Previsão de Preço NULS - Projeção NULS
Previsão de Preço NULS até $0.004954 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001659 | $0.004954 |
| 2027 | $0.001597 | $0.004197 |
| 2028 | $0.002883 | $0.007063 |
| 2029 | $0.006334 | $0.020838 |
| 2030 | $0.005387 | $0.015576 |
| 2031 | $0.006369 | $0.014219 |
| 2032 | $0.009722 | $0.026376 |
| 2033 | $0.022593 | $0.070258 |
| 2034 | $0.018164 | $0.040689 |
| 2035 | $0.021475 | $0.047942 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NULS hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.33, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Nuls para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NULS'
'name_with_ticker' => 'NULS <small>NULS</small>'
'name_lang' => 'Nuls'
'name_lang_with_ticker' => 'Nuls <small>NULS</small>'
'name_with_lang' => 'Nuls/NULS'
'name_with_lang_with_ticker' => 'Nuls/NULS <small>NULS</small>'
'image' => '/uploads/coins/nuls.png?1717208719'
'price_for_sd' => 0.004804
'ticker' => 'NULS'
'marketcap' => '$548.84K'
'low24h' => '$0.004802'
'high24h' => '$0.005114'
'volume24h' => '$92.32'
'current_supply' => '114.24M'
'max_supply' => '133.44M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004804'
'change_24h_pct' => '-5.5517%'
'ath_price' => '$8.53'
'ath_days' => 2918
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de jan. de 2018'
'ath_pct' => '-99.94%'
'fdv' => '$641.1K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.236881'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004845'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004246'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001659'
'current_year_max_price_prediction' => '$0.004954'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005387'
'grand_prediction_max_price' => '$0.015576'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.004895267631475
107 => 0.0049135447838288
108 => 0.0049547241413364
109 => 0.0046028510400801
110 => 0.0047608317320927
111 => 0.004853630587861
112 => 0.0044343619814482
113 => 0.0048453429955636
114 => 0.0045967257122342
115 => 0.0045123412721659
116 => 0.0046259538039132
117 => 0.0045816788897995
118 => 0.0045436139185547
119 => 0.0045223730105609
120 => 0.0046057975149185
121 => 0.0046019056620764
122 => 0.0044654069809487
123 => 0.0042873500158156
124 => 0.0043471117778349
125 => 0.0043253997694238
126 => 0.0042467126500371
127 => 0.0042997382677847
128 => 0.0040662402828751
129 => 0.0036645191360074
130 => 0.0039299084306798
131 => 0.0039196912315229
201 => 0.0039145392563949
202 => 0.0041139719765198
203 => 0.0040948011221755
204 => 0.004060005833819
205 => 0.0042460736072796
206 => 0.0041781563670017
207 => 0.0043874612982237
208 => 0.0045253230629207
209 => 0.0044903568600327
210 => 0.0046200165160739
211 => 0.00434848856813
212 => 0.0044386792606266
213 => 0.0044572674373512
214 => 0.0042437775598376
215 => 0.0040979377110361
216 => 0.0040882118558171
217 => 0.0038353456559644
218 => 0.0039704247388611
219 => 0.0040892887418579
220 => 0.0040323621086416
221 => 0.0040143408372002
222 => 0.0041064076046577
223 => 0.0041135619809877
224 => 0.0039504414424771
225 => 0.0039843593677891
226 => 0.004125802754726
227 => 0.0039807953573447
228 => 0.0036990696710566
301 => 0.0036291978056948
302 => 0.0036198756108615
303 => 0.0034303775703928
304 => 0.0036338669778436
305 => 0.0035450383983143
306 => 0.0038256468167176
307 => 0.0036653647930588
308 => 0.0036584553553704
309 => 0.0036480107269104
310 => 0.0034849019354135
311 => 0.0035206123946469
312 => 0.0036393193999951
313 => 0.0036816753968334
314 => 0.0036772573193507
315 => 0.0036387376709085
316 => 0.0036563717687128
317 => 0.0035995661955581
318 => 0.0035795069653713
319 => 0.0035161945171761
320 => 0.0034231427088394
321 => 0.0034360821335086
322 => 0.0032517221528634
323 => 0.0031512730506832
324 => 0.0031234700630976
325 => 0.0030862907461313
326 => 0.0031276695658793
327 => 0.0032511998842019
328 => 0.0031021961118859
329 => 0.0028467395956495
330 => 0.0028620929675521
331 => 0.00289658743576
401 => 0.0028323072224582
402 => 0.0027714713951975
403 => 0.002824363211234
404 => 0.0027161229176809
405 => 0.0029096677581118
406 => 0.0029044329125813
407 => 0.0029765744603613
408 => 0.0030216860506817
409 => 0.0029177184400439
410 => 0.0028915708671268
411 => 0.0029064657130013
412 => 0.0026602870893751
413 => 0.0029564564147481
414 => 0.0029590176993726
415 => 0.0029370864254165
416 => 0.0030947874479756
417 => 0.0034275857937577
418 => 0.003302373669292
419 => 0.0032538877501424
420 => 0.003161715982396
421 => 0.0032845293903
422 => 0.0032750992367606
423 => 0.0032324525061759
424 => 0.0032066596304523
425 => 0.0032541837948257
426 => 0.0032007708605598
427 => 0.0031911764298763
428 => 0.0031330446187783
429 => 0.0031122942070451
430 => 0.0030969314282956
501 => 0.0030800185184079
502 => 0.0031173241831857
503 => 0.0030327846388302
504 => 0.0029308382358512
505 => 0.0029223624955188
506 => 0.0029457647597711
507 => 0.0029354109999332
508 => 0.0029223129257001
509 => 0.0028973051349409
510 => 0.0028898858576296
511 => 0.0029139949095698
512 => 0.0028867771955744
513 => 0.0029269384152002
514 => 0.0029160167856836
515 => 0.002855009451019
516 => 0.0027789717242186
517 => 0.0027782948289556
518 => 0.0027619126254433
519 => 0.0027410474261897
520 => 0.0027352432050884
521 => 0.0028199088100147
522 => 0.0029951640783839
523 => 0.0029607572756999
524 => 0.00298561971679
525 => 0.0031079183196913
526 => 0.0031467933679063
527 => 0.0031192007794892
528 => 0.0030814303426273
529 => 0.003083092050161
530 => 0.0032121650668071
531 => 0.0032202151925311
601 => 0.0032405552631668
602 => 0.0032666980020369
603 => 0.0031236530009632
604 => 0.0030763546434742
605 => 0.003053942057683
606 => 0.0029849199682083
607 => 0.0030593543742
608 => 0.0030159846334277
609 => 0.0030218366931792
610 => 0.0030180255315889
611 => 0.0030201066835268
612 => 0.0029096136583844
613 => 0.0029498715094039
614 => 0.0028829350239454
615 => 0.0027933145838897
616 => 0.0027930141447496
617 => 0.0028149486204881
618 => 0.0028019011360227
619 => 0.0027667906908079
620 => 0.0027717779638341
621 => 0.0027280842042699
622 => 0.0027770831773462
623 => 0.0027784882925673
624 => 0.0027596210189408
625 => 0.0028351106975202
626 => 0.0028660388804279
627 => 0.0028536200367508
628 => 0.0028651675412494
629 => 0.0029621870336888
630 => 0.0029780054442136
701 => 0.0029850309372632
702 => 0.0029756177072762
703 => 0.00286694087947
704 => 0.0028717611589128
705 => 0.0028363931466674
706 => 0.0028065109033095
707 => 0.0028077060363321
708 => 0.0028230693938378
709 => 0.0028901620771143
710 => 0.00303135467374
711 => 0.0030367128295715
712 => 0.0030432070707477
713 => 0.00301679172814
714 => 0.0030088246080487
715 => 0.0030193352959373
716 => 0.0030723598116758
717 => 0.003208753262171
718 => 0.0031605427073538
719 => 0.0031213467758453
720 => 0.0031557321749255
721 => 0.0031504388122587
722 => 0.0031057575042997
723 => 0.003104503448801
724 => 0.0030187457333493
725 => 0.0029870430585556
726 => 0.0029605499305938
727 => 0.0029316201264802
728 => 0.0029144695688658
729 => 0.0029408206201505
730 => 0.0029468474173558
731 => 0.0028892303831842
801 => 0.0028813773943289
802 => 0.0029284287081835
803 => 0.0029077231792058
804 => 0.0029290193292317
805 => 0.0029339602187127
806 => 0.002933164621708
807 => 0.0029115456714405
808 => 0.0029253249456546
809 => 0.0028927328543388
810 => 0.0028572938502068
811 => 0.0028346859734985
812 => 0.0028149576025709
813 => 0.0028259040493812
814 => 0.0027868819652447
815 => 0.00277439801517
816 => 0.0029206568375943
817 => 0.0030286998022665
818 => 0.0030271288147704
819 => 0.0030175658324134
820 => 0.0030033571804111
821 => 0.0030713203602816
822 => 0.0030476433473814
823 => 0.0030648703525469
824 => 0.0030692553483767
825 => 0.0030825274100771
826 => 0.0030872710313628
827 => 0.0030729325131807
828 => 0.0030248106948592
829 => 0.0029048956988872
830 => 0.0028490749445579
831 => 0.002830653165861
901 => 0.0028313227625287
902 => 0.0028128522972226
903 => 0.0028182926770434
904 => 0.0028109603551413
905 => 0.0027970747113379
906 => 0.0028250466500051
907 => 0.0028282701553598
908 => 0.0028217411706351
909 => 0.0028232789828905
910 => 0.0027692217779358
911 => 0.0027733316298224
912 => 0.002750447452263
913 => 0.0027461569448435
914 => 0.0026883077367264
915 => 0.0025858194791703
916 => 0.0026426079226323
917 => 0.0025740154685937
918 => 0.0025480384669041
919 => 0.0026710095526504
920 => 0.0026586666663284
921 => 0.002637541010269
922 => 0.0026062917619846
923 => 0.0025947011118227
924 => 0.0025242799905933
925 => 0.002520119135069
926 => 0.0025550217442805
927 => 0.0025389153910549
928 => 0.0025162959711731
929 => 0.0024343707252551
930 => 0.0023422596243265
1001 => 0.0023450398794738
1002 => 0.0023743387068912
1003 => 0.0024595289990926
1004 => 0.0024262436781225
1005 => 0.0024020947958536
1006 => 0.0023975724361174
1007 => 0.0024541792364176
1008 => 0.0025342897183337
1009 => 0.0025718757640778
1010 => 0.0025346291342506
1011 => 0.0024918422114061
1012 => 0.0024944464531442
1013 => 0.0025117713067064
1014 => 0.0025135919038556
1015 => 0.0024857420156506
1016 => 0.0024935815960487
1017 => 0.0024816725565577
1018 => 0.0024085868031844
1019 => 0.0024072649136633
1020 => 0.0023893284911186
1021 => 0.0023887853833723
1022 => 0.0023582710541733
1023 => 0.0023540018885828
1024 => 0.0022934138358708
1025 => 0.0023332930756434
1026 => 0.002306544175358
1027 => 0.0022662272732003
1028 => 0.0022592766240719
1029 => 0.002259067679166
1030 => 0.0023004641229876
1031 => 0.0023328093340951
1101 => 0.0023070094839307
1102 => 0.0023011353581573
1103 => 0.0023638556534506
1104 => 0.0023558739241663
1105 => 0.0023489617980828
1106 => 0.0025271167033376
1107 => 0.0023860931942278
1108 => 0.0023245988949155
1109 => 0.0022484880220657
1110 => 0.0022732701060499
1111 => 0.00227849205527
1112 => 0.0020954591260823
1113 => 0.0020212026895062
1114 => 0.0019957206787681
1115 => 0.0019810554213255
1116 => 0.0019877385632968
1117 => 0.001920899060967
1118 => 0.0019658163119559
1119 => 0.0019079389527408
1120 => 0.0018982356251192
1121 => 0.0020017275130248
1122 => 0.002016127804636
1123 => 0.0019546916868026
1124 => 0.0019941436200557
1125 => 0.0019798378006352
1126 => 0.0019089310939465
1127 => 0.0019062229793054
1128 => 0.0018706444863802
1129 => 0.0018149710343061
1130 => 0.0017895267727901
1201 => 0.0017762751804753
1202 => 0.0017817430457328
1203 => 0.0017789783257392
1204 => 0.0017609366576522
1205 => 0.0017800124530351
1206 => 0.0017312816784947
1207 => 0.0017118766914222
1208 => 0.0017031119089539
1209 => 0.0016598605417106
1210 => 0.001728692700965
1211 => 0.0017422535034628
1212 => 0.0017558410249307
1213 => 0.0018741111227136
1214 => 0.0018682026828562
1215 => 0.0019216121016403
1216 => 0.00191953670984
1217 => 0.0019043034784275
1218 => 0.0018400369808434
1219 => 0.0018656524613402
1220 => 0.0017868119939004
1221 => 0.001845884632737
1222 => 0.0018189263473044
1223 => 0.0018367700093146
1224 => 0.001804685496122
1225 => 0.0018224423904599
1226 => 0.0017454692728076
1227 => 0.0016735928585849
1228 => 0.0017025180258715
1229 => 0.0017339629907061
1230 => 0.0018021436864955
1231 => 0.0017615358265618
]
'min_raw' => 0.0016598605417106
'max_raw' => 0.0049547241413364
'avg_raw' => 0.0033072923415235
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001659'
'max' => '$0.004954'
'avg' => '$0.0033072'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0031443694582894
'max_diff' => 0.00015049414133639
'year' => 2026
]
1 => [
'items' => [
101 => 0.0017761399485472
102 => 0.0017272185845968
103 => 0.0016262798370704
104 => 0.0016268511394195
105 => 0.0016113239121827
106 => 0.0015979061208379
107 => 0.0017662001277636
108 => 0.0017452701076679
109 => 0.0017119208598986
110 => 0.0017565601532842
111 => 0.0017683634909762
112 => 0.0017686995154067
113 => 0.001801267191554
114 => 0.0018186485661518
115 => 0.0018217121087599
116 => 0.0018729580508487
117 => 0.0018901350146866
118 => 0.0019608844977599
119 => 0.0018171738779541
120 => 0.0018142142523106
121 => 0.0017571883196859
122 => 0.001721021571671
123 => 0.0017596646878645
124 => 0.0017938972135005
125 => 0.0017582520196802
126 => 0.001762906529482
127 => 0.0017150557690976
128 => 0.0017321601643475
129 => 0.0017468927737475
130 => 0.0017387582927796
131 => 0.0017265805810572
201 => 0.0017910905367809
202 => 0.0017874506322624
203 => 0.0018475237861098
204 => 0.0018943551054063
205 => 0.0019782852016853
206 => 0.0018906997708433
207 => 0.0018875078096229
208 => 0.0019187097425594
209 => 0.0018901302378332
210 => 0.0019081914982892
211 => 0.0019753752533999
212 => 0.0019767947402786
213 => 0.0019530165061546
214 => 0.0019515695984472
215 => 0.0019561364684161
216 => 0.0019828847684675
217 => 0.0019735380905373
218 => 0.001984354302867
219 => 0.0019978801420091
220 => 0.0020538287475377
221 => 0.0020673177669176
222 => 0.0020345464430793
223 => 0.0020375053266969
224 => 0.0020252479519884
225 => 0.0020134074816045
226 => 0.0020400231298657
227 => 0.0020886637501951
228 => 0.0020883611594205
301 => 0.0020996448378983
302 => 0.002106674476111
303 => 0.0020764981228926
304 => 0.0020568544265626
305 => 0.0020643870696964
306 => 0.0020764319301069
307 => 0.0020604810838018
308 => 0.001962025071256
309 => 0.001991890336068
310 => 0.0019869192956664
311 => 0.0019798399296355
312 => 0.0020098696843452
313 => 0.0020069732412453
314 => 0.0019202135252623
315 => 0.0019257676007884
316 => 0.0019205512869908
317 => 0.0019374062640282
318 => 0.0018892200137599
319 => 0.0019040417798031
320 => 0.0019133378525199
321 => 0.001918813310766
322 => 0.0019385944205075
323 => 0.001936273335592
324 => 0.0019384501386102
325 => 0.0019677803023375
326 => 0.0021161222055736
327 => 0.0021241961280688
328 => 0.0020844371808041
329 => 0.0021003200960258
330 => 0.0020698283720119
331 => 0.0020902976706192
401 => 0.0021043022448625
402 => 0.0020410182667817
403 => 0.0020372710003094
404 => 0.002006653426104
405 => 0.0020231055762139
406 => 0.0019969290224376
407 => 0.0020033518331173
408 => 0.0019853930945262
409 => 0.002017715248441
410 => 0.0020538564388727
411 => 0.0020629871308347
412 => 0.0020389682112929
413 => 0.0020215769306207
414 => 0.0019910435708044
415 => 0.0020418212286593
416 => 0.0020566701632371
417 => 0.0020417432335273
418 => 0.0020382843377537
419 => 0.0020317297365128
420 => 0.0020396749273926
421 => 0.0020565892927504
422 => 0.0020486127904069
423 => 0.0020538814107327
424 => 0.0020338028630286
425 => 0.0020765081125211
426 => 0.0021443343262932
427 => 0.0021445523986612
428 => 0.0021365758533214
429 => 0.0021333120228254
430 => 0.0021414964424013
501 => 0.0021459361542787
502 => 0.0021724030664213
503 => 0.0022008031176385
504 => 0.0023333337647563
505 => 0.0022961196893756
506 => 0.0024137087637819
507 => 0.002506706454607
508 => 0.0025345923957893
509 => 0.0025089386420365
510 => 0.0024211785362368
511 => 0.0024168726067646
512 => 0.0025480232561903
513 => 0.0025109671906473
514 => 0.0025065594895623
515 => 0.0024596689969472
516 => 0.0024873870855832
517 => 0.0024813247329987
518 => 0.0024717550128636
519 => 0.0025246391951223
520 => 0.0026236336633071
521 => 0.0026082044470763
522 => 0.0025966872529007
523 => 0.0025462222606281
524 => 0.0025766134577403
525 => 0.0025657917345537
526 => 0.0026122887249986
527 => 0.0025847449378935
528 => 0.0025106864545051
529 => 0.0025224805120847
530 => 0.0025206978640079
531 => 0.0025573846351086
601 => 0.0025463721770458
602 => 0.0025185475048275
603 => 0.0026232953109769
604 => 0.0026164935710835
605 => 0.0026261368831582
606 => 0.0026303821673628
607 => 0.0026941403111026
608 => 0.0027202599825597
609 => 0.0027261896052697
610 => 0.0027510012729861
611 => 0.002725572268374
612 => 0.0028273064173955
613 => 0.0028949536901426
614 => 0.0029735294785351
615 => 0.0030883498245575
616 => 0.0031315233368095
617 => 0.0031237244282523
618 => 0.00321077990418
619 => 0.0033672166592876
620 => 0.0031553447691576
621 => 0.0033784463839296
622 => 0.0033078149885248
623 => 0.0031403492206245
624 => 0.0031295663994634
625 => 0.0032429761618031
626 => 0.0034945080993872
627 => 0.003431502201874
628 => 0.0034946111544643
629 => 0.0034209912090383
630 => 0.0034173353582303
701 => 0.0034910355980377
702 => 0.0036632402255388
703 => 0.003581432262007
704 => 0.0034641404861485
705 => 0.0035507469081802
706 => 0.0034757204103704
707 => 0.0033066647122103
708 => 0.0034314540224516
709 => 0.0033480109644882
710 => 0.0033723640848788
711 => 0.0035477489814998
712 => 0.0035266462067275
713 => 0.0035539551513472
