Previsão de Preço Rave - Projeção KRAV
Previsão de Preço Rave até $0.003033 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001016 | $0.003033 |
| 2027 | $0.000978 | $0.002569 |
| 2028 | $0.001765 | $0.004323 |
| 2029 | $0.003877 | $0.012756 |
| 2030 | $0.003297 | $0.009535 |
| 2031 | $0.003899 | $0.0087045 |
| 2032 | $0.005951 | $0.016146 |
| 2033 | $0.01383 | $0.0430083 |
| 2034 | $0.011119 | $0.0249081 |
| 2035 | $0.013146 | $0.029347 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Rave hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.59, com um retorno de 39.58% nos próximos 90 dias.
Previsão de preço de longo prazo de Rave para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Rave'
'name_with_ticker' => 'Rave <small>KRAV</small>'
'name_lang' => 'Rave'
'name_lang_with_ticker' => 'Rave <small>KRAV</small>'
'name_with_lang' => 'Rave'
'name_with_lang_with_ticker' => 'Rave <small>KRAV</small>'
'image' => '/uploads/coins/krav.png?1717261458'
'price_for_sd' => 0.00294
'ticker' => 'KRAV'
'marketcap' => '$2.94M'
'low24h' => '$0.002862'
'high24h' => '$0.00296'
'volume24h' => '$204.38'
'current_supply' => '1B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00294'
'change_24h_pct' => '2.2727%'
'ath_price' => '$0.0747'
'ath_days' => 637
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2024'
'ath_pct' => '-96.07%'
'fdv' => '$29.39M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1450056'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002966'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002599'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001016'
'current_year_max_price_prediction' => '$0.003033'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003297'
'grand_prediction_max_price' => '$0.009535'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029966081290971
107 => 0.0030077963760824
108 => 0.0030330040678263
109 => 0.0028176071018146
110 => 0.0029143140158312
111 => 0.0029711202676035
112 => 0.0027144675554671
113 => 0.002966047068686
114 => 0.0028138575198513
115 => 0.0027622021011665
116 => 0.0028317493173417
117 => 0.0028046466995613
118 => 0.0027813454603129
119 => 0.0027683429684462
120 => 0.0028194107683591
121 => 0.0028170283944539
122 => 0.0027334715619636
123 => 0.0026244750801922
124 => 0.0026610578771622
125 => 0.0026477670040575
126 => 0.0025995991653691
127 => 0.002632058472838
128 => 0.0024891241100243
129 => 0.0022432129678849
130 => 0.0024056694008441
131 => 0.0023994150048938
201 => 0.0023962612548414
202 => 0.0025183427742443
203 => 0.0025066074530535
204 => 0.0024853077301798
205 => 0.002599207979255
206 => 0.002557632856168
207 => 0.0026857575891912
208 => 0.0027701488249485
209 => 0.00274874447779
210 => 0.0028281148429179
211 => 0.0026619006709176
212 => 0.002717110351501
213 => 0.0027284889901519
214 => 0.0025978024678617
215 => 0.0025085274967335
216 => 0.0025025738739684
217 => 0.0023477833768809
218 => 0.0024304712109998
219 => 0.0025032330831694
220 => 0.0024683857929496
221 => 0.0024573541818991
222 => 0.0025137122902912
223 => 0.0025180917979878
224 => 0.0024182385583855
225 => 0.0024390012088396
226 => 0.002525584912737
227 => 0.0024368195216523
228 => 0.0022643628665191
301 => 0.0022215912316462
302 => 0.0022158847071165
303 => 0.0020998846410802
304 => 0.0022244494368089
305 => 0.0021700735653444
306 => 0.002341846291778
307 => 0.0022437306316747
308 => 0.0022395010616689
309 => 0.0022331074462622
310 => 0.0021332613975224
311 => 0.002155121336649
312 => 0.0022277871036685
313 => 0.0022537150679796
314 => 0.0022510105688804
315 => 0.0022274310017675
316 => 0.0022382256068448
317 => 0.0022034524228009
318 => 0.0021911732877737
319 => 0.0021524169599859
320 => 0.0020954558648465
321 => 0.0021033766544884
322 => 0.001990521820336
323 => 0.0019290325170305
324 => 0.0019120130882915
325 => 0.0018892539968908
326 => 0.0019145837882248
327 => 0.0019902021167703
328 => 0.0018989903692211
329 => 0.001742614225808
330 => 0.0017520126984792
331 => 0.0017731282761395
401 => 0.0017337795368629
402 => 0.001696539257427
403 => 0.0017289166589972
404 => 0.0016626580255628
405 => 0.0017811353154357
406 => 0.0017779308367734
407 => 0.0018220918438516
408 => 0.0018497066278527
409 => 0.0017860634911227
410 => 0.0017700574143444
411 => 0.001779175203113
412 => 0.0016284784648948
413 => 0.001809776705321
414 => 0.0018113445800328
415 => 0.0017979194848662
416 => 0.001894455200938
417 => 0.0020981756720944
418 => 0.0020215278362084
419 => 0.0019918474774602
420 => 0.0019354250937838
421 => 0.002010604570003
422 => 0.0020048319592119
423 => 0.0019787260240168
424 => 0.0019629370729554
425 => 0.0019920286994018
426 => 0.0019593322984959
427 => 0.0019534591264562
428 => 0.0019178740939698
429 => 0.001905171856388
430 => 0.0018957676253731
501 => 0.0018854144910663
502 => 0.0019082509255067
503 => 0.0018565005606815
504 => 0.0017940946938531
505 => 0.0017889063212672
506 => 0.0018032318741433
507 => 0.0017968938834076
508 => 0.0017888759774059
509 => 0.0017735676113019
510 => 0.0017690259460904
511 => 0.0017837841547252
512 => 0.0017671229976335
513 => 0.0017917074425026
514 => 0.0017850218338176
515 => 0.0017476765671737
516 => 0.0017011305379468
517 => 0.0017007161806531
518 => 0.0016906879150069
519 => 0.0016779154109467
520 => 0.0016743623925125
521 => 0.0017261899245448
522 => 0.0018334713647843
523 => 0.001812409451038
524 => 0.0018276288422314
525 => 0.001902493183718
526 => 0.0019262903066273
527 => 0.001909399672452
528 => 0.001886278730624
529 => 0.0018872959347237
530 => 0.0019663071921352
531 => 0.0019712350273428
601 => 0.0019836860771324
602 => 0.0019996891947784
603 => 0.0019121250725866
604 => 0.0018831716724429
605 => 0.0018694519451814
606 => 0.0018272004954185
607 => 0.0018727650616222
608 => 0.0018462165401646
609 => 0.0018497988427358
610 => 0.0018474658634868
611 => 0.0018487398279121
612 => 0.0017811021986186
613 => 0.001805745795804
614 => 0.001764771035779
615 => 0.0017099104317382
616 => 0.0017097265197568
617 => 0.0017231535748748
618 => 0.0017151666370899
619 => 0.0016936739928736
620 => 0.0016967269215421
621 => 0.0016699800539635
622 => 0.0016999744755338
623 => 0.0017008346082193
624 => 0.0016892851221075
625 => 0.0017354956669691
626 => 0.0017544281649032
627 => 0.0017468260457304
628 => 0.0017538947799563
629 => 0.001813284668643
630 => 0.0018229678118614
701 => 0.0018272684244465
702 => 0.0018215061733045
703 => 0.001754980318098
704 => 0.0017579310226661
705 => 0.001736280710368
706 => 0.0017179884779298
707 => 0.0017187200712972
708 => 0.0017281246565942
709 => 0.0017691950321579
710 => 0.0018556252163007
711 => 0.0018589051786093
712 => 0.0018628805886106
713 => 0.0018467105982545
714 => 0.0018418335744372
715 => 0.0018482676277189
716 => 0.0018807262605998
717 => 0.0019642186768022
718 => 0.0019347068806453
719 => 0.0019107133309912
720 => 0.0019317621426524
721 => 0.0019285218430832
722 => 0.0019011704537969
723 => 0.0019004027913963
724 => 0.0018479067305879
725 => 0.0018285001321845
726 => 0.0018122825259999
727 => 0.0017945733234177
728 => 0.0017840747145091
729 => 0.0018002053493251
730 => 0.0018038946163596
731 => 0.0017686247014191
801 => 0.0017638175423395
802 => 0.0017926197162339
803 => 0.0017799449533563
804 => 0.0017929812612949
805 => 0.0017960057965601
806 => 0.0017955187767214
807 => 0.0017822848685899
808 => 0.0017907197669921
809 => 0.0017707687177067
810 => 0.0017490749481595
811 => 0.001735235674758
812 => 0.0017231590732019
813 => 0.0017298598736414
814 => 0.0017059727435924
815 => 0.0016983307699368
816 => 0.0017878622132047
817 => 0.0018540000529719
818 => 0.0018530383825883
819 => 0.0018471844614492
820 => 0.0018384867220611
821 => 0.0018800899667886
822 => 0.0018655962282087
823 => 0.001876141634018
824 => 0.0018788258823857
825 => 0.0018869502937511
826 => 0.0018898540724974
827 => 0.0018810768363219
828 => 0.001851619359668
829 => 0.0017782141285791
830 => 0.0017440437953536
831 => 0.0017327670162372
901 => 0.0017331769057405
902 => 0.0017218703234142
903 => 0.0017252006186347
904 => 0.0017207121826449
905 => 0.0017122121707494
906 => 0.0017293350218593
907 => 0.0017313082709393
908 => 0.0017273115928874
909 => 0.0017282529552505
910 => 0.0016951621679844
911 => 0.0016976779886709
912 => 0.0016836695793938
913 => 0.0016810431715283
914 => 0.0016456311327276
915 => 0.0015828935729352
916 => 0.0016176562711425
917 => 0.0015756678200831
918 => 0.0015597661574381
919 => 0.0016350421551837
920 => 0.0016274865328413
921 => 0.001614554591741
922 => 0.001595425555601
923 => 0.0015883304100214
924 => 0.0015452225515298
925 => 0.0015426755092787
926 => 0.0015640409279572
927 => 0.0015541815223762
928 => 0.0015403351828916
929 => 0.0014901851448595
930 => 0.0014337998980043
1001 => 0.0014355018141818
1002 => 0.0014534369121217
1003 => 0.0015055856282591
1004 => 0.0014852102226823
1005 => 0.0014704276321554
1006 => 0.0014676592973128
1007 => 0.00150231080377
1008 => 0.001551349945122
1009 => 0.0015743580130554
1010 => 0.0015515577164988
1011 => 0.0015253659634697
1012 => 0.0015269601341157
1013 => 0.0015375654372224
1014 => 0.001538679904628
1015 => 0.0015216317659618
1016 => 0.0015264307171363
1017 => 0.0015191406714769
1018 => 0.0014744016747219
1019 => 0.0014735924881395
1020 => 0.001462612816822
1021 => 0.0014622803567381
1022 => 0.0014436011968197
1023 => 0.0014409878532242
1024 => 0.0014038992474623
1025 => 0.0014283110800894
1026 => 0.0014119369044419
1027 => 0.0013872571594635
1028 => 0.0013830023621269
1029 => 0.0013828744577811
1030 => 0.0014082150375839
1031 => 0.0014280149606604
1101 => 0.0014122217402377
1102 => 0.0014086259300861
1103 => 0.0014470197750982
1104 => 0.0014421338083527
1105 => 0.0014379025926623
1106 => 0.0015469590278799
1107 => 0.0014606323496254
1108 => 0.0014229889905519
1109 => 0.0013763981854184
1110 => 0.0013915683865011
1111 => 0.0013947649707658
1112 => 0.0012827224830437
1113 => 0.0012372668597288
1114 => 0.0012216682027662
1115 => 0.0012126909551516
1116 => 0.0012167819996187
1117 => 0.0011758666072225
1118 => 0.0012033624275909
1119 => 0.0011679331562678
1120 => 0.0011619933236336
1121 => 0.0012253452496039
1122 => 0.001234160300006
1123 => 0.0011965525563689
1124 => 0.0012207028159246
1125 => 0.001211945596096
1126 => 0.0011685404894364
1127 => 0.0011668827336284
1128 => 0.0011451035768699
1129 => 0.0011110234138187
1130 => 0.0010954478648114
1201 => 0.0010873359836553
1202 => 0.0010906831039177
1203 => 0.0010889906974895
1204 => 0.0010779466007573
1205 => 0.0010896237321864
1206 => 0.0010597934867089
1207 => 0.0010479148426012
1208 => 0.0010425495346401
1209 => 0.001016073474814
1210 => 0.0010582086599546
1211 => 0.0010665098222324
1212 => 0.0010748273403642
1213 => 0.0011472256570909
1214 => 0.0011436088417828
1215 => 0.001176303090708
1216 => 0.0011750326523156
1217 => 0.0011657077229104
1218 => 0.0011263673796264
1219 => 0.0011420477392852
1220 => 0.0010937860295244
1221 => 0.0011299469839545
1222 => 0.0011134446344701
1223 => 0.001124367522994
1224 => 0.001104727184551
1225 => 0.001115596958775
1226 => 0.0010684783357613
1227 => 0.001024479628568
1228 => 0.0010421859927449
1229 => 0.0010614348355736
1230 => 0.0011031712313401
1231 => 0.0010783133783393
]
'min_raw' => 0.001016073474814
'max_raw' => 0.0030330040678263
'avg_raw' => 0.0020245387713202
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001016'
'max' => '$0.003033'
'avg' => '$0.002024'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001924806525186
'max_diff' => 9.2124067826348E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010872532022579
102 => 0.0010573062886392
103 => 0.00099551725193084
104 => 0.00099586697116834
105 => 0.0009863620740181
106 => 0.00097814845514258
107 => 0.0010811686017816
108 => 0.0010683564180396
109 => 0.0010479418800637
110 => 0.0010752675503859
111 => 0.0010824928913358
112 => 0.001082698586635
113 => 0.0011026346903244
114 => 0.0011132745924372
115 => 0.0011151499213005
116 => 0.0011465198112039
117 => 0.0011570345845206
118 => 0.0012003434477059
119 => 0.0011123718710798
120 => 0.0011105601543505
121 => 0.0010756520786053
122 => 0.0010535128250928
123 => 0.0010771679722342
124 => 0.0010981232033519
125 => 0.0010763032160486
126 => 0.0010791524457453
127 => 0.0010498608955491
128 => 0.0010603312464487
129 => 0.001069349723152
130 => 0.001064370250398
131 => 0.001056915738676
201 => 0.0010964051133706
202 => 0.0010941769680902
203 => 0.0011309503816626
204 => 0.0011596178872342
205 => 0.0012109951821483
206 => 0.0011573802965465
207 => 0.0011554263570153
208 => 0.0011745264293545
209 => 0.0011570316603991
210 => 0.00116808775048
211 => 0.0012092138751098
212 => 0.0012100828053175
213 => 0.0011955271047847
214 => 0.0011946413890845
215 => 0.0011974369705937
216 => 0.0012138107788117
217 => 0.001208089267104
218 => 0.0012147103453031
219 => 0.0012229901049766
220 => 0.0012572387015315
221 => 0.0012654959222128
222 => 0.0012454351568353
223 => 0.001247246419338
224 => 0.0012397431424065
225 => 0.0012324950709065
226 => 0.0012487876771428
227 => 0.0012785627352716
228 => 0.0012783775061803
301 => 0.0012852847409217
302 => 0.001289587890943
303 => 0.0012711156209533
304 => 0.0012590908524341
305 => 0.0012637019138402
306 => 0.0012710751014445
307 => 0.0012613108884735
308 => 0.001201041642793
309 => 0.0012193234819182
310 => 0.0012162804899515
311 => 0.0012119468993504
312 => 0.0012303294299601
313 => 0.0012285563900383
314 => 0.0011754469607353
315 => 0.0011788468540862
316 => 0.0011756537195108
317 => 0.0011859713905778
318 => 0.0011564744723017
319 => 0.0011655475256987
320 => 0.0011712380597346
321 => 0.0011745898279985
322 => 0.0011866987132968
323 => 0.0011852778753673
324 => 0.0011866103920162
325 => 0.0012045646722864
326 => 0.001295371260728
327 => 0.0013003136629834
328 => 0.001275975466679
329 => 0.0012856980960529
330 => 0.0012670327737603
331 => 0.0012795629296621
401 => 0.0012881357440987
402 => 0.0012493968441172
403 => 0.0012471029778736
404 => 0.0012283606171563
405 => 0.0012384317001842
406 => 0.0012224078829503
407 => 0.0012263395672101
408 => 0.0012153462352615
409 => 0.0012351320440185
410 => 0.0012572556526128
411 => 0.0012628449498315
412 => 0.0012481419151929
413 => 0.0012374959491373
414 => 0.001218805139743
415 => 0.0012498883723176
416 => 0.0012589780567668
417 => 0.0012498406280748
418 => 0.0012477232861901
419 => 0.0012437109271446
420 => 0.0012485745271293
421 => 0.0012589285523932
422 => 0.0012540457852875
423 => 0.0012572709389841
424 => 0.0012449799788569
425 => 0.0012711217360433
426 => 0.0013126411378117
427 => 0.0013127746294775
428 => 0.0013078918360519
429 => 0.0013058939021834
430 => 0.0013109039445507
501 => 0.0013136216870123
502 => 0.0013298232453436
503 => 0.0013472081629316
504 => 0.0014283359876809
505 => 0.0014055556191296
506 => 0.0014775370515631
507 => 0.0015344650189988
508 => 0.0015515352272745
509 => 0.0015358314388762
510 => 0.0014821096270678
511 => 0.0014794737786871
512 => 0.0015597568462927
513 => 0.0015370732024967
514 => 0.0015343750552459
515 => 0.0015056713270893
516 => 0.0015226387854557
517 => 0.0015189277534134
518 => 0.0015130697077847
519 => 0.0015454424363845
520 => 0.0016060412943899
521 => 0.0015965963940772
522 => 0.0015895462141302
523 => 0.0015586543778787
524 => 0.0015772581632435
525 => 0.0015706337116071
526 => 0.0015990965598179
527 => 0.0015822357990671
528 => 0.001536901351585
529 => 0.0015441210117708
530 => 0.0015430297746576
531 => 0.0015654873571203
601 => 0.0015587461482965
602 => 0.0015417134454422
603 => 0.0016058341740811
604 => 0.0016016705306216
605 => 0.0016075736251058
606 => 0.0016101723498571
607 => 0.0016492015074456
608 => 0.0016651905045159
609 => 0.0016688202867776
610 => 0.001684008597361
611 => 0.0016684423877741
612 => 0.001730718324641
613 => 0.0017721281887558
614 => 0.0018202278768574
615 => 0.001890514449151
616 => 0.0019169428505206
617 => 0.0019121687963646
618 => 0.0019654592733081
619 => 0.0020612210757948
620 => 0.0019315249945819
621 => 0.0020680952830258
622 => 0.0020248587064842
623 => 0.0019223455612971
624 => 0.0019157449232976
625 => 0.0019851680154204
626 => 0.0021391417520239
627 => 0.0021005730773604
628 => 0.0021392048365588
629 => 0.0020941388374072
630 => 0.0020919009307032
701 => 0.0021370160815692
702 => 0.0022424300906664
703 => 0.0021923518463294
704 => 0.0021205524033829
705 => 0.0021735679947315
706 => 0.002127640983144
707 => 0.0020241545718762
708 => 0.0021005435846218
709 => 0.0020494644272327
710 => 0.0020643720408762
711 => 0.0021717328322568
712 => 0.0021588148977965
713 => 0.0021755319011567
714 => 0.0021460268277861
715 => 0.0021184644367349
716 => 0.0020670171870279
