Previsão de Preço Rave - Projeção KRAV
Previsão de Preço Rave até $0.003019 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001011 | $0.003019 |
| 2027 | $0.000973 | $0.002558 |
| 2028 | $0.001757 | $0.004305 |
| 2029 | $0.003861 | $0.0127011 |
| 2030 | $0.003283 | $0.009494 |
| 2031 | $0.003882 | $0.008666 |
| 2032 | $0.005926 | $0.016076 |
| 2033 | $0.01377 | $0.042822 |
| 2034 | $0.011071 | $0.02480064 |
| 2035 | $0.013089 | $0.029221 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Rave hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.31, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Rave para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Rave'
'name_with_ticker' => 'Rave <small>KRAV</small>'
'name_lang' => 'Rave'
'name_lang_with_ticker' => 'Rave <small>KRAV</small>'
'name_with_lang' => 'Rave'
'name_with_lang_with_ticker' => 'Rave <small>KRAV</small>'
'image' => '/uploads/coins/krav.png?1717261458'
'price_for_sd' => 0.002928
'ticker' => 'KRAV'
'marketcap' => '$2.93M'
'low24h' => '$0.002862'
'high24h' => '$0.00296'
'volume24h' => '$444.67'
'current_supply' => '1B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002928'
'change_24h_pct' => '1.8151%'
'ath_price' => '$0.0747'
'ath_days' => 637
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2024'
'ath_pct' => '-96.08%'
'fdv' => '$29.28M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.144379'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002953'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002587'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001011'
'current_year_max_price_prediction' => '$0.003019'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003283'
'grand_prediction_max_price' => '$0.009494'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029836776602721
107 => 0.0029948176295805
108 => 0.0030199165492534
109 => 0.0028054490286793
110 => 0.0029017386489815
111 => 0.0029582997797917
112 => 0.0027027545330796
113 => 0.0029532484719048
114 => 0.0028017156262933
115 => 0.0027502831025458
116 => 0.0028195302200521
117 => 0.0027925445510148
118 => 0.0027693438574283
119 => 0.0027563974717685
120 => 0.0028072449123396
121 => 0.0028048728184611
122 => 0.0027216765366238
123 => 0.0026131503784813
124 => 0.0026495753194036
125 => 0.0026363417968809
126 => 0.0025883818041001
127 => 0.0026207010485227
128 => 0.0024783834524809
129 => 0.0022335334255158
130 => 0.0023952888532881
131 => 0.0023890614452749
201 => 0.0023859213037642
202 => 0.0025074760371434
203 => 0.0024957913542738
204 => 0.0024745835404488
205 => 0.0025879923059679
206 => 0.0025465965809903
207 => 0.0026741684513118
208 => 0.0027581955359368
209 => 0.0027368835492845
210 => 0.0028159114285125
211 => 0.0026504144764744
212 => 0.0027053859253562
213 => 0.0027167154647836
214 => 0.0025865928594054
215 => 0.0024977031128982
216 => 0.0024917751802235
217 => 0.0023376526095417
218 => 0.002419983642766
219 => 0.0024924315449137
220 => 0.0024577346219693
221 => 0.0024467506127061
222 => 0.0025028655338905
223 => 0.0025072261438583
224 => 0.0024078037744752
225 => 0.0024284768333669
226 => 0.0025146869255554
227 => 0.0024263045602361
228 => 0.002254592061598
301 => 0.0022120049878248
302 => 0.0022063230871479
303 => 0.0020908235654514
304 => 0.0022148508597323
305 => 0.0021607096220539
306 => 0.0023317411431685
307 => 0.0022340488555683
308 => 0.0022298375363049
309 => 0.0022234715095721
310 => 0.0021240563000228
311 => 0.0021458219127479
312 => 0.0022181741244427
313 => 0.0022439902086814
314 => 0.0022412973795904
315 => 0.0022178195591338
316 => 0.0022285675851129
317 => 0.0021939444485737
318 => 0.0021817182984434
319 => 0.0021431292055647
320 => 0.002086413899542
321 => 0.0020943005106996
322 => 0.0019819326491015
323 => 0.0019207086742891
324 => 0.0019037626849801
325 => 0.0018811017998543
326 => 0.0019063222922533
327 => 0.0019816143250679
328 => 0.0018907961593977
329 => 0.0017350947845097
330 => 0.0017444527024427
331 => 0.0017654771656474
401 => 0.0017262982175562
402 => 0.0016892186312278
403 => 0.0017214563231784
404 => 0.0016554835980634
405 => 0.0017734496542891
406 => 0.0017702590030643
407 => 0.0018142294538532
408 => 0.001841725079096
409 => 0.0017783565647257
410 => 0.0017624195547283
411 => 0.0017714979999195
412 => 0.0016214515233944
413 => 0.0018019674555759
414 => 0.0018035285648535
415 => 0.0017901613994418
416 => 0.0018862805605243
417 => 0.0020891219707265
418 => 0.0020128048729316
419 => 0.0019832525859689
420 => 0.0019270736668503
421 => 0.0020019287410017
422 => 0.0019961810392279
423 => 0.0019701877520558
424 => 0.0019544669308701
425 => 0.0019834330259315
426 => 0.0019508777111384
427 => 0.0019450298820414
428 => 0.001909598400214
429 => 0.0018969509732314
430 => 0.001887587321802
501 => 0.0018772788616317
502 => 0.0019000167560592
503 => 0.0018484896958672
504 => 0.0017863531125356
505 => 0.0017811871279587
506 => 0.0017954508655735
507 => 0.0017891402234894
508 => 0.0017811569150323
509 => 0.0017659146050632
510 => 0.0017613925372958
511 => 0.0017760870637445
512 => 0.001759497800128
513 => 0.0017839761622581
514 => 0.0017773194022083
515 => 0.0017401352816954
516 => 0.0016937901002116
517 => 0.0016933775308841
518 => 0.0016833925375548
519 => 0.0016706751472961
520 => 0.0016671374602606
521 => 0.0017187413546806
522 => 0.0018255598717553
523 => 0.001804588840903
524 => 0.0018197425598915
525 => 0.0018942838591276
526 => 0.0019179782966197
527 => 0.0019011605461214
528 => 0.0018781393719655
529 => 0.0018791521867939
530 => 0.0019578225078678
531 => 0.0019627290792942
601 => 0.0019751264023688
602 => 0.0019910604660027
603 => 0.001903874186059
604 => 0.0018750457208491
605 => 0.0018613851946903
606 => 0.00181931606141
607 => 0.0018646840149179
608 => 0.0018382500512583
609 => 0.0018418168960688
610 => 0.0018394939837067
611 => 0.001840762450931
612 => 0.0017734166803722
613 => 0.0017979539395744
614 => 0.0017571559870711
615 => 0.0017025321084544
616 => 0.0017023489900597
617 => 0.0017157181069655
618 => 0.0017077656330963
619 => 0.0016863657303911
620 => 0.0016894054855657
621 => 0.0016627740316556
622 => 0.0016926390262484
623 => 0.0016934954474312
624 => 0.0016819957977558
625 => 0.001728006942501
626 => 0.0017468577460447
627 => 0.0017392884302819
628 => 0.0017463266626725
629 => 0.0018054602819135
630 => 0.0018151016420304
701 => 0.0018193836973219
702 => 0.001813646310495
703 => 0.0017474075166791
704 => 0.0017503454888539
705 => 0.0017287885984102
706 => 0.0017105752975944
707 => 0.0017113037341108
708 => 0.0017206677382935
709 => 0.001761560893751
710 => 0.0018476181286281
711 => 0.0018508839377846
712 => 0.0018548421937527
713 => 0.0018387419774703
714 => 0.0018338859981812
715 => 0.0018402922882981
716 => 0.0018726108610435
717 => 0.0019557430045515
718 => 0.0019263585528266
719 => 0.001902468536178
720 => 0.0019234265214811
721 => 0.0019202002039178
722 => 0.0018929668368324
723 => 0.0018922024869219
724 => 0.0018399329484509
725 => 0.001820610090198
726 => 0.001804462463551
727 => 0.0017868296767969
728 => 0.0017763763697527
729 => 0.0017924374003157
730 => 0.0017961107480339
731 => 0.0017609930240093
801 => 0.0017562066079892
802 => 0.0017848844994964
803 => 0.0017722644286637
804 => 0.0017852444844779
805 => 0.0017882559687676
806 => 0.0017877710504366
807 => 0.0017745942470813
808 => 0.001782992748602
809 => 0.0017631277887916
810 => 0.0017415276286183
811 => 0.0017277480721653
812 => 0.0017157235815671
813 => 0.0017223954678185
814 => 0.0016986114115706
815 => 0.0016910024132984
816 => 0.0017801475252591
817 => 0.0018459999779358
818 => 0.0018450424571935
819 => 0.0018392137959287
820 => 0.0018305535875901
821 => 0.0018719773128624
822 => 0.0018575461152711
823 => 0.0018680460172857
824 => 0.0018707186830279
825 => 0.0018788080372742
826 => 0.0018816992861137
827 => 0.0018729599240192
828 => 0.0018436295574067
829 => 0.0017705410724559
830 => 0.0017365181854127
831 => 0.0017252900659924
901 => 0.0017256981868081
902 => 0.0017144403927798
903 => 0.00171775631766
904 => 0.0017132872494284
905 => 0.0017048239153813
906 => 0.0017218728807901
907 => 0.0017238376152314
908 => 0.001719858182985
909 => 0.0017207954833366
910 => 0.0016878474839743
911 => 0.0016903524488065
912 => 0.0016764044863052
913 => 0.0016737894114814
914 => 0.001638530176866
915 => 0.0015760633318371
916 => 0.0016106760277865
917 => 0.0015688687583612
918 => 0.0015530357119463
919 => 0.0016279868911304
920 => 0.0016204638715624
921 => 0.00160758773224
922 => 0.0015885412385597
923 => 0.0015814767087813
924 => 0.0015385548622059
925 => 0.0015360188105311
926 => 0.0015572920366812
927 => 0.0015474751747799
928 => 0.0015336885827343
929 => 0.0014837549438692
930 => 0.0014276130013252
1001 => 0.0014293075736749
1002 => 0.0014471652810402
1003 => 0.0014990889736447
1004 => 0.0014788014886551
1005 => 0.0014640826855231
1006 => 0.0014613262961421
1007 => 0.0014958282801377
1008 => 0.0015446558158805
1009 => 0.0015675646031965
1010 => 0.0015448626907166
1011 => 0.0015187839560174
1012 => 0.0015203712477613
1013 => 0.0015309307886144
1014 => 0.0015320404470541
1015 => 0.0015150658717022
1016 => 0.0015198441152346
1017 => 0.0015125855263771
1018 => 0.001468039579957
1019 => 0.0014672338850429
1020 => 0.001456301591391
1021 => 0.001455970565884
1022 => 0.0014373720071936
1023 => 0.0014347699402671
1024 => 0.0013978413731355
1025 => 0.0014221478678515
1026 => 0.0014058443473442
1027 => 0.0013812710963281
1028 => 0.0013770346585907
1029 => 0.0013769073061567
1030 => 0.0014021385404719
1031 => 0.0014218530261882
1101 => 0.0014061279540636
1102 => 0.0014025476599586
1103 => 0.0014407758341873
1104 => 0.0014359109505591
1105 => 0.0014316979927123
1106 => 0.0015402838455998
1107 => 0.0014543296699796
1108 => 0.0014168487433163
1109 => 0.0013704589791356
1110 => 0.0013855637202703
1111 => 0.0013887465111622
1112 => 0.0012771874906911
1113 => 0.0012319280099798
1114 => 0.0012163966617672
1115 => 0.0012074581512898
1116 => 0.0012115315427571
1117 => 0.0011707927017093
1118 => 0.0011981698766517
1119 => 0.0011628934838728
1120 => 0.0011569792818241
1121 => 0.0012200578420192
1122 => 0.0012288348551708
1123 => 0.001191389390262
1124 => 0.0012154354406036
1125 => 0.0012067160084846
1126 => 0.0011634981963776
1127 => 0.0011618475938438
1128 => 0.001140162414908
1129 => 0.0011062293089517
1130 => 0.0010907209689828
1201 => 0.0010826440908774
1202 => 0.0010859767681989
1203 => 0.0010842916645636
1204 => 0.0010732952234949
1205 => 0.0010849219676936
1206 => 0.0010552204407681
1207 => 0.0010433930534249
1208 => 0.0010380508969553
1209 => 0.0010116890822528
1210 => 0.0010536424525967
1211 => 0.0010619077950691
1212 => 0.0010701894228194
1213 => 0.0011422753382787
1214 => 0.0011386741296551
1215 => 0.0011712273017533
1216 => 0.001169962345347
1217 => 0.0011606776533381
1218 => 0.0011215070650106
1219 => 0.0011371197633693
1220 => 0.0010890663045731
1221 => 0.0011250712232208
1222 => 0.0011086400819514
1223 => 0.0011195158378294
1224 => 0.0010999602481333
1225 => 0.0011107831189016
1226 => 0.0010638678143933
1227 => 0.0010200589631595
1228 => 0.0010376889237561
1229 => 0.0010568547071551
1230 => 0.0010984110089149
1231 => 0.0010736604184188
]
'min_raw' => 0.0010116890822528
'max_raw' => 0.0030199165492534
'avg_raw' => 0.0020158028157531
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001011'
'max' => '$0.003019'
'avg' => '$0.002015'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0019165009177472
'max_diff' => 9.1726549253432E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010825616666846
102 => 0.001052743975045
103 => 0.00099122156018993
104 => 0.0009915697703767
105 => 0.00098210588718991
106 => 0.00097392771036695
107 => 0.0010765033214721
108 => 0.0010637464227508
109 => 0.0010434199742199
110 => 0.0010706277333194
111 => 0.0010778218966706
112 => 0.0010780267043874
113 => 0.0010978767830925
114 => 0.0011084707736557
115 => 0.0011103380104095
116 => 0.0011415725381413
117 => 0.0011520419398437
118 => 0.0011951639237704
119 => 0.0011075719475725
120 => 0.0011057680484642
121 => 0.0010710106022861
122 => 0.0010489668804265
123 => 0.0010725199547811
124 => 0.001093384763344
125 => 0.0010716589300486
126 => 0.0010744958652196
127 => 0.0010453307090863
128 => 0.0010557558800558
129 => 0.0010647354417169
130 => 0.0010597774555619
131 => 0.0010523551103186
201 => 0.001091674086981
202 => 0.0010894555562254
203 => 0.0011260702912327
204 => 0.0011546140955158
205 => 0.0012057696956064
206 => 0.0011523861601101
207 => 0.0011504406518963
208 => 0.0011694583067557
209 => 0.0011520390283398
210 => 0.0011630474110056
211 => 0.00120399607497
212 => 0.0012048612557135
213 => 0.0011903683635373
214 => 0.0011894864697313
215 => 0.0011922699882086
216 => 0.0012085731428718
217 => 0.0012028763196871
218 => 0.0012094688277023
219 => 0.0012177128599234
220 => 0.001251813672587
221 => 0.0012600352630724
222 => 0.0012400610605987
223 => 0.0012418645074404
224 => 0.0012343936074112
225 => 0.001227176811593
226 => 0.0012433991146639
227 => 0.001273045692376
228 => 0.0012728612625548
301 => 0.0012797386923369
302 => 0.0012840232741154
303 => 0.0012656307126163
304 => 0.0012536578313937
305 => 0.0012582489959087
306 => 0.0012655903679507
307 => 0.0012558682879
308 => 0.0011958591061213
309 => 0.0012140620584716
310 => 0.0012110321971216
311 => 0.0012067173061155
312 => 0.001225020515463
313 => 0.0012232551262704
314 => 0.0011703748660114
315 => 0.0011737600887036
316 => 0.0011705807326155
317 => 0.0011808538825712
318 => 0.0011514842445286
319 => 0.001160518147383
320 => 0.0011661841265656
321 => 0.0011695214318323
322 => 0.0011815780668673
323 => 0.0011801633599031
324 => 0.0011814901266961
325 => 0.0011993669336193
326 => 0.0012897816884576
327 => 0.0012947027640745
328 => 0.0012704695879379
329 => 0.0012801502638262
330 => 0.0012615654830517
331 => 0.0012740415708928
401 => 0.0012825773933355
402 => 0.0012440056530615
403 => 0.001241721684931
404 => 0.0012230601981553
405 => 0.0012330878241079
406 => 0.0012171331502054
407 => 0.0012210478691103
408 => 0.0012101019737732
409 => 0.0012298024060739
410 => 0.0012518305505238
411 => 0.0012573957297296
412 => 0.0012427561391994
413 => 0.0012321561108595
414 => 0.001213545952961
415 => 0.0012444950603006
416 => 0.0012535455224436
417 => 0.0012444475220758
418 => 0.0012423393165954
419 => 0.0012383442710194
420 => 0.0012431868844001
421 => 0.0012534962316831
422 => 0.0012486345338882
423 => 0.0012518457709338
424 => 0.0012396078467292
425 => 0.0012656368013195
426 => 0.001306977045418
427 => 0.0013071099610626
428 => 0.0013022482370613
429 => 0.0013002589243473
430 => 0.0013052473482067
501 => 0.0013079533635145
502 => 0.0013240850115553
503 => 0.0013413949126162
504 => 0.0014221726679659
505 => 0.0013994905975011
506 => 0.0014711614275375
507 => 0.0015278437488038
508 => 0.0015448402985341
509 => 0.0015292042725317
510 => 0.0014757142722191
511 => 0.0014730897976162
512 => 0.0015530264409789
513 => 0.0015304406778987
514 => 0.0015277541732476
515 => 0.0014991743026814
516 => 0.0015160685458719
517 => 0.0015123735270625
518 => 0.0015065407591054
519 => 0.0015387737982497
520 => 0.0015991111700646
521 => 0.0015897070248269
522 => 0.0015826872666528
523 => 0.0015519287297545
524 => 0.0015704522391352
525 => 0.0015638563722392
526 => 0.001592196402265
527 => 0.0015754083962863
528 => 0.0015302695685297
529 => 0.0015374580756294
530 => 0.0015363715472426
531 => 0.0015587322244519
601 => 0.0015520201041798
602 => 0.0015350608980338
603 => 0.0015989049434872
604 => 0.0015947592662947
605 => 0.0016006368887199
606 => 0.001603224399883
607 => 0.0016420851452923
608 => 0.0016580051492813
609 => 0.0016616192689057
610 => 0.001676742041398
611 => 0.0016612430005496
612 => 0.001723250214572
613 => 0.0017644813936757
614 => 0.0018123735299417
615 => 0.001882356813219
616 => 0.0019086711751128
617 => 0.0019039177211674
618 => 0.0019569782478401
619 => 0.0020523268348017
620 => 0.0019231903967128
621 => 0.0020591713795882
622 => 0.0020161213703858
623 => 0.0019140505730035
624 => 0.0019074784169877
625 => 0.0019766019460413
626 => 0.0021299112805891
627 => 0.002091509031105
628 => 0.002129974092912
629 => 0.002085102555122
630 => 0.0020828743050638
701 => 0.0021277947824767
702 => 0.0022327539264399
703 => 0.0021828917714777
704 => 0.0021114021456373
705 => 0.0021641889728561
706 => 0.002118460137929
707 => 0.0020154202741432
708 => 0.0020914796656285
709 => 0.0020406209165891
710 => 0.0020554642033586
711 => 0.0021623617291716
712 => 0.00214949953605
713 => 0.0021661444049563
714 => 0.0021367666470087
715 => 0.0021093231886384
716 => 0.0020580979356122
717 => 0.0020429326635656