714 => 0.0035057555788929
715 => 0.0034607295778457
716 => 0.0033766852032164
717 => 0.0033518038072262
718 => 0.003358680129939
719 => 0.0033518003996622
720 => 0.0033047783444647
721 => 0.0032946239361218
722 => 0.0032776994773422
723 => 0.0032829450748087
724 => 0.0032511221408779
725 => 0.003311178592159
726 => 0.0033223255987324
727 => 0.0033660296756823
728 => 0.0033705671779339
729 => 0.0034922824101509
730 => 0.0034252437055872
731 => 0.0034702190564518
801 => 0.003466196037746
802 => 0.0031439787116155
803 => 0.0031883774162088
804 => 0.0032574478674748
805 => 0.0032263317228023
806 => 0.0031823407742917
807 => 0.0031468157247241
808 => 0.0030929916420062
809 => 0.0031687480048316
810 => 0.003268359566156
811 => 0.0033730934915132
812 => 0.0034989244403913
813 => 0.0034708404374354
814 => 0.0033707411694501
815 => 0.0033752315494894
816 => 0.0034029893119927
817 => 0.0033670404874923
818 => 0.0033564384773427
819 => 0.0034015327586031
820 => 0.0034018432981347
821 => 0.0033604798309864
822 => 0.0033145119066857
823 => 0.0033143192994044
824 => 0.0033061397512726
825 => 0.00342244633248
826 => 0.0034864031922224
827 => 0.0034937357431202
828 => 0.0034859096531243
829 => 0.0034889216045573
830 => 0.0034517065170665
831 => 0.0035367691712792
901 => 0.0036148310746094
902 => 0.0035939088169676
903 => 0.0035625433784883
904 => 0.0035375592959754
905 => 0.0035880233611331
906 => 0.0035857762757494
907 => 0.0036141492719835
908 => 0.0036128621089839
909 => 0.0036033213375128
910 => 0.0035939091576985
911 => 0.0036312273867574
912 => 0.0036204803361009
913 => 0.0036097165923063
914 => 0.0035881282562794
915 => 0.0035910624696898
916 => 0.0035597024468957
917 => 0.0035451938654141
918 => 0.0033270196108862
919 => 0.0032687163210269
920 => 0.0032870597228895
921 => 0.0032930988470689
922 => 0.0032677251806045
923 => 0.0033041045003544
924 => 0.0032984348219066
925 => 0.003320492224096
926 => 0.0033067117168291
927 => 0.0033072772736542
928 => 0.0033478028072121
929 => 0.0033595675420119
930 => 0.0033535839029397
1001 => 0.0033577746386388
1002 => 0.0034543483740244
1003 => 0.0034406186771067
1004 => 0.0034333250492623
1005 => 0.0034353454340207
1006 => 0.003460022093976
1007 => 0.0034669302114678
1008 => 0.0034376600322303
1009 => 0.0034514640179676
1010 => 0.0035102396372504
1011 => 0.0035308077775874
1012 => 0.0035964514082758
1013 => 0.0035685648272369
1014 => 0.0036197518536368
1015 => 0.0037770833218468
1016 => 0.0039027705851625
1017 => 0.0037871833835715
1018 => 0.0040179920364743
1019 => 0.004197709680294
1020 => 0.0041908118177888
1021 => 0.0041594738896448
1022 => 0.0039548701301969
1023 => 0.0037665907002828
1024 => 0.0039240944381728
1025 => 0.0039244959475917
1026 => 0.0039109662368238
1027 => 0.0038269343652331
1028 => 0.003908042109842
1029 => 0.003914480148069
1030 => 0.0039108765586745
1031 => 0.0038464495197491
1101 => 0.0037480813394171
1102 => 0.0037673022463938
1103 => 0.0037987864841175
1104 => 0.0037391802538064
1105 => 0.0037201324515532
1106 => 0.0037555459399346
1107 => 0.0038696555781929
1108 => 0.0038480838120723
1109 => 0.0038475204860806
1110 => 0.003939813649397
1111 => 0.0038737516625737
1112 => 0.0037675446835846
1113 => 0.003740726020692
1114 => 0.003645537834639
1115 => 0.0037112846537944
1116 => 0.0037136507647691
1117 => 0.0036776419038338
1118 => 0.0037704666041934
1119 => 0.0037696112082381
1120 => 0.0038577344460962
1121 => 0.0040261929793041
1122 => 0.0039763715016936
1123 => 0.0039184345437938
1124 => 0.0039247338975351
1125 => 0.0039938222599472
1126 => 0.0039520498588989
1127 => 0.0039670715055634
1128 => 0.0039937995228859
1129 => 0.0040099251993558
1130 => 0.0039224136608512
1201 => 0.003902010535065
1202 => 0.0038602729002304
1203 => 0.0038493843303719
1204 => 0.0038833787630603
1205 => 0.003874422431088
1206 => 0.0037134519023037
1207 => 0.0036966295864141
1208 => 0.0036971455028257
1209 => 0.003654844989664
1210 => 0.0035903265538059
1211 => 0.0037598771510453
1212 => 0.0037462598652279
1213 => 0.0037312274355797
1214 => 0.0037330688224377
1215 => 0.0038066649900964
1216 => 0.0037639754961588
1217 => 0.0038774725124624
1218 => 0.003854140937943
1219 => 0.0038302109965752
1220 => 0.0038269031497544
1221 => 0.0038176921639344
1222 => 0.0037861042663011
1223 => 0.0037479599817704
1224 => 0.0037227738211219
1225 => 0.0034340620649053
1226 => 0.0034876452875001
1227 => 0.003549287900831
1228 => 0.0035705666839355
1229 => 0.0035341678529882
1230 => 0.0037875415140003
1231 => 0.0038338353234366
]
'min_raw' => 0.0015979061208379
'max_raw' => 0.004197709680294
'avg_raw' => 0.0028978079005659
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001597'
'max' => '$0.004197'
'avg' => '$0.002897'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.1954420872705E-5
'max_diff' => -0.0007570144610424
'year' => 2027
]
2 => [
'items' => [
101 => 0.0036936083549837
102 => 0.0036673776146155
103 => 0.0037892611969719
104 => 0.0037157504971491
105 => 0.0037488523607782
106 => 0.0036773042373634
107 => 0.0038226845003844
108 => 0.0038215769463587
109 => 0.0037650207404814
110 => 0.0038128216584087
111 => 0.003804515072596
112 => 0.0037406632554523
113 => 0.0038247087168783
114 => 0.0038247504023786
115 => 0.0037703162838596
116 => 0.0037067491505902
117 => 0.0036953848485503
118 => 0.0036868233735424
119 => 0.0037467467627542
120 => 0.0038004738861459
121 => 0.0039004467426944
122 => 0.0039255822941272
123 => 0.0040236880247377
124 => 0.0039652708388405
125 => 0.0039911664207195
126 => 0.004019279738003
127 => 0.0040327582961416
128 => 0.004010795708954
129 => 0.0041631942905219
130 => 0.0041760614001781
131 => 0.0041803756307458
201 => 0.004128987686502
202 => 0.0041746322084886
203 => 0.0041532766482387
204 => 0.0042088378832633
205 => 0.0042175505943566
206 => 0.0042101712380243
207 => 0.0042129367900461
208 => 0.0040828914856299
209 => 0.0040761479505523
210 => 0.0039841993712696
211 => 0.0040216690969769
212 => 0.0039516212407379
213 => 0.0039738341375241
214 => 0.0039836253707753
215 => 0.0039785109861725
216 => 0.0040237875790493
217 => 0.0039852932257072
218 => 0.0038837002981798
219 => 0.0037820796917272
220 => 0.0037808039277915
221 => 0.0037540490158652
222 => 0.0037347101149491
223 => 0.0037384354733499
224 => 0.0037515641222605
225 => 0.0037339470540078
226 => 0.0037377065487276
227 => 0.0038001392104576
228 => 0.0038126596355182
229 => 0.0037701103391165
301 => 0.0035992687742292
302 => 0.0035573438256823
303 => 0.00358747864729
304 => 0.0035730761434926
305 => 0.0028837513149577
306 => 0.0030456979585222
307 => 0.0029494747621045
308 => 0.0029938188380302
309 => 0.0028955998713637
310 => 0.002942475110354
311 => 0.0029338189653222
312 => 0.0031942243758244
313 => 0.0031901585035154
314 => 0.0031921046214285
315 => 0.0030992113428495
316 => 0.0032471928579533
317 => 0.0033200938735365
318 => 0.0033066018357498
319 => 0.0033099974909862
320 => 0.003251648883681
321 => 0.003192669563491
322 => 0.0031272524205479
323 => 0.0032487893863329
324 => 0.0032352765504428
325 => 0.0032662701342098
326 => 0.0033450955441631
327 => 0.0033567028852073
328 => 0.0033723032692808
329 => 0.0033667116421014
330 => 0.0034999268869054
331 => 0.0034837936417772
401 => 0.0035226701206849
402 => 0.0034426982540062
403 => 0.00335220249586
404 => 0.0033694027809544
405 => 0.0033677462551839
406 => 0.0033466567808531
407 => 0.0033276181464013
408 => 0.0032959241841412
409 => 0.0033962085705561
410 => 0.0033921372076085
411 => 0.0034580478412892
412 => 0.0034463974965644
413 => 0.0033685936431692
414 => 0.0033713724230142
415 => 0.0033900610529078
416 => 0.0034547426143528
417 => 0.0034739445056462
418 => 0.0034650494245361
419 => 0.0034861034217396
420 => 0.0035027436426887
421 => 0.0034881931772935
422 => 0.003694197083074
423 => 0.0036086498988518
424 => 0.0036503450012082
425 => 0.0036602890374384
426 => 0.0036348175977353
427 => 0.003640341440943
428 => 0.0036487085582456
429 => 0.0036995120560571
430 => 0.003832835134425
501 => 0.0038918830182732
502 => 0.0040695314902019
503 => 0.0038869799135058
504 => 0.0038761480584182
505 => 0.0039081479126825
506 => 0.0040124463717052
507 => 0.0040969704764869
508 => 0.0041250119983556
509 => 0.0041287181483857
510 => 0.0041813259075765
511 => 0.004211479694068
512 => 0.0041749379418893
513 => 0.0041439726329987
514 => 0.0040330587401084
515 => 0.004045897325219
516 => 0.0041343424452185
517 => 0.0042592763866093
518 => 0.0043664827054838
519 => 0.0043289427891314
520 => 0.0046153458518496
521 => 0.0046437415456665
522 => 0.0046398181789237
523 => 0.0047045077952844
524 => 0.0045761120806196
525 => 0.0045212204250506
526 => 0.0041506676842521
527 => 0.0042547778897666
528 => 0.0044061081876599
529 => 0.0043860790552742
530 => 0.0042761789478736
531 => 0.0043663993363974
601 => 0.004336569654499
602 => 0.0043130417467512
603 => 0.0044208276532535
604 => 0.0043023126214532
605 => 0.0044049259095584
606 => 0.0042733233061649
607 => 0.0043291142683072
608 => 0.00429744461989
609 => 0.004317938763702
610 => 0.0041981304177411
611 => 0.0042627760930384
612 => 0.0041954409451135
613 => 0.0041954090194861
614 => 0.0041939225923636
615 => 0.0042731420952875
616 => 0.0042757254404338
617 => 0.004217182108079
618 => 0.0042087450992679
619 => 0.0042399411428577
620 => 0.0042034187460708
621 => 0.0042205073456582
622 => 0.0042039363423439
623 => 0.0042002058604591
624 => 0.004170480746112
625 => 0.0041576743495423
626 => 0.0041626960676174
627 => 0.0041455543549537
628 => 0.004135225853031
629 => 0.0041918679933665
630 => 0.0041616063827227
701 => 0.0041872299675228
702 => 0.0041580286586888
703 => 0.0040568041998658
704 => 0.0039985889431674
705 => 0.003807385323963
706 => 0.0038616104331821
707 => 0.0038975617366942
708 => 0.0038856798310979
709 => 0.0039112067620058
710 => 0.0039127739082424
711 => 0.003904474842788
712 => 0.0038948655881679
713 => 0.003890188334444
714 => 0.0039250487517002
715 => 0.0039452863972651
716 => 0.003901169930968
717 => 0.0038908340601696
718 => 0.0039354382433328
719 => 0.0039626467692954
720 => 0.0041635392378529
721 => 0.004148656474908
722 => 0.0041860092893049
723 => 0.0041818039356295
724 => 0.0042209556358874
725 => 0.004284952119066
726 => 0.0041548293750658
727 => 0.0041774141841183
728 => 0.004171876910498
729 => 0.0042323314119329
730 => 0.0042325201442876
731 => 0.004196274650751
801 => 0.0042159239208132
802 => 0.004204956237314
803 => 0.0042247763237683
804 => 0.0041484577065353
805 => 0.0042414055442395
806 => 0.0042941009787914
807 => 0.0042948326549513
808 => 0.004319809872712
809 => 0.0043451881725399
810 => 0.0043938996090753
811 => 0.0043438296370131
812 => 0.0042537586314866
813 => 0.004260261467158
814 => 0.0042074528695736
815 => 0.0042083405916396
816 => 0.004203601861679
817 => 0.0042178231470057
818 => 0.0041515784789323
819 => 0.0041671259701211
820 => 0.0041453593914107
821 => 0.0041773668678271
822 => 0.0041429321142285
823 => 0.004171874240257
824 => 0.0041843647024042
825 => 0.0042304547766279
826 => 0.0041361245727909
827 => 0.0039437789015739
828 => 0.0039842122936296
829 => 0.0039244081308049
830 => 0.0039299432337648
831 => 0.0039411250226489
901 => 0.0039048811864217
902 => 0.0039117953681993
903 => 0.0039115483449719
904 => 0.0039094196322505
905 => 0.0038999912106444
906 => 0.0038863181339592
907 => 0.0039407874631219
908 => 0.0039500428635512
909 => 0.0039706164722039
910 => 0.0040318295763425
911 => 0.0040257129437346
912 => 0.0040356894252947
913 => 0.0040139108220647
914 => 0.0039309534807061
915 => 0.0039354584634617
916 => 0.0038792812563121
917 => 0.0039691798947135
918 => 0.003947890710536
919 => 0.0039341654350025
920 => 0.0039304203664093
921 => 0.0039917852059931
922 => 0.0040101465277725
923 => 0.003998704984222
924 => 0.0039752380445968
925 => 0.0040203015060551
926 => 0.0040323585872666
927 => 0.0040350577231018
928 => 0.0041149015367442
929 => 0.0040395201053303
930 => 0.0040576651650986
1001 => 0.0041992277416754
1002 => 0.0040708500190205
1003 => 0.0041388545618756
1004 => 0.0041355260933814
1005 => 0.0041703149163578
1006 => 0.0041326723944877
1007 => 0.0041331390186604
1008 => 0.0041640291366645
1009 => 0.0041206495369899
1010 => 0.0041099081380618
1011 => 0.004095068972374
1012 => 0.0041274697477733
1013 => 0.0041468925472642
1014 => 0.0043034260466865
1015 => 0.0044045538261081
1016 => 0.0044001636024978
1017 => 0.0044402820281411
1018 => 0.0044222083099462
1019 => 0.0043638435062886
1020 => 0.0044634651093025
1021 => 0.004431940665764
1022 => 0.0044345395025871
1023 => 0.0044344427737507
1024 => 0.0044554037727892
1025 => 0.0044405509839231
1026 => 0.0044112746124606
1027 => 0.0044307096341084
1028 => 0.0044884247002552
1029 => 0.0046675740364894
1030 => 0.004767828378459
1031 => 0.0046615385992197
1101 => 0.0047348558656621
1102 => 0.0046908916314099
1103 => 0.0046829020222235
1104 => 0.0047289506836528
1105 => 0.004775079947168
1106 => 0.0047721417125044
1107 => 0.0047386542359562
1108 => 0.0047197380101674
1109 => 0.0048629780092408
1110 => 0.0049685148005283
1111 => 0.0049613178988901
1112 => 0.0049930826821633
1113 => 0.005086345068301
1114 => 0.0050948718120872
1115 => 0.0050937976383551
1116 => 0.0050726632142074
1117 => 0.0051644921450112
1118 => 0.0052410974546641
1119 => 0.0050677712056494
1120 => 0.005133771572267
1121 => 0.0051634012632406
1122 => 0.0052069064403231
1123 => 0.0052803069663755
1124 => 0.0053600394061964
1125 => 0.0053713144474088
1126 => 0.0053633142661082
1127 => 0.0053107285787233
1128 => 0.0053979727657812
1129 => 0.0054490783644317
1130 => 0.0054795105788973
1201 => 0.0055566816113444
1202 => 0.0051635842461249
1203 => 0.0048853303928159
1204 => 0.0048418770355873
1205 => 0.0049302411462305
1206 => 0.0049535420575165
1207 => 0.0049441494893939
1208 => 0.0046309494797611
1209 => 0.0048402281023548
1210 => 0.0050653943036194
1211 => 0.0050740438544281
1212 => 0.0051867667627844
1213 => 0.0052234739624133
1214 => 0.0053142306785695
1215 => 0.0053085538212635
1216 => 0.0053306516373928
1217 => 0.0053255717321455
1218 => 0.0054936794377434
1219 => 0.0056791272012538
1220 => 0.0056727057348912
1221 => 0.0056460454247683
1222 => 0.0056856405315592
1223 => 0.0058770424972921
1224 => 0.0058594212714414
1225 => 0.0058765387913829
1226 => 0.006102212495924
1227 => 0.0063956204135375
1228 => 0.0062593029781327
1229 => 0.0065550725886757
1230 => 0.0067412438804392
1231 => 0.0070632078790732
]
'min_raw' => 0.0028837513149577
'max_raw' => 0.0070632078790732
'avg_raw' => 0.0049734795970155
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002883'
'max' => '$0.007063'
'avg' => '$0.004973'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0012858451941198
'max_diff' => 0.0028654981987792
'year' => 2028
]
3 => [
'items' => [
101 => 0.0070228964007381
102 => 0.0071482346227254
103 => 0.0069507304412589
104 => 0.006497220918431
105 => 0.0064254513004788
106 => 0.0065691358931154
107 => 0.0069223704435748
108 => 0.0065580112800663
109 => 0.0066317206643017
110 => 0.0066104923566832
111 => 0.0066093611903847
112 => 0.0066525332072123
113 => 0.006589909945103
114 => 0.0063347715095599
115 => 0.0064516999510291
116 => 0.0064065482644129
117 => 0.0064566474269948
118 => 0.0067270119449828
119 => 0.0066074773468952
120 => 0.0064815573580121
121 => 0.0066394889679539
122 => 0.0068405901785991
123 => 0.0068280056262505
124 => 0.0068035863347595
125 => 0.0069412366023418
126 => 0.0071685945166434
127 => 0.007230048447281
128 => 0.0072754124825074
129 => 0.0072816674165335
130 => 0.0073460971244218
131 => 0.0069996423467294
201 => 0.007549474976517
202 => 0.0076444158828615
203 => 0.0076265709273661
204 => 0.0077320937490439
205 => 0.0077010462580507
206 => 0.0076560633148036
207 => 0.0078233394325108
208 => 0.0076315708620462
209 => 0.0073593795192633
210 => 0.0072100499652783
211 => 0.0074066991680373
212 => 0.0075267859740507
213 => 0.0076061557138703
214 => 0.0076301729491832
215 => 0.0070265366448914
216 => 0.0067012101560823
217 => 0.0069097407055331
218 => 0.0071641623678729
219 => 0.006998229021549
220 => 0.0070047332945715
221 => 0.00676815594923
222 => 0.0071850942134721
223 => 0.0071243498153748
224 => 0.0074394918601586
225 => 0.007364280681998
226 => 0.0076212667857756
227 => 0.0075535937321087
228 => 0.0078345007943303
301 => 0.0079465622267055
302 => 0.0081347308126329
303 => 0.008273148390425
304 => 0.0083544298396108
305 => 0.0083495500062808
306 => 0.0086716276022123
307 => 0.0084817096964256
308 => 0.0082431280465438
309 => 0.008238812857213
310 => 0.0083623776744148
311 => 0.0086213356329179
312 => 0.0086884796638727
313 => 0.0087260040172192