717 => 0.0020517861927084
718 => 0.0020559954915845
719 => 0.0020517841067889
720 => 0.0020229998434024
721 => 0.0020167838844647
722 => 0.0020064236805744
723 => 0.0020096347409686
724 => 0.0019901545266703
725 => 0.0020269177158688
726 => 0.0020337412877402
727 => 0.0020604944710433
728 => 0.0020632720752842
729 => 0.0021377793099757
730 => 0.0020967419771508
731 => 0.0021242733630026
801 => 0.0021218106967166
802 => 0.0019245673320003
803 => 0.0019517457273653
804 => 0.0019940267815028
805 => 0.0019749792239245
806 => 0.0019480504339507
807 => 0.0019263039922166
808 => 0.0018933559093014
809 => 0.0019397297032926
810 => 0.0020007063110877
811 => 0.0020648185426846
812 => 0.0021418451881483
813 => 0.0021246537375698
814 => 0.0020633785831262
815 => 0.002066127341793
816 => 0.0020831190862746
817 => 0.0020611132333082
818 => 0.0020546232776631
819 => 0.002082227466029
820 => 0.0020824175609033
821 => 0.0020570971675693
822 => 0.0020289581839616
823 => 0.0020288402805928
824 => 0.0020238332202502
825 => 0.0020950295823189
826 => 0.0021341803826925
827 => 0.0021386689588607
828 => 0.0021338782657533
829 => 0.0021357220133946
830 => 0.0021129410252861
831 => 0.0021650116086098
901 => 0.0022127967251146
902 => 0.0021999892931112
903 => 0.0021807891318544
904 => 0.0021654952786082
905 => 0.002196386547332
906 => 0.0021950110077631
907 => 0.0022123793638087
908 => 0.002211591434854
909 => 0.0022057511099728
910 => 0.0021999895016876
911 => 0.0022228336272758
912 => 0.0022162548859718
913 => 0.0022096659260655
914 => 0.0021964507582541
915 => 0.0021982469190404
916 => 0.0021790500729621
917 => 0.0021701687335784
918 => 0.00203661469856
919 => 0.0020009246963991
920 => 0.0020121534976159
921 => 0.0020158503105322
922 => 0.0020003179758538
923 => 0.0020225873538532
924 => 0.0020191166948811
925 => 0.002032618998674
926 => 0.0020241833454661
927 => 0.0020245295476162
928 => 0.0020493370050297
929 => 0.0020565387154554
930 => 0.002052875867408
1001 => 0.0020554412006253
1002 => 0.0021145582218588
1003 => 0.0021061536718953
1004 => 0.0021016889222361
1005 => 0.0021029256884044
1006 => 0.0021180313548128
1007 => 0.0021222601166683
1008 => 0.0021043425555365
1009 => 0.0021127925809465
1010 => 0.002148771716674
1011 => 0.002161362377936
1012 => 0.0022015457248238
1013 => 0.0021844751248638
1014 => 0.0022158089498886
1015 => 0.0023121184455267
1016 => 0.0023890571347526
1017 => 0.0023183011365147
1018 => 0.0024595892411951
1019 => 0.0025696022972637
1020 => 0.0025653798129354
1021 => 0.002546196491962
1022 => 0.0024209495524764
1023 => 0.002305695451435
1024 => 0.0024021104009037
1025 => 0.0024023561824378
1026 => 0.0023940740527723
1027 => 0.0023426344567239
1028 => 0.0023922840663316
1029 => 0.0023962250720414
1030 => 0.0023940191568419
1031 => 0.0023545805391581
1101 => 0.0022943650594299
1102 => 0.0023061310200333
1103 => 0.0023254039035208
1104 => 0.0022889163143343
1105 => 0.0022772563187282
1106 => 0.0022989344689648
1107 => 0.0023687859858492
1108 => 0.0023555809612045
1109 => 0.0023552361246453
1110 => 0.0024117328198772
1111 => 0.0023712933788411
1112 => 0.0023062794264763
1113 => 0.0022898625460756
1114 => 0.0022315936803885
1115 => 0.0022718401934651
1116 => 0.0022732885938213
1117 => 0.0022512459899186
1118 => 0.0023080680622993
1119 => 0.002307544436899
1120 => 0.0023614885377751
1121 => 0.0024646093981712
1122 => 0.0024341114854827
1123 => 0.0023986457311895
1124 => 0.0024025018420398
1125 => 0.0024447938603759
1126 => 0.002419223140657
1127 => 0.0024284185497533
1128 => 0.0024447799420229
1129 => 0.0024546511762096
1130 => 0.00240108152335
1201 => 0.0023885918747358
1202 => 0.002363042436942
1203 => 0.0023563770655244
1204 => 0.0023771865495009
1205 => 0.002371703985683
1206 => 0.0022731668613798
1207 => 0.0022628691836348
1208 => 0.0022631849987095
1209 => 0.0022372909983916
1210 => 0.0021977964326347
1211 => 0.0023015857933459
1212 => 0.0022932500551496
1213 => 0.0022840480453158
1214 => 0.0022851752390145
1215 => 0.0023302266827514
1216 => 0.0023040945702316
1217 => 0.0023735710743346
1218 => 0.0023592887937459
1219 => 0.002344640226552
1220 => 0.0023426153483596
1221 => 0.002336976899747
1222 => 0.0023176405614801
1223 => 0.002294290771089
1224 => 0.0022788732169486
1225 => 0.0021021400818526
1226 => 0.0021349407237171
1227 => 0.0021726748723096
1228 => 0.0021857005491936
1229 => 0.0021634192275341
1230 => 0.0023185203638655
1231 => 0.0023468588360649
]
'min_raw' => 0.00097814845514258
'max_raw' => 0.0025696022972637
'avg_raw' => 0.0017738753762031
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000978'
'max' => '$0.002569'
'avg' => '$0.001773'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.792501967144E-5
'max_diff' => -0.00046340177056269
'year' => 2027
]
2 => [
'items' => [
101 => 0.0022610197552999
102 => 0.0022449627680753
103 => 0.0023195730572747
104 => 0.0022745739321506
105 => 0.0022948370354386
106 => 0.0022510392894548
107 => 0.0023400329279594
108 => 0.0023393549455391
109 => 0.0023047344101483
110 => 0.0023339954495894
111 => 0.0023289106239077
112 => 0.0022898241247181
113 => 0.0023412720397011
114 => 0.002341297557225
115 => 0.0023079760446267
116 => 0.002269063812929
117 => 0.0022621072249673
118 => 0.0022568663704243
119 => 0.0022935481064913
120 => 0.0023264368363481
121 => 0.0023876346088042
122 => 0.0024030211828228
123 => 0.0024630760055598
124 => 0.0024273162826362
125 => 0.0024431681046423
126 => 0.0024603774998071
127 => 0.0024686283167036
128 => 0.0024551840533339
129 => 0.0025484739125958
130 => 0.0025563504350449
131 => 0.0025589913648904
201 => 0.0025275345492368
202 => 0.0025554755640966
203 => 0.0025424028885529
204 => 0.0025764143586238
205 => 0.0025817477914112
206 => 0.0025772305635827
207 => 0.0025789234793319
208 => 0.0024993170419108
209 => 0.0024951890281731
210 => 0.0024389032679492
211 => 0.0024618401312838
212 => 0.0024189607646722
213 => 0.0024325582535312
214 => 0.0024385518970586
215 => 0.0024354211578161
216 => 0.0024631369471225
217 => 0.0024395728642504
218 => 0.002377383375257
219 => 0.0023151769427789
220 => 0.0023143959916914
221 => 0.0022980181360546
222 => 0.0022861799461832
223 => 0.0022884604015348
224 => 0.0022964970236382
225 => 0.0022857128430967
226 => 0.0022880141947871
227 => 0.0023262319666733
228 => 0.0023338962682684
229 => 0.0023078499768123
301 => 0.0022032703581542
302 => 0.0021776062574174
303 => 0.0021960531040858
304 => 0.0021872366995074
305 => 0.0017652707233277
306 => 0.0018644053703213
307 => 0.0018055029293722
308 => 0.0018326478841326
309 => 0.0017725237446367
310 => 0.0018012181353803
311 => 0.0017959193291613
312 => 0.0019553249079196
313 => 0.0019528360090625
314 => 0.0019540273132358
315 => 0.0018971632611177
316 => 0.0019877492401691
317 => 0.0020323751508163
318 => 0.0020241160824356
319 => 0.0020261947120124
320 => 0.0019904769690543
321 => 0.0019543731390627
322 => 0.0019143284352625
323 => 0.0019887265452484
324 => 0.0019804547454361
325 => 0.0019994272781059
326 => 0.0020476797705186
327 => 0.0020547851333197
328 => 0.0020643348129799
329 => 0.0020609119326142
330 => 0.0021424588296486
331 => 0.002132582962354
401 => 0.002156380961053
402 => 0.0021074266721705
403 => 0.0020520302475162
404 => 0.0020625592967974
405 => 0.0020615452646824
406 => 0.002048635472006
407 => 0.0020369810884135
408 => 0.0020175798233343
409 => 0.0020789682968919
410 => 0.002076476036974
411 => 0.00211682282811
412 => 0.0021096911408689
413 => 0.0020620639880529
414 => 0.0020637650011331
415 => 0.0020752051315769
416 => 0.0021147995536637
417 => 0.002126553873933
418 => 0.0021211088044556
419 => 0.0021339968800257
420 => 0.0021441830894671
421 => 0.0021352761111019
422 => 0.0022613801415983
423 => 0.0022090129561938
424 => 0.0022345363579914
425 => 0.0022406235389276
426 => 0.0022250313529593
427 => 0.0022284127397815
428 => 0.0022335346194444
429 => 0.0022646336697904
430 => 0.0023462465764811
501 => 0.0023823923772965
502 => 0.0024911388024522
503 => 0.0023793909717126
504 => 0.0023727603178951
505 => 0.002392348832893
506 => 0.0024561944964376
507 => 0.0025079354100222
508 => 0.0025251008560631
509 => 0.0025273695531281
510 => 0.0025595730710381
511 => 0.0025780315269441
512 => 0.0025556627169272
513 => 0.00253670749255
514 => 0.0024688122316396
515 => 0.0024766712929627
516 => 0.0025308124320222
517 => 0.002607289979841
518 => 0.0026729156720022
519 => 0.0026499358418937
520 => 0.0028252557243903
521 => 0.0028426379746223
522 => 0.0028402363096757
523 => 0.0028798356625299
524 => 0.0028012390113822
525 => 0.0027676374202782
526 => 0.0025408058272113
527 => 0.0026045362525226
528 => 0.0026971721684693
529 => 0.0026849114576269
530 => 0.0026176367793013
531 => 0.0026728646381261
601 => 0.0026546045808638
602 => 0.0026402021160905
603 => 0.0027061825992719
604 => 0.0026336343476851
605 => 0.0026964484441632
606 => 0.0026158887157014
607 => 0.0026500408118219
608 => 0.0026306544303129
609 => 0.0026431997950548
610 => 0.0025698598491177
611 => 0.0026094323037188
612 => 0.0025682135049041
613 => 0.0025681939618266
614 => 0.0025672840545582
615 => 0.0026157777885716
616 => 0.0026173591674968
617 => 0.0025815222247909
618 => 0.0025763575614688
619 => 0.0025954540286805
620 => 0.0025730970669483
621 => 0.0025835577486297
622 => 0.0025734139103399
623 => 0.002571130318679
624 => 0.0025529342718034
625 => 0.0025450949144987
626 => 0.0025481689284932
627 => 0.002537675733967
628 => 0.0025313532047095
629 => 0.0025660263443532
630 => 0.002547501884552
701 => 0.0025631872052105
702 => 0.0025453118026749
703 => 0.0024833478695444
704 => 0.0024477117563444
705 => 0.0023306676307205
706 => 0.0023638611995547
707 => 0.0023858685700329
708 => 0.0023785951342211
709 => 0.0023942212887909
710 => 0.0023951806077711
711 => 0.0023901003856307
712 => 0.0023842181392088
713 => 0.0023813549869593
714 => 0.0024026945780906
715 => 0.0024150829289999
716 => 0.002388077304081
717 => 0.0023817502640114
718 => 0.0024090544418258
719 => 0.0024257099745194
720 => 0.0025486850699939
721 => 0.0025395746777168
722 => 0.0025624399745081
723 => 0.002559865692986
724 => 0.0025838321667507
725 => 0.0026230072223684
726 => 0.0025433533807797
727 => 0.0025571785334569
728 => 0.0025537889252899
729 => 0.0025907957784547
730 => 0.0025909113098108
731 => 0.0025687238527091
801 => 0.0025807520331543
802 => 0.0025740382328057
803 => 0.0025861709774602
804 => 0.0025394530028736
805 => 0.0025963504530264
806 => 0.0026286076408723
807 => 0.0026290555319569
808 => 0.0026443451829869
809 => 0.0026598803539504
810 => 0.0026896987617865
811 => 0.0026590487347398
812 => 0.0026039123198028
813 => 0.0026078929908717
814 => 0.0025755665309678
815 => 0.0025761099445991
816 => 0.0025732091600474
817 => 0.0025819146328478
818 => 0.0025413633646021
819 => 0.0025508806662066
820 => 0.002537556388227
821 => 0.0025571495690788
822 => 0.0025360705453511
823 => 0.0025537872907182
824 => 0.0025614332506992
825 => 0.0025896470076348
826 => 0.0025319033505118
827 => 0.0024141601247361
828 => 0.0024389111782928
829 => 0.0024023024259291
830 => 0.0024056907053397
831 => 0.0024125355689898
901 => 0.0023903491263998
902 => 0.0023945816004708
903 => 0.0023944303867136
904 => 0.0023931273082456
905 => 0.0023873557576469
906 => 0.0023789858674123
907 => 0.0024123289339907
908 => 0.0024179945707346
909 => 0.0024305885793926
910 => 0.0024680598065609
911 => 0.0024643155473344
912 => 0.0024704225894806
913 => 0.002457090950765
914 => 0.0024063091218237
915 => 0.0024090668194539
916 => 0.0023746782858155
917 => 0.0024297091872715
918 => 0.0024166771434343
919 => 0.002408275299994
920 => 0.0024059827791688
921 => 0.0024435468902615
922 => 0.0024547866610457
923 => 0.002447782790166
924 => 0.002433417646656
925 => 0.0024610029688686
926 => 0.0024683836373614
927 => 0.0024700358968483
928 => 0.0025189117988482
929 => 0.0024727675168266
930 => 0.0024838749041439
1001 => 0.0025705315692501
1002 => 0.0024919459318011
1003 => 0.0025335744966267
1004 => 0.0025315369950031
1005 => 0.002552832760134
1006 => 0.0025297901206855
1007 => 0.0025300757618178
1008 => 0.002548984958554
1009 => 0.0025224304020297
1010 => 0.0025158551203967
1011 => 0.0025067714159137
1012 => 0.0025266053523315
1013 => 0.0025384949002022
1014 => 0.0026343159241292
1015 => 0.0026962206755556
1016 => 0.0026935332270341
1017 => 0.0027180914758285
1018 => 0.0027070277598188
1019 => 0.0026713001023627
1020 => 0.0027322828571167
1021 => 0.0027129853618857
1022 => 0.0027145762239461
1023 => 0.0027145170119807
1024 => 0.002727348159293
1025 => 0.0027182561154649
1026 => 0.0027003347638005
1027 => 0.0027122317933898
1028 => 0.0027475617180041
1029 => 0.0028572268880613
1030 => 0.0029185969700956
1031 => 0.0028535323320643
1101 => 0.0028984130481281
1102 => 0.0028715006111241
1103 => 0.0028666098207448
1104 => 0.0028947982270917
1105 => 0.0029230359735124
1106 => 0.0029212373511406
1107 => 0.0029007381972635
1108 => 0.0028891587453851
1109 => 0.0029768422344093
1110 => 0.0030414459354731
1111 => 0.0030370403961692
1112 => 0.0030564850138983
1113 => 0.0031135750129501
1114 => 0.0031187946069882
1115 => 0.0031181370581104
1116 => 0.0031051997496786
1117 => 0.0031614122678183
1118 => 0.0032083057394156
1119 => 0.0031022051365714
1120 => 0.0031426068571756
1121 => 0.0031607444912169
1122 => 0.0031873759191832
1123 => 0.0032323076021078
1124 => 0.0032811153273043
1125 => 0.0032880172747965
1126 => 0.0032831200127622
1127 => 0.003250930005973
1128 => 0.0033043360012802
1129 => 0.0033356199808065
1130 => 0.0033542488746933
1201 => 0.0034014886500377
1202 => 0.00316085650307
1203 => 0.0029905251092526
1204 => 0.0029639254024928
1205 => 0.0030180169521705
1206 => 0.0030322804624485
1207 => 0.0030265308593404
1208 => 0.0028348073897461
1209 => 0.0029629160181035
1210 => 0.0031007501305367
1211 => 0.0031060449001423
1212 => 0.0031750475388017
1213 => 0.003197517626463
1214 => 0.0032530737949664
1215 => 0.0032495987415002
1216 => 0.0032631257844391
1217 => 0.0032600161515231
1218 => 0.0033629222549443
1219 => 0.003476442968722
1220 => 0.0034725121073777
1221 => 0.003456192161656
1222 => 0.0034804300640169
1223 => 0.0035975956062546
1224 => 0.0035868088806649
1225 => 0.0035972872657642
1226 => 0.0037354320432229
1227 => 0.0039150399047848
1228 => 0.0038315940207548
1229 => 0.0040126475781935
1230 => 0.0041266111953645
1231 => 0.0043236994872038
]
'min_raw' => 0.0017652707233277
'max_raw' => 0.0043236994872038
'avg_raw' => 0.0030444851052657
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001765'
'max' => '$0.004323'
'avg' => '$0.003044'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00078712226818514
'max_diff' => 0.0017540971899401
'year' => 2028
]
3 => [
'items' => [
101 => 0.0042990230623852
102 => 0.0043757480880975
103 => 0.0042548471118347
104 => 0.0039772340322165
105 => 0.0039333006997068
106 => 0.0040212563439605
107 => 0.0042374867127719
108 => 0.004014446480148
109 => 0.0040595672287196
110 => 0.0040465724500956
111 => 0.0040458800135669
112 => 0.0040723074995216
113 => 0.0040339730527794
114 => 0.0038777916205167
115 => 0.0039493686505397
116 => 0.0039217293218365
117 => 0.0039523972176812
118 => 0.0041178992031524
119 => 0.004044726830301
120 => 0.003967645679543
121 => 0.0040643225482703
122 => 0.0041874254239365
123 => 0.0041797218672145
124 => 0.0041647737473368
125 => 0.0042490355164293
126 => 0.0043882112725882
127 => 0.0044258299202245
128 => 0.0044535992368302
129 => 0.0044574281564236
130 => 0.0044968684078967
131 => 0.0042847882355028
201 => 0.0046213649156971
202 => 0.0046794824106235
203 => 0.0046685587303007
204 => 0.0047331538799534
205 => 0.0047141483483048
206 => 0.0046866123148225
207 => 0.0047890093668043
208 => 0.0046716194097232
209 => 0.0045049991446311
210 => 0.0044135879718265
211 => 0.0045339655781046
212 => 0.0046074759816592
213 => 0.004656061682269
214 => 0.0046707636859172
215 => 0.0043012514155709
216 => 0.0041021047959443
217 => 0.0042297554959043
218 => 0.0043854981598362
219 => 0.004283923077141
220 => 0.0042879046280756
221 => 0.0041430852536143
222 => 0.0043983114610491
223 => 0.0043611271494161
224 => 0.0045540394239458
225 => 0.0045079993614116
226 => 0.0046653118324792
227 => 0.0046238861867321
228 => 0.0047958417261518
301 => 0.0048644394463366
302 => 0.0049796256949097
303 => 0.0050643571682524
304 => 0.005114113110054
305 => 0.0051111259499381
306 => 0.005308283779668
307 => 0.0051920266956462
308 => 0.0050459803984239
309 => 0.0050433388816773
310 => 0.0051189783285007
311 => 0.0052774978583739
312 => 0.0053185996661046
313 => 0.0053415699694144
314 => 0.0053063901502935
315 => 0.0051802014178081
316 => 0.0051257137629123
317 => 0.0051721388235429