718 => 0.0020471237991699
719 => 0.0020429305866469
720 => 0.0020142705283632
721 => 0.0020080813915055
722 => 0.0019977658922572
723 => 0.0020009630968135
724 => 0.0019815669403208
725 => 0.0020181714950729
726 => 0.0020249656229931
727 => 0.0020516033653751
728 => 0.0020543689841565
729 => 0.002128554717526
730 => 0.0020876944622267
731 => 0.0021151070491862
801 => 0.0021126550093912
802 => 0.0019162627566885
803 => 0.0019433238763274
804 => 0.0019854224862384
805 => 0.0019664571195368
806 => 0.0019396445282331
807 => 0.0019179919231552
808 => 0.0018851860123696
809 => 0.0019313597018186
810 => 0.0019920731934196
811 => 0.0020559087784961
812 => 0.0021326030512922
813 => 0.0021154857824238
814 => 0.0020544750324136
815 => 0.0020572119300906
816 => 0.0020741303546008
817 => 0.0020522194576592
818 => 0.0020457575063996
819 => 0.0020732425817278
820 => 0.002073431856336
821 => 0.0020482207213843
822 => 0.0020202031584745
823 => 0.0020200857638629
824 => 0.0020151003091607
825 => 0.0020859894564383
826 => 0.0021249713197398
827 => 0.0021294405275449
828 => 0.0021246705064458
829 => 0.0021265062982515
830 => 0.0021038236109031
831 => 0.0021556695078395
901 => 0.0022032484298962
902 => 0.0021904962624096
903 => 0.0021713789505198
904 => 0.002156151090785
905 => 0.0021869090626045
906 => 0.0021855394585369
907 => 0.002202832869519
908 => 0.0022020483405053
909 => 0.0021962332168301
910 => 0.002190496470086
911 => 0.0022132420224738
912 => 0.0022066916686685
913 => 0.0022001311403545
914 => 0.0021869729964541
915 => 0.0021887614067438
916 => 0.0021696473957274
917 => 0.0021608043796336
918 => 0.0020278266349448
919 => 0.0019922906363908
920 => 0.0020034709849378
921 => 0.0020071518459771
922 => 0.0019916865338658
923 => 0.0020138598187207
924 => 0.0020104041357634
925 => 0.0020238481766434
926 => 0.002015448923574
927 => 0.0020157936318498
928 => 0.0020404940442174
929 => 0.0020476646790108
930 => 0.0020440176362807
1001 => 0.0020465718999955
1002 => 0.002105433829216
1003 => 0.0020970655451794
1004 => 0.002092620061071
1005 => 0.00209385149055
1006 => 0.0021088919754798
1007 => 0.0021131024900802
1008 => 0.002095262243851
1009 => 0.0021036758071059
1010 => 0.0021394996916051
1011 => 0.0021520360237236
1012 => 0.002192045978065
1013 => 0.0021750490383405
1014 => 0.0022062476568151
1015 => 0.002302141573613
1016 => 0.0023787482697054
1017 => 0.0023082975860732
1018 => 0.0024489760276431
1019 => 0.0025585143735292
1020 => 0.0025543101093684
1021 => 0.0025352095650956
1022 => 0.0024105030705319
1023 => 0.0022957462949653
1024 => 0.0023917452105568
1025 => 0.002391989931535
1026 => 0.0023837435395485
1027 => 0.0023325259071551
1028 => 0.0023819612769618
1029 => 0.0023858852770942
1030 => 0.0023836888804959
1031 => 0.0023444204418261
1101 => 0.0022844647939977
1102 => 0.0022961799840698
1103 => 0.0023153697043914
1104 => 0.0022790395604277
1105 => 0.0022674298781102
1106 => 0.0022890144863708
1107 => 0.0023585645915181
1108 => 0.0023454165470163
1109 => 0.0023450731984389
1110 => 0.0024013261084561
1111 => 0.0023610611650216
1112 => 0.0022963277501339
1113 => 0.0022799817091459
1114 => 0.0022219642756511
1115 => 0.002262037123617
1116 => 0.002263479274075
1117 => 0.0022415317847786
1118 => 0.0022981086679308
1119 => 0.0022975873019924
1120 => 0.0023512986321875
1121 => 0.0024539745224664
1122 => 0.0024236082093372
1123 => 0.0023882954910135
1124 => 0.0023921349626107
1125 => 0.0024342444894093
1126 => 0.0024087841082399
1127 => 0.0024179398388245
1128 => 0.0024342306311145
1129 => 0.0024440592705807
1130 => 0.0023907207726457
1201 => 0.0023782850173018
1202 => 0.0023528458262252
1203 => 0.0023462092161183
1204 => 0.002366928906444
1205 => 0.0023614700000807
1206 => 0.0022633580669132
1207 => 0.0022531048240076
1208 => 0.0022534192763293
1209 => 0.0022276370095279
1210 => 0.0021883128642028
1211 => 0.0022916543701945
1212 => 0.0022833546009999
1213 => 0.0022741922981602
1214 => 0.0022753146279787
1215 => 0.002320171673161
1216 => 0.0022941523216202
1217 => 0.0023633290321794
1218 => 0.0023491083801307
1219 => 0.0023345230220164
1220 => 0.0023325068812441
1221 => 0.0023268927627343
1222 => 0.002307639861443
1223 => 0.0022843908262136
1224 => 0.0022690397993583
1225 => 0.002093069273918
1226 => 0.0021257283798663
1227 => 0.0021632997042886
1228 => 0.0021762691749215
1229 => 0.0021540839979438
1230 => 0.0023085158674503
1231 => 0.0023367320581516
]
'min_raw' => 0.00097392771036695
'max_raw' => 0.0025585143735292
'avg_raw' => 0.0017662210419481
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000973'
'max' => '$0.002558'
'avg' => '$0.001766'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.7761371885869E-5
'max_diff' => -0.00046140217572425
'year' => 2027
]
2 => [
'items' => [
101 => 0.0022512633760207
102 => 0.0022352756752572
103 => 0.0023095640184507
104 => 0.0022647590661244
105 => 0.0022849347334135
106 => 0.0022413259762345
107 => 0.0023299356040782
108 => 0.0023292605471758
109 => 0.0022947894006054
110 => 0.0023239241776384
111 => 0.0023188612931573
112 => 0.002279943453578
113 => 0.0023311693690094
114 => 0.0023311947764243
115 => 0.0022980170473176
116 => 0.0022592727232599
117 => 0.0022523461532184
118 => 0.002247127913146
119 => 0.0022836513662396
120 => 0.0023163981800775
121 => 0.0023773318820061
122 => 0.0023926520624201
123 => 0.0024524477464977
124 => 0.0024168423280285
125 => 0.0024326257488686
126 => 0.0024497608848916
127 => 0.0024579760992248
128 => 0.0024445898483216
129 => 0.0025374771585797
130 => 0.0025453196935591
131 => 0.0025479492277001
201 => 0.0025166281493056
202 => 0.0025444485977096
203 => 0.0025314323312177
204 => 0.0025652970406065
205 => 0.0025706074594449
206 => 0.0025661097236124
207 => 0.002567795334371
208 => 0.00248853240151
209 => 0.0024844222002959
210 => 0.0024283793150948
211 => 0.0024512172050624
212 => 0.0024085228644166
213 => 0.0024220616796358
214 => 0.0024280294603819
215 => 0.0024249122303887
216 => 0.0024525084250954
217 => 0.0024290460220646
218 => 0.0023671248828901
219 => 0.0023051868733426
220 => 0.0023044092920863
221 => 0.0022881021074691
222 => 0.0022763149998008
223 => 0.0022785856149078
224 => 0.002286587558706
225 => 0.0022758499122805
226 => 0.0022781413335579
227 => 0.0023161941944224
228 => 0.0023238254242882
229 => 0.0022978915234902
301 => 0.0021937631695423
302 => 0.0021682098102973
303 => 0.0021865770581775
304 => 0.002177798696693
305 => 0.0017576535184506
306 => 0.0018563603959771
307 => 0.0017977121211197
308 => 0.0018247399444514
309 => 0.0017648752427191
310 => 0.0017934458161636
311 => 0.0017881698744787
312 => 0.0019468876125925
313 => 0.001944409453421
314 => 0.0019455956170751
315 => 0.0018889769353296
316 => 0.001979172032715
317 => 0.0020236053809978
318 => 0.0020153819507859
319 => 0.0020174516110034
320 => 0.0019818879913547
321 => 0.0019459399506516
322 => 0.001906068041148
323 => 0.0019801451206887
324 => 0.0019719090139817
325 => 0.0019907996795099
326 => 0.0020388439607311
327 => 0.0020459186636433
328 => 0.002055427136102
329 => 0.0020520190255847
330 => 0.0021332140449079
331 => 0.0021233807923258
401 => 0.0021470761018286
402 => 0.0020983330524139
403 => 0.0020431756652684
404 => 0.0020536592813339
405 => 0.0020526496248029
406 => 0.0020397955383331
407 => 0.0020281914438132
408 => 0.002008873895871
409 => 0.0020699974760194
410 => 0.0020675159702901
411 => 0.002107688663612
412 => 0.0021005877498507
413 => 0.0020531661098639
414 => 0.0020548597830133
415 => 0.0020662505488942
416 => 0.0021056741196658
417 => 0.0021173777196321
418 => 0.0021119561458199
419 => 0.0021247886088934
420 => 0.002134930864485
421 => 0.0021260623200428
422 => 0.0022516222072396
423 => 0.0021994809880707
424 => 0.0022248942554973
425 => 0.0022309551700349
426 => 0.0022154302648942
427 => 0.002218797060914
428 => 0.0022238968394871
429 => 0.0022548616963438
430 => 0.0023361224404893
501 => 0.0023721122709107
502 => 0.0024803894514406
503 => 0.0023691238164969
504 => 0.0023625217741823
505 => 0.0023820257640533
506 => 0.0024455959313279
507 => 0.0024971135810618
508 => 0.002514204957603
509 => 0.0025164638651608
510 => 0.0025485284237654
511 => 0.0025669072307889
512 => 0.0025446349429692
513 => 0.0025257615110477
514 => 0.0024581592205615
515 => 0.0024659843697602
516 => 0.0025198918879122
517 => 0.0025960394324388
518 => 0.0026613819474444
519 => 0.002638501276106
520 => 0.0028130646471812
521 => 0.0028303718923959
522 => 0.0028279805907175
523 => 0.0028674090709799
524 => 0.0027891515671293
525 => 0.0027556949680654
526 => 0.0025298421612517
527 => 0.0025932975875501
528 => 0.0026855337762813
529 => 0.0026733259708348
530 => 0.0026063415850977
531 => 0.0026613311337812
601 => 0.0026431498693042
602 => 0.00262880955167
603 => 0.00269450532676
604 => 0.0026222701234148
605 => 0.0026848131748709
606 => 0.0026046010644534
607 => 0.0026386057930853
608 => 0.0026193030644902
609 => 0.0026317942955447
610 => 0.0025587708140379
611 => 0.0025981725121142
612 => 0.0025571315738572
613 => 0.0025571121151088
614 => 0.002556206134122
615 => 0.002604490615978
616 => 0.0026060651711979
617 => 0.0025703828661525
618 => 0.0025652404885331
619 => 0.0025842545538212
620 => 0.0025619940631604
621 => 0.0025724096066348
622 => 0.0025623095393618
623 => 0.0025600358014787
624 => 0.0025419182711814
625 => 0.0025341127409775
626 => 0.0025371734904942
627 => 0.0025267255744691
628 => 0.0025204303271464
629 => 0.0025549538509805
630 => 0.0025365093248709
701 => 0.0025521269628224
702 => 0.0025343286932737
703 => 0.0024726321366806
704 => 0.0024371497945547
705 => 0.0023206107184243
706 => 0.0023536610558486
707 => 0.0023755734637539
708 => 0.0023683314130719
709 => 0.0023838901402385
710 => 0.0023848453197237
711 => 0.0023797870189195
712 => 0.0023739301545966
713 => 0.0023710793569491
714 => 0.0023923268669987
715 => 0.0024046617617408
716 => 0.0023777726670374
717 => 0.0023714729283669
718 => 0.0023986592876995
719 => 0.0024152429511874
720 => 0.0025376874048263
721 => 0.0025286163242103
722 => 0.0025513829564467
723 => 0.0025488197830393
724 => 0.0025726828406319
725 => 0.0026116888545153
726 => 0.0025323787220374
727 => 0.0025461442186975
728 => 0.0025427692368082
729 => 0.002579616404108
730 => 0.0025797314369423
731 => 0.0025576397194936
801 => 0.0025696159979197
802 => 0.0025629311678543
803 => 0.0025750115592915
804 => 0.0025284951743983
805 => 0.0025851471100648
806 => 0.0026172651070176
807 => 0.0026177110654365
808 => 0.0026329347410879
809 => 0.0026484028772456
810 => 0.0026780926176096
811 => 0.002647574846501
812 => 0.0025926763471218
813 => 0.0025966398414559
814 => 0.0025644528713564
815 => 0.0025649939401388
816 => 0.0025621056725739
817 => 0.0025707735809548
818 => 0.0025303972928491
819 => 0.0025398735269646
820 => 0.0025266067437102
821 => 0.0025461153793017
822 => 0.0025251273122983
823 => 0.0025427676092898
824 => 0.0025503805766862
825 => 0.0025784725902744
826 => 0.0025209780990504
827 => 0.0024037429394096
828 => 0.002428387191305
829 => 0.0023919364069875
830 => 0.002395310065854
831 => 0.0024021253936782
901 => 0.0023800346863635
902 => 0.002384248897161
903 => 0.0023840983358963
904 => 0.0023828008802575
905 => 0.0023770542341014
906 => 0.0023687204602357
907 => 0.0024019196503163
908 => 0.0024075608396396
909 => 0.00242010050471
910 => 0.0024574100422233
911 => 0.0024536819396062
912 => 0.0024597626296521
913 => 0.0024464885174235
914 => 0.0023959258138492
915 => 0.0023986716119178
916 => 0.002364431466004
917 => 0.0024192249071966
918 => 0.0024062490970841
919 => 0.002397883507892
920 => 0.0023956008793743
921 => 0.0024330029000145
922 => 0.002444194170795
923 => 0.0024372205218629
924 => 0.0024229173644493
925 => 0.0024503836550323
926 => 0.0024577324756825
927 => 0.002459377605612
928 => 0.0025080426063863
929 => 0.0024620974385546
930 => 0.0024731568971074
1001 => 0.0025594396356745
1002 => 0.0024811930979981
1003 => 0.0025226420341113
1004 => 0.0025206133243784
1005 => 0.0025418171975384
1006 => 0.0025188739878846
1007 => 0.0025191583964655
1008 => 0.0025379859993567
1009 => 0.002511546026672
1010 => 0.0025049991176091
1011 => 0.0024959546096286
1012 => 0.0025157029619174
1013 => 0.0025275412059734
1014 => 0.0026229487588327
1015 => 0.0026845863890928
1016 => 0.0026819105370055
1017 => 0.002706362816098
1018 => 0.0026953468404097
1019 => 0.0026597733490443
1020 => 0.0027204929610798
1021 => 0.0027012787352153
1022 => 0.0027028627326503
1023 => 0.0027028037761867
1024 => 0.0027155795566498
1025 => 0.0027065267453086
1026 => 0.002688682724903
1027 => 0.0027005284183938
1028 => 0.0027357058931484
1029 => 0.0028448978541635
1030 => 0.0029060031221486
1031 => 0.0028412192403047
1101 => 0.0028859062945099
1102 => 0.0028591099856123
1103 => 0.0028542402991644
1104 => 0.0028823070715526
1105 => 0.0029104229711105
1106 => 0.002908632109857
1107 => 0.0028882214105454
1108 => 0.0028766919244067
1109 => 0.0029639970561107
1110 => 0.0030283219899462
1111 => 0.0030239354606984
1112 => 0.0030432961742223
1113 => 0.0031001398279326
1114 => 0.00310533689924
1115 => 0.0031046821877086
1116 => 0.0030918007042148
1117 => 0.0031477706633738
1118 => 0.003194461788002
1119 => 0.0030888190129679
1120 => 0.0031290463987354
1121 => 0.0031471057682519
1122 => 0.0031736222806755
1123 => 0.0032183600818177
1124 => 0.0032669571999738
1125 => 0.0032738293653214
1126 => 0.0032689532351439
1127 => 0.0032369021293593
1128 => 0.0032900776759299
1129 => 0.003321226663991
1130 => 0.0033397751735494
1201 => 0.003386811107612
1202 => 0.0031472172967698
1203 => 0.0029776208888708
1204 => 0.0029511359607755
1205 => 0.0030049941035256
1206 => 0.0030191960662581
1207 => 0.0030134712728884
1208 => 0.0028225750967671
1209 => 0.0029501309319151
1210 => 0.003087370285335
1211 => 0.0030926422078248
1212 => 0.0031613470976864
1213 => 0.0031837202261339
1214 => 0.0032390366678282
1215 => 0.0032355766093392
1216 => 0.0032490452826149
1217 => 0.0032459490678738
1218 => 0.0033484111278615
1219 => 0.0034614419957911
1220 => 0.0034575280962508
1221 => 0.0034412785716654
1222 => 0.0034654118866304
1223 => 0.0035820718554577
1224 => 0.003571331674966
1225 => 0.0035817648454673
1226 => 0.0037193135233824
1227 => 0.0038981463707434
1228 => 0.0038150605586199
1229 => 0.0039953328636294
1230 => 0.0041088047238087
1231 => 0.0043050425727793
]
'min_raw' => 0.0017576535184506
'max_raw' => 0.0043050425727793
'avg_raw' => 0.0030313480456149
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001757'
'max' => '$0.004305'
'avg' => '$0.003031'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00078372580808365
'max_diff' => 0.0017465281992501
'year' => 2028
]
3 => [
'items' => [
101 => 0.0042804726275964
102 => 0.0043568665821408
103 => 0.0042364872978167
104 => 0.0039600721283412
105 => 0.0039163283696969
106 => 0.0040039044822711
107 => 0.0042192018094827
108 => 0.0039971240032591
109 => 0.0040420500542234
110 => 0.0040291113485234
111 => 0.0040284218998825
112 => 0.0040547353503115
113 => 0.004016566318047
114 => 0.0038610588141239
115 => 0.0039323269867604
116 => 0.0039048069227267
117 => 0.0039353424855288
118 => 0.0041001303241475
119 => 0.0040272736926427
120 => 0.0039505251497446
121 => 0.004046784854404
122 => 0.0041693565368586
123 => 0.0041616862212531
124 => 0.0041468026030352
125 => 0.0042307007796486
126 => 0.0043692759875547
127 => 0.0044067323094115
128 => 0.0044343818004453
129 => 0.0044381941981169
130 => 0.0044774642635263
131 => 0.0042662992244896
201 => 0.0046014235645436
202 => 0.0046592902804479
203 => 0.0046484137361875
204 => 0.0047127301555115
205 => 0.0046938066333963
206 => 0.0046663894188611
207 => 0.0047683446239842
208 => 0.0046514612086713
209 => 0.0044855599158474
210 => 0.0043945431854487
211 => 0.004514401358148
212 => 0.0045875945617416
213 => 0.0046359706133549
214 => 0.0046506091773435
215 => 0.0042826913653602
216 => 0.0040844040703586
217 => 0.0042115039530862
218 => 0.0043665745819792
219 => 0.0042654377993164
220 => 0.0042694021697195
221 => 0.0041252076959213
222 => 0.0043793325933494
223 => 0.0043423087333209
224 => 0.0045343885846427
225 => 0.0044885471865876
226 => 0.0046451808488437
227 => 0.004603933956206
228 => 0.0047751475014623
301 => 0.0048434492200867
302 => 0.0049581384359707
303 => 0.0050425042900441
304 => 0.0050920455332176
305 => 0.005089071262802
306 => 0.0052853783496049
307 => 0.0051696229189644
308 => 0.0050242068166198
309 => 0.0050215766981103
310 => 0.0050968897580767
311 => 0.0052547252706373
312 => 0.005295649722631
313 => 0.005318520908279
314 => 0.0052834928913073
315 => 0.0051578486676136
316 => 0.0051035961288533
317 => 0.0051498208637244
318 => 0.0050932919851138