314 => 0.0086685341638368
315 => 0.0084623918886443
316 => 0.0083733806993812
317 => 0.0084492208115357
318 => 0.0083564748713858
319 => 0.0085165803839993
320 => 0.0087364394495096
321 => 0.0086910394218987
322 => 0.0088428049074495
323 => 0.0089998662187999
324 => 0.0092244709480958
325 => 0.0092831909414228
326 => 0.0093802528574709
327 => 0.009480161452263
328 => 0.009512249400298
329 => 0.0095735152494025
330 => 0.0095731923481361
331 => 0.0097578211080797
401 => 0.0099614723477742
402 => 0.010038345976222
403 => 0.010215112646001
404 => 0.0099124059186474
405 => 0.010142012448589
406 => 0.010349123286021
407 => 0.010102197207457
408 => 0.01044252728036
409 => 0.010455741525886
410 => 0.010655260944658
411 => 0.010453009790437
412 => 0.010332913700669
413 => 0.010679626611887
414 => 0.010847390068271
415 => 0.010796858349904
416 => 0.010412309478071
417 => 0.010188485540588
418 => 0.0096026951237799
419 => 0.010296589176751
420 => 0.010634564728787
421 => 0.01041143420304
422 => 0.010523968261499
423 => 0.01113791759516
424 => 0.011371669751143
425 => 0.011323050936749
426 => 0.011331266716048
427 => 0.011457395136515
428 => 0.012016718013053
429 => 0.011681558780428
430 => 0.011937775455593
501 => 0.012073671856242
502 => 0.012199900006754
503 => 0.011889923563914
504 => 0.011486648766237
505 => 0.011358914709488
506 => 0.010389248269677
507 => 0.010338772920437
508 => 0.010310439577349
509 => 0.010131801857009
510 => 0.0099914415418122
511 => 0.0098798218079231
512 => 0.009586898293724
513 => 0.0096857513809063
514 => 0.0092188924371618
515 => 0.0095175722449044
516 => 0.0087724540979849
517 => 0.0093930106320448
518 => 0.0090552699237993
519 => 0.0092820537258789
520 => 0.0092812624985578
521 => 0.0088636816170593
522 => 0.0086228296793016
523 => 0.0087763099081385
524 => 0.0089408528967273
525 => 0.0089675494430368
526 => 0.0091808837227536
527 => 0.0092404207346175
528 => 0.0090600208091524
529 => 0.0087570131805733
530 => 0.008827394941824
531 => 0.0086214033951563
601 => 0.0082604111329716
602 => 0.0085196820779929
603 => 0.0086082085779619
604 => 0.0086473069235917
605 => 0.0082923124939744
606 => 0.0081807655368846
607 => 0.0081213788728997
608 => 0.0087111878575388
609 => 0.0087434989251359
610 => 0.0085781909349849
611 => 0.0093253987256142
612 => 0.0091562825898839
613 => 0.0093452267479538
614 => 0.0088210085346972
615 => 0.0088410343763971
616 => 0.0085928610732718
617 => 0.0087318215400759
618 => 0.0086336087610437
619 => 0.0087205949075922
620 => 0.008772734045176
621 => 0.0090208666255042
622 => 0.0093958439075313
623 => 0.0089838038924956
624 => 0.0088042721574228
625 => 0.0089156526361371
626 => 0.0092122735285013
627 => 0.009661669364177
628 => 0.0093956179845229
629 => 0.009513687068968
630 => 0.0095394799113913
701 => 0.0093433034737918
702 => 0.0096689026692545
703 => 0.0098433939232661
704 => 0.010022385844005
705 => 0.010177799513542
706 => 0.0099508925347449
707 => 0.010193715527896
708 => 0.0099980430594446
709 => 0.0098225046269961
710 => 0.009822770846339
711 => 0.0097126530234568
712 => 0.0094992858658839
713 => 0.0094599376883879
714 => 0.0096646318768489
715 => 0.0098287772313828
716 => 0.0098422970289854
717 => 0.0099331763313482
718 => 0.0099869577663553
719 => 0.01051408894174
720 => 0.010726105461137
721 => 0.010985355247789
722 => 0.011086347650208
723 => 0.011390298573706
724 => 0.011144833517294
725 => 0.011091725608292
726 => 0.010354440089473
727 => 0.010475170551876
728 => 0.01066847167094
729 => 0.010357627553729
730 => 0.010554786599646
731 => 0.01059370997171
801 => 0.010347065189572
802 => 0.010478808824604
803 => 0.010128936789225
804 => 0.0094034701618126
805 => 0.0096697103209964
806 => 0.0098657526936243
807 => 0.0095859760560341
808 => 0.010087464850063
809 => 0.0097945054494215
810 => 0.0097016513839492
811 => 0.0093393945696774
812 => 0.0095103658414702
813 => 0.0097416069346427
814 => 0.0095987268237246
815 => 0.0098952245074363
816 => 0.010315144300616
817 => 0.010614404151892
818 => 0.010637377607349
819 => 0.010444973571831
820 => 0.010753302266654
821 => 0.010755548104586
822 => 0.010407752077266
823 => 0.010194728947069
824 => 0.010146329643683
825 => 0.010267240592782
826 => 0.010414048806381
827 => 0.01064552444147
828 => 0.010785400319835
829 => 0.011150122426177
830 => 0.011248805770751
831 => 0.011357228847517
901 => 0.011502115514515
902 => 0.011676089106426
903 => 0.011295444791648
904 => 0.011310568499884
905 => 0.010956117784343
906 => 0.010577336361412
907 => 0.010864784245646
908 => 0.011240584116691
909 => 0.011154375211051
910 => 0.011144674948079
911 => 0.01116098809977
912 => 0.011095989400237
913 => 0.010802002691215
914 => 0.010654364406398
915 => 0.010844855460355
916 => 0.010946092977752
917 => 0.011103103538395
918 => 0.011083748672705
919 => 0.011488191015219
920 => 0.011645345079818
921 => 0.011605138345092
922 => 0.011612537351911
923 => 0.011897057279211
924 => 0.012213501954355
925 => 0.01250989415118
926 => 0.012811397024131
927 => 0.012447923542931
928 => 0.012263374125105
929 => 0.012453782016627
930 => 0.012352748909201
1001 => 0.012933315112841
1002 => 0.012973512257145
1003 => 0.013554036479241
1004 => 0.014105023093548
1005 => 0.013758958273052
1006 => 0.014085281811678
1007 => 0.014438227324251
1008 => 0.015119116481348
1009 => 0.014889816967207
1010 => 0.014714177132957
1011 => 0.014548198338275
1012 => 0.014893573861615
1013 => 0.015337893954884
1014 => 0.015433596247329
1015 => 0.01558867052218
1016 => 0.015425628883755
1017 => 0.01562199457879
1018 => 0.016315251769725
1019 => 0.016127927557184
1020 => 0.015861897061506
1021 => 0.016409157032621
1022 => 0.016607208288748
1023 => 0.017997235724497
1024 => 0.019752202781299
1025 => 0.019025634896048
1026 => 0.018574630763473
1027 => 0.018680627432589
1028 => 0.019321481992349
1029 => 0.019527304137237
1030 => 0.018967808596284
1031 => 0.019165431879976
1101 => 0.020254355603012
1102 => 0.020838528243564
1103 => 0.020045143332841
1104 => 0.017856225830256
1105 => 0.015837943926073
1106 => 0.016373283171481
1107 => 0.016312592314562
1108 => 0.017482505008963
1109 => 0.016123459936667
1110 => 0.016146342770219
1111 => 0.017340448020181
1112 => 0.017021881211638
1113 => 0.016505843780752
1114 => 0.015841711570399
1115 => 0.014614001754768
1116 => 0.013526584933843
1117 => 0.015659259736815
1118 => 0.015567294921294
1119 => 0.015434116239996
1120 => 0.015730490983785
1121 => 0.017169602612186
1122 => 0.017136426431202
1123 => 0.016925376494415
1124 => 0.017085456011359
1125 => 0.016477781067459
1126 => 0.016634392737003
1127 => 0.015837624219907
1128 => 0.016197796865627
1129 => 0.01650473659619
1130 => 0.016566359291421
1201 => 0.016705198370308
1202 => 0.015518833642427
1203 => 0.016051476575407
1204 => 0.01636435439664
1205 => 0.01495076101772
1206 => 0.016336412200588
1207 => 0.015498181671938
1208 => 0.015213673640714
1209 => 0.015596726223674
1210 => 0.015447450259564
1211 => 0.015319111551401
1212 => 0.015247496347107
1213 => 0.015528767888061
1214 => 0.015515646234484
1215 => 0.015055431401028
1216 => 0.014455099911541
1217 => 0.014656590864623
1218 => 0.01458338731238
1219 => 0.014318088195609
1220 => 0.014496867767975
1221 => 0.013709613009544
1222 => 0.012355182115605
1223 => 0.013249960651481
1224 => 0.013215512651182
1225 => 0.013198142407339
1226 => 0.013870543747187
1227 => 0.013805907873299
1228 => 0.013688593129276
1229 => 0.014315933618336
1230 => 0.014086945900908
1231 => 0.014792632089727
]
'min_raw' => 0.0063347715095599
'max_raw' => 0.020838528243564
'avg_raw' => 0.013586649876562
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006334'
'max' => '$0.020838'
'avg' => '$0.013586'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0034510201946023
'max_diff' => 0.013775320364491
'year' => 2029
]
4 => [
'items' => [
101 => 0.015257442654604
102 => 0.015139551660305
103 => 0.015576708243196
104 => 0.014661232809227
105 => 0.014965317025892
106 => 0.015027988361504
107 => 0.01430819233408
108 => 0.013816483101633
109 => 0.013783691701724
110 => 0.012931135654367
111 => 0.013386564213273
112 => 0.013787322498196
113 => 0.013595390379817
114 => 0.013534630404947
115 => 0.013845039939327
116 => 0.013869161418626
117 => 0.013319189134325
118 => 0.013433545787589
119 => 0.013910432041908
120 => 0.013421529477544
121 => 0.012471671656764
122 => 0.012236093784399
123 => 0.012204663353664
124 => 0.011565757479893
125 => 0.01225183622429
126 => 0.011952344466594
127 => 0.012898435340695
128 => 0.012358033307395
129 => 0.012334737655828
130 => 0.012299522861754
131 => 0.01174959018333
201 => 0.01186999048986
202 => 0.01227021944625
203 => 0.012413025646792
204 => 0.012398129790098
205 => 0.012268258106019
206 => 0.01232771269794
207 => 0.01213618874201
208 => 0.012068557646945
209 => 0.011855095307521
210 => 0.011541364639044
211 => 0.011584990812718
212 => 0.01096340826637
213 => 0.010624737105237
214 => 0.010530997391449
215 => 0.010405644728521
216 => 0.010545156308278
217 => 0.010961647401114
218 => 0.010459270779639
219 => 0.009597981299744
220 => 0.0096497462650516
221 => 0.0097660467729415
222 => 0.0095493215458934
223 => 0.0093442093068619
224 => 0.0095225377574178
225 => 0.0091575980506076
226 => 0.0098101479929895
227 => 0.0097924983457981
228 => 0.0100357286109
301 => 0.010187825487256
302 => 0.0098372914292043
303 => 0.0097491330615492
304 => 0.00979935207434
305 => 0.0089693436571413
306 => 0.0099678992155185
307 => 0.0099765347654533
308 => 0.0099025919441174
309 => 0.010434291952009
310 => 0.011556344810052
311 => 0.011134183390385
312 => 0.010970709728793
313 => 0.010659946178609
314 => 0.011074020157916
315 => 0.011042225736865
316 => 0.010898439307199
317 => 0.010811476825896
318 => 0.010971707864112
319 => 0.010791622427062
320 => 0.010759274134152
321 => 0.010563278674401
322 => 0.010493317212495
323 => 0.010441520531346
324 => 0.010384497474838
325 => 0.010510276128235
326 => 0.010225245152078
327 => 0.0098815257367633
328 => 0.0098529491864756
329 => 0.0099318515542961
330 => 0.0098969431301259
331 => 0.0098527820583709
401 => 0.0097684665458382
402 => 0.0097434519343856
403 => 0.0098247372862422
404 => 0.0097329708632265
405 => 0.0098683772191619
406 => 0.0098315541827229
407 => 0.009625863694505
408 => 0.009369497189813
409 => 0.0093672149901743
410 => 0.0093119812472638
411 => 0.0092416327712184
412 => 0.0092220634345377
413 => 0.0095075194327105
414 => 0.010098404805949
415 => 0.0099823998684939
416 => 0.01006622532447
417 => 0.010478563602767
418 => 0.010609633541993
419 => 0.010516603203692
420 => 0.010389257538764
421 => 0.010394860101731
422 => 0.010830038788943
423 => 0.010857180349864
424 => 0.01092575831811
425 => 0.011013900387439
426 => 0.010531614179236
427 => 0.010372144464696
428 => 0.010296578866904
429 => 0.010063866073271
430 => 0.010314826869917
501 => 0.010168602760924
502 => 0.010188333388954
503 => 0.010175483791566
504 => 0.010182500540626
505 => 0.0098099655919816
506 => 0.0099456977474071
507 => 0.0097200167133277
508 => 0.0094178551425804
509 => 0.0094168421910437
510 => 0.0094907958074121
511 => 0.0094468053025909
512 => 0.0093284279852163
513 => 0.0093452429244242
514 => 0.0091979263634526
515 => 0.0093631298221785
516 => 0.0093678672662484
517 => 0.0093042549359457
518 => 0.0095587736577972
519 => 0.0096630501858073
520 => 0.0096211791872939
521 => 0.009660112404932
522 => 0.009987220397376
523 => 0.010040553272867
524 => 0.010064240213188
525 => 0.010032502851076
526 => 0.0096660913385533
527 => 0.0096823432472357
528 => 0.0095630975246349
529 => 0.0094623474548418
530 => 0.009466376929269
531 => 0.009518175561735
601 => 0.0097443832276633
602 => 0.010220423924939
603 => 0.01023848932142
604 => 0.010260385108959
605 => 0.010171323937096
606 => 0.010144462235462
607 => 0.010179899753511
608 => 0.010358675610377
609 => 0.010818535651408
610 => 0.010655990399888
611 => 0.010523838580235
612 => 0.010639771353946
613 => 0.010621924412144
614 => 0.010471278262811
615 => 0.010467050127142
616 => 0.010177912002084
617 => 0.010071024220607
618 => 0.0099817007899924
619 => 0.0098841619356089
620 => 0.0098263376331983
621 => 0.0099151820423764
622 => 0.0099355018099316
623 => 0.0097412419565292
624 => 0.0097147650563253
625 => 0.0098734018460038
626 => 0.0098035917094419
627 => 0.0098753931661039
628 => 0.009892051719951
629 => 0.0098893693091026
630 => 0.0098164795088888
701 => 0.0098629372939399
702 => 0.0097530507825618
703 => 0.0096335657058584
704 => 0.0095573416711049
705 => 0.0094908260911315
706 => 0.0095277328008089
707 => 0.0093961671197078
708 => 0.0093540766104295
709 => 0.0098471984416979
710 => 0.010211472840409
711 => 0.010206176146383
712 => 0.0101739338837
713 => 0.010126028421458
714 => 0.010355171027429
715 => 0.01027534232536
716 => 0.010333424376027
717 => 0.010348208695617
718 => 0.010392956378266
719 => 0.01040894982862
720 => 0.010360606513486
721 => 0.010198360443257
722 => 0.0097940586621393
723 => 0.0096058550916374
724 => 0.0095437447785934
725 => 0.0095460023705083
726 => 0.009483727907162
727 => 0.0095020705275631
728 => 0.0094773490923437
729 => 0.0094305326747957
730 => 0.0095248420189506
731 => 0.0095357102923121
801 => 0.0095136973644736
802 => 0.0095188822058592
803 => 0.009336624565201
804 => 0.0093504812177774
805 => 0.0092733256154135
806 => 0.0092588598700949
807 => 0.0090638172260256
808 => 0.0087182709101735
809 => 0.008909737112148
810 => 0.0086784728643849
811 => 0.0085908895895318
812 => 0.0090054951906925
813 => 0.0089638802877053
814 => 0.0088926536633547
815 => 0.0087872946410109
816 => 0.0087482159547569
817 => 0.0085107862278864
818 => 0.0084967576129845
819 => 0.0086144341967635
820 => 0.0085601305023535
821 => 0.0084838675489846
822 => 0.008207650862534
823 => 0.0078970918547615
824 => 0.0079064656791018
825 => 0.0080052487213185
826 => 0.0082924737392717
827 => 0.0081802499557141
828 => 0.0080988303131236
829 => 0.0080835828615318
830 => 0.0082744366409046
831 => 0.0085445347238199
901 => 0.0086712587012198
902 => 0.0085456790882809
903 => 0.0084014199906233
904 => 0.0084102003734654
905 => 0.0084686123268333
906 => 0.0084747505972317
907 => 0.0083808527547314
908 => 0.0084072844473855
909 => 0.0083671322892793
910 => 0.0081207185690968
911 => 0.0081162617262851
912 => 0.0080557878253943
913 => 0.0080539566997092
914 => 0.0079510755083724
915 => 0.0079366817185203
916 => 0.0077324048686792
917 => 0.0078668605098519
918 => 0.0077766747249913
919 => 0.0076407434745303
920 => 0.0076173088757152
921 => 0.0076166044033768
922 => 0.0077561754039288
923 => 0.0078652295414483
924 => 0.0077782435453308
925 => 0.0077584385201676
926 => 0.0079699043747401
927 => 0.0079429934171917
928 => 0.0079196887015118
929 => 0.0085203504029566
930 => 0.008044879796046
1001 => 0.0078375474725195
1002 => 0.0075809343508151
1003 => 0.0076644888771978
1004 => 0.007682095043578
1005 => 0.0070649867438708
1006 => 0.0068146259835355
1007 => 0.0067287116052347
1008 => 0.0066792666658716
1009 => 0.0067017993456298
1010 => 0.0064764452969398
1011 => 0.0066278869446714
1012 => 0.0064327493872095
1013 => 0.0064000339406684
1014 => 0.0067489640663151
1015 => 0.0067975156548786
1016 => 0.0065903794942705
1017 => 0.0067233944416792
1018 => 0.0066751613727027
1019 => 0.0064360944605534
1020 => 0.0064269638629665
1021 => 0.0063070084900582
1022 => 0.006119301559394
1023 => 0.0060335144552312
1024 => 0.0059888357865453
1025 => 0.006007271076015
1026 => 0.00599794962953
1027 => 0.0059371208859458
1028 => 0.0060014362619086
1029 => 0.0058371370532718
1030 => 0.0057717117845439
1031 => 0.0057421607085142
1101 => 0.0055963357041394
1102 => 0.0058284081347735
1103 => 0.0058741293271799
1104 => 0.0059199406044593
1105 => 0.0063186964964891
1106 => 0.0062987757789958
1107 => 0.0064788493633528
1108 => 0.0064718520349988
1109 => 0.0064204921317415
1110 => 0.006203813148193
1111 => 0.0062901775291039
1112 => 0.0060243613886648
1113 => 0.0062235289148224
1114 => 0.0061326371733188
1115 => 0.0061927983255912
1116 => 0.0060846231492931
1117 => 0.0061444917583
1118 => 0.0058849715180439
1119 => 0.005642635169241
1120 => 0.0057401583902383
1121 => 0.0058461772845955
1122 => 0.0060760532606737
1123 => 0.0059391410257572
1124 => 0.0059883798426579
1125 => 0.0058234380485187
1126 => 0.0054831160139153
1127 => 0.0054850421996723
1128 => 0.0054326910689671
1129 => 0.0053874520486476
1130 => 0.0059548670429101
1201 => 0.0058843000188699
1202 => 0.0057718607016456
1203 => 0.0059223651959112
1204 => 0.0059621609730225
1205 => 0.0059632939028506
1206 => 0.0060730980967835
1207 => 0.0061317006147689
