1204410239686
411 => 0.12345739714928
412 => 0.12344687330741
413 => 0.11789277393979
414 => 0.11468928533565
415 => 0.11673067295585
416 => 0.11891920253026
417 => 0.11927428409061
418 => 0.1221117698103
419 => 0.12290365108311
420 => 0.12050421385709
421 => 0.11647401383395
422 => 0.11741013738025
423 => 0.11467031482186
424 => 0.10986888117404
425 => 0.11331735464489
426 => 0.11449481510652
427 => 0.11501484872482
428 => 0.11029319018056
429 => 0.10880954255376
430 => 0.10801966100626
501 => 0.11586450700794
502 => 0.11629426538065
503 => 0.11409556078415
504 => 0.12403391405004
505 => 0.12178455862184
506 => 0.1242976397406
507 => 0.11732519398041
508 => 0.11759155079809
509 => 0.11429068323681
510 => 0.11613894850708
511 => 0.11483265418643
512 => 0.11598962693815
513 => 0.11668311163516
514 => 0.11998343755655
515 => 0.12497088113276
516 => 0.11949047892007
517 => 0.11710258919519
518 => 0.1185840225505
519 => 0.1225292747967
520 => 0.12850653390344
521 => 0.1249678762087
522 => 0.12653827240332
523 => 0.12688133410979
524 => 0.12427205893391
525 => 0.12860274160101
526 => 0.13092358962471
527 => 0.1333042994652
528 => 0.13537140311371
529 => 0.13235339160197
530 => 0.13558309653449
531 => 0.13298052447855
601 => 0.13064574829542
602 => 0.13064928918713
603 => 0.12918464998181
604 => 0.1263467269651
605 => 0.12582337041926
606 => 0.12854593726333
607 => 0.13072917804424
608 => 0.13090900021197
609 => 0.13211775448725
610 => 0.13283308281619
611 => 0.13984427288157
612 => 0.14266423152548
613 => 0.14611242357615
614 => 0.14745568870935
615 => 0.15149843517306
616 => 0.1482335890678
617 => 0.14752721907608
618 => 0.1377208385274
619 => 0.13932663279289
620 => 0.14189766434802
621 => 0.13776323389078
622 => 0.14038557840119
623 => 0.1409032847564
624 => 0.1376227475259
625 => 0.13937502420435
626 => 0.13472149686021
627 => 0.12507231531224
628 => 0.12861348389844
629 => 0.13122097592233
630 => 0.12749976330279
701 => 0.13416989289251
702 => 0.13027334088562
703 => 0.12903832096691
704 => 0.12422006794766
705 => 0.12649409790118
706 => 0.12956975597429
707 => 0.12766935686874
708 => 0.13161297035912
709 => 0.1371981787848
710 => 0.14117853091386
711 => 0.1414840929261
712 => 0.13892499317
713 => 0.14302596686111
714 => 0.14305583797731
715 => 0.13842992290077
716 => 0.13559657567359
717 => 0.13495283322217
718 => 0.13656102807898
719 => 0.13851367352429
720 => 0.14159245115859
721 => 0.14345289200249
722 => 0.14830393502181
723 => 0.14961648817253
724 => 0.15105858614392
725 => 0.15298567376025
726 => 0.15529963653877
727 => 0.15023681771334
728 => 0.15043797294355
729 => 0.1457235461528
730 => 0.1406855050097
731 => 0.14450875023662
801 => 0.14950713478582
802 => 0.14836049984751
803 => 0.14823147999332
804 => 0.14844845560094
805 => 0.14758393030305
806 => 0.1436737144215
807 => 0.14171002848502
808 => 0.14424368433278
809 => 0.14559020965582
810 => 0.1476785530025
811 => 0.14742112060544
812 => 0.15280046879478
813 => 0.15489072083812
814 => 0.1543559449185
815 => 0.15445435655781
816 => 0.15823865803882
817 => 0.16244757958665
818 => 0.16638979003232
819 => 0.17039997581952
820 => 0.16556554033283
821 => 0.16311091213922
822 => 0.16564346187209
823 => 0.16429965533561
824 => 0.17202156629315
825 => 0.17255621465385
826 => 0.18027756722934
827 => 0.18760605026503
828 => 0.18300316137372
829 => 0.18734347827956
830 => 0.19203788488445
831 => 0.2010941568653
901 => 0.19804432306564
902 => 0.19570819817209
903 => 0.19350057143575
904 => 0.19809429222319
905 => 0.20400404062974
906 => 0.20527694383365
907 => 0.20733953331042
908 => 0.20517097267704
909 => 0.20778276510083
910 => 0.21700354003658
911 => 0.21451200525491
912 => 0.21097362533074
913 => 0.21825254156987
914 => 0.22088675306074
915 => 0.23937502885096
916 => 0.26271724074868
917 => 0.25305341174979
918 => 0.24705476124037
919 => 0.24846458639998
920 => 0.25698837200129
921 => 0.259725941405
922 => 0.25228428406896
923 => 0.25491280324599
924 => 0.26939620234174
925 => 0.27716608127353
926 => 0.26661354205019
927 => 0.23749950485278
928 => 0.21065503293282
929 => 0.21777539570832
930 => 0.21696816754016
1001 => 0.23252877302771
1002 => 0.21445258297437
1003 => 0.2147569396559
1004 => 0.23063932198596
1005 => 0.22640217467327
1006 => 0.21953853867953
1007 => 0.21070514507133
1008 => 0.19437579999655
1009 => 0.17991244368635
1010 => 0.20827841612269
1011 => 0.20705522381106
1012 => 0.20528386007688
1013 => 0.20922583838572
1014 => 0.22836696610343
1015 => 0.22792570115575
1016 => 0.22511859869398
1017 => 0.22724776117057
1018 => 0.21916528620303
1019 => 0.2212483240367
1020 => 0.21065078063131
1021 => 0.21544131284305
1022 => 0.2195238123993
1023 => 0.22034343462766
1024 => 0.22219008535909
1025 => 0.20641065704512
1026 => 0.21349515709842
1027 => 0.21765663715184
1028 => 0.19885491887452
1029 => 0.21728498763363
1030 => 0.20613597230423
1031 => 0.20235182904884
1101 => 0.20744667941926
1102 => 0.205461211275
1103 => 0.20375422235517
1104 => 0.20280169320812
1105 => 0.20654278902203
1106 => 0.20636826243074
1107 => 0.20024710356376
1108 => 0.19226230135214
1109 => 0.19494226306656
1110 => 0.19396860785094
1111 => 0.1904399557455
1112 => 0.19281784121348
1113 => 0.18234683703277
1114 => 0.16433201857528
1115 => 0.17623315945711
1116 => 0.17577497847911
1117 => 0.17554394285315
1118 => 0.18448732130247
1119 => 0.18362762182341
1120 => 0.18206725885073
1121 => 0.19041129845585
1122 => 0.18736561175681
1123 => 0.19675170050922
1124 => 0.20293398561572
1125 => 0.20136595813674
1126 => 0.20718042716097
1127 => 0.1950040039717
1128 => 0.19904852332187
1129 => 0.19988209315448
1130 => 0.19030833430234
1201 => 0.18376827929027
1202 => 0.18333213218305
1203 => 0.17199257806722
1204 => 0.17805007634621
1205 => 0.18338042415542
1206 => 0.18082760120651
1207 => 0.1800194537243
1208 => 0.1841481039451
1209 => 0.18446893542675
1210 => 0.17715394364485
1211 => 0.17867496207197
1212 => 0.18501786176134
1213 => 0.178515137274
1214 => 0.16588140580912
1215 => 0.16274806573083
1216 => 0.16233002040547
1217 => 0.1538321536048
1218 => 0.16295745049751
1219 => 0.15897401386109
1220 => 0.17155764246664
1221 => 0.1643699412945
1222 => 0.16406009386285
1223 => 0.16359171402517
1224 => 0.15627724902738
1225 => 0.15787865200339
1226 => 0.16320195939623
1227 => 0.16510137544534
1228 => 0.16490325078996
1229 => 0.16317587228588
1230 => 0.16396665731944
1231 => 0.16141926319858
]
'min_raw' => 0.089130486426042
'max_raw' => 0.27716608127353
'avg_raw' => 0.18314828384979
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.08913'
'max' => '$0.277166'
'avg' => '$0.183148'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.050774704194586
'max_diff' => 0.17311054013178
'year' => 2033
]
8 => [
'items' => [
101 => 0.16051972531508
102 => 0.15768053631737
103 => 0.15350771283671
104 => 0.15408796953511
105 => 0.14582051434127
106 => 0.1413159659646
107 => 0.14006916634294
108 => 0.1384018937815
109 => 0.14025748921519
110 => 0.14579709367945
111 => 0.13911515540291
112 => 0.12765944091125
113 => 0.12834794887178
114 => 0.12989482183926
115 => 0.12701223429796
116 => 0.12428410710734
117 => 0.12665599235963
118 => 0.12180205511149
119 => 0.13048139696574
120 => 0.13024664509216
121 => 0.13348176700852
122 => 0.13550475513421
123 => 0.13084242245468
124 => 0.12966985839407
125 => 0.13033780417306
