Previsão de Preço PIRB - Projeção PIRB
Previsão de Preço PIRB até $0.00809 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00271 | $0.00809 |
| 2027 | $0.002609 | $0.006854 |
| 2028 | $0.0047085 | $0.011532 |
| 2029 | $0.010343 | $0.034025 |
| 2030 | $0.008796 | $0.025433 |
| 2031 | $0.01040036 | $0.023218 |
| 2032 | $0.015875 | $0.043068 |
| 2033 | $0.03689 | $0.114718 |
| 2034 | $0.029658 | $0.066438 |
| 2035 | $0.035065 | $0.078281 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em PIRB hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.89, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de PIRB para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'PIRB'
'name_with_ticker' => 'PIRB <small>PIRB</small>'
'name_lang' => 'PIRB'
'name_lang_with_ticker' => 'PIRB <small>PIRB</small>'
'name_with_lang' => 'PIRB'
'name_with_lang_with_ticker' => 'PIRB <small>PIRB</small>'
'image' => '/uploads/coins/pirb.png?1717113580'
'price_for_sd' => 0.007844
'ticker' => 'PIRB'
'marketcap' => '$544.56K'
'low24h' => '$0.02492'
'high24h' => '$0.02807'
'volume24h' => '$310.69'
'current_supply' => '69.42M'
'max_supply' => '69.42M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007844'
'change_24h_pct' => '-3.2696%'
'ath_price' => '$0.03621'
'ath_days' => 589
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de mai. de 2024'
'ath_pct' => '-78.34%'
'fdv' => '$544.56K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.38678'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007911'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006933'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00271'
'current_year_max_price_prediction' => '$0.00809'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008796'
'grand_prediction_max_price' => '$0.025433'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0079930064958666
107 => 0.0080228494806608
108 => 0.0080900872492228
109 => 0.0075155478785909
110 => 0.0077734991884149
111 => 0.0079250214161674
112 => 0.0072404384787559
113 => 0.0079114894125967
114 => 0.0075055464263829
115 => 0.0073677632798029
116 => 0.0075532701351236
117 => 0.0074809779331938
118 => 0.0074188253431151
119 => 0.0073841431299341
120 => 0.0075203588908371
121 => 0.007514004262778
122 => 0.0072911288396007
123 => 0.0070003969356303
124 => 0.0070979761055522
125 => 0.00706252467831
126 => 0.0069340441326591
127 => 0.0070206245076275
128 => 0.0066393683535914
129 => 0.0059834369565427
130 => 0.0064167653291551
131 => 0.0064000826581801
201 => 0.0063916704989756
202 => 0.0067173047946773
203 => 0.006686002570807
204 => 0.0066291887279702
205 => 0.0069330007018814
206 => 0.0068221052445561
207 => 0.0071638589137769
208 => 0.0073889599835672
209 => 0.0073318670710116
210 => 0.0075435757151572
211 => 0.007100224132545
212 => 0.0072474877441106
213 => 0.0072778385703558
214 => 0.0069292517092829
215 => 0.0066911240017533
216 => 0.0066752435985157
217 => 0.006262362969679
218 => 0.0064829204689476
219 => 0.0066770019410145
220 => 0.0065840519772251
221 => 0.0065546267954906
222 => 0.0067049536674291
223 => 0.0067166353528413
224 => 0.0064502916874733
225 => 0.0065056729695103
226 => 0.0067366221219764
227 => 0.0064998536434226
228 => 0.006039851165504
301 => 0.0059257641909484
302 => 0.0059105428855025
303 => 0.0056011299621556
304 => 0.0059333880281163
305 => 0.0057883484783619
306 => 0.0062465266781955
307 => 0.0059848177477095
308 => 0.0059735359987872
309 => 0.0059564819806185
310 => 0.0056901574958069
311 => 0.0057484656321767
312 => 0.0059422907580497
313 => 0.0060114497465575
314 => 0.0060042358974533
315 => 0.005941340909192
316 => 0.0059701339127436
317 => 0.0058773816161565
318 => 0.0058446288497596
319 => 0.0057412521096525
320 => 0.0055893168602485
321 => 0.0056104443885512
322 => 0.0053094209034612
323 => 0.0051454073322587
324 => 0.005100010537414
325 => 0.0050393040460849
326 => 0.0051068674971434
327 => 0.0053085681417496
328 => 0.0050652743711757
329 => 0.0046481642666003
330 => 0.0046732332946063
331 => 0.0047295559574746
401 => 0.0046245990478313
402 => 0.0045252661412196
403 => 0.004611628044385
404 => 0.0044348929944111
405 => 0.0047509135439023
406 => 0.0047423660736759
407 => 0.0048601589919466
408 => 0.0049338173210952
409 => 0.0047640587195748
410 => 0.0047213648903685
411 => 0.0047456852358108
412 => 0.0043437240998891
413 => 0.004827310191559
414 => 0.0048314922641611
415 => 0.0047956828195319
416 => 0.0050531774843006
417 => 0.0055965715415625
418 => 0.0053921248392453
419 => 0.0053129568966737
420 => 0.0051624585799739
421 => 0.0053629886512706
422 => 0.0053475910705515
423 => 0.0052779573711803
424 => 0.0052358426925303
425 => 0.0053134402792495
426 => 0.0052262274928013
427 => 0.0052105616799081
428 => 0.0051156438983478
429 => 0.0050817625688147
430 => 0.0050566781812829
501 => 0.0050290627353515
502 => 0.0050899755277359
503 => 0.0049519391264477
504 => 0.0047854807583695
505 => 0.0047716415461683
506 => 0.0048098528278118
507 => 0.0047929471801799
508 => 0.0047715606084315
509 => 0.0047307278186775
510 => 0.0047186136022121
511 => 0.0047579789287426
512 => 0.0047135377702308
513 => 0.0047791131204501
514 => 0.0047612802536401
515 => 0.0046616673092661
516 => 0.0045375126991405
517 => 0.0045364074626873
518 => 0.0045096585555901
519 => 0.0044755898006767
520 => 0.0044661126524473
521 => 0.0046043548857833
522 => 0.004890512171547
523 => 0.0048343326491881
524 => 0.0048749281116014
525 => 0.0050746176078692
526 => 0.00513809289386
527 => 0.0050930396393583
528 => 0.0050313679658325
529 => 0.0050340812064786
530 => 0.0052448319842012
531 => 0.0052579762516956
601 => 0.0052911875751525
602 => 0.0053338735113136
603 => 0.0051003092388657
604 => 0.0050230803502504
605 => 0.0049864850183289
606 => 0.0048737855601864
607 => 0.0049953222636718
608 => 0.0049245080312714
609 => 0.0049340632905808
610 => 0.0049278404154203
611 => 0.0049312385260469
612 => 0.0047508252097182
613 => 0.0048165583399436
614 => 0.0047072642617936
615 => 0.0045609317599867
616 => 0.0045604412021298
617 => 0.0045962558746379
618 => 0.0045749519060018
619 => 0.0045176234741772
620 => 0.0045257667073353
621 => 0.0044544234161575
622 => 0.0045344290745963
623 => 0.0045367233506063
624 => 0.0045059168141697
625 => 0.0046291765696479
626 => 0.0046796761920377
627 => 0.0046593986698152
628 => 0.0046782534670228
629 => 0.0048366671619774
630 => 0.0048624955063291
701 => 0.0048739667507655
702 => 0.0048585968028694
703 => 0.0046811489785625
704 => 0.0046890195441369
705 => 0.0046312705561541
706 => 0.004582478746747
707 => 0.004584430163244
708 => 0.0046095154957705
709 => 0.0047190646141488
710 => 0.0049496042755029
711 => 0.004958353087129
712 => 0.0049689569020406
713 => 0.0049258258577445
714 => 0.0049128171220763
715 => 0.0049299790022623
716 => 0.0050165575778673
717 => 0.0052392611801774
718 => 0.0051605428532475
719 => 0.0050965436281298
720 => 0.0051526882026253
721 => 0.0051440451854574
722 => 0.0050710894225356
723 => 0.0050690417972571
724 => 0.004929016362842
725 => 0.0048772521479635
726 => 0.0048339940955268
727 => 0.0047867574315459
728 => 0.0047587539537508
729 => 0.0048017800229972
730 => 0.0048116205941033
731 => 0.004717543341729
801 => 0.0047047209598578
802 => 0.0047815464749452
803 => 0.0047477384300991
804 => 0.0047825108426225
805 => 0.0047905783406001
806 => 0.0047892792876155
807 => 0.004753979805967
808 => 0.004776478642924
809 => 0.0047232621862945
810 => 0.0046653972825631
811 => 0.0046284830790934
812 => 0.0045962705406076
813 => 0.0046141439291633
814 => 0.0045504285625141
815 => 0.004530044734386
816 => 0.0047688565432029
817 => 0.0049452693940355
818 => 0.0049427042813172
819 => 0.0049270898173382
820 => 0.0049038898911438
821 => 0.0050148603587627
822 => 0.0049762004667688
823 => 0.0050043287683365
824 => 0.0050114886016265
825 => 0.0050331592605917
826 => 0.0050409046585157
827 => 0.0050174926864647
828 => 0.0049389192487299
829 => 0.0047431217124332
830 => 0.0046519774307417
831 => 0.0046218982996554
901 => 0.004622991618942
902 => 0.0045928329922258
903 => 0.0046017160594086
904 => 0.0045897438239752
905 => 0.0045670713064592
906 => 0.0046127439650961
907 => 0.0046180073135338
908 => 0.0046073467692603
909 => 0.004609857713354
910 => 0.0045215929599475
911 => 0.004528303537448
912 => 0.0044909381891861
913 => 0.004483932636833
914 => 0.0043894762902
915 => 0.0042221331804731
916 => 0.0043148575076505
917 => 0.0042028595594337
918 => 0.0041604442393981
919 => 0.0043612317675108
920 => 0.0043410782686674
921 => 0.0043065842391629
922 => 0.0042555603803401
923 => 0.0042366351347745
924 => 0.0041216513337227
925 => 0.0041148574773419
926 => 0.0041718465539669
927 => 0.0041455480559789
928 => 0.0041086150047836
929 => 0.0039748472371976
930 => 0.0038244479774452
1001 => 0.0038289875857211
1002 => 0.0038768267919706
1003 => 0.0040159257361371
1004 => 0.0039615773722151
1005 => 0.0039221470106141
1006 => 0.0039147628891585
1007 => 0.0040071906288802
1008 => 0.0041379952447964
1009 => 0.004199365843996
1010 => 0.004138549444042
1011 => 0.0040686868383624
1012 => 0.004072939051458
1013 => 0.0041012271201578
1014 => 0.0041041997962064
1015 => 0.0040587264219009
1016 => 0.0040715269104061
1017 => 0.0040520817978655
1018 => 0.0039327471780968
1019 => 0.0039305887932393
1020 => 0.0039013021530174
1021 => 0.0039004153651907
1022 => 0.0038505914842784
1023 => 0.0038436207789226
1024 => 0.0037446924392778
1025 => 0.0038098073720146
1026 => 0.0037661316938222
1027 => 0.0037003021447353
1028 => 0.00368895310566
1029 => 0.003688611939841
1030 => 0.0037562041675355
1031 => 0.0038090175174799
1101 => 0.0037668914509435
1102 => 0.0037573001621727
1103 => 0.0038597100333876
1104 => 0.0038466774437888
1105 => 0.0038353913052474
1106 => 0.0041262831261187
1107 => 0.0038960195513273
1108 => 0.0037956114897328
1109 => 0.003671337446536
1110 => 0.003711801701645
1111 => 0.00372032811474
1112 => 0.0034214714429316
1113 => 0.0033002253283991
1114 => 0.003258618230955
1115 => 0.0032346727581379
1116 => 0.003245585010789
1117 => 0.003136449286959
1118 => 0.003209790298311
1119 => 0.0031152879864873
1120 => 0.0030994443663729
1121 => 0.0032684262065037
1122 => 0.0032919390423803
1123 => 0.0031916259796652
1124 => 0.003256043205138
1125 => 0.0032326846237151
1126 => 0.0031169079573854
1127 => 0.0031124861403272
1128 => 0.0030543934789095
1129 => 0.0029634897127468
1130 => 0.0029219442523367
1201 => 0.0029003070158409
1202 => 0.0029092349613204
1203 => 0.0029047207188863
1204 => 0.0028752622334528
1205 => 0.0029064092447885
1206 => 0.0028268415016594
1207 => 0.0027951569852245
1208 => 0.002780845824226
1209 => 0.0027102248724505
1210 => 0.0028226142120052
1211 => 0.002844756327741
1212 => 0.0028669420702849
1213 => 0.00306005381228
1214 => 0.003050406495378
1215 => 0.0031376135417378
1216 => 0.0031342248362797
1217 => 0.0031093519739974
1218 => 0.0030044174594157
1219 => 0.0030462424866501
1220 => 0.0029175115538749
1221 => 0.0030139655215626
1222 => 0.002969947958724
1223 => 0.0029990831392892
1224 => 0.0029466954576196
1225 => 0.0029756889636899
1226 => 0.0028500070448003
1227 => 0.0027326470373336
1228 => 0.0027798761302904
1229 => 0.0028312195556364
1230 => 0.0029425451838479
1231 => 0.0028762405581016
]
'min_raw' => 0.0027102248724505
'max_raw' => 0.0080900872492228
'avg_raw' => 0.0054001560608366
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00271'
'max' => '$0.00809'
'avg' => '$0.00540015'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0051341351275495
'max_diff' => 0.00024572724922278
'year' => 2026
]
1 => [
'items' => [
101 => 0.0029000862087755
102 => 0.0028202072707318
103 => 0.002655394205257
104 => 0.0026563270293089
105 => 0.0026309741298335
106 => 0.0026090655231027
107 => 0.0028838564419738
108 => 0.0028496818474106
109 => 0.0027952291036345
110 => 0.0028681162650448
111 => 0.0028873887873965
112 => 0.0028879374490139
113 => 0.0029411140404889
114 => 0.0029694943968916
115 => 0.0029744965577151
116 => 0.0030581710733574
117 => 0.0030862176673071
118 => 0.0032017376184836
119 => 0.0029670865219334
120 => 0.0029622540370163
121 => 0.0028691419368788
122 => 0.0028100887709275
123 => 0.0028731853576737
124 => 0.0029290803199878
125 => 0.0028708787491645
126 => 0.0028784786456118
127 => 0.0028003477920246
128 => 0.0028282758957836
129 => 0.0028523313410628
130 => 0.0028390493380934
131 => 0.0028191655367919
201 => 0.0029244975704958
202 => 0.0029185543243546
203 => 0.0030166419357126
204 => 0.0030931082430786
205 => 0.0032301495358658
206 => 0.0030871398027181
207 => 0.00308192795963
208 => 0.0031328745618222
209 => 0.0030862098676478
210 => 0.0031157003435555
211 => 0.003225398164276
212 => 0.0032277159063683
213 => 0.0031888907400809
214 => 0.0031865282251839
215 => 0.0031939850230701
216 => 0.0032376597211989
217 => 0.0032223984396848
218 => 0.0032400591810213
219 => 0.0032621442084935
220 => 0.003353497245976
221 => 0.0033755221540387
222 => 0.0033220130460518
223 => 0.0033268443193869
224 => 0.0033068304441419
225 => 0.0032874972914284
226 => 0.0033309553953482
227 => 0.0034103759344329
228 => 0.0034098818633811
301 => 0.0034283058847341
302 => 0.0034397838974042
303 => 0.0033905118646055
304 => 0.0033584375830363
305 => 0.0033707369035295
306 => 0.0033904037848424
307 => 0.0033643591989833
308 => 0.0032035999500353
309 => 0.0032523640368255
310 => 0.0032442473083416
311 => 0.0032326880999526
312 => 0.0032817207663017
313 => 0.0032769914460164
314 => 0.0031353299423689
315 => 0.0031443986522128
316 => 0.003135881440651
317 => 0.0031634022936646
318 => 0.0030847236512693
319 => 0.0031089246717614
320 => 0.0031241033249435
321 => 0.0031330436682757
322 => 0.0031653423188424
323 => 0.003161552444988
324 => 0.0031651067349624
325 => 0.0032129971072252
326 => 0.0034552101761392
327 => 0.0034683932990672
328 => 0.0034034747802691
329 => 0.0034294084480678
330 => 0.0033796214769641
331 => 0.0034130438042097
401 => 0.0034359105116761
402 => 0.0033325802576504
403 => 0.0033264617106148
404 => 0.0032764692509711
405 => 0.003303332367066
406 => 0.0032605912178327
407 => 0.0032710784008326
408 => 0.0032417553229086
409 => 0.0032945310250052
410 => 0.0033535424604642
411 => 0.0033684510794933
412 => 0.0033292329213917
413 => 0.0033008363903236
414 => 0.0032509814361668
415 => 0.0033338913360196
416 => 0.00335813671737
417 => 0.003333763985353
418 => 0.0033281162907899
419 => 0.0033174139197981
420 => 0.0033303868493892
421 => 0.0033580046718162
422 => 0.0033449806167807
423 => 0.003353583234586
424 => 0.0033207989264933
425 => 0.0033905281756985
426 => 0.003501275004694
427 => 0.0035016310738582
428 => 0.0034886069486182
429 => 0.0034832777571787
430 => 0.0034966413000449
501 => 0.0035038904738486
502 => 0.0035471057210234
503 => 0.0035934774030133
504 => 0.0038098738093104
505 => 0.0037491105643464
506 => 0.003941110329493
507 => 0.0040929572156747
508 => 0.0041384894573811
509 => 0.0040966019374688
510 => 0.0039533069945682
511 => 0.0039462762610449
512 => 0.0041604194033027
513 => 0.0040999141572376
514 => 0.0040927172507443
515 => 0.0040161543250205
516 => 0.0040614124966261
517 => 0.0040515138705986
518 => 0.0040358884051569
519 => 0.0041222378438688
520 => 0.0042838762846699
521 => 0.0042586834178354
522 => 0.0042398781114068
523 => 0.0041574787327794
524 => 0.0042071015632806
525 => 0.0041894318238019
526 => 0.0042653522380964
527 => 0.0042203786665114
528 => 0.0040994557704901
529 => 0.0041187131402486
530 => 0.00411580242755
531 => 0.0041757046886307
601 => 0.0041577235167198
602 => 0.0041122913151469
603 => 0.0042833238220516
604 => 0.004272217922386
605 => 0.0042879635489497
606 => 0.0042948952607127
607 => 0.0043989997337348
608 => 0.0044416480053604
609 => 0.0044513299096824
610 => 0.004491842469191
611 => 0.0044503219202958
612 => 0.0046164337195264
613 => 0.0047268883731226
614 => 0.0048551871372191
615 => 0.0050426661150208
616 => 0.0051131599449517
617 => 0.0051004258655405
618 => 0.0052425702868417
619 => 0.0054980006522271
620 => 0.0051520556454185
621 => 0.0055163365776081
622 => 0.0054010094403025
623 => 0.0051275708723975
624 => 0.0051099646522533
625 => 0.0052951404251257
626 => 0.0057058424668488
627 => 0.0056029662635412
628 => 0.005706010735463
629 => 0.0055858038854368
630 => 0.0055798346021501
701 => 0.005700172557064
702 => 0.0059813487480007
703 => 0.0058477724794185
704 => 0.0056562581441613
705 => 0.0057976693490222
706 => 0.0056751658763825
707 => 0.0053991312659623
708 => 0.0056028875960473
709 => 0.0054666415407656
710 => 0.0055064053829355