318 => 0.0051153649637426
319 => 0.0052133725736894
320 => 0.0053479579554422
321 => 0.0053201666063185
322 => 0.005413068919727
323 => 0.0055092130404965
324 => 0.0056467034512994
325 => 0.0056826485359384
326 => 0.0057420643939776
327 => 0.0058032228289926
328 => 0.0058228652700534
329 => 0.0058603687847299
330 => 0.0058601711226953
331 => 0.0059731904884507
401 => 0.0060978543487973
402 => 0.0061449120701031
403 => 0.006253118705468
404 => 0.0060678186344184
405 => 0.0062083708668833
406 => 0.0063351524988172
407 => 0.0061839982106324
408 => 0.0063923291824629
409 => 0.006400418202011
410 => 0.0065225527934601
411 => 0.0063987459868699
412 => 0.0063252299003219
413 => 0.0065374680875741
414 => 0.0066401634609451
415 => 0.0066092307787231
416 => 0.0063738315396785
417 => 0.0062368190858063
418 => 0.0058782310662941
419 => 0.006302994065256
420 => 0.0065098837315437
421 => 0.0063732957454237
422 => 0.006442182780774
423 => 0.0068180081089488
424 => 0.0069610980610298
425 => 0.0069313363512712
426 => 0.006936365590301
427 => 0.0070135743311775
428 => 0.0073559604078545
429 => 0.0071507947342625
430 => 0.0073076362043124
501 => 0.0073908243544929
502 => 0.0074680941445065
503 => 0.007278343961601
504 => 0.0070314817616248
505 => 0.0069532901403221
506 => 0.0063597147620591
507 => 0.0063288165858533
508 => 0.0063114725032384
509 => 0.0062021205157208
510 => 0.0061161998075622
511 => 0.0060478724704031
512 => 0.0058685611334277
513 => 0.0059290734459174
514 => 0.005643288599963
515 => 0.0058261236168116
516 => 0.005370004102152
517 => 0.0057498739876251
518 => 0.0055431280795264
519 => 0.0056819523964013
520 => 0.0056814680514377
521 => 0.0054258484697813
522 => 0.0052784124297265
523 => 0.0053723644127459
524 => 0.0054730883964605
525 => 0.005489430523942
526 => 0.0056200217979929
527 => 0.0056564670155305
528 => 0.0055460363049272
529 => 0.0053605520390332
530 => 0.0054036358035547
531 => 0.0052775393386135
601 => 0.0050565601340347
602 => 0.00521527125669
603 => 0.005269462212
604 => 0.0052933960250555
605 => 0.0050760883569853
606 => 0.0050078055696987
607 => 0.0049714523866953
608 => 0.0053325003479182
609 => 0.0053522793702536
610 => 0.0052510870955134
611 => 0.0057084857727845
612 => 0.0056049623650279
613 => 0.0057206233753427
614 => 0.005399726403507
615 => 0.0054119850999762
616 => 0.0052600673309071
617 => 0.0053451311304368
618 => 0.0052850107786634
619 => 0.0053382588160516
620 => 0.0053701754701123
621 => 0.0055220683109703
622 => 0.0057516083598788
623 => 0.005499380585726
624 => 0.0053894813325593
625 => 0.0054576622111271
626 => 0.005639236875524
627 => 0.0059143317867215
628 => 0.0057514700624916
629 => 0.0058237453301334
630 => 0.0058395342608103
701 => 0.0057194460548319
702 => 0.005918759610168
703 => 0.006025573363693
704 => 0.0061351421728177
705 => 0.0062302776997324
706 => 0.0060913779809836
707 => 0.0062400205905374
708 => 0.0061202408861898
709 => 0.0060127861087917
710 => 0.0060129490733336
711 => 0.005945541121808
712 => 0.0058149297217786
713 => 0.0057908429756748
714 => 0.0059161452707275
715 => 0.0060166258451883
716 => 0.0060249019065704
717 => 0.0060805331154702
718 => 0.0061134550918501
719 => 0.0064361352156296
720 => 0.0065659198307636
721 => 0.0067246180014526
722 => 0.0067864398826747
723 => 0.0069725015807823
724 => 0.0068222416483681
725 => 0.0067897319668111
726 => 0.0063384071475196
727 => 0.0064123115613949
728 => 0.0065306396587245
729 => 0.0063403583342616
730 => 0.0064610480379098
731 => 0.0064848747419674
801 => 0.0063338926476684
802 => 0.0064145387077847
803 => 0.0062003666820062
804 => 0.0057562767247762
805 => 0.0059192540092402
806 => 0.0060392601481665
807 => 0.0058679965912685
808 => 0.0061749798881932
809 => 0.0059956465835513
810 => 0.0059388065354965
811 => 0.0057170532430947
812 => 0.0058217122610414
813 => 0.0059632650813871
814 => 0.0058758018956951
815 => 0.0060573011386693
816 => 0.0063143524708009
817 => 0.0064975425577493
818 => 0.0065116056179449
819 => 0.0063938266648197
820 => 0.0065825681888581
821 => 0.0065839429648069
822 => 0.0063710417546598
823 => 0.0062406409488836
824 => 0.0062110136114456
825 => 0.0062850285091474
826 => 0.0063748962588612
827 => 0.0065165926526063
828 => 0.0066022168157221
829 => 0.006825479221581
830 => 0.0068858876271716
831 => 0.0069522581502315
901 => 0.0070409496369508
902 => 0.0071474465067878
903 => 0.0069144374184547
904 => 0.0069236953039174
905 => 0.0067067204670921
906 => 0.0064748517366051
907 => 0.0066508112001994
908 => 0.0068808547919425
909 => 0.0068280825378211
910 => 0.0068221445811931
911 => 0.0068321305771896
912 => 0.0067923420209627
913 => 0.0066123798557812
914 => 0.0065220039830499
915 => 0.0066386119162174
916 => 0.006700583843074
917 => 0.0067966968971086
918 => 0.0067848489344984
919 => 0.0070324258399029
920 => 0.0071286267390061
921 => 0.0071040144323469
922 => 0.0071085436891005
923 => 0.0072827108217729
924 => 0.0074764204935075
925 => 0.0076578551633294
926 => 0.0078424183022727
927 => 0.0076199202346547
928 => 0.0075069494376913
929 => 0.007623506463483
930 => 0.007561659664939
1001 => 0.0079170497143252
1002 => 0.0079416561502658
1003 => 0.0082970205009064
1004 => 0.0086343035856639
1005 => 0.0084224621231818
1006 => 0.0086222190807534
1007 => 0.0088382725167908
1008 => 0.0092550746483137
1009 => 0.0091147103536926
1010 => 0.0090071935038017
1011 => 0.0089055906001725
1012 => 0.0091170101136182
1013 => 0.0093889979401568
1014 => 0.0094475815129262
1015 => 0.0095425092814599
1016 => 0.009442704340062
1017 => 0.0095629083988221
1018 => 0.009987281546585
1019 => 0.009872612176014
1020 => 0.0097097632357821
1021 => 0.010044765078711
1022 => 0.01016600094338
1023 => 0.011016897733343
1024 => 0.012091190079464
1025 => 0.011646425993986
1026 => 0.011370346573683
1027 => 0.011435231786145
1028 => 0.011827526983858
1029 => 0.011953519750536
1030 => 0.011611027978394
1031 => 0.011732001862355
1101 => 0.012398579856873
1102 => 0.012756177564549
1103 => 0.012270511845745
1104 => 0.010930579389347
1105 => 0.0096951004704831
1106 => 0.010022805114107
1107 => 0.0099856535773788
1108 => 0.01070180847519
1109 => 0.0098698773494496
1110 => 0.0098838849360008
1111 => 0.010614849158677
1112 => 0.010419840435966
1113 => 0.010103951280005
1114 => 0.0096974068109055
1115 => 0.008945871758963
1116 => 0.0082802162053522
1117 => 0.0095857200373016
1118 => 0.0095294243381633
1119 => 0.0094478998232558
1120 => 0.0096293238093085
1121 => 0.010510267187484
1122 => 0.010489958591281
1123 => 0.010360765663779
1124 => 0.010458757360635
1125 => 0.010086772861763
1126 => 0.010182641737052
1127 => 0.0096949047643101
1128 => 0.0099153822456848
1129 => 0.010103273523749
1130 => 0.010140995479599
1201 => 0.010225984972258
1202 => 0.0094997590628137
1203 => 0.0098258131752818
1204 => 0.010017339419218
1205 => 0.0091520168813299
1206 => 0.010000234774868
1207 => 0.0094871170854371
1208 => 0.0093129572348752
1209 => 0.0095474405298413
1210 => 0.0094560621617505
1211 => 0.0093775004067839
1212 => 0.0093336615976502
1213 => 0.0095058402504964
1214 => 0.0094978079105431
1215 => 0.0092160902160503
1216 => 0.0088486009678667
1217 => 0.0089719424219805
1218 => 0.0089271313153687
1219 => 0.0087647300842596
1220 => 0.0088741689056277
1221 => 0.0083922557220425
1222 => 0.0075631491373519
1223 => 0.00811088234342
1224 => 0.0080897952108055
1225 => 0.0080791621223159
1226 => 0.0084907684884422
1227 => 0.0084512020337137
1228 => 0.0083793885309457
1229 => 0.0087634111729644
1230 => 0.0086232377427941
1231 => 0.0090552192255651
]
'min_raw' => 0.0038777916205167
'max_raw' => 0.012756177564549
'avg_raw' => 0.0083169845925329
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003877'
'max' => '$0.012756'
'avg' => '$0.008316'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0021125208971889
'max_diff' => 0.0084324780773454
'year' => 2029
]
4 => [
'items' => [
101 => 0.0093397501689286
102 => 0.0092675839180799
103 => 0.0095351866455707
104 => 0.0089747839599685
105 => 0.0091609272526723
106 => 0.0091992911273151
107 => 0.0087586723931722
108 => 0.0084576755950339
109 => 0.0084376025402128
110 => 0.0079157155721549
111 => 0.008194503377967
112 => 0.0084398251100584
113 => 0.0083223350381221
114 => 0.0082851411912631
115 => 0.0084751564885045
116 => 0.0084899223044711
117 => 0.0081532601356211
118 => 0.0082232628612294
119 => 0.0085151858640006
120 => 0.0082159071505568
121 => 0.0076344574972358
122 => 0.0074902499440418
123 => 0.0074710099981732
124 => 0.0070799076766658
125 => 0.0074998865823015
126 => 0.0073165545352566
127 => 0.0078956982752163
128 => 0.0075648944769615
129 => 0.0075506341863879
130 => 0.0075290776656561
131 => 0.0071924397413013
201 => 0.0072661420522788
202 => 0.007511139759147
203 => 0.0075985577010544
204 => 0.0075894392935193
205 => 0.0075099391367254
206 => 0.007546333901399
207 => 0.0074290936836087
208 => 0.0073876937225628
209 => 0.0072570240575456
210 => 0.0070649757483867
211 => 0.007091681243676
212 => 0.0067111832910584
213 => 0.0065038678119176
214 => 0.0064464856196655
215 => 0.0063697517540192
216 => 0.0064551529139713
217 => 0.0067101053881657
218 => 0.0064025786131025
219 => 0.0058753455277518
220 => 0.0059070331345429
221 => 0.0059782257788674
222 => 0.0058455587571551
223 => 0.0057200005550035
224 => 0.0058291632249154
225 => 0.0056057676162613
226 => 0.0060052220708881
227 => 0.0059944179473487
228 => 0.0061433098659358
301 => 0.0062364150381981
302 => 0.006021837759291
303 => 0.0059678721539245
304 => 0.0059986134153413
305 => 0.0054905288411283
306 => 0.0061017885165644
307 => 0.0061070747156207
308 => 0.0060618110699563
309 => 0.0063872879766008
310 => 0.0070741457684137
311 => 0.006815722238343
312 => 0.0067156528366071
313 => 0.0065254208307568
314 => 0.0067788936836935
315 => 0.0067594309233804
316 => 0.0066714129402121
317 => 0.0066181793893591
318 => 0.0067162638390355
319 => 0.0066060256405916
320 => 0.006586223831008
321 => 0.0064662464095125
322 => 0.0064234199286635
323 => 0.0063917129072141
324 => 0.006356806592066
325 => 0.006433801225171
326 => 0.0062593212570677
327 => 0.0060489155200173
328 => 0.0060314225596032
329 => 0.0060797221613034
330 => 0.0060583531830335
331 => 0.0060313202531564
401 => 0.0059797070280408
402 => 0.0059643944866911
403 => 0.0060141528174888
404 => 0.0059579785631091
405 => 0.0060408667354163
406 => 0.0060183257389605
407 => 0.0058924135651074
408 => 0.005735480377829
409 => 0.0057340833432837
410 => 0.0057002723455066
411 => 0.0056572089563199
412 => 0.0056452297066051
413 => 0.0058199698493348
414 => 0.006181676715253
415 => 0.0061106650025616
416 => 0.0061619782425542
417 => 0.0064143885967377
418 => 0.0064946222580885
419 => 0.0064376743057001
420 => 0.0063597204360742
421 => 0.0063631500107152
422 => 0.006629541981468
423 => 0.0066461565219208
424 => 0.0066881361055912
425 => 0.0067420917340365
426 => 0.0064468631825351
427 => 0.0063492447724889
428 => 0.0063029877541458
429 => 0.0061605340413682
430 => 0.0063141581575406
501 => 0.0062246479638874
502 => 0.0062367259471149
503 => 0.0062288601446933
504 => 0.0062331554046987
505 => 0.0060051104152272
506 => 0.0060881980236988
507 => 0.005950048759508
508 => 0.0057650824027392
509 => 0.0057644623306538
510 => 0.0058097325844313
511 => 0.0057828040660592
512 => 0.0057103401155155
513 => 0.00572063327767
514 => 0.0056304543462221
515 => 0.00573158263269
516 => 0.0057344826300915
517 => 0.0056955427313064
518 => 0.0058513448096246
519 => 0.0059151770482339
520 => 0.0058895459726801
521 => 0.0059133787036459
522 => 0.0061136158598226
523 => 0.006146263253239
524 => 0.0061607630688288
525 => 0.0061413352367959
526 => 0.0059170386712803
527 => 0.0059269871777435
528 => 0.0058539916382539
529 => 0.0057923180994655
530 => 0.005794784717582
531 => 0.005826492933518
601 => 0.005964964572173
602 => 0.0062563699723733
603 => 0.0062674285942964
604 => 0.0062808319666698
605 => 0.0062263137152317
606 => 0.0062098704889286
607 => 0.0062315633487792
608 => 0.0063409998957264
609 => 0.0066225004062074
610 => 0.0065229993250165
611 => 0.0064421033971817
612 => 0.0065130709352783
613 => 0.0065021460390503
614 => 0.0064099289204587
615 => 0.0064073406930785
616 => 0.0062303465589051
617 => 0.0061649158574626
618 => 0.0061102370659342
619 => 0.0060505292530111
620 => 0.0060151324600863
621 => 0.0060695180215735
622 => 0.0060819566429567
623 => 0.005963041662268
624 => 0.0059468339898061
625 => 0.0060439425299946
626 => 0.0060012086820289
627 => 0.00604516150441
628 => 0.0060553589362228
629 => 0.0060537169148342
630 => 0.0060090978696068
701 => 0.0060375367184756
702 => 0.005970270362872
703 => 0.0058971283042329
704 => 0.0058504682277325
705 => 0.0058097511224248
706 => 0.0058323433389415
707 => 0.0057518062122351
708 => 0.0057260407645096
709 => 0.0060279022763732
710 => 0.006250890620745
711 => 0.0062476482819048
712 => 0.0062279113780766
713 => 0.0061985863424728
714 => 0.0063388545867177
715 => 0.0062899879351748
716 => 0.0063255425071176
717 => 0.0063345926378977
718 => 0.0063619846580441
719 => 0.0063717749508228
720 => 0.0063421818862502
721 => 0.0062428639470559
722 => 0.0059953730854502
723 => 0.0058801654212839
724 => 0.0058421449731736
725 => 0.0058435269442513
726 => 0.0058054060125378
727 => 0.0058166343353878
728 => 0.0058015012600754
729 => 0.0057728428765178
730 => 0.0058305737645141
731 => 0.0058372267115552
801 => 0.0058237516324641
802 => 0.0058269255013951
803 => 0.0057153576018026
804 => 0.0057238398668959
805 => 0.0056766095369825
806 => 0.0056677544194938
807 => 0.0055483602582878
808 => 0.0053368361952511
809 => 0.0054540410593111
810 => 0.0053124740650244
811 => 0.0052588604991981
812 => 0.0055126587811999
813 => 0.0054871844729555
814 => 0.0054435835306566
815 => 0.0053790886497641
816 => 0.0053551668710752
817 => 0.0052098257164762
818 => 0.0052012381856976
819 => 0.0052732731864581
820 => 0.0052400315121802
821 => 0.0051933476118874
822 => 0.0050242632572981
823 => 0.0048341564608337
824 => 0.0048398945900502
825 => 0.0049003640249429
826 => 0.0050761870623075
827 => 0.0050074899598397
828 => 0.0049576494237909
829 => 0.00494831578959
830 => 0.0050651457629013
831 => 0.0052304846517731
901 => 0.0053080579591825
902 => 0.0052311851674761
903 => 0.0051428778434888
904 => 0.0051482527011232
905 => 0.005184009220986
906 => 0.0051877667256536
907 => 0.0051302877358775
908 => 0.0051464677348143
909 => 0.0051218888368991
910 => 0.0049710481857625
911 => 0.0049683199567043
912 => 0.0049313012282813
913 => 0.0049301803158968
914 => 0.0048672022240947
915 => 0.0048583911537046
916 => 0.0047333443299346
917 => 0.0048156505280166
918 => 0.0047604438516125
919 => 0.0046772343683331
920 => 0.0046628890220521
921 => 0.0046624577836204
922 => 0.0047478953176484
923 => 0.0048146521406874
924 => 0.0047614041953846
925 => 0.0047492806704072
926 => 0.0048787281994379
927 => 0.0048622548214283
928 => 0.0048479889823139
929 => 0.0052156803677274
930 => 0.004924623944856
1001 => 0.0047977067315643
1002 => 0.0046406225791907
1003 => 0.0046917699712906
1004 => 0.0047025474783176
1005 => 0.0043247884084057
1006 => 0.0041715316007893
1007 => 0.0041189396397763
1008 => 0.0040886722226722
1009 => 0.0041024654647209
1010 => 0.0039645163626355
1011 => 0.0040572204407044
1012 => 0.0039377681788459
1013 => 0.003917741618414
1014 => 0.0041313370599128
1015 => 0.0041610576177909
1016 => 0.0040342604844294
1017 => 0.0041156847706387
1018 => 0.004086159192577
1019 => 0.0039398158450266
1020 => 0.003934226605579
1021 => 0.0038607966579957
1022 => 0.0037458930088674
1023 => 0.0036933789579392
1024 => 0.0036660291842679
1025 => 0.0036773142339212
1026 => 0.0036716081674883
1027 => 0.0036343722242816
1028 => 0.0036737424881661
1029 => 0.0035731677328575
1030 => 0.0035331180549078
1031 => 0.0035150285445234
1101 => 0.0034257626603201
1102 => 0.0035678243788064
1103 => 0.0035958123269945
1104 => 0.0036238554200865
1105 => 0.0038679513996197
1106 => 0.0038557570542903
1107 => 0.003965987997181
1108 => 0.003961704625442
1109 => 0.0039302649749067
1110 => 0.0037976262608697
1111 => 0.0038504936882271
1112 => 0.0036877759642433
1113 => 0.0038096951467817
1114 => 0.003754056323338
1115 => 0.0037908836046077
1116 => 0.0037246648323026
1117 => 0.0037613130350024
1118 => 0.0036024493077944
1119 => 0.0034541045946005
1120 => 0.0035138028376419
1121 => 0.00357870165515
1122 => 0.0037194188274188
1123 => 0.003635608840507
1124 => 0.0036657500810069
1125 => 0.0035647819709148
1126 => 0.0033564559196798
1127 => 0.0033576350225056
1128 => 0.0033255885981529
1129 => 0.0032978958086575
1130 => 0.0036452354256881
1201 => 0.0036020382536836
1202 => 0.0035332092136004
1203 => 0.003625339618909
