Previsão de Preço XNF - Projeção XNF
Previsão de Preço XNF até $0.003711 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001243 | $0.003711 |
| 2027 | $0.001197 | $0.003144 |
| 2028 | $0.00216 | $0.005291 |
| 2029 | $0.004745 | $0.01561 |
| 2030 | $0.004035 | $0.011669 |
| 2031 | $0.004771 | $0.010652 |
| 2032 | $0.007283 | $0.019759 |
| 2033 | $0.016925 | $0.052633 |
| 2034 | $0.0136074 | $0.030482 |
| 2035 | $0.016088 | $0.035915 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em XNF hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.69, com um retorno de 39.57% nos próximos 90 dias.
Previsão de preço de longo prazo de XNF para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'XNF'
'name_with_ticker' => 'XNF <small>XNF</small>'
'name_lang' => 'XNF'
'name_lang_with_ticker' => 'XNF <small>XNF</small>'
'name_with_lang' => 'XNF'
'name_with_lang_with_ticker' => 'XNF <small>XNF</small>'
'image' => '/uploads/coins/xnf.png?1717443975'
'price_for_sd' => 0.003599
'ticker' => 'XNF'
'marketcap' => '$2.23K'
'low24h' => '$0.9351'
'high24h' => '$0.9688'
'volume24h' => '$27.13'
'current_supply' => '618.8K'
'max_supply' => '3.34M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003599'
'change_24h_pct' => '-2.0856%'
'ath_price' => '$9.31'
'ath_days' => 759
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de dez. de 2023'
'ath_pct' => '-99.96%'
'fdv' => '$12.02K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.177456'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003629'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00318'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001243'
'current_year_max_price_prediction' => '$0.003711'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004035'
'grand_prediction_max_price' => '$0.011669'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0036672195359155
107 => 0.0036809116024619
108 => 0.0037117605275252
109 => 0.0034481598404466
110 => 0.0035665088100354
111 => 0.0036360277418699
112 => 0.003321938678721
113 => 0.0036298192109648
114 => 0.0034435711389432
115 => 0.0033803557459469
116 => 0.0034654669446217
117 => 0.0034322990277248
118 => 0.0034037832004622
119 => 0.0033878708788856
120 => 0.0034503671498122
121 => 0.0034474516240743
122 => 0.003345195594835
123 => 0.0032118067731813
124 => 0.0032565764400671
125 => 0.0032403112003696
126 => 0.0031813638734483
127 => 0.0032210872544658
128 => 0.0030461655880075
129 => 0.002745221952503
130 => 0.0029440345362701
131 => 0.0029363804680616
201 => 0.0029325209397865
202 => 0.0030819231017112
203 => 0.0030675615311365
204 => 0.0030414951399144
205 => 0.003180885143732
206 => 0.0031300059172784
207 => 0.0032868037045548
208 => 0.0033900808683
209 => 0.003363886438908
210 => 0.0034610191105922
211 => 0.0032576078427701
212 => 0.003325172906497
213 => 0.00333909797249
214 => 0.0031791650927218
215 => 0.0030699112616951
216 => 0.0030626252767504
217 => 0.0028731941898554
218 => 0.0029743867474404
219 => 0.0030634320104827
220 => 0.003020786239677
221 => 0.0030072858626461
222 => 0.0030762563610225
223 => 0.0030816159594387
224 => 0.0029594165475641
225 => 0.002984825674845
226 => 0.0030907859595219
227 => 0.0029821557475372
228 => 0.0027711049902952
301 => 0.0027187614844942
302 => 0.0027117778959381
303 => 0.00256981815679
304 => 0.0027222593278421
305 => 0.0026557146715084
306 => 0.0028659284435389
307 => 0.0027458554643542
308 => 0.0027406793582084
309 => 0.0027328549145992
310 => 0.0026106643028315
311 => 0.0026374162811901
312 => 0.0027263439316956
313 => 0.0027580743192377
314 => 0.0027547645798577
315 => 0.0027259081376939
316 => 0.0027391184691476
317 => 0.0026965633887506
318 => 0.002681536304155
319 => 0.0026341066916462
320 => 0.002564398264023
321 => 0.0025740916484306
322 => 0.0024359810131069
323 => 0.0023607310088963
324 => 0.0023399027995099
325 => 0.0023120504474477
326 => 0.0023430487967876
327 => 0.0024355897630297
328 => 0.0023239657240806
329 => 0.0021325941388182
330 => 0.0021440958971738
331 => 0.0021699369332961
401 => 0.0021217823334377
402 => 0.0020762080459811
403 => 0.0021158311913658
404 => 0.0020347445278831
405 => 0.0021797358691818
406 => 0.0021758142597332
407 => 0.002229858065565
408 => 0.0022636527664421
409 => 0.0021857669220847
410 => 0.0021661788428545
411 => 0.0021773371030126
412 => 0.0019929159179312
413 => 0.0022147869202363
414 => 0.0022167056698776
415 => 0.0022002761705419
416 => 0.0023184156297706
417 => 0.0025677267373647
418 => 0.0024739258701718
419 => 0.0024376033392484
420 => 0.0023685541814116
421 => 0.0024605580844959
422 => 0.0024534936202235
423 => 0.0024215454336651
424 => 0.0024022230707502
425 => 0.0024378251168769
426 => 0.0023978115832447
427 => 0.002390624053106
428 => 0.0023470754405754
429 => 0.0023315305672375
430 => 0.0023200217618774
501 => 0.0023073516980078
502 => 0.002335298701721
503 => 0.0022719671145725
504 => 0.0021955954289435
505 => 0.0021892459496365
506 => 0.002206777420255
507 => 0.0021990210495708
508 => 0.0021892088151178
509 => 0.0021704745873439
510 => 0.0021649165421568
511 => 0.0021829774926346
512 => 0.002162587732564
513 => 0.0021926739342359
514 => 0.0021844921521266
515 => 0.0021387893823581
516 => 0.0020818268098941
517 => 0.0020813197235161
518 => 0.0020690472307161
519 => 0.0020534163659536
520 => 0.0020490682169624
521 => 0.0021124942405795
522 => 0.0022437842112857
523 => 0.0022180088485333
524 => 0.0022366341896873
525 => 0.0023282524339874
526 => 0.0023573751187936
527 => 0.0023367045269268
528 => 0.0023084093458728
529 => 0.0023096541902387
530 => 0.0024063473894339
531 => 0.0024123780256614
601 => 0.0024276154978514
602 => 0.0024471999557246
603 => 0.0023400398447882
604 => 0.0023046069586503
605 => 0.0022878168914565
606 => 0.0022361099830734
607 => 0.0022918714507493
608 => 0.0022593816314787
609 => 0.0022637656181086
610 => 0.0022609105410647
611 => 0.0022624696061901
612 => 0.002179695341147
613 => 0.0022098539328414
614 => 0.0021597094247944
615 => 0.0020925715575046
616 => 0.0020923464878319
617 => 0.0021087783857369
618 => 0.0020990040498828
619 => 0.0020727015634205
620 => 0.0020764377074782
621 => 0.0020437051541769
622 => 0.002080412032091
623 => 0.0020814646540061
624 => 0.002067330506572
625 => 0.0021238825165717
626 => 0.0021470519212106
627 => 0.0021377485225867
628 => 0.0021463991699622
629 => 0.0022190799312245
630 => 0.0022309300665942
701 => 0.0022361931139494
702 => 0.0022291413277136
703 => 0.0021477276408561
704 => 0.002151338684066
705 => 0.0021248432449569
706 => 0.0021024573909302
707 => 0.002103352707693
708 => 0.00211486194662
709 => 0.0021651234680221
710 => 0.0022708958767344
711 => 0.0022749098623264
712 => 0.0022797749299602
713 => 0.0022599862549067
714 => 0.0022540178011584
715 => 0.002261891732241
716 => 0.0023016142877043
717 => 0.0024037914849245
718 => 0.0023676752392413
719 => 0.002338312169318
720 => 0.0023640714978676
721 => 0.0023601060511457
722 => 0.0023266336901282
723 => 0.0023256942324376
724 => 0.002261450069884
725 => 0.0022377004657568
726 => 0.002217853518921
727 => 0.0021961811710939
728 => 0.0021833330768384
729 => 0.0022030735889693
730 => 0.0022075884776565
731 => 0.0021644255028772
801 => 0.0021585425489074
802 => 0.0021937903658498
803 => 0.0021782791157845
804 => 0.0021942328211371
805 => 0.0021979342176273
806 => 0.002197338207542
807 => 0.0021811426810181
808 => 0.0021914652266669
809 => 0.0021670493289086
810 => 0.0021405007072458
811 => 0.0021235643406624
812 => 0.0021087851145355
813 => 0.0021169854881644
814 => 0.0020877526535064
815 => 0.0020784004813586
816 => 0.0021879681804657
817 => 0.0022689070178474
818 => 0.0022677301350966
819 => 0.0022605661640206
820 => 0.0022499219561601
821 => 0.0023008355976006
822 => 0.0022830983029731
823 => 0.0022960036668152
824 => 0.0022992886235494
825 => 0.0023092311982182
826 => 0.0023127848140691
827 => 0.0023020433188227
828 => 0.0022659935488127
829 => 0.0021761609494569
830 => 0.0021343436319583
831 => 0.0021205432206612
901 => 0.0021210448394011
902 => 0.0021072079552291
903 => 0.0021112835377434
904 => 0.002105790633954
905 => 0.002095388403053
906 => 0.002116343179719
907 => 0.0021187580225225
908 => 0.0021138669272577
909 => 0.0021150189572528
910 => 0.0020745227774746
911 => 0.00207760161407
912 => 0.0020604582606669
913 => 0.00205724408857
914 => 0.0020139071840093
915 => 0.0019371295757954
916 => 0.0019796718237287
917 => 0.0019282867705706
918 => 0.001908826472329
919 => 0.0020009484975074
920 => 0.0019917020012467
921 => 0.0019758760190037
922 => 0.0019524660928427
923 => 0.0019437831235125
924 => 0.0018910281505559
925 => 0.0018879111053168
926 => 0.0019140578944182
927 => 0.001901992050904
928 => 0.0018850470369178
929 => 0.0018236739139482
930 => 0.0017546702037878
1001 => 0.0017567529920557
1002 => 0.0017787017883981
1003 => 0.0018425208739619
1004 => 0.0018175856531507
1005 => 0.0017994948643535
1006 => 0.0017961070034189
1007 => 0.0018385131759828
1008 => 0.0018985267945285
1009 => 0.0019266838416211
1010 => 0.0018987810630945
1011 => 0.0018667278535155
1012 => 0.0018686787838623
1013 => 0.0018816574494274
1014 => 0.0018830213236698
1015 => 0.0018621579793571
1016 => 0.0018680308885734
1017 => 0.0018591094024438
1018 => 0.001804358258534
1019 => 0.0018033679839584
1020 => 0.0017899311702615
1021 => 0.0017895243088829
1022 => 0.0017666649368142
1023 => 0.0017634667526424
1024 => 0.0017180780819353
1025 => 0.0017479530424443
1026 => 0.0017279144874407
1027 => 0.0016977116584329
1028 => 0.0016925046793279
1029 => 0.0016923481512484
1030 => 0.0017233597034103
1031 => 0.0017475906544014
1101 => 0.0017282630666842
1102 => 0.0017238625496105
1103 => 0.0017708485592659
1104 => 0.0017648691612502
1105 => 0.0017596910411317
1106 => 0.0018931532332228
1107 => 0.001787507493998
1108 => 0.0017414399216479
1109 => 0.0016844225528701
1110 => 0.0017029876956507
1111 => 0.0017068996440132
1112 => 0.0015697831502557
1113 => 0.001514155005815
1114 => 0.0014950655229454
1115 => 0.0014840792556682
1116 => 0.0014890858356233
1117 => 0.0014390139810961
1118 => 0.0014726630954504
1119 => 0.0014293051018984
1120 => 0.0014220359931803
1121 => 0.001499565456676
1122 => 0.0015103532286009
1123 => 0.0014643292420713
1124 => 0.0014938840920299
1125 => 0.0014831670925918
1126 => 0.0014300483502528
1127 => 0.0014280196050105
1128 => 0.0014013664873189
1129 => 0.0013596595191921
1130 => 0.0013405983156108
1201 => 0.0013306710752887
1202 => 0.0013347672481237
1203 => 0.0013326960977934
1204 => 0.001319180440908
1205 => 0.0013334707994252
1206 => 0.0012969648385977
1207 => 0.0012824278708477
1208 => 0.0012758618597701
1209 => 0.001243460718331
1210 => 0.0012950253432136
1211 => 0.0013051842239095
1212 => 0.0013153631207386
1213 => 0.001403963468208
1214 => 0.0013995372452304
1215 => 0.0014395481452898
1216 => 0.0014379933952888
1217 => 0.0014265816384582
1218 => 0.0013784373135331
1219 => 0.0013976267833582
1220 => 0.0013385645779422
1221 => 0.0013828179980794
1222 => 0.0013626225851958
1223 => 0.0013759899086687
1224 => 0.0013519542557815
1225 => 0.0013652565784971
1226 => 0.0013075932713921
1227 => 0.0012537480865621
1228 => 0.0012754169607766
1229 => 0.0012989735051842
1230 => 0.0013500500955556
1231 => 0.0013196292997031
]
'min_raw' => 0.001243460718331
'max_raw' => 0.0037117605275252
'avg_raw' => 0.0024776106229281
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001243'
'max' => '$0.003711'
'avg' => '$0.002477'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.002355559281669
'max_diff' => 0.00011274052752522
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013305697682293
102 => 0.0012939210300788
103 => 0.0012183042150799
104 => 0.0012187321980408
105 => 0.0012071001984551
106 => 0.0011970484525133
107 => 0.0013231234940508
108 => 0.0013074440696842
109 => 0.0012824609590282
110 => 0.0013159018454306
111 => 0.0013247441465736
112 => 0.0013249958744563
113 => 0.0013493934819412
114 => 0.0013624144894295
115 => 0.0013647094984355
116 => 0.0014030996609583
117 => 0.0014159675370574
118 => 0.0014689684975798
119 => 0.0013613097479168
120 => 0.0013590925868143
121 => 0.0013163724272809
122 => 0.0012892786267259
123 => 0.0013182275629847
124 => 0.0013438723685861
125 => 0.0013171692828756
126 => 0.0013206561421365
127 => 0.0012848094312923
128 => 0.0012976229436746
129 => 0.0013086596667047
130 => 0.0013025658369561
131 => 0.0012934430788777
201 => 0.0013417697869763
202 => 0.0013390430047115
203 => 0.0013840459463192
204 => 0.0014191289574936
205 => 0.0014820039853566
206 => 0.0014163906160322
207 => 0.0014139994040645
208 => 0.0014373738846113
209 => 0.0014159639585462
210 => 0.0014294942927738
211 => 0.0014798240393343
212 => 0.0014808874275706
213 => 0.0014630743045151
214 => 0.0014619903743583
215 => 0.0014654115794953
216 => 0.0014854496848423
217 => 0.0014784477551253
218 => 0.001486550565461
219 => 0.0014966832538604
220 => 0.0015385963492512
221 => 0.0015487014546539
222 => 0.0015241512874219
223 => 0.0015263678926464
224 => 0.0015171854561845
225 => 0.0015083153376179
226 => 0.0015282540687789
227 => 0.0015646924918722
228 => 0.0015644658103333
301 => 0.0015729188162292
302 => 0.0015781849688739
303 => 0.0015555787866636
304 => 0.001540862993297
305 => 0.001546505964864
306 => 0.0015555291992876
307 => 0.0015435798515526
308 => 0.0014698229418558
309 => 0.0014921960766482
310 => 0.0014884720930283
311 => 0.0014831686875018
312 => 0.0015056650475418
313 => 0.0015034952187357
314 => 0.0014385004218553
315 => 0.0014426611778764
316 => 0.0014387534512098
317 => 0.0014513801155155
318 => 0.0014152820772365
319 => 0.0014263855906871
320 => 0.0014333496102344
321 => 0.0014374514712478
322 => 0.0014522702059008
323 => 0.0014505313984265
324 => 0.0014521621191868
325 => 0.0014741343906763
326 => 0.0015852625998971
327 => 0.0015913110631344
328 => 0.0015615262180323
329 => 0.0015734246761705
330 => 0.001550582238452
331 => 0.0015659165199235
401 => 0.0015764078458577
402 => 0.0015289995613267
403 => 0.001526192350394
404 => 0.0015032556338095
405 => 0.0015155805261
406 => 0.0014959707362747
407 => 0.0015007822927765
408 => 0.0014873287613336
409 => 0.0015115424393595
410 => 0.0015386170938177
411 => 0.0015454572207443
412 => 0.0015274637916601
413 => 0.0015144353631784
414 => 0.0014915617345957
415 => 0.0015296010887009
416 => 0.0015407249550695
417 => 0.0015295426597664
418 => 0.0015269514776067
419 => 0.0015220411920962
420 => 0.0015279932178901
421 => 0.0015406643721043
422 => 0.0015346888897764
423 => 0.0015386358011284
424 => 0.0015235942450918
425 => 0.0015555862702505
426 => 0.0016063973055028
427 => 0.0016065606712896
428 => 0.0016005851567516
429 => 0.0015981401049469
430 => 0.0016042713454874
501 => 0.001607597291964
502 => 0.0016274245995948
503 => 0.0016487000906375
504 => 0.0017479835241096
505 => 0.0017201051332797
506 => 0.0018081953018541
507 => 0.0018778631881196
508 => 0.0018987535410032
509 => 0.0018795353993173
510 => 0.0018137911747537
511 => 0.0018105654494472
512 => 0.0019088150774409
513 => 0.0018810550574147
514 => 0.0018777530913642
515 => 0.0018426257513468
516 => 0.0018633903599028
517 => 0.0018588488354132
518 => 0.0018516798168273
519 => 0.0018912972434769
520 => 0.0019654575294929
521 => 0.0019538989534465
522 => 0.0019452710126149
523 => 0.0019074658874462
524 => 0.0019302330168781
525 => 0.0019221260781631
526 => 0.0019569586316734
527 => 0.0019363245986094
528 => 0.0018808447479602
529 => 0.0018896800970401
530 => 0.0018883446518009
531 => 0.0019158280201923
601 => 0.0019075781951804
602 => 0.0018867337410624
603 => 0.0019652040576975
604 => 0.0019601086318101
605 => 0.001967332780742
606 => 0.001970513074516
607 => 0.0020182765734497
608 => 0.0020378437507014
609 => 0.0020422858425092
610 => 0.0020608731475185
611 => 0.0020418233734279
612 => 0.0021180360520489
613 => 0.0021687130361987
614 => 0.0022275769611025
615 => 0.0023135929765184
616 => 0.0023459357940074
617 => 0.0023400933535174
618 => 0.0024053097147185
619 => 0.0025225020661186
620 => 0.0023637812783929
621 => 0.0025309146532723
622 => 0.0024780021564331
623 => 0.0023525475782825
624 => 0.0023444697824619
625 => 0.0024294290793431
626 => 0.0026178606227963
627 => 0.0025706606583341
628 => 0.0026179378250292
629 => 0.0025627864988048
630 => 0.0025600477706059
701 => 0.0026152592482146
702 => 0.0027442638750681
703 => 0.0026829786125161
704 => 0.0025951111608849
705 => 0.0026599911198004
706 => 0.0026037860950311
707 => 0.0024771404434299
708 => 0.0025706245654108
709 => 0.0025081143953167
710 => 0.0025263581861736
711 => 0.0026577452660255
712 => 0.0026419364249706
713 => 0.0026623945291549
714 => 0.0026262865107514
715 => 0.0025925559278507
716 => 0.0025295952900006