711 => 0.0057927743260664
712 => 0.0057583176571906
713 => 0.0058029077773175
714 => 0.0057242073824202
715 => 0.005650688803673
716 => 0.00551346091688
717 => 0.0054728345048536
718 => 0.0054840621835525
719 => 0.0054728289409736
720 => 0.0053960511995023
721 => 0.0053794710535417
722 => 0.0053518367505477
723 => 0.0053604017765649
724 => 0.0053084412022358
725 => 0.0054065015415973
726 => 0.0054247024046876
727 => 0.0054960625421212
728 => 0.0055034713883178
729 => 0.0057022083553225
730 => 0.0055927473735354
731 => 0.0056661832505247
801 => 0.0056596144544815
802 => 0.0051334971153022
803 => 0.0052059914426685
804 => 0.0053187698660774
805 => 0.0052679633391992
806 => 0.0051961347970899
807 => 0.0051381293981338
808 => 0.0050502452873588
809 => 0.0051739404856098
810 => 0.005336586517792
811 => 0.0055075963601007
812 => 0.005713053480626
813 => 0.0056671978431093
814 => 0.0055037554821455
815 => 0.0055110873870636
816 => 0.0055564103382692
817 => 0.0054977129984336
818 => 0.005480402007008
819 => 0.0055540320738756
820 => 0.0055545391236798
821 => 0.0054870007403885
822 => 0.005411944186754
823 => 0.0054116296970537
824 => 0.0053982741082947
825 => 0.0055881798150074
826 => 0.0056926087520668
827 => 0.005704581361405
828 => 0.0056918029000655
829 => 0.0056967208226761
830 => 0.0056359559251358
831 => 0.0057748464616422
901 => 0.0059023061527909
902 => 0.0058681442327839
903 => 0.0058169306582904
904 => 0.0057761365794263
905 => 0.005858534444258
906 => 0.0058548653970434
907 => 0.0059011929035821
908 => 0.0058990912202849
909 => 0.0058835130223016
910 => 0.0058681447891305
911 => 0.0059290780965076
912 => 0.0059115302825419
913 => 0.0058939552119744
914 => 0.0058587057173424
915 => 0.005863496709095
916 => 0.0058122919773472
917 => 0.0057886023254715
918 => 0.0054323668006842
919 => 0.0053371690281295
920 => 0.0053671201853046
921 => 0.0053769808839281
922 => 0.005335550691313
923 => 0.0053949509449797
924 => 0.0053856934783662
925 => 0.0054217088655226
926 => 0.0053992080152336
927 => 0.0054001314579781
928 => 0.0054663016609909
929 => 0.0054855111524337
930 => 0.0054757410500463
1001 => 0.005482583694859
1002 => 0.0056402695564662
1003 => 0.0056178516694557
1004 => 0.0056059426137864
1005 => 0.0056092415035947
1006 => 0.0056495336220583
1007 => 0.0056608132153601
1008 => 0.0056130207859377
1009 => 0.0056355599719381
1010 => 0.0057315289652788
1011 => 0.0057651126815734
1012 => 0.0058722957828876
1013 => 0.0058267624964216
1014 => 0.0059103408143644
1015 => 0.0061672320697723
1016 => 0.0063724545801148
1017 => 0.0061837234784249
1018 => 0.0065605884837399
1019 => 0.0068540319484519
1020 => 0.0068427690995206
1021 => 0.0067916004439784
1022 => 0.006457522861002
1023 => 0.0061500996883309
1024 => 0.0064072722261477
1025 => 0.0064079278118346
1026 => 0.0063858364627611
1027 => 0.0062486289909642
1028 => 0.006381061940157
1029 => 0.0063915739867381
1030 => 0.0063856900360315
1031 => 0.0062804933891047
1101 => 0.0061198775528377
1102 => 0.0061512615027843
1103 => 0.0062026690530121
1104 => 0.0061053438356925
1105 => 0.0060742425316161
1106 => 0.0061320657731594
1107 => 0.0063183843053629
1108 => 0.0062831618661196
1109 => 0.0062822420658859
1110 => 0.0064329385976075
1111 => 0.0063250724032418
1112 => 0.0061516573548985
1113 => 0.0061078677681283
1114 => 0.0059524442352944
1115 => 0.0060597958230224
1116 => 0.0060636592155504
1117 => 0.0060048638480584
1118 => 0.0061564282749307
1119 => 0.0061550315820547
1120 => 0.0062989194479821
1121 => 0.0065739790058207
1122 => 0.006492630359709
1123 => 0.0063980307349886
1124 => 0.0064083163371588
1125 => 0.0065211240059363
1126 => 0.0064529179142449
1127 => 0.0064774453003669
1128 => 0.0065210868807998
1129 => 0.0065474169298345
1130 => 0.0064045278482992
1201 => 0.0063712135682184
1202 => 0.0063030642428967
1203 => 0.0062852853559876
1204 => 0.0063407915594799
1205 => 0.0063261676359228
1206 => 0.0060633345123682
1207 => 0.0060358669885671
1208 => 0.0060367093783075
1209 => 0.0059676409836999
1210 => 0.0058622951036094
1211 => 0.0061391377866117
1212 => 0.0061169034447558
1213 => 0.0060923584521482
1214 => 0.0060953650736908
1215 => 0.006215533099313
1216 => 0.0061458295758214
1217 => 0.0063311478172068
1218 => 0.0062930519579542
1219 => 0.0062539790836606
1220 => 0.0062485780222444
1221 => 0.0062335382991823
1222 => 0.0061819614927681
1223 => 0.0061196793997374
1224 => 0.006078555367136
1225 => 0.005607146014962
1226 => 0.0056946368486634
1227 => 0.0057952870777965
1228 => 0.0058300311335628
1229 => 0.0057705990219591
1230 => 0.0061843082347772
1231 => 0.0062598968945602
]
'min_raw' => 0.0026090655231027
'max_raw' => 0.0068540319484519
'avg_raw' => 0.0047315487357773
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002609'
'max' => '$0.006854'
'avg' => '$0.004731'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010115934934777
'max_diff' => -0.0012360553007709
'year' => 2027
]
2 => [
'items' => [
101 => 0.0060309339135512
102 => 0.0059881042883013
103 => 0.0061871161378782
104 => 0.0060670876643742
105 => 0.0061211364786436
106 => 0.0060043125053138
107 => 0.0062416897999128
108 => 0.0062398813826437
109 => 0.0061475362536354
110 => 0.0062255857243211
111 => 0.0062120227080863
112 => 0.0061077652848719
113 => 0.0062449949461893
114 => 0.0062450630103893
115 => 0.0061561828314749
116 => 0.006052390240876
117 => 0.0060338345771485
118 => 0.0060198553771325
119 => 0.0061176984523802
120 => 0.0062054242476999
121 => 0.006368660203721
122 => 0.0064097016014553
123 => 0.006569888909093
124 => 0.0064745051667732
125 => 0.0065167875443173
126 => 0.0065626910463489
127 => 0.0065846988732683
128 => 0.0065488383003083
129 => 0.0067976751247959
130 => 0.006818684576946
131 => 0.0068257288645208
201 => 0.0067418224873682
202 => 0.0068163509888118
203 => 0.0067814815711109
204 => 0.0068722021089655
205 => 0.006886428247679
206 => 0.0068743792142982
207 => 0.0068788948152702
208 => 0.0066665564833939
209 => 0.0066555456207122
210 => 0.0065054117267518
211 => 0.0065665923982744
212 => 0.0064522180653288
213 => 0.006488487344492
214 => 0.0065044744971608
215 => 0.0064961237158696
216 => 0.0065700514616475
217 => 0.0065071977752956
218 => 0.0063413165629101
219 => 0.0061753901562991
220 => 0.0061733070854249
221 => 0.0061296215914086
222 => 0.0060980449806321
223 => 0.0061041277561081
224 => 0.0061255642502744
225 => 0.0060967990526217
226 => 0.0061029375659735
227 => 0.0062048777883127
228 => 0.0062253211728984
229 => 0.0061558465643301
301 => 0.0058768959857902
302 => 0.005808440814122
303 => 0.0058576450339921
304 => 0.0058341285860518
305 => 0.0047085971040107
306 => 0.0049730240304718
307 => 0.0048159105298586
308 => 0.0048883156593857
309 => 0.0047279434596034
310 => 0.0048044814791667
311 => 0.0047903477016743
312 => 0.0052155383744621
313 => 0.0052088996069372
314 => 0.0052120772336356
315 => 0.0050604008320574
316 => 0.0053020254582346
317 => 0.00542105843763
318 => 0.0053990286011041
319 => 0.0054045730363434
320 => 0.0053093012693381
321 => 0.005212999672594
322 => 0.0051061863810953
323 => 0.005304632274178
324 => 0.0052825684784516
325 => 0.0053331748875449
326 => 0.0054618812344145
327 => 0.0054808337328989
328 => 0.0055063060830592
329 => 0.0054971760587721
330 => 0.0057146902780603
331 => 0.0056883478708995
401 => 0.0057518254929293
402 => 0.0056212472083552
403 => 0.005473485484755
404 => 0.0055015701577167
405 => 0.0054988653778678
406 => 0.0054644304259897
407 => 0.0054333440911248
408 => 0.0053815941020954
409 => 0.0055453387249419
410 => 0.0055386909922871
411 => 0.005646310056824
412 => 0.0056272873418113
413 => 0.0055002489953084
414 => 0.0055047861947066
415 => 0.0055353010411633
416 => 0.0056409132731624
417 => 0.0056722661742488
418 => 0.0056577422612685
419 => 0.0056921192859954
420 => 0.0057192894846753
421 => 0.0056955314446299
422 => 0.0060318951904015
423 => 0.0058922135119586
424 => 0.0059602933901328
425 => 0.0059765300399274
426 => 0.0059349402028985
427 => 0.0059439595493296
428 => 0.0059576214015481
429 => 0.0060405734929535
430 => 0.0062582637831823
501 => 0.0063546773308567
502 => 0.0066447422459958
503 => 0.0063466715278637
504 => 0.006328985244989
505 => 0.0063812346953268
506 => 0.006551533507003
507 => 0.0066895446985126
508 => 0.006735330972793
509 => 0.0067413823847881
510 => 0.0068272804791521
511 => 0.0068765156649368
512 => 0.0068168501911521
513 => 0.006766289949355
514 => 0.0065851894390062
515 => 0.0066061523161994
516 => 0.0067505657521754
517 => 0.0069545582364006
518 => 0.0071296050096663
519 => 0.0070683097306646
520 => 0.0075359494417242
521 => 0.0075823140089389
522 => 0.0075759079248957
523 => 0.0076815333089834
524 => 0.0074718884318048
525 => 0.0073822611851327
526 => 0.0067772216475147
527 => 0.0069472130783433
528 => 0.0071943056062994
529 => 0.007161601983675
530 => 0.0069821567850711
531 => 0.0071294688843919
601 => 0.0070807628974812
602 => 0.0070423464647914
603 => 0.007218339590335
604 => 0.0070248279194007
605 => 0.0071923751793532
606 => 0.0069774940854097
607 => 0.0070685897223359
608 => 0.0070168794330164
609 => 0.0070503423275808
610 => 0.0068547189297165
611 => 0.0069602725667145
612 => 0.0068503275513892
613 => 0.0068502754231366
614 => 0.0068478483808296
615 => 0.0069771982037891
616 => 0.006981416296872
617 => 0.0068858265822682
618 => 0.0068720506110018
619 => 0.0069229875970525
620 => 0.006863353726805
621 => 0.0068912560393627
622 => 0.0068641988594278
623 => 0.006858107718313
624 => 0.0068095724695885
625 => 0.0067886621499336
626 => 0.0067968616250628
627 => 0.0067688725893275
628 => 0.0067520081828892
629 => 0.0068444936259181
630 => 0.0067950823845599
701 => 0.006836920644523
702 => 0.0067892406668857
703 => 0.0066239610912174
704 => 0.0065289070594507
705 => 0.006216709262438
706 => 0.0063052481703907
707 => 0.0063639495579634
708 => 0.0063445487497208
709 => 0.006386229192942
710 => 0.0063887880336413
711 => 0.0063752372966683
712 => 0.0063595472792104
713 => 0.0063519102464243
714 => 0.0064088304319083
715 => 0.0064418745154272
716 => 0.0063698410275296
717 => 0.0063529645891708
718 => 0.0064257944225131
719 => 0.0064702205787795
720 => 0.0067982383557498
721 => 0.0067739377393483
722 => 0.0068349275177608
723 => 0.006828061004676
724 => 0.0068919880088859
725 => 0.0069964816432013
726 => 0.0067840168677584
727 => 0.0068208934062961
728 => 0.0068118521306503
729 => 0.0069105624074014
730 => 0.0069108705701109
731 => 0.0068516888282545
801 => 0.006883772210629
802 => 0.0068658641467491
803 => 0.0068982264386
804 => 0.0067736131898009
805 => 0.0069253786756692
806 => 0.0070114199266047
807 => 0.0070126146094574
808 => 0.0070533974795352
809 => 0.0070948352375188
810 => 0.0071743714055002
811 => 0.0070926170169621
812 => 0.0069455488306114
813 => 0.0069561666786386
814 => 0.0068699406547913
815 => 0.0068713901298302
816 => 0.0068636527184753
817 => 0.0068868732723966
818 => 0.0067787087955816
819 => 0.006804094782094
820 => 0.0067685542523165
821 => 0.0068208161481253
822 => 0.0067645909874359
823 => 0.0068118477706734
824 => 0.0068322422317315
825 => 0.0069074982320974
826 => 0.0067534756149931
827 => 0.006439413072303
828 => 0.0065054328264168
829 => 0.0064077844243428
830 => 0.0064168221557284
831 => 0.0064350798114717
901 => 0.0063759007756746
902 => 0.0063871902707589
903 => 0.0063867869305515
904 => 0.0063833111625464
905 => 0.0063679164097328
906 => 0.006345590972394
907 => 0.0064345286433445
908 => 0.0064496408867033
909 => 0.0064832335316789
910 => 0.0065831824570176
911 => 0.0065731952024183
912 => 0.006589484829037
913 => 0.0065539246655908
914 => 0.0064184716897217
915 => 0.0064258274379953
916 => 0.0063341011391554
917 => 0.0064808878839887
918 => 0.0064461268453218
919 => 0.0064237161775594
920 => 0.006417601219227
921 => 0.0065177978986193
922 => 0.006547778315484
923 => 0.0065290965316049
924 => 0.006490779647834
925 => 0.0065643593920439
926 => 0.0065840462275142
927 => 0.0065884533839535
928 => 0.0067188225831767
929 => 0.0065957395739689
930 => 0.0066253668776251
1001 => 0.0068565106432641
1002 => 0.0066468951434889
1003 => 0.0067579331487032
1004 => 0.0067524984161619
1005 => 0.0068093017023083
1006 => 0.0067478388887342
1007 => 0.006748600793971
1008 => 0.0067990382638811
1009 => 0.0067282079338379
1010 => 0.0067106693480301
1011 => 0.0066864399173503
1012 => 0.0067393439928237
1013 => 0.0067710575934245
1014 => 0.0070266459231938
1015 => 0.0071917676404687
1016 => 0.0071845992712443
1017 => 0.0072501047473308
1018 => 0.0072205939303924
1019 => 0.0071252957179382
1020 => 0.0072879581462187
1021 => 0.0072364849478257
1022 => 0.0072407283357612
1023 => 0.0072405703966503
1024 => 0.0072747955737166
1025 => 0.0072505438990737
1026 => 0.0072027413589693
1027 => 0.0072344749159418
1028 => 0.0073287122351957
1029 => 0.0076212277657139
1030 => 0.0077849233319072
1031 => 0.0076113730870869
1101 => 0.0077310857220336
1102 => 0.0076593007990388
1103 => 0.0076462553431142
1104 => 0.007721443724555
1105 => 0.0077967637133041
1106 => 0.0077919661556381
1107 => 0.0077372877115304
1108 => 0.0077064012458681
1109 => 0.007940283911588
1110 => 0.0081126046756031
1111 => 0.0081008535547503
1112 => 0.0081527191805252
1113 => 0.0083049982619437
1114 => 0.0083189207527251
1115 => 0.0083171668388914
1116 => 0.0082826584928282
1117 => 0.0084325970244223
1118 => 0.0085576783853955
1119 => 0.0082746708077566
1120 => 0.0083824363884802
1121 => 0.0084308158296573
1122 => 0.0085018512028385
1123 => 0.0086216997843062
1124 => 0.0087518871320463
1125 => 0.0087702970504484
1126 => 0.0087572343323464
1127 => 0.0086713722768881
1128 => 0.0088138248262434
1129 => 0.0088972701887324
1130 => 0.0089469599924814
1201 => 0.009072965067194
1202 => 0.0084311146046156
1203 => 0.0079767809451648
1204 => 0.007905830183584
1205 => 0.0080501113472595
1206 => 0.0080881571395
1207 => 0.0080728209283532
1208 => 0.0075614270884322
1209 => 0.0079031378008522
1210 => 0.0082707897955634
1211 => 0.0082849128059901
1212 => 0.0084689670817832
1213 => 0.0085289026986212
1214 => 0.00867709051518
1215 => 0.0086678213269071
1216 => 0.008703902702056
1217 => 0.0086956082187516
1218 => 0.0089700949443006
1219 => 0.0092728945642543
1220 => 0.0092624095762591
1221 => 0.0092188785483283
1222 => 0.0092835295479488
1223 => 0.0095960512057204
1224 => 0.0095672792195303
1225 => 0.009595228753322
1226 => 0.0099637094007835
1227 => 0.010442786658244
1228 => 0.010220207173584
1229 => 0.010703140609776
1230 => 0.011007121608658
1231 => 0.011532825314002
]
'min_raw' => 0.0047085971040107
'max_raw' => 0.011532825314002
'avg_raw' => 0.0081207112090063
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0047085'
'max' => '$0.011532'
'avg' => '$0.00812'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.002099531580908
'max_diff' => 0.00467879336555
'year' => 2028
]
3 => [
'items' => [
101 => 0.011467004620947
102 => 0.011671657215646
103 => 0.011349171843187
104 => 0.010608680242974
105 => 0.010491494612753
106 => 0.010726103212069
107 => 0.011302865560716
108 => 0.010707938913187
109 => 0.010828291799148
110 => 0.010793630159895
111 => 0.010791783188442
112 => 0.010862274576639
113 => 0.010760023141475
114 => 0.010343432399933
115 => 0.010534353481797
116 => 0.010460629683306
117 => 0.010542431734205
118 => 0.010983883665175
119 => 0.010788707243594
120 => 0.010583104738303
121 => 0.010840975906786
122 => 0.011169334518413
123 => 0.011148786426615
124 => 0.01110891454009
125 => 0.011333670276807
126 => 0.011704900906613
127 => 0.011805243054124
128 => 0.011879313576012
129 => 0.011889526649548
130 => 0.011994727654365
131 => 0.011429035337399
201 => 0.012326803572433
202 => 0.012481823346277
203 => 0.012452686053706
204 => 0.012624984008103
205 => 0.012574289579142
206 => 0.01250084130529
207 => 0.012773970211836
208 => 0.012460849960847
209 => 0.012016415185311
210 => 0.011772589477529
211 => 0.012093678838396
212 => 0.012289756906602
213 => 0.012419352036779
214 => 0.012458567444867
215 => 0.011472948421645
216 => 0.010941754433065
217 => 0.011282243689594
218 => 0.011697664081871
219 => 0.011426727656144
220 => 0.011437347851082
221 => 0.011051063708836
222 => 0.011731841657121
223 => 0.0116326580363
224 => 0.012147222836574
225 => 0.012024417817348
226 => 0.012444025436681
227 => 0.012333528687928
228 => 0.012792194514212
301 => 0.012975168730198
302 => 0.013282410916502
303 => 0.013508419519447
304 => 0.013641136093953
305 => 0.013633168288627
306 => 0.014159057475951
307 => 0.013848958995355
308 => 0.013459402219125
309 => 0.013452356366079