126 => 0.11929814831396
127 => 0.13257959160086
128 => 0.13269445007393
129 => 0.13171096209491
130 => 0.13878292062663
131 => 0.15370695892773
201 => 0.1480919354008
202 => 0.14591762857619
203 => 0.1417842697132
204 => 0.14729172498357
205 => 0.1468688383485
206 => 0.14495638460968
207 => 0.14379972662122
208 => 0.14593090443002
209 => 0.14353565010601
210 => 0.14310539661223
211 => 0.14049852856034
212 => 0.13956799527076
213 => 0.13887906546875
214 => 0.13812062144958
215 => 0.13979355996339
216 => 0.1360024611977
217 => 0.13143076773227
218 => 0.13105068088703
219 => 0.13210013408432
220 => 0.13163582916712
221 => 0.13104845797371
222 => 0.12992700640448
223 => 0.12959429567991
224 => 0.13067544412647
225 => 0.12945489056518
226 => 0.13125588383185
227 => 0.13076611331682
228 => 0.1280302950331
301 => 0.12462045252192
302 => 0.12459009777119
303 => 0.12385545279542
304 => 0.12291977196416
305 => 0.12265948696238
306 => 0.1264562387994
307 => 0.13431540147482
308 => 0.13277245978781
309 => 0.1338873932837
310 => 0.13937176259323
311 => 0.14111507867599
312 => 0.13987771421315
313 => 0.1381839334191
314 => 0.13825845117796
315 => 0.14404661289354
316 => 0.14440761343984
317 => 0.14531974535714
318 => 0.14649209263932
319 => 0.14007737002468
320 => 0.13795631831967
321 => 0.13695124635037
322 => 0.13385601369673
323 => 0.13719395674849
324 => 0.1352490802772
325 => 0.13551151055962
326 => 0.13534060249392
327 => 0.13543392985455
328 => 0.1304789709128
329 => 0.1322842975262
330 => 0.12928259188258
331 => 0.12526364498303
401 => 0.1252501720638
402 => 0.12623380362383
403 => 0.12564870108242
404 => 0.12407420518785
405 => 0.12429785489826
406 => 0.12233844809976
407 => 0.1245357623598
408 => 0.12459877347041
409 => 0.12375268779178
410 => 0.12713795358031
411 => 0.12852489973599
412 => 0.1279679880174
413 => 0.1284858253252
414 => 0.13283657598087
415 => 0.13354593817431
416 => 0.13386099000279
417 => 0.13343886228899
418 => 0.1285653490604
419 => 0.12878151009587
420 => 0.12719546384271
421 => 0.12585542189224
422 => 0.12590901654266
423 => 0.12659797229847
424 => 0.12960668249079
425 => 0.13593833571737
426 => 0.13617861732894
427 => 0.13646984565168
428 => 0.13528527370349
429 => 0.1349279954691
430 => 0.1353993376816
501 => 0.137777173731
502 => 0.14389361362623
503 => 0.14173165526397
504 => 0.13997394946257
505 => 0.14151593132448
506 => 0.14127855530329
507 => 0.13927486279768
508 => 0.13921862582255
509 => 0.13537289928504
510 => 0.13395122174707
511 => 0.13276316158563
512 => 0.13146583090443
513 => 0.1306967297897
514 => 0.13187841865214
515 => 0.13214868487631
516 => 0.12956490152621
517 => 0.129212741403
518 => 0.13132271466152
519 => 0.13039419409818
520 => 0.13134920052378
521 => 0.13157077020642
522 => 0.13153509238433
523 => 0.13056561027629
524 => 0.13118352926158
525 => 0.12972196665085
526 => 0.12813273683128
527 => 0.12711890721891
528 => 0.12623420641714
529 => 0.12672508984108
530 => 0.12497518006651
531 => 0.12441534871091
601 => 0.13097419221298
602 => 0.13581928042741
603 => 0.13574883092591
604 => 0.13531998770365
605 => 0.13468281366304
606 => 0.13773056048122
607 => 0.13666878643138
608 => 0.13744131576683
609 => 0.13763795690565
610 => 0.13823313040835
611 => 0.13844585377868
612 => 0.13780285600768
613 => 0.13564487695264
614 => 0.13026739832198
615 => 0.12776416750318
616 => 0.12693805963837
617 => 0.12696808709025
618 => 0.12613979591885
619 => 0.12638376479024
620 => 0.12605495350169
621 => 0.12543226446917
622 => 0.12668664054801
623 => 0.12683119570577
624 => 0.1265384093403
625 => 0.12660737112839
626 => 0.12418322507292
627 => 0.12436752763255
628 => 0.1233413075605
629 => 0.12314890366826
630 => 0.12055470868932
701 => 0.11595871624955
702 => 0.11850534220496
703 => 0.11542937616063
704 => 0.11426446121114
705 => 0.11977898740055
706 => 0.11922548192028
707 => 0.11827812114111
708 => 0.11687677710143
709 => 0.11635700496571
710 => 0.11319903400896
711 => 0.11301244423772
712 => 0.11457761991627
713 => 0.11385534519503
714 => 0.11284099793957
715 => 0.10916713500304
716 => 0.10503649668816
717 => 0.10516117469462
718 => 0.10647505388933
719 => 0.11029533484868
720 => 0.10880268498633
721 => 0.10771975038501
722 => 0.10751694928708
723 => 0.11005542962056
724 => 0.11364791112051
725 => 0.11533342306304
726 => 0.11366313191775
727 => 0.1117443913849
728 => 0.11186117623055
729 => 0.1126380934881
730 => 0.11271973650685
731 => 0.11147083366968
801 => 0.11182239250286
802 => 0.11128834248805
803 => 0.10801087853298
804 => 0.10795159960299
805 => 0.10714725709217
806 => 0.1071229019206
807 => 0.10575451465706
808 => 0.10556306781967
809 => 0.10284605185273
810 => 0.10463439999005
811 => 0.10343486995203
812 => 0.10162689524419
813 => 0.10131519972309
814 => 0.10130582977935
815 => 0.10316221554855
816 => 0.1046127070415
817 => 0.1034557362906
818 => 0.10319231647756
819 => 0.10600495091844
820 => 0.1056470175481
821 => 0.10533704955782
822 => 0.11332624380487
823 => 0.10700217315372
824 => 0.10424451738449
825 => 0.10083139470544
826 => 0.1019427246602
827 => 0.1021768982105
828 => 0.093968953428986
829 => 0.09063899125336
830 => 0.089496273721662
831 => 0.088838623626516
901 => 0.089138323033124
902 => 0.086140966509454
903 => 0.088155239665062
904 => 0.085559782275804
905 => 0.085124645398145
906 => 0.089765644725612
907 => 0.090411412669704
908 => 0.087656365995833
909 => 0.089425551962
910 => 0.088784020537143
911 => 0.085604273943328
912 => 0.085482831012077
913 => 0.083887345944798
914 => 0.081390720761292
915 => 0.080249696059033
916 => 0.079655440487266
917 => 0.079900641917987
918 => 0.079776660571327
919 => 0.078967598420154
920 => 0.079823035066778
921 => 0.077637747925481
922 => 0.076767548977761
923 => 0.076374500301539
924 => 0.074434932183203
925 => 0.077521647589332
926 => 0.078129769409756
927 => 0.078739089418024
928 => 0.084042804089562
929 => 0.083777845492714
930 => 0.086172942168149
1001 => 0.086079873115641
1002 => 0.085396752745814
1003 => 0.082514780273357
1004 => 0.083663483134658
1005 => 0.080127954275632
1006 => 0.082777012889408
1007 => 0.081568093165413
1008 => 0.082368275914662
1009 => 0.080929475181943
1010 => 0.081725766914056
1011 => 0.078273977653211
1012 => 0.075050745409419
1013 => 0.076347868156336
1014 => 0.077757988926213
1015 => 0.080815490047398
1016 => 0.078994467603457
1017 => 0.07964937613478
1018 => 0.077455542185211
1019 => 0.072929036109562
1020 => 0.072954655642374
1021 => 0.07225835129793
1022 => 0.071656642682232
1023 => 0.07920363393696
1024 => 0.078265046274159
1025 => 0.076769529672801
1026 => 0.078771338073186
1027 => 0.079300647987219
1028 => 0.07931571669635
1029 => 0.080776184431117
1030 => 0.081555636322966
1031 => 0.081693018097242
1101 => 0.083991095633394
1102 => 0.084761380911136
1103 => 0.087934076955303
1104 => 0.08148950527567
1105 => 0.081356783562896
1106 => 0.078799507622576
1107 => 0.077177642792291
1108 => 0.078910558095071
1109 => 0.080445684486806
1110 => 0.078847208278715
1111 => 0.079055935525817
1112 => 0.076910111816761
1113 => 0.077677142822359
1114 => 0.078337813254614
1115 => 0.077973029874336
1116 => 0.077426931498343
1117 => 0.080319821629034
1118 => 0.080156593430532
1119 => 0.082850519227488
1120 => 0.084950627030697
1121 => 0.088714395653222
1122 => 0.084786706885921
1123 => 0.084643566296092
1124 => 0.086042788522146