1204 => 0.0036497003603788
1205 => 0.0036503938764412
1206 => 0.0037176098419244
1207 => 0.0037534830147519
1208 => 0.003759805816946
1209 => 0.0038655715909309
1210 => 0.0039010228832863
1211 => 0.0040470417392436
1212 => 0.0037504394266694
1213 => 0.0037443310972265
1214 => 0.0036266360826476
1215 => 0.0035519920437171
1216 => 0.0036317470238539
1217 => 0.0037023990486147
1218 => 0.0036288314379987
1219 => 0.0036384378148481
1220 => 0.0035396793082907
1221 => 0.0035749808273653
1222 => 0.0036053872512206
1223 => 0.0035885986111747
1224 => 0.0035634652044466
1225 => 0.0036966063882894
1226 => 0.0036890940409125
1227 => 0.0038130781722095
1228 => 0.0039097326687457
1229 => 0.0040829548055967
1230 => 0.0039021884755185
1231 => 0.0038956006319694
]
'min_raw' => 0.0032978958086575
'max_raw' => 0.0095351866455707
'avg_raw' => 0.0064165412271141
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003297'
'max' => '$0.009535'
'avg' => '$0.006416'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00057989581185913
'max_diff' => -0.0032209909189785
'year' => 2030
]
5 => [
'items' => [
101 => 0.0039599978593855
102 => 0.0039010130244063
103 => 0.0039382894040259
104 => 0.0040769490045494
105 => 0.0040798786634115
106 => 0.0040308031028187
107 => 0.0040278168504966
108 => 0.0040372423487363
109 => 0.004092447786326
110 => 0.0040731573101404
111 => 0.0040954807375575
112 => 0.004123396525371
113 => 0.0042388680598166
114 => 0.0042667078558444
115 => 0.0041990715847762
116 => 0.0042051783827624
117 => 0.0041798805607257
118 => 0.0041554431816191
119 => 0.0042103748410582
120 => 0.0043107635283677
121 => 0.0043101390155541
122 => 0.0043334272397326
123 => 0.0043479356104658
124 => 0.0042856550625025
125 => 0.0042451127158977
126 => 0.0042606592313625
127 => 0.0042855184481499
128 => 0.0042525977224025
129 => 0.0040493957527263
130 => 0.004111034249734
131 => 0.0041007745898634
201 => 0.0040861635865904
202 => 0.0041481415719681
203 => 0.0041421636440821
204 => 0.0039631014952053
205 => 0.0039745644730106
206 => 0.0039637985968522
207 => 0.0039985853452112
208 => 0.0038991344258346
209 => 0.0039297248588226
210 => 0.0039489108916253
211 => 0.0039602116123401
212 => 0.0040010375645387
213 => 0.0039962471102595
214 => 0.0040007397831746
215 => 0.0040612738926333
216 => 0.0043674346454778
217 => 0.0043840982997495
218 => 0.0043020403716704
219 => 0.0043348208954169
220 => 0.0042718894581361
221 => 0.0043141357535867
222 => 0.0043430395959944
223 => 0.0042124286900431
224 => 0.0042046947598504
225 => 0.004141503582142
226 => 0.0041754589417112
227 => 0.0041214335231598
228 => 0.0041346894711434
301 => 0.0040976246849485
302 => 0.004164333920574
303 => 0.0042389252115707
304 => 0.0042577699173758
305 => 0.0042081976095585
306 => 0.0041723039917246
307 => 0.0041092866229009
308 => 0.0042140859116883
309 => 0.0042447324174302
310 => 0.0042139249386403
311 => 0.0042067861726479
312 => 0.0041932582239919
313 => 0.004209656190906
314 => 0.0042445655099783
315 => 0.0042281029197777
316 => 0.0042389767506387
317 => 0.0041975369204423
318 => 0.0042856756799554
319 => 0.0044256612418098
320 => 0.0044261113182811
321 => 0.0044096486393411
322 => 0.0044029124658121
323 => 0.0044198041734435
324 => 0.0044289672318994
325 => 0.0044835919169699
326 => 0.0045422063803941
327 => 0.0048157345057004
328 => 0.0047389289026549
329 => 0.0049816193276876
330 => 0.005173555944481
331 => 0.0052311093434863
401 => 0.0051781629244981
402 => 0.0049970360852489
403 => 0.0049881491384041
404 => 0.0052588291060214
405 => 0.0051823496172416
406 => 0.005173252625407
407 => 0.0050764760018966
408 => 0.0051336829724092
409 => 0.0051211709687825
410 => 0.0051014201589496
411 => 0.0052105670736155
412 => 0.0054148803542579
413 => 0.005383036213432
414 => 0.0053592660395126
415 => 0.0052551120567915
416 => 0.0053178360180238
417 => 0.0052955012168273
418 => 0.0053914656967825
419 => 0.0053346184647306
420 => 0.0051817702098945
421 => 0.0052061117982715
422 => 0.0052024326161568
423 => 0.0052781499233681
424 => 0.0052554214671624
425 => 0.005197994520304
426 => 0.0054141820336763
427 => 0.0054001440190561
428 => 0.0054200467142507
429 => 0.0054288084961867
430 => 0.0055603980259251
501 => 0.0056143060458637
502 => 0.0056265441101825
503 => 0.0056777525597282
504 => 0.0056252699973079
505 => 0.0058352376664218
506 => 0.0059748539144294
507 => 0.0061370253710767
508 => 0.0063740014568165
509 => 0.006463106657206
510 => 0.0064470106003054
511 => 0.0066266831639426
512 => 0.0069495507669021
513 => 0.0065122713740015
514 => 0.0069727276365231
515 => 0.006826952500032
516 => 0.0064813222737942
517 => 0.0064590677619372
518 => 0.0066931325639948
519 => 0.0072122657670564
520 => 0.0070822287876496
521 => 0.0072124784609703
522 => 0.0070605352984229
523 => 0.0070529900397249
524 => 0.0072050989207088
525 => 0.0075605096121512
526 => 0.0073916673150175
527 => 0.0071495904802465
528 => 0.0073283362479087
529 => 0.0071734901218199
530 => 0.00682457846104
531 => 0.0070821293508221
601 => 0.0069099124054518
602 => 0.0069601744656672
603 => 0.0073221488694982
604 => 0.0072785951515638
605 => 0.0073349576955366
606 => 0.0072354792806892
607 => 0.0071425507549155
608 => 0.006969092760596
609 => 0.0069177403998537
610 => 0.0069319323448985
611 => 0.0069177333670306
612 => 0.00682068521337
613 => 0.0067997276738271
614 => 0.0067647975230846
615 => 0.0067756238373926
616 => 0.0067099449348207
617 => 0.0068338945939275
618 => 0.0068569007428984
619 => 0.0069471009682526
620 => 0.0069564658548766
621 => 0.0072076721985682
622 => 0.007069311965814
623 => 0.0071621359553933
624 => 0.007153832904072
625 => 0.0064888131288393
626 => 0.0065804469863472
627 => 0.0067230005123409
628 => 0.0066587803421075
629 => 0.0065679880466029
630 => 0.0064946684000081
701 => 0.0063835816380981
702 => 0.0065399341222541
703 => 0.0067455210126862
704 => 0.006961679877688
705 => 0.0072213805906978
706 => 0.0071634184148036
707 => 0.0069568249535024
708 => 0.0069660925852597
709 => 0.007023381438105
710 => 0.0069491871684292
711 => 0.0069273058298576
712 => 0.0070203752781961
713 => 0.0070210161963367
714 => 0.0069356467223977
715 => 0.0068407741745633
716 => 0.0068403766551238
717 => 0.0068234950015967
718 => 0.0070635385070826
719 => 0.007195538163964
720 => 0.0072106717118974
721 => 0.0071945195556103
722 => 0.007200735879509
723 => 0.0071239281875837
724 => 0.0072994877947115
725 => 0.0074605986512576
726 => 0.0074174175000718
727 => 0.007352682815882
728 => 0.00730111852188
729 => 0.0074052705911418
730 => 0.0074006328634481
731 => 0.0074591914884757
801 => 0.0074565349309934
802 => 0.007436843867898
803 => 0.0074174182033017
804 => 0.0074944387676483
805 => 0.0074722580820289
806 => 0.0074500429436783
807 => 0.0074054870827485
808 => 0.0074115429642434
809 => 0.0073468194574095
810 => 0.0073168754016019
811 => 0.0068665886480926
812 => 0.0067462573140108
813 => 0.0067841160012831
814 => 0.0067965800641335
815 => 0.0067442117133323
816 => 0.0068192944760557
817 => 0.0068075929070176
818 => 0.006853116866956
819 => 0.0068246754732071
820 => 0.0068258427179273
821 => 0.0069094827925984
822 => 0.0069337638621057
823 => 0.006921414314182
824 => 0.00693006351423
825 => 0.0071293806787375
826 => 0.0071010441517487
827 => 0.0070859909365538
828 => 0.0070901607800383
829 => 0.0071410905889781
830 => 0.0071553481548168
831 => 0.0070949378464969
901 => 0.0071234276971284
902 => 0.007244733865217
903 => 0.0072871841587134
904 => 0.0074226651182574
905 => 0.0073651103986611
906 => 0.00747075457739
907 => 0.0077954687660482
908 => 0.0080548729284611
909 => 0.0078163141403758
910 => 0.0082926768497263
911 => 0.0086635935491278
912 => 0.0086493571484107
913 => 0.0085846792424122
914 => 0.0081624004414742
915 => 0.0077738131930289
916 => 0.0080988829266395
917 => 0.0080997115962417
918 => 0.0080717878178345
919 => 0.0078983556283594
920 => 0.0080657527535768
921 => 0.0080790401294795
922 => 0.0080716027323724
923 => 0.0079386326793352
924 => 0.0077356119853209
925 => 0.0077752817429685
926 => 0.0078402616152362
927 => 0.0077172411608119
928 => 0.0076779286715512
929 => 0.007751018068594
930 => 0.0079865273346466
1001 => 0.0079420056721117
1002 => 0.0079408430315767
1003 => 0.0081313255840244
1004 => 0.0079949811851795
1005 => 0.0077757821056525
1006 => 0.0077204314471913
1007 => 0.0075239738983253
1008 => 0.0076596678270848
1009 => 0.0076645512100097
1010 => 0.0075902330319864
1011 => 0.0077818126162083
1012 => 0.0077800471766127
1013 => 0.0079619234789734
1014 => 0.0083096026594673
1015 => 0.0082067768175419
1016 => 0.0080872015508023
1017 => 0.0081002026977594
1018 => 0.0082427931903138
1019 => 0.0081565797234911
1020 => 0.0081875826872622
1021 => 0.008242746263615
1022 => 0.0082760278188631
1023 => 0.0080954139941333
1024 => 0.0080533042718309
1025 => 0.0079671625585042
1026 => 0.0079446897934086
1027 => 0.0080148504215073
1028 => 0.0079963655748148
1029 => 0.0076641407805842
1030 => 0.0076294214411058
1031 => 0.0076304862336798
1101 => 0.0075431828037468
1102 => 0.0074100241178749
1103 => 0.0077599571938542
1104 => 0.0077318526705428
1105 => 0.0077008274519244
1106 => 0.0077046278641777
1107 => 0.007856521952128
1108 => 0.0077684157102815
1109 => 0.0080026605945594
1110 => 0.0079545068883976
1111 => 0.0079051182213734
1112 => 0.007898291203175
1113 => 0.0078792807800137
1114 => 0.0078140869655268
1115 => 0.007735361516993
1116 => 0.0076833801567894
1117 => 0.0070875120526998
1118 => 0.0071981017068135
1119 => 0.0073253250233072
1120 => 0.0073692420023454
1121 => 0.0072941189707381
1122 => 0.0078170532806949
1123 => 0.0079125984182444
1124 => 0.0076231859643519
1125 => 0.0075690487108612
1126 => 0.0078206025100209
1127 => 0.0076688848179263
1128 => 0.0077372032853867
1129 => 0.0075895361269411
1130 => 0.007889584392497
1201 => 0.0078872985274318
1202 => 0.0077705729752331
1203 => 0.0078692286126493
1204 => 0.0078520847678523
1205 => 0.0077203019069023
1206 => 0.0078937621442459
1207 => 0.0078938481783595
1208 => 0.0077815023722007
1209 => 0.0076503070662665
1210 => 0.0076268524442602
1211 => 0.0076091825372637
1212 => 0.0077328575714506
1213 => 0.0078437442203807
1214 => 0.0080500767829082
1215 => 0.0081019536914684
1216 => 0.0083044327192202
1217 => 0.0081838663167189
1218 => 0.0082373118413514
1219 => 0.008295334518671
1220 => 0.0083231527238914
1221 => 0.008277824451292
1222 => 0.0085923577250833
1223 => 0.0086189139704418
1224 => 0.0086278180497998
1225 => 0.0085217591995789
1226 => 0.0086159642819581
1227 => 0.0085718888436573
1228 => 0.0086865608896065
1229 => 0.0087045429306175
1230 => 0.0086893127816109
1231 => 0.008695020565255
]
'min_raw' => 0.0038991344258346
'max_raw' => 0.0087045429306175
'avg_raw' => 0.006301838678226
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003899'
'max' => '$0.0087045'
'avg' => '$0.0063018'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00060123861717703
'max_diff' => -0.00083064371495313
'year' => 2031
]
6 => [
'items' => [
101 => 0.0084266219035459
102 => 0.0084127040170205
103 => 0.0082229326466792
104 => 0.0083002658828124
105 => 0.0081556951045398
106 => 0.0082015399875741
107 => 0.0082217479751895
108 => 0.0082111924692524
109 => 0.0083046381879535
110 => 0.0082251902373585
111 => 0.0080155140332857
112 => 0.0078057807030714
113 => 0.0078031476719556
114 => 0.0077479285882109
115 => 0.0077080153045432
116 => 0.0077157040189774
117 => 0.0077428000514984
118 => 0.0077064404338752
119 => 0.0077141996017745
120 => 0.0078430534879684
121 => 0.0078688942159007
122 => 0.0077810773257625
123 => 0.0074284798399411
124 => 0.0073419515324967
125 => 0.0074041463639568
126 => 0.007374421240379
127 => 0.0059517334909655
128 => 0.0062859728746646
129 => 0.0060873791825676
130 => 0.0061789002927423
131 => 0.0059761875586986
201 => 0.0060729327004689
202 => 0.0060550674053508
203 => 0.0065925144434765
204 => 0.0065841229472104
205 => 0.0065881395124049
206 => 0.0063964183905673
207 => 0.0067018353434503
208 => 0.0068522947168789
209 => 0.0068244486912038
210 => 0.0068314569359471
211 => 0.0067110320718308
212 => 0.0065893054883252
213 => 0.0064542919736307
214 => 0.0067051303957584
215 => 0.0066772414451725
216 => 0.0067412086636889
217 => 0.0069038953107395
218 => 0.0069278515375042
219 => 0.006960048949216
220 => 0.0069485084690851
221 => 0.0072234495258589
222 => 0.0071901523497641
223 => 0.0072703889639012
224 => 0.0071053361610546
225 => 0.0069185632476777
226 => 0.0069540626724441
227 => 0.0069506437923708
228 => 0.0069071175250292
229 => 0.0068678239570641
301 => 0.0068024112372964
302 => 0.0070093867619024
303 => 0.0070009839335851
304 => 0.007137015956823
305 => 0.0071129709753711
306 => 0.0069523927044305
307 => 0.0069581277887915
308 => 0.006996698987307
309 => 0.0071301943457671
310 => 0.0071698248572152
311 => 0.0071514664253096
312 => 0.0071949194719108
313 => 0.007229262988221
314 => 0.0071992324887973
315 => 0.0076244010319183
316 => 0.007447841410167
317 => 0.0075338953413147
318 => 0.0075544186968342
319 => 0.0075018485532306
320 => 0.0075132491349825
321 => 0.0075305179098641
322 => 0.007635370529372
323 => 0.0079105341423108
324 => 0.0080324022333794
325 => 0.0083990483982248
326 => 0.0080222827849019
327 => 0.0079999270726184
328 => 0.0080659711185605
329 => 0.0082812312307628
330 => 0.0084556793333486
331 => 0.0085135538331288
401 => 0.0085212029036786
402 => 0.0086297793126902
403 => 0.0086920132855055
404 => 0.0086165952807931
405 => 0.0085526864183936
406 => 0.0083237728059386
407 => 0.0083502701798914
408 => 0.0085328108102443
409 => 0.0087906602022073
410 => 0.0090119218051684
411 => 0.0089344437035568
412 => 0.0095255469278374
413 => 0.0095841523980846
414 => 0.0095760550170382
415 => 0.0097095669999248
416 => 0.0094445729031374
417 => 0.0093312827927419
418 => 0.0085665042398408
419 => 0.0087813758182942
420 => 0.0090937042765416
421 => 0.009052366433921
422 => 0.0088255451589781
423 => 0.0090117497408917
424 => 0.0089501846829554
425 => 0.0089016257674245
426 => 0.0091240835730807
427 => 0.0088794820776987
428 => 0.0090912641895148
429 => 0.0088196514405053
430 => 0.0089347976169987
501 => 0.0088694350782271
502 => 0.0089117326513438
503 => 0.0086644619031852
504 => 0.0087978831967335
505 => 0.0086589111387251
506 => 0.0086588452478749
507 => 0.0086557774319918
508 => 0.0088192774419422
509 => 0.0088246091713969
510 => 0.0087037824170087
511 => 0.0086863693940328
512 => 0.0087507544665097
513 => 0.0086753764091164
514 => 0.0087106453277469
515 => 0.0086764446687327
516 => 0.0086687453800125
517 => 0.0086073961375641
518 => 0.0085809651970847
519 => 0.0085913294498881
520 => 0.0085559509119316
521 => 0.0085346340631152
522 => 0.008651536974225
523 => 0.008589080464669
524 => 0.0086419646183831
525 => 0.0085816964507136
526 => 0.0083727807239805
527 => 0.0082526310802926
528 => 0.0078580086389919
529 => 0.0079699230738171
530 => 0.0080441224598901
531 => 0.0080195995632356
601 => 0.0080722842343507
602 => 0.00807551864527
603 => 0.0080583903216339
604 => 0.0080385579171373
605 => 0.0080289045994292
606 => 0.0081008525208109
607 => 0.0081426207108286
608 => 0.0080515693609423
609 => 0.0080302373036077
610 => 0.0081222952454256
611 => 0.0081784505367544
612 => 0.0085930696569936
613 => 0.0085623533333642
614 => 0.0086394452779
615 => 0.0086307659080176
616 => 0.008711570547601
617 => 0.0088436519827312
618 => 0.0085750934945614
619 => 0.0086217059620538
620 => 0.0086102776614637
621 => 0.0087350488506449
622 => 0.0087354383726783
623 => 0.0086606318119811
624 => 0.0087011856621329
625 => 0.0086785496155148
626 => 0.0087194560111988
627 => 0.0085619430981353
628 => 0.0087537768237784
629 => 0.0088625341847259
630 => 0.0088640442807882
701 => 0.0089155944067255
702 => 0.0089679723202597
703 => 0.0090685071641339
704 => 0.0089651684580295
705 => 0.0087792721855679
706 => 0.0087926932959983
707 => 0.0086837023794709
708 => 0.0086855345364685
709 => 0.0086757543388263
710 => 0.0087051054481694
711 => 0.00856838401608
712 => 0.0086004722629164
713 => 0.0085555485294369
714 => 0.0086216083066307
715 => 0.0085505389064425
716 => 0.0086102721503912
717 => 0.008636051038291
718 => 0.0087311756896212
719 => 0.0085364889180975
720 => 0.008139509411825
721 => 0.0082229593169548
722 => 0.0080995303524193
723 => 0.0081109541730143
724 => 0.0081340321087037
725 => 0.0080592289685036
726 => 0.0080734990503359
727 => 0.0080729892225959
728 => 0.0080685958025632
729 => 0.0080491366167628
730 => 0.0080209169474697
731 => 0.0081333354243773
801 => 0.0081524375142217
802 => 0.0081948990936975
803 => 0.0083212359522531
804 => 0.0083086119208551
805 => 0.0083292022398313
806 => 0.008284253689116