310 => 0.01365411334055
311 => 0.01407694060972
312 => 0.014186573568729
313 => 0.014247843436412
314 => 0.014154006501236
315 => 0.013817416825507
316 => 0.013672079110075
317 => 0.013795911054462
318 => 0.013644475227478
319 => 0.013905895950241
320 => 0.01426488243905
321 => 0.014190753148697
322 => 0.014438556252261
323 => 0.014695006394803
324 => 0.015061741616535
325 => 0.015157619783661
326 => 0.015316102748001
327 => 0.015479233777249
328 => 0.015531627067339
329 => 0.015631662114804
330 => 0.015631134880725
331 => 0.015932597229395
401 => 0.01626511953549
402 => 0.016390639008132
403 => 0.016679264114287
404 => 0.016185003734626
405 => 0.016559905910253
406 => 0.016898077057079
407 => 0.016494895474673
408 => 0.017050587356759
409 => 0.017072163613315
410 => 0.017397939470807
411 => 0.017067703228137
412 => 0.01687161000139
413 => 0.017437723799489
414 => 0.017711648433972
415 => 0.017629140104793
416 => 0.017001247645804
417 => 0.016635787303098
418 => 0.015679307094201
419 => 0.01681229921851
420 => 0.017364146632427
421 => 0.016999818494319
422 => 0.017183564415478
423 => 0.018186022581511
424 => 0.018567693746776
425 => 0.018488308812484
426 => 0.018501723559592
427 => 0.018707666392548
428 => 0.019620930328663
429 => 0.01907368140885
430 => 0.019492032703021
501 => 0.019713924720971
502 => 0.01992003039342
503 => 0.019413900002253
504 => 0.018755431799876
505 => 0.018546867279568
506 => 0.016963593241107
507 => 0.016881176951594
508 => 0.016834914190822
509 => 0.016543234028148
510 => 0.016314053318207
511 => 0.016131800308728
512 => 0.015653513986499
513 => 0.015814921580009
514 => 0.015052633008489
515 => 0.015540318222699
516 => 0.014323687256453
517 => 0.015336933677527
518 => 0.014785469717198
519 => 0.015155762934983
520 => 0.01515447101683
521 => 0.014472643801316
522 => 0.014079380092778
523 => 0.014329983033911
524 => 0.014598649279691
525 => 0.014642239474168
526 => 0.014990572274729
527 => 0.015087784471977
528 => 0.014793226975911
529 => 0.014298475283898
530 => 0.014413394817868
531 => 0.01407705125209
601 => 0.013487622090332
602 => 0.013910960404753
603 => 0.014055506718167
604 => 0.014119346604793
605 => 0.013539710720601
606 => 0.013357576541281
607 => 0.013260609832464
608 => 0.014223651570005
609 => 0.014276409170331
610 => 0.014006493827889
611 => 0.01522653677015
612 => 0.014950403477099
613 => 0.015258912019737
614 => 0.01440296707469
615 => 0.014435665324273
616 => 0.014030447270162
617 => 0.014257342303784
618 => 0.014096980207188
619 => 0.014239011427288
620 => 0.014324144354999
621 => 0.014729295916815
622 => 0.015341559857559
623 => 0.014668779784094
624 => 0.014375639871697
625 => 0.014557502224666
626 => 0.015041825636165
627 => 0.015775600396645
628 => 0.015341190969848
629 => 0.01553397449671
630 => 0.015576089120987
701 => 0.015255771692378
702 => 0.015787410957134
703 => 0.016072320758147
704 => 0.016364579260209
705 => 0.016618339128653
706 => 0.016247844787583
707 => 0.016644326840806
708 => 0.016324832294412
709 => 0.016038212657559
710 => 0.016038647341236
711 => 0.015858846656193
712 => 0.015510460172578
713 => 0.015446212359792
714 => 0.01578043759551
715 => 0.016048454583309
716 => 0.016070529746139
717 => 0.016218917721794
718 => 0.016306732197269
719 => 0.017167433434916
720 => 0.017513614592792
721 => 0.017936918359768
722 => 0.018101819033098
723 => 0.018598110939659
724 => 0.018197314918253
725 => 0.018110600177897
726 => 0.016906758348425
727 => 0.017103887380561
728 => 0.017419509981132
729 => 0.016911962848858
730 => 0.01723388468304
731 => 0.017297438872344
801 => 0.016894716591518
802 => 0.01710982796231
803 => 0.016538555937564
804 => 0.015354012026592
805 => 0.015788729693127
806 => 0.016108828220081
807 => 0.015652008154254
808 => 0.016470840440871
809 => 0.015992495523159
810 => 0.015840883148849
811 => 0.015249389222954
812 => 0.015528551587288
813 => 0.015906122682268
814 => 0.015672827642921
815 => 0.016156949878993
816 => 0.016842596075954
817 => 0.017331228386846
818 => 0.017368739508304
819 => 0.017054581668223
820 => 0.017558021611882
821 => 0.017561688622253
822 => 0.016993806309194
823 => 0.016645981554427
824 => 0.016566955038315
825 => 0.016764378769625
826 => 0.017004087625867
827 => 0.017382041681537
828 => 0.017610431401682
829 => 0.018205950663271
830 => 0.018367081100582
831 => 0.018544114599491
901 => 0.018780685949142
902 => 0.019064750510047
903 => 0.018443233422591
904 => 0.018467927455128
905 => 0.017889179348779
906 => 0.017270703996272
907 => 0.017740049694784
908 => 0.018353656761147
909 => 0.018212894622148
910 => 0.018197056006001
911 => 0.018223692165094
912 => 0.018117562109151
913 => 0.01763753979948
914 => 0.017396475600663
915 => 0.017707509919174
916 => 0.017872810816917
917 => 0.018129178093565
918 => 0.018097575415461
919 => 0.018757949988269
920 => 0.019014551578572
921 => 0.018948901911171
922 => 0.01896098302992
923 => 0.019425547952274
924 => 0.019942239690994
925 => 0.020426189687786
926 => 0.020918484410658
927 => 0.020325003907645
928 => 0.020023671109004
929 => 0.020334569639662
930 => 0.020169602503081
1001 => 0.021117552602304
1002 => 0.021183186610436
1003 => 0.022131068162077
1004 => 0.02303072062622
1005 => 0.02246566503244
1006 => 0.022998487006712
1007 => 0.0235747774135
1008 => 0.024686535107942
1009 => 0.024312134228561
1010 => 0.024025349022565
1011 => 0.023754338388635
1012 => 0.024318268496117
1013 => 0.02504375557039
1014 => 0.025200018537559
1015 => 0.025453224241422
1016 => 0.025187009404331
1017 => 0.025507635853004
1018 => 0.026639588107223
1019 => 0.026333724616114
1020 => 0.02589934928873
1021 => 0.026792916879585
1022 => 0.027116295517059
1023 => 0.029385936149562
1024 => 0.032251451202275
1025 => 0.031065109154466
1026 => 0.030328708362372
1027 => 0.030501780016174
1028 => 0.031548169109619
1029 => 0.031884236075704
1030 => 0.030970690212655
1031 => 0.031293370055557
1101 => 0.033071367715126
1102 => 0.03402520641449
1103 => 0.032729765343125
1104 => 0.029155694805167
1105 => 0.025860238543102
1106 => 0.026734341940131
1107 => 0.026635245741495
1108 => 0.028545482416977
1109 => 0.026326429873007
1110 => 0.02636379302677
1111 => 0.028313531373725
1112 => 0.027793374609735
1113 => 0.026950787268716
1114 => 0.025866390363155
1115 => 0.023861782388652
1116 => 0.022086245203006
1117 => 0.025568482505851
1118 => 0.025418322101315
1119 => 0.025200867583021
1120 => 0.025684789082447
1121 => 0.028034574520147
1122 => 0.027980404360295
1123 => 0.027635801441174
1124 => 0.027897179718136
1125 => 0.026904966393019
1126 => 0.027160682359179
1127 => 0.025859716525993
1128 => 0.026447807415726
1129 => 0.026948979454707
1130 => 0.027049597161511
1201 => 0.027276293992609
1202 => 0.025339194391466
1203 => 0.026208895242123
1204 => 0.026719763011934
1205 => 0.024411643842397
1206 => 0.026674138917121
1207 => 0.025305473797067
1208 => 0.024840928298661
1209 => 0.02546637761305
1210 => 0.025222639406963
1211 => 0.025013087610157
1212 => 0.024896154106983
1213 => 0.025355415055148
1214 => 0.025333989982981
1215 => 0.024582549933073
1216 => 0.023602327020584
1217 => 0.023931322004736
1218 => 0.023811795042649
1219 => 0.023378613912762
1220 => 0.023670525691817
1221 => 0.022385093950029
1222 => 0.020173575449212
1223 => 0.021634572311495
1224 => 0.021578325521556
1225 => 0.02154996333948
1226 => 0.022647862102499
1227 => 0.022542324469269
1228 => 0.022350772631528
1229 => 0.023375095913045
1230 => 0.023001204136199
1231 => 0.024153450492456
]
'min_raw' => 0.010343432399933
'max_raw' => 0.03402520641449
'avg_raw' => 0.022184319407212
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010343'
'max' => '$0.034025'
'avg' => '$0.022184'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0056348352959226
'max_diff' => 0.022492381100489
'year' => 2029
]
4 => [
'items' => [
101 => 0.024912394465309
102 => 0.024719901724528
103 => 0.02543369219929
104 => 0.023938901384694
105 => 0.024435410932705
106 => 0.024537740862417
107 => 0.023362455922752
108 => 0.022559591731271
109 => 0.022506049843021
110 => 0.021113993976493
111 => 0.02185761898411
112 => 0.022511978217519
113 => 0.022198590925044
114 => 0.022099381870425
115 => 0.022606219414653
116 => 0.02264560503261
117 => 0.021747608769301
118 => 0.021934330628286
119 => 0.02271299182018
120 => 0.021914710364089
121 => 0.020363779893439
122 => 0.019979127693426
123 => 0.019927807999398
124 => 0.018884600725813
125 => 0.020004831992717
126 => 0.019515821024382
127 => 0.021060600814102
128 => 0.020178230883034
129 => 0.020140193678876
130 => 0.020082694865947
131 => 0.019184763271223
201 => 0.019381353223938
202 => 0.020034848168257
203 => 0.020268022526537
204 => 0.020243700530627
205 => 0.020031645686517
206 => 0.020128723308254
207 => 0.019816002464552
208 => 0.01970557422592
209 => 0.019357032329115
210 => 0.018844772027969
211 => 0.018916004964719
212 => 0.017901083267949
213 => 0.017348100061578
214 => 0.017195041598256
215 => 0.016990365424348
216 => 0.017218160316722
217 => 0.017898208122301
218 => 0.017077926188582
219 => 0.015671610349309
220 => 0.015756132327495
221 => 0.015946028117678
222 => 0.015592158568958
223 => 0.015257250739114
224 => 0.015548425925232
225 => 0.014952551364998
226 => 0.016018036711458
227 => 0.015989218318824
228 => 0.016386365366813
301 => 0.016634709566198
302 => 0.016062356589005
303 => 0.015918411363048
304 => 0.016000409105698
305 => 0.014645169071908
306 => 0.016275613342876
307 => 0.016289713492637
308 => 0.016168979449934
309 => 0.017037140689905
310 => 0.018869231692525
311 => 0.01817992536165
312 => 0.017913005115941
313 => 0.01740558953373
314 => 0.01808169066967
315 => 0.01802977665125
316 => 0.017795001772151
317 => 0.017653009192729
318 => 0.017914634874043
319 => 0.017620590875531
320 => 0.017567772493609
321 => 0.017247750566131
322 => 0.017133517298091
323 => 0.017048943534192
324 => 0.016955836130185
325 => 0.017161207862504
326 => 0.016695808498168
327 => 0.01613458248844
328 => 0.01608792261828
329 => 0.016216754622168
330 => 0.016159756050862
331 => 0.01608764973105
401 => 0.01594997912954
402 => 0.015909135202939
403 => 0.016041858149736
404 => 0.015892021681031
405 => 0.01611311355262
406 => 0.016052988797119
407 => 0.015717136800409
408 => 0.015298540864172
409 => 0.015294814482305
410 => 0.015204628674478
411 => 0.015089763488683
412 => 0.015057810621754
413 => 0.015523903963211
414 => 0.016488703231027
415 => 0.016299290049065
416 => 0.016436160484876
417 => 0.017109427563418
418 => 0.017323438921839
419 => 0.017171538728769
420 => 0.016963608375698
421 => 0.016972756255969
422 => 0.01768331721721
423 => 0.017727634032771
424 => 0.017839608328546
425 => 0.01798352694255
426 => 0.017196048691055
427 => 0.01693566610114
428 => 0.016812282384562
429 => 0.01643230829301
430 => 0.016842077774232
501 => 0.016603322645603
502 => 0.016635538869491
503 => 0.01661455801142
504 => 0.016626014978647
505 => 0.016017738886589
506 => 0.016239362724484
507 => 0.015870870109333
508 => 0.015377499862882
509 => 0.015375845912818
510 => 0.015496597581679
511 => 0.015424769764027
512 => 0.015231482953587
513 => 0.015258938432722
514 => 0.015018399545487
515 => 0.01528814420873
516 => 0.015295879520479
517 => 0.015192013132039
518 => 0.015607592003355
519 => 0.015777855006013
520 => 0.015709487924109
521 => 0.015773058189294
522 => 0.016307161021925
523 => 0.016394243088184
524 => 0.016432919189698
525 => 0.016381098337271
526 => 0.015782820608608
527 => 0.015809356769948
528 => 0.015614652025058
529 => 0.015450147033107
530 => 0.01545672637007
531 => 0.015541303320085
601 => 0.015910655821173
602 => 0.016687936385193
603 => 0.016717433614413
604 => 0.016753185116722
605 => 0.016607765789565
606 => 0.016563905929018
607 => 0.016621768406269
608 => 0.016913674118645
609 => 0.017664534862503
610 => 0.01739913052732
611 => 0.017183352671553
612 => 0.017372648024353
613 => 0.017343507488536
614 => 0.017097532040236
615 => 0.017090628328649
616 => 0.016618522800255
617 => 0.01644399613573
618 => 0.016298148591759
619 => 0.016138886881189
620 => 0.016044471200662
621 => 0.01618953659711
622 => 0.016222714769642
623 => 0.015905526744998
624 => 0.015862295189289
625 => 0.016121317777192
626 => 0.016007331593591
627 => 0.016124569210146
628 => 0.016151769342832
629 => 0.016147389494998
630 => 0.016028374828088
701 => 0.016104231227708
702 => 0.015924808228727
703 => 0.015729712665798
704 => 0.015605253851533
705 => 0.01549664702902
706 => 0.015556908406416
707 => 0.015342087599293
708 => 0.015273362099606
709 => 0.01607853278634
710 => 0.016673321029674
711 => 0.016664672573054
712 => 0.016612027317582
713 => 0.01653380714665
714 => 0.016907951825938
715 => 0.016777607300933
716 => 0.016872443833524
717 => 0.016896583711345
718 => 0.016969647851043
719 => 0.01699576200091
720 => 0.016916826902568
721 => 0.016651911071423
722 => 0.015991766007651
723 => 0.015684466698438
724 => 0.015583052807923
725 => 0.015586739010231
726 => 0.015485057094649
727 => 0.015515006975852
728 => 0.015474641748213
729 => 0.015398199772463
730 => 0.015552188329821
731 => 0.015569934076554
801 => 0.01553399130724
802 => 0.015542457130561
803 => 0.015244866352002
804 => 0.015267491532563
805 => 0.015141511652133
806 => 0.015117891943262
807 => 0.014799425775857
808 => 0.01423521679789
809 => 0.014547843340775
810 => 0.014170234438915
811 => 0.014027228226072
812 => 0.014704197395641
813 => 0.014636248467218
814 => 0.014519949438448
815 => 0.014347918936054
816 => 0.014284111149312
817 => 0.013896435236153
818 => 0.013873529275033
819 => 0.014065671925725
820 => 0.013977004703655
821 => 0.013852482342967
822 => 0.013401474975184
823 => 0.012894393370388
824 => 0.012909698976635
825 => 0.013070992200532
826 => 0.013539974002367
827 => 0.013356734698923
828 => 0.013223792481845
829 => 0.013198896400815
830 => 0.013510522978385
831 => 0.013951539873433
901 => 0.014158455133393
902 => 0.013953408394883
903 => 0.013717861742183
904 => 0.013732198375514
905 => 0.013827573574146
906 => 0.013837596158989
907 => 0.013684279502668
908 => 0.013727437243365
909 => 0.01366187668882
910 => 0.013259531686593
911 => 0.013252254541352
912 => 0.013153512589116
913 => 0.013150522722045
914 => 0.012982538028957
915 => 0.012959035809171
916 => 0.012625492005102
917 => 0.012845031547004
918 => 0.01269777594864
919 => 0.012475827027821
920 => 0.012437562950214
921 => 0.012436412685836
922 => 0.012664304600646
923 => 0.012842368497294
924 => 0.012700337522819
925 => 0.012667999823085
926 => 0.013013281853915
927 => 0.012969341568177
928 => 0.012931289564111
929 => 0.013912051647597
930 => 0.013135701928699
1001 => 0.012797169138766
1002 => 0.012378170525591
1003 => 0.012514598586815
1004 => 0.01254334598386
1005 => 0.011535729849352
1006 => 0.011126940109072
1007 => 0.010986658875124
1008 => 0.010905925041702
1009 => 0.010942716463384
1010 => 0.010574757750879
1011 => 0.010822032091158
1012 => 0.010503410948903
1013 => 0.010449993077522
1014 => 0.011019727149458
1015 => 0.01109900231723
1016 => 0.010760789822651
1017 => 0.0109779769958
1018 => 0.010899221907689
1019 => 0.010508872793889
1020 => 0.010493964328956
1021 => 0.010298100865086
1022 => 0.0099916124707702
1023 => 0.0098515390503863
1024 => 0.0097785875968771
1025 => 0.0098086887883905
1026 => 0.0097934687048497
1027 => 0.0096941473644846
1028 => 0.009799161687818
1029 => 0.0095308934866156
1030 => 0.009424066927313
1031 => 0.0093758158488334
1101 => 0.0091377123793247
1102 => 0.0095166408844065
1103 => 0.0095912945735231
1104 => 0.009666095353469
1105 => 0.010317185074237
1106 => 0.010284658471747
1107 => 0.010578683117151
1108 => 0.010567257860107
1109 => 0.010483397268355
1110 => 0.010129603226148
1111 => 0.010270619225599
1112 => 0.0098365938980413
1113 => 0.010161795184301
1114 => 0.010013386897983
1115 => 0.010111618193412
1116 => 0.0099349894670715
1117 => 0.01003274309705
1118 => 0.009608997732682
1119 => 0.0092133102736937
1120 => 0.0093725464580276
1121 => 0.0095456544012651
1122 => 0.0099209965292875
1123 => 0.0096974458543427
1124 => 0.0097778431304397
1125 => 0.009508525713856
1126 => 0.008952846956727
1127 => 0.0089559920381459
1128 => 0.0088705129674813
1129 => 0.0087966465702785
1130 => 0.0097231233385417
1201 => 0.0096079013069779
1202 => 0.0094243100795676
1203 => 0.0096700542330816
1204 => 0.0097350328877549
1205 => 0.0097368827387042
1206 => 0.0099161713295334
1207 => 0.010011857682598
1208 => 0.010028722817054
1209 => 0.01031083728851
1210 => 0.010405398338163
1211 => 0.0107948819189
