Previsão de Preço Dor - Projeção DOR
Previsão de Preço Dor até $0.002459 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000823 | $0.002459 |
| 2027 | $0.000793 | $0.002083 |
| 2028 | $0.001431 | $0.0035063 |
| 2029 | $0.003144 | $0.010344 |
| 2030 | $0.002674 | $0.007732 |
| 2031 | $0.003162 | $0.007059 |
| 2032 | $0.004826 | $0.013094 |
| 2033 | $0.011216 | $0.034878 |
| 2034 | $0.009017 | $0.020199 |
| 2035 | $0.010661 | $0.023800072 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dor hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.92, com um retorno de 39.58% nos próximos 90 dias.
Previsão de preço de longo prazo de Dor para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dor'
'name_with_ticker' => 'Dor <small>DOR</small>'
'name_lang' => 'Dor'
'name_lang_with_ticker' => 'Dor <small>DOR</small>'
'name_with_lang' => 'Dor'
'name_with_lang_with_ticker' => 'Dor <small>DOR</small>'
'image' => '/uploads/coins/dor.png?1717500831'
'price_for_sd' => 0.002384
'ticker' => 'DOR'
'marketcap' => '$794.05K'
'low24h' => '$0.002197'
'high24h' => '$0.002388'
'volume24h' => '$146.19K'
'current_supply' => '332.94M'
'max_supply' => '438.1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002384'
'change_24h_pct' => '8.5507%'
'ath_price' => '$0.3869'
'ath_days' => 778
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 de nov. de 2023'
'ath_pct' => '-99.38%'
'fdv' => '$1.04M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.117593'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002405'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002107'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000823'
'current_year_max_price_prediction' => '$0.002459'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002674'
'grand_prediction_max_price' => '$0.007732'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0024301333585216
107 => 0.0024392065943439
108 => 0.0024596490579424
109 => 0.0022849704446974
110 => 0.0023633960137498
111 => 0.002409463688086
112 => 0.0022013282594787
113 => 0.0024053495198688
114 => 0.0022819296786656
115 => 0.0022400391308575
116 => 0.0022964392348212
117 => 0.0022744600594556
118 => 0.0022555636551368
119 => 0.0022450191368454
120 => 0.0022864331485441
121 => 0.0022845011353979
122 => 0.0022167397741457
123 => 0.0021283478406986
124 => 0.0021580150749297
125 => 0.0021472366906017
126 => 0.0021081744353579
127 => 0.0021344976789976
128 => 0.0020185834358972
129 => 0.001819159005341
130 => 0.0019509048927019
131 => 0.0019458328193505
201 => 0.0019432752499665
202 => 0.0020422786431293
203 => 0.0020327617512736
204 => 0.0020154884993658
205 => 0.0021078571985407
206 => 0.0020741413808076
207 => 0.0021780455866155
208 => 0.0022464836166633
209 => 0.0022291255185048
210 => 0.0022934918165545
211 => 0.002158698548087
212 => 0.0022034714649046
213 => 0.0022126991010081
214 => 0.0021067173831309
215 => 0.0020343188324786
216 => 0.002029490674554
217 => 0.0019039615648576
218 => 0.0019710182020218
219 => 0.0020300252677342
220 => 0.0020017654623912
221 => 0.0019928192522573
222 => 0.0020385234996352
223 => 0.0020420751110869
224 => 0.0019610979936059
225 => 0.001977935700542
226 => 0.0020481517375014
227 => 0.0019761664365664
228 => 0.001836310755582
301 => 0.0018016246130418
302 => 0.0017969968422345
303 => 0.0017029252726728
304 => 0.0018039425069446
305 => 0.0017598457770914
306 => 0.0018991468183377
307 => 0.0018195788106643
308 => 0.001816148792884
309 => 0.001810963817935
310 => 0.0017299925319656
311 => 0.0017477200975992
312 => 0.0018066492257498
313 => 0.0018276758025581
314 => 0.0018254825583314
315 => 0.0018063604408732
316 => 0.0018151144483245
317 => 0.0017869147402256
318 => 0.0017769568363698
319 => 0.0017455269526634
320 => 0.001699333706342
321 => 0.0017057571605627
322 => 0.0016142362524796
323 => 0.0015643708043737
324 => 0.0015505687055541
325 => 0.001532111962183
326 => 0.0015526534438293
327 => 0.001613976985246
328 => 0.0015400077837824
329 => 0.0014131927762094
330 => 0.0014208145742468
331 => 0.0014379384915047
401 => 0.0014060281849806
402 => 0.0013758277578847
403 => 0.0014020845790065
404 => 0.0013483513885251
405 => 0.001444431890861
406 => 0.0014418331825353
407 => 0.0014776460522277
408 => 0.0015000405746005
409 => 0.001448428450844
410 => 0.0014354481412933
411 => 0.0014428423155356
412 => 0.0013206330860375
413 => 0.0014676589509223
414 => 0.0014689304367072
415 => 0.0014580432034754
416 => 0.0015363299376122
417 => 0.0017015393648856
418 => 0.0016393809328116
419 => 0.0016153113091639
420 => 0.001569554937015
421 => 0.0016305225861589
422 => 0.0016258412219481
423 => 0.0016046703176324
424 => 0.001591866088645
425 => 0.0016154582731534
426 => 0.0015889427559012
427 => 0.0015841798404051
428 => 0.0015553217546015
429 => 0.0015450207309288
430 => 0.0015373942630972
501 => 0.0015289982713758
502 => 0.0015475177369624
503 => 0.0015055501915045
504 => 0.0014549414458115
505 => 0.0014507338762013
506 => 0.0014623513458283
507 => 0.0014572114803372
508 => 0.0014507092685028
509 => 0.0014382947753388
510 => 0.0014346116604107
511 => 0.0014465799971336
512 => 0.0014330684427709
513 => 0.0014530054772456
514 => 0.0014475837070349
515 => 0.0014172981393716
516 => 0.0013795511089099
517 => 0.0013792150811617
518 => 0.0013710825453662
519 => 0.0013607245382958
520 => 0.0013578431776879
521 => 0.0013998733027679
522 => 0.0014868744038276
523 => 0.0014697940059297
524 => 0.0014821363438805
525 => 0.0015428484309378
526 => 0.0015621469777372
527 => 0.0015484493263301
528 => 0.0015296991362498
529 => 0.0015305240494545
530 => 0.0015945991250275
531 => 0.0015985954088949
601 => 0.0016086927289778
602 => 0.0016216706387866
603 => 0.0015506595204887
604 => 0.0015271794321686
605 => 0.0015160532636969
606 => 0.001481788971173
607 => 0.0015187400730616
608 => 0.0014972102483951
609 => 0.0015001153573061
610 => 0.0014982234013167
611 => 0.0014992565372204
612 => 0.0014444050344025
613 => 0.0014643900391192
614 => 0.0014311610926222
615 => 0.001386671263387
616 => 0.0013865221178793
617 => 0.0013974109405559
618 => 0.0013909338427482
619 => 0.001373504139089
620 => 0.0013759799462279
621 => 0.0013542892705244
622 => 0.0013786135869807
623 => 0.00137931112134
624 => 0.0013699449345499
625 => 0.0014074199001596
626 => 0.0014227734241466
627 => 0.0014166083993581
628 => 0.0014223408695727
629 => 0.0014705037735757
630 => 0.001478356428423
701 => 0.001481844058989
702 => 0.0014771710960531
703 => 0.001423221199044
704 => 0.001425614106389
705 => 0.0014080565400102
706 => 0.0013932222465908
707 => 0.0013938155405319
708 => 0.0014014422956727
709 => 0.0014347487826755
710 => 0.0015048403210482
711 => 0.0015075002436932
712 => 0.0015107241475344
713 => 0.0014976109104081
714 => 0.0014936558326141
715 => 0.0014988736011166
716 => 0.0015251962976914
717 => 0.0015929054198242
718 => 0.0015689724939223
719 => 0.0015495146526258
720 => 0.0015665844252392
721 => 0.0015639566675426
722 => 0.0015417757481021
723 => 0.0015411532035692
724 => 0.0014985809274939
725 => 0.0014828429263527
726 => 0.0014696910746301
727 => 0.0014553295958869
728 => 0.0014468156298867
729 => 0.0014598969511913
730 => 0.0014628888041473
731 => 0.0014342862664925
801 => 0.0014303878463002
802 => 0.0014537452959777
803 => 0.0014434665532281
804 => 0.0014540384950466
805 => 0.001456491276233
806 => 0.0014560963219696
807 => 0.001445364134033
808 => 0.0014522045105854
809 => 0.0014360249808246
810 => 0.0014184321722965
811 => 0.0014072090565264
812 => 0.0013974153994866
813 => 0.0014028494896229
814 => 0.0013834779505125
815 => 0.001377280605279
816 => 0.0014498871449228
817 => 0.0015035223764094
818 => 0.0015027424989017
819 => 0.0014979951951418
820 => 0.00149094166471
821 => 0.0015246802880066
822 => 0.0015129264262751
823 => 0.0015214783427528
824 => 0.0015236551644192
825 => 0.0015302437479865
826 => 0.001532598600304
827 => 0.0015254806010506
828 => 0.0015015917261658
829 => 0.001442062921239
830 => 0.0014143521018506
831 => 0.0014052070698923
901 => 0.0014055394744351
902 => 0.0013963702732255
903 => 0.0013990710139165
904 => 0.0013954310658296
905 => 0.0013885378847512
906 => 0.0014024238551158
907 => 0.0014040240838436
908 => 0.0014007829324355
909 => 0.0014015463409235
910 => 0.0013747109915783
911 => 0.0013767512249057
912 => 0.0013653909464784
913 => 0.0013632610312235
914 => 0.001334543236612
915 => 0.0012836655007467
916 => 0.0013118567052374
917 => 0.0012778056944959
918 => 0.0012649100607711
919 => 0.0013259559851418
920 => 0.0013198286674854
921 => 0.0013093413631385
922 => 0.0012938284542637
923 => 0.0012880745654622
924 => 0.001253115758564
925 => 0.0012510502057544
926 => 0.0012683767344204
927 => 0.0012603811376105
928 => 0.0012491522915201
929 => 0.0012084825492305
930 => 0.0011627562936082
1001 => 0.0011641364818404
1002 => 0.0011786811529867
1003 => 0.0012209717459605
1004 => 0.0012044480796509
1005 => 0.0011924599701561
1006 => 0.001190214957609
1007 => 0.0012183159898885
1008 => 0.0012580848379122
1009 => 0.0012767434916271
1010 => 0.0012582533324674
1011 => 0.0012370128332055
1012 => 0.0012383056439766
1013 => 0.0012469061348471
1014 => 0.0012478099248332
1015 => 0.0012339845433723
1016 => 0.0012378763072709
1017 => 0.0012319643620386
1018 => 0.0011956827650605
1019 => 0.0011950265460214
1020 => 0.0011861224570032
1021 => 0.0011858528447264
1022 => 0.0011707047680773
1023 => 0.0011685854474404
1024 => 0.0011385080218311
1025 => 0.00115830507445
1026 => 0.0011450262509452
1027 => 0.0011250119317656
1028 => 0.0011215614555952
1029 => 0.0011214577301149
1030 => 0.0011420079607925
1031 => 0.0011580649330396
1101 => 0.0011452572417652
1102 => 0.0011423411787287
1103 => 0.0011734771029157
1104 => 0.0011695147727526
1105 => 0.0011660834203857
1106 => 0.0012545239737602
1107 => 0.0011845163746618
1108 => 0.0011539890655609
1109 => 0.0011162057235697
1110 => 0.0011285081702422
1111 => 0.0011311004765166
1112 => 0.0010402383499872
1113 => 0.0010033755965703
1114 => 0.00099072568874119
1115 => 0.0009834454879421
1116 => 0.00098676316686525
1117 => 0.00095358236522035
1118 => 0.00097588041268553
1119 => 0.00094714864316439
1120 => 0.00094233166850291
1121 => 0.00099370763158995
1122 => 0.0010008562967195
1123 => 0.00097035787036071
1124 => 0.00098994279732977
1125 => 0.00098284103055994
1126 => 0.00094764116688766
1127 => 0.00094629679100804
1128 => 0.00092863473675233
1129 => 0.00090099704188975
1130 => 0.0008883658737192
1201 => 0.00088178745166714
1202 => 0.00088450183681671
1203 => 0.00088312936062353
1204 => 0.00087417302508438
1205 => 0.00088364272729272
1206 => 0.00085945155130151
1207 => 0.00084981843010025
1208 => 0.00084546737274036
1209 => 0.00082399631165602
1210 => 0.00085816631806541
1211 => 0.00086489823979046
1212 => 0.0008716434254809
1213 => 0.00093035566178235
1214 => 0.00092742256437579
1215 => 0.00095393633645475
1216 => 0.00095290606002746
1217 => 0.00094534390273591
1218 => 0.00091344040503736
1219 => 0.00092615657059483
1220 => 0.00088701818953981
1221 => 0.00091634332577745
1222 => 0.00090296055824556
1223 => 0.00091181859861307
1224 => 0.00089589104333499
1225 => 0.00090470601005852
1226 => 0.0008664946281693
1227 => 0.0008308133774098
1228 => 0.00084517255431607
1229 => 0.00086078262178424
1230 => 0.00089462922542646
1231 => 0.00087447046752557
]
'min_raw' => 0.00082399631165602
'max_raw' => 0.0024596490579424
'avg_raw' => 0.0016418226847992
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000823'
'max' => '$0.002459'
'avg' => '$0.001641'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001560943688344
'max_diff' => 7.4709057942442E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00088172031915376
102 => 0.00085743452980983
103 => 0.00080732600950054
104 => 0.00080760961828372
105 => 0.00079990151410759
106 => 0.00079324058669777
107 => 0.00087678594336835
108 => 0.00086639575760973
109 => 0.00084984035643724
110 => 0.0008720004187921
111 => 0.00087785989100621
112 => 0.0008780267019427
113 => 0.00089419411140281
114 => 0.00090282266072983
115 => 0.000904343479947
116 => 0.00092978324805248
117 => 0.00093831032276278
118 => 0.00097343213669774
119 => 0.00090209058860376
120 => 0.00090062135636837
121 => 0.00087231225631405
122 => 0.00085435817751044
123 => 0.00087354158745012
124 => 0.00089053546986008
125 => 0.00087284030361079
126 => 0.0008751509187576
127 => 0.00085139660381613
128 => 0.0008598876536633
129 => 0.00086720128965962
130 => 0.00086316312973811
131 => 0.00085711780888645
201 => 0.00088914216529814
202 => 0.00088733522560493
203 => 0.00091715704253227
204 => 0.00094040528140572
205 => 0.00098207028158673
206 => 0.00093859068185226
207 => 0.00093700611242218
208 => 0.00095249553277415
209 => 0.00093830795141323
210 => 0.00094727401309467
211 => 0.00098062571043508
212 => 0.00098133037924497
213 => 0.00096952626876489
214 => 0.00096880798756942
215 => 0.00097107509610993
216 => 0.0009843536216436
217 => 0.00097971369681426
218 => 0.00098508313529529
219 => 0.00099179770033558
220 => 0.0010195719882588
221 => 0.0010262682750477
222 => 0.0010099997697774
223 => 0.0010114686336525
224 => 0.001005383766101
225 => 0.00099950586028932
226 => 0.0010127185341547
227 => 0.0010368649553394
228 => 0.0010367147417064
301 => 0.0010423162420819
302 => 0.0010458059304105
303 => 0.0010308256334962
304 => 0.0010210740110457
305 => 0.0010248134036051
306 => 0.0010307927737409
307 => 0.001022874374458
308 => 0.00097399834592461
309 => 0.00098882421076885
310 => 0.00098635646191101
311 => 0.00098284208744894
312 => 0.00099774960919485
313 => 0.00099631174235532
314 => 0.00095324204814074
315 => 0.00095599923022507
316 => 0.00095340972151536
317 => 0.00096177695392009
318 => 0.00093785609340446
319 => 0.00094521398898961
320 => 0.00094982879212463
321 => 0.00095254694662375
322 => 0.00096236678453054
323 => 0.00096121453989232
324 => 0.000962295159386
325 => 0.00097685538666069
326 => 0.0010504960197494
327 => 0.0010545041169295
328 => 0.0010347667805219
329 => 0.001042651457115
330 => 0.0010275146022455
331 => 0.0010376760743275
401 => 0.0010446282954526
402 => 0.0010132125450235
403 => 0.0010113523081697
404 => 0.00099615297811563
405 => 0.0010043202371526
406 => 0.00099132554077807
407 => 0.0009945139847332
408 => 0.00098559881747111
409 => 0.0010016443435508
410 => 0.0010195857349305
411 => 0.00102411843892
412 => 0.0010121948461753
413 => 0.0010035613792251
414 => 0.00098840385530133
415 => 0.001013611155394
416 => 0.0010209825381197
417 => 0.0010135724366587
418 => 0.0010118553542362
419 => 0.0010086014861484
420 => 0.0010125456777331
421 => 0.0010209423919863
422 => 0.0010169826566074
423 => 0.0010195981315867
424 => 0.0010096306380318
425 => 0.0010308305925978
426 => 0.0010645012224955
427 => 0.0010646094790764
428 => 0.0010606497223531
429 => 0.001059029475216
430 => 0.0010630924259123
501 => 0.001065296409994
502 => 0.0010784352475279
503 => 0.001092533743676
504 => 0.0011583252735439
505 => 0.0011398512752261
506 => 0.0011982254344805
507 => 0.0012443918155148
508 => 0.0012582350945758
509 => 0.0012454999292163
510 => 0.0012019336164614
511 => 0.0011997960453136
512 => 0.0012649025097921
513 => 0.001246506951512
514 => 0.0012443188583887
515 => 0.0012210412443991
516 => 0.0012348011972555
517 => 0.0012317916937195
518 => 0.0012270410451579
519 => 0.0012532940766814
520 => 0.0013024374080691
521 => 0.0012947779590091
522 => 0.0012890605355974
523 => 0.0012640084505243
524 => 0.0012790954013241
525 => 0.0012737232271158
526 => 0.0012968054967806
527 => 0.001283132071566
528 => 0.0012463675870654
529 => 0.0012522224523995
530 => 0.0012513375012826
531 => 0.0012695497325598
601 => 0.0012640828727858
602 => 0.0012502700091718
603 => 0.001302269441505
604 => 0.0012988928876053
605 => 0.0013036800690473
606 => 0.0013057875343666
607 => 0.0013374386724951
608 => 0.0013504051310628
609 => 0.0013533487441675
610 => 0.001365665876945
611 => 0.0013530422826834
612 => 0.0014035456602001
613 => 0.001437127459295
614 => 0.0014761344470472
615 => 0.0015331341402431
616 => 0.0015545665521614
617 => 0.0015506949787825
618 => 0.0015939114956351
619 => 0.0016715706157701
620 => 0.001566392107321
621 => 0.0016771453321113
622 => 0.0016420821398502
623 => 0.0015589479417589
624 => 0.0015535950794896
625 => 0.0016098945236449
626 => 0.0017347612721607
627 => 0.0017034835678844
628 => 0.0017348124312799
629 => 0.0016982656479985
630 => 0.0016964507921681
701 => 0.0017330374355899
702 => 0.0018185241221791
703 => 0.0017779126018011
704 => 0.0017196860289859
705 => 0.0017626796242468
706 => 0.0017254345931624
707 => 0.0016415111139015
708 => 0.0017034596504134
709 => 0.0016620364282406
710 => 0.0016741259266503
711 => 0.0017611913784182
712 => 0.0017507154329149