1208 => 0.0061420295625617
1209 => 0.0063148088341917
1210 => 0.0063727221670284
1211 => 0.0066112589887811
1212 => 0.0061267286005509
1213 => 0.0061167500160593
1214 => 0.0059244831027917
1215 => 0.0058025443867777
1216 => 0.0059328323510003
1217 => 0.0060482497012208
1218 => 0.0059280694415876
1219 => 0.005943762446352
1220 => 0.0057824302668824
1221 => 0.0058400989296582
1222 => 0.0058897709508485
1223 => 0.0058623449803337
1224 => 0.005821286975041
1225 => 0.0060387867947048
1226 => 0.0060265146024907
1227 => 0.0062290554348609
1228 => 0.0063869504975274
1229 => 0.0066699266769442
1230 => 0.0063746262818409
1231 => 0.0063638643617305
]
'min_raw' => 0.0053874520486476
'max_raw' => 0.015576708243196
'avg_raw' => 0.010482080145922
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005387'
'max' => '$0.015576'
'avg' => '$0.010482'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00094731946091237
'max_diff' => -0.0052618200003686
'year' => 2030
]
5 => [
'items' => [
101 => 0.0064690638570753
102 => 0.0063727060615338
103 => 0.006433600862158
104 => 0.0066601155831337
105 => 0.0066649014822507
106 => 0.0065847315057583
107 => 0.0065798531554029
108 => 0.0065952506763517
109 => 0.0066854344374817
110 => 0.0066539214602758
111 => 0.0066903890753094
112 => 0.0067359923863209
113 => 0.0069246270160675
114 => 0.0069701061866799
115 => 0.0068596153803382
116 => 0.0068695914630378
117 => 0.0068282648684255
118 => 0.0067883438958508
119 => 0.0068780804122089
120 => 0.007042075659629
121 => 0.0070410554537062
122 => 0.0070790991634955
123 => 0.0071028000795232
124 => 0.0070010583978015
125 => 0.006934828304146
126 => 0.0069602251363839
127 => 0.0070008352242033
128 => 0.0069470558322332
129 => 0.0066151045119558
130 => 0.0067157973373955
131 => 0.0066990371276147
201 => 0.0066751685507757
202 => 0.00677641596539
203 => 0.0067666504052557
204 => 0.0064741339654491
205 => 0.0064928599188582
206 => 0.0064752727526982
207 => 0.006532100484557
208 => 0.0063696371775207
209 => 0.006419609796558
210 => 0.006450952154754
211 => 0.0064694130445147
212 => 0.0065361064370813
213 => 0.0065282807372358
214 => 0.0065356199805911
215 => 0.0066345086753644
216 => 0.0071346537590257
217 => 0.0071618755524215
218 => 0.0070278254858376
219 => 0.0070813758434172
220 => 0.0069785708670402
221 => 0.0070475845364155
222 => 0.007094801936245
223 => 0.0068814355857994
224 => 0.0068688014152622
225 => 0.0067655721261779
226 => 0.006821041698926
227 => 0.0067327856202803
228 => 0.0067544405749134
301 => 0.0066938914339143
302 => 0.0068028678324989
303 => 0.0069247203793368
304 => 0.006955505144771
305 => 0.0068745236805886
306 => 0.0068158877635819
307 => 0.0067129424091901
308 => 0.0068841428278306
309 => 0.0069342070474792
310 => 0.0068838798617977
311 => 0.0068722179532046
312 => 0.0068501186574932
313 => 0.0068769064232599
314 => 0.0069339343869872
315 => 0.0069070410524345
316 => 0.0069248045737061
317 => 0.0068571083482823
318 => 0.0070010920785316
319 => 0.0072297728937392
320 => 0.0072305081399532
321 => 0.0072036146604354
322 => 0.0071926104280449
323 => 0.0072202047700629
324 => 0.0072351735686285
325 => 0.0073244086107779
326 => 0.0074201613662851
327 => 0.0078669976960369
328 => 0.007741527842687
329 => 0.0081379876168551
330 => 0.0084515358243634
331 => 0.0085455552219937
401 => 0.0084590618001283
402 => 0.0081631724762096
403 => 0.0081486547343635
404 => 0.0085908383055484
405 => 0.0084659011933981
406 => 0.0084510403214544
407 => 0.008292945751813
408 => 0.0083863992228644
409 => 0.0083659595778658
410 => 0.0083336945982938
411 => 0.0085119973110347
412 => 0.0088457640720928
413 => 0.008793743392337
414 => 0.0087549123680692
415 => 0.008584766123269
416 => 0.0086872321661783
417 => 0.0086507459709061
418 => 0.0088075138205073
419 => 0.0087146480192366
420 => 0.0084649546718945
421 => 0.0085047191604588
422 => 0.0084987088380073
423 => 0.008622400848162
424 => 0.008585271576938
425 => 0.0084914587518974
426 => 0.0088446232935886
427 => 0.0088216907526556
428 => 0.0088542038525899
429 => 0.008868517124682
430 => 0.0090834821577522
501 => 0.0091715464536872
502 => 0.0091915385906469
503 => 0.0092751928606481
504 => 0.009189457196202
505 => 0.0095324609824793
506 => 0.0097605384855279
507 => 0.01002546224208
508 => 0.010412587055195
509 => 0.010558149566031
510 => 0.010531855001328
511 => 0.010825368616437
512 => 0.011352806058348
513 => 0.010638465188352
514 => 0.011390667859013
515 => 0.011152529178079
516 => 0.010587906649517
517 => 0.010551551615139
518 => 0.010933920546884
519 => 0.011781978035848
520 => 0.011569549253451
521 => 0.011782325493236
522 => 0.011534110707252
523 => 0.011521784751009
524 => 0.011770270255106
525 => 0.012350870179669
526 => 0.012075048918972
527 => 0.011679591507615
528 => 0.011971591106162
529 => 0.011718634030613
530 => 0.011148650941175
531 => 0.011569386813165
601 => 0.011288052717433
602 => 0.011370160963111
603 => 0.011961483387051
604 => 0.011890333908557
605 => 0.011982407921992
606 => 0.011819899698276
607 => 0.01166809139213
608 => 0.011384729915276
609 => 0.011300840551532
610 => 0.011324024553648
611 => 0.011300829062692
612 => 0.011142290920619
613 => 0.011108054623932
614 => 0.011050992629529
615 => 0.011068678527623
616 => 0.010961385284069
617 => 0.011163869802571
618 => 0.011201452713492
619 => 0.01134880406025
620 => 0.01136410256589
621 => 0.011774473969195
622 => 0.011548448296266
623 => 0.011700085831785
624 => 0.01168652194334
625 => 0.010600143731796
626 => 0.01074983706415
627 => 0.010982712912939
628 => 0.010877802658715
629 => 0.010729484104462
630 => 0.010609708919565
701 => 0.010428237266804
702 => 0.010683655133211
703 => 0.011019502466873
704 => 0.011372620208504
705 => 0.011796868037883
706 => 0.011702180861154
707 => 0.011364689190434
708 => 0.011379828820245
709 => 0.01147341605451
710 => 0.01135221208284
711 => 0.011316466665412
712 => 0.011468505183064
713 => 0.011469552188776
714 => 0.01133009237138
715 => 0.011175108305222
716 => 0.011174458916326
717 => 0.011146880998722
718 => 0.011539016757529
719 => 0.011754651775476
720 => 0.01177937398277
721 => 0.011752987773948
722 => 0.011763142778493
723 => 0.011637669512743
724 => 0.011924464190306
725 => 0.012187655347492
726 => 0.012117114495107
727 => 0.012011363729409
728 => 0.011927128150884
729 => 0.012097271269852
730 => 0.012089695064594
731 => 0.012185356602337
801 => 0.012181016842417
802 => 0.012148849465286
803 => 0.012117115643905
804 => 0.012242936658653
805 => 0.012206702227029
806 => 0.012170411513325
807 => 0.012097624931161
808 => 0.012107517836534
809 => 0.012001785330197
810 => 0.011952868634775
811 => 0.011217278903194
812 => 0.011020705290828
813 => 0.011082551350903
814 => 0.011102912679712
815 => 0.011017363591694
816 => 0.011140019008154
817 => 0.011120903291423
818 => 0.011195271362904
819 => 0.011148809420529
820 => 0.011150716234851
821 => 0.011287350900644
822 => 0.011327016525409
823 => 0.011306842268512
824 => 0.011320971626509
825 => 0.011646576717925
826 => 0.01160028608619
827 => 0.011575695110688
828 => 0.01158250697896
829 => 0.011665706060868
830 => 0.011688997261301
831 => 0.011590310808423
901 => 0.0116368519101
902 => 0.011835018014095
903 => 0.011904364935263
904 => 0.012125687019221
905 => 0.012031665464269
906 => 0.01220424609754
907 => 0.012734700127143
908 => 0.013158463510616
909 => 0.012768753190412
910 => 0.013546940678219
911 => 0.014152871261842
912 => 0.014129614636812
913 => 0.014023956624131
914 => 0.013334120764174
915 => 0.012699323520968
916 => 0.013230358369824
917 => 0.013231712086862
918 => 0.013186095722394
919 => 0.012902776400408
920 => 0.013176236824119
921 => 0.013197943119491
922 => 0.013185793366253
923 => 0.012968573106364
924 => 0.012636917918527
925 => 0.01270172254836
926 => 0.012807873854005
927 => 0.012606907286937
928 => 0.012542686291765
929 => 0.012662085340334
930 => 0.013046813952602
1001 => 0.012974083237034
1002 => 0.012972183944123
1003 => 0.013283356787947
1004 => 0.013060624187072
1005 => 0.012702539942275
1006 => 0.012612118947914
1007 => 0.012291185332809
1008 => 0.012512855323888
1009 => 0.012520832832235
1010 => 0.012399426443534
1011 => 0.01271239140161
1012 => 0.012709507374425
1013 => 0.013006621023431
1014 => 0.013574590729541
1015 => 0.013406614139353
1016 => 0.013211275640764
1017 => 0.01323251435171
1018 => 0.013465450589178
1019 => 0.013324612022588
1020 => 0.013375258553095
1021 => 0.013465373929588
1022 => 0.013519742773665
1023 => 0.013224691511736
1024 => 0.013155900948647
1025 => 0.013015179598774
1026 => 0.012978468025281
1027 => 0.013093082628505
1028 => 0.013062885729949
1029 => 0.012520162353549
1030 => 0.012463444741031
1031 => 0.012465184189233
1101 => 0.012322565055781
1102 => 0.012105036644752
1103 => 0.012676688320989
1104 => 0.012630776691127
1105 => 0.012580093805037
1106 => 0.012586302169391
1107 => 0.012834436786972
1108 => 0.012690506177677
1109 => 0.013073169292253
1110 => 0.012994505259802
1111 => 0.012913823791745
1112 => 0.012902671155242
1113 => 0.01287161567346
1114 => 0.012765114871193
1115 => 0.012636508752748
1116 => 0.012551591853681
1117 => 0.011578180010385
1118 => 0.011758839586425
1119 => 0.011966671961019
1120 => 0.012038414863894
1121 => 0.01191569366407
1122 => 0.012769960652156
1123 => 0.012926043462801
1124 => 0.012453258448328
1125 => 0.012364819675805
1126 => 0.012775758683359
1127 => 0.012527912226553
1128 => 0.012639517470877
1129 => 0.012398287977454
1130 => 0.012888447684355
1201 => 0.01288471348863
1202 => 0.012694030291887
1203 => 0.012855194424032
1204 => 0.012827188190018
1205 => 0.012611907330526
1206 => 0.01289527247159
1207 => 0.012895413017165
1208 => 0.012711884586109
1209 => 0.012497563558176
1210 => 0.012459248020418
1211 => 0.012430382409686
1212 => 0.012632418300131
1213 => 0.012813563047754
1214 => 0.01315062851349
1215 => 0.013235374780053
1216 => 0.01356614510033
1217 => 0.01336918747952
1218 => 0.013456496241797
1219 => 0.013551282253827
1220 => 0.013596726153634
1221 => 0.013522677757552
1222 => 0.014036500215438
1223 => 0.014079882573997
1224 => 0.014094428303565
1225 => 0.013921170261756
1226 => 0.014075063954432
1227 => 0.014003062192053
1228 => 0.014190390775099
1229 => 0.014219766288852
1230 => 0.014194886273768
1231 => 0.014204210525494
]
'min_raw' => 0.0063696371775207
'max_raw' => 0.014219766288852
'avg_raw' => 0.010294701733187
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006369'
'max' => '$0.014219'
'avg' => '$0.010294'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00098218512887313
'max_diff' => -0.0013569419543433
'year' => 2031
]
6 => [
'items' => [
101 => 0.013765753702182
102 => 0.013743017402849
103 => 0.013433006348153
104 => 0.013559338144427
105 => 0.013323166906532
106 => 0.013398059238902
107 => 0.013431071065411
108 => 0.013413827560647
109 => 0.013566480754642
110 => 0.013436694354759
111 => 0.013094166706609
112 => 0.01275154573703
113 => 0.01274724440985
114 => 0.012657038356322
115 => 0.012591835901684
116 => 0.012604396207629
117 => 0.012648660364044
118 => 0.012589263188446
119 => 0.012601938587373
120 => 0.012812434665305
121 => 0.012854648152545
122 => 0.012711190229029
123 => 0.012135185965235
124 => 0.011993833074102
125 => 0.012095434729099
126 => 0.012046875681995
127 => 0.0097227688954671
128 => 0.010268783310999
129 => 0.0099443600861873
130 => 0.010093869234175
131 => 0.0097627171306297
201 => 0.0099207602716105
202 => 0.0098915754742827
203 => 0.010769550496716
204 => 0.010755842124356
205 => 0.010762403596774
206 => 0.010449207422443
207 => 0.010948137432355
208 => 0.01119392829618
209 => 0.011148438948798
210 => 0.011159887637505
211 => 0.010963161234206
212 => 0.010764308338381
213 => 0.010543749873669
214 => 0.010953520239253
215 => 0.010907960769613
216 => 0.011012457801187
217 => 0.011278223174259
218 => 0.011317358134988
219 => 0.011369955919076
220 => 0.011351103357646
221 => 0.011800247856294
222 => 0.011745853493957
223 => 0.011876928256863
224 => 0.011607297524898
225 => 0.011302184758096
226 => 0.011360176720178
227 => 0.011354591627887
228 => 0.011283486992761
229 => 0.011219296907472
301 => 0.01111243850091
302 => 0.01145055431134
303 => 0.011436827426909
304 => 0.011659049730097
305 => 0.011619769779456
306 => 0.011357448655643
307 => 0.011366817505898
308 => 0.011429827526383
309 => 0.011647905926717
310 => 0.011712646443846
311 => 0.011682656056849
312 => 0.011753641078364
313 => 0.011809744745077
314 => 0.011760686835116
315 => 0.012455243386188
316 => 0.012166815081869
317 => 0.012307393030523
318 => 0.012340920042943
319 => 0.012255041305625
320 => 0.012273665328662
321 => 0.012301875648821
322 => 0.01247316318868
323 => 0.012922671255717
324 => 0.013121755318703
325 => 0.013720709544831
326 => 0.013105224158656
327 => 0.013068703802972
328 => 0.013176593545783
329 => 0.013528243082264
330 => 0.01381322200282
331 => 0.013907765951597
401 => 0.013920261495178
402 => 0.014097632228246
403 => 0.014199297824673
404 => 0.014076094755939
405 => 0.013971693055085
406 => 0.013597739121445
407 => 0.013641025307506
408 => 0.013939224204626
409 => 0.014360447710634
410 => 0.014721901299626
411 => 0.01459533285069
412 => 0.015560960772668
413 => 0.015656698836896
414 => 0.015643470932002
415 => 0.015861576490047
416 => 0.015428681373752
417 => 0.015243610324588
418 => 0.013994265887819
419 => 0.014345280714454
420 => 0.014855501379345
421 => 0.014787971761118
422 => 0.014417435876036
423 => 0.01472162021493
424 => 0.014621047359768
425 => 0.01454172137613
426 => 0.014905129085274
427 => 0.014505547381104
428 => 0.014851515246182
429 => 0.014407807880641
430 => 0.014595911004704
501 => 0.014489134573961
502 => 0.014558232010679
503 => 0.01415428980752
504 => 0.014372247215202
505 => 0.014145222062783
506 => 0.014145114423301
507 => 0.014140102830479
508 => 0.014407196915516
509 => 0.01441590684404
510 => 0.014218523911641
511 => 0.014190077947381
512 => 0.014295257586382
513 => 0.014172119775703
514 => 0.0142297351823
515 => 0.014173864887675
516 => 0.014161287307546
517 => 0.014061067009184
518 => 0.014017889349035
519 => 0.014034820422131
520 => 0.013977025941089
521 => 0.013942202675743
522 => 0.014133175606513
523 => 0.014031146473429
524 => 0.014117538178564
525 => 0.01401908392706
526 => 0.013677798596872
527 => 0.013481521794454
528 => 0.012836865442896
529 => 0.013019689184504
530 => 0.013140901514335
531 => 0.013100840840049
601 => 0.013186906669838
602 => 0.01319219041279
603 => 0.013164209534188
604 => 0.01313181126134
605 => 0.013116041573854
606 => 0.01323357590451
607 => 0.013301808539479
608 => 0.013153066793245
609 => 0.013118218683221
610 => 0.01326860480092
611 => 0.013360340245842
612 => 0.014037663229448
613 => 0.013987484955098
614 => 0.014113422576727
615 => 0.014099243933202
616 => 0.014231246624106
617 => 0.014447015235235
618 => 0.014008297318958
619 => 0.014084443579499
620 => 0.014065774274888
621 => 0.014269600847275
622 => 0.014270237171585
623 => 0.014148032959547
624 => 0.01421428184543
625 => 0.014177303534773
626 => 0.014244128340048
627 => 0.013986814793652
628 => 0.014300194917882
629 => 0.014477861254552
630 => 0.014480328151809
701 => 0.014564540585343
702 => 0.014650105295069
703 => 0.014814339304272
704 => 0.01464552489769
705 => 0.014341844214001
706 => 0.014363768978481
707 => 0.014185721104746
708 => 0.01418871412167
709 => 0.014172737162761
710 => 0.014220685219138
711 => 0.013997336695673
712 => 0.014049756147708
713 => 0.013976368607892
714 => 0.01408428404932
715 => 0.013968184873405
716 => 0.014065765271984
717 => 0.01410787773717
718 => 0.014263273640322
719 => 0.013945232772161
720 => 0.013296725912506
721 => 0.013433049916791
722 => 0.013231416006435
723 => 0.013250077992513
724 => 0.013287778174423
725 => 0.013165579550119
726 => 0.013188891196715
727 => 0.013188058340657
728 => 0.013180881237095
729 => 0.013149092655379
730 => 0.013102992922711
731 => 0.01328664006891
801 => 0.013317845297649
802 => 0.013387210655625
803 => 0.01359359490999
804 => 0.013572972256104
805 => 0.013606608660219
806 => 0.013533180578895
807 => 0.013253484110608
808 => 0.013268672974497
809 => 0.013079267598425
810 => 0.013382367134317
811 => 0.0133105891635
812 => 0.01326431343877
813 => 0.013251686678536
814 => 0.013458582519549
815 => 0.013520488997875
816 => 0.013481913034971
817 => 0.013402792609616
818 => 0.013554727216153
819 => 0.013595378507255
820 => 0.013604478832172
821 => 0.013873677824384
822 => 0.013619524065408
823 => 0.013680701401265
824 => 0.014157989511777
825 => 0.0137251550568
826 => 0.013954437120961
827 => 0.013943214957047