807 => 0.0081130392073664
808 => 0.0081223369774631
809 => 0.0080063936353703
810 => 0.008191934161764
811 => 0.0081479957160987
812 => 0.0081196683143418
813 => 0.0081119389203209
814 => 0.0082385889435125
815 => 0.0082764846154473
816 => 0.0082528705757815
817 => 0.0082044374914952
818 => 0.0082974433312808
819 => 0.008322327770406
820 => 0.0083278984786233
821 => 0.0084926869946224
822 => 0.0083371083260956
823 => 0.008374557657929
824 => 0.0086667266545096
825 => 0.0084017696911765
826 => 0.0085421233038994
827 => 0.0085352537249216
828 => 0.0086070538838833
829 => 0.0085293640161971
830 => 0.0085303270752176
831 => 0.0085940807522115
901 => 0.0085045502109098
902 => 0.0084823811898126
903 => 0.0084517548459444
904 => 0.0085186263473382
905 => 0.0085587127880859
906 => 0.0088817800602661
907 => 0.009090496251752
908 => 0.0090814353314298
909 => 0.0091642351818426
910 => 0.009126933090872
911 => 0.0090064747993333
912 => 0.0092120824146661
913 => 0.0091470195621868
914 => 0.0091523832646938
915 => 0.0091521836274186
916 => 0.0091954447364241
917 => 0.0091647902758713
918 => 0.0091043671875059
919 => 0.0091444788533903
920 => 0.009263596160884
921 => 0.0096333399383097
922 => 0.0098402534546107
923 => 0.0096208834848202
924 => 0.0097722019525007
925 => 0.0096814647921753
926 => 0.0096649751509475
927 => 0.0097600143309978
928 => 0.0098552198645517
929 => 0.0098491556836492
930 => 0.0097800413551473
1001 => 0.0097410004246878
1002 => 0.010036631429799
1003 => 0.010254447318422
1004 => 0.010239593735074
1005 => 0.010305152621327
1006 => 0.010497635539027
1007 => 0.010515233764747
1008 => 0.010513016792797
1009 => 0.010469397754165
1010 => 0.010658922183705
1011 => 0.010817026797193
1012 => 0.010459301206997
1013 => 0.010595518428772
1014 => 0.010656670728271
1015 => 0.010746460447006
1016 => 0.010897950753017
1017 => 0.011062509406163
1018 => 0.011085779804012
1019 => 0.011069268343147
1020 => 0.010960737487823
1021 => 0.011140799529689
1022 => 0.011246275650839
1023 => 0.011309084267206
1024 => 0.011468356467956
1025 => 0.010657048384054
1026 => 0.010082764197641
1027 => 0.0099930814291679
1028 => 0.010175454865458
1029 => 0.010223545286207
1030 => 0.010204160097903
1031 => 0.0095577510344604
1101 => 0.0099896782192263
1102 => 0.010454395552565
1103 => 0.01047224723796
1104 => 0.01070489445181
1105 => 0.010780653921172
1106 => 0.010967965422089
1107 => 0.010956249036707
1108 => 0.011001856406403
1109 => 0.01099137206192
1110 => 0.011338327174279
1111 => 0.011721070186543
1112 => 0.011707817013077
1113 => 0.011652793176654
1114 => 0.0117345129567
1115 => 0.012129544762591
1116 => 0.012093176564161
1117 => 0.0121285051711
1118 => 0.012594269933263
1119 => 0.013199830378339
1120 => 0.012918486754327
1121 => 0.013528921463987
1122 => 0.013913157755965
1123 => 0.014577654692166
1124 => 0.014494456403037
1125 => 0.014753140183996
1126 => 0.01434551410149
1127 => 0.013409522221231
1128 => 0.013261397923347
1129 => 0.013557946518815
1130 => 0.014286982303985
1201 => 0.013534986587522
1202 => 0.013687114341561
1203 => 0.013643301538164
1204 => 0.013640966940063
1205 => 0.013730069054067
1206 => 0.01360082179045
1207 => 0.013074245187337
1208 => 0.013315572141409
1209 => 0.013222384214969
1210 => 0.013325783166974
1211 => 0.01388378466597
1212 => 0.013637078902169
1213 => 0.013377194420754
1214 => 0.013703147233432
1215 => 0.014118197173509
1216 => 0.014092224094175
1217 => 0.014041825464363
1218 => 0.014325919901828
1219 => 0.014795160680658
1220 => 0.014921994577614
1221 => 0.015015620767342
1222 => 0.015028530237078
1223 => 0.01516150579855
1224 => 0.014446462690359
1225 => 0.015581254466668
1226 => 0.015777201658446
1227 => 0.015740371707571
1228 => 0.015958158764514
1229 => 0.015894080287637
1230 => 0.015801240628247
1231 => 0.016146479438137
]
'min_raw' => 0.0059517334909655
'max_raw' => 0.016146479438137
'avg_raw' => 0.011049106464551
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005951'
'max' => '$0.016146'
'avg' => '$0.011049'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.002052599065131
'max_diff' => 0.0074419365075199
'year' => 2032
]
7 => [
'items' => [
101 => 0.015750691001933
102 => 0.01518891914512
103 => 0.014880719993885
104 => 0.015286581497948
105 => 0.015534426955864
106 => 0.015698237037616
107 => 0.015747805869377
108 => 0.014501969451381
109 => 0.013830532719337
110 => 0.01426091596654
111 => 0.014786013231592
112 => 0.014443545748539
113 => 0.014456969825498
114 => 0.013968701193536
115 => 0.014829214171227
116 => 0.014703844668431
117 => 0.015354261870713
118 => 0.015199034585464
119 => 0.015729424564874
120 => 0.015589755107992
121 => 0.016169515214697
122 => 0.016400797217641
123 => 0.016789155696752
124 => 0.017074833774889
125 => 0.017242589406522
126 => 0.017232517987635
127 => 0.017897249375689
128 => 0.017505280500099
129 => 0.017012875212387
130 => 0.017003969154251
131 => 0.017258992830194
201 => 0.017793452492642
202 => 0.017932030107042
203 => 0.018009476088387
204 => 0.017890864872044
205 => 0.017465410750253
206 => 0.017281701817566
207 => 0.017438227150776
208 => 0.017246810118635
209 => 0.017577249618243
210 => 0.018031013629274
211 => 0.017937313155374
212 => 0.018250539791263
213 => 0.018574696407005
214 => 0.019038254926301
215 => 0.019159446288767
216 => 0.019359771002429
217 => 0.019565970936028
218 => 0.019632196797456
219 => 0.019758642515599
220 => 0.019757976084249
221 => 0.020139028766654
222 => 0.020559341675565
223 => 0.020718000068413
224 => 0.021082826294292
225 => 0.02045807416751
226 => 0.020931955832309
227 => 0.021359408955985
228 => 0.020849781720115
301 => 0.021552184136845
302 => 0.021579456831009
303 => 0.021991242133244
304 => 0.02157381884091
305 => 0.021325954222385
306 => 0.022041530088702
307 => 0.022387774709985
308 => 0.022283483012222
309 => 0.021489818042734
310 => 0.021027870988599
311 => 0.019818866444998
312 => 0.021250984552003
313 => 0.021948527506468
314 => 0.021488011574995
315 => 0.021720269024218
316 => 0.022987390357446
317 => 0.023469828121108
318 => 0.023369484438761
319 => 0.02338644086928
320 => 0.023646755529688
321 => 0.024801134091836
322 => 0.024109403699111
323 => 0.024638205665706
324 => 0.024918680322051
325 => 0.025179200813886
326 => 0.024539444824286
327 => 0.023707131681697
328 => 0.023443503171311
329 => 0.021442222341388
330 => 0.021338046983068
331 => 0.021279570197607
401 => 0.020910882336979
402 => 0.02062119467063
403 => 0.020390824282936
404 => 0.019786263591205
405 => 0.019990285077599
406 => 0.019026741516603
407 => 0.019643182541041
408 => 0.018105343752119
409 => 0.01938610159266
410 => 0.018689043328967
411 => 0.019157099205715
412 => 0.019155466202855
413 => 0.018293626936511
414 => 0.01779653603381
415 => 0.018113301704078
416 => 0.018452899647496
417 => 0.018507998271271
418 => 0.018948295869325
419 => 0.019071173464777
420 => 0.018698848613952
421 => 0.018073475461392
422 => 0.018218735381489
423 => 0.017793592346166
424 => 0.017048545529653
425 => 0.017583651160542
426 => 0.017766359749861
427 => 0.017847054271583
428 => 0.017114386296748
429 => 0.016884166112059
430 => 0.016761598817465
501 => 0.017978897226291
502 => 0.018045583581023
503 => 0.017704406761717
504 => 0.019246558336692
505 => 0.018897521939667
506 => 0.019287481111138
507 => 0.018205554566282
508 => 0.018246885617303
509 => 0.017734684252327
510 => 0.018021482791406
511 => 0.017818782827933
512 => 0.017998312303647
513 => 0.018105921531162
514 => 0.018618038848934
515 => 0.019391949149804
516 => 0.018541545599267
517 => 0.018171012594294
518 => 0.018400889186622
519 => 0.019013080844775
520 => 0.019940582544391
521 => 0.019391482870507
522 => 0.019635163981459
523 => 0.019688397463584
524 => 0.019283511692837
525 => 0.019955511260281
526 => 0.020315641287789
527 => 0.020685060177603
528 => 0.021005816248746
529 => 0.020537506149316
530 => 0.021038665085322
531 => 0.020634819449362
601 => 0.020272528165112
602 => 0.020273077611442
603 => 0.020045806996601
604 => 0.019605441542405
605 => 0.019524231396233
606 => 0.01994669683233
607 => 0.020285474104455
608 => 0.02031337742322
609 => 0.020500941928073
610 => 0.020611940669977
611 => 0.021699879236106
612 => 0.022137457127303
613 => 0.022672519089733
614 => 0.02288095587854
615 => 0.023508275884122
616 => 0.023001664031175
617 => 0.022892055370051
618 => 0.021370382231318
619 => 0.021619556122539
620 => 0.02201850756409
621 => 0.021376960793646
622 => 0.021783874555782
623 => 0.021864207952039
624 => 0.021355161279877
625 => 0.021627065102087
626 => 0.020904969164162
627 => 0.01940768886799
628 => 0.019957178161271
629 => 0.020361787237222
630 => 0.019784360197901
701 => 0.020819375816372
702 => 0.02021474105912
703 => 0.020023100868658
704 => 0.019275444161005
705 => 0.019628309347071
706 => 0.020105564563769
707 => 0.019810676326724
708 => 0.020422613696284
709 => 0.021289280209317
710 => 0.021906918377387
711 => 0.021954332966687
712 => 0.021557233003162
713 => 0.02219358822897
714 => 0.022198223382065
715 => 0.021480412087766
716 => 0.021040756666798
717 => 0.020940866030111
718 => 0.021190412425268
719 => 0.021493407817794
720 => 0.021971147102232
721 => 0.022259834946265
722 => 0.023012579735302
723 => 0.023216250892331
724 => 0.023440023744669
725 => 0.023739053284385
726 => 0.024098114916414
727 => 0.023312508506924
728 => 0.023343722114127
729 => 0.022612176303071
730 => 0.021830414689676
731 => 0.022423674306282
801 => 0.023199282336975
802 => 0.023021356997763
803 => 0.023001336762417
804 => 0.023035005245119
805 => 0.022900855349852
806 => 0.022294100345385
807 => 0.02198939178063
808 => 0.02238254356861
809 => 0.022591486246749
810 => 0.022915538118825
811 => 0.022875591885687
812 => 0.023710314707526
813 => 0.024034662755384
814 => 0.023951680645107
815 => 0.023966951350474
816 => 0.02455416799824
817 => 0.02520727368087
818 => 0.025818993337539
819 => 0.026441260846273
820 => 0.02569109307698
821 => 0.025310204147649
822 => 0.025703184297857
823 => 0.025494663498561
824 => 0.026692885862607
825 => 0.026775848179347
826 => 0.027973983898278
827 => 0.029111157366892
828 => 0.028396919085835
829 => 0.029070413614873
830 => 0.029798852858842
831 => 0.031204130345467
901 => 0.03073088232623
902 => 0.030368381760236
903 => 0.030025820476962
904 => 0.030738636127383
905 => 0.031655662074142
906 => 0.031853180679908
907 => 0.032173236279164
908 => 0.031836736951083
909 => 0.032242013327572
910 => 0.033672817024042
911 => 0.033286201235202
912 => 0.03273714466346
913 => 0.033866626765975
914 => 0.034275381948125
915 => 0.037144239883202
916 => 0.040766291532848
917 => 0.039266738366221
918 => 0.038335917325418
919 => 0.038554682349377
920 => 0.039877332997641
921 => 0.040302126407031
922 => 0.039147391485241
923 => 0.039555263381144
924 => 0.041802677628649
925 => 0.043008343266754
926 => 0.041370887387709
927 => 0.036853211559866
928 => 0.032687708126533
929 => 0.033792587212117
930 => 0.033667328212202
1001 => 0.036081894450509
1002 => 0.0332769805765
1003 => 0.033324208132536
1004 => 0.035788705043582
1005 => 0.035131219519888
1006 => 0.034066177175888
1007 => 0.03269548411429
1008 => 0.030161631216165
1009 => 0.027917327042579
1010 => 0.032318924359363
1011 => 0.032129119479278
1012 => 0.031854253885408
1013 => 0.032465937521003
1014 => 0.035436099626024
1015 => 0.035367627776026
1016 => 0.034932044800989
1017 => 0.035262430648502
1018 => 0.034008258939427
1019 => 0.034331487545815
1020 => 0.032687048289507
1021 => 0.033430403511208
1022 => 0.034063892073353
1023 => 0.034191074281162
1024 => 0.03447762228944
1025 => 0.032029100932274
1026 => 0.033128415136831
1027 => 0.033774159240198
1028 => 0.030856663888817
1029 => 0.033716489737564
1030 => 0.031986477622914
1031 => 0.031399285527292
1101 => 0.032189862327371
1102 => 0.031881773779519
1103 => 0.031616897337643
1104 => 0.03146909173192
1105 => 0.032049604081121
1106 => 0.032022522486169
1107 => 0.031072691610285
1108 => 0.029833675952754
1109 => 0.030249530276724
1110 => 0.03009844650217
1111 => 0.029550899412994
1112 => 0.029919880040011
1113 => 0.02829507609545
1114 => 0.025499685358792
1115 => 0.027346406104562
1116 => 0.027275309364696
1117 => 0.027239459164475
1118 => 0.028627218765308
1119 => 0.028493817700749
1120 => 0.028251693462308
1121 => 0.029546452611479
1122 => 0.029073848105064
1123 => 0.03053030383421
1124 => 0.031489619775076
1125 => 0.031246306221853
1126 => 0.032148547501014
1127 => 0.03025911072044
1128 => 0.030886705827901
1129 => 0.031016052309739
1130 => 0.029530475484558
1201 => 0.02851564376471
1202 => 0.028447966058925
1203 => 0.026688387709133
1204 => 0.027628340260772
1205 => 0.028455459608334
1206 => 0.028059333627906
1207 => 0.027933931976429
1208 => 0.028574581817523
1209 => 0.028624365796971
1210 => 0.027489285789691
1211 => 0.027725304866514
1212 => 0.02870954365177
1213 => 0.027700504574422
1214 => 0.025740106472732
1215 => 0.025253900638888
1216 => 0.025189031818102
1217 => 0.023870403035248
1218 => 0.025286391237589
1219 => 0.024668274441143
1220 => 0.026620897994941
1221 => 0.025505569893142
1222 => 0.025457490327851
1223 => 0.025384811013176
1224 => 0.024249812747904
1225 => 0.024498305235096
1226 => 0.025324332108996
1227 => 0.025619067803462
1228 => 0.025588324455831
1229 => 0.025320284126676
1230 => 0.025442991616775
1231 => 0.025047708037044
]
'min_raw' => 0.013830532719337
'max_raw' => 0.043008343266754
'avg_raw' => 0.028419437993046
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01383'
'max' => '$0.0430083'
'avg' => '$0.028419'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0078787992283716
'max_diff' => 0.026861863828617
'year' => 2033
]
8 => [
'items' => [
101 => 0.024908125177925
102 => 0.024467563279255
103 => 0.023820058996541
104 => 0.023910098438427
105 => 0.022627223025658
106 => 0.02192824441343
107 => 0.021734776345956
108 => 0.021476062760541
109 => 0.021763998733839
110 => 0.022623588800798
111 => 0.021586740807839
112 => 0.019809137650341
113 => 0.019915974628995
114 => 0.020156005599847
115 => 0.019708709473628
116 => 0.01928538122888
117 => 0.019653430791982
118 => 0.018900236900422
119 => 0.020247025483215
120 => 0.020210598626382
121 => 0.0207125981252
122 => 0.021026508713878
123 => 0.020303046436736
124 => 0.020121097630485
125 => 0.020224743939637
126 => 0.018511701324346
127 => 0.020572605996867
128 => 0.020590428786056
129 => 0.020437819244491
130 => 0.021535187359315
131 => 0.023850976359292
201 => 0.022979683385104
202 => 0.022642292410529
203 => 0.02200091192123
204 => 0.022855513341816
205 => 0.022789893286574
206 => 0.022493134511102
207 => 0.022313653877753
208 => 0.022644352447875
209 => 0.022272676665236
210 => 0.022205913481707
211 => 0.021801401228579
212 => 0.021657008758347
213 => 0.021550106321817
214 => 0.021432417243214
215 => 0.021692010024321
216 => 0.021103738630058
217 => 0.020394340997533
218 => 0.020335362260178
219 => 0.02049820773948
220 => 0.020426160737309
221 => 0.02033501732685
222 => 0.020160999734852
223 => 0.020109372432604
224 => 0.020277136118904
225 => 0.020087740698302
226 => 0.020367203958303
227 => 0.02029120541499
228 => 0.019866683729937
301 => 0.019337572532303
302 => 0.019332862332796
303 => 0.019218866193182
304 => 0.019073674969949
305 => 0.019033286093171
306 => 0.019622434684351
307 => 0.020841954636361
308 => 0.020602533689143
309 => 0.020775539860354
310 => 0.021626558992212
311 => 0.021897072383191
312 => 0.021705068385735
313 => 0.021442241471726
314 => 0.021453804522073
315 => 0.02235196365036
316 => 0.022407980733486
317 => 0.022549517830752
318 => 0.022731432999117
319 => 0.021736049325531
320 => 0.02140692204056
321 => 0.021250963273655
322 => 0.020770670635224
323 => 0.021288625068593
324 => 0.020986835201289
325 => 0.021027556964998
326 => 0.021001036862961
327 => 0.021015518631955
328 => 0.020246649028359
329 => 0.020526784701313
330 => 0.02006100481182
331 => 0.019437377826035
401 => 0.019435287209707
402 => 0.019587919030986
403 => 0.019497127651205
404 => 0.019252810382676
405 => 0.019287514497525
406 => 0.018983469934057
407 => 0.019324431012435
408 => 0.019334208556145
409 => 0.019202919968694
410 => 0.019728217553498
411 => 0.019943432402594
412 => 0.01985701544186
413 => 0.019937369158259
414 => 0.02061248271042
415 => 0.020722555676692
416 => 0.020771442817298
417 => 0.020705940525191
418 => 0.019949708994669
419 => 0.019983251078792
420 => 0.019737141521017
421 => 0.019529204879083
422 => 0.019537521254277
423 => 0.019644427718102
424 => 0.020111294515608
425 => 0.021093788167659
426 => 0.021131073083561
427 => 0.021176263489312
428 => 0.020992451398245
429 => 0.020937011912735
430 => 0.021010150904269
501 => 0.021379123862917