319 => 0.0051908766887978
320 => 0.0053248813299238
321 => 0.005297209901443
322 => 0.0053897113381218
323 => 0.0054854405936493
324 => 0.0056223377285235
325 => 0.0056581277088659
326 => 0.0057172871854008
327 => 0.0057781817196308
328 => 0.0057977394028718
329 => 0.0058350810885715
330 => 0.0058348842794555
331 => 0.005947415962697
401 => 0.0060715418941285
402 => 0.006118396559722
403 => 0.0062261362796729
404 => 0.0060416357849071
405 => 0.0061815815295759
406 => 0.0063078160943363
407 => 0.0061573140421887
408 => 0.0063647460585934
409 => 0.0063728001737393
410 => 0.0064944077501571
411 => 0.006371135174265
412 => 0.0062979363122003
413 => 0.0065092586842556
414 => 0.0066115109235007
415 => 0.0065807117168838
416 => 0.0063463282337842
417 => 0.0062099069934398
418 => 0.0058528662937664
419 => 0.0062757964255399
420 => 0.0064817933556857
421 => 0.0063457947515003
422 => 0.0064143845368851
423 => 0.0067885881656316
424 => 0.0069310606795676
425 => 0.006901427392627
426 => 0.0069064349303145
427 => 0.0069833105127753
428 => 0.0073242191815631
429 => 0.0071199388050244
430 => 0.0072761034986486
501 => 0.0073589326890531
502 => 0.0074358690572218
503 => 0.0072469376529884
504 => 0.0070011406720342
505 => 0.0069232864503107
506 => 0.0063322723705536
507 => 0.0063015075210582
508 => 0.0062842382787661
509 => 0.0061753581488971
510 => 0.0060898081915976
511 => 0.0060217756892868
512 => 0.0058432380869983
513 => 0.0059034892867444
514 => 0.0056189376123901
515 => 0.0058009836897498
516 => 0.0053468323467399
517 => 0.0057250630803786
518 => 0.0055192092881003
519 => 0.0056574345731952
520 => 0.0056569523181971
521 => 0.0054024357439708
522 => 0.0052556358955825
523 => 0.0053491824725111
524 => 0.0054494718287151
525 => 0.0054657434393453
526 => 0.0055957712074838
527 => 0.0056320591626337
528 => 0.0055221049644068
529 => 0.0053374210696039
530 => 0.0053803189261754
531 => 0.0052547665718883
601 => 0.0050347409003016
602 => 0.0051927671789148
603 => 0.0052467242983584
604 => 0.0052705548361739
605 => 0.0050541848582876
606 => 0.0049861967136149
607 => 0.004950000395867
608 => 0.0053094904225165
609 => 0.0053291840976793
610 => 0.0052284284711418
611 => 0.0056838534571318
612 => 0.0055807767564984
613 => 0.0056959386855107
614 => 0.0053764263953256
615 => 0.005388632195091
616 => 0.0052373699565058
617 => 0.0053220667027671
618 => 0.0052622057724132
619 => 0.0053152240426587
620 => 0.0053470029752414
621 => 0.0054982403931817
622 => 0.0057267899687555
623 => 0.0054756505662649
624 => 0.0053662255322172
625 => 0.0054341122079106
626 => 0.0056149033712837
627 => 0.0058888112383232
628 => 0.0057266522681263
629 => 0.0057986156654618
630 => 0.0058143364663509
701 => 0.005694766445179
702 => 0.0058932199555567
703 => 0.0059995728040016
704 => 0.0061086688198849
705 => 0.0062033938336755
706 => 0.0060650934720683
707 => 0.0062130946835661
708 => 0.0060938318328296
709 => 0.0059868407265522
710 => 0.0059870029878964
711 => 0.0059198859040379
712 => 0.0057898380967652
713 => 0.0057658552858128
714 => 0.0058906168970824
715 => 0.005990663894352
716 => 0.0059989042442399
717 => 0.0060542954025287
718 => 0.0060870753194297
719 => 0.0064083630671956
720 => 0.0065375876571787
721 => 0.0066956010397137
722 => 0.0067571561573574
723 => 0.0069424149927338
724 => 0.0067928034371804
725 => 0.0067604340360356
726 => 0.0063110566991157
727 => 0.0063846422128618
728 => 0.0065024597203152
729 => 0.0063129994664187
730 => 0.0064331683897769
731 => 0.0064568922807737
801 => 0.0063065616794892
802 => 0.0063868597490371
803 => 0.0061736118830363
804 => 0.0057314381894951
805 => 0.0058937122212797
806 => 0.0060132005295216
807 => 0.0058426759808582
808 => 0.006148334634126
809 => 0.0059697751589623
810 => 0.0059131803777018
811 => 0.0056923839585082
812 => 0.005796591369134
813 => 0.0059375333841118
814 => 0.0058504476051234
815 => 0.0060311636725198
816 => 0.0062871058191679
817 => 0.0064695054344876
818 => 0.0064835078120869
819 => 0.0063662370792614
820 => 0.006554164177026
821 => 0.0065555330207685
822 => 0.0063435504867853
823 => 0.0062137123650443
824 => 0.006184212870603
825 => 0.0062579083914339
826 => 0.0063473883586663
827 => 0.0064884733275193
828 => 0.0065737280193783
829 => 0.0067960270401517
830 => 0.0068561747813606
831 => 0.0069222589132934
901 => 0.0070105676931473
902 => 0.0071166050252682
903 => 0.0068846013792963
904 => 0.0068938193166596
905 => 0.0066777807338397
906 => 0.0064469125250298
907 => 0.006622112717388
908 => 0.0068511636629914
909 => 0.0067986191229912
910 => 0.0067927067888536
911 => 0.0068026496949283
912 => 0.0067630328277123
913 => 0.0065838472055643
914 => 0.0064938613078829
915 => 0.0066099660737428
916 => 0.0066716705895687
917 => 0.0067673689124154
918 => 0.006755572074178
919 => 0.0070020806765816
920 => 0.0070978664654424
921 => 0.0070733603617468
922 => 0.0070778700745991
923 => 0.007251285670006
924 => 0.0074441594777358
925 => 0.0076248112506153
926 => 0.0078085779931625
927 => 0.0075870400124838
928 => 0.0074745566884583
929 => 0.0075906107666094
930 => 0.007529030839163
1001 => 0.0078828873680632
1002 => 0.0079073876263727
1003 => 0.0082612185674182
1004 => 0.0085970462638752
1005 => 0.0083861189047087
1006 => 0.0085850139040258
1007 => 0.0088001350619344
1008 => 0.0092151386776902
1009 => 0.0090753800599069
1010 => 0.0089683271489816
1011 => 0.0088671626654332
1012 => 0.009077669896288
1013 => 0.0093484840858477
1014 => 0.0094068148684528
1015 => 0.009501333020347
1016 => 0.0094019587407599
1017 => 0.0095216441148047
1018 => 0.0099441860776008
1019 => 0.0098300115093722
1020 => 0.0096678652680099
1021 => 0.010001421566276
1022 => 0.010122134293951
1023 => 0.010969359434522
1024 => 0.012039016171618
1025 => 0.011596171258715
1026 => 0.011321283130761
1027 => 0.011385888361264
1028 => 0.011776490791485
1029 => 0.011901939894971
1030 => 0.011560925986798
1031 => 0.011681377864221
1101 => 0.012345079551392
1102 => 0.012701134212459
1103 => 0.012217564158209
1104 => 0.010883413557198
1105 => 0.0096532657730556
1106 => 0.0099795563596868
1107 => 0.0099425651331386
1108 => 0.010655629797532
1109 => 0.00982728848368
1110 => 0.0098412356270055
1111 => 0.01056904571351
1112 => 0.010374878460254
1113 => 0.010060352377043
1114 => 0.0096555621615385
1115 => 0.0089072700096154
1116 => 0.0082444867829868
1117 => 0.0095443573202668
1118 => 0.0094883045390381
1119 => 0.0094071318052621
1120 => 0.0095877729404733
1121 => 0.010464915017178
1122 => 0.010444694053278
1123 => 0.010316058597773
1124 => 0.010413627457033
1125 => 0.010043248084276
1126 => 0.010138703282017
1127 => 0.0096530709113616
1128 => 0.0098725970246972
1129 => 0.010059677545329
1130 => 0.010097236729621
1201 => 0.010181859489648
1202 => 0.0094587672703886
1203 => 0.009783414447964
1204 => 0.0099741142494628
1205 => 0.0091125256085734
1206 => 0.0099570834122511
1207 => 0.0094461798435863
1208 => 0.0092727714988674
1209 => 0.0095062429902192
1210 => 0.0094152589229809
1211 => 0.0093370361647331
1212 => 0.0092933865215933
1213 => 0.0094648222175339
1214 => 0.0094568245374083
1215 => 0.0091763224646148
1216 => 0.0088104189453829
1217 => 0.0089332281768107
1218 => 0.0088886104316903
1219 => 0.0087269099675702
1220 => 0.0088358765565986
1221 => 0.0083560428452462
1222 => 0.0075305138844504
1223 => 0.008075883602588
1224 => 0.0080548874616878
1225 => 0.0080443002553468
1226 => 0.0084541305256153
1227 => 0.008414734801522
1228 => 0.0083432311765287
1229 => 0.0087255967474234
1230 => 0.0085860281705042
1231 => 0.0090161456380768
]
'min_raw' => 0.0038610588141239
'max_raw' => 0.012701134212459
'avg_raw' => 0.0082810965132915
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003861'
'max' => '$0.0127011'
'avg' => '$0.008281'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0021034052956733
'max_diff' => 0.0083960916396799
'year' => 2029
]
4 => [
'items' => [
101 => 0.0092994488204738
102 => 0.0092275939695201
103 => 0.0094940419818875
104 => 0.008936057453463
105 => 0.009121397531352
106 => 0.0091595958645346
107 => 0.0087208784156316
108 => 0.0084211804291989
109 => 0.008401193990311
110 => 0.007881558982763
111 => 0.0081591438094479
112 => 0.00840340696969
113 => 0.008286423871521
114 => 0.0082493905174113
115 => 0.008438585892003
116 => 0.0084532879929576
117 => 0.0081180785331344
118 => 0.0081877791945347
119 => 0.0084784425393446
120 => 0.0081804552240108
121 => 0.0076015145462688
122 => 0.0074579292537077
123 => 0.007438772328878
124 => 0.0070493576275591
125 => 0.0074675243095364
126 => 0.007284983346683
127 => 0.0078616280611604
128 => 0.0075322516928585
129 => 0.0075180529359373
130 => 0.0074965894323459
131 => 0.007161404112402
201 => 0.0072347883953314
202 => 0.0074787289285305
203 => 0.0075657696589627
204 => 0.007556690597675
205 => 0.0074775334868365
206 => 0.0075137712068284
207 => 0.007397036884676
208 => 0.0073558155659092
209 => 0.0072257097450642
210 => 0.0070344901310724
211 => 0.007061080391216
212 => 0.0066822243005646
213 => 0.0064758033949631
214 => 0.0064186688088764
215 => 0.0063422660525426
216 => 0.0064272987035043
217 => 0.0066811510488605
218 => 0.0063749512625815
219 => 0.0058499932064238
220 => 0.0058815440800839
221 => 0.0059524295256596
222 => 0.0058203349667834
223 => 0.005695318552663
224 => 0.0058040101818384
225 => 0.0055815785330446
226 => 0.0059793093277366
227 => 0.0059685518243678
228 => 0.0061168012691216
301 => 0.0062095046893111
302 => 0.0059958533188631
303 => 0.0059421205769702
304 => 0.0059727291887694
305 => 0.0054668370172545
306 => 0.0060754590858242
307 => 0.0060807224747468
308 => 0.0060356541432956
309 => 0.0063597266057107
310 => 0.0070436205821425
311 => 0.0067863121586374
312 => 0.006686674559868
313 => 0.0064972634117726
314 => 0.0067496425204885
315 => 0.0067302637426666
316 => 0.0066426255601723
317 => 0.0065896217139521
318 => 0.0066872829257996
319 => 0.0065775204090354
320 => 0.0065578040449523
321 => 0.0064383443302244
322 => 0.0063957026471372
323 => 0.0063641324425938
324 => 0.0063293767494158
325 => 0.0064060391479875
326 => 0.0062323120670456
327 => 0.0060228142381054
328 => 0.0060053967604269
329 => 0.0060534879476574
330 => 0.0060322111772758
331 => 0.0060052948954361
401 => 0.005953904383191
402 => 0.0059386579159925
403 => 0.0059882015378534
404 => 0.005932269677345
405 => 0.0060148001842913
406 => 0.0059923564530232
407 => 0.0058669875946015
408 => 0.0057107315795119
409 => 0.0057093405732196
410 => 0.0056756754710797
411 => 0.0056327979019227
412 => 0.0056208703430891
413 => 0.0057948564759948
414 => 0.006155002564143
415 => 0.006084297269474
416 => 0.0061353890910424
417 => 0.0063867102857244
418 => 0.0064665977360219
419 => 0.0064098955160387
420 => 0.0063322780200852
421 => 0.0063356927959917
422 => 0.0066009352760788
423 => 0.0066174781242088
424 => 0.0066592765645082
425 => 0.0067129993725308
426 => 0.0064190447425489
427 => 0.0063218475593544
428 => 0.0062757901416624
429 => 0.0061339511216349
430 => 0.006286912344376
501 => 0.0061977883903374
502 => 0.006209814256645
503 => 0.0062019823954359
504 => 0.0062062591212442
505 => 0.0059791981538737
506 => 0.0060619272364104
507 => 0.0059243740911237
508 => 0.0057402058706499
509 => 0.0057395884741972
510 => 0.0057846633852472
511 => 0.0057578510643732
512 => 0.0056856997983091
513 => 0.0056959485451091
514 => 0.0056061587389026
515 => 0.0057068506532795
516 => 0.0057097381370908
517 => 0.0056709662653301
518 => 0.0058260960522342
519 => 0.0058896528525027
520 => 0.0058641323759358
521 => 0.0058878622678344
522 => 0.0060872353936828
523 => 0.0061197419124554
524 => 0.0061341791608341
525 => 0.0061148351605755
526 => 0.0058915064425805
527 => 0.0059014120208906
528 => 0.0058287314597054
529 => 0.0057673240443928
530 => 0.0057697800189658
531 => 0.0058013514128417
601 => 0.0059392255415356
602 => 0.0062293735172478
603 => 0.0062403844208307
604 => 0.0062537299571839
605 => 0.0061994469539064
606 => 0.0061830746806996
607 => 0.0062046739351017
608 => 0.0063136382595234
609 => 0.0065939240854616
610 => 0.0064948523549141
611 => 0.0064143054958357
612 => 0.0064849668065248
613 => 0.0064740890516058
614 => 0.0063822698531045
615 => 0.0063796927940159
616 => 0.0062034623957184
617 => 0.0061383140300398
618 => 0.0060838711794081
619 => 0.0060244210077849
620 => 0.0059891769532589
621 => 0.0060433278391472
622 => 0.0060557127874443
623 => 0.005937310929054
624 => 0.0059211731932653
625 => 0.0060178627067085
626 => 0.0059753132567905
627 => 0.0060190764212067
628 => 0.0060292298507447
629 => 0.0060275949147358
630 => 0.0059831684022483
701 => 0.0060114845364901
702 => 0.0059445084375622
703 => 0.0058716819894629
704 => 0.0058252232528236
705 => 0.0057846818432486
706 => 0.0058071765735614
707 => 0.0057269869673719
708 => 0.005701332698454
709 => 0.0060018916673422
710 => 0.0062239178092133
711 => 0.0062206894611785
712 => 0.0062010377227803
713 => 0.0061718392257302
714 => 0.006311502207598
715 => 0.0062628464173647
716 => 0.0062982475700867
717 => 0.0063072586492362
718 => 0.0063345324718582
719 => 0.0063442805191813
720 => 0.0063148151497167
721 => 0.0062159257709018
722 => 0.005969502841015
723 => 0.0058547923019468
724 => 0.0058169359133991
725 => 0.0058183119212233
726 => 0.0057803554826627
727 => 0.0057915353549071
728 => 0.0057764675793436
729 => 0.0057479328577129
730 => 0.0058054146349094
731 => 0.0058120388742515
801 => 0.0057986219405978
802 => 0.0058017821141733
803 => 0.0056906956339675
804 => 0.0056991412977904
805 => 0.0056521147684015
806 => 0.0056432978610543
807 => 0.0055244188898275
808 => 0.0053138075605167
809 => 0.0054305066814913
810 => 0.0052895505537335
811 => 0.0052361683323178
812 => 0.0054888714658611
813 => 0.0054635070801472
814 => 0.0054200942774385
815 => 0.0053558776942115
816 => 0.0053320591388338
817 => 0.0051873451363974
818 => 0.0051787946611143
819 => 0.0052505188283285
820 => 0.0052174205930371
821 => 0.0051709381354059
822 => 0.005002583385717
823 => 0.0048132969067247
824 => 0.0048190102757131
825 => 0.0048792187828804
826 => 0.0050542831376928
827 => 0.0049858824656235
828 => 0.00493625699323
829 => 0.0049269636339869
830 => 0.0050432894818796
831 => 0.0052079149276663
901 => 0.0052851535035427
902 => 0.0052086124206196
903 => 0.0051206861458222
904 => 0.005126037810758
905 => 0.0051616400399877
906 => 0.0051653813308913
907 => 0.0051081503649652
908 => 0.0051242605466411
909 => 0.0050997877075296
910 => 0.0049495979390753
911 => 0.0049468814824209
912 => 0.004910022491105
913 => 0.0049089064154967
914 => 0.0048462000763621
915 => 0.0048374270260487
916 => 0.0047129197836943
917 => 0.0047948708276547
918 => 0.004739902369989
919 => 0.0046570519385385
920 => 0.0046427684929282
921 => 0.0046423391153054
922 => 0.0047274079833876
923 => 0.0047938767484016
924 => 0.0047408585698441
925 => 0.0047287873583008
926 => 0.0048576763167188
927 => 0.0048412740219112
928 => 0.0048270697403912
929 => 0.0051931745246238
930 => 0.0049033740203912
1001 => 0.0047770044593113
1002 => 0.0046205981305461
1003 => 0.0046715248198612
1004 => 0.0046822558215686
1005 => 0.0043061267952482
1006 => 0.0041535312961138
1007 => 0.004101166271251
1008 => 0.0040710294591097
1009 => 0.0040847631828368
1010 => 0.003947409335949
1011 => 0.0040397133926805
1012 => 0.0039207765715074
1013 => 0.0039008364263838
1014 => 0.0041135101960862
1015 => 0.0041431025087182
1016 => 0.0040168525094194
1017 => 0.0040979254469875
1018 => 0.0040685272728272
1019 => 0.003922815401937
1020 => 0.003917250280253
1021 => 0.0038441371854602
1022 => 0.0037297293495944
1023 => 0.0036774418986317
1024 => 0.0036502101401898
1025 => 0.0036614464944593
1026 => 0.0036557650499026
1027 => 0.0036186897810924
1028 => 0.003657890160912
1029 => 0.0035577493891883
1030 => 0.0035178725269988
1031 => 0.0034998610734841
1101 => 0.0034109803746915
1102 => 0.0035524290918966
1103 => 0.00358029627111
1104 => 0.0036082183572751
1105 => 0.0038512610541241
1106 => 0.003839119327821
1107 => 0.00394887462034
1108 => 0.0039446097314998
1109 => 0.0039133057441555
1110 => 0.003781239370806
1111 => 0.0038338786733663
1112 => 0.0036718630820495
1113 => 0.0037932561790534
1114 => 0.0037378574390777
1115 => 0.0037745258093415
1116 => 0.0037085927733536
1117 => 0.0037450828377776
1118 => 0.0035869046131057
1119 => 0.0034392000125348
1120 => 0.0034986406555706
1121 => 0.0035632594324126
1122 => 0.0037033694051643
1123 => 0.0036199210612756
1124 => 0.0036499322412692
1125 => 0.0035493998121014
1126 => 0.0033419726950597
1127 => 0.0033431467100156
1128 => 0.0033112385671041
1129 => 0.0032836652729635
1130 => 0.0036295061074051
1201 => 0.0035864953327078
1202 => 0.0035179632923386
1203 => 0.0036096961517278