717 => 0.0025109557490552
718 => 0.0025161070475921
719 => 0.0025109531963274
720 => 0.0024757272980884
721 => 0.0024681202687176
722 => 0.0024554415531613
723 => 0.0024593712172686
724 => 0.0024355315227336
725 => 0.0024805219518533
726 => 0.0024888725719522
727 => 0.002521612854375
728 => 0.0025250120591079
729 => 0.0026161932796268
730 => 0.0025659721956031
731 => 0.002599664834646
801 => 0.0025966510478826
802 => 0.0023552665594026
803 => 0.0023885272121617
804 => 0.0024402703500872
805 => 0.0024169601365879
806 => 0.0023840049484499
807 => 0.0023573918670831
808 => 0.002317070327485
809 => 0.0023738221201627
810 => 0.0024484446926535
811 => 0.0025269046106922
812 => 0.0026211690613183
813 => 0.0026001303332977
814 => 0.0025251424023568
815 => 0.0025285063061601
816 => 0.0025493006358247
817 => 0.0025223700895449
818 => 0.0025144277457003
819 => 0.0025482094797434
820 => 0.0025484421159796
821 => 0.0025174552678196
822 => 0.002483019056623
823 => 0.0024828747676407
824 => 0.0024767471764726
825 => 0.0025638765836611
826 => 0.0026117889478381
827 => 0.0026172820231764
828 => 0.0026114192201013
829 => 0.0026136755803186
830 => 0.0025857964312809
831 => 0.0026495198986762
901 => 0.0027079988539559
902 => 0.0026923252447203
903 => 0.0026688282763413
904 => 0.00265011180926
905 => 0.0026879162398938
906 => 0.0026862328681074
907 => 0.0027074880912975
908 => 0.0027065238315975
909 => 0.002699376499488
910 => 0.002692325499974
911 => 0.0027202819160381
912 => 0.002712230917178
913 => 0.0027041674128928
914 => 0.0026879948205883
915 => 0.0026901929444808
916 => 0.0026667000331846
917 => 0.0026558311374565
918 => 0.0024923890238335
919 => 0.0024487119504483
920 => 0.0024624536468641
921 => 0.0024669777701272
922 => 0.0024479694518162
923 => 0.0024752224974378
924 => 0.0024709751391458
925 => 0.0024874991256385
926 => 0.0024771756562659
927 => 0.0024775993350499
928 => 0.0025079584572788
929 => 0.0025167718396188
930 => 0.002512289282228
1001 => 0.0025154287117714
1002 => 0.0025877755405301
1003 => 0.002577490135002
1004 => 0.0025720262183109
1005 => 0.0025735397605754
1006 => 0.0025920259264568
1007 => 0.0025972010435963
1008 => 0.0025752737086271
1009 => 0.002585614766559
1010 => 0.0026296456787574
1011 => 0.0026450540060931
1012 => 0.0026942299905318
1013 => 0.0026733391583088
1014 => 0.0027116851849882
1015 => 0.0028295477978767
1016 => 0.0029237046085245
1017 => 0.002837114114258
1018 => 0.0030100211062151
1019 => 0.0031446540014886
1020 => 0.0031394865667252
1021 => 0.0031160102073193
1022 => 0.0029627342354511
1023 => 0.002821687400922
1024 => 0.0029396790671706
1025 => 0.002939979852193
1026 => 0.0029298442634207
1027 => 0.0028668929920427
1028 => 0.0029276536956315
1029 => 0.0029324766596319
1030 => 0.0029297770823213
1031 => 0.0028815124901529
1101 => 0.0028078213786994
1102 => 0.0028222204454858
1103 => 0.002845806410615
1104 => 0.0028011532580777
1105 => 0.0027868838702121
1106 => 0.0028134133771163
1107 => 0.0028988969760041
1108 => 0.0028827367968071
1109 => 0.0028823147892199
1110 => 0.0029514548888069
1111 => 0.0029019654988699
1112 => 0.0028224020638302
1113 => 0.0028023112471698
1114 => 0.0027310023828215
1115 => 0.0027802556694203
1116 => 0.0027820282075211
1117 => 0.0027550526858073
1118 => 0.0028245909787467
1119 => 0.0028239501711352
1120 => 0.0028899664308722
1121 => 0.0030161647249143
1122 => 0.0029788416795252
1123 => 0.0029354390384734
1124 => 0.0029401581089804
1125 => 0.002991914664784
1126 => 0.0029606214696579
1127 => 0.0029718747208091
1128 => 0.0029918976316406
1129 => 0.0030039779508861
1130 => 0.0029384199369465
1201 => 0.0029231352278949
1202 => 0.0028918680773792
1203 => 0.0028837110614386
1204 => 0.0029091775031232
1205 => 0.002902467995482
1206 => 0.0027818792325573
1207 => 0.0027692770358822
1208 => 0.0027696635272624
1209 => 0.0027379747045209
1210 => 0.0026896416436513
1211 => 0.0028166580417996
1212 => 0.002806456847435
1213 => 0.0027951955183661
1214 => 0.0027965749669208
1215 => 0.0028517084803718
1216 => 0.0028197282582611
1217 => 0.0029047529201979
1218 => 0.002887274405779
1219 => 0.0028693476334177
1220 => 0.0028668696074145
1221 => 0.0028599693294957
1222 => 0.002836305709032
1223 => 0.0028077304653589
1224 => 0.0027888626143407
1225 => 0.0025725783430093
1226 => 0.0026127194457007
1227 => 0.0026588981253705
1228 => 0.0026748388205431
1229 => 0.0026475711583878
1230 => 0.0028373824025323
1231 => 0.0028720627459041
]
'min_raw' => 0.0011970484525133
'max_raw' => 0.0031446540014886
'avg_raw' => 0.002170851227001
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001197'
'max' => '$0.003144'
'avg' => '$0.00217'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.6412265817681E-5
'max_diff' => -0.0005671065260366
'year' => 2027
]
2 => [
'items' => [
101 => 0.002767013723688
102 => 0.0027473633407546
103 => 0.0028386706783659
104 => 0.0027836011919183
105 => 0.0028083989782937
106 => 0.002754799727814
107 => 0.0028637092667448
108 => 0.0028628795585315
109 => 0.0028205112880539
110 => 0.0028563206601362
111 => 0.0028500979005116
112 => 0.0028022642274908
113 => 0.002865225679499
114 => 0.0028652569075936
115 => 0.0028244783684246
116 => 0.0027768579622452
117 => 0.0027683445583641
118 => 0.0027619308521546
119 => 0.0028068215997335
120 => 0.002847070503643
121 => 0.0029219637352691
122 => 0.0029407936731192
123 => 0.0030142881741281
124 => 0.0029705257771597
125 => 0.0029899250809179
126 => 0.0030109857693465
127 => 0.0030210830378603
128 => 0.0030046300806663
129 => 0.0031187972922766
130 => 0.0031284365029295
131 => 0.0031316684468826
201 => 0.0030931719054821
202 => 0.0031273658444734
203 => 0.0031113676328036
204 => 0.0031529905351372
205 => 0.003159517537691
206 => 0.0031539893987328
207 => 0.0031560611723651
208 => 0.0030586395977319
209 => 0.0030535877751475
210 => 0.0029847058157471
211 => 0.0030127757233525
212 => 0.00296030037651
213 => 0.0029769408495497
214 => 0.0029842758115094
215 => 0.0029804444436371
216 => 0.0030143627538128
217 => 0.0029855252611105
218 => 0.0029094183765463
219 => 0.0028332907567123
220 => 0.0028323350364575
221 => 0.0028122919779193
222 => 0.0027978045176655
223 => 0.0028005953164807
224 => 0.0028104304555149
225 => 0.0027972328815055
226 => 0.0028000492530544
227 => 0.0028468197861512
228 => 0.0028561992830116
229 => 0.002824324087874
301 => 0.0026963405798279
302 => 0.0026649331059311
303 => 0.0026875081753308
304 => 0.0026767187461784
305 => 0.0021603209374986
306 => 0.002281640942811
307 => 0.0022095567152925
308 => 0.0022427764437688
309 => 0.0021691971135927
310 => 0.0022043130265758
311 => 0.0021978283996757
312 => 0.002392907378098
313 => 0.0023898614881723
314 => 0.0023913193944948
315 => 0.0023217297271659
316 => 0.0024325879567862
317 => 0.0024872007070302
318 => 0.0024770933404313
319 => 0.0024796371468496
320 => 0.0024359261245498
321 => 0.0023917426127382
322 => 0.0023427362983455
323 => 0.0024337839731237
324 => 0.002423661025924
325 => 0.0024468794246786
326 => 0.0025059303499945
327 => 0.0025146258230599
328 => 0.0025263126270406
329 => 0.0025221237397368
330 => 0.0026219200297468
331 => 0.0026098340405495
401 => 0.0026389577971386
402 => 0.00257904802021
403 => 0.002511254420927
404 => 0.002524139767811
405 => 0.0025228988052886
406 => 0.0025070999280688
407 => 0.0024928374081302
408 => 0.0024690943308725
409 => 0.00254422094063
410 => 0.0025411709374712
411 => 0.0025905469433722
412 => 0.0025818192547162
413 => 0.0025235336138442
414 => 0.0025256152969105
415 => 0.0025396156159543
416 => 0.0025880708800179
417 => 0.0026024557014779
418 => 0.0025957920790416
419 => 0.0026115643790804
420 => 0.0026240301619426
421 => 0.0026131298894813
422 => 0.002767454760893
423 => 0.0027033683147904
424 => 0.0027346036027102
425 => 0.0027420530348301
426 => 0.0027229714710997
427 => 0.0027271095790132
428 => 0.0027333776849354
429 => 0.0027714363966735
430 => 0.0028713134686512
501 => 0.0029155483439439
502 => 0.0030486311487724
503 => 0.00291187525333
504 => 0.0029037607244467
505 => 0.0029277329563119
506 => 0.0030058666509918
507 => 0.0030691866718051
508 => 0.0030901935757285
509 => 0.0030929699848681
510 => 0.003132380333141
511 => 0.0031549696098115
512 => 0.0031275948802656
513 => 0.0031043976632291
514 => 0.0030213081111489
515 => 0.0030309259530475
516 => 0.0030971833461741
517 => 0.0031907758165064
518 => 0.0032710878926884
519 => 0.0032429654027679
520 => 0.0034575201494774
521 => 0.0034787923762361
522 => 0.0034758532423115
523 => 0.0035243145405995
524 => 0.0034281287324695
525 => 0.0033870074359816
526 => 0.003109413164852
527 => 0.0031874058321162
528 => 0.0033007727543335
529 => 0.0032857682170739
530 => 0.0032034381278532
531 => 0.003271025437933
601 => 0.00324867895957
602 => 0.0032310533649289
603 => 0.0033117996308695
604 => 0.003223015794594
605 => 0.0032998870676506
606 => 0.0032012988648241
607 => 0.003243093863933
608 => 0.0032193690010421
609 => 0.0032347218949424
610 => 0.0031449691909127
611 => 0.0031933975713834
612 => 0.0031429544110674
613 => 0.0031429304944415
614 => 0.0031418169588817
615 => 0.0032011631132943
616 => 0.0032030983892591
617 => 0.0031592414914811
618 => 0.0031529210273378
619 => 0.003176291095965
620 => 0.0031489308662333
621 => 0.0031617325455215
622 => 0.0031493186160576
623 => 0.003146523979058
624 => 0.0031242558359762
625 => 0.0031146621076613
626 => 0.0031184240557335
627 => 0.0031055825875459
628 => 0.0030978451384666
629 => 0.0031402777855111
630 => 0.0031176077339233
701 => 0.003136803274971
702 => 0.0031149275332768
703 => 0.0030390966817578
704 => 0.0029954855571525
705 => 0.0028522481081567
706 => 0.0028928700710064
707 => 0.0029198024744022
708 => 0.0029109013152405
709 => 0.0029300244494111
710 => 0.0029311984545375
711 => 0.0029249813286814
712 => 0.0029177826934031
713 => 0.0029142787958592
714 => 0.0029403939774624
715 => 0.0029555547193796
716 => 0.002922505501392
717 => 0.0029147625320252
718 => 0.002948177116108
719 => 0.0029685599930956
720 => 0.0031190557046222
721 => 0.0031079064962176
722 => 0.0031358888213916
723 => 0.0031327384410008
724 => 0.0031620683757171
725 => 0.0032100104232231
726 => 0.0031125308358362
727 => 0.003129449921616
728 => 0.0031253017525015
729 => 0.003170590375185
730 => 0.0031707317613216
731 => 0.0031435789696884
801 => 0.0031582989385365
802 => 0.0031500826557467
803 => 0.003164930589245
804 => 0.003107757591742
805 => 0.003177388131257
806 => 0.0032168641602691
807 => 0.0032174122849703
808 => 0.0032361236094209
809 => 0.0032551353987495
810 => 0.003291626872788
811 => 0.0032541176713444
812 => 0.0031866422693945
813 => 0.003191513775471
814 => 0.0031519529719961
815 => 0.0031526179962497
816 => 0.0031490680446648
817 => 0.003159721716599
818 => 0.0031100954736236
819 => 0.0031217426536584
820 => 0.0031054365334039
821 => 0.0031294144752951
822 => 0.003103618173516
823 => 0.0031252997521288
824 => 0.0031346568027024
825 => 0.0031691845207618
826 => 0.003098518401485
827 => 0.0029544254006038
828 => 0.0029847154963478
829 => 0.0029399140655067
830 => 0.0029440606085021
831 => 0.0029524372852703
901 => 0.0029252857351866
902 => 0.0029304653952989
903 => 0.002930280341391
904 => 0.0029286856467867
905 => 0.0029216224799673
906 => 0.0029113794906743
907 => 0.002952184407392
908 => 0.0029591179578784
909 => 0.0029745303817243
910 => 0.0030203873007429
911 => 0.0030158051131523
912 => 0.0030232788512257
913 => 0.0030069637229748
914 => 0.0029448174205088
915 => 0.0029481922637276
916 => 0.0029061079147111
917 => 0.0029734541903015
918 => 0.0029575057033143
919 => 0.0029472236100026
920 => 0.0029444180455795
921 => 0.0029903886350306
922 => 0.0030041437558951
923 => 0.0029955724876442
924 => 0.0029779925663977
925 => 0.0030117512122281
926 => 0.0030207836016894
927 => 0.0030228056205881
928 => 0.0030826194684212
929 => 0.003026148550233
930 => 0.0030397416615135
1001 => 0.0031457912353997
1002 => 0.0030496189057258
1003 => 0.003100563533653
1004 => 0.003098070059219
1005 => 0.0031241316069943
1006 => 0.0030959322516218
1007 => 0.0030962818164283
1008 => 0.0031194227052906
1009 => 0.0030869255003648
1010 => 0.0030788787354159
1011 => 0.0030677621872711
1012 => 0.0030920347634545
1013 => 0.0031065850751223
1014 => 0.0032238499011383
1015 => 0.0032996083266703
1016 => 0.0032963194536194
1017 => 0.0033263735967929
1018 => 0.0033128339300288
1019 => 0.0032691107744639
1020 => 0.0033437408695424
1021 => 0.0033201247848038
1022 => 0.0033220716661361
1023 => 0.0033219992031157
1024 => 0.0033377018349129
1025 => 0.0033265750811595
1026 => 0.0033046431073737
1027 => 0.0033192025750951
1028 => 0.0033624389891226
1029 => 0.0034966461449194
1030 => 0.0035717502473115
1031 => 0.0034921247836519
1101 => 0.0035470493622569
1102 => 0.0035141141867223
1103 => 0.003508128885591
1104 => 0.0035426255798495
1105 => 0.0035771826560046
1106 => 0.0035749815196478
1107 => 0.0035498948568847
1108 => 0.0035357240376403
1109 => 0.0036430302285315
1110 => 0.0037220916020668
1111 => 0.0037167001464259
1112 => 0.0037404962782297
1113 => 0.0038103624571923
1114 => 0.0038167501450052
1115 => 0.0038159454431601
1116 => 0.0038001128924295
1117 => 0.003868905218888
1118 => 0.0039262929879055
1119 => 0.0037964481143818
1120 => 0.0038458913424254
1121 => 0.0038680880004555
1122 => 0.0039006792798954
1123 => 0.0039556662312431
1124 => 0.0040153966449752
1125 => 0.0040238431803876
1126 => 0.0040178499593085
1127 => 0.0039784561458125
1128 => 0.0040438138772502
1129 => 0.004082098903499
1130 => 0.004104896760493
1201 => 0.0041627083326279
1202 => 0.0038682250794589
1203 => 0.0036597751960985
1204 => 0.003627222736759
1205 => 0.0036934194428881
1206 => 0.0037108749863856
1207 => 0.0037038386786891
1208 => 0.0034692093835328
1209 => 0.0036259874620776
1210 => 0.0037946674923166
1211 => 0.0038011471792491
1212 => 0.0038855919293199
1213 => 0.0039130906014502
1214 => 0.0039810796936835
1215 => 0.0039768269574529
1216 => 0.003993381219469
1217 => 0.0039895756813113
1218 => 0.0041155111578812
1219 => 0.0042544366901369
1220 => 0.0042496261407111
1221 => 0.004229653951757
1222 => 0.004259316058118
1223 => 0.0044027020955708
1224 => 0.0043895014069566
1225 => 0.0044023247515133
1226 => 0.0045713849705531
1227 => 0.0047911873038405
1228 => 0.0046890670522351
1229 => 0.0049106386139081
1230 => 0.0050501061669775
1231 => 0.0052913008787969
]
'min_raw' => 0.0021603209374986
'max_raw' => 0.0052913008787969
'avg_raw' => 0.0037258109081477
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00216'
'max' => '$0.005291'
'avg' => '$0.003725'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00096327248498534
'max_diff' => 0.0021466468773082
'year' => 2028
]
3 => [
'items' => [
101 => 0.0052611021129681
102 => 0.0053549974443108
103 => 0.0052070400194619
104 => 0.0048672998648799
105 => 0.0048135346849442
106 => 0.0049211739367266
107 => 0.0051857945339491
108 => 0.0049128400924153
109 => 0.004968058420441
110 => 0.0049521555382549
111 => 0.0049513081412461
112 => 0.0049836498384593
113 => 0.004936736519822
114 => 0.004745603220149
115 => 0.0048331984850336
116 => 0.0047993737465915
117 => 0.0048369048156942
118 => 0.0050394445166514
119 => 0.0049498968869148
120 => 0.0048555657332461
121 => 0.0049738779337054
122 => 0.0051245300213732
123 => 0.0051151024844748
124 => 0.0050968091224871
125 => 0.0051999278462022
126 => 0.0053702497668284
127 => 0.0054162870975647
128 => 0.0054502709139225
129 => 0.005454956708037
130 => 0.0055032232996207
131 => 0.0052436816719279
201 => 0.0056555809005781
202 => 0.0057267045188795
203 => 0.0057133362264108
204 => 0.0057923871348133
205 => 0.0057691283522333
206 => 0.005735430025466
207 => 0.0058607425298945
208 => 0.0057170818557649
209 => 0.0055131736152139
210 => 0.0054013055216
211 => 0.0055486224514125
212 => 0.0056385837597967
213 => 0.0056980424620248
214 => 0.0057160346293932
215 => 0.0052638291496654
216 => 0.0050201154765578
217 => 0.0051763331468368
218 => 0.0053669294861449
219 => 0.0052426228996396
220 => 0.0052474954824871
221 => 0.0050702669573267
222 => 0.0053826102780613
223 => 0.0053371044834511
224 => 0.0055731886263872
225 => 0.0055168452509819
226 => 0.0057093627048126
227 => 0.0056586664072565
228 => 0.0058691039040201
301 => 0.0059530531188469
302 => 0.006094016916193
303 => 0.0061977104593467
304 => 0.006258601291228
305 => 0.0062549456340776
306 => 0.0064962254456831
307 => 0.0063539511704539
308 => 0.0061752211492939
309 => 0.0061719884870971
310 => 0.0062645552976799
311 => 0.006458549938197
312 => 0.0065088499259759
313 => 0.0065369607570937
314 => 0.0064939080406917
315 => 0.0063394795118195
316 => 0.0062727980560229
317 => 0.0063296125883094
318 => 0.0062601332974514