713 => 0.0017642722764426
714 => 0.0017403448024605
715 => 0.0017179927687449
716 => 0.0016762710379309
717 => 0.0016639192902934
718 => 0.0016673328689711
719 => 0.0016639175986933
720 => 0.0016405746737454
721 => 0.0016355337713253
722 => 0.001627132046445
723 => 0.0016297360923008
724 => 0.0016139383915144
725 => 0.0016437519168698
726 => 0.0016492855698917
727 => 0.0016709813674037
728 => 0.0016732338970744
729 => 0.0017336563843249
730 => 0.001700376693706
731 => 0.0017227035834034
801 => 0.00172070645624
802 => 0.0015607497119164
803 => 0.0015827903399739
804 => 0.0016170786405013
805 => 0.0016016318075904
806 => 0.0015797935998567
807 => 0.001562158076221
808 => 0.0015354384545882
809 => 0.0015730458089315
810 => 0.0016224954807968
811 => 0.0016744880223573
812 => 0.001736953654356
813 => 0.001723012052474
814 => 0.0016733202708173
815 => 0.0016755494078425
816 => 0.0016893290557995
817 => 0.0016714831596822
818 => 0.0016662200565239
819 => 0.001688605986246
820 => 0.0016887601458409
821 => 0.0016682262856093
822 => 0.0016454066576186
823 => 0.0016453110425441
824 => 0.0016412505101546
825 => 0.0016989880076901
826 => 0.0017307377934152
827 => 0.0017343778551812
828 => 0.0017304927882558
829 => 0.0017319879963226
830 => 0.001713513495568
831 => 0.00175574072585
901 => 0.0017944926081971
902 => 0.0017841062759149
903 => 0.0017685356873197
904 => 0.0017561329635225
905 => 0.0017811845883525
906 => 0.0017800690789337
907 => 0.0017941541443112
908 => 0.0017935151643864
909 => 0.0017887788866661
910 => 0.0017841064450623
911 => 0.0018026321478725
912 => 0.0017972970429768
913 => 0.0017919536511897
914 => 0.0017812366609282
915 => 0.0017826932778951
916 => 0.0017671253777815
917 => 0.0017599229548504
918 => 0.0016516157949946
919 => 0.0016226725828426
920 => 0.001631778706579
921 => 0.0016347766789535
922 => 0.0016221805559332
923 => 0.0016402401606658
924 => 0.001637425590398
925 => 0.0016483754368412
926 => 0.0016415344481706
927 => 0.0016418152047318
928 => 0.0016619330937596
929 => 0.0016677734025319
930 => 0.0016648029743532
1001 => 0.0016668833604293
1002 => 0.0017148249794755
1003 => 0.0017080092143338
1004 => 0.0017043884749455
1005 => 0.0017053914445007
1006 => 0.0017176415560469
1007 => 0.0017210709184485
1008 => 0.0017065404689757
1009 => 0.0017133931129466
1010 => 0.0017425708012447
1011 => 0.0017527813408349
1012 => 0.0017853684818698
1013 => 0.0017715248851679
1014 => 0.001796935406051
1015 => 0.0018750386841607
1016 => 0.0019374329870505
1017 => 0.0018800526075594
1018 => 0.0019946317989499
1019 => 0.0020838481348562
1020 => 0.0020804238632866
1021 => 0.0020648669315103
1022 => 0.0019632965050199
1023 => 0.0018698298842338
1024 => 0.0019480186813237
1025 => 0.0019482180006472
1026 => 0.001941501513635
1027 => 0.0018997859896423
1028 => 0.0019400499038236
1029 => 0.0019432459071143
1030 => 0.0019414569951574
1031 => 0.0019094738007194
1101 => 0.001860641374295
1102 => 0.00187018311353
1103 => 0.0018858126770432
1104 => 0.0018562226526443
1105 => 0.001846766846926
1106 => 0.0018643469887969
1107 => 0.0019209938688729
1108 => 0.0019102851043276
1109 => 0.0019100054552078
1110 => 0.0019558220911557
1111 => 0.0019230272676659
1112 => 0.0018703034654187
1113 => 0.0018569900100097
1114 => 0.0018097362123262
1115 => 0.0018423745786985
1116 => 0.0018435491753992
1117 => 0.0018256734756932
1118 => 0.0018717539799312
1119 => 0.0018713293399724
1120 => 0.0019150759205685
1121 => 0.0019987029522029
1122 => 0.0019739703239123
1123 => 0.0019452089681126
1124 => 0.0019483361249539
1125 => 0.0019826333170224
1126 => 0.0019618964517691
1127 => 0.0019693535730967
1128 => 0.0019826220297761
1129 => 0.0019906272191281
1130 => 0.0019471843013991
1201 => 0.0019370556791614
1202 => 0.0019163360727267
1203 => 0.0019109307141576
1204 => 0.00192780640127
1205 => 0.0019233602539427
1206 => 0.0018434504550948
1207 => 0.0018350994365013
1208 => 0.001835355550319
1209 => 0.0018143565169963
1210 => 0.0017823279508337
1211 => 0.0018664971103827
1212 => 0.0018597371489243
1213 => 0.0018522746746537
1214 => 0.0018531887851715
1215 => 0.0018897237645742
1216 => 0.00186853163146
1217 => 0.0019248743906666
1218 => 0.0019132920131921
1219 => 0.0019014125914397
1220 => 0.0018997704934974
1221 => 0.0018951979296274
1222 => 0.0018795169067409
1223 => 0.0018605811293222
1224 => 0.0018480780888814
1225 => 0.0017047543479549
1226 => 0.001731354400595
1227 => 0.0017619553364863
1228 => 0.0017725186569305
1229 => 0.0017544493663513
1230 => 0.0018802303924666
1231 => 0.001903211797994
]
'min_raw' => 0.00079324058669777
'max_raw' => 0.0020838481348562
'avg_raw' => 0.001438544360777
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000793'
'max' => '$0.002083'
'avg' => '$0.001438'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.0755724958245E-5
'max_diff' => -0.00037580092308621
'year' => 2027
]
2 => [
'items' => [
101 => 0.0018335996216115
102 => 0.0018205780256568
103 => 0.0018810840861296
104 => 0.0018445915350994
105 => 0.0018610241285938
106 => 0.001825505849607
107 => 0.0018976762503766
108 => 0.0018971264328412
109 => 0.0018690505168994
110 => 0.0018927800887979
111 => 0.0018886564917244
112 => 0.0018569588517741
113 => 0.0018986811221011
114 => 0.0018987018158266
115 => 0.0018716793571557
116 => 0.0018401230414049
117 => 0.0018344815174756
118 => 0.0018302313870269
119 => 0.0018599788570412
120 => 0.0018866503456381
121 => 0.0019362793734941
122 => 0.0019487572902537
123 => 0.0019974594300685
124 => 0.001968459677073
125 => 0.0019813148919662
126 => 0.001995271046214
127 => 0.002001962139781
128 => 0.0019910593618775
129 => 0.0020667138316103
130 => 0.0020731013868488
131 => 0.0020752430788682
201 => 0.0020497328173393
202 => 0.002072391900328
203 => 0.0020617904657876
204 => 0.0020893724532984
205 => 0.0020936976611246
206 => 0.0020900343639696
207 => 0.0020914072532024
208 => 0.0020268495096484
209 => 0.0020235018500759
210 => 0.0019778562742658
211 => 0.0019964571838035
212 => 0.0019616836749875
213 => 0.0019727107128399
214 => 0.0019775713260558
215 => 0.0019750324175492
216 => 0.0019975088513201
217 => 0.0019783992909828
218 => 0.0019279660193498
219 => 0.0018775190072057
220 => 0.0018768856860615
221 => 0.0018636038782277
222 => 0.0018540035638483
223 => 0.0018558529249872
224 => 0.0018623703148567
225 => 0.0018536247613011
226 => 0.001855491068563
227 => 0.001886484204251
228 => 0.0018926996565803
229 => 0.0018715771210314
301 => 0.0017867670928349
302 => 0.0017659544991857
303 => 0.0017809141787691
304 => 0.001773764415455
305 => 0.0014315663199087
306 => 0.0015119606865612
307 => 0.001464193083831
308 => 0.0014862065928508
309 => 0.0014374482398241
310 => 0.0014607182815327
311 => 0.001456421154515
312 => 0.0015856929170499
313 => 0.0015836745162854
314 => 0.00158464061792
315 => 0.0015385260697376
316 => 0.0016119877971386
317 => 0.0016481776856546
318 => 0.001641479900453
319 => 0.0016431655886901
320 => 0.0016141998798239
321 => 0.0015849210692977
322 => 0.0015524463624476
323 => 0.0016127803537801
324 => 0.0016060722438795
325 => 0.0016214582344897
326 => 0.0016605891406316
327 => 0.0016663513152048
328 => 0.0016740957362655
329 => 0.0016713199126006
330 => 0.0017374512938923
331 => 0.001729442347269
401 => 0.0017487416043
402 => 0.0017090415683491
403 => 0.0016641172093086
404 => 0.0016726558612742
405 => 0.0016718335204264
406 => 0.0016613641775951
407 => 0.0016519129230029
408 => 0.0016361792469814
409 => 0.0016859629260594
410 => 0.0016839417996045
411 => 0.0017166614876066
412 => 0.0017108779649301
413 => 0.0016722541850286
414 => 0.0016736336408838
415 => 0.0016829111444544
416 => 0.0017150206902406
417 => 0.0017245529896146
418 => 0.0017201372487481
419 => 0.0017305889798456
420 => 0.0017388496019537
421 => 0.0017316263867996
422 => 0.0018338918809688
423 => 0.0017914241178644
424 => 0.0018121226101127
425 => 0.0018170590785513
426 => 0.0018044144184485
427 => 0.0018071565924535
428 => 0.0018113102388733
429 => 0.0018365303665671
430 => 0.0019027152791385
501 => 0.0019320281263804
502 => 0.0020202172735781
503 => 0.0019295941024715
504 => 0.001924216898534
505 => 0.0019401024270014
506 => 0.0019918787921758
507 => 0.0020338386730429
508 => 0.0020477591862501
509 => 0.0020495990118731
510 => 0.002075714820068
511 => 0.0020906839142944
512 => 0.0020725436740392
513 => 0.0020571717197853
514 => 0.0020021112876848
515 => 0.002008484682625
516 => 0.0020523910535714
517 => 0.0021144113886055
518 => 0.0021676312881808
519 => 0.0021489955342502
520 => 0.002291173181948
521 => 0.0023052695149736
522 => 0.0023033218575385
523 => 0.0023354354019865
524 => 0.0022716965560668
525 => 0.0022444469645542
526 => 0.0020604953107741
527 => 0.0021121782221958
528 => 0.0021873023691783
529 => 0.0021773594066241
530 => 0.0021228022430112
531 => 0.0021675899016799
601 => 0.0021527817010844
602 => 0.002141101858882
603 => 0.0021946094802602
604 => 0.002135775652583
605 => 0.0021867154567417
606 => 0.0021213846310033
607 => 0.0021490806608044
608 => 0.0021333590547831
609 => 0.0021435328606465
610 => 0.0020840569994541
611 => 0.0021161487304586
612 => 0.0020827218779365
613 => 0.0020827060292561
614 => 0.002081968129634
615 => 0.0021212946733889
616 => 0.0021225771105689
617 => 0.0020935147353149
618 => 0.0020893263930012
619 => 0.0021048128897341
620 => 0.0020866822579798
621 => 0.0020951654664648
622 => 0.0020869392057228
623 => 0.0020850873011582
624 => 0.0020703310105121
625 => 0.0020639735947691
626 => 0.0020664665012923
627 => 0.002057956926147
628 => 0.0020528295993172
629 => 0.0020809481752746
630 => 0.0020659255544407
701 => 0.0020786457431771
702 => 0.0020641494826962
703 => 0.0020138991281491
704 => 0.0019849996178613
705 => 0.0018900813563323
706 => 0.0019170000575562
707 => 0.001934847184317
708 => 0.0019289487090291
709 => 0.0019416209163546
710 => 0.001942398886965
711 => 0.0019382790231856
712 => 0.0019335087487163
713 => 0.0019311868429173
714 => 0.0019484924264408
715 => 0.0019585389001554
716 => 0.0019366383822512
717 => 0.0019315073973271
718 => 0.0019536500300889
719 => 0.0019671570232823
720 => 0.0020668850720979
721 => 0.0020594968961243
722 => 0.0020780397679617
723 => 0.0020759521251564
724 => 0.0020953880089532
725 => 0.0021271574647436
726 => 0.0020625612782422
727 => 0.0020737729426507
728 => 0.0020710241014529
729 => 0.0021010352288661
730 => 0.0021011289203301
731 => 0.0020831357502788
801 => 0.0020928901396695
802 => 0.0020874455071093
803 => 0.0020972846940317
804 => 0.0020593982225298
805 => 0.0021055398552273
806 => 0.0021316991876656
807 => 0.0021320624100219
808 => 0.0021444617259844
809 => 0.0021570601491222
810 => 0.0021812417252438
811 => 0.0021563857380887
812 => 0.0021116722368783
813 => 0.0021149004072419
814 => 0.0020886848978423
815 => 0.0020891255852915
816 => 0.0020867731611502
817 => 0.0020938329630804
818 => 0.0020609474520464
819 => 0.0020686656157554
820 => 0.0020578601413652
821 => 0.0020737494536597
822 => 0.0020566551802283
823 => 0.0020710227758784
824 => 0.0020772233538677
825 => 0.0021001036201371
826 => 0.0020532757462969
827 => 0.0019577905415685
828 => 0.0019778626892486
829 => 0.0019481744061966
830 => 0.0019509221698243
831 => 0.0019564730896557
901 => 0.0019384807423343
902 => 0.0019419131151992
903 => 0.0019417904866872
904 => 0.0019407337404203
905 => 0.0019360532359846
906 => 0.0019292655785432
907 => 0.0019563055166589
908 => 0.0019609001290525
909 => 0.0019711133832514
910 => 0.0020015011000311
911 => 0.0019984646505331
912 => 0.0020034172256454
913 => 0.0019926057819827
914 => 0.0019514236816878
915 => 0.0019536600678669
916 => 0.0019257722963782
917 => 0.0019704002302342
918 => 0.0019598317464372
919 => 0.0019530181761812
920 => 0.0019511590304095
921 => 0.0019816220724614
922 => 0.001990737092093
923 => 0.0019850572235448
924 => 0.0019734076474442
925 => 0.0019957782774453
926 => 0.0020017637142925
927 => 0.0020031036328682
928 => 0.0020427401000874
929 => 0.0020053188710795
930 => 0.0020143265328367
1001 => 0.0020846017385161
1002 => 0.0020208718242804
1003 => 0.0020546309811977
1004 => 0.0020529786461408
1005 => 0.0020702486884721
1006 => 0.0020515619985949
1007 => 0.0020517936425117
1008 => 0.0020671282701279
1009 => 0.0020455935512556
1010 => 0.0020402612520194
1011 => 0.0020328947188152
1012 => 0.0020489792745673
1013 => 0.0020586212382988
1014 => 0.0021363283847327
1015 => 0.0021865307452054
1016 => 0.002184351328338
1017 => 0.0022042671188088
1018 => 0.002195294872794
1019 => 0.0021663211236531
1020 => 0.0022157757804643
1021 => 0.0022001262577785
1022 => 0.0022014163854145
1023 => 0.0022013683667995
1024 => 0.0022117739312805
1025 => 0.0022044006351897
1026 => 0.0021898671117415
1027 => 0.0021995151428576
1028 => 0.0022281663460381
1029 => 0.0023171005598368
1030 => 0.0023668693241002
1031 => 0.0023141044177367
1101 => 0.002350500943596
1102 => 0.0023286759974886
1103 => 0.002324709755545
1104 => 0.0023475694634668
1105 => 0.0023704691842811
1106 => 0.0023690105710635
1107 => 0.0023523865496659
1108 => 0.0023429960617974
1109 => 0.0024141039819823
1110 => 0.0024664950862827
1111 => 0.0024629223642039
1112 => 0.0024786911975485
1113 => 0.0025249889799601
1114 => 0.0025292218689612
1115 => 0.0025286886222389
1116 => 0.0025181969651936
1117 => 0.0025637831445045
1118 => 0.0026018119372983
1119 => 0.0025157684497207
1120 => 0.0025485326833983
1121 => 0.0025632416034938
1122 => 0.002584838662134
1123 => 0.0026212765201474
1124 => 0.0026608576986144
1125 => 0.0026664549112351
1126 => 0.0026624834210294
1127 => 0.0026363785698312
1128 => 0.0026796887676115
1129 => 0.0027050588657221
1130 => 0.0027201661785625
1201 => 0.0027584758103088
1202 => 0.0025633324407768
1203 => 0.0024252002645673
1204 => 0.0024036289305994
1205 => 0.002447495086474
1206 => 0.0024590622419521
1207 => 0.0024543995360828
1208 => 0.002298919213331
1209 => 0.0024028103588775
1210 => 0.0025145884960699
1211 => 0.0025188823495503
1212 => 0.0025748408221994
1213 => 0.0025930631947093
1214 => 0.0026381170998365
1215 => 0.0026352989658039
1216 => 0.0026462688747382
1217 => 0.0026437470826466
1218 => 0.0027271999546757
1219 => 0.0028192608653954
1220 => 0.0028160730887929
1221 => 0.0028028382436617
1222 => 0.002822494245558
1223 => 0.0029175109712674
1224 => 0.002908763353776
1225 => 0.0029172609190486
1226 => 0.0030292909935679
1227 => 0.0031749460265354
1228 => 0.0031072746401958
1229 => 0.0032541020766359
1230 => 0.0033465221648869
1231 => 0.0035063531511016
]
'min_raw' => 0.0014315663199087
'max_raw' => 0.0035063531511016
'avg_raw' => 0.0024689597355052
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001431'
'max' => '$0.0035063'
'avg' => '$0.002468'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00063832573321096
'max_diff' => 0.0014225050162454
'year' => 2028
]
3 => [
'items' => [
101 => 0.0034863415244433
102 => 0.0035485625544828
103 => 0.0034505165361725
104 => 0.0032253830597625
105 => 0.0031897548253443
106 => 0.0032610834529002
107 => 0.0034364379236005
108 => 0.0032555609165842
109 => 0.0032921520995289
110 => 0.0032816138363792
111 => 0.0032810522971207
112 => 0.0033024839666729
113 => 0.0032713962121867
114 => 0.00314473910783
115 => 0.0032027853123617
116 => 0.0031803708851843
117 => 0.0032052413632438
118 => 0.0033394570759658
119 => 0.0032801171100685
120 => 0.003217607276383
121 => 0.0032960084798672
122 => 0.0033958401534789
123 => 0.0033895928667591
124 => 0.0033774705193593
125 => 0.0034458035569465
126 => 0.0035586697153391
127 => 0.0035891769844197
128 => 0.0036116968267613
129 => 0.0036148019325443
130 => 0.0036467864519223
131 => 0.0034747976300903
201 => 0.0037477483073239
202 => 0.0037948793491718
203 => 0.0037860206666859
204 => 0.0038384048361225
205 => 0.0038229920846162
206 => 0.0038006614258701
207 => 0.0038837014768594
208 => 0.0037885027593867
209 => 0.0036533801651195
210 => 0.0035792492374826
211 => 0.0036768708229662
212 => 0.0037364849186972
213 => 0.0037758860438068
214 => 0.0037878088004582
215 => 0.0034881486327397
216 => 0.0033266484222543
217 => 0.0034301682055718
218 => 0.0035564694857729
219 => 0.0034740960201017
220 => 0.0034773249040024
221 => 0.0033598819893212
222 => 0.0035668605777571
223 => 0.003536705538386
224 => 0.003693149935987
225 => 0.0036558132249548
226 => 0.0037833875580619
227 => 0.0037497929606733
228 => 0.0038892422561847
301 => 0.0039448723556031
302 => 0.0040382839506603
303 => 0.004106997900238
304 => 0.0041473480457184
305 => 0.0041449255743333
306 => 0.0043048129530893
307 => 0.0042105329518764
308 => 0.0040920950502629
309 => 0.0040899528822895
310 => 0.0041512935498132
311 => 0.0042798467609526
312 => 0.0043131787382279
313 => 0.0043318067662928
314 => 0.004303277292865