1125 => 0.084761166697503
1126 => 0.085571107450596
1127 => 0.088583901676263
1128 => 0.088647557270752
1129 => 0.087581244047454
1130 => 0.08751635879091
1201 => 0.087721155909633
1202 => 0.088920659030714
1203 => 0.088501515783201
1204 => 0.088986558960632
1205 => 0.089593112881255
1206 => 0.092102077070485
1207 => 0.09270697984245
1208 => 0.091237379712704
1209 => 0.091370068150005
1210 => 0.090820397360054
1211 => 0.090289422264316
1212 => 0.091482976736849
1213 => 0.093664220994775
1214 => 0.093650651587453
1215 => 0.094156657857962
1216 => 0.094471895572507
1217 => 0.09311866453357
1218 => 0.092237760886906
1219 => 0.092575555398392
1220 => 0.093115696178466
1221 => 0.09240039502325
1222 => 0.087985224933525
1223 => 0.08932450549659
1224 => 0.089101583723422
1225 => 0.088784116010218
1226 => 0.09013077297273
1227 => 0.090000884623504
1228 => 0.086110224285996
1229 => 0.086359291737586
1230 => 0.086125370902664
1231 => 0.086881216975998
]
'min_raw' => 0.071656642682232
'max_raw' => 0.16051972531508
'avg_raw' => 0.11608818399866
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.071656'
'max' => '$0.160519'
'avg' => '$0.116088'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01747384374381
'max_diff' => -0.11664635595845
'year' => 2034
]
9 => [
'items' => [
101 => 0.084720348529068
102 => 0.085385017109673
103 => 0.085801891012547
104 => 0.086047432943916
105 => 0.0869344987697
106 => 0.08683041183352
107 => 0.086928028579602
108 => 0.088243313022545
109 => 0.094895570383831
110 => 0.095257638074627
111 => 0.09347468434511
112 => 0.094186939192845
113 => 0.092819565638206
114 => 0.093737492666042
115 => 0.094365515025668
116 => 0.091527602744271
117 => 0.091359559996865
118 => 0.089986542805165
119 => 0.090724324472316
120 => 0.089550460791499
121 => 0.089838485878763
122 => 0.089033142625198
123 => 0.090482600139374
124 => 0.092103318863149
125 => 0.092512776416896
126 => 0.091435669875547
127 => 0.09065577375483
128 => 0.089286533080604
129 => 0.09156361083736
130 => 0.092229497766123
131 => 0.0915601132168
201 => 0.091405002190381
202 => 0.091111067075596
203 => 0.091467361914503
204 => 0.092225871202903
205 => 0.091868172229961
206 => 0.092104438703434
207 => 0.091204034543485
208 => 0.093119112509351
209 => 0.096160717207759
210 => 0.096170496464217
211 => 0.095812795563144
212 => 0.095666432061199
213 => 0.096033454892805
214 => 0.096232549722887
215 => 0.097419434259824
216 => 0.098693008655524
217 => 0.10463622465621
218 => 0.10296739338538
219 => 0.1082405681847
220 => 0.1124109648149
221 => 0.11366148441496
222 => 0.1125110652244
223 => 0.10857554331793
224 => 0.1083824478378
225 => 0.11426377910056
226 => 0.11260203363679
227 => 0.11240437430151
228 => 0.11030161292479
301 => 0.11154460533049
302 => 0.11127274465777
303 => 0.11084359928599
304 => 0.11321514220847
305 => 0.11765445885025
306 => 0.11696254971998
307 => 0.11644607165097
308 => 0.1141830150971
309 => 0.11554588061451
310 => 0.11506059030773
311 => 0.1171457054385
312 => 0.11591052942599
313 => 0.11258944428053
314 => 0.11311833803638
315 => 0.11303839680917
316 => 0.11468358160047
317 => 0.11418973796212
318 => 0.11294196591288
319 => 0.11763928574858
320 => 0.11733426792632
321 => 0.11776671346151
322 => 0.11795708935992
323 => 0.12081626516785
324 => 0.12198757801294
325 => 0.12225348653549
326 => 0.12336614314574
327 => 0.12222580262542
328 => 0.1267879777557
329 => 0.12982155800704
330 => 0.13334521757558
331 => 0.13849423127562
401 => 0.14043030805788
402 => 0.14008057311632
403 => 0.14398449653881
404 => 0.15099976014968
405 => 0.14149855846614
406 => 0.15150334690963
407 => 0.14833594639926
408 => 0.14082609676827
409 => 0.14034255098734
410 => 0.1454283083486
411 => 0.15670802868986
412 => 0.1538825866779
413 => 0.1567126501008
414 => 0.15341123079032
415 => 0.15324728749501
416 => 0.1565523075338
417 => 0.1642746670017
418 => 0.16060606348681
419 => 0.15534622076974
420 => 0.15923000677981
421 => 0.15586551191046
422 => 0.148284363307
423 => 0.15388042611564
424 => 0.1501384982822
425 => 0.15123059175582
426 => 0.15909556749197
427 => 0.15814923280325
428 => 0.15937387751868
429 => 0.15721241165047
430 => 0.15519326169769
501 => 0.15142436836676
502 => 0.15030858485567
503 => 0.15061694727645
504 => 0.15030843204657
505 => 0.14819977086584
506 => 0.14774440568462
507 => 0.14698544376593
508 => 0.14722067780028
509 => 0.14579360735099
510 => 0.14848678413659
511 => 0.14898666148019
512 => 0.15094653095245
513 => 0.15115001110267
514 => 0.1566082196859
515 => 0.15360193011973
516 => 0.15561880871127
517 => 0.15543840010645
518 => 0.14098885798163
519 => 0.14297987739704
520 => 0.1460772787911
521 => 0.14468190366151
522 => 0.14270916969575
523 => 0.14111608124709
524 => 0.13870238934573
525 => 0.14209961434605
526 => 0.14656660396688
527 => 0.15126330133111
528 => 0.15690607547444
529 => 0.15564667397478
530 => 0.15115781359354
531 => 0.15135918059112
601 => 0.15260395213522
602 => 0.15099185988619
603 => 0.15051642241018
604 => 0.15253863432685
605 => 0.15255256018894
606 => 0.15069765322858
607 => 0.14863626358653
608 => 0.14862762628866
609 => 0.14826082191252
610 => 0.15347648447397
611 => 0.15634457151981
612 => 0.15667339307746
613 => 0.15632243920907
614 => 0.15645750742415
615 => 0.15478863076616
616 => 0.15860318791632
617 => 0.16210380277791
618 => 0.16116556321527
619 => 0.15975900873227
620 => 0.15863862033772
621 => 0.16090163531597
622 => 0.16080086682131
623 => 0.16207322796096
624 => 0.16201550631015
625 => 0.16158765911481
626 => 0.16116557849505
627 => 0.16283908044258
628 => 0.16235713875731
629 => 0.16187444848349
630 => 0.16090633924315
701 => 0.1610379213675
702 => 0.15963160974596
703 => 0.1589809856414
704 => 0.14919716017424
705 => 0.1465826023137
706 => 0.14740519544086
707 => 0.14767601445694
708 => 0.14653815552539
709 => 0.14816955294126
710 => 0.14791530138207
711 => 0.14890444546668
712 => 0.14828647118626
713 => 0.14831183306629
714 => 0.15012916365899
715 => 0.15065674246153
716 => 0.15038841162448
717 => 0.15057634134491
718 => 0.15490710243204
719 => 0.15429140669539
720 => 0.15396433060657
721 => 0.15405493291845
722 => 0.15516153522878
723 => 0.15547132345743
724 => 0.15415872896422
725 => 0.15477775611523
726 => 0.15741349515801
727 => 0.15833585465307
728 => 0.16127958340362
729 => 0.16002903510978
730 => 0.16232447062559
731 => 0.16937985682956
801 => 0.17501618752488
802 => 0.16983278488625
803 => 0.18018318842582
804 => 0.18824246225858
805 => 0.18793313390546
806 => 0.18652781309835
807 => 0.17735254410663
808 => 0.1689093247849
809 => 0.17597243626556
810 => 0.17599044158927
811 => 0.17538371404911
812 => 0.17161538140556
813 => 0.17525258424145
814 => 0.17554129219418
815 => 0.1753796925143
816 => 0.1724905207118
817 => 0.1680792893776
818 => 0.16894123342131
819 => 0.17035311534809
820 => 0.16768012831128
821 => 0.16682594699102
822 => 0.16841403258002
823 => 0.17353117523856
824 => 0.17256380906055
825 => 0.17253854722021
826 => 0.17667734995683
827 => 0.17371486040694
828 => 0.16895210529603
829 => 0.1677494468175
830 => 0.16348081942656
831 => 0.16642917556981
901 => 0.16653528165855
902 => 0.16492049713036
903 => 0.16908313616091
904 => 0.16904477670942
905 => 0.17299658294187
906 => 0.18055095222768
907 => 0.17831675350193
908 => 0.17571862346401
909 => 0.17600111223747
