Previsão de Preço DeGate - Projeção DG
Previsão de Preço DeGate até $0.050071 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.016774 | $0.050071 |
| 2027 | $0.016148 | $0.04242 |
| 2028 | $0.029142 | $0.071378 |
| 2029 | $0.064017 | $0.210588 |
| 2030 | $0.054444 | $0.157414 |
| 2031 | $0.064369 | $0.1437011 |
| 2032 | $0.098255 | $0.266558 |
| 2033 | $0.228324 | $0.710013 |
| 2034 | $0.183562 | $0.4112019 |
| 2035 | $0.217027 | $0.484498 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em DeGate hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.51, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de DeGate para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DeGate'
'name_with_ticker' => 'DeGate <small>DG</small>'
'name_lang' => 'DeGate'
'name_lang_with_ticker' => 'DeGate <small>DG</small>'
'name_with_lang' => 'DeGate'
'name_with_lang_with_ticker' => 'DeGate <small>DG</small>'
'image' => '/uploads/coins/degate.png?1717220253'
'price_for_sd' => 0.04855
'ticker' => 'DG'
'marketcap' => '$18.74M'
'low24h' => '$0.04818'
'high24h' => '$0.04921'
'volume24h' => '$106.7'
'current_supply' => '387.22M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04855'
'change_24h_pct' => '-0.2444%'
'ath_price' => '$0.6018'
'ath_days' => 1753
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 de mar. de 2021'
'ath_pct' => '-91.96%'
'fdv' => '$48.4M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.39'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.048965'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.042909'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.016774'
'current_year_max_price_prediction' => '$0.050071'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.054444'
'grand_prediction_max_price' => '$0.157414'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.049470251700069
107 => 0.049654955662215
108 => 0.05007110312015
109 => 0.046515168655257
110 => 0.048111678833243
111 => 0.049049478990036
112 => 0.044812463764184
113 => 0.048965726822064
114 => 0.046453267747464
115 => 0.045600501401676
116 => 0.046748638942856
117 => 0.046301208626458
118 => 0.045916534314408
119 => 0.045701879438741
120 => 0.046544944933668
121 => 0.046505614920648
122 => 0.045126196138987
123 => 0.043326800570612
124 => 0.043930736786505
125 => 0.043711321097339
126 => 0.042916130334614
127 => 0.043451992896992
128 => 0.041092325366117
129 => 0.037032640024092
130 => 0.039714592512559
131 => 0.039611340259156
201 => 0.039559275790873
202 => 0.041574688962233
203 => 0.0413809534893
204 => 0.041029321708863
205 => 0.042909672341213
206 => 0.04222331906612
207 => 0.044338498134787
208 => 0.045731691870616
209 => 0.045378332874113
210 => 0.04668863831655
211 => 0.043944650257139
212 => 0.044856093020783
213 => 0.045043940111165
214 => 0.042886469106289
215 => 0.041412651008639
216 => 0.041314364144282
217 => 0.038758966667601
218 => 0.040124039373196
219 => 0.041325246863573
220 => 0.040749961693149
221 => 0.040567843594349
222 => 0.041498245464525
223 => 0.04157054565819
224 => 0.039922093580579
225 => 0.040264858967203
226 => 0.041694247609427
227 => 0.040228842040852
228 => 0.037381798393752
301 => 0.036675692205813
302 => 0.036581484624223
303 => 0.034666468640545
304 => 0.036722877597669
305 => 0.035825199979551
306 => 0.038660952819358
307 => 0.037041186005708
308 => 0.036971361095758
309 => 0.036865810503282
310 => 0.035217477137816
311 => 0.035578357387803
312 => 0.036777978302373
313 => 0.037206016559389
314 => 0.037161368662368
315 => 0.036772099505441
316 => 0.036950304932101
317 => 0.036376243161941
318 => 0.036173530002835
319 => 0.035533711512049
320 => 0.034593355084963
321 => 0.03472411741369
322 => 0.032861025273989
323 => 0.031845913794496
324 => 0.031564944315927
325 => 0.031189220186661
326 => 0.031607383356091
327 => 0.032855747368043
328 => 0.03134995551443
329 => 0.028768381000427
330 => 0.028923538027508
331 => 0.029272129800823
401 => 0.028622531337416
402 => 0.028007740908467
403 => 0.028542251306914
404 => 0.027448404153036
405 => 0.029404316003453
406 => 0.029351414069278
407 => 0.030080457054336
408 => 0.030536342594361
409 => 0.0294856740193
410 => 0.029221433713982
411 => 0.029371957000944
412 => 0.026884142362237
413 => 0.029877149522426
414 => 0.029903033172635
415 => 0.029681401645128
416 => 0.0312750855592
417 => 0.034638255700369
418 => 0.033372895810056
419 => 0.032882910214821
420 => 0.031951447240103
421 => 0.033192566349116
422 => 0.033097267766018
423 => 0.032666291432334
424 => 0.032405635600995
425 => 0.032885901962382
426 => 0.032346125283946
427 => 0.032249166560428
428 => 0.031661702188038
429 => 0.031452004135021
430 => 0.031296752044887
501 => 0.031125834748405
502 => 0.031502835714508
503 => 0.030648501926711
504 => 0.029618259130003
505 => 0.029532605588838
506 => 0.02976910254673
507 => 0.029664470247991
508 => 0.029532104649646
509 => 0.029279382674782
510 => 0.02920440546339
511 => 0.029448045026641
512 => 0.029172990164799
513 => 0.029578848596461
514 => 0.02946847756022
515 => 0.028851953923799
516 => 0.028083537206534
517 => 0.028076696685942
518 => 0.027911142564663
519 => 0.027700284499985
520 => 0.027641628610171
521 => 0.028497236332027
522 => 0.030268318710086
523 => 0.029920612860864
524 => 0.030171865971256
525 => 0.03140778260004
526 => 0.031800643331021
527 => 0.031521800089587
528 => 0.03114010226241
529 => 0.031156895029657
530 => 0.03246127205291
531 => 0.032542624447869
601 => 0.032748175704653
602 => 0.033012367158398
603 => 0.031566793036556
604 => 0.031088808618516
605 => 0.030862313083683
606 => 0.030164794501201
607 => 0.030917008491685
608 => 0.030478725612444
609 => 0.030537864946729
610 => 0.030499350377693
611 => 0.03052038193673
612 => 0.029403769286229
613 => 0.029810604248638
614 => 0.029134162216694
615 => 0.028228482270101
616 => 0.028225446113348
617 => 0.028447109997201
618 => 0.028315255645376
619 => 0.027960438974903
620 => 0.028010839008256
621 => 0.027569281682674
622 => 0.028064452062235
623 => 0.028078651776916
624 => 0.027887984208672
625 => 0.028650862498731
626 => 0.028963414356618
627 => 0.028837912878705
628 => 0.028954608838366
629 => 0.029935061608697
630 => 0.030094918190414
701 => 0.03016591592448
702 => 0.030070788366229
703 => 0.028972529715165
704 => 0.029021242156496
705 => 0.028663822583222
706 => 0.028361840707751
707 => 0.028373918399084
708 => 0.028529176337972
709 => 0.029207196862852
710 => 0.030634051085969
711 => 0.03068819916072
712 => 0.030753828206928
713 => 0.030486881893483
714 => 0.030406368331016
715 => 0.030512586502224
716 => 0.031048437927996
717 => 0.032426793277324
718 => 0.031939590439613
719 => 0.03154348694879
720 => 0.031890976498976
721 => 0.031837483206438
722 => 0.03138594598367
723 => 0.031373272837718
724 => 0.030506628542044
725 => 0.030186249878469
726 => 0.029918517487258
727 => 0.029626160705387
728 => 0.029452841805206
729 => 0.029719138407916
730 => 0.029780043591684
731 => 0.029197781415792
801 => 0.02911842123275
802 => 0.029593909094586
803 => 0.029384664614566
804 => 0.02959987775128
805 => 0.029649809045062
806 => 0.029641768956748
807 => 0.029423293688032
808 => 0.029562543309285
809 => 0.029233176442711
810 => 0.028875039444615
811 => 0.028646570352553
812 => 0.028447200767702
813 => 0.028557822600806
814 => 0.02816347596454
815 => 0.028037316538969
816 => 0.02951536867082
817 => 0.030607221672357
818 => 0.030591345697293
819 => 0.030494704782063
820 => 0.030351115984925
821 => 0.031037933513126
822 => 0.03079866001965
823 => 0.030972751478123
824 => 0.0310170650609
825 => 0.031151188929568
826 => 0.031199126684281
827 => 0.031054225494627
828 => 0.03056791940396
829 => 0.029356090862615
830 => 0.02879198140535
831 => 0.028605815888466
901 => 0.028612582651426
902 => 0.028425925120827
903 => 0.028480904128992
904 => 0.028406805665466
905 => 0.02826648110189
906 => 0.028549157954429
907 => 0.028581733828368
908 => 0.028515753673248
909 => 0.028531294388295
910 => 0.027985006884397
911 => 0.028026539936845
912 => 0.027795278623053
913 => 0.027751919914614
914 => 0.027167311451575
915 => 0.026131592818951
916 => 0.026705481481065
917 => 0.026012304678189
918 => 0.025749788119597
919 => 0.02699250067827
920 => 0.02686776680486
921 => 0.026654276634094
922 => 0.02633848017628
923 => 0.026221348198207
924 => 0.025509691378911
925 => 0.025467642897485
926 => 0.025820359233479
927 => 0.025657592780646
928 => 0.025429007036392
929 => 0.024601092642071
930 => 0.023670242749818
1001 => 0.023698339256951
1002 => 0.023994425288599
1003 => 0.024855335358256
1004 => 0.024518962900146
1005 => 0.024274920822357
1006 => 0.024229219077065
1007 => 0.024801272102477
1008 => 0.025610846982249
1009 => 0.025990681402621
1010 => 0.025614277027776
1011 => 0.025181883949003
1012 => 0.025208201712192
1013 => 0.025383282000118
1014 => 0.025401680462877
1015 => 0.025120237019323
1016 => 0.025199461700119
1017 => 0.025079112165533
1018 => 0.024340527293928
1019 => 0.024327168635678
1020 => 0.024145907996896
1021 => 0.024140419496791
1022 => 0.023832049932638
1023 => 0.023788906898955
1024 => 0.023176620412634
1025 => 0.023579629232105
1026 => 0.023309312074916
1027 => 0.022901880357662
1028 => 0.022831638976038
1029 => 0.022829527435287
1030 => 0.023247868708842
1031 => 0.023574740670753
1101 => 0.023314014357598
1102 => 0.02325465203006
1103 => 0.023888486383654
1104 => 0.02380782518463
1105 => 0.023737973106485
1106 => 0.025538358431261
1107 => 0.024113212960882
1108 => 0.023491768191338
1109 => 0.022722612279865
1110 => 0.022973053323061
1111 => 0.023025824930607
1112 => 0.02117614361429
1113 => 0.020425728134623
1114 => 0.020168213820812
1115 => 0.020020010692496
1116 => 0.020087548719087
1117 => 0.01941208677243
1118 => 0.019866008371693
1119 => 0.019281115421265
1120 => 0.01918305621472
1121 => 0.020228917264418
1122 => 0.020374442719651
1123 => 0.019753585916409
1124 => 0.020152276491677
1125 => 0.020007705746871
1126 => 0.019291141732156
1127 => 0.019263774257482
1128 => 0.01890422762334
1129 => 0.018341606762857
1130 => 0.018084473932483
1201 => 0.017950556921894
1202 => 0.018005813690454
1203 => 0.017977874177385
1204 => 0.017795549955597
1205 => 0.017988324788357
1206 => 0.017495864750717
1207 => 0.017299763195709
1208 => 0.017211188672834
1209 => 0.016774102044486
1210 => 0.017469701243493
1211 => 0.017606743048625
1212 => 0.017744054868447
1213 => 0.018939260513241
1214 => 0.018879551416843
1215 => 0.01941929256877
1216 => 0.019398319220126
1217 => 0.01924437630037
1218 => 0.018594916444298
1219 => 0.01885377956742
1220 => 0.018057039110714
1221 => 0.018654011233963
1222 => 0.018381578087064
1223 => 0.018561901312953
1224 => 0.018237663893714
1225 => 0.018417110268956
1226 => 0.017639240744537
1227 => 0.016912877127555
1228 => 0.017205187050904
1229 => 0.01752296136728
1230 => 0.018211977052572
1231 => 0.017801604994668
]
'min_raw' => 0.016774102044486
'max_raw' => 0.05007110312015
'avg_raw' => 0.033422602582318
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.016774'
'max' => '$0.050071'
'avg' => '$0.033422'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.031776147955514
'max_diff' => 0.0015208531201498
'year' => 2026
]
1 => [
'items' => [
101 => 0.017949190304576
102 => 0.017454804221867
103 => 0.016434744518836
104 => 0.016440517945977
105 => 0.016283603983875
106 => 0.016148007410804
107 => 0.01784874116205
108 => 0.017637228035461
109 => 0.017300209550394
110 => 0.017751322185238
111 => 0.017870603526011
112 => 0.017873999298093
113 => 0.018203119431572
114 => 0.018378770905808
115 => 0.01840973023946
116 => 0.018927607880601
117 => 0.01910119363494
118 => 0.019816168790288
119 => 0.018363868105428
120 => 0.018333958928536
121 => 0.017757670265127
122 => 0.017392178884029
123 => 0.017782695772682
124 => 0.018128640425157
125 => 0.017768419729796
126 => 0.017815456947936
127 => 0.017331890095526
128 => 0.017504742491328
129 => 0.017653626260324
130 => 0.017571421394068
131 => 0.017448356730521
201 => 0.018100276908755
202 => 0.018063493017403
203 => 0.018670576074955
204 => 0.019143840731242
205 => 0.019992015601485
206 => 0.01910690090803
207 => 0.019074643810589
208 => 0.019389962112283
209 => 0.019101145361351
210 => 0.019283667578325
211 => 0.019962608450548
212 => 0.019976953401317
213 => 0.01973665699351
214 => 0.019722034935257
215 => 0.019768186488931
216 => 0.020038497580317
217 => 0.019944042579166
218 => 0.020053348297806
219 => 0.020190036772714
220 => 0.020755438259647
221 => 0.020891754643989
222 => 0.02056057650198
223 => 0.020590478180159
224 => 0.020466608464005
225 => 0.020346951870283
226 => 0.020615922418528
227 => 0.021107471382076
228 => 0.021104413481485
301 => 0.021218443286681
302 => 0.021289482910645
303 => 0.02098452884041
304 => 0.020786014954159
305 => 0.020862137809915
306 => 0.020983859914008
307 => 0.020822664972087
308 => 0.019827695117792
309 => 0.020129505412665
310 => 0.020079269421828
311 => 0.020007727261972
312 => 0.020311199847297
313 => 0.020281929176116
314 => 0.01940515893387
315 => 0.019461286920105
316 => 0.019408572262615
317 => 0.019578904105369
318 => 0.019091946882861
319 => 0.019241731644797
320 => 0.019335675243339
321 => 0.019391008744589
322 => 0.01959091129364
323 => 0.019567455036775
324 => 0.019589453219779
325 => 0.019885855927706
326 => 0.021384959111273
327 => 0.021466551989969
328 => 0.021064758814073
329 => 0.021225267262824
330 => 0.020917126140561
331 => 0.021123983340302
401 => 0.021265509782761
402 => 0.020625979003257
403 => 0.020588110141016
404 => 0.02027869721073
405 => 0.020444958193421
406 => 0.020180425015372
407 => 0.020245332204287
408 => 0.020063846045572
409 => 0.020390484997726
410 => 0.020755718100795
411 => 0.020847990406122
412 => 0.020605261696531
413 => 0.020429510114185
414 => 0.020120948231756
415 => 0.020634093518985
416 => 0.02078415283879
417 => 0.020633305321261
418 => 0.020598350655365
419 => 0.020532111626656
420 => 0.020612403578438
421 => 0.020783335583508
422 => 0.020702727206536
423 => 0.020755970459663
424 => 0.020553062082947
425 => 0.020984629792897
426 => 0.021670063178723
427 => 0.021672266959138
428 => 0.021591658147656
429 => 0.021558674758739
430 => 0.021641384291071
501 => 0.021686250819438
502 => 0.021953718280665
503 => 0.022240721522935
504 => 0.023580040425283
505 => 0.023203965036875
506 => 0.024392288443476
507 => 0.025332097973616
508 => 0.025613905758815
509 => 0.025354655856513
510 => 0.024467775945142
511 => 0.024424261385606
512 => 0.025749634404234
513 => 0.025375155820542
514 => 0.025330612784593
515 => 0.02485675013874
516 => 0.025136861651469
517 => 0.025075597154647
518 => 0.024978888149252
519 => 0.025513321402803
520 => 0.026513732744264
521 => 0.026357809254899
522 => 0.026241419603171
523 => 0.025731434029815
524 => 0.026038559254377
525 => 0.025929197844507
526 => 0.026399083863775
527 => 0.02612073379521
528 => 0.02537231877696
529 => 0.025491506335425
530 => 0.025473491375735
531 => 0.025844237969598
601 => 0.025732949044616
602 => 0.025451760427009
603 => 0.026510313447058
604 => 0.026441576901917
605 => 0.026539029607565
606 => 0.026581931302416
607 => 0.027226253871923
608 => 0.027490212212628
609 => 0.027550135377209
610 => 0.027800875385607
611 => 0.027543896737381
612 => 0.028571994552957
613 => 0.029255619609145
614 => 0.030049685290931
615 => 0.031210028676755
616 => 0.031646328523601
617 => 0.031567514861436
618 => 0.032447273973752
619 => 0.034028181542636
620 => 0.031887061480985
621 => 0.034141666104949
622 => 0.033427884311664
623 => 0.031735520520172
624 => 0.031626552243658
625 => 0.032772640652004
626 => 0.035314554434795
627 => 0.034677833862353
628 => 0.035315595881552
629 => 0.034571612609432
630 => 0.034534667569188
701 => 0.035279462274627
702 => 0.037019715700531
703 => 0.036192986530308
704 => 0.035007667542485
705 => 0.035882888637488
706 => 0.035124691127108
707 => 0.033416259930101
708 => 0.034677346974131
709 => 0.033834093981479
710 => 0.03408020003453
711 => 0.035852592400668
712 => 0.035639333462006
713 => 0.035915310275881
714 => 0.035428218422962