315 => 0.004200943108657
316 => 0.0041567557267621
317 => 0.0041944046563683
318 => 0.0041483632506693
319 => 0.0042278436338425
320 => 0.0043369871760331
321 => 0.0043144494661711
322 => 0.0043897896511975
323 => 0.0044677588166813
324 => 0.0045792582251374
325 => 0.0046084082993189
326 => 0.004656592263463
327 => 0.0047061893901749
328 => 0.0047221186505948
329 => 0.0047525325512954
330 => 0.004752372255026
331 => 0.0048440265918792
401 => 0.0049451241637267
402 => 0.004983286156685
403 => 0.005071037555228
404 => 0.0049207663603989
405 => 0.0050347487878678
406 => 0.00513756379061
407 => 0.0050149835057757
408 => 0.0051839318708765
409 => 0.0051904917530481
410 => 0.0052895381855889
411 => 0.0051891356512083
412 => 0.0051295169467893
413 => 0.0053016339125632
414 => 0.0053849158906676
415 => 0.0053598306810913
416 => 0.0051689309976065
417 => 0.0050578191937457
418 => 0.0047670181711758
419 => 0.0051114845440792
420 => 0.0052792640660986
421 => 0.005168496489177
422 => 0.0052243612120111
423 => 0.0055291410255965
424 => 0.0056451814455783
425 => 0.0056210458494059
426 => 0.0056251243678533
427 => 0.0056877376721929
428 => 0.005965399545411
429 => 0.0057990181148269
430 => 0.0059262104843152
501 => 0.0059936728584656
502 => 0.0060563356712955
503 => 0.0059024556077707
504 => 0.0057022599060721
505 => 0.0056388495237003
506 => 0.0051574828366425
507 => 0.0051324256101116
508 => 0.0051183602295481
509 => 0.0050296799946829
510 => 0.0049600016216396
511 => 0.0049045907924034
512 => 0.0047591762294133
513 => 0.0048082493757332
514 => 0.004576488912705
515 => 0.0047247610438639
516 => 0.0043548657488189
517 => 0.0046629255420304
518 => 0.0044952626023454
519 => 0.0046078437570636
520 => 0.0046074509720206
521 => 0.0044001533722968
522 => 0.0042805884429667
523 => 0.0043567798694725
524 => 0.0044384631267697
525 => 0.0044517159604507
526 => 0.0045576204356877
527 => 0.0045871760983173
528 => 0.0044976210607277
529 => 0.0043472004909999
530 => 0.0043821397586198
531 => 0.0042798803998235
601 => 0.0041006748068825
602 => 0.0042293833923622
603 => 0.004273330162362
604 => 0.0042927395595862
605 => 0.0041165114408301
606 => 0.0040611367398184
607 => 0.0040316557136385
608 => 0.0043244516538464
609 => 0.0043404916764005
610 => 0.0042584286531833
611 => 0.0046293612996602
612 => 0.0045454078176769
613 => 0.0046392044261547
614 => 0.0043789693862993
615 => 0.0043889107152748
616 => 0.0042657112769557
617 => 0.0043346947302249
618 => 0.0042859394488947
619 => 0.0043291215489086
620 => 0.0043550047216104
621 => 0.0044781839441139
622 => 0.0046643320508859
623 => 0.0044597850759369
624 => 0.004370661029785
625 => 0.004425953086765
626 => 0.0045732031208048
627 => 0.0047962944599656
628 => 0.0046642198970508
629 => 0.0047228323453008
630 => 0.0047356365577571
701 => 0.0046382496647298
702 => 0.0047998852536227
703 => 0.0048865070788356
704 => 0.0049753631476429
705 => 0.0050525143824977
706 => 0.0049398720797744
707 => 0.0050604154903282
708 => 0.0049632787801983
709 => 0.0048761371094032
710 => 0.0048762692673473
711 => 0.0048216040243209
712 => 0.0047156832276933
713 => 0.0046961498076786
714 => 0.0047977651253941
715 => 0.0048792509871955
716 => 0.0048859625530644
717 => 0.0049310773130524
718 => 0.0049577757632943
719 => 0.0052194568704481
720 => 0.0053247071764851
721 => 0.0054534052584207
722 => 0.0055035404143611
723 => 0.0056544292592935
724 => 0.0055325742624178
725 => 0.0055062101673398
726 => 0.0051402031848989
727 => 0.0052001368077695
728 => 0.0052960963207198
729 => 0.0051417855219233
730 => 0.0052396602063099
731 => 0.0052589827422771
801 => 0.005136542100028
802 => 0.0052019429374011
803 => 0.005028257703335
804 => 0.0046681179143616
805 => 0.0048002861921593
806 => 0.0048976065319796
807 => 0.0047587184075446
808 => 0.0050076699948816
809 => 0.0048622376169632
810 => 0.0048161425351484
811 => 0.0046363091869054
812 => 0.0047211836048557
813 => 0.0048359774704181
814 => 0.0047650482077198
815 => 0.0049122370779012
816 => 0.0051206957719159
817 => 0.0052692558512006
818 => 0.0052806604494102
819 => 0.0051851462711824
820 => 0.0053382083513558
821 => 0.0053393232415081
822 => 0.0051666685897957
823 => 0.0050609185769669
824 => 0.0050368919515523
825 => 0.0050969151725354
826 => 0.0051697944437068
827 => 0.0052847047417463
828 => 0.0053541426282229
829 => 0.0055351998091447
830 => 0.0055841886909859
831 => 0.0056380126196285
901 => 0.0057099379869799
902 => 0.0057963028317709
903 => 0.0056073414681216
904 => 0.0056148492553674
905 => 0.0054388910498853
906 => 0.0052508544723685
907 => 0.0053935507956134
908 => 0.0055801072561599
909 => 0.0055373109979839
910 => 0.0055324955446909
911 => 0.0055405938014344
912 => 0.0055083268203649
913 => 0.0053623844608576
914 => 0.0052890931215605
915 => 0.0053836576478685
916 => 0.0054339144850184
917 => 0.005511858456581
918 => 0.0055022502168883
919 => 0.0057030255170622
920 => 0.0057810407275799
921 => 0.0057610810982704
922 => 0.0057647541504187
923 => 0.0059059969625687
924 => 0.0060630880184794
925 => 0.0062102245223303
926 => 0.0063598980937074
927 => 0.0061794607615534
928 => 0.0060878458121132
929 => 0.0061823690545072
930 => 0.006132213691582
1001 => 0.0064204212839975
1002 => 0.0064403761523813
1003 => 0.0067285629041075
1004 => 0.0070020864481357
1005 => 0.0068302912108149
1006 => 0.006992286381781
1007 => 0.0071674973668409
1008 => 0.0075055077839794
1009 => 0.007391677766837
1010 => 0.0073044857576497
1011 => 0.0072220897302764
1012 => 0.0073935427832392
1013 => 0.0076141143968464
1014 => 0.0076616234098087
1015 => 0.0077386061606475
1016 => 0.0076576682111434
1017 => 0.0077551490562984
1018 => 0.0080992992749491
1019 => 0.0080063068479717
1020 => 0.0078742426523851
1021 => 0.0081459161974715
1022 => 0.0082442337973341
1023 => 0.0089342782024967
1024 => 0.0098054877683271
1025 => 0.0094448012874029
1026 => 0.0092209115494132
1027 => 0.0092735309485764
1028 => 0.0095916671897127
1029 => 0.0096938424532261
1030 => 0.0094160948650712
1031 => 0.0095142000087068
1101 => 0.010054768995624
1102 => 0.010344766913575
1103 => 0.0099509107890807
1104 => 0.0088642773621601
1105 => 0.0078623517165182
1106 => 0.0081281075150423
1107 => 0.0080979790548522
1108 => 0.0086787529939401
1109 => 0.0080040890093429
1110 => 0.0080154486205713
1111 => 0.0086082323496693
1112 => 0.0084500878136318
1113 => 0.008193913918873
1114 => 0.0078642220694489
1115 => 0.0072547561929835
1116 => 0.0067149352699847
1117 => 0.0077736484133192
1118 => 0.0077279947774337
1119 => 0.0076618815471817
1120 => 0.0078090093869088
1121 => 0.0085234204136577
1122 => 0.0085069509271683
1123 => 0.0084021804569287
1124 => 0.0084816479352009
1125 => 0.0081799828857123
1126 => 0.008257728837751
1127 => 0.0078621930063769
1128 => 0.0080409917211935
1129 => 0.0081933642847484
1130 => 0.0082239553327964
1201 => 0.0082928785260663
1202 => 0.0077039373858393
1203 => 0.0079683546673977
1204 => 0.0081236750477646
1205 => 0.0074219319186634
1206 => 0.0081098038423784
1207 => 0.0076936852308637
1208 => 0.0075524483242238
1209 => 0.0077426052124669
1210 => 0.0076685008881849
1211 => 0.0076047903417192
1212 => 0.0075692387621052
1213 => 0.007708868993981
1214 => 0.0077023550767698
1215 => 0.0074738929163608
1216 => 0.0071758733414162
1217 => 0.0072758984929267
1218 => 0.0072395584176421
1219 => 0.0071078572968479
1220 => 0.0071966079506092
1221 => 0.0068057949871223
1222 => 0.0061334215961331
1223 => 0.0065776120535745
1224 => 0.0065605112041493
1225 => 0.0065518881804073
1226 => 0.0068856850326519
1227 => 0.0068535981673122
1228 => 0.0067953601925252
1229 => 0.0071067877107701
1230 => 0.0069931124773195
1231 => 0.0073434327615609
]
'min_raw' => 0.00314473910783
'max_raw' => 0.010344766913575
'avg_raw' => 0.0067447530107027
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003144'
'max' => '$0.010344'
'avg' => '$0.006744'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0017131727879212
'max_diff' => 0.0068384137624738
'year' => 2029
]
4 => [
'items' => [
101 => 0.0075741763580577
102 => 0.0075156523182127
103 => 0.0077326677859985
104 => 0.007278202870395
105 => 0.0074291578853908
106 => 0.0074602695047669
107 => 0.0071029447435366
108 => 0.0068588479753068
109 => 0.0068425695037727
110 => 0.0064193393462688
111 => 0.006645425480213
112 => 0.0068443719220039
113 => 0.0067490920152536
114 => 0.0067189292431827
115 => 0.0068730243041858
116 => 0.0068849988101607
117 => 0.006611978804932
118 => 0.0066687483094381
119 => 0.0069054865803738
120 => 0.0066627831124184
121 => 0.0061912499195675
122 => 0.006074303168284
123 => 0.0060587003159066
124 => 0.005741531451262
125 => 0.0060821181094075
126 => 0.005933442905972
127 => 0.0064031060922222
128 => 0.0061348369990903
129 => 0.006123272454668
130 => 0.0061057909496239
131 => 0.0058327906057435
201 => 0.0058925603309764
202 => 0.0060912440008365
203 => 0.0061621365725744
204 => 0.0061547418965364
205 => 0.0060902703424627
206 => 0.0061197850897699
207 => 0.0060247078050739
208 => 0.0059911340369852
209 => 0.0058851659897047
210 => 0.0057294222346227
211 => 0.0057510793589988
212 => 0.0054425102276111
213 => 0.0052743853878277
214 => 0.0052278506480255
215 => 0.0051656224491412
216 => 0.0052348794886724
217 => 0.0054416360900315
218 => 0.0051922437629324
219 => 0.0047646781109588
220 => 0.0047903755351788
221 => 0.0048481100177675
222 => 0.0047405221914153
223 => 0.0046386993429347
224 => 0.0047272260485398
225 => 0.0045460608453001
226 => 0.004870002967052
227 => 0.0048612412404959
228 => 0.0049819868310386
301 => 0.0050574915267539
302 => 0.0048834776480657
303 => 0.0048397136281592
304 => 0.0048646436028617
305 => 0.0044526066532332
306 => 0.0049483146217102
307 => 0.0049526015248063
308 => 0.0049158944578431
309 => 0.0051798436477906
310 => 0.0057368587663966
311 => 0.0055272872728958
312 => 0.0054461348562803
313 => 0.0052918640529723
314 => 0.0054974207386863
315 => 0.0054816371924073
316 => 0.0054102580104015
317 => 0.0053670876584077
318 => 0.0054466303556315
319 => 0.0053572314379616
320 => 0.0053411729358302
321 => 0.0052438758847361
322 => 0.0052091452642293
323 => 0.0051834320954719
324 => 0.0051551244231937
325 => 0.0052175640944069
326 => 0.0050760675848151
327 => 0.0049054366653213
328 => 0.0048912505506175
329 => 0.0049304196605706
330 => 0.0049130902452136
331 => 0.0048911675840439
401 => 0.0048493112535893
402 => 0.0048368933744624
403 => 0.0048772454573263
404 => 0.0048316903084456
405 => 0.0048989094121364
406 => 0.0048806295353352
407 => 0.0047785196294875
408 => 0.0046512528808722
409 => 0.0046501199398585
410 => 0.0046227005276287
411 => 0.0045877777836177
412 => 0.004578063075158
413 => 0.0047197705763148
414 => 0.0050131008627607
415 => 0.0049555131087325
416 => 0.0049971261628483
417 => 0.0052018212031445
418 => 0.0052668876010601
419 => 0.0052207050130017
420 => 0.0051574874380494
421 => 0.0051602686905127
422 => 0.0053763022813859
423 => 0.0053897760314565
424 => 0.0054238198510883
425 => 0.0054675757800975
426 => 0.0052281568369179
427 => 0.0051489920798195
428 => 0.0051114794260128
429 => 0.0049959549715121
430 => 0.0051205381913729
501 => 0.0050479488843454
502 => 0.0050577436618672
503 => 0.0050513648001567
504 => 0.0050548480899874
505 => 0.004869912418627
506 => 0.004937293257338
507 => 0.0048252595442524
508 => 0.0046752589788053
509 => 0.0046747561243129
510 => 0.0047114685502005
511 => 0.0046896305627252
512 => 0.0046308650999352
513 => 0.0046392124565594
514 => 0.0045660808290304
515 => 0.0046480919602322
516 => 0.0046504437460252
517 => 0.004618864993336
518 => 0.0047452144563076
519 => 0.0047969799343785
520 => 0.004776194122876
521 => 0.0047955215464328
522 => 0.0049579061399055
523 => 0.0049843819139781
524 => 0.0049961407039296
525 => 0.0049803854831357
526 => 0.0047984896387078
527 => 0.0048065574928891
528 => 0.0047473609320126
529 => 0.0046973460760518
530 => 0.0046993464079969
531 => 0.0047250605454369
601 => 0.0048373556917515
602 => 0.0050736742070102
603 => 0.0050826423219176
604 => 0.0050935119388039
605 => 0.0050492997442958
606 => 0.0050359649233785
607 => 0.0050535569941778
608 => 0.0051423058034717
609 => 0.0053705918360423
610 => 0.0052899003054204
611 => 0.0052242968349863
612 => 0.0052818487651256
613 => 0.0052729890965876
614 => 0.0051982045780715
615 => 0.0051961056257143
616 => 0.005052570224625
617 => 0.0049995084549852
618 => 0.0049551660686696
619 => 0.0049067453404003
620 => 0.0048780399096047
621 => 0.0049221444976917
622 => 0.0049322317388173
623 => 0.0048357962861488
624 => 0.0048226524902914
625 => 0.0049014037626443
626 => 0.0048667482638251
627 => 0.0049023923037756
628 => 0.0049106620267931
629 => 0.0049093304109194
630 => 0.0048731460899935
701 => 0.0048962088971197
702 => 0.0048416584829126
703 => 0.0047823431006696
704 => 0.0047445035822775
705 => 0.0047114835837966
706 => 0.0047298049980874
707 => 0.0046644925014989
708 => 0.0046435977193594
709 => 0.0048883957369949
710 => 0.0050692306646445
711 => 0.0050666012531779
712 => 0.0050505953871053
713 => 0.0050268139167926
714 => 0.0051405660407927
715 => 0.0051009370753366
716 => 0.0051297704588168
717 => 0.0051371097650458
718 => 0.0051593236345433
719 => 0.0051672631835421
720 => 0.0051432643520965
721 => 0.0050627213425545
722 => 0.0048620158205753
723 => 0.0047685868582998
724 => 0.0047377537445665
725 => 0.0047388744696903
726 => 0.0047079598676389
727 => 0.0047170656034383
728 => 0.0047047932643305
729 => 0.0046815524230579
730 => 0.0047283699416298
731 => 0.0047337652245098
801 => 0.0047228374562475
802 => 0.0047254113412642
803 => 0.0046349340873627
804 => 0.0046418128764706
805 => 0.0046035109046037
806 => 0.0045963297466158
807 => 0.0044995056970706
808 => 0.0043279678584309
809 => 0.0044230164726182
810 => 0.0043082111125375
811 => 0.0042647325830899
812 => 0.0044705531791963
813 => 0.0044498944999219
814 => 0.0044145358211162
815 => 0.0043622329657682
816 => 0.0043428333279502
817 => 0.0042249672697467
818 => 0.0042180031142371
819 => 0.004276420715334
820 => 0.0042494630024547
821 => 0.0042116041638879
822 => 0.004074483288288
823 => 0.003920314024952
824 => 0.0039249674259386
825 => 0.0039740058001847
826 => 0.0041165914870309
827 => 0.0040608807924227
828 => 0.0040204620442778
829 => 0.0040128928277334
830 => 0.0041076374200151
831 => 0.0042417208676993
901 => 0.0043046298214047
902 => 0.004242288958856
903 => 0.0041706751326304
904 => 0.0041750339344063
905 => 0.0042040310898433
906 => 0.004207078280882
907 => 0.0041604650420295
908 => 0.0041735863957278
909 => 0.0041536538596183
910 => 0.0040313279223064
911 => 0.0040291154340001
912 => 0.0039990946762116
913 => 0.0039981856595968
914 => 0.0039471128615695
915 => 0.0039399674240759
916 => 0.0038385592836954
917 => 0.0039053064287859
918 => 0.0038605359482416
919 => 0.0037930562737726
920 => 0.0037814227524595
921 => 0.0037810730347609
922 => 0.0038503595722615
923 => 0.0039044967752547
924 => 0.0038613147499186
925 => 0.0038514830397979
926 => 0.0039564599820351
927 => 0.0039431007092494
928 => 0.003931531665175
929 => 0.0042297151655993
930 => 0.0039936796574648
1001 => 0.0038907547034823
1002 => 0.0037633655280103
1003 => 0.003804844085896
1004 => 0.0038135842274893
1005 => 0.003507236224104
1006 => 0.0033829508772838
1007 => 0.0033403008298496
1008 => 0.0033157551245681
1009 => 0.0033269409106905
1010 => 0.0032150695213351
1011 => 0.0032902489451639
1012 => 0.0031933777782353
1013 => 0.0031771370118537
1014 => 0.0033503546583568
1015 => 0.0033744568819449
1016 => 0.0032716293081442
1017 => 0.0033376612567963
1018 => 0.0033137171543023
1019 => 0.0031950383563552
1020 => 0.0031905056992157
1021 => 0.0031309568501673
1022 => 0.0030377744323359
1023 => 0.0029951875669689
1024 => 0.0029730079577296
1025 => 0.0029821596967737
1026 => 0.0029775322974652
1027 => 0.0029473353868836
1028 => 0.0029792631490325
1029 => 0.0028977009102041
1030 => 0.0028652221695111
1031 => 0.0028505522758411
1101 => 0.0027781610943336
1102 => 0.0028933676566165
1103 => 0.0029160648007203
1104 => 0.0029388066652095
1105 => 0.0031367590690572
1106 => 0.0031268699263687
1107 => 0.0032162629600653
1108 => 0.0032127893111591
1109 => 0.0031872929698777
1110 => 0.003079728099956
1111 => 0.0031226015399473
1112 => 0.0029906437556658
1113 => 0.0030895154999066
1114 => 0.0030443945648179
1115 => 0.0030742600663656
1116 => 0.0030205592017191
1117 => 0.0030502794774688
1118 => 0.0029214471355958
1119 => 0.0028011453074748
1120 => 0.00284955827494
1121 => 0.0029021887072691
1122 => 0.0030163048945432
1123 => 0.0029483382348408
1124 => 0.0029727816157737
1125 => 0.002890900381421
1126 => 0.0027219560067331
1127 => 0.0027229122135465
1128 => 0.002696923802154
1129 => 0.0026744660203407
1130 => 0.0029561450233061