910 => 0.17909931684054
911 => 0.17722607161239
912 => 0.17789970365716
913 => 0.17909829721776
914 => 0.17982143847228
915 => 0.17589706333945
916 => 0.17498210377143
917 => 0.17311041760243
918 => 0.17262212961761
919 => 0.17414657894825
920 => 0.17374494040922
921 => 0.16652636385266
922 => 0.16577198243871
923 => 0.16579511823967
924 => 0.16389819030543
925 => 0.16100491989085
926 => 0.16860826179217
927 => 0.16799760702879
928 => 0.16732349143095
929 => 0.16740606674523
930 => 0.17070641976343
1001 => 0.16879204834105
1002 => 0.17388171852675
1003 => 0.17283543534606
1004 => 0.17176231894977
1005 => 0.17161398157588
1006 => 0.1712009233173
1007 => 0.16978439285642
1008 => 0.16807384720462
1009 => 0.16694439680037
1010 => 0.15399738140092
1011 => 0.15640027214973
1012 => 0.15916457892586
1013 => 0.16011880654772
1014 => 0.15848653416999
1015 => 0.16984884491871
1016 => 0.17192484858245
1017 => 0.16563649807061
1018 => 0.1644602044415
1019 => 0.1699259625332
1020 => 0.16662944224216
1021 => 0.16811386512736
1022 => 0.16490535478545
1023 => 0.17142480009234
1024 => 0.17137513284216
1025 => 0.16883892136943
1026 => 0.17098250993895
1027 => 0.17061000867387
1028 => 0.16774663216757
1029 => 0.1715155742349
1030 => 0.17151744358314
1031 => 0.16907639518263
1101 => 0.16622578506504
1102 => 0.16571616330442
1103 => 0.16533223176585
1104 => 0.16801944150431
1105 => 0.17042878535312
1106 => 0.17491197692877
1107 => 0.17603915780889
1108 => 0.18043861982469
1109 => 0.1778189544002
1110 => 0.17898021815253
1111 => 0.18024093422647
1112 => 0.18084536787362
1113 => 0.17986047568129
1114 => 0.18669465108264
1115 => 0.18727166488024
1116 => 0.18746513261542
1117 => 0.18516068712214
1118 => 0.18720757408236
1119 => 0.18624990345944
1120 => 0.1887414963717
1121 => 0.1891322099546
1122 => 0.18880128944992
1123 => 0.18892530810813
1124 => 0.18309354503424
1125 => 0.18279113735385
1126 => 0.17866778717397
1127 => 0.18034808285054
1128 => 0.17720685062186
1129 => 0.17820296771985
1130 => 0.1786420466453
1201 => 0.17841269673215
1202 => 0.180443084247
1203 => 0.17871684007862
1204 => 0.17416099789744
1205 => 0.16960391448011
1206 => 0.16954670400992
1207 => 0.16834690438534
1208 => 0.16747966901103
1209 => 0.16764672931095
1210 => 0.16823547159789
1211 => 0.16744545023904
1212 => 0.16761404135105
1213 => 0.17041377712711
1214 => 0.17097524417019
1215 => 0.16906715977845
1216 => 0.16140592561034
1217 => 0.15952583952873
1218 => 0.16087720812046
1219 => 0.1602313409729
1220 => 0.12931919770855
1221 => 0.13658154724221
1222 => 0.1322665057554
1223 => 0.13425507539803
1224 => 0.12985053541458
1225 => 0.1319526127564
1226 => 0.13156443582694
1227 => 0.14324207896851
1228 => 0.14305974863293
1229 => 0.14314702051587
1230 => 0.13898130615761
1231 => 0.14561740224178
]
'min_raw' => 0.084720348529068
'max_raw' => 0.1891322099546
'avg_raw' => 0.13692627924183
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.08472'
'max' => '$0.189132'
'avg' => '$0.136926'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013063705846836
'max_diff' => 0.028612484639522
'year' => 2035
]
10 => [
'items' => [
101 => 0.14888658179914
102 => 0.14828154366947
103 => 0.14843381873168
104 => 0.1458172286516
105 => 0.14317235482743
106 => 0.14023878271325
107 => 0.14568899710092
108 => 0.14508302629927
109 => 0.14647290529684
110 => 0.15000775891661
111 => 0.15052827953973
112 => 0.15122786453579
113 => 0.15097711311455
114 => 0.15695102927412
115 => 0.15622754861003
116 => 0.1579709288509
117 => 0.15438466342485
118 => 0.15032646368385
119 => 0.15109779478207
120 => 0.15102350939466
121 => 0.15007777115211
122 => 0.14922400095355
123 => 0.14780271412121
124 => 0.1522998759696
125 => 0.15211729941134
126 => 0.15507300166758
127 => 0.15455055258363
128 => 0.15106150973603
129 => 0.1511861215839
130 => 0.15202419614726
131 => 0.15492478178002
201 => 0.15578587308275
202 => 0.15538698128277
203 => 0.1563311285859
204 => 0.15707734411831
205 => 0.15642484176784
206 => 0.16566289904489
207 => 0.16182661358835
208 => 0.16369639242717
209 => 0.16414232366285
210 => 0.16300008017958
211 => 0.16324779189043
212 => 0.16362300763496
213 => 0.16590124416101
214 => 0.1718799960184
215 => 0.1745279445173
216 => 0.18249442822372
217 => 0.17430806925569
218 => 0.17382232459305
219 => 0.17525732887334
220 => 0.17993449814695
221 => 0.18372490453904
222 => 0.18498240101308
223 => 0.18514859993113
224 => 0.18750774691323
225 => 0.18885996596788
226 => 0.18722128441788
227 => 0.18583267338136
228 => 0.1808588410093
229 => 0.18143457564966
301 => 0.18540081639318
302 => 0.19100336505382
303 => 0.19581093465049
304 => 0.19412749133845
305 => 0.20697097548353
306 => 0.20824435447558
307 => 0.20806841467215
308 => 0.21096936152026
309 => 0.20521157279432
310 => 0.20275000656208
311 => 0.18613290684886
312 => 0.19080163406559
313 => 0.19758790325983
314 => 0.19668971508477
315 => 0.19176134499841
316 => 0.19580719603984
317 => 0.19446951116009
318 => 0.19341442359483
319 => 0.19824798427007
320 => 0.19293328575591
321 => 0.19753488507662
322 => 0.19163328635036
323 => 0.1941351811657
324 => 0.19271498466548
325 => 0.19363402585386
326 => 0.18826132984568
327 => 0.19116030619687
328 => 0.18814072289852
329 => 0.18813929122287
330 => 0.1880726337542
331 => 0.19162516011383
401 => 0.19174100787088
402 => 0.18911568552354
403 => 0.18873733555805
404 => 0.19013629368172
405 => 0.18849848010662
406 => 0.18926480277013
407 => 0.18852169123943
408 => 0.18835440118154
409 => 0.18702140553826
410 => 0.18644711436365
411 => 0.18667230873087
412 => 0.18590360425989
413 => 0.18544043201086
414 => 0.187980497136
415 => 0.18662344280557
416 => 0.18777250909696
417 => 0.18646300303419
418 => 0.18192368449602
419 => 0.17931307440229
420 => 0.17073872247873
421 => 0.1731703980478
422 => 0.17478260146584
423 => 0.1742497682458
424 => 0.17539450018154
425 => 0.17546477742527
426 => 0.1750926134038
427 => 0.1746616951441
428 => 0.17445194796655
429 => 0.17601523158535
430 => 0.17692277034377
501 => 0.17494440764734
502 => 0.17448090494781
503 => 0.17648113886229
504 => 0.17770128039463
505 => 0.1867101199311
506 => 0.18604271600007
507 => 0.18771776889555
508 => 0.1875291836453
509 => 0.18928490593662
510 => 0.19215476985931
511 => 0.1863195340779
512 => 0.18733232924228
513 => 0.18708401525683
514 => 0.18979504223855
515 => 0.18980350576887
516 => 0.18817810966749
517 => 0.18905926326309
518 => 0.18856742749921
519 => 0.18945624120013
520 => 0.18603380241368
521 => 0.19020196342614
522 => 0.19256504212984
523 => 0.19259785347994
524 => 0.19371793403094
525 => 0.19485600074145
526 => 0.19704042068756
527 => 0.19479507845475
528 => 0.1907559263576
529 => 0.19104754009263
530 => 0.18867938669593
531 => 0.18871919578237
601 => 0.18850669175906
602 => 0.18914443232958
603 => 0.18617375060564
604 => 0.18687096366853
605 => 0.18589486129761
606 => 0.18733020738635
607 => 0.18578601226607
608 => 0.18708389551231
609 => 0.18764401889587
610 => 0.18971088623981
611 => 0.18548073427885
612 => 0.17685516807435
613 => 0.17866836666542
614 => 0.17598650352555
615 => 0.17623472016972
616 => 0.17673615729432
617 => 0.17511083551346
618 => 0.17542089568947
619 => 0.17540981815813
620 => 0.17531435797754
621 => 0.17489154900944
622 => 0.17427839235548
623 => 0.17672101974519
624 => 0.17713606973642
625 => 0.17805867445311
626 => 0.18080372028123