715 => 0.034973197825001
716 => 0.034123868088633
717 => 0.033872423425145
718 => 0.033941913684102
719 => 0.033872388989224
720 => 0.033397196807469
721 => 0.033294579101063
722 => 0.0331235450946
723 => 0.033176555684934
724 => 0.032854961715022
725 => 0.033461875980951
726 => 0.033574524616818
727 => 0.034016186207112
728 => 0.034062040978573
729 => 0.035292062220882
730 => 0.034614587190285
731 => 0.03506909593119
801 => 0.035028440391401
802 => 0.031772199175229
803 => 0.032220880484758
804 => 0.032918887798434
805 => 0.03260443644975
806 => 0.032159875812994
807 => 0.03180086926298
808 => 0.031256937629404
809 => 0.03202251095838
810 => 0.033029158476336
811 => 0.034087571220849
812 => 0.035359184783432
813 => 0.035075375439477
814 => 0.034063799289813
815 => 0.03410917785693
816 => 0.03438969030304
817 => 0.034026401198084
818 => 0.033919260148787
819 => 0.034374970768129
820 => 0.03437810899671
821 => 0.033960100976504
822 => 0.033495561556705
823 => 0.033493615119574
824 => 0.033410954816739
825 => 0.034586317693676
826 => 0.0352326484334
827 => 0.035306749211096
828 => 0.035227660860657
829 => 0.035258098827837
830 => 0.034882013211317
831 => 0.035741633405956
901 => 0.036530505904183
902 => 0.036319071222856
903 => 0.036002100578334
904 => 0.035749618192599
905 => 0.036259594396782
906 => 0.036236885959187
907 => 0.036523615791108
908 => 0.036510608069701
909 => 0.03641419161168
910 => 0.036319074666191
911 => 0.036696202603522
912 => 0.03658759581406
913 => 0.036478820328256
914 => 0.036260654438782
915 => 0.036290306806513
916 => 0.035973390891443
917 => 0.035826771088046
918 => 0.033621961035052
919 => 0.033032763744645
920 => 0.033218137206424
921 => 0.033279166963261
922 => 0.033022747547399
923 => 0.033390387121002
924 => 0.033333090882883
925 => 0.033555997028227
926 => 0.033416734946076
927 => 0.033422450310504
928 => 0.033831990400304
929 => 0.033950881630681
930 => 0.033890412591341
1001 => 0.033932763033737
1002 => 0.034908711103752
1003 => 0.034769962497258
1004 => 0.03469625506542
1005 => 0.034716672527765
1006 => 0.034966048184216
1007 => 0.035035859752617
1008 => 0.034740063231733
1009 => 0.034879562580961
1010 => 0.035473533104871
1011 => 0.03568138917242
1012 => 0.036344765963462
1013 => 0.036062951712045
1014 => 0.036580233967156
1015 => 0.03817018326485
1016 => 0.039440344779972
1017 => 0.038272251759022
1018 => 0.040604741627449
1019 => 0.042420919565819
1020 => 0.042351211631541
1021 => 0.042034518999034
1022 => 0.039966848701789
1023 => 0.038064147667036
1024 => 0.03965583787556
1025 => 0.039659895421236
1026 => 0.039523167820723
1027 => 0.038673964436686
1028 => 0.039493617383714
1029 => 0.039558678458106
1030 => 0.039522261557583
1031 => 0.038871179314104
1101 => 0.037877097068424
1102 => 0.038071338359733
1103 => 0.038389509557313
1104 => 0.03778714510283
1105 => 0.037594653161073
1106 => 0.037952532303889
1107 => 0.039105693469122
1108 => 0.038887695030643
1109 => 0.038882002210413
1110 => 0.039814691975954
1111 => 0.039147087390876
1112 => 0.038073788364463
1113 => 0.037802766205219
1114 => 0.036840820122305
1115 => 0.037505239708108
1116 => 0.037529150986158
1117 => 0.037165255169217
1118 => 0.038103316504464
1119 => 0.038094672104117
1120 => 0.03898522172993
1121 => 0.040687618139319
1122 => 0.040184135751223
1123 => 0.039598640512595
1124 => 0.039662300079056
1125 => 0.040360488397933
1126 => 0.039938347802251
1127 => 0.040090152503727
1128 => 0.040360258623336
1129 => 0.040523220351654
1130 => 0.03963885239419
1201 => 0.039432663919096
1202 => 0.039010874661374
1203 => 0.038900837717104
1204 => 0.039244376266596
1205 => 0.039153865996201
1206 => 0.037527141335827
1207 => 0.037357139557807
1208 => 0.037362353269632
1209 => 0.036934875715658
1210 => 0.036282869839478
1211 => 0.03799630235283
1212 => 0.037858689742535
1213 => 0.03770677607114
1214 => 0.037725384629078
1215 => 0.038469127609508
1216 => 0.038037719120938
1217 => 0.039184689294263
1218 => 0.038948906707707
1219 => 0.038707077187494
1220 => 0.038673648981494
1221 => 0.038580565248137
1222 => 0.038261346491526
1223 => 0.037875870660844
1224 => 0.037621346128084
1225 => 0.034703703146325
1226 => 0.035245200712591
1227 => 0.035868144303524
1228 => 0.036083181934824
1229 => 0.035715345186334
1230 => 0.038275870928348
1231 => 0.038743703655253
]
'min_raw' => 0.016148007410804
'max_raw' => 0.042420919565819
'avg_raw' => 0.029284463488312
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016148'
'max' => '$0.04242'
'avg' => '$0.029284'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0006260946336822
'max_diff' => -0.007650183554331
'year' => 2027
]
2 => [
'items' => [
101 => 0.037326607809482
102 => 0.03706152703638
103 => 0.038293249579701
104 => 0.037550370314121
105 => 0.037884888801925
106 => 0.037161842803124
107 => 0.038631016451083
108 => 0.038619823809425
109 => 0.038048282077577
110 => 0.038531345235586
111 => 0.038447401124281
112 => 0.03780213191667
113 => 0.03865147263591
114 => 0.038651893898311
115 => 0.038101797407796
116 => 0.037459405138481
117 => 0.037344560573355
118 => 0.03725804062073
119 => 0.037863610197348
120 => 0.038406561986178
121 => 0.039416860656026
122 => 0.03967087374573
123 => 0.040662303745454
124 => 0.040071955452469
125 => 0.040333649204459
126 => 0.040617754791086
127 => 0.040753965456952
128 => 0.040532017486391
129 => 0.042072116364831
130 => 0.042202147897581
131 => 0.042245746345744
201 => 0.041726433669203
202 => 0.042187704872617
203 => 0.041971891352236
204 => 0.042533378177544
205 => 0.042621426481176
206 => 0.042546852700409
207 => 0.04257480062173
208 => 0.041260597921041
209 => 0.041192449578039
210 => 0.040263242085617
211 => 0.040641901007134
212 => 0.039934016302953
213 => 0.040158493834669
214 => 0.040257441391749
215 => 0.040205756803155
216 => 0.040663309814421
217 => 0.04027429628294
218 => 0.039247625613616
219 => 0.038220675228554
220 => 0.038207782703006
221 => 0.037937404793799
222 => 0.037741971087626
223 => 0.037779618552818
224 => 0.037912293130591
225 => 0.037734259799977
226 => 0.037772252237583
227 => 0.038403179844121
228 => 0.038529707876042
229 => 0.03809971618588
301 => 0.036373237502373
302 => 0.035949555302896
303 => 0.036254089665897
304 => 0.036108541854907
305 => 0.029142411433055
306 => 0.030779000445596
307 => 0.029806594827655
308 => 0.030254724074634
309 => 0.02926214974193
310 => 0.029735858238774
311 => 0.029648381576472
312 => 0.032279968278448
313 => 0.032238879671726
314 => 0.032258546613403
315 => 0.031319792245205
316 => 0.032815253443704
317 => 0.03355197140513
318 => 0.033415624517584
319 => 0.033449940091701
320 => 0.032860284835434
321 => 0.032264255765207
322 => 0.031603167798109
323 => 0.032831387528035
324 => 0.032694830460477
325 => 0.033008043241772
326 => 0.033804631531589
327 => 0.033921932183209
328 => 0.034079585448532
329 => 0.034023077975437
330 => 0.035369315236985
331 => 0.035206277021852
401 => 0.035599152211027
402 => 0.034790978139382
403 => 0.03387645246473
404 => 0.034050273897384
405 => 0.034033533495636
406 => 0.033820408967641
407 => 0.033628009673209
408 => 0.033307719056144
409 => 0.034321165962629
410 => 0.034280021868997
411 => 0.034946096920121
412 => 0.034828361684927
413 => 0.034042096969603
414 => 0.03407017856773
415 => 0.034259040810689
416 => 0.034912695189965
417 => 0.035106744313917
418 => 0.035016853028182
419 => 0.035229619033917
420 => 0.035397780609681
421 => 0.035250737538772
422 => 0.037332557336455
423 => 0.036468040612487
424 => 0.03688940004848
425 => 0.036989891791171
426 => 0.036732484305383
427 => 0.036788306771979
428 => 0.036872862598161
429 => 0.037386269017009
430 => 0.03873359601541
501 => 0.039330317971437
502 => 0.041125585417887
503 => 0.03928076851976
504 => 0.039171304719636
505 => 0.039494686598625
506 => 0.04054869863805
507 => 0.041402876397687
508 => 0.041686256439256
509 => 0.041723709789844
510 => 0.042255349586576
511 => 0.042560075603567
512 => 0.042190794531738
513 => 0.041877867488702
514 => 0.040757001662482
515 => 0.040886744933884
516 => 0.041780547413627
517 => 0.043043096060967
518 => 0.044126494146183
519 => 0.043747125896975
520 => 0.046641437846181
521 => 0.046928397053741
522 => 0.046888748569758
523 => 0.047542484349835
524 => 0.046244951957359
525 => 0.04569023172107
526 => 0.041945525867279
527 => 0.042997635467627
528 => 0.044526938559964
529 => 0.044324529561101
530 => 0.043213908777057
531 => 0.044125651640726
601 => 0.043824200937162
602 => 0.04358643426006
603 => 0.044675689501204
604 => 0.043478008619427
605 => 0.04451499077699
606 => 0.043185050433708
607 => 0.043748858819182
608 => 0.043428813911244
609 => 0.043635922189909
610 => 0.042425171424752
611 => 0.043078463148317
612 => 0.042397992341228
613 => 0.042397669709465
614 => 0.042382648278684
615 => 0.043183219165555
616 => 0.043209325753434
617 => 0.042617702658441
618 => 0.042532440527563
619 => 0.042847699313111
620 => 0.042478613841641
621 => 0.042651306610746
622 => 0.042483844529692
623 => 0.042446145287956
624 => 0.042145751315804
625 => 0.042016333333097
626 => 0.042067081458807
627 => 0.041893851943306
628 => 0.041789474894232
629 => 0.042361885056491
630 => 0.042056069397756
701 => 0.042315014420775
702 => 0.042019913885577
703 => 0.040996966861398
704 => 0.040408659210324
705 => 0.038476407108889
706 => 0.039024391407905
707 => 0.039387705565083
708 => 0.039267630238303
709 => 0.039525598503209
710 => 0.039541435659543
711 => 0.039457567546947
712 => 0.039360459016731
713 => 0.03931319195466
714 => 0.039665481910157
715 => 0.039869998086857
716 => 0.039424169001272
717 => 0.039319717484331
718 => 0.039770475304756
719 => 0.040045437314821
720 => 0.042075602309333
721 => 0.041925201129193
722 => 0.042302678576604
723 => 0.042260180408889
724 => 0.042655836910648
725 => 0.043302568074111
726 => 0.041987582789914
727 => 0.04221581876648
728 => 0.042159860575764
729 => 0.042770797428973
730 => 0.042772704707143
731 => 0.042406417545085
801 => 0.042604987757967
802 => 0.042494151312625
803 => 0.042694447749802
804 => 0.041923192429737
805 => 0.04286249815771
806 => 0.043395023977946
807 => 0.043402418099476
808 => 0.043654831111882
809 => 0.043911297351262
810 => 0.04440356196425
811 => 0.043897568358383
812 => 0.042987335118913
813 => 0.043053051018767
814 => 0.042519381603507
815 => 0.042528352682792
816 => 0.042480464358489
817 => 0.042624180824589
818 => 0.041954730112168
819 => 0.042111848856294
820 => 0.041891881694431
821 => 0.042215340600829
822 => 0.041867352287218
823 => 0.042159833591031
824 => 0.042286058825847
825 => 0.042751832659756
826 => 0.04179855711324
827 => 0.039854763742814
828 => 0.040263372675494
829 => 0.039659007968521
830 => 0.03971494422313
831 => 0.039827944359629
901 => 0.039461673945892
902 => 0.039531546798325
903 => 0.039529050448349
904 => 0.039507538252887
905 => 0.03941225717224
906 => 0.039274080754513
907 => 0.039824533074277
908 => 0.039918065649673
909 => 0.040125976978542
910 => 0.040744580065655
911 => 0.040682767029587
912 => 0.040783586656012
913 => 0.040563497977604
914 => 0.039725153505692
915 => 0.039770679643914
916 => 0.039202967970781
917 => 0.04011145931467
918 => 0.039896316572937
919 => 0.039757612647756
920 => 0.039719765996687
921 => 0.040339902481202
922 => 0.040525457036817
923 => 0.040409831889861
924 => 0.040172681340129
925 => 0.040628080502881
926 => 0.040749926107085
927 => 0.040777202844373
928 => 0.041584082846641
929 => 0.040822298473181
930 => 0.041005667543358
1001 => 0.042436260683871
1002 => 0.041138910113785
1003 => 0.04182614564513
1004 => 0.041792509042071
1005 => 0.042144075485125
1006 => 0.041763670332286
1007 => 0.041768385910066
1008 => 0.042080553094324
1009 => 0.041642170583683
1010 => 0.04153362090906
1011 => 0.041383660311018
1012 => 0.041711093790645
1013 => 0.04190737535314
1014 => 0.043489260593922
1015 => 0.044511230602199
1016 => 0.044466864188886
1017 => 0.044872290156125
1018 => 0.044689642044607
1019 => 0.04409982311238
1020 => 0.045106572108936
1021 => 0.044787994602259
1022 => 0.044814257744837
1023 => 0.044813280229359
1024 => 0.04502510642077
1025 => 0.04487500815057
1026 => 0.044579149052734
1027 => 0.044775554129043
1028 => 0.045358806989584
1029 => 0.047169241765084
1030 => 0.048182385050524
1031 => 0.04710824926716
1101 => 0.047849173747273
1102 => 0.047404883077591
1103 => 0.047324142246408
1104 => 0.047789497573808
1105 => 0.048255667444106
1106 => 0.048225974438675
1107 => 0.047887559050927
1108 => 0.04769639678536
1109 => 0.049143941504288
1110 => 0.050210467794912
1111 => 0.050137737851975
1112 => 0.050458744167057
1113 => 0.05140122863649
1114 => 0.051487397604775
1115 => 0.051476542295342
1116 => 0.051262963516645
1117 => 0.052190961873876
1118 => 0.052965114430055
1119 => 0.051213526200261
1120 => 0.051880508068193
1121 => 0.052179937717522
1122 => 0.052619589279509
1123 => 0.05336135515874
1124 => 0.054167109647267
1125 => 0.054281052166593
1126 => 0.054200204496479
1127 => 0.053668787751453
1128 => 0.054550453927449
1129 => 0.055066913295732
1130 => 0.055374453030581
1201 => 0.056154322628428
1202 => 0.052181786893098
1203 => 0.049369828651794
1204 => 0.048930700767245
1205 => 0.049823684588327
1206 => 0.050059157300533
1207 => 0.0499642385455
1208 => 0.046799123892855
1209 => 0.048914037093635
1210 => 0.051189505870721
1211 => 0.051276915893588
1212 => 0.052416063141206
1213 => 0.052787016180253
1214 => 0.053704179026029
1215 => 0.053646810240309
1216 => 0.053870124798007
1217 => 0.053818788648461
1218 => 0.055517639688837
1219 => 0.057391724668193
1220 => 0.057326831064583
1221 => 0.057057409175634
1222 => 0.057457546623982
1223 => 0.059391803161829
1224 => 0.059213727815654
1225 => 0.059386712846041
1226 => 0.061667310314084
1227 => 0.064632411433747
1228 => 0.063254824272378
1229 => 0.066243792022521
1230 => 0.068125188782863
1231 => 0.071378869939819
]
'min_raw' => 0.029142411433055
'max_raw' => 0.071378869939819
'avg_raw' => 0.050260640686437
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029142'
'max' => '$0.071378'
'avg' => '$0.05026'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.01299440402225
'max_diff' => 0.028957950374
'year' => 2028
]
3 => [
'items' => [
101 => 0.07097149303425
102 => 0.072238127232038
103 => 0.070242203351157
104 => 0.065659158677885
105 => 0.06493387431515
106 => 0.066385911976472
107 => 0.069955604879068
108 => 0.06627348964351
109 => 0.067018376760067
110 => 0.066803849220387
111 => 0.066792417959481
112 => 0.067228702693971
113 => 0.066595848931512
114 => 0.064017488855033
115 => 0.065199136083712
116 => 0.064742845341358
117 => 0.065249133938728
118 => 0.06798136468943
119 => 0.066773380346299
120 => 0.065500866969489
121 => 0.067096881137333
122 => 0.069129155622968
123 => 0.069001979538005
124 => 0.068755204777698
125 => 0.070146261180844
126 => 0.072443878817556
127 => 0.073064915632184
128 => 0.073523352312204
129 => 0.073586562985027
130 => 0.074237672200324
131 => 0.070736493849024
201 => 0.076292953809174
202 => 0.077252400950183
203 => 0.077072064652683
204 => 0.078138449770207
205 => 0.077824692217052
206 => 0.077370106749582
207 => 0.079060553987477
208 => 0.077122592641288
209 => 0.074371900492923
210 => 0.072862816377808
211 => 0.074850100074935
212 => 0.076063664882126
213 => 0.076865754022462
214 => 0.077108465711692
215 => 0.071008280357859
216 => 0.067720618783933
217 => 0.069827972159703
218 => 0.072399088719903
219 => 0.070722211166714
220 => 0.070787941592049
221 => 0.06839715487687
222 => 0.072610620294537
223 => 0.071996753824005
224 => 0.075181494159036
225 => 0.074421430318943
226 => 0.077018462431253
227 => 0.076334576840058
228 => 0.079173347693581
301 => 0.080305810243704
302 => 0.082207391119083
303 => 0.083606201751838
304 => 0.084427610110375
305 => 0.084378295833554
306 => 0.087633124974098
307 => 0.085713865944988
308 => 0.083302824269803
309 => 0.083259216132638
310 => 0.084507928780941
311 => 0.087124887924198
312 => 0.087803427354838
313 => 0.088182638328514
314 => 0.0876018635219
315 => 0.085518645400335