319 => 0.0063800740459181
320 => 0.0065447783115243
321 => 0.0065107675319879
322 => 0.0066244604687971
323 => 0.0067421206975489
324 => 0.0069103801091155
325 => 0.0069543693499269
326 => 0.0070270818922273
327 => 0.0071019269830802
328 => 0.0071259652091304
329 => 0.0071718616412838
330 => 0.0071716197444312
331 => 0.0073099317319115
401 => 0.0074624941372679
402 => 0.0075200829134621
403 => 0.0076525051288571
404 => 0.0074257367256211
405 => 0.0075977431644033
406 => 0.0077528972777853
407 => 0.007567916147558
408 => 0.0078228695405007
409 => 0.0078327688030119
410 => 0.0079822359139845
411 => 0.0078307223625801
412 => 0.0077407540994045
413 => 0.0080004891041256
414 => 0.0081261666913341
415 => 0.0080883115792688
416 => 0.0078002323073141
417 => 0.0076325578147353
418 => 0.0071937213256623
419 => 0.0077135421032948
420 => 0.0079667316406996
421 => 0.0077995766075783
422 => 0.0078838798834571
423 => 0.0083438112212225
424 => 0.0085189232962948
425 => 0.0084825012088056
426 => 0.0084886559420327
427 => 0.0085831432392327
428 => 0.0090021519501225
429 => 0.0087510722180114
430 => 0.0089430132654323
501 => 0.0090448181048894
502 => 0.0091393801134225
503 => 0.0089071657070949
504 => 0.0086050581763699
505 => 0.0085093680397779
506 => 0.0077829563338
507 => 0.0077451434498577
508 => 0.0077239179322533
509 => 0.0075900940461663
510 => 0.0074849451291493
511 => 0.0074013268064084
512 => 0.0071818873569914
513 => 0.007255941729457
514 => 0.0069062010476589
515 => 0.0071299527418246
516 => 0.0065717581688907
517 => 0.0070366391960714
518 => 0.0067836255885235
519 => 0.0069535174212127
520 => 0.0069529246846133
521 => 0.0066400999563778
522 => 0.0064596691816171
523 => 0.0065746466937654
524 => 0.0066979117137147
525 => 0.0067179110484882
526 => 0.0068777273643986
527 => 0.006922328662929
528 => 0.0067871846461464
529 => 0.0065601908270726
530 => 0.0066129163140656
531 => 0.006458600701306
601 => 0.0061881685256092
602 => 0.0063823976354875
603 => 0.0064487159932511
604 => 0.0064780059581129
605 => 0.0062120669726603
606 => 0.0061285031696148
607 => 0.0060840145020416
608 => 0.0065258614435694
609 => 0.0065500668164394
610 => 0.0064262287065418
611 => 0.0069859887060903
612 => 0.0068592977785502
613 => 0.0070008425846433
614 => 0.0066081320287634
615 => 0.0066231341008529
616 => 0.0064372186302336
617 => 0.0065413188709042
618 => 0.0064677441761056
619 => 0.0065329086001966
620 => 0.0065719678873138
621 => 0.0067578528510339
622 => 0.0070387617037659
623 => 0.0067300878361713
624 => 0.0065955942117692
625 => 0.0066790332999274
626 => 0.0069012425871673
627 => 0.0072379010320198
628 => 0.0070385924567845
629 => 0.0071270422179948
630 => 0.0071463645559633
701 => 0.0069994017913893
702 => 0.0072433197587752
703 => 0.0073740373790833
704 => 0.0075081266093192
705 => 0.0076245525308381
706 => 0.0074545684220776
707 => 0.0076364757847161
708 => 0.0074898905614016
709 => 0.0073583884623866
710 => 0.0073585878967891
711 => 0.0072760947091379
712 => 0.0071162537632531
713 => 0.0070867766404319
714 => 0.0072401203558982
715 => 0.0073630874939983
716 => 0.0073732156564651
717 => 0.007441296582397
718 => 0.0074815861730742
719 => 0.0078764789327531
720 => 0.0080353080674203
721 => 0.0082295213268096
722 => 0.0083051783366013
723 => 0.0085328788115351
724 => 0.0083489921850976
725 => 0.0083092071567668
726 => 0.0077568802848352
727 => 0.007847323779172
728 => 0.0079921325401045
729 => 0.0077592681279665
730 => 0.0079069669994689
731 => 0.0079361258853934
801 => 0.0077513554843488
802 => 0.0078500493390044
803 => 0.0075879477217275
804 => 0.0070444748027815
805 => 0.0072439247994939
806 => 0.0073907871312172
807 => 0.0071811964758531
808 => 0.0075568796133148
809 => 0.0073374132800838
810 => 0.0072678529886914
811 => 0.0069964734919353
812 => 0.0071245541680494
813 => 0.0072977851164324
814 => 0.007190748530591
815 => 0.0074128655178361
816 => 0.0077274424082118
817 => 0.0079516286336712
818 => 0.0079688388683306
819 => 0.0078247021446707
820 => 0.0080556821642039
821 => 0.0080573646014796
822 => 0.0077968181958651
823 => 0.0076372349731547
824 => 0.0076009773291889
825 => 0.0076915560325452
826 => 0.0078015353001709
827 => 0.007974941952267
828 => 0.0080797279603792
829 => 0.0083529542953315
830 => 0.0084268815075567
831 => 0.0085081051004618
901 => 0.0086166448690115
902 => 0.0087469746901809
903 => 0.0084618204611432
904 => 0.0084731501702568
905 => 0.0082076185004059
906 => 0.0079238598300769
907 => 0.008139197289839
908 => 0.0084207223733362
909 => 0.0083561402081244
910 => 0.0083488733952441
911 => 0.0083610941588629
912 => 0.0083124013153495
913 => 0.0080921653887795
914 => 0.0079815642852058
915 => 0.0081242679261666
916 => 0.0082001085603289
917 => 0.0083177307699164
918 => 0.0083032313498811
919 => 0.0086062135300751
920 => 0.008723943243593
921 => 0.0086938229449366
922 => 0.0086993658047749
923 => 0.0089125098275949
924 => 0.0091495698173823
925 => 0.0093716077806391
926 => 0.0095974743336163
927 => 0.0093251833882807
928 => 0.00918693083881
929 => 0.0093295721798253
930 => 0.0092538846764604
1001 => 0.0096888075211673
1002 => 0.0097189206352961
1003 => 0.010153812030131
1004 => 0.010566575749733
1005 => 0.010307326252881
1006 => 0.010551786851559
1007 => 0.010816190920194
1008 => 0.011326269266605
1009 => 0.011154492824307
1010 => 0.011022914761586
1011 => 0.010898574128095
1012 => 0.011157307247869
1013 => 0.011490163273096
1014 => 0.011561857272875
1015 => 0.011678028941732
1016 => 0.011555888636724
1017 => 0.011702993180792
1018 => 0.012222336862364
1019 => 0.01208200561523
1020 => 0.011882712684926
1021 => 0.01229268464323
1022 => 0.012441051901214
1023 => 0.013482371018285
1024 => 0.014797079418335
1025 => 0.014252781507874
1026 => 0.013914918230467
1027 => 0.013994324114881
1028 => 0.014474411116892
1029 => 0.014628599824738
1030 => 0.014209461764778
1031 => 0.01435750841335
1101 => 0.015173260002612
1102 => 0.015610884557807
1103 => 0.015016531631034
1104 => 0.013376735478445
1105 => 0.011864768537063
1106 => 0.012265810254676
1107 => 0.012220344569672
1108 => 0.013096767885251
1109 => 0.012078658761397
1110 => 0.012095801107956
1111 => 0.012990347929552
1112 => 0.012751698173965
1113 => 0.012365116133866
1114 => 0.011867591013773
1115 => 0.010947869813778
1116 => 0.010133247098619
1117 => 0.011730909839453
1118 => 0.011662015716907
1119 => 0.011562246817923
1120 => 0.011784271706488
1121 => 0.012862361542497
1122 => 0.012837508082341
1123 => 0.012679403049173
1124 => 0.012799324323357
1125 => 0.012344093354691
1126 => 0.012461416740733
1127 => 0.011864529033775
1128 => 0.012134347205552
1129 => 0.012364286702431
1130 => 0.012410450460742
1201 => 0.012514459765396
1202 => 0.011625711644898
1203 => 0.012024733458728
1204 => 0.012259121391065
1205 => 0.01120014818566
1206 => 0.012238188895652
1207 => 0.011610240517406
1208 => 0.011397105406362
1209 => 0.011684063754968
1210 => 0.01157223580744
1211 => 0.011476092704913
1212 => 0.011422443201754
1213 => 0.011633153742533
1214 => 0.011623323843952
1215 => 0.011278560502084
1216 => 0.010828830776969
1217 => 0.010979774834592
1218 => 0.01092493544335
1219 => 0.010726190415063
1220 => 0.010860120567562
1221 => 0.010270359956457
1222 => 0.0092557074781399
1223 => 0.0099260179849622
1224 => 0.0099002117596071
1225 => 0.0098871990905638
1226 => 0.010390918910419
1227 => 0.010342497872534
1228 => 0.010254613214631
1229 => 0.010724576344401
1230 => 0.010553033480139
1231 => 0.011081688167213
]
'min_raw' => 0.004745603220149
'max_raw' => 0.015610884557807
'avg_raw' => 0.010178243888978
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004745'
'max' => '$0.01561'
'avg' => '$0.010178'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0025852822826504
'max_diff' => 0.01031958367901
'year' => 2029
]
4 => [
'items' => [
101 => 0.011429894335361
102 => 0.011341577987829
103 => 0.011669067571999
104 => 0.010983252280816
105 => 0.011211052610413
106 => 0.011258001942626
107 => 0.01071877707233
108 => 0.010350420153165
109 => 0.010325854946233
110 => 0.0096871748111099
111 => 0.010028352584047
112 => 0.010328574905335
113 => 0.010184791711631
114 => 0.010139274247905
115 => 0.010371813098548
116 => 0.010389883358803
117 => 0.0099778795099777
118 => 0.010063548156614
119 => 0.010420800654313
120 => 0.010054546310287
121 => 0.0093429739471525
122 => 0.0091664941628375
123 => 0.0091429485064421
124 => 0.0086643213345916
125 => 0.0091782873858963
126 => 0.008953927431068
127 => 0.0096626778401257
128 => 0.0092578434075766
129 => 0.0092403918043218
130 => 0.0092140111464084
131 => 0.0088020369677573
201 => 0.008892233130557
202 => 0.0091920589129667
203 => 0.0092990401299096
204 => 0.0092878811125112
205 => 0.0091905896030635
206 => 0.0092351291578755
207 => 0.0090916517332163
208 => 0.0090409868683449
209 => 0.0088810746183414
210 => 0.0086460477877229
211 => 0.0086787297100237
212 => 0.008213080060453
213 => 0.0079593694174695
214 => 0.0078891456553442
215 => 0.0077952395057772
216 => 0.0078997526048125
217 => 0.0082117609335016
218 => 0.0078354126928431
219 => 0.0071901900319936
220 => 0.0072289690133166
221 => 0.0073160938707664
222 => 0.0071537372752973
223 => 0.0070000803832419
224 => 0.0071336725843063
225 => 0.0068602832370844
226 => 0.0073491316672451
227 => 0.0073359096871912
228 => 0.007518122151771
301 => 0.0076320633452489
302 => 0.0073694657831817
303 => 0.0073034232064611
304 => 0.0073410440596289
305 => 0.0067192551582511
306 => 0.0074673087330614
307 => 0.00747377793144
308 => 0.0074183847273585
309 => 0.0078167001623819
310 => 0.0086572699679811
311 => 0.0083410137952726
312 => 0.0082185498463064
313 => 0.0079857457898012
314 => 0.0082959433725574
315 => 0.0082721250380378
316 => 0.0081644094965052
317 => 0.0080992628008933
318 => 0.0082192975850649
319 => 0.0080843891627683
320 => 0.0080601559030883
321 => 0.0079133287154742
322 => 0.0078609180897073
323 => 0.0078221153489166
324 => 0.0077793973439846
325 => 0.007873622618201
326 => 0.0076600957504596
327 => 0.0074026032802605
328 => 0.0073811955674706
329 => 0.0074403041446689
330 => 0.0074141529993747
331 => 0.007381070365848
401 => 0.0073179066089264
402 => 0.0072991672715279
403 => 0.007360061027039
404 => 0.0072913155273935
405 => 0.0073927532568816
406 => 0.0073651678072664
407 => 0.0072110777281265
408 => 0.0070190244380642
409 => 0.0070173147609372
410 => 0.0069759371946238
411 => 0.0069232366427649
412 => 0.0069085765548631
413 => 0.0071224218217516
414 => 0.0075650751243607
415 => 0.0074781716892628
416 => 0.0075409683273433
417 => 0.0078498656345825
418 => 0.0079480547996877
419 => 0.0078783624560338
420 => 0.0077829632776039
421 => 0.0077871603572958
422 => 0.0081131682292861
423 => 0.0081335009403727
424 => 0.0081848751417075
425 => 0.0082509055087702
426 => 0.007889607713068
427 => 0.0077701432636092
428 => 0.0077135343798203
429 => 0.0075392009281456
430 => 0.0077272046095562
501 => 0.0076176629155185
502 => 0.0076324438325213
503 => 0.0076228177409327
504 => 0.0076280742378535
505 => 0.0073489950241461
506 => 0.0074506768216495
507 => 0.0072816111117912
508 => 0.0070552511048076
509 => 0.0070544922666921
510 => 0.0071098935577174
511 => 0.0070769387019628
512 => 0.0069882580324741
513 => 0.007000854703014
514 => 0.0068904946142448
515 => 0.0070142544159245
516 => 0.0070178034042028
517 => 0.0069701491393142
518 => 0.0071608181893634
519 => 0.0072389354547397
520 => 0.0072075683967367
521 => 0.007236734658332
522 => 0.0074817829193366
523 => 0.0075217364780855
524 => 0.0075394812096979
525 => 0.0075157056200638
526 => 0.0072412136907018
527 => 0.0072533885749988
528 => 0.0071640573521899
529 => 0.0070885818824088
530 => 0.0070916005053834
531 => 0.0071304047079751
601 => 0.0072998649365298
602 => 0.0076564839972971
603 => 0.0076700174299681
604 => 0.0076864203451634
605 => 0.0076197014456194
606 => 0.0075995783871031
607 => 0.0076261258954882
608 => 0.007760053264573
609 => 0.008104550818785
610 => 0.0079827823749084
611 => 0.0078837827345981
612 => 0.0079706321092616
613 => 0.0079572623287801
614 => 0.0078444079266442
615 => 0.0078412404794495
616 => 0.0076246368000159
617 => 0.0075445633515564
618 => 0.0074776479846299
619 => 0.0074045781508161
620 => 0.0073612599040083
621 => 0.0074278164188962
622 => 0.0074430386813246
623 => 0.0072975116983133
624 => 0.0072776769082696
625 => 0.0073965173840147
626 => 0.0073442201214588
627 => 0.0073980091529072
628 => 0.007410488669597
629 => 0.0074084791799823
630 => 0.0073538748315716
701 => 0.0073886780149235
702 => 0.007306358110968
703 => 0.0072168475794661
704 => 0.0071597454370711
705 => 0.0071099162443314
706 => 0.0071375643765531
707 => 0.0070390038335323
708 => 0.0070074723321881
709 => 0.0073768874795003
710 => 0.0076497784207019
711 => 0.0076458104783401
712 => 0.0076216566496849
713 => 0.0075857689597285
714 => 0.007757427856522
715 => 0.0076976253293072
716 => 0.0077411366645243
717 => 0.0077522121255021
718 => 0.0077857342101664
719 => 0.0077977154741133
720 => 0.0077614997729428
721 => 0.0076399554564393
722 => 0.0073370785757994
723 => 0.007196088570261
724 => 0.0071495595200591
725 => 0.0071512507626626
726 => 0.0071045987416161
727 => 0.0071183398526112
728 => 0.0070998201439829
729 => 0.0070647482962396
730 => 0.0071353987887848
731 => 0.0071435405998957
801 => 0.0071270499307252
802 => 0.0071309340802858
803 => 0.0069943983828105
804 => 0.0070047788953496
805 => 0.0069469788824402
806 => 0.0069361420768092
807 => 0.0067900286773969
808 => 0.0065311676108622
809 => 0.0066746017699742
810 => 0.0065013534756618
811 => 0.0064357417214657
812 => 0.0067463375611089
813 => 0.0067151623533963
814 => 0.0066618039493294
815 => 0.0065828757488487
816 => 0.0065536005115262
817 => 0.0063757334369686
818 => 0.0063652241013198
819 => 0.0064533798262855
820 => 0.0064126989924671
821 => 0.0063555676947495
822 => 0.0061486439257232
823 => 0.0059159930992321
824 => 0.0059230153652929
825 => 0.0059970172645772
826 => 0.0062121877672621
827 => 0.0061281169293756
828 => 0.0060671225718873
829 => 0.0060557001622134
830 => 0.0061986755337168
831 => 0.0064010156386606
901 => 0.0064959490887956
902 => 0.0064018729228836
903 => 0.0062938032889044
904 => 0.0063003809867782
905 => 0.0063441394638724
906 => 0.0063487378611034
907 => 0.0062783956391208
908 => 0.006298196562577
909 => 0.0062681171492127
910 => 0.0060835198449181
911 => 0.0060801810650478
912 => 0.0060348779095403
913 => 0.0060335061479961
914 => 0.0059564341790761
915 => 0.0059456512778508
916 => 0.0057926202056259
917 => 0.0058933457207851
918 => 0.0058257843335432
919 => 0.0057239533868495
920 => 0.0057063976932572
921 => 0.0057058699479086
922 => 0.00581042756118
923 => 0.0058921239041976
924 => 0.0058269595927998
925 => 0.0058121229422516
926 => 0.005970539554263
927 => 0.0059503795963851
928 => 0.0059329212028806
929 => 0.0063828983015486
930 => 0.006026706315802
1001 => 0.0058713862792887
1002 => 0.0056791482396286
1003 => 0.0057417419146903
1004 => 0.0057549313217182
1005 => 0.0052926334898467
1006 => 0.0051050793170319
1007 => 0.0050407177927518
1008 => 0.0050036768255902
1009 => 0.0050205568594569
1010 => 0.0048517361060133
1011 => 0.004965186444365
1012 => 0.0048190019419459
1013 => 0.0047944936343898
1014 => 0.0050558896335
1015 => 0.0050922613597229
1016 => 0.0049370882758464
1017 => 0.0050367345159354
1018 => 0.0050006014040928
1019 => 0.0048215078556649
1020 => 0.0048146677994379
1021 => 0.0047248049522794
1022 => 0.0045841869973524
1023 => 0.0045199208186673
1024 => 0.0044864504348236
1025 => 0.0045002609675223
1026 => 0.0044932779395806
1027 => 0.0044477089587586
1028 => 0.0044958899002201
1029 => 0.0043728075045255
1030 => 0.0043237951028176
1031 => 0.0043016573380452
1101 => 0.0041924146275078
1102 => 0.0043662683604267
1103 => 0.0044005197359633
1104 => 0.0044348385972906
1105 => 0.0047335608546623
1106 => 0.0047186375348644
1107 => 0.0048535370778864
1108 => 0.0048482951297089
1109 => 0.0048098195948113
1110 => 0.0046474976419967
1111 => 0.004712196279278
1112 => 0.0045130639301267
1113 => 0.0046622674257944
1114 => 0.0045941771812586
1115 => 0.0046392460456242
1116 => 0.0045582081637992
1117 => 0.0046030578735733
1118 => 0.0044086420077453
1119 => 0.0042270992077402
1120 => 0.004300157330027
1121 => 0.0043795798641624
1122 => 0.0045517881546533
1123 => 0.0044492223175245
1124 => 0.0044861088709997
1125 => 0.0043625450915922
1126 => 0.0041075977204259
1127 => 0.0041090406948595
1128 => 0.0040698225961359
1129 => 0.0040359324329026
1130 => 0.0044610032377247
1201 => 0.0044081389637701
1202 => 0.0043239066619285
1203 => 0.0044366549452021
1204 => 0.0044664673808555
1205 => 0.0044673160989872
1206 => 0.0045495743360092
1207 => 0.0045934755718535