1204 => 0.0036339517757465
1205 => 0.0036346422992629
1206 => 0.0037015682255055
1207 => 0.0037372866043383
1208 => 0.0037435821234199
1209 => 0.0038488915143929
1210 => 0.0038841898331826
1211 => 0.0040295786126723
1212 => 0.0037342561494448
1213 => 0.0037281741776569
1214 => 0.00361098702118
1215 => 0.0035366650738867
1216 => 0.0036160759084964
1217 => 0.0036864230673006
1218 => 0.003613172903496
1219 => 0.0036227378284935
1220 => 0.003524405468344
1221 => 0.0035595546601299
1222 => 0.0035898298792033
1223 => 0.0035731136827261
1224 => 0.0035480887275266
1225 => 0.0036806554025071
1226 => 0.0036731754711717
1227 => 0.0037966246066082
1228 => 0.0038928620356133
1229 => 0.0040653367128887
1230 => 0.0038853503958436
1231 => 0.0038787909790696
]
'min_raw' => 0.0032836652729635
'max_raw' => 0.0094940419818875
'avg_raw' => 0.0063888536274255
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003283'
'max' => '$0.009494'
'avg' => '$0.006388'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0005773935411604
'max_diff' => -0.0032070922305717
'year' => 2030
]
5 => [
'items' => [
101 => 0.0039429103301984
102 => 0.003884180016844
103 => 0.0039212955475825
104 => 0.0040593568270828
105 => 0.0040622738443646
106 => 0.0040134100465312
107 => 0.0040104366799923
108 => 0.0040198215068775
109 => 0.0040747887310744
110 => 0.0040555814939678
111 => 0.0040778085950153
112 => 0.0041056039252286
113 => 0.0042205771959666
114 => 0.0042482968623014
115 => 0.0041809524441071
116 => 0.0041870328910466
117 => 0.0041618442299963
118 => 0.0041375122990347
119 => 0.0041922069264432
120 => 0.0042921624330577
121 => 0.0042915406150388
122 => 0.004314728349716
123 => 0.0043291741163223
124 => 0.0042671623111005
125 => 0.0042267949061384
126 => 0.0042422743378456
127 => 0.0042670262862436
128 => 0.0042342476145786
129 => 0.0040319224685046
130 => 0.0040932949932431
131 => 0.0040830796041634
201 => 0.0040685316478803
202 => 0.0041302421960845
203 => 0.0041242900631664
204 => 0.0039460005737212
205 => 0.0039574140883766
206 => 0.0039466946673501
207 => 0.003981331309674
208 => 0.0038823095244908
209 => 0.0039127679586912
210 => 0.0039318712030917
211 => 0.0039431231608015
212 => 0.0039837729475893
213 => 0.0039790031642878
214 => 0.0039834764511622
215 => 0.0040437493538226
216 => 0.0043485890123165
217 => 0.0043651807623376
218 => 0.0042834769170866
219 => 0.0043161159917272
220 => 0.0042534561057981
221 => 0.0042955201070071
222 => 0.0043242992283245
223 => 0.0041942519129979
224 => 0.0041865513549844
225 => 0.0041236328494166
226 => 0.0041574416904224
227 => 0.0041036493934405
228 => 0.0041168481415452
301 => 0.0040799432911983
302 => 0.0041463646741403
303 => 0.0042206341011089
304 => 0.0042393974913497
305 => 0.0041900390897735
306 => 0.0041543003541552
307 => 0.0040915549074808
308 => 0.0041959019836738
309 => 0.0042264162486722
310 => 0.0041957417052301
311 => 0.0041886337432625
312 => 0.0041751641681778
313 => 0.0041914913772915
314 => 0.0042262500614317
315 => 0.0042098585078833
316 => 0.004220685417784
317 => 0.0041794244019035
318 => 0.0042671828395884
319 => 0.0044065643588501
320 => 0.0044070124932257
321 => 0.0043906208513207
322 => 0.004383913744616
323 => 0.0044007325639385
324 => 0.0044098560834769
325 => 0.0044642450611219
326 => 0.0045226066010874
327 => 0.0047949544429718
328 => 0.0047184802587881
329 => 0.0049601234661535
330 => 0.0051512318697362
331 => 0.0052085369238129
401 => 0.0051558189704734
402 => 0.004975473699867
403 => 0.0049666251005085
404 => 0.0052361370746038
405 => 0.0051599875974915
406 => 0.0051509298594946
407 => 0.0050545708304976
408 => 0.0051115309509327
409 => 0.005099072937039
410 => 0.0050794073526409
411 => 0.0051880832945547
412 => 0.0053915149562493
413 => 0.0053598082240041
414 => 0.0053361406192161
415 => 0.0052324360645712
416 => 0.0052948893697183
417 => 0.0052726509439697
418 => 0.0053682013338394
419 => 0.0053115993995809
420 => 0.0051594106903072
421 => 0.0051836472438796
422 => 0.0051799839375643
423 => 0.0052553745219482
424 => 0.0052327441398255
425 => 0.0051755649922502
426 => 0.0053908196489454
427 => 0.005376842208849
428 => 0.0053966590232181
429 => 0.0054053829977587
430 => 0.0055364047140766
501 => 0.0055900801190248
502 => 0.0056022653756682
503 => 0.0056532528589641
504 => 0.0056009967606353
505 => 0.0058100584119174
506 => 0.0059490722109345
507 => 0.0061105438920775
508 => 0.0063464974177237
509 => 0.0064352181260589
510 => 0.0064191915242064
511 => 0.006598088794451
512 => 0.0069195632124177
513 => 0.0064841706953828
514 => 0.0069426400730362
515 => 0.0067974939613546
516 => 0.0064533551416247
517 => 0.0064311966587643
518 => 0.0066642514630192
519 => 0.007181144588163
520 => 0.0070516687228678
521 => 0.0071813563642952
522 => 0.0070300688418055
523 => 0.0070225561411625
524 => 0.0071740086670079
525 => 0.0075278857488932
526 => 0.0073597720121736
527 => 0.0071187397474066
528 => 0.0072967142208331
529 => 0.0071425362611911
530 => 0.0067951301664239
531 => 0.0070515697151137
601 => 0.0068800958918827
602 => 0.0069301410695513
603 => 0.0072905535411768
604 => 0.0072471877590577
605 => 0.0073033070966831
606 => 0.007204257934673
607 => 0.0071117303987364
608 => 0.0069390208817257
609 => 0.0068878901082151
610 => 0.0069020208145209
611 => 0.0068878831057388
612 => 0.0067912537182537
613 => 0.0067703866112265
614 => 0.0067356071853055
615 => 0.0067463867836887
616 => 0.0066809912878773
617 => 0.0068044060998724
618 => 0.0068273129765062
619 => 0.006917123984735
620 => 0.0069264484615459
621 => 0.0071765708410834
622 => 0.00703880763757
623 => 0.0071312310883895
624 => 0.007122963865025
625 => 0.0064608136733685
626 => 0.0065520521275781
627 => 0.0066939905301242
628 => 0.0066300474721701
629 => 0.0065396469485943
630 => 0.0064666436788375
701 => 0.0063560362601882
702 => 0.0065117140779097
703 => 0.0067164138537232
704 => 0.0069316399856666
705 => 0.0071902200810218
706 => 0.0071325080139427
707 => 0.0069268060106485
708 => 0.0069360336522509
709 => 0.0069930753016936
710 => 0.0069192011828849
711 => 0.0068974142630542
712 => 0.0069900821134697
713 => 0.0069907202660262
714 => 0.0069057191643514
715 => 0.0068112559948772
716 => 0.0068108601907479
717 => 0.006794051382146
718 => 0.0070330590915148
719 => 0.0071644891652626
720 => 0.0071795574114077
721 => 0.0071634749522396
722 => 0.0071696644524834
723 => 0.0070931881884336
724 => 0.0072679902497199
725 => 0.0074284059072883
726 => 0.0073854110842793
727 => 0.0073209557325146
728 => 0.0072696139402436
729 => 0.0073733165896859
730 => 0.0073686988739493
731 => 0.007427004816463
801 => 0.0074243597221191
802 => 0.0074047536266492
803 => 0.0073854117844747
804 => 0.0074621000023938
805 => 0.0074400150272082
806 => 0.0074178957479561
807 => 0.0073735321471238
808 => 0.0073795618972783
809 => 0.0073151176746388
810 => 0.0072853028284788
811 => 0.0068369590780509
812 => 0.0067171469778819
813 => 0.0067548423035952
814 => 0.0067672525835788
815 => 0.0067151102040418
816 => 0.0067898689820195
817 => 0.0067782179056608
818 => 0.0068235454281207
819 => 0.00679522675998
820 => 0.0067963889679985
821 => 0.0068796681328237
822 => 0.0069038444286673
823 => 0.0068915481694746
824 => 0.0069001600479221
825 => 0.0070986171518975
826 => 0.0070704028980131
827 => 0.007055414637968
828 => 0.0070595664884321
829 => 0.0071102765334661
830 => 0.0071244725774098
831 => 0.007064322941682
901 => 0.0070926898576121
902 => 0.007213472585345
903 => 0.0072557397043412
904 => 0.0073906360588089
905 => 0.0073333296898395
906 => 0.0074385180102444
907 => 0.007761831045828
908 => 0.0080201158702125
909 => 0.0077825864716367
910 => 0.0082568936592448
911 => 0.0086262098401228
912 => 0.0086120348699724
913 => 0.0085476360513992
914 => 0.0081271793982482
915 => 0.0077402689173632
916 => 0.0080639359637103
917 => 0.0080647610575742
918 => 0.0080369577712469
919 => 0.0078642739477319
920 => 0.0080309487485025
921 => 0.0080441787889137
922 => 0.0080367734844351
923 => 0.0079043772018248
924 => 0.0077022325492019
925 => 0.0077417311304585
926 => 0.007806430612306
927 => 0.0076839409954428
928 => 0.0076447981409474
929 => 0.0077175721546871
930 => 0.0079520651900243
1001 => 0.0079077356400195
1002 => 0.0079065780163191
1003 => 0.0080962386298946
1004 => 0.0079604825618967
1005 => 0.0077422293340601
1006 => 0.0076871175156249
1007 => 0.0074915076879495
1008 => 0.0076266160926632
1009 => 0.00763147840362
1010 => 0.0075574809111328
1011 => 0.007748233822752
1012 => 0.00774647600109
1013 => 0.0079275675008484
1014 => 0.0082737464335252
1015 => 0.008171364288702
1016 => 0.0080523049934182
1017 => 0.0080652500399718
1018 => 0.0082072252495664
1019 => 0.0081213837968667
1020 => 0.0081522529817654
1021 => 0.0082071785253579
1022 => 0.0082403164695318
1023 => 0.0080604819997691
1024 => 0.0080185539823904
1025 => 0.0079327839735679
1026 => 0.0079104081792392
1027 => 0.0079802660617751
1028 => 0.0079618609778423
1029 => 0.0076310697452119
1030 => 0.007596500220897
1031 => 0.0075975604188538
1101 => 0.0075106337062727
1102 => 0.0073780496047849
1103 => 0.0077264727073093
1104 => 0.0076984894559984
1105 => 0.0076675981122828
1106 => 0.0076713821256244
1107 => 0.0078226207852757
1108 => 0.0077348947249426
1109 => 0.0079681288343566
1110 => 0.0079201829131202
1111 => 0.0078710073599206
1112 => 0.0078642098005444
1113 => 0.0078452814080236
1114 => 0.007780368907125
1115 => 0.0077019831616535
1116 => 0.0076502261028362
1117 => 0.0070569291904446
1118 => 0.0071670416463351
1119 => 0.007293715989771
1120 => 0.0073374434655095
1121 => 0.0072626445924096
1122 => 0.0077833224225395
1123 => 0.0078784552794807
1124 => 0.0075902916504432
1125 => 0.0075363880010937
1126 => 0.0077868563368169
1127 => 0.0076357933118671
1128 => 0.0077038169827523
1129 => 0.0075567870132571
1130 => 0.0078555405600588
1201 => 0.0078532645585812
1202 => 0.0077370426812205
1203 => 0.0078352726161127
1204 => 0.0078182027476052
1205 => 0.0076869885343068
1206 => 0.0078597002846629
1207 => 0.0078597859475363
1208 => 0.0077479249174581
1209 => 0.007617295723855
1210 => 0.0075939423093626
1211 => 0.0075763486486324
1212 => 0.0076994900207236
1213 => 0.0078098981898876
1214 => 0.0080153404201953
1215 => 0.0080669934780817
1216 => 0.0082685988017509
1217 => 0.0081485526474909
1218 => 0.0082017675528164
1219 => 0.0082595398602552
1220 => 0.0082872380289476
1221 => 0.008242105349429
1222 => 0.0085552814011492
1223 => 0.0085817230553806
1224 => 0.008590588713325
1225 => 0.0084849875107502
1226 => 0.0085787860949058
1227 => 0.008534900843662
1228 => 0.0086490780757245
1229 => 0.0086669825236
1230 => 0.0086518180932187
1231 => 0.0086575012475769
]
'min_raw' => 0.0038823095244908
'max_raw' => 0.0086669825236
'avg_raw' => 0.0062746460240454
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003882'
'max' => '$0.008666'
'avg' => '$0.006274'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0005986442515273
'max_diff' => -0.00082705945828752
'year' => 2031
]
6 => [
'items' => [
101 => 0.0083902607354751
102 => 0.0083764029051166
103 => 0.0081874504048718
104 => 0.0082644499453879
105 => 0.0081205029950771
106 => 0.0081661500558385
107 => 0.008186270845281
108 => 0.008175760886721
109 => 0.0082688033838795
110 => 0.0081896982539684
111 => 0.0079809268100456
112 => 0.0077720984864824
113 => 0.007769476816988
114 => 0.0077144960055199
115 => 0.0076747549490664
116 => 0.007682410486429
117 => 0.0077093895986225
118 => 0.0076731868740203
119 => 0.0076809125608389
120 => 0.0078092104380097
121 => 0.0078349396622977
122 => 0.0077475017051102
123 => 0.0073964256897653
124 => 0.0073102707549922
125 => 0.0073721972135805
126 => 0.00734260035495
127 => 0.005926051552906
128 => 0.0062588486819809
129 => 0.0060611119286073
130 => 0.0061522381219924
131 => 0.005950400100482
201 => 0.0060467277835838
202 => 0.0060289395778387
203 => 0.0065640675132081
204 => 0.0065557122265417
205 => 0.006559711460117
206 => 0.0063688176216218
207 => 0.0066729166896771
208 => 0.00682272682565
209 => 0.006795000956549
210 => 0.0068019789604714
211 => 0.0066820737338532
212 => 0.0065608724048105
213 => 0.0064264414781513
214 => 0.0066761975237193
215 => 0.00664842891493
216 => 0.0067121201126626
217 => 0.0068741047611444
218 => 0.0068979576159531
219 => 0.0069300160947079
220 => 0.0069185254121522
221 => 0.0071922800886553
222 => 0.0071591265910393
223 => 0.0072390169813817
224 => 0.0070746763871488
225 => 0.006888709405422
226 => 0.0069240556489296
227 => 0.0069206515214433
228 => 0.0068773130714668
229 => 0.006838189056621
301 => 0.0067730585950256
302 => 0.006979141013008
303 => 0.0069707744431886
304 => 0.0071062194834912
305 => 0.0070822782569748
306 => 0.0069223928868863
307 => 0.0069281032241579
308 => 0.0069665079866034
309 => 0.0070994273079254
310 => 0.0071388868123313
311 => 0.0071206075977011
312 => 0.0071638731428873
313 => 0.0071980684657241
314 => 0.0071681675489552
315 => 0.0075915014749506
316 => 0.007415703714139
317 => 0.0075013863195656
318 => 0.0075218211160886
319 => 0.0074694778144924
320 => 0.0074808292023355
321 => 0.0074980234618498
322 => 0.0076024236386394
323 => 0.0078763999109699
324 => 0.0079977421369655
325 => 0.0083628062107933
326 => 0.0079876663542619
327 => 0.0079654071076584
328 => 0.0080311661712336
329 => 0.0082454974285273
330 => 0.0084191927814525
331 => 0.0084768175507431
401 => 0.0084844336152861
402 => 0.0085925415132975
403 => 0.0086545069443446
404 => 0.0085794143709589
405 => 0.0085157812775346
406 => 0.0082878554353192
407 => 0.0083142384721771
408 => 0.0084959914333292
409 => 0.0087527281961526
410 => 0.0089730350475626
411 => 0.0088958912666677
412 => 0.0094844438598732
413 => 0.0095427964454678
414 => 0.0095347340049036
415 => 0.0096676698789171
416 => 0.0094038192409203
417 => 0.0092910179813113
418 => 0.0085295394745992
419 => 0.0087434838746807
420 => 0.0090544646247131
421 => 0.0090133051563283
422 => 0.0087874626231155
423 => 0.0089728637257493
424 => 0.0089115643231901
425 => 0.008863214941077
426 => 0.0090847128335257
427 => 0.0088411668021465
428 => 0.0090520350667471
429 => 0.0087815943362439
430 => 0.0088962436529608
501 => 0.0088311631558288
502 => 0.0088732782134389
503 => 0.0086270744472021
504 => 0.0087599200232049
505 => 0.0086215476344847
506 => 0.0086214820279558
507 => 0.0086184274498055
508 => 0.0087812219514978
509 => 0.0087865306743534
510 => 0.008666225291634
511 => 0.0086488874064609
512 => 0.0087129946550995
513 => 0.0086379418566587
514 => 0.0086730585886725
515 => 0.0086390055066974
516 => 0.0086313394406772
517 => 0.0085702549223544
518 => 0.0085439380323071
519 => 0.0085542575629974
520 => 0.0085190316846688
521 => 0.0084978068188002
522 => 0.0086142052897621
523 => 0.0085520182822281
524 => 0.0086046742389703
525 => 0.008544666130551
526 => 0.0083366518824815
527 => 0.008217020688706
528 => 0.0078241010570338
529 => 0.0079355325771607
530 => 0.0080094117902892
531 => 0.0079849947107909
601 => 0.0080374520457085
602 => 0.0080406725000317
603 => 0.0080236180857107
604 => 0.0080038712587328
605 => 0.007994259595428
606 => 0.008065897059014
607 => 0.0081074850178318
608 => 0.008016826557703
609 => 0.0079955865489414
610 => 0.0080872472575225
611 => 0.0081431602368062
612 => 0.0085559902610484
613 => 0.0085254064794291
614 => 0.0086021657695295
615 => 0.0085935238514315
616 => 0.0086739798161705
617 => 0.0088054913152912
618 => 0.0085380916663854
619 => 0.0085845029994513
620 => 0.0085731240123777
621 => 0.0086973568095161
622 => 0.0086977446507483
623 => 0.0086232608829754
624 => 0.0086636397418462
625 => 0.0086411013705606
626 => 0.0086818312537173
627 => 0.0085249980143796
628 => 0.0087160039707909
629 => 0.0088242920399242
630 => 0.0088257956198692
701 => 0.0088771233052111
702 => 0.0089292752062176
703 => 0.0090293762387262
704 => 0.0089264834427509
705 => 0.0087413893192031
706 => 0.0087547525170728
707 => 0.00864623190016
708 => 0.0086480561513362
709 => 0.0086383181555887
710 => 0.008667542613869
711 => 0.0085314111395382
712 => 0.0085633609244679
713 => 0.0085186310384686
714 => 0.0085844057654147
715 => 0.0085136430321726
716 => 0.0085731185250856
717 => 0.0085987861761831
718 => 0.0086935003613176
719 => 0.0084996536700185
720 => 0.0081043871441922
721 => 0.0081874769600643
722 => 0.0080645805958253
723 => 0.008075955122235
724 => 0.0080989334758252
725 => 0.00802445311379
726 => 0.0080386616197203
727 => 0.0080381539919048
728 => 0.0080337795296331
729 => 0.0080144043108997
730 => 0.007986306410466
731 => 0.0080982397977161
801 => 0.0081172594613751
802 => 0.0081595378176512
803 => 0.0082853295282459
804 => 0.0082727599699847
805 => 0.0082932614410147
806 => 0.0082485068448671
807 => 0.008078031159591