316 => 0.084619122377599
317 => 0.085385542054661
318 => 0.084448276648808
319 => 0.086066259689536
320 => 0.088288095986986
321 => 0.087829295577655
322 => 0.089362996558845
323 => 0.090950215724328
324 => 0.093220010417442
325 => 0.093813418800476
326 => 0.094794300292332
327 => 0.095803949550236
328 => 0.096128221681065
329 => 0.096747357794549
330 => 0.096744094641617
331 => 0.098609902992269
401 => 0.10066794738231
402 => 0.10144481149572
403 => 0.10323116768795
404 => 0.10017209531014
405 => 0.1024924368488
406 => 0.10458544299859
407 => 0.1020900747823
408 => 0.10552935852224
409 => 0.10566289811627
410 => 0.10767918744073
411 => 0.1056352919361
412 => 0.10442163330979
413 => 0.10792542028874
414 => 0.10962079243959
415 => 0.10911013255036
416 => 0.1052239855789
417 => 0.10296208135683
418 => 0.097042241718922
419 => 0.10405454748806
420 => 0.10747003707645
421 => 0.10521514028599
422 => 0.10635237906758
423 => 0.11255678510905
424 => 0.11491902122409
425 => 0.11442769262544
426 => 0.11451071907066
427 => 0.11578533880072
428 => 0.12143770462971
429 => 0.11805067600417
430 => 0.12063993247886
501 => 0.12201326477677
502 => 0.12328889235172
503 => 0.12015635419389
504 => 0.11608096807667
505 => 0.11479012222028
506 => 0.10499093523934
507 => 0.10448084500127
508 => 0.10419451589332
509 => 0.10238925136979
510 => 0.10097080795786
511 => 0.099842809093261
512 => 0.096882603223592
513 => 0.097881585806851
514 => 0.093163635493579
515 => 0.096182012910117
516 => 0.088652050291242
517 => 0.094923226914289
518 => 0.091510110593777
519 => 0.093801926407531
520 => 0.093793930478059
521 => 0.089573970944071
522 => 0.087139986353175
523 => 0.088691016066592
524 => 0.090353843040266
525 => 0.090623631122323
526 => 0.092779529697916
527 => 0.093381194649479
528 => 0.091558121757192
529 => 0.088496008552906
530 => 0.089207267610896
531 => 0.087125572711067
601 => 0.083477482470355
602 => 0.086097604570779
603 => 0.086992229454501
604 => 0.087387346768807
605 => 0.083799869003062
606 => 0.082672605601134
607 => 0.082072460024603
608 => 0.088032910222965
609 => 0.088359437139787
610 => 0.086688879267073
611 => 0.094239959260537
612 => 0.09253091729778
613 => 0.094440335895627
614 => 0.089142728306448
615 => 0.089345104050529
616 => 0.086837131719884
617 => 0.088241428642273
618 => 0.087248916840131
619 => 0.088127975328477
620 => 0.088654879361898
621 => 0.091162440158962
622 => 0.094951859230641
623 => 0.090787894195664
624 => 0.088973595000846
625 => 0.090099176017305
626 => 0.093096746591466
627 => 0.097638219454135
628 => 0.094949576113776
629 => 0.096142750372102
630 => 0.096403405866919
701 => 0.094420899806725
702 => 0.097711317280391
703 => 0.099474678735833
704 => 0.10128352271288
705 => 0.10285409125549
706 => 0.10056103065111
707 => 0.10301493419512
708 => 0.10103752111094
709 => 0.099263577153221
710 => 0.099266267493953
711 => 0.098153446536091
712 => 0.095997215705769
713 => 0.095599573658142
714 => 0.097668157806554
715 => 0.099326966397933
716 => 0.099463593818676
717 => 0.10038199548753
718 => 0.10092549613486
719 => 0.10625254133206
720 => 0.108395122978
721 => 0.11101503125766
722 => 0.11203563318253
723 => 0.11510727907034
724 => 0.11262667554905
725 => 0.11208998137349
726 => 0.10463917317737
727 => 0.10585924260208
728 => 0.10781269147024
729 => 0.10467138482971
730 => 0.106663820864
731 => 0.10705716994274
801 => 0.1045646444321
802 => 0.105896010003
803 => 0.10236029776906
804 => 0.095028928095354
805 => 0.097719479190621
806 => 0.099700630426444
807 => 0.096873283338739
808 => 0.10194119356001
809 => 0.098980625031644
810 => 0.098042266940505
811 => 0.094381397478156
812 => 0.096109186944596
813 => 0.098446046937519
814 => 0.097002139151026
815 => 0.099998464611844
816 => 0.10424206055517
817 => 0.1072662997349
818 => 0.10749846326699
819 => 0.10555408008272
820 => 0.1086699665444
821 => 0.10869266237559
822 => 0.10517792971803
823 => 0.1030251755354
824 => 0.10253606525567
825 => 0.10375795863015
826 => 0.10524156276073
827 => 0.10758079297088
828 => 0.10899434079511
829 => 0.11268012383285
830 => 0.11367739104319
831 => 0.11477308535482
901 => 0.11623727085477
902 => 0.11799540095691
903 => 0.11414871238382
904 => 0.11430154849195
905 => 0.11071956535372
906 => 0.10689170266217
907 => 0.10979657329523
908 => 0.11359430522922
909 => 0.11272310132744
910 => 0.11262507309141
911 => 0.11278992939365
912 => 0.11213307010257
913 => 0.10916211987335
914 => 0.10767012726737
915 => 0.10959517837699
916 => 0.11061825736759
917 => 0.11220496366014
918 => 0.11200936861828
919 => 0.11609655362808
920 => 0.11768471013283
921 => 0.11727839173786
922 => 0.11735316410114
923 => 0.12022844559274
924 => 0.12342634995815
925 => 0.12642160939699
926 => 0.12946851594758
927 => 0.12579535117806
928 => 0.12393034463741
929 => 0.12585455532994
930 => 0.12483354205126
1001 => 0.13070058720278
1002 => 0.13110680867953
1003 => 0.13697342957691
1004 => 0.14254155139274
1005 => 0.13904431384348
1006 => 0.14234205133339
1007 => 0.14590882329722
1008 => 0.15278970510333
1009 => 0.15047246618337
1010 => 0.14869749748645
1011 => 0.14702016064444
1012 => 0.15051043234293
1013 => 0.15500061112459
1014 => 0.15596775262777
1015 => 0.15753489133939
1016 => 0.15588723660472
1017 => 0.15787165524942
1018 => 0.16487752506294
1019 => 0.1629844771968
1020 => 0.16029604490426
1021 => 0.16582650627114
1022 => 0.16782795874069
1023 => 0.18187520034079
1024 => 0.19961042312353
1025 => 0.19226792443572
1026 => 0.18771019855925
1027 => 0.18878137225093
1028 => 0.195257675236
1029 => 0.19733765820723
1030 => 0.19168354747831
1031 => 0.1936806749741
1101 => 0.20468504382911
1102 => 0.2105885346574
1103 => 0.20257080116798
1104 => 0.1804501924586
1105 => 0.16005398099109
1106 => 0.16546397472565
1107 => 0.1648506493278
1108 => 0.17667347083954
1109 => 0.16293932863127
1110 => 0.16317057636288
1111 => 0.1752378813029
1112 => 0.17201853123088
1113 => 0.16680359641742
1114 => 0.16009205578642
1115 => 0.14768515218764
1116 => 0.1366960116781
1117 => 0.15824824686522
1118 => 0.15731887529376
1119 => 0.15597300753313
1120 => 0.15896809059631
1121 => 0.17351136378198
1122 => 0.17317609426306
1123 => 0.17104328063976
1124 => 0.17266100097528
1125 => 0.16652000222104
1126 => 0.16810267742795
1127 => 0.16005075012698
1128 => 0.16369055754521
1129 => 0.16679240750946
1130 => 0.16741514981345
1201 => 0.16881822002237
1202 => 0.15682913870657
1203 => 0.16221188423643
1204 => 0.16537374294017
1205 => 0.15108835028726
1206 => 0.16509136665846
1207 => 0.15662043547416
1208 => 0.15374527420109
1209 => 0.15761630008158
1210 => 0.15610775753126
1211 => 0.15481080123108
1212 => 0.15408707733104
1213 => 0.15692953150814
1214 => 0.15679692762331
1215 => 0.152146120893
1216 => 0.14607933310443
1217 => 0.1481155462218
1218 => 0.14737577090666
1219 => 0.14469472973169
1220 => 0.14650142777347
1221 => 0.1385456439464
1222 => 0.12485813137759
1223 => 0.13390052144039
1224 => 0.1335523992592
1225 => 0.13337686026936
1226 => 0.14017196648826
1227 => 0.13951877381509
1228 => 0.1383332227172
1229 => 0.14467295615605
1230 => 0.14235886816942
1231 => 0.14949034207652
]
'min_raw' => 0.064017488855033
'max_raw' => 0.2105885346574
'avg_raw' => 0.13730301175622
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.064017'
'max' => '$0.210588'
'avg' => '$0.137303'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.034875077421978
'max_diff' => 0.13920966471758
'year' => 2029
]
4 => [
'items' => [
101 => 0.15418759202655
102 => 0.1529962174991
103 => 0.15741400378088
104 => 0.14816245645945
105 => 0.15123544937197
106 => 0.15186878895226
107 => 0.14459472482951
108 => 0.13962564421459
109 => 0.13929426318924
110 => 0.13067856218445
111 => 0.1352810001177
112 => 0.13933095503714
113 => 0.13739134091992
114 => 0.13677731703474
115 => 0.13991423189862
116 => 0.1401579970494
117 => 0.13460012577849
118 => 0.1357557832106
119 => 0.14057506681459
120 => 0.13563434962879
121 => 0.12603534319835
122 => 0.12365465688696
123 => 0.12333702944826
124 => 0.11688041935715
125 => 0.12381374572998
126 => 0.12078716296664
127 => 0.13034810165199
128 => 0.12488694475126
129 => 0.12465152519235
130 => 0.12429565400051
131 => 0.11873818297588
201 => 0.11995491593457
202 => 0.1239995216029
203 => 0.1254426824711
204 => 0.12529214896908
205 => 0.1239797008286
206 => 0.12458053286649
207 => 0.12264504352868
208 => 0.12196158195977
209 => 0.11980438924739
210 => 0.11663391189988
211 => 0.11707478622072
212 => 0.11079324099477
213 => 0.10737072176884
214 => 0.10642341355518
215 => 0.10515663342114
216 => 0.1065664997421
217 => 0.11077544616638
218 => 0.1056985638009
219 => 0.096994605087162
220 => 0.097517727836681
221 => 0.098693029338313
222 => 0.09650286276542
223 => 0.094430053910923
224 => 0.09623219303761
225 => 0.09254421098834
226 => 0.099138704349425
227 => 0.098960341784862
228 => 0.10141836110914
301 => 0.10295541103625
302 => 0.099413008580091
303 => 0.098522103942042
304 => 0.099029603713233
305 => 0.090641762965163
306 => 0.10073289557083
307 => 0.10082016410464
308 => 0.10007291793584
309 => 0.10544613451959
310 => 0.11678529745958
311 => 0.11251904824478
312 => 0.11086702760075
313 => 0.10772653514882
314 => 0.11191105487702
315 => 0.11158974905057
316 => 0.11013668225175
317 => 0.10925786291798
318 => 0.11087711448653
319 => 0.10905721972917
320 => 0.10873031662339
321 => 0.10674963947643
322 => 0.10604262785003
323 => 0.10551918458879
324 => 0.10494292499063
325 => 0.10621401006922
326 => 0.10333356405598
327 => 0.099860028537621
328 => 0.099571241643445
329 => 0.10036860764867
330 => 0.10001583254827
331 => 0.099569552691986
401 => 0.098717482909245
402 => 0.098464692006295
403 => 0.099286139804169
404 => 0.098358773133752
405 => 0.099727153172229
406 => 0.099355029517684
407 => 0.097276377033186
408 => 0.094685606421783
409 => 0.094662543129016
410 => 0.094104365850505
411 => 0.093393443163805
412 => 0.093195680736073
413 => 0.096080421906935
414 => 0.10205174979758
415 => 0.10087943525088
416 => 0.1017265526545
417 => 0.10589353185739
418 => 0.10721808924055
419 => 0.10627794978385
420 => 0.10499102891023
421 => 0.10504764689743
422 => 0.10944544510003
423 => 0.10971973037947
424 => 0.11041276079285
425 => 0.11130350072441
426 => 0.10642964664586
427 => 0.10481808880863
428 => 0.10405444329953
429 => 0.1017027106995
430 => 0.10423885268632
501 => 0.10276115135902
502 => 0.10296054375354
503 => 0.10283068919504
504 => 0.10290159856471
505 => 0.099136861054134
506 => 0.10050853353421
507 => 0.098227861995833
508 => 0.095174298823342
509 => 0.09516406220887
510 => 0.095911417469357
511 => 0.095466861316405
512 => 0.094270572139395
513 => 0.094440499370664
514 => 0.092951758018916
515 => 0.094621259525298
516 => 0.094669134854738
517 => 0.094026285836419
518 => 0.096598383253814
519 => 0.097652173664352
520 => 0.097229036669334
521 => 0.097622485244785
522 => 0.10092815021298
523 => 0.10146711783907
524 => 0.10170649165638
525 => 0.10138576245214
526 => 0.097682906732109
527 => 0.09784714412905
528 => 0.096642079083517
529 => 0.095623926106667
530 => 0.095664646886232
531 => 0.096188109866955
601 => 0.098474103404471
602 => 0.10328484203749
603 => 0.10346740605201
604 => 0.10368867896338
605 => 0.10278865083
606 => 0.10251719373286
607 => 0.10287531571301
608 => 0.10468197620695
609 => 0.10932919750091
610 => 0.10768655911815
611 => 0.10635106854378
612 => 0.10752265382317
613 => 0.1073422974526
614 => 0.10581990818072
615 => 0.10577717978433
616 => 0.10285522803429
617 => 0.10177504900192
618 => 0.10087237055248
619 => 0.099886669250701
620 => 0.099302312478001
621 => 0.10020015006627
622 => 0.10040549614561
623 => 0.098442358567342
624 => 0.098174790169467
625 => 0.099777930693149
626 => 0.099072448319779
627 => 0.099798054435911
628 => 0.099966401278988
629 => 0.099939293559896
630 => 0.099202688937963
701 => 0.099672178758117
702 => 0.098561695371802
703 => 0.097354211478395
704 => 0.096583911983307
705 => 0.095911723508441
706 => 0.09628469274212
707 => 0.094955125525546
708 => 0.094529770214063
709 => 0.099513126170904
710 => 0.10319438479633
711 => 0.10314085783798
712 => 0.10281502624502
713 => 0.10233090659042
714 => 0.10464655983882
715 => 0.10383983255003
716 => 0.10442679405694
717 => 0.10457620039515
718 => 0.1050284083826
719 => 0.10519003386952
720 => 0.10470148939192
721 => 0.10306187445443
722 => 0.098976109920118
723 => 0.097074175500084
724 => 0.09644650546225
725 => 0.09646932007601
726 => 0.095839991179584
727 => 0.096025356744124
728 => 0.095775528600954
729 => 0.09530241453771
730 => 0.096255479281915
731 => 0.096365311115273
801 => 0.096142854415699
802 => 0.096195251021499
803 => 0.094353404561532
804 => 0.094493436147603
805 => 0.093713722482006
806 => 0.093567535569295
807 => 0.091596487320101
808 => 0.088104489638642
809 => 0.090039395330587
810 => 0.087702301343629
811 => 0.086817208438016
812 => 0.091007100593002
813 => 0.09058655163016
814 => 0.089866754614014
815 => 0.088802024808292
816 => 0.088407106166324
817 => 0.086007705513774
818 => 0.085865936122917
819 => 0.087055143875588
820 => 0.086506365415871
821 => 0.085735672619772
822 => 0.08294430143618
823 => 0.079805876034585
824 => 0.079900605370021
825 => 0.080898880097788
826 => 0.083801498504459
827 => 0.082667395277164
828 => 0.081844590373427
829 => 0.081690503748381
830 => 0.083619220463025
831 => 0.086348758692889
901 => 0.087629396960366
902 => 0.086360323330859
903 => 0.084902479877058
904 => 0.084991212053095
905 => 0.085581507467552
906 => 0.085643539169284
907 => 0.084694632949588
908 => 0.084961744492182
909 => 0.08455597763379
910 => 0.082065787172824
911 => 0.082020747523864
912 => 0.081409614624997
913 => 0.081391109763699
914 => 0.080351420248481
915 => 0.080205960498268
916 => 0.078141593861159
917 => 0.079500366233182
918 => 0.07858897306478
919 => 0.077215288584084
920 => 0.076978464861839
921 => 0.076971345654776
922 => 0.078381812466221
923 => 0.079483884107276
924 => 0.078604827139146
925 => 0.078404682907306
926 => 0.080541699683347
927 => 0.080269744819255
928 => 0.080034233660873
929 => 0.086104358482242
930 => 0.081299381028382
1001 => 0.079204136599974
1002 => 0.076610873743693
1003 => 0.077455253206064
1004 => 0.077633176365301
1005 => 0.071396846666711
1006 => 0.068866768484679
1007 => 0.06799854099659
1008 => 0.06749886380226
1009 => 0.067726572974267
1010 => 0.065449205861866
1011 => 0.066979634225575
1012 => 0.065007626807286
1013 => 0.064677013346142
1014 => 0.068203206894886
1015 => 0.068693856127469
1016 => 0.066600594068499
1017 => 0.067944807178702
1018 => 0.067457376818983
1019 => 0.065041431214468
1020 => 0.064949159862868
1021 => 0.063736923283117
1022 => 0.061840007771062
1023 => 0.060973066481015
1024 => 0.060521555930029
1025 => 0.060707857983131
1026 => 0.060613657964146
1027 => 0.059998939120919
1028 => 0.060648892928676
1029 => 0.058988529529313
1030 => 0.058327359445229
1031 => 0.058028724257278
1101 => 0.056555056173392
1102 => 0.058900317438026
1103 => 0.059362363451982
1104 => 0.059825319839319
1105 => 0.063855039117335
1106 => 0.063653725730073
1107 => 0.065473500707318
1108 => 0.065402787598054
1109 => 0.064883758296144
1110 => 0.06269405904756
1111 => 0.063566834140409
1112 => 0.060880568063982
1113 => 0.062893301256779
1114 => 0.061974773881334
1115 => 0.062582746227186
1116 => 0.061489557130688
1117 => 0.062094573113362
1118 => 0.059471931702668
1119 => 0.057022946054923
1120 => 0.058008489369924
1121 => 0.059079887663878
1122 => 0.061402952152379
1123 => 0.060019354107894
1124 => 0.060516948284325
1125 => 0.058850091089539
1126 => 0.055410888582477
1127 => 0.05543035409517
1128 => 0.054901307716558
1129 => 0.054444134403401
1130 => 0.060178276987165
1201 => 0.059465145713494
1202 => 0.058328864361213
1203 => 0.059849822105267
1204 => 0.06025198747364
1205 => 0.0602634365563
1206 => 0.06137308806476
1207 => 0.061965309273741
1208 => 0.062069690828658
1209 => 0.063815751452827
1210 => 0.064401007942953
1211 => 0.06681159659718
1212 => 0.061915063441778
1213 => 0.061814222563696
1214 => 0.059871225099821