502 => 0.022328222487741
503 => 0.021992747645562
504 => 0.021720001376894
505 => 0.021959273386382
506 => 0.021922439335998
507 => 0.021611522882273
508 => 0.021602796492956
509 => 0.021006048412254
510 => 0.020785444234115
511 => 0.020601090870926
512 => 0.020399781810989
513 => 0.020280439052318
514 => 0.020463803769951
515 => 0.020505741450381
516 => 0.02010481129061
517 => 0.020050165991321
518 => 0.020377574214469
519 => 0.020233494062471
520 => 0.020381684071817
521 => 0.020416065425135
522 => 0.020410529235381
523 => 0.020260093009195
524 => 0.020355976573693
525 => 0.020129183359388
526 => 0.019882579802071
527 => 0.019725262096448
528 => 0.019587981533125
529 => 0.01966415276845
530 => 0.019392616222836
531 => 0.019305746216944
601 => 0.02032349337949
602 => 0.021075314151088
603 => 0.021064382379315
604 => 0.020997838030072
605 => 0.020898966625125
606 => 0.021371890803813
607 => 0.021207133476376
608 => 0.021327008198022
609 => 0.021357521345807
610 => 0.02144987545418
611 => 0.02148288410982
612 => 0.021383109026491
613 => 0.021048251660341
614 => 0.020213818941177
615 => 0.019825388257898
616 => 0.019697199662591
617 => 0.019701859074566
618 => 0.019573331691776
619 => 0.019611188766201
620 => 0.019560166546227
621 => 0.019463542805199
622 => 0.01965818652472
623 => 0.019680617400163
624 => 0.019635185230207
625 => 0.0196458861509
626 => 0.019269727188003
627 => 0.019298325736977
628 => 0.019139085382158
629 => 0.0191092297353
630 => 0.01870668398496
701 => 0.017993515838293
702 => 0.018388680220454
703 => 0.017911377215325
704 => 0.017730615334961
705 => 0.018586313962361
706 => 0.018500425553555
707 => 0.018353421932474
708 => 0.018135972938656
709 => 0.018055318991641
710 => 0.017565291141515
711 => 0.017536337681933
712 => 0.01777920871632
713 => 0.017667132090633
714 => 0.01750973406143
715 => 0.016939654354839
716 => 0.016298696017727
717 => 0.016318042521004
718 => 0.016521919442585
719 => 0.017114719088633
720 => 0.016883102011384
721 => 0.01671506116434
722 => 0.016683592164978
723 => 0.017077492576806
724 => 0.01763494418423
725 => 0.017896488006156
726 => 0.017637306021831
727 => 0.017339571713587
728 => 0.017357693421362
729 => 0.01747824902452
730 => 0.017490917713847
731 => 0.017297123286762
801 => 0.017351675282829
802 => 0.017268805812464
803 => 0.016760236025799
804 => 0.016751037611051
805 => 0.016626226383607
806 => 0.016622447149244
807 => 0.016410112115743
808 => 0.016380404976753
809 => 0.015958800879922
810 => 0.016236301973191
811 => 0.016050168809288
812 => 0.01576962222691
813 => 0.015721255890364
814 => 0.015719801939883
815 => 0.016007860550917
816 => 0.016232935840605
817 => 0.016053406675364
818 => 0.016012531364466
819 => 0.01644897274633
820 => 0.016393431602237
821 => 0.016345333329653
822 => 0.017585030506968
823 => 0.016603713456346
824 => 0.016175803210656
825 => 0.015646183023663
826 => 0.015818630027125
827 => 0.015854967144528
828 => 0.014581326066024
829 => 0.014064610039097
830 => 0.013887292570688
831 => 0.013785243860718
901 => 0.013831748739298
902 => 0.013366643710319
903 => 0.01367920198192
904 => 0.013276460341174
905 => 0.013208939394468
906 => 0.013929091338238
907 => 0.014029296274148
908 => 0.013601790886326
909 => 0.013876318552143
910 => 0.013776771004298
911 => 0.013283364190666
912 => 0.01326451967964
913 => 0.013016945484647
914 => 0.012629539809294
915 => 0.012452485020176
916 => 0.012360273348743
917 => 0.012398321681546
918 => 0.012379083280183
919 => 0.012253539697931
920 => 0.012386279291362
921 => 0.012047184481934
922 => 0.011912154196547
923 => 0.011851164149316
924 => 0.01155019798838
925 => 0.012029168990689
926 => 0.012123532312062
927 => 0.012218081558328
928 => 0.013041068195561
929 => 0.012999954108901
930 => 0.013371605428935
1001 => 0.013357163742062
1002 => 0.013251162765236
1003 => 0.012803962080321
1004 => 0.012982208302742
1005 => 0.012433594135742
1006 => 0.012844653171796
1007 => 0.012657062993976
1008 => 0.012781228743976
1009 => 0.012557967529902
1010 => 0.012681529504
1011 => 0.012145909356207
1012 => 0.011645754798577
1013 => 0.011847031592989
1014 => 0.012065842487309
1015 => 0.012540280258172
1016 => 0.012257709035873
1017 => 0.012359332332613
1018 => 0.012018911300068
1019 => 0.011316525473469
1020 => 0.011320500900969
1021 => 0.011212454143854
1022 => 0.011119085970621
1023 => 0.012290165739918
1024 => 0.012144523458574
1025 => 0.011912461544444
1026 => 0.012223085638281
1027 => 0.012305219578959
1028 => 0.012307557816783
1029 => 0.012534181137279
1030 => 0.012655130044052
1031 => 0.012676447813093
1101 => 0.013033044504413
1102 => 0.01315257101172
1103 => 0.013644883779291
1104 => 0.012644868374335
1105 => 0.012624273715148
1106 => 0.012227456756292
1107 => 0.011975789167557
1108 => 0.012244688651403
1109 => 0.012482896885651
1110 => 0.012234858550133
1111 => 0.012267247120376
1112 => 0.011934275920419
1113 => 0.012053297456653
1114 => 0.01215581483759
1115 => 0.012099210765529
1116 => 0.012014471729987
1117 => 0.012463366526934
1118 => 0.012438038123257
1119 => 0.012856059278221
1120 => 0.013181936661494
1121 => 0.01376596718987
1122 => 0.01315650088731
1123 => 0.013134289512835
1124 => 0.01335140926114
1125 => 0.013152537771818
1126 => 0.013278217688259
1127 => 0.013745718212328
1128 => 0.013755595761724
1129 => 0.013590134082839
1130 => 0.013580065724642
1201 => 0.013611844450024
1202 => 0.013797973437178
1203 => 0.0137329342499
1204 => 0.013808199244009
1205 => 0.013902319271641
1206 => 0.014291639611989
1207 => 0.014385503428009
1208 => 0.014157463017889
1209 => 0.014178052513662
1210 => 0.014092759140428
1211 => 0.014010366810607
1212 => 0.014195572735612
1213 => 0.01453404020379
1214 => 0.014531934615237
1215 => 0.014610452488987
1216 => 0.014659368473856
1217 => 0.014449385258109
1218 => 0.014312693905954
1219 => 0.014365110068267
1220 => 0.014448924653281
1221 => 0.014337930127972
1222 => 0.0136528205001
1223 => 0.013860638996224
1224 => 0.013826047836663
1225 => 0.013776785819021
1226 => 0.013985748923886
1227 => 0.013965593922653
1228 => 0.013361873385995
1229 => 0.013400521615985
1230 => 0.013364223712868
1231 => 0.013481509663693
]
'min_raw' => 0.011119085970621
'max_raw' => 0.024908125177925
'avg_raw' => 0.018013605574273
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.011119'
'max' => '$0.0249081'
'avg' => '$0.018013'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0027114467487158
'max_diff' => -0.018100218088829
'year' => 2034
]
9 => [
'items' => [
101 => 0.013146203945573
102 => 0.013249341726149
103 => 0.013314028775269
104 => 0.01335212994415
105 => 0.013489777492364
106 => 0.013473626141303
107 => 0.013488773501705
108 => 0.013692868478102
109 => 0.014725110831778
110 => 0.014781293505574
111 => 0.014504629471954
112 => 0.014615151296428
113 => 0.014402973561903
114 => 0.014545409896557
115 => 0.014642861219237
116 => 0.01420249743086
117 => 0.014176421945249
118 => 0.013963368477738
119 => 0.014077851343213
120 => 0.013895700872633
121 => 0.01394039422676
122 => 0.013815427712323
123 => 0.014040342557725
124 => 0.014291832303118
125 => 0.014355368544435
126 => 0.014188232047601
127 => 0.014067214209062
128 => 0.01385474675034
129 => 0.01420808486934
130 => 0.014311411703119
131 => 0.01420754213747
201 => 0.014183473289514
202 => 0.014137862866129
203 => 0.014193149756449
204 => 0.014310848962992
205 => 0.01425534419075
206 => 0.014292006070684
207 => 0.01415228878994
208 => 0.01444945477129
209 => 0.014921425866562
210 => 0.014922943330809
211 => 0.014867438259375
212 => 0.014844726780017
213 => 0.014901678351638
214 => 0.014932572242966
215 => 0.015116743182455
216 => 0.015314365938221
217 => 0.016236585109815
218 => 0.015977629656751
219 => 0.016795877368854
220 => 0.017443005072959
221 => 0.017637050375955
222 => 0.017458537827736
223 => 0.016847856043335
224 => 0.016817893081581
225 => 0.017730509490675
226 => 0.017472653554626
227 => 0.017441982411524
228 => 0.017115693268631
301 => 0.017308570563777
302 => 0.017266385469989
303 => 0.01719979423568
304 => 0.01756779067887
305 => 0.018256647169254
306 => 0.018149282425172
307 => 0.018069139624223
308 => 0.01771797719968
309 => 0.017929455414222
310 => 0.017854152072622
311 => 0.018177703016817
312 => 0.017986038605006
313 => 0.017470700042302
314 => 0.017552769406991
315 => 0.017540364787619
316 => 0.017795650975295
317 => 0.017719020398347
318 => 0.017525401437593
319 => 0.018254292732658
320 => 0.018206962586263
321 => 0.018274065912673
322 => 0.018303606872199
323 => 0.018747270158999
324 => 0.01892902481196
325 => 0.018970286300245
326 => 0.019142939163148
327 => 0.018965990539733
328 => 0.019673911195625
329 => 0.020144637123478
330 => 0.020691409512013
331 => 0.021490390930227
401 => 0.021790815334467
402 => 0.021736546354836
403 => 0.022342324947476
404 => 0.02343089561275
405 => 0.021956577609714
406 => 0.023509038046835
407 => 0.02301754699646
408 => 0.021852230557568
409 => 0.021777197917081
410 => 0.022566363739101
411 => 0.024316657577946
412 => 0.023878228822984
413 => 0.024317374690327
414 => 0.023805087709465
415 => 0.023779648342972
416 => 0.024292494055112
417 => 0.025490786015292
418 => 0.024921522422313
419 => 0.024105343472618
420 => 0.024707997307922
421 => 0.024185922782802
422 => 0.023009542758249
423 => 0.023877893564778
424 => 0.023297252109659
425 => 0.02346671415486
426 => 0.024687136129622
427 => 0.024540291728783
428 => 0.024730321980894
429 => 0.024394923559875
430 => 0.024081608547167
501 => 0.023496782808868
502 => 0.023323644739318
503 => 0.023371493872886
504 => 0.023323621027664
505 => 0.022996416401912
506 => 0.022925756594134
507 => 0.02280798715216
508 => 0.022844488826719
509 => 0.022623047821143
510 => 0.023040952750711
511 => 0.023118519588204
512 => 0.023422635945564
513 => 0.023454210314653
514 => 0.024301170041076
515 => 0.023834678856342
516 => 0.024147641417972
517 => 0.024119647100742
518 => 0.021877486498347
519 => 0.022186436446607
520 => 0.022667065612264
521 => 0.022450542824613
522 => 0.022144430261403
523 => 0.021897227953895
524 => 0.021522691180285
525 => 0.022049844496799
526 => 0.022742995051509
527 => 0.023471789756593
528 => 0.02434738884223
529 => 0.024151965319413
530 => 0.023455421040741
531 => 0.023486667508256
601 => 0.023679820875404
602 => 0.023429669715113
603 => 0.023355895254413
604 => 0.023669685397388
605 => 0.023671846297646
606 => 0.023384017155954
607 => 0.023064147737141
608 => 0.023062807472597
609 => 0.023005889799091
610 => 0.023815213237139
611 => 0.024260259296236
612 => 0.024311283109684
613 => 0.024256824987055
614 => 0.024277783757089
615 => 0.024018821261221
616 => 0.024610732733833
617 => 0.025153929235079
618 => 0.025008340969044
619 => 0.024790083461667
620 => 0.024616230844335
621 => 0.024967386817517
622 => 0.024951750394802
623 => 0.025149184887515
624 => 0.025140228118488
625 => 0.025073838324476
626 => 0.025008343340033
627 => 0.025268023550132
628 => 0.02519323981996
629 => 0.025118339929999
630 => 0.024968116734084
701 => 0.024988534561352
702 => 0.02477031473921
703 => 0.024669356264428
704 => 0.023151183036954
705 => 0.022745477542832
706 => 0.02287312075018
707 => 0.022915144208293
708 => 0.022738580657325
709 => 0.022991727433958
710 => 0.022952274776969
711 => 0.023105761986282
712 => 0.023009869841543
713 => 0.023013805288612
714 => 0.023295803639929
715 => 0.023377668961023
716 => 0.02333603159798
717 => 0.02336519297981
718 => 0.024037204715827
719 => 0.023941666136691
720 => 0.02389091317068
721 => 0.023904972089117
722 => 0.024076685495763
723 => 0.02412475587442
724 => 0.023921078302206
725 => 0.024017133822708
726 => 0.024426126037745
727 => 0.024569250166053
728 => 0.025026033680134
729 => 0.024831983924673
730 => 0.025188170649098
731 => 0.02628296720698
801 => 0.027157566451576
802 => 0.026353248841903
803 => 0.027959338975061
804 => 0.02920991052367
805 => 0.029161911504698
806 => 0.028943845428957
807 => 0.027520102969031
808 => 0.026209953930602
809 => 0.027305949233114
810 => 0.027308743150534
811 => 0.027214596182058
812 => 0.026629857446594
813 => 0.027194248541558
814 => 0.027239047857109
815 => 0.0272139721535
816 => 0.026765654336013
817 => 0.026081155891691
818 => 0.026214905249254
819 => 0.026433989425354
820 => 0.026019217374249
821 => 0.025886672571996
822 => 0.026133098577065
823 => 0.026927134510293
824 => 0.026777026616653
825 => 0.026773106692917
826 => 0.027415331917561
827 => 0.026955637257594
828 => 0.026216592256978
829 => 0.026029973647516
830 => 0.025367603305286
831 => 0.025825104859946
901 => 0.025841569526424
902 => 0.025591000600489
903 => 0.026236924544353
904 => 0.026230972241498
905 => 0.026844180893104
906 => 0.028016405524325
907 => 0.027669721019202
908 => 0.027266564658911
909 => 0.027310398933588
910 => 0.027791152734586
911 => 0.027500478011961
912 => 0.027605006668873
913 => 0.027790994517944
914 => 0.027903205605107
915 => 0.027294253484976
916 => 0.027152277616227
917 => 0.026861844815524
918 => 0.026786076319005
919 => 0.027022627775099
920 => 0.026960304823904
921 => 0.025840185734961
922 => 0.025723127057883
923 => 0.025726717080388
924 => 0.025432367471038
925 => 0.024983413664778
926 => 0.026163237461989
927 => 0.02606848109945
928 => 0.025963877408766
929 => 0.025976690764015
930 => 0.026488812286445
1001 => 0.026191755940679
1002 => 0.026981528922477
1003 => 0.026819175340168
1004 => 0.026652658001089
1005 => 0.026629640232587
1006 => 0.026565545263633
1007 => 0.026345739766403
1008 => 0.026080311420236
1009 => 0.025905052635087
1010 => 0.023896041719967
1011 => 0.024268902459934
1012 => 0.024697844753941
1013 => 0.024845913914954
1014 => 0.024592631368967
1015 => 0.026355740905094
1016 => 0.026677878007091
1017 => 0.02570210371266
1018 => 0.025519576182774
1019 => 0.026367707379566
1020 => 0.025856180588078
1021 => 0.026086521070964
1022 => 0.025588650936473
1023 => 0.026600284612495
1024 => 0.026592577658834
1025 => 0.026199029310079
1026 => 0.026531653679544
1027 => 0.026473852009866
1028 => 0.026029536893387
1029 => 0.026614370194198
1030 => 0.026614660264219
1031 => 0.026235878535021
1101 => 0.0257935444013
1102 => 0.025714465505656
1103 => 0.025654890180544
1104 => 0.02607186919302
1105 => 0.026445731271747
1106 => 0.027141395911988
1107 => 0.027316302531129
1108 => 0.027998974709828
1109 => 0.027592476666118
1110 => 0.027772671983863
1111 => 0.027968299491461
1112 => 0.028062090512566
1113 => 0.027909263076778
1114 => 0.028969733969377
1115 => 0.029059270204701
1116 => 0.02908929092992
1117 => 0.028731706111608
1118 => 0.029049325124038
1119 => 0.028900721706558
1120 => 0.029287346515622
1121 => 0.029347974222357
1122 => 0.029296624711646
1123 => 0.029315868902707
1124 => 0.028410944075758
1125 => 0.028364018949622
1126 => 0.027724191525103
1127 => 0.02798492592996
1128 => 0.027497495457404
1129 => 0.027652064681342
1130 => 0.027720197322464
1201 => 0.027684608697235
1202 => 0.027999667462008
1203 => 0.027731803149698
1204 => 0.027024865188541
1205 => 0.02631773462261
1206 => 0.026308857174371
1207 => 0.026122682178253
1208 => 0.02598811175571
1209 => 0.026014034793234
1210 => 0.026105390958663
1211 => 0.025982801969299
1212 => 0.0260089625456
1213 => 0.026443402419193
1214 => 0.026530526237559
1215 => 0.026234445461279
1216 => 0.025045638420262
1217 => 0.024753902190499
1218 => 0.024963596407072
1219 => 0.024863376077587
1220 => 0.020066685001553
1221 => 0.021193596419543
1222 => 0.020524023921269
1223 => 0.020832593734023
1224 => 0.020149133598243
1225 => 0.020475316598252
1226 => 0.020415082508446
1227 => 0.022227122720841
1228 => 0.022198830205304
1229 => 0.022212372335285
1230 => 0.021565971187468
1231 => 0.022595705767644
]
'min_raw' => 0.013146203945573
'max_raw' => 0.029347974222357
'avg_raw' => 0.021247089083965
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.013146'
'max' => '$0.029347'
'avg' => '$0.021247'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0020271179749521
'max_diff' => 0.0044398490444321
'year' => 2035
]
10 => [
'items' => [
101 => 0.023102990049897
102 => 0.023009105230186
103 => 0.023032734016638
104 => 0.022626713179474
105 => 0.022216303504506
106 => 0.021761096013371
107 => 0.022606815266554
108 => 0.022512785722509
109 => 0.022728455665786
110 => 0.023276965054736
111 => 0.023357735145844
112 => 0.023466290967381
113 => 0.02342738143289
114 => 0.024354364401574
115 => 0.024242100647636
116 => 0.024512623994141
117 => 0.023956136945724
118 => 0.023326419028206
119 => 0.023446107817297
120 => 0.023434580824431
121 => 0.023287828975182
122 => 0.023155347967398
123 => 0.022934804415731
124 => 0.02363263684751
125 => 0.023604306125171
126 => 0.02406294758897