1201 => 0.0029211137866013
1202 => 0.0028652960956871
1203 => 0.0029400102930826
1204 => 0.0029597659127478
1205 => 0.0029603283274665
1206 => 0.0030148378772338
1207 => 0.0030439296337159
1208 => 0.0030490571818868
1209 => 0.0031348291362023
1210 => 0.0031635787639294
1211 => 0.0032819944117379
1212 => 0.0030414614014312
1213 => 0.0030365077823711
1214 => 0.0029410616750597
1215 => 0.0028805282448595
1216 => 0.0029452064508141
1217 => 0.0030025025118343
1218 => 0.0029428420233877
1219 => 0.0029506324236772
1220 => 0.0028705430923787
1221 => 0.0028991712597646
1222 => 0.002923829694148
1223 => 0.0029102147560373
1224 => 0.0028898325347151
1225 => 0.0029978048882263
1226 => 0.0029917126648941
1227 => 0.0030922590027574
1228 => 0.0031706420632594
1229 => 0.0033111185203271
1230 => 0.0031645240141737
1231 => 0.0031591815277091
]
'min_raw' => 0.0026744660203407
'max_raw' => 0.0077326677859985
'avg_raw' => 0.0052035669031696
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002674'
'max' => '$0.007732'
'avg' => '$0.0052035'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00047027308748923
'max_diff' => -0.002612099127577
'year' => 2030
]
5 => [
'items' => [
101 => 0.0032114051898625
102 => 0.0031635707687589
103 => 0.0031938004717083
104 => 0.0033062480478326
105 => 0.0033086238879236
106 => 0.0032688255053033
107 => 0.003266403770104
108 => 0.0032740474848328
109 => 0.0033188169607466
110 => 0.0033031731302353
111 => 0.0033212765669563
112 => 0.0033439151917856
113 => 0.0034375581426576
114 => 0.0034601351410862
115 => 0.0034052847397364
116 => 0.0034102371168444
117 => 0.0033897215610624
118 => 0.0033699037912362
119 => 0.0034144512436527
120 => 0.0034958625885263
121 => 0.0034953561327751
122 => 0.0035142419823753
123 => 0.0035260077102175
124 => 0.0034755005932798
125 => 0.0034426223173516
126 => 0.0034552299404415
127 => 0.0034753898043207
128 => 0.0034486923682934
129 => 0.0032839034256777
130 => 0.0033338898641089
131 => 0.003325569676542
201 => 0.0033137207176774
202 => 0.0033639824680536
203 => 0.0033591345996155
204 => 0.003213922118541
205 => 0.0032232181504386
206 => 0.0032144874410301
207 => 0.0032426981492642
208 => 0.0031620472979346
209 => 0.0031868549566118
210 => 0.0032024140875768
211 => 0.003211578535246
212 => 0.003244686804348
213 => 0.0032408019311031
214 => 0.0032444453151724
215 => 0.0032935361379916
216 => 0.0035418206738751
217 => 0.0035553342533542
218 => 0.0034887884456393
219 => 0.0035153721832634
220 => 0.0034643372202494
221 => 0.0034985973328252
222 => 0.0035220372317371
223 => 0.0034161168357877
224 => 0.0034098449173573
225 => 0.0033585993148968
226 => 0.0033861357989598
227 => 0.0033423232728723
228 => 0.0033530733342771
301 => 0.0033230152254158
302 => 0.0033771138368563
303 => 0.003437604490521
304 => 0.003452886818485
305 => 0.0034126855930675
306 => 0.0033835772564755
307 => 0.0033324726063019
308 => 0.0034174607784819
309 => 0.003442313909995
310 => 0.0034173302355624
311 => 0.0034115409722923
312 => 0.0034005703288564
313 => 0.0034138684461588
314 => 0.0034421785545033
315 => 0.0034288280302136
316 => 0.0034376462867129
317 => 0.0034040401862843
318 => 0.0034755173132371
319 => 0.0035890401927457
320 => 0.0035894051873661
321 => 0.0035760545911122
322 => 0.0035705918147677
323 => 0.0035842903367062
324 => 0.003591721222915
325 => 0.0036360197309847
326 => 0.0036835537950739
327 => 0.0039053745314413
328 => 0.0038430881562994
329 => 0.0040399007097792
330 => 0.0041955538866701
331 => 0.0042422274685312
401 => 0.0041992899693807
402 => 0.0040524031042251
403 => 0.0040451961338597
404 => 0.0042647071244372
405 => 0.0042026852153587
406 => 0.0041953079066259
407 => 0.0041168258058688
408 => 0.0041632184476135
409 => 0.004153071696325
410 => 0.0041370545530199
411 => 0.0042255684817295
412 => 0.0043912586545809
413 => 0.0043654342873094
414 => 0.0043461575950991
415 => 0.0042616927411946
416 => 0.0043125594491532
417 => 0.0042944467887368
418 => 0.0043722702724642
419 => 0.0043261693647053
420 => 0.0042022153383972
421 => 0.0042219554256446
422 => 0.0042189717511687
423 => 0.0042803755604572
424 => 0.0042619436610451
425 => 0.0042153726269871
426 => 0.0043906923435829
427 => 0.0043793080563667
428 => 0.0043954483728289
429 => 0.0044025538392914
430 => 0.0045092678613034
501 => 0.0045529851816538
502 => 0.0045629097787528
503 => 0.0046044378518668
504 => 0.0045618765224625
505 => 0.0047321521857934
506 => 0.004845375566048
507 => 0.0049768903486356
508 => 0.0051690687938372
509 => 0.005241329666983
510 => 0.0052282763870312
511 => 0.0053739838908807
512 => 0.0056358170364025
513 => 0.0052812003518373
514 => 0.0056546125817611
515 => 0.0055363945810187
516 => 0.0052561018279096
517 => 0.0052380542790438
518 => 0.0054278717857151
519 => 0.005848868746254
520 => 0.005743413782547
521 => 0.0058490412327964
522 => 0.0057258212013481
523 => 0.0057197022882068
524 => 0.0058430567109013
525 => 0.0061312810432265
526 => 0.0059943564668663
527 => 0.0057980415113704
528 => 0.0059429974195096
529 => 0.0058174231968435
530 => 0.0055344693271649
531 => 0.0057433331431237
601 => 0.0056036718574911
602 => 0.005644432445441
603 => 0.0059379796947924
604 => 0.0059026593131208
605 => 0.0059483671575832
606 => 0.0058676940084896
607 => 0.0057923325662482
608 => 0.0056516648378906
609 => 0.0056100200583591
610 => 0.0056215291771994
611 => 0.0056100143550114
612 => 0.0055313120537984
613 => 0.0055143162993448
614 => 0.005485989297321
615 => 0.0054947690197326
616 => 0.0054415059685711
617 => 0.0055420243508207
618 => 0.0055606814483312
619 => 0.005633830344395
620 => 0.0056414249054465
621 => 0.0058451435397749
622 => 0.0057329387393394
623 => 0.0058082154067679
624 => 0.0058014819531016
625 => 0.0052621766217914
626 => 0.0053364881381147
627 => 0.0054520935372754
628 => 0.0054000134616529
629 => 0.0053263844195836
630 => 0.0052669250203732
701 => 0.0051768379505337
702 => 0.0053036337713639
703 => 0.0054703567925233
704 => 0.005645653276398
705 => 0.0058562605158928
706 => 0.0058092554317761
707 => 0.005641716120551
708 => 0.005649231811665
709 => 0.0056956908568164
710 => 0.0056355221720959
711 => 0.0056177772523396
712 => 0.0056932529773336
713 => 0.0056937727371709
714 => 0.0056245413937716
715 => 0.0055476034247854
716 => 0.0055472810518861
717 => 0.0055335906834376
718 => 0.0057282566874818
719 => 0.0058353033067532
720 => 0.0058475760291384
721 => 0.0058344772547527
722 => 0.005839518453142
723 => 0.0057772303839993
724 => 0.0059196024391064
725 => 0.0060502571160096
726 => 0.0060152388715695
727 => 0.005962741545017
728 => 0.0059209248958041
729 => 0.0060053881979671
730 => 0.0060016271800794
731 => 0.0060491159613875
801 => 0.0060469615959588
802 => 0.0060309929049483
803 => 0.0060152394418617
804 => 0.0060777001423095
805 => 0.0060597124636687
806 => 0.0060416968451946
807 => 0.0060055637642917
808 => 0.0060104748500933
809 => 0.0059579865879444
810 => 0.0059337031161749
811 => 0.0055685379649567
812 => 0.0054709539044357
813 => 0.0055016558363823
814 => 0.0055117637095545
815 => 0.0054692950013584
816 => 0.0055301842195956
817 => 0.005520694699431
818 => 0.0055576128712079
819 => 0.0055345480002824
820 => 0.0055354945906305
821 => 0.0056033234580736
822 => 0.005623014466857
823 => 0.0056129994608638
824 => 0.0056200136277671
825 => 0.0057816521435585
826 => 0.0057586723155217
827 => 0.0057464647398821
828 => 0.0057498463217623
829 => 0.0057911484281159
830 => 0.0058027107628835
831 => 0.0057537203380024
901 => 0.0057768245055866
902 => 0.0058751991188047
903 => 0.0059096246659102
904 => 0.0060194944870708
905 => 0.0059728198342614
906 => 0.0060584931795247
907 => 0.0063218238346682
908 => 0.0065321905830922
909 => 0.0063387286274679
910 => 0.0067250403709047
911 => 0.0070258394762985
912 => 0.0070142943056264
913 => 0.0069618430239923
914 => 0.0066193912396594
915 => 0.0063042620020478
916 => 0.0065678809904041
917 => 0.0065685530094192
918 => 0.0065459079045272
919 => 0.006405261102901
920 => 0.0065410137007003
921 => 0.0065517892489325
922 => 0.006545757807372
923 => 0.006437924234329
924 => 0.006273282299268
925 => 0.0063054529392818
926 => 0.0063581491038878
927 => 0.0062583842707172
928 => 0.0062265033615548
929 => 0.0062857760372788
930 => 0.0064767649484141
1001 => 0.0064406596010874
1002 => 0.0064397167445555
1003 => 0.0065941907314692
1004 => 0.0064836206944119
1005 => 0.0063058587140771
1006 => 0.0062609714696501
1007 => 0.0061016519916052
1008 => 0.0062116945225673
1009 => 0.0062156547573517
1010 => 0.0061553855877511
1011 => 0.0063107492250278
1012 => 0.0063093175217591
1013 => 0.0064568121725275
1014 => 0.0067387665483359
1015 => 0.0066553787652771
1016 => 0.0065584078461449
1017 => 0.0065689512737665
1018 => 0.0066845866513788
1019 => 0.0066146708623755
1020 => 0.0066398130675713
1021 => 0.00668454859564
1022 => 0.0067115386504446
1023 => 0.0065650678202335
1024 => 0.0065309184632016
1025 => 0.0064610608635099
1026 => 0.0064428363197042
1027 => 0.0064997338770264
1028 => 0.0064847433808924
1029 => 0.0062153219149528
1030 => 0.0061871658727153
1031 => 0.0061880293783331
1101 => 0.0061172296713799
1102 => 0.0060092431243997
1103 => 0.0062930253223221
1104 => 0.0062702336402996
1105 => 0.0062450733872829
1106 => 0.006248155374715
1107 => 0.0063713356085621
1108 => 0.0062998848521799
1109 => 0.0064898483985706
1110 => 0.0064507976042596
1111 => 0.0064107453044266
1112 => 0.0064052088565668
1113 => 0.0063897921382327
1114 => 0.006336922474757
1115 => 0.0062730791791359
1116 => 0.0062309243053553
1117 => 0.0057476983062776
1118 => 0.0058373822409101
1119 => 0.0059405554327569
1120 => 0.0059761704051418
1121 => 0.0059152485303964
1122 => 0.0063393280416952
1123 => 0.0064168114549413
1124 => 0.0061821091421008
1125 => 0.0061382059222006
1126 => 0.0063422063294828
1127 => 0.0062191691458561
1128 => 0.0062745727821095
1129 => 0.0061548204246984
1130 => 0.0063981479696695
1201 => 0.006396294221462
1202 => 0.0063016343106663
1203 => 0.0063816402190677
1204 => 0.0063677372236343
1205 => 0.0062608664174831
1206 => 0.0064015359648465
1207 => 0.006401605735187
1208 => 0.0063104976291301
1209 => 0.0062041033073847
1210 => 0.0061850825155783
1211 => 0.0061707529040361
1212 => 0.0062710485760913
1213 => 0.0063609733620395
1214 => 0.0065283010944442
1215 => 0.0065703712619796
1216 => 0.00673457392664
1217 => 0.0066367992347174
1218 => 0.0066801414892524
1219 => 0.0067271956376864
1220 => 0.0067497551268047
1221 => 0.0067129956498954
1222 => 0.0069680699766261
1223 => 0.0069896060650776
1224 => 0.0069968269292489
1225 => 0.0069108173014349
1226 => 0.0069872139817378
1227 => 0.0069514705050162
1228 => 0.007044465101622
1229 => 0.0070590478417844
1230 => 0.0070466967796629
1231 => 0.0070513255715633
]
'min_raw' => 0.0031620472979346
'max_raw' => 0.0070590478417844
'avg_raw' => 0.0051105475698595
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003162'
'max' => '$0.007059'
'avg' => '$0.00511'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00048758127759384
'max_diff' => -0.00067361994421409
'year' => 2031
]
6 => [
'items' => [
101 => 0.0068336646318934
102 => 0.0068223777639186
103 => 0.0066684805182024
104 => 0.0067311947833827
105 => 0.006613953470601
106 => 0.0066511318986034
107 => 0.0066675197954178
108 => 0.006658959688127
109 => 0.0067347405538403
110 => 0.0066703113369759
111 => 0.0065002720405268
112 => 0.0063301864169851
113 => 0.0063280511305302
114 => 0.0062832705881123
115 => 0.0062509024579096
116 => 0.0062571377081078
117 => 0.0062791115430825
118 => 0.0062496252986746
119 => 0.0062559176839096
120 => 0.0063604132047534
121 => 0.0063813690362307
122 => 0.006310152932899
123 => 0.0060242100015877
124 => 0.0059540388890103
125 => 0.0060044764931773
126 => 0.0059803705669832
127 => 0.004826625796341
128 => 0.0050976810164653
129 => 0.004936629208833
130 => 0.0050108492914273
131 => 0.0048464570999981
201 => 0.0049249136702811
202 => 0.0049104256065251
203 => 0.0053462743793779
204 => 0.0053394692002802
205 => 0.0053427264793922
206 => 0.0051872480605803
207 => 0.0054349294034467
208 => 0.0055569461392757
209 => 0.005534364088844
210 => 0.0055400475044265
211 => 0.0054423875946629
212 => 0.0053436720407927
213 => 0.0052341812993358
214 => 0.005437601563498
215 => 0.0054149847026229
216 => 0.0054668596441807
217 => 0.0055987922262707
218 => 0.0056182198001466
219 => 0.0056443306564508
220 => 0.0056349717731631
221 => 0.0058579383423335
222 => 0.0058309356196262
223 => 0.0058960044121373
224 => 0.0057621529691607
225 => 0.0056106873561371
226 => 0.0056394760173889
227 => 0.0056367034378066
228 => 0.0056014053175047
229 => 0.0055695397527816
301 => 0.005516492565585
302 => 0.0056843417153816
303 => 0.0056775273464284
304 => 0.0057878440589434
305 => 0.005768344508447
306 => 0.0056381217378827
307 => 0.0056427726696092
308 => 0.0056740524206319
309 => 0.0057823119960671
310 => 0.0058144508089302
311 => 0.0057995628303018
312 => 0.0058348015714137
313 => 0.0058626528355893
314 => 0.0058382992613885
315 => 0.0061830945149286
316 => 0.0060399114866175
317 => 0.0061096978983552
318 => 0.0061263415463493
319 => 0.0060837091919908
320 => 0.006092954623101
321 => 0.0061069589320038
322 => 0.0061919903533366
323 => 0.006415137406954
324 => 0.0065139677179877
325 => 0.0068113035849345
326 => 0.0065057612364407
327 => 0.006487631617941
328 => 0.0065411907862611
329 => 0.0067157584163568
330 => 0.0068572290842457
331 => 0.006904163066423
401 => 0.0069103661669633
402 => 0.0069984174376402
403 => 0.0070488867839332
404 => 0.0069877256974017
405 => 0.006935898080399
406 => 0.0067502579893757
407 => 0.0067717463353928
408 => 0.0069197797304834
409 => 0.0071288856201723
410 => 0.0073083202272851
411 => 0.0072454884818016
412 => 0.007724850347541
413 => 0.0077723771185114
414 => 0.0077658104554878
415 => 0.0078740835126903
416 => 0.007659183543568
417 => 0.0075673096432775
418 => 0.0069471037994634
419 => 0.0071213563437075
420 => 0.0073746426502595
421 => 0.0073411192578124
422 => 0.007157175971632
423 => 0.0073081806898079
424 => 0.0072582538076248
425 => 0.0072188744041788
426 => 0.0073992790854381
427 => 0.0072009167277777
428 => 0.0073726638340025
429 => 0.0071523963937728
430 => 0.0072457754919224
501 => 0.0071927689995739
502 => 0.0072270706963548
503 => 0.0070265436778728
504 => 0.0071347431895274
505 => 0.007022042222461
506 => 0.0070219887875285
507 => 0.007019500907434
508 => 0.0071520930953952
509 => 0.0071564169218843
510 => 0.0070584310946454
511 => 0.007044309806114
512 => 0.0070965236110816
513 => 0.0070353949202817
514 => 0.0070639966499676
515 => 0.0070362612375368
516 => 0.0070300174120015
517 => 0.0069802655478367
518 => 0.0069588310767985
519 => 0.0069672360851909
520 => 0.0069385454584689
521 => 0.0069212583180837
522 => 0.0070160620601004
523 => 0.0069654122451129
524 => 0.0070082992495329
525 => 0.0069594240952248
526 => 0.0067900015165019
527 => 0.006692564799867
528 => 0.0063725412541407
529 => 0.0064632995347207
530 => 0.0065234723686415
531 => 0.0065035852473896
601 => 0.0065463104791329
602 => 0.006548933461362
603 => 0.0065350430529901
604 => 0.0065189597395669
605 => 0.0065111312720555
606 => 0.0065694782551422
607 => 0.0066033506426932
608 => 0.0065295115175341
609 => 0.0065122120436284
610 => 0.0065868674759342
611 => 0.0066324072465136
612 => 0.0069686473258856
613 => 0.0069437375747645
614 => 0.0070062561617865
615 => 0.0069992175283138
616 => 0.0070647469675048
617 => 0.0071718599057747
618 => 0.0069540693530233
619 => 0.0069918702623503
620 => 0.0069826023523338
621 => 0.0070837869637173
622 => 0.0070841028510294
623 => 0.0070234376219587
624 => 0.0070563252268189
625 => 0.0070379682680102
626 => 0.0070711417736693
627 => 0.0069434048898516
628 => 0.007098974625997
629 => 0.0071871726416991
630 => 0.0071883972712327
701 => 0.0072302024306928
702 => 0.0072726788938958
703 => 0.0073542087660936
704 => 0.0072704050700106
705 => 0.0071196503788826
706 => 0.0071305343806473
707 => 0.007042146960398
708 => 0.0070436327689009
709 => 0.0070357014066676
710 => 0.0070595040217748
711 => 0.0069486282253304
712 => 0.0069746505531405
713 => 0.0069382191418198
714 => 0.006991791067577
715 => 0.0069341565312189
716 => 0.0069825978830669
717 => 0.0070035035646683
718 => 0.0070806459798445
719 => 0.0069227625337748
720 => 0.0066008274994689
721 => 0.006668502146765
722 => 0.0065684060276852
723 => 0.0065776703045988
724 => 0.0065963856183631
725 => 0.0065357231631835
726 => 0.0065472956479381
727 => 0.0065468821973483
728 => 0.0065433193035299
729 => 0.0065275386560425
730 => 0.0065046535950798
731 => 0.0065958206343048
801 => 0.0066113116907755
802 => 0.006645746390374
803 => 0.0067482006990991
804 => 0.0067379630976185
