Previsão de Preço Radar - Projeção RADAR
Previsão de Preço Radar até $0.004731 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001585 | $0.004731 |
| 2027 | $0.001525 | $0.0040086 |
| 2028 | $0.002753 | $0.006745 |
| 2029 | $0.006049 | $0.019899 |
| 2030 | $0.005144 | $0.014875 |
| 2031 | $0.006082 | $0.013579 |
| 2032 | $0.009284 | $0.025188 |
| 2033 | $0.021575 | $0.067093 |
| 2034 | $0.017345 | $0.038857 |
| 2035 | $0.0205083 | $0.045783 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Radar hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.75, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Radar para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Radar'
'name_with_ticker' => 'Radar <small>RADAR</small>'
'name_lang' => 'Radar'
'name_lang_with_ticker' => 'Radar <small>RADAR</small>'
'name_with_lang' => 'Radar'
'name_with_lang_with_ticker' => 'Radar <small>RADAR</small>'
'image' => '/uploads/coins/radar.png?1717375972'
'price_for_sd' => 0.004587
'ticker' => 'RADAR'
'marketcap' => '$224.53K'
'low24h' => '$0.002596'
'high24h' => '$0.004602'
'volume24h' => '$2.07'
'current_supply' => '48.94M'
'max_supply' => '85M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004587'
'change_24h_pct' => '0.6707%'
'ath_price' => '$0.8645'
'ath_days' => 1787
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 de fev. de 2021'
'ath_pct' => '-99.47%'
'fdv' => '$389.97K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.226211'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004627'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0040548'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001585'
'current_year_max_price_prediction' => '$0.004731'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005144'
'grand_prediction_max_price' => '$0.014875'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0046747669653014
107 => 0.0046922208482094
108 => 0.0047315453376186
109 => 0.0043955218811777
110 => 0.0045463865479893
111 => 0.0046350054056335
112 => 0.0042346221828155
113 => 0.0046270911166486
114 => 0.0043896724603858
115 => 0.0043090890025417
116 => 0.0044175840124655
117 => 0.0043753034015834
118 => 0.0043389530151476
119 => 0.0043186688749376
120 => 0.0043983356360684
121 => 0.0043946190864392
122 => 0.0042642688025773
123 => 0.0040942321710366
124 => 0.0041513020458438
125 => 0.0041305680252934
126 => 0.004055425260077
127 => 0.0041060624110608
128 => 0.0038830820250036
129 => 0.0034994558603041
130 => 0.0037528910554918
131 => 0.0037431340761615
201 => 0.0037382141647394
202 => 0.0039286637094887
203 => 0.0039103563801796
204 => 0.0038771283982178
205 => 0.0040548150021305
206 => 0.0039899570014803
207 => 0.0041898340770175
208 => 0.004321486046205
209 => 0.004288094848324
210 => 0.0044119141616741
211 => 0.0041526168204944
212 => 0.0042387449960307
213 => 0.0042564958936402
214 => 0.0040526223770198
215 => 0.0039133516856651
216 => 0.0039040639183539
217 => 0.0036625877322283
218 => 0.0037915823617289
219 => 0.003905092297529
220 => 0.0038507298470076
221 => 0.0038335203192046
222 => 0.0039214400644592
223 => 0.0039282721816472
224 => 0.0037724991857259
225 => 0.0038048893242672
226 => 0.0039399615863967
227 => 0.0038014858498212
228 => 0.0035324501135382
301 => 0.0034657255312299
302 => 0.003456823241972
303 => 0.0032758608827586
304 => 0.0034701843868758
305 => 0.0033853569697825
306 => 0.0036533257639916
307 => 0.0035002634258848
308 => 0.0034936652144109
309 => 0.0034836910500208
310 => 0.0033279292719849
311 => 0.0033620312021974
312 => 0.0034753912120942
313 => 0.0035158393407173
314 => 0.0035116202695202
315 => 0.0034748356862024
316 => 0.0034916754800777
317 => 0.0034374286366321
318 => 0.0034182729471611
319 => 0.003357812322003
320 => 0.0032689519056945
321 => 0.0032813084915948
322 => 0.0031052527552951
323 => 0.0030093282461739
324 => 0.0029827776063138
325 => 0.0029472729810653
326 => 0.0029867879482098
327 => 0.0031047540115144
328 => 0.0029624619112727
329 => 0.0027185120860385
330 => 0.0027331738862054
331 => 0.0027661145980527
401 => 0.0027047297994498
402 => 0.0026466342392077
403 => 0.0026971436153964
404 => 0.002593778858511
405 => 0.0027786057350914
406 => 0.0027736066860512
407 => 0.002842498716023
408 => 0.0028855783161711
409 => 0.0027862937850158
410 => 0.0027613239939242
411 => 0.0027755479217437
412 => 0.0025404580790777
413 => 0.0028232868603863
414 => 0.0028257327754318
415 => 0.0028047893658543
416 => 0.0029553869605422
417 => 0.0032731948579013
418 => 0.0031536227431218
419 => 0.0031073208061928
420 => 0.0030193007902444
421 => 0.0031365822353843
422 => 0.0031275768502731
423 => 0.0030868510836094
424 => 0.0030622200128591
425 => 0.0031076035159464
426 => 0.0030565964945896
427 => 0.0030474342319747
428 => 0.0029919208891684
429 => 0.0029721051514827
430 => 0.0029574343681875
501 => 0.0029412832773009
502 => 0.0029769085591957
503 => 0.0028961769835258
504 => 0.0027988226174819
505 => 0.0027907286553342
506 => 0.0028130767964524
507 => 0.002803189407631
508 => 0.0027906813183205
509 => 0.0027667999694511
510 => 0.0027597148833858
511 => 0.0027827379759028
512 => 0.0027567462467808
513 => 0.0027950984589431
514 => 0.0027846687793596
515 => 0.0027264094370312
516 => 0.0026537967261189
517 => 0.0026531503206814
518 => 0.0026375060312241
519 => 0.0026175806764655
520 => 0.002612037898602
521 => 0.0026928898566159
522 => 0.0028602509900092
523 => 0.0028273939949116
524 => 0.0028511365411899
525 => 0.0029679263700175
526 => 0.0030050503446091
527 => 0.0029787006267735
528 => 0.0029426315078203
529 => 0.0029442183660004
530 => 0.0030674774643282
531 => 0.0030751649830983
601 => 0.0030945888629425
602 => 0.0031195540377303
603 => 0.0029829523039923
604 => 0.0029377844366257
605 => 0.0029163813952496
606 => 0.0028504683118304
607 => 0.0029215499213373
608 => 0.0028801337114956
609 => 0.0028857221731824
610 => 0.0028820826801776
611 => 0.0028840700894597
612 => 0.0027785540722126
613 => 0.0028169985631388
614 => 0.0027530771405423
615 => 0.002667493531202
616 => 0.002667206624934
617 => 0.0026881530920738
618 => 0.0026756933137837
619 => 0.0026421643707752
620 => 0.0026469269988774
621 => 0.0026052013652293
622 => 0.0026519932462693
623 => 0.0026533350699881
624 => 0.0026353176470167
625 => 0.0027074069957941
626 => 0.0027369420608076
627 => 0.0027250826070372
628 => 0.0027361099699161
629 => 0.0028287593513983
630 => 0.0028438652431558
701 => 0.0028505742824353
702 => 0.0028415850585782
703 => 0.0027378034305308
704 => 0.0027424065870482
705 => 0.0027086316787654
706 => 0.0026800954403786
707 => 0.0026812367402612
708 => 0.0026959080762434
709 => 0.0027599786609399
710 => 0.0028948114292664
711 => 0.0028999282342629
712 => 0.0029061299511865
713 => 0.0028809044517253
714 => 0.0028732961997123
715 => 0.0028833334479739
716 => 0.0029339695465872
717 => 0.0030642193397872
718 => 0.0030181803637792
719 => 0.0029807499596452
720 => 0.0030135865152352
721 => 0.0030085315848835
722 => 0.0029658628856136
723 => 0.0029646653173376
724 => 0.0028827704414302
725 => 0.0028524957704633
726 => 0.0028271959893835
727 => 0.002799569288912
728 => 0.002783191254817
729 => 0.0028083553588702
730 => 0.0028141106872001
731 => 0.0027590889338945
801 => 0.0027515896722313
802 => 0.0027965216237077
803 => 0.0027767487470949
804 => 0.0027970856410349
805 => 0.0028018039748756
806 => 0.0028010442144548
807 => 0.0027803990603707
808 => 0.0027935576659366
809 => 0.0027624336410042
810 => 0.0027285909385675
811 => 0.0027070014028878
812 => 0.002688161669571
813 => 0.0026986150485869
814 => 0.0026613506611067
815 => 0.0026494290335678
816 => 0.0027890998264489
817 => 0.0028922761428641
818 => 0.0028907759183611
819 => 0.0028816436875257
820 => 0.0028680750449095
821 => 0.002932976915866
822 => 0.0029103664017786
823 => 0.0029268174399488
824 => 0.0029310049196111
825 => 0.0029436791593604
826 => 0.0029482091106831
827 => 0.0029345164515325
828 => 0.0028885622150055
829 => 0.002774048626778
830 => 0.0027207422423346
831 => 0.0027031502475802
901 => 0.0027037896831776
902 => 0.002686151194836
903 => 0.0026913465201542
904 => 0.0026843444727101
905 => 0.0026710842888282
906 => 0.0026977962695984
907 => 0.0027008745765429
908 => 0.0026946396810467
909 => 0.0026961082246425
910 => 0.002644485952893
911 => 0.0026484106820965
912 => 0.0026265572911613
913 => 0.0026224600438075
914 => 0.0025672165745157
915 => 0.0024693447609964
916 => 0.0025235752463329
917 => 0.0024580724460066
918 => 0.0024332655429937
919 => 0.0025506975635921
920 => 0.0025389106457812
921 => 0.0025187365661391
922 => 0.0024888948977017
923 => 0.0024778263325973
924 => 0.0024105772349042
925 => 0.0024066037994525
926 => 0.0024399342681476
927 => 0.0024245534036762
928 => 0.0024029528447695
929 => 0.0023247178100231
930 => 0.0022367557282382
1001 => 0.0022394107505773
1002 => 0.0022673898522004
1003 => 0.0023487428636653
1004 => 0.0023169568346646
1005 => 0.0022938957059219
1006 => 0.0022895770497234
1007 => 0.002343634073767
1008 => 0.0024201360880855
1009 => 0.0024560291215676
1010 => 0.0024204602154745
1011 => 0.0023796005713206
1012 => 0.0023820875085349
1013 => 0.002398631987654
1014 => 0.0024003705784831
1015 => 0.0023737751505782
1016 => 0.0023812616077498
1017 => 0.0023698889947301
1018 => 0.0023000952896205
1019 => 0.0022988329428133
1020 => 0.0022817044420039
1021 => 0.0022811857978067
1022 => 0.0022520459450251
1023 => 0.0022479690781867
1024 => 0.0021901101318262
1025 => 0.0022281930655337
1026 => 0.0022026490330465
1027 => 0.0021641481508601
1028 => 0.0021575105842593
1029 => 0.0021573110509922
1030 => 0.0021968428483579
1031 => 0.0022277311134649
1101 => 0.0022030933824279
1102 => 0.0021974838486531
1103 => 0.0022573789936307
1104 => 0.0022497567904759
1105 => 0.0022431560117018
1106 => 0.0024132861717847
1107 => 0.0022786148746572
1108 => 0.0022198905023407
1109 => 0.0021472079401431
1110 => 0.0021708737488919
1111 => 0.0021758604825184
1112 => 0.0020010720224499
1113 => 0.0019301603659686
1114 => 0.0019058261577136
1115 => 0.0018918214768277
1116 => 0.0018982035857671
1117 => 0.0018343747778262
1118 => 0.0018772687923935
1119 => 0.0018219984400316
1120 => 0.0018127321855928
1121 => 0.0019115624222988
1122 => 0.0019253140723786
1123 => 0.0018666452608355
1124 => 0.001904320135464
1125 => 0.0018906587022037
1126 => 0.0018229458915873
1127 => 0.0018203597602835
1128 => 0.0017863838521365
1129 => 0.0017332181349187
1130 => 0.0017089199755236
1201 => 0.0016962652831443
1202 => 0.001701486855855
1203 => 0.0016988466689097
1204 => 0.0016816176632003
1205 => 0.0016998342153494
1206 => 0.0016532984522074
1207 => 0.0016347675363602
1208 => 0.001626397551586
1209 => 0.0015850943832989
1210 => 0.0016508260916459
1211 => 0.0016637760662565
1212 => 0.0016767515563176
1213 => 0.0017896943385557
1214 => 0.001784052036328
1215 => 0.0018350557005531
1216 => 0.0018330737919511
1217 => 0.0018185267207095
1218 => 0.0017571550200183
1219 => 0.0017816166860685
1220 => 0.0017063274801531
1221 => 0.0017627392723933
1222 => 0.0017369952862276
1223 => 0.0017540352047745
1224 => 0.0017233958947997
1225 => 0.0017403529540059
1226 => 0.0016668469856491
1227 => 0.0015982081466544
1228 => 0.0016258304191585
1229 => 0.0016558589883605
1230 => 0.0017209685775274
1231 => 0.001682189843362
]
'min_raw' => 0.0015850943832989
'max_raw' => 0.0047315453376186
'avg_raw' => 0.0031583198604587
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001585'
'max' => '$0.004731'
'avg' => '$0.003158'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0030027356167011
'max_diff' => 0.00014371533761859
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016961361425542
102 => 0.0016494183748427
103 => 0.0015530262757834
104 => 0.0015535718445959
105 => 0.0015387440201717
106 => 0.0015259306149713
107 => 0.001686644047466
108 => 0.0016666567916319
109 => 0.0016348097153276
110 => 0.0016774382925134
111 => 0.0016887099649278
112 => 0.0016890308535954
113 => 0.0017201315631073
114 => 0.0017367300173489
115 => 0.0017396555668508
116 => 0.0017885932052432
117 => 0.0018049964561292
118 => 0.0018725591250539
119 => 0.0017353217544735
120 => 0.0017324954411379
121 => 0.0016780381640147
122 => 0.0016435004979277
123 => 0.00168040298756
124 => 0.001713093555682
125 => 0.0016790539510909
126 => 0.0016834988048352
127 => 0.0016378034168095
128 => 0.0016541373678609
129 => 0.0016682063669271
130 => 0.0016604382925803
131 => 0.001648809109304
201 => 0.0017104133018943
202 => 0.0017069373519196
203 => 0.0017643045923339
204 => 0.0018090264586076
205 => 0.0018891760379599
206 => 0.0018055357736137
207 => 0.001802487589941
208 => 0.0018322840742858
209 => 0.0018049918944427
210 => 0.0018222396100095
211 => 0.0018863971643334
212 => 0.0018877527123581
213 => 0.0018650455364192
214 => 0.0018636638026997
215 => 0.001868024964228
216 => 0.0018935684235181
217 => 0.0018846427539709
218 => 0.0018949717647412
219 => 0.0019078883508728
220 => 0.0019613168276323
221 => 0.0019741982524978
222 => 0.0019429030683278
223 => 0.001945728673061
224 => 0.0019340234151094
225 => 0.0019227162825946
226 => 0.0019481330652138
227 => 0.0019945827350184
228 => 0.0019942937740333
301 => 0.0020050691945754
302 => 0.0020117821923048
303 => 0.0019829650918358
304 => 0.0019642062190646
305 => 0.0019713995645432
306 => 0.001982901880614
307 => 0.0019676695184657
308 => 0.0018736483229697
309 => 0.0019021683475859
310 => 0.0018974212209318
311 => 0.0018906607353061
312 => 0.0019193378405966
313 => 0.001916571863833
314 => 0.0018337201211441
315 => 0.0018390240208993
316 => 0.0018340426688553
317 => 0.0018501384363981
318 => 0.0018041226701736
319 => 0.0018182768099433
320 => 0.0018271541537201
321 => 0.0018323829774036
322 => 0.0018512730739862
323 => 0.0018490565391809
324 => 0.0018511352910706
325 => 0.0018791443175021
326 => 0.0020208043616556
327 => 0.0020285146053036
328 => 0.0019905465456917
329 => 0.0020057140366198
330 => 0.0019765957708035
331 => 0.0019961430577214
401 => 0.0020095168149834
402 => 0.0019490833775421
403 => 0.0019455049015866
404 => 0.0019162664543293
405 => 0.0019319775397351
406 => 0.0019069800731875
407 => 0.001913113577104
408 => 0.0018959637654442
409 => 0.0019268300119385
410 => 0.0019613432716488
411 => 0.0019700626840216
412 => 0.0019471256640119
413 => 0.0019305177499016
414 => 0.0019013597237109
415 => 0.001949850171095
416 => 0.0019640302556297
417 => 0.0019497756891476
418 => 0.0019464725946253
419 => 0.001940213236474
420 => 0.001947800547047
421 => 0.001963953027844
422 => 0.0019563358161896
423 => 0.0019613671186854
424 => 0.0019421929818282
425 => 0.0019829746314951
426 => 0.0020477457058046
427 => 0.0020479539553997
428 => 0.0020403367026856
429 => 0.002037219886991
430 => 0.0020450356505292
501 => 0.0020492753816292
502 => 0.0020745501277456
503 => 0.0021016709373189
504 => 0.0022282319218609
505 => 0.0021926941038435
506 => 0.0023049865384758
507 => 0.0023937952749222
508 => 0.0024204251318472
509 => 0.0023959269165078
510 => 0.0023121198451996
511 => 0.0023080078704585
512 => 0.0024332510174258
513 => 0.002397864091908
514 => 0.0023936549297179
515 => 0.0023488765555072
516 => 0.0023753461205753
517 => 0.0023695568384098
518 => 0.0023604181732902
519 => 0.0024109202595542
520 => 0.002505455656688
521 => 0.0024907214284974
522 => 0.0024797230106542
523 => 0.0024315311452569
524 => 0.0024605534122689
525 => 0.0024502191388708
526 => 0.0024946217356809
527 => 0.0024683186209686
528 => 0.0023975960011432
529 => 0.0024088588114552
530 => 0.0024071564603342
531 => 0.002442190725775
601 => 0.0024316743088936
602 => 0.0024051029611556
603 => 0.0025051325449779
604 => 0.0024986371801983
605 => 0.0025078461224087
606 => 0.0025119001835657
607 => 0.0025727864285194
608 => 0.0025977295749344
609 => 0.0026033921058618
610 => 0.0026270861657839
611 => 0.0026028025760662
612 => 0.0026999542488431
613 => 0.0027645544422825
614 => 0.0028395908912579
615 => 0.002949239311107
616 => 0.0029904681312749
617 => 0.0029830205139365
618 => 0.003066154694466
619 => 0.0032155449689085
620 => 0.0030132165596327
621 => 0.0032262688658919
622 => 0.0031588189655374
623 => 0.0029988964651688
624 => 0.0029885993415075
625 => 0.0030969007154955
626 => 0.00333710273938
627 => 0.0032769348567457
628 => 0.0033372011524814
629 => 0.003266897317273
630 => 0.0032634061392876
701 => 0.0033337866521265
702 => 0.0034982345566165
703 => 0.0034201115214308
704 => 0.003308102993938
705 => 0.003390808347593
706 => 0.0033191613162379
707 => 0.0031577205018535
708 => 0.0032768888474998
709 => 0.0031972043684852
710 => 0.0032204605357216
711 => 0.0033879454584386