808 => 0.0080872888094848
809 => 0.0079718457669659
810 => 0.0081565856795027
811 => 0.0081128368297663
812 => 0.0080846316617381
813 => 0.0080769356203226
814 => 0.008203039144237
815 => 0.0082407712950228
816 => 0.0082172591507635
817 => 0.008169035056929
818 => 0.0082616395732648
819 => 0.0082864166351654
820 => 0.008291963305582
821 => 0.0084560407533742
822 => 0.0083011334122405
823 => 0.008338421148898
824 => 0.0086293294260454
825 => 0.0083655157612708
826 => 0.0085052637432487
827 => 0.0084984238067443
828 => 0.0085699141455103
829 => 0.0084925595123188
830 => 0.0084935184157059
831 => 0.0085569969933551
901 => 0.0084678527794687
902 => 0.0084457794184725
903 => 0.0084152852283486
904 => 0.0084818681768764
905 => 0.0085217816432311
906 => 0.0088434548688388
907 => 0.0090512704426627
908 => 0.0090422486205284
909 => 0.0091246911866923
910 => 0.0090875500555481
911 => 0.0089676115457481
912 => 0.0091723319570336
913 => 0.0091075498530371
914 => 0.0091128904109803
915 => 0.0091126916351469
916 => 0.0091557660709548
917 => 0.0091252438854709
918 => 0.0090650815248439
919 => 0.0091050201074879
920 => 0.0092236234196359
921 => 0.0095917717397375
922 => 0.0097977924169828
923 => 0.0095793690362801
924 => 0.0097300345594832
925 => 0.0096396889331764
926 => 0.0096232704453269
927 => 0.0097178995279932
928 => 0.0098126942463418
929 => 0.0098066562325918
930 => 0.0097378401348334
1001 => 0.0096989676673534
1002 => 0.0099933230143434
1003 => 0.010210199019793
1004 => 0.010195409530177
1005 => 0.010260685527544
1006 => 0.010452337874725
1007 => 0.010469860163486
1008 => 0.010467652757848
1009 => 0.010424221936892
1010 => 0.010612928561894
1011 => 0.010770350948448
1012 => 0.010414168956678
1013 => 0.01054979839638
1014 => 0.010610686821569
1015 => 0.010700089094529
1016 => 0.010850925714574
1017 => 0.01101477429138
1018 => 0.011037944276648
1019 => 0.011021504063314
1020 => 0.010913441522425
1021 => 0.011092726590286
1022 => 0.011197747578286
1023 => 0.011260285173278
1024 => 0.011418870108914
1025 => 0.010611062847754
1026 => 0.010039256717679
1027 => 0.0099499609334876
1028 => 0.010131547422025
1029 => 0.010179430330927
1030 => 0.010160128790389
1031 => 0.0095165090046505
1101 => 0.0099465724085159
1102 => 0.010409284470317
1103 => 0.010427059125065
1104 => 0.010658702458055
1105 => 0.010734135022658
1106 => 0.010920638267901
1107 => 0.010908972439132
1108 => 0.010954383011434
1109 => 0.010943943907263
1110 => 0.011289401896184
1111 => 0.011670493358972
1112 => 0.011657297373413
1113 => 0.011602510966767
1114 => 0.011683878123106
1115 => 0.012077205352946
1116 => 0.012040994084563
1117 => 0.012076170247329
1118 => 0.012539925218262
1119 => 0.01314287264885
1120 => 0.012862743032409
1121 => 0.013470543694959
1122 => 0.013853121993906
1123 => 0.014514751602599
1124 => 0.014431912316997
1125 => 0.014689479868399
1126 => 0.014283612706687
1127 => 0.013351659664109
1128 => 0.013204174527748
1129 => 0.013499443505661
1130 => 0.014225333475934
1201 => 0.013476582647274
1202 => 0.013628053964737
1203 => 0.013584430215118
1204 => 0.013582105690889
1205 => 0.013670823326157
1206 => 0.013542133769001
1207 => 0.013017829362337
1208 => 0.013258114982166
1209 => 0.013165329164886
1210 => 0.013268281946798
1211 => 0.013823875649821
1212 => 0.013578234430015
1213 => 0.013319471359222
1214 => 0.013644017674119
1215 => 0.014057276659196
1216 => 0.014031415654608
1217 => 0.013981234496645
1218 => 0.014264103056681
1219 => 0.014731319045149
1220 => 0.014857605649406
1221 => 0.014950827838852
1222 => 0.014963681603775
1223 => 0.015096083371051
1224 => 0.014384125698866
1225 => 0.015514020808993
1226 => 0.015709122481789
1227 => 0.015672451453439
1228 => 0.015889298751619
1229 => 0.01582549677561
1230 => 0.015733057722595
1231 => 0.016076806814953
]
'min_raw' => 0.005926051552906
'max_raw' => 0.016076806814953
'avg_raw' => 0.01100142918393
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005926'
'max' => '$0.016076'
'avg' => '$0.0110014'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0020437420284153
'max_diff' => 0.0074098242913531
'year' => 2032
]
7 => [
'items' => [
101 => 0.015682726219686
102 => 0.015123378428072
103 => 0.014816509166948
104 => 0.015220619364434
105 => 0.015467395360536
106 => 0.015630498596058
107 => 0.015679853536577
108 => 0.014439392946275
109 => 0.0137708534872
110 => 0.014199379615646
111 => 0.014722211067645
112 => 0.014381221343752
113 => 0.01439458749535
114 => 0.013908425759602
115 => 0.014765225593715
116 => 0.014640397064706
117 => 0.015288007694024
118 => 0.015133450219937
119 => 0.015661551548047
120 => 0.015522484769753
121 => 0.016099743191332
122 => 0.016330027204348
123 => 0.016716709903046
124 => 0.017001155270291
125 => 0.017168187030509
126 => 0.017158159070146
127 => 0.017820022119025
128 => 0.017429744602835
129 => 0.016939464061152
130 => 0.016930596432968
131 => 0.017184519672835
201 => 0.017716673123156
202 => 0.017854652770307
203 => 0.017931764569534
204 => 0.017813665164736
205 => 0.017390046892354
206 => 0.017207130670132
207 => 0.017362980591058
208 => 0.017172389530102
209 => 0.017501403171719
210 => 0.01795320917518
211 => 0.0178599130221
212 => 0.018171788074106
213 => 0.018494545942721
214 => 0.018956104190802
215 => 0.019076772608303
216 => 0.019276232913823
217 => 0.0194815430875
218 => 0.019547483182021
219 => 0.019673383282471
220 => 0.019672719726795
221 => 0.020052128153555
222 => 0.020470627397573
223 => 0.020628601173909
224 => 0.020991853161871
225 => 0.020369796862355
226 => 0.020841633711205
227 => 0.021267242359711
228 => 0.020759814183177
301 => 0.021459185708927
302 => 0.021486340720462
303 => 0.021896349154724
304 => 0.021480727058488
305 => 0.021233931984455
306 => 0.021946420115896
307 => 0.022291170679535
308 => 0.022187329004094
309 => 0.021397088726691
310 => 0.020937134990243
311 => 0.019733347343509
312 => 0.021159285810822
313 => 0.021853818843055
314 => 0.021395290053925
315 => 0.021626545304135
316 => 0.022888198964517
317 => 0.023368554992366
318 => 0.023268644296515
319 => 0.023285527559444
320 => 0.023544718952992
321 => 0.024694116331294
322 => 0.024005370779393
323 => 0.024531890947017
324 => 0.024811155345416
325 => 0.025070551682222
326 => 0.02443355626208
327 => 0.023604834579796
328 => 0.023342343635647
329 => 0.02134969840246
330 => 0.021245972564453
331 => 0.021187748108365
401 => 0.020820651148744
402 => 0.020532213494802
403 => 0.020302837163383
404 => 0.01970088517217
405 => 0.019904026298719
406 => 0.01894464046187
407 => 0.019558421521739
408 => 0.018027218560947
409 => 0.019302449886636
410 => 0.018608399453717
411 => 0.019074435652996
412 => 0.0190728096966
413 => 0.018214689296816
414 => 0.017719743358737
415 => 0.018035142174065
416 => 0.018373274740486
417 => 0.018428135611773
418 => 0.018866533310301
419 => 0.018988880684633
420 => 0.018618162428554
421 => 0.017995487783008
422 => 0.018140120901472
423 => 0.017716812373208
424 => 0.016974980459751
425 => 0.017507777091138
426 => 0.017689697286508
427 => 0.017770043608548
428 => 0.017040537121635
429 => 0.01681131034509
430 => 0.016689271932657
501 => 0.017901317656298
502 => 0.017967716257078
503 => 0.017628011627673
504 => 0.019163508764696
505 => 0.018815978471925
506 => 0.019204254955939
507 => 0.018126996961944
508 => 0.018168149668035
509 => 0.017658158469853
510 => 0.017943719463211
511 => 0.017741894157166
512 => 0.017920648956916
513 => 0.018027793846853
514 => 0.018537701360498
515 => 0.019308272211366
516 => 0.018461538181876
517 => 0.018092604039773
518 => 0.018321488706569
519 => 0.018931038736318
520 => 0.019854538233678
521 => 0.019307807944081
522 => 0.019550437562522
523 => 0.019603441340311
524 => 0.019200302665817
525 => 0.019869402531638
526 => 0.020227978585488
527 => 0.020595803419879
528 => 0.020915175417363
529 => 0.020448886092382
530 => 0.020947882510061
531 => 0.020545779482137
601 => 0.020185051497442
602 => 0.020185598572893
603 => 0.019959308638699
604 => 0.019520843376831
605 => 0.019439983655279
606 => 0.019860626138252
607 => 0.020197941574604
608 => 0.020225724489574
609 => 0.020412479647032
610 => 0.020522999425485
611 => 0.021606243498672
612 => 0.022041933225972
613 => 0.022574686377331
614 => 0.022782223754108
615 => 0.023406836851938
616 => 0.022902411046845
617 => 0.022793275350926
618 => 0.021278168284976
619 => 0.021526266982148
620 => 0.021923496934283
621 => 0.021284718460578
622 => 0.021689876375607
623 => 0.021769863130451
624 => 0.021263013012473
625 => 0.021533743560186
626 => 0.020814763491474
627 => 0.019323944012119
628 => 0.019871062239891
629 => 0.020273925413536
630 => 0.019698989992074
701 => 0.020729539481972
702 => 0.020127513744833
703 => 0.019936700488492
704 => 0.019192269945667
705 => 0.019543612506121
706 => 0.020018808349876
707 => 0.019725192565882
708 => 0.020334489404301
709 => 0.021197416221035
710 => 0.02181238925882
711 => 0.021859599252511
712 => 0.021464212789209
713 => 0.022097822119973
714 => 0.022102437272221
715 => 0.021387723358748
716 => 0.02094996506629
717 => 0.020850505461193
718 => 0.021098975054931
719 => 0.021400663011747
720 => 0.021876340834473
721 => 0.022163782980368
722 => 0.022913279649327
723 => 0.023116071958194
724 => 0.023338879222853
725 => 0.023636618439652
726 => 0.023994130708188
727 => 0.023211914217816
728 => 0.023242993137212
729 => 0.022514603971903
730 => 0.021736215687197
731 => 0.022326915367819
801 => 0.023099176622747
802 => 0.022922019037594
803 => 0.022902085190263
804 => 0.022935608392285
805 => 0.022802037358506
806 => 0.022197900523093
807 => 0.021894506786445
808 => 0.022285962110718
809 => 0.022494003193897
810 => 0.022816656770818
811 => 0.022776882907072
812 => 0.023608003870756
813 => 0.023930952345451
814 => 0.023848328305879
815 => 0.023863533117619
816 => 0.024448215905024
817 => 0.025098503413804
818 => 0.025707583478771
819 => 0.026327165881453
820 => 0.025580235112307
821 => 0.02520098973202
822 => 0.025592274159144
823 => 0.025384653134385
824 => 0.026577705127046
825 => 0.02666030945849
826 => 0.027853275179912
827 => 0.028985541705258
828 => 0.02827438538735
829 => 0.028944973763953
830 => 0.029670269767122
831 => 0.031069483432269
901 => 0.030598277494778
902 => 0.030237341131398
903 => 0.029896258012035
904 => 0.030605997838008
905 => 0.031519066785751
906 => 0.03171573309183
907 => 0.032034407639988
908 => 0.031699360318269
909 => 0.032102887913027
910 => 0.033527517641532
911 => 0.033142570113335
912 => 0.032595882739893
913 => 0.033720491087654
914 => 0.034127482476905
915 => 0.03698396118971
916 => 0.040590383559876
917 => 0.039097301017581
918 => 0.038170496502106
919 => 0.03838831754734
920 => 0.039705260911823
921 => 0.040128221322802
922 => 0.038978469122565
923 => 0.039384581036979
924 => 0.041622297613447
925 => 0.042822760762179
926 => 0.04119237056249
927 => 0.036694188663762
928 => 0.032546659523351
929 => 0.033646771017059
930 => 0.033522052514107
1001 => 0.035926199814694
1002 => 0.033133389242099
1003 => 0.033180413009579
1004 => 0.035634275530306
1005 => 0.03497962707963
1006 => 0.033919180430573
1007 => 0.032554401957449
1008 => 0.030031482723151
1009 => 0.027796862800526
1010 => 0.032179467071028
1011 => 0.031990481205635
1012 => 0.03171680166641
1013 => 0.032325845865736
1014 => 0.03528319161745
1015 => 0.035215015225879
1016 => 0.034781311806604
1017 => 0.035110272027637
1018 => 0.033861512113327
1019 => 0.034183345976979
1020 => 0.032546002533545
1021 => 0.033286150151479
1022 => 0.033916905188335
1023 => 0.034043538600472
1024 => 0.034328850144078
1025 => 0.031890894242157
1026 => 0.032985464867495
1027 => 0.033628422562483
1028 => 0.030723516305526
1029 => 0.033571001905768
1030 => 0.031848454853867
1031 => 0.031263796512663
1101 => 0.032050961946215
1102 => 0.031744202811216
1103 => 0.031480469320445
1104 => 0.031333301501079
1105 => 0.0319113089192
1106 => 0.031884344182277
1107 => 0.030938611859824
1108 => 0.029704942598166
1109 => 0.030119002496191
1110 => 0.029968570653406
1111 => 0.02942338624906
1112 => 0.029790774711773
1113 => 0.028172981853029
1114 => 0.025389653325114
1115 => 0.027228405406313
1116 => 0.027157615451364
1117 => 0.02712191994601
1118 => 0.028503691315656
1119 => 0.028370865881354
1120 => 0.028129786417466
1121 => 0.029418958635649
1122 => 0.028948393434199
1123 => 0.030398564505963
1124 => 0.031353740965011
1125 => 0.031111477318274
1126 => 0.032009825394778
1127 => 0.030128541599958
1128 => 0.030753428612592
1129 => 0.03088221695984
1130 => 0.029403050450589
1201 => 0.028392597765086
1202 => 0.028325212090967
1203 => 0.026573226383261
1204 => 0.027509123006783
1205 => 0.028332673305449
1206 => 0.027938256622473
1207 => 0.027813396083506
1208 => 0.028451281498141
1209 => 0.028500850657977
1210 => 0.027370668560606
1211 => 0.027605669206862
1212 => 0.028585660967355
1213 => 0.027580975928897
1214 => 0.025629037013543
1215 => 0.025144929174868
1216 => 0.025080340265311
1217 => 0.023767401411748
1218 => 0.0251772795755
1219 => 0.024561829974637
1220 => 0.026506027889546
1221 => 0.025395512467492
1222 => 0.025347640367207
1223 => 0.025275274666314
1224 => 0.024145173958232
1225 => 0.024392594191655
1226 => 0.02521505673072
1227 => 0.025508520630362
1228 => 0.025477909941351
1229 => 0.025211026215586
1230 => 0.025333204218575
1231 => 0.024939626301308
]
'min_raw' => 0.0137708534872
'max_raw' => 0.042822760762179
'avg_raw' => 0.028296807124689
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01377'
'max' => '$0.042822'
'avg' => '$0.028296'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0078448019342936
'max_diff' => 0.026745953947226
'year' => 2033
]
8 => [
'items' => [
101 => 0.024800645747106
102 => 0.024361984888428
103 => 0.023717274609328
104 => 0.023806925527875
105 => 0.022529585767356
106 => 0.021833623272273
107 => 0.021640990026272
108 => 0.021383392799023
109 => 0.02167008631853
110 => 0.022525967224304
111 => 0.021493593266677
112 => 0.019723660528941
113 => 0.019830036502297
114 => 0.02006903173112
115 => 0.019623665703321
116 => 0.019202164134747
117 => 0.019568625551119
118 => 0.018818681717529
119 => 0.02015965886051
120 => 0.020123389186837
121 => 0.02062322254027
122 => 0.020935778593785
123 => 0.020215438081658
124 => 0.020034274390865
125 => 0.020137473462571
126 => 0.018431822686046
127 => 0.020483834482864
128 => 0.020501580366095
129 => 0.020349629340037
130 => 0.021442262273086
131 => 0.023748058562578
201 => 0.02288052524803
202 => 0.022544590127304
203 => 0.021905977217237
204 => 0.022756891002819
205 => 0.022691554100409
206 => 0.022396075849428
207 => 0.022217369681286
208 => 0.022546641275517
209 => 0.022176569286873
210 => 0.022110094188814
211 => 0.021707327420198
212 => 0.021563558008522
213 => 0.021457116859743
214 => 0.021339935613628
215 => 0.02159840824281
216 => 0.021012675260177
217 => 0.020306338703234
218 => 0.020247614461192
219 => 0.020409757256559
220 => 0.02033802113972
221 => 0.020247271016263
222 => 0.020074004316258
223 => 0.020022599787624
224 => 0.020189639567753
225 => 0.020001061395011
226 => 0.020279318761277
227 => 0.020203648154335
228 => 0.019780958295192
301 => 0.019254130230871
302 => 0.019249440356039
303 => 0.019135936113752
304 => 0.018991371395723
305 => 0.01895115679836
306 => 0.019537763192776
307 => 0.020752020873564
308 => 0.020513633036102
309 => 0.020685892679637
310 => 0.021533239634193
311 => 0.021802585750434
312 => 0.021611410256938
313 => 0.02134971745025
314 => 0.021361230605631
315 => 0.022255514145884
316 => 0.022311289513339
317 => 0.022452215873082
318 => 0.022633346071137
319 => 0.021642257512896
320 => 0.021314550423665
321 => 0.02115926462429
322 => 0.020681044465384
323 => 0.021196763907267
324 => 0.02089627627379
325 => 0.020936822321665
326 => 0.020910416654795
327 => 0.020924835934449
328 => 0.020159284030069
329 => 0.020438210907802
330 => 0.019974440874814
331 => 0.019353504861272
401 => 0.019351423266026
402 => 0.019503396475661
403 => 0.019412996863858
404 => 0.019169733832882
405 => 0.019204288198263
406 => 0.018901555597714
407 => 0.019241045417121
408 => 0.019250780770388
409 => 0.019120058697781
410 => 0.019643089605144
411 => 0.019857375794644
412 => 0.019771331726116
413 => 0.01985133871342
414 => 0.020523539127005
415 => 0.020633137124579
416 => 0.020681813315465
417 => 0.020616593668038
418 => 0.019863625303004
419 => 0.019897022651862
420 => 0.019651975065432
421 => 0.019444935677377
422 => 0.01945321616712
423 => 0.019559661325817
424 => 0.020024513576773
425 => 0.021002767734371
426 => 0.021039891764558
427 => 0.021084887172128
428 => 0.02090186823666
429 => 0.020846667974467
430 => 0.020919491368696
501 => 0.02128687219613