1215 => 0.058638945390656
1216 => 0.059955600345769
1217 => 0.061121976894673
1218 => 0.059907467670457
1219 => 0.060066056935451
1220 => 0.05843567753099
1221 => 0.059018461451604
1222 => 0.059520433473508
1223 => 0.059243274027564
1224 => 0.058828352922317
1225 => 0.061026347318846
1226 => 0.060902327860984
1227 => 0.062949150774704
1228 => 0.06454479560566
1229 => 0.067404476398364
1230 => 0.064420250412646
1231 => 0.064311493356502
]
'min_raw' => 0.054444134403401
'max_raw' => 0.15741400378088
'avg_raw' => 0.10592906909214
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.054444'
'max' => '$0.157414'
'avg' => '$0.105929'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0095733544516314
'max_diff' => -0.053174530876518
'year' => 2030
]
5 => [
'items' => [
101 => 0.065374611025486
102 => 0.064400845185177
103 => 0.065016231582998
104 => 0.067305328135838
105 => 0.067353693138888
106 => 0.066543517023007
107 => 0.066494217732727
108 => 0.066649820918138
109 => 0.067561193635264
110 => 0.067242732004245
111 => 0.067611263866122
112 => 0.06807211860256
113 => 0.069978409190824
114 => 0.070438009397938
115 => 0.069321419170037
116 => 0.069422234765686
117 => 0.069004599369364
118 => 0.068601168809473
119 => 0.069508021791806
120 => 0.07116531344126
121 => 0.071155003515922
122 => 0.071539462965449
123 => 0.07177897801747
124 => 0.070750804078461
125 => 0.070081500651169
126 => 0.070338154174077
127 => 0.070748548746392
128 => 0.070205068745435
129 => 0.066850458415101
130 => 0.067868032895987
131 => 0.067698658745517
201 => 0.067457449358648
202 => 0.06848062836785
203 => 0.068381940256351
204 => 0.065425848170476
205 => 0.065615087594796
206 => 0.065437356446649
207 => 0.066011642146684
208 => 0.06436983187273
209 => 0.064874841655237
210 => 0.065191579056653
211 => 0.065378139819378
212 => 0.066052125220255
213 => 0.065973040812572
214 => 0.066047209222434
215 => 0.067046551646385
216 => 0.072100882693822
217 => 0.072375978780981
218 => 0.071021305036142
219 => 0.071562470477447
220 => 0.070523551170014
221 => 0.071220984661248
222 => 0.071698150943061
223 => 0.06954192826935
224 => 0.069414250756382
225 => 0.068371043459403
226 => 0.068931603970518
227 => 0.068039711891607
228 => 0.068258551010711
301 => 0.067646657755644
302 => 0.068747943788033
303 => 0.069979352694792
304 => 0.07029045521445
305 => 0.069472078423284
306 => 0.068879519692822
307 => 0.067839181763109
308 => 0.069569286925664
309 => 0.070075222399194
310 => 0.069566629462004
311 => 0.069448777365482
312 => 0.069225447855527
313 => 0.069496157776766
314 => 0.07007246696595
315 => 0.06980069019509
316 => 0.069980203540334
317 => 0.069296083781625
318 => 0.070751144446817
319 => 0.073062130962561
320 => 0.073069561162093
321 => 0.072797782926256
322 => 0.072686577127695
323 => 0.072965438090547
324 => 0.073116708723418
325 => 0.074018493942925
326 => 0.074986145412164
327 => 0.079501752599692
328 => 0.078233788170928
329 => 0.082240303502376
330 => 0.085408936948647
331 => 0.086359071571636
401 => 0.085484992425775
402 => 0.082494814884611
403 => 0.082348102509046
404 => 0.086816690175939
405 => 0.085554109485761
406 => 0.085403929530163
407 => 0.083806268535636
408 => 0.084750684057565
409 => 0.084544126529179
410 => 0.084218065365482
411 => 0.086019944392767
412 => 0.089392901076993
413 => 0.088867194146369
414 => 0.088474778309501
415 => 0.086755326342877
416 => 0.087790820480285
417 => 0.087422100851538
418 => 0.089006354371894
419 => 0.088067877681947
420 => 0.08554454419525
421 => 0.085946393370023
422 => 0.085885654675664
423 => 0.087135652701573
424 => 0.086760434321053
425 => 0.085812387264828
426 => 0.089381372677734
427 => 0.08914962261676
428 => 0.089478191217781
429 => 0.089622837277273
430 => 0.091795215805531
501 => 0.092685169780199
502 => 0.092887204913286
503 => 0.09373259235771
504 => 0.092866170903539
505 => 0.096332474468253
506 => 0.098637364074368
507 => 0.1013146119604
508 => 0.1052267906983
509 => 0.10669780609342
510 => 0.10643208032884
511 => 0.10939824959883
512 => 0.11472838984276
513 => 0.10750945406668
514 => 0.11511101096784
515 => 0.11270444581713
516 => 0.10699852313705
517 => 0.10663112898486
518 => 0.11049524607093
519 => 0.11906548586037
520 => 0.11691873799597
521 => 0.11906899717082
522 => 0.11656060562561
523 => 0.11643604284301
524 => 0.1189471701923
525 => 0.12481455611835
526 => 0.12202718100056
527 => 0.11803079527678
528 => 0.12098166430457
529 => 0.11842534846267
530 => 0.1126652534031
531 => 0.11691709641833
601 => 0.11407401007956
602 => 0.11490377382
603 => 0.12087951842692
604 => 0.12016050102595
605 => 0.12109097612202
606 => 0.11944871193224
607 => 0.11791457821769
608 => 0.11505100371322
609 => 0.11420324047496
610 => 0.11443753173469
611 => 0.11420312437185
612 => 0.1126009807542
613 => 0.11225499799251
614 => 0.11167834489851
615 => 0.11185707380491
616 => 0.11077279728237
617 => 0.11281905110335
618 => 0.11319885384405
619 => 0.11468794673156
620 => 0.11484254929502
621 => 0.1189896517908
622 => 0.11670549742535
623 => 0.11823790537809
624 => 0.11810083238722
625 => 0.10712218778339
626 => 0.1086349481444
627 => 0.11098832853577
628 => 0.10992813385939
629 => 0.10842926663433
630 => 0.10721885098593
701 => 0.10538494750723
702 => 0.1079661314365
703 => 0.11136011382517
704 => 0.11492862628932
705 => 0.11921596019679
706 => 0.11825907717871
707 => 0.11484847756412
708 => 0.11500147457139
709 => 0.1159472418682
710 => 0.11472238728681
711 => 0.11436115375875
712 => 0.11589761392857
713 => 0.11590819468533
714 => 0.11449885146082
715 => 0.11293262437386
716 => 0.11292606182518
717 => 0.11264736684301
718 => 0.11661018484382
719 => 0.11878933405817
720 => 0.11903917000372
721 => 0.11877251810845
722 => 0.1188751418399
723 => 0.11760714292635
724 => 0.12050541242934
725 => 0.12316515113443
726 => 0.12245228434443
727 => 0.12138359568625
728 => 0.12053233369498
729 => 0.12225175407279
730 => 0.12217519098998
731 => 0.12314192063714
801 => 0.12309806419625
802 => 0.12277298937645
803 => 0.12245229595388
804 => 0.12372380912483
805 => 0.12335763375147
806 => 0.12299088960662
807 => 0.1222553280784
808 => 0.12235530310647
809 => 0.12128679897245
810 => 0.12079246006863
811 => 0.11335878904003
812 => 0.11137226923899
813 => 0.11199726880774
814 => 0.11220303489387
815 => 0.11133849893066
816 => 0.11257802142084
817 => 0.11238484315373
818 => 0.11313638678556
819 => 0.11266685495262
820 => 0.11268612470283
821 => 0.11406691770876
822 => 0.1144677677927
823 => 0.11426389220475
824 => 0.1144066796781
825 => 0.11769715673468
826 => 0.11722935612076
827 => 0.11698084636824
828 => 0.11704968526803
829 => 0.11789047270461
830 => 0.11812584728156
831 => 0.11712854865955
901 => 0.117598880455
902 => 0.11960149354606
903 => 0.12030229478985
904 => 0.12253891595634
905 => 0.12158875953204
906 => 0.12333281277064
907 => 0.12869343783454
908 => 0.13297587606261
909 => 0.12903756888883
910 => 0.13690172132947
911 => 0.14302509205018
912 => 0.14279006688291
913 => 0.14172231556164
914 => 0.13475102079435
915 => 0.12833593141334
916 => 0.13370242607964
917 => 0.13371610637817
918 => 0.13325511972703
919 => 0.13039197122826
920 => 0.1331554883655
921 => 0.13337484632024
922 => 0.13325206419757
923 => 0.13105689495658
924 => 0.12770527726066
925 => 0.1283601753358
926 => 0.12943291174244
927 => 0.12740199792841
928 => 0.12675299790742
929 => 0.12795961242375
930 => 0.13184757580348
1001 => 0.13111257884798
1002 => 0.13109338510711
1003 => 0.13423801376995
1004 => 0.1319871383007
1005 => 0.1283684356978
1006 => 0.12745466556575
1007 => 0.12421139718627
1008 => 0.1264515342081
1009 => 0.12653215275148
1010 => 0.12530525259827
1011 => 0.1284679918834
1012 => 0.1284388466841
1013 => 0.13144139692372
1014 => 0.1371811452755
1015 => 0.13548361925201
1016 => 0.13350958117701
1017 => 0.1337242138499
1018 => 0.13607820451295
1019 => 0.13465492802169
1020 => 0.13516674817138
1021 => 0.13607742981185
1022 => 0.1366268666565
1023 => 0.13364515834331
1024 => 0.13294997950391
1025 => 0.13152788757311
1026 => 0.13115689033297
1027 => 0.13231515453768
1028 => 0.13200999284182
1029 => 0.12652537707508
1030 => 0.12595220421134
1031 => 0.12596978260477
1101 => 0.12452851218601
1102 => 0.12233022885288
1103 => 0.12810718619968
1104 => 0.12764321567627
1105 => 0.12713102812688
1106 => 0.12719376817918
1107 => 0.12970134956418
1108 => 0.12824682572498
1109 => 0.13211391574325
1110 => 0.13131895829086
1111 => 0.13050361317947
1112 => 0.13039090764905
1113 => 0.13007706934314
1114 => 0.12900080101809
1115 => 0.12770114234188
1116 => 0.12684299510934
1117 => 0.11700595809302
1118 => 0.11883165494383
1119 => 0.1209319527532
1120 => 0.12165696714057
1121 => 0.1204167798615
1122 => 0.12904977117089
1123 => 0.13062710187269
1124 => 0.1258492642902
1125 => 0.12495552595634
1126 => 0.12910836450727
1127 => 0.1266036951972
1128 => 0.12773154763416
1129 => 0.12529374756774
1130 => 0.13024716909627
1201 => 0.13020943232347
1202 => 0.12828243947077
1203 => 0.12991112063439
1204 => 0.12962809720234
1205 => 0.12745252701762
1206 => 0.13031613855162
1207 => 0.13031755886721
1208 => 0.12846287014293
1209 => 0.12629699975654
1210 => 0.12590979328702
1211 => 0.12561808522612
1212 => 0.12765980533321
1213 => 0.12949040519693
1214 => 0.13289669769912
1215 => 0.13375312056569
1216 => 0.13709579602919
1217 => 0.13510539554259
1218 => 0.1359877142983
1219 => 0.13694559611923
1220 => 0.13740483988912
1221 => 0.13665652681046
1222 => 0.14184907770539
1223 => 0.14228748809657
1224 => 0.1424344833085
1225 => 0.14068358436228
1226 => 0.14223879242952
1227 => 0.14151116207794
1228 => 0.14340425411122
1229 => 0.14370111511426
1230 => 0.14344968440582
1231 => 0.14354391277382
]
'min_raw' => 0.06436983187273
'max_raw' => 0.14370111511426
'avg_raw' => 0.10403547349349
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.064369'
'max' => '$0.1437011'
'avg' => '$0.104035'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0099256974693286
'max_diff' => -0.013712888666625
'year' => 2031
]
6 => [
'items' => [
101 => 0.13911298661374
102 => 0.13888321971735
103 => 0.13575033178145
104 => 0.13702700677247
105 => 0.13464032406939
106 => 0.13539716574009
107 => 0.13573077433708
108 => 0.13555651613814
109 => 0.13709918806095
110 => 0.13578760177951
111 => 0.13232610993802
112 => 0.1288636750154
113 => 0.12882020696539
114 => 0.12790860896731
115 => 0.12724969058221
116 => 0.12737662163956
117 => 0.12782394324157
118 => 0.12722369143751
119 => 0.12735178559345
120 => 0.12947900206885
121 => 0.12990560016238
122 => 0.12845585315793
123 => 0.1226349097376
124 => 0.12120643562151
125 => 0.12223319448828
126 => 0.12174246988171
127 => 0.098255674804735
128 => 0.10377354892351
129 => 0.10049501549144
130 => 0.10200591453501
131 => 0.098659380872972
201 => 0.10025652214335
202 => 0.099961588468973
203 => 0.1088341667662
204 => 0.10869563365993
205 => 0.10876194212689
206 => 0.10559686623277
207 => 0.11063891807328
208 => 0.11312281411623
209 => 0.11266311106543
210 => 0.11277880841941
211 => 0.11079074455449
212 => 0.1087811909308
213 => 0.10655228669404
214 => 0.11069331526505
215 => 0.11023290357767
216 => 0.11128892233762
217 => 0.11397467537276
218 => 0.11437016270936
219 => 0.1149017017004
220 => 0.11471118280963
221 => 0.11925011572823
222 => 0.11870042100294
223 => 0.12002502713291
224 => 0.11730021182545
225 => 0.11421682466322
226 => 0.11480287575924
227 => 0.11474643432597
228 => 0.11402787009995
229 => 0.11337918244588
301 => 0.11229930026847
302 => 0.11571620727029
303 => 0.11557748708602
304 => 0.11782320562476
305 => 0.11742625305929
306 => 0.11477530667633
307 => 0.11486998574501
308 => 0.11550674798309
309 => 0.1177105893595
310 => 0.11836483952899
311 => 0.11806176478312
312 => 0.11877912022631
313 => 0.11934608871966
314 => 0.11885032273987
315 => 0.12586932353577
316 => 0.12295454504229
317 => 0.12437518779911
318 => 0.12471400272571
319 => 0.12384613541575
320 => 0.12403434475928
321 => 0.12431943063076
322 => 0.12605041621679
323 => 0.13059302325927
324 => 0.13260491299581
325 => 0.13865778253309
326 => 0.13243785356005
327 => 0.13206878871542
328 => 0.13315909329823
329 => 0.13671276847792
330 => 0.13959268843132
331 => 0.14054812402643
401 => 0.14067440061285
402 => 0.14246686130544
403 => 0.14349426634702
404 => 0.14224920943096
405 => 0.1411941540575
406 => 0.13741507666805
407 => 0.13785251516596
408 => 0.14086603262971
409 => 0.14512280354255
410 => 0.14877555582729
411 => 0.14749648928845
412 => 0.1572548640996
413 => 0.15822236710274
414 => 0.15808868947082
415 => 0.16029280529573
416 => 0.15591808424368
417 => 0.1540478062377
418 => 0.14142226900463
419 => 0.14496952997815
420 => 0.15012568212649
421 => 0.14944324605508
422 => 0.14569871054061
423 => 0.14877271526133
424 => 0.14775635316764
425 => 0.14695470621545
426 => 0.15062720631034
427 => 0.14658914159802
428 => 0.15008539934203
429 => 0.14560141262118
430 => 0.14750233195666
501 => 0.14642327820472
502 => 0.14712155822608
503 => 0.14303942748943
504 => 0.1452420461468
505 => 0.14294779131175
506 => 0.14294670353623
507 => 0.14289605773359
508 => 0.14559523837275
509 => 0.14568325855649
510 => 0.14368855998591
511 => 0.14340109275885
512 => 0.14446400976499
513 => 0.1432196123292
514 => 0.14380185805726
515 => 0.14323724795916
516 => 0.14311014233357
517 => 0.14209734308362
518 => 0.14166100131925
519 => 0.1418321021682
520 => 0.1412480467622
521 => 0.14089613225387
522 => 0.14282605308032
523 => 0.14179497423553
524 => 0.14266802545961
525 => 0.14167307340193
526 => 0.13822413609002
527 => 0.1362406157701
528 => 0.12972589290458
529 => 0.13157346022775
530 => 0.13279839927446
531 => 0.13239355692683
601 => 0.13326331494273
602 => 0.13331671102103
603 => 0.13303394382392
604 => 0.1327065356344
605 => 0.13254717143455
606 => 0.1337349416156
607 => 0.13442448218421
608 => 0.13292133829537
609 => 0.13256917271343
610 => 0.1340889341759
611 => 0.13501598779007
612 => 0.14186083081066
613 => 0.14135374273114
614 => 0.14262643429972
615 => 0.14248314876014
616 => 0.14381713227968
617 => 0.14599763155062
618 => 0.14156406685561
619 => 0.14233358038553
620 => 0.14214491343866
621 => 0.1442047296935
622 => 0.14421116021501
623 => 0.14297619747478
624 => 0.14364569081124
625 => 0.14327199799742
626 => 0.14394731141961
627 => 0.14134697026068
628 => 0.14451390510277
629 => 0.14630935308547
630 => 0.14633428288245
701 => 0.14718531097669
702 => 0.14805000480866
703 => 0.14970970932017
704 => 0.14800371655064
705 => 0.14493480163331
706 => 0.14515636737781
707 => 0.14335706368465
708 => 0.1433873103048
709 => 0.14322585147595
710 => 0.14371040157537
711 => 0.14145330175889
712 => 0.14198303857439
713 => 0.14124140393056
714 => 0.14233196821665
715 => 0.14115870132155
716 => 0.14214482245774
717 => 0.14257039964969
718 => 0.14414078865001
719 => 0.14092675358936
720 => 0.13437311852964
721 => 0.13575077207434
722 => 0.13371311426938
723 => 0.13390170725714
724 => 0.13428269510677
725 => 0.13304778883467
726 => 0.13328337003501
727 => 0.13327495341678
728 => 0.13320242354785
729 => 0.13288117673213
730 => 0.1324153052926
731 => 0.13427119372003
801 => 0.13458654532822
802 => 0.1352875328894
803 => 0.13737319638709
804 => 0.13716478942034
805 => 0.13750470982984
806 => 0.13676266548448
807 => 0.13393612856609
808 => 0.13408962311964
809 => 0.13217554357731
810 => 0.13523858557207
811 => 0.13451321679753
812 => 0.13404556682978
813 => 0.13391796420334
814 => 0.13600879765742
815 => 0.13663440779669
816 => 0.13624456954103
817 => 0.13544499990529
818 => 0.13698040997746
819 => 0.13739122093902
820 => 0.13748318636319
821 => 0.1402036386254
822 => 0.13763522942419
823 => 0.13825347104672
824 => 0.14307681570078
825 => 0.13870270767561
826 => 0.14101977025079
827 => 0.14090636209515
828 => 0.14209169290349
829 => 0.14080913037165
830 => 0.14082502927137
831 => 0.14187752272791
901 => 0.14039948548639
902 => 0.14003350267971
903 => 0.13952790005349
904 => 0.14063186489073
905 => 0.14129364188262
906 => 0.14662707841562
907 => 0.15007272165019