828 => 0.01406050790259
829 => 0.013933593511988
830 => 0.013935166767965
831 => 0.014039314957495
901 => 0.013893057608525
902 => 0.013856842232098
903 => 0.013806810948944
904 => 0.013916052425353
905 => 0.013981537749893
906 => 0.014509301372015
907 => 0.014850260740851
908 => 0.014835458795434
909 => 0.014970720868469
910 => 0.014909784065708
911 => 0.014713003055276
912 => 0.015048884245196
913 => 0.014942597382839
914 => 0.014951359542633
915 => 0.014951033414608
916 => 0.015021704886317
917 => 0.014971627671666
918 => 0.014872920341269
919 => 0.014938446873665
920 => 0.015133037248716
921 => 0.015737051743637
922 => 0.016075066257122
923 => 0.015716702845501
924 => 0.01596389712816
925 => 0.015815668642893
926 => 0.015788731117705
927 => 0.015943987394729
928 => 0.016099515427313
929 => 0.016089608964003
930 => 0.0159767035988
1001 => 0.015912926222864
1002 => 0.016395869880438
1003 => 0.016751694540607
1004 => 0.016727429684262
1005 => 0.016834526868814
1006 => 0.017148967515049
1007 => 0.017177716027043
1008 => 0.017174094375308
1009 => 0.017102838188736
1010 => 0.017412445840232
1011 => 0.017670725990139
1012 => 0.017086344440334
1013 => 0.017308869284383
1014 => 0.01740876785618
1015 => 0.017555448598148
1016 => 0.017802923596395
1017 => 0.018071747083992
1018 => 0.018109761672638
1019 => 0.018082788502828
1020 => 0.017905492186394
1021 => 0.018199642054255
1022 => 0.018371948148184
1023 => 0.018474552483964
1024 => 0.018734740007769
1025 => 0.01740938479575
1026 => 0.016471232502255
1027 => 0.016324726474542
1028 => 0.016622652242961
1029 => 0.016701212892179
1030 => 0.016669545192986
1031 => 0.015613569493582
1101 => 0.016319166981024
1102 => 0.017078330549189
1103 => 0.017107493113634
1104 => 0.017487546269219
1105 => 0.017611307155583
1106 => 0.017917299760535
1107 => 0.017898159839782
1108 => 0.017972664169682
1109 => 0.017955536914473
1110 => 0.018522323780802
1111 => 0.019147573863026
1112 => 0.019125923440853
1113 => 0.01903603634391
1114 => 0.019169534010897
1115 => 0.019814859101624
1116 => 0.019755447908394
1117 => 0.019813160821984
1118 => 0.020574035472879
1119 => 0.0215632807522
1120 => 0.021103677001353
1121 => 0.022100884893274
1122 => 0.022728574401519
1123 => 0.023814098501722
1124 => 0.023678185538057
1125 => 0.024100772104323
1126 => 0.023434872967207
1127 => 0.021905833947969
1128 => 0.021663857670248
1129 => 0.02214830030606
1130 => 0.023339255254983
1201 => 0.02211079289647
1202 => 0.022359309231644
1203 => 0.022287736510395
1204 => 0.022283922704245
1205 => 0.022429480173153
1206 => 0.022218341472734
1207 => 0.021358124424104
1208 => 0.021752356828201
1209 => 0.021600124764384
1210 => 0.021769037588841
1211 => 0.022680590437485
1212 => 0.022277571194394
1213 => 0.021853023160421
1214 => 0.022385500609773
1215 => 0.023063527381902
1216 => 0.023021097685033
1217 => 0.022938766338871
1218 => 0.023402863826459
1219 => 0.02416941690815
1220 => 0.024376613125871
1221 => 0.024529561137852
1222 => 0.024550650084627
1223 => 0.024767879343111
1224 => 0.023599782871421
1225 => 0.025453581970838
1226 => 0.025773681865141
1227 => 0.025713516351793
1228 => 0.026069293912448
1229 => 0.025964615128898
1230 => 0.025812951995131
1231 => 0.026376935104827
]
'min_raw' => 0.0097227688954671
'max_raw' => 0.026376935104827
'avg_raw' => 0.018049852000147
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009722'
'max' => '$0.026376'
'avg' => '$0.018049'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0033531317179464
'max_diff' => 0.012157168815974
'year' => 2032
]
7 => [
'items' => [
101 => 0.025730373980651
102 => 0.024812661864666
103 => 0.024309186847549
104 => 0.02497220336426
105 => 0.025377084414927
106 => 0.025644685034147
107 => 0.025725660819835
108 => 0.023690458875374
109 => 0.022593597904784
110 => 0.023296673211395
111 => 0.024154473609127
112 => 0.0235950177469
113 => 0.023616947357509
114 => 0.022819310320387
115 => 0.02422504678798
116 => 0.024020242808756
117 => 0.02508276621526
118 => 0.024829186477015
119 => 0.025695633068097
120 => 0.025467468642878
121 => 0.026414566415462
122 => 0.026792389358595
123 => 0.02742681288356
124 => 0.027893497411093
125 => 0.028167543491913
126 => 0.028151090793141
127 => 0.029236997894564
128 => 0.028596676415559
129 => 0.027792281725744
130 => 0.027777732763638
131 => 0.028194340171854
201 => 0.029067435008815
202 => 0.029293815797025
203 => 0.0294203317742
204 => 0.029226568151104
205 => 0.028531545077898
206 => 0.028231437638735
207 => 0.028487137871852
208 => 0.028174438459322
209 => 0.028714245373308
210 => 0.029455515562746
211 => 0.029302446199927
212 => 0.029814134130389
213 => 0.030343677307278
214 => 0.0311009478335
215 => 0.031298926390701
216 => 0.031626177417304
217 => 0.031963026220041
218 => 0.03207121297715
219 => 0.032277775064851
220 => 0.032276686380687
221 => 0.032899175135205
222 => 0.033585799508311
223 => 0.033844984313767
224 => 0.034440965482381
225 => 0.033420368616801
226 => 0.034194503063115
227 => 0.034892791711533
228 => 0.034060263197827
301 => 0.035207709799705
302 => 0.035252262551086
303 => 0.035924956201476
304 => 0.035243052314296
305 => 0.034838139962802
306 => 0.036007106749696
307 => 0.036572732955765
308 => 0.036402361739278
309 => 0.03510582836955
310 => 0.034351190337436
311 => 0.032376157048588
312 => 0.034715669294317
313 => 0.035855177464703
314 => 0.035102877318673
315 => 0.035482293753645
316 => 0.037552266796657
317 => 0.038340378510607
318 => 0.038176456783422
319 => 0.038204156856935
320 => 0.038629407632542
321 => 0.040515203761467
322 => 0.039385191008603
323 => 0.040249043417398
324 => 0.04070722762017
325 => 0.041132814642589
326 => 0.040087707423689
327 => 0.038728038287574
328 => 0.038297373997139
329 => 0.035028075895366
330 => 0.034857894731327
331 => 0.034762366886934
401 => 0.034160077340723
402 => 0.033686842738392
403 => 0.033310509012544
404 => 0.032322896933155
405 => 0.032656187018292
406 => 0.031082139494407
407 => 0.03208915931937
408 => 0.029576941464543
409 => 0.031669191144999
410 => 0.030530474766846
411 => 0.031295092189097
412 => 0.031292424510942
413 => 0.029884521414404
414 => 0.029072472290509
415 => 0.029589941597679
416 => 0.030144709771731
417 => 0.030234719041507
418 => 0.030953990460096
419 => 0.031154723652337
420 => 0.03054649270851
421 => 0.029524881333439
422 => 0.029762178355393
423 => 0.029067663473933
424 => 0.027850552858302
425 => 0.028724702951161
426 => 0.029023176226529
427 => 0.029154999028579
428 => 0.027958110524205
429 => 0.027582022170417
430 => 0.027381795886547
501 => 0.029370378057406
502 => 0.029479317077696
503 => 0.028921969647467
504 => 0.031441232881956
505 => 0.03087104602303
506 => 0.031508084443622
507 => 0.029740646137881
508 => 0.029808164661331
509 => 0.028971431042938
510 => 0.029439945958678
511 => 0.029108814717173
512 => 0.02940209458344
513 => 0.029577885326043
514 => 0.030414481644683
515 => 0.031678743731115
516 => 0.030289522052707
517 => 0.029684218273403
518 => 0.030059745333725
519 => 0.031059823381741
520 => 0.032574992817537
521 => 0.031677982015919
522 => 0.032076060177446
523 => 0.032163022546474
524 => 0.031501599990506
525 => 0.032599380410619
526 => 0.033187689856109
527 => 0.033791173613696
528 => 0.034315161651177
529 => 0.033550128930023
530 => 0.034368823604791
531 => 0.033709100215993
601 => 0.033117260135291
602 => 0.033118157712392
603 => 0.032746887784364
604 => 0.032027505515787
605 => 0.031894840388158
606 => 0.032584981135846
607 => 0.03313840865892
608 => 0.033183991600459
609 => 0.033490397513365
610 => 0.033671725376392
611 => 0.035448984937324
612 => 0.036163813434993
613 => 0.037037892190932
614 => 0.03737839512675
615 => 0.038403186886502
616 => 0.037575584310985
617 => 0.037396527287907
618 => 0.034910717685578
619 => 0.035317768868702
620 => 0.03596949708748
621 => 0.034921464443859
622 => 0.035586199932375
623 => 0.035717432798831
624 => 0.034885852695664
625 => 0.03533003555922
626 => 0.034150417564654
627 => 0.031704456179872
628 => 0.032602103464855
629 => 0.033263074011411
630 => 0.032319787544395
701 => 0.034010592026294
702 => 0.033022858953258
703 => 0.032709794988654
704 => 0.031488420847373
705 => 0.032064862427056
706 => 0.032844507917425
707 => 0.032362777647893
708 => 0.033362440289335
709 => 0.034778229189904
710 => 0.035787204672136
711 => 0.035864661281164
712 => 0.035215957642195
713 => 0.036255509363613
714 => 0.036263081362999
715 => 0.035090462774547
716 => 0.034372240418287
717 => 0.034209058787792
718 => 0.034616718494412
719 => 0.035111692636381
720 => 0.035892128901198
721 => 0.036363730190927
722 => 0.037593416236544
723 => 0.037926134022627
724 => 0.038291689995801
725 => 0.038780185509249
726 => 0.039366749620823
727 => 0.038083380737814
728 => 0.038134371376034
729 => 0.036939316041628
730 => 0.035662228028544
731 => 0.036631378639206
801 => 0.037898414141945
802 => 0.037607754797667
803 => 0.037575049683804
804 => 0.037630050613679
805 => 0.03741090296014
806 => 0.036419706245175
807 => 0.035921933460139
808 => 0.036564187348216
809 => 0.036905516706298
810 => 0.037434888773634
811 => 0.037369632492646
812 => 0.038733238087693
813 => 0.039263093988636
814 => 0.039127534175362
815 => 0.039152480443434
816 => 0.040111759242874
817 => 0.041178674558584
818 => 0.042177981543621
819 => 0.043194519530035
820 => 0.04196904331126
821 => 0.041346822064232
822 => 0.041988795564353
823 => 0.041648155388758
824 => 0.04360557487817
825 => 0.043741102356664
826 => 0.045698380302367
827 => 0.047556070141162
828 => 0.046389288437386
829 => 0.047489511031045
830 => 0.048679491468552
831 => 0.05097515679987
901 => 0.050202057478762
902 => 0.049609875514804
903 => 0.049050266420267
904 => 0.050214724110558
905 => 0.051712780326451
906 => 0.05203544728715
907 => 0.052558291031749
908 => 0.052008584764595
909 => 0.052670645415223
910 => 0.055008010436132
911 => 0.05437643377499
912 => 0.053479493385155
913 => 0.05532461858624
914 => 0.05599236222377
915 => 0.060678936772013
916 => 0.066595930731908
917 => 0.064146256379434
918 => 0.062625664458356
919 => 0.062983039628732
920 => 0.06514372552
921 => 0.065837669251533
922 => 0.063951290972477
923 => 0.064617591671062
924 => 0.068288974029503
925 => 0.070258552872759
926 => 0.067583600253888
927 => 0.060203512068584
928 => 0.053398733716688
929 => 0.055203667358773
930 => 0.054999043897373
1001 => 0.058943486227241
1002 => 0.054361370880499
1003 => 0.054438521951448
1004 => 0.058464531171461
1005 => 0.057390460934833
1006 => 0.055650604708018
1007 => 0.053411436592584
1008 => 0.049272127233221
1009 => 0.045605825500452
1010 => 0.052796287497274
1011 => 0.052486221700965
1012 => 0.052037200478732
1013 => 0.05303644861964
1014 => 0.057888513950359
1015 => 0.057776658139883
1016 => 0.057065088542971
1017 => 0.057604807810742
1018 => 0.055555989310874
1019 => 0.05608401648902
1020 => 0.05339765580503
1021 => 0.054612003026526
1022 => 0.055646871757965
1023 => 0.055854636977295
1024 => 0.0563227426252
1025 => 0.052322831115808
1026 => 0.054118673952293
1027 => 0.05517356337101
1028 => 0.050407534600043
1029 => 0.055079354306158
1030 => 0.05225320155543
1031 => 0.051293962864443
1101 => 0.052585451391769
1102 => 0.052082157056656
1103 => 0.051649454141761
1104 => 0.05140799848047
1105 => 0.052356325118551
1106 => 0.052312084547389
1107 => 0.05076043810522
1108 => 0.04873637857461
1109 => 0.049415719390572
1110 => 0.049168908503278
1111 => 0.04827443400849
1112 => 0.048877201818715
1113 => 0.046222917436292
1114 => 0.041656359114031
1115 => 0.044673167419181
1116 => 0.044557023581089
1117 => 0.044498458591219
1118 => 0.046765506654082
1119 => 0.046547582292535
1120 => 0.046152047442407
1121 => 0.048267169700785
1122 => 0.047495121624068
1123 => 0.049874391879106
1124 => 0.051441533150626
1125 => 0.05104405543246
1126 => 0.052517959372975
1127 => 0.049431370030896
1128 => 0.050456611197864
1129 => 0.050667911981453
1130 => 0.048241069420439
1201 => 0.0465832374132
1202 => 0.046472678918986
1203 => 0.043598226681758
1204 => 0.045133735865117
1205 => 0.046484920402786
1206 => 0.045837807865399
1207 => 0.045632951367999
1208 => 0.046679518785261
1209 => 0.046760846036826
1210 => 0.044906576082468
1211 => 0.045292137523072
1212 => 0.046899992824645
1213 => 0.045251623694804
1214 => 0.04204911173509
1215 => 0.041254844490889
1216 => 0.041148874599263
1217 => 0.038994758838861
1218 => 0.041307921226083
1219 => 0.040298163855163
1220 => 0.04348797529115
1221 => 0.041665972106216
1222 => 0.041587429190505
1223 => 0.041468700053667
1224 => 0.039614563633288
1225 => 0.040020501672834
1226 => 0.041369901542396
1227 => 0.041851382617933
1228 => 0.041801160197096
1229 => 0.041363288746872
1230 => 0.04156374405452
1231 => 0.040918007665327
]
'min_raw' => 0.022593597904784
'max_raw' => 0.070258552872759
'avg_raw' => 0.046426075388771
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.022593'
'max' => '$0.070258'
'avg' => '$0.046426'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.012870829009317
'max_diff' => 0.043881617767932
'year' => 2033
]
8 => [
'items' => [
101 => 0.040689984706463
102 => 0.03997028152563
103 => 0.038912516672884
104 => 0.039059605363307
105 => 0.036963896410787
106 => 0.035822042945762
107 => 0.03550599295603
108 => 0.035083357701122
109 => 0.035553730732662
110 => 0.036957959530637
111 => 0.03526416167652
112 => 0.032360264061742
113 => 0.032534793256391
114 => 0.032926908538584
115 => 0.032196204304319
116 => 0.031504654069945
117 => 0.03210590089149
118 => 0.030875481190702
119 => 0.033075598881025
120 => 0.03301609186326
121 => 0.033836159683847
122 => 0.034348964921546
123 => 0.033167114871317
124 => 0.032869882779747
125 => 0.033039199687551
126 => 0.030240768359629
127 => 0.03360746814162
128 => 0.03363658350114
129 => 0.033387280116483
130 => 0.035179943815199
131 => 0.03896302336532
201 => 0.037539676664542
202 => 0.036988513801119
203 => 0.035940752794855
204 => 0.03733683212581
205 => 0.037229635015422
206 => 0.036744849028955
207 => 0.036451648951715
208 => 0.036991879084035
209 => 0.036384708459859
210 => 0.036275643931824
211 => 0.035614831555308
212 => 0.03537895160194
213 => 0.035204315475117
214 => 0.035012058258877
215 => 0.03543612977039
216 => 0.034475127934049
217 => 0.033316253927593
218 => 0.033219906093147
219 => 0.033485930935041
220 => 0.033368234745723
221 => 0.033219342609073
222 => 0.032935066971848
223 => 0.032850728462872
224 => 0.033124787701818
225 => 0.032815390799694
226 => 0.0332719227825
227 => 0.033147771344243
228 => 0.032454271502365
301 => 0.031589913932859
302 => 0.031582219337439
303 => 0.031395994916919
304 => 0.031158810118358
305 => 0.031092830733452
306 => 0.032055265561193
307 => 0.034047476851367
308 => 0.03365635810553
309 => 0.033938981482858
310 => 0.035329208776677
311 => 0.035771120227788
312 => 0.035457461947036
313 => 0.035028107146741
314 => 0.035046996578942
315 => 0.036514231906085
316 => 0.036605741573691
317 => 0.036836956981595
318 => 0.037134134122218
319 => 0.035508072499114
320 => 0.034970409222723
321 => 0.034715634533946
322 => 0.033931027102725
323 => 0.034777158950139
324 => 0.034284154157629
325 => 0.034350677347581
326 => 0.034307354032855
327 => 0.034331011492205
328 => 0.033074983903292
329 => 0.033532614341825
330 => 0.03277171497888
331 => 0.031752956146858
401 => 0.03174954091003
402 => 0.031998880690893
403 => 0.031850563632569
404 => 0.0314514462422
405 => 0.031508138983721
406 => 0.031011450913092
407 => 0.031568445908324
408 => 0.031584418531763
409 => 0.031369945118876
410 => 0.032228072759528
411 => 0.032579648354069
412 => 0.032438477359241
413 => 0.032569743420739
414 => 0.033672610855214
415 => 0.033852426368514
416 => 0.033932288541575
417 => 0.033825283809383
418 => 0.032589901812879
419 => 0.032644696257674
420 => 0.032242650978454
421 => 0.031902965084002
422 => 0.031916550738362
423 => 0.032091193444186
424 => 0.032853868383178
425 => 0.034458872830144
426 => 0.034519781575663
427 => 0.034593604752066
428 => 0.03429332879308
429 => 0.034202762690595
430 => 0.034322242756867
501 => 0.034924998040022
502 => 0.036475448274762
503 => 0.035927415610715
504 => 0.035481856524209
505 => 0.035872731964942
506 => 0.035812559754624
507 => 0.035304645744369
508 => 0.035290390289761
509 => 0.03431554091415
510 => 0.033955161296232
511 => 0.033654001113554
512 => 0.033325142056054
513 => 0.033130183383313
514 => 0.033429728511776
515 => 0.033498238026769
516 => 0.032843277368233
517 => 0.032754008650637
518 => 0.033288863662706
519 => 0.033053493913299
520 => 0.033295577537453
521 => 0.033351743014811
522 => 0.033342699079356
523 => 0.033096946028932