1208 => 0.0046012133549499
1209 => 0.0047306484682109
1210 => 0.0047740334108855
1211 => 0.0049527298496956
1212 => 0.004589750858713
1213 => 0.0045822755452586
1214 => 0.0044382415447656
1215 => 0.0043468929045655
1216 => 0.0044444962643123
1217 => 0.0045309595168607
1218 => 0.0044409281990377
1219 => 0.0044526843884805
1220 => 0.004331824700132
1221 => 0.0043750263517397
1222 => 0.0044122374339952
1223 => 0.00439169166154
1224 => 0.004360933645748
1225 => 0.0045238705161657
1226 => 0.004514676979382
1227 => 0.0046664075390173
1228 => 0.0047846923606095
1229 => 0.0049966799068437
1230 => 0.0047754598511876
1231 => 0.0047673977130894
]
'min_raw' => 0.0040359324329026
'max_raw' => 0.011669067571999
'avg_raw' => 0.007852500002451
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004035'
'max' => '$0.011669'
'avg' => '$0.007852'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00070967078724642
'max_diff' => -0.0039418169858076
'year' => 2030
]
5 => [
'items' => [
101 => 0.0048462064062068
102 => 0.0047740213456852
103 => 0.0048196398121913
104 => 0.0049893300666308
105 => 0.0049929153543127
106 => 0.0049328571662586
107 => 0.0049292026200574
108 => 0.0049407374520378
109 => 0.0050082973232308
110 => 0.0049846898283308
111 => 0.0050120090190978
112 => 0.0050461720854781
113 => 0.0051874850128673
114 => 0.0052215550812481
115 => 0.0051387824783878
116 => 0.0051462559176605
117 => 0.005115296692032
118 => 0.0050853904679928
119 => 0.0051526152921797
120 => 0.0052754699796883
121 => 0.0052747057070535
122 => 0.0053032056066016
123 => 0.0053209608079142
124 => 0.0052447424862789
125 => 0.0051951271615197
126 => 0.0052141528341375
127 => 0.0052445752989787
128 => 0.0052042872388133
129 => 0.0049556106682276
130 => 0.0050310432542225
131 => 0.0050184875834479
201 => 0.0050006067814432
202 => 0.005076454829964
203 => 0.0050691391006516
204 => 0.0048500046051773
205 => 0.0048640328845974
206 => 0.0048508577113119
207 => 0.0048934293915841
208 => 0.0047717223352422
209 => 0.0048091586060634
210 => 0.0048326382841793
211 => 0.0048464679949689
212 => 0.0048964303934625
213 => 0.0048905678826631
214 => 0.0048960659715599
215 => 0.0049701470189417
216 => 0.0053448235350532
217 => 0.0053652163511481
218 => 0.0052647946663751
219 => 0.0053049111487117
220 => 0.0052278962751357
221 => 0.0052795968757221
222 => 0.0053149691135905
223 => 0.0051551287723535
224 => 0.0051456640647007
225 => 0.0050683313233456
226 => 0.0051098855581995
227 => 0.0050437697826918
228 => 0.0050599922813697
301 => 0.0050146327608142
302 => 0.0050962708668237
303 => 0.0051875549546214
304 => 0.005210616920117
305 => 0.0051499508176986
306 => 0.0051060245614566
307 => 0.0050289045257041
308 => 0.0051571568638926
309 => 0.0051946617559981
310 => 0.0051569598666607
311 => 0.0051482235150987
312 => 0.0051316681446749
313 => 0.0051517358151964
314 => 0.0051944574963011
315 => 0.0051743107404377
316 => 0.0051876180276256
317 => 0.0051369043712801
318 => 0.0052447677177148
319 => 0.005416080670581
320 => 0.005416631469737
321 => 0.005396484605275
322 => 0.0053882409424074
323 => 0.0054089128479594
324 => 0.0054201265087153
325 => 0.0054869756606911
326 => 0.0055587074641488
327 => 0.005893448491848
328 => 0.0057994545507579
329 => 0.0060964567043655
330 => 0.0063313468469662
331 => 0.006401780130231
401 => 0.0063369848237694
402 => 0.0061153235805379
403 => 0.0061044478224542
404 => 0.006435703302805
405 => 0.0063421084571438
406 => 0.0063309756480687
407 => 0.0062125413686876
408 => 0.0062825506961727
409 => 0.0062672386292768
410 => 0.0062430677825898
411 => 0.0063766407025393
412 => 0.0066266772845479
413 => 0.0065877067384136
414 => 0.006558617033516
415 => 0.0064311544145404
416 => 0.0065079153809704
417 => 0.0064805822710841
418 => 0.0065980226571755
419 => 0.0065284535740781
420 => 0.0063413993841348
421 => 0.0063711883804219
422 => 0.0063666858335603
423 => 0.0064593479289193
424 => 0.0064315330679071
425 => 0.0063612545355351
426 => 0.006625822686693
427 => 0.0066086431025622
428 => 0.00663299982506
429 => 0.0066437224075602
430 => 0.0068047603789563
501 => 0.006870732483197
502 => 0.0068857093058638
503 => 0.0069483777024268
504 => 0.0068841500590678
505 => 0.0071411064260376
506 => 0.0073119674162529
507 => 0.0075104312488141
508 => 0.0078004402502352
509 => 0.0079094863175028
510 => 0.0078897881214844
511 => 0.0081096696365349
512 => 0.0085047918313892
513 => 0.0079696536140404
514 => 0.0085331554563258
515 => 0.0083547572789999
516 => 0.0079317784098062
517 => 0.0079045435572234
518 => 0.008190989758327
519 => 0.0088262998629497
520 => 0.0086671618873693
521 => 0.0088265601556681
522 => 0.00864061360876
523 => 0.0086313797954254
524 => 0.0088175291469252
525 => 0.0092524772531774
526 => 0.009045849711683
527 => 0.0087495984637989
528 => 0.0089683457750566
529 => 0.0087788466099372
530 => 0.0083518519534466
531 => 0.0086670401975585
601 => 0.0084562827947653
602 => 0.0085177930093801
603 => 0.0089607737222537
604 => 0.0089074731108992
605 => 0.0089764490374957
606 => 0.0088547083324672
607 => 0.0087409833172234
608 => 0.0085287071309404
609 => 0.0084658626172715
610 => 0.0084832305799409
611 => 0.0084658540105718
612 => 0.0083470874352653
613 => 0.0083214398046357
614 => 0.008278692629938
615 => 0.008291941766836
616 => 0.0082115645722772
617 => 0.0083632529451855
618 => 0.0083914076438706
619 => 0.0085017937919128
620 => 0.0085132544479945
621 => 0.0088206782990434
622 => 0.0086513544079336
623 => 0.0087649514928115
624 => 0.0087547903003228
625 => 0.0079409456444857
626 => 0.0080530862574479
627 => 0.008227541859554
628 => 0.0081489498472742
629 => 0.0080378391296091
630 => 0.0079481112677148
701 => 0.0078121643817999
702 => 0.0080035070130964
703 => 0.0082551022262309
704 => 0.0085196353177949
705 => 0.0088374544944143
706 => 0.0087665209540159
707 => 0.0085136939093584
708 => 0.0085250355458915
709 => 0.0085951450801694
710 => 0.0085043468631566
711 => 0.0084775686963678
712 => 0.0085914661712594
713 => 0.008592250520572
714 => 0.0084877761985677
715 => 0.008371672108259
716 => 0.0083711856278813
717 => 0.0083505260264433
718 => 0.0086442889059602
719 => 0.0088058287869174
720 => 0.0088243490739346
721 => 0.0088045822240392
722 => 0.0088121897000457
723 => 0.0087181932026051
724 => 0.0089330413219589
725 => 0.0091302072025547
726 => 0.0090773625347204
727 => 0.0089981408653245
728 => 0.0089350369898182
729 => 0.0090624972671211
730 => 0.0090568216616139
731 => 0.0091284851305915
801 => 0.0091252340616904
802 => 0.0091011363324726
803 => 0.0090773633953262
804 => 0.0091716204039409
805 => 0.0091444758991811
806 => 0.0091172892315079
807 => 0.0090627622074187
808 => 0.0090701733355904
809 => 0.0089909653449327
810 => 0.0089543201041434
811 => 0.0084032636068994
812 => 0.0082560033045453
813 => 0.0083023343934258
814 => 0.0083175877908714
815 => 0.0082534999185677
816 => 0.0083453854646276
817 => 0.008331065199605
818 => 0.008386776973733
819 => 0.0083519706759819
820 => 0.0083533991385825
821 => 0.0084557570387834
822 => 0.0084854719726733
823 => 0.008470358717468
824 => 0.0084809435233617
825 => 0.0087248659076161
826 => 0.0086901879447738
827 => 0.0086717659681713
828 => 0.0086768689815883
829 => 0.0087391963805201
830 => 0.0087566446492713
831 => 0.0086827151085047
901 => 0.0087175807073118
902 => 0.008866034001929
903 => 0.0089179842533163
904 => 0.0090837845182091
905 => 0.0090133496188179
906 => 0.0091426359250014
907 => 0.0095400179532598
908 => 0.0098574742141775
909 => 0.0095655283172028
910 => 0.010148496312567
911 => 0.01060242051875
912 => 0.010584998151666
913 => 0.010505845966862
914 => 0.0099890653263222
915 => 0.0095135160761319
916 => 0.0099113332168039
917 => 0.0099123473345073
918 => 0.009878174489317
919 => 0.0096659298827488
920 => 0.0098707888370753
921 => 0.0098870497969313
922 => 0.0098779479835501
923 => 0.0097152205413281
924 => 0.0094667658141134
925 => 0.0095153132730946
926 => 0.0095948350012471
927 => 0.009444283779884
928 => 0.0093961735424384
929 => 0.009485619627197
930 => 0.0097738335491213
1001 => 0.0097193483766911
1002 => 0.0097179255486471
1003 => 0.0099510362216124
1004 => 0.0097841792882011
1005 => 0.0095159256120228
1006 => 0.0094481880209565
1007 => 0.00920776520618
1008 => 0.0093738261007028
1009 => 0.0093798023366642
1010 => 0.0092888524818353
1011 => 0.0095233056914889
1012 => 0.0095211451638873
1013 => 0.0097437235926984
1014 => 0.010169209951945
1015 => 0.010043372698604
1016 => 0.0098970376640219
1017 => 0.0099129483397113
1018 => 0.010087449181131
1019 => 0.0099819419889417
1020 => 0.010019883110875
1021 => 0.010087391752698
1022 => 0.010128121392456
1023 => 0.0099070879713438
1024 => 0.009855554507632
1025 => 0.0097501351266655
1026 => 0.0097226331779172
1027 => 0.0098084950640669
1028 => 0.0097858734906117
1029 => 0.0093793000571728
1030 => 0.0093368108712252
1031 => 0.0093381139538976
1101 => 0.0092312728755817
1102 => 0.0090683145863531
1103 => 0.009496559240712
1104 => 0.0094621652016869
1105 => 0.0094241968444904
1106 => 0.0094288477516025
1107 => 0.0096147342415017
1108 => 0.0095069106898674
1109 => 0.0097935772738198
1110 => 0.0097346472421455
1111 => 0.0096742058775221
1112 => 0.0096658510398421
1113 => 0.009642586271077
1114 => 0.0095628027225423
1115 => 0.0094664592934387
1116 => 0.0094028450164196
1117 => 0.0086736274951401
1118 => 0.0088089660254264
1119 => 0.0089646606680255
1120 => 0.0090184058347437
1121 => 0.00892647100802
1122 => 0.0095664328698508
1123 => 0.0096833600688332
1124 => 0.009329179956143
1125 => 0.0092629273181373
1126 => 0.0095707763817685
1127 => 0.0093851057633814
1128 => 0.0094687132314724
1129 => 0.0092879996162998
1130 => 0.0096551957306264
1201 => 0.0096523983114569
1202 => 0.0095095507294835
1203 => 0.0096302845275894
1204 => 0.0096093040590557
1205 => 0.0094480294908257
1206 => 0.0096603084220995
1207 => 0.009660413709801
1208 => 0.0095229260179258
1209 => 0.0093623704937414
1210 => 0.0093336669581695
1211 => 0.0093120426998935
1212 => 0.0094633949895276
1213 => 0.0095990969791473
1214 => 0.0098516047384532
1215 => 0.0099150911885791
1216 => 0.010162883029953
1217 => 0.010015335053181
1218 => 0.010080741160218
1219 => 0.010151748741665
1220 => 0.010185792387428
1221 => 0.01013032009354
1222 => 0.010515242818384
1223 => 0.010547742090088
1224 => 0.010558638814773
1225 => 0.010428845037699
1226 => 0.010544132290353
1227 => 0.010490193202749
1228 => 0.010630527723985
1229 => 0.010652533968795
1230 => 0.010633895462335
1231 => 0.010640880591783
]
'min_raw' => 0.0047717223352422
'max_raw' => 0.010652533968795
'avg_raw' => 0.0077121281520188
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004771'
'max' => '$0.010652'
'avg' => '$0.007712'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0007357899023396
'max_diff' => -0.001016533603204
'year' => 2031
]
6 => [
'items' => [
101 => 0.010312416951151
102 => 0.0102953843786
103 => 0.010063144043297
104 => 0.010157783696567
105 => 0.0099808594009755
106 => 0.01003696391763
107 => 0.010061694253987
108 => 0.010048776529708
109 => 0.010163134480567
110 => 0.010065906860551
111 => 0.0098093071856301
112 => 0.0095526376002992
113 => 0.0095494153227339
114 => 0.0094818387515107
115 => 0.0094329932677828
116 => 0.0094424026408354
117 => 0.0094755624987567
118 => 0.0094310659565591
119 => 0.0094405615498689
120 => 0.0095982516676192
121 => 0.0096298752961395
122 => 0.0095224058502781
123 => 0.0090909005173774
124 => 0.0089850080263344
125 => 0.0090611214489567
126 => 0.0090247441352755
127 => 0.0072836728695679
128 => 0.0076927117377708
129 => 0.0074496747319321
130 => 0.0075616773658175
131 => 0.0073135995169838
201 => 0.0074319952693213
202 => 0.0074101318969852
203 => 0.0080678542927154
204 => 0.0080575848621736
205 => 0.0080625002951278
206 => 0.007827873873133
207 => 0.0082016401341722
208 => 0.0083857708345602
209 => 0.0083516931423983
210 => 0.0083602697633404
211 => 0.0082128949998505
212 => 0.0080639272049836
213 => 0.0078986989944969
214 => 0.0082056725867572
215 => 0.0081715423635118
216 => 0.00824982481597
217 => 0.0084489191334763
218 => 0.0084782365280148
219 => 0.0085176394035823
220 => 0.008503516277579
221 => 0.0088399864369021
222 => 0.0087992376805065
223 => 0.0088974304592026
224 => 0.0086954404635206
225 => 0.0084668696103401
226 => 0.0085103134569856
227 => 0.0085061294652003
228 => 0.0084528624476111
229 => 0.0084047753658609
301 => 0.008324723923198
302 => 0.0085780185331677
303 => 0.0085677352345732
304 => 0.008734209885791
305 => 0.0087047838741398
306 => 0.0085082697665663
307 => 0.0085152883063629
308 => 0.0085624913594902
309 => 0.0087258616653188
310 => 0.0087743610951873
311 => 0.0087518942269041
312 => 0.0088050716376719
313 => 0.0088471008949251
314 => 0.0088103498652891
315 => 0.0093306669438721
316 => 0.0091145950164643
317 => 0.009219906970464
318 => 0.0092450232509589
319 => 0.0091806884266098
320 => 0.0091946403463537
321 => 0.0092157737030953
322 => 0.0093440913068947
323 => 0.0096808338282621
324 => 0.0098299747986919
325 => 0.010278672766716
326 => 0.0098175907172402
327 => 0.0097902320165716
328 => 0.0098710560699932
329 => 0.010134489276727
330 => 0.010347977147761
331 => 0.010418803390994
401 => 0.010428164248251
402 => 0.010561038988996
403 => 0.010637200312423
404 => 0.010544904500517
405 => 0.0104666934637
406 => 0.010186551237735
407 => 0.010218978463192
408 => 0.010442369890062
409 => 0.010757923438205
410 => 0.011028701210263
411 => 0.010933884272046
412 => 0.011657270580311
413 => 0.011728991378007
414 => 0.011719081882777
415 => 0.011882472533415
416 => 0.011558175365826
417 => 0.01141953204372
418 => 0.010483603577593
419 => 0.010746561300549
420 => 0.01112878579383
421 => 0.011078196948876
422 => 0.010800615304965
423 => 0.011028490639694
424 => 0.010953147927712
425 => 0.0108937220048
426 => 0.011165963677943
427 => 0.010866622775251
428 => 0.011125799639342
429 => 0.010793402630304
430 => 0.010934317387833
501 => 0.010854327356179
502 => 0.010906090709869
503 => 0.010603483201899
504 => 0.010766762867818
505 => 0.010596690230983
506 => 0.010596609594409
507 => 0.010592855231525
508 => 0.010792944934543
509 => 0.010799469852575
510 => 0.010651603259726
511 => 0.010630293373586
512 => 0.010709087191609
513 => 0.010616840266838
514 => 0.010660002022343
515 => 0.010618147592442
516 => 0.010608725278683
517 => 0.010533646679571
518 => 0.010501300754744
519 => 0.01051398442532
520 => 0.010470688518763
521 => 0.010444601168981
522 => 0.010587665801044
523 => 0.010511232139344
524 => 0.010575951246176
525 => 0.010502195655738
526 => 0.010246526645501
527 => 0.010099488694062
528 => 0.0096165536342539
529 => 0.0097535134181365
530 => 0.0098443178965459
531 => 0.0098143070169732
601 => 0.0098787819989639
602 => 0.009882740239214
603 => 0.0098617787653242
604 => 0.0098375080638909
605 => 0.0098256944286872
606 => 0.0099137435867661
607 => 0.0099648590866293
608 => 0.0098534313407614
609 => 0.0098273253789444
610 => 0.0099399849821113
611 => 0.010008707274962
612 => 0.010516114073649
613 => 0.0104785237391
614 => 0.010572868102088
615 => 0.010562246374648
616 => 0.010661134297294
617 => 0.010822774257667
618 => 0.010494115022985
619 => 0.010551158901945
620 => 0.010537173060159
621 => 0.010689866813487
622 => 0.010690343506718
623 => 0.010598795973979
624 => 0.010648425376666
625 => 0.010620723605598
626 => 0.010670784450037
627 => 0.010478021697264
628 => 0.010712785922688
629 => 0.010845882110631
630 => 0.01084773015133
701 => 0.010910816688098
702 => 0.01097491626318
703 => 0.011097949815654
704 => 0.010971484924178
705 => 0.010743986895522
706 => 0.010760411518377
707 => 0.010627029507414
708 => 0.010629271683116
709 => 0.010617302773497
710 => 0.010653222372239
711 => 0.010485904029254
712 => 0.010525173309921
713 => 0.010470196087026
714 => 0.010551039392199
715 => 0.01046406535971
716 => 0.010537166315763
717 => 0.01056871426506
718 => 0.010685126877146
719 => 0.010446871122253
720 => 0.00996105150953
721 => 0.010063176682118
722 => 0.0099121255301012
723 => 0.0099261058893127
724 => 0.0099543484398774
725 => 0.0098628050931095
726 => 0.0098802686788105
727 => 0.0098796447566398
728 => 0.0098742681324436
729 => 0.0098504541723775
730 => 0.0098159192188332
731 => 0.0099534958444556
801 => 0.0099768727940053
802 => 0.010028836857063
803 => 0.010183446661162
804 => 0.010167997495782
805 => 0.010193195725496
806 => 0.010138188131512
807 => 0.009928657533832
808 => 0.0099400360533682
809 => 0.0097981457324237
810 => 0.010025208402543
811 => 0.0099714369651783
812 => 0.0099367701697051
813 => 0.0099273110133746
814 => 0.010082304065273
815 => 0.01012868041562
816 => 0.010099781786285
817 => 0.010040509854411