1212 => 0.010003739364064
1213 => 0.009987446303773
1214 => 0.0096735123572799
1215 => 0.0094744104853147
1216 => 0.0096871450327925
1217 => 0.0098755988006961
1218 => 0.0096793681411615
1219 => 0.0097049917226414
1220 => 0.0094415680948502
1221 => 0.0095357296465518
1222 => 0.0096168342598081
1223 => 0.0095720530594768
1224 => 0.0095050134351463
1225 => 0.0098601477408265
1226 => 0.0098401096715174
1227 => 0.010170818901469
1228 => 0.010428630395461
1229 => 0.01089067468201
1230 => 0.010408507382082
1231 => 0.010390935289232
]
'min_raw' => 0.0087966465702785
'max_raw' => 0.02543369219929
'avg_raw' => 0.017115169384784
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008796'
'max' => '$0.025433'
'avg' => '$0.017115'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015467858296548
'max_diff' => -0.0085915142152002
'year' => 2030
]
5 => [
'items' => [
101 => 0.010562705315501
102 => 0.010405372041067
103 => 0.010504801239549
104 => 0.010874655100965
105 => 0.010882469530249
106 => 0.010751567771424
107 => 0.010743602387504
108 => 0.010768743502194
109 => 0.010915995796205
110 => 0.010864541320072
111 => 0.010924085742522
112 => 0.010998546954571
113 => 0.011306550098509
114 => 0.011380808613773
115 => 0.011200398920308
116 => 0.011216687895666
117 => 0.011149209717953
118 => 0.011084026643782
119 => 0.011230548675296
120 => 0.011498320567784
121 => 0.011496654772739
122 => 0.011558772647054
123 => 0.011597471568141
124 => 0.011431347469496
125 => 0.011323206789831
126 => 0.011364674807585
127 => 0.011430983071029
128 => 0.011343171931431
129 => 0.01080116089975
130 => 0.010965572422963
131 => 0.010938206306188
201 => 0.010899233628066
202 => 0.011064550686013
203 => 0.011048605452481
204 => 0.010570983802443
205 => 0.010601559590839
206 => 0.010572843217405
207 => 0.010665631694786
208 => 0.010400361158782
209 => 0.010481956589033
210 => 0.010533132477976
211 => 0.010563275469715
212 => 0.010672172625121
213 => 0.01065939480082
214 => 0.010671378337621
215 => 0.010832844071304
216 => 0.011649482343924
217 => 0.011693930163292
218 => 0.011475052844698
219 => 0.011562490016312
220 => 0.011394629767221
221 => 0.011507315477002
222 => 0.011584412177727
223 => 0.011236027011992
224 => 0.011215397903478
225 => 0.011046844835427
226 => 0.011137415706864
227 => 0.010993310938132
228 => 0.011028669207808
301 => 0.010929804403315
302 => 0.011107741367616
303 => 0.011306702542313
304 => 0.011356967992256
305 => 0.011224741234092
306 => 0.011129000347013
307 => 0.010960910888312
308 => 0.01124044740425
309 => 0.011322192400232
310 => 0.011240018032586
311 => 0.011220976436057
312 => 0.011184892645043
313 => 0.0112286317829
314 => 0.011321747199428
315 => 0.011277835688565
316 => 0.011306840015111
317 => 0.011196305431449
318 => 0.011431402463485
319 => 0.01180479312954
320 => 0.011805993641587
321 => 0.011762081894025
322 => 0.011744114153015
323 => 0.011789170270801
324 => 0.011813611366401
325 => 0.011959314589443
326 => 0.01211565995284
327 => 0.012845255544985
328 => 0.012640388022235
329 => 0.013287728635422
330 => 0.013799691013795
331 => 0.013953206145667
401 => 0.01381197944779
402 => 0.013328850543267
403 => 0.013305145934323
404 => 0.014027144489442
405 => 0.013823146827992
406 => 0.013798881955278
407 => 0.013540744705747
408 => 0.01369333579114
409 => 0.013659961882389
410 => 0.013607279534717
411 => 0.013898412696059
412 => 0.014443387984456
413 => 0.014358448475013
414 => 0.014295045071445
415 => 0.014017229813462
416 => 0.014184536651052
417 => 0.014124961890737
418 => 0.014380932868126
419 => 0.014229301331572
420 => 0.013821601345069
421 => 0.013886528911717
422 => 0.013876715240634
423 => 0.01407867989611
424 => 0.014018055119607
425 => 0.013864877280029
426 => 0.014441525318166
427 => 0.014404081002055
428 => 0.014457168481339
429 => 0.014480539231504
430 => 0.01483153473064
501 => 0.014975326356033
502 => 0.015007969572424
503 => 0.015144560495304
504 => 0.015004571065831
505 => 0.015564628594493
506 => 0.01593703417079
507 => 0.016369602411475
508 => 0.017001700874498
509 => 0.017239375743832
510 => 0.017196441906032
511 => 0.017675691746656
512 => 0.018536893057131
513 => 0.017370515313567
514 => 0.018598713909727
515 => 0.018209880414417
516 => 0.017287963191854
517 => 0.017228602591411
518 => 0.01785293563821
519 => 0.01923764624618
520 => 0.018890791944141
521 => 0.019238213575561
522 => 0.018832927788124
523 => 0.01881280193276
524 => 0.01921852974948
525 => 0.020166534908318
526 => 0.019716173192796
527 => 0.019070469240372
528 => 0.019547246990576
529 => 0.019134217979652
530 => 0.018203548018499
531 => 0.018890526711194
601 => 0.018431163623415
602 => 0.018565230193514
603 => 0.019530743078921
604 => 0.019414570014119
605 => 0.019564908717309
606 => 0.019299564841227
607 => 0.019051691820077
608 => 0.018589018418809
609 => 0.018452043634217
610 => 0.018489898536842
611 => 0.018452024875207
612 => 0.018193163359386
613 => 0.018137262239691
614 => 0.018044091257781
615 => 0.018072968840989
616 => 0.017897780136867
617 => 0.018228397417379
618 => 0.018289762898031
619 => 0.018530358583595
620 => 0.018555338025815
621 => 0.019225393585444
622 => 0.018856338243027
623 => 0.019103932429425
624 => 0.019081785274947
625 => 0.017307943933565
626 => 0.017552363619672
627 => 0.017932603948133
628 => 0.017761306195565
629 => 0.017519131250935
630 => 0.017323561998547
701 => 0.017027254583196
702 => 0.017444301580223
703 => 0.017992674033308
704 => 0.018569245656178
705 => 0.019261958682587
706 => 0.019107353199161
707 => 0.01855629586799
708 => 0.018581015897319
709 => 0.018733825391656
710 => 0.018535923212283
711 => 0.018477557996077
712 => 0.018725806907208
713 => 0.018727516461024
714 => 0.018499806086378
715 => 0.018246747675518
716 => 0.018245687351536
717 => 0.018200658051578
718 => 0.018840938400553
719 => 0.019193027852844
720 => 0.019233394341129
721 => 0.019190310866559
722 => 0.019206891985999
723 => 0.019002018891473
724 => 0.019470298032331
725 => 0.019900037279991
726 => 0.019784857981578
727 => 0.019612187839556
728 => 0.019474647754514
729 => 0.019752457908629
730 => 0.01974008745978
731 => 0.019896283882559
801 => 0.019889197910587
802 => 0.019836674928451
803 => 0.019784859857339
804 => 0.019990300757389
805 => 0.019931137077454
806 => 0.019871881499984
807 => 0.019753035367791
808 => 0.019769188530981
809 => 0.019596548202893
810 => 0.019516676887636
811 => 0.018315603944245
812 => 0.017994638007581
813 => 0.018095620425119
814 => 0.01812886645898
815 => 0.017989181672015
816 => 0.018189453774446
817 => 0.018158241579423
818 => 0.018279669971735
819 => 0.018203806784026
820 => 0.018206920235712
821 => 0.018430017695026
822 => 0.018494783836589
823 => 0.018461843254263
824 => 0.018484913708987
825 => 0.019016562600671
826 => 0.018940979129448
827 => 0.018900826916795
828 => 0.018911949354105
829 => 0.019047797044611
830 => 0.019085826980944
831 => 0.018924691468386
901 => 0.019000683907622
902 => 0.019324250069011
903 => 0.019437479913239
904 => 0.019798855222605
905 => 0.019645336568252
906 => 0.019927126702448
907 => 0.02079325350563
908 => 0.021485175527428
909 => 0.020848855441296
910 => 0.02211948211859
911 => 0.023108847247435
912 => 0.023070873765916
913 => 0.022898355071274
914 => 0.021771989175717
915 => 0.020735490485456
916 => 0.021602565651918
917 => 0.021604776004833
918 => 0.021530293479063
919 => 0.02106768890838
920 => 0.021514195842757
921 => 0.021549637941733
922 => 0.021529799791121
923 => 0.021175121951412
924 => 0.020633594445599
925 => 0.020739407624001
926 => 0.020912731768754
927 => 0.020584593003532
928 => 0.020479732785414
929 => 0.020674687881368
930 => 0.021302873821036
1001 => 0.021184118907975
1002 => 0.021181017737269
1003 => 0.021689101615264
1004 => 0.021325423209983
1005 => 0.020740742267041
1006 => 0.020593102617954
1007 => 0.02006908132568
1008 => 0.020431024698754
1009 => 0.020444050396395
1010 => 0.020245817709935
1011 => 0.020756827757025
1012 => 0.020752118709479
1013 => 0.021237246695384
1014 => 0.022164629198682
1015 => 0.021890356558735
1016 => 0.021571407319255
1017 => 0.02160608594509
1018 => 0.021986424876353
1019 => 0.021756463276218
1020 => 0.021839159070976
1021 => 0.021986299706364
1022 => 0.022075073304989
1023 => 0.021593312790396
1024 => 0.021480991369175
1025 => 0.021251221160819
1026 => 0.021191278402323
1027 => 0.021378421442716
1028 => 0.021329115863434
1029 => 0.020442955636947
1030 => 0.02035034696273
1031 => 0.020353187138553
1101 => 0.020120318223933
1102 => 0.019765137234193
1103 => 0.020698531668474
1104 => 0.020623567032555
1105 => 0.020540811876301
1106 => 0.020550948910748
1107 => 0.020956103798997
1108 => 0.020721093503
1109 => 0.021345906892338
1110 => 0.0212174640431
1111 => 0.021085727119438
1112 => 0.021067517063783
1113 => 0.021016809587439
1114 => 0.020842914783636
1115 => 0.020632926358586
1116 => 0.020494273811482
1117 => 0.018904884267878
1118 => 0.019199865722117
1119 => 0.019539214996814
1120 => 0.019656357006582
1121 => 0.019455977492893
1122 => 0.020850826988164
1123 => 0.021105679432054
1124 => 0.020333714755897
1125 => 0.020189311684098
1126 => 0.020860294029511
1127 => 0.020455609650971
1128 => 0.020637839001848
1129 => 0.020243958819378
1130 => 0.021044292941272
1201 => 0.021038195736189
1202 => 0.020726847686407
1203 => 0.020989996926064
1204 => 0.020944268269888
1205 => 0.0205927570885
1206 => 0.021055436472701
1207 => 0.021055665955903
1208 => 0.020756000227278
1209 => 0.020406056261506
1210 => 0.020343494545734
1211 => 0.020296362696883
1212 => 0.020626247456266
1213 => 0.020922021100006
1214 => 0.021472382522501
1215 => 0.021610756460382
1216 => 0.022150839152003
1217 => 0.021829246205291
1218 => 0.021971804193243
1219 => 0.022126571055222
1220 => 0.022200771980218
1221 => 0.022079865554779
1222 => 0.022918836281771
1223 => 0.022989671116528
1224 => 0.023013421423903
1225 => 0.022730525215177
1226 => 0.022981803261208
1227 => 0.022864238584924
1228 => 0.023170109212206
1229 => 0.023218073632117
1230 => 0.023177449474836
1231 => 0.023192674138783
]
'min_raw' => 0.010400361158782
'max_raw' => 0.023218073632117
'avg_raw' => 0.016809217395449
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01040036'
'max' => '$0.023218'
'avg' => '$0.0168092'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0016037145885037
'max_diff' => -0.0022156185671737
'year' => 2031
]
6 => [
'items' => [
101 => 0.022476760627873
102 => 0.022439636735588
103 => 0.021933449830086
104 => 0.022139724735623
105 => 0.021754103686736
106 => 0.021876388093675
107 => 0.021930289895085
108 => 0.021902134652929
109 => 0.022151387209289
110 => 0.02193947161745
111 => 0.021380191528435
112 => 0.020820759063935
113 => 0.020813735845047
114 => 0.020666447151947
115 => 0.020559984404106
116 => 0.020580492906309
117 => 0.020652767543039
118 => 0.020555783670831
119 => 0.020576480097174
120 => 0.020920178674029
121 => 0.020989104972472
122 => 0.020754866479121
123 => 0.019814365127867
124 => 0.0195835637372
125 => 0.019749459199821
126 => 0.019670171853724
127 => 0.015875363879924
128 => 0.016766897724186
129 => 0.016237178587554
130 => 0.01648129753692
131 => 0.015940591468524
201 => 0.016198644745195
202 => 0.016150991727591
203 => 0.01758455176676
204 => 0.017562168698546
205 => 0.017572882288814
206 => 0.017061494711185
207 => 0.017876149008034
208 => 0.018277477008683
209 => 0.018203201876762
210 => 0.018221895327272
211 => 0.017900679913151
212 => 0.017575992356165
213 => 0.017215863886411
214 => 0.01788493806999
215 => 0.017810548442253
216 => 0.017981171483738
217 => 0.018415113918199
218 => 0.01847901359006
219 => 0.018564895397048
220 => 0.018534112882726
221 => 0.019267477259414
222 => 0.019178661994503
223 => 0.019392681229043
224 => 0.018952427425917
225 => 0.018454238458405
226 => 0.018548927894104
227 => 0.018539808540002
228 => 0.018423708695573
229 => 0.018318898947198
301 => 0.018144420246116
302 => 0.018696496674328
303 => 0.018674083379552
304 => 0.019036928569362
305 => 0.018972792157573
306 => 0.018544473502804
307 => 0.018559770987352
308 => 0.01866265392266
309 => 0.019018732936455
310 => 0.019124441431457
311 => 0.019075473044817
312 => 0.019191377583811
313 => 0.019282983805623
314 => 0.019202881914877
315 => 0.020336955767912
316 => 0.019866009236779
317 => 0.020095545299228
318 => 0.020150288297618
319 => 0.020010065258365
320 => 0.020040474614568
321 => 0.020086536503163
322 => 0.020366215270866
323 => 0.021100173283023
324 => 0.021425238290386
325 => 0.022403212403464
326 => 0.021398246166648
327 => 0.021338615629119
328 => 0.021514778298873
329 => 0.022088952632323
330 => 0.022554267000131
331 => 0.022708638620563
401 => 0.022729041378601
402 => 0.023018652800962
403 => 0.023184652667327
404 => 0.022983486356751
405 => 0.022813018971529
406 => 0.022202425956854
407 => 0.022273103760892
408 => 0.02276000374291
409 => 0.023447778645775
410 => 0.024037961063216
411 => 0.023831299750562
412 => 0.025407979685961
413 => 0.025564301061396
414 => 0.025542702501786
415 => 0.025898825858767
416 => 0.025191993518421
417 => 0.024889808998692
418 => 0.022849875955101
419 => 0.023423013932562
420 => 0.024256103642016
421 => 0.024145841095044
422 => 0.023540829079487
423 => 0.024037502107349
424 => 0.023873286471936
425 => 0.023743762786973
426 => 0.024337135897191
427 => 0.023684697788083
428 => 0.024249595072788
429 => 0.023525108462039
430 => 0.02383224376203
501 => 0.023657898911292
502 => 0.023770721396621
503 => 0.023111163452732
504 => 0.02346704490939
505 => 0.023096357614105
506 => 0.023096181860062
507 => 0.023087998917473
508 => 0.023524110876497
509 => 0.023538332471824
510 => 0.023216045075177
511 => 0.023169598426245
512 => 0.023341336031021
513 => 0.023140276273978
514 => 0.023234350868844
515 => 0.023143125697621
516 => 0.023122588990083
517 => 0.022958949010385
518 => 0.022888448407757
519 => 0.022916093510624
520 => 0.02282172652251
521 => 0.022764866998768
522 => 0.023076688127068
523 => 0.022910094677046
524 => 0.023051155291566
525 => 0.022890398918052
526 => 0.022333147289234
527 => 0.022012665984672
528 => 0.02096006931509
529 => 0.021258584424842
530 => 0.021456500251443
531 => 0.021391089071932
601 => 0.021531617596288
602 => 0.021540244906358
603 => 0.021494557650571
604 => 0.02144165766127
605 => 0.021415908872031
606 => 0.021607819251431
607 => 0.021719229686079
608 => 0.021476363752415
609 => 0.021419463662213
610 => 0.021665014530143
611 => 0.02181480041773
612 => 0.022920735254255
613 => 0.022838804029443
614 => 0.023044435325531
615 => 0.023021284397261
616 => 0.023236818755195
617 => 0.023589126338802
618 => 0.02287278651458
619 => 0.022997118338897
620 => 0.022966635046816
621 => 0.023299443636614
622 => 0.023300482628704
623 => 0.023100947254098
624 => 0.023209118617764
625 => 0.023148740330092
626 => 0.02325785205653
627 => 0.022837709787985
628 => 0.023349397719517
629 => 0.023639491804255
630 => 0.023643519760903
701 => 0.023781022054739
702 => 0.023920732348873
703 => 0.02418889409226
704 => 0.023913253463395
705 => 0.02341740280514
706 => 0.023453201621078
707 => 0.023162484561569
708 => 0.023167371567861
709 => 0.023141284345269
710 => 0.023219574064022
711 => 0.022854889978638
712 => 0.022940480604558
713 => 0.022820653227052
714 => 0.022996857857581
715 => 0.022807290802801
716 => 0.022966620346849
717 => 0.023035381696203
718 => 0.023289112555642
719 => 0.022769814548559
720 => 0.021710930758733
721 => 0.02193352096908
722 => 0.021604292563894
723 => 0.021634763906255
724 => 0.021696320867302
725 => 0.021496794616364
726 => 0.021534857937248
727 => 0.021533498047578
728 => 0.021521779253079
729 => 0.02146987476914
730 => 0.02139460299844
731 => 0.02169446256548
801 => 0.021745414549067
802 => 0.021858674496966
803 => 0.022195659276957
804 => 0.022161986550787
805 => 0.022216908164237
806 => 0.022097014590447
807 => 0.02164032542528
808 => 0.021665125844146
809 => 0.021355864223482
810 => 0.021850765982011
811 => 0.021733566713207
812 => 0.021658007582183
813 => 0.021637390573233
814 => 0.021975210673313
815 => 0.022076291741938
816 => 0.022013304803269
817 => 0.021884116754436
818 => 0.022132195999213
819 => 0.022198571539492
820 => 0.022213430575125
821 => 0.022652979432393
822 => 0.022237996473468
823 => 0.022337886996257
824 => 0.023117204340051
825 => 0.022410471047672
826 => 0.022784843434678
827 => 0.022766519854474
828 => 0.022958036099596
829 => 0.022750809932434
830 => 0.022753378749134
831 => 0.022923432200368
901 => 0.022684622797412