524 => 0.03325358169481
525 => 0.032883091649668
526 => 0.032480239371381
527 => 0.032223244716417
528 => 0.031998982794567
529 => 0.032123416342989
530 => 0.031679833463534
531 => 0.031537922372837
601 => 0.033200517055625
602 => 0.034428693623705
603 => 0.034410835449994
604 => 0.034302128410277
605 => 0.034140611799674
606 => 0.034913182093932
607 => 0.034644034051443
608 => 0.034839861740425
609 => 0.034889708106133
610 => 0.035040578042367
611 => 0.035094501076861
612 => 0.034931508214664
613 => 0.034384484261228
614 => 0.033021352578742
615 => 0.032386811100841
616 => 0.03217740184401
617 => 0.032185013472771
618 => 0.031975050771735
619 => 0.032036894197058
620 => 0.03195354415222
621 => 0.031795699331839
622 => 0.032113669870125
623 => 0.032150313012562
624 => 0.032076094889461
625 => 0.032093575944187
626 => 0.031479081583886
627 => 0.031525800255488
628 => 0.031265664755286
629 => 0.031216892484978
630 => 0.030559292593056
701 => 0.029394259063887
702 => 0.030039800731588
703 => 0.0292600771739
704 => 0.028964784047864
705 => 0.030362655779016
706 => 0.030222348228135
707 => 0.029982202691252
708 => 0.029626977391488
709 => 0.029495220872396
710 => 0.028694709971438
711 => 0.02864741151685
712 => 0.029044166334977
713 => 0.028861077637911
714 => 0.028603951766119
715 => 0.027672667922917
716 => 0.026625596545675
717 => 0.026657201048898
718 => 0.026990254972543
719 => 0.027958654173982
720 => 0.027580283852504
721 => 0.027305771842972
722 => 0.027254363995387
723 => 0.027897840837528
724 => 0.028808495381723
725 => 0.029235754119112
726 => 0.0288123536864
727 => 0.028325974066799
728 => 0.028355577740578
729 => 0.02855251771955
730 => 0.028573213326758
731 => 0.028256630195031
801 => 0.028345746492216
802 => 0.028210370687827
803 => 0.027379569626175
804 => 0.027364543069468
805 => 0.027160651090462
806 => 0.02715447732237
807 => 0.026807606202842
808 => 0.026759076535414
809 => 0.02607034287402
810 => 0.026523669455627
811 => 0.026219601785399
812 => 0.025761300084053
813 => 0.025682288697996
814 => 0.025679913520323
815 => 0.02615048689322
816 => 0.026518170531783
817 => 0.026224891172705
818 => 0.026158117147625
819 => 0.02687108904039
820 => 0.026780356868153
821 => 0.026701783392155
822 => 0.028726956255437
823 => 0.02712387390794
824 => 0.02642483850369
825 => 0.025559649447708
826 => 0.025841359366997
827 => 0.025900719786171
828 => 0.023820096068583
829 => 0.022975987285483
830 => 0.022686320960691
831 => 0.022519613895493
901 => 0.022595584398479
902 => 0.021835787489604
903 => 0.022346383578249
904 => 0.021688463679197
905 => 0.021578161267064
906 => 0.022754603547205
907 => 0.022918298617811
908 => 0.022219924590536
909 => 0.022668393772531
910 => 0.022505772612952
911 => 0.021699741827521
912 => 0.021668957380279
913 => 0.021264519465502
914 => 0.020631652443489
915 => 0.020342415232339
916 => 0.0201917779815
917 => 0.020253933847058
918 => 0.020222505939431
919 => 0.020017417583509
920 => 0.020234261363924
921 => 0.019680315111001
922 => 0.019459729249638
923 => 0.019360095733614
924 => 0.018868436550188
925 => 0.01965088495285
926 => 0.0198050371452
927 => 0.019959493064989
928 => 0.021303926395215
929 => 0.021236762305366
930 => 0.021843892967362
1001 => 0.021820300986278
1002 => 0.021647137486612
1003 => 0.020916589165535
1004 => 0.021207772705545
1005 => 0.020311555029364
1006 => 0.020983062249237
1007 => 0.020676614396899
1008 => 0.020879451922103
1009 => 0.020514731762664
1010 => 0.020716582957824
1011 => 0.019841592348675
1012 => 0.019024538429303
1013 => 0.019353344777749
1014 => 0.019710794882077
1015 => 0.020485837784853
1016 => 0.020024228625925
1017 => 0.02019024073485
1018 => 0.019634127960042
1019 => 0.018486708459851
1020 => 0.018493202729612
1021 => 0.018316697237401
1022 => 0.018164170721906
1023 => 0.020077249990712
1024 => 0.019839328342328
1025 => 0.019460231334044
1026 => 0.019967667744348
1027 => 0.020101841985331
1028 => 0.020105661737346
1029 => 0.020475874243474
1030 => 0.020673456724359
1031 => 0.020708281492987
1101 => 0.021290818870351
1102 => 0.02148607771539
1103 => 0.022290321264038
1104 => 0.020656693231288
1105 => 0.020623049736993
1106 => 0.019974808415263
1107 => 0.019563683520733
1108 => 0.020002958488525
1109 => 0.020392096142975
1110 => 0.019986900006904
1111 => 0.020039810068118
1112 => 0.019495867361183
1113 => 0.019690301284029
1114 => 0.019857773971462
1115 => 0.019765305397051
1116 => 0.019626875465628
1117 => 0.020360191292978
1118 => 0.020318814740111
1119 => 0.021001695297396
1120 => 0.021534049525057
1121 => 0.022488123470727
1122 => 0.021492497571421
1123 => 0.021456213006396
1124 => 0.021810900449745
1125 => 0.02148602341459
1126 => 0.021691334486434
1127 => 0.022455044682956
1128 => 0.02247118067597
1129 => 0.022200882002937
1130 => 0.022184434304118
1201 => 0.022236348121017
1202 => 0.022540408968096
1203 => 0.022434160765281
1204 => 0.022557113875454
1205 => 0.022710868622451
1206 => 0.023346863446691
1207 => 0.023500199645665
1208 => 0.023127672177862
1209 => 0.023161307237192
1210 => 0.023021971738126
1211 => 0.022887375391897
1212 => 0.023189928322002
1213 => 0.023742849748461
1214 => 0.023739410052964
1215 => 0.023867677076645
1216 => 0.023947586369778
1217 => 0.023604557186476
1218 => 0.023381257801679
1219 => 0.023466884994719
1220 => 0.023603804741108
1221 => 0.023422483766324
1222 => 0.022303286713907
1223 => 0.022642779605026
1224 => 0.022586271387589
1225 => 0.022505796814326
1226 => 0.022847159541567
1227 => 0.022814234273764
1228 => 0.021827994674111
1229 => 0.021891130533434
1230 => 0.021831834174829
1231 => 0.022023432840376
]
'min_raw' => 0.018164170721906
'max_raw' => 0.040689984706463
'avg_raw' => 0.029427077714184
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.018164'
'max' => '$0.040689'
'avg' => '$0.029427'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0044294271828781
'max_diff' => -0.029568568166296
'year' => 2034
]
9 => [
'items' => [
101 => 0.021475676457877
102 => 0.021644162631938
103 => 0.02174983558085
104 => 0.021812077759576
105 => 0.022036939188998
106 => 0.022010554295597
107 => 0.022035299066978
108 => 0.022368709205595
109 => 0.024054983274174
110 => 0.024146763451172
111 => 0.023694804292608
112 => 0.023875353061954
113 => 0.023528738906485
114 => 0.023761423311164
115 => 0.023920620071303
116 => 0.023201240524013
117 => 0.023158643535957
118 => 0.02281059878057
119 => 0.022997618317852
120 => 0.022700056786856
121 => 0.022773067978302
122 => 0.022568922322018
123 => 0.022936343858335
124 => 0.023347178227472
125 => 0.023450971213457
126 => 0.023177936553021
127 => 0.022980241465004
128 => 0.022633154015257
129 => 0.023210368179534
130 => 0.023379163191452
131 => 0.023209481571195
201 => 0.023170162632165
202 => 0.02309565331375
203 => 0.023185970136295
204 => 0.023378243897567
205 => 0.02328757114249
206 => 0.023347462094666
207 => 0.02311921954425
208 => 0.023604670743409
209 => 0.024375684077866
210 => 0.02437816301181
211 => 0.024287489767973
212 => 0.024250388230177
213 => 0.024343424480866
214 => 0.024393892830318
215 => 0.024694755005117
216 => 0.025017592105553
217 => 0.026524131988428
218 => 0.026101101617833
219 => 0.027437793426378
220 => 0.028494943099229
221 => 0.028811936062565
222 => 0.028520317451967
223 => 0.027522705938043
224 => 0.027473758357812
225 => 0.028964611140333
226 => 0.028543376943888
227 => 0.028493272476577
228 => 0.02796024559722
301 => 0.028275330499583
302 => 0.02820641680942
303 => 0.028097633178124
304 => 0.028698793222828
305 => 0.029824111160586
306 => 0.029648719806822
307 => 0.029517798297407
308 => 0.028944138353832
309 => 0.029289609771451
310 => 0.029166594016706
311 => 0.029695147766818
312 => 0.029382044234151
313 => 0.028540185680554
314 => 0.028674254430017
315 => 0.028653990208244
316 => 0.029071026456381
317 => 0.028945842526167
318 => 0.02862954603674
319 => 0.029820264946213
320 => 0.029742946283358
321 => 0.029852566469779
322 => 0.029900824665958
323 => 0.030625594283334
324 => 0.030922509205531
325 => 0.030989914091098
326 => 0.031271960302961
327 => 0.030982896524408
328 => 0.032139357737602
329 => 0.032908336962993
330 => 0.033801545904593
331 => 0.035106764240202
401 => 0.035597538408336
402 => 0.035508884447612
403 => 0.036498486093419
404 => 0.038276778253327
405 => 0.035868328136448
406 => 0.038404431957695
407 => 0.037601530768615
408 => 0.035697866492881
409 => 0.035575292956251
410 => 0.036864476505775
411 => 0.0397237615393
412 => 0.039007543068145
413 => 0.039724933016141
414 => 0.038888059535393
415 => 0.03884650171335
416 => 0.039684287939118
417 => 0.041641821120973
418 => 0.040711870483308
419 => 0.039378558210963
420 => 0.040363055244226
421 => 0.039510192803114
422 => 0.037588455022123
423 => 0.039006995389378
424 => 0.038058457843498
425 => 0.038335291526415
426 => 0.040328976363542
427 => 0.040089090929304
428 => 0.040399524894002
429 => 0.039851617071781
430 => 0.039339784768693
501 => 0.038384411765814
502 => 0.038101572918981
503 => 0.03817973940077
504 => 0.038101534183555
505 => 0.037567011768775
506 => 0.037451581704196
507 => 0.037259193206123
508 => 0.037318822446338
509 => 0.036957075784721
510 => 0.037639766475867
511 => 0.037766479883993
512 => 0.03826328523733
513 => 0.038314865217202
514 => 0.039698461054663
515 => 0.038936399717773
516 => 0.039447656255769
517 => 0.039401924658877
518 => 0.035739124670151
519 => 0.03624382619144
520 => 0.037028983374502
521 => 0.036675271127788
522 => 0.036175204766853
523 => 0.035771374368536
524 => 0.035159530021307
525 => 0.036020689190601
526 => 0.037153021924156
527 => 0.038343583043958
528 => 0.039773964220746
529 => 0.039454719793559
530 => 0.03831684306281
531 => 0.038367887381732
601 => 0.038683423276108
602 => 0.038274775623432
603 => 0.038154257452908
604 => 0.038666865930161
605 => 0.038670395983019
606 => 0.038200197471897
607 => 0.037677657872203
608 => 0.037675468412201
609 => 0.037582487537569
610 => 0.038904600626431
611 => 0.039631629144595
612 => 0.039714981792538
613 => 0.039626018847269
614 => 0.03966025715409
615 => 0.039237215278351
616 => 0.04020416355712
617 => 0.041091530918991
618 => 0.040853697510171
619 => 0.040497151420338
620 => 0.0402131452862
621 => 0.040786794690813
622 => 0.040761250985833
623 => 0.041083780539208
624 => 0.041069148735646
625 => 0.040960694177796
626 => 0.040853701383425
627 => 0.041277915719189
628 => 0.041155748803163
629 => 0.041033392128173
630 => 0.04078798708461
701 => 0.040821341705776
702 => 0.040464857178653
703 => 0.040299931124783
704 => 0.037819838987523
705 => 0.037157077329098
706 => 0.037365595638596
707 => 0.037434245280259
708 => 0.03714581055716
709 => 0.037559351857282
710 => 0.037494901883707
711 => 0.037745639028915
712 => 0.03758898934633
713 => 0.037595418303945
714 => 0.038056091619194
715 => 0.038189827042455
716 => 0.038121808126807
717 => 0.038169446243775
718 => 0.039267246542504
719 => 0.039111174445702
720 => 0.039028264254908
721 => 0.039051230944376
722 => 0.039331742457805
723 => 0.039410270366205
724 => 0.039077542100258
725 => 0.039234458673958
726 => 0.039902589529092
727 => 0.040136397515457
728 => 0.040882600373735
729 => 0.04056560013684
730 => 0.04114746779111
731 => 0.042935930587032
801 => 0.044364678420627
802 => 0.043050742867352
803 => 0.045674456313809
804 => 0.047717393581217
805 => 0.047638982246204
806 => 0.047282748879641
807 => 0.044956919114995
808 => 0.042816655889399
809 => 0.044607076957987
810 => 0.044611641109494
811 => 0.044457842351856
812 => 0.043502611477058
813 => 0.044424602387996
814 => 0.044497786678327
815 => 0.044456822937016
816 => 0.043724449664965
817 => 0.042606251043749
818 => 0.042824744377745
819 => 0.043182640915974
820 => 0.042505068104067
821 => 0.042288542535078
822 => 0.042691104763504
823 => 0.04398824414066
824 => 0.043743027455226
825 => 0.043736623856571
826 => 0.044785764824918
827 => 0.044034806310373
828 => 0.042827500278399
829 => 0.042522639582916
830 => 0.041440589492721
831 => 0.042187965344149
901 => 0.042214862070514
902 => 0.041805531954683
903 => 0.042860715161352
904 => 0.042850991462341
905 => 0.043852730873779
906 => 0.045767680392307
907 => 0.045201335590735
908 => 0.044542738204647
909 => 0.044614346001439
910 => 0.045399706789151
911 => 0.044924859728858
912 => 0.04509561804249
913 => 0.045399448325992
914 => 0.04558275667971
915 => 0.044587970750295
916 => 0.044356038564037
917 => 0.043881586708088
918 => 0.043757811074935
919 => 0.044144242211842
920 => 0.04404243126008
921 => 0.042212601504813
922 => 0.04202137411431
923 => 0.042027238785367
924 => 0.041546388419583
925 => 0.040812976194451
926 => 0.04274033973233
927 => 0.042585545466803
928 => 0.042414664577785
929 => 0.042435596511657
930 => 0.043272199699039
1001 => 0.042786927600884
1002 => 0.044077103008362
1003 => 0.043811881730808
1004 => 0.043539858528255
1005 => 0.043502256635633
1006 => 0.043397550910579
1007 => 0.043038476020085
1008 => 0.042604871512759
1009 => 0.042318568258843
1010 => 0.039036642267728
1011 => 0.039645748641594
1012 => 0.040346470002933
1013 => 0.040588356208903
1014 => 0.040174593115576
1015 => 0.043054813908926
1016 => 0.043581058002369
1017 => 0.041987030317277
1018 => 0.041688852821117
1019 => 0.043074362375933
1020 => 0.042238730742724
1021 => 0.042615015615992
1022 => 0.041801693536809
1023 => 0.043454301210484
1024 => 0.043441711108886
1025 => 0.042798809397989
1026 => 0.043342185521638
1027 => 0.043247760548325
1028 => 0.042521926100119
1029 => 0.04347731145714
1030 => 0.043477785316358
1031 => 0.042859006397508
1101 => 0.042136408088415
1102 => 0.042007224577759
1103 => 0.041909902155843
1104 => 0.042591080266173
1105 => 0.043201822429907
1106 => 0.044338262180793
1107 => 0.044623990135308
1108 => 0.045739205363768
1109 => 0.045075148994064
1110 => 0.045369516581784
1111 => 0.045689094239091
1112 => 0.045842311520084
1113 => 0.045592652182799
1114 => 0.047325040473498
1115 => 0.047471307124239
1116 => 0.047520349067031
1117 => 0.04693619748258
1118 => 0.047455060811953
1119 => 0.047212301843087
1120 => 0.047843893239693
1121 => 0.047942934835245
1122 => 0.047859050127319
1123 => 0.047890487493013
1124 => 0.046412199701137
1125 => 0.046335542680539
1126 => 0.04529031876535
1127 => 0.045716255236695
1128 => 0.044919987419183
1129 => 0.045172492146583
1130 => 0.045283793824468
1201 => 0.045225656144256
1202 => 0.045740337045715
1203 => 0.045302753137113
1204 => 0.044147897256857
1205 => 0.042992726736889
1206 => 0.042978224511993
1207 => 0.042674088504538
1208 => 0.042454253876437
1209 => 0.042496601824862
1210 => 0.04264584151864
1211 => 0.042445579794132
1212 => 0.042488315786583
1213 => 0.043198018009698
1214 => 0.043340343729179
1215 => 0.042856665324134
1216 => 0.040914626733418
1217 => 0.040438045592021
1218 => 0.040780602665442
1219 => 0.040616882447848
1220 => 0.032780994153114
1221 => 0.034621919876588
1222 => 0.03352810432363
1223 => 0.034032184854467
1224 => 0.032915682417062
1225 => 0.033448535901098
1226 => 0.03335013731929
1227 => 0.036310291405683
1228 => 0.036264072671183
1229 => 0.036286195133547
1230 => 0.035230232365133
1231 => 0.036912409727731
]
'min_raw' => 0.021475676457877
'max_raw' => 0.047942934835245
'avg_raw' => 0.034709305646561
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.021475'
'max' => '$0.047942'
'avg' => '$0.0347093'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0033115057359716
'max_diff' => 0.0072529501287819
'year' => 2035
]
10 => [
'items' => [
101 => 0.037741110785688
102 => 0.037587740275025
103 => 0.037626340328321
104 => 0.0369630635246
105 => 0.036292617102859
106 => 0.035548988840183
107 => 0.036930558237003
108 => 0.036776951304253
109 => 0.037129270341952
110 => 0.03802531685241
111 => 0.038157263104824
112 => 0.038334600206136
113 => 0.03827103747903
114 => 0.03978535951449
115 => 0.039601965124177
116 => 0.040043892838664
117 => 0.039134814000829
118 => 0.038106105005263
119 => 0.038301628954289
120 => 0.038282798425694
121 => 0.038043064183998
122 => 0.037826642829838
123 => 0.037466362251499
124 => 0.038606343312856
125 => 0.038560062163615
126 => 0.03930930017388
127 => 0.039176865077856
128 => 0.038292431094242
129 => 0.038324018826991
130 => 0.038536461510275
131 => 0.03927172806275
201 => 0.039490005236289
202 => 0.039388890552664
203 => 0.039628221508718
204 => 0.039817378938073
205 => 0.039651976769526
206 => 0.041993722673857
207 => 0.041021266508424
208 => 0.041495234877149
209 => 0.041608273540306
210 => 0.041318727381576
211 => 0.041381519575534
212 => 0.041476632639532
213 => 0.042054140539078
214 => 0.043569688370746