502 => 0.022231875427212
503 => 0.021897848170704
504 => 0.021626278811719
505 => 0.021864518354122
506 => 0.021827843243952
507 => 0.021518268405593
508 => 0.021509579670952
509 => 0.020915406579078
510 => 0.020695754315679
511 => 0.020512196443696
512 => 0.02031175603939
513 => 0.020192928248894
514 => 0.020375501741361
515 => 0.020417258459234
516 => 0.020018058327117
517 => 0.019963648824205
518 => 0.020289644269425
519 => 0.020146185828319
520 => 0.020293736392594
521 => 0.020327969389172
522 => 0.02032245708827
523 => 0.020172669999658
524 => 0.020268139823224
525 => 0.020042325229567
526 => 0.01979678577522
527 => 0.019640146900995
528 => 0.019503458708102
529 => 0.019579301261883
530 => 0.019308936405956
531 => 0.019222441247175
601 => 0.020235796795139
602 => 0.020984373433828
603 => 0.020973488833032
604 => 0.020907231624982
605 => 0.020808786853604
606 => 0.021279670347929
607 => 0.021115623954119
608 => 0.02123498141215
609 => 0.021265362894636
610 => 0.021357318491804
611 => 0.021390184713941
612 => 0.021290840163584
613 => 0.020957427718674
614 => 0.020126595605861
615 => 0.019739841014559
616 => 0.019612205557521
617 => 0.01961684486397
618 => 0.019488872081329
619 => 0.019526565801155
620 => 0.019475763743844
621 => 0.019379556937636
622 => 0.019573360762703
623 => 0.019595694848135
624 => 0.019550458719581
625 => 0.019561113465427
626 => 0.019186577641603
627 => 0.019215052786839
628 => 0.019056499559717
629 => 0.019026772741019
630 => 0.018625963989663
701 => 0.017915873188478
702 => 0.018309332422517
703 => 0.017834088996539
704 => 0.017654107110008
705 => 0.018506113367919
706 => 0.0184205955706
707 => 0.018274226275282
708 => 0.018057715581473
709 => 0.017977409659059
710 => 0.017489496296236
711 => 0.017460667771844
712 => 0.017702490809228
713 => 0.017590897798098
714 => 0.017434178946893
715 => 0.016866559154163
716 => 0.016228366574681
717 => 0.01624762959712
718 => 0.016450626782658
719 => 0.017040868477511
720 => 0.016810250836047
721 => 0.016642935091133
722 => 0.016611601881603
723 => 0.017003802599384
724 => 0.017558848783636
725 => 0.017819264034828
726 => 0.017561200429825
727 => 0.017264750855529
728 => 0.017282794367502
729 => 0.017402829769018
730 => 0.017415443792508
731 => 0.01722248559515
801 => 0.017276802197447
802 => 0.017194290311743
803 => 0.016687915021485
804 => 0.016678756298218
805 => 0.016554483635584
806 => 0.016550720708748
807 => 0.016339301908339
808 => 0.016309722956693
809 => 0.015889938096277
810 => 0.016166241762628
811 => 0.015980911769833
812 => 0.015701575755766
813 => 0.015653418121652
814 => 0.015651970445019
815 => 0.015938786073077
816 => 0.016162890155022
817 => 0.015984135664405
818 => 0.015943436731901
819 => 0.016377994853948
820 => 0.016322693371832
821 => 0.016274802644976
822 => 0.017509150485636
823 => 0.016532067852391
824 => 0.016106004054369
825 => 0.015578669196996
826 => 0.015750372085609
827 => 0.015786552407081
828 => 0.014518407134351
829 => 0.014003920755142
830 => 0.013827368417808
831 => 0.013725760051589
901 => 0.013772064259992
902 => 0.013308966175471
903 => 0.013620175747205
904 => 0.013219171950716
905 => 0.013151942359255
906 => 0.013868986822215
907 => 0.013968759370323
908 => 0.013543098683194
909 => 0.013816441752536
910 => 0.01371732375584
911 => 0.013226046009856
912 => 0.013207282813554
913 => 0.012960776909867
914 => 0.012575042903545
915 => 0.012398752112031
916 => 0.012306938337184
917 => 0.0123448224901
918 => 0.012325667103112
919 => 0.012200665245806
920 => 0.01233283206325
921 => 0.011995200459778
922 => 0.011860752834793
923 => 0.011800025961749
924 => 0.011500358480317
925 => 0.011977262706008
926 => 0.012071218846351
927 => 0.012165360109314
928 => 0.01298479553044
929 => 0.012943858852501
930 => 0.013313906484098
1001 => 0.013299527113608
1002 => 0.013193983534702
1003 => 0.012748712536375
1004 => 0.012926189620116
1005 => 0.012379942742423
1006 => 0.012789228044368
1007 => 0.012602447324723
1008 => 0.012726077295171
1009 => 0.012503779461041
1010 => 0.012626808260901
1011 => 0.012093499332769
1012 => 0.011595502959538
1013 => 0.011795911237546
1014 => 0.012013777955208
1015 => 0.012486168510506
1016 => 0.012204816592908
1017 => 0.01230600138157
1018 => 0.011967049277681
1019 => 0.011267694270476
1020 => 0.011271652543867
1021 => 0.011164072012286
1022 => 0.011071106725985
1023 => 0.012237133245141
1024 => 0.012092119415332
1025 => 0.011861058856473
1026 => 0.012170342596487
1027 => 0.01225212212634
1028 => 0.012254450274587
1029 => 0.012480095707532
1030 => 0.012600522715545
1031 => 0.012621748497667
1101 => 0.0129768064618
1102 => 0.013095817208049
1103 => 0.013586005628819
1104 => 0.012590305325292
1105 => 0.012569799532779
1106 => 0.012174694852971
1107 => 0.011924113218679
1108 => 0.012191852391853
1109 => 0.012429032749244
1110 => 0.012182064707813
1111 => 0.012214313520244
1112 => 0.011882779102654
1113 => 0.012001287056798
1114 => 0.012103362071652
1115 => 0.012047002248142
1116 => 0.0119626288645
1117 => 0.012409586664707
1118 => 0.012384367553977
1119 => 0.012800584933045
1120 => 0.013125056144018
1121 => 0.01370656656025
1122 => 0.013099730126089
1123 => 0.013077614594471
1124 => 0.013293797463472
1125 => 0.013095784111578
1126 => 0.013220921714787
1127 => 0.013686404957753
1128 => 0.013696239885178
1129 => 0.013531492179221
1130 => 0.013521467266341
1201 => 0.013553108865413
1202 => 0.013738434699481
1203 => 0.01367367615857
1204 => 0.013748616381598
1205 => 0.013842330278021
1206 => 0.014229970687491
1207 => 0.014323429477864
1208 => 0.014096373070085
1209 => 0.014116873721465
1210 => 0.014031948392118
1211 => 0.013949911588079
1212 => 0.014134318343044
1213 => 0.014471325312266
1214 => 0.014469228809401
1215 => 0.014547407875781
1216 => 0.014596112786465
1217 => 0.014387035655634
1218 => 0.014250934131442
1219 => 0.014303124116182
1220 => 0.014386577038332
1221 => 0.01427606145828
1222 => 0.013593908102401
1223 => 0.013800829854449
1224 => 0.013766387956952
1225 => 0.013717338506637
1226 => 0.013925399928401
1227 => 0.013905331896702
1228 => 0.013304216435263
1229 => 0.01334269789679
1230 => 0.013306556620393
1231 => 0.013423336478241
]
'min_raw' => 0.011071106725985
'max_raw' => 0.024800645747106
'avg_raw' => 0.017935876236545
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.011071'
'max' => '$0.02480064'
'avg' => '$0.017935'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.002699746761215
'max_diff' => -0.018022115015073
'year' => 2034
]
9 => [
'items' => [
101 => 0.013089477616016
102 => 0.013192170353463
103 => 0.013256578275705
104 => 0.01329451503671
105 => 0.013431568630943
106 => 0.013415486973526
107 => 0.013430568972538
108 => 0.013633783271977
109 => 0.014661571463815
110 => 0.01471751170741
111 => 0.014442041488765
112 => 0.014552086407704
113 => 0.01434082422752
114 => 0.014482645944411
115 => 0.014579676761227
116 => 0.01414121315799
117 => 0.014115250189011
118 => 0.01390311605466
119 => 0.014017104922569
120 => 0.013835740437636
121 => 0.013880240938378
122 => 0.013755813658819
123 => 0.013979757988801
124 => 0.014230162547151
125 => 0.014293424627366
126 => 0.014127009330359
127 => 0.014006513688023
128 => 0.013794963033813
129 => 0.014146776486478
130 => 0.014249657461358
131 => 0.014146236096514
201 => 0.014122271106479
202 => 0.014076857493665
203 => 0.014131905819121
204 => 0.014249097149474
205 => 0.014193831882263
206 => 0.014230335564904
207 => 0.014091221169111
208 => 0.014387104868864
209 => 0.014857039392362
210 => 0.014858550308697
211 => 0.014803284743586
212 => 0.014780671265056
213 => 0.014837377088655
214 => 0.014868137671762
215 => 0.015051513907209
216 => 0.015248283913876
217 => 0.016166523677508
218 => 0.015908685626276
219 => 0.016723402570898
220 => 0.01736773789634
221 => 0.017560945887071
222 => 0.017383203626737
223 => 0.016775156955582
224 => 0.016745323285056
225 => 0.017654001722443
226 => 0.017397258443772
227 => 0.017366719647724
228 => 0.017041838453888
301 => 0.017233883476764
302 => 0.017191880413131
303 => 0.017125576522325
304 => 0.017491985048
305 => 0.018177869098548
306 => 0.01807096763709
307 => 0.017991170655128
308 => 0.017641523508722
309 => 0.017852089187376
310 => 0.017777110782327
311 => 0.018099265592888
312 => 0.017908428219714
313 => 0.017395313360922
314 => 0.017477028593433
315 => 0.017464677500428
316 => 0.01771886211928
317 => 0.017642562205951
318 => 0.01744977871778
319 => 0.018175524821428
320 => 0.018128398906269
321 => 0.018195212679481
322 => 0.018224626168733
323 => 0.018666375032943
324 => 0.018847345408222
325 => 0.018888428851743
326 => 0.019060336711508
327 => 0.018884151627588
328 => 0.019589017581104
329 => 0.020057712310124
330 => 0.02060212535669
331 => 0.021397659142155
401 => 0.021696787204589
402 => 0.021642752397502
403 => 0.02224591703434
404 => 0.023329790479142
405 => 0.021861834209824
406 => 0.023407595725892
407 => 0.02291822547658
408 => 0.021757937418856
409 => 0.021683228546836
410 => 0.022468989090748
411 => 0.024211730350496
412 => 0.023775193430937
413 => 0.024212444368511
414 => 0.02370236792388
415 => 0.023677038329142
416 => 0.024187671094108
417 => 0.025380792382593
418 => 0.024813985181916
419 => 0.024001328072919
420 => 0.024601381435857
421 => 0.024081559680563
422 => 0.022910255776936
423 => 0.023774859619382
424 => 0.023196723652438
425 => 0.023365454462991
426 => 0.024580610274271
427 => 0.024434399512154
428 => 0.024623609777085
429 => 0.024289658611977
430 => 0.0239776955645
501 => 0.023395393369705
502 => 0.023223002396978
503 => 0.023270645059862
504 => 0.02322297878764
505 => 0.022897186061285
506 => 0.022826831153048
507 => 0.022709569890334
508 => 0.02274591405889
509 => 0.022525428578994
510 => 0.022941530234183
511 => 0.023018762368061
512 => 0.023321566452709
513 => 0.023353004577291
514 => 0.024196309642888
515 => 0.023731831383923
516 => 0.02404344350116
517 => 0.024015569980388
518 => 0.021783084379368
519 => 0.022090701197801
520 => 0.022569256431808
521 => 0.022353667947554
522 => 0.022048876270755
523 => 0.021802740649844
524 => 0.021429820015505
525 => 0.021954698647031
526 => 0.022644858232869
527 => 0.023370508163324
528 => 0.0242423290083
529 => 0.024047748744815
530 => 0.023354210079053
531 => 0.023385321716969
601 => 0.023577641620586
602 => 0.023328569871296
603 => 0.023255113749973
604 => 0.023567549877512
605 => 0.02356970145341
606 => 0.023283114304526
607 => 0.022964625133436
608 => 0.02296329065218
609 => 0.022906618580425
610 => 0.023712449759547
611 => 0.024155575429343
612 => 0.024206379073252
613 => 0.024152155939326
614 => 0.024173024271535
615 => 0.023915179207888
616 => 0.024504536561805
617 => 0.025045389151161
618 => 0.024900429103583
619 => 0.02468311338498
620 => 0.024510010947769
621 => 0.024859651670651
622 => 0.024844082719647
623 => 0.025040665275622
624 => 0.025031747155367
625 => 0.024965643835637
626 => 0.024900431464341
627 => 0.025158991145256
628 => 0.025084530109494
629 => 0.025009953415176
630 => 0.024860378437603
701 => 0.024880708161232
702 => 0.024663429965251
703 => 0.024562907129817
704 => 0.023051284872888
705 => 0.022647330012154
706 => 0.022774422434601
707 => 0.022816264560023
708 => 0.02264046288695
709 => 0.022892517326393
710 => 0.022853234908997
711 => 0.023006059815637
712 => 0.022910581448855
713 => 0.022914499914332
714 => 0.023195281432905
715 => 0.023276793502277
716 => 0.023235335805912
717 => 0.02326437135536
718 => 0.023933483337245
719 => 0.023838357010418
720 => 0.023787823045229
721 => 0.023801821298941
722 => 0.023972793756236
723 => 0.024020656709528
724 => 0.023817858013158
725 => 0.023913499050732
726 => 0.024320726450064
727 => 0.024463232992756
728 => 0.024918045470006
729 => 0.024724833046023
730 => 0.025079482812282
731 => 0.026169555284747
801 => 0.02704038060303
802 => 0.026239533651959
803 => 0.02783869345005
804 => 0.029083868738712
805 => 0.029036076837186
806 => 0.028818951724184
807 => 0.02740135276274
808 => 0.026096857063209
809 => 0.027188123107679
810 => 0.027190904969248
811 => 0.027097164248232
812 => 0.026514948680851
813 => 0.027076904408512
814 => 0.027121510413451
815 => 0.027096542912379
816 => 0.026650159601945
817 => 0.025968614792338
818 => 0.026101787016748
819 => 0.02631992583697
820 => 0.025906943541764
821 => 0.025774970674966
822 => 0.026020333343209
823 => 0.026810942983629
824 => 0.026661482810797
825 => 0.026657579801669
826 => 0.02729703380202
827 => 0.026839322740579
828 => 0.026103466744974
829 => 0.025917653401336
830 => 0.025258141210286
831 => 0.025713668629746
901 => 0.025730062250612
902 => 0.025480574538352
903 => 0.026123711297819
904 => 0.026117784679358
905 => 0.026728347314198
906 => 0.027895513755159
907 => 0.027550325205795
908 => 0.027148908479291
909 => 0.027192553607541
910 => 0.027671232939082
911 => 0.027381812488046
912 => 0.027485890100149
913 => 0.02767107540515
914 => 0.02778280229755
915 => 0.027176477827104
916 => 0.02703511458919
917 => 0.026745935016175
918 => 0.026670493463367
919 => 0.026906024191659
920 => 0.026843970166177
921 => 0.025728684430258
922 => 0.025612130865463
923 => 0.025615705396895
924 => 0.025322625916398
925 => 0.024875609361506
926 => 0.026050342177791
927 => 0.025955994692268
928 => 0.025851842370166
929 => 0.025864600435339
930 => 0.026374512135499
1001 => 0.026078737598248
1002 => 0.026865102682023
1003 => 0.026703449661097
1004 => 0.026537650850157
1005 => 0.02651473240413
1006 => 0.026450914007208
1007 => 0.026232056978382
1008 => 0.025967773964807
1009 => 0.025793271427442
1010 => 0.023792929464646
1011 => 0.024164181297487
1012 => 0.024591272690502
1013 => 0.024738702927909
1014 => 0.024486513304962
1015 => 0.02624201496181
1016 => 0.026562762030951
1017 => 0.025591198236709
1018 => 0.025409458319495
1019 => 0.026253929800526
1020 => 0.025744610265024
1021 => 0.025973956820675
1022 => 0.025478235013217
1023 => 0.026485503454566
1024 => 0.026477829756679
1025 => 0.026085979582805
1026 => 0.026417168666489
1027 => 0.026359616413036
1028 => 0.025917218531816
1029 => 0.026499528256491
1030 => 0.02649981707485
1031 => 0.026122669802053
1101 => 0.025682244355581
1102 => 0.025603506688137
1103 => 0.025544188432635
1104 => 0.025959368166097
1105 => 0.026331617016885
1106 => 0.027024279839886
1107 => 0.027198431730851
1108 => 0.027878158155236
1109 => 0.027473414164794
1110 => 0.027652831933445
1111 => 0.027847615301508
1112 => 0.027941001611079
1113 => 0.027788833631019
1114 => 0.028844728554647
1115 => 0.028933878437986
1116 => 0.028963769622726
1117 => 0.028607727795404
1118 => 0.028923976270693
1119 => 0.028776014082154
1120 => 0.029160970591653
1121 => 0.029221336687714
1122 => 0.029170208751936
1123 => 0.02918936990364
1124 => 0.028288349858952
1125 => 0.028241627216376
1126 => 0.027604560669558
1127 => 0.027864169996344
1128 => 0.027378842803316
1129 => 0.02753274505565
1130 => 0.027600583702044
1201 => 0.027565148642977
1202 => 0.027878847918166
1203 => 0.027612139449727
1204 => 0.026908251950585
1205 => 0.026204172677764
1206 => 0.026195333536024
1207 => 0.026009961891521
1208 => 0.025875972145056
1209 => 0.025901783323767
1210 => 0.025992745284149
1211 => 0.025870685270559
1212 => 0.025896732963058
1213 => 0.026329298213411
1214 => 0.026416046089456
1215 => 0.026121242912075
1216 => 0.024937565614995
1217 => 0.024647088237262
1218 => 0.024855877615959
1219 => 0.0247560897407
1220 => 0.01998009655433
1221 => 0.021102145310159
1222 => 0.020435462040621
1223 => 0.020742700363846
1224 => 0.020062189382443
1225 => 0.020386964891405
1226 => 0.020326990713803
1227 => 0.02213121190934
1228 => 0.022103041476997
1229 => 0.022116525172213
1230 => 0.021472913267945
1231 => 0.022498204507412
]
'min_raw' => 0.013089477616016
'max_raw' => 0.029221336687714
'avg_raw' => 0.021155407151865
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.013089'
'max' => '$0.029221'
'avg' => '$0.021155'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0020183708900312
'max_diff' => 0.0044206909406081
'year' => 2035
]
10 => [
'items' => [
101 => 0.023003299840254
102 => 0.022909820136822
103 => 0.022933346964235
104 => 0.022529078121176
105 => 0.022120439378302
106 => 0.021667196123403
107 => 0.022509266068446
108 => 0.02241564226517
109 => 0.022630381585103
110 => 0.023176524136866
111 => 0.023256945702207
112 => 0.023365033101581
113 => 0.02332629146309
114 => 0.024249274467862
115 => 0.024137495135946
116 => 0.024406851164754
117 => 0.023852765377404
118 => 0.023225764714712
119 => 0.023344937042494
120 => 0.023333459789005
121 => 0.023187341179115
122 => 0.023055431831511
123 => 0.022835839932979
124 => 0.023530661193422
125 => 0.02350245271914
126 => 0.023959115128991