902 => 0.022625490230855
903 => 0.022543799013674
904 => 0.022722168797777
905 => 0.022829093416375
906 => 0.0236908273148
907 => 0.024247546713023
908 => 0.024223378055703
909 => 0.024444234341775
910 => 0.024344736562088
911 => 0.024023431985289
912 => 0.024571859718965
913 => 0.024398314236839
914 => 0.024412621115528
915 => 0.024412088612788
916 => 0.024527481186793
917 => 0.024445714972537
918 => 0.024284545371108
919 => 0.024391537274007
920 => 0.024709264975311
921 => 0.025695501509235
922 => 0.026247412539515
923 => 0.025662275772212
924 => 0.026065895279004
925 => 0.025823867399264
926 => 0.02577988373381
927 => 0.026033386611323
928 => 0.026287333212064
929 => 0.026271157911438
930 => 0.026086805719602
1001 => 0.025982669844198
1002 => 0.026771221580838
1003 => 0.027352213067767
1004 => 0.027312593343375
1005 => 0.027487461921817
1006 => 0.028000881476606
1007 => 0.028047822126312
1008 => 0.028041908683368
1009 => 0.02792556138532
1010 => 0.028431089612963
1011 => 0.028852810154386
1012 => 0.027898630347418
1013 => 0.028261969526781
1014 => 0.028425084190454
1015 => 0.028664584910666
1016 => 0.029068662770645
1017 => 0.029507598502941
1018 => 0.029569668828173
1019 => 0.029525626962082
1020 => 0.029236137047407
1021 => 0.029716425763278
1022 => 0.029997767628879
1023 => 0.03016530027145
1024 => 0.030590135178237
1025 => 0.028426091531086
1026 => 0.026894273877684
1027 => 0.02665505843139
1028 => 0.027141512448112
1029 => 0.027269786492923
1030 => 0.027218079386301
1031 => 0.02549387935063
1101 => 0.026645980875034
1102 => 0.027885545243845
1103 => 0.027933161959536
1104 => 0.028553713800632
1105 => 0.028755790917372
1106 => 0.029255416487043
1107 => 0.029224164771627
1108 => 0.029345815647063
1109 => 0.029317850217499
1110 => 0.030243301376739
1111 => 0.031264211436207
1112 => 0.031228860567143
1113 => 0.031082092667235
1114 => 0.031300068026244
1115 => 0.032353756614987
1116 => 0.032256749854751
1117 => 0.032350983659304
1118 => 0.033593341888717
1119 => 0.035208584310353
1120 => 0.034458142037815
1121 => 0.036086385835274
1122 => 0.03711127899628
1123 => 0.038883725742308
1124 => 0.038661806680221
1125 => 0.039351807191634
1126 => 0.038264525243179
1127 => 0.035767906113589
1128 => 0.035372806579658
1129 => 0.036163805852103
1130 => 0.038108400378828
1201 => 0.036102563650232
1202 => 0.036508341808019
1203 => 0.036391477671278
1204 => 0.036385250478072
1205 => 0.036622917114932
1206 => 0.036278169262308
1207 => 0.034873604491764
1208 => 0.035517308248952
1209 => 0.035268743315109
1210 => 0.035544544640952
1211 => 0.037032930647407
1212 => 0.036374879715262
1213 => 0.035681676513965
1214 => 0.036551107162497
1215 => 0.037658191146863
1216 => 0.037588911820743
1217 => 0.037454480971557
1218 => 0.038212260629845
1219 => 0.03946389061673
1220 => 0.039802201172728
1221 => 0.040051935108711
1222 => 0.040086369199194
1223 => 0.040441061731833
1224 => 0.038533790589805
1225 => 0.041560678874401
1226 => 0.042083338865049
1227 => 0.041985100448845
1228 => 0.042566015031556
1229 => 0.042395095224942
1230 => 0.042147459241654
1231 => 0.043068332419326
]
'min_raw' => 0.015875363879924
'max_raw' => 0.043068332419326
'avg_raw' => 0.029471848149625
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015875'
'max' => '$0.043068'
'avg' => '$0.029471'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0054750027211416
'max_diff' => 0.019850258787209
'year' => 2032
]
7 => [
'items' => [
101 => 0.042012625631758
102 => 0.040514182756594
103 => 0.03969210735944
104 => 0.040774682557344
105 => 0.041435773454035
106 => 0.041872712483471
107 => 0.042004929969772
108 => 0.038681846619256
109 => 0.036890888999979
110 => 0.038038872300565
111 => 0.039439491156854
112 => 0.038526010081339
113 => 0.038561816810051
114 => 0.03725943285497
115 => 0.039554723238012
116 => 0.039220318735634
117 => 0.040955209885525
118 => 0.040541164189232
119 => 0.041955900573882
120 => 0.041583353070824
121 => 0.043129776927166
122 => 0.043746687271215
123 => 0.044782575753302
124 => 0.04554457953755
125 => 0.045992042734469
126 => 0.045965178722519
127 => 0.047738250833995
128 => 0.046692732156279
129 => 0.045379314287234
130 => 0.045355558701764
131 => 0.046035796427417
201 => 0.04746138808628
202 => 0.047831023261908
203 => 0.048037598898526
204 => 0.047721221120095
205 => 0.046586385528433
206 => 0.0460963692737
207 => 0.04651387731987
208 => 0.04600330085628
209 => 0.04688469907489
210 => 0.048095047085544
211 => 0.047845115007578
212 => 0.048680600472305
213 => 0.049545240032662
214 => 0.050781713437366
215 => 0.051104973371833
216 => 0.051639309751033
217 => 0.052189317405586
218 => 0.052365965041107
219 => 0.052703240187858
220 => 0.052701462581351
221 => 0.053717863937321
222 => 0.054838986108286
223 => 0.055262183773787
224 => 0.056235303470352
225 => 0.054568870092166
226 => 0.055832878952127
227 => 0.056973046584006
228 => 0.055613691729686
301 => 0.057487245707307
302 => 0.057559991562693
303 => 0.05865836761117
304 => 0.057544953062649
305 => 0.056883811057882
306 => 0.058792503252976
307 => 0.059716059282941
308 => 0.059437876690567
309 => 0.057320893427034
310 => 0.056088718365975
311 => 0.052863878562363
312 => 0.056683840612453
313 => 0.058544432697232
314 => 0.057316074943021
315 => 0.057935587144941
316 => 0.061315444841114
317 => 0.062602275822236
318 => 0.06233462397379
319 => 0.062379852730253
320 => 0.063074203370032
321 => 0.066153336492695
322 => 0.064308248551849
323 => 0.0657187491485
324 => 0.066466873579025
325 => 0.067161773243525
326 => 0.065455319292808
327 => 0.063235247775713
328 => 0.062532057933987
329 => 0.05719393897265
330 => 0.056916066698437
331 => 0.056760088570529
401 => 0.055776668537616
402 => 0.055003969773165
403 => 0.054389491027207
404 => 0.052776915298927
405 => 0.053321112269564
406 => 0.050751003129398
407 => 0.052395267878201
408 => 0.04829331163304
409 => 0.051709542684298
410 => 0.049850243440064
411 => 0.051098712876874
412 => 0.051094357084622
413 => 0.048795529023859
414 => 0.047469612973728
415 => 0.048314538286296
416 => 0.049220365291624
417 => 0.04936733267567
418 => 0.050541761032581
419 => 0.050869518742742
420 => 0.049876397579411
421 => 0.048208307707328
422 => 0.048595766939533
423 => 0.047461761124754
424 => 0.045474459553258
425 => 0.046901774236863
426 => 0.047389122224443
427 => 0.04760436285936
428 => 0.045650080006921
429 => 0.04503600190514
430 => 0.044709071876366
501 => 0.047956034331911
502 => 0.048133910264829
503 => 0.047223871842898
504 => 0.051337331803411
505 => 0.050406329126876
506 => 0.051446487217759
507 => 0.048560609075366
508 => 0.048670853506756
509 => 0.047304632545898
510 => 0.048069624993061
511 => 0.047528952988264
512 => 0.048007821163133
513 => 0.048294852772702
514 => 0.049660849550143
515 => 0.051725140173266
516 => 0.049456815183572
517 => 0.04846847350255
518 => 0.049081635122811
519 => 0.050714565319061
520 => 0.053188538154537
521 => 0.051723896442592
522 => 0.052373879563124
523 => 0.052515871959224
524 => 0.051435899384819
525 => 0.053228358283812
526 => 0.054188951569693
527 => 0.055174321514234
528 => 0.05602989062764
529 => 0.054780743089635
530 => 0.056117510013566
531 => 0.055040311844005
601 => 0.054073953727209
602 => 0.054075419293577
603 => 0.053469208730671
604 => 0.052294599377595
605 => 0.052077983391147
606 => 0.053204847108232
607 => 0.054108485094944
608 => 0.054182913047664
609 => 0.054683213467703
610 => 0.054979286102778
611 => 0.057881200417746
612 => 0.05904837436112
613 => 0.060475572565606
614 => 0.061031546698737
615 => 0.062704829511702
616 => 0.061353517742847
617 => 0.061061152941506
618 => 0.057002316163889
619 => 0.057666950458843
620 => 0.058731094092736
621 => 0.057019863500463
622 => 0.058105245440274
623 => 0.058319522826725
624 => 0.056961716539748
625 => 0.057686979544969
626 => 0.055760896028598
627 => 0.051767123530544
628 => 0.053232804494283
629 => 0.054312039026473
630 => 0.05277183828038
701 => 0.055532588503752
702 => 0.05391981521671
703 => 0.053408643511488
704 => 0.051414380443547
705 => 0.05235559584539
706 => 0.05362860315329
707 => 0.052842032639992
708 => 0.054474284559242
709 => 0.056785988582586
710 => 0.058433446533975
711 => 0.058559917898916
712 => 0.057500712807283
713 => 0.059198095726381
714 => 0.059210459307872
715 => 0.057295804441116
716 => 0.056123088996071
717 => 0.055856645579542
718 => 0.05652227347334
719 => 0.057330468618098
720 => 0.058604767104698
721 => 0.059374798991827
722 => 0.061382633760103
723 => 0.061925896279265
724 => 0.062522777080919
725 => 0.063320393903151
726 => 0.064278137402996
727 => 0.062182649149703
728 => 0.062265906804485
729 => 0.060314617157027
730 => 0.058229384325477
731 => 0.059811816116682
801 => 0.061880635181602
802 => 0.061406045802267
803 => 0.061352644802111
804 => 0.061442450472172
805 => 0.061084625578793
806 => 0.059466196847653
807 => 0.058653432070774
808 => 0.059702105991357
809 => 0.06025942950904
810 => 0.061123789681248
811 => 0.061017239045593
812 => 0.063243738023695
813 => 0.064108888200752
814 => 0.063887545763597
815 => 0.063928278098937
816 => 0.065494591169538
817 => 0.067236653440899
818 => 0.068868324643392
819 => 0.070528130672476
820 => 0.068527169721083
821 => 0.06751120515208
822 => 0.068559421254434
823 => 0.068003223035815
824 => 0.071199302979108
825 => 0.071420592619945
826 => 0.07461644145028
827 => 0.077649682544867
828 => 0.075744558159516
829 => 0.077541004646215
830 => 0.079484007988012
831 => 0.083232376675269
901 => 0.081970057970601
902 => 0.081003141625882
903 => 0.080089410352228
904 => 0.081990740081947
905 => 0.084436770404747
906 => 0.084963621908491
907 => 0.085817322617321
908 => 0.084919760707542
909 => 0.086000775164669
910 => 0.089817231220149
911 => 0.088785991105169
912 => 0.087321464361776
913 => 0.090334189881241
914 => 0.091424483535062
915 => 0.099076735388794
916 => 0.10873801945289
917 => 0.10473818441094
918 => 0.10225535772654
919 => 0.10283888089081
920 => 0.10636685477591
921 => 0.10749992801551
922 => 0.10441984435651
923 => 0.10550778197564
924 => 0.11150242522071
925 => 0.11471835899051
926 => 0.11035068897359
927 => 0.098300460621227
928 => 0.087189599752268
929 => 0.090136700383301
930 => 0.089802590630922
1001 => 0.096243086950775
1002 => 0.08876139636948
1003 => 0.088887368851004
1004 => 0.095461047814147
1005 => 0.093707302968169
1006 => 0.090866460920354
1007 => 0.087210341043081
1008 => 0.080451665299786
1009 => 0.074465317714333
1010 => 0.086205923902919
1011 => 0.08569964761516
1012 => 0.084966484524543
1013 => 0.086598059646179
1014 => 0.094520525306165
1015 => 0.094337886830183
1016 => 0.093176034028958
1017 => 0.094057289138587
1018 => 0.09071197263883
1019 => 0.091574136872258
1020 => 0.087187839735139
1021 => 0.089170629229066
1022 => 0.090860365749206
1023 => 0.091199605372601
1024 => 0.091963929566114
1025 => 0.085432863016884
1026 => 0.088365120155448
1027 => 0.090087546509017
1028 => 0.082305561581188
1029 => 0.089933721687983
1030 => 0.085319171678573
1031 => 0.083752924097164
1101 => 0.085861670128103
1102 => 0.085039889749023
1103 => 0.084333371235654
1104 => 0.083939121765664
1105 => 0.085487552116979
1106 => 0.085415315990316
1107 => 0.082881783398184
1108 => 0.079576893411748
1109 => 0.080686122970512
1110 => 0.080283129472731
1111 => 0.078822629049575
1112 => 0.079806829993288
1113 => 0.075472907129874
1114 => 0.068016618101077
1115 => 0.07294247102581
1116 => 0.072752831046504
1117 => 0.07265720596945
1118 => 0.076358848301812
1119 => 0.076003020802974
1120 => 0.07535719040831
1121 => 0.078810767867911
1122 => 0.077550165637985
1123 => 0.081435044675377
1124 => 0.083993877267626
1125 => 0.083344874552669
1126 => 0.08575146897359
1127 => 0.080711677379217
1128 => 0.082385693985525
1129 => 0.082730706487998
1130 => 0.078768151258144
1201 => 0.076061238582377
1202 => 0.075880718367967
1203 => 0.071187304823731
1204 => 0.073694488455151
1205 => 0.075900706296493
1206 => 0.074844099159911
1207 => 0.07450960890571
1208 => 0.07621844707234
1209 => 0.076351238433097
1210 => 0.073323581335254
1211 => 0.073953127119326
1212 => 0.076578437692187
1213 => 0.073886976028743
1214 => 0.06865790566444
1215 => 0.067361023916538
1216 => 0.067187995985095
1217 => 0.063670749827798
1218 => 0.067447687756214
1219 => 0.065798953134817
1220 => 0.071007286048937
1221 => 0.068032314221242
1222 => 0.06790406913175
1223 => 0.06771020786952
1224 => 0.064682768806326
1225 => 0.065345585557376
1226 => 0.067548889387708
1227 => 0.068335053016364
1228 => 0.068253049709047
1229 => 0.067538091996931
1230 => 0.067865395976362
1231 => 0.066811035818349
]
'min_raw' => 0.036890888999979
'max_raw' => 0.11471835899051
'avg_raw' => 0.075804623995242
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.03689'
'max' => '$0.114718'
'avg' => '$0.0758046'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.021015525120055
'max_diff' => 0.071650026571179
'year' => 2033
]
8 => [
'items' => [
101 => 0.066438719301946
102 => 0.065263585962452
103 => 0.063536464592266
104 => 0.063776631411841
105 => 0.060354752051614
106 => 0.058490330563279
107 => 0.057974283267988
108 => 0.057284203257624
109 => 0.058052229641391
110 => 0.060345058297323
111 => 0.057579420487534
112 => 0.052837928449588
113 => 0.053122900200178
114 => 0.053763147114882
115 => 0.052570051224989
116 => 0.051440886094154
117 => 0.052422603563352
118 => 0.05041357088089
119 => 0.05400592911629
120 => 0.05390876589349
121 => 0.055247774893704
122 => 0.056085084700769
123 => 0.054155356677754
124 => 0.053670035298505
125 => 0.053946496412752
126 => 0.049377210018991
127 => 0.054874366712542
128 => 0.054921906351903
129 => 0.054514843097548
130 => 0.057441909331193
131 => 0.063618932059035
201 => 0.061294887638657
202 => 0.060394947394473
203 => 0.058684160332425
204 => 0.060963682516119
205 => 0.060788650778497
206 => 0.059997090882154
207 => 0.059518352987029
208 => 0.060400442237703
209 => 0.059409052367221
210 => 0.059230971504911
211 => 0.0581519952332
212 => 0.057766849794492
213 => 0.057481703444754
214 => 0.057167785331594
215 => 0.057860210465705
216 => 0.056291084015697
217 => 0.054398871340351
218 => 0.054241554330421
219 => 0.054675920426291
220 => 0.054483745763621
221 => 0.054240634272071
222 => 0.053776468227226
223 => 0.053638760077059
224 => 0.054086244758605
225 => 0.053581060643118
226 => 0.054326487324323
227 => 0.054123772513374
228 => 0.052991424058027
301 => 0.051580098633571
302 => 0.051567534876938
303 => 0.051263467129276
304 => 0.050876191135738
305 => 0.050768459814009
306 => 0.052339926056329
307 => 0.055592814147904
308 => 0.054954194380513
309 => 0.055415662610839
310 => 0.05768562957215
311 => 0.058407183808863
312 => 0.057895041702593
313 => 0.057193989999981
314 => 0.057224832716999
315 => 0.059620538607605
316 => 0.05976995584537
317 => 0.060147485001373
318 => 0.060632716656563
319 => 0.057977678751673
320 => 0.057099780670442
321 => 0.056683783855624
322 => 0.055402674677011
323 => 0.056784241092145
324 => 0.055979261506618
325 => 0.056087880754724
326 => 0.056017142326901
327 => 0.056055770291804
328 => 0.054004924978951
329 => 0.054752145221698
330 => 0.053509746642381
331 => 0.051846314410461
401 => 0.051840738002345
402 => 0.052247860684525
403 => 0.052005688182452
404 => 0.051354008206199
405 => 0.051446576270983
406 => 0.05063558261878
407 => 0.051545045583874
408 => 0.051571125727498
409 => 0.051220932947155
410 => 0.052622086126587
411 => 0.053196139727433
412 => 0.052965635337554
413 => 0.053179966924961
414 => 0.054980731915044
415 => 0.055274335181312
416 => 0.055404734357845
417 => 0.055230016735871
418 => 0.053212881603269
419 => 0.053302350123921
420 => 0.052645889482674
421 => 0.052091249416939
422 => 0.052113432110864
423 => 0.052398589202814
424 => 0.0536438869476
425 => 0.05626454263719
426 => 0.056363994604936
427 => 0.056484533291062
428 => 0.055994241876697
429 => 0.055846365294667
430 => 0.056041452676548
501 => 0.057025633166028
502 => 0.059557212587368
503 => 0.058662383341362
504 => 0.057934873235512
505 => 0.058573095733658
506 => 0.058474846382622
507 => 0.057645522985223
508 => 0.057622246639606
509 => 0.056030509889268
510 => 0.055442081054761
511 => 0.054950345877512
512 => 0.054413383901027
513 => 0.054095054842239
514 => 0.054584152954507
515 => 0.054696015479622
516 => 0.053626593909174
517 => 0.053480835700771
518 => 0.054354148440266
519 => 0.053969836063995
520 => 0.054365110873478
521 => 0.054456818019883
522 => 0.054442051057117
523 => 0.054040784798295
524 => 0.054296539945736