215 => 0.044240914188709
216 => 0.046260330179748
217 => 0.044185178228441
218 => 0.044062047299483
219 => 0.04442580509999
220 => 0.045611416063622
221 => 0.04657224239087
222 => 0.046891003915019
223 => 0.046933133512615
224 => 0.047531151322784
225 => 0.047873923979201
226 => 0.047458536231199
227 => 0.047106538607678
228 => 0.04584572681178
229 => 0.045991669210231
301 => 0.046997067611452
302 => 0.048417252070845
303 => 0.049635918082014
304 => 0.049209183719701
305 => 0.052464865676637
306 => 0.052787653244399
307 => 0.052743054439506
308 => 0.053478412556099
309 => 0.052018876447739
310 => 0.051394896484235
311 => 0.047182644489226
312 => 0.048366115484298
313 => 0.050086360078448
314 => 0.049858679255826
315 => 0.048609391649284
316 => 0.049634970385338
317 => 0.049295881982386
318 => 0.049028428890188
319 => 0.050253683353883
320 => 0.048906465740371
321 => 0.050072920552186
322 => 0.048576930190603
323 => 0.049211133006323
324 => 0.048851128815182
325 => 0.049084095647304
326 => 0.04772217630701
327 => 0.04845703492431
328 => 0.04769160377254
329 => 0.047691240858511
330 => 0.047674343923412
331 => 0.048574870279028
401 => 0.048604236411155
402 => 0.047938746073735
403 => 0.0478428385192
404 => 0.0481974590155
405 => 0.047782291289587
406 => 0.047976545655508
407 => 0.047788175056441
408 => 0.047745768866899
409 => 0.047407869133813
410 => 0.047262292638052
411 => 0.047319376933084
412 => 0.047124518805169
413 => 0.047007109734774
414 => 0.047650988304167
415 => 0.047306989958528
416 => 0.047598265624067
417 => 0.047266320241266
418 => 0.046115652922756
419 => 0.045453891979795
420 => 0.043280388082048
421 => 0.043896791091226
422 => 0.044305466924026
423 => 0.044170399563724
424 => 0.044460576517783
425 => 0.044478391026043
426 => 0.044384051540274
427 => 0.044274818501391
428 => 0.044221649899028
429 => 0.04461792510082
430 => 0.04484797619347
501 => 0.044346483011225
502 => 0.04422899017526
503 => 0.044736027470707
504 => 0.045045319928024
505 => 0.047328961656432
506 => 0.047159782101126
507 => 0.047584389585133
508 => 0.047536585298567
509 => 0.047981641587083
510 => 0.048709120523986
511 => 0.047229952438953
512 => 0.04748668487273
513 => 0.047423740008786
514 => 0.048110955528303
515 => 0.048113100940143
516 => 0.047701080907231
517 => 0.047924443651334
518 => 0.047799768695212
519 => 0.048025073191756
520 => 0.047157522605021
521 => 0.048214105573365
522 => 0.048813120031714
523 => 0.048821437348049
524 => 0.049105365447234
525 => 0.049393852840012
526 => 0.049947579268493
527 => 0.049378409710457
528 => 0.048354529083091
529 => 0.048428449957272
530 => 0.04782814912007
531 => 0.047838240285597
601 => 0.047784372853157
602 => 0.04794603307286
603 => 0.047192997932303
604 => 0.047369733774646
605 => 0.047122302560402
606 => 0.047486147005593
607 => 0.047094710528209
608 => 0.047423709654866
609 => 0.047565694771438
610 => 0.048089622908309
611 => 0.0470173259164
612 => 0.044830839761773
613 => 0.045290465660058
614 => 0.04461064285366
615 => 0.04467356304266
616 => 0.044800671838114
617 => 0.044388670644637
618 => 0.044467267488703
619 => 0.044464459456355
620 => 0.044440261350606
621 => 0.044333083927942
622 => 0.044177655460672
623 => 0.044796834635916
624 => 0.044902045243289
625 => 0.04513591539064
626 => 0.045831754313522
627 => 0.045762223596114
628 => 0.045875631081008
629 => 0.045628063178241
630 => 0.044685047007627
701 => 0.044736257322679
702 => 0.044097663873391
703 => 0.045119585120388
704 => 0.044877580680398
705 => 0.044721558843604
706 => 0.044678986839903
707 => 0.045376550612884
708 => 0.045585272626732
709 => 0.045455211074515
710 => 0.045188451036416
711 => 0.045700709170092
712 => 0.045837767836228
713 => 0.045868450217046
714 => 0.046776073414164
715 => 0.045919176271329
716 => 0.046125439930435
717 => 0.047734650118218
718 => 0.046275318533725
719 => 0.047048359021009
720 => 0.047010522711865
721 => 0.047405984066895
722 => 0.0469780833381
723 => 0.046983387680468
724 => 0.047334530572862
725 => 0.046841413709449
726 => 0.046719311039349
727 => 0.046550627075123
728 => 0.046918942339832
729 => 0.047139730683558
730 => 0.048919122582822
731 => 0.050068690899875
801 => 0.050018785107461
802 => 0.050474830630397
803 => 0.050269377945416
804 => 0.049605917029934
805 => 0.050738363912223
806 => 0.050380010335077
807 => 0.050409552568577
808 => 0.050408453005171
809 => 0.05064672680616
810 => 0.050477887980686
811 => 0.050145089324727
812 => 0.050366016603615
813 => 0.051022091638966
814 => 0.053058568679537
815 => 0.054198208211172
816 => 0.052989960948759
817 => 0.053823393731296
818 => 0.053323631044238
819 => 0.053232809297347
820 => 0.05375626667498
821 => 0.054280640295457
822 => 0.054247239962762
823 => 0.053866571641179
824 => 0.053651541765418
825 => 0.055279820024975
826 => 0.056479507709621
827 => 0.056397697052336
828 => 0.056758782687339
829 => 0.057818941279666
830 => 0.057915868895008
831 => 0.057903658243331
901 => 0.057663413035354
902 => 0.05870727684849
903 => 0.059578086406444
904 => 0.057607803211059
905 => 0.058358061258961
906 => 0.058694876268468
907 => 0.059189420630936
908 => 0.060023799865677
909 => 0.060930157022769
910 => 0.061058325862482
911 => 0.060967383937262
912 => 0.060369617027972
913 => 0.061361363844351
914 => 0.061942305870061
915 => 0.062288243551749
916 => 0.06316548395397
917 => 0.058696956323302
918 => 0.055533910366081
919 => 0.055039955064924
920 => 0.05604443259366
921 => 0.05630930530743
922 => 0.056202535448631
923 => 0.052642239652223
924 => 0.055021210844376
925 => 0.057580783817554
926 => 0.057679107439643
927 => 0.058960483188162
928 => 0.059377751657247
929 => 0.060409427088564
930 => 0.06034489550944
1001 => 0.060596092059424
1002 => 0.060538346322701
1003 => 0.062449307814323
1004 => 0.06455738212011
1005 => 0.064484386210167
1006 => 0.064181325587107
1007 => 0.064631422291866
1008 => 0.06680718089041
1009 => 0.066606871904477
1010 => 0.066801455022032
1011 => 0.069366797030097
1012 => 0.072702106556227
1013 => 0.071152520421738
1014 => 0.07451467645218
1015 => 0.07663097545311
1016 => 0.080290895745817
1017 => 0.079832655699683
1018 => 0.081257435811898
1019 => 0.079012310379519
1020 => 0.073857048572063
1021 => 0.073041208657484
1022 => 0.074674540826829
1023 => 0.07868992858694
1024 => 0.074548081976711
1025 => 0.075385972151608
1026 => 0.07514465972487
1027 => 0.07513180121116
1028 => 0.075622558380082
1029 => 0.074910689510389
1030 => 0.072010407672496
1031 => 0.073339589747334
1101 => 0.072826328715674
1102 => 0.073395830096446
1103 => 0.076469194168238
1104 => 0.07511038665225
1105 => 0.073678993314716
1106 => 0.075474278211594
1107 => 0.077760292812142
1108 => 0.077617238126803
1109 => 0.077339652245025
1110 => 0.078904389326681
1111 => 0.081488876560628
1112 => 0.082187453074653
1113 => 0.082703127975538
1114 => 0.082774230831971
1115 => 0.083506634443413
1116 => 0.079568315635218
1117 => 0.085818528727024
1118 => 0.086897767869326
1119 => 0.086694915640453
1120 => 0.087894444525797
1121 => 0.087541512698618
1122 => 0.087030169854343
1123 => 0.088931678284723
1124 => 0.08675175231311
1125 => 0.083657621841452
1126 => 0.08196012066974
1127 => 0.084195527146164
1128 => 0.085560611876382
1129 => 0.086462846047361
1130 => 0.086735861562354
1201 => 0.079874036113342
1202 => 0.076175892770611
1203 => 0.078546360254002
1204 => 0.081438494184666
1205 => 0.079552249685205
1206 => 0.079626186898451
1207 => 0.076936897938555
1208 => 0.081676436584429
1209 => 0.080985925669519
1210 => 0.084568297517562
1211 => 0.083713335725696
1212 => 0.086634620900901
1213 => 0.085865348611342
1214 => 0.089058554875866
1215 => 0.090332411307393
1216 => 0.092471414515849
1217 => 0.094044873983299
1218 => 0.094968839478069
1219 => 0.09491336805547
1220 => 0.098574579663531
1221 => 0.096415691091248
1222 => 0.093703618233493
1223 => 0.093654565391976
1224 => 0.095059186355377
1225 => 0.098002886555724
1226 => 0.098766145188578
1227 => 0.099192702638685
1228 => 0.098539415055274
1229 => 0.096196096238999
1230 => 0.095184263055028
1231 => 0.096046374243401
]
'min_raw' => 0.035548988840183
'max_raw' => 0.099192702638685
'avg_raw' => 0.067370845739434
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.035548'
'max' => '$0.099192'
'avg' => '$0.06737'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.014073312382306
'max_diff' => 0.051249767803441
'year' => 2036
]
11 => [
'items' => [
101 => 0.09499208634208
102 => 0.096812083040699
103 => 0.099311327238221
104 => 0.098795243194516
105 => 0.10052043477698
106 => 0.10230582656938
107 => 0.10485901701948
108 => 0.10552651554751
109 => 0.10662986523164
110 => 0.10776557448809
111 => 0.10813033369305
112 => 0.10882677219343
113 => 0.10882310161877
114 => 0.1109218659154
115 => 0.11323686792791
116 => 0.11411072759521
117 => 0.11612011971527
118 => 0.11267910612717
119 => 0.11528915446126
120 => 0.11764348339235
121 => 0.11483655538311
122 => 0.11870525171351
123 => 0.11885546442536
124 => 0.12112349803362
125 => 0.11882441146898
126 => 0.11745922120585
127 => 0.12140047434251
128 => 0.12330752258704
129 => 0.12273310413571
130 => 0.1183617513586
131 => 0.11581743654619
201 => 0.10915847392041
202 => 0.11704630279642
203 => 0.1208882341508
204 => 0.11835180168454
205 => 0.11963103068505
206 => 0.12661008932047
207 => 0.12926726298826
208 => 0.1287145894404
209 => 0.12880798217221
210 => 0.13024174485223
211 => 0.13659983816298
212 => 0.13278992127173
213 => 0.13570245998023
214 => 0.13724726000928
215 => 0.1386821563689
216 => 0.13515850441332
217 => 0.13057428499184
218 => 0.12912227026862
219 => 0.11809960346339
220 => 0.11752582578716
221 => 0.11720374699025
222 => 0.11517308573469
223 => 0.11357754223274
224 => 0.11230870680126
225 => 0.10897890372273
226 => 0.11010261451434
227 => 0.10479560339107
228 => 0.10819084103881
301 => 0.099720723143815
302 => 0.10677488901768
303 => 0.1029356272461
304 => 0.1055135882691
305 => 0.10550459400595
306 => 0.10075775041932
307 => 0.098019870102647
308 => 0.099764554000326
309 => 0.10163499363182
310 => 0.10193846616911
311 => 0.10436353997481
312 => 0.1050403259472
313 => 0.10298963285476
314 => 0.099545198777076
315 => 0.10034526225415
316 => 0.09800365684182
317 => 0.093900083425271
318 => 0.096847341494555
319 => 0.097853664981198
320 => 0.098298114761884
321 => 0.0942627216053
322 => 0.092994713462853
323 => 0.092319636567433
324 => 0.099024280194859
325 => 0.099391575707646
326 => 0.097512439933873
327 => 0.10600631181829
328 => 0.10408388701425
329 => 0.10623170652588
330 => 0.10027266487947
331 => 0.10050030829528
401 => 0.097679202481987
402 => 0.099258833231071
403 => 0.098142401131494
404 => 0.09913121467676
405 => 0.099723905438761
406 => 0.10254454833635
407 => 0.10680709622871
408 => 0.1021232383476
409 => 0.10008241439472
410 => 0.10134853009705
411 => 0.10472036305916
412 => 0.1098288625977
413 => 0.10680452805275
414 => 0.10814667636726
415 => 0.10843987606596
416 => 0.10620984373947
417 => 0.10991108707046
418 => 0.11189461344038
419 => 0.11392930106298
420 => 0.11569596331502
421 => 0.11311660208277
422 => 0.11587688833819
423 => 0.11365258487244
424 => 0.1116571547194
425 => 0.11166018096326
426 => 0.11040841847968
427 => 0.10798297093551
428 => 0.10753568119532
429 => 0.10986253891024
430 => 0.11172845844336
501 => 0.11188214451326
502 => 0.1129152134412
503 => 0.1135265729913
504 => 0.11951872768528
505 => 0.1219288218729
506 => 0.12487583942478
507 => 0.12602386884605
508 => 0.12947902581273
509 => 0.12668870594801
510 => 0.12608500269334
511 => 0.1177039220654
512 => 0.11907632354871
513 => 0.12127367074053
514 => 0.11774015551126
515 => 0.11998135762114
516 => 0.12042381839278
517 => 0.11762008801589
518 => 0.11911768155222
519 => 0.11514051712525
520 => 0.10689378754488
521 => 0.10992026803793
522 => 0.11214877638314
523 => 0.10896842020143
524 => 0.11466908556036
525 => 0.11133887454329
526 => 0.1102833575292
527 => 0.10616540933826
528 => 0.10810892237002
529 => 0.11073755157391
530 => 0.10911336433685
531 => 0.11248379672669
601 => 0.11725722785218
602 => 0.12065905913495
603 => 0.12092020950013
604 => 0.11873305989031
605 => 0.12223798109825
606 => 0.12226351062284
607 => 0.11830994518226
608 => 0.11588840836345
609 => 0.11533823010325
610 => 0.11671268326601
611 => 0.11838152314366
612 => 0.12101281849881
613 => 0.12260285517328
614 => 0.12674882753001
615 => 0.1278706087754
616 => 0.12910310626127
617 => 0.13075010299052
618 => 0.13272774484529
619 => 0.12840077705427
620 => 0.12857269555109
621 => 0.12454348305504
622 => 0.12023769165549
623 => 0.12350525060327
624 => 0.12777714926235
625 => 0.12679717098993
626 => 0.12668690341514
627 => 0.12687234289026
628 => 0.12613347127595
629 => 0.1227915823483
630 => 0.12111330665016
701 => 0.12327871047455
702 => 0.12442952623618
703 => 0.12621434112078
704 => 0.12599432501338
705 => 0.13059181648098
706 => 0.13237826264437
707 => 0.13192121326943
708 => 0.13200532135393
709 => 0.13523959680095
710 => 0.13883677627751
711 => 0.14220600954695
712 => 0.14563333834056
713 => 0.14150155970895
714 => 0.13940369733249
715 => 0.14156815580931
716 => 0.14041966367455
717 => 0.14701924014577
718 => 0.14747618050174
719 => 0.15407527974846
720 => 0.16033861073972
721 => 0.15640472476334
722 => 0.16011420205295
723 => 0.16412630417978
724 => 0.17186630012256
725 => 0.16925974178537
726 => 0.16726315894906
727 => 0.16537639781617
728 => 0.16930244821883
729 => 0.17435324934166
730 => 0.17544114352754
731 => 0.17720394771624
801 => 0.17535057465726
802 => 0.17758275836446
803 => 0.18546334772206
804 => 0.18333394291375
805 => 0.18030984576704
806 => 0.18653081420503
807 => 0.18878215849933
808 => 0.20458327179492
809 => 0.22453283004203
810 => 0.21627358193186
811 => 0.21114680010561
812 => 0.21235171544367
813 => 0.21963661878035
814 => 0.22197629852082
815 => 0.21561624245026
816 => 0.21786272177517
817 => 0.23024104372438
818 => 0.23688161630602
819 => 0.22786282679227
820 => 0.20298034421422
821 => 0.18003755890635
822 => 0.18612301869708
823 => 0.18543311641061
824 => 0.19873207911793
825 => 0.18328315731331
826 => 0.18354327753554
827 => 0.1971172487078
828 => 0.19349594591582
829 => 0.18762989917423
830 => 0.18008038753932
831 => 0.16612441703687
901 => 0.15376322477183
902 => 0.17800636941614
903 => 0.17696096093578
904 => 0.17544705453536
905 => 0.17881608940771
906 => 0.19517516643061
907 => 0.19479803675607
908 => 0.19239893017988
909 => 0.19421863137317
910 => 0.18731089675692
911 => 0.18909117725372
912 => 0.18003392465193
913 => 0.18412818109222
914 => 0.1876173132725
915 => 0.18831780821517
916 => 0.18989605908918
917 => 0.17641007817036
918 => 0.18246488767531
919 => 0.18602152100054
920 => 0.16995252224572
921 => 0.18570388856093
922 => 0.17617531724616
923 => 0.17294117702759
924 => 0.17729552076632
925 => 0.1755986287766
926 => 0.17413974068868
927 => 0.17332565606874
928 => 0.17652300553908
929 => 0.17637384536463
930 => 0.17114236105236
1001 => 0.16431810302959
1002 => 0.16660854802066
1003 => 0.16577640788237
1004 => 0.16276062467298
1005 => 0.16479289842905
1006 => 0.1558437933175
1007 => 0.14044732310707
1008 => 0.15061870293472
1009 => 0.15022711587568
1010 => 0.15002965992346
1011 => 0.15767317074765
1012 => 0.1569384235477
1013 => 0.15560485018513
1014 => 0.16273613255237
1015 => 0.16013311855904
1016 => 0.16815499433925
1017 => 0.17343872055049
1018 => 0.17209859667268
1019 => 0.17706796671282
1020 => 0.16666131524721
1021 => 0.1701179874217
1022 => 0.17083040276612
1023 => 0.16264813363492
1024 => 0.15705863727638
1025 => 0.15668588159419
1026 => 0.14699446518853
1027 => 0.15217154160605
1028 => 0.1567271546115
1029 => 0.15454536951174
1030 => 0.15385468152813
1031 => 0.15738325664443
1101 => 0.15765745715117
1102 => 0.15140565653906
1103 => 0.1527056038551
1104 => 0.15812660026122
1105 => 0.15256900865451
1106 => 0.14177151599009
1107 => 0.1390935885223
1108 => 0.1387363036341
1109 => 0.13147355195234
1110 => 0.1392725404407
1111 => 0.13586807296563
1112 => 0.14662274492759
1113 => 0.14047973398138
1114 => 0.14021492105737
1115 => 0.13981461748312
1116 => 0.13356326709014
1117 => 0.13493191553216
1118 => 0.13948151140448
1119 => 0.14110485846659
1120 => 0.14093553006832
1121 => 0.13945921590268
1122 => 0.14013506496776
1123 => 0.13795791964772
1124 => 0.13718912432185
1125 => 0.1347625947996
1126 => 0.13119626674778
1127 => 0.13169218653695
1128 => 0.1246263574858
1129 => 0.12077651880681
1130 => 0.11971093420052
1201 => 0.11828598993115
1202 => 0.11987188544738
1203 => 0.12460634087988
1204 => 0.11889558315753
1205 => 0.10910488960565
1206 => 0.10969332697065