805 => 0.0067546610503873
806 => 0.0067182095132479
807 => 0.0065793611868612
808 => 0.0065869013190035
809 => 0.0064928757503672
810 => 0.0066433419451856
811 => 0.0066077095641959
812 => 0.0065847371363695
813 => 0.006578468896599
814 => 0.0066811771697385
815 => 0.0067119090948168
816 => 0.0066927590214508
817 => 0.0066534816622802
818 => 0.0067289058031966
819 => 0.0067490861214167
820 => 0.0067536037504447
821 => 0.006887240867004
822 => 0.0067610725807372
823 => 0.0067914425412466
824 => 0.0070283803036527
825 => 0.0068135104483265
826 => 0.0069273318028624
827 => 0.0069217608398556
828 => 0.0069799879933315
829 => 0.0069169845137473
830 => 0.0069177655173857
831 => 0.0069694672850233
901 => 0.0068968614768393
902 => 0.0068788832576751
903 => 0.0068540464766623
904 => 0.0069082766793684
905 => 0.0069407852332695
906 => 0.0072027803028111
907 => 0.0073720410661617
908 => 0.0073646930100311
909 => 0.0074318404880797
910 => 0.0074015899342184
911 => 0.0073039029161074
912 => 0.0074706427443601
913 => 0.0074178792860102
914 => 0.007422229041409
915 => 0.0074220671432958
916 => 0.0074571502304369
917 => 0.0074322906478797
918 => 0.0073832898588757
919 => 0.0074158188693876
920 => 0.007512418401274
921 => 0.0078122663122849
922 => 0.007980065175743
923 => 0.0078021646100103
924 => 0.0079248780380692
925 => 0.007851293708499
926 => 0.0078379212468719
927 => 0.0079149943481441
928 => 0.0079922023556772
929 => 0.0079872845393767
930 => 0.0079312354905827
1001 => 0.007899574805111
1002 => 0.0081393201226109
1003 => 0.00831596038859
1004 => 0.0083039147066616
1005 => 0.0083570804292279
1006 => 0.0085131766350366
1007 => 0.0085274481158344
1008 => 0.0085256502372801
1009 => 0.0084902768830477
1010 => 0.0086439738693201
1011 => 0.0087721905993097
1012 => 0.0084820889735774
1013 => 0.0085925558749471
1014 => 0.0086421480259933
1015 => 0.0087149640170572
1016 => 0.0088378167993592
1017 => 0.0089712675060303
1018 => 0.0089901388991662
1019 => 0.008976748742657
1020 => 0.0088887344142598
1021 => 0.0090347577698974
1022 => 0.0091202948269608
1023 => 0.0091712301869614
1024 => 0.0093003937850869
1025 => 0.008642454290235
1026 => 0.0081767320140641
1027 => 0.0081040027555288
1028 => 0.0082519005626972
1029 => 0.0082909000349845
1030 => 0.0082751793966067
1031 => 0.0077509666331595
1101 => 0.0081012428838176
1102 => 0.0084781106774621
1103 => 0.0084925877042584
1104 => 0.0086812556016908
1105 => 0.0087426936028532
1106 => 0.0088945959895528
1107 => 0.0088850944539062
1108 => 0.0089220802677727
1109 => 0.0089135778696698
1110 => 0.0091949450542097
1111 => 0.0095053348421883
1112 => 0.0094945870308097
1113 => 0.0094499648264225
1114 => 0.009516236409154
1115 => 0.0098365919337392
1116 => 0.009807098730628
1117 => 0.0098357488652254
1118 => 0.010213466083158
1119 => 0.010704552196117
1120 => 0.010476393392408
1121 => 0.01097143234553
1122 => 0.011283033125633
1123 => 0.011821914454699
1124 => 0.011754443858253
1125 => 0.011964226405164
1126 => 0.011633657409077
1127 => 0.010874604175043
1128 => 0.010754481095219
1129 => 0.010994970543029
1130 => 0.011586190383853
1201 => 0.010976350926268
1202 => 0.011099720654281
1203 => 0.011064190164314
1204 => 0.011062296895499
1205 => 0.011134555265705
1206 => 0.011029740730977
1207 => 0.010602707460722
1208 => 0.010798414291957
1209 => 0.010722842485803
1210 => 0.010806695038982
1211 => 0.011259212685066
1212 => 0.011059143847059
1213 => 0.010848387578491
1214 => 0.011112722709836
1215 => 0.011449312167443
1216 => 0.011428249004095
1217 => 0.011387377663481
1218 => 0.011617767270567
1219 => 0.011998303403651
1220 => 0.012101160791306
1221 => 0.012177088012046
1222 => 0.012187557092985
1223 => 0.012295395133155
1224 => 0.011715522812473
1225 => 0.012635795077573
1226 => 0.012794700675748
1227 => 0.012764833009253
1228 => 0.012941449893855
1229 => 0.012889484726067
1230 => 0.012814195351028
1231 => 0.01309417068061
]
'min_raw' => 0.004826625796341
'max_raw' => 0.01309417068061
'avg_raw' => 0.0089603982384753
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004826'
'max' => '$0.013094'
'avg' => '$0.00896'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0016645784984064
'max_diff' => 0.0060351228388253
'year' => 2032
]
7 => [
'items' => [
101 => 0.012773201558088
102 => 0.012317626297558
103 => 0.012067688699374
104 => 0.012396826690554
105 => 0.012597819776434
106 => 0.01273066342064
107 => 0.01277086182711
108 => 0.011760536650043
109 => 0.011216027414806
110 => 0.011565051591782
111 => 0.011990885176054
112 => 0.011713157285411
113 => 0.011724043692916
114 => 0.011328076706466
115 => 0.012025919468161
116 => 0.011924249647564
117 => 0.012451712856675
118 => 0.012325829528664
119 => 0.01275595529969
120 => 0.012642688769094
121 => 0.01311285180495
122 => 0.013300412569108
123 => 0.013615356283633
124 => 0.013847030162089
125 => 0.013983073494733
126 => 0.013974905963327
127 => 0.014513977423783
128 => 0.014196105817274
129 => 0.013796784162914
130 => 0.01378956169403
131 => 0.013996376037255
201 => 0.01442980216391
202 => 0.014542183252458
203 => 0.014604988949647
204 => 0.014508799838121
205 => 0.014163772991319
206 => 0.014014792148195
207 => 0.014141728142927
208 => 0.013986496329105
209 => 0.014254469990116
210 => 0.014622455062771
211 => 0.014546467600438
212 => 0.014800482294339
213 => 0.0150633607794
214 => 0.01543928881965
215 => 0.015537570329946
216 => 0.015700025929155
217 => 0.015867246104625
218 => 0.015920952718276
219 => 0.016023495307919
220 => 0.016022954857855
221 => 0.016331973853657
222 => 0.016672831375548
223 => 0.016801497199192
224 => 0.017097357165987
225 => 0.016590707341021
226 => 0.016975007053231
227 => 0.017321655013291
228 => 0.01690836702469
301 => 0.017477988233225
302 => 0.017500105333963
303 => 0.017834047296476
304 => 0.01749553314193
305 => 0.017294524517537
306 => 0.017874828884466
307 => 0.018155619888207
308 => 0.018071043352727
309 => 0.017427411741668
310 => 0.017052790537373
311 => 0.016072334586699
312 => 0.017233727012817
313 => 0.017799407385298
314 => 0.017425946766162
315 => 0.017614298579547
316 => 0.018641885000098
317 => 0.01903312337775
318 => 0.018951748530161
319 => 0.018965499539859
320 => 0.019176604666961
321 => 0.020112761058249
322 => 0.019551794448654
323 => 0.019980632402672
324 => 0.020208086507193
325 => 0.020419358555626
326 => 0.01990054117789
327 => 0.019225567392395
328 => 0.019011774861057
329 => 0.017388813467693
330 => 0.017304331279004
331 => 0.017256908866421
401 => 0.016957917263117
402 => 0.016722991763612
403 => 0.016536170284182
404 => 0.01604589493254
405 => 0.016211348471536
406 => 0.015429951889437
407 => 0.015929861731669
408 => 0.01468273391916
409 => 0.015721379020021
410 => 0.01515609171302
411 => 0.015535666936318
412 => 0.015534342634122
413 => 0.014835424303597
414 => 0.014432302796603
415 => 0.014689187510583
416 => 0.014964588315504
417 => 0.015009271169543
418 => 0.015366335501818
419 => 0.015465984481885
420 => 0.015164043420118
421 => 0.014656889967252
422 => 0.014774690147414
423 => 0.014429915579712
424 => 0.013825711411377
425 => 0.014259661393468
426 => 0.014407830996788
427 => 0.01447327113465
428 => 0.01387910572841
429 => 0.01369240605781
430 => 0.013593008719745
501 => 0.014580190674516
502 => 0.014634270730436
503 => 0.014357589518202
504 => 0.015608214833489
505 => 0.015325159807537
506 => 0.01564140162169
507 => 0.014764001015788
508 => 0.01479751890051
509 => 0.014382143392707
510 => 0.014614725921675
511 => 0.014450344086685
512 => 0.01459593555176
513 => 0.014683202475629
514 => 0.015098509824398
515 => 0.015726121162826
516 => 0.015036476755772
517 => 0.014735988811729
518 => 0.014922409842205
519 => 0.015418873612639
520 => 0.01617104163836
521 => 0.015725743028341
522 => 0.015923358989806
523 => 0.015966529286064
524 => 0.015638182576887
525 => 0.016183148249876
526 => 0.016475199781324
527 => 0.01677478422104
528 => 0.01703490499588
529 => 0.016655123607814
530 => 0.017061544132569
531 => 0.016734040932497
601 => 0.016440236705374
602 => 0.01644068228511
603 => 0.016256374601641
604 => 0.015899255240657
605 => 0.015833396951298
606 => 0.01617600008953
607 => 0.016450735361755
608 => 0.016473363874669
609 => 0.01662547143778
610 => 0.016715487126797
611 => 0.017597763249558
612 => 0.017952622004703
613 => 0.018386536573362
614 => 0.01855557075194
615 => 0.019064303027352
616 => 0.018653460397741
617 => 0.018564572010504
618 => 0.017330553915413
619 => 0.017532624309353
620 => 0.017856158506944
621 => 0.017335888875166
622 => 0.017665880206967
623 => 0.017731027486037
624 => 0.017318210312162
625 => 0.017538713801506
626 => 0.016953121908536
627 => 0.015738885465855
628 => 0.016184500042144
629 => 0.016512622362538
630 => 0.016044351354146
701 => 0.016883709012098
702 => 0.016393373596181
703 => 0.016237960809587
704 => 0.015631640120422
705 => 0.015917800146284
706 => 0.01630483567868
707 => 0.016065692717369
708 => 0.016561950269585
709 => 0.017264783310576
710 => 0.017765663990018
711 => 0.017804115389126
712 => 0.017482082668644
713 => 0.017998142158401
714 => 0.018001901088389
715 => 0.017419783875778
716 => 0.017063240324295
717 => 0.016982232879225
718 => 0.017184605359457
719 => 0.017430322910479
720 => 0.0178177510031
721 => 0.018051865685354
722 => 0.018662312611841
723 => 0.018827482047263
724 => 0.019008953180548
725 => 0.019251454578242
726 => 0.019542639682256
727 => 0.018905543251851
728 => 0.018930856280728
729 => 0.018337600905935
730 => 0.017703622456543
731 => 0.018184733073102
801 => 0.01881372120479
802 => 0.018669430632411
803 => 0.018653194995429
804 => 0.018680498833442
805 => 0.018571708453958
806 => 0.018079653599509
807 => 0.017832546732031
808 => 0.018151377634763
809 => 0.018320822070034
810 => 0.018583615612031
811 => 0.018551220761082
812 => 0.019228148703302
813 => 0.01949118243241
814 => 0.019423887148656
815 => 0.019436271100418
816 => 0.019912481102841
817 => 0.020442124565591
818 => 0.020938205561067
819 => 0.02144284045684
820 => 0.02083448339375
821 => 0.020525597195361
822 => 0.020844288906495
823 => 0.020675186598656
824 => 0.021646898618497
825 => 0.021714177850457
826 => 0.022685819604459
827 => 0.023608023329954
828 => 0.023028803692966
829 => 0.02357498172202
830 => 0.02416571779099
831 => 0.025305343511506
901 => 0.024921557661352
902 => 0.024627583714826
903 => 0.02434977975583
904 => 0.024927845694364
905 => 0.025671518289459
906 => 0.025831698243634
907 => 0.026091250962851
908 => 0.025818363015191
909 => 0.026147026490526
910 => 0.027307352980508
911 => 0.02699382252043
912 => 0.026548558864582
913 => 0.027464525189482
914 => 0.027796009841735
915 => 0.030122542731102
916 => 0.033059886608209
917 => 0.031843806955447
918 => 0.031088947072333
919 => 0.03126635705038
920 => 0.032338975598934
921 => 0.032683466633519
922 => 0.031747021248337
923 => 0.032077789589587
924 => 0.0339003556703
925 => 0.034878103897681
926 => 0.033550190475791
927 => 0.029886530010605
928 => 0.026508467744108
929 => 0.02740448197331
930 => 0.027302901766277
1001 => 0.029261021650253
1002 => 0.026986344922649
1003 => 0.027024644645008
1004 => 0.0290232563745
1005 => 0.028490061029951
1006 => 0.027626352858281
1007 => 0.026514773769598
1008 => 0.024459917015546
1009 => 0.022639873084563
1010 => 0.026209398364306
1011 => 0.026055473943483
1012 => 0.02583256857181
1013 => 0.026328620355588
1014 => 0.028737307010857
1015 => 0.028681778987295
1016 => 0.028328538032041
1017 => 0.028596468183278
1018 => 0.027579383407346
1019 => 0.027841509312694
1020 => 0.026507932641786
1021 => 0.027110764992118
1022 => 0.027624499728456
1023 => 0.027727639582749
1024 => 0.027960018940922
1025 => 0.025974362768089
1026 => 0.026865864093888
1027 => 0.027389537600418
1028 => 0.025023561646513
1029 => 0.027342769863002
1030 => 0.025939796911806
1031 => 0.025463606820224
1101 => 0.026104734045265
1102 => 0.02585488614215
1103 => 0.025640081586613
1104 => 0.025520216953812
1105 => 0.025990990029253
1106 => 0.025969027902588
1107 => 0.02519875177805
1108 => 0.024193957974062
1109 => 0.024531199755913
1110 => 0.024408676654908
1111 => 0.023964637131072
1112 => 0.024263866156601
1113 => 0.022946212964515
1114 => 0.020679259133184
1115 => 0.022176878272835
1116 => 0.022119221565054
1117 => 0.022090148438468
1118 => 0.023215567830763
1119 => 0.023107384724037
1120 => 0.022911031325997
1121 => 0.023961030946935
1122 => 0.023577766960804
1123 => 0.024758896257705
1124 => 0.025536864403298
1125 => 0.025339546516942
1126 => 0.026071229318118
1127 => 0.024538969125434
1128 => 0.025047924497835
1129 => 0.025152819494705
1130 => 0.023948074114599
1201 => 0.02312508481822
1202 => 0.023070200814917
1203 => 0.021643250789906
1204 => 0.022405515975329
1205 => 0.023076277793824
1206 => 0.022755034935984
1207 => 0.02265333904405
1208 => 0.023172881300795
1209 => 0.023213254183723
1210 => 0.022292748174446
1211 => 0.022484150522409
1212 => 0.023282330131407
1213 => 0.02246403844418
1214 => 0.020874231363087
1215 => 0.020479937226174
1216 => 0.020427331120027
1217 => 0.019357974148855
1218 => 0.020506285845793
1219 => 0.020005017017239
1220 => 0.021588519240518
1221 => 0.020684031263074
1222 => 0.020645040594144
1223 => 0.020586100479368
1224 => 0.0196656607597
1225 => 0.019867178561311
1226 => 0.020537054425896
1227 => 0.020776073681071
1228 => 0.020751142014529
1229 => 0.02053377166871
1230 => 0.02063328269991
1231 => 0.020312722996473
]
'min_raw' => 0.011216027414806
'max_raw' => 0.034878103897681
'avg_raw' => 0.023047065656244
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.011216'
'max' => '$0.034878'
'avg' => '$0.023047'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0063894016184654
'max_diff' => 0.021783933217072
'year' => 2033
]
8 => [
'items' => [
101 => 0.020199526693316
102 => 0.019842248023458
103 => 0.019317147079517
104 => 0.019390165586403
105 => 0.018349803216321
106 => 0.017782958580889
107 => 0.017626063456694
108 => 0.017416256739522
109 => 0.017649761683673
110 => 0.018346856000441
111 => 0.01750601235761
112 => 0.0160644449103
113 => 0.016151085570195
114 => 0.016345741409135
115 => 0.015983001541047
116 => 0.01563969869835
117 => 0.015938172667035
118 => 0.015327361535762
119 => 0.016419555016165
120 => 0.016390014243357
121 => 0.01679711643206
122 => 0.017051685785233
123 => 0.016464985843975
124 => 0.016317432395354
125 => 0.016401485545619
126 => 0.015012274202445
127 => 0.01668358822739
128 => 0.016698041820481
129 => 0.016574281381409
130 => 0.017464204503661
131 => 0.019342219865595
201 => 0.018635634943442
202 => 0.018362023904942
203 => 0.017841889120746
204 => 0.01853493783814
205 => 0.018481722509888
206 => 0.01824106261422
207 => 0.018095510758416
208 => 0.018363694515599
209 => 0.018062279823042
210 => 0.018008137461937
211 => 0.017680093661111
212 => 0.017562996949257
213 => 0.017476303205556
214 => 0.017380861912091
215 => 0.017591381622985
216 => 0.017114316261925
217 => 0.016539022203782
218 => 0.016491192727615
219 => 0.016623254116522
220 => 0.016564826782745
221 => 0.016490913000019
222 => 0.016349791459576
223 => 0.016307923713111
224 => 0.016443973577779
225 => 0.016290381212769
226 => 0.016517015113951
227 => 0.016455383233055
228 => 0.016111112556404
301 => 0.015682023827967
302 => 0.015678204038239
303 => 0.015585757575544
304 => 0.015468013105883
305 => 0.015435259288052
306 => 0.015913036021904
307 => 0.016902019562323
308 => 0.016707858428968
309 => 0.01684815974625
310 => 0.01753830336596
311 => 0.017757679269323
312 => 0.017601971449319
313 => 0.017388828981658
314 => 0.017398206168518
315 => 0.018126578503131
316 => 0.018172006192201
317 => 0.018286787306954
318 => 0.018434313476549
319 => 0.017627095793923
320 => 0.017360186288259
321 => 0.017233709756899
322 => 0.01684421099289
323 => 0.017264252016774
324 => 0.017019512100107
325 => 0.017052535876371
326 => 0.017031029098756
327 => 0.017042773253616
328 => 0.016419249725828
329 => 0.016646428927922
330 => 0.01626869944231
331 => 0.0157629620632
401 => 0.015761266654171
402 => 0.015885045161231
403 => 0.015811416861778
404 => 0.015613285001108
405 => 0.01564142869676
406 => 0.015394860308659
407 => 0.01567136656334
408 => 0.015679295773338
409 => 0.015572825803888
410 => 0.015998821839735
411 => 0.016173352763201
412 => 0.016103271948501
413 => 0.016168435706421
414 => 0.016715926700644
415 => 0.016805191621409
416 => 0.016844837202704
417 => 0.016791717375802
418 => 0.016178442836752
419 => 0.016205644170403
420 => 0.016006058832436
421 => 0.015837430253639
422 => 0.01584417451245
423 => 0.015930871522133
424 => 0.016309482448129
425 => 0.017106246821556
426 => 0.0171364834471
427 => 0.017173131119325
428 => 0.017024066618744
429 => 0.016979107339014
430 => 0.017038420233952