525 => 0.053691602777758
526 => 0.053033824466206
527 => 0.052614202884473
528 => 0.052248027399686
529 => 0.05245120284089
530 => 0.051726919491366
531 => 0.05149520667091
601 => 0.054209895856456
602 => 0.056215265945646
603 => 0.056186107070335
604 => 0.056008609915936
605 => 0.055744885148482
606 => 0.057006340056649
607 => 0.056566874390231
608 => 0.056886622381135
609 => 0.056968011664601
610 => 0.057214352512769
611 => 0.057302398192278
612 => 0.057036262997147
613 => 0.056143080776609
614 => 0.053917355604245
615 => 0.052881274528279
616 => 0.052539350515916
617 => 0.052551778804359
618 => 0.05220895112677
619 => 0.052309929242279
620 => 0.052173835059086
621 => 0.051916105600836
622 => 0.052435288773106
623 => 0.052495119797184
624 => 0.052373936240999
625 => 0.052402479355389
626 => 0.051399131268355
627 => 0.051475413644255
628 => 0.05105066368175
629 => 0.050971028184217
630 => 0.049897297266214
701 => 0.047995027305186
702 => 0.049049069521408
703 => 0.047775934744976
704 => 0.047293779314001
705 => 0.049576228133682
706 => 0.049347133577462
707 => 0.048955023282223
708 => 0.048375010432618
709 => 0.048159878024697
710 => 0.046852801616815
711 => 0.046775572569656
712 => 0.047423394931434
713 => 0.04712444720168
714 => 0.046704611368746
715 => 0.045184008539936
716 => 0.043474347506058
717 => 0.043525951426125
718 => 0.044069762791627
719 => 0.045650967679778
720 => 0.045033163574855
721 => 0.044584939608248
722 => 0.044501000732866
723 => 0.045551671496217
724 => 0.047038590748688
725 => 0.047736219994005
726 => 0.047044890599211
727 => 0.046250728614291
728 => 0.046299065574521
729 => 0.04662062971559
730 => 0.046654421560144
731 => 0.046137503749132
801 => 0.046283013085068
802 => 0.046061971098128
803 => 0.044705436832288
804 => 0.044680901429035
805 => 0.044347986043128
806 => 0.044337905497552
807 => 0.043771533376489
808 => 0.043692294001606
809 => 0.042567727778905
810 => 0.043307920672187
811 => 0.042811438141245
812 => 0.042063121858725
813 => 0.041934111849561
814 => 0.041930233652901
815 => 0.04269858715459
816 => 0.043298942014163
817 => 0.042820074667433
818 => 0.042711045855036
819 => 0.043875188328801
820 => 0.04372704058762
821 => 0.043598745599208
822 => 0.046905453438303
823 => 0.044287936158029
824 => 0.043146549221166
825 => 0.041733866143299
826 => 0.042193842876819
827 => 0.042290766733036
828 => 0.038893518586027
829 => 0.037515255435887
830 => 0.037042287461509
831 => 0.03677008770547
901 => 0.036894132552366
902 => 0.035653534063096
903 => 0.036487236765491
904 => 0.035412983338963
905 => 0.035232881256082
906 => 0.037153779457178
907 => 0.037421061220135
908 => 0.036280754181422
909 => 0.037013015899217
910 => 0.036747487621145
911 => 0.035431398330666
912 => 0.035381133400267
913 => 0.03472076605708
914 => 0.033687419037308
915 => 0.033215151720869
916 => 0.032969190802055
917 => 0.033070679070841
918 => 0.033019363496551
919 => 0.032684494663115
920 => 0.0330385577861
921 => 0.032134072815858
922 => 0.031773899612777
923 => 0.0316112177329
924 => 0.030808435261599
925 => 0.032086019172425
926 => 0.032337719297436
927 => 0.032589915349447
928 => 0.034785109800648
929 => 0.034675444089421
930 => 0.035666768709544
1001 => 0.035628247657735
1002 => 0.035345505817682
1003 => 0.034152664503272
1004 => 0.034628109790844
1005 => 0.033164763096301
1006 => 0.034261201937756
1007 => 0.033760833038896
1008 => 0.034092026709725
1009 => 0.033496510627045
1010 => 0.033826093815457
1011 => 0.032397406734535
1012 => 0.03106331884054
1013 => 0.031600194753537
1014 => 0.032183840270173
1015 => 0.033449332460351
1016 => 0.032695615751965
1017 => 0.032966680781485
1018 => 0.032058658308331
1019 => 0.030185148582419
1020 => 0.030195752444005
1021 => 0.029907553789301
1022 => 0.029658508073945
1023 => 0.032782189182687
1024 => 0.032393710058724
1025 => 0.03177471941758
1026 => 0.032603262988461
1027 => 0.032822343059357
1028 => 0.032828579960985
1029 => 0.033433063962495
1030 => 0.033755677182461
1031 => 0.033812539160766
1101 => 0.034763707797884
1102 => 0.035082526978828
1103 => 0.036395698064158
1104 => 0.03372830570472
1105 => 0.033673372514404
1106 => 0.032614922295634
1107 => 0.031943636433455
1108 => 0.032660885812928
1109 => 0.033296270848837
1110 => 0.032634665479829
1111 => 0.03272105717377
1112 => 0.031832906021021
1113 => 0.032150378266733
1114 => 0.03242382813287
1115 => 0.032272845189429
1116 => 0.032046816415442
1117 => 0.033244176521728
1118 => 0.033176616772039
1119 => 0.034291626030203
1120 => 0.035160855482018
1121 => 0.036718670053022
1122 => 0.03509300933747
1123 => 0.035033763799579
1124 => 0.035612898435745
1125 => 0.035082438316332
1126 => 0.03541767080094
1127 => 0.036664658917078
1128 => 0.036691005810994
1129 => 0.036249661391848
1130 => 0.036222805543833
1201 => 0.036307570567309
1202 => 0.036804041957395
1203 => 0.036630559598674
1204 => 0.036831317776222
1205 => 0.037082368951364
1206 => 0.038120823055242
1207 => 0.038371190824017
1208 => 0.037762926946698
1209 => 0.037817846364378
1210 => 0.037590338977044
1211 => 0.037370569691539
1212 => 0.037864578950628
1213 => 0.038767390581391
1214 => 0.038761774237092
1215 => 0.038971208987279
1216 => 0.039101685101594
1217 => 0.0385415861046
1218 => 0.038176982252969
1219 => 0.03831679457003
1220 => 0.038540357509728
1221 => 0.038244296121792
1222 => 0.036416868086479
1223 => 0.036971193015838
1224 => 0.036878926242489
1225 => 0.036747527137216
1226 => 0.037304905140154
1227 => 0.037251144672038
1228 => 0.035640809932457
1229 => 0.035743898337767
1230 => 0.035647079079823
1231 => 0.035959921909595
]
'min_raw' => 0.029658508073945
'max_raw' => 0.066438719301946
'avg_raw' => 0.048048613687945
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.029658'
'max' => '$0.066438'
'avg' => '$0.048048'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0072323809260344
'max_diff' => -0.048279639688559
'year' => 2034
]
9 => [
'items' => [
101 => 0.035065543776862
102 => 0.035340648466762
103 => 0.035513191549321
104 => 0.035614820750487
105 => 0.035981975112892
106 => 0.035938893786144
107 => 0.035979297117133
108 => 0.036523690111423
109 => 0.039277043063425
110 => 0.039426901989671
111 => 0.038688941828506
112 => 0.038983742357271
113 => 0.03841778980783
114 => 0.038797717545822
115 => 0.039057654455038
116 => 0.037883049545285
117 => 0.037813497065652
118 => 0.03724520862872
119 => 0.037550574645225
120 => 0.037064715356372
121 => 0.03718392823122
122 => 0.036850598640353
123 => 0.037450525538654
124 => 0.03812133703017
125 => 0.038290810504075
126 => 0.037844998757148
127 => 0.037522201671947
128 => 0.036955476326304
129 => 0.037897953206406
130 => 0.038173562167611
131 => 0.037896505549863
201 => 0.037832305477724
202 => 0.037710646457029
203 => 0.037858116014084
204 => 0.038172061142018
205 => 0.038024010417341
206 => 0.038121800529308
207 => 0.037749125463214
208 => 0.038541771520674
209 => 0.039800684220583
210 => 0.039804731830766
211 => 0.03965668030804
212 => 0.039596100814755
213 => 0.03974801066159
214 => 0.039830415521829
215 => 0.040321664110989
216 => 0.040848793419365
217 => 0.04330867589702
218 => 0.042617950740674
219 => 0.044800504813913
220 => 0.046526621716668
221 => 0.047044208701861
222 => 0.046568053029833
223 => 0.044939150197252
224 => 0.044859228453194
225 => 0.047293496990108
226 => 0.046605704631867
227 => 0.046523893919392
228 => 0.045653566160032
301 => 0.046168037658004
302 => 0.046055515194556
303 => 0.045877892981216
304 => 0.046859468760951
305 => 0.048696890994739
306 => 0.048410511508367
307 => 0.048196742506552
308 => 0.047260068967819
309 => 0.047824155651745
310 => 0.047623295187968
311 => 0.048486319209555
312 => 0.04797508289749
313 => 0.046600493928291
314 => 0.046819401752341
315 => 0.046786314275117
316 => 0.047467252211776
317 => 0.047262851545109
318 => 0.046746401764437
319 => 0.048690610885298
320 => 0.048564364759248
321 => 0.048743352902104
322 => 0.048822149017981
323 => 0.050005554849041
324 => 0.050490358353264
325 => 0.050600417236403
326 => 0.051060943069365
327 => 0.050588958934149
328 => 0.052477231994
329 => 0.053732823395012
330 => 0.055191257419432
331 => 0.057322421519218
401 => 0.058123758935108
402 => 0.05797900450342
403 => 0.059594828801239
404 => 0.062498429146662
405 => 0.058565905150341
406 => 0.062706862467381
407 => 0.061395883190458
408 => 0.058287574908382
409 => 0.058087436499564
410 => 0.060192418956387
411 => 0.064861067448566
412 => 0.063691623952648
413 => 0.064862980239184
414 => 0.063496530910687
415 => 0.063428675184188
416 => 0.064796614845271
417 => 0.067992880425899
418 => 0.066474454458766
419 => 0.064297418501559
420 => 0.06590490797393
421 => 0.064512351826835
422 => 0.061374533075506
423 => 0.063690729701246
424 => 0.062141954979096
425 => 0.062593969780412
426 => 0.065849263883519
427 => 0.065457578284593
428 => 0.065964455718713
429 => 0.065069830314784
430 => 0.064234109118037
501 => 0.062674173442837
502 => 0.06221235339331
503 => 0.062339983840454
504 => 0.062212290145999
505 => 0.061339520472273
506 => 0.061151045944329
507 => 0.060836913473831
508 => 0.060934276261786
509 => 0.060343615314553
510 => 0.06145831455876
511 => 0.06166521256118
512 => 0.062476397712911
513 => 0.062560617646367
514 => 0.06481975674744
515 => 0.06357546089386
516 => 0.064410241979777
517 => 0.064335571302188
518 => 0.05835494137407
519 => 0.05917901941062
520 => 0.060461026225558
521 => 0.059883483893147
522 => 0.059066974159212
523 => 0.058407598770576
524 => 0.057408577632199
525 => 0.058814680699964
526 => 0.060663556711684
527 => 0.062607508193135
528 => 0.064943038525351
529 => 0.064421775343771
530 => 0.062563847078135
531 => 0.062647192382914
601 => 0.063162400261889
602 => 0.062495159247044
603 => 0.062298376845675
604 => 0.06313536538174
605 => 0.063141129261787
606 => 0.062373387835438
607 => 0.061520183735249
608 => 0.061516608778916
609 => 0.061364789350262
610 => 0.063523539249776
611 => 0.064710633420277
612 => 0.064846731853827
613 => 0.064701472911323
614 => 0.064757377313172
615 => 0.064066633371193
616 => 0.065645469188804
617 => 0.067094365065723
618 => 0.066706030019563
619 => 0.06612386058029
620 => 0.065660134580829
621 => 0.066596790911515
622 => 0.066555083079543
623 => 0.067081710224227
624 => 0.067057819374999
625 => 0.06688073447369
626 => 0.066706036343823
627 => 0.067398694681766
628 => 0.067199220204191
629 => 0.066999435887656
630 => 0.066598737855396
701 => 0.06665319937287
702 => 0.066071130453358
703 => 0.06580183873753
704 => 0.061752337452654
705 => 0.060670178388064
706 => 0.061010647659163
707 => 0.061122738983489
708 => 0.060651781971755
709 => 0.061327013347652
710 => 0.061221779252966
711 => 0.061631183555505
712 => 0.061375405521547
713 => 0.061385902741279
714 => 0.062138091401523
715 => 0.062356454969631
716 => 0.062245393496482
717 => 0.062323177145311
718 => 0.064115668502165
719 => 0.063860833551867
720 => 0.06372545756357
721 => 0.063762957637504
722 => 0.064220977610628
723 => 0.06434919819614
724 => 0.063805918565428
725 => 0.064062132379934
726 => 0.065153058283726
727 => 0.065534820608995
728 => 0.06675322269494
729 => 0.06623562383346
730 => 0.067185698944861
731 => 0.070105905932832
801 => 0.072438769337777
802 => 0.070293371740932
803 => 0.074577378295751
804 => 0.077913091902918
805 => 0.077785061658754
806 => 0.077203402834898
807 => 0.073405781577672
808 => 0.06991115387743
809 => 0.072834558338413
810 => 0.072842010697587
811 => 0.07259088766175
812 => 0.071031184053672
813 => 0.072536613357042
814 => 0.072656108868227
815 => 0.072589223158385
816 => 0.07139340205899
817 => 0.069567604264896
818 => 0.06992436078352
819 => 0.070508735238661
820 => 0.069402392481796
821 => 0.069048848935307
822 => 0.069706153652643
823 => 0.071824126406777
824 => 0.071423735926189
825 => 0.071413280112636
826 => 0.07312632038058
827 => 0.07190015324596
828 => 0.069928860625712
829 => 0.069431083240944
830 => 0.067664308868044
831 => 0.068884626220441
901 => 0.068928543269465
902 => 0.068260187926898
903 => 0.069983093978245
904 => 0.06996721709567
905 => 0.0716028599707
906 => 0.074729594828349
907 => 0.073804865473664
908 => 0.072729505844434
909 => 0.072846427252619
910 => 0.07412876651379
911 => 0.073353434923528
912 => 0.07363224956919
913 => 0.07412834449443
914 => 0.074427650880172
915 => 0.072803361669775
916 => 0.072424662156097
917 => 0.07164997585658
918 => 0.071447874661241
919 => 0.072078840487838
920 => 0.071912603284881
921 => 0.068924852211549
922 => 0.068612615600696
923 => 0.06862219145178
924 => 0.067837057647748
925 => 0.066639540142895
926 => 0.069786544645593
927 => 0.069533796141727
928 => 0.069254781354638
929 => 0.06928895907402
930 => 0.070654967066763
1001 => 0.069862613445915
1002 => 0.071969215411143
1003 => 0.071536161377344
1004 => 0.07109200114164
1005 => 0.071030604667614
1006 => 0.070859640870839
1007 => 0.070273342398869
1008 => 0.069565351762889
1009 => 0.069097875019917
1010 => 0.063739137206019
1011 => 0.064733687773935
1012 => 0.065877827546185
1013 => 0.066272780010713
1014 => 0.065597186490259
1015 => 0.070300018948847
1016 => 0.071159271756653
1017 => 0.068556538954137
1018 => 0.068069673915666
1019 => 0.070331937739715
1020 => 0.068967516103309
1021 => 0.069581915082638
1022 => 0.068253920547602
1023 => 0.070952302917112
1024 => 0.070931745764483
1025 => 0.069882014077014
1026 => 0.07076924011101
1027 => 0.070615062754043
1028 => 0.069429918264265
1029 => 0.070989874111341
1030 => 0.070990647829979
1031 => 0.069980303903925
1101 => 0.068800443391019
1102 => 0.068589512198373
1103 => 0.068430603879333
1104 => 0.069542833377411
1105 => 0.070540054867537
1106 => 0.072395636828487
1107 => 0.07286217422101
1108 => 0.07468310072318
1109 => 0.07359882765044
1110 => 0.074079471859899
1111 => 0.074601279140541
1112 => 0.074851452739708
1113 => 0.07444380828492
1114 => 0.077272456666041
1115 => 0.077511281256954
1116 => 0.077591357076463
1117 => 0.07663755275756
1118 => 0.077484754233426
1119 => 0.077088376719232
1120 => 0.07811964089432
1121 => 0.078281356284816
1122 => 0.078144389102258
1123 => 0.078195720119705
1124 => 0.075781967734187
1125 => 0.07565680193944
1126 => 0.073950157446701
1127 => 0.074645627692371
1128 => 0.073345479402847
1129 => 0.073757769818467
1130 => 0.073939503505224
1201 => 0.073844576140558
1202 => 0.074684948536586
1203 => 0.073970460323224
1204 => 0.072084808455424
1205 => 0.070198642843033
1206 => 0.070174963570207
1207 => 0.069678369458053
1208 => 0.069319422870714
1209 => 0.06938856871775
1210 => 0.069632247701538
1211 => 0.069305259805192
1212 => 0.069375039251585
1213 => 0.070533842999722
1214 => 0.070766232827201
1215 => 0.069976481392861
1216 => 0.066805515423398
1217 => 0.066027352420726
1218 => 0.066586680555404
1219 => 0.066319357732373
1220 => 0.053524897703674
1221 => 0.056530766304509
1222 => 0.054744781251546
1223 => 0.055567845333172
1224 => 0.053744817072684
1225 => 0.054614861711687
1226 => 0.054454196235806
1227 => 0.05928754399583
1228 => 0.05921207791861
1229 => 0.059248199536199
1230 => 0.057524020614282
1231 => 0.060270684453455
]
'min_raw' => 0.035065543776862
'max_raw' => 0.078281356284816
'avg_raw' => 0.056673450030839
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.035065'
'max' => '$0.078281'
'avg' => '$0.056673'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0054070357029173
'max_diff' => 0.01184263698287
'year' => 2035
]
10 => [
'items' => [
101 => 0.061623789827469
102 => 0.061373366034472
103 => 0.061436392308001
104 => 0.060353392112748
105 => 0.05925868534541
106 => 0.058044487066268
107 => 0.060300317389471
108 => 0.060049507565838
109 => 0.060624775062725
110 => 0.062087842277403
111 => 0.062303284482416
112 => 0.062592840990754
113 => 0.06248905559455
114 => 0.064961644792419
115 => 0.064662197925889
116 => 0.065383778717484
117 => 0.063899432282705
118 => 0.062219753396296
119 => 0.062539005439762
120 => 0.062508258900714
121 => 0.06211682016939
122 => 0.061763446785159
123 => 0.061175179662748
124 => 0.063036543885209
125 => 0.062960975897027
126 => 0.064184333787511
127 => 0.063968093397304
128 => 0.062523987148498
129 => 0.062575563685688
130 => 0.062922440685134
131 => 0.064122985940788
201 => 0.06447938951202
202 => 0.064314289177599
203 => 0.064705069423014
204 => 0.065013926195595
205 => 0.064743857078407
206 => 0.068567466252426
207 => 0.066979637142272
208 => 0.067753534002517
209 => 0.067938103843621
210 => 0.06746533207672
211 => 0.067567859344273
212 => 0.067723160217608