712 => 0.0033677932294271
713 => 0.0033938720798141
714 => 0.0033478435914834
715 => 0.0033048457253562
716 => 0.0032245870151662
717 => 0.0032008263677856
718 => 0.0032073929559031
719 => 0.0032008231137106
720 => 0.003155919102975
721 => 0.003146222086132
722 => 0.0031300599665575
723 => 0.0031350692832274
724 => 0.0031046797700327
725 => 0.003162031060225
726 => 0.0031726759650625
727 => 0.0032144114513638
728 => 0.0032187445680038
729 => 0.0033349773032853
730 => 0.003270958265904
731 => 0.0033139077633172
801 => 0.0033100659560122
802 => 0.0030023624706792
803 => 0.0030447612960672
804 => 0.0031107205628867
805 => 0.0030810060025902
806 => 0.0030389965664672
807 => 0.0030050716943945
808 => 0.002953672044208
809 => 0.0030260160648026
810 => 0.0031211407589557
811 => 0.0032211570872271
812 => 0.0033413201523158
813 => 0.0033145011550403
814 => 0.003218910722309
815 => 0.0032231988392924
816 => 0.0032497062911724
817 => 0.0032153767325319
818 => 0.0032052522754962
819 => 0.0032483153462473
820 => 0.0032486118979486
821 => 0.0032091115918669
822 => 0.0031652142301367
823 => 0.0031650302985883
824 => 0.0031572191870666
825 => 0.0032682868966602
826 => 0.0033293629067246
827 => 0.0033363651728496
828 => 0.0033288915984233
829 => 0.0033317678806044
830 => 0.003296229096066
831 => 0.0033774602188217
901 => 0.0034520059299878
902 => 0.0034320260869584
903 => 0.0034020734619554
904 => 0.0033782147534266
905 => 0.0034264057334697
906 => 0.003424259864988
907 => 0.003451354838233
908 => 0.0034501256537384
909 => 0.0034410146333296
910 => 0.0034320264123417
911 => 0.0034676636925766
912 => 0.0034574007281862
913 => 0.0034471218225773
914 => 0.003426505903757
915 => 0.0034293079495188
916 => 0.0033993604962588
917 => 0.0033855054340785
918 => 0.0031771585418292
919 => 0.0031214814442891
920 => 0.003138998592587
921 => 0.0031447656926393
922 => 0.0031205349484376
923 => 0.0031552756112553
924 => 0.0031498613157546
925 => 0.0031709251722907
926 => 0.0031577653892133
927 => 0.0031583054713011
928 => 0.0031970055873703
929 => 0.0032082403957072
930 => 0.0032025262815111
1001 => 0.0032065282512257
1002 => 0.0032987519541737
1003 => 0.0032856406927625
1004 => 0.003278675596455
1005 => 0.0032806049757325
1006 => 0.0033041701091342
1007 => 0.0033107670598781
1008 => 0.0032828153160167
1009 => 0.0032959975200088
1010 => 0.0033521256715366
1011 => 0.0033717673479931
1012 => 0.0034344541507026
1013 => 0.0034078236827425
1014 => 0.0034567050592229
1015 => 0.0036069497456342
1016 => 0.0037269755972811
1017 => 0.0036165948638285
1018 => 0.0038370070551781
1019 => 0.0040086295623946
1020 => 0.0040020424047154
1021 => 0.0039721160508821
1022 => 0.0037767283892364
1023 => 0.0035969297499242
1024 => 0.0037473389463624
1025 => 0.003747722370336
1026 => 0.0037348020869707
1027 => 0.0036545553166371
1028 => 0.003732009673308
1029 => 0.0037381577188677
1030 => 0.0037347164482515
1031 => 0.0036731914375853
1101 => 0.0035792541180205
1102 => 0.0035976092454093
1103 => 0.0036276753185066
1104 => 0.0035707539696935
1105 => 0.0035525641497616
1106 => 0.0035863824857699
1107 => 0.0036953522107187
1108 => 0.0036747521154357
1109 => 0.0036742141636964
1110 => 0.0037623501071167
1111 => 0.0036992637925548
1112 => 0.0035978407623469
1113 => 0.0035722301096141
1114 => 0.0034813295458152
1115 => 0.0035441148890078
1116 => 0.0035463744217347
1117 => 0.0035119875309188
1118 => 0.0036006310690197
1119 => 0.0035998142032107
1120 => 0.0036839680497881
1121 => 0.0038448385977026
1122 => 0.0037972612607254
1123 => 0.0037419339942204
1124 => 0.0037479496021482
1125 => 0.0038139259733305
1126 => 0.0037740351532196
1127 => 0.0037883801702602
1128 => 0.0038139042604291
1129 => 0.0038293035777556
1130 => 0.003745733877367
1201 => 0.0037262497826055
1202 => 0.0036863921627116
1203 => 0.003675994053659
1204 => 0.0037084572534061
1205 => 0.0036999043472145
1206 => 0.0035461845167583
1207 => 0.0035301199391866
1208 => 0.0035306126168458
1209 => 0.0034902174727126
1210 => 0.0034286051819641
1211 => 0.0035905186033725
1212 => 0.0035775146896565
1213 => 0.003563159375337
1214 => 0.0035649178194309
1215 => 0.0036351989479092
1216 => 0.0035944323441097
1217 => 0.0037028170418257
1218 => 0.0036805364063175
1219 => 0.0036576843565811
1220 => 0.0036545255072171
1221 => 0.0036457294177138
1222 => 0.0036155643539264
1223 => 0.0035791382267638
1224 => 0.003555086542434
1225 => 0.0032793794142317
1226 => 0.0033305490535115
1227 => 0.0033894150592435
1228 => 0.0034097353685314
1229 => 0.0033749760733718
1230 => 0.0036169368627597
1231 => 0.0036611454305731
]
'min_raw' => 0.0015259306149713
'max_raw' => 0.0040086295623946
'avg_raw' => 0.002767280088683
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001525'
'max' => '$0.0040086'
'avg' => '$0.002767'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.9163768327583E-5
'max_diff' => -0.00072291577522396
'year' => 2027
]
2 => [
'items' => [
101 => 0.0035272347950129
102 => 0.0035021855826348
103 => 0.003618579084953
104 => 0.0035483795745282
105 => 0.0035799904097741
106 => 0.0035116650741748
107 => 0.0036504968811648
108 => 0.0036494392154025
109 => 0.0035954305068248
110 => 0.003641078297479
111 => 0.0036331458705158
112 => 0.0035721701715492
113 => 0.0036524299195825
114 => 0.0036524697274162
115 => 0.0036004875196607
116 => 0.0035397836813709
117 => 0.0035289312688453
118 => 0.0035207554338238
119 => 0.0035779796555466
120 => 0.0036292867138078
121 => 0.0037247564291334
122 => 0.0037487597838708
123 => 0.0038424464754045
124 => 0.0037866606121184
125 => 0.0038113897627653
126 => 0.0038382367539444
127 => 0.003851108188781
128 => 0.0038301348764339
129 => 0.0039756688713665
130 => 0.0039879563995852
131 => 0.0039920763015102
201 => 0.0039430030572567
202 => 0.0039865915838896
203 => 0.0039661979557784
204 => 0.0040192565106108
205 => 0.0040275767694942
206 => 0.0040205298062218
207 => 0.0040231707877177
208 => 0.0038989831969988
209 => 0.0038925434152783
210 => 0.0038047365345731
211 => 0.0038405184874961
212 => 0.0037736258415801
213 => 0.0037948381886707
214 => 0.0038041883891495
215 => 0.0037993043750386
216 => 0.0038425415454276
217 => 0.0038057811178266
218 => 0.0037087643054138
219 => 0.0036117210608353
220 => 0.0036105027619493
221 => 0.0035849529886073
222 => 0.0035664851821555
223 => 0.0035700427368588
224 => 0.0035825800236522
225 => 0.0035657564922555
226 => 0.0035693466456537
227 => 0.0036289671131303
228 => 0.003640923572689
229 => 0.0036002908514182
301 => 0.0034371446122422
302 => 0.003397108115927
303 => 0.0034258855555201
304 => 0.0034121317928991
305 => 0.0027538566628372
306 => 0.0029085086403122
307 => 0.0028166196867815
308 => 0.0028589663441759
309 => 0.0027651715171502
310 => 0.0028099353248149
311 => 0.0028016690840518
312 => 0.0030503448873469
313 => 0.0030464621567208
314 => 0.003048320614402
315 => 0.0029596115870941
316 => 0.0031009274763081
317 => 0.0031705447648899
318 => 0.0031576604575776
319 => 0.0031609031601466
320 => 0.0031051827864233
321 => 0.0030488601094183
322 => 0.002986389592622
323 => 0.0031024520912404
324 => 0.0030895479226469
325 => 0.003119145442627
326 => 0.0031944202692997
327 => 0.0032055047734685
328 => 0.0032204024594794
329 => 0.003215062699534
330 => 0.0033422774449915
331 => 0.0033268708999267
401 => 0.0033639962407673
402 => 0.0032876265979517
403 => 0.0032012070980327
404 => 0.003217632619701
405 => 0.0032160507098786
406 => 0.0031959111822084
407 => 0.0031777301171269
408 => 0.0031474637662494
409 => 0.0032432309790028
410 => 0.0032393430050564
411 => 0.003302284783972
412 => 0.0032911592131649
413 => 0.0032168599284257
414 => 0.0032195135419156
415 => 0.0032373603679179
416 => 0.0032991284364833
417 => 0.0033174654047244
418 => 0.0033089709904333
419 => 0.0033290766389952
420 => 0.0033449673238452
421 => 0.003331072264355
422 => 0.0035277970046479
423 => 0.0034461031768773
424 => 0.0034859201801107
425 => 0.0034954163007664
426 => 0.0034710921873886
427 => 0.003476367216599
428 => 0.0034843574484935
429 => 0.0035328725719086
430 => 0.0036601902937138
501 => 0.0037165784460203
502 => 0.0038862249843769
503 => 0.0037118961949323
504 => 0.0037015522460109
505 => 0.0037321107104035
506 => 0.0038317111873287
507 => 0.0039124280188794
508 => 0.0039392064485705
509 => 0.0039427456601179
510 => 0.0039929837744148
511 => 0.0040217793246443
512 => 0.0039868835459455
513 => 0.0039573130272386
514 => 0.0038513950996583
515 => 0.0038636553881807
516 => 0.0039481166181566
517 => 0.0040674230802392
518 => 0.0041698004364279
519 => 0.0041339514545017
520 => 0.0044074538811612
521 => 0.0044345705296072
522 => 0.0044308238855782
523 => 0.0044925996462367
524 => 0.0043699873417445
525 => 0.0043175682060726
526 => 0.0039637065090227
527 => 0.0040631272120627
528 => 0.0042076410427044
529 => 0.0041885140953199
530 => 0.0040835642886421
531 => 0.0041697208225884
601 => 0.0041412347781019
602 => 0.0041187666529282
603 => 0.004221697490009
604 => 0.004108520806473
605 => 0.0042065120187105
606 => 0.0040808372754266
607 => 0.0041341152096314
608 => 0.004103872077413
609 => 0.0041234430904172
610 => 0.0040090313482962
611 => 0.0040707651471567
612 => 0.0040064630193017
613 => 0.0040064325317208
614 => 0.0040050130586844
615 => 0.0040806642269465
616 => 0.0040831312088275
617 => 0.0040272248811793
618 => 0.0040191679059442
619 => 0.00404895876622
620 => 0.0040140814710757
621 => 0.0040304003379586
622 => 0.0040145757529293
623 => 0.0040110133055225
624 => 0.0039826271184842
625 => 0.0039703975686136
626 => 0.0039751930902345
627 => 0.0039588235026814
628 => 0.0039489602340669
629 => 0.0040030510063021
630 => 0.0039741524887123
701 => 0.0039986218940184
702 => 0.003970735918387
703 => 0.0038740709775074
704 => 0.0038184779477943
705 => 0.0036358868353175
706 => 0.0036876694483123
707 => 0.0037220013743009
708 => 0.0037106546729665
709 => 0.0037350317780234
710 => 0.0037365283342912
711 => 0.0037286030889421
712 => 0.0037194266701145
713 => 0.0037149600969171
714 => 0.0037482502741361
715 => 0.0037675763425075
716 => 0.0037254470423758
717 => 0.0037155767368065
718 => 0.0037581717852621
719 => 0.0037841547402136
720 => 0.0039759982810146
721 => 0.0039617858918656
722 => 0.0039974561995891
723 => 0.0039934402703449
724 => 0.0040308284355648
725 => 0.0040919422842817
726 => 0.0039676807421393
727 => 0.0039892482492144
728 => 0.003983960394546
729 => 0.004041691805265
730 => 0.0040418720364277
731 => 0.0040072591718038
801 => 0.004026023367246
802 => 0.0040155497081189
803 => 0.0040344770257615
804 => 0.0039615960767436
805 => 0.0040503572056351
806 => 0.0041006790460757
807 => 0.0041013777648791
808 => 0.0041252299178691
809 => 0.0041494650867306
810 => 0.0041959823829217
811 => 0.0041481677445871
812 => 0.0040621538648843
813 => 0.0040683637891757
814 => 0.0040179338829772
815 => 0.0040187816188113
816 => 0.0040142563384906
817 => 0.0040278370453803
818 => 0.0039645762781965
819 => 0.0039794234538107
820 => 0.0039586373210058
821 => 0.0039892030642211
822 => 0.0039563193772198
823 => 0.0039839578445824
824 => 0.0039958856908664
825 => 0.0040398997004425
826 => 0.0039498184722187
827 => 0.0037661367499074
828 => 0.0038047488748629
829 => 0.0037476385091368
830 => 0.0037529242909193
831 => 0.0037636024113457
901 => 0.00372899112938
902 => 0.0037355938712522
903 => 0.0037353579748497
904 => 0.0037333251470949
905 => 0.0037243214159045
906 => 0.0037112642243444
907 => 0.0037632800567281
908 => 0.0037721185602451
909 => 0.0037917654587044
910 => 0.0038502213019009
911 => 0.0038443801846818
912 => 0.0038539072892117
913 => 0.0038331096735154
914 => 0.0037538890326624
915 => 0.0037581910946027
916 => 0.0037045443132711
917 => 0.0037903935898913
918 => 0.0037700633480326
919 => 0.0037569563088502
920 => 0.0037533799317734
921 => 0.0038119806756985
922 => 0.0038295149367351
923 => 0.0038185887619376
924 => 0.0037961788586605
925 => 0.0038392124978456
926 => 0.0038507264842481
927 => 0.0038533040411841
928 => 0.0039295513989383
929 => 0.0038575654214801
930 => 0.0038748931617334
1001 => 0.0040100792447677
1002 => 0.0038874841218598
1003 => 0.0039524254926616
1004 => 0.0039492469504995
1005 => 0.0039824687583055
1006 => 0.0039465217925875
1007 => 0.0039469673983096
1008 => 0.0039764661130011
1009 => 0.0039350404883381
1010 => 0.0039247829211016
1011 => 0.0039106121654306
1012 => 0.0039415534920116
1013 => 0.0039601014179411
1014 => 0.0041095840789824
1015 => 0.0042061566952526
1016 => 0.0042019642232881
1017 => 0.0042402755690645
1018 => 0.0042230159569005
1019 => 0.0041672801163675
1020 => 0.0042624143998958
1021 => 0.0042323099319999
1022 => 0.0042347917077563
1023 => 0.0042346993359387
1024 => 0.0042547161753112
1025 => 0.0042405324100994
1026 => 0.0042125747529334
1027 => 0.0042311343504894
1028 => 0.0042862497200534
1029 => 0.0044573295183259
1030 => 0.0045530680399451
1031 => 0.0044515659391116
1101 => 0.0045215807290993
1102 => 0.0044795968039272
1103 => 0.0044719670758098
1104 => 0.0045159415379744
1105 => 0.0045599929716138
1106 => 0.0045571870857305
1107 => 0.0045252080069745
1108 => 0.0045071438368243
1109 => 0.0046439317851425
1110 => 0.0047447148153415
1111 => 0.0047378420883399
1112 => 0.0047681760701942
1113 => 0.0048572375791133
1114 => 0.0048653802473337
1115 => 0.004864354458295
1116 => 0.0048441720055112
1117 => 0.0049318646271404
1118 => 0.0050050193549084
1119 => 0.0048395003508189
1120 => 0.0049025278207733
1121 => 0.0049308228826541
1122 => 0.0049723684282617
1123 => 0.0050424627275435
1124 => 0.0051186037281583
1125 => 0.0051293709004888
1126 => 0.0051217310764637
1127 => 0.0050715140397783
1128 => 0.0051548284312021
1129 => 0.0052036320477352
1130 => 0.0052326934845298
1201 => 0.0053063884528788
1202 => 0.0049309976233235
1203 => 0.0046652773360294
1204 => 0.0046237812761209
1205 => 0.0047081651456967
1206 => 0.0047304164991551
1207 => 0.0047214470064768
1208 => 0.0044223546648958
1209 => 0.0046222066168411
1210 => 0.0048372305131049
1211 => 0.0048454904566728
1212 => 0.0049531359150801
1213 => 0.0049881896888739
1214 => 0.0050748583923046
1215 => 0.0050694372413076
1216 => 0.0050905396913927
1217 => 0.0050856886035617
1218 => 0.0052462241264183
1219 => 0.0054233186478849
1220 => 0.0054171864277326
1221 => 0.0053917269949845
1222 => 0.0054295385940938
1223 => 0.0056123191188497
1224 => 0.0055954916171284
1225 => 0.0056118381016875
1226 => 0.0058273466414337
1227 => 0.006107538398836
1228 => 0.0059773611967301
1229 => 0.006259808267819
1230 => 0.0064375937271936
1231 => 0.0067450552958223
]
'min_raw' => 0.0027538566628372
'max_raw' => 0.0067450552958223
'avg_raw' => 0.0047494559793298
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002753'
'max' => '$0.006745'
'avg' => '$0.004749'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0012279260478659
'max_diff' => 0.0027364257334277
'year' => 2028
]
3 => [
'items' => [
101 => 0.0067065595931499
102 => 0.0068262521255598
103 => 0.0066376442510706
104 => 0.0062045624473028
105 => 0.006136025594086
106 => 0.0062732381098556
107 => 0.0066105616908736
108 => 0.0062626145898566
109 => 0.0063330038352251
110 => 0.0063127317278236
111 => 0.0063116515133711
112 => 0.0063528789054739
113 => 0.0062930764229526
114 => 0.0060494303509
115 => 0.0061610919099064
116 => 0.0061179740195456
117 => 0.0061658165335526
118 => 0.0064240028498949
119 => 0.0063098525250469
120 => 0.006189604430639
121 => 0.0063404222262149
122 => 0.0065324651066003
123 => 0.00652044740828
124 => 0.0064971280505304
125 => 0.0066285780492028
126 => 0.0068456949357737
127 => 0.0069043807577675
128 => 0.0069477014317845
129 => 0.0069536746208227
130 => 0.007015202180232
131 => 0.0066843529863465
201 => 0.0072094191538528
202 => 0.007300083576321
203 => 0.0072830424225522
204 => 0.0073838121123835
205 => 0.0073541631133548
206 => 0.0073112063655478
207 => 0.007470947758258
208 => 0.0072878171419814
209 => 0.0070278862876802
210 => 0.0068852830801612
211 => 0.0070730744872948
212 => 0.0071877521466144
213 => 0.0072635467845556
214 => 0.0072864821962003
215 => 0.006710035867461
216 => 0.0063993632674495
217 => 0.0065985008421883
218 => 0.0068414624271107
219 => 0.0066830033224748
220 => 0.0066892146193738
221 => 0.0064632935784831
222 => 0.006861451426221
223 => 0.0068034431768402
224 => 0.0071043900772427
225 => 0.0070325666842118
226 => 0.0072779771987987
227 => 0.007213352385706
228 => 0.0074816063717291
301 => 0.0075886201494405
302 => 0.0077683129375824
303 => 0.0079004956840208
304 => 0.0079781159209825
305 => 0.0079734558931015
306 => 0.0082810259421922
307 => 0.0080996626299224
308 => 0.0078718275656609
309 => 0.0078677067481589