501 => 0.017337643040731
502 => 0.018107325337965
503 => 0.01783526820877
504 => 0.017614081527913
505 => 0.017808121878526
506 => 0.017778250887487
507 => 0.017526109662022
508 => 0.017519032897606
509 => 0.017035093271511
510 => 0.016856191810516
511 => 0.016706688359167
512 => 0.016543434493179
513 => 0.016446652129103
514 => 0.016595353827122
515 => 0.016629363664846
516 => 0.016304224803266
517 => 0.016259909577862
518 => 0.016525424990838
519 => 0.016408581556999
520 => 0.01652875792628
521 => 0.016556639874807
522 => 0.016552150238918
523 => 0.016430152274608
524 => 0.016507910139028
525 => 0.01632398960894
526 => 0.01612400365644
527 => 0.015996425078311
528 => 0.01588509584805
529 => 0.015946867775491
530 => 0.01572666213327
531 => 0.01565621391646
601 => 0.01648156752417
602 => 0.017091265108232
603 => 0.017082399863893
604 => 0.017028434968935
605 => 0.016948254081406
606 => 0.017331777309392
607 => 0.017198165485551
608 => 0.017295379251037
609 => 0.017320124234402
610 => 0.017395019846336
611 => 0.017421788590107
612 => 0.017340874854343
613 => 0.017069318474339
614 => 0.016392625794174
615 => 0.01607762352486
616 => 0.015973667529209
617 => 0.015977446132211
618 => 0.015873215393006
619 => 0.015903916016996
620 => 0.015862538968866
621 => 0.015784180849892
622 => 0.015942029382452
623 => 0.015960219955369
624 => 0.01592337622172
625 => 0.015932054254757
626 => 0.015627003876307
627 => 0.015650196194046
628 => 0.015521058421739
629 => 0.01549684664621
630 => 0.015170397603129
701 => 0.014592045803766
702 => 0.014912508842581
703 => 0.014525434555615
704 => 0.014378843658008
705 => 0.015072782167716
706 => 0.015003129988199
707 => 0.014883915733942
708 => 0.014707573005467
709 => 0.014642165772124
710 => 0.014244772127746
711 => 0.014221291991224
712 => 0.014418251011908
713 => 0.014327361200808
714 => 0.014199717483361
715 => 0.013737404877802
716 => 0.01321761244271
717 => 0.013233301709027
718 => 0.013398638011547
719 => 0.013879375609764
720 => 0.013691543113296
721 => 0.013555268481979
722 => 0.013529748339933
723 => 0.013849186347667
724 => 0.014301258052942
725 => 0.014513359982523
726 => 0.01430317341194
727 => 0.014061722396903
728 => 0.014076418401412
729 => 0.014174184335484
730 => 0.014184458152819
731 => 0.014027298363596
801 => 0.014071537923693
802 => 0.014004333986555
803 => 0.013591903548383
804 => 0.013584443989588
805 => 0.013483226908721
806 => 0.013480162095739
807 => 0.013307966591401
808 => 0.013283875250013
809 => 0.01294197062463
810 => 0.01316701328444
811 => 0.013016066483509
812 => 0.012788554049756
813 => 0.012749330820423
814 => 0.012748151722786
815 => 0.0129817561214
816 => 0.013164283481031
817 => 0.013018692267737
818 => 0.012985543970638
819 => 0.013339481060646
820 => 0.013294439339734
821 => 0.013255433499913
822 => 0.014260779990101
823 => 0.013464969794952
824 => 0.013117951126609
825 => 0.012688449627477
826 => 0.012828297481329
827 => 0.012857765478928
828 => 0.01182489179698
829 => 0.01140585507285
830 => 0.011262057460195
831 => 0.011179299901111
901 => 0.01121701355999
902 => 0.010839831360167
903 => 0.011093304036466
904 => 0.010766696133837
905 => 0.010711939256087
906 => 0.011295954644942
907 => 0.011377216974533
908 => 0.011030526630272
909 => 0.011253157955356
910 => 0.011172428742074
911 => 0.010772294888906
912 => 0.0107570127189
913 => 0.010556239616766
914 => 0.010242068589259
915 => 0.010098483999354
916 => 0.010023703898273
917 => 0.010054559625414
918 => 0.01003895802557
919 => 0.0099371470332634
920 => 0.010044793712474
921 => 0.0097698009297702
922 => 0.0096602965879303
923 => 0.0096108360172026
924 => 0.0093667640945593
925 => 0.0097551910627615
926 => 0.0098317160687713
927 => 0.0099083918526828
928 => 0.010575802202851
929 => 0.010542460267839
930 => 0.010843855122169
1001 => 0.01083214347236
1002 => 0.010746180777632
1003 => 0.010383518308751
1004 => 0.01052806910501
1005 => 0.010083164222306
1006 => 0.010416517211019
1007 => 0.010264388828124
1008 => 0.010365082451735
1009 => 0.010184026237305
1010 => 0.010284230221998
1011 => 0.0098498629865868
1012 => 0.0094442569738714
1013 => 0.0096074846737657
1014 => 0.0097849318509026
1015 => 0.010169682543635
1016 => 0.0099405282051679
1017 => 0.010022940770566
1018 => 0.0097468724721802
1019 => 0.0091772647176002
1020 => 0.0091804886356319
1021 => 0.0090928668921692
1022 => 0.0090171489128335
1023 => 0.0099668493375313
1024 => 0.0098487390771781
1025 => 0.0096605458351941
1026 => 0.0099124499680919
1027 => 0.0099790574190862
1028 => 0.009980953639577
1029 => 0.010164736392352
1030 => 0.010262821280454
1031 => 0.010280109167106
1101 => 0.010569295299487
1102 => 0.010666226676604
1103 => 0.011065473300707
1104 => 0.010254499462979
1105 => 0.010237797990467
1106 => 0.0099159947758326
1107 => 0.0097119020896037
1108 => 0.0099299691766676
1109 => 0.01012314684668
1110 => 0.0099219973445206
1111 => 0.0099482632230049
1112 => 0.0096782364508735
1113 => 0.00977475831597
1114 => 0.0098578959490904
1115 => 0.0098119922346855
1116 => 0.0097432721524565
1117 => 0.010107308480708
1118 => 0.010086768124399
1119 => 0.010425767122426
1120 => 0.010690041083439
1121 => 0.011163667266196
1122 => 0.010669413653798
1123 => 0.010651401087682
1124 => 0.010827476810772
1125 => 0.010666199720328
1126 => 0.010768121274393
1127 => 0.011147246128135
1128 => 0.011155256438877
1129 => 0.011021073413239
1130 => 0.011012908363934
1201 => 0.011038679681809
1202 => 0.011189623095558
1203 => 0.011136878828772
1204 => 0.011197915829618
1205 => 0.011274243533808
1206 => 0.011589967280615
1207 => 0.011666087207093
1208 => 0.01148115524941
1209 => 0.011497852534593
1210 => 0.011428682905924
1211 => 0.011361865911322
1212 => 0.011512060757348
1213 => 0.011786544790548
1214 => 0.011784837239623
1215 => 0.011848512200118
1216 => 0.011888181172995
1217 => 0.011717892901946
1218 => 0.011607041499166
1219 => 0.011649548980649
1220 => 0.011717519369235
1221 => 0.011627507099713
1222 => 0.011071909674488
1223 => 0.0112404424416
1224 => 0.011212390348322
1225 => 0.011172440756242
1226 => 0.011341901756798
1227 => 0.011325556829892
1228 => 0.010835962811538
1229 => 0.010867305032109
1230 => 0.010837868835779
1231 => 0.010932983208199
]
'min_raw' => 0.0090171489128335
'max_raw' => 0.020199526693316
'avg_raw' => 0.014608337803075
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.009017'
'max' => '$0.020199'
'avg' => '$0.0146083'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0021988785019729
'max_diff' => -0.014678577204365
'year' => 2034
]
9 => [
'items' => [
101 => 0.010661063232079
102 => 0.010744703985324
103 => 0.010797162681677
104 => 0.010828061256835
105 => 0.010939688097658
106 => 0.010926589976279
107 => 0.010938873900042
108 => 0.011104387036589
109 => 0.011941495683993
110 => 0.011987057660695
111 => 0.011762693823904
112 => 0.011852322751321
113 => 0.011680254810372
114 => 0.011795765171886
115 => 0.011874794427589
116 => 0.011517676417519
117 => 0.01149653020664
118 => 0.011323752080091
119 => 0.011416593258645
120 => 0.011268876268048
121 => 0.011305120850619
122 => 0.011203777838004
123 => 0.01138617508352
124 => 0.011590123545673
125 => 0.011641648981381
126 => 0.011506107743127
127 => 0.011407966954027
128 => 0.011235664057954
129 => 0.011522207614144
130 => 0.01160600168223
131 => 0.011521767479577
201 => 0.011502248574268
202 => 0.011465260283978
203 => 0.011510095814908
204 => 0.01160554532174
205 => 0.011560533096994
206 => 0.011590264464452
207 => 0.011476959150554
208 => 0.011717949274449
209 => 0.012100699588626
210 => 0.012101930193472
211 => 0.012056917726093
212 => 0.012038499594249
213 => 0.012084685117365
214 => 0.012109738869026
215 => 0.012259094381806
216 => 0.012419358797605
217 => 0.013167242897297
218 => 0.01295724003481
219 => 0.013620807299881
220 => 0.014145602853126
221 => 0.014302966093017
222 => 0.01415819931683
223 => 0.013662959995645
224 => 0.013638661191883
225 => 0.014378757822383
226 => 0.014169646625694
227 => 0.014144773514234
228 => 0.013880165632086
301 => 0.014036581662759
302 => 0.014002371182366
303 => 0.013948368265432
304 => 0.014246799155921
305 => 0.014805435141808
306 => 0.014718366484553
307 => 0.01465337377091
308 => 0.014368594618823
309 => 0.014540095276106
310 => 0.014479027176926
311 => 0.014741414485775
312 => 0.014585982056604
313 => 0.014168062402712
314 => 0.014234617485076
315 => 0.014224557818267
316 => 0.01443158504836
317 => 0.014369440612618
318 => 0.014212423119805
319 => 0.01480352578474
320 => 0.014765142865565
321 => 0.014819561069398
322 => 0.014843517645664
323 => 0.015203311421413
324 => 0.01535070741922
325 => 0.015384168891253
326 => 0.015524183689154
327 => 0.01538068519553
328 => 0.015954781482717
329 => 0.01633652201425
330 => 0.016779933285813
331 => 0.017427876331281
401 => 0.017671508910185
402 => 0.017627498865476
403 => 0.018118761887678
404 => 0.019001550618411
405 => 0.017805935707853
406 => 0.019064921111851
407 => 0.01866634086863
408 => 0.017721314282108
409 => 0.017660465711068
410 => 0.018300448687445
411 => 0.019719869332971
412 => 0.019364320560202
413 => 0.019720450883391
414 => 0.019305005944415
415 => 0.01928437560155
416 => 0.019700273649996
417 => 0.020672042109611
418 => 0.020210391340644
419 => 0.019548501761917
420 => 0.020037230726706
421 => 0.019613848467675
422 => 0.018659849740845
423 => 0.019364048678757
424 => 0.018893170903406
425 => 0.019030598071493
426 => 0.020020313117496
427 => 0.0199012279847
428 => 0.020055335173524
429 => 0.019783340018936
430 => 0.019529253654851
501 => 0.019054982587586
502 => 0.01891457430585
503 => 0.018953378103561
504 => 0.018914555076615
505 => 0.018649204773257
506 => 0.018591902400511
507 => 0.018496395935459
508 => 0.01852599738255
509 => 0.018346417286852
510 => 0.018685322030576
511 => 0.018748225737429
512 => 0.018994852347601
513 => 0.019020457940422
514 => 0.019707309539241
515 => 0.019329003220684
516 => 0.019582803760568
517 => 0.019560101451417
518 => 0.017741795873809
519 => 0.017992342339358
520 => 0.018382114013939
521 => 0.018206522402863
522 => 0.017958276946911
523 => 0.01775780543115
524 => 0.017454070585508
525 => 0.017881571548038
526 => 0.018443689854107
527 => 0.0190347141883
528 => 0.019744791200385
529 => 0.019586310277495
530 => 0.019021439792479
531 => 0.019046779469798
601 => 0.019203419384193
602 => 0.019000556462815
603 => 0.018940728226946
604 => 0.01919519990331
605 => 0.01919695230989
606 => 0.018963534002041
607 => 0.018704132267966
608 => 0.018703045365229
609 => 0.018656887332174
610 => 0.019313217355955
611 => 0.019674132506585
612 => 0.019715510846961
613 => 0.019671347414592
614 => 0.019688344166927
615 => 0.019478335592998
616 => 0.019958352916891
617 => 0.020398864282089
618 => 0.020280797826063
619 => 0.020103799424345
620 => 0.019962811671979
621 => 0.020247585592261
622 => 0.020234905057866
623 => 0.020395016799607
624 => 0.020387753206152
625 => 0.020333913649512
626 => 0.020280799748843
627 => 0.02049139036127
628 => 0.020430743646873
629 => 0.020370002731377
630 => 0.020248177526382
701 => 0.020264735595043
702 => 0.020087767754595
703 => 0.020005894334106
704 => 0.018774714531757
705 => 0.018445703058609
706 => 0.018549216765707
707 => 0.018583296165816
708 => 0.018440109951063
709 => 0.018645402201499
710 => 0.018613407621727
711 => 0.018737879815417
712 => 0.018660114992754
713 => 0.018663306488201
714 => 0.018891996250446
715 => 0.018958385861341
716 => 0.01892461956941
717 => 0.018948268322838
718 => 0.01949324386407
719 => 0.019415765769443
720 => 0.019374607075869
721 => 0.019386008315272
722 => 0.019525261250464
723 => 0.01956424446939
724 => 0.019399069831501
725 => 0.019476967145592
726 => 0.019808644022354
727 => 0.019924712157935
728 => 0.020295145930843
729 => 0.020137779080176
730 => 0.020426632745253
731 => 0.021314470434229
801 => 0.022023736613878
802 => 0.021371466123408
803 => 0.02267394313783
804 => 0.023688108322788
805 => 0.023649182973809
806 => 0.023472339815748
807 => 0.02231773971565
808 => 0.021255259489421
809 => 0.022144069313955
810 => 0.022146335072983
811 => 0.022069985520809
812 => 0.02159578500948
813 => 0.022053484370904
814 => 0.022089814884094
815 => 0.022069479457771
816 => 0.021705911037557
817 => 0.021150809258566
818 => 0.021259274817455
819 => 0.021436943615552
820 => 0.021100579515159
821 => 0.020993090804064
822 => 0.021192932768554
823 => 0.021836865216867
824 => 0.02171513351756
825 => 0.021711954610934
826 => 0.022232774442843
827 => 0.021859979843151
828 => 0.021260642915507
829 => 0.021109302436994
830 => 0.020572145693435
831 => 0.020943161769498
901 => 0.020956513977568
902 => 0.020753312264401
903 => 0.021277131614622
904 => 0.021272304527093
905 => 0.021769593039907
906 => 0.02272022190337
907 => 0.022439074170839
908 => 0.022112129946691
909 => 0.022147677849036
910 => 0.02253755059806
911 => 0.022301824634071
912 => 0.022386593334261
913 => 0.02253742229048
914 => 0.022628421144639
915 => 0.022134584514315
916 => 0.02201944757285
917 => 0.021783917798188
918 => 0.02172247247635
919 => 0.021914306563322
920 => 0.021863765059003
921 => 0.020955391776182
922 => 0.020860461713986
923 => 0.020863373083465
924 => 0.020624666928394
925 => 0.02026058274587
926 => 0.021217374239206
927 => 0.021140530492003
928 => 0.021055700942324
929 => 0.021066092078129
930 => 0.021481402836714
1001 => 0.021240501623039
1002 => 0.021880976982527
1003 => 0.021749314503068
1004 => 0.021614275377818
1005 => 0.021595608857317
1006 => 0.021543630315092
1007 => 0.021365376553442
1008 => 0.021150124424859
1009 => 0.021007996324748
1010 => 0.019378766131096
1011 => 0.019681141778242
1012 => 0.020028997397875
1013 => 0.020149075763829
1014 => 0.019943673409695
1015 => 0.021373487090325
1016 => 0.021634727827804
1017 => 0.02084341259367
1018 => 0.020695389822551
1019 => 0.021383191438557
1020 => 0.020968362983778
1021 => 0.021155160211564
1022 => 0.02075140677771
1023 => 0.021571802584167
1024 => 0.021565552542661
1025 => 0.021246400044469
1026 => 0.021516145550479
1027 => 0.021469270630699
1028 => 0.021108948246278
1029 => 0.021583225446449
1030 => 0.021583460682023
1031 => 0.021276283341487
1101 => 0.020917567457508
1102 => 0.020853437529944
1103 => 0.020805124244167
1104 => 0.021143278104922
1105 => 0.021446465799094
1106 => 0.022010622931346
1107 => 0.022152465438437
1108 => 0.022706086186603
1109 => 0.022376431986375
1110 => 0.0225225634236
1111 => 0.022681209770261
1112 => 0.022757270662876
1113 => 0.022633333520012
1114 => 0.023493334421305
1115 => 0.023565944847121
1116 => 0.023590290494819
1117 => 0.023300303029644
1118 => 0.023557879771131
1119 => 0.023437368143834
1120 => 0.023750905918966
1121 => 0.023800072645558
1122 => 0.023758430177292
1123 => 0.023774036472356
1124 => 0.023040177417657
1125 => 0.023002122954256
1126 => 0.022483247645561
1127 => 0.022694693169187
1128 => 0.022299405897616
1129 => 0.022424755563342
1130 => 0.022480008501618
1201 => 0.022451147502239
1202 => 0.022706647981843
1203 => 0.02248942037888
1204 => 0.021916121019137
1205 => 0.021342665464367
1206 => 0.021335466197004
1207 => 0.021184485471764
1208 => 0.021075354060915
1209 => 0.021096376642289
1210 => 0.021170462961071
1211 => 0.021071048029386
1212 => 0.021092263245526
1213 => 0.021444577189695
1214 => 0.02151523123861
1215 => 0.021275121174078
1216 => 0.020311044617264
1217 => 0.020074457812019
1218 => 0.020244511715909
1219 => 0.020163236902723
1220 => 0.016273305856616
1221 => 0.017187187455736
1222 => 0.016644190042025
1223 => 0.016894428232373
1224 => 0.016340168481473
1225 => 0.016604690285845
1226 => 0.016555842767367
1227 => 0.01802533733503
1228 => 0.018002393198579
1229 => 0.018013375342522
1230 => 0.017489168998341
1231 => 0.018324243938374
]
'min_raw' => 0.010661063232079
'max_raw' => 0.023800072645558
'avg_raw' => 0.017230567938818
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.010661'
'max' => '$0.023800072'
'avg' => '$0.01723'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0016439143192454
'max_diff' => 0.0036005459522415
'year' => 2035
]
10 => [
'items' => [
101 => 0.018735631882158
102 => 0.018659494922499
103 => 0.018678656954939
104 => 0.018349389750774
105 => 0.0180165633688
106 => 0.017647407689579
107 => 0.018333253312551
108 => 0.018256998987052
109 => 0.018431898974307
110 => 0.018876718886062
111 => 0.018942220307775
112 => 0.019030254882806
113 => 0.018998700754385
114 => 0.019750448109372
115 => 0.019659406544494
116 => 0.019878790521404
117 => 0.019427501036199
118 => 0.018916824146898
119 => 0.019013887128269
120 => 0.019004539182632
121 => 0.018885529105598
122 => 0.018778092129351
123 => 0.018599239834081
124 => 0.019165154961474
125 => 0.019142179840784