213 => 0.068666116709467
214 => 0.071140707390767
215 => 0.072236686758406
216 => 0.075533994760618
217 => 0.072145680928693
218 => 0.071944632408143
219 => 0.072538577148504
220 => 0.074474446001302
221 => 0.076043285879579
222 => 0.076563760575747
223 => 0.076632549898946
224 => 0.077608995029462
225 => 0.07816867516865
226 => 0.077490428907561
227 => 0.076915686216631
228 => 0.074857029237412
229 => 0.075095324388293
301 => 0.076736941671936
302 => 0.079055822775857
303 => 0.08104566400148
304 => 0.080348890957235
305 => 0.085664777439712
306 => 0.086191825871
307 => 0.086119004819312
308 => 0.087319699581111
309 => 0.084936564996177
310 => 0.08391772879006
311 => 0.077039952110017
312 => 0.078972326816244
313 => 0.081781146936132
314 => 0.08140938906073
315 => 0.07936954880969
316 => 0.081044116599732
317 => 0.080490452119768
318 => 0.08005375397286
319 => 0.082054352841947
320 => 0.079854612205314
321 => 0.081759202840568
322 => 0.079316545650387
323 => 0.080352073757809
324 => 0.079764257921177
325 => 0.080144646807477
326 => 0.07792090115079
327 => 0.079120780328764
328 => 0.077870982232149
329 => 0.077870389665123
330 => 0.07784280030287
331 => 0.079313182221084
401 => 0.079361131322649
402 => 0.078274516863465
403 => 0.078117918743788
404 => 0.078696944068629
405 => 0.078019057060213
406 => 0.078336236124881
407 => 0.078028664090967
408 => 0.077959423147674
409 => 0.077407699531145
410 => 0.077170001827188
411 => 0.077263209221625
412 => 0.076945044332706
413 => 0.076753338478606
414 => 0.077804665183323
415 => 0.077242983735391
416 => 0.077718579445782
417 => 0.077176578108828
418 => 0.075297765336204
419 => 0.074217240242584
420 => 0.070668337081134
421 => 0.07167480161532
422 => 0.072342088642749
423 => 0.072121550284164
424 => 0.072595352015419
425 => 0.07262443959366
426 => 0.072470401820992
427 => 0.072292045813704
428 => 0.072205231973061
429 => 0.072852271215963
430 => 0.073227899274807
501 => 0.0724090598231
502 => 0.072217217196347
503 => 0.073045109091388
504 => 0.073550122669105
505 => 0.077278859184354
506 => 0.077002622339644
507 => 0.077695922611123
508 => 0.077617867640114
509 => 0.078344556776019
510 => 0.07953238639148
511 => 0.077117196660864
512 => 0.077536390087121
513 => 0.077433613539593
514 => 0.078555700936051
515 => 0.078559203970422
516 => 0.077886456523823
517 => 0.078251163828706
518 => 0.078047594216342
519 => 0.078415472019966
520 => 0.076998933028169
521 => 0.078724124614243
522 => 0.079702197074656
523 => 0.079715777611718
524 => 0.080179376195491
525 => 0.080650419206424
526 => 0.081554545246709
527 => 0.080625203621876
528 => 0.078953408508384
529 => 0.079074106715713
530 => 0.078093933852358
531 => 0.078110410735274
601 => 0.078022455842954
602 => 0.078286415095743
603 => 0.07705685724044
604 => 0.077345432011474
605 => 0.076941425642135
606 => 0.077535511856175
607 => 0.076896373295837
608 => 0.07743356397763
609 => 0.077665397667738
610 => 0.078520868975262
611 => 0.076770019488153
612 => 0.073199918861849
613 => 0.073950397296785
614 => 0.072840380742706
615 => 0.072943117000917
616 => 0.073150660592858
617 => 0.072477943907341
618 => 0.072606277051199
619 => 0.072601692088234
620 => 0.072562181354398
621 => 0.072387181762945
622 => 0.072133397732722
623 => 0.073144395198522
624 => 0.07331618336854
625 => 0.073698047190439
626 => 0.074834214903703
627 => 0.074720684956468
628 => 0.074905857010721
629 => 0.074501627455985
630 => 0.072961868050603
701 => 0.073045484394321
702 => 0.072002787248295
703 => 0.073671383080112
704 => 0.073276237562749
705 => 0.073021484677131
706 => 0.072951972992021
707 => 0.074090957045287
708 => 0.074431758925412
709 => 0.074219394064082
710 => 0.073783827537821
711 => 0.074620244031926
712 => 0.07484403380017
713 => 0.074894132076231
714 => 0.076376101736831
715 => 0.074976957717629
716 => 0.075313745589346
717 => 0.077941268424148
718 => 0.075558467786349
719 => 0.076820690426986
720 => 0.076758911197016
721 => 0.077404621588681
722 => 0.076705944098026
723 => 0.07671460504288
724 => 0.077287952126468
725 => 0.07648278955126
726 => 0.076283419974612
727 => 0.076007992332385
728 => 0.07660937851287
729 => 0.076969882329713
730 => 0.079875278332591
731 => 0.081752296652605
801 => 0.08167081033705
802 => 0.082415442725236
803 => 0.082079979014307
804 => 0.080996678200863
805 => 0.082845740594952
806 => 0.082260619885406
807 => 0.082308856525779
808 => 0.082307061155615
809 => 0.082696115275323
810 => 0.082420434775224
811 => 0.081877040211504
812 => 0.082237770882064
813 => 0.08330901201005
814 => 0.086634177341012
815 => 0.088494983912799
816 => 0.086522154448893
817 => 0.087882985795856
818 => 0.087066971901466
819 => 0.086918677902544
820 => 0.087773380553084
821 => 0.08862957924747
822 => 0.088575043092086
823 => 0.087953486806251
824 => 0.087602385431791
825 => 0.090261042666799
826 => 0.092219896028508
827 => 0.092086315361559
828 => 0.092675896982712
829 => 0.094406926857491
830 => 0.094565190535268
831 => 0.094545252949517
901 => 0.094152979911039
902 => 0.095857403625393
903 => 0.097279263874388
904 => 0.09406218003649
905 => 0.095287203447242
906 => 0.095837155924117
907 => 0.096644649323718
908 => 0.098007026040453
909 => 0.099486928507404
910 => 0.099696202942536
911 => 0.099547712716106
912 => 0.098571677257238
913 => 0.10019100419548
914 => 0.10113956793802
915 => 0.1017044159392
916 => 0.10313677648846
917 => 0.095840552243388
918 => 0.090675922076852
919 => 0.089869390498183
920 => 0.091509504178693
921 => 0.091941989076582
922 => 0.091767654956533
923 => 0.085954394156464
924 => 0.089838784883153
925 => 0.094018062696221
926 => 0.094178605777666
927 => 0.096270839635466
928 => 0.096952156743129
929 => 0.098636679234018
930 => 0.098531311893567
1001 => 0.098941466313491
1002 => 0.098847178915235
1003 => 0.10196740211155
1004 => 0.10540947165471
1005 => 0.10529028373154
1006 => 0.10479544550999
1007 => 0.10553036465145
1008 => 0.10908294929458
1009 => 0.10875588422965
1010 => 0.10907360008089
1011 => 0.11326229759004
1012 => 0.11870820018721
1013 => 0.11617803167114
1014 => 0.12166776931463
1015 => 0.12512326816271
1016 => 0.13109919611523
1017 => 0.13035098050351
1018 => 0.13267736540204
1019 => 0.12901151840122
1020 => 0.12059399269742
1021 => 0.11926188703381
1022 => 0.12192879630666
1023 => 0.12848513252077
1024 => 0.12172231394726
1025 => 0.12309042333676
1026 => 0.12269640774055
1027 => 0.12267541232388
1028 => 0.12347672198341
1029 => 0.12231438052877
1030 => 0.1175787923413
1031 => 0.11974908450062
1101 => 0.11891103047191
1102 => 0.11984091389783
1103 => 0.12485911123438
1104 => 0.12264044657301
1105 => 0.12030326358193
1106 => 0.12323460971517
1107 => 0.12696722066259
1108 => 0.12673364057765
1109 => 0.12628039758396
1110 => 0.12883530460836
1111 => 0.13305526249516
1112 => 0.1341959001548
1113 => 0.13503789555583
1114 => 0.13515399249601
1115 => 0.13634986313364
1116 => 0.12991936531687
1117 => 0.14012473049898
1118 => 0.14188691514841
1119 => 0.14155569746938
1120 => 0.14351429154316
1121 => 0.14293802348192
1122 => 0.14210310147487
1123 => 0.1452078896867
1124 => 0.14164850054532
1125 => 0.13659639577377
1126 => 0.13382471117679
1127 => 0.13747468903951
1128 => 0.1397036031536
1129 => 0.14117677359745
1130 => 0.14162255408364
1201 => 0.13041854655711
1202 => 0.12438020790305
1203 => 0.12825071375061
1204 => 0.13297299801267
1205 => 0.12989313278936
1206 => 0.13001385767516
1207 => 0.12562277924106
1208 => 0.13336151101955
1209 => 0.1322340428924
1210 => 0.13808334953049
1211 => 0.13668736555769
1212 => 0.14145724805228
1213 => 0.14020117813528
1214 => 0.1454150541348
1215 => 0.14749501043107
1216 => 0.15098758077185
1217 => 0.15355672973185
1218 => 0.15506538314115
1219 => 0.15497480924927
1220 => 0.16095284566505
1221 => 0.15742780644735
1222 => 0.15299952640196
1223 => 0.15291943278698
1224 => 0.1552129017717
1225 => 0.16001938358119
1226 => 0.16126563438292
1227 => 0.16196211856443
1228 => 0.16089542879566
1229 => 0.15706925136668
1230 => 0.15541712735201
1231 => 0.15682478487915
]
'min_raw' => 0.058044487066268
'max_raw' => 0.16196211856443
'avg_raw' => 0.11000330281535
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.058044'
'max' => '$0.161962'
'avg' => '$0.1100033'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022978943289406
'max_diff' => 0.083680762279616
'year' => 2036
]
11 => [
'items' => [
101 => 0.15510334068485
102 => 0.15807503631615
103 => 0.16215580913787
104 => 0.16131314568731
105 => 0.16413004326336
106 => 0.16704523590832
107 => 0.17121409232009
108 => 0.17230398575843
109 => 0.17410553816708
110 => 0.17595992737472
111 => 0.17655550721102
112 => 0.17769265391609
113 => 0.17768666059164
114 => 0.18111352872617
115 => 0.18489347039983
116 => 0.18632031087578
117 => 0.1896012518738
118 => 0.18398275539258
119 => 0.18824444951422
120 => 0.19208860428906
121 => 0.1875054444906
122 => 0.19382226253351
123 => 0.1940675302639
124 => 0.1977707817975
125 => 0.19401682691104
126 => 0.19178774048251
127 => 0.1982230294789
128 => 0.20133686311455
129 => 0.20039895108228
130 => 0.19326139420622
131 => 0.18910702996015
201 => 0.17823425741114
202 => 0.19111352616426
203 => 0.19738664228048
204 => 0.19324514835096
205 => 0.19533387699269
206 => 0.20672930318947
207 => 0.21106794368599
208 => 0.2101655367921
209 => 0.21031802870229
210 => 0.21265908036232
211 => 0.22304059266358
212 => 0.21681974985109
213 => 0.22157535109071
214 => 0.22409770484061
215 => 0.22644060757581
216 => 0.22068717894016
217 => 0.21320205281983
218 => 0.2108311991733
219 => 0.19283335839959
220 => 0.19189649262666
221 => 0.19137060147837
222 => 0.18805493217721
223 => 0.18544972434476
224 => 0.18337796635123
225 => 0.17794105469689
226 => 0.17977585277801
227 => 0.17111055037265
228 => 0.17665430377214
301 => 0.16282427190214
302 => 0.17434233340509
303 => 0.16807357619103
304 => 0.17228287806259
305 => 0.1722681922049
306 => 0.16451753289898
307 => 0.16004711436347
308 => 0.16289583904559
309 => 0.16594989803687
310 => 0.16644540883312
311 => 0.17040507603442
312 => 0.17151013403754
313 => 0.16816175669786
314 => 0.16253767523182
315 => 0.16384402108474
316 => 0.16002064130645
317 => 0.15332031530919
318 => 0.15813260641689
319 => 0.15977573418257
320 => 0.16050143301081
321 => 0.15391243193014
322 => 0.15184202473642
323 => 0.15073975731889
324 => 0.16168711793343
325 => 0.16228683906017
326 => 0.15921858098377
327 => 0.17308739843325
328 => 0.16994845790878
329 => 0.17345542353371
330 => 0.16372548389105
331 => 0.1640971806885
401 => 0.15949087133247
402 => 0.16207009677815
403 => 0.16024718336546
404 => 0.16186172085054
405 => 0.16282946796211
406 => 0.1674350214681
407 => 0.17439492142813
408 => 0.16674710535598
409 => 0.1634148423746
410 => 0.16548215958689
411 => 0.17098769775109
412 => 0.17932886989317
413 => 0.17439072810333
414 => 0.17658219157457
415 => 0.17706092885162
416 => 0.17341972591573
417 => 0.17946312623917
418 => 0.182701833569
419 => 0.18602407713335
420 => 0.18890868813313
421 => 0.18469709999605
422 => 0.18920410301017
423 => 0.18557225417392
424 => 0.18231411031417
425 => 0.1823190515735
426 => 0.1802751703364
427 => 0.1763148928939
428 => 0.17558455697194
429 => 0.17938385666921
430 => 0.18243053523139
501 => 0.18268147427038
502 => 0.18436827206641
503 => 0.18536650162669
504 => 0.19515050834479
505 => 0.19908571678436
506 => 0.20389761517458
507 => 0.20577212078131
508 => 0.2114137106101
509 => 0.20685766863583
510 => 0.20587194029585
511 => 0.19218728872118
512 => 0.1944281496499
513 => 0.19801598420771
514 => 0.19224645079155
515 => 0.19590589178057
516 => 0.19662834294936
517 => 0.19205040425381
518 => 0.19449567911216
519 => 0.18800175406186
520 => 0.17453647124837
521 => 0.1794781169482
522 => 0.18311683152323
523 => 0.17792393717439
524 => 0.18723199930192
525 => 0.18179442156442
526 => 0.1800709704714
527 => 0.17334717330283
528 => 0.17652054674371
529 => 0.18081257976082
530 => 0.17816060235864
531 => 0.18366385366458
601 => 0.1914579251773
602 => 0.19701244468225
603 => 0.1974388517191
604 => 0.19386766780132
605 => 0.19959051282055
606 => 0.19963219749875
607 => 0.19317680493854
608 => 0.1892229129392
609 => 0.18832458035789
610 => 0.19056879127448
611 => 0.19329367763141
612 => 0.19759006394766
613 => 0.20018628021703
614 => 0.20695583532082
615 => 0.20878748283355
616 => 0.21079990812922
617 => 0.2134891289332
618 => 0.21671822801044
619 => 0.20965314306215
620 => 0.20993385205811
621 => 0.20335494277701
622 => 0.19632443469913
623 => 0.20165971396504
624 => 0.20863488188275
625 => 0.20703477065555
626 => 0.20685472545519
627 => 0.20715751154183
628 => 0.20595107993127
629 => 0.20049443446914
630 => 0.19775414127847
701 => 0.20128981861779
702 => 0.20316887376874
703 => 0.20608312443704
704 => 0.20572388152981
705 => 0.21323067828367
706 => 0.21614759250847
707 => 0.21540132102797
708 => 0.21553865294041
709 => 0.22081958681443
710 => 0.22669307138923
711 => 0.23219436476808
712 => 0.23779051667909
713 => 0.23104413712883
714 => 0.22761874165206
715 => 0.23115287542526
716 => 0.22927761429867
717 => 0.24005342097065
718 => 0.24079951444469
719 => 0.2515745419032
720 => 0.26180132602773
721 => 0.25537806615098
722 => 0.26143491090478
723 => 0.26798588232781
724 => 0.28062376905964
725 => 0.27636777341457
726 => 0.27310774745041
727 => 0.2700270386666
728 => 0.27643750459695
729 => 0.28468446660666
730 => 0.28646078323513
731 => 0.28933909477843
801 => 0.28631290213384
802 => 0.28995761785006
803 => 0.30282506589756
804 => 0.29934816785102
805 => 0.29441041368568
806 => 0.30456802811634
807 => 0.30824402929206
808 => 0.33404413068009
809 => 0.36661782443149
810 => 0.353132101328
811 => 0.3447610778161
812 => 0.34672846690473
813 => 0.35862327717363
814 => 0.36244351270959
815 => 0.35205879560869
816 => 0.35572685324896
817 => 0.37593821148234
818 => 0.38678095671654
819 => 0.37205505231353
820 => 0.33142686610346
821 => 0.29396582294823
822 => 0.30390217848576
823 => 0.30277570412881
824 => 0.32449028713229
825 => 0.2992652449825
826 => 0.29968996999907
827 => 0.32185358758292
828 => 0.31594071439215
829 => 0.30636261708668
830 => 0.29403575365832
831 => 0.27124840651413
901 => 0.25106501767633
902 => 0.2906492911441
903 => 0.28894234529284
904 => 0.28647043474501
905 => 0.29197140418054
906 => 0.31868255028207
907 => 0.31806677190889
908 => 0.31414950407159
909 => 0.31712071720097
910 => 0.3058417490595
911 => 0.30874859596688
912 => 0.2939598889276
913 => 0.30064500214032
914 => 0.30634206679161
915 => 0.30748583686684
916 => 0.31006280924868
917 => 0.28804286239344
918 => 0.29792917205977
919 => 0.30373645276679
920 => 0.27749894726178
921 => 0.30321782164297
922 => 0.28765954410865
923 => 0.28237883103602
924 => 0.28948861550727
925 => 0.28671792558433
926 => 0.28433584908896
927 => 0.28300660947527
928 => 0.28822725051269
929 => 0.28798370136827
930 => 0.27944171934831
1001 => 0.26829905201899
1002 => 0.27203889692029
1003 => 0.27068017620642
1004 => 0.26575599706086
1005 => 0.26907429925731
1006 => 0.25446217573847
1007 => 0.22932277669641
1008 => 0.24593063374421
1009 => 0.24529124931375
1010 => 0.24496884269013
1011 => 0.2574491882541
1012 => 0.25624949099869
1013 => 0.25407202873264
1014 => 0.26571600625876
1015 => 0.26146579782813
1016 => 0.27456393873629
1017 => 0.28319122147304
1018 => 0.28100306350764
1019 => 0.28911706462084
1020 => 0.27212505539339
1021 => 0.27776911925767
1022 => 0.27893235299776
1023 => 0.26557232138354
1024 => 0.25644577630658
1025 => 0.25583713980018
1026 => 0.24001296835212
1027 => 0.24846611301142
1028 => 0.25590453049672
1029 => 0.25234210576577
1030 => 0.25121434852037
1031 => 0.25697581570644
1101 => 0.25742353105042
1102 => 0.24721557376078
1103 => 0.24933813132526
1104 => 0.25818954921499
1105 => 0.24911509830484
1106 => 0.23148492248955
1107 => 0.22711239513111
1108 => 0.22652901937983
1109 => 0.21467037839422
1110 => 0.22740458831726
1111 => 0.22184576443024
1112 => 0.23940602248439
1113 => 0.22937569726141
1114 => 0.22894330998841
1115 => 0.22828969320784
1116 => 0.21808247103723
1117 => 0.22031720398978
1118 => 0.22774579668351
1119 => 0.23039640224572
1120 => 0.23011992236981
1121 => 0.22770939252666
1122 => 0.22881292074494
1123 => 0.22525807185913
1124 => 0.22400278072976
1125 => 0.22004073663047
1126 => 0.21421762634712
1127 => 0.21502736554723
1128 => 0.20349026037624
1129 => 0.19720423315857
1130 => 0.19546434367322
1201 => 0.19313769073843
1202 => 0.19572714531319
1203 => 0.20345757720685
1204 => 0.19413303624048