310 => 0.0079857057563877
311 => 0.0082329993061884
312 => 0.0082971189256769
313 => 0.0083329530456116
314 => 0.0082780718435369
315 => 0.0080812149664939
316 => 0.0079962131650737
317 => 0.0080686371626229
318 => 0.0079800688370853
319 => 0.0081329626148464
320 => 0.0083429184280611
321 => 0.0082995633828875
322 => 0.0084444927987511
323 => 0.0085944794971508
324 => 0.0088089672121864
325 => 0.0088650422433538
326 => 0.0089577321375311
327 => 0.0090531404856836
328 => 0.0090837830757831
329 => 0.0091422892881203
330 => 0.0091419809315019
331 => 0.0093182933403025
401 => 0.0095127713871503
402 => 0.0095861823476582
403 => 0.0097549868034422
404 => 0.0094659150885258
405 => 0.0096851793049064
406 => 0.0098829611166211
407 => 0.0096471574871079
408 => 0.0099721578551926
409 => 0.0099847768830187
410 => 0.010175309221192
411 => 0.0099821681948741
412 => 0.0098674816699743
413 => 0.010198577370112
414 => 0.010358784149992
415 => 0.010310528564086
416 => 0.0099433011726705
417 => 0.009729559079743
418 => 0.0091701547947811
419 => 0.0098327933347852
420 => 0.01015554523819
421 => 0.0099424653232119
422 => 0.010049930438208
423 => 0.010636225259949
424 => 0.010859448368289
425 => 0.010813019522202
426 => 0.010820865232907
427 => 0.010941312370381
428 => 0.011475441309393
429 => 0.011155378868125
430 => 0.011400054611963
501 => 0.011529829744251
502 => 0.011650372119567
503 => 0.011354358143601
504 => 0.010969248310178
505 => 0.010847267860121
506 => 0.0099212787250134
507 => 0.009873076969164
508 => 0.0098460198629431
509 => 0.0096754286355238
510 => 0.009541390659642
511 => 0.0094347986847099
512 => 0.0091550695114297
513 => 0.0092494698958758
514 => 0.008803639977683
515 => 0.0090888661601006
516 => 0.0083773108457251
517 => 0.0089699152555173
518 => 0.0086473876176836
519 => 0.008863956252136
520 => 0.0088632006645723
521 => 0.0084644291453975
522 => 0.0082344260552868
523 => 0.0083809929761595
524 => 0.0085381243498318
525 => 0.0085636183865567
526 => 0.0087673433140713
527 => 0.0088241985622879
528 => 0.0086519245058737
529 => 0.0083625654434175
530 => 0.0084297769540485
531 => 0.0082330640161691
601 => 0.0078883321589893
602 => 0.0081359245972566
603 => 0.0082204635415521
604 => 0.0082578007554304
605 => 0.0079187965666154
606 => 0.0078122740903507
607 => 0.0077555624177975
608 => 0.0083188042596737
609 => 0.0083496599192183
610 => 0.0081917980024378
611 => 0.0089053488353669
612 => 0.0087438503057404
613 => 0.0089242837314336
614 => 0.0084236782139365
615 => 0.0084428020188596
616 => 0.0082058073443172
617 => 0.008338508526071
618 => 0.0082447196079661
619 => 0.008327787581964
620 => 0.0083775781830762
621 => 0.0086145339691245
622 => 0.0089726209099667
623 => 0.008579140676468
624 => 0.0084076957039919
625 => 0.008514059200673
626 => 0.0087973192087523
627 => 0.0092264726208055
628 => 0.0089724051633527
629 => 0.009085155986625
630 => 0.009109787025575
701 => 0.0089224470885378
702 => 0.0092333801115029
703 => 0.0094000116445253
704 => 0.0095709411178689
705 => 0.0097193543902381
706 => 0.0095026681273958
707 => 0.0097345534893927
708 => 0.0095476948208999
709 => 0.0093800632781677
710 => 0.0093803175060227
711 => 0.0092751597905608
712 => 0.0090714034661284
713 => 0.0090338276737202
714 => 0.0092293016911271
715 => 0.0093860533416291
716 => 0.0093989641583542
717 => 0.0094857499262627
718 => 0.0095371088497465
719 => 0.010040496118958
720 => 0.010242962642873
721 => 0.010490534875821
722 => 0.010586978212961
723 => 0.010877238080901
724 => 0.010642829663785
725 => 0.010592113928244
726 => 0.0098880384318996
727 => 0.010003330754983
728 => 0.010187924888294
729 => 0.0098910823211676
730 => 0.010079360606269
731 => 0.010116530728027
801 => 0.0098809957243249
802 => 0.010006805146669
803 => 0.0096726926208171
804 => 0.0089799036500061
805 => 0.0092341513836717
806 => 0.0094213632945114
807 => 0.009154188814681
808 => 0.0096330887286966
809 => 0.0093533252854296
810 => 0.0092646537049275
811 => 0.0089187142556878
812 => 0.0090819843592984
813 => 0.0093028095122344
814 => 0.0091663652413994
815 => 0.0094495075905924
816 => 0.0098505126683559
817 => 0.010136292767035
818 => 0.010158231414466
819 => 0.0099744939567951
820 => 0.01026893440531
821 => 0.01027107908253
822 => 0.0099389490537801
823 => 0.0097355212604787
824 => 0.0096893020378249
825 => 0.0098047667178265
826 => 0.0099449621553042
827 => 0.010166011285536
828 => 0.010299586645383
829 => 0.010647880340968
830 => 0.01074211862863
831 => 0.010845657935508
901 => 0.010984018379836
902 => 0.011150155568142
903 => 0.010786656858324
904 => 0.010801099339712
905 => 0.010462614374112
906 => 0.010100894644715
907 => 0.010375394830327
908 => 0.010734267307785
909 => 0.010651941564937
910 => 0.010642678237104
911 => 0.010658256585086
912 => 0.010596185663486
913 => 0.010315441185546
914 => 0.010174453066278
915 => 0.010356363710039
916 => 0.010453041121287
917 => 0.010602979354976
918 => 0.010584496302862
919 => 0.010970721090654
920 => 0.011120796364358
921 => 0.011082400687262
922 => 0.011089466415891
923 => 0.011361170530404
924 => 0.011663361385955
925 => 0.011946402999775
926 => 0.012234325086272
927 => 0.011887223773209
928 => 0.011710987132669
929 => 0.011892818359934
930 => 0.011796336151287
1001 => 0.012350751540652
1002 => 0.012389138059314
1003 => 0.012943513358135
1004 => 0.0134696815305
1005 => 0.01313920472872
1006 => 0.013450829467796
1007 => 0.013787877030245
1008 => 0.014438096462206
1009 => 0.014219125432517
1010 => 0.014051397055489
1011 => 0.013892894549655
1012 => 0.014222713102731
1013 => 0.014647019402284
1014 => 0.014738410915253
1015 => 0.014886500080507
1016 => 0.014730802430724
1017 => 0.014918323100354
1018 => 0.015580353464905
1019 => 0.015401467016499
1020 => 0.015147419502332
1021 => 0.015670028893073
1022 => 0.01585915919999
1023 => 0.017186574742241
1024 => 0.018862491697135
1025 => 0.018168651073145
1026 => 0.017737961807737
1027 => 0.017839184001194
1028 => 0.018451172139752
1029 => 0.018647723306324
1030 => 0.018113429480331
1031 => 0.018302151092248
1101 => 0.019342025728611
1102 => 0.019899885107847
1103 => 0.019142237140334
1104 => 0.017051916446719
1105 => 0.015124545303275
1106 => 0.01563577092117
1107 => 0.015577813801279
1108 => 0.016695029371048
1109 => 0.015397200633866
1110 => 0.015419052741333
1111 => 0.016559371145934
1112 => 0.016255153745593
1113 => 0.015762360518262
1114 => 0.015128143239193
1115 => 0.013955733940835
1116 => 0.012917298330228
1117 => 0.014953909700067
1118 => 0.014866087314462
1119 => 0.014738907485558
1120 => 0.01502193243249
1121 => 0.016396221236757
1122 => 0.01636453943168
1123 => 0.016162995951978
1124 => 0.016315864905009
1125 => 0.015735561851685
1126 => 0.015885119161781
1127 => 0.015124239997839
1128 => 0.015468189157062
1129 => 0.015761303205321
1130 => 0.015820150190136
1201 => 0.015952735451727
1202 => 0.014819808907928
1203 => 0.015328459665118
1204 => 0.015627244330837
1205 => 0.014277324341242
1206 => 0.015600560752966
1207 => 0.014800087177335
1208 => 0.014528394423056
1209 => 0.014894192923894
1210 => 0.014751640892367
1211 => 0.014629083026596
1212 => 0.014560693631684
1213 => 0.014829295678992
1214 => 0.014816765072436
1215 => 0.01437727998963
1216 => 0.013803989614812
1217 => 0.013996404682216
1218 => 0.013926498484327
1219 => 0.013673149405099
1220 => 0.013843876095014
1221 => 0.013092082155429
1222 => 0.011798659757221
1223 => 0.012653134212077
1224 => 0.012620237875054
1225 => 0.012603650050197
1226 => 0.013245763987082
1227 => 0.01318403954814
1228 => 0.013072009087052
1229 => 0.013671091877826
1230 => 0.013452418600393
1231 => 0.014126318115538
]
'min_raw' => 0.0060494303509
'max_raw' => 0.019899885107847
'avg_raw' => 0.012974657729374
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006049'
'max' => '$0.019899'
'avg' => '$0.012974'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0032955736880629
'max_diff' => 0.013154829812025
'year' => 2029
]
4 => [
'items' => [
101 => 0.014570191921301
102 => 0.014457611166346
103 => 0.014875076626094
104 => 0.014000837536745
105 => 0.014291224693842
106 => 0.014351073084461
107 => 0.013663699289181
108 => 0.01319413842971
109 => 0.013162824073769
110 => 0.012348670252917
111 => 0.012783584652396
112 => 0.013166291325957
113 => 0.012983004528559
114 => 0.01292498140404
115 => 0.013221408963526
116 => 0.013244443923629
117 => 0.012719244392157
118 => 0.012828450005656
119 => 0.01328385556787
120 => 0.012816974953939
121 => 0.011909902185585
122 => 0.011684935597771
123 => 0.011654920908
124 => 0.011044793679524
125 => 0.011699968940889
126 => 0.011413967381697
127 => 0.012317442880357
128 => 0.011801382520959
129 => 0.011779136190302
130 => 0.011745507598687
131 => 0.011220345889099
201 => 0.011335322927731
202 => 0.011717524115641
203 => 0.011853897805292
204 => 0.011839672912185
205 => 0.011715651121312
206 => 0.011772427662079
207 => 0.011589530642009
208 => 0.011524945897549
209 => 0.011321098678603
210 => 0.011021499580983
211 => 0.011063160673055
212 => 0.010469576466301
213 => 0.010146160286564
214 => 0.010056642950569
215 => 0.0099369366276902
216 => 0.010070164098265
217 => 0.010467894916824
218 => 0.0099881471663414
219 => 0.0091656532985316
220 => 0.0092150865814483
221 => 0.0093261484912888
222 => 0.0091191853570491
223 => 0.0089233121195905
224 => 0.0090936080078627
225 => 0.0087451065133266
226 => 0.0093682632319179
227 => 0.0093514085890565
228 => 0.0095836828779944
301 => 0.0097289287576155
302 => 0.0093941840290008
303 => 0.0093099966350002
304 => 0.0093579536007267
305 => 0.0085653317827295
306 => 0.0095189087653864
307 => 0.0095271553387306
308 => 0.009456543171118
309 => 0.0099642934759964
310 => 0.011035804990581
311 => 0.010632659257344
312 => 0.01047654904429
313 => 0.010179783415158
314 => 0.010575205995777
315 => 0.010544843711138
316 => 0.010407533945449
317 => 0.010324488570728
318 => 0.010477502219962
319 => 0.010305528486261
320 => 0.010274637278166
321 => 0.010087470167077
322 => 0.010020660023979
323 => 0.009971196453818
324 => 0.0099167419232605
325 => 0.010036855048447
326 => 0.0097646629045771
327 => 0.0094364258623952
328 => 0.0094091365039118
329 => 0.0094844848219894
330 => 0.0094511488002626
331 => 0.0094089769038651
401 => 0.0093284592688095
402 => 0.0093045714064756
403 => 0.0093821953703175
404 => 0.0092945624408982
405 => 0.0094238696018691
406 => 0.0093887052089766
407 => 0.0091922797687789
408 => 0.0089474609442804
409 => 0.0089452815432174
410 => 0.0088925357290626
411 => 0.0088253560043501
412 => 0.008806668141799
413 => 0.0090792661631463
414 => 0.009643535909163
415 => 0.0095327562561893
416 => 0.0096128059086183
417 => 0.010006570970516
418 => 0.010131737042765
419 => 0.010042897129403
420 => 0.0099212875765874
421 => 0.0099266377797323
422 => 0.01034221443542
423 => 0.010368133441679
424 => 0.010433622408706
425 => 0.010517794238515
426 => 0.010057231955989
427 => 0.009904945337643
428 => 0.0098327834893307
429 => 0.0096105529266784
430 => 0.0098502095358904
501 => 0.0097105718928218
502 => 0.0097294137815728
503 => 0.0097171429768056
504 => 0.0097238436659567
505 => 0.0093680890469151
506 => 0.0094977073321815
507 => 0.0092821917930462
508 => 0.0089936406788985
509 => 0.0089926733543848
510 => 0.0090632958307824
511 => 0.0090212868183633
512 => 0.0089082416460941
513 => 0.0089242991792568
514 => 0.0087836182922214
515 => 0.0089413803860526
516 => 0.0089459044384037
517 => 0.0088851574389194
518 => 0.0091282117114401
519 => 0.0092277912452052
520 => 0.0091878062688178
521 => 0.0092249857926701
522 => 0.0095373596509105
523 => 0.0095882902196306
524 => 0.0096109102139716
525 => 0.0095806024181297
526 => 0.0092306954133659
527 => 0.0092462152769467
528 => 0.0091323408155824
529 => 0.0090361288955248
530 => 0.009039976867762
531 => 0.0090894423013458
601 => 0.0093054607509154
602 => 0.0097600588430516
603 => 0.0097773105083412
604 => 0.0097982200299389
605 => 0.0097131704973176
606 => 0.0096875187444646
607 => 0.0097213600277569
608 => 0.0098920831695311
609 => 0.010331229441055
610 => 0.010176005819105
611 => 0.01004980659826
612 => 0.010160517338007
613 => 0.010143474287402
614 => 0.0099996137887803
615 => 0.0099955761037262
616 => 0.0097194618118868
617 => 0.0096173886450119
618 => 0.0095320886667272
619 => 0.0094389433172526
620 => 0.0093837236318237
621 => 0.0094685661655407
622 => 0.0094879706568292
623 => 0.0093024609740632
624 => 0.009277176689784
625 => 0.0094286679012353
626 => 0.0093620022672372
627 => 0.0094305695250324
628 => 0.009446477717
629 => 0.0094439161316965
630 => 0.0093743095533031
701 => 0.009418674710673
702 => 0.0093137378876033
703 => 0.0091996348535162
704 => 0.0091268442266389
705 => 0.0090633247504128
706 => 0.0090985690475967
707 => 0.0089729295634907
708 => 0.008932734963902
709 => 0.0094036447936037
710 => 0.0097515109479382
711 => 0.0097464528362841
712 => 0.0097156628824302
713 => 0.0096699152565174
714 => 0.0098887364457512
715 => 0.0098125035188899
716 => 0.0098679693426557
717 => 0.0098820877226974
718 => 0.0099248198068995
719 => 0.009940092854055
720 => 0.0098939270977377
721 => 0.0097389891808647
722 => 0.0093528986230723
723 => 0.0091731724261884
724 => 0.0091138597876401
725 => 0.0091160156894006
726 => 0.0090565462944769
727 => 0.0090740626965133
728 => 0.0090504548046882
729 => 0.009005747168934
730 => 0.0090958084770717
731 => 0.0091061872038554
801 => 0.0090851658183836
802 => 0.0090901171156474
803 => 0.008916069022292
804 => 0.0089293015208172
805 => 0.0088556212875242
806 => 0.0088418071320102
807 => 0.0086555499183172
808 => 0.0083255682658452
809 => 0.0085084101334087
810 => 0.0082875628688491
811 => 0.0082039246633783
812 => 0.0085998549196676
813 => 0.0085601145033321
814 => 0.0084920961853093
815 => 0.0083914829166941
816 => 0.0083541644766617
817 => 0.0081274294486076
818 => 0.0081140327335658
819 => 0.0082264087358302
820 => 0.0081745510774073
821 => 0.0081017232849505
822 => 0.0078379484031071
823 => 0.007541378103053
824 => 0.0075503296962372
825 => 0.0076446631907978
826 => 0.0079189505488378
827 => 0.0078117817328321
828 => 0.0077340295271995
829 => 0.0077194688763072
830 => 0.0079017259070114
831 => 0.0081596577894861
901 => 0.0082806736578426
902 => 0.0081607506076079
903 => 0.0080229894646137
904 => 0.0080313743470641
905 => 0.008087155213513
906 => 0.0080930169938778
907 => 0.0080033486518629
908 => 0.0080285897649048
909 => 0.0079902462060984
910 => 0.0077549318564806
911 => 0.0077506757660858
912 => 0.0076929258297331
913 => 0.0076911771846117
914 => 0.007592930136479
915 => 0.0075791846952954
916 => 0.0073841092180584
917 => 0.0075125084879188
918 => 0.0074263849989607
919 => 0.0072965765866235
920 => 0.0072741975674089
921 => 0.0072735248270678
922 => 0.0074068090419082
923 => 0.0075109509842665
924 => 0.0074278831539237
925 => 0.0074089702191569
926 => 0.0076109108821942
927 => 0.0075852120920927
928 => 0.0075629571056042
929 => 0.0081365628184321
930 => 0.0076825091377169
1001 => 0.007484515816447
1002 => 0.0072394614834636
1003 => 0.0073192524099542
1004 => 0.0073360655305384
1005 => 0.0067467540340768
1006 => 0.0065076704333564
1007 => 0.0064256259512646
1008 => 0.0063784081918821
1009 => 0.006399925917756
1010 => 0.0061847226353983
1011 => 0.0063293428002764
1012 => 0.0061429949484353
1013 => 0.0061117531246457
1014 => 0.0064449661678068
1015 => 0.0064913308161603
1016 => 0.0062935248219171
1017 => 0.0064205482921028
1018 => 0.0063744878160552
1019 => 0.0061461893475043
1020 => 0.0061374700252555
1021 => 0.0060229178788159
1022 => 0.0058436659513043
1023 => 0.0057617430104602
1024 => 0.005719076831581
1025 => 0.0057366817285338
1026 => 0.0057277801539157
1027 => 0.0056696913582757
1028 => 0.0057311097356855
1029 => 0.0055742111612292
1030 => 0.0055117328846629
1031 => 0.005483512896623
1101 => 0.005344256381048
1102 => 0.0055658754249813
1103 => 0.0056095371685194
1104 => 0.00565328493918
1105 => 0.0060340794149089
1106 => 0.0060150559990155
1107 => 0.0061870184139125
1108 => 0.0061803362706882
1109 => 0.0061312898043531
1110 => 0.0059243708306376
1111 => 0.0060068450455846
1112 => 0.0057530022313166
1113 => 0.0059431985273997
1114 => 0.0058564008806546
1115 => 0.0059138521557246
1116 => 0.0058105495829761
1117 => 0.0058677214919938
1118 => 0.0056198909876561
1119 => 0.0053884703497749
1120 => 0.0054816007700479
1121 => 0.00558284418764
1122 => 0.0058023657133228
1123 => 0.0056716205036394
1124 => 0.0057186414250653
1125 => 0.0055611292094957
1126 => 0.0052361365176357
1127 => 0.0052379759409775
1128 => 0.0051879828956855
1129 => 0.0051447816054491
1130 => 0.0056866381637586