126 => 0.019514120339096
127 => 0.019448376243182
128 => 0.019009321080361
129 => 0.019025002021394
130 => 0.01913046388585
131 => 0.019495468602872
201 => 0.0196038268543
202 => 0.019553630994909
203 => 0.019672440870858
204 => 0.019766343352539
205 => 0.019684233576809
206 => 0.020846734846955
207 => 0.020363983270285
208 => 0.02059927302979
209 => 0.020655388251024
210 => 0.020511650291809
211 => 0.020542821908292
212 => 0.020590038413507
213 => 0.020876727787235
214 => 0.021629083658136
215 => 0.021962296951898
216 => 0.022964785586637
217 => 0.021934628226404
218 => 0.021873502951863
219 => 0.022054081427236
220 => 0.022642648380026
221 => 0.02311962661398
222 => 0.023277867811717
223 => 0.023298781998276
224 => 0.023595653004906
225 => 0.02376581392959
226 => 0.023559605056219
227 => 0.023384864627005
228 => 0.022758966099143
229 => 0.022831415558008
301 => 0.023330520484918
302 => 0.024035535591311
303 => 0.024640511896916
304 => 0.024428670280246
305 => 0.026044872278563
306 => 0.026205112105103
307 => 0.026182972142249
308 => 0.02654802231399
309 => 0.025823472064258
310 => 0.025513712794998
311 => 0.023422645491189
312 => 0.024010150110032
313 => 0.024864122576458
314 => 0.024751096118294
315 => 0.024130918486426
316 => 0.024640041436569
317 => 0.024471709467505
318 => 0.024338939059405
319 => 0.024947186037723
320 => 0.024278393499653
321 => 0.024857450859291
322 => 0.024114803805975
323 => 0.024429637954906
324 => 0.024250922865158
325 => 0.024366573430723
326 => 0.023690482587562
327 => 0.024055284795354
328 => 0.023675305616359
329 => 0.023675125456753
330 => 0.023666737395317
331 => 0.024113781214319
401 => 0.024128359297207
402 => 0.023797993239519
403 => 0.023750382329318
404 => 0.023926424818218
405 => 0.023720325169317
406 => 0.023816757897862
407 => 0.023723246018427
408 => 0.023702194524705
409 => 0.023534452641109
410 => 0.023462184825497
411 => 0.023490522898111
412 => 0.023393790447002
413 => 0.023335505646244
414 => 0.023655143081439
415 => 0.023484373693951
416 => 0.023628970223629
417 => 0.023464184228524
418 => 0.022892964175653
419 => 0.022564449482705
420 => 0.021485467754958
421 => 0.021791465634474
422 => 0.021994342545171
423 => 0.021927291727396
424 => 0.022071342829199
425 => 0.022080186396915
426 => 0.022033353915292
427 => 0.021979127901184
428 => 0.021952733676404
429 => 0.022149454603537
430 => 0.022263657723059
501 => 0.022014703957302
502 => 0.021956377573219
503 => 0.022208083575513
504 => 0.022361624091507
505 => 0.023495280994642
506 => 0.023411296029595
507 => 0.023622081810648
508 => 0.023598350566473
509 => 0.023819287645824
510 => 0.024180426395588
511 => 0.023446130341336
512 => 0.023573578746307
513 => 0.023542331340621
514 => 0.023883482322385
515 => 0.023884547358512
516 => 0.02368001030319
517 => 0.023790893159115
518 => 0.023729001390849
519 => 0.023840848181279
520 => 0.023410174359183
521 => 0.02393468858613
522 => 0.024232054353858
523 => 0.024236183277832
524 => 0.024377132291694
525 => 0.024520344652995
526 => 0.024795228309344
527 => 0.024512678297013
528 => 0.024004398330518
529 => 0.024041094502365
530 => 0.023743090143982
531 => 0.023748099651085
601 => 0.023721358509565
602 => 0.023801610688245
603 => 0.023427785199432
604 => 0.023515521294465
605 => 0.023392690247637
606 => 0.023573311735599
607 => 0.023378992872353
608 => 0.023542316272176
609 => 0.023612801237283
610 => 0.023872892275961
611 => 0.023340577214467
612 => 0.022255150769518
613 => 0.02248332056777
614 => 0.022145839513805
615 => 0.02217707467023
616 => 0.022240174657248
617 => 0.022035646954293
618 => 0.022074664394608
619 => 0.022073270417078
620 => 0.022061257871816
621 => 0.022008052317043
622 => 0.021930893736223
623 => 0.02223826977405
624 => 0.022290498952492
625 => 0.022406597946342
626 => 0.02275202980134
627 => 0.022717513013181
628 => 0.022773811326756
629 => 0.022650912424325
630 => 0.022182775597832
701 => 0.022208197679784
702 => 0.021891183910472
703 => 0.022398491191516
704 => 0.022278354131236
705 => 0.022200900986935
706 => 0.022179767178915
707 => 0.022526055292667
708 => 0.022629670123703
709 => 0.022565104314334
710 => 0.022432677955633
711 => 0.022686975712678
712 => 0.022755015064502
713 => 0.022770246566181
714 => 0.023220813434906
715 => 0.022795428248969
716 => 0.022897822691189
717 => 0.023696674899608
718 => 0.022972226180641
719 => 0.023355982824212
720 => 0.023337199933483
721 => 0.023533516846717
722 => 0.023321096216536
723 => 0.023323729424831
724 => 0.023498045544123
725 => 0.023253249992655
726 => 0.023192635171544
727 => 0.023108896230311
728 => 0.023291737144966
729 => 0.023401342004118
730 => 0.024284676672989
731 => 0.024855351154035
801 => 0.024830576669766
802 => 0.025056969080094
803 => 0.024954977225724
804 => 0.024625618623873
805 => 0.02518779359623
806 => 0.025009897912577
807 => 0.025024563416594
808 => 0.025024017565802
809 => 0.025142302643521
810 => 0.025058486825289
811 => 0.024893277244036
812 => 0.02500295107408
813 => 0.025328643140199
814 => 0.026339601306885
815 => 0.026905346890376
816 => 0.026305542712387
817 => 0.026719279602666
818 => 0.026471184898026
819 => 0.026426098710015
820 => 0.026685956052026
821 => 0.026946268239915
822 => 0.026929687478907
823 => 0.026740714197679
824 => 0.026633967986132
825 => 0.027442286062567
826 => 0.028037841051945
827 => 0.02799722819432
828 => 0.028176480139865
829 => 0.028702769396038
830 => 0.028750886689951
831 => 0.028744825016881
901 => 0.028625561283398
902 => 0.029143761403396
903 => 0.029576053060362
904 => 0.028597955174957
905 => 0.028970402045478
906 => 0.029137605445143
907 => 0.029383109642866
908 => 0.029797316375704
909 => 0.030247254750477
910 => 0.030310880969993
911 => 0.030265735122451
912 => 0.029968988669296
913 => 0.030461316607853
914 => 0.030749710767749
915 => 0.030921442890184
916 => 0.031356926979179
917 => 0.029138638036417
918 => 0.027568422866616
919 => 0.02732321109367
920 => 0.027821858876433
921 => 0.027953348320106
922 => 0.027900345090235
923 => 0.026132925158906
924 => 0.027313905993507
925 => 0.028584542071849
926 => 0.028633352378446
927 => 0.029269459367011
928 => 0.029476601877394
929 => 0.029988751379638
930 => 0.02995671628883
1001 => 0.030081416542548
1002 => 0.030052750113725
1003 => 0.031001399220831
1004 => 0.032047900061724
1005 => 0.032011663065273
1006 => 0.031861216187758
1007 => 0.032084655455872
1008 => 0.033164756473519
1009 => 0.03306531808008
1010 => 0.033161914009164
1011 => 0.034435413980796
1012 => 0.036091145097176
1013 => 0.035321891760931
1014 => 0.036990950153898
1015 => 0.038041533939287
1016 => 0.039858409963726
1017 => 0.039630928137163
1018 => 0.040338224640625
1019 => 0.039223688190726
1020 => 0.036664487216777
1021 => 0.036259483866422
1022 => 0.037070310830151
1023 => 0.039063649801142
1024 => 0.037007533492264
1025 => 0.037423483143658
1026 => 0.037303689616074
1027 => 0.037297306328079
1028 => 0.037540930468148
1029 => 0.037187540946397
1030 => 0.035747768461219
1031 => 0.036407607706544
1101 => 0.036152812085841
1102 => 0.036435526823282
1103 => 0.037961221660828
1104 => 0.037286675605127
1105 => 0.036576096131117
1106 => 0.037467320481734
1107 => 0.038602155337981
1108 => 0.038531139412172
1109 => 0.038393338833747
1110 => 0.039170113479324
1111 => 0.040453117620202
1112 => 0.040799908483953
1113 => 0.041055902409747
1114 => 0.041091199647062
1115 => 0.041454783128508
1116 => 0.039499703113934
1117 => 0.042602465307079
1118 => 0.043138226625759
1119 => 0.043037525702879
1120 => 0.043633001860309
1121 => 0.043457797669021
1122 => 0.04320395428454
1123 => 0.044147910655478
1124 => 0.043065740849549
1125 => 0.041529737051422
1126 => 0.040687054989059
1127 => 0.041796766706002
1128 => 0.042474428927936
1129 => 0.042922320549223
1130 => 0.043057852283201
1201 => 0.039651470410067
1202 => 0.037815619507047
1203 => 0.038992378887809
1204 => 0.040428106547933
1205 => 0.039491727574291
1206 => 0.039528431857258
1207 => 0.038193401516909
1208 => 0.04054622710979
1209 => 0.040203440211286
1210 => 0.041981819247108
1211 => 0.041557394817826
1212 => 0.043007593885263
1213 => 0.042625707869343
1214 => 0.044210895370465
1215 => 0.044843269581901
1216 => 0.045905124304088
1217 => 0.046686228960256
1218 => 0.047144908554509
1219 => 0.047117371152133
1220 => 0.048934888217829
1221 => 0.047863161903398
1222 => 0.046516821065974
1223 => 0.046492470007876
1224 => 0.047189759005375
1225 => 0.048651085452239
1226 => 0.049029986138475
1227 => 0.049241739931499
1228 => 0.04891743162628
1229 => 0.047754149523283
1230 => 0.047251850209182
1231 => 0.047679823777808
]
'min_raw' => 0.017647407689579
'max_raw' => 0.049241739931499
'avg_raw' => 0.033444573810539
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.017647'
'max' => '$0.049241'
'avg' => '$0.033444'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0069863444575003
'max_diff' => 0.025441667285941
'year' => 2036
]
11 => [
'items' => [
101 => 0.047156448879567
102 => 0.048059940786991
103 => 0.049300628151342
104 => 0.049044431116813
105 => 0.049900859392038
106 => 0.050787172558013
107 => 0.052054640192173
108 => 0.052386003165933
109 => 0.052933733560953
110 => 0.05349752805749
111 => 0.05367860365509
112 => 0.054024333155367
113 => 0.054022510990244
114 => 0.055064390109607
115 => 0.056213615042575
116 => 0.056647420850152
117 => 0.057644933384483
118 => 0.055936728126449
119 => 0.057232421437116
120 => 0.058401169236644
121 => 0.05700773992823
122 => 0.05892825760249
123 => 0.059002826951795
124 => 0.060128735593489
125 => 0.058987411487135
126 => 0.058309696876018
127 => 0.060266233564678
128 => 0.061212940037992
129 => 0.060927784343677
130 => 0.058757735430066
131 => 0.057494673884569
201 => 0.054188998193624
202 => 0.058104713844111
203 => 0.060011944714471
204 => 0.058752796162865
205 => 0.059387837451998
206 => 0.062852416812677
207 => 0.064171504318322
208 => 0.063897143338265
209 => 0.063943505827529
210 => 0.064655261502443
211 => 0.067811578136022
212 => 0.065920240046335
213 => 0.067366097148815
214 => 0.068132974542545
215 => 0.068845293004382
216 => 0.067096063992671
217 => 0.064820342749712
218 => 0.064099526303787
219 => 0.058627598654514
220 => 0.058342761056992
221 => 0.05818287308204
222 => 0.057174802016573
223 => 0.05638273429302
224 => 0.055752852631661
225 => 0.054099855053669
226 => 0.054657693211989
227 => 0.052023160080077
228 => 0.053708641015752
301 => 0.049503862524194
302 => 0.053005726997632
303 => 0.051099821374979
304 => 0.052379585741423
305 => 0.052375120764109
306 => 0.050018668815825
307 => 0.048659516509952
308 => 0.049525621258253
309 => 0.050454154299913
310 => 0.050604805661962
311 => 0.051808672987666
312 => 0.052144646481228
313 => 0.051126631110632
314 => 0.04941672783597
315 => 0.049813899367932
316 => 0.048651467841533
317 => 0.046614351303803
318 => 0.048077443965843
319 => 0.048577008128307
320 => 0.048797644121994
321 => 0.046794373971551
322 => 0.046164902997171
323 => 0.045829777932184
324 => 0.049158130815537
325 => 0.049340465499819
326 => 0.048407615475506
327 => 0.052624186041868
328 => 0.051669846259601
329 => 0.052736077615316
330 => 0.049777860214362
331 => 0.049890868102846
401 => 0.048490400577697
402 => 0.049274568812507
403 => 0.048720343979066
404 => 0.049211215768436
405 => 0.049505442295044
406 => 0.050905680017253
407 => 0.053021715463186
408 => 0.050696531195368
409 => 0.049683415112627
410 => 0.050311946632378
411 => 0.051985808896391
412 => 0.054521795909802
413 => 0.053020440556367
414 => 0.053686716567555
415 => 0.053832268235442
416 => 0.052725224381016
417 => 0.054562614195786
418 => 0.055547286324449
419 => 0.056557356179271
420 => 0.057434371532697
421 => 0.056153912067343
422 => 0.057524187241926
423 => 0.056419987337342
424 => 0.055429405872842
425 => 0.055430908176029
426 => 0.054809501953262
427 => 0.053605449094428
428 => 0.053383403273774
429 => 0.054538513674112
430 => 0.055464802825822
501 => 0.055541096436982
502 => 0.056053937705824
503 => 0.056357431886039
504 => 0.059332087432478
505 => 0.060528518500897
506 => 0.061991491764079
507 => 0.062561402298744
508 => 0.06427662868385
509 => 0.062891444074001
510 => 0.06259175067044
511 => 0.058431172506448
512 => 0.059112466947722
513 => 0.060203285083337
514 => 0.058449159695731
515 => 0.059561748510159
516 => 0.059781397109981
517 => 0.058389555186285
518 => 0.05913299809567
519 => 0.057158634143803
520 => 0.053064751202023
521 => 0.054567171857798
522 => 0.055673459169774
523 => 0.054094650771343
524 => 0.056924603717207
525 => 0.05527140362832
526 => 0.054747418567742
527 => 0.052703166032264
528 => 0.053667974538514
529 => 0.054972891857943
530 => 0.054166604667457
531 => 0.055839771652346
601 => 0.058209422320286
602 => 0.059898176501396
603 => 0.060027818078078
604 => 0.058942062277367
605 => 0.060681992877207
606 => 0.060694666372102
607 => 0.058732017547656
608 => 0.057529906070758
609 => 0.057256783813942
610 => 0.05793909676024
611 => 0.058767550638964
612 => 0.060073791502601
613 => 0.060863125499187
614 => 0.06292128993188
615 => 0.063478170215168
616 => 0.064090012810949
617 => 0.064907623204181
618 => 0.065889374112258
619 => 0.063741359016495
620 => 0.063826703660651
621 => 0.061826501744771
622 => 0.059688999139682
623 => 0.061311097173483
624 => 0.063431774574019
625 => 0.062945288835196
626 => 0.062890549251577
627 => 0.06298260604773
628 => 0.062615811687796
629 => 0.060956814391848
630 => 0.060123676335696
701 => 0.061198636984319
702 => 0.061769930728068
703 => 0.062655957502573
704 => 0.062546736000859
705 => 0.064829045819654
706 => 0.065715882401772
707 => 0.065488991654189
708 => 0.065530745012175
709 => 0.067136320283262
710 => 0.06892205019645
711 => 0.070594621907966
712 => 0.072296033691547
713 => 0.070244915379208
714 => 0.069203483995593
715 => 0.070277975350025
716 => 0.069707835112802
717 => 0.072984030030461
718 => 0.073210866658301
719 => 0.076486824669778
720 => 0.079596098916493
721 => 0.077643219470565
722 => 0.079484696828453
723 => 0.08147640472886
724 => 0.085318732411707
725 => 0.084024771622842
726 => 0.083033617937522
727 => 0.082096982494114
728 => 0.084045972165156
729 => 0.086553316241081
730 => 0.087093374139992
731 => 0.087968474254224
801 => 0.08704841348626
802 => 0.088156525339903
803 => 0.092068647112286
804 => 0.091011557276134
805 => 0.089510319773128
806 => 0.092598564188255
807 => 0.093716187836843
808 => 0.10156025590669
809 => 0.11146371586715
810 => 0.10736361841389
811 => 0.10481855561534
812 => 0.1054167057427
813 => 0.10903311406698
814 => 0.11019458964168
815 => 0.10703729864501
816 => 0.10815250720104
817 => 0.11429741598967
818 => 0.11759396240248
819 => 0.11311680958863
820 => 0.10076452254165
821 => 0.089375149761377
822 => 0.092396124292845
823 => 0.092053639532731
824 => 0.098655577433122
825 => 0.090986346033145
826 => 0.09111547622108
827 => 0.097853935205678
828 => 0.096056229875021
829 => 0.093144177472058
830 => 0.089396410966589
831 => 0.082468317954786
901 => 0.076331912770065
902 => 0.088366816467016
903 => 0.087847849535552
904 => 0.0870963085122
905 => 0.088768781734436
906 => 0.096889836961808
907 => 0.096702620353526
908 => 0.095511643810393
909 => 0.096414989021574
910 => 0.092985816688928
911 => 0.093869592479854
912 => 0.089373345626539
913 => 0.091405836984092
914 => 0.093137929515471
915 => 0.093485672735213
916 => 0.094269155965501
917 => 0.087574377544709
918 => 0.090580136507277
919 => 0.092345738296258
920 => 0.0843686851805
921 => 0.092188057604341
922 => 0.087457836346941
923 => 0.08585232820664
924 => 0.088013933407942
925 => 0.087171553758765
926 => 0.086447325202595
927 => 0.086043193224426
928 => 0.087630437516601
929 => 0.087556390673204
930 => 0.084959350940364
1001 => 0.081571618477755
1002 => 0.082708652690734
1003 => 0.082295557501406
1004 => 0.080798447244942
1005 => 0.081807318796017
1006 => 0.077364759063291
1007 => 0.069721565947297
1008 => 0.074770893437059
1009 => 0.074576499821315
1010 => 0.074478477745208
1011 => 0.078272907800603
1012 => 0.077908160903172
1013 => 0.077246141712724
1014 => 0.080786288743348
1015 => 0.079494087455473
1016 => 0.083476347343789
1017 => 0.086099321262655
1018 => 0.085434050232513
1019 => 0.08790096988114
1020 => 0.082734847662515
1021 => 0.084450826234694
1022 => 0.084804487040176
1023 => 0.080742603878513
1024 => 0.077967838006493
1025 => 0.077782792757476
1026 => 0.072971731121684
1027 => 0.075541761413992
1028 => 0.077803281716142
1029 => 0.076720188992477
1030 => 0.076377314192639
1031 => 0.078128987184539
1101 => 0.078265107178075
1102 => 0.075161556900121
1103 => 0.075806883279563
1104 => 0.078498001558419
1105 => 0.075739074003634
1106 => 0.070378928432943
1107 => 0.069049538221601