818 => 0.010154329485782
819 => 0.010184782817472
820 => 0.010191600195362
821 => 0.010393266759401
822 => 0.010202871116055
823 => 0.010248701239778
824 => 0.010606254782281
825 => 0.010282003058247
826 => 0.010453766428144
827 => 0.010445359505001
828 => 0.010533227832885
829 => 0.01043815173743
830 => 0.010439330319581
831 => 0.010517351442026
901 => 0.010407784846736
902 => 0.010380654616904
903 => 0.010343174398701
904 => 0.01042501108396
905 => 0.010474068475619
906 => 0.0108694350237
907 => 0.011124859844666
908 => 0.011113771179553
909 => 0.011215100821576
910 => 0.011169450889771
911 => 0.011022035218131
912 => 0.011273655794195
913 => 0.011194032515676
914 => 0.011200596562015
915 => 0.011200352247882
916 => 0.011253294767309
917 => 0.011215780140185
918 => 0.011141834959324
919 => 0.011190923221257
920 => 0.01133669780982
921 => 0.011789186605634
922 => 0.01204240533045
923 => 0.011773942520449
924 => 0.011959124571927
925 => 0.011848081328152
926 => 0.011827901467507
927 => 0.011944209480682
928 => 0.012060721075637
929 => 0.012053299790732
930 => 0.011968718355731
1001 => 0.011920940449274
1002 => 0.012282730763742
1003 => 0.012549291704505
1004 => 0.012531114035393
1005 => 0.012611344355162
1006 => 0.012846903055435
1007 => 0.01286843959087
1008 => 0.012865726482417
1009 => 0.012812345932236
1010 => 0.013044284063817
1011 => 0.013237770933746
1012 => 0.012799989877181
1013 => 0.012966691172546
1014 => 0.013041528754816
1015 => 0.013151412528898
1016 => 0.013336804874433
1017 => 0.013538190134575
1018 => 0.013566668218436
1019 => 0.013546461655135
1020 => 0.013413642662545
1021 => 0.013634000817218
1022 => 0.013763081456191
1023 => 0.013839946022742
1024 => 0.01403486177447
1025 => 0.013041990926246
1026 => 0.012339187590991
1027 => 0.012229434701587
1028 => 0.012452621518008
1029 => 0.012511474101617
1030 => 0.012487750698959
1031 => 0.011696681649045
1101 => 0.012225269886755
1102 => 0.012793986385569
1103 => 0.01281583310246
1104 => 0.013100544473067
1105 => 0.013193258166051
1106 => 0.013422488137362
1107 => 0.013408149740244
1108 => 0.013463963590413
1109 => 0.01345113295282
1110 => 0.01387573320461
1111 => 0.014344130336081
1112 => 0.01432791123283
1113 => 0.014260573603357
1114 => 0.014360581465896
1115 => 0.014844017502061
1116 => 0.014799510458756
1117 => 0.014842745260226
1118 => 0.015412743592126
1119 => 0.016153822504914
1120 => 0.015809516946818
1121 => 0.016556560936631
1122 => 0.017026785529118
1123 => 0.017839990339694
1124 => 0.017738173092291
1125 => 0.018054747757476
1126 => 0.017555898969541
1127 => 0.016410441318467
1128 => 0.016229168260549
1129 => 0.016592081513066
1130 => 0.017484268331822
1201 => 0.01656398337512
1202 => 0.016750155823279
1203 => 0.016696538145685
1204 => 0.016693681087506
1205 => 0.016802723377686
1206 => 0.016644551848517
1207 => 0.016000132584169
1208 => 0.016295466135433
1209 => 0.016181423668208
1210 => 0.016307962288023
1211 => 0.016990839030671
1212 => 0.016688922944998
1213 => 0.016370878874413
1214 => 0.016769776718556
1215 => 0.01727771075032
1216 => 0.017245925151458
1217 => 0.017184247804315
1218 => 0.01753191978084
1219 => 0.018106172027727
1220 => 0.018261390102529
1221 => 0.018375968912053
1222 => 0.018391767394062
1223 => 0.018554501577452
1224 => 0.017679438859068
1225 => 0.019068185866348
1226 => 0.019307984111144
1227 => 0.019262911979741
1228 => 0.019529437636578
1229 => 0.019451019027234
1230 => 0.019337402765796
1231 => 0.019759902623516
]
'min_raw' => 0.0072836728695679
'max_raw' => 0.019759902623516
'avg_raw' => 0.013521787746542
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007283'
'max' => '$0.019759'
'avg' => '$0.013521'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0025119505343257
'max_diff' => 0.0091073686547204
'year' => 2032
]
7 => [
'items' => [
101 => 0.01927554063062
102 => 0.018588049761184
103 => 0.018210878673183
104 => 0.018707567987386
105 => 0.019010878819501
106 => 0.019211347985337
107 => 0.019272009833793
108 => 0.017747367486912
109 => 0.016925669822485
110 => 0.0174523686046
111 => 0.018094977469588
112 => 0.017675869134377
113 => 0.01769229738764
114 => 0.017094759041362
115 => 0.018147846354332
116 => 0.017994420390691
117 => 0.018790394561469
118 => 0.018600428937521
119 => 0.019249514974251
120 => 0.019078588867538
121 => 0.019788093580153
122 => 0.020071134219088
123 => 0.020546403503619
124 => 0.020896013524014
125 => 0.021101311214963
126 => 0.021088985911651
127 => 0.021902477642098
128 => 0.02142278998989
129 => 0.020820189245017
130 => 0.020809290098723
131 => 0.021121385563411
201 => 0.021775452038188
202 => 0.021945041958818
203 => 0.022039819588567
204 => 0.021894664349373
205 => 0.021373997782425
206 => 0.021149176598656
207 => 0.021340730760924
208 => 0.021106476480907
209 => 0.021510865088358
210 => 0.022066177019134
211 => 0.02195150730137
212 => 0.02233483097561
213 => 0.022731530651621
214 => 0.023298829005215
215 => 0.023447141801842
216 => 0.023692297214835
217 => 0.023944642664163
218 => 0.024025689221586
219 => 0.024180432246978
220 => 0.024179616674851
221 => 0.024645945197275
222 => 0.025160319998501
223 => 0.02535448457816
224 => 0.025800955322788
225 => 0.025036389818814
226 => 0.025616321536274
227 => 0.026139434462056
228 => 0.025515757666524
301 => 0.026375350831108
302 => 0.026408726885809
303 => 0.026912665685914
304 => 0.026401827169015
305 => 0.026098492888335
306 => 0.026974207590871
307 => 0.027397938350674
308 => 0.027270307197386
309 => 0.026299027818938
310 => 0.025733701560549
311 => 0.024254133699055
312 => 0.02600674574357
313 => 0.02686039194606
314 => 0.026296817081499
315 => 0.026581051461991
316 => 0.028131742078648
317 => 0.028722144665689
318 => 0.02859934505481
319 => 0.028620096167595
320 => 0.028938666686997
321 => 0.030351383810017
322 => 0.029504850963377
323 => 0.030151993605652
324 => 0.030495235729669
325 => 0.030814058143547
326 => 0.030031131059921
327 => 0.029012554427608
328 => 0.028689928451216
329 => 0.026240780668066
330 => 0.026113291889843
331 => 0.026041728575321
401 => 0.025590532000093
402 => 0.025236015085108
403 => 0.024954090071942
404 => 0.024214234647459
405 => 0.024463914134538
406 => 0.023284739007741
407 => 0.024039133466466
408 => 0.022157141491918
409 => 0.023724520332015
410 => 0.022871467289321
411 => 0.023444269464702
412 => 0.023442271011873
413 => 0.022387560599902
414 => 0.021779225645522
415 => 0.022166880355204
416 => 0.022582476976052
417 => 0.022649906129549
418 => 0.02318873799666
419 => 0.023339114388619
420 => 0.022883466900582
421 => 0.022118141391372
422 => 0.022295909051946
423 => 0.021775623189555
424 => 0.020863842228221
425 => 0.021518699232819
426 => 0.021742296206219
427 => 0.021841049367711
428 => 0.02094441751099
429 => 0.020662676314784
430 => 0.020512679665961
501 => 0.022002397478091
502 => 0.022084007582687
503 => 0.021666478749066
504 => 0.023553748668739
505 => 0.02312660136126
506 => 0.023603829557345
507 => 0.022279778500021
508 => 0.022330359033482
509 => 0.021703532044085
510 => 0.022054513273553
511 => 0.021806451053218
512 => 0.022026157458676
513 => 0.022157848572224
514 => 0.02278457270548
515 => 0.023731676514896
516 => 0.022690961019379
517 => 0.022237506374662
518 => 0.022518827085919
519 => 0.023268021212005
520 => 0.024403088663568
521 => 0.023731105886881
522 => 0.024029320432167
523 => 0.02409446704367
524 => 0.023598971822297
525 => 0.024421358279147
526 => 0.024862081862428
527 => 0.02531417306398
528 => 0.025706711186979
529 => 0.025133597896381
530 => 0.025746911269884
531 => 0.025252688955225
601 => 0.024809320447213
602 => 0.024809992854225
603 => 0.024531861312569
604 => 0.023992946403779
605 => 0.023893562226161
606 => 0.024410571268972
607 => 0.024825163560368
608 => 0.02485931136725
609 => 0.025088850962288
610 => 0.025224690130186
611 => 0.026556098639975
612 => 0.027091602156602
613 => 0.027746405720169
614 => 0.028001488610886
615 => 0.028769196659665
616 => 0.028149210060077
617 => 0.028015072059357
618 => 0.026152863448409
619 => 0.026457800004129
620 => 0.026946032851838
621 => 0.02616091422824
622 => 0.026658891285516
623 => 0.026757202505219
624 => 0.02613423619784
625 => 0.026466989419396
626 => 0.025583295517397
627 => 0.023750938627102
628 => 0.024423398216173
629 => 0.024918554821178
630 => 0.024211905293466
701 => 0.025478547220777
702 => 0.024738601155639
703 => 0.024504073776665
704 => 0.02358909885624
705 => 0.024020931798066
706 => 0.024604992035138
707 => 0.024244110712918
708 => 0.024992993643127
709 => 0.026053611592086
710 => 0.026809471103405
711 => 0.026867496611139
712 => 0.026381529584016
713 => 0.027160294846382
714 => 0.02716596730112
715 => 0.026287516903822
716 => 0.025749470926709
717 => 0.025627225748651
718 => 0.02593261817102
719 => 0.026303420950327
720 => 0.026888073584735
721 => 0.027241366927011
722 => 0.028162568591356
723 => 0.028411819348806
724 => 0.028685670363136
725 => 0.029051619770806
726 => 0.029491035862216
727 => 0.028529618470183
728 => 0.028567817375474
729 => 0.027672558811743
730 => 0.026715846643331
731 => 0.0274418719233
801 => 0.028391053397765
802 => 0.02817331011877
803 => 0.028148809551792
804 => 0.028190012709559
805 => 0.028025841388028
806 => 0.027283300585216
807 => 0.026910401242595
808 => 0.027391536531344
809 => 0.027647238524446
810 => 0.028043810016191
811 => 0.027994924209224
812 => 0.029016449783289
813 => 0.029413383732041
814 => 0.029311831042189
815 => 0.029330519181123
816 => 0.030049149135301
817 => 0.03084841344187
818 => 0.031597029937185
819 => 0.032358554790047
820 => 0.031440506857101
821 => 0.030974378734076
822 => 0.03145530397421
823 => 0.031200118272282
824 => 0.032666491008555
825 => 0.032768019475271
826 => 0.034234286176105
827 => 0.035625947874987
828 => 0.034751870096128
829 => 0.035576086072264
830 => 0.036467542849769
831 => 0.038187307607227
901 => 0.037608151338969
902 => 0.037164526714019
903 => 0.03674530358702
904 => 0.037617640364508
905 => 0.038739887692826
906 => 0.038981609018594
907 => 0.039373289910992
908 => 0.038961485345096
909 => 0.039457458585933
910 => 0.041208462067771
911 => 0.040735325470443
912 => 0.040063395441734
913 => 0.041445644522483
914 => 0.041945875091449
915 => 0.045456755197234
916 => 0.049889386358012
917 => 0.048054247951224
918 => 0.046915118322585
919 => 0.047182840805832
920 => 0.048801487651713
921 => 0.049321345645328
922 => 0.047908192412887
923 => 0.048407342024838
924 => 0.051157705461992
925 => 0.052633187203801
926 => 0.050629284814788
927 => 0.045100597599423
928 => 0.040002895494394
929 => 0.041355035645165
930 => 0.041201744913862
1001 => 0.044156667312257
1002 => 0.040724041319073
1003 => 0.040781837937339
1004 => 0.043797865001616
1005 => 0.042993240688661
1006 => 0.041689852350169
1007 => 0.040012411671681
1008 => 0.036911507433014
1009 => 0.034164950073714
1010 => 0.039551581549685
1011 => 0.039319300205487
1012 => 0.038982922396922
1013 => 0.039731494810003
1014 => 0.043366349961934
1015 => 0.043282554785804
1016 => 0.042749492627939
1017 => 0.043153815576485
1018 => 0.041618972582416
1019 => 0.042014536569713
1020 => 0.040002087992336
1021 => 0.040911798796587
1022 => 0.041687055864176
1023 => 0.041842700198372
1024 => 0.042193374830711
1025 => 0.039196898492041
1026 => 0.04054222839618
1027 => 0.041332483674498
1028 => 0.037762081577328
1029 => 0.041261908304754
1030 => 0.039144736505543
1031 => 0.038426136598037
1101 => 0.039393636705155
1102 => 0.039016600972486
1103 => 0.038692447789819
1104 => 0.038511564744232
1105 => 0.039221990043809
1106 => 0.039188847854442
1107 => 0.038026454176725
1108 => 0.036510159009371
1109 => 0.037019077438227
1110 => 0.036834182601888
1111 => 0.036164099863087
1112 => 0.036615654722941
1113 => 0.034627235646829
1114 => 0.031206263975409
1115 => 0.033466262648745
1116 => 0.033379255158227
1117 => 0.033335382036033
1118 => 0.035033708577269
1119 => 0.034870453667389
1120 => 0.03457414440736
1121 => 0.036158657911158
1122 => 0.035580289167557
1123 => 0.037362685354519
1124 => 0.03853668676141
1125 => 0.038238922029655
1126 => 0.039343076027277
1127 => 0.037030801890957
1128 => 0.037798846606706
1129 => 0.037957139558158
1130 => 0.036139105260478
1201 => 0.034897164189653
1202 => 0.034814340879394
1203 => 0.032660986212604
1204 => 0.033811290894332
1205 => 0.03482351141141
1206 => 0.034338736335215
1207 => 0.034185271028335
1208 => 0.03496929199862
1209 => 0.035030217142697
1210 => 0.033641117401191
1211 => 0.033929955224518
1212 => 0.035134456963084
1213 => 0.033899604871139
1214 => 0.031500488968435
1215 => 0.030905475054192
1216 => 0.03082608922975
1217 => 0.029212364303174
1218 => 0.030945236729111
1219 => 0.030188791477096
1220 => 0.032578392964607
1221 => 0.031213465410631
1222 => 0.031154626111825
1223 => 0.031065681881831
1224 => 0.02967668217539
1225 => 0.029980784835564
1226 => 0.030991668394126
1227 => 0.03135236303624
1228 => 0.031314739629983
1229 => 0.030986714513204
1230 => 0.031136882731905
1231 => 0.030653138577393
]
'min_raw' => 0.016925669822485
'max_raw' => 0.052633187203801
'avg_raw' => 0.034779428513143
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.016925'
'max' => '$0.052633'
'avg' => '$0.034779'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0096419969529168
'max_diff' => 0.032873284580285
'year' => 2033
]
8 => [
'items' => [
101 => 0.03048231844817
102 => 0.029943163132567
103 => 0.029150753764088
104 => 0.029260943146904
105 => 0.027690972842756
106 => 0.026835569696425
107 => 0.026598805379553
108 => 0.02628219423997
109 => 0.026634567450239
110 => 0.027686525314141
111 => 0.026417640944965
112 => 0.024242227695904
113 => 0.024372973738896
114 => 0.024666721278651
115 => 0.024119324681652
116 => 0.023601259742105
117 => 0.024051675175104
118 => 0.02312992390351
119 => 0.024778110516105
120 => 0.024733531687224
121 => 0.025347873733222
122 => 0.025732034422153
123 => 0.024846668407668
124 => 0.024624001249309
125 => 0.024750842582368
126 => 0.022654437889458
127 => 0.025176552744363
128 => 0.025198364098362
129 => 0.025011602043371
130 => 0.026354550342048
131 => 0.029188590128336
201 => 0.028122310361748
202 => 0.027709414607649
203 => 0.026924499477281
204 => 0.027970352284847
205 => 0.027890047107071
206 => 0.027526876638335
207 => 0.027307230005683
208 => 0.027711935661078
209 => 0.0272570824963
210 => 0.027175378369377
211 => 0.026680340255189
212 => 0.026503634171223
213 => 0.026372808021526
214 => 0.026228781285422
215 => 0.026546468376041
216 => 0.025826547633481
217 => 0.024958393792655
218 => 0.024886216194345
219 => 0.025085504889198
220 => 0.024997334477024
221 => 0.024885794068333
222 => 0.024672833051919
223 => 0.024609652067541
224 => 0.024814959615713
225 => 0.024583179364001
226 => 0.024925183751126
227 => 0.024832177481794
228 => 0.024312652021748
301 => 0.02366513094557
302 => 0.023659366649771
303 => 0.023519859296056
304 => 0.023342175706029
305 => 0.023292748196133
306 => 0.024013742443647
307 => 0.025506178958461
308 => 0.025213177959624
309 => 0.025424901209234
310 => 0.026466370047112
311 => 0.026797421672613
312 => 0.02656244907022
313 => 0.026240804079585
314 => 0.026254954826797
315 => 0.027354113128355
316 => 0.027422666283368
317 => 0.027595877990001
318 => 0.027818503982646
319 => 0.026600363239429
320 => 0.026197580507337
321 => 0.026006719703337
322 => 0.025418942299443
323 => 0.026052809837316
324 => 0.025683482367912
325 => 0.025733317261557
326 => 0.025700862221694
327 => 0.025718584868059
328 => 0.024777649814356
329 => 0.025120477093835
330 => 0.024550460249257
331 => 0.023787271681761
401 => 0.023784713206074
402 => 0.02397150252676
403 => 0.023860392929749
404 => 0.023561399861082
405 => 0.023603870415278
406 => 0.023231783670898
407 => 0.023649048482894
408 => 0.023661014144657
409 => 0.02350034446347
410 => 0.024143198477799
411 => 0.024406576291989
412 => 0.024300820065954
413 => 0.024399156153246
414 => 0.025225353473946
415 => 0.025360059686736
416 => 0.025419887288265
417 => 0.025339726227855
418 => 0.024414257523596
419 => 0.024455305996027
420 => 0.02415411954142
421 => 0.023899648725524
422 => 0.023909826223636
423 => 0.024040657301897
424 => 0.024612004293805
425 => 0.025814370355529
426 => 0.025859999268654
427 => 0.02591530284245
428 => 0.025690355414472
429 => 0.025622509117737
430 => 0.025712015895746
501 => 0.026163561371125
502 => 0.027325058927202
503 => 0.026914508117071
504 => 0.026580723917831
505 => 0.026873542648139
506 => 0.026828465499797
507 => 0.026447969003753
508 => 0.026437289734392
509 => 0.025706995306395
510 => 0.025437022084365
511 => 0.02521141225289
512 => 0.024965052206614
513 => 0.024819001713118
514 => 0.02504340164989
515 => 0.025094724570452