1201 => 0.0056192497352483
1202 => 0.0055118750939965
1203 => 0.0056556003182106
1204 => 0.0056936035487189
1205 => 0.0056946854472652
1206 => 0.0057995436607669
1207 => 0.0058555065081096
1208 => 0.0058653702025106
1209 => 0.0060303668670671
1210 => 0.0060856715726678
1211 => 0.0063134638280223
1212 => 0.0058507584515032
1213 => 0.0058412293387655
1214 => 0.005657622826859
1215 => 0.0055411766743037
1216 => 0.0056655959945485
1217 => 0.0057758145273544
1218 => 0.0056610476239062
1219 => 0.005676033758635
1220 => 0.0055219685675563
1221 => 0.0055770396239259
1222 => 0.0056244742365439
1223 => 0.0055982836315339
1224 => 0.0055590750281944
1225 => 0.0057667778645799
1226 => 0.005755058456557
1227 => 0.0059484761128668
1228 => 0.0060992590073895
1229 => 0.0063694889100407
1230 => 0.0060874899192208
1231 => 0.0060772127551508
]
'min_raw' => 0.0051447816054491
'max_raw' => 0.014875076626094
'avg_raw' => 0.010009929115772
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005144'
'max' => '$0.014875'
'avg' => '$0.0100099'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00090464874545092
'max_diff' => -0.0050248084817527
'year' => 2030
]
5 => [
'items' => [
101 => 0.0061776736824435
102 => 0.0060856561926233
103 => 0.0061438080698539
104 => 0.0063601197435943
105 => 0.006364690068401
106 => 0.0062881312393585
107 => 0.0062834726276535
108 => 0.006298176588233
109 => 0.0063842981446166
110 => 0.006354204626568
111 => 0.0063890296075285
112 => 0.0064325787794786
113 => 0.0066127166191304
114 => 0.0066561472424167
115 => 0.0065506333440275
116 => 0.006560160067663
117 => 0.0065206949732442
118 => 0.0064825721865317
119 => 0.0065682666436754
120 => 0.0067248749484341
121 => 0.0067239006962982
122 => 0.0067602307789718
123 => 0.0067828641195028
124 => 0.0066857052533259
125 => 0.0066224584040752
126 => 0.0066467112705795
127 => 0.0066854921322786
128 => 0.0066341351598059
129 => 0.0063171361348407
130 => 0.0064132933890391
131 => 0.0063972881200909
201 => 0.0063744946708016
202 => 0.0064711815334601
203 => 0.0064618558496875
204 => 0.006182515414688
205 => 0.0062003978830188
206 => 0.0061836029068157
207 => 0.0062378709108567
208 => 0.0060827255423127
209 => 0.0061304472127568
210 => 0.0061603777970965
211 => 0.0061780071412101
212 => 0.0062416964207031
213 => 0.0062342232188535
214 => 0.0062412318759833
215 => 0.006335666264125
216 => 0.0068132829933769
217 => 0.0068392786181481
218 => 0.0067112666543213
219 => 0.0067624049089458
220 => 0.0066642306427737
221 => 0.0067301356853655
222 => 0.0067752262417001
223 => 0.0065714706880391
224 => 0.0065594056065139
225 => 0.0064608261402228
226 => 0.0065137971615812
227 => 0.0064295164578487
228 => 0.0064501959945308
301 => 0.0063923742071581
302 => 0.006496441912226
303 => 0.0066128057769784
304 => 0.0066422038845631
305 => 0.0065648701201888
306 => 0.0065088753782384
307 => 0.0064105670571881
308 => 0.0065740559860385
309 => 0.0066218651310692
310 => 0.0065738048649526
311 => 0.0065626682511559
312 => 0.0065415643881344
313 => 0.0065671455354603
314 => 0.0066216047521978
315 => 0.0065959227912882
316 => 0.0066128861789269
317 => 0.0065482392378175
318 => 0.0066857374169534
319 => 0.0069041176161598
320 => 0.0069048197442091
321 => 0.0068791376448641
322 => 0.0068686290831407
323 => 0.0068949804755887
324 => 0.0069092750250011
325 => 0.006994490596159
326 => 0.0070859302991496
327 => 0.0075126394947388
328 => 0.0073928212601218
329 => 0.0077714230434921
330 => 0.0080708478988493
331 => 0.0081606323207089
401 => 0.0080780348772816
402 => 0.007795473485143
403 => 0.0077816096752144
404 => 0.0082038756894121
405 => 0.0080845661993925
406 => 0.0080703747151944
407 => 0.0079194013002167
408 => 0.0080086452868897
409 => 0.007989126317874
410 => 0.0079583146703821
411 => 0.0081285859801642
412 => 0.0084473186718516
413 => 0.0083976411927958
414 => 0.0083605592591527
415 => 0.0081980770203169
416 => 0.0082959276198179
417 => 0.0082610848955404
418 => 0.0084107913507759
419 => 0.0083221085630984
420 => 0.0080836623126615
421 => 0.0081216356639727
422 => 0.0081158960683138
423 => 0.008234016540262
424 => 0.0081985597065135
425 => 0.0081089725524626
426 => 0.0084462292781621
427 => 0.0084243297023156
428 => 0.0084553782939258
429 => 0.0084690468441623
430 => 0.0086743290699654
501 => 0.0087584266295785
502 => 0.0087775182479456
503 => 0.0088574044252393
504 => 0.0087755306070799
505 => 0.0091030842547605
506 => 0.0093208883171828
507 => 0.0095738789437809
508 => 0.0099435662467106
509 => 0.010082572092411
510 => 0.010057461930578
511 => 0.010337754624477
512 => 0.010841434364856
513 => 0.010159270006864
514 => 0.010877590732254
515 => 0.010650178684007
516 => 0.010110988808581
517 => 0.010076271337235
518 => 0.010441416980996
519 => 0.011251274874893
520 => 0.011048414657804
521 => 0.011251606681535
522 => 0.011014572392673
523 => 0.011002801642349
524 => 0.011240094455196
525 => 0.01179454204657
526 => 0.011531144779065
527 => 0.011153500208437
528 => 0.011432347082588
529 => 0.011190784114139
530 => 0.010646475137004
531 => 0.011048259534419
601 => 0.010779597750029
602 => 0.01085800754156
603 => 0.011422694651924
604 => 0.011354750004828
605 => 0.011442676669675
606 => 0.011287488407662
607 => 0.011142518099999
608 => 0.010871920255109
609 => 0.01079180957355
610 => 0.010813949283852
611 => 0.010791798602209
612 => 0.010640401594916
613 => 0.010607707425605
614 => 0.010553215711057
615 => 0.010570104971949
616 => 0.010467644606485
617 => 0.010661008485507
618 => 0.01069689852537
619 => 0.010837612631314
620 => 0.010852222036594
621 => 0.011244108818706
622 => 0.011028264164509
623 => 0.011173071393675
624 => 0.01116011847212
625 => 0.010122674688149
626 => 0.010265625288136
627 => 0.010488011561347
628 => 0.010387826846703
629 => 0.010246189099809
630 => 0.010131809025057
701 => 0.009958511515844
702 => 0.010202424432177
703 => 0.010523143979908
704 => 0.010860356013592
705 => 0.011265494177056
706 => 0.011175072055299
707 => 0.010852782237435
708 => 0.010867239923231
709 => 0.010956611647936
710 => 0.010840867144166
711 => 0.010806731830403
712 => 0.010951921980008
713 => 0.010952921824773
714 => 0.010819743784996
715 => 0.010671740765107
716 => 0.010671120627049
717 => 0.010644784919199
718 => 0.011019257456594
719 => 0.011225179488717
720 => 0.01124878811784
721 => 0.011223590439874
722 => 0.011233288026063
723 => 0.011113466532753
724 => 0.0113873429345
725 => 0.011638679004311
726 => 0.01157131556859
727 => 0.011470328202167
728 => 0.0113898869006
729 => 0.011552366154402
730 => 0.011545131208996
731 => 0.011636483803002
801 => 0.01163233952166
802 => 0.011601621080241
803 => 0.011571316665642
804 => 0.01169147024407
805 => 0.01165686794309
806 => 0.011622211895179
807 => 0.011552703885519
808 => 0.011562151178438
809 => 0.011461181248907
810 => 0.011414467939437
811 => 0.010712011845903
812 => 0.010524292624295
813 => 0.01058335291279
814 => 0.010602797093262
815 => 0.01052110144745
816 => 0.010638232017655
817 => 0.010619977342361
818 => 0.010690995605304
819 => 0.010646626477872
820 => 0.010648447402338
821 => 0.010778927545621
822 => 0.010816806486318
823 => 0.010797540951359
824 => 0.010811033871661
825 => 0.011121972525003
826 => 0.011077766991757
827 => 0.011054283683268
828 => 0.011060788720207
829 => 0.011140240212736
830 => 0.011162482292754
831 => 0.011068241036796
901 => 0.011112685757908
902 => 0.011301925739526
903 => 0.011368149023037
904 => 0.011579501955025
905 => 0.011489715473018
906 => 0.01165452244661
907 => 0.012161082896595
908 => 0.01256575843536
909 => 0.012193602085988
910 => 0.012936737177811
911 => 0.013515374443192
912 => 0.013493165381176
913 => 0.013392266589836
914 => 0.012733503447066
915 => 0.012127299781485
916 => 0.012634414888511
917 => 0.012635707629208
918 => 0.012592145991776
919 => 0.012321588402946
920 => 0.012582731174153
921 => 0.012603459739
922 => 0.012591857254856
923 => 0.012384421385855
924 => 0.012067705154449
925 => 0.012129590747954
926 => 0.012230960612548
927 => 0.012039046310903
928 => 0.01197771806303
929 => 0.012091738944002
930 => 0.01245913797969
1001 => 0.012389683320191
1002 => 0.012387869578343
1003 => 0.01268502606504
1004 => 0.012472326150949
1005 => 0.012130371323473
1006 => 0.012044023219706
1007 => 0.011737545622383
1008 => 0.011949230790489
1009 => 0.011956848962834
1010 => 0.011840911159632
1011 => 0.012139779037233
1012 => 0.012137024917127
1013 => 0.012420755486296
1014 => 0.012963141770213
1015 => 0.012802731456851
1016 => 0.012616191715003
1017 => 0.012636473757128
1018 => 0.012858917698892
1019 => 0.0127244230138
1020 => 0.012772788240289
1021 => 0.012858844492329
1022 => 0.012910764365841
1023 => 0.012629003286331
1024 => 0.012563311300507
1025 => 0.012428928552264
1026 => 0.01239387060162
1027 => 0.012503322546076
1028 => 0.012474485825706
1029 => 0.011956208684947
1030 => 0.011902045840071
1031 => 0.011903706937197
1101 => 0.011767511888453
1102 => 0.011559781748562
1103 => 0.012105684153274
1104 => 0.012061840550276
1105 => 0.012013440605792
1106 => 0.012019369322825
1107 => 0.012256327054362
1108 => 0.012118879603418
1109 => 0.012484306178946
1110 => 0.012409185460745
1111 => 0.01233213817958
1112 => 0.012321487898405
1113 => 0.012291831268522
1114 => 0.012190127649905
1115 => 0.012067314418985
1116 => 0.011986222486032
1117 => 0.011056656654041
1118 => 0.011229178665423
1119 => 0.011427649513642
1120 => 0.011496160855125
1121 => 0.011378967464678
1122 => 0.012194755159262
1123 => 0.012343807432188
1124 => 0.011892318375055
1125 => 0.011807863206642
1126 => 0.012200292026043
1127 => 0.011963609475472
1128 => 0.012070187613502
1129 => 0.011839823974206
1130 => 0.0123079051044
1201 => 0.012304339110439
1202 => 0.012122244978701
1203 => 0.012276149691919
1204 => 0.012249404960589
1205 => 0.012043821134335
1206 => 0.012314422478386
1207 => 0.012314556693277
1208 => 0.012139295050547
1209 => 0.011934627821546
1210 => 0.011898038155025
1211 => 0.011870472756432
1212 => 0.012063408215238
1213 => 0.01223639354431
1214 => 0.012558276355013
1215 => 0.01263920534137
1216 => 0.012955076562872
1217 => 0.012766990629959
1218 => 0.012850366687899
1219 => 0.012940883193056
1220 => 0.012984280134263
1221 => 0.012913567147375
1222 => 0.013404245172149
1223 => 0.013445673431426
1224 => 0.013459563968408
1225 => 0.013294110099223
1226 => 0.01344107186002
1227 => 0.013372313319005
1228 => 0.013551203941053
1229 => 0.01357925627478
1230 => 0.013555496946104
1231 => 0.013564401199605
]
'min_raw' => 0.0060827255423127
'max_raw' => 0.01357925627478
'avg_raw' => 0.0098309909085463
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006082'
'max' => '$0.013579'
'avg' => '$0.00983'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00093794393686355
'max_diff' => -0.0012958203513144
'year' => 2031
]
6 => [
'items' => [
101 => 0.013145694066995
102 => 0.013123981893313
103 => 0.012827934864535
104 => 0.012948576217031
105 => 0.01272304299103
106 => 0.012794561900245
107 => 0.012826086753969
108 => 0.012809619959403
109 => 0.012955397098093
110 => 0.012831456749905
111 => 0.012504357793357
112 => 0.012177169718918
113 => 0.012173062139165
114 => 0.012086919294514
115 => 0.012024653795681
116 => 0.012036648339744
117 => 0.012078918677493
118 => 0.012022196966808
119 => 0.012034301419646
120 => 0.012235315988312
121 => 0.012275628026487
122 => 0.012138631969837
123 => 0.011588573033948
124 => 0.011453587191363
125 => 0.011550612338127
126 => 0.011504240567194
127 => 0.0092848200068879
128 => 0.0098062399464012
129 => 0.0094964299240904
130 => 0.009639204636045
131 => 0.009322968828182
201 => 0.009473893131033
202 => 0.0094460229231695
203 => 0.010284450755969
204 => 0.01027135985858
205 => 0.010277625778405
206 => 0.0099785370993703
207 => 0.010454993486216
208 => 0.010689713035193
209 => 0.010646272693536
210 => 0.010657205691645
211 => 0.010469340561365
212 => 0.010279444723519
213 => 0.010068821014588
214 => 0.010460133831905
215 => 0.010416626526552
216 => 0.010516416631597
217 => 0.010770210965245
218 => 0.010807583144946
219 => 0.010857811733454
220 => 0.010839808359988
221 => 0.011268721756148
222 => 0.011216777513812
223 => 0.011341948192464
224 => 0.011084462609753
225 => 0.01079309323216
226 => 0.010848473025257
227 => 0.010843139505846
228 => 0.010775237682209
229 => 0.010713938951925
301 => 0.010611893836813
302 => 0.010934779680864
303 => 0.010921671105254
304 => 0.011133883707323
305 => 0.011096373068584
306 => 0.010845867842675
307 => 0.010854814685826
308 => 0.010914986505718
309 => 0.011123241861395
310 => 0.011185066230066
311 => 0.011156426719223
312 => 0.011224214317081
313 => 0.011277790870505
314 => 0.011230942707312
315 => 0.011894213904092
316 => 0.011618777460082
317 => 0.011753023266418
318 => 0.011785040100207
319 => 0.011703029653698
320 => 0.011720814782972
321 => 0.011747754407664
322 => 0.011911326533476
323 => 0.012340587121582
324 => 0.012530703713978
325 => 0.013102678862391
326 => 0.012514917177531
327 => 0.012480041831551
328 => 0.012583071827774
329 => 0.012918881789611
330 => 0.013191024222653
331 => 0.013281309567967
401 => 0.013293242266799
402 => 0.013462623576664
403 => 0.013559709784704
404 => 0.013442056230476
405 => 0.013342357162108
406 => 0.012985247474317
407 => 0.013026583893056
408 => 0.013311350826815
409 => 0.013713600893438
410 => 0.014058773297586
411 => 0.013937905952126
412 => 0.014860038478938
413 => 0.014951464152398
414 => 0.014938832080472
415 => 0.015147113370578
416 => 0.014733717425465
417 => 0.01455698264976
418 => 0.013363913232321
419 => 0.013699117073952
420 => 0.014186355543594
421 => 0.014121867705087
422 => 0.013768022104511
423 => 0.014058504873968
424 => 0.01396246218615
425 => 0.013886709333452
426 => 0.014233747837071
427 => 0.013852164746786
428 => 0.014182548960373
429 => 0.013758827789061
430 => 0.013938458063979
501 => 0.013836491232197
502 => 0.013902476268945
503 => 0.013516729092411
504 => 0.013724868905385
505 => 0.013508069791891
506 => 0.013507967000883
507 => 0.013503181148437
508 => 0.013758244344028
509 => 0.013766561945679
510 => 0.013578069858758
511 => 0.013550905204233
512 => 0.013651347169584
513 => 0.01353375593395
514 => 0.013588776132993
515 => 0.01353542243973
516 => 0.013523411399575
517 => 0.013427705388115
518 => 0.013386472606887
519 => 0.013402641042844
520 => 0.013347449835521
521 => 0.013314195136756
522 => 0.013496565951844
523 => 0.01339913258216
524 => 0.013481632890548
525 => 0.013387613376771
526 => 0.013061700779664
527 => 0.012874264998605
528 => 0.012258646314785
529 => 0.012433235009844
530 => 0.012548987495293
531 => 0.012510731299543
601 => 0.012592920411197
602 => 0.01259796615514
603 => 0.012571245637123
604 => 0.012540306700369
605 => 0.012525247336987
606 => 0.012637487493727
607 => 0.012702646682544
608 => 0.012560604805776
609 => 0.012527326381427
610 => 0.012670938561186
611 => 0.012758541907877
612 => 0.013405355799776
613 => 0.013357437737483
614 => 0.013477702670394
615 => 0.013464162684564
616 => 0.013590219493961
617 => 0.013796269101743
618 => 0.013377312636746
619 => 0.013450028992645
620 => 0.013432200621444
621 => 0.013626846103362
622 => 0.01362745376531
623 => 0.013510754075638
624 => 0.013574018870645
625 => 0.013538706197651
626 => 0.013602520970546
627 => 0.013356797762546
628 => 0.013656062105708
629 => 0.013825725704113
630 => 0.013828081483341
701 => 0.013908500682451
702 => 0.013990211246313
703 => 0.014147047558155
704 => 0.013985837166699
705 => 0.013695835365984
706 => 0.013716772559295
707 => 0.013546744609643
708 => 0.013549602810195
709 => 0.013534345511649
710 => 0.013580133813102
711 => 0.013366845719816
712 => 0.013416904008996
713 => 0.013346822111003
714 => 0.013449876648285
715 => 0.013339007001695
716 => 0.013432192024064
717 => 0.013472407590586
718 => 0.013620803896832
719 => 0.013317088746605
720 => 0.012697792995584
721 => 0.012827976470684
722 => 0.01263542488532
723 => 0.012653246267641
724 => 0.012689248296181
725 => 0.012572553942551
726 => 0.012594815547762
727 => 0.012594020206571
728 => 0.012587166385869
729 => 0.01255680967754
730 => 0.012512786444571
731 => 0.012688161455082
801 => 0.012717961086774
802 => 0.012784201976632
803 => 0.012981289933226
804 => 0.012961596198708
805 => 0.012993717496792
806 => 0.012923596883428
807 => 0.012656498961784
808 => 0.012671003663976
809 => 0.012490129795218
810 => 0.012779576625148
811 => 0.012711031795309
812 => 0.012666840497602
813 => 0.012654782492593
814 => 0.012852358992109
815 => 0.012911476977397
816 => 0.012874638616226
817 => 0.012799082062718
818 => 0.012944172981743