908 => 0.14992313719014
909 => 0.15129005914463
910 => 0.15067424828456
911 => 0.14868563257472
912 => 0.15207995710557
913 => 0.15100585079944
914 => 0.15109439881828
915 => 0.1510911030566
916 => 0.15180528985017
917 => 0.15129922305266
918 => 0.15030171344809
919 => 0.15096390687543
920 => 0.15293038461616
921 => 0.15903439186227
922 => 0.16245027518454
923 => 0.15882875139716
924 => 0.16132683001156
925 => 0.15982887299934
926 => 0.15955664964986
927 => 0.16112562762626
928 => 0.16269735189091
929 => 0.16259723985001
930 => 0.1614562487428
1001 => 0.16081173181792
1002 => 0.16569222990213
1003 => 0.16928809775346
1004 => 0.169042883673
1005 => 0.17012517887625
1006 => 0.17330283106711
1007 => 0.1735933557598
1008 => 0.17355675632616
1009 => 0.17283666056219
1010 => 0.17596547181437
1011 => 0.17857558120713
1012 => 0.1726699791984
1013 => 0.17491875513332
1014 => 0.17592830310154
1015 => 0.17741061903827
1016 => 0.17991153448854
1017 => 0.18262819200259
1018 => 0.18301235716171
1019 => 0.18273977359732
1020 => 0.18094806493913
1021 => 0.18392066400746
1022 => 0.18566194282567
1023 => 0.18669883451346
1024 => 0.18932821931135
1025 => 0.1759345377261
1026 => 0.16645382419089
1027 => 0.1649732738692
1028 => 0.16798403116812
1029 => 0.1687779438575
1030 => 0.16845791864789
1031 => 0.15778651361525
1101 => 0.1649170911302
1102 => 0.17258899298031
1103 => 0.17288370197517
1104 => 0.17672441645324
1105 => 0.1779751105235
1106 => 0.1810673890923
1107 => 0.18087396622588
1108 => 0.18162688684849
1109 => 0.18145380343612
1110 => 0.18718159832874
1111 => 0.19350020668107
1112 => 0.19328141336577
1113 => 0.19237303865675
1114 => 0.19372213000056
1115 => 0.20024361096339
1116 => 0.19964321750093
1117 => 0.20022644860831
1118 => 0.20791564219805
1119 => 0.21791268763974
1120 => 0.21326805634512
1121 => 0.22334556979779
1122 => 0.22968883033021
1123 => 0.24065884351566
1124 => 0.23928534383638
1125 => 0.2435558894678
1126 => 0.23682649275246
1127 => 0.22137443765856
1128 => 0.21892909079186
1129 => 0.22382473714504
1130 => 0.23586020599414
1201 => 0.22344569740038
1202 => 0.22595713632021
1203 => 0.22523384174235
1204 => 0.22519530044809
1205 => 0.22666626489086
1206 => 0.22453255424628
1207 => 0.21583943323308
1208 => 0.21982343936455
1209 => 0.2182850232695
1210 => 0.21999201062348
1211 => 0.22920391735773
1212 => 0.22513111380609
1213 => 0.22084074611213
1214 => 0.22622181930916
1215 => 0.23307377462635
1216 => 0.23264499157675
1217 => 0.23181297324311
1218 => 0.23650301702677
1219 => 0.24424959530349
1220 => 0.24634346428342
1221 => 0.24788911555713
1222 => 0.24810223475378
1223 => 0.25029749493215
1224 => 0.23849302767628
1225 => 0.25722702037156
1226 => 0.26046186339394
1227 => 0.25985384697624
1228 => 0.2634492388526
1229 => 0.26239138335629
1230 => 0.26085871671457
1231 => 0.26655817760039
]
'min_raw' => 0.098255674804735
'max_raw' => 0.26655817760039
'avg_raw' => 0.18240692620256
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.098255'
'max' => '$0.266558'
'avg' => '$0.1824069'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.033885842932005
'max_diff' => 0.12285706248613
'year' => 2032
]
7 => [
'items' => [
101 => 0.26002420561757
102 => 0.25075005499217
103 => 0.24566207253717
104 => 0.25236233826975
105 => 0.25645395674558
106 => 0.2591582562823
107 => 0.25997657568813
108 => 0.23940937486634
109 => 0.22832479433265
110 => 0.23542988336977
111 => 0.24409858236211
112 => 0.23844487261568
113 => 0.23866648733385
114 => 0.23060578300422
115 => 0.24481177583465
116 => 0.24274208217046
117 => 0.25347965656149
118 => 0.25091704825865
119 => 0.2596731233443
120 => 0.25736735532622
121 => 0.26693846945552
122 => 0.27075664600927
123 => 0.27716795869475
124 => 0.28188414640492
125 => 0.28465358203463
126 => 0.28448731550731
127 => 0.29546119919957
128 => 0.28899028338454
129 => 0.2808612880431
130 => 0.28071426016403
131 => 0.28492438204011
201 => 0.29374764250186
202 => 0.29603538556637
203 => 0.29731392183979
204 => 0.29535579903089
205 => 0.28833208368838
206 => 0.28529927901454
207 => 0.28788331646546
208 => 0.28472326071185
209 => 0.29017840349763
210 => 0.29766947969814
211 => 0.29612260208566
212 => 0.30129358202333
213 => 0.30664500225586
214 => 0.31429777353569
215 => 0.31629849132954
216 => 0.31960560176229
217 => 0.32300970472678
218 => 0.32410301085582
219 => 0.32619047148914
220 => 0.3261794695412
221 => 0.332470172662
222 => 0.33940901301111
223 => 0.34202826460837
224 => 0.3480510892299
225 => 0.33773721313048
226 => 0.34556040662916
227 => 0.35261712299221
228 => 0.34420381482992
301 => 0.35579960008225
302 => 0.35624983814698
303 => 0.3630478983772
304 => 0.35615676198312
305 => 0.35206482718959
306 => 0.3638780896157
307 => 0.36959415518941
308 => 0.36787242971972
309 => 0.35477001388333
310 => 0.34714384587751
311 => 0.3271846932283
312 => 0.35082717171251
313 => 0.36234273332162
314 => 0.35474019136072
315 => 0.35857447131234
316 => 0.37949305945893
317 => 0.38745750344687
318 => 0.38580095477305
319 => 0.38608088422981
320 => 0.39037835364082
321 => 0.40943569966887
322 => 0.39801609618304
323 => 0.40674595516358
324 => 0.41137624088901
325 => 0.41567710831941
326 => 0.40511553721345
327 => 0.39137508838488
328 => 0.38702291145607
329 => 0.35398426839244
330 => 0.35226446354142
331 => 0.35129908496312
401 => 0.34521250958248
402 => 0.3404301285866
403 => 0.33662700166026
404 => 0.32664646089569
405 => 0.33001460042189
406 => 0.31410770154392
407 => 0.32428437174016
408 => 0.29889657704542
409 => 0.32004028686959
410 => 0.30853272689881
411 => 0.31625974392436
412 => 0.31623278508988
413 => 0.30200489689288
414 => 0.29379854790929
415 => 0.29902795287751
416 => 0.30463429011413
417 => 0.30554389946879
418 => 0.31281266203643
419 => 0.31484121742753
420 => 0.3086945998883
421 => 0.29837047143013
422 => 0.30076853100267
423 => 0.2937499513086
424 => 0.28145016036051
425 => 0.29028408495317
426 => 0.29330037520936
427 => 0.29463254082075
428 => 0.28253710906384
429 => 0.27873646180122
430 => 0.27671302908912
501 => 0.29680910307824
502 => 0.29791001137569
503 => 0.29227760887321
504 => 0.31773660227074
505 => 0.31197444797181
506 => 0.3184121860858
507 => 0.30055093223173
508 => 0.30123325618232
509 => 0.29277745236852
510 => 0.29751213748723
511 => 0.29416581465135
512 => 0.29712962171871
513 => 0.29890611545465
514 => 0.30736053175426
515 => 0.32013682272322
516 => 0.30609772388904
517 => 0.29998068748339
518 => 0.30377566246593
519 => 0.31388218094041
520 => 0.32919407377241
521 => 0.3201291250353
522 => 0.32415199535202
523 => 0.32503081355118
524 => 0.31834665595508
525 => 0.32944052819716
526 => 0.33538582445815
527 => 0.3414844682162
528 => 0.3467797497112
529 => 0.33904853578718
530 => 0.34732204291187
531 => 0.34065505663998
601 => 0.33467408073373
602 => 0.33468315140534
603 => 0.33093119785123
604 => 0.32366131506357
605 => 0.32232063713751
606 => 0.32929501301782
607 => 0.33488780199797
608 => 0.33534845088603
609 => 0.33844490623331
610 => 0.34027735661181
611 => 0.35823786141657
612 => 0.36546172502613
613 => 0.37429492870716
614 => 0.37773595935301
615 => 0.38809222791923
616 => 0.379728699957
617 => 0.37791919807331
618 => 0.35279827804128
619 => 0.35691182728922
620 => 0.36349801653365
621 => 0.35290688187607
622 => 0.35962451907315
623 => 0.36095072295486
624 => 0.35254699917315
625 => 0.35703579114843
626 => 0.34511489049616
627 => 0.32039666578137
628 => 0.32946804664735
629 => 0.33614763635848
630 => 0.32661503825322
701 => 0.34370185139441
702 => 0.33372008790074
703 => 0.3305563480824
704 => 0.31821347109635
705 => 0.32403883391286
706 => 0.33191772053335
707 => 0.32704948462077
708 => 0.33715180510868
709 => 0.35145938511003
710 => 0.3616558186501
711 => 0.36243857420769
712 => 0.35588295054941
713 => 0.36638837929924
714 => 0.36646489987864
715 => 0.3546147333329
716 => 0.34735657230564
717 => 0.34570750284895
718 => 0.34982720167088
719 => 0.35482927657907
720 => 0.36271615455242
721 => 0.36748202973256
722 => 0.37990890457749
723 => 0.3832712606041
724 => 0.3869654704747
725 => 0.39190207411394
726 => 0.39782973250206
727 => 0.38486035341065
728 => 0.3853756510199
729 => 0.37329874478325
730 => 0.36039283846585
731 => 0.37018681261683
801 => 0.38299113098144
802 => 0.38005380620108
803 => 0.37972329715919
804 => 0.38027912169209
805 => 0.37806447473176
806 => 0.36804770860883
807 => 0.36301735137017
808 => 0.36950779558904
809 => 0.37295717783494
810 => 0.37830686888057
811 => 0.37764740654092
812 => 0.3914276361596
813 => 0.39678221669691
814 => 0.39541228586004
815 => 0.39566438610325
816 => 0.40535859839794
817 => 0.41614055623646
818 => 0.42623928255687
819 => 0.43651214072039
820 => 0.42412780924779
821 => 0.41783980948538
822 => 0.42432742017935
823 => 0.4208850026254
824 => 0.44066615497777
825 => 0.44203575904809
826 => 0.461815480998
827 => 0.48058879245394
828 => 0.46879761188727
829 => 0.4799161640752
830 => 0.4919417847753
831 => 0.51514115819244
901 => 0.50732842538935
902 => 0.50134399450331
903 => 0.49568873623256
904 => 0.50745643094702
905 => 0.52259538220366
906 => 0.52585616730526
907 => 0.53113988488565
908 => 0.52558470191212
909 => 0.5322753079204
910 => 0.55589608713088
911 => 0.54951354408183
912 => 0.54044930690717
913 => 0.55909564353009
914 => 0.56584368026813
915 => 0.61320493606996
916 => 0.67300047791567
917 => 0.64824473095285
918 => 0.63287803995007
919 => 0.63648957683851
920 => 0.65832488451373
921 => 0.66533769232098
922 => 0.64627446324104
923 => 0.65300791802807
924 => 0.69010991592324
925 => 0.71001394741939
926 => 0.68298159917954
927 => 0.60840042250428
928 => 0.53963317152356
929 => 0.55787334311332
930 => 0.55580547371346
1001 => 0.59566694188332
1002 => 0.54936132254095
1003 => 0.5501409904133
1004 => 0.59082675153089
1005 => 0.57997248799524
1006 => 0.56238997117654
1007 => 0.53976154335431
1008 => 0.49793080164869
1009 => 0.46088014718349
1010 => 0.53354501284588
1011 => 0.53041157170603
1012 => 0.52587388458557
1013 => 0.53597201624312
1014 => 0.5850056771675
1015 => 0.58387529257672
1016 => 0.57668436253747
1017 => 0.58213861959429
1018 => 0.56143381354353
1019 => 0.56676991350248
1020 => 0.53962227843966
1021 => 0.55189414327344
1022 => 0.56235224699216
1023 => 0.56445186614856
1024 => 0.56918241531715
1025 => 0.52876039061
1026 => 0.54690869297521
1027 => 0.55756912034881
1028 => 0.50940492164524
1029 => 0.55661706900015
1030 => 0.52805673309074
1031 => 0.51836292612123
1101 => 0.53141436014371
1102 => 0.52632820361222
1103 => 0.52195542489557
1104 => 0.5195153392378
1105 => 0.5290988719497
1106 => 0.5286517886939
1107 => 0.51297126909368
1108 => 0.49251667049495
1109 => 0.49938190518399
1110 => 0.49688770105954
1111 => 0.48784838355381
1112 => 0.49393979214132
1113 => 0.46711631151326
1114 => 0.42096790725589
1115 => 0.45145495667216
1116 => 0.45028123843316
1117 => 0.44968939647317
1118 => 0.47259957150935
1119 => 0.47039728680729
1120 => 0.46640011850821
1121 => 0.48777497242338
1122 => 0.47997286321199
1123 => 0.50401712539337
1124 => 0.5198542315514
1125 => 0.51583742915301
1126 => 0.53073230404202
1127 => 0.4995400663254
1128 => 0.5099008764795
1129 => 0.5120362250928
1130 => 0.487511210044
1201 => 0.47075760782066
1202 => 0.46964033355741
1203 => 0.44059189609074
1204 => 0.45610933691464
1205 => 0.46976404268434
1206 => 0.46322449826863
1207 => 0.46115427386994
1208 => 0.47173060134592
1209 => 0.47255247257093
1210 => 0.45381372154286
1211 => 0.45771010126066
1212 => 0.47395865240314
1213 => 0.45730067946136
1214 => 0.42493695909991
1215 => 0.41691030898683
1216 => 0.41583940590123
1217 => 0.39407049419291
1218 => 0.41744668812831
1219 => 0.40724235303246
1220 => 0.43947772533354
1221 => 0.42106505355693
1222 => 0.42027132007758
1223 => 0.41907147550816
1224 => 0.40033407393839
1225 => 0.40443637405818
1226 => 0.4180730444543
1227 => 0.42293876207973
1228 => 0.42243122786775
1229 => 0.4180062173299
1230 => 0.42003196449441
1231 => 0.41350632706044
]
'min_raw' => 0.22832479433265
'max_raw' => 0.71001394741939
'avg_raw' => 0.46916937087602
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.228324'
'max' => '$0.710013'
'avg' => '$0.469169'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13006911952791
'max_diff' => 0.443455769819
'year' => 2033
]
8 => [
'items' => [
101 => 0.4112019886631
102 => 0.40392886282291
103 => 0.39323937709012
104 => 0.39472581564369
105 => 0.37354714735095
106 => 0.36200788482806
107 => 0.35881396904676
108 => 0.35454293138107
109 => 0.35929639411589
110 => 0.37348715084463
111 => 0.35637008749279
112 => 0.32702408299844
113 => 0.32878782787171
114 => 0.33275043894139
115 => 0.32536613942833
116 => 0.3183775196565
117 => 0.32445355754346
118 => 0.31201926857767
119 => 0.33425306335739
120 => 0.33365170151809
121 => 0.34193908528332
122 => 0.34712135642596
123 => 0.33517789922239
124 => 0.33217415203423
125 => 0.3338852229453
126 => 0.30560503224285
127 => 0.33962799036322
128 => 0.33992222231788
129 => 0.33740282968869
130 => 0.3555190045468
131 => 0.39374978407406
201 => 0.37936582698636
202 => 0.3737959240446
203 => 0.36320753448074
204 => 0.37731593489822
205 => 0.37623262987149
206 => 0.37133351370938
207 => 0.36837051296836
208 => 0.37382993268425
209 => 0.36769403044884
210 => 0.36659185380405
211 => 0.3599138625166
212 => 0.35753012345622
213 => 0.3557652979553
214 => 0.35382239848697
215 => 0.35810795057374
216 => 0.34839632573379
217 => 0.33668505821914
218 => 0.33571139304297
219 => 0.3383997681999
220 => 0.33721036231895
221 => 0.3357056986252
222 => 0.33283288586308
223 => 0.33198058368449
224 => 0.33475015228667
225 => 0.33162347081069
226 => 0.33623705964766
227 => 0.33498241876552
228 => 0.32797409678715
301 => 0.31923913278897
302 => 0.31916137328718
303 => 0.31727943962199
304 => 0.31488251414874
305 => 0.31421574431631
306 => 0.32394185058007
307 => 0.34407459946819
308 => 0.3401220591256
309 => 0.34297817459575
310 => 0.35702743590749
311 => 0.36149327360247
312 => 0.35832352778574
313 => 0.35398458421039
314 => 0.35417547570719
315 => 0.3690029593917
316 => 0.36992773136134
317 => 0.37226433178588
318 => 0.37526752365462
319 => 0.35883498434715
320 => 0.35340150458356
321 => 0.3508268204336
322 => 0.34289778977986
323 => 0.3514485695562
324 => 0.34646639636142
325 => 0.34713866174067
326 => 0.34670084803051
327 => 0.34693992392109
328 => 0.33424684855862
329 => 0.33887153809231
330 => 0.33118209476927
331 => 0.32088679334024
401 => 0.32085227987986
402 => 0.32337204031927
403 => 0.32187318821167
404 => 0.31783981572914
405 => 0.3184127372533
406 => 0.31339334184528
407 => 0.31902218273492
408 => 0.31918359775067
409 => 0.31701618740313
410 => 0.32568819342398
411 => 0.32924112136641
412 => 0.32781448544522
413 => 0.32914102478706
414 => 0.34028630502149
415 => 0.34210347200237
416 => 0.34291053753996
417 => 0.34182917663528
418 => 0.32934474005006
419 => 0.32989847790054
420 => 0.32583551696457
421 => 0.32240274311795
422 => 0.32254003606929
423 => 0.32430492805581
424 => 0.33201231487052
425 => 0.3482320560468
426 => 0.34884758336796
427 => 0.34959362043741
428 => 0.34655911274777
429 => 0.34564387619225
430 => 0.34685130945158
501 => 0.35294259144391
502 => 0.36861102249512
503 => 0.3630727525023
504 => 0.35857005278983
505 => 0.36252013435679
506 => 0.36191205026132
507 => 0.35677920854134
508 => 0.35663514676972
509 => 0.34678358244031
510 => 0.34314168341699
511 => 0.34009824000169
512 => 0.33677487924328
513 => 0.33480467958564
514 => 0.33783180169951
515 => 0.33852414034281
516 => 0.33190528493579
517 => 0.33100315940132
518 => 0.33640825960461
519 => 0.33402967652759
520 => 0.33647610820833
521 => 0.33704370134336
522 => 0.33695230577585
523 => 0.33446879186491
524 => 0.33605170957229
525 => 0.33230763730385
526 => 0.3282365210534
527 => 0.32563940252511
528 => 0.3233730721514
529 => 0.32463056396263
530 => 0.32014783526453
531 => 0.31871372013451
601 => 0.3355154526698
602 => 0.34792707314269
603 => 0.34774660326547
604 => 0.346648039301
605 => 0.34501579608535
606 => 0.35282318268607