127 => 0.023878395612268
128 => 0.023339330924175
129 => 0.023358583724969
130 => 0.023488068062889
131 => 0.023936214834857
201 => 0.024069255308936
202 => 0.024007625660596
203 => 0.024153498466895
204 => 0.024268790385281
205 => 0.024167977356779
206 => 0.025595277244503
207 => 0.025002562820119
208 => 0.025291447706483
209 => 0.025360345049673
210 => 0.025183865953848
211 => 0.02522213795049
212 => 0.025280109596907
213 => 0.025632102081941
214 => 0.026555832212516
215 => 0.026964945999304
216 => 0.028195785012174
217 => 0.02693097479445
218 => 0.026855926190435
219 => 0.02707763746443
220 => 0.027800270262526
221 => 0.028385896271936
222 => 0.028580182204832
223 => 0.028605860298175
224 => 0.028970353624173
225 => 0.029179274401237
226 => 0.028926094547271
227 => 0.02871155113007
228 => 0.027943083239767
229 => 0.028032035490538
301 => 0.028644828288649
302 => 0.029510434209296
303 => 0.030253214140158
304 => 0.029993118496865
305 => 0.031977464656287
306 => 0.032174204472666
307 => 0.032147021391403
308 => 0.032595223971925
309 => 0.031705633124456
310 => 0.031325315802152
311 => 0.02875793785204
312 => 0.029479266334036
313 => 0.030527759644753
314 => 0.030388987623431
315 => 0.029627543754882
316 => 0.030252636516704
317 => 0.030045961301188
318 => 0.029882947983747
319 => 0.030629743592627
320 => 0.029808611143991
321 => 0.030519568220444
322 => 0.029607758415984
323 => 0.029994306591854
324 => 0.029774883151999
325 => 0.029916877009111
326 => 0.029086783821845
327 => 0.029534681956321
328 => 0.029068149786899
329 => 0.029067928589906
330 => 0.029057629866409
331 => 0.029606502894813
401 => 0.029624401624564
402 => 0.029218783627272
403 => 0.029160327736918
404 => 0.029376469801529
405 => 0.029123424051566
406 => 0.029241822565323
407 => 0.029127010221934
408 => 0.029101163545119
409 => 0.028895212826809
410 => 0.028806483594628
411 => 0.028841276612837
412 => 0.02872251010466
413 => 0.028650948987511
414 => 0.029043394559041
415 => 0.028833726721381
416 => 0.029011259955859
417 => 0.028808938428691
418 => 0.028107603868234
419 => 0.027704258946037
420 => 0.026379502975081
421 => 0.026755202125089
422 => 0.027004291050234
423 => 0.026921967161959
424 => 0.027098830729088
425 => 0.027109688715684
426 => 0.027052188567099
427 => 0.026985610761264
428 => 0.026953204367367
429 => 0.027194735077415
430 => 0.027334951784148
501 => 0.027029290456252
502 => 0.026957678283782
503 => 0.02726671876231
504 => 0.027455233275684
505 => 0.028847118525289
506 => 0.028744003170268
507 => 0.029002802476004
508 => 0.028973665645777
509 => 0.029244928548151
510 => 0.029688328749275
511 => 0.028786772163742
512 => 0.02894325121351
513 => 0.028904886164136
514 => 0.029323745713345
515 => 0.029325053347137
516 => 0.0290739261238
517 => 0.029210066265645
518 => 0.029134076573277
519 => 0.029271400218009
520 => 0.028742626001835
521 => 0.029386615919486
522 => 0.029751716705001
523 => 0.029756786129762
524 => 0.029929841004477
525 => 0.030105674779849
526 => 0.030443172399783
527 => 0.030096262154406
528 => 0.029472204394006
529 => 0.029517259348613
530 => 0.029151374512024
531 => 0.029157525102229
601 => 0.029124692769681
602 => 0.02922322507116
603 => 0.028764248301058
604 => 0.028871969231611
605 => 0.028721159298023
606 => 0.028942923382167
607 => 0.028704341886545
608 => 0.028904867663347
609 => 0.028991407941081
610 => 0.029310743428995
611 => 0.028657175775336
612 => 0.027324507086885
613 => 0.027604650202244
614 => 0.027190296529862
615 => 0.027228646539796
616 => 0.027306119663223
617 => 0.027055003922568
618 => 0.027102908892319
619 => 0.027101197389697
620 => 0.027086448584733
621 => 0.027021123682039
622 => 0.026926389648994
623 => 0.027303780879047
624 => 0.027367907002984
625 => 0.027510451432949
626 => 0.027934566967716
627 => 0.02789218782446
628 => 0.027961309965405
629 => 0.027810416719827
630 => 0.027235646044686
701 => 0.027266858857652
702 => 0.026877634579823
703 => 0.02750049809307
704 => 0.027352995791736
705 => 0.027257900098507
706 => 0.027231952357555
707 => 0.027657119192699
708 => 0.027784335773448
709 => 0.027705062937512
710 => 0.027542472038251
711 => 0.027854694630517
712 => 0.027938232224594
713 => 0.02795693321116
714 => 0.028510131781913
715 => 0.027987850865996
716 => 0.028113569073483
717 => 0.029094386640453
718 => 0.028204920450784
719 => 0.028676090528915
720 => 0.028653029205441
721 => 0.028894063873886
722 => 0.028633257327354
723 => 0.028636490337072
724 => 0.028850512793549
725 => 0.02854995685258
726 => 0.028475534974869
727 => 0.02837272168383
728 => 0.028597210743464
729 => 0.028731781781948
730 => 0.029816325520592
731 => 0.030516990236959
801 => 0.03048657253375
802 => 0.030764533401528
803 => 0.030639309484764
804 => 0.030234928425134
805 => 0.030925157584906
806 => 0.030706740198339
807 => 0.030724746262311
808 => 0.030724076075711
809 => 0.030869304543398
810 => 0.030766396864048
811 => 0.030563555264792
812 => 0.030698210984599
813 => 0.031098090332125
814 => 0.032339328096642
815 => 0.033033941193879
816 => 0.032297511516007
817 => 0.032805490846617
818 => 0.032500884259793
819 => 0.032445528181707
820 => 0.032764576740707
821 => 0.033084183751976
822 => 0.033063826167057
823 => 0.032831807888878
824 => 0.03270074665078
825 => 0.033693186254391
826 => 0.034424398848564
827 => 0.034374535051752
828 => 0.034594617634301
829 => 0.035240786903563
830 => 0.035299864523488
831 => 0.035292422101261
901 => 0.035145992056166
902 => 0.035782229617437
903 => 0.036312990184584
904 => 0.035112097731497
905 => 0.035569381856796
906 => 0.035774671433417
907 => 0.03607609743857
908 => 0.036584653634126
909 => 0.037137080550369
910 => 0.037215199773379
911 => 0.037159770446305
912 => 0.03679543004501
913 => 0.037399902168587
914 => 0.037753987761963
915 => 0.037964837629713
916 => 0.038499517812256
917 => 0.035775939231954
918 => 0.033848054942177
919 => 0.033546987971342
920 => 0.034159219495409
921 => 0.034320660065851
922 => 0.034255583574335
923 => 0.03208557453062
924 => 0.03353556332282
925 => 0.035095629344707
926 => 0.035155557834177
927 => 0.035936559504175
928 => 0.036190885662267
929 => 0.036819694374845
930 => 0.036780362218667
1001 => 0.036933467133648
1002 => 0.036898270965101
1003 => 0.038063006693856
1004 => 0.039347883167601
1005 => 0.039303391980973
1006 => 0.039118675785903
1007 => 0.039393010834373
1008 => 0.040719141051009
1009 => 0.040597052231465
1010 => 0.040715651120151
1011 => 0.04227923338299
1012 => 0.044312112741663
1013 => 0.043367636181808
1014 => 0.045416878550883
1015 => 0.046706767996545
1016 => 0.04893749841576
1017 => 0.048658199980695
1018 => 0.049526606963039
1019 => 0.048158197490587
1020 => 0.045016052740653
1021 => 0.04451879630633
1022 => 0.045514316280384
1023 => 0.04796170499518
1024 => 0.045437239300239
1025 => 0.045947935422454
1026 => 0.0458008549049
1027 => 0.045793017609171
1028 => 0.046092135310543
1029 => 0.045658249483773
1030 => 0.04389052057094
1031 => 0.044700660314399
1101 => 0.044387826453344
1102 => 0.044734938945494
1103 => 0.046608161905549
1104 => 0.045779965382851
1105 => 0.04490752762341
1106 => 0.046001758183186
1107 => 0.047395089704195
1108 => 0.047307897521668
1109 => 0.04713870824406
1110 => 0.048092419343473
1111 => 0.04966767066857
1112 => 0.050093454771871
1113 => 0.050407759892156
1114 => 0.050451097258014
1115 => 0.050897499060382
1116 => 0.048497084061314
1117 => 0.052306604311863
1118 => 0.05296440322326
1119 => 0.052840764290889
1120 => 0.053571880096497
1121 => 0.053356767279869
1122 => 0.053045102558743
1123 => 0.054204076623422
1124 => 0.052875406382651
1125 => 0.050989526250809
1126 => 0.049954895112
1127 => 0.051317380856896
1128 => 0.052149403357105
1129 => 0.052699317303173
1130 => 0.052865720930986
1201 => 0.048683421444587
1202 => 0.046429393982381
1203 => 0.047874199743178
1204 => 0.049636962486516
1205 => 0.048487291825271
1206 => 0.048532356738577
1207 => 0.046893228503777
1208 => 0.049781988964342
1209 => 0.049361120863537
1210 => 0.051544585315014
1211 => 0.051023484000272
1212 => 0.05280401449885
1213 => 0.052335141146499
1214 => 0.05428140821775
1215 => 0.05505782684555
1216 => 0.056361554561535
1217 => 0.057320581976541
1218 => 0.057883741217903
1219 => 0.057849931249409
1220 => 0.060081448728507
1221 => 0.058765600834365
1222 => 0.057112585757787
1223 => 0.057082687930247
1224 => 0.057938807861812
1225 => 0.059733000373339
1226 => 0.060198208387138
1227 => 0.060458196202008
1228 => 0.060060015813294
1229 => 0.058631757231872
1230 => 0.058015042417849
1231 => 0.058540501307345
]
'min_raw' => 0.021667196123403
'max_raw' => 0.060458196202008
'avg_raw' => 0.041062696162705
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.021667'
'max' => '$0.060458'
'avg' => '$0.041062'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.008577718507387
'max_diff' => 0.031236859514294
'year' => 2036
]
11 => [
'items' => [
101 => 0.057897910238689
102 => 0.059007202702399
103 => 0.060530498187157
104 => 0.060215943693318
105 => 0.061267452205578
106 => 0.062355652893846
107 => 0.06391182875222
108 => 0.064318670746624
109 => 0.064991165092559
110 => 0.06568338267741
111 => 0.065905704309877
112 => 0.066330185288608
113 => 0.066327948064321
114 => 0.067607150064592
115 => 0.06901814948448
116 => 0.069550769100776
117 => 0.070775498539632
118 => 0.06867819229523
119 => 0.070269023173726
120 => 0.07170399244721
121 => 0.069993162922524
122 => 0.072351142850149
123 => 0.072442697867441
124 => 0.073825069929431
125 => 0.072423771014162
126 => 0.071591684191379
127 => 0.073993887670866
128 => 0.075156238265889
129 => 0.074806128807145
130 => 0.072141778539068
131 => 0.070591012403689
201 => 0.066532358306954
202 => 0.071340009405346
203 => 0.073681676014267
204 => 0.072135714188256
205 => 0.072915407410067
206 => 0.077169160811891
207 => 0.078788714697169
208 => 0.078451858810567
209 => 0.078508781910283
210 => 0.079382663789797
211 => 0.083257937299101
212 => 0.080935783584189
213 => 0.0827109830898
214 => 0.083652542506618
215 => 0.084527115366635
216 => 0.082379440834024
217 => 0.079585347822703
218 => 0.078700341277972
219 => 0.071981998752237
220 => 0.07163227984749
221 => 0.071435972028688
222 => 0.070198278999433
223 => 0.069225791311093
224 => 0.068452432995171
225 => 0.06642290982985
226 => 0.067107814320869
227 => 0.063873177989752
228 => 0.065942583685927
301 => 0.06078002599844
302 => 0.06507955744681
303 => 0.062739517955169
304 => 0.064310791538645
305 => 0.064305309513135
306 => 0.061412096673212
307 => 0.059743351886956
308 => 0.060806741013277
309 => 0.061946778568627
310 => 0.062131745826436
311 => 0.063609834274972
312 => 0.064022336989554
313 => 0.062772434506461
314 => 0.060673043465248
315 => 0.06116068412211
316 => 0.059733469864609
317 => 0.057232331775341
318 => 0.059028692816734
319 => 0.059642049456686
320 => 0.059912942691045
321 => 0.057453360637901
322 => 0.056680506556678
323 => 0.05626904552871
324 => 0.060355542308296
325 => 0.060579409826626
326 => 0.05943407195117
327 => 0.064611107753628
328 => 0.06343938510776
329 => 0.064748486382212
330 => 0.061116435843707
331 => 0.061255185065483
401 => 0.059535714134363
402 => 0.060498502960701
403 => 0.059818034850378
404 => 0.060420719137997
405 => 0.060781965615036
406 => 0.062501154397896
407 => 0.065099187821139
408 => 0.062244364923631
409 => 0.061000477705369
410 => 0.061772178339691
411 => 0.063827318822411
412 => 0.066940961854438
413 => 0.065097622511572
414 => 0.065915665210004
415 => 0.066094371147425
416 => 0.064735160960128
417 => 0.066991077872801
418 => 0.068200042073339
419 => 0.069440189183199
420 => 0.070516974170557
421 => 0.068944847156101
422 => 0.070627248417124
423 => 0.069271529984541
424 => 0.068055310398918
425 => 0.068057154901996
426 => 0.067294202589802
427 => 0.065815886346748
428 => 0.065543262150089
429 => 0.066961487649752
430 => 0.068098770194027
501 => 0.06819244223159
502 => 0.068822100283787
503 => 0.069194725433084
504 => 0.07284695845552
505 => 0.07431591679
506 => 0.076112131235444
507 => 0.076811857991043
508 => 0.078917784659472
509 => 0.077217077839714
510 => 0.076849119221312
511 => 0.071740829967067
512 => 0.072577312046278
513 => 0.07391660056361
514 => 0.071762914341427
515 => 0.073128932539168
516 => 0.073398613467624
517 => 0.071689732907716
518 => 0.072602519851133
519 => 0.070178428351885
520 => 0.065152026391545
521 => 0.066996673695056
522 => 0.068354955012008
523 => 0.066416520097838
524 => 0.069891089653697
525 => 0.067861317848839
526 => 0.067217977632928
527 => 0.064708078083313
528 => 0.065892654055838
529 => 0.067494810020172
530 => 0.066504863904836
531 => 0.068559150735316
601 => 0.071468568745561
602 => 0.073541993278499
603 => 0.073701165068323
604 => 0.072368092002299
605 => 0.074504350098161
606 => 0.074519910406184
607 => 0.07211020254718
608 => 0.07063426990085
609 => 0.070298934898214
610 => 0.071136667481097
611 => 0.072153829490682
612 => 0.073757610480767
613 => 0.074726741744222
614 => 0.077253722091805
615 => 0.077937450519657
616 => 0.078688660768359
617 => 0.079692509325287
618 => 0.080897886899365
619 => 0.078260589389465
620 => 0.078365374136071
621 => 0.075909559210722
622 => 0.073285168763501
623 => 0.075276753978054
624 => 0.077880486716604
625 => 0.077283187549512
626 => 0.077215979191499
627 => 0.077329005007632
628 => 0.076878660941612
629 => 0.074841771421531
630 => 0.07381885825615
701 => 0.075138677212472
702 => 0.075840102249374
703 => 0.076927951310917
704 => 0.076793850952374
705 => 0.079596033308449
706 => 0.080684876638424
707 => 0.080406303920383
708 => 0.08045756800473
709 => 0.082428866843713
710 => 0.084621356581189
711 => 0.086674912544839
712 => 0.088763877873343
713 => 0.086245548636126
714 => 0.084966896358422
715 => 0.086286139123076
716 => 0.085586130342464
717 => 0.089608588431951
718 => 0.089887094702663
719 => 0.093909261922646
720 => 0.097726777565173
721 => 0.095329064387999
722 => 0.097589999918701
723 => 0.10003538603193
724 => 0.10475293259396
725 => 0.10316422887716
726 => 0.10194730672825
727 => 0.10079732117766
728 => 0.10319025855338
729 => 0.10626873425913
730 => 0.10693180844088
731 => 0.10800624192914
801 => 0.10687660649171
802 => 0.10823712795083
803 => 0.11304036654495
804 => 0.11174248907746
805 => 0.10989929442941
806 => 0.11369098999153
807 => 0.11506318987562
808 => 0.12469400728882
809 => 0.1368533121022
810 => 0.13181928006716
811 => 0.12869449393581
812 => 0.1294288927976
813 => 0.133869059297
814 => 0.13529509985277
815 => 0.13141863003654
816 => 0.13278786470981
817 => 0.14033248237976
818 => 0.14437992769937
819 => 0.13888295331091
820 => 0.12371701898631
821 => 0.10973333491818
822 => 0.11344243762655
823 => 0.11302194048628
824 => 0.12112769096241
825 => 0.1117115351291
826 => 0.11187007904425
827 => 0.12014344785609
828 => 0.11793625489854
829 => 0.11436088498323
830 => 0.1097594390753
831 => 0.10125324073227
901 => 0.093719063646958
902 => 0.10849531992862
903 => 0.10785814088887
904 => 0.10693541121468
905 => 0.10898884625481
906 => 0.118959743932
907 => 0.1187298824679
908 => 0.11726762110961
909 => 0.11837673346209
910 => 0.11416645222536
911 => 0.11525153756639
912 => 0.10973111983118
913 => 0.1122265792005
914 => 0.11435321384517
915 => 0.11478016723545
916 => 0.11574211502454
917 => 0.10752237648857
918 => 0.11121279777237
919 => 0.1133805745309
920 => 0.10358648027149
921 => 0.1131869767778
922 => 0.10737928912792
923 => 0.10540807271101
924 => 0.10806205592837
925 => 0.10702779608748
926 => 0.10613860021006
927 => 0.10564241363214
928 => 0.10759120599752
929 => 0.10750029250437
930 => 0.1043116899503
1001 => 0.10015228790258
1002 => 0.10154831975751
1003 => 0.10104112829675
1004 => 0.099203001013932
1005 => 0.10044167686621
1006 => 0.094987175292266
1007 => 0.08560298883461
1008 => 0.091802469853943
1009 => 0.091563796578436
1010 => 0.091443446689954
1011 => 0.096102185334913
1012 => 0.095654355109588
1013 => 0.094841538865456
1014 => 0.09918807300619
1015 => 0.097601529575688
1016 => 0.10249088259185
1017 => 0.10571132671182
1018 => 0.10489451791254
1019 => 0.10792336117313
1020 => 0.10158048151186
1021 => 0.10368733170317
1022 => 0.10412155060764
1023 => 0.099134437449589
1024 => 0.095727625672861
1025 => 0.09550043016785
1026 => 0.089593488034586
1027 => 0.092748928843005
1028 => 0.095525586173401
1029 => 0.094195782789454
1030 => 0.093774806764843
1031 => 0.095925481976023
1101 => 0.096092607859219
1102 => 0.092282120011138
1103 => 0.093074441097211
1104 => 0.096378551738554
1105 => 0.092991185986524
1106 => 0.086410087653383
1107 => 0.084777884275961
1108 => 0.084560118257936
1109 => 0.080133453246685
1110 => 0.084886955910324