819 => 0.01298299319078
820 => 0.012991683603949
821 => 0.013248756894038
822 => 0.013006051145137
823 => 0.013064472831185
824 => 0.013520262148527
825 => 0.013106924132324
826 => 0.013325878498044
827 => 0.013315161821226
828 => 0.013427171465717
829 => 0.013305973761061
830 => 0.013307476151865
831 => 0.013406933127982
901 => 0.013267263742185
902 => 0.013232679638087
903 => 0.013184901945972
904 => 0.013289222788794
905 => 0.01335175841604
906 => 0.013855749644287
907 => 0.014181350962527
908 => 0.01416721575059
909 => 0.014296385127687
910 => 0.014238193140249
911 => 0.014050275862539
912 => 0.014371027741519
913 => 0.014269528426181
914 => 0.014277895906416
915 => 0.014277584468384
916 => 0.014345072639859
917 => 0.014297251085169
918 => 0.014202989892092
919 => 0.014265564871042
920 => 0.014451390187559
921 => 0.015028197671845
922 => 0.015350986781734
923 => 0.015008765362124
924 => 0.015244825114844
925 => 0.015103273379902
926 => 0.015077549218864
927 => 0.01522581218825
928 => 0.015374334672338
929 => 0.015364874432182
930 => 0.015257054735448
1001 => 0.015196150124587
1002 => 0.015657340242571
1003 => 0.015997137265334
1004 => 0.015973965386409
1005 => 0.016076238524082
1006 => 0.016376515619479
1007 => 0.016403969193887
1008 => 0.016400510674525
1009 => 0.01633246412587
1010 => 0.016628125922196
1011 => 0.016874772194366
1012 => 0.01631671331591
1013 => 0.016529214831299
1014 => 0.016624613607928
1015 => 0.016764687315562
1016 => 0.017001015139418
1017 => 0.017257729838986
1018 => 0.017294032112238
1019 => 0.017268273912142
1020 => 0.017098963666916
1021 => 0.017379863954426
1022 => 0.017544408754927
1023 => 0.017642391418085
1024 => 0.017890859149092
1025 => 0.016625202758295
1026 => 0.015729308257685
1027 => 0.015589401394541
1028 => 0.01587390750231
1029 => 0.015948929494035
1030 => 0.01591868822324
1031 => 0.014910277511639
1101 => 0.01558409232084
1102 => 0.016309060399583
1103 => 0.016336909376013
1104 => 0.016699843554599
1105 => 0.016818029800321
1106 => 0.017110239384953
1107 => 0.017091961595874
1108 => 0.017163109979662
1109 => 0.017146754198348
1110 => 0.017688010921891
1111 => 0.01828509746536
1112 => 0.018264422256979
1113 => 0.018178584001948
1114 => 0.018306068448267
1115 => 0.01892232574881
1116 => 0.018865590651898
1117 => 0.018920703965864
1118 => 0.019647306053944
1119 => 0.020591992126389
1120 => 0.020153090600807
1121 => 0.021105380620809
1122 => 0.021704796709674
1123 => 0.022741424854587
1124 => 0.022611633905343
1125 => 0.023015185635029
1126 => 0.022379281018007
1127 => 0.020919115479798
1128 => 0.020688038694087
1129 => 0.021150660270876
1130 => 0.022287970275459
1201 => 0.021114842331489
1202 => 0.021352164586669
1203 => 0.021283815761212
1204 => 0.021280173742767
1205 => 0.021419174773646
1206 => 0.02121754652855
1207 => 0.020396076785799
1208 => 0.02077255152795
1209 => 0.020627176550204
1210 => 0.020788480926436
1211 => 0.021658974117977
1212 => 0.021274108328031
1213 => 0.02086868348228
1214 => 0.021377176209827
1215 => 0.022024662189052
1216 => 0.021984143680116
1217 => 0.021905520837358
1218 => 0.022348713685428
1219 => 0.023080738427119
1220 => 0.023278601773284
1221 => 0.023424660450285
1222 => 0.023444799474162
1223 => 0.023652243936428
1224 => 0.02253676278009
1225 => 0.024307060022786
1226 => 0.024612741453125
1227 => 0.024555286013419
1228 => 0.0248950380582
1229 => 0.024795074387948
1230 => 0.024650242713572
1231 => 0.025188821971882
]
'min_raw' => 0.0092848200068879
'max_raw' => 0.025188821971882
'avg_raw' => 0.017236820989385
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009284'
'max' => '$0.025188'
'avg' => '$0.017236'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0032020944645752
'max_diff' => 0.011609565697102
'year' => 2032
]
7 => [
'items' => [
101 => 0.024571384313334
102 => 0.023695009290265
103 => 0.023214212619877
104 => 0.023847364460205
105 => 0.02423400819514
106 => 0.024489555108771
107 => 0.024566883450431
108 => 0.022623354406888
109 => 0.021575900045482
110 => 0.022247306282055
111 => 0.023066468228657
112 => 0.022532212294116
113 => 0.022553154115269
114 => 0.021791445552603
115 => 0.023133862534745
116 => 0.022938283671951
117 => 0.023952947158099
118 => 0.023710789573947
119 => 0.024538208257891
120 => 0.024320321188589
121 => 0.025224758231361
122 => 0.025585562654378
123 => 0.026191409435348
124 => 0.02663707279367
125 => 0.026898774841858
126 => 0.026883063232505
127 => 0.027920057126869
128 => 0.02730857805717
129 => 0.026540416231076
130 => 0.026526522607161
131 => 0.026924364501833
201 => 0.02775813197047
202 => 0.027974315744264
203 => 0.028095132981482
204 => 0.027910097177004
205 => 0.027246380471946
206 => 0.026959790963821
207 => 0.02720397352804
208 => 0.026905359234847
209 => 0.027420851281271
210 => 0.028128731964172
211 => 0.027982557402416
212 => 0.028471197046649
213 => 0.02897688767204
214 => 0.029700047978337
215 => 0.029889108860952
216 => 0.030201619310572
217 => 0.030523295217566
218 => 0.030626608849484
219 => 0.030823866629153
220 => 0.030822826983285
221 => 0.031417276579295
222 => 0.032072972892266
223 => 0.032320483071008
224 => 0.032889619079235
225 => 0.031914993610051
226 => 0.032654258224117
227 => 0.033321093410999
228 => 0.032526065010811
301 => 0.03362182644261
302 => 0.033664372375958
303 => 0.034306765456653
304 => 0.033655577001745
305 => 0.033268903375888
306 => 0.034385215645266
307 => 0.034925363988911
308 => 0.034762666911932
309 => 0.033524534122777
310 => 0.032803887733476
311 => 0.030917817130367
312 => 0.033151949231936
313 => 0.034240129808084
314 => 0.03352171599797
315 => 0.033884042136156
316 => 0.035860776061451
317 => 0.03661338835616
318 => 0.036456850260018
319 => 0.03648330262143
320 => 0.036889398554775
321 => 0.038690251564345
322 => 0.037611138697565
323 => 0.03843608005063
324 => 0.038873625969749
325 => 0.039280043004125
326 => 0.03828201121712
327 => 0.036983586526224
328 => 0.036572320922457
329 => 0.033450283902943
330 => 0.033287768317758
331 => 0.033196543395067
401 => 0.032621383161524
402 => 0.032169464767606
403 => 0.031810082482108
404 => 0.030866956044327
405 => 0.031185233531311
406 => 0.029682086835273
407 => 0.03064374682315
408 => 0.028244688401528
409 => 0.030242695543461
410 => 0.029155271094344
411 => 0.029885447365739
412 => 0.029882899849515
413 => 0.028538413831279
414 => 0.027762942354667
415 => 0.028257102961366
416 => 0.028786882358264
417 => 0.028872837283019
418 => 0.029559710099754
419 => 0.029751401538623
420 => 0.029170567529632
421 => 0.028194973248156
422 => 0.028421581548807
423 => 0.027758350144688
424 => 0.026596062619796
425 => 0.027430837811766
426 => 0.027715866764779
427 => 0.027841751788171
428 => 0.026698775497065
429 => 0.026339627531176
430 => 0.026148420167681
501 => 0.028047429361856
502 => 0.028151461372284
503 => 0.027619218898291
504 => 0.03002500535004
505 => 0.029480501781937
506 => 0.030088845674121
507 => 0.028401019220719
508 => 0.028465496464198
509 => 0.027666452372539
510 => 0.028113863671723
511 => 0.027797647786199
512 => 0.028077717260153
513 => 0.028245589748072
514 => 0.029044502724458
515 => 0.03025181784634
516 => 0.028925171767186
517 => 0.028347133072577
518 => 0.0287057450277
519 => 0.029660775921521
520 => 0.031107696612793
521 => 0.030251090441568
522 => 0.030631237714241
523 => 0.030714282981746
524 => 0.030082653304368
525 => 0.031130985699945
526 => 0.031692795547372
527 => 0.032269096200665
528 => 0.032769481910341
529 => 0.032038909046617
530 => 0.032820726734308
531 => 0.032190719687429
601 => 0.031625538237447
602 => 0.03162639538441
603 => 0.031271848804853
604 => 0.030584870131217
605 => 0.030458180723654
606 => 0.031117235020902
607 => 0.03164573415462
608 => 0.031689263874613
609 => 0.031981868150306
610 => 0.032155028346597
611 => 0.033852233670121
612 => 0.034534863691261
613 => 0.035369570759586
614 => 0.035694736204211
615 => 0.03667336761427
616 => 0.03588304327009
617 => 0.035712051626854
618 => 0.033338211933947
619 => 0.033726928050675
620 => 0.034349300059084
621 => 0.033348474619132
622 => 0.03398326800252
623 => 0.034108589663163
624 => 0.033314466953653
625 => 0.033738642204819
626 => 0.032612158496918
627 => 0.030276372112847
628 => 0.031133586097911
629 => 0.031764784126025
630 => 0.03086398671375
701 => 0.032478631209578
702 => 0.031535389228143
703 => 0.031236426803629
704 => 0.030070067797796
705 => 0.030620544351274
706 => 0.031365071771917
707 => 0.030905040386562
708 => 0.031859674585234
709 => 0.033211691202194
710 => 0.034175218757421
711 => 0.034249186438943
712 => 0.033629702772264
713 => 0.034622429301608
714 => 0.03462966023059
715 => 0.033509860650083
716 => 0.032823989642092
717 => 0.032668158305992
718 => 0.033057455536104
719 => 0.033530134241693
720 => 0.034275416817426
721 => 0.034725775469085
722 => 0.035900071980839
723 => 0.0362178029472
724 => 0.036566892949221
725 => 0.037033384847291
726 => 0.037593527976991
727 => 0.036367966698173
728 => 0.036416660532512
729 => 0.035275434838728
730 => 0.0340558715166
731 => 0.034981368057381
801 => 0.036191331670807
802 => 0.035913764680996
803 => 0.035882532724463
804 => 0.035935056212329
805 => 0.035725779766502
806 => 0.034779230158173
807 => 0.034303878870585
808 => 0.034917203306621
809 => 0.035243157948444
810 => 0.03574868517168
811 => 0.035686368271031
812 => 0.036988552108426
813 => 0.037494541371642
814 => 0.03736508766561
815 => 0.037388910262997
816 => 0.038304979654853
817 => 0.039323837222636
818 => 0.040278131784963
819 => 0.041248881201666
820 => 0.040078604890836
821 => 0.039484410752804
822 => 0.040097467430578
823 => 0.039772170927954
824 => 0.041641421121244
825 => 0.041770843948973
826 => 0.043639958974198
827 => 0.045413971703213
828 => 0.044299746092858
829 => 0.045350410657599
830 => 0.046486790046306
831 => 0.048679050258032
901 => 0.047940774143367
902 => 0.047375266209795
903 => 0.046840863945084
904 => 0.047952870223977
905 => 0.049383448537039
906 => 0.049691581403764
907 => 0.050190874363673
908 => 0.049665928866967
909 => 0.0502981678969
910 => 0.052530249492468
911 => 0.051927121342216
912 => 0.05107058241117
913 => 0.052832596459476
914 => 0.053470262493902
915 => 0.057945736671796
916 => 0.063596207694005
917 => 0.061256875587817
918 => 0.059804776659731
919 => 0.060146054352078
920 => 0.062209415088874
921 => 0.062872101069737
922 => 0.061070692132196
923 => 0.061706980222897
924 => 0.065212990161124
925 => 0.067093852006717
926 => 0.064539388986954
927 => 0.057491726826903
928 => 0.050993460452025
929 => 0.052717093315391
930 => 0.05252168683924
1001 => 0.056288457134218
1002 => 0.0519127369353
1003 => 0.05198641284129
1004 => 0.055831075956889
1005 => 0.054805385751859
1006 => 0.053143898980188
1007 => 0.051005591144169
1008 => 0.047052731339754
1009 => 0.043551573177333
1010 => 0.050418150602411
1011 => 0.050122051297781
1012 => 0.049693255625218
1013 => 0.050647493993969
1014 => 0.055281004647337
1015 => 0.055174187229566
1016 => 0.054494669316436
1017 => 0.055010077664549
1018 => 0.053053545404801
1019 => 0.053557788317549
1020 => 0.05099243109343
1021 => 0.052152079697513
1022 => 0.053140334175787
1023 => 0.053338740893659
1024 => 0.05378576135992
1025 => 0.049966020419097
1026 => 0.051680971959825
1027 => 0.052688345320773
1028 => 0.048136995827451
1029 => 0.052598379774995
1030 => 0.049899527227474
1031 => 0.04898349613744
1101 => 0.050216811322251
1102 => 0.049736187195292
1103 => 0.049322974794128
1104 => 0.049092395174389
1105 => 0.049998005730084
1106 => 0.049955757915222
1107 => 0.04847400327467
1108 => 0.046541114750116
1109 => 0.047189855583859
1110 => 0.046954161956983
1111 => 0.046099977848099
1112 => 0.046675594802904
1113 => 0.044140869047016
1114 => 0.03978000512759
1115 => 0.042660925409637
1116 => 0.042550013112616
1117 => 0.042494086102986
1118 => 0.044659018072156
1119 => 0.044450909816799
1120 => 0.044073191295524
1121 => 0.046093040751245
1122 => 0.045355768529098
1123 => 0.047627867794573
1124 => 0.049124419320981
1125 => 0.048744845445514
1126 => 0.050152359389562
1127 => 0.047204801262397
1128 => 0.048183861836735
1129 => 0.048385644864187
1130 => 0.046068116122495
1201 => 0.044484958901094
1202 => 0.04437938036374
1203 => 0.041634403914336
1204 => 0.043100748176932
1205 => 0.044391070446568
1206 => 0.043773106212465
1207 => 0.043577477197105
1208 => 0.044576903409825
1209 => 0.04465456738606
1210 => 0.042883820497442
1211 => 0.043252014847847
1212 => 0.044787446496253
1213 => 0.043213325909819
1214 => 0.040155066741517
1215 => 0.039396576184037
1216 => 0.039295379561914
1217 => 0.037238293013384
1218 => 0.039447262149951
1219 => 0.038482987925147
1220 => 0.041529118647524
1221 => 0.039789185115629
1222 => 0.03971418005863
1223 => 0.039600798914127
1224 => 0.037830179544632
1225 => 0.03821783265782
1226 => 0.039506450647294
1227 => 0.039966244063259
1228 => 0.039918283842997
1229 => 0.039500135716142
1230 => 0.039691561787352
1231 => 0.039074911714722
]
'min_raw' => 0.021575900045482
'max_raw' => 0.067093852006717
'avg_raw' => 0.044334876026099
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.021575'
'max' => '$0.067093'
'avg' => '$0.044334'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.012291080038594
'max_diff' => 0.041905030034834
'year' => 2033
]
8 => [
'items' => [
101 => 0.038857159739615
102 => 0.038169874608778
103 => 0.037159755333811
104 => 0.037300218614417
105 => 0.035298908018622
106 => 0.03420848778844
107 => 0.033906673840233
108 => 0.033503075615018
109 => 0.033952261333705
110 => 0.035293238557155
111 => 0.033675735521486
112 => 0.030902640021477
113 => 0.031069307786153
114 => 0.031443760769275
115 => 0.030745970112481
116 => 0.030085569816957
117 => 0.030659734293946
118 => 0.02948473717352
119 => 0.031585753557663
120 => 0.031528926952502
121 => 0.032312055934529
122 => 0.032801762558415
123 => 0.03167314733476
124 => 0.031389303658111
125 => 0.031550993916306
126 => 0.028878614117841
127 => 0.032093665491487
128 => 0.032121469389275
129 => 0.031883395536185
130 => 0.033595311139076
131 => 0.037207987021045
201 => 0.035848753034698
202 => 0.035322416552119
203 => 0.034321850513988
204 => 0.035655045352065
205 => 0.03555267678958
206 => 0.035089727327899
207 => 0.034809734048983
208 => 0.035325630250447
209 => 0.034745808800451
210 => 0.034641656935604
211 => 0.034010609952977
212 => 0.033785354890987
213 => 0.033618585010752
214 => 0.033434987759084
215 => 0.03383995754668
216 => 0.032922242729775
217 => 0.03181556862528
218 => 0.031723560647871
219 => 0.031977602762921
220 => 0.031865208038223
221 => 0.031723022545171
222 => 0.031451551717019
223 => 0.031371012121363
224 => 0.031632726734988
225 => 0.031337266195115
226 => 0.031773234316266
227 => 0.03165467511053
228 => 0.030992413024917
301 => 0.030166989265415
302 => 0.030159641262571
303 => 0.029981805067553
304 => 0.029755303935346
305 => 0.02969229650201
306 => 0.030611379763169
307 => 0.032513854607919
308 => 0.03214035327353
309 => 0.032410246265583
310 => 0.03373785266357
311 => 0.034159858814972
312 => 0.03386032884447
313 => 0.033450313746643
314 => 0.033468352330085
315 => 0.034869498039372
316 => 0.03495688577858
317 => 0.035177686403205
318 => 0.035461477604098
319 => 0.03390865971313
320 => 0.033395214747063
321 => 0.033151916037299
322 => 0.032402650179674
323 => 0.033210669169923
324 => 0.032739871107128
325 => 0.032803397850551
326 => 0.032762025975558
327 => 0.032784617816858
328 => 0.031585166280765
329 => 0.0320221833792
330 => 0.031295557692191
331 => 0.030322687464847
401 => 0.030319426062712
402 => 0.030557534672591
403 => 0.030415898354244
404 => 0.030034758663377
405 => 0.030088897757536
406 => 0.02961458232487
407 => 0.03014648823882
408 => 0.030161741397181
409 => 0.029956928647199
410 => 0.03077640309651
411 => 0.03111214244702
412 => 0.030977330307468
413 => 0.031102683667928
414 => 0.032155873940231
415 => 0.03232758990853
416 => 0.032403854798728
417 => 0.032301669949025
418 => 0.031121934052737
419 => 0.031174260356361
420 => 0.030790324659411
421 => 0.030465939453635
422 => 0.030478913160689
423 => 0.030645689323583
424 => 0.031374010608234
425 => 0.032906719814896
426 => 0.032964885008893
427 => 0.033035382920816
428 => 0.032748632483614
429 => 0.032662145807922
430 => 0.032776244057265
501 => 0.033351849049266
502 => 0.034832461363923
503 => 0.034309114085152
504 => 0.033883624601125
505 => 0.034256893589758
506 => 0.034199431754737
507 => 0.033714396039613
508 => 0.033700782702551
509 => 0.03276984408993
510 => 0.03242569728129
511 => 0.032138102449049
512 => 0.031824056400095
513 => 0.031637879375356