1205 => 0.17814676479415
1206 => 0.17910756694735
1207 => 0.18126620412089
1208 => 0.17724359802882
1209 => 0.17343653895442
1210 => 0.17674646794314
1211 => 0.16997287398804
1212 => 0.18208476058913
1213 => 0.18175716799974
1214 => 0.18627173033059
1215 => 0.18909477880421
1216 => 0.18258856604531
1217 => 0.18095227113111
1218 => 0.1818843790797
1219 => 0.16647871098574
1220 => 0.18501275857727
1221 => 0.18517304179049
1222 => 0.18380059960818
1223 => 0.19366940777616
1224 => 0.21449567116903
1225 => 0.20665999314613
1226 => 0.20362578178104
1227 => 0.19785774375801
1228 => 0.20554331195149
1229 => 0.20495318022777
1230 => 0.2022843807723
1231 => 0.20067028253447
]
'min_raw' => 0.15073975731889
'max_raw' => 0.38678095671654
'avg_raw' => 0.26876035701771
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.150739'
'max' => '$0.38678'
'avg' => '$0.26876'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.092695270252617
'max_diff' => 0.22481883815211
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0047315487357773
]
1 => [
'year' => 2028
'avg' => 0.0081207112090063
]
2 => [
'year' => 2029
'avg' => 0.022184319407212
]
3 => [
'year' => 2030
'avg' => 0.017115169384784
]
4 => [
'year' => 2031
'avg' => 0.016809217395449
]
5 => [
'year' => 2032
'avg' => 0.029471848149625
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0047315487357773
'min' => '$0.004731'
'max_raw' => 0.029471848149625
'max' => '$0.029471'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.029471848149625
]
1 => [
'year' => 2033
'avg' => 0.075804623995242
]
2 => [
'year' => 2034
'avg' => 0.048048613687945
]
3 => [
'year' => 2035
'avg' => 0.056673450030839
]
4 => [
'year' => 2036
'avg' => 0.11000330281535
]
5 => [
'year' => 2037
'avg' => 0.26876035701771
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.029471848149625
'min' => '$0.029471'
'max_raw' => 0.26876035701771
'max' => '$0.26876'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.26876035701771
]
]
]
]
'prediction_2025_max_price' => '$0.00809'
'last_price' => 0.0078443631331041
'sma_50day_nextmonth' => '$0.007919'
'sma_200day_nextmonth' => '$0.015829'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.00755'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007567'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.008135'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.009029'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.011371'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.016051'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.01696'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007668'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007746'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.008153'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.009034'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.011258'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013858'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.015747'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.014935'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01601'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01735'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.008464'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0090074'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.010458'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.012984'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015211'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.015786'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009857'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 12.78
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007895'
'vwma_10_action' => 'SELL'
'hma_9' => '0.007232'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 13.81
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -86.33
'cci_20_action' => 'NEUTRAL'
'adx_14' => 40.83
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.002444'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -86.19
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 26.24
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.002093'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 21
'buy_signals' => 11
'sell_pct' => 65.63
'buy_pct' => 34.38
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767710839
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de PIRB para 2026
A previsão de preço para PIRB em 2026 sugere que o preço médio poderia variar entre $0.00271 na extremidade inferior e $0.00809 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, PIRB poderia potencialmente ganhar 3.13% até 2026 se PIRB atingir a meta de preço prevista.
Previsão de preço de PIRB 2027-2032
A previsão de preço de PIRB para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004731 na extremidade inferior e $0.029471 na extremidade superior. Considerando a volatilidade de preços no mercado, se PIRB atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de PIRB | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002609 | $0.004731 | $0.006854 |
| 2028 | $0.0047085 | $0.00812 | $0.011532 |
| 2029 | $0.010343 | $0.022184 | $0.034025 |
| 2030 | $0.008796 | $0.017115 | $0.025433 |
| 2031 | $0.01040036 | $0.0168092 | $0.023218 |
| 2032 | $0.015875 | $0.029471 | $0.043068 |
Previsão de preço de PIRB 2032-2037
A previsão de preço de PIRB para 2032-2037 é atualmente estimada entre $0.029471 na extremidade inferior e $0.26876 na extremidade superior. Comparado ao preço atual, PIRB poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de PIRB | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.015875 | $0.029471 | $0.043068 |
| 2033 | $0.03689 | $0.0758046 | $0.114718 |
| 2034 | $0.029658 | $0.048048 | $0.066438 |
| 2035 | $0.035065 | $0.056673 | $0.078281 |
| 2036 | $0.058044 | $0.1100033 | $0.161962 |
| 2037 | $0.150739 | $0.26876 | $0.38678 |
PIRB Histograma de preços potenciais
Previsão de preço de PIRB baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para PIRB é Baixista, com 11 indicadores técnicos mostrando sinais de alta e 21 indicando sinais de baixa. A previsão de preço de PIRB foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de PIRB
De acordo com nossos indicadores técnicos, o SMA de 200 dias de PIRB está projetado para aumentar no próximo mês, alcançando $0.015829 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para PIRB é esperado para alcançar $0.007919 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 30.19, sugerindo que o mercado de PIRB está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PIRB para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.00755 | BUY |
| SMA 5 | $0.007567 | BUY |
| SMA 10 | $0.008135 | SELL |
| SMA 21 | $0.009029 | SELL |
| SMA 50 | $0.011371 | SELL |
| SMA 100 | $0.016051 | SELL |
| SMA 200 | $0.01696 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.007668 | BUY |
| EMA 5 | $0.007746 | BUY |
| EMA 10 | $0.008153 | SELL |
| EMA 21 | $0.009034 | SELL |
| EMA 50 | $0.011258 | SELL |
| EMA 100 | $0.013858 | SELL |
| EMA 200 | $0.015747 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.014935 | SELL |
| SMA 50 | $0.01601 | SELL |
| SMA 100 | $0.01735 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.012984 | SELL |
| EMA 50 | $0.015211 | SELL |
| EMA 100 | $0.015786 | SELL |
| EMA 200 | $0.009857 | SELL |
Osciladores de PIRB
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 30.19 | NEUTRAL |
| Stoch RSI (14) | 12.78 | BUY |
| Estocástico Rápido (14) | 13.81 | BUY |
| Índice de Canal de Commodities (20) | -86.33 | NEUTRAL |
| Índice Direcional Médio (14) | 40.83 | SELL |
| Oscilador Impressionante (5, 34) | -0.002444 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -86.19 | BUY |
| Oscilador Ultimate (7, 14, 28) | 26.24 | BUY |
| VWMA (10) | 0.007895 | SELL |
| Média Móvel de Hull (9) | 0.007232 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002093 | SELL |
Previsão do preço de PIRB com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do PIRB
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de PIRB por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.011022 | $0.015488 | $0.021764 | $0.030582 | $0.042973 | $0.060384 |
| Amazon.com stock | $0.016367 | $0.034152 | $0.07126 | $0.148689 | $0.310249 | $0.647354 |
| Apple stock | $0.011126 | $0.015782 | $0.022385 | $0.031752 | $0.045038 | $0.063884 |
| Netflix stock | $0.012377 | $0.019529 | $0.030814 | $0.048619 | $0.076714 | $0.121043 |
| Google stock | $0.010158 | $0.013155 | $0.017035 | $0.022061 | $0.028569 | $0.036997 |
| Tesla stock | $0.017782 | $0.040311 | $0.091383 | $0.207159 | $0.469615 | $1.06 |
| Kodak stock | $0.005882 | $0.004411 | $0.0033079 | $0.00248 | $0.00186 | $0.001394 |
| Nokia stock | $0.005196 | $0.003442 | $0.00228 | $0.00151 | $0.0010008 | $0.000662 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para PIRB
Você pode fazer perguntas como: 'Devo investir em PIRB agora?', 'Devo comprar PIRB hoje?', 'PIRB será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para PIRB regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como PIRB, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre PIRB para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de PIRB é de $0.007844 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de PIRB com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se PIRB tiver 1% da média anterior do crescimento anual do Bitcoin | $0.008048 | $0.008257 | $0.008472 | $0.008692 |
| Se PIRB tiver 2% da média anterior do crescimento anual do Bitcoin | $0.008252 | $0.008681 | $0.009132 | $0.0096072 |
| Se PIRB tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008863 | $0.010015 | $0.011317 | $0.012788 |
| Se PIRB tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009883 | $0.012452 | $0.015689 | $0.019767 |
| Se PIRB tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011922 | $0.01812 | $0.02754 | $0.041857 |
| Se PIRB tiver 50% da média anterior do crescimento anual do Bitcoin | $0.018039 | $0.041484 | $0.095400086 | $0.219387 |
| Se PIRB tiver 100% da média anterior do crescimento anual do Bitcoin | $0.028234 | $0.101624 | $0.365779 | $1.31 |
Perguntas Frequentes sobre PIRB
PIRB é um bom investimento?
A decisão de adquirir PIRB depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de PIRB experimentou uma queda de -3.2696% nas últimas 24 horas, e PIRB registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em PIRB dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
PIRB pode subir?
Parece que o valor médio de PIRB pode potencialmente subir para $0.00809 até o final deste ano. Observando as perspectivas de PIRB em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.025433. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de PIRB na próxima semana?
Com base na nossa nova previsão experimental de PIRB, o preço de PIRB aumentará 0.86% na próxima semana e atingirá $0.007911 até 13 de janeiro de 2026.
Qual será o preço de PIRB no próximo mês?
Com base na nossa nova previsão experimental de PIRB, o preço de PIRB diminuirá -11.62% no próximo mês e atingirá $0.006933 até 5 de fevereiro de 2026.
Até onde o preço de PIRB pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de PIRB em 2026, espera-se que PIRB fluctue dentro do intervalo de $0.00271 e $0.00809. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de PIRB não considera flutuações repentinas e extremas de preço.
Onde estará PIRB em 5 anos?
O futuro de PIRB parece seguir uma tendência de alta, com um preço máximo de $0.025433 projetada após um período de cinco anos. Com base na previsão de PIRB para 2030, o valor de PIRB pode potencialmente atingir seu pico mais alto de aproximadamente $0.025433, enquanto seu pico mais baixo está previsto para cerca de $0.008796.
Quanto será PIRB em 2026?
Com base na nossa nova simulação experimental de previsão de preços de PIRB, espera-se que o valor de PIRB em 2026 aumente 3.13% para $0.00809 se o melhor cenário ocorrer. O preço ficará entre $0.00809 e $0.00271 durante 2026.
Quanto será PIRB em 2027?
De acordo com nossa última simulação experimental para previsão de preços de PIRB, o valor de PIRB pode diminuir -12.62% para $0.006854 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006854 e $0.002609 ao longo do ano.
Quanto será PIRB em 2028?
Nosso novo modelo experimental de previsão de preços de PIRB sugere que o valor de PIRB em 2028 pode aumentar 47.02%, alcançando $0.011532 no melhor cenário. O preço é esperado para variar entre $0.011532 e $0.0047085 durante o ano.
Quanto será PIRB em 2029?
Com base no nosso modelo de previsão experimental, o valor de PIRB pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.034025 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.034025 e $0.010343.
Quanto será PIRB em 2030?
Usando nossa nova simulação experimental para previsões de preços de PIRB, espera-se que o valor de PIRB em 2030 aumente 224.23%, alcançando $0.025433 no melhor cenário. O preço está previsto para variar entre $0.025433 e $0.008796 ao longo de 2030.
Quanto será PIRB em 2031?
Nossa simulação experimental indica que o preço de PIRB poderia aumentar 195.98% em 2031, potencialmente atingindo $0.023218 sob condições ideais. O preço provavelmente oscilará entre $0.023218 e $0.01040036 durante o ano.
Quanto será PIRB em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de PIRB, PIRB poderia ver um 449.04% aumento em valor, atingindo $0.043068 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.043068 e $0.015875 ao longo do ano.
Quanto será PIRB em 2033?
De acordo com nossa previsão experimental de preços de PIRB, espera-se que o valor de PIRB seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.114718. Ao longo do ano, o preço de PIRB poderia variar entre $0.114718 e $0.03689.
Quanto será PIRB em 2034?
Os resultados da nossa nova simulação de previsão de preços de PIRB sugerem que PIRB pode aumentar 746.96% em 2034, atingindo potencialmente $0.066438 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.066438 e $0.029658.
Quanto será PIRB em 2035?
Com base em nossa previsão experimental para o preço de PIRB, PIRB poderia aumentar 897.93%, com o valor potencialmente atingindo $0.078281 em 2035. A faixa de preço esperada para o ano está entre $0.078281 e $0.035065.
Quanto será PIRB em 2036?
Nossa recente simulação de previsão de preços de PIRB sugere que o valor de PIRB pode aumentar 1964.7% em 2036, possivelmente atingindo $0.161962 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.161962 e $0.058044.
Quanto será PIRB em 2037?
De acordo com a simulação experimental, o valor de PIRB poderia aumentar 4830.69% em 2037, com um pico de $0.38678 sob condições favoráveis. O preço é esperado para cair entre $0.38678 e $0.150739 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Pillar
Previsão de Preço do Metaverser
Previsão de Preço do TYBENG
Previsão de Preço do DePay
Previsão de Preço do SafeMoonCash
Previsão de Preço do Kambria
Previsão de Preço do League of Ancients
Previsão de Preço do Revuto
Previsão de Preço do Heroes of NFT
Previsão de Preço do Pandacoin
Previsão de Preço do DOLA Borrowing Right
Previsão de Preço do MetaFighter
Previsão de Preço do Kalmar
Previsão de Preço do Nominex
Previsão de Preço do MetaVPad
Previsão de Preço do FlowX Finance
Previsão de Preço do Solanacorn
Previsão de Preço do Battle Infinity
Previsão de Preço do Virtacoinplus
Previsão de Preço do Cryptocart
Previsão de Preço do SYNO Finance
Previsão de Preço do NFTY Token
Previsão de Preço do IP Exchange
Previsão de Preço do NetherFi
Previsão de Preço do Tokenomy
Como ler e prever os movimentos de preço de PIRB?
Traders de PIRB utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de PIRB
Médias móveis são ferramentas populares para a previsão de preço de PIRB. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PIRB em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PIRB acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PIRB.
Como ler gráficos de PIRB e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de PIRB em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PIRB dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de PIRB?
A ação de preço de PIRB é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PIRB. A capitalização de mercado de PIRB pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PIRB, grandes detentores de PIRB, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de PIRB.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