607 => 0.35010324530801
608 => 0.35208222700892
609 => 0.35258596090941
610 => 0.35411061171123
611 => 0.35465554332471
612 => 0.35300838150942
613 => 0.34748030527341
614 => 0.333704864887
615 => 0.32729236020104
616 => 0.32517612684595
617 => 0.32525304790911
618 => 0.32313122159647
619 => 0.32375619453913
620 => 0.32291388151199
621 => 0.32131874441599
622 => 0.32453206874193
623 => 0.32490237443631
624 => 0.32415234614227
625 => 0.32432900495694
626 => 0.31811909102355
627 => 0.31859121729268
628 => 0.31596235823125
629 => 0.3154694788486
630 => 0.30882395206225
701 => 0.29705043807571
702 => 0.30357410770691
703 => 0.29569443215919
704 => 0.2927102796327
705 => 0.30683679356217
706 => 0.30541888337215
707 => 0.30299203747759
708 => 0.29940222660054
709 => 0.29807073082681
710 => 0.28998098400593
711 => 0.28950299860663
712 => 0.2935124955726
713 => 0.29166225068117
714 => 0.28906380611107
715 => 0.27965250327828
716 => 0.26907108291894
717 => 0.26939046948715
718 => 0.27275622242913
719 => 0.28254260304157
720 => 0.27871889483019
721 => 0.27594475065083
722 => 0.27542523683651
723 => 0.28192803989863
724 => 0.29113086861089
725 => 0.295448629941
726 => 0.29116985959522
727 => 0.28625463860735
728 => 0.28655380533394
729 => 0.28854402753689
730 => 0.2887531717502
731 => 0.28555386817998
801 => 0.28645445339497
802 => 0.28508638210216
803 => 0.27669053110347
804 => 0.27653867678243
805 => 0.27447819954596
806 => 0.27441580911413
807 => 0.27091042332477
808 => 0.27041999562125
809 => 0.26345983937476
810 => 0.26804103529349
811 => 0.26496820959479
812 => 0.26033673646053
813 => 0.25953826874648
814 => 0.25951426584282
815 => 0.26426975317325
816 => 0.26798546465526
817 => 0.26502166271341
818 => 0.26434686246214
819 => 0.2715519637243
820 => 0.27063504891274
821 => 0.26984100659939
822 => 0.29030685623721
823 => 0.27410653927871
824 => 0.26704227640304
825 => 0.25829890962726
826 => 0.26114579393733
827 => 0.2617456742909
828 => 0.24071945330547
829 => 0.23218911807033
830 => 0.22926182847653
831 => 0.2275771319295
901 => 0.22834486930107
902 => 0.22066656708091
903 => 0.22582651316025
904 => 0.21917775246833
905 => 0.21806306610139
906 => 0.22995187384195
907 => 0.23160613198564
908 => 0.22454855280693
909 => 0.22908066115795
910 => 0.22743725566885
911 => 0.21929172638729
912 => 0.21898062708319
913 => 0.21489348681891
914 => 0.2084979037316
915 => 0.2055749506443
916 => 0.20405265129819
917 => 0.20468078167742
918 => 0.20436317973658
919 => 0.20229061223834
920 => 0.20448197687951
921 => 0.19888394575569
922 => 0.19665476465578
923 => 0.19564789526956
924 => 0.19067932043652
925 => 0.19858653253115
926 => 0.20014435292622
927 => 0.20170524270871
928 => 0.21529172260056
929 => 0.21461298046015
930 => 0.22074847884857
1001 => 0.22051006466365
1002 => 0.21876012113479
1003 => 0.21137739723827
1004 => 0.21432001939902
1005 => 0.20526308577324
1006 => 0.2120491562573
1007 => 0.20895227708145
1008 => 0.21100209829277
1009 => 0.2073163349299
1010 => 0.20935618855635
1011 => 0.20051376993322
1012 => 0.19225684383913
1013 => 0.19557967193409
1014 => 0.1991919660848
1015 => 0.20702434019897
1016 => 0.20235944279225
1017 => 0.20403711629901
1018 => 0.19841719089053
1019 => 0.18682167952052
1020 => 0.1868873088556
1021 => 0.18510359205328
1022 => 0.18356220030915
1023 => 0.20289526237535
1024 => 0.20049089049694
1025 => 0.19665983858509
1026 => 0.20178785380905
1027 => 0.20314378242681
1028 => 0.20318238380834
1029 => 0.20692365134251
1030 => 0.20892036649616
1031 => 0.20927229619625
1101 => 0.21515926149669
1102 => 0.21713249461445
1103 => 0.22525996256411
1104 => 0.20875095916564
1105 => 0.2084109671047
1106 => 0.2018600154995
1107 => 0.19770529842503
1108 => 0.2021444925321
1109 => 0.20607701250054
1110 => 0.20198220985677
1111 => 0.20251690463605
1112 => 0.19701996664445
1113 => 0.19898486332148
1114 => 0.20067729703989
1115 => 0.19974283461724
1116 => 0.19834389914203
1117 => 0.205754590709
1118 => 0.20533645044805
1119 => 0.21223745680627
1120 => 0.2176172847582
1121 => 0.22725889820734
1122 => 0.21719737194449
1123 => 0.21683068993653
1124 => 0.22041506538201
1125 => 0.21713194586525
1126 => 0.21920676407041
1127 => 0.22692461291793
1128 => 0.22708767890245
1129 => 0.22435611356307
1130 => 0.22418989756392
1201 => 0.2247145245674
1202 => 0.2277872813132
1203 => 0.22671356568994
1204 => 0.22795609659233
1205 => 0.22950990051208
1206 => 0.23593709232337
1207 => 0.23748666650992
1208 => 0.23372200459871
1209 => 0.23406191141816
1210 => 0.23265382452109
1211 => 0.23129363022179
1212 => 0.23435114836618
1213 => 0.23993882287072
1214 => 0.23990406223763
1215 => 0.24120029411381
1216 => 0.24200783583411
1217 => 0.23854127561393
1218 => 0.23628467237954
1219 => 0.237149997651
1220 => 0.2385336716044
1221 => 0.23670129083661
1222 => 0.22539098789647
1223 => 0.22882181130356
1224 => 0.22825075452993
1225 => 0.2274375002414
1226 => 0.230887219707
1227 => 0.23055448584889
1228 => 0.22058781499361
1229 => 0.22122584892498
1230 => 0.22062661595021
1231 => 0.22256286028322
]
'min_raw' => 0.18356220030915
'max_raw' => 0.4112019886631
'avg_raw' => 0.29738209448612
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.183562'
'max' => '$0.4112019'
'avg' => '$0.297382'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.044762594023502
'max_diff' => -0.29881195875629
'year' => 2034
]
9 => [
'items' => [
101 => 0.21702738231705
102 => 0.21873005805743
103 => 0.21979796032021
104 => 0.22042696295699
105 => 0.22269935179221
106 => 0.22243271319021
107 => 0.22268277716233
108 => 0.22605212991654
109 => 0.2430931599251
110 => 0.24402066558955
111 => 0.23945328847853
112 => 0.24127786554685
113 => 0.23777507656681
114 => 0.24012652227576
115 => 0.24173532170957
116 => 0.2344654664225
117 => 0.23403499277337
118 => 0.23051774653719
119 => 0.2324077154375
120 => 0.22940063902354
121 => 0.23013847039246
122 => 0.22807542956198
123 => 0.23178849230951
124 => 0.23594027341287
125 => 0.23698917727839
126 => 0.23422996278973
127 => 0.23223210965884
128 => 0.22872453769474
129 => 0.23455770804238
130 => 0.23626350481467
131 => 0.23454874821811
201 => 0.23415140164652
202 => 0.23339843061134
203 => 0.23431114801116
204 => 0.23625421467911
205 => 0.23533790032131
206 => 0.23594314209802
207 => 0.23363658456782
208 => 0.23854242318961
209 => 0.24633407557536
210 => 0.24635912701185
211 => 0.24544280771477
212 => 0.24506786960078
213 => 0.24600806880649
214 => 0.24651808830659
215 => 0.24955852013479
216 => 0.2528210246226
217 => 0.26804570952497
218 => 0.26377067892695
219 => 0.27727892509289
220 => 0.28796219398392
221 => 0.29116563920161
222 => 0.28821862033508
223 => 0.27813702798751
224 => 0.27764237697017
225 => 0.29270853227593
226 => 0.28845165332842
227 => 0.28794531112289
228 => 0.28255868553472
301 => 0.28574284840388
302 => 0.28504642527555
303 => 0.28394708729728
304 => 0.29002224824095
305 => 0.30139440719413
306 => 0.29962194957385
307 => 0.29829889218224
308 => 0.29250163982847
309 => 0.29599288060863
310 => 0.29474971663713
311 => 0.30009113799006
312 => 0.29692699830755
313 => 0.28841940328364
314 => 0.2897742658326
315 => 0.28956948108392
316 => 0.29378393670035
317 => 0.29251886173352
318 => 0.28932245489292
319 => 0.30135553839114
320 => 0.30057417688029
321 => 0.30168196885856
322 => 0.302169653147
323 => 0.30949397902565
324 => 0.31249452098585
325 => 0.31317569654269
326 => 0.31602597933464
327 => 0.31310477891028
328 => 0.3247916633883
329 => 0.33256275961757
330 => 0.34158928778482
331 => 0.35477947153922
401 => 0.3597391026469
402 => 0.35884318967923
403 => 0.36884383646433
404 => 0.38681477643526
405 => 0.3624756304562
406 => 0.38810481027222
407 => 0.37999090784558
408 => 0.36075299115488
409 => 0.35951429612014
410 => 0.37254243665988
411 => 0.40143759846498
412 => 0.39419968815902
413 => 0.40144943709333
414 => 0.39299221986837
415 => 0.39257224775012
416 => 0.40103868892958
417 => 0.42082099022706
418 => 0.4114231604091
419 => 0.39794906692265
420 => 0.40789812787293
421 => 0.39927933053567
422 => 0.37985876788535
423 => 0.39419415346541
424 => 0.3846084893763
425 => 0.38740609575943
426 => 0.40755373591483
427 => 0.40512951854728
428 => 0.40826668029737
429 => 0.40272967192229
430 => 0.39755723299389
501 => 0.38790249162368
502 => 0.38504419867695
503 => 0.38583412801682
504 => 0.3850438072272
505 => 0.37964206816222
506 => 0.37847556312544
507 => 0.37653133695838
508 => 0.37713393394474
509 => 0.37347821994725
510 => 0.38037730756957
511 => 0.38165783902682
512 => 0.38667841966219
513 => 0.38719967299889
514 => 0.40118191860488
515 => 0.39348073268719
516 => 0.39864735308918
517 => 0.39818520193031
518 => 0.36116993514403
519 => 0.36627031231872
520 => 0.374204898616
521 => 0.37063037824415
522 => 0.36557684274731
523 => 0.36149584188018
524 => 0.35531270826271
525 => 0.36401535009273
526 => 0.37545839867643
527 => 0.38748988759488
528 => 0.40194493319601
529 => 0.39871873529312
530 => 0.38721966057208
531 => 0.38773550066399
601 => 0.39092422113656
602 => 0.38679453839878
603 => 0.38557661433842
604 => 0.39075689707316
605 => 0.39079257083332
606 => 0.38604087175467
607 => 0.38076022778051
608 => 0.38073810168944
609 => 0.37979846209921
610 => 0.39315937966405
611 => 0.40050653338358
612 => 0.40134887271699
613 => 0.40044983723503
614 => 0.4007958403106
615 => 0.39652069344468
616 => 0.40629241142473
617 => 0.41525990616598
618 => 0.41285642601274
619 => 0.40925326758821
620 => 0.40638317835144
621 => 0.41218032420131
622 => 0.41192218642217
623 => 0.41518158292248
624 => 0.41503371787004
625 => 0.41393770541909
626 => 0.4128564651548
627 => 0.41714346058485
628 => 0.41590887474804
629 => 0.41467237125841
630 => 0.41219237421076
701 => 0.41252944699793
702 => 0.4089269107095
703 => 0.40726021258162
704 => 0.38219707170639
705 => 0.37549938150277
706 => 0.37760661118489
707 => 0.37830036591043
708 => 0.3753855225505
709 => 0.37956465916682
710 => 0.37891334515197
711 => 0.38144722697781
712 => 0.37986416762138
713 => 0.37992913692957
714 => 0.38458457695297
715 => 0.38593607099742
716 => 0.38524869021852
717 => 0.38573010815403
718 => 0.39682418128403
719 => 0.39524695885343
720 => 0.39440909087239
721 => 0.39464118602923
722 => 0.39747595957356
723 => 0.39826954139307
724 => 0.39490707945978
725 => 0.39649283594568
726 => 0.40324478580018
727 => 0.40560758612198
728 => 0.4131485105407
729 => 0.40994499181839
730 => 0.41582518907823
731 => 0.43389891074804
801 => 0.44833745022429
802 => 0.43505917262405
803 => 0.46157371163527
804 => 0.48221908354023
805 => 0.48142667977986
806 => 0.47782668165217
807 => 0.45432247462398
808 => 0.43269355288866
809 => 0.45078706433278
810 => 0.45083318841442
811 => 0.44927893973503
812 => 0.43962563467278
813 => 0.44894302564361
814 => 0.44968260630309
815 => 0.44926863780415
816 => 0.4418674714463
817 => 0.43056725838205
818 => 0.43277529296591
819 => 0.43639209865697
820 => 0.42954473093909
821 => 0.42735658205658
822 => 0.43142476714152
823 => 0.4445333071252
824 => 0.44205521357389
825 => 0.4419905005365
826 => 0.45259283562423
827 => 0.44500385182853
828 => 0.43280314335312
829 => 0.42972230355551
830 => 0.41878739777634
831 => 0.42634017614681
901 => 0.42661198719441
902 => 0.42247540766842
903 => 0.43313880398366
904 => 0.43304053890936
905 => 0.4431638466736
906 => 0.46251580897805
907 => 0.45679248147239
908 => 0.45013687427958
909 => 0.4508605233214
910 => 0.45879716719224
911 => 0.45399849113198
912 => 0.45572412850081
913 => 0.45879455523341
914 => 0.46064701991559
915 => 0.45059398216145
916 => 0.44825013816858
917 => 0.44345545593662
918 => 0.44220461283928
919 => 0.44610978147289
920 => 0.44508090750957
921 => 0.42658914252836
922 => 0.42465665020062
923 => 0.42471591698134
924 => 0.41985657313823
925 => 0.41244490740132
926 => 0.43192232243035
927 => 0.43035801341727
928 => 0.42863113733473
929 => 0.42884266980142
930 => 0.43729715551468
1001 => 0.43239312683923
1002 => 0.44543129082741
1003 => 0.44275103627452
1004 => 0.44000204330588
1005 => 0.43962204874124
1006 => 0.43856392098137
1007 => 0.43493520718079
1008 => 0.43055331721469
1009 => 0.42766001390626
1010 => 0.39449375680572
1011 => 0.40064922120434
1012 => 0.40773052190672
1013 => 0.41017495853265
1014 => 0.40599358053413
1015 => 0.43510031346997
1016 => 0.4404183940568
1017 => 0.42430958106947
1018 => 0.42129627987804
1019 => 0.43529786499442
1020 => 0.42685319754507
1021 => 0.43065583078044
1022 => 0.42243661765475
1023 => 0.43913742417501
1024 => 0.43901019201083
1025 => 0.43251320106963
1026 => 0.43800441332366
1027 => 0.43705018006242
1028 => 0.42971509329119
1029 => 0.43936995950902
1030 => 0.43937474820221
1031 => 0.43312153567806
1101 => 0.4258191524541
1102 => 0.42451365880825
1103 => 0.42353014471449
1104 => 0.43041394660389
1105 => 0.43658594185283
1106 => 0.44807049484372
1107 => 0.45095798433188
1108 => 0.46222804803522
1109 => 0.45551727382932
1110 => 0.45849207311572
1111 => 0.46172163855216
1112 => 0.46327001098573
1113 => 0.46074702119548
1114 => 0.47825406907006
1115 => 0.47973220031277
1116 => 0.48022780493266
1117 => 0.47432452689164
1118 => 0.47956801947149
1119 => 0.4771147629396
1120 => 0.48349745490129
1121 => 0.48449834249918
1122 => 0.48365062631137
1123 => 0.48396832383288
1124 => 0.4690291469268
1125 => 0.46825447179379
1126 => 0.45769172138667
1127 => 0.46199612025348
1128 => 0.45394925288718
1129 => 0.45650099742095
1130 => 0.45762578209752
1201 => 0.45703825841345
1202 => 0.46223948450714
1203 => 0.45781737978721
1204 => 0.44614671837001
1205 => 0.4344728772889
1206 => 0.43432632172343
1207 => 0.43125280542719
1208 => 0.42903121608759
1209 => 0.42945917300952
1210 => 0.43096734902167
1211 => 0.42894355815605
1212 => 0.42937543654603
1213 => 0.43654749541037
1214 => 0.43798580066683
1215 => 0.43309787742324
1216 => 0.41347216027628
1217 => 0.40865596006103
1218 => 0.41211774926635
1219 => 0.41046323699399
1220 => 0.33127586759631
1221 => 0.34987976543344
1222 => 0.3388259610673
1223 => 0.3439200626803
1224 => 0.33263699079123
1225 => 0.33802186409316
1226 => 0.33702747461838
1227 => 0.36694199181113
1228 => 0.36647491777124
1229 => 0.36669848139712
1230 => 0.35602720704156
1231 => 0.37302683684665
]
'min_raw' => 0.21702738231705
'max_raw' => 0.48449834249918
'avg_raw' => 0.35076286240812
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.217027'
'max' => '$0.484498'
'avg' => '$0.350762'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.033465182007909
'max_diff' => 0.073296353836077
'year' => 2035
]
10 => [
'items' => [
101 => 0.38140146577555
102 => 0.37985154484434
103 => 0.38024162655099
104 => 0.37353873042823
105 => 0.3667633800834
106 => 0.35924847383204
107 => 0.37321024077658
108 => 0.37165793062766
109 => 0.37521837160572
110 => 0.38427357547697
111 => 0.38560698864438
112 => 0.38739910946353
113 => 0.38675676172171
114 => 0.40206009095492
115 => 0.40020675681016
116 => 0.40467275885841
117 => 0.39548585380878
118 => 0.38508999871609
119 => 0.3870659109031
120 => 0.38687561467021
121 => 0.38445292521365
122 => 0.38226582949803
123 => 0.37862493134193
124 => 0.39014527185938
125 => 0.38967756707299
126 => 0.3972491639174
127 => 0.39591081062859
128 => 0.38697295981525
129 => 0.38729217690558
130 => 0.38943906524859
131 => 0.39686947031648
201 => 0.39907532044118
202 => 0.39805348277549
203 => 0.40047209673634
204 => 0.40238367059616
205 => 0.40071216098203
206 => 0.4243772122164
207 => 0.41454983302227
208 => 0.41933962926303
209 => 0.42048196744333
210 => 0.41755589221527
211 => 0.41819045315734
212 => 0.41915164007706
213 => 0.42498777883394
214 => 0.44030349563235
215 => 0.44708672234476
216 => 0.46749439458754
217 => 0.44652346979337
218 => 0.4452791419024
219 => 0.44895517992598
220 => 0.46093664390399
221 => 0.47064649509648
222 => 0.47386781291178
223 => 0.47429356323924
224 => 0.4803369696099
225 => 0.48380093743871
226 => 0.47960314111914
227 => 0.47604594826589
228 => 0.46330452500059
229 => 0.4647793794373
301 => 0.4749396639634
302 => 0.48929166429429
303 => 0.50160717364933