514 => 0.0319239319013
515 => 0.031989355498457
516 => 0.031363896651139
517 => 0.031278648921399
518 => 0.031789412117586
519 => 0.031564644278115
520 => 0.031795823574985
521 => 0.031849459154878
522 => 0.031840822591183
523 => 0.031606139152354
524 => 0.031755719377903
525 => 0.031401917552468
526 => 0.031017211206624
527 => 0.030771792526028
528 => 0.030557632177144
529 => 0.030676460785777
530 => 0.030252858493245
531 => 0.030117339594435
601 => 0.031705044963149
602 => 0.032877899989727
603 => 0.032860846213138
604 => 0.032757035734034
605 => 0.032602794419272
606 => 0.033340565336381
607 => 0.033083540701056
608 => 0.033270547598382
609 => 0.033318148702406
610 => 0.033462222907753
611 => 0.033513717052568
612 => 0.033358065981954
613 => 0.032835681977796
614 => 0.031533950706217
615 => 0.030927991285341
616 => 0.030728014583399
617 => 0.030735283356705
618 => 0.030534778139699
619 => 0.030593835912121
620 => 0.030514240256582
621 => 0.03036350534125
622 => 0.030667153329515
623 => 0.030702145931486
624 => 0.030631270862702
625 => 0.030647964507115
626 => 0.030061149208718
627 => 0.030105763501359
628 => 0.029857345450622
629 => 0.029810770060833
630 => 0.029182790860804
701 => 0.028070234680911
702 => 0.028686698803013
703 => 0.027942096831487
704 => 0.027660104782309
705 => 0.028995011284356
706 => 0.028861023696093
707 => 0.028631695187992
708 => 0.028292470528262
709 => 0.028166648802203
710 => 0.027402195824984
711 => 0.027357027864892
712 => 0.027735911402368
713 => 0.027561069686409
714 => 0.027315525699467
715 => 0.026426190269158
716 => 0.025426282796649
717 => 0.025456463718049
718 => 0.025774515681115
719 => 0.026699294658878
720 => 0.026337967513427
721 => 0.026075820523651
722 => 0.026026728272576
723 => 0.026641220576374
724 => 0.027510855926367
725 => 0.027918869375589
726 => 0.027514540438963
727 => 0.027050069127182
728 => 0.027078339343777
729 => 0.027266408429505
730 => 0.027286171831262
731 => 0.026983848755715
801 => 0.027068950930614
802 => 0.026939672945036
803 => 0.026146294186176
804 => 0.02613194448026
805 => 0.025937236537875
806 => 0.025931340858761
807 => 0.025600094076592
808 => 0.025553750361966
809 => 0.024896039770726
810 => 0.025328946873611
811 => 0.025038575517639
812 => 0.02460091739251
813 => 0.024525464966775
814 => 0.024523196775746
815 => 0.024972573811687
816 => 0.025323695641306
817 => 0.025043626651695
818 => 0.02497986037167
819 => 0.025660717416147
820 => 0.025574072151087
821 => 0.025499037910348
822 => 0.027432989619019
823 => 0.025902115933472
824 => 0.025234567627358
825 => 0.024408349834557
826 => 0.024677370514045
827 => 0.024734057123949
828 => 0.022747152269214
829 => 0.021941065217102
830 => 0.021664446517566
831 => 0.021505248545169
901 => 0.021577797060273
902 => 0.020852224168791
903 => 0.021339821151735
904 => 0.020711536358861
905 => 0.02060620236872
906 => 0.021729653407929
907 => 0.021885975056929
908 => 0.021219058336965
909 => 0.021647326835192
910 => 0.021492030724357
911 => 0.020722306498348
912 => 0.020692908694622
913 => 0.020306688135126
914 => 0.019702327746551
915 => 0.019426118831817
916 => 0.019282266830869
917 => 0.01934162297008
918 => 0.019311610689767
919 => 0.019115760259636
920 => 0.019322836607168
921 => 0.018793842109079
922 => 0.018583192237542
923 => 0.018488046577609
924 => 0.018018533512768
925 => 0.018765737592337
926 => 0.018912946209041
927 => 0.019060444872195
928 => 0.020344320033337
929 => 0.02028018125848
930 => 0.020859964546337
1001 => 0.020837435233924
1002 => 0.020672071648361
1003 => 0.019974429881857
1004 => 0.020252497455717
1005 => 0.019396648684673
1006 => 0.020037908775999
1007 => 0.019745264449979
1008 => 0.019938965434998
1009 => 0.019590673598621
1010 => 0.019783432681489
1011 => 0.018947854833142
1012 => 0.018167603995252
1013 => 0.018481599709361
1014 => 0.018822948960362
1015 => 0.019563081110705
1016 => 0.019122264507919
1017 => 0.019280798827402
1018 => 0.018749735395457
1019 => 0.017653999844586
1020 => 0.017660201588808
1021 => 0.017491646546203
1022 => 0.017345990379953
1023 => 0.01917289759751
1024 => 0.018945692805878
1025 => 0.018583671706239
1026 => 0.019068251334252
1027 => 0.019196381879211
1028 => 0.019200029575696
1029 => 0.019553566363484
1030 => 0.019742249010501
1031 => 0.019775505144835
1101 => 0.020331802919086
1102 => 0.02051826659527
1103 => 0.021286284088145
1104 => 0.019726240606154
1105 => 0.019694112537257
1106 => 0.019075070363367
1107 => 0.018682464030016
1108 => 0.019101952454901
1109 => 0.019473561933468
1110 => 0.019086617305723
1111 => 0.01913714410526
1112 => 0.01861770255705
1113 => 0.018803378468539
1114 => 0.018963307576759
1115 => 0.018875004123398
1116 => 0.018742809579782
1117 => 0.019443094194004
1118 => 0.019403581391632
1119 => 0.02005570252387
1120 => 0.020564077580079
1121 => 0.021475176563717
1122 => 0.020524397277627
1123 => 0.020489747101436
1124 => 0.020828458131761
1125 => 0.020518214740376
1126 => 0.020714277854494
1127 => 0.021443587764909
1128 => 0.021458996934084
1129 => 0.0212008734968
1130 => 0.021185166662183
1201 => 0.021234742091875
1202 => 0.021525106932037
1203 => 0.021423644534874
1204 => 0.021541059389585
1205 => 0.021687888463321
1206 => 0.022295235766529
1207 => 0.022441665145168
1208 => 0.022085917670004
1209 => 0.022118037683876
1210 => 0.021984978362677
1211 => 0.021856444725629
1212 => 0.022145369570884
1213 => 0.022673385404421
1214 => 0.022670100645325
1215 => 0.022792590055544
1216 => 0.022868899943354
1217 => 0.022541322042623
1218 => 0.02232808087462
1219 => 0.022409851107321
1220 => 0.022540603490132
1221 => 0.022367449871811
1222 => 0.021298665526976
1223 => 0.021622866422991
1224 => 0.02156890354128
1225 => 0.021492053835613
1226 => 0.021818040343528
1227 => 0.02178659814959
1228 => 0.020844782370062
1229 => 0.020905074360554
1230 => 0.020848448925698
1231 => 0.021031417290193
]
'min_raw' => 0.017345990379953
'max_raw' => 0.038857159739615
'avg_raw' => 0.028101575059784
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.017345'
'max' => '$0.038857'
'avg' => '$0.0281015'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0042299096655289
'max_diff' => -0.028236692267102
'year' => 2034
]
9 => [
'items' => [
101 => 0.020508333848243
102 => 0.020669230791966
103 => 0.020770143846754
104 => 0.020829582411274
105 => 0.021044315263728
106 => 0.02101911884193
107 => 0.021042749018772
108 => 0.02136114115159
109 => 0.022971459300398
110 => 0.023059105364271
111 => 0.022627504090719
112 => 0.022799920286544
113 => 0.022468918893837
114 => 0.022691122346278
115 => 0.022843148305082
116 => 0.022156172230156
117 => 0.022115493965436
118 => 0.021783126412237
119 => 0.021961721909066
120 => 0.021677563632141
121 => 0.021747286133864
122 => 0.021552335940748
123 => 0.02190320747416
124 => 0.022295536368438
125 => 0.022394654140671
126 => 0.022133917954812
127 => 0.021945127772898
128 => 0.021613674404809
129 => 0.022164888742861
130 => 0.02232608061326
131 => 0.022164042070587
201 => 0.022126494199638
202 => 0.022055341052036
203 => 0.022141589676264
204 => 0.022325202727716
205 => 0.022238614203452
206 => 0.022295807449221
207 => 0.022077845773766
208 => 0.022541430484538
209 => 0.023277714572982
210 => 0.023280081846721
211 => 0.023193492855712
212 => 0.023158062506177
213 => 0.023246908065612
214 => 0.023295103136969
215 => 0.023582413384689
216 => 0.023890708727438
217 => 0.025329388572252
218 => 0.024925413028798
219 => 0.026201895374564
220 => 0.027211427179576
221 => 0.027514141626424
222 => 0.02723565857914
223 => 0.026282983117738
224 => 0.026236240314623
225 => 0.027659939663163
226 => 0.027257679387639
227 => 0.027209831807847
228 => 0.026700814398623
301 => 0.027001706730507
302 => 0.0269358971637
303 => 0.02683201354298
304 => 0.027406095151874
305 => 0.028480724675103
306 => 0.028313233586096
307 => 0.02818820925784
308 => 0.027640389045458
309 => 0.027970299173386
310 => 0.027852824495843
311 => 0.028357570261841
312 => 0.028058570051552
313 => 0.027254631870418
314 => 0.027382661675578
315 => 0.027363310228089
316 => 0.02776156164617
317 => 0.02764201645567
318 => 0.027339967111012
319 => 0.02847705170822
320 => 0.028403215759274
321 => 0.028507898253632
322 => 0.028553982725062
323 => 0.029246106081704
324 => 0.029529646875444
325 => 0.029594015599703
326 => 0.029863357423923
327 => 0.029587314129751
328 => 0.030691684121972
329 => 0.031426025725023
330 => 0.03227900128584
331 => 0.03352542783841
401 => 0.033994095752267
402 => 0.033909435088513
403 => 0.034854461475402
404 => 0.036552652885886
405 => 0.034252688125722
406 => 0.036674556602926
407 => 0.035907821004859
408 => 0.034089904694828
409 => 0.033972852316288
410 => 0.035203966347883
411 => 0.037934458779627
412 => 0.037250501394464
413 => 0.037935577488888
414 => 0.037136399834783
415 => 0.037096713928259
416 => 0.037896763214026
417 => 0.039766121978639
418 => 0.038878059701437
419 => 0.037604804665264
420 => 0.038544956369931
421 => 0.037730509956416
422 => 0.035895334237567
423 => 0.037249978385142
424 => 0.036344166421703
425 => 0.036608530508247
426 => 0.038512412526035
427 => 0.038283332404607
428 => 0.038579783293982
429 => 0.038056555233706
430 => 0.037567777719916
501 => 0.036655438193333
502 => 0.036385339437306
503 => 0.036459985016337
504 => 0.036385302446664
505 => 0.035874856866374
506 => 0.03576462619191
507 => 0.035580903571821
508 => 0.035637846894088
509 => 0.035292394618371
510 => 0.035944334436731
511 => 0.036065340211892
512 => 0.036539767644426
513 => 0.036589024274324
514 => 0.037910297920877
515 => 0.037182562599457
516 => 0.03767079028271
517 => 0.037627118603343
518 => 0.034129304453671
519 => 0.03461127238202
520 => 0.035361063228664
521 => 0.035023283468568
522 => 0.034545741916084
523 => 0.034160101508296
524 => 0.033575816856739
525 => 0.034398186283612
526 => 0.035479514630711
527 => 0.03661644854567
528 => 0.037982400149631
529 => 0.037677535653057
530 => 0.03659091303057
531 => 0.036639658127636
601 => 0.036940981137212
602 => 0.036550740461729
603 => 0.036435650868126
604 => 0.036925169594372
605 => 0.036928540640805
606 => 0.0364795215815
607 => 0.035980519066704
608 => 0.035978428227947
609 => 0.035889635550231
610 => 0.037152195854895
611 => 0.037846476363215
612 => 0.037926074504605
613 => 0.037841118774095
614 => 0.037873814862996
615 => 0.037469828332631
616 => 0.03839322174256
617 => 0.039240618849655
618 => 0.039013498322955
619 => 0.038673012366346
620 => 0.038401798901882
621 => 0.038949609050015
622 => 0.038925215926452
623 => 0.039233217575177
624 => 0.039219244841287
625 => 0.039115675471349
626 => 0.039013502021743
627 => 0.039418608200267
628 => 0.039301944126658
629 => 0.03918509884152
630 => 0.038950747734056
701 => 0.03898259994172
702 => 0.038642172774813
703 => 0.038484675590514
704 => 0.036116295827245
705 => 0.035483387365459
706 => 0.035682513251577
707 => 0.035748070663588
708 => 0.035472628089924
709 => 0.035867541985166
710 => 0.03580599507291
711 => 0.03604543810476
712 => 0.035895844493868
713 => 0.035901983867839
714 => 0.036341906780751
715 => 0.036469618273935
716 => 0.036404663177743
717 => 0.036450155500585
718 => 0.037498506879374
719 => 0.0373494648377
720 => 0.037270289223579
721 => 0.037292221409786
722 => 0.037560097663974
723 => 0.037635088389645
724 => 0.037317347415471
725 => 0.03746719589573
726 => 0.03810523170607
727 => 0.038328508129989
728 => 0.039041099296377
729 => 0.038738377903598
730 => 0.039294036121519
731 => 0.041001940045565
801 => 0.042366331878054
802 => 0.04111158076302
803 => 0.043617112609135
804 => 0.045568028548533
805 => 0.045493149145358
806 => 0.045152961825825
807 => 0.042931895896605
808 => 0.040888037914309
809 => 0.042597811903294
810 => 0.04260217046881
811 => 0.042455299366832
812 => 0.041543095566363
813 => 0.042423556651892
814 => 0.042493444455497
815 => 0.042454325870145
816 => 0.041754941355101
817 => 0.040687110468492
818 => 0.040895762067709
819 => 0.041237537643605
820 => 0.04059048517658
821 => 0.040383712707075
822 => 0.040768142067958
823 => 0.042006853567761
824 => 0.041772682334091
825 => 0.041766567176819
826 => 0.04276845101852
827 => 0.042051318407928
828 => 0.04089839383257
829 => 0.040607265172086
830 => 0.03957395455513
831 => 0.040287665878787
901 => 0.04031335107873
902 => 0.039922458680716
903 => 0.040930112596338
904 => 0.040920826888112
905 => 0.041877444311503
906 => 0.043706137535929
907 => 0.043165302964938
908 => 0.042536371201509
909 => 0.04260475352258
910 => 0.043354738802778
911 => 0.042901280581872
912 => 0.043064347319733
913 => 0.04335449198174
914 => 0.043529543460216
915 => 0.042579566308717
916 => 0.042358081192042
917 => 0.041905000374039
918 => 0.041786800045776
919 => 0.042155824918198
920 => 0.042058599902156
921 => 0.040311192337133
922 => 0.040128578524104
923 => 0.040134179029037
924 => 0.039674987913363
925 => 0.038974611243464
926 => 0.04081515931464
927 => 0.040667337546071
928 => 0.040504153754067
929 => 0.040524142837474
930 => 0.041323062373209
1001 => 0.040859648696079
1002 => 0.042091709908738
1003 => 0.041838435162565
1004 => 0.041578664874847
1005 => 0.041542756708287
1006 => 0.041442767310075
1007 => 0.041099866459189
1008 => 0.040685793076597
1009 => 0.040412385962988
1010 => 0.037278289860217
1011 => 0.037859959866693
1012 => 0.038529118188254
1013 => 0.038760108959374
1014 => 0.038364983261299
1015 => 0.041115468430068
1016 => 0.041618008574737
1017 => 0.040095781696653
1018 => 0.039811035199877
1019 => 0.041134136362992
1020 => 0.040336144619095
1021 => 0.04069548025251
1022 => 0.039918793159149
1023 => 0.04149696136998
1024 => 0.041484938372368
1025 => 0.040870995293809
1026 => 0.041389895779706
1027 => 0.041299724050768
1028 => 0.04060658382715
1029 => 0.0415189351514
1030 => 0.041519387666274
1031 => 0.040928480801435
1101 => 0.040238430949449
1102 => 0.040115066334164
1103 => 0.040022127668251
1104 => 0.040672623037939
1105 => 0.041255855152355
1106 => 0.042341105521781
1107 => 0.042613963249568
1108 => 0.043678945126285
1109 => 0.043044800271726
1110 => 0.043325908472202
1111 => 0.043631091189
1112 => 0.043777407006157
1113 => 0.04353899323384
1114 => 0.045193348452412
1115 => 0.045333026720993
1116 => 0.045379859636237
1117 => 0.044822020364659
1118 => 0.045317512201727
1119 => 0.045085687980128
1120 => 0.045688830202106
1121 => 0.045783410603818
1122 => 0.045703304368363
1123 => 0.045733325680717
1124 => 0.044321625349925
1125 => 0.044248421240461
1126 => 0.043250278013592
1127 => 0.043657028756443
1128 => 0.042896627738753
1129 => 0.043137758734461
1130 => 0.043244046979789
1201 => 0.043188528032234
1202 => 0.04368002583316
1203 => 0.043262152296006
1204 => 0.042159315326687
1205 => 0.041056177890173
1206 => 0.041042328898253
1207 => 0.040751892283212
1208 => 0.040541959806657
1209 => 0.040582400249396
1210 => 0.040724917644339
1211 => 0.04053367643658
1212 => 0.040574487444431
1213 => 0.041252222097076
1214 => 0.041388136948281
1215 => 0.040926245178524
1216 => 0.039071683072288
1217 => 0.0386165688796
1218 => 0.038943695935997
1219 => 0.03878735027272
1220 => 0.031304418898654
1221 => 0.033062422629101
1222 => 0.032017876508635
1223 => 0.032499251418202
1224 => 0.031433040313113
1225 => 0.031941892137374
1226 => 0.031847925785726
1227 => 0.034674743761172
1228 => 0.034630606886647
1229 => 0.034651732872811
1230 => 0.03364333450974
1231 => 0.035249740483111
]
'min_raw' => 0.020508333848243
'max_raw' => 0.045783410603818
'avg_raw' => 0.03314587222603
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0205083'
'max' => '$0.045783'
'avg' => '$0.033145'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00316234346829
'max_diff' => 0.006926250864203
'year' => 2035
]
10 => [
'items' => [
101 => 0.036041113830084
102 => 0.035894651685279
103 => 0.035931513051723
104 => 0.035298112648659
105 => 0.034657865573257
106 => 0.033947733033318
107 => 0.03526707151749
108 => 0.035120383599909
109 => 0.035456832906193
110 => 0.036312518221441
111 => 0.036438521134543
112 => 0.036607870327549
113 => 0.036547170696953
114 => 0.037993282157882
115 => 0.037818148518213
116 => 0.038240170200429
117 => 0.037372039581249
118 => 0.036389667381931
119 => 0.036576384220855
120 => 0.036558401887785
121 => 0.036329466148638
122 => 0.036122793199746
123 => 0.035778740969582
124 => 0.03686737313597
125 => 0.03682317665809
126 => 0.037538666262175
127 => 0.037412196524758
128 => 0.036567600665891
129 => 0.036597765572222
130 => 0.036800639064051
131 => 0.037502786535642
201 => 0.037711231711055
202 => 0.0376146716007
203 => 0.037843222219657
204 => 0.038023859310121