1108 => 0.068872173061885
1109 => 0.065266761373459
1110 => 0.06913837443225
1111 => 0.067448311579308
1112 => 0.072787199881688
1113 => 0.069737655516401
1114 => 0.069606195753861
1115 => 0.069407475041826
1116 => 0.066304148263917
1117 => 0.066983579601573
1118 => 0.069242112848259
1119 => 0.070047982954875
1120 => 0.069963924100456
1121 => 0.069231044803212
1122 => 0.069566553192541
1123 => 0.06848576377164
1124 => 0.068104114532434
1125 => 0.066899524552605
1126 => 0.065129110058732
1127 => 0.065375297052688
1128 => 0.061867642686173
1129 => 0.059956486421989
1130 => 0.059427503556697
1201 => 0.058720125561514
1202 => 0.059507403783514
1203 => 0.061857705942067
1204 => 0.059022742894434
1205 => 0.054162397598804
1206 => 0.054454512632697
1207 => 0.055110808384122
1208 => 0.053887805593172
1209 => 0.052730336090382
1210 => 0.053736661914589
1211 => 0.05167726954003
1212 => 0.055359676113724
1213 => 0.05526007733573
1214 => 0.056632650787908
1215 => 0.057490949135598
1216 => 0.055512849321563
1217 => 0.055015362567684
1218 => 0.055298753632206
1219 => 0.050614930597058
1220 => 0.056249882519579
1221 => 0.056298613817802
1222 => 0.055881346856792
1223 => 0.058881784795913
1224 => 0.065213644707519
1225 => 0.062831344310298
1226 => 0.061908845591083
1227 => 0.060155174851514
1228 => 0.062491836989325
1229 => 0.062312417794749
1230 => 0.061501016154166
1231 => 0.061010277910215
]
'min_raw' => 0.045829777932184
'max_raw' => 0.11759396240248
'avg_raw' => 0.081711870167334
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.045829'
'max' => '$0.117593'
'avg' => '$0.081711'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.028182370242605
'max_diff' => 0.068352222470985
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.001438544360777
]
1 => [
'year' => 2028
'avg' => 0.0024689597355052
]
2 => [
'year' => 2029
'avg' => 0.0067447530107027
]
3 => [
'year' => 2030
'avg' => 0.0052035669031696
]
4 => [
'year' => 2031
'avg' => 0.0051105475698595
]
5 => [
'year' => 2032
'avg' => 0.0089603982384753
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.001438544360777
'min' => '$0.001438'
'max_raw' => 0.0089603982384753
'max' => '$0.00896'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0089603982384753
]
1 => [
'year' => 2033
'avg' => 0.023047065656244
]
2 => [
'year' => 2034
'avg' => 0.014608337803075
]
3 => [
'year' => 2035
'avg' => 0.017230567938818
]
4 => [
'year' => 2036
'avg' => 0.033444573810539
]
5 => [
'year' => 2037
'avg' => 0.081711870167334
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0089603982384753
'min' => '$0.00896'
'max_raw' => 0.081711870167334
'max' => '$0.081711'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.081711870167334
]
]
]
]
'prediction_2025_max_price' => '$0.002459'
'last_price' => 0.00238494
'sma_50day_nextmonth' => '$0.00217'
'sma_200day_nextmonth' => '$0.004236'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0022019'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002161'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002138'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002139'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002454'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002946'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004977'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002246'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00220055'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002166'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002198'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002462'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003137'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004364'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003599'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005584'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0097039'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002276'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002314'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002618'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003534'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006616'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.013259'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007667'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '63.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 273.85
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002132'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002193'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 469.9
'cci_20_action' => 'SELL'
'adx_14' => 38.16
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000086'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.02
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000094'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 18
'sell_pct' => 45.45
'buy_pct' => 54.55
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767710544
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dor para 2026
A previsão de preço para Dor em 2026 sugere que o preço médio poderia variar entre $0.000823 na extremidade inferior e $0.002459 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dor poderia potencialmente ganhar 3.13% até 2026 se DOR atingir a meta de preço prevista.
Previsão de preço de Dor 2027-2032
A previsão de preço de DOR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001438 na extremidade inferior e $0.00896 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dor atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dor | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000793 | $0.001438 | $0.002083 |
| 2028 | $0.001431 | $0.002468 | $0.0035063 |
| 2029 | $0.003144 | $0.006744 | $0.010344 |
| 2030 | $0.002674 | $0.0052035 | $0.007732 |
| 2031 | $0.003162 | $0.00511 | $0.007059 |
| 2032 | $0.004826 | $0.00896 | $0.013094 |
Previsão de preço de Dor 2032-2037
A previsão de preço de Dor para 2032-2037 é atualmente estimada entre $0.00896 na extremidade inferior e $0.081711 na extremidade superior. Comparado ao preço atual, Dor poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dor | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004826 | $0.00896 | $0.013094 |
| 2033 | $0.011216 | $0.023047 | $0.034878 |
| 2034 | $0.009017 | $0.0146083 | $0.020199 |
| 2035 | $0.010661 | $0.01723 | $0.023800072 |
| 2036 | $0.017647 | $0.033444 | $0.049241 |
| 2037 | $0.045829 | $0.081711 | $0.117593 |
Dor Histograma de preços potenciais
Previsão de preço de Dor baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dor é Altista, com 18 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de DOR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dor
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dor está projetado para aumentar no próximo mês, alcançando $0.004236 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dor é esperado para alcançar $0.00217 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 63.18, sugerindo que o mercado de DOR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DOR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0022019 | BUY |
| SMA 5 | $0.002161 | BUY |
| SMA 10 | $0.002138 | BUY |
| SMA 21 | $0.002139 | BUY |
| SMA 50 | $0.002454 | SELL |
| SMA 100 | $0.002946 | SELL |
| SMA 200 | $0.004977 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002246 | BUY |
| EMA 5 | $0.00220055 | BUY |
| EMA 10 | $0.002166 | BUY |
| EMA 21 | $0.002198 | BUY |
| EMA 50 | $0.002462 | SELL |
| EMA 100 | $0.003137 | SELL |
| EMA 200 | $0.004364 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.003599 | SELL |
| SMA 50 | $0.005584 | SELL |
| SMA 100 | $0.0097039 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003534 | SELL |
| EMA 50 | $0.006616 | SELL |
| EMA 100 | $0.013259 | SELL |
| EMA 200 | $0.007667 | SELL |
Osciladores de Dor
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 63.18 | NEUTRAL |
| Stoch RSI (14) | 273.85 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 469.9 | SELL |
| Índice Direcional Médio (14) | 38.16 | SELL |
| Oscilador Impressionante (5, 34) | -0.000086 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 79.02 | SELL |
| VWMA (10) | 0.002132 | BUY |
| Média Móvel de Hull (9) | 0.002193 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000094 | SELL |
Previsão do preço de Dor com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dor
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dor por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.003351 | $0.004709 | $0.006617 | $0.009297 | $0.013065 | $0.018358 |
| Amazon.com stock | $0.004976 | $0.010383 | $0.021665 | $0.0452064 | $0.094325 | $0.196816 |
| Apple stock | $0.003382 | $0.004798 | $0.006806 | $0.009653 | $0.013693 | $0.019422 |
| Netflix stock | $0.003763 | $0.005937 | $0.009368 | $0.014781 | $0.023323 | $0.036801 |
| Google stock | $0.003088 | $0.003999 | $0.005179 | $0.0067073 | $0.008685 | $0.011248 |
| Tesla stock | $0.0054064 | $0.012256 | $0.027783 | $0.062983 | $0.142778 | $0.323667 |
| Kodak stock | $0.001788 | $0.001341 | $0.0010057 | $0.000754 | $0.000565 | $0.000424 |
| Nokia stock | $0.001579 | $0.001046 | $0.000693 | $0.000459 | $0.0003042 | $0.0002015 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dor
Você pode fazer perguntas como: 'Devo investir em Dor agora?', 'Devo comprar DOR hoje?', 'Dor será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dor regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dor, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dor para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dor é de $0.002384 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Dor com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dor tiver 1% da média anterior do crescimento anual do Bitcoin | $0.002446 | $0.00251 | $0.002575 | $0.002642 |
| Se Dor tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0025089 | $0.002639 | $0.002776 | $0.00292 |
| Se Dor tiver 5% da média anterior do crescimento anual do Bitcoin | $0.002694 | $0.003045 | $0.00344 | $0.003888 |
| Se Dor tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0030048 | $0.003785 | $0.00477 | $0.0060098 |
| Se Dor tiver 20% da média anterior do crescimento anual do Bitcoin | $0.003624 | $0.0055091 | $0.008373 | $0.012726 |
| Se Dor tiver 50% da média anterior do crescimento anual do Bitcoin | $0.005484 | $0.012612 | $0.0290047 | $0.066701 |
| Se Dor tiver 100% da média anterior do crescimento anual do Bitcoin | $0.008584 | $0.030897 | $0.1112088 | $0.400276 |
Perguntas Frequentes sobre Dor
DOR é um bom investimento?
A decisão de adquirir Dor depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dor experimentou uma escalada de 8.5507% nas últimas 24 horas, e Dor registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dor dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dor pode subir?
Parece que o valor médio de Dor pode potencialmente subir para $0.002459 até o final deste ano. Observando as perspectivas de Dor em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.007732. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dor na próxima semana?
Com base na nossa nova previsão experimental de Dor, o preço de Dor aumentará 0.86% na próxima semana e atingirá $0.002405 até 13 de janeiro de 2026.
Qual será o preço de Dor no próximo mês?
Com base na nossa nova previsão experimental de Dor, o preço de Dor diminuirá -11.62% no próximo mês e atingirá $0.002107 até 5 de fevereiro de 2026.
Até onde o preço de Dor pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dor em 2026, espera-se que DOR fluctue dentro do intervalo de $0.000823 e $0.002459. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dor não considera flutuações repentinas e extremas de preço.
Onde estará Dor em 5 anos?
O futuro de Dor parece seguir uma tendência de alta, com um preço máximo de $0.007732 projetada após um período de cinco anos. Com base na previsão de Dor para 2030, o valor de Dor pode potencialmente atingir seu pico mais alto de aproximadamente $0.007732, enquanto seu pico mais baixo está previsto para cerca de $0.002674.
Quanto será Dor em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dor, espera-se que o valor de DOR em 2026 aumente 3.13% para $0.002459 se o melhor cenário ocorrer. O preço ficará entre $0.002459 e $0.000823 durante 2026.
Quanto será Dor em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dor, o valor de DOR pode diminuir -12.62% para $0.002083 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.002083 e $0.000793 ao longo do ano.
Quanto será Dor em 2028?
Nosso novo modelo experimental de previsão de preços de Dor sugere que o valor de DOR em 2028 pode aumentar 47.02%, alcançando $0.0035063 no melhor cenário. O preço é esperado para variar entre $0.0035063 e $0.001431 durante o ano.
Quanto será Dor em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dor pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.010344 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.010344 e $0.003144.
Quanto será Dor em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dor, espera-se que o valor de DOR em 2030 aumente 224.23%, alcançando $0.007732 no melhor cenário. O preço está previsto para variar entre $0.007732 e $0.002674 ao longo de 2030.
Quanto será Dor em 2031?
Nossa simulação experimental indica que o preço de Dor poderia aumentar 195.98% em 2031, potencialmente atingindo $0.007059 sob condições ideais. O preço provavelmente oscilará entre $0.007059 e $0.003162 durante o ano.
Quanto será Dor em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dor, DOR poderia ver um 449.04% aumento em valor, atingindo $0.013094 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.013094 e $0.004826 ao longo do ano.
Quanto será Dor em 2033?
De acordo com nossa previsão experimental de preços de Dor, espera-se que o valor de DOR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.034878. Ao longo do ano, o preço de DOR poderia variar entre $0.034878 e $0.011216.
Quanto será Dor em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dor sugerem que DOR pode aumentar 746.96% em 2034, atingindo potencialmente $0.020199 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.020199 e $0.009017.
Quanto será Dor em 2035?
Com base em nossa previsão experimental para o preço de Dor, DOR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.023800072 em 2035. A faixa de preço esperada para o ano está entre $0.023800072 e $0.010661.
Quanto será Dor em 2036?
Nossa recente simulação de previsão de preços de Dor sugere que o valor de DOR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.049241 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.049241 e $0.017647.
Quanto será Dor em 2037?
De acordo com a simulação experimental, o valor de Dor poderia aumentar 4830.69% em 2037, com um pico de $0.117593 sob condições favoráveis. O preço é esperado para cair entre $0.117593 e $0.045829 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Cindicator
Previsão de Preço do Pepe Community
Previsão de Preço do Inter Stable Token
Previsão de Preço do BlackCoin
Previsão de Preço do Genius
Previsão de Preço do Blockchain Certified Data Token
Previsão de Preço do HalalChain
Previsão de Preço do Kaching
Previsão de Preço do BitCore
Previsão de Preço do Platypus Finance
Previsão de Preço do Bastion Protocol
Previsão de Preço do Proteo DeFi
Previsão de Preço do DexGame
Previsão de Preço do Chad Coin
Previsão de Preço do Mooncoin
Previsão de Preço do BuzzCoin
Previsão de Preço do Fina.cash
Previsão de Preço do Bit Game Verse Token
Previsão de Preço do Osean
Previsão de Preço do PIRB
Previsão de Preço do Pillar
Previsão de Preço do Metaverser
Previsão de Preço do TYBENG
Previsão de Preço do DePay
Previsão de Preço do SafeMoonCash
Como ler e prever os movimentos de preço de Dor?
Traders de Dor utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dor
Médias móveis são ferramentas populares para a previsão de preço de Dor. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DOR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DOR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DOR.
Como ler gráficos de Dor e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dor em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DOR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dor?
A ação de preço de Dor é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DOR. A capitalização de mercado de Dor pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DOR, grandes detentores de Dor, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dor.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