304 => 0.49729471151203
305 => 0.53019575349581
306 => 0.5334577574198
307 => 0.53300705395072
308 => 0.54043838434083
309 => 0.52568870688057
310 => 0.51938293400477
311 => 0.47681505373662
312 => 0.48877489177069
313 => 0.50615921872989
314 => 0.50385833786896
315 => 0.4912333749468
316 => 0.50159759648284
317 => 0.49817086072385
318 => 0.49546805205534
319 => 0.50785014253103
320 => 0.49423552542477
321 => 0.50602340250961
322 => 0.49090532821833
323 => 0.49731441047582
324 => 0.49367630541404
325 => 0.49603060525839
326 => 0.48226741647453
327 => 0.48969369905978
328 => 0.48195845870363
329 => 0.48195479119254
330 => 0.48178403533296
331 => 0.49088451130866
401 => 0.49118127750351
402 => 0.48445601200741
403 => 0.48348679618103
404 => 0.48707049507773
405 => 0.48287492224192
406 => 0.48483800436518
407 => 0.48293438199961
408 => 0.4825058365087
409 => 0.47909111312612
410 => 0.47761995640313
411 => 0.47819683486125
412 => 0.47622765128245
413 => 0.47504114694774
414 => 0.4815480097569
415 => 0.47807165544406
416 => 0.48101520860052
417 => 0.47766065827271
418 => 0.46603232532852
419 => 0.45934474808493
420 => 0.43737990510039
421 => 0.44360910732351
422 => 0.44773907484201
423 => 0.44637412060178
424 => 0.44930657047696
425 => 0.44948659908292
426 => 0.44853322973571
427 => 0.44742935016582
428 => 0.44689204263957
429 => 0.45089669273246
430 => 0.45322152690171
501 => 0.44815357233432
502 => 0.4469662214874
503 => 0.45209020336447
504 => 0.45521582934946
505 => 0.47829369548506
506 => 0.47658401262121
507 => 0.48087498110116
508 => 0.48039188390059
509 => 0.48488950247247
510 => 0.49224120800205
511 => 0.47729313509121
512 => 0.47988760368306
513 => 0.47925149989937
514 => 0.48619631421435
515 => 0.48621799516659
516 => 0.48205423206556
517 => 0.48431147559197
518 => 0.48305154417976
519 => 0.48532841053156
520 => 0.47656117876422
521 => 0.48723872069266
522 => 0.49329219892048
523 => 0.49337625147155
524 => 0.49624555210816
525 => 0.49916092773364
526 => 0.50475673737106
527 => 0.49900486363999
528 => 0.48865780273141
529 => 0.48940482710821
530 => 0.48333834908335
531 => 0.48344032767495
601 => 0.4828959579608
602 => 0.4845296524512
603 => 0.47691968283425
604 => 0.47870572749276
605 => 0.47620525451178
606 => 0.47988216814314
607 => 0.4759264168914
608 => 0.47925119315087
609 => 0.48068605636637
610 => 0.48598073252199
611 => 0.47514438891824
612 => 0.45304835075424
613 => 0.45769320586488
614 => 0.45082310031074
615 => 0.45145895473612
616 => 0.45274348187085
617 => 0.44857990915606
618 => 0.44937418762078
619 => 0.44934581040477
620 => 0.4491012708878
621 => 0.44801816481987
622 => 0.44644744673538
623 => 0.45270470414248
624 => 0.4537679341066
625 => 0.45613136261054
626 => 0.46316332270938
627 => 0.46246066407046
628 => 0.46360672946356
629 => 0.46110487514532
630 => 0.45157500858245
701 => 0.45209252618638
702 => 0.44563907337266
703 => 0.45596633331275
704 => 0.45352070184577
705 => 0.45194398732923
706 => 0.45151376616523
707 => 0.45856315713302
708 => 0.46067244539625
709 => 0.45935807849967
710 => 0.45666227364859
711 => 0.46183901590583
712 => 0.46322409374464
713 => 0.46353416159305
714 => 0.47270635633099
715 => 0.46404678538852
716 => 0.46613123018311
717 => 0.48239347343945
718 => 0.46764586284212
719 => 0.47545800108649
720 => 0.47507563757183
721 => 0.4790720631493
722 => 0.47474781402756
723 => 0.47480141827798
724 => 0.47834997344946
725 => 0.47336666769642
726 => 0.47213273111158
727 => 0.47042805655724
728 => 0.47415015108236
729 => 0.47638137841432
730 => 0.49436343205397
731 => 0.50598065878646
801 => 0.50547632433575
802 => 0.51008499714073
803 => 0.50800874783148
804 => 0.50130399112502
805 => 0.51274819326498
806 => 0.50912676886214
807 => 0.50942531468988
808 => 0.50941420279926
809 => 0.51182213343673
810 => 0.51011589389648
811 => 0.50675272062075
812 => 0.50898535199391
813 => 0.51561546899185
814 => 0.53619555559032
815 => 0.5477124447007
816 => 0.53550222440484
817 => 0.54392467086356
818 => 0.53887420421285
819 => 0.53795638418405
820 => 0.54324630297403
821 => 0.54854548106658
822 => 0.54820794633107
823 => 0.54436101515168
824 => 0.54218798134071
825 => 0.55864292137711
826 => 0.57076664089334
827 => 0.56993988450078
828 => 0.57358891834196
829 => 0.58430259456003
830 => 0.58528211884524
831 => 0.58515872129942
901 => 0.58273086815571
902 => 0.59327987373906
903 => 0.60208003978878
904 => 0.58216889030037
905 => 0.58975079536947
906 => 0.59315455682871
907 => 0.5981522885014
908 => 0.60658429955032
909 => 0.61574370002991
910 => 0.61703893968544
911 => 0.61611990516691
912 => 0.61007903433272
913 => 0.62010135963187
914 => 0.62597220273965
915 => 0.62946815545849
916 => 0.63833330988238
917 => 0.59317557730071
918 => 0.56121068969447
919 => 0.55621891091618
920 => 0.56636988935383
921 => 0.5690466214153
922 => 0.56796763407766
923 => 0.5319882469564
924 => 0.55602948688909
925 => 0.5818958396118
926 => 0.58288947156392
927 => 0.59583870857683
928 => 0.6000555109554
929 => 0.61048134404609
930 => 0.60982920534762
1001 => 0.61236772979397
1002 => 0.61178416698487
1003 => 0.63109582736721
1004 => 0.65239945657824
1005 => 0.65166177964006
1006 => 0.64859913088787
1007 => 0.65314768654408
1008 => 0.67513531492552
1009 => 0.67311104644872
1010 => 0.67507745084715
1011 => 0.70100210387731
1012 => 0.7347078405554
1013 => 0.71904814186779
1014 => 0.75302518206298
1015 => 0.77441192782035
1016 => 0.81139809317692
1017 => 0.80676724311358
1018 => 0.82116568586987
1019 => 0.79847705501261
1020 => 0.7463793724355
1021 => 0.73813471474576
1022 => 0.75464072822861
1023 => 0.79521915174297
1024 => 0.7533627692658
1025 => 0.76183026092706
1026 => 0.75939162275898
1027 => 0.75926167809454
1028 => 0.76422113741277
1029 => 0.75702718300368
1030 => 0.72771771857335
1031 => 0.74115007340001
1101 => 0.73596319612678
1102 => 0.74171842316874
1103 => 0.77277700987807
1104 => 0.75904526834965
1105 => 0.74457999412555
1106 => 0.76272265810389
1107 => 0.78582450384405
1108 => 0.78437883185564
1109 => 0.78157362395411
1110 => 0.79738643401912
1111 => 0.8235045635279
1112 => 0.83056418898298
1113 => 0.83577546016623
1114 => 0.83649400641725
1115 => 0.84389547937678
1116 => 0.80409589386202
1117 => 0.86725885819979
1118 => 0.87816535729925
1119 => 0.87611538749662
1120 => 0.88823750223003
1121 => 0.88467086856709
1122 => 0.87950337597717
1123 => 0.89871950627736
1124 => 0.87668976354995
1125 => 0.84542131721587
1126 => 0.82826682913725
1127 => 0.85085724285225
1128 => 0.86465242021122
1129 => 0.87377015490742
1130 => 0.87652917591741
1201 => 0.80718542239064
1202 => 0.7698129852206
1203 => 0.79376828897073
1204 => 0.82299541285265
1205 => 0.80393353571314
1206 => 0.8046807252081
1207 => 0.77750349778036
1208 => 0.8253999944389
1209 => 0.81842187774869
1210 => 0.85462435948154
1211 => 0.84598434667293
1212 => 0.87550606515383
1213 => 0.86773200729728
1214 => 0.90000168681808
1215 => 0.91287493564562
1216 => 0.93449112398826
1217 => 0.95039208012682
1218 => 0.95972942570821
1219 => 0.959168846503
1220 => 0.99616806154354
1221 => 0.97435091708825
1222 => 0.94694344174626
1223 => 0.9464477269868
1224 => 0.96064244683335
1225 => 0.9903906855005
1226 => 0.99810397096762
1227 => 1.002414645278
1228 => 0.99581269751601
1229 => 0.97213175085862
1230 => 0.96190643815708
1231 => 0.97061870083462
]
'min_raw' => 0.35924847383204
'max_raw' => 1.002414645278
'avg_raw' => 0.68083155955501
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.359248'
'max' => '$1.00'
'avg' => '$0.680831'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14222109151499
'max_diff' => 0.5179163027788
'year' => 2036
]
11 => [
'items' => [
101 => 0.95996435223326
102 => 0.97835674700144
103 => 1.0036134334217
104 => 0.99839802755167
105 => 1.0158323474378
106 => 1.033875034376
107 => 1.0596768870454
108 => 1.066422446773
109 => 1.0775726004921
110 => 1.0890497713038
111 => 1.09273592925
112 => 1.0997739485171
113 => 1.0997368546815
114 => 1.1209463994561
115 => 1.1443411841475
116 => 1.153172173778
117 => 1.1734785474897
118 => 1.1387045941286
119 => 1.1650810372074
120 => 1.1888732491096
121 => 1.160507193242
122 => 1.1996031928121
123 => 1.201121201882
124 => 1.2240413365736
125 => 1.2008073890971
126 => 1.187011145251
127 => 1.2268403842963
128 => 1.246112498461
129 => 1.2403075808329
130 => 1.1961318710591
131 => 1.1704197131854
201 => 1.103126036525
202 => 1.1828383033997
203 => 1.2216638233556
204 => 1.1960313223419
205 => 1.2089588648997
206 => 1.2794873453251
207 => 1.3063400242902
208 => 1.3007548547798
209 => 1.3016986564874
210 => 1.3161878746463
211 => 1.3804410473213
212 => 1.3419390568776
213 => 1.3713723859297
214 => 1.3869837175292
215 => 1.4014843923478
216 => 1.3658753179787
217 => 1.3195484354257
218 => 1.3048747670509
219 => 1.1934826752775
220 => 1.1876842331494
221 => 1.184429391872
222 => 1.1639080780251
223 => 1.1477839466023
224 => 1.1349614386443
225 => 1.1013113486374
226 => 1.112667266206
227 => 1.0590360460547
228 => 1.0933474001338
301 => 1.0077506778012
302 => 1.0790381716801
303 => 1.0402396298064
304 => 1.0662918071912
305 => 1.0662009135985
306 => 1.0182305951829
307 => 0.99056231663576
308 => 1.0081936205915
309 => 1.0270957780067
310 => 1.0301625894528
311 => 1.0546697299385
312 => 1.0615091460688
313 => 1.0407853958921
314 => 1.0059768759878
315 => 1.0140621012637
316 => 0.99039846980361
317 => 0.94892886587815
318 => 0.97871305940723
319 => 0.98888269259661
320 => 0.99337418196426
321 => 0.95259358931977
322 => 0.93977944172113
323 => 0.93295729706072
324 => 1.0007126135781
325 => 1.0044244027659
326 => 0.98543436448703
327 => 1.071271138217
328 => 1.0518436326973
329 => 1.0735489162172
330 => 1.0133284518153
331 => 1.015628954653
401 => 0.98711962172942
402 => 1.0030829431723
403 => 0.99180058209835
404 => 1.0017932645524
405 => 1.0077828372139
406 => 1.0362874920365
407 => 1.0793636490505
408 => 1.0320298471525
409 => 1.011405831833
410 => 1.0242008549434
411 => 1.0582756875947
412 => 1.1099008033199
413 => 1.0793376957583
414 => 1.0929010838989
415 => 1.0958640808145
416 => 1.0733279768063
417 => 1.1107317416199
418 => 1.1307767230511
419 => 1.1513387262751
420 => 1.1691921375403
421 => 1.1431258100193
422 => 1.171020516928
423 => 1.1485423072382
424 => 1.1283770293919
425 => 1.1284076117945
426 => 1.1157576384338
427 => 1.0912467210482
428 => 1.0867265318174
429 => 1.1102411270332
430 => 1.1290976055558
501 => 1.1306507154434
502 => 1.1410906308344
503 => 1.1472688652231
504 => 1.2078239611347
505 => 1.2321797216484
506 => 1.2619614845736
507 => 1.2735631596412
508 => 1.3084800421638
509 => 1.2802818237162
510 => 1.27418096178
511 => 1.1894840260053
512 => 1.2033531444936
513 => 1.2255589413643
514 => 1.1898501914168
515 => 1.2124991742372
516 => 1.216970563217
517 => 1.1886368217578
518 => 1.2037710972999
519 => 1.16357894846
520 => 1.0802397280628
521 => 1.110824521996
522 => 1.1333452250611
523 => 1.1012054050045
524 => 1.1588147884732
525 => 1.1251605759499
526 => 1.114493806267
527 => 1.0728789347564
528 => 1.0925195522061
529 => 1.1190837685334
530 => 1.1026701712648
531 => 1.1367308501113
601 => 1.1849698550091
602 => 1.2193478425817
603 => 1.2219869575944
604 => 1.1998842147315
605 => 1.2353040012271
606 => 1.2355619957031
607 => 1.1956083318419
608 => 1.1711369351899
609 => 1.1655769823823
610 => 1.1794668345886
611 => 1.1963316793753
612 => 1.2229228391067
613 => 1.2389913200193
614 => 1.2808893961757
615 => 1.2922258142716
616 => 1.3046811007718
617 => 1.3213252046042
618 => 1.3413107187156
619 => 1.2975835516158
620 => 1.2993209134823
621 => 1.2586027809228
622 => 1.2150896167121
623 => 1.2481106843555
624 => 1.2912813376908
625 => 1.2813779421164
626 => 1.2802636078062
627 => 1.2821376090253
628 => 1.2746707721768
629 => 1.2408985458451
630 => 1.2239383452066
701 => 1.2458213310389
702 => 1.2574511641091
703 => 1.275488020973
704 => 1.2732645976526
705 => 1.3197256039169
706 => 1.3377789460433
707 => 1.3331601285813
708 => 1.3340101021524
709 => 1.3666948157322
710 => 1.403046939357
711 => 1.4370955002169
712 => 1.4717311587432
713 => 1.429976520537
714 => 1.4087760903239
715 => 1.4306495227291
716 => 1.419043171604
717 => 1.485736707836
718 => 1.4903544235818
719 => 1.557043137112
720 => 1.6203386673964
721 => 1.580583878882
722 => 1.6180708538561
723 => 1.6586160736485
724 => 1.736834380853
725 => 1.7104932067397
726 => 1.6903162801878
727 => 1.6712491820905
728 => 1.7109247864145
729 => 1.7619668175441
730 => 1.7729607821749
731 => 1.7907752048945
801 => 1.7720455176488
802 => 1.7946033629289
803 => 1.8742424691872
804 => 1.8527232796824
805 => 1.8221625712032
806 => 1.885029996973
807 => 1.9077814739682
808 => 2.0674632545613
809 => 2.2690680986856
810 => 2.1856023694094
811 => 2.1337924978254
812 => 2.1459690465942
813 => 2.2195883109137
814 => 2.2432324820545
815 => 2.1789594742593
816 => 2.2016617871885
817 => 2.3267537634709
818 => 2.3938615953153
819 => 2.3027201458863
820 => 2.0512645016342
821 => 1.8194109137766
822 => 1.8809089257796
823 => 1.8739369597239
824 => 2.0083326826974
825 => 1.8522100541295
826 => 1.8548387587958
827 => 1.9920136429929
828 => 1.955417735662
829 => 1.8961370526356
830 => 1.8198437283666
831 => 1.678808462177
901 => 1.5538895938535
902 => 1.7988842617331
903 => 1.7883196461602
904 => 1.7730205172224
905 => 1.8070670731349
906 => 1.9723874843623
907 => 1.9685763137936
908 => 1.9443315911115
909 => 1.9627209995827
910 => 1.8929133004191
911 => 1.9109043339853
912 => 1.8193741869837
913 => 1.860749636065
914 => 1.8960098629141
915 => 1.9030888754907
916 => 1.919038252289
917 => 1.7827525738132
918 => 1.8439408423115
919 => 1.8798832174889
920 => 1.7174942588428
921 => 1.8766733098967
922 => 1.7803801433592
923 => 1.7476967963615
924 => 1.7917006173903
925 => 1.7745522855403
926 => 1.7598091567994
927 => 1.751582237643
928 => 1.783893787282
929 => 1.7823864148707
930 => 1.7295184482597
1001 => 1.6605543409896
1002 => 1.6837009590591
1003 => 1.6752915757137
1004 => 1.6448148856381
1005 => 1.6653524949795
1006 => 1.5749152572864
1007 => 1.4193226903539
1008 => 1.5221119059987
1009 => 1.5181546330095
1010 => 1.5161591965204
1011 => 1.5934024511922
1012 => 1.5859772945606
1013 => 1.5725005625668
1014 => 1.6445673748865
1015 => 1.6182620189544
1016 => 1.6993289276157
1017 => 1.752724836739
1018 => 1.7391819070086
1019 => 1.7894010176238
1020 => 1.6842342103898
1021 => 1.719166405193
1022 => 1.726365882128
1023 => 1.6436780816091
1024 => 1.5871921420139
1025 => 1.5834251738298
1026 => 1.4854863388138
1027 => 1.5378044739447
1028 => 1.5838422677883
1029 => 1.5617937372144
1030 => 1.5548138311157
1031 => 1.5904726576166
1101 => 1.5932436538329
1102 => 1.530064646444
1103 => 1.5432015626991
1104 => 1.5979846873136
1105 => 1.5418211685178
1106 => 1.4327046257564
1107 => 1.4056422144973
1108 => 1.4020315899762
1109 => 1.3286361842947
1110 => 1.4074506542216
1111 => 1.373046026002
1112 => 1.481729834317
1113 => 1.4196502258904
1114 => 1.4169740980481
1115 => 1.4129287383118
1116 => 1.3497542807157
1117 => 1.3635854719831
1118 => 1.4095624583055
1119 => 1.4259675649932
1120 => 1.4242563779626
1121 => 1.4093371459899
1122 => 1.4161670939882
1123 => 1.3941654517741
1124 => 1.3863962139837
1125 => 1.3618743624201
1126 => 1.3258340149559
1127 => 1.3308456463191
1128 => 1.2594402875227
1129 => 1.2205348582812
1130 => 1.2097663482325
1201 => 1.1953662465483
1202 => 1.2113928780349
1203 => 1.2592380051128
1204 => 1.2015266309469
1205 => 1.1025845279216
1206 => 1.1085311169026
1207 => 1.1218913367847
1208 => 1.0969946554211
1209 => 1.0734320359305
1210 => 1.0939178218818
1211 => 1.0519947484993
1212 => 1.1269575399131
1213 => 1.1249300064861
1214 => 1.1528714994573
1215 => 1.1703438884293
1216 => 1.1300756886019
1217 => 1.1199483452421
1218 => 1.1257173402819
1219 => 1.0303687028687
1220 => 1.1450794815787
1221 => 1.1460715051564
1222 => 1.1375771970087
1223 => 1.1986571453738
1224 => 1.3275548877377
1225 => 1.2790583721607
1226 => 1.2602790555144
1227 => 1.2245795608421
1228 => 1.2721470178667