205 => 0.037865907457081
206 => 0.040102172605142
207 => 0.039173519403805
208 => 0.039626138512609
209 => 0.039734085503072
210 => 0.039457581556881
211 => 0.039517545361946
212 => 0.03960837418746
213 => 0.040159869029876
214 => 0.041607151072692
215 => 0.042248142437474
216 => 0.044176596584375
217 => 0.042194917027659
218 => 0.042077332363769
219 => 0.042424705189362
220 => 0.043556911921196
221 => 0.044474459134577
222 => 0.044778862479824
223 => 0.04481909440705
224 => 0.045390175319085
225 => 0.045717508247835
226 => 0.045320831075445
227 => 0.044984688705675
228 => 0.043780668460687
229 => 0.043920037082483
301 => 0.044880148681442
302 => 0.046236362865264
303 => 0.047400135725019
304 => 0.046992623031112
305 => 0.050101657226496
306 => 0.050409905267702
307 => 0.05036731535526
308 => 0.051069550266587
309 => 0.049675756975255
310 => 0.049079883339737
311 => 0.045057366501397
312 => 0.046187529656641
313 => 0.047830288174943
314 => 0.047612862925018
315 => 0.046419847777966
316 => 0.047399230716049
317 => 0.047075416088583
318 => 0.046820010056819
319 => 0.047990074601226
320 => 0.046703540571048
321 => 0.047817454013845
322 => 0.046388848501499
323 => 0.046994484514771
324 => 0.04665069622232
325 => 0.046873169380644
326 => 0.045572595842953
327 => 0.046274353754253
328 => 0.045543400406677
329 => 0.045543053839617
330 => 0.045526918003957
331 => 0.046386881375837
401 => 0.04641492475052
402 => 0.045779410519368
403 => 0.045687822990061
404 => 0.046026470088877
405 => 0.045630003027979
406 => 0.045815507470439
407 => 0.045635621768565
408 => 0.0455951257081
409 => 0.045272446208483
410 => 0.04513342700779
411 => 0.045187940018465
412 => 0.045001859009648
413 => 0.044889738470991
414 => 0.045504614406785
415 => 0.045176110998315
416 => 0.045454266548035
417 => 0.0451372731931
418 => 0.044038436117465
419 => 0.043406483295276
420 => 0.041330881921653
421 => 0.041919519896437
422 => 0.042309787482709
423 => 0.042180804047774
424 => 0.042457910375977
425 => 0.042474922453965
426 => 0.042384832361901
427 => 0.042280519576547
428 => 0.042229745881496
429 => 0.042608171406301
430 => 0.042827860160668
501 => 0.042348956056098
502 => 0.042236755524978
503 => 0.042720954015718
504 => 0.043016314815358
505 => 0.045197093010998
506 => 0.045035533918445
507 => 0.045441015536384
508 => 0.045395364528827
509 => 0.045820373862714
510 => 0.046515084501275
511 => 0.045102543528932
512 => 0.045347711799739
513 => 0.045287602201499
514 => 0.045943863033497
515 => 0.045945911808181
516 => 0.045552450656739
517 => 0.045765752330114
518 => 0.045646693187661
519 => 0.045861849149881
520 => 0.045033376198266
521 => 0.046042366825205
522 => 0.046614399492759
523 => 0.046622342166903
524 => 0.046893481111392
525 => 0.047168973982302
526 => 0.04769775855764
527 => 0.047154226467494
528 => 0.046176465149103
529 => 0.046247056358141
530 => 0.045673795254918
531 => 0.045683431877631
601 => 0.045631990830352
602 => 0.045786369285538
603 => 0.045067253587725
604 => 0.045236028604654
605 => 0.044999742592609
606 => 0.045347198160094
607 => 0.044973393405943
608 => 0.045287573214831
609 => 0.045423162805121
610 => 0.045923491312328
611 => 0.044899494478623
612 => 0.042811495616208
613 => 0.043250418291627
614 => 0.04260121717805
615 => 0.042661303212795
616 => 0.0427826865656
617 => 0.042389243404996
618 => 0.042464299961221
619 => 0.042461618412867
620 => 0.042438510277849
621 => 0.042336160516281
622 => 0.042187733112722
623 => 0.042779022204952
624 => 0.042879493743746
625 => 0.043102829528695
626 => 0.043767325334592
627 => 0.043700926533692
628 => 0.043809225732819
629 => 0.0435728091892
630 => 0.042672269898194
701 => 0.042721173514321
702 => 0.042111344637592
703 => 0.043087234833234
704 => 0.042856131153785
705 => 0.042707137108226
706 => 0.042666482702475
707 => 0.043332625664947
708 => 0.04353194607983
709 => 0.04340774297317
710 => 0.043152998777828
711 => 0.043642182941246
712 => 0.043773067986354
713 => 0.043802368321099
714 => 0.044669108866916
715 => 0.043850809489324
716 => 0.044047782282706
717 => 0.045584507788316
718 => 0.044190909808352
719 => 0.044929129739283
720 => 0.044892997715175
721 => 0.045270646051838
722 => 0.044862019528839
723 => 0.044867084944326
724 => 0.04520241108317
725 => 0.044731505997552
726 => 0.044614903276
727 => 0.044453817451301
728 => 0.044805542456325
729 => 0.045016385689684
730 => 0.046715627303262
731 => 0.047813414880465
801 => 0.04776575702653
802 => 0.048201260599733
803 => 0.048005062251249
804 => 0.047371486029487
805 => 0.048452923383646
806 => 0.048110711355529
807 => 0.04813892289934
808 => 0.04813787286427
809 => 0.048365413946273
810 => 0.04820418023584
811 => 0.047886372042276
812 => 0.048097347952651
813 => 0.048723870981198
814 => 0.050668617685881
815 => 0.051756923706288
816 => 0.050603100296935
817 => 0.051398992234396
818 => 0.050921740677213
819 => 0.050835009872269
820 => 0.051334888824946
821 => 0.051835642749558
822 => 0.051803746889379
823 => 0.051440225254109
824 => 0.051234881106366
825 => 0.052789815788416
826 => 0.05393546517453
827 => 0.053857339566927
828 => 0.054202160591074
829 => 0.055214565782881
830 => 0.055307127425745
831 => 0.055295466786249
901 => 0.055066043096602
902 => 0.056062887485364
903 => 0.056894472612276
904 => 0.055012938141137
905 => 0.055729401836652
906 => 0.056051045472587
907 => 0.056523313757507
908 => 0.057320109515521
909 => 0.058185641048361
910 => 0.058308036697175
911 => 0.058221191127171
912 => 0.057650349814526
913 => 0.058597424745699
914 => 0.05915219902874
915 => 0.059482554418507
916 => 0.060320280721061
917 => 0.056053031834182
918 => 0.053032460976019
919 => 0.052560755218945
920 => 0.053519987424868
921 => 0.053772929307836
922 => 0.053670968751974
923 => 0.050271041632823
924 => 0.052542855306293
925 => 0.054987135799428
926 => 0.055081030567815
927 => 0.056304688490174
928 => 0.056703161669127
929 => 0.057688366685135
930 => 0.057626741843141
1001 => 0.057866623586504
1002 => 0.057811478927877
1003 => 0.059636363760642
1004 => 0.0616494827292
1005 => 0.061579774820646
1006 => 0.061290365150773
1007 => 0.061720187862216
1008 => 0.063797942376708
1009 => 0.063606656036351
1010 => 0.063792474422276
1011 => 0.066242264091975
1012 => 0.069427339141101
1013 => 0.067947552004476
1014 => 0.071158264293675
1015 => 0.073179237487181
1016 => 0.076674301652821
1017 => 0.076236702405729
1018 => 0.077597305237447
1019 => 0.075453308423716
1020 => 0.070530258366142
1021 => 0.069751166849852
1022 => 0.071310927795203
1023 => 0.075145447880102
1024 => 0.071190165111831
1025 => 0.071990313664481
1026 => 0.071759870827489
1027 => 0.071747591508025
1028 => 0.072216243188376
1029 => 0.071536439482799
1030 => 0.068766796891928
1031 => 0.070036107769718
1101 => 0.069545965882489
1102 => 0.070089814848868
1103 => 0.073024743420042
1104 => 0.071727141538768
1105 => 0.070360223365462
1106 => 0.072074642098213
1107 => 0.074257686283198
1108 => 0.074121075301409
1109 => 0.073855992897778
1110 => 0.075350248527782
1111 => 0.077818321052728
1112 => 0.078485431138702
1113 => 0.078977878165703
1114 => 0.079045778290765
1115 => 0.079745191778604
1116 => 0.075984269179602
1117 => 0.081952949931561
1118 => 0.082983576215945
1119 => 0.082789861189564
1120 => 0.083935358929274
1121 => 0.083598324435778
1122 => 0.083110014333795
1123 => 0.084925871905592
1124 => 0.082844137731677
1125 => 0.079889378154849
1126 => 0.078268338612484
1127 => 0.0804030542474
1128 => 0.081706650594335
1129 => 0.08256824485536
1130 => 0.082828962758156
1201 => 0.076276218894989
1202 => 0.072744653384578
1203 => 0.075008346387271
1204 => 0.077770208082301
1205 => 0.075968926898437
1206 => 0.076039533710568
1207 => 0.073471380110745
1208 => 0.077997432690596
1209 => 0.077338024899805
1210 => 0.080759033684898
1211 => 0.079942582483025
1212 => 0.082732282344472
1213 => 0.081997660877929
1214 => 0.085047033513413
1215 => 0.086263510816176
1216 => 0.088306165537089
1217 => 0.089808750664893
1218 => 0.090691097391813
1219 => 0.090638124603928
1220 => 0.094134421919379
1221 => 0.092072777543782
1222 => 0.08948286631576
1223 => 0.089436022992711
1224 => 0.090777374717029
1225 => 0.093588479949325
1226 => 0.094317358636142
1227 => 0.094724702386614
1228 => 0.094100841253029
1229 => 0.091863074042702
1230 => 0.09089681750702
1231 => 0.091720096070568
]
'min_raw' => 0.033947733033318
'max_raw' => 0.094724702386614
'avg_raw' => 0.064336217709966
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.033947'
'max' => '$0.094724'
'avg' => '$0.064336'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013439399185075
'max_diff' => 0.048941291782795
'year' => 2036
]
11 => [
'items' => [
101 => 0.090713297132482
102 => 0.092451314557507
103 => 0.094837983702556
104 => 0.094345145962016
105 => 0.095992628638278
106 => 0.097697599887976
107 => 0.1001357853501
108 => 0.10077321731564
109 => 0.10182686811532
110 => 0.10291142089444
111 => 0.10325975001758
112 => 0.10392481839383
113 => 0.1039213131552
114 => 0.1059255414713
115 => 0.10813626736973
116 => 0.10897076521797
117 => 0.11088964700552
118 => 0.10760362918999
119 => 0.11009611145012
120 => 0.11234439283963
121 => 0.10966389908129
122 => 0.11335833525222
123 => 0.11350178183696
124 => 0.11566765495898
125 => 0.11347212761873
126 => 0.11216843049247
127 => 0.11593215524711
128 => 0.11775330309966
129 => 0.11720475854548
130 => 0.11303030740317
131 => 0.11060059778772
201 => 0.10424157906809
202 => 0.11177411143065
203 => 0.11544298821748
204 => 0.11302080589863
205 => 0.11424241377033
206 => 0.12090711021061
207 => 0.12344459510794
208 => 0.12291681598765
209 => 0.123006001971
210 => 0.12437518276298
211 => 0.13044688441629
212 => 0.12680858004469
213 => 0.12958992741211
214 => 0.1310651440269
215 => 0.13243540743343
216 => 0.12907047358319
217 => 0.12469274408472
218 => 0.12330613338797
219 => 0.11277996760302
220 => 0.11223203496109
221 => 0.11192446376512
222 => 0.10998527088132
223 => 0.10846159646429
224 => 0.10724991399746
225 => 0.1040700973655
226 => 0.10514319213429
227 => 0.10007522810225
228 => 0.10331753189233
301 => 0.095228938926922
302 => 0.10196535950235
303 => 0.098299032050606
304 => 0.10076087232889
305 => 0.10075228320008
306 => 0.096219254720582
307 => 0.093604698495498
308 => 0.095270795482172
309 => 0.097056983706831
310 => 0.097346786736823
311 => 0.099662626394376
312 => 0.10030892746399
313 => 0.098350605050143
314 => 0.09506132081633
315 => 0.095825346523259
316 => 0.093589215538933
317 => 0.089670482000438
318 => 0.092484984842308
319 => 0.093445979857478
320 => 0.093870410002854
321 => 0.090016785637332
322 => 0.08880589319543
323 => 0.088161224219733
324 => 0.094563866302483
325 => 0.094914617488923
326 => 0.093120124827875
327 => 0.10123140181659
328 => 0.099395570020707
329 => 0.10144664392642
330 => 0.095756019198493
331 => 0.095973408726543
401 => 0.093279375784035
402 => 0.094787854216493
403 => 0.093721710280961
404 => 0.094665984066225
405 => 0.095231977879725
406 => 0.097925568757936
407 => 0.10199611598341
408 => 0.097523236104071
409 => 0.095574338287824
410 => 0.096783423532006
411 => 0.10000337686865
412 => 0.10488177100005
413 => 0.10199366348743
414 => 0.10327535655829
415 => 0.10355534947571
416 => 0.10142576591946
417 => 0.10496029178338
418 => 0.10685447290829
419 => 0.10879751079689
420 => 0.11048459615288
421 => 0.10802141873587
422 => 0.11065737165469
423 => 0.10853325891045
424 => 0.10662771019212
425 => 0.10663060012295
426 => 0.10543522157632
427 => 0.10311902501484
428 => 0.10269188283207
429 => 0.10491393040894
430 => 0.1066958021369
501 => 0.10684256562701
502 => 0.10782910137148
503 => 0.10841292306294
504 => 0.11413516930629
505 => 0.11643670408227
506 => 0.11925097724052
507 => 0.1203472952394
508 => 0.12364681936427
509 => 0.12098218565919
510 => 0.12040567539576
511 => 0.11240210913493
512 => 0.11371269266177
513 => 0.11581106334075
514 => 0.11243671049455
515 => 0.1145769607065
516 => 0.11499949143504
517 => 0.11232205127605
518 => 0.11375218775032
519 => 0.10995416928055
520 => 0.10207890240726
521 => 0.10496905920667
522 => 0.1070971874273
523 => 0.10406008606015
524 => 0.10950397270871
525 => 0.10632376651325
526 => 0.10531579382611
527 => 0.10138333300536
528 => 0.10323930313846
529 => 0.1057495293184
530 => 0.10419850138431
531 => 0.10741711723556
601 => 0.11197553565443
602 => 0.11522413607822
603 => 0.11547352328073
604 => 0.11338489084756
605 => 0.11673193765119
606 => 0.1167563172331
607 => 0.11298083476551
608 => 0.11066837277609
609 => 0.11014297654663
610 => 0.11145551933782
611 => 0.11304918859508
612 => 0.11556196083314
613 => 0.11708037647024
614 => 0.12103959914638
615 => 0.12211085128274
616 => 0.12328783259724
617 => 0.124860642601
618 => 0.12674920427073
619 => 0.12261713885324
620 => 0.12278131351541
621 => 0.11893359141098
622 => 0.11482174852324
623 => 0.11794212472658
624 => 0.12202160152621
625 => 0.12108576504096
626 => 0.12098046431896
627 => 0.12115755092537
628 => 0.12045196077705
629 => 0.11726060268659
630 => 0.11565792263252
701 => 0.11772578878956
702 => 0.11882476762189
703 => 0.12052918794981
704 => 0.12031908216845
705 => 0.1247094858918
706 => 0.12641546401977
707 => 0.12597900181172
708 => 0.12605932136205
709 => 0.12914791327461
710 => 0.13258306269876
711 => 0.13580053344236
712 => 0.13907348287634
713 => 0.13512781458829
714 => 0.13312444756661
715 => 0.13519141095797
716 => 0.1340946510879
717 => 0.14039695862145
718 => 0.14083331672116
719 => 0.14713516852615
720 => 0.15311637629964
721 => 0.14935968686157
722 => 0.15290207579666
723 => 0.15673345824516
724 => 0.16412481660771
725 => 0.16163566714233
726 => 0.15972901766179
727 => 0.15792724311554
728 => 0.16167644992263
729 => 0.1664997445849
730 => 0.16753863605821
731 => 0.16922203713207
801 => 0.1674521467394
802 => 0.16958378477034
803 => 0.17710940370876
804 => 0.17507591504112
805 => 0.17218803423346
806 => 0.17812878761721
807 => 0.1802787231727
808 => 0.1953680968311
809 => 0.21441905438577
810 => 0.2065318328628
811 => 0.20163597994445
812 => 0.20278662151145
813 => 0.2097433862948
814 => 0.21197767834654
815 => 0.20590410234326
816 => 0.20804939206528
817 => 0.21987014935381
818 => 0.2262116063838
819 => 0.21759905596576
820 => 0.19383737094109
821 => 0.17192801216372
822 => 0.17773936070276
823 => 0.17708053412557
824 => 0.1897804631626
825 => 0.17502741700892
826 => 0.17527582046985
827 => 0.1882383705899
828 => 0.18478018445224
829 => 0.17917836580024
830 => 0.17196891163922
831 => 0.15864156882878
901 => 0.14683716964112
902 => 0.16998831483889
903 => 0.16898999536034
904 => 0.16754428081274
905 => 0.17076156209578
906 => 0.18638376676499
907 => 0.18602362438322
908 => 0.18373258229668
909 => 0.185470317527
910 => 0.17887373241254
911 => 0.18057382259799
912 => 0.17192454160935
913 => 0.1758343778421
914 => 0.17916634681332
915 => 0.17983528891494
916 => 0.18134244962691
917 => 0.16846392635913
918 => 0.17424600521279
919 => 0.17764243483179
920 => 0.16229724224997
921 => 0.177339109713
922 => 0.16823973992117
923 => 0.16515127714587
924 => 0.16930948539878
925 => 0.16768902759863
926 => 0.16629585313854
927 => 0.16551843785203
928 => 0.16857176706827
929 => 0.16842932561081
930 => 0.16343348638738
1001 => 0.15691661777688
1002 => 0.15910389279149
1003 => 0.15830923527287
1004 => 0.15542929391254
1005 => 0.15737002666395
1006 => 0.14882402180908
1007 => 0.13412106463894
1008 => 0.14383428850929
1009 => 0.14346033995623
1010 => 0.14327177813857
1011 => 0.15057099742335
1012 => 0.14986934591076
1013 => 0.14859584154481
1014 => 0.15540590500616
1015 => 0.15292014023449
1016 => 0.16058068154094
1017 => 0.16562640949812
1018 => 0.16434664967598
1019 => 0.16909218120782
1020 => 0.15915428319015
1021 => 0.16245525427236
1022 => 0.16313557983745
1023 => 0.15532186988015
1024 => 0.14998414477569
1025 => 0.14962817936574
1026 => 0.14037329961844
1027 => 0.14531718167667
1028 => 0.14966759329617
1029 => 0.14758408373601
1030 => 0.14692450685234
1031 => 0.15029414210623
1101 => 0.15055599162444
1102 => 0.14458579485986
1103 => 0.14582718781876
1104 => 0.15100400282177
1105 => 0.14569674536302
1106 => 0.13538561105626
1107 => 0.13282830718559
1108 => 0.13248711570878
1109 => 0.12555150478922
1110 => 0.13299919845846
1111 => 0.12974808058605
1112 => 0.1400183229906
1113 => 0.13415201560954
1114 => 0.13389913082318
1115 => 0.13351685837847
1116 => 0.12754709155352
1117 => 0.12885409108971
1118 => 0.13319875660965
1119 => 0.13474898221333
1120 => 0.13458728098224
1121 => 0.13317746537838
1122 => 0.13382287174241
1123 => 0.1317437929694
1124 => 0.13100962698237