516 => 0.02460407018686
517 => 0.024537195807407
518 => 0.024937874768558
519 => 0.024761550896573
520 => 0.024942904371532
521 => 0.024984979933343
522 => 0.024978204798809
523 => 0.024794102425789
524 => 0.02491144378834
525 => 0.024633896484762
526 => 0.024332105478378
527 => 0.024139581618549
528 => 0.023971579016264
529 => 0.02406479662438
530 => 0.023732492872308
531 => 0.023626182214067
601 => 0.024871691174972
602 => 0.02579176203587
603 => 0.025778383841165
604 => 0.025696947521487
605 => 0.025575949669201
606 => 0.026154709624581
607 => 0.025953081228797
608 => 0.026099782733346
609 => 0.026137124423297
610 => 0.02625014647218
611 => 0.026290542140082
612 => 0.026168438375086
613 => 0.025758643226041
614 => 0.024737472676775
615 => 0.024262115029495
616 => 0.024105239088184
617 => 0.024110941230701
618 => 0.023953650684603
619 => 0.023999979799697
620 => 0.023937539309051
621 => 0.023819292125747
622 => 0.024057495194023
623 => 0.024084945878626
624 => 0.024029346436176
625 => 0.024042442117602
626 => 0.023582102480946
627 => 0.023617101103716
628 => 0.023422224324724
629 => 0.023385687277937
630 => 0.022893055750507
701 => 0.022020287591583
702 => 0.022503885873282
703 => 0.021919767153198
704 => 0.02169855254306
705 => 0.022745748101526
706 => 0.022640638712139
707 => 0.022460737127463
708 => 0.022194625188951
709 => 0.022095921682387
710 => 0.021496230422233
711 => 0.021460797463355
712 => 0.021758020644913
713 => 0.021620862373449
714 => 0.021428240214414
715 => 0.020730582280186
716 => 0.019946183775509
717 => 0.019969859835812
718 => 0.020219362405897
719 => 0.020944824778424
720 => 0.020661374078851
721 => 0.020455727344089
722 => 0.020417215892386
723 => 0.020899267339632
724 => 0.021581471130385
725 => 0.021901545885557
726 => 0.021584361523996
727 => 0.021219997207854
728 => 0.021242174375476
729 => 0.021389709136119
730 => 0.021405212953433
731 => 0.021168049240881
801 => 0.02123480943677
802 => 0.021133394594535
803 => 0.020511011894934
804 => 0.020499754965495
805 => 0.020347012213736
806 => 0.020342387223916
807 => 0.020082533699709
808 => 0.02004617839539
809 => 0.019530223451095
810 => 0.019869826557886
811 => 0.019642038623814
812 => 0.019298708477427
813 => 0.019239518230781
814 => 0.019237738900492
815 => 0.019590262193616
816 => 0.019865707117956
817 => 0.019646001092452
818 => 0.019595978289267
819 => 0.020130090956958
820 => 0.020062120251449
821 => 0.020003258058843
822 => 0.0215203872634
823 => 0.020319461114925
824 => 0.019795788767721
825 => 0.019147644795376
826 => 0.019358683740997
827 => 0.019403152747647
828 => 0.017844483330888
829 => 0.017212131342629
830 => 0.01699513196994
831 => 0.016870245763037
901 => 0.016927157975745
902 => 0.016357967018822
903 => 0.016740472755424
904 => 0.016247601499242
905 => 0.016164970029201
906 => 0.017046284890287
907 => 0.01716891470464
908 => 0.016645737818512
909 => 0.016981702074051
910 => 0.01685987676474
911 => 0.016256050362303
912 => 0.016232988635176
913 => 0.015930009771958
914 => 0.015455906519289
915 => 0.015239228610931
916 => 0.015126380874974
917 => 0.015172944050189
918 => 0.015149400283944
919 => 0.014995761283578
920 => 0.015158206691601
921 => 0.014743225801178
922 => 0.014577977066883
923 => 0.014503338047344
924 => 0.014135018621685
925 => 0.014721178620301
926 => 0.014836659524277
927 => 0.014952367961308
928 => 0.015959530908159
929 => 0.015909215893547
930 => 0.016364039121232
1001 => 0.01634636552697
1002 => 0.016216642574787
1003 => 0.015669362777915
1004 => 0.015887498750624
1005 => 0.015216110132484
1006 => 0.015719160135183
1007 => 0.015489589121821
1008 => 0.015641541944637
1009 => 0.01536831706818
1010 => 0.01551953099599
1011 => 0.014864044330669
1012 => 0.014251960105538
1013 => 0.014498280665583
1014 => 0.014766059284525
1015 => 0.015346671559114
1016 => 0.015000863678316
1017 => 0.015125229268695
1018 => 0.014708625359475
1019 => 0.013849052497731
1020 => 0.013853917586779
1021 => 0.013721691028812
1022 => 0.013607427977335
1023 => 0.015040583873289
1024 => 0.014862348282785
1025 => 0.014578353196215
1026 => 0.014958491905105
1027 => 0.015059006613349
1028 => 0.015061868125785
1029 => 0.015339207514992
1030 => 0.015487223596727
1031 => 0.015513312072671
1101 => 0.015949711593902
1102 => 0.016095986957169
1103 => 0.016698474476804
1104 => 0.015474665466323
1105 => 0.015449461925102
1106 => 0.014963841236307
1107 => 0.014655852918114
1108 => 0.014984929459949
1109 => 0.015276446352587
1110 => 0.014972899478761
1111 => 0.015012536292259
1112 => 0.014605049414838
1113 => 0.014750706799476
1114 => 0.014876166561295
1115 => 0.014806895055003
1116 => 0.014703192257304
1117 => 0.015252545291806
1118 => 0.015221548640667
1119 => 0.015733118815967
1120 => 0.016131924350348
1121 => 0.016846655162974
1122 => 0.016100796300239
1123 => 0.01607361423876
1124 => 0.016339323249853
1125 => 0.016095946278504
1126 => 0.016249752123309
1127 => 0.016821874663547
1128 => 0.016833962711283
1129 => 0.01663147233713
1130 => 0.01661915077946
1201 => 0.016658041270819
1202 => 0.016885824093426
1203 => 0.016806229776148
1204 => 0.016898338335183
1205 => 0.017013521498674
1206 => 0.01748996789952
1207 => 0.017604837513762
1208 => 0.01732576390422
1209 => 0.017350961126507
1210 => 0.017246579935796
1211 => 0.017145749013462
1212 => 0.017372402201695
1213 => 0.017786615358071
1214 => 0.017784038559523
1215 => 0.017880127960649
1216 => 0.017939990861503
1217 => 0.017683015468716
1218 => 0.017515733937259
1219 => 0.01757988032082
1220 => 0.017682451785061
1221 => 0.017546617777391
1222 => 0.016708187357617
1223 => 0.016962513587834
1224 => 0.016920181267209
1225 => 0.016859894894852
1226 => 0.017115621885982
1227 => 0.017090956393837
1228 => 0.016352129142863
1229 => 0.016399426466351
1230 => 0.016355005449758
1231 => 0.016498538842056
]
'min_raw' => 0.013607427977335
'max_raw' => 0.03048231844817
'avg_raw' => 0.022044873212753
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0136074'
'max' => '$0.030482'
'avg' => '$0.022044'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0033182418451494
'max_diff' => -0.022150868755631
'year' => 2034
]
9 => [
'items' => [
101 => 0.016088195004284
102 => 0.016214414005075
103 => 0.016293577379141
104 => 0.016340205214628
105 => 0.016508656929412
106 => 0.016488891064944
107 => 0.016507428255524
108 => 0.016757197678945
109 => 0.018020445712095
110 => 0.018089201515339
111 => 0.017750622793909
112 => 0.01788587831495
113 => 0.017626217291682
114 => 0.01780052947618
115 => 0.017919789445764
116 => 0.017380876575587
117 => 0.017348965652931
118 => 0.017088232916253
119 => 0.017228335920286
120 => 0.017005421967106
121 => 0.017060117254018
122 => 0.016907184463564
123 => 0.017182433037766
124 => 0.017490203713027
125 => 0.017567958739831
126 => 0.017363418739955
127 => 0.017215318300202
128 => 0.016955302715313
129 => 0.017387714427808
130 => 0.01751416479005
131 => 0.017387050237887
201 => 0.017357595018643
202 => 0.0173017774314
203 => 0.017369436983643
204 => 0.01751347611422
205 => 0.017445549920225
206 => 0.017490416368064
207 => 0.017319431734981
208 => 0.017683100538264
209 => 0.018260694119541
210 => 0.018262551177351
211 => 0.018194624617208
212 => 0.018166830532296
213 => 0.018236527305131
214 => 0.018274334945282
215 => 0.018499721528427
216 => 0.018741570311939
217 => 0.019870173057699
218 => 0.019553265922867
219 => 0.020554629419783
220 => 0.021346577935067
221 => 0.02158404866709
222 => 0.02136558676749
223 => 0.020618240410042
224 => 0.020581572032341
225 => 0.021698423011863
226 => 0.021382861455133
227 => 0.021345326412068
228 => 0.020946016970317
301 => 0.021182058305829
302 => 0.021130432603235
303 => 0.021048938906075
304 => 0.021499289331448
305 => 0.022342305124687
306 => 0.022210913207558
307 => 0.022112835236518
308 => 0.021683086117486
309 => 0.021941891075084
310 => 0.021849735586766
311 => 0.022245694047899
312 => 0.022011137027077
313 => 0.021380470765977
314 => 0.02148090644676
315 => 0.021465725795658
316 => 0.021778142519622
317 => 0.021684362773748
318 => 0.021447413795165
319 => 0.022339423788353
320 => 0.022281501621016
321 => 0.022363622011449
322 => 0.022399773946975
323 => 0.022942724710849
324 => 0.023165154266322
325 => 0.023215649669592
326 => 0.023426940543971
327 => 0.023210392560156
328 => 0.024076738891515
329 => 0.024652808649159
330 => 0.025321943316942
331 => 0.026299728913015
401 => 0.026667385342161
402 => 0.026600971499001
403 => 0.027342317378631
404 => 0.028674499445133
405 => 0.026870243583184
406 => 0.028770129386891
407 => 0.028168647476674
408 => 0.026742544687746
409 => 0.026650720480786
410 => 0.027616493846842
411 => 0.029758486220513
412 => 0.029221941425185
413 => 0.029759363815586
414 => 0.029132432050312
415 => 0.02910129960397
416 => 0.029728915139084
417 => 0.031195373046421
418 => 0.030498713863998
419 => 0.029499882098155
420 => 0.03023740393051
421 => 0.029598494264901
422 => 0.028158851968728
423 => 0.029221531139491
424 => 0.028510947841362
425 => 0.028718333824442
426 => 0.030211874225821
427 => 0.03003216749331
428 => 0.030264724645575
429 => 0.029854267358907
430 => 0.029470835529985
501 => 0.028755131547282
502 => 0.028543246881784
503 => 0.028601804180516
504 => 0.028543217863695
505 => 0.028142788063031
506 => 0.028056315285704
507 => 0.027912190201698
508 => 0.027956860591774
509 => 0.027685863268563
510 => 0.028197291208367
511 => 0.028292216740683
512 => 0.028664391345721
513 => 0.028703031747858
514 => 0.029739532725318
515 => 0.029168645404624
516 => 0.029551645907385
517 => 0.029517386737478
518 => 0.026773452659504
519 => 0.027151542565513
520 => 0.027739731808115
521 => 0.027474753351595
522 => 0.027100135809484
523 => 0.026797612058508
524 => 0.026339257641138
525 => 0.02698438268167
526 => 0.02783265350857
527 => 0.028724545295889
528 => 0.029796094839287
529 => 0.029556937455412
530 => 0.028704513422529
531 => 0.028742752541948
601 => 0.028979131731657
602 => 0.02867299920367
603 => 0.028582714744749
604 => 0.028966728033414
605 => 0.028969372521883
606 => 0.028617130051081
607 => 0.028225677004477
608 => 0.028224036801918
609 => 0.028154381513263
610 => 0.029144823571423
611 => 0.029689466558425
612 => 0.029751908999149
613 => 0.029685263684649
614 => 0.029710912821142
615 => 0.029393997067395
616 => 0.030118372502013
617 => 0.030783131034124
618 => 0.030604961547023
619 => 0.030337860157575
620 => 0.030125101035533
621 => 0.030554842259453
622 => 0.030535706559227
623 => 0.030777324948268
624 => 0.030766363742486
625 => 0.030685116565979
626 => 0.030604964448616
627 => 0.030922758533975
628 => 0.030831238941008
629 => 0.030739577192836
630 => 0.030555735524164
701 => 0.030580722660223
702 => 0.030313667389595
703 => 0.030190115401785
704 => 0.028332189947791
705 => 0.027835691557018
706 => 0.027991900057912
707 => 0.028043327952358
708 => 0.027827251216414
709 => 0.028137049750199
710 => 0.028088767976866
711 => 0.02827660411301
712 => 0.028159252250044
713 => 0.028164068411434
714 => 0.028509175218362
715 => 0.028609361192603
716 => 0.028558405797504
717 => 0.028594093209582
718 => 0.029416494558213
719 => 0.029299575385352
720 => 0.029237464405055
721 => 0.029254669571072
722 => 0.02946481074813
723 => 0.029523638804424
724 => 0.029274380196134
725 => 0.02939193199675
726 => 0.029892452644231
727 => 0.030067606543833
728 => 0.030626613712724
729 => 0.030389137531819
730 => 0.030825035339599
731 => 0.032164836592199
801 => 0.033235162539971
802 => 0.032250846565309
803 => 0.034216363863205
804 => 0.035746801016328
805 => 0.035688060289315
806 => 0.035421193172019
807 => 0.033678831161965
808 => 0.03207548366316
809 => 0.033416751927642
810 => 0.033420171096282
811 => 0.033304954962851
812 => 0.032589357453361
813 => 0.033280053720668
814 => 0.033334878682127
815 => 0.033304191282844
816 => 0.032755544350125
817 => 0.031917861890766
818 => 0.032081543038196
819 => 0.032349656096692
820 => 0.031842062142716
821 => 0.031679855118218
822 => 0.031981428837909
823 => 0.03295316219813
824 => 0.032769461635248
825 => 0.032764664471159
826 => 0.033550613380329
827 => 0.032988043579753
828 => 0.032083607581645
829 => 0.031855225564077
830 => 0.031044623258273
831 => 0.031604509158158
901 => 0.03162465845495
902 => 0.031318014669478
903 => 0.032108490034826
904 => 0.032101205665173
905 => 0.03285164437784
906 => 0.034286201344549
907 => 0.033861932259232
908 => 0.033368553473354
909 => 0.033422197427288
910 => 0.034010539197393
911 => 0.033654814332651
912 => 0.033782735474214
913 => 0.034010345573424
914 => 0.034147668397518
915 => 0.033402438786179
916 => 0.033228690115323
917 => 0.032873261312249
918 => 0.032780536571919
919 => 0.033070025915758
920 => 0.032993755701466
921 => 0.031622964984576
922 => 0.031479709727654
923 => 0.031484103161862
924 => 0.031123881006914
925 => 0.030574455757396
926 => 0.032018312508654
927 => 0.031902350604765
928 => 0.031774337637611
929 => 0.031790018495656
930 => 0.032416747774531
1001 => 0.032053213142196
1002 => 0.033019729544413
1003 => 0.03282104282826
1004 => 0.032617260547551
1005 => 0.032589091628997
1006 => 0.032510652836811
1007 => 0.032241657032617
1008 => 0.031916828434911
1009 => 0.031702348458534
1010 => 0.029243740673198
1011 => 0.029700043977093
1012 => 0.030224979334869
1013 => 0.030406184916827
1014 => 0.030096220229843
1015 => 0.032253896327716
1016 => 0.032648124542681
1017 => 0.031453981564681
1018 => 0.031230606170033
1019 => 0.032268540781401
1020 => 0.0316425393284
1021 => 0.031924427744356
1022 => 0.03131513917378
1023 => 0.032553166510046
1024 => 0.032543734816007
1025 => 0.032062114220084
1026 => 0.032469176649762
1027 => 0.032398439535291
1028 => 0.031854691068673
1029 => 0.032570404306304
1030 => 0.032570759291141
1031 => 0.0321072099389
1101 => 0.031565885779483
1102 => 0.031469109805286
1103 => 0.03139620210875
1104 => 0.031906496920331
1105 => 0.032364025652745
1106 => 0.033215373192773
1107 => 0.033429422191855
1108 => 0.034264869685321
1109 => 0.033767401380162
1110 => 0.033987922636546
1111 => 0.034227329654987
1112 => 0.034342110183529
1113 => 0.034155081471732
1114 => 0.035452875312991
1115 => 0.035562448876569
1116 => 0.035599187944629
1117 => 0.035161579163311
1118 => 0.035550278184732
1119 => 0.035368418784968
1120 => 0.035841566421158
1121 => 0.035915762011965
1122 => 0.035852920986136
1123 => 0.035876471837756
1124 => 0.034769033740764
1125 => 0.034711607233233
1126 => 0.033928592728257
1127 => 0.034247676926786
1128 => 0.033651164311739
1129 => 0.033840324606731
1130 => 0.033923704662378
1201 => 0.033880151653085
1202 => 0.03426571746862
1203 => 0.033937907759523
1204 => 0.033072764040309
1205 => 0.032207384613268
1206 => 0.032196520479484
1207 => 0.03196868135156
1208 => 0.031803995392888
1209 => 0.031835719751077
1210 => 0.031947520527206
1211 => 0.031797497328537
1212 => 0.031829512384342
1213 => 0.03236117562591
1214 => 0.032467796897357
1215 => 0.032105456157358
1216 => 0.030650605800743
1217 => 0.030293581874014
1218 => 0.030550203592455
1219 => 0.030427554939596
1220 => 0.024557411609549
1221 => 0.025936514711876
1222 => 0.025117098478389
1223 => 0.025494723178308
1224 => 0.024658311390723
1225 => 0.025057490935857
1226 => 0.024983777049573
1227 => 0.027201334027489
1228 => 0.027166709925429
1229 => 0.027183282650818
1230 => 0.026392223287969
1231 => 0.02765240233259
]
'min_raw' => 0.016088195004284
'max_raw' => 0.035915762011965
'avg_raw' => 0.026001978508124
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016088'
'max' => '$0.035915'
'avg' => '$0.0260019'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0024807670269485
'max_diff' => 0.0054334435637946
'year' => 2035
]
10 => [
'items' => [
101 => 0.028273211844543
102 => 0.028158316526191
103 => 0.028187233202497
104 => 0.027690348898014
105 => 0.027188093577021
106 => 0.0266310151295
107 => 0.027665998028017
108 => 0.027550925597449
109 => 0.027814860351418
110 => 0.028486120743212
111 => 0.028584966385774
112 => 0.02871781593177
113 => 0.028670198826405
114 => 0.029804631460159
115 => 0.029667244182984
116 => 0.029998307991959
117 => 0.029317284619026
118 => 0.028546642029221
119 => 0.028693115991338
120 => 0.028679009370917
121 => 0.028499415902131
122 => 0.028337286948677
123 => 0.028067387920726
124 => 0.028921388382704
125 => 0.028886717523535
126 => 0.029447998433005
127 => 0.029348786580265
128 => 0.028686225546404
129 => 0.028709889043347
130 => 0.028869037432577
131 => 0.029419851824829
201 => 0.029583371038753
202 => 0.029507622423749
203 => 0.029686913776881
204 => 0.029828618352099
205 => 0.029704709689807
206 => 0.031458995047628
207 => 0.030730493458712
208 => 0.031085560064268
209 => 0.031170241357519