127 => 0.023981878255238
128 => 0.023440477403545
129 => 0.023459813640879
130 => 0.023589859129629
131 => 0.024039948051026
201 => 0.024173565087287
202 => 0.024111668352372
203 => 0.024258173332783
204 => 0.024373964895811
205 => 0.024272714970341
206 => 0.025706200397793
207 => 0.02511091730606
208 => 0.025401054143018
209 => 0.025470250069047
210 => 0.025293006159557
211 => 0.025331444016897
212 => 0.025389666897077
213 => 0.025743184824325
214 => 0.026670918156658
215 => 0.027081804934254
216 => 0.028317978077448
217 => 0.027047686507194
218 => 0.026972312662405
219 => 0.027194984774347
220 => 0.027920749271618
221 => 0.028508913229063
222 => 0.028704041145741
223 => 0.02872983052114
224 => 0.029095903464686
225 => 0.02930572964907
226 => 0.029051452580665
227 => 0.028835979389111
228 => 0.028064181162481
229 => 0.02815351890875
301 => 0.028768967388565
302 => 0.029638324616038
303 => 0.030384323558413
304 => 0.030123100729481
305 => 0.032116046519652
306 => 0.032313638954294
307 => 0.032286338068755
308 => 0.032736483040566
309 => 0.03184303694195
310 => 0.031461071425089
311 => 0.02888256713885
312 => 0.02960702166746
313 => 0.030660058870518
314 => 0.030520685448006
315 => 0.02975594168338
316 => 0.030383743431691
317 => 0.030176172540524
318 => 0.030012452766536
319 => 0.030762484789814
320 => 0.029937793770602
321 => 0.030651831946745
322 => 0.029736070600063
323 => 0.03012429397336
324 => 0.029903919610425
325 => 0.03004652883131
326 => 0.029212838240001
327 => 0.029662677446376
328 => 0.029194123450082
329 => 0.02919390129448
330 => 0.029183557939042
331 => 0.029734809637796
401 => 0.029752785935902
402 => 0.029345410097628
403 => 0.029286700874926
404 => 0.029503779642004
405 => 0.029249637258774
406 => 0.029368548880334
407 => 0.029253238970654
408 => 0.029227280281187
409 => 0.029020437027005
410 => 0.028931323265829
411 => 0.028966267067765
412 => 0.028846985856994
413 => 0.028775114612915
414 => 0.029169260939622
415 => 0.02895868445708
416 => 0.02913698707358
417 => 0.028933788738494
418 => 0.028229414779783
419 => 0.027824321867509
420 => 0.026493824755004
421 => 0.026871152085634
422 => 0.027121320496215
423 => 0.02703863983801
424 => 0.027216269885001
425 => 0.027227174927235
426 => 0.027169425588234
427 => 0.02710255925182
428 => 0.027070012417194
429 => 0.027312589857375
430 => 0.027453414226182
501 => 0.027146428243038
502 => 0.027074505722378
503 => 0.027384885500497
504 => 0.027574216985849
505 => 0.028972134297519
506 => 0.028868572067857
507 => 0.029128492941247
508 => 0.029099229839714
509 => 0.029371668323669
510 => 0.029816990103842
511 => 0.028911526410823
512 => 0.029068683599352
513 => 0.029030152286014
514 => 0.029450827061585
515 => 0.029452140362316
516 => 0.029199924820098
517 => 0.029336654957264
518 => 0.029260335945693
519 => 0.029398254714735
520 => 0.028867188931141
521 => 0.02951396973055
522 => 0.029880652766181
523 => 0.029885744160486
524 => 0.030059549009198
525 => 0.030236144801588
526 => 0.030575105046829
527 => 0.03022669138432
528 => 0.029599929122852
529 => 0.0296451793337
530 => 0.029277708849125
531 => 0.02928388609436
601 => 0.029250911475178
602 => 0.029349870789557
603 => 0.028888904935682
604 => 0.028997092700221
605 => 0.02884562919632
606 => 0.029068354347275
607 => 0.028828738902633
608 => 0.029030133705048
609 => 0.029117049025427
610 => 0.029437768428778
611 => 0.028781368385989
612 => 0.027442924264368
613 => 0.027724281445799
614 => 0.027308132074332
615 => 0.027346648283054
616 => 0.027424457154481
617 => 0.027172253144708
618 => 0.027220365721911
619 => 0.02721864680209
620 => 0.027203834079711
621 => 0.027138226076188
622 => 0.027043081490932
623 => 0.027422108234634
624 => 0.027486512264209
625 => 0.027629674443985
626 => 0.028055627983163
627 => 0.028013065179923
628 => 0.028082486877921
629 => 0.027930939700977
630 => 0.027353678121945
701 => 0.027385026202975
702 => 0.026994115130204
703 => 0.027619677968966
704 => 0.027471536431721
705 => 0.027376028618942
706 => 0.027349968427351
707 => 0.027776977822964
708 => 0.027904745726683
709 => 0.02782512934327
710 => 0.02766183381811
711 => 0.027975409500407
712 => 0.028059309124294
713 => 0.028078091155983
714 => 0.02863368714284
715 => 0.028109142799747
716 => 0.028235405836652
717 => 0.029220474007211
718 => 0.028327153106629
719 => 0.028800365111101
720 => 0.028777203845958
721 => 0.029019283094825
722 => 0.028757346281788
723 => 0.028760593302514
724 => 0.028975543275638
725 => 0.028673684804817
726 => 0.028598940402396
727 => 0.028495681545781
728 => 0.02872114348155
729 => 0.028856297715276
730 => 0.029945541579269
731 => 0.030649242790962
801 => 0.030618693265483
802 => 0.030897858742051
803 => 0.030772092137994
804 => 0.030365958597942
805 => 0.031059179028102
806 => 0.030839815078425
807 => 0.030857899175909
808 => 0.030857226084897
809 => 0.031003083934303
810 => 0.030899730280324
811 => 0.030696009619294
812 => 0.030831248901331
813 => 0.031232861220051
814 => 0.032479478180328
815 => 0.033177101546777
816 => 0.032437480377706
817 => 0.032947661156209
818 => 0.032641734485106
819 => 0.032586138508436
820 => 0.032906569739399
821 => 0.033227561842814
822 => 0.033207116033514
823 => 0.032974092249561
824 => 0.032842463026766
825 => 0.033839203600795
826 => 0.034573585076707
827 => 0.034523505183406
828 => 0.034744541545584
829 => 0.035393511141337
830 => 0.035452844788021
831 => 0.035445370112307
901 => 0.035298305478175
902 => 0.035937300324545
903 => 0.036470361067431
904 => 0.035264264264479
905 => 0.035723530138077
906 => 0.035929709385357
907 => 0.03623244169099
908 => 0.03674320183442
909 => 0.037298022822621
910 => 0.037376480593655
911 => 0.037320811050556
912 => 0.036954891694449
913 => 0.03756198344013
914 => 0.037917603546696
915 => 0.038129367181935
916 => 0.038666364526792
917 => 0.035930982678196
918 => 0.033994743448461
919 => 0.033692371733105
920 => 0.034307256506463
921 => 0.034469396717583
922 => 0.034404038201787
923 => 0.032224624913551
924 => 0.033680897573182
925 => 0.035247724508062
926 => 0.035307912711734
927 => 0.036092299036142
928 => 0.03634772737645
929 => 0.036979261179464
930 => 0.036939758568137
1001 => 0.037093526999274
1002 => 0.037058178299853
1003 => 0.038227961684804
1004 => 0.039518406472919
1005 => 0.039473722473269
1006 => 0.039288205767128
1007 => 0.039563729711047
1008 => 0.040895607024849
1009 => 0.040772989104693
1010 => 0.040892101969555
1011 => 0.042462460383843
1012 => 0.044504149703298
1013 => 0.043555580032155
1014 => 0.045613703274965
1015 => 0.046909182759889
1016 => 0.049149580573986
1017 => 0.048869071733469
1018 => 0.049741242161698
1019 => 0.048366902364982
1020 => 0.045211140391823
1021 => 0.044711728979799
1022 => 0.045711563273782
1023 => 0.048169558323136
1024 => 0.045634152262417
1025 => 0.04614706160638
1026 => 0.045999343680814
1027 => 0.045991472420321
1028 => 0.046291886418597
1029 => 0.045856120245557
1030 => 0.044080730463756
1031 => 0.044894381138318
1101 => 0.044580191538155
1102 => 0.044928808323922
1103 => 0.046810149336208
1104 => 0.045978363629108
1105 => 0.045102144955462
1106 => 0.046201117620704
1107 => 0.047600487471535
1108 => 0.047512917421179
1109 => 0.047342994922048
1110 => 0.048300839152799
1111 => 0.049882917199972
1112 => 0.050310546538818
1113 => 0.050626213774258
1114 => 0.050669738952783
1115 => 0.051118075342343
1116 => 0.048707257580361
1117 => 0.052533287282817
1118 => 0.053193936920494
1119 => 0.053069762169733
1120 => 0.053804046437624
1121 => 0.053588001379016
1122 => 0.053274985985525
1123 => 0.054438982736875
1124 => 0.053104554391147
1125 => 0.051210501354242
1126 => 0.050171386398075
1127 => 0.051539776795368
1128 => 0.052375405060752
1129 => 0.052927702188231
1130 => 0.053094826965299
1201 => 0.048894402500506
1202 => 0.046630606680204
1203 => 0.048081673846546
1204 => 0.049852075936789
1205 => 0.04869742290736
1206 => 0.048742683120067
1207 => 0.047096451337579
1208 => 0.049997730920963
1209 => 0.049575038889266
1210 => 0.051767965897438
1211 => 0.051244606267599
1212 => 0.053032853113827
1213 => 0.052561947788537
1214 => 0.054516649465854
1215 => 0.05529643288637
1216 => 0.056605810613016
1217 => 0.057568994198863
1218 => 0.058134594023239
1219 => 0.058100637531295
1220 => 0.060341825816184
1221 => 0.059020275385739
1222 => 0.05736009657958
1223 => 0.057330069182773
1224 => 0.058189899311399
1225 => 0.059991867378123
1226 => 0.060459091480255
1227 => 0.060720206013463
1228 => 0.060320300016393
1229 => 0.058885851740518
1230 => 0.058266464247813
1231 => 0.058794200336981
]
'min_raw' => 0.021761096013371
'max_raw' => 0.060720206013463
'avg_raw' => 0.041240651013417
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.021761'
'max' => '$0.06072'
'avg' => '$0.04124'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0086148920677977
'max_diff' => 0.031372231791106
'year' => 2036
]
11 => [
'items' => [
101 => 0.058148824448808
102 => 0.059262924292286
103 => 0.060792821336268
104 => 0.060476903646555
105 => 0.061532969118241
106 => 0.062625885780108
107 => 0.064188805692537
108 => 0.064597410832402
109 => 0.065272819590738
110 => 0.065968037063285
111 => 0.066191322178831
112 => 0.066617642745711
113 => 0.066615395825886
114 => 0.067900141548861
115 => 0.069317255866566
116 => 0.069852183715227
117 => 0.071082220807131
118 => 0.068975825392886
119 => 0.070573550511117
120 => 0.072014738561415
121 => 0.070296494754641
122 => 0.072664693542819
123 => 0.07275664533531
124 => 0.074145008231729
125 => 0.07273763645806
126 => 0.071901943591346
127 => 0.074314557584547
128 => 0.075481945499229
129 => 0.075130318758809
130 => 0.072454421902259
131 => 0.070896935157132
201 => 0.066820691928377
202 => 0.07164917811344
203 => 0.074000992885311
204 => 0.072448331270157
205 => 0.073231403475908
206 => 0.077503591518472
207 => 0.079130164121389
208 => 0.078791848390583
209 => 0.078849018179938
210 => 0.079726687232091
211 => 0.083618755150513
212 => 0.081286537836367
213 => 0.083069430586516
214 => 0.084015070472497
215 => 0.08489343349968
216 => 0.082736451514405
217 => 0.07993024964392
218 => 0.079041407715197
219 => 0.072293949672145
220 => 0.071942715178279
221 => 0.071745556613378
222 => 0.070502499750308
223 => 0.069525797557865
224 => 0.068749087711808
225 => 0.066710769130559
226 => 0.067398641816261
227 => 0.0641499874279
228 => 0.066228361380331
301 => 0.061043430535004
302 => 0.065361595014044
303 => 0.063011414410949
304 => 0.064589497478023
305 => 0.064583991694866
306 => 0.061678240436692
307 => 0.060002263752458
308 => 0.06107026132564
309 => 0.062215239501844
310 => 0.062401008358764
311 => 0.063885502451201
312 => 0.064299792843306
313 => 0.063044473613858
314 => 0.060935984367844
315 => 0.061425738330174
316 => 0.059992338904043
317 => 0.057480361544662
318 => 0.059284507539087
319 => 0.059900522304283
320 => 0.060172589518181
321 => 0.057702348287778
322 => 0.05692614486164
323 => 0.056512900670541
324 => 0.06061710724496
325 => 0.06084194494583
326 => 0.059691643479336
327 => 0.064891115183949
328 => 0.063714314602437
329 => 0.065029089175129
330 => 0.061381298291451
331 => 0.061520648815609
401 => 0.059793726152833
402 => 0.060760687450974
403 => 0.060077270372066
404 => 0.060682566533782
405 => 0.061045378557385
406 => 0.062772017849144
407 => 0.065381310461217
408 => 0.062514115517301
409 => 0.061264837621249
410 => 0.062039882601754
411 => 0.064103929519073
412 => 0.067231066255427
413 => 0.065379738368013
414 => 0.066201326246861
415 => 0.066380806648489
416 => 0.065015706004194
417 => 0.067281399463342
418 => 0.06849560299456
419 => 0.069741124573571
420 => 0.070822576061905
421 => 0.069243635865308
422 => 0.070933328207853
423 => 0.069571734450612
424 => 0.068350244091391
425 => 0.068352096588057
426 => 0.067585837842591
427 => 0.066101114968436
428 => 0.065827309290706
429 => 0.067251681004102
430 => 0.068393892229743
501 => 0.068487970217109
502 => 0.069120357040556
503 => 0.069494597048569
504 => 0.073162657881719
505 => 0.074637982292602
506 => 0.076441981055769
507 => 0.077144740241822
508 => 0.079259793438728
509 => 0.077551716206004
510 => 0.077182162952395
511 => 0.072051735725328
512 => 0.072891842896348
513 => 0.074236935535437
514 => 0.072073915807518
515 => 0.073445853966371
516 => 0.073716703620552
517 => 0.072000417224853
518 => 0.072917159945154
519 => 0.070482563075309
520 => 0.065434378019994
521 => 0.067287019536409
522 => 0.068651187284881
523 => 0.06670435170714
524 => 0.070193979127299
525 => 0.068155410828974
526 => 0.06750928254694
527 => 0.064988505757363
528 => 0.066178215368447
529 => 0.067787314652439
530 => 0.066793078372802
531 => 0.068856267938377
601 => 0.071778294595789
602 => 0.073860704801557
603 => 0.074020566399766
604 => 0.072681716148105
605 => 0.074827232220819
606 => 0.074842859963096
607 => 0.072422709068384
608 => 0.070940380120829
609 => 0.070603591865098
610 => 0.071444954959141
611 => 0.072466525079506
612 => 0.07407725643168
613 => 0.075050587653379
614 => 0.077588519264579
615 => 0.078275210790369
616 => 0.079029676585349
617 => 0.080037875556077
618 => 0.081248476917346
619 => 0.078599750058463
620 => 0.078704988914411
621 => 0.076238531137538
622 => 0.073602767277125
623 => 0.075602983494575
624 => 0.078218000121278
625 => 0.077618112417776
626 => 0.077550612796538
627 => 0.077664128436627
628 => 0.077211832698687
629 => 0.075166115838847
630 => 0.0741387696387
701 => 0.075464308340857
702 => 0.076168773168114
703 => 0.077261336679399
704 => 0.077126655165415
705 => 0.079940981437732
706 => 0.081034543526345
707 => 0.080754763547918
708 => 0.08080624979723
709 => 0.08278609172333
710 => 0.084988083130701
711 => 0.087050538662063
712 => 0.08914855701309
713 => 0.086619314003877
714 => 0.08533512038582
715 => 0.086660080399247
716 => 0.08595703796596
717 => 0.089996928323557
718 => 0.090276641566691
719 => 0.094316239794232
720 => 0.098150299538577
721 => 0.095742195307469
722 => 0.098012929134008
723 => 0.10046891290305
724 => 0.10520690406255
725 => 0.10361131532457
726 => 0.10238911935734
727 => 0.10123415007392
728 => 0.10363745780651
729 => 0.10672927481072
730 => 0.10739522258037
731 => 0.10847431237883
801 => 0.10733978140057
802 => 0.10870619899939
803 => 0.11353025355757
804 => 0.11222675143284
805 => 0.11037556886731
806 => 0.11418369663386
807 => 0.11556184326885
808 => 0.12523439809423
809 => 0.13744639811458
810 => 0.13239054991784
811 => 0.12925222179092
812 => 0.12998980334289
813 => 0.13444921234803
814 => 0.13588143298591
815 => 0.13198816357608
816 => 0.13336333214983
817 => 0.14094064619474
818 => 0.1450056320705
819 => 0.13948483525078
820 => 0.12425317578315
821 => 0.11020889013151
822 => 0.11393406710875
823 => 0.11351174764523
824 => 0.12165262629732
825 => 0.11219566333826
826 => 0.11235489434076
827 => 0.12066411774203
828 => 0.11844735939472
829 => 0.11485649477304
830 => 0.11023510741713
831 => 0.10169204546314
901 => 0.094125217249587
902 => 0.10896550991284
903 => 0.10832556950788
904 => 0.10739884096764
905 => 0.10946117505143
906 => 0.11947528395861
907 => 0.11924442633579
908 => 0.11777582792402
909 => 0.11888974687571
910 => 0.11466121939509
911 => 0.11575100720863
912 => 0.11020666544491
913 => 0.11271293947427
914 => 0.11484879039031
915 => 0.11527759408351
916 => 0.11624371069957
917 => 0.10798834999358
918 => 0.11169476458591
919 => 0.11387193591482
920 => 0.10403539664462
921 => 0.11367749916034
922 => 0.10784464253021
923 => 0.10586488338337
924 => 0.10853036826115
925 => 0.10749162621201
926 => 0.10659857679514
927 => 0.10610023987599
928 => 0.1080574777914
929 => 0.10796617030324
930 => 0.10476374919012
1001 => 0.10058632139545
1002 => 0.10198840328273
1003 => 0.1014790137885
1004 => 0.099632920548821
1005 => 0.10087696449421
1006 => 0.095398824554937
1007 => 0.085973969518347
1008 => 0.092200317446635
1009 => 0.091960609824359
1010 => 0.091839738371333
1011 => 0.096518666755825
1012 => 0.0960688957529
1013 => 0.095252556978421
1014 => 0.099617927847047
1015 => 0.098024508757475
1016 => 0.10293505093478
1017 => 0.10616945160671
1018 => 0.10534910297441
1019 => 0.10839107243958
1020 => 0.10202070441761
1021 => 0.1041366851397
1022 => 0.1045727858339
1023 => 0.099564059848147
1024 => 0.09614248385139
1025 => 0.095914303741229
1026 => 0.089981762485068
1027 => 0.093150878138309
1028 => 0.095939568766245
1029 => 0.094604002366599
1030 => 0.094181201943382
1031 => 0.096341197611373
1101 => 0.096509047773888
1102 => 0.092682046280589
1103 => 0.093477801076421
1104 => 0.096796230858271
1105 => 0.093394185160132
1106 => 0.08678456608966
1107 => 0.085145289175049
1108 => 0.084926579416772
1109 => 0.080480730411657
1110 => 0.085254833496991