627 => 0.18052942547036
628 => 0.18097681168727
629 => 0.18000017008773
630 => 0.17628002377244
701 => 0.17648204561553
702 => 0.1739628299951
703 => 0.17799425244573
704 => 0.17703955839724
705 => 0.17642406093353
706 => 0.17625611674801
707 => 0.17900796701378
708 => 0.17983136374327
709 => 0.17931827815755
710 => 0.17826592465215
711 => 0.18028675448291
712 => 0.18082744329366
713 => 0.18094848357855
714 => 0.18452900658296
715 => 0.18114859503984
716 => 0.18196229369667
717 => 0.18831053833674
718 => 0.18255355644608
719 => 0.18560315814958
720 => 0.18545389601555
721 => 0.18701396905417
722 => 0.18532592449127
723 => 0.18534684982673
724 => 0.18673208899652
725 => 0.18478677041175
726 => 0.18430508217308
727 => 0.18363963332128
728 => 0.18509261654423
729 => 0.18596361427361
730 => 0.19298321629504
731 => 0.19751819933363
801 => 0.19732132375976
802 => 0.19912039796932
803 => 0.19830989856028
804 => 0.19569258216956
805 => 0.20016002210079
806 => 0.19874633718092
807 => 0.19886287964809
808 => 0.19885854193164
809 => 0.19979851881688
810 => 0.19913245904607
811 => 0.19781958686819
812 => 0.19869113268905
813 => 0.20127931219367
814 => 0.20931310079106
815 => 0.2138089153237
816 => 0.20904244711108
817 => 0.21233029305859
818 => 0.21035875706938
819 => 0.21000047033203
820 => 0.21206548055697
821 => 0.21413410530895
822 => 0.21400234285516
823 => 0.21250062751028
824 => 0.21165234661657
825 => 0.21807581373867
826 => 0.22280851489333
827 => 0.22248577640301
828 => 0.22391023913909
829 => 0.22809250578918
830 => 0.2284748798378
831 => 0.22842670949644
901 => 0.22747895552035
902 => 0.23159694017332
903 => 0.23503223541987
904 => 0.22725957785813
905 => 0.23021930410608
906 => 0.23154802057521
907 => 0.23349897056431
908 => 0.2367905502131
909 => 0.24036607876006
910 => 0.24087169770028
911 => 0.2405129368661
912 => 0.23815477967401
913 => 0.24206716567503
914 => 0.24435894963769
915 => 0.2457236545409
916 => 0.24918431911022
917 => 0.23155622627578
918 => 0.21907818599449
919 => 0.21712955981949
920 => 0.2210921677723
921 => 0.22213707588826
922 => 0.22171587473692
923 => 0.20767070594655
924 => 0.21705561491252
925 => 0.22715298785435
926 => 0.22754086907189
927 => 0.23259582509268
928 => 0.23424192598269
929 => 0.23831182814766
930 => 0.23805725465913
1001 => 0.23904821107001
1002 => 0.23882040735212
1003 => 0.24635904409371
1004 => 0.25467527991808
1005 => 0.25438731511549
1006 => 0.2531917578225
1007 => 0.2549673642754
1008 => 0.26355061086814
1009 => 0.2627604030656
1010 => 0.26352802263602
1011 => 0.27364815409944
1012 => 0.28680576457379
1013 => 0.28069273350596
1014 => 0.29395625194585
1015 => 0.30230493373486
1016 => 0.31674311561914
1017 => 0.31493538413768
1018 => 0.32055606239296
1019 => 0.31169916750093
1020 => 0.29136194655504
1021 => 0.2881435034926
1022 => 0.29458690800757
1023 => 0.31042738926939
1024 => 0.29408803488115
1025 => 0.29739346499347
1026 => 0.29644150089875
1027 => 0.29639077477773
1028 => 0.29832678449904
1029 => 0.29551850142281
1030 => 0.28407705096974
1031 => 0.28932060028749
1101 => 0.28729581407999
1102 => 0.28954246533502
1103 => 0.30166671556899
1104 => 0.29630629553453
1105 => 0.29065952847338
1106 => 0.29774182748598
1107 => 0.306760027871
1108 => 0.30619568509817
1109 => 0.3051006242419
1110 => 0.31127342495317
1111 => 0.32146908326728
1112 => 0.32422492874011
1113 => 0.32625923752738
1114 => 0.32653973433921
1115 => 0.32942902582891
1116 => 0.3138925772936
1117 => 0.33854932012344
1118 => 0.34280685848138
1119 => 0.34200661772697
1120 => 0.34673869242721
1121 => 0.34534639600925
1122 => 0.34332917694424
1123 => 0.35083052188529
1124 => 0.3422308352377
1125 => 0.3300246627119
1126 => 0.32332811505352
1127 => 0.33214666920516
1128 => 0.33753185250044
1129 => 0.34109111609663
1130 => 0.34216814711027
1201 => 0.3150986275668
1202 => 0.30050965787724
1203 => 0.30986102018537
1204 => 0.32127032759783
1205 => 0.31382919801485
1206 => 0.31412087620658
1207 => 0.3035117809157
1208 => 0.32220899712367
1209 => 0.31948496999051
1210 => 0.33361722757607
1211 => 0.33024445088483
1212 => 0.34176875833477
1213 => 0.3387340219616
1214 => 0.35133104297681
1215 => 0.3563563357105
1216 => 0.36479458433474
1217 => 0.37100179437258
1218 => 0.3746467868318
1219 => 0.37442795515657
1220 => 0.38887123120806
1221 => 0.38035453593013
1222 => 0.36965555943009
1223 => 0.36946204870004
1224 => 0.37500320023508
1225 => 0.38661593371184
1226 => 0.38962694654396
1227 => 0.3913096919472
1228 => 0.38873250878536
1229 => 0.37948824645821
1230 => 0.37549662085483
1231 => 0.37889760151744
]
'min_raw' => 0.14023878271325
'max_raw' => 0.3913096919472
'avg_raw' => 0.26577423733022
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.140238'
'max' => '$0.3913096'
'avg' => '$0.265774'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.055518434184179
'max_diff' => 0.20217748199259
'year' => 2036
]
11 => [
'items' => [
101 => 0.37473849441666
102 => 0.38191828011194
103 => 0.39177765939104
104 => 0.38974173655812
105 => 0.39654752134597
106 => 0.40359079261195
107 => 0.41366298685541
108 => 0.41629623140293
109 => 0.42064888450664
110 => 0.42512919432243
111 => 0.42656814908753
112 => 0.42931556021554
113 => 0.42930108000273
114 => 0.43758058835908
115 => 0.44671314247117
116 => 0.45016047022937
117 => 0.45808741032258
118 => 0.44451280320606
119 => 0.45480929863779
120 => 0.46409699525521
121 => 0.45302382046114
122 => 0.46828561219594
123 => 0.46887819298503
124 => 0.4778254593561
125 => 0.46875569080019
126 => 0.46337009118342
127 => 0.47891811548126
128 => 0.48644131468081
129 => 0.48417526585608
130 => 0.46693052241125
131 => 0.45689334206453
201 => 0.43062410506965
202 => 0.46174115103667
203 => 0.47689735643053
204 => 0.46689127150075
205 => 0.47193775872013
206 => 0.49946975666009
207 => 0.50995215891077
208 => 0.50777189252015
209 => 0.50814032164992
210 => 0.51379643563533
211 => 0.5388787599255
212 => 0.5238488498071
213 => 0.53533865293263
214 => 0.54143280308084
215 => 0.54709338936917
216 => 0.53319277849169
217 => 0.51510828798061
218 => 0.50938017070049
219 => 0.46589636355287
220 => 0.46363284255023
221 => 0.46236225961975
222 => 0.45435141397056
223 => 0.44805708364559
224 => 0.44305159847767
225 => 0.42991571063266
226 => 0.43434868717232
227 => 0.41341282362024
228 => 0.42680684719941
301 => 0.39339270345618
302 => 0.42122099527219
303 => 0.4060753212339
304 => 0.41624523400901
305 => 0.4162097521414
306 => 0.39748371834864
307 => 0.38668293285933
308 => 0.39356561374598
309 => 0.40094439400436
310 => 0.40214157627608
311 => 0.41170835748694
312 => 0.41437824048561
313 => 0.40628837035471
314 => 0.39270026959713
315 => 0.39585647549154
316 => 0.38661897244762
317 => 0.37043060367859
318 => 0.38205737275031
319 => 0.38602726290435
320 => 0.38778059255602
321 => 0.37186119111839
322 => 0.36685896955967
323 => 0.36419582877451
324 => 0.39064527477882
325 => 0.39209423513718
326 => 0.38468114908144
327 => 0.41818900099106
328 => 0.41060514211988
329 => 0.41907817056952
330 => 0.3955700828884
331 => 0.39646812349566
401 => 0.3853390180536
402 => 0.39157057345406
403 => 0.38716631094942
404 => 0.39106712535913
405 => 0.39340525743266
406 => 0.40453253669802
407 => 0.4213480509274
408 => 0.40287049223784
409 => 0.39481955531328
410 => 0.39981431130109
411 => 0.41311600469787
412 => 0.43326875109514