210 => 0.030953332005512
211 => 0.031000371877021
212 => 0.031071624464759
213 => 0.031504256224817
214 => 0.03263960714622
215 => 0.033142446340714
216 => 0.034655262866998
217 => 0.033100692545471
218 => 0.033008450776043
219 => 0.033280954715109
220 => 0.03416913816393
221 => 0.03488892742637
222 => 0.035127723050361
223 => 0.035159283834157
224 => 0.035607280299596
225 => 0.035864063518945
226 => 0.035552881745215
227 => 0.035289187774067
228 => 0.034344668700319
229 => 0.034453999354945
301 => 0.035207179147328
302 => 0.036271089966137
303 => 0.03718403612973
304 => 0.036864354202626
305 => 0.03930330164616
306 => 0.03954511332298
307 => 0.039511702767951
308 => 0.040062585754148
309 => 0.038969195211916
310 => 0.038501749571667
311 => 0.035346201403683
312 => 0.03623278172575
313 => 0.03752147829091
314 => 0.037350914468147
315 => 0.036415028575569
316 => 0.037183326176357
317 => 0.036929302962649
318 => 0.036728944314565
319 => 0.037646826122874
320 => 0.036637577370132
321 => 0.037511410262566
322 => 0.036390710539376
323 => 0.036865814482741
324 => 0.036596122506295
325 => 0.036770646267261
326 => 0.03575038392676
327 => 0.036300892720226
328 => 0.035727480951047
329 => 0.035727209079207
330 => 0.035714550982622
331 => 0.036389167386164
401 => 0.036411166602864
402 => 0.035912624061357
403 => 0.035840776292428
404 => 0.0361064351511
405 => 0.03579541820376
406 => 0.035940941075903
407 => 0.035799825943311
408 => 0.035768057954625
409 => 0.035514925215898
410 => 0.035405868672025
411 => 0.035448632552919
412 => 0.035302657381137
413 => 0.035214702059986
414 => 0.035697054455441
415 => 0.03543935302859
416 => 0.035657558015818
417 => 0.035408885893207
418 => 0.034546879974951
419 => 0.034051131255815
420 => 0.032422881984221
421 => 0.032884651457808
422 => 0.033190805096532
423 => 0.03308962132076
424 => 0.033307003224041
425 => 0.033320348707399
426 => 0.033249675634697
427 => 0.033167845270288
428 => 0.033128014774397
429 => 0.033424878658256
430 => 0.033597218134815
501 => 0.033221531709985
502 => 0.033133513637059
503 => 0.033513353354778
504 => 0.033745055363161
505 => 0.035455812810946
506 => 0.035329074373541
507 => 0.035647162980267
508 => 0.035611351084617
509 => 0.035944758619955
510 => 0.036489739031695
511 => 0.035381641475708
512 => 0.035573968896297
513 => 0.035526814654257
514 => 0.036041632304339
515 => 0.036043239508849
516 => 0.035734580610575
517 => 0.035901909606748
518 => 0.035808511151515
519 => 0.035977294783679
520 => 0.03532738170444
521 => 0.036118905681171
522 => 0.0365676487713
523 => 0.036573879569541
524 => 0.036786580232817
525 => 0.037002696425496
526 => 0.037417512637591
527 => 0.036991127426483
528 => 0.036224101939463
529 => 0.036279478702149
530 => 0.035829771939752
531 => 0.035837331591675
601 => 0.035796977577254
602 => 0.035918083012238
603 => 0.03535395753707
604 => 0.035486356658534
605 => 0.035300997113156
606 => 0.035573565960845
607 => 0.035280326937976
608 => 0.035526791915054
609 => 0.035633158028717
610 => 0.036025651278033
611 => 0.035222355365926
612 => 0.033584380622788
613 => 0.03392870277232
614 => 0.033419423267241
615 => 0.0334665590244
616 => 0.033561780755461
617 => 0.033253135970481
618 => 0.03331201566894
619 => 0.033309912071781
620 => 0.03329178440792
621 => 0.033211493978919
622 => 0.033095056971891
623 => 0.03355890617047
624 => 0.033637723188003
625 => 0.033812923654617
626 => 0.034334201403649
627 => 0.034282113463945
628 => 0.03436707105471
629 => 0.034181609111086
630 => 0.033475162072047
701 => 0.033513525545086
702 => 0.033035132421556
703 => 0.033800690066874
704 => 0.033619395911596
705 => 0.033502514390299
706 => 0.033470622184314
707 => 0.033993192080059
708 => 0.034149553183145
709 => 0.034052119436705
710 => 0.03385227998016
711 => 0.034236030813959
712 => 0.034338706347935
713 => 0.034361691613465
714 => 0.035041624514032
715 => 0.034399692309494
716 => 0.034554211771384
717 => 0.035759728503521
718 => 0.03466649117741
719 => 0.035245603371152
720 => 0.035217258842823
721 => 0.035513513045054
722 => 0.035192957351228
723 => 0.035196931023236
724 => 0.035459984684818
725 => 0.035090573259103
726 => 0.034999101795052
727 => 0.034872734622595
728 => 0.035148652720603
729 => 0.035314053141657
730 => 0.036647059062124
731 => 0.037508241679202
801 => 0.037470855470587
802 => 0.037812495433277
803 => 0.037658583501022
804 => 0.037161561271853
805 => 0.03800991761164
806 => 0.037741462168995
807 => 0.037763593309513
808 => 0.037762769587357
809 => 0.037941268987935
810 => 0.037814785803396
811 => 0.037565474463437
812 => 0.037730978965775
813 => 0.038222468168775
814 => 0.039748065735618
815 => 0.040601810345502
816 => 0.039696669238109
817 => 0.040321023453667
818 => 0.039946633404486
819 => 0.039878595595411
820 => 0.040270736182195
821 => 0.040663563159165
822 => 0.04063854177897
823 => 0.040353369565578
824 => 0.04019228301821
825 => 0.041412084322834
826 => 0.042310813145308
827 => 0.042249525864769
828 => 0.042520027989374
829 => 0.043314230593528
830 => 0.043386842526381
831 => 0.043377695091808
901 => 0.04319771883996
902 => 0.043979714443991
903 => 0.044632068934776
904 => 0.043156059537672
905 => 0.043718104593707
906 => 0.043970424727322
907 => 0.04434090554348
908 => 0.044965968780132
909 => 0.045644953244971
910 => 0.045740969092985
911 => 0.045672841254038
912 => 0.045225032747394
913 => 0.04596798565079
914 => 0.04640319003721
915 => 0.046662344289848
916 => 0.047319516355382
917 => 0.043971982970568
918 => 0.041602432457592
919 => 0.041232392928266
920 => 0.041984882862235
921 => 0.042183308456828
922 => 0.042103323348452
923 => 0.03943617881599
924 => 0.041218350964281
925 => 0.043135818346552
926 => 0.043209476077836
927 => 0.044169400341753
928 => 0.04448199103071
929 => 0.045254855883312
930 => 0.045206512976353
1001 => 0.045394693268996
1002 => 0.045351433878546
1003 => 0.046783003272097
1004 => 0.048362236903296
1005 => 0.048307553064303
1006 => 0.048080519545174
1007 => 0.048417703036048
1008 => 0.050047641384406
1009 => 0.049897582780519
1010 => 0.050043351932234
1011 => 0.051965141104248
1012 => 0.054463740399188
1013 => 0.053302890171421
1014 => 0.055821601140022
1015 => 0.057406996183624
1016 => 0.060148772978628
1017 => 0.059805489020358
1018 => 0.060872842606565
1019 => 0.059190939089531
1020 => 0.055328948645637
1021 => 0.054717773874785
1022 => 0.055941361243441
1023 => 0.05894943139337
1024 => 0.055846626409606
1025 => 0.05647431981672
1026 => 0.056293544073244
1027 => 0.056283911302122
1028 => 0.056651554996552
1029 => 0.056118268642776
1030 => 0.053945564101109
1031 => 0.054941301788726
1101 => 0.054556799648286
1102 => 0.054983433439638
1103 => 0.057285800054405
1104 => 0.056267868892452
1105 => 0.055195561103346
1106 => 0.056540473035032
1107 => 0.058253008085948
1108 => 0.058145840720183
1109 => 0.057937891238116
1110 => 0.059110091580651
1111 => 0.061046223124045
1112 => 0.061569551700218
1113 => 0.061955862156167
1114 => 0.062009127841274
1115 => 0.062557797502312
1116 => 0.059607462452352
1117 => 0.064289719946617
1118 => 0.065098216471123
1119 => 0.064946252633264
1120 => 0.065844862493518
1121 => 0.065580468677099
1122 => 0.065197403519227
1123 => 0.066621891287529
1124 => 0.064988831011407
1125 => 0.062670907546022
1126 => 0.061399248889584
1127 => 0.063073871590159
1128 => 0.064096505237122
1129 => 0.064772401026049
1130 => 0.064976926683391
1201 => 0.059836488563754
1202 => 0.057066077519037
1203 => 0.058841879235873
1204 => 0.061008479889701
1205 => 0.059595426876326
1206 => 0.059650815879187
1207 => 0.057636173625913
1208 => 0.061186731025803
1209 => 0.060669444677527
1210 => 0.063353127167446
1211 => 0.062712644803329
1212 => 0.064901083693904
1213 => 0.064324794391441
1214 => 0.066716939066061
1215 => 0.067671230341498
1216 => 0.069273633916535
1217 => 0.070452368509288
1218 => 0.071144544007752
1219 => 0.071102988387109
1220 => 0.073845732552489
1221 => 0.072228432142347
1222 => 0.070196721658769
1223 => 0.070159974426085
1224 => 0.071212226075091
1225 => 0.073417456860263
1226 => 0.073989241118056
1227 => 0.074308790513919
1228 => 0.07381938949056
1229 => 0.072063925808316
1230 => 0.071305925490726
1231 => 0.071951763722696
]
'min_raw' => 0.0266310151295
'max_raw' => 0.074308790513919
'avg_raw' => 0.050469902821709
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.026631'
'max' => '$0.0743087'
'avg' => '$0.050469'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010542820125216
'max_diff' => 0.038393028501954
'year' => 2036
]
11 => [
'items' => [
101 => 0.071161959062508
102 => 0.07252538348604
103 => 0.074397656431292
104 => 0.074011039471867
105 => 0.07530344200237
106 => 0.07664094265673
107 => 0.078553628663378
108 => 0.079053675612073
109 => 0.079880234203184
110 => 0.08073103450379
111 => 0.081004288630634
112 => 0.081526015544554
113 => 0.081523265786187
114 => 0.083095524957558
115 => 0.084829775512394
116 => 0.085484414948851
117 => 0.086989722235957
118 => 0.084411936259047
119 => 0.086367216534004
120 => 0.088130928285855
121 => 0.086028158425998
122 => 0.088926336795271
123 => 0.089038866493936
124 => 0.090737931342373
125 => 0.089015603617043
126 => 0.087992890911607
127 => 0.090945424171656
128 => 0.092374062012267
129 => 0.091943744668035
130 => 0.088669008431037
131 => 0.086762971481061
201 => 0.081774505135902
202 => 0.087683559007452
203 => 0.090561686778819
204 => 0.088661554775414
205 => 0.089619870833854
206 => 0.094848132513674
207 => 0.096838716056474
208 => 0.096424688594801
209 => 0.096494652420351
210 => 0.0975687351684
211 => 0.10233180958142
212 => 0.099477664985937
213 => 0.10165955158642
214 => 0.10281681637195
215 => 0.10389174839981
216 => 0.10125205507514
217 => 0.097817852844544
218 => 0.096730096840113
219 => 0.088472624095184
220 => 0.088042786778424
221 => 0.087801506067123
222 => 0.086280265312204
223 => 0.085084986781749
224 => 0.084134456916485
225 => 0.081639982697786
226 => 0.082481794520538
227 => 0.078506123253163
228 => 0.081049616840891
301 => 0.074704349502221
302 => 0.079988876692502
303 => 0.0771127488008
304 => 0.079043991326866
305 => 0.079037253403627
306 => 0.075481223612137
307 => 0.073430179840855
308 => 0.074737184759734
309 => 0.076138397782952
310 => 0.076365739881722
311 => 0.078182449141727
312 => 0.078689453646159
313 => 0.077153206327952
314 => 0.074572857940331
315 => 0.075172214019295
316 => 0.073418033909044
317 => 0.070343900739395
318 => 0.072551796851053
319 => 0.073305669657912
320 => 0.073638622836608
321 => 0.070615565930837
322 => 0.069665655817286
323 => 0.069159931643349
324 => 0.074182619255719
325 => 0.074457773421201
326 => 0.073050045807717
327 => 0.079413108106872
328 => 0.077972951137232
329 => 0.079581959319344
330 => 0.075117828737282
331 => 0.075288364537266
401 => 0.073174973578851
402 => 0.074358331298728
403 => 0.073521972203719
404 => 0.074262727689131
405 => 0.074706733472838
406 => 0.076819777644592
407 => 0.080013004262714
408 => 0.076504159309145
409 => 0.07497530531529
410 => 0.075923797734477
411 => 0.07844975803764
412 => 0.082276717198461
413 => 0.080011080350524
414 => 0.08101653151063
415 => 0.081236177859704
416 => 0.079565581126471
417 => 0.082338314482929
418 => 0.083824244814301
419 => 0.085348501864332
420 => 0.08667197155216
421 => 0.084739680079419
422 => 0.086807508938354
423 => 0.085141203898983
424 => 0.083646356019219
425 => 0.083648623086406
426 => 0.082710883175187
427 => 0.080893893934367
428 => 0.080558813240744
429 => 0.082301945325
430 => 0.08369977218135
501 => 0.083814903896379
502 => 0.084588812666991
503 => 0.085046803905546
504 => 0.089535740652276
505 => 0.091341228146243
506 => 0.093548944077737
507 => 0.094408973853106
508 => 0.096997355139228
509 => 0.094907027032634
510 => 0.094454771397993
511 => 0.088176205050927
512 => 0.089204319938527
513 => 0.090850431071907
514 => 0.088203348817216
515 => 0.089882313233471
516 => 0.090213776374569
517 => 0.08811340197512
518 => 0.089235302693686
519 => 0.086255867005557
520 => 0.080077947818857
521 => 0.082345192273036
522 => 0.084014647337543
523 => 0.081632129118166
524 => 0.085902700810211
525 => 0.083407920990212
526 => 0.082617195557823
527 => 0.079532293732103
528 => 0.080988248645082
529 => 0.082957448512153
530 => 0.081740711938359
531 => 0.084265623022897
601 => 0.087841570487792
602 => 0.09039000360263
603 => 0.090585640653167
604 => 0.088947168892085
605 => 0.091572830345806
606 => 0.091591955422997
607 => 0.088630198577057
608 => 0.08681613900005
609 => 0.08640398084734
610 => 0.087433632721175
611 => 0.088683820180233
612 => 0.090655017356283
613 => 0.091846170525919
614 => 0.094952066253505
615 => 0.095792432584381
616 => 0.096715740398862
617 => 0.097949564376593
618 => 0.099431086407834
619 => 0.096189600546575
620 => 0.096318390822728
621 => 0.093299964070151
622 => 0.090074342198839
623 => 0.092522187119722
624 => 0.095722418730613
625 => 0.094988282063133
626 => 0.09490567669099
627 => 0.095044596014115
628 => 0.094491080941497
629 => 0.091987552782272
630 => 0.090730296613624
701 => 0.092352477831436
702 => 0.093214594953723
703 => 0.094551663425877
704 => 0.094386841514592
705 => 0.097830986308189
706 => 0.099169276829448
707 => 0.09882688484543
708 => 0.098889893210613
709 => 0.10131280427427
710 => 0.10400757968671
711 => 0.1065315924674
712 => 0.10909912667679
713 => 0.10600386397481
714 => 0.104432280464
715 => 0.10605375348824
716 => 0.1051933770777
717 => 0.11013735513691
718 => 0.11047966545094
719 => 0.11542328600427
720 => 0.12011537058477
721 => 0.11716835632718
722 => 0.11994725803565
723 => 0.12295286680053
724 => 0.12875117375044
725 => 0.12679850795661
726 => 0.12530279656071
727 => 0.12388935651881
728 => 0.12683050086872
729 => 0.13061423608895
730 => 0.13142921641522
731 => 0.13274979589023
801 => 0.13136136804503
802 => 0.13303357645426
803 => 0.13893720694444
804 => 0.1373419938732
805 => 0.13507653486875
806 => 0.13973688415005
807 => 0.1414234464383
808 => 0.15326062383678
809 => 0.16820554927176
810 => 0.16201825200801
811 => 0.15817759693356
812 => 0.15908024197761
813 => 0.16453762282881
814 => 0.16629036034961
815 => 0.16152581556323
816 => 0.16320873332943
817 => 0.17248177568204
818 => 0.1774564653894
819 => 0.17070016857684
820 => 0.15205981362962
821 => 0.13487255507233
822 => 0.13943138999406
823 => 0.13891455959105
824 => 0.14887728676334
825 => 0.13730394856903
826 => 0.13749881390274
827 => 0.14766755972223
828 => 0.14495471267403
829 => 0.14056024789114
830 => 0.13490463952845
831 => 0.12444972438956
901 => 0.11518951449417
902 => 0.133350918598
903 => 0.13256776582868
904 => 0.13143364456195
905 => 0.13395750871631
906 => 0.14621267663853
907 => 0.14593015535181
908 => 0.14413289906936
909 => 0.14549610211931
910 => 0.14032127180549
911 => 0.14165494340606
912 => 0.13486983252276
913 => 0.13793698601327
914 => 0.14055081934337
915 => 0.14107558508285
916 => 0.1422579090891
917 => 0.13215507990598
918 => 0.13669095360572
919 => 0.13935535445043
920 => 0.1273174945023
921 => 0.13911740466392
922 => 0.13197921212666
923 => 0.12955640236747
924 => 0.13281839652731
925 => 0.13154719423083
926 => 0.13045428914381
927 => 0.12984442932676
928 => 0.1322396778246
929 => 0.13212793661923
930 => 0.12820884517908
1001 => 0.123096550158
1002 => 0.12481240417243
1003 => 0.12418901832277
1004 => 0.12192978758522
1005 => 0.12345223632177
1006 => 0.11674814257967
1007 => 0.10521409774487
1008 => 0.11283384106009
1009 => 0.11254048923114
1010 => 0.11239256793653
1011 => 0.11811859444369
1012 => 0.11756816911693
1013 => 0.11656914175909
1014 => 0.12191143966435
1015 => 0.11996142906488
1016 => 0.12597090225215
1017 => 0.12992912996164
1018 => 0.12892519537926
1019 => 0.13264792767182
1020 => 0.12485193398339
1021 => 0.12744145036571
1022 => 0.12797514610319
1023 => 0.12184551653746
1024 => 0.11765822550761
1025 => 0.11737898093454
1026 => 0.11011879533303
1027 => 0.11399712787919
1028 => 0.11740990002349
1029 => 0.11577544700819
1030 => 0.11525802801144
1031 => 0.11790140945135
1101 => 0.11810682282826
1102 => 0.11342337606593
1103 => 0.11439721295329
1104 => 0.11845827466049
1105 => 0.11429488461788
1106 => 0.10620609785099
1107 => 0.10419996689657
1108 => 0.10393231204692
1109 => 0.098491525790295
1110 => 0.10433402615963
1111 => 0.10178361817914
1112 => 0.10984032643093
1113 => 0.1052383778865
1114 => 0.10503999708255
1115 => 0.10474011540124
1116 => 0.10005700591411
1117 => 0.10108230926466
1118 => 0.10449057375999
1119 => 0.10570668092877
1120 => 0.10557983098779
1121 => 0.10447387140459
1122 => 0.10498017403835
1123 => 0.10334919684747
1124 => 0.10277326485552
1125 => 0.10095546506634
1126 => 0.098283801556256
1127 => 0.098655312753598