1229 => 1.2684945793351
1230 => 1.2519768671492
1231 => 1.2419869032808
]
'min_raw' => 0.93295729706072
'max_raw' => 2.3938615953153
'avg_raw' => 1.663409446188
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.932957'
'max' => '$2.39'
'avg' => '$1.66'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.57370882322868
'max_diff' => 1.3914469500373
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029284463488312
]
1 => [
'year' => 2028
'avg' => 0.050260640686437
]
2 => [
'year' => 2029
'avg' => 0.13730301175622
]
3 => [
'year' => 2030
'avg' => 0.10592906909214
]
4 => [
'year' => 2031
'avg' => 0.10403547349349
]
5 => [
'year' => 2032
'avg' => 0.18240692620256
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029284463488312
'min' => '$0.029284'
'max_raw' => 0.18240692620256
'max' => '$0.1824069'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18240692620256
]
1 => [
'year' => 2033
'avg' => 0.46916937087602
]
2 => [
'year' => 2034
'avg' => 0.29738209448612
]
3 => [
'year' => 2035
'avg' => 0.35076286240812
]
4 => [
'year' => 2036
'avg' => 0.68083155955501
]
5 => [
'year' => 2037
'avg' => 1.663409446188
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18240692620256
'min' => '$0.1824069'
'max_raw' => 1.663409446188
'max' => '$1.66'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.663409446188
]
]
]
]
'prediction_2025_max_price' => '$0.050071'
'last_price' => 0.04855025
'sma_50day_nextmonth' => '$0.046092'
'sma_200day_nextmonth' => '$0.050175'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.048355'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.048297'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.048126'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.048287'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.048583'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.049711'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.051692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.048384'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.048298'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.048254'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.048359'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.048768'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.050102'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.055294'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.050054'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.064132'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.085128'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.1067054'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.048457'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.048514'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.048979'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.051643'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.062994'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.08258'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.121579'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.69'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.68
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.048136'
'vwma_10_action' => 'BUY'
'hma_9' => '0.048477'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.29
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 50.2
'cci_20_action' => 'NEUTRAL'
'adx_14' => 12.38
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000258'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -12.71
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.84
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 18
'sell_pct' => 45.45
'buy_pct' => 54.55
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767714568
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de DeGate para 2026
A previsão de preço para DeGate em 2026 sugere que o preço médio poderia variar entre $0.016774 na extremidade inferior e $0.050071 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, DeGate poderia potencialmente ganhar 3.13% até 2026 se DG atingir a meta de preço prevista.
Previsão de preço de DeGate 2027-2032
A previsão de preço de DG para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029284 na extremidade inferior e $0.1824069 na extremidade superior. Considerando a volatilidade de preços no mercado, se DeGate atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de DeGate | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016148 | $0.029284 | $0.04242 |
| 2028 | $0.029142 | $0.05026 | $0.071378 |
| 2029 | $0.064017 | $0.137303 | $0.210588 |
| 2030 | $0.054444 | $0.105929 | $0.157414 |
| 2031 | $0.064369 | $0.104035 | $0.1437011 |
| 2032 | $0.098255 | $0.1824069 | $0.266558 |
Previsão de preço de DeGate 2032-2037
A previsão de preço de DeGate para 2032-2037 é atualmente estimada entre $0.1824069 na extremidade inferior e $1.66 na extremidade superior. Comparado ao preço atual, DeGate poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de DeGate | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.098255 | $0.1824069 | $0.266558 |
| 2033 | $0.228324 | $0.469169 | $0.710013 |
| 2034 | $0.183562 | $0.297382 | $0.4112019 |
| 2035 | $0.217027 | $0.350762 | $0.484498 |
| 2036 | $0.359248 | $0.680831 | $1.00 |
| 2037 | $0.932957 | $1.66 | $2.39 |
DeGate Histograma de preços potenciais
Previsão de preço de DeGate baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para DeGate é Altista, com 18 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de DG foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de DeGate
De acordo com nossos indicadores técnicos, o SMA de 200 dias de DeGate está projetado para aumentar no próximo mês, alcançando $0.050175 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para DeGate é esperado para alcançar $0.046092 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.69, sugerindo que o mercado de DG está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DG para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.048355 | BUY |
| SMA 5 | $0.048297 | BUY |
| SMA 10 | $0.048126 | BUY |
| SMA 21 | $0.048287 | BUY |
| SMA 50 | $0.048583 | SELL |
| SMA 100 | $0.049711 | SELL |
| SMA 200 | $0.051692 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.048384 | BUY |
| EMA 5 | $0.048298 | BUY |
| EMA 10 | $0.048254 | BUY |
| EMA 21 | $0.048359 | BUY |
| EMA 50 | $0.048768 | SELL |
| EMA 100 | $0.050102 | SELL |
| EMA 200 | $0.055294 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.050054 | SELL |
| SMA 50 | $0.064132 | SELL |
| SMA 100 | $0.085128 | SELL |
| SMA 200 | $0.1067054 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.051643 | SELL |
| EMA 50 | $0.062994 | SELL |
| EMA 100 | $0.08258 | SELL |
| EMA 200 | $0.121579 | SELL |
Osciladores de DeGate
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.69 | NEUTRAL |
| Stoch RSI (14) | 76.68 | NEUTRAL |
| Estocástico Rápido (14) | 87.29 | SELL |
| Índice de Canal de Commodities (20) | 50.2 | NEUTRAL |
| Índice Direcional Médio (14) | 12.38 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000258 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -12.71 | SELL |
| Oscilador Ultimate (7, 14, 28) | 65.84 | NEUTRAL |
| VWMA (10) | 0.048136 | BUY |
| Média Móvel de Hull (9) | 0.048477 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000498 | SELL |
Previsão do preço de DeGate com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do DeGate
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de DeGate por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.068221 | $0.095862 | $0.1347023 | $0.189279 | $0.265969 | $0.373731 |
| Amazon.com stock | $0.1013029 | $0.211374 | $0.441045 | $0.920268 | $1.92 | $4.00 |
| Apple stock | $0.068864 | $0.097679 | $0.13855 | $0.196523 | $0.278754 | $0.395391 |
| Netflix stock | $0.0766046 | $0.12087 | $0.190714 | $0.300917 | $0.474800069 | $0.74916 |
| Google stock | $0.062872 | $0.081419 | $0.105437 | $0.136541 | $0.17682 | $0.228981 |
| Tesla stock | $0.110059 | $0.249497 | $0.565591 | $1.28 | $2.90 | $6.58 |
| Kodak stock | $0.0364075 | $0.0273017 | $0.020473 | $0.015352 | $0.011513 | $0.008633 |
| Nokia stock | $0.032162 | $0.0213063 | $0.014114 | $0.00935 | $0.006194 | $0.0041033 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para DeGate
Você pode fazer perguntas como: 'Devo investir em DeGate agora?', 'Devo comprar DG hoje?', 'DeGate será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para DeGate regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como DeGate, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre DeGate para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de DeGate é de $0.04855 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de DeGate com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DeGate tiver 1% da média anterior do crescimento anual do Bitcoin | $0.049812 | $0.051107 | $0.052435 | $0.053798 |
| Se DeGate tiver 2% da média anterior do crescimento anual do Bitcoin | $0.051074 | $0.053729 | $0.056522 | $0.05946 |
| Se DeGate tiver 5% da média anterior do crescimento anual do Bitcoin | $0.05486 | $0.06199 | $0.070046 | $0.07915 |
| Se DeGate tiver 10% da média anterior do crescimento anual do Bitcoin | $0.06117 | $0.07707 | $0.097103 | $0.122343 |
| Se DeGate tiver 20% da média anterior do crescimento anual do Bitcoin | $0.073789 | $0.11215 | $0.170453 | $0.259066 |
| Se DeGate tiver 50% da média anterior do crescimento anual do Bitcoin | $0.111649 | $0.256755 | $0.590449 | $1.35 |
| Se DeGate tiver 100% da média anterior do crescimento anual do Bitcoin | $0.174747 | $0.628974 | $2.26 | $8.14 |
Perguntas Frequentes sobre DeGate
DG é um bom investimento?
A decisão de adquirir DeGate depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de DeGate experimentou uma queda de -0.2444% nas últimas 24 horas, e DeGate registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em DeGate dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
DeGate pode subir?
Parece que o valor médio de DeGate pode potencialmente subir para $0.050071 até o final deste ano. Observando as perspectivas de DeGate em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.157414. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de DeGate na próxima semana?
Com base na nossa nova previsão experimental de DeGate, o preço de DeGate aumentará 0.86% na próxima semana e atingirá $0.048965 até 13 de janeiro de 2026.
Qual será o preço de DeGate no próximo mês?
Com base na nossa nova previsão experimental de DeGate, o preço de DeGate diminuirá -11.62% no próximo mês e atingirá $0.042909 até 5 de fevereiro de 2026.
Até onde o preço de DeGate pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de DeGate em 2026, espera-se que DG fluctue dentro do intervalo de $0.016774 e $0.050071. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de DeGate não considera flutuações repentinas e extremas de preço.
Onde estará DeGate em 5 anos?
O futuro de DeGate parece seguir uma tendência de alta, com um preço máximo de $0.157414 projetada após um período de cinco anos. Com base na previsão de DeGate para 2030, o valor de DeGate pode potencialmente atingir seu pico mais alto de aproximadamente $0.157414, enquanto seu pico mais baixo está previsto para cerca de $0.054444.
Quanto será DeGate em 2026?
Com base na nossa nova simulação experimental de previsão de preços de DeGate, espera-se que o valor de DG em 2026 aumente 3.13% para $0.050071 se o melhor cenário ocorrer. O preço ficará entre $0.050071 e $0.016774 durante 2026.
Quanto será DeGate em 2027?
De acordo com nossa última simulação experimental para previsão de preços de DeGate, o valor de DG pode diminuir -12.62% para $0.04242 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.04242 e $0.016148 ao longo do ano.
Quanto será DeGate em 2028?
Nosso novo modelo experimental de previsão de preços de DeGate sugere que o valor de DG em 2028 pode aumentar 47.02%, alcançando $0.071378 no melhor cenário. O preço é esperado para variar entre $0.071378 e $0.029142 durante o ano.
Quanto será DeGate em 2029?
Com base no nosso modelo de previsão experimental, o valor de DeGate pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.210588 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.210588 e $0.064017.
Quanto será DeGate em 2030?
Usando nossa nova simulação experimental para previsões de preços de DeGate, espera-se que o valor de DG em 2030 aumente 224.23%, alcançando $0.157414 no melhor cenário. O preço está previsto para variar entre $0.157414 e $0.054444 ao longo de 2030.
Quanto será DeGate em 2031?
Nossa simulação experimental indica que o preço de DeGate poderia aumentar 195.98% em 2031, potencialmente atingindo $0.1437011 sob condições ideais. O preço provavelmente oscilará entre $0.1437011 e $0.064369 durante o ano.
Quanto será DeGate em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de DeGate, DG poderia ver um 449.04% aumento em valor, atingindo $0.266558 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.266558 e $0.098255 ao longo do ano.
Quanto será DeGate em 2033?
De acordo com nossa previsão experimental de preços de DeGate, espera-se que o valor de DG seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.710013. Ao longo do ano, o preço de DG poderia variar entre $0.710013 e $0.228324.
Quanto será DeGate em 2034?
Os resultados da nossa nova simulação de previsão de preços de DeGate sugerem que DG pode aumentar 746.96% em 2034, atingindo potencialmente $0.4112019 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.4112019 e $0.183562.
Quanto será DeGate em 2035?
Com base em nossa previsão experimental para o preço de DeGate, DG poderia aumentar 897.93%, com o valor potencialmente atingindo $0.484498 em 2035. A faixa de preço esperada para o ano está entre $0.484498 e $0.217027.
Quanto será DeGate em 2036?
Nossa recente simulação de previsão de preços de DeGate sugere que o valor de DG pode aumentar 1964.7% em 2036, possivelmente atingindo $1.00 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.00 e $0.359248.
Quanto será DeGate em 2037?
De acordo com a simulação experimental, o valor de DeGate poderia aumentar 4830.69% em 2037, com um pico de $2.39 sob condições favoráveis. O preço é esperado para cair entre $2.39 e $0.932957 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Socean Staked Sol
Previsão de Preço do Aleph
Previsão de Preço do ZTX
Previsão de Preço do Stride Staked Atom
Previsão de Preço do Manifold Finance
Previsão de Preço do LumerinPrevisão de Preço do Compound Basic Attention Token
Previsão de Preço do Rave
Previsão de Preço do Decubate
Previsão de Preço do GraphLinq Protocol
Previsão de Preço do RocketX Exchange
Previsão de Preço do TempleDAO
Previsão de Preço do sETH
Previsão de Preço do Samoyedcoin
Previsão de Preço do Rowan Coin
Previsão de Preço do KONDUX
Previsão de Preço do Vara Network
Previsão de Preço do Altura
Previsão de Preço do Avalaunch
Previsão de Preço do dForce Token
Previsão de Preço do Hatom
Previsão de Preço do Paris Saint-Germain Fan Token
Previsão de Preço do Qredo
Previsão de Preço do Proton
Previsão de Preço do Unifi Protocol DAO
Como ler e prever os movimentos de preço de DeGate?
Traders de DeGate utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de DeGate
Médias móveis são ferramentas populares para a previsão de preço de DeGate. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DG em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DG acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DG.
Como ler gráficos de DeGate e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de DeGate em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DG dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de DeGate?
A ação de preço de DeGate é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DG. A capitalização de mercado de DeGate pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DG, grandes detentores de DeGate, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de DeGate.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