413 => 0.42133791961614
414 => 0.42663262002786
415 => 0.427789276523
416 => 0.41899192309377
417 => 0.43359312206449
418 => 0.44141802321283
419 => 0.44944475265589
420 => 0.45641413692744
421 => 0.44623870040477
422 => 0.45712787607555
423 => 0.44835312268316
424 => 0.44048126177286
425 => 0.4404932001365
426 => 0.43555506679792
427 => 0.4259868112096
428 => 0.42422227807573
429 => 0.43340160227407
430 => 0.4407625509959
501 => 0.4413688339892
502 => 0.4454442334208
503 => 0.44785601282447
504 => 0.47149472963557
505 => 0.48100241708671
506 => 0.49262823733065
507 => 0.497157149511
508 => 0.51078755146895
509 => 0.49977989488078
510 => 0.49739831913653
511 => 0.46433542245703
512 => 0.46974946993608
513 => 0.47841788232792
514 => 0.46447836138459
515 => 0.47331977898769
516 => 0.47506526210938
517 => 0.46400470179696
518 => 0.46991262495842
519 => 0.45422293261872
520 => 0.42169004334543
521 => 0.43362934047027
522 => 0.44242068187812
523 => 0.42987435372455
524 => 0.45236316132987
525 => 0.43922566419006
526 => 0.43506170830781
527 => 0.41881663185372
528 => 0.42648368260972
529 => 0.43685347853879
530 => 0.43044615027279
531 => 0.44374231848992
601 => 0.46257323864392
602 => 0.47599327374634
603 => 0.47702349740426
604 => 0.46839531390593
605 => 0.48222203302634
606 => 0.48232274558016
607 => 0.46672614992853
608 => 0.45717332193412
609 => 0.45500289931446
610 => 0.46042504055478
611 => 0.46700852100301
612 => 0.47738883475045
613 => 0.48366144094749
614 => 0.50001707117611
615 => 0.50444243576331
616 => 0.50930456975793
617 => 0.51580188020134
618 => 0.52360356726485
619 => 0.50653392012017
620 => 0.50721212902303
621 => 0.49131710994726
622 => 0.47433100248848
623 => 0.48722134070151
624 => 0.50407374318521
625 => 0.5002077834352
626 => 0.49977278398893
627 => 0.50050433239877
628 => 0.4975895249977
629 => 0.48440595915048
630 => 0.4777852549155
701 => 0.48632765250042
702 => 0.49086755663843
703 => 0.49790855203523
704 => 0.4970406007352
705 => 0.51517744872966
706 => 0.5222248794305
707 => 0.52042184508066
708 => 0.52075364679348
709 => 0.53351268344818
710 => 0.54770335630422
711 => 0.56099479405812
712 => 0.57451541542192
713 => 0.55821577864903
714 => 0.54993982831759
715 => 0.55847849655895
716 => 0.55394775899963
717 => 0.57998272091957
718 => 0.58178532519565
719 => 0.60781840449151
720 => 0.6325268967047
721 => 0.61700793544422
722 => 0.63164161692349
723 => 0.64746913654488
724 => 0.67800298981705
725 => 0.66772026222889
726 => 0.65984385404725
727 => 0.65240068637412
728 => 0.6678887367323
729 => 0.68781386609046
730 => 0.69210554811369
731 => 0.69905971254004
801 => 0.6917482589605
802 => 0.70055409946686
803 => 0.73164258593668
804 => 0.72324220246688
805 => 0.71131230751072
806 => 0.73585368180867
807 => 0.74473510976492
808 => 0.80706962240181
809 => 0.88576951951617
810 => 0.85318724533944
811 => 0.83296237633453
812 => 0.83771570029099
813 => 0.86645423855751
814 => 0.87568414493311
815 => 0.85059407766472
816 => 0.85945631358743
817 => 0.90828810483738
818 => 0.93448479413154
819 => 0.8989061713853
820 => 0.80074616229706
821 => 0.71023815099773
822 => 0.73424495122317
823 => 0.73152332509535
824 => 0.7839869929034
825 => 0.72304185609931
826 => 0.72406801590058
827 => 0.77761657679891
828 => 0.76333073880598
829 => 0.74018951084932
830 => 0.71040710757143
831 => 0.65535158057336
901 => 0.60658736497423
902 => 0.70222522149228
903 => 0.69810114321307
904 => 0.69212886671061
905 => 0.70541952179902
906 => 0.76995517029011
907 => 0.76846741471089
908 => 0.7590030727754
909 => 0.76618169271858
910 => 0.73893106406516
911 => 0.74595417155443
912 => 0.71022381406632
913 => 0.72637542788248
914 => 0.74013986016738
915 => 0.74290327373448
916 => 0.74912938560454
917 => 0.69592794135949
918 => 0.71981382791317
919 => 0.73384454845856
920 => 0.67045324259252
921 => 0.73259150616018
922 => 0.69500182257771
923 => 0.68224331939172
924 => 0.69942096312668
925 => 0.69272681865736
926 => 0.68697158633599
927 => 0.68376006781322
928 => 0.69637343354482
929 => 0.69578500495721
930 => 0.67514709047153
1001 => 0.64822577233397
1002 => 0.65726145036308
1003 => 0.65397870382517
1004 => 0.64208160688906
1005 => 0.65009881376303
1006 => 0.61479509210559
1007 => 0.55405687392172
1008 => 0.59418240131592
1009 => 0.59263761215942
1010 => 0.5918586594161
1011 => 0.62201188426472
1012 => 0.61911334744878
1013 => 0.6138524747453
1014 => 0.64198498683623
1015 => 0.63171624148736
1016 => 0.6633620950319
1017 => 0.68420610090181
1018 => 0.67891938678025
1019 => 0.69852327504873
1020 => 0.65746961413536
1021 => 0.67110599350379
1022 => 0.67391643239242
1023 => 0.64163783600393
1024 => 0.61958758391868
1025 => 0.61811708349587
1026 => 0.57988498509196
1027 => 0.60030826346062
1028 => 0.61827990325234
1029 => 0.60967288244769
1030 => 0.60694815678837
1031 => 0.62086818926095
1101 => 0.62194989500108
1102 => 0.59728688949197
1103 => 0.60241510931313
1104 => 0.62380063846294
1105 => 0.60187624884817
1106 => 0.55928074115536
1107 => 0.54871646631858
1108 => 0.54730699731714
1109 => 0.51865584609658
1110 => 0.54942242167822
1111 => 0.53599198694387
1112 => 0.57841856934837
1113 => 0.55418473301724
1114 => 0.55314006076856
1115 => 0.55156088544458
1116 => 0.5268996560249
1117 => 0.53229889796492
1118 => 0.55024680050131
1119 => 0.55665081432389
1120 => 0.55598282321566
1121 => 0.55015884598744
1122 => 0.55282503293893
1123 => 0.54423631580707
1124 => 0.54120346102912
1125 => 0.53163093709749
1126 => 0.51756197139522
1127 => 0.5195183473661
1128 => 0.49164404496477
1129 => 0.47645664561533
1130 => 0.47225297364211
1201 => 0.46663164779598
1202 => 0.47288791735421
1203 => 0.49156508056829
1204 => 0.46903645915089
1205 => 0.43041271792981
1206 => 0.43273407058885
1207 => 0.43794946079792
1208 => 0.42823061564657
1209 => 0.41903254435167
1210 => 0.42702952107948
1211 => 0.41066413275632
1212 => 0.43992713979021
1213 => 0.43913565745857
1214 => 0.45004309686859
1215 => 0.45686374257486
1216 => 0.44114436243217
1217 => 0.43719098083601
1218 => 0.43944300666436
1219 => 0.40222203617126
1220 => 0.44700134949379
1221 => 0.44738860285491
1222 => 0.44407270446871
1223 => 0.46791630640677
1224 => 0.51823374350201
1225 => 0.49930229965256
1226 => 0.49197147238813
1227 => 0.47803556439966
1228 => 0.49660433436196
1229 => 0.49517854254679
1230 => 0.48873057124311
1231 => 0.48483081807975
]
'min_raw' => 0.36419582877451
'max_raw' => 0.93448479413154
'avg_raw' => 0.64934031145303
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.364195'
'max' => '$0.934484'
'avg' => '$0.64934'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.22395704606126
'max_diff' => 0.54317510218435
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01143169090798
]
1 => [
'year' => 2028
'avg' => 0.019620100241676
]
2 => [
'year' => 2029
'avg' => 0.053598577681242
]
3 => [
'year' => 2030
'avg' => 0.041351222859682
]
4 => [
'year' => 2031
'avg' => 0.04061202544884
]
5 => [
'year' => 2032
'avg' => 0.071205661686602
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01143169090798
'min' => '$0.011431'
'max_raw' => 0.071205661686602
'max' => '$0.0712056'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.071205661686602
]
1 => [
'year' => 2033
'avg' => 0.18314828384979
]
2 => [
'year' => 2034
'avg' => 0.11608818399866
]
3 => [
'year' => 2035
'avg' => 0.13692627924183
]
4 => [