1128 => 0.093362048261337
1129 => 0.090477996831143
1130 => 0.089679729406453
1201 => 0.088612252844264
1202 => 0.089800303724598
1203 => 0.093347053108094
1204 => 0.089068920866741
1205 => 0.081734363215027
1206 => 0.082175182627374
1207 => 0.083165572966457
1208 => 0.081319987121663
1209 => 0.079573295007844
1210 => 0.081091902087199
1211 => 0.077984153320402
1212 => 0.083541129557479
1213 => 0.083390828923512
1214 => 0.085462126023589
1215 => 0.086757350607563
1216 => 0.083772277275442
1217 => 0.083021539404911
1218 => 0.083449193815099
1219 => 0.076381019026652
1220 => 0.084884505348402
1221 => 0.084958043851227
1222 => 0.084328362543516
1223 => 0.088856206494162
1224 => 0.098411369499969
1225 => 0.094816332821643
1226 => 0.093424225959236
1227 => 0.090777829796177
1228 => 0.094303995555997
1229 => 0.094033241042398
1230 => 0.092808786451302
1231 => 0.092068232494076
]
'min_raw' => 0.069159931643349
'max_raw' => 0.1774564653894
'avg_raw' => 0.12330819851637
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.069159'
'max' => '$0.177456'
'avg' => '$0.1233081'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.042528916513849
'max_diff' => 0.10314767487548
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.002170851227001
]
1 => [
'year' => 2028
'avg' => 0.0037258109081477
]
2 => [
'year' => 2029
'avg' => 0.010178243888978
]
3 => [
'year' => 2030
'avg' => 0.007852500002451
]
4 => [
'year' => 2031
'avg' => 0.0077121281520188
]
5 => [
'year' => 2032
'avg' => 0.013521787746542
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.002170851227001
'min' => '$0.00217'
'max_raw' => 0.013521787746542
'max' => '$0.013521'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013521787746542
]
1 => [
'year' => 2033
'avg' => 0.034779428513143
]
2 => [
'year' => 2034
'avg' => 0.022044873212753
]
3 => [
'year' => 2035
'avg' => 0.026001978508124
]
4 => [
'year' => 2036
'avg' => 0.050469902821709
]
5 => [
'year' => 2037
'avg' => 0.12330819851637
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013521787746542
'min' => '$0.013521'
'max_raw' => 0.12330819851637
'max' => '$0.1233081'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12330819851637
]
]
]
]
'prediction_2025_max_price' => '$0.003711'
'last_price' => 0.00359902
'sma_50day_nextmonth' => '$0.007693'
'sma_200day_nextmonth' => '$0.015951'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.006393'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.008982'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.011928'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014369'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016586'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018656'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017761'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005824'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.007815'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010624'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.013255'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.01582'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017481'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.032068'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0173054'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.023323'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.333133'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.008085'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.010083'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.012819'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016869'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.119544'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.428995'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.236758'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '10.86'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -14.53
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004530'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0053073'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0.15
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -263.75
'cci_20_action' => 'BUY'
'adx_14' => 32.39
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.006694'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -99.85
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 5.47
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.001056'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 3
'sell_pct' => 91.18
'buy_pct' => 8.82
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767714094
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de XNF para 2026
A previsão de preço para XNF em 2026 sugere que o preço médio poderia variar entre $0.001243 na extremidade inferior e $0.003711 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, XNF poderia potencialmente ganhar 3.13% até 2026 se XNF atingir a meta de preço prevista.
Previsão de preço de XNF 2027-2032
A previsão de preço de XNF para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00217 na extremidade inferior e $0.013521 na extremidade superior. Considerando a volatilidade de preços no mercado, se XNF atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de XNF | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001197 | $0.00217 | $0.003144 |
| 2028 | $0.00216 | $0.003725 | $0.005291 |
| 2029 | $0.004745 | $0.010178 | $0.01561 |
| 2030 | $0.004035 | $0.007852 | $0.011669 |
| 2031 | $0.004771 | $0.007712 | $0.010652 |
| 2032 | $0.007283 | $0.013521 | $0.019759 |
Previsão de preço de XNF 2032-2037
A previsão de preço de XNF para 2032-2037 é atualmente estimada entre $0.013521 na extremidade inferior e $0.1233081 na extremidade superior. Comparado ao preço atual, XNF poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de XNF | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007283 | $0.013521 | $0.019759 |
| 2033 | $0.016925 | $0.034779 | $0.052633 |
| 2034 | $0.0136074 | $0.022044 | $0.030482 |
| 2035 | $0.016088 | $0.0260019 | $0.035915 |
| 2036 | $0.026631 | $0.050469 | $0.0743087 |
| 2037 | $0.069159 | $0.1233081 | $0.177456 |
XNF Histograma de preços potenciais
Previsão de preço de XNF baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para XNF é Baixista, com 3 indicadores técnicos mostrando sinais de alta e 31 indicando sinais de baixa. A previsão de preço de XNF foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de XNF
De acordo com nossos indicadores técnicos, o SMA de 200 dias de XNF está projetado para aumentar no próximo mês, alcançando $0.015951 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para XNF é esperado para alcançar $0.007693 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 10.86, sugerindo que o mercado de XNF está em um estado BUY.
Médias Móveis e Osciladores Populares de XNF para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.006393 | SELL |
| SMA 5 | $0.008982 | SELL |
| SMA 10 | $0.011928 | SELL |
| SMA 21 | $0.014369 | SELL |
| SMA 50 | $0.016586 | SELL |
| SMA 100 | $0.018656 | SELL |
| SMA 200 | $0.017761 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005824 | SELL |
| EMA 5 | $0.007815 | SELL |
| EMA 10 | $0.010624 | SELL |
| EMA 21 | $0.013255 | SELL |
| EMA 50 | $0.01582 | SELL |
| EMA 100 | $0.017481 | SELL |
| EMA 200 | $0.032068 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0173054 | SELL |
| SMA 50 | $0.023323 | SELL |
| SMA 100 | $0.333133 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.016869 | SELL |
| EMA 50 | $0.119544 | SELL |
| EMA 100 | $0.428995 | SELL |
| EMA 200 | $0.236758 | SELL |
Osciladores de XNF
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 10.86 | BUY |
| Stoch RSI (14) | -14.53 | BUY |
| Estocástico Rápido (14) | 0.15 | BUY |
| Índice de Canal de Commodities (20) | -263.75 | BUY |
| Índice Direcional Médio (14) | 32.39 | SELL |
| Oscilador Impressionante (5, 34) | -0.006694 | NEUTRAL |
| Momentum (10) | -0.01 | BUY |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -99.85 | BUY |
| Oscilador Ultimate (7, 14, 28) | 5.47 | BUY |
| VWMA (10) | 0.004530 | SELL |
| Média Móvel de Hull (9) | 0.0053073 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001056 | SELL |
Previsão do preço de XNF com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do XNF
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de XNF por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005057 | $0.0071062 | $0.009985 | $0.014031 | $0.019716 | $0.0277046 |
| Amazon.com stock | $0.0075095 | $0.015669 | $0.032694 | $0.068219 | $0.142343 | $0.2970084 |
| Apple stock | $0.0051049 | $0.00724 | $0.01027 | $0.014568 | $0.020663 | $0.02931 |
| Netflix stock | $0.005678 | $0.00896 | $0.014137 | $0.0223069 | $0.035196 | $0.055535 |
| Google stock | $0.00466 | $0.006035 | $0.007816 | $0.010121 | $0.0131076 | $0.016974 |
| Tesla stock | $0.008158 | $0.018495 | $0.041927 | $0.095045 | $0.215461 | $0.488434 |
| Kodak stock | $0.002698 | $0.002023 | $0.001517 | $0.001138 | $0.000853 | $0.00064 |
| Nokia stock | $0.002384 | $0.001579 | $0.001046 | $0.000693 | $0.000459 | $0.0003041 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para XNF
Você pode fazer perguntas como: 'Devo investir em XNF agora?', 'Devo comprar XNF hoje?', 'XNF será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para XNF regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como XNF, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre XNF para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de XNF é de $0.003599 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de XNF com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se XNF tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003692 | $0.003788 | $0.003887 | $0.003988 |
| Se XNF tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003786 | $0.003982 | $0.00419 | $0.0044078 |
| Se XNF tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004066 | $0.004595 | $0.005192 | $0.005867 |
| Se XNF tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004534 | $0.005713 | $0.007198 | $0.009069 |
| Se XNF tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00547 | $0.008313 | $0.012635 | $0.0192045 |
| Se XNF tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008276 | $0.019033 | $0.043769 | $0.100655 |
| Se XNF tiver 100% da média anterior do crescimento anual do Bitcoin | $0.012954 | $0.046625 | $0.16782 | $0.604041 |
Perguntas Frequentes sobre XNF
XNF é um bom investimento?
A decisão de adquirir XNF depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de XNF experimentou uma queda de -2.0856% nas últimas 24 horas, e XNF registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em XNF dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
XNF pode subir?
Parece que o valor médio de XNF pode potencialmente subir para $0.003711 até o final deste ano. Observando as perspectivas de XNF em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.011669. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de XNF na próxima semana?
Com base na nossa nova previsão experimental de XNF, o preço de XNF aumentará 0.86% na próxima semana e atingirá $0.003629 até 13 de janeiro de 2026.
Qual será o preço de XNF no próximo mês?
Com base na nossa nova previsão experimental de XNF, o preço de XNF diminuirá -11.62% no próximo mês e atingirá $0.00318 até 5 de fevereiro de 2026.
Até onde o preço de XNF pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de XNF em 2026, espera-se que XNF fluctue dentro do intervalo de $0.001243 e $0.003711. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de XNF não considera flutuações repentinas e extremas de preço.
Onde estará XNF em 5 anos?
O futuro de XNF parece seguir uma tendência de alta, com um preço máximo de $0.011669 projetada após um período de cinco anos. Com base na previsão de XNF para 2030, o valor de XNF pode potencialmente atingir seu pico mais alto de aproximadamente $0.011669, enquanto seu pico mais baixo está previsto para cerca de $0.004035.
Quanto será XNF em 2026?
Com base na nossa nova simulação experimental de previsão de preços de XNF, espera-se que o valor de XNF em 2026 aumente 3.13% para $0.003711 se o melhor cenário ocorrer. O preço ficará entre $0.003711 e $0.001243 durante 2026.
Quanto será XNF em 2027?
De acordo com nossa última simulação experimental para previsão de preços de XNF, o valor de XNF pode diminuir -12.62% para $0.003144 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003144 e $0.001197 ao longo do ano.
Quanto será XNF em 2028?
Nosso novo modelo experimental de previsão de preços de XNF sugere que o valor de XNF em 2028 pode aumentar 47.02%, alcançando $0.005291 no melhor cenário. O preço é esperado para variar entre $0.005291 e $0.00216 durante o ano.
Quanto será XNF em 2029?
Com base no nosso modelo de previsão experimental, o valor de XNF pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.01561 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.01561 e $0.004745.
Quanto será XNF em 2030?
Usando nossa nova simulação experimental para previsões de preços de XNF, espera-se que o valor de XNF em 2030 aumente 224.23%, alcançando $0.011669 no melhor cenário. O preço está previsto para variar entre $0.011669 e $0.004035 ao longo de 2030.
Quanto será XNF em 2031?
Nossa simulação experimental indica que o preço de XNF poderia aumentar 195.98% em 2031, potencialmente atingindo $0.010652 sob condições ideais. O preço provavelmente oscilará entre $0.010652 e $0.004771 durante o ano.
Quanto será XNF em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de XNF, XNF poderia ver um 449.04% aumento em valor, atingindo $0.019759 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.019759 e $0.007283 ao longo do ano.
Quanto será XNF em 2033?
De acordo com nossa previsão experimental de preços de XNF, espera-se que o valor de XNF seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.052633. Ao longo do ano, o preço de XNF poderia variar entre $0.052633 e $0.016925.
Quanto será XNF em 2034?
Os resultados da nossa nova simulação de previsão de preços de XNF sugerem que XNF pode aumentar 746.96% em 2034, atingindo potencialmente $0.030482 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.030482 e $0.0136074.
Quanto será XNF em 2035?
Com base em nossa previsão experimental para o preço de XNF, XNF poderia aumentar 897.93%, com o valor potencialmente atingindo $0.035915 em 2035. A faixa de preço esperada para o ano está entre $0.035915 e $0.016088.
Quanto será XNF em 2036?
Nossa recente simulação de previsão de preços de XNF sugere que o valor de XNF pode aumentar 1964.7% em 2036, possivelmente atingindo $0.0743087 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.0743087 e $0.026631.
Quanto será XNF em 2037?
De acordo com a simulação experimental, o valor de XNF poderia aumentar 4830.69% em 2037, com um pico de $0.177456 sob condições favoráveis. O preço é esperado para cair entre $0.177456 e $0.069159 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Value Liquidity
Previsão de Preço do NeoCortexAI
Previsão de Preço do One Cash
Previsão de Preço do APY.Finance
Previsão de Preço do Blind Boxes
Previsão de Preço do Merge
Previsão de Preço do SWAPZ.app
Previsão de Preço do Bee Token
Previsão de Preço do Yieldwatch
Previsão de Preço do Mercurial
Previsão de Preço do Swingby
Previsão de Preço do Qubitcoin
Previsão de Preço do .Alpha
Previsão de Preço do Aidi Finance
Previsão de Preço do OctoFi
Previsão de Preço do DarkCrypto
Previsão de Preço do Archi Token
Previsão de Preço do Brick Token
Previsão de Preço do Italian Lira
Previsão de Preço do Linked Finance World
Previsão de Preço do CNNSPrevisão de Preço do Defi Warrior
Previsão de Preço do Playcent
Previsão de Preço do Radar
Previsão de Preço do KeyFi
Como ler e prever os movimentos de preço de XNF?
Traders de XNF utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de XNF
Médias móveis são ferramentas populares para a previsão de preço de XNF. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XNF em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XNF acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XNF.
Como ler gráficos de XNF e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de XNF em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XNF dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de XNF?
A ação de preço de XNF é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XNF. A capitalização de mercado de XNF pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XNF, grandes detentores de XNF, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de XNF.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