1207 => 0.11101537102118
1208 => 0.10855175067921
1209 => 0.10622014078153
1210 => 0.10824728641808
1211 => 0.10409884049171
1212 => 0.11151669089194
1213 => 0.1113160588269
1214 => 0.11408097473932
1215 => 0.11580993340114
1216 => 0.11182524344266
1217 => 0.11082310469385
1218 => 0.11139396846984
1219 => 0.10195886186751
1220 => 0.11330992523797
1221 => 0.11340808970536
1222 => 0.11256754593818
1223 => 0.11861163675819
1224 => 0.1313665535876
1225 => 0.12656764081103
1226 => 0.12470935673604
1227 => 0.12117675735108
1228 => 0.12588373628654
1229 => 0.12552231374461
1230 => 0.12388782394456
1231 => 0.12289927941357
]
'min_raw' => 0.092319636567433
'max_raw' => 0.23688161630602
'avg_raw' => 0.16460062643673
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.092319'
'max' => '$0.236881'
'avg' => '$0.16460062'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.05677064772725
'max_diff' => 0.13768891366734
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0028978079005659
]
1 => [
'year' => 2028
'avg' => 0.0049734795970155
]
2 => [
'year' => 2029
'avg' => 0.013586649876562
]
3 => [
'year' => 2030
'avg' => 0.010482080145922
]
4 => [
'year' => 2031
'avg' => 0.010294701733187
]
5 => [
'year' => 2032
'avg' => 0.018049852000147
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0028978079005659
'min' => '$0.002897'
'max_raw' => 0.018049852000147
'max' => '$0.018049'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.018049852000147
]
1 => [
'year' => 2033
'avg' => 0.046426075388771
]
2 => [
'year' => 2034
'avg' => 0.029427077714184
]
3 => [
'year' => 2035
'avg' => 0.034709305646561
]
4 => [
'year' => 2036
'avg' => 0.067370845739434
]
5 => [
'year' => 2037
'avg' => 0.16460062643673
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.018049852000147
'min' => '$0.018049'
'max_raw' => 0.16460062643673
'max' => '$0.16460062'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.16460062643673
]
]
]
]
'prediction_2025_max_price' => '$0.004954'
'last_price' => 0.00480423
'sma_50day_nextmonth' => '$0.004577'
'sma_200day_nextmonth' => '$0.007667'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004957'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.005018'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005121'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.004778'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004639'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004649'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.0093028'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004953'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.004999'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.004992'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.004877'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.004829'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.007154'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006628'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.054937'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.234348'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.236265'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004949'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.004962'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005338'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013248'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.071714'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.154112'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.284178'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.80'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 22.59
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005251'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0050024'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 34.37
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -2.21
'cci_20_action' => 'NEUTRAL'
'adx_14' => 7.04
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000262'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -65.63
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 44.12
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.0001076'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 30
'buy_signals' => 3
'sell_pct' => 90.91
'buy_pct' => 9.09
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767695248
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Nuls para 2026
A previsão de preço para Nuls em 2026 sugere que o preço médio poderia variar entre $0.001659 na extremidade inferior e $0.004954 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Nuls poderia potencialmente ganhar 3.13% até 2026 se NULS atingir a meta de preço prevista.
Previsão de preço de Nuls 2027-2032
A previsão de preço de NULS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002897 na extremidade inferior e $0.018049 na extremidade superior. Considerando a volatilidade de preços no mercado, se Nuls atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Nuls | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001597 | $0.002897 | $0.004197 |
| 2028 | $0.002883 | $0.004973 | $0.007063 |
| 2029 | $0.006334 | $0.013586 | $0.020838 |
| 2030 | $0.005387 | $0.010482 | $0.015576 |
| 2031 | $0.006369 | $0.010294 | $0.014219 |
| 2032 | $0.009722 | $0.018049 | $0.026376 |
Previsão de preço de Nuls 2032-2037
A previsão de preço de Nuls para 2032-2037 é atualmente estimada entre $0.018049 na extremidade inferior e $0.16460062 na extremidade superior. Comparado ao preço atual, Nuls poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Nuls | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.009722 | $0.018049 | $0.026376 |
| 2033 | $0.022593 | $0.046426 | $0.070258 |
| 2034 | $0.018164 | $0.029427 | $0.040689 |
| 2035 | $0.021475 | $0.0347093 | $0.047942 |
| 2036 | $0.035548 | $0.06737 | $0.099192 |
| 2037 | $0.092319 | $0.16460062 | $0.236881 |
Nuls Histograma de preços potenciais
Previsão de preço de Nuls baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Nuls é Baixista, com 3 indicadores técnicos mostrando sinais de alta e 30 indicando sinais de baixa. A previsão de preço de NULS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Nuls
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Nuls está projetado para aumentar no próximo mês, alcançando $0.007667 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Nuls é esperado para alcançar $0.004577 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 49.80, sugerindo que o mercado de NULS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de NULS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004957 | SELL |
| SMA 5 | $0.005018 | SELL |
| SMA 10 | $0.005121 | SELL |
| SMA 21 | $0.004778 | BUY |
| SMA 50 | $0.004639 | BUY |
| SMA 100 | $0.004649 | BUY |
| SMA 200 | $0.0093028 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004953 | SELL |
| EMA 5 | $0.004999 | SELL |
| EMA 10 | $0.004992 | SELL |
| EMA 21 | $0.004877 | SELL |
| EMA 50 | $0.004829 | SELL |
| EMA 100 | $0.007154 | SELL |
| EMA 200 | $0.028074 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006628 | SELL |
| SMA 50 | $0.054937 | SELL |
| SMA 100 | $0.234348 | SELL |
| SMA 200 | $0.236265 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.013248 | SELL |
| EMA 50 | $0.071714 | SELL |
| EMA 100 | $0.154112 | SELL |
| EMA 200 | $0.284178 | SELL |
Osciladores de Nuls
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 49.80 | NEUTRAL |
| Stoch RSI (14) | 22.59 | NEUTRAL |
| Estocástico Rápido (14) | 34.37 | NEUTRAL |
| Índice de Canal de Commodities (20) | -2.21 | NEUTRAL |
| Índice Direcional Médio (14) | 7.04 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000262 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -65.63 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 44.12 | NEUTRAL |
| VWMA (10) | 0.005251 | SELL |
| Média Móvel de Hull (9) | 0.0050024 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.0001076 | BUY |
Previsão do preço de Nuls com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Nuls
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Nuls por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.00675 | $0.009485 | $0.013329 | $0.018729 | $0.026318 | $0.036982 |
| Amazon.com stock | $0.010024 | $0.020916 | $0.043643 | $0.091064 | $0.19001 | $0.396468 |
| Apple stock | $0.006814 | $0.009665 | $0.01371 | $0.019446 | $0.027583 | $0.039125 |
| Netflix stock | $0.00758 | $0.01196 | $0.018871 | $0.029776 | $0.046983 | $0.074132 |
| Google stock | $0.006221 | $0.008056 | $0.010433 | $0.013511 | $0.017497 | $0.022658 |
| Tesla stock | $0.01089 | $0.024688 | $0.055967 | $0.126873 | $0.287613 | $0.651997 |
| Kodak stock | $0.0036026 | $0.0027016 | $0.002025 | $0.001519 | $0.001139 | $0.000854 |
| Nokia stock | $0.003182 | $0.0021083 | $0.001396 | $0.000925 | $0.000612 | $0.000406 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Nuls
Você pode fazer perguntas como: 'Devo investir em Nuls agora?', 'Devo comprar NULS hoje?', 'Nuls será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Nuls/NULS regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Nuls, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Nuls para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Nuls é de $0.004804 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Nuls
com base no histórico de preços de 4 horas
Previsão de longo prazo para Nuls
com base no histórico de preços de 1 mês
Previsão do preço de Nuls com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Nuls tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004929 | $0.005057 | $0.005188 | $0.005323 |
| Se Nuls tiver 2% da média anterior do crescimento anual do Bitcoin | $0.005053 | $0.005316 | $0.005593 | $0.005883 |
| Se Nuls tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005428 | $0.006134 | $0.006931 | $0.007832 |
| Se Nuls tiver 10% da média anterior do crescimento anual do Bitcoin | $0.006053 | $0.007626 | $0.0096087 | $0.0121063 |
| Se Nuls tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0073017 | $0.011097 | $0.016867 | $0.025635 |
| Se Nuls tiver 50% da média anterior do crescimento anual do Bitcoin | $0.011048 | $0.0254068 | $0.058427 | $0.134362 |
| Se Nuls tiver 100% da média anterior do crescimento anual do Bitcoin | $0.017291 | $0.062239 | $0.224019 | $0.806317 |
Perguntas Frequentes sobre Nuls
NULS é um bom investimento?
A decisão de adquirir Nuls depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Nuls experimentou uma queda de -5.5517% nas últimas 24 horas, e Nuls registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Nuls dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Nuls pode subir?
Parece que o valor médio de Nuls pode potencialmente subir para $0.004954 até o final deste ano. Observando as perspectivas de Nuls em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.015576. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Nuls na próxima semana?
Com base na nossa nova previsão experimental de Nuls, o preço de Nuls aumentará 0.86% na próxima semana e atingirá $0.004845 até 13 de janeiro de 2026.
Qual será o preço de Nuls no próximo mês?
Com base na nossa nova previsão experimental de Nuls, o preço de Nuls diminuirá -11.62% no próximo mês e atingirá $0.004246 até 5 de fevereiro de 2026.
Até onde o preço de Nuls pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Nuls em 2026, espera-se que NULS fluctue dentro do intervalo de $0.001659 e $0.004954. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Nuls não considera flutuações repentinas e extremas de preço.
Onde estará Nuls em 5 anos?
O futuro de Nuls parece seguir uma tendência de alta, com um preço máximo de $0.015576 projetada após um período de cinco anos. Com base na previsão de Nuls para 2030, o valor de Nuls pode potencialmente atingir seu pico mais alto de aproximadamente $0.015576, enquanto seu pico mais baixo está previsto para cerca de $0.005387.
Quanto será Nuls em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Nuls, espera-se que o valor de NULS em 2026 aumente 3.13% para $0.004954 se o melhor cenário ocorrer. O preço ficará entre $0.004954 e $0.001659 durante 2026.
Quanto será Nuls em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Nuls, o valor de NULS pode diminuir -12.62% para $0.004197 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.004197 e $0.001597 ao longo do ano.
Quanto será Nuls em 2028?
Nosso novo modelo experimental de previsão de preços de Nuls sugere que o valor de NULS em 2028 pode aumentar 47.02%, alcançando $0.007063 no melhor cenário. O preço é esperado para variar entre $0.007063 e $0.002883 durante o ano.
Quanto será Nuls em 2029?
Com base no nosso modelo de previsão experimental, o valor de Nuls pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.020838 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.020838 e $0.006334.
Quanto será Nuls em 2030?
Usando nossa nova simulação experimental para previsões de preços de Nuls, espera-se que o valor de NULS em 2030 aumente 224.23%, alcançando $0.015576 no melhor cenário. O preço está previsto para variar entre $0.015576 e $0.005387 ao longo de 2030.
Quanto será Nuls em 2031?
Nossa simulação experimental indica que o preço de Nuls poderia aumentar 195.98% em 2031, potencialmente atingindo $0.014219 sob condições ideais. O preço provavelmente oscilará entre $0.014219 e $0.006369 durante o ano.
Quanto será Nuls em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Nuls, NULS poderia ver um 449.04% aumento em valor, atingindo $0.026376 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.026376 e $0.009722 ao longo do ano.
Quanto será Nuls em 2033?
De acordo com nossa previsão experimental de preços de Nuls, espera-se que o valor de NULS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.070258. Ao longo do ano, o preço de NULS poderia variar entre $0.070258 e $0.022593.
Quanto será Nuls em 2034?
Os resultados da nossa nova simulação de previsão de preços de Nuls sugerem que NULS pode aumentar 746.96% em 2034, atingindo potencialmente $0.040689 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.040689 e $0.018164.
Quanto será Nuls em 2035?
Com base em nossa previsão experimental para o preço de Nuls, NULS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.047942 em 2035. A faixa de preço esperada para o ano está entre $0.047942 e $0.021475.
Quanto será Nuls em 2036?
Nossa recente simulação de previsão de preços de Nuls sugere que o valor de NULS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.099192 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.099192 e $0.035548.
Quanto será Nuls em 2037?
De acordo com a simulação experimental, o valor de Nuls poderia aumentar 4830.69% em 2037, com um pico de $0.236881 sob condições favoráveis. O preço é esperado para cair entre $0.236881 e $0.092319 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Across Protocol
Previsão de Preço do Alien Worlds
Previsão de Preço do MovieBloc
Previsão de Preço do REN
Previsão de Preço do Moonwell
Previsão de Preço do Pandora
Previsão de Preço do TomoChain
Previsão de Preço do NORMIE
Previsão de Preço do QuarkChain
Previsão de Preço do PepeFork
Previsão de Preço do Star Atlas DAO
Previsão de Preço do Uquid Coin
Previsão de Preço do Artrade
Previsão de Preço do Vaiot
Previsão de Preço do HarryPotterObamaSonic10Inu (ETH)
Previsão de Preço do Elastos
Previsão de Preço do SWEAT
Previsão de Preço do Magic Internet Money
Previsão de Preço do Polymath
Previsão de Preço do Neon
Previsão de Preço do Rally
Previsão de Preço do Cortex
Previsão de Preço do Celsius Network
Previsão de Preço do Loom Network
Previsão de Preço do Boson Protocol
Como ler e prever os movimentos de preço de Nuls?
Traders de Nuls utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Nuls
Médias móveis são ferramentas populares para a previsão de preço de Nuls. Uma média móvel simples (SMA) calcula o preço médio de fechamento de NULS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de NULS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de NULS.
Como ler gráficos de Nuls e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Nuls em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de NULS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Nuls?
A ação de preço de Nuls é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de NULS. A capitalização de mercado de Nuls pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de NULS, grandes detentores de Nuls, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Nuls.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