'year' => 2036
'avg' => 0.26577423733022
]
5 => [
'year' => 2037
'avg' => 0.64934031145303
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.071205661686602
'min' => '$0.0712056'
'max_raw' => 0.64934031145303
'max' => '$0.64934'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.64934031145303
]
]
]
]
'prediction_2025_max_price' => '$0.019546'
'last_price' => 0.01895242
'sma_50day_nextmonth' => '$0.019797'
'sma_200day_nextmonth' => '$0.024049'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.020698'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.020545'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.02126'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0235011'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0215058'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.022366'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024093'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.020086'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.02052'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.021319'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022077'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.022272'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.023011'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.024348'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.025396'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.024681'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.035138'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0585026'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.020865'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.021441'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02209'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.023263'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026754'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.039348'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.068351'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 15.01
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021321'
'vwma_10_action' => 'SELL'
'hma_9' => '0.020498'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -128.47
'cci_20_action' => 'BUY'
'adx_14' => 13.74
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001986'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 29.29
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000543'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 33
'buy_signals' => 1
'sell_pct' => 97.06
'buy_pct' => 2.94
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767690638
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de ASD para 2026
A previsão de preço para ASD em 2026 sugere que o preço médio poderia variar entre $0.006548 na extremidade inferior e $0.019546 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, ASD poderia potencialmente ganhar 3.13% até 2026 se ASD atingir a meta de preço prevista.
Previsão de preço de ASD 2027-2032
A previsão de preço de ASD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011431 na extremidade inferior e $0.0712056 na extremidade superior. Considerando a volatilidade de preços no mercado, se ASD atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de ASD | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0063036 | $0.011431 | $0.016559 |
| 2028 | $0.011376 | $0.01962 | $0.027863 |
| 2029 | $0.02499 | $0.053598 | $0.0822068 |
| 2030 | $0.021253 | $0.041351 | $0.061449 |
| 2031 | $0.025127 | $0.040612 | $0.056096 |
| 2032 | $0.038355 | $0.0712056 | $0.104055 |
Previsão de preço de ASD 2032-2037
A previsão de preço de ASD para 2032-2037 é atualmente estimada entre $0.0712056 na extremidade inferior e $0.64934 na extremidade superior. Comparado ao preço atual, ASD poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de ASD | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.038355 | $0.0712056 | $0.104055 |
| 2033 | $0.08913 | $0.183148 | $0.277166 |
| 2034 | $0.071656 | $0.116088 | $0.160519 |
| 2035 | $0.08472 | $0.136926 | $0.189132 |
| 2036 | $0.140238 | $0.265774 | $0.3913096 |
| 2037 | $0.364195 | $0.64934 | $0.934484 |
ASD Histograma de preços potenciais
Previsão de preço de ASD baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para ASD é Baixista, com 1 indicadores técnicos mostrando sinais de alta e 33 indicando sinais de baixa. A previsão de preço de ASD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de ASD
De acordo com nossos indicadores técnicos, o SMA de 200 dias de ASD está projetado para aumentar no próximo mês, alcançando $0.024049 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para ASD é esperado para alcançar $0.019797 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 39.35, sugerindo que o mercado de ASD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ASD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.020698 | SELL |
| SMA 5 | $0.020545 | SELL |
| SMA 10 | $0.02126 | SELL |
| SMA 21 | $0.0235011 | SELL |
| SMA 50 | $0.0215058 | SELL |
| SMA 100 | $0.022366 | SELL |
| SMA 200 | $0.024093 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.020086 | SELL |
| EMA 5 | $0.02052 | SELL |
| EMA 10 | $0.021319 | SELL |
| EMA 21 | $0.022077 | SELL |
| EMA 50 | $0.022272 | SELL |
| EMA 100 | $0.023011 | SELL |
| EMA 200 | $0.024348 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.025396 | SELL |
| SMA 50 | $0.024681 | SELL |
| SMA 100 | $0.035138 | SELL |
| SMA 200 | $0.0585026 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.023263 | SELL |
| EMA 50 | $0.026754 | SELL |
| EMA 100 | $0.039348 | SELL |
| EMA 200 | $0.068351 | SELL |
Osciladores de ASD
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 39.35 | NEUTRAL |
| Stoch RSI (14) | 15.01 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -128.47 | BUY |
| Índice Direcional Médio (14) | 13.74 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001986 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 29.29 | BUY |
| VWMA (10) | 0.021321 | SELL |
| Média Móvel de Hull (9) | 0.020498 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000543 | SELL |
Previsão do preço de ASD com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do ASD
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de ASD por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.026631 | $0.037421 | $0.052583 | $0.073888 | $0.103825 | $0.145892 |
| Amazon.com stock | $0.039545 | $0.082513 | $0.172169 | $0.359242 | $0.74958 | $1.56 |
| Apple stock | $0.026882 | $0.03813 | $0.054085 | $0.076716 | $0.108816 | $0.154347 |
| Netflix stock | $0.0299039 | $0.047183 | $0.074448 | $0.117468 | $0.185346 | $0.292447 |
| Google stock | $0.024543 | $0.031783 | $0.041159 | $0.0533012 | $0.069024 | $0.089386 |
| Tesla stock | $0.042963 | $0.097395 | $0.220788 | $0.50051 | $1.13 | $2.57 |
| Kodak stock | $0.014212 | $0.010657 | $0.007992 | $0.005993 | $0.004494 | $0.00337 |
| Nokia stock | $0.012555 | $0.008317 | $0.0055098 | $0.00365 | $0.002418 | $0.0016018 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para ASD
Você pode fazer perguntas como: 'Devo investir em ASD agora?', 'Devo comprar ASD hoje?', 'ASD será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para ASD/AscendEx regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como ASD, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre ASD para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de ASD é de $0.01895 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para ASD