1111 => 0.083170809562235
1112 => 0.08975421620169
1113 => 0.085993809636751
1114 => 0.085831706025566
1115 => 0.08558666264183
1116 => 0.081759936747418
1117 => 0.082597746517177
1118 => 0.085382753793885
1119 => 0.086376475765567
1120 => 0.086272822422597
1121 => 0.085369105738874
1122 => 0.085782822608904
1123 => 0.084450096422024
1124 => 0.08397948306714
1125 => 0.082494097866724
1126 => 0.080310991970248
1127 => 0.080614566234919
1128 => 0.076289262213269
1129 => 0.073932607021014
1130 => 0.073280315924015
1201 => 0.072408045007985
1202 => 0.073378841245004
1203 => 0.076277009170421
1204 => 0.072781203771744
1205 => 0.066787890617948
1206 => 0.0671480989506
1207 => 0.067957380127255
1208 => 0.06644929000849
1209 => 0.065022009275488
1210 => 0.066262914073887
1211 => 0.063723468282172
1212 => 0.068264260018838
1213 => 0.068141444327783
1214 => 0.069833970686535
1215 => 0.070892342152799
1216 => 0.06845313857489
1217 => 0.067839685471354
1218 => 0.068189136239017
1219 => 0.062413493460747
1220 => 0.069361977451919
1221 => 0.069422068230017
1222 => 0.068907534505775
1223 => 0.072607387720699
1224 => 0.080415232017346
1225 => 0.077477606923138
1226 => 0.076340069696472
1227 => 0.074177610597046
1228 => 0.077058958952915
1229 => 0.076837716355221
1230 => 0.075837173424683
1231 => 0.07523204193841
]
'min_raw' => 0.056512900670541
'max_raw' => 0.1450056320705
'avg_raw' => 0.10075926637052
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.056512'
'max' => '$0.1450056'
'avg' => '$0.100759'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.03475180465717
'max_diff' => 0.084285426057037
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017738753762031
]
1 => [
'year' => 2028
'avg' => 0.0030444851052657
]
2 => [
'year' => 2029
'avg' => 0.0083169845925329
]
3 => [
'year' => 2030
'avg' => 0.0064165412271141
]
4 => [
'year' => 2031
'avg' => 0.006301838678226
]
5 => [
'year' => 2032
'avg' => 0.011049106464551
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017738753762031
'min' => '$0.001773'
'max_raw' => 0.011049106464551
'max' => '$0.011049'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.011049106464551
]
1 => [
'year' => 2033
'avg' => 0.028419437993046
]
2 => [
'year' => 2034
'avg' => 0.018013605574273
]
3 => [
'year' => 2035
'avg' => 0.021247089083965
]
4 => [
'year' => 2036
'avg' => 0.041240651013417
]
5 => [
'year' => 2037
'avg' => 0.10075926637052
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.011049106464551
'min' => '$0.011049'
'max_raw' => 0.10075926637052
'max' => '$0.100759'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.10075926637052
]
]
]
]
'prediction_2025_max_price' => '$0.003033'
'last_price' => 0.00294088
'sma_50day_nextmonth' => '$0.002761'
'sma_200day_nextmonth' => '$0.003468'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.002884'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002852'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002795'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002845'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002912'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.003491'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003468'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002892'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002864'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002835'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002843'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003007'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003246'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0034048'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00355'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003132'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005397'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002876'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002875'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0030012'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003225'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003534'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004461'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003047'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.92'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.27
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002840'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002915'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 68.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.14
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000032'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.82
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000716'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767706223
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Rave para 2026
A previsão de preço para Rave em 2026 sugere que o preço médio poderia variar entre $0.001016 na extremidade inferior e $0.003033 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Rave poderia potencialmente ganhar 3.13% até 2026 se KRAV atingir a meta de preço prevista.
Previsão de preço de Rave 2027-2032
A previsão de preço de KRAV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001773 na extremidade inferior e $0.011049 na extremidade superior. Considerando a volatilidade de preços no mercado, se Rave atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Rave | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000978 | $0.001773 | $0.002569 |
| 2028 | $0.001765 | $0.003044 | $0.004323 |
| 2029 | $0.003877 | $0.008316 | $0.012756 |
| 2030 | $0.003297 | $0.006416 | $0.009535 |
| 2031 | $0.003899 | $0.0063018 | $0.0087045 |
| 2032 | $0.005951 | $0.011049 | $0.016146 |
Previsão de preço de Rave 2032-2037
A previsão de preço de Rave para 2032-2037 é atualmente estimada entre $0.011049 na extremidade inferior e $0.100759 na extremidade superior. Comparado ao preço atual, Rave poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Rave | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005951 | $0.011049 | $0.016146 |
| 2033 | $0.01383 | $0.028419 | $0.0430083 |
| 2034 | $0.011119 | $0.018013 | $0.0249081 |
| 2035 | $0.013146 | $0.021247 | $0.029347 |
| 2036 | $0.021761 | $0.04124 | $0.06072 |
| 2037 | $0.056512 | $0.100759 | $0.1450056 |
Rave Histograma de preços potenciais
Previsão de preço de Rave baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Rave é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de KRAV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Rave
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Rave está projetado para aumentar no próximo mês, alcançando $0.003468 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Rave é esperado para alcançar $0.002761 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 54.92, sugerindo que o mercado de KRAV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KRAV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.002884 | BUY |
| SMA 5 | $0.002852 | BUY |
| SMA 10 | $0.002795 | BUY |
| SMA 21 | $0.002845 | BUY |
| SMA 50 | $0.002912 | BUY |
| SMA 100 | $0.003491 | SELL |
| SMA 200 | $0.003468 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002892 | BUY |
| EMA 5 | $0.002864 | BUY |
| EMA 10 | $0.002835 | BUY |
| EMA 21 | $0.002843 | BUY |
| EMA 50 | $0.003007 | SELL |
| EMA 100 | $0.003246 | SELL |
| EMA 200 | $0.0034048 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.00355 | SELL |
| SMA 50 | $0.003132 | SELL |
| SMA 100 | $0.005397 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003225 | SELL |
| EMA 50 | $0.003534 | SELL |
| EMA 100 | $0.004461 | SELL |
| EMA 200 | $0.003047 | SELL |
Osciladores de Rave
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 54.92 | NEUTRAL |
| Stoch RSI (14) | 93.27 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 68.82 | NEUTRAL |
| Índice Direcional Médio (14) | 13.14 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000032 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.82 | SELL |
| VWMA (10) | 0.002840 | BUY |
| Média Móvel de Hull (9) | 0.002915 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000716 | NEUTRAL |
Previsão do preço de Rave com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Rave
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Rave por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.004132 | $0.0058067 | $0.008159 | $0.011465 | $0.01611 | $0.022638 |
| Amazon.com stock | $0.006136 | $0.0128037 | $0.026715 | $0.055744 | $0.116313 | $0.242695 |
| Apple stock | $0.004171 | $0.005916 | $0.008392 | $0.0119042 | $0.016885 | $0.02395 |
| Netflix stock | $0.00464 | $0.007321 | $0.011552 | $0.018227 | $0.02876 | $0.045379 |
| Google stock | $0.0038084 | $0.004931 | $0.006386 | $0.00827 | $0.01071 | $0.01387 |
| Tesla stock | $0.006666 | $0.015113 | $0.03426 | $0.077665 | $0.17606 | $0.399116 |
| Kodak stock | $0.0022053 | $0.001653 | $0.00124 | $0.000929 | $0.000697 | $0.000522 |
| Nokia stock | $0.001948 | $0.00129 | $0.000854 | $0.000566 | $0.000375 | $0.000248 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Rave
Você pode fazer perguntas como: 'Devo investir em Rave agora?', 'Devo comprar KRAV hoje?', 'Rave será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Rave regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Rave, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Rave para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Rave é de $0.00294 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Rave com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Rave tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003017 | $0.003095 | $0.003176 | $0.003258 |
| Se Rave tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003093 | $0.003254 | $0.003423 | $0.0036017 |
| Se Rave tiver 5% da média anterior do crescimento anual do Bitcoin | $0.003323 | $0.003754 | $0.004243 | $0.004794 |
| Se Rave tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0037053 | $0.004668 | $0.005881 | $0.00741 |
| Se Rave tiver 20% da média anterior do crescimento anual do Bitcoin | $0.004469 | $0.006793 | $0.010325 | $0.015692 |
| Se Rave tiver 50% da média anterior do crescimento anual do Bitcoin | $0.006763 | $0.015552 | $0.035765 | $0.082249 |
| Se Rave tiver 100% da média anterior do crescimento anual do Bitcoin | $0.010585 | $0.038099 | $0.137132 | $0.493582 |
Perguntas Frequentes sobre Rave
KRAV é um bom investimento?
A decisão de adquirir Rave depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Rave experimentou uma escalada de 2.2727% nas últimas 24 horas, e Rave registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Rave dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Rave pode subir?
Parece que o valor médio de Rave pode potencialmente subir para $0.003033 até o final deste ano. Observando as perspectivas de Rave em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.009535. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Rave na próxima semana?
Com base na nossa nova previsão experimental de Rave, o preço de Rave aumentará 0.86% na próxima semana e atingirá $0.002966 até 13 de janeiro de 2026.
Qual será o preço de Rave no próximo mês?
Com base na nossa nova previsão experimental de Rave, o preço de Rave diminuirá -11.62% no próximo mês e atingirá $0.002599 até 5 de fevereiro de 2026.
Até onde o preço de Rave pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Rave em 2026, espera-se que KRAV fluctue dentro do intervalo de $0.001016 e $0.003033. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Rave não considera flutuações repentinas e extremas de preço.
Onde estará Rave em 5 anos?
O futuro de Rave parece seguir uma tendência de alta, com um preço máximo de $0.009535 projetada após um período de cinco anos. Com base na previsão de Rave para 2030, o valor de Rave pode potencialmente atingir seu pico mais alto de aproximadamente $0.009535, enquanto seu pico mais baixo está previsto para cerca de $0.003297.
Quanto será Rave em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Rave, espera-se que o valor de KRAV em 2026 aumente 3.13% para $0.003033 se o melhor cenário ocorrer. O preço ficará entre $0.003033 e $0.001016 durante 2026.
Quanto será Rave em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Rave, o valor de KRAV pode diminuir -12.62% para $0.002569 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.002569 e $0.000978 ao longo do ano.
Quanto será Rave em 2028?
Nosso novo modelo experimental de previsão de preços de Rave sugere que o valor de KRAV em 2028 pode aumentar 47.02%, alcançando $0.004323 no melhor cenário. O preço é esperado para variar entre $0.004323 e $0.001765 durante o ano.
Quanto será Rave em 2029?
Com base no nosso modelo de previsão experimental, o valor de Rave pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.012756 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.012756 e $0.003877.
Quanto será Rave em 2030?
Usando nossa nova simulação experimental para previsões de preços de Rave, espera-se que o valor de KRAV em 2030 aumente 224.23%, alcançando $0.009535 no melhor cenário. O preço está previsto para variar entre $0.009535 e $0.003297 ao longo de 2030.
Quanto será Rave em 2031?
Nossa simulação experimental indica que o preço de Rave poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0087045 sob condições ideais. O preço provavelmente oscilará entre $0.0087045 e $0.003899 durante o ano.
Quanto será Rave em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Rave, KRAV poderia ver um 449.04% aumento em valor, atingindo $0.016146 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.016146 e $0.005951 ao longo do ano.
Quanto será Rave em 2033?
De acordo com nossa previsão experimental de preços de Rave, espera-se que o valor de KRAV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0430083. Ao longo do ano, o preço de KRAV poderia variar entre $0.0430083 e $0.01383.
Quanto será Rave em 2034?
Os resultados da nossa nova simulação de previsão de preços de Rave sugerem que KRAV pode aumentar 746.96% em 2034, atingindo potencialmente $0.0249081 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.0249081 e $0.011119.
Quanto será Rave em 2035?
Com base em nossa previsão experimental para o preço de Rave, KRAV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.029347 em 2035. A faixa de preço esperada para o ano está entre $0.029347 e $0.013146.
Quanto será Rave em 2036?
Nossa recente simulação de previsão de preços de Rave sugere que o valor de KRAV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.06072 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.06072 e $0.021761.
Quanto será Rave em 2037?
De acordo com a simulação experimental, o valor de Rave poderia aumentar 4830.69% em 2037, com um pico de $0.1450056 sob condições favoráveis. O preço é esperado para cair entre $0.1450056 e $0.056512 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Decubate
Previsão de Preço do GraphLinq Protocol
Previsão de Preço do RocketX Exchange
Previsão de Preço do TempleDAO
Previsão de Preço do sETH
Previsão de Preço do Samoyedcoin
Previsão de Preço do Rowan Coin
Previsão de Preço do KONDUX
Previsão de Preço do Vara Network
Previsão de Preço do Altura
Previsão de Preço do Avalaunch
Previsão de Preço do dForce Token
Previsão de Preço do Hatom
Previsão de Preço do Paris Saint-Germain Fan Token
Previsão de Preço do Qredo
Previsão de Preço do Proton
Previsão de Preço do Unifi Protocol DAO
Previsão de Preço do Pirate Chain
Previsão de Preço do Abelian
Previsão de Preço do FAR Labs
Previsão de Preço do Gamium
Previsão de Preço do Arkadiko
Previsão de Preço do League of Kingdoms
Previsão de Preço do Crust Network
Previsão de Preço do Tranchess
Como ler e prever os movimentos de preço de Rave?
Traders de Rave utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Rave
Médias móveis são ferramentas populares para a previsão de preço de Rave. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KRAV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KRAV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KRAV.
Como ler gráficos de Rave e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Rave em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KRAV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Rave?
A ação de preço de Rave é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KRAV. A capitalização de mercado de Rave pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KRAV, grandes detentores de Rave, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Rave.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