1111 => 0.082811924611694
1112 => 0.089366923621374
1113 => 0.08562274334221
1114 => 0.085461339213773
1115 => 0.085217353200804
1116 => 0.081407139762391
1117 => 0.082241334353707
1118 => 0.085014324226665
1119 => 0.086003758253304
1120 => 0.085900552178131
1121 => 0.085000735063489
1122 => 0.085412666730763
1123 => 0.084085691303965
1124 => 0.083617108662158
1125 => 0.082138132950805
1126 => 0.079964447232583
1127 => 0.080266711563691
1128 => 0.075960071380087
1129 => 0.073613585237366
1130 => 0.072964108799251
1201 => 0.072095601762714
1202 => 0.073062208980036
1203 => 0.075947871209548
1204 => 0.072467150333364
1205 => 0.066499698535326
1206 => 0.066858352556431
1207 => 0.06766414165652
1208 => 0.066162558999333
1209 => 0.064741437032586
1210 => 0.065976987283403
1211 => 0.063448499289048
1212 => 0.067969697350644
1213 => 0.067847411613589
1214 => 0.069532634661939
1215 => 0.070586439218331
1216 => 0.068157760889124
1217 => 0.067546954857173
1218 => 0.067894897732559
1219 => 0.062144177054768
1220 => 0.06906267809463
1221 => 0.06912250957892
1222 => 0.068610196085683
1223 => 0.072294084304655
1224 => 0.080068237480234
1225 => 0.077143288340994
1226 => 0.076010659627225
1227 => 0.073857531614402
1228 => 0.076726446851397
1229 => 0.076506158923245
1230 => 0.075509933370428
1231 => 0.07490741304767
]
'min_raw' => 0.05626904552871
'max_raw' => 0.14437992769937
'avg_raw' => 0.10032448661404
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.056269'
'max' => '$0.144379'
'avg' => '$0.100324'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.034601849405307
'max_diff' => 0.083921731497359
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017662210419481
]
1 => [
'year' => 2028
'avg' => 0.0030313480456149
]
2 => [
'year' => 2029
'avg' => 0.0082810965132915
]
3 => [
'year' => 2030
'avg' => 0.0063888536274255
]
4 => [
'year' => 2031
'avg' => 0.0062746460240454
]
5 => [
'year' => 2032
'avg' => 0.01100142918393
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017662210419481
'min' => '$0.001766'
'max_raw' => 0.01100142918393
'max' => '$0.0110014'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01100142918393
]
1 => [
'year' => 2033
'avg' => 0.028296807124689
]
2 => [
'year' => 2034
'avg' => 0.017935876236545
]
3 => [
'year' => 2035
'avg' => 0.021155407151865
]
4 => [
'year' => 2036
'avg' => 0.041062696162705
]
5 => [
'year' => 2037
'avg' => 0.10032448661404
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01100142918393
'min' => '$0.0110014'
'max_raw' => 0.10032448661404
'max' => '$0.100324'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.10032448661404
]
]
]
]
'prediction_2025_max_price' => '$0.003019'
'last_price' => 0.00292819
'sma_50day_nextmonth' => '$0.002753'
'sma_200day_nextmonth' => '$0.003467'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.00288'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002849'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002794'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002844'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002912'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00349'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003468'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002886'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002859'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002833'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002842'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0030065'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003245'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0034046'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003549'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003132'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005397'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00287'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00287'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002998'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003224'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003533'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004461'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003047'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.22'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.8
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002844'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002912'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 60.46
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.04
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000029'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.34
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000716'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767690583
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Rave para 2026
A previsão de preço para Rave em 2026 sugere que o preço médio poderia variar entre $0.001011 na extremidade inferior e $0.003019 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Rave poderia potencialmente ganhar 3.13% até 2026 se KRAV atingir a meta de preço prevista.
Previsão de preço de Rave 2027-2032
A previsão de preço de KRAV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001766 na extremidade inferior e $0.0110014 na extremidade superior. Considerando a volatilidade de preços no mercado, se Rave atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Rave | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000973 | $0.001766 | $0.002558 |
| 2028 | $0.001757 | $0.003031 | $0.004305 |
| 2029 | $0.003861 | $0.008281 | $0.0127011 |
| 2030 | $0.003283 | $0.006388 | $0.009494 |
| 2031 | $0.003882 | $0.006274 | $0.008666 |
| 2032 | $0.005926 | $0.0110014 | $0.016076 |
Previsão de preço de Rave 2032-2037
A previsão de preço de Rave para 2032-2037 é atualmente estimada entre $0.0110014 na extremidade inferior e $0.100324 na extremidade superior. Comparado ao preço atual, Rave poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Rave | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005926 | $0.0110014 | $0.016076 |
| 2033 | $0.01377 | $0.028296 | $0.042822 |
| 2034 | $0.011071 | $0.017935 | $0.02480064 |
| 2035 | $0.013089 | $0.021155 | $0.029221 |
| 2036 | $0.021667 | $0.041062 | $0.060458 |
| 2037 | $0.056269 | $0.100324 | $0.144379 |
Rave Histograma de preços potenciais
Previsão de preço de Rave baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Rave é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de KRAV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Rave
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Rave está projetado para aumentar no próximo mês, alcançando $0.003467 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Rave é esperado para alcançar $0.002753 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 54.22, sugerindo que o mercado de KRAV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KRAV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.00288 | BUY |
| SMA 5 | $0.002849 | BUY |
| SMA 10 | $0.002794 | BUY |
| SMA 21 | $0.002844 | BUY |
| SMA 50 | $0.002912 | BUY |
| SMA 100 | $0.00349 | SELL |
| SMA 200 | $0.003468 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002886 | BUY |
| EMA 5 | $0.002859 | BUY |
| EMA 10 | $0.002833 | BUY |
| EMA 21 | $0.002842 | BUY |
| EMA 50 | $0.0030065 | SELL |
| EMA 100 | $0.003245 | SELL |
| EMA 200 | $0.0034046 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.003549 | SELL |
| SMA 50 | $0.003132 | SELL |
| SMA 100 | $0.005397 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003224 | SELL |
| EMA 50 | $0.003533 | SELL |
| EMA 100 | $0.004461 | SELL |
| EMA 200 | $0.003047 | SELL |
Osciladores de Rave
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 54.22 | NEUTRAL |
| Stoch RSI (14) | 91.8 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 60.46 | NEUTRAL |
| Índice Direcional Médio (14) | 13.04 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000029 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.34 | SELL |
| VWMA (10) | 0.002844 | BUY |
| Média Móvel de Hull (9) | 0.002912 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000716 | NEUTRAL |
Previsão do preço de Rave com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Rave
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Rave por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.004114 | $0.005781 | $0.008124 | $0.011415 | $0.016041 | $0.02254 |
| Amazon.com stock | $0.0061098 | $0.012748 | $0.0266006 | $0.0555037 | $0.115811 | $0.241648 |
| Apple stock | $0.004153 | $0.005891 | $0.008356 | $0.011852 | $0.016812 | $0.023847 |
| Netflix stock | $0.00462 | $0.007289 | $0.0115024 | $0.018149 | $0.028636 | $0.045183 |
| Google stock | $0.003791 | $0.00491 | $0.006359 | $0.008235 | $0.010664 | $0.01381 |
| Tesla stock | $0.006637 | $0.015047 | $0.034112 | $0.077329 | $0.175301 | $0.397394 |
| Kodak stock | $0.002195 | $0.001646 | $0.001234 | $0.000925 | $0.000694 | $0.00052 |
| Nokia stock | $0.001939 | $0.001285 | $0.000851 | $0.000563 | $0.000373 | $0.000247 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Rave
Você pode fazer perguntas como: 'Devo investir em Rave agora?', 'Devo comprar KRAV hoje?', 'Rave será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Rave regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Rave, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Rave para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Rave é de $0.002928 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Rave com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Rave tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0030043 | $0.003082 | $0.003162 | $0.003244 |
| Se Rave tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00308 | $0.00324 | $0.003409 | $0.003586 |
| Se Rave tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0033087 | $0.003738 | $0.004224 | $0.004773 |
| Se Rave tiver 10% da média anterior do crescimento anual do Bitcoin | $0.003689 | $0.004648 | $0.005856 | $0.007378 |
| Se Rave tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00445 | $0.006764 | $0.01028 | $0.015624 |
| Se Rave tiver 50% da média anterior do crescimento anual do Bitcoin | $0.006733 | $0.015485 | $0.035611 | $0.081894 |
| Se Rave tiver 100% da média anterior do crescimento anual do Bitcoin | $0.010539 | $0.037935 | $0.13654 | $0.491452 |
Perguntas Frequentes sobre Rave
KRAV é um bom investimento?
A decisão de adquirir Rave depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Rave experimentou uma escalada de 1.8151% nas últimas 24 horas, e Rave registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Rave dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Rave pode subir?
Parece que o valor médio de Rave pode potencialmente subir para $0.003019 até o final deste ano. Observando as perspectivas de Rave em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.009494. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Rave na próxima semana?
Com base na nossa nova previsão experimental de Rave, o preço de Rave aumentará 0.86% na próxima semana e atingirá $0.002953 até 13 de janeiro de 2026.
Qual será o preço de Rave no próximo mês?
Com base na nossa nova previsão experimental de Rave, o preço de Rave diminuirá -11.62% no próximo mês e atingirá $0.002587 até 5 de fevereiro de 2026.
Até onde o preço de Rave pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Rave em 2026, espera-se que KRAV fluctue dentro do intervalo de $0.001011 e $0.003019. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Rave não considera flutuações repentinas e extremas de preço.
Onde estará Rave em 5 anos?
O futuro de Rave parece seguir uma tendência de alta, com um preço máximo de $0.009494 projetada após um período de cinco anos. Com base na previsão de Rave para 2030, o valor de Rave pode potencialmente atingir seu pico mais alto de aproximadamente $0.009494, enquanto seu pico mais baixo está previsto para cerca de $0.003283.
Quanto será Rave em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Rave, espera-se que o valor de KRAV em 2026 aumente 3.13% para $0.003019 se o melhor cenário ocorrer. O preço ficará entre $0.003019 e $0.001011 durante 2026.
Quanto será Rave em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Rave, o valor de KRAV pode diminuir -12.62% para $0.002558 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.002558 e $0.000973 ao longo do ano.
Quanto será Rave em 2028?
Nosso novo modelo experimental de previsão de preços de Rave sugere que o valor de KRAV em 2028 pode aumentar 47.02%, alcançando $0.004305 no melhor cenário. O preço é esperado para variar entre $0.004305 e $0.001757 durante o ano.
Quanto será Rave em 2029?
Com base no nosso modelo de previsão experimental, o valor de Rave pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0127011 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0127011 e $0.003861.
Quanto será Rave em 2030?
Usando nossa nova simulação experimental para previsões de preços de Rave, espera-se que o valor de KRAV em 2030 aumente 224.23%, alcançando $0.009494 no melhor cenário. O preço está previsto para variar entre $0.009494 e $0.003283 ao longo de 2030.
Quanto será Rave em 2031?
Nossa simulação experimental indica que o preço de Rave poderia aumentar 195.98% em 2031, potencialmente atingindo $0.008666 sob condições ideais. O preço provavelmente oscilará entre $0.008666 e $0.003882 durante o ano.
Quanto será Rave em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Rave, KRAV poderia ver um 449.04% aumento em valor, atingindo $0.016076 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.016076 e $0.005926 ao longo do ano.
Quanto será Rave em 2033?
De acordo com nossa previsão experimental de preços de Rave, espera-se que o valor de KRAV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.042822. Ao longo do ano, o preço de KRAV poderia variar entre $0.042822 e $0.01377.
Quanto será Rave em 2034?
Os resultados da nossa nova simulação de previsão de preços de Rave sugerem que KRAV pode aumentar 746.96% em 2034, atingindo potencialmente $0.02480064 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.02480064 e $0.011071.
Quanto será Rave em 2035?
Com base em nossa previsão experimental para o preço de Rave, KRAV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.029221 em 2035. A faixa de preço esperada para o ano está entre $0.029221 e $0.013089.
Quanto será Rave em 2036?
Nossa recente simulação de previsão de preços de Rave sugere que o valor de KRAV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.060458 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.060458 e $0.021667.
Quanto será Rave em 2037?
De acordo com a simulação experimental, o valor de Rave poderia aumentar 4830.69% em 2037, com um pico de $0.144379 sob condições favoráveis. O preço é esperado para cair entre $0.144379 e $0.056269 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Decubate
Previsão de Preço do GraphLinq Protocol
Previsão de Preço do RocketX Exchange
Previsão de Preço do TempleDAO
Previsão de Preço do sETH
Previsão de Preço do Samoyedcoin
Previsão de Preço do Rowan Coin
Previsão de Preço do KONDUX
Previsão de Preço do Vara Network
Previsão de Preço do Altura
Previsão de Preço do Avalaunch
Previsão de Preço do dForce Token
Previsão de Preço do Hatom
Previsão de Preço do Paris Saint-Germain Fan Token
Previsão de Preço do Qredo
Previsão de Preço do Proton
Previsão de Preço do Unifi Protocol DAO
Previsão de Preço do Pirate Chain
Previsão de Preço do Abelian
Previsão de Preço do FAR Labs
Previsão de Preço do Gamium
Previsão de Preço do Arkadiko
Previsão de Preço do League of Kingdoms
Previsão de Preço do Crust Network
Previsão de Preço do Tranchess
Como ler e prever os movimentos de preço de Rave?
Traders de Rave utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Rave
Médias móveis são ferramentas populares para a previsão de preço de Rave. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KRAV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KRAV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KRAV.
Como ler gráficos de Rave e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Rave em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KRAV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Rave?
A ação de preço de Rave é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KRAV. A capitalização de mercado de Rave pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KRAV, grandes detentores de Rave, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Rave.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