com base no histórico de preços de 4 horas
Previsão de longo prazo para ASD
com base no histórico de preços de 1 mês
Previsão do preço de ASD com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se ASD tiver 1% da média anterior do crescimento anual do Bitcoin | $0.019445 | $0.01995 | $0.020469 | $0.0210011 |
| Se ASD tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019937 | $0.020974 | $0.022064 | $0.023211 |
| Se ASD tiver 5% da média anterior do crescimento anual do Bitcoin | $0.021415 | $0.024198 | $0.027343 | $0.030897 |
| Se ASD tiver 10% da média anterior do crescimento anual do Bitcoin | $0.023878 | $0.030085 | $0.0379058 | $0.047758 |
| Se ASD tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0288051 | $0.043779 | $0.066539 | $0.10113 |
| Se ASD tiver 50% da média anterior do crescimento anual do Bitcoin | $0.043584 | $0.100228 | $0.230492 | $0.530053 |
| Se ASD tiver 100% da média anterior do crescimento anual do Bitcoin | $0.068215 | $0.24553 | $0.883744 | $3.18 |
Perguntas Frequentes sobre ASD
ASD é um bom investimento?
A decisão de adquirir ASD depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de ASD experimentou uma queda de -7.4034% nas últimas 24 horas, e ASD registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em ASD dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
ASD pode subir?
Parece que o valor médio de ASD pode potencialmente subir para $0.019546 até o final deste ano. Observando as perspectivas de ASD em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.061449. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de ASD na próxima semana?
Com base na nossa nova previsão experimental de ASD, o preço de ASD aumentará 0.86% na próxima semana e atingirá $0.019114 até 13 de janeiro de 2026.
Qual será o preço de ASD no próximo mês?
Com base na nossa nova previsão experimental de ASD, o preço de ASD diminuirá -11.62% no próximo mês e atingirá $0.01675 até 5 de fevereiro de 2026.
Até onde o preço de ASD pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de ASD em 2026, espera-se que ASD fluctue dentro do intervalo de $0.006548 e $0.019546. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de ASD não considera flutuações repentinas e extremas de preço.
Onde estará ASD em 5 anos?
O futuro de ASD parece seguir uma tendência de alta, com um preço máximo de $0.061449 projetada após um período de cinco anos. Com base na previsão de ASD para 2030, o valor de ASD pode potencialmente atingir seu pico mais alto de aproximadamente $0.061449, enquanto seu pico mais baixo está previsto para cerca de $0.021253.
Quanto será ASD em 2026?
Com base na nossa nova simulação experimental de previsão de preços de ASD, espera-se que o valor de ASD em 2026 aumente 3.13% para $0.019546 se o melhor cenário ocorrer. O preço ficará entre $0.019546 e $0.006548 durante 2026.
Quanto será ASD em 2027?
De acordo com nossa última simulação experimental para previsão de preços de ASD, o valor de ASD pode diminuir -12.62% para $0.016559 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.016559 e $0.0063036 ao longo do ano.
Quanto será ASD em 2028?
Nosso novo modelo experimental de previsão de preços de ASD sugere que o valor de ASD em 2028 pode aumentar 47.02%, alcançando $0.027863 no melhor cenário. O preço é esperado para variar entre $0.027863 e $0.011376 durante o ano.
Quanto será ASD em 2029?
Com base no nosso modelo de previsão experimental, o valor de ASD pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0822068 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0822068 e $0.02499.
Quanto será ASD em 2030?
Usando nossa nova simulação experimental para previsões de preços de ASD, espera-se que o valor de ASD em 2030 aumente 224.23%, alcançando $0.061449 no melhor cenário. O preço está previsto para variar entre $0.061449 e $0.021253 ao longo de 2030.
Quanto será ASD em 2031?
Nossa simulação experimental indica que o preço de ASD poderia aumentar 195.98% em 2031, potencialmente atingindo $0.056096 sob condições ideais. O preço provavelmente oscilará entre $0.056096 e $0.025127 durante o ano.
Quanto será ASD em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de ASD, ASD poderia ver um 449.04% aumento em valor, atingindo $0.104055 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.104055 e $0.038355 ao longo do ano.
Quanto será ASD em 2033?
De acordo com nossa previsão experimental de preços de ASD, espera-se que o valor de ASD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.277166. Ao longo do ano, o preço de ASD poderia variar entre $0.277166 e $0.08913.
Quanto será ASD em 2034?
Os resultados da nossa nova simulação de previsão de preços de ASD sugerem que ASD pode aumentar 746.96% em 2034, atingindo potencialmente $0.160519 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.160519 e $0.071656.
Quanto será ASD em 2035?
Com base em nossa previsão experimental para o preço de ASD, ASD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.189132 em 2035. A faixa de preço esperada para o ano está entre $0.189132 e $0.08472.
Quanto será ASD em 2036?
Nossa recente simulação de previsão de preços de ASD sugere que o valor de ASD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.3913096 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.3913096 e $0.140238.
Quanto será ASD em 2037?
De acordo com a simulação experimental, o valor de ASD poderia aumentar 4830.69% em 2037, com um pico de $0.934484 sob condições favoráveis. O preço é esperado para cair entre $0.934484 e $0.364195 ao longo do ano.
Previsões relacionadas
Previsão de Preço do UniLend Finance
Previsão de Preço do ECOx
Previsão de Preço do Botto
Previsão de Preço do Coinweb
Previsão de Preço do ThetaDrop
Previsão de Preço do Syncus
Previsão de Preço do Streamr XDATA
Previsão de Preço do EURC
Previsão de Preço do SUKU
Previsão de Preço do Router Protocol
Previsão de Preço do Keep3rV1
Previsão de Preço do RAMP
Previsão de Preço do CoW Protocol
Previsão de Preço do Circuits of Value
Previsão de Preço do Archway
Previsão de Preço do XCAD Network
Previsão de Preço do Concordium
Previsão de Preço do EverGrowCoin
Previsão de Preço do Only1
Previsão de Preço do SatoshiVM
Previsão de Preço do Whiteheart
Previsão de Preço do Zano
Previsão de Preço do Sentinel Protocol
Previsão de Preço do SWFT Blockchain
Previsão de Preço do MicrovisionChain
Como ler e prever os movimentos de preço de ASD?
Traders de ASD utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de ASD
Médias móveis são ferramentas populares para a previsão de preço de ASD. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ASD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ASD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ASD.
Como ler gráficos de ASD e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de ASD em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ASD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de ASD?
A ação de preço de ASD é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ASD. A capitalização de mercado de ASD pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ASD, grandes detentores de ASD, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de ASD.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