1125 => 0.12869239717904
1126 => 0.12528670951921
1127 => 0.12576029127661
1128 => 0.11901273287584
1129 => 0.11533630493907
1130 => 0.11431871814072
1201 => 0.11295795854608
1202 => 0.11447241955777
1203 => 0.11899361789068
1204 => 0.11354009347546
1205 => 0.10419040838584
1206 => 0.10475234039081
1207 => 0.10601483476688
1208 => 0.10366218484931
1209 => 0.10143559914528
1210 => 0.10337143476633
1211 => 0.099409849939134
1212 => 0.10649357336655
1213 => 0.10630197849975
1214 => 0.10894235253897
1215 => 0.11059343261163
1216 => 0.10678822758767
1217 => 0.10583122881452
1218 => 0.10637637880888
1219 => 0.097366263738752
1220 => 0.10820603391272
1221 => 0.10829977669532
1222 => 0.10749709407784
1223 => 0.11326893705512
1224 => 0.12544932602015
1225 => 0.12086657373649
1226 => 0.11909199353784
1227 => 0.11571851528299
1228 => 0.12021347476026
1229 => 0.1198683320047
1230 => 0.11830746557254
1231 => 0.11736344868417
]
'min_raw' => 0.088161224219733
'max_raw' => 0.2262116063838
'avg_raw' => 0.15718641530177
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.088161'
'max' => '$0.226211'
'avg' => '$0.157186'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.054213491186415
'max_diff' => 0.13148690399719
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.002767280088683
]
1 => [
'year' => 2028
'avg' => 0.0047494559793298
]
2 => [
'year' => 2029
'avg' => 0.012974657729374
]
3 => [
'year' => 2030
'avg' => 0.010009929115772
]
4 => [
'year' => 2031
'avg' => 0.0098309909085463
]
5 => [
'year' => 2032
'avg' => 0.017236820989385
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.002767280088683
'min' => '$0.002767'
'max_raw' => 0.017236820989385
'max' => '$0.017236'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.017236820989385
]
1 => [
'year' => 2033
'avg' => 0.044334876026099
]
2 => [
'year' => 2034
'avg' => 0.028101575059784
]
3 => [
'year' => 2035
'avg' => 0.03314587222603
]
4 => [
'year' => 2036
'avg' => 0.064336217709966
]
5 => [
'year' => 2037
'avg' => 0.15718641530177
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.017236820989385
'min' => '$0.017236'
'max_raw' => 0.15718641530177
'max' => '$0.157186'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.15718641530177
]
]
]
]
'prediction_2025_max_price' => '$0.004731'
'last_price' => 0.00458783
'sma_50day_nextmonth' => '$0.004124'
'sma_200day_nextmonth' => '$0.004421'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004508'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004458'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004167'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003956'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004067'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004687'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004286'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.0045028'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004400034'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004212'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004092'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004185'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.004316'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.004232'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.004569'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.003823'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.003498'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.031655'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004483'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004464'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0045063'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.004426'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.004342'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.01072'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.041462'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.83
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002351'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004712'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 71.3
'cci_20_action' => 'NEUTRAL'
'adx_14' => 7.64
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000420'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 52.36
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000564'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 29
'sell_pct' => 17.14
'buy_pct' => 82.86
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767702200
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Radar para 2026
A previsão de preço para Radar em 2026 sugere que o preço médio poderia variar entre $0.001585 na extremidade inferior e $0.004731 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Radar poderia potencialmente ganhar 3.13% até 2026 se RADAR atingir a meta de preço prevista.
Previsão de preço de Radar 2027-2032
A previsão de preço de RADAR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002767 na extremidade inferior e $0.017236 na extremidade superior. Considerando a volatilidade de preços no mercado, se Radar atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Radar | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001525 | $0.002767 | $0.0040086 |
| 2028 | $0.002753 | $0.004749 | $0.006745 |
| 2029 | $0.006049 | $0.012974 | $0.019899 |
| 2030 | $0.005144 | $0.0100099 | $0.014875 |
| 2031 | $0.006082 | $0.00983 | $0.013579 |
| 2032 | $0.009284 | $0.017236 | $0.025188 |
Previsão de preço de Radar 2032-2037
A previsão de preço de Radar para 2032-2037 é atualmente estimada entre $0.017236 na extremidade inferior e $0.157186 na extremidade superior. Comparado ao preço atual, Radar poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Radar | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.009284 | $0.017236 | $0.025188 |
| 2033 | $0.021575 | $0.044334 | $0.067093 |
| 2034 | $0.017345 | $0.0281015 | $0.038857 |
| 2035 | $0.0205083 | $0.033145 | $0.045783 |
| 2036 | $0.033947 | $0.064336 | $0.094724 |
| 2037 | $0.088161 | $0.157186 | $0.226211 |
Radar Histograma de preços potenciais
Previsão de preço de Radar baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Radar é Altista, com 29 indicadores técnicos mostrando sinais de alta e 6 indicando sinais de baixa. A previsão de preço de RADAR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Radar
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Radar está projetado para aumentar no próximo mês, alcançando $0.004421 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Radar é esperado para alcançar $0.004124 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.93, sugerindo que o mercado de RADAR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de RADAR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004508 | BUY |
| SMA 5 | $0.004458 | BUY |
| SMA 10 | $0.004167 | BUY |
| SMA 21 | $0.003956 | BUY |
| SMA 50 | $0.004067 | BUY |
| SMA 100 | $0.004687 | SELL |
| SMA 200 | $0.004286 | BUY |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0045028 | BUY |
| EMA 5 | $0.004400034 | BUY |
| EMA 10 | $0.004212 | BUY |
| EMA 21 | $0.004092 | BUY |
| EMA 50 | $0.004185 | BUY |
| EMA 100 | $0.004316 | BUY |
| EMA 200 | $0.004232 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.004569 | BUY |
| SMA 50 | $0.003823 | BUY |
| SMA 100 | $0.003498 | BUY |
| SMA 200 | $0.031655 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.004426 | BUY |
| EMA 50 | $0.004342 | BUY |
| EMA 100 | $0.01072 | SELL |
| EMA 200 | $0.041462 | SELL |
Osciladores de Radar
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.93 | NEUTRAL |
| Stoch RSI (14) | 101.83 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 71.3 | NEUTRAL |
| Índice Direcional Médio (14) | 7.64 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000420 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 52.36 | NEUTRAL |
| VWMA (10) | 0.002351 | BUY |
| Média Móvel de Hull (9) | 0.004712 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000564 | NEUTRAL |
Previsão do preço de Radar com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Radar
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Radar por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.006446 | $0.009058 | $0.012728 | $0.017886 | $0.025133 | $0.035316 |
| Amazon.com stock | $0.009572 | $0.019974 | $0.041677 | $0.086962 | $0.181451 | $0.3786098 |
| Apple stock | $0.0065074 | $0.00923 | $0.013092 | $0.01857 | $0.026341 | $0.037363 |
| Netflix stock | $0.007238 | $0.011421 | $0.018021 | $0.028435 | $0.044866 | $0.070793 |
| Google stock | $0.005941 | $0.007693 | $0.009963 | $0.0129026 | $0.0167089 | $0.021637 |
| Tesla stock | $0.01040026 | $0.023576 | $0.053446 | $0.121158 | $0.274658 | $0.622629 |
| Kodak stock | $0.00344 | $0.002579 | $0.001934 | $0.00145 | $0.001087 | $0.000815 |
| Nokia stock | $0.003039 | $0.002013 | $0.001333 | $0.000883 | $0.000585 | $0.000387 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Radar
Você pode fazer perguntas como: 'Devo investir em Radar agora?', 'Devo comprar RADAR hoje?', 'Radar será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Radar regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Radar, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Radar para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Radar é de $0.004587 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Radar com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Radar tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004707 | $0.004829 | $0.004954 | $0.005083 |
| Se Radar tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004826 | $0.005077 | $0.005341 | $0.005618 |
| Se Radar tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005184 | $0.005857 | $0.006619 | $0.007479 |
| Se Radar tiver 10% da média anterior do crescimento anual do Bitcoin | $0.00578 | $0.007282 | $0.009175 | $0.011561 |
| Se Radar tiver 20% da média anterior do crescimento anual do Bitcoin | $0.006972 | $0.010597 | $0.0161072 | $0.02448 |
| Se Radar tiver 50% da média anterior do crescimento anual do Bitcoin | $0.01055 | $0.024262 | $0.055795 | $0.12831 |
| Se Radar tiver 100% da média anterior do crescimento anual do Bitcoin | $0.016513 | $0.059435 | $0.213928 | $0.769998 |
Perguntas Frequentes sobre Radar
RADAR é um bom investimento?
A decisão de adquirir Radar depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Radar experimentou uma escalada de 0.6707% nas últimas 24 horas, e Radar registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Radar dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Radar pode subir?
Parece que o valor médio de Radar pode potencialmente subir para $0.004731 até o final deste ano. Observando as perspectivas de Radar em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.014875. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Radar na próxima semana?
Com base na nossa nova previsão experimental de Radar, o preço de Radar aumentará 0.86% na próxima semana e atingirá $0.004627 até 13 de janeiro de 2026.
Qual será o preço de Radar no próximo mês?
Com base na nossa nova previsão experimental de Radar, o preço de Radar diminuirá -11.62% no próximo mês e atingirá $0.0040548 até 5 de fevereiro de 2026.
Até onde o preço de Radar pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Radar em 2026, espera-se que RADAR fluctue dentro do intervalo de $0.001585 e $0.004731. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Radar não considera flutuações repentinas e extremas de preço.
Onde estará Radar em 5 anos?
O futuro de Radar parece seguir uma tendência de alta, com um preço máximo de $0.014875 projetada após um período de cinco anos. Com base na previsão de Radar para 2030, o valor de Radar pode potencialmente atingir seu pico mais alto de aproximadamente $0.014875, enquanto seu pico mais baixo está previsto para cerca de $0.005144.
Quanto será Radar em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Radar, espera-se que o valor de RADAR em 2026 aumente 3.13% para $0.004731 se o melhor cenário ocorrer. O preço ficará entre $0.004731 e $0.001585 durante 2026.
Quanto será Radar em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Radar, o valor de RADAR pode diminuir -12.62% para $0.0040086 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0040086 e $0.001525 ao longo do ano.
Quanto será Radar em 2028?
Nosso novo modelo experimental de previsão de preços de Radar sugere que o valor de RADAR em 2028 pode aumentar 47.02%, alcançando $0.006745 no melhor cenário. O preço é esperado para variar entre $0.006745 e $0.002753 durante o ano.
Quanto será Radar em 2029?
Com base no nosso modelo de previsão experimental, o valor de Radar pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.019899 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.019899 e $0.006049.
Quanto será Radar em 2030?
Usando nossa nova simulação experimental para previsões de preços de Radar, espera-se que o valor de RADAR em 2030 aumente 224.23%, alcançando $0.014875 no melhor cenário. O preço está previsto para variar entre $0.014875 e $0.005144 ao longo de 2030.
Quanto será Radar em 2031?
Nossa simulação experimental indica que o preço de Radar poderia aumentar 195.98% em 2031, potencialmente atingindo $0.013579 sob condições ideais. O preço provavelmente oscilará entre $0.013579 e $0.006082 durante o ano.
Quanto será Radar em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Radar, RADAR poderia ver um 449.04% aumento em valor, atingindo $0.025188 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.025188 e $0.009284 ao longo do ano.
Quanto será Radar em 2033?
De acordo com nossa previsão experimental de preços de Radar, espera-se que o valor de RADAR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.067093. Ao longo do ano, o preço de RADAR poderia variar entre $0.067093 e $0.021575.
Quanto será Radar em 2034?
Os resultados da nossa nova simulação de previsão de preços de Radar sugerem que RADAR pode aumentar 746.96% em 2034, atingindo potencialmente $0.038857 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.038857 e $0.017345.
Quanto será Radar em 2035?
Com base em nossa previsão experimental para o preço de Radar, RADAR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.045783 em 2035. A faixa de preço esperada para o ano está entre $0.045783 e $0.0205083.
Quanto será Radar em 2036?
Nossa recente simulação de previsão de preços de Radar sugere que o valor de RADAR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.094724 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.094724 e $0.033947.
Quanto será Radar em 2037?
De acordo com a simulação experimental, o valor de Radar poderia aumentar 4830.69% em 2037, com um pico de $0.226211 sob condições favoráveis. O preço é esperado para cair entre $0.226211 e $0.088161 ao longo do ano.
Previsões relacionadas
Previsão de Preço do KeyFi
Previsão de Preço do IDRX
Previsão de Preço do POSTHUMAN
Previsão de Preço do Rabbit Finance
Previsão de Preço do Marginswap
Previsão de Preço do CluCoin
Previsão de Preço do GATEWAY TO MARS
Previsão de Preço do NIRVANA
Previsão de Preço do Evil Coin
Previsão de Preço do BabyUSDT
Previsão de Preço do ShopNext Loyalty Token
Previsão de Preço do Alpaca
Previsão de Preço do Creaticles
Previsão de Preço do SOHOTRN
Previsão de Preço do Pawtocol
Previsão de Preço do BitScreener
Previsão de Preço do TurtleCoin
Previsão de Preço do Snowswap
Previsão de Preço do Lithium
Previsão de Preço do Meta Doge
Previsão de Preço do Butter
Previsão de Preço do APE
Previsão de Preço do TEN
Previsão de Preço do DeFiner
Previsão de Preço do TosDis
Como ler e prever os movimentos de preço de Radar?
Traders de Radar utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Radar
Médias móveis são ferramentas populares para a previsão de preço de Radar. Uma média móvel simples (SMA) calcula o preço médio de fechamento de RADAR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de RADAR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de RADAR.
Como ler gráficos de Radar e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Radar em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de RADAR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Radar?
A ação de preço de Radar é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de RADAR. A capitalização de mercado de Radar pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de RADAR, grandes detentores de Radar, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Radar.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


